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Vorwort

Ziel des Buches ist es, eine griindliche Darstellung der Methoden zur

Behandlung nichtlinearer Systeme und eine Einfihrung in die adaptiven
Regelkreise zu geben. Hierbei werden elementare Kenntnisse der Theorie
linearer Systeme vorausgesetzt. Das Buch wendet sich im besonderen an
fortgeschrittene Studenten technischer Studiengédnge und an Ingenieure,

die in der Forschung und Entwicklung tédtig sind.

Bei der Behandlung des Stoffes wurde grofer Wert darauf gelegt, auch
Sachverhalte auf einfache Weise verbal zu erldautern und an-
deuten. Die Autoren hoffen, daB das Buch auf diese Weise zu

Verstidndnis der Materie beitrdagt und ein groBer Leserkreis

komplizierte
schaulich zu
einem tiefen

angesprochen wird.

Verschiedene mathematische Grundlagen, apf die sich das Buch stiitzt,

sind in acht Anhingen zusammengefaBt, um den Leseflul in den Hauptkapi-

teln nicht zu hemmen.

Im 1. Kapitel des Buches werden zundchst einige Beispiele nichtlinearer
Systeme vorgestellt und anschlieBend einfache Methoden zur Behandlung

nichtlinearer Systeme eingefiihrt. Im besonderen wird hierbei auf die

Linearisierung, die Untersuchung der Trajektorien von Schaltelemente

enthaltenden Systemen 2.

thode zur Verbesserung d

Ordnung in der Zustandsebene und auf eine Me-

er Dynamik stellgroBenbeschrankter Regelkreise

eingegangen.

Das 2. Kapitel behandelt Methoden zur Untersuchung der Existenz und
Stabilitdt von pericdischen Losungen (Grenzschwingungen) nichtlinearer
zeitkontinuierlicher Systeme sowie Verfahren zum Entwurf von Korrektur-
gliedern (Reglern), die Grenzschwingungen erzeugen, unterdrucken bzw.
deren Amplitude vermindern oder vergrofBern. Zur Untersuchung periodi-

scher Losungen werden zundchst Verfahren vorgestellt, die speziell auf

nichtlineare Systeme 2. Ordnung zugeschnitten sind. Anschliefend wird

die Methode der Harmonischen Balance vorgestellt und in einer Reihe von

Beispielen angewendet.



Vorwort
VI

Im 3. Kapitel werden Regelkreise, die in einer speziellén.Sfandardfor:ht
vorliegen, mit funktionalanalytischen Methoden auf Stablllt?t unter;u i )
wobel zeitkontinuierliche und zeitdiskrete Regelkreise gemelnsam.b? ?n
delt werden. Hierbei werden die Begriffe der L,- und der LQ-SFab1%1tjEum
eingefithrt. Die L,-Stabilitdt fihrt unter andere? ?uf das Krels§;%t:

und das Popov-Kriterium, wiahrend mit der L_-Stabilitat betra%sma ig .
Abschdtzungen der SystemgroBen gewonnen werden konnen, was fir pﬁaktl—
sche Anwendungen besonders zweckdienlich ist. Die aufgefiihrten Sét%e“t )
gestatten uber die Stabilitdt hinaus auch Aussagen iiber den Stabilitéats

: : i 0 regel-
grad von Regelkreisen. Das Kreiskriterium wird auch fiir MehrgroBenreg
kreise entwickelt.

Die Untersuchung von zeitkontinuierlichen und zeitdiskreten SYSteTen m?td
Methoden im Zustandsraum findet der Leser im 4. Kapitel. Ausfihrlich wir
die direkte Methode von Ljapunov behandelt, wobei ein wesentl%cher Ge-‘-
sichtspunkt die Bestimmung des Einzugsbereichs einer asymptotlfch stab;-
len Ruhelage ist. Die nichtlinearen Zustands- und Parameterschidtzverfa 1
ren werden nur in dem Rahmen behandelt, wie diese beim Entwurf von Rege -
kreisen oder in technischen Diagnosesystemen gegenwidrtig Verwendung fin-
den. Die Regelkreisentwurfsverfahren in den letzten Abschnitten beruhen

fast ausschlieBlich auf der erweiterten Ljapunov-Methode, da andere auf

diesem Gebiet in der Literatur vorgeschlagene Verfahren zu keinen besse-

s izier-
ren Ergebnissen filhren und in der Durchfiihrung des Entwurfs kompliz
ter sind.

Das 5. Kapitel dieses Buches verfolgt das Ziel, den Leser in Methode? zZur
Behandlung adaptiver EingréBenregelkreise und Systeme einzufiihren. ﬁler'
bel werden einerseits Regelkreise untersucht, die nach dem Self-Tuning-
Verfahren arbeiten, andererseits adaptive Systeme, denen ein Modell-
Referenz-Verfahren zugrunde liegt. Bei der Darstellung des Stoffes w?rde
aus Grinden der Anschaulichkeit auf groBtmogliche Allgemeinheit verzich-

. 3 en LLe-
tet. Die teilweise exemplarische Darbietung des Stoffes versetzt d

iber-
ser in die Lage, die Methoden auch auf andere Systemstrukturen zu u

tragen,

Die Kapitel 1 und 2 sowie der Anhang 1 dieses Buches wurden von Herrn

. . , . . e
Bocker und Herrn Zwanzig gemeinsam ausgearbeitet, wobei als Grundlag ,
) i - ; ; i un

ein Vorlesungsskript von Herrn Hartmann diente. Die weiteren Kapitel
Anhange wurden von

den Autoren separat erstellt. Herr Boécker verfalite
das 3.

Kapitel und die Anhdnge 2 und 3,

Herr Hartmann das 4. Kapitel und
Herr Zwanzig das 5.

Kapitel und die Anhange 4, 5, 6, 7 und 8.



Vorwort VII

Um dem Leser ein schnelles und bequemes Nachschlagen innerhalb des
Buches zu ermdglichen, sind Sdtze, Definitionen und Anmerkungen gemein-
sam mit den Gleichungen innerhalb jedes Kapitels fortlaufend numeriert.
Der AbschluB3 von Sdtzen, Beweisen, Anmerkungen, Definitionen und son-
stigen Aussagen, die mit einer Nummer versehen sind, wird durch das
Symbol W angezeigt. Anstelle des allgemein i{iblichen mathematischen
Symbols e zur Kennzeichnung einer Mengenzugehdrigkeit wird hier der
griechische Buchstabe e verwendet. Die Transposition einer Matrix AT

wird im 4. Kapitel abweichend mit A' bezeichnet.

Die umfangreiche Arbeit der Reinschrift des Manuskriptes wurde von Frau
R. Hide ibernommen, der wir fir ihre Sorgfait und groBe Geduld besonders
danken. GroBer Dank gebiihrt auch Frau M. Thieke fiir die vorzigliche An-

fertigung der zahlreichen Zeichnungen.

Weiterhin sind wir Herrn Dr.-Ing. R. Poltmann und Herrn Dipl.-Ing.

A. Hambrecht fiir die kritische Durchsicht groBer Teile des Buches und
fiir wertvolle Anregungen zu besonderem Dank verpflichtet. AuBerdem dan-
ken wir Herrn Prof. Dr.-Ing. G. Brunk, Herrn Dr.-Ing. M. Dlabka, Herrn
Dipl.-Ing. N. Schmidt, Herrn cand.-Ing. E. Schwarz, Herrn Dipl.-Ing.

G. Weber und Herrn Dipl.-Ing. A. Wied fiir die Korrektur einzelner Ab-

schnitte.

Berlin, im Juni 1986 Joachim Bocker
Irmfried Hartmann

Christian Zwanzig
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1 Einfuhrende Betrachtungen und nichtlineare Modelle

1.1 Einleitung

Ein System heift nichtlinear, wenn das zugehdrige mathematische
Modell mindestens eine nichtlineare Gleichung enthdlt. Fiur die
linearen zeitinvarianten Systeme mit konzentrierten Parametern exi-
stiert eine abgeschlossene einheitliche Theorie, die zu allgemeinen
globalen Aussagen bei der Analyse und Synthese fihrt, vgl. die Lite-
ratur [1.1] bis [1.6]. Die Behandlung nichtlinearer Systeme ist kom-
plizierter und liefert im allgemeinen nur lokale Aussagen, die vom

Arbeitspunkt abhidngen und den Arbeitsbereich bestimmen.

Es ist verstandlich, daB man versucht, die nichtlinearen mathemati-

schen Modelle durch Linearisierung auf den linearen Fall zurickzu-

fihren, um die schon erprobten Methoden aus der linearen Theorie

anzuwenden. Bei einer Linearisierung lassen sich die Eigenschaften f
von nichtlinearen Systemen héchstens ndherungsweise erfassen. :
Viele nichtlineare Systeme (z.B. mit Schaltgliedern) lassen sich

jedoch nicht linear approximieren. Ob eine Linearisierung zuldssig

ist, hiangt nicht zuletzt von den Genauigkeitsforderungen ab, die man g
an die mathematische Modellierung eines technischen Systems stellt. :
Das Modell kann z.B. grober ausfallen, wenn nur eine Stabilitats-

untersuchung durchgefiihrt werden soll, als wenn Optimierungen des

Systemverhaltens angestrebt werden.

Alle Aussagen, die bei einer theoretischen Behandlung ilber ein reales
System gemacht werden, beziehen sich nur auf das mathematische Modell,

vgl. Bild 1.1. Es ist immer zu prifen, ob sich diese Aussagen auch
auf das reale System Ubertragen lassen.

Wir beschrinken uns hier auf Systeme, die sich durch gewohnliche Dif-

ferential- bzw. Differenzengleichungen beschreiben lassen. Man nennt

solche Systeme auch Systeme mit konzentrierten Parametern, da der Mo-
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Bild 1.1: Mathematische Modellbildung von physikalischen oder
technischen Prozessen

dellbildung die Vorstellung zugrundeliegt, die Systemeigenschaften

seien in diskreten Elementen konzentriert (z.B. Massenpunkte, Federn,
elektrische Widerstinde, Induktivitaten).
sen Systeme,

Im Unterschied hierzu heis-
die durch partielle Differentialgleichungen beschrieben
werden miissen (z.B. Stromungsvorgange),
metern,

Systeme mit verteilten Para-
In diesem Fall beruht die Modellbildung auf der Vorstellung,
daBl die Systemparameter raumlich verteilt

sind (beispielsweise Massen-
dichten, elektrische Feldstdrken).

Der Zustand eines Systems mit konzentrierten Parametern ist in den

zugelassenen Zeitpunkten durch dje Komponenten x1(t),...,xn(t) eines
n-dimensionalen Zustandsvektors x(t) ¢ "

vollstdndig festgelegt.
Als EingangsgréBen treten eine r-dimension

ale Steuerfunktion u(-)

on z(+)} (1 > 1) auf. Eine
') enthilt die gemessenen
des Systems. Die Werte der

ch u(t), z(t), y(t) dar-

(r > 1) und eine 1-dimensionale Storfunkti
p-dimensionale Ausgangsfunktion yi«) (p >
oder zu regelnden GroBen (Ausgangsgrbﬁen)

Funktionen zu einep Zeitpunkt t werden dur
gestellt,
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Modelle, bei denen die SystemgrdBen nur in abzihlbar vielen Zeitpunkten
erklart sind, z.B. t = vT (v = 0,1,...;T Abtastzeit), heiBen zeitdis-
kret. Die Systemfunktionen sind dann Folgen, z.B. {(x(0),x(1),

x{v},

Sind die SystemgroBen iiber einem Zeitintervall [t ,°) erkldrt, heifRt
das Modell (die Regelstrecke) zeitkontinuierlich.

Die zeitkontinuierliche Darstellung eines Systems mit konzentrierten

Parametern hat die allgemeine Form

x(£) = £Ix(t),ult),z(t),t] ,

(1.1)

il

y(t) hix(t),u(t),z(t),t]

(siehe Bild 1.2). Entsprechend erhalten wir fiir ein zeitdiskretes System

die Differenzengleichung

ax(k) = flx(k),u(k),z(k),k!]
y(k) = hix(k),u(k),z(k),k]
mit ax(k) = x(k+1) - x(k)

Die erste Differenzengleichung kann auch in der Form
x(k+1) = £Ix(k),ulk),z(k),k]

. u |
" FIx(k),ulk),z(k),k] = £0x(k),u(k),z(k),k] + x(k) ‘

geschrieben werden.

Stérfunktion z{+) ult)  z{t)
ul-| x(t) = x{t) _Z“): y(t)
% B 1 ——f
Steuerfunktion flxit), ult), z(t), t]| Zustand | hix(t], ult), z{t), t] | Ausgangsfunktion

Bild 1.2: Blockdarstellung eines zeitkontinuierlichen Systems mit

konzentrierten Parametern

Ein zeitkontinuierliches bzw. zeitdiskretes System heiBt zeitvariant

oder zeitvariabel, wenn die Zeit t bzw.

der Folgenindex k explizit
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in einer der Funktionen f oder h auftritt, andernfalls heiBt das System

zeltinvariant. Wenn in einer Differentialgleichung

x(t) = £0x(0),u(t),z(t),t]

bzw. Differenzengleichung
x(k+1) = £0x(k),u(k),z(k),k]

die rechte Seite weder explizit, noch iiber die Funktionen u und z von
der Zeit t bzw. dem Folgenindex k abhidngig ist, so heiBt die Differen-
tial- bzw. Differenzengleichung autonom, andernfalls heift sie nicht-
autonom. Die Zustandsdifferentialgleichung bzw. -differenzengleichung
eines zeitinvarianten Systems ist genau dann autonom, wenn die Funktio-
nen u und z konstant sind cder verschwinden.

§ult) b u(t) §ult)

elt) elt) // et
Begrenzung Sattigung Sattigung u
Hysterese
bult) uft) bult)
Aﬂ / elt] / elt]

Schwellwert tote Zone ///,/// Vorspannung

“U‘f} \U[t)
e(t) /| elt)
viskose //
Reibung Lose

Bild 1.3: NichtlineareKennlinien



1.2 Beispiele nichtlinearer Systeme

Einen AbriB iiber einige Grundlagen gewdhnlicher Differentialglei-
chungen findet der Leser im Anhang A1.

Fir ein nichtlineares Systemverhalten sind vielfdltige Griinde denkbar:

1. Die zugrundeliegenden physikalischen Phdnomene sind im benutzten
Arbeitsbereich nichtlinear, z.B. nichtlineare Reibung, Magnetisie-

rung ferromagnetischer Werkstoffe, Diodenkennlinien.

2. Die gewahlte technische Realisierung verursacht ein nichtlineares
Verhalten, wie z.B. beim mehrgelenkigen Roboterarm der Zusammen-

hang zwischen Drehwinkeln und Positionierung.

3. An lineare Bereiche schlieBen Sattigungen oder Begrenzungen an.
Diese konnen unvermeidbar sein (z.B. Ventilhub, Maximalwert einer
Spannungsquelle), oder sie sind beabsichtigt (z.B. Schutzbegren-

zungen fir Drehzahl oder Spannung).

bu(t) }UH) 4 uit)
] | |
elt) elt) elt)
Schalter ' Zweipunktglied 14 Dreipunktglied
mit Hysterese mit Hysterese mit Hysterese

Bild 1.4: Nichtlineare Kennlinien bei Stellgliedern

1.2 Beispiele nichtlinearer Systeme

Anhand der folgenden Beispiele werden einige technische Systeme be-
handelt, die eine nichtlineare Systembeschreibung verlangen. Eine

linearisierte Beschreibung filhrt oft auf unzuldssige Vernachlidssi-

gungen.
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(1.2) Beispiel: Phase-locked Loop (PLL)

Der im Bild 1.5 dargestellte Regelkreis tritt bei der Synchronisa-
tion eines spannungsgesteuerten Oszillators (VCO = voltage control-
led oscillator) auf. Man spricht von einer PLL (s. BEST (1.81).

Die Regelkreisstruktur 14Bt sich prinzipiell auch auf die folgenden
Problemstellungen anwenden:

Die Synchronisation der Drehzahl eines Motors, bei dem die
Anzahl der Impulse einer Codiereinrichtung auf der Motorwelle
ein MaB fiir die zu regelnde Kreisfrequenz (Drehzahl) ist.

Eine Winkel- oder Wegregelung mit einem Schrittmotor. Der
Schrittmotor wird mit einenm periodischen Signal angesteuert,
wobei die Winkellage der Schrittmotorwelle mit der Fihrungs-
groBe des Regelkreises synchronisiert wird.

In diesen beiden Fidllen entspricht der Motor dem spannungsgesteuerten
Oszillator.

Agsinlpit]) plt)

- ——n" r—-——== === - = = = 1
| Phasen- | I
| detektor ! ! Wp
j
|
Attt 1 7] ! ett) [ heger |t | alt)
(Fuhrungsgréne) : I gcl+) [ Y
[ I
|
—_d___ |
|
|
|

Agsin(+)

[

|
|
I spannungsgesteuerter
' Oszillator (vCO)

Bild 1.5: Phasenregelkreis

Die Systemgleichungen des Phasenregelkreises lauten

e(t) = Ay sin(e(t)) A, sin(wsoll(t)J )
t

w(t) = [ g (t-) e(o)ae :
‘t

e(t) =

t
jm(-:)d-r = j[cuo + Vou(r)lde .
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Un die Phasendetektionseigenschaften des Multiplizierers zu erliu-
tern, wird die erste Gleichung mit Hilfe eines Additionstheorems um-

geformt:
e(t) = A0 sin(e(t)) AT sin(wsoll(t))
A A
= o [cosw(t) - tpsoll(t)) - cos{e(t) + @Soll(t))]
A A t A A t
_ 0 o1
- cos(:o/o. ) = gy (D1an) - L cos(:!: (a(t) + w11 (5)1de)

Die GroBe e(t) enthdlt zwei Anteile. Der erste Anteil hangt von der
Phasendifferenz o(t) - wsoll(t) ab, wdhrend der zweite von der Pha-
sensumme ¢(t) + wsoll(t) bzw. Summenfrequenz w(t) + msoll(t) abhangt.
Der zweite Anteil ist ein unerwiinschter hochfrequenter Anteil, der in
Regelkreis als eine Storung v(t) aufgefaBt werden kann und méglichst
durch den Regler unterdriickt werden sollte. Der Regler muB somit Tief-

paBeigenschaften besitzen.

Das Strukturbild des Phasenregelkreises kann unter Berilicksichtigung

der beiden Terme in e(t) umgeformt werden, siehe Bild 1.6.

Ag Ay
vit)= 5 cos(plt) + g, 1t))
Wy
Peonlt) Aglt) | AgA, "X elt) | Regler |ult] wit)
> cosi-] a.1-] v

wit)

it

Bild 1.6: Umgeformtes Strukturbild des Phasenregelkreises

Um Fragestellungen nach dem Haltebereich und dem Einzugsbereich
(pull-in range) der Frequenz o(t) beantworten zu kénnen, ist unbe-
dingt die Nichtlinearitat zu beriicksichtigen. Die wichtigste Forde-
fung an den Regelkreis ist, daB die Sollfrequenz w_ _,, erreicht wer-
den kann. Bei ungiinstigem Reglerentwurf kénnen sogenannte Dauer-
Schwingungen der Frequenz w(t) auftreten, die bei linearen Systemen
unbekannt sind. Hiermit beschiftigt sich ausfihrlich das 2.Kapitel. W
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{1.3) Beispiel: Frequenzgesteuerter und amplitudengeregelter
Zweiphasen-0Oszillator

Der ungeregelte Oszillator mit den Steuereingriffen u1(t) und uz(t) ge-
niigt nach Bild 1.7 den Zustandsgleichungen

TO;1(t) X (0, (0) = x, (D), (t)

(1.4)

T x,(t) x(thu (t) + X, (t)u, (t)

Man bezeichnet das System (1.4) als bilinear, da die Zustands- und Ein-
gangsgroBen zusammen multiplikativ aber selbst nur linear auftreten.
Sind die EingangsgroBen u1(t) = Uy und uz(t) = uy, konstant, erhdlt
man das lineare System

. Y0 T Uig|| % (t)
x(t) = A x(¢v) = 0,
Yo Y20 XZ(t)
mit o, = I/To . Die Eigenwerte der Matrix A sind die Nullstellen des

charakteristischen Polynonms

A(x) = detlE r - Al

die das Einschwingverhalten des linearen Systems festlegen. Der Oszil-

lator besitzt bei konstanten Eingangsgréfen die komplexen Eigenwerte

l1,2 - m0[u20 . ulo]
Wahrend u, nur auf den Realteil (Dampfung) der Eigenwerte wirkt, kann
mit u, die Frequenz (Imaginérteil) eingestellt werden. Mit Uy = 0
liefert der Oszillator eine harmonische Schwingung mit der Frequenz

w u -
o lo

Eine Regelung der Schwingungsamplitude 1aBt sich mit einem nichtlinea-
ren Regelkreis nach Bild 1.7 erreichen.

Der Sollwert der Amplituden von
X1+ X, sei r,

Die Regelabweichung ist dann

-

ett) = vt din L2
Fir die Regelung reicht ein P-Regler

uz(t) = Vv E(t)

¥

wenn ein stationirer Regelfehler zulassig ist. Senst kann ein PI-ReglerT
verwendet werden.
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}
|
i u, t}
L e %
|
! %10
| [ -
| -
xﬂt) | % e
2 uplth | ylt)
PI - Regle
- I
xf(ﬂ | x|
I X20
i ! w1/ =

|
| u,lt)
| e x
|
!
|

Amplitudenregelung steverbarer Oszillator

Bild 1.7: Amplitudengeregelter Oszillator mit veridnderlicher
Frequenz nach LEONHARD [1.9]

Setzen wir die P-Regler-Gleichung in (1.4) ein, erhalten wir das nicht-

lineare Modell eines amplitudengeregelten Oszillators:

, TO;(](t) = v[—x?(t) - x1(t)x§(t) + r2x1(t)] - xz(t)u1O
1.5)

. 3 2 2
Toxz(t) V[-xz(t) - x](t)xz(t) +r Xz(t)] + x1(t)ulo
Die hier auftretende Dauerschwingung ist die gewiinschte Oszillation.
Es ist zu untersuchen, ob diese auch stabil ist (s.2.Kapitel).
Derartige Oszillatoren verwendet man z.B. bei der Erzeugung von

Strom—FﬁhrungsgréBen einer drehzahlgeregelten Asynchronmaschine

(s. LEONHARD [1.91).
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(1.6) Beispiel: Handhabungssystem (Industrieroboter)

Ein Handhabungssystem ist ein mechanisches System mit einer grdfBeren
Zahl von Freiheitsgraden (je nach Anwendungsbereich bis zu 6 und mehr
Freiheitsgrade).

Wir beschrdnken uns hier auf ein einfaches System nach Bild 1.8 mit

2 Freiheitsgraden, wobei ¢(t) den Drehwinkel und r(t) die Linge des
Roboterarms angeben.

Bild 1.8: Roboterarnm

F und M sind durch Motoren oder Hydraulik aufgebrachte Krafte und
Drehmomente. Unter Vernachldssigung von Reibung erhalten wir aus der
Impuls- und Drehimpulsbilanz (Krifte- und Momentengleichung)

(m+mL);(t) - [(m+mL}r(t) - ml] éz(t) = F(t)

(1.7)

¥

2 2 . .
(6 + m(r(t)-1)" =« mr (t)]§(t) + 2[(m+mL)r(t) - mllr(t)e(t) = M(t)

Hierbei bedeutet

m die Masse des ausziehbaren Armteils,

1 die Lage des Massenmittelpunktes C des ausziehbaren Armteils gemédB
Bild 1.8,

8 beinhaltet das Massentrigheitsmoment des drehenden Aufbaus bezogen
auf den Drehpunkt und das Tragheitsmoment des ausziehbaren Arm-
teils bezogen auf dessen Massenmittelpunkt C,

m

L 1st die Masse der zy transportierenden Last,

diese wird als Punkt-
masse angenommen.
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Fiihren wir die ZustandsgrdBen

() i= r(t) 5 xy(t) = r(1) ;

xz{t) i=olt) 5 x, (1) := o(t)
und die EingangsgroBen

u,(t) := F(t) ; u,(t) o= M(t)

ein, dann folgt aus (1.7) das nichtlineare Zustandsmodell

X (1) = xy(t)

. 2 1 2 1
(e (1) = x,(0)xy(t) - ﬁgﬁz xg(t) + mrmr Uy (0)

x3(t) = x,(t)

. ml—Z(m+mL)x](t) 1

X (t) = xz(t)xq_(t) r—_— uz(t)

) glx,(t)] glx ()]
wobei

2

glxy(£)] := 0 + m(x,()-1)" + m x%(t)

ist.

Fir das weitere Studium sei auf die umfangreiche Literatur verwiesen

(z.B. VUKOBRATOVIC [1.10]). [ |

1.3 Ruhelagen, Arbeitspunkte und deren Stabilitit

(1.9) Definition (Ruhelage):

Ein Zustand x, heiRt Ruhelage des zeitkontinuierlichen Systems

R
. n
(1.10) x(t) = fIx(t),u(t),t] x(t) ¢ R
Wenn gilt
(1.11) £lxp,0,t] = 0 fir alle t € R .

Offensichtlich ist x(t) = xp = const. fir u(t) = 0 eine Losung des Dif-

ferentialgleichungssystems (1.10). |
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Bei linearen Systemen existiert immer die triviale Ruhelage Xp = 0.
Uber die Losungen der nichtlinearen Gleichung (1.11) kénnen keine

allgemeinen Aussagen gemacht werden. Es ist moglich, daB mehrere Ruhe-
lagen existieren oder iberhaupt keine.

(1.12) Definition (Arbeitspunkt):

Ein Zustand X4 heiBt Arbeitspunkt des Systems
(1.13) x(t) = flx(t),ul(t),t] | x(t) ¢ R

zur konstanten Eingangsgrofe u, ,wenn gilt

(1.14) i[iA’EA’t] = 0 fir alle t ¢ R
x(t) = X, = const ist eine LOsung des Differentialgleichungssystems
{1.13) zur konstanten EingangsgroBe u(t) = u

A - [ ]

Da ein technisches System aufgrund von Storungen, Parameteranderungen

etc. eine Ruhelage bzw. einen Arbeitspunkt nie exakt und dauerhaft

einnehmen wird, ist es fir praktische Anwendungen von grolBer Bedeu-

tung, ob ein System bei kleiner Auslenkung aus einer Ruhelage (einem

Arbeltspunkt) von selbst in diese (diesen) zuriickstrebt bzw. in einer
gewissen Umgebung verbleibt.

auf diese Problematik.

Die folgenden Definitionen beziehen sich

(1.15) Definition (Stabilitit i.S.v. Ljapunov):

Die Ruhelage Xg des dynamischen Systems (1.
von Ljapunov, wenn fir alle Anfangszeit
e > 0 ein G(c,to) > 0 existiert,
fangsbedingung

16) heiBt stabil im Sinne
punkte t = zu jedem beliebigen

so daRR alle Losungen x{+) mit der An-

[xCe) - Spllon < 6let))

fur alle t > t, in der e-Ungebung der Ruhelage Xp verbleiben:

Ili(t) - }_Rlan< € -

R = O und ein spezielles ¢ und
nd dargestellt. Eine derartige

In Bild 1.9 ist diese Bedingung fiir
6 sowie einen speziellen Anfangszust;

Zeichnung kann daher niemals als Nach

weis der Stabilitit verwendet
werden,

sie dient hier nyr der Veranschaulichung.

(1.16) Definition (Asymptotische Stabilitat 1.S5.v.Ljapunov):

Die Ruhelage Xp des dynamischen Systems (1.10) heiBt asymptotisch stabil
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[

-S.v. Ljapunov, wenn gilt:
i. Xp ist stabil i.S.v. Ljapunov,
Z. Fir alle Lésungen x(+) aus einer hinreichend kleinen, von t, ab-

hdngigen Umgebung von Xp gilt

lim ||x(t) _5RHar = 0 . n

tow

Bild 1.10 zeigt diese Bedingung fiir Xgp = 0 und ein spezielles ¢ und 6

sowie einen speziellen Anfangszustand X,

A
X2
%
Trajektorie
x{t)
=~
X
di - 2 _
o X‘]— g //j x"
© Trajektorie
x(t)
Bild 1.9: einfache Stabilitit Bild 1.10: asymptotische Stabilitit

Bei autonomen (zeitinvarianten) Systemen brauchen die Bedingungen der
Stabilitdtsdefinitionen (1.15), (1.16) nur fir ein spezielles t_
hachgewiesen zu werden.

Die Begriffe der Stabilitédt und asymptotischen Stabilitdt von Ruhelagen
lassen sich unmittelbar auf Arbeitspunkte iibertragen.

Die bisherigen Begriffe gelten analog fir zeitdiskrete dynamische

Systenme.

(1.17) Beispiel: Stabilitiat von Ruhelagen

Wir betrachten die Differentialgleichung
(1.18) x(t) = -x(t) + 2x(t) .

Diese besitzt die Ruhelagen

Xp1 = » Xp2,3
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Nach Multiplikation von (1.18) mit x(t) 14Bt sich diese in der Form

YA
% %?[xz(t)] = - xz(t) + 2x4(t) = -zxz(t){% - x4(t)]

bzw.
d ;.2 2,001 2
HT[X (t)] = -4 x (t)[z— x“{t)]

) 2
schreiben. Die Ableitung von xz(t) bleibt negativ, so lange x“(t) < 0,5
ist. Demzufolge nimmt xz(t) streng moncton ab, sofern zum Zeitpunkt

t_ der Anfangszustand x(to) betragsmdBig kleiner als V0,5 war. Ist
0
jedoch zum Zeitpunkt t,

Ix(t )] > V0,57,

dann widchst xz(t) monoton.

Die Ruhelage Xp = O des Systems ist also stabil, denn es 14Bt sich zu
jedem positiven ¢ ein positives & finden, nimlich

min[ V0,55l ,

so daB aus der Bedingung

5

lx(tO)I < &
stets

[x(t)] < ¢ folgt.

AuBerdem ist diese Ruhelage asymptotisch stabil.
zustande 1x(to)| <¥0,5 folgt

lim|x(t)] = 0 .
L=

Denn fiir alle Anfangs-

Wird hingegen ein Anfangszustand gewahlt,

der betragsgemidB groBer als
0,5 ist,

dann entfernt sich der Zustand immer mehr von der Ruhelage.
Die Ruhelagen Xg =+ V0,5 sind also instabil.

Bei einer asymptotisch stabilen Ruhelage bezeichnet man die Gesamtheit

der Punkte des Zustandsraumes,

vorn denen aus die Zustande wieder gegen
die Ruhelage streben,

als den Einzugsbereich.

In unserem Beispiel ist der Einzugsbereich der Ru

Intervall (- V0,5, V0,5).

Das Beispiel zeigt,

helage Xp = 0 das

daB sich auch ohne Kenntnis der Losung der Differen-
tialgleichung die Stabilitat untersuchen 1iBt.

als Ldosungen explizit zu ermitteln.

Bild 1.

Dies jst i.a. einfacher,

11 zeigt fir verschiedene Anfangszustinde x(0) qualitativ den Ver-
lauf der Lésungen x(+).
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4x“)

e

V5 -

M

'

YT _
N

Bild 1.11: Verlauf der Lésungen x(+) von (1.18) fiir unterschiedliche
—_———

Anfangszustdande x(0) B

(1.19) Beispiel: Nichtlineare Schwingungsdifferentialgleichung

Gegeben sei die nichtlineare Schwingungsdisferentialgleichung

. o . ;
R Bm°[1 . iz(tmz(t)J e Y=o
“o (wo> 0)
Das Zustandsmodell 1lautet mit x1(t) i= x(t), xz{t) ' = i(t)/wo
(1.20) G0 erg© )
,(t) = e x,(t) - B“o[ - 1+xf(t)+x§(t)J x,(t)

Die (einzige) Ruhelage des Systems ist

X = 9
Wir untersuchen Stabilitit und Einzugsbereich der Ruhelage. Zu d?esem
Iweck multiplizieren wir in (1.20) mit x, bzw. x, und addieren die

Gleichungen:
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——Juﬁ_-(f——[i 4 Uu-—b-f X2 Wy f X1.—-—b-

= X P

X x5l t) x2(t) xZ 1)

1+x12+x22

o |y

' 1.

Bild 1.12: Strukturbild zur Schwingungsdifferentialgleichung

; ) ) . )
XgXq * XXy = Bug |1 - 1 Xy
1+x1+x2

Die linke Seite ist bis auf den Faktor 1/2 gleich der Zeitableitung des

Betragsquadrates, was wir mit V(x) abkiirzen:

1+x]+x2

Es ist moglich, V(x) als "Energiefunktion" des Systems zu interpretie-

1 2 1, 2
Vi = ogllxllT = 35 e k)
(1.21) Vx) = xyxp + X%,
= -Buw 1 - o ]XZ
0 AR

ren, die auch als "Abstand" von der Ruhelage gedeutet werden kann.
Durch Untersuchung des Vorzeichens von Q(i) erkennen wir, ob der Zu-
stand x(t) sich der Ruhelage nahert oder weglduft. Das Vorzeichen 1in
der Kiammer von (1.21) wechselt, je nachdem ob

(1.22) 1+ x +x§ >,

- o

In einer Umgebung der Ruhelage xp = O bestimmt also o < 1 oder o > 1
und B8 > 0 oder 8 < O das Vorzeichen von V(x). Fir B8 = 0 ist V(x) = O.
Wir haben dann eine lineare Schwingungsdifferentialgleichung mit einer
einfach stabilen Ruhelage.
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B >0 =20 B <0
(1.23) @2 asympt. stabil instabil
a > 1 - - : asympt.
instabil stabil stabil

Fir die asymptotisch stabilen Fdlle sollen die Einzugsbereiche ermit-

telt werden:

Fir 8 > 0, o« < 1 ist fiir alle x ¢ RZ Q(AJ < 0; der Einzugsbereich

ist die gesamte XT-XZ—Ebene.

Im Fall B < 0, o > 1 bestimmen wir aus (1.22) den Einzugsbereich
2
(1.24) X7+ x5 < a-1

Das 1st eine Kreisflache mit Radius Va-1. Auf dem Rand der Kreis-
flache

ist 0(1) = 0 und (1.20) geht in eine lineare Schwingungsdifferential-
gleichung iliber. Wir haben hier einen Grenzzyklus vorliegen. (Im 2.Ka-
pltel wird dieser Begriff ausfuhrllch behandelt). Fir x%+x§<a 1 ist
V(x) < 0, fir x%+x§>u 1 gilt V(x) > 0; die Bewegung strebt auf beiden
Seiten des Kreises von diesem weg. Der Grenzzyklus 1st instabil.

Fiir den Fall der instabilen Ruhelage, B > 0, o > 1, haben wir wieder
den glelchen Grenzzyklus. Jetzt gilt aber innerhalb des Kreises

X%+x§<a 1 V(x) > 0, fiir x%+x§>&*i gilt V(x) < (. Die Trajektorien

streben auf den Grenzzyklus zu; er ist stabil.

Genau dies ist die gewlinschte Stabilisierung des nichtlinearen Oszil-

lators (siehe auch Beispiel 1.37)}). B

1.4 Das exakte nichtlineare Modell der Anderungen um einen
Arbeitspunkt

Bei Regelungen, bei denen die FithrungsgroBe im wesentlichen auf einen
festen Wert eingestellt ist (Festwertregelung), interessiert das Ver-
halten der Zustandsgrofen um einen vorgegebenen Arbeitspunkt x,. Die

zu einem Arbeitspunkt Xy gehorige konstante EingangsgroRe Uy kann
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nach (1.74) bei einem autonomen System aus der Gleichung
(1.25) £[1A’EA] = 0

ermittelt werden. Wir stellen das Modell der Anderungen um den durch

Xpr Uy gegebenen Arbeitspunkt auf und fiihren dazu die GroRBen

ax(t) x(t) - x,

(1.26)

au(t) u(t) - u

=A

ein. Damit geht die Zustandsdifferentialgleichung

i(t)

il

£lx(t),u(t)]
iber in

ax(t) flax(t)+x,, sult)+u,]

oder, da die rechte Seite bei festem Xp»U,y nur noch von ax(t),au(t)
abhangt,

(1.27) ax(t) = £Lax(t),au(t)]

Ist keine Verwechslung zwischen den urspriinglichen ZustandsgréBen und
deren Abweichungen méglich, so schreiben wir (1.27) wieder in der Form

x(t)

£Ix(t),u(t)]

Die Ruhelage 8xp = 0 von (1.27) entspricht dem Arbeitspunkt x, des

urspriinglichen Modells. !
(1.28) Beispiel: Nichtlineares Modell der Anderungen
Nichﬂlnecres Teilsystem Lineares Teilsystem
M TNe T T T T 1T T i
i | ! }
| 3 o |
ult) elm [ . |
1 x hd X ? j l-x“)'—‘"
ol 7 | -} !
I | | I
e B T J

Bild 1.13: Nichtlineares Systenm 1.0rdnung
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Aus Bild 1.13 liest man die Zustandsdifferentialgleichung

Q(t) -x(t) - 2{30u(t)-x(t)] + 3[u(t)~x(t)]2+[u(t)—x(t)]3}

flx(t),u(t)]

ab. Fiir die konstante Eingangsgréfie u(t) = u, = 1 erhdlt man als L§-
sung der nichtlinearen Gleichung

ffo,uA] = Q0
den stabilen Arbeitspunkt

xA = 2

Fir die Abweichung 4Ax(t) = x(t)-2 zur EingangsgréBe Au(t) = u(t)-1
gilt dann die Differentialgleichung

A;(t) = flax(t)+2, su(t)+1]
= =(ax(t)+2) -2 {3fau(t)-ax(t)-1]
2 3
+ 3[au(t)-ax(t)-11 + [au(t)-ax(t)-11 1}
3
= - Ax(t) - 20au(t)-ax(t)]
= E[Ax(t),Au[t)]
Nichtlineares Teilsystem Lineares Teilsystem
- — - == —— - — = - — -
:- NlAe) —]I | _:
I Ax(t)
Au(t) ATH] x x L - 2 | f % H
- 3 I
|
| I |
Lo I

Bild 1.14: Strukturbild des transformierten Systems (Modell

der Anderungen)

Das urspriingliche System nach Bild 1.13 und das Modell der Anderungen
nach Bild 1.14 haben die Form eines nichtlinearen Standardregelkreises
(siehe Abschnitt 2.3 und 3.1.1). Ein Vergleich beider Bilder zeigt, daR
das lineare Teilsystem durch Verschiebung des (Zustands-) Koordinaten-
ursprungs in den Arbeitspunkt x, nicht verdandert wurde. Das nichtli-
neare Teilsystem hat sich hingegen verdndert (siehe hierzu auch Ab-
schnitt 2.3). Die nichtlinearen Teilsysteme des urspringlichen Systems
und des transformierten Systems sind Kennlinienglieder, die durch Ver-
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schiebung ineinander iibergehen (siehe Bild 1.15). Die beiden Teilbil-
der in Bild 1.15 stellen die gleiche Kennlinie (kubische Parabel) dar;
Kennlinie b entsteht aus a durch Verschiebung des Achsenursprungs vom
Punkt (0,0) zum Punkt (-1,-1),

(a} $Nie) (b) dRine)

Bild 1.15: Kennlinienglieder zu Beispiel (1.28)
a: Urspringliches System
b: System der Anderungen B

1.5 Linearisierung eines nichtlinearen Systems

Wir nehmen an, daR wir eine exakte Ldsung is(°) des nichtlinearen Sy-
stems (1.1) zur Eingangsfunktion Hs(') kennen (Sollbewegung). Da sich

eine Storfunktion z(*) formal wie eine zweite EingangsgroBe verhalt,

wird diese hier nicht weiter berucksichtigt. Sollen kleine, durch Veran-

ht werden, kann dies mit

Da der durch die Linearisierung
hervorgerufene Fehler in der Systembes

chreibung i.a. mit groBeren Ab-
welchungen wichst,

hangt es allein von den Genauigkeitsanforderungen ab,

wie groB die maximal zugelassenen Abweichungen sein diirfen.

Die Linearisierung um Ruhelagen oder Arb
schlossen; die Sollbewegung ist dann

u (t) = u,, x (1) = X -

Die Sollbewegung ist eine exakte Losung der Zustandsgleichungen

eitspunkte ist hier einge-
u (t) = 0, xs(t) = xp bzw,



1.5 Linearisierung eines nichtlinearen Systems 21

x (1) = £lx_(t),u(t),t]

(1.29)

Il

Y (1) hlx (t),u (t),t]

Unter Verwendung der Abweichungen von der Sollbewegung

du(t) := u(t) - w(t)
(1.30) ax{t) = x(t) - x_(t)
ay(t) = y(t) - Xs(t)

lauten die Zustandsdifferentialgleichungen

is(t) + Ai(t) fix (1) + ax(t),u (t) + ault),t]

¥y (t) + ay(t) hix (t) + ax(t),u (t) + ault),t]

Die nichtlinearen Funktionen f und h werden an der Stelle [is(t)’ﬂs(t)’t]
bis zum linearen Glied entwickelt (Taylor-Reihe), die Restfunktionen

f, h enthalten die Anteile hoherer Ordnung:

x (1) + ax(t) = £lx (t),u (£),t] + ACt)ax(t) + B(t)au(t) +

(1.31) + flax(t),su(t),t]

hix (t),u (t),t] + Clt)ax(t) + D(r)ault) +

y (t) + ay(t)
+ l}_[Ai(_(t],AE_(t),t]

Die Elemente der Matrizen A(t), B(t), C(t), D(t) erhalten wir durch
partielle Ableitung der Funktionen f und h nach ihren Variablen:

af. afi
A () t= — Ix (0),u (t),t] By, (t) = — [x (t),u (0),t]
ax . u.
j J
i D, . (t) (0
ij(t) = Q;T [is(t),gs(t),t] , it P= g;; xtt)hu (t),t

(1.32)

Unter Beriicksichtigung von (1.29) ergibt sich aus (1.31) (siehe
Bild 1.16):

A(t)ax(t) + B(t)au(t) + flax(t),ault),t]

Ai(t)

(1.33) .
C(t)ax(t) + D(t)au(t) + hlax(t),aul(t),t]

]

ay(t)

Wenn die Restfunktionen i, é_fﬁr Ax,au - O mit hoherer als 1.0rdnung
gegen Null streben, konnen wir fiir kleine Abweichungen von der Sollbe-
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wegung die linearisierten Zustandsgleichungen anschreiben:

Aé(t)

Alt)ax(t) + B{t)ault)
(1.34)

ay(t) Clt)ax(t) + D(t)au(t)

Wir bezeichmen (1.34) als linearisiertes System von (1.1) beziiglich
der Sollbewegung Ugs Xoo Yoo

Linearisierter Anteil

- A

f = DIt l
| |
| By
dult) | Ax(t) Ay(t)
===.=T:u:====tqgu) (OF——— f = clt) [
/
L
—|=— AN Y |
[ N Axit) |
- | AN
| flaxit). Ault)f) Ek
| | \ |
| AN
I ~— — ]
| .
| |
. I
| hlAx(t),ault).t]
|

Nichtiinearer Restterm

Bild 1.16: Strukturbild der Zustandsgleichungen (1.33), aufgespalten

nach linearisiertem Term und nichtlinearem Restterm.

Sowohl das exakte nichtlineare System (1.33) als auch das linearisierte

System (1.34) besitzen die Ruhelage AXp = 0. Daher sind wir in der Lage,

mit Hilfe der Stabilitatsdefinitionen (1.75), (1.16) auch die Stabili-

tat einer Sollbewegung u., LI Yg Zu definieren:

(1.35) Definition ((Asymptotische) Stabilitidt einer Sollbewegung):

Die Sollbewegung Ys» Xg» Yg heiBt (asymptotisch) stabil im Sinne von

Ljapunov, wenn die Ruhelage Axp = 0 des Systems (1.33) (asymptotisch)

R
o

stabil i.S.v. Ljapunov ist.
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(1.36) Bemerkung:

Verschwinden die Funktionen £, é fir Ax,4u = 0 mit héherer als 1.0rd-
nung (wie vorausgesetzt), stimmen das Stabilitdtsverhalten der Ruhe-
lage Axp =0 des linearisierten Systems (1.34) und des exakten nicht-
linearen Systems (1.33) in einer hinreichend kleinen Umgebung der Ruhe-
lage iberein, wenn asymptotische Stabilitdt oder Instabilitit verliegt.
Hierauf wird im 4. Kapitel ndher eingegangen. Wenn die Ruhelage des
linearisierten Systems stabil, aber nicht asymptotisch stabil ist,

sind gesonderte Betrachtungen notwendig. Bei einem zeitinvarianten
System liegen in diesem Fall einfache Eigenwerte auf der imagindren

Achse der s-Ebene. [ ]

(1.37) Beispiel: Nichtlineare Schwingungsdifferentialgleichung

Wir greifen die nichtlineare Schwingungsdgl. aus Beispiel (1.19) auf:

i](t) w %, (t)

(1.38)

a

1+x%(t)+x§(t)

1l

)-(z(t) -m0x1(t) - Bwo 1 - xz(t)

Fiir xf(t) + xg(t) = a-1 verschwindet die Klammer in (1.38). Dies

fihrt dann auf die Lésung
Ve-1 sin(wot + ¢0)
xzs(t) = Ya-1 cos(wot + wo)

Durch Verschiebung der Zeitachse erreichen wir L 0, wodurch wir im

x, (t)
(1.39) Is

folgenden Schreibarbeit sparen.

Un diese Sollbewegung wird eine Linearisierung durchgefiihrt. Aus
f1fx1,x2] = wo Xy

Q
[ ] = -wx, - Buw |t - ———— | x
£alxy,x, o¥1 o[ 1+xf+x§ 2

bestimmen wir nach (1.32) die Koeffizienten der linearisierten Diffe-

rentialgleichung:
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af2 Zqu0x1x2
o S e Z
3x (1+x1+x2)
af Zaflw x2
A B __2 - -Bu 1 - o _ 0" 2
22 ax2 0 1+x$+xg {1+x%+xg)2

Fiir Xy, X, ist die Sollbewegung X151 X;¢ Dach (1.39) einzusetzen. Es
2

gilt 1 + X1 * X56 = @ und der 1. Term im Ausdruck fir A22 verschwin-
det entlang der Sollbewegung:

Ay, (t)

a-1 .
- w - w —— sinw t cosw t
0 28 0 a 0 0

13

o-1 2
Azz(t) - ZBwO cos”w t
Da keine Eingangs- und AusgangsgriBen auftreten, entfidllt die Rechnung

zur Bestimmung der Matrizen B, C, D. Das linearisierte System lautet
also

A)(.I(t) wOAXZ 3
(1.40)

f

. ) 2
sz(t) -w0[1 + 751nmotcosm0t]Ax1(t) o vcos“w t sz(t)

a-1
[+

mit Y 1= 2B

Obwohl das urspriingliche nichtlineare System autonom (zeitinvariant)

ist, erhalten wir, da die Sollbewegung zeitabhdngig ist, ein nicht-

autonomes (zeitvariantes) linearisiertes System. Ein derartiges zeit-

variantes System, bei dem keine duBere Erregung auftritt, die Koeffi-

zienten der Dgl. jedoch periodisch in

der Zeit sind, heift parame-
trisch erregt.

Das bekannteste Beispiel dieses Typs ist die Mathieu-
sche Differentialgleichung.

Die komplizierte Struktur von (1.40) erschwert eine Stabilitdtsunter-

suchung; die Zustandsgrofen Ax], sz sind hierzu ungeschickt gewahlt.
Durch die (Dreh-) Transformation

E](t)

Ax,(t)cosw t - Ax (t)sine t
(1.41) 1 o) 2 0

£,(t)

Ax](t)51nmot + sz(t)cosmot

erhalten wir unter Auslassung der Iwischenrechnung die transformier-
ten Zustandsdifferentialgleichungen
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51(1‘.) = WY COSth Sinwot Ez(t)
(1.42)

éz(t) - w ¥ COSZmOt gz(t)

Die geometrische Interpretation der neuen ZustandsgréBen €y EZ 1st
Bild 1.17 zu entnehmen: £, ist (in linearer Ndherung) die radiale
Abweichung des Zustandes x(t) von der Sollbewegung is(t)’ €, gibt die
tangentiale Abweichung (Phase) an.

Xy

AX1

§1= I‘ALP
x(t] E, = Ar

Ax,
g ~xt)

Uot Xz

)

Bild 1.17: Sollbewegung is(t) und Abweichung von der Sollbewegung

In (1.42) ist die Stabilitdt der Sollbewegung (= Stabilitdt der Ruhe-

lage des linearisierten Systems) wesentlich besser zu uberblicken:

Fiir v > 0 gilt éZ < 0, wenn £, > O und £, > 0, wenn £, < 0; £,(t)

strebt fir t - =« gegen Null.

Um eine Aussage iiber £y zu gewinnen, gehen wir von folgender Uberlegung
. 1 . . .

aus: In (1.42) ist nun cose t sine t = 7751n2w0t perlédlsch und Fz(t)

ist betragsmidBig monoton fallend. Zerlegen wir daher-die Integration

von é1(t) in Teilintegrale iiber Halbwellen von sinZth, so entsteht eine

alternierende Reihe mit betragsmaBig fallenden Summanden. Eine derartige

Reihe konvergiert immer; d.h. die ZustandsgroBe £,(t) bleibt fir t - =

beschriankt, 51(t) strebt aber i.a. nicht gegen Null, was man sofort er-

kennt, wenn man den speziellen Anfangszustand 51(to) =& Ez(to) =0
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in (1.42) einsetzt. Der Endwert, gegen den 51(-) strebt, kann aber be-
liebig klein gehalten werden, wenn die Anfangsauslenkung 510, 520 ent-
sprechend klein gewdhlt wird.

Die Ruhelage ax, = 0 bzw. Ep = 0 des linearisierten Systems (1.40) bzw.

R
(1.42) ist somit fir ¥ > O nach Definition (1.15) stabil, aber nicht
asymptotisch stabil nach Definition (1.16), obwohl £, fiir sich allein

die Bedingung der asymptotischen Stabilitat erfiillen wirde.

Die Sollbewegung, um die hier linearisiert wurde, ist ein Grenzzyklus
(siehe 2. Kapitel). Unter der Annahme, daBl wir von der Stabilitit der
Ruhelage des linearisierten Modells auf die Stabilitat des Grenzzyklus
(Lésung der nichtlinearen Schwingungsdifferentialgleichung) schlieBen
konnen, erhalten wir folgende Aussage (bei asymptotischer Stabilitit
ist dieser Schlufl immer berechtigt, siehe Bemerkung (1.36)):

Eine gestorte Bewegung lauft fir v > O wieder auf die Bahnkurve der Soll-
bewegung, d.h. des Grenzzyklus ein (wegen £, 0), hat aber dann im all-
gemeinen einen Phasenfehler gegeniber der Scllbewegung, da £, zwar end-
lich bleibt, aber im allgemeinen nicht gegen null konvergiert. Wenn
gestorte Bewegungen aus einer hinreichend kleinen Umgebung eines Grenz-
zyklus asymptotisch in diesen einlaufen, bezeichnet man den Grenzzyklus
als asymptotisch bahnstabil (siehe Definition (2.4)). Da der Phasenfeh-
ler £ hier gegen einen konstanten Wert strebt, ist der Grenzzyklus

sogar asymptotisch bahnstabil mit asymptotischer Phase (sjiehe Defini-
tion (2.6)).

Die fir die Stabilitat einflieBende Bedingung v = 28 ol

. . . [
pondiert genau mit der Bedingung B > 0, o« > 1, fir die wir in Beispiel

(1.19) die Stabilitat des Grenzzyklus mit Hilfe einer Ljapunov-Funktion
V(x) exakt nachgewiesen haben.

> 0 korres-

Somit erfidhrt unsere SchluBweise vom
linearisierten System auf das Stabilitadtsverhalten des Grenzzyklus eine
nachtragliche Absicherung. ]

1.6 Systeme 2. Ordnung in der Zustandsebene

Nichtlineare Systeme 2. Ordnung sind eine vergleichsweise einfach hand-

habbare Klasse innerhalb der nichtlinearen Systeme. Bei Systemen 2. Ord-

nung existieren einige Besonderheiten, die eine separate Betrachtung
nahelegen:
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Die unmittelbar anschauliche Art, den Verlauf zweier Zustands-
groBen (Trajektorie) in einer Zustandsebene darstellen zu konnen,
beglinstigt unsere bildliche Vorstellungskraft.

In der Zustandsebene haben wir die topologische Besonderheit,
da eine in sich geschlossene Trajektorie die Zustandsebene

in zwel nicht zusammenhingende Gebiete aufteilt.

Un ein Gefihl fir unterschiedliche Verhaltensweisen von Systemen
2. Ordnung zu vermitteln, betrachten wir zunichst die lineare, zeit-

invariante Differentialgleichung

X, (1) 0o 1 Xy (t)
(1.43) -

X, (1) -ay -a x, ()
ohne EingangsgroBe. Abhdngig von der Eigenwertkonfiguration SRS
der Dgl. zeigen die Trajektorien ein jeweils typisches Verhalten.
Wie aus der Theorie linearer Systeme bekannt ist, bestimmt der
groBte Realteil aller Eigenwerte das Stabilitdtsverhalten. 6 der prin-
zipiell méglichen Fdlle sind in Bild 1.18 dargestellt. Dabei ist in
den Fallen a,b die Ruhelage Xp =0 asymptotisch stabil, in ¢ stabil,
wahrend in den Fidllen d,e,f ein instabiles Verhalten vorliegt. Der

(a) % s-Ebene (bl 4, 5- Ebﬁne (c) iy s-Eane
i
3 x X
‘ @
) X,

I X
N s
A 2-/11

s-Ebene (f

A X
S

Bild 1.18: Trajektorien von linearen Systemen Z.0rdnung
mit verschiedenen Eigenwertkonfigurationen
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Leser beachte, daB zu einem linearen System 2. Ordnung in allgemeiner

Form Trajektorien gehdren, die gegeniiber denen im Bild 1.18 gedreht
und verzerrt sein konnen,

Bei nichtlinearen zeitinvarianten Systemen 2. Ordnung

() = £00 (0,01
(1.44) :

verschafft man sich eine grobe Skizze iiber den Verlauf der Trajekto-

rien der Eigenbewegung (d.h. ohne EingangsgréBe), indem man an speziel-
len Stellen Richtungsfelder konstruiert:

Entlang der Losungen der Gleichungen

f1[x1,x2] = 0 bzw. fz[x],xz] = 0
gilt x{t) = 0 bzw. gz(t) = 0
Die Schnittpunkte der durch f][x1,x2] = 0 und fz[x1,x2} = 0

festgelegten Kurven in der Zustandsebene sind die Ruhelagen des
Systems (1.44).

Weitere Aussagen iiber Richtungsfelder in der Zustandsebene erhdlt man
durch formale Division der Gleichungen (1.44):

dx folx,,x,]
(1_45) __2 = HZ_]__Z_ g(x1,x2)
dx1 f1[x],x2]

f2[)(1,)(2] =0

f,[X1.X2]=0

Bild 1.19: Ndherungsweise Konstruktion der Trajektorien
aus Richtungsfeldern
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Z.B. konnte man die Richtungen der Trajektorien auf der Xq- oder der
X,-Achse durch g(x1,0) oder g(O,xZ) bestimmen. Der Wert von g gibt die
Steigung der Trajektorie in der x]—xz-Ebene an. Ebenso kodnnten die
Richtungen entlang jeder anderen Geraden durch g(x1,ax1) bestimmt wer-
den. Bild 1.19 zeigt eine derartige Konstruktion von Trajektorien.
Durch diese Konstruktion wird nicht der Durchlaufsinn der Trajektorie
ermittelt. Zu diesem Zweck geht man erneut in (1.44) und prift fiir
einfache Punkte die Vorzeichen von ;I(t) und ;z(t)' Fir den im Bild
1.19 eingezeichneten Richtungssinn scheint die Ruhelage Xp =0
asymptotisch stabil zu sein, soweit dies aus der groben Konstruktion
ersichtiich ist. Bei entgegengesetztem Richtungssinn liegt die Vermu-

tung auf Instabilitdt nahe.

Eine wichtige Klasse nichtlinearer Systeme sind Regelkreise, bei denen
die Strecke als linear angenommen werden kann, die EingangsgroBe jedoch
durch nichtlineare Stell- oder Schaltglieder (z.B. Zwei- oder Drei-
punktglieder mit und ohne Hysterese) aufgeschaltet wird. Derartige
Stellglieder kommen beispielsweise dann zum Einsatz, wenn Prozesse ge-
regelt werden sollen, die mit Stellgroflen grofler Leistung gespeist wer-
den miissen (z.B. Motoren groBer Leistung). Wenn kein linearer Leistungs-
verstdarker zur Verfiugung steht, der die von MeB- und Regelgliedern ge-
lieferte StellgroBe auf den Leistungseingang der Strecke aufbringt,
konnen lineare Regler i.a. nicht eingesetzt werden. In solchen Fillen
konnen Regelungen mit gesteuerten Leistungsschaltern (wie beispiels-
weise Zweipunktgliedern) aufgebaut werden. Die EingangsgroBe der
Strecke ist dann abschnittsweise konstant. Dementsprechend ist der Re-
gelkreis beziiglich der Zeit abschnittsweise linear. Das Systemverhalten
springt zwischen unterschiedlichen linearen Typen hin und her. Diese
unterschiedlichen Bereiche werden bei Systemen 2. Ordnung in der Zu-

standsebene durch Schaltgeraden getrennt.

Wir erlautern die Untersuchung derartiger Systeme an einem Beispiel:

(1.46) Beispiel: Lageregelung mit nichtlinearem Stellglied

Aufgabe sei die Lageregelung eines fahrbaren Schlittens oder die Winkel-
positionierung einer Welle, wobei Reibung vernachlassigt wird. Die Lage-

koordinate x geniigt dann der Differentialgleichung

(1.47) mx(t) = u(t),

wobei m die Trdgheit (Masse oder Trigheitsmoment) und u die &uBere

KraftgroBe (Kraft oder Drehmoment) angibt. Das Zustandsmodell lautet
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mit v(t) := ;(t)

x(t) = v(t)
(1.48)

() = Ly

Bei dem Regelproblem soll es sich um eine Festwertregelung handeln, d.h.
die Soll-Lage r(t) = L nimmt einen beliebigen, aber zeitlich konstanten
Wert an. Die Lageabweichung ist

(1.49) e(t) = ro - x(t)

In Anlehnung an die einleitenden Bemerkungen zu diesem Beispiel wird

ein nichtlinearer Regler (gesteuerter Leistungsschalter) der Form

(1.50) u(t) = gle(t),v(t)]

eingesetzt, der als StellgroBen nur die Moglichkeiten

u, + A
(1.51) gle(t),v(t)l = u, = - A
uq 0

zuldBt, die in einer noch festzulegenden Abhdngigkeit von den GréBen
e(t) und v(t) angenommen werden,

Fir diese konstanten StellgroBen lassen sich die Differentialgleichun-
gen {1.48) leicht integrieren und die Trajektorien ermitteln:

Y3
vit) = Vo —t
(1.52) u. o,
B i
x(t) = Xy * Vot # 7ot

Durch formale Division der Gleichungen (1.48) folgt

dv. % Y
R T vdvo= 5 dx,
102 2y

(1.53) 5 (v —vo) = = (x-xo)

Die Trajektorien sind fiir Uy 5 = *A Parabeln in der x-v-Ebene, fiir

Uz = O erhalten wir Geraden v(t) = Vo = const. Bild 1.20 zeigt die fir
die Regelung zur Verfligung stehenden Trajektorienscharen. Zusdtzlich
sind fir zwei spezielle Anfangszustinde die Trajektorien einer zeit-
optimalen Regelung eingezeichnet, die den Sollwert T, erreichen.

Die Lénge der Kurven hat dabei nichts

mit der Zeitdauer zu tun, in der
diese durchlaufen werden.

Die optimale Unsteuerung unter Beriicksich-
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tigung einer Geschwindigkeitsbegrenzung (in Bild 1.20 gestrichelt) bend-
tigt mehr Zeit, obwoh! die Kurve in der Zustandsebene kiirzer ist.

Bild 1.20: Trajektorienfelder und zeitoptimale Regelung
ohne { —— ) und mit ( --- ) Beriicksichtigung

einer Geschwindigkeitsbeschrédnkung

Wir versuchen, einen Regler zu entwerfen, der eine derartige optimale

Umschaltung der StellgroBe u leistet oder ihr zumindest nahekommt. Wir

prifen die Eigenschaften des Regleransatzes

A fur -e+cv < 0

(1.54) gle,vl =
-A far -e+cv > 0

Der Regler schaltet an der Geraden
e = *(x-ro) = cv

von einem Trajektorienfeld zum anderen um. In Bild 21 sind die Trajek-
torien mit diesem Regler dargestellt. Fir einen speziellen Anfangszu-

stand liefert dieser Regler tatsdchlich das gewiinschte optimale Regel-

verhalten. Bei Abweichungen hiervon wird nicht mehr optimal geregelt.
Dabe1 fdllt eine Besonderheit auf:

Entlang eines Stiicks der Schaltgeraden (gestrichelt) laufen die Trajek-
torien von beiden Seiten auf diese zu und finden keine Fortsetzung
(nicht mit einer Ruhelage zu verwechseln!). Um das Systemverhalten in
diesem Bereich zu erfassen, gehen wir von einem verzdgerten Umspringen
des Stellglieds aus, was wir durch eine kleine Hysterese modellieren

konnen. Dadurch entstehen nun zwei parallele Schaltgeraden, zwischen
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denen die Trajektorie hin- und herlduft, was im rechten unteren Teil
von Bild 1.21 dargestellt ist. Wenn die Hysterese sehr klein ist
(beide Schaltgeraden liegen sehr dicht zusammen), sieht es aus, als ob
die Trajektorie an der ursprunglichen Schaltgeraden heruntergleitet.
Dieser Vorgang trédgt den Namen Gleiteffekt oder Gleitvorgang.

Wir bemerken, daB das urspringliche mathematische Modell hier vollig
versagt, es existiert im Gleitbereich keine Losung der Zustandsdiffe-
rentialgleichungen. Die Modellierung ist hier nicht nur vonm technischen,
sondern auch vom mathematischen Gesichtspunkt unzureichend. Die Rettung
uber die Zusatzannahme einer kleinen Hysterese ist auch recht problema-
tisch, wenn dies nicht tatsichlich dem realen Schaltverhalten ent-
spricht. Allgemein kann man nur erwarten, daf der Zustand sich irgend-
wie auf der Schaltgeraden bewegt. Ob er aber auf den gewiinschten End-
zustand zugleitet, weglduft oder auf einen Punkt der Schaltgeraden
liegenbleibt, hidngt méglicherweise sogar von der Wahl der Zusatzannahme

ab. Statt einer Hysterese hitte man auch eine kleine tote Zone o.4i. an-
nehmen kénnen.

Bild 1.21:

Trajektorien der Lageregelung mit einem Regler nach (1.54)

Mit dem Regler (1.54) wird zwar der Sollwert r_ erreicht, doch befrie-
digt das Gleiten auf der Schaltgeraden keineswggs, da das standige

schnelle Umsteuern des Stellgliedes die regelungstechnischen Méglich-
keiten sehr schlecht ausnutzt und bei mechanischen

Schaltgliedern zu
erhohtem Verschleif fiihren kann.

Wenn das Stellglied entlang der Parabel
X-r = - %K visgn v

umschaltet, wird der Sollwert nach nur einem Schaltvorgang erreicht,
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wie man in Bild 1.20 erkennt und mit (1.53) nachpriift. Wir setzen also

den neuen Regler

(1.55) gle,vl = flir -e + %K vzsgn v
-A > 0

an. Wie bei jedem Zweipunktglied ist auch hier nach Erreichen des Soll-
werts eine standige Oszillation zu erwarten, so daB eine Abschaltung

erfolgen sollte, wenn ein Toleranzbereich
(1.56) Ix(t)-r | <6

eingehalten wird. Der Bereich 6 sollte so bemessen werden, da beim Ab-
schalten evtl. noch vorhandene Bewegungen durch bisher nicht beriick-
sichtigte Reibung innerhalb des Toleranzbereichs zum Stillstand kommen.
Bild 1.22 zeigt das vollstdndige Strukturbild der Strecke mit dem Regler

nach (1.55), (1.56).

lel<b:0=0 g
lel26:a=1

[ LY

LI e eniins s

- - -gA

Leistungsschalter

— visgnv

Bild 1.22: Strukturbild der Lageregelung mit eilnem Regler nach
(1.55), (1.56)

Der so entworfene Regler erscheint sehr elegant; er leistet tatsachlich
fiir beliebige Anfangszustdnde eine zeitoptimale Umsteuerung, was jedoch
den hoheren Aufwand eines Quadrierers im Regler erfordert. Ein Nachteil
soll nicht verschwiegen werden: Die Regelstrecke 1ist sehr empfindlich
gegeniiber Parameterschwankungen. Der Grund liegt darin, daB die Konstan-
ten A und m jeweils an zwel verschiedenen Stellen im Strukturbild auf-
tauchen. Bei der Realisierung ist daher grofle Sorgfalt darauf zu verwen-
den, diese Konstanten im Regler genau einzustellen. Der Leser kann in
Bild 1.20 schnell nachvollziehen, welchen Effekt eine nicht mehr stim-
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mende Umschaltparabel hat. Eine zu stark gedoffnete Umschaltparabel (Quo-
tient m/A im Regler zu klein) ist einer zu spitzen Parabel vorzuziehen,

da dann zwar Uberschwingen, aber kein Gleiten stattfindet. Insbesondere

ist daher der Regler fiir einen Schlitten mit unterschiedlichen Lasten

ungeeignet, wenn nicht durch eine Adaptionstechnik die Konstante m im
Regler nachgefiihrt wird. B

1.7 Verbesserung der Dynamik von Regelkreisen mit
StellgrbBenbeschréinkung durch »anti-rest-windup« (ARW)

Als AbschluB des 1.Kapitels wird ein Verfahren vorgestellt, mit dem
das dynamische Verhalten von Regelkreisen mit Integral-Anteil im Reg-
ler und Stellgréﬁenbeschrénkungen verbessert werden kann. Die Verbes-

serung beruht darauf, daB in dem Regler bewult nichtlineare Elemente
eingearbeitet werden.

Regelkreise mit Stellgréﬁenbeschrénkungen konnen mit linearen Methoden
entworfen werden, wenn die Stellgréﬁenbeschrénkungen insoweit beachtet
werden, daB méglichst keine Sattigung der StellgroBe auftritt. Ist der
StellgroBenbereich jedoch sehr stark eingeschrinkt, kann die Forderung
der Vermeidung von Sattigungen zu wenig befriedigenden Einschriankungen
des Betriebsbereichs fithren. Wird andererseits der Regler auch fiir

groBe Sdttigungen einfach ibernommen, treten in vielen Fillen erheb-
liche Verschlechterungen des dynamisch
bilitaten auf.

en Verhaltens bis hin zu Insta-

Zur Verbesserung des Regelverhaltens wire entweder ein
neuer Reglerentwurf unter voller Beriicksichti

erforderlich. Dies ist

gung der Nichtlinearitidt
jedoch meistens sehr schwierig. Ein anderes
gangiges Verfahren zur Verbesserung des Regelverhaltens von Reglern
mit I-Anteil, bei dem der urspringlich entw

orfene lineare Regler als
Ausgangspunkt dient,

sei an einem einfachen Beispiel erlautert:

(1.57) Beispiel: ARW bei einer Drehzahlregelung mit StellgréBen-
beschrinkung

In Bild 1.23 ist eine Geschwindigkeits- oder
mierten Zustandsgrofen dargestellt.
Gleichstrommotor,

Drehzahlregelung mit nor-
Das Streckenmodell entspricht einem
bei dem die elektrische leitkonstante t beriicksich-
tigt wurde, mechanische Reibung und Spannungsrﬁckwirkung der Drehzahl
aber vernachldssigt wurden. Die StellgréBe u (Spannung) unterliegt einer
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A

Begrenzung, so daB nur die Grolle u wirksam werden kann. Eine derartige
Begrenzung kann durch die elektrischen Grenzwerte des Motors notwendig
werden oder aber bei digitalem Aufbau des Reglers durch den begrenzten
Aussteuerungsbereich eines D/A-Wandlers zustandekommen. Zur Regelung
soll ein PI-Regler eingesetzt werden. Fiir die Zeitkonstante t = 0,1
wurden bei einem linearen Entwurf die Reglerparameter Kp = 3,3 und

KI = 3,6 gewdhlt, so daB ein Doppelpol der Fihrungsiibertragungsfunk-
tion bei s = -3 und ein weiterer Pol bei s = -4 entsteht. Mit diesen
Parametern sind fir die Fiihrungsspringe Weoll = O,é; 1,0; 1,5; 2,0

die Verlaufe der Drehzahl w{t) und der StellgréBe u{t) in Bild 1.24
dargestellt. Zur Zeit t = 5 wird zusidtzlich die Belastung M oast = 0,5
aufgeschaltet. Zum Vergleich ist fiur woo11 = 2,0 der Verlauf von w(t)
und u(t) gestrichelt eingezeichnet, wie er bei linearem Verhalten ohne
Begrenzung zu erwarten ware. Der Hochlauf der Drehzahl mit Begrenzung
geschieht langsamer als ohne Begrenzung, was aber nicht weiter zu ver-
bessern ist, da die StellgroBe in diesem Bereich bereits voll ausge-
steuert ist. Héchst unerwiinscht ist aber das starke Uberschwingen der
Drehzahl iiber dem Sollwert. Diese Verschlechterung der Dynamik 1aBt
sich unmittelbar anschaulich erkldren: Wahrend der Phase der Sattigung
integriert der Regler unvermindert auf, ohne daf3 sich dies in einer
groBeren Wirkung der StellgroBe bemerkbar machen konnte, da sich diese
schon in der Begrenzung befindet. Das Vorzeichen der Stellgréfe kann
sich erst wieder idndern, wenn der P-Anteil des Reglers den inzwischen
recht groB gewordenen I-Anteil kompensiert. Die Stellgrofie schaltet
dann aber viel zu spit um. Dieser Effekt, der bei anderen Regelkreisen
sogar zu einer aufklingenden Schwingung fiihren kann, hat den Namen
reset-windup (in der angelsdchsischen Literatur wird ein integraler An-

teil im Regler auch als 'reset' bezeichnet - setzt den stationdren Re-

gelfehler zu null).

PI-Regler Steligréfen- Strecke
beschrankung

mLust

cC>
- !—-
1
—
3
—
€
1

Bild 1.23: Drehzahlregelung mit StellgréBenbeschrédnkung
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Die einfachste Moglichkeit, das dynamische Verhalten zu verbessern,
wdre = auf den Integrator im Regler zu verzichten bzw. den Parameter

K geniigend klein zu wdhlen. Dies ist aber wegen des nicht mehr ver-
schwindenden stationdren Regelfehlers bzw. des dann auftretenden lang-
samen "Kriechens'" bis zum stationdren Endwert nicht erwiinscht (obwohl
bereits die Strecke einen Integrator enthilt, muR auch im Regler ein
weiterer vorgesehen werden, damit der Regelfehler auch bei stationaren
Belastungen M 2ot VErschwindet).

Ein KompromiB ist in der Weise méglich, bei groBen Amplituden den Inte-
grator "auszuschalten" und erst bei kleinen Amplituden diesen wieder

"zuzuschalten", um dann das urspriinglich angestrebte lineare dynamische

wlt)

2.5+

2071 / T

1.51 |

101/

051/

1

and
|

10 !

051

1
o
wn

1

Bild 1.24: Dynamisches Verhalten der Drehzahlregelung nach Bild 1.23
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Verhalten zu erreichen. Fiir die technische Realisierung sind mehrere
Varianten denkbar (siehe Bild 1.25). Die Varianten a und b sind in
Analogschaltungstechnik durch einfache Diodenriickkopplungen aufzubauen.
Die Variante ¢ bendtigt einen Komparator und einen steuerbaren Schalter.
Bei digitaler Realisierung des Reglers sind alle drei Varianten durch
Abfragen im Regelprogramm einfach zu realisieren. Derartige Modifikatio-

nen des linearen Reglers werden als anti-reset-windup (ARW) bezeichnet.

(a) -qpo.‘ I

Qmax

e u
e —

(b) , ] t

e u
B — b
Kp
Komparator
{c) v vzl f0r Ul < Upqx
v=0 far lul 2 v,
q q
K, - X [
e u
Kp

Bild 1.25: Verschiedene Varianten eines PI-Reglers mit

anti-reset-windup (ARW)
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Fir unser Beispiel wurde ein modifizierter Regler nach Bild 1.25c
gewdhlt: Der Integratoreingang wird null gesetzt, d.h. der Integrator
hdlt seinen Wert, wenn die StellgroBe in die Begrenzung geht.

Bild 1.26 zeigt die damit gewonnenen Fiihrungssprungantworten, die gegen-
tiber dem urspringlichen Regler eine wesentliche Verbesserung bringen.
Sogar der Vergleich mit dem linearen Regelkreis ohne Begrenzung fillt

in Bezug auf das Uberschwingen zugunsten des Regelkreises mit Begren-
zung und ARW aus. Dies legt es nahe, eine derartige PI-Regler-Modifika-
tion auch einmal fir Strecken zu testen, bei denen Begrenzungen keine
Rolle spielen. In Bezug auf den Lastsprung zur Zeit t = 5 gibt es

keine Verdnderung, da die StellgrdBe innerhalb ihrer Begrenzung ver-
bleibt.

u(H%

25+

151 |

.01 |

0541

!

-

and o
1.0 4

0571

0 -

—

-

\
-05+ \,’/

104

Bild 1.26: Dynamisches Verhalten der Drehzahlregelung nach Bild 1.23

mit ARW nach Bild 1.25¢
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Obwohl hier keine allgemeine Grundlage fiir die Wirkungsweise des ARW
gegeben wurde, ist dies gleichwohl ein weit verbreitetes Verfahren,
Verschlechterungen des dynamischen Verhaltens durch Stellgroflenbe-
schridnkungen durch eine zusdtzliche, bewuBt eingebrachte Nichtlineari-

tdt im Regler zu verbessern. n



2 Periodisches Verhalten von nichtlinearen Systemen

Sowohl bei linearen als auch bei nichtlinearen Systemen kénnen perio-

dische Vorgiange ohne iduBere Erregung auftreten (Eigenbewegung).

Bei linearen zeitinvarianten Systemen ist dies genau dann der Fall,

wenn die Systemmatrix A mindestens ein einfaches rein imaginares Eigen-
wertpaar besitzt (vgl. Bild 1.18¢). Dann sind bei der entsprechenden
Eigenbewegung die ZustandsgréBen harmonische Funktionen (Sinus- und
Cosinusfunktionen). Die Frequenz dieser Schwingung wird durch die ima-
ginaren Eigenwerte gegeben, wihrend Amplitude und Phase beliebige Werte
annehmen kdnnen, die erst durch die Anfangsbedingungen festgelegt werden.
Entfernen sich die Eigenwerte aufgrund von Parameterinderungen nur mini-
mal von der imagindren Achse, tritt statt einer harmonischen Schwingung

sofort eine aufklingende oder gedampfte Schwingung auf; das periodische
Verhalten verschwindet.

Bei nichtlinearen Systemen konnen dagegen vgéllig andersartige Schwin-
gungen beobachtet werden, bei denen nicht nur die Frequenz, sondern
jetzt auch die Amplitude allein durch die Zustandsdifferentialglei-
chung festgelegt sind. Unterschiedliche Anfangszustinde aus einem
gewissen Bereich des Zustandsraumes fiihren dann nur zu einer anfang-
lichen Abweichung; nach einiger Zeit stellt sich eine vom Anfangszu-
stand unabhidngige Schwingungsamplitude ein. Im Gegensatz zu Schwin-
gungen linearer Systeme sind derartige Schwingungen meist sehr unemp-

findlich gegeniiber Parameterdnderungen, welche nur die Amplitude und
Frequenz verstimmen.

Fir die Untersuchung von Schwingungen nichtlinearer Systeme werden
zundchst einige Begriffe eingefiihrt:
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2.1 Geschlossene Trajektorien und deren Stabilitat

Existieren fur die Zustandsdifferentialgleichung

(2.1) x(t) = £0x(t),t] , x(t) ¢ &
mit dem Anfangszustand i[to) = X, Lésungen mit der Eigenschaft
(2.2) x(t,t ,x ) = x(t+T,t ,x ) fir alle t > t_

so nennen wir diese periodisch mit der Periodendauer T. Sie stellen im
Zustandsraum in sich geschlossene Trajektorien dar und werden Dauer-

schwingungen genannt. Allerdings ist nicht jede geschlossene Trajekto-

rie im Zustandsraum Trajektorie einer Dauerschwingung. Liegen auf dieser
namlich Ruhelagen, bewegen sich die Zustande nur von einer Ruhelage auf
eine andere zu ohne den '"Umlauf" zu vollenden; es findet keine periodi-
sche Bewegung statt. Auch wenn keine Ruhelagen auf der geschlossenen
Trajektorie liegen, darf bei zeitvariablen Systemen noch nicht auf eine
Dauerschwingung geschlossen werden, da sich aufgrund der Zeitvariabili-
tat die Umlauffrequenz dndern konnte. Nur beil zeitinvarianten Systemen
gehort genau dann zu einer geschlossenen Trajektorie eine Dauerschwin-

gung, wenn auf der Trajektorie xeine Ruhelagen liegen.

Wenn in einer hinreichend kleinen Umgebung einer Dauerschwingung keine
weiteren periodischen Ldosungen existieren, so nennen wir die Dauer-
schwingung eine Grenzschwingung bzw. bei Systemen 2. Ordnung einen

Grenzzyklus. Die ungeddmpften Schwingungen eines linearen Oszillators
sind nach dieser Nomenklatur zwar Dauerschwingungen, jedoch keine Grenz-

schwingungen, da es zu jeder Dauerschwingung auch eine beliebig dicht
benachbarte Dauerschwingung gibt, die aus einem leicht verdnderten An-

fangszustand hervorgeht.

Mit {iG} bezeichnen wir eine geschlossene Trajektorie der Zustandsdif-
ferentialgleichungen (2.1). Als Abstandsmaf eines beliebigen Zustandes

x(t) von der geschlossenen Trajektorie {X;} definieren wir die GroBe

p(x(t), {xch) := min [|x(t) = xgl|
X R
die den kleinsten euklidischen Abstand zwischen dem Zustand x(t) und
der Menge aller Zustdnde der geschlossenen Trajektorie angibt. Damit
filhren wir fir geschlossene Trajektorien einige Stabilitdtsbegriffe ein,
die aufgrund der Vorbemerkungen auch die Stabilitdt von Dauer- und

Grenzschwingungen bzw. Grenzzyklen einschliefen.
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(2.3) Definition (Bahnstabilitat):

Eine geschlossene Trajektorie {56} der Zustandsgleichung (2.1) heift
bahnstabil, wenn zu jedem e¢ > O ein 6(e¢} > O existiert, so daf aus

p(l(to)’{ie}) < 6(e)
die Ungleichung
p(x(t),{x}) < e fir alle t > t_

folgt. [ |

(2.4) Definition (Asymptotische Bahnstabilitit):

Eine geschlossene Trajektorie {iG} der Zustandsgleichung (2.1) heiBt
asymptotisch bahnstabil, wenn {1G} bahnstabil ist und zusdtzlich fir
alle Trajektorien aus einer hinreichend kleinen Umgebung von {1G} gilt:

lim p(x(t),{x,}) = 0 .
Tow i .

Nach unserer Begriffsbildung ist eine asymptotisch bahnstabile ge-
schlossene Trajektorie immer eine Grenzschwingung.

{2.5) Definition (Semibahnstabilitdt):

Tritt bei einem System 2. Ordnung

i(t) = flx(t),t] , x(t) ¢ R?

)

eine geschlossene Trajektorie { } auf, zerlegt diese die Zustandsebene
in zwel Bereiche {zwei dls]unkte Teilmengen). Erfiillt {x } die Bedingung
der (asymptotischen) Bahnstabilitit nur fir Zustinde aus einem der beiden
Bereiche, sprechen wir von (asymptotischer) Semibahnstabilitat (vgl.

Bild 2.1b). Dieser Begriff kann nur auf Systeme 2. Ordnung angewendet
werden. B

(2.6) Definition (Asymptotische Bahnstabilitit mit asymptotischer
Phase):

Wenn zusdatzlich zur asymptotischen Bahnstabilitit fiir jede Losung x(t)
aus einer hinreichend kleinen Umgebung der Grenzschwingung {x
Konstante At existiert, so daB

"G} eine

lim } X(t) - t =
t-w I'_ iG( +At)”Rn 0

so heifit die Grenzschwingung { } asymptotisch bahnstabil mit asympto-

tischer Phase. .
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X

(0
&

aq b ¢

Bild 2.1: Stabilitdtsverhalten von Grenzzyklen
a: asymptotisch bahnstabil
b: asymptotisch semibahnstabil

c: instabil

Die obige Bedingung ahnelt der Forderung der asymptotischen Stabilitat
(i.S.v. Ljapunov) der Sollbewegung x. nach Definition (1.35).

In der Definition (2.6) darf jedoch die Zeitverschiebung At fir jedes
L(t) passend gewahlt werden, was 1in Definition (1.35) nicht vorgesehen
ist. Die asymptotische Stabilitdt einer Sollbewegung ist also eine

schirfere Aussage als die der asymptotischen Bahnstabilitdt mit asymp-

totischer Phase.

Zum Verstidndnis dieser Zusammenhdnge erinnern wir uns an das Beisplel
(1.37), bei dem eine nichtlineare Schwingungsdifferentialgleichung um
einen als Sollbewegung gewdhlten Grenzzyklus linearisiert und auf Sta-

bilitdt i.S.v. Ljapunov untersucht wurde.

2.2 Nichtlineare Systeme 2. Ordnung

Fir nichtlineare Systeme 2. Ordnung existieren einige Sdtze und Nahe-
rungsmethoden zur Untersuchung von Dauerschwingungen und Grenzzyklen,
die sich nicht auf Systeme hoherer Ordnung ilbertragen lassen. Die Ur-
sache ist darin zu sehen, dafl nur fir Systeme 2. Ordnung geschlossene
Trajektorien die (zweidimensionale) Zustandsebene in punktfremde (dis-

junkte) Teilmengen aufteilen.
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2.2.1 Untersuchungen von Dauerschwingungen und Grenzzyklen

(2.7) Satz von Bendixon (Nichtexistenz von Dauerschwingungen):

Sei M ein einfach zusammenhdngendes Gebiet in der Zustandsebene. Fiir ein

nichtlineares zeitinvariantes System 2. Ordnung der Form

(O = £0x(0),x,(1)]

(2.8) .
xz(t) = fz[x1(t),x2(t)3 )

bei dem die Funktionen f1 und f2 stetig partiell nach X4 und X, diffe-

renzierbar sind, existiert keine ganz in M liegende Dauerschwingung,
wenn

af1 sz
(2-9) div ﬁ(x‘lsxz) = +
ax1 6x2
auf M konstantes Verzeichen besitzt. u

Beweis:

Sei G ein ganz in M liegendes einfach Zusammenhangendes Gebiet, dessen
Rand 3G die Trajektorie einer vermuteten Dauerschwingung von (2.8) sei.

Der GauB3sche Integralsatz fiir 2 Dimensionen lautet bei Anwendung auf
das Gebiet G

.{;j div £(x1,x2)dx1dx2 = ¢[f1(x1,x2)dx2 - fz(x1,x2)dx1].
2G

Langs jeder Trajektorie von (2.8) gilt aber

dxZ _ fz(x1,x2)
dxT f1(x1,x2)
bzw.
fi(x],xz)dx2 —fz()(1,x2)d)(1 = 0

Damit wirde, wenn 8G Trajektorie einer Dauerschwingung ist, die rechte

Seite im GauBschen Integralsatz verschwinden. Andererseits ist aufgrund

des konstanten Vorzeichens von div f in G die linke Seite ungleich null,
daB aG die Trajektorie
Dieselbe Uberlegung gilt fiir jedes beliebige

ganz in M liegende einfach zusammenhangende G, womit der Satz bewiesen
ist.

so daB ein Widerspruch zur Annahme vorliegt,
einer Dauerschwingung ist.
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Fiir nichtlineare Systeme 2. Ordnung, die in der Standardform

;1(t) = x, (1)

(2.10) .
xz(t) = -u? x1(t) + e f(x1(t),x2(t))

vorliegen (bzw. in diese transformiert werden konner), wobei ¢ als hin-
reichend klein angenommen wird, sind spezielle Aussagen iiber evtl. auf-
tretende Grenzzyklen moglich, die im folgenden behandelt werden. Das
Verhalten eines Systems nach (2.10) wird geprdgt durch einen dominie-

renden linearen Systemanteil und einen nichtlinearen Storanteil.

Der nachstehende Satz erlaubt eine hinreichende Aussage iber die

asymptotische Bahnstabilitadt eines Grenzzyklus von (2.10):

(2.11) Satz (Asymptotische Bahnstabilitdt eines Grenzzyklus):

In dem System (2.10) sei die Funktion f differenzierbar. Das System be-

sitze einen Grenzzyklus iG("e)’ der fiir ¢ = 0 in die periodische Losung
xJ(t) = a sin(ut + ¢ )

(2.12)

xg(t) aw cos(wt + ¢0)

iibergeht. Dann ist der Grenzzyklus x.(-,e) fir hinreichend kleines

e > 0 asymptotisch bahnstabil mit asymptotischer Phase, wenn

2n
w
af 0 C
(2.13) .[ 5 (x9(t),x3(t))dt < 0
o
gilt (Beweis siehe HALE [2.41]). B

(2.14) Eine Nidherungsmethode zur Untersuchung von Grenzzyklen

Aufgrund von Niherungsbetrachtungen werden fir das System (2.10) unter
der Annahme eines hinreichend kleinen ¢ zwel Bedingungen hergeleitet,
mit denen die Existenz und die asymptotische Bahnstabilitdt von Grenz-
zyklen iiberpriift werden konnen. Gleichzeitig sind die Beziehungen zur

Berechnung der Amplituden und Frequenzen von Grenzzyklen verwendbar.

Zur Herleitung wird die Differentialgleichung {2.10) in Polarkoordina-
ten (r,¢) iliberfilhrt. Das Argument t wird im folgenden weggelassen. Mit

Xy = r sing

(2.15)
r w cose

1

X2
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geht (2.10) iiber in

r sing + r ¢ COSg

I w Cosg

T COS9 - T ¢ sSing

. [ -
-re sing + = f(rsine,rucose),

wobei die 2. Gleichung durch w dividiert wurde. Nach Multiplikation
der Gleichungen mit sing und cose¢ bzw. cosg und -sing erhdalt man durch
Addition die neuen Zustandsdifferentialgleichungen

r = = oa(r,e)

W

(2.16)

S

¢ = '%h(rsq))

mit den Abkirzungen

glr,o)
h(r,e)

f(r sine, rw cose) cose

f(r sing, ruw cose) sing
Fir ¢ = 0 hat (2.16) und damit (2.10) die Lésungen

ro(t)

a
a,6 e R

¢°(t)

wt + 6

Durch formale Division der Differentialgleichungen (2.16) fir r und ¢
erhalten wir

dr _ e g(r,9)
& w- == h(r,q)
o nir,e

£

In erster Naherung fiir ¢ lautet diese Gleichung

(2.17) %% = %T glr,e)

Der Differentialquotient dr/de kann durch hinreichend kleines ¢ beliebig

klein gemacht werden, so daB wahrend eines Umlaufs die GroBe r naherungs-

weise konstant ist. Wir setzen dje Naherung r(t) = a in die rechte Seite
von (2.17) ein:

dr e
r:ry -7 gla,o)

Eine Integration liefert
Zn

(2.18) Ar = r(2x)} - r(0) %T j.g(a,w)dw =: %T G(a)
)
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Fir eine periodische Losung gilt ar = 0 . Die Gleichung
(2.19) G(aG) = 0

ist somit eine Bedingung fir die Existenz eines Grenzzyklus, aus der wir

die Amplitude ag bestimmen konnen. Damit asymptotische Bahnstabilitat

vorliegt, muB gelten
< ..
(2.20) AT = %T G{a) o O fir a | as -

Das Vorzeichen von G(a) in einer Umgebung von ag bestimmt also das Sta-
bilitatsverhalten. Ist nur eine der Bedingungen (2.20) erfillt, liegt
asymptotische Semibahnstabilitdt vor. Sind beide Bedingungen nicht er-

fullt, ist der Grenzzyklus instabil.

eG(a<aG) sG(a>aG)

+ - asymptotisch bahnstabil

- + instabil

asymptotisch semibahnstabil

Das Vorzeichen von e hat alsoc maflgeblichen Einflufl auf die Stabilitit.
Ein fiir ¢ > 0 stabiler Grenzzyklus ist fiir € < 0 instabil. Fiir kleine

e 146t sich aus den Vorzeichen von G(a) auch der Einzugsbereich des
Grenzzyklus bestimmen. Ist G(a) an der Stelle as differenzierbar und ist
G'(aG) + 0, so 1dRt sich die Stabilitatsbedingung (2.20)} einfacher in

der Form
(2.21) EG'(aG) <0
schreiben. Fiir die Frequenz des Grenzzyklus mG(E) := 2n/T(e) ergibt

sich aus (2.16)

de _ - = - - £
a? = w aGlU h(aG,(P) UJ(] aGwz h(aGy(P))

Nach Trennung der Variablen und Berucksichtigung der fir kleine x
-1

giltigen Niherung (1 + x) = 1 + x erhalten wir durch Integration
T(e) 2n
1
f dt = ;.[(1 + ;(E;m_z h(aGs‘p))d‘P ]
) 0
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Zx
. 1 €
T(e) = < (2x+ aG—w;j hag,edde )
(2.22)
mG(e) = (1 - W H(a ))
2n 2
mit H(a) := fh(a,:p)dtv = j f(asing,awcosg)sing dg

o}

Bild 2.2 ist die Existenz zweier Grenzzyklen mit den Amplituden ag
und a., zu entnehmen. Fir e > 0 ist der Grenzzyklus ag, asymptotisch
bahnstabil, da dort entsprechend (2.21) G(a) negative Steigung be-
sitzt. Der zweite Grenzzyklus ist fiir ¢ > O instabil.

} Gla)

a

Qg9 ds2

Bild 2.2: Zur Stabilitatsaussage nach (2.21)

(2.23) Bemerkung:

Ist eine Abspaltung eines kleinen nichtlinearen Anteils ef (x, yXy) wie
in (2.10) scheinbar nicht méglich, so wihlen wir den Parameter w in
(2.10) gleich dem noch unbekannten ey wodurch wir am ehesten einen
"kleinen" nichtlinearen Rest f erwarten dirfen:

Xy f(x1,x2;mG)

[op IS

X, = - w

Gleichung (2.19) ist dann mit we parametrisiert und lautet
2n

(2.24) G(aG;wG) 1= Jf f(aGsinw,aGchosw)cosw de = 0.
0

Wegen w = wG(e) = wo bekommen wir aus (2.22) die weitere Bedingung
2=

(2.25) H(aG, G) 1= j. f(aGsinw,aGchosw)sinw de = 0 .
)

Aus den Gleichungen (2.24), (2.25) kénnen ag und 0o bestimmt werden.
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Die Stabilitdtsbedingung (2.21) erhdlt jetzt die Form
3G |
(2.26) a (aG,wG) <0 .

Die Groen é(aG;mG) und ﬁ(aG;mG) sind bis auf~einen Vorfaktor 1/ die
Fourierkoeffizienten 1. Ordnung der Funktion f(aGsin¢, aGchosw).

Diese miissen nach (2.24) und (2.25) verschwinden. Somit erfidhrt die An-
nahme eines "kleinen" nichtlinearen Rests f cine gewisse nachtragliche

Absicherung. |

2.2.2 Beispiele

In drei Beispielen werden die Beziehungen des letzten Abschnitts an-
gewendet. In Beispiel (2.28) (Temperaturregelung) findet ein Vergleich
zwischen den rechnerisch ermittelten und den bei einer Analogrechner-
simulation gemessenen Werten fir die Grenzzyklusfrequenz und Grenzzyk-

lusamplitude statt.

(2.27) Beispiel: Grenzschwingungen der Van-der-Pol-Differentialgleichung

Die autonome Van-der-Pol-Differentialgleichung

(1) + e[x2()-1]x(t) + ox(t) = 0, >0
besitzt einen schwach nichtlinearen Dampfungsterm e(xz(t) - 1) , der
in Abhdangigkeit von x{t) abwechselnd positiv und negativ werden kann,
so daBl von der Anschauung her das Auftreten einer Grenzschwingung mog-
lich erscheint. Zur weiteren Untersuchung wird die Differentialglei-
chung mit Hilfe der Zustandsgrofien x1(t) i= x(t), xz(t) 1= ;(t) auf die
Standardform (2.10) gebracht:

£1(t) = xz(t)
- wl xl(t) + e[] - x%(t)]xz(t)

xz(t)
Mit £ ) = (1 - xS)x
1 X1,x2 .= 1 2

lautet die Existenzbedingung (2.19) fiir periodische Ldsungen

n

2
a
Glag) = er[1-aésin2¢}aGcoszwdv = nmaG[l— ?g] =0 .
o
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Diese liefert die (nichtnegativen) Lésungen

aG1 = 0 und ag; = 2

Die zu aa1 gehorige "entartete” Grenzschwingung ist die Ruhelage der
Van-der-Pol-Differentialgleichung. Zur Stabilitédtsuntersuchung der
Grenzschwingungen ist nach (2.21) das Vorzeichen von

G'(a) = re (1 -3 a%
an den Stellen ac und ag, zu betrachten:

G'(aG1) = 1w >0 - Instabilitdat fir £ > O

G'(a = =-IZmw < 0 - Asymptotische Bahnstabilitit

fir € > 0

GZ)

Fir ¢ < 0 gelten die umgekehrten SchluBfolgerungen. Die Frequenz des
stabilen Grenzzyklus ist nach (2.22) niherungsweise

21
wnfe) = w- 1—azsin2 a.cos ing d = o
G VTP G ?)8g-0s¢ sine de =

0

Durch das nichtlineare Dampfungsglied wird die harmonische Frequenz
w 1in 1. Naherung nicht verindert.

Eine andere Moglichkeit zu priifen, ob iberhaupt eine Grenzschwingung
existieren kann, bietet der Satz {2.7) von Bendixson. Danach darf

div £(xy,x,) = e(1-x))

kein konstantes Vorzeichen haben, wenn ein Grenzzyklus existieren soll.

Dies schlieBt einen Grenzzyklus allein im Gebiet

lx | < 1 oder im Ge-
biet !x f

> 1 aus. Die oben bestimmte Grenzschw1ngung mit Xy (t) =2 sine(t)

ist dagegen moglich. Wir erhalten somit eine gewisse Ab51cherung unserer
Naherungsbetrachtungen.

Andererseits ist in unserem Beispiel die Nichtlinearitit differenzierbar,
so daB auch der Satz (2.11) anwendbar ist. Es gilt

oo
-

2n
2
(1-4sinot)dt = %f(1~4sin2a)du - Z <o

OI-..,__. E|



2.2 Nichtlineare Systeme Z. Ordnung 51

Der Grenzzyklus ist somit filir ein hinreichend kleines & asymptotisch
bahnstabil mit asymptotischer Phase. Auch hier ist eine Ubereinstimmung
zwischen der Ndherungsmethode (2.14) und der hinreichenden Bedingung nach
Satz (2.11) vorhanden. B

(2.28) Beispiel: Grenzschwingungen einer Temperaturregelung

Zu untersuchen sind (meistens unerwiinschte) Grenzschwingungen einer Fest-
wert-Temperatur-Regelung nach Bild 2.3. Die Regelstrecke (der zu regelnde
ProzeB) wird durch ein Verzogerungsglied 1. Ordnung mit der Zeitkonstan-
ten t = ¢/x» modelliert (c Warmekapazitdt, A Widrmeleitfahigkeit). Der
abgefiihrte ("verlorengehende') Warmestrom qa(t) hdngt von der Differen:z
zwischen der zu regelnden ProzeBtemperatur T(t) und der hier konstant
angenommenen Auflentemperatur Ta ab. Uber einen Motor, dessen Eigendyna-
mik hier vernachlidssigt wird (was im Zusammenhang mit gemeinhin lang-
samen Temperaturregelstrecken meistens erlaubt ist), wird die Klappen-
stellung s(t) einer Liftung bzw. die Stellung eines Ventils einer Brenn-
stoffzufuhr veridndert, wodurch der zugefithrte Warmestrom qe(t) einge-
stellt wird. Die StellgroBe s(t) unterliegt einer technisch bedingten
Begrenzung, die hier jedoch nicht explizit beriicksichtigt wird, da der
Regler bereits so ausgelegt sein moge, daB s(t) innerhalb dieser Be-
grenzung verbleibt. Als Regler wird ein Zweipunktglied mit Hysterese
(Bimetallstreifen) eingesetzt, welches eine Spannung u auf den Motor
schaltet und damit dessen Drehzahl adndert. Die Regeldifferenz (der Re-
gelfehler) o(t) = TS—T(t) (TS konstante Sollwerttemperatur) wird direkt

auf das Zweipunktglied aufgebracht.

hig,4]

9a

Motor

T 3 Y v=$ . |Qe ]
b b VM f V' ? o [ -

Bild 2.3: Temperaturregelung

Entsprechend dem Strukturbild 2.3 lauten die Systemgleichungen
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¢ T(t) = q (1) - q(t)

q {t) = A(T(t) - T)
(2.29) q (1) = V s(t)

s(t) = hls(t), 8{t)]

2(t) = T, - T(t)

Hierbei ist der Motorverstidrkungsfaktor Vy mit der Hysteresekennlinie

zu einer neuen Hysteresekennlinie h(#%(t), 8#(t}] zusammengefa@t, deren

Ausgangsamplitude k := i VM 1st. Durch Einsetzen der Systemgleichungen
folgt

—c 8(t)

C f(t} = qe(t)-qa(t) = Qs(t)—A[T(t)-Ta]

Vs(t) + xa(t) - AT -T,)

Mit Hilfe der transformierten Stellgrofe

as(t) = s(t) - s = s(t) - % (T,-T,)

erhalten wir die Zustandsdifferentialgleichungen

¢ 8(t) - a8(t) - V as(t)

(2.30) .
As(t)

his(t), é(t)] ,

in denen explizit keine EingangsgroBe mehr auftritt. Da die Nichtline-
aritat h nicht differenzierbar ist, soll die Niherungsmethode (2.14)
zur Untersuchung von Grenzschwingungen angewendet werden, die diese
Voraussetzung nicht verlangt. Um die Zustandsdifferentialgleichungen
(2.30) in die Standardform (2.10) zu bringen, gehen wir mit der Ande-
rungsgeschwindigkeit 6(t) des Temperaturregelfehlers 8(t), Differentia-

tion der 1. Gleichung und Einsetzen der 2. Gleichung auf das Zustands-
modell

a(t) = o(t)

; A v

6(t) = - S 6(t) - = hlal(t),s6(t)]

iiber. GemiB def Bemerkung (2.23) wird die rechte Seite der Differential-
gleichung fiir s(t) aufgespalten und man erhalt

8 (1) 6(t)

]

5(1)

~mé3(t) + %[e(t),é(t);mG]
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mit der Funktion

2 A v
wd(t)- = 6(t) - ¢ h{#e(t),6(t)]

Ll

£lo(t),6(t) 0]

]

(2.31) wle(t)- He(t) + v nla(t),6(1)]

und den Abklrzungen

-

[}
P‘IO
>t

; V =

Als erste Bedingung zur Bestimmung der Amplitude und Frequenz einer
Grenzschwingung wird (2.24) ausgewertet:

n
Glagivg) = j'f(aGs1nm,aGchos¢)cosw de = 0
0
2n
2 :
= aGij sing cose de¢
o

Zn 21
1 2 .
- T13g%g jcos gde + V jh(aGsmq:,aGchosw)coscpdtp )
0 )

b agsiny
Qs T - "7
b 1
. v
b f--- ,
- |
} hlagsing .agwg cosyl |
k ' —

A
in 2 ; n -
sin

aresin g
-k

Bild 2.4: Antwort der Hysterese h auf eine harmonische Erregung
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Das erste Integral verschwindet aufgrund der Orthogonalitit der Funk-
tionen sin und cos iber dem Intervall 2x. Das zweite Integral hat den
Wert n . Zur Bestimmung des 3. Integrals ziehen wir Bild 2.4 heran,
welches die Antwort der Hysteresekennlinie h auf eine harmonische Ein-
gangsgroBe darstellt, wie sie im Integranden auftritt. Wir erhalten

Gl - ] Vkb
(2-32) G(aG,mG) = Tr' "aGmGI + 4 _—aE J = 0 ’
woraus folgt
(2.33) alo = 4 VKb
- GG
Als zweite Bedingung muB (2.25) gelten:
2n
H(aG;mG) = .[ f(aGsinw, aGchosw)sin¢ de = ¢
0
2n
= aGwé fsinzqn de
)
2n Zn
1 .
- T[aGwG fcoswsm(pdrp + th(aGsinqo,aGchoscp)sintp de
o 0

Nach Ausfiihrung der Integration, wobei fiir das letzte Integral erneut
der Zusammenhang nach Bild 2.4 verwendet wird, ergibt sich

- 2
- - Z Vk b
(2.34) H(aG,UG) = aG(ﬂGT[— 4 FT— 1 - EE] = O s
woraus folgt
2
(2.35) mg - 3 vk L [P_J
1 T T aG aG

Eliminieren wir ac aus (2.33) und (2.35), so ergibt sich eine kubische
Bestimmungsgleichung fir o

V k

T

(2.36) wn 4+ w., -

G

A 5
7

= 0

ANI—-

3
G
Da die Koeffizienten der Potenzen von Yo Positiv sind und der Absolut-
term negativ ist, gibt es immer eine positiv reelle Losung we-
erhalt man dann aus (2.33) eine positiv reelle Losung a., woraus wir auf

die Existenz eines Grenzzyklus schliefen diirfen. Die Stabilitidtsbedin-

gung (2.26) kann gepriift werden, ohne wg und a. explizit zu kennen:
. G G ¢*P
Nach {2.32) ist

Ebenso
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3G, . 1 vk
(2.37) EE(aG’mG) = - ? [(UGTE + 4 aé } < 0

Alle GroBen in der Klammer sind positiv, dementsprechend ist der Grenz-

zyklus asymptotisch bahnstabil.
In Tabelle (2.38) sind die nach (2.36) und (2.33) berechneten und die

bei einer Analogrechnersimulation gemessenen Werte von ag und g fir
unterschiedliche Werte von b und V dargestellt. In allen Fallen ist
k = 0,5 und v = 5s gewahlt. Die Abweichung von etwa 5% befriedigt ange-

sichts der verwendeten Ndaherungsmethode durchaus.

—— <o

NS i
g

t A N
N

-1 Grenzzyklus

10 20 30 40 50s _

-
-

+]

V=2 b:01

\ N
(B wANVARTANVIR /@} -

=1 Grenzzyklus

10 20 30 40 50s

\

~1]

~¥

Bild 2.5: Zeitlicher Verlauf des Temperaturregelfehlers #(t) und
der Trajektorien fiir unterschiedliche Werte ven b und V

im Regelkreis nach Bild 2.3
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V=1 b=02 + -

10 20 30 40 50s

[
A

7
|
J.

+]

N
Grenzzyklus

10 20 30 40 50s

-~ -
Val baQ
+1 b
\ +05
N

=1

10 20 30 40s
R ———

¢

Bild 2.5: (Fortsetzung)
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(2.38) Tabelle: Berechnete und gemessene Kennwerte der Grenzschwingung

Kennwerte Berechnung Messung Differenz
bV ag |ugls™ '] ag |ugls 11| sag | aeg
0,2 1 0,517 0,477 0,5 0,465 0,02 0,01
0,1 1 0,322] 0,613 0,31 0,628 0,01,- 0,02
0,2 2 0,645 0,613 0,63 0,628 0,02 |- 0,02
0,1 2 0,456 0,782 0,4 0,785 0,06 = O

In Bild 2.5 sind das Zeitverhalten und die Trajektorien des Regelkrei-
ses (Analogrechnersimulationen) fiir unterschiedliche Kombinationen der
Parameter b und V dargestellt. Je kleiner die Hysteresebreite b gewdhlt
wird, desto hoher wird die Grenzschwingungsfrequenz e und desto ge-
ringer wird die Amplitude ag- Da ag die Amplitude des Regelfehlers o

ist, erscheint eine moglichst kleine Wahl von b giinstig. Dabei darf aber
die Belastung des Schaltgliedes durch die hohe Schaltfrequenz nicht iber-

sehen werden. [ ]

(2.39) Beispiel: Dauerschwingungen der Velterraschen Differential-

gleichungen

Wenn in einem okologischen System zwel Tierarten in einer "Rauber-Beute-

Beziehung” zueinander stehen und sonstige Umwelteinfliisse keinen wesent-
lichen EinfluR auf die Entwicklung der beiden Arten haben, dann genlgen
die (normierte) Anzahl der Rauber (xq(t)) und die (normierte) Anzahl der

Beutetiere (xz(t)) niaherungsweise den sogenannten Volterraschen Differen-

tialgleichungen

(8) = = ap () + By xg(E)x,(6)
(2.40) .

Xz(t) = az xz(t) . Bz x1(t)x2(t)

(siehe KNODEL, KULL [2.973, Seite 35-37). Hierbei sind a;, o,, B, und B,
positive Konstanten, die durch das okologische System (und die Normierung)
festgelegt sind. Anhand der Differentialgleichungen (2.40) wurden Gesetze
abgeleitet {(Volterrasche Gesetze), die gut mit der Realitdt iibereinstimmen
und in der Okologie hdufig Anwendung finden. So konnten anhand von (2.40)
beobachtete, periodische Schwankungen in den Anzahlen von Raubern und
Beutetieren mathematisch erkldart werden. Aus diesem Grund werden die Vol-
terraschen Differentialgleichungen in diesem Beispiel auf Dauer- bzw.
Grenzschwingungen untersucht, wobei die Naherungsmethode (2.14) angewen-
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det wird. Aus ;](t) = 0, iz(t) = O bestimmen wir die Ruhelagen

Xp1 = 0 J

X2~ [ %2 ' ;l'JT
2 1
Aufgrund der Positivitdt der normierten Anzahlen x1(t) und xz(t) und der
Eigenschaften des um Xp1 = 0 linearisierten Differentialgleichungssystems
(bei Linearisierung um Xp1 = O verschwinden die Produktterme in (2.40))
sind Dauerschwingungen um Xp1 nicht zu erwarten. Aus diesem Grunde stel-
len wir mit den Abkiirzungen

Axl(t) 1= Xl(t) -

7
(S § oS )

R

1
B,

das nichtlineare Modell der Anderungen um die Ruhelage Xp2 auf:

sz(t) 1= xz(t) -

Ax (t) = -a,|ax,(t) + 23 + B (Ax (t) + "2 Ax,(t) + 1]
1 1[4%, B, 1% [P RA B |
Ax (t) = o, ax,(t) + jl - B (Ax (t) + 2 Ax,{(t) + 1]
2 2|8%; 5 2| ® [ | R A B | ’
A;1(t) = B, sz(t)[Ax1(t) + E%J
(2.41) ) a
sz(t) = -Bz Ax1(t)[Ax2(t) +,E%}

Linearisieren wir dieses System in Gedanken um Xp2> S0 verschwinden die
Produktterme der Zustandsgrofen und wir erhalten eine lineare unge-
dampfte Schwingungsdifferentialgleichung mit der Frequenz w = Y a,a )

. 172
s0 daB Dauerschw1ngungen von (2.41) unm Xp2 nicht unwahrscheinlich sind.

Ur das Differentialgleichungssystem (2.41) zur Anwendung der Niherungs-
methode in die Standardform (2.10) 2y bringen, gehen wir auf die Zu-
standsgréfien

x(t) = Ax (t) 5 wv(t) = A;1(t)
iber. Dann gilt die Gleichung

4]
v(t) = B1 sz(t) [ x(t) + El J )
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die wir nach der alten ZustandsgroBle sz(t) auflosen koénnen:

sz(t) = v(t) = J

B, [x(t) + o=
1 BZ
Wir differenzieren die erste der Gleichungen (2.41) nach der Zeit t und

setzen die zweite Gleichung ein:

o]

\-r(t) B1A)'(2(t)[1_\x1(t) + é] + B1Ax2(t)A;c1(t)

i}

a [+3 .
—8182Ax1(t)[Ax2(t) + E%}[Ax1(t) + E%J + B]sz(t)ﬁx1(t)

Werden Ax1(t), sz(t) durch x(t)}, v(t) ausgedriickt, kommen wir auf die

gewlinschte Standardform:

. o o 2
vit) = -B,B, x(t) v(t) N El [x(t) R El} .V (t)a
rs[(tw—iJ ! 2l ) v 2
10X B, g,
i v2e)
= -32 x(t)|[v(t) + «, x(t) + |+t — ,
: x(t) + EE
2
;(t) = v(t)
(2.42) _ )
v(t) = -eo x(t) - o8B, xz(t) - B, x(t)v(t) +___l_££lag_
x(t) + ==
2

Entsprechend der Bemerkung (2.23) wird in der rechten Seite der Differen-

tialgleichung fir v die Funktion

2
p 2
f[x,v;wG] = (wé—u1uz)x - 0132x - BZXV +-__X_EE_
X + =
By

abgespalten. Als Existenzbedingung missen die Gleichungen (2.24) und
(2.25),

Glagivg) = 0 H(agiug) = 0

erfillt sein. Es ergibt sich
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2n
G(aG;wG) = J[ f[aGsin¢,aGchosw]cos¢ de
0
2n Zn
= (wé - U1&2)aG fsintpcosrpdtp - a1f32a(2;f sinch cose dg
0 0
2n 2n 3
- BzaéwG j' sinwcoszw do + aéwé J[ €os ¢“2 de
0 0 [Singp + B—]
2

Alle vier Integrale sind null, wie man aufgrund von Symmetrieeigen-
schaften der Integranden recht schnell erkennen kann. Die Bedingung
é(aG;wG) = 0 ist identisch erf@_illt und liefert daher keine Gleichung
zur Bestimmung von ag,wg. Fir H(aG;wG) erhalten wir

2n
H(a

L}

G;mG) j f[aGsinv,aGchosw]sinw de
0

2n Zn
(wé - a]az)aG f Sinzlp de - a1f3 aéjsins(p de
0 0
2 2n 2
- BzaémG j CoOso sinzrpdzp + aémé f M—Si—zi de
0 0 [sinqo + B—}
2

[ge]

Das erste Integral hat den Wert 1, das zweite und dritte sind null. Das

vierte Integral kiirzen Wir mit I ab. Aus l:l(aG;mG) = 0 ergibt sich

G- eape e agedi - o
-1
2 _ aGI
(2.43) vy = a1u2[1 v —

Dies ist die einzige Beziehung zwischen we und dg- Nach der Niaherungs-
methode ist somit jede Schwingungsamplitude a; moglich, woraus wir auf
Dauerschwingungen, nicht jedoch auf Grenzschwingungen schlieBen konnen.
Durch (2.43) werden die zu Amplituden a; gehorigen Frequenzen wa fest-
gelegt, woraus sich fiur kleine Schwingungsamplituden e ZVET;;' ergibt.
Diese Frequenz erhdlt man auch bei der Untersuchung des um die Ruhelage
Xpp linearisierten Modells, Erstaunlicherweise hdngt sie nicht von den
Koeffizienten 81, Bz der Koppelterme in den Differentialgleichungen

(2.40) ab. zur Angabe der Frequenz wo bei gréoBeren Amplituden & muf
das Integral I berechnet werden.
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Die Auswertung der Stabilitdtsbedingung (siehe (2.26)}) fiihrt auf

3G -
E (aG,wG) = 0 y

da G identisch null ist. Diese Bedingung 148t auf bahnstabile, nicht
jedoch asymptotisch bahnstabile Dauerschwingungen schlieBen.

In Bild 2.6 sind fir die Parametersitze a; = B, =1, a, = 82 = 10 und
oy = By = 2, ay = B, = 5 einige Trajektorien (Koordinaten x1,x2) um
die {fiir beide Fdlle giiltige)} Ruhelage Xpp = [1, 1]T dargestellt.Die
Trajektorien sind in Ubereinstimmung mit den Ergebnissen unserer
Naherungsbetrachtung periodisch und bahnstabil, nicht jedoch asympto-
tisch bahnstabil. Der ganze erste Quadrant der X,-x,-Ebene wird durch

bahnstabile Dauerschwingungen um die Ruhelage XR2 uberdeckt. Im Falle

ay = 81 = 8, = Bz sind die Dauerschwingungen symmetrisch zur Winkelhal-
bierenden Xy = X,
8 4
7.
6 37
5-
I 2
3-
Xg2
2 1 @
1,
0 - - 0 ' ‘ y ;
0 1 2 3 )] 05 1 1.5 2 25
—_— _"“—.X;
{a) k (b}

Bild 2.6: Dauerschwingungen der Volterraschen Differentialgleichungen
Fall a: a; = B, = 1 ; a, = B, =10

Fall b: oy = By =2 ; oy =By =35 |



62 2 Periodisches Verhalten von nichtlinearen Systemen

2.2.3 Zusammenhinge zwischen der Existenz von Ruhelagen und

Dauerschwingungen

Fir zeitinvariante Systeme 2. Ordnung ohne Eingangsgréfe der Form
(2.44) (1) = EIx(D] 5 x(t) e B2

existieren Sdtze, mit deren Hilfe auf die Existenz von Ruhelagen und
Dauerschwingungen in einenm beschridnkten abgeschlossenen Gebiet M ge-
schlossen werden kann. Voraussetzung fiir die Anwendung der Sdtze ist,
daB die Funktion f auf M eine Lipschitzbedingung beziiglich x erfiillt
(siehe Definition (A1.6)). Dies sei im folgenden angenommen.

(2.45) Satz (Existenz einer Ruhelage):

Sei M einfach zusammenhdngend und {iG} eine ganz in M verlaufende Trajek-
torie einer Dauerschwingung. Dann existiert mindestens eine Ruhelage der
Differentialgleichung (2.44) im Inneren des durch {56} berandeten Ge-
biets, [ |

(2.46) Satz (Nichtexistenz einer geschlossenen Trajektorie):

Sei M einfach zusammenhangend. Wenn sich in M keine Ruhelage der Diffe-
rentialgleichung (2.44) befindet, dann existiert keine ganz in M liegen-
de, geschlossene Trajektorie von (2.44). n

Der Beweis dieses Satzes folgt unmittelbar aus Satz (2.45).

(2.47) Satz (Grenzverhalten einer Trajektorie):

Sei x(+) eine beliebige nichtperiodische Losung der Differentialglei-
chung (2.44), die fiir t > t, innerhalb des Gebiets M verlauft. Dann
strebt x(t) fir t - « in ejine Ruhelage oder gegen eine asymptotisch
bahnstabile oder semibahnstabile geschlossene Trajektorie {5G}' Liegen
auf {iG} keine Ruhelagen, so ist {56} die geschlossene Trajektorie
einer Dauerschwingung. .

Néhere Erlduterungen zu den Sétzen (2.45) und (2.47) findet der Leser
in KNOBLOCH, KAPPEL [2.8], Seite 192 (Sitze 3.4 und 3.3).

(2.48) Ssatz (Existenz einer Dauerschwigggng):

Wenn von dem Rand oM des Gebietes M a
gleichung (2.44)

lle Trajektorien der Differential-
in das Innere von M laufen und in M nur solche Ruhe-
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lagen Xg von (2.44) liegen, so daB keine Trajektorie in diese hinein-
lauft, dann existiert in M mindestens eine asymptotisch bahnstabile
oder asymptotisch semibahnstabile Dauerschwingung von (2.44) (siehe
Bild 2.7).

Jr X,

X

Bild 2.7: Zur Aussage von Satz (2.48) B

Das Verhalten der Trajektorien auf dem Rand priift man, indem man einen
(duBeren) Normalenvektor n auf dem Rand aM angibt und das Skalarprodukt
ETf(x) bildet. Hat dieses Produkt fiir alle x ¢ aM einen negativen Wert,

laufen alle Trajektorien vom Rand ins Innere von M.

(2.49) Bemerkungen:

Die Forderung des Satzes (2.48) an die Ruhelagen 148t sich gut anhand
des um eine Ruhelage linearisierten Systems verdeutlichen: Genau dann,
wenn beide Eigenwerte des linearisierten Systems in der rechten s-Halb-
ebene einschlieBlich der imagindren Achse liegen, lauft keine Trajekto-
rie des Systems in die Ruhelage (siehe Bild 1.18 c,d,e). In allen ande-
ren Fiallen (siehe Bild 1.18 a,b,f) existieren Trajektorien, die in die
Ruhelage hineinlaufen. Um Satz (2.48) anwenden zu kdnnen, ist es somit
beziiglich der Forderung an die Ruhelagen weder hinreichend noch notwen-

dig, die Instabilitdt aller Ruhelagen in M nachzuweisen. n

Beweis des Satzes (2.48):

Da alle Trajektorien vom Rand 8M in das Innere von M laufen, konnen
diese M nicht verlassen und nicht zu periodischen Ldsungen gehdren.
Somit strebt jede auf aM startende Trajektorie nach Satz (2.47) gegen
eine asymptotisch (semi-) bahnstabile geschlossene Trajektorie, da sie
nach Voraussetzung nicht in eine Ruhelage einlaufen kann. Also existiert
mindestens eine asymptotisch (semi-) bahnstabile geschlossene Trajek-
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torie in M. Da voraussetzungsgemdR in die Ruhelagen keine Trajektorien
einlaufen, kann auf keiner der geschlossenen Trajektorien in M eine Ru-
helage liegen, womit jede geschlossene Trajektorie in M zu einer Dauer-
schwingung gehért. Somit existiert mindestens eine asymptotisch (semi-)
bahnstabile Dauerschwingung in M. [ |

Die Anwendung von Satz (2.48) empfiehlt sich dann, wenn die Struktur der
Differentialgleichung (2.44) so kompliziert ist, daB Methoden zur Berech-
nung einer Dauerschwingung (bzw. eines Grenzzyklus) nicht mehr eingesetzt
werden konnen, die Existenz einer Dauerschwingung jedoch mathematisch
nachgewiesen werden soll.

Zur Erlduterung der Anwendung von Satz (2.48) wird das folgende prak-
tische Beispiel aus der chemischen Reaktionstechnik betrachtet (siehe
WEILAND [2.15] und HARTMANN, KARL, KOLBE [2.61, Seite 2.83 - 2.88):

(2.50) Beispiel: Grenzschwingungen einer Oxidation

Bei einer heterogenen Oxidation von Kohlenmonoxid (CO) und Sauerstoff
(02) an der Oberflache eines Katalysators folgt aus den Bilanzgleichun-
gen fir die normierte Kohlenmonoxid-Konzentration x1(t) und die normier-
te Sauerstoff-Konzentration xz(t) das Zustandsmodell

© 3 -25,2x2

X, = f1[x],x2] = O,95[1-x]—x2] ~O,2x]—79,2-10 X1x,€

; -0,5(x,+x,) -25,2x
2 ’ 1 - ’

Xy = fz{x1,x2] = S[1—x1-x2] e 2 -3+10 4x§*79,2-103x]xze :

(2.51) —0,13x2

Fir die normierten Konzentrationen x1(t) und xz(t) gelten die Beschrin-
kungen

0 < x,(1)
(2.52) 0 < x,(t)

A

1

b

1

I A

0 < x;(t) + x,(t) <1

Dieses nichtlineare System ist auf Dauerschwingungen (bzw. Grenzzyklen)
und Ruhelagen sowie deren Stabilitétsverhalten Zu untersuchen. Die Ruhe-
lagen des Systenms ermitteln wir dhnlich der Methode aus Abschnitt 1.6

auf graphische Weise. Anstatt die Ruhelagen als Schnittpunkte der Kurven
f1[x1,x2] = 0 und fz[x],xz] = 0 zu bestimmen, ist es an dieser Stelle ein-
facher und deshalp zweckmiaBiger, die Losungen der Gleichungen
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fT[x1,x2] = 0 , (Kurve II)
fz[x1,x2] - f1[x1,x21 = 0 , (Kurve I)

in der Zustandsebene zu zeichnen (siehe Bild 2.8). Der Schnittpunkt der

Kurven ist die einzige Ruhelage des Systems, fiir die wir

g = 0,299 , Xop = 0,432

erhalten.

—
3

Systemgrenze

)
[3,]

I A N A N NN NN N RN NN N NN Y U NN N NN

I~ %\

X
~N

L=

N, s
il vaietid
!

‘ Xy =
Bild 2.8: Graphische Ermittlung der Ruhelage von (2.51)

in der Zustandsebene

Zur Untersuchung des Stabilitdtsverhaltens der Ruhelage wird das nicht-

lineare System um die Ruhelage xp linearisiert. Anhand der Eigenwerte

der Systemmatrix A des linearisierten Systems

mit
afi
A = e ) i,j = 1,2

kénnen wir iliber das Verhalten der Trajektorien in einer hinreichend
kleinen Umgebung der Ruhelage entscheiden. In unserem Fall liegen, wie
der Leser leicht nachrechnet, beide Eigenwerte von A in der rechten
s-Halbebene. Somit ist die Ruhelage xp instabil und keine Trajektorie

strebt in die Ruhelage.
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Zum Nachweis eventuell vorhandener stabiler Dauerschwingungen wird Satz
(2.48) angewendet. Als Gebiet M wird der gesamte zuldssige Bereich (2.52)
fur die ZustandsgréBen gewdhlt. Da die Funktionen f1 und f2 auf dem ab-
geschlossenen Gebiet M differenzierbar sind, geniligen sie dort auch einer
Lipschitzbedingung beziiglich X, was eine Voraussetzung fir die Anwend-
barkeit von Satz (2.48) ist. Wir untersuchen nun, ob sdmtliche Trajek-
torien vom Rand des Gebiets M in dieses hineinlaufen. Damit diese Bedin-
gung erfilillt ist, muB fiir das Randstiick X =0;0¢< Xy < 1 mit der
duBeren Normalen ET =[-1,0] das Vorzeichen von ET.i[O’XZJ = —f1[0,x2]
negativ sein. Dies wird durch Einsetzen leicht nachgewiesen. Fiir das
Randstiick X, =0, 0< X1 £ 1 mit der &uBeren Normalen BT = {0,-1] weist
man entsprechend die Negativitidt von ET'E[X1,O] = -fz[x],o] nach. Entlang
des Stiickes Xg ¥ x5 = 1;0¢< X10Xy < T ist mit n- = [1,11 der Ausdruck
ET°£[X1’(1‘X1)] = fl[x],(1-x1)] + f2[X1,(1-x1)] zu untersuchen, welcher
sich ebenfalls als negativ ergibt. Zur Veranschaulichung sind in

Bild 2.9 die Richtungen der Trajektorien an den Begrenzungen eingezeich-
net, welche durch explizite Berechnung von f1[l]’ fz[l] ermittelt wurden.
Die Ldnge der Richtungspfeile in Bild 2.9 gibt keinen Hinweis auf den

Betrag von flx]. Eine Berechnung der Steigungen entsprechend (1.45) nach
der Gleichung

Eig _ fz[x],xz]
dx1 f1[x1,x23

ist in diesem Beispiel unzweckmdRig, da sich hier ipm Unterschied zu ande-

ren Differentialgleichungen keine Vereinfachung durch die Quotientenbil-
dung ergibt.

In Bild 2.10 sind die durch Simulation berechneten Trajektorien des
Systems dargestellt. Man erkennt deutlich eine asymptotisch bahnstabile
Dauerschwingung, die hier ein asymptotisch bahnstabiler Grenzzyklus ist.
In Bild 2.11 ist der zu den Grenzzyklus gehdrige zeitliche, periodische
Verlauf von xT(t) dargestellt. Zu beachten ist, dag das System aus jedem
technisch moglichen Anfangszustand in die Grenzschwingung einlauft.

Die Trajektorien laufen im unteren Teil des Bjldes 2.10 sehr dicht an,
aber nicht auf der x]—Achse entlang, was inm Rahmen der Zeichengenauigkeit
nicht mehr zu erkennen ist. Dies ist beim Vergleich von Bild 2.10 mit
den Richtungen der Trajektorien auf denm Rand nach Bild 2.9 zu beriicksich-

tigen, da die Bilder auf den ersten Blick widerspriichlich erscheinen
kénnen.



2.2 Nichtlineare Systeme 2. Ordnung
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Bild 2.9: Richtungen der Trajektorien an den Begrenzungslinien

der Zustandsebene

0.9
0.84
0.7
0.6

0.5+

Bild 2.10: Trajektorien des Systems (2.51)

67
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“ X1(”
05 4
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Bild 2.11: Zeitlicher Verlauf von x1{t) {normierte Kohlenmonoxid-
Konzentration) entlang des Grenzzyklus .

2.3 Die Methode der Harmonischen Balance

2.3.1 Vorbemerkungen

Die Methode der Harmonischen Balance (auch Harmonische Linearisierung
genannt) ist eine leistungsfihige Néherungsmethode zur Untersuchung der
Existenz und Stabilitit naherungsweise harmonischer Grenzschwingungen
und zur Bestimmung von deren Amplituden Az und Frequenzen wg. Gleich-
zeitig konnen mit dieser Methode Korrekturglieder (Regler) zur Unter-

druckung oder Erzeugung von Grenzschwingungen entworfen werden.

Die Methode der Harmonischen Balance 1st anwendbar auf nichtlineare Re-

gelkreise, die in der Standardregelkreisstruktur nach Bild 2.12 vorlie-

gen oder in diese transformiert werden konnen. Hierbei wird davon ausge-
gangen, daB sich der Regelkreis im eingeschwungenen Zustand befindet.

Einschwingvorgénge sind mit der Methode der Harmonischen Balance nicht
behandelbar.

Der Regelkreis muB sich aufspalten lassen in ein lineares zeitinvarian-
tes Teilsystem G(s) und ein spezielles nichtlineares Teilsystem (Kenn-
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elt) ult) y(t)
fle, sgnél Gls) -

Bild 2.12: Nichtlinearer Standardregelkreis

linienglied) mit der Eingangs-Ausgangs-Darstellung
(2.53) u(t) = fle(t), sgn e(t)]

Damit sind nichtlineare Kennlinien wie Begrenzung, Hysterese, tote Zone
usw. (siehe Bilder 1.3 und 1.4) erfaf3t. Diese kénnen sich aus zwei ver-

schieden durchlaufenen Kennliniendsten zusammensetzen.

(2.54) Bemerkung:

Mit der Methode der Harmonischen Balance konnen abweichend von (2.53)
auch nichtlineare Regelkreise behandelt werden, deren nichtlineare
Ubertragungsglieder ein "Geddchtnis" besitzen. Diese miissen jedoch so
beschaffen sein, daB die Ausgangsgroéfe zwar von der Vorgeschichte der
EingangsgroBe abhdngen kann, nicht jedoch von der "Geschwindigkeit",

mit der diese Werte der Eingangsfunktion durchlaufen wurden. Ein Beispiel
ist die magnetische Hysterese: In die Abhdngigkeit der magnetischen
FluRdichte von der Feldstdrke geht der letzte vorangegangene Extrem-

wert der Feldstidrke ein, unabhdngig vom Zeitpunkt, wann dieser er-

reicht wurde. .

In dem nichtlinearen Standardregelkreis nach Bild 2.12 ist eine Fiih-
rungsgroBe nicht zugelassen. Im folgenden wird jedoch gezeigt, wie bei-
spielsweise ein Regelkreis nach Bild 2.73 mit konstanter FihrungsgroBe

ry in diese Standardstruktur lberfihrt werden kann.

elt) ult) yit)

fo .
fle, sgn é] Gis) -

Bild 2.13: Nichtlinearer Regelkreis (Festwertregelung)

Gleichzeitig werden, was fiir viele Anwendungen sinnvoll ist, die Ab-

weichungen der RegelgroBe y(+) von einem festen Bezugspunkt yg, der
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kein Arbeitspunkt des Regelkreises sein muB, aber einer sein kann,
betrachtet. Die Abweichungen bezeichnen wir mit Ay(*)}., Zur Losung des
Problems formen wir Bild 2.13 in Bild 2.74 um, indem die feste Grofe

Yg einmal abgezogen und einmal hinzuaddiert wird.

-Ye o ~Yg

Aelt) elt) ult) y(t) Aylt)
fle, sgn'e) Gls) ——

Bild 2.14: Umgeformter nichtlinearer Festwert-Regelkreis (Schritt 1)

Nun sei ug die konstante EingangsgriRe des linearen Systems, die an des-
sen Ausgang im eingeschwungenen Zustand den konstanten Wert Yg erzeugt.
Dann kann der Summenpinkt hinter den linearen Teilsystenm entsprechend

Bild 2.15 vor dieses gezogen werden, wobei die Linearitdtseigenschaft
des linearen Teilsystems ausgenutzt wird,

u(t] Auft
fle, sgn é) |Butt] Gls) At -

Bild 2.15: Umgeformter nichtlinearer Festwert-Regelkreis (Schritt 2)

Die Struktur in Bild 2.15 ist aber gerade die Struktur des nichtlinea-
ren Standardregelkreises, nur dag jetzt die Abweichungen ay(+), ae(+)
und au(+) als SystemgréBen auftreten. Anstelle der urspringlichen Nicht-
linearitdt f erhalten wir jetzt eine transformierte Nichtlinearitat £,
die aus f durch Verschiebung hervorgeht (vergleiche Beispiel (1.28),
Bild 1.15). Das lineare Teilsystem hat sich hingegen nicht verindert.
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2.3.2 Annahmen und Voraussetzungen fiir die Methode

der Harmonischen Balance

Die Gleichungen zur Harmonischen Balance werden unter folgenden Grund-

Annahmen hergeleitet:

1. Der Regelkreis besteht aus einem BIBO-stabilen linearen Teilsystem
und einem nichtlinearen Kennlinienglied (siehe Bild 2.12). Bei einem
punktsymmetrischen Kennlinienglied darf, wie an spédterer Stelle er-
ladutert wird, fir das lineare Teilsystem sogar ein einfacher integra-

ler Anteil zugelassen werden.

2. Der Regelkreis befindet sich in einem stationdren (eingeschwungenen)

Zustand.

3. Fiir diesen stationdren Zustand sind die EingangsgroBe e(t) des nicht-
linearen Teilsystems und damit auch die Ausgangsgréfle y(t) des linea-
ren Teilsystems ndherungsweise harmonisch, d.h. sinus- bzw. kosinus-
formig (siehe Bild 2.16). Fir die StellgroBe u(t) braucht dies nicht

zu gelten.

Einschwingvorgange konnen demnach mit der Methode der Harmonischen Ba-
lance nicht behandelt werden. Ebenso sind Vorgdnge ausgeschlossen, bei

denen starke Oberschwingungen in den Groflen e{t) und y(t) auftreten.

elt)= Asinwt ult) ylt) = -Asin wt
fle, sgn é] » Gls) -

Bild 2.16: Nichtlinearer Standardregelkreis im eingeschwungenen Zustand

Aufgrund der Annahmen wird e(t) als harmonische Funktion mit noch un-

bekannter Amplitude und Frequenz angesetzt:
(2.55) e(t) = A sinwt

Dann ist auch die AusgangsgroBe u(t) des nichtlinearen Kennlinienglie-

des periodisch:
(2.56) u(t) = fIA sinwt, sgn(Awcoswt)]

Fiihren wir durch Substitution den Phasenwinkel 9 := wt ein und behal-
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ten das Symbol u auch fiir die funktionale Abhdngigkeit vom Phasenwin-
kel ¢ bei, so lautet die Funktion u, da A und w positiv sind ,

(2.57) u(e) = f[A sing, sgn(cosg)]

Die AusgangsgroBe u des nichtlinearen Kennliniengliedes hangt nur vom
Phasenwinkel ¢, nicht jedoch explizit von der Frequenz w ab.

Fur die folgenden Uberlegungen ist es zweckméBig, u(9) in eine Fourier-
reihe zu entwickeln:

b b
u(e) = 79 + }E (aksink¢ + by coske)
k=1
(2.58) bzw. -
b
u(e) = TO- + Z csinlke + o)
k=1
Hierbei sind die Fourierkoeffizienten a, und bk gegeben durch
2n
a, = % Jrf[Asinw,sgn(cosm))sinkw de
©2x k > 1
(2.59) b := %- j.f[Asinw,sgn(cos¢)]coskw de
0
2t
bO 1= % j. f[ASinw,sgn(cos¢)]d¢
0

Zwischen den Gréfen ay, bk’ Ck und & bestehen die Zusammenhénge

2 2 2

Ck T A * by
(2.60) a = ¢ cos o
bk = Ck sin )

Das lineare, stabile Ubertragungssystenm G(s) wird mit der Eingangsfunk-
tion u nach (2.56) angeregt und €rzeugt somit im eingeschwungenen Zu-
stand die Systemantwort (siehe HARTMANN, LANDGRAF £2.51, Seite 134)

b @
(2.61) y(t) = -2 6(0) « :E:IG(jkw)lcksin[kmt +oap v ¢(ka)]
k=1

wobei (ko) := arg[G(jkew)]
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Damit e(t) = - y(t) harmonisch ist, wie in (2.55) angenommen wurde, miis-
sen die folgenden Beziehungen gelten, die wir durch Vergleich von (2.55)
und (2.61) erhalten:

(2.62) bOG(O) = 0
(2.63) ¢ 16(jka)| = 0 fir k > 1
arg(G(juw) 1 + a0 = (2v-1)= (v e2)
(2.64)
[G(jw)! ¢y = A

Aus den letzten beiden Gleichungen koénnen die unbekannte Frequenz o und
die unbekannte Amplitude A berechnet werden. Die Behandlung und Auswer-
tung dieser beiden Gleichungen erfolgt in den Unterkapiteln Z.3.3 und
2.3.5, wobei diese Gleichungen in anschaulicher Form als eine komplexe
Gleichung dargestellt werden und dann ven der Gleichung der Harmonischen

Balance gesprochen wird.

Um die Gleichungen (2.62) und (2.63) erfiilllen bzw. in Naherung erfiillen
zu kénnen, miissen das nichtlineare und das lineare Teilsystem gewisse

Voraussetzungen erfiillen:

Umn die Bedingung bOG(O) = 0 (siehe (2.62)) sicherzustellen, muB ent-
weder G(0) = O gelten (dies ist bel linearen Systemen mit differenzieren-

dem Anteil der Fall) oder aber das nichtlineare Teilsystem mufl so be-

schaffen sein, daf

2 =

(2.65) b, 0

ist. Hierbei ist zu beachten, daB der Fourierkoeffizient b0 = bO(A) eine
Funktion der Amplitude A ist und die Gleichung (2.65) fir alle Amplitu-

den erfillt sein muf. Dies ist bei "punktsymmetrischen” Kennlinien

f[e,sgné] = - fl-e,-sgnel

immer gewdhrleistet. Wenn die Kennlinie zusdtzlich nur aus einem Ast be-
steht, d.h. f nicht von sgne abhdngig und somit eindeutig ist, verschwin-

den sogar alle Fourierkoeffizienten b, (k > 0) in (2.58).

Wenn das nichtlineare Kennlinienglied punktsymmetrisch ist, enthdlt
die Funktion u(t) im eingeschwungenen Zustand keinen Gleichanteil. In
diesem Fall diirfen wir Ffiir das lineare Teilsystem einen einfachen inte-

gralen Anteil zulassen.
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Die Gleichung (2.63) ist i.a. nicht exakt, sondern nur in der gendherten
Form

ck|G(jkm)|

(2.66) << 1 fir k > 2

C1IG(jw)|

erfiillbar. Diese Bedingung 148t sich durch ein lineares Teilsystem mit
TiefpaBcharakter erfiilllen, wenn die Frequenz o im Bereich fallender Be-
tragskennlinien des Frequenzgangs liegt. Eine mit 20 dB/Dekade fallende
Kennlinie ergibt ein Verhdltnis

G(2jw)|
+ETF%TTl % 0,5

Fallende Fourierkoeffizienten (ck > Cra1 > Cre2 > ...) verbessern die
Erfillung der Ndherung (2.66).

In Bild 2.17 sind die Betragsfrequenzginge zu den Ubertragungsfunktionen

(a) G(s) = — Y

s(z+ 1)
(b) Gls) = — X

G+ DG+ NE 1)
(c) G(s) = —V

S

¢

gezeichnet. Die Frequenz der Grenzschwingung sei W
Ein lineares Teilsystem nach Fall (a) unterdriickt alle héheren Harmo-
nischen mit den Frequenzen ka (k > 2), so daR die Bedingung (2.66)
annahernd erfillt ist. Auch ein Teilsystem nach Fall (b) dampft die
héheren Harmonischen einschlieBlich k = Z, jedoch hdngt hier eine aus-

reichende Unterdriickungsgiite auch von der Nichtlinearitdt d.h. von den
Fourierkoeffizienten Sk ab.

Im Fall (c) wird die zweite Harmonische gegeniiber der Grundschwingung
durch das lineare Teilsystem in der Amplitude nicht vermindert. In die-

sem Fall ist eine Voraussetzung zur Anwendung der Methode der Harmoni-
schen Balance verletzt.

E?ne Beurt?ilung, ob die Grenzschwingungsfrequenz Wy S0 liegt, daB das
lineare Teilsystem die hiheren Harmonischen ausreichend unterdriickt, ist
allerdings erst moglich, wenn wir “q nach der Methode der Harmonischen
Balance bereits berechnet haben. Stellen wir dann fest, daR die TiefpaB-
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eigenschaften des linearen Teilsystems nicht ausreichend sind, sco missen
wir mit groBeren Fehlern bei der ermittelten Frequenz und Amplitude der

Grenzschwingung rechnen.

1iGljw)l 4
: Iglw)
+ —
wgd 2wy
(a)
A IG(ijdg
lglwl
(b)
1Gljuw)lgg
|
. . gtul_
(c) s e ‘\\\‘\\
¢

Bild 2.17: Beispiele zur Unterdriickung héherer harmonischer
Schwingungen durch ein lineares Teilsystem



76 Z Periodisches Verhalten von nichtlinearen Systemen

Wie spdtere Beispiele zeigen, fithrt die Methode der Harmonischen Balance
allerdings hdufig selbst dann noch auf gute Ergebnisse, wenn einzelne
Voraussetzungen nicht erfillt sind.

Anhand eines Zweipunktgliedes sei abschlieBend der EinfluB des nichtli-
nearen Teilsystems auf die Fourierkoeffizienten der Funktion u(t) bei
harmonischer Erregung erlidutert:

(2.67) Beispiel: Zweipunktglied mit harmonischer Erregung

Die AusgangsgroBe u(t) eines Zweipunktgliedes nach Bild 2.18 lautet bei
harmonischer EingangsgrdBe

u(t) = f(e(t))

K sgn e(t)

K sgn(A sin(uwt))

butt) butt), eft)
K K ult) —
A.
em o Q= wt
n o
S elt) = Asinlwt]
—-—-K -K-I

Bild 2.18: Zweipunktglied mit AusgangsgroBe und zugehdriger sinusfér-

miger EingangsgroRe

u(t) ist eine Rechteckschwingung. Da die Kennlinie des Zweipunktgliedes
eine ungerade Funktion ist, verschwinden in der Fourierentwicklung fir

u(t) samtliche (Kosinus-) Koeffizienten bk (k = 0...=). Fiir die Koeffi-
zienten ay erhalten wir

2n
1 .
a, = ¥ j-K sgn(Asing)sinke de
0
X 2x

]

K .
x [fsmktp de —f sinke dcp] = i—% (1-coskr)
o x
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0 fiir k gerade

ak =
- fir k ungerade

u(t) besitzt somit die Fourierentwicklung

u(t) = i% [5in(wt)+% sin(3wt)+% sin(5wt) + ...]

Die Fourierkoeffizienten ap nehmen fir ungerade k mit 1/k ab, so daB fiir
die Betragskennlinien [G(jw)|4p der Fdlle a,b nach Bild 2.17 die Nihe-
rung (2.66) fir v = v, gut erfillt ist. [

2.3.3 Die Gleichung der Harmonischen Balance

Die Gleichungen (2.64) sind zwei Bestimmungsgleichungen zur Berechnung
der unbekannten Grenzschwingungsparameter (AG,mG . Un eine anschauli-
chere Form zu erhalten, fassen wir beide Gleichungen zu der komplexen

Gleichung )
Jey

(2.68) G(jw) c, e = - A

zusammen, die wir nach (2.60) auch in der Form

a, + j b1
G(jw) _1____-— = -1
A
schreiben konnen. Mit der Abklirzung
a1 + J b] C.E ju1
(2.69) N(A) 17 ————— = — ¢
A A
lautet diese Gleichung
(2.70) G(jw)N(A) = -1 ;

die wir die Gleichung der Harmonischen Balance nennen. Die Funktion

N(A) heiBt Beschreibungsfunktion des nichtlinearen Teilsystems. Be-

schreibungsfunktionen hdngen im Unterschied zu Frequenzgidngen linearer
Systeme von der Amplitude, nicht jedoch von der Frequenz der harmoni-
schen Schwingung am Eingang der Nichtlinearitdt ab. Sind die Beschrei-
bungsfunktion N(A) und die Ubertragungsfunktion G(s) (s = jw) gegeben,
so kann (2.70) ausgewertet werden. Hierbei bestehen die Mdglichkeiten,

daB es eine Losung, mehrere Losungen oder keine Losung (AG,wG) gibt.
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(2.71) Bemerkung:

Stellt man die Funktion e(t) und von der Funktion u{(t) die 1. Harmoni-
sche, die mit u1(t) bezeichnet sei, in einer Form mit komplexen Zei-
gern,

e(t)

ImfA exp(jut}] =: Im[E(jut)]
(2.72)
u1(t) = Im[(a]+jb1)exp(jmt)} =: Im[Ul(jwt)] ,

dar, so erkennt man N{A) als Verhdltnis der komplexen Zeiger U] zu E:

U1(jwt)
(2.73) N(A) = ————
E(jut)

Die GroRe u1(t) kann als "ErsatzeingangsgroRe" des linearen Teilsystems
aufgefallt werden. Da aufgrund der vorausgesetzten TiefpaBeigenschaften
von G(s) die héheren Harmonischen in u(t) am Ausgang von G(s) (ndherungs-
weise) keine Wirkung zeigen, kann man sich anstelle der wahren Eingangs-

groBe u(t) auch u1(t) als EingangsgrioBe des linearen Teilsystems denken.

In Bild 2.16 kénnte somit u(t) durch u1(t) ersetzt werden. AuBerdem
ist das nichtlineare Teilsystem durch die Beschreibungsfunktion N(A)
vollstdndig beschrieben, wenn sich der nichtlineare Regelkreis im Zu-
stand harmonischer Schwingungen befindet. Somit gelangen wir zu denm
in Bild 2.19 dargestellten Ersatzregelkreis fiir den harmonischen
Schwingungszustand. Die Beschreibungsfunktion N(A) hat die Wirkungs-
weise eines amplitudenabhidngigen (komplexen) Verstarkungsfaktors.

Fir den angenommenen, stationdren Schwingungszustand mit A = const

entspricht der Ersatzregelkreis einen ungedampften linearen harmoni-
schen Schwinger.

wit) = gy sinwt

elt] = A sinwt - + by cos wt yltlz <A sinwt
N(A} Gl jw) -
Bild 2.19: Ersatzregelkreis zur Harmonischen Linearisierung ]

Fihren wir die inverse Beschreibungsfunktion

(2.74) Np(&) s - ]
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ein, so konnen wir die Gleichung der Harmonischen Balance auch in der
Form

(2.75) 6(jw) = N (A)

schreiben,

2.3.4 Berechnung von Beschreibungsfunktionen

Die Beschreibungsfunktion N(A) eines nichtlinearen Kennliniengliedes
fle,sgn(e)] ist definiert durch die Gleichung

?1 by :
(2.76) N(A) = — + j — =: R(A) + j I(A) |,

A A

wobei die Fourierkoeffizienten a, und b? nach (2.59) durch die Bezie-

hungen
2 2=
a; = %fu(q))sinq)dtp - -,]?ff[Asinm,sgn(cosv)]sin‘Pd‘P )
0 0
(2.77) In 2n
b1 = %fu(qa)cosmdtp = %j‘f[Asincp,sgn(cosq:)]coswdq’

(o] o]

festgelegt sind. Fiir den Realteil R(A) und den Imagindrteil I(A) der
Beschreibungsfunktion N(A) erhalten wir somit die Bestimmungsgleichun-

gen A
R(A) = %K Jrf[Asinw,sgn(cosw)] sinede

0

(2.78) .

I(A)

i

%K-J[f[Asinw,sgn(cos¢)} cosede

0

Wir beschrinken alle weiteren Betrachtungen auf punktsymmetrische

(schiefsymmetrische) Kennlinien
f[e,sgn(é)] = - fl-e,-sgn(e)l

Bei der Berechnung von R(A) und I(A) nach (2.78) muB vorausgesetzt wer-
den, daB die Amplitude A des harmonischen Eingangssignals e(t) = A sinwt
$o groB ist, daB alle mehrdeutigen Teile der Kennlinie vollstdndig durch-

laufen werden.

Als erstes wird der Imagindrteil I(A) fiir den allgemeinen Fall einer

mehrdeutigen Kennlinie (siehe beispielsweise Bild 2.20) berechnet.

A S g

e PR Ay B it

- N bl AR e ¢ NSt e Rk T e T D L <R T
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Wir zerlegen die mehrdeutige Kennlinie in zwei eindeutige Kennlinien
und zwar in eine Kennlinie f,le(t)], die fir wachsende Werte e(t) durch-
laufen wird und eine Kennlinie f_le(t)], die fiir fallende Werte von
e(t) durchlaufen wird:

b u

S

f.

Bild 2.20: Mehrdeutige Kennlinie, aufgespalten in f_,f+. Die
Flachenteile (®) liefern positiven Beitrag zu S,
die Fldchenteile (O liefern negativen Beitrag zu S.

£,le(t)] fir  e(t) > 0
(2.79) u(t) = .
£ le(t)] fir e(t) <0

Zur Berechnung des Imagindrteils fiithren wir unter Ausnutzung der Bezie-
hung e(t) = A sinut = A sing dje Substitution

(2.80) de = d(A $1n9) = A cose de¢

durch und erhalten aus (2.78) durch Zerlegung des Integrals

A -A 0
TAT[_[ fledde v [ £ relde - [ f+[e]deJ :
) -A

A
(2.81) A
1
TR = - o [[2.e] - £ el ae)
-A

I(A)

Nun ist aber

A
(2.82) S = [[f_lel - £, le]de
“A
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die von den Kennliniendsten f_, f, umschlossene Flache in der e-u-Ebene.
Dabei werden Fldchenteile, die von den Xennliniendsten im mathematisch
positivem Sinn (gegen den Uhrzeigersinn) eingeschlossen werden, positiv
gezahlt; Flachenteile, die von Kurventeilen mit mathematisch negativem
Unlaufsinn eingeschlossen werden, sind negativ zu zdhlen (siehe

Bild 2.20).

Durch geometrische Uberlegungen lassen sich S und damit der Imaginar-

teil
(2.83) I(A) - - W

meist sehr schnell angeben.

Gleichung (2.83) gilt unabhidngig von der speziellen Gestalt der zugrun-
deliegenden (punktsymmetrischen) Kennlinie. Aus (2.83) folgt andererseits,
daB der Imagindrteil einer eindeutigen punktsymmetrischen Kennlinie ver-

schwindet, da mit flel = f_[el = f [e] die durch die Kennliniendste f_,

f+ umschlossene Flache null ist.

Zur Berechnung des Realteils R(A) einer Beschreibungsfunktion kann keine
so einfache, von der speziellen Gestalt der Kennlinie unabhidngige Be-
ziehung wie fiir den Imagindrteil angegeben werden. Die Berechnung des
Realteils muB fir jede spezielle Kennlinie gesondert durchgefiihrt wer-
den. Wir erlautern die Berechnung von R(A) anhand der in Bild 2.27 dar-
gestellten Dreipunktkennlinie mit Hysterese. Ausgehend von der Beschrei-
bungsfunktion dieser Kennlinie konnen die Beschreibungsfunktionen ein-
facherer Kennlinienglieder wie Dreipunktkennlinie oder Zweipunktkenn-

linie als Spezialfédlle berechnet werden.

(2.84) Beschreibungsfunktion einer Dreipunktkennlinie mit Hysterese

Die Berechnung der Beschreibungsfunktion des Dreipunktgliedes wird
anhand von Bild 2.27 durchgefihrt. Aufgrund der Schiefsymmetrie der
Kennlinie reicht es aus, das Integral in R(A) iber eine halbe Periode

zu berechnen. Wir erhalten
%2
R(A) = %K j. K sinada = %% [cose, - cose,]
%
Die Winkel 1 und L konnen nach Bild 2.21 durch die Kennlinienparameter

a und q ausgedriickt werden:
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b ult) fuit)
f_[elt)]
K- -— K1
1 f, lelt)]
-a -qa elt) TRy ey, xswt
-y - o - T — + o
qa a 2n
f felt] I non
| | 1
| | |
- > -K I I -K;
|f,[2“" : f I
| | { ! !
| | i b
b
L
| X ! .
| 1 : I |
i ; ) o A>aq
| 3 | 1 1 B
| I | 1 |
, i i I A elt)
| | ' P -
1 | ! ot
[ : v -—% -2 |
] | | .
I | [
[
| | ,
[ ' )
| 7R
3 ! n
I
T+,
R+,
rZn
a=wt
\

Bild 2.21: Konstruktion der AusgangsgroBe einer Dreipunktkennlinie

mit Hysterese bei sinusfdormiger Eingangsgrofe

2
- @ 1 2 2
1 T R == coso9e, = ’1 - [%} = X I/A -a
%i == cos g, = - V1 - [%3]2 = - %— AZ-(qa)2

Somit erhalten wir fiir R(A) die Beziehung

sin ¢

sin ¢,
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(2.85) R(A) = %%T ['VAZ-aZ + Yal-(qa)? ]

oder in anderer Darstellung
A A
a a

In der letzten Darstellung tritt nur noch eine normierte Amplitude A/a

auf, was im Zusammenhang mit logarithmischen Frequenzkennlinien gewisse

(2.86) R(A) = -—

2
na A

Vorteile hat (siehe Beispiel (2.116}).

Der Imagindrteil I(A) kann nach (2.83) iiber die von der Dreipunktkenn-
linie eingeschlossene Fldche S ermittelt werden. Nach Bild 2.21 ist die

Flache gegeben durch

S = 2Ka(1‘Q) ’
so dafB
(2.87) a) - - el o ZK0-a) gyl

Die Beschreibungsfunktion N(A) des Dreipunktgliedes mit Hysterese lau-

tet somit

(2.88) N(A)Y = —§7 [ VAZ—aZ + /AZ-(qa)2 - a(1-q)}

™~

n

bzw. in Abhingigkeit von der normierten Amplitude o : Ala

[ fal1 + Vﬁ2~q2 - j(1-q)}

Zu beachten ist, daB A > a bzw. o > 1 gelten muBs.

(2.89) N(o) =

7a o

Die inverse Beschreibungsfunktion N (A) = - 1/N(A) berechnen wir nach
der Beziehung

-1 _ R(A)-3I(A)
Np(A) = qrAY+ITAT T S EVEYEIEV)
und erhalten nach kurzer Zwischenrechnung

qu I/Az—a2 + I/AZ-(qa)2 + j a(l-q)

(2.90) N(A) = - gp : .
: Az-qa2 + V%Z-az . V&i—(qa)z

(2.91) Anmerkung:
In den Vorbemerkungen zur Methode der Harmonischen Balance wurde die

Klasse der zuldssigen nichtlinearen Kennlinienglieder auf solche einge-
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schrankt, deren AusgangsgréBen von sgn e(t), nicht jedoch allgemein von
é(t) abhdngen diirfen (siehe Gleichung (2.53)). Hierdurch ist sicherge-
stellt, daB die Beschreibungsfunktionen derartiger Kennlinienglieder
nicht von der Frequenz o der harmonischen Eingangsfunktion e(t) = A sinuwt
abhéngig sind, sondern nur von deren Amplitude A. B

Aus der Beschreibungsfunktion der Dreipunktkennlinie mit Hysterese las-

sen sich durch entsprechende Wahl der Parameter q und a Spezialfidlle
ableiten:

(2.92) Beschreibungsfunktion einer Dreipunktkennlinie
(ohne Hysterese)

Die Beschreibungsfunktion einer Dreipunktkennlinie ohne Hysterese nach
Bild Z.27a erhalten wir aus (2.88) und (2.89) durch die Wahl q = 1:

(2.93) R
(2.94) NG) = Ll «=As
Fir die inverse Beschreibungsfunktion NI(A) folgt
Al2
(2.95) No(A) = - v A 1a [5] A >
. I = B = - A —— Sm— >a
1k [/a?-a’ [5]2_ ]
a
Die Ortskurve der inversen Beschreibungsfunktion ist im Bild 2.22b
dargestellt,
(a) $ult) (b) $ImIN(AN
Kt -« p————r
-a elt) . Azaf? Re[N(Al]
a a ~—A
_Ta
K K
Bild 2.22: Dreipunktkennlinie (a} und Ortskurve der inversen

Beschreibungsfunktion NI(A) (b)
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{(2.96) Beschreibungsfunktion einer Zweipunktkennlinie

Die Beschreibungsfunktion einer Zweipunktkennlinie nach Bild Z.23a
erhalten wir aus der Beschreibungsfunktion der Dreipunktkennlinie
durch die Wahl a = 0 :

(2.97) N(A) = X

(vergleiche hierzu auch Beispiel (2.67)). Die inverse Beschreibungs-

funktion lautet

(2.98) NI(A) = " Ix

Bild 2.23b zeigt die Ortskurve der inversen Beschreibungsfunktion.

[ 4 Im[N(A)]
(a) ult) (b) :

elt) ==—A A0 Re[Ny(Al]

S

Bild 2.23: Zweipunktkennlinie (a) und Ortskurve der inversen

Beschreibungsfunktion N (A) (b) s

(2.99) Beschreibungsfunktion einer Zweipunktkennlinie mit Hysterese

Die Beschreibungsfunktion einer Zweipunktkennlinie mit Hysterese

(siehe Bild 2.24a2) erhalten wir aus der Beschreibungsfunktion einer

Dreipunktkennlinie mit Hysterese durch die Wahl q = -1:
(2.100) N(A) = %%7 [ AZ_aZ -] a} ’ AZ>a
(2.101) N(a) = %g L [ R j] . o= % > 1
Die inverse Beschreibungsfunktion NI(A) ist

(2.102) N = - R [ aloal s a]

_%[VEFTT+j] (A > a)
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Bild 2.24b zeigt die graphische Darstellung von NI(A) in der Ortskur-

venebene.
*uh)
A
(o) ) (b) b ImIN,(A]]
b
1 'y
e(t) Re[N;(A)]
-a a e o
1 A
—r— -
-K
00 A A-q na
il - -Z}T

Bild 2.24: Zwelpunktkennlinie mit Hysterese (a) und Ortskurve der
inversen Beschreibungsfunktion NI(A) (b)

Kennlinienglieder in Abhdngigkeit von einer normierten Amplitude «o
angegeben. Hierbei wurde eine Aufspaltung von N(«) in der Form

N(a) = kn Nn(a)
vorgenommen,

(2.103) Tabelle: Beschreibungsfunktionen wichtiger Kennlinienglieder
(siehe die nichsten Seiten)

2.3.5 Auswertung der Gleichung der Harmonischen Balance

Die Gleichung der Harmonischen Balance ist

(2.104) G(ju) = - NT%T - N ()

Aus dieser komplexen Gleichung kénnen die Amplituden AG > 0 und Fre-
quenzen w. > 0 eventuell vorhandener Grenzschwingungen berechnet wer-

den. Hierzu bieten sich folgende Méglichkeiten an-:

a} Algebraische Auswertung

Gleichung (2.104) wird entweder nach Real- und Imagindrteil zerlegt,
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. . . R(A)

Re[G(juw)] = RelN;(A)) = - orroyyrrra

Im[G(Jw)] = Im[NI(A)] = R—r(mjm )
oder nach Betrag und Phase:

. 1

|G(jw)| = TNCAIT
(2.106)

arglG(jw)]l = (2v-1)n - argIN(A)] (v ezZ)

Bei eindeutigen statischen Kennlinien ist der Imagindrteil von N(A)
gleich null. In diesem Fall vereinfacht sich die Phasengleichung zu

argiG(jw)]l = (2v-1)x (v e Z)

Die nach Betrag und Phase aufgespaltenen Gleichungen (2.106) sind
gerade wieder die Gleichungen (2.64), aus denen durch Zusammenfas-

sung die Gleichung der Harmonischen Balance abgeleitet wurde. Dies

erkennt man, wenn man die Zusammenhdnge
“1
IN(A)I = K_ r

arg(N(A)] = o

beriicksichtigt (siehe auch Gleichung (2.69)).

Durch analytische oder numerische Losung der Gleichungen (2.105) bzw.
(2.106) kénnen die Amplitude(n) AG und Frequenz (en} we eventueller

Grenzschwingungen ermittelt werden.

b) Graphische Auswertung

Zur graphischen Auswertung der Gleichung der Harmonischen Balance bie-
ten sich zwei Vorgehensweisen an:

b1) G(jw) und N (A) werden in einer komplexen Ebene (Ortskurven-
ebene) als Ortskurven dargestellt und deren Schnittpunkte

ermittelt. Die zu jedem Schnittpunkt gehorigen Werte AG und

sind die Amplitude und Frequenz einer moglichen Grenz-
Bei Auswertung der Gleichung

i)

G .
schwingung des Regelkreises.

der Harmonischen Balance in der Ortskurvenebene sprechen wir

vom Zweiortskurvenverfahren.

b2) Die Gleichung der Harmonischen Balance wird mit Hilfe loga-
rithmischer Frequenzkennlinien ausgewertet. Hierzu empfiehlt
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sich die Aufspaltung der Gleichung nach Betrag und Phase
(siehe (2.106)), wobei man die Betragsgleichung zweckmidBiger-
weise in der Form
20 log[G(jw)| = - 20 log|N(A)|
(2.107)
IG(jw)'dB = - IN(A)JdB

darstellt.

Die Anwendung des Zwelortskurvenverfahrens ist besonders geeignet, um
einen qualitativen Uberblick iiber die moglichen Losungen der Gleichung
der Harmonischen Balance bzw. die Vorgehensweise zu deren Unterdriickung
zu vermitteln. Fir die quantitative Ermittlung der Grenzschwingungspa-
rameter ist dieses Verfahren etwas schwerfdllig, so daB hiufig die ande-

ren Moglichkeiten zur Losung der Gleichung der Harmonischen Balance
vorzuziehen sind,

(2.108) Anmerkung:

Wenn keine Lésung (AG,wG) der Gleichung der Harmonischen Balance exi-
stiert, sind dennoch Grenzschwingungen im Regelkreis moglich. Diese

sind dann aber nicht harmonisch und einer Behandlung mit der Methode

der Harmonischen Balance nicht zugénglich. Haufig kann jedoch davon aus-
gegangen werden, daf der Regelkreis keinerlei Grenzschwingungen besitzt,

wenn keine Loésung der Gleichung der Harmonischen Balance existiert. |

Anhand von 3 Beispielen erlautern wir die unterschiedlichen Vorgehens-

weisen zur Berechnung (harmonischer) Grenzschwingungen mit Hilfe der
Methode der Harmonischen Balance:

(2.109) Beispiel: Regelkreis mit linearem System 2. Ordnung
und Zweipunktglied mit Hysterese

Der in Bild 2.25 dargestellte Regelkreis ist mit Hilfe der Methode der
Harmonischen Balance in der Ortskurvenebene
tersuchen.

auf Grenzschwingungen zu un-

In Bild 2.26 sind die Ortskurve des linearen Teilsystems

) v
Gljuw) = — : V,A >0

. . w
J‘-"[1+JT}

und die Ortskurve der inversen Beschreibungsfunktion
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N (&) - %{ {-‘2—}2-1+j}

des nichtlinearen Teilsystems eingezeichnet.

K ']
Eljw) . Uljwl Vv Y{jwl
-0 a Jw T
- Wile
e J [ x]
Bild 2.25: Regelkreisstruktur zu Beispiel (2.109)
| Im
Wo- Re
N (A) A=a _Ta
—— LK
(AG-UG)
Gljw $w=0

Bild 2.26: Anwendung des Zweiortskurvenverfahrens

Da die Ortskurven von G(jw) und NI(A) einen gemeinsamen Schnittpunkt
besitzen, existiert eine harmonische Grenzschwingung (AG,wG) des Regel-
kreises, und zwar fir beliebige positive Werte der Parameter V, X, K
und a. Aus der Gleichung der Harmonischen Balance folgt

2

v juw + %‘ 18 A2 _
.z Y 2, Y a !
ju - 3 N
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Im
Re
} ; —
-1,0 - 05
AG=0,53
A a:05 =08
- J } }
16 12 08 06
T -05
A O=1
J— ! !
1.8 1.4
+-10
A az2 T
~ + t }
26 24 22 21| we=0,3
Ag=2,06
+G(ju)
T -20
Bild 2.27: Ermittlung der Grenzschwingungen des Regelkreises nach

Bild 2.25 fir v = 0,5; x=1; X =

"und a = 0,5; 1; 2
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Durch Aufspaltung nach Real- und Imagindrteil erhalten wir zur Bestim-

mung von (AG,wG) die beiden reellen Gleichungen

4
_ rva | 2“6
(2.110) Z 4
Sy “6 _ _1a fg]z -1 u)2 . “G
X 4X a G :7 ;
die wir in die Beziehungen
2
3 2 4VKx _
wG+A wG_—Ia—_ -O ]
(2.111)
2
A2 . Q)2
G TT A tw
G

umformen konnen. Fir den Parametersatz V = 0,5 ;x2=1,K=1und

a = 1 erhalten wir die numerische Losung
(Agrug) » (1,13 ; 0,5) '

so daf der Regelkreis in diesem Fall naherungsweise die Grenzschwingung

e(t) ~ 1,13 sin(0,5t)

besitzt. In Bild 2.27 sind die Grenzschwingungsparameter nach dem Zwel-

ortskurvenverfahren ermittelt worden, wobei fiir die Hystereseweite a

die Variationsfille a = 0,5 ; 1 ; 2 betrachtet wurden. Die Frequenzen
wo liegen aufgrund des integralen Anteils
20 dB/Dekade fallenden Betragskennlinie,

fillt ist. Fir Hystereseweiten a < 0,25 liegen
im Bereich einer mit 40 dB/Dekade fallenden Betragskennlinie, was die

Erfiillung von (2.66) noch verbessert und geringere Fehler in den berech-

in G(s) im Bereich einer mit
so daB die Naherung (2.66) er-
die Frequenzen w. sogar

neten Grenzschwingungsparametern erwarten lagt. -

(2.112) Beispiel: Regelkreis mit linearem System 3. Ordnung und
Dreipunktkennlinie
Der Regelkreis nach Bild 2.28 (Ay, 2g, Vv, a, K > 0) ist mit Hilfe der

Methode der Harmonischen Balance auf Grenzschwingungen zu untersuchen.
einer Dreipunktkennlinie 1st nach

Die inverse Beschreibungsfunktion
(2.95) bzw. Tabelle (2.103)

IAZ . A

NI(A) = - >
4K VA - a

| v
V]
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u

Elju) o | T |t v N
- I ol ]
1 2

Bild 2.28: Regelkreisstruktur zu Beispiel (2.112)

NI(A) besitzt nach Bild 2.22b den Maximalwert

N = - 72
I,max ZK ’

der fiir A = a VZ angenommen wird. Die Ortskurve des linearen Teil-
S5ystems

_ v Vo,
G(]w) = ” .w ~ = 2
Jw[%? +1}[{; +1J [jwl1—w ”'jun-lﬂ
Y l]lz

jm[A]lz—wz] - mz[x1+A2J
schneidet die negative reelle Achse fiir ¢ = VA1A2 im Punkt - ijx‘ .
172
Wir erhalten somit 3 unterschiedliche Falle (siehe Bild 2.29):

. na
Fall (a): 0 <V« 7K (AT+A2)

Fall (b): vV o= %% (l]+kz)

Die Ortskurven von G(ju) und NI(A) besitzen genau einen Schnittpunkt
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zwei Grenzschwingungen mit unterschiedlicher Amplitude aber gleicher

Frequenz

(2.113) vy = yx1x2

Mit der Abkurzung

2.2
(2.114) 2 2% - YR
n [l1+A2
folgt durch Quadrieren
2l (ak-al) = Ag
AL - 2 ag e %2l = 0,

woraus wir die Losungen

2
./ 2
Aé = xz + n4 - szaz = nz [1 + 1 - —%— ]

| Im
Ay,

oo [Agy wg! Re
Q - A (Aﬁzuwﬁl |

f

! na

F———E'—'

(c}! (bl (Gl//

Bild 2.29: Auswertung der Gleichung der Harmonischen Balance in
der Ortskurvenebene (Beispiel (2.112))
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erhalten. Wegen nz > Za2 im Fall (c¢) liefern die Wurzeln nur reelle
Losungen.

Bemerkenswert ist, daR die Frequenz we der Grenzschwingungen nur von
den Zeitkonstanten A, und A, des linearen Teilsystems abhangt, nicht
jedoch von den Regelkreisparametern V, K und a. Da die Frequenz

we = VA112 das geometrische Mittel der Frequenzen A, und A, ist,
liegt sie wegen

min(A1,12} < Vl1k2 < max(lT,AZ) (x1,x > 0)

Z

im Bereich einer mit ca. 40 dB/Dekade fallendeq Betragskennlinie, was
eine hohe Genauigkeit der berechneten Grenzschwingungsparameter erwar-
ten 148t (vergleiche Beziehung (2.139) und Bild 2.3 in Beispiel (2.138)).

(2.116) Beispiel: Regelkreis mit instabilem linearen Teilsystem
und einer Tote-Zone-Kennlinie

Der Regelkreis nach Bild 2.30 mit dem linearen Teilsystem

2
G(s) = S5 _*0,2s + 1
s{s™ - 1]

und einer Tote-Zone-Kennlinie mit der Steigung m = 20 ist unter Verwen-

dung von logarithmischen Frequenzkennlinien auf Grenzschwingungen zu
untersuchen.

Eljul -a _% Uljw) (ju)z +02jw +1 Yljw)

’ ek jwlljul -1]

Bild 2.30: Regelkreis mit instabilenm linearen Teilsystem und
einer Tote—Zone-Kennlinie

Das lineare Teilsystem G(s) besitzt die Polstellen

51 = 0 S, = 1, Sz = -1

Obwohl G(s) instabil ist und s

omit die Voraussetzungen zur Anwendung
der Methode der Harmonischen B

alance verletzt, wenden wir diese Methode
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dennoch an. Unsere Ergebnisse miBten jedoch anhand einer Simulation uber-

prift werden.

Die normierte Beschreibungsfunktion N(a) einer Tote-Zone-Kennlinie ist
nach Tabelle (2.103) gegeben durch

(2.117) No) = kN (a) =k, {1 s [arcsin[%i . %‘V1 -4 }};a'z1,

also

(2.118) N(A) = m [1 - %(arcsin[%

Hierbei 1ist

o

(2.119) kn = m ; a =

Zur Auswertung der Gleichung der Harmonischen Balance verwenden wir die

Betragsgleichung

G lyg = - INMgg = = INlgg
die wir auch in der Form
(2.120) [6(jw)l4p * lk lgp = - [Na () lgp
schreiben konnen, und die Phasengleichung

(2.121) arglG(ju)] = (2v-1)x - argIN(A)] (vez) .

Da die Tote-Zone-Kennlinie keine flysterese enthalt, ist arg[N(A)] = O.

Der Nenner von G(jw) liefert den konstanten Phasenanteil

n

L
-5 = > ,
wihrend der Phasenbeitrag des Zdhlers stetig von O bis ® wdachst.

Die Phasengleichung (2.121) ist somit

arglG(jw)l = ®
die fiir wg = 1 erfiillt ist (siehe Bild (2.31)). Aus Bild 2.31 lesen
wir fur 0 = 1 den Wert

l6(j1)] + [k lgg = © 9B
ab, wobei
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berilicksichtigt wurde (siehe waagerechte gestrichelte Linie in Bild 2.31).
Nach Bild 2.32 ist

- JNn(a = a; = z,s)de = 6 dB
Die Grenzschwingungsparameter sind somit
(2.122) (AG;wG) = (2,5a;1)
womit wir fiir den Regelkreis die eventuell mégliche Grenzschwingung

e(t) = 2,5a sin t

erhalten. Da das lineare Teilsystem instabil ist und somit eine Voraus-

setzung zur Anwendung der Methode der Harmonischen Balance verletzt,

/6Uw]
//M 2
n
p
120°
16(juleg] b
L0 Y
\.‘N"q‘- —_’_‘_‘_’1 | ! 600
20— 16(jwllyg - T
0 } 0°
\\\ I
2 _nlgl=2608 | | [N' /7" | TR
B ) iy R e
| 3
40 l
10-2 101 100 10" 10?

e ]

Bild 2.31: Logarithmische Frequenzkennlinien des linearen

Teilsystems in Beispiel (2.116)
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-201gIN ()l =-IN{allyg

20+
15+

10+

G:A
x

0 i 2 3 4 5 6 7

Bild 2.32: Logarithmische Darstellung der normierten Beschreibungs-
funktion Nn(a) = I‘:I(a)/kn einer Tote-Zone-Kennlinie -

2.3.6 Untersuchung des Stabilitdtsverhaltens von Grenzschwingungen

Die Grenzschwingungen eines Regelkreises konnen unterschiedliches Stabi-
litdtsverhalten zeigen (siehe auch Kapitel Z.1). In diesem Abschnitt

wird ein Stabilitdtskriterium fiir Grenzschwingungen eingefihrt, das auf

dem Nyquistkriterium beruht, welches aus der Stabilitdtstheorie linearer

Systeme bekannt ist (siehe LANDGRAF, SCHNEIDER [Z.10], Seite 132). Wir
formulieren zunichst das Nyquistkriterium, wobei wir uns auf den Fall

beschrinken, da@ die Kreisiibertragungsfunktion L(s) := Z(s)/a(s)

keinen Durchgriff besitzt, so daB

(2.123) Grad[Z(s)] < Gradla(s)]

Dann erhalten wir:
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(2.124) satz (Nyquistkriterium):

Ein linearer Regelkreis mit der Kreisilibertragungsfunktion (offener Regel
kreis) L(s) = V G(s) ist genau dann BIBO-stabil, wenn

o0

(2.125) [X arg(% + G(ju)) = (na+2nr}u

W= o
Hierbei ist
o

ZX arg[% + G(juw)?

W=-o

die stetige Winkelénderung des Zeigers vom Punkt -1/V an die Ortskurve
G(juw). n, ist die Anzahl der Polstellen von G(s) auf der imagindren

Achse und n_ die Anzahl der Polstellen von G(s) in der rechten offenen
s-Halbebene. u

Die Einschrinkung auf Kreisiibertragungsfunktionen ohne Durchgriff ist
sinnvoll, da wir das Nyquistkriterium auf nichtlineare Standardregel-
kreise im Zustand der Harmonischen Balance anwenden werden. Aufgrund
der in den Voraussetzungen zur Methode der Harmonischen Balance gefor-
derten TiefpaBeigenschaften des linearen Teilsystems konnen wir namlich
In den meisten Anwendungsfillen €rwarten, daB das lineare Teilsystem
keinen Durchgriff besitzt. Die gesonderten Uberlegungen, die bei linea-

ren Systemen mit Durchgriff angestellt werden miissen, bleiben dem inter-
essierten Leser Uberlassen.

funktion mit einer Polstelle bei s - O gezeichnet (n_ = 1, n_ = 0).
a *r

—1/VG sei der Schnittpunkt der Ortskurve mit der reellen Achse, d.h.

1 .
(2.]26) VE + G(JwG) = 0

Fir einen kleineren Verstirkungsfaktor v = y +*aV. (AV < Q) liegt der
Punkt -1/V auf der reellen Achse 1ipks ’
anderung im Bereich
dem Nyquistkriterium

von -1/V.. Die stetige Winkel-
T < w <@ ist x («/2 fir 0 < w < =), so daB nach

der Regelkreis BIBO-stabil ist. Fir betrags-
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=+jm+6, 56 <0 ,

51,2 G

welches gedimpfte Schwingungen mit der Abklingkonstanten [6] verursacht.

Wird V = VG+AV (AV > 0) gegeniiber VG vergroBert, erhalten wir vom
Punkt -1/V, welcher jetzt auf der reellen Achse rechts von —1/VG
liegt, eine Winkelédnderung von 3r; der Regelkreis ist instabil. Fir
kleine Abweichungen AV gehért hierzu das Polpaar

%+ ju. + 6 , 6 >0

51,2 G

welches fiir aufklingende Schwingungen verantwortlich ist.

Vergleichen wir die Gleichung der Harmonischen Balance

(2.127) N%KT + G(ju) = O

mit der Beziehung (2.126), so erkennen wir, daR die Beschreibungsfunk-
tion N(A) wie ein von der der Eingangsamplitude A der Nichtlinearitiat
abhdngiger Verstédrkungsfaktor V, wirkt (siehe Ersatzregelkreis nach

Bild 2.19).

Wir erliutern das Stabilitdtsverhalten von Grenzschwingungen anhand von
Beispiel (2.112). Im Fall (c) ergeben sich Z Grenzschwingungen mit unter-
schiedlichen Amplituden aber gleicher Frequenz. Im Bild 2.33b und 2.33c
sind die Ortskurven von G(jw) und N;(A) aus Beispiel (2.112), Fall (c),
eingezeichnet. Die Pfeile an der Kurve NI(A) zeigen in Richtung wachsen-
der Amplitudenwerte. Wir betrachten nun eine Amplitude

A = AGZ + AN,

wobei A.. die kleinere der beiden Losungen der Gleichung der Harmoni-

G2
schen Balance ist,

NI(AGZ) = G(ij)

Wir priifen nun ganz analog wie beim Nyquistkriterium fur lineare Regel-
kreise die Winkelinderung der Ortskurve G(juw). Fir aA > O verschiebt
sich der Punkt NI(A) auf der reellen Achse nach rechts, so daB die

Winkelanderung von G(jw) gleich 3z wird und sich eine aufklingende

Schwingung ergibt. Dies bedeutet, da die Amplitude A wachst und sich

damit von A, entfernt. Ist AA < O, verschiebt sich der Punkt N (A)

nach links, die Schwingung ist abklingend. Dies bedeutet, daB die Ampli-
tude A abnimmt und sich auch hier von As, entfernt. Wir stellen a}so.
fest, daB ein Regelkreis mit der Grenzschwingung (AGZ,wG) nach Beispiel
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(2.112) bei der geringsten Storung in einen anderen Zustand iibergeht.
Die Grenzschwingung (AGZ,wG) ist also instabil.

dIm iIm
1 Ni{Ag,)
v Re LY/ Re
; -
Ve {Agz.ug)
@l o) (b) Gljw)
Im | Im
(Agy.wg) - stabit
Ni(A) Re Ref
(Asz,UG)
instabil

Bild 2.33: Stabilitdtsbetrachtung bei Grenzschwingungen in der
Ortskurvenebene (Nyquistkriterium)

Wir untersuchen nun die zweite, in Beispiel (2.112), Fall (c), existie-

rende Grenzschwingung (AG1’wG) auf Stabilitdt, indem wir eine Schwin-

gungsamplitude

A = AG1 + AA
in der Ungebung von AG] betrachten. Fir AA > 0 rickt hier NI(A) auf

der reellen Achse nach links, so dag der vergleichbare lineare Regel-

kreis abklingende Schwingungen besitzt. Somit strebt A - AG1’ d.h.
AA ~ 0. Flir aA < 0 schiebt sich NI(A) nach rechts. Der vergleichbare
lineare Regelkreis besitzt aufklip

hier A -~ AG] (AA -~ 0) strebt.
kreis bei kleinen Auslenkungen

gende Schwingungen, so daB auch

Wir stellen somit fest, daB der Regel-
aus dem Schwingungszustand (AGI'wG)

Die Grenzschwingung (AGI’wG) ist somit.
Wir sprechen hdufig auch nur von der Stabili-

wieder in diesen zurickkehrt .
asymptotisch bahnstabi].
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tdt der Grenzschwingung. Bild 2.33d zeigt den Verlauf von NI(A) zwi-

schen den beiden Grenzschwingungen. Die instabile Grenzschwingung geht
in die stabile Grenzschwingung iber, wenn die Amplitude beispielsweise
durch Stérungen geringfiigig vergroBert wird. Fallen beide Grenzschwin-

gungen zusammen {Fall (b) in Beispiel (2.112)), d.h. AG1 = AGZ’ dann

ist die Grenzschwingung semibahnstabil.

Unsere bisherigen Uberlegungen bleiben giiltig, wenn die negative inverse
Beschreibungsfunktion NI(A) komplex ist, also nicht auf der negativen
reellen Achse liegt.

Zusammenfassend koénnen wir zur Stabilitdtsuntersuchung von Grenzschwin-

gungen den folgenden Satz formulieren:

(2.128) Satz (Stabilitit von Gremzschwingungen):

Eine nach der Methode der Harmonischen Linearisierung gefundene Grenz-
W ) eines nichtlinearen Standardregelkreises mit dem line-
Z(s)}/a(s) ist genau dann asymptotisch bahnstabil,

schwingung (A

aren Teilsystem G(s)

wenn

oo

(2.129) A arsfcGe) - Ny ()]

pw=—-o

= (na+2nr)n fir A > AG

$ (na+2nr)n fur A < AG

daf G(s) keinen Durchgriff besitzt, d.h.
ist die Anzahl der Polstellen von G(s) auf
die Anzahl der Polstellen von G(s) in der

Hierbet ist vorausgesetzt,
Grad(Z(s)) < Grad(a(s)). n
der imagindren Achse und n,
rechten offenen s-Halbebene.

Sind die beiden Aussagen in (2.129) vertauscht, dann ist die Grenzschwin-

gung instabil. Gilt das Gleichheitszeichen oder Ungleichheitszeichen 1n
(2.129) sowohl fir A > Ag als auch fir A < Ag, dann liegt eine asympto-

tisch semibahnstabile Grenzschwingung VOT. ]

Bei der Formulierung von Satz (2.128) wurden instabile lineare Teil-

systeme G(s) (n N + 0) mit beriicksichtigt, obwohl diese in den Voraus-

setzungen zur Methode der Harmonischen Balance ausgeschlossen wurden.

Die allgemeine Formulierung von Satz (2.128) ist jedoch zweckmdBig, da

die Methode der Harmonischen Linearisierung gelegentlich auch bei 1insta-

bilen linearen Teilsystemen angewendet wird (siehe Beispiel (2.116) oder

Beispiel (2.132)).

ot Ao GRS S e T

S A 1 g e s e e
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(2.130) Anmerkung :

Die Stabilitdtsuntersuchung von Grenzschwingungen nach Satz (2.128} hat
groBe Ahnlichkeit mit der Stabilitétsuntersuchung in der Néherungsmeth?d€
(2.14): Wihrend wir in Satsz (2.128) mit Hilfe des Nyquistkriteriums pri-
fen, wie sich das System bei Verdnderungen der Schwingungsamplitude ver-
hdlt, geschieht dies in der Naherungsmethode (2.14) mit Hilfe der Funk-
tion G (siehe Beziehung (2.20)). L

Anhand von zwei Beispielen untersuchen wir die Stabilitit von Grenz-
schwingungen:

(2.131) Beispiel: Regelkreis mit linearem System Z. Ordnung
und Zweipunktglied mit Hysterese

Wir greifen das Beispiel (2.109) auf und betrachten den Fall V = 0,5;

A =1; K =a = 1. Hierfiir wurde die Existenz einer Grenzschwingung
e(t) = 1,13 sin(0,5t)

1 at
nachgewiesen. Diese Grenzschwingung wird mit Satz (2.128) auf Stabilitd

untersucht. Die stetige Winkeldnderung kann aus dem Bild 2.27 (a = 1)
abgelesen werden.

@

T fir A> 1,13
Z} arglG(juw) - N (AT =

-x fir A< 1,13

gindren Achse bej s = 0 besitzt, folgt aus
Satz (2.128), dag die Grenzschwingung stabil ist. o
(2.132) Beispiel: Regelkreis mit instabi
und toter Zone
——_-Oler sone

Wir greifen den Regelkreis ausg Bei
wurde darauf hingewiesen,

Spiel (2.116) auf. In diesem Beispiel
dafl der Regelkreis aufgrund der Instabilitdt

ie Voraussetzungen Zur Anwendung der Methode
der Harmonischen Linearisierung nicht erfillt,

rechnete Grenzschwingung W

des linearen Teilsystems 4

Die in dem Beispiel be-
ollen wir dennoch mit Hilfe von Satz (2.128)
auf Stabilitit untersuchen, Ip Bild 2.34 sind dije Ortskurven von G(jw)

und von Ni(A) fiir a = 1, = 20 eingezeichnet. Fiir den Schnittpunkt der

Ortskurven wurden bereits in Beispiel (2.116) nach Gleichung (2.122) die
Grenzschwingungsparameter FAH
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bestimmt. In der Umgebung dieses Schnittpunktes erhaliten wir die steti-

gen Winkeldnderungen

@™ 3n far A > A
A arstcte) - N1 -

W= —co -1 fl]l" A < A

G

G

Da das lineare Teilsystem G(jw) einen Pol auf der imagindren Achse

(s = 0) und einen Pol in der rechten s-Halbebene (s = 1) besitzt, gilt
(na + ZnR)n = 3n ,

so daB die Grenzschwingung nach Satz (2.128) stabil ist.

AIm
u:O,S
+0,2
w
1
N1 =-§1a) Re
+ - 4 —
-0,4 - 02

Wws2

Bild 2.34: Ermittlung des Stabilitdtsverhaltens der Grenzschwingungen

in Beispiel (2.132)

In Bild 2.35 sind die Verlaufe von y(t) und u(t) aufgrund einer Rechner-
simulation dargestellt. Die AusgangsgroBe y(t) strebt gegen eine stabile

SR
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Grenzschwingung mit

2
A, ~ 2,08 w, = 27

— = 0,99
G G TG

Somit ist das Ergebnis unserer Stabilitdtsbetrachtung bestitigt.

Bei der Anwendung der Methode der Harmonischen Balance wird die Stabi-
litdt des linearen Teilsystems gemeinhin vorausgesetzt, um die Existenz
einer méglichen Grenzschwingung begriinden zu konnen. Im vorliegenden
Beispiel kann diese Begrindung trotz der verletzten Voraussetzung auf
sehr einfache Weise erfolgen, und zwar ohne Ruckgriff auf die Simulation:

Fiur sehr groBe Werte der Ausgangsgrofe des Regelkreises ist dieser prak-
tisch ein linearer Regelkreis, da sich die Tote-Zone-Kennlinie dann wie
ein Verstdrkungsfaktor mit dem Wert m verhdlt. Beziiglich dieses Verstar-
Kungsfaktors ist aber nach Bild 2.34 das Nyquistkriterium erfillt, wo-
raus die Beschranktheit aller SystemgroBen folgt. Andererseits konnen
die SystemgroBen aufgrund der Instabilitdt des linearen Teilsystems und
der toten Zone am Eingang nicht in eine Ruhelage einlaufen, womit die
Existenz einer stabilen Grenzschwingung naheliegt. Tritt anstelle der
Tote-Zone-Kennlinie eine Lose (mit der Steigung m) im Regelkreis auf, so
kann v6llig analog argumentiert werden,

ultid Ayt
30} 31
Ag=2.08
a0+ T"'—'T—"“““““—-*--hy“ ————————
_/’\\Qﬂtl yit) / \\\

/ .
10+ 14 ¢ \

i \ i

i \ ,‘
T T 7
I _ :

, | I

101 -14- : |

! \ // |

! \ l

201 -24 |

Bild 2.35: Zeitliche Verlaufe von y(t) und u(t) zu Beispiel (2.132) B
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In der folgenden Tabelle sind ohne Anspruch auf Vollstdndigkeit einige
Ergebnisse zusammengefaft, die man bei Anwendung des Stabilitdtssatzes
(2.128) erhilt. Hierbei wird vorausgesetzt, daB das lineare Teilsystem
BIBO-stabil ist, wobei zusdtzlich ein integraler Anteil in G(s) zuge-
lassen wird. AuBerdem wird angenommen, daB in der Ortskurvenebene genau
ein Schnittpunkt zwischen G(jw) und N{A) auftritt, zu dem allerdings Z
Grenzschwingungen mit unterschiedlicher Amplitude aber gleicher Frequenz
gehbren konnen (vergleiche Beispiel (2.112)). Dann gelten die folgenden

Stabilitdtsaussagen:

(2.133) Tabelle: Stabilititsverhalten spezieller Grenzschwingungen

Stahilitdtsverhalten
Kennlinie der Grenzschwingungen
Zweipunktglied 1 asymptotisch bahnstabile
ohne /mit Hysterese Grenzschwingung (AG,wG)
Dreipunktglied 2 Grenzschwingungen (AG1,mG),(AGZ,mG)
ohne Hysterese . .

Y Fir AG] > AG2 gilt

(AGz,mG) instabil

(AG1’wG) asymptotisch bahnstabil
Tote-Zone-Kennlinie 1 instabile
ohne Hysterese Grenzschwingung (AG,mG)

2.4 Korrekturglieder zur Erzeugung, Unterdriickung bzw.
Verminderung der Amplitude von Grenzschwingungen

Grenzschwingungen konnen in einem Regelkreis bzw. einem nichtlinearen

System erwiinscht sein, wenn stabile und parameterunempfindliche Schwin-

gungen mit einer bestimmten Frequenz und Amplitude erzeugt werden sollen

(beispielsweise bei Oszillatoren).

In anderen Fidllen wird die Vermeidung von Grenzschwingungen im Regelkreis

um eine asymptotisch stabile Ruhelage des Regelkreises zu

angestrebt,
alten sicherzustellen.

erhalten und damit ein gewiinschtes stationares Verh
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2.4.1 Anwendung von Ljapunov-Funktionen

Mit Hilfe von Ljapunov-Funktionen kénnen Korrekturglieder zur Unter-
driickung von Grenzschwingungen entworfen werden. Hierbei wird der fol-
gende Satz ausgenutzt:

(2.134) Satz (Nichtexistenz von Dauerschwingungen bei asymptotisch
stabiler Ruhelage):

Besitzt ein nichtlineares System bzw. ein Regelkreis n-ter Ordnung eine
asymptotisch stabile Ruhelage Xp» SO existieren innerhalb des Einzugsbe-

reichs E der Ruhelage keine Dauerschwingungen. |

(2.135) Bemerkung:

Ist die Ruhelage Xp S0gar global asymptotisch stabil, so existieren im

gesamten Zustandsraum keine Dauerschwingungen. [

Der Einzugsbereich der Ruhelage kann mit Hilfe der fir den Entwurf ge-
wahlten Ljapunov-Funktion abgeschidtzt werden.

(2.136) Beispiel: Reglerentwurf zur Unterdriickung eines Grenzzyklus

Das nichtlineare Systen

() = ()

(2.137) ? 7
xz(t) = -y x1(t) + e[]—x1(t)}x2(t) + u(t)

(e > 0) besitzt die Ruhelage Xp = 0 und fir u(t) = 0 einen asymptotisch
bahnstabilen Grenzzyklus, fir den in 1. Ndherung gilt

XG1(t) = 2 sinwt

sz(t) = szOSmt

(siehe Beispiel {2.27)).
Korrekturglied u(t) = g(x

Mit Hilfe einer Ljapunov-Funktion wird nun ein
1(t},X2(t)) entworfen, das den Grenzzyklus un-
terdriickt. Wir multiplizieren dije erste Differentialgleichung mit

2z . . . .
w' x,(t), die zweite leferentialgleichung mit x,{t), addieren beide
Gleichungen und erhalten

Q(i) = % gf [wz x%(t) + xg(t)}

e[l—x%(t)] x%(t) + u(t) Xz(t)



2.4 Korrekturglieder 109

Hierbei ist V(x) = % [wzx%(t) + x%(t)] unsere Ljapunov-Funktion.

Wahlen wir

u(t)

-a xz(t) mit a > ¢
so folgt

V(l)

-e (0x5(0) - (ame)xd(r)

Die Ruhelage Xp = 0 ist jetzt global asymptotisch stabil, so daf in der

gesamten Zustandsebene kein Grenzzyklus mehr moglich ist. B

2.4.2 Anwendung der Methode der Harmonischen Balance

Mit Hilfe der Methode der Harmonischen Balance kénnen auf anschauliche
Weise harmonische Grenzschwingungen berechnet und auf Stabilitat unter-
sucht werden. Gleichzeitig kann mit Hilfe dieser Methode festgestellt
werden, welche Veranderungen am Regelkreis vorgenommen werden miissen, da-
mit harmonische Grenzschwingungen erzeugt bzw. unterdriickt werden. Harmo-
nische Grenzschwingungen (nicht jedoch Grenzschwingungen beliebiger Form,
siehe Anmerkung (2.108)) sind genau dann unterdriickt, wenn keine LOsung
der Gleichung der Harmonischen Balance existiert. Die Ortskurven G(jw)

und N;(A) besitzen dann keinen Schnittpunkt.

Der Entwurf von Korrekturgliedern bzw. eine Veranderung des Regelkreises
zur Erzeugung oder Unterdrickung von (harmonischen) Grenzschwingungen
beruht auf einer derartigen Verdnderung der Ortskurven G(jw) oder NI(A)’
daB entweder ein oder mehrere Schnittpunkte auftreten oder aber kein

Schnittpunkt mehr vorhanden ist.

Da in technischen Systemen das lineare und richtlineare Teilsystem hau-
fig durch die technische Realisierung vorgegeben sind (das nichtlineare
Kennlinienglied kann beispielsweise ein verfiighares Stellglied fir die
Regelstrecke sein, die das lineare Teilsystem darstellt), entwirft man

zur Unterdriickung bzw. Erzeugung von Grenzschwingungen oft lineare Kom-

Pénsationsglieder.
Die Vorgehensweise beim Entwurf eines linearen Kompensationsgliedes zur

Unterdrickung von Grenzschwingungen wird anhand des folgenden Beispiels

erliautert:
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(2.138) Beispiel: Unterdriickung von Grenzschwingungen durch ein
lineares Kompensationsglied

Im Beispiel (2.112) wurde ein nichtlinearer Regelkreis nach Bild 2.28
mit einem Dreipunktglied und dep linearen Teilsystem

Gs(s) = v ‘
T
1 2
in Abhangigkeit vonm Verstarkungsfaktor v auf Grenzschwingungen unter-
sucht. Wir betrachten die Parameterkombination v = S5, A, =1, A, =2

1 2

und a = K = 1. In diesem Fall jgt

Vv = 5> ;% (x1 + AZ) = % noR 47

so daB der Fall (c) aus Beispiel (2.112) vorliegt, fiir den die Existenz

von 2 Grenzschwingungen nachgewiesen wurde. Die Grenzschwingungen be-
sitzen die Amplituden

AG1 % 1,73 ; AGZ ® 1,23

und die Frequen:z e VEﬁ. Aus Bild 2.33¢ entnehmen wir, daB die Grenz-
schwingung

(2.139) -y(t)

It

e(t) = 1,73 sin( Y7 1)
asymptotisch bahnstabil ist. [n Bild 2.36 sind durch Simulation des
Regelkreises berechnete Verlaufe yon y(t) und

ebene (y - y -Ebene) dargestellt. Map erkennt deutlich die instabile
Grenzschwingung (gestrichelte Kurve) alg auch die stabijle Grenzschwin-

gung. Zu beachten 1st, daB die Kurven ip Bild 2.3¢ keine Trajektorien
des linearen Teilsystems sind. Da dieses 3.

y(t) in einer Zustands-

Ordnung ist, sind dessen

Trajektorien Kurven in einem dreidimensionalen lustandsraum. Die Kur-
ven in Bild 2.36 sind Projektionen der Traje .

ktorien auf die y-y-Ebene.
In Bild 2.37 sind die zeitlichen v

erlaufe von y(t) ung u(t), die gegen

die stabile Grenzschwingung streben, dargestellt. Aus beiden Bildern

1st zu entnehmen, daB eipe gute (

imulationsergebnissen besteht. Dies ist

darauf zuruckzufihren, dap der periodische Zeitverlauf von y(t) nahezu

sinusformig ist.

Im folgenden wird ein lineares Kompensationsglied G.(s) entworfen, wel-
ches die Ortskurve des heuen linearen Teilsystems GC(S)GS(S) so verdn-
dert, daB kein Schnittpunkt pit der Ortskurve NI(A) der inversen Be-

schreibungsfunktion mehr auftrite.
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Bild 2.36: Verldufe von y(t) und y(t) in der y-y-Ebene (Man er-
kennt deutlich eine instabile Grenzschwingung (innere

dicke Kurve) und eine stabile Grenzschwingung)

byit), uit)
ylt}
1,84 - — _ — —_ _ . - _ _
't
1.0
t
20 -
104
“18H -1 - - _ - A - _ - - 4NV _
Lo T=bi
2n
—-bw-T = 1,42

Bild 2.37. zeitliche Verlaufe von y(t) und u(t), die gegen eine

stabile Grenzschwingung streben
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Die Aufgabenstellung kann unmittelbar mit einem P-Glied der Form

- 4,71
Gc(s) B Vc <5

erfullt werden. Dann liegt nimlich Fall (a) aus Beispiel (2.112) vor

(keine Schnittpunkte zwischen den Ortskurven VC Gs(jw) und NI(A)).

Da der Verstarkungsfaktor des linearen Teilsystems jedoch das statio-
nare Verhalten des Regelkreises (Regelfehler) festlegt, ist man be-
strebt, Kompensationsglieder zy entwerfen, die den Verstarkungsfaktor
des linearen Teilsystenms beibehalten oder unter Umstdnden sogar erhchen.

Aus diesem Grunde wird ein Lead-Lag-Glied mit dem Verstarkungsfaktor
VC = 1 entworfen. In Bild 2.40 ist

6(jo) = 26 (ju)

im Bodediagramm nach Betrag und Phase eingezeichnet. Der bei einer Pha-
sendrehung von -x auftretende Wert 2,12 (6,53 dB) in der Betragskenn-
linie fiihrt bei einem Vergleich mit
o 4
N(&Y *

der Dreipunktkennlinie zu den oben berechneten Grenzschwingungen. Um

diese zu verhindern, heben wir die Phase mit dep Lead-Lag-Glied

S S
6 (s) - 0,77 1“0‘,‘1‘6‘ i 1J - {s5+0,7)(s+0,16)
) [25-8 + 1J[0?04 + i} (s+2,8)(5+0,00)

an, so daB der Regelkreis aus Bild 2,28 (a = K = 1

s A = 1 A =2)
: . 1 C 2
V.= 5) in den Regelkreis nach Bild 2.38 iibergeht. Da das nichtlineare

Teilsystem haufig ein Stellglied ist, das direkt auf die Regelstrecke

Gs(s) wirkt, ist das Kompensationsglieq in Bild 2.38 hinter Gs(s) in
den Ruckfithrzweig gezeichnet,

Gl s)

10
sls+1){s+2)

yit)

u
elt) , ’f . | uih
if | j r
- -1

G.ls)

yit)

(s+0,7}{s+0.16)
(5.28H5+Q0L}

Bild 2.38: Regelkreis zy Beispiel (2.138) mit eingefiigtem

Lead—Lag—Kompensationsglied
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Die Betrags- und Phasenkennlinien von
3 6 (jw)6.(ju)
IISJ CJ

sind wiederum Bild 2.40 zu entnehmen. Bei einer Phasendrehung von -x
(Frequenz w = 2,5) liest man einen Betrag kleiner eins ab, so daB
jetzt Fall (a) aus Beispiel (2.112) vorliegt. Die Gleichung der Harmo-

dIm

J/ Re

! Gyl jwlGfjw)

Ggljw)

Bild 2.39: Ortskurven von NI(A) und Gs(jw) bzw. Gs(jw}GC(jm) nach
Beispiel (2.138)

60
16l4g ~
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N6 les
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Bild 2.40: Logarithmische Frequenzkennlinien des‘linearen'Teilsystems
mit und ohne Lead-Lag-Kompensationsglied (s.Beisp.(2.138))
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nischen Balance hat jetzt keine Lésung mehr, d.h. die Ortskurven NI(A)
und Gs(jw)GC(jm) besitzen keine Schnittpunkte (siehe Bild 2.39). Analog
zu den Bildern 2.36 und 2.37 sind fiir den Regelkreis mit Lead-Lag-Kom-
pensationsglied in den Bildern 2.41 und 2.42 die Verlaufe von y(t),
&(t) bzw. y(t), u(t) in der y—&-Ebene bzw. liber der Zeit dargestellt.

Wir erkennen, daB keine Grenzschwingungen mehr auftreten.

o

\ ylt)

+ N
1 + T —

-5 -4 -3 -2 -1 ]

Bild 2.41: Verlauf von y(t) und y(t) in der y—;—Ebene bei Verwendung
eines Lead—Lag—Kompensationsgliedes (vergleiche Bild 2.36)

buit), yin), 5t
21-

1 ult)

Bild 2.42: Zeitliche Verlaufe von y(t) und u(t) bei Verwendung eines

Lead-Lag—Kompensationsgliedes (vergleiche Bild 2.37) o
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(2.140) Beispiel: Verminderung der Amplitude von Grenzschwingungen bei

Regelkreisen mit toter Zone und instabilem linearen Teilsystem

In unterschiedlichen Anwendungen tritt der Fall auf, daB zundchst ein
linearer Regler fiir eine linear angenommene Strecke entworfen wird.
Wenn Polstellen des offenen Regelkreises in der rechten s-Halbebene
liegen, so daR der offene Regelkreis instabil ist, und wenn sich im
Regelkreis eine bisher nicht berlicksichtigte Nichtlinearitdt befindet,
die niherungsweise durch eine Kennlinie mit toter Zone modellierbar
ist, so konnen im Regelkreis stabile Grenzschwingungen auftreten (siehe

Beispiel (2.132)). Solche Fille sind beispielsweise:
Lageregelungen mit Trockenreibung (Haftreibung)

Digitale Regelkreise mit schlecht ausgesteuerten
D/A-Wandlern oder A/D-Wandlern

Nach Bild 2.34 in Beispiel (2.132) erscheinen bel oberflachlicher Be-

trachtung zwei Vorgehensweisen moglich, derartige Grenzschwingungen zu
unterdriicken:

1. Der Verstarkungsfaktor des of fenen Kreises wird soweit abgesenkt,
bis kein Schnittpunkt der Ortskurven G{jw) und N (A) mehr auf-
tritt.

2. Mit Hilfe eines linearen Kompensationsgliedes wird die Ortskurve

des linearen Teilsystems bel vorgebbarem Verstarkungsfaktor so ver-

andert, daB keine Schnittpunkte in der Ortskurvenebene mehr auf-

treten (siehe Beispiel (2.138)).

Bei genauer Betrachtung zeigt sich aberT, daR bei einem derartigen Vor-

gehen zwar tatsidchlich eine Grenzschwingung vermieden wird, doch wird

nun der gesamte Regelkreis instabil!

Kleine Amplituden der ReglerausgangsgroBe, welche innerhalb der toten

Zone verbleiben, zeigen namlich keinerlei Wirkung auf die Strecke.

Wegen der angenommenen Instabilitat des offenen Regelkreises klingen

die ZustandsgroBen zundchst unvermeidbar auf, bis uber die grofler wer-

dende AusgangsgroBe y(t) schlieBlich auch die Tote-Zone-Kennlinie wei-
ter ausgesteuert wird. Fir groBe Aussteuerungen 143t sich die Kennlinie

aber niherungsweise durch einen (linearen) Verstarkungsfaktor m (Stei-

gung der Tote-Zone-Kennlinie) ersetzen. Der zu diesem Verstarkungsfak-

tor gehorige Wert -1/m ist in der Ortskurvenebene aber gerade der am

weitesten rechts liegende Punkt auf der Ortskurve-NI(A). Wenden wir-
fir dieses lineare Ersatzsystem das Nyquistkriterium (2.124) an, zeigt
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sich, daB die stetige Winkeldnderung der Ortskurve G(jw) vom Punkt -1/m
aus den geforderten Wert (na + an)n wegen n_ £ 0 niemals annehmen
kann, da die Ortskurve zur Grenzschwingungsunterdrﬁckung gerade so ver-
bogen wurde, daR sie rechts vom Punkt -1/m verbleibt. Um den Regel-
kreis wenigstens fir grofle Amplituden zu stabilisieren, muR die Orts-
kurve G(jw) den Punkt -1/m nach dem Nyquistkriterium entsprechend oft
umschlieBen {in Beispiel (2.132) wegen n_ = 1 genau einmal). Dann ist
aber mindestens ein Schnittpunkt mit der Ortskurve NI(A) der Begren-
zungskennlinie unvermeidbar.

Eine stabile Grenzschwingung ist also hier die einzige Moglichkeit,

das weitere Aufklingen der Systemgréfen zu vermeiden, da die Ruhelage
Xp = 0 ohne direkte Eingriffsméglichkeiten in die Strecke nicht zu sta-
bilisieren ist. Ein Reglerentwurf kann sich neben der Befriedigung des
Nyquistkriteriums fiir den Punkt -1/m nur auf die Verminderung der

Grenzschwingungsamplitude AG und méglicherweise auf die Beeinflussung
der Grenzschwingungsfrequenz e konzentrieren.

Nach Bild 2.34 ist die Amplitude der Grenzschwingungen dadurch vermin-
derbar, daB der Verstarkungsfaktor des offenen Regelkreises vergros-
sert wird. Dann schneidet die Ortskurve des linearen Teilsystems die
negative Achse in Bild 2.34 weiter links. Die zu solchen Schnittpunk-
ten gehorigen Amplitudenwerte der Grenzschwingung sind kleiner. Wenn
ein linearer Regler fiir die zundchst linear angenommene Regelstrecke
entworfen wurde, ist dessen Verstdarkungsfaktor (ebenso wie der Ver-
starkungsfaktor der Regelstrecke) jedoch bereits festgelegt. Eine
(globale) Erhohung des Verstdarkungsfaktors kommt auBerdem aus Griinden
von StellgrdBenbeschrénkungen meistens nicht infrage. Um den bereits
entworfenen Regler im Prinzip beibehalten zu konnen, kann hiufig die
folgende Vorgehensweise zur Verminderung der Grenzsch
mit Erfolg angewendet werden:

wingungsamplitude

In Abhédngigkeit vom Regelfehler e oder der ReglerausgangsgriRe u wird
der Verstarkungsfaktor des entworfenen R

flir verschwindenden Regelfehler bzw. verschwindende Reglerausgangs-
groBe am groBten ist und sich dann allmi

mindert, der beim linearen Reglerentw

eglers so verandert, dal er
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werden, bis diese eine annehmbare Grofenordnung besitzt, vorausgesetzt,
der Regelkreis ist fiir den entsprechenden Verstidrkungsfaktorbereich
stabil. Der variable Verstarkungsfaktor nach Bild 2.43 konnte ebenso

vor den linearen Regler G, gesetzt werden.

r __________ -
Variabler I Kenntinie '
Verstdrkungs- mit |
Linearer  faktor | toter Zone |
Regler | |
r e o U o = [ G i yA
[ P - s ’ o
i- e vl |
| |
| I
L Regelstrecke _l

Bild 2.43: Verminderung der Amplitude von Grenzschwingungen in einem
Regelkreis mit toter Zone und instabilem linearen Teil-

system Gch

Die Verminderung der Grenzschwingungsamplitude durch einen variablen

Verstérkungsfaktor funktioniert ebenfalls, wenn eine stabile Grenz-

schwingung in einem Regelkreis mit instabilem linearen Teilsystem und

einer Lose oder einer Dreipunktkennlinie auftritt.
h Bild 2.33c zwei Grenzschwingungen.

Im Falle einer Drei-

punktkennlinie existieren dann nac
Die stabile Grenzschwingung ist gerade die Grenzschwingung mit der
kleineren Amplitude und die bisherigen Uberlegungen gelten analog.

Tritt jedoch eine stabile Grenzschwingung in einem Regelkreis mit

Stabilem linearen Teillsystem und einer Dreipunktkennlinie auf, so ist

die stabile Grenzschwingung die Grenzschwingung mit der groBeren Ampli-

tude. Bei einer VergroBerung des Verstarkungsfaktors des linearen Teil-

systems vergrofert sich dann unerwiinschterweise auch die Amplitude

der Grenzschwingung.



3 Funktionalanalytische Methoden zur Stabilitits-
untersuchung nichtlinearer Systeme

In diesem Kapitel werden nichtlineare Regelkreise mit Hilfe funktional-
analytischer Methoden untersucht. Die Funktionalanalysis ist ein breites
Gebiet der Mathematik mit einer Fille von allgemeinen Sdtzen, aus denen
wir Aussagen iber nichtlineare Regelungssysteme gewinnen kénnen wie
allgemeine Stabilitdtssitze und Abschédtzungen von SystemgroBen.

Im Mittelpunkt der gewdhnlichen Analysis steht die Funktion. Dementspre-
chend ist Gegenstand der Funktionalanalysis das Funktional oder der
Operator (hier synonym: die Abbildung). Wie kénnen wir die Funktional-
analysis auf Regelungssysteme anwenden ? Dazu betrachten wir ein belie-
biges Ubertragungssystem nach Bild 3.1:

y
===_>

jwn

Bild 3.1: Ubertragungssystem in Eingangs~Ausgangs—Darste1lung

Auf das System S wirkt die (vektorielle) Eingangsgrofe r, die Ausgangs-
groBe ist y. Zu jeder Eingangsfunktion I erhalten wir alsc durch das
System S eine Ausgangsfunktion Y- Oder: S vermittelt eine Abbildung

I = y. Dies schreiben wir als

(3.1) Yy = Sr

Wir nennen § auch die Abbildung oder den Operator des Systems. Es muf
deutlich gemacht werden, dafB in (3.1) I und y nicht etwa einzelne Werte

darstellen, sondern daR durch S einer ganzen Zeitfunktion r komplett
eine Funktion Y zugeordnet wird,

Zur Unterscheidung: Mit I, y oder r(.), y(*) werden Funktionen bezeich-

net, wahrend der Wert an einer Stelle t mit r(t), y(t) = (S r)(t) ange-
geben wird.
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Obwohl wir jetzt die Moglichkeit der Interpretation des Systems S als
Operator erkannt haben, kdénnen wir noch nicht beginnen. Wie in der ge-
wohnlichen Analysis auch fehlt zu der Systemgleichung (3.1) noch die
Angabe von Definitions- und Bildbereich. Beide sind Mengen von Funktionen
(Funkticnenrdume). Es ist jedoch notig, abhdngig vom mathematischen
Riistzeug und vom Anwendungsziel, die Funktionen zu spezialisieren. In
diesem Kapitel arbeiten wir ausschlieBlich in den Funktionenrdumen Lg,

die im Anhang erkldrt werden, siehe (A3.22),(A3.33).

Im Abschnitt 3.1 wird zundchst ein Standardregelkreis dargestellt, auf
den sich die Aussagen dieses Kapitels beziehen. Um funktionalanalytische
Methoden auf regelungstechnische Problemstellungen anwenden zu konnen,
wird ein neuer Stabilitatsbegriff eingefihrt, der sowohl den mathemati-
schen Erfordernissen als auch den Problemen von praktischen Anwendungen
gerecht wird. Es werden drei allgemeine Stabilitatssdtze vorgestellt,

die Aussagen mit diesem Stabilitidtsbegriff liefern.

Der lediglich an den Ergebnissen interessierte Leser kann Abschnitt 3.1

iberspringen und direkt zu den folgenden Abschnitten iibergehen, in denen

die allgemeinen Stabilitadtssatze fiir die Fialle Ein-/Mehrgrofensystem,

und LZ-/LQ—Stabilitét konkretisiert werden. Zeitkontinuierliche und zeit-

diskrete Systeme werden stets parallel behandelt.

3.1 Grundlagen

3.1.1 Der nichtlineare Standardregelkreis und die Stabilitdtsbegriffe

Wegen der Fiille der moglichen nichtlinearen Regelkreise beschranken wir
bei der eine Aufspaltung in ein lineares
welches Nichtlinearitaten enthal-

uns hier auf eine Struktur,
Teilsystem I und in ein Teilsystem N,

ten darf, méglich ist. Hierdurch sind aber bereits viele praxisrelevante

Anwendungsfalle erfaBt.
F4

1<

-

Bild 3.2: Nichtlinearer Standardregelkreis
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Wir wadhlen fir das lineare System den Buchstaben I, um g fir die

Gewichtsfunktion bzw. Gewichtsfolge und G fir die Ubertragungs-
funktion (Laplace- bzw. Z-Transformierte von g) frei zu haben.

An dieser Stelle bleibt noch offen, ob es sich um ein Ein- oder Mehr-
grofensystem bzw. um ein zeitkontinuierliches oder zeitdiskretes System
handelt. Die allgemeinen Methoden erméglichen es, zuniachst alle diese
Falle gemeinsam zu behandeln.

Der Regelkreis weist zwei EingangsgroRen r, z auf. Nicht bei jedem Sy-
stem werden tatsidchlich zwei Eingange auftreten, doch ist es gut denkbar,
daB neben einer FiihrungsgréBe auch eine StorgroBe angreift. Wir legen
uns aber nicht fest, ob nun I Fiuhrungsgrofe und z StorgroBe ist oder um-
gekehrt. Ebenso stellt das Strukturbild 3.2 nicht unbedingt die gewohnte
Aufspaltung in Regler und Strecke dar, sondern wir miissen sowohl die
Strecke als auch den Regler nach linearen und nichtlinearen Anteilen sor-

tieren, um auf den dargestellten Regelkreis zu kommen. Dies ist sicher
nicht immer méglich.

GemaB den einleitenden Bemerkungen werden I und N als Operatoren auf-
gefaBt, mit denen wir die Systemgleichungen

€ = r-y
(3.2) u = Ne+z |
Yy = Iu

anschreiben. Die Funktionen I, z, &, u, vy legen wir fiir das folgende als
Elemente eines Raumes L; fest. Derartige Funktionen sind in der p-ten
Potenz absolut integrierbar. Die Raume L" werden in (A3.22), (A3.33) na-
her erliutert, Dementsprechend sind r ung N Operatoren auf L" (Abbildun-
gen von L" in L;). Zusatzlich gehen wir im gesamten Kapitel von der Kau-
salitdt der Teilsysteme I und N aus (siehe Definition (A3.53)). Dies ist
bei technischen Systemen immer gewdhrleistet.

. . n . N
Die Riume Lp sind Banachraume (siehe (A3.8)). Die fir uns wichtigste

Eigenschaft eines Banachraums ist die Verfiigbarkeit einer Norm |
(siehe Definition (A3.5)). Fir eine Funktion f ¢ L" sind wir damit in

der Lage, durch [1£]]_ ein Mag einzufihren, mit dem die "Groge" der
Funktion f beschrieben werden kann.

Um Verwechselungen von Normen
verschiedener Raume L; ZU vermeiden

p indiziert.

, wird auch das Normzeichen mit

(3.3) Beispiel: Funktionennormen

Funktionen des L_(R") sind iiber dep reellen Zahlen t > 0 definiert und
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Bild 3.3: Beispiele fir Funktionen aus L_(R")

iberall beschrdnkt. Die Norm im Raum Lm(R+) ist nach (A3.24) die

Supremumnorm. Fiir die Funktionen Xx;, X, in Bild 3.3 1ist
eyl = 2 5 lxyll, = @ -

Die Norm im Raum LZ(R+) lautet nach (A3.23)

lixll, = [f Kol at]

ist keine Funktion aus LZ(R+)'
Die Norm ist jedoch nicht

| =

Fir x, divergiert dieses Integral; X,
Die Funktion x, kénnte zu L,(R") gehdren.

direkt aus der Zeichnung ablesbar, sondern muB ausgerechnet werden. ]

itels steht folgende Fragestellung: Beliebige

Im Mittelpunkt dieses Kap
Ist es dann méglich, fur dern

Eingangsfunktionen r, z seien vorgegeben.
Regelkreis nach Bild 3.2 die ngroRe' (Norm) der Ausgangsfunktion y und
u mit endlicher Schranke abzuschatzen? Bei positi-

die der Funktionen e, u
ver Antwort nennen wir den Regelkreis stabil. Existieren keine endlichen
Schranken, ist der Regelkreis instabil. Dies fassen wir in folgende

Definitionen:

(3.4) Definition (Schwache L;:Stabilitét):

Ein Ubertragungssystem nach Bild 3.1 wird schwach Lg-stabil genannt ,wenn
n

eine Funktion ¢ existiert, mit der fiir alle Eingangsfunktionen r e Lp
< ol]|rli,]
[yll, <@ Izl

gilt. Entsprechend heift ein Regelkreis nach Bild 3.2 schwach Lg—stabil,

. n .
wenn es Funktionen ¢, ¢ gibt, mit denen fir aller, z ¢ Lp gilt

I A

[yl 1y < otz Ty Hzllp

1A

[l < otlzlpe H1zl1)
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(3.5) Bemerkung (BIBO-Stabilitdt):

Die Funktionen des Lg sind tberall beschrinkt. Bei einem schwach
Lg-stabilen System gehoren zu beschrinkten Eingangsfunktionen immer
beschrankte Ausgangsfunktionen da diese Elemente des L sein miissen.
Die schwache L -Stabilitdt ist also der bekannteren BIBO-Stabilitit
(bounded input - bounded output) dquivalent. |

(3.6) Definition (L"-Stabilitit):
|

Gibt es bei einem schwach Lg—stabilen System entsprechend Definition
(3.4) Abschatzungsfunktionen ¢, ¢, die linear in flrll und Ilgllp
sind, so daB mit einer Konstanten C

<C . n
IJXpr < f|£||p fir alle I e Lp

bzw. mit Konstanten C, bis C

1 4

< C
Hxllp < ey el » ¢ lzll, . )
fir alle r,z e Lp

Hully ey lIzll, « ey lzll
gilt, sprechen wir von Lg—Stabilitét. [

Die Lp Stabilitdt ist also dem Begriff der Beschrinktheit eines Opera-
tors im Raum Lp nach Definition (A3.18) #quivalent.

Bei der Lp-Stabllltat 1st im Gegensatz zur schwachen LE—Stabilitét ge-
sichert, daB fir kleiner werdende EingangsgroBen |[r||_, ||2]|p

p
auch die AusgangsgréBen gegen null streben- ||e|| i\u|| |!1||p
Es ist nicht notig, auch die Abschatzbarkeit von ]]e]] in der Defini-
tion (3.6) zu fordern; sie folgt vielmehr bereits aus = r-y und An-

wendung der Dreiecksunglelchung (A3.6).

(3.7) Bemerkung:

Die oben definierten Stabilitdtsbegriffe beziehen sich nur auf das Ein-
gangs-Ausgangs- Verhalten von Systemen. Im allgemeinen ist es nicht zu-
lassig, von der LD -Stabilitdt etwa auf die Stabilitdt innerer Zustands-

groBen der Teilsysteme N und r zu schlieBen. Dies bedarf gesonderter
Uberlegungen. [ |

3.1.2 Allgemeine Stabilitdtssitze

. n .
Zum Nachweis der Lp—Stab111tat dienen die nachfolgenden Sitze:
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giaeme n
(3.8) Satz (Existenz, Eindeutigkeit und Stabilitdt im Raum Lpl:

Es liege ein nichtlinearer Standardregelkreis nach Bild 3.2 mit den

Systemgleichungen
e = r-x

(3.9) u = Ne+z
y = Lu

vor. I sei ein linearer Operator {siehe Definition (A3.16)}), der mit

einer Konstanten y > O die Bedingung
) n
(3.10) [z ull, < vllull, fir alle u e Ly

erfiille, d.h. I ist beschrankt mit der Operatornorm \|£||p <y
(siehe Definition (A3.18)). Der Operator N, der nichtlinear sein darf,

geniige mit einer Konstanten v > 0 den Bedingungen

NO =0
(3.11) " ]

| N e; - N e2||p < v[|51-gz[[p fir alle e ,e; ¢ Lp ,
d.h. N ist Lipschitz-stetig (siehe Definition (A3.10)). Gilt die
Ungleichung
(3-12) a := vy v < 1,

n . . .
e . . i ndeutige Losungen
so existieren fir alle Eingangsfunktiomen r,z e L, €l 8 &

fir e,u,y e Lg. Diese lassen sich durch die Eingangsgrofen r, z abschat-

zen:
1 } ,
[yll, £ 7% Lol lzl 1, *+ Izl
1 ] ’
(3.13) elly <5 Chelly « vzl
NI

) n_ 1. Die Lg en
ist der Regelkreis dann Lp stab{l Die Losung
tetig von den Eingangsgrofen r, z ab:

’XZ) zwei Losungen der Regelkreis-
(3.13) auch fir die Differenzen

Nach Definition (3.6)
fir e, u, y hangen auBerdem S
Sind (31,51,31,51,11) und (12152:32:52
gleichungen, gelten die Abschatzungen

Ar = 1, und Az,Ae,d8,8y entsprechend. B

(3.14) Bemerkung:

Nach den Voraussetzungen (3.10) und (3.1]11) sind auch die Teilsysteme .
initi - i Systeme.

T und N entsprechend Definition (3.6) Lp stabile Sys
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Der Beweis des Satzes erfolgt im AnschluB an zwei Beispiele.

(3.15) Beispiel: Inkrementelle Sektorfunktionen

Kennlinienglieder sind spezielle nichtlineare Ubertragungsglieder, bei
denen der momentane Wert der AusgangsgroBe nur vom momentanen Wert der
EingangsgroBe abhingt, nicht aber von der Vorgeschichte der Eingangs-
groe. Die Bedingung der Lipschitz-Stetigkeit (3.11) ist fir Eingrof3en-
kennlinienglieder gut graphisch darstellbar.

bneltt)

-V v
elt)

J

Bild 3.4: Inkrementelle Sektorfunktion

Die Kennlinie muB durch den Ursprung laufen und die Steigung darf in
jedem Punkt vom Betrag nicht gréBer als v werden. Dann erfiillt das nicht-
lineare System N die Bedingung (3.11) in allen Riumen Lp (1 <p < =)

Wir bezeichnen derartige Nichtlinearititen als inkrementelle Sektorfunk-
tionen (incrementally conic}. B

(3.16) Beispiel fir einen nichtlinearen Standardregelkreis

Das lineare System I sei ein einfaches P-Glied mit Verstdarkungsfaktor V.
Dann ist |iP|!p= Y =V in allen Riumen Lp (1 <p<e),

(Nel(t}= kleft)| z

Bild 3.5: Einfaches Beispiel eines nichtlinearen Regelkreises

Das nichtlineare Kennlinienglied genigt mit v = k der Bedingung (3.11).
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Gilt « = yv = kV < 1, so ist nach Satz (3.8) der Regelkreis LD-stabil.
Die Aussage ist hier unabhdngig von der Wahl von p; sie gilt fir alle p
mit 1 < p < ®». In Bild 3.6 ist fir z = O die GroBe y bei einer speziel-

len Erregung r dargestellt.

be(t) byit)

1 __________
A
//////, | N
N

O

1-kV

Bild 3.6: Ein- und AusgangsgréBe des Regelkreises nach Bild 3.5

Fir dieses sehr einfache Beispiel konnten die SystemgrdBen in Bild 3.6

explizit angegeben werden, was bei komplizierteren Systemen allgemein

nicht méglich ist. Um die Aussagekraft von Normabschdtzungen zu ver-

deutlichen, soll die nach (3.13) gewonnene Abschatzung

KV
(3.17) Hyll, < v Tl

mit den exakten GroBen nach Bild 3.6 verglichen werden. Bisher ist noch

nicht festgelegt, welche spezielle Norm der Raume Lp
len. Interessieren die Maximalwerte, wahlen wir die Supremumnorm des

Raumes L_. In Bild 3.6 lesen wir

wir verwenden wol-

kV
lef], = 1 uwnd [l = T3

ab. Die Abschatzung (3.17) 1st somit im Raum L_ die kleinstmogliche.

Interessiert man sich beispielsweise fir die quadratische Gewichtung

der SystemgroBen, welche ein MaB fur die Energie ist, benutzt man statt-

d .
essen die Normen des LZ‘ [ ]

Beweis des Satzes (3.8):

Wir setzen die Systemgleichungen (3.9) ineinander ein und erhalten auf -

grund der Linearitat des Operators [ (siehe (A3.17)):

(3.18) y = IIN(r-y) +2] = L N(r-y) + Tz =: Ty.

niert. T hdngt also noch pa-

Der Operator T wird fir festes I und z defi
anachschen Fixpunktsatz

rametrisch von r und z ab. Wir wenden den B
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(A3.12) an, um zu zeigen, daB die Gleichung

y = Ty

eine Losung besitzt. Dazu ist zu prifen, ob der Operator T kontraktiv
ist (siehe Definition (A3.10)):

[T - T X2|‘p = |Ir N(r-y) -1 E(Eflz)‘{p

© HICyg) = Ny U < El ] NGey,) - 8oy, ],

[N

wil(r-y,) - (-ypll, = «Hyp-z, 1l

Zur Umformung wurden die Linearitit von I (A3.17), die Eigenschaft der
Operatornorm (A3.20) sowie die Voraussetzungen (3.10) und (3.11) einge-
setzt. Da « < 1, ist die Kontraktivitat gesichert, sie hingt offen-
sichtlich nicht von den Eingangsgréfien r, 2z ab. Nach dem Banachschen

Fixpunktsatz hat die Regelkreisgleichung (3.18) also genau eine Losung
y - Wegen

9 =

K]

-y,
4 = Ne+:z
haben wir dann auch eindeutige Losun

gen fir e und u. Zum Beweis der Ab-
schatzungen (3.13) bildep wir

by L17Y¥, = T E(L]'X1)' r E(EQ'XZ)+ 'z,;-rez
= IIN(r,-y,)- Mry-yp)+ z4-2,1

Daraus folgt mit der Dreiecksungleichung (A3.6);

Hoxlly < e, [HNCe -y - Neryy ) - laz] ], ]
< M- ezl ]
Al

o [oet 1, 1oyl ]+ vlleal]

Eine Umsortierung nach ||Ay]|p ergibt

Q-a)flayi] ) < shlarl], + oz

Daa < Ten 1 = 4 > 0 kann durch 7 -

« dividiert werden, ohne daB sich
das Ungleichheitszeichen umkehrt:
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:
[yl 1, < =5 Cellorfly 1ozl -

Entsprechend ergeben sich die Abschitzungen fiir ae, au aus den System-

gleichungen (3.9) unter erneuter Verwendung der Dreiecksungleichung
(A3.6).

Wegen T 0 = 0 und N O =0 ist offensichtlich r =z =e =u=y =0

eine L&sung der Regelkreisgleichungen, weshalb wir als Bezug in den

Differenzen auch stets (-)2 - O wihlen konnen. Hieraus folgen die Ab-

schatzungen (3.13). .

(3.19) Bemerkung:

Der Praktiker bringt Existenzbeweisen gewohnlich nich
entgegen. Tatsachlich gibt es das Problem der Nichtexistenz im techni-
Irgendetwas passiert immer. Die Problema-

t viel Verstandnis

schen Bereich auch gar nicht:
tik liegt vielmehr in der mathematischen Modellbildung: Existiert die

Losung eines mathematischen Modells nicht, so ist das ein untrigliches

Zeichen, daB die mathematische Modellierung das technische Sys
einleitende Bemerkungen zum Anhang A1).

tem nicht

genau genug beschreibt (vgl.
en sei aus der Relaistechnik der "Gleiteffekt"
bei dem das System durch sehr schnelles
iner Schaltgeraden

Als ein bekanntes Phédnom
genannt (siehe Beispiel (1.46)},
Offnen und SchlieBen etines Schaltgliedes entlang €
gleitet. Eine einfache Modellbildung kann diesen Effekt eigentlich gar

nicht erkliren: Bei einer Darstellung in der Zustandsebene laufen die

Trajektorien von beiden Seiten der Schaltgeraden auf diese zu, sie enden

dort. Man behilft sich hier durch die 7usatziiberlegung, daB bisher ver-
ynamiken (unmodelled dynamics") die Trajektorie

nachlissigte Systemd
rlaufen lassen. Dieser

doch ein kleines Stiick iber die Schaltgerade hinube
Effekt wiederholt sich sehr schnell, so da@ die Trajektorie scheinbar

auf der Schaltgeraden ”herunterrutscht".

Hier kann durch Zusatzannahmen das eigentlich nicht ausreichende mathe-

Fs ist jedoch z.B. nicht méglich, die

matische Modell gerettet werden.
eim "Gleiten" schaltet. Dazu

mit der das Relais b

Frequenz zu bestimmen,
eicheres mathematisches Modell auf-

muB ein neues, genaueres und umfangr

gestellt werden.
wie er mit Satz (3.8) moglich ist, kann daher

Ein Existenzbeweis,
Bezug auf diese Problematik

sicherstellen, daB die Modellbildung in
in sich abgeschlossen ist, und das Vertrauen in das Modell stdrken. [
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(3.20) Bemerkung:

Bei zeitdiskreten Systemen ist die Frage nach der Existenz von Losungen
meistens recht einfach zu beantworten: Wenn die Systemgleichungen in re-
kursiver Form vorliegen (d.h. ein Wert zu einem bestimmten Zeitpunkt
wird als Funktion der vorangegangenen Werte berechnet), erhilt man kon-
struktiv durch einfaches Ausfiihren der Rekursion eine Losung, womit die
Existenz gesichert ist. |

Der Stabilitdtssatz (3.8) schrénkt die zugelassenen Nichtlinearitdten
recht stark ein. Insbesondere die Forderung der Stetigkeit an das nicht-
lineare Teilsysten (3.11) schlieBt Schaltglieder vollig aus. Wir geben
einen weiteren Satz an, 1in dem die Forderung der Stetigkeit fallengelas-
sen wird. Die Aussagen dieses Satzes sind dann aber auch nicht so weit-
gehend: Wihrend Satz (3.8) die Existeng und Eindeutigkeit als Ergebnis
lieferte, wird in Satz (3.21) bereits die Existenz von Losungen der
Regelkreisgleichung in geeigneter Form vorausgesetzt. Es wird dazu ange-
nommen, es existieren Losungen in den erweiterten Funktionenraum Lne,
siehe (A3.37). In Lge sind auch Funktionen enthalten, die im Unendlichen
beliebig aufklingen koénnen. Durch dieses Vorgehen wird zwar die Existenz
"im Kleinen" (lokal) vorausgesetzt; durch die Benutzung des Raums Lne

wird aber auf das Stabilitatsverhalten "ip GroBen" nicht vorgegriffen.

Zur Prifung der lokalen Existenz von Lésungen im Falle zeitkontinuier-

licher Systeme kénnen zum Beispiel die Sitze im Anhang A1 herangezogen

werden.

(3.21) Satz (Stabilitit im Raum L;l:

Es liege wieder der Regelkreis nach Bild 3.2 mit den Systemgleichungen

&€ = r-y
(3.22) U= Ne+z,
Yy = ru

vor. Der lineare Operator T und der Operator
;v > 0 die Bedingungen

N erfillen mit Konstanten

3.23 r < i n

( ) Ilr gllp < Yflglfp fir alle u Lp ,
(3.24) [N ell) < lell, fir alle e ¢ L,
d.h. fir die Operatornormen gilt ]|£]|p < v, ||N]|p < v
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Fiir beliebige Eingangsfunktionen r,z e Lt gebe es Losungen der System-
gleichungen (3.22) e,u,y ¢ L;e . Gilt die Ungleichung

{3.25) ¢ = yYv <l o,

ist e,u,y € L fir alle r,z € Lg und es folgen die Abschatzungen

1
gl € 5 Cellell, ezl

:
(3.26) ||sl|p_m”|£”p* vllzll,]

N

N
L
<
=
pwl
+
|3
s~}
-

[ull, < 3=
Der Regelkreis ist Lg-stabil.

Die Forderung an das lineare Teilsystem ist die gleiche wie in Satz

(3.8). An das nichtlineare Teilsystem wird hier gegenitber (3.11) die
schwichere Bedingung (3.24) gestellt, die wir uns fiir EingréBenkenn-

linienglieder wieder gut veranschaulichen konnen:

(3.27) Beispiel: Sektorfunktionen

Lauft die Kennlinie entsprechend Bild 3.7 im Sektor mit den Stéliungeﬁ
5 ® fiillt. Hier sind auc
+ v, ist (3.24) in allen Réumen Lj (1 <p < =) erfu

Hsgi r nicht
Unstetigkeiten und Hystereseeffekte zuldssig, wenn nur der Sekto

; it "Sektor-
verlassen wird. Derartige Nichtlinearitaten haben den Namen "Se

funktionen" (conic functions).

b(Nellt)

/AV )

v ———

__._————[———”

Bild 3.7: Sektorfunktion
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Beweis des Satzes (3.21):

Die Systemgleichungen (3.22) werden ineinander eingesetzt, so daB wieder
die Regelkreisgleichung

(3.28) y = I N(r-y) +r 2z

entsteht. Nach Voraussetzung existiert fiir alle I,z e L" eine Losung

y € Lge. Wir wenden die Abschneideoperation (')t nach (A3.38) auf (3.28)

an und benutzen die Kausalitit der Operatoren I und N nach (A3.53):
Lo = WENEp)liv (02l = (2 NG-y) 3+ Ir 2ol

Die abgeschnittenen Funktionen sind immer Funktionen des Ln, deshalb
existieren die Normen:

el = I MEp I, etz )

I A

IHLML-DtJtHP * Iz 3,

< HZN@E-p) [+ (e zell,
SR SORTREITIIRIPNTR
<

Y Ul [Tyt vzl

| A

Y V(HLHP + HXth) + YHin .

Neben Dreiecksungleichung (A3.6) und Operatornorm (A3.20) wurde beim

Z. Schritt der Abschidtzungen die Eigenschaft der Beschranktheit der
Operatoren auf L" ausgenutzt: Da (E'X)t £ L;, ist neben [r N(r'l)t]t

auch r ﬂfl‘l)t Element von Lg. Die Norm der letzten Funktion ist aber

groler als die der ersten,
Da « = yv < 1, kann man die letzte Ungleichung nach

,'Xt‘, auflosen,
und man erhilt die Aussage P

1
e, < Tatellzlly « vlfzl;]
Die rechte Seite ist unabhdngig von t. Nach (A3.39) , (A3.40) ist daher
n . .
sogar y e Lp und die Ungleichung gilt auch fir ||X|[p. Die Abschdatzungen

fir IIEIIP, ||£[|p werden ebenso gewonnen.

n Der Regelkreis ist also
Lp-stabil.
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Es widre nicht statthaft, direkt in der Regelkreisgleichung (3.28) die
Normen zu bilden, denn y ist nur als Funktion des L;e vorausgesetzt;
y(t) kénnte also fiir t ~ = beliebig aufklingen, dann gibt es aber keine

N . a
orn |1yl

Satz (3.21) 1aBt gegeniiber Satz (3.8) zwar Schaltglieder zu, doch darf
auch dort der Schaltpunkt nicht bei e(t) = O liegen, da ein derartiges
Zweipunktglied keine Sektorfunktion ist. Wir schlieRen daher diese Voran-
stellung allgemeiner Sdtze mit einem dritten ab, der auch derartige
Nichtlinearitidten zuldBt. Die Aussagen dieses Satzes sind dann aber gegen-

iber Satz (3.21) schwicher.

(3.29) Satz (Schwache L&*Stabilitﬁt):
p—>

Es gelten die gleichen Voraussetzungen wie in Satz (3.21) mit Ausnahme
der Beschranktheit (3.24) des Teilsystems N. Statt dessen gebe es eine
monoton wachsende Funktion v(+), mit der sich die Norm der Ausgangs-

gréBe des nichtlinearen Teilsystems durch die der Eingangsgrofe ab-

schitzen lasse:

i 1 Ln
(3.30) [N ell, < v(l]el ) fir alle e e L)
LaBt sich die Funktion v(+) mit Konstantenm v, vy > 0 durch
(3.31) v(g) < v+ vk fir alle € > 0

abschdtzen und gilt

(3.32) @ 1= yvy < 1,

. . . n . .
S0 1st der Regelkreis schwach 1" -stabil. Zu jedem r,z e Lp existieren

daher Losungen e,u,y e Lg, fiir die die Abschatzungen

Lty wel Izl ], #rllzll)

RPARP
1
(3.33) lelly < =g Drog * [elly +riizl]y]
1
Hull, ¢ 75 (% * vptielly o+ Lzl
angegeben werden kénnen. [

Beweis:
Bewels:

Wie im Beweis des Satzes (3.21) gehen wir von der Regelkreisgleichung
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(3.28) aus und gelangen zu der Abschitzung

[yl < 1E M-y, |

LIS NI ITPNE

o -
Unter Verwendung von (3.30) ergibt sich

el [y < v otlngyg 1)+ vllzg

| A

(3.30) [zl < v vQlelly + gl 1)+ allzi ]

Setzen wir (3.31) ein, kann die Ungleichung unter der Voraussetzung

« - 1 < 1 nach llxtllp aufgelost werden:
Hrelly < v = vy Ul Tyl 1) o ollal ]

g T v ) < vy s v llehly « izl 1)

ye 1, < o *ellzll, + vzl ]

Da die rechte Seite dieser Ungleichung wieder unabhédngig von t ist,
folgt y ¢ Lp und die Giiltigkeit dieser Unglelchung auch fir ]|X|‘
Entsprechend zeigt man die Existenz von €e,u e L" und deren Abschat*
zungen. Der Regelkreis ist daher schwach Lp—stabll. .

(3.35) Bemerkung :

Abweichend von Satz (3.29) 148t sich oft fiir spezielle Nichtlinearitéa-
ten, die die Bedingung (3.31) nicht erfillen, eine Aussage gewinnen.
Ebenso kann fiir Nichtlinearititen, die (3. 31) geniigen, eventuell eine
scharfere Abschdtzung als (3. 33) gewonnen werden. Wir benutzen dazu

die Normabschidtzungsfunktion uf . *) und gehen direkt von der Ungleichung
(3.34) aus, die wir in der Form

(3.36) %—u - T < vlusp)

mit den Abkiirzungen

(3.37) L N RS LR

schreiben. Die Ungleichung (3. 36) kann sehr gut graphisch ausgewertet

werden, indem man den Graph der Funktion v mit einer Geraden der Stei-

gung 1/v vergleicht. Das soll an Beispielen verdeutlicht werden. .
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(3.38) Beispiel: Normabschidtzungsfunktionen

Besonders einfach erhilt man die Normabschidtzung v(-) bei EingroBenkenn
liniengliedern, wenn man im Raum L_ arbeitet. Der Raum L_ wird durch di
Supremumnorm normiert. Deshalb koénnen fir die Nichtlinearitdten nach
Bild 3.8 die Normabschdtzungen v(+) in Bild 3.9 unmittelbar angegeben

werden.

$ (Neltt) $Nelit) }(Nelit)

elt) ult) \ eQ}

(c]

Quadrierer, Sinusfunktionsgeber

{a) (b}

Bild 3.8: Zweipunktglied mit Hysterese,

b uiz) ) buie)

4 5

| Riad

(a) (b le)

Bild 3.9: Normabschdtzungsfunktionen v(+) der Nichtlinearitaten

aus Bild 3.8

lc)

{a) (b)

Bild 3.10: Konstruktion der Losungsmengen der Ungleichung (3.36)
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Zur Auswertung der Ungleichung (3.36) zeichnen wir eine um £ nach unten
verschobene Gerade der Steigung 1/y und die um p nach links verschobene
Funktion v(+). Alle Punkte v, bei denen die Gerade unterhalb der Funk-
tion v(+) verlduft, gehéren zur Losungsmenge der Ungleichung (3.36)
(dick gezeichnet). In den Fdllen (a) und (c) gibt es eine obere Schranke
¢ dieser Losungsmengen; es folgt

o = llyll. < ¢

Die Abschatzung ist wieder unabhdngig von t, daher gilt sie auch fir
|lyll, - Im Fall des Quadrierers (b) gibt es keine obere Schranke der
Losungsmenge von v. Es gibt aber zwei disjunkte Intervalle, von denen
das linke die Schranke c' besitzt. Konnen wir zusidtzlich davon ausgehen,
daB bei diesem Regelkreis die GroRen e, u, vy stetig von den Eingangs-
groBen r, z 1m Raum Lpe abhangen und r = z = e = u = y = 0 eine Lésung
der Regelkreisgleichungen ist, so kann v nur im linken Intervall lie-
gen, da ein "Springen" in das rechte unbeschrinkte Intervall aufgrund

der Stetigkeit nicht méglich ist. In diesem Fall wire ]|y||p <c' ge-
sichert (hier p = =).

Es darf nicht ibersehen werden, daB die durch diese Methode gewonnenen

Aussagen nur fiir ein spezielles p = [|r|Ip und ¢ = ||z||_  gelten. Fir
. . ‘ P "

andere Werte ist die Konstruktion erneut durchzufithren. Nur wenn fir

alle Werte p, ¢ die Existenz einer Schranke c gezeigt werden kann, ist

der Regelkreis schwach Lp-stabil. Andernfalls hat man nur fiir einige

spezielle Eingangsfunktionen Beschrdnktheit nachgewiesen, was manchmal
schon eine wertvolle Aussage sein kann. .

3.1.3 Exponentielle Stabilitit

Wenn die Frage gestellt wird, wie "schnell" die Ausgangsgrofe y(t) des

nichtlinearen Standardregelkreises nach einer Storung wieder gegen null
geht, liefert der Begriff der L"-

werden jedoch zeigen,

Stabilitdt zundchst keine Antwort. Wir

daB sich auch diese Fragestellung mit den bisher
dargestellten Begriffen bearbeiten laft.

Multiplizieren wir die Ausgangsfunktion Yy mit einer Exponentialfunktion,

(3.39) r (1) 1= ety

1st die Norm der sg definierten Funktion

: |[Xe||p ein mogliches MaB, um
das Abklingen der Ausgangsfunktion y zu b

eschreiben. Fiir ¢>0 muB y{t)
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fir t-» schnell genug fallen, damit IIXE|Ip "endlich” ist. So ist z.B.
fir p = = die Bedingung

(3.40) Hy I, < ¢

dquivalent mit der exponentiellen Abschatzung

(3.41) y, (O] <ce™® , i=1,,n; firallet
Gleichung (3.39) kann auch in dér Operatorschreibweise

(3.42) y = Ey

dargestellt werden, wobei die Anwendung des Exponentialoperators EE die

Multiplikation mit der Exponentialfunktion eEt bedeutet. Wir schreiben

die Systemgleichungen

e = r-y '
(3-43) El- = N 9_ + -Z; »
y = Lu

an und multiplizieren diese mit der Exponentialfunktion (Anwendung des

Operators E_), so daB die Gleichungen

— = _r_e - -Xg !
(3.44) EE = Eg E g + Eg = EE E E‘E ‘?"E + E’C )
y = E_ TIu = E LE 4

2 £ —

; : : i = 1 enutzt, damit
entstehen. Hierbei wurde die Eigenschaft E_EEE ausgenu )

auch auf den rechten Gleichungsseiten die Funktionen €. entstehen.

Mit den neuen Operatoren
(3.45)

erhalten wir die transformierten Systemgleichungen

(3.46) u = N + 7 ’
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Diese Gleichungen haben die gleiche Form wie die urspringlichen Gleichun-
gen (3.43), so daB nichts dagegen spricht, die Stabilitdtsbegriffe und St
bilitatssdtze auch auf diese Gleichungen mit den verdnderten Operatoren
I., N_ anzuwenden. Die Stabilitdtssidtze (3.8}, (3.21), (3.29) liefern Qan
Aussagen iiber die exponentiell gewichteten GréBen €., u_, y_ in Abhdngig-
keit von re,» z,., wodurch sich die aufgeworfene Frage nach dem Abklingver-
halten beantworten 14Bt. Fir die genaue Begriffsbildung fithren wir folgen
de Definition ein:

.47) Definiti L"-Stabilitit Grad €):
(3.47) Defini 1on‘£‘p abirlitdt vom Grad ¢)

Der nichtlineare Regelkreis mit den Systemgleichungen (3.43) heift
(schwach) Ln-stabil mit exponentiellem Stabilitdtsgrad ¢ oder kurz
{schwach) Lg—stabil vom Grad e genau dann, wenn das System (3.46) nmit
den Operatoren £6,<§E(3chwach) Lg*stabil ist. o

(3.48) Belerkungen:

Aus der L;—Stabilitét vom Grad e, folgt die Lg-Stabilitét vom Grad e, fir

jedes €9 < eq, Wie sich mit der Kausalitit unseres Regelkreises nachwel-
sen 140t.

Das Vorzeichen des exponentiellen Stabilitdtsgrads e unterliegt keiner

Einschrdnkung, doch sind fiir die Beschreibung eines "echten" Stabilitats-
verhaltens nur Konstanten e>0 sinnvoll,
verwendet werden

. " r
Negative Exponenten ¢ konnen abe

» um bei instabilen Systemen das Aufklingen der System-
groBen zu quantifizieren,

In diesem Sinne kénnen wir auch hier von
Lg—Stabilitét vom Grad e n

1t e<0 sprechen.

Der bisherige Begriff der (einfachen) Ln—Stabilitét ist mit € = O im
Begriff der L;—Stabilitét vom Grad € enthalten. .

3.1.4 Beriicksichtigung von Anfangszustinden

In diesem Abschnitt werden die Systeme nur durch thr Eingangs-Ausgangs-

Verhalten und nicht durch ihre Zustandsbeschreibung modelliert. Damit in
den Eingangs-Ausgangs—Beschreibun

hdngigen Zusatzterme auftreten
jedoch real vorhandene Anfangs
"Umrechnung"

gen keine von den Anfangszustinden ab-
» sind diese als null angenommen. Sollen
zusténde berﬁcksichtigt werden, ist eineé

auf ein Eingangs-Ausgangs-Problen méglich, sofern vollstan-
dige Erreichbarkeit der Teilsysteme I und N gewidhrleiste

t ist (zum Be-
griff der Erreichbarkeit siehe LUDYK [3.11],

Seite 143),
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Sollen zum Anfangszeitpunkt t, die inneren Zustandsgréfen x., x, der

Teilsysteme I', N die Anfangswerte

x.(t ) X ,
(3.49) =I'*"o —To

LN(to) XNo

annehmen, so gibt es aufgrund der vollstdndigen Erreichbarkeit fir den

Zeitpunkt t, Steuerfunktionen go(t), Eo(t)’ t <t die die Zustdnde
Xpgr Xy, Zum Zeitpunkt t einstellen (erreichen). Die Steuerfunktionen
&0 Y, kénnen jedoch nicht direkt aufgebracht werden, da sich die Teil-
systeme ', N im geschlossenen Regelkreis befinden. Mit den von auBen

aufschaltbaren Steuerfunktionen

r {(t) := e (t) + (ruJ){t)
(3.50) - —° - , ot <t
z (1) = ou(t) - (Ned(t)

werden aber genau die gewilinschten 7ustiande erreicht. Durch diesen "Vor-
lauf" der Steuerfunktionen r (t), z(t), t <ty kann also das Anfangs-
wertproblem auf ein Eingangs-Ausgangs-Problem zuriickgefiihrt werden. In
diesem Sinne kénnen die Stabilitdtsbegriffe auch auf Anfangswertprobleme

ubertragen werden.

3.2 Kreiskriterium (L,-Stabilitét)

Die allgemeinen Aussagen des vorangegangenen Abschnitts sollen jetzt auf
den Fall eines EingroBenregelkreises (n = 1) und die L,-Stabilitat ange-
wendet werden. Wir beschrinken uns hier auf die Anwendung des Satzes

(3.21), da dieser eine groBere Klasse von Nichtlinearitaten als der Satz

(3.8) zuliBt. Jedoch kann Satz (3.21) nicht wie Satz (3.8) die Existenz

der Losungen der Regelkreisgleichungen zeigen. Wie von Satz (3.21) ge-

fordert, setzen wir die Existenz in dem erweiterten Raum L, fir das

hachfolgende stillschweigend voraus. Es bereitet jedoch keine Mihe, die
folgenden Ausfiihrungen auch fir die
Satzes (3.8) zu iibertragen. Satz (3

dessen Voraussetzungen fiir den Raunm
Sil’ld. Dieser erd erst fu[‘ dle Lm-Stabllltét VErwendet.

Klasse der Nichtlinearitaten des
.29) wird hier nicht aufgegriffen, da
L2 im Einzelfall schwer nachweisbar
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Wir werden sehen, daB sich die fiir die Anwendung des Satzes (3.8) abzu-
schdtzende Norm Ilrllp des linearen Teilsystems im Raum L, auf sehr ein-
fache Weise durch Untersuchung der Ubertragungsfunktion G(p) im Laplace-
bzw. Z-Bereich bestimmen 1aBt, woraus sich das Kreiskriterium ergibt.
Eine graphische Interpretation filhrt dann auf eine Ortskurvendarstellung.
die als Erweiterung des bekannten Nyquistkriteriums verstanden werden
kann. Es schlieBt eine Ubertragung der Stabilitdtsaussagen in die Wur-
zelortsebene an, mit der der maximale exponentielle Stabilitdtsgrad be-
sonders einfach bestimmt werden kann. Den AbschluB dieses Abschnitts
bildet eine algebraische Auswertung des Kreiskriteriums, die den Rechen-

aufwand filir die Stabilitétsﬁberprﬁfung gegenuber der urspriinglichen Fas-
sung erheblich reduziert.

Bild 3.11: Nichtlinearer EingréBen—Standardregelkreis

Das lineare Teilsystem des Standardregelkreises nach Bild 3.11 setzen
Wir von nun an als zeitinvarianpt voraus, so daB sich das Eingangs-Aus-

gangs-Verhalten durch Faltung mit der Gewichtsfunktion bzw. -folge g
beschreiben 14Rt:

(3.51) y = T'u = gy

(3.52) y(t) = fg(t*r)u(r)dt
und fir zeitdiskrete Systeme
G533 v = > ptkeiuci)
i=-o
Im gesamten Kapitel wurde Kausalitiat vorausgesetzt; daher ist g(t) = 0

fir t<0, so daB inm Faltungsintegral bzy. in der Faltungssumme die obere

Grenze nur scheinbar gleich unendlich ist

Im Bereich der Laplace- bz, I-Transformation geht die Faltung (3.51)

in eine Multiplikation der Laplace- bzy. Z-Transformierten iiber (siehe

Satz (A2.12) bzy. (A2.44)),
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(3.54) Y(p) = G(p)u(p) ,

wobei im Laplace-Bereich die unabhidngige Variable p = s und im Z-Be-
reich p = z ist. Die Laplace- bzw. Z-Transformierte G(p) der Gewichts-
funktion bzw. -folge g ist die Ubertragungsfunktion des Systems.

im folgenden'Satz wird die Analytizitdt der Ubertragungsfunktion G{p) im
zeitkontinuierlichen Fall in einer Halbebene Re(s) > -e bzw. im zeitdis-
kreten Fall auBerhalb des Kreises |z]| > e ¢ vorausgesetzt, d.h. Singula-

rititen (Polstellen) von G(p) diirfen nur in der linken offenen Halbebene

Re(s) < - € oder im Kreis |z| < e © liegen. Weiter wird eine Bedingung
an G(p) auf dem Rand dieses Gebietes p = 5 = ju -e bzw. p = 2 = el?7F
gestellt. Zur einheitlichen Formulierung definieren wir als abgeschlos-

senes Gebiet die rechte Halbebene

(3.55) a_ = {s| Re(s) > -¢}

bzw. das AuBere des Kreises

(3.56) a_ = Az] [z] 2 e )

Den Rand dieses Gebietes, also die Gerade s = ju-e bzw. den Kreis
z = ¢ | bezeichnen wir mit sa_. Ein fortgelassener Index e bedeutet

stets ¢ = Q.

(3.57) Satz (Kreiskriterium):

Es liege ein nichtlinearer gtandardregelkreis nach Bild 3.11 vor. Die
¢ linearen Teilsystems sel in Q_ analytisch

>0

Ubertragungsfunktion G(p) de
und es gelte mit einer Konstanten 7,

(3.58) |6(p)| < v, fir alle p e 88

Das Teilsystem N erfille mit einer Konstanten v > 0 die Sektorbedingung

(3.59) [ (Ne)(t)] < vle(t)]
fir alle ¢ und t. Gilt

(3-60) a = oy v < 1 '

E 4

_stabil mit exponentiellem Stabilitatsgrad ¢. @

S0 ist der Regelkreis L,
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Beweis:

Wir fihren den Beweis zundchst fiir die (einfache) L,-Stabilitédt, d.h.
exponentieller Stabilitdtsgrad € = 0. Die Sektorbedingung impliziert
die Forderung des Satzes (3.21) an das nichtlineare Teilsystem N, so
daB nur noch nachzuweisen 1st, wie aus der Voraussetzung dieses Satzes
an die Ubertragungsfunktion G(p) die Bedingung

HYHZ ||F u[l.zf_'fllul‘z )

d.h.
el <

<

folgt: Wir gehen vom Normquadrat der Funktion y aus und gelangen mit der

Parsevalschen Gleichung (A2.18) bzw. (A2.50) in den Bereich der Fourier-
bzw. diskreten Fourier-Transformation:

2 1 vy 2
115 = 3= 1131
Aus y = g*u wird im (diskreten) Fourier-Bereich % = G U. Zusammen mit
der Rechenregel (A3.42) der Lp—Normen folgt
2 AR "2 2
HYHZ = ﬂHGUHZ = HHG UH1

Mit der Holderschen Ungleichung (A3.44) und erneuter Anwendung der Parse-
valschen Gleichung erhalten wir

| A

2 1 . . . T2
RAUVES - R TT R TR I TN TIIE

16112 11uf |

und damit

I A

INIA IR
Hieraus folgt fiir die Norm des Operators I': y = r y (siehe (A3.18))
rll, < 11611,

Die einzige einflieRende Abschidtzung war die Holdersche Ungleichung.
Nach Satz (A3.46) ist diese aber die kleinstmggliche. Daher gilt sogaT

(3.61) ety = el

Die Operatornorm von I ayf L, wird also durch das Supremum des Betrags
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von G angegeben:

lrtl, = [l6ll, = sup [6(o)]
bzw. weR
ril, = 16ll. = swp _[6(s)]
gel-n,n]

Aufgrund der Voraussetzung der Analytizitdt im Gebiet 0 = 2, ist die

(diskrete) Fourier-Transformierte G durch die Ubertragungsfunktion

G(w) G(ju)

bzw,
Gle) = G(el®)

gegeben, so daB aus der Voraussetzung {3.58) die gewinschte Aussage

(3.62) [Irll, = supl6(p)] <
peaf

folgt. Damit ist mit dem Satz (3.21) die LZ—Stabilitat fir ¢ = 0 nachge-

wiesen, wenn o = yv < 1.

3.47) das Ubertragungsver-

Fir ¢ 4 0 ist entsprechend der Definition (
in (3.46)

halten der exponentiell gewichteten Grofen r . Z , €., U, ¥,

zu priifen: Die zum Teilsystem

yEZ = FE uE

gehorende Ubertragungsfunktion G, (p) ergibt sich als Quotient der
U (p). Im Laplace-Bereich geht die Multiplika-
€

Transformierten Ye(p),
r Dampfungsregel Nr.6 aus

tion mit einer Exponentialfunktion nach de
(A2.19) in eine Verschiebung tber, so da® folgt

Y (s) Y(s-€)
(3.63) G (s) = — = = G(s-¢)
¢ U, (s) U(s-¢)
Entsprechend ergibt sich fiir die 7-Transformierten mit Regel Nr.6 aus
(A2.51)
[
Y (z) Y(ze ) €
(3.64) G (z) = — - — = Glze)
€ Ue(z) U(ze )

Durch die Voraussetzung an die ibertragungsfunktion G(p) im Gebiet &,

erfillt G (p) die Voraussetzung dieses Satzes im Gebiet # =8 .

Fir das Teilsystem N ergibt sich mit der Substitution

e(t) = e €t e (t) = (E_Ees)(t)
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aus der Sektorbedingung (3.59)
..gt
I(NE_Eee)(t)| < ve IeE(t)I

[e"F(NE__e ) (t)] < vle (1)

I(ENE__e )(t)] < vle_(1)] ,
so daB die Sektorbedingung auch fiir das verdnderte Teilsystenm

No = ENE__
erfillt ist. Daher geniigen die exponentiell gewichteten Systeme T,

N. den Voraussetzungen dieses Satzes fiir die (einfache) Lz—Stabilitét.
Nach Definition (3.47) ist daher der Regelkreis mit den urspriinglichen
Teilsystemen T, N[Q-stabil vom (Crad é, wenn a_ = TV < 1 ist. L

(3.65) Bemerkungen:

Das Kreiskriterium kann zur Beantwortung verschiedener Fragestellungen
herangezogen werden. Denkbar sind z.B. folgende Aufgaben:

1. Fir vorgegebenes G(p) und v Uberprife man die L,-Stabilitat fir einen

speziellen exponentiellen Stabilitdtsgrad ¢ (Grundaufgabe).

2. Fir vorgegebenes G(p) und ¢ ermittele man den gréBtmoglichen Sektor

Voax der Nichtlinearitit N, fir den sich mit dem Kreiskriteriunm Lz'
Stab1litat nachweisen 1igt.

3. Fir vorgegebenes v und ¢ 3011 ZU elner Streckeniibertragungsfunktion
Gs(p) ein lineares Korrekturglied Gc(p) entworfen werden, mit dem

fir G(p) = Gc(p)GS(p) Stabilitit des nichtlinearen Regelkreises ge-
sichert ist.

Diese drei Aufgabenstellungen lassen sich recht anschaulich mit Hilfe

der anschlieBenden Ortskurvendarstellungen bearbeiten. Es sollte dabel

nicht Gbersehen werden, dag dje Prifung eines exponentiellen Stabili-

tatsgrades €>0, dessen Vorgabe sich nach den dynamischen Anforderungen

an den Regelkreis richtet, etwas mehr Aufwand erfordert als die Priifung

der einfachen LZ—Stabilitét mit € = 0. Wihrend bei dieser namlich nur

die vertrauten Frequenzginge G(jw) bzw. G(e
fiir die exponentielle Stabilitidt @

j9-¢ : ,
p = e’ Aus diesem Grund wird trotz der hoheren
Aussagekraft der exponentiellen Stabilitj

bilitdt dberpriift.

7%} zu betrachten sind, muB
(p) entlang der Kontur p = ju-e bzw.
untersucht werden.
t oft nur die einfache L,-Sta-
Be1 der Verwendung von Rechnerprogrammen fallt die-
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ser Nachteil aber kaum noch ins Gewicht. In bezug auf den Stabilitats-

grad 148t sich noch folgende Frage formulieren:

4. Fiir vorgegebene Systeme ', N ermittele man den maximalen Stabilitats-
grad e , welcher sich mit dem Kreiskriterium nachweisen laft. Man
kann dazu wie in Bild 3.12 fir jedes ¢ die zu ermittelnde kleinste
Schranke Te auftragen. Der Menge der zu prifenden ¢ 1st von vorn-
herein eine Grenze a gesetzt: Man kann das Gebiet @ _ nur soweit er-
weitern, bis eine Polstelle von G(p) erreicht wird, da Analytizitdt
von G(p) in a gefordert wird. Der Wert -a ergibt sich im Laplace-
Berelch durch den groBten Realteil aller Polstellen, im Z-Bereich
ist e ® der groBte Betrag aller Polstellen. Ein Vergleich der Kurve

von y_ iiber ¢ mit der Konstanten % liefert sofort die exponentielle

Stab111tatsgrenze €max” Fir alle e<e . ist exponentielle L,-Stabi-

litdt gesichert, da hier y_v<1 1st. Im iibrigen 148t sich zeigen, daB
€

der Verlauf von y_ iber e stets monoton wachsend ist, wie man auch
[

LaBt sich also fir e, exponentielle Stabilitat
so laBt sich

intuitiv vermutet.
des Regelkreises mit dem Kreiskriterium nachweisen,

dies auch fir alle e, < ¢4 (vgl. Bemerkung (3.48)).
ellen Stabilitatsgrad ist zur Beurteilung des

Die Frage nach

dem maximalen exponenti
dynamischen Verhaltens des Regelkreises gut geeignet,
ses Problem recht umfangreich erscheint. Wir werden jedoch spater

in der Wurzelortsebene (Abschnitt 3.2.2) eine iberra

auch wenn die-

schend einfache

Deutung kennenlernen.

!
!
I
l
!
!
!
|
i
a

abilitatsgrads € 8

Ellghé;lﬂi Ermittelung des maximalen St max

3.2.1 Ortskurvendarstellung des Kreiskriteriums

——

Die Bedingungen (3.58), (3.60) des Kreiskriteriums (3.57) lassen sich

auch gemeinsam in der Form
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1 ..
(3.66) |G(p)| < T, <5 fir alle p e aa_

darstellen. Diese Ungleichung 14Bt sich unmittelbar anschaulich interpre-
tieren. Zeichnet man die Ortskurve G(p), p e 8n_, in der komplexen Ebene,
so besagt (3.66), daB diese innerhalb eines Kreises mit dem Radius Ye
verbleiben muB. Ist die Konstante v, welche die Nichtlinearitdt N ab-
schatzt, bereits bekannt, kann auch gleich ein Kreis mit dem Radius 1/v
gezeichnet werden. Wegen v, < 1/v darf die Ortskurve G(p) diesen Kreis
nirgends berilihren. In Bild 3.13 ist diese graphische Auswertung darge-
stellt, woher das Kreiskriterium seinen Namen bezieht.

Da die Ortskurve G(p), p ¢ 8@, aus zwel zueinander konjugiert komplexen
Teilen besteht, geniigt das Zeichnen des einen Astes, also mit

p=s = ju-e fiire> 0 bzw. mit p = z = )¢ fiir o ¢ [0,n]. Da es bei der
Kreisbedingung (3.66) nur auf den Betrag von G(p) ankommt, bietet sich
als Alternative zu der Ortskurvendarstellung auch die Benutzung von Fre-
quenzkennlinien an. Es ist zu priifen, ob die Betragskennlinie unterhalb
der Verstarkung 1/v8 bleibt (siehe z.B. Bild 3.17b).

peon,

Bild 3.13: Ortskurvendarstellung des Kreiskriteriums

(3.67) Bemerkung:

Viele Probleme entsprechen in ihrer urspriinglichen Systemstruktur nicht

dem nichtlinearen Standardregelkreis. Oft ist es aber moglich, durch

Strukturumformungen zu diesem zu gelangen. Dies wird auch in dem folgen-
den Beispiel exemplarisch dargestellt. Die Art der notwendigen Struktur-
umformungen kann aber von Fall zy Fall recht verschieden sein. B
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(3.68) Beispiel: Winkelpositionierung eines Roboterarms

Wir greifen den im 1. Kapitel dargestellten Roboterarm auf (Beispiel
(1.6), Bild 1.8), fiir den wir bei fester Auszugslange des Arms
r(t) = ry

einen Regler fiir eine Winkelpositionierung entwerfen wollen. Mit dem

Gesamtmassentragheitsmoment

+

L 2 2
bg = 8¢ m(r—ro) *mro ot Oyotor

lautet die Bewegungsgleichung

eGﬁ;(t) = eGé(t) = M(t)

Liegt die Drehachse horizontal, bewirkt die Gewichtskraft ein winkelab-

hangiges Drehmoment

| Mn(w(t)) = M, cos e(t)
mit

a den Abstand des Massenmittelpunktes des ge-
d g die Erdbeschleunigung angibt. Zu-
ent re und dem Antriebs-

wobel m; die Gesamtmassen,
samten Aufbaus von der Drehachse un
sammen mit einem zu beriicksichtigenden Reibmom

moment M,(t) des Motors ergibt sich

M(t) = MA(t) - rw - MO cos ¢

Der Antrieb erfolge durch eine konstant erregte Gleichstrommaschine, wo-

bei durch eine unterlagerte Stromregelung naherungsweise Proportionali-

tit zwischen Steuerspannung und Ankerstron erreicht wird, so da3 wir

auch zwischen Steuerspannung und Antriebsmoment ein proportionales Ver-

halten erwarten diirfen:
MA(t) = VvV ou(t)

Die Zustandsgleichungen lauten nun zusammengefafit

o(t) = w(t)

eG;(t) = - rw(t) - Mocosw(t) + Vou(t)

ntwerfen, wird das nichtlineare

Un einen Regler fiir dieses Modell zu €
kende StorgroBe aufgefaft,

Moment Mn zundchst als scheinbar von auflen wir
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so daB die Zustandsgleichungen die lineare Form
olt) = w(t)
ogu(t) = - ro(t) + V u(t) + M(t)

erhalten. Hierauf kénnen nun lineare Entwurfsmethoden angewendet werden.
Die Streckeniibertragungsfunktion zwischen Eingangsspannung u(t) und Win-
kelposition ¢(t) lautet dabei

G (s) = —T_!___T
S S GGS‘*‘T

Bild 3.14 zeigt die Regelkreisstruktur mit einem zu entwerfenden linea-
ren Regler Gc(s).

Mn

Mycos g

<|-—

Psoni u ¢
| Glsl Gls) -

Bild 3.14: Strukturbild der Winkelpositionierung

Im Hinblick auf eine gute stationdre Stdrunterdrﬁckung (Unterdriickung
des nichtlinearen Anteils) soll der Regler einen Integrierer enthalten.

Durch einen Entwurf mit Frequenzkennlinien oder Wurzelortskurven findet
man als Regler z.B. ein Pl-Lead-Glied

(s+b.)(s+b
G (s) = V_S_L(S_Z_)
C

s(s+a)

dessen konkrete Werte sich nach den Streckenparametern richten. Dieser

Reglerentwurf kann aber nur als Ansatz fiir den gesamten nichtlinearen

Regelkreis dienen, da das nichtlineare Moment Mn tatsachlich in Form

einer Rickkopplung und nicht als unabhingige StorgroBe auftritt, wie

hilfsweise angenommen wurde. Wir koénnen jetzt aber das Kreiskriterium

» 0b der oben entworfene Regler auch fiir den
nichtlinearen Regelkreis Stabilitit sichert.

heranziehen, um zy priifen
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Auf den ersten Blick ist eine Ahnlichkeit des Strukturbildes 3.14 mit
dem Standardregelkreis nach Bild 3.11 nicht ohne weiteres ersichtlich
und auch die auftretende Nichtlinearitdt cos ¢ ist keine Sektorfunk-
tion, wie im Kreiskriterium (3.57) gefordert wird. Durch Umformungen
kénnen wir jedoch zu der gewinschten Struktur gelangen: Mit den Substi-

tutionen

o(t) = o(t) - e,

q)s.oll(t] T 501

].(t) - cPO

mit einem beliebigen Bezugswinkel ¢, um den das dynamische Verhalten

beurteilt werden soll, erhalten wir in der umgeformten Struktur nach

N

Mglcos(9+ g ) - cos 9o

""v— cos Yo Y] ‘PU

Bson M
- o) 5/s)

Y

{a)
GdsiGyls) | ¥
[ e
1« GC(SiGSCS)
M4 — !
I [a |
v
| |
| S |
asi—1 T
I . |
I — |
Glsle—— |
I s
(b) L . — — ——— —
onierung

Bild 3.15: Strukturumformungen der Winkelpositi
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] Mﬂ[cos[fﬁupg]- cos gyl

-1

Bild 3.16: Abschdtzung des nichtlinearen Moments durch einen
Sektor der Steigung + MO

Bild 3.15a nun eine Sektorfunktion. Diese wird unabhdngig von der Wahl
des Bezugswinkels % durch den Sektor mit v = Mo abgeschatzt (siehe ‘
Bild 3.16). Da sowohl die Strecke als auch der Regler integrale Anteile
enthalten, kénnen die hinter Gc(s) und GS(S) aufzuaddierenden Konstan-
ten mit den Anfangswerten der Integratoren verrechnet werden, so dal
diese Summenpunkte nicht mehr explizit ip Strukturbild erscheinen. In
Bild 3.15b ist nun auch der Angriffspunkt der FihrungsgroBe é dem

soll
Standardregelkreis entsprechend verschoben dargestellt, die nun iiber

ein "Vorfilter" angreift.

Der lineare Block T des Standardregelkreises ist nun klar zu erkennen.
Die zugehorige Ubertragungsfunktion lautet

1 G_{
G(S) = - —-—ii)____
V 1+ Gs(s)Gc(s)

Dies ist genau die Stérﬁbertragungsfunktion Ty (s) des linearen Regel-

kreises. Fiir die konkrete Ubertragungsfunktionrl

_ 0,17
500 st o v o=

wurde nach der oben beschriebenen Vorgehensweise der Regler

G (s) = 5085+ 0,3)(s + 0,4)
___—ETE_T_ﬁTT_-—-

entworfen, der fiir eine gewlinschte normierte Durchtrittsfrequenz v ©

einen Phasenrand von etya 50° sichert. Fiir die Stériibertragungsfunktiol
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ergibt sich mit diesen Werten

0,17s%+ 1,7s

T.. (s) = G(s) =
Mn s4+ 10,0653+ 9,152

+ 5,95s + 1,02

Damit iberpriifen wir die Lz-Stabilitﬁt fiir die Stabilitdtsgrade ¢ = 0O
und ¢ = 0,1. Der grofte Realteil aller Polstellen ist in beiden Fdllen
kleiner als -e, wie man durch Polstellenberechnung oder andere geeig-
nete Verfahren nachweist, womit die Analytizitat von G(s) in den Halb-
ebenen R, 9, d.h. Re(s) > 0, Re(s) > -e, gewdhrleistet ist. In Bild
3.17a sind nun die Ortskurven G(jw) und G(ju-e) dargestellt, denen so-
fort die Schranken vy = ||I‘||2 = 0,409 und v_ = ||F€||2 = 0,625 entnom-

men werden konnen. Wird nun

Mo o= w<t o= 2,45
0 Y
sichergestellt, ist nach dem Kreiskriterium der nichtlineare Regelkreis

LZ-Stabil. Wird dariiber hinaus sogar
M = v<l— = 1,60
) T,

eingehalten, ist der Regelkreis Lz—stabil vom Grad e, d.h. fir das dyna-

b Im

Lt
T

~a6{ 7 107 2 107! 10° 10"

(b) —

{a)

Bild 3.17: Ortskurven- und Betragskennliniendarstellung der Kreis-

bedingung fiir die Wwinkelpositionierung
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mische Verhalten sind Zeitkonstanten kleiner gleich 1/e zu erwarten. Das
Kreiskriterium liefert nur eine hinreichende Aussage. Werden die Bedin-
gungen nicht eingehalten, diirfen wir trotzdem nicht auf Instabilitit
schlieBen. Bei Einhaltung dieser Forderungen sind wir aber auf der siche-
ren Seite.

Statt der Ortskurvendarstellung kann alternativ die Frequenzkennlinien-
darstellung von [G(jw)| und |G(ju-€)| geprift werden. Ebenso wie in
Bild 3.17a kann man 3.17b die Konstanten y = 0,409 und Y, = 0,625 ent-
nehmen.

Welche Bedeutung hat nun der hier eingefihrte Bezugswinkel wo? Der Be-
griff der L,-Stabilitdt allein sagt nur aus, daB zu im Sinne der Loy-

Norm beschrankten Eingangsgréfen des Regelkreises im Sinne der Lz-Norm
beschriankte Ausgangsgroflen gehoren, wobei sich diese entsprechend der
Definition (3.6) abschdtzen lassen miissen. Geht also die FithrungsgroBe
eines Regelkreises gegen null, tut dies auch die AusgangsgroBe. Es ist
aber unsicher, ob die Ausgangsgrofle auch beliebigen anderen Fihrungs-
vorgaben folgt. Da wir hier aber die Stabilitit fiir das Ubertragungs-
verhalten der auf 9, bezogenen Winkel ;5011, é nachgewiesen haben, ist
gesichert, dab o(t) bei einem beliebigen Fihrungssprung stets 9go11 (L)

folgt, da der Bezugswinkel ?, entsprechend gewahlt werden kann. .

(3.69) L,-Normen von Systemen 1. und 2. Ordnung:

Fur Systeme 1. und 2. Ordnung soll die jeweils kleinstmggliche Schranke
Y, = |‘PEf|2 allgemein dargestellt werden, so daB hierauf zurilickgegrif-

fen werden kann, ohne jedesmal G(p) mit den jeweils vorliegenden speziel-
len Werten untersuchen zu miissen.

Fuir ein System 1. Ordnung

G(s) = v

1 +

S ) aER, V_>_O
a

b

wird im Laplace-Bereich das betragsmdBige Maximunm auf der Geraden
80 _: s = ju-e offensichtlich bej ¢ < 0 angenommen.

Wegen der Analytizi-
tat im Gebiet @

muR die Polstelle links von dieser Geraden liegen:
a8 > €, Als kleinste Schranke erhalten Wir

_ Vv

el = =
a
Fir e = 0 wird diese Schranke allein durch den Verstidrkungsfaktor V be-
stimmt.
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Bild 3.18: Darstellung der Operatornorm |r]|, fir eine Laplace-Uber-

tragungsfunktion 7. Ordnung nach (3.70)
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14

/

I,

V.

Ed

0.1 —

0 !
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 18

a=0
2.0

———— |b]

Bild 3.19: Darstellung der Operatornorn ||1"[[2 fir eine Z-Ubertragungs-
funktion nach (3.71)

Fir die Z-Ubertragungsfunktion

6(z) = Yz a e R

Z-a ’ v V20

wird das betragsmaBige Maximum auf den Kreis an :
bei » = 0, fiir a < 0 bej $ = +1 angenommen.

z = e®F fiir a >0
In beiden Fillen ergibt sich

Ve © Y
el = el

e-E~|a| 1 - lale

-
Die Polstelle z = a mup aber innerhalb des Kreises 09 _ liegen: Inlal <

Fir Systeme 2. Ordnung verzichten wir auf die expllzlte Berechnung (sie~
he BOCKER [3.3], .39 ff)} und stellen 4

l1e Operatornorm |IF|| in Abhan-
gigkeit der Parameter b, ¢,

d der Standardform
c + b 3

w

(3.70) G(s) = °

+ b,c e R; d,wo >0
1+2d 5
w

+
Eth
o)
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in Bild 3.18 dar. Um die Werte |]Fe||2 fiir e + 0 zu erhalten, ist

s - s - ¢ zu substituieren.

Fir den Z-Bereich ist die Operatornorm ||F||2 Far

k
(3.71) 6(z) = — Ve . a, b, VeR, k<2,
z“- 2abz + a

in Abhdngigkeit der Parameter a, b mit V = 1 dargestellt. Zur Bestimmung

-E .

von ||T£||2 substituiere man z - ze

Bisher haben wir die Nichtlinearitaten durch einen symmetrischen Sektor
abgeschitzt und dann den Stabilitatssatz (3.57) angewendet. Ist uns be-
kannt, daB eine Nichtlinearitdt asymmetrisch verlauft, so ist eine sym-
metrische Abschatzung zu grob, und die Anwendung des Kreiskriteriums
(3.57) liefert einen zu kleinen Stabilitétsbereich bzw. Stabilitadtsgrad
Um diesen Nachteil zu vermeiden, konnen wir

des Standardregelkreises.
daR asymmetrische Sektorfunktionen

das Kreiskriterium so modifizieren,

direkt beriicksichtigt werden. Dazu definieren wir:
-

(3.72) Definition (Nichtlinearitaten der
wird durch die Operatoren N gebildet,

Klasse S(v;,v,)):

Die Klasse S(v1,v2) mit v < vy

die die Bedingung

(3.73) vy < (N:)Et) < vy
.

fir alle e und t erfiillen.

Die bisher betrachteten symmetrischen Sektorfunktionen lassen sich nach
dieser neuen Definition als Nichtlimearitdten der Klasse S(-v,v) beschrei-

ben. Fir das folgende definieren wir die mittlere Steigung
(3. )
74) “'m =7 (Vz + Vl)
und die Sektorweite
(3.75) Av t= .;. (\)2 - v,l)
Liegt nun ein Standardregelkreis mit einem Teilsystem N ¢ S(v1,u2) vor,
orfunktion durch die in Bild 3.21 a,b

Das auf diese Weise entstehende Teil-
us S{-av,av}, so daB} das

SO symmetrieren wir diese Sekt
dargestellten Strukturumformungen.
System N ist eine symmetrische Sektorfunktion 2
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} (Nelit)

Wy

elt)

Bild 3.20: Nichtlinearitit der Klasse S(v

10V9)

'

la)

|

(bl

Bild 3.21: Strukturumformung des nichtlinearen Standardregelkreises
zur Symmetrierung der Sektorfunktion
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Kreiskriterium (3.57) angewendet werden kann. Als zugehoriges lineares

Teilsystem ist nun das System T mit der Ubertragungsfunktion

(3.76) 6a(P) = TRy

m

zu untersuchen. Die Kreisbedingung
1 .
{(3.77) |Gm(p)| v < fir alle p e 2a_
setzen wir nun in eine Bedingung an die urspringliche Ubertragungsfunk-
tion G(p) um. Mit (3.76) ergibt sich

1
< K;‘ b

s IG(p)| < |1+ vy6(p) ]
Wir quadrieren diese Ungleichung und stellen die Betragsquadrate durch
Produkte der komplexen Gréfen mit ihren konjugiert komplexen Werten dar:

- _ 2 -
s’ G(pl)G{p) < 1 + vm{G(p) + G(p)] + v, G(p)G(p)

0 < (vi _ avl) G(p)Glp) + v [G(p) + G(p)l + 1

Mit vZ - av’? = v,v, erhdlt man
m 1V2 )
(3.78) 0 < v,v, G(p)G(p) + vm[G(p) + G(p)] + 1

v

Von hier an sind mehrere Fdlle in Abhangigkeit der Vorzeichen von v,,v,

ZUu unterscheiden:

a) Vv, >0, d.h. v, und v, haben gleiches Vorzeichen. Es folgt

1
+

0 < G(p)G(p) * -1-2‘; (6(p) + 6] + 557

2 v - v
v 1 m m
+ G(p) +
[v : ] vy, © {G(p) Y1V2 ] ' Py ]

172 172
Es ist ) 2
Z -v
v : | \vz 1} ) ;_[1_ I
- — —— = v Y Y
vivy ViV Tvyvy 1 2

S0 daB wir die Ungleichung mit den Abkiirzungen



156 5 Funktionalanalytische Methoden zur Stabilitdtsuntersuchung

p = 1 -1_ - ]_
7 v v,
(3.79)
. noo_ a1 s
poi= - v]vz - 7 VT VZ
in der Form
(3.80) 1G(p) - ul > fir alle p « 0a_

. . : . : isch
schreiben kénnen. Diese Ungleichung ist wieder sehr leicht geometrisc
Zu interpretieren: Die Ortskurve G(p), p e 8G_, muB auBerhalb eines

Kreises mit Mittelpunkt W und Radius p bleiben. Dies ist in Bild 3.22a
illustriert,

b) vy €0 < v, . Bei Division der Ungleichung (3.78) durch vyv, <0
kehrt sich das Ungleichheitszeichen um. Sonst laufen die algebraischen
Unformungen wie in Fall a ab. wir erhalten

(3.81) Gp) - n| <o fir alle p e o0 _

Die Ortskurve G(p), P e on_
telpunkt p und dem Radius p

» MuB hier innerhalb des Kreises mit dem Mit-
verlaufen (siehe dazu Bild 3.22b).

c) Vi =0, V2 > 0 . Hier fillt der €rste Term in (3.78) weg; wir divi-
dieren durch Vo = V9/2 > 0 und es ergibt sich

(3.82) RelG(p)} > - 1_
2

Ist G(p) nicht fiir alle Werte
G(p) auf ane,

fir alle p £0n_

P e 20 definiert, liegen also Pole von
sind diese Werte gesondert zy untersuchen: Setzen wir

G(p) - = ip Gm(p) nach (3.76) ein, erhalten Wir

N 21
Gm(p) N Vi - U; T Ay
als Widerspruch zy der Kreisbedingung (3.77),
missen wir hier neben (3.82) zusitzlj
P e aq beschrinkt bleibt,

graphische Darstellung der

Im Gegensatz zum Fall b
ch fordern, dap G(p) fiir alle
G(p) also keine Pole ayf oa_ besitzt. Die
Bedingung (3.82) zeigt Bild 3.22c.

d) vy = 0, V1 <0 . Wie im Fal} ¢ fdllt der er
chung (3.78) fort. Nun ist aber

vision durch diesen Wert das Un
sich die Bedingung

ste Term der Unglei- '
- 1 Yy Negativ, weshalb sich bei Di-
gleichheitszeichen umkehrt. Es ergibt
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(3.83) Rel[G{(p)] < - %— fir alle p e 89 _ ,
1

neben der wir wie im Fall ¢ die Beschrinktheit von G(p), p € 20, for-

dern missen.

Das "verbotene Gebiet" der komplexen Ebene, welches die Ortskurve G(p),

peoa_, zu vermeiden hat, wollen wir in allen Fadllen mit V{v1,v2) be-
und b ist V(v1,v2) das AufBere bzw. Innere

und d eine linke bzw. rechte

zeichnen. In den Fallen a
eines Kreises (mit Rand), in den Fédllen c
Halbebene, denen auch der Punkt p = = zugerechnet werden muf.

 Im }1m
/
Gylpl jé;/
Glp)
Vivy v )
)\
// Y44 RE%‘ —— T
Bl N gl "
Wy “"vm vy Vi
G4pl
fa)  wy,»0 (b) v <0<y
dim

/////
Gipl viv,, 0}
)

Re /422?221

_

x|

(dl Vq =0

Ellﬂ_é;gii Graphische Deutung der Kreisbedingung fur

asymmetrische Sektorfunktionen
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(3.84) Bemerkung :

In dieser Darstellung des Kreiskriteriums fiir "asymmetrische'" Sektorfunk-

tion konnen die in (3.65) genannten Aufgabenstellungen um weitere Punkte
erweitert werden:

1. Mit gegebenem G(p), e ermittele man fiir ein vorgegehenes vy die
maximal mogliche Schranke vy (oder umgekehrt).

2. Verletzt die Ortskurve G (p) p e 8a_, die Kreisbedingung mit Kon-
stanten ViV, soll ein llneares Korrekturglled G (p) entworfen wer-
den, welches die Ortskurve so "verbiegt", daB mit G(p) = GC(P)GS(p)
die Kreisbedingung eingehalten wird.

O0ft kann durch die Herabsetzung der Kreisverstdrkung als einfachste
lineare Korrektur zwar eine Stabilisierung erreicht werden, doch
entfernt man sich dadurch meistens von anderen angestrebten Ent-
wurfszielen wie kleinem Regelfehler, weshalb dann doch ein etwas
anspruchsvolleres Regelglied G (p) zu entwerfen ist. Dazu kénnen

die bekannten linearen Entwurfsmethoden herangezogen werden. L

Neben der Kreisbedingung darf auf keinen Fall die Forderung der Analyti-

zitat der Ubertragungsfunktion G (p) im Gebiet Q_ aus den Augen verloren

werden. Diese Forderung konnen wir sogar in die oben entwickelten Orts-

kurvendarstellungen der Ubertragungsfunktlon G(p) einbauen. Bisher durf-

te G(p) durchaus eine transzendente Ubertragungsfunktion sein, wie si€

z.B. bel einem Warmeleitungsproblem auftreten kénnte. Jetzt beschranken
wir uns aber auf gebrochen rationale Funktionen

(3.85) G6(p) = %}g}

mit Z(p) und a(p) als Zihler- und Nennerpolynom.

Zur Prifung der
Analytizitidt von

(3.86) G (p) = —G(p) - Z(p) .. Z(p)

m P Tev GpT Alp)+y Z(p) ~° A_m‘?ﬂ
in a_ ist nun die Lage der Polstellen von G (p) (Nullstellen von 8n (p))
zZu untersuchen Diese Aufgabe bewdltigt aber gerade das wohlbekannte
1um von Nyquist (2. 124), was ohne Schwierigkeiten auch
fir das hier betrachtete Gebiet n formuliert werden kann:

Ortskurvenkriteri

(3.87) Sat:z (Allgemeines Nyquistkriterium):

Ist der Zahlergrad vop G(p) kleiner al

n_und n

. s der Nennergrad und sind
a r die Anzahlen der Polstellen

von G(p) auf dem Rand 2a_ bzw. im
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Innern des Gebietes a_, so liegt genau dann keine Polstelle von Gm(p) in-
nerhalb von a_, wenn fiir die stetige Winkeldnderung der Ortskurve G(p),

peda_, "vom Punkt -1/\)m aus gesehen" gilt

(3.88) A arg [%— + G(p)] = In n.+1n, . -

peBQE m

Ublicherweise zeichnet man nur die Halfte von 3@ fiir positive w bzw. g;
die Winkelsumme in (3.88) bezieht sich aber auf den gesamten Durchlauf
so daB dann der Faktor 2 zu bericksichtigen ist. Den Durchlauf-
verstehen wir dabei in Richtung wachsender w- bzw.

von ane
sinn der Kontur an8

9-Werte.

wie in Bild 3.22 vorliegt, kann darin
Der Punkt —I/vm liegt
—1/v2 und in den Fal-

Wenn die Ortskurve G{p), p € 3%,
unmittelbar die Winkelanderung untersucht werden:

im Fall a auf der reellen Achse zwischen —1/v1 und
oder rechts von —1/v1. In jedem Fall

). Da G(p), p ¢ d2a_, dieses Ge-
mufd die Winkelanderung fur

len b,c,d entweder links von -1/v,
liegt -1/vm im verbotenen Gebiet V{v,,v,
biet nicht durchschneiden oder beriihren darf,
jeden Punkt des verbotenen Gebiets den gleichen Wert ergeben wie vonm

Punkt -1/v e V(v ,v,). Diese Aussage ist auch umkehrbar: Ergibt die

Winkelanderung von G(p), p € 39, fiir jeden Punkt aus V(v1,v2} den glei-
chen Wert, kann die Ortskurve das verbotene Gebiet V(v],vz) nicht berih-
ren. Es reicht sogar die Priifung fiir die Randpunkte dieses Gebiets, die

mit aV(v1,vZ) bezeichnet werden sollen.

nun verschiedene, zur urspriinglichen Fassung (3.57) d

Mit diesen Zusammenhangen kénnen
es Kreiskriteriums

dquivalente Aussagen gemacht werden.

des Kreiskriteriums):

(3.89) Satz (Ortskurvendarstellungen
urve G(p), p ¢ 230, vermeide das

a) Es sei N ¢ $(v,,v,) und die Ortsk

verbotene Gebiet V(VI'VZ) und erf
V(v,,v,) (2.B. -1/v,) die Nyquistbedinguns (3.88).
gelkreis Lz—stabil mit exponentiellem Gtabilitdtsgrad e.

iille fir einen beliebigen Punkt aus
Dann ist der Re-

b) Es sei N ¢ $(vy,vy) und die Ortskurve 6(p), p £ 8a_, erfille fir je-

den Punkt des Randes 6V(v],uz) die Nyquistbedingung (3.88). Dann ist
der Regelkreis Lz—stabil nit exponentiellem Stabilitéatsgrad €. )

Als Beispiele betrachten wir die in den Bildern 3.22 dargestellten Orts-

kurven. Im Teilbild a erzeugt die Ortskurve 6,(p), p ¢ 2, fﬁrsjeden
Punkt des "verbotenen" Kreisgebiets eine Winkeldnderung von 2+ % = 3x .
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Hat die "offene" Ubertragungsfunktion G1(p) einen Pol im Gebiet 2 und
einen Pol auf dem Rand an_, ist die Nyquistbedingung erfiillt, und der
geschlossene nichtlineare Regelkreis ist L,-stabil vom Grad e. Fir die
Ortskurve Gz(p) ergibt die Winkeldnderung null; daher kann der geschlos-
sene nichtlineare Regelkreis nur stabil sein, wenn Gz(p) selbst keine
Polstellen in Q_ oder auf dem Rand 8Q_ besitzt. In allen Fdllen nach
Bild 3.22b kann die Nyquistbedingung nur erfillt werden, wenn G(p) keine
Pole in @ oder auf 92 besitzt, da keine andere Winkeldnderung als O
erreichbar ist. Auch in den Fiallen ¢ und d kann die Ortskurve G(p),

P e 28, nur die Winkeladnderung null liefern. Andere Winkeldnderungen
waren nur durch Ortskurven mit Polen auf 82_ zu erreichen, welche fir
diese Fdlle aber ausgeschlossen sind (die Bedingung der Beschrinktheit
von G(p), p € aa_, fiir die Fille ¢ und d korrespondiert mit der Ny-
quistbedingung beziiglich des Punktes = ¢ V(v],vz)), Dann darf auch hier

G(p) keine Pole in Q_ besitzen, wenn die Nyquistbedingung erfiillt wer-
den soll.

Fur die Sektorgrenzen V1 20 < v, (Félle b,c,d) ist also stets Stabili-
tat bereits des linearen Teilsystems I mit der Ubertragungsfunktion G(p)
vorauszusetzen. Fir viv, > 0 (Fall a) ist die Stabilitit des linearen
Teilsystems nicht erforderlich; sie kann vielmehr durch eine nichtlineare
Rickkopplung erreicht werden.

(3.90) Interpretation der Ortskurvendarstellung des Kreiskriteriums

Die Fassung b) des Satzes (3.89) kann iberraschenderweise so interpre-
tiert werden, daB die Stabilitdt nur fir konstante Rickkopplungen » mit
-1/x ¢ 6V(v],v2) uberprift werden mug (diese sind im allgemeinen kom-

plex), um die Stabilitat fur beliebige,

auch nichtlineare Riickkopplungen
aus S(v1,v2) zu sichern.

Die Menge dieser « wollen wir mit

(3.91) K(vi,v)) = xeg | - 1. V(v v,))

bezeichnen. Dementsprechend ist

(3.92) K(v],vz) = v e €| - % £ V(v1,v2)}

die Menge der konstanten Rickkopplungen,
Gebiets V(v1,u2) entsprechen.

die dem Inneren des verbotenén
Diese Mengen kénnen auch in der Form

aK(V s V ) = {l € ﬂ: ’ I - =
1"V2 r -y av}
(3.93) ol ’

K(v1,v2) = {xeC | |x- vm] < av}
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geschrieben werden, wie man durch Rechnung fir die verschiedenen Fille
der Vorzeichen von Vis Yy nachweist, oder aber schneller mit der Eigen-
schaft der Funktion -1/v iberblickt, Kreise und Geraden der komplexen
Ebene wiederum in Kreise und Geraden abzubilden. Im Rahmen dieser Be-
trachtung "komplexer Rickkopplungen" ist eine Erweiterung der System-
gréfen auf komplexwertige Funktionen sinnvoll. Dann sind aber auch be-
liebige komplexwertige Ubertragungsglieder T, N zuzulassen. Die Erweil-

terung auf komplexwertige Ubertragungsglieder T hat zur Folge, daB in

ihren Ubertragungsfunktionen G(p) auch komplexe Koeffizienten auftreten

kénnen. Im Unterschied zu der Sektorbedingung (3.73) fir die Klasse

S(v],vz) definieren wir durch

(3.94) |(Ne)(t) - v e(t)] < av le(t) |

eine komplexe Erweiterung é(v1,v2), die die Menge K(VT,VZ) umfafit:

(3.95) aK(v1,V2) C K(v],vz) c S(v1,vz)

Ohne Schwierigkeiten kann der Beweis des Kreiskriteriums auch fir diese

komplexwertigen Ubertragungsglieder I, N gefiihrt werden. Bemerkenswert

ist, daB nach Satz (3.89b) nur die Stabilitat der linearen Ruckkopp-

lungen aus 6K(v1,v2) zu tberprift werden braucht, um die Stabilitat fur

die wesentlich umfassendere Menge S(v1,v2) zu sichern.

Beziiglich der Klasse é(v1,v2) ist das Kreiskriterium sogar hinreichend

und notwendig. Wird die Nyquistbedingung fir irgendein =« ¢ aK(v],vz)

verletzt, so ist der mit dieser komplexen linearen Riickkopplung aufge-
t instabil 1in dem

baute geschlossene lineare Regelkrels mit Sicherhel
liegen. Beziglich einer

Sinne, daB Pole im "verbotenen” Bereich Q_
festen vorgegebenen Sektorfunktion N ist das Kreiskriterium aber weiter-

hin nur hinreichend.
eellwertige Grofien auftreten, ist
“2) nur noch eine hinreichende,

Es ist aber anzumerken, daf z.B.

Da bei technischen Systemen aber nur T
hierfiir die Priifung aller » aus aK(v1,
jedoch keine notwendige Bedingung mehT.

bei der Beschreibung von Asynchronmaschine :
wodurch die vorangegangenen iber-

n oft zwel reelle GréBen zu

€iner komplexen zusammengefaBt werden,

legungen durchaus auch praktische Bedeutung erlangen konnen.

(3.96) Zusammenhang des Kreiskriteriums mit der Methode

der Harmonischen Balance

ktion aus S(V

1,V2) die inverse Beschrei-
daB diese vollstdndig innerhalb

Ermittelt man fiir eine Sektorfun
b“ngsfunktion NI(A)’ so stellt man fest,
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des verbotenen Gebiets V(v1,v2) verlauft. Um dies nachzuweisen, gehen
wir zundchst von einer "symmetrierten" Sektorfunktion fm aus S{-Av,av)
aus, wobei wir fir die Nichtlinearitit hier die Bezeichnungsweise f des
Z. Kapitels verwenden, um einen Konflikt der Bezeichnungsweisen der Be-
schreibungsfunktion und des nichtlinearen Operators zu vermeiden. Der In-
dex m weist auf die symmetrierte Sektorfunktion hin. Nach (2.69) gilt
fir die Beschreibungsfunktion

a4y + by

Np(a) = L1

A

’

worin a, und by die Fourierkoeffizienten 1. Ordnung der Ausgangsfunktion
W o= f (e, sgne)

sind, wenn die Nichtlinearitat durch die Eingangsfunktion
e(e) = A sin ) (¢ = wt)

erregt wird. Aufgrund der Eigenschaft der Sektorfunktion ist fiir die Aus-
gangsgrofBe die Abschitzung

lw(o)| < A av[sin o]

bekannt. Mit Hilfe der Parsevalschen Gleichung (A2.50), die mit (A2.28)
in der Fornm

Zn ®
i 1,2 1 2 2
n[ v - Th t 7 2 (ap + b))
0 k=1

dargestellt werden kann, gelingt dje Abschétzung

2 N N R - 2
ATIN (A) ] -a1+b1§2—b+2(ak+b)

0 k
k=1
2n 2x
2 2 )
© 1 weray < Al [sinfoap = alav
o} 0

= le(A)l < v

Ohne Schwierigkeiten Zelgt man,

daB zu der urspriinglichen Nichtlineari-
tat aus der Klasse S(vl,v

2)
f(e,sgn e) - fm(e,sgn é) *ovoe

die Beschreibungsfunktion
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N(A) = Nm(A) vy
gehort, so daB wir zu der Abschdtzung

(3.97) IN(A) - vml < Ay

gelangen. Nach (3.93) gehort der Wert der Beschreibungsfunktion N(A) fir
jeden Amplitudenwert A zur Menge K(v1,v2). Die inverse Beschreibungsfunk-

tion wird durch den negativen reziproken Wert

1
NiCA) = -y

gebildet, wie auch V(v,,v,) durch die Abbildung -1/x aus K(v,,v,) ent-
steht (siehe (3.92)). Aus

N(A) € K(V1gv2)
folgt daher
NI(A) [ V(V11V2) ,

die inverse Beschreibungsfunktion verlduft fir alle A im verbotenen Ge-
biet V(vy,v,). Gelingt es also, mit dem Kreiskriterium L,-Stabilitat
nachzuweisen, so filihrt das 7wei-Ortskurven-Verfahren der Harmonischen
Balance zwangsldaufig zum Ergebnis der Nichtexistenz einer Grenzschwin-
gung und zur Aussage der asymptotischen Stabilitdt der Ruhelage. Umge-
kehrt ist es moglich, daB das Zwei-Ortskurven-Verfahren die Nichtexi-
stenz einer Grenzschwingung und die asymptotische Stabilitat der Ruhe-
lage nachweist, wiahrend mit dem Kreiskriterium keine Stabilitatsaussage
gelingt. Dies ist durchaus einsichtig, da die Bedingungen des Kreiskri-
teriums hinreichend fir Stabilitdt sind, wiahrend die Harmonische Balance

eine Naherungsmethode ist.

3.2.2 Darstellung des Kreiskriteriums in der Wurzelortsebene

Neben der Ortskurvendarstellung des Kreiskriteriums wurde von DREYER
(3.6] eine Ubertragung in die Wurzelortsebene entwickelt. Ausgangs-

punkt ist hierfiir die Fassung (3.89b) des Kreiskriteriums. Dort wird

gefordert, daB die Ortskurve G(p), p € 8RR, fiir jeden Punkt des Randes

av(“1,vz) die Nyquistbedingung (3.88) befriedigt.
sich mit dem Nyquistkriterium auch wieder in die Wurzelortsebene uber-
setzen: Zusammen mit den Uberlegungen in (3.90) bedeutet dies, daB fur

Diese Forderung laft
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jede konstante Riickkopplung der Ubertragungsfunktion G(p) mit
L K(v1,v2) die Pole der Ubertragungsfunktion des geschlossenen Kreises

e S 3y ap)
R RO Ok B e

auflerhalb des Gebiets ﬁE (d.h. im "stabilen" Bereich) liegen miissen.

Dies konnen wir sofort als neue Fassung des Kreiskriteriums formulieren:

(3.99) Satz (Wurzelortsdarstellung des Kreiskriteriums):

Sei N ¢ S(v],vz) und liegen fiir alle x e K(v1,v2) die Polstellen von
Gx(p) aulerhalb von a_, ist der Regelkreis Lz—stabil vom Grad e. [

Die zur Anwendung des Satzes (3.99) notwendige Bestimmung der Polstellen
von Gx(p), d.h. der Nuliztellen vop

(3.100) Ax(p) = Alp) + xZ(p), x» £ 8K

kann mit einem Nullstellenprogramm auf einenp Rechner durchgefiihrt werden,
wobei allerdings komplexe Koeffizienten des Polynoms Ax(p) zu verarbei-

ten sind. Die Menge der Wurzeln (Pole) fiir alle » ¢ aK(v vz) (kurz aK)

‘] ]
von Gx(p) bezeichnen wir mit aB(G, v

1,vz) oder kurz aB:

(3.101) 8B = {p | A (p) = 0 | x ¢ 8K} ,

fir die DREYER [3.6]1 den Namen Betra

prufenden x ¢ 3K k@nnen dabei durch

gsortskurve geprigt hat. Die zu

(3.102) x = vy * Ay ej¢ s ¢ e [-n,n] ,

parametrisiert werden.

Es ist auch moglich, die Polstellenbestimmung in Abhdngigkeit des Para-

Y mit der bekannten Wurzelortsmethode durchzufiihren. Da

gewohnlich von Polynomen mit reellen Koeffizienten ausgeht
sind noch einige Vorbereitungen zy treffen;

meters » bzw.
diese Methode
Da neben x stets auch der
konjugiert komplexe Wert x zyr Menge aK gehs

rt, kann mit der Parametri-
sierung (3.102) fiir 9B auch die Darstellung

9B

i

AN 0 , 4 el0,x]}

U {P f A;(¢)(p)

n
o

’ ¢ € [O,l]}

i

RN )@ = 0, 4 e (0,21}
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angegeben werden. Wir formen das entstandene Polynom Ax(p)A;(p) weiter
um: '

[a(p) + va(p) + Avej¢2(p)] [alp) + va(p) + Ave_j¢Z(p)]

An(p)A;(p)

[ (p) + svel¥2(p)10ay(p) + sve I42(p))

]

Ai(p) + 2hv Re(ej¢]Am(p)Z(p) + Auzzz(p)

An dieser Stelle ist bereits zu erkennen, daf ein Polynom mit reellen

Koeffizienten entstanden ist. Fir die weitere Umformung sind zwel ver-

schiedene Moglichkeiten durch alternierende Vorzeichen und Indizes ge-

kennzeichnet:
b (p)az(p) = [ag(p) avz(p)1% ¢ 28v(1 + cose)a (p)Z(p)

Mit

a,(p) = 8, (p) - avZ(p) = alp) + viZ{p)

8,(p) = s, (p) + avZ(p) = alp) + v, 2(p)
und der Substitution

A = 2av (1 # cosé) 0 < <dav
ergibt sich
(3.103) o (p)az(p) = b7 p(p) £ N dp(PIEERT
so daB die Betragsortskurve in der Form
(3.104) 0B - lpl 8l ,(p) £ (@R = O 0 <A< dav)

auf diese Darstellung kann nun die Wurzelorts-

da hier die ibliche Form

geschrieben werden kann.

methode angewendet werden,
(3.105) q(p) + A R(p) = O

mit den reellen Polynomen

Q(p) A%,Z(p) ,
(3.106)

"

R(p) Am(p)Z(p)

und reellem Parameter A vorliegt. Wir skizzieren kurz die Vorgehenswelse,

die sich auch in vorhandene Wurzelortsprogramme einfiligen laBt.
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(3.107) Konstruktion der Betragsortskurve aB

(Zur Erlduterung der Konstruktionsschritte siehe Bild 3.23).

1. Man kennzeichnet die Nullstellen von Z{p) (0) und die Nullstellen
von A(p) (x).

2. Hiervon ausgehend zeichnet man die gewohnliche Wurzelortskurve von

o (p) = alp) + xZ(p) = 0
fiir reelle x.

. Auf dieser Kurve markiert man die Wurzelorte fiir den Parameterwert
* = v mit (O . Zusammen mit den Nullstellen von Z(p) (0) liegen
damit alle Nullstellen von R(p) = Am(p)Z(p) vor. Der Parameterwert
x = vy (bzw. x = v,) liefert die Nullstellen von Q(p), die aber wegen

Qlp) = A?(p) (bzw. Q(p) = A%(p)) doppelt einzuzeichnen sind
(&® bzw. ER ).

Re

O

Bild 3.23: Konstruktion der Betragsortskurve aB
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4. Ausgehend von den Nullstellen von Q(p) (® bzw. ®) und den Nullstel-

len von R(p) (O und O ) zeichnet man die Wurzelortskurve von
Qp) + A R(p) = 0 fir 0 <1< 44w

and hat damit die Betragsortskurve 8B gewonnen.

on konnen fir kleine Av statt des 4. Schritts
ameter-

Als Niherungskonstruktl
kleine Kreise mit Mittelpunkten in den Wurzelorten fir den Par

wert » = Vo gezeichnet werden.

Unabhingig davon, ob die Betragsortskurve direkt durch Nullstellenbestim-
mung des (komplexen) Polynoms (3.100) oder durch die vorangegangene Kon-
struktion ermittelt wurde, 1dBt sich nun wie in Bild 3.23 unmittelbar der
ablesen oder prifen, ob der gewiinschte Sta-
Im Bereich der 7-Transformation mufl die
Grad € vollstédndig innerhalb

maximale Stabilitdtsgrad € nax
bilitdtsgrad eingehalten wird.

Betragsortskurve fir die LZ—Stabilitét vom
"¢ t{jegen. DREYER [3.6] konnte anhand einer grofen

daB die Lage der Betragsortskurve 3B weite-~
Das Ubergangsverhal-

des Kreises |z| = e
Menge von Beispielen zelgen,

re Schliisse auf das dynamische Verhalten nahelegt:

ten von Regelkreisen mit einer beliebigen Sektorfunktion aus S(v1,vz)

ldft sich stets durch die Sprungantworten einer Klasse linearer Regel-

kreise abschiatzen, deren Polstellen aus dem Bereich der Betragsorts-

kurve aB gewidhlt werden. Bei einer Lage der Betragsortskurve wie in

Bild 3.23 darf also etwa eln Verhalten wie das eines dominierenden Pol-

paares angenommen werden.

3.2.3 Algebraische Auswertung des Kreiskriteriums

Die vorangegangenen Darstellungen des Kreiskriteriums als verallgemei-

und als verallgemeinerte Wurzelorts-

nertes Nyquistortskurvenkriterium
Da sich beide Verfahren zu-

kurve besitzen unmittelbare Anschaulichkeit.
echnische Methoden einbetten, bieten diese fir

dem in bekannte regelungst
lkreises einige Vorzige.

die Beurteilung des Rege
lgebraische Auswertung gegen-

um (sie baut teilweise

den Reglerentwurf und

Diesen Methoden stellen wir jetzt eine a
ch wie das bekannte Routh-Kriteri
siehe hierzu z.B. JURMUHL [3.181, S$.98 ff) nach einem
teil aber keine Anschaulichkelt

iber, die ahnli
auf diesem auf,
strengen Rechenschema ablauft,

bietet. Fiir die schnelle Uberprufun
als auch mit dem Rechner ist diese Methode aber besser geeignet als die

als Nach
g der Kreisbedingung sowohl von Hand
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vorangegangenen Verfahren. Dieses Verfahren wurde von KARL in [3.9]

S. 163 und [3.10] erstmalig aufgezeigt, wird hier aber etwas modifiziert
dargestellt. Wir beschrinken uns dabei auf den Laplace-Bereich und die
Untersuchung der einfachen L)-Stabilitdt, d.h. ¢ = 0. Fiir ¢ 4 0 kann die

Methode mit Hilfe der Substitutionen (3.63) bzw. (3.64) angewendet wer-
den.

Ausgangspunkt ist die Kreisbedingung

(3.108) 16,(s)] < 1 fiir alle s ¢ 0 = 0

oder IGm(jm)! < %; fir alle w

Durch Quadrieren folgt

)G (ju) = Z0w)2(ju)
G, (J0)G_(juw) 3 GGu)d T-3u) © ot

und damit
dplie)a (-5u) - av? 2(ju)z(-jw) > 0

Wir schreiben dies als

(3.109) P(ju) > 0O fir alle o
mit der Abkiirzung

(3.110) P(s) := Am(s)Am(-s) - At Z(s)z{-s)

Wird in P(juw) w mit - vertauscht, andert sich der Wert nicht, folg-

lich kann das Polynom P(s) nyr aus geraden Potenzen bestehen. Ist daher
e von P(s), P(so) = 0, muf} auch
= 0. Aus (3.110) ist ersichtlich, daB

So eine beliebige komplexe Nullstell
=S, eine Nullstelle seip- P(-s )
) )

b Im I m
X X
X X
X
Re Re
o MW —- -
X
x b 4
X x
{a)

(b}

Bild 3.24: Mégliche Nullstellenkonfigurationen des Polynoms P(s)
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die Koeffizienten von P(s) wie die von Am(s) und Z{(s) reell sind. Des-
halb weisen die Nullstellen auch eine Symmetrie zur reellen Achse auf

(siehe Bild 3.24).

Um die Ungleichung (3.109) zu befriedigen, diirfen keine Nullstellen von
P(s) auf der imaginiren Achse liegen. Wire s = ju  eine Nullstelle
(Bild 3.24b), fiihrt P(jwo) - 0 zum Widerspruch zu (3.109). Andererseits
kann P(jw) niemals das Vorzeichen wechseln, wenn keine Nullstelle von
P(s) auf der imaginiren Achse liegt (Bild 3.24a). Es geniigt in diesem
Fall, das Vorzeichen von P(juw) fiir ein beliebiges w» zu priifen, z.B.
P(0) > 0, um P(ju) > O fiir alle w sicherzustellen.

Die Kreisbedingung (3.108) kann niemals erfiillt werden, wenn der Zah-
lergrad von Gm(s) gréBer als der Nennergrad ist, da dann [Gm(jw)| iber

alle Grenzen wichst. Fir das folgende kann daher

Grad[Am(s)] > Grad [Z(s)]

=
1]

Aus (3.110) ist der Grad des Polynoms P(s) von Zn

angenommen werden.
n Nullstellenkonfiguration von P(s)

ersichtlich. Wegen der symmetrische
ellen in der offenen rechten Halbebene

missen jeweils genau n Nullst
da keine

Re(s) > 0 und in der offenen linken Halbebene Re(s) < O liegen,
= 0 liegen darf. Um dies zu prifen, bie-

auf der imaginiren Achse Re(s)
Die Anzahl der Vorzeichenwech-

tet sich das bekannte Routh-Kriterium an:
sel in der ersten Spalte des Routh-Schemas gibt die Anzahl der Polstel-

len in der rechten offenen Halbebene an;
Gewphnlich beginnt man heim Routh-Schema mit

) gebildeten Start-

es missen also n Vorzeichen-

wechsel erreicht werden.
den beiden aus geraden und ungeraden Potenzen von P(s
polynomen. Da P(s) aber nur aus geraden potenzen besteht, muB als zweltes
Startpolynom die Ableitung p'(s) verwendet werden. Auf die beim Routh-

Schema auftretenden Sonderfalle (Behandlung von Nullen in der 1. Spalte)

gehen wir nicht ein, sondern verwelisen dazu auf ZURMUHL [3.18], 5.98 ff.

Neben der Untersuchung der Kreisbedingung ist wieder zu prifen, ob Gm(s}
selbst "stabile" Polstellen besitzt. Dies kann durch die ilibliche Anwen-

dung des Routh-Kriteriums auf das Nennerpolynom Am(s) nachgewiesen wer-

den; hier darf kein Zeichenwechsel in der ersten Spalte auftreten.

ertung des Kreiskriteriums bei

(3.111) Beispiel: Algebraische Ausw
Roboterarms

der Winkelpositionierung eines

Wir prifen mit dieser Methode die bei der Winkelpositionierung {3.68)

auftretende {jbertragungsfunktion



170 3 Funktionalanalytische Methoden zur Stabilitdatsuntersuchung

_ _ I{s)
G(s) = Gm(S) = W
mit
2(s) = 0,175 + 1,75 + 0 |
b ( _ 4 3 2
n s) = s + 10,065 + 9,1s% + 5,955 + 1,02

Zuerst untersuchen wir mit dem Routh-Schema die "Stabilitdt" der Null-
stellen von Am(s). Je nach Darstellung variiert das Routh-Schema etwas
in der &uBeren Form; man vergleiche z.B. FOLLINGER [3.7]1, S.124 und
ZURMUHL [3.181, S.98 ff. Wir beginnen mit dem héchsten Koeffizienten der
Abbaupolynome immer in der ersten Spalte. Die Koeffizienten des jeweils
nachsten Abbaupolynoms werden dabei nach dem Schema

allbt

C"d' X=b"d2
C

I-xo-

berechnet, wobei leere Plitze am rechten Rand des Schemas als null zédh-
len. Der Quotient % 1st fiir alle Zahlen einer Zeile gleich und wird da-
her zweckmdBigerweise fiir jede Zeile nur einmal berechnet. Um die Null-

stellen von Am(s) ZUu untersuchen, starten wir mit den Koeffizienten der
geraden und ungeraden Potenzen:

1 9,1 1,02
10,06 | 5,95
8,51 1,02
I
4,74
1,02

In der ersten Spalte tritt kein Vorzeichenwechsel auf; alle Nullstellen
von Am(s) liegen in der linken offenen Halbebene (auBerhalb von a). Als
nachstes sind die Produkte Am(s)Am(-s) und Z(s)Z(-s) zu berechnen. Es
ist

Z(-s) = 0,17s°- 1,75 + o

.0-s) = s*- 10,06 + 9. 142. 5,955 + 1,02
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Die Polynommultiplikation kann recht iibersichtlich in einem Matrixschema

durchgefiithrt werden, wobei die mit (*) gekennzeichneten Felder nicht be-
rechnet werden, da diese Beitrédge zu ungeraden Potenzen liefern, die sich

im Ergebnis immer aufheben. Die Koeffizienten des Produktpolynoms erhilt

man durch Addition der Matrixelemente entlang der Diagonalen, wie ange-

deutet ist.
Z(s)
0,17 | 1,7 0
0,17 | 0,0289 0
2(-s) -1,7 . -2,80 | -
;
0 0 . 0
0,0289 | -2,98 | O
4 2
7(s)z(-s) = 0,0289s -2,89s" + 0
Am(s)
1 10,06 | 9,1 5,95 1,02
1 1 . 9,1 1,02
§
~10,06| . |-101,2 . -59,9 .
e
a_(-s) 9,1 19,1 82,8 . 9,28
4___‘_——«
-5,95| - -59,9 . 35,4
——— 7]
1,02|1,02] - 9,28 1,04
:
1 .83 |-34,9 |-16,8 1,04
bys)ogl-s) = B _ 5356 - 34,05" - 16,85° + 1,08

Wir wollen den Sektor Av = 2 iiberprifen. Aus (3.110) ergibt sich damit

8. 83,08°- 35,0s%-5,285%+ 1,0

P(s)

und
8s’ - 498s°- 140s°- 10,65

1

P'(s)

R A, a0 i
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Die Bedingung

P(0) = 1,04 >0

ist erfiillt, so daB wir mit den Startpolynomen P(s) und P (s) das Routh-
Schema durchfithren (nach Rechnung auf drei Stellen gerundet):

1 -83 -35 -5,28 1,04
8 -498 | -140 | -10,6

-20,8 | -17,5 |-3,96 1,04

=505 | -141 | -10,2

-11,7 {-3,54 | 1,04

11,6 | -55,1
-58,8 | 1,04
-54,9
1,04

In der 1. Spalte treten 4 Vorzeichenwechse] auf, da n = Grad[ﬁm(S)] =4

ist die Kreisbedingung erfille,

der Regelkreis ist somit LZ—Stabila was

ntspricht, wo eine Stabilitats-
= 0) ermittelt wurde. .

genau dem Ergebnis ays Beispiel (3.67) o
grenze von Av = v < 2 45 (vm

Steht das Polynonm 8,(s) bei Regelkreisen mit asymmetrischer Sektorfunk-
tion nicht direkt zur Verfligung, kann die Beziehung

Am(S) = As) + va(s)

auch direkt in (3.110) eingesetzt werde

. n-
2 2 n und man erhdlt mit dem Zusamme
hang vm - Av = Vv

2
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(3.112) P(s) = a(s)a(-s) + vm[A(S)Z(-s) + 8(-s)Z(s)] + vyv, Z(s)Z(-s) .

Fiir den Bereich der Z-Transformation ist ein analoges Vorgehen mit dem
Zypkin-Kriterium (siehe ACKERMANN [3.11, S. 211 ff) leider nicht méglich,
da dieses Kriterium nur feststellt, ob Nullstellen auBerhalb des Ein-

heitskreises liegen. Es liefert aber nicht wie das Routh-Kriterium die

Anzahl der auBerhalb liegenden Nullstellen, die wir fiir dieses Verfah-

ren benotigen. Es ist aber moglich, den Einheitskreis durch die Trans-

formation

1 5

(3.113) 7 =
1 - s

auf die imagindre Achse abzubilden. Aus

+ + ...
Am(z] a  * a,z a,z

(3.114)
2 m
Z(z) = b+ bz + byz” + ... bz  » m<m

. n .
entstehen damit nach Erweiterung mit (1-s) die Polynome

A;(S) = ao(i-s)n + 31(1-s)n"1(1+s) ot an(1+s)n

(3.115)

*

7 (s) = bo(l-s)n * b1(1-s)n—](1+s) T am(1-s)“"“(1+s)'“,

) kann nun das oben dargestellte Verfahren
ber der zusdtzliche Aufwand fiur die
1+s) und (1-s) an.

. * *
Mit den Polynomen Am(s), Z (s
durchgefiihrt werden. Es fdllt hier a
Ausmultiplikation und Umsortierung der Potenzen von

3.3 Kreiskriterium fiir MehrgroBensysteme (L;-Stabilitat)

Prinzipiell stellt sich das Mehrgréﬁenkreiskriterium durchaus ahnlich

dem Kreiskriterium fiir Eingroflensysteme dar, nur daB hier statt der Uber-

tragungsfunktion G(p) eine nxn {jbertragungsmatrix G(p) auftritt. Im Mehr-

grofenfall mu@ nun aber die Matrixnorm von G(p) untersucht werden, wah-

rend im Eingréﬁenfall nur der Betrag von G(p) zu bilden ist. In der Regel

wird man diese Matrixnorm (Hilbertnorm) nicht genau bere
ende p € da_ zu losen ist, sondern

chnen, da hierzu

ein Eigenwertproblem fiir jedes zu prif

man benutzt einfacher zu handhabende A
itzung verwendet,

bschatzungen fir die Hilbertnorn.

Je nachdem was man fiir eine Absch erhalt man verschie-
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dene untereinander nicht dquivalente Fassungen des Mehrgrofenkreiskri-
teriums.

Wir beginnen mit einem Satz, der vornehmlich Grundlage der nachfolgen-
den Darstellungen sein soll, jedoch auch direkt angewendet werden kann
(vgl. das Kreiskriterium (3.57) fiir EingréRensysteme). Auch in diesem

Abschnitt wird die fiir die Anwendung des allgemeinen Stabilitdtssatzes

n

(3.21) notwendige Existenz der Systemgrdfien im Raum Lye

stets vorausge-
setzt.

(3.116) Satz (MehrgréBenkreiskriterium):

Es liege ein nichtlinearer Standardregelkreis nach Bild 3.2 vor. Die
Ubertragungsmatrix G(p) des linearen Teilsystems sei in Q_ analytisch

und es gelte mit einer Konstanten v, > 0 fir die Hilbertnorm (siehe
(A3.85)) der Ubertragungsmatrix

(3.117) HIG(p)] < y_  fir alle p ¢ an,

Das Teilsystem N erfiille mit einer Konstanten v > 0 beziiglich der Eukli-
dischen Norm E(+) (siehe (A3.70)) die Bedingung

(3.118) E[(ﬁ e)(t)] < v Ele(t)]
fir alle e und t. Gilt

(3.119) & tm oy v <

n_

so ist der Regelkreis L2 stabil mit exponentiellem Stabilitdtsgrad e- .

(3.120) Bemerkung:

Die Bedingungen (3.117) und (3.119) kénnen dhnlich wie bei der Kreisbe-
dingung im EingroBenfall zu

1 ..
(3.121) HIG(p)] < Y. <5 fir alle p e o0 _

zusammengefalt werden. Leider ist hier eine unmittelbare graphische

Interpretation nicht mdglich. Wir werden im Abschnitt 3.3.2 dennoch
eine Ortskurvendarstellung des MehrgroBenkreiskriteriums kennenlernen,
die aber nicht ohne zusidtzliche Voraussetzungen auskommt. Auch die alge~

braische Auswertung im Abschnitt 3.3.1 verschirft die urspriinglichen
Forderungen des MehrgroBenkreiskriteriums.
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Beweis des Satzes (3.116):

Die Beweisschritte laufen dhnlich ab wie die des Satzes (3.57) fir Ein-
groBensysteme, weshalb wir uns hier etwas knapper fassen konnen. Wir
beschrianken uns wieder auf den Beweis fir die einfache L2 Stabilitat

(¢ = 0). Die Ubertragung auf Stabilitdtsgrade e + 0 geschieht dann wie-
der durch die Substitutionen (3.63) bzw. (3.64).

Ausgangspunkt ist das Normquadrat von y, welches wir mit der Eigen-
schaft (A3.34) und der Parsevalschen Gleichung (A2.18) bzw. (A2.50) in

den (diskreten) Fourier-Bereich bringen:
n

n

) 2 1 Y
z!;yiug - S = g LI
i=1 1

1l

2
[yl

Mit (A3.43) folgt

2
[yl 15

. *
wobei (*) fir Transposition und komplexe K
benutzen wir fiir die Fuklidische Vek-
so daB wir fir den Term

(R
Lyl

onjugation steht.

Um MiBverstindnisse zu vermeiden,
tornorm nach (A3.70) die Bezeichnungsweise E(*),

Y (w )Y( ) schreiben kénnen

(Y = Y (W)

Es gilt %(m) = é(w)d(w). Mit Hilfe der Hilbertschen Matrixnorm H(*) ge-

langt man zu der Abschatzung

EL¥(w)] < HIG(w)] ELU(w)]

Wir setzen dies in ||X\|§ ein und erhalten mit der Holderschen Unglei-

chung (A3.44)

g = Y SUPEE SISO MEF

1yl 15

< =l 1HheCe)) ELLUC)I1 ]

~ -
NP OMNIRILS S

- Y
ORI

aea 112 Null7
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Beim letzten Umformungsschritt wurde wieder die Parsevalsche Gleichung

fiir die Grofle u verwendet. Wir erhalten also

Il € LHIGEI] T ul ],

Sowohl die Holdersche Ungleichung als auch die Abschdtzung mit der Hil-
bertschen Matrixnorm sind jeweils kleinstmogliche Abschatzungen. Daher

folgt fir die Norm des Operators P:ty=r~Tu

ell, - 1IBtac) ],
Also

|l£[|2 = sup H[é(w)]
bzw. wek

Hrll, = sup HIG(e)]

goel-n,1]

Wegen der Voraussetzung der Analytizitdt in o gilt

6(w)

6(ju)
bzw.

é(w) Q(eij

so daB aus der Voraussetzung {3.117)
Hril, <«

folgt. Die Voraussetzung an das Teilsystem N impliziert unmittelbar

[INIf, < v ; daher ist mit dem allgemeinen Stabilititssatz (3.21)
LZuStabilitét gezeigt, wenn yv < 1. .

3.3.1 Algebraische Auswertung des MehrgrioBenkreiskriteriums

Wie eingangs erwahnt, ist die Berechnung der Hilbert-Norm recht aufwen-
dig, weshalb man sich mit gréberen, aber leichter zu berechnenden Schran”

ken behilft. Eine Abschitzung der Hilbert-Norp bietet nach (A3.87) die
Euklidische Matrixnorm,

(3.122) HIG(p)] < EG(p)]

¥

die sehr einfach zu berechnen ist. Ip ungiinstigsten Fall iiberschatzt mah

mit (3.122) die Hilbert-Norm um den Faktor Yn' (siehe (A3.87)). Statt
(3.121) fordern wir also als schiarfere Bedingung

(3.123) E[G(P)] < 1  Fir alle p ¢ ag
— v [
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Fiir das weitere benutzen wir fir die Ubertragungsmatrix die Form

(3.124) G(p) = 3%57 2(p)
} und einem gemeinsamen Nennerpolynom

mit der Zihlerpolynommatrix Z(p
vielfaches der

enfalls als kleinstes gemeinsames

a(p), welches gegeben
j(p) -u bestimmen ist. Transzendente Uber-

Nennerpolynome der Elemente Gi
tragungsfunktionen missen also bei dieser Methode ausgeschlossen werden.

Mit (3.124) kann die Fuklidische Matrixnorm als

2 _ 2 _ 1 2
Ella(p)] = 167 WZ 245
i,] i,j

geschrieben werden. Damit wird aus der Bedingung (3.123)

2 1 z ..
;Z. |Zij(p)‘ < :7 |a(p) | fiir alle p e 3R,
bZW. 1,]
2 .
(3.125) lA(P)lz N E; IZij(p)l > 0 fiir alle p e 30
i,]

Wir haben die gleiche Ungleichungsstruktur vorliegen wie im Fall des
EingréBensystems (siehe (3.109), (3.110)). Im Fall e = 0 kann fur

Laplace-Ubertragungsfunktionen mit

Z
(3.126) p(s) = a(s)a(=s) = v > 2;(s)245(-5)
1,]
sofort das Verfahren nach Abschnitt 3.2.3 angewendet werden, um zu pru-
fena ob

P(jw) > O fir alle w

e Anwendung auf Z—Ubertragungsfunktionen geschieht mit

erfillt ist. Di
fiir Stabilitdtsgrade e $ 0 sind zuvor

Hilfe der Transformation (3.113),

die Substitutionen (3.63) bzw. (3.64) auszufiihren.

Fir das weitere Vorgehen betrachten wir von nun an Nichtlinearitdten N,

die in einer ”Diagonalform" (entkoppelt) vorliegen, d.h. die Eingangs-
Ausgangs-Beziehung
(3.127) W v = EE
soll komponentenweise als
3. = =1, ’ ’
(3.128) we o= Neg oo 1 n

geschrieben werden konnen. Nur die i-te Eingangsgrofe hat Wirkung auf

AR et e

g
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1Z

Bild 3.25: Teilsystem N mit Diagonalstruktur

die i-te AusgangsgroBe (siehe Bild 3.25). Kopplungen zu anderen Eingangs-

groBen sind nicht gestattet. Ein derartiges entkoppeltes System erfilit
die Voraussetzung

(3.129) EL(N e)(t)] < v Ele(t)]

des Satzes (3.116), wenn alle Komponenten N, Sektorfunktion aus S(-v,v)
sind. Sind jedoch die einzelnen Komponenten N. durch verschiedene (sym-
metrische) Sektoren vy abschdtzbar, wiirde d1e Wahl von v als

V. = max wv.
1

eine zu grobe Abschiatzung darstellen. Um dies zu vermeiden, fiihrt man
eine Umnormierung durch:

(3.130) Umnormierung des nichtlinearen Teilsystems N

Un méglichst gleichartige Abschédtzungen fir die Komponenten N; zu erhal-
ten, die wir als Sektorfunktionen aus S(—vi,vi) mit im allgemeinen unter-
schiedlichen Konstanten v, voraussetzen, kann recht instruktiv eine Trans-
formation direkt im Strukturbild 3.26 vorgenommen werden. Man figt in dem
Regelkreis Einheitsmatrizen E ein, die in E = U U bzw. E = V V -1 mit zu”
ndachst noch beliebigen Matrizen U, V aufgespalten werden. Durch Umstruk-

turlerung entsteht ein transform1erter Regelkrels mit den Teilsystemen

T, N und den SystemgréfRen r, z, e, u, y.
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|

Bild 3.26: Strukturumformung des nichtlinearen MehrgroBenstandardregel-

kreises zur Umnormierung der Sektorfunktionen

Wahlen wir nun U und V als Diagonalmatrizen zu

y

diag(Ui) , U vi Ay

(3.131)

hil

\ diag(Vi) ) Vi : Vi M

mit noch freien Parametern XA, > 0, so ergeben sich die Komponenten des
Teilsystems N = !-1 NU - zZu

~ - -1 1
(3.132) o= vitw oultos N.
i 1 i1 1
Vi MoEYy
Die Konstanten r; dirfen hier nicht gekirzt werden,

Operatoren N, kelne Vertauschung der Reihenfolge gestatten.
aritat N eine Sektorfunk-

da die nichtlinearen
Dennoch 1st

jede Komponente N der transformierten Nichtline

tion aus S(-1,1) wie man ausgehend von
|(Niei)(t)[ < vi‘ei(t)l
mit Hilfe der Substitution
ei(t) =y V“i ei(t)

nachweist:

|éi(t)| :

v ,;i}m IR (0] < leg(o)]
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Durch Quadrieren und Addition iber alle Komponenten i erhidlt man fiur N
eine Abschétzung der Art (3.129) bzw. (3.118) mit v = 1:
(3.133) E[(ﬁ é)(t)l < Ele(t)]

Die Ubertragungsmatrix des transformierten Systems I = Ur V lautet

[t

(3.134) G(p) = Uslp) v = A11p] ij(p)

mit den Komponenten der Zahlerpolynommatrix

A

{3.135) iij(p) = T? V;;U; Zij(p)

Fir die Anwendung des oben beschriebenen algebraischen Verfahrens auf
G(s) sind die Polynome a(s), Zij(s) in (3.126) einzusetzen, wobei zuvor

Zij(s) durch Zij(s) ZUu ersetzen ist. Dann erhalten wir das Polynom

:

(3.136) P(s) = a(s)a(-s) - Z 7 vpvy 2902
1,] ]

auf das wiederum das in Abschnitt 3.2.3 dargestellte algebraische Ver-
fahren angewendet werden kann. Die noch freien Parameter Ay konnen vor-
teilhaft dazu genutzt werden, die Nichtdiagonalelemente Zij(S)’ it
in der Summe (3.136) unterschiedlich stark zu gewichten. Haben bei-
Spielsweise in einer 2x2 Ubertragungsmatrix die beiden Elemente 212(5)’

Z,1(s) betragsmiBig verschiedene GroBenordnungen, kann durch Wahl des
Quotienten

o Z71(s)
X Z1,0s)

die GroBenordnung angeglichen werden. Dabei ist fir s = jo derjenige
Frequenzbereich zu wahlen, fiir den ap ehesten eine Verletzung der Bedin-
gung P(ju) > 0 zu erwarten ist. Ist sogar ein Element identisch null,
Z-B. Z21(s) = 0, geht durch die Wahl Ay = O auch das andere Nichtdiago-
Nalelement Z1,(s) iberhaupt nicht mehr in die Summe (3.136) ein. Die

Diagonalelemente 2;;(s) bleiben von der Wahl der A, stets unberihrt, da
dort immer der Quotient 1 entsteht, o

In einem weiteren Schritt sollen nun auch Sektorfunktionen mit asymme-
trischen Sektoren zugelassen werden:
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(3.137) Symmetrierung asymmetrischer Sektorfunktionen

Treten im MehrgroBenregelkrels "asymmetrische” Sektorfunktionen

3.
(3.138) N; € S(vqisVyei)

auf, kann dhnlich wie im EingroBenfall durch die Transformation

(3.139) Em .= E - X,m

eine Symmetrierung erreicht werden (siehe Bild 3.27, vgl. Bild 3.21).

Die Diagonalmatrix v, ergibt sich aus den Komponenten

3. ]
(3.140) vy i= o7 (vgq Vi)

Der zugehérige Block T hat die Ubertragungsmatrix

6, (p) (£ + 6(p)y,) " B(p)
(3.141)

(6 (p) + vg) !

1

es moglich, die algebraische Auswertung des Mehr-
torfunktionen zu ubertragen. Al-

ndigen {lbertragungsmatrix gm(p)

Auf diese Weise ist
groBenkreiskriteriums auf beliebige Sek

lerdings ist die Bildung der dazu notwe

auf rein analytischem Weg im allgemeinen recht aufwendig, da hierzu

Matrixinversionen durchgefithrt werden miissen.

erte Strukturumformung nach

Eine Alternative bietet eilne modifizi
hr einfach zu

Bild 3.28, wobei die zugehdrige lbertragungsmatrix se
bilden ist. Dazu muB aber die Einschrankung

3.

(3.142) v1i <0 < v,
s in Bild 3.27 wird dazu das Tellsystem N
parallel geschaltet, sondern durch p gegenge-

ob das dadurch entstehende neue Teilsystenm

gemacht werden. Anders al
nicht mit einem Block Yo
koppelt. Es ist unerheblich,

Hu’ welches wir formal als

indeutige Abbildung zwischen der neu-

schreiben wollen, tatsadchlich eine e
da in bezug auf das

angsgrofle vermittelt,

en Eingangsgriofe und der Ausg
keine expliziten Funktionalzusammen-

Teilsystem Eu nur Abschatzungen und

hidnge interessieren.

Die Elemente der Diagonalmatrix u werden auf die Werte
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v

Bild 3.27: Symmetrierung der Sektorfunktionen durch Subtraktion der
mittleren Sektorweiten Vo

Bild 3.28: Symmetrierung der Sektorfunktionen durch Gegenkopplung des
nichtlinearen Teilsystems

Y1 Voi

(3.148) Hp o= g { L, J
gesetzt (vgl. im EingréBenfall Gleichung (3.79)). Die nichtlinearen Ope-
ratoren besitzen "Diagonalstruktur”; daher kann die Untersuchung von ﬂu
komponentenweise durchgefiihrt werden. Da N, eine Sektorfunktion aus

S(v]i,in] (v1i <0< \)2.1) ist, gilt

(Niei)(t)

Vy, < e — @ <

v .
11 — ei(t) 21

Ist der Quotient negativ, besitzt er das gleiche Vorzeichen wie Viie

so daB sich bei Kehrwertbildung in der linken Ungleichung das Ungleich-
heitszeichen umkehrt und wir
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-1
11 (Niei)(t) Wi(t)

erhalten, wobei w, = N.e; substituiert wurde. Fir positive Quotienten

ergibt sich fir den Kehrwert

e (1) (W) T

(N;e;)(t) w () Vi

Wird nun der Wert u; zu N11 addiert, erhdlt man als Abschatzungen fur

die Komponenten N;} = N;1 + oy im Fall des negativen Vorzeichens
-1 -1
i 1 1 X (N '+ ui)wi(t) i (Nui wi)(t)
v T v,. | - = T w.(t)
I Vi wy(t) Witt

und im Fall des positiven Vorzeichens

< wi(t) = thi

1

\Y

[ 1 1 (N£1 + ui)wi(t) (NL} wi)(t)
Voi 1i]

Wird die erste Ungleichung mit -1 multipliziert, kehrt sich das Ungleich-

heitszeichen um, wodurch die beiden Fdlle zu

(N_? w.)(t)
pr 1 > .
W.(t) - 1

1

zusammengefaBt werden konnen. Hierbel ist pj als

1 1

Vip o V2

(3.145) o, = 7

definiert (vgl. auch hier Gleichung (3.79)). Die Inversion der letzten

Ungleichung fihrt auf

W (1) (N;v;) (D) 1
1 = __P_L_l_._-d _<_ —_ ,
(N;{ W) (1) v, (t) Py

eine "symmetrische"

daB die Komponente Nui
Ubertragungsmatrix

wodurch nachgewlesen ist,
/pi) ist. Die zugehdrige U

Sektorfunktion aus S(-1/pi, 1

des linearen Teilsystems [, ergibt sich zu

(3.146) G,(p) = G(p) - U

R A 0 e
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Diese ist im Gegensatz zu der Ubertragungsmatrix gm(p) nach (3.141) sehr
einfach zu bilden. In der Schreibweise mit

T
(3.147) Eu(p) = WZH(P)

bedeutet dies fiir die Komponenten der Zéhlerpolynommatrix

(p)

7 .. z..(p) fir i &3
(3.148) . -

2,1i(p) = 2;1(P) + u8(p)

wahrend das Nennerpolynom von Eu(p) das gleiche wie das von G(p) ist.
Wenden wir nun die algebraische Auswertung des MehrgroBenkreiskriteriums
(im Fall von Laplace-Ubertragungsmatrizen) fir "asymmetrische" Sektor-
funktionen mit dem Polynom P(s) nach (3.136) an, in dem v, durch %f und

Zij durch Zuij zu ersetzen sind, ergibt sich g
M. AZ 1
3.149 P =11 - 1 -s) - 1 (-
( ) (s) [ Zp—z]t\(s)ﬂ( s) Z = Zij(s)ZlJ( s)
iPi i,j "5 PiPj

. My Hi
1

i 1 i

Dieses Polynom kann dann wieder dem in Abschnitt 3.2.3 dargestellten Al-

gorithmus unterworfen werden, um festzustellen, ob die Kreisbedingung

befriedigt wird. Da gu[p) wie G(p) das Nennerpolynom aA(p) besitzt, ist
die Prifung der Analytizitat von G

u(P) in 2_ gleichbedeutend mit der
Prufung der Nullstellen von a(p)

» Was wie in Abschnitt 3.2.3 mit dem
Routh-Kriterium durchgefiihrt werden kann. o

3.3.2 Ortskurvendarstellung des MehrgroBenkreiskriteriums

Wie bei der algebraischen Auswertung des MehrgroBenkreiskriteriums muf

die Hilbert-Norm von G(p) durch eine grobere Schranke abgeschitzt werden,

um zu einer anschaulichen Deutung zu gelangen. Anders als im Eingrofen-

fall, wo die Darstellungen in der Ortskurvenebene,
ebene und die algebraische Auswertung
teriums sind

in der Wurzelorts-
dquivalente Formen des Kreiskri-
» impliziert weder die folgende Abschidtzung die Abschatzung
durch die Euklidische Matrixnorm des Abschnitts 3.3.1 noch umgekehrt.
Es ist durchaus moglich, mit der einen Fassun

g des MehrgroBenkreiskrite-
riums Stabilitit nachzuweisen,

wahrend die andere nicht zum Ziel fihrt.
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Allein fiir die Ortskurvendarstellung gibt es mehrere untereinander nicht

dquivalente Varianten (siehe . B. ROSENBROCK [3.13], COOK [3.51, SAFONOV,

ATHANS [3.15], BOCKER [3.2], S.88 ff). Wir beschrinken uns in diesem Ab-

schnitt auf zwei Stabilitdtssadtze, fiir die wir im AnschiuB Ortskurvenin-

terpretationen entwickeln.

N wird wieder "Diagonalstruktur" angenommen, wobel

Fir das Teilsystem
) mit unterschied-

jede Komponente N, eine Sektorfunktion aus $(vqi1V23

lichen Konstanten Vi, Vi sein darf. Die folgenden gitze unterscheiden

dabei zwei Falle, die leider nicht alle Méglichkeiten abdecken: Fir die

Anwendung des Satzes (3.153) muf

3.1
(3.150) vy €0 < vy

fir alle i gelten, wihrend Satz (3.156)

(3.151) > 0

Y1iV24

filr alle i fordert; Vii und Vai miissen jeweils gleiches Vorzeichen haben.

Eine Mischung der beiden Voraussetzungen 1st nicht moéglich. Fir diesen
zunichst durch die Symmetri-

Fall ist aber die Mdglichkeit unbenommen,
rung (3.137) auf ngymmetrische"” gektorfunktionen iiberzugehen, die die

Bedingung (3.150) erfillen. Auch in diesem Abschnitt machen wir von den

in (3.144), (3.145) definierten Abkiirzungen

poe - { 1, ﬂl_]
i T|v; Vi
(3.152)
. - 1
1 -Z \).I1 Vzl
Gebrauch.

(3.153) Satz (Mehrgrogenkreiskriteriun):

€ S(“1i’VZi) gelte vy <0 < voy fir alle 1. Ist

Fir die Komponenten Nj
analytisch in &

die Ubertragungsmatrix G(p) und gilt mit der Summe

i i SRTINeY
(3'154) I‘l(p) r= Z B——;max X—]‘ ‘Glj(p)‘a A‘i I _]l p ‘ '

jEi

worin die A > 0 frei verfiigbare Konstanten sind,

.. an
(3.155) 65;(p) - wl o+ r;(p) < Py fiir alle p € 39

und alle i, so ist der MehrgréBenregelkreis L?-stabil vom Grad e. »
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Beweis:
Mit Hilfe der Symmetrierung (3.137) des Abschnittes 3.3.1 gelangen wir
zu der transformierten Ubertragungsmatrix

G (p) = G(p) - p

und zu Sektorfunktionen aus S(-1/p 1/p ). Wenden wir hierauf die Um-
normierung nach {3.130) an, entstehen Sektorfunktlonen aus S(-1,1),

daB die Operatornorm des umnormierten Systems N kleiner 1 ist. Die Kom-
ponenten der Ubertragungsmatrix Qu(p) lauten dann

. AL 1
. (p) = L G ..(p)
= \ Vop ey M

Nach Satz (A3.96) ist die Hilbert-Norm der Matrisx é(p) kleiner 1, wenn

]
fir alle i gilt. Genau dies ist die Voraussetzung (3.155), was man durch
Einsetzen der Komponenten

- 1
- Ai i

. (p) = L G..(p) fiir 1 4 j
uij )«j lr‘“—ﬁpipj ij J

und Multiplikation der Ungleichungen jeweils mit p; erkennt. Nach Satz
(3.116) ist also der Regelkreis Lp—Stabll vom Grad E. u

(3.156) Satz (MehrgrﬁBenkreiskriterium):

Fir die Komponenten N, e S(V1i’v21) gelte V1iv2i > O fir alle i. Ist

(6(p) - n)” analytisch in nE und gilt mit

(3.157) r,(p) = 4 ; —; 1645 (p) s —llc (p)]
it

worin die Ai > 0 frei verflighare Konstanten sind,
(3.158) ]Gii(p) - o- r.(p) > p;  fir alle p e ag,

und alle i, so ist der MehrgroBenkreis L2 stabil vom Grad «. .
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Bewels:

Wir fihren Strukturumformungen wie in Bild 3.28 durch. Anders als in
(3.137), wo die Einschrdnkung v,; < 0 < vy getroffen wurde, folgt hier

bei gleichen Vorzeichen von v,. und vos aus
N; & 8(vy5.vp5)

fiir die "inverse" Funktion unmittelbar

-1 1 1
Ni > S(;—_a v )

21 1i

Fiir die Komponenten N;1 = N;1 + p; des ninpversen Operators” E;l ergibt

sich

-1 1 1
NT' o+ p. e S + U, +u)
1 1 VZi 1 V1i 1

1
NUi 2 S('pi:pi) )

n Sektorfunktionen erhalten haben.

wodurch wir wieder "symmetrische
1
lautet

Die Ubertragungsmatrix des inversen Operators E;

o) = (Glp) - w7

elkreis mit den Teilsystemen Lu’ Eu ist auch der aus

. - -1 - .
den inversen Ubertragungsgliedern Eu]’ N aufgebaute Krels eln Stan-

dardregelkreis, so daB hierauf der Satz (3.116) angewendet werden kann.
3.130) die Systemgrofien umnormiert, so daf

Fiir das umnormierte inverse li-

Ebenso wie der Reg

Zuvor werden dhnlich wie 1n (

Sektorfunktionen aus s(-1,1) entstehen.

neare Ubertragungsglied ergibt sich dann

- -1
6 '(p) = VS -w) Y
-1
-1 -1
= {VGlp) - p) U
mit y = diagy) Y = Voy ’
. -1
E = dlag(Vi) ) Vi = VEI Xi

Fiir die Ubertragungsmatrix
: 1 -1
g,(m = ¥ (G(p) - U

bedeutet dies in Komponentenschreibweise



188 3 Funktionalanalytische Methoden zur Stabilitdtsuntersuchung

- 1

- 1N

G .. L N TR
ulJ(p) VE;;; y lJ(D) fir i 4 j

Die Anwendung des Satzes (A3.97) auf die Matrix G (p) fiilhrt mit der Wahl

der freien Konstanten ng = 1/ Ve zusammen mit der Voraussetzung (3.158)
dieses Satzes zu der Aussage

H[é; (p)1 <1 fir alle p e an_

wodurch mit Satz (3.116) erl—Stabilitét vom Grad e gesichert ist. |

In den Bildern 3.29, 3.30 ist eine graphische Interpretation des Mehr-
groBenkreiskriteriums dargestellt: Man zeichnet fiir ein i ahnlich wie

im EingroBenfall die Ortskurve des Diagonalelementes Gii(p), peon,
und konstruiert dann fiir jedes p e 3a_ (in der Praxis fur einige Werte-
P aus an mit angemessener Schrlttwelte) ausgehend von den Mittelpunk-
ten G, (p) Kreise mit Radien r. (p) Auf diese Weise entsteht ein "Band"
in der komplexen Ebene, welches wir i-tes modifiziertes Gerschgorinband
nennen wollen. Bleibt dieses Gerschgorinband fiir alle p ¢ aq_ im Fall
des Satzes (3.153), Bild 3.29, innerhalb bzw. im Fall des Satzes (3.156),
Bild 3.30, auBerhalb des Kreises mit Mittelpunkt u, und Radius p, ist
die Bedingung (3.155) bzw. (3.158) fiir dieses i erfullt Auf dlese Weise

prift man alle i zwischen 1 und n. Es sind also n modifizierte Gersch-
gorinbdnder zu untersuchen,

Das fiir das Gerschgorinband "verbotene Gebiet" 1st das gleiche wie 1m
EingroBenfall, weshalb wir auch hier von der Bezeichnung V(v VZi)

fir das verbotene Gebiet Gebrauch machen konnen. Zu beachten 15t, daB
die Radien rl(p) der "Gerschgorinkreise” im Fall v.. < 0 <w

1 und
Y1iva; > 0 unterschiedlich definiert sind.

21
Neben der Bedingung, daB die modifizierten Gerschgorinbinder jeweils
aulerhalb der verbotenen Gebiete V{v 1i'V2 ) bleiben miissen, ist im Fall

des Satzes (3.156) als weitere wlchtlge Bedingung die Analytizitat der
inversen Ubertragungsmatrix

(3.159) §;1(p) = (G(p) - g)“1

in @_ nachzuweisen. Die Prifung kann durch direkte Bestimmung von G '(p)
durchgefiihrt werden, was im allgemeinen jedoch sehr aufwendig ist. D1e
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Yim

Bild 3.29: Darstellung des wehrgropenkreiskriteriuns (3.153)

b Im

Fi(p)

Gilp)

Bild 3.30: Darstellung des Mehrgrbﬂenkreiskriteriums (3.156)

189
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Frage nach der Lage der Polstellen von G (p) kann jedoch auch ohne expli-
zite Kenntnis von G (p) durch Untersuchung der gegebenen Ubertragungsma-
trix G(p) mit Hllfe des MehrgroBennyquistkriteriums beantwortet werden,
welches wir im folgenden direkt in der fiir unsere Problemstellung beno-
tigten Fassung herleiten wollen. Dieses bezieht sich wie das EingroBen-
nyqulstkrlterlum jedoch auf eine Riickkopplungsstruktur und ist nicht un-
mittelbar auf G (p) wie in (3 159} anwendbar. Um zu dem Ziel zu gelan-
gen, die Analyt1z1tat von G (p) wie im EingroBenfall direkt in der Orts-
kurvenebene mit Hilfe einer Wlnkelbedlngung uberpriifen zu konnen, glie-
dern wir das weitere Vorgehen in drei Teilprobleme:

1. Als erstes wird gezeigt, daB die zu untersuchende Matrix G (p) die-
selben analytischen Eigenschaften wie die Fihrungs- Ubertragungsma-
trix T(p) einer Rickkopplungsstruktur nach Bild 3.31 besitzt, auf die
im zweiten Punkt das MehrgroBennyquistkriterium angewendet wird.

Z. Ausgehend von der Zustandsbeschreibung eines Systems erarbeiten wir
die Nyquistbedingung fiir MehrgroBensysteme, die dhnlich wie im Ein-
groBenfall einen Zusammenhang zwischen einer Winkelbedingung und der
Anzahl der "instabilen" Pole des offenen Kreises herstellt.

3. Der letzte Schritt hat zur Aufgabe, die so erhaltenen Bedingungen in
die Ortskurvendarstellung der Diagonalelemente G (p) der ursprung-
lichen Matrix G(p) einzuarbeiten. Die Ergebnlsse werden dann 1im
Satz (3.178) zusammengefafit.

1. Wir betrachten den rickgekoppelten Regelkreis aus Bild 3.31, fur den
sich die Ubertragungsmatrix

(3.160) ) = w& e - B - (- 6pu~ "1 Yo(pu”!

ergibt. In Bild 3.31 ist eine spezielle Bezeichnung der Ein- und Aus-
gangsgrofen unterblieben, da diese in keinem direkten Zusammenhang
mit den bisherigen SystemgroBen stehen und fir das folgende auch nicht

weiter bendtigt werden. Um einen Zusammenhang zu Gu(p) herzustellen,
formen wir (3.160) um:

(E- 6 "1 16) = op! |
(B - 6™ 1(p) = [o(p)y™! - £1 » E
(E - G(p)u™'MT(p) + E] = g |

[6(p) - wIl-p""101(p) + EI

u
|t
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Es ergibt sich

(3.161) §;1(p) = [G(p) - 51'1 - - uTI(p) ¢ B

Bild 3.31: Regelkreisstrukt

Man erkennt aus dieser Gleichung, daB T(p) und §;1(p) gleiche Polstel-

len haben missen. Deshalb kénnen wif im folgenden statt g; (p) die

Fiilhrungsiibertragungsmatrix T(p) untersuchen. Zu bemerken 1st noch,

daf aufgrund der gleichen Vorzeichen von v, und v, Stets b £ 0

gilt, weshalb die inverse Matrix p = immer existiert.

ur mit der Fﬁhrungs-Ubertragungsmatrix T(p)

kriteriums gelingt am einfachsten,

2. Die Herleitung des Mehrgrofennyquist
wenn man auf die 7ustandsbeschreibung der zu G(p) gehorenden Strecke
iibergeht, wie dies in Bild 3.32 mit der Systemmatrix A und den Ein-
und Ausgangsmatrizen B und G, dargestellt ist. Die Realisierung
(A, B, C) wird dabei als Minimalrealisierung yorausgesetzt. Dann lau-
tet die Ubertragungsmatrix

(3.162) G(p) = %EEE- = C (#p-ﬂ)_1§

. - 8(p)

mit

(3.163) a(p) = det(Ep-A)

Bild 3.32: Regelkreis nach

Die innere Rickkopplung im StI‘Ukturbild 3,32 mit der Matrix A lait
_ ) _ ‘ -1 -
sich mit der aufleren Riickkopplung iiber die Matrix Bu C zu A+B p ]g

Bild 3.31 in 7ustandsdarstellung
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zusammenfassen, woraus wir sofort fir die Fihrungsiubertragungsmatrix
T(p) die neue Darstellung

I B T Z3(p)
(3.164) T(p) = CIEp-A-B u CI"'Byp™ ' =:
- - AT(p)
mit
(3.165) 84(p) = det [Ep-A-B y'c]

erhalten. Mit der Determinantenrechenregel
(3.166) det [E + P Q1 = det [E + Q P]

worin P eine beliebige kx1 Matrix, Q eine beliebige lxk Matrix und E
die jeweils passende Einheitsmatrix ist, formen wir das Polynom AT(P)
um, wobei P = (Ep—é)"1§ £'1 und Q = C gesetzt wird:

det [Ep-A-B u_1Q]

bp(p)
= det [Ep-Al det [E - (Ep-A)"'B »”'c]
= det [Ep-Al det (E - Q(Ep-é)—1§ g—1]

= &(p) det [E - Q(p)g_1]

Das Verhdltnis der Nennerpolynome der Ubertragungsmatrizen vom ge-

schlossenen und offenen Kreis ist also durch
AT(p)
A(p)

(3.167)

= det [E - g(p)£_1]

gegeben. Von diesem Ausdruck untersuchen wir die stetige Winkelédnde-
rung entlang der Kurve 82 _: Damit T(p) analytisch in Q ist, missen
alle Nullstellen von Ar(p) auBerhalb von Q_ liegen. Wirden auch alle
Nullstellen von A(p) auBerhalb von Q_ liegen, ergibe die Winkelande-
rung entlang 8a_ den Wert null, da beide Polynome gleichen Grad be-
sitzen. Fir jede Nullstelle von A(p), die im Innern von a_ liegt,
dndert sich der Beitrag zur Winkeldnderung um den Wert 2x. Nullstel-
len von 4(p) auf dem Rand 90 _ geben als stetige Winkelinderung nur
den halben Beitrag, so daB die Mehrgréﬁennyquistbedingung

(3.168) l& det [E - g(p)2f1] = 2rn_ +n_ =: 3zN
peaﬂE

erfiillt werden mug

» wenn T(p} und damit g;](p) analytisch in a_ sein
sollen.

Die Anzah!l der Pole von A(p) im Innern von Qe ist dabei mit
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N, die der Pole auf dem Rand 88 mit n, bezeichnet. Es gilt
det [E - g(p)g_1] = det [G(p) - ul det [-3—1}
- det [G,(p)] det 71,

so daB wir statt (3.168) auch

(3.169) A arg det 16,1 = X
psaﬂE

schreiben konnen, da die Konstante det(-5_1) sur Winkelanderung kei-

Die Determinante einer Matrix ist das Produkt

nen Beitrag liefert.
so daf wir schlieBlich zu der Winkelbedingung

aller ihrer Eigenwerte,

n n
(3.170) A arg ﬂhi[gu(p)] - Nare 216,21 = oW
o1

pedd_ i i=1 pedd_

Y] die Eigenwerte von G(p) bezeichnen. Diese

gelangen, worin Ai[g(p
ystemmatrix A (Pole von

diirfen keinesfalls mit den Eigenwerten der S

a(p)) verwechselt werden.

3. Da die Winkelbedingung (3.170) eline Eigenwertberechnung notwendig
immer noch nicht die angestrebte einfache graphi-
Nur im Spezialfall einer Diagonalma-

eich den Diagonalelementen

machen wiirde, 1ist
sche Interpretation erreicht.
trix sind die Eigenwerte von gu(p) gl

(3.171) G .. (p) = Gy (p) - My

uii

deren stetige Winkeldnderungen

(3.172) N. 1= %- l& arg(Gii(p) - uy)
psaﬂE

dann der Gleichung

n
(3.173) Ng = }; Ny T N o= In_ *+ny
i=1

wir werden jedoch zeigen, daB auch im Fall einer

er Bedingung (3.173) ausreicht,
durch die Diagonalelemente Gii(p)

geniigen muBten.
Nicht-Diagonalmatrix die priifung d

wobei die GroBen N; weiterhin nur
nach (3.172) bestimmt werden: Dazu definieren wir in Abhangigkeit

eines Parameters § € [0,1] die Matrix

(3.174) G(p;e) = ¢ Glp) + (I—C)diag(Gii(p)) .

AT B T D
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Offensichtlich gilt G(p;1) = G(p), wahrend G(p;0) eine Diagonalma-
trix mit den Elementen Gii(p) ist. Entsprechend zu gu(p) definieren
wir

(3.175) G, (p;z) := G(psT) - p

und ahnlich zu der Matrix G (p) die im Verlauf des Beweises von Satz
{3.156) eingefiihrt wurde,

~ . - _1 - _1
(3.176) Qﬂ(p,C) = vV gﬂ(p,C) u

Die stetige Winkeldnderung von det(G (p 0)), p e an
wie oben angenommen den Wert nNG Wegen

. liefert also

det(6,(p;t)) = det(v) det (G, (p;e)) det(u™')

ergibt auch die stetige Wlnkelanderung von det(G (p 0)) den Wert sNi,
da die Konstante det(V )det(U ) hierzu nichts beltragt Im Verlauf
des Beweises der Fassung (3.156) des MehrgrofBenkreiskriteriums wurde
m1t Hilfe des Satzes (A3.97) gezeigt, daB die Hilbert-Norm von

u (p) = G (p 1) fir pe 82_ kleiner 1 ist, wenn die Voraussetzung
(3.158) erfullt ist. Die modlflzlerte Matrix G(p;g) erfillt dann
aber fiir ¢ e [0,1] die Voraussetzung (3.158) erst recht, womit die
Aussage iber die Hilbert-Norm von G (p t) fir alle ¢ e [0 11 gilt.
Nach Satz (A3.97) sind daher auch alle Eigenwerte von G (p ¢) fur
pedn und ¢ e [0,1] betragsmiRig kleiner 1. Die E1genwerte von
gu(p,c) und auch die Determinante als Produkt der Eigenwerte sind
also~a11e vom Betrage groBer als 1. Sollte nun die Ortskurve
det(gu(p,c)), p € 34_, den Ursprung fiir ¢ = 0 weniger oder ofter um-
schlingen als fir ¢ = 1, ist dies nur moglich, wenn die Ortskurve,
die sich stetig mit dem Parameter t andert, fiir einen Zwischenwert
¢, € [0,1] durch den Ursprung lauft, also det(G (p 2 }) = 0 fur
einen Punkt P, € 80 _. Dies widerspricht aber der oblgen Aussage. Des-
halb reicht es aus, daB beim Vorliegen der Voraussetzung (3.158) die
Diagonalelemente G, (p) der Winkelbedingung (3.173) geniigen, um die

Analytizitat von (p) In @_ nachzuweisen.

(3.177) Bemerkung:

Bei der vorangegangenen Ableitung miissen die Anzahlen n und n_ des cha-
rakteristischen Polynoms a(p) im Inneren und auf dem Rand von Q_ bekaﬂnt
sein. Bestimmt man diese Anzahlen nicht direkt aus a(p) = det(ES A)
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sondern bestimmt statt dessen die Nullstellen des kleinsten gemeinsamen

Nennerpolynoms der Elemente von G(p), ist es mbglich, zu einen falschen

Ergebnis zu gelangen. So ist ;.B. eine Minima

, 12
6P = a5 4

durch die Matrizen
1 0 LI
’Bz ’_C_z

-a 0
A:
0 -a
gegeben, Eine Minimalrealisierung mit einer Ordnung der Systemmatrix A
hst nach alleiniger Be-

obwohl es zunac
Nullstelle so erscheinen

lrealisierung der Ubertra-

gungsmatrix

kleiner als 2 existiert nicht,

trachtung des Nennerpolynoms mit einer einzigen

mag. Das maBgebliche Polynom a(p) ist also

alp) = det(Ep-A) = (p+a)2

Liegt die Nullstelle p = @ im "instabi-

und nicht das Nennerpolynom p*a-
der Nyquistbedingung

len" Bereich Qs z.B. Re(-a) > 0, muB diese in

(3.173) doppelt gezéhlt werden: n. = 2. Es ist daher zweckmafBig, 1m
Falle "instabiler" Polstellen von der Justandsdarstellung des Systems
|

auszugehen.

n eine 7usammenfassung der FErgebnisse:

In Satz (3.178) geben wir nu

(3.178) Satz (Mehrgrésenkreiskriterium):

s> 0 fir alle 1. Bleibt

Fir die Komponenten N. € 5(V1i,“21) gelte vq;Vpg
e 00 auBerhalb des

jeweils das i-te modifizierte cerschgorinband fur p
verbotenen Gebietes V(vli'VZi) (d.h. es wird die Bedingung (3.158) er-

fil1t) und geniigen die ortskurven Gii(p), p e 30, der Nyquistbedingung
(3.172), (3.173), so ist der Mehrgréﬂenregelkreis Lg-stabil vom Grad e.

3.4 Modifikationen des Kreiskriteriums

um wurde von popov fur den Fall zeitkontinuierli-

Neben dem Kreiskriteri
jlitatskriterium angegeben (siehe

cher EingroBensysteme €in weiteres Stab

e L

A
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z.B. HSU, MEYER [3.8], S.372 ff). Dieses bezieht sich wie das Kreiskri-
terium auf die Struktur des Standardregelkreises nach Bild 3.11. Das
Stabilitdtskriterium nach Popov gestattet bezliglich einer vorgegebenen
Ubertragungsfunktion G(s) des Teilsystems I im allgemeinen einen grofe-
ren Sektor fir das Teilsystem N als das Kreiskriterium liefert. Diesen
Vorteil des Popov-Kriteriums gegeniiber dem Kreiskriterium stehen zwel
Nachteile gegeniiber: Im Gegensatz zum Kreiskriterium, bei dem Sektor-
funktionen durchaus dynamische Systeme (mit 'Geddchtnis') sein diirfen,
fordert das Popovkriterium zusdtzlich eindeutige statische (eventuell
hysteretische) Kennlinien. Weiterhin ist bei der Ortskurveninterpreta-
tion des Popov-Kriteriums statt G{s), s ¢ o0_, eine modifizierte Orts-

kurve zu zeichnen.

Historisch wurde bei der Entwicklung des Popov-Kriteriums ein anderer
Weg beschritten als beim Kreiskriterium. So sind Zugange iber Ljapunov-
Funktionen oder iiber die Hyperstabilitdtstheorie moglich. Dementspre-
chend bezog sich die Aussage auch auf andere Stabilititsbegriffe wie die€
asymptotische Ljapunov-Stabilitdt, bei der EingangsgroBen des Regelkrei-

ses nicht zugelassen sind.

Spater gelang es ZAMES [3.17] zu zeigen, daB® das Popov-Kriterium durch
eine Transformation aus dem Kreiskriterium zu erhalten ist. Dadurch
ibertragt sich der beim Kreiskriterium verwendete Begriff aus der L,-
Stabilitdt auf das Popov-Kriterium. Wir wollen dieses Vorgehen im fol-
genden nur grob skizzieren:

r e U y
N T -
{a}
N 5 F
I ~—==--- 7
Frer gl L
¢ N r ¢ + —
- l | !
| S | — — — — _ _ _ _
{b)

Bild 3.33: Strukturumformung des Standardregelkreises durch Einfiigen
von Operatoren ¢ und ¢ |
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Wie in Bild 3.33 dargestellt ist, fiigt man in den Regelkreis einen
-1 e . . .
Operator ¢ ¢ =1 (1dentitat) ein. Dieser wird aufgespalten und die

. -1 X
Teile ¢ und ® ' werden mit den Systemen N und T zu den neuen Operato-

ren

(3.179)
r = ¢ T

zusammengefaft. Im allgemeinen i{st das transformierte Teilsystem N keine

Sektorfunktion mehr. Unter zusdtzlichen Einschrankungen laBt sich jedoch

zeigen, daB N der verallgemeinerten Sektorbedingung

(3.180) ||N e - vme||2 < by ||e\l2 fiir alle e

mit

- .
m T 7 [VZ * V1] '
(3.181)

I

R N
Av Vi [vz v]]
geniigt: Ist N eine Sektorfunktion aus S(v,,vy) mit einer eindeutigen

statischen Kennlinie

(3.182) (N e)(t) = fle(t))

und wird fiir @ ein VZ1-Glied mit der ilbertragungsfunktion

(3.183) B(s) = s 0 420

<0 < vy das zusammengesetzte Teilsystem

gewéhlt befriedigt im Fall vy <
t den Sektorgrenzen

N die verallgemeinerte Sektorbedingung ebenfalls mil

(3.184) v,

li
<
—_

<

[
{

<

=Y

Im Fall O < vy < v, ist N eine verallgemelnerte Sektorfunktion mit

(3.185) \)1 = 0 , \JZ = VZ

Entsprechendes gilt fir vy <V <0

L, -Stabilitat (Stabllltatsgrad e = 0) kann das

Im Fall der einfachen
verallgemeinerte Sektor-

Kreiskriterium ochne Schw1er1gke1ten auch fir

Die Anwendung des Kreiskriteriums auf die

funktionen formuliert werden.

Ubertragungsfunktion

(3.186) G(s) = F(s)G(s) = (1+qs)6G(s)

b S e wig s 1o
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des transformierten Teilsystems I' fiihrt dann auf das Popov-Kriterium,
welches wir aber nur fiir Sektorfunktionen aus S(0Q,v), v > 0, darstellen.

(3.187) Satz (Popov-Kriterium):

Es liege ein nichtlinearer Standardregelkreis nach Bild 3.33a vor. Das
Teilsystem N sei eine eindeutige statische Kennlinie nach (3.182) aus
S(0,v) mit v > 0 und die Ubertragungsfunktion G(s) des linearen zeitin-
varianten Teilsystems sei analytisch in 8 (Re(s) > 0). Gilt mit einer
frei wiahlbaren Konstante q ¢ R

(3.188) Re[(1+qs)G(s)] > - % fir alle s = jo , w >0

ist der Regelkreis Lz-stabil, wenn neben 1, z € L2 auch die Zeitablei-

tung r Funktion aus L2 ist, u

(3.189) Bemerkungen:

Obwohl in (3.183) q > 0 vorausgesetzt. wurde, gelingt es durch zusatz-

liche Uberlegungen, auch negative ¢ zuzulassen,

Ist die Sektorfunktion N entgegen der Voraussetzung des Satzes (3.187)
keine eindeutige Kennlinie, sondern besitzt sie eine Hysterese mit zwel
verschieden durchlaufenen Kennliniendsten, bleibt die Aussage des Satzes
(3.187) giiltig, wenn fiir passive Hysteresen die Einschriankung q > 0, fur
aktive Hysteresen die Einschrankung q < 0 gemacht wird. Eine passive

Hysterese liegt vor, wenn mit der Bezeichnungsweise (2.79) fiir die bei-
den Kennlinieniste

- f le(t)] < f [e(t)] fur alle e(t)

gilt. Bei einer aktiven Hysterese gilt das umgekehrte Ungleichheitszei-
chen.

Ein Vergleich mit dem Kreiskriterium zeigt, daB fir q = 0 die Forderung

(3.188) genau in die Bedingung (3.82) des Kreiskriteriums fiir Sektoren
aus S(0,v) Gbergeht. .

(3.190) Graphische Interpretation des Popov-Kriteriums

Spalten wir G(s) nach Real- und Imagindrteil auf,

G(s) = G.(s) + j G, (s)

3

kann die Popov-Bedingung (3.188) auch in der Form
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Re[(1+qje) (6, (jo) + j6;(ju))] > - 1

(3.191) Gr(]w) - qui(Jw) > - 5

geschrieben werden. Um zu einer graphischen Interpretation zu gelangen,

fiilhrt man die sogenannte Popov-Ortskurve

(3.192) 6 (jo) = G (ju) + juG(ju)

ein. Diese muB nach der Bedingung (3.191) in der komplexen Ebene rechts

von einer Geraden liegen, die durch den Punkt -1/v tritt und die Stei-

gung 1/q besitzt (Popov-Gerade). Man betrachte dazu Bild 3.34.

Il

=

\ n1—
>y
S

: G ljw), w20

Bild 3.34: Popov-Ortskurve mit der Popov-Geraden

s urspriingliche Kreiskriterium fur die in Bild 3.34

Man erkennt, daf da
cht, da dann die

dargestellte Ortskurve keine Stabilitatsaussage ermogli

Ortskurve rechts von der gestrichelt eingezeichneten Geraden bleiben

miBte (man vergleiche Bild 3 22c). Durch Wahl einer geeigneten Steigung

1/q ist mit dem Popov-Kriterium hier eine Stabilitatsaussage méglich.

Zu einem weiteren bemerkenswerten Satz gelangt man, indem man das oben

vorgestellte Konzept der Regelkreistransformation auf kompliziertere

"Multiplikatoren" & ausdehnt (siehe CHO, NARENDRA [3.41). Dazu muB aber
die Klasse der Nichtlinearitaten auf inkrementelle gektorfunktionen ein-

geschrinkt werden, die der Bedingung
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(Ne)(t) = 0 fir e(t) = 0

»

(3.193)
(N e)(t) - (N e,)(t)

e (t) - e,(t)
fir alle e., t geniigen (siehe auch (3.15)).

(3.194) Satz (Modifiziertes Kreiskriterium fiir inkrementelle
Sektorfunktionen):

Das Teilsystem N des Standardregelkreises sei eine eindeutige Kennlinie
entsprechend (3.182), die die inkrementelle Sektorbedingung (3.193) mit
Konstanten Vie Yy erfiillt. Befriedigt die Ortskurve G(s), s e 30 (s = ju,
w e R), fiir den Punkt -1/v_die Nyquistbedingung (3.88) und bleibt G(s),
s = jw, fiir w > 0 auBerhalb eines modifizierten Gebiets, dessen Lage fir
die verschiedenen Fdlle der Konstanten v v, in Bild 3.35 dargestellt

1 72
ist, ist der Regelkreis L,-stabil.

. Im b Im

T ///

la} wv;50 bl vy<C0<w, //

Gljw)

Gljwl

el w=0 (dl v,=0

Bild 3.35: Verbotene Gebiete des modifizierten Kreiskriteriums (3.194)
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Wie beim urspriinglichen Kreiskriterium besteht das verbotene Geblet aus
Kreisflichen oder Halbebenen, deren Rander die reelle Achse wie auch
aV(v v ) in den Punkten -1/v, und -1/v schneiden. Wahrend aber fir v,,
v, # 0 belm Gebiet V(v1, 2) dle Mlttelpunkte der Kreise stets auf der

2
reellen Achse liegen, konnen hier die Mittelpunkte der Kreise auch ab-

seits der reellen Achse gewdhlt werden. Im Fall vy = 0 oder v, = 0 dur-
fen die "Steigungen'" der Begrenzungsgeraden frei gewahlt werden, wobel
auch hier der Punkt @ mit zum Gebiet gehort, so daB Polstellen von G(s)

auf der imagindren Achse nicht zuldssig sind.

Durch diese Wahlmoglichkeiten gelingt es im allgemeinen, einen wesent-
lich groReren Sektor des Teilsystems N zuzulassen, als dies mit dem ur-

springlichen Kreiskriterium moéglich ist.

35 L_-Stabilitt

Verschiedene Griinde konnen maBgeblich sein, statt der LZ-Stabi]jtét dre

Besteht die Aufgabe, einen Regelkreirs zu

L_-Stabilitdt zu untersuchen:
ebene Grenzwerte wie maximale Span-

entwerfen, bei dem technisch vorgeg

nung oder Druck unbedingt eingehalten werden missen, ist die Verwendung

ein geelgnetes Mittel, dieses Problem zu hear-

der Begriffe des Raums Lo
sind die betragsmafiigen

beiten. Die Normen von Funktionen des Raums L _

Maximalwerte. Gewinnt man durch die Lm—Stabiiitat eine Abschatzung de:

Normen, gilt diese Abschatzung erst recht fur jeden Funkt
liebigen Zeitpunkten. Im Gegensatz dazu liefert die Methode der f.,-Stabi-

litdt Aussagen iber die Integrale bzw. Summen der Quadrate der Svstem-

grofen, welche keine Aussagen iber die

- die L -Stabilitat zu verwenden, kann
-stabil ist, wahrend die

innswert zu be-

Waximalwerte gestatten.

Ein anderer Grund, statt der L,
darin liegen, daf der Regelkreis gar nlcht Ly
L_-Stabilitdt noch gezeigt werden kann. In diesem Fall wahlt man den zu

untersuchenden Stabilitdtsbegriff weniger aufgrund technischer Anforde-
sondern man benutzt denjeni-

rungen wie bel der ersten Aufgabenstellung,
t noch Stabilitdt nachweisen

gen Stabilitatsbegriff, fiir den sich itberhaup
1iBt, Natiirlich ist auch der umgekehrte Fall denkbar, bei dem Lz-Stabi-

litat, aber keine Lm—Stab111tat nachweisbar 1ist (man beachte aber den

Satz (3.203)).



202 3 Funktionalanalytische Methoden zur Stabilitdtsuntersuchung

Mit den im Anhang A3 zur Verfiigung stehenden Mitteln und dem Rickgriff
auf einzelne Punkte in den vorangegangenen Abschnitten laBt sich unmit-
telbar ein Stabilitédtssatz formulieren, den wir aber nur fir Eingrofen-
systeme darstellen. Eine Stabilitdtsaussage im Raum Lz fiir Mehrgrofen-
systeme 1dBt sich dhnlich wie im Abschnitt 3.3 gewinnen: Dazu miissen
dann zusatzlich Matrizennormen der Gewichtsfunktionsmatrix eingearbeitet
werden. Die Existenz der Lésungen der Regelkreisgleichungen im Raum L_,
wird allgemein vorausgesetzt, um die Stabilitatssatze (3.21) und (3.29)
anwenden zu kdénnen.

Bild 3.36: Nichtlinearer Standardregelkreis

(3.195) Satz (L_-Stabilitit):

Es liege ein nichtlinearer Standardregelkreis nach Bild 3.36 vor. N sel
eine Sektorfunktion aus S(-v,v) und die Gewichtsfunktion bzw. -folge &

des linearen Teilsystems T erfiille mit einer Konstanten T, >0 die Ab-
schatzung

(3.196) f lg(t)] et at <,
bzw. -

. £l
(3.197) Z lgli)]e™” < v,
Gilt o
(3.198) @ i YV <1

so ist der Regelkreis L_-stabil vom Grad e und es lassen sich die Ab-
schdtzungen

a + ¥ T
Iy(t)| < £ E e € e'Et ,
1 - «a
€
FEEN-
(3.199) le(t)] <« £ £€ et :
T - a
€
vp + T
lu(t) | < £ eTct



3.5 L_-Stabilitat 203

fir alle t angeben. Hierbei sind

suplr(t)e®t|

o, = e e =
(3.200) t

oo e el = swlaoe]
die L,-Normen der gewichteten Eingangsgrofen r_, Z - ]
Beweis:

Wir wenden den allgemeinen Stabilitatssatz (3.21) an, um zundchst den Be-

weis fir die einfache Lm-Stabilitét, also ¢ = 0, zu fiihren. N ist eine
bschiatzung (3.24), d.h.

Sektorfunktion aus S(-v,v) und erfillt daher die A

HNHm < v. Da die Voraussetzung (3.196) bzw. (3.197) an die Gewichts-
- 0 auch als |lglly < v geschrieben werden

funktion bzw. -folge fir e
siehe auch Bemerkung

kann, liefert die Anwendung des Satzes (A3.60) (
(A3.62)) fiir die Norm des linearen (Operators

lrll, = lelly 2«

aussetzungen des allgemeinen

Damit sind zusammen mit (3.198) die Vor
bilitdtsgrad € = 0

Stabilitdtssatzes (3.21) erfillt, womit fiir den Sta
die L_-Stabilitédt nachgewiesen 1ist. Die Abschatzungen (3.199) ergeben

sich unmittelbar aus (3.26).
des Kreiskriteriums (3.57) gezeigt wor-

Fiir e 4 0 ist bereits im Beweis
chtlineare System

den, daB das dann zu priifende transformierte ni

N = ENE

[ [ —-E
Bei dem linearen Teil-

ebenfalls eine Sektorfunktion aus S(-v,v) ist.
(3.64) die Substi-

system ist im Laplace- bzw. 7-Bereich nach (3.63),

tution

GE(S) G(s-¢)
bzw.

G(ze®)

Ge(z)
durchzufihren. Im 7eitberetich bedeutet dies aber nach der Rechenregel
Nr. 6 in (AZ2.19) bzw. (A2.51) eine Multiplikation mit der Exponential-

funktion, so daf die transformierte Gewichtsfunktion
t
g (t) = g(t)e

bzw. die Gewichtsfolge
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ge(i) = g(i)eEi

entsteht. Mit der Voraussetzung (3.196) bzw. (3.197) folgt also
rolle = Heglly <o,

womit die Bedingungen fiir die exponentielle Stabilitit entsprechend dem
Abschnitt 3.1.3 erfiilllt sind. Die Abschdtzungen (3.26) gelten dann fir

die gewichteten Funktionen Ter Zoo €, U, y_. Bringt man danr in

oz 0.

. a llr 11,
ly()e®t] - ly (O < 1y |, <

- Q

die Exponentialfunktion auf die rechte Ungleichungsseite, entsteht die

Abschétzung (3.199). Ebenso erhilt man die Abschdtzungen fiir u(t) und
e(t). u

(3.201) Bemerkung (Asymmetrische Sektorfunktionen):

Anders als beim Kreiskriterium ist es hier leider schlecht méglich,
"asymmetrische" Sektorfunktionen aus S(vT’“Z)’ -V, + v,, direkt in die
Formulierung des Satzes iiber die L,-Stabilitdt einzuarbeiten. Um asym-
metrische Sektorfunktioren auch in bezug auf die L_-Stabilitdt zu unter-
suchen, kann aber selbstverstindlich die Strukturumformung nach

Bild 3.21 durchgefiihrt werden, nur daB hier die zum linearen Teilsystem

r, gehorende Gewichtsfunktion explizit bestimmt werden muB, wihrend dies
beim Kreiskriterium nicht notig ist. s

Der Bemerkung (A3.62) entnehmen wir, dag die Norm des Operators T im

Raum L_ stets eine obere Schranke fiir die Normen von T in allen anderen
Raumen Lp’ P <1 <o jst:

(3.202) el < il - Hell,

Die Norm [|r]|_ wird durch das Integral oder die Summe des Betrags der

Gewichtsfunktion oder -folge angegeben. Da weiterhin eine nichtlineare

Sektorfunktion aus S(-v,v) ip allen Rdumen L_ die Bedingung ||N||p LV

befriedigt, kann sofort folgender Satz formuliert werden.

(3.203) Satz (Lp:Stabilitét):

Unter den Voraussetzungen des Satzes (3.195) ist der Regelkreis Lp‘Sta'
bil vom Grade ¢ fiir jedes p e [1,=]. .
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(3.204) L_-Normen von Systemen 1. und 2. Ordnung:

Wie in (3.69) fir den Fall der Lz—Normen soll hier die jeweils kleinst-

mégliche Schranke

v, = e 1,

des linearen Teilsystems fiir Systeme 1. und 2. Ordnung allgemein be-

stimmt werden.
Zu der Laplace-Ubertragungsfunktion

(3.205) G(s) = , aeR, V>0,

gehort die Gewichtsfunktion

(3.206) g(t) = Va e 8t

+

Wobei wir mit der Schreibweise (), entsprechend (A2.20) die fir t <0

abgeschnittene Funktion bezeichnen. Es ergibt sich

=]

@ _ )t
j!g(t)leEtdt = Va_/'e(E P,

e 1,
0

I

Va_ .
a-e 1 _

G20min 11, <
a
mul a > € vorausgesetzt werden. Es er-

Damit das Integral konvergiert,
L,-Norm (3.69).

gibt sich die gleiche Konstante wie im Fall der

Die Z-Ubertragungsfunktion

(3.208) Gz) = Y=, aceR, V2O

i richtsfolge

hat als Riicktransformierte nach Tabelle (A2.83), Nr.4 die Gewlc g
(3 _ k
.209) g(k) = V a,

Fir die Schranke ||I‘E||w erhalten wiT

z - k ek
Sl - v Blals
k=0

k=-

v Z (lalef1®
k=0

e 11,
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BN

s

fir eine
Laplace-Ubertragungsfunktion 2. Ordnung nach (3.211)

Bild 3.37: Darstellung der Operatornorm lIr]|
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b =1

1.8 2.0

1.6

4

1

1.2

1.0

0.8

0.6

0.4

14

4 A

0.0 6.2

(Fortsetzung)

Bild 3.37:
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T

a=0495

"”E’ //] ||
/// 0,6
S / // 03

1/ s
—

o

e
2'/- /"/
= asy,
0 |
0.0 0.2 0.4 0.6 0.8 (.0 1.2 1.4 1.6 1.8 2.0

———ib]

Bild 3.38: Darstellung der Operatornorm [Ir|], fir eine
Z-Ubertragungsfunktion nach (3.212)

(3.210) Hr 1], = —Y
£ « E
1 - |ale
wobei wir fir die Konvergenz der Reihe aber In|a] < e fordern miissen.
Auch hier ergibt sich beim Vergleich mit der L,-Abschitzung (3.69)
[Ir {1, = [Ir Il,, was aber nicht fir beliebige lineare Teilsysteme T
gliltig ist.

Fir Systeme 2. Ordnung stellen wir die Ergebnisse fiir die Operatornorm
|IT|], in Abhingigkeit der Parameter b, c, d der Standardform

c+ b
w
(3.211) G(s) = o ; by,ceR ; dy,o >0
1 s S_z' ] + ’O
+2dw_+—2
o} cuo

in Bild 3.37 dar. Fir die expizite Berechnung siehe BOCKER [3.31,

S.29 ff. Um die Werte fiir ||I‘€||°° fir € # O zu erhalten, ist s - s-¢
zu substituieren.
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Ebenso ist fiir die Z-Ubertragungsfunktion

V zk

(3.212) G(Z) = A 7 ’ a, b, Ve R,
z°- Zabz + a

k < 2,

in Abhdngigkeit der Parameter a, b mit V = 1 die Norm ||r||_ in Bild 3.38

aufgetragen. Die relativen Minima der Kurven liegen an den Stellen des

Parameters b, bei denen der Winkel des Polpaares Bruchteile von 2n  an-

nimmt, so da® in der Gewichtsfolge eine Reihe von Gliedern zu null wird.

Fiir die Werte b > 1 (reelle Polstellen) stimmt die L_-Norm mit der L2
= |Ir_|{, ist wieder

Norm nach Bild 3.19 iiberein. Zur Bestimmung von v_
z durch z_ © zu substituieren.

Kir wollen jetzt Regelkreise untersuchen, in denen die Nichtlinearitdten

sind. Das Kreiskriterium kann hier nicht angewen-
Deshalb ist es besonders

dennoch eine Stabili-

keine Sektorfunktionen
det werden, da dieses gektorfunktionen fordert.

interessant, daB mit den Hilfsmitteln des Raumes L
er auf den Stabilitdtsgrad

titsaussage gelingt. Wir missen uns dazu ab
e = 0 festlegen. Der nachfolgende Satz liefert eine Aussage iber die

schwache Lm—Stabilitét (siehe Definition (3.4)), die wir nach Bemerkung

(3.5) auch als BIBO-Stabilitdt bezeichnen.

(3.213) Satz (Schwache Lm—Stabilitﬁt):

Es liege ein nichtlinearer standardregelkreis nach Bild 3.36 vor. Fur
die Gewichtsfunktion bzw. -folge g des linearen Teilsystems T gelte mit

einer Konstanten v > O

(3.214) j le(t)] dt < ¥

bzw. -

(3.215) Z 1g(i)] < 7
i=_m

Das Teilsystem N sel so beschaffen, daB mit Konstanten v,, vy > 0 die

Bedingung

(.216) (N ell, < vy + vy el

fiir alle Funktionen e ¢ L_ erfiillt wird. Gilt

(3.217) a 1= vy < LN
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ist der Regelkreis schwach L_-stabil und es lassen sich die Abschét-

zungen
1
Y] < g Tyvg + e [Irl, + vl lz]],]
1
(3.218) le(t)] < % [Y\)O + il + oy z| )
1
JIC I e N I I T

fir alle t angeben. Ist die Konstante v, = 0, folgt iber die schwache
L,-Stabilitdt hinaus sogar die L_-Stabilitat. 8

Beweis:

Die Voraussetzung (3.214) bzw. (3.215) an das lineare Teilsystem ist

gleichbedeutend mit

e, = Ilelly <«

Da die Bedingung (3.216) direkt der Voraussetzung (3.30), (3.31) des
allgemeinen Stabilitdtssatzes (3.29) entsprechen, liegen zusammen mit
(3.217) alle Voraussetzungen fiir die Anwendung von Satz (3.29) fir den
Fall p = @ vor. Wir erhalten die Aussage der schwachen L_-Stabilitat

und die Abschdtzungen (3.33) fiir die L_-Normen der Systemgrofen y,e,u.
Da die L_-Normen obere Schranken fiir den Betrag jedes Funktionswertes
sind, ergibt sich die Aussage (3.218) dieses Satzes. Fir v, = 0 entspres
chen die Normabschdtzungen unmittelbar der Definition (3.6) der L.-
Stabilitdat; daher folgt die letzte Aussage des Satzes. L

(3.219) Bemerkung:

Wie bereits in der Bemerkung (3.35) ausgefithrt wurde, ist in speziellen
Fallen abweichend vom vorangegangenen Stabilitdatssatz eine bessere Ab-
schatzung als die in (3.218) angegebene zu erzielen. Dazu geht man vol

einer monoton wachsenden Normabschdtzungsfunktion vw(+) aus, die statt
(3.216) die Abschitzung

(3.220) IN efl, < v]e]],]

fir alle e gestatten mége. Das weitere Vorgehen folgt den Ausfiihrungen
von Beispiel (3.38), wo bereits der Fall des Raums [ aufgegriffen
wurde. o
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(3.221) Bemerkung:

Es darf nicht iibersehen werden, daB der Satz (3.213) fir vy 2 0 im
eigentlichen Wortsinn nur eine schwache Stabilitatsaussage liefert: Fur
verschwindende EingangsgroBen r = z = 0 darf sich z.B. die Ausgangs-
groRe y nach (3.218) noch innerhalb der Abschatzung

™5

ly(t)] <

-Q

bewegen. So ist ein System mit einer stabilen Grenzschwingung durchaus
schwach L_-stabil. Diese "schwache" Aussage erklart sich aber mit der
sehr umfangreichen Klasse der im Satz (3.213) zugelassenen Nichtlinea-
rititen, fir die der Satz (3.195) iber die L_-Stabilitat oder das Kreis-

kriterium Gberhaupt keine Aussage liefern wirde. B

(3.222) Beispiele fiir Teilsysteme N, die in Satz (3.213)

zugelassen sind

Zweipunktglied

Eine wichtige Nichtlinearitat, die mit Satz (3.213) behandelt werden

kann, ist das Zweipunktglied mit oder ohne Hysterese (Bild 3.39a).
Die Ausgangsgrofie dieser Nichtlinearitat hat stets den konstanten

Betrag K, so daB die Normabschatzungsfunktion

(3.223) v(g) = K
ist. Mit
(3-224) \)O = K , \),] = O

148t sich eine Abschitzung der Art (3.216) angeben.

Dreipunktglied

Beim Dreipunktglied mit oder ohne Hysterese (Bild 3.39b) lautet die

Normabschatzungsfunktion

(3.225) v(E) =
K fur Eza 3

da erst beim Uberschreiten der Eingangsamplitude a der Ausgang erstmalig

auf den Wert + K springt. Wie beim Zweipunktglied gelingt mit

(3.226) v = K o vy = 0
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eine Abschatzung der Art (3.216). Dies ist hier aber nicht die einzige
Moglichkeit. Man kann Yy frei zwischen O und K vorgeben und erhilt dann

K - v
(3.227) v 0

Insbesondere der Fall

(3.228) v, = 0

) VT

X
a

kann mit Hilfe von Satz (3.213) eine Aussage sogar iiber die L_-Stabili-
tat moglich machen.

Totzeitglied

Ein Totzeitglied (ohne Bild)
(3.229) (Ne)(t) := e(t-T) ,

wobei T die Totzeit (Zeitverzdgerung) ist, liefert an seinem Ausgang
nur die verzégerten Werte der Eingangsfunktion. Die Amplitude der Aus-
gangsfunktion kann daher niemals den betragsmdBig groBten Wert der Ein-

gangsfunktion iberschreiten: Die L,-Norm der Ausgangsgrofe ist stets
gleich der L_-Norm der Eingangsgroge,

(3.230) [INell, = lell,
woraus sofort

(3.231) vig) = ¢

folgt und sich die Konstanten

(3.232) v, = 0, 1
ergeben. Diese Gleichungen hangen vom konkreten Wert der Totzeit T iuber-

haupt nicht ab. Wir diirfen sogar eine zeitabhidngige Totzeit T = T(t) zu-
lassen.

In Bild 3.39 sind weitere Nichtlinearitidten mit ihren Normabschatzungs-
funktionen und méglichen Abschitzungskonstanten angegeben.
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§(Nel(t) v(E)

K
K:VG
Vo= K, vi=0

-K

{a) Zweipunktglied mit Hysterese

§(Nelit) vig)
: Vg € {O,K]
"1 « Y _ K-y
i, Y 177
-a -qa elt} E
qa a | a -
| B
__...._K
{b) Dreipunktglied mit Hysterese
$(Nelit) §viz)

m m=V1
vg=b, vyy=m
b {” b:Vo k §.—
L-b
’//,Azj;/

{e) Vorspannung

 (Ne){t) $uiz)
vg=b, vyy=m

b=V0 1 §

/| el .

{d) Lose

Biid 3.39: Beispiele von Nichtlinearitdten, die mit Satz (3.213)
mit zugehorigen Normabschat-

bearbeitet werden konnen,

zungsfunktionen v(+) und Abschdtzungskonstanten v,,vy
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(3.233) Beispiel: Regelkreis mit VZ2-Glied und Zweipunktglied

mit Hysterese

Zur Erlauterung der moglichen Abschatzungen betrachten wir ein System,
bei dem das lineare Teilsystem T aus einem V2Z2-Glied mit der Ubertra-
gungsfunktion

(3.234) G(S) = —2—1—‘*—

s° + 0,4s+1

besteht und das nichtlineare Teilsystem N ein Zweipunktglied mit Hyste-
rese nach Bild 3.3%a mit den KenngroéBen

(3.235) K = 1, a = 1,5

ist. Nach (3.224) gelten hierfiir die Abschitzungskonstanten

(3.236) \)o = 1 s V1 = 0

Fir das lineare Teilsystem entnehmen wir mit den Werten b = O

d = 0,2 der Standardform (3.211) aus Bild 3.37 die Schranke

(3.237) Y

[Ir{l, = 3,1
Da u=‘rv1=0<1

gilt, ist der Regelkreis nach Satz (3.213) schwach L_-stabil und es gilt
z.B. fir die AusgangsgroBe y die Abschatzung

(3.238) [y < 3,1+ 3,1 [z]]_.

Dies soll mit einem Simulationsergebnis nach Bild 3.40 verglichen werden.
Ohne &uBere Erregung (r = z = 0) geht das System je nach Anfangszustand

(hier: x = 0) in eine Grenzschwingung idber, die eine Amplitude von

(3.239) A = 2.0

erreicht. Dagegen liefert die Abschatzung (3.238) fir r = z = 0

(3.240) ly(t)| < 3,1

Die Amplitude wird etwa um den Faktor 1,5 liberschdtzt, doch darf nicht
ibersehen werden, daf die Abschdtzung (3.238) auch fiir beliebige andere

Eingangsfunktionen r,z giiltig ist. Hier sind Funktionen denkbar, die
die obere Grenze der Abschédtzung erreichen.
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3.0 | _

2.5
ylt

; A
1.0 1/\ \ U(\” / ; 1
R \ \

0.5

‘*—._A_

——]
—n___\

d\ 22

- \ EREE
| Y VA

—
L

Bild 3.40: Grenzschwingung eines Regelkreises mit einem VZ2-Glied

und einem Zweipunktglied mit Hysterese



4 Analyse und Synthese von Regelkreisen im
Zustandsraum

4.1 Einfihrende Betrachtungen zu nichtlinearen Zustandsmodellen

In den vorangegangenen Kapiteln ist bei der Untersuchung von nichtline-
aren Regelkreisen weitgehend vorausgesetzt worden, daB sich diese in ein
lineares und nichtlineares Teilsystem zerlegen lassen. Auch in diesenm
Kapitel fihrt eine solche Voraussetzung zu einer einfacheren Behandlung
der nichtlinearen Regelkreise, jedoch streben wir dariiberhinaus eine

Untersuchung von allgemeineren Zustandsmodellen an.

Gegenstand dieses Kapitels sind bis auf einige Ausnahmen zeitkontinuier-
liche und zeitdiskrete dynamische Systeme mit zeitinvariantem Verhalten.
Die Untersuchung dieser Systeme macht es erforderlich, daB wir uns zuerst
ausfithrlich mit der direkten Methode nach Ljapunov, den Parameter- und
den Zustandsschidtzungen beschdftigen. Diese Methoden werden im letzten

Teil des Kapitels zu Entwurfsverfahren bei nichtlinearen Regelkreisen
welterentwickelt.

Bei dem zeitkontinuierlichen Zustandsmodell

i(t) = flx(t);ult)] x(t) ¢ R", u(t) e R
(4.1)
y(t) = hlx(t);u(t)] y(t) ¢ RP
mit gegebenen X, i= x(t ) wird allgemein vorausgesetzt, daB fl+,+] und

hC-,+] mindestens stetige Funktionen in x und u sind. Weiterhin geniige

flx(t),u(t)] fir alle zuldssigen festen u(+) in einer offenen zusammen-
hangenden Menge

Moo= {(x) | x(t) ¢ M c R"}
der Lipschitz-Bedingung

(4.2) ||£[£1;E] - £££2;21|| K |[£1'lzl,
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mit einer von (ii) ¢ M unabhingigen positiven Konstanten K, die jedoch
noch von u abhdngen kann. Aufer der Steuerfunktion u(+) héngt fl(+,-]
auch von der Stérfunktion z(+) ab, die sich jedoch formal im Zustands-
modell (4.1) wie eine zusdtzliche Eingangsgrofe auswirkt (siehe Ab-
schnitt 1.1, G1.(1.1) und Bild 1.2). Aussagen iber die Existenz und Ein-
deutigkeit von Lésungen der Differentialgleichung (4.1) findet der Leser
im Anhang (A1). Die Voraussetzungen hlerzu sind in unseren Ausfiilhrungen

immer gegeben.

Treten nichtlineare Systeme in einem zeitdiskreten Regelkreis auf, dann
ist eine kontinuierliche Regelstrecke in der Zeit zu diskretisieren (vgl.
Bild 4.1), wahrend der Regler durch eine "reine'" nichtlineare Differen-

zengleichung beschrieben werden kann.

X

3|

1
vt pya- uylt) x(t) x(t) ytb 1 a/p- {ytvl}
f - > Umsetzer

Umsetzer

Bild 4.1: Zeitdiskrete Regelstrecke

Das zeitdiskrete nichtlineare 7ustandsmodell laBt sich aus einer konti-

nuierlichen Regelstrecke nicht so einfach wie im linearen Fall ermitteln.
skreten Regelstrecken wird in der Regel fiir die Ein-
Will man ein

Bei linearen zeitdi
gangs- und Ausgangsgrofien die gleiche Abtastzeit gewdhlt.
moglichst einfaches nichtlineares zeitdiskretes 7ustandsmodell, das den

Verlauf der ZustandsgroBen der kontinuierlichen Strecke bei gleicher

Eingangs-Treppenfunktion gut approximiert, dann sollte die Abtastzeit

fiir die AusgangsgroBe wesentlich kleiner als die fiir die Eingangsgrofe

Formt man die Differentialgleichung (4.1) in eine Inte-

gewahlt werden.
,tv+1] um, dann folgt fir den

gralgleichung lber dem Zeitintervall [t

Zustand zum Zeitpunkt t _,
v+ t

v+l
) = ox(e e [ fx(e)sa(e)1ds
t

v

(v+1)T0 und u(<) eine Treppenfunktion, zu

i(tv+1

Es sel nun tv = vTo, toel ©

der die Folge {u(v) := g(vTo)} gehort, so daB gilt
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t\)+'|

(4.3) x(oo1) = x() v [ Ex(e)5u(0) 1
t

v

Um eine gute Approximation des Integrals zu bekommen, zerlegen wir das
Intervall [tv,tv+1] in m gleiche Zeitabschnitte Tm. Es ist dann

T
0 -
Tm = — , (vTo + me) = ’(v+1)To
m
und
(0 = xOOT 4+ T )
mit u = 0,...,m. Beziiglich der Abtastzeit Tm erhdlt man die Approxima-

tion der Differentialgleichung (4.1)

-

X () + Ty flx (9 5u(v)]

(4.4) gu(v>
o= T1,...,m .

Wird das Integral in der Gleichung (4.3) unter Ausnutzung des Mittel-
wertsatzes der Integralrechnung angendhert, so geht diese Beziehung in
die Differenzengleichung

m
(4.5) X(#1) = x(v) 4 T 5 5[’12[51—1(“) ¢ x, () 75u0)
p=1
() = x(v)

uber. Die Gleichungen (4,4) und (4.5) stellen zusammen mit der Ausgangs-
beziehung

(4.6) Xu(v) = h{iu(“);ﬂ(“)] u=20,...,n

das aus dem kontinuierlichen System (4.1) ndherungsweise gewonnene zeit-
diskrete Zustandsmodell dar. Die Gite dieser Ndherung ist schwierig ab-
zuschdtzen. Hierzu ist in der Gleichung (4.3) der Mittelwertsatz der
Integralrechnung anzuwenden. Die formale Berechnung der Fehlerfolge
fe(v) := i(v) - x(v)} sei dem Leser iiberlassen.

Eine andere Klasse nichtlinearer zeitdiskreter Systeme sind die puls-
breitenmodulierten Regelkreise. Aus dem Bild 4.2 liest man ab, daB sich
der Regelkreis aus den Teilsystemen
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|

rit) _ elt) | pgm | uit) xlt) ylt)

I
I
I
Block | -
) ]
I
I

Bild 4.2: Pulsbreitenmodulierter Regelkreis

x(t) x(t) + b ult)

[}
|3

(4.7)

y(t) x(t)

1
{0

und (e(v) := e(vT))
M sgnle(v)] fiir vT < t < vT + tle(v)]

(4.8) u(t) =
0 sonst

zusammensetzt, wobei sich die Impulsdauer in jedem Abtastzeitpunkt aus

der Beziehung
B le(v)] fir Ble(v)| < T

(4.9) t(v) = tle(v)] =
T fir 8le(v)| > T

berechnet. R bezeichnet man als Modulationsfaktor. Es sei nun r(t) = 0,

dann ist e(v) = - clx(v). Die Losung der zustandsgleichung des linearen

Teilsystems lautet in den Abtastzeitpunkten (vT)
t(v)

x(v+1) = a(Thx(v) + fﬂ(T‘T)E u(<)dr

wobel 0

o(T) = AT

die Transitionsmatrix des kontinuierlichen Systems ist. Nach dem Ein-
setzen von u(t) und e(v) erhdlt man als nichtlineare Regelkreisgleichung

(Bild 4.2) ()
v

(4.10) x(ve1) = 2(T)x(v) - M sgnlc' x(v)] j' #(T-1)b dr
0
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Die Stabilitdtsuntersuchung und die Festlegung der Parameter des puls-
breitenmodulierten Regelkreises wird im Abschnitt 4.5 durchgefiihrt.

(4.11) Steuerbarkeit und Beobachtbarkeit

Bei linearen Systemen ist die Steuerbarkeit und Beobachtbarkeit in den
Lehrbichern ausfiihrlich behandelt (siehe z.B. HARTMANN [4.9], KNOBLOCH/
KWAKERNAAK [4.14], LUDYK [4.16], UNBEHAUEN (4.231).

Wahrend fiir lineare Systeme rein algebraische Kriterien der Steuerbar-
keit bzw. Beobachtbarkeit mit einer globalen Aussage existieren, besit-
zen nichtlineare Systeme in der Regel diese FEigenschaften nur in einer
lokalen Umgebung eines ausgezeichneten Punktes des Zustandsraumes (z.B.
einer Ruhelage). Von MARKUS und LEE [4.17] sind hinreichende Kriterien
fir die lokale Steuerbarkeit und Beobachtbarkeit abgeleitet worden.
Andere hinreichende Kriterien der Steuerbarkeit bei nichtlinearen Sy-
stemen findet der Leser in GUNTHER [4.7]. [

(4.12) Definition (Steuerbarkeit):

Gegeben sei das nichtlineare Zustandsmodell (4.1), in dem x = 0 eine
Ruhelage oder ein Arbeitspunkt ist und u(t) e U ¢ RT aufgrund der Teil-
menge u" einer Beschrdnkung unterliegt. u{+) heift dann zuldssig. Die
Menge aller Zustinde X, € R", die sich mit einer zuldssigen Steuerfunk-
tion u(+) in endlicher Zeit in den O-Zustand bringen 1aRt, werde als

Bereich S der 0-Steuerbarkeit bezeichnet.

Wenn die Menge S0 c R" eine offene Umgebung des O-Zustandes enthilt,
dann heiBit x e SD lokal steuerbar. [ ]

(4.13) Satz (Steuerbarkeit):

Gegeben sei das nichtlineare Zustandsmodell (4.7) mit u(t)e vl c RT
und u = 0 liege im Inneren von U'. Wenn die Bedingungen

2) £10; 01 = 0
b) Rang [[B, A Q,...,Aﬁ-1§]] = n
| of. af
mit A = | — = f [0;0) und B =|—L = £ [0;0]
X —_ - au st
)] jx=0 Jlx=0
u=o u=g
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gelten, dann ist der Bereich der Q-Steuerbarkeit S0 offen im Rn, so daf}

alle x ¢ So lokal steuerbar sind. [ |

Den Beweis findet der Leser bei MARKUS und LEE [4.17], Seite 366.

(4.14) Beispiel: Lokale Steuerbarkeit eines nichtlinearen Systems

Es ist zu zeigen, daB das System

() - Fx(e),xt), .o = 0

mit |u(t)| < 1 lokal steuerbar ist, wenn gilt

a) F[...1 ist in allen Variablen stetig differenzierbar,
b) F(0,...,00 = 0 ,
c) Fu[o,...,O] $ 0
Zuerst formen wir die pifferentialgleichung n-ter Ordnung in n Differen-
tialgleichungen erster Ordnung um. Mit x1(t) c= x(t)-ist
X](t) = Xz(t)
xpoq(t) = x, (t)
(1) = Rl (0)xg(t), g g ()0

Die Bedingung (a) im Satz (4.13) ist laut Voraussetzung erfillt. Die Be-

dingung (b) des Satzes (4.13) fihrt in diesem Beispiel auf die Matrizen

0 1 0 . 0 0
A = » B =
- 1
aF aF 3F
T ' By du
" n-1 o Jx=0 } x=0
u=0 u=o

daB in diesem Beispiel die Bedingung (b) des Satzes

Hieraus folgt,
(0,...,0] erfiilllt ist. =

(4.13) unabhingig von den Werten F,.
i

(4.15) Definition (Beobachtbarkeit):

eines nichtlinearen 7ustandsmodells (4.1) heiBt beobacht-

Ein Zustand X,
eise stetige Steuerfunktion u(+)

bar, wenn fiir jede beschrankte stiickw

-
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mit den Trajektorien

x(t)

H
-
—
Py
fa

]

hs o' Xoo E[to,t]

x(t)

1l
-~
~—
ot
-+

X , u ]
= o’ =0 —[to,t]

und 4 io (beliebig) der Verlauf der Ausgangsfunktionen h(x(+)] und

ﬁ[,’-‘_(')] verschieden ist. | |

(4.16) Satz (Beobachtbarkeit):

Gegeben sei das Zustandsmodell (4.1) mit u(t) e U'e RY und
y(t) « YP ¢ RP. Wenn die Bedingungen

a) £00;01 = 0, hio;0] = 0
b) Rang [rc, A" ¢’y AT Ny -
mit A = EXEQ;QJ und  C = EX[Q;Q]

erfiillt sind, dann gibt es eine Umgebung Eo des 0-Zustandes, deren Zu-
stande beobachtbar sind, d.h. lokal beobachtbar. 8

Den Beweis findet der Leser bei MARKUS und LEE [4.17], Seite 379.

(4.17) Beispiel: Lokale Beobachtbarkeit eines nichtlinearen Systems

Es ist zu zeigen, daB das System
RO I e IR S FOUURM C L DI PN SRS
y(t} = hix(t)]

lokal beobachtbar ist, wenn gilt

a) hl+] und F[+++] sind in allen Variablen stetig differenzierbar,
b) F[O,...,01 = 0 ; hlo] = ¢ ,
c) hX[O] + 0

Die Losung der Aufgabe sei dem Leser empfohlen, die in Analogie zum Bei-
spiel (4.14) ermittelt werden kann. L

Die Steuerbarkeit und Beobachtbarkeit eines Zustandsmodells hat insbhe-

sondere einen EinfluB auf dje Zustands- und Parameterschiatzung (Abschnitt
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4.4) sowie beim Entwurf der nichtlinearen Regelungssysteme (Abschnitt 4.5

und 4.6).

4.2 Einfache Stabilitatskriterien

Die Stabilitatsuntersuchungen bei nichtlinearen Systemen beziehen sich
rmittlung des Stabilititsverhaltens einer Ruhelage,
In der Anwendung

nicht nur auf die E
sondern auch auf die Bestimmung des Einzugsbereichs.
ist im allgemeinen ein hinreichend grofer Arbeitsbereich fir die Zustan-
Dieser Abschnitt beschaftigt sich im wesentli-
Stabilitat der Ruhelage. Verfahren zur

de der Strecke gefordert.
chen nur mit der Frage nach der
niaherungsweisen Bestimmung des Einzugsbereiches einer asymptotisch sta-

bilen Ruhelage lernt der Leser im Abschnitt 4.3 kennen.

4.2.1 Stabilitat in der ersten Ndherung

Im Abschnitt 1.5 (Bemerkung (1.36)) wurde schon darauf hingewiesen, daB

unter bestimmten Voraussetzungen das Stabilitdtsverhalt
sierten Differentialglei-

en eines nicht-

linearen Systems mit der zugehorigen lineari
chung in einer Umgebung der Ruhelage des Arbeitspunktes iibereinstimmt.

Das Ausnutzen dieses Zusammenhanges ermoglicht bel Stabilitatsuntersu-

chungen von nichtlinearen Systemen eine erste einfache Entscheidung uber

das Stabilititsverhalten einer Ruhelage.

Die Differentialgleichung (4.1) habe einen Arbeitspunkt bel (iA =0,

u, = 0). Im Abschnitt 1.4 (61.(1.27)) wurde gezeigt, daB durch eine ge-

eignete Transformation

x(t) = iA + ax(t) und u(t) = éA + au(t)

eine Ruhelage in den punkt (0,0) iberfihrt werden

ein Arbeitspunkt oder
ter Abdnderung von

kann. Mit den hier gemachten Voraussetzungen und un
ax(t) ~ x(t) sowie au(t) - u(t) nimmt dann die Differentialgleichung

(4.1) nach einer Taylorentwicklung die Form der Gleichung (1.33), (Ab-

schnitt 1.5)

(4.18) x(t) = Ax(t) +Bu(t)+ £x(t);u(t)]

mit £00; 0] = 0 an.
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(4.19) Satz (Stabilitdt in der ersten Niherung):

Das Stabilitdtsverhalten der L&sungen der Differentialgleichung (4.18)
fir u(+) = 0 stimmt in einer hinreichend kleinen Umgebung der Ruhelage
Xg = O mit der linearisierten Differentialgleichung

v(t) = A v(t) v(t) ¢ B
iiberein, wenn die beiden folgenden Bedingungen erfiillt sind:

a) Die Matrix A besitzt keine Eigenwerte auf der imaginaren Achse.

b) Der nichtlineare Anteil in (4.18) erfiillt die Bedingung
|1£0x;01]|
m — 0 .
[x[1=0  []x|]| 8

Beweis:

Es sei 9(t) die Transitionsmatrix der linearisierten Differentialglei-
chung, d.h. 2(t) = eAt » dann 14Bt sich (4.18) unter den angegebenen Vor-
aussetzungen in der Integralform

t
(4.20) x(t) = e(t)x, + [ o(t-0flx(0);01d0
0

darstellen. Haben alle Eigenwerte der Matrix A einen negativen Realteil,

so folgt fiir die Transitionsmatrix die Abschidtzung

[ott) || < 8 et B,y >0

siehe KNOBLOCH et al. [4.14]), LUDYK [4.16] oder UNBEHAUEN [4.23]). Auf-

grund der Bedingung des Satzes {4.19) gibt es ein >0 mit einem zugeho-
rigen 6{(c) > 0, so daB

HETX(0);011] < ef [x(t)]] fir alle |[x(t)]] < &

gilt. Die Losungen x(t) der Differentialgleichung (4.18) (u(+) = 0) las-

sen sich nun in der Umgebung {{x(t)]] < 6 mit der Integralform (4.20) ab-
schitzen. Es gilt

Hx(e)]]

| A

t
HeOT gl + [ Hete-0 1] [[Ex(o);01]] ¢
0

t

@ Hxgll + feu e fxcoyas
0

()
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Durch Multiplikation mit et fiihrt letztere Ungleichung auf
t

T <8 [lxgll + 8 e [ eTlIx(dr

0

die alle Voraussetzungen des Satzes von Gronwall (siehe (A1.17)) erfullt,
wobei hier als nichtnegative stetige Funktionen et {|x(t)|| und (Be) auf-

treten, so daB die Gronwall-Ungleichung lautet

[1x( ] <8 [1xol1e™" ,

1xC0) ] <8 [Ix o778
Die Ruhelage der nichtlinearen 7ustandsdifferentialgleichung (4.18) ist
unter der Voraussetzung, daB alle Eigenwerte der Systemmatrix A in der

linken offenen s-Halbebene liegen, fir alle [|x(t)]|} < &6 und v > (Be)
Die Bedingung (b) des Satzes (4.19) 148t immer ein

so daB die Ungleichung v > (Be) erfillbar ist.

asymptotisch stabil.
hinreichend kleines e zu,

Den Beweis, daB die Ruhelage Xp = 0 von (4.18) instabil ist, wenn die

Systemmatrix A des linearisierten Systems mindestens einen Eigenwert mit

positivem Realteil besitzt, kann der Leser mit der im nachsten Aoschnitt
eingefiihrten direkten Methode von Ljapunov fuhren,

daB es immer einen Zustand mit |[x(0)[| < & gibt, der eine untere monoton

wachsende Schranke in t besitzt. [ ]

wobel zu zelgen ist,

(4.21) Bemerkung:

Der in der Abschitzung der Transitionsm
hangt von dem groBten Eigenwert der Systemmatrix A ab. Aus dem Beweils des
Satzes (4.19) ist zu erkennen, dafl y>Be den Parameter e und damit auch
|Ix(t)|] < 6 beschrdnkt. Ist der lineare Anteil in (4.18) vollstandig
steuerbar, dann laBt sich ¥ durch eine geeignete lineare Zustandsrickfuh-

rung u(t) = - K x(t) vergroBern, 1n dem die Eigenwerte der Matrix [A-B K]
er links liegenden vorgegebenen Sektor

atrix auftretende Parameter v

gegeniiber denen von A in einen weit

verschoben werden. Dabei darf sich die Absc
e,6(e)) nicht verschlechtern.
héherer als 1.0rdnung ge-

auch eine groBere 6(e}-Um-

hdtzung von ﬁli(t) -X x(t)]

mit den Parametern ( Dies ist jedoch nicht

Zu erwarten, wenn i[i(t);ﬂ(t)] in x und u mit
gen Null strebt. Damit bedingt ein groBeres ¥

gebung der Ruhelage.
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(4.22) Beispiel: Stabilititsverhalten einer nichtlinearen

Schwingungsdifferentialgleichung

Es ist das Stabilitdtsverhalten der Ruhelage Xp = 0 von der nichtlinearen
Schwingungsdifferentialgleichung

x(t) + Flx(t),x(t)] + glx(t)] = u(t)

mit F[0,0] = O und g[0] = 0 zu untersuchen. Es wird vorausgesetzt, daf
F[x,i] und glx] mindestens einmal stetig differenzierbar in x, ; sind
und die Restterme entsprechend der Beziehung (4.18) mit hoherer als

1. Ordnung gegen Null streben.

Das Zustandsmodell lautet mit x1(t) := x(t) und xz(t) = ;(t)

- x, (1) 0
x(t)y = + ut) =: frx(t);ult)]
“Flxy,x,0 - glx,] 1

Als Systemmatrix des um die Ruhelage Xp = O linearisierten Zustandsmo-
dells erhdlt man

[ of of ' ]
—' 0,001, — 10,0 0 ]
X X2
-A- = =
of of
2 - oy _oF 5 _sF
5, (0,015 53 (0,03 [ Sy 0,01 - E%T[Oq’ < 5 10,0

Die Eigenwerte der Systemmatrix sind die Nullstellen des Polynoms

2 aF aF )
7. 5[5;;»[0,03]+ [577 (0,0 + 357[01] -0

Die Ruhelage Xp = O der nichtlinearen Schwingungsdifferentialgleichung
ist aufgrund der Aussage des Satzes (4.19) asymptotisch stabil, wenn gilt

1

F
(4.23) 27; (0,01 >0  und [%;T (0,0 + %%T[O]] > 0

da dann beide Nullstellen des Polynoms einen negativen Realteil besit-
zen.

Die Ruhelage ist instabil, wenn eine der folgenden Ungleichungen gilt:

aF 8
a) [5;7 [0,0] + 357[01] < 0
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oder

aF
b) -a'x—z [0,0] <0 . .

4.2.2 Stabilitdtsverhalten periodischer Lésungen von

zeitdiskreten Systemen

Die Untersuchungen der Existenz und Stabilitdtseigenschaften von perio-
dischen Lésungen bei kontinuierlichen Systemen, insbesondere in Regel-
kreisen, wurden im zweiten Kapitel durchgefiihrt. Dort steht die Frage
im Vordergrund, unter welchen Voraussetzungen (asymptotisch stabile)

periodische Lésungen erzeugt oder verhindert werden kénnen.

In diesem Abschnitt werden die Eigenschaften von periodischen Grenzfol-
gen der zeitdiskreten nichtlinearen Systeme hauptsdchlich untersucht, um
diese im Abschnitt 4.3 bei der Ermittlung des ndherungsweisen Einzugs-

bereiches einer asymptotisch stabilen Ruhelage zu verwenden.

Es werde das zeitdiskrete autonome nichtlineare System

(4.24) l(v+1) = £O[£(v)]

Bit £o[O] = 0 betrachtet, das auch eine autonome Regelkreisgleichung dar-
stellen kann, wenn beispielsweise

(4.25) 1(v+1) = £[i(v);g(v)]

eine Regelstrecke und u(v) = - K x(v) ein Zustandsregler sind.

Die Ruhelagen eines zeitdiskreten Zustandsmodells sind die Losungen der

Gleichung

o= Llxgd o
d.h. das System (4.24) hat eine Ruhelage bei xp = 0. Eine LOsung der Zu-
standsgleichung (4.24) wird mit elv; x(0)}] bezeichnet.

In Analogie zur Entwicklung des kontinuierlichen Zustandsmodells (4.18)

148t sich das zeitdiskrete System (4.25) mit £[0;0] = 0 in die Form

(4.26) x(vel) = & x(v) + Hulv) + £1x(v)5u(v))

bringen, wobei

¢ = 1 [0;0] eine (nxn)-Matrix
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of .
und H := 2 (0;0] eine (nxr)-Matrix

au.
Y3

sind. Der Satz (4.19) ist dann auch auf zeitdiskrete Systeme iibertrag-

bar.

(4.27) Satz (Stabilitdt in der ersten Ndherung bei
zeitdiskreten Systemen):

Das Stabilitdtsverhalten der Losungen der Differenzengleichung (4.26)
fir u(+) = 0 stimmt in einer hinreichend kleinen Umgebung der Ruhelage

xp =0 mit der linearisierten Differenzengleichung
vivel) = @ v(v) v(v) e R"

Uberein, wenn gilt:

a) Die Matrix o besitzt keine Eigenwerte auf dem Einheitskreis.
(Die Ruhelage ist asymptotisch stabil, wenn alle Eigenwerte von ¢
im Inneren des Einheitskreises liegen und instabil, wenn ¢ minde-

stens einen Eigenwert auBerhalb des Einheitskreises besitzt).
b) Der nichtlineare Anteil in (4.26) erfiillt die Bedingung
[£Lx;011]

im
Hxll=o  [lx}]

= 0 . B

Der Beweis des Satzes wird dem Leser empfohlen und liBt sich in Analogie
zum Satz (4.19) durchfiihren.

Im weiteren gehen wir davon aus, daB die Ruhelage Xp = 0 asymptotisch
stabil ist, d.h. nach Satz (4.27), daB die Matrix ¢ nur Eigenwerte im
Inneren des Einheitskreises besitzt, und der Einzugsbereich ME der Ruhe-
lage eine echte Teilmenge im R" ist, d.h. mit CME + @ (leere Menge) als

Komplementarmenge gilt R" - Mg U CMg.

In der Arbeit von AFACAN [4.1] wurden Eigenschaften von periodischen
Grenzfolgen auf dem Rand aME des Einzugsbereiches untersucht, die dann

in den Abschnitten 4.3 und 4.5 eine effektive Stabilititsanalyse ermég-
lichen,

Eine Lésungsfolge des nichtlinearen zeitdiskreten Systems (4.24) heiBt
periodisch mit der Periode p, wenn

x(v) = ellv+p); x(v)] , peN
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gilt. Die periodische Lgsungsfolge wird in der Form {5(v)}€ geschrieben.

(4.28) Definition (Stabilitit periodischer Losunger):

Eine periodische Losung der Zustandsgleichuhg (4.24) heift asymptotisch

stabil, wenn gilt:

a) Zu jedem >0 existiert ein 5(e), so daB fur jedes
x(0) e Ulx(w);6(e)] = {5![[1—_}(_.(u)llnn < 6(e))
und jedes x{p) e {i(v)}? die Ungleichung
||9lv;x(0)] - g[v;i(u)lllkn <e

fir alle v ¢ N folgt.

b) lim |[glv;x(0)] - plv; x(u)]|| = 0

\indo

Eine periodische Losung heift stabil, wenn die Bedingung (a) gilt und

instabil, wenn die Bedingung (a) nicht erfiilllt ist. [

(4.29) Definition (Rand des Einzugsbereiches; Invarianzeigenschaft):

Die Zustandsmenge oM c CMg heidt der Rand des Einzugsbereiches Mg,
eine e-Umgebung hat, die ganz in CME enthal-
M, die durch die Zustandsgleichung (4.24)
wenn fiir jedes x(v) ¢ M

wenn kein Zustand aus EME
ten ist. Eine Zustandsmenge
erzeugt wird, heit invariant beziiglich 50[5],
auch fﬂ[i(“)] e M folgt.

(4.30) Satz (Stabilitdt von periodischen Lésungen auf dem Rand):

die auf dem Rand 3Mg des Einzugsbe-
= 0 liegt, ist instabil.

Eine periodische Losung {i(V)}? ,
reiches der asymptotisch stabilen Ruhelage xp

Beweis:

Nach Definition (4.29) gibt es fiir einen Zustand x € BME keine e-Umge-
bung, die ganz in CM enthalten ist. Hieraus folgt, daf zur e-Umgebung
von x(p) e {x(v )}p c aM auch Zustdnde aus My gehoren. Da aber aus
x(0) e M, elv; x(O)] - 0 fir v - @ folgt, ist in der Definition (4.28)

E
die Bedingung (a) verletzt, so daB die periodische Ldsungsfolge auf dem
B

Rand instabil sein muf}.
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(4.31) Satz (Invarianz von aME):

Es sei f [x1 in (4.24) mindestens stetig, dann ist der Rand aM; des Ein-
zugsberelches invariant beziiglich der Zustandsgleichung (4. 24) [

Beweis:

Es muB gezeigt werden, daB aus x(v) e aMp f [x(v)] e oMy folgt. Es sei
erinnert, daB eine Abbildung fl-] : R" - R" genau dann im Punkt x stetig
ist, wenn fiir jede Umgebung Us von flx] die Menge f~ [U I o= Ax[f(x) € Ug!
eine Umgebung des Punktes X 1st. Weiterhin wird die Aussage verwendet,
daB ein Punkt x{v) genau dann auf dem Rand aME der Menge ME liegt, wenn
fir jedes 6>0 sowohl die Umgebung Ulx(v);6(e)] n Mg $ ¢ als auch die
Ungebung Ulx(v)};6(e)] N CMg $ @ ist.

Eine Umgebung Ug von Eo[i(v)] kann nicht ganz in Mg enthalten sein, da
die durch (4.24) erzeugte Folge {x(u)} aufgrund der Voraussetzung dann
gegen die Ruhelage Xp = O strebt im Gegensatz zur Annahme, daB x(v) auf
der Rand des Einzugsbereiches liegt. Daraus folgt, daB £,0x(v)] zur Kom-
plementarmenge CME gehort,

Es ist nun zu prifen, ob es eine Umgebung Ug von f, [x(v)] gibt, die
ganz in CM; liegt. Wenn Ug eine Umgebung von f [x( )] ist, dann folgt
aus der Stetlgkelt der Abblldung, dag f [U ] eine Umgebung von x(v)
ist, d.h. es gibt ein X € ME N f [U ] (we11 x(v) e 6M ) und daraus
folgt f_ [x] e £ IM] N Ug. M1th1n kann Ug nicht ganz in CM; enthalten

sein und hleraus folgt £,0x(v)] e M. [

Im folgenden erweist sich eine nur auf eine Teilmenge beschrankte Sta-
bilitdtsdefinition als niitzlich.

(4.32) Definition (Asymptotische Stabilitit auf dem Rand):

Eine periodische Grenzfolge {x(v )}p C OMp der Zustandsgleichung (4. 24)
heiflt asymptotisch stabil auf dem Rand aME, wenn die Aussagen in der
Definition (4.28) auf die Umgebungen des Randes U[x(u),b( )l o=

aMp N Ulx(n);6(e)] beschrinkt werden. L

Eine zeitdiskrete Trajektorie mit einem Anfangszustand auf dem Rand des
Einzugsbereiches strebt entweder gegen einen Zustand einer periodischen
Grenzfolge mit endlicher Periode p oder fiihrt eine Bewegung aus, die als
Grenzfolge unendlicher Periode (limited band) bezeichnet wird. In jedem

Fall bleibt die Trajektorie aufgrund der Invarianzeigenschaft des Ran-
des in M.
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Ermittlung von periodischen Lésungen

Eine periodische Lésung mit der Periode p der Zustandsgleichung (4.24)

erfiillt die Beziehung

(4.33) glxl = £

(p-1)Verkettungen

Jeder Zustand der periodischen LOsung {L(V)}g erfilllt die Gleichung
(4.33). Es geniigt auch, einen Zustand x(1) einer periodischen Losung

aus {4.33) zu ermitteln, denn die ibrigen Zustande x{2),...,x(p) lassen
sich mit der Zustandsgleichung (4.24) berechnen. Nicht fiir jedes p muf
eine neue Beziehung (4.33) aufgestellt werden, denn liegt z.B. fir p = 6
dann erfiillen die Lésungen fir die Periode 1,2 und 3

33) mit p = 6, d.h. fur alle Perioden, die eiln

das Ergebnis vor,
auch die Gleichung (4.
ganzzahliges Vielfaches von p sind.

Numerisch kénnen die Losungen von (4.33) aus einem quadratischen Gutekri-

terium ermittelt werden. Es ist also

J !
(4.34) Jxl = 3 [gfx) - x][elx) - x] 20
zu einem Minimum zu machen. Unter den hier allgemein vereinbarten Voraus-

setzungen existiert der Gradient von (4.34)
gradx[J[L]] = [B (x] - E][ﬁ[i] - 5]

mit der (nxn)-Matrix

ag(x)
P[x] 1= |——
ax

Somit lassen sich verschiedene Gradientenverfahren zur Losung der Extremal-

aufgabe (4.34) anwenden. Die Matrix P ist bel Anwendung der Kettenregel

einfach zu bestimmen. Es gilt

af [x] af [x]
(4.35) PIx(v)] = |—— 1. .. -« —0
- ax ax
- x=x[v+p-1 ] x=x[v]
= L[\)+p-1]£[\)+p-2] ...E[v] .

wobei die Matrizen L durch
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of J[x]

L] =
ax

T x=x(u)
erkldrt sind. Fir eine hinreichend kleine Umgebung der periodischen Lo-
sungsfolge bestimmt P[x(v)] das Stabilitdtsverhalten der Lésung (in Ana-
logie zum Satz (4.27)). Die periodische Lésung ist dann asymptotisch
stabil (in der ersten Ndherung), wenn alle Eigenwerte der Matrix P[x{(v)]
im Einheitskreis liegen. Man kann zeigen, daB die Eigenwerte der Matri-
zen

Plx(v)1 5 Px(v+1)1 5 ... Plx(v+p-1)]

sich nicht dndern, sofern die Zustdnde x zur gleichen periodischen Lo-
sungsfolge gehoren.

(4.36) Beispiel: Stabilitidt periodischer Losungen

Welches Stabilitatsverhalten besitzen die periodischen Losungen des auto-
nomen zeitdiskreten Zustandsmodells

2
(v) - 2 v v
(o) = x7(v) x4 ( )"2( ) ,

() - x5(v)

Die periodische Losungsfolge wird mit einem Gradientenverfahren ermit-
telt, das das Giitekriterium (4.34) zu einem Minimum macht. Hierzu kann

beispielsweise der Algorithmus (e>0)

(4.37) LT S “[E|[ii] - E][E[li] - 11] i=0,1,...

gewahlt werden.

Fiir die Periode p = 4 und mit dem Startvektor [1,5; 1,5] bekommt man
die periodische Losungsfolge

0,697| |-0,678| | 0,46 0,835
x(v) -

0,835, 0 , | -0,678], 0 ,

die im Bild 4.3 dargestellt ist. Die Stabilitidtsmatrix P[x(v)1 wird nun
fir einen dieser Zustinde nach (4.35) berechnet. Die Matrix P besitzt
hier die Eigenwerte Ay o= 7,43 und Ay = - 2,26. Hieraus folgt aufgrund

der vorangegangenen Ausfiihrungen, da8 die Losungsfolge instabil ist
(mindestens ein IAi! > 1).
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. - '
Die Periode p = 1 und der Startvektor [-1; -1] liefern unter Anwen-

dung des Algorithmus (4.37) die LOsung

-0,236

(x(v)} = Xpq =
-0,618

und die Stabilitdtsmatrix R[5R1] hat die Eigenwerte i, = 1,726 und
Ay = 0,273, d.h. die Ruhelage XR1 (entartete periodische Folge) ist

instabil (|A1| > 1).

Fir p = 1 und den Startvektor [0;-2] erhdlt man eine weitere Ruhelage

= [O;-l]' mit den Eigenwerten A, , = 2 der Matrix Plxp,1. Auch diese

Xp2
Ruhelage ist instabil.

X3
14»
X 5“1
<\
rd
» )
¥
P \
- \
x(2) -~ xfe) X
2 e
—+ w
-1 ~ / 1
S /
\\ /
~
Xq: ® %&(ﬂ

JQEm

Bild 4.3: Ruhelagen und periodische Losungsfolge des Beispiels (4.36) Ik

Eigenschaften der Stabilitatsmatrix P[x(v)] auf dem Rand des

Einzugbereiches

Es sei F[x] = C eine den Rand M beschreibende Hyperflédche im 8" und

alle ersten partiellen Ableitungen von F[x] sollen auf dem Rand existie-

ren. Insbesondere werden die Gradienten von F{x] in den Zustédnden der

periodischen Grenzfolge {1(“)}2 mit

(4.38) b, o:= grad1 [F[l}]x=x(v) v=71,...,p

bezeichnet. Fiir alle X € aME ist die Beziehung

Flx] = F[ﬁotil] - F[E[ﬂ] = 0
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erfiillt, wobei g durch Gleichung (4.33) erkldrt ist und die Invarianz-

eigenschaft auf dem Rande ausgenutzt wurde (vgl. Satz 4.31).

Zur Vereinfachung wird in den weiteren Betrachtungen angenommen, da8 die

Eigenwerte von P[x] alle voneinander verschieden sind.

Zu F[x] und F[glx]] gehoren dieselben Zustinde auf der Hyperflache und
die zugehdrigen Gradienten miissen daher dieselben Richtungen haben. Ins-
besondere fiur die periodische Grenzfolge {i(v)}? folgt dann im Vergleich
zu (4.38)

(4.39) gradx[F[E[i]]} ) =X_b v=1,...,p ,
- X=xtv

wobei man nach Anwendung der Kettenregel erhalt

aF[g[i]} [GFEE]J'ag[i]

ox ag dx

Unter Bericksichtigung von P{x] und (4.38) in der letzten Beziehung,

1aBt sich die Gleichung (4.39) in der Form

(4.40) Poby 1= P Ix(v)] b, = A b v o= 1,...,p

W —V v =V

schreiben. Die Gradienten auf der Hyperfldche in den Zustdnden x(v) sind
also Linkseigenvektoren der Stabilitatsmatrix p,. Die zugehérigen Eigen-

werte von P mussen reell sein, da die Hyperfldche im R liegt.

(4.41) Satz (Asymptotische Stabilitdt auf dem Rand 3M;):

Eine periodische Losung {i(v)}? auf dem Rand des Einzugsbereiches ist geé-

nau dann asymptotisch stabil auf dem Rand My, wenn die zugehdrige Sta-
bilitatsmatrix Bv n-1 Eigenwerte im Einheitskreis und den n-ten Eigen-
wert (reell) auBerhalb des Einheitskreises hat. 8

Beweis: Die Hyperflache 8Mp hat die Dimension (n-1) und der Gradient b,
(Gleichung (4.38)) steht im Punkt x(v) senkrecht auf der Hyperfléche.

b, steht aber in x{v) als Linkseigenvektor senkrecht zu den (n-1) Rechts-
eigenvektoren von P . Denn mit é.(v) als Rechtseigenvektor gilt

EVPJ(“) = lj(v)gj(v). Wird in (4.40) mit Bj(v) das Innere Produkt gebil-
det, so folgt

Ej(")gvh\, = Avhj(\))gu - [Bv]zj(v)] EV = Aj(v)hj(v)hv = Avgj(v)gv

Mit A;(v) § A, mub also das Inmere Produkt b, (v)b, fiir alle j 4 v ver-
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schwinden. Es missen daher diese n-1 Rechtseigenvektoren von P, in der
invarianten Hyperfléche aME liegen.

Es sei nun die Beziehung (4.33) an der Stelle x(u) e {5(v)}? in eine
Taylor-Reihe bis zum linearen Glied entwickelt, so daB in der ersten

Naherung gilt

aglx]
- [x - x(w)]

glx] glx(u)] +

ax
o x(W)

x(w) + P lx - x(n)1 .

Mit x e U[x(u) 6(e)] (Definition 4.32) folgt |1x - x(w) || < 6 und nach
Satz 4.31 glx] e aMg Die (n-1) Rechtseigenvektoren aus Mg bilden eine

Basis in den Umgebungen U nach Definition 4.32, so daB [x - x(u)] sich

nach dieser Basis entwickeln 1d8t. Es gilt dann
n-1
[x - x()] = 2, a5 b
j=1

(el

und fiir jedes x(i) «

glx(1)1 = x(w) + P, Z o Bj(u)

n-1
S k(o e ey b )

x(i+p)

Weiterhin folgt aus der letzten Gleichung

x(u) + Eu[1(1+p) - x(w)]

1

x(i+2p) = 5[1(1+P)]
n-1
= }_(U) + -EJJZ ujkj(u)P_j(u)

n-1

= x(u) + j; ajxi(u)éj(u) .
=1

S0 daB sich die Komponenten des letzten Ausdruckes fir ein X e U mit

asA (u) verindern. Hieraus folgt aber, daf nach Definition 4.32 genau

]
dann asymptotische gtabilitat auf dem Rand vorliegt, wenn alle Eigen=
betragsmafig kleiner

werte zu den (n-1) Rechtseigenvektoren aus aME

eins sind, d.h. es gilt dann

lim|a, A (u)l = 0 fiir alle j = 1,...(n=1)

1-»
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Andererseits muB nach Satz (4.30) eine periodische Losung auf dem Rand

instabil sein, d.h. mindestens ein Eigenwert von P, liegt auBerhalb des
Einheitskreises. Damit muf der Eigenwert A, von E» groer eins sein. Die
Aussage des Satzes ist damit bewiesen. [ |

Einen Algorithmus zum Auffinden der periodischen Losungen auf dem Rand
des Einzugsbereiches findet der Leser in der Arbeit von AFACAN [4.1].

(4.42) Beispiel: Stabilitdt periodischer Losungen auf dem Rand

Aus den Ergebnissen des Beispiels (4.36) und Bild 4.3 geht hervor, daf
Xpt (p = 1) als einzige Losung die Bedingungen des Satzes (4.41) er-
fillt. Das autonome zeitdiskrete Zustandsmodell

[ - KA
x(v+1) =

X.](\))

hat bei Anwendung des Algorithmus (4.37) die pericdische Losung (vgl.
Bild 4.4)
1 0 -1
{1(“)}? =

-1 s 1 , 0

und die Stabilitdtsmatrix P[x(v)] hat die Eigenwerte Ay = O sowie

A, = 4. Die Ruhelage Xp = 0 ist nach Satz (4.27) asymptotisch stabil

und die periodische Losung (Bild 4.4) erfiillt die Bedingungen des Satzes
(4.41), d.h. asymptotisch stabil in M.

EBL/’ X Xy

/
-1
\

~ A\
~

*‘y1)

Bild 4.4: Periodische Lésungsfolge aus dem Beispiel (4.42) [ |
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Die hier gewonnenen Aussagen werden im néchsten Abschnitt bei der Kon-
struktion des Einzugsbereiches bendtigt und geben auch einen vertieften

Einblick in die Stabilititsanalyse bei zeitdiskreten nichtlinearen Sy-

stemen.

4.3 Die direkte Methode von Ljapunov

Der Anwendungsbereich der direkten Methode von Ljapunov liegt vor allem
in der Regelungstechnik, Signalverarbeitung und Mathematik. Die Methode
kann sowohl als Hilfsmittel in Beweisen als auch in Kriterien oder Ver-
fahren Verwendung finden. In der nichtlinearen Regelungstechnik fihrt

diese Methode beim Vorliegen eines 7ustandsmodells in vielen Fdllen zu

die mit den Methoden und Verfahren aus den Kapiteln Z und
Beim Entwurf von nichtlinearen Regel-
erweiterte direkte

Ergebnissen,
3 nicht gewonnen werden konnen.
kreisen oder einfachen adaptiven Regelungen ist eine
Abschnitte 4.6 und 5.1), die fur spe-

Methode hiufig anwendbar (vgl.
gar zu einem suboptimalen bzw. opti-

zielle Klassen von Regelstrecken so

malen Reglergesetz fuhrt.

Gegenstand dieses Abschnitts sind die Einfiihrung der erforderlichen Be-

griffe und der grundlegenden Stabilitatssdtze von Ljapunov, das Auffin-

den geeigneter Ljapunov-Funktionen und die hieraus folgende Ermittlung

von hinreichend grofBen Teilbereichen eines Einzugsbereichs, die eine Um-

gebung der asymptotischen stabilen Ruhelage ganz enthalten.

Zum Verstandnis der Satze von Ljapunov ist eine Kenntnis iiber definite

Abbildungen und Vergleichsfunktionen erforderlich.

(4.43) pefinition (Definite Abbildungen):
0 < || x]] < u} eine Umgebung der Ruhelage
N und r(=) = R". Eine Abbildung

Es sei r(a) := {i | x ¢ R ;

= 0. Es ist dann fir ¢ < ® r(a) c R
(negativ) definit auf I'(a), wenn fiir alle

XR

V[+] : r(a) - R heiBt positiv
X e P(u)

Vix] > 0 (vix] < 0) und V(O] = 0

gilt. Ist fir alle x ¢ f(a)

vix1>0 (VIx1<0)
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so heiBt V[x] positiv (negativ) semidefinit auf r(o). Wenn eine Funk-

tion auf dem R" definit ist, wird r'(=) nicht explizit angegeben. [ ]

Ein allgemeines Kriterium zum Nachweis der Definitheit einer Funktion
Vix] gibt es nicht. Liegt jedoch eine quadratische Form Vix] = x'Q x
vor, dann 148t sich diese auf (Semi-) Definitheit priifen. Es gibt hier-
fur zwel Moglichkeiten des Nachweises.

(4.44) TIst V{x] = x'Q x eine positive (negative) definite quadratische
Form, dann muf gelten, daB Q = Q' eine symmetrische Matrix ist
und alle Eigenwerte * (Q) reell und positiv (negativ) sind.
Unter Anwendung der Definition (4.43) und Entwicklung des Vek-

tors x nach den Eigenvektoren von Q kann der Leser diese Aus-
sage leicht zeigen.

(4.45) Eine Matrix Q 1st genau dann positiv definit, wenn Q = Q' und
alle Hauptunterdeterminanten von Q positiv sind, d.h.

Q1 A2

det| g]] = a9 >0 : det[gz] = >0 ...
992 422
qT] 9y
det[gv] = >0 v = ... n
q]v Ay

(4.46) Beispiel: Nachweis der Definitheit einer Matrix

Die Matrix

ist auf Definitheit zu untersuchen.

Da Q symmetrisch ist und alle Eigenwerte wegen ,(Q) = 2 sowie Rz(g) =7
positiv sind, folgt aus dem Kriterium (4.44) die positive Definitheit
der Matrix. Der Nachweis mit dem Kriterium (4.45) liefert die gleiche
Aussage, d.h.

det{Q] = 6 >0 und det[Q,} = 14 >0 . §

Bei der Behandlung von zeitvarianten bzw. nichtautonomen dynamischen
Systemen (vgl. Abschnitt 1.1) ist die Definition (4.43) auf definite Ab-
bildungen zu erweitern, die explizit von der Zeit t abhangen.
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(4.47) Definition (Explizit zeitabhingige definite Abbildungen):

Eine Funktion VIx;t] mit vi0,t] = O heifit positiv (negativ) definit auf
I'(a), wenn aus der Klasse K(a) der streng monoton wachsenden, stetigen
Funktionen mit p[0] = O eine Abbildung pu[r] e K(e) im Intervall

0 <r < e existiert, so daf}
Vix; tl > pu[‘|i||] (< - ou[||1|l])

gilt. V[x;t] heiBt radial unbeschrankt, wenn die Ungleichung fiir eine
Funktion pu[||1|y] " K(=) erfallt ist, d.h. fir alle x und [[x|] -~ =. B

Eine Funktion V[x;t} mit V{0Q;t] = O laBt sich auch durch eine obere

Schrankenfunktion po[r] ¢ K abschitzen, wenn alle ersten partiellen

Ableitungen von V[x;t] nach x; (i = 1,...,n) in r{a) fur alle t >t be-

schriankt sind. Aus dem Mittelwertsatz der Differentialrechnung folgt un-
ter den angegebenen Voraussetzungen die Ungleichung

| {x|| sup l\gradi[v[az:t]]li

(4.48) IVIx;td]
- Of_ai]

| A

< po[||1||] fur alle t > t .

Die Vergleichs- bzw. Schrankenfunktionen o(r) e K{a) geniugen der Unglei-

chung
(4.49) ol (r-x)1 < p(r)f1-mxl

fir 0 < x<r <o und p(r)m < ¢ mit

¢ = min
r

delr]
dr

Der Leser mache sich die Aussage anhand des Bildes 4.5 klar.

b ollr—x)]

olr)

Bild 4.5: Darstellung der Ungleichung (4.49)
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Die folgende Abschdtzung der Losung einer skalaren Differentialgleichung
ist bei den Stabilitatsuntersuchungen, insbesondere bei Regelkreisen,

von Bedeutung. Es sei

Q(t)

- glv(t)]

mit glvl ¢ K(a) und 0 < v(to) < o gegeben. Die Losung dieser skalaren
Differentialgleichung 1. Ordnung geniigt dann der Ungleichung

(4.50) v(t) < v(t J1-m(t-t )] t >t

mit v(to) m < c :=min glv]. Der Leser kann diese Ungleichung unter Ver-
v

wendung von (4.49) bzw. Bild 4.5 leicht nachweisen.

4.3.1 Stabilitdtssatze von Ljapunov fiir zeitkontinuierliche Systeme
(direkte Methode)

Im Abschnitt 1.3 findet der Leser die Begriffe

- Ruhelage (Definition (1.9))
und

- Stabilitédt bzw. asymptotische Stabilitit einer Ruhelage 1.5.v.
Ljapunov {Definitionen (1.15) und (1.16))

bei nichtautonomen sowie autonomen zeitkontinuierlichen Systemen erklart.
Die hier abgeleiteten Stabilitdtssdtze fiir nichtautonome dynamische Sy-
steme werden insbesondere beim Entwurf von zeitabhdngigen Steuerfunktio-
nen, bei der Bericksichtigung von StdrgroBen in der Regelstrecke und in

einigen Konvergenzbeweisen bei adaptiven Regelungen bendtigt.

Der Stabilitdtssatz in der ersten Naherung (4.19) liefert uns mit den 1m
Abschnitt 4.2.1 gemachten Voraussetzungen schon eine Aussage iUber das

Stabilitatsverhalten einer Ruhelage (asymptotisch stabil, instabil). Die
Anwendung der hier behandelten Stabilitdtssidtze soll daher hauptséchlich

- zur Ermittlung hinreichend groBer Stabilitatsgebiete im Einzugsbe-

reich einer asymptotischen stabilen Ruhelage (im Idealfall den ganzen
Einzugsbereich)

und
- zu Reglerentwurfsverfahren

bei nichtlinearen dynamischen Systemn fiilhren. Hierzu miissen die Stabi-
litdtsdefinitionen aus Abschnitt 1.3 ergidnzt werden.
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(4.51) Definition (Asymptotisch stabil im GroBen):

Die Ruhelage xp = O eines Zustandsmodells x(t) = £[x(t);0;t] heiBt asymp-
totisch stabil im GroBen, wenn alle i(to) € Rn, die als Anfangszustéande

der Differentialgleichung auftreten konnen, die Bedingungen der Defini-

tion (1.16) erfiillen. 8

Bei nichtautonomen dynamischen Systemen hangen alle bisherigen Stabili-

tdtsaussagen vom Anfangszeitpunkt t ab.

(4.52) Bemerkung {GleichmiBige Stabilitdt):

gleichméfig asymptotisch sta-

Eine Ruhelage xp heift gleichmédBig stabil,

bil bzw. gleichmdBig asymptotisch stabil im GroBen,
tionen (1.15), (1.16) bzw. (4.51) die GroBen s(e) und in den Definitio-

nen (1:16) bzw. (4.51) die Umgebungen in der zweiten Bedingung nicht vom

Anfangszeitpunkt t, abhingen. Die nachfolgenden Siatze vereinfachen sich

in der gleichen Weise. o

wenn in den Defini-

Die Stabilititssitze in diesem Abschnitt machen ohne Kenntnis der Losung

der Zustandsdifferentialgleichung eine Aussage iiber das Stabilitatsver-
halten einer Ruhelage. Man spricht 1in diesem Zusammenhang auch von der
direkten Methode. Unter Verwendung von definiten Funktionen wird ein
r Abstand zwischen dem Trajektorienverlauf x(+) und der
Nimmt dieser Abstand uber

verallgemeinerte

Ruhelage Xp des Zustandsmodells eingefiihrt.
das ganze Zeitintervall [tO,W) nicht zu bzw. (streng) monoton ab, dann

liegt Stabilitat bzw. asymptotische Stabilitat der Ruhelage vor.
1 zuerst anhand eines autonomen dynamischen Sy-

Diese Vorgehensweise sol
liche physikalische Deutung

stems beispielhaft erlautert und eine mog

gegeben werden.

(4.53) Beispiel: Weiterfiihrung des Beispiels (4.22)

Die nichtlineare sChwingungsdifferentialgleichung aus Beispiel (4.22)

mit den dort genannten Voraussetzungen sei in der autonomen Form

x(t) + F1[x(t); i(t)]i(t) + glx(t)1 = 0

gegeben, wobei F1[x(t); x(t)] als nichtlinearer Dampfungsterm und

X
Glx(6)] = fg[vldv
(o]
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mit den Bedingungen

glx(t)Ix(t) > 0 fir alle x ¢ 0

und
lim Glx] = =

X |~
als die gespeicherte Energie des Systems interpretiert werden kénnen.
Denken wir z.B. an ein mechanisches Feder-Dampfungs-Massesystem, dann
gilt nach dem Energieerhaltungssatz der Mechanik, daB die Summe aus der
kinetischen Energie (hier % ;2 auf die Masse bzw. Trigheitsmoment nor-

miert) und der potentiellen Energie G[x] gleich der Differenz aus zuge-
fihrter und abgefiihrter Energie ist.

Aufgrund der gemachten Voraussetzungen ist Xp = O eine Ruhelage der Zu-
standsdifferentialgleichung (x1(t) = x(t))

).(1(1',) = x,(t)

xz(t) - xz(t)F1{x1(t); xz(t)] - g[x1(t)]
Im Beispiel (4.22) wurde gezeigt, daB die Ruhelage Xp = 0 asymptotisch
stabil ist, wenn die Bedingungen (4.23), d.h. hier

(4.54) Fil0;01 >0 und 28 (015 g
1

erfiillt sind. Es sei daran erinnert, daf der Stabilitdtssatz (4.19)

keine Aussage iiber das Stabilitdtsverhalten der Ruhelage macht, wenn

die Matrix A des linearisierten Systems Eigenwerte auf der 1maginaren

Achse besitzt. In dem vorliegenden Beispiel liegt dieser Fall vor (vgl.
Beispiel (4.22)), wenn

(4.55) FL0:01 = 0 oder % qg) . |

1
ist. Mit der direkten Methode, die in den nachfolgenden Stabilitatssdt-
zen begriindet wird, wollen wir elnerseits die Bedingungen (4.54) und
{(4.55) Uberprifen und andererseits einen hinreichend groflen Stabilitats-
bereich fir die asymptotisch stabile Ruhelage des Beispiels ermitteln.

Ausgehend vom Energieerhaltungssatz der Mechanik 148t sich die Energie-
funktion

(4.56) Vixy,x, = 4 K Glx;1 , x = e R
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einfiilhren, die auf dem ganzen R’ positiv definit ist und fir Fix]] = =
gegen unendlich strebt. Fir Vix) = c; = konst. ergeben sich aufgrund der
gemachten Voraussetzungen an G[x1] geschlossene Kurven im Rz, die fir
jedes S 0 den Ursprung einschlieflen (vgl. Bild 4.6). Die Ellipsen im
Bild 4.6 treten im speziellen Fall G[x1] = @ x% (a>0) auf. V(x] darf
auch als eine verallgemeinerte Abstandsfunktion aufgéfa@t werden. Jeder
Zustandspunkt auf der geschlossenen Kurve V[x] = ¢ hat denselben Ab-
stand (Energiewert) vom Ursprung und dieser nimmt streng monoton zu mit
wachsenden Werten c;. Weiterhin gilt V[0] = O. Die Gradienten der Funk-

tion V[x] in den Punkten einer geschlossenen Kurve stehen senkrecht auf

grad,V

Trajektorie

Bild 4.6: Veranschaulichung der direkten Methode

den anliegenden Tangenten. Stimmt die Trajektorie einer Zustandsdifferen-

tialgleichung mit einer geschlossene
ein, d.h. die Losung der Differentialgleichung mit Vix 1 = ¢, stellt in
geschlossene Kurve dar, dann ist die Bedingung

n Kurve V[(x]} = ¢; vollstandig uber-

der Zustandsebene eine
[gradX V[i(t)]] x(t) = O fir alle t > t

e Trajektorien einer Zustandsdifferentialgleichung

erfillt. Schneiden di
die nach innen fihrt,

die geschlossenen Kurven mit einer Richtung x(t),

dann ist das innere Produkt

[gradX V[i(t)}} i(t) <0,

d.h. der Winkel zwischen dem Gradienten und dem Richtungssinn der Tra-

jektorie liegt zwischen groBer 90° und 180° (Bild 4.6). In diesem Fall

nimmt der Abstand (Energiewert) vix(t)1 immer ab. Liegt fiir alle x € (o)
mit V[x] < c. diese Aussage VoI, dann laufen alle Trajektorien, die ganz
= =i

in V[x] < ¢, liegen, in die Ruhelage Xp = 0. Die Ruhelage 1st dann asymp-
— = =1
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totisch stabil und Vix] = i gibt den Stabilitidtsbereich an, der mit dem
Einzugsbereich libereinstimmt oder eine Teilmenge davon ist.

Die direkte Methode nach Ljapunov fordert also fiir die asymptotische

Stabilitdt der Ruhelage und den Stabilitdtsbereich die Bedingung, daB
die totale zeitliche Ableitung der positiv definiten Funktion Vix(t)]
negativ definit fiir alle x auf der Trajektorie ist, die auch ganz in

r(a) liegen muB, d.h. mit x(t) = £fIx(t)] gilt

VIx(t)l = [gradX VIx(t)1| £Ix(t)] < O fiir alle x e I'(a)

Im vorliegenden Beispiel lautet die totale zeltliche Ableitung der Ener-
giefunktion (4.56)

. dG[x]] . ’

VIx{t)] = x,x, + X105 = x5 Folxosx,1 - xoglx, 1 + glx,Ix,
=~ 272 dx1 1 2 11 2 1 1°°2

) _ 2

Vix(t)l = - X5 Fl{x1;x2]

Da x,(t) = konst 4 O und danmit xz(t) - ;(t) = 0 keine Losung der Zu-
standsdifferentialgleichung ist, gilt fir alle x(t) auf der Trajektorie
VIx(t)] < 0, wenn F1[x1;x21 > 0 fur x $ 0 ist, d.h. VIx(t)] nimmt in
diesem Fall streng monoton ab und strebt gegen null. Zu der Funktion
(4.56), die aufgrund der Voraussetzung an G[x1] fir alle x e R2 positiv
definit ist, gehért eine auf die Losung der Zustandsdifferentialglei-
chung x{t) eingeschrinkte Funktion Q[i(t)], die fir alle x mit

F][x];xz] > 0 negativ definit ist. Der Einzugsbereich der*ésymptotiSChen

stabilen Ruhelage Xgp = 0 stimmt mit dem RZ iberein, wenn FT[x1;x2] >0
auf dem ganzen Rz gilt.

Der Leser prift mit der direkten Methode leicht nach, daf im vorliegen-
den Beispiel die Bedingungen (4.54) oder (4.55) zu einer asymptotischen

stabilen Ruhelage fuhren, d.h. wir erhalten eine erweiterte Aussage ge-
genuber dem Satz (4.19). [ ]

Eine positiv definite Funktion VIix(t)] iber M(e), zu der die negative

(semi) definite Funktion mit der Einschrankung auf alle x der Trajek-
torie

n
Vix(e)) - Y -g;\:—_fi[i(t)] - [gradxvql]gu(t)]
i=1 1 -

iber r{e) gehort, heift Ljyapunovfunktion.
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(4.57) Satz (Stabilitdt i.S.v. Ljapunov):

Die nichtautonome Zustandsdifferentialgleichung i(t) = flx(t);t] habe
eine Ruhelage bei xp =0 und es existiere eine Ljapunovfunktion VIx(t);t]

mit der negativ semidefiniten Ableitung
v av ,
Vix(t);t]l = ¢+ [grade[i,t]] fix(t);tl

dann ist die Ruhelage xp = 0 stabil im Sinne der Definition (1.15). [

Beweis:

Die positiv definite Funktion Vix;t] besitzt aufgrund der Definition

(4.47) eine untere Schrankenfunktion auf r(a), d.h.
Vix;t] > pu[||5j|] e K(a) fir alle t > t_

Nach Voraussetzung ist V[«;<] in X und t stetig, so daB zu jedem

0 < ¢ < o ein 6(e,to) mit den Ungleichungen
[[x(e ) < 6(e,t,) und Vix(t )it 1 < pylel

existiert. Der Leser mache sich die Ungleichungen anhand des Bildes 4.7

bvix:t)

MLEY
? [ - l V[’_‘.;*O]

ol

ixl

|
|
|
l
!
E

H—

Bild 4.7: Erliuterung zum Beweis des Satzes (4.57)

= gl t, ,x(t }] die Losung der Differentialglei-

klar. Es sei nun x(t)
daf fur hinreichend kleine Werte von

chung, dann folgt aus Bild 4-7
(t-to)

l|1[t;to;£(to)]|| < e
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gilt. Existiert nun ein Zeitpunkt ty > t, mit

Holt st sx(e I = ¢,
dann muB aufgrund der oben angegebenen Ungleichungen gelten
V[i(t1);t1] > pu[|’l1||] = pylel > V[i(to);to]
Diese Aussage steht im Widerspruch zur Bedingung des Satzes

VEX;t) <0 < Vix(e,);e,] < Vix(t );t, )

d.h. wenn eine Ljapunovfunktion existiert, dann liegt Stabilitat der

Ruhelage i.S.v. Ljapunov vor. |

(4.58) Satz (Asymptotische Stabilitit 1.S.v.Ljapunov):

Die Ruhelage Xp = O des nichtautonomen Zustandsmodells aus dem Satz

(4.57) ist asymptotisch stabil, wenn es eine Ljapunovfunktion V[x(t);t]
mit der negativ definiten Ableitung
Vix(e)iel = S lgrad Vix();t]] £0x(t)it]

gibt. [ ]

Beweis:

Die Bedingung aus Satz (4.57) ist erfillt, so daB die Ruhelage minde-
stens stabil ist und die Losungen olt;t ,x(t )1 mit hinreichend kleinem

Ifx(t )| in einer Umgebung r(a) verlaufen Welterhln gilt aufgrund der
Def1n1t10n (4.47)

Vix(t);t] > pur{I1x]1] und Q[i(t);t] <= e I

Hieraus folgt, daB mit wachsendem t dije Ljapunovfunktion Vix;t] abnimmt
und einen Grenzwert

lim Viglt;t ,x(t )1t = V(=) > Q

f{-> -

besitzt. Der Leser beachte, daf fiir Q(m) > 0 die Norm des Zustandes

lIx(=)|] > 0 ist. Unter der Annahme V(=) > 0 gibt es also ein a mit

jfg[t;to;i(to)lll > a vt
so da

V[E[t;to;i(to)};t] < - Puz[uo]
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und nach Integration
vit) < vix(t )5t 1 - (t-t e ,lo,]

fir jedes t > t gelten. Da laut Voraussetzung v(t) > 0 ist, liegt in

der letzten Ungleichung ein Widerspruch vor. Daraus folgen o, = 0 und

lim V(t) = O . (]

s

(4.59) Bemerkung:

Bei autonomen 7ustandsdifferentialgleichungen x(t) = i[i(t)] geniigt es,

in den Siatzen (4.57) und (4.58) eine Ljapunovfunktion VIx(t)] nach der
_h. V hingt nicht explizit von der Zeit

Definition {4.43) zu verwenden, d
ab.
Die Ruhelage eines nichtautonomen 7ustandsmodells ist gleichmaBig stabil

bzw. gleichmiBig asymptotisch stabil, wenn in den Sitzen (4.57) bzw.
(4.58) eine Ljapunovfunktion existiert, die eine von t unabhdngige obere

Schrankenfunktion p [r] « K(e) besitzt, d.h. VIx(t);t] £ po[||£|H . B

{(4.60) Bemerkung:

Die Ruhelage Xp = 0 eines 7ustandsmodells 1st asymptotisch stabil im
) eine radial unbeschrankte Ljapunovfunk-

GroBen, wenn es im Satz (4.58

tion gibt.

(4.61) Satz (Instabile Ruhelage):

Das Zustandsmodell i(t) = f[x(t);t] habe eine Ruhelage bei xp = O und es

existiere eine Funktion V[x;t] in einen Bereich r(ajt ) := ((x,t,)]
x ¢ R®: 0 < [[x|]| <o t, ¢ R} mit den folgenden Eigenschaften:

a) Vix;tl > 0 fir x

b) Vixit] =

¢) Die Funktion VIix;tl strebt mit wachsendem t gleichmédfiig beziiglich x

gegen null.

Dann ist die Ruhelage instabil.

Dem Leser sei der Bewels dieses Satzes 1n Anlehnung an die Bewelse der

vorangegangenen Satze empfohlen.
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Hinweis: Es geniigt zu zeigen, daB es in jeder Ungebung der Ruhelage ein
X, gibt, so daB kein ¢ > 0 nach der Stabilitdtsdefinition (1.15) exi-
stiert,

4.3.2 Auffinden von Ljapunovfunktionen - zeitkontinuierlich -

Die Stabilitédtssdtze im Abschnitt 4.3.1 geben hinreichende Bedingungen
iber das Stabilitdtsverhalten der Ruhelagen an. Es wird jedoch nichts
ausgesagt auf welche Weise man zu einer gegebenen Zustandsdifferential-
gleichung eine mégliche Ljapunovfunktion findet. Ob eine solche Funktion
uberhaupt existiert, wird nicht beantwortet. Es ist daher erforderlich,
das Auffinden von Ljapunovfunktionen jeweils auf eine bestimmte Klasse
von Systemen zu beschrianken.,

Um das Stabilitdtsverhalten einer Ruhelage mit der direkten Methode nach-
zuweisen, ist eine positiv definite Funktion V[i] bzw. Vix;t] mit den
entsprechenden Eigenschaften aus den Stabilitétssdtzen zu ermitteln.
Dabei kann es vorkommen, daB die gefundene Ljapunovfunktion einen gegen-
Uber dem Einzugsbereich einer asymptotisch stabilen Ruhelage wesentlich
kleineren Stabilitdtsbereich liefert.

a) Lineare zeitinvariante Systeme

Das Stabilitdtsverhalten der Ruhelage bei linearen zeitinvarianten Sy-
stemen wird nur dann mit der direkten Methode untersucht, wenn damit
gleichzeitig andere Frage- und Aufgabenstellungen aus der Regelungs-
technik verbunden sind, wie sie beispielsweise beim Entwurf eines Reglers
auftreten, oder wenn das lineare System als Teilsystem innerhalb eines
nichtlinearen Modells auftritt (vergleiche Abschnitt 4.6). Ist nur nach

dem Stabilitdtsverhalten eines Systems
(4.62) x(t) = A x(t)

gefragt, dann gibt es einfachere Verfahren wie beispielsweise das Routh-

Schema, welches auf das charakteristische Polynom det(Es-A) angewendet
wird. T

Bei der Untersuchung des homogenen Systems (4.62) geniigt es, die posi-
tiv definite Funktion in quadratischer Form

n
PHENERS

T u=1

Vix] = x'Q X =

n

v
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mit Q = Q anzusetzen. Als totale zeitliche Ableitung erhdlt man dann

{grad V[E]JI i(t) = i'g

- x[AQ+QAlx = -xP

| =

Vix] £ xQx

"

| >

(4.63) Satz (Asymptotische Stabilitdt):

= 0 des linearen 7ustandsmodells (4.62) ist genau dann

Die Ruhelage Xp
enen positiv de-

asymptotisch stabll wenn zu einer beliebigen vorgegeb

finiten Matrix P die Matrixgleichung
AQ+QA = -P
eine positiv definite Losung Q besitzt.

Den Beweis findet der Leser im Buch von HAHN [4.8].

Es 14aBt sich fiir die n(n+1)/2 unbekannten Elemente Ay der Matrix Q die

gleiche Anzahl von linear unabhdngigen Gleichungen aufstellen. Wird fur
dann vereinfacht sich das zu

seits liefert im Zusammenhang

die Matrix P eine Finheitsmatrix gewahlt,

l16sende Gleichungssystem erheblich. Anderer

mit nichtlinearen Systemen die Wahl P = E hdufig einen zu kleinen Stabi-

litdtsbereich, d.h. dieser 1ist erheblich kleiner als der Einzugsbereich

der Ruhelage.

b) Nichtlineare zeitinvariante Systeme mit linearem Teilsystem

stabile Ruhelage. Es be-

Das Modell x(t) = A x(t) habe eine asymptotisch

sitzt dann den Einzugsbereich R". Betrachten wir nun das erweiterte Zu-

standsmodell

(4.64) x(t) - Ax(t)+glx(0)]

dann wird sich durch den nichtlinearen Anteil g{x] unter Umstdnden ein

kleinerer Einzugsbereich ergeben (Mg € R"). Es sei nun

Vi ix) = x'Q x Q>0
eine Ljapunovfunktion des linearen Teilsystems in (4.64) mit der negativ

definiten Ableitung

i x - xQAAQ X = - xBX

0 von (4.64) ist nach Satz (4.58) asymptotisch stabil

n

Die Ruhelage xp
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(vergleiche.Bemerkung (4.59)), wenn VL(E) eine Ljapunovfunktion von
(4.64) ist, d.h. es wird der Zustandsbereich mit VL[i] = ¢ gesucht, fur
den die Bedingung

Vlx] - x'ex e xgx

(4.65) = x [AQ+ QAlx+2x0Qglx]

fir alle V [x] < c erfillt ist. Der Leser findet hierzu eine anschauliche

Vix)>0

Darstellung im Bild 4.8. Gleichzeitig liest man aus diesem Bild ab, daB
durch eine ungiinstige Wahl der Matrix BL und damit auch VL[i] ein klei-
nerer Stabilitdtsbereich ermittelt wird. Die Erfillung der Bedingung
(4.65) hangt bei diesem Verfahren davon ab, ob der nichtlineare Anteil
in (4.64) durch geeignete obere und untere lineare Schranken in x ab-
schatzbar ist. Wir suchen jetzt jeweils n obere und untere Schranken-
vektoren éu bzw. éu mit der Eigenschaft

1

(4.66) s,x < g [x]< uX W=1,...,n

== =y

i >

Weiterhin ist der Wertebereich der Elemente einer Matrix S zu ermitteln,
fir den die Matrix S die Bedingung (4.65) in der Form

L3 1

VL[£]+X[ g+g§]£<0

erfiilllt, d.h. es wird das iquivalente System x(t) = [A « S1 x(t) mit
einer asymptotisch stabilen Ruhelage gesucht. Es gilt dann
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+8§Q+QS8<0 -~ negativ definit.

(4.67) - P

Da die Ruhelage des linearen Teilsystems asymptotisch stabil ist, gibt
es nichtleere Intervalle I\)u mit Sep € Ivu, aus denen sich Matrizen S
bilden lassen, die alle die Bedingung (4.67) erfiillen. Liegen nun alle
Komponenten gvu und gvu der Schrankenvektoren ganz in diesen zuldssigen
Intervallen I , dann ist das Stabilitadtsgebiet 1im Zustandsraum durch
die von der groBten Ellipse VLEE} = c* eingeschlossenen Flidche gegeben,

die von den Ungleichungen (4.66) begrenzt wird.

Die Ermittlung des Stabilitdtsgebietes fiir Zustandsmodelle hoherer Ord-
nung der Form (4.64) ist im allgemeinen sehr mithsam und hangt von der
Wahl der Matrix EL ab. Anhand eines allgemein gehaltenen Beispiels zwel-

ter Ordnung wird die Bestimmung der Stabilitatsgrenzen aufgezeigt.

(4.68) Beispiel: Ermittlung eines Stabilitatsgebietes

Es sei die autonome 7ustandsdifferentialgleichung
X(t) + glx(t);x()1 = 0

mit é[O;O] - 0 gegeben. Diese 146t sich in die Form

Y1) + ax(t) + agx(t) v glx(0ix(01 =0
oder mit xl(t) .= x(t) in die Darstellung
X1(t) = xz(t)
(4.69) )
x,(t) = - a0x1(t) - a1x2(t) + glx(t)]
bringen. Das lineare Teilsystem mit der Systemmatrix
0 1
A =
"3y T

stabile Ruhelage, wenn a, > 0 und

hat genau dann eine asymptotisch
da® die Nichtlinearitdt in der Um-

a. > 0 sind. Es sei nun angenommen,

1
gebung der Ruhelage durch

7 X

|n>

, x <glxl g

fune

- ayx, T agX + glx] gilt. In diesem Bei-

abschitzbar ist, wobei glx] =
etzten Zeile von Null

gesuchten Matrizen S nur in der 1

spiel haben die
die die Bedingung (4.67) genau dann erfiillen,

verschiedene Elemente,
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wenn die Koeffizienten
[aO - 521] >0 und [a1 - 522] >0

sind. Die zuldssigen Intervalle fiir die Elemente der Matrizen S ermit-
telt man aus den letzten Ungleichungen. Es ist

-~

21 (-=,a,)  und T2p = (-=,a))

n»

I

und die Komponenten der Schrankenvektoren §2 und éz missen entsprechend
in diesen Intervallen liegen, d.h.

~

S91» 521 £ Iz1 und s

220 337 ¢ 1y
Das Stabilitdtsgebiet der asymptotisch stabilen Ruhelage wird nun aus
[(QA+AQl = - Pp und der Beziehung (4.67) berechnet, d.h. es ist der

von V. [x] = c* eingeschlossene Bereich zuy bestimmen, der durch die bei-
den Geraden

52 X = uu = min g[i] und EZ X = GO = mix g[l]

begrenzt wird, vergleiche Bild 4.9. Der Leser mache sich klar, welche
Bedeutung verschieden gewihlte positiv definite Matrizen P, in diesem

L
Beispiel haben.
4
X, p p
/7 /S SX=ay
Vs 7
/ »
ya W[!]:C
,/ﬂ 4 1
/ ﬂ}/ -
~ e
S X =0y
b 2
7 /s
4 7
Bild 4.9: Stabilitidtsgebiet zu Beispiel (4.68) o

c) Erweiterte Betrachtungen zu Beispiel (4.53)

Die Bewegungsgleichungen eines autonomen Systems in kanonischer Form
lauten

. 9Hlg;p] .

q,(t) = — und p (t) = - —— " (v =1,...,m),

p,, 3q
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wobei die Gesamtemergie Hlq;p] des Systems sich nicht &ndert. Die Orts-
koordinaten q (t) und die Impulskoordinaten pv(t) beschreiben dann den
Zustand des Systems vollstdndig. Hlq;p] wird Hamiltonfunktion genannt.
Fiir das Beispiel (4.53) wurde als Ljapunovfunktion V[x];le die Energie-
funktion (4.56) gewdhlt. Ein System, in dem die Gesamtenergie (4.56) er-
halten bleibt, d.h. Hlq;pl = V[x1;x2], besitzt die Bewegungsgleichungen
(Zustandsmodell, x, := q; und x, := Py)

§1(t) = —— = xz(t)

(4.70)
xz(t) aH  _ ¢ _  _ g[x1(t)]

4
3

Der Leser zeige, daB die Ruhelage des Systems stabil aufgrund des Satzes

(4.57) und Bemerkung (4.59) ist, d.h. H(t) = 0. Die positiv definite

Hamiltonfunktion kann in solchen Systemen als Ljapunovfunktion verwendet

werden. Weiterhin erkennt man, daB in den Bewegungsgleichungen {(4.70)
gegeniiber dem Beispiel (4.53) der (positive oder negative) Dampfungsterm
fehlt. Dieser Term ist fir die Zu- oder Abnahme der Gesamtenergie ver-
antwortlich und bestimmt somit das Stabilitdtsverhalten der Ruhelage

(Gleichgewichtslage).

Eine Erweiterung auf nichtautonome Systeme mit einer Hamiltonfunktion
Hlg; p; t] ist méglich. Der Leser sollte dann Lehrblicher der Mechanik

verwenden, die die Hamilton'sche Theorie behandeln.

d) Ljapunovfunktionen nach dem Verfahren von Krasovskii

Es existiere auf r(a) die Funktionalmatrix

af [x]
otX

Jix} =
by u=1...n ,

die auch Jakobi-Matrix von f[i(t]] genannt wird. Das autonome Zustands-

modell sei durch
x(t) = flx()] nit £00] = O

= 0 asymptotisch stabil. Zur Ermittlung des

gegeben und die Ruhelage Xxp
sich die fol-

zugehorigen Stabilitdtsgebietes (Einzugsbereiches) lassen

genden Ljapunovfunktionen verwenden:
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VIx(t)] = x'Q x
(4.71) ) 1 '

Vix(£)1 = f x[J I8 xJQ+ Q JIB x1]x d& < 0
und 0

VIx(t)] = £'Ix1Q £Ix)
(4.72)

VIx(t)] = f [x1[J [x1Q + Q JIxI]£[x] < 0
tir alle x € r(a).

Die totale zeitliche Ableitung von VIx1 in (4.71) lautet

Q[x] = f£'[x]Q x + x'Q flx]

£0x] ist nun in Abhangigkeit von der Jakobi-Matrix darzustellen. Hierzu
bilden wir mit v =8 x die Ableitung

n
d fv[l] _ EE va[i] EXE
dR et avu ds
n af [Bx]
\) —
= ———— Xu \)=],--',n
uot a(Bxu)

In der Vektordarstellung lautet der letzte Ausdruck
df[Bx] = JIBxIx dB

und nach Integration iiber @ in den Grenzen 0 bis 1 erhdlt man
1

£lx] - £[0] - meyi ds

Nach Voraussetzung ist flo] =

Y, s0 daB sich nach Einsetzen von flx] in
V[x] die Ableitung in (4.71) ergib

Da iiber den Integranden in (4.71)

h der Definitheit in der vorliegen-
den Form méglich ist, bestimmt man die Ma

fir alle B € (0,1) die Matrix

keine differentierte Aussage bezugllc

trix Q aus der Forderung, daB

208210 + Q Jlox)

negativ semidefinit ist.

ter Berﬁcksichtigung von
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unmittelbar nachweisen.

Die GrioBe des berechneten Stabilitdtsgebietes hangt in beiden Fallen von

der Wahl der negativen definiten Matrix ab, die dann Q bestimmt.

(4.73) Beispiel: Bedingungen fiir ein Stabilitdtsgebiet

Gegeben sei das autonome Zustandsmodell

x,(t) = f,[x(t)]
1 1 x(t) ¢ B?

X, (1) £,0x(t)]

mit £ [0l = 0 (v = 1,2). Es wird angenonmmen, dal stetige erste Ablei-
tungen von £ [x] nach allen xvexistieren und die Ruhelage Xp = 0 asymp-
totisch stabil ist. Gesucht werden die Bedingungen, aus denen sich ein

Stabilitdtsgebiet der Ruhelage berechnen laft.

Es wird zuerst mit Q = E versucht, ob (4.72) eine Ljapunovfunktion sein
kann. Es ist also der symmetrische Teil der Jakobi-Matrix auf negative

Definitheit zu priifen. Als Forderung an die Elemente der Matrix

- ;
afI[i]. [af1 afz}

2 +
, 6X1 ze 6X1
J I[x] + Jlx] =
CAREE A [af] ale ' of,[x]
+ ;2
ax2 ax] axz J

erhilt man (vergleiche Nachweis (4.45), hier jedoch fir negative Defi-

Nitheit)

af1[x]
- < 0

ax
1 2

of [x] of,[x) [of; 8%

1"~ - +

axz axz ax]

4

Hingt f1[x] nicht von x, ab, dann lassen sich beide Bedingungen nicht er-

fillen. In diesem Fall muB man nach einer geeigneten positiv definiten

Matrix Q suchen. Hierin liegt dann auch die Schwierigkeit der Anwendung
|

des Verfahrens.

ST
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e) Ljapunovfunktionen bei norminvarianten Systemen

Eine autonome Zustandsdifferentialgleichung x(t) = flx(t)] mit £[0] = 0
heiBt norminvariant, wenn es eine positiv definite Funktion k[fliﬁl]
und eine positiv definite Matrix Q gibt, so daB fiir alle x e I(a)

(4.74) £f'ix1Qx = - k[[’l’[]
gilt.

Die Ljapunovfunktion bei norminvarianten Systemen leitet sich direkt aus
der Beziehung (4.74) ab. Fir die positiv definite Funktion

Vix] = % x'Q x

ergibt sich unter der Bedingung (4.74) die totale zeitliche Ableitung
in r(a)

Vix) - XQx - _'[EJQ_X_ = - k[lIx]]] <o

Ist die Beziehung (4.74) in ganzen R" erfillt, dann liegt asymptotische
Stabilitat der Ruhelage im GroBen vor,

Das Verfahren besitzt gegeniiber der Vorgehensweise in b) bis d) die
folgenden Vorteile:

- Die rechte Seite des Zustandsmodells flx] muB nicht differen-
zierbar sondern nur stetig im Zustand x = @ sein.

- Die Ljapunovfunktion liegt in einfacher Form vor
und

- das Verfahren 1aBt sich ohne Schwierigkeiten auf den nicht-

autonomen Fall iibertragen, wenn die Bedingung (4.74) fir jedes
t > to erfillt ist.

(4.75) Beispiel: Kriftefreie Kreisel

Es seien 6, die Haupttrégheitsmomente, mv(t) die Winkelgeschwindigkeiten
und N, (t) =0 o (t) (v =1,2,3) die Komponenten des Drehimpulses eines
starren Korpers im korperfesten Bezugssystem, in dem die Koordinatenach-
sen mit den drei Haupttrégheitsachsen zusammenfallen. Die Drehbewegung
eines starren Korpers in diesenm Bezugssystem lautet (auch Eulersche

Gleichungen genannt, die der Leser in jedem Lehrbuch der Mechanik des
starren Kérpers findet):
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0, u (t) = L8, - 0gduy(t)ug(t) + my(t)
(4.76) 9, Zuz(t) = [93 - 91]w1(t)w3(t) + mz(t)
6, wg(t) = [0 - 6 Juy(t)uy(t) + mglt)

wobei die Drehmomente mv(t) (v = 1,2,3) EingangsgroBen des Kreisels sind.
Bei einem kriftefreien Kreisel sind die dufleren Drehmomente mv(t) = 0.
Die Winkelgeschwindigkeiten w(t) sind die Zustande, die das Kreiselver-
halten beschreiben. Im Kreiselmodell (4.76) ist eine Reibung, die z.B.
von der Winkelgeschwindigkeit abhangen konnte, nicht berilicksichtigt wor-
den.

Wir prifen nun mit der positiv definiten Matrix Q = Diag[e1,92,e3],‘0b
der autonome Teil des Kreiselmodells (4.76) im Sinne der Bedingung (4.74)

norminvariant ist. Es gilt

6,-90 8,-0
, 2793 379
f'llel Qu = wywg Oquwq + wiwg 9u,
3] e
1 2
6,-0
+ 12 w1w2 63w3 = 0
83

fliir alle w(t) ¢ R>. Hier liegt ein Grenzfall der Bedingung (4.74) vor,
da zu der positiv definiten Funktion

+

1 2 2 2
Viw] = % wQu = glogwy e epuy e 9303 |

eine negativ semidefinite Ableitung

Vel = 0 firalle ue®

gehort. Die Ruhelage wp = 0 des Kreisels ist daher nach Satz (4.57) sta-

bil. Die Regelung eines Kreisels wird im Abschnitt 4.6 behandelt. [ ]

f) Ljapunovfunktionen nach dem variablen Gradientenverfahren

Das Verfahren geht von einem Ansatz des Gradienten der V[x]-Funktion aus.

Die Komponenten des Gradienten

avix]

ax
v

sind zuerst in der Weise zu wahlen, dal Vix] mindestens negativ semidefi-
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nit wird. Aus den Linienintegral

4

- [ Vixceae

o

i

t

[gradxv[i(tJ]J i(t)dt

o'\.f‘*

x(0)=x
= f [gradZV[i(t)]J dz = V[x]
1(t1)=9 -

lagt sich VIx] mit V(0) = 0 genau dann eindeutig ermitteln, wenn das Inte-

gral im Zustandsraum unabhdngig vom Wege ist. Die Berechnung von V[x] kam
unter dieser Voraussetzung nach der Formel

X1 2

aV[z1,O,...O] aV[x1,zz.0...0]

Vix] = f dz] +f dz1 + ...
o 621 o azz
(4.77) .
aVIx.,...x ,Z ]
+j' 1 n-1’“n dzn
0 aZn

erfolgen. Die Forderung an das Linienin
Einschridnkung an eine mogliche VixI-Fun
gradXV[i] gehort.

tegral ist eine vorweggenommene
ktion, die zu einem festgelegten
Das Linienintegral ist vom Wege unabhdngig, wenn

[rot grade[i]} = 0
1st, d.h. die nach diesen Verfahren €rzeugte Ljapunovfunktion muB die Be-
dingung
G} aVv G av
(4.78) 3x ['ax—] = W[ax J Vo= 1, 00n
v H v

erfiilllen. Mit diesen n(n-1)/2 Gleichungen konnen n(n-1)/2 unbekannte
Koeffizienten im Ansatz des grade[i] bestimmt werden

. Eine mégliche
Wahl fir die Gradientenfunktion Wire

oV
(4.79) 3% = EE qvu[ilxu v o= 1]

wobei die qvu[i] zuerst einmal beliebj
standsvariablen sein konnen.

Durch die weitere Einschrﬁnkung des Ansatzes
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i

q,,[x,7 >0 v=1,..., (n-1)
(4.80)

App = ¢ ’

wird eine zusdtzliche Vereinfachung erreicht. Der folgende Satz faBt die
zu erfiillenden Bedingungen und Vorgehensweise bei der Methode nach

SCHULTZ-GIBSON [4.21]1 zusammen.

(4.81) Satz (Variable Gradientenmethode):

Gegeben sei das autonome Zustandsmodell
x(t) = £0x(t)]

mit f{0] = 0. Die Ruhelage xp = 0 ist asymptotisch stabil mit dem Stabili-
tatsbereich r(e) c Rn, wenn eine reelle Vektorfunktion grade[i] existiert,

die die folgenden Bedingungen erfullt:

(1) Bei der Wahl des Ansatzes (z.B. Gleichung (4.79)) ist darauf zu
achten, daB grad Vix] {0 fir alle x ¢ r(e) gilt, jedoch x =0

ausgenommen ,
(Z) Die Funktion Q[i(t)] = [gradXV[i]] f(x(t)] muB mindestens fiir
alle x ¢ I'(a) negativ semidefinit sein und darf langs einer Tra-

jektorie der 7ustandsdifferentialgleichung nicht identisch ver-

schwinden,

(3) Der Ansatz muB die n(n-1)/2 Bedingungen (4.78) erfiillen, so daB
damit n(n-1)/2 Xoeffizienten (Funktionen) festgelegt sind,

(4) Die Funktion V[x(t)] ist nun nach der Formel (4.77) zu ermit-
teln und auf positive Definitheit zu prifen, anderenfalls kann

V[x(t)] keine Ljapunovfunktion sein.

Ein gegeniiber (4.79) anderer Ansatz, der sich gleichzeitig auf nicht-

autonome Systeme anwenden 1dRt, hat die Form

(4.82) grade[i;t] = (A4 Q_S]ﬁ[i(t);t] )
wobei A eine Diagonalmatrix und Q. eine reelle schiefsymmetrische Matrix
mit noch festzulegenden Koeffizienten sind. Dieser Ansatz liefert eine

negativ definite Funktion auf I'(a)

avix;t]

Q[x;t] -
X ot
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fiir alle' t > to, wenn alle Elemente der Diagonalmatrix negativ und
fix;t] 4 O fir alle x € I'(a) sind. Der schiefsymmetrische Anteil mit Q
verschwindet bei der Bildung von Vix;t].

Geniigt nun der Ansatz (4.82) den Bedingungen (3) und (4) im Satz (4.81),
dann erhdlt man eine Ljapunovfunktion V[i;t] auch fiir nichtautonone
Systeme.

(4.83) Beispiel: Variable Gradientenmethode

Fiir das autonome Zustandsmodell

(1) = x,(1)

() = - flx, (1)1 - alx, (1)1 £l0] = gl0] = O

sind die Bedingungen an f[+] und gl*] zu ermitteln, so daB die Ruhelage

Xp = 0 asymptotisch stabil ist. Welche Bedingungen miissen fir einen nach
der variablen Gradientenmethode ermittelten Stabilitdtsbereich der Ruhe-
lage gelten?

Mit dem Ansatz (4.79) lautet der zweite Schritt im Satz (4.81)

g[x1} X, )
X1%21919 ~ 2 B Xflx 1|2+ ay, Xy | T Qg% - apyxq8lxy]

Damit V[+] in X € T'(a) negativ definit wird, missen die Bedingungen

g[x1]
q11[x1] = 2 - ; x1g[x]] >0 fiir X, $0
1

und unter Beachtung des Schrittes 3 im Satz (4.81)

9q,,0x] 3q,,[x]

aplxd v, A2 L,y DX
12 2 T, 21 L,
Z 1

. ) ) 2 2
Mt Qyy = gy = %y X x]

3
xzf[le[Z + u21x2x1] >0
und

2
“ X% Lx% " x1g[x1]} <0
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gelten. Aus den letzten beiden Ungleichungen 148t sich der Rand des Sta-
bilitdtsbereichs bestimmen, wenn V[x] in einem noch zu ermittelnden Ge-

biet I'(a) eine Ljapunovfunktion ist.

Die Gradientenfunktion geht nun mit den gewonnenen Bedingungen in den

Ausdruck

3rad£V[£] =

iber. Die Funktion V[x] wird nach Gleichung (4.77) berechnet. Es gilt

X X
1 2
Vix(t)l = 2‘/.g[x1]dx1 +f [uﬂxgx? + 2 xz]dx2
0 0
1 3.3 2

L]

2 G[x1] +op ey XPX] Y X

Aus der Bedingung x,glxy] > 0 folgt, daB Glx,] > O fir alle x; >0 ist
auf dem V[x] positiv definit ist.

und damit gibt es ein Gebiet (e} @ R”,

Der Leser bestimme die Stabilitdtsbereiche der Ruhelage Xp = 0 fur die

Falle (a) flx,] = x, und glx;] = xj und (b) flx,] = x5 sgnix,] und
Weiterhin untersuche der Leser das Beispiel (4.83) mit dem

g[XT] = X?
die mit den beiden Ansidtzen

Ansatz (4.82) und vergleiche die Ergebnisse,

erzielt wurden.

4.3.3 2ubov-Methode beil kontinuierlichen Systemen

ZUBOV [4.261 hat das Auffinden einer Ljapunovfunktion auf die Ldsung

einer partiellen Differentialgleichung zuriickgefiihrt. Mit dieser LGsung

13t sich der Einzugsbereich einer asymptotisch stabilen Ruhelage genau
bestimmen. Die Schwierigkeit bei dieser Methode liegt jedech in der Er-

mittlung der Losung, die nur selten in geschlossener Form angebbar ist.

(4.84) Satz (von Zubov):
ene Menge und M die abgeschlossene Hille mit

Es sei ME c R" eine off

Xp =0 EME.
[ ist genau dann der Einzugsbereich der Ruhelage xp = 0 von
x(t) = fix(t)], wenn zwei skalare Funktionen VIx] und ¢[x] mit den fol-
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genden Eigenschaften existieren:

a) V[x] ist stetig und positiv definit auf Mc und es gilt
0 < VIx] < 1 fiir alle x ¢ ME(E_+ 0),

b) ¢[x] ist stetig und positiv definit auf dem R",
c) fiir alle x auf dem Rand von Mp gilt Vix) =1,

d) VI[x] ist Losung der partiellen Differentialgleichung
n

BV[X] 2
Z £ Ix] = - olxI[1 - VIx]] V1+||§|J

Die Funktion ¢(x] ist, bis auf die geforderten Eigenschaften im Satz,
weitgehend frei wihlbar, so daB sich die rechte Seite der Differential-
gleichung noch vereinfachen 148t. Den Beweis zum Satz (4.84) findet der
Leser in dem Buch von ZUBOV [4.26]. u

(4.85) Beispiel zum Satz von Zubov (1):

Es 1st zu prifen, ob die Ruhelage Xp = 0 des autonomen Zustandsmodells
. 2
x1(t) = - x1(t) + 2x1(t)x2(t)
Xz(t) = - xz(t)

asymptotisch stabil ist, d.h. eine Ljapunovfunktion als Lésung der par-
tiellen Differentialgleichung aus dem Satz (4.84) existiert. Liegt eine
Ljapunovfunktion vor, so ist dann der Einzugsbereich zu ermitteln.

Der Leser erkennt, daB sich das autonome Zustandsmodell zweiter Ordnung
in eine nichtautonome Differentialgleichung erster Ordnung mit

X (t) Oe_ iberfihren 14Bt.

Hier gehen wir jedoch veon dem autonomen System aus. Die partielle Dif-

ferentialgleichung lautet
[-x,7 = - olx][1 - V[x]]|/1 o 1]

avix] 2 8Vlx]
f- TXqo* 2x]x2] +

ax]

2
Wird [ J
olx] = 1

_ N

gewahlt, so erfiillt o[x] alle Bedingungen des Satzes (4.84) und als Lo-
sung der partiellen Differentialgleichung erhilt man
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X2 X2
Vix] = 1 -exp}|- S
2[1—x1x2] 2
Der Leser priife das Ergebnis durch Einsetzen der Losung V[x] in die Dif-
ferentialglieichung nach.

Aus der Bedingung [1 - V[x]] = O berechnet man den Rand des Einzugsbe-

reiches, der in dem vorliegenden Beispiel durch die Ungleichung

X1% 2

d. Der Leser zeichne sich den Einzugsbereich der Ruhelage

dargestellt wir
in die Zustandsebene (x1;x2) ein.

(4.86) Beispiel zum Satz von Zubov (2):

Gegeben sei die autonome 7ustandsdifferentialgleichung

x1(t) = f1[x1(t)1'+ g?[xz(t)]
x,(t) = fz[x1(t)] ,
die bei xp = 0 eine Ruhelage und fiir jeden endlichen Anfangszustand x

eine eindeutige L&sung besitze. Weiterhin gelte f1[x1]fz[x1] > 0 fur

alle x, L 0. Es sind die Bedingungen an die Funktionen f1[°], fz[-l,

g][-] zu ermitteln, so daB die Ruhelage Xg * 0 asymptotisch stabil im

GroRen ist.

Die partielle Differentialgleichung im Satz (4.84) lautet mit

f1[x1] fZ[Xl]

plx] ; ) ;
1+ [f1[x}]+g1[x2]] + £50x,]

avix] aV[il
- [f1[x]]+g1[x1]] b —_— fz[x11 = - f1[x1]f2[x1][1—V[1]] .
axT 6)(2

Der Leser zeige, daB die Funktion

Vixl = 1 - exp[Fylx;) - Gylx;]]

eine Losung der partiellen Differentialgleichung ist, wenn

X1 X2

Fz[x1] 1= f fz[v]dv und G1[x2] = j g lvldv
0 0
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gilt. Wenn die Ruhelage Xgp = 0 asymptotisch stabil im GroBen ist, missen
die folgenden Bedingungen erfiillt sein:

f.lol = - g,lo1 ; £,00) = 0

f1Ex1]f2[x1] > 0 fir x, $ 0
[Fz[x1] - G1[x2]] <Q fir alle X9s Xy € R
lin 0 [F)lxg) - Gylx,0] = -

1x; 1y~
. 2
Die letzte Bedingung garantiert, daf der Einzugsbereich gleich dem R

ist. Andernfalls wird der Rand des Einzugsbereichs (also "nicht im Gros-
sen'") durch die Beziehung

[F,lx,1 - S|

beschrieben, sofern dieser existiert. o

Der folgende Satz hat eine groBle Bedeutung beim Entwurf von nichtlinea-
ren Regelkreisen, vergleiche Abschnitt 4.6,

(4.87) Satz (von Zubov bei Berﬁcksichtigung eines Regleranteils
oder einer Modellunsicherheit):

Das autonome Zustandsmode]l i(t) = glx(t}] habe eine asymptotische sta-
bile Ruhelage Xp = 0 mit dem Stabilitatsbereich M < R". Es gibt also eine
Ljapunovfunktion V[x] mit einer Positiv definiten Funktion Wix1, so daB

& . [gradi VIx1]' glx] = - gy

gilt. Das nichtautonome Zustandsmodell

X(1) = plx(t)] 4 £lx(t);t)

mit £{0,t} = 0 hat dann eine asymptotische s

tabile Ruhelage xp = 0 mit
demselben Stabilitatsbereich M,

wenn die Bedingungen

!fv[i;t]I < Flx] v = 1,...,n

¥y Fix] IIgrade[i]Il < 1lxIWix]

erfiillt sind. [ ]
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Bewels:
Nach Satz (4.58) ist V[x] auch Ljapunovfunktion des nichtautonomen Zu-

standsmodells, wenn

dvix]
— [g,[x] + £ [x;t]]

dt

eine negativ definite Funktion fir jedes t > t ist. Es gelten nun die

Bedingungen des Satzes, dann folgt

% =

v=1

aVlx]

fv[i;t] < l{gradLV[i]]|

| [grad VIxJ[| yn" Flx]

Damit die totale zeitliche Ableitung von Vix] negativ definit wird, mus-
sen die zweiten und dritten Bedingungen des Satzes erfiillt sein. [ ]

Der Leser leite sich die Bedingungen des Satzes fir den Fall ab, dafB

glx(t)] = A x(t) linear ist und A nur Eigenwerte mit negativem Realteil

besitzt.

4.3_.4 Stabilitdtskriterien fir zeitdiskrete Zustandsmodelle

Stabilitatsbegriffe und Sdtze bei Systemen mit periodischen Folgen sind
im Abschnitt 4.2.2 behandelt worden. Das Stabilitdtsverhalten bei zeit-

diskreten Systemen in der ersten Naherung wurde im Satz (4.27) unter-

sucht. In diesem Abschnitt wird das Stabilitatsverhalten der Ruhelage

und deren Einzugsbereich eines autonomen zeitdiskreten Zustandsmodells

(4.24) bestimmt.

Die Normen der hier auftretenden Folgen hangen von dem zu betrachtenden

ab (vergleiche Anhang A3). Obwohl die Stabilitdtsdefinition

Folgenraum 1
che Systeme direkt auf zeitdiskrete Systeme iber-

(1.16) fiir kontinuierli

tragbar ist, sei hier die entsprechende Definition formuliert.

(4.88) Definition (Asymptotische Stabilitdt):

elage des autonomen zeitdiskreten Zustandsmodells

Es sei Xp = 0 die Ruh
x(v+1) = £, [x(v)]. Die Ruhelage Xp heift asymptotisch stabil i.S.v.

Ljapunov, wenn

AN AR A PP
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a) zu jedem ¢ > 0 ein 6(e) > O existiert, so daB fiir jedes
X, mit der Bedingung

1, < se)
q

die Ungleichung

HxCoO ], < e fir alle v e N
q
folgt
und
b) Hn [[x(v)[l; = 0
Yo q
gilt.

Die Bedingung (a) der Definition (4.88) garantiert die Stabilitat der
Ruhelage. Eine Ruhelage heiBt instabil, wenn die Bedingung (a) nicht
erfiilllt ist. 8

Ein weiterer Stabilitdtsbegriff ist die Bibostabilitdt, die insbesondere
im dritten Kapitel und im Abschnitt 4.5 Anwendung findet. Dieser Begriff
legt das Stabilitatsverhalten zwischen den Eingangsgrofen und den Aus-
gangsgroBen fest. Hier wird dieser Begriff anhand von zeitvarianten
linearen Systemen nur in einer Ubersicht (den Bildern 4.10 und 4.11)

der Stabilitdt im Sinne von Ljapunov gegeniibergestellt. Eine ahnliche
Ubersicht 14Bt sich auch fiir nichtlineare Systeme aufstellen. Die weite-
ren Betrachtungen beziehen sich auf die Ljapunov-Stabilitdt, da aus den
Bildern 4.10 und 4.11 hervorgeht, daB mit schwachen zusdtzlichen Voraus-

setzungen auf das Stabilitdtsverhalten des Ubertragungssystems (Eingang-
Ausgang)} geschlossen werden kann.

Fir den Nachweis der Stabilitat i.S.v. Ljapunov bei zeitdiskreten Sy-

stemen wird neben der positiv definiten Funktion Vix(v)] die erste Diffe-
renz

VIx(v)1 = [VIx(v+1)1 - Vix(v)]]

benotigt.

(4.89) Satz (Asymptotische Stabilitit i.S.v. Ljapunov):

Die autonome Zustandsdifferenzengleichung x(v+1) = fl[x(v)}] habe eine

Ruhelage bei Xp = 0 und es existiere eine Ljapunovfunktion V[x(v)l mit
der negativen definiten ersten Differenz
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BIBO -Stabilitdt

Xy# =9v§v +Hyu, Yv = Cyxy P, _Hv'.(.:.v
gleichmadfig beschrankt

{GleichmidRig) BIBO-Stabil

/\ V /\ /\ sup ly I=€
§>0 >0 yEZ (u,) 2%

sup llu h=0

vy

sup Iyt = M4 - sup ly M
v, ¥y ¥,V
V>V V>
¥-1
M3 <sup Z "(_:v@v‘j",‘] Hi Il < o0
V¥ jawy
vo>v

aleichmafBig volistondg
erreichbar
und beobachtbar

¥
sup Z ”@V,i I < o
¥, ¥ j:vo#'l
¥ >

gt

Ny, U <qe" W ap>0

Gleichmafig asymptotisch stabil i.S.L.

Bild 4.10: Definitionen der Bibostabilitat und Zusammenhang mit der
gleichmdBigen asymptotischen Stabilitat bei linearen

zeitvarianten Systemen

S e R TLE D
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avix(»)] = [v[g[i(v)]] . V[g_(v)]] ,
dann ist die Ruhelage Xp = 0 asymptotisch stabil im Sinne der Definition

(4.88).

Gilt vix] = = fir |[x|] - = und avlx] < 0 fir alle x ¢ R", dann liegt

asymptotische Stabilitdt im GroBen vor, d.h. der Einzugsbereich der Ru-

helage stimmt mit dem R" iiberein.

Der Beweis 148t sich in Analogie zum Satz (4.58) filihren oder ist der Ar-

beit von KALMAN, BERTRAM [4.13] zu entnehmen.

Einen Uberblick zu den Stabilitdtskriterien von Ljapunov fiir zeitdiskrete

Zustandsmodelle findet der Leser im Bild 4.12.

(4.90) Bemerkung:

Bei linearen zeitinvarianten Systemen
x(v+¢l1) = ¢ x(v)

ist die Aussage des Satzes (4.89) auch notwendig. Es geniigt, fir die po-

sitiv definite Funktion den Ansatz
VIx(W)1 = x'(v) Q x(v)

mit Q als positiv definiter Matrix zu machen. Es muf dann gezeigt werden,

daB zu einer negativ definiten Differenz

aVIix(v)] i'(\)+1) Q i(v+1) - _X_'(V) Q i(\’)

o x'(feg e - Qlx(v) = - x' (VP x(V)

mit P als positiv definiter Matrix eine positiv definite Matrix Q gehdrt.

Die zu bestimmende Matrix Q geniigt also der Matrixgleichung

{4.91) (6'Q ¢ -Ql = -F ’

wobei die Matrix P vorzugeben ist. Den Beweis findet der Leser in dem

Buch von HARTMANN, 4. Kapitel, [4.9]. ]

(4.92) Beispiel: Zum Stabilitétskriterium (4.89)

Der im Bild 4.13 dargestellte Abtastregelkreis ist auf Stabilitdt i.S.v.
Ljapunov zu untersuchen und der Stabilitatsbereich ist in der Parameter-

ebene (a,b) anzugeben.
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B a
e fulty)]

= t
uH(H“[u(t,l} 5+2

Bild 4.13: Regelkreis mit variabler Abtastzeit

Es gelte

T, := [t\)+1 - tv] und uH(t) = u(tv) fiir t e (tv’tv+1]'

Zu der kontinuierlichen Ubertragungsfunktion G{s} gehort die Gewichts-

funktion
1 -2t
g(t) = £7'6(s)] = Ibe
Das zeitdiskrete Modell der Strecke lautet
t\)+1
plort) = ey = [ gle, g - xdule) ds
: t
mit Y
-ZTv
(T ) = e
v
und tv+1 _ZTv
H[tv+1;tv] = j. g[tv+1 - ] dr = b [1 - e }
t
A"
Die zeitdiskrete Regelkreisgleichung leitet man nun aus dem Bild 4.73 ab.

o(T)y(v) + H(T)r(v) = y(v)]

I

y(v+1)

[o(T,) - H(T)T y(v) + H(T Jr(v)

Hierbei ist die Abtastzeit durch

a

T =
v (1 o+ [r(v)-y(v)|]

gegeben. Fiir die autonome Differenzengleichung ist r(v) = O zu setzen,

so daB man nach dem Einsetzen von Tv das nichtlineare Systenm
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y(v+1) = {[1+b] exp. [ “2a } - bJ y(v) = fly(v)]
[1 + ‘y(v)l]

erhilt. Die positiv definite Funktion

Viy(W1 = yiw)

filhrt auf die erste Differenz

AVLy(v)] [yz(v+1) - yz(vﬂ

[}

2
[[1+b] exp. [ ~2a ] - b} -1 yz(v) .
[T+ |y(v)|]

Damit AV[+] negativ definit ist, muB gelten

-2a
(1 + fy(v) ]

Der ungiinstigste Fall in dieser Bedingung liegt bei y(v) = 0, so daB fiir

a = |b| <1 und fiir endliche a > Q

[b [1 - e_za} - e*zaJ <

folgen. Damit erhdlt man fir die Parameter die Ungleichung

[[1+b] exp {' J - b <1

-2a
1
-1 <b < [;—1~9725} = cothla] fir alle [y(v}]
- e
b
coth g

+1

>
_1////////

Bild 4.14: Stabilitdtsgebiet in der Parameterebene
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Im schraffierten Parameterbereich des Bildes 4.14 ist die erste Diffe-
renz aV[y(v)]1 fiir alle y(v) % O negativ, so daB mit diesen Parametern
die Ruhelage des nichtlinearen Abtastregelkreises (Bild 4.13) asympto-
tisch stabil im GroBen ist. B

In den weiteren Ausfithrungen dieses Abschnittes soll die Zubov-Methode
auf zeitdiskrete autonome Zustandsmodelle iibertragen werden, so daB hier
die Ljapunovfunktion als Losung einer Differenzengleichung auftritt.

Diese Uberlegungen gehen auf O'SHEA [4.20] zuriick.

Es sei daran erinnert, daB aus der asymptotischen Stabilitdt der Ruhe-
lage in der ersten Naherung nach Satz (4.27) bei autonomen Systemen die
exponentielle Stabilitat der Losung in einer Umgebung von Xp folgt, d.h.
es gibt positive reelle Zahlen 6, o und a > 0, so daB sich fir die An-

fangszustinde |[|x(0)|]| < & die Ungleichung
1 < a0 a e

fir alle v > 0 ergibt. Die Systemmatrix ¢ der linearisierten Differen-

zengleichung im Satz (4.27) besitzt dann nur Eigenwerte, die alle im

Inneren des Einheitskreises liegen.

(4.93) Satz (von Zubov bei autonomen zeitdiskreten Systemen):

Das autonome Zustandsmodell x{v+1) = f [x(v)] habe eine Ruhelage bei

Xp = 0, die nach der ersten Naherung (Satz (4.27)) asymptotisch stabil
sei,
V,[x(v)] sei eine beliebige positiv definite quadratische Form, dann

besitzt die Differenzengleichung

aVIx(v)] = =V Ix(v)I[ 1 - Vix(v)]]

mit V[0] = 0 eine Losung

(4.94) Vix(W)] = 1 - — ’ ,

| JEIAERASIY

i=o

die als Ljapunovfunktion im ganzen Einzugsbereich Me der Ruhelage er-
klirt ist und die Werte 0 < V[x] < 1 annimmt, wenn M. ein einfacher zu-

sammenhdngender Bereich ist. Der Rand BME wird dann durch V[x] = 1 be-

schrieben.
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Beweis:

Zuerst zeigen wir, daB (4.94) eine Lésung auf Mg ist. Dividiert man die
Differenzengleichung durch [1 - V[i(v)]] und addiert anschlieBend beide
Seiten mit -1, so ergibt sich der Ausdruck
[1 - vIx(ve1)]]
[1 - vix(v)1]

= [ v xon])
der nach Logarithmierung auf beiden Seiten in die Form

1n[1 - Vti(“+1)]] - 1n[1 - V[i(“)]] = 1n[1 + VO[E(V)]]

ibergeht. Eine Aufsummierung zwischen den Abtastwerten v = Q0 bis v = U
ergibt

u
ln[1 - V[i(“+1)]] - 1n[1 - V[E(O)]] = }Eﬁh}“ + Vo[i(l)]]
i=0
Da nach Voraussetzung 5(0) zum Einzugsbereich ME gehdren soll, ist auch
die gesamte Losungsfolge {x(v)} des autonomen Zustandsmodells in M; ent-

E
halten und es gilt lim ||x(v)|| = 0. Damit erhalten wir aus der letzten

Y -ro

Beziehung fir u - = die Gleichung
(4.95) - In[1 - vix(0)]] = Z In{1 + vV _[x(i)1]
1=0

Es 1st nun die Konvergenz der Summe auf der rechten Seite zu zeigen. Auf-
grund der Voraussetzung gibt es eine Umgebung 6 der Ruhelage, in der die
Losungsfolge exponentiell abnimmt. Diese Umgebung sei nach m Abtast-

schritten erreicht, so daB fiir p > m die quadratische Funktion VO[-]
durch

Vo lx(u)d < [lx(m)[ |2 ¢ 2om a, « >0

nach oben abgeschidtzt werden kann. Weiterhin ist Vo[x(i)] fir alle

x(i) ME endlich. Die Summe in (4.95) 14Bt sich also durch die Teilsum-
men
m

[tV Ix(D1] < < w
i=0
und

®© @

}S ln[1 + Vo[l(i]]] < :; ln[1 + a ||1(m)ll2e-zui]

1=m+1 i=m+?
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abschiatzen. Aus der Konvergenz der rechten Seite in der letzten Unglei-
chung folgt dann auch die Konvergenz der Beziehung (4.95). Die Summe

darf mit dem ln vertauscht werden, so daB sich (4.95) in

In[1 - V(x(0)]] = - 1n [[[1 + v [x(i)]]
i=0
iiberfiithren 14Bt. Hieraus berechnet man nach einer Indexverschiebung
0 - v direkt die Loésung (4.94). Der Wertebereich liegt zwischen
0 < V[x] < 1. Nur far

[0+ v ixeein] = -
i=0

ist V{x] = 1. Da aV[x] auf dem Einzugsbereich ME negativ definit und
fl-] stetig sind, kann x e Mg nur wieder in Mg abgebildet werden. Aus
Vix] = 1 folgt aV[x] = 0. Nach Voraussetzung ist M. einfach zusammen-

hingend, so daB die Hyperfldche V[x] = 1 den Rand aMg beschreibt. [

Die Schwierigkeit bei der direkten Anwendung des Satzes (4.93) besteht
darin, daR das unendliche Produkt in der Losung (4.94) nur in wenigen

Fidllen zu einem geschlossenen Ausdruck fiihrt. Aus diesem Grund unter-

suchen wir die Funktion

m
(4.96) vix(nl o= [ 1 volxtee ] m>
i=0

die fiir alle x ¢ R" eine positive definite Form bildet. Es werden die

Teilmengen

(x(v) ¢ ME|[1 PV Ix()1) < L 21

=
1)

und
m+1,

(x(v) € M |V [x(v)] < Lo s 1705 m > 1)

=
1]

eingefiihrt, wobel o« vorgegeben wird, so da die Bedingungen Mo c ME und

AVO['] < 0 fir alle X € MO gelten.

(4.97) Satz (Approximation des Einzugsbereiches):

Die Teilmengen M_ sind fiir jedes m > 1 in Mg enthalten, d.h. M < M.
Jeder beliebige dicht am Rand aME liegende Zustand x{v) e Me wird durch

das autonome Zustandsmodell x(v+1) = fﬂ[i(v)] nach einer endlichen An-

zahl von Schritten m* in die Teilmenge Mm

transformiert. | |
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Bewels:

Nach Voraussetzung gibt es x(v) e M mit

[1 + Vo[i(“)]] < [uo + 11,

d.h. x(v) e My © Mg. Da aVv [x(v)] < 0 ist, gilt auch fiir jedes x(v+i)
der Lésungsfolge mit dem Anfangszustand x(v) die Bedingung

[T+ v [x(ve1)]] < la, + 1]

und x(v+i) e ME‘ Andererseits gibt es aus denm Einzugsbereich Anfangszu-

stinde x(v) ¢ My, deren Losungsfolge erst nach einer endlichen Anzahl

von Abtastschritten in die Menge M, eintreten. Da nach Satz (4.93) fir

x(v) e M das Produkt lim Volx(v)] konvergiert, gilt fir die Teilmengen
m-o

iREMOCM]C"' M CMmCM

m-1 E

Aufgrund der asymptotischen Stabilitit der Ruhelage muB ein beliebiger
Anfangszustand x(v) e Mg mindestens nach einer endlichen Anzahl von Ab-

tastschritten die Menge Mm erreichen, so daB die Aussagen des Satzes be-
wiesen sind. [ ]

Das Problem besteht jetzt darin, eine moglichst geeignete positive

definite quadratische Funktion Vo[ij zu finden. Es sollten die im Ab-

schnitt 4.2.2 gefundenen periodischen Losungen, die asymptotisch stabil
auf dem Rand OMp sind (Satz (4.41)), auch auf den Rand der Hyperflache
Vo[i] = o, liegen. Diese periodischen Losungen brauchen nur niherungs-

weise bekannt zu sein. Es sei z.B. {i*(v)l? eine solche periodische Folge,

dann ist das Optimierungsproblem

(4.98) voIex()l = L0 - Volx*(p)1 = Min v _[x]
xedM
- E

) und den nachfolgenden Nebenbedingungen zu

f(v)}g kann durch eine nach Algorithmus (4.37) be-
rechnete Naherung {1*(v)}? ersetzt werden):

mit moglichst vielen x* (v
16sen (die Folge {x

a) Es sei Wlx] eine beliebige positive definite quadratische
Form, dann gelte

~ p_]
[1+ v Ix*(n)]] - I WEx*(vs1) 1]

i=o
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b) Da die Hyperflidche Vo[i} = Vo[i*(v)] den Rand des Einzugsberei-
CheS*aME in den Zustédnden {1*(v}}$ beriihrt und sonst in M ent-
halten sein soll, muB diese in den Zustanden x*(v) die gleiche
Tangentialhyperebene wie die von oM besitzen. Es sind also die

Bedingungen (vergleiche Gleichung (4.38))

]
o
<
I}

—_
=’

—V

Vo[i]]

grad
5. i:i*(\))

mit b nach Gleichung (4.40) zu erfullen.

Es sind anschlieBend mit der inversen Transformation, bei der in Vo[-}

X durch fo[i] ersetzt wird, der Reihe nach die erweiterten Hyperflachen

in M

E
v[Exl] = VIxr(1) = e
bis
(m) _ - o
v,"Ix] = Vo[ﬁo[...io[“x_]l] =V [x*(1)]
—_—————r

m Verknipfungen

zu ermitteln. Damit ist VO[-} im Ausdruck (4.96) bestimmt, wobel

x(v+m) von der Hyperflédche Vo[i] = o« eingeschlossen wird.

(4.99) Beispiel: Approximation des Einzugsbereiches

Im Beispiel (4.42) wurde fiir das zeitdiskrete Zustandsmodell

x%(v) - X%(V)

x(v+1) =
x;(v)
die periodische Losung
1 0 -1
(x*(V)}) = ’ :
-1 1 0

m Rand oM_ ist. Die positiv

ermittelt, die asymptotisch stabil auf de E

definite Funktion

beriihrt den Rand des Einzugsbereiches in den Zustanden x*(2) und x*(3),

d.h.
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exs o= v Ix(2)]) - VI (3)] =

Durch dreimalige Anwendung der inversen Transformation erreicht man dann
eine gute Abschdtzung des Einzugsbereichs, vergleiche Bild 4.15. Es gilt

0 [l o] [

7]

IXZ

Bild 4.15: Approximierter Einzugsbereich VgS)[x] nach Beispiel {4.99)
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4.4 Nichtlineare Parameter- und Zustandsschatzung

Die Struktur und die Parameter eines nichtlinearen dynamischen Systems

aus den MeBdaten der Eingangs- und AusgangsgroBen zu ermitteln, stellt

ein schwieriges Problem dar, das in dieser Allgemeinheit fir praktische

Anwendungen noch nicht geldst ist. Bei technischen Prozessen liegen ge-
wisse Kenntnisse iber die physikalischen Zusammenhidnge vor, die sich

a priori nutzen lassen. Dadurch reduziert sich in vielen Anwendungen die

Aufgabenstellung auf eine parametrisierte Struktur, die im giinstigsten

Fall zu einer Linearisierung in den Arbeitspunkten fihrt.

In komplexen technischen Prozessen ist jedoch nicht nur das Eingangs-

Ausgangsverhalten von Interesse, das im nichtlinearen Fall meistens in

komplizierter Weise von den Anfangszustdnden a
auch der Verlauf der nicht mefbaren Zustandsgrofen in den verschieden-

sten Aufgabenstellungen bendtigt. Z.B. bei der Uberwachung, Diagnose

oder Regelung des Prozesses.

bhingt, sondern es wird

In diesem Buch findet der Leser nur einfilhrende Betrachtungen und eilne

vereinfachte Behandlung der nichtlinearen Zustands- und Parameterschdtz-

verfahren. Als weiterfilhrende Literatur seien z.B. die Biicher von

ANDERSON und MOORE [4.3] und HSIA [4.11] empfohlen.

4.4.1 Dynamische Beobachtung des Zustandes

Die vollstdndige Kenntnis uber den zeitlichen Verlauf aller Zustandsgros-

sen, die einen Prozel beschreiben, wird

- bel einem Regelkreisentwurf hoher Gute,

- bei der sicheren Fihrung und Uberwachung

und

_ bei der Feststellung und Lokalisierung von Fehlern (Diagnose)

im Prozef

angestrebt. Die Zustandsgrofen konnen entweder mit einem

- geeigneten MeBumformer, z.B. Tachomaschine, Strom- und

Spannungswandler, KraftmeRdose, Thermoelement,

oder

- dynamischen 7ustandsbeobachter bzw. Zustandsschatzer
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ermittelt werden. Bei der Rekonstruktion bzw. Schatzung des Zustandes
ist jedoch eine hinreichend genaue Kenntnis der Struktur und Parameter
des Prozesses erforderlich. Liegen diese Kenntnisse nur teilweise vor,
dann muB ein adaptiver Schitzer entworfen werden, der Parameter und Zu-
stdnde des Prozesses gleichzeitig schitzt, siehe auch §. Kapitel "Adap-
tive Systeme". In diesem Abschnitt gehen wir davon aus, da@ ein geeig-

netes Zustandsmodell vorliegt, d.h. die Struktur und die Parameter sind
bekannt.

Der Einsatz eines MeBumformers ist infrage gestellt, wenn der Aufwand

fir die Messung zu groB oder eine direkte laufende Messung der Zustands-
grofe nicht moglich ist. Derartige Falle sind z.B. nicht zugdngliche Tem-
peraturen oder Stoffkonzentrationen in einen chemischen Reaktor, die Be-

schleunigung eines bewegten Korpers oder der magnetische Flufl in einer
elektrischen Maschine.

Das Zustandsmodell des Prozesses (Strecke) liege in der zeitkontinuijer-
lichen Form

x(t)

]

fix(t);ult)]
(4.100)

y(t) hix(t);u(t)]
vor, vergleiche auch Voraussetzungen zum Modell (4.1). Um den Zustand

x(t) aus vergangenen Messungen tuCt), y(t)} zu rekonstruieren, miissen

die Zustdnde der Strecke in einem hinreichend groBen Arbeitsbereich be-

ult] Xt}

y(t)

{x
4
ie?

§lt)

Bild 4.16: Strecke mit nichtlinearen Zustandsbeobachter



4.4 Nichtlineare Parameter- und Zustandsschatzung 281

obachtbar sein. Der direkte Nachweis einer globalen Beobachtbarkeit, d.h.

zwischen den Messungen {u(t), y(t)} und den Anfangszustanden X, aus einer

existiert eine eindeutig umkehrbare Abbildung, ist bis auf

Menge MB c R"
Daher setzen wir beim Entwurf

spezielle Systeme nicht einfach zu fiihren.
eines dynamischen Beobachters nur die lokale Beobachtbarkeit (Satz (4.16))

in den gewiinschten Arbeitspunkten (1A’EA) (Definition (1.12)) voraus.

(4.101) Satz (Dynamischer 7ustandsbeobachter):

Das zeitkontinuierliche Zustandsmodell (4.100) sei im Arbeitspunkt
(iA’EA) lokal beobachtbar und es gelten die Entwicklungen (vergleiche

Gleichungen (1.33) fiir den seitinvarianten Fall)

fIx(t);ult)] flxysuyd + A sx(t) + B au(t) + flax(t);eu(t))

1]

hix(t);ule)] hlxy;u,d + Cox(t) + D bu(t) + hlex(t)jeu(t)]

mit Ax(t) = (x(t) - iA} und Au(t) = [g(t) - EA]' Dann gibt es eine offe-

ne Zustandsmenge MB c Rn mit Xp £ MB’ so daB durch geeignete Wahl der

Verstidrkungsmatrix K der Zustandsbeobachter

£10t);ult)] + K[y(t) - h[(t);ult)]]

(4.102) (1)

eine Fehlerdifferentialgleichung

(4.103) e(t) = [A-KCle(t)+ [rlag{t);oult)]- L[Al(t);au_(t)]]
mit

e(t) = [x(t) - x(t)) 5 rfool = 0
und

]ri[Ag(t);Ag(t)] - ri[Ai(t);Ag(t)]I < Rle(t)]

0 fiir alle t > t_ besitzt und die eine asymptotisch stabile
ceey 21,
z 0 hat. Das Sta-

= 0 mit dem Stabilitatsgebiet MB fir au(t) =
d durch die Schrankenfunktion R[+] bestimmt.

i =1

y

Ruhelage ep

bilitdtsgebiet wir

Das zugehdrige Blockschaltbild ist dem Bild 4.16 zu entnehmen. [ |

Beweis:

Durch Einsetzen der Zustandsmodelle (4.100) und (4.102) in e(t) erhalt

man

e(t) = [£1R(t);u(0)] - K h&(t);u(t)]] - [£0x(0);u(8)] - K hix(t);u(0)1].
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Y

Die Entwihklung der rechten Seite im Arbeitspunkt (XA’EA) fuhrt auf die

Fehlerdifferentialgleichung

+

e(t) = [A-Xcle(t) [ELax(t);au(t)] - K hlax(t);au(t)]]

[£08x(0):0006)1 - K Rlax(t);au(t)1]

und auf den Ausdruck

r(ax(t);au(t)] [ £306x(0)38u(6)7 - k! Alax(t);au(t)]]

i=1,...,n, wobei Ei ein Zeilenvektor von K ist. Da r[0;0] = 0 und die
Lipschitzbedingung (4.2) gelten, gibt es eine obere Schranke fiir die Dif-
ferenz der Funktionen ri[-;-], d.h.

|ri[A£(t);AH(t)] - ri[Ai(t);AE(t)][ < Rle(t)] fir alle t > 2

Aus der vorausgesetzten lokalen Beobachtbarkeit in dem Arbeitspunkt
folgt, daB das Paar (A;C) (bei unterschiedlichen Arbeitspunkten sind die
Paare (A,C) verschieden) vollstdndig beobachtbar ist. Damit gibt es eine
Verstarkungsmatrix K, so daB die Matrix AB = [A-K C] nur Eigenwerte
mit negativem Realteil besitzt, vergleiche HARTMANN [4.91. Es lapt sich
also fir die linearisierte Fehlergleichung eine quadratische Ljapunov-
funktion Vlel = e'Q e angeben, so dad mit den beiden positiv definiten
Matrizen (Q,P) die Beziehung [ﬂég * QAgl = - P gilt, vergleiche Satz
(4.63).. Die nichtlineare Fehlergleichung (4.103) hat nun eine asympto-

tisch stabile Ruhelage €p = 0 mit einem Stabilitatsbereich My, wenn die
Bedingungen des Satzes (4.87)

e'P e
Mg = {e | Vo Rle(t)) < 1[E]TT;:;:_ ; 0 < llel <0,5)
Qel| T

fir alle t > t erfillt sind. Das Stabilitdtsgebiet wird also durch die
Elemente der Matrizen X, Q und P festgelegt. [

(4.104) Bemerkung (Mehrere Arbeitspunkte und Grenzfalle):

Um fir mehrere Arbeitspunkte nur elne Verstdrkungsmatrix K im Zustands-

beobachter zuy bestimmen, lassen sich die Verfahren fir den Multi-Modell-
entwurf bei MehrgroBenregelkreisen verwenden
HARTMANN, LANGE, POLTMANN (4.107.
des Satzes (4.101) ist die Matrix
Matrizen [A, - K Gl 1i=1...m

y Wie z.B. in dem Buch von
AuBBer den zu erfiillenden Bedingungen
K dann derart zy bestimmen, daB die

nur Eigenwerte mit einem negativen Real-

teil haben. Besitzen jeweils mindestens zwel Stabilitdtsbereiche MBi
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einen nichtleeren Durchschnitt, so ist eine Zustandsbeobachtung nach
Gleichung (4.102) fir alle diese Arbeitspunkte mit einer konstanten Ver-

starkungsmatrix K moglich.

Ein Grenzfall liegt vor, wenn die 7ustandsbeobachtung chne Eingangsgrofe

betrachtet wird. In diesem Fall folgt aus der Definition (1.12), daB die

Arbeitspunkte mit den Ruhelagen des Systems zusammenfallen. Der Leser

prift ohne Schwierigkeiten nach, daB die Aussagen des Satzes (4.101)

auch fir E[EA;Q] { 0 und EEEA;_Q] } 0 erfillt sind. [

(4.105) Beispiel: Nichtlinearer Zustandsbeobachter

In der Arbeit von ZEITZ [4.25] ist ein modifiziertes Beispiel eines iso-

thermen Batch-Reaktors angegeben,

Py Ps

A— B —=C

in dem eine Folgereaktion

Es handelt sich dabei um einen sogenannten diskontinuierlichen
Fillung des Reaktors, Ablauf der

ablauft.
ProzeB mit der getrennten Fahrweise:
Reaktion und Entnahme des neuen Produkts (Charge).

schwindigkeitskonstanten sel Py bekannt und p, werde
Die Konzentrationen x1(t) und xz(t)

Von den beiden Ge

als Zustandsgrofie xs(t) eingefiihrt.
der Stoffe A und B gehen in die LeitfahigkeitsmeRgleighung linear ein.

y(t) = c1x1(t) * szz(t)-

Unter der Annahme, daB die beiden Reaktionsschritte von erster Ordnung

sind, ergibt sich das Zustandsmodell

k() = = (0xg) k(1) > 0
L) = x(Oxg(6) - pgxp (1) xple) 20
;3(t) = 0 xg(t) >0
y(t) = lcy v €y 01 x(t) = C x(t)

In diesem Beispiel liegt der in der Bemerkung (4.104) erwdhnte Grenzfall

vor (keine EingangsgroBen). Daher entwickeln wir die rechte Seite des

Zustandsmodells zuerst einmal in einem beliebigen Punkt

' - .
Xy = Dxgp Xgp0 Pyl jedoch sollen alle Komponenten von X, positive Werte
haben. Es gilt dann

f][ll = - X1AP] + [‘[)1, 01 -x‘lA]Ai + E-I[Al]
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£,0x]1 = [X1Ap1 T PpXyal [p;, Py Xpplax o+ f,0ax]
flx] = 0
und
%1[A£] = -%Z[Ai] = -(Ax1)(Ax3) = tXyXg o+ Pixy + X1paXz - X1 aP1

Es ist nun zu priifen, fir welche Zustidnde Xa das Matrixpaar
Py 0 mxyy

A = Py =Py Xy, c = [c1 » €y, 0]
0 0 0

vollstdndig beobachthar ist. Die Ranguntersuchung der Beobachtbarkeits-
matrix

€1 pyley-cyl, P1[p1c1‘C2[P1*P2]]
2

C2 0 T Sy , Py €

0 , x?A[CZ'CI}’ x]ApT[c]—cz]ﬁmpzc2

zeigt, daB nur fir X140 = 0 im vorgegebenen Arbeitsbereich die vollstén-
dige Beobachtbarkeit verletzt jst. Daraus folgt, dag fiir X154 > O die

Eigenwerte der Matrix Ag = [A - k'c] beliebig vorgegeben werden konnen,

um dann k zu bestimmen. Es gibt also fiir den linearen Anteil in der Feh-

einfluBt werden konnen. Fiir eine Matrix A

g: dle nur verschiedene negatlv

reelle Eigenwerte besitzt, 14Bt sich aus der Ljapunovbeziehung des Sat-

zes (4.63)

'

e Pe = [Age]

e+ lQel age

die folgende Abschitzung ableiten,

wenn e nach den Eigenvektoren von Ag
entwickelt wird und lmax[ﬁB] < 0 de

r grofite Eigenwert von ﬂB ist:

Mit Amin[E] als kleinstenm Eigenwert von

P sowie Anax Q] als groBtem
Eigenwert von Q gilt

A . [P] e Pe
zl)‘max[i'\-B]| < T S —_
nax!@ T e Qe
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Die Abschiatzung des Stabilitédtsgebietes MB gestaltet sich in diesem Bei-
spiel einfach, wenn man sich auf den fiir die Anwendung interessanten
Bereich !eil <2 (i= 1,2,3) und xq, = 1 beschridnkt, d.h. es ist

lax;| <1 bzw. ]Aii[ < 1. Daraus ergibt sich fir die Funktionen r (-]

in der Fehlergleichung (4.103) die Abschatzung

|rl[A£] - rl[A£]| = |‘X1X3 + X1X3 + D1€1 + X1A83l < “||g||10' >0 .

Die Ungleichung im Beweis des Satzes (4.101), die das Stabilitéatsgebiet

MB bestimmt, lautet nun
1 &
Vgﬂ“’l§|| < Y'TT——"TT

o
[

1o
|

und mit der oben angegebenen Abschatzung

V3 o < 'Amax[é 1] fir Iei| <2,

die aufgrund der vollstandigen Beobachtbarkeit des Paares (A,C) immer er-
fillbar ist. Der Arbeitsbereich des 7ustandsheobachters liegt also in

dem Gebiet
0<x ()2 5 0 < x,(t) 5 0 < xg{t) <2

In diesem Gebiet verschwindet jeder Fehler e(t) fir t = =, wenn die nor-

mierten Zustandsgroflen x(t) des Prozesses ebenfalls 1in diesem Gebiet

liegen.

Der Satz
standsmodelle ilibertragen.

(4.101) 1aBt sich ohne Schwierigkeiten auf zeitdiskrete Zu-
Das nichtlineare zeitdiskrete System

ﬁ{iﬁv);g(v)]

f_(\”])
(4.106)
y(v) = hix(v);ulv)]

sei in den Arbeitspunkten (EA’EA) lokal beobachtbar und habe die Ent-

wicklungen (4.26)

+

flxysupd + 28X * H au + flax;aul

Las)

[

| >
=
—
i

+

hix,;u 0+ Cax + D Au + h(ax;au]

=2
-
| >
|e
| )
]

]

mit ax(v) = [x(v) 'EA] upd au(v) = [ulv) - EA]' Dann ist
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(4.107) (1) = Elx()u(0)] Kly (o) - nixtvyiuce)1]

ein dynamischer Lustandsbeobachter ip MB c Rn, wenn die Fehlerdifferen-
zengleichung

(4.108) elv+1) = [9 - K Cle(v) +[£[A£(v);Ag(v)] - rlox(v);au(v)]]

mit x, e Mg eine asymptotisch stabile Ruhelage €p = 0 mit dem Stabili-
tdtsgebiet MB besitzt, Die Erkldrung der Funktionen rfe;+] ist dem Beweis
des Satzes (4.101) 2y entnehmen. Die Bestimmung von Mg erfolgt unter Ver-
wendung des Satzes (4.97) und den Optimierungsbedingungen (4.98).

Der nichtlineare Zustandsbeobachter (4.102) bzw, (4.107) berﬁckéichtigt
auftretende StorgréBen in ProzeB nur ip dem Unfange wie der nichtlineare

Anteil r[Ai,Ag] in der Fehlergleichung, der diese

(A5.67)). Die Zustandsgrofen und
auch Zufallsprozesse, wenn de
bung und MeBgleichung auftreten.

trix nicht ausreicht. Dabei soll die
trix die Fehlergleichung des Zustands-

107) ersetzen. Wir nehmen Jedoch an, daf
eine Linearisierung des Zustandsmodells an

FIX()u(0)1 + grx(y); ¥ xo) = x

|-

—
<

—
[

LIR{OOTE S IRRTOR:
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mit der deterministischen Beziehung
t

v+ ]
Flx(v);u(v)) = x(v) + j' flx(t);ulv)lde
t

beschrieben, wobei die folgenden Annahmen gelten mdgen:

- Die Stoérungen in der Strecke und der MeBgleichung seien weifie, nor-

malverteilte Zufallsprozesse und gegenseitig unabhdngig (einschlieB-

lich des Anfangszustandes) mit

It
o
=

0 5 E[N(WN ()] ven &

E[H(v)]

(4.110) und
E[!(\))]

N
o

1

0  EIV(WY ()]

V=l —v

- Die Anfangszustdnde seien normalverteilte Zufallsvariablen, d.h.

X wird durch den Erwartungswert x(0) und der Autokovarianzmatrix

Eo beschrieben.

Beji der Schitzung des Zustandes zum Zeitpunkt (vT) (T Abtastzeit) wird

die Kenntnis der Messungen Y := {y(0),y(1),...,y(v)} und u(v) ausge-

wertet, so daR aufgrund dieser a priori Information der bedingte Erwar-
mit der zugehdrigen bedingten Autokovarianzmatrix

tungswert x(v|Y )

(genannt Fehlerkovarianzmatrix)
Lvly) := B[[X(x)-x (] ¥ ) IX()-x (v 1Y 1]

mindestens niherungsweise durch rekursive Beziehungen ermittelt werden
sollte. Um die Niherungen von den bedingten Erwartungswerten zu unter-
scheiden, schreiben wir im weiteren x{v[v) und L(v[v).

Khnlich den Uberlegungen zum Satz (4.101) oder zum zeitdiskreten Modell
(4.106) (jedoch ohne festen Arbeitspunkt) ist das stochastische Zustands-
modell im geschatzten Zustand x(v|v) bzw. x(v[v-1) zu entwickeln. Es gilt

dann

Flx(v);ulv)] E[i(vIV);g(v)] + o(v)ax(v]v) + E[AL(VlV)§E(V)}

&[i(vl\))] + é[Al(vlv)]

glx(v)]

hix(v);u(v)] = ALX(v]w=1)5u()] + CO»axlv]v-1) REax(v]v-1);u(v)]

(4.111)
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mit Ai(vlb) 1= [i(v) - i(vlv)] ,

FLO;u(»)] = 0 5 glo) - 0 5 B =0

und
dF . [+;+]
2(\)) = —;_
ax.
[ 1 .
(x(v[v),u(v))
[
8h.[e;]
E(\;) = —_L_]
ax.
1

(x(v]v-1),u(v))

Wird die Entwicklung (4.111) unter Vernachldssigung der Terme héherer Ord-
nung (d.h. F[+1, gl+] und h[-]1) in das nichtlineare Zustandsmodell (4.109)

eingesetzt, so bekommt man das linearisierte stochastische Zustandsmodell
an der Stelle x(v{v) bzw. x(v{v~1)

X (v fy) g(v)ﬁL(v]v) + glx(v]v)Tu(v)

(4.112)

XL(v[v-n g(v)_)SL(\)I\)-1) + V(v)

’

wenn die Zufallsvektoren

X O#1[v) o= [X(ue1) - Elx(v]v)5u(»)I)
X (v]v) = [X09) - 3v)v))

und
Yoolv-1y s [¥(v) - hlxColv=1)5u(v) 1]

eingefiihrt werden. Aus der linearen
Zustande EL im Modell (4.112) unter
aren Kalmanfilter

Schdatztheorie ist bekannt, daB die
den Annahmen (4.110) von einem line-

G113 10 = XGIE, D kg () - CIxtoly, ]

x(0]-1) = x(0), im Sinne eines mittleren quadratischen Fehlers

LGN, D - B[y - XOIL, DI ) - 2y, 0 I

S e
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optimal mit den folgenden Eigenschaften rekursiv geschatzt werden (der
Leser entnehme weitergehende Betrachtungen dem Buch von ANDERSON/MOORE
[4.31):

- Die Kalman-Verstirkung K(v) wird durch die rekursiven Beziehungen

G k) - LOlY,.6 Gee Eely, e () ¢ R
mit rof-n = P,
Loy = [E- KEMW] LY, )
(4.115) ' '
L(v+1]Y)) = o(v) L(v[YJe (v) + gQpg,
bestimmt.

_ Die Fehlerkovarianzmatrix L(v[Y _;) und damit auch K(v) hédngen
nicht von den Messungen Y _, ab, so daB beide Matrizen schon vor
diesen Messungen fir die Schatzung (4.113) berechnet werden konnen,

d.h. auch, daB E(“) nicht von den geschatzten Zustanden abhangt.

- Die Innovation [XL(v) - g(v)i(vliv_1)] ist ein weiBer normalverteil-
ter ProzeB.

Weitere Betrachtungen zur rekursiven Schatzung findet der Leser im An-

hang A6.1.3.

Ein nichtlinearer Zustandsschatzer, der in Anlehnung an das lineare Kal-
manfilter entwickelt wird, besitzt die letzten beiden oben genannten
Eigenschaften nicht. In Anlehnung an den linearen Zustandsschiatzer

(4.113) wihlen wir fir die nichtlineare Schatzung zum Zustandsmodell

(4.109) den rekursiven Ansatz (Bild 4.17)

ylv) x(viv)
= Kivl

xi0)

x{vl v-1)
hi-] e -

Xlv-1lv-1}

Fl-] e

Bild 4.17: Nichtlinearer 7ustandsschatzer {4.116) fir u(v) = 0
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XOo[v) = x(v[v-1) + K[ y(v) - AIX(e]v=1)5u(w) 1]

(4.116) _ -
E(\J'V-1) = E[l(v-]’v-]);g(\))]

Bei der Berechnung der Verstdarkung K(v) geht man von dem linearisierten
Zustandsmodell (4.112) in den geschitzten Zustinden x(v]v) und x(v|v-1)
aus, so daB die Beziehungen (4.114) und (4.115) zusammen mit dem nicht-

linearen Schatzer (4.116) das erweiterte Kalmanfilter bilden.

Der Leser vergleiche die Beziehung (4.116) mit dem dynamischen Zustands-
beobachter (4.107) und mache sich die Unterschiede in den Aussagen klar.

(4.117) Bemerkung (Erweitertes Kalmanfilter):

Uber das Stabilitdts- bzw. Konvergenzverhalten der Fehlerkovarianz-
folge { L(v|v}} der Differenzengleichung (4.115) 1Rt sich wegen der
Zeitabhangigkeit der Matrizen K(v), olv), C(v) und 8, keine allgemeine
Aussage wie bei der Fehlerdifferenzengleichung (4.108) machen. Eine Di-
vergenz der Fehlerkovarianzmatrix g(v}v—l) bedeutet eine unbrauchbare
Schatzung, d.h. der Zustandsschatzer (4.116) wire in einem solchen Fall
ungeeignet. Die Schwierigkeiten in der Untersuchung des erweiterten Kal-

manfilters liegen vor allem in der Abhangigkeit der Verstirkung K(v) von
den geschdtzten Zustinden x(v|v) und x(vlv-1),

Gibt es fiir x(v) eine hinreichend grofe Umgebung, auf der die Differen-
zen

HECX( )50 = FLOx() + ax)svl(] 0

R
und

RO 59T = REGOn) + ax) 5]
—- — 'Rn

eine von l(v) unabhadngige obere Schranke besitzen, dann ist auch die

Verstarkung K(v) von x(v) unabhdngig. In diesem Fall lassen sich obere

Schranken fir die Fehlerkovarianzmatrix angeben,

Bei der Anwendung des erweiterten Kalmanfilt
Voruntersuchung erforderlich, die nur in Abh
Zustandsmodell gefiihrt werden kann.

ers ist also eine griindliche

dngigkeit von dem jeweiligen

In der technischen Diagnose jist die Innovation

[0 = LR v-1)50(v) 7]

fir den Fall einer Konvergenz der Fehlerkovarianzmatrix anwendbar. Aus
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der Anderung der statistischen Eigenschaften der Innovation lassen sich

Aussagen iiber das Vorhandensein einiger Systemeigenschaften machen. [

4.4.2 Parameterschatzung

Die Aufgabe in einem linearen Zustandsmodell, die Zustdnde und die unbe-
kannten Parameter zu schiatzen, fiihrt auf ein nichtlineares Schatzproblem.
Hiufig wird der Zustand x um die unbekannten Parameter @ e R™ erweitert,

wobei im zeitdiskreten Fall die zusdtzlichen Zustandsbeziehungen lauten

slor1) = b 8(9) + wg()

Die stochastische Stérung wird als weiBler normalverteilter ProzeB ange-
nommen und von der Systemmatrix ¢ ist zu fordern, daB diese keine Eigen-
werte auBerhalb des Einheitskreises besitzt. Fir den Zustand x := [x,0]
erhidlt man ein nichtlineares Zustandsmodell. Unter Beachtung der Bemer-

kung (4.117) ist dann eine nichtlineare Schatzung x(v|v) nach (4.116),
(4.114) und (4.115) moglich.

In den weiteren Betrachtungen dieses Abschnittes wollen wir uns jedoch
nur auf Verfahren beziehen, die die Schdtzung der Parameter eines nicht-

linearen Eingangs-Ausgangsverhalten erlauben (der Leser vergleiche hier-

zu das Buch von HSIA [4.11]).

Es seien {u(p)} die Eingangsgrofle, gu(v) = [u(v),u(v-1),...,u(v-m)] der
Elngangsmeﬁdatenvektor, {y(u)} die Ausgangsgrofe und
@Y( v) = [y(v-1), ...,y(v-n)] der AusgangsmeBdatenvektor eines nichtlinea-
ren Ubertragungssystems, das sich in der Form

n n1 m m1

u=1 =1 H=0 u=0

(4.118)

ohne Stérung hinreichend gut darstellen laBt. Zum Zeitpunkt (vT) sind

also die Funktionswerte f [mY( v)] und g lo, (v)1 (u = .} bekannt,
so daB die Beziehung (4. 118) in einen Parameter- und einen Datenvektor

zerlegbar ist. Es gelte fir den Parametervektor

9' = ,b ---,b ,b

= a}""’an’aﬂ""’amT o’ m* lo*" b

lm1

und fiir den Datenvektor
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h (v) = {—9(v—1),_._,-y(v—n),ﬂf1[3Y(v)]...,u(v),...,go[gu(v)]... )

dann geht die Eingangs-Ausgangsbeziehung (4.118) unter Bericksichtigung
einer additiven Stdrung iiber in

(4.119) Y(v) = b (v) 8+ v(v)

Ist die Annahme erlaubt, daR die Storung {v(v)} nicht mit der Eingangs-
groBe korreliert und eine weiBe Zufallsfolge darstellt (der Leser ver-
gleiche A5.67), dann lassen sich die rekursiven Schitzgleichungen aus
dem Anhang (A6.1.3) zur Bestimmung von é(v) in (4.119) anwenden. Die
Schdtzbeziehungen (A6.20) konvergieren hier nur dann gegen den wahren
Parametervektor 6, wenn das Modell (4.118) bzw. (4.119) allein von der
Eingangsfolge abhangt (nichtrekursives System).

4.5 Pulsbreitenmodulierte Regelungssysteme

Im Abschnitt 4.1 wurde das Zustandsmode]] eines PBM-Regelungssystems
{4.10) abgeleitet und im Bild 4.2 dargestellt. Es handelt sich hier um
eine spezielle Klasse nichtlinearer zeltdiskreter Regelkreise, die sehr
robust ausgelegt und einfach implementiert werden konnen. Als Beispiel
sel die Lageregelung von Raumfahrzeugen genannt, bei der die Signale zur
Ansteuerung der Antriebsstaurchre pulsbreitenmoduliert sind (e(v) im
Bild 4.2 bestimmt die Dauer der geoffneten Ventile). Weitere Anwendungen
findet man bei der Regelung von elektrolytischen Metallveredelungspro-

zessen, elektrischen Schmelzéfen und beim Einsatz von hydraujischen
Systemen,

Gegenstand dieses Abschnittes sind die Ableitungen von Entwurfsbedin-

gungen fiir PBM»Regelungssysteme, die ein Lustandsmodel]l der Form (4.10)
besitzen. Es lautet unter Beachtung der Bedingung (4.9)

(v)
(4.120) x(v+1) = e(TIx(v) - M sgn[g'i(v)l.[ ¢(T-»)b dx
0

+

indem die FithrungsgroBe r(t) identisch null gesetzt ist. Diese Annahme

stellt innerhalb des Giltigkeitsbereiches des linearen Teil-Zustandsmo-
dells keine Einschrankung dar.
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Die Aufgabe besteht nun darin, das Stabilitdtsverhalten der Ruhelage

Xp = 0 bei gegebenen Parametern der Matrizen ¢(T), b und c zu untersu-
chen und bei asymptotischer Stabilitdt der Ruhelage eine moglichst grofe
Anndherung an den Einzugsbereich nachzuweisen. Eine Erweiterung des li-

nearen Anteils im Zustandsmodell (4.120) wird zugelassen.

Die Untersuchungen beruhen auf den Aussagen und Verfahren der Abschnit-
te 4.2.2 (periodische Folgen auf dem Rand des Einzugsbereiches) und
4.3.4 (Stabilitatskriterien). Die Wirkungsweise der Pulsbreitenmodula-
tion ist aus dem Bild 4.18 zu erkennen. Im wesentlichen 14Bt sich das

Regelkreisverhalten durch den Modulationsfaktor B beeinflufen, wenn das

lineare Teilsystem vorgegeben ist.

Das Zustandsmodell (4.120) geht mit

1(v)
H{t(v)] := ¢(T-x)b dx
/
in
(4.121) i(‘”]) = _@_(T)_x_(v) - M sgnlc'x(v)] Hlt(v)] = ioii(")}

iiber, wobei im gesidttigten Bereich
T
le(v)] = |e¢'x(V)| > 3

H(T) unabhédngig von i(“) gilt. Der Nachweis von periodischen Losungen
{x(v)}? erfolgte im Abschnitt 4.2.2 unter Anwendung des Algorithmus

b lelv]
-.ei_OJ_..-...7
T e e —
T 7
T S
el2)f oo Y
q0leT Tl 2T @) 3T
b ult) ! X '
M1t :
i
: t
T it 3T -
-M

Bild 4.18: Pulsbreitenmodulierte Eingangsgrofe u(t)
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(4.37), der dann die Losung (4.33) liefern muR. Das Stabilititsverhalten
der periodischen Losungen bestimmt in der ersten Naherung die Matrix
(4.35)

p
Plx()1 = T Lovep-ul
p=1

mit den Jakobi-Matrizen

af [x]
Livl = =0 -

dx

x=x(v)

Bezogen auf den PBM-Regelkreis erhilt man ays der Beziehung (4.121) die
Jakobi-Matrizen

(4.122) Lv) = o(T) fir — Je'x(v)] >%
und
(4.123) L(v) = [E(T) - M8 o[T-<(v)1b g'] fir 1(v) = 8]c'x(v)] ,

wenn x(v) e {i(u)}? ein Element der periodischen Folge und B|c'x(v}] < T
sind. Im Punkte B|c'x(v)| = T ist (4.121) nach X nicht differenzierbar.
Eine Untersuchung der periodischen Losungen in dem PBM-Regelkreis hat je-
doch nur dann einen Sinn, wenn die Ruhelage Xp = O der Regelkreisgleichung
(4.121) asymptotisch stabil ist, Nach Sat:z (4.27) darf~die Stabilitdtsma-
trix der Ruhelage (ir erster Naherung) nur Eigenwerte ip Einheitskreis be-
sitzen. Fiir den PBM-Regelkreis erhalten wir fir t(v) = 0, d.h. x = 0, die
Stabilitatsmatrix ¢ aus der Beziehung (4.123). X

Es ist von der Matrix

(4.124) 4 = o(T) [E-MB b ']

zu fordern, daB diese nur Eigenwerte im Einheitskreis hat. Andernfalls
muB durch eine geeignete Rickfihrung mit einem zweiten lineareﬁ Teil-
system die Forderung eérzwungen werden

» sofern das Systenm (A,b,c) stabi-
lisierbar ist.

Es sind nun unter Verwendung der Stabilitdtsmatrizen L(v) fir periodi-

die ein hinreichend groBes Sta-
r = O gewdhrleisten,

sche Losungen Bedingungen zu entwickeln,
bilitdtsgebiet der Ruhelage

Zuerst stellen wir fest, dag periodische Losungen fiir t(v) < T nicht

wenn der Regelkreis fiir jedes t(v) im ganzen Abtast-
intervall T asymptotisch stabiles Verhalten haben soll.

auftreten dirfen,

Fir die perio-
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dischen Lésungen der Periode p = 1 und p = 2 nimmt das Zustandsmodell

(4.121) die Formen

x(1) = M[e(T) - E]7 HLx(1)1 sgnle'x(1)]

und unter Beachtung von Symmetrieeigenschaften fiir p = 2
x(1) = M[e(T) + E]7 HI<(1)] sgnle’x(1)]

an. Werden die Vektoren fp(;) durch

(4.125) 5, () i= famd E]7 HI<(1)]

festgelegt, so ergibt sich nach Einsetzen von ip in die vorangegangene

Zustandsbeziehung

x(1) = M ip(') sgnlc'x(1)] fir p = 1
und

x(1) = M 5p(+) sgnlc'x{1)}] fir p = 2

Nach Multiplikationen beider Beziehungen mit ¢' folgt, daB nur dann eine
periodische Losung mit p = 1 oder p = 2 auftreten kann, wenn gilt:

a) Die Matrix ¢(T) besitzt keine Eigenwerte bei +1, da sonst die Inversen
der Matrizen [&(T) + E] nicht existieren. Der Leser prift leicht nach,

daB diese Bedingung fir jedes p > 1 erfillt sein muB3.

b} Das Innere Produkt E'ip(;) geniigt der Bedingung

' +) >0
¢'x,(+)
Diese Aussage ergibt sich aus der Gleichung
c'x(1) 5 (1)
____;_._—-——— = M ! + =
(4.126) ¢x, "

sgnlc'x(1)]

c) Fir 0 < 1(1) gilt

(1)

Mgl = =
c'xy(+)
oder fiir (1) =T
Mgl > ——
c'x (+)
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wobel diese Aussagen aus der Gleichung in b) tfolgen,

Zum Nachprifen der Bedingungen (b) und (c) sind die Vektoren ip(;) nach
Gleichung (4.125) schrittweise fiir jedes (1) aus dem Intervall [0,T},
zu ermitteln.

Bei geeigneter Wahl der Parameter [MB] treten also keine pericdischen
Losungen der Periode p = 1 und p = 2 im PBM-Regelkreis auf. Mit diesen
Parametern [MB] prift man nach, ob der Algorithmus (4.37) periodische
Losungen fir p > 2 liefert. Gibt es Werte [MR], fiir die keine periodi-

schen Losungen auftreten, dann ist die Ruhelage Xp = Q asymptotisch sta-
bil im GroBen.

Liegen periodische Ldsungen im PBM-Regelkreis vor, dann sind fir die
{x(w)}] die Matrizen L(u) aus der Gleichung (4.122) bzw. (4.123) zu be-
rechnen und die Stabilitdtsmatrix P[x(v)] zu bilden. Mit dem Satz (4.41)
kann dann nachgepriift werden, ob es periodische Losungen gibt, die
asymptotisch stabil auf dem Rand sind. Das Stabilitdtsgebiet der Ruhe-

lage wird nach Satz (4.97) und mit den Optimierungsbedingungen (4.98)
bestimmt.

(4.127) Beispiel: Vermeidung periodischer Lésungen in PBM-Regelkreisen

Das lineare Teilsystem in dem PBM-Regelkreis nach Bild 4.2 sei durch die
kontinuierliche Ubertragungsfunktion

350 4+ 85t 4 125 4 6.5
Gls) = = 7 ;
[s+25+4510s%+2541,5]

gegeben. Es sind die Grenzwerte fiir die Parameter [M3] bei der Abtast-

zeit T = 1 zu ermitteln, bei denen keine periodische Losungen auftreten.

Zuerst bestimmt man die Matrizen 9(T) und H(t), um daraus x (3) nach der
' ~ - =p

Gleichung (4.125) zu berechnen. Die Beziehungen in den Bedingungen

(4.126) sind nun fir p = 1 im Bild 4.19 und fir p = 2 im Bild 4.20 gra-

phisch dargestellt. Aus den Bildern 4.19 und 4.20 folgt, daB keine perio-
dische Lésungen auftreten, wenn

[MB] < 3,79 fiir p

[t}
——

und
[(MB] < 0,71 fir p

i

2

sind. Da der Algorithmus (4.37) fiir [MB) < 0,71 keine periodischen Lo-

sungen liefert, ist die Ruhelage Xp = O in diesem Beispiel ggxmgﬁgﬁiﬁﬁﬂ
stabil im GroBen fiir [M8] < 0,71
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Bild 4.19: E'ip(') und [MB] in Abhdngigkeit von t(1) fir
p = 1 nach (4.126)
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Bild 4.20: xp(+) und [MB] in Abhdngigkeit von t(1) fir
= 2

CI
p nach (4.126) |
Das dynamische Verhalten eines PBM-Regelkreises kann in der Umgebung der
Ruhelage xp = 0 mit der Matrix ¢ (Gleichung (4.124)) festgelegt werden,
wobei sich durch ein zusdtzliches lineares Teilsystem (Zustandsbeobach-

ter und Zustandsregler) die hierfiir geeigneten freien Parameter ergeben.
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4.6 Entwurf nichtlinearer Regelkreise

In diesem Abschnitt gehen wir von der zeitkontinuierlichen Regelstrecke

1

x(t) = Elx(t);u(t)]  u(t) e R ro>

(4.128)

y{(t) hix(t)] y(t) ¢ RP p> 1

aus und entwickeln hierzu Verfahren zum Entwurf eines Reglers

v(t) = glv(t);x(t)] v(t) e R

(4.129)

u(t) klv(t);x(1)]

Der allgemeine Regelkreis ist dem Bild 4.21 zu entnehmen. Der dynamische
Zustandsbeobachter nach Satz (4.101) wird hier nicht weiter behandelt.
Wir nehmen an, daB die Voraussetzungen fiir den Entwurf eines Zustands-
beobachters in einem hinreichend groBen Stabilitdtsgebiet gegeben s%nd-

Daher wurde auch in den Reglergleichungen (4.129) x(t) (eigentlich L(t)}
elngesetzt.

M g T T
| Strecke
Reglergesetz ? I — ) '
entweder v X ¥l Regel-
Kenawerte ? ™ X=f(x,u) hlxl >
oder - - Vgrifen
Struktur + Kenowerte 7 | |
l |
| |
X Zustands - - I
| beobachtung [ I
| nach Abschn, 4.4.1 |
L - - - _ _ _

Bild 4.71: Allgemeiner nichtlinearer Regelkreis

Der folgende Unterabschritt orientiert sich zuerst nur an linearen zelt-

invarianten Systemen, um einen Teil der Vorgehensweise einfach zu erlau-
tern.

4.6.1 Einfiihrende Betrachtungen

In den weiteren Ausfiihrungen erweist sich die Kenntnis einer oberen und

unteren Schranke der quadratischen Ljapunovfunktion Vix]) = x'Q x als sehr
nitzlich. B T
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Die positiv definite Matrix Q besitzt nur positiv reelle Eigenwerte, so
dafl es einen kleinsten Eigenwert Amin[g] > 0 und einen groBten Eigenwert
Amax[g] > 0 gibt. Sind alle Eigenwerte von Q = Q' verschieden, dann bil-
den die zugehérigen Eigenvektoren # eine orthogonale Basis im R". Die

Zustdnde x lassen sich dann nach diesen Eigenvektoren entwickeln, d.h.

n
X = Z av 2\) av e R
v=1
und n n
.Q.l = ZGV-Q-E\) - Zuvlviv
v=1 v=1

Die positiv definite quadratische Form besitzt daher die folgende obere

und untere Schranke

1
x'Qx = Z Z ety 2y 9,
v ol
t
noL S e

D NCRNEXS

\J=1 ]

z Kmin[g] XX 4

wobei die letzte Gleichung aus der Orthogonalitat der Eigenvektoren folgt.

Somit gelten die Abschatzungen

x'Qx
Amln[g] < - = max[Q]
{4.130)
Z 2
ninl@ Tl < VO agg [V TIxl,

die im Bild 4.22 in zwei verschiedenen Ebenen anschaulich dargestellt
sind.

Die quadratische Form V[x] = x'Q x = k ergibt in der Zustandsebene eine
Ellipse (Bild 4.22). Der kleinste Kreis, der die Ellipse von innen be-

rithrt, hat den Radius |k A&;x und der Kreis mit dem groften Radius

]/k x‘1 beriihrt die Ellipse von auBen. Aus dem Bild 4.22 und den Un-
m

in . . . .
gleichungen (4.130) entnimmt man, daB eine Abschatzung um so gilinstiger

wird, desto kleiner die Differenz [Amax-lmin] ist.

Um das dynamische Verhalten einer Ljapunovfunktion V[x] beurteilen zu

konnen, entwickeln wir fiir Vix] eine Differentialungleichung.
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Bild 4.2Z: Darstellungen der Abschdtzungen (4.130) fir n = 2
Besitzt ein lineares zeitinvariantes System ;(t) = A i(t) eine asympto-

tisch stabile Ruhelage, dann existiert zu VIx] eine negativ definite
zeitliche Ableitung

Vix] = - x'P x P positiv definit
mit
-P = AQ+QA

Es sei nun ”min[p] der kleinste Eigenwert von P, dann erhalt man die fol-

gende Abschdtzung:

x'Px
Vix] R - x . [P] 1
(4.131) — = — ¢ mn=-" _
Vixl X'Qx Apax Q] T,

VIx] 1
.
vixl ~ T,
besitzt die Losung N
TS
(4.132) VIx(t)] < Vix ]e 2
— — _o ’

die im Bild 4.23 graphisch dargestellt ist.
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Vixg)

Vix(T,)r

e

T, t

B /

Bild 4.23: Zur Abschatzung des Verlaufs von VIx(t)]

Eine Abschitzung des dynamischen Verlaufs der Trajektorie x{t}, die Lo-
sung des linearen zeitinvarianten Systems i(t) = A x(t) ist und damit
der Ungleichung (4.132) geniigt, wurde fir n = 2 im Bild 4.24 veranschau-
licht. Der verallgemeinerte Abstand V[x] und damit auch x(t) nehmen ex-
ponentiell mit der Zeitkonstanten T2 (Gleichung (4.132)) ab. Alle Tra-
jektorien x(t), die auf der geschlossenen Flache (Kurve) V[io] = ko be -
ginnen, liegen mindestens nach der Zeit T2 innerhalb der abgeschlossenen
Zustandsmenge, die durch die Ellipse 0,37 V[lo] begrenzt ist (Bild 4.24).
die ein System bendétigt, um von einem Anfangszustand L in

Die Zeit ty,
der asymptotisch stabilen Ruhelage Xp = 0 zu

einen Umgebungszustand X,

kommen, laBt sich unter verwendung der Ungleichung (4.132) nach oben ab-

schatzen. Es gilt nach Umformung von (4.132)

V[lo]

(4.133) t, < T, In
Vix,]

Allgemein 148t sich bel linearen Systemen die Bestimmung von t in den

folgenden Schritten durchfithren:

1) Aus der Beziehung -P = A Q + Q A folgt bei einer vorgegebenen

positiv definiten Matrix P die Matrix Q und daraus V[x ] = x'Q x .
- = -0 —0= —0

2) Nach Bild 4.22 wird die Fldche (Kurve fiur n = Z) V[x;] = k, von
einer Kugel (Xreis) vom Radius ry eingeschlossen, so daf gilt

2
V[ill = k] = I J\min{g]
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A&

Vlx(1,))=0,37k

Vixp) =1

Bild 4.24; Veranschaulichung der Ungleichung (4.132) undg

der zugehorige Trajektorienveriauf fir n =2

3) Die Zeitkonstante wird nach der Formel
X (0]
T - max =
nmin[B}

und die obere Schranke Ffijr t1 wird aufgrund der Ungleichung (4.133)
berechnet.

Optimierungsproblen.

In den bisherigen Ausfﬁhrungen 1st die Zeit t] des autonomen linearen

Systems ermittelt worden. Es sel nun die Regelstrecke
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x(t) = A x(t) + B u(t)

mit Re[lv(é)] <0 (v =1,...,n) und der StellgroBenbeschrankung
[[u(t)|] < m fiir alle t gegeben. Verwendet man fiir diese Strecke die
gleiche positiv definite Form V[{x] = x'Q x wie fiir das autonome System,

so ergibt sich die totale zeitliche Ableitung
(4.134) v Ix()] = x'Qx+x'Qx = -xPx+2x'QBu

Um Vu[i} gegeniiber Vix] des autonomen Systems negativer zu machen, wah-
len wir unter Beachtung der StellgroBenbeschrinkung das Reglergesetz

B'Q x(t)

(4.135) u(x) = - m
T |/B'Q x(t)]]

u(x)} in die Beziehung (4.134) eingesetzt, ergibt
VX)) = - x'Px - m B x(D)]] < - x'P x

Zur Beurteilung des dynamischen Verhaltens des Regelkreises mit Stell-

groRenbeschrankung werde der Ausdruck (4.131) fiir das autonome Systenm

nach unten abgeschatzt. Es gilt

\./[x] " [P] 1

(4.136) - _;._ _ _fax = _ _ _
V[i] Amin[g] T]
vix)

~Y

Bild 4.25: Verbesserung des dynamischen Verhaltens des Regelkreises

Die Regelgiite des Regelkreises wird dann verbessert, wenn die Ungleichung

VIx] -x'P x-n|[B'Q x| Vix]
u-=" _ == - == . -

| >

i
—<
T] - Vix]

v, [x] '

| =
1o
| =
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fir alle XeMc R" erfillt ist. Hieraus folgt unter Beachtung der Un-
gleichungen (4.131) und (4.136) die Bedingung

1 [1B'Q x| 1
me—em—== < - — fir alle x ¢ M
Ty XQx T
oder
1 1 7
(4.137) m B x| 2 a, 1Q1— - — | [x]]
T1 T2

Der Leser erkennt, daB diese Bedingung nicht allgemein erfiillbar ist,

da die Eingangsmatrix B in den meisten Fidllen nicht reguldr ist. Daher
1st hierzu eine zusdtzliche Untersuchung erforderlich. Geniigt das Regler-
gesetz (4.135) innerhalb einer festgelegten Zustandsmenge M mit 0eM
der Bedingung (4.137), dann geht aus dem Bild 4.25 auch die Verbesserung
des dynamischen Verhaltens gegeniber dem autonomen System hervor. Schran-

ken fir auftretende Storungen in denm Regelkreis kénnen auch in der Be-
dingung (4.137) beriicksichtigt werden.

Die Stellgréﬁenbeschrénkung in einem Regelkreis kann sehr unterschied-

lich sein. Im Bild 4.26 sind in der u-Ebene fir r = 2 die Beschridnkungen
Hywuwgm und  fu; ()] < o, Mtugm2=m

dargestellt. Diese verschiedenartigen Beschrénkungen fithren auch zu un-
terschiedlichen Ergebnissen bei der Erfillung der Bedingung (4.137).

‘“b
(4) ly| =1
d
(5)
1

L

Bild 4.26: Unterschiedliche Beschriankungen der StellgroRen

bei denen die
vorliegende nichtlineare Regelstrecke ZUerst mit einer nichtlinearen

In der Literatur gibt es eine Reihe von Entwurfsverfahren,

Transformation auf eine geeignete nichtlineare Normalform gebracht werden
muf (Entkopplungsverfahren), z.B. in der Arbeit von SOMMER [4.22]. Dieser
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Weg wird hier nicht eingeschlagen, da bei diesen Verfahren Untersuchungen
zur Stor- und Parameterempfindlichkeit des Regelkreises analytisch zu
Schwierigkeiten fiihren und der Aufwand gegeniiber einer Synthese mit der
erweiterten Ljapunovmethode ohne Gewinn erheblich groBer ist. Hinzu kommt,
da die Frage nach der Stabilitadt, eventuell auch Stabilitdtsgilite, bei der

erweiterten Ljapunovmethode direkt beantwortet wird.

4.6.2 Entwurf mit der erweiterten Ljapunovmethode

Aus den Ausfithrungen des letzten Unterabschnittes und den Aussagen des
Satzes (4.87) geht deutlich hervor, daB sich zum Entwurf eines nichtli-
nearen Regelkreises eine optimierte Ljapunovfunktion V[x] und deren to-
tale zeitliche Ableitung Q[L] eignet, wenn gleichzeitig die Bedingungen
im Satz (4.87) oder die Forderung (4.137) eingehalten werden. Bei diesenm

Entwurf lassen sich

- eine Modellunsicherheit oder Parametervariationen,
- von auBen auftretende Storungen

und
- ein verbessertes dynamisches Verhalten

im Rahmen der angegebenen Bedingungen bericksichtigen.

Wir formulieren die einzelnen Verfahren in Form von Sdtzen, aus denen

sich dann die Reglergesetze ergeben.

(4.138) Satz (Reglerentwurf mit integralem Giitekriterium):

Das Zustandsmodell der Regelstrecke i(t) = ffi(t);g(t]] mit £{0;0] = 0

und das Gitekriterium

(4.139) j‘ LEx(t);u(t)ldt
0

mit positiv definiter Funktion L[-;-] seien gegeben. Existieren Funktio-
nen VlixI und ulx], so daB

(1) VI[x] eine Ljapunovfunktion des Zustandsmodells auf einer hinrei-
chend groBen Zustandsmenge I(a) mit einer asymptotisch stabilen

Ruhelage ist,

(2) fir die totale zeitliche Ableitung mit u = u*[x]
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dvlx]

— = - L x;u*[x]
dt

u*lx]
gilt und
(3) die Funktion
dvix]

Hlx;u] = — + Lix;ul

T dt

u

ein Minimum in jedem Zustand x e (o) fir u*[x] besitzt,

dann ist u*(x] ein optimales Reglergesetz in dem Sinne, daB das Giitekrl.'
terium (4.139) ein Minimum annimmt.

Der Beweis des Satzes ist dem Leser uberlassen, da dieser sich unmittel-
bar aus den Bedingungen (2) und (3) des Satzes ergibt,

Der Satz fordert fir eine Ljapunovfunktion V[ix] des Zustandsmodells die
Extremalbedingung

dV[i]
min

n 8Vix]
:E: —— f.lx;ulf+ Lix:ul = 0
Bx 1 ="= -
i=1 i
(4.140)
D oavix] af [x:u]l aLlx:u)
}; = Lo s == L , o i=1,...,r
ab, das die Losungen (das Reglergesetz) u bx] .., u lx] liefert, sofern

diese existieren.

(4.141) Satz (Zeitoptimales Reglergesetz):

: it
Gegeben sei das Zustandsmodell der Regelstrecke x(t) = flx(t);u(t)] mi

£00;03 = 0. fix;ul geniige der Lipschitzbedingung und ulx] gehére zur
Menge U der zuldssigen Funktionen.

Es existiere eine Ljapunovfunktion Vix] des Zustandsmodells, die die
folgenden Bedingungen erfiillt:
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(1) lim V[x] = « .

[ x][==
(2) min grade[i]]' £[§;g[§]] = - h[V[E]] - v x;u*[xﬂ
uel = T

(3) h[V[i]] ist eine stetige positiv definite Funktion.

Dann ist u = u*[x] ein zeitoptimales Reglergesetz. [ ]

Beweis:

Die Lésung Q(t) ;= V[x(t)] der Differentialgleichung
\:’[i(t)] = - h[vix(t)]]

mit der Anfangsbedingung VI[x(0)] ist im Bild 4.27 graphisch dargestellt.
Aus dem Bild 4.5, den Voraussetzungen des Satzes und der Beziehung (4.50)
folgt, daB die Lésung VIx(t)] monoton abnehmend ist. Die t-Achse mufl
dann von V(t) zu einem endlichen Zeitpunkt T*[i(o)] geschnitten werden

(der Leser vergleiche (4.50) und Bild 4.5). Wir nehmen nun an, daB es

ein Reglergesetz u = ulx) ¢ U gibt, so daB} der Regelkreis vom Zustand

x(0) in der Zeit T(x(0)] < T*[l(O)] in den 0-Zustand gebracht wird.

Aus der Bedingung (2) des Satzes folgt jedoch

V*[i;g*[i]] < Q[i;g[il] fir alle x « R"
und nach Integration iiber dem Zeitintervall [0,t]

V) - vIx(0)] < V(t) - VIx(0)]

Da V' Ix(0)] - VIx(0)7 und TIx(0)] € T [x(0)] mit VIx(T);ulx(T)1] = 0

b v x(t]

L

T"!Q)

Bild 4.27: Erlauterung zum Bewels
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gelten soll, steht die letzte Ungleichung im Widerspruch zur Annahme,

d.h. u*[x] muB ein zeitoptimales Reglergesetz sein. [

(4.142) Beispiel: Zeitoptimale Regelung norminvarianter Strecken

Gegeben sei das Zustandsmodell der Regelstrecke
x(t) = fIx(t)] + B u(t)
mit den Eigenschaften

(1 £'[x]x = - x[l1xl]

mit k[*] positiv definit (der Leser vergleiche Abschnitt 4.3.2,
Gleichung (4.74))

(2) B'B = E , d.h. B ist eine orthogonale Matrix,
(3) ult)]] pim<ce
R

Es ist das zeitoptimale Reglergesetz fiir die vorgegebene Strecke zu er-
mitteln. Wir wdhlen die Ljapunovfunktion

1
Vixl = 3 x'x = g |lx|?

und wenden den Satz (4.141) an. Es gilt

Vixl = x'x

"
|

=
[ =
+
| =<
==
| e=

Die rechte Seite von VIx] muB nun in der Forp -h[V] darstellbar sein. Es
set
B'x B’
(4.143) wix] = -m—= . _,. =%
1B x| x|

dann erhalten wir nach Einsetzen von u*(x] ip Q[X] den Ausdruck

b

. x'B B'x
VIx] = - k(lx]{] -mmr = - k[Hx{1] - ml{x]]

Unter Beachtung von V2V = |[x[| geht die letzte Gleichung in

(4.144) VIx] = -k [V2V] - nVy L oC v
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iiber. Der Leser erkennt, daB die negative Definitheit von Q[il selbst
dann gesichert ist, wenn die Funktion k(<) im Unterschied zur Forderung
(1) nur die schwichere Bedingung k[|[1}]] > - m||x]|| erfillt. Das Regler-
gesetz (4,143) ist also zeitoptimal, da alle Bedingungen des Satzes
(4.141) erfiillt sind.

Umn die Zeit T*[l(o)] explizit auszurechen, nehmen wir an, daB
k[||£||] = ~clfii|2 gilt, d.h. c||1||2 2cV. Die Differentialgleichung

(4.144) lautet nun

av _ T
‘a? = 2cV m Y2V s

und daraus folgt die LoOsung

yvixl = VV[l(O)] et 4 V;" % [1 - eCtJ

oder unter Beriicksichtigung von VIV = llill
s 1] = Hx) e+ B 1 - et

Aus der letzten Beziehung berechnet man fiir x(T*) = O die minimale Uber-

gangszeit vom Zustand x(0) in den Zustand 0. Es gilt

T (x(0)) = _'1—’ 1n[1 + J—;—'Hi(oﬂ IJ fir c < 0
C
und
. Hx(0) ]
T [x(0)] = ———— fir ¢c = 0
m

Das Bild 4.28 zeigt das zeitoptimale Verhalten des Regelkreises mit der

norminvarianten Regelstrecke

k a o
x(t) = |- koo x(t)+ult) , Jlu)]] <m
-a o k

und dem Reglergesetz (4.143)
x(t)

u(t) = - m —————
B Hx() ]

Insbesondere wird der EinfluB der Parameter m und k auf das Regelkreis-

verhalten deutlich.
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QS...

a09

0 o a
Q: ¢ 0 « x= V(f-k )/3
“a —a U
|
- Eigenwertverteilung

i X,
k=-02
057 0
0,05
prd
_m
!
~05 (_L; 35 x
G/2 L/ 1
= 0
% "2
u
—_——
X
x=(kE + D)x-m—=
=
Einflunl der
Steuerung y - kL
K~
+——x
Bild 4.28:

leitoptimale Regelung einer norminvarianten Regelstrecke =
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(4.145) Beispiel: Subzeitoptimale Regelung

Gegeben sei das Zustandsmodell
x(t) = A x(t) +Bult)

mit den Eigenschaften

(1) Re[Aj(A)] < 0 fir alle j = 1...n,
(2) B ist eine reguldre Matrix,

(3) [lull <m

Gesucht ist ein sogenanntes subzeitoptimales Reglergesetz. Es ist jetzt

fiir die zeitliche Ableitung einer Ljapuncvfunktion eine obere negative
Schrankenfunktion zu ermitteln.

Wir gehen von einer positiv definiten quadratischen Form

vix] = x'Qx

aus. Fir die zeitliche Ableitung findet man unter Berlicksichtigung des

7ustandsmodells der Strecke

Vix;ul = xQx+xQx = -xPx+2xQBu

Die Matrix Q muB so gewahlt werden, daB die Matrix

-P = AQ+ QA

negativ definit 1st. Aufgrund der Bedingung (1) existiert immer eine

derartige positiv definite Matrix Q. Durch Bildung des Minimums von

0[1] beziiglich u erhalten wir

- 2ml B Q x|/

| =

(4.146) min Vix;ul = - xP
EEU

und das Reglergesetz

|
12>
| =

(4.147) ulx] = - m———

[ y

|
[Fa
| =

Werden zwel positive Konstanten k] und kZ so bestimmt, daB die Matrizen

(v -ke] . |eBRa-K

positiv semidefinit sind, dann gelten die folgenden Ungleichungen:
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1

IS
o
| =
A

]
—

| =<
>

| =

und (hier geht die Forderung der Regularitit von B ein)

Die Beziehung (4.146) geht unter Bertucksichtigung der letzten beiden
Ungleichungen iiber in

dvix]

min

uel dt

< [- k, vix] - Znk, VV[L]} = - hlV]

Da h[VIx]] fir jedes V 4 0 positiv ist, sind fiir eine Funktion W[x] die
Bedingungen des Satzes (4.141) erfillt, wenn Wlx] Losung der Differen-
tialgleichung

dw

T - [- koW - 2mk, YW

ist, wobei hierzu ein anderes System gehort, das jedoch nicht von Inter-
esse ist. Die zu W[x] gehdrige Ubergangszeit T*[x(O)] ist eine obere

Schranke fir die Ubergangszeit der vorliegenden Regelstrecke. Als Losung
der Differentialgleichung erhialt man

-0, 5k, t k -0,5k, t
VW[i] = VWix(0)] e L Zm FE {1 - e ] ]
1

Da Wlx] positiv definit ist, kann T*[i(o)] nach Einsetzen von

*
WIx(T )1 = WIO] = 0 aus der letzten Beziehung berechnet werden. Hieraus
ergibt sich

k

* 2 I )
U1 = — 11 +— 1/ \T0) q o)
k1 2mk h T
2
Damit geht jeder Anfangszustand der Regelstrecke mit dem Reglergesetz -
(4.147) mindestens nach der Zeit T*[x(O)]
es gilt

in den 0O-Zustand tber, d.h.

TIx(0)) < T (x(0)]

- *
In diese Berechnung von T geht die gewdhlte Matrix Q der Ljapunovfunk-

tion ein. Dgrch eine andere Wahl von Q kann sich unter Umstianden ein
kleineres T ergeben. o
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(4.148) Beispiel: Regelung eines Gleichstrommotors

Gegeben sei das 7ustandsmodell des Gleichstrommotors

() = - ax(2) + byuy(t)
;z(t) = - a21x2(t) - a22x1(t)x (t) + biu (t)
XS(t) = a3x1(t)x2(t) )

in dem x, (t) der Feldstrom, x (t) der Ankerstrom, 3(t) die Winkelge-
schw1nd1gke1t u, (t) die Ankerspannung und u (t) die Feldspannung sind.
Die Koeff1z1enten a;, aij und b sind alle p051t1v und die Beziehung zwi-

schen magnetischem FluB und Feldstrom X, wird linear angesetzt.

Es lassen sich nun verschiedene Reglergesetze zu der vorgegebenen Regel-
strecke unter bestimmten Annahmen entwickein. Davon wird hier ein Ansatz
verfolgt. Wenn im folgenden nicht die Ruhelage Xp * 0 betrachtet wird,
dann ist zu beachten, daB der Zustand x = O nur im Stillstand auftritt.
Insbesondere gibt es fir den Feldstrom x1(t) vom Betrag her eine untere

10

Das auf den Arbeitspunkt (xA,
unter Beachtung der Vorgehenswe1se im Abschnitt 1.4 ohne Schwierig-

Schranke X1min

) bezogene Zustandsmodell leitet sich der

Leser
keit ab. Werden fiir die Abweichungen vom Arbeitspunkt die GroBen

v = a0 - x| e ou(v) - a0 - u, |

eingefiihrt, dann lautet das auf den Arbeitspunkt bezogene Modell

Q1(t) -a1v](t) + bZAuz(t)

(t) + v1(t)v3(t)] + b1Au](t)

v, (1) = mayvy(t) = 3y xguvq (B + XYy

vy (1) = ag|xgva(t) + xpuvy (8] * v1(t)v2(t)}

(4.149)

Hierbei ist noch zu beachten, daB in der letzten Gleichung fiir die Win-

kelgeschwindigkeit (Drehzahl) das Lastmoment hinzukommt. Es findet bei

der Abschatzung von V{v] Beriicksichtigung.
Ausgehend von der positiv definiten Form

1 2 2 2 o
Vivl = » qqevq(t) + a,vy(t) + agvz(t)|, a; > 0 i=1,2,3

erhilt man die totale zeitliche Ableitung
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i

0[1] qqvq(t)

-31V1(t) + bzﬂuz(t)

+

qzvz(t)[‘az1vz(t) " ayp%gavy(t) - 322X1Av3(t)]

- qzazzvz(t)vl(t)VS(t) + qpby v,y (t)au, (t)

+

q3v3(t)[x1Av2(t) + x2Av1(t) + v](t)vz(t)]a
und nach einer Umordnung

(4.150) Vvl = —a1q1v$(t) - az1q2v§(t) + X }vz(t)VS(t)

1A{33q3 YAy

Y3393 7 g3y, v (t)v, (v, (t) + qsz(t)[b1Au1(t) - xSAa22v1(tﬂ
‘ V1(t)[b2q1A“z(t) * qsaSXZAVS(t)]'

V[v] ist eine Ljapunovfunktion, wenn durch geeignete Wahl der Parameter
q; > 0 und der Reglerfunktlonen (unter Beachtung der StellgroBenbe-
schrankungen) sich V[v] < 0 fir eine méglichst groBe Zustandsmenge errei-
chen 1dBt. Man erkennt in der Beziehung (4.150), daB die Mischglieder
verschwinden, wenn die Koeffizienten q9 und qz die Bedingung

(4.151) 4387 = q,a,,
erfillen. Auch die Reglergesetze werden aus der Gleichung (4.150) abge-
leitet. Diese sollten nicht nur die indefiniten Terme in (4.150) zum
Verschwinden bringen, sondern auch ein minimales V[v] erreichen (der Le-

ser vergleiche hierzu Gleichung (4. 137)). Wir wahlen daher die Regler-
funktionen

vz(t)
k1 T——IHET fﬁr |V2(t)| 2 CZ
X-,4a volt
bug(t) = SA 21 v, (t) - ¢ 2
1 kT
o v,(t) fir |v2(t)| < ¢,
(4.152) .
) v3(t)
5 o sgn[vS(t)] fir |v1(t)| 24
333X, ‘
Auz(t) = - = vs(t) - <
bya, k,
7 Vi(Ovg(O)sgnlve (1)) fir v ()] < ¢y,
C
1
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bei denen die UmschalFung an den Stellen Cy stetig erfolgt und sicher-
gestellt ist, daB in V[v] ein von v3(t) abhingiger negativer Term auf-
tritt. Die Konstanten ki und c; sind positiv, wobei die Abhdngigkeit der
Reglerfunktionen von den Schwellwerten ¢ bei der Implementierung von
Bedeutung ist. Die totale zeitliche Ableitung (4.150) ist bei der Wahl
der Reglergesetze (4.152) und der Bedingung (4.151) negativ definit im
ganzen Zustandsraum. Fir den Fall |Vi(t)| > c; erhalt man

y 2 2
Viv] = -a1q1v1(t) - q az1v2(t) + b1k1|v2(t)| - k2b2q1V3(t)sgn[v3(t)].

Tritt ein Lastmoment mL(t) auf, dann ist in VIv] der positive Term

[q3v3(t)mL(t)] su beriicksichtigen und zu prifen, ob V (v] noch nega-
L

tiv definit ist. Es muB gelten

VS(t) kzbzq1 sgn[v3(t)} - Qg mL(t) >0

er Beachtung der StellgroBenbeschrankung geeignet

d.h. k
et
.

zu wdhlen.

und aq sind unt

(4.153) Beispiel: Regelung eines Handhabungssystems

Im erste
habungssystems mit 2 Freiheitsgraden hergeleitet. In diesem Beispiel

n Kapitel wurde im Beispiel (1.6) das Zustandsmodell eines Hand-

wird ein Regler zu diesem 7ustandsmodell (1.8) entworfen.

Ausgehend von der einfachsten quadratischen Form

vixl = % x'x

ermitteln wir zuerst die totale zeitliche Ableitung von VIixI, wobei die

xi(t) aus dem 7ustandsmodell (1.8) einzusetzen sind.

Vix] = x(t)x(t)

x1(t)x2(t) + xz(t)[x1(t)xi(t) - a24x§(t) + b, u1(t)]

[a42—a41x1(t)] 1
+ X (t)x4(t) + x4(t) xz(t)xa(t) + uz(t)
3 glx, ()] glx ()]
Hierbei sind
nl S a =ml ; i= 20
324 V= ’ 2 ) 42 =m ’ 341 = m+mL]
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g[xl(t)] = 8+ m[)(](t)—l]2 + mLx%(t) > 0

Damit 0[1] mit geeigneten Reglerfunktionen ui(t) negativ definit wird,
sind die folgenden Bedingungen zu erfiillen:

X1(t)xz(t)xi(t)~a24x§(t)x2(t)+b2x2(t)u](t)+x](t)x2(t) = —Azxg(t)
und
a2 2 Sy 2
— x, (t)xy(t) - — %1 (t)x, (t)x%(t)
glx (1)) 2 74 g[x.,(t)lx‘ 2
1 2
+ ;E;:I;}E uz(t)x4(t) + xs(t)x4(t) = -l4x4(t)

Hieraus ergeben sich fir Ao, Ay > 0 die Reglergesetze

u,(t) - -1‘5;{a24x§(t)-x](t)xﬁ(t)-x1(t)-x2x2(t)}

u,(t) = {a41x](t)xz(t)x4(t)-a4zx2(t)x4(t)-g[x](t)st(t)-a4g[x1(t)]x4(tﬂ
(4.154)

mit . 2 2
VL_X_} = -Azxz(t) —)«4)(4(1;)

die hier nur negativ semidefinit ist. per Leser erkennt jedoch, daB die

Ruhelage Xp = 0 des Regelkreises asymptotisch stabil ist, da

X(t) = x,(t) = 0 keine Losung der autonomen Differentialgleichung des
Regelkreises ist. Diese lautet

S0 = ()

(4.155) Tz(t) = - oxy(e) - Azxz(t)
XS(t) = xa(t)
§4(t) = . x3(t) - Agx, ()
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5.1 Einflhrung

Wenn eine hinreichend genaue mathematische Beschreibung eines zu regeln-
den Systems vorliegt und gewisse Forderungen an den geschlossenen Regel-~
kreis gegeben sind, kann ein Regler in vielen Fallen mit "klassischen"
Reglerentwurfsmethoden bestimmt werden., Dies ist meistens dann moglich,
wenn die Regelstrecke linear und zeitinvariant ist und ein lineares
Reglergesetz gesucht ist. Die Forderungen an den Regelkreis konnen bei-
spielsweise durch ein quadratisches Giitekriterium oder durch Vorgaben

an das Filhrungs- oder Storverhalten festgelegt sein.

In vielen praktischen Anwendungsfallen sind die Parameter einer Regel-

strecke jedoch nicht genau bekannt oder variieren in nicht vorhersehba-

rer Weise innerhalb gewisser Grenzen. Einer theoretischen Behandlung

vergleichsweise einfach zuganglich sind hierbel quasi-zeitinvariante
Regelstrecken sowie Regelstrecken, deren Parameter sich plotzlich
indern und dann fur ldngere Zeit konstant bleiben. Von einem quasi-
zeitinvarianten System spricht man, wenn die Systemparameter im Ver-
gleich zu den Eigenbewegungen des Systems sehr langsam zeitvariabel
sind. In diesem Fall brauchen die zeitlichen Differentiale der Parame-
ter bei analytischen Berechnungen nicht berucksichtigt zu werden. Sehr
langsame parameteranderungen konnen beispielswelse durch Alterung ent-
stehen. Ein plotzlicher Ubergang von einer naherungsweise zeitinvarian-
ten Systembeschreibung zu einer anderen tritt zum Beispiel bei Fahrzeugen

auf, deren Zuladung sich andert.
Wenn die Parameter der Regelstrecke unbekannt oder zeitveranderlich

sind, bieten sich zur Losung eines Regelproblems zwei Moglichkeiten an:

a) Entwurf eines robusten Reglers

b) Entwurf eines adaptiven Reglers
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Unter einem robusten Regler versteht man einen Regler, der fir eine

Klasse von Regelstrecken (oder auch fiir eine Klasse einwirkender Stor-
groBen) Stabilitdt und den Anforderungen entsprechendes dynamisches
Verhalten des geschlossenen Regelkreises garantiert. Beim Entwurf eines
robusten Reglers muB von einer Regelstrecke ein eingegrenzter Bereich des
Parameterraumes bekarnt sein, in dem die Regelstreckenparameter mit Si-
cherheit liegen bzw. verbleiben. Als robuste Regler werden meistens
lineare Regler eingesetzt, da diese unter Zuhilfenahme der bekannten
regelungstechnischen Entwurfsverfahren ermittelt werden koénnen (zur ro-
busten Regelung siehe ACKERMANN [5.1]1, HOROWITZ, SIDI [5.16]).

Unter einem adaptiven Regler versteht man einen Regler, dessen Parameter
nach einer speziellen Strategie in Abhdngigkeit von den meBbaren System-
groBen verstellt (adaptiert) werden, so daB sich (asymptotisch) das ge-
winschte Regelkreisverhalten einstellt.f%in adaptiver Regelkreis ist
somit ein nichtlinearer Regelkreis mit~zwei geschlossenen verschachtel-
ten Schleifen (siehe Bild 5.1 und 5.2). Die erste Schleife entsteht durch
die gewohnte Rickfiihrung der RegelgroBe (Grundregelkreis). Die zweite
entsteht durch die Adaption der Reglerparameter in Abhangigkeit von den
SystemgroBen. Adaptive Regler basieren in den meisten Fdllen auf linearen
_Beglern, deren Koeffizienten sich automatisch einstellen.

Bei der Wahl zwischen einenm robusten und einem adaptiven Regler ist zu
beachten, daR ein robuster Regler meistens erheblich einfacher als ein

adaptiver Regler zu realisieren ist. Andererseits wird man mit einem
adaptiven Regler in vielen Fallen ein

ten erreichen kénnen.

besseres dynamisches Regelverhal-

In Abhdngigkeit von der Art und Weise, wie die Reglerparameter verandert

werden, unterscheidet man ip wesentlichen drei adaptive Regelungsver-
fahren, und zwar das Self—Tuning—Verfahren, das Modell-Referenz-Verfah-
ren und das sogenannte Gain—Scheduling (siehe RSTROM [5.91).

1. Self-Tuning-Verfahren (STR = Self Tuning Regulator)

gegebenen Entwurfsalgorithmus berechnet
(siehe Bild 5.1). Der Entwurfsalgorithmy

s wird durch das gewiinschte
Regelkreisverhalten festgelegt,
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kann durch geeignete Zusammenfassung der Blécke "Identifikations-Algo-
rithmus" und "Reglerentwurfs-Algorithmus" aus Bild 5.1 geschehen.

Regelstrecken- y

Reglerentwurfs- | PoO™ete" ¥ | gentitikations-

Algorithmus [ Algorithmus o
Regler-
parameter 35

\
r \ u y
y Regler Regelstrecke -

Bild 5.1: Adaptive Regelkreisstruktur nach dem {expliziten)
Self-Tuning-Verfahren {STR)

2. Modell-Referenz-Verfahren (MRAS = Model Reference Adaptive System)

Beim Modell-Referenz-Verfahren wird das gewinschte Verhalten des ge-

schlossenen Regelkreises in Form eines Referenzmodells vorgegeben. Je

Parallel- u

Fihrungsmodell

esyy-
Regterparameter 3q Adaptiver ._y”_y_.<5
y

Algorithmus

y Regler Regelstrecke >

Bild 5.2: Adaptive Regelkreisstruktur nach dem Modell-Referenz-Verfahren
(MRAS) mit Parallel-Fiihrungsmodell
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nach Realisierung des adaptiven Reglers wird das Referenzmodell hard-
waremaBig aufgebaut oder auf einem ProzeBrechner implementiert. In Ab-
hdngigkeit von dem Fehler zwischen der Modell-Ausgangsgréfe und der wah-
ren Regelstrecken-AusgangsgroBe werden die Reglerparameter mit Hilfe
eines geeigneten adaptiven Algorithmus sclange gedndert, bis der Fehler
im Idealfall verschwindet.

Wir betrachten im Rahmen dieses Kapitels den gebrduchlichen Fall eines
Modell-Referenz-Verfahrens mit einem Parallel-Fihrungsmodell, welches
das gewlinschte Fihrungsverhalten des geschlossenen Regelkreises vorgibt
(siehe Bild 5.2).

3. Gain-Scheduling

Man spricht von Gain-Scheduling, wenn Reglerparameter anhand einer
Parameterliste in Abhdngigkeit von HilfsgroBen des zu regelnden Pro-
zesses verstellt werden, wobei die HilfsgréBen Informationen iber An-
derungen der ProzeB-Dynamik enthalten (siehe Bild 5.3). Derartige Rege-
lungen wurden urspriinglich auf die Anpassung von Verstirkungsfaktoren
(gains) angewendet. Daher erklart sich der Name "Gain-Scheduling", der

heute in allgemeinerem Zusammenhang verwendet wird.

Eine adaptive Regelung nach dem Prinzip des Gain-Scheduling liegt bei-
spielsweise vor, wenn bei einem Flugzeug die Parameter eines Reglers

zur Stabilisierung der Fluglage umgeschaltet werden, je nachdem ob das
Flugzeug im Unterschall- oder Uberschallbereich fliegt. Durch Messung
des Staudrucks kann festgestellt werden, welcher Geschwindigkeitsbe-

reich vorliegt. Die Umschaltung ist zweckmdBig, da sich das dynamische
Verhalten eines Flugzeugs beim Uberschreiten der "Schallgrenze" stark
andert und zwei, auf die jeweilige Flugphase exakt abgestimmte Regler

eine bessere Dynamik erwarten lassen als ein einziger Regler fiir beide
Flugphasen.

Reglerparameter R Parameter- Hilfs-Messungen
Liste
'
u
y Regler * Regelstrecke y

Bild 5.3: Regelkreisstruktur mit Gain-Scheduling
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Neben diesen drei Grundtypen adaptiver Regler sind Mischformen moglich,
in denen unterschiedliche Elemente der drei Grundtypen gemeinsam auftre-
ten. Weiterhin konnen Adaptionsverfahren zur Zustandsschatzung und zur

Systemidentifikation eingesetzt werden (siehe auch Abschnitt 5.5).

7wischen dem Self-Tuning-Verfahren und dem Modell-Referenz-Verfahren
bestehen - trotz augenfalliger Unterschiede - wesentliche Gemelnsam-
keiten: Wenn ein Self-Tuning-Regelkreis mit dem Ziel entworfen wurde,

ein gewiinschtes Fihrungsverhalten des geschlossenen Regelkreises zu er-
halten, dann ist das Parallel-Fihrungsmodell des Modell-Referenz-Verfah-
rens beim Self-Tuning-Verfahren implizit in dem Block mit der Bezeichnung
"Reglerentwurfsalgorithmus” enthalten. Andererseits werden beim Modell-
Referenz-Verfahren implizit die Regelstreckenparameter geschatzt, denn
wenn nach Beendigung der Adaption das dynamische Verhalten des Grund-
regelkreises gleich dem dynamischen Verhalten des Parallel-Fuhrungs-

modells ist, konnen die Regelstreckenparameter aus den adaptierten Reg-

lerparametern berechnet werden.

Wir behandeln in diesem Kapitel ausschlieflich adaptive Systeme mit einer
linearen zeitinvarianten oder quasi-zeltinvarianten Regelstrecke, von der
die Ordnung und gegebenenfalls weitere Einzelheiten wie der Polstellen-

iberschuf oder das Vorzeichen spezieller Parameter bekannt sein missen.

Anhand eines einfachen Einfilhrungsbeispiels werden eine mogliche Vorge-
hensweise und die Schwierigkeiten beim Entwurf eines adaptiven Reglers
nach dem Modell-Referenz-Verfahren (MRAS) mit Parallel-Fihrungsmodell

ausfihrlich erlautert und diskutiert.

(5.1) Einfiihrungsbeispiel: Entwurf eines adaptiven Reglers fiir eine

Regelstrecke 1. Ordnung

Die lineare zeitinvariante Regelstrecke 1. Ordnung
(5.2) y(t) = a y(t) + b ult) (b +0)

deren Parameter (a,b) bis auf das Vorzeichen von b unbekannt seien, soll

mit Hilfe eines zeitvarianten (adaptiven) P-Reglers mit Vorfilter der
Form
(5.3) u(t) = o(t)r(t) - k(t)y(t)

so gerzgelt werden, daB sich das Fihrungsverhalten des Regelkreises

asymptotisch dem vorgegebenen gewlinschten Modellverhalten

(5.4) yy(t) = ayyy(t) + byr(t) (a, < 0)



322 5 Adaptive Systeme

in dem Sinne nahert, daR
I
(5.5) lim e(t) = 1lim (yM(t) -y(t)) = 0
t-e t-w
Zur Losung des Problems wird zunichst die Reglergleichung in die Glei-
chung der Regelstrecke eingesetzt:

y(t) a y(t) + b u(t)

a y(t) « blp(t)r(t) - k(t)y(t)]
{a - b k(t)ly(t) + b p(t)r(t)

(5.6)

ap(t)y(t) + bplt)r(t)

Hierbei gelten die Abkiirzungen

aR(t)

bR(t)

a-b>bk(t)
b p(t)

Im Falle perfekter Regelkreisanpassung an das Parallel-Fiihrungsmodell
lauten die (optimalen) Reglerparameter
a-a

(5.7) k% - - M : po _ M

Da die Regelstreckenparameter unhekannt sind, werden Adaptionsgesetze

fir die Reglerparameter p(t) und k(t) aus der Forderung

lim e(t) = 9
tﬂm

hergeleitet. Hierzu wird eine Differentialgleichung fiir den Fehler
e(t) = yM(t) - y(t) aufgestellt. Wir erhalten

e(t) = y,(t) - y(t)

(5.8) = aMYM(t) + er(t) - aR(t)y(t) - bR(t)r(t)
= ayyylt) - ayy(t) + ayy(t) - ap(tly(t) + (by - bR(t)]r(t)

= aye(t) + (a, - ap(t)ly(t) + (b - bp(t)Ir(t) .
Im weiteren werden die Abkiirzungen

Aa(t)

ay - apy(t) |
(5.9) M R
ab(t)

bM - bR(t)

eingefihrt. Die Fehlergleichung lautet dann
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(5.10) e(t) - ae(t) + sa(t)y(t) + ab(t)r(t)

Die Differentialgleichungen fir die Reglerparameter sollen aus einer
Ljapunov-Funktion ermittelt werden. Als Ljapunov-Funktion wird die

quadratische Form
(5.11) Vie(t),aa(t),ab(t)] = 5 [que(t) + qyaa’(t) + qgab?(t)]

mit beliebigen positiven Konstanten 44, 4y, 95 angesetzt. Durch
Differentiation von (5.11) folgt unter Beriicksichtigung der Differen-

tialgleichung (5.10)

Vie(t),aalt),sb(t)]

q, e(t)laye(t) + aalt)y(t) + ab(t)r(t)]

+ g, ra(t) Aé(t) * Qs Ab(t) Aé(t)

(5.12) = qq ay e (1)
¢ salt)lq, salt) + q; e(t)y(t)]

v ab(t)lqg ab(t) + q; e(t)r(t)] .

Die Differentialgleichungen fiir die Reglerparameter p(t) und k(t)

werden durch die Forderungen

qué(t) + que(t)y(t) = 0 |
(5.13) .
q3Ab(t) + q]e(t)r(t) = 0
festgelegt. Dann gilt gerade
(5.14) Vle(t),sa(t),ab(t)] = q1aMez(t) <0,

da der Eigenwert ay des Parallel-Fihrungsmodells voraussetzungsgemal
kleiner als null ist. Die Beziehung (5.14) stellt somit sicher, daB
der Fehler e(t) asymptotisch verschwindet. Uber die Konvergenz der

Parameter
ist hierbei allerdings nichts ausgesagt.

Aus den Gleichungen (5.13) folgt

X a4
sa(t) = - — e(t)y(t) |
4z
(5.15) ]
Ab(t) = - ! e(t)r(t)
a3

Andererseits ist
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palt) = g? lay - ag(t)] = - ap(t) = - gf [a - b k(t)] = b k(t),
8b(t) = G5 [by - bp(t)] = - b(t) = - b p(t)
(5.16)

Somit lauten die Adaptionsgleichungen

. q
k(1) = - —f eltly(t)
9,
(5.17) - .
p(t) = ag% e(t)r(t)

Da das Vorzeichen des Streckenparameters b bekannt sein soll und a4
dy, dg beliebige positive Zahlen sind, kénnen die Adaptionsgleichungen

in der Form

E(t) = - oa; e(t)y(t)

(5.18) .
p(t) = ay e(tir(t)

dargestellt werden. Hierbei sind ay und o, bis auf die Nebenbedingung
sgn(a1) = sgn(uz) = sgn(b)

beliebige Zahien (Adaptionskonstanten), die die Adaptionsgeschwindig-
keit beeinflussen. Die Struktur des adaptiven Regelungssystems ist in
Bild 5.4 dargestellt.

Den Bildern 5.5 konnen einige charakteristische Simulationsergebnisse
entnommen werden. Fir alle Simulationen gilt y(0) = yM(O) = p(0) =

= k(0) = 0 . Die Parameter der Regelstrecke sind a = - 0,5; b = 1, wih-
rend fir das Parallel-Fihrungsmodell ay = - 3 und bM = 3 gewdahlt wurde.
Der Regelkreis wird durch eine rechteckférmige FiihrungsgroBe der Ampli-
tude A angeregt. Die Adaptionskonstanten sind ap = ay = a. Aus Bild 5.5
wird ersichtlich, daB die Adaptionsgeschwindigkeit groBer ist, wenn die
Adaptionskonstante o grofer gewdhlt wird. Andererseits nimmt die Adap-
tionsgeschwindigkeit mit der Amplitude A der Fihrungsgrofe zu, da das
Quadrat der Amplitude in dhnlicher Weise auf den Regelkreis wirkt wie
die Adaptionskonstante a, (siehe Bild 5.4). Aufgrund der quadratischen
Abhangigkeit 1st diese Zunahme besonders stark. Die Werte der Reglerpa-
rameter im angepaBten Zustand sind nach (5.7) k° = 2,5 und p° = 3 .
Anhand von Bild 5.5 e,f wird deutlich ersichtlich, da® im Fall einer
konstanten FithrungsgréBe der Fehler e(t) asymptotisch verschwinden wirde,
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obwohl die Reglerparameter nicht gleich den angepaBten Werten nach (5.7)
sind. In diesem Falle stellen sich die Reglerparameter so ein, daf der
Verstdrkungsfaktor des Regelkreises gleich dem Verstidrkungsfaktor des
Parallel-Fithrungsmodells ist. Welche Endwerte p und k im einzelnen an-

nehmen, hdngt dann unter anderem von den Anfangswerten ab.

Paralle! - Fihrungsmodell

L |

yul0)
by | | f ——'(£F

Qpm =

rit) yult)

| |
| |
| f
| 1

|
! |
' |
' |
! {
i

Regelstrecke

|
l y( 0)
um; X ] %
N N
i( |
|
|
|
}

ol t) elt)

o(0)

?: k{0)

| k(t) | . L

e

ua

X

Bild 5.4: Struktur des adaptiven Regelkreises aus Beispiel (5.1)
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1.0
y(t) (X=1U; A:O,S ﬁ=10; A:0,5

-1,0 -1
0 10 20 30 40 0 10 20 30 40
— 1 —t
{a) (bl
1.0 4
a=100;A=05 olt) a=100;A=05

(1:10; A=2
-3 4
¢ 5 10 15 20 0 5 10 15 20

Bild 5.5: Simulationsergebnisse zu Beispiel (5.1)

(5.19) Bemerkungen:

a) Da die Adaptionsgleichungen mit Hilfe einer Ljapunov-Funktion ge-
funden wurden, ist die globale asymptotische Stabilitit des Regel-
kreises 1.S.v. Ljapunov sichergestellt. Beim Entwurf wurden jedoch
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b)

c)

d)

327

keine Storungen beriicksichtigt. Da das Gesamtsystem nichtlinear ist,
ist es denkbar, daB sich das Stabilitdtsverhalten durch einwirkende
Storungen dndert. Ebenso kann sich das Stabilitatsverhalten des
Regelkreises dndern, wenn die Regelstrecke zusétzliche, beim Regler-
entwurf nicht bericksichtigte, dynamische Effekte ("unmodelled
dynamics'") enthdlt, was bei praktischen Anwendungen fast immer zu-
trifft. In diesem Fall treten Instabilitdten haufig dann auf, wenn
die Adaptionskcnstanten zu grofl sind oder die Amplitude des Fithrungs-

signals eine gewisse Grenze uberschreitet (siehe Beispiel (5.352)).

Da in den Adaptionsgleichungen der unbekannte Streckenparameter b
im Produkt mit frei wahlbaren (positiven) XKonstanten auftrat,
konnte dieser eliminiert werden. Eine so einfache Vorgehensweise
ist i.a. nicht mdglich.

Wenn das Fiihrungssignal r(*) alle Eigenbewegungen der Regelstrecke
"gut anregt" (r(+) heift dann in der angelsdchsischen Literatur
"persistently exciting" oder "sufficiently rich"), ist sicherge-
stellt, daB auch die Regelkreisparameter gegen die Parameter des
Parallel-Fihrungsmodells konvergieren. Ist r(*) dagegen beispiels-
weise eine konstante Flihrungsgrofe, so stimmen nur die Verhdlt-
nisse bM/aM und bR/aR (Verstarkungsfaktoren) iberein, es sei denn,

es liegen spezielle Anfangswerte vor.
Wenn anhand der Gleichung (5.12) zur Herleitung von Adaptionsge-
setzen der Ansatz
qa(t) + qe(tly(t) = - sa(t)
(5.20)

qzob(t) + qpelt)r(t) - ab(t)

gewahlt wird, konnte es scheinen, als ob dann unabhangig vom Fih-
rungssignal r(¢) auch die Parameterkonvergenz (aR - ay: bR - bw’
gesichert ist, da dann

Vie(t), m(t),80(0)] = qya,e’(t) - sa’(t) - ap(t)
Dies ist jedoch ein Trugschluf, da aus (5.20) keine von den unbe-
kannten Streckenparametern a und b unabhangigen Adaptionsgesetze

fiir k und p abgeleitet werden konnen. ]

Die Ergebnisse des Einfiihrungsbeispiels (5.1) lassen sich auf die adap-

tive Drehzahl-Regelung einer konstant erregten Gleichstrommaschine an-

wenden, wenn das Ubertragungsverhalten zwischen der Anker-Spannung und

der Maschinen-Drehzahl ndherungsweise durch ein VZ1—Glied beschreibbar
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Adaptive Drehzahlregelung einer Gleichstrommaschine nach

Bild 5.6:

Beispiel (5.1) in analoger Schaltungstechnik
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ist. In Bild 5.6 1ist eine analoge Schaltung mit 4 Multiplizierern zur
Realisierung des adaptiven Reglers nach (5.18) angegeben. Die Messung
der Drehzahl erfolpgt mit Hilfe einer Tacho-Maschine, deren Ausgangs-
grole tiefpafgefiltert wird, um MeB-Stdrungen zu unterdriicken. Die
Grenzfrequenz des Stor-Filters muB wesentlich grofler sein als die
Eigenfrequenzen der Regelstrecke und des Parallel-Fiihrungsmodells, da
sonst die Voraussetzungen fiir den Entwurf des adaptiven Reglers nicht

mehr in guter Ndherung erfillt sind.

Zum AbschluB dieses Abschnitts befassen wir uns mit den Nullstellen
von Ubertragungsfunktionen im Laplace- bzw. Z-Bereich. Wir werden
namlich im Verlauf dieses Kapitels Reglerentwurfsmethoden behandeln,
bei denen alle Nullstellen der Regelstrecke gekiirzt werden. Damit
derartige Regler realisierbar sind, missen sdmtliche Nullstellen der
Regelstrecke "stabil" sein. Fir den Entwurf zeitkontinuierlicher Regler
bedeutet dies keine groRe Einschrankung, da nur wenige reale technische
Systeme existieren , die (Laplace-Bereichs-) Ubertragungsfunktionen mit
"instabilen Nullstellen" besitzen. Diese Tatsache iibertragt sich bei
Abtastung jedoch i.a. nicht auf die Z-Ubertragungsfunktionen, so daB
"instabile Nullstellen" zeitdiskreter Systeme keine ungewdhnliche
Erscheinung sind. Wihrend die Polstellen einer Z-Ubertragungsfunktion
G(z) auf einfache Weise nach der Gleichung

AT
z. = e 12 (Ta Abtastzeit)
berechnet werden kénn?n, wobel Ay die Polstellen der entsprechenden
Ubertragungsfunktion G(s) im Laplace-Bereich sind, existiert kein ein-
facher Zusammenhang zur Berechnung der Nullstellen einer Z-Ubertragungs-

funktion. Dennoch kodnnen einige ithrer Eigenschaften angegeben werden:

(5.21) Eigenschaften der Nullstellen von G(z):

Wir setzen voraus, dal die Ubertragungsfunktion é(s) gebrochen rational

ist und keinen Durchgriff besitzt. Dann gilt:

a) Der PolstelleniiberschuB von G(z) ist (abgesehen von einigen Ausnahmen)
immer gleich eins, unabhangig vom Polstelleniiberschu d in der Uber-
tragungsfunktion G(s). Durch die Abtastung entstehen im Z-Bereich
somit d-1 zusdtzliche Nullstellen. Dies ist unmittelbar einsichtig,
wenn man bedenkt, daB die Sprungantwort eines Systems ohne Totzeit
nach beliebig kurzer Zeit einen von null verschiedenen Wert besitzt,
und zwar unabhingig vom Polstelleniiberschu der Ubertragungsfunktion
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é(s). Die zeitdiskrete Sprungantwort des abgetasteten Systems be-
ginnt somit um eine Abtastzeit verzogert, womit der Polstellentber-
schuB in der Ubertragungsfunktion G(z) nicht groBer als eins sein
kann. Ausnahmen liegen dann vor, wenn die Sprungantwort des zeit-
kontinuierlichen Systems im ersten Abtastzeitpunkt (bzw. in den

ersten beiden Abtastzeitpunkten usw.) durch null lduft.

Zur Reglersynthese kann es manchmal zweckmdfig sein, ndherungswelse

mit einem groReren PolstelleniberschuB in G(z) zu rechnen.

b) Besitzt 6(5) einen PolstelleniliberschuB, der groRBer als zwei ist,
so liegen Nullstellen von G(z) mit Sicherheit auBerhalb des Ein-
heitskreises der z-Ebene, wenn die Abtastzeit Ta hinreichend klein

ist. Diese Aussage gilt unabhangig von der Lage der Nullstellen
von G(s).

c) Wenn alle Polstellen von é(s) negativen Realteil besitzen und
G(0) £ 0 ist, dann laufen alle Nullstellen der Z-Ubertragungsfunk-
tion G(z) gegen null, wenn die Abtastzeit Ta gegen unendlich geht.

d) Alle Nullstellen von G(z) sind "stabil", wenn é(s) die folgenden
drei hinreichenden Bedingungen erfillt:

(1) Alle Polstellen von é(s) besitzen negativen Realteil.
(2) G(0) #0

(3) -t < arglG(ju)]l <0  fir 0<uw<ao . n

Die Beweise dieser Aussagen und ausfithrliche Beispiele findet der Leser
in RSTRGM, HAGANDER, STERNBY [5.10]. Die in (5.21d) an é(s) gestellten
Forderungen zur Vermeidung "instabiler Nullstellen" von G(z) sind recht
streng. Eine notwendige Bedingung zur Erfiillung dieser Forderungen ist,
daB der Polstelleniiberschuf in G(s) nicht groBer als zwei ist.

5.2 Allgemeine Beziehungen zur Berechnung der Reglerparameter bei
bekannter Regelstrecke und vorgegebenem Regelkreisverhalten

In einem Regelkreis, dessen Parameter adaptiv einzustellen sind, miissen
die Zusammenhdnge zwischen den Strecken- und Reglerparametern bekannt
sein, wenn ein gewinschtes Fihrungs- oder Storverhalten des geschlosse-

nen Regelkreises vorgegeben wird. Wir berechnen derartige Zusammenhdnge,
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indem wir von linearen Reglergesetzen (deren Parameter spater adaptiert
werden) und linearen zeitinvarianten oder quasi-zeitinvarianten Regel-
strecken ausgehen. Weiterhin wird die vollstandige Steuerbarkeit und
Beobachtbarkeit der Regelstrecken vorausgesetzt. Andernfalls mifte man
aufgrund der Kirzungen in den Streckeniibertragungsfunktionen von den

reduzierten Ubertragungsfunktionen ausgehen.

5.2.1 Vorgabe des Fiihrungsverhaltens (Pol- und Nullstellenvorgabe)

Im folgenden leiten wir Reglerentwurfsgleichungen unter der Annahme
her, daB ein gewiinschtes Fithrungsverhalten des geschlossenen Regel-
kreises gegeben ist. Wir werden sehen, daB das Storverhalten der

gewdhlten Regelkreisstruktur im wesentlichen festliegt, in gewissen

Grenzen jedoch durch freie Parameter beeinfluBt werden kann.

Der Reglerentwurf erfolgt anhand von Ubertragungsfunktionen im
Laplace- bzw. Z-Bereich, wobei zeitkontinuierliche und zeitdiskrete
Regelkreise gemeinsam betrachtet werden, da sich die algebraischen
Reglerentwurfsgleichungen nur in der Hinsicht unterscheiden, dafl 1im
zeitkontinuierlichen Fall die Koeffizienten von Ubertragungsfunktionen
im Laplace-Bereich ermittelt werden, im zeitdiskreten Fall dagegen

die Koeffizienten von Z-Ubertragungsfunktionen.

Als Argument der auftretenden Polynome und Ubertragungsfunktionen wird
die Variable p gewdhlt, wobei p im zeitkontinuierlichen Fall der

Variablen s entspricht (Laplace-Bereich), im zeitdiskreten Fall dage-

gen der Variablen z (Z-Bereich).

Es ist selbstverstindlich, daf die Beurteilung von Polstellenkonfigu-
rationen im zeitkontinuierlichen und zeitdiskreten Fall unterschied-
lich ist und daB heispielsweise eine sinnvolle Fihrungs-Ubertragungs-
funktion im zeitkontinuierlichen Fall so vorgegeben werden muB3, dag
alle Polstellen in der linken s-Halbebene liegen, im zeitdiskreten
Fall dagegen so, daB alle Polstellen innerhalb des Einheitskreises

der z-Ebene liegen.

Dem Reglerentwurf liegt eine Regelkreisstruktur nach Bild 5.7 zugrunde,
Die Reglerstruktur ist gleich der Struktur eines in den Laplace- bzw.
7-Bereich iibertragenen dynamischen Zustandsreglers mit eventuellem
zusitzlichem Vorfilter (siehe Anhang A4.2). Die Festlegung der Regler-
parameter erfolgt jedoch in etwas allgemeinerer Weise als in Anhang
A4.2. Der Regler nach Bild 5.7 kann entweder durch unmittelbare Uber-
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tragung der Struktur in den Zeitbereich oder in der Struktur eines
dynamischen Zustandsreglers realisiert werden. Es sei an dieser Stelle
darauf hingewiesen, daf wir immer dann von einem dynamischen Zustands-
regler sprechen, wenn eine Reglerstruktur nach Bild A4.2 bzw. Bild A4.3
vorliegt, unabhdngig davon, wie die Systemmatrizen des Reglers berechnet
werden, obwohl bei einem allgemeinen Entwurf die Deutung des dynamischen
Zustandsreglers als Kombination von (reduziertem) Beobachter und Zu-
standsregler verlorengehen kann. Da der "gewohnliche"” dynamische Zu-
standsregler in der folgenden allgemeinen Entwurfstechnik als Spezial-
fall enthalten ist, verwenden wir fiir das charakteristische Polynom der

Systemmatrix des dynamischen Zustandsreglers weiterhin die Bezeichnung
"Beobachterpolynom".

Es ist zweckmdBig, die Nennerpolynome von Ubertragungsfunktionen,
gekennzeichnet durch das Symbol A, immer so zu normieren, daB ihr
hochster Koeffizient gleich eins ist. Derartige Polynome werden monisch

(englisch: "monic") genannt.

Rip) Z[pl Uipl Zlp) Y(p)
—— 6fpl- Gelp) = -2 " .
Alp) _ Adpl

2p)
Gclp’z p
Adp)

Bild 5.7: Regelkreisstruktur

Das Verhalten der linearen zeitinvarianten Regelstrecke (Ordnung n_)
wird durch die Eingangs-Ausgangs-Beziehung

(5.22) As(p)Y(p) = Zs(p)U(p)
beschrieben. Das Reglergesetz lautet nach Bild 5.7
(5.23) a (pulp) = 2,(pIR(p) - Z.(p)Y(p)

Die Reglerpolynome Z (p), Zc(p) und Ac(p) sollen so bestimmt werden, daB
der geschlossene Regelkreis méglichst dasselbe Fiilhrungsverhalten wie das
als Spezifikation vorgegebene Parallel-Fihrungsmodell

(5.24) AM(p)YM(p) = ZM(p)R(p)

(Ordnung n,) besitzt, so daB Yy(pP) und Y(p) beziiglich des Fiihrungsver-
haltens gleich sind. Da bei Einsatz eines kausalen, d.h. realisierbaren
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Reglers der PolstelleniiberschuB des geschlossenen Regelkreises nie
geringer sein kann als der der Regelstrecke, muf das Parallel-Fiihrungs-
modell so vorgegeben werden, daB die Differenz seines Nenner- und Zihler-
grades nicht kleiner ist als bei der Regelstrecke. Im Unterschied zum
Entwurf eines dynamischen Zustandsreglers nach Anhang A4.2 werden hier
nicht nur die Polstellen des gewiinschten Fiihrungsmodells vorgegeben,
sondern - soweit moglich - auch die Nullstellen. AuBerdem kann das
Parallel-Fihrungsmodell mit anderer Ordnung vorgegeben werden als die
Regelstrecke.

Wir setzen das Reglergesetz (5.23) in die Eingangs-Ausgangs-Beziehung

(5.22) der Regelstrecke ein und erhalten

(5.25) Caglpla (p) + 2, (p)Z (p))Y(p) = Z_(p)Z (pIR(p)
Ein Vergleich der Beziehungen (5.24) und (5.25) liefert die Gleichung

Z (p)Z (p) Z,(p)
(5.26) S v - M
As(p)Ac(p) + Zs(p)Zc(p) AM(p)

Diese Gleichung kann nur erfillt werden, wenn die Nullstellen der
Regelstrecke durch den Nenner der linken Seite von (5.26) gekiirzt
werden, was aus Stabilitatsgrinden bei der Realisierung jedoch nur fiir
Nullstellen méglich ist, die im zeitkontinuierlichen Fall in der linken

offenen s-Halbebene und im zeitdiskreten Fall innerhalb des Einheits-
kreises der z-Ebene liegen,

Im allgemeinen wird man Streckennullstellen auch dann nicht kiirzen, wenn
diese im zeitkontinuierlichen Fall zwar in der linken s-Halbebene, aber
dicht an der imagindren Achse und im zeitdiskreten Fall zwar innerhalb
des Einheitskreises der z-Ebene, aber dicht am Einheitskreis liegen.
Innerhalb welcher Bereiche noch Kirzungen vorgenommen werden, hédngt vom

konkreten Anwendungsfall ab. Das Zahlerpolynom Zs(p) der Regelstrecke
wird in der Form

+ -
(5.27) 2. (p) = z (p)z (p)

aufgespalten, wobei das Polynom Z;Ep) die zu kiirzenden Streckennull-
stellen enthidlt und das Polynom Zs(p) die Streckennullstellen ent-
hialt, die nicht gekiirzt werden sollen bzw. dirfen. Der Koeffizient

der hochsten Potenz von Z;(p) sei auf eins normiert, damit im folgenden

nur monische Nennerpolynome auftreten.
Da das Polynom Z;(p) nicht gekiirzt werden darf, mufl dieses in ZM(p) ent-

halten sein. Wir kdnnen ZM(p) somit in der Form
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(5.28) Zy(p) = Z;(p)Z&(p)

darstellen, wobei das Polynom Za(p) die verbleibenden, frei vorgebbaren
Nullstellen des geschlossenen Regelkreises enthilt. Entgegen der urspriing
lichen Annahme kénnen nicht alle Nullstellen der Fuihrungsiibertragungs-
funktion vorgegeben werden, wenn nicht samtliche Streckennullstellen ge-
kirzt werden.

Der Nenner der linken Seite von (5.26) muB somit die Gleichung
N -
(5.29) a.(pla (p) + z,(p)z (p) = 2 (play(plag(p)
erfiillen, wobei AB(p) ein frei vorgebbares Polynom ist, mit dem die
Gradunterschiede der linken und rechten Seite von (5.26) ausgeglichen

werden. Setzen wir (5.29) in (5.26) ein und bericksichtigen (5.28),
so folgt

- + - +
(5.50) Zf(p)zs(p)?v(p) _ ZS(p)ZM(p) |
Zs(p)AM(p)AB(p) AM(p)

woraus wir flr Zv(p) unmittelbar die Bestimmungsgleichung
N +
(5.31) Zv(p) = AB(p)ZM(p)

erhalten. Das vorgebbare Polynom & (p) kiirzt sich auf diese Weise wieder
heraus. Aufgrund der Kiirzung mug das Polynom A (p) so vorgegeben werden,
daB alle seine Nullstellen in der linken offenen s-Halbebene bzw. inner-
halb des Elnheltskrelses der z-Ebene liegen. Wie wir an spaterer Stelle

sehen werden, ist A (p) ein frei vorgebbares Teilpolynom des Beobach-
terpolynoms beim dynamlschen Zustandsregler.

Da 2° (p) als Faktor in der rechten Seite von Gleichung (5.29) auftritt,
muf Z (p) auch auf der linken Seite von (5.29) als Faktor auftreten.

Dies 1st nur moglich, wenn Zs(p) in Ac(p) enthalten ist. Wir schreiben
Ac(p) in der Form

(5.32) a.(p) = Zl(pla,(p)
und erhalten aus (5.29) durch Kirzung von Z;(p)
(5.33) Ay(plaglp) = s,(pla_,(p) + Z;(p)ZC(p)

Aus dieser sogenannten Diophantischen Gleichung lassen sich die unbe-

kannten Koeffizienten der Reglerpolynome a 1(p) und Z (p) in Abhdngig-
keit von a (p) und AB(p) sowie den Polynomen A (p) und z (p) der Regel-
strecke durch Koeffizientenvergleich bezugllch aller Potenzen von p er-
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mitteln. Der Koeffizientenvergleich fihrt auf ein lineares Gleichungs-
system, welches nachweisbar immer lésbar ist, wenn die Reglerpolynone

mit so hohem Grad angesetzt werden, daB geniigend Reglerparameter vorhan-
den sind, um alle Koeffizientenbedingungen zu erfillen, und keine gemein-
samen Nullstellen in Z;(p) und As(p) auftreten. Letzteres ist bei einer

vollstdndig steuerbaren und beobachtbaren Regelstrecke sichergestellt.

ZusammengefaBt lauten die Gleichungen fiir den Reglerentwurf

(5.34) sy(Plaglp) = s (0)a_ (p) + 2(p)Z (p)

(5.35) 2,(p) = ap(p)Zy(p) :

(5.36) Ac(p) Z;(D)AC1(P)

Das Reglergesetz ist

(5.37) Zg(p)a  (PIUGP) = ap(p)Zy(pIR(p) - Z_(p)¥(p)

Wir untersuchen abschliefBend, wie der Grad ng des Polynoms AB(p} ge-

wdhlt werden muB, damit die Gleichung (5.34) bei vorgegebenem, festem

Polynom AB(p) eindeutig losbar ist. Sei

Grad[Z;(p)] = m

1]
3

(5.38) 'Gradfzg(p)]

Grad[AB(p)]

1
=
jv vl

Dann folgen aus (5.34), (5.35) und (5.36) unmittelbar die Grade

Grad[ACT(p)] = Mg+ Ny - n ,
(5.39) Gradlz (p)] = ng + m, ,
Grad[AC(p)] = Mg v Mmoo+ omy -ong

Wir betrachten zuerst den Fall, daB in der Reglerlibertragungsfunktion
G (p) der Zidhlergrad gleich dem Nennergrad angesetzt wird, d.h.
c
Grad(z_(p)1 = Gradla_(p)], und daB in der Regelstrecke der Zihler-
c
grad kleiner als der Nennergrad ist (Regelstrecke ohne Durchgriff).
. +
Das Polynom Zc(p) besitzt dann Dg + Mg + Ny - n_ + 1 unbekannte Para-
meter und das Polynom AC1(p) ng + Ny - N unbekannte Parameter. Zur
Berechnung der unbekannten Reglerparameter aufgrund eines Koeffizien-
tenvergleichs in (5.34) stehen andererseits genau ng + ny Gleichungen
zur Verfiigung, da der Koeffizient der hdochsten Potenz auf beiden Seiten
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der Gleichung (5.34) immer gleich eins ist, wenn die Regelstrecke keinen
Durchgriff besitzt. Gilt

+
(5.40) Dy *+ Mg = Np+ny -n_+n, + me +n, - n_ o+

so ist die Anzahl der Gleichungen gleich der Anzahl der unbekannten
Parameter und die Reglerparameter sind eindeutig festgelegt. Aus
(5.40) folgt durch Auflésen

(5.41) n = 2n_-n, -m -~ 1

Gleichzeitig muB aber die Nebenbedingung ng > 0 erfillt sein. Setzt man
in der Ubertragungsfunktion G (p) den Zahlergrad um d kleiner als den
Nennergrad an, so ist die Gle1chung (5.34) (auch bei Regelstrecken mit
Durchgriff) eindeutig lésbar fiir

(5.42) ng = 2n_-n,-m -1 +4d ,
5 c
wenn gleichzeitig np > 0 gilt.

Wahlt man ng groBer, so gibt es mehrere Losungen, wahlt man n
so gibt es nur in Sonderfiallen eine Lésung.

B kleiner,

Aufgrund des Reglergesetzes (5. 37) erhalten wir die Regelkreisstruktur

nach Bild 5.8, in der zusidtzlich Streckene1ngangs~ und Streckenausgangs-
storungen eingezeichnet sind.

Z{p) Dip)
Rip) | Aglp)Zulp) Ulp) o Z.(p) Z,(p) Yip]
Zyplagle) [ ¥, P T A
Z.{p)
Zip) &,p)

Bild 5.8: Struktur des Regelkreises beij Vorgabe des Fithrungsverhaltens

Die Storiibertragungsfunktionen ergeben sich anhand von Bild 5.8 zu

25(pYa_,(p)

(5.43) Tz(p) = = t!

ay(plag(p)



5.2 Allgemeine Beziehungen zur Berechnung der Reglerparameter 337

(5.44) Tylp) = M
ay(plag(p)

Hierbei wurde Gleichung (5.34) berilicksichtigt. Wiahlt man ng grofer als
in Gleichung (5.41) bzw. (5.42) angegeben, erhilt man entsprechend viele
freie Reglerparameter, mit denen das Stérverhalten beeinfluRt werden
gann. Ebenso kann das Stdérverhalten durch die Wahl der Eigenwerte von

AB(p) verdndert werden.

(5.45) Beispiel: Reglerentwurf fiir eine Regelstrecke 2. Ordnung

Betrachtet sei eine zeitkontinuierliche Regelstrecke mit der Ubertra-

gungsfunktion
Zs(s) 10{5+3)
(5.46) G (s) = ——— = T , (n_=2)
s As(s] s"+ 35 + 2 s
Als Verhalten des geschlossenen Regelkreises (Fiuhrungsmodell) geben wir
ZM(S) 20(s+1)
(5.47) GM(S) = = N/ B— ) (HM = 2)
AM(S) s"+ 75 + 12

vor. In diesem Fall ist entsprechend der Zerlegung von Zs(s) nach (5.27)

Z;(s) = 10 ,

(5.48) + .
ZS(S) s + 3 (m_ =

1]

Aus der Darstellung von ZM(S) nach {5.28) folgt

Z,,(s)
(5.49) h(s) = - = 2(s+1)
ZS(S)

Fiir den Reglerentwurf setzen wir
GradEAC(s)] = Grad[ZC(s)}

an. Um eindeutige Reglerparameter zu erhalten, wdhlen wir den Grad von

AB(S) entsprechend (5.41):

Ll

Grad[&B(s)] = ng 0 .

Dann ergibt sich aus (5.39)
Grad[ZC(s)} = 1 , Gradla_;(s)1 = 0

Die unbekannten Polynome AB’ AL und Z. haben somit die Form
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ag(s) = 1 ,
(5.50) AC1(5) = 1 ,
Zc(s) = as + b

Die Koeffizienten a und b werden anhand von Gleichung (5.34) berechnet:

52+ 78 + 12 = 52+ 3s + 2 + 10(a s + b)

= 5% (34 10a)s + (2 + 10 b)

Durch Koeffizientenvergleich folgt

a = 0,4 ; b = 1

(5.51)
Z.(s) = 0,45+ 1 = 0,4(s + 2,5)

Nach (5.35) und (5.36) erhalten wir
(5.52) Zv(s) = 2(s+1) Ac(s) = s + 3
Das Reglergesetz lautet somit nach (5.37)

(5.53) UGs) = 2 Z1R(s) - 0,4 §§§%§ Y(s) . n

Es gibt unterschiedliche Griinde, die dafiir sprechen, den Regelkreis
nach Bild 5.8 nicht direkt in dieser Struktur, d.h. durch einen Regler
im Rickfithrzweig und ein separates Vorfilter zu realisieren. Zum einen
wire bei einem zeitkontinuierlichen Regler der Realisierungsaufwand
recht groB, da sowohl das Vorfilter als auch der Regler eine Ordnung
besitzen, die gleich dem Grad des Nennerpolynoms Ac(p) ist. Zweitens
sind wir beziiglich des Fihrungsverhaltens des Regelkreises davon aus-
gegangen, daBl sich die Nennerpolynome des Reglers und des Vorfilters
gegenseitig kiirzen. Wenn der Regler im Rickfihrzweig und das Vorfilter
getrennt realisiert werden, kann diese Kirzung aufgrund von Parameter-
variationen so ungenau sein, da@ spirbare Fehler im Fithrungsverhalten
die Folge sind. Drittens ist bei der Losung der Reglerentwurfsgleichung
(5.34) nicht sichergestellt, daB alle Nullstellen der Polynome Acl(p)
und Zc(p) "stabil" sind. Wenn 6.1(p) "instabile Nullstellen" besitzt,
ist eine unmittelbare Realisierung nach Bild 5.7 bzw. 5.8 aufgrund

der Instabilitdt des Vorfilters nicht méglich. Eine andere Realisie-
rungsmoglichkeit besteht darin, den Regler in den Vorwiartszweig zu

schieben. Als Nennerpolynom des Vorfilters tritt dann jedoch das Polynom
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Zc(p) auf (siehe auch Bild A4.7). Bei den folgenden Realisierungs-
vorschldgen werden die geschilderten Probleme umgangen.

In Bild 5.9 ist eine geeignete Zustandsdarstellung des Reglers ange-
geben. Fiir diese wdhlt man zweckmdBigerweise die Beobachtbarkeitsnor-
malform. Dann ist der Reglerausgangsvektor der Einheitsvektor gT =

1
(1,0,...,0] und die Reglersystemmatrix besitzt die Form

Ty 100
. 0 '
R - o
1
-T o « - - 0
| 0 |

wobei in der ersten Spalte von R die negativen Werte der Koeffizienten
des Polynonms

1-1
O I S U L I S

stehen. Die Festlegung der Eingangsvektoren Er und Ey sowie der GroBen
p und ky erfolgt anhand der Gleichungen (siehe auch Bild 5.8)

e; adjlpE-R] by + keap) = z.(p),
e] adjlpE-R1 b+ ea.(p) = Z,(p) = ag(p)Zy(p)
Rip]
br ’ 2(p) Dip)
] " Ulp} Y(p}

O— by | RETLE Gilel T

e
x
~

Bild 5.9: Mégliche Realisierung der Regelkreisstruktur nach Bild 5.8

Im Falle eines zeitdiskreten Regelkreises kann das Reglergesetz (5.37)
auch durch unmittelbare Implementierung der zugehorigen Differenzen-

gleichung realisiert werden.
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Als weitere Moglichkeit 14dBt sich der Regler in Form eines dynamischen
Zustandsreglers aufbauen, wenn das Parallel-Fihrungsmodell denselben
PolstelleniiberschuB wie die Regelstrecke besitzt (siehe auch Bild A4.6).
In diesem Fall kann mit Hilfe der Polynome

AB(p)Z;(p) ,

Zs(p)Ac1(p)

s (p)
(5.54) °p'P

4.(p)

und Zc(p) zur Berechnung der Systemmatrizen des dynamischen Zustands-
reglers unmittelbar das Entwurfsschema (A4.22), beginnend bei Punkt 3,
angewendet werden. Bei einen groBeren Polstelleniiberschuf in der Fiih-
rungsibertragungsfunktion miiBte ein zusdtzliches TiefpaBfilter am Ein-
gang verwendet werden. Die in dem charakteristischen Polynom (Beobachter-
polynom) AB(p) des dynamischen Zustandsreglers enthaltenen, neu vorgege-
benen Nullstellen der Fﬁhrungsﬁbertragungsfunktion missen im Gegensatz
zu den Nullstellen von ;B(p) nicht "stabil" sein, obwohl man diese aus
praktischen Erwagungen im allgemeinen "stabil" vorgeben wird.

Wir zeigen abschlieBend durch Unformung des Reglergesetzes (5.23) bzw.
(5.37), daB sich die Regelkreisstruktur nach Bild 5.7 bzw. 5.8 in eine
Regelkreisstruktur mit Referenzmodell Uberfiihren 14Rt. Die Regelung
sorgt dann dafiir, daf die RegelgroBe der Modellausgangsgrofe folgt.
Man nennt dies in der angelsdchsischen Literatur auch "Model Following
Control”. Die Uberfithrung der Regelkreisstruktur wird so vorgenommen,
dal sich die Fﬁhrungsﬂbertragungsfunktion und die Stgriibertragungs-
funktionen TD(p) und Tz(p) nicht adndern. Unm Schreibarbeit zu sparen,

wird bei den Umformungen das Argument p weggelassen. Wir erweitern
(5.23) mit

(5.55) 0 =y, -

und erhalten

Z
- _ M
ACU = ZVR ZCY + ZC(YM - — R)

=

Zy
(z, - 2, E;) R-z.(Y - v

1

»

2.4, -2 72 Z

v M c™M C
U = R - — (y -y )
AMAC AC M

Nach (5.35), (5.28) und (5.34) gilt

- - + N - - — +
ZVAM ZcZM ZM[ABAM ZCZS] = ZMASAC1

Damit lautet das Reglergeset:
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+
Z.A A Z
(5.56) U = Ms cl R - -5 (Y - YM)

+
AMAc1zs Ac

Durch Kiirzung des gemeinsamen Faktors Ay folgt endgiiltig

Zy(p)a_(p) Z.(p)

(5.57) U(p) = ——>—R(p) - —— (Y(p) - Y, (p))
Zs(p)AM(p) Ac(p)

bzw. durch Erweitern mit Z;(p)
ZM(p)AS(p) ZC(p)

(5.58) ulp) = ———— R(p) - (Y(p) - Yy (p))
Zs(p)AM(p) Ac(p) :

Fir eine praktische Realisierung des Reglergesetzes miiBte man (5.57)
verwenden, da dort Z;(p) gekirzt ist. Die Regelkreisstruktur ist in
Bild 5.10 dargestellt. Der Faktor vor R(p) in den Reglergesetzen (5.57)
und (5.58) ist das Verhdltnis der Fihrungsilibertragungsfunktion zur
Ubertragungsfunktion der Regelstrecke. Beziiglich des Fihrungsverhaltens,
d.h. bei verschwindenden StorgroBen und verschwindenden Anfangswerten
der ZustandsgroBen, ist der Fehler E{p) = Y(p) - YM(p) identisch null.
Aus Bild 5.10 ist unmittelbar ablesbar, daB sich die Fihrungsiibertra-
gungsfunktion und die Storiibertragungsfunktionen TD(p) und Tz(p) durch

die Umformung nicht geédndert haben.

Rip) Zylp) Yulpl
aAuip)
Zip) Dipl
Z\ip) Adp) Ulpl Yip) ~
: + G,lp)
Aulp) Z,(pl -
Eip)
Z.(p
aclp)

Bild 5.10: Darstellung der Regelkreisstruktur nach Bild 5.8 als
Struktur mit Referenzmodell (Parallel-Fihrungsmodell)
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5.2.2 Vorgabe eines Stérverhaltens {(Minimum-Varianz-Regler)

Wir betrachten in diesem Abschnitt eine mégliche Vorgabe des Storver-
haltens von Regelkreisen, wobei wir uns auf zeitdiskrete Regelkreise

mit konstanter FihrungsgroBe (Festwertregelungen) beschrinken. Wir
nehmen an, daB eine stochastische StorgréBe auf den Ausgang einer line-
aren zeitinvarianten Regelstrecke einwirkt. Gesucht ist ein (lineares)
Reglergesetz, daB diese Stérung in dem Sinne optimal unterdriickt, daB
die Varianz der RegelgréBe minimal wird. Die Varianz einer GriBe ist
ein Ma fiir die Abweichungen dieser GroRe von ihrem Mittelwert (siehe
(A5.44)). Den gesuchten Regler nennt man Minimum-Varianz-Regler oder
kurz MV-Regler.

Die gestdrte Regelstrecke sei beschrieben durch die Differenzengleichung
y(k) + a1y(k—1) + .. 4+ any(k—n) =
(5.59) = boulk-d) + ... + b ulk-d-m)
+ e(k) + cielk-1) + ... + c,elk-n)

wobei {e(k)! ein stochastischer StorprozeB ist. d := n-m bezeichnet den
Polstellentiberschufl der Regelstrecke, der eine Regelstreckentotzeit zur
Folge hat. Wir nehmen an, daB d groBer als null ist, betrachten also

Regelstrecken ohne Durchgriff. Weiterhin sei bO + 0. Andernfalls miite
man eine groBere Regelstreckentotzeit ansetzen. {e{k)} wird als im wei-

teren Sinne stationdre (abgekiirzt: i.w.S. stationdre) Folge mit der
Eigenschaft

Ele(k)] = o ,
(5.60) 2

Ele(k)e(j)]1 =
0 sonst

2 . . . .
vorausgesetzt. o ist die Varianz von {e(k)}. Stochastische Folgen, die
(5.60) geniigen, nennt man weiBe Zufallsfolgen oder diskrete weife Zu-
fallsprozesse (siche (A5.67), (A5.68)). Das Symbol "E" in (5.60) be-

zeichnet eine Erwartungswertbildung (siehe (A5.27)). Durch Z-Transfor-
mation von (5.59) erhalten wir die Darstellung

Z (z) C
(5.61) Y(z) = s* u(z) + ()

As(z) AS(Z)

E(z)

mit den Polynomen
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ASCZ) = 2" at1zn'1 *o...va gz o+ ,
_ m m-1
(5.62) Zs(z) = bz + bz + + b4+ b ,
c(z) = 2"+ c1zn-1 + v gz

Die auf die Regelstrecke einwirkende StorgrdéBe ist nach (5.61) ein Zu-
fallsprozeB, der durch Filterung eines weiBen Zufallsprozesses ent-
steht. Die Z-Ubertragungsfunktion des Filters ist C(z)/AS(z). Bei gege-
bener Regelstrecke ist durch das Polynom C(z)} das Spektrum des Storpro-
zesses festgelegt. Die Darstellung oder Anndherung von Zufallsprozessen
durch gefilterte weiBe Zufallsprozesse ist sehr vorteilhaft bei der Be-
rechnung von Optimalfiltern (z.B. Kalman-Filter) und optimalen Reglern.
Durch Erweiterung der rechten Seite von (5.67) in Zahler und Nenner mit

z ™ kénnen wir (5.61) in die dquivalente Form

*o-1

A CRID I ¢z
(5.63) Y(Z) = *—‘3— z U(Z) + —ﬁ' E(Z}
A (z ) s {(z )
s s
mit den Polynomen
As(z_]) = 1+ a]z_1 oo+ anz_n = 2" a(z)
(5.64) 22(z7) = by bzl e e bz = 2z (2)
C (z'1) = 1+ c1z_1 oL 4 cnz_n = 27" ()

iiber fiihren. Beide Darstellungen werden je nach Bedarf verwendet. Um den
Reglerentwurf im Folgenbereich (Zeitbereich) vornehmen und deuten zu kén-
nen, fithren wir einen sogenannten Verschiebeoperator q ein, mit dessen

Hilfe ein beliebiger Folgenwert x{k) gemdB der Operation
(5.65) q° x(k) = x(k+v)

vorwiarts verschoben wird. Entsprechend sei

(5.66) q " x(k) = x(k-v)

Wir wenden den Verschiebeoperator unter Beriicksichtigung des Distribu-

tivgesetzes auf die Differenzengleichung {5.59) an und erhalten

- - -1 - -
(1 + a;q T s a q ™ oyk) = (by +bja "+ ... +bg ™ q 4 u(k)

(5.67) + (1 + <:1q-1 oo+ cnq-n) e(k)
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Zur Auflésung nach y(k) missen wir diese Gleichung linksseitig mit dem
inversen Operator von (1 + a1q-1 oL+ anq‘n) multiplizieren. Wir
schreiben den inversen Operator formal als Quotienten des Operators und

erhalten dann die Zeitbereichsdarstellung

Z.(a) c(q)
(5.68) y(k) = u(k) + e(k)
As(q) As(q)
oder in anderer Schreibweise
(5.69) (k) B (k) C (a7 (k)
. y = - q u Yo €
a.(q7) N

Die Operatorpolynome As(q), Zs(q) und C(q) bzw. A;(q_]), Z;(q"1) und
* -

C (q 1) erhalten wir, indem wir in (5.62) bzw. (5.64) die komplexe

Variable z formal durch den Verschiebeoperator g ersetzen.

Gesucht ist nun ein linearer Regler, der die Varianz der Regelgrofe
{y(k)} bei konstanter FiihrungsgréBe minimiert (Minimum-Varianz-Regler).
Zur Herleitung des Reglers wird die FiihrungsgrofBe gleich null gesetzt:

(5.70) r(k) = 0 fir alle k ¢ 12

Dies stellt jedoch keine Einschrdnkung dar. Ein unter der Annahme

r(k) = O hergeleiteter MV-Regler stellt auch fiir nichtverschwindende,
konstante Filihrungsgrofen eine minimale Varianz der Ausgangsgrofie
{y(k)} sicher. Da der Erwartungswert der Storfolge {e(k)} gleich null
ist und r(k) = 0 angenommen wird, verschwindet auch der Erwartungswert
der RegelgroBe {y(k)}, so daB wir die Forderung

(5.71) Varly(k)] = E[y2(K)] - min

erhalten. Die Struktur des betrachteten Regelkreises ist in Bild 5.11
dargestellt.

efk) ¢’lg™
_
819"
rikl=0 ulk) ! (k)
MV-Regler - Z-".(q 1) -4 e,
- A lq )

Bild 5.11: Regelkreisstruktur mit Minimum-Varianz-Regler
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Zur Ldsung der Aufgabenstellung multiplizieren wir (5.69) mit qd und

bekommen
(5.72) (k+d) E—EE:;E (k+d) Z*(q-}) (k)
. ylg+ = e(k+ +T“‘“:—Uk
As(q ) As(q 1)

Um zu veranschaulichen, welche Eigenschaften der inverse Operator

1/A (q ) besitzt, entwickeln wir diesen formal in Potenzen von q.

Da A (z) nach (5.64) keine Nullstelle bei ; = 0 be51tzt treten in
einer Re1henentw1ck1ung fir 1/A (z) keine Potenzen von z mit negativem
Exponenten auf. Durch die formale Setzung z = q_] erhalten wir fir

1/A;(q_1) eine Reihendarstellung

-1 -1
(5.73) Tl_‘T = 1 + Ot.lq + ,.. * Oth ] +
s.(q )

mit entsprechenden Koeffizienten @y Oy

Damit erkennen wir, daB auf der rechten Seite von (5.72) ausschlieB-
lich Operatoren stehen, in denen nur Potenzen von g mit Exponenten
auftreten, die kleiner gleich null sind. Diese Operatoren bewirken
keine Vorwirts-Verschiebung ihrer Argumente. Gleichung (5.72) entneh-
men wir somit, da sich eine "gegenwdrtige" StellgroBe u(k) aufgrund

der Regelstreckentotzeit d erst in dem "zukiinftigen'" RegelgroBenwert
y(k+d) bemerkbar macht. Andererseits wirken auf den Wert y(k+d)} aber

die "zukiinftigen" StorgriBenwerte e(k+1),...,e(k+d) ein. Deren Wirkung
auf die Varianz von y(k+d) kann mit Hilfe eines kausalen Reglergesetzes
nicht vermindert werden, da ein kausaler Regler nur die bis zum Zeit-
punkt k verfiigbaren GréBen verarbeiten kann und da die StorgroBenwerte
e(k+1) ... e(k+d) wegen (5.60) nicht mit den vergangenen Werten korre-
liert und damit nicht vorhersagbar {prddizierbar) sind. Um den EinfluB
der "zukiinftigen' StorgroBenwerte auf y(k+d)} zu separieren, spalten

wir den ersten Term der rechten Seite von {5.72) in einen Anteil auf,
der die "zukiinftigen'" StérgriBenwerte enthdlt, und einen Anteil, der die

restlichen StorgroBenwerte e(k), e(k-1),... enthalt. Wir bewerkstelligen

diese Aufspaltung durch den Ansatz

* -1 N _ _ *
(5.74) 9#—1-)=F(q1)+qu*—(“:—1—)

As(q_ ) As(q )

mit den Operatorpolynomen
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F*(q_1 1 -d+1 q—d+1

) 1+ f1q- AEETEL S SRR =: F(q) |

(5.75)
£ - n+ -
G (q") = g, +ga 't ... g0 ™= g7 G(g)

1

* - * -
Fir eine Berechnung der unbekannten Polynome F (g ') und G (q T) mul-

tipliziert man (5.74) mit A;(q_1) und erhdlt

-1 1 -d *

(5.76) c'a™) = FaMalta s 86T

oder in anderer Schreibweise

d-1
q

(5.77) Clq) = F(q)AS(q) + G(q)

Die Gleichung (5.76) wurde erstmalig von ASTROM [5.2] angegeben und ist

stets eindeutig durch Koeffizientenvergleich nach den unbekannten Poly-
* - * -

nomen F (q 1), G (q 1) auflésbar. Wir setzen (5.74) in (5.72) ein und

erhalten
* _] * _"

x  _ G (q ') Z (q
(5.78) y(k+d) = F (q"e(k+d) + ———7- e(k) + —— u(k)
a.(q ') 2 (q )

. .
Der Term F (q 1)e(k+d) berticksichtigt die "zukiinftigen" StorgroBenwerte.
Aus (5.78) konnten wir schnell das "Steuergesetz"

* o
() = - 8la g
z,(q ')

herleiten, welches die Varianz von y(k+d) minimiert. Wir wiinschen

jedoch ein Reglergesetz, in dem u(k) als Funktion von y(k),y(k-1),...

und u(k-1), u(k-2),... berechnet wird. Hierzu setzen wir in den zweiten
Term der rechten Seite von (5.78) die aus (5.69) folgende Beziehung
NCE 25 (g™

_ s $ ~
(5.79) e(k) m y(k) - m— q U(k)
ein, welche e(k) als Funktion der bis zum Zeitpunkt k vorliegenden
GroBen y(k), y(k-1),... und u(k-d), u{k-d-1),... ausdriickt. Es folgt
y(ked) = F (¢ Ne(ked) + ¢ (k) UM IO

C*(q—T) y A;(q_])c*(q_'l) q u(k)
-
(5.80) + E§£E:Tz u(k)
a.(q )

Wir fassen die beiden Terme mit u(k) zusammen und erhalten unter erneu-
ter Anwendung von (5.76) und Kirzung von A;(q—])
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N 6 (a™") z0(a"DE (@)
(5°81) Y(k+d) = F (q )e(k+d) + "-I_'_:"I_ Y(k) + * T U(k)
C (q ) c (q )

In dieser Gleichung stehen auf der rechten Seite nur noch die "zukinfti-
gen" StoérgroBenwerte, aber keine 'vergangenen'" und "gegenwdrtigen™ Stor-
groBenwerte mehr. u(k) sei nun aufgrund eines kausalen Reglergesetzes
eine Funktion der bis zum Zeitpunkt k verfiigbaren GréBen y(k),y(k-1),...
und u(k-1),u(k-2),..., welche von den "zukinftigen" StorgroRenwerten
e{k+1),...,e(k+d) stochastisch unabhingig sind, da die Stérfolge {e(k)}
nach Voraussetzung ein diskreter weiBer ZufallsprozeR ist. Bildet man

den Ausdruck E[yz(k+d)], so folgt aus (5.81)

Elyl(ked)] = E{(F (¢ De(ked)1?} +
¢ (¢ ” Z;(q_!)F*(q_1) " 2
(5.82) + E " y + T u ,
C(q N g™

wobei die gemischten Terme bel der Erwartungswertbildung aufgrund der

stochastischen Unabhdngigkeit von {e(k+d),..., e{k+1)} und
{y(k),y(k-1),... ; u(k),u(k-1),... } verschwinden. Die beiden Ausdricke

auf der rechten Seite von (5.82) sind nicht negativ, wobei der erste
Ausdruck durch die Wahl eines Reglergesetzes nicht beeinfluBbar ist.
Die Varianz der RegelgroBe wird genau dann minimal, wenn das Reglerge-
setz so gewdhlt wird, daB der zweite Ausdruck der rechten Seite von

(5.82) verschwindet. Dies ist gerade der Fall, wenn

* * -
u(k) = = 9 ((_11 )*C E? 2 | y(k)
Z (q JE (q ")C (q ')

(5.83) :

G*(q' )

* _1 _1 Y(k) ’
z.(q )F (q

)

womit der Minimum-Varianz-Regler festgelegt ist. Im Z-Bereich lautet die

Ubertragungsfunktion des Minimum-Varianz-Reglers

x -1
G (z ) G(z)
5.84 G ( ) = * = * _ =
( ) MV z (z HE (2™ z (z)F(z)
mit F(z) = zd_1 + f1zd-2 + oLt fd_I = zd 1F*(z_1)
n‘1 n-z - Zn—1G*(z-])

und . G(z) = g,z + gz Tt .- gy s
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Anhand der Ordnungen der Polynome G(z), Zs(z) und F(z) tliberzeugt man
sich leicht, daB in der Ubertragungsfunktion des Minimum-Varianz-
Reglers der Zadhlergrad gleich dem Nennergrad ist. Die Varianz der Regel-
groBe ist wegen (5.75) und der stochastischen Unabhingigkeit der GroRen
e(k+1),...,e(k+d) gegeben durch

ElyZ(k+d)] E{F (q7 Je(k+d) ¢}

(5.85) E{LT + fre(ked-1) + ... + £, e(k+1)1%)

O'Z(T + f? + ...+ fd_1)

Auf den ersten Blick mag es verwunderlich erscheinen, daB die Varianz
der RegelgréBe grofer gleich der Varianz o’ der StdorgroBe {e(k)} ist.
Zu beachten ist jedoch, daB sich der RegelgréRe {y(k)} im ungeregelten
Fall die stochastische GréBe

* -1
%—(q—q—) e(k)
a.(q )
additiv iiberlagert. Deren Varianz ist jedoch groBer als die im geregel-

ten Fall durch (5.85) gegebene Varianz. Der Regelkreis mit MV-Regler
ist in Bild 5.12 dargestellt.

Elz} Ciz)
—_—
Aglz)
Giz) ulz) | zz) Yiz)
_ Zlz)Flz) Afz)

Bild 5.12: Regelkreis mit Minimum—Varianz—Regler im Z-Bereich

(5.86) Folgerungen:

Da durch den Minimum-Varianz-Regler das Zahlerpolynom 2,(z) der Regel-
strecke herausgekiirzt wird, muB fiir eine Realisierung des Reglers gefor-
dert werden, daB alle Nullstellen des Zahlerpolynoms innerhalb des Ein-
heitskreises der z-Fbene liegen. Aus (5.83) folgt auBerdem, daB bei der
Berechnung des Reglergesetzes das Polynom C*(q'1) gekiirzt wird. Damit
die Stellgréfe {u(k)} beschrinkt bleibt, darf auch das Polynom C(z)
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nur Nullstellen innerhalb des Einheitskreises der z-Ebene besitzen.
Letztlich missen auch alle Nullstellen des Nennerpolynoms As(z) der
Regelstrecke innerhalb des Einheitskreises liegen, da in der Stériiber-
tragungsfunktion des Regelkreises eine Kirzung des Polynoms As(z) auf -
tritt. Diese Kiirzung tritt auch beim Ubergang von (5.80) zu (5.81) in
Erscheinung. Sowohl die Regelstrecke Gs(z) = Zs(z)/As(z) als auch das
Stormodell C(z)/As(z) miissen somit Minimalphasensysteme sein. [ ]

Setzen wir das MV-Reglergesetz in (5.81) ein, so heben sich die beiden

letzten Terme der rechten Seite auf, was die minimale Varianz der Aus-

gangsgroBe sichert. Es folgt
* -
(5.87) y(x) = F(q Delk)

Als Storibertragungsfunktion des Regelkreises erhalten wir

LI £, .92

s.88) 12 - Feh - e - L
z

L

+ ... + f

(5.89) Anmerkungen:

Das Minimum-Varianz-Reglergesetz hat den Nachteil, daB das Regelkreisver-
halten hidufig sehr empfindlich beziiglich Parameteranderungen der Regel-
strecke ist und daB der Stellgrofenaufwand sehr grof sein kann. Zur Ver-

meidung dieser Schwierigkeiten ist es moglich, suboptimale Reglergesetze

su verwenden. Diese konnen auch dann eingesetzt werden, wenn das Zahler-

polynom Z_(z) der Regelstrecke Nullstellen auBerhalb des Einheitskreises
s

besitzt.

Weiterhin ist es moglich, Minimum-Varianz-Regler herzuleiten, bei denen
neben der Varianz der RegelgroBe auch der StellgroBenaufwand bewertet

wird. AuBerdem kann eine beliebige zeitveranderliche FuhrungsgroBe be-
riicksichtigt werden.

Auf alle diese Modifikationen wird hier nicht eingegangen und auf die
Literatur verwiesen (siehe z.B. ASTROM {5.2], Seite 182-187 und UNBEHAUEN

[5.8], Seite 150-170). ]

(5.90) Beispiel: MV-Regler fiir eine Regelstrecke 2. Ordnung

Fiir die stochastisch gestorte Regelstrecke

2
0,6 z2°+0,52
. Y(z) = ———— U(z) +
(5.91) (z z°-0,8z z°-0,8z

E{z)
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soll ein Minimum-Varianz-Regler entworfen werden. Die Varianz des i.w.S.
stationdren weiBen Stérprozesses {e(k)} sei

(5.92) Varle(k)] = Efel(k)] = 42

Die Zdhler- und Nennerpolynome der Ubertragungsfunktionen der Regel-
strecke und des Stérmodells besitzen nur Nullstellen innerhalb des Ein-
heitskreises, so daB die in (5.86) geforderten Minimalphaseneigenschaf-
ten erfillt sind. Die interessierenden Polynome sind

* .

ZS(Z) = 0)6 ] ZS(Z ) = 0,6 3

2 * - -1 .

As(z) = 2°-0,8z : As(z ) = 1-0,82 ;
Clz) = 22+O,52 ; C*(z_1) = 1+O,Sz_1

* -
Die Grade sind n = 2, m - 0, d = 2. Die unbekannten Polynome F (z 1

)
und G*(z_1) werden gemiB (5.75) angesetzt (q - z):

= 1+ £,z . G*(z_1) = v gz
1 ’ = & 81
Zu ihrer Berechnung wird (5.76) verwendet (q - z):

140,52

(1+f1z_1)(1-0,82_1) + 2-2(g0+g1z_1)

-1 -7 -3
1 + (f1—0,8)z + (go—O,8f1)z * g4z
Durch Koeffizientenvergleich erhalten wir die Losung

(5.93) fT = 1,3 , g = 1,04

0 ’ & = 0

Die Ubertragungsfunktion des Minimum~Varianz-Reglers lautet somit

1,04 1,73 1,73z
(5.94) Guylz) = — 104 o,
MV 0,6(1"‘],32—1) "+1,3zﬁ Z+1,3

Die Varianz der Regelgrige ly(k)} ist im eingeschwungenen Zustand
(bei verschwindender oder konstanter Fihrungsgroge)

(5.95) Varly(k)l = (14 £9)62 . 5 g,

AbschlieBend wollen wir berechnen, wie grof die Varianz von {y(k)}
im ungeregelten Fall fiir u(k) = 0 ist, In diesem Fall gilt

Y(z) = E;:QLQE E(z) = 115553:;-E(z)
z°-0,82 1-0,8z"
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Im Zeitbereich erhalten wir die Differenzengleichung

(5.96) y(k) = 0,8 y(k-1) + e(k) + 0,5 e(k-1)

Die Varianz der Ausgangsgrofle ist

(5.97) Ely2(k)] = E|0,85y5(k-1)+e’(x)+0,5%e% (k=1)+2+0,5-0,8y(k-1)e(k-1)

Hierbei wurde ausgenutzt, daf {e(k)] ein weiBer ZufallsprozeB 1st, so
daB e(k) und e(k-1) sowie e(k) und y(k-1) unkorreliert sind, womit
bei der Erwartungswertbildung die entsprechenden Produktterme ver-
schwinden. Da {e(k)} ein im weiteren Sinne stationdrer Zufallsprozef

ist, gilt dasselbe auch fiir {y(k)}. Somit ist
Ely2(k)1 = Ely’(k-D)1

da die ersten beiden Momente eines im weiteren Sinne stationaren Zu-
fallsprozesses gegeniiber Zeitverschiebungen invariant sind. Weiterhin

gilt wegen (5.96) und der Tatsache, daB {e(k)} weifl 1ist,

Ely(k-1)e(k-1)] = Ele’(k-1)] = o
Aus (5.97) erhalten wir
Ely2(K)] = 0,68 Ely2 (k)T + (1+0,2540,8)0°
Ey 200 1(1-0,64) = 2,050°
2 . 2
(5.98) ElyZ(k)1 = 5,6940

Mit dem Minimum-Varianz-Regler erreichen wir in diesem Beilspiel eine

Absenkung der Varianz der Regelgrofle auf ca. 47% des ursprunglichen

Wertes.

5.3 Self-Tuning-Regler

5.3.1 Einfithrung

In Abschnitt 5.2 wurden unter der Voraussetzung bekannter Regelstrecken-

parameter Reglerentwurfsgleichungen hergeleitet, die ein vorgegebenes

dynamisches Verhalten des geschlossenen Regelkreises sicherstellen.
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Wenn die Regelstreckenparameter unbekannt oder nur ungenau bekannt sind,
kénnen Self-Tuning-Regler eingesetzt werden. Diese arbeiten gemeinhin
nach dem sogenannten "Gewiheitsprinzip" ("certainty equivalence prin-
ciple"): Mit Hilfe eines Identifikationsverfahrens werden Schatzwerte
fir die Regelstreckenparameter ermittelt und diese dann in die Regler-
entwurfsgleichungen eingesetzt, so als wiren sie gleich den wahren Para-
metern. Bel impliziten (direkten) Self-Tuning-Reglern sind beide Schritte
zu eilnem zusammengefaBt. Zur Parameteridentifikation wird haufig die im
Anhang A6.1 behandelte rekursive Methode der kleinsten Quadrate verwen-
det, aber auch andere Verfahren sind méglich. Aufgrund der numerischen
Berechnungen werden Self-Tuning-Regler auf ProzeBrechnern implementiert,
so daB zeitdiskrete Regelkreise vorliegen.

Es gibt unterschiedliche Méglichkeiten in der Art und Weise, wie der

zeitliche Ablauf der Adaption der Reglerparameter vor sich gehen kann:

a) Die Regelstreckenparameter werden einmalig wahrend einer Adaptions-
phase identifiziert. AnschlieBend werden die Reglerparameter einma-
lig eingestellt. Der Regelkreis arbeitet dann als gewohnlicher linea-
rer zeitinvarianter Regelkreis. Derartige Adaptionsphasen kénnen ge-
gebenenfalls in grofen Abstinden wiederholt werden.

Man wird diese Vorgehensweise wahlen, wenn die Zeitpunkte der Parame-
teranderungen aufgrund physikalischer Vorinformationen bekannt sind
(wie beispielsweise bei Fahrzeugen mit verdnderlicher Zuladung) oder
aber bekannt ist, daB die Regelstreckenparameter nicht oder nur lang-
sam zeltverdnderlich sind.

b) Die Regelstreckenparameter werden laufend geschitzt und die Parameter
des Reglers in kurzen Zeitabstdnden nachgestelit. Diese Vorgehenswelse
wird gewahlt, wenn die Regelstreckenparameter zeitverdanderlich sind.
Die Verstellung der Reglerparameter kann in jedem Abtastschritt oder

jeweils nach einer gewlssen Anzahl von Abtastschritten erfolgen,

Wenn keinerlei a-priori-Informationen iber die Parameter einer Regel-
strecke vorhanden sind, muB dem Beginn der Arbeitsweise eines adaptiven
Reglers besondere Aufmerksamkeit geschenkt werden, da geeignete Start-
werte fiir die Reglerparameter bekannt sein miussen, um anfingliche
Instabilitdten des Regelkreises zy vermeiden. Wenn die Regelstrecke
stabil ist, kann zur Bestimmung der Startparameter mit einer Identi-
fikation an der ungeregelten Strecke begonnen werden. Andererseits be-
steht bei einer stabilen Regelstrecke die Moglichkeit, mit beliebigen
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Reglerstartparametern zu beginnen und die StellgroBe der Regelstrecke
in der Anfangsphase zu beschréanken, um Instabilitaten des Regelkreises
zu vermeiden. Ist die ungeregelte Strecke instabil, so muB irgend ein
Regler bekannt sein, mit dem die Strecke stabilisiert werden kann. An

der so stabilisierten Strecke kann dann die erste Identifikation vor-

genommen werden.

Obwohl Konvergenzeigenschaften von Self-Tuning-Regelkreisen unabhéngig
von speziellen Konvergenzeigenschaften der Schatzparameter und damit
ohne spezielle Anforderungen an die anregenden Systemgréflen gezeigt
werden koénnen (siehe Abschnitt 5.4), ist man in praktischen Anwendungen
gezwungen, die Schidtzparameter innerhalb eines Parameterbereichs zu
halten, fir den zumindest die Stabilitdt des Regelkreises dauerhaft ga-
rantiert ist. Damit ein derartiger Parameterbereich moéglichst grof ist,
muB ein adaptiver Regler entsprechend robust sein. Um andererseits die
Schitzparameter innerhalb dieses Bereichs zu halten, muBl der Regelkreis
gut angeregt sein, was hdufig erst durch eine der Stellgrofe iiberlagerte,
geeignete Anregungsgrofie erreicht wird. Da diese jedoch zwangslaufig die
Regelgiite verschlechtert, ist ein KompromiB zwischen dem gewinschten
dynamischen Regelverhalten und dem Adaptionsverhalten zu schlieen. Ein
derartiger KompromiB kann beispielsweise darin bestehen, die Anregungs-

groBe nur in gewissen Zwischenphasen aufzuschalten.

Bei dem Einsatz von Identifikationsverfahren im Zusammenhang mit der
adaptiven Regelung ist zu beachten, daB sich die unbekannte Regel-
strecke innerhalb eines geschlossenen Regelkreises befindet (Identifi-
kation im geschlossenen Regelkreis). Hierdurch konnen tber den Regler
unerwiinschte Korrelationen zwischen der Regelstreckeneingangsgrofie und
eventuellen StorgroRen am Regelstreckenausgang auftreten. Weiterhin ist
es moglich, daB aufgrund des geschlossenen Regelkreises die Regelstrek-
kenparameter nicht eindeutig identifizierbar sind (siehe beispiels-
weise RSTRGM, WITTENMARK [5.12], Seite 187). Dieses Problem 1aBt sich
vermeiden, wenn die zeitdiskrete Kreistibertragungsfunktion mindestens
einen PolstelleniiberschuB von eins besitzt und der Regler von geniigend
hoher Ordnung ist. Eine ausfihrliche Darstellung der Bedingungen, die
die Identifizierbarkeit der Regelstreckenparameter im geschlossenen

Regelkreis sicherstellen, findet der Leser in SODERSTROM, GUSTAVSSON,
LJUNG [5.22] und in GUSTAVSSON, LJUNG, SODERSTROM [5.14].

Zur Schitzung der unbekannten Regelstreckenparameter im geschlossenen

Regelkreis bieten sich prinzipiell zwei Moglichkeiten an:
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a) Direkte Identifikation

b) Indirekte Identifikation

parameter in gewohnter Weise anhand von Eingangs-Ausgangs—Messungen
an der Regelstrecke direkt geschitzet. Die Tatsache, dag die Eingangs-
groBe ilber den Regler von der AusgangsgréBe abhangt, tritt hierbei nich!

kreises die Koeffizienten der Ubertragungsfunktion des geschlossenen
Regelkreises geschatzt. Diese Koeffizienten hangen iiber bekannte Glei-

5.3.2 Ubergang von einem expliziten zy einem impliziten

Self—Tuning*Regler bei Vorgabe des Fihrungsverhaltens

Messungen an der Regelstrecke
identifiziert, was hdufig den Rechenaufwand vermindert. Hierzu ist es

notwendig, die Re elstrecke neu zy arametrisieren, und zwar so, daB als

unbekannte Regelstreckenparameter die gesuchtep Reglerparameter auftre-

ten. Dies ist jedoch nur in manchen Fallen durchfiihrbar.

der Reglerausgangsgréﬁe verkniipft . Deshalb lige es nahe, zur Identifi-
kation direkt die Eingangs~Ausgangs—
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(in der Startphase sind dies die Regler-Startparameter) geschitzt,

nicht jedoch die aufgrund der Regelstreckeneigenschaften gesuchten
Reglerparameter. Deshalb muB der Identifikation immer eine umparame-
trisierte Regelstreckengleichung zugrunde liegen. Wenn gleichzeitig

die Identifizierbarkeit der Regelstreckenparameter im geschlossenen
Regelkreis sichergestellt ist, werden auf diese Weise wirklich die Regel-

streckenparameter und nicht die eingestellten Reglerparameter geschiatzt.

Wir erlautern die Umparametrisierung der Regelstrecke anhand des Reg-
lerentwurfs nach Abschnitt 5.2.1 (siehe auch ASTROM, [5.9]1, Seite 475).

Hierzu multiplizieren wir die Regelstreckengleichung (5.22) zundchst
mit dem gesuchten Teil-Nennerpolynom des Reglers AC1(p) und erhalten

(5.99) a.1(pla (p)Y(p) = Aci(p)zs(p)u(p)

Durch Anwendung der Entwurfsgleichung (5.34) und Beriicksichtigung von
(5.36) folgt

by (PIag(PIY(P) = 4 (PIZ(PIU(P) + Z2(p)z (p)¥(p) ,

(5.100) AM(p);B(p)Y(p) = Z;(p)[Ac(p)U(p) + 2 .(p)Y(p)l

Die letzte Gleichung kann als eine neue Eingangs-Ausgangs-Beziehung
der Regelstrecke aufgefaBt werden, in der als unbekannte Parameter die
Koeffizienten der Polynome Z;(p), Ac(p) und Zc(p) auftreten. Die Poly-
nome AM(p) und AB(p) sind vergegeben und damit bekannt. Aufgrund des
Produkts der unbekannten Polynome ist das entstandene Schitzproblenm
nichtlinear. AuRerdem konnen in (5.100) mehr unbekannte Parameter als
in der urspriinglichen Regelstreckengleichung (5.22) enthalten sein. Da
den meisten bekannten Identifikationsverfahren Schdatzgleichungen zu-
grunde liegen, die linear in den unbekannten Parametern sind, ist es

zweckmifig, die rechte Seite von (5.100) mit Hilfe der Polynome

a(p) z.(pla (p)

(5.101)

z.(p) z (p)z_(p)

neu zu parametrisieren, so daB als Grundlage eines Schdtzverfahrens

die Beziehung

(5.102) 2y (P)aG(PIY(P) = . (PIU(P) + Z_(p)Y(p)
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dient, welche fiir einen zeitdiskreten Regelkreis im Zeitbereich eine
Differenzengleichung darstellt. Bei Messungen von {u(k)} und {y{(k)}
kann zur Schdtzung der Koeffizienten von a <{p) und Z <(p) ein Identifi-
kationsverfahren wie die rekursive Methode der klelnsten Quadrate ange-
wendet werden, wenn von der Regelstrecke die Ordnung ngs der Polstel-
leniberschuB ng T omg und die Anzahl mg der zu kiirzenden Nullstellen
bekannt sind uynd die Polynome 4 (p) A (p) Z (p) mit entsprechenden
Graden angesetzt werden. Aus Schatzwerten fur A -(p) und Z (p) lassen
sich nach (5.101) Schiatzwerte fiir a (p) und 7 (p) durch Kurzung (nahe-
rungswelse) gemeéinsamer Nullstellen ermltteln, sofern sclche auftreten.

Nun fiihrt gber jede mégliche Zerlegung von Z (p) in zu kirzende und
nicht zu kiirzende Streckennullstellen bei fester Anzahl mS auf das-
selbe Schatzproblem, weshalb die Bestimmung der Polynome Ac(p) und
z (p) nicht eindeutig moglich ist, es sei denn, man wahlt m; =0
(kelne Kirzung von Streckennullstellen) oder m; = m_ (Kirzung sdmt-
licher Streckennullstellen). Andernfalls kann sich bei der Schatzung
eine der moglichen Zerlegungen von 2 (p) einstellen, was dazu fihren
kann, daB "instabile" Streckennullstellen gekiirzt werden.

5.3.3 Ein Self-Tuning-Algorithmus fiir den Minimum-Varianz-Regler

Zum Entwurf eines Minimum-varianz- Reglers muB einerseits die Regelstrecke
und andererseits das Polynom C(z) bekannt sein, welches durch das Fre-
quenzspektrum des Stdorsignals festgelegt ist (siehe (5.61)). Da in vie-
len Fdllen das Stérsignal—Frequenzspektrum unbekannt sein wird, selbst
wenn die RegelgstTrecke relativ genau bekannt ist, liegt es nahe, adap-
tive Minimum-Varianz- -Regler einzusetzen Ein derartiger adaptiver Algo-
rithmus wurde erstmalig von ASTROM WITTENMARK [5.12] angegeben und auf
Konvergenz untersucht. Wir stellen diesen Algorithmus vor, ohne jedoch
die Konvergenzeigenschaften zu zeigen. Die Ordnung n und der Polstellen-
uberschuBl d der Regelstrecke werden als bekannt angenommen. Weiterhin
setzen wir voraus, daB der Koeffizient b der hdéchsten Potenz des Zah-
lers in der Ubertragungsfunktion der Regelstrecke bekannt ist, Diese
Annahme 1ist notwendig, uym Schwierigkeiten bei der Identifikation im
geschlossenen Regelkreis zu vermeiden. Die Regelstrecke und das Stér-

modell missen entsprechend den Folgerungen (5.86) Minimalphasensysteme
sein.

Wenn ein adaptiver Minipum-Varianz- Regler als expliziter Self- Tuning-

Regler realisiert wird, ist es nicht ausreichend, die gewohnliche
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rekursive Methode der kleinsten Quadrate zu verwenden, da diese bei
Eingangs-Ausgangs-Messungen an der Regelstrecke nur fiir die Polynome
Zs(z) und As(z) Schitzwerte liefert. Um ebenfalls Schdtzwerte fiir das
Polynom C(z) zu bekommen, miiBte die erweiterte rekursive Methode der
kleinsten Quadrate bei korreliertem StdrprozeB angewendet werden (siehe
Anhang A6.1.6). Die Schidtzung von C{z) und die Auswertung der Regler-
entwurfsgleichung (5.76) konnen durch einen impliziten Self-Tuning-
Algorithmus umgangen werden. Zu dessen Herleitung betrachten wir das

Minimum-Varianz-Reglergesetz

1

(5.103) z;(q")p*(q")u(k) - -6 (g Dy

mit den Operatoren

- -1 “m

Zs(q ) = b+ big o+t b aq (bo $+ 0) ,
(5.104) Flaa) = 1+ 0 £ Wm0

* - -1 -n+1

(a7 = gyt gt oeee v _gal”

(siehe (5.83), (5.84) und (5.76)). Zur Vereinfachung der Schreibweise

filhren wir die Abklirzung
* - LS B P -1 —n+1
(5.105)  H'(q1) = 2.(a DF (a7 = Ry v higT s by

ein, wobei h_ = bo gilt. Das Minimum-Varianz-Reglergesetz lautet dann
’ 0
*oo-1 o=
(5.106) H (g” Ju(k) = -G (qa Dylk)

oder in anderer Darstellung

w(k) = - %; [h]u(k-1) + ...+ h_ulk-n+d) o+

(5.107)
+ goy(k) + 21)"“(”’1) + ...+ gn*]y(k_n.'.])]

Um die Regleroperatoren H*(q_1) und G*(q_1) direkt identifizieren zu
kénnen, missen wir eine geeignete Darstellung f?q die Regelstrecke fin-
den. Wir betrachten zunichst den Fall, daB C (q ') = 1 ist. Dann erhal-
ten wir aus (5.81) durch riickwartige Verschiebung um d Schritte und
Beriicksichtigung der Abkirzung (5.105) die Regelstreckengleichung

(5.108) J0 = 6 (q Dy(k-d) + B (@ Dulk-d) + F (q™De(k)

in welcher die gesuchten Regleroperatoren explizit auftreten. Durch An-
wendung der rekursiven Methode der kleinsten Quadrate nach Anrhang A6.1.3
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auf dlese Glelchung konnen die unbekannten Koeffizienten in den Opera-
toren G (q ) und H (q ) geschiatzt werden, wenn {y(k)} und {u(k)}
gemessen werden. Zu beachten ist, daB in (5.108) der StorprozeR

F*(q Je(k) nicht mit den EingangsgréBen u(k-d). ..u(k-d-n+1) korre-
liert ist, was eine notwendige Bedingung fiir die Biasfreiheit der
Methode der kleinsten Quadrate ist (siehe Anhang A6.1.2). Um Schwierig-
keiten bei der Parameterschdtzung im geschlossenen Regelkreis zu umgehen,
wird angenommen, daB der Koeffizient b (oder wenigstens eine obere
Schranke fiir diesen Koeffizienten) bekannt ist. Mit dieser Annahme
erhalten wir den folgenden adaptiven Algorithmus:

(5.109) Impliziter Self-Tuning-Algorithmus fiir den
Minimum-Varianz-Regler:

N A A % '
Parametervektor: H = [go(k),g1(k),...,gn_](k),h1(k),...,hn_i(k)]
Datenvektor: EE = [y(k—d),y(k*d—1),...,y(k-d—n+1) ,

u(k-d-1),u(k-d-2),...,u(k-d-n+1)]

Schdtzalgorithmus nach der rekursiven Methode der kleinsten Quadrate:

- T ;
57 Kotk Iy - b ulk-d) - hye 3,7
P, . h
(5.110) ke = —= 1ok ,
Ty Py by
By = (E-K hilp,

Der Parameter bO wird als bekannt vorausgesetzt.
Reglergesetz:
1 - -
ulk) = - g [h(Kulk-1) + ...+ h _;(k)u(k-n+1)
o

(5.111) * 8,00y (k) + g ()y(k-1)+.. o5 (K)y(k-ns1)]
.

In ASTROM, WITTENMARK [5. 12], Seite 190, 191, ist gezeigt, daB der

Self- Tunlng Algorithmus (5. 109) unveridndert angewendet werden darf,
wenn C (q ) $ 1 gilt.
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5.3.4 Ein selbsteinstellender zeitdiskreter PID-Regler nach dem

Verfahren von Ziegler-Nichols

Der in industriellen Anwendungen am hdufigsten eingesetzte Reglertyp
ist der PID-Regler. Bei Einsatz eines idealen zeitkontinuierlichen
PID-Reglers berechnet sich die StellgroBe u(t) aus dem Regelfehler e(t)
gemd der Gleichung .
(5.112) u(t) = Kple(t) + }—N [ etorar + 1y G eo))

)
Hierbei nennt man KR den Ubertragungsbeiwert, TN die Nachstellzeit und
T, die Vorhaltzeit des PID-Reglers (siehe FOLLINGER [5.41, Seite 180).

Die zugehorige Ubertragungsfunktion des idealen PID-Reglers lautet

(5.113) Gy nls) = KR(1 + Tlg + Tvs)

PID N

Ausgehend von (5.112) iibertragen wir zundchst das Reglergesetz fir den
Fall einer im Verhaltnis zu den Regelkreiszeitkonstanten kleinen Ab-

tastzeit T niherungsweise in den Z-Bereich. Hierzu schreiben wir
a

(5.112) in der Form

(5.114) ult) = up(t) + uI(t) + uD(t)
mit
up(t) = K e(t) (Proportionaler Anteil) |
K t
(5.115) uI(t) = TE j. e(r)dr (Integraler Anteil) |
0
uD(t) = KRTV %€ e(t) (Differentieller Anteil)

Fir den Proportionalanteil folgt aus
(5.116) uP(kTa) = KR e(kTa)
durch Z-Transformation

(5.117) Up(z) = Kq E(z)

Den Integralanteil ndhern wir durch die Beziehung (Trapezregel)

K, T
R "a
(5.118) uI(kTa) = UI((k'1)Ta) + TE 7 [e(kTa) + E((k-T)Ta)]

an und erhalten im Z-Bereich
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KpT 1 K, T

12"

+1
(5.119) Uz) = 7BT§ e RICI 7BTi 2 E(z)

In dem differentiellen Anteil wird die zeitliche Ableitung durch den
Differenzenquotienten

K, T

RV
(5.120) UptkTy) = = [e(kT,) - e((k-1)T,))

ersetzt, woraus durch Z-Transformation

K,T KT
(5.121) Up(z) = =Y (127 o RV oz
a a z

folgt. Nach Zusammenfassung der einzelnen Terme ergibt sich

Ulz) = Up(z) + UI(z) + UD(z)
{(5.122)
T T
_ a z+1 V z-1
= KR 1+2—TE-2—-_7-+T;—Z—— E(Z)
und damit die Z-Ubertragungsfunktion
T T T 2T T
2 a v a v v
R wil e IR B T,
(5.123) G, (z) = K a N a
PID R
z(z-1)

Als zeitdiskretes PID-Reglergesetz erhalten wir

T Ty
u(k) = u(k-1) + Ke(1 + 7$_ + ) e(k)
N a
(5.124)
' 2T T
. KR(7%§ -1 - T;!) e(k-1) + Kk ¥ e(k-2)

Zur Festlegung der Parameter eines PID-Reglers beim Einsatz an einfa-
chen stabilen Regelstrecken mit Verzdogerungsverhalten und eventueller
Totzeit existieren unterschiedliche Verfahren, die Einstellregeln
bereitstellen. Eines davon ist das Verfahren nach Ziegler-Nichols
(siehe ZIEGLER, NICHOLS [5.25]), welches darauf beruht, anhand eines
Versuches an der Regelstrecke den Schnittpunkt der Regelstrecken-

Ortskurve Gs(jw) mit der negativen reellen Achse zu ermitteln. Dieser
ist durch die Gleichung

(5.125) és(jmkrit) - -

krit
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festgelegt. Die GroBe Kepi mennt man kritische Verstarkung und

1t

2r

(5.126) i
“krit

Tkrit
kritische Periodendauer. Zur Ermittlung dieser Werte wird die Regel-
strecke {ber einen P-Regler betrieben, dessen Verstarkung so lange er-
héht wird, bis die Regelgrifle sich ndherungsweise im harmonischen
Schwingungszustand befindet (Stabilitédtsgrenze). Der eingestellte Ver-
stdrkungsfaktor des P-Reglers ist dann gerade gleich Kkrit’ und die
Periodendauer der Regelgrofie ist gleich Tkrit' Anhand dieser Werte
werden die Reglerparameter nach den folgenden Einstellregeln berechnet:

(5.127) Einstellregeln nach Ziegler-Nichols:

P - Regler : KR = 0,5 Kkrit
PI- Regler : KR = 0,45 Kerie Ty = 0,85 Terit
PID-Regler : KR = 0,6 Kkrit ; TN = 0,5 Tkrit ; Tv = 0,125 Tkrit‘

Im folgenden wird ein Verfahren vorgestellt, mit dessen Hilfe das Ein-
stellverfahren fir die Reglerparameter automatisiert werden kann (siehe
RSTROM, HAGGLUND [5.111), wenn zur Regelung ein ProzefBrechner verwendet
wird, dessen Abtastzeit so klein 1ist, dall der Abtastvorgang auf die
Regelgiite keinen wesentlichen Einfluf hat. Die weiteren Uberlegungen und
der Reglerentwurf koénnen dann zeitkontinuierlich durchgefiihrt und unmit-
telbar auf den zeitdiskreten Fall tibertragen werden. Das automatische

Einstellverfahren verlauft folgendermaBen:

Uber eine vom ProzeBrechner erzeugte StellgroBe wird die (stabile)
Regelstrecke zundchst ungeregelt in die Ndhe des vorgesehenen Arbeits-
punktes gefahren. AnschlieBend wird die Regelstrecke mit Hilfe eines
Zweipunktgliedes (das denkbar einfach programmierbar ist) geregelt.
Hierdurch stellt sich eine ndherungsweise harmonische Grenzschwingung
ein, die nach Tabelle (2.133) stabil ist, wenn die
auf einen einfachen integralen Anteil BIBO-stabil

des Regelfehlers

Regelstrecke bis
ist und deren Ortskurve die negative reelle Achse nur einmal schneidet.

Durch Anwendung der Methode der Harmonischen Balance folgt unmittel-

bar, daB die Frequenz dieser Grenzschwingung naherungsweise gleich
Zwischen der Schwingungsamplitude A des Regelfehlers und der

wkrit ist.
besteht nach (2.75) und (2.98) der Zusammen-

kritischen Verstarkung Kkrit

hang
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A . 1
(5.128) Ne(A) = - 22 = G (ju, ..) = -
I 4K s krit Kkrit

Hierbei ist K die Ausgangsamplitude des Zweipunktgliedes. Es folgt

_ 4K
(5.129) Kerit = 73
Die Periodendauer Tkrit der Schwingung kann innerhalb des Prozefirech-
ners leicht durch Bestimmung der Zeitdauer zwischen den Nulldurch-
gingen des Regelfehlers ermittelt werden. Zur Bestimmung der Amplitude
A kénnen die maximalen und minimalen Werte des Regelfehlers gemessen
werden. Mit Kkrit nach (5.129) werden die Parameter des P-, PI- oder
PID-Reglers berechnet, womit der Regler einsatzfdhig ist.

Die Bestimmung von Kkrit und Tkrit anhand der Grenzschwingungen der

zweipunktgeregelten Strecke hat gegeniiber der urspriinglichen Bestim-
mung mit einem P-Regler mehrere Vorteile. Zum einen kann es recht
mihsam und langwierig sein, mit Hilfe des P-Reglers die Stabilitidts-
grenze aufzufinden und das System im Schwingungszustand zu halten.
Diese Einstellung entfiallt beim Einsatz des Zweipunktgliedes. Zum ande-
ren kann mit Hilfe des Iweipunktgliedes die Amplitude der Grenzschwin-
gung eingestellt werden, was sehr vorteilhaft ist, da in technischen
Systemen immer eine maximal zuldssige Amplitude vorgegeben sein wird.
Die Amplitude der Grenzschwingung hdngt gemiB (5.129) proportional von

der Ausgangsamplitude K des Zwelpunktgliedes ab. Diese kann gegebenen-
falls nachadaptiert werden.

Nach ASTROM, HGGLUND [5.11] eryjes sich der selbsteinstellende PID-
Regler bei praktischen Anwendungen als sehr robust und einfach hand-
habbar. Es zeigte sich, daR bei Verwendung eines Zweipunktgliedes mit
kleiner Hysterese anstelle eines reinen Zweipunktgliedes MeBfehler
unterdriickt werden, die auf MeBrauschen zurlickzufithren sind.

54 Konvergenzbetrachtungen bei Setf-Tuning-Regelkreisen

5.4.1 Vorbemerkungen

Da bei Self—Tuning-Regelkreisen Identifikationsverfahren innerhalb ge-

schlossener Regelkreise eingesetzt werden, deren Reglerparameter in Ab-

hdangigkeit von den Schiatzwerten der Identifikationsverfahren verstellt
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werden, sind aufgrund der Nichtlinearitédt der Gesamtsysteme allgemeine
Untersuchungen iber das RegelgroBenverhalten gemeinhin sehr schwierig.
Aus diesem Grunde beschrdnkt man sich meistens auf Untersuchungen iber
das asymptotische Regelkreisverhalten. Diese nennen wir Konvergenzunter-

suchungen.

In theoretischer Hinsicht einfach zu iiberblicken ist der Fall eines tiber
die FiihrungsgroBe oder eine StdorgrdBe hinreichend gut angeregten Self-
Tuning-Regelkreises, bei dem die Parameter eines (von der Struktur her
linearen) Reglers in grofen Zeitabstdnden neu eingestellt werden, an-
sonsten jedoch fest sind. In diesem Fall liegt zwischenzeitlich jeweils
ein linearer zeitinvarianter Regelkreis vor, wodurch sichergestellt ist,
daB die anregenden Frequenzen des Fihrungs- oder Storsignals auch in

der StellgréBe der Regelstrecke enthalten sind. Ist die Stabilitdt des
Regelkreises gewdhrleistet und wartet man mit einer Verstellung der
Reglerparameter jeweils solange, bis die Schdtzparameter eingeschwungen
sind, so hat man die Konvergenzeigenschaften des adaptiven Regelkreises
aufgrund der zeitlichen Entkopplung von Identifikation und Reglerentwurf
auf die Konvergenzeigenschaften des Identifikationsverfahrens zuriickge-
fithrt. Wenn fiir das Identifikationsverfahren die Kecnsistenz gezeigt wer-

den kann, so ist die Konvergenz der Reglerparameter gegen die gesuchten
Reglerparameter sichergestellt.

Wir betrachten in diesem Abschnitt zwei unterschiedliche, im Hinblick
auf das Fihrungsverhalten entworfene, zeitdiskrete Self-Tuning-Regel-
algorithmen, bei denen sdmtliche Parameter der Regelstrecke mit Hilfe
der Methode der kleinsten Quadrate {siehe Anhang A6.1.3) rekursiv ge-
schitzt und in jedem Abtastschritt die Reglerparameter neu berechnet und
eingestellt werden. An die Fihrungsgrofen der Regelkreise werden hier-
bei, abgesehen von der Beschrédnktheit, keine weiteren Voraussetzungen
gestellt. Wir nehmen allerdings an, daBl keinerlei Storgrofien im Regel-
Fur beide Self-Tuning-Algorithmen wird die Konvergenz

kreis auftreten.
in dem Sinne formuliert, daB die AusgangsgroBe des Regelkreises asymp-

totisch gegen ein gewilinschtes Verhalten strebt und daB alle Systemgrofien
im Regelkreis beschrankt bleiben. Uber die Konvergenzgeschwindigkeit
werden jedoch keine Aussagen gemacht. Ebensowenig werden Schranken fir

die SystemgréBen angegeben, womit anfangliche Instabilitdten des Regel-

kreises nicht ausgeschlossen sind. Diesbeziiglich existieren in der
Literatur bisher kaum Ergebnisse. Die Beweistechnik erfolgt in Anlehnung
an GOODWIN, SIN [5.5] und GOODWIN, HILL, PALANISWAMI [5.13]. In diesen
Literaturstellen sind die Kenvergenzaussagen und Beweise jedoch so for-

muliert, daB gleichzeitig unterschiedliche Identifikationsverfahren
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erfat werden. Aus Griinden der Einfachheit wird hier nur die rekursive
Methode der kleinsten Quadrate betrachtet. GOODWIN, SIN [5.5] kann ent-
nommen werden, wie sich auch im Fall stochastischer Storgroen Konver-
genz von Self-Tuning-Regelkreisen zeigen laBt.

Die Ausfiihrungen dieses Abschnitts verfolgen zwei Ziele. Einerseits sol-
len dem an der Anwendung interessierten Leser zwei adaptive Regelalgo-
rithmen bereitgestellt werden, fiir die unter storungsfreien Verhalt-
nissen Konvergenz gezeigt werden kann, so daB der Anwendung eine theo-
retische Basis zugrunde liegt. Andererseits soll ein Einblick in auf-
tretende Schwierigkeiten bei der Konvergenzuntersuchung von Self-Tuning-
Regelkreisen vermittelt und dem Leser die Moglichkeit gegeben werden,

eventuell selbstidndig Konvergenzuntersuchungen durchzufiihren.

In Abschnitt 5.4.2 wird zunidchst ein Self-Tuning-Regelkreis betrachtet,
bei dem das gewlinschte Filhrungsverhalten in Form eines Referenzmodells
(Vorgabe der Pol- und Nullstellen) spezifiziert ist. Hierbei werden

samtliche Nullstellen der Regelstrecke durch den Regler herausgekirzt,
wodurch sich beziiglich der Anwendbarkeit gewisse Einschrédnkungen erge-
ben (siehe (5.21) in Abschnitt 5.1). Fiir diesen Reglerentwurf wird die

Konvergenz gezeigt, wobei alle Beweisschritte ausfithrlich erliutert
werden.

In Abschnitt 5.4.3 wird dann ein Self-Tuning-Algorithmus angegeben, dem
eine Vorgabe der Polstellen des geschlossenen Regelkreises zugrunde
liegt. Hierbei werden die Nullstellen der Regelstrecke nicht gekiirzt,

so dall diesbeziigliche Einschrinkungen in der Anwendbarkeit entfallen.

Da die Konvergenzuntersuchung dieses Self-Tuning-Reglers beweistechnisch

etwas umfangreicher ist, werden die Konvergenzeigenschaften nur formu-

liert, jedoch nicht bewiesen.

Bei beiden Reglerentwiirfen gehen wir von einer linearen {quasi-)zeitin-

varianten zeitdiskreten Regelstrecke aus, deren Parameter unbekannt

sind. Wir setzen voraus, dafB die Regelstreckenordnung n und bei der Vor-
gabe eines Referenzmodells nach Abschnitt 5.4.2 zusitzlich der Polstel-

leniiberschuBl d der Regelstrecke (Regelstreckentotzeit) bekannt ist.

Da die Reglerparameter eines adaptiven Regelkreises zeitverinderlich
sind, kann das Regelkreisverhalten nicht mehr anhand von Ubertragungs-
funktionen im Z-Bereich charakterisiert werden. Wir fiihren deshalb den
aus der Herleitung des Minimum-Varianz-Reglers (Abschnitt 5.2.2) bekann-

ten Verschiebeoperator q bzw. a4 ein und stellen das Verhalten der ein-

zelnen Regelkreiskomponenten jeweils im Zeitbereich dar.
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5.4.2 Self-Tuning-Regler bei Vorgabe eines Referenzmodells

Die lineare (quasi-)zeitinvariante Regelstrecke sel beschrieben durch

die Eingangs-Ausgangs-Beziehung
(5.130) As(q)y(k) = Zs(q)u(k)

oder in anderer Darstellung

(5130 agta” Oy = o%zglaDutk)
Hierbei sind

A (q) = "+ a n-1, + a +a

s 4 = 4a 14 o n-14 n

m-1

Zs(q) = boqm + biq + ... bm_1q + bm
(5.132) P -1 -n -n

sl ) = 1 ragq + e+ ang = q  as.(q),

* .- -1 -m -m

Zs(q ) = b0 + b1q + L.t bmq = q Zs(q)

Das Polynom Zs(q) sei so beschaffen, daB alle Nullstellen von Zs(z) in-
nerhalb des Einheitskreises der z-Ebene liegen, so daB ZS(q) durch einen
Regler kompensiert werden darf. Die Ordnung n und der Polstellentberschuf

d = n-m der Regelstrecke seien bekannt. Das gewiinschte Flhrungsverhalten

des zu entwerfenden Regelkreises geben wir anhand des stabilen Parallel-
Fiilhrungsmodells

(5.133) AM(Q)YM(k) = zM(q)r(k)
oder in anderer Darstellung

* - * __‘I _d
(5.134) 8y Dyy(o) = Zyla™a™" (o)

vor. Hierbei werden dieselbe Totzeit und dieselbe Ordnung wie bel der

Regelstrecke angesetzt.
Wir missen an dieser Stelle voraussetzen, daB in (5.132) bo + 0 gilt.

Regelstreckentotzeit gréBer als angenommen und somit

r(k) ist die FihrungsgroBe des Regelkreises.

Ansonsten wire die
vorgegebenen Parallel-Fihrungsmodells, was auf ein

grofer als die des
somit nicht realisierbares) Reglergesetz fihren

nichtkausales (und

wirde.

Wir gehen zundchst von der Annahme bekannter Regelstreckenparameter aus.

Im Falle bekannter .
entwurf nach Abschnitt 5.2.1 angewendet werden, indem die komplexe

Regelstreckenparameter kann unmittelbar der Regler-
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Variable p formal durch den Verschiebeoperator q ersetzt wird, um auf
eine Darstellung im Zeitbereich iberzugehen. Nach (5.23) lautet das
Reglergesetz '

(5.135) Ac(q]u(k) = Lyla)r{k) - Zc(q)y(k)

Da nach Voraussetzung simtliche Regelstreckennullstellen kiirzbar sind,
wahlen wir in (5.27)

[}
—_

z.(q)
so daB gilt

(5.136) Zs(q)

Z;(q) byl = zy(q)

Durch diese Wahl sind - im Unterschied zu Abschnitt 5.2.1 - die Polynom
Z (q) und A (q) im allgemeinen nicht monisch, d.h. ihre hdchsten Koeffi
zlenten 51nd ungleich eins. Hierdurch entstehen keinerlei Schwierigkei-
ten; andererseits wird Schreibarbeit gespart, da der Koeffizient b

nicht gesondert beriicksichtigt zu werden braucht. Nach (5.37) und (5 34
lautet das Reglergesetz

(5.137) Z(@agy(ul) = apl@)zy(a)rk) - z_(q)y(k)

und die Reglerentwurfsgleichung
(5.138) AM(q)AB(q) = As(q)AC1(q) + Zc(q)

Da das Parallelfihrungsmodell mit demselben Grad wie die Regelstrecke
angesetzt wurde, 1st die Entwurfsglelchung (5.138) genau dann eindeutig
losbar, wenn Grad[A (q)] = d-1 gewdhlt wird (siehe (5.41)) und im Reg-
ler der Zahlergrad glelch dem Nennergrad angesetzt wird. Die zu (5.137)

und (5.138) &dquivalenten Darstellungen mit Operatorpolynomen in q-1
lauten dann

* _‘] * -
(5.139) P laT 00y a7 hut) = i@ N znte et - 2 (e Ny (o)
und
PR LY Pe N U T -d * -
(5.140) Ayla aglq ) = a.(q Ja (a7 ) + g 2.la ),
wobei
T _ -1 -d+1
AB(q ) o= 1+ B1q + L.+ Bd_1q ,
P -1 ~d+1
(5.141) Ad(q ) = 1+ L N P + ’
P -1 -
2la ') = o v G * ..l ey nel
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Wir kehren nun zu der urspringlichen Annahme zuriick, daf die Regel-
streckenparameter unbekannt sind. Wir gelangen von dem Reglergesetz
(5.139) zu einem adaptiven Reglergesetz, indem wir das "GewiBheits-
prinzip" ("Certainty Equivalence Principle") anwerden. In (5.139)

und (5.140) werden die wahren Regelstreckenparameter durch Schatzwerte
ersetzt. Diese werden hier nach der Methode der kleinsten Quadrate be-
rechnet. In jedem Abtastschritt wird anhand der neuen Schatzwerte fur
die Regelstreckenparameter die Reglerentwurfsgleichung (5.140) geldst
und ein neuer Satz Reglerparameter berechnet. Die zeitinvarianten Opera-
toren Z;(q_1), A;(q—1), ZZ(q-]) und A;1(q-1) gehen beim adaptiven Reg-

lergesetz in die zeitvariablen Operatoren

20 ,q7) = b (k) ¢ by(k)aT e e b (g
A*(k,q_i) = 1+ zﬂ(k)q_1 + ..t an(k)q-n

(5.142) 3 1
- % _ - ) - - L o-n+1
g = ek cq(k)aT e e kg
x - i -1 ’ -4+
AC1(k,q 1) = 1+ a1(k)q oL+ ud_](k)q

iiber. Setzen wir diese Operatoren in (5.139} und (5.140) ein, so treten
Produkte von zeitvariablen Operatoren auf. Wir missen zunachst klaren,
wie wir die Produktblldung auffassen wollcn Hierzu definieren wir am

) -1 . , )
Beispiel der Operatoren I (k q ) und Z {k ,q ) zwel unterschiedliche

Produkte:

(5.143) pefinition (Produkte zeitvarianter Verschiebungsoperatoren):

m n-1
-* -1, -1 - ‘ ) -1
(5.144) 2itkq ez () s Z Z by (k) (1114 '
m n-1 _ ’ o
e e e
(5.145) z.(k,q” )z (la" ) s Z > b (ke (g
i=o j=0 B

(5.146) Anmerkungen:

Die Produktoperation (5. 144) entsteht durch
) auf den zeztvarlablen Operator

gewohnliche Anwendung des

ze1tvar1ab1en Operators I, "k, q
Z (1 q 1). Hierbei miissen d1e Verschlebeoperatoren in z. (k q ) auf die

zeltvarlablen Koeffizienten von Z (1,9

Unformungen der Gestalt

) angewendet werden wodurch
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(5.147) by (kK)q™le (1)g™) - by (k)e (1-1)q™" )
auftreten. Die Produktoperation (5.144) ist nicht kommutativ, d.h.

s _‘l ~ % _‘I A %k __] o _‘l
(5.148) 2,(k,q )z (1,07 ) +# 2.(l,q )2 (k,q ')

Im Gegensatz hierzu werden bei der Produktoperation (5.145) die Ver-
schiebeoperatoren nicht auf die zeitvariablen Operatorkoeffizienten
angewendet. Deshalb ist die Produktoperation (5.145) kommutativ:

~x I -1 _ A% wl 0% -1
(5.149) Z(kyq Nz (1,97 ) = 2.(1,q JZ_(k,q ')

Nur bei Anwendung der Produktoperation (5.144) gilt fiir gemischte Pro-

dukte zwischen Operatoren und Folgen ein assoziatives Gesetz der Art

~ % - ~ % _ ~ & I -1
(2 (k™ )ezi(1,q D Ix(v) = z_(k,q” D02 (1,q" Dx(v)]

Im Falle zeitinvarianter Operatoren sind die beiden Produktoperationen
(5.144) und (5.145) identisch. u

Bei der Uberfiihrung zeitinvarianter Reglergesetze in zeitvariante
(adaptive) Reglergleichungen bestehen unterschiedliche Moglichkeiten,
die zeitliche Anpassung der Reglerparameter zu realisieren. Zwei die-
ser Moglichkeiten konnen durch die oben definierten Produkte von Ver-
schiebeoperatoren erzeugt werden. Wir gehen von den Reglergleichungen
(5.139) und (5.140) durch Anwendung der Produktbildung (5.145) zu
adaptiven Reglergleichungen iiber:

Reglergesetz:
(5.150) 2. (k,q" )8 (k,q"utk) = artq 25" yeck) - 2 (k.q My (k)
: st c1+4 ‘4 yta Jr ctk.a )y .

Reglerentwurfsgleichung:

~

(5.151) 8,0a"82(a™) = 8Tk, DA (kg™ + q7 92" (k.q"]
- M q B q s » q cl » G +q C( »q )
Auf diese Weise treten in den Gleichungen (5.150) und (5.151) nur Reg-

lerparameter und geschitzte Regelstreckenparameter jeweils desselben
Zeitpunktes k auf.

Die geschatzten Regelstreckenparameter ﬁo(k),...,gm(k), é1(k),..-,;n(k)
in (5.150) und (5.151) werden dem Schatzparametervektor

~

(5.152) o = lay(K),...,a,(K), b (K),...,0 (k)17
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aus der rekursiven Methode der kleinsten Quadrate entnommen. Sk berech-

net sich nach der Rekursionsgleichung

. T

L AR VLS ACO Ry R

P, -h
1+ hy P qhy

p, = [E-k hilp

Tk = 2k =k° —k-1
mit dem Datenvektor
(5.154) nY = [-y(k-1),...,-y(k-n), u(k-d),...,u(k-d-m)]

N

und den Startwerten 2 und Bo (siehe Anhang A6.1.3). In jedem Abtast-
schritt werden die Reglerparameter anhand der aktualisierten Schitz-
werte fiir die Regelstreckenparameter neu berechnet. Damit das Regler-
gesetz (5.150) nach u(k) aufldésbar ist, muB sichergestellt sein, daB
in (5.142) go(k) $ 0 gilt, wasnwir im folgenden annehmen. Wire Bo(k)

gleich null, miBte in (5.142) bo(k) gleich einem festen, von null ver-

schiedenen Wert bOmin gesetzt werden. Derartige Modifikationen werden
bei der Konvergenzuntersuchung allerdings nicht beriicksichtigt. Bevor
wir die Konvergenzeigenschaften des Self-Tuning-Reglers untersuchen,

werden eine Definition und zwei Sdtze vorangestellt, auf die wir an

spiaterer Stelle zurickgreifen.

(5.155) Definition (pradiktionsfehler):

Die GrdBe

(5.156) e(k) := y(k) -h{ -1

nennt man Pradiktionsfehler (zum Zeitschritt k). e(k) ist die Differenz
zwischen dem MeRwert y(k) und dem aufgrund der MeBwerte bis zum Zeit-

schritt k-1 und des Schétzpa{ametervektors I vorhergesagten Melwert

T
(Pradiktionswert) y(k) = hp % 4 =

{(5.157) Satz (Konvergenzeigenschaften der rekursiven Methode der

kleinsten Quadrate):
ode der kleinsten Quadrate nach (5.153) besitzt, unab-
folgende Konvergenzeigenschaf-

Die rekursive Meth

hingig von der anregenden Eingangsgrofle,
die allerdings nur fur den Fall verschwindender StdrgroRen giiltig

ten,

sind:
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a

a) %, ist beschrinkt fir alle k ¢ N,
b) 11m||&k N B e 0 fir alle N e N
koo R
2
c) lim .____E_Lkl__ = 0
k~eo 1 +x£l_k hk

Hierbei ist » > O der maximale Eigenwert der (positiv definiten) Start-
i |
matrix Eo .

Der Beweis dieses Satzes kann GOODWIN, SIN [5.5], Seite 60, 61 ent-
nommen werden. Wenn die Norm des Datenvektors Ek fiir alle k beschrédnkt
bleibt, folgt aus c), daB der Pradiktionsfehler e(k) gegen null kon-
vergiert. Der Satz (5.157) gilt jedoch unabhdngig von einer derartigen
Annahme. Dies ist fiir uns auch wichtig, denn beim Einsatz des Identifi-
kationsverfahrens innerhalb eines Self-Tuning-Reglers lassen sich zu-

nachst keine Aussagen iiber die Beschranktheit der Systemgrofen machen.

Mit Hilfe des nachfolgenden allgemeinen Satzes kann ohne Annahme der Be-
schranktheit von h hk gezeigt werden, daB der Priadiktionsfehler gegen
null konvergiert, wenn die Norm des Datenvektors hk linear iiber den Pra-
diktionsfehler abschdtzbar ist. Dies ist jedoch erst im geschlossenen
Regelkreis méglich, da bei der Identifikation an einer offenen Regel-

strecke die in h, enthaltenen Werte der StellgroBe und der Ausgangs-
grofe nicht vom Pradiktionsfehler abhidngen.

(5.158) Satz (Key Technical Lemma):

Gegeben seien drei reelle skalare Folgen {s(k)}, by (k) }, {by(k) 1 und
eine reelle (px1)-Vektorfolge {o(k)} mit den nachstehenden Elgenschafter

2
a) lim s (k) -
k== b, (k) + b,(k)a' (k)alk)

b) Alle Elemente der Folgen {b (k)} und (b »(k)} sind positiv und t
schriankt mit der endlichen Schranke M > O d.h.

0 < b1(k) < M

fir alle k e N .
0 < bz(k) < M
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c) Es existieren zwei positive Konstanten C1 und CZ’ so daf}
[e(k)|] < Cp + Cy max [s(j)! fir alle k ¢ N .
rP 0<j <k

Dann folgen die Aussagen

1) iim s(k) = 0O ,
Ko
2) Die Folge {]]o(x)!| p} ist beschrankt. [ ]
R

Den Beweis dieses Satzes findet der Leser in GOODWIN, SIN [5.51,
Seite 181, 182. Die Folge {s(k)} wird bei der Anwendung des Satzes
gleich der Folge der Pradiktionsfehler {e(k)} gewahlt. Wir formulie-

ren nun einen Satz iliber die Konvergenzeigenschaften des Self-Tuning-

Reglers:

(5.159) Satz {Xonvergenzeigenschaften des Self-Tuning-Reglers}:

Der durch (5.150), (5.151) gegebene Regelalgorithmus im Zusammenhang

mit der rekursiven Methode der kleinsten Quadrate (5:153) ist unter der

Voraussetzung einer beschrédnkten Fithrungsgrofe (und bo(k) £ 0 fir

k € NO) konvergent in dem Sinne, da@

a) u(k),y{k)} beschrankt sind fir alle k ¢ N

b) lim{y, (k) -y(k)l = 0 . n
k-

Beweis:
Um Schreibarbelt zu sparen,
Operatoren weglassen und Abkiirzungen der Form

werden wir im weiteren die Argumente der

o . _'I

ZS = Zs(kvq ) »

O % ik _T
(5.160) ZS = Ls(k-T,q ) ,

5. 2N (ked-1,07")

S S

Entsprechendes gilt fur die iibrigen Operatoren. Bevor wir

einfiihren.
setzen wir in das Regler-

mit den eigentlichen Umformungen beginnen,

gesetz (5.150) die Identitat

~* * b 4 *
(5.161) g Iy r(k) = g by yM(k+d)
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ein, die unmittelbar aus (5.134) folgt, und erhalten als aquivalente
Darstellung des Reglergesetzes

-

» * ~ % * .
(5.162) Z;AC]u(k) = 8gty yy(ked) - 2'y(k)

Un mit Hilfe des "Key Technical Lemmas" an spaterer Stelle zeigen zu
konnen, daB der Prddiktionsfehler

(5.163) 0 = () - b sy = 8y - 2 a(kea)

gegen null konvergiert, miissen wir die Voraussetzung c¢) des "Key Tech-
nical Lemmas" sicherstellen, d.h. wir missen zeigen, daR die Norm des
Datenvektors Hk mit Hilfe des Pradiktionsfehlers abschidtzbar ist. Aus
diesem Grunde formen wir die Systemgleichungen so nun, daR wir die
RegelgréBe y(k) und die StellgréBe u(k) in geeigneter Darstellung als
Funktionen des Prddiktionsfehlers e(k) erhalten. Aus (5.163) folgt
durch Vorwértsverschiebung um d Schritte

(5.164) e(ked) = & y(ks+d) - Zo u(k)

]
Linksseitige Multiplikation mit 4.7 und Erweitern liefert

-~

* o J % o 7 _*
AC]e(k+d) = ACT'ASy(k+d) - Acl'zsu(k)
(5.165) _oor o R
Aoqbd y(k+d) + {AC1 by AC]AS]y(k+d)

~ % _*

% o 3 ok ~x
= 8.42ulk) - [Ac1'25 - BgqZ Tulk)
Aus der Regierentwurfsgleichung (5.151) folgt
- x

a1 * & ~ %
AC1ASy(k+d) = Aybpy(k+d) - Z.y(k)

’

so dall wir nach Umstellung von (5.165) erhalten

LR * - %

"ok _ ~ ok ~ % _* [ (k.
Aybpy(k+d) + [AC]-AS T 8eqb ] ylkedy - [AC1-ZS ST
(5.166)

“ %

. e ey 7
= b8.q elksd) + [ch(k) + A qZoulk)]
Der letzte Ausdruck kann nach (5.162) umgeformt werden:
~ ok a2 ok * ~ %
ch(k) + AcTZsu(k) = AMAByM(k+d)

Wir erhalten somit fir (5.166)



5.4 Konvergenzbetrachtungen bei Self-Tuning-Regelkreisen 373

A -

* o~k ~ % _* * o~k ~ % _* *x K
AMABy(k+d) + [A qrag = A qa.] y(k+d) - [AC1-ZS - 842, ] u(k)
(5.167) . -
AMAByM(k+d) + A e(k+d)
Dies ist eine Gleichung, in der die RegelgroBe und die StellgréBe in
Abhdngigkeit vom Pradiktionsfehler und der gewiinschten AusgangsgrofBe
dargestellt sind. Um eine zweite Gleichung zu erhalten, multiplizie-

*
ren wir (5.167) linksseitig mit dem zeitinvarianten Operator B und

beachten die Identitéat

*" %k % A*&* * k
AMABAs y(k+d) = M BZs u(k)

Dann folgt

*~ & & * ~ ok _% *x % * ~ % _* * Sk
AMABZsu(k) * As'[AcT' A5 - Ac1As] y(k+d) - As [Ac1 Zs - Ac1zs] u(k)

ok

* “ k%
(5.168) - A;ABASyM(k+d) v 8 by e(k+d)

Aus Griinden der Ubersichtlichkeit fassen wir (5.167) und (5.168) in

Matrizenschreibweise zusammen:

* ~ ~k "
Bybp * [A g°h AC1AS] ;o - La 1°Z AC1ZS] y(k+d)
* ~ k"% L - " ok
As'[A 1.A - Ac1As] ’ AMABZS - agtla 1 z ‘Ac1zs] u(k)
* "~ %
bybp ; B yM(k+d)
(5.169) = et .
bybpls Bg"8aq e(k+d)

Gleichung (5.169) kann als Eingangs-Ausgangs-Beziehung eines linearen
zeitvariablen Systems aufgefaBt werden, welches die Eingangsgrofien
{yM(k+d)}’ {e(k+d)} und die AusgangsgroBen {y(k+d)}, {u(k)} besitzt.
Der Pradiktionsfehler e(k+d) hat seine Ursache in einer Abweichung

des geschédtzten Regelstreckenmodells von der wahren R§§elf5r?sk?;

Die Klammerausdriicke in (5.169), wie beispielsweise [A ;-8 -4 44.1,
sind i.a. solange von null verschieden, wie die Schatzwerte fiir die

Regelstreckenparameter zeitverdanderlich sind.

Da der Parametervektor an
Quadrate fiir alle k € N/ beschrinkt ist (siehe (5.157)), sind die

nach der rekursiven Methode der kleinsten
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Operatoren i; und A; fir alle k beschrdnkt in dem Sinne, daB ihre Koef-
fizienten fiir alle k beschrinkt sind. Da auBerdem die Reglerentwurfs-
gleichung (§;151) fg: beliebige A; losbar ist, sind somit auch die
Operatoren Aq und ZS beschrédnkt, womit fiir endliche k sichergestellt
ist, daB y(k) und u(k) beschrinkt bleiben. Die zweite Eigensghaft im
Satz (5.157) gewahrleistet, daR die Schdtzparametervektoren Ek asymp-
totisch gegen einen konstanten Endwert streben. Damit ist sicherge-
stellt, daBl das Modell (5.169) asymptotisch gegen das zeitinvariante
Modell

A A 0 (k+d) A N (k+d)
M°B ylk+ Byd Y Yy
(5']70) *~% % = T~f * * ?*
0 5 AydpZ. u{k) Aybgde & B A, e(k+d)

strebt. Dieses Modell ist stabil, da die Nullstellen der Polynome
AM(z), &B(z) und Zs(z) voraussetzungsgemdfl innerhalb des Einheitskrei-
ses liegen. Somit sind die RegelgréBe {y(k+d)} und die StellgroBe
{u(k}} und damit auch der MeBdatenvektor {hy} asymptotisch in linearer
Weise durch den Prddiktionsfehler {e(k+d)} beschrinkt (was genau genom-
men noch streng mathematisch gezeigt werden miBte), womit alle Voraus-
setzungen zur Anwendung des Satzes (5.158) erfiillt sind, wenn wir

|
=

(5.171)
s(k) = e(k) o(k)

"
f=nd

=k

setzen. Aus Satz (5.158) folgt dann, daB der Pridiktionsfehler e(k+d)
gegen null konvergiert und daB die GrjRe ||hk|| n+m+1 fir alle k be-

schrdnkt ist. Damit sind auch u(k) und y(k) fiir alle k beschrankt.
Aus (5.170) folgt wegen e(k+d) - 0

(5.172) limly(k+d) - yM(k+d)] = 0
ke
womit der Beweis abgeschlossen ist. 8

(5.173) Anmerkungen:

Im Rahmen dieses Beweises konnten keine Aussagen iiber die Konvergenz-
geschwindigkeit und die GrdBe der Schranken fir die Systemgroflen

hergeleitet werden. AuBerdem wurde angenommen, daB keine Stérungen im

Regelkreis auftreten. Die Voraussetzungen und die Ergebnisse der Kon-
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vergenzuntersuchung 4hneln somit denen, die bei einer Behandlung von
MRAS-Strukturen mit Hilfe der Hyperstabilitdtstheorie auftreten bzw.

gezeigt werden konnen (siehe Abschnitte 5.5 und 5.6).

Wenn in den adaptiven Reglergleichungen fiir die praktische Anwendung
notwendige Modifikationen vorgenommen werden, wie beispielsweise Be-
schrankungen der StellgréoBe, so kann die Konvergenz des adaptiven Re-
gelkreises hiaufig nicht mehr gezeigt werden, was allerdings nicht be-
deutet, daB der Regler in der Praxis nicht gut funktioniert.

Aufgrund der Zeitvariabilitdt des adaptiven Reglergesetzes {(5.150) be-
sitzt ein dynamischer Zustandsregler, dessen Parameter nach dem Entwurfs-
schema (A4.22) aus den zeitvariablen Reglerparametern berechnet werden,
ein anderes Eingangs-Ausgangs-Verhalten als das durch (5.150) gegebene.
Eine Uberfithrung der Struktur eines dynamischen Zustandsreglers in die
Standardregelkreisstruktur gemdB Anhang A4 ist namlich nur bei zeitin-
varianten Parametern durchfiihrbar. Dieselben Uberlegungen gelten fiir die
Zustandsdarstellung gemaB Bild 5.9 (vgl. auch Anmerkung (5.286)). [ ]

5.4.3 Self-Tuning-Regler bei Vorgabe der Polstellen des

geschlossenen Regelkreises

Um die Kirzung der Regelstreckennullstellen beim Reglerentwurf nach
Abschnitt 5.4.2 zu vermeiden, betrachten wir nun einen Reglerentwurf,
bei dem nur die Polstellen des geschlossenen Regelkreises vorgegeben

werden. Die lineare (quasi)zeitinvariante Regelstrecke sei beschrieben

durch die Eingangs-Ausgangs-Beziehung
* o -1 WP
(5.174) so(q” Dy) =z (e Julk)

mit den Operatoren

* . - -n

i@ = 1 ragal e e
(5.175) :

* _1 - -1

Zs(q ) = b]q + + bnq ’

wobei es nicht erforderlich ist, daB die hochsten Koeffizienten in den

Operatoren A*(q-1) und Z*(q_}) von null verschieden sind. Wir nehmen an,
s s _
daB die Regelstreckenordnung n bekannt sei.
daB die Polynome a_(z) und Zs(z) keine gemeinsamen Nullstellen besitzen.
S -
Da die Regelstreckentotzeit bei dem folgenden Reglerentwurf keine beson-
besitzt und nicht bekannt zu sein braucht, wird diese

Weiterhin setzen wir voraus,

dere Bedeutung
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nicht explizit beriicksichtigt, sondern sei implizit in Z (q ) enthal-

* -
ten. Aus diesem Grunde diirfen die Koeffizienten b ’bd—1 in Zs(q 1)
gleich null sein.

Wir gehen von einem Reglergesetz der Form
* -1 * -1
(5.176) Ala Dulk) =z (q" Hler(k) - y(k)]

mit den Operatoren

¥ -1 -1 -n+1
Ac(q ) . q

Il
—

+

(]

—_

=l

+

+

@]

(5.177)

_])

Z:(q d+dja + ...+ d q—n+1

aus, in dem allerdings kein dynamisches Vorfilter enthalten ist, son-
dern nur ein stationdrer Vorfaktor o, mit dem beispielsweise das sta-
tiondre Fihrungsverhalten festlegbar ist. Mit diesenm Regler konnen unter
den angegebenen Voraussetzungen im Falle bekannter Regelstreckenparame-
ter sdmtliche Zn-1 Polstellen des geschlossenen Regelkreises vorgegeben
werden, wenn die Koeffizienten der Operatoren A (q ) und ZZ(q_1) nach
der Reglerentwurfsgleichung

(5.178) si@halta™) « 2l Tzl - agla™)

durch Koeffizientenvergleich in Potenzen von q_i berechnet werden,
wobel A (z) die vorgegebenen 2n-1 Polstellen enthdlt (zum Vergleich
siehe Reglerentwurfsglelchung (5.34)). Die Losung von (5.178) ist ein-
deutig, was aus ahnlichen Uberlegungen wie in Abschnitt 5.2.1 folgt.

Das Ubertragungsverhalten des geschlossenen Regelkreises ist gegeben
durch

(5.179) spla™ Dyt = 227Nz e i)

Wir setzen voraus, daB alle Nullstellen von a (z) innerhalb des Ein-

heitskreises der z-Ebene liegen, so dap der geschlossene Regelkreis
stabil ist.

Im Falle unbekannter Regelstreckenparameter erweitern wir den Regler
zu einem adaptiven Regler, indem die Regelstreckenparameter nach der
rekursiven Methode der kleinsten Quadrate geschitzt werden und in die
Reglerentwurfsgleichung (5.178) die Schédtzparameter anstelle der wah-

ren Regelstreckenparameter eingesetzt werden. Wir erhalten somit den
folgenden adaptiven Algorithmus:
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(5.180) Expliziter Self-Tuning-Algorithmus fiir den Polvorgabe-Regler:

. T N N § -
Parametervektor: B = [31(k),...,an(k),b1(k),...,bn(k)]
Datenvektor  : hl = [-y(k-1),...,-y(k-n),u(k-1),...,u(k-n)]

Schdtzalgorithmus nach der rekursiven Methode der kleinsten Quadrate:

X . T
S = Aoy KOO - by g )
P h
(5.181) k, = —X-17% ,
T+ by Byhy

p, = [E-k hilP

2k 7R I Ik
Reglerentwurfsgleichung:
(s 2k, DAk, ¢ zhaThzheTh (g7

.182) 6,(k,q A (k,q ) + 2 .(k,q JZ_ (k,q = aplg )

Die zeitvariablen Operatoren sind:

“x -1 " -1 - -

As(k,q ) = 1+ a1(k)q + ...+ a (klq n

o* -1 . -1 X -n

Z.(k,q"') = by(kdaT ¢ ...+ bk
(5.183) . . .

-1 -1 -n+1

a (kg™ ) = 1 cq(k)aT v ke (kg n+

2% - : p -1 p -n+1

Z,qTh = 400+ d e s d G0
Reglergesetz:

~x _ ~ % - ~
(5.184) a(k,q Dutk) = Z00aaT D Te(0r(k) - y(K))

Der Vorfaktor é(k) kann wegen {5.179) beispielsweise durch
*
AR(T)

zs(k,1}zc(k,1)

(5.185) 0(k)

. . _ )
festgelegt werden, sofern Zs(k,1)zc(k,1) nicht gleich null ist.
Beim Einsatz des adaptiven Polvorgabe-Reglers treten Schwierigkeiten

auf, wenn der Schatzalgor1thmus solche Parameter liefert, daB die

Polynome A (k,z) und Z_ (k,z) exakt oder ndherungsweise gemeinsame

NUIlstellen besitzen. Im Falle exakt gleicher Nullstellen ist die
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Reglerentwurfsgleichung (5.182) nicht loésbar, es sei denn, dieselben
Nullstellen werden auch in A (z) vorgegeben. Im Falle ndherungsweise
glelcher Nullstellen treten sehr grofle Werte der Koeffizienten in

A (k q ) und Z (k q ) auf, was schon aus numerischen Griinden bei
einer praktlschen Realisierung unzulissig 15t.ﬁD1e Schatzqu nahe-
rungsweise oder exakt gleicher Nullstellen in Ac(k,z) und Zs(k.z)

kann beispielsweise dadurch ausgeschlossen werden, daB die Startwerte
der Schatzparameter in einer geniigend kleinen Umgebung der wahren Re-
gelstreckenparameter vorgegeben werden. Dies setzt allerdings eine gute
a-priori-Information iiber die Regelstrecke voraus.

Zu beachten ist, daB gemeinsame Nullstellen in As(k,z) und Zs(k,z)
beim Reglerentwurf nach Abschnitt 5.4.2 keine Probleme verursachen.
Da dort samtliche Regelstreckennullstellen durch den Regler gekiirzt

werden, tritt nur noch A (k q 1), nicht jedoch A (k q ) in der Reg-
lerentwurfsgleichung (5. 151) auf.

Wir formulieren nun einen Satz iiber die Konvergenzeigenschaften des

adaptiven Polvorgabe-Reglers:

(5.186) Satz {Konvergenzeigenschaften des adaptiven Polvorgabe-Reglers):

Es sei vorausgesetzt, daf die als Losung der Reglerentwurfsgleichung
(5 182) berechneten Koeffizienten der Operatoren AL (k q ) und

Z (k,q ) fir beliebige k unterhalb einer endllchen Schranke verblei-
ben (Beschranktheit). Dies ist aufgrund der vorausgegangenen Bemer—
kungen 51chergestellt wenn die Koeffizienten der Operatoren A (k q 1)
und Z (k q ) beschrinkt sind und die Polynome A (k z) und Zg (k z) fir
belleb1ge k keine exakt oder naherungswelse gemelnsamen Nullstellen
besitzen. Wenn X, (k) die Nullstellen von a (k z) und u (k) die Null-

stellen von Z (k z) sind, so muB fiir be11eb1ge k und alle (i,j) eine
Konstante n > O existieren, so daB

(5.187) 200 - w0 >

Unter diesen Voraussetzungen und unter der Annahme, daB im Regelkreis
keinerlei Storungen auftreten, besitzt der adaptive Polvorgabe-Regel-
algorithmus (5.180) die folgenden Konvergenzelgenschaften und zwar

unabhangig davon, auf welche Weise der Vorfaktor p(k) berechnet wird:

a) u(k) und y(k) sind fiir alle k ¢ N beschrankt.
~y P P
b) ilmfﬂ (a™Dy(x) - Z(k-1,q Dzk-1,0" e (KIr (k)] = o0

(5.188) ]
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Der Beweis dieses Satzes kann GOODWIN, SIN [5.5], Seite 212, 213 entnom-
men werden. Zum Verstiandnis der Konvergenzaussage b) vergleiche man die
Beziehung (5.179).

(5.189) Anmerkung:

Wenn gewilinscht wird, daB der Self-Tuning-Regler zur Vermeidung eines sta-
tiondren Regelfehlers einen integralen Anteil enthdlt, so kann dies fol-
gendermaBen beriicksichtigt werden: Im Regler wird ein integraler Anteil
fest vorgegeben. Die verbleibenden, mit AZ(k,q-1) und i:(k,q-1) bezeich-
neten Komponenten des Reglers werden nach der Reglerentwurfsgleichung
(5.182) ermittelt, wobei der Integralanteil formal der Regelstrecke hin-
zugeschlagen w1rd H1erdurch erhoht sich deren Ordnung um eins. Die Opera-
toren A (k q ) und Z (k,q ) missen dann mit der Ordnung n angesetzt wer-
den, so daB der Regler insgesamt die Ordnung n+1 und der geschlossene

Regelkreis die Ordnung 2n+1 besitzt. B

5.5 Zeitkontinuierliche MRAS-Strukturen

5.5.1 Einleitende Bemerkungen

Wir betrachten in diesem Abschnitt adaptive Systemstrukturen mit einem
stabilen linearen (quasi)zeitinvarianten Parallel-Fiihrungsmodell und
einem abgleichbaren System, dessen Parameter mit Hilfe eines adaptiven
Algorithmus so verdndert werden sollen, daB der Fehler e beschrankt
bleibt und asymptotisch verschwindet. In Bild 5.13 ist ein derartiges
adaptives Modell-Referenz-System (MRAS = Model Reference Adaptive System)
dargestellt. Wir nehmen hierbei an, daB keinerlei StorgroBen auftreten.
An die FithrungsgroBe r des adaptiven Systems werden, abgesehen von der
Beschrinktheit, keine Forderungen gestellt. Die Voraussetzungen glei-
chen somit denen bei den Konvergenzbetrachtungen von Self-Tuning-Regel-
kreisen in Abschnitt 5.4. Die Untersuchungen werden zundchst fir den
Fall zeitkontinuierlicher Systeme durchgefihrt. In Abschnitt 5.6 wer-
den dann zeitdiskrete MRAS-Strukturen behandelt. Das Ziel der Ab-
schnitte 5.5 und 5.6 besteht darin, dem Leser zu zeigen, wie anhand

von Stabilititsmethoden Adaptionsgesetze hergeleitet werden kénnen.
Dabei wird im wesentlichen die Hyperstabilitdtstheorie benutzt.
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. Parallel I
arallel-
ey
Fuhrungsmodell
- Y
o Abgleichbares .J'>
System N
[
3(Parameter) e=yy-y
Adaptions- <
Algorithmus e —

Bild 5.13: Allgemeine MRAS-Struktur mit Parallel-Flihrungsmodell

Die Anwendung eines adaptiven Systems nach Bild 5.13 ist im Zusammenhang
mit den folgenden Problemstellungen méglich:

a) Identifikation der Parameter einer Regelstrecke
b) Adaptive Zustandsbeobachtung

c) Adaptive Regelung

Je nach Problemstellung entsprechen die Blécke in Bild 5.13 unter-
schiedlichen technischen Systemen:

Wenn eine Struktur nach Bild 5.13 zur Identifikation der Parameter
einer Regelstrecke angewendet wird, entspricht die Regelstrecke dem
Parallel-Fihrungsmodell. Das abgleichbare System ist ein (beispiels-
weise auf einem Digitalrechner simuliertes) System, dessen Parameter
mit Hilfe eines adaptiven Algorithmus so lange verandert werden, bis
sein Verhalten dem Regelstreckenverhalten gleich ist. Nach Beendigung
der Adaption sind die an abgleichbaren System eingestellten Parameter
Schédtzwerte fiir die Parameter des Parallel-Fithrungsmodells, d.h. die
Parameter der Regelstrecke. Wenn das Eingangssignal r die Regelstrecke
gut anregt und die gewiinschten Parameter identifizierbar sind, konver-
gieren die Parameter des abgleichbaren Systems unter gewissen Voraus-
setzungen gegen die wahren Regelstreckenparameter.

Bei der adaptiven Zustandsbeobachtung entspricht dem Parallel-Fithrungs-
modell wiederum die Regelstrecke, deren ZustandsgréBen in diesem Fall
zu beobachten sind. Das abgleichbare System ist der hardwaremdBig auf-

gebaute oder auf einem Digitalrechner simulierte Zustandsbeobachter,
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dessen ZustandsgroBen Schitzwerte fiir die ZustandsgroBen der Regel-
strecke sind. In dem Zustandsbeobachter werden gewisse Parameter
durch Adaption so lange veridndert, bis die AusgangsgroBen des Beobach-

ters und der Regelstrecke gleich sind.

Einen adaptiven Zustandsbeobachter wird man dann einsetzen, wenn einige
(oder im Grenzfall alle) Parameter der Regelstrecke ungenau bekannt sind
oder sich teilweise langsam dndern. Gewthnliche lineare Zustandsbeob-
achter liefern in diesen Fdllen fehlerbehaftete Schiatzwerte, da bei
linearen Beobachtern der Zustands-Schatzfehler im storungsfreien Fall

- abgesehen von Ausnahmen - nur dann asymptotisch verschwindet, wenn die
Parameter des Beobachters exakt gleich den Parametern der Regelstrecke
sind. Anhand der adaptierten Beobachterparameter kdnnen gleichzeitig
Schdtzwerte fur die unbekannten Regelstreckenparameter berechnet werden,

wobel dann eine kombinierte Parameter- und Zustandsschatzung vorliegt,

Im Falle einer adaptiven Regelung ist das abgleichbare System der Grund-

regelkreis, bestehend aus der Regelstrecke und dem Regler, dessen Para-
meter adaptiert werden. Das Parallel-Fiihrungsmodell ist ein System, wel-
ches das gewiinschte Filhrungsverhalten des Grundregelkreises festlegt

(siehe auch Bild 5.2).

Allgemeine Reglerentwirfe nach dem Modell-Referenz-Verfahren (mit fest
vorgegebenem Referenzmodell) besitzen den Nachteil, daff stets alle Null-
stellen der Regelstrecke gekiirzt werden missen. Der Grund ist unmittel-
bar einsichtig: Da die Regelstrecke bei allgemeinen adaptiven Reglerent-
wiirfen als unbekannt angenommen wird, sind die Nullstellen im voraus
nicht bekannt und konnen somit nicht bei der Vorgabe des Referenzmo-
dells beriicksichtigt werden. Um eine Anpassung des geschlossenen Regel-
kreises an ein beliebig vorgegebenes Parallel-Fihrungsmodell zu ermég-
lichen, miissen nach Abschnitt 5.2.1 aber samtliche Streckennullstellen
gekiirzt werden. Dies ist jedoch nicht méglich, wenn "instabile Strecken-
nullstellen™ auftreten. Verzichtet man auf eine perfekte AnpaRbarkeit

an das vorgegebene Referenzmodell, so ist ein Reglerentwurf mit Hilfe
der Hyperstabilitdtstheorie, die gemeinhin bei Modell-Referenz-Verfah-

ren angewendet wird, nicht méglich.

Un die Kirzung von Streckennullstellen zu vermeiden, ist es moglich,
ein Modell-Referenz-Verfahren in Kombination mit einem Identifikations-
verfahren einzusetzen. Dann konnen in Abhdngigkeit von den identifi-
zierten Nullstellen der Regelstrecke die Nullstellen des Parallel-
Fihrungsmodells verandert werden. Ein derartiges Verfahren wurde von

SCHUTZE [5.21] angegeben.
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Im Unterschied zu zeitdiskreten Regelkreisen stellt die Kiirzung der
Regelstreckennullstellen bei zeitkontinuierlichen Regelkreisen keine
grofle Einschrénkung in der Anwendbarkeit eines Reglers dar. Ein all-
gemeiner adaptiver Reglerentwurf fiir den zeitkontinuierlichen Fall
liefert jedoch sehr komplexe Strukturen, die in der Praxis wegen des
Realisierungsaufwandes kaum Anwendung finden.

Aus den genannten Griinden verzichten wir darauf, einen allgemeinen
Reglerentwurf nach dem Modell-Referenz-Verfahren (mit festem Referenz-
modell) durchzufiihren und verweisen hierzu auf UNBEHAUEN [5.81,

Seite 231-248.

5.5.2 Das Fehlermodell fiir den Zustandsfehler

Wir werden in den folgenden Abschnitten zunichst Adaptionsgesetze an-
hand von Zustandsdarstellungen des Parallel-Fihrungsmodells und des
abgleichbaren Systems herleiten. Wir gehen dabei davon aus, daB sémt-
liche ZustandsgréBen meBbar sind. Das Verhalten des Parallel-Fihrungs-
modells sei beschrieben durch das lineare zeitinvariante (bzw. quasi-
zeitinvariante) Zustandsmodell

-;(—M(t) AmiM(t) + EML(t) , _X_M(t) e R"

(5.190)

yyu(t) xy(t)

und das Verhalten des abgleichbaren Systems durch das zeitvariable Zu-
standsmodell

3

i(t) Alt)x(t) + B(t)r(t) , x(t) e R"

3

(5.191)

y(t) x(t)

Beide Systemordnungen werden als gleich angenommen. Bei der Herleitung
von Adaptionsgleichungen legen wir uns zunichst nicht fest, ob ein
Identifikationsproblem oder eine adaptive Regelaufgabe vorliegt und
betrachten ein allgemeines abgleichbares System. Die Zeitabhdngigkeit
der Matrizen A(t) und B(t) des abgleichbaren Systems soll zum Ausdruck
bringen, daB diese iliber noch zu entwickelnde Adaptionsgleichungen von
dem Fehler e, von der AusgangsgréBe Y = x und von der FihrungsgréBe T
abhangen koénnen. Nun werden in den Matrizen A(t) und B(t) i.a. nicht
samtliche Elemente zeitverinderlich sein. Im Falle ei;ér Identifika-
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tionsaufgabe sind meistens einige Systemparameter bereits bekannt, so
da diese im abgleichbaren System fest vorgegeben werden kdénnen. Ande-
rerseits stehen im Falle einer adaptiven Regelung i.a. nicht geniigend
adaptierbare Reglerparameter zur Verfiigung, um sdmtliche Matrizenele-
mente unabhidngig voneinander zu variieren. Um das ablgeichbare System
dem Parallelmodell angleichen zu konnen, miissen die nicht veradnderli-
chen Elemente in A(t) und B(t) den entsprechenden Elementen 1in AM

und EM gleich sein, was im weiteren vorausgesetzt wird. Dies laft

sich dann leicht erfullen, wenn das Parallelmodell und das abgleich-
bare System in der gleichen Standardform angesetzt werden bzw. vor-
liegen. Tritt eine skalare EingangsgroBe r(t) auf und liegen Parallel-
modell und abgleichbares System in der Steuerbarkeits-Normalform vor,

so erhalten wir beispielswelse

[ 0 1 0 0 0
A = ’ b =
M | 0 oM
0 0 1 0
“2M,0 "2, n-1 | "M, |
(5.192)
h [ 1
0 1 0. 0 0
Alt) = : . o0 ., b(t) =
o . - - - 0 1 0
—a (t) e 'an-1(t)_ Lbn(t)‘

so daB sich die Systemmatrizen A, und A(t) nur in der letzten Zeile und
die Eingangsvektoren by und b(t) nur im letzten Element unterscheiden,

wihrend die iibrigen Elemente automatisch gleich sind.

Um die Stabilitit des Parallel-Fihrungsmodells sicherzustellen, nehmen
wir an, daB alle Eigenwerte der Systemmatrix AM negativen Realteil be-
sitzen. r(t) ¢ R™ ist bei einer Regelaufgabe die FiihrungsgroBe und bei
einer Id;ntifikationsaufgabe die EingangsgroBe des adaptiven Systems.

Wir setzen voraus, daB r{t) beschrdnkt ist.
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Zur Herleitung von Adaptionsgleichungen ist es zweckmidBig, ein mathe-
matisches Modell fiir den Zustandsfehler

(5.193) elt) = xy(t) - x(t)

aufzustellen (Fehlermodell). Wir erhalten durch Einsetzen der Differen-
tialgleichungen und Erweitern mit Ayx(t)

e(t) = x,(t) - x(t)

e(t) = Ayxy(t) + Byr(t) - ACt)x(t) - B(t)r(t)

(5.194)
= Ay[xy(©)-x(8)] + [A-ACO)] x(£) + [B,-B()] r(t)

In Analogie zur Vorgehensweise in Beispiel (5.1) werden zur Abkiirzung
die Fehlermatrizen

Aé(t) AM - A(t) ]

(5.195)

AB(t) By, - B(t)

M

eingefilhrt. Das Fehlermodell lautet dann endgiiltig
(5.196) e(t) = Age(t) + 8ACt)x(t) + aB(t)r(t)

Aufgrund der Vorbemerkungen werden in AA(t) und 4B(t) nicht samtliche
Elemente Aaij und Abij zeitverdnderlich sein. Die nicht zeitverdnder-
lichen Elemente sind identisch null, da die entsprechenden Elemente
in A, und A(t) bzw. By und B(t) voraussetzungsgemiB gleich sind. Mit

I, = {(i,j)IAaij(t) i o}

(5.197)
g = (G.5)]eb, () 0}

werden die Indexmengen zu den zeitverdnderlichen, nicht identisch ver-
schwindenden Elementen von 8A(t) und AB(t) bezeichnet.

5.5.3 Anwendung der direkten Methode von Ljapunov zur
Herleitung von Adaptionsgleichungen

Die erste aus der Literatur bekannte Adaptionsvorschrift bei einem

Modell-Referenz-System ist die von WHITAKER, OSBURN, KEZER [5.22]

vorgeschlagene, sogenannte "MIT-rule" (MIT = Massachusetts Institute
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of Technology) . Diese Adaptionsvorschrift wurde durch Anwendung eines
Gradientenverfahrens zur Minimierung eines Giitefunktionals gewonnen,
wobei als Giitefunktional das Integral iiber das Quadrat des Regelgros-
senfehlers gewdhlt wurde. Die Nachteile eines derartigen Entwurfs be-
stehen allerdings darin, daB die (globale) Stabilitdt des adaptiven
Systems nicht gesichert ist. So ist es beispielsweise moglich, daf

das adaptive System instabil wird, wenn die Amplitude der Fihrungs-
grofe einen gewissen Wert iberschreitet (siehe LANDAU [5.6], Seite 77).

Wendet man zur Herleitung von Adaptionsgesetzen dhnlich der Vorgehens-
weise in Beispiel (5.1) die direkte Methode von Ljapunov an, so kann
sichergestellt werden, daB in der MRAS-Struktur nach Bild 5.13 der
Fehler e beschrinkt bleibt und asymptotisch verschwindet, und zwar
unabhdngig von der Fiihrungsgrofie T (globale asymptotische Stabilitét
des adaptiven Systems). Zur Durchfiihrung dieser Entwurfstechnik wird

die Ljapunov-Funktion

V(t) = V(e(t),sA(t),sB(t))
T 2 2
= e (t)P e(t) + ZZ aijﬂaij(t) + 22 BijAbij(t)
(5.198) (i,3)e Iy (i,j)e Iy

angesetzt, wobei die frei wahlbaren Koeffizienten mij und Bij positiv

sein miissen und P eine symmetrische, positiv definite Matrix mit der

Eigenschaft

(5.199) Ay P+ P A = - Q

[

sein muB, wobei Q ebenfalls eine symmetrische, positiv definite Matrix
ist. Eine derartige Matrix P existiert genau dann, wenn Ay eine Hurwitz-
Matrix ist, d.h. eine Matrix. die nur Eigenwerte mit negativem Realteil

besitzt. Dies ist aber nach Voraussetzung erfullt.

Die Adaptionsgleichungen miissen so gewdahlt werden, daB V(t) negativ ist,
solange der Zustandsfehler e(t) nicht null ist. Aus (5.198) folgt durch

Differentiation

i) = TP elt) + e (DR e(t)  + 2 ZZ aijAaij(t)Aéij(t)
(1,]j)e IA

(5.200) + 2 Z Z fsijnbij(t)aﬁij(t) .
(i,3)e IB
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Unter Beriicksichtigung der Fehlerdifferentialgleichung (5.196), der Ma-
trizengleichung (5.199) und der Abkiirzung

(5.201) (hy(t), ... ,h ()] = eT(e) p

lassen sich die ersten beiden Terme in V(t) geeignet umformen:

e ()P e(t) + eT(1IP &(t)

[T eonh + xTaa"e) « 1T p eco)

+

ST(t)R[éM_e_(t) + M(t)x(t) + AE(t)L(t)]

gT(t){A; P+ P Al elt)

+

2 e ()P sA(t)x(t) + 2 eT(t)P aB(t)r(t)

T
- e (1)Q e(t) + 2 Z > hy (0)x;(t)aa; (1)
(5.202) (1,5)e 1,

+ 2 Z Z hi(t)rj(t)ﬂbij(t)

(i,j)e I

Die zeitliche Anderung V(t) der Liapunov-Funktion G(t) ist somit nach
Zusammenfassung der entsprechenden Summenterme gegeben durch

V(t) V(e(t),8A(t),aB(t))

. .
- el (g e(t) 2 :E: 2 tay (0 n (0x(0) » ap jhag; (1]
(5.203) (i,j)e 1,

c2 2 2 by nh(tr (1) « B; by (6] -

(i,ji)e IB
Wahlt man als Adaptionsgesetze
pag (1) = - b (t)e () (i,j) e 1
1] al] 1 ] ’ 1,) [ A
(5.204)
X - 1 ..
Abij(t) = - BI—J hl(t)rJ(t) s (1,_]) € IB ,

so verschwinden in V(t) sdmtliche Summenterme und es verbleibt
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(5.205) V(t) = -el(t) Qelt) <0 fir e(t) + O

Somit ist sichergestellt, daf der Zustandsfehler e(t) asymptotisch ver-
schwindet; es ist jedoch keine Aussage moglich, ob die Matrizen A(t)

und B(t) gegen die Matrizen Ay und By konvergieren. Dies hidngt davon ab,
wie die Eingangsfunktion r(t) das Gesamtsystem anregt. Beriicksichtigt
man in den Adaptionsgesetzen (5.204), daB aA(t) = Ay - A(t) und

AB(t) = By - B(t), so folgen die Adaptionsgleichungen

ag;(t) - %J R () (), (1,3) €1,
(5.206)

- 1 .

bl](t) = TJ hl(t)rj(t)’ (1yJ) € IB ]
wobei [h1(t),...,hn(t)]T = Pe(t) = Plxy(t) - x(t)]

In integraler Form erhdlt man

t
3 5(t) = —I—J [ hiGoxjtodr v st GL3) e 1,
t
(5.207) o
1 o
by;(t) = B_l_]f hy(e)r (Ode + by (), (1,9) e Iy
t
0]

Durch geeignete Wahl der Matrix P und der positiven Konstanten %5 und
Bij kann ein gewiinschtes Adaptionsverhalten festgelegt werden.

(5.208) Anmerkungen:

Wenn die Adaptionsgleichungen (5.207) im Zusammenhang mit einer Identi-
fikationsaufgabe angewendet werden, entspricht die zu identifizierende
Regelstrecke dem Parallelmodell mit den Systemmatrizen AM und EM' In
diesem Fall muB eine gewisse Vorinformation iiber die Regelstrecke zur
Verfiigung stehen, um die fir die Adaption notwendige Matrix P so wahlen
zu kénnen, daB die Matrixgleichung (5.199) mit Sicherheit erfilllt ist.

Im Falle einer adaptiven Regelungsaufgabe entspricht das abgleichbare
System dem adaptiven Regler zusammen mit der unbekannten Regelstrecke,
wihrend das Parallelmodell vorgegeben und damit bekannt ist. Die Para-
meter aij(t) und bi'(t) des abgleichbaren Systems sind somit Funktionen
der zu adaptierenden Reglerparameter, die wir durch den Index R kenn-
zeichnen, und der Regelstreckenparameter, die wir in dem Vektor o
zusammenfassen. Damit sich aus den Adaptionsgesetzen {(5.207) verwert-
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bare Adaptionsgesetze fiir die Reglerparameter ableiten lassen, miissen

die Parameter aij(t) und bij(t) dergestalt von den Regler- und Strek-
kenparametern abhingen, daB in den Adaptionsgesetzen fiir die Reglerpa-
rameter keine unbekannten Regelstreckenparameter auftreten. Setzen sich

die Parameter aij(t) und bij(t) beispielsweise in der Form

aij(t) flij(is)aRij(t) + fZij(&s) oo (i,5) e 1,

(5.209)

aus Reglerparametern und Funktionen der Streckenparameter is zusammen,
so konnen die unbekannten Funktionswerte fZij(is) und gZij(ﬁé) in den
Adaptionsgleichungen (5.207) den frei wdhlbaren Anfangswerten ai-(to)
und bij(to) hinzugerechnet werden. Dividiert man anschlieBend durch die
unbekannten Werte f1ij(gé) und g]ij(is)’ so treten diese im Produkt |
mit den frei widhlbaren Konstanten aij und Bij auf. Dann konnen iiber die

Beziehungen

“ij = iy fgy(e)
(5.210)

By Bij 8115(2)

neue, frei wihlbare Konstanten ;i' und éij definiert werden, so daB

die Adaptionsgleichungen (5.207) unmittelbar in Adaptionsgleichungen

fir die Reglerparameter ibergehen. Allerdings miissen die Vorzeichen

der Funktionswe{te f1ij£35) und gTij(ﬁs) bekannt sein, um die Vorzeichen
der Konstanten aij und Bij so festlegen zu konnen, daB die Konstanten

% und Bij gemall den vorangegangenen Uberlegungen positiv sind. [ ]

5.5.4 Anwendung der Hyperstabilitiatstheorie zur Herleitung
von Adaptionsgleichungen

Zur Gegeniberstellung mit der direkten Methode von Ljapunov wird nun

die Hyperstabilititstheorie zur Herleitung von Adaptionsgleichungen an-
gewendet, wobei dieselben Voraussetzungen wie bei der direkten Methode
von Ljapunov gelten sollen. So wird wiederum angenommen, da@ samtliche

ZustandsgroBen meBbar sind. Um die Hyperstabilitidtstheorie anwenden zu
kénnen, muB die Fehlerdifferentialgleichung

(5.211) e(t) = Ae(t) + aA(O)x(t) + AB(t)r(t)
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in eine Struktur gemidB Bild 5.14 gebracht werden, bei der sich im Vor-
wirtszweig ein lineares zeitinvariantes System befindet und im Riickwdrts-
zweig ein nichtlineares zeitvariables System auftreten darf. v(t) und

w(t) missen dieselbe Dimension besitzen.

vt} wit)
Gis)

vit)

Bild 5.14: Regelkreisstruktur, auf die die Hyperstabilitdtstheorie

anwendbar ist

Die Hyperstabilitdtstheorie nach Anhang A8 liefert dann die Aussage, daB
die ZustandsgroéBen des linearen Teilsystems beschrankt sind und asympto-
tisch verschwinden, wenn das lineare Teilsystem nur Eigenwerte mit nega-
tivem Realteil besitzt und dessen Ubertragungsmatrix G(s) (bzw. Ubertra-
gungsfunktion G(s)) streng positiv reell ist (siehe Definition (A7.20))

und das nichtlineare zeitvariable System fiir beliebige Funktionen w(-)
die sogenannte Popov-(Integral)Ungleichung

t
(5.212) j _\LT(T)E(T)dT > - 7(2) fir alle t > t_

t
0

erfiillt, wobei Yo 2 0 eine beliebige, aber fiir alle Funktionen w(*)
feste Konstante ist. t, bezeichnet den Anfangszeitpunkt. Wir schreiben

die Fehlerdifferentialgleichung (5.211) in der Gestalt

e(t) = Ay e(t) + v (t)
(5.213) w(t) = D e(t)
- v (1) = () = - aAGw(+),t)x(t)- aB(u(+),t)r(t)

wobei beriicksichtigt ist, daR die Matrizen aA und AB iiber noch festzu-
legende Adaptionsgesetze unter anderem von der Fehlerfunktion

w(*) = D e(+) abhangen mogen. Die quadratische Matrix D wird im weiteren
Verlauf geeignet festgelegt. Die Struktur der Gleichungen (5.213) ist

in Bild 5.15 dargestellt. Ein Vergleich mit Bild 5.14 zeigt, daB die
gewiinschte Form vorliegt. Der Zustandsvektor des linearen Teilsystems

im Vorwdrtszweig ist der Zustandsfehler e(t).
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viit) elt) = Avelt) + viit) witl
V_\_f[” = Qg“}

vit)

vith = -AAIW(),t) xit) - ABIw(-Ltirlt]  fe

Bild 5.15: Umgeformtes Fehlermodell

(5.214) Anmerkung:

Wirde man die in den Adaptionsgesetzen auftretende GréBe w(t) in der
Form
wlt) = Del(t) +F v (t)

ansetzen, was einen Durchgriff in dem linearen Teilsystem nach Bild 5.15
zur Folge hatte, so wirde w(t) algebraisch von der "Hilfsgrofe" i1(t)

abhdngen. Die GroRe l1(t) ist jedoch eine Funktion der unbekannten Para-
meter des adaptiven Systems und somit am realen System nicht zugidnglich,

so daB dieser Ansatz auf nicht realisierbare Adaptionsgesetze fihren
wiirde. o

Um die asymptotische Hyperstabilitit des Fehlersystems zu gewdhrleisten,
mufl die Matrix D so gewahlt werden, daR die Ubertragungsmatrix

(5.215) 6(s) = DISE - A"

streng positiv reell ist (siehe Definition (A7.20}). Die funkticnalen
Zusammenhdnge AA(w(-),t) und aB(w(-),t) (Adaptionsgleichungen) missen
so festgelegt werden, daf der nichtlineare Block im Rickwidrtszweig in
Bild 5.15 die Popov-Ungleichung (5.212) fiir alle Funktionen w(+) er-

fillt. Zur Losung der Aufgabe wird v(t) nach (5.213) in die Popov-
Ungleichung eingesetzt:

t t
_/‘f(r)g(r)dr - ff(f)l(f)cn .
(5.216) t, %o
t
= j ET(T)['AA{E('),T]i(T) -AE[E('),T]l(T)]dT
t

o
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Wir beriicksichtigen entsprechend den Vorbemerkungen in Abschnitt 5.5.2,
daB in 4A und AB i.a. nur einige Elemente zeitverdnderlich und die rest-
lichen identisch null sind. Die Indexmengen zu den zeitverdnderlichen
(zu adaptierenden) Elementen in 4A und 4B werden wiederum mit I, und I,
bezeichnet. Wir schreiben Gleichung (5.216) in der Form

t t
flT(r)E(r)dt = z Z {-f Wi(T)Aaij[E(°)’T]Xj(T)dT ]
A

t (i,7)el t,

0
t
+ }3 za —.[ wi(T)Abij[E(.)’T]rj(T)dT } )

(l,JJEIB t,

(5.217)

wobei die Vertauschbarkeit der Summationen mit der Integration beriick-
sichtigt wird. Zur Erfillung der Popov-Ungleichung ist es hinreichend,
wenn jeder Summand der rechten Seite von (5.217) gro6Rer als eine end-
liche negative Konstante ist. Aus diesem Grunde betrachten wir zunédchst
eine Bedingung der Gestalt

t
(5.218) - flw(r)a[w('),T]x(r)dT > - Yé ,

t
o}

die fiir beliebige t > t und beliebige Funktionen x(+) sowie beliebige
w(+) zu erfiillen ist. Unabhdngig von dieser Bedingung kann man sich
iiberlegen, daB ein geeignetes Adaptionsgesetz in jedem Fall einen inte-
gralen Anteil enthalten muBl, damit der eingestellte Parameterwert ge-
halten wird, wenn der Fehler e(t) und damit die GroRe w(t) abgeklungen

ist. Wir wahlen somit fir a[w(-},t] den allgemeinen Ansatz

t
(5.219) a(t) = .[ f1[w(x),A]dx + fz[w(t),t] +alt))
t
0

Hierbei soll die Funktion fz[w(t),t1 die Adaptionsdynamik verbessern.
Fir die asymptotische Stabilitédt des adaptiven Gesamtsystems ist es not-

wendig, daf gilt
(5.220) £,00,t) = 0

Wire £,(0,t) beispielsweise konstant, so wirde a(t) unbeschrankt wach-
sen, wenn die fehlerabhdngige GroBe w(t) abgeklungen ist. Demgegeniiber
darf die Funktion f2 fiir w(t) = O einen konstanten Wert annehmen, da

£,(0,t) dem Anfangswert a(to) hinzugerechnet werden kann.
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Die Ungleichung (5.218) ist erfiillt, wenn fiir a(t) der konkrete Ansatz

(5.221) a(t) = -a1_[ WX e pu(t)x(t) + alt)

t0

gewdhlt wird, wobel o, und @, bis auf die Forderungen

(5.222) «, >0 , “, >0

frei wiahlbare Faktoren sind. Zur Uberpriifung dieser Aussage wird
(5.221) in die Ungleichung (5.218) eingesetzt:

t
_Jr wit)alw(+),t)x(1)d
t
0
t T
(5.223) = j W(T)X(T){QT.[ wia)x(x)da + mzw(t)x(r) - a(to)JdT
% to
= I1 + Iz
mit t . .
a
I, = an W(T)x(t)[f wix)x(x)da - G1° }dr ,
t t
(5.224) Ot 0
IZ = ooy f wz(t)xz(t)dr
t

o]

Der Term I, ist nicht negativ. Fiir den Term I, gilt mit der Abkiirzung

T

alt )
(5.225) g(c) = .[ WODx()dr - —0
t, !
die Abschatzung
I = o fg'(r)g(r)dr = 71 [gz(t) -gz(to)]
t
(5.226) 0
2
0'--! 2 a (t ) 2
3-?——g(t0) = "2‘0—"3- = "Yo ’

1

hangt einerseits von dem Faktor ¢
andererseits von dem Anfangswert a(t ) ab.

was zu beweisen war. Die Konstante Y

Fir die Parameterfehler
(t) erhalten wir entsprechend (S 221) die Adaptionsgesetze
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t

(5.227) Aaij(t) = -a1ij j wi().)xj(k)dk - QZijwi(t)xj(t) + Aaij(to)
to

Entsprechendes gilt fiir Abij(t). Unter Beriicksichtigung von Aaij(t) =

By,ij " aij(t) und Abij(t) = bM,ij - bij(t) lauten die Adaptionsgesetze

fir die Parameter des abgleichbaren Systems zusammengefaft

t
ai(8) = ey fwi(l)xj(l)dl F oy e (X (0) + ay(x,)
t0
%15 ; >0 , %33 > o , (i,j) e Iy ;
(5.228) ¢
bij(t) = B.lij f wi(x)rjn)dx + BZijwi(t)rj(t) + bij(to) ,
tO
B135 >0 4 By 20, (i) edp
wobei w(t) = Del(t) = Dixy(t) - x{t)]

Die Matrix D muB so gewdhlt werden, daB die Ubertragungsmatrix

6(s) = DISE - A 17
streng positiv reell ist. Die Matrix D und die Konstanten “ijr %2i5°

B legen die Adaptionsdynamik fest.

1150 P21
(5.229) Anmerkungen:

Vergleicht man die Adapticnsgleichungen (5.228) mit den Adaptionsglei-
chungen (5.207) aus der direkten Methode von Ljapunov, so erkennt man
groBe Ahnlichkeiten. Im Unterschied zu (5.207) sind jetzt jedoch auch
proportionale Anteile in den Adaptionsgleichungen zugelassen. Den GroRen
wi(t) in (5.228) entsprechen die GroBen h.(t) 1n (5.207), die jedoch
unterschiedliche Bedeutung haben. Die Unterschiede 1n den Adaptions-
gleichungen sind darauf zurickzufithren, da von unterschiedlichen Sta-
bilititsbegriffen ausgegangen wird.

Wenn die Adaptionsgleichungen (5.228) im Zusammenhang mit einer Iden-
tifikationsaufgabe verwendet werden, sind - ebenso wie bei der Anwen-

dung der Adaptionsgleichungen (5.207) - Vorinformationen iber die Re-

gelstrecke erforderlich (siehe Anmerkungen (5.208)). An dieser Stelle
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werden Vorinformationen dazu bendtigt, um die Matrix D so wahlen zu

konnen, daB G(s) streng positiv reell ist.

Im Falle einer adaptiven Regelaufgabe gelten die gleichen Uberlegungen
wie unter den Anmerkungen (5.208)}. [ ]

(5.230) Beispiel: Verstdrkungsfaktoranpassung bei einer

Regelstrecke 2. Ordnung

Betrachtet sei eine stabile Regelstrecke der Form
(5.231) y(t) + a1y(t) + aoy(t) = bsu(t)

mit b $+ 0. Die Koeffizienten a, > 0 und a, > 0 der Regelstrecke seien
bekannt, jedoch sei der Faktor bS bis auf das Vorzeichen unbekannt und

eventuell langsam zeitverdnderlich. Durch einen adaptiven Vorfaktor der
Form

(5.232) u(t) = bp(t)r(t)

soll das Verhalten der Regelstrecke dem gewiinschten Modellverhalten
(Parallel-Fiihrungsmodell)

(5.233) yy(t) + a,yy(t) + agyy(t) = byr(t)

angepafBt werden, w?bei zur Adaption die Regelstrecken-Zustandsgréfen
y(t) =: x,(t) und y(t) =: x,(t) als MeBgroéBen zur Verfiigung stehen.

Die Differentialgleichung des abgleichbaren Systems erhalten wir durch
Einsetzen von (5.232) in (5.231) zu

(5.234) () + ay(t) « ay(t) = blo)r(t)

wobei b(t) := bSbR(t)-

Durch Subtraktion dieser Gleichung von der Differentialgleichung des

Parallel-Fihrungsmodells ergibt sich die Fehlerdifferentialgleichung

(5.235) g(t) + a1é(t) + aoe(t) = Ab(t)r(t)

wobei e(t) = yy(t)-y(t) und  ab(t) := b,-b(t)
In Zustandsdarstellung lautet das Fehlermodell mit den ZustandsgroéfBen

e1(t) := e(t) ez(t) 1= é(t)
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(5.236)

mit

e(t) = Age(t) +m,p(t)r(t)
0 1 0
AM = s &2 =
-a -a 1
o] 1

In Bild 5.16 ist das Fehlermodell als riickgekoppelte Systemstruktur
dargestellt, wobei im Unterschied zu Bild 5.15 der hier auftretende

Einheitsvektor L&) dem linearen Teilsystem hinzugerechnet ist.

vyt elt) = Ayelt] »aquitl | wit)
w(t] = d'elt)

vit}

vit) = -Ablwl). t]r(t] e

Bild 5.16: Fehlermodell zur Verstiarkungsfaktoranpassung

Entsprechend (5.228) erhalt man die - asymptotische Hyperstabilitat des

Gesamtsystems garantierende - Adapticnsgleichung

(5.237)

t
b(r) = 8y [ wOOr(0ar ¢ Bpu(dr(e) + blty)

t
(o]

mit den bis auf die Nebenbedingungen B, > 0, B, > 0 frei wahlbaren Kon-
stanten Bl und 82. w(t) berechnet sich aus der Gleichung

(5.238)

I

W) = dle(t) = doeg(t) + dyeyl(t)

It

d_e(t) + delt)

wobei dT so festgelegt werden muB, daB die Ubertragungsfunktion

(5.239)

streng positiv reell 1ist,

d1s + dO

6(s) = d'GsE- AT 8y T
s+a1s+a0

d.h. RelG(juw)]l > O fiir 0 < w < <. Hieraus er-

halten wir die Forderung
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. 2 .
Re[(d0 + d13m}(ao - wt - aTJm)]
— 2 - 13 < @
= dja ) + w(a,d, dO) >0 fir 0 < w )
woraus fiir d1 und d2 die Bedingungen
d

> _©
Za

(5.240) d >0
© 1

) d1
folgen. Beriicksichtigen wir, daf b(t)Nz bsbR(t), und fiihren wir die
wadhlbaren Konstanten By := 81/bS und By := Bz/bS ein, so lautet die
Adaptionsgleichung fir den Vorfaktor

t
(5.241) bp(t) = By [ wO0r0ax v Bu(edr(e) + by(t)
t
0]
mit B.b. > 0 : B,b, > 0
17s ’ i7s ~

Hiermit ist die zu Beginn des Beispiels formulierte Aufgabenstellung
gelost. Ein Strukturbild der adaptiven Verstidrkungsfaktoranpassung

ist in Bild 5.17 dargestellt.

rlt) Paraltel-Fihrungsmodell
Yu * O¥m + Qoyy = byr .
witl [ wlt)
gt o
rit) ult) Regeistrecke =)
= X
. ., _ y(t)
\ Y+ Q1Y + gy = bu _,83
bglt)
—~
p—ed rh f
91{”=e(tl
rit) balt do
x o)
wit) ejt) = élt)
d

Bild 5.17: Strukturbild zur Verstdrkungsfaktoranpassung
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5.5.5 Adaptiver Zustandsregler

Die Ergebnisse aus Abschnitt 5.5.4 werden im folgenden auf den Entwurf
eines adaptiven Zustandsreglers fir eine lineare zeitinvariante oder
quasizeitinvariante Regelstrecke bekannter Ordnung angewendet. Wir neh-
men an, daB sdmtliche ZustandsgroBen der Regelstrecke meBbar sind. Das
Fiihrungsverhalten des geschlossenen Regelkreises soll sich asymptotisch

dem Verhalten des stabilen Parallel-Fithrungsmodells
: n
(5.242) xy(t) = Ayxy(t) + byr(t) (xy(t) e RY)

angleichen. Die Regelstrecke sei beschrieben durch die Differential-

gleichung

(5.243) x(t) = Ax(t) + bault) (x(t) ¢ RM
Fir den adaptiven Zustandsregler wahlen wir den Ansatz
(5.244) u(t) = - K(O)x(t) + e(t)r(t)

wobei die GroBen ET(t) und p(t) liber geeignet zu wéhlende Adaptionsge-
setze festgelegt werden miissen. Die Struktur des Systems ist in Bild
5.18 dargestellt. Wir setzen die Reglergleichung in die Differential-

gleichung der Regelstrecke ein und erhalten das abgleichbare System

Referenzmodeil xmlit)

xth = Agxlt] + byrlt)

r{t) ult) Regelstrecke xl(t) ‘5
x(t) = Acxlt] + bgult)

elt)

X he

3
olt) K'it)

Adaptionsalgorithmus

Bild 5.18: Systemstruktur zum adaptiven Zustandsregler
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i(t)

Ay - bkT(D]x(6) + bpleIr(t)

(5.245)

¢ ACE)x(t) + b(t)r(t)

Damit eine perfekte Anpassung dieses Regelungssystems an das Parallel-
Fuhrungsmodell {iberhaupt méglich ist, miissen Werte EZ
stieren, so daf

d exi-
und o

pt pt

M Espopt ’

|
[

(5.246)
_ _ T
Ay = ﬁs Eskopt

Derartige Werte existieren genau dann, wenn der Vektor EM von dem Vektor
ES linear abhdngig ist, d.h.

(5.247) rg[gs] = rg[gs, EM] = 1
und wenn gilt
(5.248) rg[hs] = rg[hs, (AM - AS)] = 1

Hierbei haben wir den singuliren Fall Es = 0 ausgeschlossen. Als notwen-

dige und hinreichende Bedingung fiir eine mogliche perfekte Modellanpas-
sung erhalten wir somit zusammengefafBt

(5.249) relbgl = rglbg, byl = relb, (4,

- = 1

AS)]
Diese Bedingung 148t sich unmittelbar auf Mehrgrofensysteme erweitern
(siehe LANDAU [5.6], Seite 209). Wenn die Regelstrecke und das Parallel-
Fiuhrungsmodell beispielsweise in der Steuerbarkeitsnormalform vorliegen
(siehe (5.192), so ist diese Bedingung mit Sicherheit erfiillt. Das Feh-

lermodell fiir den Zustandsfehler e(t) = iM(t) - x(t) lautet nach (5-196)

(5.250) e(t) = Ae(t) + aA(OX(t) + ab(t)r(t)

mit

2A(t) Ay - Alt)

T
ﬂM - AS + 955 (t) 4
{(5.251)

ab(t) by - b(t) = by - boelt)

Unm die Herleitung der Adaptionsgesetze zu vereinfachen, stellen wir die
Reglerparameter k(t) und p(t) formal in der Form
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k(t) = koo * 2k (t)
(5.252)

p(t) = oo * ap(t)
dar, wobei Eopt und popt die unbekannten Werte sind, die nach (5.246)
perfekte Modellanpassung garantieren. Dann folgt

T

aA(t) = b ak (t)
(5.253)

sb(t) = - b se(t)

und wir erhalten das Fehlermodell
(5.254) e(t) = Ayel(t) + b rak! (£)x(t) - ap(t)r(t)]

Dieses konnen wir als riickgekoppelte Struktur in der Form

e(t) = Age(t) + bovi(t)
(5.255) w(t) = dle(t)
v(t) = - v(t) = —{Ap[w(-),t]r(t)-af[w(o),t]i(t)

schreiben (siehe Bild 5.19), wobel wir einflieBen lassen, daB Ap und

AET iiber Adaptionsgesetze unter anderem von der GroBe w(+} = QTE(-)

abhdangen modgen.

wit) é(t) = Auelt) + bow(t} wit)
%%' wit) = d elt)
v(t)
Vit) = Aplwl-) thr(th - AK [wl)tix(t) =

Bild 5.19: Umgeformtes Fehlermodell beim adaptiven Zustandsregler

Der Vektor d muB so gewahlt werden, daB die Ubertragungsfunktion

(5.256) G(s) = QT[SE - AM]-1 b,

streng positiv reell ist. Aufgrund der vorausgesetzten linearen Abhéan-

gigkeit der Vektoren EM und b_ existiert ein (unbekanntes) Popt so daB
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EM = poptgs‘ Unter AusschluBl des singuldren Falls Popt ~ 0 folgt
b, = by/ Popt und wir erhalten aus (5.256)
1 T
(5.257) G(s) = d" [sE - AM] BM
popt
Um den Vektor QT bestimmen zu koénnen, muB das Vorzeichen von p be-

opt
kannt sein. Hierzu reicht es aus, das Vorzeichen eines von null verschie

denen Elementes in Rs zu kennen. Aus der Forderung, daB der Riickfihr-
block in Bild 5.19 zur Sicherung der asymptotischen Hyperstabilitdt die
Popov-Ungleichung erfiillen muB, erhalten wir fiir ap(t) und ak(t) =

[Ak1(t),...,Akn(t)]T analog zu (5.228) die Adaptionsgesetze
t
ap(t) = o .[ wltlr(t)dr + azw(t)r(t) + Ap(to) )
t
0
ay > o , a, > o,
(5.258)
t
ski (1) = - 8y [ wlax()de - By ulox (6) + aky(ty)
t
)
B1i >0 BZi >0 , 1= 1...n

Um zu Adaptionsgesetzen fiir die urspriinglichen Reglerparameter p(t) und
k(t) zu gelangen, miissen wir (5.252) in (5.258) einsetzen. Die unbekann-
ten Parameter popt und Eopt treten dann in einer Summe mit den frei wéhl
baren Anfangswerten p(to) und E(to) auf, so daB wir diese zu neuen An-
fangswerten zusammenfassen konnen. Die Adaptionsgesetze fiir p(t) und
k{t) lauten dann

t
o(t) =y [ wlor(ads + auloIr(t) + olt))
t
[0}
(5.259) a; >0, ay > o ,
t
k() = -8y [ wx(dr - By w6 (0) - K;(t,)
tO
Biy >0, By, 20, i=1...n_:

Bei einer Implementierung des adaptiven Zustandsreglers konnen fiir
die Reglerparameter p(t) und k(t) feste Voreinstellungen PE und kg
vorgenommen werden, die beispielsweise anhand bekannter Nennwerte der
Regelstrecke berechnet werden. Die Adaption hat dann die Aufgabe, die
Reglerparameter so nachzufiihren, daB Abweichungen der Regelstrecken-
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parameter von den Nennwerten kompensiert werden. Das Reglergesetz lautet

in diesem Fall

w(t) = - (kg + 8k (£)x(t) + (o + ap(£))T(t)

(5.260)

- kp x(t) + pp T(t) + u,()
mit dem Adaptionssignal
(5.261) up(6) = -kl (0)x(e) + ap(e)r(e)

Die Adaptionsgesetze fiir ak{t) und Ap(t) sind wiederum durch (5.258)
gegeben. Die Struktur des Gesamtsystems ist in Bild 5.20 dargestellt.
Diese Struktur ist der nach Bild 5.18 &dquivalent.

Referenzmodell xult)

24t) = Ayxult) o byrlt)

rit) uft)  ult) Regelstrecke x(t) A)
* ' x(t) = Agx(t] + byult) h
up{t)
E: - elt]
hg———————

Adaptionsalgorithmus

1

Bild 5.20: Systemstruktur zum adaptiven Zustandsregler mit

Parametervoreinstellung

Wir behandeln abschlieBend eine Erweiterung des adaptiven Zustandsreg-

lers. Hierzu betrachten wir den Fall bekannter Regelstreckenparameter

und perfekter Modellanpassung, d.h.
(5.262) k() = koo olt) = ey

In diesem Fall lautet die Fehlergleichung (5.250)

(5.263) e(t) = Ayel(t)
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Diese beschreibt unter anderem das Verhalten, mit dem Zustandsfehler
e(t)) = xylt)) - i(to) abklingen. Nun kann es wiinschenswert sein, die
Eigenwerte des Fehlermodells unabhéngig von den Eigenwerten des Paral-
lel-Fihrungsmodells vorzugeben und festzulegen. Hierzu wahlen wir fir
den adaptiven Zustandsregler alternativ zu (5.244) den Ansatz

(5.264) u(e) = - KN(Ox(8) ¢ p(Or(t) + K] x, ()

Das Fehlermodell lautet dann

(5.265) e(t) = (A bkDe(t) + [Ay=Ag+b (kT (1) -k1)Ix(¢)
+ [EM-ESp(t)]r(t)

Im Falle einer perfekten Anpassung des Regelungssystems an das Refe-

renzmodell missen die optimalen Werte kTpt und popt fiir die Reglerpa-
rameter k (t) und p(t) den Gleichungen
EM - Espopt
(5.266)
- _ T 7
By o= A bl - kD
Referenzmodell x(t)

Sult) = Ayxyltl + by rit)

rlt) Regelstrecke x(t) A
x{t) = Ax(t) + boult) -‘\)
elt)
e -
|

Adaptionsalgorithmus

Bild 5.21: Systemstruktur zum erwelterten adaptiven Zustandsregler
mit Parametervorelnsteilung
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geniigen. Damit derartige Werte existieren, muB als notwendige und hin-
reichende Bedingung wiederum die Gleichung (5.249) erfiillt sein. Das
Fehlermodell lautet bei perfekter Modellanpassung
1
opt

(5.267) e(t) = (Ay - bkpe(t) = (A - —— bykile(t) .

Mit Hilfe des fest einzustellenden Vektors EE kénnen die Eigenwerte der
Fehlerdifferentialgleichung (5.267) unabhdngig von A, beliebig vorgege-
ben werden, wenn das Referenzmodell vollstdndig steuerbar 1st. Zur Fest-
legung von E; ist allerdings eine Kenntnis liber das Vorzeichen und die
ungefdahre GroBe von Popt erforderlich. Die Adaptionsgesetze fiir die
Reglerparameter p(t) und k(t) in (5.264) sind wiederum durch die Glei-
chungen (5.259) gegeben. Die Systemstruktur eines erweiterten adap-
tiven Zustandsreglers mit zusdtzlicher Parametervoreinstellung ist

in Bild 5.21 dargestellt.

5.5.6 Anwendung von Hilfsfiltern zur Vermeidung zeitlicher

Ableitungen in den Adaptionsgesetzen

Die in den Abschnitten 5.5.3 und 5.5.4 hergeleiteten Adaptionsalgorith-
men haben den Nachteil, daf sie nur dann angewendet werden konnen, wenn
sdmtliche Zustandsgroéfen des abzugleichenden Systems und des Parallel-
modells meRbar sind. Andernfalls miite man versuchen, die nicht meBba-
ren Zustandsgrofen durch ndherungsweise differenzierende Filter aus den
Ausgangsgré6Ben zu erzeugen. Hierbel kann jedoch die Stabilitdat der adap-

tiven Systeme verlorengehen.

Wir zeigen an dieser Stelle fiir eine Identifikationsaufgabe, wie durch
Hilfsfilter mit TiefpaBcharakter Adaptionsgesetze gewonnen werden konnen,
in denen keine zeitlichen Ableitungen der AusgangsgroBe des Referenzmo-

dells auftreten. Hierbei ist es zweckmaBig, als Systembeschreibungen

Eingangs-Ausgangs-Darstellungen zu verwenden, die aufgrund der Nicht-
linearitit der Adaptionsgleichungen im Zeitbereich formuliert werden,
Unsere Betrachtungen erfolgen fiir zeitkontinuierliche Systeme. Deshalb
fiihren wir, dhnlich dem Verschiebeoperator q bei zeitdiskreten Systemen,
zur Abkiirzung den Differentialoperator

(5.268) o = gﬁ

ein. Das (stabile) Parallel-Fihrungsmodell, welches gleich der zu iden-

[ R N
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tifizierenden Regelstrecke ist, sei beschrieben durch die Eingangs-Aus-
gangs-Darstellung

n n-1 _ m
(8" + ay 12 + L., + aM,o)yM(t) = (bM,ma + oo+ bM,o)r(t)
(5.269)
die wir abgekiirzt in der Form
(5.270) Ay(3)yy(t) = Zylalr(t)

mit den zeitinvarianten Operatoren

AM(a) = 3" . a

(5.271)

|
o
(o]
=
+
+
o

Zy(8)

schreiben. Wir nehmen an, daB die Ordnung n und der PolstelleniiberschuB

d = n-m des Parallel-Fithrungsmodells bekannt sind, wdhrend samtliche
Koeffizienten unbekannt sind. Genau genommen reichte es aus, fiir den Pol
stelleniiberschul eine untere Schranke du zu kennen. In dem abgleichbaren
System, mit dem die Identifikation bewerkstelligt wird, miiBte dann der
"Zdhlergrad" m = n—du angesetzt werden. Aus Griinden der Ubersichtlich-
keit und Einfachheit wird dieser Fall jedoch nicht betrachtet. Fiir das

abgleichbare System gehen wir von der Eingangs-Ausgangs-Darstellung

"+ ay (0™ w0y = (b, ()0 ¢ ...+ b (£))r(D)

(5.272)
aus. In abgekirzter Schreibweise erhalten wir
(5.273) aa,t)y(t) = Z(a,t)r(t)

mit den zeitvariablen Operatoren

n

ala,t) a + <an_1(t)<3“"1 oL 4 ao(t)

3

(5.274)
Z(9,t)

m
bm(t)a R bo(t)

Um in den spdter auftretenden Adaptionsgleichungen Differentialquotien-
ten der AusgangsgrofBe yM(t) des Parallel-Fihrungsmodells und der Ein-

gangsgréBe r{t) zu vermeiden, wird ein stabiles lineares zeitinvarian-
tes Tiefpalfilter der Ordnung n-1
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K
T A
0

(5.275) G.{(3) =
F an—1+ £
n-2

eingefiihrt , mit dem wir die AusgangsgroBe des Parallel-Fihrungsmodells
und die EingangsgroBe des abgleichbaren Systems filtern. Hierbei ist der
Nenner in (5.275) eine formale Schreibweise fir den inversen Operator.
Die gefilterten GroBen bezeichnen wir mit yMF(t) und rF(t). In unseren
Adaptionsgesetzen werden die gefilterten GréBen und ihre Differential-
quotienten auftreten. Wie am Beispiel der EingangsgroBe in Bild 5.22

gezeigt ist, konnen von der gefilterten GroRe rF(t) die zeitlichen Ab-

leitungen bis zur Ordnung n-1 problemlos innerhalb des Tiefpafifilters

abgegriffen werden, ohne daB man Differenzierer bendtigt. Hierzu ist es

zweckmidflig, GF(a) in der Standardform nach Bild 5.22 zu realisieren.

T e U A 1f ) it)

[ ] [}

Lo T R

fn-2 fn-:! f1 fo

Bild 5.22: Filterung des Eingangssignals r(t) durch einen
TiefpaB GF(a) der Ordnung n-1

Wir wenden GF(a) auf die Ausgangsgrofie yM(t) an und erhalten

zy(o)
yMF(t) = GF(a)yM(t) = Gp(a) AM(G) r(t)

(5.276) Z.(2) 2.(3)
- Mg (r(n) = rp(t)

by (9) 2y (2)

Hierbei wurde die Kommutativitat der linearen zeitinvarianten Operatoren

Ge(2) und z,(2)/4,(9) beriicksichtigt.

erhalten

Wir multiplizieren mit AM(a) und

(5.277) AM(G)yMF(t) = ZM(a)rF(t)
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Das abgleichbare System regen wir mit der gefilterten EingangsgroBe
rF(t) an und erhalten die Systembeschreibung

(5.278) A(a,t)§F(t) = Z(a,t)rF(t)

Die so entstehende AusgangsgréBe des abgleichbaren Systems ist mit
;F(t) bezeichneE. Aufgrund der Zeitvariabilitidt der Operatoren Z(a,t)
und A(a,t) ist yF(t) nicht gleich der GréRe Gp(a)y(t), welche hier
nicht auftritt. Zur Herleitung der Adaptionsgesetze stellen wir ein Feh-
lermodell fir den Fehler

ep(t) = yyp(t) - yp(t)
auf. Hierzu subtrahieren wir Gleichung (5.278) von Gleichung (5.277):
(5.279) 2y (yyp(t) = ala,0)y () - [2y(8) - z2(a,t)] rp(t)
Durch Erweitern mit AM(G);F(t) folgt das Fehlermodell
(5.280) bulPep(t) = ~[ay(a) - (o, 0)] yu(t) + [2,(0) - 2(8,0)]ry(1)

das wir in Anlehnung an die Vorgehensweise in Abschnitt 5.5.4 als riick-
gekoppeltes System darstellen:

AM(a)eF(t) = v, (t)
wit) = Zd(a)eF(t)
(5.281) -
vilt) = - v(t) = - [AM(a) - A(a,w(-),t)]yp(t)
- {ZM(a) - Z(a,w(-),t)]rF(t)
Fir die Koeffizienten ao(t),...,an_1(t) und bo(t),...,bm(t) der Opera-

toren A(3,t) und Z(8,t) des abgleichbaren Systems erhalten wir analog
zu den Gleichungen (5.228) aus Abschnitt 5.5.4 die Adaptionsgesetze

t i .
- i.
ai(t) = - e J[ w(r)[%?J yF(r) dt - QZiW(t){%f] yF(t) + ai(to) )
Lo
(5.282) ars > 0 , oy >0 i=0 n-1

und
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t

) Rk d !
bi(t) = 811 .[ W(T)[H?] TF(T) dr + BZiW(t)[HT] rF(t) + bi(to) ,
to
(5.283) Byy >0 By 20 i=0...m
Das Polynom
. n-1 n-2
(5.284) Zd(a) 1= d 40 + dn_za + + d0

muB so bestimmt werden, daB die Ubertragungsfunktion

WCs) Z4(s)

(5.285) G (S) L= =
Md V1(S) AM(S)

streng positiv reell ist. Hierzu sind Vorinformationen iber die Regel-
strecke erforderlich.

Die Struktur des Identifikationsverfahrens 1st in Bild 5.23 fiir eine

Regelstrecke 3. Ordnung (Referenzmodell) dargestellt. Aufgrund der Zeit-
variabilitit ist der Zustandsdarstellung des abgleichbaren Systems beson-
dere Beachtung zu schenken. Diese muB so gewahlt werden, daB in der Ein-
gangs-Ausgangs-Darstellung des abgleichbaren Systems gemaf (5.278) keine

zeitlichen Ableitungen der Koeffizienten ai(t) und bi(t) auftreten.

(5.286) Anmerkung:

Setzt man ein abgleichbares System beispielsweise in der Steuerbarkeits-
normalform gemaR Bild 5.24 an, so liegt nicht das Eingangs-Ausgangs-Ver-
halten nach (5.273) vor. Unter Verwendung der Operatoren a(a,t) und

7(8,t) nach (5.274) folgen namlich die Beziehungen
y(t) = Z(a,t)xn(t)

und A(a,t)xn(t) = r{t)

Hieraus erhalten wir die Fingangs-Ausgangs-Beziehung

(5.287) Jt) = z(e,0)87 (o, t)r(t)

. . . -1
wobei wir die Existenz des inversen Operators & (a,t) voraussetzen,

wihrend aus (5.273) die Beziehung
y(t) = a7 (s, 00z(a,t)r(t)

folgt. Aufgrund der Nichtkommutativitat zeitvarianter Operatoren sind

die beiden Beziehungen im allgemeinen verschieden. B
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egelstrecke dritter Ordnung nach dem MRAS-Prinzip
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in-1 I(

A xM x ) x{t)
ST TP

%t}

ap1(t] a,lt) ayft) agit)

Bild 5.24: Zeitvariables lineares System in Steuerbarkeitsnormalform

Die Anwendung von Hilfsfiltern zur Vermeidung unerwiinschter Ableitungen

in den Adaptionsgleichungen kann ebenfalls bei adaptiven Regelproblemen
vorgenommen werden. Hierbei ergeben sich jedoch einige Modifikationen.

Da das abgleichbare System die Regelstrecke implizit enthdlt, sind im
Unterschied zur Identifikationsaufgabe die ZustandsgréBen des abgleich-
baren Systems nicht meBbar, wihrend die Messung der ZustandsgroBen des
Referenzmodells keine Schwierigkeiten bereitet. Weiterhin ist es win-
schenswert, daB der adaptive Regelkreis durch die (ungefilterte) Fiihrungs-
gréRe r(t) angeregt wird. Die Hilfsfilter missen sich deshalb am Ausgang
des abgleichbaren Systems und des Referenzmodells befinden. Die gefil-

terte FithrungsgréBe darf nur auf den Adaptionsalgorithmus, nicht jedoch
auf das abgleichbare System wirken.

Wir verzichten an dieser Stelle auf eine allgemeine Darstellung (siehe
beispielsweise LANDAU [5.6], Seite 119-130) und greifen zur Veranschau-

lichung die Verstarkungsfaktoranpassung nach Beispiel (5.230) auf:

(5.288) Beispiel: Verstidrkungsfaktoranpassung bei einer

Regelstrecke 2. Ordnung

Wir gehen erneut von der BIBO-stabilen Regelstrecke

(5.289) y(t) + a;y(t) + ay(t) = boult)

aus, deren Koeffizient bS $ 0 bis auf das Vorzeichen unbekannt und

eventuell langsam zeitveranderlich sei. Die Koeffizienten a > 0 und
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a; > 0 werden als bekannt angenommen. Durch den adaptiven Vorfaktor
(5.290) u(t) = bplt)r(t) + up (t)

soll das Verhalten der Regelstrecke dem gewinschten Modellverhalten
(5.291) yM(t) + a1yM(t) + aOyM(t) = er(t)

angeglichen werden. ub(t) ist ein Hilfs-Eingangssignal, das im Verlauf
des Entwurfs bestimmt wird. Wir nehmen an, daB zur Adaption nur die
GroBen r(t), yM(t) und y(t) zur Verfiigung stehen. Fiir das abgleichbare
System (Regelstrecke und Vorfaktor) erhalten wir die Gleichung

(5.292) YD+ apy(t) + ay(1) = bbo(tr(t) » b uy (1)
Das Fehlermodell fiir den Fehler e(t) := yy(t) - y(t) lautet somit
(5.293) e(t) + a1é(t) vagelt) = [b, - bobplt)ir(t) - bu, (t) .

Un Differentiale von y(t) im Adaptionsalgorithmus zu vermeiden, werden
der Fehler e(t) und die FihrungsgroBe r(t) mit Hilfe des stabilen Tief-
paBfilters 1. Ordnung

_ K
(5.294) Gp(ﬁ) = 6—+_'f_0- (fO > 0)
gefiltert. Wir erhalten
eF(t) = GF(G)e(t) ,
(5.295)
rF(t) = GF(a)r(t)

Der Adaptionsalgorithmus wird anhand eines Fehlermodells fiir den gefil-
terten Fehler eF(t) abgeleitet. Dieses erhalten wir durch Anwendung von
GF(a) auf die Fehlergleichung (5.293), wobei wir beriicksichtigen, daB

(5.296) G(o)e(t) = er(r) Gp(a)e(t) = eq(t)
Es folgt

eF(t) +ajep(t) + ajep(t) = erF(t) - bSGF(a)[bR(t)r(t) + ub(t)] .
(5.297)

Die Hilfs-Eingangsgrége ub(t) bestimmen wir nun so, daB

(5.298) Gp(a)[bR(t)r(t) fup ()] = bR(t)rF(t)
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Dann lautet das Fehlermodell fiir den gefilterten Fehler

(b

Mo bSbR(t)]rF(t)

Ab(t)rF(t)

; (t) + a é (t) + a e.{t)
(5.299) F 1"F o°F

Ein Vergleich mit der Fehlergleichung (5.235) aus Beispiel (5.230)
zeigt, daB sich die beiden Fehlermodelle nur in der Hinsicht unterschei-
den, daB jetzt anstelle der GroRen e(t) und r(t) die gefilterten GroRen
eF(t) und rF(t) auftreten. Wir konnen somit die Adaptionsgleichung
(5.241) anwenden, indem wir e(t) durch eF(t) und r(t) durch rF(t) erset-

zen, und erhalten

t
bo(t) = B _[ WAL ()dr + Bow(t)ro(t) + bo(t )
(5.300) R 1 : F 2 F R'Yo
0 i
mit wit) = d0 eF(t] + d1eF(t) , f
wobei 31 b5 > Q , BZ bs >0 ,
dO
d >0 , d; > 7

Zur Berechnung der Hilfs-EingangsgroBe ub(t) multiplizieren wir (5.298)
mit GF(a)-1 = (a+fo)/K und erhalten

(o + £ )bp(t)r (1)

| —

bR(t)r(t) + ub(t)

. 8 + f
bp(t)TR(t) + bp(t) ——Em—ﬁ re(t)

= —

be(t)rp(t) + bo(t)r(t)

= —

Die Hilfs-EingangsgroBe berechnet sich somit zu

(5.301) u (1) = % SR(t)rF(t)

Damit bei der Berechnung von ER(t) kein zeitliches Differential von
w(t) und damit keine zweifache Ableitung von eF(t) auftritt, setzen wir

in (5.300) éz = 0 und erhalten
1 1 ; 2
(5.302) ug(t) = g bpltdrp(t) = g Byu(t)rp(t)

Das Hilfssignal ub(t) tritt nur wiahrend der Adaption auf und ist an-
sonsten gleich null. Die Struktur des gesamten adaptiven Systems ist

in Bild 5.25 dargestellt.
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eclt)

dg

&)

yult)

Regelstrecke

wit)

Parallel-Fihrungsmodeli
Yult) + ayyuit) « agyult) = byr(t)
Yitl + ayy(t) + apy(t} = b ult)

ult)

rit)

Bild 5.25: Strukturbild zur Verstérkungsfaktoranpassung

(Anwendung des Hilfsfilters G_(s) = K/(s+f )) o
E 0
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5.6 Zeitdiskrete MRAS-Strukturen

5.6.1 Vorbemerkungen

Grundlage dieses Hauptabschnitts ist wiederum eine MRAS-Struktur nach
Bild 5.13, nur daB jetzt zeitdiskrete Systeme behandelt werden. Die Aus-
fithrungen in Abschnitt 5.5.1 iliber die Anwendbarkeit dieser Struktur auf
unterschiedliche Problemstellungen iibertragen sich vollig analog auf

zeitdiskrete Systeme.

5.6.2 Das Fehlermodell

Es ist zweckmdBig, im zeitdiskreten Fall von Eingangs-Ausgangs-Darstel-
lungen auszugehen. Wir nehmen an, daB das Parallel-Fihrungsmodell stabil

ist und durch die Differenzengleichung
n n

(5.303) yy(k) = - > ay, 1yy(k-i) + :Z:bM’ir(k-i-d)
i=1 1=0

beschrieben sei. Zur Abkiirzung verwenden wir auch die Schreibweise

*  _1 _ * -1, -d
(5.304) ayla” Dyy(k) = Zyla g “rik)
mit den Operatoren

* -1 -n

AM(q ) = 1+ ay 19 t oot ay ,
(5.305) *

-1 -m
ZM(q ) - bM,O toeee bM,mq ’

wobei q-1 der Verschiebeoperator ist. Wir nehmen der Einfachheit halber
an, daB das abgleichbare System dieselbe Ordnung n und denselben Polstel-
leniiberschuB d = n-m wie das Parallel-Fihrungsmodell besitzt. Fir das ab-
gleichbare System gehen wir von der Differenzengleichung

n

m
(5.306) y(k) = - > a (K)y(k-i) Db, (Kr(k-i-d)

i:’i i=0

aus, die wir abgekiirzt schreiben als

(5.307) 2 gyt = 2L Kg (k)
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mit den Operatoren

*oo-

A (q

(5.308) .
Z (q

k) = 1 s a1(k)q_1 + oL+ an(k)q-n )

_T,k)

1

-m
bo(k) R bm(k)q

In der Differenzengleichung des abgleichbaren Systems treten bereits die
(unbekannten) Koeffizienten des Zeitpunktes k auf. Dies ist notwendig,
um die Koeffizienten an spaterer Stelle durch Auswertung der Popov-
Ungleichung iiber Adaptionsgesetze festlegen zu kdnnen. Andererseits wer-
den die Adaptionsgesetze von dem Fehler

(5.309) e(k) = y (k) - y(k)

abhéngen, der seinerseits eine Funktion der Koeffizienten des Zeitpunk-
tes k ist. Diese implizite Abhdngigkeit wird an spaterer Stelle aufge-
16st. Die GréBe y(k) nennt man a-posteriori-Ausgangsgrife des abgleich-

baren Systems, Entsprechend heift e(k) a-posteriori-Fehler. Im Gegen-
satz hierzu nennt man

n m
(5.310) yo(k) = - }Ezg(k—1)y(k—i) N Ezthﬁk-l)r(k—i—d)

i=1 i=o

die a-priori-Ausgangsgréfe des abgleichbaren Systems und entsprechend
(5.311) e®(k) =y, (k) - yO(k)

den a-priori-Fehler. Diese GroBen, die zum Zeitpunkt k unmittelbar be-
rechnet werden kénnen, werden wir zur expliziten Aufldsung der Adap-
tionsgleichungen bendtigen.

Durch Subtraktion der Differenzengleichung des abgleichbaren Systems
von der des Parallel-Fithrungsmodells erhalten wir dhnlich der Gleichung
(5.280) in Abschnitt 5.5.6 die Fehlerdifferenzengleichung

(@ e = - Lante™) - 4" (q T 01,00
(5.312) Co e g
+ [ZM(q ) - Z(q",k)Iq % (k)
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5.6.3 Anwendung der Hyperstabilitdtstheorie zur Herleitung

von Adaptionsgleichungen

Un die Hyperstabilitédtstheorie zur Herleitung von Adaptionsgleichungen
anwenden zu konnen, schreiben wir die Fehlergleichung (5.312) als riick-

gekoppelte Systemstruktur in der Form

A;(q_1)e(k) = v, (k)
(5.313) . *
wik) = z3(aTDe(k) 1= e(k) + D delk-1)
i=1
S OO B  PNMC R IR SOOIy
(5.314)

Czh@h - 2 w0 T )

Die Koeffizienten d1,...,dA
gelegt werden, daf die Ubertragungsfunktion

22(2-1) 1+ d1z_1+ ce. * dkz_x
(5.315) Gy, (z) := ———7 = T -
Md alz 1) 1 + a z 4+ + a "
M M, e M, n
streng positiv reell ist. Die Adaptionsgesetze fiir die Koeffizienten
a (k),...,a (k) und bo(k),...,bm(k) miissen so gewdhlt werden, daB die
sogenannte Popov-(Summen)Ungleichung
k
2 .
(5.316) Sov(w(l) 2 - 1 fir alle k > k,_
l=k0

und beliebige Folgen {w(k)} giitig ist, wobei y > 0 eine beliebige,
jedoch von {w(k)} unabhdngige Konstante ist. Durch Einsetzen von v(l)

nach (5.314) in die linke Seite von (5.316) folgt

k

(5.317) E; vilw(l) =
1=k

w(D) [taytaD-a"@™ DIy - [zya™)) - 207! 11 ()]

N =

[
It

k
0

k m k
[ > w(l)(a, i-ai(l)]y(1—14 - [ ST Wby 5-b; (1)Ir(1-i-d)

1=k0 i=o0 l—ko

M

i=1

miissen einschlie@lich der Ordnung X} so fest-

] .
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Hierbei ist zur Vereinfachung der Schreibweise das Argument {w(k)} in
den zeitvariablen Operatoren und Koeffizienten weggelassen. Zur Erfiil-
lung der Popov-Ungleichung ist es hinreichend, daB jeder einzelne Sum-
mand in (5.317) groBer als eine endliche negative Konstante ist. Wir
betrachten deshalb analog zur Vorgehensweise in Abschnitt 5.5.4 die
Ungleichung
k
(5.318) 2 owWfay ;- a,W]ya-i) > - 4

o1l ’
1=k
0

die fir beliebige k > k0 und beliebige Folgen {w(k)} und {y(k-i)} zu
erfiillen ist. Entsprechend dem zeitkontinuierlichen Fall liegt es nahe,
ai(l) uber einen proportionalen und einen integralen (summierenden)
Anteil zu berechnen:

_ I
(5.319) I I \
al(k) = al(k-]) + f]l(w(k),k) = Z f’]l(w(-])’—]) + ai(k0-1J
i=k,
Zusammengefaflt lauten diese Gleichungen
k
(5.320) a0 = D1 £ L)L)+ £y (w(K) LK) v (k1)
i=k,
Wahlt man
B0, 0 = - awloy(k-i) a0
(5.321)
£, (w(k),k) = - ey wlk)y(k-i) 6 20

so 1st die Ungleichung (5.318) erfiillt. Ump dies zu zeigen, setzen wir
zundchst (5.321) in (5.320) ein. Es folgt

k

(5.322) a; (k) = - a 2 WOy (3-1) - appwk)y(k-i) + a;(k-1) -
=k

Die linke Seite der Ungleichung (5.318) lautet damit

k
(5.323) 2, w(ay -a (1)) y(1-1)
1=k '
0
k 1
= z w(l)y(l-i)[auz wijdy(j-i) + GZiw(l)y(l—i) - [ai(ko—ﬂ-aM i]
1=k j=k ’
o 0
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mit K ! a.(k -1)-a
3y = ey w(y(l-i) 2, wiy(G-1) - = Ou =
1=k j=k 1i
(5.324)
k
2 2 .
Jy 1= wyy E; wo(l)y“(1-i)
l=k0

Der Term J2 ist nicht negativ. Zur Untersuchung des Terms J1 betrachten
wir die fiir beliebige Folgen {x(k)} giiltige Beziehung (siehe LANDAU
[5.61, Seite 158)

X - K 2, & 2 2
2 x(l)[quwc]ﬁEZ x(1)+c]+,}2 Gy - -5
1=k i=k, 1=k 1=k
(5.325)
die mit x{(1) := w(1)y(1-i) unmittelbar auf J1 angewendet werden kann.
Es folgt somit
2

[a.(k -1) - a -]

(5.326) Jy 2 - 1 0 M1 =: - Ygi ,
- Zayy

was zu beweisen war. Die Adaptionsgesetze fiir die Koeffizienten ai(k)

und b, (k) lauten zusammengefalt

1

a, (x) al (k) - ey te-i)

(5.327) a}(k) ai(k—l) - g Wy (k1)

i = 1... ;
oy >0 |, %93 >0 ) i n ;

I - 1 -
b (k) = bi(K) + Bywlk)r(i-i a
(5.328) bl(k) = blek-1) + By uk)r(koizd)
B]i >0 , BZi >0 , i=o0...m

In diesen Adaptionsgesetzen tritt allerdings die Grofe w(k) auf, die iiber

die Gleichung

A
(5.329) (k) = e(k) + 2, dye(k-i)

i=1
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vom bisher unbekannten a-posteriori-Fehler e(k) abhangt. Aus diesem Grun-
de wird w(k) durch den zum Zeitpunkt k zur Verfiigung stehenden a-priori-
Wert

A
(5.330) wl(k) = e%k) + Z d;e(k-i)
i=1

ausgedrickt. Es gilt

WOk) - wlk) = eO(k) - e(k) = y(k) - y°(x)
(5.331) n .
- - 2 lay(0a (e D Iy (i) D10, (K)-b, (k-1)Tr (k-i-d)
i=1 i=0

Unter Bericksichtigung des Adaptionsgesetzes (5.327) bzw. (5.328) folgt

a;(k)-a; (k-1) T oMy (ki) e (k) y (ke1) vay w(k=1)y (k-1-1)

(5.332)

- (°11+“2i)W(k)y(k“i)+QZiW(k-])y(k_1_i)

Entsprechend erhalten wir

(5.333) b (k)-b, (k-1) - (B]i+BZi)w(k)r(k-i—d)—BZiw(k—l)r(k-1—i-d)

Wir setzen die letzten beiden Beziehungen in (5.331) ein und bekommen
n

wo(k) = - Z}[-(a1i+o.21)w(k)y(k—i)+u21w(k—1)y(k—l—i)]y(k—i)

[

+ 2; [(B]i+BZi)w(k)r(k—i—d)—BZiw(k—1)r(k-1-i—d)]r(k—i-d) + w(k) .
i=o0

(5.334)

Durch Zusammenfassung aller Terme, in denen w(k) auftritt, und Umstel-

lung folgt endgliltig

n

m
vl _Z“ziW“‘-‘)v(k-1-i)y(k~i)+zrsZiw(k-1)r(k-1-i-d)r(k-i-d)
wik) = 1= . i=o
m
T+ Z(a .ta )yz(k..l)+ (B 2 .
11772 +8,.)r%(k-1-4d)
(5.335) o el Z 1178725

i=p
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GroBe w(k) nach (5.335) bestimmt. AnschlieBend koénnen die neuen Parame-
terwerte ai(k) und bi(k) nach (5.327) und (5.328) berechnet werden.

(5.336) Anmerkungen:

Entsprechend den Ausfiihrungen in Abschnitt 5.5.6 tritt bei zeitkontinu-
ierlichen Systemen das Problem auf, daB zur Realisierung der Adaptions-
gesetze zeitliche Ableitungen der Ausgangsgroflen und der FihrungsgrofBe
bendtigt werden. Zur Beseitigung dieses Nachteils wurden deshalb in Ab-
schnitt 5.5.6 Hilfsfilter eingeflihrt. Wie die Adaptionsgleichungen
{5.327), (5.328) und (5.335) zeigen, treten derartige Probleme bei zeit-
diskreten Systemen nicht in Erscheinung. Zur Realisierung des Adaptions-
gesetzes werden lediglich die vergangenen Werte der Ausgangsgroéfen, des
Fehlers und der Filhrungsgrofe benotigt, welche auf einem Digitalrechner

problemlos abspeicherbar sind.

Mit Hilfe der Adaptionsgleichungen (5.327), (5.328) und (5.335} konnen
beispielsweise die Parameter eines zeitdiskreten Systems identifiziert
werden. Hierbei iibernimmt die zu identifizierende Regelstrecke, analog
zu Abschnitt 5.5.6,die Rolle des Parallel-Flhrungsmodells.

Im Unterschied zu den Adaptionsgleichungen bei zeitkontinuierlichen
Systemen muB bei zeitdiskreten Systemen in jedem Adaptionsschritt zu-
nachst ein a-posteriori-Fehler anhand der a-priori bekannten Grofen er-

mittelt werden.

Die Adaptionsgesetze (5.327) und (5.328) sind in der Hinsicht erwei-
terbar, daB die konstanten Faktoren @pis %5 und B]i’ BZi durch zeit-
variable Faktoren ersetzt werden (siehe LANDAU [5.6], Seite 164-190).
Wenn in dem adaptiven System Stdrungen auftreten, missen zur Sicherung
der Parameterkonvergenz Faktoren eingesetzt werden, die mit wachsender
Zeit gegen null streben. Zum Vergleich betrachte man die rekursiven
Schatzgleichungen zur Methode der kleinsten Quadrate (A6.20), bei denen
der Korrekturvektor EN gegen null strebt. Die Konvergenz der Parameter
gegen feste Endwerte ist allerdings nur dann sinnvoll, wenn das Refe- B

renzmodell (bzw. belil einer adaptiven Regelung die Regelstrecke) zeit-

invariant ist. Im Falle eines zeitverdnderlichen Referenzmodells diirfen

die Faktoren aris %5 und B1i’ BZi nicht gegen null streben, damit sich
die Adaptionsparameter laufend dem Referenzmodell zanpassen konnen. Ent-
sprechendes erreicht man bei der rekursiven Methode der kleinsten Qua-
drate durch eine exponentielle Wichtung der Mefdaten, wodurch ein voll-

stindiges Abklingen des Korrekturvektors ky verhindert wird (siehe An-

hang A6.1.5). |
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5.7 Schatzung der Drehzahl einer konstant erregten Gleichstrom-
maschine mit einer MRAS-Struktur bei Messung von Ankerstrom
und Ankerspannung

Im Rahmen dieses Abschnitts wird ein Modell-Referenz-Verfahren auf ein
praktisches Beispiel angewendet. Es wird gezeigt, wie sich mit Hilfe
einer MRAS-Struktur die Drehzahl und das Lastmoment einer konstant erre
ten Gleichstrommaschine bei Messung des Ankerstroms und der Ankerspannu
schatzen lassen. Auf diese Weise kénnte bei Drehzahlregelungen von klel
nen Gleichstrommotoren die Tachomaschine elngespart werden.

Den Uberlegungen liegt das folgende mathematische Modell eines Gleich-
strommotors zugrunde:

(5.337) FHO = LRt - conte) + uct)]
(5.338) S e = Liee i) - (o))

Das Moment m(t) enthilt ein drehzahlproportionales Reibungsmoment cuw(t
und ein von auBen angreifendes Lastmoment mL(t), in dem ein Haftreibung!
moment enthalten sei. w(t) ist die Winkelgeschwindigkeit des Gleich-
strommotors, welche im folgenden "Drehzahl" genannt wird.

Die Schatzung der Drehzahl beruht auf folgenden Annahmen:
a) Gemessen werden der Ankerstrom i(t) und die Ankerspannung u(t).

b) Die SystemgrdBen c¢ (FluB-Konstante), L (Ankerinduktivitat)
und R (Ankerwiderstand) sind bekannt. Bei Schatzung des Last-

moments m (t) werden zusitzlich das Trdgheitsmoment J und die

Reibungskonstante ¢, als bekannt vorausgesetzt. Die Anderungs-

geschwindigkeiten der Drehzahl w(t) sind gegeniiber der rezi-
proken elektrischen Zeitkonstanten des Motors und den Ein-

schwingvorgangen des Schiatzalgorithmus vernachlassigbar, so

daB bei Herleitungen w(t) = w = const angenommen werden darf.

5.7.1 Drehzahlschitzung bei bekanntem konstantem Ankerwiderstand

Die Anwendung des MRAS-Prinzips auf die vorliegende Aufgabenstellung
besteht in der Nachbildung des elektrischen Teils der Gleichstromma-
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schine in Form eines Parallelmodells, das mit Hilfe der gemessenen
Ankerspannung u(t) gespeist wird und die geschdtzte Drehzahl w(t) als
abgleichbaren Modellparameter enthdlt:

(5.339) %f i(t) = (- R i(t) - cow(t) + ult)]

Die ZustandsgroRe des Parallelmodells ist ein geschatzter Strom i(t).

Das Abgleichgesetz fiir die geschdtzte Drehzahl é(t) muB so gewahlt wer-
den, daf ;(t) gegen die wahre Drehzahl konvergiert. Hierzu wird die Dif-
ferentialgleichung des "Stromfehlers" e(t) := i(t) - 1(t) betrachtet
(Fehlermodell), die man durch Subtraktion der Gleichung (5.337) von Glei-
chung (5.339) erhdlt:

(5.340) doe(t) = -Fet) - £ (wlt) - w)

Der Fehler ist hier im Unterschied zu den vorhergehenden Abschnitten mit
anderem Vorzeichen eingefiihrt. Sorgt man dafilir, da nach einer hinrei-
chend kurzen Einschwingzeit des Parallelmodells

(5.341) lim e(t) = 0
]

gilt, so folgt aus (5.340) auch

(5.342) lim o(t) = o

t—®

d.h. die Drehzahl im Modell stimmt mit der Drehzahl in der Gleichstromma-
schine iiberein. Zur Erfillung der Bedingung (5.341) wenden wir die Hyper-

stabilitatstheorie an. Hierzu schreiben wir das Fehlermodell (5.340} als

riickgekoppeltes System in der Form

%¥ e(t) = - % e(t) + %3 v](t) ,
(5.343) .
- v1(t) = y(t) = w(t) - w

Diese Gleichungen entsprechen der in Bild 5.26 dargestellten Struktur.
Diese ist asymptotisch hyperstabil, wenn die Ubertragungsfunktion G(s)
streng positiv reell ist, was hier zutrifft, und der Rickfiihrblock die
Popov-Ungleichung

t
(5.344) [ voetnar 2 - 2o giroalle t> ot

o
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erfiilllt, wobei Ty 2 0 eine beliebige feste Konstante ist.

vyt Els] co 1 elt)

vit)

vitl = Qlt) -

Bild 5.26: Fehlermodell fiir den "Stromfehler" e(t)

Wahlt man als Adaptionsgesetz zur Drehzahlschidtzung
t
(5.345) w(t) = K f e(x)dt + u + k,e(t)

t
o]

mit freien Konstanten k, > O und k, > 0, so ist nach (5.221) auch die
Popov-Ungleichung erfiillt.

Die Struktur des adaptiven Algorithmus zur Drehzahlschiatzung ist in
Bild 5.27 dargestellt. Hierbei ist der Parameter R im Parallelmodell
durch einen festen Schitzwert R ersetzt, da im folgenden die Genauigkeit
des adaptiven Verfahrens bei Variation von R betrachtet wird. Man er-
kennt, daB der adaptive Algorithmus linear und der Struktur eines Zu-
standsbeobachters ahnlich ist. Aufgrund der Linearitat konnte in diesem
einfachen Fall zur Stabilitdtsuntersuchung auch eines der bekannten Sta-

bilitatskriterien fiir lineare zeitinvariante Systeme angewendet werden.

Anhand der Differentialgleichung (5.337) ist erkennbar, daB die Drehzahl
w(t) nach Abklingen der elektrischen Ausgleichsvorginge (L.di(t)/dt = 0)
durch die Parameter R und cg festgelegt wird, wenn u(t) und i(t) gegeben
sind. Hieraus kann geschlossen werden, daf die Genauigkeit der Drehzahl-
schatzung von einer genauen Kenntnis der Parameter R und c¢ abhangig
ist, wahrend die Empfindlichkeit des Schiatzverfahrens bezliglich fehler-
hafter Vorgaben von L im Parallelmodell gering ist, was sich durch
Rechnersimulationen sowie Versuche an einem Scheibenldufermotor be-
statigt.

In Bild 5.28 sind Verléufe der geSChétZten und wahren Drehzahl eines
Scheibenlaufermotors fiir sprungformige Anderungen der Ankerspannung
u(t) und des Lastmoments mL(t) bei festen Schatzwerten R im Parallel-



5.7 Schatzung der Drehzahl einer Gleichstrommaschine 423

modell dargestellt. Die Einstellung R » R wurde in einer Vorphase durch
Vergleich der geschatzten und wahren Drehzahl bei rechteckformiger
Ankerspannung erreicht. Fehler in R wirken sich einerseits auf die End-

werte der geschédtzten Drehzahl aus, was in den Teilbildern 5.28 e,f gut

‘J:” |
ult) 1 ——f it} _65

L
R
elt)
g
wlt) :
co f re— K ;
ks
Gt

Bild 5.27: MRAS-Struktur zur Drehzahlschatzung (fester Schatzwert R E

im Parallelmodell)
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zu erkennen ist. Bei einer Anregung der Gleichstrommaschine iiber die
Ankerspannung treten fiir R t R zusadtzliche dynamische Schitzfehler auf
(siehe Teilbilder 5.28 b,c).

b wlt], wit),
wlt)

-

Wt

—

wlt)”

—

b wit),
wit)

wit)
Qlt) t

wit], bu(t),

C) f)

Bild 5.28: Verldufe der geschdtzten und wahren Drehzahl eines
Scheibenléufermotors

2]

a) mL(t) 0

i ult) rechteckformig : R » R
Vom0 5 u(t) rechteckformig ;. h 1,1
c) mL(t) =0 5 u(r) rechteckformig R =~ 0,9
d) mL(t) rechteckfdrmig ;o ou(t) = uo ; ]i = R
e) mL(t) rechteckférmig u(t) = u, R = 1,1
£) mp (1) rechteckférmig ; y(t) = g . R = 0,9

0
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5.7.2 Drehzahl- und Lastmomentschitzung bei bekanntem

konstantem Ankerwiderstand

ol
Y
—

cd

Gleichstrommaschine

ift)

ult) o

L
elt)
R le
(]
ky
g
wit) ;
cd j - J -

Cp -

Yolt) m,(t) T mt)

Bild 5.29: MRAS-Struktur zur Drehzahl- und Lastmomentschatzung
(fester Schitzwert R im Parallelmodell)
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Soll zusédtzlich das Lastmoment mL(t) ermittelt werden, so wird auch der
mechanische Teil der Gleichstrommaschine nachgebildet (siehe (5.338))

(5.346) n(t) = co i(t) - g & w(t)

Aus m(t) erhalten wir einen Schidtzwert mL(t) fir das Lastmoment durch
Subtraktion des geschitzten Reibungsmoments cuw(t):

(5.347) m (t) = coi(t) - 4 I wlt) - ¢ olt)
Un Differentiationen des Fehlers e(t) zu vermeiden, wird k, = 0 gesetzt.

2
Die Struktur der kombinierten Drehzahl- und Lastmomentschiatzung ist in

Bild 5.29 dargestellt.

5.7.3 Drehzahlschitzung bei gleichzeitiger Schitzung des
Ankerwiderstandes durch Adaption

Un Verschlechterungen der Schitzgenauigkeit aufgrund von thermischen
Anderungen des Ankerwiderstandes R zy verhindern, kann dieser durch Adap

tion mitgeschdtzt werden. Die Differentialgleichung des abzugleichenden
Parallelmodells lautet dann

(5.348) it = L0 R(IC(E) - con(t) u(t)]

Hieraus folgt fiir den "Stromfehler" e(t) = i(t) - i(t) das Fehlermodell

d - - N
(5.349) o e(t) = - -E e(t) - % [R(t)-RJi(t) - E—‘i{w(t) - wJ ’
das auch in der Fornm
v, (t} (t)
' Gis) - E8L 11 N
s Vyls) L R
ST

vit)

VH)=(ﬁH)-m7H)+c¢(GH)-u)

Bild 5.30: Fehlermodell fir den "Stromfehler" e(t)
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- LR- e(t) + 71: v, (1)

T el
(5.350)

Svy () = vl = [ROD-RIE(E) + cefo(t) - o]

geschrieben werden kann (siehe Bild 5.30).

(t)
) 1Tﬂ.f

cd

Gleichstrommaschine

- L —
it}
T
uit) 1L .[ it} ?)
L
X elt) x
i
R k3
Wo
wlt) J
L ¢co f 1 Ky f
(Oe—R
K2 elt) 0

T Ll

Bild 5.31: MRAS-Struktur zur Drehzahlschatzung
(gleichzeitige Schdtzung des Ankerwiderstandes)
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Die Ubertragungsfunktion G(s) ist streng positiv reell. Die asymptoti-
sche Hyperstabilitdt des Systems ist aufgrund der vorhergehenden Uberle-

gungen gesichert, wenn die Adaptionsgleichungen

t
o(t) = ky fetndr +ug v kgele)
t
(o]
(5.351) A t ) ) )
R(t) - k3f e()i(r)dr + R+ ke(t)i(t)
t
o]
mit k1, k3 >0 k2’ k4 >0

gewdhlt werden. Um schnelle Anderungen von ﬁ(t) zu vermeiden, sollt?
man k4 = 0 wdhlen und k3 einen kleinen Wert geben. Der Anfangswert R,
sollte moglichst gut mit dem wahren Ankerwiderstand iibereinstimmen.
AuBerdem ist eine ausreichende Anregung der Gleichstrommaschine sicher-
zustellen. Die Struktur des Gesamtsystems ist in Bild 5.31 dargestellt.

5.8 AbschlieBende Bemerkungen

Bei der Herleitung und Untersuchung von adaptiven Algorithmen wurde
stets angenommen, daB das Verhalten der Regelstrecke exakt durch ein li-
neares System bekannter Ordnung beschreibbar ist. Nun liegen aber der
mathematischen Modellbildung bei einem realen System immer gewisse Ver-
einfachungen zugrunde. Einerseits werden nichtlineare Effekte vernachlds-
sigt, andererseits werden hdufig lineare dynamische Anteile vernachlis-
sigt, die oberhalb bzw. auBerhalb des technisch interessierenden Fre-
quenzbereichs liegen. Man nennt solche Anteile in der angelsdchsischen

Literatur "unmodelled (high frequency) dynamics".

Ein am realen technischen System einsetzbarer Regler, der aufgrund einer
gewissen Modellvorstellung entworfen wurde, muBl so robust sein, daB das
Regelkreisverhalten unempfindlich ist beziiglich nicht modellierter An-
teile. Diese Uberlegungen sollten schon an der Stelle einflieBen, wo un-
ter der Annahme bekannter Regelstreckenparameter aufgrund eines gewiinsch-
ten Regelkreisverhaltens ein linearer Regler (zum Beispiel anhand der
Entwurfsgleichungen von Abschnitt 5.2) bestimmt wird. Unter Umstédnden
ist das vorgegebene Regelkreisverhalten entsprechend abzuindern, wenn
dadurch ein robusterer Reglerentwurf sichergestellt ist.
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Anhand des adaptiven Reglerentwurfs nach Beispiel (5.71) zeigen wir, daB
ein adaptiver Regelkreis aufgrund eines nicht modellierten linearen dy-

namischen Anteils der Regelstrecke instabil werden kann.

(5.352) Beispiel: Instabilitdt eines adaptiven Regelkreises aufgrund

von "unmodelled high frequency dynamics"

Wir betrachten die Regelstrecke nach Gleichung (5.2}, von der wir verein-
fachend annehmen, daB der Eigenwert a gleich dem Eigenwert 3y des Paral-

lel-Fihrungsmodells

(5.353) yy(t) = ayy(t) + byr(t)

ist. Am Eingang der Regelstrecke soll sich nun zusdtzlich ein sehr
schnelles "parasitédres" VZi—Glied befinden, so daB die Regelstrecke durch

die Gleichungen

}(t) aMy(t) + b z(t) ,

(5.354)

2(t) = w (2(t) - u(®)) . w<0 , ful > fal

beschrieben wird. Aufgrund der Gleichheit der Eigenwerte der Regel-

strecke und des Parallel-Fihrungsmodells erhalten wir aus den Glei-
chungen (5.3) und (5.17) das vereinfachte Reglergesetz

u(t) p(t)r(t) )

(5.355)

1l

p(t) a,e(t)r(t) = apr(t)yy(t) - y(1))

mit sgn(az) = sgn(b). Zur Stabilitdtsuntersuchung der Gleichungen
(5.354) und (5.355) betrachten wir den Sonderfall einer konstanten Fiih-

rungsgrofe r(t) = Ty Die Systemgleichungen sind in diesem Fall linear

und lauten in Matrizenschreibweise zusammengefafit

y(t) ay b 0 y(t) 0
(5.356) z(t) = 0 wooo-urg z(t) | +| O yM(t)
p(t) -a,T 0 0 p(t) e r

Das charakteristische Polynom der Systemmatrix ist
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s-ay -b 0

a(s) = det 0 S-U ur ,
uzro 0 s

A(s) = (s-aM)(s-u)s - buuzrg

(5.357)

3 Y4
= 5 - (aM+u)s *ay s - buuzré

Aufgrund der negativen Vorzeichen von ay und p sind samtliche Koeffizien-
ten von A(s) positiv, was eine notwendige Bedingung fir die Stabilitat
des Systems (5.356) ist. Durch Anwendung des Routh-Schemas erhdlt man

als zusdtzliche, fir Stabilitdt notwendige und hinreichende Bedingung

2
(5.358) (aM + u)aM > ba, L
Fir
(5.359) oIl > T%F ay(ay + u)

ist das adaptive System somit instabil. Wir erkennen, daB die Stabilitat
einerseits vom Produkt der Adaptionskonstante mit dem Quadrat der Fuh-
rungsgroBe und andererseits von der GroBe des "parasitdren' Eigen-
wertes p abhdngt (siehe auch Bemerkungen (5.19)). Die globale Stabi-
litat des in Beispiel (5.1) entwickelten adaptiven Regelkreises kann
somit aufgrund von nicht modellierten dynamischen Effekten verloren-

gehen. n

Eine ausfiihrliche Darstellung weiterer Ursachen der Instabilitdt adap-
tiver Regelkreise sowie Méglichkeiten zur Verbesserung des Stabilitdts-
verhaltens findet der Leser in [OANNU, KOKOTOVIC [5.17].



Anhang



A1 Mathematische Grundlagen gewohnlicher
Differentialgleichungen

Im Rahmen dieses Anhangs werden dem Leser Sitze bereitgestellt, die
Aussagen iliber das Verhalten miglicher Losungen ¢(+) einer nichtlinea-
ren gewdhnlichen Differentialgleichung (DGL) der Form

T x(t) = £lx(t),t]

erlauben, ohne die Losungen explizit zu kennen. Die Aussagen betref-
fen die Existenz und Eindeutigkeit, aber auch betragsmiBige Abschat-

zungen und die Parameter- und Anfangswertabhingigkeit der Loésungen.

Die Anwendung der Sdtze dieses Kapitels auf die Differentialgleichun-
gen eines dynamischen Systems kann beispielsweise Hinweise auf eine
korrekte oder unkorrekte Modellbildung liefern. Wenn nimlich die Lo-
sung eines ein reales technisches System beschreibenden DGL-Systems
mathematisch nicht existiert, so ist die Modellbildung hiufig falsch

oder bedarf einer besonderen Diskussion.

A1.1 Bezeichnungen

k, M, a, T seien im folgenden positive reelle Konstanten.

I = Lt ]t <t<t +T; t T fest }
o] (0] 0

sei ein offenes Intervall auf der reellen Achse.

Mit D wird eine offene zusammenhdngende Menge im R bezeichnet.

Die Elemente des Rn+T werden durch {x,t) bzw. (xl’XZ"' ,xn,t)
dargestellt,

£(+,+) bzw. f sei eine auf D definierte reellwertige Vektorfunktion,

d.h. f : D - R". Mit £(5,t) wird der Wert der Funktion f an einer
festen Stelle (x,t) bezeichnet.
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Unter ||£(x,t)]] o wird die euklidische Vektornorm des Funktionswertes

f(x,t) im R"™ verstanden.

A1.2 Problemstellung und Definitionen

(A1.1) Definition (Lbsung einer Differentialgleichung):

Wenn iiber einem Intervall I eine differenzierbare Funktion

8(e) + I - R" existiert, so daB

(e(t),t) D fiir alle t e 1
und
(A1.2) d o) = flae),t] fiir alle t ¢ 1

gilt, so heiBt o(+) Losung der DGL (A1.2).

(A1.3) Definition (Anfangswertproblem):

Ist eine Losung #(+) der DGL (A1.2) mit der Eigenschaft

2t ) = X5 % (x,,t,) €D

gesucht, so spricht man von einem Anfangswertproblem.

Im Zusammenhang mit der Losung gewShnlicher Differentialgleichungen

treten unter anderem folgende Fragestellungen auf:

a) Wann existiert eine Lésung ¢(+) in einer Umgebung von t . mit

2t ) = x, (lokale Existenz)?
b) Gesucht ist das gréBte Intervall I, auf dem eine Losung o(+)
existiert (Existenz im GroBen).

c) Wann ist die Losung 9(+) eines Anfangswertproblems eindeutig?

(A1.4) Bemerkungen:

Hingt die rechte Seite der
heiBt die DGL nichtautonom, andernfalls autonom.

DGL (A1.2) explizit von der Zeit t ab,

Fiir die Losung ¢(+) eines Anfangswertproblems werden auch die Symbole

3(':50,t0) (bei nichtautonomer DGL) bzw. o(-,x) (bei autonomer DGL)
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verwendet.

Stelit man den Verlauf von 2(*) im Zustandsraum R" nmit der Zeit t
als Kurvenparameter dar, so spricht man von einer Trajektorie.

X, wird der Anfangszustand und x(t) der Zustand (zum Zeitpunkt t)
eines DGL-Systems genannt.

(A1.5) Definition (GleichmiBige Stetigkeit):

Eine auf einem Bereich D c Rn+1 definierte Funktion f: D~ R" heiBt
auf D gleichmdBig stetig, wenn es zu jedem € > 0 ein 6 > 0 gibt, so
daB fiir beliebige (x,t), (x,t) ¢ D aus

[x - ;|| <6 und |t - t] < 6
- ='"'""n
R
die Bedingung

[1£0x,t) - ;(;_,émkn < e

folgt.

(A1.6) Definition (Lipschitzbedingung beziiglich X):

Eine auf einem Bereich D < R definierte Funktion f: D - R" geniigt

auf D einer Lipschitzbedingung beziiglich X, wenn eine Konstante K > O
existiert, so dafB

[1E(x,t) - ﬁ(i-t)IIRn < K||(1-5)|’Rn
fir alle (x,t) ¢ D und (x,t) € D gilt. K heift Lipschitzkonstante.

(A1.7) Definition (Beschrinktheit):

n+1

Eine auf einem Bereich D c R definierte Funktion f: D -~ R" heiBt

auf D beschriankt mit der Schranke M, wenn

HE(x,t) ]| LS M fir alle (x,t) e D .
R

A1.3 Existenz und Eindeutigkeit von Lésungen

Den Beweis der lokalen Existenz einer Losung der DGL (A1.2) fiihrt man

in zwel Stufen durch. Zuerst wird eine Naherungslosung konstruiert
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(Satz (A1.9)). Dann wird gezeigt, daB eine Folge von Ndherungsldsungen

existiert, die gegen eine Lésung der DGL (A1.Z) strebt.

(A1.8) Definition (e-Losung):

Eine auf einem Intervall I definierte Funktion &(+}: I ~ Rn, heiflt
e-Losung der DGL (A1.2), wenn die folgenden Bedingungen erfillt sind:

(a) (a(t),t) ¢ D fir t ¢ 1

(b) #(+) hat eine stetige erste Ableitung auf dem Intervall I bis auf

eine abzahlbare Anzahl von Punkten von I.

(c) In den Punkten, in denen die Ableitung von 2o existiert und stetig
ist, gilt

de(t)

N

dt

(A1.9) Satz (Existenz einer e-Lésung):

Die Funktion f: G - R" sei auf dem Bereich
6 = {(x,t)|te [to,t0+T] ; ‘lzflo‘lﬁn < a)

stetig und beschrankt mit der Schranke M. Dann existiert auf dem
Intervall

. a
it = min [T, 3]
[tO,tO+T] m T v

fiir jedes ¢ > O eine e-Losung o(+) der DGL (A1.2), die durch den

Punkt (io’to) verléduft.

Beweis: {siehe z.B. HALANY [A7.2],Seite 3 oder CODDINGTON [Al1.11],
Seite 3-5):

Existiert eine Losung &(+) der DGL (A1.2) mit olt)) = x, ., so ist
aufgrund der Beschranktheit von f sichergestellt, daB die Losung inner-
halb des schraffierten Bereichs von Bild Al.T verlduft. Die anstei-

gende Gerade des schraffierten Bereichs hat die Steigung M. Nur bis

zum Zeitpunkt t = 1 kann gesichert werden, daB #(+) nicht den Defini-

tionsbereich von f verlaft.

Die Existenz einer e-Losung wird durch Konstruktion einer speziellen

e-Losung gezeigt, die innerhalb des schraffierten Bereichs von

Bild Al1.1 verlauft.

- f t),t] < .
£la(t) ian_E -
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0“5'50"n“

, L f

tO T fg +T

Bild A1.7: Bereich, innerhalb dessen jede Losung ¢(-) der DGL (A1.2)
verlauft, wenn f beschrinkt ist (Schranke M)

Die Funktion f ist auf dem Bereich G voraussetzungsgemidll stetig. Da
G kompakt ist, ist f dort sogar gleichméBig stetig. Somit existiert
zu jedem € > 0 ein 6(e) > 0, so daB

ECx,t) - £0x,1)]]
R

fir alle (x,t) ¢ G, (x,1) € G

mit x - X

x| <8 und It - t] <5
R

Wir betrachten nun eine Aufteilung des Intervalls [t 'ty +1] in Teilin-
tervalle mit den Randpunkten

ty <t < Ctpo= ot 4 ,
so daB
max |tv -t 4| < min (s, %]
vel1,n]

Auf den Teilintervallen wird abschnittsweise eine Funktion (1€ durch
die Gleichungen

Ax

8t )

2(t)

[}
|

(t, ;) + flele, Dot (1lt-t <t <t

definiert. Die Funktion 2(+) ist stetig und innerhalb der Teilinter-
valle [tv—T’tv] differenzierbar. Weiterhin gilt

|le(t) - g(%)HRn < M|t -t

Fir t e [t _ 4.t 1 folgt |t - t, 1l < 8(e) und fle(t) - g(t‘,_1)||Rn<6(E
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Somit gilt aufgrund der Stetigkeit von f fir t e [tv_1,tv]

de
T - £(®(t),t)||Rn = [JElelt, ()it 4] - g[g(t).tJlen < e
Damit ist aber ¢{+) nach Definition (A1.8) eine e-Losung. [

(A1.10) Satz (Existenzsatz von Cauchy, Peano):

Die Funktion f£ : G -~ R" sei auf dem Bereich
G = {(x,t)|telt,,t+T); ”i'lo”Rn < al

stetig und beschrinkt mit der Schranke M. Dann existiert auf dem

Intervall
[t ,t +71] mit t = min(T, 43
o' o M

eine Losung ¢(-) der DGL(A1.2) mit
8ty = X

(Beweis siehe z.B. HALANY [A1.2], Seite 4). )

Im Beweis des Satzes wird gezeigt, daf eine Folge von eu—Lésungen

{gu(-)} gegen eine Losung 2(+) der DGL strebt.

(A1.11) Satz (Eindeutigkeitssatz):

Die Funktion f : G -~ R® sei auf dem Bereich

¢ = {(x,t)|tce [ty T] 3 |D1-10|!Rn < a}

stetig, beschrankt mit der Schranke M und gentge auf G einer Lip-

schitzbedingung beziglich x. Danr existiert auf dem Intervall

[to,to+r] mit + = miniT, %]

eine eindeutige Losung #(+) der DGL (A1.2) mit
s(ty) = X

(Beweis siehe z.B. CODDINGTON [A1.1] , Seite 10). B

In dem Beweis geht man, wie im Beweis zu Satz (A1.10), von einer

Folge von su-Lbsungen {gu(-)} aus, die gegen eine Losung o (+) der

DGL (A1.2) strebt. Die Eindeutigkeit der Losung wird dann unter Ver-

wendung der Lipschitzbedingung gezeigt.
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(A1.12) Anmerkung:

Sind die in den Sdtzen (A1.10) und (A1.11) geforderten Voraussetzungen
an die Funktion f nicht erfiillt, so ist die entsprechende Losungs-Aus-

sage nicht méglich. Lésungen kénnen trotzdem exlistieren und eindeutig
sein. |

Picard und Lindeldéf haben den Beweis der Eindeutigkeit einer L&sung
mit Hilfe der Methode der sukzessiven Approximation durchgefiihrt.

Diese Methode ist gleichzeitig dazu geeignet, die explizite Losung der
DGL (A1.2) iterativ zu berechnen.

(A1.13) Satz {Picard, Lindelsf):

Die Funktion f:6-~ R" sei auf dem Bereich

G = {(x,t)|te [to,to+T] ; Ili_lollﬁn < a}
stetig, beschrdnkt mit der Schranke M und genige auf G einer Lip-
schitzbedingung beziiglich X mit der Lipschitzkonstanten K. Dann
konvergieren die durch die Beziehungen

3,(t) = X

Sult) = (Fo(t) = x -+ flo (a),alde w = 0,1,

Oﬁ'\("‘

festgelegten Funktionen gu(-) auf dem Intervall

t e [to,t0+r] mit T = min [T,

=l
—_

gleichmaBig gegen die (eindeutige) Losung #(+) der DGL (A1.2). L

Beweis (siehe CODDINGTON [A1.1]) seite 12):

Da die Funktion f auf dem Bereich stetig und beschrinkt ist und die
Funktion go(-) z X, existiert, existieren alle Funktionen gp(') iber
dem Intervall ito,to+1] (siehe Bild A1.1) und es gilt fir alle

t e [to,to+r] und beliebiges pu e N,

t t
2, () - f-oHRn = Hf g[gu(a),a}daumn < f ||£[2u(a),a]|’iRn da
t t
0 o

Damit folgt die Abschatzung

O A I [N 301, < MCet,)
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Zum Beweis der Konvergenz der Funktionenfolge {gu(°)} beriicksichtigen
wir, daB f einer Lipschitzbedingung mit der Lipschitzkonstanten K

geniigt:
2,0 (0) = 2,011 = 11(Fe,)00) = (Re, DO,
t
1 [t ed - £ e, (),a00de] | g
t
o}
t
(A1.15) < j' 100, ()11 - £08,_y(a)0)]] o
t
0
t
L AR RRCI I
o]
Andererseits folgt aus (A1.14) fir w =0

|1, () - go(t)lllRnl < M(t-t )

in die rechte Seite von (A1.14) eingesetzt, ergibt nach weiterer

Dies,
sukzessiver Anwendung von (A1.14)
M KT ) : ]
o t - ¢ (t < = . t e [t ,t +1
1’—u+1( ) —u( )||Rn K (ur1)] o' %o
Hieraus folgt
112, (t) - Eu(t)Hmn < ey, (6) - &, 0 ](tm
o l|fu+1(t) - Eu(t)|| n
R
e 1oy o )
< M 28 -
- K
=p+]
@ 1 1 ) TR PR |
M Klt-t )y K(t-t ) ) z K (t-t,)
< ¥ —_ = T | & _—
-k 1! . 1! ]
1=|~H’1 ’ 1=0

Somit gilt fiir alle m ¢ N und alle t ¢ [to,t0+t]

lim| e () - 3y(t)'|Rn =0,

p-e
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so daB die Funktionenfolge {e (-)} konvergiert. Die Grenzfunktion 2(+)
der Funktionenfolge {gu(-)} gentigt fiir alle t ¢ [to,t0+1] der Unglei-
chung

[fe(t) - (Fg)(t)lan = llelt) - 8 (t) + o, (t) - (FE)(t)|’Rn
< lalt) - gu(t)lan + [[(Fo _3(t) - (Fg)(t)||Rn
t
<= e @f ek [ o1le, 0 - 2], do
t
0

Da ¢(+) Grenzfunktion der Folge {gu(-)} ist, kann durch entsprechende

Wahl von u die rechte Seite der Ungleichung beliebig klein gemacht
werden, d.h. es ist

o(+) = (Fa)(+)

Man bezeichnet ¢ als Fixpunkt des Operators F. Die Grenzfunktion ()
genigt somit der Integralgleichung

t
8(t) = X, * j. flo(a),alda | t e [to,tO+T]
t
0

Es ist g(to) = X, - Da die rechte Seite der Integralgleichung differen-
zierbar ist, gilt dies auch fiir die linke Seite. Also folgt

do(t)

= flo(e),a]
dt -

Somit ist #(+) Lésung der DGL (A1.2). Nach Satz (A1.11) ist die Ldsung
¢(+) eindeutig. 8

Der Beweis des Satzes ist den Beweis des Banachschen Fixpunktsatzes sehT
ahnlich, man vergleiche (A3.12).

(A1.16) Anmerkung:
Anstatt fiir den Bereich

¢ = Mt fve et omd 5 xx || n < al

konnen die vorangegangenen und die folgenden Sitze auch fiir Bereiche
der Form

G = Mt ee et ] 5 |lxex || < al

Rn
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1

G, {(x,t) |t = [tO—T,tO+T] s llx-x [ < ab

G

i

5 Wx,t) | toe e =Tt +T) 5 Hlxex il o< al

formuliert werden. Die Aussagen der Existenz- und Eindeutigkeitssétze

beziehen sich dann auf die entsprechenden Zeitintervalle. [ |

A1.4 Gronwall-Ungleichung

(A1.17) Satz (Gronwall-Ungleichung):

) seien auf dem Intervall [to,tO+T] definiert

Die Funktionen x(+) und y(*
und dort nichtnegativ, stetig und skalar.

existiert, so daf

Wenn eine Konstante ¢ > 0O

t
x(t) < c +f ((s)y(r)de  fir alle t e [t ,t+T]
t
0
dann gilt
t
fy(t)dt
t .y
x(t) <c * € © fir alle t ¢ [to,tO+T] . [ |
Beweis: t
Sei V(t) = ¢ +j x(t)y(t)dr ;
t
0

dann gilt x(t) < v(t) und v(t) > ¢ > 0 . Daraus folgt

%fc_t_l - x(t)y(t) < y(v(t)

Mit v(t) > O gilt aber

V(li Q%%El < y(t) und V(t) = c

so daB die Behauptung des Satzes folgt:

t
j y(t)dr
t0

x(t) < V(t) cce
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A1.5 Stetigkeit und Differenzierbarkeit einer Losung beziiglich der
Anfangswerte und eventueller Parameter

(A1.18) Satz (Stetigkeit der Losung beziiglich 50):

Die Funktion f:G6- R" sei auf dem Bereich
G = {(x,t) | te [to,to+T] : [fl_iollmn < a}

stetig und geniige auf G einer Lipschitzbedingung mit der Lipschitz-
konstanten K.

Sei (1u’to) e G fir beliebiges p und 2(',5u,to) eine Lésung der DGL
(A1.2) mit dem Anfangszustand iu’ d.h.

g(to,iu,to) = X, -
Dann gilt
Lmoo(e,x .t ) = o(+,x ¢t ) a
X X —H - o
Beweis:

Fir die Losung mit dem Anfangszustand X, gilt

t
ot xg,t) = x +f FLolo,x ,t ),alda
t

o
Mithin gilt die folgende Abschédtzung

el x . t0) - alt,x ,t )| n <

R
t
< HLO'LHHRH + _{Hﬂg(a,io,to),u] - i[g(u,lu,to),a]Han da -
0]

Die Anwendung der Lipschitzbedingung ergibt

llﬂ(t’io’to) h E(t’iu’to)llﬂn A3

t
< H_X_O‘iquRn + Kf [oCa,x ,t.) - 3(“'iu’to)”Rn de
t
0

Auf diese Ungleichung kénnen wir den Satz (A1.15) (Gronwall-Unglei~
chung) mit y(+) = K anwenden und erhalten
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K(t-to)
Ilg(t:io’to) - g(t,lu’to)l |Rn i ||io_iu| |R],l e

Hieraus folgt direkt die Behauptung des Satzes. [ ]

(A1.19) Satz (Differenzierbarkeit der Losung beziiglich x )

Wenn die Funktion £ : G~ R" (G siehe Satz (A1.18)) auf dem Bereich G

differenzierbar ist und

(ib_(t,_x_o,to),t) e G fiir alle t € [to,to+T] ,

dann ist ®(+,x ,t ) beziiglich X differenzierbar. Die Matrixfunktion
- '=0’"0 -0

9 ad ad
() = — (o,x ) = B

ax 09 ax ax

-0 ol on

ist Losung des DGL-Systems

. af

(A1.20) o(t) = — (elt,x .t ),t) * $(t)
- LY
é;(t) = _f_(g(t,iﬂ,to),t)

mit den Anfangswerten

E (E Einheitsmatrix)

1l

4(0)

0(0) X

-0

Das DGL-System (A1.20) nennt man Variationssystem zur Losung 3(-,50,t0)

beziiglich des Anfangszustandes X.

(Beweis siehe z.B. HALANY [A1.21, Seite 11). [ ]

(A1.21) Anmerkung:

Um die Anderung der Losung o, x,
beziiglich des Anfangszustandes X,
(A1.20) bis zum Zeitpunkt t = Ty

,t) zu einem Zeitpunkt t, e [to,to+T]
zu erhalten, mufl das Variationssystem

integriert werden. B

(A1.22) Anmerkung:

Liegt eine von konstanten Parametern U & Rm abhangige DGL der Fornm

x(t) = £0x(t),t,u]

AR B
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vor (u kann beispielsweise eine konstante EingangsgriBe eines dynami-
schen Systems sein), so kdnnen die Sitze (A1.18) und (A1.19) analog auf

die stetige Abhdngigkeit und Differenzierbarkeit der Losung beziiglich
der Parameter u ibertragen werden.

Das Variationssystem zur Lé&sung 3(-,50,t0,g) beziiglich des Parameter-
vektors u lautet beispielsweise

. af
= —-.: . 1 = O ]
¢(t) » [Qﬁt,go,to,g),t,g] (1) mit ¢(0) = 0
wobei
9 8d ae
¢le) 1= = (+,x toau) = | — L., — . _
au  ° Bu, au



A2 Funktionaltransformationen

Ohne auf Hintergriinde einzugehen, werden kurz die Laplace- und Fourier-
e die Z- und die diskrete Fouriertransformation
Es sei auf die ausfihrliche Literatur

transformation sowil
("Fourierreihen") dargestellt.

verwiesen.

A2.1 Fourier- und Laplace-Transformation

(A2.1) Fourier-Transformation

7u einer Funktion f(t) wird durch
(A2.2) I;(w) = (F £)(w) := ff(t)efjmt dt ; we R

die Fourier-Transformierte %(m) gebildet. Durch die Riicktransformation

(A2.3) (- FBw - g [ Rt

erhilt man zu der Fourier-Transformierten E(w) wieder die zugehorige

Zeitfunktion f(t).

Die Fouriertransformation wird gewdhnlich fir absolut integrable Funk-

tionen f(t) erklart,
dest dahingehend aufgeweicht,

der Cauchysche Hauptwert verstanden
eigentlichen Sinne konvergieren. Weitere Verallgemeinerungen sind mog-

lich: so konnen auch die in (A3.22) erklarten Funktionen aus den Raumen
L_ (die Funktionen sind in der p-ten Potenz integrierbar) der Fourier-
; n unterworfen werden (siehe YOSIDA [AZ.6], Kapitel IV,
Beispiel 3). Gern arbeitet man mit den quadratisch
(siehe Satz (A2.16)). Die umfassendste

doch wird diese Voraussetzung sehr schnell zumin-
da®t unter den Integralen (A2.2), (A2.3)

werden soll, wenn diese nicht im

transformatio
insbesondere IV.Z,
integrierbaren Funktionen aus L,
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Erweiterung der Fourier-Transformation ist die Anwendung auf Distribu-
tionen (genauer: Distributionen aus dem Raum &' , Siehe z.B. WALTER
[AZ.51 , § 11, YOSIDA [A2.61, Kapitel IV.2), wobei die wichtige Dirac-
sche 6-Funktion und ihre Ableitungen eingeschlossen sind. Bei diesen
Erweiterungen lassen sich die Fourier-Transformation und die Riicktrans-
formation im allgemeinen nicht mehr durch eine Integration im Riemann-
schen oder Lebesgueschen Sinne ausfilhren, sondern es werden allgemeiner
Begriffe herangezogen. Fir die praktische Arbeit, die meistens mit Kor-
respondenztabellen bewdltigt wird, ist dies ohne Bedeutung.

(A2.4) Laplace-Transformation

Zu der Zeitfunktion f(t) wird durch

(A2.5) F(s) = (L £)(s) := j’f(t)e'f’tdt . se

die Laplace-Transformierte erklirt. Wir schreiben diese hier als zwei-
seitige Transformation mit den Integrationsgrenzen -», =. (blicherweise
werden nur Funktionen f(t) der Laplace-Transformation unterworfen, fir
die

(A2.6) f(t) = 0 fir t < t,

gilt. Diese heiRen linksseitig finit. Speziell fiir t = 0 kann man dann
statt (AZ.5) auch

(A2.7) F(s) := ff(t)e_Stdt , s e (
0

schreiben. Dies ist die iibliche Darstellung der Laplace-Transformation;

doch es besteht keine Notwendigkeit, von vornherein hiervon auszugehen.

Das Laplace-Integral (Az.5) konvergiert im Sinne absoluter Integrabilité
im allgemeinen nicht fiir alle komplexen Zahlen s ¢ ¢

einem Streifen der komplexen Ebene cq < Re(s) < ¢,. Fiir linksseitig

_ . 2
finite Funktionen ist ¢. = w; das Konvergenzgebiet ist dann eine rechte

offene Halbebene Re(s) > c, (siehe Bild AZ.1).

, sondern nur 10

Innerhalb ihres Konvergenzgebietes jst F(s) eine analytische Funktion,
was die Anwendung funktionentheoretischer Methoden erlaubt.

Fir die Ricktransformation gilt

C+j=
(A2.8) £(t) = (£ 'Fy(e) - zl; j F(s)eStqs
c-jm
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jj/ m dIm
q/, /C,/czt‘; C////c/// Re
7 7

{a) {b)

Bild A2.1: (a) Konvergenzstreifen der Laplace-Transformation
(b) Konvergenzhalbebene der Laplace-Transformation

fiir eine linksseitig finite Funktion

Hierbei ist der Integrationsweg s = ¢ + ju SO ZU wihlen, daB dieser im

Konvergenzbereich der Laplace-Transformation liegt: ¢,
Biid A2.1). Beachtet man dies nicht, erhdlt man unter Umstdnden zwar

eine Zeitfunktion f(t) durch (A2.8), die aber nicht die gewiinschte
he die Korrespondenzen Nr.11

< ¢ <y (siehe

Riicktransformierte darstellt (man vergleic
und 12 in Tabelle (A2.22)).

rier-Transformation 1d8t sich auch die Anwendung der Laplace-
siehe z.B. DOETSCH

Wie die Fou
Transformation auf Distributionen verallpgemeinern,

(A2.11, § 12. ]

(A2.9) Zusammenhang zwischen Laplace- und Fourier-Transformation

Setzt man in der Laplace-Transformation (A2.5) s = jw, so entsteht for-

mal die Fourier-Transformation (A2.2). Liegt die imagindre Achse 1im Kon-
vergenzgebiet der Laplace-Transformation,

auch die Fouriertransformierte F, die wir durch

also o < 0 < Cys sg existiert

(A2.10) Flo) = F(ju)

aus der Laplace-Transformierten F erhalten. Umgekehrt laBt sich in die-

sem Fall aus der Fourier-Transformierten durch analytische Fortsetzung

von der imagindren Achse in einen Streifen der komplexen Ebene die

Laplace-Transformierte gewinnen:

(AZ2.11) F(s) = F(3)

Fiir diesen Fall gibt es keine wesentlichen Unterschiede zwischen

Laplace- und Fourier-Transformation.
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Die Beziehungen (A2.10), (A2.11) diirfen jedoch nicht mehr angewendet
werden, wenn die imagindre Achse den Rand des Konvergenzstreifens der
Laplace-Transformation bildet (z.B. ¢y = 0) oder die imagindre Achse
gar auBlerhalb des Konvergenzstreifens liegt. So ist von der Sprung-
funktion o(t) die Fourier-Transformierte 1/jw + 6(w), die Laplace-
Transformierte ist 1/s mit der Konvergenzhalbebene Re(s) > O. Die
Anwendung von (A2.10) fihrt auf die falsche Fourier-Transformierte

1/jw, zu der vielmehr die Zeitfunktion sgn(t) /2 gehért.

Die Anwendungsgebiete von Fourier- und Laplace-Transformation liegen
etwas verschieden: So bevorzugt man fir die Behandlung von Einschalt-
vorgdngen (Anfangswertproblemen) die Laplace-Transformation. Die
Laplace-Transformierten der hierbei auftretenden linksseitig finiten
Zeitfunktionen konvergieren stets in Halbebenen Re(s) > Cyq- Auch wenn
¢y > 0 sein sollte, 1aBt sich ohne Einschridnkung mit der Laplace-
Transformation operieren, widhrend die Fourier-Transformierte gar nicht
existiert. AuBerdem lassen sich wegen der Analytizitdt der Laplace-
Transformierten die Hilfsmittel der Funktionentheorie anwenden: Man
beschreibt die nun auch auBerhalb ihres eigentlichen Konvergenzgebietes
analytisch fortgesetzte Funktion durch ihre Residuen (Polstellen),
welche in einer linken Halbebene Re(s) < ¢ liegen.

Andererseits zeigt die Fourier-Transformation ihre vollen Starken, wenn
die Laplace-Transformierten nicht mehr existieren. Dies ist z.B. bei
stationdren Prozessen der Fall: Die Laplace-Transformation ist fir
sin w,t (nicht fir t < 0 abgeschnitten) nicht erkidrt, wohl aber exi-
stiert die Fourier-Transformation (siehe Tabelle (AZ2.22), Nr.14).

(A2.12) Satz (Faltung von Zeitfunktionen im Bereich der
Fourier- und Laplace-Transformation):

Die Faltung zweier Funktionen

(A2.13) (F+g)(t) = ff('r)g(t-r)dr . ff(t—-r)g(t)dt

geht im Bereich der Fourier- oder Laplace-Transformation in eine Mul-
tiplikation der Bildfunktionen iiber:

(A2.14) F(£rg) () F(u)G(w)

(A2.15) L (F*g)(w) F(s)G(s)
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Die Gleichungen sind unter der Voraussetzung zu lesen, daf das Faltungs-
produkt und dessen Transformierte existieren, woriiber der Satz (A3.60)
Auskunft geben kann. Bei der Laplace-Transformation ist der Giltigkeits-
bereich des Produktes F(s)G(s) die Schnittmenge der Konvergenzbereiche
der beiden Transformierten F(s} und G(s). Nur in diesem Bereich darf die

Formel (A2.8) der Riicktransformation angewendet werden.

Fiir linksseitig finite Zeitfunktionen sind die Konvergenzgebiete der
Laplace-Transformierten Halbebenen Re(s) > c;. Daher ist auch die

Schnittmenge zweier Konvergenzgebiete wieder eine Halbebene.

(A2.16) Satz (Parsevalsche Gleichung der Fourier-Transformation):

Seien f, g quadratisch integrierbar, d.h. f, g ¢ LZ(R),§oAsind auch die
Fourier-Transformierten F, G quadratisch integrierbar, F,G ¢ LZ(R), und

es gilt
(A2.17) [rwawe - i JEi6t1ds

wobei der Querstrich den konjugiert komplexen Wert angibt. Diese Glei-

chung heiBt Parsevalsche Gleichung. Der Spezialfall f = g laBt sich mit

Hilfe der Norm in LZ(R) nach (A3.23) auch 1in der Form

] "2
(A2.18) ||fH§ = -Z;HFHZ
schreiben. n
Beweis:

die Fourier-Transformierte des Produkts f(t)glt) und
r.11 aus Tabelle (A2.19) vor:

Wir untersuchen
greifen auf die Rechenregeln Nr.Z und N

o F(F3) = Flw) * Gl-0)

)y ff(t)g(t)e“j‘”tdt - ]f:(;,)é(-(w-;))d;,

-

lten wir die parsevalsche Gleichung. Die Aussage,

Setzen wir w = O, erha
folgt unmittelbar durch die Setzung g = f.

daBl F € LZ’
Entsprechendes gilt fur g. »

wenn f € LZ’

Ohne weitere Herleitung sind in der Tabelle (A2.19) einige Rechenregeln

der Fourier- und Laplace-Transformation zusammengestellt. Die Regeln

beziehen sich stets auf die zweiseitige Laplace-Transformation (A2.5),
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was das einfachere Aussehen der Verschiebungsregel Nr.4 erklart. Unter
den Differentiationen verstehen wir immer die verallgemeinerte Ablei-
tung, also z.B. a(t) = 6(t).

(A2.19) Tabelle: Rechenregeln der Fourier- und Laplace-Transformation

Nr.| Operation der £(t) F(w) F(s}
Zeitfunktionen
1| Superposition cqfy (W+e, £, (1) e e eC ¢1F (w)ec,By(w) e Fy(s)4cyFy(s)
2 | kompl.Konjug. f(t) %(-m) F(s)
. 1T Lw 1 S
3| Umn f : - fd 2
ormierung (at); a e R-{0} TaT F(a) TET—F(a)
_ -jwt . -st
4 | Verschiebung f(t-to); to e R e OF(m) e ° F(s)
) ont R
5 | Modulation e f(t); w, € R Flu- wo) F(S_jwo)
. Sot
6 | Dimpfung e~ f(t) : s, € C - F(s-s )
7 | Differentiat. £ ;nelN (30)"E(w) sPE(s)
8 | Multipl.m.t" t"E(t) USCI 1™ )
t ]
. E . F(s)
9 | Integration j;f(r)dr g:’l + 1F(0)6(w) =
10 | Faltung £,% £,(0) £, (w)F, (0) F(s)F,(s)
1 o
11 | Multiplikation| £, (t)f e ! ~0)F, (¢
p 1(Of, (1) 75 Fp* Fylw) I f F,(s 0)F,(
c-j=

Um Unterschiede und Gemeinsamkeiten der Fourier- und Laplace-Transform
tion heraustreten zu lassen, ist in Tabelle (A2.22) eine Auswahl von
Korrespondenzen der beiden Transformationen gegeniibergestellt worden.
Fir die Laplace-Transformation ist stets der Konvergenzstreifen bzw.
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die Konvergenzhalbebene c, < Re(s) < cy angegeben. Weitere Korrespon-
denzen konnen den Tabellen von DOETSCH [A2.11,[A2.2), FOLLINGER [AZ2.3],
$.105 f, 210 ff und ZEMANIAN [AZ.7] entnommen werden. Siehe auch Tabelle

(A2.83).

Fiir "linksseitig abgeschnittene" Funktionen verwenden wir die Kurzbe-

zeichnung

(A2.20) £ (t) := f£(t)olt)

Bei Anwendung der pifferentiationsregel Nr.7 aus (A2.19) auf derartige
abgeschnittene Funktionen beachte man die korrekte Verwendung der Pro-

duktregel im Zeitbereich:

P - b (E(De(r)) = f(t)et) + £(r)e(t)
(A2.21) )
£(t) = (F()), + £(0)6(t)

(A2.22) Tabelle: Korrespondenzen der Fourier- und Laplace-Transformation

Wenn nicht anders angegeben, gilt n e N; a, w»,, T ¢ R.

NT . f(t) Flw) F(s) Cis €5
1 1 2r6(w) - -
2 1 = o(t) 1 + 16(w) 1 0, =
+ -9 t jw s
2
3 sgn{t) To - -
4 " 2n j" 6(M) (u) - -
! .n,.(n) n!
5 1t n s o1jte (w) 0, =
+ _(_;m_)m Sn”
6 6(t) 1 ] o, @
7 1 (M ey ()" s" o, ®
-
8 eJ 0 216(w-0_) - -
0
jtl)ot ‘l a 1 0 o
9 | e, TTE?G;T + 16{w mo) S ,
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NT. £(t) F(w) F(s) Ciy €
at 1 @
10 e+ sy @ € C - ﬁ Re(a):
1] e2lth e e > - = @ 8
w +a s -a
. a
12 51nh+at - — a, @
s -a
s
13 COSh+at - ‘“‘z—-—z a, ©
s"-a
14 Sinwot jn[é(m+wo)-6(m—mo)] - -
. Y i %
15 | sin,u t ~g * F 16l )5ww ) 0, =
wo-w S tuw
)
16 COSmOt K{G(mﬂuo)’( 6(m-mo)] - -
jw
17 cos+w0t —32—2- + %[O(wo)m(wo)} 3 - 0, =
w o-w S +w
o
0
inat
18 | 2 ta ro{a-|w|) - -
sin+at . i wea .
19 v 7 ola-fu])- 4in 222 arctan-a-=;—.ln§;-ﬁ 0, =
} o s-)a
20| o(T- |t]),Te R 2 512” eST- 75T o @
S bl
2.2 2
t 2 w V2t 2
21 | exp(- a—z—) ae exp(-—=) ﬂex S cw, @
: 2! a X (57 ’
22| Y e(tkm) uy O olomkn ); Sl . _
k=-= k=-=
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A2.2 Diskrete Fourier-Transformation, Fourier-Reihen und
Z-Transformation

(A2.23) Diskrete Fourier-Transformation und Fourier-Reihen

Zu der Folge oder zeitdiskreten Funktion f(k), k ¢ Z erkldren wir durch

K

(A2.24) Bo) = (DD(e) = 2 £k o6 [-xa)
k=-o
die diskrete Fourier-Transformation. Durch diese Transformation wird

einer Folge eine kontinuierliche Funktion zugeordnet. Die Riicktransforma-

tion wird durch

R
(A2.25) (0 = @R = gy [ R %
-7

gegeben. Betrachtet man nicht f(k), sondern die Funktion F(y) als Aus-

so erkennt man in der Darstellung (A2.24) die Fourier-Reihen-
die man sich auch periodisch fortgesetzt
sind £(k) und werden durch (AZ.25)

gangspunkt,
entwicklung der Funktion F(e),

denken darf. Die Fourierkoeffizienten
ergleichen beachte man Vertauschungen von j mit

berechnet (bei Literaturv
-j in (A2.24),(A2.25)).
Zieht man fiir reellwertige Funktionen F(g) die Schreibweise mit Sinus-

und Kosinusfunktionen

N a
(A2.26) Flo) = 2+ > (a coske + bysinke)
k=1

und den Fourier-Koeffizienten

n

a = ff:(q:)coskqa dv , k>0 ,

-1

(A2.27) t
by = 1 fF(«p)sinkq: de , k>1

vor, kann zwischen a,, by und f£(k) der Zusammenhang

£(0)

"
i

<V)
o]

(A2.28)
£(ix)

"
e
~~
o]
P
|+
—
o
=
Nt
|

bzw.
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a = f(k) + f(-k) , k

| v
O

(A2.29)
by = -j (f(k) - £(-k)) , k

twv
.y

angegeben werden.

Als hinreichende Bedingung fiir die Anwendbarkeit der Transformation
(AZ.24) kann die absolute Konvergenz der Reihe f(k) gefordert werden
(d.h. f ¢ L1(Z), siehe (A3.22)). Ahnlich wie bei der zeitkontinuierli-
chen Fouriertransformation (A2.1) lassen sich auch hier die Vorausset-

zungen lockern, so daR f nur noch die wesentlich schwachere Bedingung

(A2.30) [£(k)| < ¢ |k|®

mit Konstanten c,a > 0 zu erfiillen braucht. Die dadurch entstehenden
diskreten Fourier-Transformierten sind im allgemeinen Distributionen.
So wird auch fiir die Formel (A2.25) der Rucktransformatlon die scharfe
Voraussetzung der absoluten Integrierbarkeit von F F e L, (-n,n), ent-
sprechend abgeschwécht (siehe hierzu z.B. WALTER [AZ. 51, § 10). Auch
ohne sich in diese Erweiterungen ndher einzuarbeiten, diirfen die hier-

aus gewonnenen Ergebnisse mit Hilfe von Korrespondenztabellen ange-
wendet werden.

Wenn die Folge oder zeitdiskrete Funktion f(k) aus einer zeitkontinu-
lerlichen Funktion f(t) durch Abtastung mit einer konstanten Abtast-
zeit T entstanden ist, kann im Fourier- Bereich der Ubergang von der un-
abhéngigen Variablen ¢ auf die Frequenz w := ¢/T sinnvoll sein. Dann
erhalten die Formeln (AZ.24), (A2.25) das veridnderte Aussehen

) © —!'kw
(AZ.31) Flo) = D k) e T ,
k=-= .
x K
(A2.32) F(k) = lzf-,; f F(w) eJT do |

wobei der Funktionsname F auch fiir die Abhangigkeit von der neuen unab-
hdangigen Variablen v beibehalten wurde. |

(A2.33) Z-Transformation

Fir die Folge oder zeitdiskrete Funktion f(k), k ¢ 7, wird durch die
Laurent-Reihe

m

(A2.30)  F(z) = (36)(2) = ) )X L. o
k=-
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die Z-Transformation erklidrt. Die Transformation erhdlt ihren Namen
durch die iiblicherweise im Bildbereich verwendete unabhdngige Variable
z. Doetsch schldgt auch die Bezeichnung Laurent-Transformation vor.

Die Reihe (A2.34) wird in zwei Teilsummen aufgespalten, wobei die Po-

tenzreihe ®
-k k 1 ,
(A2.35) E; f(k)z = }Z f(k)w ) wois o, ;
k=0 k=0 i
das Konvergenzgebiet lwl < a —z| > ry = 1/a habe. Die zweite Tell- i
summe j
-1 ®
(A2.36) > ot K = ) (k)25
k=~ k=1

konvergiere im Kreis |z] < ry. Dann konvergiert die gesamte Summe (A2.34)

im Kreisringgebiet ry < lz] < Ty, siehe Bild AZ.Z. Wenn r,
kein Konvergenzgebiet, so daB die Transformation nicht angewendet werden

> T, gibt es

kann.
Ist die Folge linksseitig finit, d.h.
(A2.37) f(k) = 0 fir k < ko ,

ist die Reihe (A2.36) endlich und hat den Konvergenzradius T, = ®. Dann
ist das Konvergenzgebiet der 7-Transformation die gesamte komplexe Ebene

mit Ausnahme eines Kreises mit Radius T siehe Bild A2.2b. Im Konver-

genzgebiet ist F(z) eine analytische Funktion.

Im

/// )

(b

Bild A2.2: Konvergenzgebiet der Z-Transformation

(a) allgemein und (b) fir eine linksseitig finite Folge
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Die Umkehrtransformation wird durch

(2.38)  f00 = (27000 - g § E@H e
C

angegeben, wobei der geschlossene Integrationsweg C, der den Punkt O um-
schlieft, innerhalb des Konvergenzgebietes verlaufen muB (siehe Bild
A2.2).

Ist der duBere Konvergenzradius r, = = und ist F(z) im Punkt z = = analy-
tisch, d.h. F(1) ist im Punkt w = O analytisch, 148t sich eine andere
Form fir die Umkehrtransformation angeben:

akrcdy

(A2.39) () = (37hao - 11—,—;{— (w=0) . u
) W

(A2.40) Zusammenhang zwischen diskreter Fourier-Transformation
und Z-Transformation

Liegt der Einheitskreis |z| = 1 im Konvergenzgebiet der Z-Transforma-
tion, also ry <1< Ty, erhdlt man durch die Setzung

(A2.41) z = ejw ; ¢ = -j 1n z

aus der Z-Transformation (A2.34) die diskrete Fouriertransformation
(A2.24). Es gilt

(A2.42) F(o) = F(e)®)

Ebenso kann man unter der Voraussetzung r, <1« Ty die Z-Transfor-

mierte durch analytische Fortsetzung aus der diskreten Fourier-Trans-
formation erhalten:

(A2.43) F(z) = E(—j Iln z)

Ist der Einheitskreis jedoch Rand des Konvergenzgebietes der Z-Transfor-
mation, dirfen (A2.42), (A2.43) nicht angewendet werden. 5

(A2.44) Satz (Faltung von zeitdiskreten Funktionen im Bereich
der diskreten Fourier- und Z-Transformation)

Die Faltung zweier Folgen oder zeitdiskreter Funktionen

® @

(A2.45) () = DD EGdgt-d) = S p(kei)g(i)

= m® 1=-

geht im Bereich der diskreten Fourier- oder I-Transformation in eine
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Multiplikation der Bildfunktionen uber:

(AZ.46) D (£%g) (o) F()G(o)

F(z)G(z)

It

(A2.47) 3,(f*g)(z)

Die Existenz des Faltungsproduktes (siehe hierzu Satz (A3.60)) und seiner
Transformierten wird vorausgesetzt. In (A2.47) ist der Konvergenzbereich

von F(z)G(z) gleich der Schnittmenge der einzelnen Konvergenzbereiche

von F(z) und G(z). [

(A2.48) Satz (Parsevalsche Gleichung der diskreten Fourier-Transformation)

Seien f,g quadratisch summierbar, d.h. f,g e L,(Z), so sind die diskreten

Fouriertransformierten F,G quadratisch integrierbar, F,G & Lz(—u,n), und
es gilt
® 1 )
(A2.49) S f0F0) = gy [Fo6GYe
k=- -1

wobei der Querstrich den konjugiert komplexen Wert angibt.
chung heiBt Parsevalsche Gleichung. Der Spezialfall f = g laBt sich mit
Hilfe der Norm im LZ(Z) bzw. Lz(-n,n) nach (A3.25) bzw. (A3.23) auch 1n

Diese Glei-

der Form

2 1 12
(A2.50) Hell5 = 5 HES
schreiben.

Der Beweis nimmt als Ausgangspunkt die Multiplikation zweier Folgen im
)) und wird genauso wie der

Fourier-Bereich (siehe Nr.11 in Tabelle (AZ.51
Beweis des Satzes (A2.16) gefuhrt.

Ohne weitere Herleitung gibt Tabelle (A2.51) eine Zusammenstellung von

Rechenregeln der diskreten Fourler- und Z-Transformation. Man vergleiche

die Rechenregeln (A2.19) der Fourier- und Laplace-Transformation!
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(A2.51) Tabelle: Rechenregeln der diskreten Fourier- und

Z-Transformation

Nr. Operation d.Folgen f(k) ﬁ(w) F(z)
1| Superposition c1f1(k)+c2f2(k);c1,Cf C C1F1(¢0+C2F2(¢) CTF(Z)+C2F(Z)
2 | kompl.Xonjugation f(x) F(-9) F(z)
3 | Umkehrung f(-k) ﬁ(-m) FC%)
. _jko‘PA o
4 | Verschiebung f(k—ko),koe z e F(o) z F(z)
jmok A -j¢o
5| Modulation e f(k),moe R F(w_wo) F(ze )
. k
6 | Dampfung z, flk);z e € - F(é;)
. —jkom . -ko
7 | Differenz f(k)-f(k—ko);koe y/d (1 -¢ YE( o) (1-z “)F(z)
8a | Multipl.mit k k £(k) i F (9) 2 F (2)
8b | Multipl.mit K" K"£(K) P () )"FM (2)+
N R SRy nach 82
9| Summe Ea £(i) A : z )
R T Fle)+xF(0)o(o)l =7 Flz
10| Faltung £%£, (k) Fy(0)F,(¢) F,(2)F,(2)
11| Multiplikation £.(k)F, (k) LI . 1 z)d2
P (K, 7e [ Flo-0)B(4)ay iy PEEOET]
-n

C

In der Tabelle (A2.53) sind einige Korrespondenzen der diskreten

Fourier- und Z-Transformation aufgefiihrt.
ist das Konvergenzgebiet r, < 2! < r

wenden wir die Abkiirzung

(A2.52)

um linksseitig abgeschnittene Folgen zy kennzeichnen

denzen der Z-Transformation sind Tabelle (A2.83) 2y entnehmen

£, (k)

f(k) fir

0 fir

k >0

k <0

Fir die Z-Transformierten
2 Mit angegeben. Auch dort ver-

Weitere Korrespon-

Fiir die
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diskrete Fourier-Transformation kénnen auch Tabellen von Fourier-Reihen-
entwicklungen herangezogen werden, indem man die Beziehungen (AZ2.28),

(A2.29) verwendet.

(A2.53) Tabelle: Korrespondenzen der diskreten Fourier- und

Z-Transformation

NT. £(k) F(o) F(z) Ty, Ty
1 1 2n5(9) - -
1 fir k > 0 (o) 2 |
2 1 = - €x = hd + Hﬁ((P) —_f . 3
—-'%LJjTT' z
*lo firk <o | FPH°
1 fir k =0
3 1 1 0,=
0 firk 40
4 K 2576 (M) () - -
5 k exp(_]fl’) 2 + jl[él[q)) —-z——z- ‘],co
* (exp(jg)-1) (z-1)

A2.3 Zusammenhinge zwischen zeitkontinuierlichen und
zeitdiskreten Funktionen

A2.3.1 Zeitkontinuierliche und abgetastete Funktionen

im Fourier-Bereich

Ein Abtast-Halte-Glied 0. Ordnung tastet von einer stetigen zeitkonti-

nuierlichen Funktion f(t) zu diskreten Zeitpunkten kT, k eZ, die Werte

£(kT) ab und halt sie bis zum ndchsten Abtastzeitpunkt:

(A2.54) £ (t) = £(KT) fir kT < t < (k«1)T

Ellg;ﬁl;i: Abtast-Halte-Glied
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Bild AZ.4: Urspriingliche und abgetastete Zeitfunktion

Diese Zusammenhinge werden im Fourier-Bereich untersucht. Dazu schreibt
man die Funktion fAH(t) mit Hilfe der Sprungfunktion o(t) als Summe

o

(A2.55) Ea(t) = D fRMIo(kT) - o((k+1)T)]

k=_m
so daB sich mit der Verschiebungsregel Nr.4 aus der Tabelle (A2.19)
und der Korrespondenz Nr.2 aus (A2.22) die Fourier-Transformierte be-
stimmen 14Rt:

@D

[ %U + né(w)Jézj f(kT)[e_jkwT—e_j(k+1)wTJ

Fan(@)

[%; + wé(w)](1-ej“T)§Z £(kT)e JkoT
k=-=

Da 6(w) = 0 fir v $ 0 und 1-exp(-joT) = 0 fiir © < 0, gibt das Produkt
beider Funktionen keinen Beitrag und es folgt

. _ —ij .
(A2.56) Fan(@) = S5 D0 fkmyenIkeT
k=-o

Der strenge mathematische Nachweis dieser Unformung wird mit Hilfe der
Distributionentheorie gefiihrt.

Fiir die Funktion fAH(t) laBt sich noch eine weitere interessante Dar-
stellung angeben, die durch Unformung von (A2.55) oder durch Riicktrans-
formation der Fouriertransformierten FAH(w) Zu gewinnen ist:

Wir nennen
]_e-ij

(A2.57) H(w) := %

und
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: . - jkoT
(A2.58) Folo) 1= D, £(KT)e
k=-w
Unter Verwendung der Korrespondenztabellen (AZ.19}, (A2.22) ergibt sich

mit diesen Bezeichnungen aus (A2.56)

(A2.59) fAH(t) = h(t) * fA(t)

mit

(A2.60) hit) = o(t) - o(t-T)

und .

(A2.61) £ (1) = > EKT)s(t-kT)
k=-w

Die Funktion fA(t) kann weiter zu

£,(t) > E(R)6(t-kT)
(A2.62) k=-o o
£,(t) = £(t) D) 6(t-KT)

umgeformt werden, da in Produkten mit &6-Funktionen nur die Funktions-
werte an den Stellen von Bedeutung sind, fur die das Argument der
6-Funktion verschwindet. Die in fA(t) auftretende Summe von &-Funktionen
(A2.63) a(t) = D 6(t-kT)

k=-=

hat auch den Namen "&-Kamm".

Durch diese Darstellung haben wir die Moglichkeit, den technischen

Abtast-Halte—Vorgang auch formal in die beiden Operationen

(A2.64) £,0t) = al(t)f(t) (Abtasten)
und
(A2.65) f,y(t) = h(t) *fA(t) (Halten)

2u zerlegen, was in dem Strukturbild A2.5 dargestellt ist.

alt)

Ht) it

X Hiw) -

giii_5§;§: Aufspaltung des Abtast-Halte-Gliedes
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Fir die Fouriertransformierte ﬁA(m) 1dBt sich noch eine andere Darstel-
lung finden, wenn man hierzu von (A2.64)} ausgeht:

Folo) = 2= A(w) * F(w)

Nach der Korrespondenz Nr.22 aus (A2.22) geht der "6-Kamm" a(t) auch

im Fourier-Bereich wieder in einen "6§-Kamm' liber:

~ (JJO “ > -
o) = 22 [0S Re)eu-ku -0ar
—-m k:-m )
(AZ.66) ) " ®
_ 0
Fale) = 5= }E Flu-ke )
k=_m
Hierin ist w, 1= 2r/T die Abkiirzung fiir die Abtastkreisfrequerz.

FA(w) ist also periodisch in w und entsteht durch fortgesetzte Verschie-
bung und Uberlagerung von F(w) (siehe Bild A2.6).

Bild AZ.6: Spektrum der urspriinglichen und der abgetasteten Funktion

Nur fir bandbegrenzte "Spektren" Flw) (ﬁ finit),

- w
(A2.67) Flw) = 0  Ffir |u,{i«1,35?_° )

ist es moglich, aus FA(w) wieder die urspringliche Funktion é(m) zu re-
konstruieren: Dann ist

Zn . m()
a; FA(w) fiir Iw] i 7—
Flo) =
{(A2.68) 0 sonst

wo -
= — - o F.(w
mo 0[7_ ! l} A( )
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Wird diese Beziehung mit der Korrespondenz Nr.18 aus (A2.22) wieder in
den Zeitbereich iibertragen und fA(t) nach (A2.61) verwendet, entsteht
das bekannte Abtasttheorem nach Shannon:

w t
. 0 ®
S1n
F(t) = B v D! E(KTIS(tkT)

0 ©

- k=-
® sin 2—0 (t-kT)

(A2.69) F(t) = D> £(kT) —
k=_m 2_0 (t"kT)

Eine bandbegrenzte Funktion kann durch die Werte zu einzelnen Abtast-
zeitpunkten vollstdndig rekonstruiert werden. Die Abtastbedingung folgt

aus der Voraussetzung (A2.67):

2n
(A2.70) w, o= T 2> lug

AZ2.3.2 Zusammenhinge zwischen Fourier- und diskreter Fouriertransfor-

mation sowie zwischen Laplace- und Z-Transformation

Sei f(t) eine zeitkontinuierliche Funktionm, fD(k) die Folge der Abtast-
werte
(A2.71) (k) i= £(KT) , k ez

und fA(t) die zeitkontinuierliche "abgetastete' Funktion, die als Reihe

mit 6-Funktionen dargestellt wird (siehe (AZ.61)):

(A2.72) £,00) = Z £ (k)6 (t-kT)
K= -
Die Fourier-Transformierte von fA(t) ist nach (AZ2.58)
" _ —jwkT
(A2.73) Fo() = D fp(K)e
K=-o
Dies vergleichen wir mit der Z-Transformierten der Folge f(k):
. _ 'jkw
(A2.74) Fple) = D fp(kde
k=-w

Offensichtlich entsteht durch die Setzung
(A2.75) ¢ = oT

aus der Fourier-Transformierten der abgetasteten Funktion fA(t) die dis-
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krete Fourier-Transformierte der Folge fD(k):

(A2.76) Fp(oT) = Fy(w)

Mit (A2.66) 1aBt sich auch ein Zusammenhang zu der Fourier-Transfor-
mierten F(w) der urspringlichen Zeitfunktion f(t) herstellen:

: _ 1 " 21tk
(A2.77) FploT) = 1 > Flu- 275
k=-o
Existiert die Laplace-Transformierte von fA(t)
_ -skT
(A2.78) Fu(s) = D £,(K)e
k=-o
und die Z-Transformierte von fD(k)
B -k
(A2.79) Fo(z) = > £ 0z7%
k=-o
so besteht zwischen ihnen mit der Setzung
. = esT
(A2.80)
5 = 1 ln z
T

der Zusammenhang

_ sT
(A2.81) FA(S) = FD(e )
bzw.
B 1
(A2.82) FD(z) = FA(T In z)
Durch (A2.80) wird der Halbstreifen der s-Ebene |Im(s)| < % , Re(s) <0
eindeutig auf das Innere des Einheitskreises der z-Ebene |z| < 1 abge-

bildet.

Tabelle (AZ2.83) stellt einen Zusammenhang zwischen den Laplace-Transfor-
mierten zeitkontinuierlicher Funktionen und den Z-Transformierten der
zugehodrigen Abtastfolgen dar.
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(A2.83) Tabelle: Korrespondenzen der Laplace- und Z-Transformation

Abkiirzungen: o := el g .- e T v 1= 0T

a,b e C; v, T ¢ R

Nr. F(s) £(t) f (k) = f(kT) F.(z)
D D
1 z
1 E O(t) = 1+ 1+ —-——z_,l
1 Tz
2 — t, kT, 1z
s (z-1)
3 1 % 1 em)? t2z(z+1)
53 7 Y4 7 + 2(2-1)3
4 1 -at oK =
S+a €y + 70
1 -at Tzao
5 te, kT o 7
(s+a) (z-o)
v z sinwo
6 A sin w_t sin ko
sé4w + 0 0 22-22c05¢0+1
)
z(z—coswo)
7 S t cos ko e
TZ_S o COS+UO + 0 ZZ-ZZCOSQJO""]
)
W zo sinwo
8 o edatsin+wot aksin+k¢0 -5 7
(s+a)“+w z°-2azcos9 *a
c 22- azCOSY
9 5*a -3l w t| o cos_ ke
—_—__2_2-(54.3) +wo e Cc +UJO + 0 ZZ-ZaZCOSqJO‘H!Z
- - - k k z(a-B)
10 b-a o3t e bt at - B} S TEE

s+a)(s+b + +




A3 Hilfsmittel der Funktionalanalysis

A3.1 Einige Begriffe aus der Funktionalanalysis

Es werden hier nur sehr knapp einige Elemente der FunktionalanalysiS_
dargestellt. Zum ausfithrlichen Studium seien z.B. LJUSTERNIK, SOBOLEW
[A3.3], YOSIDA [A3.57, BRONSTEIN, SEMENDJAJEW [A3.1] genannt, die im

folgenden nicht mehr explizit zitiert werden.

(A3.1) Definition (Metrischer Raum):

Eine Menge X wird zum metrischen Raum, wenn zwischen den Elementen ein
reellwertiges AbstandsmaB p (Metrik) erklért wird, das die folgenden
Eigenschaften besitzt:

Fir alle x,y,z ¢ X gilt

p(x,y) >0 und p(x,y) =0 < x =y (Definitheit),
(A3.2) plx,y) = ply,x) (Symmetrie) ,

plx,z) < plx,y) + ply,z) (Dreiecksungleichung)
[ |

(A3.3) Definition (Linearer Raum):

Eine Menge X heiBt linearer Raum, wenn eine Addition und eine Skalarmul-
tiplikation definiert sind. Beztiglich der Addition von Elementen aus X
muB X eine Abelsche Gruppe sein: Kommutativitdt, Assoziativitat, Exi-
stenz des Nullelementes, Existenz des inversen (negativen) Elementes zu
jedem Element aus X. Fir die Skalarmultiplikation zwischen reellen oder
komplexen Zahlen o,B und Elementen X,y aus X muB gelten:

a(x+y) = ax + ay
(a+B)x = ax + By (Distributivitdt) ,
(A3.4)
(eB)x = a(Bx) (Assoziativitdt der Multiplikation) .
Ix = «x
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Ist die Skalarmultiplikation mit den obigen Eigenschaften nur fiir
a,B ¢ R erkldrt, sprechen wir auch genauer von einem reellen linearen

Raum, bei «,B e € von einem komplexen linearen Raum.

a

(A3.5) Definition (Normierter linearer Raum):
Ein linearer Raum X heift normiert, wenn eine reellwertige Norm ||- !
definiert ist, mit der fir jedes x e X gilt:

[[x|] >0 und [[x]] = 0&=x = 0 (Definitheit) |,
(A3.6) xey ] < Vxll+ Tyl (Dreiecksungleichung) |

Hex || = Tal lx]| (Homogenitdt) . B
Ein normierter Raum ist offensichtlich mit

o(x,y) = [lx=-yll
auch ein metrischer Raum.
(A3.7) Definition {(Vollstdndigkeit):
Fin metrischer Raum X heiBt vollstdndig, wenn es zu jeder Cauchy-Folge
{Xi} einen Grenzwert x in X gibt, d.h.

lim p(xi,x.) = 0 == lim p(X,Xi) = 0
1,)7® 1=

X enthdlt alle seine Haufungspunkte. |
(A3.8) Definition (Banachraum):
Ein vollstindiger normierter linearer Raum heifit Banachraum. ]
(A3.9) Bemerkung (Vervollstindigung normierter Riume):
Jeder normierte lineare Raum X kann zu einem Banachraum X vervollstan-
digt werden, indem man X um seine Haufungspunkte erwelitert. B

(A3.10) Definition (Lipschitz»Stetigkeit, Kontraktivitat):

X sei ein metrischer Raum. Erfillt ein Operator T auf X, T: X = X, die

Bedingung
(A3.11) p(Tx,Ty) < apl(x,y) fiir alle x,y e X

mit einer Konstanten a > O (Lipschitz—Konstante), so nennen wir T
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Lipschitz-stetig auf X. Ist die kleinstmoégliche Schranke o« < 1, heifit
T zusdtzlich kontraktiv. [

(A3.12) Satz (Banachscher Fixpunktsatz):

Sei T ein kontraktiver Operator auf einem vollstdndigen metrischen Raum
X. Dann hat die Gleichung

(A3.13) Tx = «x

genau eine LGsung € in X. Die Losung & heiBt Fixpunkt des Operators T.
Die Rekursion

(A3.14) Xpep % Txn

konvergiert mit einem beliebigen Startwert X, © X gegen diese Losung E.
Dabei gilt die Fehlerabschidtzung

n

o
(A3.15) px ,8) < 3= p(x ,x;) B
Beweis:

Da T kontraktiv ist, gilt

p(xn’xn+1) = p(TXn_‘I;Txn) i Qp(xn_1;xn)

mit a < 1. Durch Einsetzen der Rekursion (A3.14) gelangt man zu
n
p(xn,xn+1) < a p(xo,x1)

Weiter gilt mit m > p aufgrund derk”Dreiecksungleichung”:

m-1

m-1
P00 ) < 20 el )) < ale xp) S
k=n k=n
m-1 n-1
) k k n_ m
plxg.xq) kZ * - kZ"‘ = elxgxg) &1%“
=0 :O

n
= P(Xn,xm) 5_%13 p(xo,xi)

Da a < 1 ist, strebt p(xn,xm) gegen O fir n-w,
Folge und konvergent. Weil der Raum X vollstangd
wert 1in X:

Damit ist {x,} Cauchy-
ig ist, liegt der Grenz-

E = lim Xp o+ Eoe X

N—wo
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Aus der letzten Abschiatzung folgt mit
plx ,8) < px,x ) + plx, )

und Grenziibergang m-= die Fehlerabschatzung (A3.15):

n
p(xnvg) i P(X01x1) %!Ta

Zu zeigen ist noch, daB € Lésung von (A3.13]) ist:

p(E,TE) < plx,8) + olx),TE) = p(x ,E) + o(Tx,_4,TE)

—> p(g,TE) < plx,E) + aplxy _4,E)

Die beiden Terme der rechten Seite werden wegen (A3.15) beliebig klein,

daher kann die letzte Ungleichung nur gelten, wenn
o(g,T¢) = 0 <= & = T¢

Die Losung £ ist die einzige Losung von (A3.13). Nehmen wir an, es gabe

zwei Losungen &, } £, » SO fihrt
0 < 0(51,52) = p(Tg,,TEy) £ ap(€,,E,) < p(g,,8,)
sofort zum Widerspruch. n

(A3.16) Definition (Linearer Operator):

Ein Operator T auf einem reellen bzw. komplexen linearen Raum X heifit

linear, wenn fiir beliebige Elemente x,y € X und beliebige reelle bzw.

komplexe Zahlen «,B gilt:

(A3.17) T(ax + By) = oTx + BTy . a

(A3.18) Definition (Beschrankte Operatoren, Operatornorm):

Ein Operator T auf einem normierten Raum X heiBt beschrédnkt, wenn eine

Schranke C ¢ R existiert, so daB fir alle x e X gilt

(A3.19) ||Tx|| < C | x|

Die kleinste derartige Schranke heiBt Operatornorm und wird mit ||T]]

bezeichnet:

(A3.20) Htxb] < [T [xd
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Die Norm ldBt sich durch

(A3.21) [T = sup ++§?+l
xeX

x$o

bestimmen, wenn TO = O ist. B

Wir beachten, daB die so definierte Operatornorm gemidB der Definition

(A3.5) die Dreiecksungleichung erfiillt und definit und homogen ist. In
der Literatur wird die Operatornorm nur fir lineare Operatoren einge-

fihrt. Hier soll von dem Begriff auch fir nichtlineare Operatoren Ge-

brauch gemacht werden.

Ein beschrdnkter linearer Operator ist auch Lipschitz-stetig (siehe Defi-
nition (A3.10)),.

A3.2 Sperzielle Funktionenraume

(A3.22) Die Funktionenriume Lp

Mit LP(G) bezeichnen wir den Raum der in der p-ten Potenz (i < p < «)
iber dem Gebiet G absolut (Lebesgue-) integrierbaren Funktionen f. Mit
reellwertigen Funktionen f haben wir einen reellen linearen Raum, mit

komplexwertigen einen komplexen linearen Raum. Durch

1

. P
(A3.23) RIS [receyp ae|
G

wird der Raum Lp(G) normiert.

LN(G) ist der Raum der iiberall in G beschrdnkten Funktionen. Die Norm
wird durch

(A3.24) [[E]], := sup|f(t)|
teG

angegeben.

Die Folgen {f.}, i e I (I Indexmenge), welche in der p-ten Potenz abso-
lut summierbar sind (die Reihe konvergiert absolut), bilden den Raum
Lp(I). Wir kénnen uns Folgen auch als Funktionen denken, die nur an dis-
kreten Stellen definiert sind: £(i), i ¢ I. Die Norm im Raum L (1)

(1 < p < =) wird durch P
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1
A3.25 = i)|P|P
(A3.25) el D)
iel
definiert. Entsprechend ist L_(I) der Raum der beschrédnkten Folgen mit

der Norm

(A3.26) [1£]], := sup [£(i)]
iel

Wegen der sehr dhnlichen Beziehungen in den Raumen Lp(G) und Lp(I) ist

fir beide Typen die gleiche Bezeichnungsweise gew&hlt worden. Wird die

Angabe des Gebiets G oder der Indexmenge I fortgelassen, meinen wir ein
mit G ein rechtsseitig unbeschranktes Intervall [tO,W), z.B. R+, mit

I eine Menge von ganzen Zahlen {i | i > i b, z.B. N,

Mit Hilfe des Lebesgue-Stieltjes-Integrals konnen {A3.23) und (A3.25)

auch gemeinsam als

A3, =
(A3.27) el flf(t)ldu(t)

-00

geschrieben werden. Dann ist fiir den Fall Lp(G) das MaB dpu(t) = dt fir
t e G, sonst null. Fir Lp(I) ist u(t) eine Treppenfunktion mit Springen
um 1 an den Stellen t = i e I.

Die Raume Lp sind vollstdandig, also Banachrdunme. [ ]

Die Diracsche 6-Funktion gehért nicht zum Raum L,(G), obwohl man sie ge-

wohnlich durch die folgenden Eigenschaften charakterisiert:

6(t) = 0 fir t+0 ,

(A3.28) ®
fé(t)dt -

Es gibt jedoch keine (gewohnliche) Funktion, die diese Eigenschaften be-

sitzt (auch nicht im Sinne der Lebesgue-Integrierbarkeit des Raumes L1).

Das Integral in (A3.28) kann nur im Sinne verallgemeinerter Funktionen

(Distributionen) interpretiert werden. Es macht jedoch keine Miihe, den

Raum Ll(G) um die wichtigen &6-"Funktionen" zu erweitern:

(A3.29) Der Funktionenraum E](G)

Funktionen der Art

£(t) = £ (t) + 3D o(t-T ),
K
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wobei fo € L1(G) und Tk € G ist sowie die Reihe der Dk absolut konver-
giert, bilden den Raum £1(G). Er wird durch

(A3.30) el e e 11y« Y I, |
k
normiert, wobei alle T, als verschieden vorausgesetzt werden. Machen wir

von einem verallgemeinerten Integralbegriff Gebrauch, diirfen wir auch di-
rekt

(3.3 el = flecofa

G
schreiben. Ist h eine Stammfunktion von f, also h = f (wobei bei der Ab-
leitung an Sprungstellen von h entsprechend der Regel s =6 (o Sprung-

funktion) verfahren wird), 1dBt sich die Norm (A3.31) umschreiben :

Tkt

Jiecotae o ST e ae = Sncey, ) - wiep|
G k t k

Hierbei sind die t, ¢ G die Stellen, an denen f(t) das Vorzeichen wech-
selt. Die rechts entstandene Summe heiBt Totalvariation von h auf G und
wird mit V(h) bezeichnet:

(A3.32) Hfll1 = V(h)

Funktionen des L](G) und damit auch Funktionen des L1(G) haben Stammfunk-

tionen beschrankter Totalvariation. ll

(A3.33) Die Funktionenriume Lg

Die Rdume L; werden durch n-dimensionale Vektorfunktionen

_ T
[ F PN NN

gebildet, wobei die Elemente fi Funktionen aus L sind. Es gibt unter-

schiedliche Moglichkeiten, hier eine Norm einzufihren. Wir wihlen fir
1 <pxgw

1
(A3.34) HEN, o= | DT 0He R P

i=1

Fir p = = gilt entsprechend

(A3.35) HEH, = max ||
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Hier 148t sich aber mit Vorteil auch die verdnderte Normierung
n

(43.36)  [IgllL = NI
i=1

verwenden. .

n

pe

Die Raume Lne sind Erweiterungen der Raume LB (1 <p <=), welche auf
folgende Weise entstehen {die Raume Lp, Lpe sind mit n = 1 eingeschlos-

sen):

(A3.37) Die Funktionenriume L

Wir definieren zu jeder Funktion f eine abgeschnittene Funktion f, :

(1) fir © <t
(A3.38) £ .(x) =

t
0 fir 2>t

. n . .
Eine Funktion f gehért genau dann zum Raum Lpe’ wenn die abgeschnittenen

Funktionen f, fiir alle t Elemente von Lg sind. Dabei muBl der Grenzwert

von ||ft[|p fiir t - = nicht unbedingt existieren. Dementsprechend ist
n o : n

Lge kein normierter Raum. Gilt aber fir ein f e Lpe

(A3.39) [1£, 41, <€ fir allet ,

so folgt f Lg mit

(A3.40) e, < ¢ - o

. T
Unter der "Potenz" fr einer Vektorfunktion f = [£1,f2,---,fn] verstehen

wir hier den Ausdruck
r T r
(A3.41) £ = L, IEy 1 s £ 1]

. T
Mit £2 meinen wir hier also ausnahmsweise nicht das Skalarprodukt f f.

. n N
Damit kénnen wir einen Zusammenhang der Normen verschiedener Lp-Raume
darstellen:
(A3. r . r , l<p<wo, 0<r <=
) (IENE, - TIETT <p s

Speziell fiir p = 2 gilt auch

(A3.43) '|[£H§ = |I£*_f_|11
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Der Stern bedeutet die Transposition und gleichzeitige komplexe Konjuga-

tion.

(A3.44) Satz (Holdersche Ungleichung):

Sei f e L;, gelgmit ) <pq<eundi/p+ 1/q=1. Dann ist die Funk-

tion fT& aus L1 und es gilt die Abschédtzung

T
(A3.45) e glly < HEN, el

Als Spezialfall ergibt sich mit P = q = 2 die sogenannte Cauchy-Schwarz-
sche Ungleichung. [ |

Diese Aussage 1dBt sich in einer gewissen Weise umkehren:

(A3.46) Satz (Umkehrung der Hélderschen Aussage):

f sei eine n-dimensionale Funktion, die so beschaffen ist, daB mit

1 <q <= fir alle g e L; gilt £T§ ¢ L,, und daB die Ungleichung
T
(A3.47) HE gl < Eligll,

mit einer Konstanten F > 0 fir alle g ¢ Lg erfillt ist. Dann ist f Elemenf
aus Lg mit 1/p + 1/q = 1 und es gilt

A3.48 f < )
(A3.48)  |I£]] < ° s

Dieser Satz besagt, daB die Héldersche Ungleichung (A3.45) bei fest ge-
wahltem f und beliebigem g die kleinstmégliche Abschdtzung ist: Nehmen
wir an, es gdbe eine bessere Abschatzung als (A3.45) in der Form der Ab-

schatzung (A3.47) mit einem F < ’Ifllp, so fiihrt (A3.48) sofort zum Wi-
derspruch.

Beweis von Satz (A3.44):

Der Fall p = =, q = 1 (und umgekehrt) wird zunachst ausgenommen. Die
Funktion

ist null fir

wie man durch Einsetzen nachweist. Wir prifen das Vorzeichen von H fiir



A3.2 Spezielle Funktionenriume 475

beliebige Werte x,y > 0. Dazu schreiben wir H als Integral seiner Ablei-

tung:
H(X,Y) = H(X,Xp*1) + j —g—nH(x’n)dn
xp_1
q-1
= 0+ j‘ (n - xJ)dn

xp_]

ISt]Y > xP1 also y97! > x, so ist auch ad! > x; fir y < P qug
nd < x gelten. Das Integral ist in beiden Fdllen positiv und damit

auch H(x,y). Setzen wir nun

Ifi(t)i Igi(t)[
T 1777Fﬂ;' ’ yo- TTETT:;_—

und verwenden die Nicht-Negativitdt von H(x,y), ergibt sich

(£ ()P g ()] ) 1£,(0)] [gy (0]

+
|% qQ -
olIEI1E  allglld = TIEl, el

Die Summation iiber den Index i der Vektorkomponenten und die Summation
iber den Folgenindex t im Falle seitdiskreter Funktionen bzw. Integra-
tion liber t im Falle zeitkontinuierlicher Funktionen 1&Bt in den Zahlern
der Briiche der linken Ungleichungsseite die Terme |1£||g und ||&||g
entstehen, die sich dann wegkiirzen. Rechts ergibt sich die L,-Norm von
£g:

[1eTgl 1
= 1

z >
el gl

+

h=1

= @

Damit ist Satz (A3.44) fir 1 < p, q < © bewlesen. Der Beweis fir p ,

9 = 1 geht sehr schnell: Da
[£,(t)g, (O] < £l ], Tg;(t)]

folgt sofort nach (A3.6) mit & := ||£||°°

n n
eI, = Doliggs;lly < X 1leall
i=1 i=1

} az||gi||1 - 11l el .
i=

SR L e e

FEET R



476 A3 Hilfsmittel der Funktionalanalysis

Beweis von Satz (A3.46):

Wir fithren einen Widerspruchsbeweis, indem wir annehmen, daf f die Vor-
aussetzung (A3.47) mit einer Konstanten F erfiillt, aber entgegen der Aus-
sage des Satzes nicht zu Lp gehort, oder daB gilt |{f[| Dann muf
es eine Konstante K geben, so daB fiir die "abgeschnlttene" Funktion

n - .
£K 3 Lp, die wir durch

£.(t), wenn [t] < K und £ (t)| <K
frei(t) 2=

0] sonst

komponentenweise definieren, gilt IIfKIi > F. Von dieser Stelle an mis-
sen wir den Fall p = o, q = 1 zunédchst ausnehmen Setzen wir

. ~j arglf . (t)]
B (1) = [ ()P e t

ist sichergestellt, daB & Element von Lg 1st, weshalb nach Voraussetzung
Heg glly = 11E gell, < 5 gl

ist. Die rechte Gleichung folgt aus der Eigenschaft
fKi(t)gKi(t) = fi(t)gKi(t)

Wir setzen 8¢ ein und erhalten unter Verwendung der Schreibweise nach
(A3.41)

HERH < F pelhy

Mit (A3.42) wird daraus

IJEKi’g FlIE |Ip(p 1y = F||£K(fg‘1

’

wobel 1/p + 1/q beriicksichtigt wurde. Nach Division durch

1 =
-1
HEgl1D™ 4 0 folgt

2l <

@ls Widerspruch zu der Annahme R

Kll > F. Damit mup f e LY sein und
[1EIT, < F gelten (1 < p < ), P

Im Fall P ==, q =1 setzen wir
—jarg[fKi(t)]
e wenn ]fKi(t)l > F
gKl(t) =

0 sonst
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» K > F ist.

Il

so daB g, ¢ L, und gy + 0 sichergestellt ist, da fir p
Fiir g..(t) $ 0 gilt nach obiger Definition von gy; (1)

-

Fleg (O] < £, (0)gy (1) = £, (t)ge, (1)
daher folgt zusammen mit der Voraussetzung (A3.47)

T
F||§KH] < H£§K||1 < F H&KH1

Daraus ergibt sich der Widerspruch F < F; folglich ist f e LZ und

[Ell, < F . [ ]

A3.3 Faltungsoperatoren

(A3.49) Definition (Translations- oder Zeitinvarianz)

Ein Operator S auf L™ heiBt translationsinvariant oder zeiltinvariant,

wenn mit dem Verschiebungsoperator q_

(A3.50) (q_£)(t) = flt-1)

aus
y = Su
fir alle © folgt
(A3.51) ' qu = E(q-[y_) . [ ]

Eine um t verschobene Eingangsfunktion darf nur eine um t verschobene

Ausgangsfunktion verursachen.

(A3.52) Definition (Kausalitit):

Ein Operator $ auf L" heiBt kausal, wenn mit der in (A3.38) eingefuhrten

"Abschneideoperation” (=), gilt:
) n
(A3.53) (s £1, = [(S(£,)0 7, fir alle f ¢ Lp und alle t . n

Bei einem kausalen System darf also der momentane Wert am Ausgang nur

VOMm momentanen Wert am Eingang und von dessen Vorgeschichte abhangen,

Nicht jedoch vom zukiinftigen Verlauf der Eingangsgrofe. Dies ist beil

technischen Systemen immer gewihrleistet. Es ist aber moglich, im Digi-
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talrechner auch nichtkausale Systeme (Filter) zu realisieren, wenn alle
Daten bereits vorliegen.

(A3.54) Faltung

Die durch einen linearen zeitinvarianten Operator S auf L vermittelte
Abbildung kann als Faltung mit einer Gewichtsfunktion bzw. -folge s ge-
schrieben werden:

(A3.55) y = Su = s*y

oder ausfiihrlich

(A3.56) (s*u)(t) = fs(t-t)u(t)dt
bzw. -
(A3.57) (s*w () = B s(k-i)ulk)

i=-w
Zu einem linearen zeitinvarianten Operator S auf LP gehort eine nxn
= p

Gewichtsfunktionsmatrix 5. Damit kann komponentenweise

(A3.58) y; = Sij * uj

geschrieben werden.
Ist der Operator S kausal, gilt fir seine Gewichtsfunktion bzw. -folge

(A3.59) s(t) = 0 fir t<o . n

Es soll nicht diskutiert werden, welche Struktur die Gewichtsfunktion be-
sitzt (zu welchem Funktionenraum sjie gehdrt), wenn S ein Operator auf L
ist. Uber die umgekehrte Fragestellung gibt der folgende Satz Auskunft,
den wir ohne Beweis aus SCHWART? [A3.4], s. 151, zitieren:

P

(A3.60) Satz (Abschitzung von Faltungsprodukten):

Sei f ¢ Lp’ g € Lq mit 1/p + /g = 1 + 1/r, 1 <P, q,r < =, Dann exi-
stiert das Faltungsprodukt zwischen f und g (siehe (A2.13) bzw. (A2.45))
1m Raum Lr und es gilt die Abschidtzung

(A3.61) fell, < Hfllpllgllq

Im Fall p =1, r = q gilt die Aussage auch fiir f . L1(R). Im Fall r = =,

1/p + 1/q = 1 ist (A3.61) fir ein festes f und beliebiges g die kleinst-
mogliche Abschidtzung. B
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Beweis filir r = «:

Der Spezialfall r = «, 1/p + t/q = 1 14Bt sich aus dem Satz (A3.44)

iber die Héldersche Ungleichung ableiten:

|(f*g)(t)] = ff(t—‘t)g('t)d‘r _<_j|f(t—t)g(‘r)ld1:

- 1ECe-0g( 1y < G- (] = [l 18]l -
Die Ungleichung gilt fiir alle t. Daher folgt

f* < f
gl < el lel]

Fir zeitdiskrete Funktionen steht oben statt des Integrals eine Summe.

(A3.62) Bemerkung:
Mit dem Satz (A3.60) gelangt man zu folgender Aussage: Der durch eine

Gewichtsfunktion s € L, definierte Operator S,

1

(A3.63) Su s*u

besitzt als Schranke seiner Operatornorm die Abschidtzung

(A3.64) sl < 1Isl,
in jedem Raum L., 1£r <= Nur im Raum L, gilt die Gleichheit
(A3.65) lIsll, = sl

Die Abschitzung (A3.64) erhalten wir aus (A3.61), indem wir f = s,

8 =uund q = r setzen. Dann ist p = 1! und wir erhalten nach Division

durch [’Ullr die Ungleichung
[Is*ull,

e |’5||1 :

| Tull,

welche fiir beliebige s und u giltig ist. Da andererseits

|Is*ull,
[Isli, = sup
u o]l

gilt, folgt die Abschiatzung (A3.64).
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A3.4 Matrixnormen

Als Literatur zu diesem Abschnitt ist insbesondere ZURMUHL [A3.6] zu nen-
nen.

(A3.66) Normen im Vektorraum ¢

Der Raum (" besteht aus n-dimensionalen komplexen Vektoren

(A3.67) X = [x1,x2,...,xn]T , x; e €

Der Vektorraum ¢" kann auf unterschiedliche Weise normiert werden; z.B.
kann auch hier eine Héldersche Norm

n i

(A3.68) lli[,p = ZS Ixifp L P<T<oew
i=1

bzw.

(A3.69) Hxll, := max|x, |

1

eingefithrt werden. Fiir P = 2 entsteht die bekannte Euklidische Vektor-
horm, die in anderen Kapiteln auch mit dem Zeichen |

*I| _ benannt wurde.
g™

Bei Verwechselungsgefahr mit den Normen der Funktionenriume Lp wollen wir

bei der hiufiger auftretenden Euklidischen Vektornorm von der Bezeichnungs

(A3.70) E(x) := }f£|‘z = |/5*3 = VGZ;IZ+ e+ IXQT?

Gebrauch machen. [ ]

*
Die Operation (*) bedeutet gleichzeitige
Konjugation der Elemente eines Vektors ode

Transposition und komplexe

r einer Matrix.

(A3.71) Eigenwerte einer Matrix

Die Losungen A = Ay der charakteristischep Gleichung
(A3.72) det{aE - A1 = o

der quadratischen komplexen Matrix A

heiflen Eigenwerte von A. E ist die

Einheitsmatrix. Die Menge der Eigenwerte

(A3.73) (A} = a1}
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heiBt Spektrum von A. Der betragsmdBig groBte Eigenwert gibt den spektra-
len Radius

(A3.74) pz(é) 1= mgx[ki|
i

an. [ |

(A3.75) Numerischer Bereich einer Matrix

Die Menge

(A3.76) R(A) = | xeC

heiBt numerischer Bereich oder Wertebereich der Matrix A. Der Quotient in

(A3.76) hat den Namen Rayleigh-Quotient. Die Schranke

(A3.77) pR(é) = max{Iw||w e R(A)}

der Menge R(A) heift numerischer Radius. B

(A3.78) Normen einer Matrix

. . . 2 .
Quadratische Matrizen aus ¢"*™ bilden dhnlich wie Vektoren einen n -di-

mensionalen Raum. Auch hier konnen Holdersche Normen der Art
1

_ p E 1 < @
(a3.79) (Al = | Ialt|P o s
i,]
bzw.
(A3.80) VALY, = mgxlAijl

1

eingefiihrt werden. Mit p = 2 entsteht die Euklidische Matrixnorm, die wir

auch mit

2 2 2 2
581 b - 1l = VR Al e e
bezeichnen. ]

(A3.82) Operatornormen auf "

2
Quadratische Matrizen sind nicht nur Anordnung von n Elementen, sondern

n . n
sie vermitteln auch lineare Abbildungen von Vektoren aus € in €,

(A3.83) y = A x

L R
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Dementsprechend kann fiir A die Operatornorm untersucht werden (siehe
(A3.18)), die sich aus der fiir x gewdhlten Vektornorm durch

1A x|
(A3.88)  [[Al] = sup ———-
x l1x]]

ergibt. Man bezeichnet diese Matrixnormen im Sinne der Norm eines Operato

auch als lub-Normen {least upper bound). [

(A3.85) Hilbert-Matrixnorm

Die zur Euklidischen Vektornorm E(x) = [|£f|2 gehorende Operatornorm ist
nicht die Euklidische Matrixnorm. Vielmehr ergibt sich aus (A3.84)

2 FE(A ) XAA x *
HATT® = sup ——— = sup =52 = - pp(A A)
X ET(x) X XX

Die zur Euklidischen Vektornorm gehérende Operatornorm von A ergibt sich

also aus dem numerischen Radius der Matrix A*A und tragt den Namen Spek-
tral- oder Hilbertnorm:

(A3.86) HE(A) - pR(A*A)

Zur Euklidischen Matrixnorm besteht der Zusammenhang

1

(A3.87) 1/—: E(A) < H(A) < E(A) ,
n
der somit als Abschdtzung der Hilbertnorm verwendet werden kann. [ |

(A3.88) Zeilen-Matrixnorm

Die zur Vektornorm |{x||_ gehtrende Operatornorm von A ist die Zeilennorm
Z(A) = max ZlA[ .
i 5 ) [

(A3.89) Spalten-Matrixnorm

Zur Vektornorm "1|i1 gehért als Operatornorm

S(A) := max [A. .| }
i 25 ij [

(A3.90) Zusammenhang zwischen Eigenwerten, numerischem Bereich

und Norm einer Matrix

Fir eine beliebige quadratische Matrix A gilt
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(A3.91) £(A) © R(A)
und
(A3.92) p (A) < pp(A) < H(A) < E(A)

Fir eine normale Matrix A gilt

(A3.93) sA) = P e 3a)
und
(A3.94) p(A) = pp(A) = H(A) .

*

* v
Normale Matrizen sind Matrizen, die der Gleichung A A = A A geniigen.

(A3.95) Satz von Gerschgorin (Abschdtzung der Eigenwerte einer Matrix}:

Die Eigenwerte Mo der Matrix A = (Ai.) liegen im Gebiet G der komplexen

Ebene, welches aus Kreisen K(Aii’ri) mit Mittelpunkten A, und Radien

n
oo Ayl
j=1
it
gebildet wird, die gleich den 7eilensummen der Betrage der Nichtdiagonal-

elemente sind:
n

lk e G = U K(All’rl)

1=1

Die gleiche Aussage gilt fir das Gebiet G, welches aus Kreisen K(A; ,r;)

mit den Radien

j=1
iti
entsteht, die gleich den Spaltensumm

mente sind:

en der Betrdge der Nichtdiagonalele-

n 1
€ G L= K(Ali’rl)
i=1

Offensichtlich kann man die Lage der Eigenwerte durch den Schnitt der Men-

1
gen G, G weiter eingrenzen:

v, e GNG

k
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Bilden m Xreise K(Aii’ri) bzw. K(Aii,ri) ein zusammenhidngendes Gebiet H,
welches disjunkt zu allen anderen Kreisen ist, liegen genau m Eigenwerte
in H. ||

Auf den Beweis dieses Satzes wird aus Platzgriinden verzichtet.

(A3.96) Satz (Abschidtzung der Hilbertnorm einer Matrix):

Erfiilllen die Elemente einer quadratischen Matrix A die Bedingung

n
S na

j=1

Ayl Tagil] <a

fur alle 1 mit einer Konstanten a > O, so gilt fiir die Hilbertnorm

H(ﬂ)f_a ; B

Beweis:

Wir bilden mit den Elementen Aij der Matrix A eine symmetrische, reelle
Matrix B mit

B.. := ) .. .
i max |A1]|y |AJ1I ’
so daB fir jedes Element gilt

A, | < B

1] 1]

Daraus folgt sofort

und damit

HOA) = sup ———= < sup ———__ 2 _ y(B)
N b4

Die Zeilen- oder Spaltensummen der Betrige der Elemente B sind aufgrun

der Voraussetzung des Satzes kleiner als 4, weshalb mit dem Gerschgorin-
Theorem {A3.95) fir die Eigenwerte Bi von B

!Bi[ < a

&

folgt. Da B auch eine normale Matrix E*B = B B ist, ergibt sich mit

(A3.94)
H(A) < H(B) = ps(B) < a . 5
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A3.4 Matrixnormen

Den folgenden Satz zitieren wir aus COOK [A3.2]:

(A3.97) Satz (Abschitzung der Hilbertnorm einer inversen Matrix):

Erfiillen die Elemente einer quadratischen Matrix A die Bedingungen

n:
1 }E S . ALl > a
Al -7 s [|A13| s 1Ayl
it
- ‘ ie Matrix A
fir alle i mit a>0 und beliebigen Konstanten ny>0, S0 1St die A

invertierbar und es gilt fur die Hilbertnorm der inversen Matrix

HAT) <1 ]

Beweis {siehe COOK [A3.21):

Mit der Diagonalmatrix
A

¢ = diag

definieren wir die hermitesche Matrix

454

Boo- g (@A AY)
und mit

Yy := diag(n;)
die Matrix

¢ = YBY

ini Y aufgrund
Mit diesen Beziehungen erhalten wir nach einiger Nebenrechnung R

; ' ingungen
der Voraussetzung des Satzes fiir die Elemente von C die Bedingung

fir i = 1...1
- c..| > a
Cii ES | 1J|

j¥l
sind reell und positiv; daher kann dort das Be-

Die Di C.. . :
Diagonalelemente G;. vatrix ist, sind alle Eigen-

tragszeichen entfallen. Da C eine hermitesche S
werte reell, die nach dem Gerschgorin-Theorem auBerdem a g

C e A i i ormation
sein miissen. Da sich die Eigenwerte bel einer Xhnlichkeitstransf _ ’
) . ; ; ; i hermitescnen
nicht &4ndern, gilt das Gleiche fir die Eigenwerte von B. Be

5 leinsten
Matrizen wird der reelle Wertebereich durch den groSten und klel

Eigenwert begrenzt. Daher gilt
*

n
vBy . fir alle v e €
*

yy
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Weiterhin folgt durch Anwendung der Schwarzschen Ungleichung

A
| <
| &
| =
|
A

e vll,l14 v,

v, A vl

Wir erhalten somit

1A v, ]

— > a fur alle v ¢ €

v,
A kann also nicht singular sein; daher gilt fiir die inverse Matrix mit
W=Ay

-1
- A Twl | vl
H(_q) = S ——-——2- = Sup_____z._ < _;_
w o Il vollA V],

womit der Satz bewiesen ist.



A4 ZustandsregIer-Beobachter-Entwurf bei linearen
Regelstrecken

Wir stellen in kurzer Form einige Ergebnisse des 7ustandsregler-Beobach-

t einer Eingangs- und einer

terentwurfs bei linearen Regelstrecken mi
hen Entwurfsglei-

Da die Struktur der algebraisc
e und zeitdiskrete Regelkreise gleich 1ist,
Hierzu ist es :weckmaBig, die
diskreten Fall durch

AusgangsgroBe zusammen.
chungen fiir zeitkontinuierlich
werden beide Falle gemeinsam untersucht.

Systemmatrizen im seitkontinuierlichen und im zeit

dieselben Symbole zu kennzeichnen.

Die Herleitung der Reglerentwurfsgleichungen erfolgt iber den Laplace-

bzw. Z-Bereich. Als Argument der iUbertragungsfunktionen, Polynome etc.
in Laplace- bzw. Z-Bereich wird die variable p gewdhlt, wobei p im
zeitkontinuierlichen Fall der Variablen s entspricht (Laplace—Bereich).

im zeitdiskreten Fall dagegen der variablen z (Z-Bereich).

Ausfiihrliche Darstellungen der 7ustandsraummethoden bei linearen Regel-

kreisen findet der Leser in LUDYK [A4.3], HARTMANN [A4.1] und HARTMANN,
LANDGRAF [A4.27.

Betrachtet sei das Zustandsmodell einer linearen seitinvarianten Regel-

strecke n-ter Ordnung der Form

i(t) = A x(t) + bult); x(t) e R"
(A4.1) Az D

y(t) = ET i(t) (zeitkontinuierlich)
bzw.

x(kel) = A x(k) +D w(k) ; x(K) € R
(A4.2) - = =

y (k) = g? x(k) (zeitdiskret)

ormation des Zustandsmodells (A4.1} bzw.

Durch Laplace- bzw. 7-Transf
ktion

(A4.2) erhialt man die zugehorige {bertragungsfun



488 A4 Zustandsregler-Beobachter-Entwurf bei linearen Regelstrecken

T ..

Z_(p) c adjlpE-Al b
Y(p) T -1 s < L-A

(M.3) 6.(p) = g5y = c¢[PE-AV Db = - :
s°F ulp - - T~ a,(p) det[pE-A)

A4.1 Der Zustandsregler

Wenn die Regelstrecke (A4.1) bzw. (A4.2) vollstdndig steuerbar ist,d.h.

(A4.4) rglWl := rglb,Ab,...,A" 6] = n ,

dann konnen mit Hilfe eines Zustandsreglers der Form

u(t)

{ =

Tx(t) + o r(t) bzw.

(A4.5)

u(k) Te(k) + o r(k)

| =

alle Polstellen des geschlossenen Regelkreises beliebig vorgegeben wer-
den (siehe HARTMANN, LANDGRAF [A4.2], Seite 342). Ist AR(p) ein vor-
gegebenes Nennerpolynom des geschlossenen Regelkreises, dann lassen
sich die unbekannten Zustandsreglerparameter k. (ET = [k],...,kn])

durch Koeffizientenvergleich aus der Beziehung
(A4.6) bo(p) = detlpt - A+ b k")

berechnen. Die Flhrungsibertragungsfunktion des geschlossenen Regelkrei-

ses lautet
Y{(p) Z_(p)
(A4.7) T(p) = — = p =2 P
R(p) AR(P)

Die Nullstellen der Streckenlibertragungsfunktion G (p) sind gleichzel-
. - b .. S

tig die Nullstellen der Fihrungsiibertragungsfunktion T(p). Mit Hilfe

des Vorfaktors p kann das stationdre Fiihrungsverhalten festgelegt wer-

den. Soll der stationdre Lagefehler verschwinden, so muf gelten

(A4.8) T(p,) = »—=>2- =

AR(po)

mit P, = O im zeitkontinuierlichen Fall und P, = 1 im zeitdiskreten

Fall. Hieraus kann p bestimmt werden, wenn Zs(p) und AR(p) keine
Nullstellen bei p = Py besitzen.

Der Stellgrofenaufwand ist gegeben durch
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(A4.9) ule) ) . 25(p)
R(p) Gs(p) AR(p)

Die Storiibertragungsfunktion beziiglich einer Storung Z(p) am Strecken-

eingang lautet

Y Z
Z(p) AR(p) P

Da beim Zustandsregler die Zustandsgrofen riickgekoppelt werden, nicht

jedoch die AusgangsgroBe, gilt fir die Stbrﬁbertragungsfunktion beziig-

lich einer Storung D(p) am Streckenausgang

(A4.11) Tolp) =1

A4.2 Der dynamische Zustandsregler

r Regelstrecke meBbar sind, wird

Wenn nicht sdmtliche ZustandsgroBen de
(Zustands-)Beobach—

ein . . . . .
Zustandsregler meistens 10 Verbindung mit elnem

ter eingesetzt.

Fir die folgenden Betrachtungen wird vorausgesetzt, dap nur die (ska-

y(k) der Regelstrecke (s.(A4.1) bzw.

lare) Ausgangsgrofe y(t) bzw.
g vervendet wird. Die Regelstrecke mul

(A4.2)) gemessen und zur Regelun

vollstandig steuerbar sein, d.h.

(A4.12) rglwl := 18lb,A g,...,g“'1gl = n
und vollstindig beobachtbar sein, d.h.

(A4.13) rgiM) := rgle,Ac,.--st2 c

allgemeines 7ustandsregler-

D .
er dynamische Zustandsregler 1st ein
den Bildern A4.1 und A4.Z fur

BeObaChter-System. pie Struktur ist 1in
11 und 1n Bild A4.3 fur den zeitdiskreten

Fall dargestellt. Die Bilder Ad4.1 und Ad4.2 unterscheiden gich nur 1in
der Hinsicht, da® der Eingriff der Fiihrungsgrode r(t) anders gezeich-

net wurde. Im Bild A4.] entspricht die Darstellung nehr der gewohnten
e folgenden Betrachtungen im Bild

den zeitkontinuierlichen Fa

Regelkreisstruktur, wihrend fir di
A4.2 eine iibersichtlichere parstellung angegeben ist.
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Die Reglergleichungen lauten

1

¥(e) = Ey(t) + Su(t) + S y(t) 5 y(t) € R

(A4.14)

1}

u(t) -k ¥(8) - kyy(e) + b r(t)

(zeitkontinuierlich)

zit) alt)

r"' ________________ r

I _)So€|R :

[——— - 1 [ ]

, | l”l |
r{t] jult x(t) x(t) ylt)
= ¢ eO—O+ b = -+ ¢ Ot

I - I ] - f E I

I I i :

| | | A e

| [ | |

| ] :

| | | _Fgge%fniys_ __________ N

i I

' |

l |

| I

| e e e e e e o ___41_

1

| |

| |

1 [

: 2y v €R Ky |

| |
1

| uft) "g vit) v(t) T [

| - -S-U E ! == B.m

| j !
|

: 3 *
|

I Ta

| K &it) !

I i
|

{_ ____[ﬁTQTBEPei_%E“EP%fESPF ____________ J

Bild A4.1: Strukturbild einer zeitkontinuierlichen Regelstrecke
mit dynamischem Zustandsregler (im Zeitbereich)
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bzw.
l(k+1) = F v(k) + _S_uu(k) + 5 y(k) ; v(k) ¢ Rr™
(A4.15) y -
Wk) = - kb ov(k) - kpy(k) o+ e rlk)
(zeitdiskret)
z{t) dit]
el I 7
I x€ R I
f
I |
j ) |
I ;ﬁI f x(t) T II | vl
| g 1
' - :
| A |
I L— I
| |
L_ngﬁgﬁeck{_ o J
uft}
———m | T -]
| |
I !
I |
I
. §y hem“ Ky :
l I
I q vit) vit)
v Y T |
r - S, / o L I
I |
it} | I
™ ° F
I - L I
| |
| |
| I
| Dynamischer Zustandsregler _ _ _ _ _ _ — — — 1
recke mit

itkontinuierlichen Regelst

Bild A4.2: Strukturbild einer Z€
(im Zeitbereich)

dynamischem 7ustandsregler
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Die unbekannten Reglerparameter E, §u’ S Ei, ky und p sollen anhand

der Ubertragungsfunktionen im Laplace- bzw. Z-Bereich ermittelt werden.
Dies ist besonders einfach, allerdings tritt hierbei die Deutung des
dynamischen Zustandsreglers als Zustandsregler-Beobachter-System in
den Hintergrund. Eine Ermittlung der Reglerparameter im Zustandsraum

kann HARTMANN, LANDGRAF [A4.2], Seite 391-399 entnommen werden.

N
E
o

x

>
[=1
m
3
2

s T T T T
|
I
i
!
I
I
!
|
[
I
|
!
|
I
I
!
!

j?‘
1%

S

LOR)
b
I
|
I
!
I

Bild A4.3: Strukturbild einer zeitdiskreten Regelstrecke mit

dynamischem Zustandsregler (im Zeitbereich)
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A . . n
us Bild A4.2 bzw. Bild A4.3 erhdlt man nach Laplace- bzw. Z-Transfor-

mation mit den Ubertragungsfunktionen

z T,d4ilpE -
6.(p) - J(P) cadjlpE - AJ B
As(p) det{pE - Al ’
T .
(A4.16) Gy, (7 :- z,(p) kadjlpE - El S,
85(p) det(pE - FI ’
Z (p) kYadj[pE - F1 S
Gy, (p) 1= — - ’
ag(p) det[pE - FI

1z in Bild A4.4 dargestellte Struktur. AB(p) ist das charakteristi-
s
che Polynom des Beobachters. Die Nullstellen von AB(p) sind die

Beobachtereigenwerte.

2ip) D(p}

Y
Glp) L -

Ggy(p) "ky

p)

Utpl

Gg, (P!

Rip)

Bi
Bild A4.4: Struktur des dynamis
Laplace~- bzw. Z-Bereich

chen Zustandsreglers im
(Schritt 1)

Dur N .
ch Auflésen der einen Regelkreisschleife in Bild A4.4 erhalt man

Bil . -
0 d A4.5. Setzt man fiir die Ubertragungsfunktionen die Ausdriicke
4 : . .
; .16) ein, so gelangt man zu Bild A4.6, das eine dem dynamischen
u .
standsregler dquivalente, klassische Regelkreisstruktur darstellt.

Eine 4dj ..
direkte Realisierung in dieser Form mit getrenntem Vorfilter und
om Ac(p) keine "instabilen

Re : .
gler ist jedoch nur mdglich, wenn das Polyn
der rechten s-Halbebene

N

bUllstellen" besitzt, d.h. keine Nullstellen in
z
W. auBerhalb des Einheitskreises der z-Ebene.
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Z{p) D(pl

Rip} 0 Ulp) 5ol Yip)
1+ Gg,lp) =P

 J

1
14 GBu(p]

Gay(p) + ky

Bild A4.5: Struktur des dynamischen Zustandsreglers im
Laplace- bzw. Z-Bereich (Schritt 2)

In Bild A4.7 ist der Reglerblock im Rickfihrzweig uiber den Summations-
punkt in den Vorwdrtszweig geschoben worden. Diese Struktur entspricht
der gewohnten Regelkreisdarstellung, fiihrt jedoch bei einer direkten
Realisierung in dieser Form auf Stabilitatsprobleme, wenn das Polynom
Zc(p) 1= Zy(p) + kyAB(p) "instabile Nullstellen" besitzt.

Nach Bild A4.7 erhdlt man die Fihrungsiibertragungsfunktion

Y(p) ag(p)Z
(A4.17) T(p) = —— = P Ap(p)Zs(p)

RGY 2 (p)a(p) + 2 (p)z_(p)

mit den Abkirzungen

Zc(p)

Z (p) + k_a,(p) ,
(A4.18) Y y'e

5.(p) Z,(p) + 25(p)

Damit die Fiihrungsiibertragungsfunktion die Form

Z (p)
(A4.19) T(p) = p -2 P

6p(p)

besitzt, wobei ap(p} ein vorgegebenes Nennerpolynom n-ten Grades ist
(vgl.(A4.7)), muB gelten

(A4.20) 8stpac(p) + 2 (plz (p) = Splp)ag(p)

Aus dieser Gleichung konnen die unbekannten Koeffizienten der Regler-

polynome Zc(p) und 4 (p) durch Koeffizientenvergleich bestimmt werden,
wenn AR(p) und AB(p) vorgegeben sind.
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A4.2 Der dynamische Zustandsregler
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schem 7ustandsregler im Laplace-Bereic

bzw. Z-Bereich (p=z)
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Die Bestimmung von Ac(p) und Zc(p) ist eindeutig moglich, wenn

n-1

1]

m = Gradlag(p)]

In diesem Fall sind 2n-1 unbekannte Parameter zu bestimmen (n-1 Parame-
ter von A (p) und n Parameter von Z (p}), andererseits ist der Grad von
AR(p)AB(p) gleich 2n-1, so daB genau 2n-1 Gleichungen fiir 2n-1 Parameter
zur Verfigung stehen.

Wenn m = Grad[AB(p)] > n, erhdalt man m-n+1 frei wahlbare Parameter, mit
denen das Storverhalten des Regelkreises beeinfluBt werden kann, da das
Polynom Ac(p) im Zahler der Storiibertragungsfunktionen Tz(p) und Td(p)
auftritt (siehe Gleichungen (A4.21)).

Der StellgroBenaufwand und die Stériibertragungsfunktionen ergeben sich
anhand von Bild A4.6 bzw. Bild A4.7 zu

Ulp) As(p)
= p ’

R(p) 8p(p)

Y(p) Z
(A1.21) ) - L B

Z(p) 8p(p)ag(p) ,
Y(p) a.(pla (

L) - — o s pla_(p)
D(p) ap(p)ag(p) ,

wobel (A4.20) bericksichtigt wurde.

(A4.22) Schema zum Entwurf eines dynamischen Zustandsreglers:

1) Die Polstellen der Flhrungsibertragungsfunktion und die Beobachter-
eigenwerte werden vorgegeben, wobei diese "stabil" sein miissen. Somit

sind die Polynome AR(p) und AB(p) festgelegt ( Grad[AB(p)] > n-1 ).

2) Aus der Gleichung

a,(pla_(p) + z,(p)z (p) = ap(plag(p)

werden die unbekannten Koeffizienten der Reglerpolynome Z (p) und
c

Ac(p) durch Koeffizientenvergleich bestimmt. (Freje Parameter im

Fall Grad(ag(p)] > n-1 werden durch Forderungen an das Stérverhalten
festgelegt).
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3} Aus den Gleichungen

1l

Z.(p)

a.(p) = Z,(p) + o4(p)

Zy(pJ + kyAB(p)

werden k und die Koeffizienten der Polynome Zy(p) und Zu(p) durch

Koeffizientenvergleich bestimmt.

4) Das Zustandsmodell des Beobachters (die Matrizen F, §y’ S, Eﬁ)

wird so angesetzt, dal

- Z_(p)
Kpe - P17 s, = J—
AB(p)
z (p)
Kpg - BT s, = = (siche (A4.16)).
AB(p)

Fir das Zustandsmodell des Beobachters wahlt man sweckmaBigerweise
eine Standardform. Diese mul so beschaffen sein, daB die Zéhler-
koeffizienten der Ubertragungsfunktionen GBy(p) und GBu(p] durch die
"Eingangsvektoren" §y und §u festgelegt werden, da der "Ausgangs-

vektor" k$ in beiden bertragungsfunktionen gemeinsam auftritt.

Aus diesem Grund bietet sich als Standardform die Beobachtbarkeits-

normalform an.

s stationare Fiihrungsverhalten festge-

5) Mit dem Vorfaktor p wird da
t werden. B

legt. p kann beispielsweise nach Gleichung (A4.8) berechne

(A4.23) Anmerkung:

In Sonderfillen kann die Reglerentwurfsgleichung

As(p)AC(p) + Zs(p)zc(p) = AR(p)AB(p)

dies muB jedoch {iberprift werden.

auch fir Gradlag(p)l < n-1 losbar sein,

A4.3 Kiirzung von Nullstellen der Regelstrecke

) des dynamischen Zustandsreglers

Wenn die Reglerpolynome Ac(p) und ZC(P
ebenso wie beim Zu-

nach Gleichung (A4.20) berechnet werden, dann sind,
Standsregler, die Nullstellen der Fﬁhrungsﬁbertragungsfunktion gleich
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den Nullstellen der Regelstrecke. Wenn andere Nullstellen der Fihrungs-
libertragungsfunktion vorgegeben werden sollen, so kann dies beim dyna-
mischen Zustandsregler einerseits durch eine modifizierte Entwurfs-
technik nach Abschnitt 5.2.1 geschehen. Andererseits konnen mit Hilfe
eines zusdtzlichen Vorfilters év(p) die entsprechenden Regelstrecken-
nullstellen gekiirzt und neue Nullstellen der Fithrungsiibertragungsfunk-
tion vorgegeben werden. Eine Kirzung von Streckennullstellen P> fiir die
im zeitkontinuierlichen Fall Relp.] > 0 bzw. im zeitdiskreten Fall
]pil > 1 gilt, ist jedoch aus Stabilitdtsgriinden bei der Realisierung
nicht méglich. Wir spalten das Zihlerpolynom Zs(p) der Regelstrecke in
der Form

(A4.24) z,(p) = Zs(p)Z;(p) .

auf, wobei das Polynonm Z;(p) die zu kiirzenden und das Polynom Z;(p)~die
restlichen Streckennullstellen enthidlt. Als zusidtzliches Vorfilter Gv(p)
kann N

Zp(p)

+

Z,(p)

(A4.25) G, (p)

angesetzt werden, wobei die Nullstellen des Polynoms Z;(p) die vorgeb-
baren Nullstellen der Fihrungstibertragungsfunktion T(p) sind. Sowohl
beim Zustandsregler als auch beim dynamischen Zustandsregler lautet
dann die Fihrungsibertragungsfunktion
- +
(A4.26) T(p) = ¢ Eﬁiﬁlﬁﬂiﬁl
ap(p)

Das Vorfilter Gv(p) trate in den Bildern A4.1 bis A4.7 als zusiatzlicher
Block auf.



A5 Grundlagen der Stochastik

Im Rahmen dieses Kapitels werden wichtige Begriffe aus der Stochastik

ntinuierlich verteilte Zufalls-

zusammengestellt. Hierbei wird nur auf ko
der Stochastik

groBen explizit eingegangen. Fiir ein vertieftes Studium

sei auf PAPQULIS [A5.3] verwiesen.

A5.1 Grundbegriffe

(A5.1) Definition (Ergebnismenge n):

7ufallsexperiments wird die

Die Menge aller méglichen Ergebnisse eines
oder das sichere Ereignis ge-

Ergebnismenge @ (zu dem zufallsexperiment)

nannt.
[

(A5.2) Definition (Ereignis):

Teilmengen A, der Ergebnismenge 8 nennt man Ereignisse. B

(A5.3) Beispiel (Wﬁrfelexgeriment):

Das Zufallsexperiment sei derT einmalige Wurf eines wirfels. Dann 1st

9 =1{1,2,3,4,5,6}. Mogliche Ereignisse sind Ay = (1,2} , Ay = {1,5,6}1 ,
.

A3 = {4} usw.

(A5.4) Definition (Zufallsgrége):

lem wertebereich, deren Wert

Eine ZufallsgréBe ist eine croBe mit reel
7ufallsgroBen werden mit

7ufallsexperiments abhdngt.

grofen Buchstaben bezeichnet (z.B-: X, y), die Realisierungen von Zu-

fallsgréflen, d.h. die bel Experimenten eingetretenen (Zufalls-)Werte
B

mit kleinen Buchstaben (z.B.: X, y).

vom Ausgang eines
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(A5.5) Definition (Zufallsvektor, Zufallsmatrix):

Ein Zufallsvektor ist ein Vektor, dessen Komponenten ZufallsgroBen sind.
Entsprechendes gilt fir eine Zufallsmatrix. [ ]

(A5.6) Definition (ZufallsprozeB):

Ein ZufallsprozeB ist eine Familie von ZufallsgréBen, der ein Lauf-Para-
meter (im folgenden die Zeit t) zugeordnet ist, welcher einer Indexmenge

[ angehért.
Je nach Indexmenge unterscheidet man zwei Falle:

1. Zufallsprozesse mit kontinuierlicher Zeit

(kontinuierliche Zufallsprozesse)

Z. Zufallsprozesse mit diskreter Zeit
(diskrete Zufallsprozesse = Zufallsfolgen). |

Bei kontinuierlichen Zufallsprozessen sind die Indexmengen Intervalle
auf der Zeitachse; bei diskreten Zufallsprozessen sind die Indexmengen
abzdhlbare Mengen, die einzelne Zeitpunkte enthalten.

A5.2 Die Wahrscheinlichkeit von Ereignissen

Zur Beschreibung der Haufigkeit des Auftretens eines Ereignisses A

wird eine reelle MaBzahl, die sogenannte Wahrscheiniichkeit P(A) ein-
gefuhrt.

In der klassischen Wahrscheinlichkeitsrechnung wurde versucht, den Be-

griff der Wahrscheinlichkeit mit Hilfe relativer Haufigkeiten zu defi-
nieren.

(A5.7) Definition (Relative Haufigkeit):

Wenn ein Zufallsexperiment n-mal durchgefiihrt wird und ein Ereignis A
dabei nA—mal eintritt, so nennt man den Quotienten

fa
(AS5.8) H(A) = =

relative Haufigkeit des Ereignisses A in n Versuchen. u

Da aufgrund von Erfahrungstatsachen die relativen Hiaufigkeiten Hy (A}

immer weniger schwanken, je groBSer n gewdahlt wird (Gesetz der groBen
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Zahlen), versuchte man, die Wahrscheinlichkeit P(A) durch den Grenz-

ibergang

H (A) M . P(A)

zu definieren. In der modernen Wahrscheinlichkeitstheorie wird die Wahr-
scheinlichkeit aus mathematisch-theoretischen Grinden durch drei Bedin-
gungen, die im Ubereinklang mit Erfahrungstatsachen bel relativen Hau-

figkeiten stehen, axiomatisch festgelegt:

(A5.9) Axiome von Kolmogorow:

1. Jedem Ereignis A ist eine reelle Zahl P(A) mit
0 < P(A) 21

zugeordnet, die man die Wahrscheinlichkeit von A nennt.

2. Es ist P(a) = 1
3. (Additionsaxiom): Sind Ay, Ags e Afyees Ereignisse, die paarweise
unvereinbar sind, d.h.
AOAL - g far 1 F 3
so gilt
P(u A;) = z P(A) - ]
i i

(A5.10) Definition (Stochastische Unabhingigkeit von Ereignissen):

Iwei Ereignisse A und B heiflen stochastisch unabhangig, wenn

(A5.11) P(ANB) = P(A)P(B) . u

(A5.12) Definition (Bedingte Wahrscheinlichkeit):

Mit P(A/B) bezeichnet man die Wahrscheinlichkeit des Ereignisses A unter

der Bedingung, daB das Ereignis B bereits eingetreten ist. P(A/B) heifSt
bedingte Wahrscheinlichkeit und berechnet sich fir P(B) # O nach der

Gleichung

(A5.13) P(A/B) = E(—f‘,—(%%—) . n
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A5.3 Die Verteilungsfunktion und Verteilungsdichte

(A5.14) Definition (Verteilungsfunktion einer ZufallsgroBe):

X sei eine ZufallsgroBe. Die Funktion
(A5.15) Fx(x) = P(X <x) ; x ¢ R

heiBt Verteilungsfunktion der ZufallsgroBe X. [ ]

Durch ihre Verteilungsfunktion ist eine ZufallsgrtBe in ihrem statisti-
schen Verhalten vollstidndig beschrieben.

(A5.16) Eigenschaften von Verteilungsfunktionen:

i. Jede Verteilungsfunktion Fx(-) ist eine monoton wachsende Funktion.

2. lim F,(x) = 0 |, lim F (x) = 1
X+ X xom X n

In Bild A5.1 ist ein typischer Verlauf der Verteilungsfunktion einer
stetigen ZufallsgroBe dargestellt.

“Fﬂxl

1 —— - -
054
el x
0 -

Bild AS5.1: Moglicher Verlauf der Verteilungsfunktion Fx(°) einer
stetigen ZufallsgroBe X

(A5.17) Definition (Stetige ZufallsgroBe, Verteilungsdichte):

Man spricht von einer stetigen ZufallsgréBe X, wenn eine nichtnegative,
integrierbare Funktion px(°) existiert, so dag

X
(A5.18) Fx(x) = Jr Dx(u)du fir alle x e R .

Py(*) heiBt Verteilungsdichte der Zufallsgrofe X . [
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Bei einer differenzierbaren Verteilungsfunktion FX(-) kann die Vertei-

lungsdichte durch

de(x)

(A5.19) pX(x) = N
dx

berechnet werden.

(A5.20) Eigenschaften von Verteilungsdichten:

. py(x) > 0 fiir alle x ¢ R

2. .[ px(x)dx = 1 .
bW [ ]

(A5.21) Definition (Diskrete ZufallsgroBe):

Eine ZufallsgroBe X heifit diskrete zufallsgrofle, wenn X nur diskrete

Werte annchmen kann (Beispiel: Augenzahl eines Wirfels). ]
skreten Zufallsgrofe ist eine monoten §

Die Verteilungsfunktion einer di
hte einer diskreten Zu-

wachsende Treppenfunktion. Die Verteilungsdic

fallsgroBe existiert nur im Sinne der Distributionentheorie.

(A5.22) Beispiel (Normalverteilung):

die Normalverteilung

Eine wichtige, hdufig auftretende Verteilung ist
ormalverteilten Zufalls-

(GauB-Verteilung). Die Verteilungsdichte einer n

groBe X hat die Gestalt

2
_ (x-m)
1 202
px(x) = ———'___"2 €
2rno
m ist der Erwartungswert und ¢? die Varianz der Verteilung. ]
ichte):

(A5.23) pefinition (Verbund—VerteilungSd

Die Funktion pXY(
d Y, wenn die Gleichung

X und Y seien stetige Zufallsgrofen. +,*) heift Ver-

bund-Verteilungsdichte der 7ufallsgroBen X un

X2 "2
p(x1 <X < X9y Yy <Y< YZ) = f f pxy(x,y)dy dx
Xy
fir beliebige Intervalle (xl,xz), (y],yz) gliltig ist. s
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(A5.24) Definition (Bedingte Verteilungsdichte):

X und Y seien stetige ZufallsgréBen. Die Funktion pX/Y('/') heiBt die

bedingte Verteilungsdichte von X unter der Hypothese Y, wenn die Bezie-

hung Xy
P(xy < X < X,/ Y =y) = .[ pX/Y(x/y)dx
X
fir alle (xq,x,) und alle y erfillt ist. [

Zwischen der Verbund-Verteilungsdichte pXY(-,') und der bedingten Ver-
teilungsdichte pX/Y('/') besteht der Zusammenhang

(A5.25) pXY(x,y) = px/y(x/y) PY(Y)

{(vergleiche auch die Beziehung (A5.13)).

Die Definitionen (A5.23) und (A5.24) lassen sich unmittelbar auf Zufalls-
vektoren verallgemeinern.

A5.4 Der Erwartungswert

Eine auBerordentliche Bedeutung bei der Untersuchung von ZufallsgroBen
besitzt der Erwartungswert; dieser wird ig folgenden nur fiir stetige
ZufallsgroBen behandelt. Im Falle diskreter ZufallsgréBen sind Inte-
grale durch entsprechende Summen Zu ersetzen.

(A5.26) Definition (Erwartungswert einer ZufallsgroBe):

Der Erwartungswert einer (stetigen) ZufallsgroBe X ist definiert durch

o«

(A5.27) E(X) := jxpx(x)dx
g [ ]

(A5.28) Rechenregeln fiir den Erwartungswert :

Seiren X,Y ZufallsgroBen, a,b beliebige Konstanten und f eine beliebige
Funktion. Dann gilt

1. E(aX+bY) = aE(X) + bE(Y) (Linearitit),

2. E(X+a) = E(X) + a

5. ECEOD) = [ £00p,(x)ax
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Der Erwartungswert E(X) einer ZufallsgroBe X ist der Wert, der im Mit-

tel von der ZufallsgroBe angenommen wird.

(A5.29) Definition (Erwartungswert von Zufallsvektoren und

Zufallsmatrizen):

Der Erwartungswert von zufallsvektoren und 7ufallsmatrizen wird gebildet

durch elementweise Ausfiihrung der Erwartungswertoperation. B

(A5.30) Definition (Bedingter Erwartungswert):

X und Y seien stetige ZufallsgroBen. Der bedingte Erwartungswert von X

unter der Hypothese Y = y 1ist definiert durch

@

E(X/Y = y) := jxpx/Y(x/y)dx . .

-m

(A5.31) Eigenschaften des bedingten Erwartungswertes:

I B0 = [ EO/Y - ey )dy

Z. Flir beliebige Funktionen g und h gilt

E(g(X)h(Y)/Y = y) = h(y)E(g(X)/Y = y)

A5.5 Die Momente einer Verteilung

Untersuchung von 7ufallsgroBen sple-

Eine besondere Bedeutung bel derT
die mit Hilfe der Erwartungswertope-

len die Momente der Verteilungen,

ration definiert werden.

(A5.32) Definition (k-tes Moment) :
Den Ausdruck

X sei eine stetige Zufallsgrofie.

w

1= E[Xk] = kapx(x)dx (k € N)

-

My

nennt man das k-te Moment der Verteilung von X.
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(A5.33) Definition {k-tes zentrales Moment):

X sei eine stetige ZufallsgroBe. Den Ausdruck

Vi 1= E[(X-m1)k] '[(x - E(X))kpx(x)dx (k € N)
nennt man das k-te zentrale Moment der Verteilung von X. n

(A5.34) Definition (gemischte k-te Momente):

X und Y seien ZufallsgrioBen. Ausdriicke der Form
. ivl : .
mJ.1 = E[X’Y"] mit j+l1 = k

(i, 1, k € N) heiB3en gemischte k-te Momente der ZufallsgroBen X und Y
(des Zufallvektors (x,yn. |

(A5.35) Definition (gemischte k-te Zzentrale Momente):

X und Y seien ZufallsgréBen. Ausdricke der Form
Vip T ELeBOOV Gy-E(01 pit jel - k

(j, 1, k € N) heiBen gemischte k-te zentrale Momente der Zufallsgrofien
X und Y (des Zufallvektors [X,Y]1). [ ]

Auf entsprechende Weise lassen sich die gemischten Momente von mehr als
zwel ZufallsgréBen und bedingte Momente definieren.

Die Momente von Verteilungen kénnen im Unterschied zu den Verteilungs-
funktionen und Verteilungsdichten relativ einfach experimentell durch

Mittelwertbildung bestimmt werden. Inp Anwendungen wird fast immer mit

den ersten und zweiten Momenten gearbeitet.

A5.6 ZufallsgroBen

(A5.36) Definition (Stochastische Unabhingigkeit von ZufallsgréBen):

Zwel ZufallsgroBen X und Y heiBen stochastisch
dingung

unabhédngig, wenn die Be-

P <X < ;
(A5.37) Dr Xy <Yy

P(x1 <X < X5) Ply, <Y < ¥y)
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fiir beliebige Intervalle (x1,x2) , (y1,y2) Giltigkeit hat. B

Bei stetigen ZufallsgroBen X,Y ist dies gleichbedeutend damit, daB die
Verbund-Verteilungsdichte pXY(-,-) fiir beliebige (x,y) € R der Be-
dingung

(A5.38) pyy(x,y) = px(xIpy(y)
geniigt.

Die stochastische Unabhangigkeit von Zufallsgrofen ist im allgemeinen

schwer iberprifbar. Mit Hilfe des gemischten 7. zentralen Moments, der
kann eine schwadchere (aber einfacher zu

Kovarianz zweier ZufallsgroBen,
stische Unabhdngigkeilt, und

untersuchende) Eigenschaft als die stocha

zwar die Unkorreliertheit definiert werden.

(A5.39) Definition (Kovarianz):

X und Y seien Zufallsgrofen. Die GroBe

Cov(X,Y) := EL(X-E(X))(Y-E(Y))]
- [ [ B0 (D DRy (o) &y
(gemischtes 2. zentrales Moment) heiBt Kovarianz der Zufallsgrofien
n

X und Y.

(A5.40) Rechenregeln fiir die Kovarianz:

b feste Zahlen. Dann gilt

X, Y, Z seien Zufallsgrogen und a,

Cov(X,Y) = Cov(Y,X) ,

Cov(X,Y) = E(XY) - E(X)E(Y) ,

Cov(X+Y,Z) = Cov(X,Z) + Cov(Y,Z) ,

Cov(aX,bY)} = ab Cov(X,Y) ,

Cov(X+a,Y+b) = Cov(X,Y) B
(A5.41) pefinition (Unkorreliertheit von zwel zufallsgroSen):
Iwei ZufallsgroBen X und Y heiflen unkorreliert, wenn

Cov(X,Y) = 0 =-=—% E(XY) = E(X)E(Y) . |

(A5.42) pefinition (Orthogonalitat von zwel JufallsgroBen):

eiBen orthogonal, wenn

Zwei ZufallsgroBen X und Y h
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E(XY) = 0 . [

(A5.43) Anmerkung :

Aus der stochastischen Unabhdngigkeit von 2 ZufallsgréBen folgt ihre
Unkorreliertheit. Die Umkehrung gilt nur bei normalverteilten Zufalls-
grofen. |

Ein MaR fir die Streuung einer ZufallsgréBe X um ihren Erwartungswert

ist das 2. zentrale Moment, die sogenannte Varianz.

(AS5.44) Definition (Varianz, Streuung):

Die GroBe ®
of = var(n) e BLOGEODY = [ (ceB00) 2py(0dx

wird Varianz der ZufallsgréBe X genannt. Die GroBe ¢ heiBt Streuung oder
Standardabweichung. B

(A5.45) Rechenregeln fiir die Varianz:

Var(X) = Cov(X,X)

Var(x) = E(x%) - [E(0)7?

Var(aX) = a Var(X)

Var(X+b) = Var(x)

Var(X) = 0 <@=== X = E(X) mit Wahrscheinlichkeit 1
Var(X+Y) = Var(Xx) + 2Cov(X,Y) + Var(Y)

Fir zwel unkorrelierte ZufallsgréRen X und Y gilt
Var{X+Y) = Vvar(X) + var(y) . o

Bei kleiner Varianz konzentriert sich die Verteilung einer ZufallsgroRe
starker um ihren Erwartungswert als bhei groBerer Varianz.

(A5.46) Satz (Schwarzsche Ungleichung):

Zwischen der Kovarianz zweier ZufallsgroBen X und Y und deren Varianzen
besteht die Ungleichung

[Cov(X,Y)1? < Var(X) var(y)

die Schwarzsche Ungleichung genannt wird. B
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(A5.47) Anmerkung:

Wenn von einer ZufallsgroBe bekannt ist, daB sie normalverteilt,

so ist mit der Kenntnis des
lung vollstandig festgelegt.

gleichverteilt oder dreiecksverteilt 1ist,
Erwartungswertes und der varianz die Vertel

Es gibt weitere Beispiele, wo dies zutrifft.

A5.7 Zufallsvektoren

Die Definition der stochastischen Unabhdngigkeit von 7ufallsgrofen X,
ren X, Y, wenn in Definition

Y ibertrigt sich sinngemalB auf Zufallsvekto
durch x4, X35 Yy» ¥y ersetzt

(A5.36) die Intervallgrenzen X, Xy s Y10 Y2

werden usw..

Zur Untersuchung stochastischer 7usammenhange bei zufallsvektoren X, Y

werden 1. und 2. Momente verwendet:

(A5.48) Dpefinition (Autokorrelationsmatrix)5

R(LX) = EQCXD)
wird Autokorrelationsmatrix des sufallsvektors X genannt. .
(A5.49) Definition (Kreuzkorrelationsmatrix):
T
R(X,Y) := E(X-Y )
wird Kreuzkorrelationsmatrix der sufallsvektoren X und Y genannt. B
(A5.50) Definition (Autokovarianzmatrix):
T
Cov(X,X) := E[(L-E(i))(i‘E(ﬁ)) ]
heiBt Autokovarianzmatrix des 7ufallsvektors X. .
(A5.51) pefinition (Kreuzkovarianzmatrix):
T
Cov(X,Y) := EL(X-E(0)) (X-E(D)) ]
n

heiBt Kreuzkovarianzmatrix der zufallsvektoren X und Y.

Fir Kovarianzmatrizen gelten entspTEChende Rechenregeln wie fir die

Kovarianz zweier ZufallsgroBen (siehe (A5.40)).
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(A5.52) Definition (Unkorreliertheit von zwei Zufallsvektoren):

Zwei Zufallsvektoren X und Y heiBen unkorreliert, wenn
Cov(X,Y) = 0.

Dies ist gleichbedeutend mit E(X-Y') = E(X)E(Y)T. |

(A5.53) Definition (Orthogonalitit von zwei Zufallsvektoren):

Zwei Zufallsvektoren X und Y heiBen orthogonal, wenn

A58 Zufallsprozesse

Zur Untersuchung der stochastischen Eigenschaften von Zufallsprozessen
werden 1. und 2. Momente verwendet, die hier fir Zufallsprozesse mit
kontinuierlicher Zeit (Indexmenge I) definiert werden. Samtliche Defi-
nitionen und Aussagen iibertragen sich analog auf Zufallsfolgen (Zufalls-

prozesse mit diskreter Zeit), indem Funktionen durch Folgen ersetzt wer-
den.

(A5.54) Definition (Erwartungswertfunktion):

Die Funktion mx(t) = E[X(t)] (tel)

heiBt Erwartungswertfunktion des Zufallsprozesses X(+). |

{A5.55) Definition (Autokorrelationsfunktion):

Die Funktion Ryy(s,t) := E[X(s)X(t)] (t,sel)

heiBt Autokorrelationsfunktion des Zufallsprozesses X(-). |

(A5.56) Definition (Kreuzkorrelationsfunktion):

Die Funktion RXY(s,t) = E[X(s)Y(t)] (t,sel)

heiBt Kreuzkorrelationsfunktion der Zufallsprozesse X(+) und Y(.). |

(A5.57) Definition (Autokovarianzfunktion):

Die Funktion Cxx(s,t) i= CoviX(s),Xx(t)] (t,sel)

heiBt Autokovarianzfunktion des Zufallsprozesses X{+). |
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(A5.58) Definition (Kreuzkovarianzfunktion):

Die Funktion Cyy(s,t) = CoviX(s),Y(t)] (t,sel)

heifit Kreuzkovarianzfunktion der Zufallsprozesse X(+) und Y(+).

Zwischen den Kovarianzfunktionen und den Korrelationsfunktionen be-
stehen die Zusammenhange

(A5.59) CXX(S,t) = Rxx(s,t) - mx(s)mx(t) ,

R

1l

(A5.60) CXY(s,t) XY(s,t) - mx(s)mY(t)

(A5.61) Definition (Unkorreliertheit von zwel Zufallsprozessen):

Zwel Zufallsprozesse X(*) und Y(+) heiBen unkorreliert, wenn fiir alle

s,t € I die Bedingung
CXY(s,t) = 0

erfillt ist.

(A5.62) Definition (Stationaritdt im weiteren Sinne):

Ein ZufallsprozeB X(*)} heift stationdr 1m weiteren Sinne, wenn

mx(t) = my = const

und die Autokorrelationsfunktion Rxx(s,t) fir alle s,t e I nur von der

Zeitdifferenz 1 := s-t abhingt, d.h.

= Ry,(1)

RXX(S’t) = RXX(S't) XX

Das gleiche gilt dann auch fir die Autokovarianzfunktion.

Zur Definition im engeren Sinne stationarer 7ufallsprozesse siehe

LANDGRAF [A5.21, Seite 2.10.

korrelationsfunktion und Autokovarianz-

(A5.63) Eigenschaften der Autokorrt
funktion im weite[gg_§in“e stationdrer 7ufallsprozesse X(+):

. Cxx(") Cxx("T)
2 ey (O] < Cxx(0) - var(X(t))
’ Ryy () Ryx (-0

2
Var(Xt) + My

1

4. Ry ()] < Ry ()
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Ein typischer Verlauf einer Autokovarianzfunktion ist in Bild A5.2
dargestellt.

beydn

~

~— 0 N e

Bild A5.2: Autokovarianzfunktion Cxx(t) eines im weiteren Sinne
stationdren Zufallsprozesses X(«)

Der Wert der Autokorrelationsfunktion RXX(-) bzw. der Autokovarianzfunk-
tion Cxx(-) eines im weiteren Sinne stationdren Prozesses X(+) an einer
festen Stelle t ist ein MaB fir die statistische Verwandtschaft der Zu-
fallsgroBe X(t) (t beliebig) mit der vergangenen ZufallsgroBe X(t-t)

und der zukiinftigen Zufallsgrsfe X(t+1). Wenn eine Autokovarianzfunk-
tion schnell nach null abklingt, nimmt die statistische Verwandtschaft
benachbarter Werte des Prozesses X(+) schnell ab.

(A5.64) Definition (Spektrale Dichte):

X(+) sei ein im weiteren Sinne Stationdrer Zufallsprozel mit der Auto-
kovarianzfunktion Cxx(-). Die Fouriertransformierte

Sep(w) i fCXX{T)e—JwTdT

wird (sofern sie existiert) spektrale Dichte des Prozesses X(*) genannt.
[

(A5.65) Eigenschaften der spektralen Dichte:

1. Sxx(w) ist reell fir alle w ¢ R ,

2. Sxx(m) z O n " " ,

3. Sxx(m) = Sxx(-m) " " " ’

1 )
4. Cxx(T) = j—l‘ fsxx(m)eJMwa .
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(A5.66) Anmerkung:
D .
a Syy(w) fir alle w reell und positiv ist und da aufgru

schaft 4

nd von Eigen-

Var(X = .

(1) - (@ = B [sp) e
hat di : . . i

i die Funktion SXX(') die Eigenschaften einer Dichte. Somit ist der
ame "Spektrale Dichte" gerechtfertigt.

AS5.9 WeiBe Zufallsprozesse

(A5.67) Definition (WeiBer Zufallsgrozeﬁ):

Ein i . ) L
n im weiteren Sinne stationarer zufallsp

rozell X(*) heit weiBer Zu-

fallsprozeB, wenn

Sxx(w) = SO = const

(A5.68) Folgerungen:

Eij : i . . .
ir die Autokovarianzfunktion CXX s weiBen kontlnulerllchen u-

(+) eilne
fallsprozesses X(+) gilt

Co.(t) = SO (1)

XX
ten Zufallspro-

Fir die Autokovarianzfolge {CXX(k)} eines weifien diskre
zesses {X(k)} (weile zufallsfolge) gilt

g fir k= 0
0 (k ¢ L) .

C. (k) =
XX o fir kO [ |

(A5.69) Anmerkungen:

‘I .
. Iwei benachbarte Werte eine
unkorreliert (folgt aus den Eigensc

{Cyy(K)1).
2. Kontinuierliche weiBe 7ufallsprozesse sind nich
jgkeiten. Dies e

und bereiten mathematische Schwierl
daB} die nyarianz" eines kontinuierliche

5 weilen 7ufallsprozesses sind immer

haften von CXX(-) bzw.

t realisierbar
rkennt man bei~
n weiflen

spielsweise daran,
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Zufallsprozesses wegen CXX(T) = Sob(r) unendlich groB ist. Demgegen-
tiber sind diskrete weiBe Zufallsprozesse (weiBe Zufallsfolgen) mathe-
matisch leicht behandelbar und einfach realisierbar. [ ]

A5.10 Stochastische Eigenschaften von Parameterschéatzverfahren

Parameterschatzverfahren arbeiten (im stochastischen Sinne) nach fol-
gendem Schema:

Mit Hilfe einer Anzahl von ZufallsgroRen Xi’ cee XN’ die Informatio-
nen iliber einen gesuchten festen Parametervektor # enthalten, wird iber

eine, dem jeweiligen Anwendungsfall angepaBt zu widhlende Funktion £N
eine Schatzung

~

fir den Parametervektor o berechnet. Die Schatzung é

(X1,..., X

y ist als (Vektor-)
Funktion der ZufallsgroBen X1, e e XN ein Zufallsvektor. Setzt man in
(A5.70) auf der rechten Seite anstelle der ZufallsgroBen Xis wnes XN
konkrete Reélisierungen (MeBwerte) Xps «onh Xy ein, so erhdlt man einen

Schitzwert 3, fiir den gesuchten Vektor 9.

Die Eigenschaften von Parameterschidtzverfahren werden anhand der sto-
chastischen Eigenschaften des Zufallsvektors eN definiert und unter-
sucht.

(A5.71) Definition (Bias):

Die GroBe by = E(8y) - & heiBt Bias der Schitzung o . ]

(A5.72) Definition (Biasfreiheit):

Eine Schatzung Oy heit biasfrei, wenn EN =0, d.h. E(éN) = & . [ |

(A5.73) Definition (Asymptotische Biasfreiheit):

-~

Eine Schatzfolge Oy heit asymptotisch biasfrei, wenn

ﬂ EN =0 , d.h, l%Iim E(QN) =9 . N

(A5.74) Definition (Konsistenz im quadratischen Mittel):

Eine Schatzfolge 8y heiBt konsistent im quadratischen Mittel, wenn
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(A5.75 i 0, -9)(0,-8) 11 =
) éiz EL(ey-2)(8y-0) 1 = O - n

(A5.76) Definition (Mittleres Fehlerquadrat):

Die GroBe E[(QN-ﬁ)(gN-g)T] heiBt mittleres Fehlerquadrat der Schat-
|

zung 0y .

(A5.77) Anmerkungen:

Die Gleichung (A5.75) ist gleichbedeutend damit, daB
lim b, = O
New N h

und i ) 5 =
ﬁig COV(ENv EN) =0

adratischen Mittel existleren zwel weitere

und "Starke Konsistenz'),
(siehe beispielsweise

Neben der Konsistenz 1m qu
Konsistenzbegriffe ("Schwache Konsistenz"
auf die hier jedoch nicht weiter eingegangen wird

GOODWIN, SIN [A5.11, Seite 499,500).



A6 Parameterschatzverfahren

A6.1 Die Methode der kleinsten Quadrate (MKQ)

A6.1.1 Allgemeine nichtrekursive Schitzgleichung

Die Methode der kleinsten Quadrate ist eine Methode zur L&sung tber-

bestimmter linearer Gleichungssysteme. Hierbei muf der gesuchte Para-

n

metervektor $ ¢ R einer Gleichung der Form

(A6.1) Iy < EN£+-€—N
genugen, wobel der Vektor Yy € RN und die Matrix EN £ RNXH (N > n)

bekannt sind. e e R" ist ein Vektor, der die sogenannten "Gleichungs-

fehler" e; enthilt.

Bei1 der Methode der kleinsten Quadrate wird, ausgehend von der Glei-
chung

(A6.2)

+ E

Iy T Hy Byt

ein Schitzwert EN gerade so bestimmt, daB der Ausdruck (das Giitefunk-

tional)
Iy = (yy - 0o )T (v - Hoe)
2N N T INEN Yy = Hy3y
(A6.3) N
= E; EN T Z e“ (k)
k=1

minimal wird. Durch Nullsetzen des Gradienten gradg (J(@N)) ergibt sich
N -

< T 1T
(A6.4) N = (EN ﬂN) Hy Yy )

vorausgesetzt, die inverse Matrix (Eﬁ EN)'1 existiert. Der Schatzwert
&, erklart die Gleichung (A6.1) im Sinne kleinster quadratischer
Gleichungsfehler am besten. (A6.4) wird in der Literatur Normalglei-

chung genannt.
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Wenn T i - i
. Pdle Matrix Hy Hy nicht invertierbar ist, ist ihr Rang kleiner als
e Parameteranzahl n. In diesenm Fall reicht die Anzahl der Gleichungen
-u berechnen. Abhilfe ist nur durch

Hinzunahme weiterer (linear unabhingiger) Gleichungen (d.h. Erhohung
rt den Parametervektor & (Verminderung

nicht aus, um einen Schatzwert %N

von N) moglich oder man reduzie

von n).

A6.1.2 Parameteridentifikation bei linearen Systemen

uadrate kann auf die Identifikation von Para-
wenn ein beziglich des zu
stem der Form

Die Methode der kleinsten Q
metern linearer Systeme angewendet werden,

schatzenden Parametervektors % lineares Gleichungssy

H

Yy = By 2 iy

hl der Gleichun-

vorliegt, in dem Yy und Hy bekannt sind. N sel die Anza

gen.

nwendung sogenannter MOD-Funktionen
[A6.61) auf die Eingangs-
jerlichen Systems ein

n den Koeffizienten der

So kann beispielsweise durch A
(siehe HILLENBRAND [A6.2] oder MALETINSKY

Ausgangs-Messungen elnes linearen zeitkontinu
das linear 1
uierlichen Systems ist. Auf

der kleinsten Quadrate ange-

§1e1chungssystem erzeugt werden,
Ubertragungsfunktion G(s) des zeitkontin
dieses Gleichungssystem kann die Methode

wendet werden.

Im Rahmen dieses Anhangs soll jedoch die tdentifikation der Koeffi-

zienten von Z- Ubertragungsfunktlonen seitdiskreter Systeme im Vorder-

grund stehen. Die Eingangs-Ausgangs- Beziehung eines seitdiskreten Sy-

stems n-ter Ordnung mit der Z- Ubertragungsfunktlon

m-1, ..+ b z + b
m-1

72(2) b 2" + bz
(AG-S) G(Z) = = _O_____,_i_’-‘l—/_’—/_’m
a(z) 2"+ a1zn + ...t an-IZ *a

lautet im Folgenbereich

a, y(k-n)

+

y(k) + a, y(k-f) + ...t

L+ bm u{k-n)

bO u(k-n+m) + b1 u{k-n+m-1) + .

(A6.6) L+ bm u(k-d-m)

b, ulk-d) + by u(k-d-1) + -
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Hierbei ist d := n-m die Differenz zwischen Nenner- und Zihlergrad in
der Ubertragungsfunktion (A6.5), welche eine Totzeit d-Ta (T, Abtast-
zeit) zur Folge hat.

Wenn Eingangs- und Ausgangswerte u(k) und y(k) gemessen werden, sind
diese aufgrund von (MeB-) Stérungen meistens fehlerbehaftet, so daf
Gleichungen der Form (A6.6) fiir beliebige k nicht exakt durch die
MelBwerte erfillbar sind. Deshalb soll in (A6.6) ein StérprozeR {e(k)]}
beriicksichtigt werden. Aus (A6.6) folgt dann

y(k) = - a, y(k-1) - ... - a_ y(k-n)
(A6.7)
+ b u(k-n+m) + ...+ b, ulk-n) + e(k) , k > 1
Falt man diese Gleichungen fiir k = 1,...,N in Matrizenschreibweise zu-

sammen, so erhdlt man

(A6.8) Yy = Hy 8+ gy
mit den Bezeichnungen
vy = Le(h), y(2), o, yT ,
4 = [a1, SRR S bo’ e, bm]T ,
ey = (D), e(2), ..., )T
und
Hy = [hyyohys oo b 0T wobed
hy = Loy(k=B),ee oy (kon); ulked), ... u(k-d-m)]

Auf (A6.8) kann die Methode der kleinsten Quadrate angewendet werden.
Die Losung des S%hétngoblems 1n nichtrekursiver Form ist durch (A6.4)
gegeben, wenn (Hy Hy) exis;iert. Un die Invertierbarkeit und eine gute
Konditionierung der Matrix Hy Hy zu sichern, sollte die Eingangsgrolle

{u(k)} alle Eigenbewegungen des Systems (A6.5) hinreichend gut anregen

("persistently exciting") und keinen zu groBen Gleichanteil besitzen.

Wenn die EingangsgroBe {u(k)} nicht mit dem StorprozeB {e(k)} korre-

liert ist und der StorprozeB {e(k)} die stochastischen Eigenschaften

Ele(k})] = 0
(A6.9) 2
Ele(i)e(k)] = @ 6ik

besitzt (d.h. {e(k)} ist eine weiBe Zufallsfolge, siehe (A5.67)), damn
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kann gezeigt werden, daB die Schatzung
- T -1 T
1Y =
2N (Hy ﬂN) Hy Yy

biasfrei und unter zusdtzlichen Annahmen auch konsistent ist. Durch
Anwendung der Z-Transformation auf die Differenzengleichung (A6.7) ge-

langt man zu dem Strukturbild A6.1.

E(Z) 1
Alz)
ufz) 742) Y{z)
o =e
Alz)

Bild A6.1: Strukturbild im 7_Bereich zur Systemgleichung (A6.7)

Wir erkennen, daB eine weifle zufallsfolge {e(k)} "iber das Nennerpoly-
nom A(z)" auf den Ausgang des Systems G(z) = 2(z)/a(z) wirken muB,

damit die Schatzung iN biasfrei 1ist.

A6.1.3 Rekursive Schidtzgleichung

Die Normalgleichung

(A6.10) . _ T -1 4T
sy = Uy Hy By Yy

als Losung des Schdtzproblenms (Gleichungssystems)

Yy = Hy 2" &n

nach der Methode der kleinsten Quadrat
st dann erfolgen kann, wenn der ge-

e hat den Nachteil, daB die

Berechnung des Schitzwertes 8y €T
samte Datensatz (XN’ ﬂN) vorliegt.
zeitlich nacheinander eintreffem,
frihzeitig Schatzwerte & fir den gesucht
halten und diese Schatzwerte mit jedem n
aktualisieren. Der Lésung dieses Problems

mungen der Normalgleichung.

Besonders dann, wenn MeRwerte
ist es wiinschenswert, moglichst
en parametervektor & zu er-
eu eintreffenden Mefiwert zu

dienen die folgenden Umfor-

Sei Xy := ﬂg Hy. Dann gilt
(A6.11 - T
) Xy = Xyt DDy
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Unter Berilicksichtigung von
T
Yy = [y(1),...,y(N)]

folgt aus (A6.10) durch Aufspaltung des letzten Faktors der rechten
Seite

ST
S = Xy [Hy gy yyop by y(N)]

-1 -
Xy Hyoq 8o+ by vy

T .
Wegen iN*] = EN - ENEN folgt hieraus

. ) o1 . T
o7 X TSy - hyhy Syl s (0D
d.h.
(A6.12) g, = o, .+ X2 hly(N) - nT & 1
. N IN-1 7 A INYY AN IN-1
Diese Gleichung hat die Gestalt
[Neuer Schatzvektor] = [Alter Schiatzvektor] + [Korrekturvektor]
Der Faktor
(A6.13) kK, = x2'n

—N =N =N
wird hdufig Kalman-Verstarkung genannt. Die GréBe
T -

(A6.14) yON) = hD o

ist ein Vorhersagewert (Pr@diktionswert) fir den MeBwert ;(N) aufgrund
des alten Parametersatzes 5.1 und der MeBgriBen bis zum Zeitpunkt
k-1. Dementsprechend ist

(A6.15) e(N) =y - y(N) = y(N) - nl e

ein Pradiktionsfehler. Der Schdtzgleichung (A6.12) liegt somit das
Schema

[ Neuer ] = [ Alter ] + [Verstérkung }-[Prédiktionsfehler

Schédtzvektor Schiatzvektor

zugrunde (siehe Bild A6.2) .

Die Berechnung der Verstarkung EN nach (A6.13) ist unpraktisch, da die
Matrix EN invertiert werden muf}, die alle vergangenen MeBdaten enthdlt.
Aus diesem Grund wird mit Hilfe der folgenden Umformungen eine weitere
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Verstarkung ky

Pradiktions- Korrektur=
yINb o fehler e(N) vek tor 8
x —p —>

neuester )
Ausgangs- | .
wert In-1

~ x * o

y(N) ] I

Pradiktionswert

DL Mefdatenvektor

Bild A6.2: Schema der Schitzparameter-Korrektur bei der
rekursiven Methode der kleinsten Quadrate

‘ _ : ; t
Rekursionsbeziehung hergeleitet, mit deren Hilfe KN effektiver berechne

werden kann. Sei

(A6.1 .
6) Py = Ay

Dann folgt aus (A6.11)

(A6. _ T,-1
' Py = [Xy_1 * END_N]
Aufgrund des Matrizeninversionslemmas (siehe (A6.48)) gilt
- -1
-1 -1 T -1 +1)1hTX.
Py = Xyor o Ko Ma(By Xyo1 By hy Xy
(A6.18) ]
) Py_1hyly Byt
= Pyy - N Ve

T
1+ by Pyoqhy

Fir die Verstarkung ky folgt somit aus (A6.13)

T
o Dty Bierhy
ky = Pyby = In-1EN T T ’
N N=N 1o+ hy BN-1EN
(#6.19) k- Bt
1+ hy 2N-1EN

Setzt man diese Beziehung in (A6.18) ein, SO ergibt sich fur Py die

Rekursionsbeziehung
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P, = P

Py kol P = [E - kahlp

~N-1 = 2N=N =N-1 = = =N=N =N-1

Die Gleichungen zur Parameterschétzung nach der rekursiven Methode der

kleinsten Quadrate lauten somit zusammengefalt

- A

- T .
By Byt kyly(N) - hy 3,1,
P. b
(A6.20) K, = N-1T7N
N 1 hT Py hy
Iy Py_qhy
Py = [ - ky hydPy

A

Um die Rekursionsbeziehungen lésen zu kénnen, miissen Startwerte % und
Eo vorgegeben werden. Wenn bereits Vorinformationen iiber den gesuchten
Parametervektor % vorhanden sind, kénnen diese in die Wahl von & ein-
flieBen. Die Startmatrix P, muB positiv deflnlt gewdhlt werden; dadurCh

ist sichergestellt, daB der Nenner 1 + hN Py_qhy nicht singular wird.

A6.1.4 Der EinfluB der Anfangswerte é und P
—0 —0

Die rekursive und die nichtrekursive Methode der kleinsten Quadrate unter
scheiden 51ch beziiglich der Schdtzergebnisse, da im rekursiven Fall An-
fangswerte ib und EO vorgegeben werden missen, was im nichtrekursiven
Fall nicht erforderlich ist. Wenn n Parameter zu schitzen sind, konnen
Schatzwerte im nichtrekursiven Fall erst dann berechnet werden, wenn
mindestens N > n Gleichungen vorliegen, ansonsten ist die Matrix HN Hy
nicht invertierbar. Im rekursiven Fall liegen aufgrund der Startwerte
schon Qach der ersten Messung Schitzwerte vor. Der EinfluB der Start-

werte &, und Eo auf die Schatzergebnisse wird im weiteren quantitativ
untersucht.

Fir B&] gilt aufgrund von (A6.17) die Rekursionsgleichung

-1 -1
Evoom Byt by EN

Durch wiederholtes Einsetzen erhalt man

-1 -1 T _ -1 T
A N Y

Somit ist

(A6.21)

e
-

H
—
-

—
+

j=y
=z -]
=
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Weiterhin wird die Parameter-Rekursionsgleichung
3 (v(N) - nY & )
W= Iy kY N 2N-1

—N N-1

mit Py! multipliziert:

-1 . -1, -1 - hT; )
Pyl %y = By oyop By kyO( - DBy

(A6.22) -1

-1 Tye N) .
- Py (B - kyhy)By g * Py kyy (V)

Aufgrund von k, = P, h, und

IN T OINEN
T -1 - -1
(E - kyhp) = (E - kyhy) Py qPyes Pyl 1

erhalten wir die Rekursionsbeziehung

-1 -1 ,
(A6.23) Py 8y = Puoi®ya1 ! Il—NY{N)

die exakt gelost werden kann:

N

-1 = _ -
Py oy ot B
k=1
N
. -1 h, y(k)]
gy = ByiBy &7 Z by
k=1
Mit (A6.21) folgt hieraus
-1 .
) -1 T
(46.24) By = [E’_;] + [—l_g Hy [P, 5 * Hyyy?

Ein Vergleich dieser Beziehung mit der Normalgleichung (A6.10) zelﬂi,

daB jetzt zusatzliche Terme auftreten, die den Einfluf der Startwer ?
beschreiben. Deren Einflug klingt mit 1/N ab, wenn die Folge ' I,h'kH
beschriankt ist und nicht gegen null strebt. Bei der Iéentlflkatlon di;
Systemparameter eines linearen seitdiskreten Systems 15? dies der Fall’
wenn die Folgen {u(k)} und {y(k)! beschrankt sind und'nlc?t 8egendn: .
Streben. Zur Veranschaulichung erweitern wir (A6.24) in Zahler und R¢€

mit 1/N und erhalten

(A6.25) 8. = [

Die Matrizen

und
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N
% gXN N 25 hy y (k)
streben fiir N -~ » gegen konstante Matrizen (Korrelationsmatrizen). Dem-
gegeniber konvergieren sdmtliche Elemente in den Termen, die von den
Anfangswerten abhdngen, mit 1/N gegen null. Die Schitzgleichung (A6.24)
und damit die rekursive Schitzung (A6.20) minimieren, wie man schnell
nachrechnet, im Unterschied zu (A6.3) das modifizierte Giitefunktional

ey = (y-He W yByey) + (e e Te o -2
(A6.26) N
- D S e TR e ey
k=1

in dem ein von den Anfangswerten abhingiger Zusatzterm auftritt.

Wenn keine Informationen iiber die zu schdtzenden wahren Parameter # vor-
liegen, wihlt man hdufig & = 0 und Po=a Emita> 0. Je groBer o ge-
wahlt wird, umso geringer 1st der ElnfluB der Startmatrix P in der
Gleichung (A6.24). Andererseits darf o nicht zu groB sein, um algorith-
mische Schwierigkeiten aufgrund der endlichen Wortldnge des verwendeten
Digitalrechners zu vermeiden. Haufig setzt man o« = 103 ... 100,

A6.1.5 Rekursive Schitzgleichung bei exponentieller Wichtung
der MeBdaten

Wenn der zu schatzende Parametervektor & langsam zeitverinderlich ist,
so 1st es sinnvoll, die jeweils zeitlich zuletzt eingetroffenen Mef-
werte starker zu bewerten als die fritheren. Inm Unterschied zu dem
Gutefunkticnal

Moy = gy - 2 el
k=1

(siehe (A6.3)) wdhit man hiufig ein Gitefunktional der Form
N

(A6.27) L = DaNR 2y gaa <
k=1

)

bei dem eine exponentielle Wichtung der Gleichungsfehlerwerte &(k) vor-

genommen wird. Je nach Gr6Be des Parameters ) ("forgetting factor"),

der meistens zwischen 0,95 und 1 gewahlt wird, klingt der EinfluB ver-
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gangener Werte &(k) im Giitefunktional stirker oder schwacher ab. ALs-

gehend von dem Gitefunktional Jx(ﬁN) gelangt man zu rekursiven Schatz-

gleichungen der Gestalt

~

N T o
Byq *ky YOO - By Bgd

5 © In-
P, +h
(A6.28) ky ——N%1—N
A+ by Byoqly
p = Vg - Kyl P
Lith v [E - kyhy! IN-1

Bei diesen Schitzgleichungen kann je-
nEstimator Wind Up" auf-
hatzung der

(siehe GOODWIN, SIN [A6.13, S.64).

doch ein unangenehmer Effekt, der sogenannte

en kurz erldutert wird: Bei der 5S¢

treten, der im folgend
aren zeitdiskreten

goeffizienten der Ubertragungsfunktion eines line
ystems stehen in den Vektoren hy MeRBwerte y(k—1),...,y(k-n) und
u(k-n+m),...,u(k-n). Wenn das Zzu identifizierende System eine gewlsse

Zeit nicht angeregt wird, d.h. u(k) = 0 fir L.I f_k < Lz, sind nach eini-
ger Zeit bei einem stabilen System auch die Ausgangswerte y(k) nadhe-

rungsweise null, so daf hy # 0 fur eine gewisse Menge von k-Werten gilt.

Wihrend dieser Zeit lautet die dritte der Rekursionsgleichungen (A6.28)

p. =

1
N 5 P

N-1 ,
nten Aufklingen der Matrix-

die aufgrund von [%[ > 1 zu einem unerwiinsc
h moglich, daB die Elemente

folge PN fiithrt. Abhilfe ist entweder dadurc
hrankt werden, oder aber mit

der Matrizen Py in geelgneter Weise besc
Die-

Hilfe eines variablen Faktors A(N) ("variable forgetting factor").
ser kann nach GOODWIN, SIN [A6.11, se durch die

Beziehung

Seite 227, beispielswei

2
e“(N)
(46.29) WN) = V- =
;7
. . . -7
wobei e(N) der Pradlktlonsfehler ist und e~ der

festgelegt werden,
itdauer.

Mittelwert von e (N) iiber eine gewlisse Ze
(z.B. 107).

Der Parameter n > 0

besi - ;
esitzt einen kleinen konstanten Wert

insten Quadrate bei korreliertem

A6.1.6 Rekursive Methode der kie
Stérgrozeﬂ

Die Methode der kleinsten Quadrate liefert genau dann biasfreie Schatz-
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werte, wenn der StdrprozeB {e(k)} weiB ist und sein Erwartungswert ver-
schwindet. Bei korreliertem StérprozeB kann die Methode der kleinsten
Quadrate modifiziert werden. Hierzu wird angenommen, daR sich die korre-

lierte Storung e(k) in der Form
(A6.30) e(k) = v(k) + fovik-1) +. .+ fnv(k-n)

darstellen ldRt, wobei die Koeffizienten fv noch unbekannt sind und der
ProzeR {v(k)} ein weiBer ProzeR sei. Die Eingangs-Ausgangs-Beziehung
einer zu identifizierenden linearen zeitdiskreten Regelstrecke lautet
dann analog zu (A6.6)

y(k) = - a;y(k-1) -...- a_y(k-n)
(A6.31) + bou(k-d) oo+ bmu(k—d-m)
tovlk) + fov(k-1) 4.4 f v(k-n) (k > 1)

bzw. im Z-Bereich

a(z)Y(z) = Z(z)U(z) + F(z)V(z)
mit
alz) = M+ a]zn_1 te.etag gz va
(A6.32) 2(z) = b 2" b e by_qz + b,
F(z) = 2"+ f1zn_1 ACERLEE SUE AR 3

Schreibt man die Eingangs-Ausgangs-Beziehung (A6.31) vektoriell bzw. fir
k = 1...N in Matrixform, so erhilt man

(A6.33) y(k) = hl g+ vik)
bzw.
(A6.34) Yy = Hy &+ vy

mit den Bezeichnungen

XN T = [y(1),y(2),..., Y(N)]T y
$ :=la;,...,a ;b ,...0b: ¢ ... ¢ 1T

hd 1, 2 n! 0! ’ ml ‘|i RO | n )
vy 1= v(),v(2), v (0]

EE = [-y(k-1),...,-y(k-n); u(k-d),...,u(k-d-m); vik-1),...,v(k-n)] ,
T
Hy := [hy, Byyee by 10
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Auf i
(A6.34) kann die Methode der kleinsten Quadrate angewendet werden,

nur i
enthidlt der (gesuchte) Parametervektor % jetzt zusdtzlich die unbe-
AuBerdem stehen in den MefRvektoren

1’ 2’..., I'l'

hk die unbekannten Stérungswerte v(k-1),
we ¥
rden miissen. Aus diesem Grunde werden die Merektoren hk durch

(A6.35 T
) hy := [-y(k-1),...,-y(k-n); u(k-d),...,u(k-d-m);
Tlk=1), . yv(k-n)]
er Cdi . ' '
setzt, wobei die Groflen v(k-1),...,v(k—n) Gchitzwerte sind. Aufgrund

von (A6.33) erhdlt man durch

(A6.36) v(k) = y(k) - hle

derarti 4 0 ei
ige Schatzwerte, wenn % ein gchitzwert fiir den gesuchten Parameter-

vektor ist.

Wir ;
erhalten den folgenden erwelterten rekursiven MKQ-Algorithmus:

¥ = y
kY g Ry VOO

A ] e

V(N) = Y(N) - ‘l'_lN iN'T )
(A6.37) ky - __—E-N_L}]N__—

1 + thN 1hN
p - -
Py [E th }PN ,

Als 5
Startwerte werden wiederum ein Anfangsschatzwert ¥ % fiir den Para-
met
; ervektor und eine positiv definite Matrix P vorgegeben Weiterhin
en i

otigt man die Startwerte V(O), v(1-nJ), dle gemeinhin gleich null

gesetzt werden.

Di
e Rekursionsgleichungen (A6. 37) haben in den bisher untersuchten An-

wen
dungen gute Konvergenzelgenschaften gezeigt.

genzbeweis kann fiir diese Schitzmethode aller
en das Verfahren nicht konvergi

Ein allgemeiner Konver-

dings nicht gefithrt werden,

da
Beispiele existieren, bei den ert.

ithmus zur Verminderung

A6 .
-1.7 Umformung eines rekursiven MKQ-Algor

des Rechenaufwandes

Bei . .
€1 der Implementierung rekursiver MKQ-Algorithmen auf einem Digital-
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rechner ist es aus Griinden des Rechenaufwandes nicht zweckmidBig, un-
mittelbar die Gleichungen (A6.20), (A6.28) oder (A6.37) zu verwenden.
Eine erhebliche Verringerung des Rechenzeitaufwandes ergibt sich be-
reits, wenn die Gleichungen (A6.20) folgendermaBen dargestellt werden
(dhnliches gilt fir (A6.28) und (A6.37):

. IRy
By = Byop t kyDy(N) - hy sy T,
Yy o= Byoaby ’
(A6.38) by = 1+ Bl
- N hy vy ’
1
k = — ¥ ,
Ky by U
1 T
By o= 3 [Byo - ky vyl

Da die Matrizen EN symmetrisch sind, reicht es aus, jeweils die oberen

oder unteren Dreiecksmatrizen zu berechnen.

Das Schema zur Berechnung von ky ist in Bild A6.3 dargestellt. Das
Schema zur Korrektur des Schdtzparametervektors R kann Bild A6.2
entnommen werden.

T
hy T
X == [} la=
Verstarkung k,, . hy
<+ T M X e
N
1 T
.YN T
X e {) e
P
“ 1 Px Prn-y
BN!L A

Bild A6.3: Schema zur Berechnung der Verstarkung ky
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A6. - - }
6.1.8 Schwierigkeiten bei der Schitzung von Parametern

linearer zejtdiskreter Systeme

We i = .
nn bei gestorten Messungen die Koeffizienten der z-Ubertragungsfunk-

tion ei ; Ca .
eines linearen zeitdiskreten {bertragungssystems geschatzt werden,

s 3 : n . . .
o zeigt sich hdufig, daR die Schatzgenauigkeit bei den Nennerkoeffi-
den Ziahlerkoeffizienten. Dies ist

zienten erheblich groBer ist als bei
inearen Systems in

déran zuriickzufihren, daf die Ausgangsgrafe eines 1
vielen Fdllen beziiglich Anderungen der Polstellen, die )a die Eigenbe-
wegungen festlegen, empfindlicher ist als beziiglich Anderungen der Null-
St?llen- Andererseits wird die Summe der 7ihlerkoeffizienten einer
Z-Ubertragungsfunktion meistens relativ genau geschatzt, da diese auf-

grund der Beziehung

1)

-
1l

o

—
48]
i

(AG.SQ) V - G(Z)

di ; .
rekt in den Verstidrkungsfaktor V eingeht, der meistens gut identifi-

zierbar ist.
zung zu erhalten, ist allgemein

Um . . )
gute Ergebnisse bei der Parameterschat
des zu identifizierenden

d aa
afiir Sorge zu tragen, daB alle Eigenbewegungen

Ub
ertragungssystems durch die EingangsgroBe gut angeregt werden.

A2 Die Methode der »Instrumentellen Variablen< (IV-Methode)

fert bei der Schatzung von System-

Di . .
ie Methode der kleinsten Quadrate lie
wenn in der

parametern linearer Systeme nur dann biasfreie Schatzwerte,
GlEiChung

(8 ¢ R")

(A6.40) He & + &y

XN = Iy 2
eine weifle 7ufallsfolge bilden,
Um bei korrelierten

kann die Methode

di
ie Elemente des StorprozeBvektors ey
t sind (siehe (A5.67)).
zu erhalten,

r Hilfsvariablen) angewendet

d. ] .
h. paarweise unkorrelier

Stérwerten ebenfalls biasfreie Schatzwerte

der "Instrumentellen variablen" (Methode de
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werden, die darin besteht, (A6.40) formal mit der Transponierten einer
besitzt,

sog. Hilfsvariablenmatrix WN, die die gleiche Dimension wie HN

linksseitig zu multiplizieren:

T
(A6.41) LN

Eine Matrix ﬂ; wird genau dann eine Hilfsvariablenmatrix genannt, wenn

(A6.42) ECW = 0

=N =N
gilt und die (quadratische) Matrix E[W Hyl positiv definit ist

(siehe UNBEHAUEN [A6.8], Seite 78). Dle Matrix Wy muB somit so gewdhlt
werden, daB sie stark mit den Nutzsignalanteilen (ungestdrten MeBwert-
anteilen) in H korreliert ist, nicht jedoch mit dem Storvektor 2%
Wendet man auf (A6.41) die Methode der kleinsten Quadrate an, indem
man den Vektor

(A6.43) v = W, o¢

als neuen Storvektor auffa@t und, ausgehend von der Gleichung

_ T . N
(A6.414) EN YN T EN ENEN tyy,
das Gutefunktional
n
. -7 - ;
(A6.45) T = vy = Y v
k=1

minimiert, so erhalt man bei einer invertierbaren Matrix Wg Hy die
Schatzgleichung

o _ T -1 T
(A6.46) S o= By BT Wy vy
die, wenn EN die angegebenen Voraussetzungen erfiillt, biasfreie Schatz-
werte liefert (siehe UNBEHAUEN [A6. 81, Seite 79) Da Yy dieselbe Dimen-

sion wie ® besitzt, nimmt das Gitefunktional J(e ) fur $ nach (A6.46)

den Wert null an. N

Die Schdtzgleichung (A6.46) konnte man formal auch dadurch erhalten, daB

in der MKQ-Schidtzgleichung (A6. 10) H durch W ersetzt wird.

Beziiglich der Wahl einer geeigneten Hilfsvariablenmatrix sei auf die

einschldgige Literatur verwiesen (z.B. SODERSTROM, STOICA [A6.71).

Die Schitzung nach der IV-Methode kann, ebenso wie die MKQ-Schédtzung,
rekursiv durchgefiihrt werden.
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A6.3 Das Matrizeninversionslemma

Wenn A, C und (5'1 + B 9_1 D) nichtsingulédre (quadratische) (nxn)-Matri-

zen sind, so gilt

(A6.47) [A'T + B 9'191'1 = A-AB((DAB* Q)_12 A

(Beweis siehe ISERMANN [A6.41, Seite 173). Die Dimension der Matrix C

ist gleich der 1. Dimension der Matrix D.

Ist D beispielsweise eine (1xn)-Matrix, d.h.

b - a
so ist die Matrix C ein Skalar c. Ist

b - a'; B-bo Lol

so lautet das Matrizeninversionslemma in vereinfachter Form

b a7 - a-an@an e Nl
T [}
(A6.48) AbdA
= A - —



A7 Positive dynamische Systeme

Der Begriff der Positivitdt dynamischer Systeme tritt im Zusammenhang
mit unterschiedlichen systemtheoretischen Problemstellungen auf, unter
anderem im Zusammenhang mit der Hyperstabilitdt von Regelkreisstrukturen,

die eine mogliche Grundlage zur Herleitung von adaptiven Gesetzen ist.

Obgleich im Zusammenhang mit adaptiven Systemstrukturen nur die Positi-
vitdt linearer (Teil-) Systeme von Interesse ist, soll der Begriff der
Positivitdt zundchst allgemein formuliert werden. In Abschnitt A7.1 wer-
den die Begriffe fir zeitkontinuierliche Systeme eingefiihrt und erléu-

tert und dann in Abschnitt A7.2 auf zeitdiskrete Systeme Ubertragen.

A7.1 Zeitkontinuierliche positive Systeme

(A7.1) Definition (Positivitat):

Ein nichtlineares dynamisches System der Form

x(6) = flxlo),6u(0], x(t) - X,
(A7.2)
y(t) = gix(t),t,u(t)]
mit x(t) e BY , u(t) e RP y(t) e RP | ¢ ¢ [t @)
(o]

heiBt positiv, wenn das Integral des Skalarprodukts der Eingangs- und
AusgangsgroBe fir beliebige ty X, und beliebige Eingangsfunktionen u(-)
in der Form

t, t, 5
(A7.3) tf XT(t)E(t)dt = [:»(ﬂt),t)}t +f hix(t),u(t),t)de

o] ot
0

darstellbar ist, wobei fiir die Funktionen h und ¢ die Ungleichungen
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v
ot
| =
M
-e)
e’
fe=
m
=
a

(A7.4) h(x,u,t) >0 fiir alle t
_ Z Yo ?

(A7.5) $(x,t) >0 fir alle t21t,, X¢ R
giilltig sind.

Dér Begriff der Positivitdt wird in der Literatur oft auch als Dissipa-
tivitdt bezeichnet (siehe WILLEMS [A7.31). Die Terme in (A7.3) haben aus
physikalischer Sicht die folgende Bedeutung:

T
y (t)ult) . AuBere Leistung (zu- und abgefiihrte Leistungen)
Y
f T .
y (t)ult)dt . Im Zeitintervall [to,t1] zugefiihrte Energie
Yo
$(x(t),t) . Momentane 7ustandsenergie
h(i(t),g(t),t) . Momentan nyerbrauchte" (dissipierte) Leistung
(z.B. durch Reibung, Ohmsche Widerstiande usw.)
t
.[ h(x(t),u(t),t)dt: Im Zeitintervall [to,t1] dissipierte Energie .
t
0

Aus (A7.3) folgt somit, daB die dem System zugefiihrte Energie sich auf-

spalten 148t in einen Energieanteil, der in den 7ustandsgrofen gespel-
chert ist, und einen zweiten Energieanteil, der im System durch Reibung,

Ohmsche Widerstdnde usw. nyerbraucht' wurde.
oder verhalt sich bezuglich der Ein-

Ein positives System be-

sitzt somit keine ”EnergiEquellen“

gangsgréBe u(+) und Ausgangsgrofie y(+) zumindes
Fiir ein positives System gilt

t so, als wenn keine

Energiequellen vorhanden waren.

t
1
(A7.6) f f(t)g(t)dt > - e(x(t ), tg) ,
t
0

so daB die von einem positiven System abgebbare Energie (negatives Vor-

die 1im Anfangszustand i(to) gespeicherte
dem System tatsdch-

Eingangsfunktion u(+)

zeichen) niemals groBer als
Energie @(i(to),to) sein kann. Welche Energiemenge
lich entnommen werden kann, hdngt von der gewdhlten
und von der individuellen peschaffenheit des Systems ab.
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Die Uberpriifung der Positivitdt ist bei allgemeinen nichtlinearen Syste-
men sehr schwierig, da sie anhand der Beziehung (A7.3) durchgefihrt wer-
den muB. Eine hinreichende, aber nicht notwendige Bedingung fiir die Posi
tivitdt des Systems (A7.2) ist durch den folgenden Satz gegeben:

(A7.7) Satz (Positivitat):

Das dynamische System (A7.2) ist positiv, wenn fiir jede Losung
i[i(to)’ﬂ(')"] und fir beliebige t, die Gleichung

4

[ Youmar = FxepTecexce,) - 3 xce 3 ece )at,)

t
0

1

(A7.8)
[xT(oaxte) + 2 uT0)sToxe) « JTorRe)ule)]de

|
t
&~

ot S—

0

erfillt ist, wobei die Matrizen P(t), Q(t), S(t) und R(t) fiir alle t 2t

den Bedingungen

P(t) >0 (positiv definit)
(A7.9)
Q(t) S(t)
> 0 (positiv semidefinit)
sTeor  R(t)
geniigen. 8
Beweis:

Unter dem Integral der rechten Seite von Gleichung (A7.8) steht eine po-
sitiv semidefinite quadratische Form, da

Jogox + 2u (s Toxn + wTeoRr(ou()

7.1
(A7.10) o Qt) sy [ x(t)
= [x (t),u (t)]

sTt) RO | [ ule)

Mit

(A7.11) v(x(8),1) = xT(OP()x(t)

und

h(x(t),u(t),t) = xT()Q(e)x(t) + 20T ()sT()xce) + uT(eIR(EICE

(A7.12)
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stel i i
ellt Gleichung (A7.8) somit nuf cinen Spezialfall der Definitionsglei-

ung (A7.3) dar, womit die Aussage des Satzes bewiesen ist. B

Der £ . .
olgende Satz stellt ninreichende, aber nicht notwendige Bedingungen

fﬁr dl . . . " . .
e Positivitdt eines linearen zeitvariablen Systems bereit:

(A7. Csoient @i
13) Satz (Positivitdt eines linearen zeitvariablen sttens):

Das lineare zeitvariable System

x(t) = Al)x(t)+ B(t)ult)
(A7.14)
y(t) = clt)x(t) + p(tjult)
mit  x(t) = x, , x(t)e¢ 1, u(t) <R, y(t)e rP te ft ,”)

ist positi ; ‘ ' i it] ini
positiv, wenn €lne symmetrlsche, seitvariable, positly definite und

beziioli :
eziiglich t differenzierbare Matrix P(t),
(t) sowie ein

symmetrische, seitvariable,

semi ini ;
idefinite Matrizen Q(t) und R e Matrix S(t) existieren,

so daB die Bedingungen
Bee) + aT(0R() + RIOAED =7 Q)
gTop(t) + 1(8) = L

(A7.15) po) » DT0) = RO

Q(t)  s(t)
>0 (positiv cemidefinit)

sTeoy R(Y)

Seite 371). s

.
ir alle t > t_ erfillt <ind (siehe LANDAU (a7.13,

(A7.16) Anmerkung:

lineare zeitinvariante Systeme der Form

1
| >
| =
-
ot
L
+
|
{§=1
~
ot
R—_

x(t)
(A7.17) B
y(t) = C x(t) + D u(t)
mit x(t) = xp o A & () e BP, yle) e RP

(A7.13) voliig analog, nur sind die

ibertragen sich die Satze (A7.7) und
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Matrizen P, Q, R und S in diesem Fall zeitunabhéngig und es darf t =0
gesetzt werden. [

Bei linearen zeitinvarianten Systemen (A7.17) besteht weiterhin die Mog-
lichkeit, die Positivitit eines Systems anhand seiner Ubertragungsmatrix
(bzw. Ubertragungsfunktion)

(A7.18) G(s) = CISE - AJ'B+D

zu liberprifen. Diese Vorgehensweise hat groBe praktische Bedeutung und
1st in vielen Fdllen sehr einfach. H1erzu benétigen wir einige Defini-
tionen und Erlduterungen. Die Operation bedeutet gleichzeitige Trans-
position und komplexe Konjugation der Elemente eines Vektors oder einer
Matrix. Die nachfolgenden Definitionen beziehen sich auf Ubertragungsma-
trizen zeitkontinuierlicher Systeme.

(A7.19) Definition (Positiv reelle Ubertragungsmatrix):

Eine (pxp)-Matrix G(s), deren Elemente gebrochen rationale Funktionen
der komplexen Variablen s sind, heift positiv reell, wenn folgende Be-
dingungen erfiillt sind;:

1) G(s) ist eine reelle Matrix fir alle reellen s.

2) Alle Elemente von G(s) sind analytisch in der rechten offenen
s-Halbebene, d.h. sie besitzen dort keine Polstellen.

3) Fir alle s mit der Eigenschaft Rels] > 0 ist die Matrix G(s) + G (s)
positiv definit hermitesch. 8

(A7.20) Definition (Streng positiv reelle Ubertragungsmatrix):

Eine (pxp)-Matrix G(s), deren Elemente gebrochen rationale Funktionen
der komplexen Variablen s sind, heift streng positiv reell, wenn folgen-

de Bedingungen erfillt sind:
1) G(s} ist eine reelle Matrix fiir alle reellen s.

2) Alle Elemente von G(s) sind analytisch in der rechten geschlossenen
s-Halbebene, d.h. sie besitzen dort keine Polstellen.

3) Fir alle s mit der Eigenschaft Re[s] 2 0 ist die Matrix G(s) + G (5)
positiv definit hermitesch. ]

Da die Uberpriifung der dritten Eigenschaft in den Definitionen (A7.19)
und (A7.20) recht umstindlich ist, geben wir zwei zu (A7.19) und (A7.20)
dquivalente Definitionen an, die einfacher nachprifbar sind.
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(A7.21) Definition (positiv reelle Ubertragungsmatrix):

Ei i
ine {pxp)-Matrix G(s), deren Elemente gebrochen rationale Funktionen

der komplexen Variablen s sind, heifit positiv reell, wenn folgende Be-

dingungen erfillt sind:
1) G(s) ist eine reelle Matrix fur alle reellen s.

2 -
) Alle Elemente von G(s) und G 1(s) sind analytisch in der rechten
offenen s-Halbebene, d.h. sie besitzen dort keine Polstellen.

3 i -
) Die eventuellen Pole der Elemente von G(s) und G (s) auf der imagi-

naren Achse Rel[s] = 0 sind einfach und die zugehorigen Residuenma-

trizen sind positiv semidefinit hermitesch.

4 : . ‘ . . L
) Die Matrix G(jw) + QT(-Jm) ist positiv semidefinit hermitesch fur

alle imaginiren Werte ju (d.h. alle reellen Werte w), die nicht

Polstellen eines Elementes von G(je) sind. B
(A7.22) Definition (Streng positiv reelle ilbertragungsmatrix):
Eine (pxp)~Matrix g(s), deren Elemente gebrochen rationale Funktionen
der komplexen Variablen s sind, heit streng positiv reell, wenn fol-
gende Bedingungen erfillt sind:
1 . :

) G(s) ist eine reelle Matrix fur alle reellen s.
chlosse-

1(5) sind analytisch in der ges

) Alle Elemente von G(s) und G
e Polstellen.

nen rechten s-Halbebene, d.h. sie besitzen dort keln

3) Die Matrix Q(jw) + QT(_jw) ist eine positlv definite, hermitesche
B

Matrix fiir alle reellen w.
(A7.23) Folgerungen:
A
ufgrund von Punkt 2 in den Definitionen (A7.20) und

das . . :
Zu einer streng positiv reellen bertragungsmatri

(A7.22) folgt, daB
X Q(S) (bzw. Uber-

; ‘ . o
ragungsfunktion G(s)) gehorige gbertragungsglied BIBO-stabil ist, wenn

gleichzeitig in keinem Element von G(s) der 7ihlergrad groBer als der

Nennergrad ist.

Fiir of ‘
Ur eine skalare positiv reelle Ubertragungsfunktion G(s) folgt aus

p
unkt 4 von Definition (A7.21)

(A7.24) Re[G(ju)] > O
le von G(s) ist. Fiir eine

fi
ur alle reellen w, fiir die jw keine Polstel
nktion G(s) folgt aus

sk i
alare streng positiv reelle bertragungsfu

Py
nkt 3 yon Definition (A7.22):
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(A7.25) RelG(jw)] > O fiir alle w ¢ R . |

(A7.26) Satz (Inverse einer (streng) positiv reellen

Ubertragungsmatrix):

Sei G(s) eine (streng) positiv reelle Ubertragungsmatrix. Dann ist
§_1(s) ebenfalls eine (streng) positiv reelle Ubertragungsmatrix. |

Beweis:

Zur Vereinfachung der Schreibweise fiihren wir die Mengen

a° = {s|Rels] > 0] und @ = {s|Rels] > 0} ein. Die in Punkt 3 der Defi-
nitionen (A7.19) und (A7.20) geforderte Eigenschaft, daB die Matrix
G(s) + g*(s) fiir alle s ¢ 2°(s ¢ ) positiv definit hermitesch sein
muB, ist dquivalent zu der Aussage, daB fiir diese s-Werte und fiir be-
liebige Vektoren x ¢ cP gilt

(A7.27) Relx G(s)x] > 0

Damit kann G(s) fﬁr alle s € 2° (s ¢ q) keinen Eigenwert bei r» = O be-
sitzen, so daB G (s) exlstlert und fir alle s e @° (s e @) analytisch
ist. Weiterhin ist G (s) eine reelle Matrix fiir alle reellen s, wenn

g(s) diese Eigenschaft besitzt. Setzt man in (A7.27) fiir x den Ausdruck

X = (s) y ein, wobei y e tP ein beliebiger komplexer Vektor ist, so
folgt

* ® _‘I
(A7.28) Rely {G (s)} 'yl >0

Diese Ungleichung dndert sich nicht, wenn die skalare Zahl in der ecki-
gen Klammer transponiert und durch ihren konjugiert komplexen Wert er-
setzt wird. Wir erhalten somit

(A7.29) Re[x*g_T(s)x] >0

fir alte y ¢ €” und s € 0° (s € @), womit der Beweis abgeschlossen ist.

Fir die Uberprufung einer skalaren Ubertragungsfunktion G(s) = Z(s)/
A(s) eines zeitkontinuierlichen linearen Systems auf positiv reellen
bzw. streng positiv reellen Charakter existieren einige (einfache) not-
wendige, aber nicht hinreichende Bedingungen (siehe auch WOLF [A7.5],
Seite 177, 178):
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(A7.30) Notwendige Bedingungen fir eine positiv reelle

Ubertragungsfunktion G(s) = Z(s)/a(s):

a) Alle Koeffizienten der Polynome z(s) und A(s) miissen reell und groBer

gleich null sein.

b) In beiden Polynomen miissen zwischen dem Glied héchsten und niedrig-

sten Grades alle Potenzen vorhanden sein, es sei denn, €s fehlen in
e ungeraden Glieder. Ist dies in
das an-

einem Polynom alle geraden oder all
beiden Polynomen der Fall, so muB eines der Polynome gerade,

dere ungerade sein.

¢) Die Nullstellen der Polynome Z(s) und A(s) auf der imagindren Achse
missen einfach sein.

nd der Gradunter-

7(s) und a(s)

d) Der Gradunterschied der Glieder hochster Ordnung u
schied der Glieder niedrigster Ordnung der Polynome
darf héchstens gleich eins sein.

(A7.31) Notwendige Bedingungen fiir eine StICng positiv reelle

Ubertragungsfunktion G(s) = Z(s)/a(s):

a) Alle Koeffizienten der Polynome z(s) und a(s) miissen reell und grofer

null sein.

b) Simtliche Nullstellen der Polynome 7{(s) und A(s) missen in der lin-

ken offenen s-Halbebene liegen (HUTWitZP01Yn0m9)-

r- und Nennerpolynom darf maximal

¢) Der Gradunterschied zwischen Zahle

gleich eins sein.

Ist eine dieser notwendigen Bedingungen verletzt, SO sind weitere Un-
tersuchungen auf positiv reellen bzw. streng positiv reellen Charakter

hinfdllig.

Der positiv reelle bzw. streng positlv reelle Charakter einer skalaren
Ubertragungsfunktion G(s) 1aBt sich aufgrund der Beziehungen (A7.24)
und (A7.25) einfach anhand der Ortskurve G(je) in der Ortskurvenebene
iberpriifen, wenn die weiteren Bedingungen 1, 2 und 3 in Definition
(A7.21) bzw. 1 und 2 in Definition (A7.22) erfiillt sind. Die Ortskurve
G(jw) muf in der rechten Halbebene liegen, wenn die Ubertragungsfunk-
tion G(s) streng positiv reell ist (siehe Bild A7.1). Hierbei ist es

zuldssig, daB die Ortskurve fiir w ~ « in den Ursprung lauft.
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Im(Gljw))

ﬂ RelGljw))

Bild A7.1: Ortskurven von Ubertragungsfunktionen
G1(s), Gz{s) : Streng positiv reell
G3(s) : Positiv reell

(A7.32) Satz (Positivitdt eines linearen zeitinvarianten Systems) :

Ein vollstdndig steuerbares, lineares zeitinvariantes System der Form

x(t) -

[ 2=

x(t) + B ult)

(A7.33)
y(t)

n
g

x(t) + D u(t)

ist genau dann positiv, wenn seine Ubertragungsmatrix (bzw. Ubertra-
gungsfunktion)

(A7.34) G(s} = CIsE - A]—I_B_ + D

positiv reell ist.

A7.2 Zeitdiskrete positive Systeme

Die Positivitadt zeitdiskreter dynamischer Systeme 148t sich analog zum
zeitkontinuierlichen Fall formulieren.

(A7.35) Definition (Positivitit):

Ein nichtlineares dynamisches System der Form
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i(k+1) = i[i(k),k,gﬁk)] , i(ko) = X, )
(A7.36)
mit x(k) e R® , u(k) e RP ,  y(k) e R, ko= kg, Kgrl

heiBt positiv, wenn die Summe des Skalarprodukts der Eingangs- und Aus-

gangsgroBe fiir beliebige k;, X, und beliebige Eingangsfolgen {u(k)} in

der Form

(A7.37) ES .XT(k)E(k) = [¢(£(k),k)} + ja h(i(k),g(k),k)

k=k .
o k,  kekg

darstellbar ist, wobei fir die Funktionen h und ¢ die Ungleichungen

(A7.38) h(x,u,k) > 0 fir alle k 2 kg, X € R, uc®

(A7.39) s(x,t) » 0 fiir alle k > Ky, X ¢ R

giltig sind. .
ei zeit-

ei zeitdiskreten Systemen ist der b
h den Sdtzen (A7.7) und
itze, 1n denen hin-

Die Deutung der Positivitdt D
kontinuierlichen Systemen identisch. Ahnlic

(A7.13) existieren auch fir seitdiskrete Systeme S
sitivitat formuliert sind.

reichende Bedingungen ZzZur Sicherung der Po
377-379 und wenden uns

Wir verweisen hierzu auf LANDAU [A7.1], Seite
sitiv reellen und streng positiv reellen

Definitionen zu, die den po
die zu linearen zelt-

Charakter von Ubertragungsfunktionen betreffen,
invarianten zeitdiskreten Systemen gehoren.

(A7.40) Definition (Positiv reelle Ubertragungsmatrix):

hen rationale Funktionen der

deren Elemente gebroc
wenn folgende Bedingun-

Eine (pxp)-Matrix G(z),
komplexen Variablen z sind, heildt EgglEll_EEEll’

gen erfillt sind:

1) E(Z) ist eine reelle Matrix fiur alle reellen z.

2) Alle Elemente von G(z) sind analytisch im Bereich |z| > 1, d.h.
auBerhalb des Einheitskreises der z-Ebene.
*
3) Fiir alle z mit der Eigenschaft 1z{ > 1 ist die Matrix G(z) + 6 (2)
[

positiv definit hermitesch.
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(A7.41) Definition (Streng positiv reelle Ubertragungsmatrix):

Eine (pxp)-Matrix G(z), deren Elemente gebrochen rationale Funktionen
der komplexen Variablen z sind, heiBt streng positiv reell, wenn folgende

Bedingungen erfiillt sind:
1} G(z) ist eine reelle Matrix fiir alle reellen z.
2) Alle Elemente vonr G(z) sind analytisch im Bereich |z| > 1.

*
3) Fir alle z mit der Eigenschaft [z| > 1 ist die Matrix G(z) + G (z)
positiv definit hermitesch. B

Analog zum zeitkontinuierlichen Fall geben wir zwei, zu (A7.40) und

(A7.41) dquivalente Definitionen an, die einfacher nachpriifbar sind.

(A7.42) Definition (Positiv reelle Ubertragungsmatrix):

Eine (pxp)-Matrix G(z), deren Elemente gebrochen rationale Funktionen
der komplexen Variablen z sind, heiBt positiv reell, wenn folgende Be-

dingungen erfiillt sind:
1) G{z) ist eine reelle Matrix fir alle reellen z.

2) Alle Elemente von G(z) und §-1(z) sind analytisch fiar |z| > 1, d.h.
sie besitzen dort keine Polstellen.

3) Die eventuellen Pole der Elemente von G(z) und §-1(z) auf dem Ein-
heitskreis [z| = 1 sind einfach und die zugehdrigen Residuenmatri-
zen sind positiv semidefinit hermitesch.

4) Die Matrix G(el%) + QT(e—Jw) ist positiv semidefinit hermitesch fiir
alle regllen Werte ¢ ¢ [0,2n],die nicht Polstellen eines Elementes
von G(el?) sind. [ |

(A7.43) Definition (Streng positiv reelle Ubertragungsmatrix):

Eine (pxp)-Matrix G(z), deren Elemente gebrochen rationale Funktionen
der komplexen Variablen z sind, heiBt streng positiv reell, wenn folgen-
de Bedingungen erfiillt sind:

1) G(z) ist eine reelle Matrix fir alle reellen z.

2) Alle Elemente von G(z) und §_1(z) sind analytisch fir |z| > 1, d.h.
sie besitzen dort keine Polstellen.

3) Die Matrix G(el¥)+ QT(e-Jw) ist eine positiv definite, hermitesche
Matrix fiir alle ¢ e [0,2x]. »
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(A7.44) Satz (Inverse einer (streng) positiv reellen

Ubertragungsmatrix):

591 G(z) eine (streng) positiv reelle Ubertragungsmatrix. Dann ist
(Z) ebenfalls eine (streng) positiv reelle Ubertragungsmatrix.
Der Beweis dieses Satzes erfolgt v6llig analog zum Beweis von Satz

(A7.26).

(A7.45) Anmerkungen:
Aufgrund von Punkt 2 in den Definitionen (A7. 41) und (A7.43) folgt, daB
das zu einer streng positiv reellen Ubertragungsmatrix G(z) (bzw. Uber-

tragungsfunktion G(z)) gehorige Ubertragungsglied BIBO- stabil ist.

Fir eine skalare positiv_reelle Ubertragungsfunktion G(z) folgt aus

Punkt 4 von Definition (A7.42)

(A7.46) Re[G(el?)1 > 0

je keine Polstelle von G(z) ist.

fir alle reellen ¢ e[0,21], fir die e
ktion G(z) folgt

Fiir eine skalare streng positiv reelle Ubertragungsfun

aus Punkt 3 von Definition (A7.43)

(A7.47) Re[G(ej@)] > 0 fir alle ¢ ¢ [0,21]

Deshalb kann auch bei zeitdiskreten Systemen der positlv reelle oder

streng positiv reelle Charakter einer Ubertragungsfunktlon in der Orts-

kurvenebene untersucht werden.

dimlz]

-1

Bild A7.2: Winkelbeitrag eines Linearfaktors el?-a in einer

Ubertragungsfunktion G(z)
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In skalaren streng positiv reellen (gebrochen rationalen) Ubertragungs-
funktionen G(z) ist stets der Zadhlergrad gleich denm Nennergrad. Dies ist
unmittelbar einsichtig, wenn man bedenkt, daB das Argument jedes Linear-
o e [0,2x]

und |a] < 1 jeden Wert zwischen 0 und 2x annimmt (siehe Bild A7.2). Bei

faktors (z-a) in der Ubertragungsfunktion G(z) fir z = er,
einem Pol- oder Nullstelleniiberschuf wirde die Winkeldnderung der Orts-
kurve G(el®) ein Vielfaches von 2r ergeben, womit die Ortskurve die
rechte Halbebene verlieRe. [ |

Zwischen dem (streng) positiv reellen Charakter einer zeitkontinuierli-
chen Ubertragungsmatrix G(s) und einer zeitdiskreten Ubertragungsmatrix
G(z) kann {iber die bilineare Transformation

z-~] l+s
(A7.48) s zZ = T

ein eindeutiger Zusammenhang hergestellt werden.

(A7.49) Satz (Zusammenhinge zwischen {streng) positiv reellen

zeitkontinuierlichen und zeitdiskreten Ubertragungsmatrizen):

Wenn G(s) eine (streng) positiv reelle, zeitkontinuierliche (bertra-
gungsmatrix ist, dann ist

(A7.50) 6(z) = G(Zh

eine (streng) positiv reelle, zeitdiskrete Ubertragungsmatrix. Ist umge-
kehrt G(z) eine (streng) positiv reelle, zeitdiskrete Ubertragungsmatrix,
dann ist

(A7.51) 6(s) := G

eine (streng) positiv reelle, zeitkontinuierliche Ubertragungsmatrix.

Der Beweis dieses Satzes folgt unmittelbar aus der Tatsache, daB durch
die bilineare Transformation

_z-1
(A7.52) s = I
das Innere des Einheitskreises [z] < 1 eindeutig auf die linke offene
s-Halbebene Rels] < O und der Einheitskreis lz] = 1 eindeutig auf die
imagindre Achse s = ju (w ¢ R) abgebildet wird, wihrend sich das Gebiet
|z} > 1 eindeutig auf die rechte offene s-Halbebene Rel[s] > 0 abbildet.
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i iti i ms ):
(A7.53) Satz (Positivitdt eines linearen zeitinvarianten Syste )

i iti i itdiskretes
Ein vollstdndig steuerbares, lineares zeitinvarlantes zeitd

System der Form

x(k+1) = A x(k) + B u(k) ,
(A7.54
: y(k) = C x(k) + D u(k)

i i I tragungs-
ist genau dann positiv, wenn seine Ubertragungsmatrix (bzw. Ubertragung
funktion)

-1
(A7.55) G(z) = ClzE - A1"'B+1D -

positiv reell ist.



A8 Hyperstabilitat

Die Hyperstabilitidtstheorie bietet neben anderen Anwendungsgebieten die
Moglichkeit, adaptive Regelkreise nach dem Modell-Referenz-Verfahren
(MRAS) auf Stabilit#t zu untersuchen bzw. so zu entwerfen, daB Stabili-
tat gesichert ist. Die aufgefiihrten Stabilitédtssdtze werden nicht bewie-
sen (Beweise siehe POPOV [A8.2]). Die Hyperstabilitdtstheorie ist auf
Regelkreise anwendbar, die eine Struktur nach Bild A8.1 besitzen oder

sich in eine derartige Struktur umformen lassen.

[

Lineares zeitinvariantes
System

1€

i<

Nichtlineares zeitva-
riables  System

Bild A8.1: Der Hyperstabilititstheorie zugrundeliegende
Regelkreisstruktur

A8.1 Zeitkontinuierliche Regelkreise

Das lineare zeitinvariante System im "Vorwdrtszweig" in Bild A8.1 sei
beschrieben durch das Differentialgleichungssystem

i(t)

]
| o=

x(t) + B u(t) , x(t ) = X, s

(A8.1) w(t)

i
[

x(t) +

L

u(t)

x(t) ¢ R" s u(t) e rP , w(t) e RP
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D . " . I . . i
as System im "Rickfiihrzweig" 1n Bild A8.1 sei in der allgemeinen Form

(A8.2) v(t) = £lw(),t]

dar i ]
stellbar. Dieses System darf nichtlinear und zeitvariabel sein. Wir

be -
trachten nun eine Klasse von nichtlinearen Systemen:

(A8.3) Definition (Klasse ?):

D 1 : - . .
ie Klasse P sei die Menge aller nichtlinearen zeitvariablen Systeme

der allgemeinen Form

v(t) = Elu(,tl

bei denen das Skalarprodukt der Eingangsgrofe und Ausgangsgrofe die

_sogenannte Popov—(Integral)Ungleichung

t
(A8.4) f V(owla)de > - o firalle t 2 6

t
0

und beliebige Eingangsfunktionen w(e) erfiillt, wobei v, > 0 eine belie-

bige, aber beziiglich E( ) und t feste Konstante 1ist. [ ]

(A8.5) Definition (Hyperstabilitdt}:

wenn eine Konstante n 2 0

Das lineare System (A8. 1) heifit hyoerstabll
A8.1 fiir jedes

existiert, so daB in der Regelkreisstruktur nach Bild
fiir alle nichtlinearen Systeme im

feste 1, 20 alle Losungen x[x .- -]
eniigen, durch die Beziehung

Rﬁckfﬁhrzwe1g, die der Ungleichung (A8. 4) g

(A8.
6) ||i[i0't]|{ . AR N T
R R
fir alle t > t abschatzbar sind. Man spricht dann auch von Hyperstabi-
]

litdt des Regelkrelses.

es hyperstabilen linearen Systems sind somit be-

Die ZustandsgroBen eln
ystem der Klasse P zurickge-

schrankt, wenn dieses uber ein beliebiges 5

koppelt wird.

(A8.7) Definition (Asyaptotische Hyperstabilitdt):

tisch hyperstabil, wenn gilt:

Das lineare System (A8.1) hellt asympto

1. Das lineare System ist hyperstabil.
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2. lim i[lo’t] = 0 fiir alle X, € 8" und alle nichtlinearen Systeme

toe

der Klasse P im Riickfiihrzweig. |

(A8.8) Satz (Asymptotische Hyperstabilitit, Hyperstabilitdt):

Das lineare zeitinvariante zeitkontinuierliche System (A8.1) ist genau

dann asymptotisch hyperstabil, wenn seine Ubertragungsmatrix

(A8.9) G(s) = CBs - A1 B+ D

streng positiv reell ist und sdmtliche Eigenwerte von (A8.1) negativen

Realteil besitzen.

Wenn das System (A8.1) vollstdndig steuerbar und vollstidndig beobacht-
bar ist, so ist dieses genau dann hyperstabil, wenn die (bertragungs-
matrix G(s) positiv reell ist. [ ]

(A8.10) Anmerkungen

Die Hyperstabilitédtsaussage bezieht sich ausschlieBlich auf die Zustands-
groBlen des linearen zeitinvarianten Teilsystems. Aussagen iiber die Be-
schranktheit eventueller innerer ZustandsgroBen des allgemeinen nichtli-
nearen Systems im Riickfihrzweig mit der Eingangs-Ausgangs-Beziehung

v(t) = flw(-),t] werden hierbei nicht gemacht.

Bei der Definition der Stabilitdt einer Ruhelage ¥p = 0 i.S.v.Ljapunov
(siehe Definition (1.15)) werden schirfere Forderungen an die Loésungen
i[io"] der Zustandsdifferentialgleichungen gestellt als bei der Defini-
tion der Hyperstabilitdt. Wenn die Ruhelage Xp = 0 stabil i.S.v.Ljapunov
ist, muBl zu jedem ¢ > 0 ein 6(e) > O existieren, so daB fir alle

i(to) = X, mit

HioHar < 6(e)

die Ungleichung

Hzizo,tJHRn <e fir alle t >t

erfillt ist. Hieraus folgt z.B. unmittelbar, daB zum Anfangszustand

X, =0 die Lésung x[0,*] = 0 gehéren nuB. Demgegeniliber ist bei der De-
finition der Hyperstabilitidt die Norm des Zustandsvektors x[x ,t] in
Abhdngigkeit vom Anfangszustand X5 durch eine Gerade mit der Steigung

n abschatzbar, die fiir T, > 0 nicht durch den Ursprung verlauft (siehe
Bild A8.2).
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b ilxCa,t] g

NY¥o]

Bild A8.2: Zuldssiger Bereich fur die Norm des Zus
des linearen Teilsystems eines hypersta

tandsvektors i[lo’t]
bilen Regelkreises

Bei einem hyperstabilen Regelkreis kann somit nicht durch entsprechende

Wahl von X, sichergestellt werden,
i[Lo,t] fiir beliebige t kleiner als ein beliebig kleines € > O bleibt.
Vielmehr ist die kleinste Schranke fir die Norm von 1[50,t] gegeben

durch L (fir X, = Q). Da iiber die GroBe der Konstanten n 2 0 nichts
tlinearen Riickfiihrblock fest), ist

] beziglich

daR die Norm des zustandsvektors

ausgesagt ist (70 liegt durch den nich
0 startende Trajektorie x[x,,

der Norm groBe (aber durch nv, beschrinkte) Werte annimmt (siehe Bild
A8.3). Insofern scheint die der Hyperstabilitat zugrundeliegende Forde-
rung recht schwach zu sein. Man erinnere sich jedoch daran, da die sehr
gebrduchliche Definition der BIBO-Stabilitdt eines Ubertragungssystems
(siehe Abschnitt 3.1.1, Bemerkung (3.5)) shnlich schwache Forderungen
enthialt. Bei einem BIBO-stabilen {bertragungssystem muB namlich zu jeder

es méglich, daB eine bei x =

durch eine beliebige Konstante M beschrankten Eingangsfunktion,
{ [
Ixl 0.t fx[xo .t
nllo’ﬂlolmﬂl
Mo
Ixokg" '
t
0 - o —— —
to ty

Ellg_ﬁﬁ;ii Mégliche Verldufe der Norm des 7ustandsvektors i[io't]
elkreises

des linearen Teilsystems eines hyperstabilen Reg
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[fuC) [, < M
eine in der Form
[{y()]T, < L(M)

beschrankte Ausgangsfunktion y(+) des Ubertragungssystems gehéren, wobei
iber die GroBe der Konstanten L(M) allerdings nichts ausgesagt ist. Wird
ein BIBO-stabiles Ubertragungssystem mit der Eingangsfunktion uf(e)
angeregt, so ist es zuldssig, daB die Werte y(t) der Ausgangsfunktion
Betrédge bis zu einer festen Schranke L annehmen.

Die Hyperstabilitdtsaussage bezieht sich, ebenso wie einige Stabilitats-
aussagen des 3. Kapitels (siehe z.B. Kreiskriterium, Abschnitte 3.2, 3.3
oder Popov-Kriterium, Abschnitt 3.4) auf eine ganze Klasse nichtlinearer
Teilsysteme. Im Unterschied zum Kreiskriterium und zum Popov-Kriterium
ist die Klasse der nichtlinearen Teilsysteme bei der Hyperstabilitdts-
theorie erheblich erweitert; dafiir darf jedoch keine FihrungsgroBie von
auBen auf den Regelkreis nach Bild A8.1 einwirken. Hierbei ist aber an-
zumerken, daB in Anwendungen der Hyperstabilitidtstheorie der zu behan-
delnde Regelkreis meistens erst in die Struktur nach Bild A8.1 trans-
formiert werden muB. Die FihrungsgréBe(n) des urspriinglichen Regelkeises
ist (sind) dann in der transformierten Struktur nach Bild A8.1 meistens
implizit in dem nichtlinearen Teilsystem enthalten. Beim Kreiskriterium
sind nur nichtlineare Teilsysteme v(t) = flw(+),t] zugelassen, deren
Eingangsvektor w(t) und Ausgangsvektor v(t) nach (3.73) komponentenweise
zu jedem Zeitpunkt t die Sektorbedingungen

(0 v Ow ) < vk (1= 1)

erfiilllen (bei der Ubertragung der Ungleichung (3.73) beachte man
wi{t) = e(t), v.(t) = (Ne)(t)). Demgegeniiber ist die durch die Popov-
Ungleichung
t
T 2 .
J[ v (0wlt)dr > - T, fir alle t > t

o

0

festgelegte Forderung an die nichtlinearen Teilsysteme erheblich schwi-
cher, da eine Mittelung beziiglich der einzelnen Komponenten vy (1)w ()
und eine Zeitmittelung vorgenommen wird.

Der Begriff der Hyperstabilitdt schlieft beliebige Teilsysteme der
Klasse P im Riickfiihrzweig ein. In Bezug auf diese Klasse ist die Aus-
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wendig und hinreichend. Wen-

sage des Hyperstabilitatssatzes (A8.8) not
Regelkreis mit bekanntem

det man diesen Satz jedoch auf einen konkreten

nic ; : . . R
htlinearen Teilsystem an, so ist die Stabilitadtsaussage bezogen auf

diesen Regelkreis nur hinreichend. Beim Kreiskriterium (3.57) und beim

Popov-Kriterium (3.187) sind auch die Stabilitatsaussagen fir die je-

weili : : . . :
lige Klasse von nichtlinearen Teilsystemen nur hinreichend (wenn

reelle Systemgroflen betrachtet werden).

uf den Fall erweiterbar, daf in der

Die Hyperstabilitatsaussagen sind a
lsystem des Vorwidrtsblockes zeit-

Struktur nach Bild A8.1 das lineare Teil
variabel ist und durch die pifferentialgleichungen

io - Ao+ sou o 2l T 5

1}

(A8.11)
Clt)x(t) + p(t)ult)

wit)

) Matrizenfunktionen

beschrieben wird, wobei A(+), B(+), C(+) und DO
d. Die Definition

sind, deren Elemente stiickwelse stetige Funktionen sin
der Hyperstabilitat ist in diesem Fall mit der Definition (A8.5) iden-
tisch, nur ist x(t) jetzt der Zusta

systems (A8.11).

ndsvektor des Differentialgleichungs-

(A8.12) Satz (Hyperstabilitdt eines linearen zeitvariablen Teilsystems):

Hyperstabili*

r Satze (A7.7)
[ |

ge Bedingung fir die
daB dieses elnem de
Seite 385).

Eine hinreichende aber nicht notwendi
tit des linearen Systems (A8.11) ist,
oder (A7.13) geniigt {siehe LANDAU [A8.1],

er Teilsysteme besonders ein-
) (bzw. Ubertragungsfunktion
versuchen, Regelkreise soO

m zeitinvarian-

Da die Positivitdt linearer seitinvariant
fach mit Hilfe der Ubertragungsmatrix G(s
G(s)) iiberprift werden kann, wird man meistens

umzuformen, daB eine Struktur nach pild A8.1 mit lineare
tem Teilsystem im Vorwartszwelg zur Stabilitétsuntersuchung vorliegt.

A82 Zeitdiskrete Regelkreise

sinngemaB auf

s A5.2.1 {ibertragen sich
durch Differen-

ferentialgleichungen
ichungen ersetzt werden.

Die Ausfithrungen des Abschnitt

zeitdiskrete Regelkreise, indem Dif

zengleichungen und Integral- durch Summengle



552 A8 Hyperstabilitit

Das lineare zeitinvariante System im "Vorwdrtszweig" (siehe Bild A8.1)
sei beschrieben durch die Differenzengleichungen

x{k+1)

I
| ==
| =<
oY
-
-
+

Bulk) ; x(k ) =

j=

(A8.13)
wik)

n
10
e
N
~
-
+

D

|=
~_
~
p—

(x(k) e B" ; w(k) « RP ; u(k) ¢ RP)
Das System im "Rickflihrzweig" in Bild A8.1 sei in der allgemeinen Form
(A8.14) v(k) = £0{w(j)},k] (j<k)

darstellbar. Dieses System darf nichtlinear und zeitvariabel sein.

(A8.15) Definition (Klasse 2’ ):

Die Klasse 2  sei die Menge aller nichtlinearen zeitvariablen zeitdis-

kreten Systeme der allgemeinen Form
vik) = fl{w(j)},k] (j<k)

bei denen das Skalarprodukt der EingangsgroBe und AusgangsgroBe die
sogenannte Popov-(Summen)Ungleichung
k
(A8.16) > v u) > - vZ o fir alle k > k,
v=k0

und beliebige Eingangsfolgen {w(k)} erfiillt, wobei T, > 0 eine beliebige,
aber beziiglich {w(k)} und k feste Konstante ist.

(A8.17} Definition (Hyperstabilitiat):

Das lineare System (A8.13) heift hyperstabil, wenn eine Konstante n >0
existiert, so daB in der Regelkreisstruktur nach Bild A8.1 fiir jedes
feste v > 0 alle Lésungen {i[iofk]} fir alle nichtlinearen Systeme im

Rickfihrzweig, die der Ungleichung (A8.16) gentugen, durch die Beziehung

(A8.18) Ili[go,kllan SoncUlx e y)
R
fir alle k > kO abschdtzbar sind. Man spricht dann auch von Hyperstabi-

litdt des Regelkreises. |
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(A8.19) Definition (Asymptotische Hyperstabilitat):

Das lineare zeitdiskrete System (A8.13) heift asymptotisch hyperstabil,

wenn gilt:
1. Das lineare zeitdiskrete System 1ist hyperstabil.

2. lim k] = 0 fir alle x_ R
- —0

koo l[io

und alle nichtlinearen Systeme der Klasse P im Riickfithrzweig. [ ]

(A8.20) Satz (Asymptotische Hyperstabilitat, Hygerstabilitﬁt):
A8.13) ist genau dann

Das lineare zeitinvariante zeitdiskrete System (
asymptotisch hyperstabil, wenn seine {Jbertragungsmatrix

(A8.21) G(z) = C [Ez - AT B+D

streng positiv reell ist und sémtliche Eigenwerte VOl (A8.13) betrags-

maBig kleiner als eins sind.

Wenn das System (A8.13) vollstandig steuerbar und vollstandig beobacht-
bar ist, so ist dieses genau dann hyperstabil, wenn die Ubertragungs-
|

matrix G(z) positiv reell 1ist.

(A8.22) Anmerkung:

Analog zum zeitkontinuierlichen Fall konnen hinreichende Aussagen iber
tdiskreten Systemen

die Hyperstabilitdt von linearen zeitvariablen zeil
in denen hinrei-

gemacht werden. Diese Aussagen greifen auf Satze zurick,

chende Bedingungen fir die Positivitat von linearen zeitvariablen zeit-

siehe LANDAU [A8.11, Seite 386). -

diskreten Systemen formuliert sind (

A8.3 Eigenschaften von Systemen der Klasse -~ bzw. A

von Systemen, die durch

Der folgende Satz behandelt die Eigenschaften ’
der Klasse 2’ entstehen.

Kombination von Systemen der Klasse P bzw.

P bzw. P ):

stemen der Klasse

(A8.23) Satz (Zusammenschaltung von S
ung oder einer Riickkopplung

Ein System, das sich aus einer parallelschalt
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von zwei Systemen der Klasse # {bzw. Klasse 2 zusammensetzt, gehort
wieder der Klasse # (bzw. Klasse 2 ) an (siehe Bilder A8.4 und AS8.5).
[ |

Bewels:

Wir beweisen diesen Satz fiir zeitkontinuierliche Systeme, d.h. Systeme
der Klasse ® . Der Beweis ibertrdgt sich analeg auf zeitdiskrete Systeme
indem Integrale durch Summen ersetzt werden.

Fir das System P1 gelte die Ungleichung
t

8.24) [ yltow (ddr > - 42,
t

o
und fir das System P, gelte
t
(48.25) [ vJ(o)w,(e)de

t
0

v

" o2

Im Falle der Parallelschaltung erhalten wir mit W= W, =W, und
VEVy ot die Abschiatzung

t t t
jiT(T)E(T)dT - j vy (O, (1) d f vy (0w, (x)dx
t t t
0 0] 4]
(AB.26)
2= ligp v gy = - o

womit die erste Aussage des Satzes bewiesen ist. Im Falle der Riickkopp-

lungsstruktur gilt mit w = Wyt yyund v, = v = W, die Abschitzung
t t
T T
[ Mmoo+ v
tO tO
t t
T T
(A8.27) = [ oo v [ oy, o
tO tO
2 2 _ 2
2= (g v rgp) = - To 0

womit auch die zweite Aussage des Satzes bewiesen ist. |
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—pd  System P,

|m
W
|1<

eyt System P,

e JO (bzw. p, )

Bild A8.4: Parallelschaltung von zwei Systemen der Klass

System P,

System P, pe=————"

131_151_1\8_-_5_: Riickkopplungsstruktur ven zwei Systemen der Klasse ?

(bzw. P')

(A8.28) Anmerkung:

D ;

.16 Reihenschaltung von zwei System
i - . ) .

m allgemeinen nicht wieder ein System der Klasse #

en der Klasse 2 (bzw. 2" ) liefert
(bzw. 2 ). B
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