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Abstract

Though K-theory for C*-algebras has been an object of investigation
for several years and various approaches to the theory are known,
no rigorous and concise treatment, accessible to any interested
functional analyst, seems to exist. This work is designed to fill
this gap. It builds the theory from the scratch, following and gen-—
eralizing Karoubis approach to K-theory for locally compact spaces
(ef. [K1).

First we set up K-theory for unital C**aigebras. We define re-
lative K-groups K,(¢) «=0,1 for unital C*-morphisms ¢ and
prove two ex01310n theorems, which will allow us to define K-theory
for non unital c* -algebras. Morecover, we show that the K-functors
do not distinguish between homotopie C*-morphisms. This will enable
us to define K, of a c* -algebra for all ne¢IN and to establish a
long exact sequence in K-theory associated to a short exact sequence
of C* -algebras. Flnally, we describe some multiplicative structures
in K~theory for C *algebras



CHAPTER I: K-THEORY FOR UNITAL C*-ALGEBRAS

This chapter is devoted largely to the introduction of
notations and terminology which will be used throughout.
We also give the definitions and establish some basic

properties of the K-groups for unital C*-algebras.

I.1. DEFINITION (cf. [K]: II.2.1). Let € be an addi-
tive category. Let ¥€(E,F) denote the set of €-morphisms
E -F . A Banach structure on ¥ 1is given by a completely
normable topological vector space structure (over €) on
all €(E,F) such that the composition of morphisms
€(E,F)x€(F,G) »€(E,¢) is bilinear and continuous. A
Banach category is an additive category provided with a

Banach structure.

I.2. DEFINITION (ecf. [K]: II.2.1). Let € and €' be
additive categories and ¢ : € »€' an additive functor.
Then ¢ 1is called quasi surjective if every object of
€' is a direct factor of an object isomorphic to an ob-
ject of the form ¢{(E) with E €0b(€).

© is called full if €(E,F) - €'(@(E),p(F)) is
surjective. If € and €' are Banach categories, the
functor ¢ is called a Banach funector if
€(E,F) =+ €' {9(E),9(F)) is linear and continuous.

1.%, LEMMA (cf. [K}: II.2.9). Let B be a unital C*-
algebra. Let P(B) be the category of finitely generated
projective (left) modules over B and module maps. Then
P(B) is a Banach category.

Proof. The proof is done in several steps. First we con-
sider an object E €0b(P(B)) and endow it with a com-
pletely normable topological vector space structure. If



E €0b(P(B)) is free, we can give it the product norm of
BY . If E €0b(P(B)) is not free, then there is a pro-
jection of B-modules p: B® » E onto E . Equip E with
the quotient topology. Then E 1is complete.

Next, we show that this topology does not depend on the
particular choice of p . Let q: B™ » E be another
B-module projection onto E , then we get the following

commutative diagrams

B B-
v
y p and / lq
fla N ‘

where the existence of the module maps u and v fol=
lows from the projectivity of E . Now u and v are
automatically continuous, since they are implemented by
m xn , respectively, n xm matrices with entries in B
in the usual way. Thus the two quotient topologies agree.
We call the topology on E the canonical topology. The
canonical topology on E is actuélly the same as the in-
duced topology given by any injection j: E = B® which
inverts the projection p on the right, i.e. satisfies
pej = 1E . Indeed, consider f := jop: B® »B" , then f
is a module homomorphism, hence is continuous. Therefore
j is continucus, too, since E carries the quotient
topology with respect to p . Clearly, p 1s continuous
by definition, and poj = 1p - Define g: J(E) -E by
g(x) = p(x) . If UcE is open, then p~'(U) is open

in B® and g™ (U) = p~'(U) nj(E) . Hence g '(U) is
open in Jj{(E) w.r.t. the subspace topology, thus g

is continuous. Moreover, if j': E -»j(E) denotes the
corestriction of j , we have goj' = 1_ and

E
Jtog = 1j(E) . This implies that Jj' 1is a homeomorphism



and thus j is an embedding, which proves our claim.

The next step is to equip P(B)(E,F) = HomB(E,F)
with the structure of a completely normable vector space.
The topology of uniform convergence on bounded sets
turns the vector space =2(E,F) of all continuous linear
operators E =+F w.r.t. the canonical topologies of E
and F into a complete topological vector space. This
topology is compatible with the operator norm ||| =
sup“m"ES‘Hf(m)HF for any pair of norms on E and F compat-
ible with the canonical topologies on E,F . We show that
P(B)(E,F) 1is a closed vector subspace of 2(E,F) : It
is clear that HomB(E,F) is a vector subspace of
2(E,F) . Pick norms on E and F , which are compatible
with the canonical topologies. Endow £(E,F) with the
corresponding operator norm. To prove that HomB(E,F)
is closed in ®&(E,F) it is enough to show that if
£, EHomB(E,F) converges to f in £(E,F) , f has to
be in HomB(E,F) , 1.e. f{(bm) = bf(m) for all
b €B, meE . But |f{bm)-bf(m)ljy <||f(bm)-£, (bm)|| .+
li£; (om)=br, (m)flp+hbr, (m)=bf ()|l <||£(om)-£, (om)fj 5+
Hofl g £; (m)-£(m)||, . Now uniform continuity proves that
fIf(bm)}-bf(m)|| =0, i.e. f£(bm) = bf(m) . To complete the
proof of the lemma we have to show that the composition
of morphisms P(B)(E,F) x P(B)(F,G) » P(B)(E,G) is bi-
linear and continuous. But this is clear since the com-
position of linear operators g£(E,F) xg(F,G) »2(E,G) is
bilinear and continucus w.r.t. the topologies of uniform
convergence on bounded sets. [

Note that there is no canonical norm on an E €0Ob(P(B))
§0 we don't ask for a Banach space structure on E , as
it might seem natural. This problem does not occur in

[K] II.2.9, because Karoubi gives no proof.



I.4., LEMMA (cf. [K]: II.2.9). Let B and A be unital
C*-algebras. Let : B-A be a unital C*-homomorphism.
Consider A as right B-module via a+b = ap(b) and let
A @B E Dbe the algebraic tensor product of the right
B-module A and the left B-module E . Then A ®; E 1is
a left A-module with a-<(a'®x) = aa'®x . Then the assign-
ment @,: P(B) »P(A) defined by ¢,(E) = A8E on ob-
jects and by @, (f) = idALEBf‘ on morphisms (ef. [M] §2
for these definitions) is a quasi surjective Banach func-
tor. Further, ¢, 1is full iff ¢ 1is 5urjective.

Proof. 1t is easy to see that ¢, 1s a functor. More-
. . s . . n n
over is ¢, clearly gquasi surjective, since @,(B") =A".
Now let f: E +F be a morphism in P(B)(E,F) . We first
consider the case E =B and F =B™ . Then f: B" »B"
may be identified with that mxn-matrix C :(cjk)j
n k
with entries in B for which pr.f(x) = ] c. pr (
J x=1 JE K
j=1,...,m . Then @,(E) = A.@BBH = (A @BB)n may be ca-
nonically identified with A" via the isomorphism
a— a®1l: A-A®B. Likewise we identify ¢,F with A",
It is readily observed that the matrix associated with
@, (f): ©,E » o,F after identifying ¢4(E) with A" and
e b e ofig) es
0e(F) with A~ is ¢ (C) := (w(cjij=1_..m

k=1...n
the continuity and linearity of ¢,: P(B)(E,F) -

P(A)(9,E,p,F) . Now, let E,F €Ob(P(B)) be arbitrary.
Select projections Pyt B" -»E, Pp: B®™ »F and correspond-
ing coprojections jE: E -B", jF: F +B" . The commutative

. This shows

diagram



gh £ > BT
l"'\
IE Pﬂ////
%
E—L s &
n l , n
i} Q
Q. E 'w—?> @ F
*
©,B =" = > AM=q B"
) (Cf)

may be rephrased in the commutative diagram

0]
P(B)(E,F) . > P(A) (9,E,0,F)
P(B}(pE’jF) P(A)((D*PE:(P*J.F)
\/ A4
P(B)(B",B") TS T > P(A)(A",AT)

This proves linearity and contiuity of e, ,
can show that the injections P(B)(pE,jF) and
P(A)(m#pE:wth) are embeddings, But P(B)(jE,pF)oP(B)(pE,jF)=
P(B)(pEJE,pFJF) = P(B)(idE,idF) = ig
P(B)(pE,jF) is a coretraction of co
hence is an embedding,

provided one

P(8)(E,F) - Thus
mpletely normable spaces,

The same argument works for

P(A) (@4Pgs0,5 ) . This
concludes the proof that o,

is a Banach functor. The as-
sertion that ©y 1s full iff o

if E and F are free, since for
lift any A-matrix to a B

is surjective is clear
¢ surjective one can

~matrix. The general case follows
easily from the described embeddings. ®



We are now ready to define the Ko and K4 groups for
unital C*—algebras and pairs of unital algebras. We fol-
low Karoubi's approach.

I.5. DEFINITION (cf. [K] II.1.7). Let B be 2 unital

C*-algebra. Consider the set T of isomorphism classes

B
of modules in P(B) . For E €0b(P(B)) denote the class
of E by [E]. Define an equivalence relation on T

B
by setting [E] ~[F] if there exists a G €0b(P(B))

such that E &G =~ F &G . Denote the class of [E] in

Pa/. DY [E] . Then T is a cancellative monoid

B/~
w.r.t. the addition [E] +[F] = [E®F] . Let KX,(B) be
the Grothendieck group of T

B/~ i.e. the group of for-

mal differences of elements of FB/~ .
Note that this definition is based only on the ring
structure of B . The full C*-algebra structure of B

does not enter.

I.6. DEFINITION (cf. [K] 2.13). Let ¢: B-sA be a
unital C*-homomorphism. Consider the set of triples
r(e) :={(E,F,a): E,F €0b(P(B)),a: ©E -9, F an isom.} .
Two triples (E,F,a) and (E',F',a') are called iso-
morphic, written (E,F,a) = (E',F',a') , if there exist
isomorphisms f: E-E' and g: F -F' which make the
following square commute.

a

PE D> P, F




A triple (E,F,a) 1is called elementary if E =F and a
is homotopiec to 1@ . within Aut(p,E) . Define an ad-
dition on T {wy) by*setting (E,F,o) +{(E',F',a') :=
(E®E'",F®F',a ®a') . This definition makes T () into
a commutative moncid. Define a congruence relation on
T(p) by setting, o~c', for o,o' €r{gp) , if there
exist elementary triples 1 and t' such that

o+t = o'+1t' . Denote the equivalence class of (E,F,a)
by d{(E,F,e) . Then Ko(p) 1is defined as the quotient
monoid of TF(p) modulo ~ . It turns out that Ko(w)
is a group.

Note that A =0 1is viewed as unital C*-algebra. Then,
fer @: B-0, we can identify Ko{w) and Ko(B)
{(ef. [K] II.2.13).

The following lemmas are stated and proved in [K] and
are stated here only for the sake of completeness. They
will enable us to give an alternative description of

Ko{w) , which will be useful in actual calculations.

I.7. LEMMA (cf. [K] II.2.14). Ko(w) 1is an abelian
group. The inverse of d(E,F,a) is d(F,E,a”") . =

I.8. LEMMA (cf. [K} II.2.15). For d(E,F,a) and
d(E,F,a') in Xo(w) with o homotopic to o' within
the space of isomorphisms from @,E to @,F , we have
d(E,F,a) = d(E,F,a') . [

I.9. LEMMA (cf. [K] II.2.16). For d(E,F,a) and
d(F,G,8) in K¢{(p) we have that 4(E,F,e)+d(F,G,B8) =
d(E,G,Ba) . W



I.10. LEMMA (ef. [X] IZ.2.20).

The maps j*¥: Ko{@) »Ko(B), given by d(E,F,a)h»TET—TﬁT
and ©%: Ko(B) -Ko(A), given by [El-[F]s (0 El-[0,F] are
well defined group homomorphisms yielding the exact se-

quence Ko(@) - Ko (B) — Ko(A) . Moreover, if there
. . ¥ .
exlists a C*—ho%omorphlsm y: A ->B such that o :1dA,
we get a split exact sequence 0 -»Ko(@) — Ko(B) —>
j ®
Ko(A) -0 . = !

I.11. LEMMA (cf. [K] II.2.25). Let ¢: B-A be a sur-
Jective unital C*—homomorphism. If 1 =(E,E,a') €T (p)
is an elementary triple, then 1 = (E,E,id@ vt o

#E

I.12, LEMMA (ef. [K] II.2.26). Let ¢: B-oA be as in
I.11. If we replace elementary triples in the definition
of Xo(w) by triples of the form (E,E,idw .
ceed 1In the same fashion otherwise, we get ghe same group
Ko(p) . ®

} and pro-

I.13, THEOREM (cf. [K] II.2.28). Let ¢ be as in I.11,
then d(E,F,a) =0 1in Ko(w) 1iff there is a G €0b(P(B)),
which can be chosen to be free, and a module isomorphism
B: E®G » FOG such that .8 =a E}:‘Jid‘p . [

*

9]

Note that this description of Ko(y) does no longer in-

volve the topological structure of A and B.

We now turn to the definiticon of K4 . Here we can rely
only partly on previous work. The notion of relative
Kq4-groups has to my knowledge, not been used before in
the context of C*—algebras.
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I.14. DEFINITION. Let : B-A be a unital C*-algebra
homomorphism. Consider the set of pairs T4(g) :=
{(E,a): E €0b(P(B)),a €Aut E, g,a :idm E} . Two pairs
(E,a) and (E',a') are called isomo;phic, written
(Eya) = (E',a') , if there is an isomorphism h: E -E'

which makes the following square commute:

E -2 g
al ia'
1

E —E_> B

A pair (E,a) 1is called elementary if o is homotopic
to idE in Aut E relative to A, written a==-idE relA .
This means that if o is the homotopy between a and
idE s We have Py0, = idw*E for all t €I . Define an
addition on T4(@) by (E,a)+(E',a') := (E®E',a @a') .
For o,0' €T4(p) , define a relation ~ by o ~ag' if
there exist elementary pairs 1 ang =<' such that

ott = g'+1' . It is easy to check that ~ is a congru-
ence. Denote the equivalence class of (E,a) by d(E,a).
Now set Kq(@) := rq(p)/~. For A =0,0: B>0, we set
Ka(B) := Kq(9) .

It is easy to see that K,(p) is a morioid with zeroc as
neutral element. In the following we shall show that
Ki(p) 1is an abelian group and give an alternative de-

sciption of K4(p) , which will prove useful in calecula-
tions,

I.15. LEMMA. With the notation of I.i4 we have that
d(E,a)+d(E,a" ') = o . Thus K.(¢) is a group.
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Proof. It sufficies toc show that o ®a” ' = ldpgp relh
[1-t2 -(2—t2)t}_1[1 ~ta~?

1 0]f1 ~ta™ "
0 1 ta 1]10 1

1 0}
then we have oo = [ = idEfBidE and

Let o, :=
t § 1-%

0 =-1}{0 -al™* {0 1)(0 =7 a O
04 = = = :a@q“1,
1 0Jle O -1 0jle O 0 o
Moreover, we see from I.4 and @,(a) = id@ . that
*
1-t =(2-t%Yt)" {1 -t)({1 o)1 -t 1 0
(p*(dt) = = 3
% 1-t o 141t 1Jlo 1 o 1
now with entries in E-lA instead of E-iB . [ ]

I.16. LEMMA. Let B,A,p,E be as in I.1l4, Let a,a' €Aut E
be such that @,(a) = id‘p g - Wela') and o=a'reld.

» ,
Then d{(E,a) = d(E,ch) .

Proof. d(E,a')-d(E,a) = d(E,a')+d(E,a”™") = d(E®E,a'®a"").
The last term is zero, since a'@a™" =~=a®a~! *idEﬁidE rell
by I.15. [

I.17. LEMMA. Let : B=A be a unital C*-morphism. Then
a) Kq(p) 1is abelian.
b) d(E,a)+d(E,8) = d(E,aB) = d(E,Ba) for all a,B €Aut E.

Proof. a) We want to show d(E®F,a®8) = d(FOE,pda) .
Let h: E®F -F®E be the isomorphism which simply inter-
changes summands. Then the following square commutes:

E @F > FOE
a®B BDa
N/
E &F > F @E
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Thus (E®F,a®s8) is isomorphic to (F@E,g®e) which proves
the first claim.

b) By adding elementary pairs, we get d(E,aB) =
d(E@E,ag+idE) . Thus it suffices to show
aB+idE== ap =~ 8®a=*sa+idE reld. By I.15 we have
(ues)“‘(as+idE) = g®p-? >~ 1d,® id rel A. Multiplying
the homotopy from the left with o« ®pB we obtain
af @id; = a®g relA . Similarly (aBQidE)(BQa)'1 o
idEeidE reldA and aB@idE =~ g@a relA . Interchanging the

roles of o and B now proves the claim. [ ]

1.18. LEMMA. Let B,A,9,E,a be as in I.14. Then

d(E,a) = 0 in K,(p) iff there is a G e0b{P(B)) such
that o®id, = idE@G relA in Aut(E®G) . We can choose

G to be free,

Proof. If d{(E,a) = O then there exist elementary pairs
(G,n) and (G',n') in K4(¢) and an isomorphism

h: E®G -»G' which satisfies ho(a®n) = n'oh . By adding
another elementary pair to (G,n) and {(G',n') , if
necessary, we can choose G to be free. Hence we have

that a®idg = o®n reld and a®n = h_1on'oh‘“h_1oidG,oh rell.
Thus a@idE=* idE@G relA . The converse is clear. -

.19, THEOREM. Let ¢: B=+A be a suriective unital
C*-morphism. Then d(E,a) = d(F,8) in K,{(@) iff there
is a free G €0b(P(B)) such that a@idFQidG -

idE@BQidG relA in Aut (E@F®G) .

Proof. If d(E,a«) = d(F,8) , then d(E®F,a®s” ') = 0,
thus by I.18 there exists a free G €0b{(P{B)) such that
368'1$idG‘*idE®F®G relA . Multiplying the homotopy by
1dE®B®1dG we get that a@idFQidG =idE6B®idG rel A . The
converse is clear. ]



Note that this description of K4{(y¢) dces still depend

on the notion of homotopy.

Before we turn to yet another way to view K, , let us
ncte that K¢ and K4 are covariant functors from the
category of unital C*-algebras and unital C*-morphisms
into the category of abelian groups. The proof is routine,
50 we only describe how Ko and K4 act on a C*-morphism
¢: B-A . Since the notation Ki(w) , for 1i=0,1, 1is
already in use, we denote the image of ¢ under Ki by
w; . Then w? is the group homomorphism from K. (B) to
K. () defined by @g([E]-[F]) = [wsEl-{0xF] and
©¥(d(E,a)) = d(psE,pxa) respectively.

We now give another description of K,(9) , which is ex-
tremely useful in relating homotopy and K-theory as well
as in many calculations. First, we deseribe G1(aA) for
a unital C*-algebra A . Let G1_(A) cM (A) be the set
of n xn matrices with entries in A . It is well known
that Gln(A) is a topological group, which is open in

M (A) . Let Glg(A) be the connected component of 1 in
Gl (A) . Denote the quotient group Gln(A)/Glg(A) by
Gn . For each n €IN we obtain a map from Gln(A) to

. _ a0
Gl (A) sending a EGln(A) to a@1, = [O 1AJ . Note

N+t
that this map sends Glg(A) into Gl:+1(A) . Consider
the following diagram:

G+ + Gz + ... Gp +...+]£T1.Gn =: G,

+ + 4 +

Gla(A) > G12(A) + ... G1,(A) » ... + 1lim Gl,(A) =: GI(A)
+ + 4 t

G13(4) > G12(A) » ... GI2(A) » ... » lim GIJ(A) =: G12(A)
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Here, 1lim denoctes the direct 1limit. The diagram clear-
ly commutes, and since the direct limit commutes with
exact sequences, we get the following short exact se-
quence of groups 0 - G12{A) » G1(A) » G_ - 0 . Give
G1(A), Glz(A) and G_ the inductive 1imit topology,
i.e. a set C <cGl{(A) is closed iff ¢C nGln(A) is
closed in Gln(A) for all n eIN.

I.20. LEMMA, Let Xn be a directed system of Hausdorff
spaces such that X <X = for all n€IN. Let X =1im X
be the inductive 1imit with the inductive limit topology.

Then any compact set KeX is contained in an Xn for
some n €IV,

Proof. Suppose K is not contained in any Xn . We may

assume Xn+1 #Xn . Then there exists a sequence

{kn} of points kn E(Xn+1\Xn) NK . Since K 1is compact,
{kn} has a cluster point k €X gX . Now X% €X, for some
1L €IN. The set {k,ky,kz,...} 1is closed since it inter-
sects each X in a finite, hence closed set; thus it is
compact. On the other hand, {k,kq,ka...} 1is the induc-

tive limit of the discrete subspaces {k,k ,...,kn} s

hence it is discrete as subspace of X . This is a contra-
dicticn. |

I.21. PROPOSITICN. PFor a unital C*-algebra A the group
Gl:(A) is the connected component of 1 in GL(A) .

Proof. By the preceding lemma, we see that any path in
G1l(A) is actually a path in Gl (A) for some n €IN.

Thus any a €G1°(A) is in Glg(A) for some n . The re-
verse inclusion is clear. B

For a topological group G we denote its connected com-
ponent by G° and the quotient G/G° vy T, (G) .
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I.22. THEOREM. Let B and A be unital C*-algebras and
@: BoA a unital C*-morphism. Then ¢ induces a natural
group homomorphism of: G1{(B) »G1(A) and we have that
K1(@) = mno(ker of) .

Proof. The map w# is the map induced by the

m#: Gln(B) aGln(A) (ef. I.4 for the definiticn) on the
direct limits. Note first that for A =0, Gl(A) =C and
of is the zero map. Thus in particular we prove that
Ki1(B) =~ 1o(G1(B)) . Now we define the map

1: Kq(@) »no(ker of) which will be the desired isomorph-
ism. Let D;: B" »E be a projection onto E and

i: E »B"™ a corresponding coprojection. Let E' be the
complement of E in B" w.r.t. (pi,i) . For any

a €Aut(E} with o,a :idw we define a, :=a®idy . Then

E
oy EGln(B) cGl(B) . In fact a, €ker ot , since w#(ai) =
@40, = @uad0,idy, = id,, (ef. I.4). Denote the class of
a; in no(ker ®f) by [o;] . Now, for d(E,a) €K1 (y)
we set t(d(E,a)) = [a;] . To show that t is well de-

fined, we have to show that [ai] does not depend on the
embedding. Suppose ps: B® »E, j: E +B® is another pair
of projection and coprojection. Let E" be the comple-
ment of E in B® w.r.t. (pi,j) . Then d(Bn,ai) =
d(E,a) = d(Bm,aj) . Thus, by I.19 there exists a

G €0b(P(B)) such that ai$idBm®idG = idBHQaJQidG reld .
We can assume that G 1is free, say G =BK . This is the
same as saying aiﬁle®1Bk is pathconnected to

1Bn®uj®1Bk in ker w? . Since 1 _,®aj is pathconnected
to ujeiBn in ker ¢f we have ?aj] =fai] . The same
kind of argument shows in general that +t(d(E,e)) =
1(d(F,8)) if d(E,e) = d{(F,a) . Thus 1t is well defined.
For any « €ker wf
a €61, (B) . Define t':n (ker of) 2K (9} by <t([al) =
d(Bn“,g) . Using the same methods as above it is now

there is a number n, such that
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routine to check +t' is well defined, a group homomorph-
ism and the inverse of ¢ . This coricludes the proof. B

We now state a lemma which actualily has been a key in-
gredient in the proof of theorem I.13 and which will be
used again and again in the sequel.

1.23. LEMMA (cf. [X]: [I.2.21). Let A and B be unital
Banach algebras and ¢: B -A g3 continuous surjective ring
hemomorphism. If y: T +A is 3 path such that

Y{t) €G11(A) for all t eI and y{0) = o(b) for some

D €Gl4(B) . Then there exists a b’ €G1l4(B) such that
(') = y(1) and b' is connected to b in GQ14(B) .

Proof. Let V := {¢ €A: ly-14]] <1} , then we can define
a logarithm on V. Find a partition 0O =to ... t, =1

of I such that y(ti)"‘y(ti+1) €V for 1i=0...n-1.
Define a, ::1og(y(ti)_*y(ti+1)) . We get

v(1) = v(0)sexp(aqs)«...vexplay_1) . Choose b; €B such
that w(bi) = a; and define b' by

bt := b-exp(b1)-...-exp(bn_1) . But

e(b") = @(b)+p(exp b1)e...*9(exp by_4) and since ¢ is
continuous, ¢(exp b,) = eXp(w(bi)) . Thus o{(b') = y(1).
Moreover b' 1is connected to b in G14(B) via the
path t beexp(tbs)e...cexp(tb,_4) with ¢ el{0,1] . &

I.24, LEMMA. Let B and A be unital C*-algebras and
Y a surjective C*-morphism. For E €0b(P(B)})}) and
o €Aut(E) such that Pyla) = idLp p s+ there exists a

B €Aut E with B8 =a in Aut(ES and v, (B) = id(p B
*

Proof. By I.3 the set End E can be given a Banach
space structure and ¥y: End E » End ¢, ,E is continuous.
By I.4, the map o, is surjective. Clearly, ¢, is a
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ring homomorphism. We apply I.23 to obtain a 8§ €Aut(E)

with @.(8) = %de#E): ldm*E and R connected to «a

in Aut(E), i.e., 8==a0 in Aut(E) . ®

Next, we prove the analocgue of I.10 for K. . Note the
important role lemma I.24 plays in the proof. First, to
simplify language, we introduce the notion of a retract.

I.25, DEFINITION. A C*-algebra A is called a retract
of the C*—algebra B if there exists a C*-surjection

@: B-A and a C*-morphism ¢: A +B such that ¢oy =id,.
The map ¢ 1s required to be unital if B,A and ¢ are.

1.26. PROPOSITICN. Let B and A be unital C*-algebras
and ¢: B-A a unital C*-surjection. Then we get an exact
sequence K4(g) H;;> K4+(B) —6;> Ks(A) . Moreover, if A

1 1

is a retract of B, we geE a split exact sequence
w‘i
0 —> Kq4(9) —3> Kq(B) S5 Kq(8) —> 0.
T4 Py

Proof. The maps wf and w: are the images of ¢ and

¢ under the functor K, . The map n:: Ky(p) - K4(B) is
defined by n3(d(E,a)) = d(E,a) . Note that the right

hand d{E,a) denotes the class of (E,a} in X,(B) .

Tt is routine to verify that =* 1is a well defined group
homcmorphism. From the definition of K.(¢) , it follows
that w:ow: = 0. Now, let d(E,a) €ker ¢¥ . Then
A(peE,Pea) = 0. By I1.19, there exists a free G €0b(P(B)),
say G =BY, such that m,a@idc == idw*EGG
Aut (9 EDG) = Aut(w*(EQBn)) . Lemma I.24 now shows the
existence of B €Aut(E®B") such that m%idBn =~ g in

I - 3 -
Aut (E®B") and @.8 = ldw*(EﬁBn) . Thus d(E,a) =

in

d(E®R", a®id n) d(E®BR",8) . But (E®B",8) defines an
element in K4(¢) . Thus d(E,a) is in the image of n:
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If A is a retract of B, the retraction ¢ induces a
splitting for w? . Thus wt is surjective and it only
remains to show that wf is an injection. To this end,
view K4(p) as wo(ker 9©F) and K41(B) as no(Gl B) .
Then nf maps the class of a €ker of to its class in
G1(B) . Suppose now that v:([a]) = 0, i.e. that there
is a path y: I *Gl(B)” connecting a and 1Gl(B) . Con-
sider y'(t) := vy(€)«¢T (0¥ (y(£)™%)) , then of(y'(t)) =
o7 (3(6)) 0 s 0T (v (£)7) = @ (y(£)) ~0F(y(£)™) = 1,
Thus «y'(t) 1is a path in ker of . We have «y'(1) = 1 ()
and  y'(0) = ¥(0)+pTofy(0)™" = aypfpt(a™') = apt1 = a .
Thus a 1is actuglly connected to 1GHB)
hence a € (ker @)° and [a] = 0. m

inside ker w#,
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CHAPTER II: EXCISION THEOREMS

The purpose of this chapter is to prove two theorems,

called the excision theorems, which will allow us to de-
fine a X-theory for non unital C*-algebras. Alain Connes
proﬁed a result which is analogous to ocur excision the-

orem for K using the notion of classes ¢f stably

Ko »
homotopic quasiisomorphisms. This notion is essentially
the same as our Ko(¢) . In his proof he uses, however,
analytic as well as algebraic techniques, whereas the
present proof shows that the exeision theorem for K,
is a purely algebraic theorem once I.13 is achieved.

Let B and A be unital rings and ¢: BoA a
unital ring homomorphism. Then A becomes a right B-
B-module with respect to asb := ap(B) . For
E €0b{P(B)) we can form the tensor product A ®B E.
Then A ®B E is a finitely generated projective left
A-meodule, i.e. A ®B E €0b(P(A)) . For any f €P(B)(E,F)
we have 14, @f eP(B)(A ®.E,A @BF) . The assignment
@4 : P(B) » P(A) defined by o4(E) =A.®BE and
0 (F) = idﬂLQI' is precisely the functor we used already
in I.4, There 1s a cancnical map O E -+ o,E given by
wE(m) = 1A_®n1. This ¢p is a generalized module map,
i.e. @gp(bm) =w(b)wE(m) (er. [M] §2).

II.1. PROPOSITION. Consider the commutative triangle of

unital rings and unital ring homomorphisms
B ——> A
\

C

Then for any E €0b(P(B)) the modules wn,(¢,E} and
§4E are canonically isomorphic and this isomerphism
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makes the following square commute,

YE
E > Y, E = AS®E
|
GE nw*E
WV A4
C®E=6*E > n*(m*E) = C@(ASE)

Proof. First consider the case where E is free, say
B® . Then ,(yp,E) = C® (A®E) = COE = 6,E via the
map that sends ¢ ®A(a.®Bm) to en(a) ®Bn1. For E,E!'

such that E@E!' = ' +tphe distributive law for tensor

products and direct Sums shows that the map

C® (A® E) - C@ E  given by restricting and corestrict-
1ng the canonlcal isomorphism between *(w*B ) and

*B is a well defineq module isomorphism. It is easy
to check that the sguare commutes. B

Next we introduce the map which the excision theorem will
show to be an isomorphism.

IT.2. PROPOSITION.

Consider the commutative square of
unital C*-algebras

Moreover assume , ang ¢ to be surjective. Then there

exists a natural group homomorphism j*: Ko(p) » Kgle)
given by j (d(E F,a)) = d(J*E

,J'f*F,JZ*G) =
d(B@E B&F,igd @a)



a1

Proof. By II.1 we know that AL®B(E3®DE) is canonically
isomorphic to A.@C(C @DE) for all E €0b{P(D)) . Under
this identification idA.®ba is an isomorphism from
A®B(B®DE) to A®B(B®DF) S0 d(B@DE,B®DF,idA®a)
defines an element in Ko(m) . It is clear that j* is
additive, so in order to show that it is well defined it
suffices to show that d(E,F,a) =0 implies that

d(B ®DE,B ®DF’idA @a) = 0. Suppose that d(E,F,a) = 0
in Ko(p) then by I.13 there exists G €0b(P(B)) and an
isomorphism h: E®G -FOG such that the following square

comnmutes
id
c ®D (E®G) L) C ‘®D (FG)
adid id
v v
C ®D (E%) ‘ﬁéal_'_) C @D (F@G)

We apply the functor i{ to this square to obtain, with

the obvious identifications, a commutative square
idA®id'B®h
A@B(B ®D(E@G)) > A@B(BQB(F@G))

(idA@a) @id id

v \
A ®, (B3 (E6G)) > A @ (BE(Fer))

idA ®idB ©h

Since idB QDh: B@D(E$G) - B@D(F&G) is an isomorphism
this proves that d(B @DE,B @DF,idA ®Ca) = 0. ®

Now we describe a method of constructing projective modules
over a pullback, which will be essential in what follows. Let
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D > C
Ja Ja
v \
B > A

be a pullback square of unital rings. Further let
f €0b(P(B)) and M €0b(P(C)) be such that there exists
an isomorphism g: A ® M- A@ E . We define a module E
over D as the pullback of the following diagram

E -~y
! .
g B M

|

v \

A A

E ==-2-=> AQ R
o3 B

A A
Then E = {(e,m) cE @M : Boj M(m) -tpA(e)} The module
structure is given by d. (8 m) (J.,(d) 8,0 (d)m) .

IT.3. THEOREM (cr. [M] §2). Assume that in addition to
these circumstances © 1is surjective. Then E €0b(P(D)).
Moreover B ®D E is naturally isomorphic to ﬁ and

C ®DE is naturally isomorphic to M .

Proof. We only give the naturai maps which the theorem
proves to be isomorphisms. After 1dent1fy1ng B® ﬁ

with £ and C @ M with M, we note that they are given
by id @pB:BQE-»E and 1dc®pC:C@DE—rM. a
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II.4%. THEOREM (Excision for Ko). Given is a pullback

square
D P s ¢
j1 j2
Vi v
B > A

of unital C*—algebras with a surjective ¢ . Then the

map j*: Ko(p)} = Ko{w) , defined in II.1 is an isomorphism.
Proof', We split the proof in two lemmas.
II.5. LEMMA. The map j*: Ko(p) =» Ko{p) 1is surjective.

Proof. Let a(f,#,8) €Ko(o) , i.e. B,F €Ob(P(B)) and
a: A ®B§ - A.@Bﬁ is an isomorphism. By adding an elemen-
tary triple if necessary, we can assume w.l.o.g. that ﬁ

is free, say, ﬁ =B" . Then A.@Bﬁ =A% . Define a D-module

E  via the pullback

F
E ----%--> CF
! n
PBI JZC

% \
A Il
E > A

Q0L

B

Now Theorem II.3. applies and thus E €0b(P(D)) . More-
over, a ::idC @pc: C @DE - ¢ is an isomorphism. Thus
(E,D",a) defines an element of Ko(p) . We want to show
that (3®_E,B® D",id, ®a) = (E,B",4) . For h :=id_ ®p_:
A D D A B B
JyE = E , the natural isomorphism from II.3, we consider
‘1
the diagram:
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1d, @n
= @ K
A@C(CG)DE) A@B (B®DE) ~ > A 5
id@ao 4
Ny Vi
ny_ n n
A'®C<C®DD Y= ®B(B®DD } - > A ®BB
1dAn

We check the commutativity of the square on elementary
tensors in A.@B(B®DE) »  Which we can w.l.0.g. assume
to be of the form 3 ®B(1B @De) . Then

Aoun(a & (1,8 ¢))) = A(a ®,p, (e)) = a-é(mﬁopB(e)) -
a'(igcnopc(e)) = a.QCpC(e) = jg*a(a.QC(lc ®.e)) . The
commutativity of the Square implies that

(B®)E,B® D%,id, ®a) = (£,5",4) .
proof. [ ]

This concludes the

I1.6. LEMMA. The map j*. K, (®) » K _(9) is injective.
Proof. Suppose j*(d(E,F,a)) = a(B ®,E,B @ F,id, ®a) =0,
As before, we can assume F to be free, say F =Dp%" . By
I.13 we can find a T €0b(P(B)) ,
sumed free, say T =g"
8: B® E@p™ » pitm

which also can be as-
» and an isomorphism
such that the following square com-

mutes:
o B
B @ EGB > B @p®
v
m
A @B (B@DE oA ‘
] V4

m
A @C (C@DE YoA

_ - > A" gpl
(1%§hth
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Consider the following commutative diagram:

j1tE®Bm B 5 phitm
’7
J DI J nntm
2 o 4 /
E @D"-~--mn PN s phtm “an+m
Uﬂaﬁﬁdl v
DE@Dm i ,(D*E)@Am Al S An+m

#
LG
< O P n+m’ . -, A
v /2‘:" PV 3 om0

Note that both, the right and the left square are pull-
back squares. This implies the existence of the map B8',

1

induced b B 923 and adid and of Bg'” ,‘
y J 1E$Dn ( c

n)°P pgpm

induced by B8 °j1Dn+m and (a“@idcm)OpDn+m . Now with

B' being an isomorphism, the commutativity of the front
square proves, again by I.13%, that d(E,D%,a) =0 . Thus
j* is injective,

This concludes the proof of the lemma and thereby the
proof of Theorem II.4, [

Now, we turn to K, . We are going to prove a completely
analogous result as for Ko . We shall, however, have to
use an argument which is not purely algebraic. This was

to be expected since we lack an analogue of I.13 for K,.

IT.7. THEOREM (Excision for K;). Consider a pullback
square of unital C*-algebras.
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with surjective ¢ . Then there is a natural group iso-
morphism j*: K, {(9) » K, (@) , given by j*(da(E,e)) =
(JaEsdee) = (B ®E,id, @ e) .

Proof. Note first that if o,* E>F 1is a homotopy in

End E, then ldB @Dot' B @DE - B@DE is a homotopy in
End B ® E . First we show that j* is surjective. Let
d(E 8) EK (9) . By adding an elementary pair if necessary,
we can assume w.l.o.g. that ﬁ is free, say, £ =gt

The fact that D 1is a pullback allows us to establish

amap a: D" » D" via the commutive diagram

A
/Bn a 2
DI1 ————— Pl > j
W
7An 14 >A
v / v /
n

A .
The map o 1is induced by a o} pn and S As in II.6
1

we see that a 1s invertible. The commutativity of the
front square now implies that (D",a) defines an element
of K, (p) . Moreover, the commutativity of the top square
implies that ;*a - & which shows that d(j*Dn,j*a) =

d(E 3) Thus j* is surjective., Now suppose that
J*(A(E,0)) = 0 for some d(E,a) €K, (p) . As before we
can assume that E 1is free, say E =B" . By I.19 we can
find a G €0b(P(B)) , w.l.0.g. G free, say G = B®,
and a homotopy o, in Aut(Bn+m) such that

'j4*°‘ ®idyy o, idBn+m rel A. From the following commutative

diagram we derive as before the existence of a familiy
of automorphism o) pi*® , phtm
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g
Bn+m t > Bn+m
77 7
1]
Dn+m “-“I/t _____ > D!:1+m \p
An+m 1d S An+m
7 7
\
Cn+m : > Cn+m
id

The family of maps c% is a homotopy as follows directly

from the fact that the family o

+ is one. Thus
a@ldDm ==

o' idpnen Tel A and therefore d(D",a) = O Dby

I.19. Thistconcludes the proof. [



28

CHAPTER III: XK-THEORY FOR NON UNITAL C*-ALGEBRAS

In this chapter we define KO(L) and K1(L) for non-
unital C*-algebras. We shall also examine the functorial
properties of KO and K1 . Moreover, for a short exact
sequence of C*-algebras O -L »B »A4 +0 , we define a con-
necting homomorphism K1(A) eKO(L) which will allow us

to put the seguences from I.10 and TI.26 together.

IIl.1. LEMMA (ef. [K] II.3.22)., Let B and A& be unital
C*-algebras and @: B>A a unital C*-morphism. Then there
is a natural group homomorphism aw: KI(A) aKo(m) which
makes the following sequence exact:

(D* 3 _n_*

*
! 1 Q LpO
K (B) ——> K (&) —2> K () > K (B) ——> K (&)

Proof. The maps ¢j,ms and ¢F have been defined in
I.10 and I.26. We give the definition of 3, Let
d(E',a') be in K (A) . Then there exists an

F' €0b(P(A)) such that E'@ F' is free over A
E'® F' =AY . Then Bw(d(E',a')) :=d(Bn,Bn,a'$idF.) .
This makes sense because ¢,B" = A" =E'&F' . The proocf
that a(p is well defined and satisfies the desired
properties can be found in [K] II.3.22.

s, Say

III.2. LEMMA. Consider a commutative square of unital
C*-algebras.

Then for j*¢: K,(p) »K,{(¢)

o
D >» C and j*(®: Ko(p) »Kolw) ,
; ; the maps defined in II.7 and
1 2
II.2, the following diagram

i ive:
B - > A s commutative
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pwf p: o 9“3 p¥
Ka(p) > K4(D) > K4(C) ——> Kol(p) > Ko(D) > Ko(C)
lﬁ*‘” (Gt (3,)% i (5% (3a)e
K4 (o) i K4(B) e K4(A) —> Kolw) e Ko(BY —— Ko(A)
3 )
® ©, % ® 9o

Proof. All the maps have been defined before. Subscripts
o and ‘¢ only indicate for which morphism we construct
the natural maps. The commutativity of the second and

the fifth square follows from the functoriality of K,
and Ko . Let d(E,a) €K4(p) . Then (j,)F o ,m;(d(E,a)) =
(5)3(A(E,a)) = d(j 48,3 ,40) = ,m1 05*V (d(E,a)) , where
the middle terms mean equivalence classes in K4(D) and
K4(B) , respectively. Let d(E',a') €K,(C} and

E' @F' =C% . Then JouE" @ 4F" =A" .,  Thus

j* @ o 3,(a(E",a")) = J* 7 (a(d",D%,a'@®idy,)) =
d(Bn’Bn’je*a'$id32*F') SICFCIS PR PR

% o (iz)¥(d(E",a')) . Finally, let d(E,F,a) €Kolo)

Then (§4)g o mg(d(E,Fya)) = (3, )5(TET -TFD =

[370E] =TI aF] = 75203 4B, aF 0 pex)) =

o"8 0 (G(E,F,0)) . @

ITI.3. LEMMA. Let O —> L 9> B &> A —> 0 be a short
exact sequence of C*—algebras such that B,A and ¢
are unital. Let L be the C*-algebra we obtain from L
by adjoining an identity. Let Ja: I+ B be the unital
¢*-morphism induced by 3 . Then we get a commutative
diagram of c*-algebras. Moreover, the right square is a

pullback square.

0 > L >

Cae y
v

0] > L



50

Proof. The map p is the cancnical surjection

L »0/L =C. The map Jjz 1is the canonical injection
which sends X €0 %o A-lA . With these maps the right
iquare is clearly commutative. Let

L := {{b,\) €BdC: @(b) = x+1,} be the pullback of ¢
and j. , then it is easy to check that the map

h: L »f , defined by n(i+x1) := (3(1)#r1,2) is an
isomorphism of C*-algebras. a

Now we are ready to define KO and K4, for arbitrary
C*-algebras. This definition makes also sense for unital
C*-algebras and we shall show that the two definitions
coincide for those. Note first that for any C*-algebra

L there is a short exact sequence O - L - L 5 ¢ - 0.

By the preceding lgpma and the excision theorems we see
that, for any short exact sequence O - L - B &5 A -0
with A,B and ¢ unital, Ki(w) = Ki(p) . If L is

also unital we get a pullback square of unital C*~algebras

p

T L5 ¢
la.- l/ id
1e¢ 22y ¢

The isomorphism is given by (a,c) —> atcl @ . Thus
K.(p) == K.(pra) . But we can view pra as O®id, :
I8t » 08¢ and relative K-theory preserves direct sums
as the reader can show easily. Thus KX, (pr,) =

Ki(O) eKi(ldt) = Ki(L) &0 .

ITI.4. DEFINITION. Let L be any C*—algebra such that
we have a short exact sequence of C*—algebras

0O+L-»B3A+0 with B,A and ¢ unital. Then define
K, (L) =K. (¢) for i =0,1.
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The sbove remarks make sure that the definition IIT.U
makes sense and does not create ambiguity for unital

C*-algebras.

For any C*~morphism @: B » A we can define a unital
¢*-morphism G: B »A that sends an (b,x) €B to

(p(b),x) €l . If B,A and ¢ are already unital, then
the composition of 9: B+ A with the isomorphism

B&¢ -8B and B +A 8¢ described above, is the isomorphism
cpEBidt: B®f » A ®C . Thus we see as before that in this
case K;(o) = K; (o) ®K, (id,) = K. (@) .

ITI.5. DEFINITION. Let B and A be C*-algebras and
¢: B=+A be a C*-morphism. If G: B A is the unital
C*-morphism induced by ¢ , we define Ki(m) sz Ki(g)

for 1i=0,1.

Now we can assign to each C*—morphism @: B->A group

homomorphisms w;: Ki(B) - Ki(A) where w; =($);|
K.{B)
1

and (5):: Ki(g) - Ki(z) igs the map defined in I.10 and
I.26 respectively; The fact that w; maps K, (B) actually
into Ki(A) o Ki(A) follows from the following commutative
diagram, III.2, I.10 and I.26

B B —>§ —> 0
CR
A—>A—>¢ —>0

III.6. THEOREM. The assignment X; which sends a c*-
algebra A to K,(A) and a c*-morphism @: B =+A to

m;: Ki(B) - Ki(A) is a covariant functor from the category
of C*-algebras and C*-morphisms into the category of abelian

groups.
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Proof. The proof is routine and left to the reader as
an easy exercise. [

For any short exact sequence of C*-algebras
0-L3B%4-0 wegeta short exact sequence
0-L3IBZT 0. By III.1 we obtain an exact sequence
of abelian groups K4(®) —> K4(B) —> K,(%) qo >
Ko(®) —> Ko(E) —> KO(K) . Note that G1(§¢) is path-
connected and thus X4.(¢) = . Hence we have that

K1(A) = Kq.(R) . Moreover, by definition K, (p) = K, (@) .
So we get a commutative diagram

- ~ ~ 9 o ~ (0 ~
K1{p) —> K1(B) —> K, (8) 2> Ko(@) > Ko(B) > Ko(A)

I

) Ty o
K1(9) —> K4(B) —> K4 (&) =2 Ko(p) —> Ko(B) > KolA)

Since ¥ 1is just the restriction of (G): we obtain:

III.7. PROPOSITION. Let 0 - L 3B 3% A 50 be a short

exact sequence of C*-algebras. Then the following
sequence 1s exact:

¥ * 3 ™ o*

Q
Ka(L) —> K4(B) —> Kq(A) ——> KoL) ——> Ko(B) <> Kq(A).

III.8. PROPOSITION. Consider a commutative diagram of
C*-algebras:

0 I>sB-Lyp—>0

11T

O—> K- 0-235¢c—>0
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Let the rows be exact. Then the diagranm

«’: o} : s o3
K4 (L) —=—> K1(B) —> Kq(A) —&> K4(L) —> Ko(B) —> Ko(A)

(R A A R R

' 3 Py 3 24 Py
K1(K) —> K4(D) —> K4(C) B> Ko(K) —> Ko(D) ——> Ko(C)

obtained from III.7, commutes.

Proof. First consider the case where all zlgebras and
maps in the right square are unital. Then we are in the
situation of Lemma III.2 which gives the commutativity
of the diagram. In the general case we replace the right
square of the algebra-diagram by

LN

o —

Al — i}

—_
g

Since the diagram for the general case is gotten from the
diagram for the unital case by just restricting some maps,

it is clear that it commutes. [ ]
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CHAPTER IV: K-THEORY AS HOMOTOPY FUNCTOR

In this chapter we introduce the notion of homotopic C*-
morphisms and various other concepts arising naturally
from homotopy theory of topological spaces. These ideas
have been used more or less implicitly by many authors.
It seems, however, that nobody ever bothered to write up
the powerful consequences in K-theory in a concise form.
The main result is that the K-functors do not distinguish
between homotopic C*-morphisms.

IV.1. DEFINITION. Let A and B be C*-algebras and

®;: A> B for 1i:=0,1 be two C*-morphisms. The maps o
and @41 are called homotopic, written o = o, , 1f there
exists a family ¢, A->B of C*-morphisms for t €I such
that ¢: I xA +B defined by ¢(t,a) = ¢,(a) 1is jointly
continuous and ¢o =@ as well as d1 T@q .

IV.2. DEFINITION. Let A and B be C*-algebras. A C*-
morphiém ®: A=»B 1is called a homotopy equivalence if
there exists a C*-morphism y: B -A such that o oy ~idg
and ¢ Otpa-idA .

IV.3. DEFINITION. A C*-algebra C is called contractible

if idc=~0 - Here O denotes the map C -C that sends
everything to zero.

IV.4. LEMMA. Let B be a unital C*-algebra. Let

O #E,F €0p(P(B)) and pg: B® -E , jgi E=B", pp: B" »F ,
Jgp: F+B" be pairs of projections and coprojections for
the modules E and F . Endow B® with the product norm
and E and F with the Subspace norm with respect to

- . - - . ' -1
Jg and jp . Then if |j, °pg ~Jp °pgll <(max{ljpgll,lipgll})"7
the map Pp °jp: F»E is an isomorphism of topological
vector spaces.
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Proof. First we show that pg ojE oPg ojF is an auto-
morphism of F . The space End(F) of endomorphisms of
F dis a unital Banach algebra w.r.t. the operator norm.
Then [lidp - pgoigepgezll =llpgoipepeedp - Prodpopgedpll =
Ipgo(ipepy = dgopglodpll <lppllllipery - Jgorglllizl =
HpF"“jFopF - onpE” < 1. Thus _PFoonponF is invertible
in End(F) . But (pFoonponF)opFojE is a left inverse
for ponF , thus ponF is injective. Similarly we now
show that ponFopFojE €Aut(E) and thus ponF has a
right inverse pF°jE°(pE°jF°pF°jE)—1 . Hence ponF is
surjective. n

IV.5. THEOREM. Let A and B be C*-algebras and
L B -+A and a homotopy between the Cc*-morphisms

w: B»A and ¢: B-A . Then the induced map

95: Ko(B) » Ko(A) and yJ: Ko(B) » Ko(A) are equal.

Proof. For a given free module B® over a unital C*-
algebra B we can identify projective retracts E of
B" , given by a pair of projection and coprojection
(pE,jE) , with a projection P, in Mn(B) , namely the
matrix associated with onpE . If A is another unital
C*-algebra and ¢: B-A 1is a unital C*-morphism, then
the module @.,E = A SB E 1is given by the projection
wx(PE) . Thus, if ¢: B-A is homotopic to ¢: B -A

via an unital homotopy ¢, , for any t €I =[{0,1] , there
exists an open neighbourhood U, of t such that
lo¥(By) - oX(B ) <1 +fo, (PIN™" <1 for all s €U, .
If J = {s €1 : g, (E) = ¢_,(E)} this shows by IV.4 that
J is nonempty and open. But if t €J , we find an

s €U, nJ , hence, again by IV.4, te€J . Since I is
connected this implies J =I . We see that in the case
where all the algebras and morphisms are unital the map
(6,)%: Ko(B) » Ko(B) , given by (4,)5([E] -TF]) =
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[, (E)] - [o,4(F)] , does not depend on t . In~the
general case we replace A and B by A and B, and
©s¥,4, by $,$,$t . Thus we get that the maps

6:: Ko(B) » Ko(A) and $:: Ko(B) » Ko(E) are equal.
Therefore also their restrictions-corestrictions

wr: K, (B) » Ko(A) and Vo : K, (B) » K,(A) are equal. ®

IV.6. THEOREM. If ¢,y: B » A are homotopic C*-morphisms,
the maps ©F: K,(B) » K,;(4) and ¥F: K,(B) = K,(A) are
equal.

Proof. First we assume that all algebras and maps are
unital. View K4(B) as 1no(G1(B)) and K.(A) as
"o(G1(A)) . For any b €G1(B) and [b] its class in
mo(G1(B)) , the map (¢t):: Ky(B) » K,(A) is given by
(63(01) = [o¥0] . But ¢X(b) ana ¢X(b) are path-
connected in G1(A) wvia vy: I +G1(A) defined by

Y(r) = 0K (1s (®) - Thus  (8,)3([b]) = (4_)%([b]) for
all 8,t €I . In particular m: =wf . The general case
follows easily from replacing A and B by A and B ’
and all the maps by the corresponding unital maps, just
as in IV.5 . =

IV.7. COROLLARY. Let A and B be C*-algebras and
¢: A =B a homotopy equivalence. Then the induced map

w;: Ki(A) =+ K.(B) 1is an isomorphism.

Proof. Note that the identity on A,B induces the
identity on Ki(A) and Ki(B) , respectively. Now the
claim follows directly from the preceding theorems and

the definition of a homotopy equivalence via the usual
argument. B
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IV.8. COROLLARY. Let B be a contractible C*-algebra.
Then Ko(B) and X4(B) are zero.

Proof. Note that the zero map on B induces the zero
map on Ko(B) . Thus the identity map on Ko(B) is equal

to the zero map. B
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CHAPTER V: SUSPENSIONS AND HIGHER K-GROUPS

In this chapter we give the (well known) definition of
the suspension of a C*-algebra. We use it to define
Kn(A) for any n €. The main result will be a long
exact sequence in X-theory associated with a short exact
sequence of C*-algebras.

V.1. DEFINITION. Let B be a C*-algebra. The cone CB
over B 1is defined by CB := {f: I -+B: f continuous

and f(1) =0} . The suspension SB of B 1is defined by
SB ={f €CB : £(0) =0} .

It is easy to check that CB and SB are C*-algebras.
In fact cone and suspension can be viewed as functors
from the category of C*-algebras into itself. The image
of a morphism ¢: B A under these functors are given
by Cw: CB =»CA aith Co(f) =gof and Sw: SB -+SA with
Se(f) =¢of , respectively. Note that if ev: CB -»B de-
notes the evaluation at O , we get a short exact se-
quence O -+SBSCB =B -0 ,

V.2. LEMMA. The cone CB is contractible for any C*-
algebra B .

Proof. Consider the family of C*-morphisms 9. ° CB »CB
for t €I, defined by ¢t(f)(8) =f(1-(1-t)(1-s)) . Then

L idCB and ¢4 = Q. It is clear that ¢, is a
homotopy. [

V.3. PROPOSITION. Let B be a C*—algebra. Then we have
a natural isomorphism K.(B) = KD(SB) .
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Proof. The above remarks and theorem III.7 show that we
have an exact sequence in K-theory K. {(CB) - K.(B) 3

Ko (SB) = Ko{(CB) . But CB 1is contractible by V.2, hence
Ki(CB) = C by IV.8 . Thus 3 is an isomorphism.

If A 1is another C*-algebra and @: B-A 1is a C*-

morphism, we get a commutative diagram with exact rows

O —> 8A —>CA —> A —> 0

fo T o

O —>SB —>CB —>B —> 0

By ITIT.8 we get a commutative diagram with exact rows
»

o
'

3
= Kq(CA) —> Kq1{A) —2> Ko(SA) ——> Ko(CA)

Tmf T (So)g

]
= K4(CB) —> K4(B) —2> Ko(SB) —> Ko(CB)

1]
o

O
1
i
B O

V.4. DEFINITION. Let B be a C*-algebra. Define the
n-th K-group of B by K (B) = K__.(SB) = ... = K,(s"B).
Here 3" means the n-fold application of the functor

S to B.

Proposition V.4 shows that there is no ambiguity in this
definition. Note that the functor S is exact, i.e. it
sends exact sequences to exact sequences. In particular,
for a short exact sequence of C*-algebras
0-L3IBS8SAas0 » we get a short exact sequence

0+ SL 53 sB 58384 0. By ITI.7 this induces an exact
(sv)} (Se)3

]
sequence X,(SL) > Ki(SA) —9

> K4(SB)



40

* *
(87m), {Selq .
Ko (SL) > Ko (SB) > Ko(SA) , which we rephrase
LB o3
in the following manner Xz(L) > Ka(B) >
*
32 (STT): (Sv)o

Ka(A) > Ko(SL) > Ko(S) > Ko(SA) . The nat-
urality of the isomorphism from V.3 shows that the fol-
lowing diagram commutes.

(s1)e (Se)e
Ko (SL) > Ko(SB) ————> Kqo(SA)

L,

Ki(L) ———> Kq(B) ——> K4(a)

Thus we can put together the above sequence and
K1(L) —> K4(B) —> K4(A) —>> Ko(L) —> Ko(B) —> Ko(A).
We obtain the following theorem.

V.5. THEOREM. Let 0 —> [ — > B —> A —> 0 be a

short exact sequence of C*-algebras. Then we have a long
exact sequence in K-theory as follows: for n >1

(8%n)y (8%); dsn
Q
> K (L) > K (B) > K (A) ——> &k __ (L)
(s277)* (s
> K (B) —2 % K (). ®

We dencte (Snw): by w: and (s"¢)) by m; . Moreover

we denote asnw by 3 if the map o is clear from the
context.
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CHAPTER VI: BOTT PERIODICITY AND THE SIX-TERM-SEQUENCE

In this chapter we shall describe the famous Bott perio-
dicity theorem, which is of great importance. It will,
among other things, enable us to install the so called
six term sequence, which is a different form of express-

ing the long exact sequence.

VI.1, DEFINITION, Let G be a topological group. Define
m4(G) to be the first homotopy group of G with respect
to homotopies and loops based at the identity.

It is well known that in this case the multiplicaticen in
74(G) can be described by pointwise multiplication of
loops just as well as by composition of loops.

For a unital C*-algebra A, let Ln(A) be the group of
loops in Gln(A) , based at 1, under pointwise multiplica-
tion. Let Nn(A) be the subgroup of loops which are
homotopic to a constant loop. Nn(A) is normal in Ln(A) .
There is a canonical injection L__,(A) - L (A) which

£ o
c1

sends Nn—i(A) into Nn(A) . Thus we obtain the follow-
ing commutative diagram

maps f €L _,(A) to f®1= ( ) € L (A) . This map

14(G14(4)) —> ... —> n,(Gln(A)) —> ... ~—> lim n,(Gln(A))
[ | !
L4(A) > el —D Ln(A) > L. —> 111_1; Ln(A)

| I I

Ny(R) —> ... — NH(A) > . —> 1ir_n. Nn(A)
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If we let L(G1(A)) be the group of loops in G1(A)
based at 1 and N{Gl(A)) the subgroup of L(G1(A))
consisting of the contractible loops, Lemma I.20 shows
that L(G1(A}) = lig L (A) and N(GL(A)) = 1im N_(A) .
Thus we get the following Proposition.

VI.2., PROPOSITION. Let A be a unital C*-algebra. Then
n1(GL(A)) = lig n4(G1 (A)) . m

VI.3. PROPOSITION. Let A be a unital C*-algebra. Then
To(GL(SA)) = 74(G1(A)) .

Proof. Let G be any topological group and H be a
¢losed subgroup of H . Denote the group of continuous
functions from the one-sphere S' into G, which send
the base point of S' into H, by C(S',¢,H) . Then
we know that = (C(S',G,H)) = n4(G,H) , the relative
homotopy group. Moreover, if H 1is connected we have
m1(G,H) = 74(G,1) . Now note that

Sk T {ft Toe>A 1 £(1) = £(0) € €-1,} . We identify
G1(SA) with C(S’,Gl(A},Gl(t-iA)) in the obvious way.
Then, since Gl(t-lA) is pathconnected we get

n (G1(SK)) = m1(G1(A),61(8-1,)) = wy(GL(A),1, ,)) and
since we defined ,(G1(4)) as n1(G1(A),1G1 this

(a))

proves the claim,. [ |

VI.4., THEOREM. (Bott Periodicity, ef. [K] IIT.1.11).
Let A be a unital Banach algebra. Then the map

Yp: Ko(A) —> 74(G1(A)) induced by the assignment that
sends the isomorphy class [E] of a finitely generated
projective A-module to the homotopy class of the loop
t—> z(t)p, +1 -Pg , where the projection Po eM_(A)
is as in IV.4 and z(t) = g 2mit is an isomorphism,

>

called the Bott isomorphism. [
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Note that z(t)PE +1 -PE = exp(t-PE) . Note also that the
Bott isomorphism is natural in the sense that for A and
B unital C*-algebras and o: B-A a unital C*-morphism
the map w%: n,(Gl(B)) ~—> 7,(G1(A)) induced by the map
mx: G1(B) —> G1(A) makes the following diagram commute:

Ko (B) > Ko(A)

o, b

©q
m1(G1(B)) > n4(GL(A))

VI.5. COROLLARY. Let A be a unital C*-algebra. Then
Ko(A) = K4(SA) via the Botf map.

Proof. We have seen in the proof of III.T that
K,(B) =K4(B) for any C*-algebra B . Thus K4(SA) =K+ (5R)
and the claim follows from VI.H. .

VI.6. COROLLARY. Let A be a C*-algebra. Then we have
that Ko(S3A) = Ko(A) .

Proof. If A 1is unital we have Ko(S*A) = K.(SA) by

V.3 and Ki(SA) = Ko(A) by VI.5. In the general case we
have a split exact sequence O —+ S*A - S2% » S%¢ -+ 0.

If op: Ko(RA) = Ko(S2A) denotes the composition of the
Bott map y; and the map from V.3 and p': Ko(§) = Ko(S2§)
the corresponding map for § we get a commutative diagram

0 —> Ko(S2A) ———> Ko(S2R) —> Ko(S2¢) —> O

49 E,Tp .

> Ko(K) > Ko(€) > 0

0 —> Ko(4)
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Since the rows are exact we see that is an iso-

olg (a)
morphism between Ko(A) and Ko(S2A) . &

For a short exact sequence of C*-algebras
0—>L -84 —>0 we can now write down the so-
called sixterm sequence

3, wf p*
Ka(A) —> K4(L) —> K, (B) —~> K,(A)

0
I
p e la,op la,

Ko (A) <$§— Ko(B) <?§- Ko (A)

The map 320p is often referred to as the exponential
map because of the structure of the Bott map, which is
an essential part in o .

VI.7. THEOREM. The six term sequence is exact.

Proof. We only have to show exactness at Ko(A) . First
consider the case where B,A and ¢ are unital. Then,
by writing down all the maps whose composition dz0p isZ,
we get the following commutative diagram.

YA . ~ ~ o 31¢p
Ko(A) —> m4(GL(4)) => no(GL(3A)) => K,(s4) =» Ko(S2a) — K4(L)

Twﬁ }ﬁ }Sw)g Iw: Tw!

Ko(B) ? 71(GL(B)) = 7o(GL(SB)) = K4(SB) == Ko(S2B)

We condense this to the commutative diagram

p 2
Ko(A) 2> Ko(S%4) —2 K, (L)

* *
%o L

Ko(B) 55-> Xo(S3B)
B
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Since Xo(S?B) £> Ko(S2a) 22> K,(L) is part of the
long exact sequence this proves that the sixterm sequence
is exact at Ke(A) . In the general case we replace A
and B by A and B respectively to get a diagram

~ 3 ~ 923
Ko(R) 2> Ko(S2R) =25 K, (L)

Tm: T(B):

Ko(B) o—> Ko(S7E)
B

We saw in VI.6 that the restrictions Py and
Ko(a)
p~' are isomorphisms Ko{(A) —> Ko(S2A) and
Blko(B)
Ko(B) —> Ko(S?B) respectively. Moreover, from III.7

we know that ¢f = (G):] . If we can show that
Ko(B)

* ok
e, = (@), and 3, = 3,~ 5
Ko(S2B) 20 2@l (s7K)
as in the unital case, which proves the exactness of the

we get a diagram

sexterm sequence at Ko(A) . But we see as in III.T7,

since 0 —> S2A —> S24 —> S2§{ —> O and

0 —> S2B —> S2B —> S2¢ —> 0 are split exact, that
* - 2,\¥% _ 27y * S

o = (S%p)g = (S w)°bﬁﬂ823)' Moreover, out of a similar

reasonin 3 = 3, ~ . 0
= Cey 2“3'%(0(521;)
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CHAPTER VII: MULTIPLICATIVE STRUCTURES

In this chapter we give a few canonical multiplicative
structures relating the K-theory of two nuclear C*-alge-
bras By and Bz to the K-theory of their tensor prod-
uct. Karoubi described those for unital algebras in a
fairly abstract manner in {Kz] . We give a more concrete
description, also for nonunital algebras. Moreover, we
describe a way of providing Kn(B) with a module struc-
ture.

For two C*-algebras By and B2z we can form the
algebraic tensor product B, ®¢ Bs . We can provide
B 83 Bz with C*~crossnorms. If the algebras are nuclear
all possible C*-erossnorms agree. Denote the completion
of B4 & By w.r.t. this norm by By ® Ba . The tensor
product @ 1is natural w.r.t. morphisms B, -A; and
Ba =Aa . Moreover, tensoring with a fixed nuclear algebra
is an exact functor. From now on all
C*-algebras are assumed to be nuclear. Let E; €0b(P(B;))
for i=1,2. If the E, are free, say E, = B?l then
we have a canonical isomorphism between E, ®¢
(B4 8, Ba) ®'"™2 | pefine E, ®, Ea2 to be the closure of
E1 9 E2 in (B4 ® B,)""™2 with the product norm. Now
suppose that _Ei is embedded in B?i as a retract. Let
i E, —> B?l be the embeddings and p; B?i —> E;
the retractions. We topologize E, ®

Ea and

¢ Ez with quotient
topology of the map p¢ @ pa which is clearly surjective.
As in I.3 we see that Jjq ® j2 is an embedding w.r.t. to
this topology. Thus we define E4 ® E; as the closure

of E.® Ea in BJ' & B;? = (B, & B,)""""@ . We have to
show that this definition does not depend on the partic-
ular embeddings. In fact, since E, @t Ea 1is finitely
generated projective over B, 0‘ Ba , we see as in I.3

that the topology on E, 0‘ Ea does not depend on the
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choice of embeddings and projections. But the closure in
B7' ® B;? is just the completion of Eq 8 Ez w.r.t.
that topology, since js+ ® ja 1is an embedding. Next, we
show that FE, ® E; €0b(P(B; ®B,)) . The map

P+ © pa: Bf‘ ®B}®> —> E,®E; 1is continuous, so there
exisﬁ;a unique extensicn to the completions

ps ®pa: BY? 8B32 —> E, 8E, . Similarly we get a unique
map J1 éj;: Es ® E;, —> By' ® B22 . But we have

(p1 ®pa2) °(j1®j2) = idE3¢E2 so the uniqueness of the ex-

tension shows that (pq ®pa2) 0(j,®ja) = idy gy + Thus
ps ®p2 1is onto and j4 ® j2 1is one to one. Uniqueness
of the extension also ensures that (j4 ® j2) o(ps ©p2)
is an idempotent.

VII.1. PROPOSITION. Let By and B, be unital nuclear
C*-algebras and E; €0b(P(B2)) . Then tensoring with E;
is an additive, exact functor from P(Bs) to P(Bs &Ba)
which is natural w.r.t. C*-morphisms A; »A; for 1 =1,2.

Proof. In view of the above remarks it 1s easy to check
that it is a functor. It is enough to show that the func-
tor transforms short exact sequences into short exact
sequences. Let 0O = E 5F B4 40 be short exact in
P(B4) . The algebraic tensor product with E. 1is an
exact functor, so we have an exact sequence

0 —> E ¥ E, ®id o g 8 Ea 88id H 8 Ez —> O . More-

over, since H is projective, we have a splitting

y: H-F which induces a splitting
j®id: H®, Eg —> F &, E3 . We get a sequence
adid

¢ ¢
0 —> E BE, > F QE, B®id . y®E, —> 0 and a map

vy 8 id: H® E; —> F 8 E5 . Uniqueness of the completion
shows that (g ®id) o(y &id) = idpgp » thus 8 ® id is
surjective and the sequence is exact at H ©® E; . But
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the splitting y®id induces a splitting

§8 id: FO®E, —> E®E, . So we see similarly as above
that the sequence is exact at E®E, . Again by the
uniqueness of the completion of a map we see that

(8 8id) ©(a 81d) = O . Moreover if -XcF 8E; is in the
kernel of B8 &id and ukEF ®E2 tend to - then

B Sid@%k) = B éidC&-) tends to zero in }IecEz . Replac-
ing w, by [ -(y-eld) o (g ®id) (@, )] we can assume
that ,a Eker(p Sld) = im(e ©id) . Then the sequence

By T8 81d(ﬁk) converges and (u.@ld)(@ ) =0,
§ ®id is a topological isomorphism from 1m(u.eid) to
E®Ez with inverse a®id . Thus (= « 91d(11m 6.)

and the sequence is exact also at F&E, . It 1s an easy

consequence of this that the tensorproduct & distributes
over direct sums.

since

Now let o.: 3, —> A; be unital C*-morphisms be-
tween nuclear C*—algebras We went to show that for
E; €0b(P(B;)) the modules (E, &A;) ®5,88,(E1 8E2) and
(A1 @ E ) 8 (A, 8 E;) are equal. If E, and Es; are
free thlS is clear But since the modules are projective
and all the involved tensor products distribute over di-
rect sums the general case follows easily. [

The isomorphism classes of objects in P(Bi) form com-
mutative monoids S, w.i.t. taking direct sums as ad-
dition. The assignment y: §, xS3 —> T, where T is
the monoid of isomorphism classes of objects in
P(B1®B3) , 1is bilinear. If BAbsem is the category of
abelian monoids, Ab the category of abelian groups and
G: Absem —> Ab the Grothendieck functor then

G(S;) = Ko(B;) and G(T) = Ko(By 8Ba) . Moreover we
have the following isomorphisms:
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Bil(S4x32,T) —> Absem(S4,8bsem(S2T)) —> Absem(S4,Ab(G(S2),G(T)))

Bil(G(S1)xG(S2),G(T)) <—— MBb(G(S4),Ab(G(S32),G(T)))

Thus ﬁ induces a bilinear map wu: Ko(B4) xKo(Bz) —>
Ko(By ®B,) . The formula is w([E4}-[F4],[Ez]-[F2]) =
[Eq ®Ez]-[Eq &F,)-[F, ®E;] + [Fq ®Fz] . Thus we get the
following lemma.

VII.2. LEMMA. Let B, be unital c*-algebras. Then the
tensor product &: Ob(P(B4)) xOb(P(Bz)) —> Ob(P(B, &B;))
induces a bilinear map p: Ko(Bs) xKo(Bz) —> Ko(By ®B3)
which is natural with respect to unital C*-morphisms

¢ Bi —> Ai . i

Let ¢;: B, —> A, be unital C*-morphisms. We define a
unital C*-algebra P(¢1,92) as the following pullback

B1 @A, _
P(¢1,02) Ay ®A,

\ /idélpg

Ay 8B,

The maps idB1 étp;: B, éBz —> By éAz and @4 éide :
By ®B; —> A4 ®B; induce a map x: By ®Ba —> P(g4,02) .

VII.3. LEMMA. For 9, Bi-—~> Ai surjective unital
C*-morphisms the following sequence is exact:
0 —> ker ¢4 8ker 93 —> By 8By X5 P(@q,02) —> O,

Proof. Let Li := ker @ - Tensor the exact sequence
0 —> La —> Ba —> Az —> 0 with L4y to get the exact
sequence O —> L, 8L, —> L, 8By —> L, ®a; —> 0 .
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Similarly we get 0O —> L4 ®By —> By B, —> A, 8B, —> O.

& B.&B
S0 we get an exact sequence 0 —> ngﬁg —> Elézi
{B1éBz) IL®B,\ L1®8La L2

—_—>

\T 3 \ > 0. Using the second isomorphism the-
L.&8L.7 M., 8L, 5
. = B
orem we can rephrase this to 0 —> L, ®4; —> —1—2 —>
L4®L,

A+®Bz —> 0. The map y induces a map
-, B,.®B,

X: ——= —> P(@q,02) . Moreover, there is a map
L48L,

T: L, &4, —> P(91,02) induced by L, ®A, —> B, ®4,
and L, ®A; -2> A, 8B, . It is easy to see that A4 ®B,
is the cokernel of +t , using the fact that P(@1,02)
is the pullback of A, ®B, and B, ®A, . Thus we obtain

the following diagram, which is easily checked to be com-
mutative:

0 —> L, 81, —> B‘?EE > A4 8By —> 0
L.®L,

ik

- T -
0 —> L1 eAg —_— P((p1,(pz) —_— A1 @Bz —> 0

This proves that X is an isomorphism, whence the claim.
o

~ E'
We now turn to the case where @, : B, —~—> Ei = § is the
canonical surjection. t

VII.L. LEMMA. Let B, be C*-algebras and ©;: B, —> ¢
be the canonical surgectlons For P := P(w1,¢z) and

x. B, @B, —> P the natural map, the induced map

x3: Ki(B, 8B;) — K1{(P) 1is surjective.
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Proof. The algebra P is given by the following pull-
back

B,
N
P {
N\ -

Ba

An element in K4(P)} 1is therefore given by invertible

b, = (béasne Gﬁégi) for some n €N, such that

a,B=%...n
L is (w1(b(gﬂ))) - (q,,(b(gﬂ))) €a1_(6) .
a,B=1...n a,f=1...n
Define matrices in Gln(§1 ®B.) by
- (aB) 3 - = {aB)
'VRT (b, ®1B=) and A3 .-(131 b

a,B=1...n a,B=1,..n
It is now easy to check that x¥: Gln(§1 &B2) - Gln(P)
maps Aq°A”'eA; to the pair (A4,A3) , which proves the

claim, L

We now extend our definition of the cup product to non-
unital algebras. The lemma and the long exact sequence
yield an exact sequence O —> Ko(B, 8Bz) —>
Ko(Bs ®B3) l§> Ko(P) . Moreover, the Mayer Vietoris se-
quence for P (cf. [H]) shows that the map
v¥: Ko(P) —> Ko(B, 88) ®Ko(€ 8B1) , induced by the
natural map y: P —> (B, &C) &(¢ B,) , is injective.
We get the following diagram

*

*
0 —> Ko(Bs ®Bz) —> Ko(Br 882) X Ko(P) —> Ko(B, &) ©Ko (¢ 852)
A

|u

0 —> Ko(By) ®Ko(Ba) 3> Ko(B,) ®Ko(Ba) —> Ko(€) @Ko(€)
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In order to define the cup product wu: Ko(B4) @Ko(Bz) —>
Ko(B4 ®Bz) as the restriction of the product on
Ko(§1)€£Ko(gg) we have shown that X,oM0J =0 . But the
maps pr1oY:ox: and przoy:ox: are given by

(idEq écpi): and~ (04 @idgzlz respectively, if

Pri: Ko(B,) ®Ko(Ba) —> Ko(Ez) is the projection on the
i-th summand. Moreover, the cup product is natural, i.e.
the following diagram commutes

Ko(B1 8B2) ———> Ko(¥, 8¢)

)[u /]U
Ko(B1) ®Ko(Ba) —> Ko(B,) @Ko (l)

Thus pr1oy:x:0uoj =0 . Similarly pr,oygexsouoj =0 and
hence y:ox:ouoj =0 and since y: is injective, we

have xoouoj =Q .

Recall that Ko(Bi) is defined as Ko(wi) and

Ko(By ®B;) is equal to Ko(x) . Thus we have a cup
product on the relative Ko-groups p: Ko(@q)xKe(ws) —>
Ko{x) . We want to define such a cup product for arbitrary
unital C*-surjections ©;: B, —> A; and the induced map
Xg! E, 8B, :—) P{o1,92) . If Li :=ker @ and

Ps: Li —> Li/Li =0 are the natural surjections, our
construction applies and we get a cup product

u: Kolps) xKo(pz) —> Ko{x;) where Xq,° T, 8L: —>
P(p1,p2) 1is the induced map. The following lemma, to-
gether with the excision theorem will establish a natural

isomorphism j: K°(XL) —> Ko(xy) . Thus we can define
& cup product using the following diagram.
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Ko(pa) xKo(p2) — Ko(xL)
Kolwq) xKolepg) =~====-- > Ko(xB)

VII.5. LEMMA. For 1 =1,2, let the following diagram
be a pullback square of unital C*-algebras:

P
1
——eP Ci

Moreover, let Ps and 0, be surjective and 8, and
A\ be injective. Then the following square of unital
C*-algebras is a pullback square:

Xp
Dy @D, ——->>P(D1 ,92)

161552 1(5151’2”1652)

By ®B; ————>>P(@4,92)
Xp

Proof. The proof is achieved in two steps. First we show
that for any c*-algebra S8 the following square is a
pullback:

_ iadp
S®D. > S &C
1 1
id@éi 1 1m®yi
S ®B > S @A
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To see this, note first that Ji :=ker - is naturally
isomorphic to ker ®; . Moreover tenscoring over § with
a fixed C*-algebra is an exact functor. If Q 1is the
pullback of id &y, and id_ @p; , we get the follow-
ing diagram:

0—> 5875 --f-5 g >58¢, —> 0
T
g
|

0 —> 3S®F --—> séDi —> séc:.L —_> 0

The map f: E¥®Ji —> Q 1is induced by the inclusion
SéJi —_> SéBi and the zero map SéJi —> S &¢; ._The
map g: S®D. —> Q is induced by id &5, and id &p;.
Thus the diagram commutes and g 1is an isomorphism,
which proves the c¢laim.

Now let L be a unital C*-algebra such that the
following is a commutative square of unital C*-algebras.

£
L ———> P(p1,p32)

g (61®v2,Y3853)

By ®B; —> P{ps,03)
*B

We have to show that this square induces a unique map ¢

from L to Dy @D, such that f =(id_ &p.) 00 and

g =(ids ééi) o0 . Consider the following commutative
diagram
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piof
i - _ = L
C-| @Dz L — D1 @Dz _—>> D1 @Cz p20f
I PB iy,
C4 éBz &L Dy éBz i@’L)} D4 éAz g
I PB §&1d §4+81d
Ay ®B, <<—— B, 8By ——>> B4 ®4,

The preceding shows that the lower left and the upper
right squares are pullbacks. From the lower one we get a
unique map h: L +D, ®B; fitting in the commutative dia-
gram. The fact that &4 ?ide and &, éidAz are monic
now implies that (:I.c:.’tD1 Spz)oh = (idD1 ®ya)o(paof) .
Using the upper pullback square we not get the unique
map o¢: L —> Dy &D; with the desired properties. @&

The cup product induces naturally several other multi-
plications. To define those we need the following well
known fact.

VII. 6. LEMMA. Let A and B be C*-algebras. Then we
have a natural isomorphism lnp: s®(a) &8sP(p) —
s"*P(a &B) .

Proof. Note that SP%(A) = Co(S®) &A and s®(B) =

Co(SP) ®B . Here 8" denotes the n-dimensional sphere
with base point and Co(S®) . Moreover there is a natural
isomorphism the complex valued continuous functions on

S® vanishing at the base point.

Aap’ Co(SP) BCo(SP) —> Co(SPASP) = Co(S™'P) where a

]
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denotes the wedge product. Now the map lnp is given by
the following composition of maps: A ®id.=

Ny 5, 3 P\@r & n, g Dy = np ﬁ@B>
Col(S") ®A®CH{S"®R-2>C,(5S ) ®Co(5%) ®(A®B) ———
Co(s®'?)8(43B) . m

Now we can define a cup product Mop' Kn(A)XKP(B) —>

- ~ * . . A
Kpsp(A®B) by Mg -(lnp)o o Wwhere we identify uKn( )
with Ko(S"A) , K (B) with Ko(SPB) and K4p (A ®B)
with Ko(S"'P(4 &B)) .

Ko(S"A) xKo(8PB) — % 5 Ko (SPa &5PB)

T l(xnp):

Ko (S™*P(a &R))

We know that A®B is isomorphic to B®A , thus the
question arises how it will effect the product Hop if
we switch the factors Kn(A) and KP(B) . To answer
this question we have to study a group action of the
symmetric group of order k on K (B) for any k €IN

and an arbitrary C*-algebra B .

VILI.7. LEMMA. Let B be a C*-algebra. Define a map
T: SB —> SB by T(f)}(t) = £{1-t) . Then the induced
map in K-theory T;: Kn(SB) —_ Kn(SB) is given by

T () =-u .

Proof. Define é :={f: I B, continuous} as the C*-
algebra of paths in B . Then we get a short exact se-
quence 0 —> SB 4> ¥ &V B@®B —> 0 where ev de-
notes evaluation at the endpoints. Thus we have
Kn(SB)ean(ev) . It is easy to see that % is homotopy
equivalent to B and that after identifying K, (B)
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¥
with K (B) the map ev;: K (B) —> K (B®B) 1is given
by the diagonal map. From the long exact sequence we get

a commutative diagram

3

n
Kn+1(B$B) > Kn(SB)
*
s Tn

v 3 14

& n

Kn+1(B B) > Kn(SB)

Here s denotes the map that switches summands. Moreover,
ev¥ ] . *

n+1 n Jn
—_— Kn+1(B 8B) > Kn(SB) >

we have *Kn+1(B)
evn

K_(B)
ev; is injective, thus j; is the zero map and hence

3 is surjective. For u GKD(SB) we find a v EKn+1(B£BB)
such that u =3n(v) . Let v be v,®v; with

> Kn(BEBB) exact. TFrom the above we see that

Vi,Va EKn+1(B) , then u+T;(u) = anv+an(s(v)) =an(v+s(v)) =
3 (Ve ®va +va @vy) = 3 ((vq+va) ®(vetva)) =
3, °eV;+1(v1+v2) = 0. Thus T;(u) = -y . [

Let I be the symmetric group of order n . It acts on
s"™ =S A... AS' by sending {x1...xn} €37 A... AST to
1 1 1 3 3

{xU_1(T)...XU_1(n)} € ST A... AST . Thlsnactlon induces
a group homomorphism T Iy > Aut(Co(S7)) , given by
rn(a)(g[t1...tn}) = g[td(1)...to(n)] for o €1, and

g €Co(S") ., For any C*-algebra B we get a group homo-
morphism A, r, —> Aut (S®B) = Aut(Co(S") ®B) by send-
ing o €z, to & =t{o) éidB . This in turn induces a

*

group homomorphism AT L, > Aut (Ko (S"B)) .

VII.8. PROPOSITION. Let B be a C*-algebra. Then the

*
group homomorphism A L, —> Aut(Ko(S™B)) 1is given by

e* =Sign(0) 'idKo(snB) .
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Proof. It clearly suffices to show that 5* =-ia for

any transposition ¢ . So let %3 be the transposition
that interchanges the i-th and j-th coordinates. We can
assume that i =1 and j =2 since for . =(11)(j2) €z,
95 =ac4gza” ', and if 3:2 =-id, then Gij =8*(1q)8* =-id.
The automorphism rn(aij) :Co(8B) = Co{32) ®Ce(82"2) —>
Co(S52) 8Co(S™ %) is given by T“‘(Uij) éidco(sﬂ‘z)‘ Thus,
replacing B by 3S%T2*(B), we see that it suffices to
consider the case n =2 . Now we view S82%(B) as the con-
tinuous functions from I° —> B vanishing on the bound-
ary. Then the action of the transposition ¢ on 8§%*(B)
is given by interchanging the arguments, i.e.
3(g)(x,y) = gly,x) for any g €S%*(B) . Consider the
homomorghism f: IR —> int I given by

X

f(x) = 5 +——— . It satisfies f(-x) = 1-f(x) . De-
2(1+1x1)

fine two endomorphisms a4 and az of S2(B) by sett-
ing aq(g)(x,y) = g(£(£7 (x)+27 " (y)), £ (£ ()71 (x)))
and aa(g)(x,y) = g(£(F (FI+£7 (X)), L (£~ (x)-£~(y)))
for (x,y) € int I* and ai(g)(x,y) =0 if (x,y) €a31°.
It is routine to check that this definition makes sense.
Note that a4 1is homotopic to the identity via

¢ (8)(x,y) = g(£(£7 (x)+£r7 {(y)), £ (£ (x)+t87 " (y))) -
Similarly we see that a3 1is homotopic to 8. If we
define T: S?(B) = S{SB) —> S(SB) = S3(B) by

T(g)(x,y) = g(x,1-y) then az =T oa, and Lemma VII.7
combined with the homotopy invariance of the functor

Ko show that 9*=-idKo .

n

(s2B} -

VII.9. PROPOSITION. Let A and B be C*-algebras and
S: A®B —> B&®A the canonical isomorphism, then the
following diagram commutes.
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U
Ko(SPA) xKo(SPB) — B2 5 k,(s"*P(a &B))
(~1)"P

switeh Ko(Sn+P(A ®B))
n+p#*
1] lS(s)o

u
Ko (SPB) xKo(8%4) —F > Ko(S™*P(B&A))

Proof. The diagram is induced by the following diagram

(Co(ST)IBA)x(Co(SPIYBB) —> Co(S™) BABCH(SP) BB —> Co(SASP) & (A8B)
Géid@B

switch Co(SPAS™) & (A2R)

J ia®s
(Co(SPIBB)x(Co(SPIBA) —> Col(SP) ®B®C(S™) BA —> Co(SPas™) & (B2M)

which is commutative if o 1is the permutation that sends
[x1...xn,y1...yp] to [y,...yp,x,...xni. The claim fol-
lows because sign o = (-1)"P [

The cup product can be used to provide the K-groups of an
algebra with multiplicative structures. In fact, if, for
two C*-algebras A and B, there exists a C*-morphism
m: A®B —> B, then mou: Ko(A)xKo(B) —> Ko(B) 1is a
bilinear map. If A =B it is in fact a ring multiplica-

tion, if m is associative.

Now identify K,,(B) with Ko(B) and K, ,(B) with
K.(B) . We obtain a Ip-graded multiplication u on

KJa) = @ K.(A) cross K, (B) = @ K,(B) as follows:
i=0,1 * i=0,1
for elements a ={ao ®a,) €K,(A) and b =(bo ®b,) €K, (B)
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define u(a,b) =(uoo{80,bo)+us4(a4,b4)) @

(u10{21,00) +U01(20,b4)) EKx(A®B) . This multiplication is a
bilinear map as follows from the bilinearity of the My
VII.9. PROPOSITICN. Let B be a C*-algebra and A a
subalgebra of the center z(B) of B . Then K,(A) is a
Z:-graded ring and K,(B) 1is a Zz-graded K,(A) module.

Proof. After the preceding remarks it suffices to show
that there is a C*-morphism m: A ®B —> B such that the
image of the restriction of m to A®A is contained in
A . Since A cZ(B) we have a ring homomorphism

A®B 2> B given on elementary tensors by m(a®b) =ab .
By the universal property of the maximal cross norm on
A®B this map extends to the maximal tensor product
A® B which is equal to A8®B since the algebras are
nuclear. The rest is clear. [

Finally note that for a C*~morphism ¢: B—> D and A
a subalgebra of Z(B) and ¢(A) cZ(D), the induced map
@o*: Ky (B) —> K,(D) is a module map w.r.t. the rings
Ke(A) and K,(9A) . This follows from the commutativity
of the following diagram:

Ky(A) xK (B) 2> K, (A 8B) —> K,(B)

lw’“w' l(w&o)* l on

Ky(0A)xK, (D) > K, (A ®D) —> K, (D)
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