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Preface

The present article is projected to be the core of chapter IV of a
monograph entitled The Lie Theory of Semigroups in which the
authors (K.H. Hofmann, J.D. Lawson and myself) want to give an
account of the state of the art in this relatively new area,
explain important problems and indicate possible directions in
further research. The first three chapters will deal with the
theory convex cones as needed in this context, a theory of certain
classes of convex cones in real Lie algebras and the theory of
local semigroups in Lie groups. The present chapter tries to put
the available, not yet very systematic, information on global
semigroups in Lie groups into an organic form. Whenever material
from the ealier chapters is needed the reference will be marked
by the respective roman number. References without roman numbers
are references within chapter IV. We give a fairly extensive
introduction to this chapter in which we try to give credit to
those who wused the relevant concepts and methods first. This
is not always easy: First of all, many ideas were developed in
discussions while working on joint papers or following other
peoples presentations. But also, some of the sources in the
literature need a lot of filling in and even corrections before
they c¢an be used, in spite of the substantial amount of
information they provide.

I would like to acknowledge the enormous influence the
three years of <collaboration with K.H. Hofmann have had on
everything that is in this article. Moreover I would like to
thank J.D. Lawson, J. Faraut, M. Mizony and L. Rothkrantz for
many helpful discussions over the last two years.

Introduction
Section 1: Preanalytic semigroups and their tangent objects

In his lecture Topological Semigroups: History ,Theory,

Applications , delivered at the 'Jahrestagung der Deutschen
Mathematiker-Vereinigung' in 1975 , K.H. Hofmann advocated a
programm in order to develop a Lie Theory of Semigroups. He left
open what precisely this should be, but it was to be about
semigroups with some sort of differentiable structure, a tangent
object and an exponential function. It is clear that such a theory
should somehow be able to deal with subsemigroups of Lie groups
and it is natural to ask how general that situation is. Necessary
conditions for a semigroup to be (locally) embeddable in a Lie
group were for instance studied in [Hou73] and [Gr79] (cf. also
{Gr83] and [Gr84]). The results in this direction are not

yet completely satisfactory and there is still work going on, but
nevertheless the current research concentrates on the study of
(local) semigroups in Lie Groups. We will exclusively deal with
this situation.



One of the main features in Lie group theory 1is the local
jdentification of the Lie group and its tangent object, the Lie
algebra, via the exponential function. It is this identification
which allows to translate difficult analytical questions into nmore
accessible algebraic questions, solve these and finally translate
the solutions back into solutions of the analytical problem. Any
reasonable Lie theory of semigroups should contain some variant of
this translation mechanism. The starting point has be the
definition of a tangent object. We want this tangent object of a
given subsemigroup S of a Lie group G to be a subset L(S) of the
Lie algebra L(G) of G. The natural procedure now is to pick a
neighborhood U of the identity 1 in G which is a diffeomorphic
image of a neighborhood B of zero in L{(G) under the exponential
function and then take as L(S) the set of 1limit directions of
sequences sp in exp-! (SA U}:
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This 1is essentially the point of view of Hofmann and Lawson in
[HL83a]. Vinberg, for special cases, uses a similar definition in
:7180]. On account of the limiting process it makes no difference
whether one considers S or its closure § in G as far as the

tangent object is concerned, i.e. L(S) = L(3). Actually, it is
shown in ([HL83a] that L(S) = { xeL(G): R*xAaB c xp !t (8§ A U)}.
Since S is a semigroup this shows also L{S) = {x ¢ L(G):expR*x ¢ S}.

Ol'shanskii uses this as a definition for the tangent object

in [0182a]. There are no problems with this definition as long as S
is closed. But if we consider the semigroup consisting of one half
of dense one parameter subgroup of a torus, we see that the above
concept does not yield any good information even though there is a
natural candidate for a tangent object:

exp




One way around this problem would be to define the tangent object
as {x € L(G): expR*x ¢ S}, but doing this one looses more than
gains. In fact the tangent object as defined before is a wedge, i.e.
a closed convex set which is in addition stable under
multiplication by positive scalars. Moreover this tangent wedge
satisfies

(*) e2d (x)L(s) = L(S) for all xeL(S)a -L{S)

a property which turns out to be crucial for the theory and cannot
be dismissed (cf.[HH86b]). But all of this depends on the closure
process, so the example of the dense wind suggests to take the
closure in a smaller group. This path, suggested in [HL83a], is
followed in the present article: We will call a subsemigroup S of a
Lie group G preanalytic if the group G(S) generated by S in G is
analytic. For a preanalytic semigroup S we define the tangent
object as L(S) = { x ¢ L(G): expR*xccl(S)} where cl(S) is the
closure of S in G(S). With this definition L(S) is a wedge
satisfying the property (*). We call L(S) the tangent wedge of S.

Section 2: Ray semigroups and infinitesimally generated semigroups

The definition of the tangent wedge is the first necessary device
to translate problems from the analytical to the algebraical level

(and we see already that in the case of semigroups there will be

also a geometrical aspect). It is easy to see that, in contrast to

the group situation a preanalytic semigroup is not wuniquely

determined by is tangent wedge:

Therefore the process of translating the solutions of algebraic and
geometric problems into solutions of the original analytic problem
can only work satisfactorily if the semigroup S can somehow be
recovered from 1its tangent wedge. The most obvious <class of
semigroups to look at then are the ray-semigroups . Here we call

a semigroup S a ray-semigroup if it is generated by exp(M) where M
is in L(G). It is this class of semigroups which is of interest
in geometric control theory since the problem of reachability
and controllability of systems on Lie groups and homogeneous



spaces translates into the problem of deciding which semigroup is
generated by exp(M) for some subset M of L(G). Control theorists
realised that they could assume M to be a wedge and also came
across property (*)(cf.[Hir83],[JK81],([JS72]). They also observed
that the semigroup generated by a set M (and hereby we mean the
semigroup generated by exp(M)) contains interior points if and only
if M generates L(S) as a Lie algebra. Since the existence of
interior points 1is of eminent importance, this gives a hint
which classes of semigroups, other than ray-semigroups, are to be
considered for our purpose. For, if one looks for instance at an
open quadrant in R?, then this 1is a ray-semigroup whose
tangent wedge 1is the corresponding closed quadrant. Thus only
the closure of this semigroup can be recovered from its
tangent wedge. In [HL83a] this kind of pathology is excluded by
only c¢onsidering semigroups which are generated by L(S). Such
semigroups they call analytic . By what was said above analytic
semigroups contain interior points when considered in G(S) and can
be fully recovered from their tangent wedges. Some nice results
have been proven in [HL83a] for analytic semigroups, but one has
to be aware of the fact that the closure of an analytic semigroup
is not always analytic, even if the closure is taken only in
G(S) (cf.[HL83a]).

This 1is not a very satisfactory situation, since our defintion
of the tangent wedge depends on the closure and we don't want to
fall out of our class of semigroups under consideration already
in the most basic definitions. Moreover, for technical reasons it
is often convenient to consider closures so that we would very
soon have to leave our proper domain of interest. Thus we enlarge
the class of semigroups under consideration as follows:
A preanalytic subsemigroup S of a Lie group G 1is called
infinitesimally generated if exp(L(S)) generates G(S) as a group,

if S contains exp(L(S)) and if S is contained in the closure of the
semigroup generated by L(S) where the closure is taken in G(S).
A subsemigroup is called strictly infinitesimally generated if it

is analytic in the sense of Hofmann and Lawson. The concepts of
ray-semigroups, analytic semigroups and infinitesimally generated

semigroups are very close - a statement we shall make precise 1in
this article.

Let us pause here to draw a short resumé of what has been said up
Fo now: The program is to set up a Lie theory of semigroups
including the possibility to translate analytic problems into
algebraic and geometric problems, solve them and translate the
solutions back to solutions of the original problem. It is by no
means obvious what the basic objects of our study should be and
§11 tpe defin?tions one has come up with until now are subject to
1mmed1§te criticism drawn from the inability of the concepts to
deal with gertain natural examples. Thus one has to make a choice
and for this article it will be, that object of our study is the
class of infinitesimally generated semigroups.



Section 3: Groups associated with infinitesimally generated
semigroups

After one has decided which class of semigroups one wants to study
and has made the basic definitions, it is natural to study the
groups associated with these semigroups. There are two groups
which are naturally associated with any subsemigroup S of a group
G. On the one hand there is the group G(S) generated by S, and on
the other hand there is the biggest group S nS-! contained in S.
As for the infinitesimally generated subsemigroups of a Lie group
the group G(S) poses no particular problems since it is build into
the definition of infinitesimal generation. Thus, it turns out
that G(S) is the analytic subgroup of G corresponding to the Lie
algebra generated by L(S) in L(G). It is much harder to get hold
of H(S) = S~ S-!. Hofmann and Lawson showed in [HL83a] that, for
analytic semigroups H(S) is the analytic subgroup of G corresponding
to the Lie algebra L(S)n -L(S) in L(G). Moreover they show that H(S)
is closed. This last fact is an almost immediate consequence of the
closure in the definition of the tangent wedge and hence again
gives rise to criticism of that definition. It turns out the the
same results are true for infinitesimally generated semigroups, but
they are considerably harder to prove. The key result that has to
be added to the techniques of local sections from [HL83a] is the
fact that for infinitesimally generated semigroups we <can find
arbitrarily small neighborhoods U of H(S) in S such that S\U is a
onesided semigroup ideal in S, i.e. (S)(S\U)c S\U or (S\U)(S)c
(S\U) depending on whether we want to talk about left or right
ideals. This result turns out to have several nice and useful
applications in the theory of infinitesimally generated
semigroups.

Section 4: Functorial Properties

There 1is not too much that can be said at this point about
functorial properties of infinitesimally generated semigroups, but
there are a few remarks in place concerning preimages and
semidirect products of such semigroups. These remarks will be
useful in study of examples.

Section 5: Examples

It 1is obvious that in order to develop a new theory one needs to
have a good knowledge of examples in order to develop a good
intuition and not to be trapped in too bold conjectures. We start
out with examples which are very easy from the point of view of
Lie groups and Lie algebras, but which show already that it is by
no means sufficient to take a wedge W satisfying the equation (x)



above and consider the semigroup S generated by W in order to get
an infinitesimally generated semigroup with tangent wedge W. This
strongly contrasts the situation of local semigroups (cf.[HH86b]}.
In fact it turns out very quickly that there are two different
reasons why a Lie wedge ,i.e. a wedge satisfying (*), cannot be
obtained as the tangent wedge of a preanalytic, and then of an
infinitesimally generated, semigroup. The first is of topological
nature, as exemplified in a cylinder contrasting R2.

N
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One _can avoid this kind of obstruction for instance by only
considering simply connected Lie groups, but there remains a
second type of obstruction which is of algebraic nature and occurs
for the first time in the Heisenberg group (cf.[HL81], [HHL85]) :
Here any wedge containing a central point in its interior
generates the whole Heisenberg group as a semigroup. This is all
the more surprising since there are local semigroups up to a
certain size having such a wedge as g tangent wedge. These
local semigroups may be viewed as tilting over when they are made
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Section 6: Global Lie wedges

It has been stressed above that we need to be able translate
properties from the global to the local situation and vice versa.
Thus, after having established the fact that tangent wedges of
preanalytic semigroups are Lie wedges, the first question in view
of the examples will be: Which Lie wedges are tangent wedges of
infinitesimally generated semigroups? This question is far from
being solved in general and to simplify matters one may at first
restrict oneself to the situation of simply connected Lie groups.
We «c¢all a Lie wedge global if it is the tangent wedge of an
infinitesimally generated semigroup in a simply connected Lie
group. Again there are some minor technical difficulties depending
on whether the wedge generates the Lie algebra or not.

The main concepts used to deal with the question of globality in
this section are those of left invariant wedge fields .
admissible curves and positive functions. All these concepts have

been used before in specialized contexts (cf.[Vigo0], [0182a,b],
[HH86Db]), and we expect them to play a very important role in the
general theory to be built. The basic idea behind all of this is to
associate in a differentiable way to each point of a homogeneous
space G/H a wedge in the corresponding tangent space and call
Piecewise differentiable curve admissible if its derivative at each
point where it exists sits in the right wedge:

A positive function is then a C!- function from G/H into the reals
such that the differential at each point is positive on the wedge
at this point (we draw the kernel of the differential):
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Given this machinery one tries to construct semigroups by
considering end points of admissible curves in G/H and take their
inverse image in G. At this point one can see why one has to
undergo the trouble of dealing with homogeneous spaces: this is
needed to construct in a "controlled fashion" semigroups with
nontrivial subgroups. It should be noted here that the possibility
of constructing semigroups in this way is tied up very «closely
with the existence of positive functions. 1In order to get such
functions we wuse the well known ordertheoretical concept of
causality and the close relation between order preserving and
positive functions (cf.[0182b]).What comes out of all of this is
the fact that once one has a global Lie wedge W every Lie wedge
W' which is properly surrounded by W, i.e. W'\(W'A -W') ¢ intw
(cf.[HL83a]), is again global provided the analytic subgroup H'
corresponding to W'n -W' is closed (this last requirement has to be
expected after the results of section 3; cf.[Hi86a] for a special
case). The condition that W has to surround W' can not be dropped
but it is possible to derive similar results from slightly different
situations ([Hi86c]).

The results described above suggest to study subsemigroups which
have an as big as possible tangent wedge. The biggest possible
wedge which 1is not all of the Lie algebra is halfspace. If a
halfspace is a Lie wedge its bounding hyperplane is a Lie algebra.
This 1is a very special situation and the analysis of 0ld results
(cf.[Ho65]) allow us to show that any halfspace Lie wedge 1is
global. Using some general reasoning on global wedges and results

eéxact definitions), which are of dimension less or equal to three,
are global. Resu1t§ of this type are important on the one hand

role even in proofs (cf.[HHBSa,d],[HHLBS]) and on the other hand
§ince they provide further examples which may give useful insights
1N general case. Along these lines we use the methods developed so
far to show that any Lorentzian cone which is a semialgebra is

?lobﬁl (cf.[Hi86c] for an ordertheoretical interpretation of this
act).

Tpere is another situation where one obtains globality results
with relative ease. If W is a wedge in an associative algebra A
such that WWcW then w, considered as a wedge in the Lie algebra
La coming from a is global. This observation, due to Hofmann and
Lawson, has not really been exploited Yet, Dbut it should play an

iﬁpg;tgnt role in the future, especially when representations are
studied.



Section 7: Maximal semigroups in Lie groups

It has been mentioned that one is lead to study semigroups with as
big as possible tangent wedge. Semigroups whose tangent wedge is a
halfspace <c¢an be characterized by the property that their
topological boundary is a subgroup distinct from the semigroup
itself (cf.([Po77),([Do76]). From this characterization and some
results related to the ones in [Ho65] mentioned above, allow a
classification of such semigroups up to a maximal normal subgroup
contained in the semigroup (cf.[HM68], [P0T77]).

It is by no means true that all maximal proper subsemigroups have
halfspaces as tangent wedges even if they contain interior points.
The first case where this fails to be true is S1(2,R) as was
remarked in [HH85b]. Nevertheless it is true for large classes of
Lie groups. Using a general machinery for maximal semigroups in
Lie groups as developed by J.D.Lawson it was shown in [HHL85] that
the closure of a maximal open pProper subsemigroup of a nilpotent
Lie group is always strictly infinitesimally generated with a
halfspace as tangent wedge. Moreover this tangent wedge contains
the whole commutator subalgebra. Using some methods developed 1in
[BJKS82] we generalize this result to groups which are semidirect
products of a compact group with a nilpotent normal subgroup and
complex solvable groups. Finally we show how this result can be
used to solve problems from geometric control theory as described
above (cf.[Hi86b]). We note that Lawson has recently been able to
generalize our result to semidirect products of compact groups
with a solvable normal subgroup (without the statement about the
commutator algebra which is wrong in this case).

Section 8: Divisibility and local divisibility

A semigroup S 1is called divisible if for each s ¢ S and n ¢ N
there is a g € S such that g® = s. We know from the local theory
that for a 1local semigroup (S,U) in a Lie group the analogous
statement holds if and only if the tangent wedge 1is a semialgebra
(cf.[HL83a]). The example of S1(2,R) shows that not every
semigroup generated by a semialgebra is divisible. On the other
hand no example of a divisible subsemigroup of a Lie group whose
tangent wedge is not a semialgebra is known. Hofmann and Lawson
have shown in [HL83b] that such an example cannot exist if the
semigroup is not allowed to contain a non trivial subgroup . Using
the techniques developed in this article we give a proof of this
fact which is on the one hand a little shorter than the original
proof and on the other hand will hopefully give rise to a proof in
the general situation.



Chapter IV: SUBSEMIGROUPS OF LIE GROUPS

In contrast to the basic Lie theory for loecal subsemigroups of Lie groups
which was described in Chapter III the Lie theory of global subsemigroups
of Lie groups still resists to be put into a satisfactory systematic form.
The purpose of this chapter is to give an account of results and examples
known, to show some connections and to suggest a path to follow in further

research.

We restrict our interest to finite dimensional Lie groups even though some
of the concepts introduced below make perfect sense also for infinite di-
mensional Lie groups. As far as the subsemigroups are concerned we will
concentrate on certain classes which will allow us to build a Lie theory
in the sense that they admit a reasonably big tangent object which reflects
important properties of the subsemigroups. These classes are introduced in

the first two sections.

Section I: Preanalytic semigroups and their tangent objects

Recall that a subgroup A of a Lie group G 1is called analytic if and
only if there is a connected Lie group AL and an injective morphism

f: AL + G of Lie groups with A = f(AL). We write L(A) = L(f)(L(AL))
where L is the functor which associates with a Lie group its Lie algebra.
We will usually identify the underlying groups of AL and A wvia f and
thus write AL for "A with its Lie group topology"; likewise we identi-
fy L(AL) and L(A) via L(f): in this case the exponential function

eprL: E(AL) > AL is just the restriction of the exponential function

exp.: L(G) » G to L(AL). The assignment A » L(A) 1is a bijection from
the set of all analytic subgroups A of G onto the set of all Lie sub-
algebras L(A) of L(G). The unavoidable difficulty with this part of
Lie theory is that not all analytic subgroups are closed. The simplest
example is the subgroup A = {(x, xv2) +-22: x ¢R} in the 2-torus

G = R?/Zz. For f: A, > G we can take the function

x » (x, xv2) + 22: R +» G, so that the Lie group topology of A makes A
isomorphic to R; but A 1is dense in G. One calls A "a dense winding

subgroup of the torus” or in short a "dense wind".



If this complication arises already on the level of group theory, we cer-
tainly will have to take precautions in the case of any Lie theory for
subsemigroups of Lie groups that this complication is adequately covered.
A fundamental theoretical tool is the following nontrivial fact on analytic

subgroupsin (finite dimensional) Lie groups due to Yamabe (cf. [Ya 501).

THEOREM IV.1.1: A subgroup of a (finite dimensional) Lie group G iﬁ

analytic if and only if it is arcwise conhected,

This brings us to the following definition:

DEFINITION IV.1.2: A subsemigroup S of a Lie group G 1is called pre-
analytic if and only if the subgroup <S>Gr generhied by § in G is
arcwise connected. We will write G(S) for this group with its Lie group

topology. In particular L(G(S)) is a well-defined Lie subalgebra of
L(G).

We not that the closure <S>£r of <S>Gr is a closed connected Lie sub-
group of G, and as far as § ig concerned, for most purposes we can
restrict our attention to the case that this group is g, We observe
that, in this case, L(G(5)) is an ideal in L(G) and @(S) is normal

in G, 1in fact @(S) contains the commutator group of G (cf. [Bou 72]).

In many questions we can assume that we are working in G(S); if we do

this, however, we should recall that g refinement of the topology may have

intervened.

Theoren1.1.1 allows us to make the following Simple remark.

REMARK IV.1.3: (i) Every arcwise connected semigroup containing the
——*->F Connected g

identity in a Lie group is Preanalytic,

(11) Every semigroup ig'gyLie group ig_greanalztic if it has non-empty

interior.
Io-krior

. : 2
EXAMPLE 1V.1.4: (i) Let G =R and § = {(X,Y) €G: X=y=0 or X,y > 0},

then S is a Preanalytic semigroup

.. 2,2
(ii) Let G =R /Z” be the torus and § = {(x,y) + ZZ(G: y=x/2, x 20},

b
then S is a Preanalytic semigroup in the torus such that G(S) 1is iso-
morphic to R.

(iii) Let ¢ and S be as in (ii) and set

- 2
T={(x,y) +2°¢¢: y=x/3, X20}, then T is another dense winding pre-



analytic one parameter subsemigroup of the torus. Then SnT is a dense
subsemigroup of the torus which is not preanalytic. In particular it does
not determine a unique smallest preanalytic subsemigroup containing it,
since the two one-parameter subsemigroups S and T intersect precisely

in it.

We now proceed to associate with any preanalytic subsemigroup S of a

Lie group G a tangent object. Note that for any BCH-neighborhood B in
L(G) on which exp: L(G) G 1is injective the set SB = exp_l(S n exp B) 1is
a local semigroup with respect to B. Since the tangent object of the
semigroup S should be locally determined we want it to be determined by

the local semigroup § Moreover if S happens to be an analytic sub-

B’
group of G the tangent object should be just the Lie algebra of S. This

leads to the following definition:

DEFINITION IV.1.5: Let S be a preanalytic subsemigroup of a Lie group
G. We consider the exponential function expG(S): L(G(S)) » G(S) and
call E(exp;zs)(s)) the tangent wedge of S (cf. 1.3.1). It will be de-
noted by L(S).

Discuss how Definition 1.5 would change if one would replace expG(S) by

exp.: L(G) > G using the example of the "dense wind".

REMARK 1V.1.6: Definition IV.1.5 implies that for any BCH-neighborhood B

in L(G(S)) e have L(S) = Llexpg,(S n expy gy B)) so that L(S) is

. . -1 .
a Lie wedge by chapter III since expG(S)(S n €XPG (s5) B) is a
local semigroup. [l

Next we aim for an alternative description of L(S) analogous to Propo-

sition 3.2

PROPOSITION IV.1.7: Let S be a preanalytic subsemigroup S of a Lie

group G and x € L(G), then the following statements are equivalent:

(1) x e L(S)
+ .
(2) expR x c CIG(S)S where ClG(S)S denotes the closure of S in

G(S).

Proof: Verbatim the proof of II1.3.2 with B = L(G(S)). [



Again we see that it is important to note that in condition 1.7(2)
we use the closure of S in G(S) and not in G; the latter may be

bigger (think of the dense wind).

+
Proposition 1.7  suggests to study {x ¢ L(G): exp R x ¢ S} as the,
possibly more appropriate, tangent object for S. But it is not even

clear whether this is a Lie wedge.

Section 2: Ray semigroups and infinitesimally generated semigroups

It has been pointed out that a Lie theory for subsemigroups of Lie groups
should be dealing with semigroups whose properties are determined to some
extent by their behaviour in a neighborhood of the identity. One class

of such subsemigroups are those which are generated by one-parameter-semi-

groups.

DEFINITION IV.2.1: A subsemigroup S of a Lie group G is called a ray
semigroup if S 1is generated (algebraically) by a family of one-parameter-

semigroups, i.e. if there is a subset K ¢ L(G) such that § = <exp R&K>-

Note that ray semigroups are arcconnected, hence preanalytic. Therefore
we can talk about the tangent wedge of a ray semigroup and see that Propo~
sition 1.7 implies that the closure of a ray semigroup S (in G(5))

is completely determined by its tangent wedge.

Show that the semigroups from Examples 1.4(i) and (ii) are ray semi-

groups and determine their tangent wedge.

Ray semigroups have an important feature which makes them handy to work
with: They have a big interior. There are several ways to prove this. One
method comes from differential geametry and is essentially due to E.

Cartan. We use a category argument as it is given in [JS 72].

THEOREM IV.2.2: Llet G be a Lie group and S be a ray semigroup in G
such that G = G(S). Then we have -

(i) (ints) =%

(ii) (int S) = int S.




Proof: We split the proof of Theorem 2.2 into a few lemmas which are

of separate interest.

LEMMA 1V.2.3: Let S be a ray semigroup in G such that G(S) = G and

¢ be a family of one-parameter semigroup generating S. Then some finite

subset T c I generates G as a group.

Proof: Let the dimension of G be n. Let A be any non-empty finite
subset of I. Let H be the subgroup generated by 4, then H 1is a
connected analytic subgroup of G determined by a Lie subalgebra L(H)

of L(G). We write n(A) = dim L(H). Thus the function A » n(a) is de-
fined on the set of finite subsets of I and takes values in

{1,2,..., dim G}. This function attains its maximum at A, say. Suppose

n{A) < dim G.

Then H 1is proper in G, since dim L(H) < dim L(G). Therefore 4 % I,
otherwise S c H, whence H=G. Now pick oeZI\A such that oCR+) i H.
Let K be the subgroup generated by H u o(R+). Again we have that K

is a connected analytic group and L(H) +Rx c L(K) with o(t) = exp tx
for teR. Thus n(Av{o}) = dim L(K) > dim L(H) = n(a), contradicting
maximality of n(A). [

LEMMA 1IV.2.4: Let S be a ray semigroup in G such that G(S) =G

then for any open neighborhood U of 1 in G we have Un int S % @,

where int S denotes the interior of 8.

Proof: Lemma 2.3 shows that we can find a finite set {xl,...,xk}
in L(G) such that G is generated by the one parameter groups

yj(t) = exp txj for j=1,...,k. This means that

ey = U aapy®

neN

G

k
where T = U yJ. (R). Now the Category Theorem shows that there is an

j=1 n
n, eN such that (rnt) ° has non-empty interior.

kn
Next consider the map F: R © » G defined by

t = (t]’],,,,,tl’k,tz,],.--,tnok) g Y](tl,l) ® tee 'Yk(tl’k) * .. .Yk(tno,k)'

We then know that F is (real) analytic and its image has non-empty

n
interior. Thus by Sard's Theorem there is a t, ¢R © such that the

- n
derivative dF(t ): R © 5 T_ -+ | where T - is the tangent space
o F(t,) )

F(to



to G in F(? ), has full rank. But then the analyticity of kF implies
o.» n - . . n
that the set {t e R ©: dF(t) has full rank} is dense in R ©  and

kn )
hence any neighborhood Bo of zero in R © contains an element

- k
t, € OR*) Mo and a neighborhood of zero Bl such that

- k - . . -
Bl *t, ¢ CR+) "o n Bo and F(tl +Bl) contains a neighborhood of F(tl)
- k

n
in G. But since F(GR+) ®) ¢ S this proves the lemma. O

LEMMA IV.2.5: Llet § be a subsemigroug of a topological group G then

(int S)S c int S, i.e. the interior of § 1is a semigroup ideal of s,

Proof: Let ge int S and U be a neighborhood of g which is contained
in S, then for any seS we have gs ¢ Us ¢ S. But since G 1is a

topological group Us is a neighborhood of 8s so that gs ¢ int S. []

Now we are ready to prove Theorem 2.2 » Note first that for seS and

a neighborhood U of the identity 1 in G we obtain by Lemma 2.4

that U n int S+ ¢ and hence by Lemma 2.5 that sU n int S % @.
Therefore s e (int S), i.e. § c (int S) . But then also S ¢ (int S)-
so that Theorem 2.2(i) is proved. In order to show int S = int S con-
sider seUeS where U is open. Then there exists an open set V con-

taining 1 such that sV—] cU. Let W=y g int S then sw—] cUcS

(and W 4 @ by 2.2() ); since sw-] is open, there exist teS and

-1
weW such that sw = t. But then g = tw € tW c int S which proves

the claim. O

We have seen above that the Example 1.4(j) 1s a ray semigroup.

Note further that in this example exp(L(S))
k f .
now from 1.7 that expc(s)(L(S)) < ¢l

is not contained in S. We

G(S)S’ but the closure of a ray

DEFINITION IV.2.6: A subsemigroup S of a Lie gToup G is called infi-
nitestmally gemerated if
(i) S is Preanalytic,
(1i) exp (L(S)) generates G(S)

(iii) exp (L(S)) c Sc el

as a group.

G(s) <eXP L(S)> where <exp L(S)> again de-
notes the semigroup generated by exp L(S).



The semigroup § is called strictly infinitesimally generated if
S = <exp L(S)>.

Condition 2.6(i1) has been introduced in order to assure that the
group generated by S can be recovered from the Lie algebra generated
by L(S). How this is done will be shown in the next section. We do not

know whether condition 2.6(ii) is a consequence of 2.6(i) and (iii).

REMARK IV.2.7: Every infinitesimally generated subsemigroup S of a Lie

group G contains a unique smallest strictly infinitesimally generated

subsemigroup with the same Lie wedge, namely <exp L(S)>. Every strictly

infinitesimally generated semigroup is a ray semigroup.

The relation between ray semigroups and infinitesimally generated semi-

groups is described in the following

THEOREM IV.2.8: Let T be an arbitrary subsemigroup in a Lie group G

and let TR be the ray-semigroup generated by all one-parameter subsemi-

groups of T. Then there exists a unique strictly infinitesimally gene-

rated subsemigroup S = <exp L(TR)> such that the following conditions

are satisfied:

(i) TpeScTp= CIG(S)TR €Ty = clc(TR\
(ii)  L(Tg) = L(S) = L(Tf{)
(iii) G(Tp) = G(S)

*

(iv) intG(S) TR = intG(s)S = intG(S) TR.

Proof: Note first that TR is contained in S by the very definition
of S. On the other hand exp L(TR) is contained in G(TR) by the de-
finition of L(TR) so that G(TR) = G(S). But now Proposition 1.7

* *
G(S)TR = TR and hence also S ¢ TR. Moreover

shows that exp L(TR) ccl
this proposition shows that ‘E(TR) =.£(T;) so that we can conclude

E(TR) = L(S) = E(T;). Thus it only remains to show (iv). But this

follows directly from Theorem 2.2(ii) since Ty is a ray semigroup. [J
If we choose T in Theorez 2.8 to be closed we can say even more:

PROPOSITION 1V.2.9: Let T be a closed subsemigroup in a Lie group G

which contains the identity. Then the semigroup Tp generated by all

one-parameter semigroups in T is strictly infinitesimally generated.




Proof: Since T 1is closed we have

CIG(TR)TR c (G(TR) nT) n G(TR) = TrwG(TR). Therefore, if a one-parameter
subsemigroup lies entirely in cl Tg» then it lies in T and hence
G(TR) R

in Tz by the definition of TR' Thus Proposition 1.7 implies that
exp E(TR) © Tz But this just means that TR is generated by exp L(TR)

so that TR is strictly infinitesimally generated. []

If we start out with an infinitesimally generated semigroup we obtain the

same result:

REMARK 1V.2.10: I T isa infinitesimally generated subsemigroup in a

Lie group G, then the semigroup TR generated by all one-parameter semi-

groups in T is equal to the semigroup generated by exp(L(T)).

Proof: Let S be the semigroup <exp(£(TR))> generated by L(TR). Since
exp(E(T)) €T we have § = <exp EﬂTR)> € <exp L(T)> c Tr € S by Theorem
2.8.

Section 3: Groups associated with infinitesimally geénerated semigroups

The study of groups associated with g given semigroup is an important fea-

ture in semigroup theory. In Particular if g is a subsemigroup of a

group G there are two groups which are in a natural way associated with

S. There is the subgroup G(s) generated by S on the ope hand and the

. -1 .
group of units H(S) = Sns Contained in § op the other hand. Since

we are dealing with infinitesimally generated semigroups here, we know a

priori that G(S) 1is an analytic subgroup. Therefore it suffices to know

L(G(S)) 1in order to identify G(S):

PROPOSITION IV.3.1: Let

& Lie group 6, then L(c(s)) - <<L(8)>> where <<L(S)>>

' denotes the
L
le algebra generated Ez L(s).

—_—



to show L(G(S)) ¢ <<L(S)>>. Let H be the analytic subgroup of ¢
corresponding to <<L(S)>>, then exp L(S) ¢ H and hence by Condition
2.6(ii) G = G(S) ¢ H. 1In other words L(G(S)) ¢ <<L(S)r»r. [

We see from Proposition 3.1  that the definitiom of infinitesimally
generated semigroups S yields almost immediately a characterization of
the group ‘generated by S in terms of its tangent wedge L(S). The ana-
logous problem for the group of units H(S) = SnS_l contained in S is
much harder. This is due to the freedom we allowed for S in Definition
2.6(iii) . We start with the simplest case where § is generated as a

semigroup by exp(L(S)), 1i.e. the case where no closures come into play.

PROPOSITION IV.3.2: Let §S be a strictly infinitesimally generated sub-

semigroup of a Lie group G. Then its group of units H(S) = SnS_l is

—

an analytic subgroup of G and L(H(S8)) = L(S) n -L(S). Moreover, H(S)

is closed iﬁ G(S)!

Proof: As in 2.8 associate with H(S) the ray semigroup H(S)R gene-
rated by all one-parameter semigroups contained in H(S). Then H(S)R is
an analytic group, so we can speak of E(H(S)R). Since H(S)R < H(S) c §
we have L(H(S)p) € L(S). Similarly L(H(S)p) € L(S™') = -L(S). Conver-
sely, suppose X ¢ L(S) n -L(S). Then tx ¢ L(S) for all teR. Thus
exp(tx) € S for all t, which implies exp(tx) e H(S)R for all t.
Hence x ¢ £(H(S)R) and thus ‘E(H(S)R) = E(S) n jk(s).

Since exp(E(H(S)R)) c exp L(S) ¢ S, we have that the subgroup generated
by exp(E(H(S)R)) is contained in S (note that the subgroup and the

subsemigroup generated by exp(L(H(S)R)) coincide). Hence eXp(L(H(S)R))
is contained in H(S)R. To finish the proof we show that H(S) 1is gene-

rated by exp(L(H(S)p)).

Let g ¢ H(S), then g = exp(xl)-....exp(xn) for some x],...,xn € E(S)
since H(S) ¢ S and S is strictly infinitesimally generated. Here we

need to interupt the proof of 3.2 in order to state a simple lemma:

LEMMA 1V.3.3: Let S be a subsemigroup of a topological group G and
H(S) = S;ws_] be the group of units in S then (S\H(S)) is a semi-

group ideal in S.

Proof: Let se¢S\H(S) and geS. If sg € H(S) then g“lsm1 € S,

hence s ! = gg“ls—l € S so that s ¢ H(S) contradicting our assumptions.
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Since a similar argument works for gs € H(S) the proof is finished, 0

Proof of 3.2 continued. We conclude from Lemma 3.3 that
eXp(xl)-...-exp(xn) € H(S). Moreover, since x],...,xn € L(S) we have
eXp(txk) € H(S) for all 0<t <1 and k = l,...,n again by Lemma
IV.3.3 so that finally exp(txk) € H(S) for all teR and k = l,...5m
and thus g ¢ H(S)R. But this shows that H(S)R = H(S) and H(S) is
analytic with L(H(S)) = L(S) n -L(S).

To prove the last statement note that Proposition 1.7 implies that
CIG(S)H(S) is a closed connected Lie subgroup of G(S) with
E(CIG(S)H(S)) c E(CIG(S)S) n 7£(CIG(S)S) = L(8) n -L(S) = L(H(S)) ¢
< E(CIG(S)H(S)). Thus H(S) = ch(S)H(S). 0

At this point we are ready to improve Proposition 8.2 insofar as we
may replace the hypothesis "strictly infinitesimally generated" by "infi-
nitesimally generated". The Prize we have to pay here for this is that we

no longer can guarantee the connectedness of the group of units.

PROPOSITION 1V.3.4: Let S be an infinitesimally generated subsemigroup
— — —’hlresimally

of a Lie group G. Then its group of units H(S) = SnS-I is a Lie sub-

group of G(S) with L(H(S)) = L(S) n -L(S).

Proof: We may assume without loss of generality that @ = G(S). Let SR
be the semigroup generated by all one parameter semigroups in S, then

SR 1s strictly infinitesimally generated by Remark 2.10 . Thus Propo-
_ —l 1

. . R) =S n SR 1s a

connected Lie subgroup of g with L(H(SR)) =L(S) n -L(S) since

G = G(SR) and LﬁSR) = L(S). But H(S) is a closed subgroup of G,

hence 3 Lie subgroup and &(H(g)) c L(S) n =L(S). Thus

L(H(S)) = L(s) -L(S) whence H(S)

H(SR) which at the same time is the j

sition 3.2 applies to Sg and we know that H(S

dentity component of H(S). Thus

H(S) contains any component of H(S) it meets. This proves the claim. U

Lemma 3.3 which is strong enough to comply with the discrepancy between

the semigroup generated by exp L(S)

are looking for should replace

and its closure. Thus the lemma we
H(S) by a neighborhood of H(S) . in S.

The following lemma Provides us with a nice way to obtain small neighbor-

hoods of H(S) in g,
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LEMMA 1IV.3.5: Let S be an infinitesimally generated subsemigroup of a

Lie group G, and assume that G(S) = G. Let F be a vectorsubspace of

L(G) complementary to E = L(S) n jE(S). Then we can find an open neigh-

borhood C of O imn L(G) with the following properties:

(1) The map (h,u) > hu: H(S) XUF - H(S)UF = U, where UF = exp(C nF),
e
is an H(S)-equivalent homeomorphism onto an open neighborhood of
H(S).

(ii) SnvU = H(S)(S nUF).

Proof: Let B be a Campbell-Hausdorff-neighborhood of 0 1in k(G). If

L(S) is a halfspace then exp ;](exp BnS) ¢ L(S) since it is then a

semialgebra by II1.2.7 and we set C,=B and W= L(s). If L(S) 1is not
a halfspace we find a wedge W surrounding L(S), i.e. satisfying

L(S) \ (L(S) n-L(S)) < int W and a neighborhood Cl of 0 in B with
exp El(exp C] nS) ¢ W by chap.lll since (SnB,B) 1is a local semigroup.

1
There is no loss of generality in assuming that Cl is of the form CE *CF

with an open neighborhood Cg of © in E and an open neighborhood Cr
of 0 in F; indeed the differential of the function

(x,5) » x*xy: (EnC) x(FnC) » L(G) at zero is the identity so that the
function is a local diffeomorphism at O, Moreover we may assume that

(CF *CF) nCE = {0}, making CF smaller if necessary.

F = H(S) exp CF and

that H(S) exp ¢, is an open neighborhood of H(S). Also note that

We first note that H(S) exp C] = H(S) exp CE exp C

CF = (CE *CF) nNF = Cl nF. Since H(S) 1is closed by Proposition 3.4

we can find a neighborhood C of O 1in E(G) such that

H(S) n exp C c exp CE' Thus, making C smzller if necessary we may assume
that C<:C] is a ball with H(S) n (exp C)" ¢ CE' This means that the

map (h,u) » hu: H(S) x exp CF + H(S) exp CF = H(S) exp C 1s a homeomorphism.
Iglfact hlgl = h2u2 implies , ) )
hl h2 = uzu]l e H(S) n (exp C)" n (exp CF) c exp CE n (exp CF) = {0}.
Now let seSnU where U = H(S) exp(CnF). Then s=hu with some

h e H(S) and ueU_ = exp(CnF), hence u = h_ls e SnU and so

F
SnU < H(S)(S nUF); the reverse contalnment is trivial. g

We can now prove the desired analogue of Lemma 3.3 .

LEMMA 1IV.3.6: Let S be an infinitesimally generated subsemigroup of a

Lie group G and assume that G(S) = G. Then there exist arbitrarily small
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neighborhoods ¢ of 1 in G such that $\ (H(S)(0nS)) is a right

semigroup ideal in S.

Proof: Let C(, CE’ CF’ U, UF and W be as in Lemma 3.5 and define
amap p.: U > CF by pF(g) = exp_lu, where g=hu with h ¢ H(S) and
u € U,. Note that we may define a norm | | on F such that Ixl = w(x)
with we W for all x € FnW. We may assume that CF = {xeF: ||x] < 1}.
Consider the ball C% = {xeF: x| < %} and set 0 = exp Ce *C%' Suppose
now that we can find $) € S\H(S)(0'nS) and Sy €5 be such that

18, € H(S)(OnS).

Remark 2.10 and Theorem 2.2 imply that S has dense interior so
that we may assume that s, € int S. But then S, € <exp L(S)> by Theoren
2.8 so that we can find a continuous Piecewise differentiable curve
y: [0,1] >+ G with y(0) = s and vy(l) = 518, satisfying
U . . . _
y'(t) e dky(t)(ﬂ) L(S) where Ag. G > G is defined by Ag(g') - gg' for

g:8'€¢ G and 1 is the identity in G. Moreover we may assume that

5, € H(S)UF replacing $) by y(t) for O<t<1 jif necessary. Note
ehat then 0 < Hp (y(I <5 5 Ip (y(O)I < 1. since

Y([0,1]) ¢ int SnU ¢ H(S)(SIWUF) c H(S)(exp(CFr1W)) by Lemma 3.5 we
know that the map ¢: ¢ » lpF(Y(t))” is piecewise differentiable so there
exists a t, € 10,10 such that ¢'(to) < 0. We may assume that

y(to) € UF shifting S, by an appropriate h € H(S).

We also may assume that under the identification CE-aCF > exp(CE *CF)
the wedges F n dAg(H)E(S) < W for all geg. Thus by [HH86b 4.2]
We obtain that ¢(t) jig nondecreasing in a neighborhood of t . This
1s a contradiction to ¢'(to) < 0 and we have proved our claim. [J
Finally we are in the Position to shoyw that the Broup of units of an infi-

nitesimally generated semigroup is connected,

THEOREM IV.3.7: Let g be an infinitesimally generated subsemigroup of
== - itesimally ot

a Lie group G. Then its group of units H(S) = Sranl is an analytic

Subgroup of G and L(H(s)) = L(S) n -L(s). Moreover H(S) 1is closed
in G(s). o

Proof: We may assume that G = G(s), 1¢ only remains to show that H(S)

is connected by Proposition 34

- Thus suppose that h ¢ H(S) \ H(S)
where H(S)o .

is the connected component of H(S). By Lemmas 3.5 and

3.6 w i i i
€ may find a neighborhood of T in G such that H(S) O
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is the connected component of H(S)?’ and S\H(S)(O'nS) 1is a right
semigroup ideal of S. Now let s,s' € int S n H(S)(OnS) be so close
to h and h’! respectively that ss' € O n int S. This is possible
since S has dense interior.

But by Theorem 2.8 there exist X,,...,x_ in L(S) such that
1 n -

- - ' = L
] T eXp Xy and s exp Xy .

y(t) = exp X; ¢ ... exp (t-m—l)xm for t ¢ [m-1,m] then we find a

S = exp X .t eXp X . If we set

to ¢ [0,n] such that y(to) € S\H(S)(OUNnS) since s and ss belong
to different connected component of H(S)(@nS). Thus ss' 1is of the
form g8, with gy €8 \VH(S)(OnS) and g, € S, hence cannot be contained

in @nS. This contradiction proves the claim. [

Section 4: Functorial properties

This section is devoted to the study of the behaviour of preanalytic semi-
groups and their tangent objects with respect to the simplest functorial
constructions like taking images and preimages under Lie-homomorphisms or

forming products.

PROPOSITION IV.4.1: Let ¢: G+ H be a morphism of Lie groups and

L(¢): E(G) > E(H) be the associated morphism of Lie algebras.

(1) If s ii.i subsemigroup of G with G(S) = G then ¢(S) ii pre-
analytic and L(¢)(L(S)) < L(¢(S)).
(ii) If T30 1is a subsemigroup of H with G(T) = H and ¢ 1is sur-

jective then G(¢_](T)) = G and £ﬁ¢_l(T)) = £(¢)—](£(T)).

Proof: (i) Note first that the group generated by ¢(S) 1is the image
of ¢, hence an analytic group. Moreover, since L(¢(S)) 1is defined in

terms of G(¢(S)) we may assume that ¢ 1is a quotient map. Finally we

may assume that S is closed since ¢(S) ¢ ¢(S5). Therefore

L($) (L(S)) < L(¢(8)) by Proposition 1.7 . In fact exp R'x ¢ 5 im-
plies epo'R+ L(¢)(x) = ¢ expGIR+x c ¢(S) so that L(¢)(x) ¢ L(¢(S)).
(ii) Choose any geG, then we find t],...,tn € T such that

€
tll tee.oct oo ¢(g) where € = +]. Since ¢ 1is surjective we can
fé?d gl’°'é’gﬂ_f G such that ¢(gk) =t. Then

-1 -
g .o °gnn g € ker ¢ ¢ ¢ (T) hence g e <¢ l(T)>. Note that
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$(0(T)) = T so that the inclusion L6T M) < L)L) follows
from (i). Conversely if x « £(¢)-](£(T)) then eXpy R+ L(¢)(x) € T so
that exp, R x [ ¢-](T). But H is metrizable so that [Bou 58] (cf. also
I1.3.9) implies that ¢-1(T) c ¢-](T) since any Cauchy sequence in T can
g6

we find a sequence {hn} in T converging to ¢(s) and hence a sequence

be lifted to a Cauchy sequence in ¢_1(T). In fact, for any s ¢ ¢

{sn} in G with s € ¢>—](hn) g¢>_l(T) such that S, converges to s.

Therefore s ¢ ¢-1(T) and eXp. R'x [S ¢-](T) c ¢—](T). But this just
means X ¢ £(¢—](T)) by Proposition 1.7 . 0

Note that Proposition 4.1(i) is sharp in a sense since it is easy to
construct examples of semigroups whose quotient semigroups have much bigger

tangent wedges than the quotient wedge of the original tangent wedge:

EXAMPLE 1V.4.2: Let S be a Lorentzian cone in R3 and N be the dis-
Crete subgroup generated by any nonzero point on the boundary of §. 1If

3 3 . . . . .
$: R” >R /N is the quotient map then L(¢) =R3 —>R3 1s the identity,

but ¢(S) has a halfspace as tangent wedge (cf. Figure 1),

; and 82 of the Lie groups Gl and G2 we find that

IQSZ = {(SI’SZ) € G, ®G2: s eSl, S, € 82} is an infinitesimally genera-
. . . _

ed Semigroup with L(s] +52) = E(S]) ® E(Sz). We want to present the

- In order to fix notation we
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THEOREM IV.4.3: Let 4 and { be two Lie algebras and let

§: f—* Der n be a morphism of Lie algebras, where Der n is the derjva-

tion algebra of 7. Then the product space an is a Lie algebra

'noé f, called the semidirect sum, with respect to the bracket
[x,y), (x',y")] = (8" -6(y")x + [x,x'], [y,y'])

and there exist Campbell—Hausdorff—neighborhoods Bj, By and B of f,n,

and ‘n,tDGj respectively, such that

(1) vi By x Bj + B given by v(x,y) = (x,0) * (0,y) 1s a diffeomor-

phism with inverse function pu: B » By x Bj, where * 1s the

Campbell-Hausdorff-multiplication on # o j

(11) By x Bf i_si local group with respect to the multiplication

#: BxB > #0 { defined by
6 _—
8(y)

((X:Y)’ (X',Y')) g (X *ﬂ, e
are the Campbell-Hausdorff-multiplications of N and H respecti-
vely.

(iii) The maps v: (BTL X Bi, ff) +> (B,*) and u: (B,x) - (Bn x Bf’#)

are local isomorphisms.

x', y *4 y') where 4 and 4

Proof: 1t is easy to check that mdf is a Lie algebra. It is also
clear that v has a local inverse u since the differential of v at
zero is the identity. Thus it suffices to show that v transports # into

* to prove the theorem. To do this we show first that

(y)

(0,y) * (x,0) = (€2Tx, 0) x (0,y).

ad'ﬁ« 06 é(oa}')

In fact, we have (o,y) * (x,0) * (0,-y) = e (x,0). But

ad = ad
'n,@&j

ad(o,y) (x',y') = (8§(y)x', ad; y (y"))

is given by

so that ead(o,y) = (eé(y)) x (ead” y) and hence

ead(o,y)(x’o) - (ed(y)x’ o).

Now we calculate

v(x,y) *v(x',y") = (%,0) x (0,y) * (x',0) * (0,y') =
(X,O) * (eé(}’)xo
e(S(}’)xv

S

» 0) x(0,y) * (0,y") =

(X*ﬂ’ » 0) * (o, Y*} y')=

X','ij ¥y = v((x,y) ¥ x",y"))

vi(x *y
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and the proof is finished. [J

From this theorem we can now derive the interaction of semidirect pro-
ducts of groups and semidirect sums of Lie algebras as well as a (local)

knowledge of the exponential function of such groups:

THEOREM IV.4.4: Let H and N be Lie groups and o: H - Aut N be a

morphism. Let A: Aut N + Aut L(N) be the natural morphism described by

the commutative diagram

A(¢)

LON) ————— L(N)
exp exp
N - N
Furthermore, EEE, 6: L(H) » Der L(N) ES EEXEB EZ

§ = L(leq) = L) Lﬂa), then we have

= Aa expy y)

(ii)  The cartesian product NxH {s a topological group N xh H with

respect to the multiplication

(n,h)(n",h') = (na(h)(n'), hh')

(iii) N x H if.i.Lie group with Lie algebra L(N) o, L(H) and the
exponential function

®XPNy x g = ©Xp  1is locally defined on a
a — =<
Campbell—Hausdorff-neighborhood B by

exp| . = (expN Xepo) ° U,
where . is the map given in Theorem IV.4.3,

Proof: Note first that we have the following commutative diagram:

L(a) L(})
LB ———— ey 7, o, L(N)

epo D+ eD
o A
H —————— Aut N T Aut L(N)
This proves (1). Statement (i1) is easy to

check. Note that in order to
prove (iii) it suffices to show that

exp is a local diffeomorphism

Satisfying exp ; exp z' = exp z % 5" for z,2' ip a Campbell-Hausdorff-
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neighborhood. But part (i) and Theorem 4.4 show that we may calculate

for small x, x', y and vy

' "y o
(expN X, epoy)(expN X', expy ")

((expy %) a(expy, y) (expy x'), (expH y) (expy y')) =

n

(expy(x) expy(L(a(expy y)) x'), (expy y)(expy y')) =

(expN(x) expy (ed(y)x')

§(y)

» (expy y)(expy y'")) =

]

@mm (x xe xW,eqm(y*f)L

If we now set x = uN(g,n), x' = uN(E',n'), y = uH(E,n) and

y' = uH(g',n') where My and Wy are the map u followed by the re-

spective projection N and H, this calculation shows that

(exp(&,n)) (exp(E',n")) = expy X exp, (M(E,n) Fu(E',n")) =

= expy xexp, (W((&,n) * (£",n"))) = exp((&,n) » (¢',n")). O

Now we are ready to state and prove the desired result on semidirect pro-

ducts of infinitesimally generated semigroups.

THEOREM IV.4.5: Let N and H be Lie groups and a: H » Aut N be a

morphism of Lie groups. Assume that SN and SH are closed infinitesi-

mally generated subsemigroups of N and H respectively such that

a(h)SN c SN for all he SH’ then the set SN ﬂa SH defined as

S, X §
N o "H
ted subsemigroup of N X, H with tangent wvedge E(SN )% SH) = E(SN) + E(SH)'

= {(n,h) ¢ N k% H, n eSN, he:SH} is an infinitesimally genera-

Proof: Note first that SN X, SH is a closed subsemigroup of N X H
since a(SH)SN < SN. Moreover SN.XE SH is preanalytic, since it gene-
rates the group G(SN);AG G(SH) which is analytic, so that L(SN.X% SH)
makes sense. Recall that exp: L(N) ®6 L(H) = N =, H restricted to

L(N) = L(N) o, (o) and L(H) = (o) o, L(H) gives the exponential func-
tions expy: L(N) > N and expy: L(H) > H respectively. Thus

exp(L(SN) o, (0)) c SN X% {IH} c SN'X% SH and

exp( (o) o, E(SH)) c {IN} > SH c SNN‘1 SH’ This shows that E(SN) and
L(Sy) are contained in L(Sy X S,). But L(S X SH) is a wedge and
hence contains EﬂSN) + EﬂSH). Since SN;na SH is closed this also im~
plies that exp(EﬂSN) + k(SH)) c SN %% SH' Note that the infinitesimally

generated semigroups SN and SH generate SN X% SH so that SN‘X% SH
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1s aswell generated by exp(_l_.(SN) + L(SH)). Thus SN >4a SH is infinite-
simally generated and it only remains to show that

E(SNN SH) c _1_,_(SN) + _1_,(SH). In order to do this it suffices to find a
neighborhood B of zero in L(N) ®6 L(H) such that the local semigroup
exp-l(sN X, SH) N B has tangent wedge k(SN) + _I:(SH). Now choose B

and y  as in Theorem %.4(iii) » then we get a commutative square

» expy X expy
BpxBy ———5 N x H

H

B —_—
exp Nxa H
since . is a diffeomorphism with differential identity at zero it follows
from chap.lll that the local semigroups (exp_l(SNXl SH) nNB, %),
_ -1 .
I = ((expN Xepo) (SN >da SH n exp B), #) have the same tangent wedge.
But clearly the tangent wedge of 1 ig L(SN) + L(SH). il

generated Semigroup which is not strictly infiniteSimally generated, and

the i Lo .
oscillator S§roup, which rlayed an lmportant role in the classification

of the Lorentzian semialgebras, Finally we Present an extensive study of
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the special linear group in two dimensions, which may be viewed as a proto-

type of a noncompact semisimple Lie group.

EXAMPLE IV.5.1: The simplest, but nevertheless instructive, type of

examples is the case where the Lie group G under consideration is abelian.
If G is a vectorgroup then the infinitesimally generated semigroups are
identical with their tangent wedges under the identification L(G) = G.

If G is a torus any closed infinitesimally generated semigroup is a group
(cf. Example 1.4 ). If G 1is a cylinder then there are wedges which are
tangent wedges of infinitesimally generated semigroup as well as wedges which

are not (cf. Figure 1).

Figure 1
¢t
S G = R*
G = R«
ex
L(s) F
G = 5 = TL

C,:S = T"x R
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These examples show that the global topology of the group and the position
of the wedge in the algebra will play an important role when we are dealing
with the question for which comes and wedges W in L(G) we can actually

find preanalytic semigroups S in G with W = L(Ss).

EXAMPLE IV.5.2: Of course there are many subsemigroups S in G which
are not infinitesimally generated. This may even happen if the quotient of
S by a discrete subgroup is infinitesimally generated by the same tangent

wedge (cf. Figure 2),

Figure 2

THae
—-" —_ﬁ m

EXAMPLE IV.5.3: Another question which exhibits some of its difficulties
already in the abelian case is that of global and local divisibility. Given
a divisible subsemigroup § of ¢ it may be necessary choose a very small

neighborhood U of 1 in order to have that Uns js locally divisible
(cf. chap.Ill apqg Figure 3),

Figure 3

EXAMPLE 1V.5.4: Let G be the Heisenberg group, i.e

- the group of all
real 3x3-matrices of the form



l ac
(a,b,c) = 01lb
001

This group is a good example for the fact that not only the topology but
also the algebraic structure of a Lie group can make it impossible to find
a semigroup with some prescribed tangent wedge. In fact for any wedge W
in L(G) containing the center of L(G) in its interior the semigroup
generated by exp W is all of G. We prove this by showing the following

slightly more general lemma:

LEMMA 1IV.5.5: Let S be a subsemigroup of Heisenberg group G containing

central elements in its interior, then §=¢.

Proof: Note first that we may identify G with L(G) if endow L(G)

with the Campbell-Hausdorff-multiplication
(5.1) X*y=Xx+y + %[x,y] for all x,y e L(G).

The Lie algebra £(G) can be represented as the real 3x3-matrices of the

form

Oay
lasB,y] = | 00 B
000

If we set x = [1,0,0], vy =1{0,1,0] and 2z = [0,0,1] then Rz 1is the
center of G. For weéx+ny and w' = x-£y we calculate for z, € Rz

and neN
(n(z0 +w)) *x (n(z_ +w')) = 2nz +{n(x-y) + na(y+x) - % n2(£2 - nz)Z-

If § 1is a semigroup containing a whole neighborhood of z, this calcu-
lation shows that there exists an element u € int S in the x-y-plane.
Rotating w and w' around the z-axis we also find =-u € int S. But

then T = ux-u ¢ int S so that S=G. 8

Note that Example 6.4 contrasts the assertion of the local theory that
for any cone K in L(G) there exists a local semigroup (S,B) having
K as tangent object. The crux here is that the neighborhood B must be

chosen small enough (cf. Figure 4).



- 22 -

Figure 4

(rotate around the z-axis) 2z

x-\/ - ‘P\QV\¢

()
w

SR 1]

(5,B)

EXAMPLE 1V.5.6: 1In spite of Lemma 5.4 the Heisenberg group is full of

infinitesimally generated semigroups,

2
——-__u
~ Y
\\
\“.~ ‘;)
BE7 A

-
Y1
— N\
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There are also strictly infinitesimally generated subsemigroups in the

Heisenberg group which do not contain a nontrivial group:

EXAMPLE IV.5.7: Let G be the Heisenberg group and

S = {(a,b,c) € G: 0 <a,b, O<c<ab} then S is a strictly infinite-
simally generated semigroup with

L(S) = {(o,B,y) € L(G): Y=0, O<a,B}.

Proof: It is straight forward to check that S 1is a closed semigroup.
Identifying G with a three dimensional vectorspace we may visualize §
as the region in the first octant bounded by the surface X3 = X%y and .

i
the xl—xz-plane (cf. Figure 6).

Figure 6

The one-parameter semigroup o(t) = exp t (1,0,0] = ( t,0,0) and
t(t) = exp t [0,1,0] = (0,t,0) generate S. In fact, if (a,b,c) ¢ S
and b>0 then

(5.2) (a,b,c) = o(%)r(b)o(a -%).

If b=0 then c=0, hence (a,b,c) = g(a). It remains to show that
L(S) ¢ {(a,B,y) € L(G): y=0, O < a,B}. Since S 1is a closed ray semi-
group by what we have just seén, Proposition 1.7 shows that

L(S) = {x € L(G): exp R'x c S}. But

exp tla,B,vy] = (ta, tB, ty-+t2a8) so that

L(s) ¢ {[a,B,v] € L(G): y=0, a,B20}. []
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We have seen in chap.ll that almost abelian algebras were full of semialge-
bras because of the abundance of hyperplane subalgebras. Similarly we
find a log of infinitesimally generated subsemigroups of the corresponding

groups:

EXAMPLE IV.5.8: Let G be the group of real (n+l)x(n+l)-matrices of

the form

where reR, v eR" and E : R" > R® is the identity. Such a group we call
an almost abelian group. The Lie algebra L(G) is an almost abelian alge-

bra and can be represented as the matrices of the form

r En v n
00 reR, veR .

Then the exponential map exp = L(G) + 6 is a diffeomorphism and maps
every wedge W in L(G) homeomorphically onto a subsemigroup of G. In

oarticular there exists a subsemigroup S of G with L(S) = W for any
wedge W in L(G).

To show this statement just note that any wedge in L(G) is a semialgebra

by IT1.2.1.3 and hence we can apply Corollary 11.1.30. [J

EXAMPLE 1IV.5.9: Let G be the semidirect product of € by R where R

acts on € by rotation then the set § = {(c,1) € G: lc| < r} is a

closed infinitesimally, but not strictly infinitesimally generated semi-

group with L(S) = {(y,p) ¢ L(G): |y] £ p, YEC; peR} where L(G) 1is

the corresponding Lie algebra semidirect sum of ¢ and R.

Proof: Note first that we may represent

G as the set of 3x3-matrices of
the form:

ir
C
(cbr) = | 0 1

0 er

Then the Lie algebra L(G) is given by
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ip
(Ysp) = 0 0 0

and the exponential function is the usual matrix exponential function.

It is not surjective.
It is easy to check that S 1is a closed subsemigroup of G.

Since S also contains inner points it is preanalytic and

L(S) = {(y,p) € L(G): exp Rf((Y,p)) c S}. A one parameter group in G

given by
(eitp_ 1
(5.3)  exp t(y,p) = (l—ip-——, tp) for p$0

hence eprR+(y,]) S if and only if

n

Iy(elt-—l)l <t for all teR .

But this is equivalent to each of the following statements

2]yf2 (1 -cos t) < t2 for all te¢R
afy[? sin® £ < for all teR’
ly| |sin -E—l < -;— for all teR'
|y lfi%~£L <1 for all teR’

Iyl < 1.

Since exp(y,0) = (y,0) 1is in S 1if and only if y=0 this shows that
L(S) = {(y,0) € L(G): |y| < p} (cf. Figure 7).

Figure 7
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In order to show that S is infinitesimally but not strictly infinitesi-
mally generated we consider the semigroup SR generated by L(S). Recall

that

ipt
- 'Y(e:Lp -1) . >0 l < t20}
exp L(S) = {(—‘——;E—*——, pt): p » 1Y] £ p, t20},

Thus exp L(S) ¢ T = {(c,r) ¢ G: [c] <r} v {(0,0)}. But it is easy to

check that T 1is a semigroup so that SRCT.

Conversely, let (c,r) ¢ T. If we set

lay (ei r/n

ck=de - 1) where ]d}sl, akeR
we obtain
. -1
r r ir/n l(ak+(kn ))
ey D) vee ey ) = (e(e - ) e » 1)
n n’ n
k=1
Thus if we set a = ~(k=1) we get
n
r by ir
(c],-H) v (cn, E) = (dn(e /n-]), r).
Now we choose n sgo that
Lel o [ef r/“-ll 2<,
r r
Then we can find deg with ldl <1 such that ¢ = d(ei r/n -1)n.

; r ir a )
Since (Ck’ H) = exp (?T de ! k, %J this shows that T = SR. Thus the
claim follows since T is dense in s, g

EXAMPLE 1IV.5.10: Let H be the Heisenberg 8roup, represented as pairs

2
(v,2) € R xR endowed with the multiplication

(5.4) (v,z) c(v',z") = (V+v', 2430 +% <dv,v's>),
. 2 .
where <> >R xR > R 1s the scalar Product and d: R? +IR2 is given

by the macrix [ © =14

+] o+- Note that this is just the’ -Campbell-Hausdorff-

mltiplication op the Heisenberg algebra L(n)

2 répresented as pairs
(2,€) ¢ R xR with bracket

[(z,8), (¢',8")] = (0, <dg,z's).
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For teR set

cos t - sin t
R(t) =
sin t cos t

and let R act on H by r-+(v,z) = (R(r)v,z). The semidirect product
H>XR with respect to this action we call the oscillator group 0. The

product on ( 1is given by
{5.5) (vyz,r)(v',z',r'") = (v+R(r)Vv’', z+z'+%<ﬁv,RhﬁW>,r+rW.

Then we can show that for any invariant generating cone W in L(0) the
closed subsemigroup S of 0, generated by exp W has tangent cone W

and there is a neighborhood U of 1 in 0 such that SnU = exp WnU.

In order to prove this statement we need to have a good description of
the exponential function. We start by calculating the one-parameter sub-

groups of 0:

Note first that Theorem 4.4 shows that we may identify the underlying
spaces of ( and E(O) so that the generator x of a one-parameter sub-
group y(t) 1is just x = y'(0), since in our representation of ( the
multiplication is globally given by the multiplication ¥ and the diffe-
rential of v at zero is the identity. Now let ¢(t) = (v(t), z(t), r(t))

be a one parameter subgroup of 0. Then r(t) = tro and for t,s € R
(v(s) +R(sro)V(t). z(s) +z(t) +% <dv(s), R(sr ) (t)>) = (v(s+t), z(s+1).
Fixing s and letting t tend to zero we obtain

(#(s), £(s)) = (R(st_)V(0), £(0) +3 <dv(s), R(sr_)¥(0)>)

since v(0) =0 and 2z(0) = 0. But since R(sro) = esr°d we conclude

sr.d _ . .
v(s) = (70" - 1)vo where rodvo = v(0) for r, # 0. Thus we have in

this case
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£(s) = 2(0) + 5 «d(e*To% - )y , r %oy )> -
= z(0) + %9 <e$r°d dvo, eSrod dv0> - ~r2£ <dvo, eSrod dvo> =
= 2(0) + ;§-<dvo, dvo> - ;; <dvo, desrod v =
= 2(0) + ;;-"vonz - ;; v 5ol v,>
since d and esrod are orthogonal. Integration now yields
z(s) = s(2(0) + r7° llvollz) - % <dv_, eSTod v_>

since d 1is skewsymmetric. Thus the exponential function exp: L) » 0

is given by

1 rd ] 2 ] rd
(;{B -e dv, z +§;-iv” -— <dv,e "v>,r) for r*ﬂ

(5.6) exp(v,z,r) = 2r

(v,z,0) for r=0

In fact, we only need to note that é% exp t(v,z,r)| = (v,z,r) and use
t=0
the fact that d-] = —-d is orthogonal in the above calculations.

From this we calculate easily that explB: B-~>B

where B = R2 XR x J=2m,2n[. Therefore the set

is a diffeomorphism,

C = {((v,z,r), (v',z2',r")) ¢ L(0) XL(0): =2n <r +r' <27} is contained in
the set

Hv,z,n), (v, 2, e « L(O) xL(0):
for all t ¢ [0,1]}

exp(v,z,r) exp t(v',2',r') € exp B
and hence we can apply Theorem I1.1.31 to obtain that

exp((v,z,r))eXp((v',z’,r')) € exp W for all ((v,z,r),(v',2",r')) e Cn (Wx}

where W is any generating semialgebra in W.

2 . .
Note that R“ xR x[2n,=[ is a semigroup ideal in R2 xR xR'. Therefore

for any semialgebra in L(0)

which is contained in Rz xR XR+ the
set S = exp Wy CRZ xR x [ 27,%[)

is a Subsemigroup of (. But clearly

_I:(S) = W. Finally we recall ( ChapII ) that any invariant cone in }_(0)

q((v,z,r), vhz'r')) =

and the restriction T20. Thus the argument above applies and proves the

Statement on page 2%,
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We want to give a geometric description of the semigroup generated by
exp W where W is a generating invariant cone in L(0). By what we have

just seen we may assume that W = {(v,z,r) € L(0): 2rz + “v"2 £ 0, rz0}.

Let r ¢ Jo,2n[ and comsider (exp W) n CRZ;R,r). Note first that for
exp(v,z,r) = (v',2',r') we have exp(etdv,z,r) = (etdv',z',r'), i.e.
the set (exp W) n CR2;R,r) is invariant under rotations in the v-plane.
If now v = (x,0) then dv = (o,x) and erdv = (x cos ¥, X sin r).
Therefore <«dv, erdv> = x2 sin r. Moreover

Ja-e"av? = fa -

. 2 . 1
<y, erdv> = x2 cos r. Since 2rz + ﬁvu € 0 just means z + E}..”V

= 2Hvﬂ2 - 2<v, erdv> = 2Hvﬂ2(l-cos r) since
|2 <0
this shows that exp W n (Rz;R,r) is the region below the paraboloid
given by

-sin r

2 .
(1 -cos 1)° r), veR (cf. Figure 8)

5.7) (v, |v]?

Figure 8
-T
i
. l=-cosr . sinr sin r
— " " = -—— =0 so that —=———————— approaches
Note that lim SIn T 1im o5 T F(T < cos T) PP

r->0 >0

+ » as r approaches 2mn with neN depending on whether on approaches

from the left or on the right (cf. Figure 9).
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Figure 9

EXAMPLE IV.5.11: It is not possible in Example 5.10 to replace the
oscillatorgroup by an other group with the same Lie algebra:

Let 0 be the oscillator group and 0 $ze¢ Z(L(0)) where Z(L(0)) is
the center of the oscillator algebra. Let S be the closed subsemigroup
of 0 pgenerated by exp W where W is a generating invariant cone in
L(0). Then N = expZz) is a discrete Lie subgroup of ( and the sub-

semigroup SN/N of (/N has a halfspace bounded by the hyperplane ideal
of L(0) as tangent wedge.

Proof: Note first that  SN/N clearly is contained in SON/N = So/N’
hence L(SN/N) ¢ L(SO/N) = L(SO) which is a halfspace bounded by the

Heisenberg algebra. Conversely we have that exp is:diffeomorphism from
a tube around the center of L(0) onto the image of this tube. But the
projection of W along 2(L(D)) onto {R2 x {0} xR} 1is {R2 x {0} XR+}

so that for any «x ¢ {R2 x {0} xR* \{0}} we can find a

2 + . .
yeWn (R xZz xR} pProjecting down to x. Hence

(exp x)N = (exp y)N ¢ SN/N and thus, choosing x close to the origin we
derive L(SN/N) = (R®xRxR'}. [
The remaining part of this section is devoted t

o the study of the special
linear group s} (2,R).

In a sense this group is the epitome of a (semi-)

Youp and its Lie algebra s1(2,R) is one of the
basic building blocks in the theory and classifica

simple non-compact Lie g

tion of semisimple Lie
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algebras. Thus SL(2,R) 1is the canonical starting point for the study of
infinitesimally generated semigroups in semisimple Lie groups. Since the
information available on semigroups in general semisimple Lie groups is
rather sparse at the moment, we present a fairly extensive study of the

situation in SL(2,R) and its simply connected covering group SL(2,R).

Recall that SL(2,R) 1is the set of real 2x2-matrices with determinant 1.
Its Lie algebra s1(2,R) 1is the set of real 2x2-matrices of zero trace.
The exponential function exp: sl1(2,R) + SL(2,R) 1is given by the usual
matrix exponential function. We will simply write s1(2) and SL(2) in-

stead of s1(2,R) and SL(2,R).

For computational convience we introduce the nomalized trace 1: sl(2) - R
defining T([i 3]) = % (a+d) and a normalized Cartan-Killing-form

k: s1(2) x s1(2) » R defined by k(X,Y) = t(XY). Then k(X,Y) = % ¥ (X,Y)
with x: s1(2) x s1(2) +R, defined by x(X,Y) = trace (ad X ad Y),
where the trace is taken on the space of endomorphisms of the vectorspace

s1(2), i.e. x 1is the Cartan-Killing-form. By abuse of notation we will

write k(X) for k(X,X).

For g in SL(2) we obtain a Lie algebra automorphism Ig of s1(2) wvia
Ig(x) = ng-l. The map g ~> Ig from SL(2) to Aut(sl(2)) 1is a Lie
group morphism whose kernel is the two element group {t,-1}. 1Its image

is the connected component Auto(sl(Z)) at the identity, and this group

is generated by all automorphisms of the form eadX with X 1in sl(2).

This means that Auto(sl(Z)) is the adjoint group of SL(2).

We will write g:X = ng—l for g in S1(2) and XeA where A 1is the
Banachalgebra of linear operators on B?. In this fashion SL(2) acts
linearly and automorphically on A and s1(2), and automorphically on
SL(2). The exponential function is equivariant relative to these actions,
i.e. exp: sl(2) » SL(2) satisfies g-exp X = exp(g+X). By a slight
abuse of language we call the action of SL(2) on sl1(2) the adjoint

action. This action needs to be understood very well in the following.

The form k is bilinear, symmetric, non-degenerate and ¢nvartant in the
sense that k(g-X, g-¥) = k(X,Y) for g in SL(2) and that

k([X,Y1,2) = k(X,[Y¥,Z23). In fact if ¢ 1is any automorphism of s1(2),
then k(¢X,¢Y) = % trace (ad ¢X ad ¢Y) = %-trace (¢ ad X ad Y¢—l) = %
tr(ad X ad Y) = k(X,Y). There is, up to scalar multiplication, only one

invariant form.
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The points X in s1(2) for which k(X) < 0 will play an important role
in our further discussion. They form a double cone, called the standard
double cone. In obvious ways this cone is reminiscent of the light cone in
special relativity. We want to distinguish one of the two cones. For this
purpose, we need to introduce a basis for s1(2); there will be involutive

automorphisms of s1(2) that interchange the two cones.

We identify A with the algebra of real 2 by 2 matrices and set

-8 B=r; 03 P=g0) @=100, 1-pg=r

01
1 0d» U=pQ=1I
Call {H,P,Q} the first basis and {H,T,U} the second basis for s1(2).

The multiplication is then given by

(5.92) [H,P] = 2P, [H,Q]

_ZQ’ [PSQ] =

!
j=o}

and

(5.95) [H,T] 20, [H,U] = 21, (U,T] = 2H.

We observe that
(5.9¢) k(h-H + pP + q.Q) = h2 *Pq; k(h-H + t.T + u.U) = h2 +t -u.

In particular, k(H) = k(T) = 1, k(p) = k(Q) = 0, and k(U) = =1. The
first basis is adapted to the general theory of semisimple algebras, but
for the purpose of geometric representation, we prefer the second basis
and denote the plane R-H + R'T with the letter E, and call it the hori-
zontal plane, while the line R-U will be called the vertical line. Once
and for all, we will write X=X"+x.U with x' horizontal. Moreover

we introduce a non-canonical Hilbert space structure on s1(2) through

the inner product <X1,X2> = h]h2 + t]tZ + XIXZ for X. = h.H + t.T + ij
and J = 1,2, We will write [x| = <x,x»!/2 tve 6 :

) » and observe that
k(X) = |x']° - &2,

With respect to these definitions
the set {x: [x'| < Ix|}.
setting K = {x: IX'] < x}.

» the standard double cone is given by
We distinguish ope part of the double cone by

The boundary of given by {X: k(X) = O,

x 20} is denoted by N. We observe that K as well as N is invariant

y of the adjoint group. Note here that

AUto(sl(Z)) has index two in the full automorphism group and that one con”

venient representative q: s1(2) » 51(2)
aX = TXT, i.e., by

of the second coset is defined by
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(5.10)  o(H) = -H, a(P) =Q, a(Q =P, a(U) =-U, a(T) =T.
Note that o exchanges K and -K and N and -N.

Recall (cf. [HH 85b]) that we obtain the two dimensional subalgebras of
81(2) as follows.

PROPOSITION 1V.5.12: TFor a plane B 13 s1(2) the following statements

are equivalent:

a) B 1is a subalgebra.

b) B =X' for some X $0 with k(X) = O.
c) B=x' for some XeB.

d) B c B.

e) B is tangent to N u -N.

All such B are conjugate under exp RU.

Note also that we can completely describe the orbits in sl1(2) wunder the

adjoint action (cf. [HH85b]).

PROPOSITION IV.5.13: (cf. Figure 10) The orbits in s1(2) wunder the ad-

joint action are:

a) In the interior gg_the standard double cone

SL(2) » (uU) = {X = X' + xU: x2 - |X'|2 = u2, xu > O}.

b) In the exterior gftthe standard double cone

SL(2) « (£T) = {X = X' + xU: lx']2 - x? 2

=t"}.
¢) On the boundary of the standard double cone
SL(2) +0 = {0}; SL(2) -P = N\{0}; SL(2)-Q=-N\{0}.

The hyperboloids of a) and b) constitute the level sets of k for non-zero

values.

Figure 10
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Next we will develop an explicit description of the exponential functiop

2
exp: s1(2) » SL(2). For any X in s1(2), we have X° = k(X)1, whence

all even powers of X are scalar multiplex of X. We define the power

series
2 2

z z

(5.]]) C(Z)=1+-§§!—-+—Z~!—+,'. and S(z): | +3!+ +

ﬁ c ooy

and note the formulae

(5.12a) C(22) + 25(z2%) = &2,

ICOSh Yx for 0<x, sinh vx for 0<x
(5.12b) C(x) = Y] S(x) =
cos vY-x for 0>x, sin v-x for 0 >zx.

(5.12¢) C(2)% - 25(2)2 = 1.

(5.12d) C'(z) = % S(z).

Formulae 5.12a) and 5.12b) are obvious, the last two identities can easily

be shown by considering just positive 2z and using the analyticity of §
and C.

We have the fundamental formulqg for the exponential function
(5.13)  exp X = C(k(X))1 + S(k(X))X.

In particular, we find the element exp X inside A always in the plane
spanned by 1 and X, and, since trX = 0, we have T(exp X) = C(k(X)).

Moreover we note that k(X) = ¢ implies exp X =1 +X 5o that on Nu-N

the exponential function is affine.

To discuss the singularities of the exponential function, consider the

function C which is holomorphic on the whole complex plane. From 5.12

follows that for x > -p2 e have C'(x) > 0. Hence c: [—ﬂz,m[ > [=1,=]

is a homeomorphism, and thus has an inverse c: (1,0 » {—nz,m[ which
must be real analytic on 1-1,=[,

Now let us introduce a half Space in A given by A" = T—]J‘] [ . We

define a function which we Provisionally call logarithm Log: A" > 51(2)

by

- ! *
(5.14) Log g = §?ET??§77T (g - t(g)l) for gecA ,
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By (1.1) we have k(g-1(2)1) = 1((g-t(e)1)?) = 1(g2) - 2(x(g))? +
+ (T(g))2 = T(gz) - (T(g))2 = - det g + (T(g))z. Thus
k(Log g) = S(c(1(e))) "2 (1(g)? - det g).

Now we specialize to g e SL(2) n A", i.e. to det g =1, and find

k(Log g) = S(C(T(g)))-2 (T(g)2 -1). If for the moment we say y = t(g)

and Xx = c(y), then y = C(x) and from (5.12¢c) we find

c(y) = x = S(xj-z(l -yz) = S(c(y))—z(l -yz). Thus for g ¢ SL(2) n A" we
have k(Log g) = c(1(g)) > nz and then

exp Log g = C(k(log g))! + S(k(log g))Log g = y 1 + S(x) - 57%7 (g-y1) =g.

So we have

exp Log g = g for g e SL(2) n A",

Now 1t(exp X) > -1 1iff C(K(X)) > -1 by (5.13), hence exp X ¢ AY iff
k(xX) > -n2 iff |X']2 - x2 >-12. This gives an invariant open domain
D=1{X¢e s1(2): k(X) r -nz} = {X = X' +xU: x2 < IX'I2 + nz}. For xeD
we have exp X ¢ A" so that we may consider the analytical function

X > Log exp X: D » s1(2). Since exp 1is a local diffeomorphism around
zero, every X near zero may be represented in the form X = Log g for
some g near 1 by (5.15). For these X we have

Log exp X = Log exp Log X = Log g = X. The analytical function

X + Log exp X thus agrees on a neighborhood of zero with the identity

function hence is equal to the identity function. We thus have the first

part of

THEOREM 1V.5.14: a) The exponential function exp: s1(2) -+ SL(2) induces

an isomorphism of real analytical manifolds from D onto SL(2) n A"

whose inverse is given by Log: SL(2) n A" - D,

Log g = S(C” (1(@)) ' (g - ().

b) SL(2) n 1 (J=,-1]) n exp(s1(2)) = {-1}.

c) The set of singular points of exp is exp_](—l) = {SL(2) * (v +2mZ)U}.

Proof: To show b) and c¢) simply note that from 5.12.b) and 5.13 it follows
that exp X € exp(sl(2)) n T-l(]—m,-l]) is equivalent to
V-k(X) e m+2nZ. [

Let us finally remark that, as a consequence of Theorem 5.14(a) such as
B =TRH + RP is mapped diffeomorphically under exp since D 1is an open

neighborhood of B.
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We need to recall some facts from the local theory of semigroups ip

SL(2). We start by fixing the notation for the relevant sets.

DEFINITION IV.5.15: For X 4 0 and k(X) = 0 we set
X' = (Y € 51(2): kX,Y) < 0}, x = —x*;

P' = p” nQ = {hH+pP+qQ (h,p,q) € RxR’ xR'};

P =P n(-* - {bH + pP + qQ: (h,p,q) ¢ R xR xR},

(The reader should keep the distinction between P and P+ etc. in mind

Figure 11

With thege definitions we have (cf, I1.1.18)

PROPOSITION 1v, 5.16:

Any generating Semialgebra on s1(2) is the inter-

section of half Space seml-algebra each of which is of the form X+ for
some X * 0 wlth k(X) = 0. B -

18 3 wedge in 51(2), gng dim H(W) = 1, then
Wois a Lie semialgebra iff it
\

a) P+ p' -, = 222125353.28_223 of the following.
’ 0‘1’ -p ’ £ dlm(w_w) = 3’ _—

b) the hajf- 1 i .
— !-planes in p bounded by Ry i dim(W-W) = 2 apd k(X) >
for some X ¢ H(W),

c) the half- lan i
Planes in pt bounded by ®Rp jf dim(W-w)
for all x ¢ H(W), -

d)RHRUorRP

]
N
[
=]
a.

=
pAY

>

A

"
o

i din(W-w) = g,

P oAmedge W oip gy 1s a Lie wedge iff it is either

* Exercise (yse Proposition 5. 13 and 4.12). o
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We have now laid the ground to study infinitesimally generated semigroups
in S1(2). There is one, that will turn out to play a special role. If
we identify A with the set of two by two matrices as we did before,
this semigroup can be described as the set of matrices in SL(2) with

non-negative entries. We denote this semigroup by sL(2)”.

PROPOSITION IV.5.19: The exponential function induces on isomorphism

exp: | SL(Z)+ of analytic manifolds with boundary (cf. 5.15).

Proof: After Theorem 5.14 , it suffices to show (i) exp P+ c SL(2)+
and (ii) Log SL(2)" c P* with 1log given in (5.14). To show (i), let
H="hH + pP + qQ with p,q 2 0O and set exp(X) = (: 3). We have

k(X) = h2 + pq and set t = k(X). If k(X) =0, then X=P or X=(Q

and exp X =1 +P (resp. 1+Q) which is contained in SL(2)*. So

(sinh t)
t

Since t>0 we

assume t >0, and conclude from (5.13) that a = (cosh t) + h,

b = sinh t _ sinh t q, and d = cosh t - Slﬁ? t .

t P ©° ¢
h h

= <1 it
t ;h +pq

have sinh t > 0, so that a,b,c 2 0. But from

follows that d20, too.

- +
To prove (ii), let g = [2 3 J € SL(2) . Then det g =1 implies
ad =1 +cb 21, whence 1 < vVad < a;d which means 71(g) 2 1. Thus

¢ 1 (1(g)) = (ar cosh 1(g))2 2 0 and S(C '(1(g))) 20 (with equality
precisely for g = 1). By (5.14) we have Log g € P* if b20 and c20,

which is then the case. [J

As a consequence of this proposition, we know that SL(Z)+ is a uniquely
divisible semigroup whose tangent object L(SL(2)¥) is P'. Here we mean
by uniquely divisible that for any s € SL(2)+ and any neN there
exists a unique 8] € SL(Z)+ with (sl)n = s. Moreover, the Campbell-
Hausdorff multiplication (X,Y) = X*Y allows an analytic extension to a
semigroup multiplication *: PY <P+ P,

The preceding calculations permit us to demonstrate that the Lie wedges

of quite reasonable semigroups in SL(2)+ are not semialgebras. Indeed,
let S be the set of all matrices g = (2 :) in SL(2)+ with az21.
Except for g =4 we have 1(g) > 1 and then t = S(arcosh 1(g)) > O.

- - . -1
Thus Log g = (2t) ! [acd dEa] with d = (] +bc)a whence
bc

. 1 2
log g = g + pP + qQ with h = >ta (a-1-bc) 2 - ta" One checks that
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+.3 :
L) = (bt +pP+qQ: (hip,q) € ®™)7): Indeeq, if
C ) = exp r(M+pP+qQ) € 5 for r >0, then
o

a=an) = ¢l + 5@AOrh 2 0, whence b = 1im
Ir+o

aln) , .
r

Whether S is in fact the smallest closed subsemigroup ER (cf. Theoren
2.8) containing exp L(S) we do not know, but our calculation shows at

any rate that exp (L(5)) c SR € S8, and since L(S) 1is no semialgebra,

exp L(S) is not a neighborhood of % in §R’ let alone §.

PROPOSITION IV.5.20: Let s EEE Preanalytic semi roup i_n SL(2) and
ER is smallest closed semigroup in SL(2) Containing exp(L(8)). Then
ve have the following possibilities:

a) §R E_a_circlew exp RX with k(X) < 0,

b) §R =G,

c) iconjugate£ §R is contained in sL(2)*,

Proof: w- log we set § = §R' Then § ig infinitesimally generated, aK
is therefore completely characterizeg by its tangent Lie wedge L(S). If
L(S) contains ap element X with k(X) < 0, then g contains exp RX,
a circle group, whence RX c L(S). Thus L(S) is not a cone and hence,
by Theorem 5.18 a semialgebra, This meéans that L(S) = s1(2) or RX
since no other semialgebras contain elements of negative k-length and have
BX in the edge. Now assume that L(S) n interior (Ku-K) = g.

% as well as L(S) ¢ 'X:’
as well as L(X) ¢ -T-
gebra containing L(S), and by Theorem 5.17

Find a half space x* with k(X) = g and K

in

and a half space vt with k(y) = 0 and -K ¢ vy*
Then -x* , -v* is a semial

. . . + M
1t 1s conjugate to P*, Thus a conjugate of 5 is contained in SL(2) -

In order to sharpen thisg result we will shoy that SL(2)* s a maximal pm

Per commected Subsemigroup of SL(2), i.e. that any connected subsemigrovf

T of sL(2) containing sp(2)* ;4 either sL(2)* o SL(2). For this

Purpose we need a Lemma ,

. . 1l
LEMMA ?V.S.ZI. For any element X € 51(2) there are the following mutuds
e).(c1u51ve pgssﬂuilnes for the element exp X = g:
) xepy, P (i.e.

&< S1Y y (s102)*)7 )y,
(ii) There 15 a positive Dumber s gycp that k(sH *X) <0 (i.e.

(exp sH)g 1lies on a circle group in S1(2))).
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Remark: For X, Y and ZeD with exp X exp Y = exp Z we write
2 =Xx*Y,

Proof: We set g = (: x};); then (5.14) says that for a suitable number

. _ _ o x-w 2 _ 1
a€eR we have X = log g = a(g-1(g) +1) = 3 (Zz w—yy) = 0.(7 (x~w)H +yP + zQ) .
Thus case (i) occurs precisely when yz 2 0. We now assume yz <0, 1i.e.
xw-l =yz <0, i.e., xw <1,
Now exp(sH *X) = (exp sH)g = zx Sy with t = e°,
Tt

Thus with a suitable scalar £ we then have

sH*X = B(‘f (tx —%)H + ty +%Q).

Then k(sh*X) < 0 iff Z(tx—¥)2+xw—l=l—(tx-¥)2+yz<0 iff

(tx + %)2 < 4,

There are two cases to comsider: If xw < 0, then it is easy to find a

t>0 with (tx + %)2 < 4. If xw > 0, then the function u » (ux + 5)2
attains a minimum for t = (w/x)l/z, and this minimum is equal to xw < 4.

In either case if we take s = log t we have k(sH *X) < 0. ]

LEMMA IV.5.22: Let S be a subsemigroup of S51(2) containing Sl(2)+.

If S meets the interior of exp(Ku-K) v (51(2)*)_], then S = S1(2).

Proof: Let se&5, then each neighborhood U of s contains inner points
of S§: Indeed the identity neighborhood s—]U contains inner points of
51(2)+ hence of S, and so U = s(s_]U) contains inner points of §.
Therefore, if S meets the interior of exp(Ku-K), then an open subset
of some circle group is in 8, and it then follows that this whole circle
group and exp RH. Thus S = S1(2) in this case. Now assume that S con-
tains a point s in the interior of (S1(2)+)_]. Then (Sl(2)4¥)—l con-—
tains an open subset V of S. But then vic Sl(2)+, whence the iden-
tity neighborhood VV-] is contained in S. But since S1(2) 1is connected,

the semigroup generated by any symmetric identity neighborhood is S1(2). ]

LEMMA 1V.5.23: Let S be a subsemigroup of S§1(2) containing 51(2)".
—et D¢ 3 sHbsemigrotp of ——

Suppose that S contains a boundary point s of (Sl(Z)+)- which is

not contained in Sl(2)+. Then S = §1(2).
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Proof: We may assume that s ¢ exp(RH + RP); the case s ¢ exp(RH + RQ)
is treated analogously. If B = exp(RH + RP), then the semigroup SnB
contains the half space semigroup § = exp(RH + R+P) in B and the ele-
ment s outside S'. But then s8S' is a nmeighborhood of the identity
in B, and since B is generated as a semigroup by any neighborhood of

the identity, we have B c S.

+ .
Thus § contains the semigroup generated by B u (S1(2) which, by Propo
sition 5.20 is dense in S§1(2). But it also contains inner points,

namely the ones of Sl(2)+.

The assertion then is a consequence of the following Lemma:

LEMMA 1IV.5.24: If S 1is a dense subsemigroup of a topological group G

and if the interior of 5 1is not empty, then S=¢G.

Proof: Let U be the interijor of S. Since U+ @, there is an

sesal”'. Then sU is an open identity neighborhood which is contained
in S. Thus the subgroup H = § nS_l is open in € and contained in S.
If g€G, then the neighborhood gH of g contains a semigroup element

teS, whence g ¢ si”! - sHcsScs. 01
Now we have the following Proposition:

PROPOSITION IV.5.25: Let § be any proper subsemigroup of S$1(2) con—

. +

taining S1(2) . Then S n im exp = Sl(2)+ and
+

$ =517 v -1t = 11,43 . 51027,

Proof: Since Su-5 = {f,f}.g is a semigroup containing 8, we may

assume without lgsing genmerality that S = -g, By Lemmas 5.21 22 and

23 we know § n im exp ¢ 51(2)’,

>
which proves the first assertion. Now
suppose s¢S. Since im eXp U ~im exp = S1(2) (cf. (5.14)), we know
that s or -5 in ig €Xp, hence s or -5 is ig s1(2)*. Thus
ses1Y v 1), g

+ +
The sets 51(2) and -S1(2) are obviously disjoint, hence:

EXAMPLE 1V.5.26: a) The subsemigroup s1(2)*

Per subsemigroup of S1(2).
b) The image ps1(2)* of s1*
group of PS1(2), O

is a maximal connected pro-

in PS1(2) is a maximal proper subsemi’
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The study of the universal covering group g:?i} of SL(2) will also
allow us to show that any proper subsemigroup of SL(2) containing a
circle group coincides with that circle group, Thus we can sharpen Propo-

sition 5.20 as follows.

EXAMPLE 1IV,5.27: Let S be closed preanalytic subsemigroup of SL(2).
Then we have the following possibilities:
a) S 1is a circle group.
b) S = SL(2).
c) There exists a g ¢ SL(2) such that ggkg-] csL(*. 1f

g5, = SL(D" then S is either. SL(A* or ,M}sL(2*. O
We do not know whether there are closed connected proper semigroups S

with gk c SL(Z)+ which are not contained in SL(2)+.

Proposition 5.20 shows that no semialgebra intersecting the interior
of the standard double cone manifests itself as a global semigroup in

$1(2) - unless it is a subalgebra; on the other hand, according to the
basic- theorem of the local Lie theory of semigroups, all of them define

local semigroups.

This situation becomes radically different if we ascend to the universal
covering group §f(2) of SL(2).

The polar decomposition of each element of SL(2) into a product of an
element of S0(2) and a triangular matrix shows quickly that SL(2) is
topologically the product of a one sphere and plane. Thus the universal

covering space is R~. Therefore, in order to present the universal cover-

ing group all that is required is the fixing of a covering map
f: R3 + SL(2), presumably one which respects the polar decomposition.

The general theory of simple connectivity and universal covering spaces

then gives a unique Lie group structure on R~ for any fixed identity

f becomes a covering morphism, and the lifting of the

element such that 3

exponential function exp: s1(2) - SL(2) to a function Exp: s1(2) >R

gives the exponential function of the universal covering. Thus, theoreti-

cally, there is nothing left to do. (cf. Figure 12)
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Figure 12

S

epr(U+T)!

had TN —-

Except, that for calculations and even for the formation of a geometric

intuition of the structure of the covering group, a lot depends on an

. . . . . : r
explicit choice of the "parametrization" f. We propose here a particula

one which we find to have many good features.
for f we will take s1(2)

Notably, as convenient domain
itself and Trespect as much as we can the
Symretries defined by the adjoint action of the circle group exp RU.

Of course, we retain the notation and concepts introduced above.

LEMMA IV.5.28: For x = g +xU we have the following identities:
For we have identities

(exp xU) exp(~xU + e—X/z ady X) = exp xU exp(e-x/2 adu X') =

= c(|x'|? exp(xU) + s([x'|%x* = C(k(X) exp(xU) + Sak(X))X' =

= cosh(|X']) exp(xv) + s:'u'ﬂ'x(lX'l)([)('l—l X").

Proof: The first equalit
tadu t ad - . .
e X = otadu X' + xy, By the invariance of k we have

¥ is immediate from X = X" +xU, whence
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-x/2adbu , .

x/2a X'y = k(X") = ]X'Iz. From (5.13) it then follows that
-x/2adU 2 -

x/ ) = c(Jx' D1 + s(Jx 5 ™22V 31y Now we multiply

k(e
exp(e

through with exp tU and note from

cos 2r sin 2r o)

(5.15) eV - {_ginar cos2r o0
o] 0 1
that el ad U(X') = exp{(2tU) X' since
cos t sin t
exp tU = € A,
- sin t cos t
Thus in view of (5.12) all identities are proved. ]

We are now ready to give the core definition

DEFINITION IV.5.29: We define a function f: s1(2) » SL(2) by
£(X) = C(k(X")) exp xU + S(k(X'"))X' = (exp xU) exp(e:_x/2 adU X").
X'

Note that f(X) = cosh |X'| exp xU + sinh [X'| =T for x' $ 0 and
f(xU) = exp xU. We will show that this function is a covering map, thus
use it to introduce on s1(2) the structure of the universal covering
group of SL(2). First we observe that f is analytic and that f(X)
is contained in the plane spanned in A by exp xU and X'. Recall

that exp xU = (cos x)I + (sin x)U, and hence

in h |X' f
(5.16) f£(X) = (cos h |X'| sin x)U + (cos h [X'| cos %) + EiETRT+——l X',

From t(U) = 1(X') = 0, we immediately obtain
(%) T(£(X)) = cos h |X']| cos x.

1f we denote by p, the projection of A onto RU with kernel spanned

by B, H and T, then
(x%) p, (£(X)) = cos h IX'| sin x.

For any element acA, we define a complex number z(a) = 1(a) + ipu(a)

and call it the characteristic number of aeA. In this way we can write

(x) and (*x) as

(5.17)  z(£(X)) = cos h [X'| e**.
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We extend X + X' to a projection a » a': A +RH + RT with kernel

Rl + RU.

LEMMA 1IV.5.30: If aecA, then a = t(a) -1 + pu(a)U + a' and
lz. In particular, g e SL(2) implies

det a = !z(a)l2 - |a®
@) | = 1 + |g'}2

v

1.

Proof: The claim follows immediately from the definition of z(a) and

the fact that with a = hH + tT we have

t(a) +h p,(a) +t

-(p, () - 1) (a) -h

We apply the Lemma to £(X) and obtain for x40
18 = (e |2- 72 gy,

Formulae (5.17) and (5.18) show that f(X) determines X' completely and
we see from (5.17) that f(X]) = f(XZ) iff X, =X, € ImZ. Moreover if u
is a complex number of modulus greater than one and E a horizontal unit
vector in s1(2), then there is an X in s1(2) such that u = z(£(X))
and X' = |X'|E. Note that f <g surjective. In fact, let g e SL(2),
then [z(g)| = I, and by the preceding remarks, we find an X in s1(2)
such that z(f(X)) = z2(g) and f£(X)' = 2', since ]g'] = (Iz(g)l2 '1)]/2
by Lemma IV.5.30. From this we conclude £(X) =g by (5.17).

We now decompose f canonically into the quotient map s1(2) » s1(2)/2nZU
and the induced continuous bijection f£*: s1(2)/27Z —~ SL(2). Since f

has no singular points, as is readily verified from the definition, £

is also open. Hence f£* is a homeomorphism and thus f is a covering

wap. Since f ig analytic, we know that there is a Lie group multiplicatior
(X,Y) -+ Xov: s1(2) x s1(2) » s1(2) satisfying

(5.19)  f(Xoy) = E(X)E(Y).

We denote (s1(2),¢) by 6. 1n order to establish some basic properties

of the multiplication, we observe a number of equivariance properties of f'

First we define an action of the additive group R on sl1(2) as a combi-

nati . .
1on of a rotation around the vertical and a vertical translation: For
reR and X ¢ s1(2) we set
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r/2adU
e X' + (r+x)U = (exp r)X' + (r+x)U.

(5.20) r-X =
Now we can establish the following Lemma.

LEMMA IV.5.31: a) f(r-X) = (exp rU)f(X)

b) f(er adU X) = (exp rU)Ef(X)(exp -rU) = e’ ady f (X)
e) £(X) =T £(XT (cf. (1.4)).
Proof:
a) £X) = £220 30 4 (re)U) =
= C(K(X")) exp(r+x)U + S(k(x')) ef/2240U g

exp rU (C(k(X')) exp xU + S(k(X"))X') = (exp rNE(X).

b) £V 5y = £ef 34U x' 41 xU) = Clk(X')) exp xU + Sk(x'))el 24U x

= T3V e (x")) exp xU + SERE'NX) = 729V £(x)

= (exp rU)f(X) exp(-rl),
radyl

since e Y = (exp rU)Y(exp -rU).
¢) Left to the reader as an easy exercise. 0

From the discussion above we derive the following

THEOREM IV.5.32: There is a Lie group multiplication (X,Y) + X°Y on

s1(2) such that f: G » SL(2) is the universal covering morphism, where

G denotes the group (s1(2),°) and that the following properties are

satisfied:

a) (ru) o (sU) = (r+s)U.

b) If EecE, then rEcsE = (r+s)E.

c) rUeXo (-ry) = e’ adU X. Thus the decomposition E@RU 1is invariant
under inner automorphisms induced by rU.

d) rUeX = er/2adU X' + (r+x)U and rUe (E+ul) = E+ (r+u)vu.

e) Xo (rU) = e—r/2adU X' + (r+x)U and (E+ul) exU = E+ (r+u)U.

f) Xo(X) = (-X) X = 0.

g) nZu _if__t_lgcentero_f_ G, :a_rﬁggﬁi_\_lg

Xo(2n+1)m0 = =X+ (2n+1)7U for nekZ.

X o 2n7U = X + 2n7U,

Proof: a) We have
£(xU o sU) = £(xrU)f(sU) = exp rU exp sU = exp(r+s)U
Since liftings are unique,

= f((r+s)U).

For r=s5s=0 we note rUesU =0 = (r+s)U.
we conclude rUesU = (r+s)U.

b) Let Ec¢F be of norm one, i.e.,

E =hH + tT with h2+t2=1. Then
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B (E)l = 1 and £(rE o sE) = ((cosh r)I + (sinh r)E)((cosh s)I +
+ (sinh s)E) = cosh(r+s)l + sinh(r+s)E = f((r+s)E). As before, we con-

clude rE o sE = (r+s)E.
¢), d) and e) follows from calculations of the following type:

£V = X o/ (-x0)) = (exp TUNE(X) (exp(-1V)) = eT 29U £(x) -
= pF2dl (C(k(X')) exp xU + S(K(X"))X") =

d
= cte(e™ 2V x) T MY oy s s((eT 2T yiyyradl o,
f(eradU eradUX.= (eradUX),'

X) since

- x/2adlU
f) We have f(Xeo-X) = (exp xU) exp(e x/2ady X') exp(-xU) » exp (~e X

- U
= exp(e® ad U e x/2 ad U X" exp(—eX/z ad X') = 1.

Thus f(X e (-X)) = £(0) and as before Xo -x) 0.

8) If X 1is central in G, then f(X) = *1, but this implies X ¢ 7ZU.
Moreover X o 2npl] = o BT adl X'+ (x + 2qn) X' +xU + 240U by (5.15).

U=
The last inequality is shown similarly. 0

Theorem 1IV.5,32 implies that all horizontal and vertical lines through 0
are one parameter groups in G, and that the inverse agrees with the
additive inverse. We will show presently, that egek one parameter group of
G lies in a plane containing the vertical line RU. The group of rota-
tions around the vertical is an automorphism group, and thus we can reduce
our structural description to one plane containing the vertical, say the
plane spanned by H and VU, apd derive the general information by rota-

tion. This is ap important advantage of our Parametrisation.

Exp: s1(2) » G. From Theorem 5.32a,b) it follows that Exp agrees with
the identity function on RU and E. Moreover Exp ig uniquely deter-
mined through Exp 0 = ¢ and  f(Exp X) = exp X. We write

Exp X = X + XU with X = (Exp X)'.
f(Exp X) = eXp X reads

Then the defining equation

(5-21)  C(k@)) exp 3U + ST = Ci(x))1 + S(k(X))X.
From this we derive the following

LEMMA 1Iv.5.33. For x _12 s1(2)
2 SUXHT = sa)xe
b ¢([X|?) cos ¥ = Ck()); ¢(|X|?) sin ¥ = S(k(X))x

) zlexp ) = cosh([X))el® = crcxyy ix S(k(x)).

we have
= lave
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Proof: The first three equations follow directly from (5.21) and the
fact that ]i!z = k(X). The last identity is just a reformulation of
(5.17) in view of (5.21). ]

The equations of Lemma 5.33 allow us to compute the exponential func—-
tion. In fact they tell us that X is a scalar multiple of X'. Thus if
we know the functions p = p(X) = 121 and sgn S(k(X)) then we know X.
In particular, as we already announced, Exp X € span {X',U}. But the
complete information on p and X and thus on Exp is contained in the
last equation of Lemma 5.33 which we call the characteristic equation.
By a slight abuse of language we call the complex number z(Exp X) the
characteristic number of X.

We want to determine the shape of the one parameter groups of G from the
characteristic equation. Since Exp X is contained in the plane spanned
by X' and U, it suffices up to sign to present p as a function of X,
or vice versa. The special form of the function € and S forces us to

treat vectors with positive, negative and zero k-length separately.

The characteristic equation reads

(5.22) B
a) cosh p .eix = 1 +ir for X = 2rp,

b} cosh p °ei;'= cos r + is sin r for X = r((s2 —l)l/2 H+sU), s=<1,
e) cosh p -ei;-= cosh r + is sinh r for X = r((s2 +1)1 2 H+sU), 120.

Note here that it suffices to consider those X listed in (5.22) since

they are their rotations around U by n £ill all of RH + RU, so that

all other one parameter groups are just the result of rotating one of

those described by (5.22).

To get a rough intuition of what these one parameter groups look like we

consider the following figure that depicts graphically how (5.22) deter-

mines the pair (p,x) from the given data r,s (cf. Figure 13).
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Figure 13

An analytic description of the point sets ExpR-X in span {H,U} is
given by

PROPOSITION IV.5.34: Let X be in R'H + R'L. Then

a) E:&pm+x) = {oH+U: cosh p cos t=1, p=o0, where 0 < ¢ < %} for
k(X) = o,

b) ExpCR+X) = {p sgn(sin 7)H + TU: cosh2 p((a—l)coszc# 1) = a, where
P, 20 and a = xzk(x)"} for k(X) <o,

c) ExpCR+X) = {pH + LU: c:osh2 p((a+l)c052; ~1) = a, where p 20,
O<ts7 and a=xk®} for K(X) > o,

d) ExpR X) = -Exp®'x).

We recall once more that we get all one parameter groups in G by rotatig
those described by Proposition 5.34

Proof: a) 1t suffices to consider X = 2rP 50 that by (5.22a)) we get

cosh p fcos X| = v} +¢2 (1 +tan2§)_l/2 =1 and cos x > 0.

b) Without loosinggenerality, we coﬂsider X = r((52~ I)]/ZH + sU), where

821 and obtain a=52. Thus by (5.22b)), we calculate

costh = coszr * a sin“r = (coréy +a)(1 #cotzr)_l = a(l +cot2§)(l +a cotz;)
= a(sin2; + a coszi‘)-] = a(l + (a—l)cosz§)_l
c) We consider X = r((sz*l)l/zﬂ + sU),
$0 that by (5.22¢)), cos ¥ =

where s>0 and obtain 82=s
- X +

cosh r(cosh p) ! and costh = a sinh” r

coshzr = (a+l) coszr-a,

2
Thus coszx costh = M

+T7— and the claim
a

follows.

d) Clear with Theorem 532 0

Using the identity arcosh § = log(s - (S2 - l)”z) it is now a matter of

elementary calculation to derive
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(5.23)
a) |x| = arc cos(EEE%r?ﬂ for k(X) = 0,
b) p = log(s + V52 -1 lsin ;[) - %»log(l +(s2 —l)cos2 X) for k(X) <0
and ‘5 = —lil——,
Y=k (X)
2
c) ];] = arc cos (( 5 ! 5 + ; )l/Z) for k(X) > 0 and s = _lfl__
s7+1 cosh™p 57+l YK (X)

We observe that the point sets described by (5.23b)) and c), "comverge"
to the set described by (5.23a)) if s tends to infinity.
It is important to develop an intuitive idea of these results. Figure 14

should help in this regard.

The dark area in Figure 14 is the complement of the image of the exponen-
tial function. Reading Figure 14 "modulo 2 ", i.e., considering the plank
between level -1 and 7 and identifying opposite boundary points we
obtain a éicture of SL(2). Proceeding in the same way with levels - %
and I we get a representation of PSL(2). 1In particular, PSL(2) is

2
exponential, i.e., has a surjective exponential function.

THEOREM 1V.5.35: a) Exp induces an isomorphism of real analytical mani-

folds from 0 = {X: k(X) > -nz} onto the open area between the surfaces

Exp(-N) + 7u and Exp N - nu, 1i.e. the open set

{X = pE+¢U: EcE, |E|] =1, £ € J-n,n[ and cosh p cos £ > -1},
b) The exterior of the standard double cone gets mapped onto

{X =pE+gU: EcE, |[E|] =1, [ € 1 %3 %{ and cosh p cos ¢ > 1}

c) The singular points of Exp are Exp—l{nnu: neZ\{0}}. This set

arises from the following upon rotation about the U-axis:

x = m(sZ-D"Y% + sv): s21, n # 0}.

Proof: a) By Theorem 5.14 , exp = f oExp induces an analytic isomor-

phism from 0 onto SL(2) n A*. Thus exp induces an analytic isomorphism

from P onto the component of zero in f-l(SL(2)11A*) = {Xel: T{(£X)) > =-1}.
Since 1(f(X)) = cosh |X'| cos x by (2.1), we are looking for the zero
component of the set of all X = pE+¢U with Eef and cosh p cos T > -1.
But the horizontal planes through the U with cos { = -1 separate the

set f"I(SL(Z) 0A*) into components, so the claim follows.
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b) Note first that by Propositie » the inequality Kk(X) < 0 im-
plies costh 1+ (a- for some a3 J1,=f,
2; < 1. Conversely, k(X) > o
for some g4 ¢ Jo,=[,

n 5.34
1) cosZ;) =a

hence
2
cosh™p cos

2— _ .y s
implies costh ((a+l)cos“x-1)

hence costh CDSZ; > 1 and the claim follows.



-~ 5] -

c) The set of singular points of Exp is invariant under the adjoint
action, hence, after a), is the union of the orbits of the singular points
of the form X = tU (cf. Proposition 6.13 ). The derivative of Exp
in the point X has the kernel o {ker(adX -2 in 0): n = 1, 22, ...}

(after extension of the scalars to &) by [Bou72] . Now
~in t 0
ad wtU ~ 27in I = 29 | -t  ~in 0O

Telative to the second basis, and the determinant of this vector space
endomorphism of s1(2) is 21mi(n2-t2). Thus the singular points on

the vertical axis are precisely nrlU, n = #1, 2, ... 0

To conclude the general description of S’M) we describe the two dimen~
sional subgroup Exp B, B = R.-H + RP by giving the level lines in s1(2).
This means that for a given fixed X ¢ [0, %J we wish to determine the
set {X: Exp X = X + xU; XEB}. But X = hH_+ 2pP = (hH +pT) + pU gives
Tise to the characteristic equation cosh pe’™ = cosh h + i % sinh h. If
we set s = tan x = % tanh.h_ we get p = sh coth h and the characteristic

equation becomes cosh e'™ = cosh h(l +is). Now
*
> * * h h _
X = :leﬁ‘ (h-H+p-T) = hH+p P and p—*- = ;- s cothh tends to s for
tp

large h. Since for h=h" =0 we find

* 2.1/2

P =p = arsinh s = log(s + (1 +s7) ) we obtain

Figure 15

\

ﬁrlog(S‘m
\
- n-s—%\
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Note in particular that the level lines are invariant under reflection
at the plane RU + RT and that the level line of -x is just the nega-
tive of the level line of X. Thus, if Exp B = {(X', B(X")) ¢ 51(2);
X'eE}, where B 1is the appropriate analytic function, we have
B(hH + tT) = B(~hH + tT) = ~B(~hH - tT) = B(hH - tT).

At this point we are ready to complete the proof of Example 5.27 , i.e.
to show that any proper subsemigroup of SL(2) containing a circle group

coincides with that circle group. This will be a corollary of the following

THEOREM 1V.5.36: Let § be a subsemigroug of G = s1(2) which contains
8 conjugate K of RU (i.e. the lifting of a circle Broup in s1(2)).
Then S=K or S=G.

Proof: Without loosing generality we take K =R'U and suppose that there
is an X e S\R-U.

We recall X = X' +x.U according to (5.16) and note that by IV,5.32d) we
have (-x)UcXe¢E. But then 0o F (-x)VoXes. we may therefore assume
that x¢E. By 5.32c and (5.15), we conclude

/vy | ("/2)VeXo (~1/2)U ¢ S. Hence by 6.32f , we note that
U=2Xe(xU)e (-X) ¢ 5 for all r<R. Thus S contains the analy-
tic subgroup generated by RU and R(eadxu), whose Lie algebra is ge-

d
nerated by U and e XU, and hence agrees with s1(2). Thus S=6G. [

X = ¢

ad X
re

COROLLARY 1v.5.37: A Broper subsemigroup of SL(2) containing a circle
BYoup coincides with it.

1
COROLLARY 1v.5,38: Let G be 1 on—
a quotient group of G modulo a n

degenerate central subgroup 2z apg let s* pe 4 subsemigroup of c*
T — =R —_ — Z 2UbsScmigroup of

containing a circle Broup K. Then s¥% - 'Sl or s¥%. c¥.

Proof: Let p: ¢ o g/z = ¥ by the quotient morphism and consider

S = p'l(S'). Then S is 4 subsemigroup of ¢ containing K = P_‘(K’)'
Since all one-parameter groups of ¢ whose image in ¢¥ is a circle
group contain the center of G, we conclude that K is comnnected and
thus is a one parameter group. Now Kk is of the form Exp R-W with a
conjugate W of y by Proposition 5.13

and shows Sa=g or S=g,

- Hence Theorem 5.36 applies
* But thisg implies that either
§7 = p(S) = p(r) = x¥ or p(s¥) = p(G) = g¥* g
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Note that Proposition 4.1 yields a lot of examples of infinitesimally
generated subsemigroups of G by pulling back semigroups from SL(2)
and then considering infinitesimally generated subsemigroups of these
pull backs (cf. 2.8 ), Here we will concentrate on semigroups which do

not arise in this way.

Recall from Theorem §.35 that B = P' is mapped diffeomorphically under
Exp onto a surface which we may describe by Exp B = {X ¢ 81(2): x = g(X")}
vith a suitable analytical function B from the horizontal plame £ in R.
We set Q' = {X e 81(2): x 2 B(X')} and 2 = {X e s1(2): x < B(X")}.

*/2 adl ﬂ+), since B(hH +tT) -g(hB -tT). Imn con-

Note that R~ = a(e
trast to the situation for SL(2) we find that & is a semigroup. In

order to show this we need the following lemma, which is of separate interest.

LEMMA IV.5.39: Let G be a connected locally compact group and let H
be a closed subg_r;p of _E If A is a closed subgroup of G, isomorphic
to R such that the ;ltiplication AxH + G is a homeomorphism, then
G\H has two Conn_ec-ted components which are both subsemigroups of G and

¥hose boundary is H.

Proof: Using the inversion g+ g']; G + G we see that the multiplication

EXA + G is also a homeomorphism. Let C be ome of the connected compo-

nents of A\{l1}. Define S=CH. Then S is one of the connected compo-

nents of G\H. But HC is also a component of G\H. Since HC and S

intersect at least in C they are equal. From HC=CH and the fact that

€C and H are semigroups it follows that $ is a semigroup. Moreover 1t

follows that S—l nS =@¢. Thus G =S uHuS_l and the other claims follow.

(Here & means disjoint union). 0

+ .
+ +
EXAMPLE 1V.5.40: We have (interior @) = ® \{0})U-Exp B and 2 is

a closed semigroup bounded by a two dimensional subgroup. Analogous state-

ments hold for g .

Proof: Consider the function F: s1(2) = SL(2) defined by

F(hH+pP+uU) = (exp ul) (exp(hH +pP))- From (5.13) we see that

h .
cos u sin u e % sin h
F(hH + pP +uU) = -h
sin -u cos u o e

Note that F maps B diffeomorphically onto the subgroup of upper tri=
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angular matrices in SL(2). Moreover the restriction of F to RU .is

a covering map of the subgroup S0(2) sitting in SL(2). Thus F 1? a_
covering map. If we now comsider 81(2) together with the group multipli-
cation o provided by F we see that RU is a closed one parameter
group and B is codimension one connected Lie subgroup such fhat the
multiplication RU xB - 'S\]'.(Z) (uU,hH +pP) » (ul) = (hH++ pP) is a hr:wmeo-
wmorphism. Now Lemma 5.39 applies and shows that (R \{0})UsB is an
open subsemigroup with boundary B. The uniqueness of the simply connectet
covering group shows that we find an isomorphic ¢: (s1(2),s8) + SL(2) of

Lie groups such that the following diagram commutes

(s1(2),9) -, SL(2)

N2

SL(2)

Thus ¢(B) = Exp B and ¢(ul) = Exp(uU) and the claim follows. ]

Example §.40 shows that ef advu Q+ and er adUy Q  are halfspace semi-

groups in G. In fact, since every two dimensional connected subgroup of
G is con_)ugate to Exp B under a rotation,

semigroups in G,

these are the only half space
This allows us to prove the following theorem:

THEOREM 1IV.5.41: a) Let § be an infinitesimally generated closed sub-

semigroupi_n G. If L(S)

is a semialgebra, then S is contained in
———-btnra 15 containec

the intersection
~o-crsection

s of a family of half—space semigroups in G, each of
——— Z2FSCt Semigroups 1in
which is conjugate either to I

Or to 97, such that L(ER) = L(S),
i.e. R = S.

b) For each semxalgebra w m s1(2) there exists exactly one E‘_f_lﬂlf—e;
simally generated closed subsem15rou S with L(S) =

Proof: By Proposition 5.16

» €Very semialgebra W is the intersection
of a family of half

-space semialgebras W

j* J €I, each of which deter-
wines a unique half Space semigroup §.

in ¢ with L(S ) = W-- In
L(nsJ) = an = w thus we

is 1nf1n1tes1ma11y generated by W = L(S) and since

exp W = exp(nw ) <

= Nexp W, < s, = S, then s is contained in S, as
5 is closed. Nov the rest follows. O

view of the definition of L(S ) we have
set S = nS If s
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Note that Theorem 5.4]1 leaves the open problem whether S s equal

to § or not.

We now generalise the motion of invariance to an arbitrary group G. We
say & subsemigroup S in G is invariant iff gSg-l =S for all geG.
Clearly a subgroup is invariant iff it is normal. It is also clear that
for an invariant subsemigroup § containing the identity in a Lie group
? the Lie wedge L(S) is an invariant wedge. 1f G=G we have only two
invariant wedges and we will show that they give rise to invariant sub-
semigroups. This is, among other things, remarkable, since G is a simple

group. We set

+
(5.24) ¥ = {XeG = s1(2): X is on or above the surface exp N}

(see Figure 14).

Note that

(5.25) [\ Exp rUon® Exp -rU = [\ LF 24U of
reR reR

= {X: cos x cos h lX'] <1, x20} = rt.

m 5.32¢ , the last

In fact, the first equality follows from Theore
i + . - -
equality g = f\ ¥ adU Q+ is straightforward, since e’ adl just a
reR
N while its

sweeps out the surface

D

rotation under which the ray R-P

image exp R-P sweeps out the surface exp N.

THEOREM IV.5.42: . a) z+ is a closed inpvariant non—-divisible semigroup

with L") = k.

+
b) I = [0,7]UcExp K. In par
duct of two exponmentials.

M - -
¢z is generated by each of its identity nexghborhoods.

d) (-NU) - £+ e G.
€ If we set I = -z¥, then analogous statements hold for I -

. +
ticular every element 3n " is the pro-

+
Proof: Since I = a(Z') it suffices ®0 treat I -
on of closed halfspace semigroups, hence is a

+ 3
a) »  is the intersecti
L(Z+) e K since all

closed semigroup. Obviously, conjugates of B are
tangent to K. The semigroup rt
open sets in I*\Exp(sl(2)) (see Figure 19)-

By b) below, L' < (Exp K) < (Exp Ky £*. since K is i

Exp K and hence I .

cannot be divisible, since there are

nvariant, so is
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b) It is clear from Theorem 5.35 and the invariance of Exp K that
RS [0,7]U « Exp K. Conversely, T [0,7]U < Exp K, as follows from
Theorem 5.32d and Figure 14,

c) Since Exp(K) 1is contained in the semigroup generated by each of the
sets exp(KnV) where V is a zero-neighborhood in 81(2), and since
rU e sU = (r+s)U, claim c) follows from b) above.

d) follows from (~nU) ozt = - {nvU} according to Theorem 5.32d |

THEOREM IV.5.43: If S is a non-zero invariant closed semigroup in ¢,

then §R=E+ or . In particular s=3" or I, if s is infinite-
simally generated.

Proof: L(S) is invariant, hence equal to K or -K. The closed infini-
tesimally generated semigroup §R is therefore equal to ' or I .
The rest is clear.

The existence of the semigroup 1’ secures on the Lie group G a partial

order compatible with the group structure

Let us summarize what this means for g:

EXAMPLE 1V.5.44: a) The group G allows a partial order which is define!
by B<h iff (-g)eher’ iff hegoz® - z* °g, and which is compatible
with the group structure (i.e. satisfies feg < foh and gef < hef for
all f, g€, and h with g<h).

b) For each B<€G there is a natural number n such that g < nl
(=Ue°...oU0 (n times)). 1In particular, (G,<) jg directed, i.e. for
any pair g,h € G there is an feG with g<f and h<f.

¢) The partial order is compatible with the topology in the sense that
the graph of =< jig closed in G xg.

and the monotonicity laws follow in the standard fashion from the inva-
riance of r* under inner automorphism. By Theorenm 5.42d we have

G = (1) -zt = 5t (V). Since B £ ol is equivalent to g€z+ ° (-n0),
this proves b). The remainder of b) is clear. The graph

{(g,h) € G xg: g=h} = {(g,h) ¢ GxG: (-g)-hez!y is closed since L'
is closed. This shows ¢), O

An partially ordereq 8Toup is called archimedeqn iff a" < b for all

ReZ implies as=], In the partially ordered group (G,S) we have
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Eotv <t¥ for t2 n/2

by the definition of t‘. Hence whenever Ee¢E, then by 5.32b we
have tU ¢ nEof' for neZ: Thus nE < tU for all horizontal vectors
E and all t 2 n/2. 1In view of the fact that every vector X with

k(X) > 0O is conjugate to a scalar multiple of H by 5.13 we can say
that for any X with k(X) > 0 there is a vector Y with k(Y¥) <0
such that all powers of X are dominated by Y. Thus (G,5) 78 not
archimedean, even though 5.44b) gives a weak archimedean type property.
We could have indirectly verified this observation by recalling a theorem
on partially ordered groups which says that a directed, partially ordered
archimedean group must be commutative. (See [Bi73] p. 317, or [Fue3] p- 95.)

This theorem is based on a theorem of Iwasawa (see loc.cit.) according to

which every complete lattice ordered group is commutative, and on the

y directed archimedean group can be embedded in a complete
(G,<) 1is pretty

theorem, that ever

lattice ordered group (see [Ful, p. 95). Thus the group

far from being lattice ordered, and we have seen the reason clearly: The

+ 4 -—
set of non-negative elements I  contains the translates of many sub

groups. In fact it is easy to verify that it contains translates of every

two dimensional subgroup of G.



Section 6: Global Lie wedges

In Lie group theory we know that there is a bijection between the set of
subslgebrasof the Lie algebra of & Lie group and its analytic subgroups. The
situation appears to be much more complicated in the case of Lie wedges on one
hand and global infinitesimally generated subsemigroups on the other. We have
of course seen in Sectfon 1 that every infinitesimally generated subsemigroup
of a Lie group determines a Lie wedge as its tangent wedge. From Section 5 we
know that not every Lie wedge in the Lie algebra even of a simply connected
Lie group is the tangent wedge of a global infinitesimally generated subsemi-
group - while it always is the tangent wedge of a local infinitesimally gene-
rated semigroup. The existence of global subsemigroups for a given Lie wedge
in a Lie algebra is a subtle question, and the research in this area moves

into largely uncharted territory.

We have seen in Chapter III that a very useful concept in the construction of
local semigroups was that of an invariant wedge field. It turns out that this
concept is also succesful in the global situation, but it requires more care-
ful preparation to use it properly if one wants to study semigroups with non-

trivial subgroups.

In the following let G be a Lie group and H a closed subgroup. Then G/H

is an analytic manifold. Let Ag : G~ G be the left multiplication by g e G,
then Ag induces a diffeomorphism lg : G/H = G/H via lg(g'ﬂ) = gg'H.

The tangent space T!fG/H) of G/H at H = 1 can be identified with 3/5
where ¥ and : are the Lie algebras of 6 and B respectively. Let

* : G~ G/H be the canonical quotient map, then a wedge We g/f is called
H-admissible if W = dl-’(l)(ﬂ) is invariant under Ad(H). If we abreviate
gH by & we obtain:

LEMMA IV.6.1. Let W be H-admissible, then for & = g' we have

1 =
d_A_g(_)(E) . (D(wW)

where dx (1) 1is the differential of 3 at 1

Proof: Note first that for 8 =g'h with heH we get ) . A 80
8 ~g' =h
H

that it suffices to show that dlh(})(ﬂ) =W for all h e



- 59 _

Now let Ig . G- G be the inner automorphism given by g' -~ 8_18'8 then

we have X = 1 5= L S 2‘-}\ for all h e H. Taking derivatives we see that
ho

the following diagramm commutes:

-1
9 ad(h )> o

d (1) l d (L)
dx, (1)

Gj/# _j—-—> ﬂ/‘f
But since du(I)W = W and Ad(h-1)w = W we obtain dlh(}.)(y-) = d-A—h(l)dj{(l)(W)=
(DA™ ) = de(1)W) = U. O

Lemma 6.1 allows us to make the following definitions.

DEFINITION IV.6.2. Let W be H-admissible.

(i) The family {W(g) c Tg(G/H) : uig) = dlg(l)(i‘.)' x(g) = g e G/H 1is called
the left invariant wedge field assoclated with W. The dual field

8~ (W(g)" ¢ T,(G/H) 15 denoted by wig).

(1) A piecewise differentiable curve ¥ {a,b] = G/H is called W-admissible

if  dy(e) e W(y(t)) whenever dl(t) exists.

Note that every wedge W in &} is {1}-admissible and all the definitions

in 6.2 make sense for W taking H = {1}.

-1
PROPOSITION IV.6.3. Let W be H-admissible and W = dx(1)” W. Then

(1) w(g) = dl(g)-13(§)
(i) 1f v [a,b] = G is plecewise differentiable, then:
it x oy is W-admissible.

Y 1is W-admissible if and only if ¥

Proof: (i) Let x e T (G) then X = d)‘g(l)y with y e g uniquely
&

determined. We have
dx(g) x e W(g)

if and only if dx(g)dr (L)y e wig)

if and only if dé%(l)d‘(l)y e !(E)

if and only if dx(l)y e ¥

if und only if y e W

{f and only if X = dlg(l)y e wig)- . 4 only if
(1) @y(t) = ax(y(t)) = dy(e), so by (1) ov(e)e Wir(e) if and onty

dy(t) e W(y(t)).
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Recall that for any vectorspace complement 44 of s in ﬂ we find an open

neighborhood By of zero in 4 such that (exp ByJH 1is an open neighborhood
of H in G and

% : By x H—> (exp By H
(x,h) > (exp x)h

1s a diffeomorphism (this is true since H 1is closed).

More generally for 8 e G/H there exists an open neighborhood U of g and

an analytic map UU : U~G such that 1 o GU = IdU. This will allow us to

lift W-admissible curves into W-admissible curves,

=

LEMMA 1V.6.4. Llet U be an open set in G/H. If GU : = G 1is differentiable

and satisfies x o oy = IdU ,» then we have dUU(g‘)(ET_g-) c W(GU(§)) for all ge!

Proof: dx(ou(é)) . duu(é)(ﬂ(_g_) = W(g). Hence

doy (8) (W(g)) ¢ dx(og(§)>‘*(g<§>> = Wloy(g)) by 6.3, 0

LEMMA IV.6.5. Let W - Ad(H)wW be a wedge containing £ . If 4 : [a.b] -G be
Let — 2 ¥=dge containing If

W-admissible angd n: [a,b] ~ 4§ is piecewise differentiable, then
——=>>tv’'€ and — —————— ——_—_clentiable, then

Yy ot [a,b] - g defined by T1(t) = y(eIn(t) is W-admissible,
—crined by — "TaChmissible

Proof: Let ¢, ¢ Ja,b[  and consider the curves ‘?1, ‘?2 and fi defined by

. -1 . _ _ e
¥,0(0) = v, () v, (0, ¥,(0) = n(e,) 1Y(t.) ]T(L)n(t,) and f(t) = nlt,)” nl1).
Then we have '?1(t) = ?z(t)ﬁ(t). But now ‘?1(t°) =1 = fz(tﬂ) =1f(t,) so that

d'?l(t,) = d‘f'z(to) + dA(t,). Therefore we calculate

d'y1(t,) = dA'ﬁ(t,)(l) ° d'f1(t,) e W(‘Y1(t,)) since

dn(te,) edew ang d¥(e,) = Ad(n(t,)) . dAY(t )_1(‘7(t,))(d‘7(tg))
€ AICED (A (e ) (Weyce, )y Ad(n(e, )W w.

a

PROPOSITION IV.6.6. For any W-admissible curve y ; [a,b] - G/H exists a
—= ~ —_-8Sible curve y exists a

w'w curve v : [a,b] ~ G suen that x o y o o,

Proof: Since ¥(la,b]) is Compact we can find a partition a = a<.,..<a =b
n

of [a,b]l ang open neighborhoods U, of y(a ) such that \J U, covers
=] -~ "n

k=0 —x
¥(la,b])  ang el a U, . Moreover we €an assume that we have
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differentiable maps o, : U = . =
P xS 9y G such that «x o, = IdEk, 1f g = gk(l(ak))

B4t

the ck with suitable elements in H from the right we may assume that

-1
(gll) - is in the identity component Ho of H. Thus we can find piecewise

o -1
and g = ak(l(akﬂ)) for k = O...n-1 we get (g"() e H. Multiplying

differentiable curves nk H [a ] ~H such that nk(ak) = 1 and

gt
n(a )= (g7 £ -
k(o) = (g ) or k = D...n-1. Now define =« : [a,b] = 6 by

y(1) = Uk(l(t))nk(t) for t e [ak,ak+1[ then ¥ 1is continuous since

-1
o = gt = -
k(l(ak-ﬂ )le(ak+1) gk(gl'() L 0k+1(1(ak+1))nk+1(ak+1) for k = O...n-1 .

y(o).
0

With this machinery of admissible wedges and curves we are now ready to introduce

By Lemma 6.5. ¥ is W-admissible and obviously x = y(t) = ‘Uk(‘Y(t))

the concept of positive functions which has been used in special cases by
Vinberg and 01'shanskii. Here it will play a role for the global semigroups
somewhat like Liapunoff-functionals in stability theory. The existence of

positive functions will ensure that admissible curves cannot ""come back'"

to the origin.

DEFINITION IV.6.7. Let W be H-admissible. A C1—map ¢ : G/H~- R is

called W-positive if do(g) e w*(g) for all g e G/H. A W-positive map

*
de(1) e int W (g), where

£:G6/H~ R 1is called strictly W-positive if
int denotes the interior. We denote the set of W-positive functions by
P(E) and the set of strictly W-positive functions by PS(E).

* * R
Note that int W and hence also int W (g) 1is empty as soon as W contains

@ montrivial vectorspace. Thus P (W) can only be nonempty if W is a proper
s =

Cone,

.

REMARK IV.6.8. Let W be admissible and W = d%(1)
A is W-positive if and

=9 % then ¢

Y 92:6/H~ R isaC'-map and
only if ¢ 1s W-positive.
de(g)(x) = de(g)(ax(g)(x)). If @ is W-positive
is W-positive we get

since dx(gW(g) = W(g). 0

Proof: pet x e W(g) then
Y get de(g)(x) 2 0 by 6.3i and If ¥
2(g) *(g)
2e)(dx(g)(x)) > 0 so that de(g) e W (g
REMARK IV.6.9. Let W be H-admissible, @ be W-positive and
Y:lapl~ G/H be W-admissible, then @ o ¥ is nondecreasing.
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Proof: @ » v 1is piecewise differentiable and dgey)(t) =
de(y(t)) » dy(t) e dop(y(t))(W(x(t))) ¢ R”

O

THEOREM IV.6.10. Let W be H-admissible and generating such that

P (W) 4 §. Then there exists a subsemigroup S of G such that
s = = = —_— 28
L(s) =~ w - dx(l)"g .

Proof: By the remarks made before we know that W 1is a proper cone.

Thus we find a vectorspace complement # for f in g such that
W=Wgna+ 4’ and W e 1is a proper cone satisfying dx(1)(W nm) = LB
Moreover there exists an open neighborhood B“‘ of zero in m such that

¢ B“'x H ~ (exp Bh)H given by (x,h) = (exp x)H 1is a diffeomorphism and
(exp Bn)H is an open neighborhood of H 1in G. Thus U” = x(exp B‘) is an
open neighborhood of 1 in G/H . Note that dl(1)| is invertible so that,
by making the neighborhoods smaller if necessary, w: may assume that

p = laeprB is a diffeomorphism. Now let Pe PS(E) and consider

2P B ~R then d(gp)(0) = de(1) « dx(1). 1f ce B, is a (compact)
base of W nw then dx(1)(C) 1is a compact base of W and de(1) e int E*
implies that there exists an € > 0 such that d(qa-p)_(O)(C) < [E_,"’[. By
continuity of d(g-p) and compactness of C we c:n now find a neighborhood
B.I c B‘u of zero and a compact convex set C1 = Bﬁ such that C ¢ int”C:'
and d($°p)(§)(£) Z; for all x e B, end c e Cy- Llet r >0 be such

that r ¢, « B, then, by considering the function t— ¢ -p(trc) for

cec,, :e see that e(p(rc)) > ¢(1) +_fl ; rede = 2(1): rt .—We set

51 =rz and K = p(rC1) and thus know that 3(!() c [!(1) + 51,"[.

Let W = d-(l)(m*c1) then Wio c 1nta/ W, - If W, = ax(1y"! LA JR"C1 +4
then WA= WNW -W) ¢ int H.l and [HL83a] implies that we can fin;a neighbor-
hood B of 0 in Bﬁx # and a subset ¥ of B such that

(1) I*InBcEcN.l

(11) w - {xeq i R'x a B c 5},

(111) exp B B ~ exp B 1is diffeomorphism

(1v) ¥ : [a,b] - exp B W-admissible implies y([a,b]) e exp I

Since the estimate for elplrc))

was linear in we may assume that

1'(:,l c B, Let U be a neigborhood of l in G/H such that

21 €.
MCUERES PR N S D
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Claim: Let v : [a,b)l = G be a W-admissible curve with ¥{(a) = 1 and
e v(b) e U, then x(v([a,5])) ¢ x(exp B).

Proof of the claim: Suppose there exists a t e Ja,bl  such that

y(t)) e (G/H) \ x(exp B) then we consider ¥: [a,t,] ~ 1-1(exp B) where

t, 1is the infimum of all such t. Recall that ¢ : By * H = (exp B )H is

a diffeomorphism and =z~ (exp B) c (exp B JH. Thus we find piecewise differen-

tiable curves Yy [a,t.] = exp B, and n : [a,t,] = H such that

) = v,(On(t) for all ¢t e [a,t.]. Since then 7,(0) = #Con™ (D)

Lemma 6.5. shows that 1 is W-admissible. Thus by (1v) we get v, (t) e exp I and hence
by (i) also Yy (t) e exp £ g exp By = exp(Z n B,) ¢ e:r:p(w,I n B) so that

7, (1) e p(R™ c1
LI T(tl) =X o 'Y.I(t.]) e K. But ¥ =% 1is W-admissible and hence by

n B‘). Therefore there exists a t1 € [a,t.,] such that
Remark 6.9. ¢ o v is nondecreasing. Thus @(rey)(b) > 2 (1) + €, and hence

(b) canmnot be in U. This contradiction proves the claim.

: 2
Let U be a symmetric neighborhood of 1 in G such that U°e exp B and
2. x(U) c lo(1) - 51_2 , @(1) + izll If v : [a,b] -G is W-admissible such
that ¥(b) ¢ U and ¥(a) = 1 then by the claim ¥([a,b]) c (exp B*)H so that
r(t) = ‘T.l(t)n(t) with 71(1:) e exp By, and n(t) e H and T, 1is W-admissible.
B, »H —~ B be the canonical projection. By continuity we find

Pu @ By - 1
2 neighborhood U1 of 1 in G such that U (exp ° Py ° ¢ (U])) c U. If

Bow let

then +(b) ¢ U, we obtain ‘Y.I(b) € exp ° P ° ¢ ;U ) so that
") = ¥y (5)7e UL Thus 7(6) = 7, (BIN(B) € U < exp B. Thus
1(b) e (exp z)(exp Z) nexp B c exp L.

Therefore, if s=1{geG: v:[a,b]l =G, v(a) =1, v(b) =gl is the
SEMigroup of endpoints of W-admissible curves starting at the identity, we get
Sp Uj cexp £ 5. Thus E(S)=w- D

PEFINITION IV.6.11. Let W be H-admissible, then we call

={gec: 37 W-admissible from 1 to g, W = dx(1)” W} the
sEmigroup generated by W.

Theor em 6.9. tells us that the existence of strictly W-positive functions
Buarantjes the existence of a global semigroup with tangent cone W. Now
Suppose that w1 © W then any W-positive function is a fortiori

tails the
E'l;positiVE. If we know that the existence of global semigroups enta
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existence of strictly positive functions then we could conclude that, given a
global semigroup S wit L(S) =W, an; wedge W1 contained in W guch
that H1 n w1 =W N_-W {5 the tangent wedge of a global semigroup. We do
indeed get conclusions of this type, but we shall have to make some hypotheses
on N1.

First we introduce some basic concepts and facts from the theory of ordered

sets, since this is the proper framework for the things to come.

DEFINITION 1V.6.12. Let G be a group and H be a subgroup of G, a partial

order < on the cosel space G/H 1is called left invariant if it satisfies

(6.1) 81H < gZH implies gg1H < ggZH for all 5,31,32 e G.
The set P.={glecG/H : g S gHl  is called the domain of positivity of < .

Note that (6.1) implies that Z 1is completely determined by P .

-

REMARK IV.6.13, Let x ; 6 - g/H be the canonical Projection and < be
—_— — —— ————~ EFfojection and < be

2 left invariant order on G/H. Then 5. = 1-1(P<) 1s a semigroup with
.3 - — i = T
S5 n S< = H,

Proof: 81,8, ¢ Si implies H < 31H, H <_32H as that H < 840 < 31523
and 8;8, ¢ 5. by (6.1) Moreover we have the following equivalences

-_1 - -
<=> 8 e s A <=>H53H,H§g1a<-=>nigui'gg’u-n
= B e H. D

REMARK IV.6.14, Let g be & subsemigroup of G with s s'_.pg
Let e 2 subsemigroup of .

Then gH is BoH 1 <= 8;182 e S defines a lsﬁi invariant order on G/H.
Proof: '?ote first th:t 55 is welldefined: Let g1H = g&H and ng = BéH
then g, (gé) , (g{)- &; ¢ H 80 that 3;132 €S if and only if
((31)_131)3;132(35135) ¢S if and only 1f (gi)'1gé e S,

is. The transitivity follows

from SS c S5 ang the antisymmetry from s n s = H. Assume finally that
<

H .e. -1 -1 -
88 X g0, i.e. that 8y 8, € S. Then (gg1) (ggz) = 8]182 ¢ S so0 that
g8 < 88, H.

Since 1 eHc § we have the reflexivity of
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REMARK IV.6.15. With the notation from 6.8 and 6.9 we have

for any subsemigroup S of G with S~ S-1 = H.

(1 =
) St<) s
s
(11) '<=(S<) = < for any left invariant order < on G/H.
Proof: ‘

(1) ge s(_<= ) if and only if H < gH if and only if g e S.

(i1) g H _<_(s<) g,H 1f and only if 5;132 e 5 if and only if

=

-1
H < g gH if and only if gH < 8.H

We collect this information in:

PROPOSITION IV.6.16. Let G be a group and H a subgroup of G.
1

The map S ~ < from the set of subsemigroups of 6 with Sn s = H

is a bijection with inverse

to the set of left invariant orders on G/H

< -
= S¢-

s us to speak about monotonic functions.

The existence of an order allow

< bea partial order on G/H then we call a function

DEFINITION IV.6.17. Let
implies (g H) < #(g,H).

® : G/H-~ R monotonic if g.H < 8H
all monotonie functions is denoted by M<(G/H).

The set of

Now we return to the context of Lie groups-

DEFINITION IV:6.18. Let G be a Lie group and H a closed subgroup of G.

is called causal if there are no closed E—admissible

An H-admissible cone Wc93/3

curves in G/H.

en we can define a left jnvariant order

here exists a W- admissible curve in G/H
induced by W.

REMARK Iv.6.19. 1f W is causal then

[
Sy ©on G/H by setting g,H ;B H
This order is called

if there
the causal order on G/H

f"&s,ﬂ to  g,H.

Proof: Reflexivity and transitivit

y are clear, the antisymmetry follows from
the definition of causality. Thus it only remains to show the left invarial

But that is clear since v = }_s- v is E-admissible for any !l_-admissible ¥ .

nce.



- 66 -

If Pw is the domain of positivity of Sw we know fraofh 6.8, that
- ol il . PR
5, = 1‘1(}’“) 15 a subsemigroup of G such that Sw n (SH) = H and

s -1 - _
8,H SWSZH if and only if B By ¢ SE by 6.15,

REMARK 1v.6.20. Let W be a causal cone then SH = 8§, .

Proof: Recall that SH is the subsemigroup of @ which consists of all
elements which can be Connected to 1 by a W-admissible curve, By 6.3 and 6.6
we get .(SE) = P! = I(S‘i) so that SWH = SWH = SH . D
REMARK IV.6.21. Let W be H-admissible, then W 1is causal if and only if

-1 T T T/ == £ 1Is - -
S! n (SH) c H.

-1
Proof: Let g e (SH n Sw J\H then there exist W-admissible curves
Y1073 : [0,1] - 6 Tsuch that v,(® =7,(0) =1 ang ¥ (D
where W = dx(l)(E). Consider v3 + [0,2] - ¢ given by

()

g =1r2(1)'1,

'r.'(r.) tel0,1]
73(t) =
B Y,(t-1) te ]J1,2]

Then Y3 1s a closed, W-admissible curve with 73(1) =g * H hence by 6.3
X oo Y3 is a closed, nontrivial, W-admissible curve.
Conversely, suppose that Y : [a,b] ~ G/H is a closed nontrivial W-admissible
curve, then by 6.6. there exists a W-admissible curve v : {a,bl - G such
that x . y _ Y . Without loss of generality we may assume that +y(a) = v(b) =1
s0 that ¥(b) e H. As in 6.6 we may assume that y(a) = 1 ang ¥(b) is in
the identity component of § .80 that Piecing together with a path in H
yields a W-admissible closed curve 'y.’ H [a,b'] ~™ G. Since Y was nontrivial,
we find a t. € ]a,b'[ such that 11(t,) e G\H. Now consider the curves

[ t.) — : ind
72( ) a,t.] ?1 and LETEEN § J0N Y SR where 1,00 = 7,(t) and

t) =
Yy 'r.'(t.) ‘71(1:). Then Y, and Ty are W-admissible curves with
1,0(8) = v () < 1 - -1 -1
2 1, and v,(t,) =7,(e) =v30)7 | hys Yi(t) e s, 05 \EH

Now suppose w is a causal cone,

functifns as well as the concept of Positive functions, For ¢ = R, H= {0},
W= R these would be the monoto
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rentila e functions with p051L1ve erivative respectively €. e
differentiabl t d i e ti ly, 1. th

positive f
unctions are exactly the differentiable monotontc functions

This is true in general.

PROPOSITION
IV.6.22. Let W be a causal cone in cx/: then

P(W) = c'(6/H, R) n M (G/H) .

>

Proof: L 1
et ¢ e C ‘G/H,R)N M;(G/H) then we calculate the differential of

¢ by taking directional derivatives

ap(gH) (dr_(D)(x +f)) = lim Ligt(g exp wom) - o(eh)
o

then exp tx e Sw for t >0 and
Thus, the monotonicity
that de(g)(dr (Ux)2 0
g -2 =
o e P(W).

£
°or g e G and x eof. If now x € W
he

nce H < (exp tx)H so that gH 5, < (g exp tx)H.

f
ot e Shows that de(gH){(dr (l)(x +‘))_ 0, i.e.
2o =

for al
all x e W so that dm(é)(y) >0 for all ye W(g) and hence

Then 51 82 e S and we find

Con
versely, let vy e P(E) and gqH SWSZH.
1, y'(b) = 8 sz

a W~ S z
admissible curve 7 : LO, 1] = ¢ such that y(a) =
is a W-admissible curve from g,

G/H and by 6.9. the function

The
refore the curve Y, (t) = g."Y(t) to g,-
is a W- admissible in

o x o .
Y, 1is non decreasing. Thus ‘P(g‘[{) £ W(gzﬂ)

functions than positive functions.

By 6.3. the curve X ¢ v
and 9 e M, (G/H).
q’

SomEt
imes it is much easier to find monotontc
W is a causal cone and Sw has nonempLy interior

For example, if
1 g e int §H
Xy : G/~ R, (gH):{ —
g W 0 g ¢ int S
W

-1 -
function. In fact g.IH =<’W gZH implies 8&; 8; ¢ S-“—r -
5 by 2.5. s°© that

e int Sw
xw(g1H) =0%g XF_(SZH) anyway .

is a monoton

If 5 -
&) e int S this shows that &,
X, € = = int § h
W g,H) = X, (e ) = 1- 1f 8y § int 5, we have
Therefore Proposition 6.2 2. suggests to TrY to obtain positive functions by
sider a left Haar

functions. To this end we con

Te . .
gularisation of monotonic
surable essentially

and assume that @°
- G- R"Y has compac

measure p on G .G - R is au-mea
t support

b .
ounded monotonje function. If £
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we calculate

£ *x (gox)(g)

n

g £(g,) 9ox (g;;)du(g1) =

1
J f(g1) qa(g1 gH)dp(g.l)
supp f
If now H < g.H then g H < 3-15 H and w(g—1g H) < @(3-13 H). Since

o B 58 81 B 58 8y 15270 = 918y 8,

f was chosen to have positive values and f = (gox)(g) depends only on gH
we find that fag : g/H -~ R defined by fw® ¢lgh) = £ % (oex)(g) is a
monotonic function. If £ is C1 then f * (gon) is C] and since famyg
can be locally defined as (f * (gex)) o o with some local section
0 : G/Hn U -6, we see that ¢ wp is C1 » hence by 6.22. W-positive.
Suppose that § has nonempty interior then we have f X,; € M_ (G/H) for

W L

any f e Cl(G,ni+). Of course any constant function ¢ : g/H ~ R is
pPositive so we are interested in deciding whether £ B X,; 1Is constant or not.
Suppose that 8, € int éw - Then we can choose a neighborhood U of 1 in G

-1 hud -
such that Uy = g and Ugo are contained in int SW' Then for

1 pad
fe CC(G,HQ*) with supp fe U ang f(go) >0 we obtain

-1
fo xw(go) = 5 f(g})xﬂ(g1 goH)dg1 = g f(g1)dg1 >0

Moreover f g xw(g) =0 for all , satisfying g ) éw. Thus, if §w is not

dense, such a U exists and we have proved

PROPOSITION IV.6.23. Let W ES 2 causal cone such that §w has nonempty EEESEESE

but is not dense in G. Then i Py s N
—— =2 I8 dense in Ihen there exists 2 Don-constant W-positive function

on G/H. il

Now let ¢ be a nonconstant W-positive function on G/H. Then there exists

® 8, €6 such that dw(gOH) is nonzero, Consider ? =9 then ?,

Ag-1
is still W-positive since 80

de, (gH) (W(gh)) - d¢(g;'gn) - d&g

Moreover we gee that dW,(H) is nonzero.

1) (Wigr)) = dm(g-lgH)(w(g-1gH)) < r" .
> - o =8

Therefore 6.23. yields:
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be an infinitesimally generated subsemigroup
and maximal subgroup H=S8n S'1.

PROPOSITION 1V.6.2%. Let S

of 6 with tangent wedge L (5) =
If G(S) =G, then H 1is closed and there exists a ICRF DY &
G/H - R with dg(H) ¢ 0 where £ =1L (H) 1is the Lie algebrs

positive

function ¢
of H,

The first statement follows directly from 3.7, so it only remains to

Proof .
to W +‘/‘. To this end note first that by 3.7

show that we can apply 6.23.

the group H 1s also connected and hence the admissibility of W = (w +:)/#

is equivalent to the fact that W 1is a Lie wedge with edge# . Moreover,
is egual to the semigroup generated by all end-

G. Therefore by [HL84] Sw c SW < SW

exp W. Since SH c S and

by 6.6. the semigroup SW
points of W-admissible curves in

where SW is the subsemigroup generated by
L(S) = W we conclude that Sy is infinitesimally generated with tangent
vedge L (sw) =L (S8) = W. Again from 3.7 ist follows that

T -
! is causal by 6.21.

Swns =S ns = H so that W

Note that HCSN since it is connected so that S, = Sy by 6.20. But then
we know from 2.7 that §w bhas dense interior. Finally 1 (S ) =1 (s) =
implies that éw cannot be dense in G and we can apply 6.23. to W.

S be an jnfinitesimally generated subsemigroup of
infinitesima’ 7 5 — ——

L (5) =¥ and W, 2 Lie wedge in o
of G with Lie algebra 31 = 1ﬁ( - )
of G such that L (S)

THEOREM IV.6.25. Let
such tha(

¢ with tangent wedge
Wy ccw. If the analytic subgroup 1,
L closed then there exists a subsemigroup S,

Proof. By 6.24. we find a W-positive function G/H = R, where
H=gs nSq , f=L (§) end W= (W _,,;)/‘, Moreove
ker(dg(H)) is a hyperplane E/; in %/{ where E is a hyperplane in

e that 6.8 implies that ¢ ° %
Xt G ~ G/Hy be the

r we can assume that

is W—positive

such that E n int W = @#. Not
vhere x ; g - G/H is the canonical proj ection. Let 1
G/H,‘ then @ ° X = ®; ° 2 fo'r some C -fu:cti:n
M G/H1 - IR. We remark that W, = W.‘/f.l is H1—admlsslble since H, s
- n (-W,) =j1 =1 (H ). Again

connected and W is a Lie wedge with W,
: -positive. Moreover, since ker(dw(H)) = E/i

€anonical projection onto

by 6.8 we conclude that @, is
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we get ker(dqa,I(H )) = E/:V Therefore de, (H Y w +;1) >0 for all
weW \31 since W \f1 € int W. Thus ?, e P (W }  and Theorem 6.10
1mp1ies the existence of the subsemigroup S1 of G such that L (51) = W1. D

The following example shows that the hypothesis w1 c€ W can not be replaced
by W1 C W. Let G1 be the Heisenberg group and I(1 be a cone in L (G1) =31
containing a central point in its interfor. If G = G,' x IR and

N1 = l(1 e R' then w C31 e R and G + R" is a semigroup with tangent
wedge W :%1 + RY Nevertheless there can not be a semigroup S1 in G.

with L (51) = W, since L (s ) = v,

implies §.' = G1 by Example 5.5.
Suppose that ¢ is, as before, a connected Lie group and N is a closed
normal subgroup, Let x t G ™ G/N be the canonical projection and S

be a subsemigroup of G/N with L (S ) = W.- We have seen in section 4
that for dl(l)_1wl =: W we can flnd a subsemigroup S with L (s)
After 6.25. there arises of course the question if {t ig possible to find
subsemigroups S‘I of G with L (51) = for any W_ c y satisfying

1 1
d!(l)w1 = W,. We cannot apply 6.25. since we don't have W, ec W. Never-

First we need a few lemmas

LEMMA 1v.6.26. Let % be a lie algebra and W a wedge in % .
Z.etbra — &t 1in

Let V=wnoy be the edge of the wedge and E 4 vVectorspace complement
=~ =--Orspace complement

of v in ﬂ - Then there existsg 2 proper cone in q with Knv={o0}

and a neighborhood B of zero in 3 Ssuch that x*y ey together with
. .
*Y e B nE implies X+y e K. Here =* denotes the Campbell-Hausdorff
multiplication. Moreover, if F is fi
y a xed subspace of E  such that

Faw= {0} Ye may choose K sych that K nF = {o}.

Proof. Let p: beavectorspace complement of Fp in E  such that

, :
WonF' £ {0}, Let 0 ¢ o €W nF' and E1 be a hyperplane in E containing

Fsuch that w , E = {0}, Now choose an inper product < | > 4p 3 such
that ]RxO . E'l ®V is an orthogonal decomposition, Let KE =W nE , then
Kz is a proper cone with K_E n (E * V) = {0} apg hence there exists an
a Io,x
o € 10,%/2[ such that a(xo,x) < @, for all 4 ¢ KE where u(xo,x)
denotes the angle between x and x

(o]

<X ,y>

I<T Ty ]

cos(a(x,y))
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Yy + [x,y] +eon

constant

Recall that x * y = X +
B f i
o of zero in 3 and a

all x,y e B .
o

such that |x+y-X*Y|<

so that there exists a neighborhood

clxl 1yl

for

If we decompose x * y = e + z where e € E and 2z e V then we get
Ix+y - x=* ylz =lx+y- elz + |z|2 since E and V are orthogonal.
<x°, X+y>
We want to calculate cos(u(xo,x+y)) o 1 7%
Note that e e W so that
<X, X+y> <xo,(x+y) - x¥y> + <x_,e> + <x 92> )
'xol Byl lxol Jx+v1
<x0,(x+y) - xky> 4+ <xo,z> . <X°,E> )
T ol x TB
<X _,e>
<x_,(x+y) - x*¥y> + <x , 2> <X 0€> 1
o o ( - )+
T x x+y 0 xol B [x+] |x0| <
o
We get
<x°,(x+y) - XFy> + <x0,z> Ixol c le |y| + 'xol |Z|
<
Ix T Peovl = of 17
< 2c hd
= X+Y
and
IQD’e>(1 |x||e| e|) <
Ixol Iel l I +y
|x+y - e| c IKIIYI
< X+y 2 xX+Y
Therefore
y
|c°s(u(x°,x+y) - cos(u(xo,e))l <3¢ ey

and hence we can find an
e 10, w2l .

a(xo,

"‘(Xo,x+y) < o

{xeg:

and K = x) < 01}

e such that Ix

Thus we define

| |y| < g 1implies

={xeﬂ=|"'<e}

d

B=Bs
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LEMMA 1V.6.27. Let V be a finite dimensional vectorspace and W & proper

cone in V. If V = Vie Vv, and Wn v, = {0}, then p1(w) is a proper
cone in V1 where Py : v~ V1 is the projection along VZ. Moreover,
for any neighborhood B of zero in V we find a neighborhood B1 of zero
——= Z¥ nelghvorhood LI Zero inm — —__ 82 nhelgnborhood Dt Zzero

in V1 such that x e X, ® X, X, e B1 » Xy € V2 and x e W imply x.l,x2 e B,

Proof, Enlarging W, if necessary we may assume that there is an inner

product on V such that V1 ° V2 is an orthogonal decomposition and W
is of the form W=1{xev : o < u(xo,x) < a, < %} for some x, eV,
where again u(xo,x) is the angle between x and x. But then, for

X = X, @ x we obtain

1 2

2 | <x ,x>|2 J<x ,X1>,Z

0 < (arc cos uo) §+2: c’2\22- S
Ixo' 1=l 'xol (|x1| + |x2| )

2 2 2

IXOI 'X-Il Q . Ile -1
I _<c
be Pl BT 1) Ix 17

If we set ¢ = (arc cos uo)z then we get

2 1- 2
Ix, |7 < (225 I 1

<
and hence
2 1 2
Ix' £z |x1|

g

LEMMA IV.6.28. Let G EE a lie 8roup and W be a Lie wedge in CI =1 (G)

such that EES analytic subgroup § fE G, torresponding to EF =Wa -Ww, is
P ————"PoNding to

closed. Let SW be the subsemxgroup G  generated EZ exp(W). Suppose that

for any local subsemigroup (SU,U) of G with tangent wedge W we can find 2

neighborhood U1 of 1 in G such that Sw n U1 c SUH. Then E&Sw) = W.

Then it suffices to show that we can find a neighborhood U1 such that

u - Let Vo be a symmetric neighborhood of 3 in G such that
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2
VvV clU . We set § =5, nV then
o o v, v, o (svo, Vo) is a local subsemigroup of ¢
with tangent wedge W. Thus we find i

a neighborhood U1 of 1 in G such

that SW nU, < SV H. We may also assume that U Vo. But then

1 o 1
g = sh e SW n U'I with s e SV and h e H implies that
-1 2 o
h =
s g e VOU1 c Vo = U° so that h e SU - Therefore s and h are
[o]
contained in § d i i
Uo an sh e Uo implies g e SUO. Thus S]'J n U.l c SU .
o

We can now prove the anounced theorem:

THEOREM 1IV.6.29. Let G be a Lie group and N be & closed normal subgroup

of G. Let ¢ : G - G/N be the canonical projection and W be a generating

Lie wedge in o with W A -W =#. Suppose that
(1) The analytic subgroup H of G with L (H) =f is closed.
(1) W g = £rm where m =1 (N).

(ii1) There exists an infinitesimally generated subsemigroup S
hall) x

of G/N

with 1 (sx) = dx(1)W.

Then there exists a subsemigroup § of G such that L (s) =

Proof: Let H - S n 5;1 then by 3.7 the group Hl

x x
¥ith Lie algebra g =W n-W, where W = de(1)W.

= (frn)im .

is closed and connected

Therefore (ii) implies

We can decompose 9 as a vectorspace into q =F' o F s f where E=F"eF
= E qdn(1)” (f) En({f+an)

i
® any vectorspace complement of f e o f
in E. Note that

and finally rr s any vectorspace complement of F

K = ;

E=¥ nE is a proper cone such that

k

er{dz(1)) A KE c ker{dn(1)) o W n E ¢ #n s E = {0}.

and K n F = {0}.
o

L
ot K0 be cone in E such that KE cc l(
In fact X +y =W,

This j

his ig Possible since KE nFcEn (#+$;) n W= {0}.

Viere x o ,ye ,wewWnE implies y e Wa#= - filad so that we g "

. -

nally we set w - #4- K_ and obtain that W, : w"
o °

and W cc w

1

is a wedge with WD

K in 9 such that

W
® apply Lemma 6.26. to W and find a proper cone
such that x*y e wo

Kn

$- 10 and a nelghborhood B of zero in &
Wi
ith x 2w eB nEg implies x4y e K. Moreover we ma

= {0}.

together
= {o}

y assume that K nF

Since
WnF_ =
W nE nF=K nF
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Consider L_ = dx(l) g ~J/Mm. Then F! =L (F') = (F'4m) /gy and
x n x
;x = (‘41;)/“ yield a direct vectorspace decomposition 3/* = F" 9*1.
In fact q/*: L‘(ﬂ) = LK(F'+ F +f) S L‘(F‘) +:l = Fl' + 3“.
Moreover x +#4=y +1 for x e F' and y e; implies
xe (F+m) nF' =Fn F' = {0} hence Yy e, so that F n§‘={ﬂ}_

Next we study the local decompositions of the groups G and Gl = G/N
arising from the decompositions on the Lie algebra level. It follows from the
closedness of H and Hx that we can find open neighborhoods BF' and BF
of zero in F' and F respectively as well as an open eighborhood BF' of

x
zero in Fl' such that the following maps are diffeomorphisms onto their (open)

images in G and G( respectively:

¢ BF’ x B, x H — (expGBF')(expGBF)H

(x,y,h) - (expGx)(expGy)h
[T B, x H -~ (expG B JH
x LA
(x‘,hl) - (expG‘xx)hl

Note, that we may assume that L!(BF’) = By, since L‘IF'

. : . X
is an isomorphism of vector Spaces. Moreover we may assume that BF x BF < B.
'

F' - F!
3

Let (SUO,UO) be a local subsemigroup of ¢ with tangent wedge W. Making v,

smaller if necessary we may assume that U ¢ ¢(BF|>< BF x H) n exp.B and that
o G

-1
exp exXp, (Uo) - Uo is a diffeomorphism. Moreover we may assume that

G -1 .
fexp™ '(u)
-1 .
SUOC expG(wo n (exp Uo)) since W cc WO. Now let U bpe neighborhood of 1
. 2
in G such that y* c Uo and we set SU = SU "U. By Lemma 6.28. it suffices
o

t h h i i i
© show that we can find a neighborhood Uw of 1 in ¢ such that

sw n Uw < SUH, where Sw is the subsemigroup of G generated by exp W.
Let g = ¢(x,y, h) with x e BF" y e BF, h e H. Then

x(g) = l(expGx)x(expGy)h = expGl(L‘(x))expG (L‘(y))t(h).
x
Since H is connected and hence generated by expr we know that x(h) e H_.
x
Similarl i v
milarly expG!(L‘(y) ) e B since Lx(y) e (fwﬂ.)/ﬂ, . Thus x(g) =¢1(L. (x),h')

with h_ = e
x xpct(L‘(y))l(h) and L(x) e By, . Suppose that g e 8
x
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and (exp_ x

Pg )(expcy) e U as well a hel, then h_1e Sy (we may assume
(ex

Pg x)(expGy) e 55,0 Uc 5y

xB

U and U to be symmetlr 1C) hence
(we may assume B
F* F

Therefo i
re we find x*y = expG ((exp x)(exp y)) e W,

pbell- Hausdorff ne1ghborhood) Since we have

to be contained in a Cam

-1
exp. U

gV 2B 2B, B, we get x+y ¢ K nE.
in G such that U?c U. Now

Let
U, be a symmetric neighborhood of 1
What we find

1
we a
i pply Lemma 6.27. to E = F' @ F, KnE and (expé1U1) nE.
s a neighborhood
o B[:_| such that x = Xq + X3 ,x1eB£., and xzeF

with .
x e K imply Xx,,%X, ® exp-1(U )
0f course we ma 22 v
y assume that LI(B") = BI:“ BF' . But by 3.6 we may also
assume that x
a 5,\(5‘ n (Lexpg (B%,))HI)) is a left ideal in Sy~ (here we
1 3
]
')Ht instead of H_ expG!(Blll;) ).

have to
use left ideals since we usé expg, (B
1

such that

t
x(Uw) c (exPG!BF;)H:' If now

Now w.
e choose a neigborhood Uy of 1 in G

$(B B i

F1 x F x ) n u DUw and

= (0 4(x -1
h *

K1 )) e U , where X Yie e W, X_ € BF' n expg (U1),

y
keBFnexpG(u) and hke

k YYk ’
U1 then

1)

x( _
g) = 1 ¢I(Ll(xk),(hk)‘) es, 0 (exPG!BI_'-;)H, ,

k=1
since x(
Sy) < 8y -

The 1eft-ideal-property now shows that for 8 =
the elem k=m

ents < : .

'(Sm) are contained in s, " (exPGlBl:';)Ht' We claim that
g e
m & Sy# end prove this claim DY induction:
Clearl
y s, = ¢(xY, ) e Syt
x * Yo ) e expfW " exp Y Sy 2
always assume that exp(W n (exp  UN) < SU).
m) (m)

s of the for® dc(x(m), ( ) where

since X * Yo e W so© that
(Taking the relative

(ex
. chn)(expcyn) = exp(
clos .

ure of S, in U we may
S

UH, then B i

If
now g e

(x (m) S(m

(m)e H such that

) e B_,x Bpe Moreover there exi
he argument given above we fi
(

(
¢( m) (m)eSU- By t
("‘))e expg Bf , we

(m) y(m’ e exp;1(U1) .

]

nd that X +
and i
y since t(gm) = ¢.(L‘(Xm s

Thi (m)
us x e Bp, which shows that x

n
= Hw(xk K’

sts an D
(m) _(m)
y [ ]

hk)



m))— (m))‘1é e UZU c U2 c U so that h(m) e U |
m

( 1 (
But then expG(y exp (x 1 ° o

) (m)y _ 2 pmy-n

(m)
hence h € S, . Therefore we get (expGx )(expcy = gm(h
2 2
SU SU n U cSU c U) .
[o] o] [e]

From this we conclude

(m)h(m) -

(m)
g = (exPme-1)(exPGym~1)hm-1 exp.x eXp.y

m-1
( (m),,, (m) 5
= expc(xm_1* ym-T)hm—1((exPGx rn)(expGy Tyt e(SUO n U1) H

c (sUcn WH = sgi

Finally we note that the elements of the form ¢(x,y,h) with

x*y e W , x e BF' , ¥ e BF - he U1 generate SH so that we have shown

Syn U, cSH .

with prescribed tangent wedges starting from certain semigroups whose tangent
wedge we know. If we don't have any semigroups to start with, we go back to
the examples, and find that we may have different reasons for the nonexistence
of subsemigroups with a prescribed tangent wedge. For instance the invariant
cone in s1(2,R) 1is the tangent cone of a subsemigroup of S'I\:(Z,]R), but
not the tangent cone of a subsemigroup of SLZ,R).

of topological Nature.

cone of a subsemigroup of the Heisenberg 8roup. In this case the obstruction

was of algebraic nature. It is possible to study the different kinds of

obstructions separately. In face,

N Suppose that G jg , connected Lie group
and ¢

is its simply connected covering group. We have seen in 4.1 that any

Preanalytic semigroup § in g which generates G can be pulled back to a

v .
semigroup S in ¢ with the same tangent wedge. Thus any algebraic obstruction

A
dering just ¢. This was to be

. A
expected since G {s completely determined by ﬂ =L (@ =1 (8)- We are
lead to the following definitions: B -

to the existence can be detected by consi

DEFINITION 1v.6.3(0. Let W be a Lie wedge in a finite dimensional Lie algebra

g. We say that w is glo

. . - Py g
2 bal 1nﬂ if in the simply connected Lie group G
with % =L (G) there is

an infinitesimally generated subsemigroup S
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with W = i
L (S). We say that W is global if it is global in the Lie algebra

<«W>> generated by W in 3 .

Not i
ote that for any preanalytic semigroup § 1imn G the tangent wedge L (s)

i
s global. Hence any wedge in an abelian Lie algebra is global.

Not i
e also that 3.7 implies that the analytic subgroup H of ’(\5 corresponding
to th
e edge of a global wedge W in 1 is necessarily closed. We call a
subal i i

gebra # of % admissible if the corresponding analytic subgroup B

n
of G with L (H) = : is closed.
The edge of a global wedge W in

Thus the above statement can be reformulated as:

js an admissible subalgebra.

We iy
remark that the admissibility of a subalgebra is, contrary to the first

impression, an algebraic property.

P iti .
roposition 4.1 yields the following pullback Lemma:

be 2 morphism of Lie algebras. If W is a

LEMMA 1v.6.31. Let f : 9y ¥
then £ (W) 1s global in &y-

W .
wedge in 9, which is global in &, .
cted Lie groups with L (G.‘) =

be the simply conne
ectivity yields the existence

Proof. Let G1 and Gz
The simple coni

with dF(1) = f. If now 5, 1is an
satisfying L (s) = W
ply Proposition 4.1

and L (Gz) =9, respectively.
G1 ind G2
emigroup of G,

82 has inner points by Theorem 2.2. and hence W€ can ap

of a Lie group morphism F :
then

infini ] .
nfinitesimally generated subs

t .
o obtain the desired result.

This lemma shows that any wedge W in containing the commutator algebra
is global (cf.chapter I1}. More ger\erally we obtain the following lemma, which

mentioning since it is frequently useful.

deserves independent
LEMMA 1v.6.32. I1f W is 2 Lie wedge in a Lie algebra 3 and if W contains
an ideal 1. of % such that Wi is global in q/" , then W is global -i—“—ﬂ

emma is the fact that globality does

Another consequence of the pullback-L

not depend on the embedding Lie algebra

PROPOSITION IV.6.33. let W be a Lie wedge in 2 Lie algebra 1 . Then W
is global in % if and only if it is global.
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Proof: 1f W 1is global in <<W>> it is obviously global in Ca . Conversely
if j 1is the embedding of <<W>> 1in ﬂ then Lemma 6.31 shows that W
global in 3 implies that W = j_1(w) is global in <<W>> | hence
global. 0

Note that the truth of Proposition 6.33. heavily depends on the fact that we
required the semigroup S with L (S) = W only to be infinitesimally

generated. Had we required that it be closed in G, then the situation would
be different. It is perhaps good in this context to contemplate the follwing

example:

EXAMPLE IV.6.34. Let g‘l be a compact semisimple Lie algebra of rank at

1 t 2. Let & b i = .
eas e € a maximal abelian subalgebra of g'l and set % q.! e R
Let g be a vector subspace of et which generates in the simply connected
Lie group lS1 with L (G1) = 31 a non-closed dense analytic subgroup of

the maximal torus T generated by ex .

Now W=V a Rr? is a global Lie wedge for any wedge V in f by
Proposition 6.33. But if V is generating in ‘ (i.e. * = V-V), then no
infinitesimally generated subsemigroup S5 in Gy ®R with L (5) =W is
closed; in fact its closure contains T e IR and L (T e R) is et e R. D

One can also obtain global Lie wedges as the intersection of global Lie wedges.

LEMMA IV.6.35. Let Wj , j e J b_ei family of global Lie wedges in a Lie

algebra % and W be their intersection. Then W is global
ZH8IT Intersection. Then is global.

Proof. Note first that for any Lie subalgebra 4w of 9 the wedgesm n WJ.
areglobal by the pullback Lemma. If we set m = <<W>> we thus may assume
without loss of generality that 3 = <W>>. Let now G be the corresponding
simply connected Lie 8roup with exponential function exp :q - G and Sj

be the subsemigroup of @ generated by exp W.. Then by hypothesis
J 2

L (sj) = W; and therefore L (G(SJ.)) = <S> 5 a2 9 so that G(s,) =G

N j
Now Theorem 2.8. shows that L (Sj) =L (Sj) = W, where § is the closure
- j ;

of Sj. Let S be the semigroup generated by exp W. Then § is a ray

semigroup with G(§) = g by Theorem 2.2. Thus x e L (S) if and only if
exp R*x < .« -

wl

: 5 But § ¢ Sj for any j e J hence x e L (8) implies
eprRngj for any j e J. Thus L(S)c(\L(S)—AW‘W
3 =250 = °

ieJ . i -
Conversely W c L (38) by definiticm, Je jeJ D



Note that Theore

PROPOSITION IV.6.36. Let W be a globa’

ms 6.25 and 6.29 also yield informat

19 -

ton on global Lie wedges:

lobal wedge in the Lie algebra o and

W, be a Lie wed
alb.;_;— ge auch that w1 W and W.‘A- H.‘ is an admissible
subalgebra, then W, 1o global. O
PROP
0SITION IV.6.37. Llet g be & Lie algebra and 4 an ideal in g .
otient map and We o is a Lie wedge

Suppose that ¥ :9 ~ 0\!/4 is the qu

such that
(1) x(W) 1s a global Lie wedge -
(11) 4+ oW cWn-W.

(111) Wwon - W
Then W

is an admissibl
is global.

There are very few g
given wedge is global.
this approach it is reaso
ones. The biggest kind of
and only if the bounding hyperplane

understood {cf.[Ho651):

LE
MMA 1V.6.38. Let ¢ be 2 (real) Lie

of codi <
of codimension one which contaln® ==
one contains

the ¢ :
—_— M three cases Occurs.

1€9)

e subalgebra-

eneral methods known at
One was to compareé th
nable to now study SP

wedges are the halfsp

O

the moment to decide whether a

e wedge with global ones. Given

if possible big
wedges 1f

ecial cases,

aces. They are Lie
a situation which is well

is 8 subalgebra,

Lie slgebra anc and ot 8 subalgebra in o
a5~ suba e  — —

nontrivisl jdeal of ﬂ . Then one of

q =R and &= {0}-
(i1) a b X
q- {[0 0] , a,b e R} is the abelian algebra of dimension two and
o is any line in different from the one dimensional ideal.
iy Line 1o sigrerent from the ot SmERSion
i) q - s1(2,R) and & is any Borelsubalgebra of - D

Fr
om this lemma we can conclu

is global:

Let 9 be 8
Then w is 8 o-

PROPOSITION IV.6-39.
which is a Lie wedge.

Let W be a halfs
be an ide?

Proof.

of W. Moreover let 1

de that any Lie

Lie algebra and W

pace Lie wedg
1 of

wedge bounded by @ hyperplane

halfspace in

1obal.

#(W) be the edge

e in q and <
ot and maximal with

% contained i
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respect to that property. Then C",/-; and A /¢ satisfy the hypothesis of
Lemma 6.38. But the examples of section 5 show that in either of the three

cases W/4 1is global. Thus Lemma 6.32. shows that W is global. D

Now from 6.35, we obtain

COROLLARY 1IV.6.40. Any wedge in a Lie algebra which is the intersection of a

family of halfspace Lie wedges is a global Lie wedge. D

In the sequel we give a number of examples which can be treated with the

methods developed in this section. We start with an immediate corollary to 6.40.

COROLARRY 1IV.6.41. Any Lie semialgebra of dimension at most three is global.

Proof. Up to dimension three semialgebras are intersections of halbspace

semialgebras. D

At this point we should note that not all semialgebras are intersections of

halfspace semialgebras. If one wants teo Prove globality for more general

For example it is sufficient to require that the Lie algebra be exponential
(cf.chapter I1I1). In this context the following Proposition is just a reformulatios

of Corollary II.1% .30.

PROPOSITION 1V.6.42. tLet g be an exponential Lie algebra and W be a
— — =Pofential Lie algebra and 2< 2
semialgebra in ﬂ then W is global, D

A Lie group ¢ isg usually called exponential if the exponential function

exp : L (G) -G is surjective. Note that this does not imply that L (G) is
exponential in the sense of Definition I1.1.29. In fact any nonabeli;ﬂ compact
Lie algebra shows that this is not so. Thus Proposition 6.42. does not apply

to compact Lie algebras. Nevertheless we can prove the analogous result for 2

class of Lie algebras which contains the compact Lie algebras:

algebra which is the sum of a compactly
embedded subalgebra and an abelian ideal.

PROPOSITION IV.6.43. i
Let 3 EEE motion algebra then any generating

semialgebra W in 0‘[ 1is global.
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Proof. Recall (cf.chapter II) that W is of the from W =J' + R*'a + Q)
where J 1s an ideal, C is a compact convex neighborhood of zero in a
subalgebra M® of q and’a is in the centralizer of # . Lemma 6.3 shows
that we may assume that 3 = 0. But then W is a cone and 4 1is an ideal
in of = Ra + 4. Moreover (W +a)/#= R%a which is global. Thus
Proposition 6.37. shows that W is global. 0

We have to be a little more careful if we want to detect also the topological
obstructions to the existence of global semigroups in motion groups. Here
we call a connected Lie group a motion group if its Lie algebra is a

motion algebra.

LEMMA IV.6.44. Let G be a connected Lie group whose Lie algebra L = L (G)

is compact and let W be & generating invariant cone in L. Then for the

Maximal compact subgroup K o_f G the following statement are equivalent:

(1} There exists a subsemigroup S of G such that L (S8) = W.

(2) WL = {o}.

Proof: (1) =» (2). Let x e W n L(K) then we may assume that exp x e S

since L (5) = (3). sSince (exp Rx) is compact this implies
(exp Rx)™ < § so that Rx © W whence x = 0.
(2) = (1), Note first that G = K # V where V

i = {0}.
LM be a hyperplane in L (G) containing L (X) and satisfying L, n W
B whose corresponding

is a vectorgroup. Let

This is possible by (2). Then L, is an ideal in L (G)

M
. i = R and
analytic subgroup M 1is closed and contains K. Now consider G/M

3 ee
the cone (y , L/L, in L (G/M). Identifying G/M with L (6/M) we s

.29 shows
et (u * LM)/LM is a subsemigroup of G/M, so that Theorem 6.29 s D

that there g a subsemigroup § of G with 1 (s) =.W.

Usi"& this result we obtain:

roup and W be a generating semialgebra
group anc be a generating SeW 2.5 —_

THEOREM TV:6.45. Let G be = motion. H(W) and K is a

fn L6). 1f A is the analytic subgroup fﬂgfs’pm o Talent_ -

— —_——— v -

n - ing statement are equivalent

% EM subcroup _‘E G then —[ll_e_ following statemen -~ .
o

ubsemigroup S
M M exists an infinitesimally Leﬂifﬂie_g s

Zuch that L (S) = w.

H(W).
Th\ew A is closed and W n L(K) €

(2
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Proof. (1) => (2). The 8roup A is closed by 3.7. and W n LK) ¢ H(W)
follows as in the preceding lemma.

(2) = (1), Conversely, if A 1is closed we can consider G/A since 4 {is 4
normal subgroup and find from the description of all semialgebras in motion
algebras given in chapter II that L(G/A) 1is compact and W/H(W) 1is g
generating invariant cone in L (G/a). Let K1 denote the maximal compact
subgroup of G/A and «x . G ™ G/A the quotient map. Then K ¢ '-1(K1) and
by [Hoch 65] even 1'1(K1) = KA since K is also a maximal compact subgroup
of l‘1(1<1), Hence L'_1L(K.l)= L{KA) = L(K) + H(W) and L'-1(W/H(w) n LK, ) -
=W N (LK) + HW)) = w n L(X) < H(wW) by (2). Thus Lemma 6.44 . applies to
W/H(W) and yields a subsemigroup 8; of G/A such that L (51) = W/H(W).
But then Proposition 4.1, shows that § = 1-1(51) has tangent wedge W

S0 that the Theorem is proven in view of 2.8, D

THEOREM 1IV.6.46. Let be a finite dimensional real Lie algebra and w
— ——— ——°f%ional real Lie 2.gebra and

> then W 1is defined by a
Lorentzian form q : ﬂ x =~ R  such that (35q) is isomorphic to the

. —hat — 20morphic to the
orthogonal direct sum of a compact Lie algebra (K,p) with a positive
definite form P and a Lie algebra (fh,q1) which 1s isomorphic to one
of the following types:
— —— ——_-QVIng types
(i) %N =R, qT(x,y) = -xy
(ii) %1 = sI(2,R), 9, is the Killing form
(i1i) q - LN 99 = q, for some m - 1,2,3,... (cf.Example 5.20)

_ —=Zfmple

a(lx,y],2) - qlx,ly,z] &a\ll x,y,z e%. O

PROPOSITION IV.6.47. Let ¢ be a Lie group and

W E an invariant
Lorentzian cone in L(G) If L(g) - con
T = = N QT .‘32

is the decomposition
— ——= =SOmposition

provided b_y Theorem 6.46. and G = (;1 ® G

analytic subgroups of ¢ corresponding to %1 and qz then the following
statements are equivalent;: T
—————— =% fgquivalent

2 Where G‘l and G2 are the

(i) G‘l is simply connected.
———1 Lonnected

(ii) There exists a subsemigroup S of g such that 1, (s) w
.2t a \ ot — that = = -
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as soon as we have

Proof. i) = n 6.29
(1) > (il). Note that we may Bpply Theore 2

establ
{shed the existence of subsemigroups of the groups

0 with th
e ri
n right tangent object. But this follows from the examples of

section 5.

(11) = (i)
. Consid
sider S A G1 then L (S n G1)
n the examples show that G1

contains the invariant cone

g, sl
1 sgliven by .
q, Thus agai needs to be

simply connected if L (S A G,)
= 1

O

is to be a proper cone.

ne unless ﬂ is almost

Recall
that a o i (e}
Lorentzian semialgebra is an jnvariant ¢

entzian semialgebra is global by Example 5.8. But

abelian in which case the Lor
nnot be any

since the
al i
most abelian groups do have trivial center there ca

topologi
pological obstructions. Thus we have indeed
PROPOSITIO
N
IV.6.48. Llet W Eﬁ a Lorentzian gemialgebra 12 a Lie algebra

EEEE W is global.
jed extensively

e which has not been stud
e 5.4.

We co
ncl i 5
ude this section with a special cas

It is motivated by examples 1ik

yet, bu .
’ t certainly deserves attention.
in an associative algebra A is called on

DEF
INITION IV.6.49. A subset W
WWc W.

dssociati
ive semialgebra if and only if it is a wedge with

LEMMA
v
.6.50. Let A be an associative algebra with unit 1. Let = A
multiplication

A by taking the

for all Xx,¥y © A. Then for

be th .
& the Lie algebra obtained from

[ .
» ] : A x A —~A defined by [x,y] = Xy - V%

any a fons
z;; ssociative semialgebra W 1n A we have
1 +¥W is a semigroup -
cl.(a) 1is the group of units in A.
1 st~ — — e —

(11) s
L ((1 +wWn Gl (a)) = W where
1 iy
Pro .
of: Note first that we may assume that A carries 2 norm that makes it &
be tial function

Ban
achalgebra. If we let exp :‘K‘ Gll(A)
nd zero allows

pen neighborhood B

the standard exponen

to define the logar

of O in%. We note
ponential

us ithm

the
n the open unit ball U arey

log -
thg : 1+ U~ B with a suitable ©
at or is the Lie algebra of G11(A) and exp 1s the accompanying e
5 = (1) (14W) =

1 +W. Then 1 s and S

ubsemigroup of the multiplicative

f -
Unction. Now we set S =
1+Ws+WwaewWic L +#W=25- Thus 5§ 1is 2 closed s

bsemigroup of 611(A)

and T =S5 nGl1(A)
1 in S-.

is a closed su

W-W isan associative

Subsemigroup of A
wh
ich is an open neighborhood of

Since
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algebra we may assume that W is generating. Thus T is preanalytic and L(T)
1s defined. The obvious relation exp({W) c (1+W) n G11(A) shows that Wc L(T).
In order to prove the converse, we let x e L(T). Then exp tx < Tc 1 + W for

all t > 0. This means that 1E(exptx- 1) e W for all t> 0. Passing to the
limit t - Q through positive t we obtain x e W which we had to show. D

COROLLARY IV.6.51. Let X =?A be the associated Lie algebra of an associative

algebra A. Then any associative semialgebra W in A 1is a global Lie wedge
in ﬂ . D

COROLLARY IV.6.52. If £ . 9~ sl(n,R) is a respresentation of a Lie algebra
if — =~ —Z°Presentation of a Lie algebra

% and if there is an associative semialgebra Vv ip the associative algebra

M (R) of all nxnq matrices then W = f-1(V} is global.

Proof. 6.51 and 6.31. O

Section 7: Maximal semigroups in Lie groups
T ————=-—_P° 1N Lie groups

Maximal semigroups are important for various reasons. On the one hand they
provide potential upper bounds for subsemigroups of a Lie group. On the other
hand they may be used to decide globality questions as we saw in Theorem 6.25.
Moreover it turns out that maximal semigroups are suited ideally to solve

controllability problems on Lie groups.

DEFINITION IV.7.1. Let S5 be a Preanalytic semigroup in a connected Lie
8roup G. Assume that § 4 G(s).

(1) 5 is called maximal Proper in G(S) if the only closed proper subsemigroup

of G(8) containing S is s, 1y is called maximal if G(S) =G and S is
maximal in G(§).

(1) 'S is called maximal open proper in G(S) if s is open in G(S) and

$ is the only open proper subsemigroup of G(s) containing S, It is called

maximal open broper if G(s) = g and § g maximal open Proper in G{(S).

to be understood. Consider the Lie 8roup R. The axion of choice allows us

to write R, considered as abelian 8Toup, as the direct sum of a subgroup V
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and the sub
ubgroup @ of rational numbers, since @ is divisible. The subsemigroup

veq (with ; +
Cn the semigroup @ of non-negative rationals) is & maximal subsemigroup
o in

the algebraic sense that there is no semigroup properly between
his type are fairly useless in the

it

and the whole group. But semigroups of t
context of

Lie theory and for the applications of the Lie theory of semigroups.

us is maximal proper in G(s), but is
g(s) £ G. But notice
g and G. For

Th < s
e dense winding semigroup in the tor

not maxim
al proper according ot our definition since

properly between

that 5
at there is no closed subsemigroup of G
£f G we will be able

jnstead ©

to consider

the
most part, by considering 6(s)

maxi
imal {(open) proper semigroups-
migroups we need the

In ord
er to prove the existence of maximal (open) proper s¢€

following Lemma.

ubsemigroup 3£ a connected topological

LEMMaA .
Iv:7.2. Let s P_E a proper s
2P -
n subset of 5. Then U ns="0.

gro
goup G EES U EE 2 non-empty °ope
1 -1 _ -1 . < c
then & & UucsS. Thus 1 = 85 = suc sSE S.
of 1 which generat

Thus we h

Pr .
cof: Suppose s e S n u”
es all of G

hborhood sU
ave the claim.

0

But t
hen S contains the nelg
since 1 i

¢ is connected. Hence 5 = G, 2 contradiction:

P

ROPOSITION 1v.7.3. Ler § be an 2P=2 proper subsemigrotP of 2 comnected
t ; — - i

lopological group G- Then S 18 contained in 2 maximal open proper

subsemigroup of G-

3 . )

roof: Let JY) be a maximal tower of open proper subsemigroups of G
-1

2 implies that S fT =0

gnion. Lemma 7.

is open proper - By the

co ini
ntaining S, and let M be their

fo -
r all T e YN, hence M{'\S1=0a
js then max

go that M

O

nish if we

jmal opeTl proper-

m -
aximality of the tower M
scribed before va

problems de

L
emma 7.2 also shows that some of the
t
alk about semigroups with nonempty interior:
REMARK IV.7.4. Let M be 2 subsemigrouP of a connected Lie group G» such that

(i)  int M 4 D.
(1i) M is the only proper 533552155222 of €
Then M is maximal proper and in EEZSEEELEE 512355'

containing M.

-1
Proof: Let U = intM, then by Lemm® 7.2 we have M au! = p and hence
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1

alsoc M au”' = P. Thus M 1is a proper subsemigroup containing M, so by
maximality M = M. This also shows that M is maximal Proper, since
G(M) = G6(1intM) = G. O

PROPOSITION 1V.7.5. Every infinitesimally generated semigroup S which is

not a group is contained in a maximal proper semigroup iﬂ G(8).

Proof: Note first that we may assume without loss of generality that G(§) = G.
If we now let T be the Tay semigroup generated by L(s) then G(T) = G and
int T 4 P hence also int § # 0 by Theorem 2.2. By Zorn's Lemma there exists
4 maximal tower ’11 of proper semigroups containing S. Let M =U{R e s
then M is proper, since for U open in 5§ Lemma 7.2 shows that R n U_1 =p
for all R e 111, hence M n U-1 =p. Moreover, by construction there is no
proper subsemigroup of G containing M. But then Remark 7.4 shows that M

is maximal proper. E

Before we turn to more special situations we list a few properties of maximal

open subsemigroups in topological groups which will be useful in the sequel.

PROPOSITION IV.7.6 Let G be a connected topological group and S be a

=&t — — —————— 2Po-ogical group and ==
maximal open proper subsemigroup of G and N a closed normal subgroup of G. Then
Mﬁ—“x~ — —— - — ——— e —— _

(i) Nns =29 if and only if Ns - sy - S.

(i1) N ns = implies th i i i
( ) P implies at SN/N 15 maximal open proper in G.
iii There exists a i 1
S 8 unique largest normal subgroup NS g£ G  such that
NS NS = P. Moreover NS is closed.

Proof: (i} Since N 1is normal, NS = SN ig ap open subsemigroup of G.
Thus NS is either g or G by the maximality of §. If Ns - G, then we
have 1 e N5, so that we find neN and s e S with 1 - ns. But then
s = n-1e N ns. Conversely, let g2 €N S, Then 1 = g'1g e NS so that NS =G.
(ii) Since N ns§ - P implies NS - SN = S and g/N carries the quotient
topology, SN/N is an OPE€N proper semigroup in G/N. Ifx:0¢— G/N is the
then 11 e of o T ceigrons b oS S
oy - s' so that T = x(x-i(T ) = :sp- SN/N o Sj .

x x = = - Thus SN/N is maximal open
pProper in G/N.

(i1i) Consider the monoid §* = {geg . g8S = S5l in ¢

If N is any normal subgroup of ¢ with Nns - p then by (i) we have
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any normsl subgroup N which is contained

NS = § so that N ¢ S5*%. Conversely,
Thus NS ijs the unique largest

in S satisfies NS c 5, hence NnS=0.
normal subgroup in G that 1is contained in 5* n (S*)-1. since S 1s open
then N n S = ¢ implies ﬁs ns = ? Thus ﬁs c §* whence ﬁs = Ng. 0
The biggest possible tangent wedge of a subsemigroup in a Lie group 1s a half-
space. Thus semigroups having halfASPECES as tangent wedge appear naturally in

the study of maximal subsemigroups:

DEFINITI
. ON IV.7.7. A preanalytic semigroup S in a connected Lie group G
s c
. alled a halfspace semigroup if 1(8) 1is a halfspace.
alfs -
pace semigroups turn out to have many nice properties. They are strictly

their interior

infinite
simally generated, s are maximal open Proper semigroups

e manifolds with boundary. acterization

and thei
r closures ar We start with a char
theorem.
connected Lie group ©
Li€e » -5

subsemigrovp in a con

TH '
EOREM IV.7.8. Let S lle__jl_closed
ing statements

and 1 :
and let 35 = S\intS be the boundary of S- Then the follow

(1 i
) ) s is a halfspace semigroup-
2) i

35 is a group and distinct from S-

int § 4 p so that p 4+ (int §)" n 8S c S.

L - -

net s e (int 8)” n @S then for any open neighborhood U
-1

#U ns (int §) ¢ U n (int g). Suppose that E(S) is

T
hen H(L(S)) can not be a hyperplane- In fact if H(L(S))
exp L(8) = 8 and L(0S) # L(G).

in G which {s of the form (ex

L(as) in 1(6) and ¢ ¢ B * PBp
m of an open neigh
i.e. there is a

Proof: (2) => (1). Note first that
of 1 we get

not a halfspace.

is a hyperplane

Therefore, if

p B )lexp BF)

-y given

borhood B * BF

then L(as) = H(L(S)) since
pick a neighborhood U of 1
where F is a complement of 5 =
by ¢(x,y) = (exp x)(exp y) 1s 2 diffeomorphis
in { x F = L(G) onto U, the

$(x,y) e int § with ¥ 4 0. But

o int S # 0,
so that also exp Yy ® 5.

fline of

n we know that U
expxeaS cSnS-

we find by 1.6 that a8 hal

Since this works for arbitrarily small Bp

F has to be contained in L(s). Thus _11(5) is a halfspace contradicting ouf
assumptions. - ’

Now we know that there exists 3 wedge W with E(S) \H(E(S)) c int W 1.8-
L(S) cc W. By 1.6 we know that Sp = B n exp_1S 4s a local semigrov? with
respect to B for any Campbell-ﬂausdorff-neisththOd B in L(G)-
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Now [HL 83] implies that we can find an open neighborhood of zero B‘I c B such
that sB = 131 n exp"(s) € W. If now x e int sB and w e W n B1\H(w)
1 1
then there exists a t e [0,1] such that Xo=x + tlw-x) e (SB n B1)\int Sp
1 1

and hence exp x e 85 since exp'B is a diffeomorphism onto its image. But
1

then eXp-x_ e 5 so that -x e SB1C W whence x, e H(W) contradicting the
fact that w e W\H(W). This proves the implication (2) => (1).

To prove the converse note first that S n S—1 is closed, hence a

Lie subgroup. Moreover exp(H(L(S))) c § n s so that L(S) ¢ L(G) implies
that § p S-1 is a Lie subgroup of codimension one. Lemma 7.2 shows that

s ns! e 98 so that it suffices to show that 3s ¢ S-1. By [HM 68] Theorem 1
and 2 we can find a one-parameter group exp Rx 1in G such that the map

Rx(s ns™') ~G given by (t,s) = (exp tx)s is surjective. But then x 4 H(L(S)),
hence x e int(k(s)(replacing x by -x if necessary). Therefore

€Xp ts e int S for all t > 0. If now & €08 and g = (exp tx)s then Lemma 2.5
shows that t < 0. 1f t < g then s = (exp ~tx)(exp tx)s = exp(-tx)g e int §

again by Lemma 2.5, contradicting the fact that S n S.‘| € 85. Thus t =0

and g:seSnS-1. [:I

Note that, in the notation of 7.8., [HM 68] also implies that
(exp Rx)(s n 5_1)0 =G where (S 5-1)0 = < exp H(L(S))> is the

identity component of § n S-1. Since exp tx e int § for all t > Q this
shows that (exp tx)s e as if and only 1f t = 0 g0 that S s”' - (sn 5-1)0‘
Thus § n s~ is a connected Lie group hence algebraically generated by

exp(H(L(S))). But then § jis algebraically generated by exp(H(L(S)) + R 'x) =
exp(L(5)). We summarize.
REMARK 1v.7.9, Let s be a closed halfspace Semigroup in a connected

Lie Subgroup of codimension one and 5§ i i P s : .
T T — ————"2°0°0 ©one and 18 strictly infinitesimally generated

From this remark we may draw a few more conclusions:

COROLLARY IV.7.10. pLet s be a closed half Space semigroup in a connected

Lie group ¢ , then

(i) S is maximal proper
ii) int § i
¢ n E maximal open Proper.

Y X 3
(i11) 6 = (int §) U8 u (int §) where the union is disjoint.
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Proof: Since 1int S # § any proper semigroup T containing int S is

But since L{S)
T is strictly infini-

preanalytic and L(T) contains L(s). is a halfspace

this shows that T is a halfspace semigroup. Thus

tesimally generated by E(S) by Remark 7.9. and hence T = S. Moreover
-1

S is a

(exp Rx)8 = G

int T int T = int S. To show the last assertion we note that

1

) = - _I_J_(S). Thus the equality
7

halfspace semigroup with L(s”
G = (int §) @5 (int 8)" .

for some x e L(S) shows that

Clearly the

O

union is disjoint.

heorem for halfspace semigroups. To do this

We want to prove a classification U
ell known (cf.[HM 68]).

we
need two more lemmas. The first is ¥

LE|

A IV.7.91. Let S be a open proper semigroup in a topological group
1t be a open proper SeMIBIOVE —— = ———=—— "
LK Ei?ﬂn_ga_cisubgroup‘o_f_ G , them S0 K =90.

L -

EMMA IV.7.12. Let S be 2 closed halfspace semigroup in & connected Lie
rou —‘—————_.———————____—-4—_____,___..____
group G such that H(L(s)) does not contain any nontrivial ideal. Then G
is simply connected.

ubgroup of G, then Lemma 7.11. shows
K c 85 and thus the group ©

ntained in
(cf.[Hoch 651) .

Proof:
of: Let K be a maximal compact &

t : -
hat K n int § = K n (int s) 1 . p. Hence
ps of G is also co as.

the K

al contained in (H(E(S))), hence
and thus 1is simply

K x IRn, hence to R

en
generated by all the maximal compact subgrou
are connected

alytic group since all
c = 1. But G

B .
ut C is a normal an
Therefore L(C) 1is an ide
is .
topologically isomorphic to
conneCted.
roup in 2 connected

sed halfspace semig

T
HEOREM Iv.7.13. Let S be aclo
al subgroup N
S - S

i d norm and
maximal close ance

L

Lie group G. Then 5 contains &

f " ——

=T S/NS one of the following cases occurs:
one of the fol 0¥ 5 —— >

0 (e/ng, s/Ng) = (R, r

(14 b ab

11) (G/Ng, S/NG) = (([3 71,8 o, be Rl {4
is defined as in s

(s(z, R), @7

], a >0, b2 ob)

where at ection 3.

R

(iij
1) (G/Ng, S/NG)
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Proof: Since int S 1is maximal open proper by Corollary 7.10. the existence
of NS is assured by Proposition 7.6. Then Lemma 6.37. determines the Lie

algebras of G/NS and GS/NS so that S/Ns is determinde by Lemma 7.12. But then
Remark 7.9. shows that S/NS is the semigroup generated by a halfspace
bounded by E(OS/NS). Thus Lemma 7.12. shows that the proof is finished

by inspecting the examples in section 5. E

We have seen in section 5 that maximal semigroups need not be halfspace semi-

groups in general. But for certain classes of Lie groups this is true:

THEOREM IV.7.14. Let S be 2 maximal open proper subsemigroup of a connected

nilpotent Lie group G. Then S 1is a halfspace semigroup containing the

commutator subgroup.

Proof: Let (G,S5) be a counterexample to the claim, in which G is of
minimal dimension with respect to this property. We may assume that the largest
normal subgroup Ns that does not intersect § is the identity since

(G/NS, S/N } is also a counterexample by Proposition 6.6. and the fact that
the prelmage under a quotient of a halfspace semigroup is clearly a halfspace

semigroup. If now G is abelian and T 1is a maximal torus in G then

)
T S =0 by Lemma 6.11. But T is normal in G, hence T = {1} and so G
is a vectorgroup. But then Sp = {ts e 6 : ¢ >0 and s e S} is an open
semigroup in G containing S. Therefore SIR is G or s. 1If SIR =G
then for any line M in G the open semigroup Mpn S in M contains
elements in both connected components of M\ 0} and hence is equal to M.
Thus S contains the identity contradicting the fact that § is proper.
We conclude S]R =858 so that § is a wedge, and hence by maximality a halfspace

This contradiction shows that G cannot be abelian.

Let now L = L(G) and L™ be the last nonzero element of the descending
central series. Then one finds some x el and y e Ln-1 in L such that
[x,y] 4 0. Note that 3 is central in L so that exp Rz NS ¢ §

since Ng = {1}. Let X be the analytic subgroup of ¢ whose Lie algebra
L{K) is Rx + Ry + Rz. Then L(K) is a Heisenberg algebra and, equipped
with the Campbell-Hausdorff-multiplication the universal covering group of K.
Since eprL(K) i LK) - K is the covering morphism, then exp_1(5 n oK) is

an open subsemlgroup of L(K) which meets the center of L(K). The calculation

given in Lemma 5.5. then shows that it must be all of L(X).
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-1
H I
ence exp (S K) and thus also 5 n K contains the identity, which 1is

i
mpossible since S 1is proper. This final contradiction proves the claim

th i
at L(S) is a halfspace. Since any hyperplane subalgebra in a nilpetent

is a Lie wedge the

O

Lie algebra contains the commutator algebra and L(S)

last assertion follows.

W
e want extend Theorem 7.14 to the case where G 1is the product of a compact

sub
ubgroup with a nilpotent normal subgroup. To do this we will need the following

ensional vectorspace and C be a

LEMMA IV.7.15. Let V be a finite dim
U without nonzero

aut V that operates on

compact connected subgroup of
G =V =C which intersects

fi i .
fixed points. If S 1is an open subsemigroup of

Vx {1} then S =G.

. v dp, with ¥ Haarmeasure

Proof: Let (v,1) e V X {1} s then ¥ =f ¢
v, h_encec\-l . 0. Now consider the orbit

on C, is a ficed point of C in
M=lcey : : .
{cov . ceCl} of v under the action of C. Since ¢ is compact, M is

nvex hull e€env M of M is just the

al
so compact and therefore the closed co
v is contained in

A e 10,11 with

co —_— N
nvex hull conv M of M. Moreover Conv M, i.e.

0

€ conv M. Thus there exist Cy-.-€ € c and Aj..-
k ] k 1

0 =
) Aic-'V- We claim that there is anv r e ®Y such that rxc.°v €S
i=1 1 i"i

f .
or all i. TIf this claim is tTue W€ can conclude

0. % b
= ¥ rr,c,+v and hence (o,1) = (er,c,*v,1) 5
i=) 11 i=1 ii
so that $ = G.
g two statements:

To prove the claim it suffices to prove the followin
(rx,1) ¢ 5 for all © > T -

cov,l) e S.

(1) For all (x,1) e s there T, e RY with
(i1) For all ¢ e C there is an M€ N with (mc

In fact if (i) and (ii) hold the claim is true for
r = (m . -1
ax{r_ .v})(mln{xi})

i

K om
i=1 ¢y

To prove (i) we only need fo remark that the complement of an open subsemigroup

. In order

to prove (ii) we note that

of (IR+,+) is always bounded.

(Vx {1}) n S # ® implies (v » {1})s = G lements ¥,

so we can find e

and v__3 eV
c
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-1
with (v ,¢) ¢ S and (vc_1,c ) e S hence also
C

-1) = (v _q+ c-lv ,1) e S. Since S is open there exists
- c

(v_,edlv__q,c
c < 1 -1
an m e N such that s := (v - — (v .1+ € *v), 1) es.
e o m e c o
m
- C
Thus s, - (mv - Vool + ¢ 1-vc,l) e S and finally (vc,c) s, (vc_1,c ) =

= (mcc-v,l) e S. E

We are now ready to describe the tangent wedge of maximal open subsemigroups

in semidirect products of compact groups and vector groups.

PROPOSITION IV.7.16. Let V be a finite dimensional vector space and C

2 compact connected group of automorphisms of V. If 5§ is a maximal open

subsemigroup of G = V x C then the tangent wedge L1(S) of S 1is a halfspace

in E(G) bounded by an ideal.

Proof: Llet G be a counterexample of minimal dimension. Then for any C-invariant
subspace I of V we have (I x {1}) ns ¢ P. In fact N = I x {1} is a
closed normal subgroup of G hence N p S = P implies SN = NS = S by
Proposition 7.6. Moreover the subsemigroup S/N is maximal open in G/N.

Since G was a counter_example of minimal dimension L(S/N) is a halfspece
bounded by an ideal in L(G/N) = E(G)/E(N). But Proposition 4.1 implies that
L(s) = n-1(L(S/N)) where g L@G) - L{G/N) is the canonical projection.

Thus L(S) 1is a halfspace bounded by an ideal in L(G) contradicting our
hypotheses. Now consider G’ = [L(G) ,V]l x C and note that the "Fitting Decompositic
of motion algebras given in Chapter Il shows that ¢ operates without nonzero
fixed points on {L{G),v] . Moreover §, = G1 RS s an open proper semigroup
that intersects [L(G),v] x {1} by the above, so that Lemma 7.15 applies and
we see that (0,1) ¢ S1 © 5 whence § = G. This final contradiction to our

assumptions proves the propositions. []

More generally we obtain

PROPOSITION IV.7.17. Llet G be a finite dimensional Lie group, € a connected
\\ f=Inthathel i} b e
compact subgroup of G and A an abelian analytic normal subgroup of G such

that G = ca. If s is a maximal open subsemigroup of G then L(S) is a
—_— —_—5 7up LAt
halfspace bounded by an ideal.
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Let A = TV where T is the maximal torus in A and V is a vector

Proof:
s0 it is normal in G. Moreover

group, Note that T is characteristic in A
ST = S

5nT=0 since otherwise S5 T which would imply S = G. Thus

and S/T is a maximal open subsemigroup of G/T by Propesition 7.6. But
/T = (CA)/T = ((cTH/T)(R/T) with CT/T = Clo.i and A/T = V. Therefore
€r/1) n (A1) = {r} and we may apply Proposigion 7.16 to G/T and S/T.
is a halfspace bounded by an ideal and as before Proposition 4.1

O

Thus k(s/T)
shows that L(S) is a halfspace bounded by an ideal.

Finally we obtain

G be a connected finite dimensional Lie group, C a

THEOREM IV.7.18. Let
fompact subgroup of G and N a nilpotent analytic normal subgroup of G
is a maximal open subsemigroup EE G then E(S)

such that G = c§. If s

1s 2 halfspace bounded by an ideal in L(G).

Proof: Note first that we may assume that C is connected. In fact if Cm
is connected and

*$ @ maximal compact subgroup of G containing C then ¢

Moreover we may assume that N is

G = CmN' Thus we can replace C by Con-

closed,

Now consider the commutatorgroup N' of N. If Sn N' 40 then 50N is
€ontained in some maximal open subsemigroup Sy ©of ¥. But then by 7.14 we
have that L(SN) is a halfspace bounded by an ideal which must then contain

L) = [L(N),L(N}]. Hence exp L(N') ¢ § so that N’ c 5. Therefore
- N'S = 8§ since §S, s§ ¢ s and the identity cannot be in S. Thus
PropOSition 7.6 shows that S n N' = §. Since S 1is open we have also
Hons-p where H is the closure of N’
to see that SH/H = S/H is a maximal open subsemigroup of G/H.
CH/H is compact and N/H 1is abelian. Hence Proposition

G/H = (CH/H)(N/H) where
is a halfspace bounded by an ideal and consequently

7.17 shows that E(S/H) E
108) is s halfspace bounded by an ideal in L(G).

in G. Again we apply Proposition 7.6
Note that

N ent wedges
It now only remains to translate the information we have on the tang g
lves:

. i emse
of maximal open semigroup into information on the semlgroups th
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REMARK IV.7.19. Let G be a connected Lie group then for a non empty open

subsemigroup S of G the following statements are equivalent:

(1Y L(s) is a halfspace bounded by an ideal.

(2) s = ¢—1(D?+\{O}) for some continuous homomorphism ¢ : G — R.

These properties imply that § is maximal open.

Proof: (1) => (2). Let I be the ideal that bounds L(S) and N be the
subgroup generated by exp I where exp : E(G) = G 1is the exponential function.
Then Nn S =P hence N nS =9 so that dim N < dim N < dim S and thus N is
closed. Moreover Proposition 7.6 implies SN = NS = § or, in other words,

S = 1-1(SN/N) where n : G - G/N 1is the quotient map. Therefore G/N =~ IR

since there are no proper open subsemigroups in the torus. Moreover Proposition 4.1
shows that L(S) = (Eﬂn))-1 L(S/N). Thus L(S/N) is a halfline and the claim is
proved,

(2) => (). Conversely since S £ @ the map @ is a quotient map and hence
Proposition 4.1 implies that L(5) is a halfspace bounded by 1L(S) 1is a half-
space bounded by L(kerp). Note finally that any open subsemigroup T, which
contains § = w-1(Hi+\{O}) strictly, must satisfy o(T) = R since any open
subsemigroup of IR containing positive and negative elements must be all of R.
By the first part of the proof we may assume that kere 1is connected and
contained in 5 hence in T. Thus T = w—](m(f)) =G and T 1is dense open

in G. But then T_1 is open dense and also T n T'1 is open dense, hence

T - T_] =G since T -~ T‘1 is a group. Thus T = G. E

In the local theory of semigroups nilpotent and complex Lie algebras had in
common the striking fact that they admit only trivial semialgebras, It is too
much to expect that Theorem 7.14 will hold also for complex groups in general.

It does however hold for complex solvable groups. We start with a lemma which

is similar to Lemma 7.15 and also plays a similar role in the context of

complex groups:

LEMMA 1V.7.20. Let ¢ be a Lie Broup acting linearly on a finite dimensional

vector s V. i . :
Yector space 1L © contains an element g e g which leaves no ray in V
fixed, then no open subsemigroup S of the semidirect product G« V intersects

of the semidirect product intersects

{(1,v) : v eV} where 1 is the identity of g
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is maximal open proper.

oss of generality that S
+
R SV is

Proof: We may assume without 1
Now suppose that the set Sy = {v eV (1,v) e 8} 1is non-empty. Then

is an open semigroup in G« V we know

a convex set. In fact, since S
that i
SV is an open semigroup in V. But this implies that for any V€ SV

there is an r{v) > O such that IV e s, for all r > r(v). If now

v,,v, e 3§ and r1,r2>0 then

n +
Wi thw r,vy) e RSy

LA
n

343

I'.IV1 + rzv2
n

so that — T, 7~ (v}
m 1 1

i )
if we set m = m1n(r1,r2) and n = max(r(v1),r(\'2)),

for 1 =1,2 .
N + . :
ote that R S, 18 contained in some halfspace since § cannot contalll the
id i
entity (1,0) of G = V. But then the quotient space Syl where
v ) :
~v if R'v, = IR+\.'27 s homeomorphic tO an open disk. 1f now g 1Is @0

1 2 3
element of G which satisfies 2° (TR+SV)C ]R+SV

then Brouwer 1s Fix-Point-

. +
SV such that g Ve R V-

T
heorem shows that there is a Vv e
y any B e G

note first that {1} = V
jmplies that

jr suffices to shovw that fo

To do this,
s n ({1} x v) # P

Th i
us, in order to finish the proof,

and any v +
ESV we have g'vC]RSV-

is a closed normal subgroup of G wxV SO that
H1} « V)s = G by Proposition 7.6 and hence€ there are elements Vg and Vgl
Therefore also

are in S.
ists a

in V such that (g,v ) @nd (g ,"g-1)
& which sho¥

(g"’g)(g'1 'VS"‘) = (1"’5-1 + 3—1' vg) e S o that there €%
+ 8-1 °Vg)) e 5 since s is open-
' vg)) e S so that
! v _1) e S-

n, -
- vg) = (g,vg)so(g Ve

ke N with s = (1,v - %(vg"‘
But then 52 = (1,kv + (Vg_1 + 8
(kg « v) = (g,vg)(g",kv o g
Thus kg « v e Sy ©F» in other words, & leaves the set s, fixed since
it operates linearly. .

[ HMv 78]) if the

Note that an analytic 8rouP is called fﬁi’l‘l_y— exPonenr_ial (cf.
image of its exponential function 8 dense-
X onential
LEMMa 1v.7.21. Let G be3d connected Lie groUP with 2 weakly exponen-t—
- — of G with SnH#ﬁ-_I.S
P — s
analytic

and S be an open subsemigroup

a- be ab X — subs- o—

ing morphism _o_f_ G
T1 v

) nkt + 0.

Subgroup H

D and I is the

: G~ G is the aniversal covel iy B —
subgroup of ¥ corresponding to H, then
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Proof: Since S nH 4 @ and exp L(H) is dense in H, where L(H) 1is the
Lie algebra of H' and exp : L(G) -~ G so the exponential function, we also
S noexp(L(H)) # 0. If now Exp : L(G) — ¢ is the exponential function of &
we have S exp L(H) = S n (I » Exp){L(H)) and therefore

6 4 17s) n Exp L(H) < 17'(s) n I 0

We are now ready to prove the analogue of Theorem 7.14 for complex solvable groups.

THEOREM 1IV.7.22. Let G be 2 connected complex solvable Lie group and §

be 2 maximal open proper semigroup in G then S {5 a halfspace semigroup

containing the commutator subgroup G' of G.

Proof: 1t suffices to show that G'n S =@¢. 1In fact G/(G')" is an abelian
Lie group and Proposition 7.6 then implies that S(G')” = S and S/(G')- is a
maximal open proper semigroup in G/{(G")” since (g') ns =@ follows
trivially from ''nS = 0. But then S/(G')” is a halfspace semigroup by 7.1%

and hence S is a halfspace semigroup with L(S) > L(G') so that G'e s,

=@.
(n)

Since G is solvable, L(G) is solvable. Therefore the derived series L{G)

Thus let G be a counterexample of minimal dimension to the claim G'r §

decreases to zero. Letr 4 be the abelian analytic subgroup generated by the
last non-vanishing E(G)(n). Then S rna 4 6. 1In fact, if Sr A = ¢ then
S+ A=@ since § is open, and Proposition 7.6 hence implies that S/a

is a maximal open proper subsemigroup of G/A. Now we conclude that

S/A ~G'/aT = ® by the minimality of the counterexample, since (G/A)' = G'/A.
But then also SA ~G'A = @ and consequently S ng' - ¢ contradicting our

assumptions. Thus we have indeed S n a £ D.

Next we claim that A must be central, For, if it is not we find an x e L
such that Lie group B generated by exp{x and A is non abelian. Since

S A+ we have a fortiori S n B 4 ¢. But A is a connected abelian
Lie group hence it is eéxponential so that Lemma 7.21 applies. Since the
universal covering group of B is just the semidirect product € x L(A)
where action of € - ¢x on L{(A) is given by cx . vy = 2dex . This group

satisfies the hypotheses of Lemma 7.20 ang We can conclude that S n A must

be empty. This contradiction now shows that A is central in G
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Note also that G must be metabelian. Hence G" = (G")' does not intersect

sn (6')" which is , by Proposition 7.3, contained in a maximal open proper

Since S 1is open we also have (G") " n S = 8.

subsemigroup S, of (G')
and the minimality of the counterexample we

Thus, again by Proposition 7.6,
contradicting our

find G'/(c")  n (8 /(G”)') - ¢ and hence G' 0 S =0

assumptions.
Finally we observe that A = G' Dby the above so that G is nilpotent since

cannot be a counterexample by

0

like 7.18 and 7.22

we have shown that A is central. But then G

Theorem 7.14 and the proof 1is finished.

To conclude this section we describe how to apply results

to control systems on Lie groups-

1 be simply @ family F
will be called controllable
F connecting the identity with x.

of left invariant vectorfields

Here a control system wil
if for any point X

on G and the control system

an find an integral curve for

(cf [Js 72]) that the s

tem given by the wedge

in G wec
ystem described by F is controllable

It is well known
W = conv(H(*F) is controllable.

if and only if the sYys$
ontrollability reduces to the question whether the

Therefore the question of ¢
is all of G or not (cf also

generated by exp W in G

semigroup Sw
[BJKS 82]).

group such such that for any maximal open
L(G).

REMARK IV.7.23. Let G be 3_connected Lie
L(S) is a halfspace bounded by an ideal in
is a halfspac® ———— — — ldea’

we have
L(c) as alie algebra, then the
as a Lie 2:8°87 % —— —

subsemigroup S
1f W is 2 wedge in L(G) which generates
- wese” whicll &= — —
following statements are equivalent:

(1) The semigroup S, generated by exp w in G is not equal to G

(hence not even dense)

Shel - even

(2) There exists 2 continuous non trivial homomor phism @ * G - IR
There eX19°° = ——— triviat o ———

such that L(w)(W) e R

®

1f S +# 6 then by the above S is contained in a maximal
w

proof: (1) => (2)
E(S) is a halfspace bounded by

open subsemigroup s of G. By hypothesis

7.19 shows the existence of
wells) L(s) = (L(g))" Y(R*Y) by

an ideal so that Rematk g : G~ R such that

s ¢S = w"(mf“{O}) and hence
w

proposition 4.1 . :
(2) => (1) conversely let S := ¢'1(nl+1{0}) then again EKS) = (E(¢))- (R
and therefore W c L(S). Thus exp W € €XP E(S) c which is a subsemgroup of G,

strictly contained in G.
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Recall that L(e) : L(G) = R is a Lie algebra morphism and since IR is
abelian we know that L(G)' = [L(c), L(G)] 1is contained in the kernel of
E(w). Hence the relative interior intw_ww in the vector space W-W cannot
inter_sect L(G)' wunless L(g){W) contains positive and negative values or
is completely contained in L(G)'. Moreover if C 1is a maximal compact sub-
group of G then C c ker ¢ since ¢(C) 1is a compact subgroup of IR. Thus
in the situation of Remark 7.23 we have L(C) + L(G)' < ker L{g). Even more

is true:

LEMMA 1V.7.24 Let G be a connected Lie group, € a maximal compact subgroup

ef G and W a wedge in L(G) which generates L(G) as a Lie algebra.
Then the following statements are equivalent.

(1) int W A (L(C) + L(G)') = @
W-w

(2} There exists a continuous non trivial homomorphism ¢ : G - IR

such that L{g)(W) c R™.

Proof: (2) => (1) We know that L(C) + L(G)' < ker L(p). Moreover W is

not contained in ker L(p) since it generates L(G).

I1f now intw—ww o ker L(p) = @, then L(g)(W) contains positive and negative
values contradicting our hypothesis. Thus intww n{L(Cc) + L(G)') = @.

(1) => (2) To show the converse note first that the analytic subgroup A& of G
with 1(A) = L(C) + L(G)' 1is normal and contains C since G, hence C, is
connected. Therefore A «contains all compact subgroups of G and hence A 1is
closed (cfl[Hoch.65]Ch. XVI). Moreover the quotient group G/A 1is a vectorgroup-
In fact, since G/A 1is abelian connected it is isomorphic to T x V where T
is a torus and V 1is a vectorgroup., If % : G- T x V is the quotient map with
kernel A and B is the identity component of 1_1(V) them B is a closed
connected normal subgroup of G and n(B) = V since % was a quotient map.

Thus G/B is compact and [Hoch.65] implies that CB = G

so that

G =CB <= AB ©B < G. But this just means that T = {Q}.
G/a with L(G/A) = L(G)/L(A).

Thus we may identify

But now condition (1) implies that W is contained in a halfspace H with

L(A) ¢ H so that we can find a linear functional ¢ : L(G)/L(A) ~ R with

- But then @ =9 s : G~ R is the
desired homomorphism if we identify G/A and L(GY/L(A) []

H=ker ¢ and &(W + L(A)/L(A)) « R

We can now summarize Our results to



THEOREM 1V.7.25. Llet

open semigroup S

in L(G).

Moreover let

is a wedge in L{G)

statements are equivalent:
statements 2% 4~ ——

we have that L(S)
v} EE any maximal compact subgroup of G.

which generates
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G be E'COnﬂeCKEG Lie group such that for any maximal

is a halfspace bounded by an ideal
If W

L{G) as alie algebra, then the following

(n Intw_w(w) A (L(c) + [L@ed, LG # 8

(2) exp W generates G
(3) The system described by W

Section 8:

A semigroup S
condition:
For each s € 5

g = S.

We know from the local theory that for a local semigroup

the analogous statement holds if and only if
o
$1(2,R)

ds to be divisible. On the other hand we don't

(cf. chapter 1I1). The example of

generated by a semialgebra nee

know any example of a divisible subs
it is the aim of this section to show that such an

is not a semialgebra.

example cannot exist at least for semigroup

LEMMA IV.8.1. Let

subgroup.- Then D 1is divisible.

L ————

proof: We may assume that D

Let now o
n

G = ker o - Note that G
n n
connected and A

a and © (p) =D
n n
is compactl this shows
n
and o (8) =8 since K xR X {5}
n
o (g} = G and G is divisible.
n

is called divisible provided it s

and each natural number D

G be an abelian Lie group and
be an abe_ 70 - ~ 20— —

i{s dense in G, i.e.
G - G be the morphism defined by an(g) = ng
is of the form
is discrete.- Since any subgroup of G

is dense we have that

that o (K) = K. on the other hand clearly
n

as a semigroup.

is controllable. []

Divisibility and local divisibility

atisfies the following

there is an g @ § such that

(s,u) in a Lie group
L(s) is a semialgebra

shows that every semigroup

emigroup of a Lie group whose tangent wedge

s with trivial group of units.

D cG bea divisible

D =G.

and set
K x Rr"™ x & where K is compact
is invariant under

But since ¥

a (R™ = R"
n

an(K) is dense in K.

is open for any 5 e A Thus

0
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Note that using successive roots one observes that the divisibility of a
semigroup S is equivalent to the existence of an algebraic homomor phism
+ :
f Q+ ~ S with f (1) = s for any s e S, where @ are the strictly
s

]
positive rationals. We then find

PROPOSITION 1IV.8.2. Any closed divisible subgroup H in a connected

Lie group G 1is connected.

Proof: let g e H. Then by the above remark we find an algebraic homomor phism
fg : @~ H with fg(1) = g. We set A = f;?@j' then A is a closed abelian
Lie subgroup of G with a dense divisible subgroup. Hence Lemma 8.1 shows

that A is divisible. If AO is the identity component in A, then [Mo 57]
implies that A/AO has finite rank. But A/A0 is also divisible so that it
follows from the fundamental theorem of finitely generated abelian groups that
A = Ao' Since H was closed and hence A ¢ H this implies that g 1is in
the identity component of H. But g was chosen freely in H so that H

is connected. E

THEOREM IV.8.3. A closed subsemigroup S of a connected Lie group G is
= T1osec subsemigroup o a 1s

divisible if and only if S = exp L(s).

Proaf: If 5 = exp L(S), then s is clearly divisible, since X e L(S)
iff exp tX € § for all ¢ >0
Now assume that S is divisible, and let s e §. By using the divisibility

of S we find an algebraic homomorphism £+ . Q+ = S from the additive

semigroup of positive rationals into S sych that f7(1) = s. This homomorphism

extends to a unique group homomorphism f . Q ~ G. The group A = f(q
is divisible, hence a connected closed Lie subgroup of ¢ by Proposition 8.2.
Since it is abelian, it is of the form K x r" with a torus K If

. no : . n )
P A-R is the projection, then pof:@-mR is a group homomorphism
with dense image; since it is clearly a Q-vector Space homomorphism we draw

the conclusion n = 0 or n=1. If n=og

e , then A is a2 torus. Then

f(Q) is a compact subsemigroup of the compact group A and is. therefore
s

itself a group ([HM 66]). The definition of 4 implies A = £f(Q')” cs

Since A is a torus, s = f(1) 1lies on a One-parameter group of A which is

contained in S. Hence s = exp X for some X e L(S). This settles the case N =

0.
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Now we assume that A = K x IR and that p=f(@+) is dense in R'; we
may indeed assume that pef(1) = 1, whence in fact pef(q) = q for all
q e Q+. We now apply the technigues of the one-parameter semigroup theorem

(cf.[Ho 60], [HM 66], [He 77} ). Define C = Nifgeq : g<t })7 s 0< ¢t}

Then C ¢ S, and the sets f({q e Q+ : g< t})” are contained in the compact

-1
set p ([0,t]) and are therefore compact. Hence C is a compact divisible

abelian group (see e.g. [He 77])). (In fact C = K, but we do not need this here.

Thus C 1is a torus. There is a continuous one parameter semigroup

F: [0, —~ £(@")” with pef(r) =71 for all r> 0, and F(1) = cf(1) = cs

for some ¢ e C. Let g IR - C be a one parameter group in C with
g(1) = ¢. Then t — g(t)-1F(t) : (0,2l —~ f(@+)-g_ S is a continuous one

-1 -1
parameter semigroup mapping 1 to g(1) F(1) = ¢ 'cs = s. Once again we

have found an X e L(S) with exp X = s-

O

This completes the proof.

be a closed divisible sub-

THEOREM IV.8.4. Let G be a Lie group and S

semigroup of G with trivial unit group, then L(S) is a2 semialgebra.

Proof: Let U be a neighborhood of 1 in G satisfying the properties

in the conclusion of Lemma 3.6, then s\(un 8) 1is a right semigroup
s since S -5 = {1}. But S = exp(E(S)) by Theorem 8.3.

ideal in
for all t > 0.

s = exp x € U then expl0,1]x e U since exptx e S

Thus the local semigroup (s nU,U) is divisible (cf. chapter ITI) and hence

If now

L(s) 1is a semialgebra.
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