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Abstract

Application generators produce special purpose programs from very high-level
descriptions. That principle is applicable in application domains where variants
of programs are developed that solve different instances of a certain application
problem, e. g. data base report generators. Application generators are a powerful
means for reuse of software design. The structure of application generators is similar
to that of programming language compilers: They translate from a domain specific
description language into a programming language. In this paper we show that the
Eli system, an integrated toolset for language implementation, is well suited for

construction of application generators.

1 Introduction

Application generators are software systems that generate programs for different
instances of a problem in a specialized application domain. Typical examples are
programs that produce reports of data extracted from a data base. Such a program
can be systematically constructed from information describing the data base and the
desired layout. Many different variants of such programs may be needed to produce
different reports. An application generator for this problem domain generates such

a program from a specification that describes which data have to be retrieved and

which layout has to be produced.
An application generator encorporates the knowledge how to construct such pro-

grams. Users of the application generator can produce programs in that application
domain by describing what they shall do without the need to understand how they
are built.

The input for an application generator can be considered as a very high level
specification within a restricted problem domain. It is formulated in a dedicated
specification language. An application generator is a translator for that language.
Hence techniques for language implementation have to be applied for the construc-
tion for application generators.

In this paper we show that Eli [2,9], an integrated toolset for language imple-
mentation, is well suited for constructing application generators. Eli incorporates
state-of-the-art know-how in the field of compiler construction. It enables users

who need not be compiler specialists to produce language implementations of high

quality.
This is most important for application generators, since they are usually con-

structed by people who are specialists in an application domain rather than in
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Figure 1: Application Generators

language implementation. Eli itself can be considered as an application generator
for the domain of language implementation. Eli has been successfully applied in
many industrial and academic projects, and in many application domains.

The term application generator was initially coined in [3] for the problem domain
of data base tools. Cleaveland [1] generalizes the principle of application generators,
points out their relationship to compilers, and describes tools to construct them.
In [7] application generators are discussed as one of several principles for software
reuse.

In the rest of the paper we summarize the principle of application generators
and present strategic aspects that make Eli suitable for application generator con-
struction. We demonstrate these strategies using data base report generators as a

running example throughout this paper.

2 Application Generators

ariants of programs that solve instances of prob-

An application generator produces v
lems in a certain restricted domain. Each problem instance is described in terms of

a dedicated specification language, the input language for the application generator,

Figure 1.



Let us assume for example that we want to produce information extracted from
a data base containing publication references. Such a data base report may look
like
Papers of Kastens since 1991:

1991 An Abstract Data Type for Name Analysis

1991 Attribute Grammars as a Specification Method

1991 An Attribute Grammar System in a Compiler Construction Environment
1991 Implementation of Visit-Oriented Attribute Evaluators

1992 Modularity and Reusabiltiy in Attribute Grammars

1993 Executable Specifications for Language Implementation

Kastens published 6 papers.

It may be useful to get such reports for different authors and time spans. Hence,
we need a program to produce the report which takes the author and the year as in-
put. Furthermore we may want to have several such programs that produce reports
containing different information presented in a certain layouts. According to the
application generator principle we decribe the desired report in a specification lan-
guage designed exactly for that problem class. The application generator translates
such a description into an application program.

The description for the above example may be

string name = InString ("Which author?");
int since InInt ("Since which year?");
int cnt = 0;

“Papers of ", name, " since ", since, ":\n\n";

L

SELECT SubString (name, Author) && Year >= since;
cnt = cnt + 1;

Year, "\t", Title, "\n";

]

"\n", name, " published ", cnt, " papers.\n\n\n";

records are to be selected from the data base, the fields to be
extracted, and the layout of the desired report. The generated program consists
of operations that access the data base and operations that prod’uce the formatt.ed
output. Those operations are selected and parameterized. accordu}g to the descrip-
tion and are systematically composed according to technical requirements for data
base use and printing facilities. . o

The same principle can be used in other problem domains: An application gener-
ator for simulation of mechanical systems may take descriptions of system structures
and of feedback equations for their components as input. An instance may be the
description of a car suspension. The generated simulator program can be run to

validate that car suspension under different constraints. o .
The principle of application generators is usefully applied in problem domains
ics. Krueger [7] describes them as follows:

that have certain appropriate characterist

a) If many similar software systems are written.

It describes which
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Figure 2: Compilation Subproblems

b) If one software system is modified or rewritten many times during its lifetime.
¢) If many prototypes of a system are necessary to converge to a usable product.

The example of the data base report programs fits to each of these character-
istics: Many different forms may be needed (2). The report programs have to be
modified when the data base schema changes (b). Different layouts of a form may
be considered until the final version is chosen (c).

Different people may be involved in the construction and use of an application
generator and its products:

a) the constructor of the application generator,
b) the user of the application generator,

c) the user of the generated application program.
s allows that these people have different

knowledge in different areas and act in roles suitable for their knowledge. In our
example of the data base report generator a specialist for a bibliographic data base
develops the application generator (a). He knows how to access the data base how
to print extracted information, and how to construct programs to solve these tasks.

He also designs the specification language and implements its analysis and its
translation into target programs. Solutions of these tasks clearly require language
implementation techniques. In order to avoid the application generator constructor
to be specialist in both areas he needs tools that incorporate language implementa-
tion knowledge.

A librarian (b) uses the application generator to produce a set of report pro-
grams. He knows which information is in the data base and what the frequently
asked questions of library users are. Finally the library users (c) call these programs
to retrieve information. They only need to know which kind of reports are provided

and how the corresponding programs are called.

The principle of application generator

3 Problem Decomposition




Implementation of application generators can be considered as a language imple-
mentation task: Specifications of problem instances written in a domain specific
language are translated into application programs. Well established knowledge and
effective tools for translator construction can be applied to solve that task. The
domain specific aspects of the solution then concentrate on the design of the specifi-
cation language and on the components of which application programs are composed
of.

Many years of research and experience in the field of compiler construction led
to a generally accepted model for decomposition of compilation tasks, as shown in
Figure 2 taken from [2]. Lexical analysis transforms the input program representa-
tion from a stream of characters into a stream of tokens, e. g. identifiers, numbers,
operators, and keywords. It determines the role of each token within the program
structure, and stores and encodes values associated with tokens. Syntactic analysis
determines the program structure by parsing the token stream and represents the
result in form of a tree. Each node together with its subtree is an abstraction of
an occurrence of a language construct in the input program, e. g. & declaration,
statement, or expression.

All tasks of the subsequent translation phase are expressed by computations
associated to nodes of that abstract program tree. The name analysis tasks maps
occurrences of identifiers to internal representations of named objects, e. g. variables,
parameters, or record fields, according to the scope rules of the language. Type
analysis associates the type property to objects and expression nodes and validates
typing restrictions of the language.

The transformation task maps the data objects of the program onto the storage
of an execution model, and transforms statements and operations into an instruc-
tion sequence for that model. For programming language compilers that model is
usually defined by an intermediate language. It serves as an interface to separate
the encoding phase from the frontend of the compiler. That final phase translates
the intermediate program representation into target machine code. .

This decomposition model is applicable for the implementation of domain specific
languages as well as for programming languages. Let us consider our example of
data base report generators.

Structuring. The first step in the design of a description language defines the
structural properties of the information to be described. In our case the overall
structure should be chosen according to the report structures, being composed of
three sections for the header, the record selection part, and the summary. Each
section is a sequence of statements that may have one of several forms, e. g- an
output statement is described by a sequences of string literals and expression for

text to be inserted:

3 3 " .
"Papers of ", name, " since w, since, ":\n\n";

The complete structuring task refines such structural components down to the level

of tokens, and describes the token notation. . .
has two kinds of named objects:

Name Analysis. Our description language
ld names. Each occurrence of a

those introduced by definitions and the record ﬁe. occurre
certain name refers to the same object. We require that the definition of a name

preceeds its applications, and that no name is multiply defined. Record field names
are predefined by the data base interface.

Type Analysis. Our language needs val
numbers for being printed, and boolean values

aes of three types: strings and integral
that determine selection. Opera-
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tors over these types and calls of predefined functions (e. g. input functions like
InInt) should be type checked. Definitions associate the type property to the de-
fined object. We also have to distinguish three kinds of objects: defined variables,
predefined record fields, and predefined functions. This distinction is similar to the
type property, hence it belongs to this subtask.

Transformation. The constructs of the description language are mapped to
components of the application program, a C program in our case. As an example
for this transformation we consider the header line of our report description:

"Papers of ", name, " since ", since, ":\n\n";

It is to be transformed into a C printf statement:

printf (%s¥sfshdis",
“\n\nPapers of ", name, " since ", since, ":\n\n");

The format string is derived from the types of the expression sequence. The
remaining arguments result from the translation of the expression sequence, which
is an identical mapping in this simple example.

The whole transformation task requires the design of such mappings for all rel-
evant language constructs, and their composition. The composition is trivial where
the structure of the description and that of the target program coincide, as in the
example above. The transformation of definitions are an example for restructuring:
Definitions may occur anywhere in a report description; their translations have to be
collected at the beginning of the C program. The transformation is also inﬂuen.ced
by properties that result from the analysis task, e. g. the format string above. Sim-
ilarly the kind of a named object determines whether its occurrences are translated
into a variable name or a call of a data base access function in case of record field
names.

The transformation task maps directly to the target program. Hence, the er}cod-
ing task of the decomposition model for programming language compilers (Figure
2) are not needed her. This situation is typical for application generators.

4 Problem Solution Methods

rts application generator construc-

In this section we demonstrate how Eli suppo
tion model and the

tion. We emphasize the consequences of the problem decomposi
solution methods typically applied. '

Eli comprises ayll:uge i:unlzger of components each dedicatefi for the' solution of
a subtask in the decomposition model discussed in the previous section. There
are several generating tools including generators for scanf\e.rs, parsers, grammar
mapping, attribute evaluators, operator identification, deﬁx}ltlon tables, and o?tput
transformers. These tools are driven by dedicated specification languages, see Figure
3. .

A library of C modules provides implementa.tio.ns of ba..sic tasks that ?.re .c;m-
mon in language implementation, e. g input reading, stox:mg and em.:gdmg ri‘ :ex;
tifiers and literals, error message output, consistent renaming of identi dei:rs. Their
implementations are generally applicable, validated and gfﬁcxent according to

state-of-the-art in compiler construction.

A library of specification modules contains comp tion
problem instances which occur often in language implementation,

plete solutions of particular sub-
e. g. different
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Figure 3: Problem solution with Eli

sc?pe.rules for consistent renaming of identifiers. Such specification modules com-
prise input fragments for generators and applications of basic library functions.
They can be easily reused for the specification of different application tasks.

.T.he components of Eli are smoothly integrated on the base of the task decom-
position model. Hence, solutions of related subtasks fit together, usually without
any C.0nsidera,tion of the user. In some cases Eli even deduces the existence of a
certain task and supplies its solution. An example is given below for the structuring
subtask.

Eli users may chose for each task the best suite
of components in Figure 3. From a general point 0
problem P can be described by one of three methods [8]:

problem P. Such a description is expresse
g tools.

d solution strategy from any layer
f view the solution of a particular

1. Describe the properties of the din
a specification language for one of Eli’s generatin

2. Identify P with the description of a problem ¢ that has a known solution.
This is the principle of Eli’s library of specification modules.

3. Describe a solution of P. This strategy is completely operational. The im-
plementation of a subproblem solution is provided by the user. It can be
considered as an escape for subtasks not foreseen in ELi. It is be applied if
certain domain specific algorithms have to be integrated into the application
generator, e. g. the data base access functions in the case of our example. Eli
then supports integration and interfacing with solutions of related subtasks.

three solution str
ow the methods (1) and (2)
as described in the previous section.
this task is the structure of report descrip-
grammars (method 1).

For complex subtasks several of the ategies may be combined.
The following examples demonstrate h are applied to
solve subtasks for the report generator

Structuring. The central aspect of

tions. It is specified using a notation for context-free

Report: Source.
Source: Section ’[’ Section »]* Section.
Section: Statements.



Statements: Statements Statement / .

Statement: QutputItems ’;’.

Qutputltenms: OutputItems ’,’ Outputltem / OutputItem.
QutputItem: Expr.

Statement: *SELECT’ Expr ’;°.

Statement: Type Defldent ’=’ Expr Y.

Type: rint’ / ’string’ / 'bool’.

Defldent: Ident.

Statement: Useldent ’=’ Expr ’;’.

It describes the decomposition into three sections, each consisting of a statement
sequence. A statement may be a sequence of output expressions, a selection expres-
sion, a variable definition, or an assignment. The restriction that selections may
only occur in the central section is deferred to the semantic analysis task where it
can be easily checked, instead of a more complicated description here.

We do not further refine expressions. Instead we instruct Eli to add a reusable
module from the library (method 2). It describes operators for the three types,
literals, identifiers, and function calls in C-like notation. Eli allows to combine
several fragments of each specification class: here one is explicitly specified and one
is taken from a library. .

The structure description given above covers the whole structuring ta,:v)k. It is
obvious that the parsing subtask can be solved by a parser generator glven Fhe
context-free grammar. The existence of the tree construction task and. its solution
are deduced automatically by Eli: The description of the transformation 'task (see
example below) states which tree nodes are needed. An Eli tool determines how
they are to be generated by the parser.

Some properties of the lexical analysis task are already described in the context-

free grammar, e. g. the notation of tokens like SELECT, ;, etc. The des.criptions of
identifiers, string literals, and qumbers come from the library’s expression module,

e. g.
Ident: C_IDENTIFIER

This again refers to a precoined solution for scanning,. storing, and encoding of
identifiers written as in C. If we did not use that expression module, we could have
added that lexical specification directly, or chosen a different language style, or
describe our own identifier notation. o

Name Analysis. We use this subtask to demonstrate that an mdml(llu:l solu-
tion is easily achieved by a selection of combinable library modules (metho :]} :

All problem instances of the name analysis task can be reduced to 2 SH\IN . lsle
of basic concepts [5]: Occurrences of names denote objects (e. g. variables). b;t 1:1
each range of the input text all occurrences of one na.fne denote the s%u.ne o fJe;l .
The binding between a name and its object is esta.bhshe.zd by a deﬁ.mtlc;)n o dt e
name for the smallest enclosing range. Auseofa :,m:,e yle-lfds the object bound to
it ] 1o range that has such a bin ing, if any.
) mE;il}: ;T;J:e:;:ll;cslizsﬁlbgr;y gprovides modules which implement theseauconcepts,
Range IdDef, IdUse, and Root (the latter for a structure that encloses all ranges).



[6] For our task we chose the Chain module that establishes the bindings from
the definition upto the end of the range. These concepts are simply associated to
symbols of our grammar indicating that they play the corresponding role:

SYMBOL Report INHERITS RootChain END;

SYMBOL Source INHERITS RangeChain, RangeUnique END;

SYMBOL DefIdent INHERITS IdDefChain, IdDefUnique, IdentSym END;
SYMBOL UseIdent INHERITS IdUseChain, NoKeyMsg END;

SYMBOL FctIdent INHERITS IdUseChain, NoKeyMsg END;

ATTR Sym: int;
SYMBOL IdentSym COMPUTE SYNT.Sym = CONSTITUENT Ident.Sym; END;

The above is written in the specification language LIDO for the attribute evalua-
tor generator LIGA [4]. The same technique is used for the additional requirements
of our description language: no multiply definitions (module Unique), and each used
name is defined (module NoKeyMsg).

Those translation tasks which can not completely solved by library modules
(e. g. type analysis) are specified in the language LIDO: Computations, writtefl as
C function calls, are associated to tree nodes. Dependencies between computations
in different tree contexts are stated as pre- and postconditions. Such a specification
abstracts from the evaluation order during the tree walk which is automatically
generated.

Transformation. This task is solved by the combination of two descriptions:

One specifies a set of target text patterns. Eli's PTG tool generates functions from

it which compose and output the text. The other describes which text patterns
are to be produced for different tree nodes. It is specified in terms oi: ca.lls. of th'ese
functions and their dependencies, and is written in LIDO. This techt'uque is .typx'cal
for language processors which translate into high level programs, like application
generators. .

Here only the translation of the output statements of our repf)rt description
language is shown. Each output statement is translated into a C printf statement
as described in the previous section.

The pattern for the printf statement

PrintStmt:

vprints (\'" $1 /+formatas/ "\", " §2 [razgsr/ N

consists of three string literals and two variables (81, $2) whex:e the format sttr::)gf
and the expressions to be printed are inserted. They are supplied as argumen
the calls of the generated function PTGPrintStmt.

The pattern is applied at the subtree oot of eac
description:

h output statement in the

CHAIN CFormat, CPrintArgs: PTGNode;

RULE: Statement ::= OutputItem ’;’ COMPUTE
CHAINSTART HEAD.CFormat = PTGNULL;
CHAINSTART HEAD.CPrintArgs = PTGNULL;
Statement .CStmt = PTGSeq (Statement .CStmt,
PTGPrintStmt (TAIL.CFormat, TAIL.CPrintArgs));

END;



The two arguments are both obtained from the sequence of OutputItems in its
subtree. Each OutputItem contributes one component to each argument. They are
composed in left-to-right order specified using LIDO’s CHAIN-construct: The CHAINs
CFormat and CPrintArgs are started in this tree context. Their results obtained
by TAIL.CFormat and TAIL.CPrintArgs fill the PrintStmt pattern, which then
is appended to an outer CHAIN that collects the translation of all statements in a
section.

The following LIDO fragment describes the contribution of each QutputItem to
the CHAIN that composes the format string:

RULE: Outputltem ::= EXpr COMPUTE

OutputItem.CFormat = PTGSeq (OutputItem.CFormat,

IF (EQ (Expr.Type, Tint), PTGIntFormat (),

IF (EQ (Expr.Type, Tbool), PTGBoolFormat (),
PTGStringFormat (0)));

END;

It selects one of three formats depending on the expression type which is determined
by the type analysis task. The patterns used for the format items are trivial:

StringFormat: %s"
IntFormat: %"
BoolFormat: Yc"

The translation of expressions into C code using PTG specifications are obt.ai_ned
from the expression module in the library. Hence, it need ot be described explicitly.

5 Conclusion

In this paper we have shown that the principle of application generators may effec-
tively reduce software development efforts in certain application domiams. As the
development of application generators cal be considered as a language implementa-

tion problem a tool set like Fli is well suited for their construction. Eliis desigr'xed
language implementation

such that it can be used without specialized knowledge in entalio
techniques. Hence, constructors of application generators need x}ot be specialists In
both areas, their application domain and language implementation.
Using data base report generators as an example for application generator we
demonstrated Eli’s central paradigms: 3 straight-forward problem decompo'smon
model supported by cooperating tools, high level specification languages dedicated
for different tasks, and large libraries that provide reusable and combinable solu-

tions for common tasks. These facilities allow for effective construction of applica-

tion generators from descriptions on adequate levels of abstraction. (The complete
he Eli system.)

specification for the presented example is available with t ' em.)

Eli has proven to be a useful toolset in many real life projects in different dl(;-
mains, e. g mechanical systems simulation, data base tools, user interface tools,
software configuration, signal processing, graphical music scores, and of course com-

piler construction. Eli is developed in cooperation of the group of W. M Waite,
of the author. It is available via

University of Colorado, Boulder and the group
anonymous ftp from both institutions.
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