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EINFIHRUNG

Die allgemeine L8sung einer homogenen linearen gewdhnlichen
Differentialgleichung mit konstanten Keoeffizienten P{d/dx)u = o

hat bekanntlich die Gestalt

u{x) = b3 X A (x) » X ER,
P(z)=0 “

wobei jedes Az ein Polynom in x € R ist, dessen Grad echt
kleiner als die Vielfachheit der komplexen Nullstelle = des
Polynoms P ist. Die natfirliche Verallgemeinerung dieses Dar-
stellungssatzes auf Systeme linearer partieller Differential-
gleichungen mit konstanten Koeffizienten wurde erst um 1960
von L. Ehrenpreis [8] entdeckt: Zur Fourierdarstellung einer
L3sung des homogenen Gleichungssystems bendtigt man nur jene
(komplexen) Frequenzen, die in der Nullstellenvarietdt des
Zur Differentialgleichung gehdrigen Symbols liegen. Dies 1{sgt
Ehrenpreis' Fundamentalprinzip. Es ist ein ungleich tieferes
Ergebnis als sein Spezialfall fFiip gewdhnliche Differentiai-
gleichungen. Ein Beweis des Fundamentalprinzips wurds veon
L. Ehrenpreis in {8] skizziert. Detaillierte Beweise wurder
einige Jahre spdter gegeben von L. Ehrenpreis [9] und von
V.P. Palamodov [20]. In einer schwicheren Form wurde es von
B. Malgrange [18] gezeigt. Wesentliche Teile des Beweises
des Fundamentalprinzips vereinfachte L. HSrmander in [15] mit

Hilfe seiner L3sung der Cauchy-Riemannschen Gleichungen.

Es ist das Ziel der vorliegenden Arbeit, eine Versicn des

Fundamentalprinzips zu formulieren, welche vollstdndiger ist



als die von Ehrenpreis und die von Palamadov gegebene, und

diese zu beweisen. Um das Ergebnis vorstellen zu k&nnen und
€s zu erldutern, ist es hilfreich, zunichst einige Eigen-

schaften der Exponentialpolynomlﬁsungen der zu betrachtenden

Gleichungssysteme aufzuzeigen. Dazu sei P = (Plk) eine

L xK-Matrix von Polynomen Plk in n komplexen Verdnderlichen.

Betrachte den zu P assoziierter Differentialoperator P(3/3x),

der €° in €' abbilder, £ - c®(R™y |

Fir jedes z €T" und jedes

A = (Al,..,AK) EE[X]K hat man

K
ZX _ Zx
k§1 Plk(a/ax)e Ak(x) = . Ak(a/az)e Plk(z)

[TIE o BN

4
<

fir alle x € K" yng 1 - 1,...,L. (z ist ein zu x dualer Vektor).
3 b

Daher gilt

P(a/ax)ezxA(x) =0

fiir alle x € R"

genau dann, wenn

A03/32) YPU2)F(z) = o

flir alle f eq[z]".

n . . .
Ist z € T gegeben, so gibt es 2y diesem Gleichungssystem

genau dann eine nichttriviale Lésung A, wenn z ein Elemen+t

der algebraischen Varietit

VP(3/3x)) = {2 € T Rang ®P(2) <k}

ist (siehe (1.3)). Eine fir die Integraldarstellung der allge-

meinen L&sung von P(3/3x)yu =

0 ausreichende Teilmenge der Menge
aller Exponentialpolynomlésungen u(x)

= Ala/az)e™™ = o ¥a(x),
x € Rn



P(3/8x) gehdrigen Noetherschen Operators. Dies ist eine endliche
Menge W von Paaren (A,V), A = A(z,3/08z) ein Differentialopera-
tor mit Polynomkceffizienten, V c V(P(3/5x)) eine algebraische

Varietdt, welche f EI{z]K nach der Vorschrift

£ w» (Af!V)(A,V)EJV

abbildet und mit P{3/3x) durch

(*) tP E[z]L = Kern N

verkniipft ist (vergleiche (1.2) mit M = °p E[z]L).
Solch ein N gibt es immer (siehe (1.10)). Ist (A,V) Element
eines zu P(3/3x) gehdrigen Noetherschen Operators, und ist

du  ein RadonmaR auf V, so ist

u(x) = [ e®* Alz,x)du(z) , x € R,
V

auch eine L&sung ven P(3/%x)u = o, falls dies Integral In fK
koenverglert. Ehrenpreis folgend, garantiert man die absclute
Konvergenz solcher Integrale durch eine Wachstumsbedingung

an |cdu| , welche durch die analytisch-uniforme Struktur X von
€' gegeben wird. ¥ ist eine (iber den Satz von Paley-Wiener

“.

fir €' gewonnene) Familie positiver, stetiger Funktionen auf T,

INTEGRALDARSTELLUNGSSATZ oder FUNDAMENTALPRINZIP:

Ist N ein zu P(3/3z) gehdriger Noetherscher Operator, sc
lost u € £k:die Gleichung P(3/3x)u =0 genau dann, wenn gilt
ulx) = ) [ atz,3/3z)e%% du(A V)(Z)’ x €_Pn,
(A, VIEN V ?
mtt RadommaRBen du(A V) auf V, die fiur ein ¢ €KX die 4b-
>

it ®d <+ ' I .
schidtzung £ | u{A,V/’ o erfillen



Dieses Ergebnis wird in Kapitel 4 nicht nur fiir €, sondern

allgemeiner fiir lekalisierbare analytisch-uniforme Riume

(LAU-R3ume) bewiesen. (Wegen der Benutzung der Fouriertrans-

i 1 3 1 - 3 son-
formation werden in Kapitel 4 andere Bezeichnungen insbe

dere D = ~v=T 3/3x an Stellie von 3/3x - verwendet.) Gegeniiber

anderen Darstellungen des Fundamentalprinzips enthdlt die hier

gegebene die folgenden Verbesserungen, Erstens, die Noether-

- a hd > .n—
schen Operatoren mit denen es gilt, erhalten hier eine ef

fache algebraische Charakterisierung (im wesentlichen (%)),

welche im Grunde optimal ist, Zweitens, durch eine neue Defi-

der Kohomologie mit Gewichten auf natlirliche Weise in Ehren-

Preis' Zugang zur Fourier Analysis integriert.

Im Mittelpunkt des Beweises desg Fundamentalprinzips steht

eine Untersuchung des Verhaltens eines zy P(3/3x) geh&rigen

Noetherschen Operatops N auf Riumen garnzer Funktionen mit

Wachstumsbeschrénkungen.
(3.11)) erweitert die Qultj
K

L ~wertige ganze Funktionep

Der globale Divisionssatz (siehe
gkeit von (#) von Polynomen auf

£: Es ist f € Kern o genau dann

I

enn £ = py flr eine EL-wertige Eanze Funktione h. Das
Wachstum von ih| auf €% xann zudem durch das Wachstum ven [£]

beschrdnkt werden. Der globale Interpolaticnssatz (siehe (3.12))
erméglicht es, gy j

ild von
edem Element (AflV)(A,V)EuV des Bildes

W ein Urbilg unter & zy finden, desser Wachstum auf T" durch
das Wachstunm der Af auf y beschrinkt wird. Die Wachstumsbe-~



dingungen werden durch logarithmisch—plurisubharmonische
Gewichtsfunktionen gegeben,

Der globale Divisionssatz und der globale Interpolationssatz
folgen aus ihren (semi-)lokalen Analoga (siehe (2.28) und

(2.31)) und aus dem Verschwinden der ersten Cechschen Koho-
mologiegruppen mit Koeffizienten in der Kerngarbe bzw. in

der Bildgarbe des durch CUp definierten Homomorphismus. Die
semilokalen Ergebnisse fiir allgemeine Noethersche Operatoren
lassen sich zuriickfiihren auf die fir zwei spezielle Typen
Noetherscher Operatoren, ndmlich den Polyncmrelationen auf

t" und den Restriktionen auf (irreduzible) algebraische
Varietdten. Fir diese beweist man dle semilokalen Divisionssitze
praktisch genauso wie die Kohdrenzsdtze von Oka und von Cartan.
Verkirzt gesagt gelingt die Reduktion der semilcokalen S4tze

fir allgemeine Noethersche Cperatoren auf diege Spezialfille
durch folgende Vorgehensweise. Ein allgemeiner Ncetherscher
Operator ist dquivalent zu einer Vereinigung sogenannter nor-
maler Noetherscher Operatoren (siehe (1.28)). Ist W eir

normaler Noetherscher Operatcr bezliglich einer irreduziblen
algebraischen Varietdt Vv <™ und ist t eine auf einer Kugel
definierte holomorphe Ek-wertige Furktion, so interpoliert

man (nach Hermite-Lagrange) f auf V (bis zu genigend hoher
Ordnung) durch eine holomorphe Funktion g, welche ein Polynom

in den zu V transversalen Variablen z" ist (z - (z',z") EIkxmn—k)_
Die Operation von  auf g ist dann auf den Keceffizienten von g

durch die Multiplikation mit einerp Polynommatrix.ﬁ'gegeben (ver-

gleiche (1.25)).



Ay ist der lokalkonvexe Raum allep ganzen Funktionen f,

welche im Unendlichen o(¢$) sind flir alle ¢ E]i Aus dem globa-

len Divisionssatsz und dem globalen Interpolationssatz erhdlt

man eine geometrische Beschreibung des Quotientenraumes

K,t L
“"I/ P,G(K.

Dieser wird durch N linear und hom&omorph abgebildet

auf einen Unterraum eines Raumes stetiger Funkticnen, welche

auf den zu & gehdrigen Varietiten definiert sind (siehe (4.29)).

Wesentlich hierfilir ig+ die Lokalierbarkeit von K - eine Ver-

trdglichkeit von ¥ mit der Familie aller logarithmisch-pluri-

subharmonischen Funkticnen auf g7, Die Laplace- (oder Fourier-)

Transformation bildet g' linear und hom8omorph auf J%Z ab.

Unter dieser Abbildung entsprechen den linearen ste

tigen
Funktionalen auf’&%/tPﬁi

genau die Lésungen von P(3/3x)u = o.

Die behauptete Integraldarstellung dieser ist dann eine Konse-

Guenz der Rieszschen Darstellungssatzes.

Diese Arbeit ist aufgeteilt in vier Kapitel - ein algebraisches,
Zwel funktionentheoretische (lokale und globale Theorie), und

ein distributionentheoretisches. Jedem Kapitel folgen Anmer-
Kungen. In diegep werden vor gllen Literaturhinweise gegeben.

Die nier gegebene Ubersicht ber die Literatur ist jedoch

keineswegs vollstindig,



~J

licher Tatsachen iiber den Polynomring Tlz] - Uber seine

Ideale und den zu ihnen gehbrigen Varietiten - vorausgesetzt,
Insbesondere wird hiufig, ohne es explizit zu sagen, der
Hilbertsche Basissatz iiber die endliche Erzeugtheit der Ideale
in Clz] (und der Untermoduln von E[Z]K) benutzt. Aus der
Funktionentheorie mehrerer Verinderlicher werden Ideen und
Methoden der Theorie kohidrenter Garben von Qka und Cartarn,
Hérmanders L&sung der Cauchy-Riemannschen Differentialglei-
chungen und einige Tatsachen {ber plurisubharmonische
‘Funktionen benutzt. Des weiteren wird die Kenntnis der
Schwartzschen Distributionentheorie vorausgesetzt, insbeson-
dere die des Satzes von Paley-Wiener-Schwartz, Aligemeiner
werden in dieser Arbeit Beurlingsche Ultradistributioner stu-
diert. Dieses bringt keine zusdtzliche Schwierigkeiten mit
sich, wenn man akzeptiert, daB fiir diese 4hnliche Sdtze geltern
wie flr Schwartzsche Distributioner. Wegen der hier betrachre-
ten Riume werden funktional-analytische Kenntnisse iban

Fréchet-, (DF)- und (LF)-Riume vorausgesetzt.

Die hier gegebene Darstellung des Fundamentalprinzips ist

in einigen Einzelheiten rneu. In seiner Hauptaussage und in
seiner Beweisstruktur folge ich aber dem von L. Ehrenpreis
{81, [9] und von V.I. Palamadov [20] gegebenen Vorbild. Die
"cohomology with bounds" von L. Hirmander [15] habe ich ohne
groBe Verdnderungen Ubernommen. Wihrend meiner Beschdftigung
mit dem Fundamentalprinzip lernte ich die Arbeiten wvon

J.-E. Bjdrk [6], [7] und von 0. Liess [17] zu diesem Thema



kennen. Diese halfen mir sehr, das Fundamertalprinzip besser

. . b A |
z2u versiehen, und sie haben daher auch die vorliegende Arbelt

splirbar beeinfluBt.

Auf das Fundamentalprinzip haben mich vor Jahren Dr. 0. von
Grudzinski und Prof. Dr. J. Wloka (beide in Kiel) aufmerksam
gemacht., Einen hilfreichen Hinweis - hier verwendet in Ab-
schnitt 4.2 - verdanke ich Prof. Dr. K. D. Rierstedt.

Herrn Prof. Dr. K. Deimling m&chte ich fiir sein férderndes
Interesse an meiner Arbeit herzlich danken.

Frau W. Kropp bin ich dankbar fiir die Sorgfalt, mit der sie

das Manuskript getippt hat.



KaprTeL 1

NOETHERSCHE OPERATOREN ZU POLYNOMMODULN

In diesem Kapitel wird die Theorie Noetherscher Operatoren
Uber dem Polynomring C[z] entwickelt. Noethersche Operatoren
werden in Abschnitt 1.1 eingefihrt. Das Hauptergebnis ist

der Satz (1.1o), welcher besagt, daR® jeder Untermcdul von
E‘D[z]K durch einen zugehérigen Noetherschen Operator beschrie-
ben werden kann. Einige Beispiele hierfilir sind im Abschnitt
1.5 zusgearbeitet,.

In Vorbereitung zu dem Ubergang vom Folynomring €lz] zum

Ring der Keime holomorpher Funktioneng4é, zejEn, welcher In
quantitativer Form im Kapitel 2 vollzogen wird, werden im
Abschnitt 1.4 Primidrzerlegungen Noetherscher Operatoren (dual
zu Primdrzerlegungen von Moduln) und normale Noethersche

Operatoren studiert.

1.1 Noethersche Operatoren

Sei K€MN. Sei A = A(z,3/32) ein K-tupel von linearer Differen-
tialoperatoren mit Polynomkoeffizienten auf I". A& bildet den
fodul {Ii[z]K in offensichtlicher Weise in der Polyrnomring T[z)

ab. Sei V eine algebraische Untervarietit des L. Man nennt
(V) = {fellz]; £]V = o}
das Verschwindungsideal von V. Betrachte die Abbildung

A,V el — erz1/10),

fr—>Af + I(V).



Sei W eine éndliche Familie soicher Abbildungen (A,V). Der

Durchschnit+

(1.1) M Kern (a,v)
(A, V) e

K
ist im allgemeinen kein Cfz]-Untermodul vor C{z}l". Jedoch,

wenn mit (A,V) guch Stets die Kommutatoren mit den Kcordina-

ten, ([A’zl]’V)""’([A’Zn]’V)’ zu N gehdren, dann ist (1.1)

ein Tlz]-Modul. In dep Tat, man sieht leicht ein, daf unter

dieser Bedingung (1.1) abgeschlossen ist unter der Multipli-

Kation mit den Koordinatenfunktionen z 27

1:--. n'

(1.2) DEFINITION. Eine endliche Familie A von Operatoren
== NZTION,

(A,V) E[Z]K* T{zl/1(v) heifdt Noethevracher Operator, wenn
mit (A,V) € auen ([A,zjl,V),...,([A,zn],‘w’) €N gilt. Der

E[z]—Untermodul Von EE[z]K

MN: N Xern (A,V)
(A, Vyew
ist der zi g gehirige Modul,und W st grn Bu M gehiriger

AN

Joetherschap Operatop,

Man nennt

Der Xommuta-

c)/aci- Fiihrt man die Differen-

tialoperatoren A(a), GGINE, mit den Symbolen

(z,z) = SGA(Z,Q)/BQG

ein, so sieht man, daB zy einem

Noetherschen Operator & mit
(A,V) auch Stetg (A(G)

W V) Eehdrt,

Unter der AbschlieBung €ines Operatops A 2u einem Noether-



scien Operator durch Hinzunahme der (A(a),V) dndert sich

die Menge der in (1.1) enthaltenen Moduln nicht.
(1.3) LEMMA. Ist M c E[z]K etn Llzl~Untermodul > und Zgt
(A,V) ein COperator mit (A, VIM = o, so ist auch (A(a),V)M - o,

7
o EJVO.

Beweis. Die Produktregel

]I—-\

- (3% /5 2%) - a9 5y

=4

(1.4) A(g-f) =
a

gilt fir alle g € Ciz1, fe E[z]K. Sei z € V. Betrachtet man
(1.4) mit g(z) = (z—zo)a in z = z,»> S0 erhdlt man

A8 = 0, £ e, wie behauptet. ®

Man sieht leicht ein, daB (A,V) = (B,V) genau dann gilt,

wenn sich die Koeffizienten der Differentialoperatoren A yund

B nur um Elemente aus I(V) unterscheidern. Die Ofdnung ord(a,y)
wird daher definiert als das Maximum aller 'a| fiir welche

der Koeffient von 3%/3z% nicht zu I(V) geh&rt. Lie Grdnung
eines Noetherschen Operators W ist das Maximum der Ordnungen

seiner Elemente.

BEMERKUNG. Die in (1.2) gegebene Definition Noetherscher QOpe-

sZ_ ab. Unter einem

ratoren hdngt von den Koordinaten CPETEREE

linearen Koordinatenwechsel ist ein Noetherscher Operator
ebenfalls zu &dndern. Jedoch bleibt fiir Jedes V der von allen
(A,V) € & aufgespannte endlich dimensionale C-Vektorraum un-

verdndert.



RS (O
(1.5) DETINITION. Sei M ein Cl{z]-Untermodul von T[z]". Die

. ; m
- n a1 P R - mer.ol o \-« =0 —
Menge aller Punkte 2 € T, filr welche Ai: Dimer=-

Vektorraumes {£f(z) EEK

3 £ €M} echt kleiner als ¥ ist, nennt

. .. , 7 M.
man die charakteristische Varietdt V(M) des lUntermoduls

K
Die charakteristische Varietdt ed

ines Untermoduls von ([ z]

. o n .
ist eine algebraische Untervarietit des T, Dies folgt aus

dem

(1.6) SATZ. Sei M c:E[z]K ein Ilz]l-Untermodul. Dann gilt:

(7) Die charakteristische Varietdt V(M) stimmt mit der
Nullstellenvarietat des Ideals 4 Uberein, welches aus
allen Fferiz) mit f-t[z]Kc:M besteht,

(17)

Sei A ein Differentiqloperator (mit K Komponentewn)

mit Polynomkoeffizienten. V, set die Nullstellenvarie-

tdt der Koeffiaienten von A. Ist V eine Untervarietdt

des " mit (A, VIM = Os 8C it Vo< V(y) u VA'

Die Varietaten eines Noetherschen Operators sind also im

“esentlichen ip derp Charakterigtis

Schen Varietit des zugehdri-
gen Moduls enthalten,



{(1i1) Zu z €V “Vy gibt es eine Komponente A. von A und ein
(o}

a € Nn, so daf Ai (z,2) nur ein Polynom in z ist, welches

in 2 nicht verschwindet. Da (0,...,f,0,...) € M fiir alle
f €J,erhdlt man nach (1.3) (Aga)f)(zo) = o, £f €J. Also ig+t

z € V(J) wie behauptet. m

1.2 Taylorentwicklung bezligiich einer irreduziblen algebra-

ischen Varietdt

IstM ¢ (Il[z]K ein T{z]-Untermodul, und ist J das nach (1.56.1)
zu M gehdrige Transporteurideal, so gibt es nach dem Hilbertschen

Nullstellensatz ein s €N mit T(V(M)S  cg, a.n.
TNt pra1¥ e m

Unter der Voraussetzung, daB V(M) irreduzibel ist, wird im
folgenden gezeigt, daR jedes f E(E[z]K eine Taylorentwicklung

in Potenzen geeigneter Elemente des Primideals I(VIM)) besitzt.
Dies wird es spidter ermdglichen, die Zugehdrigkeit von f zum
Modul M {iber Relationen zwischen den Koeffizienten der Tavlor-
entwicklung von f bis zur Ordnung s zu entscheiden.

Die analytische Handhabung von Varietdten wivd ermdglicht durch
den Normalisierungssatz. Dieser klassische Satz wird hier
ledigiich zitiert. Beweise findet man z.R. in Bidrk [ 7 1,

S. 116 ff, oder - flir Keime analytischer Varietiten - in

Gunning -Rossi [ 11], ITI. A.

(1.7) BOKMALISIERUNGSSATZ. Sei V § I eine irreduzible algebra-

ische Varietdt. Nach einer geetgneten linearen Koordinaten—

transformatton gilt dann mit den Koordinaten z,,...,an:
e



(%) Fir ein o < k < »n gilt I(V) ﬂE[zI,...,zk] = o.
(i7) Es gibt fur j = I, nk Polynome Pj €T(V) 05[51;'-13k+j

die in zk+j normiert sind und dewen Grad in =z, . gleich

K+
dem Polynomgrad ist. P, ist zudem irreduzibel.
(1171} Eg gibt Polynome QI""’Qn—k € I{V) der Form

Qj(z') = A(z'}zk+j —Tj(z',zk+]), z' = (2],..,3k), fir

J = 2,00 ,n~k. Hier st A die Diskriminante von 4; = Py
als Polynom in FCE
(iv) V=& “ (o} = n le(o)—A {e) = N Q;f {o)=-A “{o).
- )
(v) V. = V=A “(o)

. . . : V.
o tst eilne offene und dichte Teilmenge von

Die Projektion z - T(z) = z! regtringiert zu einer e-—

; k =1 :
facken Uberlagerungsabbildung von V_ auf £ -6 “(o). Hier

18t e depr Grad von PI.

. . . ) ; ] o . - 1.
Jie Dimension vop V ist dim V = k. Nach (v) ist dies wohl
definiert,

. . . . . . . Tetat
Die Dimension einer belleblgen algebraischen Variet

1St das Maximum der Dimensionen der irreduziblen Komponenten

diegern Varietsdrt,

Sel jetzt v § ¢ eine irreduzible algebraische Varietdt, welche

Zusdrtzlich nach (1.7) normalisiert ges Schreibe 2z = (z"z")a

3 t - " o 01 .Q n-k
mit oz _(21""3zk): Z :(Zk+1’-.azn)) undQ :Ql Tesen n_k
fir a € Ng-k- R sei ein {2’} umfassender Unterring des Ringes

k
A(Q) aller holomorphen Funktionen auf 8 flir ein Gebiet g « T .
(In diesem Kapitel wird nur R = Clz'] bendtigt werden.)



(1.8} LEMMA. Zu jedem s €W gibt es ein £ €N, so daB man jedes

£ € Rl[z"]) entwickeln kann in

(1.9)  a(z')b.p(z) =

j a a 7
Folzt)-29 g%z + 3 ko (219%z), = e,
lajcs = %7 k1 la|=s+7 °
J <e
mit fo € Ry, ko € RIz"1. Ist 3%/3z7% = o
n—k

auf VN oxz" ", la| €8, so st faj = o fir alle |a| <s, j<e.

Beweis. (Vergleiche [ 111, III. A. 5.) Es geniigt, (1.9) flr

§ = 1 zu bewelsen, denn dann folgt das Lemma mit einer Induktion
Uber s, wobei man die Induktionsvoraussetzung auf die h, arzu-
wenden hat,

Sei f € R[z"]. Sukzessive Polynomdivisionen - zuerst durch Pn_k

und zuletzt durch P1 - im Polynomring R[z"] filihren zur Dar-

stellung

f =g+ X hiP

mit h. € R[z"], g € R{z"]. Der Polynomgrad von g ist durch
n-k
I (deg Pi—i) beschrdnkt. Flr ein gentigend groBes t €N sind

1
g' = At'g und P; = At-Pi Polynome in A-z". Nun kann man

~ ! . 1 .
Al=") zk+j durch Tj(z ’Zk+1) +Qj(z) ersetzen und erhdlt

n-k
Y'oog" sy 3 ' -Q.
g g - g] QJ:
n—
P! = P+ 5 P!.:Q.,
i 1 5 13 1

b]

wobel g", P; ER[zk+1]. Da PE auf Vv n (g xmn“k) verschwindet

gent nach (1.7.ii) ,(1.7.v) die Polynomdivision P;.:/Q1 in



R[2k+1] Ohne Rest auf. Dividiert man auch noch g" durch Q1

in R[zk+1I 80 erhdlt nan zusammenfassend
+ e-1 ] n—_k
A f = g fj'Zk+1 + i hi'Qi >

mit fj € R und (neuen) hieR{z"] .

Es ist noch die Eindeutigkeit der £qs Zu zeigen. Sei

3% f/32"% - o auf Vv pn g x gtk fir alle |a|<s. Angencmmen es
i

wdren _icht alle f,+ gleich Null. Dann gdbe es ein

B = (Bl""’Bn—k) und ein 1 < e mit f31¢ 0, so dabk Bi bezlig-

: . . .- : n-k
lich dieser Eigenschaft minimal ist.

Auf Vvn g xT gelten

dann die Gleichungen

0 = B (At-f)/az"B

B j o "B
ba faj(a (zk+1Q VAT AL

i

3 B.a nB
I fajzk+1(a Q" /32"

wobel die Summen (bep lal <5, B, < 0y und 0 g2 j < e zu er-
strecken sind. w . = . S reinfachen
Lre Iy egen 3Q3/32k+i 6ij A, 1] > 1) vere

sich diese Gleichungen ayuf Vo ogaxghTk

a4

o = - ¥ . j
b j<e faf k41

B B,ot...+p
=+ _ 1 2 - .
mit q = (3Q1/sz+ ) A n-k Da g # o auf VO’lSt daher
L f,.(2").,3

= I’l"k
s ce B3 k+1 o auf Von Qx0T .

1

Wegen (1.7.v) nmissen folglich alle f j verschwinden. Dieser
Widerspruch zyur Annahne wa* © beendet den Beweis des Lemmas. ®
o



1.3 Existenz Noetherscher Operatoren zu Untermoduln von CC[Z]K

Sei M c {L"[z]K ein Clz]-Untermodul.

(1.10) SATZ. Es gibt einen zu M gehérigen Noetherschen Operator .

Fir diesen Satz werden zwei Beweise angegeben. Tn einem wird
die charakteristische Varietdt von M geelgnet stratifiziert,
wdhrend im anderen eine Primdrzerlegung von M benutzt wird.
Beide Bewelse basieren aber auf dem foiéenden Ergebnis, das

die Existenz eines "fast" zu M gehSrigen Noetherschen Operators
g g %

sichert,

(1.11) LEMMA. Die charakteristische Varietidt V = V(M) von M
set irreduzibel. Dann existiert ein Noetherscher Operator N
mit M C %M und V(T) § V. Hier ist V(T) die Nullstellenvarietdt
des Trangporteurideals

7= {g € [lz]; g-M, = M.

Hewels. Wie bereits am Anfang des Abschnittes 1.2 bemerkt

wurde, gibt es ein s € N mit

(1.12) 1% eppz1®en.

Im Falle V = C" kann man s = o wihlen.

Sei F der Quotientenk®rper des Integritidtsbereiches Tl[z]/I(V).
F enthdlt T(z') als Unterkdrper. Zu f € T[z] bezeichne f die

Klasse von f in F. Die Abbildung



. K Ka a n, "
DS-I{Z} » F s I w (37F/37 )lalssa

mit ¢ = #{a € Hg—k;[a| < s} ist Clz'l-linear. Nach (1.8)

und (1.12) ist fir ein t € N
t
(1.13) A"- Xepn Dst:M.

Der von D (M) in pko erzeugte F-Untervektorraum ist Durch-

schnitt endlich vieler Hyperebenen. Ohne Einschrdnkung kann

man annehmen, daf diese Hyperebenen durch Funktionale

rfo 3 (0 .) X éaj-wa. € F
J a5 1

mit (gaj) € {D[z]KU gegeben werden. Setzt man

a a K
gaj-(a fj/az" ), T € Tlz]

2

und definiert dann w als den von allen (A,V) erzeugten

Noetherschen Operator, so ist M o My. Ferner sind die von DS(M)

und Ds(Mvv) in pK° erzeugten F-Untervektorriume gleich. Man

kann daher zy gegebenem f ¢ MW’ endlich viele foa00,f, €M,

wl,...,wL € C{z] und y €Tlz)-1(V) finden mit

o
wl(a fl/az"a) € I(V)‘E[Z]Kalal =S

L
(1.14) 9= (2% /520%y _ ¢

Weiter unten wird gezeigt, dap hieraus die Existenz von

'€ C[2]-I(V) und T € M folgt mit

(1.15)

2% ~
a V- DY er(u) oK

az" s IQISS.



Mit (1.13) folgt hieraus AtW'f € M. Da My endlich erzeugt
ist, erhdit man wie belauptet schlieBlich ein g € T-I(V).

Es ist also noch (1.15) aus (1.1%) herzuleiten. Nach (1.8)
darf man annehmen, daf ¢ und alle ®, bereits zu E[z‘,zk+1] ge-—
néren. Nach dem foligenden Lemma stimmen ATw und ATml,
T = 1+2+...+5, modulo I(V) mit gewissen ' Em[z’,zk+1]-I(V)

bzw. wi EE[z',zk+1] iberein, die
Blw'/azi+1 €EI(V) , 1 <4 <s,
i i
alml'/azk+1 €T(V) ,1<i<s,1s51c<5,
~ L
erfillen. Mit diesem ¢' und mit f = I @/f, folgt (1.15)
1 -~ L

sofort aus (1.14), denn die Differentiationen Kemmutieren

hier mit den Multiplikationen mit %' und wi.

* !
(1.16) LEMMA. Sei ¥ € [l=a ’Zk+1]' Dann kann man v, € E[z’,zk+j]

As+I. g+

, — = . >
rekursiv durch wo = ¥ und ¢s+? ¢S ta .y QI s, 8 2 o,

. . . .
§0 mit geeigneten a_,, €Ll 533471 definieren, dag

Z i < <
(1.17) 3 ¢3/83k+1 € (V) , 1515 3.

Bewels. Zur Abklirzung setze 3:3/32k+1. & ist die Diskriminante

von Q,. Also gibt es F, G € E[z',zk+1] mit
(1.18) A = Fr3Q, + 6Q,.

Sei ws bereits definiert, so da® (1.17) gilt. ws+1 werde

- . . o1 s+l,.s+1
definiert durch die Wahl as+1 = -0t F ]

offenbar alws+17€I(V), 1<4i<s, und 357

¥o). Dann gilt

1
L € I(V) folgt aus



s+1 _ A.S5+1_s5+1 Ao y5t1 d I(V)
3 Vgyq 5 A 3 v +(S+1)as+i(c\e1) mo

_ +1 S+1_ . s+ 1 T(Y)

= (3 v (A (F 3Q,) ) mod I

= o med I(V).

Folglich ist Lemma (1.18) - und damit auch Lemma (1.11) - be=-

wiesen. g

Nun zu den Beweisen von Satz (1.10).

Erster Beweis. {(Via Stratifizierung.) Aufgrund des Hilbert-
=Sz tel bewels.

N, Kem,
schen Nullstellensatzes gibt es ein N € N mi+ vy -clz] «

. : . . . . - ad ).
Sel V eine irreduzible Komponente ven V(M) mit dim V = dim V(M

N K -
Man kann das Lemma (1.11) auf den Modul M + I(V) -C[z] anwen

dan und erhdlt einen Noetherschen Operator cﬂ} und ein Ideal

V

o 1 . T N_ K H )CV.
Tvc:EEZ] mit M ¢ }ﬂV s TV ﬂyv e M+I(M)7T[z]", V(TV ¥

v
V) <dim V. Sei # dije Vereinigung aller J(V
wobel V die irreduzible

£ ist alsgo dim V(T

n Komponenten maximaler Dimension von

V(M) durchliuft. T geq das gréfte Ideal in I[z) mit

(1.19) T'M

- M.

Dann ist v(T) VM) und

(1.20) 4din VIT) < din V(M) .

Nach denm Artin-Rees Lemma (siehe z.B. Atiyah, MacDecnald [1 ],
Corollary 1c.1e) gibt es

ein n ¢ ¥ mit

M.v n Tmom[z]K c T.M.;V .



Mit dem Modul M* = M + Tm-E[z}K folgt dann unter Benutzung

von (1.19) und (1.20)

My N M* = M,

dim V(M*) < dim v(M).

Also folgt der Satz mit einer Induktion liber dim V(M). Den

Induktionsanfang dim V(M) = o erhdlt man scofort aus (1.11). ®

Zweiter Beweis. (Via Primdrzerlegung.)

Ein Untermodul MOC:E{Z]K heift primér, wenn fiir alle f'EE{z]K

und g €C{z] cus gf €M folgt: f €M oder g GI[Z]KCMO fir
ein m € N. Es ist wohlbekannt (siehe z.B. [1]), daR jeder Unter-
modul von E[z]K endlicher Durchschnitt primdrer Moduln ist. Es
ist daher kelne Einschrinkung anzunehmen, daf M zusdtzlich

primdr ist. Dann ist V(M) irreduzibel, denn das Radikal

Rad (M) = {g€Tlz]; gmﬂf[z]K c M fir einm € N}

ist ein Primideal, und es ist Rad(M) = I(V(M)) nach (1.6.1)
und dem Hilbertschen Nullstellensatz. Nach Lemma (1.11) gibt
es einen Noetherschen Operator # und ein g € C[z]l-Rad(M),

so dalk M c M

¢ und g M, < M. Weil M primdr ist, muB M = M,

4

sein. MW

#, sei der Ring der Keime holomorpher Funkticnen in z €.

Die Abbildung von f € L[z] auf seinen Keim y_(f) € JZ, z € T,

ist eine Injektion. Ist M ein C[z]-Untermodul von E[Z]K so

bezeichne M_, z € ¢”, den von M in u4§ erzeugten :42—Untermodul,



)

und sel der Clz)-Untermodul

Msif e’y () e M fir alle 2 € €
Eine Konsequenz

der Existenz Noetherscher Operatoren ist

die

K .
(1.21) FOLGERUNG. Fyyp alle Tlzl-Untermoduln y c Tl=z1" gilt
LULGERUNG.

M= M,

Beweis. Mcl ist trivial. Aufgrund der Produktregel (1.4)

annulliert ein Noetherscher Operator fir M ebenfalls M. Also

ist MM wie behauptet. =

1.4 Primire und normale Noethersche Operatoren

Noethersche Operatoren ung Untermoduln von £Iz]" kann man als

zZueinander dyale Objekte ansenen, Einer Vereinigung Noether-

scher Operatoren entspricht eip Durchschnitt zugehdriger

1. 5913 Sal T » .
(1.223 CEFINITION Sei W eip Noetherscher Operator und
sei Ve eine irreduzitie algebraische yar

letdt. N heiBt
primér bezy lich
g VO genau dann

s wenn V = VO fir alle (A,V)EWN
gilt,



Jeder Noethersche Operator ist offenbar Vereinigung primdrer
Ncetherscher Operatoren.

Gerechtfertigt wird die Definitien (1.22) durch den

(1.23) SATZ. Ein Llzl-Untermodul M < EIZ]K ‘8t genau dann
primir, wenn es einen zugehdrigen primdiren Noetherschen

Operator N gibt.

Beweis. Aus dem zweiten Beweis filir (1.10) geht hervor, dalk
jeder primidre Modul M einen zugeh&rigen primiren Noetherschen
Operator besitzt. Zum Beweis der anderen Richtung sei W ein
bezliglich V primdrer Noetherscher Operator. Seien f € EE[ZIK
und g € T[z]-I(V) mit g-f € M, gegeben. Weil Rad(M,) = I(V)

ist, genlgt es, f € My 7u zeigen. Die Operatoren

A@ = {(a,V) €A ord (A,V) £ 31, § = ©,1,2,..

sind ebenfalls Ncethersch und primir beziiglich V. Flir gentigend
groBes J ist ij =N .

Es ist f € M\N' ; denn g-Af = A(g-f) € I(V), (A,V) EW%,

G
impliziert mit g ¢ I(V), daB Af € I(V).

Sei (A,V) € N . .. Nach (1.u4) ist
J+1

gAf = Algf) — ¥ 2 (%/32%alPgy .
a$o o

Weil (a(®)

, V) EuVj fir a # o, folgt unter der Indukticns-
voraussetzung f € M‘ﬂj wieder g-Af € I(V). Wie cben schliefit

man hieraus f € M . Dies war zu zeigen. =
Wj+1



Im Hinblick auf die semllokale Theorie in Kapitel 2 ist es
zweckmdfig, spezielle primire Noethersche Operatoren einzu-
fihren - die normalen Noetherschen Cperatoren. Diese werden

sich {iber eine Variablenreduktion als (im wesentlichen)

dquivalent zy Polynomrelationen erweisen.

(1.2w) DEFINITION. Sel V < i eine irreduzible algebraische
SR INLLION,
Variet3it.

. . . .. - 'Siert.
V seil wie in Normallslerungssatz (1.7) normali

- - - ; a l
Ein beziiglich vy Primdrer FNoetherscher Operator AN heit norm

g . - T erator
beziiglich v (ung Seiner Normalisierung), wenn fir jeden Op

(A,V) € ¥ dep Differentialoperator A nur Differentiationen

nach den

(zu v transversalen) Variablen z" = (

Z)en‘t"
Z ’1'1_

kel?0 0"
hdlt.

BEMERKUNG. Der in Lemma(i.ii) konstruierte Noethersche

Operator ist normal.

erring L[z'] auf,

50 sieht man, dag w eine Clz')-lineare Abbildung definiert
X

Tlz1™ = (2lz)/1(yyyN

f (Af+I(V))A
Hier ist N = ¥ N

ieben, pie Ordnu

Ng von W sei <g.
Setze g =§{qg ¢ R?:ki

la| < s}.

Nach (1.8) sing fir ein hin-
reichend groges t € N die folg

enden Abbildungen

1 und T
wohldefiniert.



- 25 -

o (erz1/TevnN s rrzt1e

ho+ (V) - T[z] - (h s esh )

e-1
e-1 ]

t, ] . N
Wwenn A h g hj 201 ET(V)-Tl=z]".

¢ Cl2]® - riz'1%¢

f & (faj)’

t. _ P N s+, . K

wenn A f - L fcxj Zi 41 Q7 € (T(V) y-tlzl.

lajss,] <e

Die Abbildungen t und t_ sind glz"]-1linear.

(1.25) LEMMA. FEs gibt genau eine Clz'l-lineare Abbildung N',
welche gegeben wird durch Multiplikation mit einer Polynommatriz

uber Clz']l, so daB das Diagramm

@[z]K A (E[z]/I(V))N

b )

H ?
rlz1%€0 £ prgr19¥

kommutativ <st. Es Tst zudem %ﬂ': Kern N' o T
Beweis. Aus der Darstellung (1.9) folgt Kern 1 & Xern No= My
denn at gehdrt nicht zum Primideal I(V). Folglich ist W' wohl-
definiert und Ll{z'J-linear avf dem T{z'}-Untermodul

Bild t_ < Trz'15¢%. Fir

- 3 a K
y —|0[§s 3 <eg°j “k+1 ¢ e ol
=5,



t eN
mit (g ) €r[z'1¢ed ist T (g) = at(g 2 ek (g)€a-Tlz']77,

o

und daher

W'(At(gaj)) eat gz,

Also kann man W' zu einer T{z']-linearen Abbildung auf ganz

E[z']KeU fortsetzen. Eine solche Abbildung wird offenbar durch

eine Polynommatrix gegebern.

Aus der Injektivitit von « folgt noch Kern #'o t. = M

Zu jedem bezliglich einer irreduziblen Varietdt V primdren

Noetherschen Operator kann man einen dquivalenten normalen

Ncetherschen Gpera+or konstruieren. Dies geschieht durch

Elimination zy v tangentiagler Ableitungen.

(1.

i~
fen]

) DEPINITION, Sei v er® eine algebraische Varletdr.
SEILNITION,

> - . - m n b RS f:_-
Ein linearer Vifferentialoperator T auf € mit Polynomkoeffi

zlenten heip: tangential zu v wenn T(T(V.,) c I(vy.

BEMERKUNG. Summen und Nacheinanderausfﬂhrungen tangentialer

Differentialoperatoren sind wieder tangential.

. n . . . i
Sei1 Ve pun wleder eine irreduzible und nach (1.7) normali-

slerte algebraische Varietit. pie Vektorfelder B/le,---a a/azk

sind im allgemeinen noch nicht tangential zy V. Jedoch gilt

das



(1.27) LEMMA. Es gibt ein m € I und su V tangentiale Differen-

tialoperatoren erster Ordnung Liseesly mit

m
[L.,2.] = 6...A" , 1

< 1 i <
;2% i3 £ 4, § £ k.

(éij = Kroneckersymbol)

Beweis., Zundchst werden Vektorfelder Li mit Li(Qj) €IV,

1<1<k, 1< j<nk, liber den Ansatz
2 In

Li = A“(3/92.)+ L

k+1

konstruiert. Seien F und G wie in (1.18).

c..(a/azj), 1 <1ix<k,

Mit Ci,k+1 = =A -F'(anlazi) erhZlt man

11

Li(Qy) A'(aQi/azi)'(A_ - 0Q Az 1))

11

A(an/Bzi)'GQ1 €I(V).

Fér j = 2,...,n-k hat man
- Al - .
Li(Qj) = A (BQj/Bzi) Ci,k+1(3Tj/azk+1) +A Ci k43"
Also erhdlt man Li(Qj) = 0, Wenn man
5 k4] = - A(an/aZi)-F(aQi/azi)(aTj/32k+1)

setzt. Die so konstruierten Differentialoperatcoren Li bilden
folglich das Ideal (Ql""Qn-k) in I(V) ab. Nach Lemma (1.8)
ist fiir ein geeignetes m € N,m 22,
Am-Q'I(V) (== (ng--- :Qn_k) .
Die durch Li(f) = Li(Am-zf), f € T[z], definierten Differential-

cperatoren Li leisten das Gewlinschte. =

(1.28) SATZ. Sei A ein beziglich V primidrer Noetherscher
Operator. Dann gibt es einen beziglich V normalen Noetherschen

Operator N , so daB mit geeigneten zu V tangentialen Differen-



° . ; .,, L
tialopergtoren TAB und TBA die folgenden Darstellungen
gelten:

(i) atg - 5 7,50 B
BEX,

fir alle 4 €N und oin t €.

-]

(Z7) B = % TBA

AeN

fir alle B E‘ﬁ;.

o 4

Insbesondeye 1Tat M046 = %V'

Beweis, Analog zur Aufspaltung z = (z2',2") werden auch Multi-

a

indexes g € Ng geschrieben o - (la'ya™). Ist A = ¥ 4y 3/3z" ,
a

8C bezeichnet

@(A) = max {lat]; 2, ¢ T(v)}

dle Ordnung von (A,V) bezliglich dep Variablen z' . Die Ordnung

‘

W bezlgliich 2 eines beziiglich vy Primdren Noetherschen Opera-

Tors ist das Maximum der Ordnungen

te (A,vV).

w(A) {iber a1} seine Elemen-

Seien m ynd Li wie in Lemma (1.27). Seien A W&, W%s-"

die kleingten (priméren)Noethepscher Operatoren mit den
Eigenschaften

N = falls 2 ww)

]
und
Aew. 5w < Bew,,
{ﬁmﬂ“-—-i-}E{L-[Az]-AE (A) = j+ile ..
]+1 1 i 2 i b ‘/Vj‘}_i) [ =] J
Es gilt

(1.29) w(vfj) = ] flir alie j.



Dies folgt mit einer Induktion iiber fallendes i, wenn gezeigt
ist, dap gilt
1 k

m__ .
(1.30) w(ATA e i Li[A,zi]) < ]

flir alle A mit w(A) = j+1. Seit A mit w(A) = J+1 gegeben.

Wegen m(Li—Am(B/az.)) = 0 ist

i
m 1 k
0 (a"A- i Li[A,z.1)
1 X
< max (J,u(A- :]T:i"i (B/BZi)[A,Zi])).
1 k
Das Symbol des Operators A gETey ? (3/3z.) [A,2.] ist
1 K a
(1.31) Alz,g) - == I . == (z,z) + B(z,z)
7+1 1 3z,
1 1
mit (B) £ j. Betrachtet man in (1.31) die in z' = (C“"°"Ck)

vom Grade J+1 homogenen Terme, so erkennt man mit Eulers Formel,
daf diese verschwinden. Es folgt (1.30) und damit auch (1.29).
Insbesondere ist ¢ﬁb beziglich V normal.

Es geniigt offenbar, (ii) fir JVj+1 und w% anstelle von # und

#, zu beweisen. Nach Definition von ch gilt die Darstellung
(1.32) B = )3 S.,0A
EA
A.€ﬁ3+1

mit tangentialen Differentialoperatoren Spa fUr eine .NE erzeugen-
de Menge von B € A@. Kommutiert man (1.32) mit den Koordinaten
ZyseeesZy 8O hat die resultierende Gleichung wieder dieselbe
Gestalt. Also gilt (1.32) fiir alle B E‘ﬂ}.

Aus der Definition der Folge (W%) folgt sofeort, daB (i) gilt,

wenn man & und # durch JE+1 und W} ersetzt. Dies impliziert



L
S

ber Induktion fiber fallendes j bereits (i), denn zu jedem

tangentialen Differentialoperator T und zu allen m,s €N
mit s 2 m+ @(7) gibt es einen tangentialen Differential-
operator T mit A®T = Ta™,

Wegen 4 ¢ I(V) felgt M, = M sofort aus (1) und (ii). =
W Wg

1.5 Einiqe Beisgiele

Un zu einenm Untermodul M E[Z]K, der von Pi”"PL €M Uber E[z]

erzeugt wird, einen zugehdrigen Noetherschen Operator zu kon-

n
struieren, sind hinreichend viele L8sungen A = Alz,3/3z), z €T,
von

.n
(1.33) A(Q)Pl(z) = .. o=z A(G)PL(z) SR, fir alle o €N

zu finden (vergleiche (1.3) und (1.8)). Dies ist ein homogenes

3 L s . - . - . e 7.
lineares Gleicnungssystem v die Koeffizienten von A im Punk

Es hat nichttriviale L8sungen nue for z€V(M) (siehe (1.6.11)).

Weil ein zu M gehdriger Noetherschep Uperator existiert, geniig
€35, flr ein hinp

relchend grofes d € N alle L¥sungen A,z von (1.33)

mit  ord(A) < g 2U finden. Dies Gleichungssystem ist endlich-
dimensionai .

(i) Hauptideale in T2}, Sei p € T{z}, Ps o. P besitzt eine
Primfaktorzerlegung

m
= 0.1, . L ] _
P = Qi tee QL > Wy €N, Qi irreduzibel,

Fir das von p rZeugte Hauptideal (py o L[z} ergibt dies eine



Primdrzerlegung (vgl. [25]}, Ch. III, § 9)

m m
(P) = (Qli)n... anLL).

N €T"-0 heiRft nichtcharakteristisch fir P, falls N keine Null-

stelle des Hauptteils von P ist. Mit der Notation

-4
(3 D)(2) = & f(z+,\N)]}\:O s
z EEn, f holomorph, N € En—o, erhdlt man dann:

(1.34) SATZ. Sei N €L"-0 nichtcharakterisch Fiir P. Die Menge
aller (az,ng(o)), 2 = 1,...,L und m::o,...,mi—J,ist etn zu (P)

gehdriger Noetherscher Operator.

Beweis, Sei f € T{z] gegeben mit a?legl(o) = o fir alle i und m.
Da die Q; irreduzibel sind, heift dies, daf a;’;fe (Q.) fir alle

1 und m. Ist f = g-Q?, g €Clz], so folgt g E(Qi) wenn 3§f € (Qi)’
denn 3,Q. € (Q;). Mit einer Induktion Uber m erhdlt man alio

M
f e (Qil) fiir alle 1i. =

BEMERKUNG. Ist P € CT[z] ein Polynem vom Grade £ 2, das nicht
Quadrat eines linearen Polynoms ist, so ist aufgrund des obigen
Satzes (Id, P—l(o)) ein zu P gehdriger Noetherscher Operator.

Diese Situation liegt flir n 2 2 zum Beispiel dann vor, wenn

yi 2 2 2 2 2
P = z1 +...+ zi, F = 31+"'+Zn—1'znund P = z1 + ... +zn_1 +C Zn’

¢ # o wennn = 2, Dies sind die Symbole des Laplaceoperators,

des Wellenoperators und des Wdrmeleitungsoperators.

.. 2 e - . -
(2Z) Dae Ideal M = (zg,zlzz) € E[zj,zgl. Die ailpemeine L&sung

2

5 und

A der Ordnung < 2 des Gleichungssystems (1,33) fliir P1 =z
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= 22 ' = = = o} ist
P2 24z, in 2z = (21322) EV(M) {22

_ 2 2
A = aQO(B /821) + aio(a/azi) + as
wenn Zi* O und

= 2 “Vez2) va, (3732 +a
A = a;4€3 /321322) +a01(8/322) +a20(8 /821) 246 1 o0

(Id,V(M)), ((az/azlazz),{o}) und ((3/92,),10})

erzeugte, Dieg folgt mit der (PPimér~)Zer1egung

_ 2 2
M = (22) 0(21?22)
2) dag Verschwindun

gsideal von V(M) ist und dah

1°%5] offenbap genau dann zum Igea] (zi,zg) gehdrt,
wenn gilt

£(o) = (38/3z ) (o) - (3£/32,) (o) - (azf/aziazz)(o) = 0.

T %> Py o= oz, F3 7 217>
Pu 22‘2123, welche bezﬁgllch dep charakterlstlschen Varietat
VIM) = {5 - Z, = 0} norma} sind:
A(z,a/az) = ¥ a..(z) ai+j 13
145 <q i { /321822).
Da zizg €M fiip i+i> 7

Die Gleichung o =
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(1.35) A = a(a/azi) +a23(a/822) + b auf v(M).

Der wvon

(Id,V(M)) und ((3/9z,) +z3(3/822),V(M))

erzeugte (normale) Noethersche Operator JVA hat nichtkonstante

Koeffizienten. Es ist M = M, - In der Tat, man hat flr jedes
o
fe Clz,,2,,2,]) eine Taylorentwicklung

f =1 + f

00 10721 Y fo1%) mod(Pl,PZ,P )
mt foo’ f1o= f01 € E[za], so daBk fOO - o aus (Id,v(MNf = o
und . = - . -
flo tz, fol = 0 - also f10-21 +f01-z2 = fo1 Py aus

((a/azl) +23(a/322),V(M))f = o folgt. Insbesondere ist M primdr

(siehe 1.23)).

Sei W ein beliebiger zu M gehodriger Noetherscher Qperator.

Betrachte die Noetherschen Operatoren o = [A,V) € V = VO

und uf’ = N - N, . Wegen V(ng) S v(M), gibt es ein £ € Tz}~

I(VIM)) mit £-Tlz] CMW . Dann ist f.MJ( < M und folglich

H” c M, denn M ist primir. Also ist auch l ein zu M gehﬁrigel‘

1
Noetherscher Operator. dVl ist primdr.
Dem Beweis von (1.28.ii) folgend, erhdlt man jetzt €

r-lineare Kombination endl

inen Operator
.. ich
A wie in (1.35) mit a ¢ I(V{M)) als e

vieler Operatoren

(3/3z, yi-rr...18, z3],...} sZ5 1 (3 Klame"“’wl = J)_

mit B € vf c#. (Die Dlskmmnante s+ o 15‘: hier eine Konstante .

us, Dxff rentlaloperatoren mat -

konstanten Koefflzlenten besteheno.
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(iv) Der Pall n = 71, Sei P eine K x K-Matrix von Polynomen in

einer komplexen Variablen z € T. Die Determinante von P, det P,

sei nicht identisch Null. Ein Noetherscher Operator fiir den

Clz)-Modul M ;= tP-E[Z}K c {E[Z]K wird dann gegeben durch die

Menge aller (A,{zo}) mit
m-1 .
A = T A.(d/dz)]
o J

. K . .
wobei 2z, €L und Ao""Am—i € L die Gleichungen

m=1 ., s
(1.368) & Ao p(3-10, yit, | o flr k = o0,1,...,m-1

o (3-1O1 o j
erffllen. (m > o ist die Ordnung der Nullstelle det P(z_ ) = o.)
In der Tat

K
» hach der Cramerschep Regel ist det(tP)-E[Z] « M,

und die Gleichungen (1.38) besagen gerade, dan fip k= 0,1,...,m-1
k t )
A((z zo) P)(zo) = o.

Dem Spezialfaii P(2) = z.1-q, Q eine konstante Matrix, ent-

spricht per Fouriertransformation ein explizites gewShnliches

fir alle z ¢ T, so ist T die charakteristische Varietdt des

t
Moduls M := P-tfz)le trz)K, Mit linearer Algebra gewinnt man

K )
A€ LCI2]0, A+ o, nit (A, DIM = o, wie ig (iii) wird es im allge-

Koeffizienten geben,
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(iv) Der Fqll » - I. Sei P eine x * K-Matrix von Polynomen in

einer komplexen Variablen z € . Die Determinante von P, det P,

sel nicht identisch Nuylil. Ein Noetherscher Operator fiir den
C[z]-Modul M :- tP-I[.‘[z]K = Hl[z]K wird dann gegeben durch die

Menge allerp (A, {z_}) mit

m-1 .
A= F A.(d/dz)]
o ]

. K .. .
wobei zZ, €T und Ao,..,Am_1 € T die Gleichungen

-1 .
(1.38) 5 AL __ G-k, R O 0,1,...,m-1

x  (I-K)T o j
erfiillen. (n » o ist die Ordnung der Nullstelle det P(ZO) = 0.)
In der Tat

K
» ntach der Cramerschen Regel ist det(tP)-E[Z] c M,

und die Gleichungen (1.36) besagen gerade, dag fiupr k - 051,...,m-1
K t i
A((z ZO) . P)(zo) = o.

Dem Spezialfalj P(z) = z-1-q, Q eine konstante Matrix, ent-

Spricht per Fouriertransformation ein explizites gewShnliches

fir alle z ¢ T, so ist die charakteristische Varietidt des

t
Moduls M := P‘m[Z]LC E[Z]K. Mit linearer Algebra gewinnt man

A€ trz1X, A, o, mit (A,pyM -




Anmerkungen

(a)

(b)

()

Statt des von Ehrenpreis verwendeten Begriffs "multipliecity
variety" wird hier - Palamocdov foigend - der des Noether-
schen Operators verwendet. Mit dieser Namensgebung bezog
sich Palamodov auf die Noetherschen Bedingungen in der al-
gebraischen Geometrie. Diese geben ein geometrisches Kri-
terium fiir die Zugeh&rigkeit eines Polynoms zu einem ge-

gebenen Ideal.

Die von Ehrenpreis [9], Palamodov [20] und Bj&drk [7] be-
trachteten multiplicity varieties bzw. Noetherschen Ope-
ratoren sind im wesentlichen normale Noethersche Operatoren.
In [21] gibt Palamodov eine Klasse von zu einem Modul ge-
hérigen Noetherschen Operatoren an, welche allgemeiner

als die in [20] betrachtete ist. Die Definition dieser ist
jedoch noch an die Vorgabe einer Primirzerlegung des Moduls
gekniipft. Man erkennt aus der Theorie primdrer Noetherscher

Operatoren in Abschnitt 1.4, daf eine solche Einschridnkung

nicht nétig ist. 0. Liess [17] definiert die Zugeh®rigkeit

Noetherscher Operatoren zu Moduln iber den Divisionssatz
in den Keimen holomorpher Funktionen. Diese Definition ist
im wesentlichen Huqivalent zu (1.2). Dies kann man aus (1.21)

und dem (semi-)lokalen Divisionssatz in Kapitel 2 ersehen.

Mit den offensichtlichen Anderungen gilt der Normalisierungs-
satz (1.7) auch fiir irreduzible Keime analytischer Varieti-

ten. (siehe Gunning-Rossi [11}, IIT.A. oder Narasimhan [19],




(d)
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Chpt. III). Ferner ist der Ring *é der Keime holomorpher
Funktionen in z € ein Noetherscher Ring, filir den der
Nullstellensatyz gilt. Also ist die in Kapitel 1 gegebene

Theorie auch fiip u+? an Stelle von [lz] giiltig.

Palamodov wies darauf hin, daB man nicht zu jedem Modul
einen Noetherschen Operator mit konstanten Koeffizienten
finden kann. Das in (iii) gegebene Beispiel ist eine
leichte Modifikation seineg Beispiels in [20], Chpt. IV,

§ 4,49, Plausibel wird dieses Ph&nomen, wenn man bedenkt,
daB sich der Keprn des linearen Gleichungssystems (1.33)

im Raum der mSglichen Koeffizienten dep Differentialopera-
toren A in Abhdngigkeit von gz €V "drehen" kann. Eine voll-
stdndige L8sung von (1.33), d.h. ein Noetherscher Operator,

kann daher nicht nur konstante Koeffizienten haben.



KAPITEL 2
SEMILOKALE DIVISION UND INTERPOLATION

In diesem Kapitel werden Noethersche Operatoren und Moduln
Uber dem Ring der Keime holomorpher Funktionen .42 im Punkte
z € C" untersucht. Im Divisionssatz (2.28) wird gezeigt, daf
der zu einem Noetherschen Operator & gehdrige Aé-Unter—
modul Kern # < “4'}2( mit dem von MJ/ in ..4}2( erzeugten A-Z-Unter—
mcedul Ubereinstimmt. Das zweite Hauptergebnis ist der Inter-
polationssatz (2.31). Dieser besagt im wesentlichen, daB jeder
Noethersche Operator eine - geeignet beschrdnkte -~ Rechtsin-
verse besitzt.

Das Studium allgemeiner Noetherscher Operatoren wird {iber das
primdrer auf das normaler zuriickgeftthrt. Die Untersuchung
letzterer reduziert sich auf die spezieller normaler Noether-
scher Operatoren, nidmlich den Polynomrelationen auf t” (in
Abschnitt 2.2) und den Restriktionen - auch hdherer Ordnung -
auf irreduzible algebraische Varietdten (in Abschnitt 2.3).
Der Reduktion primdrer Noetherscher Operatoren auf normale
dient die Untersuchung tangentialer Differentialoperatoren

in Abschnitt 2.4,

Alle Ergebnisse dieses Kapitels werden in der bendtigten
semilokalen Fassung bewiesen. Das heift, es werden auf Kugeln
definierte holomorphe Funktionen konstruiert - die Reprédsen-
tanten der Keime - mit geeigneteﬂ Abschdtzungen der Kugel-

radien von unten und der sup-Normen der Funktionen von oben.




- 38 -

2.1 Der Vorbereitungssatz

Inm Folgenden wird eine qQuantitative Fassung des Weierstraf-

schen Vorbereitungssatzes flir durch Polynome gegebene Keime

gezeigt,

Sei PET[z] ein Polynom vom Grade m. P sei nichtcharakteristisch

beziiglich des Vektors (o,-..,o,i), d.h. der Koeffizient von

zﬁ sei nicht Nuyl1,

Mit U wird hier und ip ganzen Kapitel immer eine Kugel im c"

mit Mittelpunkt z(y) ep" und mit Radius o < p(U) < 1 bezeichnet.

k
Liegt eine Varlablenaufspaltung z = (z',z2")y, z'€ mk e T

fiir z = (ZI,..,Zn) € ¢ Vor, so sind U' uynd U- = zu gegebenem

U ~ Kugeln in den z'-bzy. 5. i~Variablen mit Radien o < p(U'"),

p(U } <1 ung Mittelpunkten Z(U') = ', C(Ui) =% wobei
S = L(U),.

(2.1) LEMMA. Sei p €L[2) wie oben gegeben. Dann gibt es

Konstanten ¢ C >0, 80 dgs €8 z2u jeder Kugel U Kugeln U' und

Un mit 'x gy n= U, und

PV 2 0tu)/2 , ooy 2e(o(U)/(1¢ |5 ()| ) )"

gtbt, mit denen Folgendeg gilt:

(i};_ﬁalP(a)l.z;c-p(U) fir alle s €y’ 3 .
{id)

... }E& 9£bt Palynome P &nd P in der Yariablen z, mit

_.'Koeffiszenten in u‘(b ), 20 daB P =p.pt P+ hat 1
- ale ﬂuxrenden Koeffiatentcn '
*!_;ffx 's*) liegen ¢




- 39 -

Fir alle =2 € U' x Un

[P (z)| 2 ptu)™.
(i22) Zu jedem f € A(U) gibt es holomorphe Funktionen
g€ A(U! XUn} und ko""’hm+w1 € A(U') (m* = Polynom-
grad von PY) mit
f=Pg+h In"y' xU,
_1 .
wobei h(z) = Mg h (z')2. Die Funktionen g und
0 my=1-j n

hj sind hierdurch eindeutig bestimmt.

Ferner gelten die Absgchédtzungen

sup |gl < e-p(u)™".

sup|fl,
U’xun U

sup |h.|< e.p(U) ™™ -(1+[c(U)[)j'sup|f|
gt 4 U

fir § = O0s1ycee,m ~1.

Beweis. Setze ¢ = ¢(U) und p = p(U). Die Radien p' = p '(U)
und p_ = p(U ) werden so bestimmt, daB mit einer Konstanten
€, >0 gilt

f 1] 1 - - -
(2.2) z'€U', P(z'yz) = ow o -z -z |]22C0

Mit einer Linearfaktorzerlegung folgt hieraus

(2.3) |P(2',z )] 2 co” fir z'€U',|p -z -z 1] <Cho,

und insbesondere folgt dann (i).

Flir z' = ' zeigt man (2.2) mit einem einfachen Uberdeckungs-
argument: Weil das Polynom P(t',") im Kreisring o/2 < |z -c 1<

< 3p/4 h8chstens m Nullstellen hat, findet man einen Radius o_,



_L}o.._

p/QSgHIS 3p/% , so dap (2.2) in diesem Fall mit 2C1 = 1/8(m+1)

erfillt ist. Setzt man Pl = clp/(1+]g]))™ <p/4 mit geniigend

kleinem ¢ » ¢ in die Mittelwertabschétzung

IP(Z"Zn)—P(Q"Zn)l5‘3(1+|Cl)m-1'o', lz'-z'| <o, z € U,

ein, so erhilt man, da (2.3) fir z' - ' bereits bewiesen ist,

' 1
(2.4)  |p(z ,zn)-P(c',zn)l< EIP(C"zn)’

fir alle z'¢ ur, ]pn-Izn-cnllrsclo.

Nach Halbierung von C1 folgt (2.2),

Die Anzahil m, (bzw. m_) der Nullstellen von P(z',-) in Uy

(bzw. E-ﬁn) ist unabhédngig von z! €U'. Dies folgt aus (2.4)

mit Rouché'g Theorem. Ohpe Einschrénkung kann man annehmen,

daB der Koeffizient vop 20 in P gleich 1 ist. Ist gcl ein

Gebiet und ist P die Menge der normierten Polynome vom

Grade m in einep komplexen Variablen, welche keine Nullstellen

auf dem Rand von g haben, so ist Jedes symmetrische Polynom

in den in g enthaltenen Nullstellen der p €P eine holomorphe

Funktion der Koeffizienten von p. In der Tat, diese Funktion

ist nach denm Riemannschep Hebbarkeitssaty - holomorph iber

die Diskriminantenmenge fortsetzbar. Die Koeffizienten der

folgenden Polynome in Z. sind folglich holomorph in z' €U’

Pz, Y= onm (z_-3)
n P(Z',J\)=0 n ’
Il"Zn|>pn
+ m .
Flathz = n o, ot (aryeld
n P(z',3)=0 D o %m**j n

“"Zn |<on
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Aus (2.2) schlieBt man fiir beide Vorzeichen auf

(2.5), [PYz2)| 2 c.o™* fir z'¢ U lo . -lz -¢_|| <C.p.
t = p > 1Py n-"n't=71

Nach dem Maximumprinzip gilt die Abschdtzung

(2.5)_ auch auf U' xU_. Es ist natlirlich P = P P'. Damit
ist (ii) gezeigt.
Zum Bewels von (1ii) sei jetzt f € 4(U) gegeben. Durch

die Integrale

(Z) - 1 J f(Z',l) . d)\
& 271 P~ (z) PH(z",2) A-zn ?
21 £(z',0)  PH(z',2)-Pt(z',zy) dax
hiz) = o5 PT(z',%) Az >
x-c l=p_

werden auf U' x U holomorphe Funktionen g und h definiert.

Mit der Cauchyschen Integralformel erhilt man

£ = Pg+ hin U'xlU_ .

h ist ein Polynom vom Grade <m, in z,» denn

+
Pzt =Pzt ,zn) Mo T CADT CE At VT
— m - I- —- n
A “n j=o 1>] *

Die die Koeffizienten von h definierenden Integrale

oo 1 £z, ¢y ot (zrnaiTiTha
hm+-1-j(z )Ewr I ey i3 mt-i

|a-c =0,

kann man mit (2.5), unter Verwendung von |a] < 1+|g| und
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1 +
(2.8) Ip;(z')[ < CQ+lgt, zve yr, 5 - 031y...,mt-1,

wie gewlinscht abschidtzen. (2.6) folgt leicht aus der

Definition von P+. Mit Hilfe von (2.5) kann man auch g

Uber sein definierendes Integral, wie in (iii) behauptet,

abschitzen. Das Nullpolynom ist das einzige Polynom vom Grade

< m, ., das flr ein z'e y° in den in U, enthaltenen Nullstellen
. ich
(mit Vielfachheiten) von P(z',-) verschwinden kann. Folglic

sind g und h ip (i11) eindeutig bestimmt. m

2.2 Der Noethersche Operator (Q,En)

Es wird oft ndtig sein, Kugeln u geeignet zu verkleinern.

Folgende Notation und Ko

P = (o(UI/ (24 5y [N

fir ein N > 1, Us ist die 2y U' konzentrische Kugel in den

= W/ 2+ gy [ HY, N > 1.
Hierbei ist N Stets eine Konstan

£'-Variablen mit Radiug p (U
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gebenen Varietdten, Noetherschen Operatoren, Moduln, Er-
Zzeugendensystemen von Moduln u.i. Man beachte noch, dapk

U nach Vergrélerung von N ein U, enthdlt.

wx - (U,
(2.7) SATZ. Sei @ = (Qij) eine I x K-Matrixz von Polynomen

Qij €l[z]. Der I(=z]-Modul der Relationen

K

= {(fz,..,f'K)Gﬂ'[z]K; }1: Qij f,] -0, ¥i = I1,...,L}

werde von Pl""PP €M erzeugt. Dann gibt es fiir jedes U

und jedes f = (f,..,f,) €)X mit

K
E Qij fj = o auf U fir © = 1,...,15L,

. _ r .
ein p = (vj,..,vr) € A(U,) mit

Mo

Uipi = f auf U, ,

p(U,) suplv] < suplf].
Uy U
Dieser Satz ist ein Spezialfall des semilokalen Divisions-—

satzes (2.28).

Beweis. Der Satz wird mit einer Induktion iiber L und n be-
wiesen.

(a) Sei zundchst L > 1. Der Satz sei fiir kleinere L bereits
bewiesen. Betrachte den T[z]-Modul

K

— K. -
M, = {f€llz]; ?Qij £ = ol



- LYy -

»s h
Wdhle ein endlichesErzaggndaﬁgﬁtan Ri""Rs fir M,. Nac

1

5
. . Uyl
Induktionsvoraussetzung glbt es ein w = (y -:WS) €4 (U,

EEE
mit

s
X wiR_ii = fj in U, fipr J = 1,...,K,
1

p(U*)'SupIWI < supl|f|
u, U

Hier igt Ri = (Rli""’RKi)'

5 die
Betrachte nuyn den T[z]-Moduyl M' aller g ¢ C[z]", welche

Relationen

K 8
z z .R.. s =0
=1 i=1 *1 JlQlJ

. . 1 n
flir alle 1 = 1sv.osl erfillien. Fip 1 - 1 ist diese Gleichung

automatisch erfiillt. Alse ist auf M! die Induktionsvoraus-

setzung anwendbar. Wihle ein endliches Erzeugendensystem

81""St flir den Modul M', erfillt die M! definierenden

Relationen, Folglich gibt €8s ein y =

t
= (ul,...,ut) EA(U**)

mit

S

= wi in U,,,,,l filr 1 - 1,...,s,

= M -+

i1

PlUse)  suplu| « sup jw|,
* % *

wobei Sl = (811,,...,881).

Somit erhdlt map

s t
b I R..S

i=11=1 317 T Eydn UL fgp 5 - 1,...,K.
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3 s
Die Polynomvektoren ( ? RiiSil""’ § RKiSil)’ 1 = 1,...,1,

gehdren zu M. Stellt man sie linear iber T[z] durch Pi""Pr
dar, so gewinnt man schlieBlich das gewlinschte v.

(b) Sei jetzt L = 1. Der Satz sei im (n-1)-dimensicnalen

Fall bereits filir alle L bewiesen. (Der Indukticnsanfang

n=o ist trivial.) Nach einer linearen Koordinatentrans-
formation kann man annehmen, daB der Vektor (o,...,0,1) nicht-
charakteristisch fir Ql""’QK ist und daf Q, den maximalen
Polynomgrad m aller Qj in 2 hat. Wendet man Lemma (2.1) auf

P = Q, an, so erhdlt man Kugeln U' und U/ mit U, < U'x UncU und

Funktionen 85 €AV xU ), hji €A(U') mit

f5 = Qq+85 * hy in U'xU, fir Jo= 2,...5K,

J
m, -1 .
-t "t
hj - g hj,m+—1-i “n’
und
p (U, ) sup lgj[ <suplf],
U'xyU U
p(U*)-sup]hijI < suplf|,
u' U
K
flir alle i und j. Mit h, = f, + £ Q.g. gilt dann
1 1 2 171
(fl,.. ,fK)=(—Q2,Q1,o,.,.) g2+.. .-l-(—QK,O,. "QI).gK+(h1,'. ,hK).

Weil (~Qp3Qq505+4) 5000 5(=Qys05-+2Qy) EM, folgt Quhyt. . +Qehy=0.
Mit der Faktorisierung Q, = Q*Q” nach (2.1.ii) hat man daher

K
- Ayt -
(2.8) (1, Q )-Q" + § thj = o.

hIQ— ist ein Polynom in z 3 denn dividiert man im Polynom-
K + e

ring 4(U") [z ] das Polynom - I thj durch Q , so erhdlt man
2



a,b E.A(U')[zn]mit

K + +
I thj taQ +b = o, Grad b < m .
2

Subtrahiert man diese Gleichung von (2.8), so schlieBt man
aus der Eindeutigkeitsaussage in (2.1.iii), daf b = o und
a = hIQ-' AuBerden erkennt man, dag th_ h&chstens den Grad
m-1 besitzt. Also ist

h' = (his..shf) = Q-(hi,..,hK)

ein Polynom(-vektor) ip 2, vom Grade «m, das die Relation

K
2.9 .h! =
( ) § Qth o

erfillt. Durch Koeffizientenvergleich in dem z ~Potenzen

erhdlt man ein zy (2.9) dguivalentes System [C[z']l-linearer

homogener Bedingungen fijr die Koeffizient

L] r -
hj (z' = (21""’2

en der Polynome

n-1’7- Dieses Gleichungssystem wird durch

eine Matrix von Polynomen aus [z?'] gegeben, welche sich

allein aus dep Qj bestimmt. pep Zugehdrige [L[z']-Modul der

Relationen werde von (Bij),...,(8§.) em[z']mK, o< 1 <m,
1]

1 <3¢ K, €rzeugt. Danp ist also
<o
? Qij =0 flir 1 = 1,...,3,
wobei Bl = Bl 1 i
- I s 2, und nach Induktlonsvoraussetzung
| i<y 11 "n

gibt es, da (2.9) giie, ein a = (al,...,as)e A(U;)S mit

Je
t

s
v 1, .
hj z § alBj in U; fir = 1,...,K,

p(U)-supja) ¢ sup|ht|,
Ue HE
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Zusammenfassend 13Rt sich f auf U' xU_ also so darstellen:

% n
K 5 a
f = z g'(_Q.' )Oﬁ""Q 30,'---0) + Z __l (B13 QBl)'
, ©3t 1 1q- ! K

Die Polynomvektoren (-Qj,o,...,Ql,o,...) und (Bi,---sBi)

sind Tlz]-Linearkombinationen der Pi""’Pr' Setzt man diese
in die erhaltende Darstellung fiir f ein, so erhdlt man das
gesuchte v. Die behauptete Abschdtzung an v folgt aus den flr
g.,hj and a; erhaltenen Abschidtzungen zusammen mit

j
[Q (z2)| 2co ()™, z€U'x U_ (siehe (2.1.i1). =

Eine Konsequenz der Flachheit von 4, beztiglich des Polynom-
rings C[z] ist die Tatsache, daB endliche Durchschnitts-
bildung von Moduln mit dem Tensorieren mit l}z tiber T[z]

kommutiert. Eine quantitative Version hiervon ist die

(2.10) FOLGERUNG. Seien M., und M, Clz]-Untermoduln von

1
clz1%. ¥ d L L1 = 1,2, erzeugt. M NH
- M, werde von Pl""PsZ’ T i,a, € gr. &g 2
werde von Rise..,R, erzeugt. Set U eine Kugel. Seien
f = ol L o1 . ben mit
= vl""usl) € A(U) s, L = 1,2, gegeben m

s Sg .

slolpl =¥ 2 P2 = faurvu .

S 9§ it it

Dann gibt es ein u = (uya...,u,) € A(U)" mit
r
? uiRi = f auf Ut 3

p(UL) suplul| s mgm suplvzl .

Us i
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S, +S
1 =2
Beweis. Betrachte den Llz]-Untermodul von tl{z}

S, +s5
Moo= {(wl,w) ern[z] 1

3 T wWLP
o]

1

s s
Lipt Zzszz = o}
33133

: ]Si+5
Wdhle ein Erzeugendensystem (Ql’Q ), -,(QtaQ ) €Lz

fiir M . Da (v sV ) die M definierenden Relationen erfillt,
O

gibt es aufgrund von (2.7) u' = (ui,..,u%) €A(U,) mit
1Y 4 a1 L
v = % quk auf U, fiir 1 = 1,2,
1

P{Uy) suplu'| < max sup Ivll.
U, 1y

Also ist auf U, fir 1 = 1,2
t
1
'
i qujk P.

1
3
wobei @ = (gl ol g0 FUR =1,y iy

53
2.2 V4
‘1 Pr = £4Q%. pé .
ik F3 1ij j €M40 M,
Drickt man diese Elemente dyrch Rl""’RP aus, so erhdlt
man die gesuchten u.

als E[z]-Linearkombinationen der uﬁ' .

Ist M e 021X oip Clz]-Untermodul und ist d €r[z]-{o}, dann

definiert map den Modulquotlenten
. _ K
(M:d) = {fer[z] 3 d+f € M},

Dies ist ejp M umfassender Tlz)-Modul .



- 49 -

Es ist eine weitere Konsequenz der Flachheit von s4z be-
zliglich T[z], daB die Division ( : ) mit dem Tensorieren mit
42 iber T[z] kommutiert. Eine quantitative Fassung hiervon

ist die

(2.11) FOLGERUNG. Seft Mc:E[z]K ein [[z]-Modul. Sei d€L[z],
d + o. M wverde von P,,...P_ und (M:d) werde von R;,... R
i P 1 r
, K
erzeugt. Sei U eine Kugel. Seien f € A(U)" und

v o= (vz,...,vp) eAU)P mit

(2.12) df = ij. auf U

J

M3

r .
gegeben. Dann gibt es ein u = (ul,...,ur) € A(U, ) mit

(2.13) f = uiR£ auf Uy »

S

p(Ug) sup|u | <sup|v].
Uk U

Beweis. Betrachte den C[z]-Modul der Relationen

p
K+
MO = {(favis---,vp) € I[z] P; df - f ijj o}

X
M, werde von (Si’Ti)""’(Ss’Ts) erzeugt, 5;€ Tizl >

Nach Voraus-

T1€ EIZ]P- Alle S, gehdren offenbar zu (M:d).

1

setzung (2.12) erfillt (f,v) die M_ definierenden Relationen.

s .
Aufgrund von (2.7) kann man daher a = (ala--,as) €A4(U,)” finden

mit

aISl auf U, ,

|—h
T
= M m

o(U,)-sup|a] < sup max([f],|v]).
U, U



Driickt man die Sy Clz)-linear durch die R. aus, so erhdlt man

ein u pit (2.13) ung

p(U,) *supul < sup max (|f],]|v]),
U
*

wobei die durch * implizierte Konstante eventuell vergrdfert

werden muB. Ersetzt man in diesep Ungleichung U durch U, und

Uy durch Usx > 50 gewinnt man hieraus die gewiinschte Ab-

Schdtzung von |u| mit Hilfe von (2.12) und

pP(Uy) -suplf| < supldf].
U

2.3 Der Noethersche Operator (a:",V),]ai £5.

Es wird ip diesem Abschnitt eine quantitative Form des Cartan-

schen Kohdrenzsatzes fir irreduzibie algebraische Varietdten
gezeigt,

f2.14) LEMMA. Zu jeder Kugel v gibt op etne Kugel U' und _
éitnen Polykpeis Dcgtk mit Mittelpynkes £", 80 daB U, <V’ "D‘V" |

Vot 3p - # und




(2.15) a(vOU'xp) = W(Q;](o}ﬂf]' xD) wenn V O U'x D%,

Hier Zst ¢ = (g',g") = ¢{U).

Beweisg., Setze 6n+1 = p(U). Man kann dann Radien Prgq2* 2P
und 6k+1""’6n finden, so daR mit geelgneten Zahlen Nj >1 gilt
6?+p?<6? §. < 2p.
3 j j+1 J+1 7 3?
N3
(6j+1/(2+|§[)) <85
und
: izt 2 2
j_k(z) ¥ O wenn i [zi—ci[ <6j, |Zj le = Dj:

fir alle j = k+1,...,n. In der Tat, es geniigt, (2.1.1) nach-

i Setze nun
elnander auf Pn-k’Pn~k—1" .,P1 anzuwenden.
Ut = {z' €L, lz'-z' <8, .}
B i k+1° 7
D= Upyq X * Uno
mit Ui = {ziEﬂ:; lzi—gil <pi}, iz ktls...40.

Dann hat man fir alle i

(2.16) Pi(z) $# 0 wenn z €U’ *Up 1 LI xUk+i+1x"xUn'

Wegen Pi € I(V) folgt hieraus VNU'=x 3D = B.

Es ist noch (2.15) zu zeigen. Die Inklusion "e" ist trivial.

Sel Vn U' x D+ P. Wahle y € Vnu'x D. Sei nun (z',2, ;) €U'x U .,

mit Q(z"2 40 = Py(2',2 ,4) = o gegeben. Es ist ein 2" €D

mit (z',z")Y €V zu finden. z" = (zk+1,...,zn) wird mit einer

Induktion iiber 3 = 1,...,n-k so konstruiert, dag gilt
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1 - e - - '.
(2.17) Pi(Z ’Zk+1""zk+i) =0 flur i = 1,...,7

€U, .
et € Vg o € Uiy

wdren bereitg gefunden, so dag (2.17) gilt.

Zy4q 1St schon gefunden. Angenommen,

. 3h)

als Polynome in } die gleiche Anzahl von Nullstellen. Da
die Nullstellen eines (normierten ) Polynoms stetig von seinen

Koeffizienten abhingen, folgt dies aus (2.16). Wegen Pj+1(y) =0

. . fir i = j+1
g1bt es dahep eip a1 EUk+j+1’ so daB (2.17) auch

gilt. Daher igt z" €D mit Polat,zmy = | - Ph(z',2") = o ge-

funden. Nach (1.7.iv) ist somit (z',z™) € V falls aA(z') # o.

Da n{v eigentlich ist, erhilt man daher auch ein z" €D

mit (z',z") ¢ y wenn z'€ U', A(z') - o. .

Mit einep Hermite~Lagrange Interpolation kann man holomorphe

Keime auf vy durch Polynome in den beztigiich V transversalen

Variablen z" - (Zk+1:---,zn) interpolieren.

. . ‘on
(2.18) LEMMA. Seiten eine Kugel U und eine holomorphe Funktio

F €4(U) gegeben. Seten U', D ung U, wie in (2.14).

S¢t 8 €N, -Dann gipy o4 Ty € AU Bem)*, (8] <s, = 0,100E
J
mit

(2') (3% /2274 fir z€VAU's D
(3%/32"%)(5) -

fir z€vnU’ x (£

flr alle g enﬁ’k,“Tul S8, wobeg

1

n-k_p) .




- ] B n-k
g = I S ogasezY.. @ auf Ut xoR,
lglss j<e P9 KM
Ferner gilt die Abschdtzung
& a
(2.19) o(U,) max sup |g 1 < max suplad f/ez" .
B, u* BY lal<s vnU

Das Polynom d € Clz'l-{o}l kann unabhingig von U und f gewdhlt

werden.

. . -1
Beweis. (a) Betrachte zundchst den Fall s = o. Sei z'€U’'- A (o).
Dann gibt es genau e Vektoren z" = (zk+1,..,zn)EfEn-k mit

paarweise verschiedenen z -Komponenten, so dak (z',z") € V.

k+1

Betrachte das lineare Gleichungssystem fiir go(z'),...,geﬂl(z')

do(z')-f(z',z") fir (z',z") €V, z" €D,

(2.20 Y o (210 =
> <eg (z")2 4 i
) 0 fiir (z',z") €V, z"¢ D.

Hier ist do(z‘) + o das Quadrat der Determinante - eine Vander-
monde-Determinante - dieses Gleichungssystems. do(z') ist wohl-
definiert, denn eine Permutatiocn der z" dndert die Determinante
nur um den Faktor #1. Um denselben Faktor dndern sich die Ko-
faktoren von (2.20), wenn unter der Permution nur solche z",
(z',2") €V, miteinander vertauscht werden, die in derselben
Komponente von ¢ ¥- 3D liegen. Es gibt also eine eindeutige
L8sung 80(2'),...,g1_1(z') von (2.20). d_ und alle g4 sind auf
ut - a7l holomorph und beschrinkt, denn man hat (da Pj(z) =0

impliziert: 12,5 <CC1+|Czg s a0 1))



|
]
i
i
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(2.21) sup{{z"]; (z',z") €y} S(2+[z'|)N, z' €T~

3

flir ein N €N. Alse sing do und gj nach dem Ricmanrschen

Hebbarkeitssatz holomorph ayf y* fortsetzbar.Da do nur von
V abhdngt, ist do eine ganze Funktion, die wegen (2.20) nur
polynomial wichst. Also ist d_e€tlz'], d_* 0. Da die gj(zf)
linear von den flz",2"), (z2',zm) €V, z" €D, abhdngen, folgt
mit (2.21)

max sup |g.| < (2+l§(U)|)N'sup[ff
Jj< e U J VAU D

mit einem anderen N 21. Wegen der Dichte von V-A-l(o) in V

gilt (2. 20) flip alle z'e yr, Damit ist das Lemma fiir s = o

gezeigt,

(b) Sei jetzt s 0. Nach (a) gibt es hai€AUT) mit

o [9=-G%320% (1) fur 5 ey, 27 €D,
L h '(Z')Z] =
j<e a7 k+1

o fiir z €v, z" éﬁ’

fir alle z'€ §' yng o €N.5, lal <5, una

(2.22) max Su?lhuj' S(2+|c(u)])N.max sup laaf/az”af.
aj U lal <5 yny'xp

Betrachte dag Gleichungssystem fir die gBon4(U')



Hier ist d; €C[z"] die Determinante dieses Gleichungssystem.
Aufgrund der Eindeutigkeitsaussage in (1.8) ist d1 ¥ 0. Die

gBj und d = d,d, sind die gewlnschten L3sungen. Die Abschdtzung

(2.19) folgt aus (2.22) und

< (2+[r,(U)|)N max sup |h .|

max supg,.| <
B3 a,] U! aj

B3l u!

Damit ist das Lemma bewiesen. =

Zu sEI%definiere

-k
I, = {fellz]; (3%F/22"%) €1(V) flir alle aENy ", |al €5}

Nach (1.23) ist Is ein Primirideal.

(2.23)SATZ. Sei s €N,.Das Ideal Is werde von HI,---:Hz EIS

Q

erzeugt. Sei U eine Kugel, und sei f € A(U) mit (a“f/az'ﬂ)[V =

fir « Gwz_k,|a| <s, gegeben. Dann gibt es g;s.--s9; €AV, ) mit

L
f = § QZHZ auf U*,

p(Uy) = maz sup|g;| < sup [f].
1, U

Beweis. (a) Sei zundchst s = o. Beginnend mit einer Division

von f durch Pn— nach (2.1.iii),

k

£ = En-x Pn-x * hn-k ?

und fortfahrend iiber j = n-k, n-k-=1,...,2 mit Divisionen



.« = - . +h- )
P37 EjiqPyg * by

welche alg Divisionen dep Koeffizienten der hj nach (2.1.1ii)

ausgeflhrt werden, erhdlt man holomorphe Funktionen g3 und

Polynome hj in den Variablen Zk+j""’zn {(mit helomorphen
Koeffizienten), so daf

n-k

f = i giPi+h1 in U' xD,

p(U,) ‘max sup Ig | < sup|f],
i U'XD

0(Uy) *max sup lh < sup|f|,

yl<u U
n-k it
wobei hY €CAUND, ye WS, |ylcy = 3 m;, m, = Grad P,, m
1
h1 = ¥ h_«(zm)Y,
Iv] <u

Hier sing U', D = Uk+1x " Un und U, wie im Beweis von

(2.14), Aufgrund von (2.1.1) hat man auBerdem noch

m. L. oxU s
IPj(z)l 2 co() I | ey y

x .,.x3U x U a

X
k+1 k+]  Tktptl

i : . tiber
Hat Pj keine Nullstellen in U' x D, kann man folglich f/P] i

. .. z
das Max1mumprlnz1p abschdtzen, so daB in diesem Fall der Sat

flir s = o bewiegen ist,

Betrachte daher jetzt den Fall, daB jedes Pj in U'sx D eine

tx {J

Nullstelle besitzy, Dann gibt eg Sogar zu jedem (zv,zk+1)€l} k+1

1 1 -

mit Q,(z *2; 41’ = © nech 240 euk+2,...,z € U mit
- - .m

2 = (z',zk+1,.,_,z )EV. In dep Tat, dies schlieBt man wie i

Beweis von (g, 15), wenn man necp beachtet, daB das dort verwen~

*D mit p. (y)
Polynom h EJ(U')[Z

dete y € yr © © ruhig von j abhingen darf. Ein

k+ 1]’ welches auyf VAU' xD verschwindet,




kann man dann (chne Rest) durch Q1 dividieren, d.h. h/Q1
ist holomorph in U' xD. Dies folgt mit einer Anwendung von

(2.1.11i) auf P = Qi’ f = h. A¥+h, ist ein Polynom in

1

(z',A.z"), Setzt man A'Zk+j = Qj +Tj, j 2 2, nach (1.7.1i1i)

ein, so erhilt man gz,..,gn_k und h €.A(U')[Zk+1} mit

u - o
A7hp = 2 ggQph
n-k .~
ST ey

una g % h/Qig denn h|VNU'x D = 0. Geeignete Abschdtzungen

fir EQ,---,En_k erhdlt man aus denen filir die hY’ und fiir El

erhdlt man sie nach (2.1.1ii). Man hat also die Darstellung
n-k

e u ~
abf - ? (a¥g.P. +5.0;).

Weil (I(V) :AMy = T(V) ist, folgt die behauptete Darstellung
von £ aus (2.11). Somit ist der Satz fir s = o bewlesen.

(b) Sei nun s » o. Nach Induktionsannahme sei der Satz bereits
flir s-1 bewiesen. Nach (1.8) ist At'Is_1 in dem von ailen

Q

|B|= s, mit

a -
»10|= s, erzeugten Ideal enthalten. Also gibt es hg € A(U),

(2.24) ate - T hB QB in Ugs

|8]=s

p(U,) max sup Ihﬁl < sup|f].

Es ist (T_:A) = I_. Nach (2.11) genligt es daher gy; € #(U,,),

lB|= Sy, 1 = 1,...,n-k zu finden mit
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n-k _
2%hg To8i O in U,
p(U**)-mgx gup Egﬁi! < sun !bB[.
T Uss Us

Aufgrund von (a) peicht es hierfiir, hBIVfTU* =0, |Bl=s; zu

Zeigen, Differenziert man (2.24) nach z", so erhdlt man fir

alle a €M) |af= s, auf vnu,

o}

Hi

(3%3z7%y ¢ ¢ hg %)
[B|=s

(3%/327%) (h, Q%)

ha.qa)

A
wobei 4y ein |a|-faches Produkt der Polynome (3Q1/82k+1) und

ist, Folglich ist Uy ¥ O auf VO = V-A—i(o). Nach (1.7.v) er-

hdlt man daher wie gewlinscht h lvnu, = o. =

2.4 Cauchyabschétzungen fir tangentiale Differential-

Cperatoren

Produktregel (1.4}, denn mit T sind auch alle [T,z;] tangen-

tial zy vy, Wegen (2,23) bildet T daher auch die Menge aller

holomorphen Funktionen, gie auf v verschwinden, in sich selbst



eine quantitative Verallgemeinerung dieser Tatsache.
. C e : ciere
Sei Vv e ¢ eine irreduzible algebraische Varietdt. Normalisie

V nach (1.7).

(2.25) SATZ. Sei T ein zu V tangentialer Differentialoperator.

Fir alle Kugeln U und alle f € A(U) gilt dann

p(Uy)-sup |TF! < suplf].
v NU, vy

Beweis. Der Satz wird mit einer Induktion tiber die Ordnung
ven T bewiesen.

. . . 7 omern.
Operatoren o-ter Ordnung sind Multiplikationen mit Polyn
Fir diese ist die Behauptung trivial.

. 2 nd
Sei f € 4(U). Aus (2.18) und (2.23) erhdlt man ein von U u
(U,

f unabhdngiges d € Clz'], d +o, und H€ VY, gle'é *

f] E‘A'(U'): mit

: L
(2.26) d-f= 5 f..20  + I g, -H, auf Us ,
. 3 “k+1 1
]<e
(Uy)-max sup|f.| < sup|f].
n j U'IJ Vnu

: an T auf
Hier ist wieder U, € U'x DU wie in (2.14). Wendet m
i Abschnitts
(2.26) an, so ergibt sich wegen der am Anfang dieses

gemachten Bemerkung

T(df) = X T(fj'zi+1) auf V N Uy .
j <e

Cauchyabschatzung der Summanden liefert
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p(U,,)-sup [T(Af)| < max sup[fj\.

Uy 30U

Nach Induktionsvoraussetzung hat man bereits

p(U,)-sup |[T,dlf| € sup|f].
vnu, vau

Mit 4-Tf = T(df)-[T,d]f erhdlt man zusammenfassend

p(U,)Y sup |d-Tf| < sup|f]
Vnu, VAU
aher

mit einem anderen U, . Den Beweis des Satzes beendet d

. e schen
die folgende Verallgemeinerung des EhrenPfelS~Malgrang

Lemmas.

d
(2.27) LEMMA. Sei d € Clz'], d+o. Fir alle Kugeln U U"

alle f € A(U) gilt dann

plU,)-eup |fl < supldsl.
vnu, VAU

Beweis. Sei f € A(U). Seien U' und D wie in (2.14). Sel

VN U D#08,denn nur dieser Fall ist interessant.

Fir z' €U' - A" %(o) betrachte die Polynome in A €T

m-1 ]
Pe(z',))= {1 (A-f(z',z2")=2"+ T a _.(z')'lj
(z',2")EV nU%D o ™73
m-1 r);j
5 .(z

d(z? )m—'jam_]

Paglz'sM)= 1 O=d-£)(2',z")) ™
(z',2")EVNU xD o

Der Grad m >0 hingt nicht von z' ab. Die Koeffizienten

. ) . £ U
3y sind mit dem Riemannschen Hebbarkeitssatzes holomorph &4 o

P S
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fortsetzbar. Aus

/3
]Pf(z',l)—lml <|A™| wenn IA| > max (m-[aj(z')[)1 1.
J

folgt mit Rouch&'s Theorem und (1.7.v)

sup [f| € max sup (m-Ia.I)i/].

VNU'x D i U J
Andererseits kann man auch die Koeffizienten eines Polynoms
durch seine Nullstellen abschdtzen. Fiir Pdf hat man mit einer

Konstanten C > o

sup |dla.| <C- sup |d-f]|’
Ut ] VNU™D

fdr 3 = 1,...,m. Das Lemma folgt nun, wenn man die obigen

Abschétzungen mit

O(U;)-sgglaj| < supidda:] fir j = 1,...,m

|
J
* ut

. e . - a4d
kombiniert. Diese Ungleichung folgt aus (2.1.iii) mit £ = d aj

und P = gl (Ehrenpreis-Malgrange Ungleichung). ®

2.5 Semilokale Division

Noethersche Operatoren operieren in kanonischer Weise auf
holomorphen Funktionen und ihren Keimen. Ist M<=E[z]K ein
E[z]—Modul, und ist A ein zugehdrigen Noetherscher Operator,
SO annulliert # auch den von M in :4(9)K,n c T offen, erzeug-

ten A(2)-Modul, d.h. fir alle P € M und v € A4(R) gilt
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APYIVNG = o flir alle (A,V) € N .

Dies folgt sofort aus der Produktregel (1.4).

Es gilt hierzy die folgende Umkehrung.

. K . ~Modul.
(2.28) SEMILOKALER DIVISIONSSATZ. Sei Mclz]® ein Llz]l-Mo

; ls
Set N ein zy y gehoriger Noetherscher Operator. M werde a

Clz1-Modul von P
£ e Ak

12 2P €M erzeugt, Sei U eine Kugel. Set

gegeben mit Aflv n y = , fir alle (4,v) €N .
Dann gibt es ein o = (vl,...,vL) € u#(U*)L mit

L
f= Zov.p, in Ug ,
i
P(Uy) suplv! < sup|f| .
v, U

Beweis. W ist eine endliche Vereinigung primirer Noether-

scher Operatoren, M ist daher Durchschnitt der zugehorigen

T und nach (1.23) Primiren - Moduln.
(2.10),

Somit geniigt es nach

den Satz fiip primire M und W zu beweisen. Ein zu
einer Varietst vy tangentialer Differentialoperator bildet

die Menge der auf vy verschwindenden holomorphen Funktionen
in sich ab. Wegen (1.28) gaps man daher primire Noethersche

Operatoren duprcp dquivalente hormale Noethersche Operatoren
ersetzen,.

. . 1
) Sei g €N, die Ordnung von & . Seien T,

s
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und ' die Clz']-linearen Abbildungen aus (%.25). o und &'
haben kanonische #4(U')-lineare Fortsetzungen. Sei M,c:mh,]Keo
der Modul der Relationen von &', d.h. M' = Kern #'. Nach

(1.25) wird M' von rS(Pj),...,TS(PL) iber T[z'] erzeugt.

Betrachte G = Ts(g) = (Atgaj) EaKLV)KeU, wobel

- ] o PRIRTRE ¢
¥ Tlafze 3 e a3 TRen CEAWDI

n-k

fir alle q EI\IO

» |a] £s, die Gleichungen

(3%/32"%)(a.-f-g)|VnuU'xD = o,

(3%/3z2") [vauix (e"75-D) = o

18st. Nach (2.18) findet man solche Bqi Etﬁ(U')Ks so daf

auch noch gilt

p (U,) -max suplga.[ < sup|f].
a,j U! ] U

Hier sind d, U', D und Us wie in (2.18). Zur Cauchyabschdtzung

der rechten Seite von (2.19) wurde auferdem vorausgesetzt, dah

der Abstand zwischen U' x D und 3U gréBer als p(U)/2 ist.

Die Voraussetzung an f impliziert

Aglvau's ™% - 6 Fir alle (A, V) € H.

Diese Bedingung ist dquivalent zu ¥'(G) = o, denn die Polynome

n-k _ .
aus a4(LV)[Zk+1] vom Grade <e, welche auf Vv n U'x L mit
t : : i
A Ag, (A,V)eN, libereinstimmen, sind eindeutig bestimmt. Nach

(2.7) gibt es ui,...,uLE‘A(U,’,) mit

L
G = § uj.TS(Pj) i]’l U*' 2

p(U}l)-max suplu.| < sup|6G].
i ow
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Mit dep A(UL)-Linearitst von t_ folgt

L —
(3%22"%) (g~ wPOVausx e 2 o) 14 < s,
1

Folgiich

L
(3%722"%y(d.¢- 5 UPVAUL XD = o, |af <s.
1

Hierayg felgt mit (2,23)

L N
(2.29) af - i uij = § wiHi in Ug,
FUr s wy € (e, K iy
p(Uyy) "max sup |wil < suplf|,
i, U

wobei Hl""’HN das Ideal Ig - definiert vor (2.23) - {ber
Clz] erzeugen. Hier wurde die linke Seite wvon (2.29) dber

. . stzt.
die bisherp erhalteneq Abschétzungen mittels sup|f| abgeschidtz

Es ist offenbar IS-E[z]KtzM. Folglich ist
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(2.30) FOLGERUNG. Seien P,,...,P, €€lz]% gegeben. Sei U
eine Kugel. Sei f 604(U)K, so0 dafBl es su jedem z € U formale

Potenzreihen wl,...,wL gibt mit

L
wz(f) = ? wz'wz(PZ).
Dann gibt es ein v = (vy,...,v;) chu )" mit
L
f=xrwv, P in U,
P 171
p(U,)-suplv| < suplf].
U, U
Beweis. Sei # ein zu dem von P1""pL erzeugten L[z]-Untermodul

in EIZ]K gehdriger Noetherscher Operator. Ein solcher existiert
nach (1.10). Fir jedes z EEn gibt es eindeutig eine natlrliche
Operation ;#; auf dem Ring der formalen Potenzreihen, so daf
JVz(wz(g)) = mz(dﬁg)) flir alle Polynome g. Da hierfir auch die
Produktregel gilt, impliziert die Voraussetzung an f, daB

Af |VNU = o filr alle (A,V) €/ . Die Behauptung folgt nun aus

dem semilokalen Divisionssatz. =

2.6 Semilokale Interpolation

Eine holomorphe Funktion f ist natlirlich nicht durch ihre
Restriktion auf eine echte Untervarietdt V ¢ t" bestimmt.
Indem man jedoch zu f ein geeignetes Element aus dem Ver-
schwindungsideal von V addiert, erhdit man eine Funktion g

deren Betrag sich durch den Betrag ihrer Restriktion g|V

abschitzen 13B8t.
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. . . . 1 n
Dies ist eine Spezlielle Konsequenz aus dem semilokale

Divisionssatz und dem folgenden Resultat.

. . scher
(2.31} SEMILOKALER INTERPOLATIONSSATZ. Sei N ein Noether

A0
Uperator (auf glz1%), Fir jede Kugel U und jedes f €

gibt es dann ein g 604(U*)K mit

(Af-Ag)lVf)U* = 0 fir alle (4,V) €N s

plUy) suplg| < mag sup |Af].
Uy (A, VIEN vy

. und
Beweis, Ist der Satz fiip zwel Noethersche Cperatoren VV1

o . N ud,
JVQ rlchtig, so gilt er auch fiir ihre Vereinigung E AG 2

. Uy}
In derp Tat, dann gibt ez zy f €¢4(U)K Funktionen gisgze‘*(*

mit
Af-agivn oy, - ¢ fir (A, e, , 1= 1,2,
p(Uy) ssup max(}glf,]gzj) < max sup |Af].
Yy (A,V)Ef Vnu

Feletien erfuire £178; = (gl-f)-(gz-f) die Kompatibilitdts-

bedingungen filr den Moduly MM/ + M
P . 1 . er

densysteme Ri,...,R; flir MuV » 1 = 1,2, so erhidlt man dah

nach (2,30) hi = 5

. Fixiert man Erzeugenl”
M/Q

. i _
Vj R% E‘A{U**)K fiur 1 = 1,2 mit

1 2 il'l U** 5
p (U, ) sup max( |h
U

1ls1h, 1) < suplg, - g,
*% U

%*
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Dann ist g = gl—h1 = gz-h2éh4(U**)h offentar die gesuchte
L&ésung.
Da N eine endliche Vereinigung primdrer Noetherscher Opera-

toren ist, darf man also eine Einschrénkung N als primdr

beziiglich einer irreduziblen - und nach (1.7) normalisierten -

Varietdt V annehmen. uVO cei der zu A &dquivalente normaie
Noethersche Operator aus (1.28). Es geniligt, den Satz fir dVé
zu beweisen. In der Tat, dann folgt N(f-g) = o aus ‘ﬂ;(f-g) =0

mit (1.28.1i), in die zu zeigende Abschdtzung an g fiir N erhdlt

man aus der flr o aus der Darste. iung (.28.i1) mit Hilfe

von (2.25).

Chre Einschrankung wird daher jetzt angenommeli, dap N normal

bezliglich V ist, wobel V immer noch nach (1.7) rnormalisiert

AT b
Ras it

ist. Sei s € N die Ordnung von A . Sei f € A(U) " gegeben. hac

(2.18) gibt es ein

] K
h = I s h_.- ozl Q®eMUNLz"]
. o] k+1
lajss 1 <e
wobei h . €¢A(U')K, o € Nn_k, laj <3, 05 3 <% co dalh ¢iit

G o
(3%/52"®) (d-f-n)|VnU'x D=0, jof<S,
(a“hfaz"a);v nu' x(In—k—ﬁ) = 0, |a] £ S.

Setze H = ¢ (1) = (8'h3) cAUHRE . (¢ und A sind wieder

die - von Lf[z',z"1 auf A(U"[2"] fortgesetzten - Operatoren

30) auf die Spaltenvektoren der W'

;) €U0

aus (1.25).) Wendet man (2.

Lad
definierenden Matrix an, so erhdlt man ein G = (gu

mit
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3

A'© =W ) aur y;

p(Ug)-sup [BI < sup|4'(H)|
U*:x D ut

wobei

~

: K
~ o ]
g = z Eai’ 211+1 QU EAUDIZM

lal<ss j<e
Pann ist 'o )(F-ath) = o ip AN N oo

Dies ist - Wwie bereits ip Beweis von (2.28) bemerkt - &qui-
valent zu

(AE-A(Ath))lv N0 xR - o fap alle (A, V) e .

Folglich ist

AE-2"a0) v nuy 5 p - o fir alle (A,V) €.
T = atar « (E-Atdf) erfillt also die Kompatibilitdtsbedingun-

gen fir den wvon MJV und Atd.m[z]K erzeugten C[z]-Modul.

Wihle ein Erzeugendensystem Pl"”pL flir MW" Nach (2.30)

. K .
g1bt es dann Vl""’VIJEJ{U**) und g G{A(U**) mit

- t
g = § Vi Poo+ Atdg in u,,,

(Ag - Af)|v "Ues =0  Fflr alle (A, V) el

Es i;t noch die behauptete Abschétzung an g zu beweisen.
Weil fiir ajie (A, M) e



Sup Id'AfI = sup }Ah1>

VOU™D vnU xR K

genligt es aufgrund der bisher erhaltenen Abschdtzungen zu

Zzeigen, daB

sup [(Ato T )M s (2+[zu) Y max sup __, |an]
Ut S (A,V)EN vnU'x T

mit einer von U und h €¢A-(U’)[Z"]K unabhidngigen Konstanten
N 2 o gilt. Diese Ungleichung folgt aus der Lagrangeschen
Interpolationsformel - siehe (2.18) flir s = O zZusammen mit
der Eindeutigkeitsaussage in (1.8) - unter Beriticksichtigung

der Definition von Ty und N'. =

Anmerkungen
(a) Die hier benutzten Techniken sind aus der lokalen Theorie

komplexanalytischer Varietdten, insbesondere von den

Kohidrenzsidtzen von Oka und Cartan her, bekannt. Siehe hier-

Liher—

zu z.B. Gunning-Rossi [11] oder Narasimhan [16]. Tern 4o

)

gang zu quantitativen Ergebnissen ermiglicht das [1visions=—

lemma von Ehrenpreis und Malgrange. Dieses kann man ais

einen Spezialfall einer quantitativen Version des Weier-

strafschen Vorbereitungssatzes ansehen (hier {(2.1); slene

HSvrmander {151, 7.6).

(b) In der vorliegenden Darstellung wird - im Unterschied zu

anderen Darstellungen - die Definition und die Kenstruktion

der zu einem Modul gehdérigen Noetherschen Operatoren (in

Kapitel 1) getrennt von ihrer lokalen (bzw. semilokalen)

Theorie (in Kapitel 2).



KAPITEL 3

GLOBALE Division unp INTERPOLATION

Garben folgend wird hier in quantitativer Form gezeigt,
daf die p-ten Kohomologiegruppen, P21, mit Werten in der

Kerngarbe eines Noetherschen Operators verschwinden. Dies

erméglicht es, die semilokalen Ergebnisse des Kapitels 2

auSzudehnen zu globalen Resultaten auf pseudokonvexen Ge-

bieten inp En.

3.1 Uberdeckungen

Es werden Uberdeckungen offener Teilmengen des T durch

Kugeln gegeben ilokalen Theorie

vorkommenden Verkleinerungen von Kugeln kcompatibel sind.

Fir o < En, 9 offen, Setze

dg(z) z min(l,inf n]E‘—zl), z2 € Q
Z el -g

Ist Y= (Uj)j ex eine Uberdeckung vVon @  durch Kugeln und
ist s = (s

0""’Sp-1) € Ip’ dann wirg gesetzt



Die flir Kugeln in Kapitel 2 eingefiihrten Bezeichnungen

werden weiterhin benutzt.

(3.1) LEMMA. Sei 9 © I offen und nichtleer. Dann gibt es

eine Folge ‘url), ,u(2)’_ von Uberdeckungen ‘uf”) = (Ugv))j'em

{v) -

; Q, g0 daB gilt:

von Q@ durch Kugeln U

: . (v)
(i) Fiir jedes v €N wird @ bereits durch die zu UJ.v kon-

zentrischen Kugeln mit halbzm Radius o(Ugv))/Z tiberdeckt.

(1) Es gibt eine Zahl p, €N, so daB fir jedes v € N der

. . u(v)
Durchschnitt von p + ] verschiedenen Kugeln aus

leer 1st.

({171) Es gibt eine Konstante C 22, so daB fir alle v , €W

und alle z € Ugv)

gtlt
-1 v (V) "'V+1d ( )
c (dn(z)/(0+[z|)) < D(Uj ) < 2 NEYR
. (v) .
(tv) Ist v <y, 80 18t 21(”) feiner als U V/  pie Ver~-
feinerungsabbildung rou is transitiv, 4.h.
= < < X
Py o r , wenn v U
Seien v € N und ¥ 2 1 gegebzn. Dann gibt es ein u€ W,

r
VU

u > v, so daB fir alle p € A und alle s € Ip mit

v g gite

{v)
r f(ehP
i

yW e UycU €U
o v

wobei U und Uy konzentrische Kugeln um ¢(U) sind,

deren Radien
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p(Us) = (o) /et |eiuy ),
c‘I(dQ(C(U))/(c+[;rU)1}’5 o(U)

" ,L’e
erfillen. Hier is¢ € 2 2 eine von v und s unabhdngtyg

Konstante,

. . . . . - ¥ i cher
Die Verfelnerungsabblldung ruu : NoN ist hier in natiirli

Weise auf Ip fortgesetzt,

(v),._'gﬂ
Beweisg,

(v)
Sel v € N. Wihle eine Folge von Punkten Ly > By

mit
(

5% ) 2 %(d9<;j“)>/<C+]¢§“’;))U wenn i > 3,

: ist C 22
welche beziiglich dieser Eigenschaft maximal ist. Hier ist
eine noch zy bestimmende Konstante. Die Wahl einer solchen

ten
Folge ist mdglich, da die obige Bedingung auf einer kompak

o rden
Teilmenge von @ Dur von endlich vielep Punkten erftillt we

. (v) (v) -
k . = N .
ann. Dann ist U (U] )] ey mit

)

) i € N,
{2z € 952 25 “)| < (4 (g(“))/(c+| (v D)%) 5] €

ine Uberdeckung yor 2 > die zudem (i) erfgllt.

. .. ilt
4um Beweis vop (ii) betrachte einen Punkt z € u$¥). Dann gt
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Da ((1+2 Y)/(1-2"Y))Y < 3 , erhi&lt man nun

gu)
]

< 3.

(v)l))—v

(3.2) 1/3 5(dﬂ(zo)/(c+[zo|))v'(dﬂ(c )/ (CH g 5

Also 1st

(
]ZO‘ij)| < S(dg(zO)/(C+|zo[))v ,

(v)

i i+ j, so gilt

und wenn auBRerdem noch 2 €u 3

(v) (v) -1 v
le3" 7= e z 67 (2 )/ (CHlz |))
Hieraus folgt (ii), denn es gibt eine Schranke p_+1 fir die

- n .
Anzahl von Punkten, welche in der Einheitskugel des " liegen

und voneinander einen Abstand 2 18“1 haben.

(ii1i) ist offenbar erfiilit.

Zum Beweis von (iv) ist zundchst die Verfeinerungsabbildung

anzugeben. Nach (i) kann man rv’v+1:N-+N so wihlen, dak

PN cdag 6§ ccalc V0 wenn 5 = w5
. (v+1)
Flir j = r, v+1(i) folgt aus (3.2) mit z_ = &,
+1 -1 (v) Sv)c V.
CR RS VIT IR PP C LS y/ el )

Wihlt man C2 12 , so hat man
(p) n (v) _:_3_ (\)) SU) ))\’}
(3.3) UMe { z € T jzmgy " |< gldglt; y(Crlgs 7

wenn j = r (i) und u-= v+l. Setzt man jetzt
u

2

= p QO +44+ O y ¥ < Ha

T
Pvu v,vtl n=1l,u



so gilt (3.3) fir alle U > y. Damit ist rvu eine Ver-

feinerungsabbildung.

.. . () V"h]_ z EU(H).
Sei jetzt y « p . Sei US $ 0 (s EID,p_ENJ. Wdhle o s

Aus (3.2) folgt dg)c U, flir

U, = {z ¢ m“;lz—zor< C*(dﬂ(zo)/(c+|zol))u}

wenn Cy > 6. Aufgrund von (3.2) und (3.3) ist

v
U= lzeth |z-z | . (do(z )/ (CH]z |1V}

enthalten in U;vgs). (iv) folgt nun, wenn p-v geniligend groB
Vi
ist. n

Wdhlt man eine nichtnegative Funktion y € CZ(QH) mit

1 -
SUpp ¢ « {z Emn; lz| <1} und y(z) > o falls lzlzsiw so er

hdlt man in iblicher Weise eine Zu u(U} gehdrige Zerlegung

. (\J) Q0
der Eins (aj )j en € CO(Q),

(\)))),
asV)(z) - VW W8y 5 ycamgu™)y/ e
J ] J ienN 1 €a

Z

. . . n
In diesem Kapitel wipd Zu jeder offenen Teilmenge pc L stets
eine feste Folge von Uberdeckungen u‘l), TARR

dngegebenen

. 1)
... mit den in (3.2

Eigenschaftern gewdhlt,

n, SC bezeichnet fp(uﬁv),f) die

etten bezliglich der Uberdeckung
Uty mit Werten ip 4.



Die durch

p+1 .
= ] = €1 .-,
(Gf)s = (-1) £, A » 58 = (8 500058 ) "

o o-..j...p+1

[
™M+

definierte Abbildung 6:-€p(u(V),¢)* €P+1(u(”),§), f -1,
nennt man den Korandoperator. Hier bedeutet Qj, daB der Index
Sj ausgelassen wird., Es ist &§ o6 = ©O.

Die Verfeinerungsabbildung LY <y, induziert eine Abbildung

von Koketten durch Zurtickziehen der Schnitte mittels ruu

()
SRR AICRRAIEIR AL SN

P:u kommutiert mit §.

3.2 §~Kohomologie mit Gewichten

Hier wird eine quantitative Version des Dolbeault-Theorems

gezeigt.

Sei g < g" offen. Sei,-g eine Untergarbe der Garbe der lokal

i : 1 : i er-
integrierbaren Funktionen auf Q. Sel © ein reellwertige ob

halb stetige Funktion auf . Setze dann fir f = (fs)s €1

e Py 6

p+i

z eﬂwdk ,

Ity = = SN

(v)
p+l Us

n -
wobei di das Lebesguesche MaB auf I 1st.
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Es werden im Folgenden (O,q)—Formen
g= ! gJ'dzJ (Summation tber streng wachsende J)

mit lokal Guadratintegrablen Koeffizienten g; verwendet. Diese

bilden eine Garbe, welche mit fo g bezeichnet wird. Wie oben
definiert panp I f“tp flir f ¢ fp(u(v), ‘Co q)’ wobei
3
2 ! 2 ' =J

Der Cauchy—Riemann Operator 3 bildet (o,q)-Formen in (0,q+1)-~

Formen apb (Ableitung ip Pistributionensinne). Es ist 5 o 3 = o

ein Pseudokonvexes Gebiet. Sei @ eine

kKtion auf Q. Ses p,v €N gegeben.
Zu jedem f ¢ fp(u(\)),#} mit

Gfl'ound “f”(p<+w gibt es
ein g ECP‘I('H{'u)

A mit g = p:uf und ”gH(ﬁff < ”f“(p’ wobet

olz) = wiz) +C-20g(2+|z|2}-0-log dQ(z), z € q.

Hienp sind u » Viund ¢ » 4 unabh&'ngig von © und f.



Der Beweis dieses Satzes beruht auf der L&sbarkeit der
Cauchy-Riemann-Gleichungen in pseudokonvexen Cebieten. Ins-
besondere wird die folgende Tatsache bendtigt (flr einen Be-
weis siehe H&rmander [ 15], Lemma 7.6.2, und beachte, dah

dort ¢ nur auf € definiert zu sein braucht):

Ist q > o, so gibt es eine Konstante C > o, so dab es fir
jede Kugel U « " (mit Radius < 1), jede plurisubharmonische
Funktion ¢ auf U und flir jeden Schnitt £ wvon if(o,q) ber U
mit 3f = o einen Schnitt u von 4;o,q-1) iiber U, mit 3u = f in
Uy und

[ul?e™®ar < c-J]£12 e ™®ar
U* U

gibt. Hier ist U, die zu U konzentrische Kugel mit halbem

Radius p(U,) = p(U)/2.

Satz (3.4) ist offenbar der Spezialfall q = o des folgenden

Ergebnisses.

(3.5) LEMMA. Sei @ < " ein pseudokonvezes Cebiet. Sei @ eine

plurisubharmonische Funktion auf 8 . Seien p,v &F und q € I

gegeben. Zu jedem f E,ep(u(v), ‘ﬁo,q" mit S8f = o0, Of =0

-7 (1) . R -
und "me < +w gibt es ein g€ €l 1y v fo,q) mit 39 0,
og = r} fund glly < I, » wobed

(3.6) @(z) = @(z) +C-Zog(2+|z]2)-c-log dn(z), z € 2,

Hier gind u > v und € > o unabhdngtg von @ und f.
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. . . . . lesen.
Beweis, Dag Lemma wird mit elner Induktion {iber p bewl

( u(v) ge-
Sei (u-v)). €N die in Abschnitt 3.1 angegebene zu
J J

.. e 1-t
horige Zerlegung der Eins. Aus (3.1.11) und (3.1.iii) folg

31 J5a5 ) €, (2)/(C+]z]))™

. . C > 2.
mit einer von z € @ und J e N unabhdngigen Konstanten

Sel f = (£ ) efp(tﬁ“J, £O ¢ ™t §f = o und ||f Hw<+w

3

gegeben. Setze fir g €1

- (v)
hS = § (Xj ij ]

wobel die Summe nur {ibep jene j zu erstrecken ist, die niii;

in s vorkommen. Die Summanden und damit auch hS sind auf Ug de
finiert. Manp erhdlt 5o eine Kokette h = (hs) e‘fp-l(uﬁv)ai%’q)'
Man rechnet nach, daf ¢h = (Verschwinden der Kohomologie

feiner Garben),

Weiter gei §f=o.

5h€Efp_1(ﬂF“),i% q+1) hach sich. Jedoch hat man 3(3h) = O,
3

. on
Dies zieht noch nicht das Verschwinden v

§(3h)

1

3f = o, und wegen (3.7) gilt mit @ wie in (3.6)

13015 < ey .

Ist p = 1, so gibt esg eine lokal quadratintegrable (0,q)-

Form u auf £ mit 3y = 3h und

~

[ Ju]?e™® (1+]2] %)™ 24, < [ |5h)? Py
L Q

(Siehe HSrmandep [15), Thm.

H

h~u Efo( u(v )azo#?

8 = 8h = f u;2 3g = 3h- Bu = o-

4.4.2.) Dann ist g
die gesuchte Lésung; denn

H] ]
1

<



Ist p > i, und ist das Lemma fiir kleinaep bereits be-
wiesen, dann gibt es nach Induktionsvoraussetzung ein

™ p_2 (;‘\) - o~ * ey g - d
he € (‘U ,£%5q+1) mit gh = rvk(ah), ah O un

nach eventueller Vergrdferung der in @ vorkommenden Konstante C.
Aufgrund der vor (3.5) gemachten Bemerkung Uber die 3-L&sbarkeit
auf Kugeln kann man eine (pach Antisymmetrisierung alternieren-

de) Kokette § e-@p_z(UFu),i% q) finden, sc dab ag = F;uﬁ und

HElhs < C“EIHE'

Hierzu wird (3.1.iv) mit A < y und N = 1 benutzt. Jetzt 1ist

g = rj, h - 8% E-Cp_l(ﬂﬂu),i% q) die gesuchte L&sung; denn
b ]

g = * - ¥ S =
g = 8r h ruuf und 3g = © wegen
365 = sr* B = rt o ro,(3n) = r¥ (2h).
3dg = SPAuh = ry 0 Pul(ah) LN
Das Lemma - und insbesondere der Satz - ist nun bewiesen. =

3.3 Globale Division und Interpolation

Hier werden die Hauptresultate iber Noethersche Operatoren

auf ganzen Funktionen formuliert und bewiesen.

K .
Sei N ein Noetherscher Operator auf [[z] . Die aus allen
Keimen f 5,4,}( mit

Af|V = o fir alle (A,V) e N



my

_80_

(Interpretation Uber Reprisentanten fir f) bestehende
Untergarhe von,4K wird Kerngarbe @V von Jf genannt. Ist Q
eine J x K-Polynommatrix Uber C[zl, so ist die Kerngarbe

.. . K h
des durch Q definierten Garbenhomomorphismus von 4 nac
Ag gleich der Kerngarbe des Noetherschen Operators
(L e™, ., Q7,e™ ), wobes Q',...,qY die Zeilen von Q sind.

Diese Garbe wird hdufig auch als Garbe der Relationen von Q

bezeichnet.

L5 1st ndtig, auch die sup~Norm

=0(Z)/2
1 fllp,0 = sup sup Fo(z)]e z
52,7 EUS

. . ; )
einer Kokette f - (fs) € fp(ufv)’AK) bezliglich einer (stetigen

. . . : : on
Funkion ¢ : 0 sR 2y benutzen. Wegen (3.1.ii) gilt mit einer v

Ty o und unabhdngigen Konstanten C
~ [y
Hf“a < C-Hfﬂm’m, (@ = o+(2n+ D 2ogl1+|-])).

Fir eine auf einer Kugel u holemorphe Funktion h gilt bekannt-
lich
suplh! <¢ o(U)_n/Q(ﬂhf?dl)lma
. n
Us U
. . ¥/ 2
wenn U,  eine zy U konzentrische Kugel mit Radius p(Uy) < p(U

. . - ] en
ist. Hieraus folgt eine Abschitzung der sup-Normen von Kokett

f € fPWva),dK) durch LQ—Normen

(3.8) Fe2 £l o <”wa

= =]
N?

. . o . 1 ar
Aler sind » > v ypg N2 1 unabhingig von ® und f. Es ist hie

mN(z) = sup W(z+z) +N-log(2%lz|2), z € En,
1Z] <N
falls @= g™ ung

ON(2) = @(z) eN-Cy 4 Nelog(2+]z]2)-y log do(z), z € 2 ,



falls ¢ # T und falls ¢ die Abschdtzung
(3.9)  ©(z+Z)< 0(z) + Cy , 2 € 2 2] < a,(2)/2,

mit einer Konstanten Ctp erfiillt. (Man beachte, dab (3.3} wvon

¢ = log (2+l-|2) und ¢ = -log dg erfiillt wird.) Zum Bewels

von (3.8) verwendet man die untere Schranke fiir den Radius

der Kugel U aus (3.1.iv) und benutzt die flir alle ¢ und alle
Kuseln U mit Mittelpuhkt ¢ € @ und Radius p(U) < dﬂ(c)/B giiltige

Ungleichung

v

inf Oy 2 sup Wy 4 CN , N 1,

U U

CN.ZO eine Kecnstante.

i ¢ o ist
Mit ¢ ist auch @y (halb-)stetig. Ist @ pseudokonvex, §

mit @ auch Py plurisubharmonisch.

(3.10) SATZ. Sei N ein Noetherscher Operator. Der flz)-Unter-

. +
modul M c E[z]K werde von der K * -Polynommatriz P erzeugt,

N

d.h. M = P-E[z]L Sei QO ein pseudokonveres Gebiet. Sei @
heo M= .

. , . ) 0
eine plurisubharmonische Funktion auf @,

fv)
7u jedem f € (?’ru'“ ,J?.W)

pelcehe (3.3) erfillt,

wenn Q #L°. Set p &NO und sei v € K.

. . p ) Ly it
mit &f = o und Hfl]w <+ oo gibt es ewn g e €5U , A

Pg,

£l @

3
+
[,
1]

IA

Ugliwy

N und u > v sind unabhdngig von ¥ und f.

Beweis. Der Beweis wird mit einer Induktion tiber fallendes p

- » 2 .
gezeigt. Wegen (3.1.ii) sind alle p-Koketten trivial, wenn P =D,
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Also ist der Satz fur P 2D richtig.

Sel nun p > o, und sei der Satz fip echt gr&fere p und alle
Noetherschen Operatoren bereits bewiesen. Insbescondere gilt
der Satz also schon fiip P + 1 und den durch die Zeilen von P
definierten Noetherschen Operator.

Seli f € fp(%év), %”) gegeben mit &f = o und ”f”(p< *oe

Mit y und N wie in (3.§) gilt fir alle s € T_4q
{ *
sup ((r B I < £  -explsup w0./2).
(w) VM % ® (wy N
u U
S s
Mit H

. . ... : an
ilfe des semilokalen Divisionssatzes (2.28) erhdlt m

eine (nach Antisymmetrisierung alternierende) Kokette

u = (Us) € {p(ﬂ(l),iL) mit Py = r:

Af und
P sup fu | < sup [(e* £) |, gts » 3 (55 8 € Toyy
(a3 (uy Vv s S
U U
S S

. : . . . . o i groh.
Hier ist Uy wie in (3.1.1iv), wobei 3 - u > o geniligend g

Mit einem gréReren N erhdlt man dann

lull < i)

. . 11
Die Kokette ¢u € €p+1(u(k),491 wird im allgemeinen nicht Nu

. g man
sein. Jedoch ist P(sy) - 5(p:lf) = o und &§{(8u) = o, so dak m

: . .. ther-
die Induktlonsvoraussetzung auf den durch P definierten Noe .

p+1(u(0)¢+71
schen Operator anwendep kann. Damit gibt es ein h € €

o > X, mit dh = o und

Ch = P;U(éu),
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Mit (3.4) erhilt man jetzt eine Kokette h € ¢ (U A ).t > 0,
mit éh = r* h und
aT
™ -1l
RUFNER LY

Vi 1

. ~ . - * _ ¥
Dann ist g = r;Tu - Qh die gesuchte L&sung, denn Pg=r) Pu=r

und
* r * *
= - = - h = o.
§g = r, du Qéh = vy, fu - r Q
Der Satz ist bewiesen. =
{ . 2
Fiir p = o erhilt man aus dem obigen Satz, wenn man von L - zu

sup - Absch&tzungen flir die holomorphen Funktionen {ibergeht,

sofort eine Globalisierung von Satz (2.28).

K .
(2.11) GLOBALER DIVISTONSSATZ. Sei Mc<flz] ein rfz}-Modul.

Sei W ein zu M gehériger Noetherscher Operator. M werde als

. no . Q
Cl{z)-Modul von PI”"PL€ M erzeugt. Sei 9 < L ein pseudokonvexe:

Gebiet. Sei ¢ eine pzurisubharmonische Funktion auf @ , welche

K .
(3.8) erfillt, wenn Q # ", Zu jedem f € ArQ)" mit

Af|v n o= o fir alle (A,V) €N
. . L .
gibt es ein v = (vy,...,v;) € A Q)7 mit

f:

M

v, P. tn Q,
d d

-1, -
sup |vle ¥ < sup|fie ©,
Q Q

Hierbei ist N > o eine von @ und f unabhdngige Konstante.

Schlieflich kann noch eine Clobalisierung von (?.31) angegeben

werden.
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(3.12) GLOBALER TNTERPOLATIONSSAT?Z. Set N ein Noetherscher

Operator (auf £l21%). 501 g " ein pseudokonveres Gebict.
. .9)
Set @ eine plurisubharmonicche Funktion auf @ , welche (3

K . ;
erfulle, wenn 9 % €. 7u jedem £e A(2)¥ gibt es damn ein
g € dra)f mit

(3.13) (Af - 4g)lvn g = 5 fir alle (4,v) € N ,

=P
sup lgle ¥ < Lon sup l4fle™ .
Q (A, VIEWX VN g

. . . . . te.
Hierbei st N > o cine von @ und f unabhingige Konstan

. . . 2 tir
Beweis. Den Unterschied zwischen sup - und L - Normen fil

. . . i gneten
Koketten kann man wieder ignorieren, wenn man zu geclgn

Uberdeckungen Ubergeht,

Sei f € 4 () mit

max sup [Af[e™ - 4 <t o
(A V)EW Vo

gegeben. (Im Falie d = +o ist nichts zy zeigen).

. ine
Aus dem semilokalen Interpolationssatz (2.31) erhilt man ei

Kokette T = (Ej) efo(’a("),AK) mit

Y3 ] N,
(Af—Agj)Iv n Ugu) =0 fir alle (A,V)eyf und ] €

~ ~ . 2m
und  |ig] S a. Also ist 4% ¢ fi(ﬂ(v),.ﬂ J. Weil §°g = ©
©y N

erhdlt man nach (3.10) ein R € gl(u(“),dp), u>v, mit &h = O

PR = r* 4% ung sl

y )
vy d. Hier ist P eine (festgewdhlte

© <
N halt

die d%n Modul wa erzeugt. Mit (3.4) er
man eine Kokette h Efo(Z(("),AL>

K xL~Polynommatrix,

. * nd
> A > pu, mit &h = Tuxﬁ U

thiw £ a. Dann ist
N

2
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I
g = T ,,8 Ph
die gesuchte L&sung; denn wegen
* ) P
— :o
vl g TplPh
ist g eine holomorphe Funktion auf &, und aus

APh|V = o, (A,V) €4/, folgt (3.13). =

(3.14%) ERCANZUNG (zum globalen Interpolationssatz).
Seien A und @ wie in (3.12). Seien stetige Funktionen

. eben.
h(A,V).V ng - T, (A,VJE N , geg

. K
Es gibt eine global definierte holomorphe Funktion f € Q)
mit

Aflv N q= fipr aile (A,V) € N

hea,n

wenn es eine offene Uberdeckung (Uj) von £ und holomerphe

Funktionen fj €-ﬁ(Uj)K gibt mit

= . fir alle (A,V) €4 und alle 3.
Afj[v nt h(A,V)lUj

i i i Bewelses
Dies folgt mit einer nicht quantitativen Version des Bew

; i h
von (3.12). Hierbei wird der semilokale Interpolationssatz durc

t.
die Existenz der f. und (3.10) duprch Cartan's Theorem B ersetz
J

Mit dem globalem Interpolationssatz folgt dann, daf man fir

- anken
solch ein f - nach eventueller Anderung von f - noch Schr

angeben kann.



Anmerkungen

(a) Der hiep vollzogene Ubergang vom Lokalen aufs Globale

(b)

stammt von Hérmandep [151, 7.8, Von dieser Darstellung
wird hier nup geringfiigig abgewichen. Der gréfte Unter-
schied besteht ip der Wahl allgemeinerer (aber noch "tem-
perierter") Uberdeckungen vom Whitneyschen Typ. Auberdem
werden die plurisubharmonischen Funktionen keiner Lip-
schitzabschétzung unterworfen wenn q = g0, Die Verallge-
meinerung von ¢" auf Pseudokonvexe Gebiete f < I berei-
tet keine Schwierigkeiten, Wenn man von H&rmanders [15]
Theorie des §~Operators in pseudockonvexen Gebieten aus-

geht. Eine solehe Verallgemeinerung wurde auch von

de Roever [77] gegeben,

HSrmanders "cohomology with boundg" existierte noch nicht,
als Ehrenpreis Um 1960 dasg Fundamentalprinzip aufstellte.

Ehrenprejg {9] undg Palamodoy [20] benutzten eine quantita-

tive Version ¢es klassischen Beweises (Induktion wber die

Dimension) vop Cartans Theopen B, um den Ubergang vom Loka-
len aufs Globale 2y Schaffen, Dieses Verfahren ist umsténd-

licher ung liefert nicht so allgemeine Wachstumsabschdtzun-

gen wie dag Hérmandersche (vgl. Anmerkungen (a) und (b) zu

Kapitel u),
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KaPITEL 4
DiIFFERENTIALOPERATOREN AUF LAU-FAUMEN

In diesem Kapitel wird das Fundamentalprinzip und der zugehdri-
ge Integraldarstellungssatz flir lineare partielle Differential-
gleichungen mit konstanten Koeffizienten bewiesen. Er wird in
abstrakter Form fiir lokalisierbare analytisch-uniforme Rdume
(=LAU-R&ume) im Abschnitt u.4 formuliert und gezeigt. LAU-R&ume
werden im Abschnitt 4.1 eingefiihrt. Sie sind nach (abstrakter)
Fourier-Laplace-Transformation dual zu gewichteten Rdumen gan-
zer Funktionen, wobei die Familie der Gewichtsfunktionen mit

den in Kapitel 3 vorkommenden Gewichten und deren Modifikationen

vertridglich ist. Konkrete Riume wie &(X) und 2'(X), X cR"

offen und konvex, werden in den Abschnitten 4.2 bzw. 4.3 als
LAU-Rdume aufgefaft. Aus dem Fundamentalprinzip werden im
Abschnitt 4.5 noch Regularitdtssdtze fiir Differentialgleichungen

hergeleitet.

4.1 LAU-Strukturen und LAU-Rdume

Das Hauptanliegen dieses Abschnitts ist die Einflthrung gewisser

Familien ¥ von Gewichtsfunktionen auf t® - den LAU-Strukturen -

und hierzu assoziierten Rdumen ganzer Funktionen;{x.

Die Bedeutung von LAU-Strukturen ¥ wird in Abschnitt 4. klar:

Der QUOtientenraum4+§/R4§ , P eine K x L-Polynommatrix, kann

mit Hilfe eines zu P.E[ZIL gehérigen Noetherscher Operators N

mit einem Unterraum eines Raumes stetiger Funktionen auf den

Varietiten V, (A,V) €4, identifiziert werden.



. Ge-
Stetige, positive Funktionen auf C" werden im Foclgenden

) . : ist Al¢)
wichtsfunkticnen genannt. Fir eine Gewichtsfunktion ¢

: Funktio-
(bzw. €(s)) der Raum aller holomorphen (bzw. stetigen)

nen f auf g9 mit

lim £(z)/¢(z) = o.

Z =

in Banach-
Mit der Norm ”f|j®: sup|£|/¢ ist A(8) (bzw. €(0)) ein
rh

. tige
raum. (Gelegentlich wird auch 4(¢) flir oberhalb stetilg

. werden. )
Funktionen ¢ it inf #(z) > o, vr > o, betrachtet
zZl|gr

R : unktionen:
Im Folgenden igt K stets eire Familie von Gewichtsf

- - - ' - i ¢ E k
die gerichtet 1st, d.h. es gibt zu @1: ¢2 € ]( ein

mit ¢ < min(@1,¢2). Dann ist

U;K:= Proj lim A (g) - n ACe)
P € X o €X
(bzw.‘ﬁxz Proj lim €(e))
3 EX

ein lokalkonvexer Raum mit den Halbnormen H'l%’ v €X.

. .. . {e Menge
Zu Jjeder Familie von Gewichtsfunktionen, K , gehdrt die

. ionen
8= 8@ aller nichtnegativen oberhalb stetigen Funktio
b auf €V, fiir qie

Sug b/e < + = fip alle ¢ e X.
T

Es ist klap, daf es zu jeder beschrdnktern Teilmenge B Cx

ein b €8 nit B < {fety;if] by gibt.

(4.1) DEFINITION. Eine Familie von Gewichtsfunktionen, £ »
—_‘-ﬁ——___’_

. . o
heigt LAU—Struktur, Wenn es zu jedem ¢ € X und jedem N > O»
ein s ex gibt, so dag Filt:



(i) sup $(z+§)-(2+|z|2)N < o(z) fir alle z € T"

17| <N

(ii) 2u jedem b € B(X) mit b < ¥ gibt es eine pluri-
subharmonische Funktion ¢ mit b = ew:SQ , so dab

— A (%)

)
S

A (e

(Abschluf in A(¢)). Hier ist
9, (2z) = sup w(z+§)+N-1og(2+[z|2), z €L,

|Z | <N

(4.2) BEMERKUNG. Eine stdrkere Bedingung als (ii) ist:

(ii)' Zu jedem b € B(&X) mit b = T gibt es eine pluri-

subharmonische Funktion ¢ mit b = e? < ¢ und e?e BX.

Einige grundlegende Eigenschaften von LAU-Strukturen sind im

folgenden Satz zusammengefafBt.

(4.3) SATZ. Sei X eine LAU-Struktur. Dann 18% Ay abgeschlossen

unter Translationen, unter Differentiationen und unter Multipli-

- . . . . ; £
kationen mit Polynomen. Diese Operationen sind auch stetig auj

Ay. u ist ein stetiges lineares Funktional auf Ay genau dann,

wenn es ein RadonmaB du auf € gibt mit [® -ldul< = fur ein

¢ € X, so daB
ul(f) = Jn f(z)dulz) fur alle f € Ay -
r

Der Raum Ay enthdlt eine Funktion f # 0.
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. . L1.1).
Operationen und ilhre Stetigkeit folgt leicht aus (4.1.1i

- ibt
Sei u ein stetiges lineares Funktional auf oy . Dann g

€s ein ¢ € X mit

[u(f)} < £ p fUr alle f € shy.

ieszschen
U darstellendes Radonmag du  erhilt man nun aus dem Rie

. . mit
Darstellungssatg, Umgekehrt definiert ein Radonmaf dy

i1 1 ineares
IQIdU’< e fir ein e ¥ offenbar ein stetiges line

Funktional auf Ay .

. eligell,
Um cfx* {0} zu erhalten, genldgt es wegen (4.1.ii) zu zeig

0 _ e
aald A (e N) * {0} wenn N> 3n/2 und wenn ¢ eine beliebig

. v ibt
stetige plurisubharmonische Funktion ist. Fiir solche ¢ g

. : f &0
€S nach Theorem 4.4y in [15] eine holomorphe Funktion
auf ¢ pit

flecz)|? e720(2)

(1+!z[2)_3n dx(z) < + .
n
'

Hieraus erhilt Man in gewohnter Weise einesup-Abschitzung
| £Cz) ] <C-sup ew(Z+Z)(1+]z+§|2)3n/21
1Z]<1

P
Also ist f ¢ A

z € ¢".
N
} wenn N > 3n/2. =
(4.5) DEFINITION. gei # eine LAU-Struktur. Sei F: F - Ay
_-—_—'“H—_____

A . .
© o, eipn linearer Hom

F auf uﬁl.

aumes
Gomorphismus eines lokalkonvexen R
Dann wipg gesagt, dag g mittels der abstrakten

3 fgt.
Fourzer—LapZace Transformation F die LAU-Struktur X trdg



Die starken Dualrdume von lokalkonvexen Riumen mit LAU-
Struktur (und abstrakter Fourier-Laplace Transformation)

heiBen LAU~Rdume.
In den weiter unten angegebenen Beispielen ist die ab-
strakte Fourier-Laplace Transformation gleich der konkreten.

Dies rechtfertigt die folgende Terminologie.

(4.5) DEFINITION. Sei F' ein LAU-Raum mit LAU-Struktur A

und abstrakter Fourier-Laplace Transformation F:F My,

A . ) .
@ = . Sei P eine L x K-Matrix iiber dem Polynomring rlz].

) — v K L
Der via ¥ zu A; a,ﬁf, f o tPf, duale Operator P(D):F'""'» F

wird als Iinearer Differentialoperator mit konstanten Ko-

effizienten bezeichnet. Die Polynommatrix P ist sein Symbol.

Einen zum Untermodul t¥ -E[z]Lc E[z]K gehbrigen Noetherschen

Operator nennt man auch einen zum Dpifferentialoperator P(D)

. b4 n
gehirigen Noetherschen Operator. (Hier 1st P(z) = P(-z),z €L,

t . . . .
und P ist die zu P transponierte Matrix).

4.2 Die LAU-Riume .«sw(X) und A4(2).

Hier werden einige (DF)-R&ume angegeben, die eine LAU-Struktur

tragen. Diese sind auf Grund von paley-Wiener Sdtzen unter

der (konkreten und abstrakten) Fourier-Laplace Trans formation

isomorph zu einem induktiven Limes

ind 1im (&)
j-b «© J

mit sup ¢'/¢j+1 < + » fir alle j.
mn



Sei (cbj)j €N eine Folge von Gewichtsfunktionen mit
(4.8) lim q>.(z)/cp.+ (z) = o fir alle ] € N,
Z 9o J i+l

die Menge aller Gewichtsfunktionen ¢ mit

Sei K= ¥ (@j)

sup <I>j/<b < t o fliir galle j €EX.
n
T

(4.7) SATZ. Seien (o, - ‘e oben. Dann 8t
28144, J)j ey ¥nd K= ,7((%.) wie o

, 14 _
tnd Lim A(@J_) = ‘A'JC

J =eo

(Gleichhest Zokalkonvexer Ridume). X ist eine LAU-Struktur,

2
wenn es zu jedem j € y etn 1 € W gibt, so daB ¢j(z+z)(.2+|2] )

.. - ~ ~ . 3 b"
= ®(2) fir aiie 2, 2 € o pit |z| <1, und wenn es plurisu

harmonigche Funktionen log of gibt mit qu. sch’. und ¢,3:' = 0(¢j+1)

fir jedes j € .

Beweig,
ZEWels.

Zum Beweis von ind 1im ‘4_(q>) _ 041 ist es Zweckméﬁiga
]

Zuerst die analoge Gleichung fir die lokalkonvexen Riume stetls

ger Furnktionen gy Zeigen,

(4.8) ind 1im €(¢.)
j - oo J

f € ind 1in d(oj);llf][¢<1}CU-
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Ohne Einschrinkung kann man annehmen, daf U abgeschlossen
und absolutkonvex ist. Es gibt eine Folge positiver reeller

Zahlen (ej)j , So daB

€N

{f € €Ca.); ||f|], s e.} cuy fiir alle j € N.
] ¢j B

Wihle eine lokalendliche Partition der Eins,
o0
z =1 auf T°,
1

stetiger Funktionen «, mit kompaktem Trdger supp d;, S50 dap

1
flir jedes 1 > 1 gilt

-1

(4.9) ?1_4(2¥/2(2) =2 "&g wenn a,(z) # o.

1

Wihle o <6j <1, 3 =1,2,.., so dab

(4, . . -1 .
10) 63 ¢j(z)/¢l(z) < m1n(61,2 el) wenn al(z) +0, 1 €1 %5 3

Eine solche Wahl ist mdglich, da jedes &, mnur fiir endlich viele

1 Bedingungen zu erfiillen hat. Setze
¢(z) = sup §.¢.(z2) , z € ",
jen JJ
Wegen (4.10) ist das Supremum lokal ein Maximum. Somit ist ¢
stetig und folglich ¢ € ¥ . Sei nun f € ind lin1-f(¢j) mit

[£(z) < #(2), z € ¢", gegeben. Ohne Einschrdnkung darf man

{ i i iz ¢ ilt dann
annehmen, daf st °j+1 fir alle j. Mit &g 1 B

la.£]l . < sup 8(z)/8.(2)
177 7 () 40 1

» Sup Gjﬁj(z)ftl{z)).

< sup max (¢1“1(z)/01(z) SUP,

ul(z)*o
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Mit (4.9) und (4.10) erhdlt man hieraus

Half!]¢l < 27 fir alle 1= 1,2,. ..

Folglich ist f = ¥ 2_1(2101f) €U, wenn diese Reihe in der
Topologie des indiktiven Limes konvergiert. Fiir ein j sind
die Partialsummen beschrdnkt in -6(¢j). Wegen (4.6) konver-
giert die Reihe daher in {(cp.+1)_

Zum Beweis von (4.8) bleibt noch ch U € (3.) zu zeigen.
Allgemeiner wird jetzt gezeligt, daR jeée in {i beschrdnkte
Teilmenge bereits inp einem Raunl-{(Qj) enthalten und dort
beschrénkt ist, Dazy ge; b € B &) gegeben. Angenommen, es

gdbe eine Folge (Zl)’ z,€ r”, so da ‘
(4,11) Sgp b(zl)/¢l(zl) T+

Es gibt dann o <6j <1 fir alle j €N mit

Aahle 4 € ¥ mit ¢ < Sup §.9.. Dann ist @(zl) S¢1(Zl) far
alle 1 € N. (Beachte, dap ®5<9;,, fir alle j.) Im Widerspruch

z2u (4.11) ist sup b/e < + ©. Also ist fir ein 1 € N

gezeigt,

Hiermit ist auch gezeigt, daf ing llH!'C(Q ) = € und

ind lim -A'(qa ) (DF)-Riume sind (siehe z.B. [ 161, § 29).
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ind lim d(¢j) ist zudem ein Montelraum, denn die Ein-
bettungen u&(¢j)=+n4(¢j+1) sind kompakt. Dies folgt mit
(4.€) aus Montel's Theorem.

Auf die Inklusion

ind lim u*(dlj) — {x
3

ist daher der folgende Homomorphiesatz von A. Baernstein 1I
([ 21, Lemma in § 2) anwendbar. Mit ihm folgt
ind lim A(éj) = Ay
3
(4.12) LEMMA. Seien E und F (DF)-Réume. E sei auBerdem ein
Montelrqum. Sei T : E » F ein stetiger linearer Operator, £0

daB jede in TE beschrinkte Teilmenge Bild unter T einer be-

schrinkten Teilmenge in E ist. Dann ist T ein Homomorphismus,

d.h. eine offene Abbildung auf TE.

Beweis. Die starken Dualrdume Eg und Fg sind Fréchetrdume

(siehe z.B. [16], § 29.3). Der zu T duale Operator T':Fg= Eg
ist ein Homomorphismus. Zum Beweis betrachte den starken Ab-

schluf R des Bildes von T'. Die starke Topologie auf E' ist die

Mackeytopologie bezliglich der Dualitdt < E',E >. Folglich ist

der starke Abschluf einer absolutkonvexen Teilmenge in E'

gleich dem schwach-*-Abschluf dieser Teilmenge. Also ist

R = (Kern T)° (= Polare von Kern T). Sei V eine Nullumgebung

mit B?,CV. Nach

indet man eine beschrinkte Teilmenge Bp

in Fé. Es gibt ein BF=:F, BF beschrankt,

Voraussetzung iber T f

in E mit T-l(BF) c By + Kern T. Mit dem Bipolarensatz folgt
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' _ -1 o o) 0
T (BF) = (T (BF)) DBE N (Kern T)".

o ; .
T'BF ist auch der starke AbschluB von T'BF. T' ist somit

eine fast offene Abbildung von F! in den Fréchetraum R. Nach

B
dem Banach-Schauder-Theoren ist T' folglich eine offene Ab-

bildung auf R,

Sei jetzt U< E eine absolutkonvexe, abgeschlossene Nullum-
. UO<:R
gebung mit Kern T < U. Die schwach-*-kompakte Polare
ist auch kKompakt inp Eé, denn auf gleichstetigen Teilmengen
. . lo-
von E' stimmen die schwach-*-Topologie und die starke Topo
gie Uberein (siche z.R, [10], § 22.2). Da R ein Fréchetraum
n
ist, ist u° enthalten in der absolutkonvexen, abgeschlossene

3)).
Hille einer Nullfolge (&7, £ €ER (siehe z.B. [16], § 21.10(

Da T' offen auf R ist, findet man eine Nullfolge (nn) in FB

mit Tnn = En fir alle n. Setze

Ve=niye Filey,n >ls1)
n

Dann ist U% T'v°, algo vy TU. Da F ein (DF)-Raum ist, ist

V eine Nullumgebung in F. =

Fortsetzung des Beweises von (4.7). 7y jedem j € W gebe es

ein 1 € H, so dag

~

Qj(z+z)(?+|z|)2 < ¢l(z) fir alle z,Z et™, (2] <1

. 1
Es gebe eine plurisubharmonische Funktion loge! mit o, <o}

und Qé - O(¢j+1) flr jedes j € W. zun Beweis, daB K eine

LAU-Struktyur ist, seien ¢ € ¥ und N >0 gegeben.

Wihle Gj > o mit sup &%/¢ < 1/6j » ] EN. Wihle eine Folge
n

(l(j))j en Natirlicher Zahlen mit



~ 2N " Sech, |3 \
¢j(z+z)(4+|z| )< ¢l(j)(z) fiir alle z,z €L, [z| £ N.
Fir jedes 3 € X mit
~ n
¢(z) < sup 5l(j) ¢j(z), z € L,

J
gilt dann (4.1.31).

Nach geeigneter Verkleinerung der Gj > o kann man annehmen,

daf zusdtzlich fiir alle 1 >1 gilt

1A
o

' ", |z
61¢l(z) < 61‘1 ¢i—1(2) wenn z € [z ]

Betrachte 3 € X und be B&) mit

b £ ¥ < sup 5.0} (auf ™).
3 3]

Wie bereits gezeigt wurde, gibt es ein 1 €N mit

sup (b/¢; ) < + . Nach (4.6) gibt es dann ein 1 €N, 1 > 1.,
ch o
mit
< " z| =2 1.
blz) =6, 4 o (2 wenn z €T, |z]
@] Q

Also gilt auf ganz "

b<e? : - max §.9! < o.

j<1 1]

Es ist e? € B . AuRerdem ist o plurisubharmonisch. Wie in

{(4.2) bemerkt, bedeutet dies, daB ¥ eine LAU-Struktur ist.

Mit Hilfe des eben gezeigten Satzes kann man konkrete Bei-

spiele von LAU-Rdumen angeben.

(i) Der Raum der Beurlingschen ultradifferensierbaren Funktionen
. n .
€ (X) auf einer offenen und konvexen Teilmenge X € R 18t
"]

ein LAU~Raum. Hier ist w eine stetige reellwertige Funktion
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auf R" mit den Eigenschaften

Tl
1= w(g+n) < w(E)+w(n) fiir alle € , n € R,

(L.13)

w(’é)(1+|£|)_n'1dg <+

n 3

J
R

N

@(8) 2 b-logCi+]e]), £ €R", fir ein b > o.

. . . r
Sei K eine kompakte Teilmenge des r". Dann ist der Raum alle

0E C:(K) mit

bofly = 1 1) 1 D ag che i atte 1 > o
RO

ein Fréchetraun D ,(K) mit den Halbnormen ”'”A'

gy - fe-lxgﬁpfx)dxa EER", ist die Fouriertransformierte

YO @) Sei X @ R offen. Die Elemente des (LF)-Raumes

J)w(m = ind lim D (K)
KcC y v

werden Beurling-Testfunktionen genannt,

. nn
€,00 ist der Raum aller bECTX) fur die .y € (X), we

© €D (X). Mit den Halbnormen ”tb”hw = |- vl v e £,000,

. . iver
(fir alle s o und alle ¢ € ,Dw()()) izt gw()(:) ein reflexiv

Fréchetraum. seip Dualraum gL(X) besteht aus den Beurling-

Ultradistributionen mit kompaktem Trdger in X.

P uwlE) = doglerlel), £ e RN, oin D,(X) una £ (X) gerade

die {iblichen Schwartzschen Riume D(X) und €(X). (Eine de-
taillierte Darstellung der Theorie der Beurling- ~Ultradistribu-

tionen findet man ir Bisrck [ 5 }s Chap. I.)

Sei X jetzt Zusdtzlich konvex. Wihle eine Ausschonung vor X

durch konvexe, kompakte Teilmengen Kj’ j €N, mit Kj(x:ﬁj+1

flir alle j. Fir jedes j setze
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H.(n) = sup n vy , n € R"
] 1 EKj

Dann gibt es eine Folge positiver Zahlen (Gj)j €N mit

Hj(n) +5j[n| <H. .{n) fiir alle n€ R'-o und alle i € N.

j+1
Das Paley-Wiener-Theorem fir g;(X) (siehe Bjdrck [5 ],

Thm. 1.8.1u4) besagt, daB die Fourier-lLaplace Transformation

n

(l,l.ll.\l) (\?’U)(Z) = G(Z) = <ste”i Z‘X> y 2 €€ ?

u € f&(X), den Raum g&(x) linear und homdomorph auf

i ——
€,00 = ind lim A(e)
j—-)oo

abbildet. Hier ist flir j € N

®j(Z) = exp(j-w(Re z) + Hj(Im z)), z € ",

(Qj) erfiillt alle Annahmen in (4.7). Dies einzusehen ist
nur fir die letzte Annahme in (4.7) nicht trivial. Hier
wihle nach dem unten angegebenen Lemma (4.15) wj = @, 2Zu
€ = 5j/2ja 7 €N, und setze

. n

log q’é = J-e (2) +Hj(Im z) +jelIm z|, z €L .
Dann ist log ¢! plurisubharmonisch, denn alle Summanden
]
sind es, und ¢. s¢§, ¢5 = o(¢j+1). Mit (4.7) folgt nun,
daR £ (X) ein LAU-Raum mit der Fourier-Laplace Transfor-
® /"""\ .

mation F und mit einer LAU-Struktur X=X (tw(x)) ist,

welche aus allen Gewichtsfunktionen ¢ besteht, fir die

sup exp (j-w(Re z) + Hj(Im z2))/ #(z) < + =

En

fiir alle j € N.



, : ie
(4.15) LEMMA. Sei o ¢ine stetige, reellwertige Funktion, d

. T rmoe=
(4.13) erfiullt. geq € > 0 gegeben. Dann gibt es plurisubha

. . no .
nrecne Funktionen O, und ©  aquf " mit

n
(a) —elIm 4 < ®,(z) ~ w(Rez) < elImz| + ¢ fir alle z €L,

7
(b) ~e|1m 4 < ©_(2) + wlRez) < el[Imz] + ¢ Ffir alle z €0

Aier ist ¢ eine von z unabhingige Konstante.

Beweis. Wahle eine ganze Funktion f #% o mit

1T(2)| <exp(-w(-Re 2) + elImz]), 2z € ¢V

Da eg ein ) El)w(]Rn)’ ® * o, mit SUpp (QC{JXE <el, g;!_b'[

(siehe [ 5 ], Thp. 1.3.7), existiert auch solch ein f

. + 0.
(z.B. £ = §). wacn eventueller Translation von f ist f(o)

. :ne Folge
Wahle 6 > o, so das [£(2) > § wenn jzf< §. Widhle eine Folg
(Zj)?a 23 €er’, so daf die Kugeln mit Mittelpunkt e und

. ; \ . : leinste
Radius g der; gl Uberdecken, Definizre ©, als die klein

oberhalh Stetige Majorante der Funktiocn

g
i

32 sup (lOE]f(z—z%)i+m(Re z2.) - elIm zﬁ) L

; el Mit
W, ist plurisubharmon:sen auf ¢ (siehe [14], Lemma 33).

w(Re 2.) <« w(-Re(z-p

: j)) + w{Re z) folgt

loglf(z—zj)] < -w(Re zj) * wlRe z) + glImz [+e|Im Zjl

Hieraus erhgi+ man die rechte Ungleichung in (a). Ist
[z-zj]< 8, so ig+
loglf(z—zj)[+ w(Re Z‘)' e Im 24 2 -C + w(Rez) ‘EIImZI’

wenn € > -log 44 €S + m(Re(z-z )). Damit ist auch die linke

Unglexchung in (a) Eezeigt,
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W&hlt man eine ganze Funktion f mit f{o) 4 o und

]f(z)| < exp(-w(Re z) +e|Im 7Y, 2z € mna

so erfiillt die kleinste oberhalb stetige Majorante ¢ _ der

Funktion

"3 z —> SUp (log|f(z—zj)|— w(Re zj)—e|Im zj|)+ C
]
die Ungleichungen (b). Dies bewelst man wie im Fall (a). Der

Bewels wird dem Leser iiberlassen. Da @_ auch plurisubharmonisch

. n . . .
auf T ist, ist das Lemma bewlesen. ®

(77) Der Raum aller holomorpher Funktionen A(0) auf einer
¢fferen und konvexen Teilmenge §i © " ist ein LAU-Raum. #(Q)
ist bekanntlich ein reflexiver Fréchetraum. Sein Dualraur A(Q)

st der Raum der analytischen Funktionale auf Q. Wdhle eine

-

Ausschdpfung des konvexen Gebiets & durch konvexe, kompakte

r3

~ilmengen K.e¢cf, 7 € N, mit KjC‘%j+1 fiir alle 7. Setze fir

jedes j
n
H.(z) = sup Re <z,t > , z €L
- L€ K.
] _~
( < -z i acetrancsformation  Erel.
Z,L > Zakg tees +zncn). Die Laplace
~ _ <C ,z> n : - 1 3 nrnd nomScmoroh
w(z) = v le ), z € T, bildet #4'(2) linear und nOM@ >
ab auf den Raum .
ind 1lim J»?Hj)

j-;m

Dies folgt aus dem Ehrenpreis-Martineau-Thecorem. (Siehe z.B.

Lo |

9 1, Thm. 5.21 oder [ 151, Thm. 4.5.3.) Alle H, sind pluri-
subharmonisch. (4.7) ist voll anwendbar mit (¢j) z (Hj}. Also
ist 4(2) ein LAU-Raum mit der (abstrakten) Fourier-Laplace-

Transformation Ju = ?z' und mit der LAU-Struktur X aller Ge-

wichtsfunktionen & mit



sup  exp(Re <z, £>)/0(2) <+ oo fiir alle Kecc@
z €ECN,T € K

4.3 Dep LAU~Raum aé(X).

n
Hier wird gezeligt, daf die (LF)-Rdume 3N(X), X « R offen

und konvex, eine kanonische LAU-Struktur tragen.

. . . n s n
Sel w eine Stetige reellwertige Funktion auf R" mit de

Eigenschaften (3.13). Sei ¥ c rR" offen. Die Elemente des

Dualraumes @&(X) von JuﬁX) heiBen Beurling-Ultradistri-

butionen auf X. Fiip o - logle+|-]) ist 2'(x) = = 9/ (X) der

Raum der Schwartzschen Distributionen auf X.

. . on
Sei X dauferdem konvex, Wéhle wieder eine Ausschépfung Vv

. 7 fiir alle
X durch konvexe, kompakte KjCSLX mit KjCC Kj+1 u

7 €N, und setze fir jedes 3

H.:(n) = Sup n-y

;TIERn
J y EKj

n ex
Aufgrund des Paley-Wiener Theorems fiijp am(K), K « R konv

und kompakt, (siehe [ 5 ], 7y 1.4.1), bildet die Fourier-

Laplace Transformation O ~Fo = (definiert wie in 4.14)

den Raum D, (X) linear ung homSomorph ab auf den Raum

D (XY = ind 1im Proj lim  4(s.

)
] 2 =™ 3A,

A &+

wobei fiir § € N ypg A >0

. _(z)

n
.- = exp(-iu(Re z) + Hy(Imz)), z €T

Betrachte die Menge J = 3((3 X)) aller Gewichtsfunktionen

¢ flir die eg eine Folge A3~—v+ @ gibt mit



sup (=dje(Re 2) + H.(Im 2)) <log #(z), z € L.
J
— .
Offenbar ist der Raum ﬁw(X) stetig in .lx eingebettet.

Tatsdchlich sind diese lokalkonvexen Rdume gleich.

(4.16) SATZ. Sei w eine stetige reellwertige Fumktion auf

B", die (4.13) erfiillt. Sei X c R" offen und konvex. Dann

—— . et _
st X = K (D (X)) eine LAU-Struktur. Es ist JM(X) = Ay

w
(topologisch und linear). Das heiBt, d(X) ist ein LAU-Raum

mit der LAU-Struktur &K und der Fourier-Laplace T'ransfor-

mation (Fe)l(z) = [e-izxw(x)dx, z € ¢, fiir alle @€ 3U(X)-

Der Beweis des Satzes wird mit einigen Hilfss&dtzen vorbe-
reitet. Dabei sind w, X und X stets wie oben.

Zuerst wird eine Aussage iber die Reichhaltigkeit von & ge-

macht.

(4.17) LEMMA. Sei eine reelle Folge Aj—4+m geceben.

Darnn gibt es ein ¢ € X mit

n
¥(z) < sUp emp(—ljw(Re z)+ Hj(Im z})), €L .

J
AuBerdem kann man noch eine plurisubharmonigehe Funktion ¥

Finden mit @ < e¥< ¢ fur ein & eX.
Beweis. Nach VergrdBerung der Aj darf man annehmen, daB
fir alle j gilt

—%.w(Re z) + Hy(Im z) wenn |z]<].
- kj+1m(Re z) + Hj+1(Im z) S 3% j

Dann ist
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¢(z) = SUp exp (—Ajm(Re z) + Hj(Im z)), zer" s
]
sicherlich eine stetige Funktion, also ¢ € X, .
Zu einer geeigneten Folge positiver Zahlen (ej) wihle mit
Hilfe von (4.15.p) Plurisubharmonische Funktionen ¢, auf o
mit

n
-C - ) z € T
Cj sj[Im z[Swj(z)+ Aj+1m(Re z) Se]}ImZI s >

flir alle j. Die oberhalb Stetige Majorante ¢ der Funktion

ch 3 Z s 5Up (ij(z)+Hj(Im z))
]

| £H, ., fir alle j,

ist bPlurisubharmonisch. Ist Hj +g J+1

51

so folgt e® < 4. Gilt ferner Hj +e fir alle J,

5411 <Hs g

SC erhdit man mit der obigen Konstruktion ein 3 € X mit

Aus Halbnormabsché“tzungen kann man explizite Abschitzungen

auf den Flichen |[1In z |/w(Re 2) = ¢ >0, erhalten.

(4.18) LEMMA. Sei XA >0. Seien aJ-)'+oo und bj-* + o mit

Lim bj/aj = 0 gegeben. Dann gibt es ein ¢ €X, so daB

(4.19) log o(sz) <« -bj - Xw (Fe z)+ HJ.('Im z)
wenn a < [Tm z] < aiyqwlBe 2), 7 €N, und
{4.20) log %(z) < - AwlRe z) + HJ.(Im z)

wenn |Im z | Saj+1 " wlRez), 7 €m.

Beweis. Eg genligt, eine Folge Ai/H ® zu finden, so daB

fir alle i ungd i gilt

(4.21) “h;wlRe 2) + H.(Im2) < -b]. - X-w(Re z) + Hj(Im z)



wenn a, £|Im z| < a. w(Re z) und

i+l

(L.22) —Aim(Re z) + Hi(Im z) £ -xa-w(Re z)+ Hj(Im z)

wenn |Imz | < w(Re z) . Ist Ao oz und ist i < j, so

aj+1-
gilt (4.21) in aj < |Imz | wenn bj/aj sﬁi, wobeid

§. = inf (H.
+ n o0 1+l

()~ E.(a))/ [n]> o,

und (4.22) gilt fir alle z €C". Zu jedem i sind die obigen
Ungleichungen also nur fiir endiich viele j nichttrivial. Fir
diese kann man die Ungleichungen mit geeigneten Ai erfiillen,

wenn man die Absch&tzungen |Hl(Im,zN < AllIm Z!SAlaj+1-m(Re z)

benutzt. =

Die inverse Fouriertransformierte

FGo = o™ [ e*trodr , x €8T,
E

einer Funkticn f € #4(%), ist eine stetige Funktion, wenn
n . : . . . -1
%R integrabel ist. Flir geeignete ¢ € X verschwindet F £

flir jedes f € #(¢) sogar am Rand von Z%.

(4.223) LEMMA. Sei (ej)j cw eine Folge positiver reeller

Zahlen. Dann gibt es ein ¢ €X, so daB fir jedes [ € Ale)

Sup ]37-1f| < e.-su%|f[/® fir alle j € N,
"ok, J o

Beweis. Ohne Einschrankung kann man annehmen, daf alle

: : S . = =-j-lo . und b. = -1log €
E] < 1/2 und ej~3 0. Setze a:j 7 g EJ 3 j
fir j €N. Mit einem noch zu bestimmenden A >n wdhle ¢ EX

Sei x € Rk,

wie in (4.18). Sei f € A4 (3), [f| < ¢. 3

gegeben. Wihle ein n €R',|n|= 1, mit Hj(") <n-x. Be-
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n _. - a.-n . Mit
trachte die n-Kette T = I‘X aller z € T mit Imz-= aj n

i - R Z) - 4a*n
(4.20) erhdlt man |e1xzf(z)] <e w(Re falls Im z ’

0<a Saj.'. Mit dem Cauchyschen Integralsatz folgt daher

F o = (2m™ [ I%2 g(,y4s.
T

Auf T gilt wegen (4.19)

Ielzxf(z)l Sexp(-ajn-x - bj - Aw(Re 2) + ajHj(n))

SEj _e—A°w(Re z)

Ftzun
Ist X genligend grok, so folgt die behauptete Abschdtzung

von l(?bif)(x)l nach Integration dieser Ungleichung. ®

. eben.
Im folgenden Lemma wird ein Resultat Zhnlicher Art angeg

. €Em,
(4.24) LEMMA. Sei O, = 1 auf X, a, € (x) fiir alle X
— F %% F o w

. .. " ler
eine Partition der Eins, fur die die konvemen Hiillen al

) A Wi
supp O, eine lokalendliche Uberdeckung von X bilden. 5et A

nktto-
gegeben. Dann gibt es ein o €X, so dan fir alle ganzen Fu

nen f auf " mi+ lFl <6 wund alle k € I gilt
1
A —
|1J?nak(z-y)f(y)dy[ = 2 k-e:r:p(—kjm(l?e z) + ijIm 3)),2 €0

o o
wenn gu a, < K. .
pp a, 7 aber supp @ ¢ Kj—l

Beweis. Sei k €N. Setze

Sk =sup ny 4 e Rn,
ck(y}*o
Sei i =

3 . . 9 .
J(k) der kle;nste Index § mit supp a, < Kj' widhle
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e, >0 mit G + ekl-!

(siehe [ 51, Thm. 1.4.1) gilt

< Hj‘ Nach dem Paley-Wiener -Theorem

A
lak(Z)| < Ckexp(-ljw(Re z)+Gk(Im,z)+ €k|1m z1), z € .

Sel A>Aj+n so groR, dab

e [ expl(O-Ma(y)ddy € 275
n ]

k
K

Sei f eine ganze Funktion auf T mit

lecyy| < e MY [y e R .

Mit der Subadditivitit von w folgt dann

éTJGKCZ-y>f(y)idy < 27K exp(-Xju(Re 2) +H, (Im 2)), z € L.

(Ohne Einschrdnkung ist Aj > o.) Also kann marn die behaupte-

ten Abschitzungen flr endlich viele k's stets erfiillen. Fir

fast alle k gibt es ein i mit

ch supp @, nkK. =29

-
£

(ch = konvexe Hiille von). 1 = i(k) bezeichne in diesen

Fall den gr&ften Index 1 mit dieser rigenschaft. Nach Veoraus-

setzung geniigt es also, jetzt nur noch k mit 1 = itk)y 21

zu betrachten. Dann gibt es eine ch SubPP ay und K. trennende

Hyperebene, d.h. es gibt ein 1 = n(k) er",In| = 1, mit
G, (-n) + Hi(n) < -2g, <O

nach eventueller Verkleinerung veon &,-

- . . n _.
Sei f eine ganze Funktion auf [ mit
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|£(2) | < exp(-rw(Rer) +H;(Im))  fir |Inc|sag, w(Ret),

[£(z) | < exp(-b.-Auw(Reg) +H.(Img)) fir aiSIIm£[53i+1' w(Ret) .

Hier ist A > n, und 4,7+ = und b.—»+« sind noch zu wihlende

1
Folgen. Es ist

n
Gk(ﬁ-n)+ek[£-n|+ H.(n) < Hj(g) - e dn] , g €ER.

Aus den Abschdtzungen an |3k| und [f| folgt daher (mit lj 20)
A
lak(z—c)f(C)lkaexp(—A-w(Re;) +Hj(an))

fir z,z € En, Imz=za*'n mit o:Sa:Sai+1w(ReC)-

Mit Hilfe des Cauchyschen Integralsatzes (im T') erhdlt man

folglich
A
[ 8 (z=y)£(y)ay - Iak(z~q)f(c)d‘f;
R" Iy
Wwobei T

K die n-Kette £ £+iai$(5)'n(k),€ ERD: ist.
) ) ~ . . 1en-
Hier ist 4: R® o [1,+=) eine Cm-Funktion, fiir die die Quot:ie

ten W/w, /% und |grada | /w

(

auf R" beschrankt sind.
“ s Oxp mit g EC:CRH)’ Y 2 o0, [ ydx = 1, ist eine solche

Funktion.) Die Folge (a;) erfille a,e < ay,qu fiir alle 1.

Fir z € ¢" und ¢ ¢ ' erhdlt man die Abschitzung
1® (z-0)f(0) ] < exp(~b.~A.w(Re z) + H.(Tm z))
k =Tk i % j
"exP((r5-MulRe o) - ¢, {Im g).

Fii > 4 i
r ai (Yonst.)lj/ek ist (A >n)

J explr -2)u(Re ¢) -¢ |Im 2| ) |ag]
T ] K

A =

-A ~
[ e m(Rec)|dl;| < Cra; ,
Pk 1



denn |dg| = (Konst.)ai'm(g)dz, g = Re g, auf I

Zusammengefaft:
_b.

) & (z-p)f(p)dr! < Cfrase Trexp(-dju(Re 2) + Hi(Im2))

- i

k
fiir alle z € CT. Da i(k) - + ®» wenn k » + e, kann man ai’a+a

-1 -bi <2'k
und b. »+ o mit b./a. -0, a. = (Konst.)A,/e, und Gkaie <
1 171 i 7 0k

finden. Zu diesen Folgen widhle jetzt ¢ €X nach Lemma (u.18).

Mit diesem ¢ gelten die behaupteten Abschdtzungen wenn

Beweis des Satzes. Es ist bereits klar, daf F: ww(X) 4‘ﬁ1

stetig und injektiv ist. Zum Beweis der Surjektivitdt von
F sei f €Ay gegeben. Es folgt aus (4.23), dab die
Felge

-1
ML
]
- TAF
von allen Nullfolgen dominiert wird. Also mul supp F °f

in einem Kj enthalten sein. Zu jedem A > o gibt es ein v €X

- ) . -1 -
it ¢ € e M auf RV, Folglich ist F f€d (0.

-1
Zum Beweis der Stetigkeit von F Liﬁi
lutkonvexe HNullumgebung U c:@m(X) gegeben. 2
Wiener Theorems findet man eine Folge lj/”*'”’

alle 3

=

I :
i €l }cU.
UL i={p e.@m(x);](?¢)(z)ISexp(—Ajm(Re z}+H3(Im 2)),2

e

]

. - X fir
Wihle eine Partition der Eins I & =1 auf X, &y elhf ),

die die Uberdeckung durch die konvexen Hillen der supp &y

) o
lokalendlich ist. Wihle ¢ €X nach (#.24), d.h. fur all

f€ () mit |f] = ¢ gilt
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- n
Bl 6‘\k(z‘y)f(y)dyl < 2 kexp(—kjw(Re z)+Hj(Imz)), z € T,
RI‘l

0 .
wobel j der kleinste Index j mit supp a < Kj ist.

Sei g €D GO mit [Fo| <o gegeben. die Summe

v = 3 Z_k(Qkak(p)
k

) -1
ist endlich. pa 2kakw = ch U, ist @ €U. Also ist F

stetig,

Es ist noch Zu zeigen, daR X eine LAU-Struktur ist.

Seien ¢ € X und N > o gegeben. Mit Hilfe von (4.24) er-

hdlt man ein v €X, ¢, = ¢ , und eine Folge positiver

reeller Zahlen (ak), so daB
. A —k (Z) Zemni
(4.25)  exp(w(Re 2) 48 iImz )1 [ &) (z-y) E(y)dy | < 27 e(2),

wenn f eine pangze Funktion mit |f] < o, ist (£ ap = 1 wie

Dann konvergiert die Summe

oben). Sei f € :4(¢1).

”~ - .
i % *f =2 ?(Gk' ?'1f) in A(¢). Ihr Grenzwert ist f,
k

. : .23)
Wenn - wie man annehmen darf - fip ¢, die Behauptung 1in (s

1

. . n hy
mit einer Folge €5 » 0 gilt. Wihle jetzt ein ¥ E@w(R ) mit

V295 supp ye x| < 11 ypg J v dx = 1. Fir § > o setze

Vs (x) = 5_n¢(x/6), x € R". rip jedes §, > o gilt dann

Sup 1= 8(sz) |ew(Re 2) =5 |In 2 .

wenn § »0.
z €N

. A
Mit (4.25) fo1g¢ ﬁ,‘a(uk*f)_.ak, f in A(¢) wenn & - O

Tir jedes k. weij bs #(a, . F g, €D (X) fur kleine & > O»

ist somit Bezeigt

‘A-(Qi) P E‘A’(Q)-



Aufgrund von (4.17) findet mar =ine pilurisvbharrmon’erne

Funktion ¢ und ein ¥ €X mit % < % urnc

©(z+2Z) +N log(2+]z|%) <loge, (z) fur =,7€l™ mit IZ] < ¥

Also ist X eine LAU-Struktur.

Die LAU-Strukturen der LAU-R4ume £ (XY und D'(X) sind zuf
I w

gewissen Teilmengen des [ dquivalent. Dies impliziert - in

Abschnitt 4.5 - ein Hypoelliptizitdtskriterium fir lineare

Partielle Differentialgleichungen mit konstanter hoeffizienten,

—— =
(4.26) S412. Bs gilt stets K(FTI71) < K(D (). fei v e 1.
w w

. . N ~ /“\
Genau dann gibt es zu jedem ¢ EIXJL(X)) etn 2€X(E'(X)) mit

T <

r
W
auf V, wenn fir jede Folge (z.) ¢V gilt
o
| Im zj|/m(Re zj) » = falls 2; » @

Tet |Im 2l <S¢ w(Re z) auf V fir ein ¢ > o, so gibt es ein

P
¢ E:K(JL(X)) mit & < 1 auf V und

8(z)/%(z) > 0 wenn V Iz » w

fir jedes 7§ eJ((fL:(/X\)).

Bewei i :
15. Die erste Aussage folgt unmittelbar aus dep Befinition

der beiden LAU-Strukturen.

Sej 7o . .
1 ¢ GZX(JL(X)). Dann gibt es eine reelle Folge Ajzﬂ + w mit

Sgp eXD(—Ajw(Re z)+Hj(Im z)) £ o(z) , z € o,

Sei i
1 1 €N gegeben. Ist |Im z|/w(Re z) genligend groR, so igt

i-w(R
wl(Re z) + Hi(Im z) S~Ai+1m(Re zZ) + Hi+1(Im zZ).

All =
e VC =

{zev;]Im 2| <¢ - w(Re z2)}, C > 0, seien jetzt be-

Schm: . .
rdnkt. Folglich findet man ein u.2 o, so dag



“H, + 1-w(Re z) *H.(Im z) -k, uw(Re 2} +*H,, ,(Im 2)
L d /\ -
fir alle z € V. Wihle ein 3 EX(E (X)) nmit

2] - n
#(2) <sup eXp(—ui+1-w(Re 2) +H.(Im 2)), z € T
1

Offerbar gilt dann ¥ <o auf v.

Zum Beweis dep letzten Behauptung, gelte jetzt fiir ein C >0:
|Im z| £C w(Re z} wenn z €V, Der Einfachheit halber wird

0 . s
© €K, angenommer. Mit Aj = sup H.(n)/ [n[> o, j €K, wihle

N n*o
?EX(D (X)) mit

n
log #(z) < sup (-CAjw(Re z) +H3.(Im z)), z €L,
J

Dann ist ¢ beschrankt auf v ( ndmlich durch 1).
~ /\
Andererseits gilt fip alle ¢ €X(€' (X))
'5'(2) ? t® wenn z -+ w |

Damit ist dep Satz bewiesen. m

Die LAU-Strukturen dep Beispiele des Abschnitts 4.2 erfillen

. i .. . y ltat
Sogar die Bedingung (4.2)(ii)'. Ein etwas schwicheres Resu

gilt auch fir X :1(5’;}‘)).

(4.27) SATZ. Sei b . % . [o,+®) oberhalb stetig. Dann und

nur dann {st b €EBX), JC:X(Q/M‘E?)), wenn fir ein I € N und
alle X > ¢ gilt

(4.28) sup b(z)exp(lw(pe zJ—HZ(Im z}) <+ e,
ze€r

Zu jedem b € B(X) gibt es eine plurisubharmonische Funktion @
"t b <e® ung 0 e m)



Beweis. Es ist klar, daB b € B(X) wenn (4.28) flir ein 1 und
alle X > o gilt. Sei daher nun b € B (X). Aus (4.18), (4.20)
folgt, daB fiir jede Folge ay At gilt

“H.(Im z)
SUpP sup b(z)e 7 < + .
j |IHIZ|Saj+1w(Re z)

Also muf flir ein 1 > 1 gelten

sup b(z) exp(-H

_1(Im z)) < + oo,
z €LH

1

Sei A > o. Ist lImzfw(Re z) groR genug, so ist

Hl—i(Im z) £ -)w(Re z) + Hl(Im z). Zusammen mit einer nochmaligen

Anwendung von (4.20) folgt hieraus (4.28).

Sei b € F(X). Sei 1 wie in (4.28). Wihle € > © mit

I . '.t
Hyt el-] < H und Ho vel| SH,,,- Wdhle ¥ Eiﬁw(ﬂxl< eh) mi

1+1
l$(0)| >1. Betrachte die kleinste oberhalb stetige Majorante

¢ der Funktion in z € o

sup (log!®(z=z)|+log blz)-ellm d—Hl(Im g) +Hy,, (Im z)) ,
LEA

1(o,+m).

wobei A = (g7+ig@™ n b~
Es ist b < e%. (Betrachte zunidchst z = & €A.)
Mit (4.28) und einer geeigneten Paley-Wiener-Abschdtzung

folgt unter Benutzung der Subadditivitdt von

log|$(z-2) [+ logb(z) < c,-Au(Re 2) +¢ | Im(z=2) [+ H (Ime)
fiir jedes A » o. Also ist 506-3(K). SchlieBlich ist @ auch

plurisubharmonisch (siehe (14], Lemma 3.3). ®
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b.4% Das Fundamentalprinzip und der Integraldarstellungssatz

Jede Ldsung eines Systems homogener linearer partieller
Differentialgleichungen mit konstanten Koeffizienten ist
ein Integral der zu diesem Gleichungssystem gehérigen Ex=
ponentialpolynemlésungen. Dies ist die Aussage des Integral-
darstellungssatzes, der hier bewiesen wird. Der Tntegraldar-
stellungssatz ist dual zum Fundamentalprinzip - einer geome-

trischen Beschreibung der Quotientenriume 4§/QAL, Q eine KxL-

Polynommatrix, X eine LAU-Struktur.

Eine spezielle Konsequenz des Integraldarstellungssatzes
ist die Lésbarkeit inhomogener Gleichungen P(D)u = f, wenn

f die hierzu notwendigen Kompatibilitdtsbedingungen erfiillt.

Sel V" abgeschlossen. Fir jede Gewichtsfumktion ¢ definiere
f(V,¢), den Banachraum aller stetigen Funktionen f : V - ¢,

F=o(e) im Unendlichen, mit der Norm

fr— SEp | £1/¢ , f e €(v,e).

Ist X  eine Familie von Gewichtsfunkticnen, so setzt man
Cx (V) = proj lim €(v,8) = n €(v,e).
¢E X o €eX

(4.29) 5477 (Fundamentalprinzip) Sei KX eine LAU~Struktur.

Sei Q eine K x [~Matpig ber L[z). Sei N ein zu §- E[Z] gehd-

riger Noetherscher Operator. Der Kern der linearen Sﬁetige"
Abblldung
K
Dw-Ax-*

(4, w€£1 V. f "Mflwm,w EN °
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L . K .
stimmt mit QA-; iberein, dem AbschluB von Qdy, 11 Sy oy t8T
ein Homomorphismus, das heilt, unter der Abbildung pg 18t

K L
(A, VIEXN

ein topologischer Unterraum.

. . L
Beweis. Es ist klar, dak p, stetig ist und daB Qdy < Kern oy

Somit ist auch Q.Ai c KEI‘nde-

Mit f wird stets das duvrch f E.Aé reprisentierte Element in
«A'y}E/QA—J% bezeichnet. Sei ¢ €X, und sei p die zugehdrige

Halbnorm auf &;/Q&;—é

. K
p(f) = inf sup lgl/ ¢, » § € Ay .
PR En
g=f
Gesucht wird ein ¥ €KX, so dag
. ~ A’K
(4.30) p(f) < max sup |Af[/¢ » T &Ay
(A,VIEN V
1L K ..
Wihle s € X , o < b5 SO dap Q () = Af(q)o) definiert
und stetig ist. Zu ¢ und einem N> o, das nur vor Q und N

~ h K .'t
abhangt, wihle ¥ €X nach (4.1). Sel f E(A'x gegeben mi

max sup |Af|/3 < 1.

(A,VYEN V
Wihle nach (4.1) eine plurisubharmonische Tunktion ¢ mitT
o)
e N < °o und

max sup |Af|e-(p <1,

(A, V)EY v

v —

: n
Fl < (xonst.)-e? auf L.
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Aus dem globalen Interpolationssatz (3.12) erhilt man eine

: Nk :
ganze Funktion g € e ), |g| < 2, mit

(Af - Ag)|V = o fiir alle (A,V) €4 .

Weiter erhdlt man aus dem globalen Divisionssatz (3.11)
©
eine ganze Furktion h € A(e 2N)L mit f-g = Qh auf ™. wihle
ein Netz (ha) in Aé mit
h h ° L
a > in  A(s)".
Dann ist

P(f) < 1im inf sup |f~Qh /¢
o o a!'’” "o

IA

sup[gl[@o + C* lim inf sup Ih-hai/¢-
ok @ ¢

A
WY

Also ist (4.30) gezeigt. Aus (4,30) folgen alle Behauptungen

des Satzes. =

(4.31) BEMERKUNG. Sei X eine LAU-Struktur fir die zusdtzlich
gilt: Zu jedem b € § (X) gibt es eine plurisubharmonische
Funktion ¢ mit b < &9 ,pg e® € B(X). (In den Abschnitten 4.2
und 4.3 wurde gezeigt, daf die dort angegebenen LAU-Strukturen
diese Bedingung erfillen.) Mit dem globalen Divisionssatz
(3.11) folgt dann Qnﬁﬁ‘z Kern Oy e Insbesondere ist QA; abge-
schlossen in :&%. Aus dem globalen Interpolationssatz (3.12)

und seiner Ergidnzung (3.14) folgt, daB das Bild von pw,gerade

aus d : ht
em Unterraum 41Qﬂ) c N €x(V)aller (h(A,V)) besteht,
(A,V)ew

die lokal Restriktion unter & von holomorphen Funktionen sind.

Das Fundamentalprinzip besagt dann, dag oy einen linearen

HomSomorphismus
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Ay = A

definiert. Den Raum ¢fxﬁf) mag man als elnen Raum analytischer
Funktionen auf der zu N gehdrigen "multiplicity variety”

(Ehrenpreis) ansehen.

(4.32) INTEGRALDARSTELLUNGSSATZ. Sei F' ein LAU-Raum mit

der LAU-Struktur KX und der abstrakten Fourier-Laplace Trans-

formation & . Sei P(D) : F’Ka F’L ein linearer Differential-

operator mit konstanten Koeffizienten. Set N ein au p(n)

gehdriger Noetherscher Operator. Sei u € Fr&. Genau dann ist

u Losung der homogenen Gleichung P(D)Ju = o, wenn &8 Radonmale

oo,

Wea v
fiir ein ¢ € X wund

auf V zu jedem (4,V) €N gibt, so dal I¢|d“(A,V)| <t
|4

A
(4.33)  ufe) = I f 40 du,, yy fdr atle oert (¢ =Fo).
(A, V)EN V ’

. -1tV v L
Beweis. Es gilt (P(D)u)(y) = u(¥F 1t¥$) fur alle v € F'. Da W
ein zu t% EE[Z]Ll gehdriger Noetherscher Operator 1st, gilt

t i s
A iS&J\IV = o flr alle ¥ EFL und alle (A,V) €N . Folglich ist

P(D)u = o wenn u eine Darstellung (4.33) hat.

~1,,t¥ Ly _
Es gelte jetzt P(D)u = o. Dann ist (uo¥F Y( By = 0. Also

definiert u © F 1 ein lineares stetiges Funktional auf dem

Quotientenraum

,(,;((/tﬁ AL

Nach dem Fundamentalprinzip (4.29) induziert dieses Funktional

ein stetiges lineares Funktional auf einem Unterraum von
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M (V). Dieses kann linear und stetig auf den ganzen
(A, V)EW
Raum mit Hilfe deg Hahn-Banach Theorems fortgesetzt werden.
Nach dem Rieszschen Darstellungssatz wird dieses schlieBlich

durch Radonmage du(A yy auf v, (A,V) € A, gegeben. Mit diesen

Radonmafen giit aiso

- X
(wWoF e = x [ oag dup gy » £ Edy
(A, V)EW V ’

Damit ist der Integraldarstellungssatz bewiesen. m

BEMERKUNG. Geeignet gewahlte zu (4.33) gehdrige Riemann-
summen sind beschrdnkt in F'K. Ist Ai ein Mentelraum, so kon-
vergieren diese gegen u in der starken Topologie von F'

(siehe {101, § 22.2). :42 ist bereits dann ein Montelraum
Wenn er nur tonneliept ist, denn aufgrund von Montel's Theorem
sind die Spektralabbildungen () > A4(3) von vy kompakt

wenn $/¢ = o(1) im Unendlichen (siehe [101,5 22.1 und 2).

. ., . 7 jele
Filr die in den Abschnitten 4.2 und 4.3 betrachteten Belsp161

ist.Ax stets tonneliept, Insbesondere kKonvergiert - wenn
T - —
Fr o= £, das Integral

ux) = g [ Alz,3/92) 12X

dy (z), x € X,
(A,V)EJ{ V (A,V)

in der Topologie von Em(X)K.

K L
(4.34) FOLGERUNG. Sei 7' oinm LAU-Raum. Sei P(D) : F''» F'
-____—_-—h
. . . .. .
ein linearer Differentialoperator mit konstanten Koeffiziente
. L K NP
Sel f € P'". Genau dann gibt es eine Losung w € F'" der inho

mogenen Gleichung p(p)y - fs wenn Q(D)f = o gilt fir jeden
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linearen Differentialoperator mit konstanten Koeffizienten

a(p):rls po Flir den (D) oP({D) = o.

Beweis. Betrachte zundchst den Fall, daf® es ein QO(D) £ 0
mit QO(D) oP(D) = o gibt. Wihle dann eine J x L-Matrix Q
Uber L{z], so daf die Komposition tP otQ = o exakt ist. Dann
. +¥ tV . _
ist {C"P,,0%),...,( Pk,m“)} - P ,..,P, die Spalten von P

ein zu Q(D) gehdriger Noetherscher Operator. Da Q(D)f = o

erhdlt man aus dem Integraldarstellungssatz Radonmabe

dula...,de auf T, die stetig auf fx sind, so daB
K
t¥ A L
(o) = F B odu.  , @€ T,
1 én P] @ My
Flir u = (u Uy, ) EF'K mit
123K
A
usCp) = [ % duy 5 v €F,
oD
1 " L .
£ilt dann P(D)u = f, denn fir alle v € F~ gilt
~1t¥a K ty A
(P(D)w) (o) = u(F '8 = £ [ "Poduy = £O)
1 "

-
Es bleibt noch der Fall zu betrachten, in dem "FQ = 0,

1 y 3 Tcht—
C € E[Z]L, rnur gilt wenn Q = o. Dann gibt es auch keine nicht

. .ot L .
trivialen ganzen EL-wertigen Funktionen g mit "Pg = ©. in

der Tat, nach der Cramerschen Regel kann man g SOgar als einen

Quotienten gewisser Kofaktoren und der Determinante elner

t . -
L x L-Untermatrix maximalen Ranges von P schreiben. Diesen

Quotienten kann man mit der Ehrenpreis-Malgrange Ungleichung

(siehe (2.1.iii) mit h = o) abschdtzen
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e ] 2241219 sup [Tpaz-Brg(asD) ], 2 € oo,
7] <1
-1 . . . . . L
w=fofF 1st ein lineares stetiges Funktional aus A¢
L .
d.h. es gibt ein¢€ X mit lw(g)| < suplgl/e, g Edy . Wihlt
rn

~

man ¢ nach (4.1.3) go erhdlt man mit der obigen Abschdtzung

(4.35) iw(g)| s sup ]tggl/g s & €n4i
T

Hieraus folgt mit denm Hahn-Banach Theorem die Existenz
eines linearen stetigen Funktionals v auf'4§ mit
V(tﬁg) =wig) , g Qii. U =voF ist dann eine L3sung
von P(Dlu = f, .

BEMERKUNG. Man kann (4.34) auch ohne direkte Benutzung
des Integraldarstellungssatzes beweisen, indem man dies
allgemeine Giiltigkeit von (4.35) flir w = f o?ﬁl zeigt,
wenn f die Voraussetzungen in (4.3y) erfiillt. An Stelle
des Ehrenpreis—Malgrange Lemmas hat man dann jedoch den
glcbalen Divisionszatz (3.11) zu benutzen. Ein geelgnetes

E'E.I findet man nach (4.1.3i1).

4.5 Elliptische und hypoelliptische Differentialoperatoren.

Hier wird die Regularitit der Lésungen homogener linearer
Differentialgleichungen mit Hilfe ihrer Darstellung als Inte-

gral {ber Exponentiallasungen untersucht.
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(4.36) DEFINITIONEN. Sei P(D) ein linearer Differentialopera-

tor mit konstanten Koeffizienten auf einem LAU-Raum. P sei

das Symbol von P(D). Dann nennt man V = {z € T''; Kern Tp(-z)+{0}}

die zu P(D) gehérige Varietdt.

(1) w sei eine stetige reellwertige Funktion auf R", die
(4.13) erfiillt. Dann heift P(D) w-hypcelliptisch genau
dann, wenn

|Im z|/w(Re 2)»+ o falls V3z -» e

(ii) P(D) heiBt elliptisch genau dann, wenn

sup |Re z]/(1+|Im z|) < + e.
ZEV

(4.37) SATZ. Sei ¥ <« R" offen, konvex und nichtleer. Set W

eine stetige reellwertige Funktion auf.ﬁn mit (4.18). Set
P(D) :-@;(X)K'*QJ(X)L ein linearer Differentialoperator mit
konstanten Koeffizienten. Dann sind dquivalent:

(1) P(D} ist w-hypoelliptisch,

K
(1) Kern B(D) = {u € (X)%; P(DIu = o} < & (X7,

Beweis. Ist P(D) w-hypoelliptisch, so sind nach (4,26) die

e — o — wos
LAU-Strukturen Jﬁ('E(L(X)) und x(aw(x)) auf der zu P(D) gehéri

gen Varietdt dquivalent. Mit dem Integraldarstellungssatz (4.32)

folgt sofort (ii).

. und
Es gelte jetzt (ii). Dann gibt es 2zu jedem ¢ € JE(ZL(X)) un

jedem b E.ﬁ(I(@) eine Konstante c, > o, so dap fir alle

u €21 0X nit P(Du = o gilt
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(%.38) sup |u(p)]| <c ~sup |u(y)]| ,
A O A
[0] <b lv] <o

falls die rechte Seite endlich bleibt. Zum Beweis von (4.38)
betrachte man zy ¢ den stetig in 0$(X)K eingebetteten Banach-
raum

Ny = {u EI&(X)K; P(D)u = o, Hu[|¢= sup luCyp)|< + =}

lv] <e

mit der Norm H-I[Q. Nach Voraussetzung ist N, < g;(X)K' Mit
dem Satz vom abgeschlossenen Graphen erhdlt man die Stetigkeit
dieser Inklusion - also (4.38). Speziell fiir u(x) = e—iz-x,

X € X,z €V, folgt aus (u.38)

(4.39) sup [£(z)| < ¢ -0(2) fiir alle z € V
Ifl<b ©

(mit ganzen Funktionen f).

Seil € > o. Wihle & E-X(j;?ES) nach (4.26) mit ¢ < 1 auf

VC = {z € V;|In z| £ C w(Re 2)}. Filr ein fest gewdhltes

g € 5;?23 mit g{o) = 1t betrachte fC = g(c--)¢(c)ew(ReC) 6-5:??)
fir ¢ € Voo Mit Hilfe der Subadditivitit von w und einer Paley-

Wiener Abschdtzung an lg| schliept man, daf fir ein geeignetes

b € BAE(D)) gite

IfCI < b auf €V fir alle ¢ € Ve

Ferner igt Ifz(z)I/Q(z) c gW(Re ) V.. Mit (4.39)

impliziert dies die Beschrinktheit von VC' L

BEMERKUNGEN. (1) per Obige Regularititssatz ist lokaler Natur.

Er gilt daher auch fiir nichtkonvexe offene X < R.
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(2) Die RadonmaBe in (4.33) sind nicht eindeutig durch u be-
stimmt. Daher kann man (i) nicht unmittelbar mit (%4.26) und

dem Integraldarstellungssatz aus (ii) folgern.

(4.40) SATZ. Sei w eine stetige reellwertige Funktion auf R",
die die Bedingungen (4.13) erfiillt. Sei X c B" offen, konvex
und nichtleer. Sei P(D) :J&(X)Ké.Q;(X)L ein Linearer Differen-
tialoperator mit konstanten Koeffizienten.

Ist P(D) elliptisch, so besitzt jede LJsung der homogenen

Gleichung P(D)u = o eine holomorphe Fortsetzung i €¢4(§)K,

¥ = {z€a"; |Imaz]|<c +dlRe z, R'-X)1,

d.h. %|X¥ = u und % erfillt die homogene Gleichung in Y. Hier-

bei kann man wihlen

e, = lim inf iIm z|/|Re 2| > o.
V3239w
wenn V beschrankt ist.)

(C‘O Tt

n, X
Ist P(D) nicht elliptisch, so gibt es eine Ldsung u GE;CF )

n
zu P(D)u = o, die in keiner offenen Teilmenge von F reell-

analytisch ist.

Beweis. Sei P(D) elliptisch. Sei o < ¢ < ¢,, SO dap auperhalb

einer kompakten Teilmenge der zu P(D) gehdrigen Varietdt V

gilt c|Re z| < |Im z|. Sei U =X offen, konvex, U+ @ Sel

N, Re x €U, Im x <c} .

o < & - d(U,R"-X). Betrachte U=(x€tL

e )
Fir jedes ¢ € X (D (X)) gilt dann

(4.41) sup sizp,,[e'i"z”‘)[/i(z) < + o

ZzE€EV x €U

i ]
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In der Tat, fiir ein z € V mit c|Re z| <{Im z| und ftir x € U
gilt
Re(-i<z,x>) < |Re z||Im x| + Re x-Im z
<6 |[Im z| + Re x-Im 2

< HK (Im z),
o

J— n. .
wobei Hy (n) = sup n-y, n €r", zu K, =0 +{y eR";lyl <6}
0 y €K, )
Wahle Kyo=X mit K a=R,. Fiir alle A > o gilt dann

Re(-i<z,x>») < Cy= Aw(Re 2z) +HK (Im z), z € Vv, x € U.

1

Hier wurde benutzt, daB w(f) = o(|g]) fir £ =(siehe [ 5 1,

Cor.1.2.8). Also gilt (4.41). Aufgrund von (4.41) kann man

die Integraldarstellung

u(x) = ¥ J ACz,-ix)e 1<Z,X>

du (z)
(A, VYEN (A,V)

. a4 1t
flir u € DL(X)K mit P(D)u = o holomorph in x € U - und dami

schlieBlich auf ganz ¥ - fortsetzen.

Zum Beweis der letzten Behauptung sei jetzt jedes

u€eER:={u € ii; P(D)u = o} (&, = ENCRE)) in einer nichtleeren
offenen Teilmenge des R" reellanalytisch. Man kann dann mit
einem Baireschen Kategorienargument ~ dem Grothendieckschen
Paktorisationssatz, siehe z.B. | 161, § 19.5(u4) - eine Kugel
finden, in der alle y € N reellanalytiseh sind:

Flir eine offene Kugel g « g mit @ N R™ ¢ @ ist das Bild

des Fréchetraums

~ ~ n
No = {{u,0) € E};ld’(n)x; P(D)u = o, u|o nr" = u|% NR
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unter der Projektion (u,u) » u von zweiter Kategorie im
Fréchetraum N. Nach dem Banach-Schauder Theorem ist diese
Projektion sogar ein linearer Homdomorphismus. Ohne Ein-
schridnkung darf man annehmen, daf {z erh;|z! <steeq flr

ein § »o. Flir eine Konstante ¢ > o erhdlt man folglich mit

b(2) = explc-w(Re z)+c|Im z[), z € T,
die Ungleichung

(L.42)  sup 1T | € sup  |ulwd| (u,u) €Ng

|¥ < exps -] |T| <b
Hier sind die uw's analytische Funktionale auf & (¥ = Laplace-
transformierte von u) und die ¥'s sind Distributionen in

f;K- Fir o = e *<%2°” 2 € V, erhdlt man aus (4.42)

sup |u(-iz)| < b(z) far alle z € V.

|Vi<exps |- |

Die linke Seite dieser Ungleichung ist grdfer als

ie_lexpes,miz > Szl |z e,

li <8
Somit gilt

§lz] € ¢ w(Re z) + c¢|Im z|
fiir alle z €V. Wegen w= o(}+]) folgt hieraus die Elliptizitdt

von P(D). =
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Anmerkungen

(a)

(b)

Die Lokalisierbarkeit einerp analytisch-uniformen Struktur
X (d.h. (4.1.1) gilt) ist eine Aussage tiber die Reichhaltig-
keit von A]f: Zu jedem zOE gh gibt es eine ganze Funktion
in Ay, die in z, "groR" ist aber global "klein" gehalten
werden kann. Dies wird deutlich in Ehrenpreis' Definition
der Lokalisierbarkeit (vgl. [91, IV. 1.(d)):

Zu jedem ¢ € X existiert ein 9 €X, so daR

€5 2u Jjedem b €F(X) mit b < F eine beschrinkte

Teilmenge B <Ay gibt mit

b < suplf| < ¢

sup |
fE€B
Diese Bedingung impliziert (4.2,ii') und damit auch, daB

K eine LAU-Struktyr im Sinne von Definition (4.1) ist.

In der Tat, ist B abzdhlbar, so ist die kleinste oberhalb
Stetige Majorante ¢ von sup log|f| eine plurisubharmonische
Funktion (siehe [14], Le££;B3.3). Da b oberhalb stetig ist,
kann man B durch eine geeignete abzihlbare Teilmenge er-
setzen, so daf immer noch b < &% gilt (vergleiche [12],
Prop. 2). wWeil er das Verschwinden der Kohomologie mit
e¢iner Induktion {iber die (reelle) Dimension des ['' beweist

(vgl.d. Anmerkung (b) zy Kapitel 3), fordert Ehrenpreis

3 - .n
noch eine Zerlegbarkeit der Gewichtsfunktionen aus X i

Produkte (PLAU~Struktur).

Palamodov betrachtet Familien von Majoranten.J[=’{M§}a EN
und zugehdrige Familien uﬁat von Rdumen holomorpher
v-Koketten. Ep zZeigt die Trivialitit der zugehdrigen

MA-Kohomologie (siehe [20], Chpt. III, § 4, Thm. 1) unter



(c)

- 127 -

Voraussetzung, daBk 4 vom Typ J-ist (siehe [20], Chpt.
ITII, § 1.u°9). Die wichtigste TForderung dieser Bedingung
(Existenz der e,) entspricht der Lokalisierbarkeit analy-
tisch-uniformer Strukturen. Man kann dann die Mg durch

1Ogarithmisch-plurisubharmonische Gewichtsfunktion er-

setzen, ndmlich - im wesentlichen - durch
n
T'3 z » sup |ea(z-l)| Mg (M) -
MG( 1) <+

Fiir die Grundlagen der Theorie der Distributionen seil
hier auf L. Schwartz [23] und L. H&rmander [13] und fir
die der Beurlingschen Ultradistributionen auf G. Biérck

[5] verwiesen. DaB die in den Abschnitten 4.2 und 4.3

betrachteten Riume analytisch uniform sind, ist nicht neu.

Fir w = logle+!{-]|), X = £" und 9= C" wurde dies von L.

Ehrenpreis in [2], Chpt. IV, gezeigt. Berenstein und

Dostal [3] verallgemeinerten dieses Ergebnis auf Ceurling-

sche Ultradistributionen. B.A. Taylor [24] bewies einen

allgemeinen Satz {iber die Existenz analytisch-uniformer

Strukturen, der auf EL(X) und A(9) - X und @ konvex =

anwendbar ist. Ein einfacher Beweis fiir Taylors Satz wurde

von Bierstedt, Meise und Summers [4] gefunden. Dieser Zu=

gang wurde hier in Abschnitt 4.2 lbernommen. Die Lokalisier-

barkeit dieser AU-Strukturen - zunachst im Ehrenpreis'schen

Sinne (vgl. (a)) - war dagegen weniger untersucht. Daf

ormen Strukturen der Riume fw(X) und

dap (4.2.i1') gilt,

die analytisch-unif

4(Q) lokalisierbar sind in dem sinne,

wurde in [12] gezeigt. Der Fall 3;(X) xonnte in [121 Je-

doch nicht behandelt werden. pPeshalb ist in der vorliegen-
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den  Arbeit die allgemeinere Bedingung (u.1ii) eingefihrt

worden.

Die Regularitiitssdtze im Abschnitt 4.5 sind nicht neu. Zu
ihrem Beweis bendtigt man auch nicht das Fundamentalprin-
zip in seiner stdrksten Form. Insbesondere ist die de-
taillierte Beschreibung der Polynomfaktoren in der Ex-
ponentialdarstellung (4.33) durch Noethersche Operatoren

hierzu nicht erforderiich.
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BEZEICHNUNGEN

N, @, R und L sind die Mengen der natlirlichen,rationalen, reellen
und komplexen Zahlen. Nb = Nu{ol}.
i = =1

n
Clz] ist der Ring der komplexen Polynome in z = (Zi,_,,zn)EE ’

C(z) ist der Kérper der rationalen Funktionen (Quotientenkdrper

von C[z]).

4] o n
3%/32% :3101/3211-...-azn“ fir @ = (a,,..,a ) € N,
|a| = 01+...+un (Multiindexschreibweise). D = -i3/3x.
[A,B] = AB - BA ist der Kommutator der (Differential-)Operatoren
A und B.

|+|] ist die euklidische Norm auf R" oder T,

d(x,A) = inf{|x-y|; v € A} , A cR",

n
2L = <Z,p>= I z.r. flir z,g ech.
1 373

3K = K-k 1ist der topologische Rand von K <R" (cder ™.
@ bedeutet: relativ kompakt enthalten in.

3 ist der Cauchy-Riemann-Operator (auf Formen).

dx und dx -Lebesguesches Mag auf R" und rh.

tp ist die Transponierte einer Matrix P.

L 3 ¥ez) - f(-2) fiur alle z (f eine Funktion).

¢ ist das Landausche Symbol ("klein o").

f » g ist die Faltung der Funktionen f.g.

B = {x; |<x,B>| € 1} ist die Polare einer Teilmenge B eines

lokalikonvexen Raumes bezliglich der Dualitit < , >.
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CZ(Q) ist der Raum der Schwartzschen Testfunktionen auf einer
offenen Teilmenge & des R" (oder des C7). supp ¢ ist der Trdger

einer (Test-)Funktion @.

. n
4 ist die Garbe der Keime holomorpher Funktionen auf T .

d% ist der Halm von # im Punkt z € e,

s kennzeichnet das Ende eines Beweises.

I(V) - 9 dim V - 14
V(M) - 12 (1.5) Rad (M) - 21
(M:4d) - 48 I - 55
A B 9 A(u) - 1o
(A,v) - 9 ord(A,v) - 11
N - 1o (1.2) Mw, - 1o (1.2)
A, e, P. ., T. -1 (1.7)

3° Qj ]
T, TS,JV’ - 25 (1.2%)
U, t(u), ety , U’ - 38
U*g Q(U*), U** - 42 £

- T - o
dQ 70 p
eP(u,p - 74 § - 75
g - 78 [llg,e 8°

- - 8o
io,q 76 Ry
wN - 8o

A ) fir acC” offen - 14 101
Mo fir o: L" »l#e) stetiz - 88
“. ll¢ - 88

X - 88 B ) - 88

Ay - 88 Aiﬂ#) - 118



€(e) , €, - 88 CX(V) - 11u

w - 98 (4.13)

D,(Xy, £,00, gL(X) - 98

A () - 1ol D 1 (X) - 102
90 (H.3), 99 (4.14), 103

A
¥F,
T —

——
KELX) - 99 KD (X)) - 1o2 f
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