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Abstract

The semantics of a programming language is described by a mapping from the
source language constructs to operations and data of an abstract machine. Such
mappings are implemented by compiler frontends. They can be effectively generated
from specifications using toolsets like Eli. In this paper it is shown that efficient
interpreters can be generated from the same specifications by simply adding an
implementation of the source machine. The technique is based on iterative tree
walking evaluators generated from attribute grammar specifications.

1 Introduction

The definition of a programming language describes the notation of programs and
the effects they yield if executed on some input. Constraints are stated for a program
and its execution being well-defined. The effects of program execution are usually
described in terms of an execution model close to the source language concepts, an
“abstract source language machine”. The language definition then maps language
constructs onto data and storage entities and operation sequences of that machine.

The abstract source language machine separates the structural properties and
static semantics of the language from its dynamic semantics. Common compiler
technique follows this separation: A compiler frontend translates the source lan-
guage into an intermediate language, which is translated to target machine code by
a compiler backend. Execution of the target program must have the same effect as
described for executing the intermediate program.

A source language can also be implemented by an interpreter. Some languages
are designed for being interpreted rather than compiled. They usually have a simple
syntactic structure and an almost 1:1 mapping to their execution models. Examples
are LISP, APL or command languages. If the language is designed for compilation
it may be useful, too, to implement it by an interpreter: Programs are executable
without having a compiler backend. Thus an interpreter may support rapid proto-
typing for language design, source level program debugging, or validation of compiler
frontends and backends.

An interpreter implementation has to perform — at least conceptually — the
same mapping from the source language to the abstract source language machine
as the compiler does. Hence implementation effort is saved if that part of the
implementation can be reused.



In this paper we demonstrate how interpreters and compilers can be generated
from the same specification using Eli [2,15], a powerful toolset for language im-
plementation. The specification of the mapping from the source language to an
abstract machine is well supported by this toolset. Such a specification yields a
compiler frontend. If an implementation of the abstract machine is added, that
specification can also produce an interpreter which executes operations rather than
emitting them as intermediate code.

Our approach is based on the following concepts: The abstract source machine
is described by a set of functions. They operate on data structures thus maintaining
the machines state according to its data model. The abstract tree of the program is
mapped to a sequence of machine function calls. That mapping is specified in terms
of an attribute grammar [6,9]. Calls of the machine functions are associated to tree
node contexts. Sequences of such instructions are composed according to the tree
structure and to attribute dependencies which specify pre- and postconditions of
the instructions. So far this is conventional compiler technique. Instead of emitting
source machine instructions they are immediately executed. Hence the instruction
memory of a conventional interpreter is replaced by the tree walk algorithm that is
generated as attribute evaluator to produce the instructions. Arbitrary branching
in the dynamic control flow is achieved by iterating certain parts of the tree walk.
In [11] a straight-forward extension of attribute grammar by iteration specification
and a technique for evaluator generation is described. It is implemented in the
LIGA System [6]. This technique of evaluator generation from dependencies of
computations automatically determines the tree walk part to be iterated. Hence, it
separates the computations for static semantics from those for dynamic semantics
which may be iterated for interpretation.

The topic of integrated compiler and interpreter generation has been investi-
gated since the midth of the seventies. Most of the semantics-directed compiler
generators [10,12] are based on the method of denotational semantics [14]. A deno-
tational specification describes a mapping from the abstract syntax to a functional
expression. Its evaluation yields the effect of program execution. An interpreter
can be obtained immediately by implementing the description in a functional pro-
gramming language. But it is more difficult to obtain a compiler and an interpreter
separately. The problem of distinction between static and dynamic semantics is
attacked by applying the method of partial evaluation to the denotational descrip-
tion {3]. The difficulty of this strategy lies in the need to recover rather simple and
well-understood translation concepts from rather complex descriptions on a very
basic level, e. g. control flow translation from continuation semantics or name anal-
ysis from the use of identifier mapping functions. The same problems apply to the
dynamic semantics: Concepts like runtime stack organization have to be recovered
from patterns of location function use, It is clear that such a general method for
language implementation can not achieve the efficiency of compilers and interpreters
which are derived from specifications that identify such high-level concepts directly.
Mo.re recent approaches in semantics directed language specification and implemen-
tation, like action semantics (13] integrate such high-level concepts by mapping to
a set of actions which can be understood as operations of an abstract machine.
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Figure 1: Compilation Subproblems

2 Problem Decomposition

Many years of research and experience in Compiler Construction led to a generally
accepted model for decomposition of compilation tasks, as shown in Figure 1 taken
form [2].

Lexical analysis transforms the input program representation from a stream
of characters into a stream of tokens, e. g. identifiers, numbers, operators, and
keywords. It determines the role of each token within the program structure, and
stores and encodes values associated with tokens. Syntactic analysis determines the
program structure by parsing the token stream and represents the result in form
of a tree. Each node together with its subtree is an abstraction of an occurrence
of a language construct in the input program, e. g. a declaration, statement, or
expression.

All tasks of the subsequent translation phase are expressed by computations
associated to nodes of that abstract program tree. The name analysis tasks maps
occurrences of identifiers to internal representations of named objects, e. g. variables,
parameters, or record fields, according to the scope rules of the language. Type
analysis associates the type property to objects and expression nodes and validates
typing restrictions of the language.

The transformation task maps the data objects of the program onto the storage
of an abstract machine, and transforms statements and operations into an instruc-
tion sequence for that machine. For programming language compilers an abstract
machine model is usually defined by an intermediate language. It serves as an in-
terface to separate the encoding phase from the compiler frontend. The final phase
translates the intermediate program representation into target machine code.

The integrated tool set Eli is based on this model: Solutions of subtasks are
produced by Eli’s generating tools or taken from libraries embedded in Eli. For a
deeper discussion of the specification methods and solution strategies offered by Eli
we refer to [7,8]. An idea on how to use Eli can also be obtained from the complete
specification of a compiler frontend and interpreter given in the Appendix.

The subtasks of “structuring” and “semantic analysis” are identical for both
construction of compilers and interpreters. The compiler’s tasks “data mapping”



and “action mapping” refer to the concepts of a source language machine. If we
carefully design the representation of the machine concepts the mapping tasks also
coincide with those of interpreter construction. Hence, it should be possible to
generate both a compiler frontend and an interpreter from the same specification of
these tasks.

The approach presented here is based on a few systematic strategies for the
implementation of the machine and for the specification of the “action mapping”
task. In the following we take examples from a compiler and interpreter specification
for a small imperative language given in the Appendix.

3 Action mapping

The task of action mapping describes the effects of executable source language con-
structs in terms of source machine operations. The abstract program tree is mapped
to a sequence of instructions. Each instruction identifies a machine operation to be
applied to operands that refer to the data model of the machine.

Assume that our machine has a stack for expression evaluation. Then an ex-
pression that is a Number would be mapped to a push instruction

STMPushVal (Number.Sym)

Instruction sequences for non-leaf tree contexts are described by composition of
the instruction sequences of their components, e. g. for a binary operation

<Instructions of Expressioni>
<Instructions of Expression2>
STMBinOpr (BinOpr.Fct)

The composition rules may be more complex, e. g. inserting instructions from
other parts of the tree. Runtime control flow decisions are described by machine

operations that place labels in the instruction sequence and branch to such labels.
A conditional statement

if (Expression) Statement! else Statement2
would be mapped to the following instruction sequence

<Instructions of Expression>
STMBranchF (ifelselab)
<Instructions of Statementi>
STMJump (ifendlab)
AtLabel (ifelselab)
<Instructions of Statement?2>
AtLabel (ifendlab)

.Where ifelselab and ifendlab are labels generated for each application of that
Instruction sequence.

In Eli such sequencing is easily described using specifications based on attribute
grammars: computations, in this case machine operation calls, are associated to
contexts of the abstract program tree. The sequencing of such computations, i. -
the (Eomposition of the instruction sequences here, is specified by attribute depen-
dencies. The instruction sequence for integral numbers would then read
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RULE: Expression ::= Numb COMPUTE
Expression.Eval = STMPushVal (Numb.Sym)
DEPENDS_ON Expression.Eval;
END;

The DEPENDS_ON clause describes the precondition of the computation, the at-
tribute on the left of the = is a name for its postcondition. They both refer to a
dependency chain threaded through the tree left-to-right depth-first, if not speci-
fied otherwise. (For explanation of the CHAIN construct see [6]). Here the pre- and
postconditions insert the function call into the dependency chain Eval which links
the execution of the machine operations throughout the tree. The same technique
is used to translate the code sequence for the if statement into a specification of
dependent computations:

RULE: Statement ::= ’if’ ’(’ Expression ')’ Statement ’else’ Statement
COMPUTE
Statement[2] .Eval = STMBranchF (.ifelselab)
DEPENDS_ON Expression.Eval;
Statement[3] .Eval =
ORDER ( STMJump (.ifendlab),
ATLabel (.ifelselab))
DEPENDS_ON Statement[2] .Eval;
Statement[1] .Eval = ATLabel (.ifendlab)
DEPENDS_ON Statement[3] .Eval;
END;

The instructions of the Expression subtree are inserted at the beginning of
the sequence by implicit CHAIN dependencies, while the ORDER construct describes
sequencing within one computation.

4 Interpretation

The techniques described so far solve the compilation task: A language processor
generated from such a specification produces the source machine code by executing
calls of emit functions in the specified order. A conventional interpreter, like that for
P-Code 1] would read the code into its instruction memory and execute a function
call for each instruction while maintaining an instruction pointer.

In our approach, however, we integrate the interpreter into the translation phase.
Instead of storing the instruction sequence in an instruction memory it is represented
by the tree walk and the machine function calls. The calls are immediately executed,
rather than emitted in an intermediate notation.

That kind of integration requires a new concept for execution of runtime control
flow instructions. A jump instruction has to continue the translating tree walk in
the state where the target label is generated. We achieve that by switching off any
execution of machine function and continue the tree walk until the corresponding
call that places the label is reached. For execution of a backward jump the whole
translation process is repeated, switching the machine back to its execution mode
when the label is reached. The iteration terminates when the end of the instruction
sequence is reached in execution mode.

Such a repetition is easily achieved by our attribute grammar system LIGA [6],
which allows for iterative evaluation of cyclically dependent computations. The
iteration concept for cyclic attribute evaluation has been introduced in [11].

)



The root context of the abstract program tree has an instruction sequence that
consists of a prologue and an epilogue with the code of the program embedded in
between. Here the Eval dependency chain starts and ends:

RULE: Prog ::= Source COMPUTE
Prog.Prologue = STMAlloc (Prog.StoreSize)
DEPENDS_ON Prog.GotLabel;

CHAINSTART Source.Eval = Prog.Prologue;

Prog.Epilogue = Label (Prog.Label)
DEPENDS_ON Source.Eval;

UNTIL Executing () ITERATE Prog.Prologue = Prog.Epilogue;
END;

The UNTIL ITERATE construct specifies that finally the condition Executing()
holds. In order to establish that condition computations that depend on Prog.Prologue
may be re-executed. For such re-execution a new “value” of that attribute is speci-
fied, here Prog.Epilogue describing the state where all machine operations for the
program have been issued. This is a cyclic dependency causing iterative computa-
tions through the tree which has to be terminated by the UNTIL condition.

That iteration can also be understood as if the source machine executes several
identical copies of the machine program concatenated, one additional copy for each
executed backward jump.

9 Machine Implementation

The abstract source machine for this kind of interpretation is easily implemented.
It differs from a conventional interpreter only in the technique of instruction repre-
sentation: There is no instructjon memory, no instruction pointer, and no reading
of instructions. Instead the machine operates in one of two modes: executing or
Jumping. In the execute mode a function call performs the specified operation; in
the jumping mode it returns immediately. For example the STMPushVal function
would be implemented as follows:

void PushVal (int value)

{ if (VEXECUTE) return;
Stack [StackPtr++] = value;

}

Execution of a jump instruction switches the machine to the jumping mode and
stores the target label identification in a state variable TARGET

void STMJump (int label)

{ if (YEXECUTE) return;
EXECUTE=0; TARGET = label;

}

Reaching the label instruction for the required target switches the machine back
to the execute state:



void Label (int label)
{ if (TARGET == label) EXECUTE = 1;}

All machine operations are implemented according to this scheme. The example
in the Appendix shows that a simple macro expansion can reduce the function
description to the very semantics of the operations.

The execution mode concept of the machine can be extended to achieve other
useful effects by introduction of further modes. Intermediate code can be produced
if each function has a part that emits the instruction without switching the mode
on jumps. A mode that produces trace information while executing could be in-
troduced. The integration with the translation phase then allows to output source
level information. In combination with Eli’s facility to generate interactive proces-
sors debuggers can be constructed that stop the machine at certain breakpoints.

6 Efficiency

On the first glance it looks very ineflicient to repeat the complete code generation
for each execution of a backward jump. Hence, we need a closer look at its costs.

First of all we want to make sure, that no unnecessary computations are repeated
during iteration. The evaluator generated by the LIGA system is a tree walking al-
gorithm driven by visit-sequences [4,5]. The visit-sequences are computed such that
they obey the specified dependencies between computations. The computations of
the static semantics usually contribute only to the precondition of the iteration,
and thus are not repeated in the cycle without further consideration in the spec-
ification. Hence the distinction between static and dynamic semantics is achieved
automatically by dependency based visit-sequence computation. Our technique of
attribute evaluator construction yields the increase of efficiency that other methods,
e. g. based on denotational semantics, achieve by partial evaluation. In contrast
to those approaches here no partially evaluated instances of the algorithm are con-
structed. Static and dynamic computations are kept together in one program where
unnecessary computations are avoided by automatic dependency analysis.

Now let us consider the overhead resulting from the tree walking interpretation.
The time for executing source machine function bodies is productive interpretation
costs. Overhead is caused by the calls of these functions and by the tree walk
operations. Subtree visits are implemented by calls of recursive procedures [5]. The
evaluation chain usually needs one visit per node. Hence, for the four nodes and
three machine instructions of an assignment "a = 1" within a statement sequence
we pay the time of seven function calls overhead. That is about 1.4 microseconds
out of 28 microseconds interpretation time for that assignment on a Sparc processor.

That is also the amount of overhead being paid when instructions are skipped
in the jumping mode of the machine: one call for each tree node visit and one for
each machine instruction that is skipped there. For example jumping across 100
assignments like a = 1 would cost 700 calls, i. e. 1,4 milliseconds on a Sparc.

In the case of goto statements leading backwards or of procedure calls costs
proportional to the program length are not avoidable in our approach. But the costs
of backward jumps caused by source language loops can be drastically reduced. In
this case we know that the generated target of the backward jump is within the
same tree context where the jump is generated. Hence, we can apply the technique
for iterative computation again for each loop. We add the specification of a local
iteration to each loop context



UNTIL NOT (STMJumpingTo (.looplab)) ITERATE .Prelude = .Epilogue;

It has the same structure as the iteration in the root context. The UNTIL
condition holds when the repeated execution of the loop is terminated, i. e. the
machine is either in the execution mode or it is jumping out of the loop. This
optimization reduces the costs for executing a loop iteration to be proportional to
the length of the loop body rather than to the length of the whole program.

7 Conclusion

We have presented a systematic approach for generating interpreters and compilers
from the same specification. It strictly follows the commonly accepted decompo-
sition of language implementation tasks. As a consequence experience in compiler
development and tools which support it, like Eli can be effectively reused for au-
tomized interpreter construction. Integration of both compiler and interpreter in
one program allows to easily access compile time information at interpretation time.
Hence, the approach can be extended to generate source level tracers and debuggers.

The technique of iterative evaluators generated from attribute grammar has
proven to be suitable for interpreter generation. Well-known algorithms for at-
tribute evaluator generation automatically separate static and dynamic semantics
computations. The resulting interpreters are sufficiently efficient for practical use.

The example given in the appendix demonstrates that the approach is practica-
ble. For ease of presentation we have omitted constructs like procedures and nested
blocks from the example. Our experience with languages including such features
are encouraging for applying the strategy to real-life languages.
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Appendix

This document demonstrates how to generate both a compiler frontend and an
interpreter from one set of specifications using systematic techniques desribed in
the main part of this paper.

The complete set of specifications used for Elj to generate a language processor are
given here. The explanations emphasize the mapping of source language constructs
to a source language machine and its execution. The specification of the analysis
tasks is only briefly explained here. For more detailed information on the specifica-

tion techniques used to solve those tasks, please refer to the documentation of the
Eli system.

This example language defines programs that consist of a sequence of C-like state-
ments and expressions using variables of integral type, e. g.

example[l] =
{

y = 12;

x =y, fac

while (x > 1)

{

1;

fac = fac * x;
x=x-1;

}

output x;

output fac;

}

This macro is attached to an output file.

The specified language processor maps such programs to the operations of a stack

machine. It either produces the stack machine code or executes it immediately as
requested when the processor is called.

Structuring Task

The program structure is defined by the following context-free grammar:

Inter.con(2] =

{

Program: Source .

Source: Statements .

Statements: Statement Statements .

Statements:

Statement: DefLab °’:° Statement .

Summm:’ym’%%&’ﬁ

Statement: jf’ (> Expression ')’ Statement ’else’ Statement .
Statement: ’while’ *(’ Expression ’)? Statement .

Statement:

UseVar ’= Expression ’;°
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Statement: ’{’ Statements '}’
Statement: ’;°

Statement: ’output’ Expression ’;’
Statement: ’input’ UseVar ’;’

Operand: UseVar .
Operand: Numb .

UseVar: Ident .
DefLab: Ident .
Uselab: Ident .

}

This macro is attached to an output file.

The last three productions distinguish different roles of identifiers. We have left out
the part of the grammar that defines Expressions. A specification module taken
from a library provides definitions of unary and binary operators on integral values
in C-notation. The use of that library module is indicated by

Expr.specs(3] =
$/Library/Expr.fw

This macro is attached to an output file.

ELi derives the structure of the abstract program tree from the above concrete
grammar, and generates operations to construct the tree.

Identifers integral numbers and comments are written as in C:

Inter.gla[4] =
{
Ident: C_IDENTIFIER
Numb: C_INTEGER
C_COMMENT
}

This macro is attached to an output file.

Name Analysis

Variables and labels are named entities. Each occurrence of a name refers to the
same object in the whole program. Variables are implicitly defined by using their
name. Labels must have a unique definition that identifies a statement. There must
be such a definition for each label used in a goto statement.

These language properties are specified by using specification modules of the name
analysis library: the Nest module for consistent renaming of identifier occurrences,
the NoKeyMsg module for checking identifiers to be defined, and the Unique module

for checking definitions to be unique.

Scope.specs[5] =
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$/Tool/1lib/Name/Nest.gnrc:inst
$/Tool/1ib/Name/NoKeyMsg.gnrc:inst
$/Tool/lib/Name/Unique.gnrc:inst

}

This macro is attached to an output file.

The modules provide certain name analysis concepts: The Root of a tree where
name analysis is applied, Ranges that limit the scope of a definition, defining and
applied occurences of identifiers, IdDef, IdUse.

Those concepts are related to our grammar symbols using the following spcification
fragment, which is written in the attribute grammar specification language LIDO:

Scope.lido[6] =
{
SYMBOL Program INHERITS RootNest END;
SYMBOL Source INHERITS RangeNest, RangeUnique END;
SYMBOL UseVar INHERITS IdDefNest, NoKeyMsg, IdentSym END;
SYMBOL DeflLab INHERITS IdDefNest, IdDefUnique, IdentSym END;
SYMBOL UseLab INHERITS IdUseNest, NoKeyMsg, IdentSym END;

ATTR Sym: int;
SYMBOL IdentSym COMPUTE SYNT.Sym = CONSTITUENT Ident.Sym; END;

}

This macro is attached to an output file.

Type Analysis

Our language has only one data type, i.e. integral numbers. Hence, there are no
type rules to be checked. But there are two kinds of ob jects to be distinguished:
Each name refers to an object of the kind variable or label, as required by the the
context. We use the following encoding of those kinds:

Kind.head[7] =
{

#define NoKind 0
#define VarKind 1
#define LabKind 2

}

This macro is attached to an output file.

The kind property is associated to named objects by using the library module
KindSet.

Kind.specs(8] =
$/Tool/1ib/Prop/KindSet. gnrc:inst

This macro is attached to an output file.

The following LIDO fragment maps its concepts to grammar symbols and provides
€ITor messages on inconsistent uses.
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Kind.lido[9] =
{

SYMBOL Program INHERITS RootKind END;
SYMBOL UseVar INHERITS AddKind, GetKindSet COMPUTE

THIS.Kind = VarKind;

IF (InIS (LabKind, THIS.HasKindSet),
message (ERROR, "variable also used as label", 0, COORDREF));

END;

SYMBOL LabName INHERITS AddKind, GetKindSet COMPUTE

THIS.Kind = LabKind;
IF (InIS (VarKind, THIS.HasKindSet),
message (ERROR, "label also used as variable", O, COORDREF));

END;

SYMBOL UseLab INHERITS LabName END;
SYMBOL Deflab INHERITS LabName END;

}

This macro is attached to an output file.

Data Mapping

Our source language machine has a trivial memory model: One memory entity for
each integral variable is identified by numbers in the range of 0 to MAXMEMORY. Hence,
we map each variable to its memory address by simply enumerating the variables
in the program. That task is solved by a library module that counts objects. The
module is instantiated with the generaic parameter Var, because another instance

of that module is used below.

Alloc.specs(10] =
{

$/Library/0bjCnt.gnrc+instance=Var:inst

}

This macro is attached to an output file.

The variable addresses are made available at each use of a variable:

Alloc.lido[11] =
{

SYMBOL Program INHERITS VarRootObjCnt END;
SYMBOL UseVar INHERITS VarObjCnt END;

}
This macro is attached to an output file.
Action Mapping

The machine implementation is driven by calls of the machine functions specified
as computations in the node contexts of the program tree. Pre- and postconditions
of those computations specify the desired sequencing of machine instructions.
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Arbitrary unique numbers are used to identify positions in the instruction sequence
of the source machine. The labels used in the source program are mapped to
numbers by another instance of the 0bjCnt module:

Labels.specs[12] =
{

$/Library/0ObjCnt.gnrc+instance=Lab:inst

}

This macro is attached to an output file.

The label identifiactions are made available at defining and applied occurrences of
labels:

Labels.lido[13] =
{
SYMBOL Program INHERITS LabRootObjCnt END;
SYMBOL DeflLab INHERITS Lab0bjCnt END;
SYMBOL UseLab INHERITS Lab0bjCnt END;

}

This macro ts attached to an output file.

Operations of the source language are mapped to sequences of calls of the functions
that implement the machine operations. In the following specifications all function
names that begin with STM refer to source machine functions. Their meaning is
explained in the last section.

For each context of the abstract program tree an instruction sequence is specified.
It describes the machine operations issued in that context and connects them with
those issued in subtrees of the context.

That sequencing is specified using a dependency CHAIN

ChainEval.lido[M] =

{

CHAIN Eval: VOiD;

}

This macro is attached to an output file.

It describes a left-to-right depth-first depedency chain through the tree for all com-
putations attached to it. In certain contexts that default order is overridden by
explicitly specified dependencies.

The Eval CHAIN startsin the Program context. The Prologue which allocates stor-

age for the variables of the program is the precondition for the operation sequence
issued in the Source subtree:

ProgEval.lido[15] =

RULE: Program ::= Source COMPUTE

Program.Prologue = STMAlloc (Program.VarMaxCnt)
DEPENDS_ON Program.LabMaxCnt ;

CHAINSTART Source.Eval = Program.Prologue;
END;

}

14



This macro is attached to an output file.

A computation is attached to the Eval CHAIN by specifying its pre- and postcondi-
tion with respect to positions on the CHAIN. For example in

ExprUseVarEval.lido[16] =
{
RULE: Expression ::= UseVar COMPUTE
Expression.Eval = STMLoad ()
DEPENDS_ON UseVar.Eval;
END;

}

This macro is attached to an output file.

The STMLoad operation pops an address from the stack and pushes the value found at
that address in the memory. The operation is executed after the operation issued in
the UseVar subtree where the address is pushed. Execution of the STMLoad operation
establishes the postcondition for operations to be executed after this Expression.

UseVarEval.lido[17] =
{

SYMBOL UseVar COMPUTE
THIS.Eval = STMPushVal (SYNT.VarObjCnt)
DEPENDS_ON THIS.Eval;

}

This macro is attached to an output file.

END;

Here the precondition THIS.Eval denotes the CHAIN position before the UseVar leaf,
and the postcondition THIS.Eval denotes the CHAIN position after the UseVar leaf.
The VarObjCnt is the storage address of the variable as specified by the use of the
ObjCnt module described above.

The remaining instruction sequences for Expression contexts are specified using
the described patterns:

Expr.lido[18] =
{
RULE: Expression ::= Numb COMPUTE
Expression.Eval = STMPushVal (Numb.Sym)
DEPENDS_ON Expression.Eval;
END;

RULE: Expression ::= Expression BinOpr Expression COMPUTE
Expression[1] .Eval = STMBinOpr (BinOpr.Fct)
DEPENDS_ON Expression[3].Eval;
END;

RULE: Expression ::= UnOpr Expression COMPUTE

Expression[1] .Eval = STMUnOpr (UnOpr.Fct)
DEPENDS_ON Expression[2] .Eval;

}

END;
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This macro is attached to an output file.

The value of the Fct attribute of an operator is a function that yields the result of the
operation if applied to operands. It is passed as argument to the machine operation.
The Fct attributes are specified in the expression library module mentioned above.

The instruction sequences for simple statements are obvious:

SimpleStmtEval.lido[19] =
{

RULE: Statement ::= UseVar ’=’ Expression ’;’ COMPUTE
Statement.Eval = STMStore ()
DEPENDS_ON Expression.Eval;
END;
RULE: Statement ::= ’input’ UseVar ’;’ COMPUTE
Statement.Eval =
ORDER ( STMRead (),
STMStore ())
DEPENDS_ON UseVar.Eval;
END;

RULE: Statement ::= output’ Expression ’;’ COMPUTE
Statement.Eval = STMWrite ()
DEPENDS_ON Expression.Eval;

}

This macro is attached to an output file.

END;

The instruction sequences for statement labels and goto statements refer to the
unique number of the label object which is specified by the use of the ObjCnt
module as described above:

LabelEval.lido[QO] =
{
SYMBOL DefLab COMPUTE
THIS.Eval = AtLabel (SYNT.LabObant)
DEPENDS_ON THIS .Eval;
END;

SYMBOL UseLab COMPUTE
THIS .Eval = STMJump (SYNT.LabObant)
DEPENDS_ON THIS.Eval;

}

This macro is attached to an output file.

END;

Source language control statements are translated using jump and conditional
branch operations of the machine. Their targets are labels generated for each in-
stance of the particular context. The LabObjCnt function provided by the Lab

instance of the ObjCnt module is again used here to generate further unique label
numbers.
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The instruction sequence for the if statement uses two labels, one placed before
the else statement, the other at the end of the if statement. Labels are placed in
the instruction sequence using the AtLabel function of the machine.

IfEval.lido[21] =
{

ATTR ifelselab, ifendlab: int;

RULE: Statement ::= ’if’ ’(’ Expression ’)’ Statement ’else’ Statement
COMPUTE

.ifelselab = LabObjCnt ();

.ifendlab = Lab0ObjCnt ();

Statement[2] .Eval = STMBranchF (.ifelselab)
DEPENDS_ON Expression.Eval;

Statement[3] .Eval =
ORDER ( STMJump (.ifendlab),

AtLabel (.ifelselab))

DEPENDS_ON Statement[2] .Eval;

Statement[1] .Eval = AtLabel (.ifendlab)
DEPENDS_ON Statement[3].Eval;

END;

}

This macro is attached to an output file.

In the instruction sequence for the while statement one label is placed before the
condition expression, the other at the end of the while statement.

WhileEval.lido[22] =
{

ATTR looplab, loopendlab: int;

RULE: Statement ::= ’while’ ’(’ Expression ’)’ Statement COMPUTE
.looplab = LabObjCnt ();
.loopendlab = LabObjCnt ();

.Prologue = Statement[1].Eval;

Expression.Eval = AtLabel (.looplab)
DEPENDS_ON .Prologue;

Statement[2] .Eval = STMBranchF (.loopendlab)
DEPENDS_ON Expression.Eval;

.Epilogue =
ORDER ( STMJump (.looplab),

AtLabel (.loopendlab))

DEPENDS_ON Statement[2].Eval;
End of the while instructions[24]
END;

}

This macro is attached to an output file.

The end of the while instructions is described below.
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Interpretation by Iterative Evaluation

The instruction sequences specified so far describe a compiler that translates the
source program into machine code by calling the machine functions in the specified
order. Each call can emit an instruction and its operands.

If the program is to be interpreted the machine function calls execute their oper-
ations rather than emit the instruction. Jumps turn the machine state from the
executing mode into the jumping mode: Subsequent calls issued to the machine are
not executed until a AtLabel call is reached such that its argument is the target of
the jump.

Execution of backward jumps lead to the end of the code leaving the machine in

the jumping mode. The target will be reached if the whole sequence of machine
function calls is issued once more.

That iteration is specified using the UNTIL ITERATE construct in the Program con-
text:

Proglter.lido[23] =

RULE: Program ::= Source COMPUTE
UNTIL Executing ()

ITERATE Program.Prologue = Source.Eval;
END;

}

This macro is attached to an output file.

The ITERATE clause re-specifies the state attribute Program.Prologue, i.e. the
begin of the code, to depend on Source.Eval, i.e. the end of the source program
code CHAIN. Any computation that lies on this dependency cycle is re-executed until

finally the UNTIL condition holds: The machine is then in its executing state at the
end of the program.

In the same way we can improve the execution speed of the backward jumps issued
for while loops:

End of the while instructions[24) =

{

Statement[1] .Eval =

UNTIL NOT (JumpingTo (.looplab))
ITERATE .Prologue = -Epilogue;

}

This macro is invoked in definition 22.

Prologue 'is specified to cyclically depend on Epilogue. The iteration establishes
the following UNTIL condition: The machine is not Jumping to the begin of the

loop. The the while statement js executed as specified to be the postcondition of
the UNTIL ITERATE computation.

Implementation of Machine Operations

The abstract source machine is

: implemented by two C modules: One provides the
branching mechanism described

above; it can be reused for any such source machine.
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The other defines the set of functions and the data structures they operate on; it is
specific for any variant of source machines.

The interface of the branching module supports three machine states executing
(EXECUTE==1), jumping to label TARGET (EXECUTE==0), ard emitting instructions
(CODE==1).

Machine.h[25] =

extern int EXECUTE;
extern int TARGET;
extern int CODE;

#define Executing() (EXECUTE || CODE)
#define JumpingTo(label) (!EXECUTE && TARGET==(label) && 'CODE)
#define DoJump(label) {EXECUTE=0; TARGET=(label);}

extern void AtLabel (int label);

}

This macro is attached to an output file.

Machine.head[26] =

#include "Machine.h"

}

This macro is attached to an output file.

The DoJump macro is exported to describe any kind of jump semantics in the function
set of the specific machine.

The branching module is implemented by the following C code:
Machine.c[27] =

#include <stdio.h>
#include "Machine.h"

int EXECUTE = 1;
int TARGET = -1;

void AtLabel (int label)
{

if (CODE) {printf ("%s\t¥d\n", "Label", label); return; }
if (TARGET==1abel) EXECUTE=1;
}
}
This macro is attached to an output file.

The emit mode of the machine can be switched on by giving the -c command line
parameter on calling the processor. This facility is specified by

Machine.clp[28] =
CODE "-c" boolean;
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J
This macro is attached to an output file.
Our specific source machine operates on a memory for variables and a stack for
expression evaluation:

Source Machine Data[29] =
{
#define MAXMEMORY 1024
static int Memory [MAXMEMORY] ;
static int MemTop = 0;

#define MAXSTACK 64
static int Stack[MAXSTACK] ;
static int StackPtr = 0;

}

This macro is invoked in definition 32.

The machine functions are implemented such that they emit the instruction text if

the processor is compiling. If the processor is interpreting the operation is execute
or skipped depending on the execution mode,

Each function is formed according to a fixed pattern provided by a cpp macro
McFct. Its arguments are the function name, the signature of its arguments, and
two statements, one for emitting the instruction, and one for executing it.

Function code macro[30] =
{
#define McFct(name, args,emit,exec) \

void name args { \
if (CODE) {emit; return;} \
if (EXECUTE) {exec;} \
}

}

This macro is invoked in definition 32

The semantics of the functions of our stack machine should be clear from the execute
statements in each second line of the following definitons:

Machine Function Deﬁnitions[31] =

{

McFct (STMJump, (int label), Printf ("Jump\tyd\n", label),
DoJump(label))

McFct (STMBranchF, (int label), printf ("BranchF\t'/.d\n", label),
{if (!(Stack [--StackPtr])) DoJump (1abel) ;})

McFct (STMAlloc, (int varno), printf (

"Alloc\t%d\n", varno),
{MenTop += varno;})

McFct (STMStore, (), printf (“Store\n"),

{Memory[Stack[st ackPtr-21] = Stack [(StackPtr-1];
StackPtr -= 2;}) '
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McFct (STMLoad, (), printf ("Load\n"),
{Stack[StackPtr-1] = Memory[Stack[StackPtr-1]];})

McFct (STMPushVal, (int value), printf ("LoadVal\t%d\n", value),
{Stack[StackPtr++] = value;})

McFct (STMBinOpr, (int (*f)(int, int)), printf ("BinOpr\n"),

{Stack[StackPtr-2] =
(*f) (Stack[StackPtr-2], Stack[StackPtr-1]);

StackPtr--;})

McFct (STMUnOpr, (int (*f)(int)), printf ("UnOpr\n"),
{Stack[StackPtr-1] = (*f) (Stack(StackPtr-11);})

McFct (STMWrite, (), printf (“Write\n"),
{printf ("%d\n", Stack[--StackPtr]);})

McFct (STMRead, (), printf ("Read\n"),
{int v; scanf ("%d", &v); Stack[StackPtr++] = v;})
}

This macro is invoked in definitions 32 and 33.

The C module is composed of the above fragments:

STM.c[32] =
{

#include <stdio.h>
#include "Machine.h"
#include "STM.h"

Source Machine Data[29)
Function code macro[30]
Machine Function Definitions[31]

}

This macro is attached to an output file.

The McFct is redefined to describe the module interface:

STM.h(33] =
{

#define McFct (name,args,emit,exec) extern void name args;

Machine Function Definitions{31]

This macro is attached t~ an output file.

STM.head[34] =
{

#include "Machine.h"
#include "STM.h"

}

This macro is attached to an output file.
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