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Miihsal der Besten

.Woran arbeiten Sie?™ wurde Herr K. gefragt.
Herr K. antwortete: ,Ich habe viel Miihe, ich
bereite meinen nichsten Irrtum vor.®

B. BrRecHT

1 Einfithrung

Die vorliegende Arbeit beschaftigt sich mit Worten in einem Kécher und deren Endomor-
phismen. Ein Kacher Q ist ein orientierter Graph, bestehend aus einer Menge von Punkten
Qo und einer Menge von Pleilen Qy, so dafl jedern Pleil a aus Q; ein Anfangspunkt s(a)
wind ¢in Endpunkt {(e) aus Qg zugeordnetl werden. Wir fagen den Pleilen a € @, formale
Inverse a~! hinzu mit (a~!)~! = a und s{a~!) = t(a) sowie t(e"!) = s{a). deren Menge
mit Q. bezeichnet wird. 7

Cine Sequenz w = wyw;. .. w, von Pleilen und formalen Inversen heiBt ein Wort 1n )
der Linge Jw| = n, falls wiy; # ;™" und s(w;y1) = t{w;) fir jedes i € {1,2,...,n=1} gilt.
Mit s{w) = s(w) und t(w) = t(wn) werden Anfangs- und Endpunkt von w bezeichnet.
Sei v = vy... 0, vin weiteres Wort der Lange m 1n Q, so sei durch Aneinandersetzen das
Kompositum vw = vy ... v.wj ... w, erklirt, sofern die resultierende Sequenz wieder ein
Wort in ¢ ist. Weiterhin benétigen wir fiir jeden Punkt z in @ das Wort e, der Linge
lez] = 0 mit s{e;) = z = t(e,). Die Komposition e;w = w bzw. we; = w [iir ein Wort w
ist genau dann erklart, falls s(w) = z bzw. H{w) == gilt. Die Menge aller Worte in Q
bezeichnen wir mit Q.

Seien fur ein Wort @ = a; ...a, der Lingen > 0

1 ay € Ql: . 1 a, € Qh
ola) = { -1 ay €Q.y, i) = { -1 a,€Q,

sowie a-' = a,~'...a;” 7, und seien o{c,) = 7(c;) = 0 sowic e.~! = ¢;. Dann lassen sich

Faktoren, Quotienten und Divisoren von einem Wort w folgendermafen definieren:

Fac(w) = {{z,a,5) €Q"x Q" x Q" |w=1zay},
Quot(w) = {{z,a,y) € Fac(w)|7(z) < 0,0(y) >0} und
Div(w) = {(z,a,y)€ Fac(w)|7{z) 20,0(y) < 0}.

Mit =(a) = a wird die Projektion von einem Faktor a = (z,a,y) bezeichnet. Nun konnen

wir die Menge der Endomorphismen von einem Wort erklaren:

End(w) = { {4, 7¢) € Quot(w) x Div(w) | 7(w,) = #(p:) oder 7(5z,) = =)' } U {0}



Zusammen mit der Kompaosition, die im nichsten Kapitel eingefiihrt wird, bilden die
Endomorphismen cin Monoid.

Sei I ein Karper. Wir formulieren das Hauptergebnis dieser Arbeit fiir die von dem
Monoid End(w) erzeugte k-Algebra & End(w). Darunter verstehen wir den k-Vektorraum

mit Basis End(w) \ {0}, versehen mit der induzierten Multiplikation.

Theorem 1. Seiw ein Worl in ¢inem Kocher und k ein Kérper. Dann ist die von den
Endomorphismen von w erzeugte k-Algebra k End(w) lokal. Fir eine von zwei Flementen

erzeugle Faktoralgebra A von k End{w) und eine natirliche Zahl n gilt:

(a) Die Dimension dimg Afrad™ A ist durch 2n? — 2n + 1 beschrinkt.

\b) Swnd A und k(z,y}/(z,y)" isomorph, wobei k{z,y) die freie assoziative k-Algebra

in zwer Erzeugenden set, dann ist n < 3.

Sci M ein Monoid, rad M dic Teilinenge der nicht invertierbaren Elemente und rad® M =
{rad Af)". Wir nennen M lokal, falls nur das Einselement invertierbar ist und die Menge

Maen rad™ M einelementig ist. Die kombinatorische Fassung des Ergebnisses lautet nun
folgendermafen:

Theorem 2. Sei w ein Wort in einem Kécher. Dann ist das Monoid End(w) der
Endomorphismen von w lokal. Fiir ein von zwei Elementen erzeugtes Faktormonoid A

von End(w) und eine natirliche Zahi n gilt:
(a) Die Kerdinalitit card{Mfrad™ Af) ist durch 2n® — 2n +2 beschrankt.

(b) Sind M und M(z,y)/md"ﬂl{r,y) isomorph, wobei M{z,y) das freie Monoid in
cwet Erzeugenden sei, dann ist n <1

Die Motivation fir dje Unicrsu(-hung von End(w) ergibt sich aus der Darstellungs-
theoric von Algebren. Sei ein Korper k gegeben, so ist jedem Wort w in cinem Kécher ¢
in kanonischer Weise ein Modu] M (w) iber der Wegealgebra kQ von Q assozilert (siehe
Abschnitt 7.1). Wir folgen nun Wald und Waschbiisch sowie Crawley-Boevey, die bereits

gezeigt haben, daB die Menge End(w) \ {0} eine Basis der Endomorphismen von M ()
licfert {siche [WW], [C]).

Korollar 1. Sei k ein Kérper, w ein Wort in einem Kécher Q und M{w) der asso-

zuterte Modul gber der Wegealgebra Q. Dann gtlt fir die Endomorphismenalgebra von
M{w)

Endio(M(w)) =k End(w).
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Irshesondere glten fiir eine von zwei Elementen erzeugte Faktoralgebra A von Endyq(M(w))

und eine natirliche Zahl n die Aussagen (a} und (b) des Theorem].

Moduln der Form M({w) treten auf bei der Klassifikation der unzerlegbaren Moduln
iiber Stringalgebren (siehe [BR]), also ebenso bei speziell zweireihigen Algebren (siehe
[W1V]): Jeder unzerlegbare Modul itber einer Stringalgebra A ist entweder cin Stringmodul
oder ein Bandmodul. Die Stringmoduln entsprechien Moduln der Form M (w) {iir gewisse
Worte im Kocher Q5 der Algebra. Die Bandmoduln treten nur in homogenen Réhren
des Auslander-Reiten-Kéchers [y von A auf. Stringalgebren sind zahme Algebren (im
Sinne von [D]), so daB sich als Ergebnis dieser Arbeit festhalten 1afit, dafi cine wichtige
Klasse von zahmen Algebren sich auch beziiglich der Endomorphismenringe unzerlegbarer
Moduln ‘zahm’ verhalt. Wilde Algebren verhalten sich entsprechend ‘wild’. Beispielsweise
hat S. Brenner in [B] gezeigt, daf fiir A = k{z,y) jcde endlichdimensionale k-Algebra sich
als Endomorphismenring eines A-Moduls realisicren lafit.

Wir skizzieren nun den Aufbau dieser Arbeit. Im folgenden 2, Kapitel vervollstandigen
wir die Notation und zeigen, daB End(w) ein lokales Monoid bzw. kEnd(w) eine lokale
k-Algebra ist. Weil Theorem1 von zwei Elementen erzeugte Faktoralgebren von k End(w)
behandelt, stehen wir vor der Aufgabe, far Paare (@, f) von Endomorphismen das Er-
zeugnis {a, 8} C End(w) zu untersuchen. Insbesondere interessiert uns eine Abschatzung

von

cala, B) = card({a, 8) \ rad™{a, A}),

denn es gilt dimg A/ rad™ A € ca(a, ) lir eine von o und f§ erzeugte Faktoralgebra A.

Als erstes Ergebnis erhalten wir im 3. Kapitel eine 13-dimensionale Algebra, die sich
nicht als Faktoralgebra von k End(w) realisieren 1a8t. Dann folgl cine Auftcilung der
Endomorphismenpaare in reduzierbare und nicht reduzierbare Paare. Nicht reduzierbare
Paare entziehen sich einer geschlossenen Behandlung, d.h. drei Falle missen zunachst
scsondert betrachtet werden.

Jedem reduzierbaren Paar (a, ) wird cin - von Ausnahmen abgesehen - einfaches Paar
{a¢, 3p) von Transformationen zugeordnet. Im 4. Kapitel beschreiben wir zwei Operatio-
nen r, und r, um ein einfaches Paar (aq, f) sukzessive zu einem minimalen Paar (o, 8;)
zu reduzieren. Uingekehrt erhalt man aus der Kenntnis von (ay, A} induktiv eine genaue
Beschreibung von {ag, Bo}. Insbesondere gilt cq(ce, Bo) < n?/2 4+ n/2

Im 5. Kapitel werden die Beweise der beiden Theoreme abgeschlossen. Wir fassen
ein reduzierbares Paar (a,8) auf als eine durch vier ganzzahlige Parameter bestimmte
Erweiterung e{ag, fo; i, j, p, ) des Paares (ao, fo). Diese Parameter fihren zu einer wel-

teren Unterteilung in schwach- und stark reduzierbare Paare. Zunachst wird Teil (a) des



Theorem 1 bewiesen. Fir schwach reduzierbare Paare dient uns die Beschreibung von
{ag, Bo) aus dem vorherigen Kapite! als Approximation von (a, 8), und wir erhalten'so
dic Abschitzung eq{a, 8) < 2n? — 21 + 1. Im stark reduzierbaren Fall ist eine allgemeine
Abschatzung von c,(a, 8} durch ein Polynom vom Grad 2 nicht moglich, so daB wir einen
anderen Weg beschreiten. Fir den Teil (b) des Theorem 1 kombinieren wir verschiedene
Lrgebnisse und Techniken, die bereits aus dem Beweis von Teil (a) zur Verfigung stehen.

Das 6. Kapitel ist drei Beispiclen gewidmet. Sie illustrieren die Beweise und geben
zugleich Aufschlu iiber die Qualitit der Abschitzungen in beiden Theoremen.

Im 7. Kapitel diskutieren wir schlieBlich die bereits erwihnte darstellungstheoretische
Anwendung.

Mein Dank gebiihrt Claus Michael Ringel, der das Entstehen dieser Arbeit durch

geduldiges Zuhéren und viele wertvolle Anregungen unterstiitzt hat.

2 Das Monoid End(w)

Sei () ein Kocher. In der Einfithrung wurden bereits Worte in () sowie deren Faktoren
und Endomorphismen definiert. Wir vervollstindigen zunichst die benétigte Notatiolﬂ
und geben insbesondere die Komposition in End(w) an. Als erstes Ergebnis erhalten wir
dann eine Beschreibung der Potenzen o (r € N) fiir einen Endomorphismus & € End(w)

und zeigen, daB End(w) cin lokales Monoid ist.

(2.1) Sci w ein Wort in Q und seien a = (a1,a,a;) sowie B = (b, b, b;) zwei Faktoren von

w. Die Menge der Faktoren Fac(w) ist halbgeordnet vermage
(a1,a,03) < (by, b,b;) <= |a;| > ;] far i€ {1,2}.
Die Vereinigung von a und § sei definiert durch
aUf =min{y € Faclw) ja <v,8<~}.
Die Faktoren a und 8 heifien zusammenhdngend, falls

S={y€Facw)|y<a,7< P} #0.

In diesem Fall sei a N 8 = max S der Schnitt von a und S.

Ein Fakior a = (g4, q, az) von w 1aBt sich durch folgendes Bild veranschaulichen:

a, t [7) t az '



Die Gerade entspricht dem Wort w, und die Unterteilung spiegelt die Langen der Worte ay,
a und g, in Q" wieder. Fiir den Vergleich verschiedener Faktoren ist es meist hinreichend,

nur die Projektionen in ihrer relativen Lage zueinander als Geraden darzustellen:

a
il
alf
anp —_—

Sei nun v ein weiteres Wort in Q und 7 = (c1,¢,¢2) € Fac(v). Falls v = n(8} gilt,
bildet
7* B = (bici, ¢, caba)
die Komposition von v und f. Offenbar gilt & < f§ genau dann, wenn ein {durch e und g
eindeutig bestimmter) Faktor ag € Fac(x(f)) existiert mit & = ap * §.
Weiter sei fiir den Faktor o die Zahl jx(a)| die Langevona und a™! = (ay7!,a7!,0,7%) €

Fac(w™!).
(2.2) Firw e Q" sa
Trans{w) = { (¢,, ) € Fac{w) x Fac(w) | m{¢.) = (i) oder w(,) = w(2e)~! }U {0}

die Menge der Transformationen von w. Die Endomorphismen von w bilden eine Teil-
menge von Trans(w). Wir definieren fir eine Transformation ¢ = (,,¢:) folgende Be-

griffe:
1 W(‘P:) = "T("{:t)!

Das Sivnum von = sei sgn{y) =
~1 sonsl.

Der Rang von o sei rg{2) = o]
Der Trdger von v sei supp(y) = @, Ut
Die Verschiebung von ¢ sei || = |z/| — || bzw. [i2lf = fiz') = |z}, falls ¢, = (z,a,y) und
ve={a',d,y,).
Das Bild von a € Fac(w) sei ap = (a, )’5“(") » oy, falls a < @,
Das Urbild von o € Fac(w) sei ap™! = {a,, ) x @, falls a < .

Die Komposition von zwei Transformationen ¢, € Trans(w) wird folgendermaflen
erklart:

ot = {(gp“,mb) ¢ = (Pa,20), ¥ = (¥, ¥0) und @ = N Y, existiert,
sonst.

Die Mengen Trans(w) und End(w) sind jeweils abgeschlossen unter der Komposition, und

die Komposition ist offensichtlich assoziativ.
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Die folgenden Diagramme illustrieren die Komposition fiir den Fall sgn(¢) = sgn() =
1. Dabei unterscheiden wir die Faktoren w, und ¢, einer Transformation ¢ = (¢,,¢:)

durch Markierungen an den Enden der entsprechenden Geraden.

s & }
¥t b <
4 —_—y <
PV —— A
v = - - ,

Wir bemerken, daB die Halbordnung auf Fac(w) eine Halbordnung auf den Trans-

formationen von w induziert (siche 5.1 ), beziiglich der jeder Endomorphismus maximal
ist.

(2.3) Lemma. Seia=q,...q, € Q" mitn = |a| und sei p € N. Die folgenden Aussagen
sind dgquivalent:

(1) Es existieren z,,z, € Q" undre N mita= (z122)" 7y und |zy15) = p.
(1) Es gilt p < n und Gyp=a; firl <i<n-—p.

(i) Es existieren b,z,y € Q" mit a = zby, b = by und |z| = |y| = p.

Beweis. (i) = (ii) und (ii) = (iii) sind klar. Wir zeigen nun (iii) = (i) durch Induktion
nach 1. Zunichst sei jb| < |z] angenommen. Setze zy = b, und sei 19 € Q" mit z = 7,22
Austh = by folgt 1 1,2) = zb = by = 21y, alsoy = z,z,. Damit gilt ¢ = zby = (z132)° 21,
und die Behauptung st gezeigt. Nun sei |b] > |z|. Aus zb = by folgt b = z¥ fiir emn
b€ Q*. Dann gilt z2b = b = by = zb'y, d.h. z¥ = b'y. Nach Induktionsvoraussetzung

hat o’ = z¥'y die Form ¢’ = {z;2;) 2, mit iz,

T = 111y, 50 dafl mit @ = za’ = (z,13)
dic Behauptung vollstindig gezeigt st

Fin Wort a in Q heifit p-periodiscl, falls es eine der aquivalenten Eigenschaften (i} -
(1) erfallt. Ein Faktor a von einer Wort in Q heiBt p-periodisch, falls die Projektion
~ta) p-periodisch ist.

(2.4) Lemma. Seia € Q" und scicn p.g € N. Ist a zugleich p- und q-periodisch mit
lal 2 p+q, dann ist a ein geT(p, q)-periodisches Wort.

Beweis. Sei ohne Einschr;‘mkung p 2 ¢. Dann hat a die Form a = za' mit |z} = p und

T ={0132) 2y mit |zy2,| = 4. Wegen der Voraussetzung |a] > p+ ¢ und der p-Periodizitat

8



von a gilt @ = z1;7.a" fiir ein @”. Aus der ¢-Periodizitat folgt a = (z,7;) r,737,a".
Demnach ist z,zy = z,z;, und die Behauptung folgt unmittelbar aus dem [olgenden

Lemma.

Lemma. Seien a,b € Q" und sei ab = ba. Dann ezistierenz € Q" und r,s € N mit
a=1",b=1".

Beweis. Wir beweisen durch Induktion nach |a]. Ohne Einschrankung sei a| > |b].
Wegen ab = ba gibt es o’ € Q" mit a = ba’. Es folgt dann ba'b = ab = ba = bba’, d.h.
a'b = ba'. Nach Induktionsvoraussetzung ist @’ = z" und b = z*, und die Bchauptung

folgt aus @ = ba' = z™**.
(2.5) Lemma. Sei o € End(w), a # 1 und a* # 0.
(a) Es gilt sgn{a) = 1.

(b) Seir € N und o” # 0. Dann gilt supp(a”) = supp(e), rg(a”) = 1g(a) — (r = 1)|a|}

und ja"} = r|a].
(c) Der Trager supp(a) von « ist jjalj-periodisch, und es gilt | supp(a)| = rg(a) + fja]|.

{d) Seibe N undsupp(a) b-periodisch sowic jja}l = rb fir einr € N. Dann gilt a = 57

fiér einen eindeutig durch o und b bestimmten Endomorphismus f € End(ar).

Beweis. Sei a, = (z,a,y), a, = (',a’,y’). Weiter sci ohne Einschrankung ja| 2 0.

(a) Angenommen, es sei sgn(e) negativ, d.h. a’ = a7'. Dann gilt (o Ne,)"! =aiNa,,
und damit ist a2 = (a, N a,,a;Na,). Nun ist Quot{w) N Div(w) = {(1,w,1 1}, s

da8 im Widerspruch zur Voraussetzung o = 1 gilt. Also ist sgn(a) = 1.

(b) Seia = ba; = a;¥ mit |a,| = (r—1)|la}|. Dann folgt mit Teil (a) unmittelbar aus der
Definition der Komposition in End(w), daf a” dic Form (g,, 8;) mit 4, = (z,5, a1y)
und B, = (z'as, V', y') besitzt. Daraus ergibt sich die Behauptung.

(c) Nach Teil (a) gilt o = a. Wegen Ja| > 0 gibt es z",y" € Q" mit 2’ = zz" und
vy = y"y’. Dann ist 7(supp(e)) = ay” = r"a mit l¥"} = llell = |z”|, und die
Eigenschaft (iii) in Lemma 1.3 ist erfiillt. AuBerdem gilt | supp(a)] = |a] + Jy"}, so
daf (c) volistindig bewiesen ist.

LA

(d) Nach Teil (c) hat a die Form a, = (z,a,y"y'), &« =
Periodizitit von supp(a) existieren b, %, € Q" mit bf =
li] = b = |z). Damit besitzt § die Form 8, = (2,b,5y'), B = (

(:rr a,y’). Wegen der b

v z”a = zb und

V')

U" !
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(2.6) Sci M ein Monoid, d.h. M ist cine Menge versehen mit einer assoziativen Multipli-
kation und einem Einselement 1 € M. Sei 1 # zo € M ein Element mit zoz = 10 = 220
fir alle z € Af, so wird zp als Nullelement von M mit 0 bezeichnet. Das Radikal rad A
von Af sei die Menge der nicht invertierbaren Elemente in M. Man definiert induktiv
rad™*! Af == rad” Af rad M und erhilt die folgende absteigende Kette

M =rad®M Drad'M Drad?AM D ...

von Idealen in M. Sei z € M, so heifit

| o0 z € (en rad™ M,
=)= {max{n €Nyjz€rad"M} sonst,

die Ldnge von z in Af. Das Monoid M heift lokal falls M = rad M U {1} gilt und
Nnenrad™ M einelementig ist. Fir eine Teilmenge X C M wird mit {X) das kleinste X

umfassende Submonoid von M bezeichnet.

Lemma. Sei M ein endliches Monoid mit Null und sei fiir jedes x € M\ {1} die
Menge {n € M |z # 0} endlich. Dann ist M lokal.

Beweis. Offensichtlich ist 1 das einzige invertierbare Element. Wir zeigen nun, daf
rad™ Af = rad" M bereits rad® M = 0 impliziert. Dann folgt die Behauptung aus der
Endlichkeit von Af. Sei also rad® Af = rad® Mrad M, so wahle X C rad® M minimal
mit rad™ Al = Xrad M. Sei 15 € X, s0 gibt es z; € X und z € rad M mit x5 = 212
Wegen der Minimalitat von X gilt 25 = z, und somit 2o = zoz" fir alle n € N. Nach
Voraussetzung ist dann 24 = 0, d.h. rad™ M = 0,

Wit kombinieren nun das vorangegangene Lemma mit Lemma 2.3.b.
Satz. Seiw ein Wort in einem Nécher. Dann ist End(w) ein lokales Monoid.

(2.7) Sei M ein Monoid mit 0 und J/ C M ecine multiplikativ abgeschlossene Teilmenge.
Iir einen Kérper k sei die von 1 erzeugle k-Algebra der k-Vektorraum kH = @, ¢\ (o) k2
versehen mit der induzierten Multiplikation, d.h. Basiselemente werden wie in A multi-

pliziert, wobei die Null in M mit der im Vektorraum L H identifiziert wird.

Lemma. Sei M ein lokales Monoid.

(a) Dic k-Algebra k2! ist lokal, und fir das Radikal gilt rad® kAf = krad® M fir jedes
n€N.

10



{b) Sei A eine k-Algebra mit rad" A = 0 und sei p: kM — A ein surjektiver Homo-
morphismus. Dann gibl es eine Teilmenge X C rad M \ rad® M, so daff { (z) +
rad?A | 2 € X} eine k-Basis von rad Afrad’A bildet. Fir jedes r € No wird
rad” A iber k von {p(z) | z € rad"(X)} erzeugl; insbesondere wird A iber k von
{o(z}{z € {X) \rad®(X)} erzeugt.

Wir verzichten auf den elementaren Beweis des Lemmas.

3 Nicht reduzierbare Paare von Endomorphismen

Wir werden in den folgenden Abschnitten Paare a und f von Endomorphismen unter-
suchen, denn Theorem 1 behandelt von zwei Elementen erzeugte Faktoralgebren von
kEnd(w) und Lemma 2.7 zusammen mit Satz 2.6 reduziert diese Aussagen aufl Paare
a.8 € End(w) und deren Erzeugnis {a,8) C End(w). Als erstes Ergebnis erhalten wir
in Abschnitt 3.4 eine 13-dimensionale Algebra, die sich nicht als Faktor von k End{w)

realisicren 1aBt.
(3.1) Seien a, 8 € End(w). Das Paar (a, 8) heilit reduzierbar, falls
(i) «®* # 0, afa #0, sgn(f) =1, la||B] < 0, sowie

(i) 181l 2 flafl, falls 82 # 0.

Unser Ziel in diesem Abschnitt ist der folgende Satz, der all die Falle versammelt, die
sich einer geschlossenen Behandlung im Rahmen der cinfachen und reduzierbaren Paare

(verglciche das 4. und 5. Kapitel) entzichen.

Satz. Seien a,f € rad \ rad? End(w) und weder (a, 8) noch (8, o) reduzierbar. Dann
gilt firne N
card((e, 8) \ rad"(a, 8)) < 2n® — 2n + 1.

(3.2) Lemma. Seien a, € rad End(w) mit o® # 0 und ﬁ’ # 0.
(2) Sei |supp(a) Nsupp(B)| > lla]| + |B)j. Dann gilt supp(a) = supp(B)-
(b) Sei supp(a) = supp(B). Dann gibt es ein v € End(w) und r,s € N mit @ = 7",
g=7"
Beweis.

11



{¢) Zunichst sind nach Lemma 2.4 und Lemma 2.5 supp(a) und supp(3) sowohl! jja||- als
auch || 8||-periodisch. Angenominen, es sei supp(a) # supp(d). Ohne Einschrinkung
sel s = supp(a)Nsupp(B8) # supp(a). Dann existiert v = (z,¢,y) € Fac(x(supp(a)))
mit s = q =supp(a) und es ist |z| > 0 oder |y| > 0. Sei ohne Einschrankung |z| > 0.
Nach Voraussetzung ist jc| = {s] > ||]|, d-h. ¢ hat die Form ¢ = ¢’ mit |'| = }3]|.
Wegen § € End(w) ergibt sich 7(z) # 7{zc). Das widerspricht aber der [|B]}-
Periodizitat von zcy = w(supp(a)), so dab supp(a) = supp(f) bewiesen ist.

(L) Sei ¢ = ggT(jlall, |8]1). Dann ist auf Grund der Voraussetzungen nach Lemma 2.4
und Lemma 2.5 supp(a) ¢-periodisch. Sei |ja}| = cr und ||8]] = cs, so gibt es nach

Lemma 2.5.d ein 7 € End(w), so da e = 7" sowie § = 7* gilt.

(3.3) Ein Endomorphismus a € End(w) heiBt primitiv, falls a = 8" fir ein 8 € End(w)
und ein 7 € N bereits n = 1 impliziert.

Lemma. Seien o, § € End(w) primitiv und sei a™ = g # 0 fir ein Paarm,n € N.

Dann gill a = B und m = n.

Beweis. Die Behauptung folgt sofort aus Lemma 2.5.b und Lemma 3.2.b.

Das vorangegangene Lemma rechifertigt die folgende Definition: Zwei Endomorphis-
men a, # € End(w) heifen dquivalent, falls a = B = 0 gilt oder ein 4 € End(w) existiert
mit a =77 # 0 und § =4* # 0 fir gewisse r,s € N.

(3.4) Satz. Seien o, 8 € radEnd(w) mit a? #0, 2 £ 0 und ||B]| > |lel|. Dann sind o
und 3 dquivalent, oder es gilt a3%a = 0 fir alle n > 2.

Bewers. Sci af"a # 0. Wille v < (af"a), mit |y| = 0. Dann ist ya < supp(a) N
supp{J} und yaB”™ < supp(a) N supp(F). Also ist farn > 2

[supp(a) Nsupp(3) 2 [ha U a8 = |87 = n)|8]| > 2[18)| 2 llall + 151,
und damit sind a und 3 aquivalent nach Lemma 3.2.

Korollar. Sei k{z,y) die freie assoziative k-Algebra in zwei Erzeugenden und sei A
die folgende Fakioralgebra:

A=z /I mic = (2% zyz, yzy) + (z,y)"

Fir emn Wort w in einem Nécher gibt es keinen surjektiven Homomorphismus von k End(w)
nach A.



Beweis. Angenommen, es gibt einen surjektiven Homomorphismus ¢: k End(w) —
A. Dann existieren o, 8 € rad End(w) \ rad’ End(w) nach Lemma 2.7, so daB {(a) +
rad? A, o(8) + rad’ A} eine Basis von rad A/ rad? A bildet. Nun wird rad* A dber k
von {¢{af?a),v(Ba?B)} erzeugt und ist 2_dimensional. Im Widerspruch dazu ist aber
afle = 0 oder Bo?f = 0. Damit ist die Behauptung gezeigt.

(3.5) Lemma. Seien a,f € radEnd(w) und a? # 0. Seien weiter a und nicht
dquivalent und gelte supp(8) < supp(e). Dann ist 1g(8) < llall.

Brweis. Wir unterscheiden zwei Falle,
1. 52 #£0.
Es gilt nach Lemma 2.5.c

| supp(a) N supp(B)] = |supp(B)] = |81} + r&(H);

und die Behauptung folgt sofort aus Lemma 3.2.

2. g2 =0,

Seien 4, = (z,b,y), B = (z',¥,y’) und sei ohne Einschrankung |8} > 0. Angecnommen,
es gilt 1g(8) > |jal|. Wegen 8% = 0 ist |8] > 1g(/3), und es gibt daher eine Zahln € N
mit |8} = nlla|| + 7 und 0 < r < flaf|. Sei y = niy2 und 2’ = 24z, mit jyi| = nllall = [z1].
Dann liegt auch 7 = (y,,7¢) mit 7, = (z, bys, ¥2) und 7 = (74, 7}¥,y") in End(w}) wegen
der a-Periodizitit von supp(a). Nach Konstruktion ist 1g(7) 2 llall, supp(y) < supp(a)
und 4?2 # 0. Dem ersten Teil des Beweises zufolge sind dann o und ¥ aquivalent. Wegen

3 = 9™ sind folglich auch & und B aquivalent, und das Lemma ist gezeigt.

(3.6) Lenmuna. Seten o, € End(w) mut 4% =0 und jo||8] > 0. Dann gilt fa™3 =0 fir
alle n € N.

Beweis. Sein € N und z = § N {e"),. Da g2 = 0, sind B, und B, nicht zusam-
menhingend. Wegen |a||8] > 0 sind dann auch za™ und f, nicht zusammenhingend.

Deshalb gilt Ja"g = 0.

(3.7) Lemma. Seien o, € End{w) nicht dquivalent und sei afja™ #0 fir einn € N.
Gilt afia # 0 fir ein ¢ € End(w), dann folgt pafa™~! # 0.

Beweis. Wir zeigen allgemeiner (afa), = (aﬁo“""),. Daraus ergibt sich dann unmit-
telbar die Behauptung. Seialsou = (aB)Ne. Nach Lemma 3.5 gilt |u} = rg(afa) < fall
Die Beschreibung von o™! und a® in Lemma 2.5 lefert nun u < (a"1),, da nach Vor-

aussetzung u und (a"), zusammenhangend sind. Daher gilt (afa), = (afa"1),.
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(3.8) Lemma. Seien a,3 € End{w) mit sgn{e) = 1 und sgn(f) = —1. Dann gilt
aja"8a =0 fir alen € N.

Beweis. Sein € N und a3a"3a # 0 angenommen. Dann ist nach Lemma 3.7 fiir
4 = afa™! auch 7% = a3a"da"~! # 0. Nach den Voraussetzungen an das Signum von
a und B ist sgn(q) = —1 oder rg(y) = 0. Beides widerspricht 4* # 0 nach Lemma 2.5,
und es gilt daher a8a™fa = 0.

(3.9) Fiir zwei Faktoren @ = (a;,a,a9) und 8 = (b;,b,b;) aus Fac{w) schreiben wir
a &« 3, falls |a;| > |b,] fiir 1 € {1,2} gilt.

Lemma. Seien a,8 € End(w). Gilt oy € B (a, < B), so gibt es o' € End(w) mit
a=a'g (a=8d).

Bewets. Wahle o' = (a,,0,871) bzw. o’ = (0,8, a,).

(3.10) Lemma. Secien 0,8 € rad End(w) nicht dquivalent mit o® # 0, 8 # 0 und
I8l = lia||. Auferdem gelte afa = 0, falls |a]|8] < 0.

(a) Sei supp(a) # supp(a) Nsupp{B). Dann gilt af =0 oder fa = 0.

(b) Sei supp(a) = supp(a) N supp(B). Dann gilt afa = 0. Sei dariber hinaus @ €
rad’ End(w). Dann gilt af = 0 oder fa = 0 oder aff? = f%a = 0.

Beweis. Wir nchmen ohne Einschrinkung |af positiv an.

(a) Sei 7 = {e1,¢,c2) € Fac({r(supp{a))) mit supp(a) N supp(B) = v + supp(a). Nach
Voraussetzung ist |e;| > 0 oder |c;] > 0. Wir kénnen uns auf den Fall |¢;] > 0
beschranken.

1. |aj|B8i > 0.

Angenommen, es gilt Jo # 0. Dann sind S, und e, zusammenhingend, und es

crgibt sich aus jall3] > 0 dic Ungleichung
tsupp(a) Nsupp(y)] = 181+ 18: N a,] + Jall 2 (18] + llall.

Nach Lemma 3.2 sind o und f# dann aquivalent. \iderspruch. Also ist Sa =0
gezeigt.

2. Jalid] < 0.
Angenommen, es gilt a3 # 0. Die Voraussetzungen |a|8| < 0, |8 = |lell und

les} # 0 liefern (a3), € a,. Daraus ergibt sich der Widerspruch afa # 0. Also ist
af = 0.
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(b) Sei v = (c1,¢,¢z) € Fac(n(supp(B))) mit supp(a) = 7 * supp(8)-
L. jaliBl > 0.
Angenommen, es gilt afa # 0. Dann folgt wegen la]|8] > 0 sofort |supp(e) N
supp(3)] = llell + 181l + llell, d.b. nach Lemma 3.2 sind « und 4 iquivalent.
Widerspruch. Also gilt afia = 0. Fiir den zweiten Teil der Behauptung sei zunichst
le1| = 0 oder |cz] = 0 angenommen. Da rg(a) < 8]l nach Lemma 3.5 gilt, sind
B und a, bzw. A, und o, nicht zusammenhingend, so dafl fa = 0 oder aff =0
gezeigt ist. Nun seien |ci| # 0 und [e;| # 0. Aus le;| # 0 und der Voraussetzung
o € rad? End{wr) kombiniert mit Lemma 3.9 folgt lez|+ lle]] < I18)). Mit rg(a) < I8l
ergibt sich daraus f%a = 0. Analog wird aff? = 0 gezeigt.
2. le}}8| < 0.
Es ist nach Voraussetzung nur der zweite Teil zu zeigen. Beobachte zunachst, daf
afa = 0 bereits |supp(e)] < [|B]| impliziert. Die Voraussetzung o ¢ rad’ End(w)
kombiniert mit Lemma 3.9 liefert |c;] < 18]l fir ¢ € {1,2}. Aus jei| < |}B] und
| supp(a)| < [|B]| folgt af? = 0. Analog ergibt sich fla=0.

(3.11) Der nun folgende Satz vereinigt die Ergebnisse aus den Abschnitten 3.6, 3.8 und
3.10.

Satz. Seien a,f € rad End{w) \ rad? End(w) voneinander verschieden und weder
(a,f) noch (8, a) reduzierbar. Dann gilt einer der folgenden Falle:
(i) a®>=p*=0.
(i) ad=0. (i) Ba=0.
(iii) 8% = aBo™Pa =0 fir allen € N. (i) o= fafraf=10 fir allen € N.
(v} ofa=af?=pla=0. (iv') fof =fa? =08 =0.
(3.12) Lemma. Sei A = M{z, y} das freic Monoid in den Erzeugenden = und y. Weiter

sei das Ideal ] C M erzeugt von einer der Mengen

Ry = {z¥'),

Ry = {zyz,2y",y'z},

e {y}}U{zyz’yz T € N},

Ry = {Iy':[rEN}U{yz'+1y|r€N}.

Dann gilt card(Af/I \ rad” M/I) € 2n* - 2n +1 fﬁrjcdes‘n € N.
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Beweis. Sei I C M ein Ideal und n € N, so gilt
M/I\rad"M/I ={ze M/T}ze M\ (IUrad"M)}.

Wir betrachten nun einzeln die von R; crzeugten Ideale I; (1 < j < 4) und geben die

Elemente von A, = Af\ (I; U rad™ M) bzw. card A; explizit an. Insbesondere erhalten
wir card Af; < 2n% — 2n 4+ 1,

Mi={(zz)'}0< 2 <n}U{(yz) |1 <2 < n)
U{(:ry)‘:c10521’<n—1}u{(y:z)‘y|0§2i<n—l}

card My = 2n — |

My={z'|0<i<n}U{y'|1<i<n)
U{x‘yllSi(n—l}U{ymﬂlSi(n-—l}
U{yx‘y|15i<n—-2}

cardM; =51 -8, falls n>3

;113={:r"}0§i<n}u{y:r"y|1Si<n—2}
Uhyﬂhdzﬂj+j<n—ﬂ
U{y:c'y:rj[i,j?_l,i+j<n—2}
U{z'yry 1,5 > 1, 1+j<n~2}
U{y;r"yr’y[i,jzl,z'+j<n—3}

card M3 = 2n% - 10n ¢ 19, falls n>4

:“\h:{r'|0§i<n}U{y‘|lSi<n}
Vs H 21 idi<n)ufy'e [ij> 1, i+j<n)
U{y'ry’]i,j21,£+j<n—-l}

card Mf; = 3/2 n2-7/2 n+4, falls n>2

Beweis von Satz3.1. Seien a und 3 wie in der Voraussetzung. Nach Satz 3.11 ist {a, 5)

cpimorphes Bild von M({z,y)/1, wobei das Ideal I von einer der Mengen R; (1 <1< 4)

crzeugt wird. Nun folgt die Bchauptuug unmittelbar aus dem vorherigen Lemna.
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4 FEinfache Paare von Transformationen

Jedem reduzierbaren Paar (a, ) von Endomorphismen werden wir itn 5. Kapitel ein Paar
(a0, Bo) von Transformationen zuordnen, das - von Ausnahmen abgesehen - einfach sein

wird. Das Erzeugnis (ag, fo) wird dann als Approximation von {a, B} dienen.
(4.1) Scien a,3 € Trans(w). Das Paar (a, 8) heit einfach, falls

(i) a?#0, 3#0, g2=0, sgn(B)=1,

(i} supp(a) = supp(B), |a]lB} <0 und afe € End(w).

In diesem Abschnitt wird eine Konstruktion angegeben, mit der sich ein belicbiges

einfaches Paar (a.3) durch iteriertes Anwenden zweier Operationen zu einem minimalen

cinlachen Paar (a,,d)) reduzieren lafit. Umgekehrt erbalt man aus der Kenntnis von
{a1,53,)) induktiv eine genaue Beschreibung von (a, B). Insbesondere kénnen wir das

folgende Ergebnis ableiten:
Satz. Sei («, 8) ein einfaches Paar in Trans(w). Dann gilt firn € No

card(rad*{a, 8) \ rad"*!{e, f)) Sn + 1.

Bemerkung. Dic Abschatzung ist bestmaglich (vgl. Beispiet 6.1 )
(4.2) Lemma. Sei (a,3) ein einfaches Paar in Trans(w).
(&) Es gili ra( 3} < |lall.

(h) Seia™3... Ba™ =a™f...Ba™ #0 firng,...,nr und my, ..., m, aus No. Dann

git r =s und n; = m; fir: € {1,...,7}.

Hewes.

1) Sei ¢ = supp(c) = supp(8) und v’ = #{c) dic Projektion. Wir schranken a und

8 Auf w' ¢in, d.h. wir betrachten o' = ((e)e, (i)} und B’ = ((3,)e, {B)c) 1n
« ¢ fir 7 < ¢ aus Fac{w) wie in 2.1 erklart.) Wegen

Trans{w'). (Dabei sei v = 1.
(w'). Nun folgt

ada € End(w) bzw. a’#'a’ € End(w’) sind auch o’ und f’ aus End
die Behauptung sofort aus Lemma 3.5, da rg(8) = rg(8) < fla’ll = llal|-

(L) Die Behauptung folgt mit (a) durch Induktion nach r.
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Das vorangegangene Lemma rechtfertigt die folgende Konvention fir ein einfaches Paar
(n.8): Sei M{a,B) das freie von a sowie B erzeugte Monoid und sei 7 = 7, 5: M{c, 5) —
lians(w) die durch 7{a) = a und 7(3) = § induzierte Abbildung. Dann identifizieren wir
die Menge {x € A{{e, 8) | 7(z) # 0} vermdge 7 mit T(a, B) = (e, B) \ {0} C Trans(w).

{4.3) Lemumna. Sei (a,3) ein einfaches Paar in Trans(w).

(a) Sein = max{r € Ng | a™*? # 0}. Dann liegen a; = ((a"*}),,(a"*!),a) sowie
By = (B,a™",B,) in Trans(w) und (a;,B:) ist ein einfaches Paar. Dariber hinaus

gilt oy = 0.

(b) Sei faf # 0. Dann liegen ), = afa und py = ((Ba). N B,, B N (af),) in Trans(w)

und {ay, f1) ist ein einfaches Paar.

Die einfachen Eigenschaften von (a),8)) ergeben sich unmittelbar aus dencn von
(@, 3}, so daB wir auf Details verzichten. Wir bezeichnen im Teil {a) mit r, (a, 8) = (01, 51)
die n-fache Verkirzung von (o, #) und im Teil (b) mit r(e, f) = (o, f1) die einfache RHe-
duktion von {(a, ). Als Beispiel wahlen wir das Wort w = (z 'yz~'z~1y}*z~! im Kécher

mit cinem Punkt und zwei Pleilen £ und y.

ur L e A R e L o TR Yy TSIy SEEIpAPEE S NN Sy I TSN Wy S ey SRS s R
-—
(a,8) —/—— . <
7'2(0,6) f - ___'\ t _f.
- .
rrafa, §) - —

Ein einfaches Paar {a, 8) heilt minimal, falls o® = faf = 0 gilt. Die Begriffsbildungen
fiihren zu folgendem Lrgebnis:

(1.4) Lemma. Sei (a,) ein einfaches Paar in Trans(w). Dann gibt es ein minimales

Paar (a1, 51) in Trans(w) und Zahlen ny, ... ,n, € Ny, so daff

(o, B} =rarre,_, - Tt {a, ).

Bewets. lteriere die im vorangegangenen Lemma beschriebenen Konstruktionen ry

und r1m Wechsel, bis das resultierende Paar minimal ist.

(4.5) Seien o, 8 € Trans(w). Ein Element m € {a, ) heift mazimal fir das Paar (a, 8),
falls

{1) m # 0 und
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(it} m € {a,3)z{a, 8) fur jedes z € {a, B) mit z # 0 gilt.

Lemma. Sei (@, 3) ein minimales Paar in Trans(w).

(a) Sei |afalla] > 0. Dann ezistiert s € N, so daf (afa)* mazimal ist fir das Paar
(e, B).

thi Sei|adallal < 0. Dann existiert 5 € N, so daff a(afa)’a mazimal ist fir das Paar

(auﬁ)-

Beweis. Nach der Definition fiir ein minimales Paar ist Ba™B = 0 fiir jedes n € No
mit n # 2. Aus den Voraussetzungen an |afao| ergibt sich, da fir maximales m € {a, )

entweder m € a*{w, )a? oderm € afBla, B)Ba gilt.

(4.6) Wir fixieren einige Notationen fir den Rest des 4. Kapitels. Seien M = M(a, 8}
das freie Monoid und G{e, §) die freie Gruppe in den Erzeugenden a und B, wobel wir
M{a,B) als Teilmenge von G{a, ) auffassen. Weiter sei (8%) € M({a, B} das von 52
erzeugte Ideal, Mg = M \ (#?) und D{a,B) = aMp U Mpa sowie D'{a, ) = aMpa.

Wir definieren zwei Abbildungen, wobei n aus N sen:

Py Pn: A{(alyﬁl) — G(a, ﬂ)-

Es sei p die multiplikative Fortsetzung der folgendermaBen auf {a1, 8} erkldrten Abbil-

dung:

slar) = aBa, p(B) =™
Far r = alnnﬁlnna]m ...ﬂ}’"'a;"' mit r € ND, no, N, c NO: n; € N (1 S 1 S r— ]),
m, £ N (1 <1<r)set

g (I) _ On°+n3m10"‘+" ﬂmron.—-{-n.
n = J ‘e

Lemma.
(a) Firz,y e M{a,, ) gilt pa(zy) = pa(z)a"paly) mit pﬂ(z)a"“,a’"pn(y) € M{a,B).
(b) Firz € D{a;,f) gilt p{z) € M{a, B)-

(¢} Seien z,1;,z7 € M{ay, 1) mit z,2:222 € D'{e1, B). Dann gilt p(z;) € M{a, 8)
firie {1,2}.
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Bewess. (a) und (b) sind klar. (c) folgt aus (b).

(4.7) Lemma. Sei (a,3) ein einfaches Paar in Trans(w) und (a1, 5) = rula,f). Fir
z € M{ay, 3) sindz € T{ay,8;) und pa(z) € T{a,B) dquivalent; in diesem Fall gilt

pa(z) = za™ in Trans(uw).

Beweis. Wir zcigen fir ein z € M{(ay, Bi) die Behauptung durch Induktion nach
der Linge !{z} von z und nchmen dazu an, daB z € T(ay, £1) oder p.(z) € Tla.B)
gilt. Fir {(z) <1 ist die Behauptung klar. Sei nun z = z,7, mit 0 < I(z;) < I(z) fir

€ {1,2}. Danngibtesy, € Mo, 3) mit p.(z)) = y1a" sowie p,(z2) = a™y3, und es
folgt pa{z) = y10™y2 aus Lemma 4.5.a. Nach Induktionsvoraussetzung gilt ;0™ = ;0"

und a"y; = r,a™ in Trans(w). Wir interpretieren nun
ra” = 1rze” = 110"y, = y1a”y; = palz)

n Trans(w) und unterscheiden zwischen € T{ay, 81} und pu(z) € T{a, ). Im ersten
Fall folgt pn(z) € T{a, B), da 7, < (a"),. Im zweiten Fall impliziert pa(z) = za™ sofort
z € T{ay, ). Damit ist dic Behauptung vollstindig gezeigt.

(4.8) Lemma. Sei (a.B) ein einfaches Paar in Trans(w) und (a3, f) = r(e, §).

(a) Set » € T{e,B). Dann gibt es ein ' € afT{a,B)fa mit ' # 0 und ' €
T{a, 8)zT{a, §).

(b) Firz € a1M{oy,B)a, sindz € T{ey, ) und p(z) € T{a, B) dquivalent; in diesem
Fall gilt p{x) = 7 tn Trans{w).

Dewers.

(a) Hat 1 € T{a,f) dic Formz = By fireiny € T{a, B), so gilt aJy # 0 wegen 4, < a.
Vullkommen analog implizieren 7 = yf, z = a?y bzw. 1 = ya© fir cin y € T{a, 3),
daB yda # 0, ada’y # 0 bzw. ya?fa # 0 gilt. Daraus folgt dic Behauptung.

(L) Sci z € ayM{e;,51)a; und z € T{oy,f1) oder p(z) € T{a,B). Wikle ' €
a1 M{ay, fi)oy mit maximaler Linge I(z'), so daB p(z') = ' # 0 in Trans{w)
gilt und ein 7, € M(0o,,5;) mit z = 2z, existiert. Wir zeigen nun z = 1’. Sei
zunichst r; € o;M {0y, 8;) angenommen. Dann gilt z'a; = p(z')afa = p(z'cy)
im Widerspruch zur Maximalitat von I(z’). Sei also z; € fiM{a1, ;). Dann ist
z) € BigM{ey, By). Es gilt 2'f10y = p(2')Ba = p(z'B1ay), denn fir y € Fac(w)
mit y < (a1)e N (Bhar), gilt yBia; = yPa. Somit ist z = 2’ wegen der Maximalitat
von I{1') gezeigt.
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(4.9) Satz. Seien (a,8) und (ay, 1) einfache Paare in Trans(w) und sei my mazimal

Juray, 3 ).
(a) Sei(a;,B1) = rola, ). Dann ist m = p,(m) maximal fir (a, 3).

(b} Sei (ay,B)) = r(a, 8). Dann ist m = p(m,) mazimal fir (a, f).

Bewers.

{a) Zunichst ist m = p,(m,) € T{a, ) nach Lemma 4.7. Sei nun 1 € T{a, 3), so ist
m € T{a,d)zT{a, 3) zu zeigen. Sei z = a™Ba™f...Fa™. Es reicht, die Behaup-
tung fir 2’ = a™ Ba™ 3. .. fa™ ' fa™ mit m; = max(n;,n)fir: € {1,r} zu zeigen,
denn es ist ' € T{e, B)zT{a, S} und z’ # 0 wegen (@™ ); N B, = (a™) N8, und
30(a™), = gNfa™),. Nungilt 2’ = pa(y) firy = ay™ " Fioy™ "5, o Brag™ T
Nach Lemma 4.7 ist y € T{ay, ), und wegen der Maximalitat von m, gibt es
y1,v2 € T{ay, B} mit my = y,yys. Dann folgt m = pa(m1) = ol )a"z'a™" pa(y2)
nach Lemma 4.6.a, wobei p,(y1)a~", @ "p.(y2) € T{a, B} gilt. Damit ist die Be-

hauptung bewiesen.

(b) Offensichtlich ist my € o,T{ay,fi)on, d.h. m = p(rmi) € T{a, B) ist klar nach
Lemma 4.8.b. Sei nun z € T{a,f), so st m € T{a, f)zT{a, 8) zu zcigen. Nach
Lemma 4.8.a existiert z' € afT{a,B)Ba mit 0 # z' € T{a, 8)zT (e, B). Sei z’ =
afa™ B ... fa™ Ba, so gilt ' = p(y) fir y = afy o™ .. 0 e mit m; = 1,
falls n; = 1, und m; = 0, fallsn; = 2 (1 <1 < 1) Nach Lemma 3.8.b ist
y € T{ay, 1), und wegen der Maximalitat von m, gibt es y,y2 € T{ay, f1) mit
m, = yyys. Dann folgt m = p(my) = p(y1)z'p(y2), wobei ply;) € T{a,B) fir
i € {1,2} nach Lemma 4.6.c gilt. Damit ist die Behauptung gezeigt.

(4.10) Sei fir den Rest des Kapitels M = AM{a,8), D = D{e,5) und seien durch die
Fesisetzung a; = a, 3, = 8 die Abbildungen p und p, auf M definicrt. Es sei auflerdem
én: M{a, By — G{a,B)

dic multiplikative Fortsetzung der folgendermafen aul {a, B} erklarten Abbildung:

ba(a) = o"Pa, &.(B)=0a"".

Lemma. Seiz € D undn € No.
(a) Es gilt pap(z) = bnsi(z)a”.
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(b) Seiena,b,y € D mit y = azb. Dann ezistieren a’,b' € D mit §,,,(y) = a'pup(z)¥.

Beweis.

(a) Seiz=0™3...3a™ € D. Dann folgt die Behauptung unmittelbar durch Induktion

nach r.

(b) Wihle ¢’ = é.411a), ¥ = a™"6,41(b) und benutze Teil (a).

{4.11) Seien ng,ny,...,n, € Ny, o definiere
c(no) =a™ und ¢(ng,ny,...,n) = &, coibnybn (@™), falls t 2> 1.

Seien nun ng, ny,...,n, aus N fest gewihlt mit 1 > 2, so benutzen wir folgende Notation:
¢ = c(no,ny, ... my), @ = o(lyng,...,m), b = ¢(1,n2 ~ 1,na,...,n,) und p = {(a™b),

¢ = l(a).
Lemma. Seien ng,n,,...,n, € N und t > 2. Dann gilt
(a) ¢ = (amb)m,
(b) abe Ma und
{c) a€ b(fa)'A1.

Beweis. Die Behauptungen folgen unmittelbar durch Induktion nach ¢ wegen der

Multiphkativitit von &,.
Satz. Seien ng,ny,...,n, € N und sei firne N
To={r€M|c(nony,...,n) € MzM, l{z)=n}.

Dann gt card T, < n + 1.

fewers. Wir beweisen durch Induktion nach t. Fiir ¢ € 1 ist die Behauptung klar, und
es sei daher t > 1. Wir benutzen lediglich die in den Teilen (a), (b) und (c) des Lemmas
angegebencn Eigenschaften von ¢. Nach (a) und (b) existieren a; € M fir 1 <1< p—gq
mit ¢ € Majaund {a;) =1. Fur0 < i < p-—gsei b; € M mit ¢ € b;M und i(b) =1
Zudem sei b_;, = a~!}.
I.n<p
Sei r € M mit ¢ € MzM und I{z) = n. Dann gibt es nach (a) z,, 7, € M mit a™ba™b =

11222, wobei ohne Einschrankung /(z,) < p gilt. Es folgt eine Fallunterscheidung fir
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liz,). Falls I(z,) > p— g, ist a™ € MzM far m = n; + 2 wegen (b) und (c). Falls
l(z,z) < p—2, ist ebenso a™ € Mz M wegen (c). Andernfallsistn 2 ¢ und z hat die Form
a,ab,_o_; firein i € {1,...,n—g+1}. Nach Induktionsannahme folgt card T, < n +1
fir n < ¢, da a™ = c(m,ny,...,n,). Fiir n > g beachte, daB a™ ein g-periodisches
Wort ist und daher card{z € M | a™ € MzM, (z) = n} < g gilt. Daher folgt
cardT, € g+ {(n—-¢g+1)=n+1l

2.n2>p.

Nach (a) ist ¢ ein p-periodisches Wort. Daher ist card T, <p<n+1.

Beweis von Satz 4.1. Sei (e, B) einfach. Dann existieren ny,...,n; € No nach Lemma
14. so daB (6y,81) = rar...rTs (a,8) minimal ist. Weiter gibt es nach Lemma 4.5
ein s € N, so dall o,{a,fe1)*a; oder {a1fran)’ maximal ist fiir (e, 8:). Folgend der
Konvention in 4.2 fassen wir T{a, 8) = (a, 8) \ {0} als Teilmenge von M = M({e, f) auf.

Insbesondere ist
rad™{a, 8) \ rad"**{a, f) C {z € M | {z)=n}.

Sei nun m maximal fir (e, §). Wir kombinieren die Formeln aus Satz 4.9 fiir die rekursive
Berechnung von m mit Lemma 4.10 und erhalten c(s+2,n+1,m2+1,.., n,+1) € MmAf.
Damit folgt die Behauptung unmittelbar aus Satz 4.11.

5 Reduzierbare Paare von Endomorphismen

In diesem Kapitel werden die Beweise der beiden Theoreme abgeschlossen. Wir werden
jedem reduzierbaren Paar (a, 8) ein zweites Paar (aq, o) von Transformationen zuord-
nen und fassen (a, 8} auf als durch vier ganzzahlige Parameter bestimmte Erweiterung
ta. 3) = e(ao, Jo;1,j,p,q). Zunichst beweisen wir den Teil (a) des Theorem 1. Fiir so-
tenannte schwach reduzierbare Paare verwenden wir die Ergebnisse des vorangegangencn

Napitels, wahrend stark reduzierbare Paare aus bestimmten Griinden gesondert betrach-

tet werden missen. Der Beweis von Teil (b) basiert auf der far den Teil (a) bereits

geleisteten Arbeit.
(5.1) Sei w ein Wort in Q. Die Menge Trans(w) \ {0} ist halbgeordnet vermoge
(a3, a1) < (Bo Bi) = @, < Bu und a¢ = a,f
fiir zwei Transformationen a, § € Trans(w) \ {6}. Gilt « £ B, so sei {a,)g, = (z,a,y) €

Fac(=(8,)) mit i = |z| und j = |y} Dann heibt 8 = e(a,i,5) dic Erweiterung von a mit 1

23



und j. Die Erweiterung ist durch das Tripel (a,1, ) eindeutig bestimmt.

a — r—t
ﬁ = e(Q,i,j) ¢ ] b, —
(ay)s, — : }

(5.2) Sei das Paar (e, 3) aus End(w) reduzierbar und sei a = afia. Dann liegen
oo = (™! Ua,,a;Ua,a), fo=f{a,0,a0!)

in Trans(w). Das Paar («ao, B} heift das zu (a, F) gehdrende reduzierte Paar. Es gilt
ag € @ und J; € B. Dariiber hinaus ist (ao,fs) ein einfaches Paar, wenn a¢? # 0
gilt.  Seien 1,7,p,4 € Np mit a = e{ag,1,j) und f = €(f,p,¢), so schreiben wir
(a,B) = e(ao,Boi1,4,p,q)- Wir nennen (o, 8) stark reduzierbar, falls max(p,q) > |8
oder max({,j) > 2fla|| gilt. Andernfalls heiBt (@, 8) schwach reduzierbar. In 6.2 und 6.3

sind konkrete Beispiele angegeben.

(5.3) Lemma. Seidas Paar (a, 8) in End(w) reduzierbar und sei (o, 8) = e(ao, Bo; 1,7, P, 4)-
Es seien o, 0 € rad? End{w). Dann gilt:

(a) mini,p) = 0. () min(j,q) = 0.

() ¢8Il falls i > flall. (b)) p>|BI|, falls j > fall.
() j>llall, falls p> 8. () i2|ll, falls ¢ > 8]
Bewers.

ta) Set m = min(t,p). Dann ist e(aofpug, m,0) < affa, und wegen agboap = aa gilt

m o= .

{b) Angenommen, es scii > |ja|l und ¢ < ||3||. Dann ist 8, < a,, und nach Lemma 3.9
gitt 8 € rad’ End(w). Widerspruch.

(c) Angenominen, essei p > ||8l und j < |la|. Dann ist a; < 3,, und nach Lemma 3.9
gilt o € rad’ End(w). Widerspruch.

{a') - (¢) sind die zu (a) - (c) symmetrischen Aussagen.

(5.4) Lemma. Sei das Paar (a, f) in End(w) reduzierbar und sei (aq, B) das zugehirige

reduzierte Paar.

r !
i
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(a) Sei |13 < |lall. Denn ist ag® = 0.

(L) Sei ag® = 0. Dann gibt es einr € N, so daf (aofo) a0 fur {(ag, Bo) mazimal ist.
Insbesondere ist card(rad™{ao, Bo) \ rad"* {ag, o)) Sn+ 1.

Beweis,

(a) Nach der Definition in 3.2 gilt 82 = 0, und die Definition von ap liefert dann ap? =

(b) Die Behauptung folgt unmittelbar aus den Definitionen von ap und Bo.

(5.5) Lemma. Sei das Paar (a, 8) in End(w) reduzierbar und sei (ag, Bo) das zugehirige
reduzierle Paar. Sei z = a™f...0a™ € {a,B) mit n; € No (1 < 1 < r), und set
0+ y € Trans{w) mity < r und
(ﬂo)s n ?é 0, (00): ny 7& 0,
Ys S i S
(Bo)s ™ =0, (Bo) nr=0.
Dann gilt 25 = ag™ By ... Beao™ # 0 und y < zo sowie I{zo) < 1(z).
Beweis. Wir zeigen die Behauptung durch Induktion nach . Der Fall r < 2 ist klar.

Sei also r > 2. Dann ist n,_; > 1. Nach den Voraussetzungen an y. und y, sowle wegen

afa = agfaq gilt
z=y(amF.. . a"1) = glBe™) 7 < (o) N (Bo)s

Aus der Induktionsannahme, angewandt auf y; = (v;,2) und y2 = (z,9:), ergibt sich
=y (@™ Bs. .. ap™1) = yi(Boao™ )} Damit folgt zo #.0 und y = y1y2 < To. Lemma
120, Gbertragen auf {ag, do), zeigt H(zo) = (Tini)+(r— 1) fur die Linge in {ao, Fo). Fir
die Linge in (a, Y ist (3;m;) + (r — 1) < I(z) Klar, und damit ist das Lemma vollstindig

gezeigt,
(5.6) Lemma. Sei dus Paar (a, ) in End(w) reduzierbar und sei (a, 8) = e{ag, Buit,7,0,4).
Scien weiter m € Ng und z € (0'5)‘

(W) Seien p — ¢ = 0 und i < mllal], j < njjel]. Dann cxistieren 7,5 € Np und

Zo € (g, By) mit T = o"z90* undr <m, s < n. Dabei gilt I(z) 2 I(zo) + 7 +s.

(b} Seien i = j=0undp < m|bl, ¢ £ n||8l]. Dann ezistieren 7,5 € Ng und
Zo € {ag, Bo) mit 1 = §'2¢8° und r < n, s < m. Dabei gilt Iz} 2> Uzo) + T +s.

(c) Seien j = p =0 undi < milal, ¢ < nllB| sovic 18Il 2 llall. Dann existieren
€ Ngund g € {ag, Fo) mit z = a'xg undr < m, oderesist T = Bzo undr < n.

Dabei gilt I{z) > I(z0) + r.
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(') Seieni = ¢ = 0 und j < mla|, p < n||B]l sowie }8|| > |la]l. Dann ezistieren
r € Ny und 20 € {ao, f) mit £ = 20" undr < m, oder es ist z = 2,3 und r < n.
Dabei gilt I(z) > l{zg) + r.

Beweis.

{a) Talls 7 € (a), ist die Behauptung klar. Andernfalls wihle r,s € Ny und 2’ € {a, 8}

mit z = a"z'a’, so dafl r und s minimal sind beziglich

, { (ﬂg), ' € Q(Q', ﬁ), — { (00)( r'e (Q‘,B)O,
rsa" £ ) ra ' < )
(,BD)J I E ﬁ(O‘, ﬁ)a (ﬁO)t z E (Q)ﬂ>ﬁ
Nach den Voraussetzungen an 1 und 7 ist r < m und s < n. Auflerdem gilt
(z) 2 r +1(z') + s. Die Behauptung folgt nun aus Lemma 5.5, angewandt auf

v = (7,07, 107*) < 2.

(b) Zunichst gilt 3] > |la]}. Wegen i = j = 0 ist namlich a = ay. Angenommen, es
sei ||8)} < |lall. Dann gilt a? = ao? = 0 nach Lemma 5.4.a. Dies widerspricht der
Reduzierbarkeit von (a, ), so daB ||8]| > ||af| gezeigt ist. Der Beweis von Teil (a)

ibertragt sich nun durch Vertauschen von o und 8.

(c) Falls € {a} U (3}, ist die Behauptung klar. Andernfalls beachte zunichst, daB
Bina, < (ag), und o, NG, < (Bo)s gilt. Deshalb existieren 7, € {a) U {3) und

1’ € {a, f) mit
, {(Oo): 7' € afe, f),
z=r1r und z,7; < ,
(Bo}s ' € B{e.8).
Sei 7y = a” oder 13 = 8 und r minimal gewahlt, so gilt r < m bzw. r < n.

Auberdemgilt i(r) > r+1(z’). Dic Behauptung felgt nun aus Lemma 5.5, angewandt

aufly = (z,1,.1) < 1"
(c') Die Aussage ist symmetrisch zu der in (c),
(5.7} Lemima. Seien a,f € rad End(w) \ rad? End(w) und sei {a,3) reduzierbar mit
(a,8) = e(ao, Bo;1,7,p,q). Weiter sein € N und fira,b€ (a,f) se
M.(a,b) = { azb € Trans(w) | z € {aq, Bo), iz)+l{a) +1(b) < n).
(a) Sei 3]} < |lali. Dann gilt

(a,3) \rad™{(a,8) C {e"B(af)a™ € Trans(w) | ri,s € Ng, 1, <2, ri+ 1425+, <n)
U{e" |0 < min(3,n—1)} und
card({(a, 8) \ rad*{a,3)) < 3n + 1.
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{b) Seien p = ¢ = 0 und max(z,;) < |jal]. Dann gilt

{a, ) \ rad™{a, ) C M.(1,1) U Mqa(a,1}U M,(1,a) U Mp(e,a) und
card{{a, 8) \ rad"*{a, 8)) < 2n* —2n + 1.

(c) Seieni=j =0 und max(p,q) < [|B||. Dann gilt

(a, B) \ rad™{a, B) C M,(1,1)U Ma(8,1)U M, (1, B)U M, (8,8) und
card((a, ) \ rad"(a, 8)) < 22* —2n + 1.
(d) Seien j=p=0,i < 2jja|| und ¢ < ||B||. Dann gilt
und

(a, B8 \ rad™{a, 8) © Mo(1,1)U Ao(a, 1) UM (B, 1)U M.(a%1)
card({a, ) \ rad™(a, f)) < 2n* = 2n + 1.

P L .
(d'} Seteni=¢ =0, 7 < 2e|f undp £ |8ll. Denn gilt

{a, B) \ rad™(a, B) C Ma(1,1) U Ma(1,@) U Ma(1, B)U M,(1,0*%) und
card({a, #) \ rad*(a, B)) < 2n* —2n + L.

Beweis.

{a) N PR .
) i;h der Definition in 3.1 gilt g2 = 0. Deshalb ist max(p,q) < i8ll. Da a,B €
rad® End(w), ist auBerdem nach Lemma 5.3 max(i,7) < llall. Es folgt eine Fallun-
terscheidung:
Lp=g=0.
Die Behauptung folgt aus Lemma 5.6.2 und Lemma 5.4.
2. p#0.
N:Ch Lemma 5.3.a ist i = 0. Daher gilt at N g, = (
a ? = a¢’8 = 0 nach Lemma 5.4.a. AuBerdem implizieren i = 0, J
;10' = 0, daB o® = 0 gilt. Damit folgt unmittelbar die Behauptung.
-9 #0.

Dieser Fall i i
ieser Fali ist symmetrisch zum vorangegangenen.

ag)e N B, und es folgt
< felj und

\rad"(a, B) aus Lemma 5.6. Das
ten wir aus Satz 4.1 und Lemma
— I{b). Dies mehrfach

Pa:: ":; (b) - ('d’) t.trgibt sich die Beschreibung von {a, B)
] 0, Bo) ist einfach oder es gilt ap? = 0. Daher erhal
5.4 die Abschatzung card M,(a,b) < m?/2+m/2 far m =n — I(a)
angewandt liefert die Abschatzung von card({ct, B) \rad“(a.ﬂ)).
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Jedes schwach reduzierbare Paar (a, 8) erfillt eine der Vorausselzungen des vorange-

gangenen Lemmas, so daB wir das folgende Ergebnis festhalten konnen:

Satz. Seien o,f € radEnd(w) \ rad? End(w) und sei (a,8) schwach reduzierbar.
Dann qilt firn e N

card({a, 3) \ rad*{a, B)) < 2n* — 2n + 1.

Bemerkung. Seien a, 8 € rad End(w) \ rad® End(w) und sei (a, ) stark reduzicrbar.
Dann ist es im allgemeinen nicht maglich, card{{a, §) \ rad™(a, 3)) durch ein Polynom
vom Grad 2 abzuschatzen (vergleiche Beispiel 6.2). Lemma 5.6.c bzw. 5.6.¢’ liefern jedoch
die Abschatzung card({a, §) \ rad™(e, 8)) < 1/3 n® + n?+2/3 n.

(5.8) Satz. Sei die Fakloralgebra A = k End{w)/I von zwei Elementen erzeugt. Ange-
nommen, fir je zwei Endomorphismen a,f € rad End(w) \ rad? End(w), deren Neben-
klassen @ = a + I und f = f+ I die Algebra A erzeugen, sei (a,8) oder (B,a) stark
reduzierbar. Seien a,f € rad End(w) \ rad’ End(w) derart gewdhlt, dafl (o, ) stark re-
duzterbar ist und {@&, i} die Algebra A erzeugt, dann gilt af™*'a = faf = 0 fir jedes
r& N.

Bewets. Angenommen, das stark reduzierbare Paar (a, 8) = e(aq, Bo;1, 7, p.q) erzeugt
A, Die Relation a37*+'é = 0 crgibt sich sofort aus Satz 3.4. Fiir die zweite Relation folgt
cine Fallunterscheidung:
1g > |8l
Sei (n+ 18| = ¢ > n|lB||. Zunachst gilt ;7 = p = 0 nach Lemma 5.3. Daraus folg! weiter
Ja = fog = 18" mit ¥ = ((@),f7', (e):B™") € End(w). Nach Voraussetzung gibt es
paarweise verschiedene 7; € {a,f) sowie & € k* (1 < I < m}Y mit 7 = T,§%. Dabei
st ; # 3 far alle I, denn sonst wirde {@,7} die Algebra A erzeugen, obwohl wegen
le|lyf > 0 weder {@.1) noch (v, @) reduzierbar ist. Angenommen, die Behauptung ist
falsch, so wahle r € N minimal mit 3a"3 # 0. Esist 8’8 = ¥, 65,3761 5. Wir zeigen
nun 2;8%a""!f € I {iir jedes ! und {ithren damit die Annahme zum Widerspruch. Falls
r > 1, ist z:f"a""'f € I kiar wegen der Minimalitit von r. Falls r = 1, folgt 2,37+ € |
aus 6% = 0 bzw. g"*? = 0. Die Relationen aff? = 0 und #**3 = 0 ergeben sich aus
Lemma 5.6.c.
2. p > i3I
Analog zum 1. Fall,

3. ¢ £ ||B]l und i > 2jje]l.
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Zunichst gilt wie im 1. Fall j = p = 0 nach Lemma 3.3, und es folgt a8 = affp = ya? mit
-~ = ((Bo)sa™?, (Bo)ea=?) € End(w). Nach Voraussetzung gibt es paarweise verschiedene
7 € {a,B) sowie & € k* (1 £ ! £ m) mit ¥ = Y1 &%, Dabel ist z; # B far alle I,
denn sonst wiirde {a, 7} die Algebra A erzeugen, obwokl wegen 4% = 0 weder (@,7) noch
(7,0) stark reduzierbar ist. Angenommen, die Behauptung ist falsch, so wahle n € Ng
maximal mit Ba"ga" # 0 fur ein r € N. Es ist fa'Ba" = £ 4fa~1zia"*"?. Wir zeigen
nun da""'z;0"*? € I fir jedes ! und fiihren damit die Annahme zum Widerspruch. Falls
r > 1, folgt fa""*z;a™? € I aus der Maximalitat von n bzw. aus fa™? = Bat* = 0.
Falls r = 1. benutze fir z; € (8), daB wegen ¢ < [|B]| 82 = 0, also Bzia™*? = 0
e, Wenn z; ¢ (), folgt fzia®*? € I wiederum aus der Maximalitit von n bzw. aus
a2 < ﬂa3 = 0.

1. p < ||8]| und j > 2lal|.

Analog zum 3. Fall.

(5.9) Beweis von Theorem 1. Zunachst ist nach Satz 2.6, kombiniert mit Lemma 2.7.a
dic Algebra kEnd(w) lokal. Sei A = kEnd(w)/I eine von zwei Elementen erzeugte
Faktoralgebra und sei n € N. Weiterhin seien a,f € rad End(w) \ rad? End{w) derart
gewahlt, da A von {a + I, 8 + I} erzeugt wird.

{(2) Nach Lemma 2.7.b gilt
dimy A/rad” A < card({a, B) \ rad" (e, 8}).

Die Behauptung folgt damit aus den Sitzen 3.1, 5.7 und 5.8 kombiniert mit Lemma
3.12,

—~ . 4
(b} Es sein > 3 angenommen. Dann gilt ohne Einschrankung A = A= k(z,y)/{z,y)"

Lemma 2.7.b hefert zunachst 7
r,1723 # 0 fir jedes Tripel z; € {a,0) (i € {1,2,3})-

Daher ist nach Satz 3.1 eines der Paare (a, ) oder (8, a) reduzierbar. Sei ohne

Einschrinkung (a, 8) reduzierbar und (a,8) = e(ao, Bo; 1,4, p,9). Dann gilt

0<pg< Bl wnd i=j=0. (1)

Angenommen, p = 0, so gilt af? = 0 wegen Bo? = 0und a;Nf, = &N (.‘50)"
Also ist p > 0. Entsprechend folgt ¢ > 0. Den Rest der Teilbehauptung (1) lefert
Lemma 5.3. Wir zeigen weiter

p> llell (2)

29



Das Paar (ao, ) ist nimlich einfach, so daB aus (1)

|supp(a)| = |supp(ac)] = |supp(fo)i = 21g(Bo) + p + ¢ — |8, N By (3)

folgt. Weiter implizieren a® # 0 und 4% # 0 nach Lemma 2.5

|supp(e)| 2 3flal| und |8, N B > 3. (4)

Lemma 4.2 besagt
15(Bo) < llafl, (5)
und die Teilbehauptung (1) beinhaltet

¢ < |18]] (6)

Die Teilbehauptungen (3) - (6) liefern (2). Aus (2) folgt nun (afa), < f,, so dal

nach Lemma 3.9 ein 7 € End(w) existiert mit afa = fv. Diese Relation impliziert
dimy(rad®A/rad*A) < dimy(rad®A/rad*A)
im Widerspruch zur Annahme A 2 A. Damit ist auch Teil (b) bewiesen.

Beweis von Theorem 2. Zunichst ist nach Satz 2.6 das Monoid End(w) lokal. Die
Teile (a) und (b) erhilt man unmittelbar aus denen des Theorem 1, denn jeder sur-
jektive Homomorphismus End{w) — M induziert einen surjektiven Homomorphismus
kEnd(w) — kA von k-Algebren, wobei sich gerade Kardinalitit und &-Dimension bzw.

M{z,y) und k(z,y) cntsprechen.
Bemerkung.

(a) Im Beispicl 6.1 geben wir fiir n € N ein Wort w, an, so daB End(w,)/ rad™ End{w,)
von zwei Elementen erzeugt wird, und card(End(w, )/ rad™ End{w,)) = n?/24n/24
I gilt.

(b) Das Beispiel 6.3 illustricrt den Beweis von Teil (b). Insbesondere zeigt sich, daB die
jeweiligen Abschatzungen im Teil (b) von Theorem I bzw. Theorem 2 bestméglich
sind. Ist fiir zwei Endomorphismen o, 8 € rad End(w) \ rad? End{w) das Faktormo-
noid (a, )/ rad"(a, 8} zu M(z,y)/rad” Af{z,y} isomorph, so gilt n < 4 nach Satz
3.4. Beispiel 6.3 zeigt, daB n = 4 moglich ist.

30



6 Beispiele

Fir die folgenden Beispiele sei Q der Kécher mit einem Punkt und zwei Pleilen , d.h. es

sei 0y = {z,y}. AuBerdem sei n € N.
(6.1) Beispiel. Sei w, = (z7'y)'z"! far r € Ny und w = w,. Es seien
ay = (Lwe-r,y27Y), @ = (270y,wamr, 1),
B, = (w,1,1}) und B, =(1,1,w).

Dann liegen a = (a,,a,) und = (8,, ;) in End(w), und es gilt
End(w)={a'|0<i<n}U{a'Ba’ |0<1,; S"}U{U},
End(w) \ rad” End(w) = {a* |0 <i<n}U{a'fc? [0<i+j<n—1}
dimg(k End(w)/rad"k End(w)) = card(End(w)/rad” End(w)) — 1 = n?/2 + n/2.

Das Paar (e, f) ist einfach, und r,_2(a, 8) ist minimal, falis n > 2.

(6.2) Beispiel. Sei v=(z7'y)"z? und w = z7yv"*!. Es seien

a, = (1,v,yz7 "), = (z7y,v,v"),
g, ={z 'yv,v™,1) und B = (z7'y,v", v).
Dann liegen a = (a.,a,) und § = (B, B:) in rad End(w) \ rad’ End(w), und es gilt

(0,8)={a'l0<i<n+1}U{fefa' |0<i51<Sn])

U{a""Ba' |0 <i<n}U{0},
(0':5)\1'3(1"(0,,3):{0‘|0$i<n}U{ﬂiajﬂa'|05i+j+l<n—l},
card((a, 3) \ rad*(a, B)) = 1/6 n> +5/6 n.

Das Paar (a, B) ist stark reduzierbar, falls n 2 2. Sei (ag, fo) das zugehdrige reduzierte

Paar, so gilt (a, 8) = e(ao, Bo; |}, 0,0,n[|[l). Wir wihlen zur Ilustration n = 2.

w -0——~—+-t—'—O‘i—--—O-{—--i—'—"*i—-—)-i—-d—-‘—-—i'i—"——f‘t-—-

a ¢ r— — —L

ﬁ r— = —l )
(o)



(6.3) Beispiel. Sei v =z~ %z 3yz 3yz~? und w = v3. Es seien
a, = (27 yz %y Py %z ¥y 3y ),

o= (v 77y, 27027y, 2 ey ),
By = (v,v%,1) und f; = (1,02 v).
Dann liegen o = (a,,a) und 8 = (f,, B;) in rad End(w) \ rad® End(w). Sei M das freie

Monoid in zwei Erzeugenden, so gilt
{a, B)/rad*(a, 3) 22 M/[rad' M.
Die Menge I = (End(w) \ {a, 3)) U rad® End(w) ist ein Ideal in End(w), und es gilt
End(w)/I = M/rad®M.

Das Paar (e, 3) ist schwach reduzierbar. Sei (ao, J0) das zugehérige reduzierte Paar, so

gitt (o, F) = e, 8; 0,0, 31 - 1, 113]l - 1),

T Worte und Moduln

(7.1} Sei @ ein Kocher und

QY ={a1q3...a, € Q" |a;€Q  firallei}U{e, € Q" |z € Qo}

die Menge der Wege in Q. Die Wegealgebra kQ von Q ist definiert als der k-Vektorraum
mit Basis @*. Das Produkt zweier Wege in k@ sei deren Kompositum in Q*, sofern dies
erklart ist; andernfalls sei das Produkt Null.

Zu einem Wort w in ¢ definieren wir nun den w assoziierten k()-Rechtsmodul A =
M{w). Set M der k-Vektorraum mit Basis {m; | 0 < < |w|}. Es reicht, die Multiplika-
tion m-r fir m € M und r € kQ zu erkiiren, indem wir uns fiir m auf die Basiselemente
ny, und tiir 7 aut die Wege der Linge U und | beschranken. Sei w = e, fiirein r € o, s0
setze

Mo T = &g,

Ma-T = {
0 sonst.

Set w = wyw,...w, ein Wort der Linge n > 0, so setze

m; t# 0 und z = {{w;), Mg Q= Wiy,
mi-e.=4{ mg i=0undz = s(u), mica={m.; a=w"!,
0  sonst, 0 sonst.

Wir zitieren nun in verallgemeinerter Form ein Ergebnis von Crawley-Boevey:
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Satz. Sei A = kQ/!I eine k-Algebra und w ein Wort im Kécher Q sowie M(w) der
assoziierte kQ-Modul. Set M(w)-I = 0 und M der durch M(w) induzierte A-Modul.
Dann gilt

End; (M) = Endyg(M(w)) & k End(w).

Beweis. Das Theorem in [C] liefert einen Vektorraumisomorphismus, und die fir
Eudomorphismen in End(w) erklirte Komposition entspricht unter dem Isomorphismus

der Komposition in Endgg(M(w)).

Beweis des Norollar1. Kombiniere den Satz mit Theorem 1.
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