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1 Einfilhrung und Ubersicht

1.1 Passive Systeme

Ein passives System - was ist das? Im urspriinglichen Sinn darf man sich passive
Systeme aus den klassischen passiven Elementen der Mechanik oder Elektrotechnik
aufgebaut denken: Feder, Dimpfer und Massen als mechanische oder Kondensatoren,
Widerstanden und Spulen als elektrotechnische Bauelemente. Alle diese Elemente sind
dadurch gekennzeichnet, daB sie von sich aus keine Energie erzeugen kénnen.
Widerstinde und Dampfer sind Energievernichter wihrend Federn, bewegte Massen,
Spulen und Kondensatoren als Energiespeicher erscheinen; sie konnen nur die Arbeit
wieder abgeben, die sie vorher aufgenommen haben. Genau diese Eigenschaft wird zur
Definition der Passivitit bei komplizierten Systemen benutzt, deren innere Stuktur
man nicht kennt: Ein passives System ist allgemein dadurch ausgezeichnet, da die von
der Umgebung an ihm geleistete Arbeit niemals negativ werden kann (wegen der
moglichen Speichereigenschaften des Systems xann die Leistung selbst durchaus
negativ werden).

Da die physikalische Energie einer Bilanzgleichung gehorcht, muB auch bei
Zusammenschaltungen (Parailelschaltung, Reihenschaltung, Riickkopplung) passiver
Systeme und speziell der passiven Grundelemente das entstehende Gesamtsystem
passiv sein. Die Umkehrung dieser Frage ist keineswegs einfach zu beantworten: Gibt
es zu jedem (gedachten) passiven System tatsichlich eine physikalische Realisierung
aus passiven Grundelementen? Hinter dieser Uberlegung stand in den Anfingen der
systematischen Konstruktion elektrischer Netzwerke das ganz konkrete Problem, ob
und wie ein entworfenes Ubertragungsverhalten zum Beispiel eines Filters durch ein
Netzwerk mit passiven Bauelemente realisiert werden kann. Die Beschrinkung auf
passive Elemente ist ganz einfach in der zu der damaligen Zeit beschrankten
Verfiigbarkeit von aktiven Bauelementen (Verstirkerrdhren) zu sehen. Hierzu sind
besonders die Arbeiten von CAUER [10, 11, 12} zu nennen, der dieses Problem in
breiter systematischer Weise erdrtert und vorhandene Ergebnisse zusammengefaBt hat.
Wenn auch heute in der Mikroelektronik wegen der guten Einsetzbarkeit preiswerter
Verstirker kaum noch Beschrinkungen auf passive Netzwerke notwendig sind und auch
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1.2 Uberblick iiber diese Arbeit

in d?r mechanischen Schwingungstechnik der Einsatz aktiver Elemente (»aktive
.Schwmgungstilgung«) mehr und mehr zy finden ist, 80 behalten die passiven Systeme
in fier Technik auch heute noch dort ihre Bedeutung, wo es um groBe Belastungen und
Lt.alstungen geht, bei denen aktive Elemente nicht mehr einsetzbar sind oder sich ihr
Einsatz aus wirtschaftlichen Griinden verbietet.

Schon friih er‘langte die Passivitit Bedeutung in der Systemtheorie und
;;g::::f::;::k- Die systemimman'ente »Stabilitit« passiver Systeme, die auch bei
Regelungstechni; " m?h;e.rer passiver Systeme, insbesondere bei den in der
Entwickl 80 wichtigen .R_ufkkopplungen, erhalten bleibt, ermoglichte die

. 'c_ ung entsprechender Stabilitatskriterien. Die grundsitzlichen Aussagen dieser
:tabllftatssitze ‘waren gar nicht mehr von der physikalischen Bedeutung der Begriffe
P::S:I;i];’its:;;:;n Lels(;}mg ) l?erﬁhrt, ::;o .daﬁ lediglich eine verallgemeinerte
vorausgesetzt wurdeg ,V © el?e physikalische Bedeutung besitzen brauchte,
haben, die gt H. on za‘.h'lr_elchen f&utoren, die an dieser Entwicklung mitgewirkt

N yperstabilitdtstheorie fibrte, sind unter anderem BROCKETT,

WILLEMS, LEE, LANDAU und Popov [6, 7, 28, 39, 45] zu nennen.

;]::;w- ihano‘menologischen Systembesch:eibung unter Zuhilfenahme linearer
Netzwe':k::gsxfltegra]e (»Faltung«, »Ubertragungsfunkﬁonen,)’ die zwar in der
eorie schon alltagliches Handwerkszeug darstellte, in der Materialtheorie

:Z:mf:::::nfhef:odz H‘."uptsatz% der Thermodynamik, der freilich in den
den Riickoug ot :.nammcflen »Schuk.m- unterschiedlich formuliert wird. Durch
Passivititsallssage konnl: ph-m Ol?enohg's‘:he Beschreibung mit der formalen
unabhingig machen. Es golang thncn mi -y e, LOTPUlierung des 2. Hauptsatzes
reversible und irre;rersii(: ‘“‘Sg thnen, die wichtige thermodynamische Klassifizierung in
Begriffs der verlon € ?’Stelfle nachzuvollziehen. Dazu bedienten sie sich des

enen Energie. Diese GroSe wird allein durch die phinomenologische

Dissipationsleistung (16sgelost von der speziellen Formulierung des 2. Hauptsatzes)
aber nicht in der erhofften Weise gestattet oder zumindest zu der »richtigen«
Dissipation im Widerspruch steht. Den bisherigen AbschluB dieser Gedanken stellt aus
mathematischer Sicht die Arbeit von TOBERGTE [43] dar. Danach wurden die
Arbeiten anscheinend nur noch gelegentlich zitiert — so etwa KERN [23] mit einer
Anwendung auf eine Kontinuumsmechanik - und die Theorie nicht weiter ausgebaut.

1.2 Uberblick iiber diese Arbeit

Die vorliegende Arbeit kniipft an die Entwicklung der Theorie passiver Systeme von
MEIXNER, KONIG und TOBERGTE an. Es werden lineare passive MehrgréBensysteme
behandelt, wenn auch gelegentlich eine Beschrinkung auf Eingrofensystem
vorgenommen wird. Anders als bei den zitierten Autoren wird dabei konsequent die
Theorie der Distributionen verwendet, die sich als adiquates Hilfsmittel erweist.
Wegen der grundsatzlichen Bedeutung fiir diese Arbeit und der bisher nur sporadischen
Verwendung der Distributionen in der technischen Literatur ist im Anhang A ein

kurzer Abri8 der Distributionentheorie zusammengestellt.

Im 2. Kapitel werden zunichst die Voraussetzungen aufgestellt, wobei eine méglichst
schwache Formulierung gewahlt wird. Das sind neben der Passivitat die Linearitdt,
Stetigkeit und Zeitinvarianz. lhre physikalische Bedeutung wird diskutiert und
insbesondere der thermodynamische Hintergrund der Passivitit im Abschnitt 2.3.1
erortert. Trotz der Beschrinkung auf lineare Systeme sind die Ergebnisse auch auf
spezielle Klassen nichtlinearer Systeme anwendbar, was im Abschnitt 2.3.4 gezeigt

wird.

Im 3. Kapitel wird eine erste Auswertung der Voraussetzungen betrieben. Hier zeigt
sich, daB die Theorie der Distributionen ein geeignetes Mittel fir die
Systembeschreibung darstellt. Mit diesen Mitteln wird unter anderem die
Anwendbarkeit der FOURIER- und LAPLACE-Transformation nachgewiesen, bevor mit

diesen Hilfsmitteln gearbeitet wird.

Das 4. Kapitel beeinhaltet dann eine weitere Auswertung der Passivititsbedingung, die
zu Darstellungssitzen und zu der wichtigen Charakterisierung passiver linearer
Systeme im LAPLACE-Bereich, zu den positiven Funktionen, fihren. Diese Ergebnisse
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sind in der Literatur durchaus bekannt, sieche CAUER [11], YouLA [47], KONIG /
MEIXI.VER {26], ZEMANIAN [48]. Wegen der allgemeineren Grundlagen und ,der daraus
r.esultxerenden abweichenden Bezeichnungweisen scheint eine vollstindige Wiedergabe
sinnvoll, zumal zu deren Herleitung zum Tei} andere Wege beschritten werden.

Weiterhin wird s
dis(:uirhl: wird die Zusammenschaltung passiver Systeme bzw. positiver Funktionen
iert.

anderer W .
iber (z it_eg gewat'llt als ‘%er von TOBERGTE in [43]. Dieser benutzt Untersuchungen
PALEYe d)\:/ersmlebu“gsmvar iante lineare Teilraume. Hier wird das Kriterium nach

IENER direkt in seiner Form zyr Cha.rakterisierung kausaler Funktionen

Klassifizi .
Gm:;;:e;“';fgal:e"efmbler Systeme vorgenommen, die in zwei recht unterschiedliche
e : N
on. Die eine Gruppe kann als reversible relarierende Systeme

identifizi ie eine {J
dent -bllert werden., die eine Uberga.ngsstellung zwischen den eigentlich (streng)
ersiblen und den irreversiblen Systemen einnehmen

»quadrati 3] .
quadratische Uberttaglmgsfunktxonen« eingefiihrt, die {iber »Polynomkoeffizienten—

Matrizen« d; i
- e Beziehung zur Zustandsdmteuung eines Systems herstellen. Die

Konstrukti .
ion der LAGRANGE—Funkt:on ausgehend vom auBeren Systemverhaiten, wie

sie T
¢ 1ELLEGEN [42] und MEIXNER [32] gezeigt haben, wird in diesen Formalismus

eingebettet ung 2ur Formulj i
L erung einer Restrikt; .
stsxpationsfunktiona] verwende * = frktion fir das zu ermittelnde

2 Systembeschreibung und Voraussetzungen

2.1 Die Systembeschreibung

Die hier behandelten Systeme werden ausschlieBlich durch ihre Phanomenologie, dafl
heift, durch jhr &duBeres Verhalten beschrieben, welches mit der Umgebung in
Wechselwirkung tritt. Im Fall elektrischer Systeme sind das die Klemmen-
eigenschaften. Welche physikalischen Grundgesetze innerhalb des Systems fiir das
beobachtete AuBere Verhalten verantwortlich sind, wird nicht erdrtert. Wihrend bei
Kenntnis der inneren Struktur auch das duBere Verhalten bekannt ist, kann man aus
dem dufileren Verhalten nicht ohne weiteres Schliisse fiber die inneren Eigenschaften
ziehen. Es bleibt dem Betrachter verborgen, durch welche inneren Mechanismen das
beobachtete duflere Systemverhalten hervorgerufen wird, wenn es ihm auch
unbenommen ist, sich irgendein Modell fiir das beobachtete Verhalten zu konstruieren
oder ein anderes System mit gleichen duBeren Eigenschaften, aber mit bekannter
innerer Struktur heranzuziehen. Man darf aber nicht ohne weiteres davon ausgehen,
daB die dem willkiirlich herangezogenen Modell eigenen inneren Eigenschaften etwas
mit den inneren Eigenschaften des tatsichlich vorliegenden Systems zu tun haben. Ob
und mit welchen Aussagen derartige Schliisse mdglich sind, ist ein Aspekt, dem im

Folgenden Beachtung geschenkt werden soll.

Obwohl in dieser Arbeit oftmals elektrische Beispiele herangezogen werden, ist die
Natur der betrachteten Systeme nicht festgelegt. Es darf sich um mechanische,

elektrische, gemischte elektromechanische oder andere physikalische oder technische

Systeme bhandeln, sofern sie nur den im nichsten Abschnitt formulierten

Voraussetzungen geniigen.

Die geschilderte Systembeschreibung wird gemeinhin als »Black Boz« bezeichnet. Das

auflere Klemmenverhalten ist durch geeignete Experimente bestimmbar, doch besteht
keine Mdglichkeit, einmal einen Blick in die Black Box zu werfen. Diese Struktur wird

im Bild 2.1 verdeutlicht.



2 Systembeschreibung und Voraussetzungen

2.1 Die Systembeschreibung 7

z G ¥

Eingangsgrifie AusgangsgrofBe

Bild 2.1: E‘ingangs-Ausgangs—ModclI

zn d;ezem _Bild ist bereits zum Ausdruck gebracht, daB von dem vollstindigen Satz
dz, PT ? aufleren Systemgrofien der Teil ¥ unabhingig vorgebbar sein soll, wihrend
icangs, Vo * (und dem sy stemverhalten) abhingt. Die Funktion z heift

2.1
(2.1) r = [z, Ty ., 'tn]T»

(2.2
) ¥y = [yp Yas ey y,,]T .

des : oren z und y von gleicher Dimension sein, da sonst die
aussetzung der Passivitit sinnlos wire.

(2.3)

zuordnet.  Keinet 4 jeder 'Eingangsfunktion * komplett eine Ausgangsfunktion y
e fale ISt mit der Gleichung (2.3) eine Abhngigkeit des

M t) i i
von dem Onle]]‘mlwe]t emeint Dle GlelCh“ng ﬁr

(2.4) ¥t) = (Gz)(t)

geschrieben werden.

Vom technischen Standpunkt kann die Vorstellung einer unabhingig vorgebbaren
EingangsgroBe oder Erregung kritisiert werden: Bei jeder technischen Versuchs—
anordnungen ist es hochstens in guter Niherung méglich, eine GréBe (z.B. Last,
Verschiebung, elektrischer Strom, Spannung) in beliebiger Weise dem System
aufzupragen. Durch zwangslaufig vorhandene Amplituden- oder Frequenzbeschrin-
kungen schon allein der zur Verfiigung stehenden technischen Hilfsmittel gerit man
immer an irgendwelche Grenzen. Von einer beliebig vorgebbaren Eingangsgrofie kann
eigentlich keine Rede sein. Bei machen Versuchsanordnungen ist man auch aus
technischen oder physikalischen Griinden gar nicht in der Lage, die gewiinschte
Systemgrofie direkt aufzuprigen. Man ist dann darauf angewiesen, dem System
hilfsweise andere Grofien aufzuschalten, und dann die sich daraus ergebende eigentliche
EingangsgroBe und die Ausgangsgrofe zu messen.

Zunichst soll nun aber iiberlegt werden, welche Klassen von Eingangsfunktionen
iiberhaupt zugelassen werden sollen. Bei der Beantwortung dieser Fragestellung kann
man sich durchaus von dem Gedanken an einen realen Versuchsaufbau leiten lassen.
Das System liegt als »Black Box« vor, d.h. es sind a priori keine Kenntnisse iber die
innere Struktur vorhanden. Ist es sinnvoll, bei einem vollig unbekannten System, das
man sich zunichst wirklich als einen »schwarzen Kasten« auf dem Labortisch
vorstellen kann, gleich mit Sprung-, Sto8— oder periodischen Erregungen zu beginnen?
Es ist denkbar, daB z.B. bei periodischer Erregung ungedimpfte Schwingungen dieser
Frequenz angeregt werden, die dann {iber alle Grenzen wachsen. Im ungiinstigsten Fall
»brennt der Kasten durch«. Eine Sprungerregung ist in dieser Hinsicht nicht besser:
Enthilt das System ein- oder sogar mehrfache Differenzierer, kdnnen im System
bereits unerwiinschte Spitzen innerer oder iuBerer SystemgroSen auftreten, die
wiederum zur Zerstrung der Versuchsanordnung fiihren kdnnen. Angesichts dieser
Uberlegungen wird man zunachst in ersten Experimenten nur sehr vorsichtige
Erregungen zulassen: Diese soilten als erste Voraussetzung geniigend »glatt« sein; also
mindestens stetig, am besten auch hinreichend oft differenzierbar. Da man nicht wei8,
was shinreichend« ist, fordert man sicherheitshalber gleich Differenzierbarkeit von
unendlicher Ordnung. Das wiren dann also Funktionen der Differenzierbarkeitsklasse
C,.. Der Gedanke an ein unbeschrinktes »Aufklingen« des Systems legt es nun als
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finit und ist im Anhang (A.3) definiert. In

iesem Si i ifizi i
»ausgeschalteten« Versuchsaufbay mit der Nuller o Mdentifizieren wir den

regung, wobei man aber schon den

or z schreiben wir dann kurz

2.5
(2.5) zeD = DxDx.. . xDP.

N ——

n-faches kartesisches Produkt

2.2 Die Voraussetzungen

anschaulich entwickelt wurde:

s

2.2 Die Voraussetzungen

(2.6) Grundvoraussetzung:

Der Definitionsbereich des Operators G (die Menge der zugelassenen Erregungen z) soll
die Menge D" der Grundfunktionen umfassen und der Bildbereich (die Menge der
mdglichen Systemantworten) bestehe aus gewdhnlichen (vektorwertigen) Funktionen,
das heifit, die Werte y(t) = (Gx)(¢t) seien fiir jedes £ € D® und jedes ¢ € R definiert:

(2.7) zeD,te R — t) = (Ga)t) e C" g

Der erste zu definierende Begriff ist die Linearitit, die mit der Anwendbarkeit des

Superpositionsprinzips gleichzusetzen ist:

(2.8) Definition: Linearitit eines Systems
Ein System G heiBt linear in D", wenn fir alle Erregungen z; € D" und alle Zahlen

(2.9) Glayz,+a,%,) = o,G3 + «,Gx,

gilt.

(2-10) Bemerkung: Komplexe Systembeschreibung

Die Definition der Linearitit wurde gleich mit komplexen Konstanten vorgenommen.
Auch der Grundraum D enthalt grundsitzlich komplexwertige Funktionen. Dem steht
die Gewohnheit entgegen, technisch-physikalische GroBen als reellwertig anzusehen.
Auch wenn in der Elektrotechnik komplexe Zeigerrechnung betrieben wird, kommt als
Momentanwert dort nur dem Realteil wirkliche Bedeutung zu. Betrachtet man aber
zum Beispiel die Quantenmechanik, in der durchgingig mit komplexen GréBen
gerechnet wird, oder gewisse Bereiche der Theorie elektrischer Maschinen, wo mit
Vorteil zwei reelle Grifien zu einer einzigen komplexen zusammengefaBt werden, so
erscheint es nicht ohne Sinn, diese Arbeit von vornherein fiir komplexwertige Systeme
aufzubauen, zumal der reellwertige Fall stets enthalten ist und die komplexe
Formulierung kaum groBeren Aufwand erfordert. ]

Der nichste Begriff ist die Stetigkeit eines Systems: Damit ist gemeint, daB bei einer
kleinen Anderung der Erregung sich auch die Systemantwort nur wenig indert. Der
Ausdruck »Anderunge« ist hier nicht im zeitlichen Sinn zu interpretieren, sondern in
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2.2 Die Voraussetzungen 11

einer parallelen Ausfiihrung eines ghnlichen Experiments. Man mu8 nun quantifizieren,
was unter einer »kleinen« Anderung verstanden werden soll. Da jede Komponente z,
der Erregung z aus der Menge D der Grundfunktionen stammen soll, kann man zur
Beschreibung kleiner Anderungen die Topologie in D verwenden, die in (A.4) diber die

Definition kon:ergenter Folgen beschrieben ist. Damit wird auch eine Topologie in
dem Raum D definiert, wenn

bezeichnen, fiir die jede Kompone
Beschreibung der Anderung der

wir als konvergente Folgen in D" genau solche
ntenfolge in D konvergiert. Man ist nun geneigt, zur
heranzuziehen. Es ist aber kej AusgangsgroBe y ebenfalls die Topologie von D"

€ineswegs bekannt, ob die Funktion y iberhaupt zur

Men n o ir hier dj
: ge D" gehdrt, weshalb wir hier die Bedeutung einer »kleinen« Anderung an einem
einzelnen Funktionswert festmachen:

(2.11) Definition: Stetigkeit eines Systems

Ein System @ heifit stetig in D™, wenn

: fiir jede in D" k i
mit der Grenzfunktion onvergente Funktionenfolge {#;}

(2.12)

limzy =: z ¢ p"
fiir jod oo
ir je i .
Jedes € R die Folge der Funktionswerte {{Gz)(1)} konvergiert und den Grenzwert
(2.13 .
) Liff (Gx)(t) = (62)(1) € o
besitzt.

Als weiterer Begiff tritt nun die Zeit-
bedeutet anschaulich, da8 dag Versuchserge
welchem das Experiment, beginnt.

oder Verschiebungsinvarianz hinzu. Das
bnis unabhangig von dem Zeitpunkt ist, zu

(2-14) Definition: Zeitinvariang

Ein System @ heift zeitinvariant, wenn fiir allexe D und alle T ¢ B ‘

(2.15) G(z(-+7)) = (G3)(-+T)

gilt.

Wir kommen nun zum zentralen Begriff der Passivitat. Wir betrachten z{f) und
y(t) = (G:)(t) als zueinander konjugierte Groen und definieren das Produkt

(2.16) P(t) = Re (') ¥(t) = L Re (5,(t) y(¥)) € R
i=1

(-)+ bezeichnet die komplexe Konjugation in Zusammenhang mit der Transposition der
Matrizenrechnung. Der Punkt steht fir die Differentiation nach der Zeit. Da im
Grundraum D unbeschrinkt differenziert werden darf, ist P(t) wegen der
Grundvoeraussetzung (2.6) stets wohldefiniert.

(2.17) Definition: Passivitit
Ein System G heiBt passiv, wenn fiir alle £ € D" und alle ¢ € R das Funktional

_“'P(r) dr € R

-0

(2.18) (wz)(t) = W) =

existiert (d.h. P mu8 integrierbar sein) und einen nicht negativen Wert besitzt:

(2.19) W) = o . o

Die Integrierbarkeit des Funktionals P scheitert nicht an der unteren uneigentlichen
Integrationsgrenze —c. Da 7 als finite Funktion nur in einem endlichen Intervall von
Null verschieden ist, gilt das gleiche auch fir P. Die untere Integrationsgrenze kann
also immer durch eine endliche Grenze ersetzt werden. Die Integrierbarkeit richtet sich
vielmehr nach dem lokalen Verhalten. Da z unendlich oft differenzierbar ist, hangt die
Integrierbarkeit im Wesentlichen von der noch unbekannten Systemantwort y ab.

Als weitere Bezeichnungsweise wird an dieser Stelle der Ausdruck

(2.20)

L.t
& 9), = § &(a(r) dr

eingefiihrt. (2.18) erhilt damit die Form

(2.21) W(t) = Re (5 9), .
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Krifte des Systems, so ist (2.16) eine Summe von Produkten zwischen generalisierten
Geschwindigkeiten (als Zeitableitungen der generalisierten Koordinaten) und
generalisierten Kraften; die Kraft y; leistet an der Geschwindigkeit z; Arbeit. Wir
nehmen nun an, da8 die Vorzeichenkonventionen der generalisierten Koordinaten und
Krafte derart getroffen wurden, daB der Ausdruck P eine Leistung der Umgebung an
dem System ist. Fiir ein positives Vorzeichen von P haben wir dann einen
Leistungsflufl in das System hinein. Dementsprechend ist W(t) als Integral der Leistung
die am System bis zum Zeitpunkt ¢ geleistete Arbeit. UmfaBt P simtliche in das
System hineingehende Leistungen mit Ausnahme des Warmestromes P,, kann der 1.

Hauptsatz der Thermodynamik oder die totale Energiebilanz in der Form

(2.22) E = P+ P,

angegeben werden. Die totale Energie E enthilt die innere Energie, mechanische
Energieen wie Forminderungs- und kinetische Energie sowie elektromagnetische
Energieen. Nach dem 1. Teil des 2. Hauptsatzes der Thermodynamik existiert nun eine
ZustandgroBe S, die Entropie genannt wird, mit der sich der Warmestrom durch die

Beziehung

6((§-25

(2.23) P, =

ausdriicken a8t (sieche BECKER / BURGER [3], 4.3, 4.4). Hierin ist & > 0 die absolute
Temperatur der Gleichgewichtsumgebung, die den Warmestrom P, abgibt. Die Grofie
X heifit Entropieproduktion. Als 2. Teil des 2. Hauptsatzes wird in vielen
thermodynamischen Theorien die CLAUSIUS-DUHEM- Ungleichung

(2.24) rzo0

gefordert (siche z. B. MULLER [36], IV.1; TRUESDELL / NOLL [44], D.Il.a; COLEMAN
[13], 2;; ERINGEN [15], 4.6 oder BALKE / BERGANDER [2]). Mit (2.23) lautet die

totale Energiebilanz nun

(2.25) E=P+O5-0F.

Geht man jetzt von der totalen Energie E durch eine LEGENDRE-Transformation auf

die veraligemeinerte freie Energie

(2.26) & := E-6S
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iiber, so erhilt man fiir deren Bilanz
(2.27) ¢ = P-65-65.
Im Fall isothermer Prozesse, also @ = 0, ist

(2.28) P =d+0%5.

und fiir das Arbeitsfunktional ergibt sich

(2.29) W(t) = } P(r)dr = &(t) - $(-c0) + } 6xX(r)dr .

Die totale Energie wie auch die freie Energie sind ZustandsgroBen, daff heifit, &(¢
hingt nur iiber hier nicht explizit benannte innere Zustandsvariablen von der Zeit at
Durch eine Normierung kann fir den »Anfangszeitpunkt« ¢ = —co die Festlegun
#(-) =0 getroffen werden. Ist nun die freie Energie eine nicht negativ
Zustandsfunktion, $(¢) 2 0, was den physikalischen Erfahrungen entspricht, ist wege
6 > 0 und X' 2 0 auch das Arbeitsfunktional stets nicht negativ:

(2.30) wi(t) 2 0.

Dies bleibt auch dann richtig, wenn als 2. Teil des 2. Hauptsatzes statt (2.24) nur ¢
Gilltigkeit der integralen CLAUSIUS- Ungleichung

(2.31) }Z(‘r) dr 2 0

-

gefordert wird. Wir haben dann im Sinne unserer Definition ein passives Syst a

vorliegen. Dies ist eine direkte Folgerung aus den beiden Hauptsitzen 1
Thermodynamik.

Kann der urspriingliche Anfangszustand durch geeignete Steuerung wieder erre 1t
werden (Kreisprozefl), gilt fir das nur von den ZustandsgroBen abhingende »Potent 1«
#(t) = #{-o) = 0. Der erste Anteil der auBeren Arbeit in (2.29) ist also wic ™
gewinnbar oder reversibel, wihrend in dem Integral der nicht wiedergewinnbare er
irreversible Anteil der Arbeit erkannt werden kann. Den zugehdrigen Leistungsante :

(2.32) P, = 62 2 0

nennt man Dissipationsleistung.
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Fiir isentrope Prozesse, also § = 0, gelangt man unter direkter Verwendung der totalen
Energie E ebenfalls zu einer Passivititsaussage. Liuft der Prozess weder isotherm noch
isentrop ab, hat man die Mdglichkeit, durch Erweiterung der Variablensitze zu einer
Aussage iiber die Passivitit zu kommen. Bei Benutzung der totalen Energie muf der
Satz z der generalisierten Koordinaten um die Entropie S,

(2.33) z = [z,8],

und der Satz y der generalisierten Krifte um die Temperatur 6,

(2.34) ¥y = [y9],

erweitert werden. Dadurch ergibt sich fiir den neuen Leistungsausdruck
(2.35) P = Re[i'y] = P+ 65

mit der Definitheit der totalen Energie wiederum die Passivitit. Bei Verwendung der
freien Energie sind die Variablensitze genau anders herum zu erginzen.

Im Gegensatz zu der totalen Energiebilanz (2.22) werden in der Technik nur partielle
Energiebilanzen aufgestellt. ErfaSt man bei einem elektrischen Netzwerk nur die an
len Klemmen zugefiibrten elektrischen Leistungen, so ist trotzdem fiir diesen
seistungsausdruck Passivitit zu erwarten, wenn man sicher ist, daB die
lektromagnetischen Energieen nur in Wirme umgewandelt werden konnen und kein
\ustausch mit anderen Energieformen stattfindet. Das ist bei elektrischen Maschinen,
ie elektromagnetische Energieen in mechanische wandeln, nicht mehr der Fall. Hier
1issen auch die mechanischen Leistungen beriicksichtigt werden. Es ist auch denkbar,
aB nicht einmal alle Leistungen einer Klasse erfat werden. »Vergiit« man bei einem
ektrischen Netzwerk die Leistung der Versorgungsspannungen, wird im allgemeinen
sine Passivitat mehr vorliegen. Das Verhalten an den restlichen Klemmen erscheint
s aktiv (im Gegensatz zu passiv); das Netzwerk kann iber diese Klemmen Leistung
)geben, ohne daB man sie vorher dort hineingebracht hitte. Die Frage »aktiv oder
ssive ist also immer verbunden mit der mehr oder weniger vollstindigen
lanzierung der in das System hineingebrachten Leistungen.

Passivitat kann aber auch vollig losgeldst von einer energetischen Interpretation
é:rachtet werden. Davon wird in der Hyperstabilitatstheorie (siehe LANDAU [28] oder
POPOV [39]) Gebrauch gemacht, wo es darum geht, fiir eine spezielle Systemstruktur,
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die aus einem linearem und einem nichtlinearem Teilsystem besteht,
Stabilitatsaussagen, also gewisse Beschrinktheitsaussagen iiber innere oder duBere
Systemgrofien, aufzustellen. Auch hierbei treten Funktionen auf, die Energien formal
gleichen, die LJAPUNOW-Funktionen. Ob und in welcher Weise diese als reale
physikalische Energieen interpretiert werden konnen, interessiert bei dieser
Aufgabenstellung nicht.

2.3.2 Zeitinvarianz

In einem physikalischen Umfeld betrachtet, ist die Voraussetzung der Zeitinvarianz
eigentlich gar keine zusitzliche Einschrinkung. In allen physikalischen Theorien gehen
Zeitmessungen nur als Zeitdifferenzen ein. Die physikalischen Gesetze sind bereits von
ihrer Formulierung her zeitinvariant. Eine absolute Zeit im Sinne eines
ausgezeichneten Zeitursprungs existiert nicht.

Trotzdem ist es denkbar, da$ bei Beschreibungen technischer Systeme Zeitabhingig-
keiten auftreten (z. B. bei einem chemischen Reaktor die Zeitdifferenz zum
Startzeitpunkt). Dies kommt dadurch zustande, daB ein Teil der eigentlich zeitinvari-
anten Beschreibungsgleichungen vorab zumindest niherungsweise geldst oder durch
empirische Daten ersetzt wird. Diese Ergebnisse werden dann in den verbleibenden
Teil der Systemgleichungen eingesetzt und erscheinen dort als zeitabhingige
Parameter, obgleich die zugrunde liegende physikalische Theorie zeitinvariant ist.

In Bezug auf derartige Anwendungsfille stellt die Zeitinvarianz eine Einschrinkung
dar, doch darf man diese als relativ schwach werten.

2.3.3 Stetigkeit

Die Frage nach der Stetigkeit eines Systems ist eng mit der Frage nach der Giiltigkeit
der mathematischen Modellbildung verkniipft. Ist ein System nicht stetig, konnen
beliebig kleine Anderungen in der Erregung groe Wirkungen auf die Systemantwort
ausiiben. Dann ist die Frage berechtigt, ob ein derartiges mathematisches Modell das
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physikalische oder technische System {berhaupt in einer verniinftigen Weise
beschreibt, denn zum einen ist jede Modellbildung mit gewissen Modellierungsfehlern
verbunden und es treten zum anderen unvermeidlich Meffehler auf. Hangt das
Systemverhalten empfindlich von diesen nicht bekannten Fehlern ab, muB das
mathematische Modell als unbrauchbar bezeichnet werden. Das heifit nicht unbedingt,
daB das System als solches unsinnig ist oder falsch modelliert ist. Hier seien die in
momentan grofem Interesse stehenden chaotischen Systeme genannt, die zwar
deterministisch sind, aber eine ungeheure Empfindlichkeit gegeniiber Kkleinsten
Parameterdnderungen besitzen und daher eine mathematische Vorhersage ihres
Verhaltens unmdglich machen. Chaotische Systeme treten allerdings nur in
Zusammenhang mit Nichtlinearitaten auf.

Neben derartigen »globalen« Unstetigkeiten gibt es natiirlich auch wesentlich
einfachere Falle, bei denen nur in einzelnen »Punkten« Unstetigkeiten vorliegen. Das
sind speziell technische Systeme mit Schaltgliedern, die zwischen zwei oder mehreren
diskreten Zustanden hin— und herschalten.

Die Forderung der Stetigkeit stellt also durchaus eine groBere Einschrinkung dar. Da
die geschilderten Unstetigkeiten aber nur in Verbindung mit Nichtlinearititen
auftreten, ist gleichzeitig auch die Voraussetzung der Linearitit verletzt. In Bezug auf
die Klasse der linearen Systeme ist die Stetigkeitsforderung kaum eine Einschrinkung,
die irgendwelche technischen Systeme berihrt. Bei Linearitat liegt »fast immer« auch
Stetigkeit vor, so da8 diese Forderung nur noch zur mathematisch einwandfreien
Ableitung der Ergebnisse dient.

Dariiber hinaus ist der hier verwendete Stetigkeitsbegriff ist von verhiltnismiBig
»schwacher Natur: Die Topologie des Grundraums ® ist ndmlich recht »stark«, das
heifit sie ist z.B. dicht in jener der LEBESGUE- oder SOBOLEW-Riume L, oder W:.
Jede konvergente Folge in D ist auch in den LEBESGUE- oder SOBOLEW-Riumen
konvergent, nicht aber umgekehrt. Daher ist die Stetigkeit in D, da D »weniger«
konvergente Funktionenfolgen als etwa L, umfaBt, eine schwachere Bedingung als die
im Raum L,. Die Klasse der Systeme, die in D stetig sind, ist also umfangreicher als
die der in L, stetigen Systeme.
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2.3.4 Linearitat

Die empfindlichste Einschrankung ist zweifellos die Linearitit. Es ist durchaus von
grofem Interesse, Aussagen auch iiber nichtlineare passive Systeme zu gewinnen, da in
fast allen technischen Disziplinen versucht wird, sich den Nichtlineariiten
weitestgehend zu nihern. Es muB aber betont werden, dafl sich die Ergebnisse dieser
Arbeit trotzdem auf eine spezielle Klasse nichtlinearer Systeme anwenden lassen.
Oftmals ist es mdglich, ein nichtlineares System derart in ein lineares und in ein
nichtlineares Teilsystem aufzuspalten, daB der nichtlineare Teil nur noch aus einer
algebraischen Nichtlinearitit besteht, wihrend der lineare Teil die »Dynamik« oder die

Nachwirkungseigenschaften beschreibt. Dag bedeutet, daB sich die zugehorige
nichtlineare Operatorgleichung

(2.36) w

= Nu
in die Teile
(2.37) =(t) = Hu(1)),
(2.38) ¥(t) == (Go)(t),
(2.39) o) = niy(t),u(t))

aufspalten lassen mége. Die Funktionen # und g seinen rein algebraische nichtlineare
Funktionen, was dadurch zum Ausdruck kommt, daB in ihren Argumenten nur die
Funktionswerte zum Zeitpunkt ¢ auftreten, wihrend G einen linearen, stetigen,
zeitinvarianten Operator darstellt, dessen Argument die gesamte Funktion z ist. Die
Dimension der vektorwertigen Funktionen % und w ist im allgemeinen eine andere als
die der Funktionen z und y. Im Vorgriff auf das Ergebnis (3-33) fiir den Fall, daB der
zum System G gehérende Nachwirkungskern oder die Gewichtsdistribution

- . - - v ’ eine
gewohnliche Funktion ist, fihrt (2.37) bis (2.39) auf die Gesamtdarstellung

(2.40) 0 = u{ ] gn) ) or , ) |
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Derartige nichtlineare Gesetze lassen sich z. B. in der Materialtheorie finden. Man
vergleiche etwa BRUNK [8] das dort diskutierte allgemeine viskoelastische
Materialgesetz (2), bei dem allerdings auch der Nachwirkungskern noch vom Vektor
w(t) abhingen darf. Die phénomenologische ~ Materialbeschreibung  des
JOSEPHSON-Tunnelkontaktes in der Arbeit von BRUNK [9] besitzt genau die Struktur
(2.40). Ebenso wird von BALKE und BERGANDER in [2] ein viskoelastischen
Materialgesetz dieser Form besprochen.

Das System G in (2.38) ist nach Annahme linear, stetig und zeitinvariant. Es ist nun
denkbar, daf sich auch die Passivitit durch entsprechende SchluBifolgerungen aus den
speziellen Eigenschaften des vorliegenden nichtlinearen Systems zeigen liBt. Fiir eine
gewisse Klasse von nichtlinearen Systemen iibertragt sich aber eine Aussage {iber die
Passivitit des nichtlinearen Gesamtsystems direkt auf die Passivitit des linearen
Teilsystems. Ist nimlich die Funktion 5 von der Struktur

(2.41) %) = 30wy,

wobei 9,9 die Matrix mit den Elementen

.

. ), = —2
(2.42) (9.9);; 7,
bezeichnet, folgt mit
(2.43) £ 90 = M) st = &'(0) 30s() ¥e)

= (1) o(yr), 5(0)) = &t(0) wit)

die Invarianz der Leistungen und damit die Aquivalenz der Passivititsaussagen iiber
die Groflen , w einerseits und 2, y andererseits. Eine derartige Leistungsinvarianz tritt
tatsichlich bei der Beschreibung des JOSEPHSON-Tunnelkontaktes in der Arbeit [9]
von BRUNK auf.
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3.1 Matrixdarstellung des Systemoperators

Bezeichnet
(3.1) ¢ = [0,0,..,0,1,0,..]7

den i-ten Einheitsvektor, kann man damit den Zusammenhang eires beliebigen
Vektors x € C” mit seinen Komponenten &; durch die Beziehungen

(3.2) K =Yer , K = e?x
i

ausdriicken. Fiir den linearen Operator G folgt damit

(3.3) y=Gz =G (E}] ej:tj) = ZJ] Gc,—zj .

Fir die i-te Komponente von ¥y gilt damit

(3.4) v = efy = el Y Gez; = % echjzj .
j )

Mit der Definition

(35) Gl] = C?GCJ'

geht (3.4) formal in die indizistische Schreibweise einer Matrixmultiplikation

(3.6)

:ber. Der Operator G darf also als eine quadratische (nxn)-Matrix aufgefafit werden,
eren Elemente Gy; »EingréBen-Operatoren« sind. Die Aussagen iiber die Linearitat,

Stetigkeit und Zeitinvarianz des Operators G libertragen sich unmittelbar auf alle
Elemente G;;» jedoch nicht die Passivitat. Durch die Setzung von
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(3.7) T = er

mit einem beliebigen ¢, und einem z € ‘D erhilt man wegen

(3.8) ity = YIy, = Ly = Gz
t

als unmittelbare Aussage i{ber einzelne Elemente nur die Passivitit der
»Diagonalelemente« Gy;.

3.2 Faltungsdarstellung des Systemoperators

Es soll gezeigt werden, daB sich aufgrund der Voraussetzungen die Operatorgleichung
(2.3) als Faltungsgleichung mit einer Gewichtsdistribution schreiben 1i8t. Es wird
folgender Satz formuliert:

(3.9) Satz: Faltungsdarstellung eines Systems

Fir jedes lineare, stetige, zeitinvariante System G gibt es eine eindeutige

Gewichtsdistribution ¢ € D™*", mit der die Operatorgleichung als Faltung
geschrieben werden kann. a

(3.11) Bemerkung: Vektoren und Matrizen von Distributionen

Elemente des Raums D™ sind n-dimensionale Vektoren, deren Komponenten
Distributionen des in A.2 definierten Dual- oder Distributionenraums % sind.
Mathematisch ausgedriickt ist D™ das n—fache kartesische Produkt mit sich selbst.
Analog bezeichnet D™ ™ den Raum der (nxm)-Matrizen mit Komponenten aus ©'. Die
Faltung zwischen einer Funktion £ € D™ und einer Distribution ¢ € ™™ wird
komponentenweise durch

(3.12) y, = 2,.:-"0*"':'

oder
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T
(3.13) ¥y = gtz = E 2 €g;; * €,
L)
erklirt. o

Ist die Gewichtsdistribution ¢ eine gewdhnliche, lokal integrierbare Funktion, darf die
Faltung auch durch das Integral

(3.14) WO = | ot-1) =(r) dr

dargestellt werden.

(3.15) Beweis von Satz (3.9):

Da nach Abschnitt 3.1 der Operator G eine Matrixdarstellung besitzt und sich die
Eigenschaften der Linearitit, Stetigkeit und Zeitinvarianz auf die Matrixelemente

libertragen, reicht es aus, den Satz fiir den EingroBenfall n = 1 zu beweisen. Die
Abbildung

(3.16) €D — y(t) = (Go)t) € C

ist fir jedes ¢ aufgrund der Voraussetzungen linear und stetig im Raum D. Da auf diese
Weise jeder Funktion aus D eine (komplexe) Zahl zugewiesen wird, handelt es sich bei
dieser Abbildung um ein lineares, stetiges Funktional in D. Nach der
Distributionentheorie werden diese Funktionale auf dem
Distributionen identifiziert (siehe dazu Anhang A.2). Es gibt also zu der Abbildung

(3.16) eine eindeutige Distribution Gy aus dem Dual- oder Distributionenraum D', mit
der nach (A.14) das Funktional formal in der Form

Grundraum D mit

(3.17) ¥t) = (G2)(t) = (G, 1)

geschrieben werden kann. Wegen der Voraussetzung der Zeitinvarianz gilt
(Gz)(t+T) = (Gz(-+T))(2) .
Mit der Darstellung (3.17) folgt hieraus in Zusammenhang mit der Rechenregel (A.47)

(Grr2) = (Gp 2(-+7)) = (G--1), z) .
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Aus der Gleichheit der Funktionale fiir alle z € D folgt nach Abschnitt A.4 die
Gleichheit der Distributionen

Gur = G(--T) .

Setzen wir

*

g = Gy = Gy(-) € D,

wobei (-)* die totale Konjugation entsprechend (A.51) bezeichnet (Zeitspiegelung und
komplexe Konjugation), folgt

(3.18) y(t) = (Go)(t) = (Gpz) = (3(t--), 1) .

Ein Funktional in dieser Form definiert nach (A.82) die Faltung zwischen der
Distribution g und der Grundfunktion z, so da wir statt (3.18) auch

y(t) = (g*z)(t)
oder
(3.19) y = Gz = g%z

schreiben kénnen. a

Aus dieser Faltungsdarstellung kann man sofort mit den Aussagen aus (A.81) folgern,
daf die Ausgangsfunktion y unendlich oft differenzierbar ist, wenn z aus D" ist:

(3.20) re® = y=Gzr=gz € C:

Wegen z, € D, y; € C,, folgt dann fiir die duBere Leistung

(3.21) P = Re[i'y) e D |,

weshalb die Forderung der Integrierbarkeit von P in dem Arbeitsfunktional (2.18) der
Passivitatsdefinition aufgrund der ersten drei Voraussetzungen Linearitit, Stetigkeit
und Zeitinvarianz bereits von selbst erfiillt ist. Die aufgenommene Arbeit W(t) des
Systems ist als Integral der finiten, unendlich oft differenzierbaren Funktion P selbst
unendlich oft differenzierbar, linksseitig finit und auch beschrankt, da
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Il

| Re[#l(r)p(n)] dr

(3.22) W(w) = [ P(r)dr
—® supp ()

nur scheinbar ein uneigentliches Integral ist; die Integration ist nur {iber den Triger

supp(z) (siehe (A.1)) der Funktion z durchzufiihren, auf dem x Werte ungleich Null
besitzt. Fiir W gilt also

(3.23) WeC, , 0 = W-o) £ W) < o

3.3 Kausalitat

Man ist gewohnt, die Kausalitat eines Systems als gingige Voraussetzung anzusehen,
die meistens gar nicht mehr ausdriicklich erwihnt wird. Unter den hier
zusammengestellten Voraussetzungen ist sie nicht zu finden. Es la8t sich namlich
zeigen (man vergleiche KONIG [24], KONIG / MEIXNER [26]), da8 die Kausalitat
bereits aus den angegebenen Vorraussetzungen folgt und nicht als weitere Annahme
mit aufgenommen zu werden braucht. Zunichst wird dieser Begriff genau definiert:

(3.-24) Definition: Kausalitgt

Ein System G heiBt kausal, wenn fiir beliebige Erregungen z; € D" und jedes T € R aus

(3.25) ) = ) Vi<T

fir die Systemantworten

(2.26) (Gz))(t) = G)(t) V t<T

folgt. a

Die Werte der Systemantwort ¥(t) = (G2)(t) diirfen also fiir t < T nicht von Werten
der Erregung x(t) aus dem Zeitintervall ¢ 2 T abhdngen.
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(3.27) Satz: Kausalitit passiver Systeme

Ein lineares, passives System ist kausal. o

Die Voraussetzungen der Stetigkeit und Zeitinvarianz werden fiir diese Aussage nicht
benétigt.

(3.28) Beweis:

Wir definieren fiir @, ¥ € D" das bilineare Funktional

G2) Wil ¥) == | Re (#10(GH0)

Wegen der Voraussetzung der Passivitit von @ ist Wr ein nicht negatives Funktional,
das heiBt, es gilt fiir alle ¢ € D"

(3.30) Wr(é, ¢) 2 0.

Fir ein derartiges nicht-negatives bilineares Funktional gilt die CAUCHY-
SCEWARzsche Ungleichung

(3.31) (Wrld ®) + Wrlw, #)2 < 4 Wiie, ¢) Welw, 9)

Fir ¢ wird nun eine beliebige Funktion aus D" gewihlt, die im Intervall (-, T)
verschwindet. Dann ist W (¢, ¥) = 0 und es ergibt sich

Wb #)° s 0,
also

I Re {# NGO} at = 0
Da ¢ noch beliebig ist, kann diese Gleichung nur gelten, wenn
(Gé)(t) =0 fir t<T
gilt. Ersetzen wir nun ¢ durch
$=3-5,
ist das Verschwinden von ¢ in Intervall (-, T) iquivalent zu
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5t) =5,00) Yi<T

und das obige Ergebnis fiihrt zusammen mit der Voraussetzung der Linearitit
zu

(Gx)(t) = (Gm)t) Vi<T,

womit die Kausaliti nachgewiesen ist.

In Bezug auf die Faltungsdarstellung (3.10) bedeutet die Kausalitit, daB die

Gewichtsdistribution ¢ im Intervall (-0, 0) Null sein muB. Fir beliebige @, welche in
(-oo, T) Null sind, kann namlich

(@) = (#90) = ST (024)0) = T8¢, (5,5 6,t--)
L i

(siehe (A.82)) fiir ¢ < T nach Abschnitt A4 nur dann Null sein wenn fiir jede

Komponente

9%; = 0 in (‘oo, 0),
und damit
(3.32) § =0 in (- 0

gilt. Da umgekehrt aych jede Gewichtsdi
beschreibt, verkniipft man den Begr
Gewichtsdistributionen und bezeichnet
lokal integrierbaren Funktionen kann
wegen der Kausalitat die obere Grenze

stribution der Art (3.32) ein kausales System
iff der Kausalitit auch direkt mit den

in der Integraldarstellung (3.14) der Faltung
durch ¢ ersetzt werden:
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3.4 Ubergang auf generalisierte Geschwindigkeiten

Als Systemerregung traten bisher die generalisierten Koordinaten z auf. Es werden sich
aber gewisse Symmetrien zwischen den generalisierten Geschwindigkeiten

(3.34) v = %

und den generalisierten Kriften y herausstellen, da das Leistungsfunktional P ein
Produkt zwischen generalisierten Kraften und Geschwindigkeiten ist. Wir gehen daher
in der Systembeschreibung von der unabhingigen Erregungsgrofe z auf v iiber. Zu
diesem Zweck definieren wir zu der urspriinglichen Gewichtsdistribution g eine
»Stammfunktion« & durch

(3.35) h = ¢ )

wobei die Integrationskonstante so festgelegt werden soll, daB A genauso wie ¢ im
Intervall (~oo, 0) gleich Null sein soll. Dann ist auch A eine kausale Distribution. Nach
der Differentiationsregel (A.83) folgt damit

,:G::’*S:i*:=h*f,

(3.36) y = hww = Ho

3.5 Fourier— und LarLACE-Transformierbarkeit

Bei der Behandlung linearer Systeme stellen die FOURIER- und die LAPLACE-
Transformation machtige Hilfsmittel dar. Mit der LAPLACE-Transformation konnte
die Faltungsgleichung

(3.37) ¥y = Ay

in eine Multiplikation der LAPLACE-Transformierten iiberfiihrt werden:
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(3.38) ¥=hi.

Zwar ist v € D" und damit auf jeden Fall LAPLACE-Transformierbar, doch ist fraglich,
ob auch die LAPLACE-Transformierte von A, die ﬁber’tragungsfunktion des Systems,
existiert, was die Berechtigung der Gleichung (3.38) grundsatzlich in Frage stellt. Das

gleiche gilt auch fir die Anwendung der FOURIER-Transformation. Bereits einfache
Gewichtsfunktionen wie z. B,

(3.39) ) = €

sind weder FOURIER- noch LAPLACE~-transformierbar. Der Index (+), soll hier und im
Folgenden stets die fiir ¢ < 0 abgeschnittene Funktion

0 fir t<o

(3.40) L) = fOo(t) = {
fit) fir t 20

andeuten. Die vorgelegte Gewichtsfunktion A ist also kausal.

Das wirft die Frage auf, ob solche nicht LAPLACE-transformierbaren Gewichts

funktionen vielleicht wegen der Passivitit von vornherein ausscheiden, oder ob die

LAPLACE-Transformierbarkeit als zusitzliche Voraussetzung bendtigt wird, wenn man

mit diesen Hilfsmitteln arbeiten mochte. Es 1agt sich tatsachlich allgemein zeigen, da8
alle unter den vorgelegten Voraussetzungen moglichen Gewichtsfunktionen immer

FOURIER- und LAPLACE~Transformierbar sind; Funktionen wie (3.39) treten demnach
nicht auf.

B'evor- dies nachgewiesen wird, sollen noch einige niitzliche Bezeichnungsweisen
eingefiihrt werden. Ist J eine beliebige Matrix von Distributionen, f e DV, 50
definieren wir analog zu (A.51) die totale Konjugation

(3.41) = ey = 7

durch gleichzeitige komplexe Konjugation, Zeitspiegelung und Transponierung der

Distributionsmatrix. Ist [ eine quadratische Matrix und gilt

(3.42) f=7
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heiBt f HERMITEsch. Dementsprechend wird fiir beliebige quadratische f

(3.43) fa = U+ 1)
als HERMITEscher Anteil und
(3.44) fq = %U’ -

als anti~-HERMITEscher Anteil von f bezeichnet. Das »Produkt« zwischen
Grundfunktionen ¢ € D" und Distributionen f € D™™ (Vektoren werden als
(nx1)-Matrizen aufgefaBt) wird durch eine komponentenweise Definition auf das
Produkt (A.14) zwischen Grundfunktionen aus © und Distributionen aus %’
zuriickgefiihrt:

(3.45) 5, & =% (fi ¢
i

Entsprechend werden die Rechenregeln des Anhangs A auf dieses »Matrizenprodukt«
libertragen. Die Faltung zwischen Distributionen f € D™* und ¢ € D**™ soll analog
einer Matrixmultipikation verstanden werden:

(3.46) Jr9 = Xe; C? z}: Jirai;
1,2

Bei dieser »Matrizenfaltung« gilt das Kommutativgesetz in der abgednderten Form

(3.47) fr9 = (@7 = (¢'1)

und bei der Verallgemeinerung der Regel (A.87) ist wegen
]
(fi*gip da) = (i *95s)

auf die richtige Stellung der Operanden zu achten; folgt

(3.48) (Fre. #) = (f, 49) |,

wobei f von der Dimension nxm, g von mxp und ¢ von der Dimension nxp sein muB,
damit diese Regeln einen Sinn ergeben. Als Erweiterung der Definition (A.123) nennen
wir eine HERMTTEsche Distribution f € D™* positiv semidefinit, wenn fiir alle ¢ € D"
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(3.49) (7, ¢+") 2 0

gilt.

Mit diesen Hilfsmitteln kann nun die am System geleistete Arbeit bis zur Zeit oo in der
Form

W(=) = [Re{y'(Ne(r)} dr = Re(y,5)_ = Re(y, )
angegeben werden. Weiter ergibt sich

(3.50) W() = Re{h+v,9) = Re (h, vso")

2W() = (h, w+v") + (h, »o') = (A, o) + (A (vr0")*)

= (hoeo’) + (A", wve*) = (Reh*, peo®) .

Definieren wir

(3.51) l e = %{h + h*}

als HERMITEschen Anteil der Gewichtsdistribution h, so gilt

(3.52)

W(w) = (o, wo*)

Anhang (A.125) ein Darstellungssatz
Dieser gilt aber nur fir »skalare«
verhindert. Von beliebigen E
Form

nach BOCHNER / SCHWARTZ bereitgestellt.
Distributionen aug 7', was seine Anwendung nicht
Tregungen » wihlen wir zunichst solche, die sich in der

(3.53) v = xo

k. € C" und einer skalaren Funktion v ¢ D darstellen
dies, da8 die n unabhingigen Eingangsgrofien v; des
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MehrgroBensystems bis auf konstante Verhdltnisse alle gleichartig erregt werden.
Damit wird aus (3.52)

(3.54) W(o) = (s, sro*s’) = (x e, ') = (a,, vrv”)
mit der skalaren, positiv semidefiniten Distribution

(3.55) a, = Klex € D

Hierauf kann der Darstellungssatz (A.125) angewendet werden. Danach ist die
Distribution a_ sogar aus dem Teilraum der »langsam wachsenden Distributionen«
&’ ¢ D’ und besitzt eine FOURIER-Transformierte mit der Darstellung

(3.56) i, = (+()H)tus,

wobei u, eine reellwertige, beschrankte, monoton wachsende Funktion und k € N ist.
Ubertragt man (3.54) mit Hilfe der PARSEVALschen Gleichung (A.100) in den
FOURIER-Bereich, erhilt man

(3.57) W(w) = L(a,, 7).

Betrachtet man dieses Funktional jetzt fir ein beliebiges, aber festgehaltenes v als
Funktion von x, kann die in (3.54) vorliegende HERMITEsche Form in & nur dann
erreicht werden, wenn ein A mit

(3.58) i, = K'Ax

existiert. Die Zuordnung von HERMITEschen Formen zu HERMITEschen Matrizen
(3.59) A=A ™

ist eindeutig. Da nach Definition von a,

(3.60) G(nfu:) = &, = ' Ax

gilt, muS A gleich der FOURIER-Transformierten & = 3J(s) sein. Damit ist die
FOURIER-Transformierbarkeit des HERMITEschen Anteils & gezeigt. Die Darstellung
(3.56) fihrt dann zu

(3.61) &= (c2+(-)2)" C,

wobel g eine beschrinkte, monoton wachsende Matrix im Sinne von
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+
(3.62) Kk plw)s < lsfp(w2)l: fir w, < w,

ist. Auch umgekehrt definiert jede Darstellung (3.61) mit einem beliebigen k € N und
einer Funktion g mit den angegebenen Eigenschaften im Zeitbereich eine zugehorige

positiv semidefinte Distribution. Durch Riicktransformation erhilt man aus der
Darstellung (3.61)

(3.63) a = (Cz-dﬁ)k v,

woblei d; die Ableitung nach der Zeit bezeichnet. Fiir die FOURIER - Transformierte von
v gilt

(3.64) b=
“feien d.er Bes(fh.l'inkthfeit Von p ist v stetig. Die Funktion » ist im Ubrigen selbst
Wieder eine positiv semidefinite Distribution (Funktion), wie man an der Positivitat

2. Nk
des Faktors (c*+w )* in (3.56) sofort erkennt. Um dje FOURIER-Transformierbarkeit
der gesamten Gewichtsdistribution & nachzuweisen

(3.65) h=0 in (- 0)
bzw
(3.66) K =0 in (0, )
gilt
(3.67) e = ;-{h+h*} = %h in (0, o),
Wir erhalten also
(3.68) A= { 0 in (~oo, 0)
2s in (0, x)

Darstellung (3.63) zy

(3.69) b =2(afe) i (=,0) und (0, )
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zusammengefat werden. Man beachte, da8 die Abschneideoperation, also die
Multiplikation mit der Sprungfunktion, nur auf die stetige Funktion » angewendet
werden darf. Eine Anwendung auf den gesamten Ausdruck der rechten Seite von (3.69)
ist nicht statthaft, da nur die Multiplikation einer beliebigen Distribution mit einer
unendlich oft differenzierbaren Funktion definiert ist. An der Darstellung fiir A fehlt
noch eine Aussage fiir den Trager {0}. Als Distributionen auf einem solchen singuliren
Trager kommen aber nur die §~Distribution und ihre Ableitungen in Frage, so da wir
die Darstellung fiir & auf der gesamten reellen Achse in der Form

(3.70) h = 2(cz—d3)k(v¢) +r

angeben kdnnen, wobei der Rest r eine singulire Distribution (§ und Ableitungen) mit
dem Trager {0} ist.

Die Elemente der Matrix & bzw. g waren aus dem Raum &’. Die FOURIER- und deren
Riicktransformation bilden diesen Raum in sich ab, so da8 auch die Elemente von &
bzw. ¥ wieder in &’ liegen. Die Anwendung der Abschneideoperation auf die stetige
Funktion » dndert nichts an der Zugehdrigkeit zu &', in dem auch beliebige lineare
Differentialoperatoren angewendet werden diirfen. Da stets auch eine singulire
Distribution wie die Matrixelemente von r zu &’ gehéren, sind schlieflich auch die
Elemente von & aus &', also & € 6™". Damit ist auch die FOURIER-Transformation
auf h anwendbar. Diese Ergebnisse werden in dem folgenden Satz zusammengefaft:

(3.71) Satz: FOURIER-Transformierbarkeit der Gewichtadistribution

Die Gewichtsdistribution eines linearen, stetigen, zeitinvarianten, passiven Systems ist
aus dem Raum &™"" und damit FOURIER-transformierbar. o

(3-72) Bemerkung: Erweiterung der zugelassenen Eingangafunktionen

Der obige Satz gestattet noch eine andere wichtige SchluBfolgerung: Da die
Gewichtsdistribution immer im Teilraum &™"® c D™ liegt, ist es moglich, die Menge
der zugelassenen Eingangsfunktionen » zu erweitern. Statt » € D® kann man nun
9€ 6" 5 D® zulassen. Der Raum S umfaBt nach (A.8) unendlich oft differenzierbare
Funktionen aus C,, die samt ihren Ableitungen fir ¢ — + oo betragsmiBig schneller
fallen als jeder Kehrwert einer Potenz von t. Nach (A.81) liegen dann die Elemente des
Faltungsprodukts y = A*» im Raum D, =6 nC, (siche (A.41)). Dann sind die
Funktionale P(t) und W(2) fiir alle ¢ weiterhin wohldefiniert und auBerdem selbst aus
C,. o
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Wir kommen nun zur Untersuchung der LAPLACE-Transformierbarkeit der Gewichts-
distribution. Nach (A.114) ist diese gegeben, wenn fiir Werte d eines offenen Intervalls

ke 90D

FOURIER-transformierbar ist. Um djes nachzuweisen, wihlen wir zunichst irgendeine
Funktion x aus C_ mit der Eigenschaft

(3.73) O = { 1 fir t290

0fir t<sT

aus, wobei T < 0 eine beliebige Konstante ist. Das Produkt hy ist nach Abschnitt A.5
definiert und wegen der Kausalitat von A gilt hy = h. Anderseits ist nicht die

Exponentialfunktion ¢™"), aber das Produkt xe ") aus dem Raum S, sofern d > 0
ist. Daher gilt

(3.74) hed() - (hx) 4 = B(xe0)) ¢ gmn

denn das Produkt einer Distribution aus &’ und einer Funktion aus & ¢ DC ist nach
o0

A.5 wiederum aus &'. Da d der Realteil der komplexen unabhingigen Variablen s des
Bildbereichs ist, erhalten wir aug der Bedingung d > 0 die rechte offene Halbebene
Re(s) > 0 alg Konvergenzbereich. Damit jst die LAPLACE-Transformierbarkeit
nachwiesen, was im nachfolgenden Satz zusammengefait wird:

(3.75) Satz: LAPI.ACE—Tnml‘onnierbukeit der Gewichtsdistribution
Die Gewichtsdistribution eines linear.

en, stetigen, zeitinvarianten, passiven Systems ist
LAPLACE—transfonnierbar mit dem

Konvergenzgebiet Re(s) > 0. o

4 Eigenschaften passiver Systeme im Bereich
der LArLACE—Transformation

4.1 Positive Funktionen

Im vorangegangenen Abschnitt 3.4 wurde bisher nur die Nicht-Negativitit der
gesamten am System geleisteten Arbeit W{(oo) ausgewertet, um die Existenz der
LAPLACE-Transformierten zu zeigen. Das ist aber nur ein Sonderfall der
Passivitdtsaussage W(t) 2 0 fiir alle t. Die weitere Auswertung wird zu einer
Charakterisierung der  Ubertragungsfunktionen (LAPLACE-Transformierte der
Gewichtsdistributionen) im LAPLACE-Bereich fiihren. Das bringt uns zum Begriff der
Positivitat:

(4.1) Definition: Positivitat

Emne (nxn)-Matrix f, deren Elemente analytische Funktionen in der rechten
komplexen Halbebene Re(s) > 0 sind, heifit positiv, wenn der HERMITEsche Anteil der
Matrix f(s) fiir alle s der rechten Halbebene positiv semidefinit ist. o

Fir den EingroBenfall » = 1 bedeutet die Positivitat, daB die Funktionswerte f(s) fiir
alle s mit positivern Realteil selbst einen nicht negativen Realteil besitzen:

(4.2) Re(s) >0 = Re f(s) 2 0

Die Abbildungseigenschaft einer derartigen positiven, skalaren Funktion ist in Bild 4.1
skiziert. Die rechte Halbebene wird auf sich selbst abgebildet.
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Im A

f(s), Re(s)>o0

Bild 4.1: Abbildung der rechien Halbebene

! Re(s) > 0 unter einer positiven skalaren
Funktion

gﬁr Positive skalare Funktionen sind im Anhang B.§ Ergebnisse zusammengestellt. Im
unde kann auch der MehrgroBenfall auf diesen EingréSenfall zuriickgefiihrt werden:

Definiert man zy der Matrix f und einem konstanten Vektor x € C* die skalare
Funktion
(4.3) fo = ‘f!"

Ks) positiv semidefinit fiir alle s mit Re(s) > 0
ht negativen Realtei] besitzt:

(4.9) Re f (s) = Re {lc?f(s)s} = %{xff(s)foxff*(s)n}
sf{f(s)-t»f"(s)}s 20.

Nach der Bemerkung (B.74) kann i
angenommen werden, wenp [« ko
im Nullraum von I

# dem Gebiet Re(s) > 0 der Wert Re fu(s) = 0 nur
nstant imagindr oder Null igt. In diesem Fall liegt &

4.1 Positive Funktionen 37

Es gilt nun der bekannte Satz:

(4.5) Satz: Positivitit der Ubertragungsfunktionen passiver Systeme
Die Ubertragungsfunktion eines linearen, stetigen, zeitinvarianten, passiven Systems
ist eine positive Funktion. o

(4.6) Beweis:
Der Beweis wird gefiihrt, indem man dem System geeignete Testfunktionen

aufschaltet. Nach dem oben Gesagten iiber die Zuriickfiihrung des Positivitatsbegriffes
auf den EingroBenfall reicht es aus, Funktionen der Art

4.7 v = &V

zu priifen. Als Testfunktion v soll die Exponentialfunktion (") Verwendung finden,
wobei s eine komplexe Konstante mit positivem Realteil ist. Wie man aus dem
Umgang mit der LAPLACE-Transformation weil, bekommt man dann als » Amplitude«
der Systemantwort den Wert der Ubertragungsfunktion an der Stelle s, so daB sich ein
Zusammenhang zwischen der Passivitit und der Positivitdt herstellen 1a6t. Die
vorgeschlagene Exponentialfunktion als Testfunktion hat aber einen Nachteil: Zwar
haben wir entsprechend der Bemerkung (3.72) die Menge der zugelassenen
Eingangsfunktionen zu dem Raum &" erweitern konnen, doch gehort die
Exponentialfunktion mit Re(s) > 0 wegen ihres fiir ¢ — o unbeschrankt wachsenden
Verhaltens nicht dazu. Betrachtet man aber einen Wert des Ausgangs zu einer festen
Zeit, ist wegen der Kausalitit der zukiinftige Verlauf der Eingangsfunktion irrelevant,
80 daB wir sie »abschneiden« kéonnen. Dazu bedienen wir uns wieder der Funktion X
nach (3.73) und nehmen als Erregung nun die Funktion

(4.8) v = &) y(7-),

die aus der zZugelassenen Menge & ist. Damit gilt fiir ¢t £ T mit s =: d+jw

¥t) = (on)(®) = (Mer(eOx(T-)) ) = (Kb O x(T-t+4))

ey

= (“-‘X(T-t-r-), c'(‘")) = (E, c'(t")) = c“(i'_ﬁ C"(o))
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= (RO, FO) = o 5(he O w) = o cur)(d+je)

(4.9) wt) = ' his)x.

Daraus ergibt sich fiir das Arbeitsfunktional
t t .
(4.10) WO = [Re{o'(Nen}dr = [ Re {"ati(s)ne”} dr

= Re {s'h)a} %7 ar = Re (s'hio)e} 0

Der letzte Term ist wegen d > 0 stets positiv, so daB sich aus der Passivitit als
notwendige Bedingung die Positivitat der ﬁbertragungsfunktion h ergibt:

(4.11) Re {sfi;(s)n} = 0. o

Die Positivitit der Ubertragungsmatrix ist nicht nur notwendig, sondern auch

hinreichend fiir die Passivitit. Dieser Nachweis wird jedoch auf spiter verschoben
(siehe Satz (4.77)).

4.2 Beispiele passiver Systeme und positiver Funktionen

!{1 der nachfolgenden Tabelle sind die Gewichtsfunktionen und die zugehdorigen
Ubertragun.g.sfunktionen einiger passiver Systeme angegeben. Neben den gelaufigen
rationalen Ubertragungsfunktionen, deren Liste man beliebig verlingern konnte, ist
eine Reihe elementarer transzendenter positiver Funktionen angegeben, denen man
beim Umgjmg mit gewdhnlichen Differentialgleichungssystemen nicht begegnet.
Defartige Ubertragungsfunktionen treten bei der Behandlung partieller Differential-
gleichungen auf, wobei es im Einzelfall gar nicht so einfach ist, zu einer vorgegebenen
Ubertragungsfunktion eine passende partielle Differentialgleichung mit entsprechenden
Randbedingung anzugeben.

4.2 Beispiele passiver Systeme und positiver Funktionen

39

(4.12) Tabelle einiger passiver Systeme

Nr h(t) k(s)
1 Integrierer a(t) :—
2 Proportionalglied &(t) 1
3 Differenzierer &(t) s
1 3 2 s
5 o/t Vr/s
6 ol I'(a) g'“ ,la] <1
7 Schwinger cos, at 1/ (s*+a%
8 VZ,-Glied e;* 1/ (s+a)
9 J.(at) 1/ /%t
10 1 Prop.-gl. mit Totzeit ab(t) + b8(t-T) a+be T*
11 Doppelleitung (offen) 8(t) + ng}lé(t—?kT) coth Ts
12 sin,wyt / ¢ arctan (w,/s)
T3 e:ﬂ/ 212 @ TeCTP/2 erfe ’7?;
T4 e [ Vxt 1/ s+a
15 :f—:—)- - ae*™ erfe(avi) 1/ (Y5+a)
x|




40 4 Eigenschaften passiver Systeme im Bereich der Laplace-Transformation

(4.13) Beispiel: Elektrische Doppelleitung

Um den Zusammenhang zwischen der Ubertragungsfunktion und den zugrunde
liegenden partiellen Differentialgleichungen zu verdeutlichen (Blick in die Black Box),
soll das Beispiel einer homogenen, elektrischen Doppelleitung aufgegriffen werden.
Anders als in der Tabelle (4.12), Nr. 11, wo nur der Fall der an dem einen Ende offenen
Leitung aufgefiihrt ist, wird jetzt die Leitung mit einem beliebigen OHMschen
Abschluiwiderstand behandelt, Die Anordnung der beiden Einzelleiter kann natiirlich
abweichend von Bild 4.2 auch verdrillt oder in koaxialer Form ausgefiihrt sein. Es soll
sich aber um einen homogenen Leiter handeln, daB heift, die Induktivitit pro

Langeneinheit L und die Kapazitdt pro Langeneinheit C seien lings der Leitung
konstant.

iz, 1)

—

lu(z,t) o q R

Bild 4.2: Doppelleitung

Die beschreibenden partiellen Differentialgleichungen lauten

(4.14) 02:' +C a‘u =0 ,

(4.15) du+Lai=o,

Durch Einsetzen erhalt man beis
gleichung 2. Ordnung

(4.16) 83!; -LC 8?1; =0,

Dielsweise fiir die Spannung u(z, t) die Differential-

eine Wellengleichung. Bei der Anordnung wie in Bild 4.2 lauten die Randbedinungen

(4.17) 8(0,1) = u,1),

(4.18) 0, 2) = igt),
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(4.19) u(a,t) = Ri(a, t).

Von den Gleichungen (4.17) und (4.18) tritt jeweils nur eine als Randbedingung auf, je
nachdem, ob der Strom i, oder die Spannung 4, als duBere Erregung verstanden wird.
Die jeweils andere Gleichung wird aber bendtigt, um die Systemantwort an den
Klemmen zu bestimmen. Aus der zweiten Randbedingung (4.19) wird bei Ubersetzung
in eine Beziehung allein in Ableitungen von u

(4.20) du(a,t) = R 8,ila,t) = - F0,u(a,t).

Durch LAPLACE-Transformation der Zeitkoordinate geht u(z, ¢) in #(z, s) {iber und aus
der partiellen Differentialgleichung (4.16) wird eine gewdhnliche Differentialgleichung
in der Ortskoordinate

(4.21) a-LCsi =0,

wobei die unabhangige Variable s des LAPLACE-Bereichs als Parameter auftritt. Diese
hat als Losung Hyperbelfunktionen

(4.22) #(z, s) = A(s) cosh(VLC zs) + B(s) sinh(VLC zs) .

Die Integrationskonstanten A und B sind Funktionen des Parameters s. Aus den
Randbedinungen (4.17) und (4.20) ergibt sich

(4.23) 40, s) = fiy{s) = A(s) = iy(s)
und

3 ((ils) cosh(VET as) + B(s) sinb{(VEET as) )
= ~2/IC s (i(s) sinb(VECT os) + Bs)cosh(VIC as) ) =

cosh(VLZC as) + RYC/L sinh(VLC as)
(4.24) B(s) = - iig(s) )
2inh(VIC as) + RYC/L cosh(VLC as)

Damit erhalten wir fiir die Spannung
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(4.25) i(z,s) =

. wWVIC .
uo(S){ cosh(VEC z5) ~ —— (VEC as) + RVCTL sinh(VET as) b (/I 25
sinh(VIC as) + RVCJL cosh(VIC as) v
Mit
(4.26) 3 2 1.
15(s) = (o, s) = ~ 1= 8,30, 5)

ergibt sich alg Ubert . )
widerstand) ragungsfunktion der Klemmengroen 4y und i, (der Schein-
(4.27) Z(s) = k(s) = to(s) Ry sinh Ts + R cosh T's

go(“f) N

0
R, cosh Ts + R sinh Ts

wobei als Abkiirzungen der Wellenwiderstang

4.28
(4.28) R, := ¥yI;C
und die Laufzeit eineg Signals iiber die Leitungslinge a
(4.29) T := JIC
= '3
verwendet wurden. st der Abschlquiderstand R =0, erhalt man mit
=0, mi
(4.30)

(4.31)

(4.32)
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gleiche Fall ergibt sich, wenn es sich um eine unendlich lange Leitung handelt, a — .
Dann wird der AbschluBwiderstand unerheblich, da ein mit endlicher Geschwindigkeit
auf der Leitung fortschreitendes Signal diesen niemals erreicht.

Zu der allgemeinen Ubertragungsfunktion (4.27) gehért als FOURIER-Transformierte
der Gewichtsfunktion k unter der Einschrankung 0 < R < oo

JHy 8in wT + R cos wT

{4.33) ’.I(QJ) = R, .
Ry cos wT + jR 8in wT

Im Fall R = 0 treten - Distributionen an den Polstellen hinzu:

(4.34) h = jRytan(-T) - T % o(--222Y
k:-m
Ahnlich auch in Fall R = o:

(-5 .

-0

(4.35) h = ~jRycot(-T) + T

|TM&

Durch Riicktransformation gelangt man zu der Gewichtsdistribution, die sich ohne
Unterscheidung fiir alle Fille 0 < R S « als

(4.36) h = RS +2R i‘ d* 5(--2kT)
k=1

darstellen 1a8t. Hierin ist die »Dampfungskonstante« oder der Reflektionsfaktor d
durch

R-R,
R+R,

gegeben. Sein Wert liegt zwischen -1 und 1. Der Klemmenstrom 18t sich dann
unmittelbar als Funktion der Klemmenspannung angeben:

(4.37) d =

(4.38) ug(t) = (hxigh(t) = Riy(t) +2Rk§ld“io(t-2k7‘)

Die Klemmenspannung zur Zeit ¢ setzt sich aus einem scheinbaren »OBMschen« Anteil
und aus Anteilen, die durch Leitungsreflexionen mit entsprechender Dampfung
entstehen, zusammen. Die in (4.38) eingehenden Werte des Stroms i, liegen um
Vielfache der doppelten Leitungslaufzeit T zeitlich zuriick - die Zeit, die ein Signal
braucht, um nach Reflektion wieder zur Eingangsklemme zuriick zu gelangen. Fiir den
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Fall der offenen Leitung, B = oo, ist § = 1. Die Signale werden immer wieder an den

Leitungsenden ungedampit reflektiert. Das gleiche tritt be; der kurzgeschlossenen
Leitung mit R = 0, 4 = -3 auf, nur daB hier die Reflektion eine Vorzeichenumkehr

beeinhaltet. o

4.3 Darstellungen positiver Funktionen

© 2
) s - ¢
(4.39) 1d9) = jQe+ M+ [ L p(2)
- -
Hierin sind Qu M, reelle Zahlen, wobej
(4.40) M, 20

1st. Die reellwertige Funktion Py ist beschrinkt und monoton wachsend. Umgekehrt

erzeugt jede Darstellung wie (4.39) mit den genannten Eigenschaften von Qy, M, und

Py €ine ‘posit'ive Funktion. Mit der schon bekannten SchluBweise betrachen wir nun
Sfu(s) bei beliebigem, aber festgehaltenem s alg

Formen in g sind. Das fj

(4.41)

;et.zt sind Q, M konstante (nxn)-Matrizen und P eine (nxn)-Matrixfunktion. Der
usammenhang zy den Konstanten Qo M, und der Funktion Py ist durch

(4.42) Q, = K Q.

4.
(4.43) M, = "M,
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t
(4.44) Ps = K pK

gegeben. Damit diese GroBen reell sind, miissen die Matrizen Q, M und p HERMITEsch
sein. Aus (4.40) folgt fiir M zusitzlich positive Semidefinitheit. Die Monotonie-
eigenschaft der Funktionen P Ubertrigt sich auf die Matrix p in direkter Weise zu

(4.45) sfp(wl)s < sfp(wQ)lc

fir w, < w,. Die Darstellung (4.41) wird nach YOULA [47] benannt. Sie wird
gewdhnlich — wie auch bei ZEMANIAN [49] - nur fiir reelle positive Funktionen
angegeben, also solche, bei denen f(s) fiir reelle s selbst reell ist. Dadurch ergeben
veranderte Darstellungen.

Fir positive, skalare Funktionen gibt es nach (B.89) eine zugehdrige Randfunktion. Die
Gleichungen (B.93) und (B.94) fiir den Real- und Imaginarteil dieser Randfunktion
gehen im MehrgroBenfall in die Beziehungen

(4.46) LI+ i} = 7 (P4 4,
® 2 4 0w
(4.47) %{]R(w)—f}g(W)} = ]{ Q+ V‘P_.l -?Tdﬁ(n) }

fir den HERMITEschen und anti-HERMITEschen Anteil von fr fiiber. Diese
Rand-»Funktion« ist eine Distribution aus &™*. Ist die positive Funktion f die
Ubertragungsfunktion  eines passiven Systems, entspricht der Randfunktion Iy die
FOURIER-Transformierte & der Gewichtsdistribution. Vergleicht man die Form (4.46)
mit der Darstellung (3.61) fiir den HERMITEschen Anteil der Gewichtsdistribution,

(4.48) i= ;—s(hh*) =%(i+l'cf) ,

80 identfiziert man den dortigen Exponenten als ¥ = 1 und zwischen den
MaBfunktionen gilt die Beziehung

(4.49) K =5

Man kdnnte meinen, daB das Ergebnis (3.61) Gberfliissig sei, da ja die Darstellung
(4.46) mit

(4.50) i = 1 ()




46

4 Eigenschaften passiver Systeme im Bereich der Laplace-Transformation

eine engere Aussage iiber die FOURIER- Transformierte liefert. Man muf aber daran

erinnern, daB es erst der Satz (A.125) gestattete, die FOURIER-Transformation auf &
anzuwenden. Hieraus entsprang auch dag Zwischenergebnis (3.61).

Mit diesen Kenntnissen kann auch dje Darstellung (3.70) fir & im Zeitbereich

er Integralda.rstellung (4.41) 1aBt sich wie folgt
zerlegen:

s - ¢ - 2
= s+
i -5 s~ jn

(4.51)

Damit und mit (4.49) wird aus (4.41)

R o0 d n ©

(4.52) h(s) = jQ+ Ms + (c2—32) ljy(\) + iJ- dp(2) .
"o d+ j(w-0) rd

Mit dem Gleichungen (4.49) und ( 3.64) erhalt man

h(s)

JjQ+ Ms + (c2—32) L (ic * d+}\(-))(“") + 25 ¥(0)

x

iQ+ Ms + 2 (2 52) s(ue;‘('))(w) + 25 1{0)

]

jQ+ Ms + 2 (c2—s2) S(V*e'dt))(w) + 25 1(0)

= JjQ+Ms+2 (c2—32) £(v,)(s) + 25 »0) .

I+ M+ oA-ad)v,) + 24u(0)

r= jQs+ (u+2v(o))8.
Statt (4.53) kann man alternativ auch
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(4.55) h = jQ5s + Mb + 2c%, - 2d%{(v-n0)),}

schreiben. Mit der stetigen Funktion
t

(4.56) nt) = 2 { S [ (t-T(r)dr - w(2) + v+(0)} )
0

die fiir ¢ £ 0 verschwindet, gelangt man zu der Form

(4.57) h = jQ5+ Mb+hy := jQ6+ Mb+j

Mit diesem Hilfsmitteln soll nun die Ubertragung des Arbeitsfunktionals .W in de.n
Bereich der FOURIER-Transformation bewerkstelligt werden. Die gesamte bl.S zu.r Zeit
o geleistete Arbeit W(oo) kann bereits mit den Ergebnissen aus dem 3. Kapitel in der

Form

(4.58) Wo) = (a oo") = L (& #)

dargestellt werden. Jetzt soll ein gleichartiger Ausdruck .fﬁr M./(t) mit belfeblgem t
gefunden werden. Zur Vereinfachung der Schreibarbeit Wl.rd noch. el'ne neue
Abschneideoperation eingefithrt. Fiir eine stetige Funktion f bezeichnen wir mit

f(r) far r £ ¢

0 firT >t

(4.59) fd7) = f(r)olt-r) = {

die rechts von ¢ abgeschnittene Funktion.

Mit der Darstellung (4.57) erhlt man fiir das Arbeitsfunktional

(4.60) W(t) = Re (h*v, ¥), = Re (Mb*v, ), + Re (i*v, v),
= Re (M#, 8), + Re (ipv, v); .

Hier geht die Matrix Q nicht mehr ein. Fiir den ersten Term ergibt sich

¢ :
Re (Ms, v), = Re [ o} (r)Mo(r) dr = L j 6 M) ar



48 4 Eigenschaften passiver Systeme im Bereich der Laplace-Transformation

(4.61) Re (Ms, 9), = Lol()mo(y) .

Dies ist eine reelle, positiv semidefinite HERMITEsche Form in den generalisierten
Geschwindigkeiten ». Sind die Komponenten von g tatsdchlich massenkinematiSCh.e
generalisierte Geschwindigkeiten, erkennt man in dem Ausdruck die kinetische Energie
und in M die Massenmatriz wieder. Bei der Beschreibung eines elektrischen Netzwerks
mit Hilfe von Ladungskoordinaten z sind die generalisierten Geschwindigkeiten #
elektrische Strome, so daB Af hier als Induktivitatsmatrix aufgefaBt werden kann und

der Ausdruck (4.61) die magnetische Energie des Netzwerks angibt. Bei Verwendung
von magnetischen FluBkoordinaten sind die g

elektrische Spannungen: die Matrix M ist die Kapazititsmatrix und (4.61) gibt die

elektrische Energie wieder. Entsprechendes gilt fiir gemischte Koordinatensitze.

Fir den zweiten Term in (4.60) erhilt man durch partielle Integration

(4.62) (0, 9), = ~ (e, 9), + (e ()olt)

Im Ausdruck m*#(7) kann fir r < ¢ die Funktion » unbeschadet durch die rechtsseitig
abgeschnittene Funktion )

¢t ersetzt werden, denn eg gilt wegen der Stetigkeit und
Kausalitit von N zunichst
(m)(r) = (gea,)(r)
fir r < t. Weiter gilt

(") = (wo(t--)) = bo(t=) - w8(t--) = 4, - o(t)s(t--) |,

Woraus sich fiir r < ¢
(Pi)(r) = ('f"ﬁt)("') = (7“‘("))(7') + '(t)(é(t")*’l)(f)

= (@) + st)ar-y)
und wegen 5(r) = 0 fiir TS0

PHT) = (4(n))(r)
ergibt. Fir (4.62) erhalt man algo
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(4.63) (9, ), = - (m+(9,)", (3)"), + ((m) ") T (O)olt)
= (p#(9)", v); = (W9, v), = (i*v, ),

= (hprv, 9) = (hy, oxv;)

it h, nach (4.57). Der letzte Ausdruck kann mit Hilfe der PARSEVALschen Gleichung
mi .57).
analog wie (4.58) in den FOURIER-Bereich iibertragen werden. Wegen

1 * o -
Re (h, ”l*":) = %("o*":’ ”t*"t) = 5(’“’" , O*v;) (a, vv;)

folgt endlich

(4.64) W) = Lo'oMu) + = (& )

i i ort durch die
Diese Gleichung bedarf zusitzlicher Erlauterung. Die Funktion 1‘6 nge};);tFul:lkﬁonal
Anwendung der Abschneideoperation nicht mehr w1e-v zufn Raum &". o Fun ona
wie in (4.64) mit einer beliebigen Distribution & wire fiir a'lledn gx;.lr e Darelions

ings ist @ | i ollig freie Distribution, da sie durch di
Allerdings ist & ja auch keine vollig ' e
(4.50) feitgelegt ist, woraus sich auch die bei der Herleitung von (4.64b) ve_r\;lven
. ’ . i ierbereic

Eigenschaften der Funktion  ergaben. Aus 9, = vo(t--) folgt im Four

-3 T ) -jlw-t )
(4.65) #{w) = 1_{;* (vé - CJZT))')}(w)= Law) _E%VIP:O[E';&’IC iw-Mtgn

2x

i ir w — * oo mit dem
Die Funktion 9, ist stetig und strebt, wie man in (4.65) erlie?:t;::r :z/wz T
Verhalten von 1/w gegen Null. Entsprechend strebt ##, e, e ML
Andererseits besitzt @ wegen (4.50) ein Wachstumsver-h:..ltzl rlx\l,i ' k,an 0 dal das
Funktional wegen der Beschrinktheit von p stets' e;us :or;n
Erweiterung auch als LEBESGUE-STIELTIES-Integral in der

(4.66) (& #3) = x:j: (2+02?) 3} (2)dp(2)a ()

i der
darstell In diesem Sinn soll die Erweiterung des Geltungsbereichs
stellen.
»Produktklammer« verstanden werden.
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Die Darstellung (4.64) kann noch weiter aufgegliedert werden. Nach der Bemerkung
(A.128) kann man jede monoton wachsende Funktion wie P, nach (4.44) in einen

stetigen, monoton wachsenden Teil und in eine monoton wachsende Treppenfunktion
zerlegen. Diese Zerlegung iibertrgt sich auch auf p:

(4.67) P =p+p,

wobei p, der stetige Anteil von p ist. Diese Zerlegung impliziert auch eine Zerlegung
von

(4.68) & =4 +a,,

wobei

(4.69) 3 = 7 (+(-)?) p; ,

(4.70)

8, = 7 (?+(1)?) p..

ist. Der Teil &, ist als Ableitung einer monotonen, stetigen Funktion lokal absolut

integrabel, wihrend der Anteil &, als Distributions

ableitung einer Treppenfunktion
5-Distributionen an den Sprungstellen w; der Funktio

I p, enthalt:

(4.71) 8 = Yo d(--w,).

Die HERMITEschen, positiv defi

niten Koeffizienten @; ergeben sich aus der Sprunghéhe
der Treppenstufen durch

(4.72) o = r(cF+u?) { Aw;+0) - plw.-0) }

Damit gewinnen wir fir dag Arbeitsfunktional neben der Darstellung (4.64) die Form

(4.73) WO = oM + Ly Hodagu) + L (3. 351)

an. Da &, lokal absolyt integrierbar ist, darf man

dies auch als Integral schreiben:
(4.74)

W(t) = Lo (e)aras) + iy

Hwagu) + L § ! (ay(2)a(0) a2
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Fiir den Grenzfall ¢ = o ergibt sich

(4.75) W) = =3 i wasw) + & (& #')
bzw.
(4.76) W) = L3 w)aiw) + = _af # (e (Dw(0) do

Da die Koeffizienten a; sowie M und @ (f2) wegen der Pogitivitit der
Ubertragungsmatrix positiv semidefinite Matrizen sind, i.st def Au‘sdruck ('4.7?12 bzdw
(4.74) fiir jede Erregung v und jedes ¢ nicht negativ. Damit ergibt sich unmitte ar. li
bereits angekiindigte Umkehrung des Satzes (4.5) iiber den Zusammenhang passive
Systeme und positiver Ubertragungsfunktionen:

(4.77) Satz: Zuordnung passiver Systeme zu positiven Funktionen

Zu einer positiven Funktion gibt es stets ein lineares, stetiges, zeitinvariantes, passives

U i i itiven Funktion ist.
System, dessen {fbertragungsfunktion gleich der vorgelegten positi -

Die Linearitat, Stetigkeit und Zeitinvarianz wurden hier nicht b%ionders erwall:;x:i, ::
sich diese Aussagen durch die Eigenschaften der Ffaltung-mxt der zugfi (43?{7)
Gewichtsdistribution automatisch ergeben. Mit den be%lden Satzt'en (4.5) (liml' .

haben wir eine umkehrbar eindeutige Zuordnung positiver Funktionen und linearer,

sletiger, zeitinvarianter, passiver Systeme.
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4.4 Verkniipfungen positiver Funktionen und passiver Systeme

4.4.1 Verkniipfungen positiver Funktionen

Die Eigenschaft der Positivitit bleibt unter

einer Reihe von Operationen erhalten. Es
gilt folgender Satz:

(4.78) Satz: Komposition positiver Funktionen

Die Funktionen [, 9 seien positiv und

von ihrer Dimension (nxn) und (mxm)-Matrizen.
Dann gelten folgende Aussagen:

1. Ist T eine konstante (nxk)-Matrix,

k beliebig, so ist T1fT positiv. Dies beeinhaltet
die Positivitit von 1f,

wenn 7 eine reelle, nicht negative Konstante ist.

Die Summe f + g st Positiv, sofern n = g, ist.

Besitzt diel Matrix f(s) fiir irgendein s mit Re(
Inverse f ~!(s) fir alle s mit Re(s) > 0, welche
4. Ist g skalar, also m = 1,

8) > 0 vollen Rang, so existiert die
ebenfalls eine positive Funktion ist.

80 ist f{g(-)) eine positive Funktion. °
(4.79) Beweis:

Aus der Positivitit von f,

4
(4.80) l:'{f(s)+jf(s)}n 20
fiir alle Vektoren x und alle s mit Re(s) > ¢ folgt durch die Substitution

(4.81) K= TA

die Positivitat von Tf]T:

. tot
(4.82) AT fs)+f s} = AHrt e, T (s)T)A

= ,\*{r*ﬁs)1-+(r*1(s)r)*} 20

Die 2. i . ..
s) § ﬁ‘:“:saSe dlst unmn-ttelba.r einsichtig. Wir kommen zur 3. Aussage: Hat die MatriX
Tgendein s ip dey rechten Halbebene einen Rangabfall, gibt es einen
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konstanten Vektor x, der im Nullraum von f{s) liegt, also

(4.83) fs) = K f(s)s = 0.

Nach Bemerkung (B.74) iiber das Minimumprinzip analytischen Funktion ist dann f in
der gesamten Halbebene Null. Es kann daher ein beliebiges s der rechten Halbebene
gewdhlt werden, um den Rangabfall zu priffen. Hat f(s) fiir irgendein s vollen Rang,
muf dies im gesamten Gebiet Re(s) > 0 gelten. Daher ist f(s) fiir alle s dieses Gebiets
invertierbar und f ~! ist eine analytische Funktion. Aus (4.80) folgt durch die Setzung

(4.84) ss) = f9)A,
wobei A ein beliebiger konstanter Vektor ist,
@85) AT M) (f0)+S1 @)} £ oA = AT {F )+ A 2 0,

also die Positivitat von f L.

Die 4. Aussage ist sehr einfach zu beweisen: Da die positive Funktion g die rechte
Halbebene Re(s) > 0 in sich abbildet, folgt mit der Positivitit der Funktion f
unmittelbar die Positiviit der zusammengesetzten Funktion fg(-)). o

Die Aussagen der Satzes (4.78) sind sehr niitzlich, wenn es darum geht, die Positivitat
einer Funktion zu iiberpriifen. Gelingt es, die Funktionsvorschrift in Einzeloperationen
wie die im Satz (4.78) aufgefiihrten zu zerlegen, kann die Positivitit sehr schnell
gezeigt werden. Als Beispiel betrachten wir die Funktion

s
(4.86) f(s) = o
Wir bringen sie in die Form
$) = ———>—-
fs) s v ols

Man beginnt mit der elementaren positiven Funktion s — s (Ideﬂﬁtit)-_N“Ch Rfag'el 4
ist auch 1/s positiv, nach Regel 1 dann auch wg/s. Die Summe der beiden posm\ten
Funktionen s und wg/s ist nach Regel 2 ebenfalls p?sm'v. Durch .aPe‘rmal- ige
Anwendung der Regel 4 auf diese Summe gelangt man schlieBlich zur Positivitit der
Sesamten Funktion f.
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4.4.2 Verkniipfungen passiver Systeme

Wegen der eindeutigen Zuordnung von positiven Funktionen und passiven Systemen
entsprechen den Operationen 1 bis 4 in Satz (4.78) zwischen positiven Funktionen
Verkniipfungen von Systemen. Die 1. Regel kann auf der Systemebene als

Transformation der generalisierten Geschindigkeiten und Krifte gedeutet werden.
Durch die Substitution

(4.87) r v = To, § := Tfy

mit einer konstanten, nicht notwendi
geht die Faltungsgleichung

gerweise quadratischen Transformationsmatrix T

(4.88) v=~Ahxy

in

(4.89) V= TAT«5 = kxp = irs

iiber. Das neue System

(4.90) = 1ty

muf dann wegen der Aussagen iiber die Positiven Funktionen ebenfalls passiv sein. Das
kann man aber auch unmit

telbar an der Invarianz der Leistung erkennen. Es gilt

(4.91) P = Rela'§) = Refitrly) - Re[o'y] = P

(4.92)

Ein derartiges System, welches die sy der einen Seite (Primirseite) zugefiihrte

i 55
4.4 Verkniipfungen positiver Funktionen und passiver Systeme

Leistung auf der anderen (Sekundirseite) "wieder vollstindig ohne je;tlchI:z
Zwischenspeicherung abfiihrt, heiSt idealer Ubertrager oder. Transforma ok. "
einfachsten Fall kann ein derartiger Ubertrager aus einem 31m.ple—n I\‘Ietszerk vo.t
Drihten bestehen; Jdann sind vielleicht einige der Klemmen der Primirseite direkt mld
jeweils einer oder mehrerer der Klemmen der Sekundirseite ver-bur_lden, a.nderetsm

offen. Genau dies ist der Fall, wenn man nur einen Teil der Einginge des S.ys e(;n:
testen mdchte und die anderen offen 1it oder gegen Masse' oder 'Emtereman e

kurzschliefit. Auch eine derartige Beschaltung ist ein leistunginvarianter Ubertrager.

Bei mechanischen Systemen kann man sich ideale Ubertrager durch masselose
Hebelmechanismen realisiert denken.

H

e |
| " |
o [ v |
—I] H |
u; ] o | uj - }

0
|
J

Bild 4.3: Elektrischer Multipol mit Vorschaltung eines idealen Ubertragers
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—_— ]

H,, H, durch gleichartige Erregung
T = U‘ = 02
und Addition der Ausgangsgrofien

(4.94) T = Aew ks, = Ak rg = g

ist aufgrund der Additiviggy ger Leistungen

(4.95) P = t

Re o ¥l = Re [vfyl] + Re [.*’2] = P +P,
bei Passivitit d i
b erd’::axlszyaeme auch die Passivitat deg Gesamtsystems gewahrleistet.
Interpretation der Add.' .AUSSage des' Satzes (4.78). Eine schaltungstechnische
Multipole bietet Bild 4 4“;)0 " Zweier Ub‘m“148111188f11n1(tionen im Fall elektrischer

. **- Dies ist aber nyr 4 ichti =

# die Spannungen § = 40n richtig, wenn man als Erregungsgrofe

= 5 e

! die Ubertragungsfunktion & der

sich die resultierenden Strome i
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Realisierung fiir den Fall der Erregung mit gleichen Stromen v = § = §, = %), also eine
»Reihenschaltung«, existiert im Mehrgroenfall nicht. Im mechanischen Fall ist die
Parallelschaltung, die Erregung mit gleichen Verschiebungen bzw. Geschwindigkeiten,
durch geeignete starre Kopplungen zu erreichen. Die duBere Systemreaktion, die Krafte
der Teilsysteme, addieren sich dann. Umgekehrt 1aBt sich eine Kraft nur in
Sonderfillen in gleicher GroBe auf zwei verschiedene mechanische Teilsysteme
aufbringen.

Der Grund fiir diese Eigenarten ist darin zu sehen, da sowohl der elektrische Strom als
auch die mechanische Kraft von der physikalischen Natur her extensive Gréfen sind,
das heifit, sie treten in physikalischen Bilanzgleichungen als riumlich verteilte
ZufiihrgroBien auf. Den resultierenden Gesamtwert einer extensiven GréBe erhilt man
durch Addition. Umgekehrt wird eine derartige GroBe bei Aufteilung auf verschiedene
Teilsysteme auch in ihrem Wert geteilt.

Eine generelle Ausnahme bildet die Reihenschaltung idealer elektrischer Zweipole.
Aufgrund der Ladungserhaltung gehorcht der elektrische Strom pamlich einer
Bﬂmgleichung, 80 daB der zu— und abflieBende Strom an beiden Polen des Zweipols
einander gleich ist, wenn Streukapazititen vernachlissigt werden dirfen. Man findet
also an einem idealen Zweipol stets zweimal den gleichen Strom vor - aus diesem
Grund ist ein Zweipol ein EingroBensystem. Die eine Klemme kann dann zur Kopplung
mit einem weiteren Zweipol benutzt werden. Bei elektrischen Multipolen steht aber
jeder Strom im allgemeinen nur einmal zur Verfiigung, so daB eine Reihenschaltung
nicht méglich ist. Beim mechanischen Analogon eines Zweipols wie etwa beim
Langselement ist die Reihenschaltung mdglich, wenn es sich um masselose Elemente
handelt. Dann sind die duBeren Krafte an beiden Enden einander gleich wie die Strome
beim idealen elektrischen Zweipol. Bei massebehafteten Langselementen wie auch bei
elektrischen Elementen nicht zu vernachlassigender Streukapazitdt ist eine
Reihenschaltung nicht méglich.

Der Inversion der ijbertragungsﬁmktion h wie in der 3. Regel des Satzes (4.78)
entspricht einfach die Vertauschung der unabhiingigen und abhiingigen SystemgrofSen.
Statt durch

(4.96) y=Axy
Wird das System dann durch
(4.97) v=Alsy
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Al -1 .
beschrieben. Hierin ist &7! die Riicktransformierte von Al Man kann A auch im

Zeitbereich einfach alg Umkehrabbildung von A im Sinne von

(4.98) Y S

definieren, ohpne die LAPLACE—Transformation Zu bemiihen. Wegen

(4.99) P - Re['fy]

bleibt die Leistung hierbej selbstverstandlich invariant und das »Umkehrsysteme is
m Zeitbereich allein nur sehr schwer zu dberblicken ist,' ist
die Ezistenz von &l Durch Transformation in den LAPLACE-Bereich erhilt man diese
Aussage aber durch die Regel 3 des Satzes (4.78).

Wihrend die Operationen 1 bjg 3 von Satz (4.78) unmittelbare Entsprechungen ‘1m
Zeitbereich finden, gelingt dies fiir dje 4. Regel, die Hintereinanderschaltung zweier
if

benragungsfunktionen nicht in allgemeiner Weise. Fiir ein elektrisches Netzwerk aus

mit einem 4, Proportionalen Scheinwiderst
Zweipol mit einem },

Ubertmsungsfunktion

and und jeden Kondensator durch eine.n
2 Proportionalen Scheinleitwert, go besitzt das neue System die

(4100 A= ki, ()).

ist s auch das Gesamtsystem. Ein Sonderfall hiervon ist die
ven Funktion hy(s) = 1/s. Die Ubertragungsfunktion

Sind H, und H, passiv, go
Substitution mit der positj

(4.101)

ergibt sich, wenp die positive Funktion
‘4.102) hy(s) = N
gewihit wird. Nach DoEkTsca [14],

A (A S. 337, gehért dann zu der Ubertragungsfunktion
A,(k()) die Gewichtafunktiog
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(4.103) gt (ﬁl($))(t) = { ¥(r, t) by(r) dr
Dabei ist "

4 T4
(4104) ‘w(T, t) = W €

a i i dort ihr erstes
Diese Funktion tritt in der Theorie der Warmeleitung auf, w?:ellm) e
Funktionsargument jedoch eine Ortskoordinate ist. Ob der Form (4.
unkti '
t offen.
physikalische Bedeutung abgerungen werden kann, is

4.5 Rationale positive Funktionen

i ionale Funktionen
Wir beschrink ns auf den Fall skalarer rationaler Funktloneni“;n:rtlo
d s oo o darste :
sind sind als Quotient zweier teilerfremder Polynome p, ¢

(4.105) fls) =

D in der gesamten komplexen Zahlenebene analytische Funkt.:;m:; ;::ld,q (12;
a‘l:(;{?::z lges:rrnfen Ebene analytisch mit Ausnahme del;( Irun:es;;d R Conen 41
verschwindet - die Polstellen der Funktion. Andyfl?che:u:l;( t:::::n e ehe
stetig; deshalb kann fiir rationale (skalare) positive

Passivititsbedingung
Re f(s) 2 0 fiir alle s mit Re(s) > 0

durch

(4.106) Re f(s) 2 0 fir fast alle s mit Re(s) 2 0

ersetzt werden,
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(4.107) Satz: Eigenschaften Positiver, rationaler Funktionen

Fiir eine positive, rationale Funktion f gelten folgenden Aussagen:

1. Die Null- und Polstellen von f liegen im Gebiet Re(s) < 0.

2. Imaginire Null- oder Polstellen treten Jeweils nur einfach auf. An diesen Pol- bzw.
Nullstellen besitzt S bzw. 1/f positiv reelle Residuen.

3. Der Gradunterschied des Zihler- und des Nennerpolynoms von f ist hochstens
gleich 1. In diesem Fall ist ger Quotient der Koeffizienten hochster Ordnung von
Zihler- und Nennerpolynom positiv reell.

- Héchstens einer der beiden Absoluterme von Zihler-
In diesem Fall gt der entsprechende Koeffizient 1. Ord

5. Ist f eine reelle rationale Funktion, sind also alle Koeffizienten von Zihler- und

Nennerpolynom reell, so sind sie nach eventueller Kiirzung der Vorzeichen alle nicht
negativ,

und Neanerpolynom ist Null.

(4.108) Beweis:

eine rationale Funktion ist und diese nach Satz (4.78)

ebenfalls positiv ist, gilt die gleiche SchluBweise auch fiir dje Polstellen von 1/, weiche

die Nullstellen vop [ sind.

2. Es milssen dje Au
Dazu benutzen wir
Zahler- und Nenne

88agen iber die imaginiren Nyjj— und Polstellen bewiesen werden.

fir die rationale Funktion f jhre faktorisierte Form, in der das

rpolynom als Produkt jhrer Linearfaktoren ausgedriickt werden:

n . 7.
floy = 2O e

e
) _l;Il (s-8,)%

(4.109)

Die Zahlen @; sind die Nuyllgt,
Jeweils die Vielfachheit der Null- ung pelgtep
% ¥ B;. Die Anzahlen B und m sind bej ray
beliebige Polstejle B} kann die durey

ellen, 8; die Pole von £, die Exponenten ~; und (; geben

€0 an. Wegen der Teilerfremdheit _i"
ionalen Funktionen endlich. Fir eine
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i den. Mit
definierte Funktion an der Stelle s = B; analytisch fortgesetzt werden

(4.111) Ry == 6,8 #+ 0,

(4.112) Ui(s) := 6(s) - R
kann man die Funktion f durch
(4.113) (s) = (Ry + 9y(s))(s-B,)

. 5 egen Null.
ausdriicken. Die an der Stelle s = f; stetige Funktion 9 strebt fir s — f; geg
Fiir f gilt nun

(4.114) arg f(s) = arg(R+9y(s)) - ¢y arg(s-By) -
I8t B = ju, eine imaginare Polstelle, liegen die Punkte

4
(4.115) 8§ = ﬂk + TCJ

. Aus (4.114)
fir Winkel ¢ € (~x/2, 7/2) und r > 0 in der rechten Halbebene Re(s) > 0 (
wird damit

(4.116) arg f(s) = arg(Rg+9i(s)) - (1o -

ndhert sich
Beim Grenzﬁbergang r — 0 geht i(s) gegen Nu.ll und ;u f(f‘)i;::;(:l)l)er im Bereich
beliebig genau arg R,. Wire der Grad der Vielfachheit ¢; > é r Gesamtwinkel (4.116)
(- %/2, x/2) immer ein Winkel ¢ gefunden werden, so'daﬁ Reea.lteil und f wire nicht
auBerhalb dieses Intervalls lage. Dann hatte f(s) negativen Iten. Auch in diesem Fall
Positiv. Es kann fiir positive Funktionen also nur ¢; = 1 ge edi-e Konstante R, nicht
Wirde der Realteil von f(s) negative Werte memmn,‘wefm tante R, ist far den
Positiv reell ware und ¢ — +r/2 gewdhlt Wﬁr.de. e di:-msstelle 3 =‘ﬂk' Damit ist
vorliegenden Fall ¢, = 1 das Residuum der Funktion f by Durch {bergang von f
die Aussage ber die positiv reellen Residuen M ! bezll::lxl:n von f bzw. iiber die
auf 1/f folgt die Aussage iiber die Einfachheit der N
Residuen von 1 /f.

oms ist
3. Die Differenz zwischen dem Grad des Zih]erpolyn'oms uni ies:l;n:my;iﬁerm
die Ordnung der Nullstelle der Funktion £ im Unendlichen o;t;le ;)ei o e e
Poeitiv ist, bzw. bei negativem Wert die Ordnung der P_ O e Noch Surs (478) i
Abbildung s — 1/s geht der Punkt s = o in den Punkt s = She. Nach S (478) i
duch die Funktion f(1/s) positiv, wenn [ positiv ist. Wegen
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Aussage dieses Satzes kann f(1/5) an der Stelle s = 0 nur eine einfache Nuil- oder
Polstelle besitzen, daB heift, der Gradunterschied des Zahler- und des
Nennerpolynoms von f ist hochstens 1. Die Positivitit des Residuums von f(1/s) bzw.

1/f(1/s) an der Stelle s = 0 dbertrigt sich auf das Verhiltnis der Koeffizienten
hochster Ordnung,

4. Bei der Abbildung f(s) — f(1 /) geht jeweils der Koeffizient kleinster Ordnung, der
von Null verschieden ist, in den hochsten Koeffizienten iiber. Wie bereits bewiesen,
da.rf der Unterschied der hdchsten Ordnungen nur kleiner gleich 1 sein. Da der Fall, daf
beide Absolutterme gleich Null sind, wegen der Teilerfremdheit der Polynome
ausscheidet, kann nur einer der Koeffizienten 0. Ordnung verschwinden und der
entsprechende Koeffizient 1. Ordnung mu8 in diesem Fall ungleich Null sein.

5. Im Fall reeller rationaler Funktionen sind Pole und Nullstellen zueinander konjugiert
komplex angeordnet. Mit

(4.127 _ .
) 0,'—5,-+]U.-, .Bg=€'-+jwi

kann man daher fiir (4.109) auch
—_y. 7" 2_ 2 :
(4.118) fls) = K T Gme T (" 2t0r8l o
I;[ (s—ﬂ,v)c" H (32—2cis+e?+w?)(‘

scl_lreiben, wobei jeweils die ersten Produkte die reellen Null-
f:;??i::li ~d:. z:el:etsl l;ro;ukte die restlichen komplexen. Wegen der Aussagen aus
ren L P(;; » & ¢; 5 0. Die al.xftretenden Linearfaktoren und quadratischen Glieder

ynome mlt.reellen, nicht negativen Koeffizienten. Produkte von derartigen
wnxederum Bur nicht negative Koeffizienten hervor. Aus der
fur reelle s beim Grenziibergang s — oo folgt nun noch, daB such
1v reell sein mufl. Damit igt die letzte Aussage bewiesen. a

und Polstellen enthalten
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(4.119) Satz: Notwendige und hinreichende Bedingungen fiir die Positivitit rationaler
Funktionen mit imaginaren Null- und Polstellen

Eine rationale Funktion f mit ausschlielich imaginiren Null- und Polstellen ist genau
dann positiv, wenn folgende Bedingungen gelten:

1. Die Null- und Polstellen seien jeweils einfach und auf der imagindren Achse
abwechselnd angeordnet.

2. Im Fall ungleicher Grade des Zahler— und des Nennerpolynoms sei der Quotient der
jeweils hochsten Koeffizienten positiv reell. Im Fall gleicher Grade sei dieser
Quotient positiv imaginir, wenn der grofte Imagindrteil der Null- und Polstellen
zu einer Nullstelle gehort, andernfalls sei der Quotient negativ imaginar. o

(4.120) Bemerkung: Reelle rationale Funktionen mit imaginiren Null- und Poistellen

Eine reelle Funktion f kann mit ausschlieflich imaginiren Polen und Nullstellen bei
gleichem Zahler- und Nennergrad niemals positiv sein. In diesem Fall mu8 der
Gradunterschied zwischen Zihler und Nenner genau 1 sein. Da die Nullstellen s = jv;
und die Pole s = jw, bei rellen Funktionen konjugiert komplex auftreten, kann f in
diesem Fall in die Form

I (32+v?)
(4.121) fs) = Ks&¥ —*
I (s*+47)

gebracht werden. Der Wert s = 0 tritt dabei immer entweder als Nullstelle oder als Pol
auf. Es ist also entweder v = 1 oder v = -1. o

(4.122) Beweis von Satz (4.119):

Zuerst zum »hinreichenden« Teil der Aussage: Wir gehen von der Darstellung

N
I (s-4vy)

(4123) f(s) _ P(s) =K l';l
9(s) IT (s-jw;)

i=1

aus. Die Nullstellen a; = jv; und die Polstellen B; = jw; sind nach Voraussetzung
einfach und abwechselnd geordnet:
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(4.124) Y <Y <y <, < Vjo < ...

1 3

wobei ¢ = i oder ¢ = §+1 gein kann. Aus (4.123) folgt

(4.125) arg f(s) = arg K +_§larg (s-jv;) -.glarg (s-jw;) .

Wegen der Anordnung (4.124) gilt fiir die Winkel

. . . r
(4.126) % > e > arg (s-jv) > arg (s-jw,) > arg (s-ju;,,) > ... > -3

in der rechten Halbebene Re
alternierende endliche Reihe y

Anzahl der Summanden weg
sie fir beliebige s der rech

() > 0. Die Summen in (4.125) kénnen in eine
msortiert werden, bei der fiir den Fall einer ungeraden
en der Beschrankung (4.126) schnell zu erkennen ist, daf
ten Halbebene nur Werte aus dem Intervall (x/2, -1/2)
spricht dem Fall ungleicher Grade von Zahler- “?d
ausssetzung dann K positiv reell ist, also arg K = 0, ist
maBig kleiner alg 7/2. Somit liegt der Wert f(s) in der
™ Fall einer geraden Anzah von Summanden (also gleicher
ad) liegt der Summenwert zwischen 0 und #, wenn der grote

der Winkel vop f(s) betrags
rechten Halbebepe. I

Nun zum *notwendigen« Tej| der Ay

8age. Wir betrachten Punkte auf der imaginare?
Achse 5 = jy,

far die wir die modifizierge Positivitatsbedingung (4.106) aberprifes-

Auch hier werden gje Formeln (4.123) ynq (4.125) benutzt, wobei allerdings dss
Ordnungsschema (4.124) ¢

$=jw, wg (v, w;},

(4.127)

. N M

arg f(jw) = arg K ﬁElarg Hw-v)) ~ 3 arg j{w-w;) .
i= f=1

Die Summanden sing Jeweils gleich tr /2,

. Je nachdem, ob grofer oder kleiner als %
bzw. w; ist. Wir erhalten
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T M) &
(4.128) arg f(jw) = arg K + n% - (N-n) 3 -m3 +(M-m) ]

N-M
= argK+7r(n—m——2—) .

;» die grofer als w

Hierbei ist n bzw. m die Anzahl der Nullstellen v; bzw. der Pole w,;?idlnle gro :‘n i
' O i i en = =

sind. Durch ein geniigend kleines bzw. groBes w kénnen immer die o) 0
bzw. n = N, m = M erreicht werden. Daher kann der Wert arg f(jw ann
Intervall [-x/2, x/2] liegen, wenn |N-M| < 1 ist.

. Das
Fir den Fall N = M+1 darf die Differenz n-m nur die Werte Oloze'rnl ::: :h:e(i.ll;)
bedeutet aber gerade, da die Null- und Polstellen abwechseind i ], Joweil cins
angeordnet sind, wobei der grofite und der kleinste der Werte {v’; re:elle Konstante
Nullstelle ist. Weiterhin folgt noch arg K = 0, also mufl K eine positi
sein.

- jeren, was
Im Fall N = M+1 kann n-m nur zwischen den Werten 0 und ' 1 ::lt:er:ermer i
ebenfalls die wechselnde Anordnung der Null- und Polstellen ’n:,?}lzK t;rhilt man
Jeweils eine Polstelle der groBte und kleinste Wert der Menge {v;, w,}.
wieder als positiv reelle Konstante.

_ hmen mu8, je
Der letzte Fall N = M impliziert, da arg K den Wert + oder ;v/ 2n?nm{!vfn:} ist. Da
nachdem, ob eine Pol- oder eine Nullstelle der groBte m_lter fienh' ehster (;;dl;ullg der
die Konstante K das Verhiltnis der Koeffizienten jeweils hoc ' .
. wiesen.
Zahler- und Nennerpolynome von f ist, sind damit alle Aussagen be

i i einer
Die Prifung der Positivitatsbedingung »/ir alle s der .’“"‘;"d':f'cf;me':f t;; wire
willkiirlich vorgelegten Funktion oftmals gar nicht einfac auf die normale
daher wiinschenswert, wenn es gelinge, die Umemu.dmngv n‘]:f nntnissen iiber die
*Frequenzkennlinie« s = jw zu beschrinken. Untex: S orsjtz:
Zu untersuchende Funktion ist dies moglich. Dazu dient folgender

) itivitit rationaler Funktionen

(4129) Setx: Bedingungen fir die Positivitt ine Polstellen. Die imaginiren
Die rationale Funktion f besitze im Gebiet Re(s). > 0 keine I(’;:‘d da'we,polynoms
Pole seien einfach und haben positiv reelle Residuen. Def gem Fall sei der Quotient
von f sei um hdchstens 1 groBer als der des Nenners. In di
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der Koeffizienten hochsten Grades von Zahler- und Nennerpolynom positiv reell. Gilt
nun

(4.130) Re f(jw) > 0

fiir fast alle w € R, ist f eine positive Funktion. 0

ensichtlich ist die Anwendung dieses Satzes am einfachsten, wenn alle Pole im
Gebiet Re(s) < ¢ liegen und der Zahlergrad nicht grofler als der Nennergrad ist. Dann
ist nur die Bedingung (4.130) zu @berpriifen.

(4.131) Beweis:

Stiicken von C, die mit der imagindren Achge zusammenfallen, hat die Funktion f nach

Voraussetzung nicht negativen Realteil. Werden dje Halbkreise um einen Pol jw, von k
mit geniigend kleinem Radius gewihlt, wird dag Verhalten der Funktion h auf diesem
Konturstiick allein durch gas nach Voraussetzung positive Residuum R, der Polstelle

bestimmt:
Ry
(4.132) ) — — o Jwy .
8 = jwy

Man vergleiche (4.113). Daher ist Re f(

Halbkreis nicht Degativ. Der Wert der Fu

Halbkreis um den Nullpunkt allein durch

8) auf einem geniigend klein gewdahlten
nktion f wird auf einem geniigend grofem

(4.133) f8) — K& i 8$—

bestimmt. Die Konstante g ist das Verhiltnis der hdchsten Koeffizienten von Zahler
und Nennerpolynom ynq ,, die Differenz von Zahler. und Nennergrad. Nach Voraus-

setzung darf v hochsteng 1 sein. In diesem Fa ist X wiederum nach Voraussetzung
Positiv reell, go da8 auch

auf diesem Halbkreis der Realteil von f keine negativen
Werte annehmen kann. Nach dem Minimumprinzip harmonischer Funktionen - wie der
Realteil von [ eine ist -

wird der kleingte Wert immer auf dem Rand eines Gebietes
tn;enommen.lmlnnemderl(onturcm_{ j icht negati

j iebige Punkt s
Realteil. Da die Kontur C so weit vergrofiert werden kan‘n, da8 Jedef l-)te;’:edz e
der H lt->ebene Re(s) > 0 umschlossen wird, folgt die Nicht-Negativi
er a ’- . . - . t'
fir alle Punkte s mit Re(s) > 0, womit f eine positive Funktion is

i il fiir 3 — oo gegen
Ist der Exponent v negativ, strebt f(s) und dan.nt. auch de'r Rf;l:: :;S Gebietes e
Null. Auf diese Weise kdnnen wir fiir den Realtetl_ von. f(s)-lmt e Boas i
untere Schranke finden, die zwar zunichst nega.tn:' sein !(o:n t;;d o o e
der Null beliebig nihert, je gréBer der duBere Krels.gewahl w ht;m oo
diesem Fall ein negativer Wert von Re A(s) in der rec

en werden. . .

:;ge:::lm: = 0 strebt Re f(s) fiir s — o gegen eine Konstante,ndli4gll<;:;:)hn(iice;1;1
Grenzwert von Re f(jw) fir w — oo ist und nach der‘ V(:;'au:sftz?n egm&t.ion ) nent
hegativ sein kann. Ist der Grenzwert positiv, kann man sxc: e;cm;g;xweise o
Fall ¥ = 1 anschlieBen. Ist er Null, kann man nach der
fortfahren.

Re

x = Pole

Bild {.5: Kontur C (zum Beweis (4.151))
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(4.134) Satz: Partialbmcllabspaltnng bei positiven Funktionen

Bringt man eine positive, rationale Funktion f in die Form

(4.135) fo) = 22 _ Rys + D, Pl
q(s) i 8= juw; 4,(s)

(4.135) selbst eine positive Funktion.

(4.136) Beweis:

Die Positivitit der Funktionen

nicht groBer als der Nennergrad. D, ’

(4.138) ;

&ibt es nach (B.89) eine Grenz- oder Randfunktion auf der
. ist dies besonders deutlich zu dberblicken:
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. 1 . .
(4.139) fn = R} + SR (i + 78(-w) + £o(5)
lautet. Dies kann man nun wieder zu der Formel

(4.140) fr = fG)+ z? TR8(--w;)

Zusammenfassen. Ist die positive Funktion f die LAPLACE—Tmfmformlert:‘ohU:;;:i
passiven Gewichtsdistribution, ist die Randfunktion f R g?mh de.l' d also die
Transformierten 4. Fir rationale positive {bertragungsfunktionen wird also
FOURIER-Transformierte aus der LAPLACE-Transformierten durch

(4.141) B = h(j-) + L 7RH(--w)

i s Realteil,
bestimmt. Fir den wichtigen HERMITEschen Anteil, im skalaren Fall also der
ergibt sich dann

(4.142) & = Reh(j;) + ¥ rRS(--w)

ich sind, i ichtlich
Der singulare Anteil, fiir den die imaginiren Pole verantwortlich sind, ist offens

(4.143) i, = ¥ rRH(--w;)

L4 .
1

wahrend sich fiir den lokal integrierbaren Anteil

(4.144) dg(w) = Re h(jw) = Re hy(jw)

ergibt. Hierin st
Po(-’)
'AD)]

i ind Polstellen und eines

“tsprechend (4.135) der durch Abspaltung der imaginiren :d o e e

ergradiiberschusses von A enstandene Rest, der nur noch ) a;]e 2 der rechen
Offenen Halbebene Re(s) > 0 besitzt. Fir den Sonde

Tagungsfunktion (alle Koeffizienten reell) gilt

(4.145) hy =
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(4.146) h(3) = n(s),
80 daB in diesem Fall der Anteil &, durch die Beziehung

By(w) = 3 (h(jw) + h(-jw))

= 2 () + A-a))(s=ju) = L (2@, B Ys=jw)

o(9)
(€147) i(w) = L P=8) + p(-s)g(s) (5= i)
’ 9(s)q(-s)
1 _Po($)go(=3) + p,(=s)g,(s) _
=3 (s=juw)

20(8)go(-s)

Zu gewinnen igt.

46 Ein Algebraisches Kriterium gy Priifung der Positivitat

Bei rationalen Funktionen kann die Uberprﬁfung der Positivitit auf ein einfaclf”
endliches algebraisches Rechenschema reduziert werden. Dieses Verfahren gebt I
Wesentlichen auf das bekannte ROUTH-Kriterium zuriick, welches sich letztlich auf die

STURMSschen Ketten griindet - ein Verfahren zyr Bestimmung der Anzahl VO?
Nullstellen eineg Polynoms in einem vorgegebenen Intervall.

Als Grundlage benutzen wir dey, Satz (4.129), der als Voraussetzung

(4.148) Re f(ju) > o
fu fast alle o ¢ R forder. Zusitzlich gehen wir vop reellen rationalen Funktionen aus
also solchen, bej a

enen das Zihler- ypq das Nennerpol eelle Koeffizient!
. cuen ynom nur r.
besitzt. Dann schreibt sich Re £(3) gemas (4.147) alg

(4.149) Re f(jw) = % P(jw)e(jw) + ?(-jw)q(jw)

9(jw)g(-jw )

e alee 71
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Da der Nenner nicht negativ ist, fihrt die geforderte Positivitit auf
(4.150) p(jw)g(-jw) + p(-jw)q(jw) > 0.

Mit dem Polynom

(4.151) R(s) = p(s)g(-s) + p(-s)g(s)

148t sich dies als

(4.152) R(jw) > 0

fir fast alle w € R ausdriicken, denn R(s) ist far al_le Tmaginen ¢ ;e;“v;;:rllﬁgt'
Ausnahmestellen dieser Bedingung sind mogliche imaginare Nulls‘telle‘n 1:0 hhe.it ciner
R an einer solchen Stelle nicht das Vorzeichen weclvlselt, darf dlih V:eNzlclstellen o
solchen Nullstelle nur gerade sein. Da eine Unterscheld'ung mehl_fa ?niren Nullstellen
dem folgenden Verfahren nicht moglich ist, schliefien wir sol'che {mail 1 Vorseichon
ganz aus. Ist also keine Nullstelle von R imagindr, kann R(jw) niem :/ e
wechseln. Zur Priifung von (4.152) reicht es in diesem Fali aus, das

einzelnen Wertes, z. B. R(0) > 0, zu untersuchen.

. jugi omplex.
Allgemein sind die Nullstellen des reellen Polynoms R Z"emanderlt?cl::egi];rgt :.uchp ~8
Wegen R(s) = Rl=s) ist suflerdem mit jeder Nullssell s;l gkonﬁguration in der
Nullstelle. Daher ergibt sich die in Bild 4.6 skizzierte Nullste -e:: reren wogen der 3.
komplexen Ebene. Die Grade N und M der Polyome p und ¢ di efch bei der Bildung
Aussage des Satzes (4.107) um hochstens 1. In diesem Fall hel:: :;n R betrigt also
von R gemi8 (4.151) die hochsten Koeffizienten heraus. Der Gr

d der obigen
Das Polynom R besitzt demnach 2k Nullstellen, von denen ;::lixne Re(s) > 0
ijb‘meglmgen jeweils genau eine Hilfte in der rechten offeneno liegen mu8. Das fiihrt
und die andere Halfte in der linken offenen Halbebene Re(s) <
auf den folgenden Satz:
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4.6 Ein algebraisches Kriterium zur Priifung der Positivitat

Im

Re

4.154) Satz- . .
(15 s des  Kriterium  fir gie Positivitit reeller rationaler

Die rationale Funktion f = i iti i
sind: F=p/qist Pogitiv, wenn dje folgenden Voraussetzungen erfillt

d fiir deren Grade N, M gelte [N-M| S 1.

Re(s) < 0 1ig e: bl "%en die Nullstellen vop ¢ in der linken offenen Halbebene
gen bzw. im Fall N_ps — 1 die Nullstellen von p. Ist N = M, gelte dies
oder die vop q-

besitze keine imagindre Nullstelle und es gelte

da alle Nullstellen in der linken offenen Halbebene Re(s) < 0 liegen miissen. Bei
Anwendung auf R miissen genau k Zeichenwechsel stattfinden, wenn 2k der Grad von R
ist. Andernfalls wiirden Nullstellen auf der imaginiren Achse liegen, was ausgeschlossen
wurde.

(4.155) Beispiel:
Die Funktion

32+3s+2

fs) = —

s+ 752 + 17s + 15-

ist auf Positivitit zu iberpriifen. Der Nennergrad ist grofier als der Zihlergrad. Deshalb
werden die Nullstellen des Nennerpolynoms mit dem ROUTH~Schema untersucht:

1 17

7 15
14,86

15

In der ersten Spalte findet kein Vorzeichenwechsel statt. Daher haben alle Nullstellen
Von ¢ negativen Realteil. Bildung des Polynoms R:

R(s) := p(s)g(-s) + p(-s)q(s)

= 8s*—a45* +60.

Ublicherweise werden beim ROUTH-Schema als Startpolynome die geraden und die
ungeraden Potenzen des Ausgangspolynoms benutzt. Da R regelmiBig n.ur aus geraden
Potenzen besteht, ist hier abweichend als zweites Startpolynom die Ableitung

R'(s) = 325° - 88s

Zu benutzen:
8 -44 60
32 -88
-22 60
-0,73
60
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In der ersten Spalte wechselt das Vorzeichen zweimal. Es ist also keine Nullstelle von

R imaginir. Da auBerdem R(0) = 60 > 0 ist, haben wir damit die Positivit

nachgewiesen. .

5 Reversibilitat und Irreversibilitat

Die Frage der Reversibilitit wird gewohnlich mit Hilfe von Kreisprozessen erdrtert. Ein
Kreisproze8 liegt vor, wenn das System ausgehend von einem Anfangszustand (in der
Thermostatik ist dies ein Gleichgewichtszustand) nach irgendeiner Steuerung wieder
genau in diesen thermodynamischen Ausgangszustand zuriickgefihrt wird (wobei
keineswegs sicher ist, ob es Giberhaupt Kreisprozesse gibt). Dies wirft wiederum die
Frage auf, wie der Zustand eines Systems zweifelsfrei erkannt werden kann. Einerseits
beurteilt man ihn an den (AuBeren mechanischen oder elektrodynamischen)
generalisierten Koordinaten oder Arbeitsvariablen und an den zugehdrigen
generalisierten Kriften. Andererseits treten innere Zustandgrofen hinzu. Die
Thermostatik verwendet genau eine zusdtzliche unabhangige Zustandsvariable,

beispielsweise die innere Energie.

Ist der Ausgangs— und der damit iibereinstimmende Endzustand eines Kreisprozesses
ein thermodynamischer Gleichgewichtszustand, so verschwindet also die Anderung der
Energie des Systeme durch den Prozef. Das bedeutet, daB die am System geleistete
Arbeit vom System als Warme an die Umgebung abgefiihrt werden muB. Durch den
Energieaustausch des Systems mit der Umgebung konnen dort Verinderungen am Ende
des Kreisprozesses eingetreten sein, obwohl das System selbst sich wieder genau in
seinem Anfangszustand befindet.

Ein Kreisproze8 wird reversibel genannt, wenn die wahrend dieses Prozesses gesamte
geleistete Arbeit verschwindet; dann wird insgesamt keine Warme an die Umgebung
abgefiihrt. Man spricht von strenger Reversibilitat, wenn auch die Umgebung wieder in

den Ausgangszustand zuriickkehren kann.

Ist das System wihrend des ganzen Kreisprozesses adisbatisch (warmedicht)
abgeschlossen, kann also keine Warme abgefiihrt werden, muf die gesamte Arbeit - da
€8 sich um einen Kreisprozeff handelt - verschwinden. Daher sind alle Kreisprozesse
eines adiabatischen Systems reversibel. Die Erfahrung lehrt aber, daf in realen
adiabatisch abgeschlossenen Systemem nur solche Prozesse moglich sind, bei denen
zwar die mechanischen oder elektromagnetischen Koordinaten ihre Ausgangswerte
erreichen, aber die innere Energie erhoht und damit der Umgebung Arbeit entzogen ist
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(Fa.st—Kreisprozesse). Wegen des PLANCKschen Verbotg ist die Umkehrung unméglich
(siehe z. B. FREISE [17], S. 225).

Fir die Untersuchung isothermer Kreisprozesse bildet man ein adiabatisches
Gesamtsystem mit einem Wirmebad, welcheg dem System die konstante Temperatur
aufprigt, aber keine Arbeit mit ihm austausch, Die zugefithrte Gesamtarbeit ist dann
auch hier bejm reversiblen Proze8 Null, sonst positiv. Die Umgebung  des

urspringlichen Systems ha sich dann verandert, da dem Wirmebad Energie zugefiihrt
worden ist.

abbremst, sondern
Reversibilitgg ist hier nach  beidep

f:l:l;:mfeil dieser Begriffsbildung ist gie Moglichkeit einer Einbesiehung irreversibler
nicht reversibler - Systeme. Wihrend man bei revergiblen Systemen nach einef
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Steuerung sucht, die simtliche am System geleistete Arbelt-zuruzlfge\;/;:‘l'l:rsmi;)i(:;:
umgekehrt aufgrund des Ergebnisses einer solchen Suche {ber 1: e
entscheidet —, kann bei irreversiblen Systemen die Frag.e geste.l]t T)ver Sn;ersmeidung
der geleisteten Arbeit noch zuriickzugewinnen ist. Die qualitative Un

. - se et 1zt
»reversibel - irreversibel« wird durch eine quantitative erse

Als Rechengréfle eignet sich statt der zuri.ickgewinnbaren A;‘b(::u nl:lzcs)::: ‘::;
Komplement, die nicht zuriickgewinnbare Arbeit oder x?ach de(rr e; e o o
MEIXNER, KONIG und TOBERGTE die verlorene Eu(frgze an, die

verlorene Arbeit bezeichnet werden sollte. Formal wird sie durch

(5.1) V() = (Vo)(t) = inf {(WE)(): £ € 6" & = v}

or) §
o(r)

&(7) /-\

vV

Riickgewinnung

>

V

Erregung

V(t)

Bild 5.1: Die geleistete Arbeit und ihr verlorener Anteil

i i im Zeitintervall
(lert. Wegen der Nebenbedingung ¢ = # mub die fu:k u::ndfrf’z;cht verandert
(~=, 1] gleich der vorgegeben Erregung # sein. Diese liegt fes




78

5 Reversibilitat und Irreversibilitat

79
5 Reversibilitat und Irreversibilitat

werden. Nur die »Fortsetzung« im Zeitintervall (¢, o) darf frei variiert werden, um die

bestmogliche Riickgewinnung zu erreichen. Den prinzipiellen zeitlichen Verlauf einer
Rickgewinnung zeigt Bild 5.1.

Mit dem Begriff der verlorenen Arbeit 1a8t sich der hier verwendete
Reversibilititsbegriff einwandfrei definieren:

(5.2) Definition: Reversibilitat

Ein passives System heifit reversibel, wenn fiir alle Erregungen v und zu jeder Zeit ¢ die
verlorene Arbeit (Vo)(t) Null ist. g

Irreversibilitdt verstehen wir hier als »nicht reversibel«.
Begriffsbildung bei TOBERGTE [43]
der nicht-reversiblen bilden.

Das weicht z. B. von der
i 1 . . e
ab, wo irreversible Systeme nur eine Teilmeng

w(t)

V(t)

Bild 5.2: Zeitlicher Verlauf der verlorenen Arbeit

unkt , 00) vorgegeben. Nur der »Umschaltzeit”
Punkt« #, bei dem von der Erregung auf die entsprechende »Riickgewinnudg
umgeschaltet wird, jst verind,

erlich. Aus der Definitionsgleichung (5.1) ist bereits
ersichtlich, da8 V(1)
Nebenbedingtmg

eine monoton wachsende Funktion ist: Eine Funktion £, die def

9 &, = %,

geniigt, befriedigt auch

(5.4) &

=9
1

i .1) das Infimum
sofern ¢, < ¢, ist. Die Menge der Funktionen ¢, unter d.enen in éiﬁ l)bes::-znfaus dor
gesucht lwird wird mit grofer werdender Zeit immer kleiner, so Vit gofunden
gleiche Wert, niemals aber einer kleinerer Wert fiir V(t,) als der von V(¢
werden kann:

(5.5) 0 £ V() £ VIt,) fir 4 <t

(5.6) Beispicl: Ungedampfter Schwinger

Z

Bild 5.3: Ein-M assen—Schwinger

. = nservativ, das
Ein schwingungsfahiges System ist bei Abwesenheit vor Daml;;‘;jf '1:) Ist die duBere
heift, fir die duBere Leistung existiert ein Potential: die mnerel -chuf:g. Wir erwarten
Leistung Null, gehorcht die innere Energie einer ?Jrhalf.ungsg el
folglich auch Reversibilitat. Die Bewegungsdifferentialgleichung

(5.7) mi=-Cz+F

fihrt dyreh LAPLACE-Transformation auf

F(s)
(5.8) #(s) = sl + C
Nach Ubergang auf die Geschwindigkeit
(5.9) #(s) = si(s)

. 3 tion
erhalten wir die Kraft-Geschwindigkeits-Ubertragungsfunkti
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(5.10) h(s) =

ms? + C
die in der Tabelle (4.12) der positiven Funktion zu finden ist. Die Bestimmung

i ist
geeigneter Steuerungen fiir die Riickgewinnung der Energie des erregten Systems is

echt einfach. Als eine formell gut zu handhabende Methode bietet sich an, die
urspriingliche Erregung nach einer zeitlichen
Vielfachen der Eigenschwin
aufzubringen. Wir setzen algo

Verzogerung von einem ganzza.hllg;’]ilg
gungsdauer mit umgekehrten Vorzeichen nochm

(5.11) €(r) = o(r) - vo(r-kT) ,

wobei

'genschwingung ist. Wir nehmen an

, daB die Erregung v 200
Zeit t = t, begonnen habe. Bei Wahl von

t -t
(5.13) E > 0

ist sichergeetellt, daf

519 €r) = ofr),

fir r € (-oo, t]

. N
8ilt und somit dje Nebenbedingung §; = v, in (5.1) gewahrleistet 13
Die Berechnung

der Arbeit gegchieht zweckmagigerweise im FOURIER-Bereich. Es ist
(5.15) i = 5(1 - e"(')*T).
Mit (4.142) entnehmen wir der Ubertr&gungsfunktion (5.10)
5.16 @ =

(5.16) &= (B + f-0a)
Wir erhalten mit (5.14)
(5.17)

We)(=) = (g, gog*) = 2 (3 18)%)

= i(lf(—wo)|2+ |E(wo)12) -0,
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5.1 Erweiterung des Raums der zugelassenen Erregungen

i ie i dhlte Funktion
Ein kleinerer Wert als Null ist nicht moglich; daher ist die in (?.11) .g;ws "
¢ tatsichlich ein minimales Element und fiir die verlorene Arbeit ergi

(5.18) (Vo)(t) = (We)() = 0.

Das System ist reversibel.

(5-19) Bemerkung:

ir di ergie stellen sich
Bei der Betrachtung der Definitionsgleichung fiir die verlorenen Energ

zwei Fragen:

i ) eingefiihrt, wobei
Die verlorene Arbeit ist als untere Schranke der Gesamtarben; :ir’igerln i;‘ e
die Fortsetzung der Erregung v(r) fiir Zeiten‘r > t.zu T werton. bt o
Rickgewinnung notwendig, immer bis zu unendlichen Zeiten h—aub e ot ode
maximal mégliche Arbeitsanteil wieder aus dem System herausy
. . ‘o
erreicht man den Endwert schon in endlicher Zeit?

i vorangegangenen
V(t) ist als Infimum, nicht als Minimum von W(oo) defil::;:' (I;:)t es abir Systeme
Beispiel konute ein minimales Element direkt ;%ngegeben wicht e.xistiert und der Wert
oder spezielle Erregungen, bei denen das Minimum gar ndem nur in beliebig guter
der verlorenen Energie mit keiner Funktion iaxakt‘, s](:elnutzung des Infimums statt
Approximation erreicht werden kann? Dann ?va.re - hme, sondern sie hitte einen
des Minimums nicht nur mathematische Vorsichtsmafina h uiichen Vorstellung  der
konkreten Hintergrund. Entspricht es unsete.t .ansc ha ekommen werden kann,
Reversibilitat, wenn dem Wert V(t) = 0 zwar beliebig nahe g

wenn er aber selbst unerreichbar bleibt?

le[ “lathenlatlsche kl]ch, wenn unbekaﬂﬂt
I ¢ Se]te ist es mcht besonders gluc
lllllIna.les Elel“ent m dem zugrunde llegenden I unktlonenlalllll existiert. In
1un kann abel 1\ n:
g bhllfe g%chaffen werde

5.1 Erweiterung des Raums der zugelassenen Erregungen

Durch die Definition

* . ==t
(5.20) (w, &), == (., 11*12) = '%;(‘» '1'2)
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5.1 Erweiterung des Raums der zugelassenen Erregungen

erhdlt man ein Funktional fir v € G"

» welches bilinear und HERMITEsch in seinen
Argumenten ist. Fiir positive Sy

steme ist dieses Produkt auerdem positiv semidefinit:

(5.21) (v, ., 20.

. . . . : . RT-
Diese Eigenschaften entsprechen denen ejneg inneren Produkis in einem HILBE
Raum. Ein HILBERT-Raum besitzt aber noch zwei andere Eigenschaften:

Das Funktiona] (5.21) darf nur fiir die Nullfunktion verschwinden, was aber kein'eswegts
8ewdhrleistet igt, Vielmehr sipd ja revergible Systeme gerade dadurch ausgezeichnet,

. Il
auch bei von Nyj1 verschiedenen Funktionen zu Nu
gemacht werdep kann.
Weiterhin mufi  bej

) iogen:  Das
einem  HILBERT-Raym Vollstandigkeit vorliegen: D
Grenzelement (Haufungs

punkt) jeder CAUCHY-Folge muB in dem Raum enthaltel)l
sein. Zwar ist der Grundraym & vollstindig, aber das bezieht sich auf die in (A8
negebene Topologie. Die Topologie eines HILBERT-Raums ist an der zu dem inneren
Produkt gehdrenden Norp,

(5.22)

n
ie Funktionep v und v, gehéren zu der-se"()i;
» Sie sind einander gleich im Sinne der Topologie die
Durch  giegen »Tricke gt sichergestellt, ~daf

Klasse, oder anders ausgedriickt
HILBERT-Raymg S,.

Deﬁnitheitsbedingung

(5.24) (m9),>0 v v+ 0

(5.25) Der HILBERT-Raum &,

Durch die beiden Schritte

1. Erweiterung des Raums &" um seine Haufungspunkte,
2. Zusammenfassung von Funktionen zu Klassen,

. Gﬂ

i ERT-Raum, der mit &,

schaffen wir aus dem urspriinglichen Grundraum &" einen I:"fung mafigeblich von der
bezeichnet werden soll, da die Erweiterung und Zusammenfas

o
positiv semidefinitenr Distribution @ abhingt.

Raum

issigen Erregungen vom

; 3.72) der zulissigen i

ersten Erweiterung ( iegenden einzelnen

Irr': o Benoats zéﬂds:;n t diese Erweiterung spezifisch von dem vOrh:genuchung immer
8

: tz o l:)auhrlilan kann gda.‘r, so deuten, da8 nach immer genauerer Un zremutet werden

ab. z
b:':s::l bekannt wird, was dem vorliegenden System als Belastungen zug;

kann.

(5.26) Der HILBERT-Raum &l .
i u
Der Raum &7, entsteht ausgehend von dem inneren Prod
"
(5.27) (B, ), = (& 9,9,)

IER-Transformierten
. h Erweiterung und Zusammenfassung der FOUR

analog zy S, durch Er .

e =" Entsprechend bezeichnet

(5.28) LHEALP

. iterten
h in den erweiter
die Norm in diesem HILBERT-Raum. Wegen (5.20) besteht auc
Riumen dije metrische Beziehung

(5.20) (o mde = 3¢ G By

folgt
. ichnen kann. Daraus

die man alg verallgemeinerte PARSEVALsche Gleichung bezeic

8peziell fir die Norm

=12
(5:30) Wo)(e) = Iof2 = 571515

s iinglichen
- fir die ursprung
Nach (4.58) ung (4.66) kann diese Norm - zunichst nur
Funktionen 3 ¢ &" - auch in der Form
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(631)  21(Wo)(x) = I3l = (&, w') = x [ (c2+0?) 3 (2)dp(2)o(2)

= Li'(w)auw) + | ' (2)a,(2)3(2) a2
1 -0
ausgedriickt werden. Entsprechend gilt fiir das innere Produkt

(5.32) G ), = Dojw)a,w) + [ 5(2)a,(2)5,(2) d .
3 -0

In dieser Integralschreibweise

Erweiterung fiihrt. Bei der N

HERMITEsche Form in #2). Im

anderes als die Norm eines Rau

ist besonders deutlich zu erkennen, wohin die
orm handelt es sich um ein Integral iiber eine
skalaren Fall steht dort |5(2)]|2 Das ist aber nichts
ms quadratisch integrierbarer Funktionen, wobei noch
die Gewichtung mit dem Mag # hinzukommt; ein gewichteter LEBESGUE-Raum (siehe
Anhang (B.1)), den wir im vektorwertigen Fall noch mit dem Dimensionsindex K
belegen: L3(a). Die LEBESGUE-Riume sind vollstindig, speziell sind die

LEBESGUE~Riume mit dem Potenzindex p = 2 HILBERT-R&ume. Wir haben also die
Indentifizierung

gewonnen. Der Raum L}(&) ist besger Zu interpretieren als der durch rein abstrakte

o~ ~T
e Raum S, Wir konnen algo die Elemente des Raums &, a3
gewohnliche Funktionenklassen ansehen. Dabei ist der

Intervall w¢e (2, n

) die Funktion &(w), 80 ist hier ®w) im Sinn der
Funktionenkigsse g €

&7, gar nicht definiert. Auch wenn die Matrix &(w) nicht vollen
» 8ind die Komponenten von ve &)
nicht definiert. Dag heift nicht, dag €8 nicht durchaus einen Vertreter (F‘mktion)

dieser Klasse geben knnte, der fir die gesamten reellen Zahlen wohldefiniert ist-

Unter Beachtung dieser Eigenarten goll trotzdem von den Formeln (5.31) und (5.32):
die oben fir Funktionen #

Gebrauch gemacht werden, o
Durch die Vollsu'mdigkeit des HILBERT-
und zu jedem -Umschaltzeitpnnkt« tei
des Infimumg angenommmen wird:

Raums 67 existiert in ihm zu jeder Erregung ?
e »minimale Funktion« o, mit der der Wert
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5.2 Quasistationire Prozesse

(5.34) Vi) = (o)) = (W)

i i hinaus
Wegen der Definitheit der Norm in einem HILBERT-Raum ist da-rulll)te:ich aber
sichergestellt, daB das minimale Element eindeutig ist. Diese Aus?.age .bezle. o
auf Funktionenklassen. Im Sinne der urspriinglichen Funktionen ist eine Eindeutig
nicht zwangslaufig gegeben.

9.2 Quasistationire Prozesse

Nach (5.31) kann W() auch in der Form

(5.35)  W(o) = 2‘—Ji|§ =¥ o (w)ew,) + o ¥ (2)a(@)u02) 42

-0

geschrieben werden. Wihrend in dem Integral einzelne Werte der -Funktlos:;::z lelr(l)!cl:
der LEBESGUE—integrierbarkeit stets ohne Belang sind, tre-ten'm defrden conkroten
Werte an diskreten Stellen w = w; hinzu. Hier kommt es tatsachlich au ction p des
Funktionswert an. Dag riihrt von den Sprungstellen der Maﬁfm:vie::erum auf
urspriinglichen LEBESGUE-STIELTIES—Integrals (4.66) ber, welche Iche singuliren
ungedampfte Schwinger im System zuriickzufiihren sm‘d. Treten sol

Stellen auf, missen wir zum Raum &5 auch Funktionen wie

(5.36) ¢ (w) :=

1 fir w= Wy
“o

0 fir w# w,

. . ige Funktion kann man
Technen, wenp w, eine solche singuldre Stelle ist. Eine ({erzfrtll‘g;r o ktionen
Sich als Grenzfunktion (im Sinne der Norm (5.35)) zum Beispie

sin ( Wy )T e-j(u-@o)‘o
onT.‘o wr = (w-wo ) T

(5.37) ¢

onstante ¢, wahrend
Vorstellen, wenn T gegen Unendlich strebt. Das Vex‘llll“-e‘_l (::nftionen T
des Grenziibergangs ist frei. Im Zeitbereich gehoren dazu die
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1 jwgt .
(5.38) _ Jare O fur it <T
wO,T,lo

0 fiir [t~t)| > T

= 7 (T - |t-g,)) .

Das ist eine Schwingung mit der Frequenz wy, die mit einem Rechtecksignal der Breite
2 moduliert, wird. Beim Grenziibergang T — o wird die Intervallbreite groBer und
die Amplitude nimmt dazu umgekehrt proportional ab. Im Grenzfall kann man sich die
»Funktion« ¢ als eine unendlich lang andauernde Schwingung der Frequenz &
vorstellen, deren Amplitude unermeslich klein ist - eine unendlich vorsichtige
stationire Erregung, deren Amplitude so bemessen ist, daB auch nach unendlich langer
Zeit die Amplitude vorhandener ungedimpfter Schwinger nur auf endlichen Wert

anwichst. In den Bildern 54 und 55 wurde versucht, diesen Grenziibergang
darzustellen.

Euo,T,to(“’) efw-wglty
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Re wO,T,to()
AOA AR OR
%'— T ’:\ ?:Il 5“ i\i: é’i P
! ’ 5.8 1oy
ANNANAARNARNANNANANNA
VAVAVAVAY VRVAVRVAVRVRVAVAVAVAVAN
- Y u‘ ! ,‘- MoV oy
T ] RV 21
2T i

Bild 5.5. Funktionenfolge zur Darstellung der Grenzfunktion Cuy

Die hier gewihlten Folgenglieder besitzen noch einen »Schonheitsfehler«, de'rn aber
leicht abzuhelfen ist. Die Funktionen (5.37), (5.38) wurden wegen ihrer leicht .zu
iberblickenden Eigenschaften in Zusammenhang mit der FOURIER—Transff)rmfitlon
gewahlt. Sie besitzen leider den Nachteil, da sie gar nicht zum lfrsprunglxchen
Funktionenraum S gehdren, aus dem die angestrebte Erwtelterung ::-ulrll:
HILBERT-Raum &, eigentlich vorgenommen werden solite. Die Funktion (?-37) :

aber fiir grofe w mit 1/w. Aus (4.66) ist ersichtlich, daB auch fiir solche Funktionen b:s
ArbQitsfunktional konvergiert, so daf keine Schwierigkeiten auftauchen. Es ma?ht aber
keine groge Miihe, auch Funktionenfolgen in & mit ¢ als Grenz—»Funktlfm‘ o
konstruieren. Dazu verwendet man zum Beispiel statt der »harten« Moduls%tlon de;
Schwingung mit einem Rechtecksignal wie in (5.38) ein »weiche?‘ Em—‘ un
Ausblenden mit einer unendlich oft differenzierbaren Funktion, wozu die Funktion x

Dach (3.73) herangezogen werden kann:

(5.35) L oot y(t-4+T) x{-t+1+7) -

CupTit®) =

i ie (5.37).
Dann erhgy man auch im Frequenzbereich eine dhnliche Funktionenfolge wie (537)
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Wir wollen die Funktionen ¢ quasistationar nennen, da sie fiir die Steuerung
quasistationdrer Prozesse wichtig sind. Quasistationdre Prozesse sind solche, bei dem

ein System beim Ubergang von einem Gleichgewichts- oder stationiren Zustand in

einen anderen ausschlieflich Gleichgewichts~ oder stationiren Zustinde durchlauft.

Dieser in sich widerspriichliche Begriff erweist sich in der Thermodynamik als durchaus
niitzlich. Wie derartige Prozesse mit den hier betrachteten ¢-»Funktionen«
Zusammenhangen, wird in dem nachfolgenden Beispiel deutlich:

(5.40) Beispiel: Schwinger mit Dampfung

Bild 5.6: Reihenschaltung eines Parallelschwingkreises mit einem Widerstand

Die  Strom-Spannungs-tibertr

agungsfunktion oder der Scheinwiderstand Z der
skizzierten Schaltung lautet

(5.41) i(s) Ls
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Immer wird aber ein Teil der Energie wihrend des Entla'dllrlgs"(’fg‘“.lgB m v:i‘:;rs;::;
verbraucht. Das Ergebnis wird aber um so giinstiger, je mehf Zeit ;:'nh von dom
nimmt. Die vernichtete elektrische Leistung im Widerst%ﬂd ha.ngt'n th mgekehrt
Quadrat des Stromes ab, wihrend die Entladungszeit e elnm]f‘, dlrdugngueit
proportional zur Amplitude des Stroms ist. Im Grenzfall unenfllxcherE ’ :r e moglich.
ist eine vollstindige Riickgewinnung der noch in System befindlichen . Dii Entladung
Damit sind wir aber genau bei den oben eingefiihrten C—»Ft.mktlon:n -ml amplituds)
beginnt in einem stationdren Zustand (Eigenschwingung mit derl lmgd Ig(ondensator.
und endet in dem Gleichgewichtszustand mit entladenener SP? e lmh ineungen it
Dabei werden ebenfall nur stationare Zustinde »durchlaufen« (Eigenschwingu
kleineren Amplituden). Formal sieht das so aus:

Zur Ubertragungsfunktion (5.41) gehdrt nach (4.142) die Distribution

(.42 8 = R+ g (8-u) + 6-wo))
wobei
{5.43) w, = 1/VIC

it betrigt nach (4.76)
ist. Die bis zur Zejt t von der Schaltung aufgenommene Arbeit betrag
. )+ R 7 |i(2)2dn.
(5.44) WO = (1501 + li-wp)?) + 35 [ ()]
" (—»Funktionen«
Fir die Entladungssteuerung wihlen wir unter Benutzung der ¢

(545) I't = i‘ - it(wo)(wo - 7:("‘"0)C-u0 :

; it d wir
e 7 Null un
Dadurch wirg an den Stellen w = tw, die FOURIER-Transformiert
erhalten

® ¢ 10 12dr .
(5.46) V(t) = 21—(&, Iitlz) - 58;! Ii,(ﬂ)lgdﬂ = R-£ Ji(r)|"dr

. ies ist aber
Der im OHMschen Widerstand vernichtete Anteil ist wﬁrhdl verlorel;-e.D Il:r noch in
1ur der Teil, der schon vor Beginn der Riickgewinnung vefmd.lt:t o:ln: Verlust wieder
Spule ung Kondensator zur Zeit ¢ vorhandene Energieanteil wir o
bgezogen.
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(5.47) Bemerkung: Triger der {—»Funktionen«

. der
In dem obigen Beispiel verstehen wir die ¢-»Funktionen« als Grenzwerte
Funktionenfolge

(5.48) C"’o = ; iT ch,T’,o,

wobei wihrend des Grenziibergangs der Parameter ty in der Form

(5.49) tO ={t+T
. anoickeit fir des

von t und T abhingen moge. Wie oben erwihnt, ist die Abhingigkeit fur'szen

. s s i
Grenziibergang im Sinne der Topologie von S, unerheblich. Bei dieser Wahl bes .
die Funktionen Cor t, 2ur im Intervall (¢, ) von Null verschiedene Werte, 80

0l

auch die Grenz-»Funktion « ¢ als
werden kdnnte. Jede andere Verfii
Interpretationen @ber den Trager d

»Funktion« mit dieser Eigenschaft interpretiert
gung iber ¢, als (5.49) fiihrt aber zu wder;n
er (-»Funktionen«. Es ist daher nicht sinnvol,
einer (-»Funktion« einen Triger zuordnen zu wollen. In der ¢-»Funktion« S.elbs'
kommt nicht mehr zum  Ausdruck, welche Funktionenfolge man sich zu ibrer

. it der
Vorstellung gewdhlt hat. Eg reicht uns aus, dag es immer eine Folge mit i
gewiinschten Eigenschaft gibt.

5.3 Bestimmung des Minimalelementes

i n Beispielen des
Wie die bestmogliche Riickgewinnung ““szusel_len hat, ﬂjdzu:nv:;iegend:n System
vorangegangenen Absatzes durch sehr anschaullch(.e, -sp&lev tahron bei zunehmender
orientierte Uberlegungen bestimmt. Da dieses hems-nw:; t?mmungsgleichung firr das
Komplexitit seine Grenzen findet, soll eine allgex.neme es die Grundlage fir die
minimale Element aufgestellt werden. Dies Ellde? dar;n vems im darsuffolgenden
Entwicklung eines Kriterium fiir die Reversibilit eines Sys
Abschnitt.

itpunktes ¢
P E und des Zeitpunktes ¢,
Ist o das minimale Element beziiglich der Erregung »

(5.50) (o)) = (We)(),
mit
(5.51) (a‘)‘ = %,

%0 ist die geleistete Arbeit jeder anderen Erregung

(5.52) £=1d+en

mit einer Funktion

(5.53) ne 6™ : supp(y) C [t, »)
nd € € R, grofer oder gleich derjenigen von #":

550 (We(e) 2 (We)()-
Betrachten wir

64) We)(w) = 1€l2 = Io'sent?

ahlten
- a 'svondetgew-
bei festem % als Funktion von ¢, sq muB das Minimum mm o 1. Ableitung
ion § an der Stelle ¢ = 0 liegen. Das wird durch Un
Tach ¢, der GATEAUX-Ableitung, gepriift:

e — ]
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(5.56) lvt+a)|3 = (v‘+fq, v‘+51’)‘ (5.62) n(r) = O fir 75¢,
= (o of ie glei i i i . o
= e cthm s e, s Einm,, die gleichbedeutend mit, supp(n) C [t, ) ist, susdricken kenn
5.57 A dtient? — (o
( ) de l' +C"'I = (', "). + (7’, I’t). + 2¢ (1’, 1’).

= 2Re(v‘,1,). +2(n ), = 0.

Da8 die Nullfelle der 1. Ableitung tatsichlich ein Minimum liefert, ergibt sich bereits
aus -d<.ar- positiven Definitheit der verwendeten Norm - letztlich eine Folge der
Passlv'lta.t. Die konventionelle Priifung der 2. Ableitung fiihrt zu demselben Ergebnis
Das Einsetzen von ¢ = 0 fiihrt fiir das minimale Element o zu der Bedingung

(5.58) Re (¢, N, =0,

die fiir alle » mit der Nebenbedingung (

5.53) erfil ir die
Funktion 5 durch n ) erfiillt werden muB. Ersetzen Wit

die ebenfalls der zuldssigen Menge angehort, erhalten wir

t .
Re ('1]"). = Re (“j('tr ").) = Im ("a "). =0.
Wir finden also Minimalité.tsbedingung

(5.59)

(5.60 i
) O, =0 vy n €6 : supp(y) c [¢, o)

(5.61) Bemerkung:

Wir habe i
0 als Testfunktion " nur solche aus dem Raum &* zugelassen, obwobl

n A . )
(5.60) zunichst ein not _3 S S'earbeltet wird. Daher ist die abgeleitete Beding%$
wendiges Kriterium fiir die Minimalitit. Der Raum ), ist 8%

An dieser Stelle gei der folgende niitzliche kleine Satz eingeschoben, dessen Aussagen

kaum eines Beweises Wert zu sein scheinen:

(5.63) Satz: Additivitit des minimalen Elementes

Sind ,: und '; die zu den Erregungen v, und ®, gehdrigen minimalen Elemente

beziiglich des Zeitpunktes t, so gehdrt zu der zusammengesetzten Erregung
(5.64) 2= Y0+ V%,

mit beliebigen Konstanten 7, € C das minimale Element

(5.65) ¢ = ‘71': + 72'; .

¢
Ist weiterhin (Wv:)(oo) und (W';)(“’) gleich Null, s0 ist es auch (WU )(00)

(5.66) Beweis:
Es gilt
(5.67) o, ae = (7 + 1yt e = 1o Dat MO W = 0

60) als notwendige Bedingung

da aus der Miniralits t ! die Gleichung (5.
er Minimalitat von #; und s, die (5.67) umgekebrt hinreichend

folgt. Nach der Bemerkung (5.61) ist nun die Gleichung
fir die Minimalitat des zusammengesetzten Elements.

Fiir die aufgenommene Arbeit gilt

s o) = W= = o9
= 122 (o e s (921 (o alyy + 2 Re (2172 ")

— 192 (wed)() + 193] (W) + 2 Re (17 o0 ) -

aber die von of und 8

in. Ist
Wegen der Passivitit kann die Summe picht negativ sein werden. Da aber sein

geleistete Arbeit Null, darf der letste Summand nicht negativ
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Vorzeichen durch Wahi von 7,

und 7, beliebig eingestellt werden koénnte, bleibt nur die
Méglichkeit, daB auch dieser S

ummand und damit die gesamte Summe Null ist.

i eis
Unter Ausnutzung der Eigenschaften des HILBERT-Raums kann dieser Bew
wesentlich schneller gefiihrt werden: Leisten die Err

egungen vf, vzt die Gesamtarbeit
Null, s gehéren sie zur Nullklasse, algo

(5.69) ': - '; =0
im Sinne der Topolog

ist
ie des Raums 6:. Jede Linearkombination von Nullelementen is
ebenfalls Null.

]

Zur weiteren Auswertung

. in
der Minimalititsbedingung (5.60) gehen wir nach (5.32)
den Frequenzbereich iiber:

(5.70) 1 .t .

("9 "). = 2 (v, f’);

= w D) + L T s 4o - o
i -

Verwendet man die ¢-»Funktion«

geeigneten Funktionenfolge mit Tr

entsprechend

- inef
nach (5.36), die auch durch Grenziibergang e:]:n
dgern aus [t, o) zu erhalten ist, als Testfunkti

(571) q = C‘_Cw'_
mit beliebigen Einheitsvektoren €, erhalt man alg erste Auswertung der Gleichutg
(5.70)

Der Vektor i‘(wi) mufl im Nullraum der Matrix @; liegen. Im skalaren Fall folgt, da o;
Stets ungleich Null jgt,

(573) #w) = 0.

Nun ist noch

T #f(@a @)@ d2 = o
(5.74) (#, g = i (2)ay(2)5(12)

i b wir im
inen Unterschied, ol
zu befriedigen. Beziiglich dieser Bedingung macht es keine

a Odel G. mbelteﬂ, alSO dell S]nglllalen Jkntell von & be]selte lassen'

Die Aussage, da ein Element # zum Raum

(5.75) é:o = Ly(&)

st -
i keit von ¥ a ¥
gehort, ist gleichbedeutend mit der absoluten Integrierbar

dawcl,.
(5.76) & el

rzel von &,(w), die

he Wu )
o idefinite HERMITESC 0
Bezeichnet Ya,(w) € C*™" die positiv semidefin "+ und eindeutig

j istie
ix immer exis
fir eine positiv semidefinite HERMITEsche Matri
bestimmt ist, folgt mit der Umformung

2
Va, L
1 = =) _ P € L,
(5.77) ¥a,p = (u Jco) (Jco u) I |
die quadratische Integrierbarkeit von V&, #:

(5.78) Va,# € Ly -

i ichtung
i i mit der Gewic
And (4.66) selbst quadratisch integrierbar
Dderseits ist &, wegen (4.

1/(c*+(-)3),

(5.79) & € L‘:"((c2+(')2)— ) )

80 daf fiir die Wurzel /
-1/2

(5 80) Ji; € L;xu((cz+(.)2) )

‘bt sich dann die
ichung ergibt si
folgt. Mit Hilfe des Satzes (B.8) iiber die BOLDFRsche Ung

Aussage
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temperierten Distributionen gehdrt. Daher ist auch die zugehdrige Zeitfunktion

(5.82) FUa) = avwe o™

(5.83)

1 .t . ST ¢ _
20 %W = 5@V, 7) = (e, 9) < 0
fiir alle 5 ¢ 6", die im Intervall ( =%, t] verschwinden.

Obwohl diese Umfo

ist sie ohne die vorangegangenel
Uberlegungen nicht

(*1*)q ging durch Verallgemeinerung

darf man diege Ersetzung

die obigen Schlisse wyrde
mdglich ist.

: ch
aber im allgemeinen nicht mehr riickgingig machen. Dur

i och
gezeigt, daB dies im vorliegenden speziellen Fall denn
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i aminen
:hnn en (3.72 lmd i i .ﬂimalitat. Beide zus
lei ( ) (5 84:) ist not endlg fur die Mi
4 & . . W

ergeben eine hinreichende Bedingung.

- Verwendung
. ie frei ist von der
. ht darin, daB sie . Berechnung
: Formulierung beste 3 h direkt zur :
Der Vorte-sll d.e ; neu;:stﬁmktionen 9. Diese Gleichung kann mu:ich als Losung fir o eine
der ursprungll.lc}l:en Riickgewinnung ausgenutzt werden, z;;)fernNur darf das bisher
der bestmdglichen o reeben sollte. dann kannten
. R i er Distribution erg o aqs mit den bekan
herkommh;:: unktlo;s::riebene Produkt auch tatsazhll:?&us muS man im
tun Ander
:;n;al a.lsl der & Faltung bearbeitet werden. n
chenrege|
FOURIER-Bereich bleiben.

(5.86) Beispiel:
o]

R

it
Q

O

Bild 5.7: RC-Glied

. . d
i i Scheinwiderstan
Das dargestellte RC-Glied besitzt den i

1 + sRC

(5.87) h(s) = Z(s) =

Dazu gehort die Gewichtsfunktion

(588) h(t) = Z'-ef
Der HERMITEsche Anteil lautet daher "
1 .- .
= =€
(5.89) a(t) = a(t) = 3¢

: ine Stromerregung
em wird irgendeine romereet
Ein singularer Anteil a, tritt nicht auf. Auf das Syst (davon uaberibrt ist die
in si ,

diese Erregung (daVC Fortfiihrung der
¢ aufgebracht. Zur Zeit T be‘.md;tu:::ucht nach der wn.‘éshc::lwuziehen- Die
Funktion i auch fir ¢ > T deﬁmenfseuenen Kondensators wieder
Stenemng, um die Energie des :+ in die Form
gesuchte (minimale) Steuerung kﬁm} v
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(5.90) i = ip+ip
bringen, wobei ip

bestimmende Fortge
nicht auf, da keine s

die Erregungsvorgabe im Zeitintervall (o0, ¢) und ip die 'Z“
tzung im Zeitintervall [¢, =) ist. Die Bedingung (5.72) tritt hier
ingularen Stellen existieren. Die Auswertung von (5.84) fithrt zu

(5.91) ao*iT = Go¥ip + agrip .
Esist fir ¢ > 7

(5.92) (ap*ig)(t) = ?ao(t-f)iT(Z)di = & fe"";’” i(?) di

T o o
s [T i) di = a et
Fiir den freien Anteil ; F lautet also die Bestimmungsgleichung
(ag*ip)®) = ;—C(e—"l/r * i,.)(t) = -Ae"

ponentialfunktion reproduziert werden. Dies
Trager von ip im Intervall [T, =) zu liegen hat,

setzen wir

(5.93) ip = B§--T)

als Losung an:

(5.94) (ag*ig)(t) = %e-I'-Tl/r - 2% T-Dfr _

At
firt > T. Eg ergibt sich

(5.95) B - - 2AC e'T/?
und

(5.96) T ir = 00 8(--T),
mit

(5.97)

T 3
% = fe"DIT i gi
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ie dabei
. entladen. Die
Der Kondensator wird durch einen pldtzlichen S“omsu;:icht nachpriift, ist dies
on ° |
abz;efﬁhrte elektrische Ladung ist die Groe go- Vle-ipx:::t ¢ = T-0 besaB, so daf er
. um Zel
taisichlich die Ladung, die der Konde.nsatornition« iT dargestellt.
danach ladungsfrei ist. In Bild 5.8 ist die »Fu

(1)

i(t) m ‘
/\ i g

| W/ t=T

- qob('—T)

RC-Gliedes
Bild 5.8: Strom fihrung zur optimalen Entladung des

5.4 Das Reversibilitatskriterium

angegangenen Abschnitt v;:i
Die weitere Auswgrtlfng g
uns zu dem Kritertum vo‘
anderen Themenkreis
quenzbereich.

1 o) ¢
Die Bestimmung des minimalen Elemeﬂte:siti::tii:.
unabhangig von der Frage nach der .R o Systeme wird
Bedingung (5.84) fiir den Fall der revermb}en c); aus einem ganz
PALEY und WiENER filhren, welches urspringli Funktionen im Fre
stammt, namlich der Charakterisierung kausaler

¢
. . Funktionen« ¥
. 38 fiir alle minimalen »
Bei reversiblen Systemen gilt definitionsgemaB fir

beliebiger Erregungen

1. =0.
(5.98) (W")(°°) = |vl.
Da aug der Bedingung
(5.99) (")t = %
Uinmittelbar
(5.100) (), = %

icht erreicht
- Wert als Null n
fir jede Zeit ¢. < ¢ folet und wegen (5.98) ein besserer
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1‘:;?:111 l::mz, Pedeutet dies, daf fir die Erregung v die »Funktion« & nicht nur
fibrt in B zglich des Zfltpunktes ¢ sondern auch fiir jede andere Zeit ¢, <  ist. Das
in Bezug auf das Minimalitatskriterium (5.84) zu der Aussage

(5.101) .0*', - 0

auf d T
er gesamten reellen Achse. Die Ubertragung in den Frequenzbereich ergibt
(5.102) .t
& =0,

sofern die Funktion ¢ existi ¢
tiert, muf i C i itzt &
rellen R ion ¥ o 2(w) im Nullraum von &,(w) liegen. Besitat &(v)

5.4.1 Das Reversibili atskriteri
o tatskritetium fir Eingro
me
Um zu dem eigentlich
bes ich angestrebten Reversibilitatskriterium zu gelagen, gehen WIf

Nach (5.85) mu§ die p; on erg.eben_ Zunichst betrachten wir nur EingroBensysteme
besitzen. Um dies 2, -;ﬂmblftmn ay*t' einen Triger aus dem Intervall (-, ]
von PALEY und me;:::n, bleltet sich das im Anhang B.5 bereitgestelite Kriteritt
an. .
Anwendung auf die Distriby, ? der Fassung (B.66) erlaubt es die unmittelbare

. tion g xv’ bzw. ot
ilt al ; ) 0 w. ihre FOURIER~T i . Danach
gilt als notwendige Bedingung fijr (5.85) die Konvergenz d ransformierte 2,7

es Integrals
(5.103) T Ina,(2)5(2))|
\
= 24 n !

In laoa‘| € L: =L, ((c2+(-)2)")
einzelne Summang yoq

(5.108)

w A
erden, dad beim Eintreten der Bedingung (5.104) sogar jed®

In 187) = 1n j5) 415 1)
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. . iellen
zum Raum L: gehdren muB. Dadurch werden wir zu einem von der spezie

»Funktion« v' unabhangigen Kriterium an &, gelangen.

Wir definieren fiir positiv reelle Argumente z die Funktionen

Ing fir z>1

(5.106) In*z :={0 fﬁr0<z§l}go’
0 fir z>1

101 o'z = {]nz fiir 0<z§1}§0.

Damit gilt

{5.108) lnz = In'z+1In'z

und

(5.109) 0sh'z<z.

Statt (5.105) kann man damit

(5.110) |G| = InG,+ 107+ o3| + 10717

on ist, konnen bei ihr die Betragsstriche
8 nach (5.104) aus L} sein. Der Formel
diesem Raum angehort. Wegen d(.ar
lgerung ergibt gich, daB dann die
eine Funktion aus diesem

schreiben. Da &, eine nicht negative Funkti
entfallen. Der rechte Teil der Gleichung mu
(5.79) ist zu entnehmen, dad auch die Funkﬁ::m .
Abschitzung (5.109) ist daher auch In*é, € Ly Als Fo
letzten drei Summanden in (5.110) zusammen ebenfalls
Raum ergeben miissen:

<o 20 =0

Vet Nt _,I
(5.111) 1n|aof,‘| = In'Gy+InGp +1n |#] + 7|7 ] -
R

— ™ ——

*

er? €Ly = €L

(5.110) an einer Stelle &

Da von den letzen beiden Funktionen in 4a8 auch

Null verschieden sein kann, folgt im nichsten Schritt,

jmmer nur eine vou

¥
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(5.112 -~
) In Iv'l € L’:

ilt, den : .
fusge licl; angenommene l')lvergenzen dieser Funktion kdnnten auch durch In"G, nicht
glichen werden, da diese Funktion ebenfalls negativ ist. Nun gilt weiter

*
€L, S0

(5.113) In* 15 (H2] o 1 P
TIRET 718 = (a2 = i (gt +n 15

In |5o’7t| +In*|#] + ) .
S N
*
€L, 20 €L}

2:; Al_xssage, daB die links stehende Funktion aus
chatzung (5.109). Mit der gleichen SchiuBweis

(5.114)

Lr ist, entnehmen wir (5.76) und der
e wie oben folgt hieraus

In*)3'| e L*,
Zusammen mijt (5.112)

ist nun die Z ehdriekes
was das wichtigere Erg nechorigkeit von In

~8 * . -
. %’ zu LY nachgewiesen und
ebnis darstellt — 19 ! 6

mit (5.105) auch die der Funktion Gy
(5.115) - *
8 € L, .

(5.116) Zusammenfassung:

Aus der Minimalits .
tSbedlngung (5.85) f; .
i . . olgt d P
1st. Ist (5.115) nicht erfiillt, konvergiert alsgot d: I‘::::afle (5115, wemn &, nich "
g

a2 4 q? a2,

Rricht, bleibt nyr die Maglichkeit
(5.118)

(5.117) ]—" IIn &, (0)|

&' <.

Fiir die Funktion # fpy
das auf die Bedip
gung
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(5.119) #w) = 0 V w e suppldy) U {w;} = supp(d) ’

itet
worin auch die nicht zu vergessende erste Folgerung (5.72) bzw. (5.73) verarbelteu
wurde.

Es ist nun zu zeigen, da das Eintreten der Integrabilitétsbedin-gung (5‘;)1:;2) ?;:
Reversibilitat bzw. Irreversibilitit des Systems anzeigs. Wird die Bedingung (5-

. i i i ben in
alle Erregungen v und Zeiten ¢ erfillt, ist das System - wie Wit bereits obeh !

. . . ol
Abschnitt 5.4 erkannt haben — reversibel. Wird (5.118) fir irgendeine spe-z1e 'e
}. Dann muf der Logarithmus von &, die

ibilitat impliziert also (5.117).
ation »ous der Verletzung von

Erregung verletzt, ist das System irreversibel
Integrabilitatsbedingung (5.117) erfilllen. Die Irrevers
Die Umkehrung dieser Aussage wird durch ihre Neg
(5.117) folgt Reversibilitat« nachgewiesen:

en (5.118) gelten, und zwar unabhangig

Ist ndmlich (5.117) nicht erfillt, muf statt dess
( ) picht erfy gungen. Das bedeutet nach dem oben

von der speziellen Erregung, also fiir alle Erre men:
gesagten Reversibilitat. Wir fassen diese Aussagen zZu einem Satz zusammen

(5.120) Satz: Reversibilititskriterium fir Eingroensysteme

Ein EingréBensystem ist genau dann reversibel, wenn das Integral

2 |ln (M|
(5.121) j TPy a2,
c
nicht konvergiert, also
* s}
(5.122) Ina(2)EL,-

. ich. Es
Der singulire Anteil &, ist fir die Frage pach der Reversibilitat unerheblich

entscheidet allein der lokal integrierbare Anteil a,-

es nun zu einer Divergenz oder Konvergenz des

: t
Unter welchen Bedingungen komm ist, folgt aufgrund der Abschatzung

Integrals (5.121)? Da &, stets lokal integrierbar ist, . Divergenzen
(5.109) die Integrierbarkeit der »positiven Werte< In"3 des Los'-rimmd: h::is*hmus
des Integrals werden allein durch 4o .m“m:, :i‘:lmd:o lfl:‘n‘:ie Integrierbarkeit
hervorgerufen. Mogliche Unendlichkeitsstellen jon
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ohne Belang, aber an Nullstellen von &, kénnen Divergenzen auftreten. Damit das
Integral konvergiert, ist zunichst notwendig, daff

(5.123) ao(w) £0

fiir fast alle w € R gilt, also nur diskrete Nullstellen vorhanden sind. Ist nimlich

(5.124) dpw) = 0

in einem Intervall w ¢ n

p 2,) oder sogar fiir alle w € R, so ist das Integral auf jeden
Fall divergent, das Syst

em damit reversibel. Die Umkehrung ist aber keineswe?g:
richtig. Auch wenn nur diskrete Nullstellen von &, vorhanden sein sollten, is

Reversiblilitat moglich. Sogar wenn @, Gberall von Null verschieden ist, kann das
Integral (5.121) divergieren und damit Reversibibilitit vorliegen.

(5.125) Beispiel:

Ein Beispiel in dieser Richtung gibt das System mit der Gewichtsfunktion
(5.126) h(t) = e:ﬂ/(2T2) )

Fiir t — oo gtreby h(t) gegen Null, langer zuriickliegende Werte der Eingangsfunktion

werden also immer schwicher gewichtet, das System svergift« die Vorgeschichte mebr

und mehr. Das jst schon recht merkwiirdig, da man von einem reversiblen System
erwartet, da8 es die an jhm i icht vergiBt. Zeigen wir also, daB
tatsachlich Reversibilitst

(5.127) Mw) = 7T D2 o (juT/V2)
Wozu man die Korrespond
Tabelie (4.12), Nr. 13. b
Argumente den Realteil

enztabelle vop DOETSCH

88 Komplement, der Fehl
1, 30 daB

[14] heranziehen kann (siehe al-l'Ch
erfunktion erfc besitzt fiir imaginire

(5.122) i) = EpET TR

folgt. In diegem Fall ist eg Ubersichtlicher

» Zuerst im Zeitbereich auf
(5.120)

ot) = 1.#/Gm)

ﬁbuzngehenmdmmindml, " o ieren. Man

i jert. Ein
- formation reproduzie
dafl sich dieser Funktionentyp unter der FOI{RIER- ’I(‘ll(‘;n; :ga_riﬁunus gl man
singuldrer Anteil tritt nicht auf; daher ist & = 8. Fir

1 2
. LnfiinT-5(wW)*.
(5.130) lngy, = lnd = glng+ 2

g[al 5.121 ellt € W ht ng mit 1/(11 elm. Integl'and f
. 11, Dann Btlebt del ur
( ) g mne Ge 1C!

i igentlichen Grenzen
ine Konstante, weshalb das Integral mit den uneige
groe w gegen eine Kons R

o divergiert.

m w ie Rickgewinnungsfunktion,
ich fragen, wie bei einem derartigen System die Riickg
Man mu$ sich fr gen,

i i 5.119) nur die
Element »'. auszusehen hat, da doch die Gleichung (
das minimale Element o,
Méglichkeit

t =0 VYweR
(5.131) v'(w)

. im
da man eine Erregung

2uldBt. Das scheint einen Widerspruch darzustenen.' ZisjUnkten Intervall {2, )
Zeiti ‘ all (-0, ¢) nicht durch eine Fortsetzung lml- ende Topologie des Raum
k:l mter.v } ’ Hier muf abermals an die zugrunde ‘P;i w zunehmenden Grades
Gm:::l::rr: HW(:I(;:l- Man kann Folgen von POlynol::ler der Nullfunktion angepaBt

e : . -, N2) immer it einer

. ie in einem Bereich (-2, . ihrem Grad mit
o ieren, dll::l;n :‘ m(:s Bereichs wachsen sie entsprechel;dr;rtigen Folge auch die
ies i e €
?erden'h':;uﬁe:verdenden Potenz von w. LaBt ma‘.‘ bel. eme;er Norm von 6, gegen die
(l;:m o ; 'e ' er groBer werden, konvergiert sie lm.Smn;ownz von w anwachst. Auch
Nuoilt;ze 2 lmf:;a &?‘*’) fiir w — oo schneller fallt, a(a.ls l:‘:; ergibt sich als Grenzwert die
unktion, . ie (5.1 . it Folgen

. : isen Beschreibung W jeren im Zeitbereich mit Folg
™ Sine ?mer I;;mkt::ee Polynomfolgen k°"espondlerefl m;inne von Distributionen
'Nullsfun:fuo:-.. ef&ifnusner hoherer Ordnung, die a.n . m;)mz finden. DaB derartige
‘;;)cnht - tl:: hi(;:znsind sondern nur im Raum .6‘ lhr:ztspricm zwar nicht unserer
k 1zu rtgre Funktior’xen' zur Nul gehol’e;’

omplizierte » . Raums 6.

anschaulichen Vorstellungen aber jenen des

i Folgen
. : 1 gen geeignete 4
Aus Platzgriinden wird darauf verzichtet, mit mm:o\trji:ler:gmes&s* daf e tatsichlich
atz . , . :
Zur Riickgewinnung zu konstruieren. Es ?el- ab:,}rremv.fall wieder hetauszuz:ehe?l- Die
mdgli 'g die am System geleistete Arbeit Im betrichtlich (wenn sie auch immer
K()l:lvcxl - dieser Folgen verschlechtert sich aber chen 1it, bevor man mit der
kmv;r:::tz bleiban) je mebr Zeit man V desel.vetsemenden Gedachtnisses« :,e‘
. 3 Folse A ufw M’ e
lickgewinnung beginnt. Das ist eine s8er wird der zu treibende
Isl;‘;kﬁ J ufisn;er man wartet, desto
ems. Je
Arbeit wieder henuaznholell
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Leider ist bisher nicht bekannt, ob und bei welchem physikalischen System eine
derartige interessante Gewichtsfunktion. auftritt. Man findet diese zwar hiufig in
Biichern {iber die LAPLACE- oder FOURIER-Transformation, doch tritt sie dort in der

Regel bei einer Losung einer partiellen Differentialgleichung im Ortsbereich auf,
wihrend sie hier als Gewichtung in der Zeit auftaucht. o

In der nachfolgenden Tabelle sind einige reversible Systeme zusammengestellt. Sie
untertellen sich in zwei Gruppen, die dadurch ausgezeichnet sind, ob der lokal
integrierbarer Anteil Null ist oder nicht. Wir werden im Abschnitt 5.5 auf die

unterschiedlichen Eigenschaften dieser beiden Gruppen eingehen. Man vergleiche auch
die Tabelle (4.12) Nr. 1, 3,7,11,12 und 13.

(5.132) Tabelle einiger reversibler Systeme

Nr h(t) do(w) a,
1 | Integrierer o(t) 0 x6
2 | Differenzierer 8(2) 0 0
3 Schwinger cos,at 0 -2'3(6(-+a)+5("0))

4 Leitung 6(t) +2 f‘, 5(t-2kT 0 T sk
k=1 ) ng—f( -T—')
5 sin,at / ¢ %U(a—lwl) 0
-2
6 e /2T /;; T e wDY2 o

PO

o s ot
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5.4.2 Reversible Systeme mit rationalen Ubertragungsfunktionen

Liegt eine rationale Ubertragungsfunktion

e = r(s)
(5.133) (s) = )

vor, erhalt man den lokal integrierbaren Anteil @, nach (4.144) durch

(5.134) dy(w) = Reh(jw) .

Die Funktion &, ist dann selbst rational, wegen der Nicht-Negativitat von 4, besitzt

sie die Form

H (w2+R§)
(5.135 Gy(w) = A—
! ' IT (w*+@?)
Daraus folgt
(5.136) lndy(w) = In A + T In(w?+E2) - Sin(u?+Q?) .

Jedes einzelne Integral
= In(n?+R?) 0
(5.137) | Y

konvergiert wie auch diejenigen mit Q. Daher ist ein derartiges System nach dem
Kriterium (5.120) stets irreversibel, es sei denn, A ist Null und damit die ganze

Funktion:
(5.138) g = 0.

Das ist die einzige Moglichkeit, bei der Reversibilitdt auftreten kann. Die
Ubertragungsfunktion kann in diesem Fall nur imaginire Null- und Polstellen besitzen:

(5.139) Satx: Reversibilititskriterium fir Systeme mit rationalen
Ubertragungsfunktionen

Ein passives EingroBensystem mit einer rationalen Ubertraungsfunktion A ist. genau

dann reversibel, wenn A nur imaginire Null- und Polstellen besitzt. Dann ist der
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Anteil @, identisch Null. 0

5.4.3 Das Reversibilitatskriterium fiir Mehrgroensysteme

Wir konnen die Ergebnisse fir den Eingrofienfall verwenden, um zu Aussagen iiber den

Mehrgrofienfall zu kommen. Die Zuordnung von Ein- und MehrgroSensystemen kann
in der bekannten Weise

(5.140) h = ""'h“,

(5.141) o = wla

m-lt e_lnem konstanten Vektor & vorgenommen werden. Ist nun A, ein reversibles
EingroBensystem, existiert fiir jedes v und ¢ ein minimales Element v’ mit

4
(5.142) vl = e, = 0.

Vektm:iell ausgedriickt heiflt dies, daB zu kv das minimale Element sy’ gehort. Jede
vektorielle Erregung v des MehrgroBensystems & kann in einer Linearkombination

(5.143) v = Tro
- V4
L
n‘nt ];onst:nten Vektoren x; und skalaren Funktion v; dargestellt werden. Zu jedem
einzelnen Summm - R
,"_,,! di:n - an-din K;v; gehort nac¥1 den obigen Uberlegungen das Minimalelement
i die, j r sich, nach (5.142) die Gesamtarbeit Null leisten. Nach Satz (5.63)

e‘rhﬁlt man das minimale Element fir die Summe (5.143) durch Summation der
einzelnen Minimalelemente

(5.144) o = ¥ xof
fiir das ebenfalls i
(5.145) (Wo)() = (Va)(t) = o

gilt. Da';s bedeutet, aus der Reversibilitat des EingroBensystems h_ fiir alle konstanten &
folgt die Reversibilitat des MehrgroBensy b

. stems A. Es ist eigentlich gar nicht notwendig,
;l;; € f)".zu priifen. Eine Linearkombination (5.143) ist immer méglich, wenn die &;
Basumdandunvektonmmc’bilden.&michtma,nmdieaumbunygen

5.5 Weitere Klassifikation reversibler Systeme 109

Vektoren einer beliebigen Basis zu testen:

(5.146) Satz: Hinreichendes Reversibilititskriterium fir MehrgroBensysteme

Ein Mehrgro8ensystem ist reversibel, wenn mit einer willkiirlich gewahlten Basis x; €
C" das Integral

] t. )
(5.147) J Md{)

c2 + .02
-0

fiir kein i konvergiert, also

(5.148) Inslaw g LY Vi D

Es sei daran erinnert, daB in der Definition (5.2) der Reversibilitdit die Forderung
(Vo)(t) = 0 fir alle v erhoben wurde. Es ist durchaus mdglich, daB bei einem nach
dieser Definition irreversiblen System Erregungsteilrdume existieren, in denen die
verlorene Arbeit stets Null ist. Das ist z. B. der Fall, wenn (5.148) fiir einige i, aber
nicht fiir alle erfiillt ist. Man kann das in der Weise deuten, daB es in einem irreversib~
len System durchaus reversible Untersysteme geben kann.

Anders als im EingréBenfall ist der Satz (5.146) nicht umkehrbar; die Bedingungen
(5.147) sind also nicht notwendig fiir die Reversibilitdt eines Mehrgrofiensystems.
Beziiglich eines notwendigen Kriteriums sei auf TOBERGTE [43], Satz 10.5, verwiesen.

5.5 Weitere Klassifikation reversibler Systeme

5.5.1 Strenge und schwache Reversibilitat

Es gibt offenbar recht verschiedenartige Vertreter reversibler Systeme, betrachtet man
nur die Beispiele (5.6) und (5.125). Reversible Systeme stellt man sich gewdhnlich als
konservative Systeme vor, also solche, bei denen eine innere Energie existiert, welche
zusammen mit der 3uBeren Leistung einer Bilanzgleichung gehorcht. Die Folge ist, da8
das System bei abgeschalteter iuBerer Erregung in einer ungedimpften Schwingung,



110 5 Reversibilitat und Irreversibilitat

die nicht unbedingt periodisch sein mu8, schwingt. Wie schon angeschnitten, bringt die
Erkenntnis, da auch Systeme wie das in Beispiel (5.125) untersuchte zu der
reversiblen Klasse gehéren, einige Verunsicherung in diese Vorstellung der

Reversibilitit. Es soll daher eine Klassifikation dieser verschiedenen reversiblen
Systeme versucht werden:

(5.149) Definition: Strenge Reversibilitat

Ein reversibles System heifit streng reversibel, wenn es zu jeder Erregung v € " stets
ein minimales Element o' aus G™ gibt. o

(5.150) Definition: Schwache Reversibibilitit

Ein reversibles System, welches nicht streng reversibel ist, heit schwach reversibel.
a]

Die I?eﬁnitionen gind von dem Gedanken gepragt, daB bei Schwingern die innere
Ex_lergle durch eine »verniinftige«x Funktion wieder herausgezogen werden kann,
wihrend dies bei dem Beispiel (5.125) nicht méglich ist. Der gewohnte anschauliche

Reversibilitatsbegriff entspricht dann der strengen Reversibilitit.

(5.151) Satz: Hinreichendes Kriterium fiir schwache Reversibilitit

Ist ein System reversibel und gilt &, + 0, s0 ist es schwach reversibel. o
(5.152) Beweis:

B.ei einem reversiblen System mu8 nach (5.102) das Minimalelement # - sofern man es
s.lch durch eine gewdhnliche Funktion aus S® vertreten denkt - im Nullraum von &
liegen. Ist Aj(w) eine Basis des Nullraums, dessen Augrichtung und Dimension m von w

abhan.gen .ka.nn, so’kénnen wir damit das Minimalelement i‘, wenn es eine gewdhnliche
Funktion ist und fiir alle w € R definiert ist, in die Form

(5.153) YW = 57 ) )
j=1

::*:xgen. Es besteht also aus sovielen skalaren Funktionen ﬁ;-, wie die Dimension m(w)
Nullraums an der Stelle w angibt. Da andererseits in

(5.154) ¢ = Dot

i=1
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n unabhingig vorgebbare skalare Funktionen enthalten sind, kann ein Widerspruch nur
vermieden werden, wenn fast iiberall m(w) = n ist, das heifit 8, = 0. Ist umgekehrt
&, # 0, ergibt sich als Schlufifolgerung, da8f v*(w) nicht fiir alle w € R definiert sein kann
bzw. keine gewGhnliche Funktion, also auch nicht aus &" sein kann. Daher ist
nachgewiesen, dafl im Fall @, # 0 die Riickgewinnung nur durch verallgemeinerte
Funktionen aus S5 bzw. & erreicht werden kann. o

(5.155) Satz: Hinreichendes Kriterium fir strenge Reversibilitat

Ist ein System reversibel und gilt @&, = 0, so ist es sireng reversibel. D

(5.156) Beweis:

Die dem Beweis zugrunde liegende Idee ist die, daB ein System, bei dem nur der
singulire Anteil &, vorhanden ist, welcher auf ungedimpfte Schwinger zuriickzufithren
ist, durch einen externen Dimpfer vollstindig zur Ruhe gebracht werden kann. Der
Beweis wird nur fiir EingroBensysteme gefiihrt, denn ist erst einmal nachgeweisen, dafl
beim Eingrofensystem mit

- +.
aa‘ = KGN

fir alle Erregungen v € & Riickgewinnungen ' € & existieren, erhalt man mit der

Darstellung
9 = 2 LA
L
fir vektorielle Erregungen des Gesamtsystems mit Hilfe von Satz (5.63) die Aussage
" = 2 x,v: € 6. .
]

Nun also zum Beweis fiir Eingrofiensysteme. Wir betrachen neben dem eigentlich zu
untersuchenden System H ein weiteres passives externes System H, mit den System-
gleichungen

y:h*ﬂ

ye hc * vC

Diese werden durch »Parallelschaltung«
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zu dem neuen Gesamtsystem H v

Yo = hy*v

zusammengefaft. Zunachst soll die Gewichtsfunktion h, bestimmt werden. Die
Ubertragung der Gleichungen in den LAPLACE-Bereich ergibt

N 2.1a

hpy = §, = ki, b= kg,
9’9 = hg = hef]c ’ i}e = ii;l‘j}g,

(5.157) =21 hh
;)g h-l + il;l f; + I‘ie

A'ls Zusamfnenhang zwischen der urspriinglichen Eingangsgrofe » und der neuen
Eingangsgrofe v, des Gesamtsystems erhilt man

(5.158) 5 = il h, .
= Yo = /————v, =: fp
! h+h, 13,
Nach Voraussetzung soll H ein reversibles System mit G, = 0 sein. Fur die

aufgenommene Arbeit ergibt sich daher nach (5.31)
1 -
W(w) = 3-Fa; |i(w,)|?.

;\n ::ndiSt.ellen s = jw b'esnz.t die qbeftf&guﬂgsf“nktion h Polstellen. Ist v, € &, bleibt
0 esen Stellen mit Sicherheit beschrinkt. Wird dariiber hinaus ein externes
S.ystem H, so gewihlt, daB auch h, an den Stellen s = Jjw; beschrankt bleibt (im
einfachsten Fall ist dies durch einen einfachen Dampfer ;mt i'e(-’) = const. 7u

;rlrtenchen) verschwindet die Ubertmgungsfunktion Jin (5.158) an diesen Stellen; daher
#w,) = 0.

Damit ist auch die Gesamtarbeit W(0) Null. Alle Funktionen v, die sich durch
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(5.159) v=Fuy = f*y,

aus beliebigen Erregungen vy des Gesamtsystems ergeben, gewinnen die geleistete
Arbeit wieder vollstindig zuriick. Es muB aber umgekehrt gezeigt werden, daf fiir eine
beliebige Vorgabe v € & des Teilsystems H eine zugehdrige Erregung v, des
Gesamtsystems gefunden werden kann: Es existiert f~ 1~ ¢1/f) und ist wie f
kausal. Wir setzen im Zeitintervall (-oo, t)

v, = oo = (Fl+v,), in (-oo,1).

Wegen der Kausalitat hingt v, nur von der Geschichte von v im Intervall (-oo, t) ab. In
[t, ) kann aber v, geeignet fortgesetzt werden, so da v, zu & gehort, denn die
notwendigen Differenzierbarkeitsbedingungen folgen aus (A.81):

(5.160) v, = (f e, + vy € 6 mit supp(yg) C (£ ) .
Die sich dann aus (5.159) ergebende Funktion
1
f* ((f' *v,),+vgo) €6

leistet die Gesamtarbeit Null und ist wegen

f* ((fl*”t):+”go) = [+ (o) = 9y = v in (-,0)

ein zu v gehdrendes Minimalelement Ffes. o
Die Aussagen der letzen beiden Sitze werden in dem folgenden zusammengefaBt:
(5.161) Satz: Notwendiges und hinreichendes Kriterium fiir strenge Reversibilitat

o

Ein reversibles System ist genau dann streng reversibel, wenn &, = 0 ist.

Da & = O nach Satz (5.146) sowieso Reversibilitat impliziert, kann die gesonderte
Voraussetzung der Reversibilitat in Satz (5.161) aufgegeben werden:

(5.162) Sats: Nmmwxﬁmmmn«aﬁm a

Ein System ist genau dann streng reversibel, wenn &, = 0 ist.
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5.5.2 Relaxation

Unter Relaxation versteht man das zeitliche Abklingen innerer und auBerer
Systemgrofien, wenn das System nicht weiter erregt wird. Gewdhnlich verbindet man
damit die Vorstellung einer Entwertung noch vorhandener innerer Energieen. In dem
Beispiel (5.125) haben wir aber bereits ein relaxierendes reversibles System
kennengelernt, so da8 diese Vorstellung in dieser allgemeinen Art nicht aufrecht
erhalten werden kann. Es soll aber untersucht werden, inwieweit die Relaxation mit

der .strengen bzw. schwachen Reversibilitit in Verbindung gebracht werden kann.
Zunichst werden die Begriffe definiert:

(5.163) Definition: Stabilitat

fli[f ystem heii stabil, wenn fir jede Erregung » ¢ &" die Ausgangsgroe y beschrinkt
elbt:

(5.164) l5)] = |elWn)| s ¢, ¥ 1eR.
Die Konstanten C; diirfen von v abhingen. B
(5.165) Definition: Relaxation

Ein System heifit relazierend, wenn fiir

jede Erregung » € 6" die Systemantwort y fir
t — o gegen Null strebt: Y i ’

(5.166) i gt) = 0. ]
[ X1

Offensichtlich ist ein relaxierendes System stabil.

(5.167) Satz: Stabilitit passiver Systeme
Ein passives System ist stabil,
(5.168) Beweis-

Wir benutzen fiir dje Gewichtsdistribution & des Systems die Darstellung

b= jQ6+Ms+2c? 2d3{(»-(0)),} .
nach (4.55). Dann ist

(5.169) gy = h*v = jQb+v + Mbru + 2c%w v — 2d2{(v-1(0)),}*v

= jQu + M + 2% r0 — 2(v-¥0)), *b

Die Funktion » ist die Riicktransformierte der Ableitung des beschrinkten Mafes p,
ut) = )0 =5 [ & dplw)

Hieraus ergibt sich die Abschitzung
(5.170) IRl < =" (a() - W(-0)) 5.

Die Matrizen » und p sind HERMITEsch. Daher sind die Maximalwerte ihrer
HERMITEschen Formen gleich den HILBERT-Normen. Es ergibt sich

(5.171) )] < 5 1o(x) - H-)] =: N.
Damit erhalten wir aus (5.169) als Abschitzung

(5.172) ) = [¥®)] = 19| n‘nglv(t)l + |M] r:lgli(t)l

+ 2c2N? |o(7)] dr + 4N of {#(r)] dr.

Da v € G ist, konvergieren die beiden letzten Integrale. Die gesamte Abschatzung ist
von ¢ unabhingig. Somit ist das Gewiinschte nachgewiesen. o

(5.173) Satz: Relaxation streng reversibler Systeme

Ein System mit & = Ound s, ¥ 0 ist nicht relaxierend.

(5.174) Beweis:
Es reicht aus, die Aussage fir eine Komponente y = y; = e?y und eine spezielle
Erregung w=ep zu zeigen. Damit reduziert sich das Problem wieder auf den

Eingroenfall. Der Vektor ¢; soll jedoch so gewihlt werden, da8

(5.175) e := cla; # 0

gilt, was immer mdglich ist, da & = &, # 0 vorausgesetzt wurde. Nach (3.68) gilt
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(5.176) h = 2a in (0, ),
wobei
(5.177) b= elhe, .

Als Erregung wihlen wir nun eine Funktion v € © ¢ & (v finit), wobei das Intervall

(t,, t,] der Triger von v sein mége. Mit (5.176) und unter Ausnutzung der
Eigenschaften der Faltung gilt dann

(5.178) y="hxv=2a+%v in (t, x).

Schreibt man dies als Riicktransformation aus dem FOURIER-Bereich, erhilt man
_ - 1 - = o
(5.179) y(t) = 23 (@0)(t) = 2§ (Ziza,- #w;) 8(--w;) )(t) = %2 a; 3w;) it
1

fir ¢ > ¢,. Es sei bemerkt, da die Reihe aufgrund der Eigenschaften von & bzw. der ¢;
und der von ¥ gleichmaBig konvergiert und y dariiber hinaus eine Funktion C,, ist. Eine
Reihe dieser Gestalt mit Frequenzen w;, die nicht notwendigerweise in einem
rationalen Verhiltnis stehen und auch in ihrer Anzahl unbeschrinkt sein konnen, heift
veraligemeinerte FOURIER-Reihe. Die durch sie definierte stetige Funktion ist eine
sogenannte fastperiodische Funktion. Eine Funktion f heift fastperiodisch, wenn es fiir
jedes € > 0 ein L(e) gibt, so daB sich in jedem Intervall der Lange L{¢) ein T findet,

T e [T»T+L(f)] ’

mit dem

If(&) - f(t+T)] < ¢ V teR
gilt (siehe dazu RIESZ [ NAGY [40] N-. 101, 102)

E)ie Eingangstunktion  soll nun so gewahlt werden, da8 fiir zumindest ein w; gelte:
#w;) # 0. Dann ist sichergestellt, daf es stets ein ty > 1, gibt, fiir daB y(t,) + 0 ist. Da

die Wion v fiir ¢ > ¢, fastperiodisch ist, findet sich fiir jedes ¢ > 0 und jedes rein T
> 1 (Wiederkehrzeit), so da

lv(®) - ¥(t+T)| < ¢

5.5 Weitere Klassifikation reversibler Systeme 117

gilt. Setzen wir nun ¢ = ¢, ein, kann wegen y(#,) # 0 und der beliebigen Vorgabe von 7
und der dadurch verursachten Unbeschrinktheit der moglichen T die Funktion y(2)
nicht gegen Null streben. Das System relaxiert also nicht. o

(5.180) Satz: Relaxation schwach reversibler oder irreversibler Systeme

Ein System mit &, = 0 ist relaxierend. o
(5.181) Beweis:
Ist & = 0, so besitzt auch die beschrinkte monotone MaBfunktion p keine

Sprungstellen bzw. # als Ableitung von g (siche (3.64)) ist absolut integrierbar: & € L,.
Daher ist nach dem Satz (A.108) die Zeitfunktion » stetig und strebt fir ¢ — oo gegen
Null. Benutzen wir nun die Darstellung (3.70) bzw. (4.53), (4.54) fiir die Gewichts-
distribution A, erhalten wir fiir die Ausgangsgrofie

(5.182) ¥

Ty + 2(c2-d3)(v+) * v

r¥o + 2c2v+*v - 2vy,%0,

o) = (reo)(t) + 202};v(r)v(t—r)df + 2Zv(r)§(t—-r)dr,

(5.183) |p(t)] < |(ro)(t)] + 2c2°£zv(r)|-(t—r)ldr + 2IN(T)Ii(t—r)Idr,

wobei N eine monoton fallende Funktion sei, die die HILBERT-Norm von w#(t)
abschitzt:

N(@) 2 |vDl.

Da » im Unendlichen gegen Null strebt, tut es auch N(¢). Daher gibt es zu jedem ¢ > 0
ein T(¢) mit N(t) < ¢ fiir t > T(e). Das erste Integral 138t sich damit aufteilen in

o T =
r -7)| dr = + -r)| dr
(5.184) M) [o(6-n)| 4 (1+])moise-n

< NO) ]\ se-r)l dr + ¢ T o) dr.
0 -

Da v € 6" ist, konvergieren beide Integrale. Das erste wird weiterhin fir jedes feste ¢
bzw. T(e) fir ¢t — oo beliebig klein. Geben wir also fir die gesamte linke Seite von
(5.184) eine Schranke ¢ > 0 vor, wird durch Wah! von




118 5 Reversibilitat und Irreversibilitat

e =i(Tistnnar)’

~00
es immer ein T'(¢) geben, so daBl der erste Term der Abschitzung fiir ¢ > T(é) kleiner
als ¢/2 und somit die gesamte linke Seite von (5.184) kleiner als ¢ wird. Also strebt die
linke Seite von (5.184) und damit das erste Integral in (5.183) fiir t — oo gegen Null
Entsprechendes gilt fiir das zweite Integral in (5.183). Das Faltungsprodukt mit der

singuldren Distribution r strebt sowieso gegen Null, da v dies tut. Damit ist der Satz
bewiesen. o

Die beiden letzten Sitze liefern als Zusammenfassung;

(5.185) Satz: Relaxation passiver Systeme

Ein System relaxiert genau dann, wenn & = 0ist. a

Die Interpretation dieser Aussagen in Bezug auf reversible System ergibt, daf ein
schwach reversibles System, sofern kein singuldrer Anteil & vorhanden ist, stets
relaxiert. Ein streng reversibles System ist niemals relaxierend, sofern man solche mit
8, = 0 ausnimmt. Weiterhin kann man dem Beweis (5.174) entnehmen, da8 ein streng
reversibles System mit & + 0 bei Erregung durch finite Funktion mit einer
fastperiodischen Schwingung antwortet. Diese kann - entsprechend der Anzahl der
singuldren Stellen w; - aus einer endlichen oder einer unendlichen Zahl harmonischer
Schwingungen bestehen. Wir identifizieren also tatsichlich mit den streng reversiblen
Systemen solche, die aus ungedampften Schwingern bestehen.

Auch MEIXNER hat in [34] eine genauere Klassierung reversibler und irreversibler

Systeme vorgenommen. Die Benennungen der Begriffe sind dort jedoch anders
vorgenommen. Der schwachen Irreversivilita nach MEIXNER entspricht hier die
Relazation wahrend die starke Irreversibilitit nach MEIXNER hier einfach
Irreversibilitat heift. Den hiesigen schwach reversiblen Systemen gleichen bei MEIXNER
also die schwach, aber nicht stark irreversiblen (also reversiblen) Systeme. Die streng
reversiblen Systeme heien bei MEIXNER demnach nichi schwach irreversibel.
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5.5.3 Verkniipfungen reversibler Systeme

Es soll untersucht werden, inwieweit die Reversibilitat bei einer Zusanunenschalt}xng
mehrerer Systeme erhalten bleibt. Als erstes sei folgender Satz angegeben, der nicht

schwer zu beweisen ist:

(5.186) Satz: Reversibilitit des Umkehraystems

Beim Wechsel der Eingangs— und Ausgangsgrofien » « y eines passiven Systems H .
also Ubergang auf das »Umkehrsystem« H ! _ bleibt die Eigenschaft der Irreversibili-
tat bzw. der strengen bzw. der schwachen Reversibilitdt erhalten. Ebenso bleibt der

Wert der verlorenen Arbeit gleich:

-1 o
(5.187) Vo= V'y

Bei der Verkniipfung zweier Systeme ergibt sich eine Aussage iber die Reversibih{at
des entstehenden Gesamtsystem durch die Eigenschaften der Teilsysteme. Es gilt
folgender Satz:

(5-188) Satz: Reversibilitit einer Parallelschaltung

Sind H, und H, zwei n-Grdfensysteme, so ergibt sich die Reversibilitatseigenschaft der
”P&ralllelschaltung« H = H, + H, aufgrund der Eigenschaften der Teilsysteme nach
folgender Tabelle:
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H,

H,

H

streng reversibel

streng reversibel

streng reversibel

streng reversibel

schwach reversibel

schwach reversibel

streng reversibel irreversibel irreversibel
schwach reversibel schwach reversibel *

schwach reversibel irreversibel irreversibel

irreversibel irreversibel irreversibel

Im Fall (*) ist das Gesamtsystem H entweder schwach reversibel oder irreversibel.
)

(5.189) Beweis:

1. H, und H, streng reversibel: Unter Zuhilfenahme des Satzes (5.162) folgt aus
&)=8,=0unds =3 + &,, = 0 die strenge Reversibilitit des Gesamtsystems.

2. H, streng reversibel, H, schwach reversibel: Die Frage der Reversibilitdt entscheidet
sich allein durch den lokal integrierbaren Anteil @, (siehe (5.101)). Da &, = 0,

=8+ &, = &, und das System H, nach Voraussetzung reversibel ist, muf es auch

das Gesamtsystem sein. Wegen &, # 0 kann es aber nur schwach reversibel sein.

4. H, und H, schwach reversibel: Es gilt &, ¥ 0, &, # 0. Da fir jedes die
Funktionswerte #,,(w) positiv semidefinite Matrizen sind, ist &w) = &,(w) + a20(“’)

ungleich Null, wenn nur ein Summand ungleich Null ist. Daher kann &, nicht Null sein ;
also ist H nicht streng reversibel. Es bleiben nur die Méoglichkeiten der schwachen

Reversibilitit oder der Irreversibilitat, unter denen allgemein nicht entschieden werden
kann.
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3., 5. und 6. H, beliebig, H, irreversibel: Da bereits ein Teilsystem - zumindest bei
einigen Erregungen - einen Teil der aufgenommenen Arbeit nicht wieder abgibt, gilt
dies auch fiir das Gesamtsystem. o

Die am Gesamtsystem geleistete Arbeit W ergibt sich als Summe der Arbeiten an den
Teilsystemen:

(5.190) W=W+W,.

Diese Additivitat gilt fir den verlorenen Anteil der Arbeit im allgemeinen nicht. Wir
haben

Vo)) = (We)(e) = (Wye')(eo) + (Wyo')(0) -

Im allgemeinen darf man nicht davon ausgehen, daB das Minimalelement o fir das
Gesamtsystem gleich den Minimalelementen v, v, fiir die Teilsysteme ist. Die rechts
stehenden Ausdriicke stellen also nicht unbedingt die verlorene Arbeit der Teilsysteme
dar. Vielmehr gilt

Vo) = We)(=) < (we)(«0)

und daher

(5.191) Pa)) Z (V) + (Vpo)(®)

Auf diese Nichi-Additivitat der verlorenen Arbeit weist auch KERN (23], S. 75f, bei der
Diskussion verschiedener Entropiefunktionale hin. Die Folgen dieser Eigenschaft
werden im nachsten Kapitel diskutiert, wo es um die Frage der Identifikation der
Dissipationsleistung geht.




6 Dissipation

Nur bei reversiblen Systemen ist fiir jede beliebige Erregung die zugefiihrte Arbeit
wieder vollstindig zuriickzugewinnen. Bei irreversiblen Systemen wird ein Teil der
zugefihrten Arbeit vernichtet oder ist zumindest nicht mehr zuginglich. Ist es moglich,
diese Energicentwertung zeitlich zu lokalisieren? Beim Blick in die Black Box wird man
diese Frage ohne zu zogern bejahen, braucht man doch etwa bei einem elektrischen
Netzwerk nur die an den Widerstanden anfallende Warmeleistung, die in ihrem
Momentanwert eindeutig von den momentanen Strémen bzw. Spannungen abhingt, in
Ansatz zu bringen. Kann man aber auch ohne Kenntnis der inneren Struktur allein

durch die Untersuchung des duSeren Verhaltens die Rate dieser Energieentwertung, die
Dissipationsieistung, eindeutig identifizieren?

6.1 Eigenschaften der Dissipationsleistung

Bevor wir hierzu weitere Uberlegungen anstellen, soll diskutiert werden, welche
Vorstellungen iberhaupt mit der Dissipationsleistung P, verbunden werden. Im
Hinblick auf CLAUSIUS-DUREM-Ungleichung der Thermodynamik wird man als
wichtigste Eigenschaft die Nicht-Negativitit fordern (siehe (2.24), (2.32)):

(6.1) P, 2 0

Daneben mu8 die Dissipationsleistung konsistent zur duferen Leistung sein. Darunter
verstehen wir, da8 die bis zur Zeit ¢ disgipierte Arbeit

(6.2 DY) = [ Pfr) ar

nicht groer als die duBere Arbeit sein kann:

(6.3) D) s w()

Die dissipierte Arbeit D ist wegen der angenommenen Nicht - Negativitit von P, eine
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monoton wachsende Funktion. Da bei reversiblen Systemen immer W(t) = 0 erreicht
werden kann (mindestens im Grenzfall ¢ — ), folgt bei diesem zwingend D = 0 und
damit auch P; = D = 0, wie man es bei einem reversiblen System erwartet.

Diese Bedingungen charakterisieren die Dissipation noch nicht hinreichend - wurl?te
doch der Ansatz P; = 0 auch bei irreversiblen Systemen diesen Forderungen ge.rec. .
Man muB auch eine untere Schranke fiir die dissipierte Arbeit a?geben. Das <'ammg.e
MaB, was uns zur Abschitzung der dissipierten Arbeit zur Verfugung'steyt, ist die
verlorene Arbeit. Wir wollen die Abschitzung in einer mdglichst vorsnc‘htl'ge.n Fer.m
aufstellen. Wir treffen die Annahme, daB die verlorene Arbeit tatséchlich dissiptert wird
~ legen uns aber nicht fest, in welchem zeitlichen Ablauf das geschieht:

(6.4) o)) = (Wr)() S (De)(0) .

(D bezeichnet die Abbildung v — D) Dies stellt tatsichlich die klein.ste‘m‘it.den
Mitteln einer Black-Box-Beschreibung angebbare untere Schranke fir die dlsmpxerf,e
Arbeit dar. Andererseits kann die Ungleichheit gar nicht eintreten, da sonst ein
Widerspruch zu (6.3) entstehen wiirde. Es muf also gelten:

(6.5) (Do) () = (Vo)1)

Weiterhin versteht man die Dissipationsleistung als extensive Gr.o"ﬂe — also als eine
raumlich verieilte Grife, deren Gesamtwert in einem Raumberejch.smh als 'Summe
iiber die Werte der Teilbereiche ergibt. Bei unserf-:r orthchen . dlsll;retez
Systemmodellierung fihrt das zu einer Additivitat der Dissipationsleistung: Sind onl 1;1:8
H, zwei passive Systeme mit den Dissipationsleistungen ?‘1 und ?"z’ 50 8

 Tvicainaf] istun
zusammengesetzte System H := H, + H, die Dissipationsleistung

(6.6) (20 = (P2 + (Pa2)®)

besitzen.

. alitat
Als letztes ist von dem der Dissipationsieistung zugeordnetem Operator 74 Kaus

zu fordern.

Inwieweit konnen die aufgefihrten Anforderungen an eine'gesuchte 'Dissl.patlo;mh-
leistung iiberhaupt befriedigt werden? Sind sie vielleicht bereits in sic
widerspriichlich?
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In (5.191) haben wir gesehen, daB bei einer Zusammenschaltung H = H, + H, sich die

verlorenen Arbeiten an den Teilsystemen zum Gesamtsystem im allgemeinen nicht
additiv verhalten. Es gilt

(6.7) R0 2 )0 + )0,

wobei die Gleichheit nur in Sonderfillen eintritt. Dieser Umstand allein ist noch kein

Widerspruch zu der angenommenen Additivitit der Dissipationsleistung. Mit (6.5)
folgt namlich aus (6.7)

(6.8) (P9') () 2 (D;0f)(w) + (D,8)(w0) .

Hierbei ist o' das Minimalelement beziiglich der Erregung v und des Zeitpunktes ¢ fiir
das Gesamtsystem. Die »Funktionen« vf gind die jeweiligen Minimalelemente fiir die
Teilsysteme. Aus der Zusammenschaltung v = v, = u, folgt natiirlich v, = (), = (%)
aber im allgemeinen nicht die Gleichheit der Minimalelemente auch im Zeitintervall
(t, ). Daher stellt (6.8) auch keinen Widerspruch zu (6.6) dar.

Eine spezielle Systemklasse fiigt sich in diese Vorstellungen der Dissipation aber kaum
ein: die schwach reversiblen Systeme. Reversible Systeme haben allgemein die
Dissipationsleistung P; = 0. Ist bei der Zusammenschaltung zweier reversibler Systeme
zumindest eines streng reversibel, muf nach Satz (5.188) auch die Zusammenschaltung
reversibel sein, die daher auch keine Dissipation besitzt,. Anders sieht der Sachverhalt
bei der Zusammenschaltung zweier schwach reversibler Systeme aus. Das Gesamt-
system kann in Einzelfillen auch irreversibel sein. Wihrend beide Teilsysteme
verschwindende Dissipationsleistungen aufweisen, ist dem Gesamtsystem nach (6.5)
eine Dissipationsieistung groBer als Null zuzuweisen. Dazu ein Beispiel:

Wir betrachten die Systeme mit den Gewichtsfunktionen

op SiD w,l
h[(t) = x ’
4
. sin, wyt
h) = R (80) - 2 —)
Die {Ibertragungsfunktion h lautet

hy(s) = garctm%l = & ln—’lwo—
T stju,
Man grhilt daraus fir die FOURIER-Transformierten
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~wy

- iR
hyw) = Rolwy-|w]) + L 1n

wHw,
bzw. fir ihren Realteil

i) = 8 W) = Bo(up|el)
wie in Tabelle (5.132) angegeben ist. Analog erhilt man
dy(w) = &20(w) = Ro{|w|-wp) -

e = 1i

Die Funktion &, verschwindet im Intervall (wg, ) und in (-0, wp), B, lst’ Nul' l:
(~wpy wg). Hier wird In &, bzw. In &, uneigentlich und das Integral (5-12‘)_d‘lve;§‘:;t'
Beide Systeme sind also reversibel, wegen & # 0 aber nur schwach reversibel. Bilde

man nun die Summe, erhilt man

h=RS$

a(u) = ao(w) = R.

Das Integral (5.121) konvergiert, das Gesamtsystem ist also .irreverz:bel..t iel;ll
Verhalten gleicht beim elektrischen Analogon einem OHMs.c.hen Widerstan X ;nl :'e
Wert R. Ohne zu Zdgern wiirde man einem derartigen Ubertragungsverhalten ai

Dissipationsleistung
:2
(6.9) P‘ =R

zuweisen, was aber nicht mit der angenommenen Additivitat der Dissipationsleistung
Y

Zu vereinbaren ist.

Wir stellen also fest, daf die plausibel klingenden Annahmen iiber e E‘Senm‘.’:;:
der Dissipationsleistung sich (zumindest fir die Klasse der schv;vach ur;;::l die
Systeme) nicht miteinander vereinbaren lassen. Man kommt nicht s
Forderungen entsprechend abzuschwichen.

( iissen.

Die Frage stellt sich, an welcher der Forderungen Abstriche getnaf:ht werden :nnse
Hilt man an der Additivitit der Dissipationsleistung fest, muS in dem vor gegar:t-
enen Beispiel der Zusammenschaitung der beiden schwach reversiblen Systeme die
;i“iwiomleistnng Null zugewiesen werden. Es lieBe sich dann die Anbindung der
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Dis.sipa.tion an die verlorene Arbeit (6.5) nicht mehr aufrecht erhalten. Das wiirde
.glelchzeitig bedeuten, daB es durch eine reine Black-Box -Beschreibung nicht méglich
ist, den dissipierten Anteil der Arbeit zu erkennen. Die vorangegangene Zusammen-
schaltung 138t sich von einem Widerstand nicht unterscheiden.

Halt. mar? umgekehrt an der Anbindung der Dissipation an der verlorenen Leistung fest
- -dle einzige Moglichkeit, die Dissipation mit einer Black-Box-Beschreibung zu
erortern -, kann die Additivitit nicht aufrecht erhalten werden. Dann muf man
akzeptieren, daB die Dissipation 6rtlich nicht lokalisiert werden kann: In der
V(_)rangegangenen Zusammenschaltung hatte nur das Gesamtsystem dissipative
Eigenschaften. Man ist Jjedoch nicht in der Lage, die Dissipation in irgendeiner Weise

df%n.Tellsystemen zuzuordnen, da beide fiir sich (schwach) reversibel und damit nicht
dissipativ sind.

An -dleser Stelle sei auch auf das Beispiel (4.13) der elektrischen Doppelleitung him-
ge.wween. Diese ist im Grenzfall unendlicher Lange von einem OHMschen Widerstand
it .den.l Wert des Wellenwiderstandes der Leitung nicht zu unterscheiden. Vom
pﬁyzkdlsfhen Gesichtspunkt her kann man nicht behaupten, da8 hier Arbeit vernichtet
:\]’:Ir(t:(; Die F‘,nergle beﬁnde.t si-ch. in einer lings .Jer Leitung fortschreitenden

magnetischen Welle. Richtig ist allerdings, daB diese Arbeit verforen ist (und

zZwar soff)rt nach Einspeisung in die Leitung), wenn neben der Eingangsklemme nicht
noch weitere Anzapfungen der Leitung,

die das Well . .
zur Verfiigung stehen. ellenpaket noch nicht passiert hat,
Unabhingig davou

, in welcher Ri i = .
erscheint es fast s ichtung man die Forderungen abschachen wiirde,

ungoeignet. die Fr:,g :lze:VaI;:s;:ne t?im:k—Boi(—Beschreibung eines Systems prinzipiell
Sachverhalte wie ein OHMsch pan'on o, wetn 50 verschiodene physikalische
nicht unterschieden, woede l(_er iderstand und eine elektrische Leitung von aufien
physikalischer Geaetys (;: on'men. Mat-x muB aber daran denken, daB das Aufstellen
Erkundung der Bigensetaften e s ol Mchts anderes darstellt, als die
deduktiv von and ' en eufer Blat.:k—l?ox. Wenn auch viele physikalische Gesetze

eren, in der Hierarchie hoher stehenden Gesetzen abgeleitet werden

kénnen, so bleibt letztendli
? ich auf ej 5 . . .
Untersuchung einer » Black~ . einer hochsten Stufe immer die empirische

Liegen die auftretenden Widerspriichlichk,
rii i iellei i
By rete eiten vielleicht daran, da$ der Begriff der

gefaBt ist? Sind wir bei einem System noch in der Lage, zur
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Kontrolle einmal den Deckel des Kastens zu 6ffnen, um die aus dem aufleren Verhalten
gewonnenen Vorstellungen iber das »Innenleben« zu iberpriifen, liegt in einem
strengen Sinn gar keine »Black-Box« vor. Sind wir vielleicht verpflichtet, nicht nur
die Arbeits— und Kraftvariablen in Ansatz zu bringen, die im konkreten Fall in
Wechselwirkung mit der Umgebung treten, sondern auch alle diejenigen, auf die wir
prinzipiell EinfluB nehmen kénnten? Das hitte bei der unendlich langen Leitung zur
Folge, da8 man neben den Einspeisungsklemmen auch unendlich viele Anzapfstellen in
die Systembeschreibung mit aufnehmen miifte. Das wiirde zwar die hier zur Verfiigung
gestellten Hilfsmittel iibersteigen, wo nur eine ortlich diskrete, endlich dimensionale
Modellierung méglich ist, doch ware hierbei zweifelsfrei auch fiir die unendliche

Leitung Reversibilitat zu erwarten.

Bei der diskutierten Zusammenschaltung zweier Systeme wirde dann die Frage
aufgeworfen, ob sie in dieser Form eigentlich statthaft ist, weil dadurch die
Zugriffsmbglichkeiten auf die Teilsysteme verschieiert werden. Dann miifite man zuerst

aus den Teilsystemen H, und H, ein Gesamtsystem in der Form
H, 0

(6.10) H =
0 H,

aufstellen und kénnte durch eine Transformation nach (4.90) mit einer reguldren
Matrix

I o
(6.11) T =
r 1
(I ist die Einheitmatrix) auf das transformierte System
A+H, H,
(6.12) g=r1Er=-|""
0 =,

iibergehen. Hier wiirde man dann von dem vollstandigen Satz der generalisierten

Geschwindigkeiten
(6.13) o= [, 917

nur den Teil #, benutzen und den Teil % Null setzen. Zur Bestimmung der Dissipation
muf dann aber auch &, beriicksichtigt werden. Bei einer derartigen Systemzusammen—
schaltung ist bei reversiblen Teilsystemen auch das Gesamtsystem reversibel, so daf
hierbei die Additivitit der (verschwindenen) Dissipationsleistung gewihrleistet ist.

A
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Kann jedoch aus phsikalischen Griinden auf die Teilsysteme innerhalb des
Gesamtsystems prinzipiell kein Einflu§ ausgeiibt werden kann, ist mdglicherweise der
Wert der Untersuchung eines Teilsystems grundsitzlich in Frage zu stellen. Die
korrekte Systembeschreibung ware in diesem Fall immer das vollstindige
Gesamtsystem; die Frage nach der Dissipation der Teilsysteme wire ohne Sinn.

Diese Diskussion soll aufzeigen, daf die »Mangel« des hier gewihlten Zugangs zur
Dissipation mit Hilfe der Black—Box—Beschreibung moglicherweise durch eine zu
weltgehende Interpretation der Systembeschreibung entstehen und daf eine
entsprechend vorsichtige Auslegung mit den anschaulichen Vorsteltungen in Einklang

stehen konnte. Aus diesem Grund scheint €s gerechtfertigt, diesen Ansatz weiter zu
verfolgen.

6.2 Ansatz fir die Dissipationsleistung mit Hilfe der
verlorenen Arbeit

Die verlorene Arbeit wurde bisher in der Abschitzung (6.5) als untere Schranke fir die
dissipierte Arbeit verwendet. Eine zeitliche Zuordnung wurde nicht vorgenommen. Es

folgt jedoch mit den Eigenschaften der verlorenen Energie und der Monotonie der
dissipierten Leistung aus (6.5) die Abschitzung

P9)) = (Pe)1) < (o)) = (vo)(e),

(6.14) D) £ v

Die dissipierte Arbeit kann demnach nicht groBer als die verlorene Arbeit sein. Da die
verlorene Arbeit V die fir p geforderte Monotonieeigenschaft besitzt, welche
iquivalent zur Nicht-Negativitit der Dissipationsleistung ist, ist man geneigt, als

Ansatz fiir die dissipierte Arbeit direkt die verlorene Arbeit zu verwenden:

(6.15) , D(t) = v .
bzw.
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(6.16) Py =V

Natiirlich kann dieser spezielle Ansatz nicht die im Abs-chnitt 6.1 f:(:'tg:s:e:llt:z
allgemeinen Unzulinglichkeiten vermeiden. So wird auch ?ner derdunel:le wllce ' : % "
Doppelleitung die Dissipation wie bei einem OHMschen Wlderstafxd zu'ghe MED.(NER
anderes Beispiel, welches zur Kritik dieses Ansatzes vorgebra‘.chl.; wnr.ld s(lie1 e
{33]), bieten die sogenannten BOUCHEROT-Schaltungen, die in Bild 6. g

sind (siche auch CAUER [12], S. 53).

a) o— b} o=
R JR Ll "
L Lo CT !
o— » i '

. - tungen)
Bild 6.1: Zweipole mit konstantem Scheinwiderstand R (BOUCHEROT—-Schaltung

Werden in den Schaltungen der Kondensator und die Spule nach der Anpassung
(6.17) R = JIJC
gewihlt, ergibt sich in beiden Fallen wie bein'f reinen OHMsc]l:e;-h:’\:'d::tand der
konstante Scheinwiderstand R. Zum Beispiel fiir die Schaltung nach Bi
R + s(L+R?C) + s’RLC
1+ 2sRC + §°LC

Z(s) = R+l (R+sL) =

Wird L = R%C eingesetzt, erhalt man
R + 2sR*C + s°R°C
1 + 2sRC + $’R’C

{6.18) Z(s) =

. . : tsichlich eine
Anders als bei der oben diskutierten Doppelleitung tritt ::re euArbeit wird im
Dissipation in den Widerstinden des Netzwerks auf. Samtliche dufler
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Grenzfall ¢t — oo in den Widerstinden des Netzwerks vernichtet, so da im diesem
Grenzfall die dissipierte Arbeit D(t) mit der verlorenen Arbeit

(6.19) V(t) = W(t) =R }:‘2(1') dr

iibereinstimmt. Der Momentanwert der tatsdchlich dissipierten Arbeit ist aber kleiner
als die verlorene Arbeit, da von der bis zum Zeitpunkt ¢ am System geleisteten Arbeit
W(t) immer noch ein Teil in der magnetischen und elektrischen Energie von Spule und
Kondensator gespeichert ist. Erst fiir £ — oo wird auch dieser Teil vernichtet.

In diesem Beispiel ist zwar die Hypothese, daB die verlorene Arbeit auch dissipiert
wird, richtig; die zeitliche Zuordnung durch den Ansatz (6.16) stimmt aber nicht. Nach
dem in Abschnitt 6.1 Gesagten solite sich nun dieses Problem vermeiden lassen, wenn
neben den tatsichlichen Eingangs- und Ausgangsgrofien auch aile bekannten inneren
Arbeits~ und Kraftvariablen aufgefiihrt werden - ein im Einzelfall ohne Frage sehr
umstandliches Verfahren. Aus der Systemtheorie ist jedoch bekannt, daB unter
gewissen Voraussetzungen der vollstindige Satz innerer Zustandsgrofen durch die zur
Verfiigung stehenden Eingangsgrofen manipuliert werden kann und das ebenso die
zugehérigen generalisierten inneren Kréfte durch Kenntnis der Ausgangsgrofe (duflere
generalisierte Krifte) zu gewinnen sind. Die dazu notwendigen Voraussetzungen sind

die wvollstindige Steuerbarkeit und die wollstindige Beobachtbarkeit (siehe z. B.
HARTMANN [19]).

Vollstindige Steuerbarkeit bedeutet bei linearen zeitinvarianten Systemen, da8 jeder

beliebige Zustand des Systems durch geeignete Wahl der SteuergréBe v in endlicher
Zeit aus einem Anfangszustand heraug erreicht werden kann.

Vollstindige Beobachtbarkeit heifit, daB allein aus Kenntnis der Eingangs- und
Ausgangsfunktion » und y iiber einem endlichen Zeitintervall (t,, t) der Zustand des
Systems zum Zeitpunkt t, eindeutig bestimmt werden kann.

Bei Systemen mit rationalen Ubenragungsfunktionen zeigt sich volistandige
Beobachtbarkeit und vollstindige Steuerbarkeit schon dadurch, da8 beim Aufstellen
der ijbertragungsfunktion keine Kiirzungen in Zahler— und Nennerpolynom auftreten.
Genau dies ist aber bei den Scheinwiderstinden der BOUCHEROT-Schaltungen der
Fall. Auch die unendlich lange Doppelleitung ist offensichtlich nicht vollstindig
beobachtbar. Zwar ist aus der Kenntnis der vollstindigen Eingangsfunktion s(t) fiir alle
t € R auch der Zustand der Leitung, daB heiBt Strom- und Spannung an jedem Ort der
Leitung, bekannt (sofern fir t — -oo als Anfangszustand die nicht erregte Leitung
vorausgesetzt wird), doch kann ays der Kenntnis der Eingangsfunktion iiber einem
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endlichen Zeitintervall hochstens auf den Zustand eines endlichen Leitungsabschnitts

geschlossen werden.

Da sich gerade diese problematischen Beispiele durch Nichﬂt—Beobacht-bar?elt
auszeichnen, wird die Hoffnung geweckt, daf gerade in den Fall?n voll-sta.ndlger
Steuerbarkeit und Beobachtbarkeit ohne Erweiterung der Va.nab.lens?tze d(.er
generalisierten Geschwindigkeiten und Krafte zu einem Erg(fbms u.ber l;he
Dissipationsleistung zu gelangen ist, welches der Vorstellung entspricht. Wir wollen

daher den Dissipationsansatz
(6.20) Py =Py =V

naher untersuchen.

6.2.1 Die verlorene Leistung fiir Eingrofensysteme

Die der verlorenen Arbeit zugeordnete Leistung

its hi
soll nur fiir den Fall von EingroBensystemen weiter untersucht werde_x;s,e d:a;;e:;:: :‘;
die wesentlichen Eigenschaften deutlich werden. Fir den Mehrgrofien

TOBERGTE [43], Satz 10.5 verwiesen.
Nach (5.34), (5.35) und (5.72) gilt fiir die verlorene Arbeit

s - _ =ttt
6.22) (Vo)1) = (Wo')(x) = (& 3%") = #1(2)a,)(2)#(2) d2 = (&, ¥7),

wobei bei einem irreversiblen EingroBensystem nach Satz (5.120)

ng, € L}
gilt. Wegen
In vV, = +Ind,

k. man
erfillt auch va, dieses Kriterium. Nach dem Satz von PALEY und WIENER kann
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das 8o deuten, daB es eine kausale Zeitdistribution b gibt, deren FOURIER-
Transformierte § vom Betrag gleich der Wurzel aus a, ist:

(6.23) 18] = V&, .

Nach (B.54) ist eine spezielle kausale Funktion mit dieser Eigenschaft durch
(6.24)

2

N ] p N+ ¢
bw) = Vi, (w) exp -LV.P.J

—_— a,(2) dn
2% (0—&1)(024-.02) In “0( ) }

zu erhalten. Es gilt also
(6.25) a
bzw.

(6.26) ao —_ b * b* ,

8o dafl wir fiir die verlorene Arbeit auch

(Vo)(t) = (ay, v'eo’) = (sup*, v'f) = (baof, baof)

schreiben konnen. Die Distribution » n
Distributionen mit der Eigenschaft
ble existiert (die der
Zeitdistribution) und selbst kaus
Distribution

ach (6.24) ist gegeniiber anderen kausalen
(6.23) dadurch ausgezeichnet, daB ihr Inverses
reziproken LAPLACE-Transformierten zugeordnete
al ist (siehe Bemerkung (B.52)). Die Folge ist, daB die

b*vt = b_*#(b‘*b)*v‘ = b'**aotvt

wie aotv' nach (5.85) einen Trager aus (-, t] besitzt, da supp(b™*) c (-o0, 0]:
(6.27) b+t = 0 in (¢, ) .

Weiterhin ist wegen |51 ¢ L, das Produkt 53 aus L, ¢ &". Da der Raum L, unter
der FOURIER—Transformation in sich selbst abgebildet wird, ist auch b*v’ im
Zeitbereich eine gewdhnliche Funktion aus L,, auf die man die Abschneideoperation
(-), anwenden darf, und fiir die wegen ihrer Eigenschaft (6.27)

(6.28) bao' = (brrf), = (8+(v'),), = (bss),
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gilt. Wir erhalten daher fiir die verlorene Arbeit

(Vo)(t) = ((b*v),, (b*v),) = (b*v, bav),

(6.29) (vo)#) = i [b+v]%(r) dr

Als zugehdrige Leistung ergibt sich offensichtlich

(6.30) (Pyo)() = [bs0]%)

- :
. inimale Element v

Mit diesen Beziehungen sind wir jetzt sogar in derﬂI:age,. dab mini

explizit anzugeben, indem wir die Gleichung (6.28) auflosen:

(6.31) of = b7x(bs0); -
’ I och die
. richtig. In 6, mu n
Dies ist aber nur in der Topologie des Raums 640 e

Bedingung (5.73) beachtet werden, die mit

(6.32) S o= b le(brr), - T 5w €y

i & iese Gleichung in
befriedigt wird. Im FOURIER-Bereich (genauer: im Raum &,) geht dies
1 e R
- -9 ¢,
(6.33) i = —5“3 (3" (bv))‘ lzl; wi

zung der
iber. Bs sei angemerkt, dal diese Gleichungen unte;-edf;au::llauﬁ:rtzel«gb gar
Irreversibilitat hergeleitet wurden. Im reversiblen Fa.ll ist ll- e Gleichung fir das
micht definiert, weshalb fir diesen Fall leider keine exp l}:eversiblilitit dieses gar
Minimalelement angebbar ist. Der Grund liegt darin, da8 be:ml o Funktionen und
gar nicht eindeutig bestimmt ist (im Sinne »nor

Distributionen).
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6.2.2 Die verlorene Leistung im Fall rationaler
Ubertragungsfunktionen

Beschranken wir uns auf rationale Ubertragungsfunktionen

p(s)
q(s)

mit reellen Koeffizienten, hat G, nach (4.147) die Gestalt

(6.34) h(s) =

(6.35) 8y(w) = ;_ p(s)g(-5) + p(~s)q(s) (5= i) .

q(s)a(-s)

Die Nullstellen des Zahlerpolynoms

(6.36) R(s) := p(s)g(-s) + p(-s)q(s)

sind neben der Symmetrie zur reellen Achse wie jedes Polynoms mit reellen
Koeffizienten auch symmetrisch zum Ursprung der komplexen Ebene: Ist s; eine
Nullstelle von R, R(s;) = 0, so gilt auch R(-s;) = 0 (siehe Abschnitt 4.6, Bild 4.6). Als

Folge der Positivitit von A treten dariiber hinaus alle imaginiren Nullstellen doppelt
auf. R 18t sich also durch ein Produkt

(6.37) R(s) = K]I (s—s,»)(s+si)

i
darstellen, wobei nur die Nullstellen mit negativem Realteil Re(
und die doppelt auftretenden imagindren Nullstellen Re(s;) =

berficksichtigt. Wegen der Positivitit ist K > 0. Daher ist
Polynoms R in der Form

8;) < 0 aufgefiihrt sind,
0 sind jeweils nur einfach
eine Fakiorisierung des

(6.38) R(s) = r(s) r(-s),

moglich, wobei

(6.39) s) := VK I (s-s)

wiederum ein Polynom mit reellen K
in der Halbebene Re(s) < 0 liegen. D.
der Gleichung (6.25) sofort angeben:

oeffizienten ist, dessen Nullstellen ausschlieBlich
amit 138t sich die »kausale Wurzel« § als Ldsung
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o )
(6.40) blw) = q(jw)
bzw.

) r(s)
(6.41) b(s) = @)

el ann kausal,
Die zu einer rationalen Funktion gehdrende Zeitdl.smbu:]ozels:ng:fl::;n? eine rechte
wenn der (gewihlie) Konvergenzstreifen, in dem kel-n o Foe Neinermlyom ¢, welches
Halbebene ist. Nach Aussage des Satzes (4.107) bes,t?t d,;,s ist, keine Nullstellen mit
das gleiche wie das der positiven Ubertragungsfunktion lsh;_lbebene die imagindre
positivem Realteil. Daher ist die Grenze dieser KonVG:\gen:formierte einer kausalen
Achse, und (6.40) definiert tatsichlich die FOI'IRIER_. . rausgesetzte Eigenschaft,
Distribution. Andererseits besitzt die Distribution _b die V: ' to treffen genauso
daB auch ihr Inverses b kausal ist, denn die ange.fllhftell d:dg:i:h aus, daB sie in der
auf 1/5(s) = g(s)/r(s) zu. Die Funkion b zeichnet sich also

tellen besitzt.
rechten, offenen Halbebene Re{s) > 0 weder Pol- noch Nullste

- uadratischer
6.2.3 LAPLACE— und Fourier—Transformation q
und bilinearer Funktionen

i i ignete Hilfsmittel
Bevor an der Dissipationsleistung weitergearbeitet wird, std)llzndg;:eSigc e eotuondon
fir die Behandlung quadratischer Ausdriicke geschaffen werden,

als niitzlich erweisen werden.

Die FOURIER-Transformierte des Produkts

(6.42) X(t) = z,(t) z,(8)
ist
(6.43) 3(3132) =X = 21—’:?‘ * 3, -

. ird
Transformierten der Funktionen T, und z, Wir
T

die im Einzelfall gar nicht so leic%nt Zu
bei derartigen Funktionen

Der Zusammenhang mit der FOURIER- >
iiber die Faltung hergestellt; eine OP?’““’“; t. wenn man
iiberblicken ist. Eine Vereinfachung wird erzielt,
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zunichst auf das dyadische Produkt

(6.44) Sty ty) = 1,(t,) 7,(t,)

iibergeht. Das urspriingliche Produkt X erhilt man durch
(6.45) X() = =)

aus der neuen Funktion Z. Diese Darstellung hat den Vorteil, daB jede der

unabhéngigen Variablen ¢,, t, fiir sich der FOURIER- oder LAPLACE-Transformation
unterworfen werden kann (zweidimensionale Transformation):

z) = i'§1(32(5)) = 31(32(""'1‘72)) = 31(-"132(12)) = 8y(z) 8y(zy) = %3,

(6.46) E(w,, wy) = % (w,) Zy(wy) .

F bezeichne die vollstindige FOURIER-Transformation der beiden unabhingigen
Variablen, wihrend §, und 3, die Transformation jeweils einer Variablen
kennzeichnen. Die zweidimensionale FOURIER-Transformierte des dyadischen
Produktes z,(t,)z,(t,) ist wiederum das dyadische Produkt der FOURIER-
Transformierten % (w,) und %,(w,). Eine Faltung tritt nicht auf. Genauso kann man die

Funktion Z(s,, s,) durch Verwendung der LAPLACE-Transformation einfiihren.

Der zeitlichen Ableitung der Funktion X,

(6.47) X = 2,(t)z,(t) +z2,(0)z,(t)

ist entsprechend den Regeln der FOURIER- bzw. LAPLACE-Transformation die

Funktion

(6.48) Hw+w,) E(w,, wy)
bzw.

(6.49)

(8,+8,) E(s,, 3,)
zuzuordnen. Durch die Umkehrung

und zwar entspriéht wegen der
Funktion

dieser Regel erhilt man zu X eine Stammfunktion,
Eigenschaften der LAPLACE-Transformation die
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E(sy, 89)
(6.50) s, + 5,
dem Integral
(6.51) J 2(r)a(r) dr

-0

. itet. Dariiber
wenn man in rechten offenen Konvergenzhalbebenen Re(s;) > dl—ubelte
hinaus ist das Produkt X gegeniiber Symmetrierungen der Funktion =

(6.52) E(ty, ty) = ;—{ E(ty, ta} + Eltys 1) }

. . = und E(s,, 5,)-
invariant. Das iibertragt sich unmittelbar auf die Funktionen Z(w;, w,) (81, %

Obwoh! die FOURIER- und LAPLACE-Transformation ohne Schwier.igkeltenda:;clll( :11;
Distributionen mehrdimensionaler »unabhangiger Variablen« formuhel‘t. Wef: zweier
(siche etwa JANTSCHER [22]), macht der {Ubergang von de-r F.‘unkt{;):ri;)len o
unabhingiger Variablen auf die Funktion X mit einer u-nabha.nglge:

deren Interpretation als normales Produkt zweier Funktionen nur

ann einen Sinn,
. a1, €L,
wenn es sich hierbei um gewdhnliche Funktionen handelt, etwa z; 2

6.2.4 Die verlorene Arbeit und die zugehorige
Liarpunow—Funktion

ktion soll weiter aufrecht erhalten

itfunktionen als reellwertig an.
besseren

Die Voraussetzung der reellen Ubertragungsfun .
werden. Passend dazu nehmen wir jetzt auch.a.lle € et der etwas
Diese Einschrinkungen sind nicht zwingend; sie werden ledig
Ubersichtlichkeit wegen vorgenommen.

i usdruck Py in den
Mit den Hilfsmittel des Abschnitts 6.2.3 kann man den Leistungsa
LAPLACE-Bereich transformieren:

(6.53) Polsy, 3p) = olsy) blay) B(sy) #(sy) -
bleibt aus Ubersicht-

P , 8,) unter
Eine gesonderte Bezeichnung fiir Py(t;, &) bzw- Pylsp 5 durch die Zahl der

its
lichkeitsgriinden, da sich die Unterscheidung zu Py{t) Dberei
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Argumente ergibt. Im LAPLACE-Bereich wird i’V(s) gar nicht verwendet. Entspre-
chendes mége fiir die noch einzufiihrenden Funktionen gelten. Die Funktion

r(s)) 7(s,)

a(s) a(s,)

soll guadratische Ubertragungsfunktion der Leistung Py, genannt werden. Ebenso
kdnnen wir die Ubertragungsfunktion der Gesamtleistung aus

(6.54) B(sl, s,) 1= I;(sl) 5(32) =

F 5 S A 2 R p(s,) R .
Plsy, 8y) = i(sy) i(s,) = (s,) h(s,) ¥(s,) = o i(s,) #(s,)
2
mit
(6.55) (s, s;) = p(s)a(sy) + p(s,)q(s,)

a(s,)q(s,)

nach (6.52) durchgefithrt wurde. Mit der
(6.51) ergibt sich hieraus die Ubertragungsfunktion der

angeben, wobei noch eine Symmetrierung
Integrationsregel (6.50),
gesamten Arbeit W zu
p(s)a(s;) + p(s,)q(s,)
(s1+3)) q(s,)q(s,)

(656) @(Sl, 82) =

und die der verlorenen Arbeit V zu

r(s)r(s,)

(31"’32) q(sl)q(sz)
Die Ubertragungsfunkt.ion der wiedergewinnbaren Arbeit

(6.57) T(sn s,)

(6.58) E, = w-vy

kann mit

p(s,)a(s,) + p(sy)a(s,) - r(s,)r(s,)
(31+3,) g(s,)q(s,)

angegeben werden. Nach den Definitionen (636), (6.38) der Polynome R und r wird
das Zahlerpolynom von & Null, wenn 8; = -3, gesetzt wird. Daher ist (sl+32)
Linearfaktor des Zzh} erpolynoms von &, weshalb sich dieser Faktor mit dem Nenner
kiirzt:

(6.59) B(s,, 5,)

-
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F(s,, 85)
q(s,) q(sy) ’

, leibt s
wobei F ein Polynom in s, und s, ist. Das NennerpOIYmmdb elijbertragungsfunktion i
ergibt sich eine wichtige Folgerung. Das Nennerpolynom erd dos Systems von der
bestimmt die dynamische Abhingigkeit des inneren Zustands

Eingangsgrofie. Definieren wir

(6.60) (54, S9)

unverandert. Daraus

(6.61) 3(s) = d(s)/q(s),

wobei z die zugehérige Zeitfunktion ist, so legt der Vektor

T L e T
(6.62) 2 = [2g, 7y Zgs oo s 5] = [2,%,% ..., 2 ]

llstindig steuerbar
den inneren Zustand des Systems eindeutig fest, wenn das Systefnhvt‘)l; o §ogemmme
und beobachtbar ist. Bei diesem Zustandsmodell handelt es :; (16, 112.1). Die
Regelungs—Normalform (siche HARTMANN [19], FOLLING ?
Ordnung der héchsten Ableitung in z soll hier

(6.63) k = max {grad ¢, grad p}

mponenten. Die
gesetzt werden. Damit besteht der Zustandsvektor t::lsK :r:;m::t::) enten. D
s sl Tustandova :;e ::::::ma da sie als Funktion der

i i i dsvariable , ]

et omandovaiaon o1 Zul:t:nnd der Eingangsgrofie ausgedruckt(:;erden km?n.
’ wenn auch die Ableitung 2 formal im
d von (6.63) wird als Zahl del:
lynoms ¢ verstanden. Bei

anderen Zustandsvariablen z;, i <
Die Schreibarbeit vereinfacht sich aber, ‘
Zustandsvektor mitgefihrt wird. Abweichen omtero
unabhangigen Zustandsvariablen auch der Grad des Erregung und Systemantwort
dieser Definition kann sich aber bei VenauSChung. vor h (6.63) nicht der Fall; jedoch
¥ — v die Zahl der Zustandsvariablen andern. Das ist nac = - +1) eine Zustandsgrofie
wird dadurch auch einem Differenzier im System (zp :anzisvektor (6.62) in
zugewiesen. Durch LAPLACE-Transformation geht der u:‘

k
(664) o) = 5o) [1, 8" 7]
iiber. FaBt man die Koeffizienten der Polynome

2
p(s) = P+ PSS+ PS5 * oo

2
'(‘) = '°+"’+'28 + ey
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in den Vektoren

T
(6.65) P = [Po; Py Py oe. pk] ’

T
(6.66) 9= (45,01 03 - , ;]

zZusammen, kann man damit die Abbildungen des Zustandsvektors auf Ein- und
AusgangsgroBe durch

(6.67) i =93,
(6.68) b= q'3

ausdriicken. In diesen Gleichungen kommt die prinzipielle Gleichberechtigung der Ein-

und Ausgangsgrofie besonders gut zum Ausdruck. In den Zeitbereich zuriickgebracht,
ergibt sich aus (6.67)

(6.69) ue) = p7x1),

das heiit, die Ausgangsgrofie ist eine Zu
¢t hingt nur vom Zustandsvektor zum
anderen rationalen Ubertragungsfunkt
Reprasentationen von Zustandsfunktion
nicht dbersteigt.

standsfunktion: der Wert von y zum Zeitpunkt
Zeitpunkt ¢ ab. Genauso erweisen sich alle
ionen, die den Nenner ¢ besitzen, als
en, sofern der Grad des jeweiligen Zahlers &

Beziiglich der quadratischen {j

bertra.gungsfunktion @ der wiedergewinnbaren Arbeit
fihrt das mit

(6.70) By(s, ) = #(s,, 3,) i(s,) (s,) = F(sy, 8,) %(s,) 3(3,)

im Zeitbereich sofort auf die Darstellung

(6.71) Ey(t)

wobei die Komponenten der Matrix F -

() Faz)

I

= [F;;] die Koeffizienten des Polynoms

F(sp 32) = E.E.Fij 8: 3‘2'
ij

sind. Der Arbeitsanteil E, st also eine quadratische Zustandsfunktion! Wegen W 2 ¥

7y v Stels nicht negativ. Daber ist F eine Positiv semidefinite Matrix, weil jeder

Zustand z(t) wegen der vollstindigen Steuerbarkeit angenommen werden kann. Da das
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a ing, treten in
Polynom F durch Kiirzung mit (s,+s,) aus dem Zahler von (6.;9.) l;;l:;::fl:;lghat ten o
F hichstens Potenzen von s, und s, bis zur Ordnung k‘—l x.mf. ie Matebe et o0
der k-ten Zeile und Spalte nur Nullen, so daB sie .1m Ivl:'ies::1 e g
(kxk)-Untermatrix der ersten k Zeilen und S?alten (l?egn::le d it g 0. Bele o
Spalte) wiedergegeben wird. Dadurch hingt die Funktion dv poeachiich mur von
eigentlichen Zustandsvariablen, den ersten k¥ Komponenten des

Genauso konnen wir die Leistung Py darstellen: Es folgt aus (6.54)
(6.72) Py(t) = () RL),
wobei die Matrix
(6.73) R:= rel
mit r:= [r;]T aus den Koeffizienten des Polynoms
r(s) = 2'3 D

. dsfunktion (wenn
hervorgeht. Wie Ey erweist sich also auch Py als quadramd]edf::::blen), wobei auch
auch nicht zwangsliufig als Funktion der eiS‘mﬂ'.‘:h.en Zustan
hier wegen Py, > 0 die Matrix R positiv semidefinit ist.

KETT / LEE [7]7 wo
Man vergleiche hierzu auch BROCKETT / WILLBMS, [61] , [:v:?dceni Die betrachteten
Stabilitatskriterien nichtlinearer Regelkreise entw“%{e t]- earen Teilsystem. Bei der
Regelkreise bestehen aus einem linearen und einem mcl:: anegintegmle durch den
Untersuchung des linearen Teilsystems treten do! Es wird dann gezeigt, dab
Zustandsraum auf, die unserer Gesamtarbeit fntﬁpre(:henc'i in einen nicht negativen
sich dieses Wegintegral in einen wegunabhal_lglg_en U;J rene Arbeit wiedererkennen.
Wegabhangigen Anteil aufspalten 1a8t, in dem wir die verlo

zu finden. Auch die
Es nicht moglich, fiir die verlorene Arbeit eine Zustandsdarstellung

ion. Mit
— ine Zustandsfunktion.
Besamte Arbeit ist nur im reversiblen Fall wegen W = E‘;‘ :-m ner Bilanzglelchung
diesen Ergebnissen konnen wir die auere Leistung in
schreiben:

(6.74) ' P = Py + Ey,

P(t) = F(t)Rat) + {F®) FD} .
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Setzt man von einem gewissen Zeitpunkt ty an die Erregung v gleich Null, folgt
ebenfalls P gleich Null und es ergibt sich fiir t > ¢

(6.75) Eyt) = O FA)) = - TR s 0

wegen der positiven Semidefinitheit der Matrix R. Der Wert von £y, kann also nur
fallen, hochstens gleichbleiben

Hier ist nun zu erkennen, daB die Matrix F stets den grofitmoglichen Rang k besitzt.
Wire rang F < &, gibe es einen Teilraum des Zustandsraumes, in dem Ey, = 0 sein
miifite. Wegen der vollstindigen Steuerbarkeit ist jeder beleibige Zustand z dieses
Nuliraumes durch eine geeignete Steuerung zum Zeitpunkt ¢, auch zu erreichen. Nach
(6.75) kann Ey nach Abschaltung der Erregung aber nicht mehr wachsen, das heifit, der
Zustand z() muB auch fir ¢ > %3 im Nullraum bleiben. Wire nun die Ausgangsgrofe
y(t) fir ¢t > ty micht Null, kénnte man immer noch Arbeit aus dem System
herausziehen, was aber der Passivitat widersprechen wiirde. Also kann nur yit) =0
gelten, woraus mit der vollstandigen Beobachtbarkeit auch 2(t) = 0 fiir ¢t > t, folgt. Der
Nullraum der Matrix F kann also nur aus dem Nullvektor bestehen, also hat F den

vollen Rang k und ist im eigentlichen k-dimensionalen Zustandsraumn daher sogar
positiv definit (nicht nur semidefinit).

Wegen dieser Eigenschaft der Matrix F folgt direkt eine Aussage iiber den
Zustandsvektor 2 Dieser bleibt fir alle Zeiten beschrinkt. Es sei an dieser Stelle
erwahnt, da unter einer etwas strengeren Voraussetzung, der strengen Positivitat der
Ubert.ragungsfunktion, bei der die Bedingung  der positiven Definitheit der
Ubertragungsmatrix im Gebiet Re(s) 2 0 (im Gegensatz zur Semidefinitheit im Gebiet
Re(s) > 0) gestellt wird, stets t) — 0 folgt (siehe z. B. LANDAY [28]). Funktionen
wie Ey. die eine Schranke fiir den Zustandsvektor bilden und eine nicht positive

Hier ist aber weiter zy prifen, ob hinter den Funktionen Py und Ey, physikalische

GroBen stehen. Von der Form der Bilanzgleichung (6.74) her konnte die

wiedergewinnbare Arbeit Ey als Zustandsfunktion die inmere Energie des Systems

= wie angestrebt - dje Dissipationsleistung. Betrachten Wi
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aber die quadratische Form (6.72) der Leistung Py: Da sich die Matm;{ax:lacl; (:e: l3t)z ;11"‘3
dyadisches Matrixprodukt aus dem Vektor r ergibt, kann R nar de!'l o & Unterraum
Das wiirde bedeuten, die Dissipation finde nur in einem elndlmensnlond enbei cinigen
des vollstindigen k-dimensionalen Zustandsraumes statt? Obwo-h ' 8: Widostond
Systemen wie etwa elektrischen Netzwerken mit n.ur einem eflnmgebei e
zutreffen mag, lassen sich doch beliebige Gegenbeispiele k?nst‘ruler;n,s e o
Dissipationsieistung von mehreren oder auch allen unabliang.lgen St“ < barkeit oder
abhingt. Diese Erkenntnis wird auch nicht von der vollstandl.gen h‘eu enausgesett
Beobachtbarkeit beeinfluBt (wie zunichst angenommen), da diese hier v

wurde.

Zur Verdeutlichung kann nochmals die Zusammel.lschaltun.g zweier S;:;emf. l;i;ji:
zogen werden: Fiir jedes Teilsystem erhilt man eme'Matrlx R vomd vekgtor oos dor
man die beiden Systeme parallel, wird der gemeinsame Zusta:) sdsvekwren dor
entsprechend hoéher dimensionalen Zusa.mmenfﬁgu—ng der Zu‘s a: baut sich aber
Teilsysteme entstehen. Die zum Gesamtsystem gehérende Matrix 2 besitzen wiirde,
keinesfalls aus den Matrizen der Teilsysteme auf, die dann den Rﬂ-nf Dieses Ergebnis
sondern besitzt - wie jedes System - wieder nur den l?m'xg N Unterraumss,
konkurriert mit der Erwartung eines zweidimensionalen »dlsslpat.llvent b
der aus der direkten Summe der »dissipativen Unterraumes« der Teilsyste

miite. Wir kommen also zu der Aussage:

. i einen nicht unseren
Die Leistung der verlorenen Energie Py kann im allgem

Anforderungen an die Dissipationsleistung gerecht werden.

6.3 Weitere Ansitze fiir die Dissipationsleistung

. . . chungen nicht
Trotz des negativen Ergebnisses des letzten Abschm-tts sind die Ii;:::tin:?g“m die
ohne Wert. Es laBt sich erkemnen, welche AMdmn::;t bei der Frage nach
Voraussetzung der Additivitat zu erfillen. Auch KE'%: [23], S. 76f, darauf hin, da8
Nichtgleichgewichtsentropieen einer Kontinuumsn.lecm‘ u;gene Diskussion haben
€3 geeignete additive Funktionale 5;&' 3:::( ﬁeu‘::r:l‘:efeﬂorenen Leistung deren
wir i Konstruktion der j 5 icht.
nms:;‘:::;e':n:; Rang von 1 der Additivitas in jedem Fall widersprich
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Es ist aber ersichtlich, daB bei einer Erweiterung dieser Uberlegungen auf
Mehrgrofiensysteme  der Rang der Matrix R auf die Zahl der unabhingigen
Eingangsgrofien n steigen kann. Das wiirde uns auf den Gedanken zuriickfiihren, soviele
EingangsgroBen aufzufiihren, wie das a-priori-Wissen iiber die Black Box ermoglicht.

Es ist aber noch ein anderer Weg mdglich: Man kénnte versuchen, unter Beibehaltung
der Zahl der EingangsgroBen eine Matrix R mit mazrimalem Rang zu konstruieren.

Welche Eigenschaften miissen dann die Matrizen R und F besitzen? Als erstes ist
weiterhin die Bilanzgleichung

(6.76) P=E+p,

zu befriedigen. Die daraus resultierende Bedingung formuliert sich am einfachsten mit
den den Matrizen zugeordneten Polynomen:

(6.77) Uls,, s,) = R(s,, 8,) + (s,+s,) F(s, s,) .
Hierbei ist
(6.78) Ulsy, 85) == p(s,)g(s,) + p(sy)q(s,)

das Zahlerpolynom der Ubertragungsfunktion IT der Gesamtleistung W nach (6.55). Um
die gewiinschte Nicht-Negativitat der GroBen E und P, zu gewahrleisten, miissen die
zugeordneten Matrizen F und R positiv semidefinit sein. E soll weiterhin eine Funktion
der eigentlichen Zustandsvariablen sein. Daher darf F in der k-ten Zeile und Spalte nur

Nullen enthalten und wegen der angenommenen vollstindigen Steuerbarkeit und
Beobachtbarkeit soll F den Rang & besitzen.

Man kann nun die Losungsmenge dieser Aufgabe bei vorgegebenem Polynom U
untersuchen und die Losungspaare (F, R) heraussuchen, die sich gegeniiber dem Rest

verlorenen Leistung existiert. Weiterhin mufl aber auch die »richtige*
Dissipationsleistung, die man aus Kenntnis der inneren Struktur heraus aufstelles
wiirde, unter der Voraussetzung vollstandiger Steuerbarkeit und Beobachtbarkeit i
der Losungsmenge enthalten sein mu8. Es ergibt sich die Frage: Gibt es wombglich no¥
eine einzige Lisung mit maximalem Rang von R? Diege Frage mu$ im allgemeinen -
unter Versicht auf die Darstellung eines Gegenbeispiols - pgt Nein beantwortet
werden. Man kann leider auch auf diesem Weg nicht zu einer Identifikation der innere?
Energie ung der Dissipationsleistung gelangen.

145
6.3 Weitere Ansatze fiir die Dissipationsleistung

- in— derselben
Durch Untersuchung  verschiedener  Realisierungen  ein und

Ubertragungsfunktion muS man sogar feststellen, da die innere fin;figci}:*el:‘ Illl(iier(:fl::
Dissipationsleistung je nach Realisierung anders ausfillt. Als A.rgumen da dort - wie
aber die in Bild 6.1 angegebenen BOUCHEROT—Schaltungelf nicht aus, b o oo
schon erwiihnt - die vollstindige Beobachtbarkeit verletzt 1s.t. Miﬂ(; n]l:eoba.chtbarkeit
Vergleiche anstellen, bei denen vollstindige Steuerbarkeit -unbi entsprechender
vorliegt, wie etwa die in Bild 6.2 skizzierten Scha.lt..ung.en, d.le e:: Energieen und
Anpassung gleiche Scheinwiderstinde, aber un'ierﬂc.hledllche -l-m:;l steuerbar und
Disﬂipaﬁonsleismngen besitzen und dennoch beide vollstindig _—

beobachtbar sind, wenn man fiir die Schaltung 6.2.a den Fall (6.17) ausn '

a) o b) 0 ::——-l—l:R-lf
R, 4

L l 5 C, C, F L, I R,

R, R,

[ — &

Bild 6.2: Schaltungen mit gleichem Scheinwiderstand

- i enigstens
ahlten Loeungsteilmenge W
Es bleibt die Idee, ob es unter der ausgewahl z. B. durch kleinst— oder

. & ibt, =
gegeniiber anderen ausgezeichnete Lmun.ge“ %’b Wir stellen jedoch zunachst
groBtmégliche innere Energie oder Dissipationsleistung.

. Reﬂtrik"io" verkleinen wel’deﬂ
fmt, daﬂ (lie m(-)gli(:he ],4)s||||gsmenge (lll!ch eine weilter
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6.4 Die LAGRANGE—Funktion

TELLEGEN [42] und MEIXNER [32] haben nachgewiesen, da8 die innere Energie mc{zt
aus dem 3ufieren Systemverhalten zu ermitteln ist. Sie zeigten aber, dab die
LAGRANGE-Funktion deg Systems aus dem AuBeren Verhalten zu bestimmen ist und

diese fiir alle moglichen Realisierungen den gleichen Wert besitzt. Beim elektrischen
Netzwerk ist die LAGRANGE-Funktion die Dj

fferenz von magnetischer und elektrischer
Energie:

(6.79) L= Emagn -E,.

Sie ist wie die elektrische und die magnetische Energie eine Zustandsfunktion. Die
folgende Herleitung orientiert sich

an MEIXNER [32], verwendet jedoch die in
Abschnitt 6.2.3 bereitgestellten Hilfsmittel, Obwoh! die Herleitung ein elektrischen
Netzwerk als Grundlage betrachtet, bedeutet dies keineswegs eine Festlegung a.uf
elektrische Systeme, da die Struktur der Differentialgleichungen auch beim
mechanischen Analogon gewahrt bleibt. Ein elektrisches Netzwerk mit linearen

Bauelementen kann unter Verwendung von Ladungskoordinaten g stets durch das
Differentialgleichungssystem

(6.80) Li+Ri+Dg = o

beschreiben werden. Der Vektor ¢ bestehe aus m unabhéngigen Ladungskoordinaten,
die den Zustand des Netzwerks ei

ndeutig festlegen. I, jst die Induktivititsmatriz, R die
Widerstandsmatriz und p die Inverse der Kapazititsmatriz. Alle Matrizen sind aus
Griinden der Netzwerktheorie Symmetrisch und positiv semidefinit. Jede Zeile der
Matrixgleichung gibt die der zugehdrigen Ladungskoordinate entsprechende
Maschengleichung an. Auf der rechten Seite stehen die Beitrige der aufieren
Spannungen. Dieser Vektor hat die gleiche Dimension wie ¢. Treten nur n < m auflere
Spannungen auf, kann der Zusammenhang durch die konstante (mxn)-Matrix T
hergestellt werden:

(6.81)
Durch

(6.82)
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0 i, die si jederum als
i hleifenstromen §, die sich wi
halt die duBeren Strome i, aus den Schlei
er man die

inaten ergeben:
generalisierte Geschwindigkeiten aus den Ladungskoordina

(6.83) i=4q.

.. of
. . d der Ubergang a
Die LAPLACE-Transformation der Differentialgleichung (6.82) un

generalisierte Geschwindigkeiten ergibt

4 3 + lpi(s) = #(s)-
(6.84) sLis) + Ri(s) + 3 i 5 = o, i

. : bhangigen Vari b .
Diese Gleichung wird nun je einmal mit der una £l i(s,) gebildet:

odukt mit #(s,) bzw.
$ = s, angeschrieben und sodann das Skalarpr

= ;.T(sz) i‘(31) .

5, T(s) Li(s)) + iT(sy) Ris,) + 3 ¥ (sp) Dilsy)

4T, z
n <T, 2 = 1 (31) g(sz) .
Sy ;'T(sl) Li(s)) + il(s,) Ri(s;) + ‘,12 i (s,) D))

i die
etrie der Matrizen
Bei Subtraktion dieser Gleichungen fallen wegen der Symm

Terme mit R weg:

R 2 - - i¥(s,) #(sy) -
(s=8p) (s Li(sy) + (L -2) () Dilsy) = (ey) #sy) - ¥ (0] ¥
1 22 1

5 %
Nach Division durch 8,~$, entsteht

sy ¥(s) (s )alsy) - #7(8)8sp)
3 Ve 7 P T
;;T(sl) L;‘(32) - A ! D _-‘;-2-— = Sl =

T(oils,) - ¥(s)ils)
A sty - (DRl
©85)  iT(s) Lis,) - & (s;) Dls) 8 - 5

Se API,A( E- l Iallsf()llllienen der
del l]nk .

.te stehen die quadrﬂtlschen L

i en 1

magnetischen und der elektrischen Energie
ifLi,

Wm-gl

'TD(-

Wcl

—Funktion
: er LAGRANGE-F
Wir erhalten tatsdchlich die quadratische Transformierte d
Ir erhalten
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(6.86) L(s, 3) = iT(s) Li(sy) - i(s) Dats,) .
Die rechte Seite der Gleichung (6.85) ist wegen
Fls)ils) = o) Tafls) = (s, i(s,)

allein durch das auBere Verhalten bestimmt. Im Fall eines Eingro8ensystems (n = 1,
dann ist T ist eine (mx1)-Matrix, also ein Vektor) erhalten wir bei Wahl des Stromes
i, als Erregung v die Ubertragungsfunktion (Scheinwiderstand)

(6.87) h(s) = 2(s) = i) _ 7 (sL+n+lD) ro "
i(s) g q(s)

Damit wird aus (6.85)

(6.8) Z(sl, 82) - P(sl)Q(sz) - P(SQ)Q(sl) 6(31) 1‘}(82) '

(3,-5,) g(s,)q(s,)

Da der Zahler fiir 81 = $, verschwindet, mu der Linearfaktor (8,-8) im Zabler
enthalten sein  ynd sich mit dem Nenner  kiirzen  lassen. Die

LAGRANGE-Ubertragungsfunktion hat daher die Form

(6.89) ;](3“ 32) = M

a(s)als,)

bezeichnet.

Die LAGRANGE-Funktion ist als

Differenz von Energieen vom Betrag stets kleiner
oder gleich der gesamten inneren E

nergie

(6°90) E = F +Ee':
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T
(6.91) #Fsz |7 M3

ij ngen aus
genigen. Dadurch wird die urspriingliche Li')sung'smenge‘ de;li:zzi Iglul' eine
Abschnitt 6.3 eingeschrankt, jedoch auch nicht soweit, daf lmen Ign it der Bedingung
einzige Losung {ibrig bleibt. In Einzelfdllen kann aber zPsaml'Tl ige Losung eingeengt
des »maximalen Ranges« von R die Losungsmenge auf eine ;ln:i: zugehorige innere
werden, die dann die gewiinschte Dissipationsleistung un
Energie liefert.

ob unter den vorhandenen

rden .
Im allgemeinen miiBte aber noch untersucht werden, ezeichnete zu finden sind,

. i us
Maglichkeiten der Losungspaare (F, R) nicht ger'”-er:ngg
deren physikalische Eigenschaften eine Ch“akt?m']e treten, erlauben.
Systemen mit gleichen Ubertragungsfunktionen, die sie ver ,

der gesamten Klasse von
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A Aus der Theorie der Distributionen

Mittlererweile hat in vielen tech
(8~ Distribution) Verwendung gefu
noch oft die urspriingliche Einfiihry
einer widerspriichlichen Integrald
Umgang mit dieger Distribution al

nischen Diziplinen die DIRACsche StoBfunktion
nden. Als mathematische »Grundlage« dient a?ef
ng der 8- Distribution durch DIRAC (1926) mit Hilfe
efinition. Dabei wird manchmal schon allein der

s »Distributionentheorie« mifverstanden. Da8 es der
Mathematik schon vor etlichen Jahren gelungen ist, die Distributionentheorie, in det
nicht nur die - Distribution einen Platz erhilt, auf ein sicheres Fundament zu stellen,
Wird in der technischen Literatur kaum gewiirdigt. Aus diesem Grund soll ein kurzer
Abrif der Theorie gegeben werden, wobei entsprechend den hier vorliegenden
Bediirfnissen bereits die Begriffsbildung gegeniber den Quellen vereinfacht
durchgefiihrt wird.

So werden dije Distributionen alg »verallgemeinerte Funktionen« nur iiber der reellen
. . n
Achse eingefiihrt, wihrend allgemein mehrdimensionale Definitionsbereiche zugelass.e
. . ;
sind. Diesem Umstand folgend, ist insbesondere die Einfihrung der Faltung !

i i i PP 7] n
Abschnitt A g gegeniiber der Literatur stark verkiirzt, wobei modifizierte Definitione
benutzt werdep,

Als Literatur 8ind zu diesem Ap
JANTSCHER [22),

hennen, die im folg

1},
hangkapitel besonders die Werke von SCHWARTZ [4 31
GELFAND / SCHILOW ; WiLenkiN (18] und YOSHIDA [46] 2
enden nicht mehr explizit erwihnt werden.

A.1 Grundfunktionen

(A-1) Definition: Triger einer R ki

Der Tréger T = supp(g) (englisch support
kleinste abg,

) einer in R definierten Funktion ¢ ist di€
eschlossene Menge, fir die
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(A2) ¢(u) # 0

fiir fast alle u € T gilt.

(A.3) Definition: Finite Funktionen .
i ini n ihr

Eine in R definierte Funktion ¢ heifit ftf‘u't, \'{Zrilt o der

Eine Funktion heifit links— bzw. rechisseitig finit,

obere Schranke besitzt.

er supp(¢) beschrankt ist.

Trager eine untere bzw.
o

(0 D Grandrsom D dlich oft differenzierbaren, finiten
i aller unendl
Der Grundraum D ist der Raum

Funktionen,

(A3) D = {46 cCound g finit]
A5 = :

d durch die Multiplikation von
un

he ionen _Eine
Durch die gewdhnliche Addition von Funkti m

: linearen Rau
ird ® zu einem ” logie
- . lexen Zahlen wir ird aber eine Topo
tionen mit recllen Od‘;;k‘:;n; jedoch nicht erklart. Es wlrdn:uedwn Nullfolge in
i ist im Rau . ist ge
Merik Od er Norm Nullfolgen definiert: Eine Folge (4 ine gemeinsame Schranke
durch die Aflgab.e von— upp(¢,) der Funktionen o € cichmaBig gegen Null
o wemn, fic 318 :“ragkiriozeg und jede ihrer Ableitunger £
existiert und die Fun .

konvergieren:

ieN,, sE€R.
(Ny) — 0 V jEN,, - e u.
o ! h nur auf die unabhingige Varlal:d‘;r
; deren Folge gekiart-
nz jeder an _
:nve;g:enzwert ¢ ¢ D, wenn {99}
en

Die Bedingung der GleichmaBigkeit {)eZ_leh;_:‘:(
nicht auf den Ableitungsindex j. Damit ist len
Die Folge {¢,} konvergiert genau dann geg
Nullfolge ist.

t des uneingeschrinkten

die Moglichkei oD

Raums D ist . bleitungen
Eine wichtige Eigenschaft des tion aus D sind auch alle ihre A
: nkti
Differenzierens; zu jeder Fu

enthalten:

(A7) gD = #€D
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(A.8) Der Grundraum &

Der Grundraum & oder der Raum der schnell fallenden Funktionen ist

(A.9) 6 = {9¢: ¢ecC,, sup [44Du)| <= v i, j€ Ny}

Damit eine Funktion ¢ € C, zum Raum & gehort, muB sie und jede ihrer Ableitungen
fiir ¥ — oo schneller fallen als Jede reziproke Potenz von u. In dem linearen Raum &
wird eine Topologie wiederum iiber Nullfolgen eingefiihrt: Eine Folge {¢;} ist genau

dann Nullfolge in &, wenn die Funktionen und jede ihrer Ableitungen gleichmaBig
gegen Null konvergieren,

(A.10) #w) — o v JEN,, ueR

Auch in diesem Grundraum kann ohne Einschrinkung differenziert werden:

Die Menge der Elemente des Raums D i
des Raums D dicht in jener von & ist
kdnnen wir

st in & enthalten. Da auerdem die Topologie
(eine Nullfolge in D ist stets auch Nullfolge in 6),

(A.12) Do

schreiben.

A.2 Distributionen alg lineare stetige Funktionale

(A.13) Der Raum 7
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(A.14) fjeD: €D — flo] = (f,9) € C

fir den Wert des
schreiben, wobei sowohl die Schreibweise f[¢] als auch (f, ¢)

. ibweise bevorzugen. Die
Funktionals {iblich ist. Wir werden aber die letzte S'chrelt;wgsea. ¢ Czu dem 1.
Linearitit der Funktionale aus D’ fiihrt nun fir f € D', ¢; @
Distributivgesetz

(A.15) () eydtagd,) = on(fs 8) + aalfs 8)

. jert man
Da D’ wiederum ein linearer Raum sein soll, definiert

(Alﬁ) (alfl+a2f2’ ¢) = &l(f]’ ¢) + ﬁQ(f'p ¢)

bedeutet, dab fir jede

. I jonale aus D’ ]
als 2. Distributivgestz. Die Stetigkeit der Funktion onale konvergent sein

i der Funkti
konvergente Funktionenfolge {¢;} aus D die Folge de
muf:

(A17) limg,=¢ = lim(/,¢) =P
e T er Nullfolge

iar je Definition ein
Die Topologie des Raums D' wird auch hier iber die Nullfolge,

i ;e nau dann eine
beschreiben: Eine Folge {f;} von Funktionalen aus D" ist g¢

wenn

(A.18) lim(f,¢) =0 V ¢€®
= 0

gilt.

istributionen oder

) onym auch Dist i
i i Dualraum D’ pennt man SyROnym £ » emeinerung*
i)efa: ““kt’.:ﬁf ;l:n::;en Um zu erkennen, was hierbei emt'% :,eri:u:en Raum der
st wird in Abachaitt A3 die Einbetiung ~gewShnlicher« Funktion o

Funktionale angegeben.

(A-lo) " > ird durch das Funktional
Ein wichtiges Beispiel fir eine Distribution aus Dw

(A-m) ) o (s, ¢ = #(0) ’
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welches jeder Grundfunktion aus © ihren Wert an der Stelle Null zuordnet, definiert.
Durch diese einfache Definitionsgleichung wird die DIRACsche &-Distribution

eingefiihrt. .

(A.21) Der Raum &’

Véllig analog zum Dualraum D" wird der Raum & als linearer Raum der linearen,
stetigen Funktionale auf Funktionen aus & eingefiihrt. Auch diese Funktionale werden
als verallgemeinerte Funktionen oder Distributionen bezeichnet.

Da D c & st, definieren alle Funktionale auf dem Raum & (Distributionen aus &)
auch Funktionale auf dem Raum D (Distributionen aus D’). In diesemn Sinne gilt

(A.22) & 7. o

A 3 Einbettung gewdhnlicher Funktionen in die Raume der
Distributionen

Durch das Integral

(A.23) T 3(u) 6(u) du

wird ein lineares, stetiges Funktional fir alle ¢ € D definiert, sofern die Funktion §
lokal absolut LEBESGUE-integrabel ist: g ¢ Ll

(die LEBESGUE-Riume L, werden im
Abschnitt B.1 erklirt)

- Dann gilt nimlich nach der HOLDERschen Ungleichung (B.8)

150) 9la) du

() $lw) du | < Mgl (i) Wi,

I3
supp(¢
Wir bezeichnen das auf diese Weise

durch die Funktion g definierte Funktions!
(Distribution) ebenfalls mit dem Buchst

aben g:

(A.24) @ #) = [ 5u) $a) da

In diesem Sinne werden die gewdhnlichen Funktionen ays L:°° als Distributionen 8u8
D’ aufgefasit ‘und man kann schreiben
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. 4 b istributionen
A.3 Einbettung gewshnlicher Funktionen in die Raume der Distributio

loc ’
(A.25) L* ¢ ®

¢ ©'. Im Hinblick auf die Dar~stelh—mg
allgemeinerung fir die Falle
er Integralbegriff nicht mehr
die mit keinem

Insbesondere gilt D ¢ L, C L\°° und daher ‘D’ o
(A-24) kann man die Distributionen aus D als N
auffassen, in denen ein RIEMANNscher oder LE-:B-ESGUESZ_DiStribution,
ausreicht (man denke an die DIRACsche Deﬁnm(?n de}' o
dieser Integralbegriffe widerspruchsfrei zu bewaltigen ist).

ie
niert werden, wenn man d

] - = S defi .
Ebenso wie in (A.24) kann ein Funktional dber rwirft: Gehort die Funktion ¢

3 unte
Funktion ¢ zusatzlich einer Wachstumsbeschrinkung
zu der Menge

(A.26)

Nk . ,keN}
o, = (o= @Pp o Geloket

ist das Integral

T gy 6w du = § Glw) () (w) dv
wegen
0. 91 5 161, |0 ol

p(u)
. ; fiir alle ¢ € 6, da v
konvergent und es definiert ein lineares, stetiges Funktional

fiir jedes j beschrinkt bleibt. Es gilt also

(A.21) .

. enseitigen Ei
Wegen & ¢ L, C Oy, folgt auch & ¢ &'. Die geg

und Dualriume lassen sich in dem Schema

nschlieBungen der Grund-

(A.28) n o f
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A.4 Aquivalenzrelation zwischen Distributionen

Um mit Distributionen rechnen zy konnen, ist als erstes zu kliren, wann zwei

Distributionen einander gleich sind: G R sei ein offenes Gebiet auf der reellen Achse.
Wir nennen zwei Distributionen f, 9 € D einander gleich in G,

(A.29) f=9g in G,
wenn .
(A.30) (f,9) = (g,¢) v ¢ €D:supp(g) c G.

Ist G = R, nennen wir fund g gleich ay f ® und schreiben

(A.31) f =9 auf D,

Sind zwei Distributionen figes co gleich auf D, 50 sind sie auch gleich auf S, d.h.

(A32) (fr ¢) = (.9, ¢) v ¢66’

da die Topologie von D dicht in jener von & ist. Daher kann auf den Zusatz »auf D«
bzw. »auf G« verzichtet werdep.

Nur mittels der hijer definierten Gleichheit ist eg erlaubt, die lokale Struktur von
Distributionen zu beschrejben (z. B. 6§ = 0 in R)). Es ist im allgemeinen nicht
gestattet, vom Wert einer Distribution an einer bestimmten Stelle zu sprechen. Dies

ist nur in den speziellen Féllen méglich, in denen die Distribution eine gewdhnliche
Funktion ist.

(A-33) Definition: Triger einer Distribution

Der Trager T — supp(f) einer Distribution f € D ist die kleinste abgeschlossene
Menge, fiir dje

(A.34) f=0in R-T

gilt.
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A5 Multiplikation von Distributionen mit Funktionen

(A.35) Definition: Finite Distributionen beschrankt ist. Wir

ini i ager supp(f)
Eine Distribution f € D heift finit, wenn ihr TragTeﬁi P e, baw. obere
nennen f links— bzw. rechisseitig finit, wenn der Trag ’
Schranke besitzt.

Mit Hilfe dieser Begriffe definieren wir die Raume

(4.36) D) = {feD:[finit},

(A.37) D = {feD : flinksseitig finit } ,
. e

(A.38) D’ := { f €D : frechtsseitig finit } .

i i ionen
A.5 Multiplikation von Distributionen mit Funkti

stiert nicht. E8 kann aber

- istributionen exi i
Eine Multiplikation zwischen beliebigen Distribu unktionen aus Cq erklizt

I : us D und F
eine Multiplikation zwischen Distributionen &
Werden: Die Multiplikation

) — fhe®
(A.39) fe?, hele

wird durch das Funktional

D
(A.40) (fh, 9) = M)‘v_:’_l

auf der rechten Seite der

. Daher steht
definiert, denn aus ¢ € D, h € Cy fOlg:-oﬂ €D
Definitionsgleichung ein giiltiges ] ! . its nicht

ich auf diese Weise bereils 1i¢

* allgemeinen nicht mebr 1m
. achstum der Funktion h zu
w Funktionen

(=3 und he€ C- 1a8t
zusitzlich das erbaren
unendlich oft differenz

Eine Multiplikation zwischen f €
mehr definieren, da fir ¢ € 6 .
Grundraum & liegt. Es ist notwen s,det
beschrinken: Wir definieren die Menge
von langsamem Wachstsm
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D0, = {h=(2+()) H keN, He Coi 1HD| 5 05 Vjen,],

(A41) , D¢, = Con e

Fir h € D¢ ¢ € S ist damit sichergestellt, da ¢& wiederum Funktion aus & ist.
Dann kann die Multiplikation

(A.42) Je® he Op, — fhed
durch
(A.43) (fhy ¢) := (4, oh) V ge6

definiert werden.

A.6 Lineare Substitution und komplexe Konjugation

Betrachtet man in dem Integral (A.23) statt der Funktion g die substituierte Funktion
9(w(-)) mit der linearen Funktion

(A.44) v = w(y) .= a+by,

wobei @ und b reelle Konstanten seien und 5 # 0 gelte, erhilt man

Joluw) o) du = F 300) gule) w7 (0) do

¥=-c0

(A.45)

=Tir_J 30) 65 dv.
v=-o00
Ist ¢ eine Grundfunktion aus D bzw. 6, gehort auch ¢(;—‘) dazu. Daher darf man diese
Substitutionsregel in der Funktionalschreibweise ausdriicken:

(starsc1), ¢) = 1T (e 0659).
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A6 Lineare Substitution und komplexe Konjugation

Dies ne al T \V/ inearen Substitution

i l tit
Ausgangspunkt fir die erallgemeinerung der li

ies nehmen wir als Au

von Distributionen. Durch

(A46) (fa+s), 8) = pr(r o) vee?

pierte Distribution fla+bd*)
1 die Verschiebung oder

, * die linear substit
wird fiir eine Distribution f aus D’ bzw. &' die

. _ b =
- — Uqy
definiert. Insbesondere erhilt man mit @ 0
Trenslation
(A47) (F(--g), 4) = (s 8(-+80))

.. tablen
und mit ¢ = 0, b = -1 die Spiegelung der unabhingigen Var
(A48) (=) ) = (=)

ir das du
e ibuti rstehen wir d
Unter der zu f konjugiert komplezen Distribution Jve

— Ps
(A.49) 7 ¢ = m

unabhangigen Variablen in Zu

rch

sammenhang

. , wofiir die
definierte Funktional. Die Splegelm;lg ‘d;;e Konjugation genannt werden
mit der komplexen Konjugation 8ol
Bezeichnung
(A.50) ') = ¥
bzw.

chhem’esel
eingefiibrt wird. Damit gelangt man zu der

(A.52)
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A7 Verallgemeinerte Differentiation

—_
-
)
N
Ao
@

60 du = [3)0W]* - § 5u) o) du

Im Fall ¢ € D verschwj

nden wegen der Finitheit fir 4 _, ~00, b — oo die Randterme.
Auch im Fa ¢ €S si

nd diese im Fa]j uneigentlicher Integrationsgrenzen gleich Null

durch

(A.55)

definiert. In den Riumen D

oder & gt also die Differentiation uneingeschrankt
ausfiihrbar:

(A.56) TEY & ;e

(A57) fee = .o
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AT Verallgemeinerte Differentiation

(A.58) Ableitungen der 5-Distribution und der Sprungfunktion

istribution ergibt sich
Fir die Ableitung der in (A.19) definierten 6-Distributio

N '0)
(A.59) & ¢ = -69) = -9

: tiven Wert
: unktion den nega i
Die §-Distribution ordnet als Funktional jeder Gn:]denwendung von (A.55) erhilt
ihrer Ableitung an der Stelle Nuil zu. Durch mehrfache

man fiir die hheren Ableitungen

(A.60) (@®, ) = (1" 40

Das der Sprungfunktion

0 far t <0
(A.61) olt) = { L
Zugeordnete Funktional lautet _
T dt .
) = folt)¢(t) dt = 2l;¢(t)
(A.62) (@, ¢ ki

Fiir die Ableitung ¢’ gilt demnach

: Tomd = ¢0) = (6,4
(0',¢) = —(U,¢) = -£¢(t)

(A.63)
istribution:
ion die 6-Distribu
Folglich ist die Ableitung der Sprungfunktion di ]
f = &
(A.64) , 4
’ ’ ohnliche
. s ZusAnUNEngese ewOhnli
(A.65) Differentiationsregeln fiir ;ationsregeln fir &

i ir a; € C,
. n Different jtet: Fiir a; € C,
Soweit moglich, werden die bekannte jonen hergelei

i Distribut
Funktionen nun auch fir die Ableitung von
o ¢) =
((a,fl-m,f,)', $) = - (oo + oSz s
(eyfy+anfz 9)

- &x(jxa é) - 52(f Ly ¢

= &(f,, $) + 61(}2. 9=
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so daB wir die Summenregel

(A.66) (alfl + azfz)l = O‘lfl' + O‘zfz’

erhalten. Fiir f ¢ D, ke C, bzw. fe& he DC,, gilt
(7)Y, 9) = - (1n, ¢) = -, ¢#h) = - (f, ($h)-9k’)
= (L8R + (1, ¢8) = (1, gh) + (%, ¢)

= (Fh o) + (fh,9) = (1 h+fk, @) ;
daraus ergibt sich die Produktregel

Die Kettenregel kann nur fir den Fall linearer Substitution nach (A.46) formuliert
werden. Es gilt

(1A60)s 8) = ({stassoy, 8) = - (ftaws), ¢) = -1 (n ¢59)

= - sg0v) (f, {(59Y) = s (r, #59) = b(f(ass-),9)

= {1y s0), ¢) =

und fiir jedes beschrinkte Gebiet G ¢ R existiert eine

1 und eine Ableitungsordnung k € N, mit der f durch die
der Funkiion A im Gebiet G darstellbar ist:

gewohnliche Funktion j €L
k-te Distributionsableitung
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A8 Faltung

. ; angt im allgemeinen vom
Die Ableitungsordnung k und damit auch die .Funktlon_"')e l:anaitg lG — R die Ordnung
gewihlten Gebiet G ab. Es ist moglich, dafi beim Greﬂztll cght fir G = R keineswegs
k gegen Unendlich strebt. Eine Darstellung wie (A.70) brau
Zu existieren.

(A.71) Satz: Darstellung von Distributionen aus & ‘che Funktion h € Oy und eine
Fir jede Distribution f € & existiert eine gewdhnliche Fun !

Ableitungsordnung k, mit der

wm -]

gilt.

erhalten der Funktionen aus

hstumsy
Wegen dieses Darstellungssatzes umd dem Wac langsamem Wachstum oder

R * auch von
Dh nennt man die Distributionen aus &

tempersert.

(A.13) Bemerkung:

Man kann die Distributionen auch als Ablei.tung vDarste
Dazu wihlt man lediglich zu der Funktion k in der -
Stammfunktion H, welche wegen der lokalen Integr

on stetigen Funktionen darstellfan.
llung (A.70) bzw. (A.72) eine
arkeit von h stetig ist, und

schreibt o
(A79) '

A8 Faltung

(A.75) Faltung von Grundfunktionen

Fiir zwei Funktionen ¢, € D wird durch




164
A Aus der Theorie der Distributionen

(A.76) (¢=0)(w) = :I: $(u-6) W) dt = (F(u-), y)

das Faltun i ;
gsprodukt definiert. Wie man leicht nachweist, ist ¢*y € D. Ebenso kann

durch (A.76) das Faltun
gsprodukt fii i -
In diesem Fall ist g4y ¢ . it fir zwei Grundfunktionen ¢, ¥ € & definiert werden.

Kommutativgesety

(A.77)

das Assoziativgesets

(A.78)

(A.79
) (0,¢1+02¢2)*¢ = 01¢1*¢' + 02¢2*'/1

(A.80)

Wir nehmen dje rechte D

arste]lu ;
Verallgemeinerung: 76 der Faltung in (A.76) alg Ausgangspunkt fir eine

(A-81) Faltung v, Distributionen
! mit Dj ?
Die Faltung einer Distribution fepn

(bzw. € 6) definieren Wwir durch (bzw. € €’) mit einer Grundfunktion ¢ € D
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A8 Faltung

(A.83) (f+¢y = f*¢ = f"‘ﬂ'

_ . Faltungsprodukt
D igkei nktionals zeigt man, da8 das S
urch Ausnutzung der Stetigkeit des Funktio ] dann auch fir jede

eine stetige Funktion ist, was wegen der Differentiationsrege ; & it darlber
Ableitung gilt; die Funktion fx¢ ist also aus C,, ¢ D ImFall f€ &', g€ : g;m fem;
hinaus fx¢ € 9¢, = C, N & & und fir feD, 0 €D folgt fx¢ € V. +
(bzw. € D) und ¢ €D ist die Funktion f+¢ linksseitig (Dzw. recats fiir den
diesen Fillen sieht man bereits, daB es nicht moglich ist, ein ,;\ssozlat“;ge‘:f: ’
allgemeinen Fall anzugeben. Nur fiir Spezialfille wie z.B. feDpLHYEVE

- L o)y = fr(osy) = Jelpwd) = (P90 | o

feD,

echtsseitig) finit. An

. * kann flr
In Zusammenha.ng mit der totalen Konjugation ) nach (A.50)

$,¥ €D (baw. f € &, ¢, ¥ € &) die Rechenregel

(A.85) (¢, ¥) = P

formuliert werden.

(A.86) Faltung von Distributionen

Eine Faltung zwischen beliebigen Distributionen
Werden. Um zu klaren, ob das FaltunSSPrOdukt zwi

ann leider nicht definiert
stributionen existiert,
zogen. Wir definieren

aus D k
schen zwei Di

wird normalerweise die sogenannte st riby
etwas knapper und spezieller eine Faltung fir Distri

i i herange
treifenbedingung* ger-
o utionen aus D, C o durch

(A87) (fi*far $) = (fo f;*¢) Y g€

ich ist

. itig finit. Urspriingl )
Da f, € D, ist fF € D’ und die Funktion fv¢ ist mm-sse;c:;gf Jinksseitig finit ist,
das Funkti:mal n:x ﬁir-[-‘unktionen aus D definert D.s‘:'!d ﬁnit:e Funktion aus Ce
kann eine Erweiterung des Funktionals uf rechissd ‘sder Gleichung (A-87) ein
vorgenommen werden, weshalb auf der rechten Sext.e definierte Faltung gilt das
wohldefiniertes Funkti:)nal steht. Fiir die auf diese wa;:stn'butiv&setz und  die
Kommutativgesetz das  AssoziativgesetZ . (A.80). Gensuso 158t sich auch
Differentiationsroge su den Regeln (A77) bis (A5 O @ annten Regelo
cine Putter analog B . o definieren, far die wieder 1€
ung fir Distributionen A
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(A.88) Faltung mit AbIeitungen der 5-Distributi
Wegen -
(A.89) (8+0)(w) = (5, p(u--)) = $(u)
wird bei Faltung der §-
Die §-Distribution ist
mit Distributionen:

Distributi it oi
da: ;;::;tloErll mit einer Grundfunktion diese genau reproduziert.
ement der Faltung. Dies gilt auch fiir die Faltung

(1*8,8) = (£, 6*g) = (fi8%) = (£, ) V geD =

(A.90)
-] :

Fiir Faltungen e
ner beliebj -
beliebigen Distribution mit Ableitungen der §-Distribution gilt

wegen der Differentiat.ionsregel

(A.91)

ASF OUREER-Transformation

Gewéhn!ich wir .
] d die Fo
eingefiihrt. Dabe URJER—Transformation als Transformation von Funktionen

i ist man bemij - .
Ght, moglichst schwache Voraussetzungen an die ZU

tioﬂen Zu Stellen .
» UM eine maglj .
absolute Integrierbark. maglichst groBe Klasse zu erfassen:

transformierenden Funk
In der Rege] ist dies die

A9 Fourier-Transformation ol

de Beschrinkung der
»bedeutend
h integrier—

brauchbaren Integralbegriff gibt. Daher erscheint die folgen
FOURIER-Transformation auf den Raum © sehr einschneidend, da er doch
Weniger« Funktionen als immerhin die Menge der absolut und quadratisc
baren Funktionen L, n L, umfaBt. Diese Beschrankung zahlt sich aber mehr als al’IS, da
e gerade dadurch gelingt, die FOURIER—Transformation auch fir den Raum &', der

wiederum L, n L, beinhaltet, zu definieren.

(A.92) FOURIER - Transformation in &
Fir Grundfunktionen ¢ € & wird in bekannter Weise die FOURIER-Transformi
¢ = §6 durch das Integral

erte

(A.93) W) = @ow) = ToeweHa = (@9

erklirt. Eine Eigenart des Raums & besteht nun darin, daB die FOURIER-Trans-

formierten der Funktionen aus & wiederum im Raum & liegen:

ne der Topologie von S

n umkehrbar eindeutig.
s. Die

Dariiber hinaus ist diese Abbildung linear und stetig im Sin
Sowie als bekannte Eigenschaft der FOURIER-Transformatio! _
Die FOURIER- Transformation ist also auf dem Raum S ist ein Homom"rph.wmu ibst
Riicktransformation § ! hat die gleiche Gestalt wie die FOURIER - Transformierte s€

und lautet

(A.95) o) = FHW = E‘;Z Hw) & dw

9y - wie auch hier — bevorzugt der

mathematischen Werken wird meist

i jewei i x versehen.
ansformation jeweils mit 1/4/2% -

In der technischen Literatur wird der Faktor 1/
Riicktransformation zugeschlagen; insbesondere in
Sowohl die Hin- als auch die Riicktr

Manchmal sind auch j und -j in (A.93) und (A.95) vertauscht.
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(A.96) Satz: PARSEVALsche Gleichung

Fiir zwei Funktionen 8, ¥ € & gilt die PARSEVALsche Gleichung

(A.97)

TR0 @ = L T i a

die in der Funktiona.lschreibweise die Form

(A.98)

erhilt.

(A.99) FOURIER—'I‘rmaformuion in&’

ler die PARSEVALsche Gleichung, die nun als
De finitionsgletchung der FOUR!ER—Transformierten I= S8/ auftritt:

Daausg e wieder g ¢ S folgt, steht auf der rechten Seite ein Funktional auf dem

Raum &, also ejpe Distribution aus & Folglich mu8 auch dag Funktional auf der

linken  Seite der Deﬁnitionsgleichung eines auf & gein
Foummn—Transformierte] i

ist also auch eip Homomorphismus auf &'

(A.101)

. 2 umfaBt, hat map auf diese Weise die FOURIER-
Transformation fiir eine vig] umfangreichere Klasse von »Funktionen« definiert, als

orm einer Iutegral—Transformation zu erreichen ist. Fir
1 18t aber die gewohnte FOURIER-Transformation

(A.102) F@) = @MW) = F g eion g

als lntegnl-Tmmformnion konsistent mit der Definition (A.100). ?
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A9 Fou'rier-'l‘ransformation

_ ormation
(A.103) Die Faltung im Bereich der FOURIER-Transf

jon in eine Multi
Die Faltung geht unter der FOUmER—Transforma:loeng;lI:
Bildfunktionen iiber. Fiir zwei Grundfunktionen ¢, ¥

plikation der

(A.104) 3(owv) = 69 € 6

Ebenso gilt fiir die Faltung von f € &', 90 € &

(A.105) B(reg) = Jo € 6

n FOUBIER—Bereich fihrt in

. d auch das
istributionen un .
tdistrib ant. Es ist

s tributionen in de
Die Ubertragung der Faltung von Dls,t nbutm‘:; die Zei
Einzelfillen sogar dann zu Schwierigkelteu3 we ; die Sprungfunktion o gena
Faltungsprodukt in &’ existieren. Als Beispiel sei di

(oxa)®) = tolt),

blw) = 78+ i

und es existiert 1
n 8w -or -

Foro)(w) = | E
( er auch nicht die FOURI

R-Trans-

. n dah
Das Produkt #5 ist aber nicht definiert und kan

formierte von ¢ liefern. folgendes formuliert

z. B.
uns kann weder§€ Cm odel’

. t
Als Einschrankung fiir die Transformation der Fal f#g und ist ent

, tungsprodukt
Werden: Existiert fiir f, g € & das E&i sog:st
]EL:ocundjeL:mmitllp+1/q— ?

= f3
(A.106) 8

_Transformation:
(Lm)w"“ml wen einige Rech 6ce '
Ohne weiteren Nachweis sind im fe' - Wes= ist die Zulbesigheit
formierte von Distributionen .mum Insbesondere bei der F.l;mﬁ n
natirlich auch fiir GM‘:; Aussagen in (A.103) zu 8
der Operation entsprechend
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Nr Operation S F=3
1 Superposition of, + ayf, af, + eyl
_ <k
2 komplexe Konjugation f f
— ]
3 totale Konjugation r 7
.
i i)
4 Renormierung fla) mf p,
h‘—x ol . -~
5 Verschiebung f(-=t,) e H ) f
. -
6 Modulation e*o() ! f(--wp)
.
7 Differentiation ™ G F
-
8 Faltung fi*fs fifs
"
9 Multiplikation I, %;fl*f24/‘
\_‘\J
Fir die in dieger Tabelle auftretenden Konstanten gilt a; € C: a, wy € R. ¢

Der folgende Satz nach RIEMANN unq LEBESGUE beschreibt die Eigenschaften def
FOURIER—Transformienen von Funktionen aus L;:

(A.108) Satz: FOURIEB,-Tl’anxfoﬂnierte von Funktionen ausg L,

Ist die Funktion f aus Ly, 50 ist deren FOURIER-Transformierte [ gleichmaBig stetis
und sie strebt fiir |w| — o gegen Null. o

Die gleiche Aussage gilt Datirlich auch, wenp man die Rollen von Zeit- und
Frequenzbereich vertauscht. o
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A9 Fourier-Transformation

(A-110) Beweis: . Wegen f € L, kamn die
Zunichst soll die Stetigkeit nachgewiesen :{erden.
FOURIER-Transformation als LEBESGUE-Integr

}.( W) = ? f@) c‘jwt dt

geschrieben werden. Es ist ot e_j(u+Aw)l} dt

Ha) - Hwraw) = TI0 (e

_ froema- e

T ® ~juwt {1- e'jAw} d
. @®) e
~ frmer - ey (J+1)
-T

. T 5Y 1ol de
. . T up |1—e"Aw| M 2(-£+£)H
f@) - floraw)| s J1A01 4 sup,

< Il 14wl T + 20T,

wobej T "
o(r) = (I*;) /@)

1
nktion C”
by, womit auch die Umkehrfu
strebt,

1
fir T - oo monoton fallend gegen N“i ot
existiert. Gibt man nun ein ¢ > 0 VO, 8

I:f(w) - 7("”’4“’)' = ¢

gewihrleistet, wenn T2 Vo C1L))

(dann ist 2C(T) < ¢/2) und wenn ¢ =: &) -
€ e I .
£ o 07L)) igkeit
— o - 2l ;chmaBige Stetigk
|Aw} = 2T wm::hmitmchdiesw e
- vm Y
Da diegse Abechitzung unabhing )
gezeigt. a
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Wir kommen zur zweiten Aussage des Satzes. Es ist

) = Fr) e ar = - ] g eHen gy [ 1t

+5) ¢t d
20 = [ (0 - Se+9) et

el s 37 145

1

Die L,~-Norm strebt fiir jw]|

b — * gegen Null, woraus sich die gewiinschte Aussage
ergibt.

o

A.10 LAPLACE—Tra.nsformation

(A.1n) LAPLACE-Transformation in C

T ¢ € C, ein offenes Intervall A — (d,, d,), so daB die Funktion

dfunktion aus & ist, nennen wir ¢ LAPLACE-
ansformierte wird durch

¢ e d0) fir alle d € A eine Grun
transformierbar. Die LAPLACE-Tr

mit Re(s) € A schreiben k N . ]
ann. Die wichtigste Ej ‘o sich die
LAPLACE—Transformiene gegenii gste Eigenschaft, durch die si

. . ber der FOURIER-TY ; ichnet, it
nicht nur die Abhingigkeit von einer ansformierten auszei

173
A0 Laplace-Transformation

; istiert (A.112)
: = —Transformation. Exis )
LAPLACE-Transformation gegeniiber der FOURIER Tr fienen Konvergenzstreifen

v e einen einzigen Wert d = d, = dy, gibt es gar kenen shrend mit der FOURIER-
mehr; die LAPLACE-Transformierte existiert also nlcht’d - kann o
Transformierten der Funktion ¢e ') noch gearbeitet werden

(A114) LAPLACE-Transformation in D’

s o
i Distributionen aus
Vol analog zu (A.111) wird die LAPLACE-Transformation von

{ihrt: Gi fiir eine Distribution
auf die FOURIER-Transformation in & zurﬁckgefjl‘l(lf;:. Gslbtﬁ-l (:831111: e -y
J€D ein offenes Intervall A = (d,, d,), 80 daB fe €
‘ rd durch

Lap LACE~transformierbar und die Transformierte Wi

(A.IIS) }'(S) = (ﬂf)(-?) e 3(f e_‘(.))(w)

5 LACE-
Auch die LAP ’
mt gz g 4 jw im Konvergenzstreifen Re(s) Konvergenze ebiet analytische
Transformierten von Distributionen sind in ihrem o
Funktionen,

€ A definiert.

und FOUm"Ij‘I

r~-Transformierte in (A.1152
o g-Transformierten f

(A.116) Zusamenhang zwischen LAPLACE-

. . je FOU
£ st méglich, aber keineawegs zwingend, d&B dleAus der LAPLAC
auch fiir die Intervaligrenzen d = d, d, existiert.

= i ziehung
erhilt man die FOURIER-Transformierte f durch die Be

(A | l 1 7) m .
Achse im Konvergenzgebiet

o i inare . uf der
fir w € R im allgemeinen nur dann, wennp':l,le :1?:8 LAPLACE'“MT;?:;‘JURJER‘
. . . [ m . . H
:;eits das heift 0 Pi( A)' Dao l:in:le:.:&lytische Funktion ist, i8¢ ';ﬁ jst, far die
indren Achse 8) =

statt .
jon, weshalb €8 .. oine punktweise
Transformierte eine gewdhnliche Funkm;:’en cine Distribution ist, eine P
eme

FOURIER-Transformierte, die ja im allg
Gleichung wie (A.117) anzuschreiben. e
- N d, = 0 er
Ist die imaginire Achse Rand des Konver® ebietes. &

und damit § aus &', so erhilt man durch

He+1)
(A118) 1= :,i.‘:!(
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von Funktionen- bzw. Distributionenfolgen entsprechend der Topologie des Raums &'.
Nur wenn F eine gewohnliche Funktion ays &' ist, also f € & n DL1’ fiihrt der

punktweise Grenzﬁbergang

(A.119) flw) = lim f(d+jw)
d- 0

zum gleichen Ergebnis wie (A.118).
Far linksseitig finite Fun

Intervallgrenze d, stets
Transformierten eine recht,

ktionen und Distributionen aus D, ist die rechte

gleich o, 30 daB dag Konvergenzgebiet der LAPLACE-
e, offene Halbebene Re(s} > 4, ist. o
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R ——
7 = (£ (3)
f jts) = (£1)
Nr Operation -
0,f,(5) + aofy
1 S position af + ayf, —_";‘/___’_
uper ) —
2 1)
2 | komplexe Konjugation f /
1(-3)
j i /
3 totale Konjugation I .7
a a
a-) [a]
4 Renormierung f —”’_W
e
et |
§ Verschiebung e -
f(S‘so)
T D £ e’o(') f I
ampfung )
] £ st
7 Differentiation " o
[ f1 * f? _’____l_/—-
8 Faltung —1_}.1 ) ]1
2%
5 | f. I
9 Multiplikation L_/'f—l:—/
N

. cCiach
ten gllt- @, Sp
Fir die in dieser Tabelle auftretenden Konstan

. setributionen
A.11 Positiv semidefinite Distri

A Distributionen
( 121} Definition: HERMITESche ]

. 'sch,
Ein Distribution f €D heifit HERMITESch, went

(A122)

gilt.
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(A.123) Definition: Positiv definite Distributionen

Eine HERMITEsche Distribution f € D’ heift positiv definit, wenn

(A-124) (, #+¢") > o

fir alle ¢ € D, ¢ # 0, gilt. Sie heiBt positiv semide finit, wenn das Funktional fiir ¢ # 0
auch den Wert Null annehmen darf, o

Der folgende Darstellungssatz nach BOCHN ER und SCHWARTZ iiber positiv
semidefinite Distributionen kann bei GELFAND / SCHILOW / WILENKIN [18], Band IV,
S. 148ff, und fir den Spezialfall & = 0 bej BOCHNER [4], §§ 18, 20 nachgelesen werden:

(A.125) Satz: Darstellung positiv semidefiniter Distributionen

Sei f € D eine positiv semidefinite Distribution. Dann ist f sogar aus dem Teilraum

& cD und fir die damit existierende FOURIER-Transformierte gibt es eine
Darstellung

(A.126) Fo= ()

¥

wobei ¢ € R, k € Ny und 4 eine reellwertige, beschrinkte, monoton wachsende Funktion

ist und u° die Distributions—Ableitung dieser Funktion bezeichnet. Im Zeitbereich
ergibt sich daher die Form

(A.127) f = (c2_d?)k v

Hierbei bezeichnet d,

. . -1
= d/dt die Differentiation nach der Zeit. Die Funktion v := £
ist eine stetige,

beschrénkte, positiv semidefinite Funktion (Distribution). o

(A.128) Bemerkung:

Jede beschrinkte, monoton Wwachsende Funktion 4 138t sich in eine beschrinkte,
stetige, monoton wachsende Funktion 4, und in eine beschrankte, monoton wachsende
Treppenfunktion By,
(A.129) .

zerlegen. Damit besteht die Ableitung
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(A.130) : W= Byt B

¢ L, und einem singuléren Anteil p,,
t

sus einem LEBESGUE-integrierbaren Antell 4 butionen besteht. Folglich

. -Distri
der als Ableitung einer Treppenfunktion nur aus é
128t sich auch die FOURIER-Transformierte

™k . 7 7
(A.131) 7= (2N + (PO By = fot /s
7 i i i gren Anteil
in einen lokal integrierbaren Anteil J, € L, und einen singul

(A.132) 7= g a; 8(--w;) s

: . civen
prungstellen der Funktion p,. Die positi

zerlegen. Hierbei sind die Werte w; die S
Koeffizienten

(A.133) a; = (P+od) { p(w;+0) —#(wro)} >0

. hervor.
gehen aus der Hohe der Spriinge an den Stellen w;



B Analytische Funktionen im Einheitskreis
und in der rechten Halbebene

dient alg Grundlage fiir dag wichtige Kriteriy
Chara.kterisierung »kausaler« Zeitfunktione
wird hier in einer allgemeineren Form als in

B.1 Die LEBmGUE-Rﬁume

Als Literatur .y den LEBESGUE—REumen ist z. B. YOsHIDA [46] oder LIUSTERNIK /
SoBOLEW | 29] zu nennen.

(B.1) Der LERESGUE-Raym L,(G, )

Der lineare Raum LG wgpsg )
oder komplexwertigen Funkt.ionen, fi
STlELTJES—IntegraJ

besteht ayg im Gebiet ¢ ¢ R definierten reell-
I die im Fal 3 S p < o das LEBESGUE-

§1f(u) |7 dp(a)
G
konvergiere. Darin ist U ein Dositives

» im allgemeinen unbeschrinktes Maf auf G.
Genaugenommen sind dije Elemente ¢

€ Raums Ly(G, p) nicht Funktionen, sonde:;
Funktionen 2usammenfassen, die sich nur 8

wird eine Norm i Ly(G, u) eingefihrt, gse 2t Unterscheidungszwecken mit p indiziert
wird.
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en zum Ra e 1l w i hen
i i .m esenthc
um L (G, p) Funktlonen, dl
all p = 00 geho"r

. hranke
. . sentliche Scl
beschrinkg sind. Die Norm wird hier durch die kleinste we: |

)|
(B.3) Ifl. = ess sup [ f(u

iner
jonswerte auf ein
nur Funktions sonen. die
jegt vor, wenn - ader Funktionen,
i i tliche Schranke lieg : den wieder Fu
definiert. Eine wesen lf fiberschreiten. Auch hier Wf’r zu Funktionenklassen
Menge vorm MaB Null diese iibe Ma8 Null unterscheiden,
Sich nur  gyf Mengen vom
Zusammengefaft, d.b. fiir jede im Sinne der

" vollstindig, _ Damit ist
Der Raum 1, (@3, ) ist. fir alle Fille 1 -S- ps Grenzwert in Ly(G, #)
Norm konveigente Funktionenfolge liegt der
LP(G, h) ein BANACH-Raum. h kurz LP(G). Der Raurz
Is du(u) = du, schreiben wir auc
' das MaB 4 konstant, du(u) = du,

. L,
R) heifit kurz Lp
Ly(R, 4) wird auch mit L,(P) bezeichnet und LP( )

(B.4) Der HiLBERT-Raum Ly(G, p)
Der Raum L,(G, p) wird mit dem durch

._ g(u) dll(“)
(B.S) (f, 9)# = éf(“)

wegen
definierten inneren Produkt, welches

o

m.
. BERT-Ras
zur Norm kompatibel ist, zu einem HIL

fir jedes
loc wenn
i L, () im
o o oo o i s 1 70 7
, ierte Funktion f L,(G, ») ist. endlichen darf
Eine auf R definie die Funktion f aus L) gein. Im Un o
beschrinkte Gebiet G ¢ R e bar baw. Wm:m
Endlichen (das heifit 101“‘)3’:;@ 119¢(3) gibt es keine

< Im Ly
unbeschrinkt wachsen.
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(B.8) Satz: HOLDERsche Ungleichung

Die Funktion f se} ays Ly(G, p), g aus L(G, p) mit p, g € [1, o] und

(B.9) +==1.

S [
Q[

Dann ist die Funktion fg aus L,(G, p), fiir deren Norm die Abschitzung

(B.10) l7ol, < 111, lal,

gilt. Im Spezialfall p = ¢ = 2 wird daraus die CAUCHY-SCHWARZsche Ungleichung
(B.11) 1791, (f, 9 £ 111, 19l . .
B.2 Das Poissonsche Integral

Die POISSONschen Integralformeln gehen auf den CAUCHYschen Residuensatz zuriick.

Dies kann bei NEVANLINNA / PaaTERo [37], ACHIESER / GLASMANN [1], oder
HURWITZ / COURANT [21] nachgelesen werden.

Die Funktion f sei im Kreis und auf dem Rand |z| £ R der komplexen Ebene eine
analytische Funktion. Dann lassen sich durch die Werte der Randfunktion

(B.12) , IR®) = f(Re) '

alle Funktionswerte f(2) im Inneren des Kreises |z] < R durch das Poissonsche

Integral
T Re® 4 z
B.13 = L
( ) f(z) 2 !Re{mlfn(ﬁ) d¢ N
oder mit z = p ¢
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2

2 _
Sl — T TR

(B.14) f(’"ej¢) = 5 J R? - 2Rrcos(y=¢) + 7

2x

. ktion aus, wenn
gewinnen. Es reicht dazu sogar die Kenntnis des Realteils dell.) I::I;ift.u;t.
der Imaginiteil der Funktion / fir einen Punkt (z. B. 2 = 0) bekanat st

x Re’-¢+z

_ Re fg(¥) d¢ !
Re® - 2

(B.15) fiz) = jIm f(0) + 2‘1.’

-r

' i ber nicht mehr auf
Ist die Funktion f zwar im Innern des Kreises |z| < R mab:)ls:;’h: mehr bedenkenlos
dem Rand |z| = R, diirfen die Formeln (B.13), (B.14), (B.1 " 4es POISSONschen
angewendet werden. Um die Erweiterungen der Vorﬁum:',z;rg: |
Integrals sauber zu beschreiben, werden die Rdume H, einge '

B.3 Die HArDY—LEBESGUE—RAume

. FFMAN [20].
Als Quelle fiir diesen Abschnitt dient die Monografie von HO
(B.16) Der Raum H »

Der HARDY-LEBESGUE-Raum H, (1 £

< oo) besteht aus Funktionen f(z), die im
p - T - 3
i ind, und fiir die di
Einheitskreis |z| < 1 der komplexen Ebene analytisch sin

e Funktionen

(B.17) 148) = flre")

ankt bleiben:
fiir alle r € (0, 1) im Sinne der Norm des Raums L,(—f, 7) beschr

4 i/» Vr<l
(B.18) i, = { nf,(«»)r’«u} sCVr
fir die Fille * € p < o bzw. fiirp = ®
1.
- If@# s € Vr<
(B.19) ela = 2% lr |

Durch
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(B.20) 171, = sup |f,l,
O<r<l

wird der Raum Hp zu einem normierten Raum. Die Riume Hp schlieBen sich
gegenseitig ein; es gilt

(B.21) HqCHp fir 1Sp<gso

Der umfassendste Raum ist folglich H,. a

(B.22) Satz: HOLDERsche Ungleichung in H,

SeifEH,gEquitp,qE[1,00]und1/p+1/q=l.Da.nnistngHlundesgilt

(B.23) F Vsl, = 111, 191, J .

(B.24) Randverhalten von Funktionen aus H,

Fir Funktionen f aus Hp existiert der Grenzwert

(B.25) fa@) = limf(e) = lim gl
~1 -1

fir fast alle ¢ € [-x, x]. Die derartig definierte Randfunktion f g ist eine Funktion aus
LP(—ar, r). Als Folge des Minimumprinzips analytischer Funktionen gilt

Wegen der Existenz der Randfuniktion fr kann man den urspriinglichen

t Funktion f € H, um den Rand des Einheitskreises
”) = fa(9)
der Randfunktion f & durch das POISSON-Integral in

5) wieder die zugehdrige Funktion f. Im Sinne dieser
f und ihrer Randfunktion f, darf man den Raum H,

der Form (B.13), (B.14) oder (B.1
eindeutigen Zuordnung zwischen
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als Teilraum von Lp(—ar, =) auffassen:

(B.28) H, C Ly(-m, )

. Verschwinden
Man kann zeigen, daB die Funktionen aus diesem Teilraum durch das

ibrer FOURIER- K oeffizienten mit positiven Indizes

f e pw) dy = 0 VEEN

-

(B.29) fe

charakterisiert werden kénnen.

H. ist dadurch gegeben, daB der
4

Eine weitere Eigenschaft der Funktionen aus | ist, sofern es sich

. integrabe
Logarithmus des Betrags ihrer Randfunktionen absolut integr:
Bicht um die Nullfunktion handelt:

(B.30) feH, [f#0 = In|fpl € L(-=, ).

x) mit In|F| € Ly(-7,7) nicht

hin 188t sich aber stets eine
egebenen

. -7,
Umgekehrt gibt es aber zu einer Funktion F € Ly(

i = F. Immer
unbedingt eine Funktion f € H, mit Ir . F vom Betrag gleich der VOrE
Funktion aus H, finden, deren Randfunktion

Funktion F ist:

(B.31) .

. 1a8t sich durch
Eine spezielle Funktion f € H, mit dieser Eigenschaft

1 ]; e+ In}F(¥)| d'/’}
(B.32) flz) = eexp oy |79 _ .

-r

PoissoN-Formel (B.15) auf
st nur mit ihrem Betrag zu
ine Darstellung fir die

t, daB man die ]
exe Konstante € 1
hilt man dann auch e

fir |z| < 1 finden, die dadurch entsteh
Re [In F] = In |F| anwendet. Die kompl
le| = 1 festgelegt. Durch Grenzibergang er
Randfunktion:
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fr(#)

I

lim j(reﬁ)
1

1 T ¥+ re’¢
€ lim lim exp —{ J+ J } % 50 |F(y)| dy
50 1 T ges

PR
v |
+ =
2x e]dr

In |F($)| d¢

= ¢ lim exp l—{ J+
0 2
- faf

T) &%+ re”‘
} g [F(y)| dy

* lim 1lim exp[

2% 1n|F(g)| ¢4 dy }
&0 a1

21. ci‘ ¢—6 ej(¢'¢) -r

Fiir das Grenzverhaltens deg letzten Integrals gilt
$+5

dy $+5 d?,(l
N -
Pt r é-5 1-r+ ]('/"¢)

$+é
- (reip-w)] — =

Daher folgt alg Darstellung fiir die Randfunktion

T ¢ id
(B.33) fr(8) = |F(g)| e exp { ;TV.P.I :; * :; In|F(y)| dy } ,

-

B3| fae) = Ry wq,{_n j cot %4 1n| Fy)| cw}

N’ -
Betrag ~ Phase

v
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. i iinschte
wodurch gleichzeitig nachgewiesen ist, da8 die Funktion f nach (B.32) die gewi
Eigenschaft (B.31) besitzt.

i Funktionen
Die durch (B.32) definierten Funktionen f haben gegeniiber allen anderen
9 € Hy, die |gp| = | F| befriedigen, die Eigenschaft

(B.35) 11| 2 lgz)| far |2| <1.

Man nennt derartige Funktionen f dufere Funktionen.

B.4 Das Poissonsche Integral der rechten Halbebene

i von »kausalen«
Um die Ergebnisse auf LAPLACE- und FOUM-ER_Trmllls{orml::z;exen Halbebene
Zeitfunktionen anwenden zu konnen, die in emer. e t:n Einheitskreis und der
definiert sind, benGtigen wir eine Transformation zwischen dem

rechten Halbebene:

inheitskrei ten Halbebene
(B.36) Transformation zwischen dem Einheitskreis und der rech
Wir wihlen als Transformation die konforme Abbildung

-1 3
1-2 =9(s) =
(B.37) s=q@)=cp & 57 e

Einheitskreises
Dadurch wird die rechte offene Halbebene Re(s) > 0 auf ifas Innfr::-e;unkt 4 = o0 auf
|z} < 1 abgebildet. Insbesondere wird der Punkt s = 0 auf 2 ?B 37) engibt sich fi die
2= -1 und s = ¢ auf z = 0 abgebildet (siehe Bild B.1). Aus

is z =
Transformation der imaginiren Achse s = jw auf den Einheitskrei

1-é* e - M
o= c 1+ =c¢"w2+¢i‘ﬁ
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(B.38) w = 7p(#) = -~ ¢ tan % =
(B.39) ¢ = ’y;zl(w) = - 2 arctan ‘-:—
Fiir die Differentiale ergibt sich daraus
c 2c
(B.40) dw = - "ﬁ—dgb & d¢ = - —— dw
2 cos% coHw

Bild B.1: Abbildung des E'inheitskreises auf die rechte Halbebene

Unter dieser Abbildung soll die Transformation des POISSON-Kerns

(+z .
(B.41) mit ¢ = ¥
(-2
in die rechte Halbebene bestimmt werden. Mit
(B.42) $:= 1z, o := 1)
ergibt sich
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2
- 205 + 2
€9 , ¢c8 (c-o)(e+s) + (c+0)(c-s) _ ,
e z:;+::: = — 2¢0 + 2¢s8
T Tes e (c-0)(c+s) - (c+o)(e=9)
¢z Pl
C+z os - ¢
(B.43) - = o0
Mit
(B.44) (=¢*, o=i, =10
folgt daraus
. 2
Y+ z s - ¢ o
- Foe T )

B.5 Das Kriterium von PALEY—WIENER

Bei d i ob es zu einem
em v Y-W m die Frage, ob

i Kriterium vom PALE IENER geht es u

ei

_ jch eine

. im FOURIER-Berei

einer Funktion 1m Funktionen

vorgegebenen Verlauf des Betrags o isse Klasse von :

zugihf")rige kausale Zeitfunktion geben kann. Fir e;f]i:e::d hinreichendes Kriterium

. Fl'age ein notwendaig; 215) wird dieses

kann zur Beantwortung dieser ‘ Lis [38], S. :

aufgestellt werden. In der Literatur (sche 2 B P: PI? Uange[seben, weshalb hier der
R ktionen aus L, 2 ird. Der erste Satz

iteri hnlick pur fiir Fun ) nkt wird. De
:( ;lter:ium jf o cineren Formulierung breiterer Raum gesche
olgenden allgem

. indigen Kriteriums:
ist zunachst der »hinreichende« Teil des vollstindige:

= hinreichende Bedingung)
(B.46) Satz: Das Kriterium von PALEY' Wn'mn (F o
Erfilllt eine reellwertige, nicht negative Funktion 1 !

(B.47) mF e LD = L ’

20 gibt es eine stetige Funktion / € & mit
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(B.48) f = 0 in(-,0)

b

deren FOURIER-Transformierte vom Betrag gleich der vorgegebenen Funktion F ist:

(B.49) Ifi = F . a

Die Voraussetzung (B.47) bedeutet ausgeschrieben, da8 das Integral

Il F(w)|
(B.50) j ——dw
o Ctw
konvergiert.
(B.51) Beweis:

Wegen L, C & ist zuniichst gesichert, daB es zu jeder Funktion J mit 7l = Fel,

iberhaupt eine Zeitdistribution f gibt. Diese ist wegen Satz (A.108) zudem noch
gleichma8ig stetig.

Entsprechend der in (B.36) gegebenen Transformation bilden wir die Funktion

G(#) = (*+w?) F(w),

welche wegen

16048 = 2 | |Fw) aw

aus L,(-x, x) ist, da nach Voraussetzung die Funktion F aus L,(R) = L, ist. Weiterhin
gilt

ﬂmmmu¢=_Hmwﬁﬁﬂwﬂ—;%r“
x v

[ In Fw)| ® n(c?+uw?
§2CJ 2. 2 d“+2c_[l(2 z)ldw.
- ¢ +tw Cc +w

Das letzte Integral konvergiert und liefert eine von der Funktion F unabhangige reelle
Zahl. Da nach der Vorausetzung (B.47) auch das erste Integral der rechten Seite der
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Abschitzung konvergiert, folgt fir die Funktion G

InG € L(-x,7).

: i €H,
Wir verschaffen uns nun eine zu G betragsgleiche Funktion g, 1

|go(ej¢)| = G(4),

nach (B.32) durch
1 oA e’t + 2
9o(2) = exp{-g f >,

-x

maww}ﬁﬂﬂ<L

Nach (B.33) lautet die zugehdrige Randfunktion

—In G(¥) d¥
5u(¢”*) = 90(9) = G9) exp{gl;V-P-I A"

-T

"eﬂ+e’.¢ }

Wir wihlen nun aber die Funktion

o) = 290

mit der Randfunktion

9R(¢) = Cj‘goﬂ(¢) ’

B.22) wegen z € H, auch zu H,

die nach dem Satz Gber die HOLDERsche Ungleichuns ( ¢ der Abbildung

. . ktion wird mi
gehort und wie g, betragsgleich zu G ist. Diese Fun
(B.37) in die Funktion

9(2) 294(2) _ _%_Si)_. far Re(s) >0
f(s) = 2, =22 (s+¢)

i in die Funktion
iberfiihrt. Entsprechend wird die Randfunktion gp 12 die

o) _ sole)
1) = 5% = ave)?

¢2+w

transformiert. Wegen

(2+?) Flw) = G(9) = lox(®)] = (@) 1T -
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ist die auf diese Weise konstruierte Funktion [ betragsgleich zu der vorgegebenen
Funktion F. Da f die Grenzfunktion von f auf der imagindren Achse ist, verhalten sich
f und }' wie die FOURIER- und LAPLACE-Tranformierte einer Zeitfunktion f. Nun ist
nachzuweisen, daB die derart konstruierte Funktion f eine kausale Funktion ist, das
heift f = 0 in (-, 0): Wir bilden die Funktion

- ¢
9:(2) == g(2) exp{ct}T:} = g(z) .
Fir ¢t < 0 ist diese Exponentialfunktion im Einheitskreis [z] < 1 analytisch und

beschrinkt, so daB sie zum Raum H, gehdrt. Nach dem HOLDERschen Satz (B.22)

gehort daher auch die Funktion 9¢ zum Raum H,. Wegen g(0) = g,(0) = 0 folgt daher
aus dem POISSON-Integral (B.13)

0= 00) = % [gipl) ay

L F 1-¢/¥
= §;Jg‘,z(gl;)exp[ct o dy

= % J]-(n) (c2+w2) ej.ﬂl -

0
== J'(n)a”‘dn = 2 f(t) firt<o0.
—oo
Damit ist nachgewiesen, daB [ eine kausale Zeitfunk
gestattet, die FOURIER-
schreiben.

tion ist. Wegen f € L, ist es auch
Riicktransformation wie hier alg Integraltransformation zu
o

(B.52) Bemerkung:
Der Beweis wurde im Prinzip dadurch

Funktion im Frequenzbereich konstrui
Funktion lautet im Gebiet Re(s) > 0

gefihrt, daB eine spezielle betragsgleiche
ert wurde. Die LAPLACE-Transformierte dieser

© . - 2
(5.53) ) = exp{-}f (j;)m)( :m’) lni‘(ﬂ)dﬂ} .
= -8}l C
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. - ierte
Durch Grenziibergang ergibt sich die FOURIER-Transformie

) pd NRw + ¢?
(B.54) flw) = F(w) exp [ %V.P.J (n—w)(02+92)

In F(2) d2 -

i i isenschaften (B.47),
Diese Funktion ist gegeniiber allen anderen F:unkf.lonen mit d::nli;ill)lzbene Rels) > 0
(B.48) ausgezeichnet. Es existiert namlich 1/ f('s) in der gzsir;;us el (<, 0
und die zugehérige Zeitdistribution ist aus 'D-, welche 1e e oh 1t im allgemeinen
gleich Null ist. Zwar existiert auch 1/f(w) fir fast alle w,tion D wendbar ist.
f €& nicht gesichert, so daf die FOUBJER—Rﬁcktransformad o Transforma
Zum Nachweis dieses Sachverhalts kann man sich trotzde$ (:ne Folge {Fy} aus &
tion und des Satzes (B.46) bedienen, den man n'un a R:um o versieren und
anwendet. Diese soll gegen F im Sinne der Topolog’le-de:1 i, Dies erreicht man
bt hinaus 5o angelegt sein, daf auch 1/F) ¢ 6 o Umgebung ihrer Nullstellen.
durch geeignete Abinderungen der Funktion F in der o 54 e Konvergier dio
Lozt man die Folge (1/Fy} stact F 1» (B'S?) bzw.1/]' .Wenn man als zugrunde
eiistehende Folge {}—1} bzw. {]‘1} gegen. 17 Pzw ; h’ heranzieht (im Sinne der
 Bende Topologie etwa die des Raum o im Ze']ﬂ)enlelc im allgemeinen nicht). Die
strengeren Topologie des Raums & konvel'gi(?rt d.le Fori?t Tragern aus [0, ) besitzt
Grenzdistribution ! € D" als Folge von Distributionen .
selbst wieder nur einen ‘Trager aus diesem Intervall.

1 i von
i B.47) des Kriteriums
Im folgenden Satz wird die »Notwendigkeit« der Be-d:jllgu:iliB ( o Logarithmus der
PALEY-WIENER dargestellt, indem g.eze!gt wntret,s i tegrabel it
FOURIER- Transformierten kausaler Distributionen 8
notwendige Bedingung)
(B.55) Satz: Das Kriterium von PALEY-WIENER ( e
' it es
Es sei f # 0 eine kausale Distribution aus &', das hei

(B.56) f =10 in (-0 J ’

- jlt
: ann
und die FOURIER-Transformierte J sei aus ;. Dann &4 )

(B.57) mIfl € L |

das heifit, das Integral
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. -
IIn| f(w)|
(B.58) ﬁTl— dw
¢ +w
-

konvergiert. o
(B.59) Beweis:

Wir bilden die Funktion

9r(9) := (*+u?) J(w) .

Tiora = £] Iy:i¢)l

[4

(*+) dp = - [ 194()] d,

o2
ist gp € L,(x, -7). Es soll nun nachgewiesen werden, daB die FOURIER-Koeffizienten
von gp mit positiven Indizes verschwinden. Nach (B.29) ist dann namlich gezeigt, dab
9r Randfunktion einer Funktion aus H, ist:

% = z ¥ ga(y) dy = 2cT{c—;§}k Fw) dw

Die zu
Up(w) = | dw *
k : C+jw

gehorende Zeitfunktion Vg ist fiir k 2 1 ka

usal und beschrinkt, wie man geeigneten
Korrespondenztabellen entnehmen kann. Wegen J € L, ist f aufgrund von Satz (A.108)

und Bemerkung (A.109) stetig. Da f kausal ist, gilt also

fl0) =o0.
Damit folgt

= 2 [ 300 J@) do = tor F 0 Tty at = o

wegen der Kausalitat von f und ¥4, k 2 1. Die Funktion 9 i8t also Randfunktion einer
Funktion aus H,, fir die daher nach (B.30)

In 'gR' € Ll(t, "I’)
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gilt. Durch Anwendung der »Dreiecksungleichung« erhilt man die Abschitzung

@ i (cZ+d?)|

- - 2,2

o +w
2"J' ‘“‘n‘lf(w———)ll dw £ 2¢ J lmlf(W)(c )” dw + 2CJ + &

- c+w? o ctra? - e
. F |n (c2+w2)| dw
_ 2 |
= Llmlog)lldy + 2 | =37

eitsseite.

ichh
Nach obiger Uiberlegung konvergiert das erste Integral der rechten Ung;;l-ch O
Auch das zweite Integral ist konvergent und liefert eine von f unabhangig

. - it
Deshalb muB auch das links stehende Integral konvergieren. Wir erhalten mi
In|f| €L}
das gewiinschte Ergebnis.

(B.60) Bemerkung:
Da sich bei einer Zeitverschiebung oder bei elten die
FOURIER-Transformierten nicht ndert (siehe Tabelle (A.107), Nr. 4, 5), &

i i die auf dem
Aussagen der Sitze (B.46) und (B.55) nicht nur fiir kausale Funktionen, di

i , deren Trager in einem
Intervaill (-co, 0) verschwinden, sondern auch fiir solche i

Intervall (-, ¢,) oder (t,, ) liegen.

einer Zeitspiegelung der Betrag der

i ichen Kriterium
Die beiden vorangegangen Sitze lassen sich nun zu dem eigentliche

zusammenfassen:

(B.61) Satz: Das Kriterium von PALEY-WIENER

i 4 einem ¢, € R gibt
Zu einer reellwertigen, nicht negativen Funktion F € L, F # 0, un o

es eine stetige Funktion f, fiir die
fit) = 0 far 1<ty bzw.firt>%
ch der Funktion F ist,

(B.62)
gilt, und deren FOURIER-Transformierte vom Betrag glei

genas danm, wenn
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*

(B.64) In F € L

ist. a}

(B.65) Bemerkung:

Wegen

ln [FW)|] < [Fw)] fir |Fw)] > 1

und F € L, konvergiert das Integral

T | F(w)]
J dw

6‘2+w2

an allen Unendlichkeitsstellen von F. Divergenzen dieses Integrals konnen nur durch
Integration iiber Nullstellen von F auftreten. o

Im folgenden Satz sollen die Voraussetzungen des Kriteriums von PALEY-WIENER
gelockert werden; es wird nur noch die lokale Integierbarkeit der Funktion gefordert:

(B.66) Satz: Das Kriterium von PALEY~WIENER (erweiterte Voraussetzungen)

Zu einer nicht negativen Funktion F € DL, = L:°° N &', F # 0, und einem ¢, € R gibt

es eine Distribution f mit

(B.67) supp(f) € (-, t;) baw. supp(f) c (tg, )

deren FOURIER-Transformierte vom Betrag gleich der Funktion F ist,

(B.68) Ifl = F

genau dann, wenn

(B.69) mF e Lt

ist.
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(B.70) Beweis:

i ine Darstellung
Nach (A.26) besitzen die Funktionen aus L, €ine
nk
F = (c2+(-) )
mit einer Funktion G € L,. Wegen l
hl
® jIn|G{w)|| 2 im F(w)l + "'J I
J —— dw 3 J
= 2w s
ist die Voraussetzung (B.69) dquivalent 2u
InG € L’; .
Kriterium (B.61)

Y-WIENER-
Auf die Funktion G ist nun das urspriingliche PALE ) € (-0, t,) baw.

mit supp(g
anwendbar. Dieses liefert die Existenz einer Zeitfunktion ¢
supp(g) C (o, ) und

Damit wird die Funktion
= (C2—d%)k g

jerte
je g und hat die FouRIER-Transformie

gebildet. Diese besitzt den gleichen Trager W
k-
7= ()

welche wegen

Nt~ - F
1Fl = (=) 18l = P+ 6

vom Betrag gleich F ist.

i i fiir jede
1 des Beweises gefahrt. Nun wird gezeigt, da8 jed:
Teil des

i O, gibt es
Damit ist der »notwendige« die A o (B.69) folgt. Wegen JeO 8

kausale Distribution f € &' mit ]e O,

eine Darstellung ot
] = (624’(') ) L)

mit § € L,. Wir bilden nun die Funktion
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1] T

s f(w)
fw) = —— = cmiw E
(c+juw)?* {3527} Jw) €L,.

Die zu
hy(w) = (c+jw) ™
gehotende Zeitfunktion h; ist kausal. Daher ist auch
. auc
g =Mh=+f

kausal, da f ebe
) nfall i
Keiterram von ba 8 kausal ist. Auf ¢ bzw. § kann nun wied _
EY-WIENER (B.61) angewendet werd eder das wrspringliche
en, was

In|g| € L}
Liefert. Mit
T 1l f(w)]] @
In] 3 ( -
J d IIn]§(w)]| .2
ey c2eu? w % T3 g dw+k Iae+jul”l
oS cttw 73 —dw
folgt - e
7 et

Da sich die FOURI
ER-Transformierte bei ei .
vom Betrag nicht indert, gilt diese Auls:mer bei Zeitspiegelung und -verschiebung

entweder i € Ur Distri
eder in (oo, ¢;) oder in (¢, age auch fiir Distributionen, deren Trager

) liegt, womit der Satz bewiesen ist
(B.71) Bemerkung; | D

Um eine zielle Di
e Distributi .
istribution f mit einem Trager aus {0, ) hal
spe , ©) zu erhalten, die der

orderung (B68 wi w
Anford ) gerecht ird, kOnnen eiterhin die Fo in (B ) ( )
e .53 ’ B.54

verwendet werden. Di
- Diese bleiben auch
Ebenso behalten die in der Bemerk uter den erweiterten Voraussetzungen giltis.

Distribution ! Giiltigkeit. ung (B.52) gemachten Aussagen iiber die inverse
o
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B.6 Positive Funktionen

e sehr ahnlich, aber doch in eine etwas
n, die im Einheitskreis |z] <1
besitzen (positive Funktionen).
des Realteils, welcher eine
chen Funktionen, die einer
twas von dem der
il stets zusammen

Der Problematik der HARDY-LEBESGUE-Raum
andere Richtung gehend, ist die Frage nach Funktione
a’falytisch sind und dort einen nicht negativen Realteil
Dies ist eigentlich nur die Frage nach dem Verhalten

harmonische Funktion ist. Das Randverhalten von harmonis
erscheidet sich aber e

und Imaginirte
iff der positiven Funktion definiert:

gewissen Beschrinkung unterliegen, unt
analytischen Funktionen aus H), bei denen Real-
betrachtet werden miisssen. Zunichst wird der Begr

(B.72) Definition: Positive Funktionen
Eine in einem offenen Gebiet G der komplexen Ebene

positiv in G, wenn

analytische Funktion £ heifit

(B.73) Re f(z) 2 0 v z€G

gilt.

(B.74) Bemerkung:

Aufgrund des Minimumprinzips harmon
Funktion f nur dann sein Minimum im 1
Funktion konstant ist. Nimmt man also
Funktionen aus, kann die Ungleichung (B.73) durch

en kann der Realteil der
G annehmen, wenn die
d konstante jmaginare

ischer Funktion
nneren des Gebiets
die Nullfunktion un

(B.75) Reflz) > 0 V 2€C

nach der Definition so aussieht, als kiune der Realtail such den Wert Null & )
o

Fir positive Funktionen im Einheitskreis entnehmen wir z.B. ACHIESER / GLASMANN

[1], S. 188 den folgenden Darstellungasatz:
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{B.76) Satz: Darstellung von im Einheitskreis positiven Funktionen

Eine im Einheitskreis |z] < 1 analytische Funktion S 138t sich genau dann durch das
LEBESGUE—STIELTJES—IntegI‘al

AR T
(B.77) @) = ja+ JT_Zdﬂ('ﬁ)

-%

mit einer beschrinkten, monoton wachsenden Funktion 4 und einer reellen Zah!
darstellen, wenn f im Einheitskreis positiv ist. Diese Darstellung ist sogar eindeutig im
Sinne von Funktionenklassen, deren Elemente sich nur auf Mengen vom Maf Null
unterscheiden, wenn die Funktjon 4 durch die Normierung

(B.78) B~7) = p(-x+0) = 0

festgelegt wird. ]

(B.79) Bemerkung:

Spaltet man die Funktion # in einen stetigen, monoton wachsenden Anteil 4, und in

einen singuliren Anteil B, auf, der eine stickweise konstante, monoton wachsende
Funktion (Treppenfunktion) ist,

(B.80) B = py+p,,

so erhialt man durch

(B31) L) = j s ¥
-z 0

-%

eine Funktion aus H,.

(B.832) Beweis von Satx (B.76):

Zuerst wird gezeigt, da8 dje Darstellung (B.77) fir die Positivitit der Funktion f
hinreichend ist. Dazy bildet man einfach

T e
s = g re 1 e,
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1--"'2

. T du(¥)
Re f(rew) = 21_1 J- 1 -2r cOS(¢—¢) + 1‘2
2 1-r
T 1-r - L ux) 20,
1 du(¥) = 37
2 5;- 1+ r)? 147

. tet, dab die

icht wird. Das bedeutet, i
wobei das Gleichheitszeichen nur mit p(r) = 0 erreicht z)=0im
monotone Funktion s im gesamten Intervall

Einheitskreis folgt.

[-7, 7] Null sein mu8, woraus f(

. i kurz
reren Funktion f sei nur
Die Notwendigkeit der Form (B.77) fiir die Positivitat det

. Integral
skizziert: Man definiert die Funktion p, durch das Integr

¢ : L,
#e(9) = 21— [Ref(re"”) dyp , r<
r o achsend ist. Nach dem
w
di der Nicht-Negativitat des Realteils von f monoton
le wegen der Nicht— .
POISSONschen Integral (B.15) gilt
et Re f(re¥) d¥ ,

1
f2) = jIm f0) *+ 57 | TR

-r

T e+ 2
= jIm f(0) + J e - z

-T

dp(¥) -

Aus

i = p(r)
Re f( -x ¢ ist. Mit Hilfe des

umbhingis von I be@;chtilﬂkms ,— 1 aus der

, daB die Funktion p, beim Grenziiberg . ine
et mAuswahlprinz*P“ gelingt & e beschriakten Funktionen #, * t
HELLYschen den, gleichmibig :o gewinschte Eigenschaf
Folge der monoton wachsen: deren Grenzfunktion § die g

sogar eindeutig. Wie
konvergente Teilfolge W‘:fh‘;;u auf Mengen vom Ma8 Null

dann noch die Konstante a Zu
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a = Im f(0) . o

Mit der Transformation des Finheitkreises auf die rechte Halbebene nach (B.36) kann

man nun unmittelbar einen Darstellungssatz fiir Funktionen formulieren, die in der

rechten Halbebene positiv sind. Zunéchst wird aber in der Darstellung (B.77) eilf
moglicher Sprung der Funktion 4 an der Stelle y = ¢ abgespalten, da dieser Punkt bei

der Transformation in s = oo ibergeht. Wegen der Normierung (B.78) springt die
Funktion s an der Stelle ¥ = -7 nicht,.

1-2 O Y,

(B.83) 16 = javpe—0-. [ 27 gy,
Iz o €Y -2

mit

(B.84) 8 = %{ px)-pu(x-0) } .

Die Transformation deg POISSON-Kerng entnehmen wir (B.45) und mit der Abbildung
2 = yp(¥) nach (B.38) wird 4 in die Funktion

(B.85) p(2) = u(y)

transformiert, die auf dem unbeschrinkten offenen Interval] (-, ) = R definiert ist,
aber wie u beschrinkt und monoton wachsend ist.

(B.86) Satz: Darstellung von in der rechten Halbebene positiven Funktionen

Eine in der rechten Halbebene Re

(s) >0 analytische Funktion f 138t sich genau dann
in der Form

®© . _ 2
(B.87) f8) = ja+ s+ J' Mfs - e

n ,
)

-~00

mit einer beschxinkten, monoton wachsenden Funktion p und reellen Zahlen @, 5,
wobei g 2 0, darstellen, wenp J in der recht
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(B.88) p(-0) = 0 D
festgelegt wird.
(B.39) Bemerkung: Randfunktionen positiver Funktionen
Definiert man die Funktion
(B.90) fiw) = fld+jw) = f(s)

Geraden,

A - Achse parallelen
mit den Werten der Funktion f auf einer der lmagm:re—n» 0, also bei Anndherung an
kann man die Frage stellen, ob fiir den Grenzibergang ’

die imaginire Achse, eine Grenzfunktion

(B.91) fe = io Ja

ibergang als

. man den Grenzu ;

. erneinen, wenn shnlicher Funktionen

existiert. Man muB diese Frage v . Ginne gewdhnlic '

1s;kler ise, das heift fiir jedes einzelne w, oder 1m- Sinn kin " urch (B.91) eine

tx:m tweise, Gash aber zu Distributionen uber, ‘den. Man betrachtet
trachtet. Geht man ) irt werden.

Grer:chu:ktion - besser Grenzdistribution - erﬁi’; (B.87) ergibt sich

kmiBigerweise Real- und Imaginiteil getrennt.
zZweckmiBigerwe

2
«® ].03 - ¢ d(n)
pd + IRG{ } g

(B.92) Re f(s) = Re f(d+jw) = I
2
® nz + C - dp(n) )
= ﬁ“"] @2-w)? +d
Der Grenziibergang fiihrt dann zu : -
2()) ¥ _'
Re f‘ = ¥ (c +
(B.93) :

ion wird
il der R‘ndfunkﬂon
bt. Der Realteil ingrteil erhilt man
I eitang von o a0gl Fiir den Imaginirt
wobei p’ die Distributionsabl

bestimmt.
also unmittelbar durch die MaSfunktion #
punktweise .
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{B.94) Im fp(w) = a+ V.P.T

-0

c

2
+ Rw

dp(£2)

Dieser ist eine gewéhnliche Funktion. Dj
Raum &'.

e gesamte Distribution fgr ist aus dem

o

Symbolverzeichnis

Aufgefiihrt sind die verwendeten Symbole, die itber ihre lokale Verwendung hinaus
Kapitel- iibergreifende Bedeutung besitzen. Verwiesen wird jeweils auf die
Definitionen oder die wichtigsten Verwendungen. Symbole mit allgemein ablicher
Bedeutung wie etwa R fiir die Menge der reellen Zahlen sind zwar aufgefiihrt, tragen

aber keinen Verweis.

Symbol Bedeutung Verweis
¢ HERMITEscher Anteil von & (3.51)
8, (3.55)
f‘o lokal integrierbarer Anteil von @ 8?3;
a, singuldrer Anteil von &

b kausale Wurzel von a, Kern des Funktionals 7y (6.26)
b (6.23)
¢ positive Konstante (B.37)
c Menge der komplexen Zahlen

o Raum der unendlich oft differenzierbaren Funktionen

d Realteil von s

d Differentialoperator

d, Differentiation nach der Zeit (62)
D dissipierte Arbeit (6.5)
? Operator der Abbildung y — D (6.50)
D Inverse der Kapazitatsmatrix (A1)
EY Raum der finiten Grundfunktionen (A.13)
v Raum der Distributionen (A.36)
D Raum der finiten Distributionen . (A37)
D, Raum der linksseitig finiten Distributionen (A.38)
o Raum der rechtsseitig finiten Distributionen

e Basis des natiirlichen Logarithmus @.1)
¢ i~ter Einheitsvektor (2.22)
E  innere Enecgi (6.9

E, wiedergewinnbare Arbeit
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Symbolverzeichnis

TS —g-.eg:a-mb QQWH"!}?,‘,\;\\\\

o

]

N~

o

Distribution
analytische Funktion, rationale Funktion
Matrix rationaler Funktionen (4.1)
(4.3)
(B.17)
Randfunktion (B.25)
Zahlerpolynom von & (6.60)
Koeffizientenmatrix von F (6.71)
FOURIER- Transformation (A.92), (A.99)
Gebiet
Systemoperator der Abbildung z — y (2.3)
Gewichts~ oder Nachwirkungsdistribution des Operators G (3.10), (3.15)
Systemoperator der Abbildung »— (3.36)
Gewichts- oder Nachwirkungsdistribution des Operators H (3.35)
HARDY-LEBESGUE-Raum (B.16)
Imaginarteil
imaginire Einheit
Induktivititsmatrix (6.80)
LAGRANGE-Funktion (6.79)
LAPLACE-Transformation (A.111), (A.114)
Raum der absolut integrierbaren Funktionen (B.1)
Raum der lokal ahsolut integrierbaren Funktionen (B.7)
Raum der lokal absolut integrierbaren Funktionen quadratischen
Wachstumsverhalten

(5.104), (B.47)
LEBESGUE—Raum

(B.1)
mit dem Ma8 u gewichteter LEBESGUE-Raum iiber dem Gebiet G (B.1)
positive Werte der Logarithmus-Funktion (5.106)
negative Werte der Logarithmus-Funktion (5.107)
Zahlerpolynom von A (6.89)
Massenmatrix (4.41)
Koeffizientenmatrix von M (6.89)

Zahl der (auBeren) generalisierten Koordinaten und Krifte (Zahl der
Eingangs- und AusgangsgroSen) @
Menge der natiirlichen Zahlen

Menge der natiirlichen Zahlen einschlieBlich Null

Menge der langsam wachsenden, unendlich oft differenzierbaren Funktionen
(A41)
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i i nktionen
lut integrierbaren Fu
DL[ Menge der langsam wachsenden, lokal absolu (A28
. 4.104)
i i Ubertragungsfunktion (
b Zahlerpolynom einer rationalen (4.1 37)
Po (6.65)
P Koeffizientenvektor von p (2.16)
auflere Leistung
? Operator der Abbildung v — P (6.1)
Py Dissipationsleistung
74 Operator der Abbildung v — Py (2.22)
Py Wirmeleistung (6.21)
Py verlorene Leistung "
Py Operator der Abbildung v — Py . Ktion (4.1
q Nennerpolynom einer rationalen Ubertragungsfun: (4.137)
(6.66)
o
q Koeffizientenvektor von ¢ (4,4; §
Q Durchgriffsmatrix 52,33)
r .
r Koeffizientenvektor von r (4.151), (6.36)
R
R Menge der reellen Zahlen
R, Menge der positiven reellen Zahlen E:jg;
R Widerstandsmatrix y 1,11)
R .
R, Residuum '
mation
Re Realteil iable im Bereich der LAPLACE-Transfor 223
S komplexe unabhangige Varia o
N Entropie ionen o
S Raum der schnell fallenden G'nmt?funkt.lo ( (:25{
& der temperierten Distributionen 5
Raum de nlassiger Erregungen Bereichs (5.26)
S, erweiterter Raum zu]issiger Erregungen des FOURIER- (A1)
é: erweiterter Raum z
e Trager 4.87)
¢ Zeit .
T konstante Trmformﬂiom' rll: o34
u aligemeine unabhangige Variab indigkeiten (5.34)
alisierten Gesch .
e ot besiglich des Zeitpunkts !
optimales
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14 verlorene Arbeit (5.1)
y Operator der Abbildung v — V (5.1)
V.P. CAuUCHYscher Hauptwert eines uneigentlichen Integrals
w gesamte Arbeit (2.18)
w Operator der Abbildung v — W (2.18)
z Vektor der generalisierten Koordinaten oder Arbeitsvariablen (2.1)
v Vektor der generalisierten Krafte (2.2)
z komplexe unabhangige Variable
z Zustandsvektor (6.62)
Z Scheinwiderstand
« positiv definite HERMITEsche Matrix (4.72)
o Nullstelle (4.109)
B; Polstelle (4.109)
¥ Abbildungsfunktion des Inneren des Einheitskreises in die rechte komplexe
Halbebene (B.37)
TR Abbildungsfunktion des Einheitskreises auf die imaginire Achse (B.38)
é DIRACsche StoBfunktion (A.19)
8, Realteil von o (4.117)
€ Realteil von j; (4.117)
¢ komplexe unabhingige Variable
Cup quasistationire Funktion (5.36)
n stetige Funktion (4.56)
(2] Temperatur (2.23)
K konstanter Vektor aus C*
A Ubertragungsfunktion der LAGRANGE-Funktion (6.89)
b (A.126), (B.77)
B (3.61), (4.49)
v (A.127)
v (3.64)
x Kreiszahl
p (B.87)
P (4.41)
I’ stetiger Anteil von p (4.67)
P, Treppenanteil von p (4.67)
o Sprung- oder HEAVYSIDE-Funktion (A.64)
x Entropieproduktion (2.23)
T Zeit
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DE € X eSS S

\.«\.«3-8
E s e |

-~

+

«

— — — — p— — o~ —
. . . . P . . . .
. S - -

Imaginirteil von a (4(;13
Grundfunktion (B.39)
Winkel (2.26)
freie Energie . (6.59)
Ubertragungsfunktion der wiedergewinnbaren Arbeit Ey (3.73)
unendlich oft differenzierbare Ausblendungsfunktion (A 4)
Grundfunktion .
Frequenz

Frequenz o (4.117)
singulire Stellen von &, Imaginarteil von B; (A.49)

komplexe Konjugation

Transposition

Transposition und komplexe Konjugation (4.41), (A.51)
totale Konjugation ) (4.59)
rechtsseitige Abschneideoperation bei ¢ (3.40)

linksseitige Abschneideoperation bei 0
FOURIER - Transformierte
LAPLACE-Transformierte
Differentiation nach der unabhdngigen Variablen
Differentiation nach der Zeit

bei Raumen: n—faches kartesisches
bei Raumen: m—faches kartesisches
(Matrizenraum)
Produktfunktional zwischen Distributione

(A.92), (A.99)
(A 111), (A.114)

Produkt mit sich selbst (Vektorraum)
Produkt von (+)" mit sich selbst

n und Grundfunktionen
(3.45), (A.14)

(2.20)

abgeschnittenes Produktfunktional (520
n

inneres Produkt im Raum &, (5.27)

inneres Produkt im Raum &,

en oder komplexen Zahl, EUKLIDische Norm eines Vektors

Betrag einer reell

HILBERTsche Matrixnorm (5.22)
Norm im Raum 6, (5.28)
Norm im Raum 6 (8.2), (B20)
Norm im Raum L, oder (3.46), (A.76)
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