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INTRODUCTION 7

~Let X be a compact space and Y a closed subset of

B e

X. For Mk, the complex k x k-matrices, consider the (C*-
algebra of continuous functions f : X ~ Mk with the
property that f(x) 1s a diagonal nmatrix for all x - Y.

We shall study the K-theorv of this C*-algebra and some
T )
closely related C*-algebras tor various spaces X and Y.

-

The tools use{:%n this study are a Maver-\Vietoris Sequence
and a Puppe Sequence for K-theory of C*¥-algebras, both of
which reduce to the respective sequence in K-theory of )
locally compact spgges 1t the involved C*—algebras are //////%
commutative. |

First we set up K-theorv of unital C*-algebras, fol-
lowing the approach of Karoubl We detine relative K-groups
Ka(¢) for unital L*/49{p11\M\. : and prove two exeision
theorems, which will allow us to define K-theory of non-
unital C*-algebras. Moreover, we show that the K—fenctors

do not distinguish between homotopiz\gj;mgng;sms. This will

enable us to definé K, of a C*-algebra for all n ¢ N and

to establish a long exact sequence in K- theory‘assoc1ated

to a short e\act sequence of C*- algebras We also define a

'C\p\product in K- theor} of C* algebras which will be a

ZZZ-gradedkbil\inear map K,(A) x K (B) > Ky(A ® B), give

some of its basic properties, and use it to define module



e

“'structures on the K-group

192]

which generalizes the wéll known splitting principle for
—wk@} ee . ' -
=

vector bundles over compact space

1



CHAPTER T: K-THEORY FOR UNITAL C#*-ALGEBRAS

N

Al ‘This chapter is devoted largelyv to the introduction of

- notations and terminology which will be used throughout.

2

We also give the definitionsland establish some basic proper-

ties of the K-groups for unital C*-algebras.

y’“ﬂ - s -~

-, s

[.1. Definition (cf. {K]: II.2.1). Let C be'ah’gﬁaitiye

category. Let- C(E,F) dnote the set of C-morphisms E~F.

A Banach structure on C is given by a completely normable

topological vector space structure (over €) on all

L -

C(E,F) such that the composition of morphisms -

C(E,F) x C(F,G):~» C(E,G) 1is bilinear and continuous. A

Banach category is an additive category provided with a

Banach structure.

1.2. Definition (cf. [K]: IT.2.1). Let C and C! be

»additive categories and ¢ : C >~ C" an additive functor.

Then ¢ is“called quasi-surjective if evVery objec¢t of ' C'

Tis a direct factor of_an~iject'isomorphic to'an object of
the form. ¢(E) with E e Ob(C). 7
o is called full if C(E,F) = C'(4(E),®(F)) is sur-.

'.jective,, If C and " C' -are Baﬁgch-c?tegoriés, the

functor ¢ 1i$ called a'Banqch.functOE if-

C(E,F) > C‘(¢(E),¢(Pj)’ is linear and'continﬁous.gry T,

/
_ A
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’i.S. Lémma (cf. [K]: IT.2.9). Let P(B) -be the cafegory

of finitely generated projective-(left) modules over B and

.ga' module maps, Then P(B) 1is a Banach category.

B . - e
wee - Proof: The proof is ‘done in several steps. First we con-
9

~_ & sider an object E ¢ Ob(P(B)) and endow-it with a completely

normable topological vector space structure. If

E e Ob(P(B)) . is free, we can give "it the product norm of

B, If L « db(P(B)) 1s not ' free, then there 1s a projec-
tion qf B-modules p : B" -~ I ‘onto L. Equip E with the
quotient topologey. Then [ i; Coﬁﬁléte.

Next, wé show that this topology does not depend on the
pérticular choice of p. Let q : R™ - £ be another
‘B-module projection onto I, then we get the following
commu%ativq d?ﬁg{éms | ’

g
. v
- and la
v
™ > E
. q

where the existence of the module maps u and v follows

~from the'projectivitylpf E.© Now wu and . v are
= au£o£§$1ca11y GﬁﬂtiﬁUous}’since’they are implemented-by ) gaﬁ
mxn, respectively,. nxm matrices with entries in *B in

- the usdal way. Thus, the two quotient topologies agree.

»
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‘We call the topology on  E the canonical topologyv. The
canonical topology on E is actually the same as the inducedgq
topology given by the injection j . E~B" whith inverts the

projection p on the right, i.e., satisfies p=3j =1

&

i _ =
' o Ind ' t= j s : -~ B . ' S
NG In eed, consider f j=Dp B B™, . then f is a module

homomorphism, hence ?E“E@Qtinuous. Therefore; . § "is con-

tinuous, too, -since E‘ carfies the quotient topology with . Y
respect to p.  Clearly, p 1is Coﬁtinuous by definition, |
and p?>j = 1Ei Def{ne g ; J(E) ~ B by g(x) = p(x). If
-~ Uec E 1is open, then p-l(U) ‘is open-in B" and gfl(U) =
\pﬁl(U) n j(Ef. Hence g_l(U) 1s open in"j(E) with regpect
to the éubspace gopology, thus ¢ 1is co&t;nuoﬁsfﬂ Moreover,
if 3" : E Q j(E) denotes the corestriction of j, we have
go j'r’s= lé and j' * g lj(E)' This impligs that j' is,
a homeomorphism and thus j is an embedding, which proves
: »

our claim.
The negt steé 1s to equip P(B)(E,F) = HomB(E,F) with
~~he structure of a compietely normable vector space. The
tobology of uniform con§ergence on bounded sets .turns the

vector space L(E,F) of all continuous linear operatdrs

E - F with respect to the canonical topologies of E and

- F into a complete topological vector space. This topology"
Ls'camgﬁtlble'w1th the operator norm
Ell = SuPHmlusél Hf(m)ﬂj; for any pair of -norms on E ™and

F compatible-with’ the canonical topOlogies on _E, F. We

-

'show that P(B)(E,F) 1is a closed vector subspace of L(E,F):



&

~#It 1s clear that HomB(E,F) 1s a vector subspate of L(E,F).
Pick norms on E and “F, which are compatible with the

canonical~fbpologiES; Endow L(E,F) with the correspond-

w@ﬁ U . 7
iftg operator norm. To prove that HomB(E,F) 1s closed in.

~

?’,{,L(ExF),' 1t 1is enough to show thét £ fi € HomB(E,F)
converges tpwrf in . L(E,F), f has to be in Homy (E,F),
i.e., f(bm) = bf(m) b e B, m < L. But
»Hf(bm) i,bf(m)HF < ||f(bm) :- fi(bmﬂjhj+g\fi(bm) —'bfi(mﬂlF

SAIBE () - bF(m)|| < || Fbm) - £ (bmfi .+

lH)HBJIEi(m) - f(m)l\F. Now uniform continuity proves that
|£(bm) - bf(m)|] = 0, i.e., f(bm) = bf(m). "To complete
%

the proof of the lemma we have to ‘how that the compositibn

of morphisms P(BjEE,F)'X P(B)(F C) - P(B)(E,G) 1is

bilinear and continuous. But this 1s clear since the com-

position of lineaf operators L(E, F) x L(F,G) »~» L(E,() 1is

b111near and continuous with respect to the topologles of

—

un1f01m convergencg\on bounded Sets 5

~

~ ' 8
: Note that ther§§is no- canonical norm#on an

E ¢ OB(P(B)), so we don't ask for a Banach space structure
'on E, as it might séem natural. This problem does not

occur in [K] II 2 9 ‘because Karoubi giveé-nb proof.
n . - ’ T (,;.o ’

I.4 Lem@é; (cf.‘[K]: ITQZ.Q)}" Let  §-'hnd A bé'unital

C*-algebfas. Let 73 :ESQ-A  be a unital_C*—homombrphi§m.

Consider A .as a rféﬁt B-module via’ a - bv='a¢(b). and.

- B

»

et A 8, E'_be the algebraic tensor product of the~righti

B . N - -
-~ [ - to . : . ’ )
. '._ . - B : —
. . . . .
> .
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B-module A and the left B-module E. Then A @B E 1is a

left A-module with a - (a' & x) = aa' ® X. Then‘ghe assign-

B
@@; B

ment ¢, P(B) - P(A) detfined by~ Q*(E) = A 8, E  on
%j on morphisms cf. [M], §2

Shjects and by o6,(f) = id, e

RIS

for these definitions) is a quasisurjective Banach functor.

Further, ¢, 1s full iff ¢ is surjective.

Proof: It is easy to see that ¢, 1is a functor. Moreover,

v &

n

1s #¢, cClearly quasisurjective, since. &,.(B ) = A NOW

let f : E » F be a morphism in P(B)(E,F). We first con-

sider the case I = Bn,'F = ™. Then f : B" » ™ may be
identified with that m =< n-matrix 'C = {Cc_, ). with -

- ' nk’j=1...m

7 k=1...n
entries in B for which” pr.f(x) = 3. c. . pi(x), j=1,...,m.
S ] Ko JRTK

Then ¢,(E) = A @B.Bn = (A ®R By may be canonically
identified with A" via the 1somorphism a —> a ® 1

A > A B, B. Likewise, we identify ¢,F with A", It is

B
réadily observed that the matrix associated with

n

Ga(£) 1 ¢4E » ¢.F after identifying o, (E) fwith A" and

é*(f) with A™ is ¢#(C):= (¢chk)) . 0 This shows

j=1
, k=1...n
the continu{iz—ifg/{{;;arity of ¢, : P(B)(E,F) -

'~P(A)f¢*E;¢*F). Now, let E,F e Ob(P(B))" be arbitrary.

m .

N E,'pF : B" - F and cor-

Select projections Pg ¢ B*
fegﬁbhding copfdj%ftioﬁs' jE . E - Bn; jF © F > B™, -Tbe.
commutative”diagram, |

a

v



N - : n
7 @ 8
: . .
. Bph -  ' £ > gMm
. ‘\\<E; o 22///
el o E___ji__o F ]
0" J l o™
. V ¢*ET>¢*F '.
] ’ .
$ %) DD :
! / E ‘xv
, ¢*Bn - A0 . S ¢me
ot (Cp)

may be rephrased in the commutative diagram

¢ :
P(B) (E,F) S P(A)(64E,04F)
P(B) (B",B™)— SP(A) (AT, AT
o C —>6"(C)

. This proves linearity and continuity of ¢, pfovidgd one
. can show that the injections P(B)(pE,jF) aﬁd
P(A)Efizg}j4§;3 are embeddings. But P(B)(jE’Pp)
o P(B) (pg,dp) = P(B) (pgig,ppip) = P(B) (3dg,idp) =
idP(B)(E,Fj; Thus;P(Bj(pE,jF)’i?;glqoretraction of
;caﬁplétely pdrmgple spaces, hence is an embedding. - The
Same argument wonk§ fo} P(A)(¢*pE?é*jF3' hThiS conciudes
“the proof that ¢4 1is a Banaéh functor. The assertion

cthat™ ¢y 'is full iff ¢ is surjective is clear if E and

-

-

” AN N -
[T od i .
~ . . * ’
. - . N
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F are free, since for ¢ surjective one can lift any A-

matrix to a B-matrix. The general case follows easily from

the described embeddings.

We, are now ready to define the KO and ~K1 groups for
unital C*-glgebras and pairs of unital algebras. We follow
Karoubi's approach, ~——

1.5 Definition (cf. [K] II.1.7). Let B be a unital C*-

algebra. Consider the set TB of isomorphism classes of

modules in P(B). 'For E ¢ Ob(P(B)) denote the class of

E by [E]. Defiﬁe an equilvalence relation on FB :by
setging [E} ~ [F]  1if there exists ;/ G e Ob(P(é)) such .
that E.® G = F ® G. Denote the class of [E) En FB/:"

by [E]. Then FB/~ 1s a cancellative monoid with respect

N

to the addition [E] + [F] = [E ® F]. Let KOQF} be the

Grothendieck group of T

B/~ l1.e., the group of formal
differences of elements of VFB/~'
Note that this definition is based only on the ring “_

structure of B. The full C*—algebra structure of B . does

" not enter.(

(]

[.6 Definition (cf. [K] 2.13). Let ¢<:‘B > A be a unital

C*-homomorphism. Consider the set of triples ~

g

r(¢) := {(E,F,a) : E,F eOH(P(B)J, o ¢LE > ¢p.F én isombrphism,}(

Two triples (E,F,a) and (E';F',a') ~are called

isomorphic, written (E,F,a) 2 (E',F',0'), if there exist

L - S N
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isomorphisms f : E - E' and g : F » F' which make the

following square commute

- 7 é.E

Oxf Cx8

\ v

Q4B — i > 0xF!

A triple (E,F,a) 1is called elementary if E = F and o 9

1s homotopic to 1
. pic bk

addition on T (¢) byssetting “ {E,F,a) + (E',F',a') :=
@

within Aut(¢,E). Define an
%

(E ® E',F é F',a & a'). The definition makes T(¢) *~ into -
a cdﬁmutative monoid. Define a congruence rqlation on
-T(¢)  by setting o ~ o' for o,0' ¢ I'(¢), 1if there
exist elementary triples 1t and <t' such that

o+ 1 =0' + ', Denope the.equivalence class of (E,F,a)

by d(E,F,a).,. Theﬁ K0(¢) is defined as the quotient ’ﬁ\)

monoid of T (¢) modulo ~. It turns out that K0(¢) is

—*

a group. :

Note that A =0 1is viewed as-a unital ék—algebré.

Then, for ¢ : B » 0,. we can identify- Ko(¢) and Ko (B)

(cf. [K] Ii.zhléj;_

E

-

The;following lemmas are stated .and proved in [K] and =

“are é%afed here only for the sake of cdmpletehess. They

;;k;\_—Will enable us to give an alternative description of K0(¢),
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which will be useful in actual calculations.

[.7 Lemma (cf. [K] II.2.14). Ky(¢) 1is an abelian group.

1)'

@& . B
- J%e inverse of d(E,F,a) is d(F,E,a

ims
\Eﬁig@. [.8 Lemma (cf. [K] IT.2.15). For d(E,F,a) and d{(E,F,a')

in KO(¢) with «a 'homotopic to  a wifhin the space of
isomorphisms from ¢,E to ¢,F, we have d(E,F,a) =

5
o

d(E,F,a').

1.9 Lemma (cf. PK] II.2.16). For d(E,F,a) and d(F,G,R)

in Ky (), we have that d(E,F,a) + d(F,G,8) = d(E,G,8a).

1.10 Lemma (cf. [Kj I1.2.20). The map§> JjE o K0(¢) +KO(B),
given by d(E,F,a) —> [E] - TFT and o* : K (B) » K,(A),
givén by [E] - [F] —> ¢«E] - [oxF] " are well-defined

grodﬁ homomorphisms yielding the exact sequence

o o ’ ; \ ’ ; . -
K0(¢) j*> KO(B) ¢*> hO(A)f Moreover, if there exists a
C*-homomorphism ¢ : A > B such that ¢ oy = idA, we get

a split exact sequence

0 > 0.

> Ko (9) —3> Kp(B) —> Ko (A)

I.11 Lemma (cf. [K] IT1.2:25). Let ¢ : B > A be a'sﬁr—

jective.unital C*—homomdrphi§g.— If t = (E,E,a') € I'(9)

e

is an elementary .triple, fheh T (E;E,id¢ E)'
g ’ . *

-

1.12 Lemma (cf. [K} -I1.2.26). Let ¢ : B -.A be as in
I.ll.‘-lf we replace elementary triplés in the definition
N a »

A
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" of KO(¢) by triples of the form (E,E,id¢*E) and proceed

in the same fashion otherwise, we get the same group KO(¢).

£%3 -Fheorem (cf. [K] II.2.28). Let ¢ be as in I.11, then

(E,F,0) = 0 in K (¢) iff there is a G ¢ Ob(P(B)),
which can be chosen to be free, and a module isomorphism

B :E®G~F ®G such that y,8 = a ® id, ..
| , 540G

. Note that this description of Ko(éﬂ‘ does no longef

involve the topological structure of A and B.
‘We now turn to the definition of Kl. Here we can
‘rely only partly on previous work. THe notion of relative

Kl—groups»has, to my knowledge, not been used before in the

context of C*-algebras.

J+-I4 Defsnition. Let ¢ : B - A be a unital C*-algebra

homomorphism. Consider the set of pairs

ri(8) := {{E,a) : EcOb(P(B)), o ¢ Aut E, d,a = id, .
. ) . ¢

. Two paifs (E,a) and (E',a') are called isomorphic,

IR

written "~ (E,a) (E',a'), if there is an isomorphism

‘h : E »-E' which makes the following square commute: .

"“E > E!
a 'a';
¥ V v
E : > E!
° h
- -3 .
4 S
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A pair (E,a) 1is called elementary if o 1is homotopic to

id in Aut E relative to A, written qe= idE rel A.

E

This means that if 04 is the homotopy between o and
idE, we havg $x0, = id¢*E for all t ¢ I. Define an
addition on T,{¢) by (E,a) + (E',a') := (E®E', a ® a').’
For 0o,0' ¢ F1(¢), define a relation ~7'by o ~ o' if
there exist elementary'bairs T.'and T' such that

o+ 1 =0' + 1t'. It is easy to check that ~ 1is a contru-
ence. Denote the equivalence class of (E,a) by .d(E,a).
Now set K1(¢) D= Fl(¢)/~. For A =0, ¢(B) = 0, we set
Kl(B) = K1(¢).

It is easy to see that Kl(¢) is a monoid with zero

’as neutra1 elément. In the‘¥ollowing we shall show that .

K1(¢) 1s an abelian group and give an alternative

. description of K1(¢), which will prove useful in

calculations.

I.15-Lemma. With the notation of 1.14, wé have that

.d(E;a)r+ d(E,a_l) = 0. Thus K,(¢) 1is a group.
Prbof: It suffices to show that o ® o 1= idE(BE rel A.
1-tf -9\ Y st N\A Tt B
Let Op = | \
t C1-t 0 1 to 1 i
L N
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then we have 0y = . > = idE ® idE and
g 0 -1%Y0 -a 0 1\ /0 -« ™\ . ,a 0
_ : _ - B -1
SR AT I O [ R
1 O a 0 -1 0 o 0 0 o
g e A )
Moﬁe?Ve?:“we see, from 1.4 and ¢,(a) = id¢ E that
LY | : -
s 1-tf cz-tH e\ Y1 e\ /1 o\ /1 -t 10\
(b*(ot): o= b
t 1-t- 0 1 t 1 0 1 0 1 ’
now with entries in C - lA instead of (- lB' Z

1.16 Lemma. Let B,A,¢,E be as in I1.14. Let a,a' € Aut E

be such that ¢,(a) = id¢ E = ¢4(a') and o =~ a' rel A,
+E

Then - d(E,a) = d(E,a').
2

Proof: d(E,a') - d(E,a) = d(E,a') + d(E,a }) =
d(Er@ E,a' ® a-l). The last term is zero, since
a'®al s a e ol s idg ® id. rel A by I.15.

é:jf.lz Lemma . Let —¢ : B -~ A be a unital C*—morphism.. Then
a) K1(¢) is abelian, ) '
| . ..b)  d(E,a) + d(E,B) = d(E,aB) = d(E,Boc) for all

a,B € Aut E.

Proof: a) We want to show d(E @ F,a 8 B) = d(F®E,8 8a).

szet h: E®F~>F®E be the isomorphism which simply

interchanges summands. :«Then the folloWihg square commutes:



<5

| : B o R
} - o . /f/ 15_1

E ®&® F > F & E
’ o @ B 5® o
v v
E ®F s F & E
- h > -
/
ﬂ@ T
Thus (E ® F, o & B) is isomorphic to (F ® E, 8 8 o)
'f°~$ which proves the first claim. ‘
- b) By adding elementary pairs, we get d(e) =
} d(E ® E, aB & idé).' Thus, it ;uffices to show

af ® idy ~ o 8 B =B @ a = Ba ® id; rel A. By I.15, we have

(@ ® 8) L(ap ® idy) =8 6 8! « id, ® id; rel A. Multiply-

ing the homotdpy\from thenleft ith « @78, ‘we obtain

0B @ idy = a ® 8 rel A. Similarly (o8 ®id.)(8 & o) |
% idy  id; rel A and oB @ idp = B ® o rel A. Inter-

changing the roles of o and B8 now proves the claim.

1.18 Lemma. Let B, A, ¢, E, a be as in I.14. Then

d(E,a) = 0 in K1(¢) iff there is a G e Ob(P(b)) such

‘ . thétdgégé}idE & idE@Gfel A in. Aut(E @ G). We can choose

/G tdbe free. O A

wgiggﬁ: {If d(E,a) ¥‘0;‘ithen theré exist elementéry pairs
(G,n)i and (G',nf) in‘ K1(¢) “and an isomgfphism

h : E @76 + G' which satisfies ho(a 8 n) =n'oh. By
Qdding and;herelémentary pair to (G,n) and (Gﬁ,n'), if.

necessary, we can choose G to be free.- Hence, we have

-thafl'a 0 idGrz'ake ﬁ fel’A;}and a.® n.= h : §“'§’h'_
T S A ' PP : C
e h - 01§G, o? rel A'f Thus a\@ 1dG,’ 1dE@Gre1 A. |
B - C 4
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The converse is.clear. - [J .
‘Note—that this description of K1(¢) does still depend
onfthepnotion of homotopy;— ; |
Before we turn to yet another way to view Kl’ Alet us
nove—that ,KO and Ky ~are covariant functors fromrthe
category ofrunitai C*ialgebras and unital C*—morphisms into
* the;category of abelian groups. The proof ie routrne1§o

we only describe how K and K act on a C*-morphism

0 1
¢ : B> A, Since the notation Ki(¢), for i = 0,1, is
already in use, we denote ‘the image of ¢ under“Ki by
¢§. Thenf-¢; 1s the group homomorphism from KiCB) to

K (&) defined by ¢}(TE] - TFD) = T6.5] - T6.F] and

¢;(d(E,a)) = d(¢*E,¢*a),r respectively.

 We now give another descrlptlon of K (¢), which is
extremely useful in relatlng homotopy and K-theory as well
as 1n many calculations. First, we descrlbe Gl(A) for
a un1ta1 C*—algebra A. Let G1 (A) < M (A) be the set
é/ 3 'Qf‘ n><n matrices w1th entrles in A. It 15 well—knfén )
that Gl (A) 1s a topolog1ca1 group, wh1ch is open in ~
M (A) Gl (A) be the connected component of 1 ‘in
Gl (A) ' Denote the'quotlent group GL (A)/Gl (A) by G,
For each n e« N, we obtaln a map from Gl (A) to
ﬁ+1(A) Sending a e Gl (A) oza,@ 1, = <8 »g:%. nNote
that this map sends’ Glﬁ(A)’ 1ntoi’G1g+£(A). :COnsidérithe

- following diagram: -

.. . - . .
. ] . - - - . . . 7
. B ’ - o o : : -
. - . P ' .
- - - . ‘ = ‘ - . .
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G, > G, > G > > 1im G = G_
I A An - o
Gl, (A) » Gl,(A) » ... .. > 1lim G1_(A) =: G1(A)
1 , 2 . N n p
N Az - A
61.Y GL2(A) » ... > lim Glg(A)=:AGlg(A)

%Heye_'ii - denotes thérdifect'limit. The diagram clearly

.2
-

 commutes, and since the direct 1imit commutes with exact
. sequences,  we get the following short exact séquence of
groups- . |

._‘s‘?

o 0.+ G12(A) » GL(A) »'G_ > 0.
e . B | |
Give Gl(A),'Glg(Aj and G_- the inductive  limit topology,

-

i.e., a set”C < GL(A) is closed iff C n GL_(A) . is o
closea,in"Gln(A)"for>a117 n e N. -

1.20 Lemma. Let Xh be a dirécted system of Hausdorff .
Spaces'suth that X < X . for all n ¢ N. Let *

) S n. n+l. ‘ — . o
X.= 1lim X~ be the inductive 1ifit with the inductive limit
topology. Theh any compact set K < X is contained in an
X - for some n e N. ‘ ’ o

o o .
Proof: Suppose K is not'contained,in»any;'Xn;j.We,may”,é

assume Xn+1'# X - Then there exists a sequence k ~of

points 'kn € (Xn;I\Xn)rn K. Since K is compact, {kn}

has a cluster'pbint k e K c X. NoW  k ¢ XQ' for sbme',
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2 € N. The set 7{k,k1,k2,...} ~is closed since it inter-
secte each X~ in a finite, hence cloéedd set; thus it is
compact. On the other hand, {k kl’kZ"'
1nduct1ve 11m1t of the dlscrete subspaces {k’kl”':’kn}’

.} is the

_ywhence it is discrete.as subspace of X. This is a

=2 N

contradiction. 0

L4 r

E

.21 Propos”tion For a un1tal C* algebra A, the group

GlgGA) is the connected component of 1 in "Gl (A).

Proof: [By the preceding lemma, we see that any path in
: GI(A) is actually a bath in hGln(A) for some n e N.
‘Thus, any a e GlO(A) ~1s in Glg(A) for some n. The -

reverse inclusion is clear. U

For a topologicalwﬁiouﬁiﬁﬁﬂ» demote its connected

Acomponent by AGO~ and the quotient G/GO by no(G):

I.22 Theorem. Let B -and A be unital C*—aigebras and

¢ » B> A .a unital é*—morphiSm; Then ‘o induces a -
natural group homomorphism ¢o# : G1(B) > G1(A) ‘and we have
. that K (¢) 2 my(ker ¢#). | |

 Proof: The. map ¢#, is the map 1nduced byxthe

,m¢#': blh(B) + Gl (A) (cf I 4 for the deflnftlon) on the
’directnlimits. Note flrst that for'*A =0, Gl(A) =*0 and

7}¢# is the zero map. Thus,Aln partlcular we . prove that
’Kl(B) = omy (GL(B)).V‘Non’ne<detinerthe map T : K (¢)~+ 'h
no(ker ¢#) wh1ch w111 be the de51red 1somorph15m o

’ . . -
. 3 ~ . .
> .. : ) - ~
) E . . ¢ - S i
» l e - - . - - l
. . - - - \ \
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Let p; : B » E be a projection onto®E and i = E - B!
SO ° . T : . N . &

-

a corresponding co-projection. Let E' be the. compTement .

of E in B" with respect to" (pi,i). For any- o e Aut(E) -

wijiﬂffﬁ9’= id¢*E5 we oefine a.:= a @VidE. Then.
€ Gl (B) c Gl(B) In fact, oy e ker ¢#, since
~$$Ta 3 = ¢*a.i= bpa ® ¢.id., = id (cf. I.4J. Denote
1 - =Y E B I
the class of a, in ﬂo(ker o) by [a.]. Now,‘for

de,a)re Kl(¢)’ we set;‘T(d(E,a)) ="[ai]. To show that

T 1is.well-defined, we have>to show that [ui] does not

depend on the embeddlng - Suppose pj : ™ o E, j : E ~» B™

is another palr of prOJectlon and co- prOJectlon Let E"
_be the complement of E in B™ with respect to (pi,j).
. Then d(B",a;) = d(E,0) = d(Bm,aj). Thus, by 1.19, there

exists a G ¢ Ob(P(B)) such that o. ® id ® id. =
o - N : 1 - ogm ‘G

id m;@_uj @'idG rel A. We can assume that G 1is free,
B v . -

say G = ﬁk. This is the same as saying o. ® 1 ® 1

_ ; , - 7 1 Tgm Bk

is path connected to . 1"n ® aj ®.1 x 1in ker ¢#1 Since
* : B" B -

1 8 o. isrpath connected to o. ® 1 in ker ¢f,. we-
- gt ) J Bnp T S

{have‘[aj] =A[ui]' The same k%nd~of argﬁment'shoWs in
ggeneral that T(d{ﬁju}iiszed(E,B}) if d(E;u) srd(E,a),
V-Thus m,is,well-definedjvhFor‘any'o e ker ¢f, there is
a number, ﬁa sUchAthat a‘eGlﬁ_(B).«Deiim:' ;
r' my (ker ¢f) > K, () by t([a]) = d(B o) -Using—th

same methods as above, It is now routlne to- check ' is

"well—deflned a group homomorphlsm and‘the inverse of T.pﬁ

ThlS concludes the proof c,D

s
3
»

B
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f:Deflne a;= log(y(t )

. - *
3
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We now state a lemma which actually has been a key
ingredient in the proof of Theorem I 13 and Wthh will be

o

used agaln and agaln in the sequel. : |

1.23 Lemma (cf.m[K ]: I1.2.21). Let A. and B be unital

B@nach algebras and ¢ :NB > A a continuous surjective ring

homomorphlsm. {f y : I A 1is a path such that J

Y(%)'e Gll(A) rfor'all t e I' and y(O) = y(b)vifor some
b ¢ Gl (B).  Then there exists a b' « Gl,(B) such that
é(b') = yv(1) and h{“is»copnected to b in Gll(B};

_ o - . o
Proof: Let 'V:= {y e A:l|y-1 < 13,9 then we can define
evlogarithm‘en "V. Find a partition, 0 = tg<... <t = l
' ' -1

of T such that y(t;) 'y(t.,;) ¢V for i =0 ... nT..

Tyt e get () =

vy (0)+ exp(a Yoo ... - exp(a. '1) Choose b, ¢ B such that -

"¢(bi) = a; and-deflne “b" by b':=b ~exp(b1) '...';
exp(bn 1). But. ¢(b'") %7¢(b) - ¢(exp bl) .« ... ;¢(exp bn—i)
and elnce ¢‘ is continuous, - ¢ (exp bi) ='expC¢(bi))Q

fThus, ¢(b ) = y(1). ~Moreover, b' is connected -to b

in hGll(B) via the path ‘b= b exp(th,) @... rexp(tbh:1)

Cwith t e [o 1. o

2

I.24 Lemma;',Let , ang A be unital C*—algebras and - )

a surJectlve C* morphlsm 'VFor~ E € Ob(P(B)) and

o € Aut(E) ~such that w(a) there exists'a

¢*E’
8 ¢ Aut(E) with- 8 ~ ip,°Aut(E) and- ¢*(B)

- -

Mg LE

C



&

Aut(E), i.e., B

¢ | » - R
) . | | _i{{;?}A21

Proof: By 1.3, the set End E can be given a Banaéhfspace

Structure and ¢, : End E > End ¢,E is continuous. By I.4

the map ¢, is éurjective. - Clearly, ¢, is a ring homo-

- morphism. We apply I.23 to obtain a B e Aut(E) with

EFEER) = 1End(¢%E) =.id¢*E and B connected to o in,fv

2

¢ in Aut(E). 0
- . v

-

¢

ggfﬁgzkﬁ we prove the analogue of I1.10 for K;. Note the .
impoertant role Lemma 1.24 plays in the proof. "First, to

simpldfy language, we introduce the notion of a retract.

1.25 Définition, A C*—algebra A is called a retract of

the‘C*-algebra B if there exists a C*-surjection o : B~>A

+and .a C*-morphiém w,: A >~ B such that ¢oy = idA.  The

Cmaprr@ is required to be unital if B, A and ¢ are.

1.26 Proposition. Let B and A be unital C*-algebra and

¢ B> A a unital C*-surjeétion.' Then we get an exact

sequence K1Q¢) ——;—>K1(B)~—E¥+>'KI(A). Mofeoveq? if A
R e - 'n- _ o R
e ’ 1 : 1 - : ;

is a retract of B, we get a split exact sequence .

vy

<= > O;

q),

0

L)

-

- K (B) —

k)

) =5

Baat

Proof: fﬁhéjmaps ¢T and ¢I,'are the images of ¢ and

-.defined by w}(d(E,0)) = d(E,0). Note.that the right hand
d(E,d)_;aenotésithe cléss Qf (E,a) in . KI(B). It is
’ ) . ,;.: )' E ‘,7 : - . ) ' . ’ \,; .
'L;» C w‘_JV
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routine to verify that- 7% is a well-definéd*group homo-

morphism. From the définition of K1(¢), cit:fbllows that

6 °m = 0. Now, let d(E,a) ¢ ker 6F. Then d($4E,b4a) =0,

By I.19, there exists‘a‘ff%e G e Ob(P(B)), say, G = Bn,
@ ;%gghm;hat b0 B idG ~ id¢*E®G in Aut(¢*EﬁfG) =
Aut(¢¥(E ® Bn)), Lemma. I.24 now shows the existence of

, , | —~ o

B ¢ Aut(E ® B") such thet o @ id L = B in Aut(E eB™)
, : : B
./ Thus, d(E,a) = d(E®B",a®id ) =
B

}(EV® Bn}B) defines an element in

- a8 = idy

d(E ® B",8). Bu

%
1°

B, the retraction

K; (9. Thus;id(E:S) -is in the image of
If A isqé retr;éf/éb
induées a';blitting for ¢T. This ¢f is surjettive and it
- only remains to‘shbw that ﬂf. 1s an injection. To this end,'
“view” K () as my(ker’p") and K;(B) as wy(GlL B) .
Then -ﬂ;> maps the(f\ﬁss/pf a € ker ¢# to its c1assiin
.G1(B). Suppose now fhat n;([a]) = 0,"i.e.,'thutAthere_is
»a»pa;h Y ;aj - Gl(B)V ¢0nne¢ting ‘a  and 1G1(B)’ Consider
A=y @ @), then ofiyren - -
o (r(0)) - ofufef (v () 1y = f (v () RGO I PYLA
Thus, y'(t) is a path in. ker of. We have vy (1) = 15 8y
and y'(0) = v(0) - p¥ofy(0)t - |

Thus a _ié actually'cpnnectéd to 1G1(B)7 inside ker ot

a vtefta™h) = ayf(1)=a.

heﬁce  a°e (ker ¢#)9 Aand-v[a] = 0. 0
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CHAPTER II: EXCISION THEOREMS

<
fe3

The purpose‘ofAthis chapter is to prove two theorems,

called the excision theorems, which w111 allow us to define

a K theory for non unltal C*-algebras “Alain Connes proved

;-a-i',ﬁy S
a result Wthh is anafogous to our excision theorem for
0° using the notion of classes of stably homotopic quasi-

isomorphisms. This notion is essentially the same as our
KO(¢). In his proof Connes uées, however, analytic as well
as algebraic techniques, whereas the present proof shows

-that the excision theorem for 'KO is a purely algebraic

~ theorem gnce 1.13 is achieved.

Let B - and A be unital ringé and ¢ : B> A a

fﬁnitel ring homomofphism. ThenrrA becomes a right B—moduie

with respect fo_ a+b:= ap(b). For E ¢ Ob(FGP(B)), we can

form the tens;;fg}nggpt A 8, E.  Then A 8y E is a finitely

,?‘\ .
generated projective left A module, i.e., A 8g E ¢ Ob(P(A)).

For any f ¢ P(B)(E,F), we~have 'idA ® fe P(B)@A@B]3¢\®BI9.

Thé assignment ¢, : P(B) ~ P(A) defined by ¢4(E)-= AQ%BE

“and” ¢*(f) = idA ® £ 1is precisely therfuncter we used

already in'I 4.. There is a canonical map ¢E : E - ¢*'

glven by ¢E(m) =_1A’® m. This' op is a general&zed
module map, i.e., ¢E(bm) = ¢(b)¢E(m) (cf. [M] 52 for these
deflnltlons and propertles)

(:‘ .

23
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IT.1 Proposition. Let

o L lﬂ
8
PO e C

be a commutative triangle of--unital rings on unital ring

homomorphisms. Then for any E ¢ Ob(P(B)), the modules
T4 (04E) and §xE are canonically isomorphic and this iso-

morphism makes the following diagram commute:

v , v

C®E=6,FE <« m.(¢4E) = C ® (A ® E)

IR

~Proof: First consider the case where E is free, say B,

B

rThenA ﬂ;(¢*EJ = C @A(A @B E) = C 8, E = 6¢<E via the map
>fthaf,sends ~c78A(a @B m) to cm(a) @B m. For E, E' such

‘that E @,E"= B, the distributive law for‘;enser products

and difect‘suﬁs shoWs~that the map C é (A'® E) ~» C'@B E
glven by restrlctlng and corestrlctlng the canonlcal 1somor—

phlsm between *(¢*B ) qnd is a well deflned module

'isomorphism. It is easy to check that ‘the. square commutes.

U

~
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Next, we introduce the map which the excision theorem

. Will show to be an isomorphism. ' -

11.72 Proposition. Let

be a commutative squafe of unital C*-al§ebras. Moreover,
assume p and -¢ to be surjective. Then there exists a

natural group homomorphism j* : Ko(p) > KO(¢) given by

8 o).

j*(d(E,F,OL)) = d(Jl*E’J:l*F’JZy&OL) = d(B @ E, B @ F) ldA

Proof: .By I1I.1 we know that A 8y (B ®, E) is canonically

isomorphic tox\A\Sg(C @D E) for EeOb(P(D)). Under this
identification, i X’@C'a -is an isomorphism from -
E, B 8

A 8(B ® E) to A @,(B 8y F), so d(B ® F,

D D
iqA§® a) definies an element in KO(¢). It is clear that -
j*r isradditive, so in order to show that j* is weil-
defined, it suffices to show that d(E,F,a) = 0 implies
that d(é‘@D E,AB @D F,AidA @-a)l= 0. Suppose»;hét |
d(E,F,a) < 0 in Ky(0),  then by 1.13, fhere exists

G e'Ob(P(B)) and an»isomorphism h:E®G->F®GgG suchA

fhat‘the following square cdmmutes:

-]
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idC ® h

C @D(E ® G) . > C @D(F ® G)

o ®id V- id

¥y
¢
Fa

[

. \ \ 4
C ®,(E & G) > C 8,(F 8 G)
o id. & h .

We apply the functor ﬁjz* to this square to obtain, with

the obvious identifications, a commutative square:

id, ® (id, 8 h)
A8 (B 8,(E ® 0)) >A 8,(B 8, (F 8 0))
(id, ® o) @ id id
A 8L (B By (E ® G)) — >A e, (B ey (F 8 6)). -
Cid, 8 (idgeny P P T

Slgce ldB:QD h : B @D(E ® G) >~ B @D(F ® G) 1is an 1som9f-

~*phism, this proves that d(B ®y E, B 8y F, id, @C'a) = 0. O

Now we describe a method ofrconsfructing projective
modules over a pullback, which will be essgntial in what

follows. Let

p s ' ;
.Ll D V g C .
n B > A
’—\f_.;:. . ‘ .f:..w,.?‘,\. .
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‘be a ﬁullbaék square of unital rings. Furthgf, let
E ¢ Ob(P(B)) and M e Ob(P(C)) be such that there exists

an isomorphism Rg : A @C M-> A @B E. We define a module E

over D as the pullback of theAfollowing diagram

;@;— wo . M
. P )
L E ---%-os M
> I : o S
: ///"’j Lo B o]~
B B R L
- E A ®,
o B

Then E = {(é,m) c EB®M: B o j M(m) = ¢E(é)}' The module
. ‘ 2

structure is giben by d -(é,m) = (jl(d)é, p(d)m).

- IT1.3 Theorem (cf. [M] §2). Assume that, in addition to.

these_circumstances, ¢ 1s surjective. Then E e Ob(P(D)).
. - ,

Moreove%, B @D{Ej,is naturally ismorphic to E and

C @D E is naturally isomorphic to M.

Proof: We'oply give the natural maps which the theorem

. 2 ~
proves to be isomorphisms. After identifying B @B E

with £ and C ®. M with M, we note that they are

C

given by 1dB'® Pg I‘Jl*E +.E and 1dC ® Pc p*E-+VM. 0
I1.4 Theorem (Excision for KO). Given is a,pullbackvﬁ
square

D —P c

proon -

B 5 A

¢ ,
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of unital C*-algebras with ¢ surjective.‘ Then the map

j&E Ko(p) > K0(¢),’ defined in II.1 is an isomorphism.

Proof: We split the proof into two lemmas.

<%®21F:5 Lemma. The map j* : Ko(p) - KO(¢) 1s surjective.

Proof: Let d(E,F,a) e Ky(¢), i.e., E, F ¢ Ob(FGP(B))

B F is an isomorphism, ‘Byuéd&ing

an elementary triple if necessary, we can assume without

loss of generalify that F is free, say, F = B™". Then

A @B F = A". Define a D-module E via the pﬁllback'

3
E ___?Q ----- > ¢t
|
- pB:
| chn
v v
' — > An
; & o da

Theorem. I1.3 applies; thus E ¢ Ob(P(D)). Moreover,
a:= idC ® pr + C @D'E > c? is an isomorphism. Thus,

(E,Dnga)_ defines an element of Ko(p). We want to show

e o n . c 8 pll Ay L
that (ngD E, B @D D, ldA 8 q) = (E,B ’i)' For

~.

v hr= idB ® Pe ¢ jl*E_+ E, the naturdl isomorphism from

¢ me e
IT.3, we consider the diagram: ... et

28
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L - idA ® h *
A QC(C @D E)7= A @B(B ®D‘E), - >@A @B E
idA ® o a
g y
= n, _ n ] n
A @C(C @DD ) = A @B(B @DD ) I > A QB B
An

We check the commutativity of the square on elementary

tensors in A @B(B @D E), which we can, without loss of
%

D e). Then

a(oxh(a @5(1y 8 e))) = ala 8y pyle)) = a:d(sg o pyle)) =

é-‘(jzcno Pele)] = a 8c pple) = jyuala 8:(1 8y e)). The

)pommutafivity of the square implies that .

ne

(B ® LE, B ® Dn, id, © a) \%(E, Bn, &). This concludes

D D
the proof. (0

A

IT.6 Lemma. The map j* : Ko(p) > Ky(9) is injective.

Proof: Suppose j*(d(E,F,a)) = d(B 8, E,B @, F,id,® a) =0,

— D
A; before, we can assume F to be free, say F = D", By
I,iS,‘we(can;find a T € Ob(PkB)), which also can be

| assumedifree, say T = Bm, and an isomorphiyl
8 : B 8, E®B" » B such that the £61 16w TN "Square
commutes: | )

"
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B o) E @ B" B » B0 g g™
per ©® ¢Bm
v
m i
A (B 8,E) & A , ¢Bn+m
s ’ m n o o.m
A ©.(C ®.F) 8-A > AN @A™

(idg ®a) ©id

Consider the following commutative diagram:

jy«E & B" . & >pn
J m (1). m J n+m
| E®D j{«xE @B D
: \ m B! n+m
E®D -------mo-ome >D ¢ n+m
B
% jz*a@idzm o
S jyx(04E) & AT — AR
EQD -
/ //////fzg*EGBCm pDn+m lacn+m -
7 y .
o,E & C" chrm
o ® id -
C
s P

Note that both the right and the left square are pullback

squares.. This implies the existence of the map B',
~ and (e ®id )op 7 and of
EeD" ¢ " eed" ._
B'_l, induced by B o j aﬁdiﬁ(a_l ® id ) op
o 1 o ¢ D
Now with g' being an isomorphism, the commutativity“of

induced by B8 o j
! T

n+m n+m’
“the front square proves, dgain by I.13, that 7

d(E,D™,a) = 0. Thus j* is injective. This conéludes the
proof of the lemma and thereby the proof of Theorem I1I.4. ]



N | ' ]

31
Now we turn to Kl' We are going to prove a completely
analogous'result as for 'KO. We shall, however, have to use

an argument which is not purely algebraic. This was to be

expected since we lack an analogue of 1.13 for Ki'
D“‘é";‘_}'}' "o -
II1.7 Theorem (Excision for K

1). Consider a pullback square

of unital C*-algebras

D P > ¢

jl jZ
Vv \%
B > A
¢

with surjective ¢. Then there is a natural group isomor-

phism j* : K, (p) » K;(¢), given by j*(d(E,a)) =

(ji*E,jl*a) =d(B @D E,-idB @D o).

Proof: Note first that if S E - E 1is a homotopy in-
End E, then ldB @D Op ¢ B @D E - B @D E 1s a homotopy
i End-B’@D E. First, we show that j* 1s surjective.

Let d(ﬁ,&) € K1(¢). By adding an elementéry péir if

nécessary, we can assume without loss of generality that
- " \

A ", The fact that ‘£) i§ ? pullback"

E is free, say, E =B
‘allows us to establish a map o : D" > D! wvid the

’ ,
commutative diagram: - ' -
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The map o is induced by & o j pn and o .7 As in IT.6,

1 D

we see that a 1is invertible. The commutativity of the

n

front square now implies that (Dn,a) defines an element

of Kl(p). Moreover, the commutativity of the top square

A

~implies that jl*a = a which shows that

A‘d(jl*Dn,jl*a) = d(£,a). Thus j* is surjective. Now

suppoée that j*(d(E,a)) = 0 for some d(E,a) e Kl(p).

As before, we can assume that E 1is free, say E = B,

By 1.19, we can find a G ¢ Ob(P(B)), without loss of

m

generality. G free, say, G = B, and a homotopy O in
- n+m : : . _ o o
Aut (B )  such that jqx0 ® id m % id n+m rel A. From
. B t B
the following commutative diagram we derive as before the
existence of a family ofzautomorphisms o% :,Dn+m > ptm,
R g :
o gh*m _'t >B'n+m
/ . | /-r |
ph*m___-__1- t_ pi*m
l + id n+m
////;VAP m_ i A
“n+m 5 Vn+m///}y
. > C
1d
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The family of maps 0% is a homotopy as follows directly
from the fact that the family O is a homdtopy. Thus

. o . ol I ;

a 8 ldDm —Oé lan+m rel A and therefore d(D ',a) = 0 by

. I.19. This concludes the proof. d

g "o
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CHAPTER III: VK-THEORY FOR NON-UNITAL C*-ALGEBRAS

(>4

In this chapter we define KO(L) and Kl(L) :for non-
unital C*-algebras. We shall also examine the functorial
properties of KO and Kl' ~Moreover, for a short exact

s -
sequence of C*-algebras 0 - L - B > A+ 0, we define a

®

5 connecting homomorphism Kl(A) - KO(L) which will allow

us to put the sequences from 1.10 and 1.26 together.

ITI.1 Lemma (cf. [K], II.3.22). Let B and A be unital

C*lalgebras and ¢ LB > A“'émhnital C*-morphism. Then
there 1s a natural group homomorphism 'a¢: Kl(A) > KO(¢)

which makes the following sequence exact:

0¥ ' 5 | - %
1, K, (&) —> K, (o) VN K, (B) 0

K.(B) > Ky (A)

Proof: The maps ¢I,‘ﬂ8 and ¢8 have been defined in

1.10 and 1.26. We give the definition of 8¢ : Let
L, d(E",a") "be in K;(A). Then there exists an
| F' € Ob(FGP(A)j sucH'that E{ve F' 1s free overﬁ A, say
- “E' ® F' = A", Then a¢(d(E';a')):= a(s",s", o 6 idg,).
This ﬁakes sense,because;;cb*Bn = Ap = E! @»F'; The proof

-

that é¢ 1is well-defined and satisfies the desired

properties can be found in [K}, IT1.3.22. 0

34
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I11.2 Lemma. Consider a commutative square of unital C*-
algebras B
D P C
E=g . .
Wl Jl .]2
P v \'4
B B »> A
~" a ¢
Then for j*(1): Kk (o) » k. (9) ana 3*(O). Ko(p) + Ko (),
the maps defined in II.7 and II.2, the following dlagramv
1s commutative: |
* ’ *
, n p; 3 md 08
« Ky (0) E—K (D) >K;(C) —2>K(p) B>k, (D) —— K, (C)
.. (1 . . .. (0 . .
je) it i3 54(0) i s
* \ 4 Y \ 4 A
4¥?e4,eﬂ4¢1ﬂ~;4eeexxl>x (A) K, (¢) —=>K,(B) —5>K,(A)
3¢ AN o 0 ¢O 0
k! S 0 :

¢ 9

Proof: All the maps have been defined before. mSubécripts
{p ~and ¢ only indicate for which morphism we construct
the natural maps. The c0mmutat1v1ty of the second and the
'fifth'équares follows from the functorlal;ty of K1 . and

Ky- Let d(E,e) ¢ Kj(p). Then jf- nJ(d(E,a)) =

JHA(E,0) = dGq4F,3qx0) = o5« 5* (1 (d(E,0)), whero the

middle terms mean equivaience classes in Kl(D)o and Kl(B),

n

respectlvely rLet ,d(E',d') € Kl(g) and E' @& F' = C



" 1s clearly-commutative. Let 1L:= {(b,A) e BO®C : ¢(b) =r-1

[ 1
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Then j,.E' ® j,,F' = A". Thus j*(0). b, (d(E" ,0'))

#0900t @ 1dp,)) = d(BU,BY, .00 @ id. L)

7 Jox
Bd)d(jz*E',jz*oc') = 'a¢oj§(a(E',a')). Finally, let

¢TETF,6) € Ko(p). Then j¥o w¥(d(E,F,0)) = jf(TE] - [F]) =

[jl*E] - [jl*F] = ¢ﬂ8(d(j1*E’j1*F’j2*O‘)) =

¢n6gj*§giﬁd(E,F,a)). O

~

> L _J > B ¢ > A

III.3 Lemma. Let 0 > 0 be é‘

short exact sequence of C*-algebras such that B, A and
¢ are unital. Let L be the C*-algebra we obtain from L

by adjoining an identity. Let L > B be the unital

I
C*-morphism induced by.. j. Then we get a commutative

ldiagram'of C*-algebras

ot ’ 0 > 0.

%

> 0

0 > L ——>

Moreover, the right square is a pullback square.
] . 2

)

Proof: The map o is the canonical surjection
L L/L =7$.A'The map j2 is the canonical injéction which

sends X ¢ € to A »1,. With these maps the right square

Al

be the pullbacktof  ¢ and jZ’ then it iS'éasy to check

-
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the map h : L > I, defined by h(2+2Al):= (J(2) + Al,))

=8

is an isomorphism of C*-algebras. 0

Now we are ready to define K0 and K1 for arbitrary

-F-algebras. This definition makes sense also for unital
C*-algebras and we shall show that the two definitions
coincide for those unital C*-algebras. Note first that for

any C*-algebra.” I, there is a short exact sequence

0 > L > T P C

the excision theorems, we see that, for any short exact

> 0. By the preceding lemma and

sequence 0 —> L —> B 25 A —s 0 with A, B and ¢
unital, Ki(¢) E'Ki(p). If L 1is also unitaliwe get &

pullbackISQuar@ of unital C*-algebras

i P >€
|z lid
v pI‘Z

L ® C > €

The isomorphism is given by (a,c) — a-fclL ® c. Thus
. Ki (p) 2 C

as 0 & id
LeC>08c¢ and relative K-theory preserﬁeé direct

e

Ki(prz). But we can view pr

sums as the reader can show easily. Thus K. (pr,) =
Ki(Q) ® Ki(;dm) = Ki(L)AQ 0. O

o~

I11.4 Defiﬁifion.‘Afe?mAL%mbe any C*jalgebré suchrfhat we

have “a short ekact sequence of C*-algebras

00— L — B J£> A-—> 0 with B, A and ¢ unital.

e
- v T, ey

. . . o , . , N
I . » < . . - 5 . 1o
- 1 p T, ~ R
& ot - - 3

«
EX C e—



~€fsmorphism induced by ¢, we define K. (¢):= Ki(g) for

38

Then define Ki(L): = Ki(¢) for i = 0,4.
The above remarks make sure that the definition I1I.4

makes sense and does not create amhgguity for unital

=wsC%ralgebras.

For any C*-morphism ¢ : B - A we can define a unital
C*-morphism ¢ : B > A that sends anr (b,A) « B to
(6(b),r) ¢ A. If B,*A _and--¢ are already unital, then
the composition of ¢ : B - A w1th the 1somorph15ms
B @ €C~+B ‘and K+ A ® C described above, is the isomor-
phism "¢ ® idg
that in this case Ki(a)

B®C~>A®C. Thus, we see as before

K;(6) ® K, (idg) = K, (6).

III. 5 Definition. Let B and A be C*-algebras and

~

$ = B+ A be a C¥-morphism. If ¢ : B > A is the unital

i=0,1. T

Now we .can assign to each C*-morphism ¢ : B » A

group homomorphisms ¢; : Ki(B) > Ki(A), where |

9 = (93 K, (B) and ,(5)? D K (B) » K.(A) s therﬁap

i
defined 1n‘I 10 and I.26, respectively. The fact that ¢;

mapsr Ki(B) actually into Ki(A)'C,Ki(K)y follows from

- the following commuta%ive@diagram, III.Z,‘I;lOrand f.26.

’O-—+>B-——> ﬁ-—~§¢ —> 0

l H
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IIT.6 Theorem. The assignment Ki Awhichrsendsra C*¥-algebra

(o4

A to Ki(A) and a C*-morphism ¢ : B - A to

¢; Ki(B) > Ki(A) 1s a covariant functor from the cate-
@ gory of C*-algebras into the category of abelian groups.
=

Proof: The proof is routine and left to the reader as an

% easy exercise. []

For any short exact sequence of C*-algebras

0 —» L ™53 2, A —> 0 we get a short exact sequence
0 — L T § 2, A —> 0. By III.1, we obtain an exact
L4

sequence of abelian groups

9 -
bs ko (3)

Kl(a;) — Kl(ﬁ) —_ Kl(K) > Ko(ﬁ)_>1<0 (R).

Note that Gl1(€) 1is path connected and thus Kl(m) = 0.

Hence we have thqﬁ*'Kl(A) = Kl(K). Morever, by definition

K;ka) = Ki(¢). So we get a commutative diagram
L . S LT . ($)] .

A

[ e R R B

d) .
0 > KO(A)

i . T .
Ky (9)—> Ky (B) —> K, (A) —%> K (9) __0_>1<0,;B)

-

Since ¢3 is just the restriction of (5)8, we obtain: ”,C/

JI1.7 Proposition. Let 0 —> L T 2o —> 0 be a.
short'exact séquence of C*-algebras. Then the folfowing

sequence is exact:
e |
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% % . * ' %

¢ 3 m ¢
Lok ) - K () 2 k(L) — Ky (B) —O

T

K, (L)

I11.8 Proposition.: Consider a commutative diagram of

o C*-algebras:
_-ai.‘a‘g_”,;- o

B Y

B2 o 0 —>L 5B i>AA —>0

ot

0 —>K L0 Lsc —>0

Let the rows be exact. Then the diagram

' % * / %
* 3

i o) m 0
K, (L) 1 K, (B) 1, K, (A) 9 K, (L) 0, K, (B) 0, K (A)
NI L ST
Kl(K) —> K, (D) ——> K, (C) P Ko (K) —— K, (D) —= K, (C)

5
i

obtained from III.7, commutes.

#Proof: First consider the case where all algebras and maps

in the right'square are unital. Then we are in the situa-
tion of Lemma I11.2 which glves the commutat1v1ty of the
dlagram In the general case we replace the right square

.

of the algeﬁra dlagram by

F_ 9 o3
T I
50
5

— > KO (A)-.
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Since the diagram for the general case 1s gottén from
the diagram for the unital case by just restricting some

maps, it is clear that it commutes. [J

>
e
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CHAPTER IV: K-THEORY AS HOMOTOPY FUNCTOR

In this chapter we introduce the notion of homotopic

C*-morphisms and various other concepts arising naturally

fxom homotopy theory of topological spaees. These ideas

have been used more or less implicitly by many authors. It
seems, however, that nobody ever bothered to write up the
powerful consequences in K-theory in a concise forﬁ. >The
main result is that the K-functors do not distinguish

between homotopic C*-morphisms.

IV.1. Definition. Let A and B be C*-algebras and

¢, A->B for i =20,1 be two C*¥-morphisms. The maps

7'¢O and ¢y - are called homotopic, written ¢0 = ¢1, if

there-exists a family @t : A > B of C*-morphisms for

t ¢ 1 such that ¢ : I x A > B defined by ¢(t,a) = @t(a)

is jointly continuous and @0 = ¢0 as well as @1 = ¢1.

IV.2+ Definition. Let A and B be C*-algebras. A C*-

11 . .
morphism ¢ : A > B 1is called a homotopy equivalence- if

there exists a C*-morphism ¢ : B - A such that ¢ oy = idB

and w:5¢ = idA. o 5

IV.3. Definition. A C*-algebra C is called contractible

if ~id, =. 0. Here 0 denotes the map C - C that sends

everything to zero.

42
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IV.4. Lemma. Let B be a unital C*-algebra. Let

n L n n

0 # E,F ¢ Ob(P(B)) and pp ¢ B" ~ E, jE E - B, Pp B ~F,

jF F -~ B" be pairs of projections and coprojections for
the modules E and F. Endow B® with the product norm
said *E and F with the subspace norm with respect to jE
, and jF' Then if
e
lig e pg - 3p ppll < .
E YE F *F max {[Ipp I, HpgIl} 2
PE °jF F > E 1s an isomorphism of topological vector

spaces.

Proof: First, we show that Pp ° Jgp ° Pp ° jF is an auto-

. E
. morphism of F. The space End(F) of endomorphisms of F

is a unital Banach algebra with respect ‘to the operator
norm. Then {[idg - pp ° jg ° pg ° Jpll =llpp © Jp ° pp ° g
" Pp e dg o pg e Jpll=llpg o (Gp ° pp - dg ° pp) ° Jgll <
Ippllipepe - g = Pelllldgll = llpgll 115p o pp- 3 o ppll < 1
“since HjF|lf 1. Thus Pp ° jE ° Pg ° jF is iﬁvertible
9iﬁ :Epd(F).; But (pg ° Jg ° Pp ojF)_1 °pp°jp 1is a left
inverse for Pg ojF, thus P ojF is, injective. lSimilarly

we now show~thatArpE °jnpoPpe g ¢ Aut(E) and thus ppo jg

, F , ,
has a right inverse ppe jpe (pgpojpeppe jE)_l. Hence

pE'o'jE Is surjective. 0.

IV.5. Theorem. - Let A 1énd B be C*-algebras and

2, . B +'Am‘be‘éihomdtopY‘betweeﬁthe C*-morphisms

¢
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¢ : B+A and ¢ : B + A. Then the induced maps
*
¢O : KO(B) -+ KO(A) and wa : KO(B) -+ KO(A) are equal.

‘ .
For a given free module B" over a unital C*-algebra

B we can identify projective retracts E of Bn, given

" by a pair of projection and co-projection (pE,JE), with a
- 4 projection Py in M (B), namely the matrix associated with

jE opE.' If A 1is another unital C*-algebra and ¢ : B » A

1s a unital C*-morphism, then the module ¢,E = A @B E is
given by the projection ¢#(PE). Thus, if ¢ : B > A 1is
homotopic to ¥ : B - A via a unital homotopy ¢t, for any

t ¢ I, there exists an open néigﬁbd}ﬁdaa -Ut of t such

# <1 for all s ¢ U
1+[fe  (Pp|

If J = {s e I | ¢4(E) = ®S*(E)}, this shows by IV.4 that

# #
that |l¢t(PE) - @s(PE)||<

J # @ and open. But if t ¢ J, we find an s ¢ Uy n J,

hence, again by IV.4, t ¢ J. Since I 1is connected, this

implies J = I.

"Proof: First we assume that A,B,y,¢ and ¢ are unital.

t
The map - (2,)g : Ky(B) » Ky(A) is given by (o,)5(TET - TF])

= [e, x(B)] -.[@t*(F)], which does not depend on 't as we:
saw abqve.. In the general case, we replace A and B by

. Thus ( 1

we get that the maps §) : Ko(B) » Ky(K) and $3 P Ky (B) »

A and B, andA ¢, ¥ and ¢, by $, ¥ and 3

KO(K) are equal. rThereere, also their restriction-
. PO ' : * ‘ A
corestrictions ¢07. KO(B)7+ KO(A) and wo .,KO(B)-+K0(A)

are equal. [0

[ - S o o o
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IV.6. Theorem. If ¢,y : B » A are homotopic C*-morphisms,

the maps ¢I : K;(B) > Ky(A) and w; : K(B) > K{(A) are

“equal.

Proof: First we assume that all algebras and maps are

& ,
: JgJital. View Kl(B) as no(Gl(B)) and Kl(A) as

- m,(GL(A)). For a b e G1(B) and [b] its class in
"
m,(G1(B)), the map _@2 : K{(B) » K;(A) is given by
1
o* (b]) = [e'(5)]. But of(b) and o' (b) are path-
tl. t t S

" connected in Gl(A) via vy : I » GI1(A) defined by y(r) =

#
rt+(1-r)s(b)'

o) Thus, @i [b] = @Z [b] for all s,t ¢ I.

1 1
—~In particular," ¢;-= w;. The general case follows easily

from replacing A and B by A and B and all the maps

by the CorreSpbnding unital maps, just as in IV.5. a

IV.7. Corollary. Let A and B be C*-algebras and ¢ :A-+>3B

a homotopy equivalence. Then the induced map ¢; : Ki(A) >

Ki(B) is an isomorphism.

"Proof: Note that the identity on A, B induce the identity
on ‘K, (A) and K;(B), respectively. Now the claim follows
directly from the preceding theorems and the -definition of

a homotopy equivalence via the usual argument. O

¢

IV.8. Cordllary. Let B be a contractible C*-algebra.
Then Kb(B) and Kl(B) ‘are zero. |

Proof: Note that the zero map on B 1induces the zero map

on - KO(B). Thus the identity map onKO(ﬁ) is equal to

4 :‘L_the zero map. [ - o - ;_Jv."
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CHAPTER V: SUSPENSIONS AND HIGHER K-GROUPS

In this chapter we give the definition ofYthe suspension
of a C*-algebra. We use it to define Kn(A) for any n ¢ N.

@ ;;Qg main result will be a long exact sequence in K-theory

e

associated with a short exact sequence of C*-algebras.

V.1. Definition. Let B be a C*-algebra. The.cone (B

over B 1is defined by CB = {f : I - B : f continuous and

f(1) = 0}. The suspension SB of B is_@efiqed by

SB = {f ¢ CB :—f(O) = 0}.

It is easy‘toschetk that CB and SB are C*-algebras.

In fact, cone and suspension cén be viewed as functors from
the category of C*-algebras into itself. The image of a

, morphﬁsmr ¢ ¢ B> A wunder these functors is given by
Cé¢ : CB » CA with Co(f) = ¢o»f and S¢ : SB » SA with‘
S¢(f) = ¢ o f, respectively. Note that if ;v : CB % B
denotes the evaluation at 0, we get a‘short exact

| > 0.

> SB ——> CB > B

sequence 0

V.2. Lemma. The cone CB is contractible for any C*-

~algebra B,

Biggﬁ: Consider the family of C*-morphisms &, : Cé +ﬁCB
'fqr t 6?1, defined by '@t(f)(s)'=’f(l— Cl—t)(l—s));
Then éo = idCB
homqtopy;' 0o

and ¢4 = 0. It isclear that o, is a
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V.3. Prqpositidn. Let B be a C*-algebra. Then we havé>é

[

natural isomorphism Kl(B) = KO(SB).

Proof: The above remarks and Theorem III.7 show that we

have an exact sequence in K-theory
= -

K, (CB) —> K, (B) 9, K, (SB) —> K, (CB).

But CB 1s contractible by:V.Z, hence Ki(CB) = 0 by
Iv.8. Thus 3 1is an isomorphism.
"If A . is another C*-algebra and ¢ : B - A 1is a C*-

'mqrbhigﬁjin’gét a commutative diagram with exact rows

> CA

0 —— SA > A > 0
A A A
So Co o
0 > CB > B > 0 -

> SB

»

By III.8 we get a commutative diagram with exact rows

d

0 =KICCA) > Kp (A) _A Ko (SA) — K,(CA) = 0
: A Ay ' )
o3 (S6) g
S 3 |
0 = Klgcs) ——> K, (B) —11>KO(SB) ——> K, (CB) = 0 \

- V.4. Definition. Let B be a C*-algebra. Define the n-th
. ) 7 o _ _ _ n .
K-gropp of B"by Kn(B) = Kn_l(SB) —"'_'KO(S B). Here

S? means the n-fold application of the functor S to B.
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Proposition V.4 shows that there is no ambiguity in this
definition. Note that the functor S 1is exact, i.e., it
sends exact sequences to exact sequences. In particular, for

a short exact sequence of C*-algebras 0 —> L T.p t.oa —0,

:-i;;ﬁ_} P .
- we get a short exact sequence 0 —>SIL ST

———>SB EEL>SA —>0.
By IIT.7, this induces an exact sequence
(Sm)¥ (S$) 7 J

1, K, (SB) LN K, (SA) SN

(5m)§ (S¢) g
KO(SL) > KO(SB) > KO(SA)-,

K, (SL)

which we rephase in-the following manner

R 5 2, LN CO
KZ{L) —> KZ(B) —> KZ(A) —> KO(SL) >KO(SB) . >KO(SAL

The naturality Qf'the isomorphism from V.3 shows that the

—

following diagram commutes.

| L P U
Ky €SL) —————> K (SB) ————> K, (SA)
A A N
* &
K, (L) NS (B) _h K, (A) .
1 1+ 1 , \

Thus, we can put together the above sequence and
Kl(L) _->,K1(B)'“_> Kl(A) —> KO(L) — KO(B) —_> KO(A).
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We obtain the following theorem.

V.5. Theorem. Let 0 —> L s B J£> A —> 0 be a short

exact sequence of C*-algebras. Then we have a long exact

=wsSequence in K-theory as follows: for n = 1
* ' *
(s™m (5"9) “sn,
> Kn(L) _— s Kn(B) _— Kn(A) L
(s" "ty (s" 1oy,
Kn_l(L) > Kn_l(N) _— Kn_l(A).

N .

n_,#* n.* .
We denote (S ﬂ)o by T and (S ¢)0 by ¢n' Moreover,

we denote 3 n by 9, 1f the map ¢ is clear from the

S
context.
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CHAPTER VI: BOTT PERIODICITY AND THE SIX-TERM-SEQUENCE

In this chapter we shall describe the Bott periodicity
theorem which is of great importance. It will, among other
g%%pgg, enable us to install the so-called six term sequence,
which is a different form'of expressing the long exact

sequence. -

VI.1. Definition. Let G be a topological group. Define

ﬂl(G) to be the first homotopy group of G with respect
torhomotopies and loops based at the identity.

It is well-known that iﬁ this case the multiplication
in ﬂl(G) can be described by pointwise multiplication of
" loops just as well as by composition of loops. For a
unital C*-algebra A, let Ln(A) be the group of loops in
Gln(A), based at 1, wunder pointwiéé multiplitation. Let
Nn(A) be the subgroup of loops which are homotopic to a
constant loop. Nn(A) is normal in Ln(A). There is a

canonical injectionr Ln_l(A) +»Ln(A) which map; f e Ln_l(A)

_ f£0 : . L , .
to- f @/1 = \p 1>€ Ln(A). - This map sends Nn_l(A)_ 1nto
Nn(A).nWThus we obtain the following commutative diagram.
wl(Gil(A)) ——>>.7. ——>‘ﬂ1(G;n(A)) —_ .. —> 1;m gl(Gln(A))
Ll(A) —_—> .. —> Ln(A) —> ... > lim EH(A) ,
Nl(A), —> ... — Nn(A) —> ... —> 1lim Nn(A)
50
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If we let L(G1(A)) be the group of loops in G1(A)
based at 1 and N(G1(A)) the subgroup of bL(Gl(A)) con-
sisting of the contractible loops, Lemma 1.20 shows that
L(G1(A)) = 1im Ln(A), and N(G1(A)) = 1lim Nn(A). Thus we

sg€t the following proposition.

VI.2. Proposition. Let A be a unital C*-algebra. Then

™ (61(A)) = Lim m (GL (A)).

VI.3. Proposition. Let A be a unital C*-algebra. Then

nO(Gl(§A)) = nl(G1(A)).-

Proof: Let G be any topological group and H be a

closed subgroup of H. Denote the group of continuous
functions from the one-sphere Sl into G which sends

the base point of S1 into H by C(S1

,G,H). Then we
know that ﬂO(C(Sl,G,H)) = ﬂl(G,H), the relative homotopy

group. Moreover, if H 1is path-connected, we have

.ﬂl(G,H) = ﬂl(G,l). Now note that SA = {f : L > A

cont
TE(1) = £(0) € C- 1,}. We identify G1(SA) with
CCSl,Gl(A),Gi(C -1A)) ih the obvious wéy. Then, since
A) ‘is path-connected, we get NQ(Gl(gk)) =

m (GL(A),GL(C - 1,)) = nl(GigA),ch(A)) and since we

defined ) (61(A)) ‘as m(GL(A),1g (), this proves  \_,

therclaim;', 0

VI.4. Théorem - (Bott Periodicity, cf.[K] III.1.11). TLet

A beQa unital Banach algebra. Then the map -

hY
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Yp KO(A) > ﬂl(Gl(A))-rinduced by the assignﬁent that sends
the isomorphy class [E] of a finitely geﬁerated projective
A-module to the homotopy class of the loop t > z(t)PE +

1 - PE’ where the projection P, ¢ M_(A) is as in IV.4 and

E
e N 2Tit . . .

SZt) = e , 1s an 1somorphism, called the Bott
isomorphism.

Note that z(t)PE + 1 - PE = exp(t P Note also

E)'
that the Bott isomorphism is natural in the sense that for
A and B wunital C*-algebras, and ¢ : B > A a unital
C*-morphism, the map ¢f : ﬂl(G1(B)) > ﬂl(Gl(A))v induced
by the map ¢#4: G1(B) » G1l(A) ‘makes the following

—.diagram commute

%
K, (B) > Ky (A)
YB YA
| # )
T, (G1(B)) - 1, 7, (G1(A))

VI.5. Corollary. Let A be a unital C*-algebra. Then

R

KO(A)' K, (SA) via the Bott map.
Proof: We have seen in thé'proof of ITI.7 that o
Ky (B)

and the claim follows from VI.4. O

1(§A)

!Kl(ﬁ) for'any C*-algebrar B. Thusﬁ'Kl(SA) = X

VI.6.,Corollary. Let A be a C*-algebra. Then we have

Ko (A

2

that KO(SZA)

'L;'. h V 1, 7  : " | — ' o _J
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Prooff If A 1is unital, we have KO(SZA) = Kl(SA) by V.3
and Kl(SA) = KO(A)_ by VI.5. 1In the general case we have a

2% 5 s%¢ > 0. 1f

split exact sequence 0 - s?a > S
o KO(K) > KO(SZK) denotes the composition of the Bott map
.ffg'aﬁd the map from V.3 and p': KO(E) > KO(SZE)_ the

or

corresponding map for €, we get a commutative diagram

0 —> KO(SZA) > KO(SZK) > Ky (S°0) —> 0
A A
= |p = !
0 > K, (A) > KO(K) > K, (€) > 0

Since the rows are exact, we see that p[K (A) 1s an
' 0

isomérphism between KO(A) and KO(SZA). (]

For a short exact sequence of C*-algebras
0 — L T, g -9, A —> 0,  we can now write down the so-

called six term sequence.

x . ES
- ‘ 82 . ﬂl ¢l
n‘,Kz(A) > Kl(IJ — Kl(B) > Kl(A) -
‘ A
9200 0
P : : Y
KO(A) < KO(B) <— KO(A)
- by | ™0

The map 320 o 1is often referred to as the:exponential

,map because of the structure of the Bott mép, which is an

‘L_ B | "7 - | ' . x—Jr
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essential part in op.
VI.7. Theorem. The six term sequence is exact.
Proof: We only have to show exactness at KO(A). First,

swonsider the case where B, A and ¢ are unital. Then,
by writing down all the maps whose composition azo p 1is,
we get the following commutative diagram.
Y ~

Ko (A) A (Gl(A))——>1T (G1(SA)) => K, (SA) —>K (s2a) Z¢K (1)

A . A /\ N

: #
90 61 (s6)" 6] L

K, (B) 72> T (61(B)) Z. T, (G1(SB)) —» K, (SB) i‘"K'O(SZB)

We condense this to the commutative diagram

) D ) '
Ky (A) —2s k(5P —2 s k(1)
A = A -

by 43
K. (B) —— > K. (S2B)
0 pB 0 :
*
¢ P

Since’ KO(SZB) > KO(SZA) > Kl(L) is part of

the long exact sequence, this proves that the six term

éequence is exact at K (A). In the general case, we
‘replace A and B by XK and B, respectively, to get

a diagram
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PR 3 <
~ A 2~ 2¢
KO(A) _ KO(S A) ———— Kl(le
A A Q
~_ % ~: % o
(¢)O (¢)2
= & 2
Ky (B) ———> K,(5°)
B
We:saw in VI.6 that the restrictions R and
, KO(A)
ox| are isomgrphisms from K,(A) - K (SZA) and
B S 0 0
K, (B) T
KO(B) > KO(SZB): respectively. Moreover, from III.7, we
know that ¢8 =.($)S .. If we can show that :
KO(B)
&k 0 .~ R
by = (d)51] and 9, = 3,% _, we get a
2 2 K, (S2B) 24 26 K, (52K)
diagram as in the unital case, which proves the exactness
of the six term sequence at KO(A). But we see as in III.7,
since 0 + S°A » S?A > S%C > 0 and 0 - $%B » S%F » sig

+ 0 are split exact, that ¢; = (Sz¢)g = (825)8 5
, K, (S°B)
MoreOver; out of a similar reasoning, 9 = 3,%| - .
2¢. 2¢‘K0(SZA)

&qf
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CHAPTER VII: A MAYER-VIETORIS SEQUENCE c

In this chapter we present a Mayer—Vietoris.Sequence
which seems to be afusgful tool in calculating the K-theory
d?aﬁ*;hlgebras which are ‘gotten as pullbacks. Jonathan
Rosenberg uses a Mayer-Vietoris Sequence for certain con-
tinuous trace algebras, but to the authors knowledge,
nobody treated the general case.

Let Bl’ B2
be C*-morphisms faor i = 1,2. Consider'the pullback

and C be C*-algebras and fi B C

g f

. 1/ 1
gz\/

]

The C*-algebra D <can be written as

1 8 B, fl(bl) =7f2(b2)}. Then there is a

natural inclusion . j : D » B1 ® BZ' The map j 1induces

group hgmombrphisms j; : K (D) ~ K (By) ® K (B,). We

- define group_homomorphisms v Kn(Bl) ® Kn(Bz)'+ Kn(C)

as v i= (£). - (£,).. This means, for A e K (B,
that Vv (A; @ A)) = (fl)n(Al) - (fz);(Az) e K (C). There

are two mofe,maps>which will play an important role in the

560
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Mayer;Vietoris sequence. We construct Ty KO(C) - Kl(D),
the map T G Kl(C) > KO(D) will be constructed analogously.

Note first that there is a natural isomorphism between

ker fz and ker g1 Let ¢ : ker fz 2N D be the inclu-
swsion induced by that isomorphism. We get the following

commutative diagram with exact rows if fj 1s surjective:

0

This diagram induces by III.8 the following commutative

diagram with exact rows:

(g, k 3 2y (g0}
K, (D) o170, K, (B)) —E> K, (Ker £) LN K, (D) BN K, (B,)

-- - -->

*

(g,)] (FD7.

: (%%L@f (£1)¢

- -— - -

. ) : v v
K (B ) ——K, (C) ——> K, (ker f,)—> K, (B,)——K, (C)
04’2 (fz)o , 3, 1 2 ii 1272 (fz); 1

Now ;i Ky(C) » Ky (D) is defined as 7,:= 2502

VII.l.'Theorem (Mayer-Vietoris Seduence).:zLet B, B,

and C be as. above. Then the following sequence is exacf'

if the,map {fz iS'surjettive.
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-k

Jo Vo~
KO(D) —_— KO(Bl) ® KO(BZ) > KO(C)
I
1 0
\Y
=R '
i Kl(C)  — K (B ) ® K (B ) <——— K (D)
V1 J1

Proof: First we show that im jg c ker v For A ¢ KH(D),
we have v (j*(A)) = v ((gl)ﬁ(A) ® (2,)5(A) =
(DR (A) - ()0 ((g) (M) = (F) g (A) -
(fz ogz);(A) = 0. The reverse inclusion we have to do
separately for n = 0,1. We show that ker vy © im ji. To
do %hisi we first consider the case where all algebras and
mo}phlsms are unltal The general case can then be easily
derlved from this u31ng the methods of Chapter III. For
any'of the involved algebras, call it A, Ye view KI(A)
as ﬂO(Gl(A)). VNow leF bi € Gl(Bi) and [bi] be its
component in 'Gl(Bi). Suppose that vl([bl] ® [bz]) =
ffl)i([bl]) - tfz)I([bz]) ¥/O, ‘then for- .
fﬁ: Gl(Bi) +»G1(C) the .fi-indqced map, we have that
[fi(ﬂi)] = [£5(b)] in 1,(G1(C)). Thus, there exists a
path y : T > GL(C) comnecting £)(b;) and £5(b,).. As
was shown in VI.2, the path vy is ac@uélly a path in ’
Gik(C)kfor some k e N. Thus, we.can apply Lemma I.23
to the algebras Mk(BZ) and.,Mk(C) to obtain~an,e1ément

bl

y < GL(B,) with f£](b;) = £5(b}) and such that bj and

L.
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b, are pathconnected in Gl(bz). This shows that (bl’bé)

is an element in G1(D) and moreover, j;([bl,bé)]) =

[by]1 & [b3] = [by] @ [b Thus ker vy < im jf.

1] 2]'
To see that ker Vg < im jg, note first that the

1]

= e . : - ,
Suspension, being an exact, additive functor, respects pull-

backs. Hence, we have the following pullback diagram:

/\
A

- The preceding shows that the following sequence is

/

exact:

(S')* | (SE )% - (s£,)*
: K, (SBy) ® K (SB,) —t 2 2L,k (50).

Kl(SD)

But from Chapter V, we see that the following diagram

’bommutqs,
KO(D) —_— KO(Bl) ® KO(BZ) > KO(C) '
vooospy v (S€)] - (S£,)F ¥
Kl(SD) ——-———f> Kl(SBl) ® Kl(SBZ) 7 | > K, (SC)



- . B
' ‘ ‘ 60
The exactness of the lower row shows that the upper row 1s
exact since the vertical maps are isomorphisms,
It remains to be shown that the Mayer-Vietoris Sequence
1s exact at the corners. We show that for the right side,
— s

the left side is proved analogously. To see that

hnvoc:ker Ty calculate for Ai € KO(Bi) that

To (A - (£,)5(A)) = 1o ((FT(A])) - 15((£,)5(4,))
= zf'oag(Al) - 27 e 8. 0 (£,)5(A,) = 0. The reverse inclu-
sion is done by a little diagram chasing. Suppose, for

¢ ¢ Ky(C), that Ty(c) = 0. Then ¥ eac(c) = 0 and
there exists an’ A1A€ KO(BI) with ag(Al) = af(c).
Therefore, (£ 5(A) - ©) = 3,(A;) - B¢(c) = 0. This

"in turn implies that there exists an AZ € KO(BZ) with
(fz)g(Az) ='(f1)g(Al) - ¢, thus ¢ = v (A; 8 A,). The
inclusion im Ty © ker j; we see from the following
cal;ulatibn for c¢ e KO(C): we have j;(rofc)) =
SNCEEMNGY

0 8 iI oaf(c) = §. Finally, we get the reverse inclusion

(g1)1 ° %y °8p(c) @ (g} o 2] e0p(c) = -

again by diagram chasing. Note that ker jf =

,ﬁer(gl};rn.ker(gz)f. Thus, for d e ker j;, there
exists an A e Kl(ker fz) with QI(A) =-d- We get
if(A)'= (gz); ozf(A} =.O and Hence, there exists a

c e~KO(C)D with af(c) A. This implies that TO(C) =

2; oaf(c) = RT(A) = d. This concludes the proof. 0
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CHAPTER VIII: MULTIPLICATIVE STRUCTURES

In this chapter we give a few canonical multiplicative
structures relating the K-theory of two nuclear C*-algebras

Biwsand B to the K—fﬁeory of their tensor product.

v 2
Karoubi described those for unital algebras in a fairly
abstract manner»in [Kz]. We give a more concrete descrip-
tion, also for nonunital algebras. Moreover, we describe
a way of providing Kn(B) with a module structure.

For two C*-algebras B, and B,, we can form the

algebraic tensor product B, ®¢ B2' We can provide

Bl ®C B2 with C*-crossnorms. If the algebras are nuclear,

~all possible C*-crossnorms agree. Denote the'completion of.

By 8¢ B, with respect to this norm by B; 8 B,. The

2

tensor product & is natural with respect to morphisms
B1 > A1 and B, » AZ' Moreover, tensoring with a fixed
nuclear algebra is an exact functor as we see from [G].

From now on all C*-algebras are assumed to be nuclear.

Let E; « Ob(P(B;)) for i =1,2. If the _Ei are

- n -
free, say Ei =B l, then we have a canonical isomorphism
' . n, *n L
o S = 1 2 . =
between EL ®¢ E2 and ,(Bl ®C BZ) - Def}ne Elﬁ%:Ez
. : ‘ - : nyocn, )
to‘be the closure of E1 ®¢ E2 in (B1 8 Bz) W}th

theAproduét ﬁorm. Now suppose that Ei is embedded in

n. , n..

' as a retract. Let j. : E. - Bil

be thé embedding,
i i , o

1

’

01
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n.

and . : B.' > E. the retractions. We topologize
Py i i

E: ®. E with quotient topology of the map p, ® p which
1 ¢ “2 1 2 N
1s clearly surjective. As in 1.3, we see that j1 8 j2 1s an
embedding with respect to this topology. Thus, we can define
e = ,
N Et;§§1 8 EZ as the closure of Eq ®¢ E2 in
n

- n n, *n
7 1 = 2 _ = 1 2

definition does not depend on the particular embeddings.

We have to show that this

In fact, since E1 ®C E2 is finitely generafed projective

over B1'®€ BZ’ .We see as 1n I.3 that the fopology on

E1 8@ E2 does not depend on the choice of embeddings and
4 n, n
projections. But the closure in Bll [ BZZ 1s just the

completion of E1 ®E E2 with respect to that topology,

since j1 8 j, 1s an embedding. We show that

n n
_ — ) 1 2
E) ® E; ¢ Ob(P(B; 8 B,)). Themap p; 8 p, : B;" 8 B,” -
E1 8 E2 is continuous, so there exists a unique extension
- ™ n

to the completions P; 8 p, : By ® B, ~ Eg 8 E,.

g ¢

Similarly, we get a'unique map ji & j2 E1 2'
ﬁl,_' n, : _ _ :
Bq 8 ?27.' But we have (p1 ®’p2) 0(31 8 32)'= 1dE 8

"1

Thus, p, @_pz is onto, and j; ® j, 1is one-to-one.

5

Uniqueness of the exténsion also ensures that

(jl'é-jz)o°(p1,§_p2) is an idempotent.

VIII.1. Proposition. Let ‘B;  and. B2 be unital nuclear

C*-algebras and 'E) € Ob(P(B,)). Then, tensoring with E,

1
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is an additive,

which is natural with respect to C*-morphisms Bi >~ A

1,2.

:-%?B‘TOQfI

exact functor from

P(B1) to P(B1 ®

In view of the above remarks, it is easy to check

that it is a functor.

It is-enough to show that the func-

tor transforms short exact sequences into short exact

sequences. Let 0 —> E -%> F —§> H-—> 0 be short exact
in P(Bl). The algebraic tensor product with E2 is an
exact functor, so we have an exact sequence
. aBid B ®id
0 > E ®C E2 > F ®C E2 > H ®C EZ > 0.

Moreover, since H 1is projective, we have a splitting

Yy

F 8. E,.

and a map vy ®

completion shows that (B 8 id) o (y ® id) = id

B
H
s

C

H - F which induces a splitting vy ® id : H 8¢ E,

2

We get a sequence

id : H @ E

2

5 —>
~ F ® E,. Uniqueness of th

H6§E2’»

8 id is surjective and the sequence is exact at

X

o]

>

e

E,. But the splitting vy ® id induces a splifting

id

F®E

2

+~ E'® E

2‘.

- So we see similarly as abov

[ S,

3

- thus

e

that the sequence is exact at E 8 E,. Again, by the

uniqueness of the completion of a map, we see that

L.
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(B ® id) o (e 8 id) = 0. Moreover, if a e F §'E2 ‘1s in

the kernel of B ® id, and a, ¢ F ® E, tend to a, then

k 2
B ® id(ak) =B B id(ak) tends to ;ero in H ®C EZ'
D Replacing ay by Ay " (y ® 1id) o (B 8 id)(ak), we can
S8 e

assume that ay € ker(B ® id) = im(o ® 1d). Then tﬁe
T sequence by := 58 id(ak) converges and (o 8 id)(by). =

ay since 6 8 id 1is a topological isomorphism from |
im(a 8 id) to E ® E2 with inverse o ® id. Thus,
a =o 8 id(lim bk) and the sequence is exact also at
F ® EZ. It is an easy consequence of this that the tensor-
product & distributes over direct sums.

- Now let ¢£\: Bi > A, be unital C*-morphisms between
nucleaf C*-algebras. We want to show that for
Ei'e Ob(P(B;)), the modules -(A; § A)) @

Blng(El ® E,))

and (A1 @BlEl) [ (Az QBZEZ) are equal. If E1' and E2
are free, this is clear. But since the modules are pro-
rAjeétiVe and all the involved tensor products distribute

over direct sums, the general case follows easily. 0

Tﬁe isomorphism classes of objectsrin P(Bi)' form
Commutétive monoids Si with respect to taking direct sums as
aadition. The assignmentrﬁ : Sl><SZ—*T, induced by the tenéor
pfoduct, Where T is the monoid of isOmephism classes of eb—
jects in P(Biﬁ@ Bé)?'is bilinear. if eAbsem is the category
of abelian moneids, /Ab  the categofy of abelian groups,
and C.: Absem +;Ab the GfOthendieck fUnctor,rthen

B
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G(S;) = Kog(B;) and G(T) = K, (B ] B,). Moreover, we have

the following isomorphisms:

Bil(Sl><SZ,T)-%Absem(Sl,AAbsem(Sz,Tj) +,ﬂbsem(Sl,/Ab(G(SZ,G(T)))

[T
X

A
Bi1(G(S1) xG(S,),G(T)) « Ab(G(Sy), Ab(G(S,),G(T))).

Thus, u 1induces a bilinear map vy : KO(Bl) X KO(BZ) >

KO(B1 2] B,). The formula is u([EiT - [Fl], [EZI'— [FZ]) =

L ® E,1 - TE] 8 F,]

the following lemma.

E - [F; 9 E,] + TF| 8 F,T. Thgs we get

VIIT.2. Lemma. Let B. be unital C*-algebras. Then the

tensor product 8 : Ob(P(B )) X Ob(P(B )) ~ Ob(P(B ® B 2))
induces a bilinear map 1y : KO(Bl) x KO(BZ) > KO(B1 ] Bz)
which is natural with respect to unital C*-morphisms

$p Bi > Ai' B

 Let ¢; + By >~ A; be unital C*-morphisms. . We
define a unital C*-algebra P(¢1,¢2) as the following

pullback

/ \¢ B
/d@"’z

P(97,0, )
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The maps 1dB1 3] P B1 ® B2 > B1 ® A2 anq ¢y 8 1dB2

B, ® B, ~» Ay Q B, induce a map x : By 8 B, -~ P(¢1,¢2).

1 2

VIIT.3. Lemma. For ¢; * B, > A, surjective unital C*-

morphisms, the following sequence is exact:

0

> ker ¢ §'ker,¢2 > By 8 B, x> P(dqy50,)

"Proof: Let Li:= ker ¢i. Tensor the exact sequence

0 » L2 > B2 > A2 - 0 with L to get the exact sequence

1
0>1L; ®L,>L &B)~>L 8A,>0. Similarly, we get

0 -» L1 %) B2‘+ B1 ® B2 - Al 8 B2 +~ 0. So we get an exact
.sequence
) L1 (% B2 B1 ® BZ B1 ® B2 L1 (% B2
> -> — > — — - 0
L1 b3 L2 L1 3] L2 L1 %] L2 L1 ® L2

Using the second isomorphism theorem, we can rephrase

this to

o2
|
o

(V]

N
r—-*t—‘ [r—-l
e
™
i

Thé map x induces a map

.BZ'

®

By

L1 ® L2

> P(¢1’¢2)-
Moreover, there is a map T ,:VL1 §'A2 > P(¢i,¢2) induced

L.
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— — — O e .
by L1 (<] AZC———> B1 ® A2 and L1 8 A2 > Al 8 BZ' It is

o

easy to see that A1 §'BZ 1s the cokernel of 1, wusing the

fact that P(¢l,¢2) is the pullback of A 8 B, and

B, 2] A,. Thus we obtain the following diagram, which is

ea%ily  checked to be commutative:

B, & B

0 —> L, 8 A . 2 >A, @ B, — 0
1 2 L. ® L 1 2
1 2
X
—_— T —
0 > L1 ® A2 > P(¢1 > A1 8 B2 —> 0.
This proves that x 1is an isomorphism, whence the claim. [J
B
We now turn to the case where ¢i : Bi > Eo T L 1is
i
the canonical surjection.
VIIT.4. Lemma. Let B, be C*¥-algebras and $; ﬁi + C
be the canonical surjections. For P:= P($y,0,) and
X : §l°§ EZ > P the natural map, the induced map.
xi,: Kl(§1 (2] §2) > Kl(P) 1s surjective.
Proof: The algebra P is given by the following pullback
L
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An element in Kl(P) is therefore given by invertible

Ai = (b£a8))a,8=1,...n € Gln(ﬁi) for some n ¢ N, such

that | |
4 5 . »

FEA (o %)) oL 058y e (.

1 N N

Define matrices in G1_ (B4 8 BZ) by

= mlaB) 5 . 51 (aB)
Api= (by ) 132)&,B=1mn and A,:= (1B1®b2 Vo g=1...n"

It 1s now easy to check that X# : Gln(ﬁ1 8 ﬁz) > Gln(P)
maps A1 . A-1 . 1\.2 to the pair (Al,AZ), which proves

the claim. U

We extend now our definition of the cup product to

nonunital algebras. The lemma and the long exact sequencé
yield an exact sequence -
*
, — N~ e X0
0 > KO(B1 ® BZ) —_ KO(B1 ® B,) > Ky (P).

Moreover, the Mayer-Vietoris sequence for P shows that

~

.the map Yg D Kp(P) ~ KO(EI ® ) ® K,(C 8 B,), 1induced
by the,natural map y : P ~» (ﬁi 8 C) & (C 8 ﬁz),; is

injective. We get the following diagram

% ,
~ e~ XO YO i ~ _ ~_~ -
Bl 7@.B2) —> KOCP) —_> KO(B1 @C)@K'O(CQBZ)

A

(oA——> Ko (By 8B,)—>Kq

u

0—> K (B ) 'QKO(Bz)lmO‘(ﬁl) ® X, (8,) _QKO(o:) 9 K, (C).
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In order to define the cup product oo KO(Bl) ® KO(BZ)
> KO(B1 %) BZ) as the restriction of the product on
~ ~ % .
KO(Bl) o KO(BZ), we have to show that Xgoue]d = 0. But

% * :
the maps PT{ ° Yy ° Xy and pT, oyg oXS are given by

g

e

L,

. _ % . % ) .
(1d§ ® ¢2)0 and (¢1 ® 1d§2)0, respectively, if

1
pr; - Ko(ﬁl) ® Ko(ﬁz) > Ko(ﬁi) is the projection on the i-th
summand. Moreover, the cup product is natural, i.e., the

following diagram commutes

-> KO(BI) ® KO(C)

‘ & — . . ' &
Thus PTy e Yg°Xgeoued = 0. Similarly, PTy Yy © Xg°
Hej =0, and hence YS ° Xg ° M o3 =0 and since Yg is
injective, we have Xg ° M oj = 0.

Recall that KO(Bi) is defined as K0(¢i)' and

Kd(Bl ®-B2) is equal to KO(X). Thus we have a cup product
on the relative'KO—groups TR KO(¢1) x KO(¢2) > KO(X).
~ We want to define such a cup product for arbitrary unital

‘C*-surjections ¢; * By > A, and the induced map -

1

1 1

Xg : By ® By > P(67,0,). If L,:=Yker ¢, and p, : L, »
C

fi/Li = are the natural surjections, our construction

applies and we get a cup product
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U‘: KO(pl) X KO(DZ) > KO(XL) where XL : Ll ® LZ > P(pl’pz)

is the induced map. The following lemma, together with the

excision theorem will establish a natural 1somorphism

j o KO(XL) +'KO(XB). Thus we can define a cup product using

“the;}ollowing diagram

Ko(pl) X Ko(pz) > KO(XL)
: j
. \V] : \
Ko ()  Ko(6,) ----- > Ky (xp)

VIII.5. Lemma. For i = 1,2, 1let the following diagram

be a pullback square of unital C*-algebras:

Moreover, let P35 and N be surjective and 6i and '
be injective. Then the following.square of unital C*-
algebras is a pullback square:

X0
2 >>P(plyp2)

<)
j61'® 5 (87 8 v,,7, 8 6,)
e

Bl' ,BZ M ,>P(¢1’¢2)
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Proof: The proof is achieved in two steps. First we show
that for any C*-algebra S, the following square is a
pullback:
[ B id ® o3 B
- S ® D. > S 8 C.
i i
id ® SiJ Jld ® Y5
S §>Bi — > S 8 Ai
1id & ¢.
i
To see this, note first that I.:= ker p, 1is naturally
.isomorphic_tO' ker ¢i. Moreover, tensoring over € with

a fixed C*-algebra is an exact functor. If Q is the

pullback of idg 8 y; and idg ® ¢;, we get the following

diagram:
0 >s81 -Ls q >S ® C. > 0
N i
I
|
|g
|
0 >SS QI > S ® D. > S ® C. > 0
i i

The map £ : S 8 Ii +~ Q. is induced by the inclusion

S ® I.e—> S 8 B, and the zero map S ® I. »S® Ci;

s

The map. g : S ® D; + Q is induced by 1id ® §; and

[

id pi.r Thus the diagram commutes and g 1is an isomor-

phism, which proves the clainm.

L.
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Now let L be a unital C*-algebra such that the

following is a commutative square of unital C*-algebras:
L
S‘%@_‘r
g (61 ® v,,7, 8 6,)
8

We have to show that this square induces a unique map o

from L to D, ® D such that f = (idS <) pi) o 0 and.

1 2
g = (ids [3) 61) o 0. Consider the followimg commutative
~diagram
-p1°f )
] | /
v ,
— -— pof
CL,® DZ < D1 8 D2 >>D1 8 C2 2
] I PB Iid 2] Y,
. v id ® ¢2 v
C1 8 B2 < D1 R BZ »»Dl ® A2
I -PB 61,® id | 161 8 1@
Y
A1 8 B2 < B1 ? B2 »»Bl [ AZ

The preceding shows that the lower left and the upper
.right Squares are pullbacks. From the lower one we get a
unique map h : L - D1 Q,Bz fitting in the commutative

diagram. The fact that &, ® id and 6§, ® id are
, 1 B, - %1 A,

L
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i

monic now implies that (idp 8 ¢,) oh = (idy 8 v,) o (p, o ).
Dy 2D

Using the upper pullback square, we now get the unique map

o : LD 8 D, with the desired properties. 0

~%” The cup product induces naturally several other multi-
plications. To define those, we need the following

well known fact.

- VIII.6. Lemma. Let A and. B be C*-algebras. Then we:

have a natural isomorphism an : Sn(A) 8 Sp(P) > ~-

s"*P(A B B).

Proof: Note that ST(A) = Cu(s™) @A and SP(B) =

Cb(Sp) ® B. Here S™ denotes the n-dimensional sphere
witﬁ base point and CO(Sn) the complex valued continuous
functions on S" vanishing at the base point. Moreover,
there is a natuial isomorphism xn,pA: CO(Sn) Q’CO(SP) >
CO(Sn/\Sp) = CO(Sn+p) where A denotes the wedge product.
Now the maps 3 is given by the following composition of

np
maps:

co(sn){§ ABCysP) 8B —

B B A Bid
s co(sn) ® cO(sp) 8-(A 8 B) 2P

ABB Co(s™™P) & (A 8 B).

a
Now we can.define a cup product pnp : Kn(A) x Kp(B)

_ A % o .
> Kn+p(A ® B) by Mnp -'(£np)0 o u where we identify

el_ ‘! 7‘77 7, , - '\—J
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R n . p =
Kn(A) with KO(S A), Kp(B) with KO(S B? and K +p(A 8 B)

with K0(§“+P(A 8 B)).

(gh P U N, 5 P
ﬂ@ Ko (STA) x K, (S"B) > K, (S"A @ sPB)

54 v'
@
Y

L)
u np-’ 0
. ie p J

K,(s""P(a 8 B)).

We know that A ® B 1is isomorphic to VB ® A, thus the
quesfion arises how it will affect the product Unp 1f we
switch the factors Kn(A) and Kp(B). To answer this
question, we have to study a group action of the symmetric
Rgroup»of order k on Kk(B) for any k ¢ N and an

arbitrary C*-algebra B.

VIIT.7. Lemma. Let B be a C*-algebra. Define a map

T : SB > SB by T(£f)(t) = £(1-t). Then the induced map

. 4 % . p . - * - _
in K-theory Tn : Kn(SB) > Kn(SB) is glvenrby Tn(u) u.

V B . v
Proof: Define B:= {f : I » B, continuous} as the C*-

—w- o algebia«ef paths in B. Then we get a short exact sequence

0 —> SB %L> B B ®B —> 0 where ev denotes evalu-
‘ation‘at the endpoinks. Thus we have Kn(SB) = Kn(efj.,
It 1s easy to See that é is homotopy equivalent to B
énd that after identifying K (B) with Kn(B) the map
evg': Kn(ﬁ) ;!Kﬁ(B ® 3) ’is given by the diagonal map.
From the long exact sequence We get a coﬁmutative diagram
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8,
K41 (B 8 B) —=—> K (SB) -
S T*
n
, Bn
VD — > K
A s Kn+1(B ® B) > Rn(SB)
" & Here s denotes the map that switches summands. Moreover,
we have
& . % *
B Vn+1 . %n In ®Vn
Kn+1( )—————>Kn+1(B(BB) ——>Kn(SB) ——>Kn(B) > Kn(B ® B)

' : ! XL L. . )
exact. From the above we see that ev, 1s injective, thus

j; 1s the zeroAmap and
u e Kn(SB), we find a
u = an(v).’ Let Vv be
9 (u)

an(vl ® vV, * v, ® vl)

then u + T*(u) =
n

hence an is surjective. For

V € Kn+1(B ® B) such that

vy ® v, with ViV, € Kn+1(B),

= ov 3 (s(v)) = 3 (v + s(v)) =

Sn((v1 + Vz) ® (V1 + VZ)) ;

?n o ey§+1(vlr+ VZ) = 0. Thus T;(u) = -u. 0
Let Zn be thé symmetric group oflofder n., It acts
on S" =‘Sl'A . At by sending [x x,1 e st Aol A st
to [x 1 v X g ] « st AL, ASl. This action |
o (1) o " (n)
“‘induces a group homomorphism T, I, Aut(CO(Sn)), -
given by’ %n(O)(g[tl,' tn]) =‘g[tot1) tc(n)] for

.0 € X
n

~

group homomorphiém,

L.

%nd .8 elco(Sn),
»

For any C*-algebra B we get a

I Aut (S"B) = Aut(CO(Sn) ® B)
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by sending o e I, to 8==Tn(c) é'idB. This in turn induces
a group homomorphism ~E z +'Aut(KO(Snﬁj).

VII1.8. Proposition. Let B be a C*-algebra. Then the
. N n . .
iégogp homomorphism : Zn > Aut(KO(S B)) 1is given by
8# = sign(o) - id n -
KO(S B)
Proof: It clearly suffices to show that &% = -id for any

transposition o. So let Oij be the transposition that
interchanges the i-th and j-th coordinates. We can assume

that i =1 and j = 2 since for a = (i1)(j2) e I

n,
- _1 . . A% - s ~ e _ A g s A*-l
Oij = Q0,50 and if 917 id, then Oij = o (-id)a
—_— _' N - . n =V
= -id. The automorphism Tn(gij) : CO(S )

Cy(sY) ® Co(s"%) » ¢, (%) B C,(s""%) is given by

Thus, replacing B by Sn_z(B),

WeAsee that it sufficesfto consider the case n = 2. Now
we view SZ(B) as the Continuous funétions from I2 -~ B
Vanighing on fhe boundary. Then the action of the trans-
position o¢ on SZ(B) is givenrby ihterchanging the
’argumgﬁts, i.e., o(g)(x,y) = g(y,x) for any g € SZ(B).
Conéider the homeomorphism f : R » int I given by

X
2(1 + [x])

£(x) = 1+ It satisfies f£(-x) = 1 - £(x).
Define two endomorphisms. a; and ’az of SZ(B) bf
setting o) (g) (x,y) = g(£(£ 10 + €710, £0£7 (y) -
£500)) and o, (@) 06y) = g(FET T H £ ),

f£ ) - £ 1)) for (x,y) e int I and 0y (g) (x,) = 0
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it (x,y) e« BIZ. It 1is routine to check that this definition

makes sense. Note that aq is homotopic to the identity via
0, (8) (x,y) = g(£(F 1 (x) + t£ 0 (y), £(£1(x) + t£ 1)),
Similarly, we see that a, is homotopic to 6. If we -
d&Fine T : S(B) = S(SB) - S(SB) = S2(B) by T(g)(x,y) =

o g(x, 1-y), then a, = Toa and Lemma VIII.7 combined with

1
show that

the homotopy invariance of the functor KO
¢* = -id 0

K, (S BY

VIIT.9. Proposition. Let A and B be C#¥-algebras and

s : A® B> B8 A the canonical isomorphism. Then the

following diagram commutes,

1"
Ko (S"A) x Ky (sPB) —"B > k. (s""P(A @ B))

-H"P

v
n+p

switch KO(S (A 8 B))

n+p, *

y u | v (5))0
Ko (sPB) x Ko (s"a) —E0— K (s""P(B @ A))

(S

Proof: The diagram is induced by the following diagram

(C,(SMBAYx(C, (SPYBB) »'(C,(S™)BABC, (SPYBB » C (S™ASP)B (ARR)
0 0 0 0 "0

' 8§idA§B

switch : co(spAsn)é(AQB)

id 8 s

(CO(Sp)éB)x(CO(Sn)QA)4>CO(SP)QBECO(SH)QA->Cb(SpASn)Q(BQA)
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which is commutative if o is the permutation that sends

[x1 cee X sYq e yp] to [yl .. yp,xl .. xn]. The claim
follows because sign ¢ = (—1)np. O
The cup product can be used to provide the K-group of
= e .
an algebra with multiplicative structures. In fact, if, for

two- C*-algebras A and B, there exists a C*-mqrphism
m: A®B~>B, then moy : KO(A) X KO(B) > KO(B) is a
bilinear map. If A = B, it is in fact a ring multiplica-
tion if m is associative.

‘ Now identify KZH(B) with KO(B) and K2n+1(B) with
Kl(B). We obtain a Zz—graded multiplication u on

Ky (A) = Ki(A) cross K,(B) = ® Ki(B) as follows:

®
i=0,1 i=0,1
for elements a = (ao ® al) e Ky(A) and b = (bO ® bl)

¢ Ky(B), define

w(a,b) = (ugo(ag,by) + upqla;,by)) @

(ulO(al 7b0) +7 UOI(laO ’b].)) 6 K*(’AQB) .

This multiplication is a bilinear map as follows from the

bilinearity of the “ijl

VIII.9. Proposition. Let B be a C*-algebra and A a
SuBalgebfa of the center - Z(B) of B. Then K,(A) Vis a

Zz-graded ring and K,(B)  is a Zz—graded Ke(A) module.

Proof: After the preceding remarks, it suffices to show

L I .
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that there is a C*-morphism m : A ® B -~ B such that the
image of the restriction of m to A ® A is contained in

A. Since A < Z(B), we have a ring homomorphism

A®B .3 given on elementary tensors by m(a € b) = ab.
> By-wthe .universal property of the maximal cross norm on

A ® B, this map extends to the maximal tensor product
T

A ®Y B which is equal to A ® B since the algebras are

nuclear. The rest is clear. 0

Finally, note that for a C*-morphism ¢ : B » D and
A a subalgebra of Z(B), and ¢(A) < Z(D), the induced
map ¢* ¢ Kg(B) = Kx(D) 1is a module map with respect to
the rings Ki(A) and K,(9A). This follows from the

commutativity of the following diagram:

Ke(A)  x Ku(B) 2> K, (A 8 B) > Ky (B)
6" x o" (6 8 ¢) o
v 4 - . - y

Ki (9A) x Ki(D) —H> K (¢A 8 D) > Ky (D)
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CHAPTER IX: THE PUPPE SEQUENCE

In this chapter we define a mapping cylinder and a
mapping cone for C#*-algebras and use it to establish a Puppe
Sequence which generalizes the well known Puppe Sequence

o
from K-theory of locally compact spaces.

IX.1. Definition. Let A and B be C*-algebras and

. v
¢ : B> A be a C*-morphism. Define A:= {f : I - A
continuous} to be the algebra of paths in A and let

A"
;A > A be the evaluation at t. Then we define the

Dt‘
mapping cylinder of ¢, denoted by M¢ as the following
pullback:
B
Pg/v_\¢)
M A
¢ //////”
\\\\\s X P
v
Pp A 0
. \%
Note that M = {(b,f) ¢ B ® A : ¢(b).= £(0)}.

"IX.2, Lemma. In the above situation, the map

Y o= plepV M f+ A 1s surjective. Moreover, the map

~+ B 1i1s a hdmbtopy equivalence and Y = ¢ o pr
Proof: For any a ¢ A, we have (0, t-a) ¢ M¢ and’
p((0,ta)) = a, thus ¢ 1is surjective. Define for t e I

a family of maps Ve M¢ - A by Wei= pyeoo px, then

' ’ | 80
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Yy = P opx = ¢eopg and P; = . It is clear that Yo s

a homotopy, thus ¢ =~ ¢ ° Py To show that ’pB 1s a homotopy

equivalence, we define a map g - B - M¢ which will turn

out to be a homotopy inverse to Py - Set qB(b) = (b,fb),

where . £, : I » A is defined by £,(t) = ¢(b). With this

we have Pg°dp = 1dB and dp opB((b,f)) = (b,f, ). For

s e I define a family of morphisms o, ¢ M¢ > M¢ by
o ((b,£)) = (b,fy), where £_(t) = f(st). Then f£_(0) =
f(0) = ¢(b) which shows that 2 is well defined. It is

clear that o 1s a homotopy. Moreover, we have that

@O(b,f) '(b,fo) with fo(t) = £(0) = o(b) and

®1(b,f) (b,f). Thus @S is a homotopy between dp ° Py

and idM . This concludes the proof. 0
¢

IX.3. Corollary. The map (pB); : Kn(M¢) > Kn(B) is an

isomorphism and the following diagram is commutative.

*

(py) K, (A)

n

K, (M)

Proof: This follows directly from IV.5, IV.6 and IV.7. O

~

IX;4. Definition. In the above situétion we define the

\"
¢’ Par
This means C¢ = {(b,f) ¢ B® A : ¢(b) = £(0),f(1) = 0}.

[ELCIT TRy PEPIavEs

mapping cone, denoted by C to be the kernel of Py °

-

‘|_ ) ' g
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Given the map 1 : SA ~» C¢, defined by i(f) = (0,f),
we get a sequence of C*-algebras, which we call the Puppe
Sequence: .

S . pB C
SB ¢ . osA -1 o ¢ ¢, 3 % o 4.

IX.5. Theorem. The Puppe sequence induces an exact sequence

in K-theory:

*
()% it Pslc, ), o
Kn(SB) > Kn(SA) > Kn(C¢) _— Kn(B) > Kn(A).
Proof: We start with the exactness at Kn(B). Consider the
folloWing diagram:
*
“slc, ) N
K (C,) — 9y x (B) — D o ¥ (A)
n- ¢ n n
*
(pg)y,
Kn(c¢) x Kn(M¢) T Kn(A)
In _ Yy
Here j : C_ -+ M denotes the inclusion. Thus the

¢ ¢ 26

left-square is induced by the commutétive tfianglém”
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and hence is commutative. The right square is also commuta-
tive as we see from IX.3. The lower row of the diagram is

part of the long exact sequence induced by

0 —> C¢ s M¢ JL> A —> 0 and hence exact. But all the

. . . # .
=yertical maps are isomorphisms, so the upper row is also

exact. To see the exactness at Kn(C¢), note that for any

b ¢ B, we have that (b,(1-t)¢(b)) « C¢ and

Py ((b,(1-t)¢(b))) = b. Hence Py 1s surjective.
C

o €

The kernel of pBl is given by
c
¢

{(b,£) ¢ B®A : b =0, £(0) = ¢(b) =0, £(1) =0} = i(SA).

Thus we have an exact sequence of C*-algebras

0

s ?> B > 0 which shows that

¢ ' n . .
Kn(SA) > Kn(C¢) _— > Kn(B) 1s exact. Finally,

we show that the Puppe Sequence is exact at Kn(SA).

\"2 : .
define B:= {g : [-1,0] - B continuous} and Yy ﬁ -~ B
. to be the evaluation at t e [-1,0]. COnsider’the mapping

cylinder M(¢°Y ) which is given by the following pullback:

(d> Yo)

/\
\/
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We define .a C*-subalgebra D of by setting

Mooy
D= {(g,f) ¢ B®A: ¢(g(0)) = £(0),F(1) = 0, g(-1) = 0}.
For CB = {g : [-1,0}] - B : g(-1) = 0}, the (slightly
modified) cone over B, we get a C*-morphism u : D > CB
defined by w((g,£)) = g. Since (g,(1-0)6(g(0))) e D for
any g ¢ CB, we see that u 1is surjective. Def%ne a map

k : SA » D by i(f) = (0,f), then k 1is clearly injective.
Moreover, it is easily checked that k(SA) = ker p. Hence
we have an exact sequence 0 —> SA LSS D x> CB —> O. By
IV.8, we see that kg : Kn(SA) > Kn(D) is an isomorphism
since CB 1is contractible. Now define a map v : D - C¢,
by v((g,f)) = (g(0),f). Note that for any (b,f) ¢ C¢
the pair ((1+t)b,f) 1is in D and thus v 1is surjective.

For Kker v = {(g,0) = g(0) =0 = g(-1)}, we get that

Kn(ker v) - KH(D) - Kn(C¢) is exact. The last C*maigebraHWWmmw”MWw

we need to consider is S'B, defined by S'B:= {(gl,gz) I

g, t [71,0] » B, g, & [0,1] » B, g;(0) =0 = g,(0) g;(-1)

0 = gz(l)}. We get a map ¥ : S'B > D by x((gl,gz))

(g1,<pog2). Note that we also have maps 21 : ker v>S'B
defined.by Zl(g,O) = (g,0) and 12 : SB > S'B defined
by lz(g) = (0,g). Putting all these maps together, we

obtain a diagram which is easily checked to be commutative:
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SB ¢ oo 1 o ¢

0
22 k
i S'B —X > D V > ¢
¢
%
ker vc >D > C

Define a map oy S'B » CB = {g : [0,1}] >~ B, g(1) = 0}

by 01((g1,g2)) = g, Note that for any g ¢ CB, the

pair ((1+t)g(0),g) is in S'B, hence o 1s surjective.

1
Moreover, ker 01”= {(gl,O) : gl(—l) =0 = gl(O)} =
Ql(ker v). Thus we get a short exact sequence
K o

0 —> ker v 1, gp L CB —> 0. This proves, by 1V.8,

E ' . . .
that (Ql)n : Kn(ker v) - Kn(S B) 1is an isomorphism.

<0

Define a map o« S'B » CB by 02((g1,g2)) = gi where

2
gi : I+ B 1is defined by gi(t) = gl(—t). Note that for
any g e CB, the pair (g',g(0)(1-t)) is in S'B and
thus o, 1is surjective. Moreover, ker 0, =

{(O,gz) : gZ(O) =0 = gz(l)} = QZ(SB) and we get a short

; RV o : .
exact sequence (0 —> SB —£> S'B e£> CB —> 0. As before

we see that (22); . K;(SB) > Kn(S'B) is an isomorphism.
We collect all our information in the following diagram

which is commutative and whose vertical maps are .all

.
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isomorphisms:
(Sy)m i
Kn(SB) > Kn(SA) > Kn(C¢)
& ES
(Qz)n Kn
=R X* \)*
K (S'B) —F—> K (D) —F—> K, (Cy)
&
(8,)]
ve
n
Kn(ker V) > Kn(D) > Kn(C¢)

The bottom row is exact as we saw before, therefore, so

are the middle and top rows. This concludes the proof. [J

Note that we get also a Puppe Sequence’v
KJ(SZB) > K (S®A) > K (Ce.) » K_(SB) - K_(SB)
n n n- So¢ n n

for S¢ : SB » SA. Recall that suspensions respect

- pullbacks, so

S

SM‘///;7
ﬁ\\\\A

. N q

. ,
S

N

SA
///ggﬂ
A 0
, 7 . v

is a pullback. But it is easy to check that SA is

K
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canonically isomorphic to
and thus that SM

this we get a canonical isomorphism from

¢

\
SA : {f

I - SA

C

S¢

87

continuous},

is canonically isomorphic to

to

M

S¢°

SC

¢

-

From

and

a commutative diagram with exact rows and isomorphisms as

=gertical maps:-

2 2 | |
K, (S7B) » K (S°A) » K_(Cq ) ~ K_(SB) » K_(SA)

v

\4

¢

v
Kn(SC¢)

l

Y

A

Kn+1(SA)<+Kn+1(SA)—+Kn+1(C¢)—+Kn+1(B)-+Kn+l(A)

Thus we get the following theorem:

IX.6. Theofem.

The Puppe Sequence induces the following

long exact sequence in K-theory:

Ko (A 2 K (C) > K (B) > K (M) oK (A) = Ky (Cy) > Ko (B)>Kg (A).

IX.7. Corollary.

The Puppe Sequence induces the following

six-term-sequence in K-theory

K0£C¢) > Ko(B) - Ko(A)

Ky (A)

v

-+ K (B) < K1CC¢)

0
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Proof: The only problem is the map KO(A) > Kl(C¢). It is
gotten by the following triangle:

~

Ko (A) ———— K, (A)

=B .
%= he . ~

3 . A
2
Kl(C¢)

It can be checked as in VI.8 that the sequence is actually

exact. U

Let B, A and ¢ Dbe as above. If ZB < Z(B) and
ZA c Z(A) are two C*-subalgebras such that ¢(Zé) c ZA’
then ¢ : B+ A is a module map with-respect to the
module structure described in VII.5. Hence
¢3 : Kn(ﬁ) > Kn(A) 1s a module map as we saw in Chapter
VII. Moreover, it is quite clear that SB 1is an SZB
module and SA 1s an SZA module and S¢ 1is a module

homomorphism. We can endow C with a module structure,

¢
such that the Puppe Sequence is a module sequence, as

follows. For ¢ ZB : ZB +7ZA consider C(¢ . ) <
B
® Z,. Then .C
M Z . .
ol, B A (o]7)
B

Z(C¢). This gives the module structure. Thus we get the

is a C*-subalgebra of

-~

following proposition:
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IX.8. Proposition. In the above situation the Puppe exact

sequence 1s an exact sequence of modules with respect to

the rings

Zes V-Kn(SZB) +'Kn(SZA) - Kn(C¢ ) -~ Kn(ZB) > Kn(Z

7 A
B

g
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k xk-matrix with entries in A, say (p

<

CHAPTER X: EXAMPLES

In this chapter we apply our exact sequences to calcu-
late the K-theory of certain C*-algebras. A typical example

of an application of the Mayer-Vietoris Sequence is the
e

=
e

algebra of functions from a disk into the matrix algebra
Mn:= Mn(C) with boundary conditions exemplified by the
following: All matrices on the boundary have to be diagonal.
A typical example for applying the Puppe Sequence is the
algebra of functigﬂs on projective space into Mn‘ taking
restricted values on a submanifold.
We shall need the fact that for any C*-algebra A,

the inclusion ¢ : A - Mn(A), which maps a ¢ A to the

) | a;, = a and aij =0

otherwise; induces an isomorphism ¢; : Ku(A) > Ka(Mn(A))

matrix € Mn(A) with

%i571i,5=1...n
for o = 0,1. To show this, we need a device which will
allow us to describe maps in K-theory which are induced by
non-unital C*-morphisms.

We have seen earlier that for two unital C*-algebras

A and B the map ¢8 : KO(A) > KO(B), induced by a

unital C*-morphism ¢ : A + B, can be described as follows:
k

Any E e Ob(P(A)) canAbe embedded as a retract in A for
some Kk ¢ N. If p : Ak ~ E 1s a corresponding retraction
and . j : E > Ak the embedding, j op can be viewed as a

ij91,3=1...x"

90 .
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Then the image (¢(pij

morphism of BX  which is defined by the matrix
(¢(pij))i,j=1...k ~with entries in B is an object in P(B).
Its class in Ko(B) is the image of [ET « Kq(A) under
@%@} We want to show that this description of ¢S is also
valid if ¢ 1is non-unital. For this purpose, suppose that
A and B are unital C*-algebras and ¢ : A - B is a C*-
morphism. We adjoin a unit to A and B and define a
unital C*-morphism ¢ : A > B by ¢((a,r)) - (¢(é),x).
The fact that A and B are unital implies that
AZA®C via the isomorphism (a,\) —> (a + X1A) ® A.
Similarly Aﬁ =B ® C. Now it is easy to check that the
composition A ® € —> A'—> B —> B ® € is the map- ¢
given by 4¢(a ® A) = (4(a) + A1y - ¢(1,))) ® A. Thus
we have a commutative diagram

PT,

0 > A > A ® € > € > 0

¢ ¢ ' id

o PT,
>B &8 C — C > 0

0 > B

Note that any E ¢ Ob(P(A ® C€)) is the direct sum of -
(1A ® 0)-E and (0 ® 1)-E. If E is isomorphic to

isomorphic to (p

e ©X), then (1, ® 0)-E 1is
K

.
v

i,j=1.
ij @ O, 5=10. k(BB L
is not hard to see that [E] - [F] ¢ KO(A ® C) 1is in the

e

)%Jj=1...k(Bk) of the B-module endo-

Moreover, it

-
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kernel of (prz)g D Ky(A 8 €) » K, (€) iff (0 & 1)E is

stably isomorphic to (0 ® 1)F. 1In other words, [E] - [F]

€ ker(prz)g iff BT - TF] - [(iﬁ ® 0)E] - T(I, ® 0JF]. (
It is clear how we identify KO(A) with ker(pr2)0 We see
D - k
) . . .
ztvat -if E' ¢ Ob(P(A)) 1is isomorphic to (pij)i,j=1...k(A ),
; where pij e A, then its class in K (A ® €) wunder this
;&
identification is the class of (le @O) i=1. k((A(BC)k).

This gets mapped under"(%)g to the class of
o ~ ky _
(¢(p~- 0); i=1. B e ) =
(6(p;;) © 0); L((B 8 ©F in K (B 8 €) which is
in the kernel of (prz)g and gets identified with
(o(

1,j=1.

pij))i,j=l...k(Bk) in KO(B). This proves our claim.

Now we are ready to prove the following lemma.

X.1. Lemma. Let A be a C*-algebra and ¢ : A -~ Mk(A) the

map sending a to (a )1 j=1,...,n with a1 = a and aij =0

otherwise, then ¢; : Ka(A) > Ka(Mk(A)) is an isomorphism.

- Proof: First, consider the case where A 1s unital. We

show that ¢g 1s surjective. Let F ¢ Ob(P(M (A))), then
'F 1s isomorphic to the image of some projection

Pp (Mk(A))n > (Mk(A))n. With respect to the canonical
basis for (M (A))n, the projection Pr 1s given as an
n x n-matrix with entries in Mk(A), “say, (pij)l,j=1,

Each entry p. is a k><k—matrix with entries in A,-

say Py i = (plj)u,v 1' Lk Consider the kn x kn-matrix
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(11 1k, 11 )
o(py7) --- o(p77) o(py3)
Hu,v=1...k . .
W,V ’ _ k1l kk
(¢(Pij ))i,j=1...n;_ ¢(P11) c e ¢(P11)
i . 11
e ‘b(le)
\ * J
with entries in .Mk(A). It defines a map qg Mk(A)nk
> Mk(A)nk by matrix multiplication. We see that gq is

a projection and it is not hard to see that '
Pp((M (AN™ = ap (4 (AN™). In fact, (4 ()" -

M ()™ 8 (M (M) M) and the image of pp is isomor-
phic to the image of p, ® 0 : (M (A)" @ (M (A))K(P~D)

> 0 ()™ @y (ay R L)

of dg and inner automorphisms of (Mk(A))nk given by

But "Pp ® 0 " is the-composition

permutations of rows and columns. Now note that the

kn x kn-matrix with entries in A

(11 1k 11 )
P11 --+ P11 Pz -~
( uv)u,v=1,...,k i K1 Kk
Pijli,j=1,...,k P11 --+ P11
11
P21

k

defines a prbjection pE‘: AT ARK

>~ A by matrix multipli-

cation. Moreover, by the preceding descfipfion of ¢3,

. . , -
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we see that

b5 (Ipg (AM)1) = [ap (0 ()™ = [p (M (AN™] = TFT.

o g *
» > Thus ¢, 1is surjective.
To show that ¢8 1s injective, suppose that
E,F ¢ Ob(P(A)) and ¢3([E] - [F1) = 0 din Ky(M (A)). We
can find projections pp and pp from A" into A" such
that E = pE(An) and F = pF(An). Withrfespect to the

canonical basis for An, the projections are given by

. . : . _ . E

nxn-matrices with entries in A. Say Pp = (pij)i,j=1...n
= (pF :

and Pp = (pij)i,j=1...n' By hypothesis, the two Mk(A)

modules, given as the images of the projections

E |y i n n
(0(Pi50)5 5-1...n F MW7 > (M (A))" and |
(¢(p§j))i (Mk(A))n > (Mk(A))n are stably

isomorphic. This means that there is a number m such

,j=1...n :

that the projections

L E |y % - ' N n-+m n+m
Qg = (¢(pij))i»j=1---Ilgld(Mk(A))m' (M (A (A))

and "

o F ‘ ; _ n+m n+m

" have isomorphic images. If we view id o as the
' (Mk (A) )

: : e ' E
identity matrix in Mk(n+m)(A) and ¢(P§j) and ¢(pij)

as kxk-matrices with entries in A, we see that qp and

=

Lo | | | o
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qp define projections Aan+m) 5 aK(n+m)

e

images. Similarly as above, we see that qE(Ak(n+m))

k

mk kinm)y < pr(A") & A", Thus E

) n
pE(A ) & A and qF(A

and F are stably isomorphic and hence [E] - [F] = 0.

. +¥This proves that ¢y 1s injective.

Now it is easy to''generalize this result to non-

unital A. Consider the commutative diagram

0 > A —> A > C > 0
Y °x o¢
\ A\ A\
0 > Mk(A) > Mk(A) > Mk(C) > 0

The maps - ¢A, ¢K and ¢¢ are the previously described

ones for the resepctive algebras. We get a commutative

diagram
‘0 > Kq(A) 5 KO(K)_ > Ky (@) >
(6,) ¢ (47) g (6¢) g
o‘;——; Ko (M (8)) —> KO(MK(K)) —> KoM (€)) — 0.,

AThe first part of the proof ;hows'that (¢K)g and (¢¢)8

‘are isomorphisms, thUS'.(¢A)3 1s an isomorphism. This

concludes the proof of the lemma for KO. To extend the

result to the other K-groups, we only need to note that

with isomorphic

-



r" E
96

S(Mn(A)) 1s canonically isomorphic to Mn(SA) and that

Sy 1 SA > S(M (A)) becomes ¢SA:: SA - Mi(SA) under this

7\

1somorphism. Thus we have a commutative diagram

=
e
.

(007
K () — k) Oy (A)

(1K
e

(4
Ko (88) —2220 5 ko (SA))

which proves that (¢A); 1s an isomorphism. 0

Now let Y < X be compact spaces. Define a C*-

algebra D as the following pullback.
L (CO0)

\\\QNI
P

n

D k(€Y.

’ M
////7
\\N |

My (C(Y))

Here T simply denotes the restriction to Y and An is

the map that assigns the block diaébnal matrix

f -

<t to an f ¢ Mk(C(Y)). For the sake of brevity
‘£ ,

we define Bi= My (C(X), A:= M(C(Y)) and Ci= M, (C(Y)).

L
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We obtain an exact sequence
, \Y 1 -
Kl(D) _ Kl(B) & Kl(A) —> Kl(C)
A
A
Vo ,
KO(C) < KO(B) C] KO(A) < KO(D)
* . . . .
The map (An) : Ka(A) > Ka(C)V 1s, 1f we identify Ka(A)

. % . N .
with Ka(C) under (¢Mk(C(Y)))a , Jjust multiplication by
n. If X 1is a contractible space and Yo € Y, the map
ev : B ~» Mnkﬂ given as the evaluation at Yo is a homotopy
equivalence. Thus with the canonical embedding

j Mnk <—> Mnk(C(Y)) = C, we get a commutative triangle

up to homotopy:

ev

Thus the triangle in K-theory induced by this triangle

, % . . . A
commutes; also (ev)a is an isomorphicm; so we can replace

%
(Ka(B) by Ka(Mnk) andu Ty

by j;} If we set
A= {f ¢ A : f(yo) = O}, we get a split exact sequence -
0 — A —> A ev, Mk —> O{ i.e., Mk 'isfé retréct of A’,

hence we get a split exact sequence in K-theory:

]
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0 —> K (A) —> K (A) —> K (M) —> 0.

Note that Kl(Mnk) = Kl(Mk) = Kl(m) = 0 and KO(Mnk)

k) = KO(G) = Z; hence we get the exact sequence

V1

K, (D)
A}

> K (A)

> K (A)

‘Ko(f\) 0z <0 7 g (Ky(A) @ Z) <— Kg(D),

where the maps vy and v, are given as follows:

vl(a) = -na er a e Kl(A); and for m ® (ar@ m')

e L 8@ (KO(A) ® Z), we have vo(m & (a ® m')) =

(0 ®m) - n(a ®m') = (-na ® (m-nm')). If we assume that

Kl(A) is torsion-free, then vy is injective and there-

fore Kl(D) = KO(A) ® Z/im v. But for c¢,d ¢ KO(A) and

m_,My e Z, we have that ¢ m. - d ® my e im vy if and

only 1f there is an a «¢ KO(A) and m,m' ¢ Z such that

¢ - d = -na and 'mC - ma—= m - nm'. The condition on the

integers is always satisfied thus Kl(D) = KO(A)/nKO(A) =
'KO(A)‘® Z/nZ . Further, we have the exact sequence

¥

0 —4} Kl(A)/im v1.—~> KO(D)'¥f> ker Vg —> 0.

" If we coﬁtinuerto assume that KO(A) is torsion-free,

then ker vy = {m@ (a ®n') cZ 8 (K,(A) 8 2) :
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-na = 0, m = nmf} = Z. Thus the sequence splits, and since

im vy = nKl(K),' we have that KO(D) = (Kl(ﬁ) 8 Z/n7Z) 6 ZZ.
If we now observe that Ka(A) = Ka(C(Y)) = KG(Y) and

Ka(ﬁ) = Ka(CO(Y)) = X*(Y), we get the following theorem:

S -

w

X.1. Theorem. Let Y < X be compact spaces such that X
ig contractible and KQ(Y) is torsion-free for a = 0,1
and let D be the C*-algebra of continuous functions from
X info Mnk such that the values on Y are block diagonal
matrices with identical blocks of size k x k. Then

K, (D) = &% @ Z/nZ) 8 Z and K, (D) = ®'(y) 8 zZ/nz) .

The obvious question is of course: what happens if we
don't require the block matrices to be identical. In that
case we have the following result which, in contrast with

“previous results, requires no hypotheses for KQ(Y):

X.2. Theorem. Let Y < X be compact spaces with X con-

tractible and D the C*-algebra of éontinuousAfunctions
X - Mnk that map Y to block diagonal matricés with
blocks of size kxk. Then Ky(D) = (RO(y)™ ! e2z" and

K, (D) = &yt

Proof: If o : (Mk(C(Y)))n > (M, (C(Y))) 1is the map that

: ) [ 1,
sends (ai)i=11..n to - 2.. , then ? can be

‘a
n

expressed as the following pullback with notation as before
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Again we replace B by C and obtain a Mayer-Vietoris

Sequence:
_ n o Vq o
i=1
o \)OV n o
KO(A) B Z < ZZ ® 6 (KO(A) ®Z) < KO(D).
' i=1

But this timé, for a. e Kl(R), the map v 1s given by

1
. n n o
Vl(.? ai) = —.Z a; an? for bi e K, (A) and m,m. ¢ Z
1=1 i=1
the map Vo is given by v (m ® @ (b ® mi)) =
C o i=1
n
z b, & (m - y m;). It is easy to see that vy as well
i=1 i=1 ' t
as vy, 1is surjective. Thus KO(DT = ker v, and
_ n-1
Kl(D) = ket vi. But it is clear that ker vy = 8 K (&)
n-. n-1 , 1=1
® ® Z and ker vy = 0 K (A) This concludes the proof.

-

i=1 ’ i=1 ) O

- The assumption that X be contractible has of course
‘been made to avoid technical problems which arise from the
fact thatrwé=did not know the map r; : Ka(B) > Ka(C) in

,genérali In'fact, this is the same as the map
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Ka(X) > KG(Y) induced by the inclusion Y—X. If Y is a

deformation retract of X, then r : Mnk(X) > Mnk(Y) is a

homotopy equivalence and we can identify Ku(B) with

3 * . . y -
o £(€) and view rl : K (B) > K, (C) as the identity map.

=R

For tHg pullback

. : B ’
//////;7 ‘\\\\E\g
D : c
| \\\\\\\‘s ////1;)7
A n
we get the following exact sequence

V1

Kl(D) > Kl(A) @IKI(A)

A

> Kl(A)

\Y

Vv
O N
Ko (D)

K, (A) < Ko(A) @ Kb(A) <

with the maps vl” and v, as follows: For ay,a, e K, (A),
b, ¢ KO(A),

1272
we have ~\)O(bl ® bz) = by l 7 It is clear that‘avo

wé’have~“v1(a1 ® aZ) = a, -’nazi and for b

I
o

|
o]
[on)

asﬁWéll as vy, are surjective. Thus we have
KO(D) = ker Vo 'andqul(D)TQ ker vng-Bu; ker v 1is iso-
morphic to K,(A),  hence we get the following theorem:

[ S
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X.53. Theorem. Let Y < X be compact spaces and Y a

deformation retract of X. Let D be theuC*-algebra of
functioﬁs from X info Mnk such that the values on Y
are block diagonal matrices with identical blocks of size
S5 KD Then K,(0) = K°(Y) and K, (0 =k (v). O
Again we can consider the same algebra with the con-

dition that the block matrices be the same dropped. We

get:

X.4. Theorem. Let Y, X and D be as in X.3, except that
we do not require the block matrices to be the same. Then

K = ™ and K () =k v))n

Proof: The algebra D can be written as the pullback
B
D o
\\\\\\g .///4527
Al

‘We get the following Mayer-Vietoris Sequence:

B : n vy
Kl(D) > Kl(A{ ® _?1 Kl(A) —> Kl(A)
A =L
A vo , . n _ v
Kl(A)'{‘ __KO(A) (0] ifllKo(A) < KO(D)
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. n n
For a, a; e K;(A) we have vila 8 .? a;) = a - .Z a;
i=1 1=1
: n n
and for b, bi°e Ky(A), we have ve(b ® .? b.) =b - _Z bi‘
i=1 i=1
Again it is clear that Vo and v, are surjective. Thus
Ko . N CL .
;%%(D) = ker Vo and Kl(D) = ker K Now 1t 1s easy to
n n
check that ker vg = 8 KO(A) and ker vy = ® Kl(A). 0
% i=1 ' i=1 ,

We can generalize Theorem X.4 as follows:

X.5. Theorem. Let Y < X be compact spaces such that

i* 0 k%0 - K*(Y), the map induced by the inclusion

j ¢+ Ye—> X, 1is surjective. Let D be the C*-algebra
df'functipns from X 1into Mnk such that the values on
Y are block diagonal matrices with blocks of size kxk.
Then K, = k%00 & (k%(v)™' and

1 1 -1

Ky (D) = K (X) @ (K- (¥))" .
E B

Proof: With the same notation as above, we have that

% . _ . . L%
vra .{KQ(B) ?,Ku(C) Ka(A) is just the map Jg Thus

- we get the following Mayer-Vietoris Sequence

| ! vy 7

Kj (D) —> K;(B) & © K (A) > Ky (A)
A | i=1
v0' e n

’KO(A) < 7 KO(B) g 181 Ko(A) < KO(D)

For ,b:e Ka(B) andr ai'e Ka(A), we have‘va(biﬁigl

r;(b) - ) a,. The maps v are surjective since the
i=1

a;) =

- L I D N
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* = .
r, oare. Thus Ka(D) = ker Vi, But the map - x, KG(B) o

- l N
(KO‘(A))n + ker v, 8given byn_¥a(b ® (al ®...0 an_l)) =
. * . .
b & (al 6...0 a1 ® ra(b) - izlai) is clearly an isomor-

Fog ,£§i5@° This concludes the proof. [

We can also generalize Theorem X.3 in this fashion,

b
but the result will not be quite as nice:
X.6. Theorem. Let Y, X and D be as in X.5, except that
the block matrices are required to be identical. Then
KO(D) and Kl(D) are given as the following pullbacks:
Rt kL0 L«
/////” 0 1
KJm K (Y) K, (D) K (V)
\\\\& //ﬁiZtuby n \\\\* //éi:t.by n
k% () Kt (Y)
Proof: The relevant Méyer-Vietoris Sequence is
, S Vi
K1£D) > Kl(B) ) Kl(A) > Kl(A)
Vo : , v
KO(A) <= KO(B) ® KO(A) < KO(D)
and for b ¢ Ka(B) and a € Ka(A)’ we have that
> l_ ]
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va(b ® a) = r:(b) - nea. The maps v, are clearly sur-
jective since r; is. Thus Ka(D) = ker vy It is clear.

that these kernels are described pullbacks. 0

Z%¥s -- One can further modify the examples. For instance,
we can demand certain block matrices to be zero. In this
case we just replace as many summands of A" by zero as
we have zero block matrices. The calculations are clear.
One can also combine the various boundary conditions. The
resulting calculations follow the same scheme as the
preceding ones.

Another way of generalizing these examples is to
modify the maps from Mk(C(Y)) to Mnk(C(Y)). One can do
this by letting automorphisms of My ‘act on the block
matrices. But all automorphisms of My are inner automor -
phisms, which do not affect the K-theory. Thus we have
already described this case in the previous theorems.

We have seen that, if vy and - vy in the Mayer-
vVietoris Sequence are not surjectivé, torsion in tﬁe K-
grbups can cause trouble. In some cases, we can get
arouﬁa this using the Puppe Sequence. Let X and Y be
compact sﬁaces and f : Y » X be a continuous function.
”Cpnsider the mapping cone Cf;_ WQ obtain a function
fr Y 5 Ce which is the compositioh of f and the
canonical mép, g : X +VCf. Néw consider the C*—algesras

Mk(C(X)) and Mnk(C(Y)). We get a map

L.
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RO Mk(C(X)) > Mnk(C(Y)) if, for a e Mk(C(X)), we set

d(a) = An(ao f). Consider the mapping cone of . It 1is.

given by a subset of mapping cone M

¢

My (C(X))

Px

¢
M, \\\‘ M 4 (C(Y))
p\\\\ ///Z |

My (C(v))” O

where Mﬁk(C(Y)) denotes the algebra paths in Mnk(C(Y)).

. An element m ¢ M is in C 1ff ¢ opx(m) = 0. Note

¢ ¢
that M%k(C(Y)) "1s canonically isomorphic to Mnk(C(Y><I))

"and Mk(C(X)) 1s canonically isomorphic to those functions

from X into Mnk whose values are block diagonal
matrices with identical blocks of size kxk. Thus we see
that C¢ is the C*—éigebra of functions frbm Cf' into
Mnk those values on g(X) are'block diagonal matrices

with identical blocks of size rk:&k and which vanish on

’ Yo € Cg» the vertex of the cone. Moreover, after identi-

fying' K (M (C(X))) with ka(C(XJ) = K¥(X) and

KoM (CCY))) with K (C(Y)) = K*(Y), we see that the

-

Cmap ¥ Ko (M (CCX)) > K (M, (C(Y))) is given by

‘n-f; - K*(X) > X*(Y). With these identifications the

Puppe Sequence of ¢ is
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Ky (Cy) —> k! (x)

*

n-fO

K y) «—0 00 «— x (c

We collect this information into the following theorem.

X.7. Theorem. Let X and Y be compact spaces, and

f : Y > X a continuous function. Let Cf be the mapping

cone of f and D the C*-algebra of functions from Cf

‘into Mnk whose values on the canonical image of X in
Cf are block diagonal matrices with identical blocks of
size kxk. Let D be the C*-subalgebra of D of

functions which vanish on Yo € Cg» the vertex of the

~

cone. Then K;(D) = K, (D), and Ko(D) =Z 8 Ky (D). More-

over, we have the following exact sequence:
# . :

o 1 n-fI 1 A
Kl(D) —> KT (X) ————— K (Y)

n-fg

K0r) «— 9 kOx) Ko (D).

-

Proof: It only remains to be pfo?ed that Kl(D) EKﬁ(ﬁ)

and KO(D) ;52 ® Ko(ﬁ). ‘To see this, consider the follow-

ing commutative diagram with exact rows:

I_ !
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o ev(yo) . ,
0 > D > D > M > 0
nk
]\ N
0 > B > B > € —_—> 0
Here ﬁ

is viewed as functions on Cf whose values on

~

A0 ”
Yo are of the form {OO J, thus D < D and 1 maps A

A
to [ 0.'OJ . The lower row is a retraction, hence gives

rise to a split exact sequence in K-theory. Thus we have
a commutative diagram with exact rows:

0 —> Ky(D) —> K(D) — Z — K (D) — Kl(ﬁ) — 0
/,\ A . A

id

,Ov—> KO(D) —> KO(D) ® ZZ —> Z\T;'KI(D) —‘> Kl(D) —> 0.

0

Thus we see that KO(D) +~Z 1s surjective, hence

Ky (D) 2 Ky(D) ®Z and . X, (D) =K. T

- Again, we are interested in the case where we drop

the condition'that the block matrices be identical. This

‘case is described by the mapping'cone of ¢ : (Mk(C(X)))n

” Mnk(C(yj)' where * ¢ sends an ()i o ¢ M (X))

td/a'matrixj
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After making the appropriate identificationé, we see that
the maps ¢: : (KOL(X))n > K*(Y) is given by

L I no . o
¢a(i§ a;) ~» izlfa(ai) for a; ¢ K (X) and £, 1 KT (X)

> K% (Y) is the map which is induced by f : Y > X. We

get a Puppe Sequence

%

o1

> (k) . k()

Ky (Cy)

A

A\
kKLoy) «—— k00 e Kp(Cy) -

Thus we have the following theorem:”

X.8. Theorem. Let X and Y be compact spaces. and

f:Y->X avcontinuous function. Let Cf be the mapping
lcOne gf f and DA thé C*-algebra of functions from Cf
into Mnk whose values on thé canonical image of X in
.Cf are blogk diagonal ﬁatrices withrblocks of size k xk,.
Let» o be'the subalgebré of D whic consists of functions

vanishing at,,yd; the vertex of the cone. Then
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Kl(D) = Kl(ﬁ) and KO(D) =7 & KO(D). Mpreover, we have

the following exact sequence:
o n 1
Kl(D) —> 8 K (X)

n
Koy 22 e kO e— Ko (D).

Proof: The exact sequence has been shown already and the
assertions concerning the connection of D and D follow

as in X.7. U

We present an example which illustrates how this

result may be of use in dealing with spaces with torsion.

1

Let X =Y =38".and f : Y > X be the multiplication by

2 with respect to the Z-module structure of the unit

circle. Then Cf is the projective plane ﬁRPZ, and

the image of X 1is the projective plane RPl

RPZ, Moreover, f

sitting in
*

0
plication by 2. Thus in the situation of X.7, we have

KOst =z - kKO%sly =z is multi-

the sequence

Kl(D) > 0 > 0
A

Zn Vo
Z < Z < KO(D)
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We get K, (D) = K (D) *Z/2nZ and Ko(D) = Ky(D) 8 Z

e

Z ®Z. In the situation of X.8, the sequence is

It 1s easy to check that the image of If 1is just 27,
thus K (D) ¥ K, (D) ¥2Z/2Z . The kernel of &f is

: isombrphic to the direct sum of n-1 coplies of 2 Z.

n-1

Z ez 27", Note

e

Thus we have KO(D) = KO(B) ® Z
here that = KO(]RPZ) = Z/27ZZ and KO(]RP1) =7Z. Thus we can

not obtain these results from any of the previous theorems.
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CHAPTER XI: A NON-COMMUTATIVE SPLITTING PRTNCIPLE

This chapter is motivated by the equivalence of the

categories of vector bundles over a compact space X on the

=igE

Dne hand and the category P(C(X)) on the other hand. For

vector bundles the splitting principle says: for any vector
bundle E over X, we can define the projectivisation

P(E) of E being based on the underlying set U P(EX),
' : ' ' XeX

where P(Ex) 1s the projective space obtained from the fibre
EX over x e X as ‘P(EX) = (EX\{O})/CX. We provide P(E)
with the quotient topology with respect to the quotient map
Ex U {0 ¢ EX} ~ P(E). There is a natural map P(E) - X
ingﬁied by the projectibn E~» X. If we pullibéck E via
this map the resulting bun@le will be the direct sum of the
canonical line bundle over P(E) and another bundle over
P(E). If T(X,E) is the right-C(X)-module of sections of
E, the module of sections of the pullback bundle over

P(B) is T(X,E) 8; ., C(P(E)), where C(P(E)) is viewed
as a left C(X)-module via the natural induced map

C(X) +{C(P(E))‘Q The direct sum decomposition of the pull-
back buhdlevintd the:canonical.line bundle & and the -
bundle 2% induces now a di;éct_sﬁm'decomposition of
T(X;E) @Ckx) C(P(E)) into the seétionmodulesF(P(E),z)

and T (P(E),2%),

112
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What we propose to do here is to“codétruct, for a given
unital C*-algebra B and a gight module M ¢ P(B), a C*-
algebra P(M) and a natural map B » P(M) such that
=M N P(M) 1is the direct sum of a canonical right module
L e P(P(M)) and another module Lt e P(P(M)). Moreover, if
B =C(X) and M = I'(X,E) for a vector bundle E over X,
then L = I'(P(E),%).
To carry out the construction, we need the notion of
a Hilbert module (cf. [D} for the definition). Note that
for any closedrideal I of B, the module M @B B/I,
induced by the quotient map ¢y B - B/I, can be given a
Hilbert module structure. If M 1is embedded in BX as a
retract, the inner product on M 1is induced by < , >

Bk x Bk - B, given by

The induced inner product M B/f x M ® B/I > B/I’ is
dehoted‘by < ) >I' If J 1is anothérclosed.ideql in B
suchifhét I c‘J and ¢ B/I -~ B/J is the cénonical map,
“we have that ¢y ((e,£)) = (e 8y 1,50 £ 81 1y, 00 g
'In the followingAwe shall idehtify M ®B B/1 ®B/I B/Jg’and
M ®B B/J (cf. [D]).
,Nét¢ that for B =HVJC'(X) and M = F(X,E}; a clased

ideal I CorreSponds to a closed set Y c X such that

« T

L o | . N
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I = CY(X), the functions on X vanishing. on Y. Then

B/I = C(Y) and the Hilbert module structure reduces to a

metric on the bundle. Moreover, the induced mappings are

© all restrictions,
e -

XI.1. Definition. Let B be a unital C#*-algebra and let

M ¢ P(B) be provided with Hilbert module structure. For

any closed ideal I in B define a subset MI of M ® B/I

by MI:= {mI e M ® B/T : <mI’mI>I € Gll(B/I)}. Denote

<mI’mI>I by ImIIZ. Let M; be the quotient space of

I

MI with reSpeCt to the group action Gll(B/I) X MI -> MI

which is given by multiplication. Denote the class of m.

in MI by my .
over, for I < J we have that id 8 ¢IJ : M ® B/i - M B/J

Note that MI 1s open in M ® B/I. More-

maps MI into MJ as we see from the above remarks. In

the commutative case, M 1s the set of sections which

I

are nonzero on the set Y corresponding to I and the

., orbits are the sets of collinear sections over Y.

XI.2. Definition. Let ¢ be the set of closed idealé I
in B for which M; # . Then define for every "I e z,’
PI(M) .as the set of continuous; bounded functions
f : MI +~ B/I which satisfy the following compatibility
condition: If I < J, let the‘reiations my,Ny €'MI and
TT@ g ;(m) =TT 8 6, (M) imply ¢y (£(p)) =
¢IJ(f(ﬁi))' Here iﬁf§_$;3 : MI > MJ denotes the map
induced by id @ ¢IJonequivalence c1a$ses.' If B = C(x),
x

“ | : | : | e R . | N
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I = CY(X) and J = CZ(X) with Z < Y < X, then the com-
patibility condition just says that two classes of sections

0,0" ¢ F(Y,E|Y) with equal restrictions to Z get mapped

-

to functions f(o), f(o') ¢ C(Y) with equal restrictions to

Z. Considering the special case Z = {y} where y ¢ Y is

a point, we see that we can identify PI(M) with the set
of continuous bounded functions on P(EIY) because the set
of images of the sections of F(Y,E|Y) is dense in E!Y.

For closed ideals I and J in B, 1let I v J be
the closed ideal generated‘by I and J. Note that

I,J e ¢ implies I v J e z.

X1.3. Definition. Provide PI(M) with the sup norm and

define a normed space P(M) in i PI(M) by P(M) =
_ Ter - A
{(fI : MI > B/I)I : for J e ¢t and m e« MI n’MJ,

¢I,Ivj(f1(m)) = ¢J’IVJ(fJ(m)) and (f;) is bounded in the

product norm}.

|

Note that in the commutative .case the compatibility
condition reduces to saying that a family of functions on

(P(EIY)JC (X)ezMI is in P(M) if the functions agree on
Y .

overlaps. Thus we can identify P(M) with the continuous

functions on P(E) via *(fI : MI > B/I)I <—> f with
f(e) = f. (o) where - 0 F(X,Ej, where o(x) = e,
Coap (777 :

and where e is the class of e in P(E).

XI.4. Lemma. A The normed space P(M) 1is a C*¥a1gebra under

L 1
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pointwise multiplication and involution.®

Proof: The only point that is not clear right away is the
completeness of P(M), .but since we close the topology of
S®¥uniform convergence on PI(M), this can also be seen.

easily. 0

Note that there is a canonical C*-morphism
T :B-~»P(M), given by b |—> (f; : MI > B/I)I with
fI(ﬁI) =b + I = ¢I(b). It is easy to see that in the com-
mutative case this map is the one induced by the projection
P(E) - E. |
We introduce some notation in order to make the
subsequent calculations more transparent. If

B '{(bI)

e T B/T : sup||b;]] < =}, a C*-algebra,
Ig(:

I M® B/I, and N = 1 MI’ then an element of P(M)
Tec Teg

is a continuous function from N to B. Moreover, we can

Ieg
N

5 0 )
view the elements of M @B P(M) as continuous functions

. from N to B by identifying (n 8 £)0G) = n @ £,(x)

I

Tt &

for n e M, (f); ¢ P(M) and x ¢ M;. Note that N is

a B-module.
“ ,

- XI.5. Definition. Let B, M- and P(M) be as above.

- Define a submodule L .of M 8y P(M) by
L={weM@ P(M :VxeN, Hb_ e B such that

w(Xx) = xb}.
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In the commutative case, M @B P(M): 1is T (X,E) ®

C(P(E)) = T(X,P(E)) and L 1is the set of sections of P(E)
R

of the form 7} o; © fi e T(X,E) ® C(P(E)) such that for
i=1

- Z¥®¥rany nonzero point e in the fibre EX over any X s the

evaluation at e « P(E), gives a scalar multiple of e.
In other words, L 4is the set of sections of the canonical
line bundle.

We define a formal inner product on N with values
in B %by <(mI)I, (nI)I> = (<mI’nI>I)I for My ,Ny e MBB/I.

1

XI.6. Definition. Let L~ be the submodule of M 8, P (M)

defined by L* = {w ¢ M8 P(M) : V x ¢ N, (w(x),x) = 0}.

We see that in the commutative case L% is just the
orthogonal complement of the canonical line bundle with

respect to a given metric on E.

XI.7. Theorem. Let B be a unital C*-algebra, Me Ob(P(B)).

If L and LY are the modules defined in XI.5 and XI.6,

then M 8, P(M) = L & L". In particular, L,L' ¢ Ob(P(P(M)).

o

Proof: Let M be embedded as a retract -in Bk“-and ’Aa’

for -a =1 ... k be canoﬁical basis for Bk. Thenﬂeach

mp e M ® B/I can be-written uniquely as
k ;(mI) (mI) : B ,
) AD where b e B/I. Thus, there is a function
a=1 * @ . o ' '
(m;)

_ L () _
c, * N> B which sends x = (my); to . b = (b, " Jq-
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For any w ¢ M ® P(M) we define a function Pa(w) : N > B
by Pa(w)(x)r= b(X)<x<x,x>_1, w(x)). Suppose now that
X,y ¢ N define the same element Xx =y in N. Then there

. exists an invertible b ¢ B such that x = yb. Then the

following calculation shows that Pa(w)(x)r= Pa(w)(y):

b (x(x,x) T w®Y) = 6P (yo(yb,yb) L wrE)) -

o ) ) . - —\
= oW olyb 67y, y) o Lum) = 6 (y,y) Lum).

Thus we can view Pa(w) as an element of M @B P(M). We

now define a map P M @B P(M) - M @B P(M) by

L :

k .
P (w) = ) pA, 8, P_(w) where p : gk . M 1is the
a=1 & '
rétractlon. It is easy to check that P 1s well defined,

L

~and is a module homomorphism which is self adjoint with
respect to the formal inner product < , > on M &, P(M).

Moreover, "PL maps - M Q P (M) 1nto L as we see from

e

i 6 ,~”W?;;:"LQWW(X77)I S

, k
= (3, ® D) wm), -

~o=1

xp (x(x,x) hw ),

w

in M 8 B/I. Here a subscript - I means the I-th component
-in the fespéctive products. - Again, it is easy to check that

PL"is a prbjection and equal to the identity on L. More-

over 1 - PL : M® P(M) ~ M ® P(M) 1is a projection onto

Y. This concludes the proof. 0O

Lt |
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