
Dissertation

The Complexity of Local Max-Cut

Tobias Tscheuschner

Paderborn, Juli 2012

Schriftliche Arbeit zur Erlangung des Grades
Doktor der Naturwissenschaften

an der Fakultät für Elektrotechnik, Informatik und Mathematik
der Universität Paderborn

Abstract

Local search is one of the most successful approaches for solving hard optimization
problems. In local search, a set of neighbor solutions is assigned to every solution
and one asks for a local optimum, i.e., a solution that has no better neighbor. The
neighborhood relation between the solutions naturally induces standard algorithms that
find a local optimum: Begin with a feasible solution and iteratively move to a better
neighbor until a local optimum is found. Many empirical and theoretical investigations
have shown that these methods quickly terminate in a local optimum for most instances.

For some problems, however, instances were found for which a standard algorithm
can take an exponential number of improving steps if the initial solution and the rule
that chooses among the improving neighbors, i.e., the pivot rule, are unluckily chosen.
Even worse, for some problems, instances and initial solutions were found in which,
independent of the pivot rule, every standard algorithm takes an exponential number
of steps. We say that these problems have the all-exp property. Thus, using a standard
algorithm turns out to be impractical in some cases.

But how hard is computing a local optimum then—using standard algorithms or any
other approach? To encapsulate the complexity of finding local optima, Johnson et
al. (JCSS,1988) introduced the complexity class PLS. Shortly afterwards, Schäffer et
al. (JOC,1991) showed PLS-completeness for several local search problems including
LOCALMAX-CUT on graphs with unbounded degree with a FLIP-neighborhood in which
one node changes the partition. Moreover, they showed two further results for LOCALMAX-
CUT: It has the all-exp property and the STANDARDALGORITHMPROBLEM (SAP), i.e., the
problem of finding a local optimum that is reachable from a given pair of an instance
and initial solution via a standard algorithm, is PSPACE-complete. On the positive side,
Poljak (JOC,1995) showed that there are at most O(n2) improving steps possible for
LOCALMAX-CUT on cubic graphs. He also posed the question whether it has the all-exp
property on graphs with maximum degree four. Due to the huge gap between the degree
three and an unbounded degree, Ackermann et al. (JACM,2008) asked for the smallest
d ∈ N for which LOCALMAX-CUT on graphs with maximum degree d is PLS-complete.

This thesis provides three complexity results for LOCALMAX-CUT. First, it has the all-exp
property if restricted to graphs with maximum degree four—this solves the problem
stated by Poljak. Second, the SAP is PSPACE-complete for graphs with maximum degree
four. Third, finding a local optimum is PLS-complete for graphs with maximum degree
five—this solves the problem of Ackermann et al. almost completely since d is narrowed
down to four or five (unless PLS ⊆ P). Since LOCALMAX-CUT has been the basis for several
PLS-reductions in the literature, the results have impact on further problems. Some of
the reductions directly carry over the degree in some way and transfer the complexity
results to the corresponding problems even for very restricted sets of feasible inputs.

iii

Zusammenfassung

Die lokale Suche ist einer der erfolgreichsten Ansätze zur Lösung schwerer Optimierungs-
probleme. Bei der lokalen Suche ist jeder Lösung eine Menge von Nachbarlösungen
zugeordnet. Gesucht ist ein lokales Optimum, das heißt eine Lösung, die keinen besseren
Nachbarn hat. Die Nachbarschaftsbeziehung zwischen den Lösungen induziert auf
natürliche Weise so genannte Standardalgorithmen, die lokale Optima finden: Beginne
mit einer zulässigen Lösung und wechsle iterativ zu einem besseren Nachbarn bis ein
lokales Optimum gefunden ist. Viele empirische und theoretische Untersuchungen haben
gezeigt, dass diese Methoden bei den meisten Eingaben schnell ein lokales Optimum
erreichen.

Für einige Probleme sind allerdings Instanzen gefunden worden, bei denen ein Stan-
dardalgorithmus exponentiell viele Schritte benötigen kann, wenn die initiale Lösung und
die sogenannte Pivot-Regel, die unter den verbessernden Lösungen auswählt, unglücklich
gewählt sind. Schlimmer noch, für einige Probleme sind Instanzen und initiale Lösungen
gefunden worden, in denen unabhängig von der Pivot-Regel jeder Standardalgorithmus
exponentiell viele Schritte benötigt. Von solchen Problemen sagen wir, dass sie die All-exp
Eigenschaft haben. Insgesamt gilt also, dass es es in einigen Fällen unpraktisch ist, einen
Standardalgorithmus zur Berechnung eine lokalen Optimums zu wählen.

Aber wie schwer ist es dann, ein lokales Optimum zu finden—mit Standardalgorith-
men oder einem anderen Ansatz? Um die Komplexität der Berechnung lokaler Optima
zu kapseln, haben Johnson et al. (JCSS,1988) die Klasse PLS eingeführt. Kurz danach
zeigten Schäffer et al. (JOC,1991) PLS-Vollständigkeit für verschiedene lokale Suchprob-
leme einschließlich des Problems LOCALMAX-CUT auf Graphen unbeschränkten Grades
mit FLIP-Nachbarschaft, in der ein Knoten die Partition wechselt. Darüber hinaus zeigten
sie zwei weitere Ergebnisse für LOCALMAX-CUT: Es hat die All-exp Eigenschaft und das
Problem, ein lokales Optimum zu berechnen, das ausgehend von einem Paar aus Instanz
und initialer Lösung mit Hilfe eines Standardalgorithmus erreichbar ist (kurz: SAP), ist
PSPACE-vollständig. Auf der anderen Seite zeigte Poljak (JOC,1995), dass höchstens
O(n2) verbessernde Schritte für LOCALMAX-CUT auf kubischen Graphen möglich sind
bis ein lokales Optimum erreicht wird. Außerdem stellte er die Frage, ob LOCALMAX-
CUT auf Graphen mit Höchstgrad vier die All-exp Eigenschaft hat. Wegen der großen
Lücke zwischen dem Grad drei und einem unbeschränkten Grad fragten Ackermann et
al. (JACM,2008) nach dem kleinsten d ∈ N, für das LOCALMAX-CUT auf Graphen mit
Höchstgrad d PLS-vollständig ist.

Die vorliegende Arbeit liefert drei Komplexitätsergebnisse für LOCALMAX-CUT. Er-
stens behält es die All-exp Eigenschaft auch wenn es auf Graphen mit Höchstgrad vier
eingeschränkt wird—dieses Ergebnis löst das Problem von Poljak. Zweitens ist das SAP
PSPACE-vollständig auf Graphen mit Höchstgrad vier. Drittens ist die Berechnung eines

v

lokalen Optimums PLS-vollständig für Graphen mit Höchstgrad fünf—dieses Ergebnis
löst das Problem von Ackermann et al. fast vollständig, da d dadurch entweder vier
oder fünf ist (außer PLS ⊆ P). Die Ergebnisse haben Einfluss auf weitere Probleme, da
LOCALMAX-CUT in der Literatur als Basis für verschiedene PLS-Reduktionen diente. Einige
der Reduktionen behalten den Grad auf bestimmte Weise bei und übertragen so die
Komplexitätsergebnisse auf die entsprechenden Probleme auch für sehr eingeschränkte
Mengen zulässiger Eingaben.

vi

Acknowledgments

This thesis has been greatly supported by several people to whom I like to express my
gratitude here.

Most of all, I thank Burkhard Monien for his support, his advice and his encouragement.
He put a lot of trust in and gave a lot of freedom for me and my development while he,
at the same time, guided the progress. The value I assign to the overall influence he had
on me, my Ph.D. project, and my worldview can hardly be overestimated.

When the time came to write up my thesis, Martina Hüllmann entered “my” office. Her
“occupation”, however, turned out to be of great advantage for me and my thesis. Not
only has she been an invaluable counterpart for conversations that regularly broadened
my horizon, she moreover proofread and verified all proofs of my thesis.

Prior to that, I fortunately shared my office with Florian Schoppmann. Together with
Florian, I went through various ups and downs of the life of a researcher. If Florian had
not been by my side in this time, the downs would clearly have been deeper and the
highs far less enjoyable.

Throughout my time as a scientific staff member, I have been lucky to collaborate in
an outstanding research group. The scientific as well as the personal level among my
coworkers contributed a lot to make my stay at the university valuable. In particular, I
thank Christian Scheideler for his kind support in several respects towards the end of my
Ph.D. project.

I am very grateful to Robert Elsässer, Martin Gairing, Martina Hüllmann, Michelle
Kloppenburg, Thomas Sauerwald, Rahul Savani, and Ulf-Peter Schroeder for carefully
reading (preliminary) parts of my thesis.

Last but not least, I greatly thank my family and friends for their continuous support
and encouragement which significantly improved my overall well-being.

Paderborn, May 2012 Tobias Tscheuschner

vii

Contents

1 Introduction 1
1.1 Local search . 2
1.2 Contribution of This Thesis . 6
1.3 Further Related Work . 8

2 Preliminaries 13
2.1 Basic Notations . 13
2.2 Local Search . 13
2.3 Local Max-Cut . 15
2.4 Boolean Circuits and Boolean Formulas . 16

3 Complexity of Local Max-Cut: Maximum Degree Four 19
3.1 Overview of Contribution . 19
3.2 Basic Properties of Nodes with Maximum Degree Four 20
3.3 P-hardness for Graphs with Nodes of Type I and III 22
3.4 Is-Exp Property for Graphs with Nodes of Type I and III 25
3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III 27

3.5.1 Basic Subgraphs . 28
3.5.2 Combining the Subgraphs . 32
3.5.3 Enforcing Pivot-Rules with Combined Subgraphs 57

3.6 All-Exp Property . 82
3.7 PSPACE-completeness of the Standard Algorithm Problem 85

4 Complexity of Local Max-Cut: Maximum Degree Five 93
4.1 Overview of Contribution . 93
4.2 Usage of the P-hardness Reduction . 93
4.3 Substituting Certain Nodes of Unbounded Degree 94
4.4 PLS-completeness . 98

5 Impact of the Results on Other Problems 119
5.1 Max-2SAT with FLIP-neighborhood . 119
5.2 Congestion Games . 120
5.3 Partitioning with SWAP-neighborhood . 120

6 Conclusion and Open Problems 123

Bibliography 125

ix

Chapter 1

Introduction

Optimization problems occur in many areas of our daily life. If we are at some location
A and want to reach a location B, we usually try to minimize the length of the path
connecting A and B. If we decide between different leisure time options, we mostly try
to maximize our personal utility. When facing an optimization problem, we are often
interested in two measures: the quality of a solution and the time required to find it. If
the expected utility of finding a (better) solution is greater than the expected cost for the
time needed to find it, then it is rational to search for a (better) solution. In this respect,
the required time plays a crucial role in the process of optimization.

For many optimization problems, the computation of an optimum is NP-hard. Since
no polynomial-time algorithm is known that computes optimal solutions for such prob-
lems, several approaches were developed to find at least good solutions. Approximation
algorithms, for instance, compute solutions whose quality is not more than a prede-
termined factor away from an optimum. Unfortunately, some problems even resist
polynomial-time approximation in the sense that a polynomial-time algorithm that com-
putes an approximate solution directly leads to a polynomial-time algorithm computing
an optimum.

A popular approach to tackle such problems is to use metaheuristics. Nearly all
metaheuristics—local search, simulated annealing, evolutionary algorithms, to name
a few popular ones—impose a neighborhood relation on the solutions and use it to
consecutively improve the set of solutions: They compute from a set S of solutions
representing the current state of the computation a new set S′ of solutions among the
neighbors of the solutions of S, where solutions with higher quality are preferred. In
case of the local search approach, the set of solutions representing the current state
contains only a single solution and the preference for better solutions is strict, i.e., the
computation continues only with a strictly better solution. A local search terminates at a
solution that has no better neighbor solution. Such solutions are called locally optimal.

For convex optimization problems, the local search metaheuristic is especially appeal-
ing since local optima coincide with global optima. On the other hand, the advantage
of metaheuristics with non-strict preference for better solutions is that the computation
can escape local optima. This is particularly of use if local optima are frequent in the
solution space but of rather different quality.

In this thesis, we focus on the local search approach and in particular on the complexity
of computing a local optimum. In particular, we consider the so called LOCALMAX-CUT

problem, narrow the border lines of certain complexity properties down for LOCALMAX-

1

Chapter 1 Introduction

CUT, and show the impact our results have on related problems.

1.1 Local search

Local search is a frequently used technique of computing solutions for hard optimization
problems. Its basic approach is to start with an arbitrary solution and iteratively improve
it by local changes defined by a neighborhood relation between the solutions until a local
optimum is found. The structure of local search algorithms is outlined in Algorithm 1.1.
The approach has been observed to quickly reach local optima for most instances of a
wide range of optimization problems and became very popular due to its simplicity and
its speed—for comprehensive considerations of local search, we refer to [1, 2, 5, 47].

Input: Instance I of a local search problem Π
Output: Local optimum of I

1: Compute a solution s of I
2: while s is not a local optimum of I do
3: Compute better solution s′ of the neighborhood of s
4: s← s′

5: return s

Algorithm 1.1: Basic structure of local search algorithms

Successful Applications of Local Search Three outstanding examples for successful
application of the local search approach are the simplex algorithms for solving linear
programs [9, 58], k-opt heuristics for finding solutions of the TRAVELLINGSALESMANPROB-
LEM [1] and the k-means algorithm for clustering problems [14, 28]. In the following,
we take a look at these famous problems and at the complexity results of local search for
them—in particular, we focus on results that are closely related to this thesis.

LINEARPROGRAMMING In a linear program, the input is a matrix A and vectors b, c. The
task is to find a vector x maximizing cT x such that Ax ≤ b. Due to the convexity of
linear programs, local optima coincide with global optima which emphasizes the use
of local search in a natural way. In 1947, Dantzig [13] introduced the famous simplex
method which find an optimum by starting at a vertex of the polytope induced by the
constraints Ax ≤ b and iteratively moving to better vertices with respect to cT x along
the edges of the polytope until an optimum is reached. Since their invention, simplex
methods were successfully applied to linear programs originating from a wide range of
applications including scheduling problems, production planning, routing problems and
game theory.

In contrast to the short running time of simplex methods observed for practical
instances, Klee and Minty constructed linear programs for which the simplex method

2

1.1 Local search

with the steepest descent pivoting rule takes an exponential number of steps [38]. For
other pivot rules, similar results were shown (some famous examples are in [58, 37]).
On the other hand, independently from each other Kalai [31]—who built on a result
of Kalai and Kleitman [32]—and Matousek et al. [44] provided randomized pivot rules
that lead to a subexponential number of pivot steps for the simplex algorithm. Each
result implies that for every initial solution of a linear program there is a sequence of
improving steps to an optimum that has subexponential length. However, a polynomial-
time computable pivot rule that finds a path of subexponential length to an optimum is
not known.

On the positive side, finding an optimum of a linear program is known to be polynomial-
time computable since Khachiyan [35] introduced his Ellipsoid method. He used an
approach different from local search though. Karmarkar [33] subsequently introduced
an interior point method which also takes polynomial time and even outperforms the
simplex algorithm in some practical applications.

TRAVELLINGSALESMANPROBLEM In the TRAVELLINGSALESMANPROBLEM (TSP) the input is
an undirected weighted complete graph and the output is a cycle of minimum weight
that visits all nodes of the graph. One of the most frequently used local search heuristics
for this problem is 2-opt. It starts with an initial tour and iteratively improves it by
exchanging two edges of the tour with two different ones as long as such an improving
step is possible. For random and “real-world” Euclidean instances, this heuristic is known
to compute very good tours within a sub-quadratic number of improving steps [29, 51].

On the other hand, it was shown that there are instances and initial solutions of the
TSP for which the k-opt heuristic for k ≥ 2 can take exponentially many improving
steps [11, 43]. However, these instances do not fulfill the triangle inequality and the
question whether such instances can be constructed for the metric TSP remained open
for a long time. Finally, Englert et al. [19] found Euclidean instances for which the 2-opt
heuristic can take exponentially many improving steps.

CLUSTERING The CLUSTERING problem asks for a partition of a set of data points into
subsets (the clusters) such that some given measure for the similarity within the clusters
is maximized. The problem occurs, depending on the application, in many applications
including pattern recognition, data compression and load balancing. A well-studied
algorithm for clustering points in the Euclidean space is the k-means algorithm. It starts
with an initial set of k centers for the clusters, where each data point is assigned to its
closest center. Then it improves the solution by repeatedly performing the following
two steps. At first, for each cluster a new center is determined as the average of all
points of the cluster, which is called the mean, and then each point is assigned to the
cluster represented by the closest of the new center points. Note that in each improving
step, the sum of the distances of the data points to their corresponding closest center,
which can be treated as a potential function, decreases. In the Euclidean space, such an
improving step of the k-means algorithm is uniquely determined.

For the k-means algorithm, the number of steps was observed to be linear in the

3

Chapter 1 Introduction

number of data points on typical instances stemming from practical applications [14].
Contrary to this result and similar to the two above-mentioned famous problems, there
are also instances and initial solutions of the clustering problem for which the k-means
algorithm takes an exponential number of improving steps to converge [59].

PLS For each of the three famous problems mentioned above it was shown that the
local search approach quickly reaches a local optimum for the vast majority of instances—
in particular for instances arising from practical applications. However, for each of
them one could also find instances and initial solutions for which there is a sequence
of improving steps of exponential length. Thus, the local search approach might fail
to compute a local optimum in a feasible amount of time. One might think that this
problem can be circumvented by putting effort on the pivot rule, i.e., the rule that selects
for a given solution the better solution with which the computation is continued (for
a formal definition of pivot rules we refer to Definition 2.2.1). The idea is to design a
pivot rule that guarantees a subexponential or even polynomial length of every sequence
of improving steps. Unfortunately, for none of the three famous problems mentioned
above is such a pivot rule known. In case of LINEARPROGRAMMING the question whether
a deterministic pivot rule exists that induces a subexponential number of steps for the
simplex algorithm is one of the most prominent open questions and is restated in many
papers considering pivot rules for simplex (see, e.g., [31] or, recently, [22]). For some
local search problems, putting effort on the pivot rule is even hopeless: They contain
instances and initial solutions for which even the shortest sequence of improving steps
ending up in a local optimum has exponential length (we say that these problems have
the all-exp property). Altogether, it turns out that using local search for finding a local
optimum may not necessarily or even not at all lead to a local optimum in a reasonable
number of steps.

Since local search is not necessarily a successful approach to find a local optimum,
one might speculate whether one can find a local optimum in some other way or, more
generally, what the complexity of computing a local optimum is. For this purpose, John-
son et al. [30] introduced the complexity class PLS (for polynomial local search, the class
is formally introduced in Definition 2.2.2) which consists of the problems for which local
optimality can be verified in polynomial time. In the same paper they introduced the
problem CIRCUITFLIP and showed that it is complete for PLS. Subsequently, Schäffer
and Yannakakis [54] refined the notion of a PLS-reduction and introduced what is
called a tight PLS-reduction which, beyond the functionality of ordinary PLS-reductions,
additionally preserves two properties. First, the all-exp property is preserved. Second,
it preserves the PSPACE-completeness of the STANDARDALGORITHMPROBLEM (SAP), i.e.,
the problem of computing from a given pair of an instance and initial solution a local
optimum that is reachable from the initial solution via improving steps. Then they
showed by means of tight PLS-reductions that several famous local search problems
have the following three properties. First, they are PLS-complete. Second, they have the
all-exp property. Third, their corresponding SAP is PSPACE-complete.

4

1.1 Local search

LOCALMAX-CUT The LOCALMAX-CUT problem is based on the MAX-CUT problem. MAX-
CUT takes as input an undirected graph G = (V, E) with weighted edges w : E→ N and
asks for a partition of V into two sets V1 and V2 that maximizes the sum of the weights
of those edges which are incident to one node in V1 and one in V2. MAX-CUT is one of
the most famous combinatorial optimization problems with a wide range of applications
including statistical physics and circuit layout design (see [8, 50], e.g.) and is known
to be NP-complete—in fact, the decision version of MAX-CUT was one of the problems
of Karp’s list of 21 NP-complete problems [34]. The problem LOCALMAX-CUT arises from
MAX-CUT by imposing a neighborhood relation on the set of solutions, namely what is
called the FLIP-neighborhood. In this neighborhood, two solutions are neighbors if they
can be reached from each other by exchanging exactly one node between the sets V1 and
V2.

A local optimum of LOCALMAX-CUT is away from an optimum by a factor of at most
two. This is due to the fact that in a local optimum P the sum of the weights of the
edges incident to a node v ∈ V that are in the cut in P is at least the half of the
sum of the weights of all edges incident to v. Otherwise the flip of v increases the
cut—we say that v is unhappy if its flip increases the cut—which is impossible in local
optima. Schäffer and Yannakakis [54] showed that LOCALMAX-CUT is PLS-complete by
means of a tight PLS-reduction. The tightness of their reduction additionally implied
that LOCALMAX-CUT has the all-exp property and the corresponding SAP is PSPACE-
complete—concurrently to Schäffer and Yannakakis Haken [26] constructed instances
for LOCALMAX-CUT that showed its all-exp property (a description of the instances can be
found in [21]). However, the reduction of Schäffer and Yannakakis constructs graphs for
LOCALMAX-CUT with unbounded degree.

For graphs with maximum degree three, Loebl [42] showed that there is a polynomial-
time algorithm that computes a local optimum of LOCALMAX-CUT. His algorithm uses an
approach different from local search. The complexity of the local search approach for
cubic graphs was considered by Poljak [49]. He showed that starting from an arbitrary
solution there are at most O(n2) improving flips possible for LOCALMAX-CUT until a
local optimum is reached. The property can easily be generalized to arbitrary graphs
with maximum degree three. However, a similar result is not possible for graphs with
maximum degree four. For a problem closely related to LOCALMAX-CUT, Haken and
Luby [27] showed that there are graphs of maximum degree four and initial solutions
for which there is a sequence of improving steps of exponential length. Inspired by
their result, Poljak asked whether there are graphs of maximum degree four and initial
partitions for which all sequences of improving flips have exponential length, i.e.,
whether LOCALMAX-CUT has the all-exp property for graphs with maximum degree four.
Referring to the PLS-completeness of LOCALMAX-CUT for graphs with unbounded degree
and the polynomial-time computability for cubic graphs, Ackermann et al. [3] asked for
the minimum degree d ∈ N for which LOCALMAX-CUT is PLS-complete on graphs with
maximum degree d.

5

Chapter 1 Introduction

1.2 Contribution of This Thesis

In this thesis, we consider the complexity of LOCALMAX-CUT for graphs with maximum
degree four and then its complexity for graphs with maximum degree five. In the
following, we outline our findings and their implications on other problems. At the
beginning of the subsequent chapters, we give more detailed summaries of our results.

Maximum degree four We first introduce three different types of nodes of maximum
degree four classified by means of the relation between the weights of their incident
edges. The classification allows for a node v and a given partition of the corresponding
graph to easily derive the happiness of v from its type, its partition, and the partitions of
its adjacent nodes. The types and the characterization of their happiness are frequently
utilized in the subsequent parts.

For graphs that contain only two of these types, we show the following two results
with a proof that is based on essentially the same construction. First, the problem of
computing a local optimum is P-hard with respect to logspace reduction. Second, for
each polynomial-time computable function f : {0,1}n → {0,1}m for n, m ∈ N we can
compute with logarithmic space a graph G with weighted edges such that in every local
optimum the output of f can be read from the partitions of the nodes of G. The second
result turns out to be very helpful and finds application in all main results of this thesis.

Building on the second result, we construct an infinite family of pairs of graphs and
initial partitions in which there is a sequence of improving flips of exponential length;
we say that problems in which this is possible have the is-exp property. The graphs in the
proof of this result contain the same two types of nodes as in the above-mentioned results.
Moreover, the construction of the graphs relies on a Boolean circuit that is mapped to
a graph via the reduction function introduced in the aforementioned P-hardness proof.
This property and the result itself has significant impact on the subsequent main results,
since both properties are used in the proofs of the main results for the maximum degree
four.

In preparation of our main results, we develop a technique of extending certain given
graphs and initial partitions by further nodes and edges such that in the resulting graph
an intended behavior for the sequences of improving flips is enforced. More precisely, the
given graphs are obtained from Boolean circuits via the reduction of the P-hardness proof.
The intended behavior is specified by means of a polynomial-time computable function h
that returns for a given partition either one of the possible improving steps, if there is
one, or “nil”—the function h has to return “nil” if its input partition is a local optimum
but is allowed to return “nil” if it is not locally optimal. The function naturally induces
a sequence t of improving steps: Begin at the given pair of graph and initial partition
and let h iteratively choose the improving steps until a partition is reached for which h
returns “nil”. Our technique extends the given graph and initial partition according to
h by polynomially many nodes and edges such that every sequence of improving steps
starting at the resulting pair of graph and initial partition has t as a subsequence. For
this reason, we say that our technique enforces the behavior induced by h.

Using our enforcing technique, we obtain our first main result:

6

1.2 Contribution of This Thesis

Theorem 3.6.1. LOCALMAX-CUT has the all-exp property for graphs with maximum
degree four.

In the proof, we use the circuit and the initial partition developed for the proof of the
is-exp property and show that there is a polynomial-time computable function h that
induces the sequence of exponential length named in that proof. Then our enforcing
technique directly implies the all-exp property. Since there are at most O(n2) improving
steps possible for LOCALMAX-CUT on cubic graphs [49], it follows that the degree four is
the minimum degree for which LOCALMAX-CUT has the all-exp property.

Then we prove our second main result:

Theorem 3.7.1. The STANDARDALGORITHMPROBLEM for LOCALMAX-CUT is PSPACE-complete
for graphs with maximum degree four.

The proof of this result is done by simulating the computation of a linear bounded
automaton by means of improving steps starting at a graph of maximum degree four
with an initial partition that corresponds to the initial configuration of the automaton.
Then we use our enforcing technique to enforce the intended simulation and use the
construction of the is-exp proof to fuel the simulation process as long as necessary.

Maximum degree five Our main result for graphs with maximum degree five is as
follows.

Theorem 4.4.2. LOCALMAX-CUT is PLS-complete for graphs with maximum degree five.

To show this property, we first introduce a technique that substitutes nodes of degree
greater than five which have certain properties—we will call these nodes comparing—by
a subgraph that contains only nodes of maximum degree five. For the graph arising
from the substitution of each comparing node v by the corresponding subgraph, we
show that in certain local optima all nodes of the subgraph that substitutes v and which
are additionally adjacent to a node of the original graph have the same color. Namely,
they have the color that v would have in the corresponding partition of the original
graph if its flip did not increase the weight of the cut. In this respect, the nodes of the
subgraph that substitutes v behave in certain local optima as the original node v. Using
this technique, we prove PLS-completeness via a PLS-reduction from the PLS-complete
problem CIRCUITFLIP. We map instances of CIRCUITFLIP to graphs with maximum degree
five where some of the subgraphs of the graph arise from our substitution technique.
Then we show that local optima for these graphs induce local optima in the corresponding
instances of CIRCUITFLIP.

Impact on other problems In the literature, several tight PLS-reductions are based
on LOCALMAX-CUT. According to Schäffer and Yannakakis [54] tight PLS-reductions
not only lead to PLS-hardness of the corresponding problems but also preserve the
following two properties. First, the all-exp property. Second, PSPACE-completeness
of the corresponding SAP. Some of the tight PLS-reductions in the literature preserve

7

Chapter 1 Introduction

the degree of the nodes in some sense. Via these reductions our results directly imply
stronger complexity results for the corresponding problems. Namely, we get:

Theorem 5.1.1. For the LOCALMAX-2SAT(i) problem, in which the instances are re-
stricted such that each variable occurs in at most i ∈ N clauses, the following complexity
results hold: LOCALMAX-2SAT(8) has the all-exp property, its corresponding SAP is
PSPACE-complete, and LOCALMAX-2SAT(10) is PLS-complete.

Theorem 5.2.1. For the problem CONGNASH(i) of computing a Nash equilibrium in
congestion games in which every strategy contains at most i ∈ N resources, the following
complexity results hold: CONGNASH(4) has the all-exp property, its corresponding SAP is
PSPACE-complete, and CONGNASH(5) is PLS-complete.

Theorem 5.3.1. The problem PARTITIONING(i) of computing a 2-partition with equally-
sized partitions for graphs with maximum degree i ∈ N maximizing the sum of the
weights of the edges in the cut, has the following properties: PARTITIONING(5) has
the all-exp property, its corresponding SAP is PSPACE-complete and PARTITIONING(6) is
PLS-complete.

Personal contribution and bibliographic notes The constructions of all proofs were,
with the following exceptions, entirely developed by myself. The proof of the is-exp
property for graphs that contain two of the three types of nodes of maximum degree
four (i.e., Theorem 3.4.1) was concurrently and independently developed by Burkhard
Monien and myself. Both of our proofs were inspired by the construction of Haken and
Luby [27].

The pivot rule in the proof of the all-exp property of LOCALMAX-CUT for graphs of
maximum degree four (i.e., Theorem 3.6.1) was invented by Burkhard Monien and is
simpler than the rule previously designed by myself.

Finally, some subgraphs of the PLS-completeness proof of LOCALMAX-CUT for graphs
with maximum degree five were adopted from the construction of Schäffer and Yan-
nakakis [54] and adjusted such that they have maximum degree five. The overall
structure of the proof was inspired by the proof of Krentel [39].

A preliminary version of the results for the maximum degree four was published in the
Proceedings of the 7th International Conference on Algorithms and Complexity (CIAC’10)
[46]. The PLS-completeness of LOCALMAX-CUT for graphs with maximum degree five was
published in the Proceedings of the 38th International Colloquium on Automata, Languages
and Programming (ICALP’11) [18]. Lastly, some parts of this thesis appeared in the
survey on local search published in the Proceedings of the 37th International Colloquium
on Automata, Languages and Programming (ICALP’10) [47].

1.3 Further Related Work

Local Search and PLS By definition of the class PLS, a local optimum of a given
PLS-problem is verifiable in polynomial time. Thus, PLS is a subset of FNP, i.e., the

8

1.3 Further Related Work

complexity class of search problems whose decision version is NP. It is unlikely that a
PLS-problem is NP-hard, since according to Johnson et al. [30] this would imply NP
= co-NP. On the other hand, no polynomial-time algorithm is known that solves a
PLS-hard problem and therefore it is unclear whether PLS is in FP (for Function NP),
i.e., the complexity class of search problems whose decision version is P (since we do
not consider decision problems in this thesis, we do not explicitly distinguish between
the classes FP and P or NP and FNP, respectively). On the positive side, Orlin et al.
[48] showed that one can at least compute an approximate local optimum via a fully
polynomial time approximation scheme (FPTAS). For further information on local search,
its complexity, and related problems we refer the reader to [2, 56, 61, 62].

MAX-CUT In contrast to LOCALMAX-CUT on cubic graphs, which is in P [42, 49], finding
a global optimum of MAX-CUT remains NP-complete for graphs with maximum degree
three according to Yannakakis [60]. Even the unweighted case of MAX-CUT, i.e., the
case in which all edges have weight 1, was shown to be NP-complete [23]. This result
also stands in contrast to the complexity of LOCALMAX-CUT. A sequence of improving
steps on graphs with unit weights is upper bounded by |E|, since each improving step
increases the number of edges that are in the cut at least by one. Another interesting
fact is that finding a minimum cut is possible in polynomial time by means of computing
a maximum flow [17].

A major advance in the approximation of MAX-CUT was accomplished by Goemans
and Williamson [25] who used semidefinite programming to compute solutions with an
approximation factor of about 0.878. Subsequently, it was shown by Khot et al. [36] that
this approximation factor is even best possible under the assumption that the unique
games conjecture is true. Moreover, the best possible approximation factor holds for the
weighted as well as for the unweighted version of MAX-CUT according to Crescenzi et al.
[12].

Smoothed Complexity It was observed that the running time of local search algo-
rithms, in particular, simplex methods for linear programs, is very low on most instances
occurring in practical applications. Inspired by this observation, the complexity of the
simplex algorithms was investigated for many distributions of random inputs and shown
to be in expected polynomial time [4, 10, 55]. The same observation was made for
the 2-opt heuristic for computing solutions of the TSP on random instances in the unit
hypercube [0, 1]d [11]. However, as for the artificially constructed inputs for which an
exponential number of improving steps are possible, it can be argued that the random
instances may have certain properties that do not reflect the properties of instances
arising in practical applications.

To understand why the running time is polynomial on so many instances stemming
from practical applications, Spielman and Teng [57] introduced the notion of smoothed
complexity which measures the expected running time of an algorithm under small
random perturbations of the input. They showed that the simplex algorithm for linear
programs has polynomial smoothed complexity. Subsequently, the notion of smoothed

9

Chapter 1 Introduction

complexity was adapted for algorithms of various other local search problems. Famous
problems with polynomial smoothed complexity are the following: The 2-opt heuristic for
Euclidean instances [19], the k-means algorithm [7] and, recently, Elsässer [18] showed
that LOCALMAX-CUT has polynomial smoothed complexity on graphs with logarithmic
degree with high probability. The last-mentioned result shows an interesting contrast
to the PLS-completeness for graphs with maximum degree five proven in this thesis.
Although LOCALMAX-CUT is hard to solve in general on graphs with a logarithmic degree
greater than four, it can be solved in polynomial time for slightly perturbated instances
with high probability.

Constraint Satisfaction Problems In the paper of Johnson et al. [30], where the class
PLS was introduced, the authors conjectured that a PLS-problem is only PLS-complete
if the corresponding problem of verifying a local optimum is P-hard. In contrast to
this conjecture, Krentel [40] showed PLS-completeness for a constraint satisfiability
problem for which the corresponding verification of a local optimum can be done using
logarithmic space. His proof essentially provides the basis of the construction Schäffer
and Yannakakis used to prove the PLS-completeness of LOCALMAX-CUT [54]. The proofs
of Schäffer and Yannakakis and Krentel are similar in the sense that the degree of
the nodes of the graphs constructed by Schäffer and Yannakakis corresponds to the
number of occurrences of the variables in the constraints of Krentel. In both proofs these
numbers—i.e., the degree and the number of occurrences, respectively—are unbounded.

However, in a follow-up paper Krentel [39] sketched a proof of PLS-completeness for
a constraint satisfiability problem with a constraint length of at most four, at most three
occurrences of any variable and trivalent variables. Inspired by the problem considered
by Krentel, Dumrauf and Monien [16] (alternatively, see [15]) introduced the MAXI-
MUMCONSTRAINTASSIGNMENT (MCA), a generalized version of the problem considered
by Krentel. The set of feasible inputs to the problem (p, q, r)-MCA for p, q, r ∈ N are
functions (i.e., the constraints) that map assignments for the variables to integers. The
functions are limited in the sense that each constraint has at most p variables, the
maximum occurrence of each variable is q and its valence is r. The neighborhood
of an assignment contains all assignments in which the value of a single variable is
changed. The value of the solution is the sum over the values of the constraint functions
with respect to the given assignment. In these terms, the problem for which Krentel
showed PLS-completeness is (4,3,3)-MCA. In their paper, Dumrauf and Monien show
PLS-completeness for (3, 2, 3)-MCA, (2, 3, 6)-MCA and (6, 2, 2)-MCA. Let us remark that
the LOCALMAX-CUT for graphs with maximum degree k, which is in the focus of this thesis
for k = 4 and k = 5, can be formulated as a (2, k, 2)-MCA problem with a restricted set
of feasible constraint functions.

Congestion Games Congestion games were introduced by Rosenthal [52] as a model
for the behavior of selfish players that share resources whose cost depend on the number
of players that use the corresponding resource. In his paper, he showed via a potential
function argument that every congestion game has a (pure) Nash equilibrium, i.e., a

10

1.3 Further Related Work

state in which neither player can improve its utility by unilaterally changing its strategy.
Subsequently, Monderer and Shapley [45] strengthened the relation of congestion games
to potential functions and showed that congestion games are isomorphic to potential
games, i.e., games in which the players aim to improve a given potential function.

The close relation between congestion games and the class PLS was shown by Fab-
rikant et al. [20]. They proved PLS-completeness for the following three problems. First,
computing a Nash equilibrium in congestion games. Second, computing a Nash equilib-
rium in symmetric congestion games, i.e., congestion games in which the strategies of
all players are the same. Third, computing a Nash equilibrium in network congestion
games, i.e., games in which the strategies of the players correspond to paths in an
underlying network. On the positive side, they showed that a Nash equilibrium for
symmetric network congestion games is polynomial-time computable via min-cost flow
algorithms. This is in particular of interest, since Ackermann et al. [3] subsequently
showed that symmetric network congestion games have the all-exp property. In their
paper, Ackermann et al. also proved that the number of improving steps in congestion
games is polynomial if the combinatorial structure of the strategies of the players are
based on matroids. Moreover, they simplified the proof of the PLS-completeness of
computing a Nash equilibrium for network congestion games in comparison to the earlier
proof of Fabrikant et al. [20].

11

Chapter 2

Preliminaries

2.1 Basic Notations

Sets The set of natural numbers without zero, i.e., {1,2,3, . . .}, is denoted by N, the
set of natural numbers including zero is denoted by N0, the set of rational numbers is
denoted by Q and the set of non-negative rational numbers is denoted by Q>0. For the
set of functions that grow polynomially in a variable n ∈ N we write O(poly(n)), i.e.,
O(poly(n)) :=
⋃

k∈NO(nk) for n ∈ N.

2.2 Local Search

Definition 2.2.1. A local search problem Π consists of a set of instances I , a set of
feasible solutions F (I) and an objective function fI :F (I)→Q for every instance I ∈ I .
In addition, for every solution s ∈ F (I) there is a neighborhood N (s , I) ⊆ F (I). For
an instance I ∈ I , the problem is to find a local optimum, i.e., a solution s ∈ F (I) such
that for all s′ ∈ N (s, I) we have fI(s) ≥ fI(s′) in case of maximization and fI(s) ≤ fI(s′)
in case of minimization. A standard algorithm [30] is an algorithm that computes a
local optimum by first computing a feasible solution and then iteratively moving to a better
neighbor until a local optimum is reached. A pivot rule is a function that returns for a
given pair (I , s) of instance I ∈ I and solution s ∈ F (I) a solution in N (s, I) with a better
objective function value than s if there is one, and “nil” otherwise.

PLS

Definition 2.2.2 ([30]). A local search problem Π is in the class PLS if the following three
polynomial-time algorithms exist: algorithm A computes for every instance I ∈ I a feasible
solution s ∈ F (I), algorithm B computes for every I ∈ I and s ∈ F (I) the value f (s), and
algorithm C is a pivot rule.

Definition 2.2.3 ([30]). A problem Π ∈ PLS is PLS-reducible to a problem Π′ ∈ PLS if
the following polynomial-time computable functions Φ and Ψ exist. The function Φ maps
instances I of Π to instances of Π′ and Ψ maps pairs (s, I), where s is a solution of Φ(I),
to solutions of I such that for all instances I of Π and local optima s∗ of Φ(I) the solution
Ψ(s∗, I) is a local optimum of I. Finally, a local search problem Π is PLS-complete if Π ∈
PLS and every problem in PLS is PLS-reducible to Π.

13

Chapter 2 Preliminaries

Improving steps

Definition 2.2.4. Let Π be a problem in PLS, I be the set of its instances, F (I) be the
set of feasible solutions and fI : F (I) → Q be the objective function for I ∈ F (I). Let
I ∈ I and s1, . . . , sn ∈ F (I) for n ∈ N such that si+1 ∈ N (si , I) for all 1 ≤ i < n. Then
the sequence s := (s1, . . . , sn) is called a sequence of steps. If n = 2 then s is also called
a step. Moreover, s is called improving if fI(si+1) > fI(si) for all 1 ≤ i < n in case of
maximization and fI(s′)< fI(s) for all 1≤ i < n in case of minimization. We say that Π
has the is-exp property if there is an infinite family of pairs (I , s) with I ∈ I and s ∈ F (I)
for which there is a sequence of improving steps of exponential length1 in I starting from s.
Furthermore, we say that Π has the all-exp property if there is an infinite family of pairs
(I , s) with I ∈ I and s ∈ F (I) such that every sequence of improving steps in I starting
from s has exponential length.

Definition 2.2.5 ([30]). Let Π be a problem in PLS, I be the set of its instances, and
F (I) be the set of feasible solutions. For an instance I ∈ I and a solution s ∈ F (I) the
StandardAlgorithmProblem asks for a solution s′ ∈ F (I) for which s′ is reachable from
s via a sequence of improving steps.

Definition 2.2.6 ([54]). Let Π be a problem in PLS and I be an instance of Π. The
neighborhood graph NG(I) of the instance I is a directed graph with one vertex for each
feasible solution of I and an arc s → t for feasible solutions s, t of I if t ∈ N (s, I). The
transition graph TG(I) is the subgraph of NG(I) that contains the arcs s→ t for which
t has a strictly better objective value than s (i.e., greater if Π is a maximization problem
and smaller if it is a minimization problem).

Definition 2.2.7 ([54]). Let Π,Π′ ∈ PLS and (Φ,Ψ) be a PLS-reduction from Π to Π′.
The reduction is called tight if for any instance I of Π there is a subset R of the set of
feasible solutions of the image instance J := Φ(I) of Π′ so that the following properties are
satisfied:

• R contains all local optima of J.

• For every feasible solution p of I, we can construct in polynomial time a solution
q ∈ R of J such that Ψ(q, I) = p.

• Suppose that the transition graph of J, T G(J), contains a directed path q→→ q′

such that q, q′ ∈ R but all internal path vertices are outside R and let p :=Ψ(q, I)
and p′ :=Ψ(q′, I) be the corresponding feasible solutions of I . Then either p = p′ or
T G(I) contains an arc from p to p′.

1 A sequence is said to have exponential length with respect to the size n of the input I if it contains at
least cnd

steps for some constants c > 1 and d > 0.

14

2.3 Local Max-Cut

2.3 Local Max-Cut

Definition 2.3.1. The problem LocalMax-Cut is a local search problem. An instance of
LOCALMAX-CUT is an undirected graph G = (V, E) with positive edge weights w : E→Q>0.
A feasible solution is a partition of V into two sets V1, V2. The objective is to maximize
the sum of the weights of the edges {u, v} with u, v ∈ V for which u ∈ V1 and v ∈ V2. The
neighborhood of a solution s contains each solution arising from s by moving a single node
from one of the sets V1 and V2 to the other.

Observation 1. For LOCALMAX-CUT, a pivot rule is a function that maps a partition of a
given graph to an unhappy node and returns “nil” if the partition is a local optimum.

Definition 2.3.2. A generalized pivot rule for LOCALMAX-CUT is a function that either
maps a partition of a given graph to an unhappy node or returns “nil”.

The difference between a generalized pivot rule and a pivot rule for LOCALMAX-CUT is
that a generalized pivot rule may return “nil” in partitions that are not a local optimum.
Note that each pivot rule for LOCALMAX-CUT is also a generalized pivot rule.

Prerequisite: Weighted Graphs In this thesis, we consider the LOCALMAX-CUT problem
only with weighted edges. Thus, whenever we introduce a graph G = (V, E), we omit the
attribute “weighted” and assume w : E→Q>0 to be the function for the edge weights of
the graph.

Degree For a graph G = (V, E) and a node v ∈ V we let degG(v) be the degree of v in
G, i.e., the number of edges incident to v in G. Moreover, we let deg (G) be the degree
of G, i.e., deg(G) := maxv∈V degG(v).

Partitions Let G = (V, E) be a graph. The graph G together with a 2-partition P
of V into two sets V1, V2 ⊆ V is called a partitioned graph and denoted by (G, P).
Since all partitions in this thesis are 2-partitions, we simply say partition instead of
2-partition. The set of all partitions of V is denoted by P (V). Let P ∈ P (V). We let
c(G,P) : V → {0,1} with c(G,P)(u) = 1 for u ∈ V if and only if u ∈ V1 with respect to P
and call c(G,P)(u) the color of u. In particular, we say that u is black if c(G,P)(u) = 1 and
that it is white if c(G,P)(u) = 0. If the considered graph is clear from the context then we
simply write cP(u), and if the partition is also clear then we even just write c(u). We say
that an edge {u, v} ∈ E is in the cut in P if cP(u) 6= cP(v). For a vector v := (v1, . . . , vn)T

of nodes vi ∈ V for 1 ≤ i ≤ n and n ∈ N we let both c(v) and c(v1, . . . , vn) refer to the
vector (c(v1), . . . , c(vn))T . Since all vectors in this thesis are transposed, we from now
on omit the “T” in the exponent. For a subset V ′ ⊆ V we let P|V′ be the partition of V ′

such that cP(v) = cP|V ′ (v) for all v ∈ V ′.

15

Chapter 2 Preliminaries

Flips Let G = (V, E) be a graph. For a partition P0 ∈ P (V) and a sequence s :=
(u1, . . . , uq) of nodes for q ∈ N and ui ∈ V for all 1≤ i ≤ q we call s a sequence of flips
starting at (G, P0). If the graph is clear from the context then we also say that s is a
sequence of flips in P0, and if the partition is also clear then we even just say that s is a
sequence of flips. If q = 1 then s is called a flip of u1. We denote by Ps ,i for 1≤ i ≤ q the
partition arising from Ps,i−1 by a flip of ui where Ps,0 := P0. If the considered sequence
is clear from the context then we simply write Pi. The sequence s of flips is called
improving if the sequence (P0, . . . , Pq) of steps is improving. Throughout the thesis
we only consider sequences of flips that are improving and therefore we may omit the
attribute “improving”. The sequence s of flips is called final if Pq is a local optimum.
A node u is happy in (G, P0) (or happy in P0 if the considered graph is clear from the
context or just happy if even the partition is clear) if the flip of u is not improving in P0
and unhappy in P0 otherwise—note that a partition P ∈ P (V) is a local optimum if and
only if v is happy in P for all v ∈ V . For 1≤ i ≤ j ≤ q we let s j

i
:= (ui , . . . , u j)—we let s j

i
for j < i be the empty sequence. For two sequences s = (v1, . . . , vq) and t = (w1, . . . , wr)
of flips for q, r ∈ N, vi ∈ V for all 1≤ i ≤ q and wi ∈ V for all 1≤ i ≤ r the composition
(v1, . . . , vq, w1, . . . , wr) of s and t is denoted by s ◦ t . For a partition P0 ∈ P (V) and a
generalized pivot rule h starting at (G, P0) we call the sequence (w1, . . . , wq) starting at
(G, P0) for which h(Pi) = wi+1 for all 0≤ i < q and h(Pq) = nil for all 0≤ i < q induced
by h. For A, B ⊆ V with A∩ B = ; and P0 ∈ P (V) we write A <P0

B if for every sequence
s = (w1, . . . , wq) starting at (G, P0) with q ∈ N and every 1 ≤ i ≤ q for which wi ∈ B
there is a 1 ≤ j < i such that w j ∈ A. If the partition is clear from the context then we
just write A< B. For a sequence s of flips and a subset V ′ ⊆ V we let s |V′ be the sequence
arising from s by deleting the flips the nodes of V \ V ′.

2.4 Boolean Circuits and Boolean Formulas

Boolean Circuits In the literature, Boolean circuits are defined in various, conceptually
equivalent ways. In this thesis, we use a definition that is inspired by the definition
of Arora and Barak [6].

Definition 2.4.1. A Boolean circuit C is a directed acyclic graph (V, E) with a maximum
indegree of two for all nodes and a logical operation—i.e., AND, OR, NOT, NAND, NOR,
XOR or XNOR—assigned to each node of V whose indegree is not zero. The nodes with
indegree zero are called input nodes of C, the nodes with outdegree zero are called output
nodes of C and all noninput nodes are called gates. If a logical operation ∗ is assigned to a
gate g ∈ V then we call g a ∗-gate. The indegree of a node v is called the fan-in of v and
its outdegree is called its fan-out.

Definition 2.4.2. Let C be a Boolean circuit with n ∈ N inputs and m ∈ N outputs. An
input of C is a vector x ∈ {0,1}n and the output of C on input x, denoted by C(x), is
derived by assigning a value val(v) to each node v of C in the following way: If v is an
input node then we let val(v) = x i , otherwise val(v) is the output of the logical operation

16

2.4 Boolean Circuits and Boolean Formulas

(a) NOT-
gate

(b) NOR-
gate

(c) Input
marker

(d) Output
marker

Figure 2.1: A NOT- and a NOR-gate as well as the markers incident to input nodes and
output nodes.

assigned to v with respect to the values of the nodes adjacent to v via an ingoing edge of v.
Then the output C(x) is defined as the vector of the values of the output nodes of C.

A property that we frequently use is the following:

Proposition 2.4.3 (see, e.g., [53]). Let C be a Boolean circuit with N ∈ N nodes and
n ∈ N input nodes. Then there is a Boolean circuit C ′ with O(N) nodes and n input nodes
that contains only NOR-gates with a fan-in of two such that for all x ∈ {0,1}n we have
C(x) = C ′(x).

Throughout the thesis we introduce several Boolean circuits via drawings. In all
Boolean circuits, we only use NOT-gates or NOR-gates. The gates are drawn according to
the ANSI-standard. A NOT-gate is depicted in Figure 2.1a and a NOR-gate in Figure 2.1b.
We do not draw the input nodes. Instead, the input of the nodes adjacent to the input
nodes are labelled by the marker in Figure 2.1c. On the other hand, the output gates
are drawn. Here, we label the output of the output gates by the marker depicted in
Figure 2.1d.

Boolean Formulas For a set W of Boolean variables we let Φ(W) be the set of all
Boolean formulas in disjunctive normal form over variables of W . The empty Boolean
formula is denoted by the empty set, i.e., ;. Let φ ∈ Φ(W) with φ =

∨n
i=1 Mi for n ∈ N

and Mi =
∧mi

j=1 li, j where mi is the number of literals of monomial Mi and li, j for any

1≤ i ≤ n, 1≤ j ≤ mi is a literal over a Boolean variable of W . Let Wφ ⊆W be the set of
variables of φ. For an assignment t : Wφ → {0, 1} we let valt (φ) be the truth value of
φ if each variable x of φ has the value t(x). We let Mons(φ) be the set of monomials
of φ, Li t s(M) be the set of literals of a monomial M and pos(l) be the function that
returns 0 if literal l negates its corresponding variable and 1 otherwise.

17

Chapter 3

Complexity of Local Max-Cut:
Maximum Degree Four

3.1 Overview of Contribution

In this chapter, we devise several complexity results for LOCALMAX-CUT on graphs with
maximum degree four. For this, we first introduce three different types of nodes.
The types classify nodes of maximum degree four based on the relation between the
weights of their incident edges. The classification allows a simple characterization of
the happiness of a node in a given partition. The characterization in turn is frequently
exploited in the subsequent parts.

Then we show two results with basically the same construction for graphs that contain
only two of the introduced types. First, the problem of computing a local optimum is
P-hard with respect to logspace reduction. Second, for each polynomial-time computable
function f : {0,1}n → {0,1}m for n, m ∈ N one can compute with logarithmic space a
graph G such that in every local optimum the output of f can be read from the colors of
the nodes of G. The second result turns out to be very useful. In fact, it is applied in the
proofs of all main results of this thesis.

As a first application of the result, we construct an infinite family of pairs of graphs
and initial partitions for which there is a sequence of improving flips of exponential
length. The graphs in the proof of this result contain the same two types of nodes
as in the construction for the P-hardness result which implies the is-exp property of
LOCALMAX-CUT on such graphs. Actually, the construction relies on a Boolean circuit that
is mapped to a graph via the reduction function of the P-hardness proof.

Then we devise a technique of enforcing any polynomial-time computable pivot rule
on certain graphs. More concretely, the technique takes as input a Boolean circuit C ,
a partition P of the nodes of the graph GC obtained from C via the reduction function
in the P-hardness proof and a polynomial-time computable generalized pivot rule for
G. The generalized pivot rule naturally induces a sequence t of improving flips starting
at (G, PC): Begin with the initial partition P, let the pivot rule choose an improving
flip, perform the flip, get thereby another partition and repeat this procedure until the
generalized pivot rule outputs “nil”. The technique computes in polynomial time a
graph G′ = (V ′, E′) with V ⊆ V ′ and an initial partition P ′ ∈ P (V ′) such that every final
sequence of flips starting at (G′, P ′) has t as a subsequence. In other words, for any
polynomial-time computable generalized pivot rule h for the graph GC , the technique

19

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

extends G by polynomially many nodes and edges such that—independently of the pivot
rule that is performed in the extended graph—every final sequence of improving flips in
the extended graph has the sequence t as a subsequence. For this reason, we say that
our technique enforces the generalized pivot rule h.

Using our technique, we show the all-exp property for graphs with maximum degree
four. For this, we use the circuit and the initial partition developed for the proof of the
is-exp property and show that there is a polynomial-time computable pivot rule that
induces the sequence of exponential length of the proof of the is-exp property. Then the
enforcing technique directly implies the all-exp property.

Finally, we show the PSPACE-completeness of the STANDARDALGORITHMPROBLEM. We
do this by simulating the computation of a linear bounded automaton within a graph of
maximum degree four by using the enforcing technique and we use the construction of
the is-exp proof to fuel the simulation process as long as necessary.

Prerequisite: Maximum Degree Four Since we only consider graphs with maximum
degree four in this chapter, we assume an implicit statement that the graph has maximum
degree four each time we introduce a graph.

3.2 Basic Properties of Nodes with Maximum Degree Four

Definition 3.2.1. Let G = (V, E) be a graph. For a node u ∈ V and edges au, bu, cu, du
incident to u with w(au)≥ w(bu)≥ w(cu)≥ w(du) we distinguish the following types for
u:

Type of u :=















I, if w(au)> w(bu) +w(cu) +w(du)

II,
if w(au) +w(du)> w(bu) +w(cu) and
w(au)< w(bu) +w(cu) +w(du)

III, if w(au) +w(du)< w(bu) +w(cu).

These three types do not cover all possible nodes for graphs of maximum degree
four—which is due to the fact that the inequalities are strict—but if a node has one of
these types then we can characterize its happiness in local optima:

Observation 2. For a graph G = (V, E), P ∈ P (V), u ∈ V and edges au, bu, cu, du incident
to u with w(au)≥ w(bu)≥ w(cu)≥ w(du) the following three conditions are satisfied:

• If u is of Type I then u is happy in P if and only if au is in the cut.

• If u is of Type II then u is happy in P if and only if au and at least one other edge is in
the cut or bu, cu and du are in the cut.

• If u is of Type III then u is happy in P if and only if at least two of the edges au, bu, cu
are in the cut.

20

3.2 Basic Properties of Nodes with Maximum Degree Four

(a) Type I (b) Type II (c) Type III

Figure 3.1: Illustration of the three types for node u.

Throughout this thesis we introduce several graphs containing nodes of these three
types. To simplify the reading process we introduce the graphs by means of drawings. In
Figure 3.1 we show how we distinguish the different types of nodes in our illustrations.
A node u of Type I has a little arrow pointing to the heaviest edge incident to u (see
Figure 3.1a). If u is of Type II then it has an incident edge which has a thick half (see
Figure 3.1b). The half-thick edge is the heaviest edge au incident to u and the thick half
of au is adjacent to u. If u is of Type III then the lightest edge incident to u is half-dotted
(see Figure 3.1c) where the dotted half of the edge is adjacent to u.

Besides introducing graphs, the drawings throughout this chapter sometimes simulta-
neously introduce partitions of the nodes. In that case, we give a node a black filling if
its color is black in the corresponding partition and we give it a white filling if its color is
white.

Definition 3.2.2. For a graph G = (V, E) we let VI , VI I and VI I I be the sets of nodes of
Type I, II and III, respectively. For two adjacent nodes u, v ∈ V we say that u has influence
on v if one of the following conditions is satisfied:

• v is of Type I and {u, v} is the heaviest edge incident to v.

• v is of Type II.

• v is of Type III and {u, v} is not the lightest edge incident to v.

For an edge e := {u, v} we say that e has influence on v if u has influence on v.

Note that the happiness of a node u in a partitioned graph GP is independent of the
color of a neighbor that has no influence on u.

Definition 3.2.3. Let G = (V, E) be a graph. For a node v ∈ VI I I to which an edge e is
incident we call e the third edge of v if there are exactly two edges with strictly greater
weight than e incident to v. We let V3

I I I be the set of nodes v ∈ VI I I to which an edge e is
incident that is the third edge of v. We let TG : V 3

I I I → V be the function that returns for
a given node v ∈ V 3

I I I the node adjacent to v via the third edge of v. We let HG : VI → V
be the function that returns for a given node v ∈ VI the node adjacent to v via the heaviest
edge incident to v. The heaviest edge incident to v ∈ VI is called the heaviest edge of v.
Finally, we let RG : VI ∪ V 3

I I I → V be the function that returns for a given node v ∈ VI ∪ V 3
I I I

the node HG(v) if v ∈ VI and TG(v) otherwise. If the considered graph is clear from the
context then we omit the subscript indicating the graph.

21

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

Comment If a node v ∈ VI I I has a third edge e then e is the unique third edge of v
since in the case that there is a further edge incident to v with the same weight as e,
node v is not of Type III at all.

3.3 P-hardness for Graphs with Nodes of Type I and III

The theorem in this section is mainly based on the following property of a node u of
Type III in local optima. Assume that one of the neighbors with influence on u is black in
a local optimum. Then u is black if and only if the other two neighbors with influence on
u are white. This property can be used to simulate a NOR-gate of a Boolean circuit since
the output of a NOR-gate is true if and only if both inputs are false. The propagation
of the outputs of a gate to the inputs of other gates is done via nodes of Type I which
resemble NOT-gates since they have the opposite color of the node that has influence on
them in any local optimum.

Theorem 3.3.1 (Constituting Theorem). i) LOCALMAX-CUT is P-hard with respect
to logspace reduction for graphs that contain only nodes of Type I and III.

ii) Let f : {0, 1}n→ {0, 1}m be a function and C be a Boolean circuit with N ∈ N gates
computing f . Then, using O(logN) space, one can compute a graph GC = (V C , EC)
that contains only nodes of Type I and III and nodes s1, . . . , sn, t1, . . . , tm ∈ V C

of degree one such that for the vectors s := (s1, . . . , sn), t := (t1, . . . , tm) we have
f (cP(s)) = cP(t) in every local optimum P of GC .

Proof. i) We reduce from the P-complete problem CIRCUIT-VALUE [41]. An instance
of CIRCUIT-VALUE is a Boolean circuit C consisting of N ∈ N gates gN , . . . , g1 and an
assignment for the inputs of C . The solution is the output of C for the given input
assignment. Without loss of generality we make the following four assumptions.
First, a gate of C is either a NOR-gate with a fan-in of two and a fan-out of one
or a NOT-gate with a fan-in of one and a fan-out of at most two—a circuit that
only contains NOR-gates can be constructed according to Proposition 2.4.3 and
the main purpose of the NOT-gates is to distribute the output of the NOR-gates.
Second, the gates are ordered topologically such that if gi is an input of g j then
i > j. Third, gm, . . . , g1 are NOT-gates with a fan-out of one and the vector of
their outputs is the output of C . Fourth, gN , . . . , gN−n+1 are also NOT-gates and
the vector of their inputs is the input of C . We let I1(gi) and I2(gi) be the input
gates of a NOR-gate gi for 1 ≤ i ≤ N − n, I(gi) be the input gate of a NOT-gate
gi for 1 ≤ i ≤ N − n, and value(gi) be the value of the assignment of the input
corresponding to gi for N − n+ 1≤ i ≤ N .

We construct a graph G = (V, E) with weights w : E→ N from C as follows. The
set of nodes is V = {v1, . . . , v3N+1}. The set E contains for every 1 ≤ i ≤ 3N the
following edges of weight 2i:

a) If gi is a NOR-gate then {vi , vN+2i} ∈ E and in addition {vi , v j} ∈ E for each
m< j ≤ N for which there is a 1≤ k ≤ 2 with Ik(gi) = g j .

22

3.3 P-hardness for Graphs with Nodes of Type I and III

b) If gi is a NOT-gate for 1≤ i ≤ N−n then {vi , v j} ∈ E for the unique 1≤ j ≤ N
for which I(gi) = g j .

c) For all N − n + 1 ≤ i ≤ N : if value(gi) = 1 then {vi , vN+2i} ∈ E and
{vi , vN+2i−1} ∈ E otherwise.

d) For all N + 1≤ i ≤ 3N : {vi , vi+1} ∈ E.

Then the type and degree of any v ∈ V as well as the edges with influence on v
can be seen in Table 3.1. The nodes vi for N + 1≤ i ≤ N + 2n are not necessary
for the proof and are only introduced to simplify the description.

Example 3.3.2. For the sake of illustration, let the circuit in Figure 3.2 be an instance
for C and let value(g4) = 1 and value(g3) = 0. Then the graph G constructed from
the instance of C is as presented in Figure 3.3.

Range of i
Properties of vi

Type Degree Influenced by edge(s)

i = 3N + 1 I 1 {v3N+1, v3N}

N + 1≤ i ≤ 3N I ≤ 3 {vi , vi+1}

N − n+ 1≤ i ≤ N I 2 edge introduced in (c)

1≤ i ≤ N − n I ≤ 3 edge introduced in (b)

m+ 1≤ i ≤ N − n III 4 all three edges introduced in (a)

Table 3.1: Degrees, types and influences for all nodes in V .

Figure 3.2: An instance for the Boolean circuit C .

Let P ∈ P (V) be a local optimum for G. Due to the symmetry of LOCALMAX-CUT we
may assume without loss of generality that cP(v3N) = 1. In the following, we use
Observation 2 to deduce the colors of the remaining nodes. First, cP(vi) 6= cP(vi+1)
for all N + 1 ≤ i ≤ 3N . Consequently, cP(vN+2i) = 1 and cP(vN+2i−1) = 0 for all
1≤ i ≤ N and cP(v3N+1) = 0. Then, for each N−n+1≤ i ≤ N , we have cP(vi) = 0
if value(gi) = 1 and cP(vi) = 1 otherwise. Thus, the color of the node vi for any
N − n+ 1≤ i ≤ N corresponds to the complement of the input assignment for gi .
Now consider the nodes vi for 1≤ i ≤ N−n. If gi is a NOT-gate with I(gi) = g j for
m+ 1 ≤ j ≤ N then cP(vi) 6= cP(v j). Hence, the color of vi for any 1 ≤ i ≤ N − n

23

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

Figure 3.3: The graph G constructed from the instance for C .

corresponds to the output of a NOT-gate with respect to the color of v j. Finally,
if gi is a NOR-gate with I1(gi) = gk and I2(gi) = g j for m+ 1 ≤ j < k ≤ N then
cP(vi) = 1 if and only if cP(v j) = cP(vk) = 0 since vi is of Type III and its neighbor
vN+2i is black in P. Thus, the color of vi corresponds to the output of a NOR-gate
with respect of the colors of v j and vk. Altogether, the colors of each node vi for
1≤ i ≤ N − n corresponds to the output of gi in C for the given input assignment
and therefore the colors of the nodes v1, . . . , vm correspond to the output of C .

Now we show that our reduction is in logspace. Notice first that we introduce a
constant number of nodes and edges for each gate. The weights of the edges are
powers of two. Thus, we only need to store the exponents of the weights. If we
write an edge weight to the output tape then we first write the “1” for the most
significant bit of the weight and then we write “0” as often as determined by the
exponent.

ii) Let GC = (V C , EC) be the graph arising from the graph G that is introduced in (i) by
the following three operations. First, we omit the edges introduced by (c). Second,
we add nodes si for 1 ≤ i ≤ n. Third, we add an edge {si , vN−n+i} with weight
2N−n+i for each 1 ≤ i ≤ n. Let s′j := v j for N − n+ 1 ≤ j ≤ N , s′ := (s′1, . . . , s′n)
and t j := v j for 1 ≤ j ≤ m. Then the nodes si for all 1 ≤ i ≤ n and t i for all
1≤ i ≤ m are of degree one. Moreover, the node s′i for any 1≤ i ≤ n is of Type I
and influenced by si . Let P be a local optimum for GC . Then cP(si) 6= cP(s′i) for all
1≤ i ≤ n due to Observation 2. Let c be the vector of the bitwise complement of
cP(s′). As in (i) it follows that f (c) = cP(t). Thus, f (cP(s)) = cP(t). ut

Note that G f can be constructed in logarithmic space and thus in polynomial time
for every polynomial-time computable function f . The result and its proof is used in
several contexts in the rest of the thesis. To be able to refer to its parts, we introduce the
following notations.

Definition 3.3.3. For a Boolean circuit C we say that GC = (V C , EC) as constructed in
the proof of the Constituting Theorem (i.e., Theorem 3.3.1) is the graph that constitutes
C. Node vi ∈ V C is said to represent gate gi. Moreover, we call vi a NOT-node if gi is a
NOT-gate in C, a NOR-node if gi is a NOR-gate and a gate-node if it is a NOT-node or a

24

3.4 Is-Exp Property for Graphs with Nodes of Type I and III

NOR-node. The set of NOT-nodes is VC
not and the set of NOR-nodes is VC

nor . For a NOT-node
vi we let I(vi) be the unique node that has influence on vi and if it vi is a NOR-node then
we let I1(vi) and I2(vi) be the nodes representing the input gates of gi in C. For a partition
P ∈ P (V C) and a NOT-node vi ∈ V C we say that vi is correct in P if it has the opposite
color of I(vi) in P. Similarly, we call a NOR-node vi ∈ V C correct in P if it is black if and
only if the two nodes that represent the inputs of gi in C are white. We call P ordinary
if each node of V C that represents an input gate of C is happy in P, the nodes that do
not represent a gate are white in P if they have an odd index and black otherwise. For a
polynomial-time computable function f and a Boolean circuit C that computes f we say
that G f := GC looks at the input nodes si ∈ V C and biases the output nodes t i ∈ V C to
the colors induced by f .

Observation 3. Let C be a Boolean circuit computing a function f : {0,1}n → {0,1}m

for n, m ∈ N, GC = (V C , EC) be the graph that constitutes C, and s := (s1, . . . , sn), t :=
(t1, . . . , tm) for si , t j ∈ V C for all 1 ≤ i ≤ n, 1 ≤ j ≤ m be the vectors of nodes for which
f (cP(s)) = cP(t) in any local optimum P ∈ P (V C) according to Theorem 3.3.1(ii). Then
node t j has no influence on the unique node adjacent to t j in GC for all 1≤ j ≤ m.

3.4 Is-Exp Property for Graphs with Nodes of Type I and III

In this section, we show the is-exp property for graphs with nodes of Type I and III by
implementing a counter. The central part of the proof is a subgraph for which we show
that it is possible to perform four flips of a certain node of the subgraph for every two
flips of a different node of the subgraph. The construction of the proof is inspired by the
proof of [27] in which Haken and Luby show the is-exp property for a problem closely
related to LOCALMAX-CUT.

Theorem 3.4.1 (Is-Exp Theorem). LOCALMAX-CUT has the is-exp property for graphs
that contain only nodes of Type I and III.

Proof. For n ∈ N0 we let Cn be the Boolean circuit depicted in Figure 3.4. We let
Gn = (V n, En) be the graph that constitutes Cn. Recall that due to the construction in
the proof of the Constituting Theorem (i.e., Theorem 3.3.1), the graph Gn contains a
node vi for every gate gi of Cn. The graph Gn is depicted in Figure 3.5. Note that we
assumed for graphs that constitute Boolean circuits that the output gates of the circuits
are NOT-gates—in contrast to Cn. However, if the output link of g1 is substituted by two
NOT-gates linked in series, then the output of the thereby arising circuit is the same as
the output of Cn. For the sake of simplicity, we omit these two gates in our description.
The initial partition Pn ∈ P (V n) can also be seen in Figure 3.5.

For a sequence s := (vs1
, vs2

, . . . , vsm
) of improving flips starting at (Gn, Pn) with m ∈ N,

1 ≤ si ≤ 12n+ 13 we write s+ for the sequence (vs′1
, vs′2

, . . . , vs′m
) where s′i := si + 4 for

all 1 ≤ i ≤ m. Let s(0) := (v1, v2, v1) in G0 and s(n) in Gn for n ≥ 1 be the sequence
arising from s(n− 1)+ by inserting the following sequence of flips directly after the k-th

25

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

Figure 3.4: The infinite family of Boolean circuits Cn.

Figure 3.5: The graphs Gn and their initial partitions Pn.

flip of v5 in s(n−1)+ for all 1≤ k ≤ q where q ∈ N is the number of flips of v5 in s(n−1)+:

k is odd: insert t1 := (v4, v1, v3)
k is even: insert t2 := (v4, v1, v2, v1, v3, v2, v1)

For the sake of illustration, we state the first two sequences s(1) and s(2) in Exam-
ple 3.4.2:

Example 3.4.2.
s(0) = (v1, v2, v1)
s(1) = (v5, v4, v1, v3, v6, v5, v4, v1, v2, v1, v3, v2, v1)

In the following, we prove by induction on n that s(n) is an improving sequence
starting at (Gn, Pn) and node v1 flips 2n+1 times in s(n). For the induction basis, note
that s(0) is an improving sequence starting (G0, P0) and node v1 flips 21 times in s(0).
Now assume as induction hypothesis that s(n− 1) is an improving sequence starting at
(Gn−1, Pn−1) and v1 flips 2n times in s(n− 1). Notice first that after the first flip of v5 in
s(n) the sequence t1 is improving and that after the second flip of v5 the sequence t2 is
improving. Since each node that flips in t1 ◦ t2 flips an even number of times in t1 ◦ t2,
we get the following observation.

Observation 4. Let n ≥ 1, W := {v1, . . . , v4} ⊂ V n, Q0 ∈ P (V n), s = (w1, . . . , wq) be a
sequence of flips starting at (Gn,Q0) for wi ∈ V n, q ∈ N and 1 ≤ j ≤ q be an index for
which s j

1|W = t1 ◦ t2. Then cQ0
(v) = cQ j

(v) for all v ∈W.

Observation 4 guarantees that the flips of t1 are improving after each flip of v5 to the
white color in s(n)—as for its first flip. Thus, s(n) is an improving sequence starting at

26

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

(Gn, Pn). Since v1 flips four times in t1 ◦ t2, it follows that v1 flips in s(n) twice as often
as v5 in s(n− 1)+, i.e., 2n times. Thus, v1 flips 2n+1 times in s(n).

Since for all n ∈ N0 the graph Gn contains O(n) nodes, the claim follows. ut

Note that the only nodes of degree four in the graphs Gn of the above proof are the
nodes v4i+1 for 0 ≤ i < n, i.e., the NOR-nodes. These nodes are of Type III and have,
with the single exception of v1, an incident edge that has no influence on their happiness.
If to none of these nodes such an edge was incident, then we would get a graph with a
degree of at most three in which only quadratically many flips are possible [49]. Thus,
it is the existence of edges of this kind that allows exponentially long flip sequences
although the edges do not affect the happiness of nodes of Type III.

Definition 3.4.3. For n ∈ N0 we introduce the following names for objects introduced in
the proof of the Is-Exp Theorem. We call the Boolean circuit Cn the is-exp circuit of length
n. For the graph Gn = (V n, En) that constitutes Cn the initial partition Pn ∈ V n is called the
initial is-exp partition of V n. The sequence s(n) is called is-exp sequence of dimension n.
The sequence s(n)+ is called the shifted is-exp sequence of dimension n, and the sequences
t1 and t2 are called the first and the second is-exp module, respectively.

3.5 Enforcing Technique for Graphs with Nodes of Type I, II
and III

In this section, we develop a technique of enforcing any polynomial-time computable
generalized pivot rule in certain partitioned graphs. The technique extends a given graph
stepwise by further nodes and edges. In each step, an edge {u, v} of a given graph is
substituted by nodes and edges that, together with the nodes u and v, build up what is
called a basic subgraph. At first, we introduce functions that encapsulate the substitution
operations.

Then we devise a method that builds up a subgraph called filter in place of a heaviest
edge of a node of Type I by iteratively using the substitution functions. The purpose of
the filter is as follows. Let G = (V, E) be a graph, u ∈ V , v ∈ VI and e := {u, v} ∈ E such
that e is the heaviest edge of v. If in a partition P ∈ P (V) edge e is in the cut and node
u flips, then node v is instantly unhappy and could perform an improving flip. In the
graph that contains the filter in place of e, node v does not immediately become unhappy
after the flip of u. Instead, all nodes of the filter unequal to u and v must flip before v
becomes unhappy. The method that builds up the filter allows to make the “walk” of the
flips through the filter dependent on the value of an arbitrary Boolean SAT-formula in
disjunctive normal form in which the variables of the formula correspond to nodes of
V . Then, in certain partitions we are interested in, the flips migrate through the filter
towards v if and only if the formula is satisfied with respect to the colors of the nodes
that correspond to its variables.

Using the filters, we develop the technique of enforcing any polynomial-time com-
putable generalized pivot rule in certain partitioned graphs. The given graphs constitute
circuits and therefore contain only nodes of Type I and III. In our technique, we control

27

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

the happiness of the nodes of Type I—recall that these nodes represent the NOT-gates—
by means of the filters such that exactly that node of Type I becomes unhappy that is
chosen by the given generalized pivot rule according to the given partition. For the
given circuit, we assume without loss of generality that the inputs and outputs of each
NOR-gate are only NOT-gates. Then we can show that also the nodes of Type III—which
represent the NOR-gates—and therefore all nodes of the graph flip exactly when they
are chosen by the generalized pivot rule.

Prerequisite: Types of nodes The graphs considered in this section contain only nodes
of Type I, II and III. For the purpose of succinctness, we assume for each introduced
graph an implicit statement claiming one of the three types for each node.

3.5.1 Basic Subgraphs

The technique makes use of the following functions that extend a given graph by further
nodes and edges.

Definition 3.5.1. Let G = (V, E) be a graph, v ∈ VI , u := HG(v) and e := {u, v} ∈ E
where w(e) = a for a ∈Q>0. We let G1(G, v) be the graph arising from G by substituting
the edge e by the nodes and edges depicted in Figure 3.6. The values of ε,δ ∈ Q>0 are
chosen small enough such that the following conditions are satisfied:

• Node v is of Type I in G1(G, v) and HG1(G,v)(v) = g1
2(v).

• Node g1
1(v) is of Type III in G1(G, v) and TG1(G,v)(g

1
1(v)) = v.

Figure 3.6: The subgraph introduced by the function G1(G, v).

Note that the degree of v in G1(G, v) is greater by one than in G.

Comment The purpose of the subgraph G1(·) is to ensure that there is at most one
edge on the path (g1

1(v), g1
2(v), v) not in the cut in the partitions we are interested

in. In particular, we choose for the initial partition of the three nodes of this path
that c(v) = c(g1

1(v)) 6= c(g1
2(v)). Then, every sequence of improving flips started at

the initial partition will retain the property that there is exactly one edge of the cycle
(g1

1(v), g1
2(v), v, g1

1(v)) not in the cut. The subgraphs that we will introduce below, these
subgraphs may substitute the edges {g1

2(v), v} and {g1
1(v), v} by paths, together with

their initial partition, will retain the property that in every sequence of improving flips in
the subgraph arising from G1(·) by adding them, there is in each partition induced by
the sequence exactly one edge of each of the cycles not in the cut.

28

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

Definition 3.5.2. Let G = (V, E) be a graph, v ∈ VI ∪ VI I I , u := RG(v) and e := {u, v} ∈ E
where w(e) = a for a ∈Q>0. We let G2(G, v) be the graph arising from G by substituting
the edge e by the nodes and edges depicted in Figure 3.7. The value of ε ∈ Q>0 is chosen
small enough such that v has the same type in G2(G, v) as in G and RG2(G,v)(v) = g2

2(v).

Figure 3.7: The subgraph introduced by the function G2(G, v).

Comment The purpose of the subgraph G2(·) is to make the happiness of certain
nodes dependent on the color of certain other nodes. On many occasions, this goal can
be reached by drawing an edge of appropriate weight between the nodes. However,
since we want to construct graphs with maximum degree four, we cannot draw edges
between the nodes as often as it might be desirable. The subgraph G2(·) is to overcome
this obstacle in the following way. Let u be the node on whose color the happiness
of some other node w is supposed to be made dependent and let G be a graph with
an edge e := {u, v}. We use the subgraph G2(·) to substitute e. For the partitions we
will be interested in, we will ensure that all edges of G2(·) are in the cut. Then node
g2

2(v) has the same color as u. Thus, to reach the desired goal, we can draw an edge
of appropriate weight between w and g2

2(v) instead of an edge between w and u—the
weight of the added edge will be chosen to be smaller than ε to retain the property that
the heaviest edge of g2

2(v) is {g2
1(v), g2

2(v)}. Moreover, if we want to make the happiness
of w dependent on the opposite color of u then we can draw an edge between w and
g2

1(v), and if we want to make the happiness of more than one or two nodes dependent
on the color of u then we can even substitute the edge {g2

2(v), v} by G2(H, v) where H
is the graph arising from G by the substitution of e by G2(G, v).

Definition 3.5.3. Let G = (V, E) be a graph, v ∈ VI , u := HG(v) and e := {u, v} ∈ E
where w(e) = a for a ∈Q>0. We let G3(G, v) be the graph arising from G by substituting
the edge e by the nodes and edges depicted in Figure 3.8. The value of ε ∈ Q>0 is chosen
small enough such that v is of Type I in G3(G, v) and HG3(G,v)(v) = g3

5(v).

Figure 3.8: The subgraph introduced by the function G3(G, v).

29

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

Comment The purpose of the subgraph G3(·) is to split an edge between u and v up in
two paths. For the initial partition for the subgraph we will choose all edges to be in the
cut. Then, if u flips and does not flip a second time before v flips, then the flips migrate
along the two paths from u to v. Note that node g3

5(v) only becomes unhappy and flips
when both g3

3(v) and g3
4(v) flipped before.

Definition 3.5.4. Let G = (V, E) be a graph, v, w1, w2 ∈ VI , u := HG(v) and e := {u, v} ∈
E where w(e) = a for a ∈ Q>0. We let G4(G, v, w1, w2) be the graph arising from G by
substituting the edge e by the nodes and edges depicted in Figure 3.9. The value of ε ∈Q>0
is chosen small enough such that the following conditions are satisfied:

• Node v is of Type I in G4(G, v, w1, w2).

• HG4(G,v,w1,w2)(v) = g4
2(v).

• Node wi is of type I in G4(G, v, w1, w2) for all 1≤ i ≤ 2.

• HG4(G,v,w1,w2)(wi) = HG(wi) for all 1≤ i ≤ 2.

Figure 3.9: The subgraph introduced by the function G4(G, v, w1, w2).

Note that due to the weights of their incident edges, node g3
5(v) in G3(G, v) is of Type

III and g4
1(v) in G1(G, v, w1, w2) is of Type II.

Comment The purpose of the subgraph G3(G, v, w1, w2) is to hinder the flips from
migrating from u to v unless at least one of the nodes w1, w2 has, after the flip of u, the
same color as u. More concretely, suppose that the edges on the simple path from u to v
in G3(G, v, w1, w2) are in the cut. Suppose furthermore that u flips then and does not
flip a second time before v flips for the first time. If at least one of the nodes w1, w2 has,
after the flip of u, the same color as node u and neither w1 nor w2 flips prior to the first
flip of v, then the there will be consecutive flips of the nodes g4

1(v), g4
2(v) and v in every

sequence of improving flips started at the partition after the flip of u. On the other hand,
if both g4

1(v) and g4
2(v) have the opposite color as u after the flip of u, then at least one

of the two nodes must flip before g4
1(v) and then g4

2(v) and then v can flip.

Definition 3.5.5. Let G = (V, E) be a graph. We let G5(G) be the graph arising from G by
introducing two nodes g5

1 , g5
2 and an edge {g5

1 , g5
2} with weight 1.

For the identification of certain nodes and edges, we introduce the following notations.

30

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

Definition 3.5.6. Let G = (V, E) be a graph, v ∈ VI ∪ V 3
I I I and w1, w2 ∈ VI . Let Si(v) for

1≤ i ≤ 3 be the subgraph of G i(v) induced by the nodes v, RG(v) and g i
j(v) for all j and

S4(v) be the subgraph of G4(v, w1, w2) induced by the nodes v, HG(v), g4
1(v) and g4

2(v).
For each node w of Si(v) for any 1 ≤ i ≤ 4 we call every edge incident to w that is on a
simple path from RG(v) to v in Si a heavy edge of w.

Definition 3.5.7. For all n ∈ N we let

• r (n) := dn/2e

• p+n (i) := (i mod n) + 1 for 1≤ i ≤ n

• p−n (i) := ((i− 2) mod n) + 1 for 1≤ i ≤ n

• pr+n (i) := r(p+n (i)) for 1≤ i ≤ n

• pr−n (i) := r(p−n (i)) for 1≤ i ≤ n.

Definition 3.5.8. Let G = (V, E) be a graph and φ ∈ Φ(V). We let Nodes(φ) be the set
of all nodes v ∈ V contained in φ. For a subset W ⊆ V and a function ϕ : W → Φ(W) we
let D(ϕ) := {v ∈W |ϕ(v) 6= ;} ∪

⋃

v∈W Nodes(ϕ(v)) and for a literal l over a variable v
we let nod(l) := v.

In the description of the way in which the subgraphs are combined, we make use of
the following conventions.

Prerequisite: In the rest of the chapter, we treat nodes of a graph G = (V, E) also as
Boolean variables of Boolean formulas and let the values of the variables be induced
by the colors of the nodes in a given partition P ∈ P (V). Moreover, for a Boolean
formula φ ∈ Φ(V) we let valP(φ) := valt(φ) where t is the truth assignment induced
by assigning the value true to a variable v ∈ V if and only if cP(v) = 1.

Properties of the subgraphs

Observation 5. Let G = (V, E) be a graph, v ∈ VI ∪ V 3
I I I , w1, w2 ∈ VI , u := RG(v),

Gi = (Vi , Ei) := G i(G, v) for 1 ≤ i ≤ 3, G4 = (V4, E4) := G4(G, v, w1, w2) and G5 =
(V5, E5) := G5(G). Then the following conditions are satisfied:

i) degG1
(v) = degG(v) + 1.

ii) degGi
(v) = degG(v) for all 2≤ i ≤ 4.

iii) degG4
(wi) = degG(wi) + 1 for all 1≤ i ≤ 2.

iv) degGi
(w) = degG(w) for all 1≤ i ≤ 5 and w ∈ V \ {v}.

v) degGi
(w)≤ 4 for all 1≤ i ≤ 5 and w ∈ Vi \ V .

vi) Node w ∈ Vi \ V for any 1≤ i ≤ 4 is happy in a partition P ∈ P (Vi) if a heavy edge
of w with greatest weight among the heavy edges of w and one further heavy edge of
w are in the cut in P.

31

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

3.5.2 Combining the Subgraphs

In this section, we describe the function en f5 whose purpose is as follows. If for a
graph G = (V, E) and a node v ∈ VI the node u := HG(v) flips to the same color as v
and thereby turns v unhappy, then v could flip directly after the flip of u. The aim of
the function en f5 is to hinder v from becoming unhappy, and thereby from flipping, as
long as a given condition is not satisfied. In particular, the condition is formulated as
a Boolean SAT-formula ϕ(v) for ϕ : VI → Φ(VI) in disjunctive normal form. To reach
the desired goal, we substitute the edge {u, v} ∈ E by a subgraph which is iteratively
built up by the subgraphs introduced in the previous section. In fact, the subgraph is
called the filter of v and is the subgraph induced by the nodes u, v and all nodes that are
introduced by the function en f5 and substitute either the edge {u, v} or an edge of the
subgraph that substituted the edge {u, v} (a formal definition of the filter will be given
in Definition 3.5.9). The substitutions performed by the function en f5 are divided into
five parts.

A rough overview of the filter is illustrated in Figure 3.10. It shows a mapping of
subgraphs of the filter of a Type I node v to the parts of the function en f5 in which
they are added. The main purpose of the filter is to split the edge {u, v} up into several
paths between u to v. There is one path set aside from the others. We call this path the
braid of v. The subgraph induced by the other paths is called the head of v (a formal
definition of the head and the braid will be given in Definition 3.5.9). The braid can be
seen in Figure 3.10 as the path between u and v containing only nodes that are added
in the parts one and four. Each path of the head contains a node that is added in part
i for all 1 ≤ i ≤ 5. The purpose of the paths that make up the head is as follows. If in
a given partition the SAT-formula corresponding to v is satisfied, then all nodes of the
head paths can flip their colors consecutively. However, if the formula is not satisfied
then on each head path there is a node that remains happy. Altogether, after a flip of u,
assuming that neither u nor the nodes of the SAT-formula corresponding to v change
their colors, the flips pass the head paths towards v and thereby make v unhappy if and
only if the value of the formula is true.

The description of the five parts is done via the functions en fi for 1≤ i ≤ 5. For each
1< i ≤ 5 the function en fi first calls as subroutine the function en fi−1 that performs the
parts 1, . . . , i− 1 and then it adds further subgraphs in place of edges.

Figure 3.10: Parts of the filter of v labelled by the part of en f5 in which they are added.

32

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

Part 1 The pseudo-code for the function en f1, which makes up the first part, is shown in
Algorithm 3.1. In it, we substitute for each v ∈ D(ϕ) the edge {HG(v), v} by the
subgraph introduced by the function G1(·) and let α1(v) and α2(v) be the nodes
introduced by this function—see line 6 of Algorithm 3.1. We call the set of nodes
{α1(v),α2(v)} the capsule of v.

Input: graph G = (V, E), function ϕ : VI → Φ(VI)
Output: graph G′ = (V ′, E′)

1: k← 1
2: H0← G
3: for all v ∈ D(ϕ) do
4: Hk← G1(Hk−1, v) . Add capsule
5: k← k+ 1
6: α1(v)← g1

1(v);α2(v)← g1
2(v) . Rename added nodes

7: return Hk−1

Algorithm 3.1: The function en f1.

Part 2 The function en f2 (see Algorithm 3.2) first calls as a subroutine the function en f1
and then it substitutes for all v ∈ D(ϕ) the edge {v,α2(v)} by a subgraph that is
built up by iteratively introducing subgraphs according to the function G3(·) twice
as often as there are monomials in the formula ϕ(v). The nodes of the thereby
introduced subgraphs are called β i

j (v) for 1≤ j ≤ 5 and 1≤ i ≤ 2n where n is the
number of monomials of ϕ(v)—see line 9 of Algorithm 3.2. The subgraph that
contains the nodes and edges that substitute the edge {v, HG(v)} after the first two
parts of the function en f5 is depicted in Figure 3.11. We call the nodes introduced
in the iteration of the for-loop in lines 3–9 corresponding to v the splitters of v.

Comment The nodes and edges introduced in the second part substitute the edge
{v,α2(v)} by 2n+ 1 simple paths between α2(v) and v.

Part 3 The third part (see Algorithm 3.3) substitutes the heaviest edge of node β i
4(v)

for all 1 ≤ i ≤ 2n introduced in the previous part by a subgraph that is built up
by iteratively adding subgraphs according to G2(·) once more as twice as often
as there are literals in the monomial Mr of ϕ(v) for r := pr−2n(i) and call the
new nodes γi

j,k(v) for 1 ≤ j ≤ 2r + 1, 1 ≤ k ≤ 2—see line 12 of Algorithm 3.3.
Moreover, we call the nodes introduced in the iteration of the for-loop in lines
3–12 corresponding to v the internal informers of v. The subgraphs are built
up in a way such that instead of the edge {HG(β i

4(v)),β
i
4(v)} for 1 ≤ i ≤ 2n+ 1

a path is introduced—note that HG(β i
4(v)) = β

i
2(v) for all 1 ≤ i ≤ 2n. In case

of i = 2n+ 1 the edge is not substituted, i.e., the path only consists of a single
edge. For each 1≤ i ≤ 2n+ 1 we let pϕ

i
(v) be the path that substitutes the edge

{HG(β i
4(v)),β

i
4(v)}.

33

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

Figure 3.11: The subgraph containing the capsule and the splitters of v.

Comment The purpose of the nodes on the path pϕi (v) for 1≤ i ≤ 2n introduced
in this part is to reflect whether pϕi (v) was already passed by the flips that migrate
towards v.

Part 4 In the fourth part, we introduce four subgraphs for each literal lr, j of ϕ(v) of
any v ∈ D(ϕ) for 1 ≤ r ≤ n, 1 ≤ j ≤ mr where mr is the number of literals of
monomial Mr—see Algorithm 3.4. We call the nodes introduced in the iteration of
the for-loop in lines 3–13 corresponding to v the external informers of v. Two
of the four subgraphs substitute the heaviest edge of u and together build up a
path in place of that edge. We call the external informers δr

j,k(v) for any r, j, k as
introduced in line 9 anterior and the external informers ηr

j,k(v) for any r, j, k as
introduced in line 10 posterior.

Comment The purpose of the external informers is to reflect the color of the node
u := nod(lr, j), in a way that is examined closer in the description of the next part,
to the nodes of the filter of v.

Part 5 In the fifth part we again introduce four subgraphs for each literal lr, j for 1≤ r ≤
n, 1≤ j ≤ mr of ϕ(v) of any v ∈ D(ϕ) (see lines 13 and 15 of Algorithm 3.5) and
for each monomial Mr two further subgraphs (see line 20). We call the nodes
introduced in the lines 13 and 15 of the iteration of the for-loop in lines 3–13
corresponding to v the delayers of v. The nodes added in line 20 are called the
constants of v. For 1 ≤ r ≤ n, 1 ≤ j ≤ mr , w := nod(lr, j) and p := p−2n(2r − 1)
the delayers that correspond to the literal lr, j and the nodes they are adjacent to
are presented in Figure 3.12. Before describing the purpose of the nodes added in

34

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

Input: graph G = (V, E), function ϕ : VI → Φ(VI)
Output: a graph G′ = (V ′, E′)

1: k← 1
2: H0← en f1(G) . Execute first step
3: for all v ∈ D(ϕ) do
4: β0

3 (v)← v
5: for i← 1 to 2 · |Mons(ϕ(v))| do
6: Hk← G3(Hk−1,β i−1

3 (v)) . Add splitters
7: k← k+ 1
8: for j← 1 to 5 do
9: β i

j(v)← g3
j (β

i−1
3 (v)) . Rename added nodes

10: return Hk−1

Algorithm 3.2: The function en f2.

the fifth part, we first introduce some notations. For future reference we give the
pair of prerequisite and definition the name given below:

Filter Definitions (First Part) For the sake of succinctness, we make the follow-
ing assumption:

Prerequisite: In all remaining Definitions, Observations and Lemmas unequal to
the last Lemma, namely the Filtering Lemma (i.e., Lemma 3.5.21), we let G = (V, E)
be a graph, ϕ : VI → Φ(VI), Gϕ = (Vϕ, Eϕ) := en f5(G,ϕ), v ∈ D(ϕ), nv :=
|Mons(ϕ(v))|, M v

r for 1≤ r ≤ nv be the monomials of ϕ(v), mv
r = |Li ts(M v

r)| for
1 ≤ r ≤ nv and l v

r, j for 1 ≤ j ≤ mv
r be the literals of M v

r , i.e., the elements of the
set Li ts(M v

r). If the considered node is clear from the context then we may omit
the superscript that indicates the node.

Definition 3.5.9. We denote by Fϕ(v) the subset of Vϕ containing the following
nodes:

F1) v

F2) IG(v)

F3) α1(v), α2(v)

F4) β i
j(v) for all 1≤ i ≤ 2nv , 1≤ j ≤ 5

F5) γi
j,k(v) for all 1≤ i ≤ 2nv , 1≤ j ≤ 2mv

p + 1 for p := pr−2nv (i) and 1≤ k ≤ 2

F6) δi
j,k(w) for all w ∈ D(ϕ), 1 ≤ i ≤ 2nw, 1 ≤ j ≤ mw

r for r := r(i), 1 ≤ k ≤ 2
for which nod(lw

i, j) = v

35

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

Input: graph G = (V, E), function ϕ : VI → Φ(VI)
Output: a graph G′ = (V ′, E′)

1: k← 1
2: H0← en f2(G,ϕ) . Execute first two steps
3: for all v ∈ D(ϕ) do
4: n← |Mons(ϕ(v))|
5: for i← 1 to 2 · n do
6: β ← β i

4(v)
7: r ← pr+2n(i)
8: M ← r-th monomial of ϕ(v)
9: for j← 1 to 2 · |Li ts(M)|+ 1 do

10: Hk← G2(Hk−1,β) . Add internal informers
11: k← k+ 1
12: γi

j,1(v)← g2
1(β);γ

i
j,2(v)← g2

2(β) . Rename added nodes

13: return Hk−1

Algorithm 3.3: The function en f3.

F7) ηi
j,k(w) for all w ∈ D(ϕ), 1 ≤ i ≤ 2nw, 1 ≤ j ≤ mw

r for r := r(i), 1 ≤ k ≤ 2
for which nod(lw

i, j) = v

F8) φ i
j,k(v) for all 1≤ i ≤ 2nv , 1≤ j ≤ 2mv

r + 1 for r := r(i) and 1≤ k ≤ 2.

The subgraph of Gϕ induced by the nodes of Fϕ(v) is called the filter of v with respect
to ϕ. We write Tϕ(v) for the set of nodes that contains all nodes of (F6) and v
itself and we write Bϕ(v) for the set of nodes that contains all nodes of (F7) and v
itself. Moreover, we let Hϕ(v) := (Fϕ(v) \ Bϕ(v)) ∪ {v}. We call the subgraph of
Gϕ induced by the nodes of Tϕ(v) the throat of v with respect to ϕ, the subgraph
induced by the nodes of Bϕ(v) the braid of v with respect to ϕ, and the subgraph
induced by the nodes of Hϕ(v) the head of v with respect to ϕ. Finally, we let Rϕ(v)
be the set containing the nodes of Fϕ(v) without the nodes IG(v), α1(v), φ i

j,k(v) for

all i, j, k and β i
5(v) for all i.

Comment Note that since the nodes of Tϕ(v) \ {v} are added via calls of the
function G2(·) in line 9 of Algorithm 3.4 that always substitute the heaviest edge
incident to the node v, the throat of v is a path in Fϕ(v). Similarly, since the
nodes of Bϕ(v)\{v} are added via calls of the function G2(·) in line 10 that always
substitute the third edge of the node α1(v), the braid of v is also a path.

We now continue with the description of the purpose of the nodes added in the
fifth part. Recall that the idea of the filter of v is to split the edge {u, v} up in
paths and delay the flips on their migration from u to v depending on whether the
corresponding formula is satisfied. The first four parts provided the split-up of the
edge {u, v}, they provided nodes whose colors are supposed to indicate the colors

36

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

Input: graph G = (V, E), function ϕ : VI → Φ(VI)
Output: a graph G′ = (V ′, E′)

1: k← 1
2: H0← en f3(G,ϕ) . Execute first three steps
3: for all v ∈ D(ϕ) do
4: n← |Mons(ϕ(v))|
5: for i← 1 to 2n do
6: r ← r(i)
7: M ← r-th monomial of ϕ(v)
8: for j← 1 to |Li ts(M)| do
9: Hk← G2(Hk−1, nod(lr, j)) . Add anterior external informers

10: Hk+1← G2(Hk,α1(nod(lr, j))) . Add posterior external informers
11: k← k+ 2
12: δi

j,1(v)← g2
1(nod(lr, j));δi

j,2(v)← g2
2(nod(lr, j)) . Rename added nodes

13: ηi
j,1(v)← g2

1(α1(nod(lr, j)));ηi
j,2(v)← g2

2(α1(nod(lr, j)))

14: return Hk−1

Algorithm 3.4: The function en f4.

of the nodes that correspond to the literals of ϕ(v) and they provided nodes whose
colors are supposed to indicate whether one of the paths pϕi (v) for 1≤ i ≤ 2n was
passed by the flips that migrate through the filter along the head paths from u
to v. In the following, we explain the purposes of the delayers by means of their
supposed functionality with respect to the nodes they are adjacent to.

First, we consider the interaction between the delayers and the constants. In the
partitions of the filter we will be interested in, all edges on the 2n+1 simple paths
from α1(v) to v containing a node β i

4(v) along heavy edges, i.e., the head paths,
are in the cut. Then the colors of the nodes on the head paths are determined by
the color κ ∈ {0,1} of v. However, the satisfaction of the formula ϕ(v) depends
on the colors of the nodes of Nodes(ϕ(v)) and does not necessarily depend on
the color of v. Therefore, we introduced two paths pϕ2r−1(v) and pϕ2r(v) for each
monomial Mr for 1 ≤ r ≤ n of ϕ(v) in the third part and introduce in part five
delayers that let the flips pass towards the paths pϕj (v) for odd 1 ≤ j ≤ 2n− 1
if κ = 0 and furthermore introduce delayers in the same part that let the flips
pass towards the paths pϕj (v) for even 2 ≤ j ≤ 2n if κ = 1. The delayers for this
purpose are added in line 20 and the corresponding constants in line 18. We will
later assign colors to the constants such that c i

1(v) is and remains white for odd i
and black for even i.

Second, we explain the interaction between the delayers of v and the external
informers of v. The idea of the external informers of v is to reflect the colors of the
nodes of Nodes(ϕ(v)) to the delayers introduced in lines 13 and 15. However, in

37

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

Figure 3.12: The adjacent nodes of the delayers of v.

some partitions that we will later deal with, we cannot deduce the color of a node
w ∈ Nodes(ϕ(v)) from the color of an arbitrary anterior external informer of v
with respect to w. Therefore, we also introduce the posterior external informers.
We will later see that if an edge between the nodes of Tϕ(w) is not in the cut,
then all edges between the nodes of Bϕ(w) are in the cut. Then we can conclude
that of two nodes w1, w2 for w1 ∈ Tϕ(w) and w2 ∈ Bϕ(w) with equal distance
in Fϕ(w) from w modulo 2 at least one has the same color as w. Therefore,
we introduce in the lines 13 and 15 one delayer that is adjacent to an anterior
external informer and one delayer that is adjacent to a posterior external delayer
of the node nod(lr, j) for the corresponding literal lr, j for 1 ≤ r ≤ n, 1 ≤ j ≤ mr .
Depending on whether the literal lr, j is negated or not, we alternate between
the distance modulo 2 of the corresponding external informers from nod(lr, j) in
Fϕ(v)—see lines 13 and 15 again.

Third and finally, we describe the interaction between the delayers of v and the
internal informers of v. According to the function G4(·), the nodes φ i

j,1(v) for
1 ≤ i ≤ 2n, 1 ≤ j ≤ 2mr for r := r(i) are, in addition to the two nodes to which
they are adjacent via their heavy edges, adjacent to two further nodes. For one
of the two further nodes, which is either a constant or an external informer, we
already know the purpose. The other node adjacent to φ i

j,1(v) is an internal
informer on the path pi′ for i′ := p−2nv (i) according to lines 13 and 15. In some of
the partitions we will be interested in, these edges between the delayers and the
internal informers will be in the cut. Now assume that after such a partition arises
in a sequence of flips, the flips pass the path pϕi′ (v). Then all internal informers on
that path change their colors. But then one non-heavy edge of the delayers φ i

j,1(v)
for all 1≤ j ≤ 2mr + 1 for r := r(i) is not in the cut. Then, the flips can also pass

38

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

towards the path pϕi (v). Altogether, all paths can be passed and the flips migrate
towards v. This finishes the description of the function en f5.

Input: graph G = (V, E), function ϕ : VI → Φ(VI)
Output: a graph G′ = (V ′, E′)

1: k← 1
2: H0← en f4(G,ϕ) . Execute first four steps
3: for all v ∈ D(ϕ) do
4: n← |Mons(ϕ(v))|
5: for i← 1 to 2n do
6: γ← γi

1,1(v)
7: p← p−2n(i)
8: r ← r(i)
9: M ← r-th monomial of ϕ(v)

10: t ← |Li ts(M)|
11: for j← 1 to t do
12: q← (pos(lr, j) + i) mod 2
13: Hk← G4(Hk−1,γ,δi

j,2−q(v),γ
p
2 j−1,2(v)) . Add delayers

14: φ i
2 j−1,1(v)← g4

1(γ);φ
i
2 j−1,2(v)← g4

2(γ) . Rename added nodes

15: Hk+1← G4(Hk,γ,ηi
j,1+q(v),γ

p
2 j,2(v)) . Add delayers

16: φ i
2 j,1(v)← g4

1(γ);φ
i
2 j,2(v)← g4

2(γ) . Rename added nodes
17: k← k+ 2
18: Hk← G5(Hk−1) . Add constants
19: c i

1(v)← g5
1 ; c i

2(v)← g5
2 . Rename constants

20: Hk+1← G4(Hk,γ, c i
1(v),γ

p
2t+1,2(v)) . Add delayers for constants

21: k← k+ 2
22: φ i

2t+1,1(v)← g4
1(γ);φ

i
2t+1,2(v)← g4

2(γ) . Rename added nodes

23: G′← Hk−1

Algorithm 3.5: The function en f5.

Now we introduce some notations that we need for the description of some properties
of the graph arising by the call of the function en f5. For future reference we give the
following block of definitions the name given below:

Filter Definitions (Second Part)

Definition 3.5.10. We let cyϕv (i) for 1≤ i ≤ 2nv be the unique cycle along nodes of Fϕ(v)
containing the nodes v, α1(v) and β i

4(v). Similarly, we let c yϕv (2nv+1) be the unique cycle
in Fϕ(v) containing the nodes v, α1(v) and β2nv

3 (v). For 1≤ i ≤ 2nv + 1 we let s pϕv (i) be
the subpath of c yϕv (i) starting at the unique node of Bϕ(v) \ {v} incident to v, containing
α1(v) and ending at v.

39

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

Definition 3.5.11. Let P ∈ P (Vϕ). We call Tϕ(v) flat in P if all edges of the cycle c yϕv (1)
incident to nodes of Tϕ(v) \ {v} are in the cut in P and, similarly, we call Bϕ(v) flat in P
if all edges of the cycle c yϕv (1) incident to nodes of Bϕ(v) \ {v} are in the cut in P. If the
considered partition is clear from the context then we omit for any of the aforementioned
definitions the expression “in P” for the corresponding partition P.

We say that Fϕ(v) is straight in P if cP(c2r
1 (v)) = cP(c

2r−1
2 (v)) = 1 and cP(c2r

2 (v)) =
cP(c

2r−1
1 (v)) = 0 for all 1 ≤ r ≤ nv. Suppose that Fϕ(v) is straight in P. Then we call

Fϕ(v) canonical in P if on each cycle c yϕv (i) for 1≤ i ≤ 2nv + 1 there is exactly one edge
not in the cut. Now suppose that Fϕ(v) is canonical in P. Then we call Fϕ(v) enterable
in P if exactly one edge between the nodes of Bϕ(v)∪ {v,α1(v)} is not in the cut and the
edge {I(v),α1(v)} is in the cut. Furthermore, we call Fϕ(v) just entered in P if P can be
reached from an enterable partition by a flip of I(v) and we call Fϕ(v) awaiting in P if it
is enterable or just entered in P.

Definition 3.5.12. Let P ∈ P (Vϕ) such that Fϕ(v) is canonical in P, y ∈ Bϕ(v) be
the unique node for which {y, v} ∈ Eϕ and 1 ≤ i ≤ 2nv + 1. We denote by eϕv (P, i)
the unique edge of c yϕv (i) that is not in the cut in P. For a node w on the cycle c yϕv (i)
we let disϕv (w, i) be the number of edges of the subpath of spϕv (i) starting at w and
ending at v. We let the function nϕv (P, i) return a node of Fϕ(v) in the following way. If
eϕv (P, i) = {y, v} then it returns y. Otherwise it returns the node ui for {ui , vi} := eϕv (P, i),
ui , vi ∈ Vϕ for which disϕv (ui , i)< disϕv (vi , i). Furthermore, we denote by tϕv (P, i) the node
adjacent to nϕv (P, i) via the edge eϕv (P, i), i.e., eϕv (P, i) = {nϕv (P, i), tϕv (P, i)}. Finally, we call
dϕv (P) :=
∑

1≤i≤2nv+1 disϕv (nv(P, i), i) the potential of v in P.

Definition 3.5.13. Let P ∈ P (Vϕ) and P ′ ∈ P (Vϕ) be the partition arising from P by
choosing the colors of the nodes of Fϕ(v) \ {u} such that Fϕ(v) is enterable in P ′ where the
edge of the braid of v incident to v is not in the cut. For a node x ∈ Fϕ(v) \ {u} we call
cP ′(x) the natural color of x in P and the opposite color its unnatural color in P.

Definition 3.5.14. Let 1 ≤ i ≤ 2nv + 1, P ∈ P (Vϕ) such that Fϕ(v) is canonical in P
and y ∈ Bϕ(v) be the unique node for which {v, y} ∈ Eϕ. We call the subpath of spϕv (i)
starting at nϕv (P, i) and ending at v the i-th upper path of Fϕ(v) in P. The subpath of
c yϕv (i) starting at tϕv (P, i) and ending at y along edges that are not in the i-th upper path
is called the i-th lower path of Fϕ(v) in P.

Comment The i-th upper path of Fϕ(v) in P is equal to spϕv (v) if nϕv (P, i) = y and
contains only the node v if nϕv (P, i) = v, i.e., the path has length zero in this case. On the
other hand, the i-th lower path of Fϕ(v) in P contains for nϕv (P, i) = y no node and for
nϕv (P, i) = v it contains only the node y .

Properties of the filters In the following, we consider properties of the filters.

Observation 6. Let 1≤ i ≤ 2n, r := r(i), 1≤ j ≤ 2mr and k := r(j). Then node φ i
j,1(v)

is according to lines 12–16 of Algorithm 3.5 adjacent to the unique external informer w as
presented in Table 3.2—see also Figure 3.12.

40

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

Lemma 3.5.15. The following conditions are satisfied:

i) degGϕ(v) = degG(v) + 1 for all v ∈ D(ϕ)

ii) degGϕ(v) = degG(v) for all v ∈ V \ D(ϕ)

iii) degGϕ(v)≤ 4 for all v ∈ Vϕ \ V .

Proof. The graph Gϕ arises from G by consecutive calls of the functions G i(·) for 1≤ i ≤
5. Due to Observation 5 only the functions G1(·) and G4(·) increase the degree of a node
with respect to its degree in the input graph.

i) There is exactly one call of G1(·, v) in the five parts of en f5. This call is in line 4 of
Algorithm 3.1. In no call of G4(·) in any of the five parts node v is an input—all
calls of this function are in the lines 13 and 15 and 20 of Algorithm 3.5. The calls
of G2(·) and G3(·) in which v is an input do not increase the degree of v due to
Observation 3.5.8 (ii).

ii) None of the calls of the functions G i(·) for 1 ≤ i ≤ 5 in the five parts has a node
v ∈ V \ D(ϕ) as input. Thus, the claim follows from Observation 3.5.8 (iv).

iii) The only nodes added by the functions G i(·) for 1 ≤ i ≤ 5 that are itself input
for a subsequent call of a function G j(·) for j ∈ {1,4} are the informers and the
constants. None of them is input of a call of G1(·). The constants are only input
for the calls of G4(·) in line 20 of Algorithm 3.5. Each constant is input in exactly
one call of G4(·)—in fact, after a constant is added in line 18 it is an input of the
subsequent call of G4(·) in line 20 and only of this call. For each pair of anterior
external informers added in line 9 of Algorithm 3.4 there is exactly one call of G4(·)
in line 13 of Algorithm 3.5 in which one of the two anterior external informers is
an input. Moreover, for each pair of posterior external informers added in line 10
of Algorithm 3.4 there is exactly one call of G4(·) in line 15 of Algorithm 3.5 in
which one of the two posterior external informers is an input. Finally, for each pair
of internal informers added in line 10 of Algorithm 3.3 there is exactly one call of
G4(·) in lines 13 and 15 of Algorithm 3.5 in which one of the internal informers is
an input. Thus, the informers have a degree of at most three and the constants a
degree of at most two in Gϕ. ut

i odd even

j odd even odd even

pos(lr,k) 0 1 0 1 0 1 0 1

w δi
k,1(v) δ

i
k,2(v) η

i
k,2(v) η

i
k,1(v) δ

i
k,2(v) δ

i
k,1(v) η

i
k,1(v) η

i
k,2(v)

Table 3.2: Node φ i
j,1(v) is adjacent to external informer w.

41

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

Lemma 3.5.16. Let P ∈ P (Vϕ) and κ := cP(v). Then the following conditions hold:

i) Let w ∈ D(ϕ) and lw
r, j ∈ ϕ(w) for 1 ≤ r ≤ nw, 1 ≤ j ≤ mw

r be a literal for which
var(lw

r, j) = v. Then the following conditions are satisfied:

a) Suppose that Tϕ(v) is flat in P. Then cP(δ
2r−1
j,1 (w)) = cP(δ2r

j,1(w)) = κ and

cP(δ
2r−1
j,2 (w)) = cP(δ2r

j,2(w)) = κ.

b) Suppose that Bϕ(v) is flat in P. Then cP(η
2r−1
j,1 (w)) = cP(η2r

j,1(w)) = κ and

cP(η
2r−1
j,2 (w)) = cP(η2r

j,2(w)) = κ.

ii) Suppose that Fϕ(v) is awaiting in P. Then the following equations hold:

a) cP(β i
5(v)) = κ and cP(β i

3(v)) = cP(β i
4(v)) = κ for all 1≤ i ≤ 2nv .

b) cP(γi
j,1(v)) = κ and cP(γi

j,2(v)) = κ for all 1≤ i ≤ 2nv , 1≤ j ≤ 2mv
p+1 where

p := pr+2nv (i).

c) cP(φ i
j,1(v)) = κ and cP(φ i

j,2(v)) = κ for all 1≤ i ≤ 2nv , 1≤ j ≤ 2mv
i + 1.

d) cP(c
2r−κ
1 (v)) = cP(c

2r−κ
2 (v)) = κ and cP(c

2r−κ
1 (v)) = cP(c

2r−κ
2 (v)) = κ for all

1≤ r ≤ nv .

Proof. i) a) The set Tϕ(v) consists of the anterior external informers of the nodes
z ∈ D(ϕ) for which z ∈ Nodes(ϕ(v)) and are added in line 9 of Algorithm 3.4.
Recall that the nodes of Tϕ(v) and the edges between them form a path
in Fϕ(v), i.e., the throat of v. The nodes δ2r−1

j,1 (w) and δ2r
j,1(w) have even

distance and δ2r−1
j,2 (w) and δ2r

j,2(w) odd distance from v along edges of the
throat. All edges of the throat are in the cut in P due to the emptiness of
Tϕ(v). Thus, the claim follows.

b) The set Bϕ(v) is made up by the posterior external informers of the nodes z ∈
D(ϕ) for which z ∈ Nodes(ϕ(v)) and are added in line 10 of Algorithm 3.4.
The nodes of Bϕ(v) and the edges between them form a path in Fϕ(v), i.e.,
the braid of v. The nodes η2r−1

j,1 (w) and η2r
j,1(w) have odd distance and

η2r−1
j,2 (w) and η2r

j,2(w) even distance from v along edges of the braid. All
edges of the braid are in the cut in P due to the emptiness of Bϕ(v). Thus,
the claim follows.

ii) a) Since Fϕ(v) is awaiting, Tϕ(v) is flat. Due to (i)(a) and since the unique
edge incident to β1

5 (v) connecting β1
5 (v) with a node of Tϕ(v) is in the

cut in awaiting partitions, we have cP(β1
5 (v)) = κ. Moreover, the edges

{β i
3(v),β

i
5(v)} and {β i

4(v),β
i
5(v)} are in the cut in P for all 1 ≤ i ≤ 2nv

which implies cP(β i
4(v)) = cP(β i

3(v)) 6= cP(β i
5(v)) for all 1≤ i ≤ 2nv . Finally,

since node β i+1
5 (v) is adjacent to β i

3(v) for all 1 ≤ i < 2nv and the edge
between them is in the cut since Fϕ(v) is awaiting in P, we get cP(β

i+1
5 (v)) 6=

cP(β i
3(v)).

42

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

b) The internal informers of v are added in line 10 of Algorithm 3.3. As the
subgraphs induced by the nodes of Tϕ(v), the internal informers are added
via the function G2(·) and form the paths pϕi (v) for 1 ≤ i ≤ 2nv in Fϕ(v).
Let 1≤ i ≤ 2nv and 1≤ j ≤ 2mv

p(i)+ 1. Then, according to the definition of

the function G2(·), node γi
j,1(v) has even and node γi

j,2(v) odd distance from

β i
4(v) along edges of the path pϕi (v). Since all edges on the path pϕi (v) are

in the cut in awaiting partitions and cP(β i
4(v)) = κ due to (ii)(a), the claim

follows.

c) Analogously to (ii)(b) it follows that the delayers added in lines 13 and
15 and 20 of Algorithm 3.5 form paths in Fϕ(v). Let 1 ≤ i ≤ 2nv and
1≤ j ≤ 2mv

i + 1. Then node φ i
j,1(v) has even and node φ i

j,2(v) odd distance

from γi
1,1(v) along edges of its corresponding path. Since all edges on the

path are in the cut in awaiting partitions and cP(γi
1,1(v)) = κ due to (ii)(b),

the claim follows.

d) Since Fϕ(v) is awaiting in P, it is also straight. Therefore, cP(c2r
1 (v)) =

cP(c
2r−1
2 (v)) = 1 and cP(c

2r−1
1 (v)) = cP(c2r

2 (v)) = 0 for all 1≤ r ≤ nv . ut

Lemma 3.5.17. Let 1≤ r ≤ nv , 1≤ j ≤ mv
r , w := nod(l v

r, j), P ∈ P (Vϕ) such that Fϕ(v)
is awaiting in P and κ := cP(v). Then the following conditions are satisfied:

i) Suppose that Tϕ(w) is flat in P. Then the edge between φ2r−κ
2 j−1,1(v) and the unique

node of Tϕ(w) it is adjacent to is in the cut if and only if valP(l v
r, j) = false.

ii) Suppose that Bϕ(w) is flat in P. Then the edge between φ2r−κ
2 j,1 (v) and the unique

node of Bϕ(w) it is adjacent to is in the cut if and only if valP(l v
r, j) = false.

Proof. Let π := 2r −κ, σ := 2 j and τ := cP(w). Since Fϕ(v) is awaiting in P, we have
cP(φπσ−1,1(v)) = cP(φπσ,1(v)) = κ due to Lemma 3.5.16 (ii)(c).

i) The emptiness of Tϕ(w) in P implies cP(δπj,1(v)) = τ and cP(δπj,2(v)) = τ due to
Lemma 3.5.16 (i)(a). Since σ − 1 is odd and π is odd if and only if κ = 0, it
follows by Observation 6 that φπσ−1,1(v) is adjacent to δπj,1(v) if κ= pos(l v

r, j) and
to δπj,2(v) if κ 6= pos(l v

r, j).

Assume first that valP(l v
r, j) = false. Then τ = 0 if pos(l v

r, j) = 1 and τ = 1 otherwise,
i.e., pos(l v

r, j) 6= τ. Thus, if φπσ−1,1 is adjacent to δπj,1(v) then κ = pos(l v
r, j) 6= τ =

cP(δπj,1(v)) and therefore cP(δπj,1(v)) = κ and if it is adjacent to δπj,2(v) then
κ 6= pos(l v

r, j) 6= τ 6= cP(δπj,2(v)) which implies cP(δπj,2(v)) = κ.

Now assume that valP(l v
r, j) = true. Then τ = 0 if pos(l v

r, j) = 0 and τ = 1 otherwise,
i.e., pos(l v

r, j) = τ. Hence, if φπσ−1,1 is adjacent to δπj,1(v) then κ= pos(l v
r, j) = τ=

cP(δπj,1(v)) and therefore cP(δπj,1(v)) = κ and if it is adjacent to δπj,2(v) then
κ 6= pos(l v

r, j) = τ 6= cP(δπj,2(v)) which implies cP(δπj,2(v)) = κ.

43

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

ii) The emptiness of Bϕ(w) in P implies cP(ηπj,1(v)) = τ and cP(ηπj,2(v)) = τ due to
Lemma 3.5.16 (i)(b). Since σ is even and π is odd if and only if κ= 0, it follows
by Observation 6 that φπσ,1(v) is adjacent to ηπj,1(v) if κ 6= pos(l v

r, j) and to ηπj,2(v)
if κ= pos(l v

r, j).

Assume first that valP(l v
r, j) = false. Then τ = 0 if pos(l v

r, j) = 1 and τ = 1 otherwise,
i.e., pos(l v

r, j) 6= τ. Thus, if φπσ,1 is adjacent to ηπj,2(v) then κ = pos(l v
r, j) 6= τ =

cP(ηπj,2(v)) and therefore cP(ηπj,2(v)) = κ and if it is adjacent to ηπj,1(v) then
κ 6= pos(l v

r, j) 6= τ 6= cP(ηπj,1(v)) which implies cP(ηπj,1(v)) = κ.

Now assume that valP(l v
r, j) = true. Then τ = 0 if pos(l v

r, j) = 0 and τ = 1 otherwise,
i.e., pos(l v

r, j) = τ. Hence, if φπσ,1 is adjacent to ηπj,2(v) then κ = pos(l v
r, j) = τ =

cP(ηπj,2(v)) and therefore cP(ηπj,2(v)) = κ and if it is adjacent to ηπj,1(v) then
κ 6= pos(l v

r, j) = τ 6= cP(ηπj,1(v)) which implies cP(ηπj,1(v)) = κ.

Lemma 3.5.18. Let P0 ∈ P (Vϕ) such that Fϕ(v) is canonical in P0, w ∈ Rϕ(v) and
s := (w1, . . . , wq) for q ∈ N, wi ∈ Vϕ for 1≤ i ≤ q be a final sequence starting at (G, Pϕ0).
Then the following conditions are satisfied:

i) Node w is unhappy in P0 if and only if there is an index 1 ≤ i ≤ 2nv + 1 such that
w = nϕv (P0, i).

ii) Suppose that w = w1. Then Fϕ(v) is canonical in P1 and the following properties are
satisfied for all 1≤ i ≤ 2nv + 1 for which w is a node of the cycle c yϕv (i):

a) If w 6= v then dϕv (P1)< dϕv (P0).

b) If w = v then dϕv (P1)> dϕv (P0).

iii) Suppose that w is unhappy in P0. Then there is an index 1≤ i ≤ q such that w = wi .

Proof. The following cases for w ∈ Rϕ(v) are possible—see Figure 3.11 and Figure 3.12:

1) w = α2(v).

2) w = β i
j(v) for any 1≤ i ≤ 2nv , 1≤ j ≤ 4.

3) w = γi
j,k(v) for any i, j, k.

4) w = δi
j,k(z) for any i, j, k and z ∈ D(ϕ) such that nod(lz

i, j) = v.

5) w = ηi
j,k(z) for any i, j, k and z ∈ D(ϕ) such that nod(lz

i, j) = v.

6) w = v.

In each of the above cases node w is of Type I. Let 1 ≤ i ≤ 2nv + 1 be such that w is a
node of the cycle c yϕv (i) and x ∈ Bϕ(v) be the unique node for which {x , v} ∈ Eϕ.

44

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

i) Since w is of Type I, it is according to Observation 2 unhappy if and only if its
heaviest edge is not in the cut. In the following, we show that its heaviest edge
{HGϕ(w), w} is not in the cut in P0 if and only if there is an index 1≤ i ≤ 2nv + 1
such that w = nϕv (P0, i) which implies the claim.

In the cases (1)–(4) and (6)—for an orientation, see Figure 3.11 and Figure 3.12—
we have disϕv (HGϕ(w), i)> disϕv (w, i) and therefore w = nϕv (P0, i) by definition of
the function nϕv (·) if and only if {HGϕ(w), w} is not in the cut. Now we show the
claim for case (5). If w = x then, also by definition of nϕv (·), we have w = nϕv (P0, i)
if and only if {HGϕ(w), w} is not in the cut. And if w ∈ Bϕ(v) \ {x} then we
again have disϕv (HGϕ(w), i)> disϕv (w, i) and therefore w = nϕv (P0, i) if and only if
{HGϕ(w), w} is not in the cut.

ii) Since w is unhappy in P0, we have w = nϕv (P0, i) for some 1≤ i ≤ 2nv+1 according
to (i). We prove the claim by considering the possible cases for w ∈ Rϕ(v):

• Cases (1), (3), (4), w = β i
j (v) for 1≤ i ≤ 2nv , j ∈ {1, 3, 4} or w = ηi

j,k(z) for
any i, j, k and z ∈ D(ϕ) such that nod(lz

i, j) = v but w 6= x:
Since w is of Type I and unhappy in P0, its heaviest edge e1 is not in the cut
in P0. Since Fϕ(v) is canonical in P0, the lighter edge e2 of the two heavy
edges incident to w is in the cut in P0. Therefore, after the flip of w, the edge
e1 is in the cut and e2 not. Both e1 and e2 are edges of spϕv (i) which implies
that Fϕ(v) is canonical in P1. Since the node adjacent to w via e2 has a lower
distance from v along edges of spϕv (i), we get dϕv (P1)< dϕv (P0).

• Case w = β i
2(v) for any 1≤ i ≤ 2nv:

Since w is of Type I and unhappy in P0, its heaviest edge e1 is not in the cut in
P0. Since Fϕ(v) is canonical in P0, the two non-heaviest edges e2, e3 incident
to w are in the cut in P0. Thus, after the flip of w, edge e1 is in the cut and
e2 and e3 are not in the cut. The edges e2 and e3 are edges of spϕv (i) and
spϕv (i + 1). However, there is no path spϕv (j) for 1 ≤ j ≤ 2nv + 1 such that
both e2 and e3 are edges of spϕv (j). Thus, Fϕ(v) is canonical in P1. Moreover,
since the nodes adjacent to w via e2 and e3 have a lower distance to v with
respect to their corresponding path spϕv (j) for 1 ≤ j ≤ 2nv + 1 than w, we
get dϕv (P1)< dϕv (P0).

• Case w = x:
Since w is unhappy in P0, the heaviest edge e1 = {w, v} of w is not in the
cut in P0. Since Fϕ(v) is canonical in P0, the unique edge e2 = {w, w′} for
w′ ∈ Bϕ(w) \ {v} is in the cut in P0. Thus, after the flip of w, edge e1 is
in the cut and e2 is not. The edges e1 and e2 are both edges of spϕv (i) for
1 ≤ i ≤ 2nv + 1. Thus, Fϕ(v) is canonical in P1. Moreover, w′ has a lower
distance from v along the path spϕv (i) than w which implies dϕv (P1)< dϕv (P0).

• Case (6), i.e., w = v:
Since w is unhappy in P0, the heaviest edge e1 of w is not in the cut. Since
Fϕ(v) is canonical in P0, the edge e2 = (w, x) is in the cut. Thus, after the

45

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

flip of w, edge e1 is in the cut and e2 is not. The edges e1 and e2 are edges
of spϕv (i). Thus, Fϕ(v) is canonical in P1. Finally, the distance of x from v
along edges of spϕv (i) is strictly positive which implies dϕv (P1)> dϕv (P0) due
to dϕv (P0) = 0.

iii) Let 1 ≤ i ≤ 2nv + 1 be an index such that w = nϕv (P, i)—from (i) we know that
there is such an index. Since Fϕ(v) is canonical in P0, all edges of the cycle c yϕv (i)
unequal to the heaviest edge incident to w are in the cut in P0. The node HGϕ(v)
is also of Type I—see Figure 3.11 and Figure 3.12—and w has no influence on
it. Thus, HGϕ(v) is happy in P0. For the remaining nodes of the cycle c yϕv (i)
Observation 3.5.8 (vi) implies that they are happy in P0. Moreover, the nodes of
the said cycle unequal to w remain happy as long as no node of the cycle flips.
Then, since s is final, there is a flip of w in s. ut

Lemma 3.5.19. Let Q0 ∈ P (Vϕ) such that Fϕ(v) is canonical in Q0 and let s = (w1,. . . ,wq)
starting at (Gϕ,Q0) for q ∈ N and wi ∈ Vϕ for all 1≤ i ≤ q be an improving sequence of
flips. Then Fϕ(v) is canonical in Q i for all 0≤ i ≤ q.

Proof. Since Fϕ(v) is canonical in Q0, it is also straight in Q0 by definition. For every
1≤ i ≤ 2nv , node c i

1(v) and c i
2(v) are of Type I, HGϕ(c i

1(v)) = c i
2(v), HGϕ(c i

2(v)) = c i
1(v)

and cQ0
(c i

1(v)) 6= cQ0
(c i

2(v)). Thus, node c i
1(v) and c i

2(v) for all 1 ≤ i ≤ 2nv are happy
in partition Q j for all 0 ≤ j ≤ q. Consequently, no constant node c i

1(v), c i
2(v) for

1≤ i ≤ 2nv , v ∈ D(ϕ) flips in s and therefore Fϕ(v) is straight in Q j for all 0≤ j ≤ q.
Now we show by induction on i that Fϕ(v) is canonical in Q i for all 0 ≤ i ≤ q. As

induction basis, note that it is canonical in Q0. Now assume as induction hypothesis that
Fϕ(v) is canonical in Q i for an arbitrary 0≤ i < q. Let x be a node of Fϕ(v) \ {HG(v)}
such that x 6= nϕv (Q i , j) for all 1 ≤ j ≤ 2nv + 1. Then all heavy edges of x are in
the cut in Q i since Fϕ(v) is canonical in Q i and therefore x is happy in Q i due to
Observation 3.5.8 (vi). Thus, for each 1 ≤ i ≤ q there is a 1 ≤ k ≤ 2nv + 1 such that
wi = nϕv (Q i , k).

Now we consider the possible cases for wi and show for each of them that Fϕ(v)
is canonical in Q i+1. If w j ∈ Rϕ(v) then Lemma 3.5.18 (ii) implies the claim for this
case. Now consider the case that wi = α1(v). Then, exactly one of the two edges
{α1(v),α2(v)} and e := {α1(v), TGϕ(α1(v))} is in the cut in Q i . Thus, after the flip of wi
there is still exactly one of them in the cut which implies the claim for this case. Now we
consider the case that wi = φ

j
k,m(v) for any j, k, m. Then exactly one of the two heavy

edges incident to wi is in the cut in Q i. Thus, in Q i+1 there is still exactly one of them
in the cut whereafter the claim follows for this case. Finally, we consider the case that
wi = β

j
5(v) for an arbitrary 1 ≤ j ≤ 2nv—for an overview see Figure 3.11. Since wi

is of type III, it is only unhappy if at least two edges incident to it are not in the cut.
If the edges {β j

3,β j
5} and {β j

4,β j
5} are not in the cut in Q i then the remaining edge e

incident to β j
5(v) is in the cut in Q i since Fϕ(v) is canonical in Q i . Thus, after the flip of

wi the edges {β j
3,β j

5} and {β j
4,β j

5} are in the cut and e is not in the cut anymore, which

46

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

implies that Fϕ(v) is still canonical. If e is not in the cut in Q i then the remaining edges
incident to wi are in the cut since Fϕ(v) is canonical in Q i , but then wi is happy, which
is a contradiction. Thus, this case is not possible. ut

Lemma 3.5.20. Let w ∈ D(ϕ) with v 6= w, Q0 ∈ P (Vϕ) such that Fϕ(x) is canonical in
Q0 for all x ∈ D(ϕ) and assume {v}<Q0

{w}. Then {v}<Q0
Tϕ(w).

Proof. Suppose for the sake of contradiction that there is a sequence s = (w1, . . . , wq) for
wi ∈ Vϕ, 1≤ i ≤ q, q ∈ N starting at (Gϕ,Q0) such that there is a node x1 ∈ Tϕ(w) that
flips prior to the first flip of v in s, i.e., there is an index 1 ≤ j ≤ q such that x1 = w j
and wi 6= v for all 1≤ i ≤ j. Let t := (x1, x2, . . . , xk) for k ∈ N where xk = w and x i for
1< i ≤ k be the unique node on which x i−1 has influence in Gϕ—see Figure 3.12. Since
Fϕ(w) is canonical in Q0 it is also canonical in Q j−1 due to Lemma 3.5.19. Therefore,

the sequence s j−1
1 ◦ t started at (Gϕ,Q0) is improving which contradicts the assumption

{v}<Q0
{w}. Thus, {v}<Q0

Tϕ(w). ut

After characterizing basic properties of the filters, we are ready to formulate the main
tool that we use in the enforcing technique. The statement of the lemma makes use of
notations introduced in the first and in the second part of the definitions for the filter
and the proof also makes use of the definitions of the Basic Subgraphs.

Lemma 3.5.21 (Filtering Lemma). Let G = (V, E) be a graph containing only nodes of
Type I and III, P ∈ P (V) and ϕ : VI → Φ(VI) be such that for each w ∈ D(ϕ) node w is of
degree at most three, w has no influence on HG(w) and w is happy in (G, P). Then one can
compute in time O(poly(|V |, |ϕ|)) a graph Gϕ = (Vϕ, Eϕ) and a partition Q0 ∈ P (Vϕ)
with the following properties:

FL1) Gϕ is of maximum degree four.

FL2) V ⊂ Vϕ.

FL3) Each w /∈ D(ϕ) is influenced in Gϕ by the same nodes via edges of the same weights
as in G.

FL4) Q0|V = P.

FL5) For each final sequence s = (w1, . . . , wq) starting at (Gϕ,Q0) for q ∈ N and w j ∈ Vϕ

for all 1≤ j ≤ q and each index 0≤ i ≤ q, for which si
1 does not contain two flips of

HG(w) for any w ∈ D(ϕ) without an intermediate flip of w, the following properties
hold for all v ∈ D(ϕ) with u := HG(v):

i) If cQ i
(u) 6= cQ i

(v) then {u}<Q i
{v}.

ii) Suppose cQ i
(u) = cQ i

(v).

a) If

• no node of Nodes(ϕ(v)) flips in si
1 after the last flip of u

• valQ i
(ϕ(v)) = false

47

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

• {v}<Q i
{u}

then Nodes(ϕ(v))<Q i
{v}.

b) If

• valQ i
(ϕ(v)) = true

• {v}<Q i
Nodes(ϕ(v))∪ {u}

then there is a flip of v in sq
i+1.

Comment Recall that the aim of the extension of the graph G by further nodes and
edges is as follows. If a node v ∈ D(ϕ) is happy in a partition of G then it is not
supposed to flip prior to the first flip of u := HG(v) in any sequence starting at the
corresponding partition of the extended graph Gϕ. This property is encapsulated in
Lemma 3.5.21 (FL5)(i). On the other hand, for the case that v is unhappy in a partition
of G, a flip of v is supposed to depend in the extended graph on the satisfaction of the
formula ϕ(v) with respect to the colors of the nodes of Nodes(ϕ(v)). The case in which
ϕ(v) is not satisfied is encapsulated in Lemma 3.5.21 (FL5)(ii)(a) and the opposite case
in Lemma 3.5.21 (FL5)(ii)(b).

Proof. We let Gϕ := en f5(G,ϕ)—for an orientation, see Figure 3.11 and Figure 3.12.
The graph Gϕ is computable in time O(poly(|V |, |ϕ|)) for the following two reasons.
First, each operation performed in en f5(G,ϕ)—including the operations performed
during the execution of the functions en f1(G,ϕ), . . . , en f4(G,ϕ) called by en f5(G,ϕ)—
that substitutes an edge by a subgraph, namely the functions G4(·), . . . , G1(·), require
constant time—see Definition 3.5.1–Definition 3.5.5. Second, the number of passes of
each for-loop of en f5(G,ϕ), . . . , en f1(G,ϕ) can be upper bounded linearly in either |V |
or |ϕ|.

Since each node v ∈ D(ϕ) has by assumption a degree of at most three, the property
(FL1) follows from Lemma 3.5.15. The function en f5(·) substitutes no nodes which
implies (FL2). Moreover, it only substitutes the heaviest edges of the nodes of D(ϕ). By
assumption, no node v ∈ D(ϕ) has influence on HG(v) in G. Therefore, we get (FL3).

The partition Q0 is computed from P in the following way. We choose cQ0
(w) = cP(w)

for all w ∈ V . This implies (FL4). The colors of the remaining nodes are chosen such
that for all v ∈ D(ϕ) all heavy edges of Fϕ(v) but one arbitrary edge of the braid of v
are in the cut in Q0. In the following, we prove (FL5).

FL5i) Since Fϕ(v) is canonical in Q0, it is also canonical in Q i due to Lemma 3.5.19.
Moreover, due to cQ i

(u) 6= cQ i
(v) it follows that Fϕ(v) is enterable in Q i. Conse-

quently, the following properties are satisfied:

E1) The heaviest edge of v is in the cut in Q0.

E2) The edges {u,α1(v)} and {α1(v),α2(v)} are in the cut in Q0.

E3) All heavy edges of the nodes of Hϕ(v) \ {u, v,α1(v)} are in the cut in Q0.

48

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

Since v is of Type I, property (E1) implies that node v is happy in Q0. Property
(E2) implies that α1(v) is happy due to Observation 3.5.8 (vi). Finally, (E3)
implies the happiness for the remaining nodes of Hϕ(v) \ {u} due to, again,
Observation 3.5.8 (vi). Thus, no node of Hϕ(v) \ {u}, in particular node v, flips in
sq
i+1 prior to the first flip of u.

FL5ii) Let κ := cQ0
(v). Since v is happy in (G, P) by assumption, (FL4) implies cQ0

(u) = κ.
Then, (FL5)(i) implies that there is a flip of u in si

1. Let 1≤ k ≤ i be the greatest
index for which wk = u.

a) Suppose that no node of Nodes(ϕ(v)) flips in si
k+1, valQ i

(ϕ(v)) = false and
{v}<Q i

{u}. Since Fϕ(v) is canonical in Q0 by assumption and s is improving,
Lemma 3.5.19 implies that Fϕ(v) is canonical in Qk. Then wk = u implies
that Fϕ(v) is just entered in Qk whereafter we get the following properties
for all 1 ≤ r ≤ nv, 1 ≤ j ≤ 2mv

r + 1—for an overview of the corresponding
nodes see Figure 3.12:

JE1) cQk
(φ2r−1

j,1 (v)) = cQk
(φ2r

j,1(v)) = κ and cQk
(φ2r−1

j,2 (v)) = cQk
(φ2r

j,2(v)) = κ
due to Lemma 3.5.16 (ii)(c).

JE2) cQk
(γ

p−
2nv (2r−1)

j,2 (v)) = cQk
(γ

p−
2nv (2r)

j,2 (v)) = κ due to Lemma 3.5.16 (ii)(b).

Moreover, for all 1≤ r ≤ nv we have

JE3) cQk
(c2r−κ

1 (v)) = κ due to Lemma 3.5.16 (ii)(d).

In the rest of the proof, we make use of a set M ⊂ Fϕ(v) which is determined
as follows. For each 1≤ j ≤ 2nv we name a path whose nodes are in M . The
path is a subpath of spϕv (j) beginning at some node z j := φ j

i(j),1(v) for an

index 1≤ i(j)≤ 2mv
r(j) that is specified later and ends at v. We let M− := M \

⋃

j{z j}. The purpose of M is to show that Nodes(ϕ(v))<Qk
M which directly

implies Nodes(ϕ(v)) <Qk
{v} due to v ∈ M . Then, since by assumption no

node of Nodes(ϕ(v)) flips in si
k+1, we also get Nodes(ϕ(v)) <Q i

{v} as
postulated by the theorem.

To show Nodes(ϕ(v))<Qk
M we first prove some properties of the nodes in

M . In Qk all heavy edges between the nodes of M are in the cut since Fϕ(v)
is just entered in Qk. Thus, all nodes of M− are happy in Qk according to
Observation 3.5.8 (vi) and remain happy as long as no node of M flips. Node
z j for any j is of Type II and is therefore happy according to Observation 2 if
the three non-heaviest edges incident to z j are in the cut. In Qk two of these

three edges are in the cut for each z j: the heavy edge {z j ,φ
j
i(j),2(v)} according

to (JE1) and the edge between z j and the internal informer adjacent to z j
according to (JE1) and (JE2).

Now we specify the indices i(j) and consider the happiness of the correspond-
ing nodes z j . The specification and consideration of the happiness is divided
into two parts.

49

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

In the first part, we specify i(j) for the indices 1 ≤ j ≤ 2nv for which
j = 2r(j)−κ. For these j, we choose i(j) := 2mv

r(j)+ 1. Then z j is adjacent

to the constant c j
1—see line 20 of Algorithm 3.5—and the edge between them

is in the cut due to (JE1) and (JE3). Thus, all non-heaviest edges incident to
z j are in the cut in Qk which implies that it is happy. The constant c j

1 does not
flip in s since Fϕ(v) is canonical and therefore straight in Qb for all 0≤ b ≤ q.
The other two nodes adjacent to z j via non-heaviest edges incident to zi are
in M− and remain therefore happy as long as no node of M flips. Thus, z j
also remains happy as long as no node of M flips. Consequently, if a node
of M flips in sq

k+1 then the first node of M that flips in sq
k+1 is a node z j for

j 6≡ κ mod 2.

In the second part, we consider the remaining indices 1 ≤ j ≤ 2nv. These
are the indices for which j = 2r(j) − κ. Let 1 ≤ t ≤ mv

r(j) be such that
valQk

(l v
r(j),t) = false—such a literal exists in M v

r(j)(v) since, by assumption,

valQ i
(ϕ(v)) = false and no node of Nodes(ϕ(v)) flips in si

k+1—and let w :=
nod(l v

r(j),t). We choose i(j) := 2t. Let 1 ≤ j ≤ 2nv with j = 2r(j)− κ and

assume that z j is the first node of M that flips in sq
k+1. In the following, we

show that prior to the first flip of z j in sq
k+1 there is a flip of w. Then, it

follows, as required, that Nodes(ϕ(v))<Qk
M .

Since Fϕ(v) is just entered in Qk the edge between z j and the node y ′j :=

φ
j
i(j)−1,2(v) adjacent to it via the heaviest edge incident to z j is in the cut,

and the edge between y ′j and the node y j := φ j
i(j)−1,1(v) adjacent to y ′j via

the heaviest edge incident to y ′j is also in the cut in Qk. Node y ′j is of Type I.

Thus, both z j and y ′j are happy in sq
k+1 as long as y j does not flip. Moreover,

it follows that both y j and y ′j flip before z j becomes unhappy in sq
k+1.

Now we show that between the flip of y j and the flip of z j there is a flip of w.
Node y j is of Type II and is therefore happy if the three non-heaviest edges
incident to y j are in the cut. Due to (JE1) and (JE2) the edge {y j , y ′j} is in
the cut in Qk and the edge between y j and the internal informer adjacent to
y j is also in the cut. A further node adjacent y j to via a non-heaviest edge is
an anterior external informer p1 ∈ Tϕ(w). Since Fϕ(w) is canonical in Q0, it
is also canonical in Qb for all 0≤ b ≤ q due to Lemma 3.5.19. Thus, on the
path from p1 to w via the edges of the throat of w there is at most one edge
not in the cut in Qb for all 0≤ b ≤ q. Let k+ 1< d ≤ q be such that wd = y j
and wd ′ 6= y j for all k+1< d ′ < d. Assume for the sake of contradiction that
p1 has in Qd−1 the same color as in the partition Q′ that arises from Qd−1
by choosing the colors of the nodes of Tϕ(w) \ {w} such that Tϕ(w) is flat.
Then the edge {y j , p1} is in the cut in Q′ according to Lemma 3.5.17 (i). But
then y j is happy in Q′ since the three non-heaviest edges incident to it are in
the cut, which is a contradiction. Thus, p1 has in Qd−1 the opposite color as
in Q′.

50

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

Consequently, Tϕ(w) is not flat in Qd−1. But then Bϕ(w) is flat in Qd−1,
which implies that the edge between z j and the posterior external informer
p2 adjacent to z j is in the cut in Qd−1 due to Lemma 3.5.17 (ii). Therefore,
the three non-heaviest edges incident to z j are in the cut in Qd−1. Since
the two non-heaviest edges incident to z j unequal to {z j , p2} are in the cut
as long as no node of M flips, it follows that Bϕ(w) is not flat when z j
flips. By definition of the potential function dϕw (·), a canonical partition in
which Bϕ(w) is not flat has a higher potential than a canonical partition in
which Tϕ(w) is not flat. Then, since Tϕ(w) is not flat in Q j−1, it follows by
Lemma 3.5.18 (ii) that there is a flip of w between the flip of y j and the flip
of z j .

b) Suppose that valQ i
(ϕ(v)) = true and {v} <Q i

Nodes(ϕ(v))∪ {u}. Let λ be
the greatest index for i ≤ λ ≤ q such that w j 6= v for all i < j ≤ λ, π be
an index for which i ≤ π ≤ λ and 1 ≤ r ≤ nv be such that for monomial
Mr of ϕ(v) we have valQ i

(Mr) = true—the formula ϕ(v) contains such a
monomial since valQ i

(ϕ(v)) = true—and let ρ := 2r −κ.

We first show for any 1 ≤ σ ≤ 2nv + 1 a property of the σ-th upper
path and one of the σ-th lower path. Since Fϕ(v) is canonical in Qπ due
to Lemma 3.5.19, the nodes of the σ-th upper path, in particular node
nϕv (Qπ,σ), have their unnatural colors with respect to Qπ. Moreover, all
edges of the σ-th upper path are in the cut in Qπ. On the other hand, all
nodes of the σ-th lower path have their natural values with respect to Qπ and
all edges of the σ-th lower path are in the cut in Qπ.

In the following, we distinguish several cases for w ∈ Fϕ(v) \ {u, v}. For all
but the last case, we consider individually the consequences of each of the
following two assumptions:

A1) w = nϕv (Qπ,σ) and {w} <Qπ {t
ϕ
v (Qπ,σ)} for all 1 ≤ σ ≤ 2nv + 1 for

which w is a node of c yϕv (σ).

A2) w is a node of the σ-th lower path with respect to Qπ for all 1 ≤ σ ≤
2nv + 1 for which w is a node of c yϕv (σ).

The above assumptions have the following direct implications that we use
throughout the consideration of the cases:

T1) If (A1) is satisfied then {w} <Qπ {v}, since all edges of the σ-th upper
path with respect to Qπ are in the cut in Qπ.

T2) If (A2) is satisfied then w has its natural color with respect to Qπ.

With the help of these two observations, we show for all but the last of the
considered cases for w ∈ Fϕ(v) \ {u, v} that the following two implications
hold:

F1) Suppose that (A1) is satisfied. Then there is a flip of w in sλπ+1 to its
natural color with respect to Qπ.

51

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

F2) Suppose that (A2) is satisfied. Then {v}<Qπ {w}.

The cases for w are the following:

C1) Case w = α1(v):
(F1): Due to w = nϕv (Qπ,σ) the edge eϕv (Qπ,σ) = {w, tϕv (Qπ,σ)} =
{w, TGϕ(w)} is not in the cut in Qπ. By assumption, node v does not
flip in sπi+1. Moreover, due to the assumption {v} <Q i

{u}, node u does
also not flip in sπi+1. Since cQ i

(u) = cQ i
(v) and w = nϕv (Qπ,σ) has its

unnatural color in Qπ, the edge {u, w} is not in the cut in Qπ, which
implies that w is unhappy in Qπ. Due to the assumption {w} <Qπ
{tϕv (Qπ,σ)} and the property {w} <Qπ {v} following by (T1), node w
remains unhappy as long as it does not flip. Then, since s is final, it
follows that there is a flip of w in sλπ+1.

(F2): Due to (A2) all edges of the braid of v are in the cut in Qπ, which
implies {v}<Qπ {TGϕ(w)} according to Observation 3.5.8 (vi). Then the
assumption {v}<Q i

{u} implies that neither u nor TGϕ(w) flips prior to
the first flip of v in sq

π+1, which in turn implies that w does not flip prior
to the first flip of v in sq

π+1. Thus, {v}<Qπ {w}.

C2) Case w ∈ Rϕ(v) \ {v}:
(F1): Then w is of Type I and its heaviest edge is not in the cut in Qπ.
Thus, Lemma 3.5.18 (iii) implies that there is a flip of w in sλπ+1.

(F2): All nodes of the σ-th lower path with respect to Qπ unequal to
tϕv (Qπ,σ) are happy in Qπ due to Observation 3.5.8 (vi). Moreover, w
is happy since it is of Type I and its heaviest edge is in the cut. Thus, all
nodes of the σ-th lower path remain happy as long as node v does not
flip.

C3) Case w = φσj,2(v) for 1≤ σ ≤ 2nv , 1≤ j ≤ 2mv
r(σ)+ 1:

(F1): Since w is of Type I and it is influenced by tϕv (Qπ,σ), it remains
unhappy as long as neither itself nor tϕv (Qπ,σ) flips. Consequently, the
assumption {w}<Qπ {t

ϕ
v (Qπ,σ)} and (T1) together imply that there is

a flip of w in sλπ+1.

(F2): Since the node that has influence on the Type I node w is a node
of the σ-th lower path and all edges of this path are in the cut in Qπ,
Observation 3.5.8 (vi) implies {v}<Qπ {w}.

C4) Case w = φρ2ω−1,1(v) for 1≤ω≤ mv
r :

Let x be the unique anterior external informer adjacent to w and let y ∈
Nodes(ϕ(v)) such that x ∈ Tϕ(y). By assumption, we have {v}<Q i

{y}
and therefore {v}<Q i

Tϕ(y) according to Lemma 3.5.20. In particular,
we get {v} <Q i

{x} since x ∈ Tϕ(y). Moreover, Tϕ(y) is flat in Q i,
since otherwise there was an unhappy node of Tϕ(y) in Q i which would
contradict {v} <Q i

Tϕ(y). We let Q ∈ P (Vϕ) be the partition arising
from Qπ by choosing the colors of the nodes of Fϕ(v) \ {u, v} such that

52

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

Fϕ(v) is awaiting in Q.
(F1): Since w = nϕv (Qπ,σ), node w has its unnatural color in Qπ. In Q,
node w also has its unnatural color and the edge {w, x} is not in the cut
in Q due to Lemma 3.5.17 (i) which implies that it is also not in the cut
in Qπ. By assumption, we have {w}<Qπ {t

ϕ
v (Qπ,σ)} and {v}<Q i

{y, u}.
Thus, {v} <Q i

Tϕ(y) ∪ {u} according to Lemma 3.5.20 and therefore
{v} <Q i

{x}. Since v does not flip in sπi+1, we get {v} <Qπ {x} which
implies that w remains unhappy as long as it does not flip. Hence, there
is a flip of w in sλπ+1.

(F2): The Type I node z adjacent to w via the heaviest edge incident
to w is on the σ-th lower path and the heaviest edge incident to z is
also on this path. Since all edges of this path are in the cut in Qπ,
Observation 3.5.8 (vi) implies {v}<Qπ {z}. Since w is on the σ-th lower
path, node w has its natural color in Qπ. In Q, node w has its unnatural
color and the edge {w, x} is not in the cut in Q due to Lemma 3.5.17 (i)
which implies that {w, x} is in the cut in Qπ. Then, by the assumption
{v} <Q i

{y} we get {v} <Qπ {x} due to Lemma 3.5.20. Consequently,
the two properties {v}<Qπ {z} and {v}<Qπ {x} together imply for the
Type II node w that {v}<Qπ {w}.

C5) Case w = φρ2mv
r+1,1(v):

(F1): Node w has its unnatural color in Qπ and has therefore the same
color as in the partition Q arising from Qπ by choosing the colors of
the nodes of Fϕ(v) \ {u, v} such that Fϕ(v) is awaiting in Q. According
to Lemma 3.5.16 (ii)(d) the constant cρ1 —which is adjacent to w—has
in Q and therefore also in Qπ the same color as w, i.e., the color κ.
Consequently, since w is of Type II, it is unhappy in Qπ. Then, due to the
assumption {w} <Qπ {t

ϕ
v (Qπ,σ)} and since cρ1 does not flip at all in s,

there is a flip of w in sq
π+1.

(F2): Node w remains happy as long as neither φρ2mv
r ,2(v) nor cρ1 flips.

Since all edges of the σ-th lower path are in the cut in Qπ, we have
{v}<Qπ {φ

ρ
2mv

r ,2(v)} according to Observation 3.5.8 (vi). Then, since w
is of Type II, we get {v}<Qπ {w}.

C6) Case w = φσω,1(v) for any 1 ≤ σ ≤ 2nv + 1, 1 ≤ ω ≤ 2mv
r(σ) + 1

with the assumption that cQπ(γ
p
ω,2) = κ and {v} <Qπ {γ

p
ω,2} for p :=

pr−2mv
r(σ)+1(σ):

(F1): Node w is of Type II and is adjacent to tϕv (Qπ,σ) and γp
ω,2. Both of

them have the color κ in Qπ. Since w has its unnatural color in Qπ, i.e.,
κ, it remains unhappy as long as neither any of these two neighbors nor
w itself flips. However, by assumption, we have {v} <Qπ {t

ϕ
v (Qπ,σ)}

and {v}<Qπ {γ
p
ω,2}. Thus, (T1) implies that there is a flip of w in sλπ+1.

(F2): Since w is of Type II, it remains happy as long as neither γp
ω,2 nor

53

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

the node x adjacent to w via the heaviest edge incident to w flip. Since
x is on the σ-th lower path and all edges of the σ-th lower path are in
the cut in Qπ we have {v}<Qπ {x} according to Observation 3.5.8 (vi).
Then the assumption {v}<Qπ {γ

p
ω,2} implies {v}<Qπ {w}.

C7) Case w = βσ5 (v) for 1≤ σ ≤ 2nv:
(F1): Then the two edges {w,βσ3 (v)} and {w,βσ4 (v)} are not in the cut
which implies that w is unhappy in Qπ. Since both nodes βσ3 (v) and
βσ4 (v) do by assumption not flip prior to the first flip of v in sq

π+1, node
w remains unhappy as long as none of the two nodes flips. Thus, there
is a flip of w in sq

π.

(F2): Node w remains happy as long as neither βσ3 (v) nor βσ4 (v) flips.
Since all edges of the σ-th lower path are in the cut in Qπ for each σ for
which w is a node of the σ-th lower path, we have {v}<Qπ {β

σ
3 (v)} and

{v} <Qπ {β
σ
4 (v)} according to Observation 3.5.8 (vi). Then, since w is

of Type III, we get {v}<Qπ {w}.

Now we consider the last case for w. In it, we prove two properties that are
slightly different compared to (F1) and (F2), respectively. The first property
has the same premise as (F1) but two extra implications. We will denote the
property by (F1*). The second property has the same implication as (F2) but
two extra premises—the two extra premises correspond with the two extra
implications of (F1*). We will denote the second property by (F2*). The
properties are specified within the case which is as follows:

C8) Case w = φρ2ω,1(v) for 1≤ω≤ mv
r :

We let x be the posterior external informer adjacent to w, y ∈ Nodes(ϕ(v))
be such that x ∈ Bϕ(y) and Q ∈ P (Vϕ) be the partition arising from Qπ
by choosing the colors of the nodes of Fϕ(v) \ {u, v} such that Fϕ(v) is
awaiting in Q.

F1*) If (A1) is satisfied then there is an index i < j ≤ λ for which w j = w,
cQ j
(x) = κ and {y}<Q j

{x}:

Proof. Since w is a node of the σ-th upper path, it has its unnatural
in Qπ. Thus, it has the same color in Qπ as in Q, namely κ.

At first we consider the case that e1 := {w, x} is in the cut in Qπ.
The set Tϕ(y) is flat in Qπ since otherwise one of its nodes could
flip, which contradicts the assumption {v} <Q i

{y} according to
Lemma 3.5.20. Consequently, Bϕ(y) is not flat in Qπ since otherwise
e1 is not in the cut according to Lemma 3.5.17 (ii). Thus, there is
exactly one edge e2 on the path t from y to x along nodes of Bϕ(y)
not in the cut. According to Lemma 3.5.18 (i) the node x ′ ∈ Bϕ(y)
whose heaviest edge e2 is not in the cut is unhappy then and can
flip. No other node of Fϕ(y) \ {HG(y)} is unhappy since Fϕ(y) is
canonical in Qπ according to Lemma 3.5.19. Thus, by induction it

54

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

follows that the nodes on the path from x ′ to x flip consecutively.
After their flips, the edge e1 is not in the cut. Since w is of Type II,
it is unhappy then. Let π < π′ ≤ λ be the index for which x = wπ′ .
Then all edges on the path t are in the cut in Qπ′+1 and therefore we
have {y}<Qπ′+1

{x} according to Observation 3.5.8 (vi). Due to the
assumption {v}<Q i

{y} we get {v}<Qπ′+1
{x}. Then the assumption

{w}<Qπ {t
ϕ
v (Qπ,σ)} implies that there is a flip of w in sλπ+1. Due to

(T1), node x does not flip prior to the first flip of w in sλ
π′+1. Hence,

x still has the color κ when w flips. Moreover, since neither y nor x
flip in sλ

π′+1 prior to the first flip of w, the property {y} <Qπ′+1
{x}

implies {y}<Q j
{x} for the index i < j ≤ λ with w j = w.

Now consider the case that e1 is not in the cut in Qπ, i.e., cQπ(x) =
κ. Let Q′ be the partition arising from Qπ by choosing the colors
of the nodes of Bϕ(y) \ {y} such that Bϕ(y) is flat in Q′. Then
Lemma 3.5.17 (ii) implies that e1 is not in the cut in Q′. Consequently,
we have cQ′(x) = cQπ(x). Since Fϕ(y) is according to Lemma 3.5.19
canonical in Qπ, there is at most one edge of t not in the cut. Thus, it
follows that all edges of t are in the cut which implies {y}<Qπ {x}.
Thus, there is a flip of w in sλπ+1. Due to {y} <Qπ {x} and the
assumption {v}<Q i

{y}, node x does not flip prior to the first flip of
w in sλπ+1. Thus, x still has the color κ when w flips. Moreover, since
neither y nor x flip in sλπ+1 prior to the first flip of w, the property
{y}<Qπ {x} implies {y}<Q j

{x} for i < j ≤ λ with w j = w.

F2*) If (A2) is satisfied, cQπ(x) = κ and {y}<Qπ {x} then {v}<Qπ {w}:

Proof. Since w is on the σ-th lower path, it has its natural color,
i.e., κ. Node z adjacent to w via the heaviest edge incident to w
is on the σ-th lower path and all edges of this path are in the cut
in Qπ. Thus, Observation 3.5.8 (vi) implies {v} <Qπ {z}. Then the
properties cQπ(x) = κ and {y}<Qπ {x} together imply {v}<Qπ {w}.

Now we distinguish between the possible cases for w = nϕv (Qπ,σ) if w ∈
Fϕ(v) \ {u, v} and show for each of them that there is an index π < τ < λ
such that the following properties hold:

S1) w = wτ.

S2) {v}<Qτ {w}.

Then, for the node z ∈ Fϕ(v) \ {u, v} adjacent to v via the heaviest edge
incident to v the properties (S1) and (S2) imply that z flips to its natural
color in sλπ+1 and keeps its natural color until v flips. Thus, after the flip
of z there is a flip of v. After the flip of v we get that Fϕ(v) is enterable
as postulated by the lemma—recall that Fϕ(v) is canonical in Qk for all
0≤ k ≤ q according to 3.5.19 and that u does by assumption not flip prior to

55

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

the first flip of v in sq
i+1. The consideration of the cases is divided into four

parts (P1)–(P4):

P1) Case w ∈ B := Bϕ(v)∪ {α1(v),α2(v)} ∪
⋃

1≤ j≤2nv+1{β
j
1,β j

2}:
At first, we consider the case w ∈ Bϕ(v) for which w is adjacent to v.
Then we get {v} <Qπ {w} since all edges of the σ-th lower path are in
the cut and therefore all nodes of the path unequal to w are happy in
Qπ due to Observation 3.5.8 (vi). Then property (F1) of (C2) implies
(S1), whereafter property (F1) implies (S2) for this case.

We show the remaining cases via induction. In particular, the hypothesis
that {w} <Qπ {t

ϕ
v (Qπ,σ)} for all σ for which w is a node of cϕv (σ)

implies due to (F1) of (C2) the property (S1), which in turn implies (S2)
due to (F2) of (C2). Thus, the two properties (S1) and (S2) follow for
all nodes of B by induction.

P2) Case w = φk
i, j(v) or w = γk

i, j(v) for any i, j, k:
The two properties (S1) and (S2) are shown via induction on k. For
the induction basis we consider the case k = ρ and show by induction
on i that the properties (S1) and (S2) hold for w = φρi, j(v) for all i, j
and then, also by induction on i, that the two properties also hold for
w = γρi, j(v) for all i, j, k.

As induction basis, we consider the case w = φρ1,1(v). Then property (S2)
of (P1) and (F1) of (C4) together imply property (S1) for w whereafter
we get (S2) from (F2) of (C4). Then (F1) and (F2) of (C2) imply the
properties (S1) and (S2) also for w = φρ1,2(v). Assume as induction
hypothesis for an arbitrary 1 < i ≤ 2mv

r(ρ) + 1 that for φρi−1,2(v) the
properties (S1) and (S2) hold. If i = 2t − 1 for an index 1≤ t ≤ mv

r(ρ)
then (F1) and (F2) of (C4) imply the properties (S1) and (S2) and if
i = 2t then (F1*) and (F2*) of (C8) imply the properties (S1) and (S2).
Moreover, if i = 2mv

r(ρ) + 1 then the two properties follow from (F1)
and (F2) of (C5). Then, analogously to the case i = 1, (F1) and (F2)
of (C2) imply (S1) and (S2) for φρi,2(v). Consequently, the property
(S2) of φρ2mv

r(ρ)+1,2(v) implies (S1) for γρ1,1(v) according to (F1) of (C2)

whereafter we get (S2) for the same node. Then (C2) implies the two
properties inductively for the remaining nodes γρi, j(v) for any i, j.

Now assume as induction hypothesis that for an arbitrary 1 ≤ k ≤ 2nv

the properties (S1) and (S2) hold for all φk
i, j(v) and γk

i′, j′(v) for all

i, j, i′, j′. We show that the two properties then also hold for all φk′
a,b(v)

and γk′
a′,b′(v) for all a, b, a′, b′ where k′ := (k mod 2nv) + 1. We prove

this statement also by induction on i. As induction basis, we consider
the case w = φk′

1,1(v). Then the induction hypothesis and property (F1)
of (C6) together imply property (S1), which in turn implies (S2) due to
property (F2) of (C6). Then (F1) and (F2) of (C2) imply the properties

56

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

(S1) and (S2) also for w = φk′
1,2(v). Assume as induction hypothesis for

an arbitrary 1 < i ≤ 2mv
r(k′) + 1 that for φk′

i−1,2(v) the conditions (S1)
and (S2) are satisfied. Then the properties (F1) and (F2) of (C6) imply
the properties (S1) and (S2) for φk′

i,1(v). Then, analogously to the case
k = ρ, the properties (F1) and (F2) of (C2) imply the properties (S1)
and (S2) for φk′

i,2(v).

P3) Case w ∈
⋃

1≤i≤2nv{β i
3,β i

4,β i
5}:

Again, we show the two properties (S1) and (S2) by induction on i. For
the induction basis we consider the case i = 2nv. According to (S2)
of (P1) we have {v} <Qπ {β

2nv

2 (v)}. Thus, (F1) of (C2) implies (S1)
for β2nv

3 (v), whereafter (F2) of (C2) implies (S2) for the same node.
Property (F2) of (P2) implies for the node z adjacent to β2nv

4 (v) via the
heaviest edge incident to β2nv

4 (v) that {v} <Qπ {z}. Then (F1) of (C2)
implies (S1) for β2nv

4 (v), whereafter (F2) of (C2) implies (S2) for it.
Then we get property (S1) for β2nv

5 (v) due to (F1) of (C7) whereafter
(F2) of (C7) implies (S2) for it.

As induction hypothesis we assume for an arbitrary 1≤ i < 2nv that the
properties (S1) and (S2) are satisfied for β i+1

5 (v). Then property (S1)
follows for the node β i

3(v) according to (F1) of (C2) whereafter we get
(S2) due to (F2) of (C2). Then, analogously to the induction basis, the
properties (S1) and (S2) follow for the nodes β i

4(v) and β i
5(v).

P4) Case w ∈ Tϕ(v) \ {v}:
If w is adjacent to β1

5 (v) then property (S1) follows from (S2), (P3), and
(F1) of (C2) whereafter (F2) of (C2) implies (S2). For the remaining
cases the hypothesis that (S2) is satisfied for tϕv (Qπ,σ) implies due to
(F1) of (C2) the property (S1) for w whereafter (F2) of (C2) implies
(S2). Thus, by induction the properties (S1) and (S2) follow for all
nodes of Tϕ(v) \ {v}.

This finishes the proof of the Filtering Lemma. ut

3.5.3 Enforcing Pivot-Rules with Combined Subgraphs

Theorem 3.5.22 (Enforcing Theorem). Let C be a Boolean circuit, GC = (V C , EC) be
the graph that constitutes C, n be the number of gates in C, PC be an ordinary partition of
V C , h be a generalized pivot rule in GC which is computable in O(poly(n)) time and t be
the sequence starting at (GC , PC) induced by h. Then one can compute in O(poly(n)) time
a graph Gh = (V h, Eh) with V C ⊆ V h and a partition P0 ∈ P (V h) with P0|V C = PC such
that for each final sequence s = (w1, . . . , wq) starting at (Gh, P0) we get

s|V C = t.

57

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

Proof. For the sake of simplicity, we use the same names for the gates in C and the
nodes that represent the gates in GC—recall that each gate is represented by exactly
one node in the graph that constitutes the circuit. Without loss of generality, we make
the following five assumptions. First, a gate of C is either a NOT-gate with a fan-in
of one and a fan-out of at most two or a NOR-gate with a fan-in of two and a fan-out
of one—this assumption can be made due to Proposition 2.4.3. The NOT-gates are
used to distribute the output of the NOR-gates without violating the condition that all
nodes of the resulting graph have maximum degree four. Second, C contains the gates
g1, g2, . . . , gn for n ∈ N which are topologically sorted such that if gi is input to g j then
i < j. The proof that the following three assumptions can be made without loss of
generality is given after their statement. Third, for any NOR-gate gi of C the inputs of
gi in C are gi−2 =: I1(gi) and gi−1 =: I2(gi), gate gi+1 is the gate whose input is gi , all
three gates gi+1, gi−1 and gi−2 are NOT-gates and the opposite color of gi in PC . Fourth,
for each partition P ∈ P (V C) in which a NOR-node v is the unique unhappy NOR-node
of GC we have h(P) = v. Fifth, for any NOR-node gi ∈ V C and any partition P ∈ P (V C)
we have h(P ′) = gi+1 if and only if h(P) = gi for the partition P ′ ∈ P (V C) arising from
P by flipping gi .

Now we show that the last three of the above assumptions can be made without loss
of generality. For each NOR-gate gi of C we can construct a circuit C ′ from C which
computes the same function as C by iteratively adding NOT-gates and renaming the
nodes as depicted in Figure 3.13. From P we can construct a partition P ′ of the nodes of
the graph GC ′ = (V C ′ , EC ′) that constitutes C ′ by assigning to the nodes g ′i , g ′i+1 and g ′i+6
the color cP(gi) =: cP ′(g ′i+4) and the opposite color to the nodes g ′i+2, g ′i+3 and g ′i+5.
The colors of the remaining NOT-nodes of GC ′ are chosen such that they correspond
to the colors of their corresponding NOT-nodes in GC . From the generalized pivot rule
h we construct a pivot rule h′ in the following way. Let Q′ ∈ P (V C ′) and Q ∈ P (V C)
such that Q′|V C = Q. If h(Q) ∈ V C

not then we let h′(Q′) return the node of V C ′
not that

corresponds to h(Q). On the other hand, if h(Q) = gi for gi ∈ V C
nor then we let h′(Q′)

return a node of V C ′ in the following way. If the NOR-node of V C ′ that corresponds to
gi—for convenience, we let g ′i+4 be this node—is unhappy in Q′ then h′(·) returns g ′i+4,
otherwise it returns the unhappy node of the set {g ′i , . . . , g ′i+6} \ {g

′
i+4} with the highest

index—note that one of the nodes of the set {g ′i , . . . , g ′i+3} is necessarily unhappy if gi is
unhappy in Q but g ′i+4 is happy in Q′. Then a NOR-node of V C ′ is returned by h′(·) if it
is the unique unhappy NOR-node of the given partition and node g ′i+5 is chosen by h′(·)
directly after h′(·) chooses g ′i+4. Since the flips of the added NOT-gates do not occur in
s|V C , the last three assumptions can be made without loss of generality.

The proof in a nutshell We extend the graph GC by extra nodes and edges and name
the initial colors of the added nodes. The purpose of the added nodes is, depending on
the given colors of the nodes of V C , to allow only that node of V C to flip which is chosen
by the generalized pivot rule h. The proof consists of four parts. First, we extend GC

by further nodes and edges and call the hereby arising graph Gh = (V h, Eh). The nodes
and edges added in this step consist of two subsets of nodes and edges. One subset

58

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

(a) Gate gi of circuit
C

(b) Gate g ′i+4 in the extended circuit C ′

corresponds to gate gi in C

Figure 3.13: Adding NOT-gates allows desired numbering and behavior.

constitutes a Boolean circuit Ch whose main purpose is to compute the generalized pivot
rule h. The other one contains nodes and edges which are supposed to hinder that nodes
of V C from flipping which are not chosen by the generalized pivot rule h for the next
flip. Second, we name the colors of the nodes of Gh in the initial partition P0. Third, we
introduce a function ϕ : V h

I → Φ(V
h
I) whose purpose is, beside some technical purposes,

to ensure by means of the Filtering Lemma (i.e., Lemma 3.5.21) that each node that
represents a gate of Ch only switches to its correct color with respect to the colors of its
inputs when its input nodes already have their correct colors with respect to the colors
of their corresponding inputs. The graph and the corresponding partition induced by
the Filtering Lemma will be called Gϕ = (Vϕ, Eϕ) and R0, respectively. Fourth, we show
for all sequences starting at (Gϕ, R0) that the nodes of V C in fact flip in the order that is
induced by h.

1) Extend GC In this part, we add nodes and edges to the graph GC whereby we get
the graph Gh. The description of Gh is divided into three steps. In the first two steps
we add gates to the circuit C and call the resulting circuit C1. In the third step we
substitute edges in the graph G1 that constitutes C1 by further nodes and edges. Let
V C

core be the set of nodes of V C
not without the nodes that represent input nodes of C . For a

partition P ∈ P (V C
core) let P ′ ∈ P (V C) in the following be the partition arising from P

by assigning that color to each input node and to each NOR-node such that it is happy.
In the first step we add a separate Boolean circuit Ch. The circuit Ch takes as input

the bitwise complement of the bit vector encoding the colors of the nodes of V C
core in a

partition P ∈ P (V C
core) and returns the bit vector that differs from the input in that and

only that component of the bit vector which corresponds to the node h(P ′)—if h(P ′) = nil
then each output bit equals its corresponding input bit. For Ch we make the following
five assumptions without loss of generality. First, it only contains NOT-gates with a fan-in
of one and a fan-out of at most two and NOR-gates with a fan-in of two and a fan-out of
one—this assumption can be made according to Proposition 2.4.3. Second, we denote
the gates of Ch by γ1, . . . ,γm where m is the number of gates of Ch and assume that
the gates are topologically sorted such that i < j if γi is input to γ j. Third, similarly to
the circuit C , we assume that the inputs of a NOR-gate γ j are NOT-gates γi−2 =: I1(γi)
and γi−1 =: I2(γi) and each of them has a fan-out of one and as input also a NOT-gate.
Fourth, for each NOR-gate γ j the unique gate for which γ j is an input is the NOT-gate

59

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

γ j+1 and γ j+1 is not an output gate of Ch. Fifth, for each gi ∈ V C
not the gate γi is the

gate of Ch that takes as input the bit of the input assignment that corresponds to gi and
γm−n+i =: τi the corresponding output gate—this assumption can be made since one
can substitute links by two NOT-gates linked in series without changing the output of
the circuit.

In the second step we add the gates with the white fillings as depicted in Figure 3.14
and the corresponding links as shown in the figure. The added gates connect gates of C
with gates of Ch. The gates with the gray filling are gates of C and Ch, they are redrawn
to determine the inputs and outputs of some of the added gates. The gray rectangles are
to indicate the gates whose corresponding nodes in Gh make up the sets of nodes V 0

i , V 1
i

and V 2
i . We call the resulting circuit C1 and let white be the natural color of µκ,ω

i for
all 0≤ κ≤ 1 and all even 0≤ω≤ 2m and black be their unnatural color. For µκ,ω

i , all
0≤ κ≤ 1 and all odd 1≤ω≤ 2m− 1 we let black be their natural color and white be
their unnatural color.

Comment The idea of the gates µκ,ω
i for all i,κ,ω is to control, by means of the Filter-

ing Lemma (i.e., Lemma 3.5.21) and a function ϕ which is specified later, the stepwise
adaption of the correct colors of the nodes representing the gates of Ch with respect
to the colors of their input nodes in ascending order with respect to their topological
order. The insistence on the correction of the gates according to their topological order
is necessary, since if some gate γ j does not take its correct color before the gates it is an
input to take their correct color with respect their inputs, then the output of the circuit
Ch can be updated incompletely, which can lead to a flip of a node that is unequal to
the one indicated by the generalized pivot rule. The gates will perform their aim in
the following way: Suppose that node gi ∈ V C

not flips its color. In the partitions we will
be interested in, the edge {gi ,λ

0,1
i } and edges between the nodes of V 2

i are in the cut,
as well as the edges between the nodes of V 0

i and the ones between the nodes of V 1
i .

Then, after the flip of gi, the nodes in V 2
i change their colors and in exactly one of the

sets V 0
i and V 1

i all nodes take their unnatural colors, as we will see later,—the function
ϕ together with the Filtering Lemma will ensure that all nodes of this set in fact take
their unnatural colors. In particular, if gi flips to black then the nodes in V 0

i take their
unnatural colors, and if it flips to white then the nodes in V 1

i take their unnatural colors.
Let κ ∈ {0,1} be such that the nodes of Vκi flipped to their unnatural colors. Then we
let the nodes µκ,ω

i for all 0≤ω≤ 2m switch back to their natural colors consecutively
in ascending order with respect to ω. However, some of the nodes µκ,ω

i are hindered
via the function ϕ and the Filtering Lemma from flipping back to their natural colors
unless some corresponding gate node γk for 1≤ k ≤ m has its correct color with respect
to the colors of its inputs. Furthermore, each NOT-node of V Ch

is hindered from flipping
to its correct color before for a certain 0 ≤ ω ≤ 2m the nodes µκ,ω

i for all gi ∈ V C
not

have their natural colors. Then the gates of Ch take their correct colors consecutively ac-
cording to their topological order, with a single exception that is due to a technical reason.

In the third step we substitute in the graph G1 that constitutes the circuit C1 the edge

60

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

Figure 3.14: The gates that connect a NOT-gate gi of C1 with gate γi of Ch.

{I(gi), gi} for each gi ∈ V C
not for which gi does not represent an input gate of C with

weight a ∈Q>0 by the nodes and edges presented in Figure 3.15. The nodes in the figure
that have gray circumcircles were already introduced and are redrawn to determine the
edges of the added nodes. The value of ε > 0 is chosen small enough such that the types
of gi and τi remain the same, πi is of Type III and has no influence on τi and ρi has
influence on gi, i.e., the heaviest edge of gi is {ρi , gi}. This finishes the description of
Gh = (V h, Eh). For an overview of the graph Gh with the subgraphs GC and GCh

that
constitute the circuits C and Ch see Figure 3.16.

Figure 3.15: Nodes πi ,θi ,ξi, ρi and incident edges substitute the edge {I(gi), gi} of
G1.

Comment The purpose of the nodes πi ,θi ,ξi and ρi is as follows. In certain partitions
we will be interested in, node πi and ξi will have the same color as gi whereas θi and ρi
have the opposite color. If the function h chooses gi for the next flip in such a partition
and the colors of the nodes that represent the circuit Ch reflect a correct computation
of Ch then τi will have, as we see later, the same color as I(gi) and therefore also the
same color as gi . Then πi flips followed by a sequence of flip of θi ,ξi and ρi whereafter
gi becomes unhappy. On the other hand, if h chooses a node unequal to gi for the
next flip then node τi will have the opposite color of gi, which implies that all five
nodes πi ,θi ,ξi ,ρi and gi are happy. In this way, the added nodes will make the node gi
unhappy if and only if h chooses gi for the next flip. The nodes θi and ξi are only added
to for a technical reason—the above-mentioned behavior could also be achieved if there
was an edge directly connecting πi and ρi .

61

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

Figure 3.16: Overview of the graph Gh.

2) Assign colors to Vh In the following, we name the colors of the nodes of Gh in the
initial solution P0. We let P0|V C = PC and use for the colors of the remaining nodes the
following definition.

Definition 3.5.23. A partition P ∈ P (V h) is called recurring if the following conditions
are satisfied:

R1) cP(gi) = ¬(cP(gi−1)∨ cP(gi−2)) for any gi ∈ V C
nor .

R2) For any gi ∈ V C
not , κ ∈ {0,1} the following conditions are satisfied:

R2i) cP(gi) = cP(ρi) 6= cP(ξi) 6= cP(θi) 6= cP(πi) if h(P|V C
not
) = gi and cP(gi) 6=

cP(ρi) 6= cP(ξi) 6= cP(θi) 6= cP(πi) otherwise.

R2ii) cP(λ
0,2
i) 6= cP(λ

0,3
i) and cP(λ

κ, j
i) 6= cP(I(λ

κ, j
i)) for all 1≤ j ≤ 2.

R2iii) µκ, j
i has its natural color in P for each 0≤ j ≤ 2m.

62

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

R3) cP(γi) 6= cP(I(γi)) for any γi ∈ V Ch

not .

R4) cP(γi) = ¬(cP(I1(γi))∨ cP(I2(γi))) for any γi ∈ V Ch

nor .

For a given partition of the nodes of V C a recurring partition of V h can be computed in
polynomial time by choosing the colors of the nodes of V h\V C consecutively according to
(R2)–(R4). For P0 we choose the colors of the nodes in V h \ V C such that P0 is recurring
where the colors of the nodes of V Ch

that do not represent gates of Ch are chosen such
that P0|V Ch is ordinary—note that the nodes of V Ch

that represent input gates of Ch are
happy in P0 due to (R3).

3) Function ϕ We describe the function ϕ by stating a SAT-formula ϕ(v) for each
v ∈ V h

I . For each v ∈ V h
I for which we do not explicitly state ϕ(v) we let ϕ(v) = ;. The

idea of the function ϕ is to use the Filtering Lemma (i.e., Lemma 3.5.21) to hinder
certain nodes of V h

I from flipping in certain partitions. In the following, we informally
describe the supposed functionality of a considered formula, and how it fits in the overall
plan for the sequences of flips and formally introduce it. For this, we let Q be a recurring
partition of V h and h(Q) = gi for gi ∈ V C

not .

Comment As we will see later, gi is the only unhappy node of V h in Q and will therefore
flip. After that, there will be a flip of λ0,1

i since λ0,1
i has the opposite color of gi in Q

according to (R2ii).
We first consider the case that gi flipped to black. Then λ0,1

i flips to white whereafter
µ0,0

i and λ0,2
i are unhappy. To guarantee that all nodes µ0,ω

i for 0≤ω≤ 2m flip to their
unnatural colors in ascending order in ω, we hinder λ0,2

i from flipping to black unless
µ0,2m

i already has its unnatural color white as opposed to the natural color that it has in
Q according to (R2iii).

Now assume that gi flipped to white. Then, as we will see later, the nodes λ0,1
i , λ0,2

i ,
λ0,3

i and λ1,1
i flips consecutively—note that µ0,0

i does not become unhappy after the flip
of λ0,1

i since λ0,1
i flips to black and µ0,0

i has its natural color, i.e., white. Then, due to the
flip of λ1,1

i to the white color, the nodes µ1,0
i and λ1,2

i are unhappy and we hinder λ1,2
i

from flipping to black unless µ1,2m
i has its unnatural color.

Altogether, we let

ϕ(λκ,2
i) = λ

κ,1
i ∨µ

κ,2m
i for all κ ∈ {0,1}, gi ∈ V C

not . (3.5.24)

Comment Note that if for any κ ∈ {0, 1} node µκ,0
i was unhappy after the flip of λκ,1

i ,
then after the subsequent flip of λκ,2

i the node µκ,0
i is unhappy again and can flip back

to its natural color white. Now assume that cQ(gi) = κ for κ ∈ {0, 1} and that all nodes
of V 2

i flipped exactly once after the flip of gi and all nodes of Vκi flipped at least once.

63

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

In the partitions arising thereby, we want the nodes of Vκi to act as a control of the

consecutive correction of the gate nodes of V Ch
according to their topological order.

To guarantee this, we would like to simply hinder each µκ,2 j
i for γ j ∈ V Ch

not from
flipping back to its natural color if γ j is incorrect with respect to the colors of its input.
Unfortunately, in this case the following problem arises. According to our assumption,
the indices of the NOT-nodes adjacent to a NOR-node γ j ∈ V Ch

are such that its input
nodes are γ j−2 and γ j−1 and the node for which γ j is the input is γ j+1. Assume that
γ j has to switch its color if its input nodes take their correct colors and that γ j+1 has
the opposite color of γ j. If all NOT-gates flip to their correct colors according to their
topological order then there is a flip of γ j between the flip(s) of its input nodes and
the flip of γ j+1. However, if γ j already has its correct color with respect to the correct
colors of its input then γ j might flip twice. In particular, if the input nodes of γ j have
unequal colors, γ j is white and the input node that is black flips to white before the
other input node flips, then γ j becomes unhappy and can flip to black. If the other input
subsequently flips to black then γ j becomes unhappy again and can flip back to white.
But if γ j flips twice without an intermediate flip of γ j+1 then we cannot argue via the
Filtering Lemma (i.e., Lemma 3.5.21) whether γ j+1 is hindered from flipping or even
which color γ j+1 has.

Therefore, we make a distinction between the NOT-nodes and hinder the input node
of a NOR-node γ j with lower index with respect to the topological order, i.e., γ j−2,
from flipping to white if the other input node, i.e., γ j−1, does not yet have its correct
color. Only when γ j−1 has its correct color, we allow γ j−2—via the Filtering Lemma—to
flip to its correct color. Then a double flip of γ j without an intermediate flip of γ j+1 is
impossible—in fact, γ j does not flip at all in this case. For an overview of the classification
of the NOT-nodes of Ch see Figure 3.17.

Definition 3.5.25. The set N1 contains each node γ j that represents an input gate of Ch.
The set N2 contains each node that represents a NOT-gate γi ∈ Ch for which γi+2 is a
NOR-gate of Ch. The set N3 contains each node that represents a NOT-gate γi ∈ Ch for
which γi−1 is a NOR-gate of Ch. The set N4 contains all nodes that represent NOT-gates of
Ch that are not contained in Ni for any 1≤ i ≤ 3.

Comment Note that the sets Ni for 1≤ i ≤ 4 are pairwise disjoint due to our assump-
tion that in Ch each input of a NOR-gate is a NOT-gate whose input is also a NOT-gate.

For all γ j ∈ N1∪N3∪N4 we hinder γ j from flipping unless µκ,2 j−1
i has its natural color,

i.e., black, for all gi ∈ V C
not and κ ∈ {0, 1}:

ϕ(γ j) =
∧

gi∈V C
not ,κ∈{0,1}

µ
κ,2 j−1
i for all γ j ∈ N1 ∪ N3 ∪ N4. (3.5.26)

Let γ j ∈ N2 and I(γ j) = γk for γk ∈ V Ch

not . We hinder γ j from flipping unless µκ,2 j−1
i

has its natural color, i.e., black, for all gi ∈ V C
not , κ ∈ {0, 1} and γk is white or µκ,2 j+2

i has

64

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

Figure 3.17: The classification of the nodes of Ch.

its natural color, i.e., white, for all gi ∈ V C
not , κ ∈ {0,1} and γk is black:

ϕ(γ j) = (γk ∧
∧

gi∈V C
not ,κ∈{0,1}

µ
κ,2 j−1
i)∨ (γk ∧

∧

gi∈V C
not ,κ∈{0,1}

µ
κ,2 j+2
i)

for all γ j ∈ N2 with I(γ j) = γk for γk ∈ V Ch

not .

(3.5.27)

Comment As in the formula for the nodes of N1 ∪N3 ∪N4, the first part of the formula
hinders the node γ j from flipping as long as at least one µκ,2 j−1

i has its unnatural color,
i.e., white. The second part is to prevent a double flip of the NOR-node γ j+2—see
comment after (3.5.24). For this purpose, the formula ϕ(γ j) hinders γ j from flipping to

white as long as there is a node µκ,2 j+2
i for any gi ∈ V C

not , κ ∈ {0, 1} that has its unnatural
color, i.e., white. In this way it is ensured that the other input of the NOR-node γ j+2
takes its correct color—should it have been incorrect—before γ j flips to white. Then a
double flip of γ j+2 is prevented.

Let gi ∈ V C
not , γ j ∈ N1 and κ ∈ {0, 1}. We hinder µκ,2 j

i from flipping unless µκ,2 j−1
i has

its unnatural color, i.e., white, or γ j has the opposite color of λ0,1
j . Formally,

ϕ(µκ,2 j
i) = µκ,2 j−1

i ∨ (γ j ∧λ
0,1
j)∨ (γ j ∧λ

0,1
j)

for all gi ∈ V C
not ,γ j ∈ N1,κ ∈ {0, 1}.

(3.5.28)

Comment The satisfaction of the formula in the case that µκ,2 j−1
i for γ j ∈ N1 has its

unnatural color, i.e., white, is motivated by the aim to let each node v ∈ Vκi take its
unnatural color if its corresponding input flipped to the opposite of the unnatural color
of v. The satisfaction for the case that γ j has the opposite color than λ0,1

j stems from
the aim to let the flips back to the natural colors within the set Vκi only pass the node

µ
κ,2 j
i if γ j has the same color as g j. However, since g j possibly has a degree of four in

65

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

Gh, it cannot be in D(ϕ) for us to apply the Filtering Lemma (i.e., Lemma 3.5.21)—for
this, v had to have a degree of at most three. Thus, we instead choose the formula to be
satisfied if γ j has the opposite color as λ0,1

j which, as we see later, will have the opposite

color as g j in the partitions in which µκ,2 j
i has the same color as µκ,2 j−1

i .

Let gi ∈ V C
not , γ j ∈ N2 with I(γ j) = γk for γk ∈ V Ch

not and κ ∈ {0,1}. We hinder

µ
κ,2 j
i from flipping unless µκ,2 j−1

i is white or γk is black or γk is white and γ j is black.

Moreover, we hinder µκ,2 j+3
i unless µκ,2 j+2

i is black or γk is white or γk is black and γ j is
white.

ϕ(µκ,2 j
i) = µκ,2 j−1

i ∨ γk ∨ (γk ∧ γ j)

for all gi ∈ V C
not ,γ j ∈ N2 with I(γ j) = γk for γk ∈ V Ch

not ,κ ∈ {0, 1},
(3.5.29)

ϕ(µκ,2 j+3
i) = µκ,2 j+2

i ∨ γk ∨ (γk ∧ γ j)

for all gi ∈ V C
not ,γ j ∈ N2 with I(γ j) = γk for γk ∈ V Ch

not ,κ ∈ {0, 1}.
(3.5.30)

Comment See comment for (3.5.24) and (3.5.27).

Let gi ∈ V C
not , γ j ∈ N3 and κ ∈ {0,1}. We hinder µκ,2 j

i from flipping unless µκ,2 j−1
i is

white or γ j has the color c(γ j−2)∨ c(γ j−3):

ϕ(µκ,2 j
i) = µκ,2 j−1

i ∨ (γ j ∧ γ j−2 ∧ γ j−3)∨ (γ j ∧ γ j−2)∨ (γ j ∧ γ j−3)

for all gi ∈ V C
not ,γ j ∈ N3,κ ∈ {0,1}.

(3.5.31)

Comment As in the formulas (3.5.28) and (3.5.29) we let the formula of µκ,2 j
i for

γ j ∈ N3 be satisfied if its input node has its unnatural color, i.e., white. The remaining

part of the formula is to let the flips back to the natural color within Vκi pass µκ,2 j
i only

if the input node of γ j has its correct color with respect to the color of its input node,
i.e., the NOR-node γ j−1. However, since γ j−1 is a NOR-node, it cannot be in D(ϕ) and

therefore it cannot be a variable of ϕ(µκ,2 j
i). Instead, we make the flip of µκ,2 j

i dependent
on whether γ j has the opposite color of γ j−1 under the assumption that γ j−1 has the
correct color with respect to the colors of its corresponding inputs, i.e., if γ j has the color
c(γ j−2)∨ c(γ j−3).

Let gi ∈ V C
not , γ j ∈ N4 with I(γ j) = γk for γk ∈ V Ch

not and κ ∈ {0,1}. We hinder µκ,2 j
i

from flipping unless µκ,2 j−1
i has its unnatural color, i.e., white, or γ j has the opposite

color of γk:

66

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

ϕ(µκ,2 j
i) = µκ,2 j−1

i ∨ (γ j ∧ γk)∨ (γ j ∧ γk)

for all gi ∈ V C
not ,γ j ∈ N4 with I(γ j) = γk for γk ∈ V Ch

not ,κ ∈ {0,1}.
(3.5.32)

Comment Analogously to (3.5.28), (3.5.29) and (3.5.31) we design ϕ(µκ,2 j
i) for

γ j ∈ N4 to be satisfied if its input node has its unnatural color, i.e., white. The re-
maining part of the formula is supposed to let the flips to the natural color within Vκi
pass µκ,2 j

i only if the input node of γ j has the opposite color as its corresponding input
node.

Finally, we hinder ρi for all gi ∈ V C
not from flipping unless µκ,2m

j for each g j ∈ V C
not ,

κ ∈ {0,1} has its natural color, i.e., white:

ϕ(ρi) =
∧

g j∈V C
not ,κ∈{0,1}

µκ,2m
j for all gi ∈ V C

not . (3.5.33)

Comment The aim of the formula ϕ(ρi) for gi ∈ V C
not is as follows. Assume that node

gk ∈ V C
not flipped followed by flips of the nodes of V 2

k . Let gi ∈ V C be the NOT-node of
V C chosen by h for the next flip of a NOT-node after the flip of gk. When all gate-nodes
of V Ch

took their correct colors after the flip of gk and the nodes πi, θi and ξi flipped,
then all nodes of the sets Vκj for κ ∈ {0, 1}, g j ∈ V C

not are supposed to have their natural
color again—as in the initial, recurring, partition. Therefore, we let ρi only flip if the
nodes µκ,2m

j for all κ ∈ {0, 1}, g j ∈ V C
not have their natural colors again, i.e., white.

This finishes the description of ϕ. For an overview of the nodes of the formulas of ϕ
see Table 3.3.

In the following, we consider whether the graph Gh, the partition P0 and the function
ϕ satisfy the conditions of the Filtering Lemma (i.e., Lemma 3.5.21) and show that
the degrees of the nodes of D(ϕ) is at most three. By assumption, all NOT-gates of the
circuits C and Ch have fan-in one and fan-out at most two. The NOT-gates introduced
in Figure 3.14 also have fan-in one and fan-out at most two. Furthermore, all nodes of
Type I introduced in Figure 3.15 are of degree two—in particular, the nodes ρi which
are in D(ϕ). Due to the gates added in Figure 3.14 there might be NOT-gates gi ∈ C1

that have a fan-in of one and a fan-out of three—namely the NOT-gates gi ∈ C that have
a fan-out of two in C . However, no node of V C

not is in D(ϕ). Thus, in Gh all nodes of
D(ϕ) have a degree of at most three.

Now we consider the influence of the nodes of D(ϕ) and their happiness in P0—the
nodes of D(ϕ) can be seen in the first and second column of Table 3.3. Node µκ, j

i for

any gi ∈ V C
not ,κ ∈ {0,1}, 1 ≤ j ≤ 2m does not have influence on HGh(µκ, j

i) = µ
κ, j−1
i

and is happy in P0 according to (R2iii). Node λκ,2
i for any gi ∈ V C

not ,κ ∈ {0,1} has no
influence on HGh(λκ,2

i) = λ
κ,1
i and is happy in P0 according to (R2ii). Similarly, node

67

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

λκ,1
i for any gi ∈ V C

not ,κ ∈ {0,1} has no influence on HGh(λκ,2
i), i.e., node gi if κ = 0

and λ0,3
i if κ = 1, and is happy according to, again, (R2ii). Each node γ j ∈ V Ch

not \ N1

has no influence on I(γ j) according to the definition of GCh
which constitutes Ch. The

happiness of γ j follows from (R3). Each node γ j ∈ N1 has no influence on HGh(γ j) = λ
1,2
j

and is happy due to, again, (R3). Finally, node ρi for any gi ∈ V C
not has no influence on

ξi—this property is the reason for the existence of the nodes θi and ξi: If πi and ρi
were adjacent without the intermediate nodes θi and ξi, then ρi had influence on πi.
The happiness of ρi in P0 follows from (R2i). No further nodes are in D(ϕ).

Thus, Gh, P0 and ϕ satisfy the conditions of the Filtering Lemma. We let Gϕ = (Vϕ, Eϕ)
be the graph and R0 ∈ P (Vϕ) be the partition guaranteed to be polynomial-time
computable from Gh, P0 and ϕ according to the Filtering Lemma.

4) Phases For the sake of readability, we introduce the following notations.

Definition 3.5.34. For a partition P ∈ P (Vϕ), we call P recurring if P|V h is recurring.
Let r be a sequence starting at (Gϕ, R0). We call r alternating if for each v ∈ D(ϕ) with
u := HGh(v) we have r|{u,v} = (u, v, u, v, u, . . .). If r is not alternating then we call it
irregular. Furthermore, in a partition R ∈ P (Vϕ) we call v open if cP(u) = cP(v) and
closed otherwise. Finally, for a partition P ∈ P (Vϕ) we let P∗ := P|V C .

Comment The main purpose of the denotation “alternating” is to encapsulate in a
simple name for a condition that implies a condition of the Filtering Lemma (i.e.,
Lemma 3.5.21), in particular, the condition of (FL5) that for each node u ∈ D(ϕ) there
are no two flips of the HG(u) in the corresponding sequence without an intermediate
flip of u. Similarly, the purpose of the denotations “open” and “closed” is to create a

Node Nodes of formula Conditions

λκ,2
i λκ,1

i , µκ,2m
i

gi ∈ V C
not , κ ∈ {0, 1}

γ j µ
κ,2 j−1
i γ j ∈ N1 ∪ N3 ∪ N4

γ j µ
κ,2 j−1
i ,µκ,2 j+2

i ,γk γ j ∈ N2,γk = I(γ j)

µ
κ,2 j
i µ

κ,2 j−1
i ,γ j ,λ

0,1
j γ j ∈ N1

µ
κ,2 j
i µ

κ,2 j−1
i ,γ j ,γk

γ j ∈ N2,γk = I(γ j)
µ
κ,2 j+3
i µ

κ,2 j+2
i ,γ j ,γk

µ
κ,2 j
i µ

κ,2 j−1
i ,γ j ,γk γ j ∈ N4,γk = I(γ j)

µ
κ,2 j
i µ

κ,2 j−1
i ,γ j ,γ j−2,γ j−3 γ j ∈ N3,γk = I(γ j)

ρi µκ,2m
i

Table 3.3: Variables of the formulas of ϕ.

68

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

simple possibility to refer to the two different conditions for Lemma 3.5.21 (FL5)(i) and
Lemma 3.5.21 (FL5)(ii).

Definition 3.5.35. We let σ :P (V C)→ {1,2, . . . , m} be the following partial function

σ(P)=

¨

j, if g j ∈ V C
not for g j = h(P)

j+ 1, if g j ∈ V C
nor for g j = h(P).

Note that σ is partial since h(P) = nil for some partitions P ∈ P (V C).

Definition 3.5.36. Let P, P ′ ∈ P (V h) and Q ∈ P (V Ch
) be such that cP(g j) = cQ(γ j) for

each g j ∈ V C
not , cQ(g j) 6= cQ(I(γ j)) for each NOT-gate γ j of Ch whose input link is not an

input link of Ch, and cQ(γ j) 6= (cQ(I1(γ j))∨ cQ(I2(γ j))) for all NOR-gates of Ch. For a node

γ j ∈ V Ch
we call cQ(γ j) the P-correct color of γ j and call γ j itself P-correct in partition P ′

if cP ′(γ j) = cQ(γ j), otherwise we call it P-incorrect in P ′.

Before turning towards the individual phases we characterize frequently used proper-
ties of recurring partitions of V h.

Lemma 3.5.37. Let P be a partition of Vϕ such that P|V h is recurring. Then cP(τi) 6=
cP(πi) for all gi ∈ V C

not .

Proof. Due to (R2ii) we have cP(gi) 6= cP(λ
1,2
i). Thus, (R3) implies cP(gi) = cP(γi) for

all gi ∈ V C
not . Since in P the color of each node that represents a gate of Ch is correct

with respect to the colors of the nodes representing its inputs in Ch, it follows from (R3)
and (R4) that cP(τ j) = cP(g j) for g j = h(P∗) and cP(τi) 6= cP(gi) for all i 6= j. ut

Lemma 3.5.38. Let P be a partition of Vϕ such that P|V h is recurring. Then the following
two conditions are satisfied. First, all nodes of D(ϕ) are closed in P. Second, if h(P∗) = nil
then all nodes of V h \ D(ϕ) are happy in P and if h(P∗) 6= nil then h(P∗) is unhappy in P
and all other nodes of V h \ D(ϕ) are happy.

Proof. At first, we consider the nodes of V 1
I \ V C

not . According to (R2ii)–(R3) for each
node v ∈ V 1

I \ V C
not with u := HGh(v) we have cP(u) 6= cP(v). No node of V C

not is in
D(ϕ)—see first and second column of Table 3.3. The only nodes of V h \ V 1 that are in
D(ϕ) are the nodes ρi for gi ∈ V C

not but these nodes are closed due to (R2i). Thus, all
nodes of D(ϕ) are closed in P.

Now we consider the remaining nodes of V h. The NOR-nodes of V h are happy in P
according to (R1) and (R4). The nodes ρi ,ξi and θi are happy for all gi ∈ V C

not according
to (R2i). The nodes πi for gi ∈ V C

not are happy since cP(πi) 6= cP(θi) according to (R2i)
and cP(πi) 6= cP(τi) according to Lemma 3.5.37. Moreover, (R2i) also implies that each
node gi ∈ V C

not is happy in P if h(P∗) = nil. Finally, (R2i) implies that gi is unhappy if
h(P∗) = gi and that all g j ∈ V C

not with j 6= i are happy. ut

69

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

Lemma 3.5.39. Let r = (x1, . . . , xq) for q ∈ N be a final sequence starting at (Gϕ, R0) and
0≤ j ≤ q be an index for which R := R j|V h is recurring. Then node πi for any gi ∈ V C

not is
happy in each partition Rk for j ≤ k ≤ q for which there is no flip of τi in rk

j+1.

Proof. Since R is recurring, Lemma 3.5.37 implies cR(τi) 6= cR(πi) for all gi ∈ V C
not .

Moreover, (R2i) implies cR(θi) 6= cR(πi). Since θi is of Type I with HGϕ(θi) = πi—note
that θi /∈ D(ϕ)—there is no flip of θi prior to the first flip of πi in rq

j+1. However, πi is of
Type III and therefore happy as long as τi and θi do not flip. Thus, the claim follows.ut

Now we continue to prove the Enforcing Theorem. At first, we consider the case that
h(PC) = nil. Then, by definition of P0, we have h(P∗0) = nil. Since P0 is recurring, all
nodes of D(ϕ) are closed according to Lemma 3.5.38. Thus, Lemma 3.5.21 (FL5)(i)
implies that no node of D(ϕ) flips prior to the first flip of a node of V h \ D(ϕ). Then,
also due to Lemma 3.5.38, no node flips in s|V C . For the case h(PC) 6= nil we use the
following invariant.

Lemma 3.5.40. Let 0 ≤ j ≤ q be such that R j is recurring, r j
1 is alternating, gi := h(R∗j)

for gi ∈ V C
not , R′ ∈ P (V C

not) be the partition arising from R∗j by flipping gi . Then there is an
index j < k ≤ q such that the following conditions are satisfied:

i) Rk is recurring.

ii) rk
1 is alternating.

iii) In rk
j+1, node gi flips exactly once and no other node of V C

not flips.

iv) If h(R′) ∈ V C
nor then, in rk

j+1, node h(R′) flips exactly once and no other node of V C
nor

flips otherwise no node of V C
nor flips in rk

j+1.

Proof. When arguing about the flips, we make frequent use of the Filtering Lemma,
in particular of Lemma 3.5.21 (FL5)(ii). For the sake of succinctness, we make the
following convention.

Prerequisite For a node v ∈ D(ϕ) and an index j ≤ i ≤ k we say that v is blocked in
Ri if we argue by Lemma 3.5.21 (FL5)(ii)(a) that Nodes(ϕ(v)) <Ri

{v} and, similarly,
we say that v is pushed in Ri if we argue by Lemma 3.5.21 (FL5)(ii)(b) that there is a
flip of v in rk

i+1.

To show that a node v ∈ D(ϕ) is blocked, we have to show that v is open, that
u := HGh(v) does not flip prior to the first flip of v, that its corresponding formula is
unsatisfied and that no variable of ϕ(v) flipped after the flip of u that made v open. To
show that v is pushed, we have to show that it is open, that ϕ(v) is satisfied and that
neither u nor any variable of ϕ(v) flips prior to the first flip of v.

We divide the consideration of the flips of the nodes of V h in fourteen phases P1–P14.
The phases and their corresponding flips are illustrated in Table 3.4—the variable p ∈ N

70

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

in the fourth and fifth column and rows of index 10–13 is chosen such that γp := τσ(R′).
The first column of the table contains the enumeration of the phases. The second column
contains flips of nodes that occur in any case in r, and the following columns contain
nodes that flip if the condition in the second row of the corresponding column is satisfied.
The horizontal lines that enclose the nodes from above and below are to determine the
range of phases in which the flips of the corresponding nodes take place. If, for example,
h(R′) ∈ V C

nor then a flip of h(R′), as specified in the third column, happens within the
phases two to ten. For each set of nodes that is enclosed by such lines there is an absolute
order defined for the nodes. More concretely, the nodes representing the gates of Ch are
absolutely ordered by their topological ordering and the nodes µκ, j

i for a given gi ∈ V C
not ,

κ ∈ {0, 1}, are absolutely ordered according to the second superscript 0≤ j ≤ 2m. The
upper line marks the moment at which the first node of the enclosed set with respect
to the corresponding order becomes unhappy and the lower line marks the moment at
which the last node of the set flips at the latest.

We already point out that each node of V h \ D(ϕ) that becomes unhappy in rk
j+1

subsequently becomes happy only by its own flip. Similarly, a node of D(ϕ) that becomes
open within the phases subsequently becomes closed only by its own flip. Moreover, the
nodes of the set Vκi for gi ∈ V C

not , κ ∈ {0,1} flip according to their absolute order with
respect to the second superscript and the nodes that represent the gates of Ch flip, with
a single exception that is pointed out later, according to their topological order.

In the following, we keep track of the flips in r|V h by considering the set that contains
the unhappy nodes of V h \ D(ϕ) and the open nodes of D(ϕ) and how the set changes
during the phases. It satisfies to focus on this set of nodes due to the following four
properties. First, a happy node of V h \ D(ϕ) can obviously not perform the next flip.
Second, if a node v ∈ V h \ D(ϕ) is happy in a partition P and unhappy in the partition
P ′ arising from P by flipping a node w ∈ V h then v is influenced by w—recall that all
nodes of V h \ D(ϕ) are influenced by the same nodes in Gϕ as in Gh. Third, for an index
j ≤ i ≤ k for which r i

j+1 is alternating, a closed node v ∈ D(ϕ) can also not perform the
next flip since Lemma 3.5.21 (FL5)(i) implies {HGh(v)}<Ri

{v} in this case—the property
that r i

j is alternating can in each case be verified by means of Table 3.4 according to
the Filtering Lemma. Fourth, if a node v ∈ D(ϕ) is closed in P and open in P ′ then v is
influenced by w in Gh. Thus, to keep track of the set of unhappy and open nodes after a
flip of a node w we only need to consider the nodes on which w has influence in Gh.

P1 Since R j is recurring, Lemma 3.5.38 implies that node gi is the unique unhappy

node of V h \ D(ϕ) and that each node of D(ϕ) is closed. Since r j
1 is alternating,

the Filtering Lemma, in particular Lemma 3.5.21 (FL5)(i), implies that no node
of D(ϕ) flips prior to the first flip of gi in rq

j+1. Therefore, gi flips in rq
j+1 and no

other node of V h flips prior to the first flip of gi . Node gi has influence on λ0,1
i and

at most two nodes of V C .

P2 The flip of gi in P1 makes λ0,1
i unhappy since gi and λ0,1

i have the same color after
the flip of gi according to (R2ii).

71

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

P
Flips in case of

h(R′) ∈ V C
nor cR j

(gi) = 0 cR j
(gi) = 1 h(R′) 6= nil

1 gi

2 λ0,1
i

h(R′)

3
µ0,ω

i

∀0≤ω≤ 2m

4 λ0,2
i

5 λ0,3
i

6 λ1,1
i

7 µ0,ω
i

µ1,ω
i

∀0≤ω< 2i
∀0≤ω≤ 2m

8 λ1,2
i

9
µ1,ω

i

∀0≤ω< 2i

10
γω for 1≤ω≤ m µ0,ω

i µ1,ω
i

and γω R′-incorrect ∀2i ≤ω< 2p ∀2i ≤ω< 2p

11
µ0,ω

i µ1,ω
i

πσ(R′)

12
∀2p ≤ω≤ 2m ∀2p ≤ω≤ 2m

θσ(R′)

13 ξσ(R′)

14 ρσ(R′)

Table 3.4: Flips of the corresponding phases.

72

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

If gi is not an output gate of C then gi has influence on further nodes. There
are two possible cases for further influence of gi. First, gi is an input of a NOR-
gate gi′ for 1 ≤ i′ ≤ n in C . Then gi has influence on gi′ in Gh. According to
our assumption that if gi′ is the unique unhappy NOR-node of a given partition
then h returns gi′—recall that all NOR-nodes are happy in R j according to (R4).
Consequently, gi′ is unhappy after the flip of gi in P1 if and only if h(R′) = gi′ .
Thus, if gi′ is unhappy after the flip of gi then h(R′) = gi′ and gi′ can flip in P2—see
third column in Table 3.4. The unique node on which gi′ has influence is πi′+1
and this node remains happy as long as τi′+1 does not flip due to Lemma 3.5.39.
Second, gi is input of a NOT-gate gi′ for 1≤ i′ ≤ n in C . Then gi has influence on
πi′ but πi′ remains happy as long as τi′ does not flip due to, again, Lemma 3.5.39.
Thus, there is a flip of λ0,1

i in rk
j+1 after the flip of gi. Node λ0,1

i has influence on

λ0,2
i ∈ D(ϕ) and on µ0,0

i /∈ D(ϕ).

P3 After the flip of λ0,1
i in P2 node λ0,2

i is open. We now distinguish between the two
possible cases for the color of gi in R j .

Assume first cR j
(gi) = 0—see fourth column of Table 3.4. Then gi flipped to black

in P1 and λ0,1
i to white in P2. Then ϕ(λ0,2

i) is unsatisfied according to (3.5.24)
and therefore λ0,2

i is blocked as long as neither λ0,1
i nor µ0,2m

i flips. The other
node on which λ0,1

i has influence is µ0,0
i . Since both λ0,1

i and λ0,2
i are white, node

µ0,0
i is unhappy and will therefore flip to its unnatural color, i.e., black. According

to the equations (3.5.28)–(3.5.32) for each node µ0,ω
i ∈ D(ϕ) with 1 ≤ω ≤ 2m

the formula ϕ(µ0,ω
i) is satisfied if µ0,ω−1

i has its unnatural value. Thus, it follows
by induction on ω that the nodes µ0,ω

i for 1≤ω≤ 2m are consecutively pushed
in ascending order in ω and flip to their unnatural colors. The flip of µ0,2m

i to the
black color implies ϕ(λ0,2

i) is satisfied according to (3.5.24). Since each node of
V 0

i flips to its unnatural color prior to the flip of its corresponding input node, the
sequence rq

j+1 does not become irregular by a flip of a node of V 0
i in P3.

Now assume cR j
(gi) = 1—see fifth column of Table 3.4. Then gi flipped to white

in P1 and λ0,1
i to black in P2. Since λ0,2

i is black and µ0,0
i is white, node µ0,0

i is
still happy. However, since λ0,1

i is black, we have, as in the case cR j
(gi) = 0, the

formula ϕ(λ0,2
i) is satisfied according to (3.5.24).

P4 Since λ0,2
i is open after the flip of λ0,1

i in P2 and ϕ(λ0,2
i) is satisfied as shown in

P3, node λ0,2
i is pushed and flips therefore. Node λ0,2

i has influence on λ0,3
i and

µ0,0
i .

P5 The flip of λ0,2
i in P4 makes λ0,3

i unhappy and it makes µ0,0
i unhappy if µ0,0

i flipped
to its unnatural color in P3 which is true if and only if cR j

(gi) = 0—see Table 3.4.

In the following, we consider the possible flips of the two nodes λ0,3
i and µ0,0

i .

73

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

At first, we consider λ0,3
i . The only node that has influence on λ0,3

i is λ0,2
i . Thus,

λ0,3
i remains unhappy as long as neither itself nor λ0,2

i flips. Node µ0,0
i is a node

of V 0
i and the nodes of V 0

i have in Gh no influence on nodes outside of V 0
i . Thus,

there is a flip of λ0,3
i . Node λ0,3

i has influence on λ1,1
i and the flip of λ0,3

i makes
λ1,1

i unhappy.

Now we consider the possible flips initiated by the unhappiness of µ0,0
i in case of

cR j
(gi) = 0—see fourth column of Table 3.4. All nodes of V 0

i ∩ D(ϕ) are closed

and all nodes of V 0
i \ (D(ϕ)∪ {µ

0,0
i }) are happy after the flip of λ0,2

i in P4. Due to
Lemma 3.5.21 (FL5)(i) no node of V 0

i ∩ D(ϕ) flips back to its natural color before
its corresponding input node in Gh flips back to its natural color. Additionally, no
node of V 0

i \ (D(ϕ)∪{µ
0,0
i }) flips back to its natural color before its corresponding

input node flips back to its natural color. The formula ϕ(µ0,2i
i) is not satisfied

according to (3.5.28) as long as γi has the same color as λ0,1
i —recall that γi and

λ0,1
i have opposite colors in R j due to (R2ii) and (R3) and after the flip of λ0,1

i in

P2 therefore the same color. Thus, even if there is a flip of the input node of µ0,2i
i

in Gh, namely µ0,2i−1
i , node µ0,2i

i is blocked.

P6 The flip of λ0,3
i in P5 makes λ1,1

i unhappy. As shown in P5 none of the nodes of
µ0,ω

i for 0≤ω≤ 2m has influence on any node outside of V 0
i . Thus, there is a flip

of λ1,1
i . Node λ1,1

i has influence on µ1,0
i and λ1,2

i .

P7 If cR j
(gi) = 1 then λ0,3

i flipped to white in P5. Then, as for the nodes µ0,ω
i for

0 ≤ ω ≤ 2m and λ0,2
i in P3, it follows that the nodes µ1,ω

i for 0 ≤ ω ≤ 2m flip
consecutively in ascending order in ω and λ1,2

i does not flip as long as µ1,2m
i is

white.

P8 Analogously to λ0,2
i in P4 it follows that λ1,2

i flips. Node λ1,2
i has influence on

γi ∈ D(ϕ) and on µ1,0
i /∈ D(ϕ).

P9 Let κ := cR j
(gi). The flip of λ1,2

i in P8 makes γi open—recall that in the recurring

partition R j node γi is closed and neither λ1,2
i nor γi flip in P1–P7. In the following,

we show that the nodes µκ, j
i for 0 ≤ j < 2i flip back to their natural colors and

that their flips are finished before node γi takes the same color to which node gi
flipped in P1.

According to (3.5.26) the formula ϕ(γi) is unsatisfied if µ1,2i−1
i has its unnatural

color, i.e., white. None of the nodes of Vκi has influence on λ1,2
i in Gh. Thus, γi is

blocked as long as µκ,2i−1
i has its unnatural color. The nodes λ0,3

i , λ1,1
i and λ1,2

i
have no influence on the nodes of V 0

i in Gh and neither of them is a variable of a
formula ϕ(v) for any v ∈ V 0

i —see Table 3.3. Thus, in the case κ = 0 the flips of
the nodes λ0,3

i , λ1,1
i and λ1,2

i in P5–P8 do not affect the happiness or the openness
of any of the nodes of V 0

i .

74

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

We show by induction on ω that the nodes µκ,ω
i for 0≤ω< 2i flip back to their

natural colors after the flip of λκ,2
i . As induction basis, note that µκ,0

i became
unhappy after the flip of λκ,2

i and that it remains unhappy as long as neither λκ,1
i

nor λκ,2
i flips. In case of κ= 1 neither of the two nodes flips prior to the first flip

of µ0,0
i since there is no node different from µκ,0

i that is influenced by λκ,2
i and can

flip prior to a flip of µκ,0
i —recall that γi is blocked as long as µκ,2i−1

i that has its
unnatural color. In case of κ= 0, the nodes λ0,3

i , λ1,1
i and λ1,1

i have no influence
on λ0,1

i nor λ0,2
i and do therefore not affect the happiness of µ0,0

i . Thus, there is a
flip of µ0,0

i after the flip of λκ,2
i .

The induction hypothesis assumes for an arbitrary 0≤ω< 2i that the nodes µκ,ω′

i

for 0≤ω′ <ω flip back to their natural colors after the flip of λκ,2
i . If µκ,ω

i ∈ D(ϕ),
then it is pushed since ϕ(µκ,ω

i) is satisfied according to (3.5.28)—recall that in
the recurring partition R j node γω has the opposite color as λ0,1

ω due to (R2ii) and
(R3) and none of these two nodes flips in P1–P8.

P10 Let κ ∈ {0, 1}= cR j
(gi). The flip of λ1,2

i in P8 made γi open and the flip of µκ,2i−1
i

that took place in P9 at the latest made µκ,2i
i open. In the following, we show:

• For each 2i ≤ω< 2p node µκ,ω
i flips back to its natural color.

• For each γω ∈ V Ch
node γω flips exactly once if it is R′-incorrect in R j and

does not flip otherwise.

The claim is proven via induction on ω. As induction basis, we show that γi
flips and that the nodes µκ,2i

i and µκ,2i+1
i flip back to their natural colors. Notice

first that the nodes of Vκi only have influence in Gh on nodes of the same set,
i.e., Vκi itself. The formula ϕ(µκ,2i

i) is not satisfied according to (3.5.28) since
γi has the same color as λ0,1

i . Thus, µκ,2i
i is blocked. On the other hand, the

formula ϕ(γi) is satisfied due to (3.5.26). Consequently, node γi is pushed. By
assumption, each node γi′ to which γi is an input in Ch is a NOT-node. According
to (3.5.26) and (3.5.27) node µκ,2i′−1

i must have its natural value for ϕ(γi′) to
be satisfied. Therefore, γi′ is either closed or blocked. The formula ϕ(µκ,2i

i) is
satisfied according to (3.5.28) since after the flip of γi, node γi has the opposite
color as λ0,1

i . Hence, µκ,2i
i is pushed. After the flip of µκ,2i

i , node µκ,2i+1
i —which is

the only node on which µκ,2i
i has influence in Gh—becomes unhappy. Moreover,

node µκ,2i
i is not a variable of the formulas of any gate for which γi is an input.

Consequently, node µκ,2i+1
i flips.

As induction hypothesis we assume for γω with i ≤ω≤ p that

IH1) Case γω ∈ N1 ∪ N2 ∪ N4:

IH1i) I(γω) flipped once if γω was R′-incorrect in R j and the inputs of I(γω),

should they be in V Ch
, flipped once if they were R′-incorrect in R j and

did not flip otherwise.

75

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

IH1ii) µκ,2ω−1
i flipped back to its natural color.

IH2) Case γω ∈ V Ch

nor :

IH2i) The input nodes of the input nodes of γω flipped once if they were
R′-correct and did not flip otherwise.

IH2ii) µκ,2ω−5
i flipped back to its natural color.

The induction step is divided into four different cases which are induced by four
disjoint sets in which γω can be an element, namely γω ∈ N1 for ω> i, γω ∈ N2,
γω ∈ N4 with ω≤ i and γω ∈ V Ch

nor—see Table 3.5.

Case Condition of formula
Consideration of (possible) flips

Gate node Node of Vκi

γω ∈ N1 ω> i γω µκ,2ω
i ,µκ,2ω+1

i

γω ∈ N4

ω< p and γω has no
γω µκ,2ω

i ,µκ,2ω+1
iinfluence on a NOR-node

ω= p or γω has
γω µκ,2ω

iinfluence on a NOR-node

γω ∈ N2 ω> i γω µκ,2ω
i ,µκ,2ω+1

i ,µκ,2ω+3
i

γω ∈ V Ch

nor γω,γω+1 µκ,2ω
i , . . . ,µκ,2ω+3

i

Table 3.5: Distribution of the consideration of the (possible) flips among the cases.

The case γω ∈ N1 for ω = i is already covered in the induction basis and for
ω< i there is no flip of γω since γω is R′-correct in this case and the flips of the
corresponding nodes µκ,2ω

i and µκ,2ω+1
i are covered in P5–P9 for cR j

(gi) = 0 and
in P9 for cR j

(gi) = 1. In case of γω ∈ N4 for ω> p, node γω is R′-correct in R′ and
does not flip since its input is also R′-correct in R j and does not flip due to the
induction hypothesis. The flips of the nodes µκ,ω

i for 2p ≤ω≤ 2m—these nodes
correspond to the gates γω for ω> p—are covered in P11–P13. The possible flips
of the nodes of N3 and the flips of the corresponding nodes of Vκi are covered

in the case for γω ∈ V Ch

nor . Due to dependencies among the cases, we consider
the cases in the order γω ∈ N1 for ω > i, γω ∈ N4 for ω ≤ p, γω ∈ N2 and then
γω ∈ V Ch

nor . For an overview over the relevant nodes for the last three of these cases
see Figure 3.18. In each of the four cases we show that the corresponding gate
nodes flip once if they are R′-incorrect in R j and that they do not flip otherwise.
The considerations of the flips of the nodes µκ,α

i for 0 ≤ α ≤ 2m are distributed
among the cases as follows. In the case γω ∈ N1 and in the case γω ∈ N4 for ω< p
where γω does not have influence on a NOR-node we show that the nodes µκ,2ω

i

and µκ,2ω+1
i flip. In the case of γω ∈ N4 where γω has influence on a NOR-node,

76

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

we just show that µκ,2ω
i flips—the flip of the node µκ,2ω+1

i is not covered by this
case. However, in the case for γω ∈ N2, we show that µκ,2ω

i , µκ,2ω+1
i and µκ,2ω+3

i

flip—the node µκ,2ω+3
i is the node that was not covered in the previous case.

Finally, in the case of γω ∈ V Ch

nor we show that the nodes µκ,2ω
i , . . . ,µκ,2ω+3

i flip.

Figure 3.18: The relevant nodes for the induction induction step of P10.

• Case γω ∈ N1 for ω> i:

Since R j is recurring and neither gω nor γω flipped in P1–P9 node γω is
R′-correct according to (R2ii) and (R3). Since I(γω) = λ1,2

ω also did not
flip in P1–P9 node γω is closed and has the opposite color as λ1,2

ω according
to, again, (R2ii) and (R3). Thus, the formula ϕ(µκ,2ω

i) is satisfied due to
(3.5.28). According to (IH1ii) node µκ,2ω−1

i flipped back to its natural color.
Consequently, µκ,2ω

i is open and pushed. After its flip, node µκ,2ω+1
i —which

is the only node on which µκ,2ω
i has influence in Gh—becomes unhappy.

Consequently, node µκ,2ω+1
i flips.

• Case γω ∈ N4 with ω≤ i:

We distinguish between the two possible cases for the R′-correctness of γω
and show that γω flips if it is R′-incorrect and that it does not flip otherwise.
At first, we consider the case that γω is R′-incorrect. Then the input gate of
γω in Ch flipped to its R′-correct color according to (IH1i) and therefore γω
is open and has the same color as its input node. Since it has the same color
as its input node, the formula ϕ(µκ,2ω

i) is not satisfied according to (3.5.32)
which implies that µκ,2ω

i is blocked. Thus, node γω is pushed.

Now we consider the case that γω is R′-correct. Then the input gate of γω
in Ch did not flip according to (IH1i) which implies that γω is closed. Thus,
Lemma 3.5.21 (FL5)(i) implies that there is no flip of γω prior to the first flip
of µκ,2ω

i .

In both cases we get a partition in which γω has the opposite color as its
input. Now we show that when γω has the opposite color as its input node
then the node µκ,2ω

i flips. The formula ϕ(µκ,2ω
i) is satisfied according to

77

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

(3.5.32) and µκ,2ω
i is open due to the flip of µκ,2ω−1

i to its natural color. In
the following, we show that the nodes on which γω has influence—these
nodes might have become unhappy or, if they are in D(ϕ), open by a flip
of γω—or the flips of the nodes these nodes themselves have influence on,
neither affect the openness of µκ,2ω

i nor the satisfaction of ϕ(µκ,2ω
i). Then, it

follows that µκ,2ω
i is pushed.

If γω is an input to a NOT-gate γω′ in Ch then the formula ϕ(γω′) is not
satisfied according to (3.5.27) since the nodes µκ,α

i for 2ω′ ≤ α≤ 2m have
their unnatural values. Hence, γω′ is blocked if γω was R′-incorrect and
flipped or it is closed if γk was R′-correct and did therefore not flip. If
γk is an input to a NOR-gate γk+1 in Ch then the formula ϕ(γω+2) is not
satisfied according to (3.5.26) since node µκ,2(ω+1)−1

i has its unnatural value.
Thus, γω+2 is, depending on whether γω+1 flipped after the flip of γω, either
blocked or closed. In both cases, there is no flip of γω+2 prior to the first
flip of µκ,2ω

i . Finally, if γω for ω < p is an output gate of Ch then γω has
influence on πα for some gα ∈ V C

not . Node πα has only influence on θα in Gh.
The sequence of unique influences continues with ξα and ρα. None of the
nodes πα, θα, ξα and ρα is a variable in a formula of any other node of D(ϕ).
Moreover, the formula ϕ(ρα) is unsatisfied according to (3.5.33). Thus, ρα
is blocked if its input node in Gh flips prior to the first flip of µκ,2ω

i . Thus, in
each of the considered cases it follows that µκ,2ω

i is pushed.

It remains to show that µκ,2ω+1
i flips after the flip of µκ,2ω

i in the case that
γω has no influence on a NOR-node and ω< p. But this follows simply from
the fact that after the flip of µκ,2ω

i , node µκ,2ω+1
i is unhappy and node µκ,2ω

i

has influence only on µκ,2ω+1
i in Gh and is not a variable of the formula of

any node in D(ϕ).

• Case γω ∈ N2: We distinguish between the two possible cases for the color
of γω. At first, we consider the case that γω is white. In this case, the
formula ϕ(γω) is according to (3.5.27) and (3.5.26) satisfied if and only if
the formula ϕ(γω) for the case γω ∈ N4 is satisfied. Thus, the flips of the
nodes γω and µκ,2ω

i follow as in the case for γω ∈ N4 where γω is an input to
a NOR-node. Node µκ,2ω

i has influence only on µκ,2ω+1
i and µκ,2ω+1

i becomes
unhappy by the flip of µκ,2ω

i . The node γω has only influence on γω+2, which
itself has influence only on γω+3. However, the formula ϕ(γω+3) is not
satisfied according to (3.5.26) since node µκ,2ω+5

i has its unnatural color and
therefore γω+3 is, depending on whether the NOR-node γω+2 flipped after
the flip of γω, either closed or blocked. In both cases, there is no flip of γω+3
prior to the flip of µκ,2ω+1

i to its natural color. Thus, node µκ,2ω+1
i flips back

to its natural color.

Then, according to the case for γω ∈ N4, node µκ,2ω+2
i flips and node γω+1

flips if and only if it is R′-incorrect. A flip of γω+1 may make the NOR-node

78

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

γω+2 unhappy, but this can only be the case if the flip of γω, should γω have
been R′-incorrect, did not make γω+2 unhappy since the happiness of γω+2
is independent of the color of γω+1 if γω is black. Thus, node γω+2 does
not become unhappy for the second time after the flip of γω, should it have
been R′-incorrect. Hence, γω does flip twice and does therefore not make rk

1
irregular. Consequently, node γω+3 is, depending on whether γω+2 flipped,
either closed or blocked—recall that the formula ϕ(γω+3) is still unsatisfied
since µκ,2ω+5

i has its unnatural value. However, the formula ϕ(µκ,2ω+3
i) is

satisfied according to (3.5.30) since γω has the opposite color as its input.
Therefore, µκ,2ω+3

i is pushed.

Now we consider the case that γω is black. Then the formula ϕ(γω) is not
satisfied according to (3.5.27). Thus, γω is blocked. On the other hand, the
formula ϕ(µκ,2ω

i) is satisfied according to (3.5.29) and therefore node µκ,2ω
i

is pushed. Node µκ,2ω
i only has influence on µκ,2ω+1

i in Gh which becomes
unhappy by the flip of µκ,2ω

i . Since node µκ,2ω
i is not a variable of the formula

ϕ(γω), γω is still blocked and therefore there is a flip of µκ,2ω+1
i after the flip

of µκ,2ω
i . Then, according to the case for γω ∈ N4 node γω+1 flips if and only

if it is R′-incorrect and the node µκ,2ω+2
i also flips. The flip of γω+1 cannot

make the NOR-node γω+2 unhappy since γω is black and γω+2 is therefore
white according to (R4). After the flip of µκ,2ω+2

i to its natural color node
µκ,2ω+3

i is open.

Now we distinguish between the two possible cases for the R′-correctness
of γω in R j. If γω was R′-correct then it is now closed. Then ϕ(µκ,2ω+3

i) is
satisfied according to (3.5.30) and therefore µκ,2ω+3

i is pushed. Now consider
the case that γω was R′-incorrect. Then γω is now open and therefore
ϕ(µκ,2ω+3

i) is not satisfied according to (3.5.30). Consequently, µκ,2ω+3
i is

blocked. On the other hand, the formula ϕ(γω) is satisfied after the flip of
µκ,2ω+2

i to its natural color. Thus, node γω is pushed. Its flip may make the
NOR-node γω+2 unhappy, which in turn may also flip, but then node γω+3 is
blocked according to (3.5.26) since µκ,2ω+3

i has its unnatural color. After the
flip of γω the formula ϕ(µκ,2ω+3

i) is satisfied according to (3.5.30), which
implies that µκ,2ω+3

i is pushed.

• Case γω ∈ V Ch

nor : According to the induction hypothesis of this case—see
(IH2)—the node µκ,2ω−5

i flipped back to its natural color and the inputs
of the inputs of γω have their R′-correct colors. According to the cases for
γω ∈ N2 and γω ∈ N4 the nodes µκ,2ω−4

i , . . . ,µκ,2ω−1
i flip after the flip of

µκ,2ω−5
i to their natural color. In the following we distinguish between the

two possible cases for the R′-correctness of γω in R j .

Assume first that γω is R′-correct in R j. For this case, we first show that γω
does not become unhappy by the flips of its input nodes. For the flips of
the input nodes, we have three possibilities: Either none of them flips, one

79

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

of them flips or both of them flip. If none of them flips then γω obviously
remains happy. If one of them flips then its flip does not make γω unhappy
since otherwise γω was R′-incorrect in R j, which is a contradiction. Now
consider the case that both inputs of γω flip. Then the inputs of γω have
different colors in R j since otherwise γω would, again, have been R′-incorrect
in R j . In case of cR j

(γω−2,γω−1) = (0, 1) the flip of γω−2—which is according
to the cases for γω ∈ N2 and γω ∈ N4 the first of the two input nodes of γω
that flips—to the black color does not make γω unhappy since cR j

(γω) = 0 in
this case. Then γω−1 flips to white whereafter γω is still happy. Now consider
the case cR j

(γω−2,γω−1) = (1,0). Then, according to, again, the cases for
γω ∈ N2 and γω ∈ N4, node γω−1 first flips to black and then γω−2 flips to
white. Analogously to the case c(γω−2,γω−1) = (0, 1) it follows that neither
of the two flips makes γω unhappy. Thus, in neither case there is a flip of the
input nodes of γω that makes γω unhappy and therefore γω does not flip.

It remains to show that the nodes µκ,2ω
i , . . . ,µκ,2ω+3

i flip back to their natural
colors. The flip of node µκ,2ω−1

i back to its natural color makes the node
µκ,2ω

i —which is the only node on which µκ,2ω−1
i has influence—unhappy.

Since none of the flips of the input nodes of γω, should they have flipped
at all, make γω unhappy, it follows that there is a flip of µκ,2ω

i . Node µκ,2ω
i

has influence only on µκ,2ω+1
i which becomes unhappy by the flip of µκ,2ω

i .
Analogously to the flip of µκ,2ω

i it follows that µκ,2ω+1
i also flips. Node

µκ,2ω+1
i itself has only influence on µκ,2ω+2

i and the formula ϕ(µκ,2ω+2
i)

is satisfied according to (3.5.31). Thus, µκ,2ω+2
i is pushed. Node µκ,2ω+2

i

has only influence on µκ,2ω+3
i whose flip follows analogously to the flip of

µκ,2ω+1
i .

Now we consider the case that γω is R′-incorrect in R j . Then at least one of
the inputs of γω flips according to the induction hypothesis. If one of them
flips then its flip makes γω unhappy. If both of them flip then exactly one of
the two flips makes γω unhappy since if γω becomes unhappy after the flip
of the first input node then the flip of the second input node cannot make γω
unhappy again—otherwise γω would have been R′-correct in R j , which is a
contradiction. Thus, in both cases node γω can flip at most once. Node γω
has influence only on γω+1 but the formula ϕ(γω) is according to (3.5.26)
not satisfied as long as µκ,2ω+1

i has its unnatural color.

Hence, it follows as in the case for the R′-correctness of γω that there are
flips of the nodes µκ,2ω

i and µκ,2ω+1
i . After the flip of µκ,2ω+1

i node µκ,2ω+2
i

is open. However, the formula ϕ(µκ,2ω+2
i)—see (3.5.31)—is not satisfied as

long as γω+1 did not flip and therefore µκ,2ω+2
i is blocked. On the other hand,

after the flip of µκ,2ω+1
i the formula ϕ(γω+1) is satisfied according to (3.5.26)

which implies that γω+1 is pushed. The formulas of the nodes on which γω+1

has influence in V Ch
are not satisfied according to (3.5.26) and (3.5.27)

80

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

since the nodes µκ,α
i for 2ω+ 5 ≤ α ≤ 2m have their unnatural colors and

therefore are, depending on whether or not their corresponding input node
in Gh flipped, either closed or blocked. But the formula ϕ(µκ,2ω+2

i)—see
(3.5.31)—is satisfied after the flip of γω+1, which implies that µκ,2ω+2

i flips.
Analogously to the flip of µκ,2ω+1

i it follows that there is a flip of µκ,2ω+3
i

after the flip of µκ,2ω+2
i . This finishes the consideration of the flips of the

R′-incorrect γα for 1≤ α≤ m and of the nodes µκ,α
i for 2i ≤ α≤ 2p.

It remains to show that there is a flip of the NOR-node h(R′) in case of h(R′) ∈ V Ch

nor—

see third column of Table 3.4. For this, we assume that h(R′) ∈ V Ch

nor . From
Lemma 3.5.39 we know that there was no flip of πσ(R′) prior to the first flip
of τσ(R′) in rk

j+1. The flip of τσ(R′) took the edge {τσ(R′),πσ(R′)} out of the cut.

Node µκ,2p
i has influence only on µκ,2p+1

i and the sequence of unique influences
continues up to µκ,2m

i . Neither one of the nodes that flipped after the flip of gi in
P1 nor anyone that is equal to a node µκ,α

i for p+ 1 ≤ α ≤ 2m has influence on
h(R′). Thus, there is a flip of h(R′).

P11 The flip of µκ,2p
i in P10 made µκ,2p+1

i unhappy. Node µκ,2p+1
i has influence in

Gh only on µκ,2p+2
i and the sequence of unique influences continues up to node

µκ,2m
i . Neither of the nodes µκ,ω

i for 2p ≤ω≤ 2m has influence in Gh on any node
outside of Vκi and the only one of them that occurs as a variable of a formula of a
node of D(ϕ) \ Vκi is µκ,2m

i . In particular, µκ,2m
i occurs in the formula ϕ(ρσ(R′))—

see (3.5.33). In P13 we will show that the nodes µκ,ω
i for 2p ≤ ω ≤ 2m flip in

ascending order in ω, but since their flips may begin as early as in P11, we already
refer to their flips here.

If h(R′) 6= nil then the flip of γp in P10 makes πσ(R′) unhappy since the input node
of gσ(R′) in C has the same color as gσ(R′)—the generalized pivot rule only chooses
gates for which this is the case— according to (R2i), πσ(R′) also has the color of
gσ(R′). Thus, node πσ(R′) flips. Node πσ(R′) only has influence on θσ(R′) and the
sequence of unique influences in Gh continues with ξσ(R′) and ρσ(R′). The formula
ϕ(ρσ(R′)) is unsatisfied according to (3.5.33) as long as µκ,2m

i has its unnatural
color. Thus, node ρσ(R′) is blocked until µκ,2m

i has its natural color in the case that
ξσ(R′) did not yet flip and it is closed otherwise. Altogether, the flip of πσ(R′) and
the flips of the nodes that can be initiated by the flip of πσ(R′), namely the nodes
θσ(R′) and ξσ(R′), do not affect the happiness of any node of Vκi or the satisfaction
of a formula of a node of Vκi .

P12 The flip of πσ(R′) in P11 made only θσ(R′) unhappy. Since no one of the nodes µκ,ω
i

for 2p ≤ω≤ 2m has influence on θσ(R′) it follows that there is a flip of θσ(R′).

P13 Analogously to the flip of θσ(R′) in P12 it follows that there is a flip of ξσ(R′). After
the flip of ξσ(R′) node ρσ(R′) is open. However, the formula ϕ(ρσ(R′)) is unsatisfied

81

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

according to (3.5.33) as long as µκ,2m
i has its unnatural color. Thus, node ρσ(R′) is

blocked until µκ,2m
i has its natural color.

The formulas ϕ(µκ,ω
i) for 2p ≤ ω ≤ 2m for which µκ,ω

i ∈ D(ϕ) are satisfied
according to (3.5.32) since all nodes τω for σ(R′) < ω < n are R′-correct—the
nodes themselves and their inputs were R′-correct in R j. Therefore, as in P9 for
the unnatural colors it follows that the nodes µκ,ω

i for 2p ≤ω≤ 2m that did not
yet flip back to their natural color do it in ascending order in ω before ρσ(R′) flips.

P14 After the flip of ξσ(R′) in P13, node ρσ(R′) is open. The formula ϕ(ρσ(R′)) is
satisfied after the flip of µκ,2m

i in P11–P13. Thus, ρσ(R′) is pushed. This finishes
the consideration of the flips.

Let 1 ≤ k ≤ q be the smallest index such that rk
1 contains the flips of the phases

P1–P14. In the following, we show that the conditions (i)–(iv) of Lemma 3.5.40 are
satisfied for Rk and rk

1 , respectively.
For condition (i) we have to show that Rk is recurring and begin with property (R1).

Since R j is recurring, property (R1) is satisfied in R j . The only nodes that have influence
on NOR-nodes of V C are, by assumption, NOT-nodes of V C . The only NOT-node of V C

that flips in rk
j+1 is gi—see Table 3.4. If the flip of gi makes a NOR-node unhappy then,

also by assumption, h(R′) is the unhappy NOR-node and flips in P2–P10—see Table 3.4.
After its flip property (R1) is satisfied again. For (R2i) note that gi flips in P1 and if
h(R′) 6= nil then the nodes πσ(R′), θσ(R′), ξσ(R′) and ρσ(R′) flip in P11–P14. Property
(R2ii) is satisfied in Rk since, besides gi in P1, the nodes λ0,1

i , λ0,2
i , λ0,3

i , λ1,1
i , λ1,2

i flip
exactly once according to P2–P8. Property (R2iii) is satisfied since the nodes of Vκi flip
exactly twice. Finally, the properties (R3) and (R4) follow from the flips in P10.

Now we show condition (ii). Since R j is recurring, each v ∈ V h
I \ {gi} has the opposite

color as u := HGh(v) in R j. Since r j
1 is alternating, it follows that each node of D(ϕ) is

closed in R j . By means of Table 3.4 one can verify that for each flip of u there is a flip of
v after the flip of u in rk

j+1 and node u does not flip a second time before node v flips.

Thus, rk
1 is alternating.

Since node gi flips exactly once in rk
j+1 condition (iii) is satisfied and the condition (iv)

can easily be verified by means of Table 3.4. This finishes the proof of Lemma 3.5.40.ut

Lemma 3.5.40 implies the claim of the Enforcing Theorem for the remaining case
h(PC) 6= nil. ut

3.6 All-Exp Property

Theorem 3.6.1 (All-Exp Theorem). LOCALMAX-CUT has the all-exp property for graphs
with maximum degree four.

Proof. We adopt several parts of the proof of the Is-Exp Theorem (i.e., Theorem 3.4.1).
In particular, we let Cn be the is-exp circuit (see Definition 3.4.3), Pn

0 := Pn be the initial

82

3.6 All-Exp Property

is-exp partition of the nodes of the graph Gn = (V n, En) that constitutes Cn, and s(n) be
the is-exp sequence of dimension n built up on the basis of the shifted is-exp sequence
s(n− 1)+ of dimension n− 1 by appropriately adding the first and the second is-exp
modules t1 and t2, respectively. For n ∈ N we let s(n) = (wn

1 , . . . , wn
qn
) for qn ∈ N and

wn
i ∈ V n for all 1 ≤ i ≤ qn. We show the theorem by means of the Enforcing Theorem

(i.e., Theorem 3.5.22) and develop for this purpose a polynomial-time computable pivot
rule hn for any n ∈ N0 that induces s(n) in Gn. The pivot rule makes use of the following
notation.

Definition 3.6.2. For n ∈ N0 and P ∈ P (V n) a node vi ∈ V n for 2≤ i ≤ 4(n− 1) + 2 is
called pausing in P if the following conditions are satisfied:

• i ≡ 2 mod 4

• cP(vi−1) = cP(vi) = cP(vi+1) = 0 and cP(vi+2) = 1

• There is a j > i for which v j is unhappy in P.

The pseudo-code of the pivot rule hn is presented in Algorithm 3.6.

Input: Partition P ∈ P (V n) for graph Gn = (V n, En)
Output: An element of the set V n ∪ {nil}

1: if P is a local optimum for Gn then
2: return nil
3: else
4: return node vi with smallest i that is unhappy and not pausing in P

Algorithm 3.6: The pivot rule hn .

In the following, we prove by induction on n that hn induces s(n) in (Gn, Pn
0) for all

n ∈ N0, i.e., hn(Pn
i−1) = wn

i for all 1≤ i ≤ qn. Before showing the induction basis and the
induction step, we first show a property of (Gn, Pn

0) for all n ∈ N0 that we use to simplify
the argumentation of both the induction basis and the induction step. Each node of
the set Sn := {v4n+5, . . . , v12n+13} is happy in Pn

0 . Neither of them is influenced by any
node of V n \ Sn. Thus, each of them is happy in Pn

k for all 0 ≤ k ≤ qn. Consequently,
when showing that hn induces s(n) in (Gn, Pn

0) we can ignore the nodes of Sn as possible
candidates for an output of hn in any of the partitions of T n and consider their colors to
be constant throughout the sequence T n.

As induction basis, we consider the case n = 0. In Figure 3.19 the nodes of M0 :=
{v1, . . . , v4} ⊂ V 0 and their corresponding colors in the partitions of T0 are drawn. In
the drawing for (M0, P0

i |M0) for 1 ≤ i ≤ 3 the node w0
i , i.e., the node that flips next in

P0
i according to s(0), is marked by a black star next to it. Note that v1 is never pausing.

Then, one can verify by means of Figure 3.19 that the sequence induced by h0 in (G0, P0
0)

is (v1, v2, v1) = s(0).

83

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

(a) (M0, P0
0 |M0) (b) (M0, P0

1 |M0)

(c) (M0, P0
2 |M0) (d) (M0, P0

3 |M0)

Figure 3.19: The partitions of M0 according to s(0) started at (G0, P0
0).

As induction hypothesis (IH1) we assume that hn induces s(n) in (Gn, Pn
0) for an

arbitrary n ∈ N0. Before showing the induction step, we consider some properties of
s(n+ 1) and (Gn+1, Pn+1

0) in comparison to s(n) and (Gn, Pn
0). In Gn+1 no node of the

set M n+1 := {v1, . . . , v4} ⊂ V n+1 has influence on any node vi for i > 4. Recall that the
sequence s(n+ 1) arises from s(n) by increasing the index of all nodes of s(n) by four
and including the sequence t1 after the flips of v5 to white and the sequence t2 after
the flips of v5 to black. Thus, there is a unique function σ : {1, . . . , qn+1} → {1, . . . , qn}
such that s(n+ 1)k1|V n+1\M n+1 = s(n)σ(k)1 for all 1≤ k ≤ qn+1. For σ we have the property
that each node v j for j > 4 has the same color in (Gn+1, Pn+1

k) for any 0≤ k ≤ qn+1 as
v j−4 in (Gn, Pn

σ(k)). Let P ∈ P (V n+1) such that all nodes of the set M n+1 are happy or
pausing in P and Q ∈ P (V n) such that cQ(v j) = cP(v j+4) for all j. Then hn+1(P) = v j+4
if hn(Q) = v j for 1 ≤ j ≤ 12n+ 13 and hn+1(P) = nil if hn(Q) = nil. Consequently, the
induction hypothesis (IH1) implies for each partition Pn+1

i for 0 ≤ i ≤ qn+1 in which
all nodes of M n+1 are happy or pausing that hn+1(P

n+1
i) = wn+1

i+1 if i < qn+1 and that
hn+1(P

n+1
i) = nil if i = qn+1.

Now we show the induction step, i.e., we show that hn+1 induces s(n + 1) in
(Gn+1, Pn+1

0). In particular, we show by induction on j that hn+1(P
n+1
j−1) = wn+1

j for

all 1≤ j ≤ qn+1. For the induction basis, note that in Pn+1
0 all nodes of the set M n+1 are

happy and therefore hn+1(P
n+1
0) = wn+1

1 . As induction hypothesis (IH2) we assume for
an arbitrary 0≤ j < qn+1 that hn+1(P

n+1
k−1) = wn+1

k for all 1≤ k ≤ j.

At first, we show that for the induction step, we can focus on the nodes of M n+1

and the nodes that have influence on them. For this, we consider the case that wn+1
j ∈

V n+1\M n+1. Then each node of M n+1 is either happy or pausing in Pn+1
j−1 since otherwise

h(Pn+1
j−1) ∈ M n+1. Assume that wn+1

j has no influence on a node of M n+1. Then each

node of M n+1 that is happy in Pn+1
j−1 is also happy in Pn+1

j . If v2 is pausing in Pn+1
j−1 then

it is not pausing in Pn+1
j only if no node vk for k > 2 is unhappy in Pn+1

j . Due to (IH1)
the function hn(·) only returns nil at the end of the sequence s(n). The last flip of s(n)
is the flip of v1 ∈ V n to the black color. Recall that the node v1 ∈ V n corresponds to
the node v5 ∈ V n+1. After the flip of v5 to the black color, however, node v4 is unhappy.
Thus, if v2 is pausing in Pn+1

j−1 then it is also pausing in Pn+1
j and therefore it remains to

84

3.7 PSPACE-completeness of the Standard Algorithm Problem

show hn+1(P
n+1
j) = wn+1

j+1 for the cases in which wn+1
j has influence on a node of M n+1

or wn+1
j ∈ M n+1.

The only nodes that are not in M n+1 but have influence on a node of M n+1 are
v4(n+1)+6 and v5. We already know that v4(n+1)+6 does not flip in s(n+ 1) and therefore
wn+1

j 6= v4(n+1)+6. Recall that the flips of the nodes of M n+1 are induced by the sequences

t1 and t2 and that after the execution of t := t1 ◦ t2 the same partition as in Pn+1
0 is

reached for the nodes of M n+1 due to Observation 4.
Since after each of the ten flips of t there is at least one node that flipped an odd

number of times in t, there are ten different partitions of the nodes of M n+1 in s(n+ 1).
Together with the flips of v5 to the white color that precede the corresponding flips of t1
in M n+1 and the flips of v5 to the black color that precede the corresponding flips of t2
we get twelve different partitions Q0, . . . ,Q11 ∈ P (M n+1 ∪ {v5}) in T n+1, i.e., for each
0≤ i ≤ qn+1 there is a 0≤ j ≤ 11 such that Pn+1

i |M n+1∪{v5} =Q j .
The twelve partitions Q0, . . . ,Q11 are depicted in Figure 3.20 where Q0 is the partition

of M+ := M n+1 ∪ {v5} in Pn+1
0 , i.e., Pn+1

0 |M+ = Q0, and partition Q i for i ∈ {1,5}
arises from Q i−1 by flipping v5 and partition Q i for i ∈ {0, . . . , 11} \ {1,5} arises from
Q i−1 mod 12 by flipping the corresponding node of t. As in Figure 3.19 we mark in
(M+,Q i) for 0≤ i ≤ 11 the node that flips between the partitions Q i and Q i+1 mod 12. In
Figure 3.20a and Figure 3.20e the little star is gray—in contrast to the remaining figures
where it is black—to indicate that the (possibly) following flip of v5 is not necessarily the
node that flips next in s(n+ 1) but only the next flip of s(n+ 1)|M+—in the remaining
partitions the node that flips next is the same in s(n+ 1) as in s(n+ 1)|M+ .

By means of Figure 3.20 one can verify that hn+1(P
n+1
j) = wn+1

j+1 as follows: For the

partitions Qk for k ∈ {1, . . . , 11} \ {4} one can verify that hn+1(P
n+1
j) coincides with

the node that flips next in t and therefore in s(n+ 1), i.e., the node marked by the
star. In the partition Q0 all nodes of M n+1 are happy and therefore (IH1) implies that
hn+1(P

n+1
j) = wn+1

j+1 if j < qn+1 and hn+1(P
n+1
j) = nil otherwise. Finally, in P4 the

nodes v1, v3 and v4 are happy and v2 is pausing and therefore, again, (IH1) implies that
hn+1(P

n+1
j) = wn+1

j+1 .
Thus, hn induces the sequence s(n) starting at (Gn, Pn

0). The pivot rule hn is obvi-
ously polynomial-time computable. Consequently, the Enforcing Theorem (i.e., The-
orem 3.5.22) implies that LOCALMAX-CUT has the all-exp property for graphs with
maximum degree four. ut

3.7 PSPACE-completeness of the Standard Algorithm Problem

Theorem 3.7.1 (SAPPSC Theorem). The STANDARDALGORITHMPROBLEM for LOCALMAX-
CUT is PSPACE-complete for graphs with maximum degree four.

Proof. Clearly, the problem is computable in polynomial space. We reduce from the
PSPACE-complete problem of deciding whether a linear bounded automaton M halts for
a given input [24]. A configuration of M for inputs of length n consists of the state of M ,
the position of the head and a string of length n. Thus, the number of configurations of

85

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

(a) (M n+1 ∪ {v5},Q0) (b) (M n+1 ∪ {v5},Q1) (c) (M n+1 ∪ {v5},Q2)

(d) (M n+1 ∪ {v5},Q3) (e) (M n+1 ∪ {v5},Q4) (f) (M n+1 ∪ {v5},Q5)

(g) (M n+1 ∪ {v5},Q6) (h) (M n+1 ∪ {v5},Q7) (i) (M n+1 ∪ {v5},Q8)

(j) (M n+1 ∪ {v5},Q9) (k) (M n+1 ∪ {v5},Q10) (l) (M n+1 ∪ {v5},Q11)

Figure 3.20: The partitions Q i for 0≤ i ≤ 11 of M n+1 ∪ {v5} occurring in T n+1.

M for inputs of length n is bounded by kn for some constant k. We choose m ∈ N such
that 2m−2 ≤ kn < 2m−1 and let b(c) be a bit vector that encodes a configuration c of M .
Moreover, we let ci for i ∈ N0 be the configuration of M after i steps of M where ci = c j
for all j > i if ci is a halting configuration.

We let Cm be the is-exp circuit (see Definition 3.4.3) of length m, add NOT-gates as
depicted in Figure 3.21 to Cm and call the resulting circuit C+. Let G+ = (V+, E+) be

86

3.7 PSPACE-completeness of the Standard Algorithm Problem

the graph that constitutes C+ and V m be the set of nodes that represent the gates of
Cm. For convenience, we use the same name for a node in V+ and the gate of C+ that it
represents—recall that each gate of C+ is represented by exactly one node in V+. We let
yκ for 1≤ κ≤ 3 be the vector (yκ1 , . . . , yκm).

Proof in a nutshell The reduction uses the Enforcing Theorem (i.e., Theorem 3.5.22)
to simulate the steps of M as a sequence of partitions induced in (G+, P0)—see Fig-
ure 3.21—for a partition P0 ∈ P (V+) that is specified later. The decision whether M
halts is made by means of the colors of the nodes of G in the local optimum reached at
the end of the sequence of partitions.

More concretely, for the initial partition P0 of G+ we choose the colors of the nodes of
V m such that they correspond to the initial is-exp partition (see Definition 3.4.3), the
colors of the nodes of x such that each of them is happy, the colors of y3 such that they
encode c0, and the colors of the nodes of y1 and y2 such that the lightest edge incident
to each of its nodes is in the cut. The nodes of y3 are supposed to periodically contain
by means of their colors encoding of the current configuration of M . For this purpose,
we introduce a generalized pivot rule f that performs the simulation of M by means of
the colors of the vector y3 as follows.

The rule f first chooses flips of the nodes of V+ according to the pivot rule hm—see
Algorithm 3.6—until g1 flips for the first time, i.e., it flips to the black color. Then it
selects the nodes x i for 1≤ i ≤ 2m−1 to flip consecutively in ascending order in i—note
that after these flips the nodes x j are white for all odd j. Let c′ be the configuration
of M one step after the configuration c that is encoded by the colors of the nodes of
y3. Then f selects consecutively in ascending order in i those nodes y1

i for 1 ≤ i ≤ m
that would be black if the colors of y1 encoded c′. The partitions arising after this step
will, among others, be called recurring. Then f selects nodes of V m according to hm
until g1 flips back to white. Then it again chooses the nodes of x until all of them are
happy—after that, the nodes x j are black for all odd j. Then it consecutively selects in
ascending order in i the nodes y1

i for 1≤ i ≤ m that would be white if the colors of y1

encoded c′. After that, the vector of colors of y1 in fact encodes c′. Finally, it chooses
the unhappy nodes of y2 and then those of y3 to flip consecutively. Then the vector y3

also encodes c′—the partitions arising after this step will, beside the initial partitions, be
called strictly recurring. This procedure is repeated until there are no unhappy nodes
in V m. Then we can show for the local optimum that is finally reached that the vec-
tor of colors of y3 equals the vector of colors of y1 if and only if M halts if started with c0.

Now we continue with the proof. Let P ∈ P (V n) be a partition in which the colors of
the nodes of y3 encode a configuration c of M . We let d(P) be the vector of the colors of
y3 in P and d+(P) be the bit vector encoding the configuration of M one step after the
configuration that is encoded by d(P). Moreover, for a bit vector z ∈ {0,1}n for n ∈ N
we let zi for 1≤ i ≤ n be the i-th component of z.

Definition 3.7.2. A partition P ∈ P (V+) is called recurring if for all 1≤ i ≤ 2m− 1

• x i is happy in P

87

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

Figure 3.21: Gates of the Boolean circuit C+.

and for all 1≤ i ≤ m

• cP(y2
i) 6= cP(y3

i),

• if cP(g1) = 1 then cP(y1
i) 6= cP(y2

i),

• if cP(g1) = d+i (P) = 0 then cP(y1
i) = 0.

A recurring partition P ∈ P (V+) is called strictly recurring if cP(g1) = 1.

Definition 3.7.3. For a partition P ∈ P (V+), we call yκj for any 1 ≤ j ≤ m, 1 ≤ κ ≤ 3
up-to-date in P if the following conditions are satisfied:

• Case κ= 1: If d+j (P) = cP(g1) = 0 then cP(y1
j) = 0.

• Case κ= 2: If cP(g j) = 1 then y2
j is happy in P.

• Case κ= 3: y3
j is happy in P.

Otherwise we call yκi outdated.

We choose the partition P0 ∈ P (V+) such that it satisfies the following four conditions:

• cP0
(v) = cPm

0
(v) for all v ∈ V m where Pm

0 is the initial is-exp partition of V m.

• d(P0) = b(c0).

• x i is happy for all 1≤ i ≤ 2m− 1.

• cP0
(y1

i) 6= cP0
(y2

i) 6= cP0
(y3

i) for all 1≤ i ≤ 2m− 1.

Now we introduce a generalized pivot rule f for the graph G+ whose purpose is for each
step of M to successively change the colors of the nodes of V+ such that the colors of
the nodes of the vector y3 encode the configuration of M after the corresponding step.
The generalized pivot rule f is presented in Algorithm 3.7. It makes use of the pivot rule
hm as introduced in Algorithm 3.6.

In the rest of the proof we make use of the invariant in Lemma 3.7.4.

88

3.7 PSPACE-completeness of the Standard Algorithm Problem

Input: Partition Q ∈ P (V+) for graph G+

Output: An element of the set V+ ∪ {nil}
1: if Q is locally optimal for G+ then
2: return nil
3: else
4: if Q is recurring then
5: return hm(Q|V m)
6: else
7: if ∃x i for 1≤ i ≤ 2m− 1 that is unhappy in Q then
8: return x i with smallest i that is unhappy
9: else

10: if ∃yκi for 1≤ i ≤ m, 1≤ κ≤ 3 that is outdated in Q then
11: return yκi with smallest m ·κ+ i that is outdated
12: else
13: return nil

Algorithm 3.7: The generalized pivot rule f .

Lemma 3.7.4. Let s := (w1, . . . , wq) for q ∈ N, w j ∈ V+ for all 1≤ j ≤ q be the sequence
of improving flips induced by the generalized pivot rule f starting at (G+, P0) and 0≤ i ≤ q
be such that the following conditions are satisfied:

• Pi is strictly recurring.

• d(Pi) = b(cr) for some r ∈ N0.

• g1 flips k times in si
1 for 0≤ k ≤ 2m− 2.

Then there is an index i < j ≤ q such that the following conditions are satisfied:

• Pj is strictly recurring.

• d(Pj) = b(cr+1).

• g1 flips k+ 2 times in s j
1.

Proof. The argumentation is divided into nine steps, namely Step1–Step8.

Step1 Since g1 flips k times in si
1 for 0 ≤ k ≤ 2m − 2, not all nodes of Vm are happy in

Pi—recall that we showed in the proof for Theorem 3.6.1 that hn induces 2m flips
in Vm. Then, since Pi is strictly recurring, the generalized pivot rule f chooses
nodes of V m as long as g1 did not yet flip to white in sq

i according to line 5 of
Algorithm 3.7.

Step2 After the first flip of g1 in s the resulting partition is not recurring anymore since
x1 is unhappy then. Then the function f chooses the nodes x i for 1≤ i ≤ 2m− 1

89

Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

to flip in ascending order in i according to line 8 of Algorithm 3.7 until all of them
are happy.

Step3 When x i is happy for all i then f chooses those nodes of y1
i for 1≤ i ≤ m to flip

in ascending order in i for which di(P) 6= cP(y3
i) = 0 according to line 11 where P

is the corresponding partition—note that the flips of the nodes y1
i that satisfy this

condition are in fact improving since the nodes that have influence on them, i.e.,
the nodes x j for odd 1≤ j ≤ 2m− 1 are white. After the flips of the nodes y1

i for
the corresponding i, the resulting partition is recurring again.

Step4 As in Step1, the generalized pivot rule f chooses flips of the nodes of V m according
to hm until g1 flips back to black whereafter the resulting partition is not recurring
anymore.

Step5 As in Step2, the nodes x i for all 1 ≤ i ≤ 2m− 1 flip exactly once in ascending
order in i.

Step6 Similarly to Step3, f chooses that nodes of y1
i for 1≤ i ≤ m in ascending order for

the next flips for which di(P) 6= cP(y3
i) = 1 for the corresponding partition P. After

these flips, the colors of the nodes of the vector y1 encode the next configuration
cr+1 of M with respect to the configuration encoded by the colors of the nodes of
y3, i.e., cr .

Step7 f chooses the unhappy nodes y2
i for all 1≤ i ≤ m in ascending order in i for the

next flips according to line 11 of Algorithm 3.7. Then the colors of the nodes y2
i

for all i correspond to the bitwise complement of the encoding of cr+1.

Step8 f lets the unhappy nodes y3
i for all 1 ≤ i ≤ m flip according to, again, line

11 whereafter the colors of the nodes of y3 correspond to the encoding of the
configuration cr+1 and the resulting partition is strictly recurring again. ut

By definition, P0 is strictly recurring and in s0
1, i.e., the empty sequence, node g1 does

not flip. Then Lemma 3.7.4 implies for the sequence s induced by f starting at (G+, P0)
the following two conditions:

• Node g1 flips 2m times in s.

• In the partition P after the 2k-th flip of g1 in s for any 0 ≤ k ≤ 2m−1 we have
d(P) = ck.

Since node g1 flips 2m times in s, all nodes of V m are happy in P which implies
f (P) = nil according to line 5 of Algorithm 3.7.

Recall that if ci for any i ∈ N0 is a halting configuration then ci = c j for all j > i.
Since f is polynomial-time computable, the Enforcing Theorem (i.e., Theorem 3.5.22)
implies that one can compute in polynomial time a graph G = (V, E) with V+ ⊆ V and a
partition P ∈ P (V) for which P|V+ = P+ such that for any sequence t of improving flips
starting at (G, P) we have t|V+ = s. Thus, for the local optimum Q ∈ P (V) reached at

90

3.7 PSPACE-completeness of the Standard Algorithm Problem

the end of the sequence t starting at (G, P), we have Q|V+ = Pq. Consequently, node y3
i

for any 1≤ i ≤ m has the same color in Q as in Pq and therefore the vector of the colors
of y3 in Q encodes the configuration c2m−1 . Therefore, if c2m−1 is a halting configuration
then M halts if started with c0 and if c2m−1 is not a halting configuration then M does not
halt since at least one configuration occurs at least twice in the sequence of partitions
induced by s in (G+, P+) due to 2m−1 > cn. Thus, the colors of the nodes y3

i for all i in
Q encode a halting configuration of M if and only if M halts if started with c0. ut

91

Chapter 4

Complexity of Local Max-Cut:
Maximum Degree Five

4.1 Overview of Contribution

At first, we introduce a technique by which we substitute graphs whose nodes of degree
greater than five have a certain type—we will call these nodes comparing—by graphs
of maximum degree five. For the graphs arising by this substitution, we show that in
local optima that have a certain property the nodes of the subgraphs that substitute the
comparing nodes have unique colors, i.e. the Substituting Lemma (Lemma 4.3.3). In
particular, those nodes of the subgraph substituting a comparing node v that are adjacent
to nodes of the original graph all have the same color. Namely, they have the color that
v had in the corresponding partition of the original graph if it was happy. Thus, from
the viewpoint of the nodes that are adjacent to v in the original graph, the nodes of
the subgraph substituting v behave in certain local optima of the extended graph as the
single node v in the original graph.

Then we prove the PLS-completeness of computing a local optimum of MAX-CUT

on graphs with maximum degree five by reducing from the PLS-complete problem
CIRCUITFLIP. In a nutshell, we map instances of CIRCUITFLIP to graphs of degree greater
than five. Some parts of the graphs are adjustments of subgraphs of the PLS-completeness
proof of Schäffer and Yannakakis [54]. Then, using the Substituting Lemma, we show
that local optima for these graphs induce local optima in the corresponding instances of
CIRCUITFLIP.

4.2 Usage of the P-hardness Reduction

In our technique, as well as in the PLS-completeness proof, we make use of the Consti-
tuting Theorem (in particular of Theorem 3.3.1(ii)). The graph G f , as introduced in the
said proof, can be constructed in logarithmic space and thus polynomial time for any
polynomial-time computable function f . In the rest of the chapter we use the graph G f
for several functions f and we will scale the weights of its edges. Then the edges of G f
give incentives of appropriate weight to certain nodes of the graphs to which we add
G f . The incentives bias the nodes to take the colors induced by f . We already point out
that for any node v we will introduce at most one subgraph that biases v. However, we

93

Chapter 4 Complexity of Local Max-Cut: Maximum Degree Five

sometimes introduce more than one subgraph that looks at a node v. For an overview
see Figure 4.1.

Figure 4.1: Subgraph B f biases v and subgraphs L f1 , . . . , L fn
look at v.

In Figure 4.1, there is a subgraph B f that looks at a subset of the nodes of the given
graph and biases v, possibly among other nodes, according to the function f . Moreover,
there are subgraphs L f1 , . . . , L fn

that look at v, possibly among other nodes as well, and
bias some further nodes according to the functions f1, . . . , fn. Finally, there are nodes
u1, . . . , um adjacent to v that are not contained in any subgraph that biases v or looks
at v. The relations of the weights of the edges incident to v will be such that b < ai for
all 1 ≤ i ≤ m and b >

∑n
i=1 ci. If there is no subgraph that biases v then we will have

a j >
∑n

i=1 ci for all 1≤ j ≤ m.

4.3 Substituting Certain Nodes of Unbounded Degree

The following definition introduces a notation for a family of (sub-)graphs and a notation
for a factor that is related to the weights of the edges of the corresponding (sub-)graph.
The (sub-)graphs and their factors are needed for the subsequent definition of comparing
nodes.

Definition 4.3.1. Let G = (V, E) be a graph. For n ∈ N we let B(n) be an arbitrary but
fixed subgraph of G that looks at a node v ∈ V and biases nodes u1, . . . , u4n−1 ∈ V in
the following way. The nodes u1, . . . , u2n are biased to the opposite color of v and the
nodes u2n+1, . . . , u4n−1 are biased to the same color as v (a possible implementation of B(n)
is a binary tree with appropriate edge weights, where v is the root and the nodes ui for
1≤ i ≤ 4n− 1 are leaves of appropriate height). Let wmax be the maximum weight of all
edges of B(n) and wmin be the corresponding minimum. Then we call b(n) := wmax/wmin.

Definition 4.3.2. Let G = (V, E) be a graph. A node v ∈ V—see Figure 4.2—is called
comparing if there is an m ∈ N with m≥ 3 such that the following conditions are satisfied:

i) v is adjacent to nodes u j
i , bn(v) ∈ V \{v} for 1≤ j ≤ m, 1≤ j ≤ 2 with edge weights

w({u j
i , v}) = ai, w({bn(v), v}) = δ for ai ,δ ∈ Q>0 and optionally to a node ln(v)

with edge weight w({ln(v), v}) = ε for ε ∈Q>0.

94

4.3 Substituting Certain Nodes of Unbounded Degree

ii) ai ≥ 2ai+1 for all 1≤ i < m and am ≥ 2δ.

iii) If v is adjacent to ln(v) then δ > b(m) · ε.

For u j
i with 1≤ i ≤ m, 1≤ j ≤ 2 we call the node uk

i with 1≤ k ≤ 2 and k 6= j adjacent to
v via the unique edge with the same weight as {u j

i , v} the counterpart of u j
i with respect

to v. The nodes u j
i for all i, j and the node ln(v)—should it be adjacent to v—are called

receiving nodes of v.

Figure 4.2: Node v is a comparing node.

Comment The name comparing node stems from its behavior in local optima. If we
treat the colors of the neighbors u1

1, . . . , u1
m of v as a binary number a, where u1

1 is the
most significant bit, and the colors of u2

1, . . . , u2
m as the bitwise complement of a binary

number b, then, in a local optimum, the comparing node v is white if a > b, it is black if
a < b, and if a = b then v has the opposite color of bn(v). In this way, the color of v
“compares” a and b in local optima.

Figure 4.3: The gadget that substitutes a comparing node v.

In the following, we let G = (V, E) be a graph and v ∈ V be a comparing node with
adjacent nodes and incident edges as in Figure 4.2. We say that we degrade v if we
remove v and its incident edges and add the following nodes and edges. We introduce
nodes vk

i, j(v) for 1 ≤ i < m, 1 ≤ j ≤ 2,1 ≤ k ≤ 2, nodes vk
m,1(v) for 1 ≤ k ≤ 2 and

v1
m,2(v). For the purpose of succinctness, we may omit the attached expression “(v)” if

95

Chapter 4 Complexity of Local Max-Cut: Maximum Degree Five

it is clear from the context which comparing node is substituted. The edges and their
corresponding weights are as depicted in Figure 4.3—the nodes u j

i in Figure 4.3 have
gray circumcircles to indicate that they, in contrast to the other nodes, also occur in G.
Furthermore, we add the subgraph B(m) that looks at u and biases all nodes vk

i,1 to the
opposite of the color of u (this is illustrated by short gray edges in Figure 4.3) and the
nodes vk

i,2 to the color of u (short gray dashed edges). The weights of the edges of B(m)
are scaled such that the unique edge of B(m) incident to u has the weight δ—this edge
is depicted in Figure 4.2. We let D(G) = (D(V), D(E)) be the graph arising from G by
iteratively degrading all comparing nodes of G.

Now we introduce several notations for partitions P ∈ P (D(V)) that encapsulate
properties of the nodes that substitute v in D(V). We say that v is weakly indifferent
in P if cP(u1

i) 6= cP(u2
i) for all 1 ≤ i ≤ m. If v is not weakly indifferent in P then

we call the two nodes u1
i , u2

i adjacent to v via the edges with highest weight for which
cP(u1

i) = cP(u2
i) the decisive neighbors of v in P. We let Vcom ⊆ V be the set of comparing

nodes of V and colP : Vcom→ {0,1} be the partial function defined by

colP(v) =

(

0, if cP(v
j
i,1) = 0 for all i, j.

1, if cP(v
j
i,1) = 1 for all i, j.

We say that v has the color κ ∈ {0,1} if colP(v) = κ. Moreover, we say that v is
guided in P if v is weakly indifferent in P or v is not weakly indifferent and bn(v) has
the same color as the decisive neighbors of v in P.

Lemma 4.3.3 (Substituting Lemma). Let G = (V, E) be a graph and P ∈ P (D(G)) be
a local optimum in which each comparing node is guided. Then for each comparing node
v ∈ V we have

colP(v) 6= cP(bn(v)).

Comment Note the restriction that in the local optimum P, node v is guided. In the
proof of the Completeness Theorem (i.e., Theorem 4.4.2) every comparing node v is
designed to be guided in every local optimum. Then we can use the Substituting Lemma
to argue about colP(v) in D(G). Moreover, let S(v) be the set containing the nodes v i

j,1
for all i, j. The property colP(v) 6= cP(bn(v)) implies that all nodes of S(v) have the
same color in P, namely colP(v). Thus, from the viewpoint of the receiving nodes of v,
the property means that the nodes of S(v) behave in P as a single node.

Proof (of Lemma 4.3.3). Let v ∈ V be an arbitrary comparing node with adjacent nodes
and incident edges as depicted in Figure 4.2. In the following, we show for a local
optimum P ∈ P D(V) that colP(v) 6= cP(bn(v))—see Figure 4.3. Then we get colP(w) 6=
cP(bn(w)) for all comparing nodes w ∈ V since v is chosen arbitrarily.

Let κ := cP(bn(v)). For all i, j we call the color of v i
j,1 correct if cP(v i

j,1) = κ and we

call the color of v i
j,2 correct if cP(v i

j,2) = κ. Moreover, we call v i
j,k correct for any i, j, k if

it has its correct color.
Each node vk

i, j is biased by an edge with weight lower than δ to its correct color.

Moreover, the edge {ln(v), v1
1,1}, if existing, weighs less than all other edges incident to

96

4.3 Substituting Certain Nodes of Unbounded Degree

v1
1,1 due to δ > b(m) · ε. Therefore, to show that a node vk

i, j for any i, j, k is correct in
the local optimum P, it suffices to show that it gains at least half of the sum of weights
of the incident edges with weight greater than δ if it is correct. We prove the Theorem
by means of the following Lemmas which are each proven via straightforward inductive
arguments.

Lemma 4.3.4. Let q ≤ m and cP(u1
i) = κ for all i ≤ q. Then v1

i,1 and v1
i,2 are correct for

all i ≤ q.

Proof. We prove the claim by induction on i. Due to cP(u1
1) = κ we get the correctness

of v1
1,1—recall that the edge {ln(v), v1

1,1}, if existing, weighs less than all other edges
incident to v1

1,1. For each i ≤ q the correctness of v1
i,1 implies the correctness of v1

i,2.
Moreover, for each i < q, the correctness of v1

i,2 together with cP(u1
i+1) = κ implies the

correctness of v1
i+1,1. ut

Lemma 4.3.5. Let q ≤ m, node v1
i,1 and v1

i,2 be correct for all i ≤ q and v2
q,1 be correct.

Then v2
i,1 and v2

i,2 are correct for all i < q.

Proof. We prove the claim by induction on i. Node v2
q,1 and v1

q,1 are correct by assumption.
For each i < q, node v2

i,2 is correct if v2
i+1,1 is correct since v1

i+1,1 is correct by assumption.
Moreover, for each 1< i < q, node v2

i,1 is correct if v2
i,2 is correct since v1

i−1,2 is correct by
assumption. Finally, node v2

1,1 is correct if v2
1,2 is correct. ut

Lemma 4.3.6. Let q ≤ m. If v1
q,1 and v2

q,1 are correct then vk
i, j is correct for any j, k and

q ≤ i ≤ m.

Proof. If q = m then the correctness of v1
m,1 implies the correctness of v1

m,2. The case
q < m is done by induction on i. Node v1

q,1 and v2
q,1 are correct by assumption. Assume

that v1
i,1 and v2

i,1 are correct for an arbitrary q ≤ i < m. Then the nodes v1
i,2 and v2

i,2 are
correct whereafter the correctness of v1

i+1,1 and v2
i+1,1 follows. Finally, the correctness of

v1
m,1 implies the correctness of v1

m,2. ut

We first consider the case that v is weakly indifferent. Then, for each i, at least one of
the nodes u1

i and u2
i has the color κ. Due to the symmetry between the nodes v1

i, j and v2
i, j

we may assume without loss of generality that cP(u1
i) = κ for all i. Then Lemma 4.3.4

implies that v1
i,1 and v1

i,2 are correct for all i. Then the correctness of v1
m,2 and v1

m−1,2

together imply the correctness of v2
m,1. Then Lemma 4.3.5 implies the correctness of v2

i,1

and v2
i,2 for all i < m.

Now assume that v is not weakly indifferent and let u1
q and u2

q be the decisive neighbors
of v. As in the previous case we assume without loss of generality that cP(u1

i) = κ for all
i ≤ q. Then, due to Lemma 4.3.4, node v1

i,1 and v1
i,2 are correct for all i ≤ q. If q = 1 then

c(u2
1) = κ implies the correctness of v2

1,1. On the other hand, if q > 1 then the correctness

97

Chapter 4 Complexity of Local Max-Cut: Maximum Degree Five

of v1
q−1,2 and c(u2

q) = κ together imply the correctness of v2
q,1. Then Lemma 4.3.5 implies

the correctness of v2
i,1 and v2

i,2 for all i < q. Finally, Lemma 4.3.6 implies the correctness

of vk
i, j for all j, k and q ≤ i ≤ m. ut

4.4 PLS-completeness

Our reduction is based on the following PLS-complete problem CIRCUITFLIP (in [30] it is
called FLIP, which we avoid in this thesis since the neighborhood of LOCALMAX-CUT has
the same name).

Definition 4.4.1 ([30]). An instance of CIRCUITFLIP is a Boolean circuit C with n input
bits and m output bits. A feasible solution of CIRCUITFLIP is a vector v ∈ {0,1}n of input
bits for C and the value of a solution is the output of C treated as a binary number. Two
solutions are neighbors if they differ in exactly one bit. The objective is to maximize the
output of C.

Theorem 4.4.2 (Completeness Theorem). LOCALMAX-CUT is PLS-complete for graphs
with maximum degree five.

Proof. We reduce from the PLS-complete problem CIRCUITFLIP. Let C be an instance of
CIRCUITFLIP with input links X1, . . . , Xn, outputs links C1, . . . , Cm and gates GN , . . . , G1.
For the sake of simplicity, we let Gi also denote as the output of gate Gi . The two inputs
of a gate Gi are denoted by I1(Gi) and I2(Gi). Without loss of generality, we make the
following five assumptions. First, all gates are NOR-gates with a fan-in of two (this
assumption can be made due to Proposition 2.4.3) and are topologically sorted such
that i > j if Gi is an input of G j. Second, the gates G1, . . . , Gm compute the output of
C where Gm is the most significant bit and Gm+1, . . . , G2m compute the corresponding
negations of the output bits. Third, the gates G2m+1, . . . , G2m+n and G2m+n+1, . . . , G2m+2n
return the same better neighbor solution if there is one and return the input of X1, . . . , Xn
otherwise. The following two assumptions are made to simplify technical matters. Fourth,
I1(Gi) = I2(Gi) = X i for all N − n+ 1 ≤ i ≤ N . Fifth and finally, I j(Gi) 6= Xk for all
1≤ j ≤ 2, 1≤ k ≤ n and 1≤ i ≤ N − n.

In the following, we describe a graph GC = (VC , EC) that contains only nodes of
maximum degree five. In our description for GC = (VC , EC), we introduce several
comparing nodes of degree greater than five. However, we assume that the graph
GC = (VC , EC) is obtained by iteratively degrading the comparing nodes whereby we get
a maximum degree of five for GC . The proof will show two properties for local optima
P ∈ P (VC). First, every comparing node v is guided in P. Then the Substituting Lemma
(i.e., Lemma 4.3.3) implies colP(v) 6= cP(bn(v)). Second, the colors of the nodes of GC
induce a local optimum for C .

The graph GC consists of two isomorphic subgraphs G0
C , G1

C representing copies of
C—the overall structure of the proof is inspired by Krentel [39]. For each gate Gi in C
there is a subgraph Sκi for κ ∈ {0,1} in GC . The subgraphs Sκi are taken from Schäffer
and Yannakakis [54] and adjusted such that they have maximum degree five without

98

4.4 PLS-completeness

changing local optima. In particular, each Sκi contains a comparing node gκi whose color
corresponds to the output of Gi .

We introduce nodes xκi for 1 ≤ i ≤ n and call them the input nodes of GκC . For
1 ≤ i ≤ N − n, i < j ≤ N , 1 ≤ k ≤ 2 we let Ik(gκi) := gκj if G j = Ik(Gi) in C and for
N − n+ 1 ≤ i ≤ N , 1 ≤ j ≤ 2 we let I j(gκi) := xκi−N+n. We let wκi,1 := gκ2m+i , wκi,2 :=
gκ2m+n+i for 1≤ i ≤ n and ĝκi := gκm+i for 1≤ i ≤ m. Moreover, we let wκj for 1≤ j ≤ 2
be the vector of nodes induced by wκi, j for 1≤ i ≤ m. Each subgraph GκC contains nodes
yκi , zκi for 0≤ i ≤ 2N + 1 which induce vectors yκ and zκ.

For a partition P ∈ P (VC) and κ ∈ {0,1} we let CP(xκ) be the output of C on input
cP(xκ) and wP(xκ) be the better neighbor computed by C on input cP(xκ). If the
partition is clear from the context then we omit the subscript indicating the partition.
We call the subgraph G0

C the winner and the subgraph G1
C the loser if C(x0) ≥ C(x1),

otherwise we call G0
C the loser and G1

C the winner.

The proof in a nutshell: We show that the colors of the nodes of the subgraphs Sκi , in
local optima, either correspond to the correct outputs of NOR-gates or have a reset state,
i.e., a state in which each input node of Sκi is indifferent with respect to its neighbors in
Sκi . For each κ ∈ {0,1} we have a subgraph Tκ that looks at nodes that have, in local
optima, the same colors as the nodes wκi,1 and wκi,2 for 1 ≤ i ≤ n, i.e., the nodes that
correspond to the gates that return the improving neighbor with respect to the given
input, and biases each input node of GκC to the color of its corresponding wκi,1 and wκi,2.
Finally, we have a subgraph that looks at the input nodes of G0

C , G1
C , decides whose input

results in a greater output with respect to C , and biases the subgraphs Sκi of the winner
to behave like NOR-gates and the subgraphs of the loser to take the reset state. Then we
show that the colors of the subgraphs Sκi of the winner GκC for κ ∈ {0,1} in fact reflect
the correct outputs with respect to the colors of their inputs and that the input nodes
of the loser in fact are indifferent with respect to their neighbors in the subgraphs Sκi .
Then, due to the bias of Tκ, the input nodes of the loser take the colors of the improving
neighbor computed by the winner whereafter the loser becomes the new winner. Hence,
the improving solutions switch back and forth between the two copies until the colors of
the vectors of nodes of x0 correspond to a local optimum for C . This finishes the “in a
nutshell” description of the proof.

We introduce the nodes and edges of GC via what we call components. A component
of GC is a tupel (V ′C , E′C) with V ′C ⊆ VC and E′C ⊆ EC . The components of GC have fifteen
types: Type 1 up to Type 15, where we say that the nodes, edges and weights of the
edges of the components have the same types as their corresponding components. We
explicitly state weights for the edges of Type 2 up to Type 7. However, the weights of
these components are stated only to indicate the relations between edge weights of the
same type. The only edge weights that interleave between two different types are those
of Type 3 and Type 4. The edges of Type 3 and Type 4 are scaled by the same number.
For all other types we assume that their weights are scaled such that the weight of an
edge of a given type is greater than eight times the sum of the weights of the edges of

99

Chapter 4 Complexity of Local Max-Cut: Maximum Degree Five

higher types combined. Note that for these types, a lower type implies a higher edge
weight. Moreover, we assume that the weights of the edges of Type 9 and higher are
scaled such that each edge of one of these types is by the factor 8 · b(4) smaller than any
edge of Type 1 up to Type 8—for the definition of the function b(·) see Definition 4.3.1.
To distinguish between the meaning of the explicitly stated edge weights and the final
edge weights, i.e., the weights resulting by the scale, we call the explicitly stated weights
relative edge weights.

The components of Type 9 up to Type 15 are subgraphs that look at certain nodes and
bias other nodes. To some nodes more than one subgraph looks at. We assume that the
component of the lowest type which looks at such a node v not only biases the nodes of
which we state that it biases them but also biases extra nodes v′1, . . . , v′k, for k ∈ N great
enough to the same color as v, and the components of higher types look at v′1, . . . , v′k
instead of the original nodes. In this way, it is ensured that to any node v to which more
than one subgraph looks at, only one edge is incident that is an edge of the subgraphs
that look at v.

The components of some types are introduced via drawings. In the drawings, the
thick black edges and the nodes with black circumcircles are nodes counted among the
components of the introduced type. Gray edges and nodes with gray circumcircles are of
a different type than the component introduced in the corresponding drawing and are
only (re-)drawn to simplify the verification of the proofs for the reader—in particular,
the condition that each node is of maximum degree five. For comparing nodes, we only
redraw such edges in the component in which the corresponding comparing node is
introduced—these nodes have a degree that is greater than five anyway. If for a gray
edge there is no explicit relative weight given, then the edge is among the types 8− 14.
If a gray edge is dotted then it is of higher type than the non-dotted gray edges of the
same drawing. If a node has a black or a white filling then it is of Type 1. These nodes
are also (re-)drawn in components for Types higher than 1.

Type 1 contains nodes s, t which are connected by an edge whose weight is greater than
the sum of the weights of all other edges in EC . Assume without loss of generality
c(s) = 0 and let S and T be the sets of nodes representing the constants 0 and 1.
The component looks at s and biases the nodes of S to the color of s and the nodes
of T to the opposite. In the following, we assume for each constant introduced
in components of higher types, there is a separate node in the sets S, T . In the
drawings that introduce the following components, nodes with a white filling are
in the set S and nodes with a black filling are in T .

Comment Type 1 is to provide the constants 0 and 1 for the components of higher
type.

Type 2 contains the nodes d0, d1, u0, u1—we will see later that d0 and d1 are comparing
nodes—with edges and relative weights as depicted in Figure 4.4.

Comment The purpose of the edges of Type 2 is—together with the edges of
Type 10 and Type 11—to guarantee that d0 and d1 are not both black in local

100

4.4 PLS-completeness

Figure 4.4: The component of Type 2,

optima. We will see in Lemma 4.4.4 that the nodes d0 and d1 are comparing
nodes.

Type 3 consists of subgraphs Sκi which are to represent the gates Gi of C—see Figure 4.5.
We call the edges {gκi , uκi, j} for all 1≤ i ≤ N , j ∈ {2, 3, 6, 7, 10, 11} corresponding
to gκi .

Comment The nodes d0, d1, gκi (and I j(gκi), respectively) and xκi are the only
nodes which have a degree greater than five—we will see later that they are
comparing. The components of Type 3 to Type 7 are to represent the two subgraphs
G0

C and G1
C . The components are very similar to certain clauses of [54]. There are

three differences between our components and their clauses. First, we omit some
nodes and edges to obtain a maximum degree of five for all nodes unequal to gκi ,
I1(gκi) and I2(gκi) for 1≤ i ≤ N . Second, we use different edge weights. However,
the weights are manipulated in a way such that the happiness of each node for
given colors of the corresponding adjacent nodes is the same as in [54]. Third, we
add nodes that we bias and which we look at. Their purpose is to derive the color
that a comparing node gκi would have in a local optimum. To this color node gκi is
biased.

Type 4 is depicted in Figure 4.6. As in [54] we say that the natural value of the nodes
yκi is 1 and the natural value of the nodes zκi is 0.

Comment Type 4 checks whether the outputs of the gates represented by the com-
ponents of Type 3 are correct and gives incentives to nodes of other components
depending on the result. The nodes yκN+1, zκN+1, . . . , yκ2 , zκ2 check the correct compu-
tation of the corresponding gates and give incentives to their corresponding gates
depending on whether the previous gates are correct. The nodes yκ1 , zκ1 , yκ0 , zκ0 are
to give incentives to d0, d1 depending on whether all gates are correct. Recall that
the weights of the edges of Type 4 are the only weights that interleave with weights
of edges of a higher type, namely with those of Type 3. For further comments, see
comment of Type 3.

Type 5 contains the nodes and edges depicted in Figure 4.7 for 1≤ i ≤ m and the nodes
and edges depicted in Figure 4.8.

Comment The aim of the component is twofold. On the one hand it is to incite
that one of the nodes d0 and d1 to become black for which the output of the
corresponding copy G0

C and G1
C is smaller and the other one to become white. On

101

Chapter 4 Complexity of Local Max-Cut: Maximum Degree Five

Figure 4.5: The components of Type 3; 1≤ i ≤ N . Extra factor for relative edge weights:
212i−2.

the other hand, the edges {1, d0}, {1, d0}, {0, d1} and {0, d1} are to break the tie
in favor of G0

C if the outputs of G0
C and G1

C are equal. For further comments, see
comment of Type 3.

Type 6 contains nodes and edges as depicted in Figure 4.9.

102

4.4 PLS-completeness

Figure 4.6: The components of Type 4.

Figure 4.7: First part of the components of Type 5; 1≤ i ≤ m.

Comment The edges {d̂κi , dκ} for 1≤ i ≤ n are to ensure that col(dκ) 6= c(d̂κi) for
all i and the edges {1, dκ} for 1≤ i ≤ n are needed to make dκ a comparing node.
For further comments, see comment of Type 3.

Type 7 is depicted in Figure 4.10.

Comment Type 7 is to incite the nodes of the vector λκ to take the color correspond-
ing to the better neighbor computed by GκC if col(dκ) = 0 and col(wκi,1) = col(wκi,2).
On the other hand, if col(dκ) = 1 then the component incites the nodes θκi,1 and
θκi,2 to have the opposite color of ηκi whereafter a flip of a node wκi, j for 1≤ j ≤ 2
does not decrease the cut by a weight of Type 7. For further comments, see
comment of Type 3.

Type 8 looks for each 1 ≤ i ≤ n at the nodes λκi , ακN−n+i,1, ακN−n+i,2, σκN−n+i,1 and
σκN−n+i,2 and biases xκi as follows. The component computes whether xκi is weakly

Figure 4.8: Second part of the components of Type 5.

103

Chapter 4 Complexity of Local Max-Cut: Maximum Degree Five

Figure 4.9: The component of Type 6;1≤ i ≤ n.

Figure 4.10: The components of Type 7; 1≤ i ≤ n.

indifferent and it computes the color ρ ∈ {0, 1} node xκi would have if it were not
weakly indifferent. The component biases xκi to ρ if it is not weakly indifferent
and to the color of λκi otherwise.

Comment As we will see in Lemma 4.4.4, the nodes xκi are comparing nodes.
Thus, we have to ensure that in every local optimum P, node xκi is guided. For
this purpose, the component of Type 8 looks at all nodes that are adjacent to xκi —
except the constants—and biases it appropriately if it is not weakly indifferent.
However, if it is weakly indifferent then it is biased to the color of λκi . As we will
see later, xκi is weakly indifferent when the subgraph GκC is supposed to take the
improving neighbor computed by GκC as its input. In this case, the nodes of the
vector λκ have the colors corresponding to the improving neighbor. Then the bias
of Type 8 ensures that, due to the weak indifference of the nodes of xκ, the nodes
xκ also take the colors corresponding to the improving neighbor.

Type 9 looks at the vectors x0, x1 of nodes representing the inputs of GC
0 and GC

1 and at
the vectors λ0, λ1 and biases the vectors y0, z0, y1 and z1 in the following way.
The nodes y0

i , z0
i for all 0 ≤ i ≤ 2N + 1 are biased to their unnatural value, as

defined in Type 4, if C(x0) < C(x1), w(x1) = c(λ0) and c(λ0) 6= col(x0), and to
their natural value otherwise. Similarly, y1

i , z1
i are biased to their unnatural value

if C(x0)≥ C(x1), w(x0) = c(λ1) and c(λ1) 6= col(x1), and to their natural value
otherwise.

Comment The comparison between C(x0) and C(x1) is used to decide which
circuit is the winner and which one is the loser, and the consideration of the colors
of the other nodes is to avoid certain troublemaking local optima. The nodes xκi
are the only comparing nodes to which a subgraph, namely Type 9, looks at.

Type 10 looks at y0
1 , y1

1 and at the vectors x0 and x1 and biases u0 and u1 as follows.

104

4.4 PLS-completeness

If C(x0) ≥ C(x1) then it biases u0 to the color of y0
1 and u1 to the opposite.

Otherwise it biases u1 to the color of y1
1 and u0 to the opposite.

Comment The idea behind the components of Type 10 and Type 11 is as follows. In
any local optimum, we want for the nodes d0 and d1 at most one to be black. The
natural idea to reach this is to use a simple edge between them in the component
of Type 2 (see Figure 4.4) without the intermediate nodes u0 and u1. Recall that
we have to ensure that the comparing node dκ is biased to the color that it has in
a local optimum. For this, we need to know the colors of the neighbors adjacent to
dκ via the edges of the highest weight, which includes the color of dκ. But biasing
dκ analogously needs the information about the color of dκ. To solve this problem,
we introduce the intermediate nodes u0 and u1, bias them appropriately and use
their colors to bias d0 and d1.

Type 11 looks at u0, u1, y0
1 , y1

1 and at the vectors x0 and x1 and biases d0 and d1 as
follows. If c(y0

1) = c(y1
1) = 0 then d0 is biased to the color of u1 and d1 to the

color of u0. If c(y0
1) 6= c(y1

1) then d0 is biased to the color of y1
1 and d1 to the

opposite. If c(y0
1) = c(y1

1) = 1 then we distinguish two cases. If C(x0) ≥ C(x1)
then d0 is biased to 0 and d1 to 1, otherwise d0 to 1 and d1 to 0.

Comment See comment of Type 10.

Type 12 looks at yκ2i+1 for 1 ≤ i ≤ N and biases ακi,1, ακi,2, γκi,1, γκi,2, βκi,3,τκi,1, τκi,2 and φκi
to the color of yκ2i+1 and βκi,1,βκi,2,γκi,3,σκi,1,σκi,2, πκi , δκi,1 and δκi,2 to the opposite.

Comment Type 12 is to bias the nodes of Type 3 to certain preferred colors
depending on whether yκ2i+1 has its natural value. If it has its natural value then it
biases the subgraph Sκi to colors which reflect the behavior of a NOR-gate for Sκi ,
otherwise it biases them such that the input nodes I1(gκi) and I2(gκi) are indifferent
with respect to their neighbors in Sκi .

Type 13 looks at yκ2i+1, yκ2i−1,ακi,1 and ακi,2 and biases uκi,1, uκi,3, uκi,5, uκi,7, uκi,10, uκi,12 to white
and uκi,2, uκi,4, uκi,6, uκi,8, uκi,9, uκi,11 to black if c(yκ2i+1) = c(yκ2i−1). Otherwise, uκi,3,
uκi,4, uκi,7, uκi,8, uκi,11, uκi,12 are biased to their corresponding opposite and the biases
of the remaining nodes split into the following cases. Node uκi,1 is biased to c(ακi,1)
and uκi,2 to the opposite. Similarly, uκi,5 is biased to c(ακi,2) and uκi,6 to the opposite.
Finally, uκi,9 is biased to c(ακi,2)∧ c(ακi,2) and uκi,10 to the opposite.

Comment The aim of the components of Type 13 up to Type 15 is to bias every
comparing node gκi such that it is guided in every local optimum P. To reach this,
we need to know the colors of the nodes adjacent to gκi . Thus, we introduce—
similarly as in the component of Type 2—extra nodes uκi, j , bias them appropriately,
introduce a component that looks at the nodes uκi, j and use their colors to bias the
nodes gκi such that they are guided.

Type 14 looks for all 1≤ i ≤ m at yκ2i−1,ακi,1 and ακi,2 and biases uκi,14 to c(yκ2i−1)∧ c(ακi,1)∧
c(ακi,2) and uκi,13 to the opposite. Similarly, it looks for all m + 1 ≤ i ≤ 2m

105

Chapter 4 Complexity of Local Max-Cut: Maximum Degree Five

at yκ2i−1,ακi,1 and ακi,2 and biases uκi−m,15 to c(yκ2i−1) ∧ (¬c(ακi,1) ∨ ¬c(ακi,2)) and
uκi−m,16 to the opposite—recall that ĝκi = gκm+i for all 1≤ i ≤ m, κ ∈ {0,1}.

Comment See comment of Type 13.

Type 15 looks at all nodes of type lower than Type 15 that are adjacent to gκi with the
single exception of ηκi if gκi = wκj,k. Namely, it looks at uκi,4 j+2, uκi,4 j+3 for 0≤ j ≤ 2,
at ακj,k and σκj,k if Ik(g j)κ = (gκi) for k ∈ {1,2}, at uκi,13 if i ≤ m, at uκi−m,15 if
m+ 1 ≤ i ≤ 2m. Furthermore, it looks at λκi if gκi = wκj,k, at ακi,1 and ακi,2. The
component treats the color of λκi as if it were the opposite color of ηκi if gκi = wκj,k—

we will see in Lemma 4.4.3 that c(ηκi) 6= c(λκi) in any local optimum. Then the
component computes whether gκi is weakly indifferent and computes the color
ρ ∈ {0, 1} of its decisive neighbors if it is not weakly indifferent. The component
biases gκi to ρ if gκi is not weakly indifferent. If gκi is weakly indifferent then it
biases gκi to c(ακi,1)∧ c(ακi,2).

Comment See comment of Type 13.

This finishes the description of GC . For an overview showing which nodes a given type
of component biases see Table 4.1.

Type Biases Condition
8 xκi κ ∈ {0,1}, 0≤ i ≤ n
9 yκi , zκi κ ∈ {0,1}, 0≤ i ≤ 2N + 1
10 uκ κ ∈ {0,1}
11 dκ κ ∈ {0,1}

11
ακi, j , β

κ
i,k, γκi,k, σκi,k κ ∈ {0,1}, 1≤ i ≤ N ,

τκi, j , π
κ
i , φκi , δκi, j 1≤ j ≤ 2, 1≤ k ≤ 3

13 uκi, j κ ∈ {0,1}, 1≤ i ≤ N , 1≤ j ≤ 12
14 uκi, j κ ∈ {0, 1}, 1≤ i ≤ N , 13≤ j ≤ 16
15 gκi κ ∈ {0, 1}, 1≤ i ≤ N

Table 4.1: Relation between types of components and nodes that they bias.

Now we consider the colors of the nodes of GC in an arbitrary local optimum. All the
remaining Lemmas are assumed to have an inherent statement “for any local optimum
P”. We call a gate gκi correct if col(gκi) = ¬(col(I1(gκi))∨ col(I2(gκi)). The following
Lemmas characterize properties of some components.

Lemma 4.4.3. c(u0) 6= c(u1) and c(ηκi) 6= c(λκi) for all 1≤ i ≤ n.

Proof. Due to the weights of the edges incident to u0 and u1 and since they are biased
to different colors by Type 10, in each local optimum at least one of them is unhappy if
both have the same color. Thus, we get c(u0) 6= c(u1).

The claim c(ηκi) 6= c(λκi) follows directly from the weights of the edges incident to
λκi —see Figure 4.10. ut

106

4.4 PLS-completeness

Lemma 4.4.4. For all 1 ≤ i ≤ N, 1 ≤ j ≤ n, κ ∈ {0,1} the nodes d0, d1, gκi and xκj are
comparing nodes.

Proof. In Table 4.2 and Table 4.3 we name all nodes adjacent to d0, d1, gκi and xκj for all
1≤ i ≤ N , 1≤ j ≤ n, κ ∈ {0,1} and the weights of the corresponding edges. By means
of Table 4.2 it can be verified that the nodes d0, d1, gκi are comparing.

Now consider the nodes xκj for 1 ≤ j ≤ n. Our assumption that the edges of Type 9
and higher are scaled such that each edge of one of these types is by the factor 8 · b(4)
smaller than any edge of lower type ensures that condition (iii) of Definition 4.3.2 is
satisfied for xκj . The remaining properties needed for xκj to be a comparing node can be
verified by means of Table 4.3. ut

Lemma 4.4.5. For all 1 ≤ i ≤ N we have either col(gκi) = 0 or col(gκi) = 1 and for all
1≤ j ≤ n we have either col(xκj) = 0 or col(xκj) = 1.

Proof. We first consider the nodes gκi . The nodes ηκi for gκj = wκi,k and any k ∈ {1,2}
are the only nodes (apart from the constants) adjacent to node gκj to which Type 15,
i.e., the component that biases gκi , does not look at. From Lemma 4.4.3, we know that
c(ηκi) 6= c(λκi). No node adjacent to gκi is a comparing node—see Table 4.2. Moreover,
no node to which the component of Type 15 looks at is a comparing node. Thus, the
color of the decisive neighbors of gκi —should gκi not be weakly indifferent—and the
colors of the nodes to which the component of Type 15 looks at are uniquely determined
in P. Consequently, the component of Type 15 correctly decides whether gκi is weakly
indifferent as presented in the description of Type 15 and biases it to the opposite color of
its decisive neighbors in this case. Therefore, bn(gκi) has the same color as the decisive
neighbors of gκi which implies that gκi is guided. Hence, the Substituting Lemma (i.e.,
Lemma 4.3.3) implies that either col(gκi) = 0 or col(gκi) = 1.

Now we consider the nodes xκi . No node adjacent to gκi is a comparing node—see
Table 4.2. Moreover, no node to which the component of Type 8 looks at, i.e., the
component that biases xκi , is a comparing node. Thus, the color of the decisive neighbors
of xκi —should xκi not be weakly indifferent—and the colors of the nodes to which
the component of Type 8 looks at are uniquely determined in P. Consequently, the
component of Type 5 correctly decides whether xκi is weakly indifferent as presented in
the description of Type 8 and biases it to the opposite color of its decisive neighbors in
this case. Therefore, bn(xκi) has the same color as the decisive neighbors of xκi , which
implies that xκi is guided. Hence, the Substituting Lemma implies that either col(xκi) = 0
or col(xκi) = 1. ut

Comment Later in the proof, we also show that either col(dκ) = 0 or col(dκ) = 1 for
κ ∈ {0,1}.

Lemma 4.4.6 (similar to Claims 5.9.B and 5.10.B in [54]). If col(dκ) = 1 then nei-
ther flipping wκi,1 nor wκi,2 changes the cut by a weight of Type 7. If col(dκ) = 0 and
col(wκi,1) = col(wκi,2) then col(wκi,1) 6= c(ηκi).

107

Chapter 4 Complexity of Local Max-Cut: Maximum Degree Five

Node Neighbor Type R. Weight Condition

dκ

1
2 1

uκ

0

4
23

yκ0
1

21

zκ0
uκi,14

5
22i 1≤ i ≤ m

uκi,16
κ

1
κ

1
6 22i 1≤ i ≤ n

d̂κi
θκi,1 7 22i 1≤ i ≤ m
0

bn(dκ) 11 1

Node Condition Neighbor Type R. Weight Condition

gκi

1≤ i ≤ N

uκi,2

3

212i+7

uκi,3
uκi,10 212i+1

uκi,11
uκi,6 212i−1

uκi,7
1

212 j+9

I1(g j) = gi
ακj,1
0

212 j+7
2(n+m) + 1 σκj,1
≤ i ≤ N 0

212 j+5

I2(g j) = gi
σκj,2

1
212 j+1

ακj,2

1≤ i ≤ m
0

5
22i

uκi,13

m+ 1≤ i ≤ 2m
1

22(i−m)
uκi−m,15

2m+ n+ 1≤ θκj,2

7 2 j := i− 2m− ni ≤ 2(m+ n) ηκj
2m+ 1≤ θκj,1

i ≤ 2m+ n ηκj
bn(gκi) 15 1

Table 4.2: Neighborhood of the nodes d0, d1 and gκi for 1≤ i ≤ N , κ ∈ {0, 1}.

108

4.4 PLS-completeness

Proof. The proof uses the following claim.

Claim 4.4.7. If col(dκ) = ρ for ρ ∈ {0,1} then c(d̂κi) = ρ for all 1≤ i ≤ n.

Proof. There are three edges incident to each node d̂κi as introduced in Type 6. Namely,
one edge of Type 6 and two edges of Type 7. Since the weight of the edge of Type 6 is
greater than the sum of the weights of all edges of higher type, in particular the two
edges of Type 7, the claim follows. ut

Assume col(dκ) = 1. Then, by Claim 4.4.7, we have c(d̂κi) = 0 for all i. Since
col(dκ) = 1, the weights of the five edges incident to θκi,1 depicted in Figure 4.10 imply
c(θκi,1) 6= c(ηκi). Similarly, we can argue that c(θκi,2) 6= c(ηκi). But then neither a flip of
wκi,1 nor a flip of wκi,2 can change the cut by a weight of Type 7.

Now assume col(dκ) = 0 and col(wκi,1) = col(wκi,2). Due to Claim 4.4.7 we have
c(d̂κi) = 1 for all i. The weights of the edges incident to θκi,1 and θκi,2 imply c(θκi,1) = 1
and c(θκi,2) = 0. Since col(wκi,1) = col(wκi,2) and c(θκi,1) 6= c(θκi,2), node ηκi is happy if
and only if its color is unequal to the color of wκi,1 and wκi,2. ut

Lemma 4.4.8 (similar to Lemma 4.1H in [54]). If c(zκj) = 1 then c(yκj−1) = 0. If
c(yκj) = 0 then c(yκp) = 0 and c(zκp) = 1 for all p ≤ j.

Proof. The sum of the weights of the edges {zκj , yκj−1} and {yκj−1, 1} is greater than the
sum of all other edges incident to yκj−1. Thus, if c(zκj) = 1 then c(yκj−1) = 0. Similarly,
we can argue that c(zκp) = 1 if c(yκp) = 0 has its unnatural value. Therefore, the claim
follows by induction. ut

Lemma 4.4.9 (similar to Lemma 4.1 in [54]). If gκi is not correct then c(zκ2i) = 1.

Proof. The proof uses the following claims.

Claim 4.4.10. If c(zκ2i) = 0 then c(yκ2i−1) = 1.

Node Neighbor Type R. Weight Condition

xκi

1

3

212 j+9

j := N − n+ i

ακi,1
0

212 j+7
σκi,1
0

212 j+5
σκi,2
1

212 j+1
ακi,2

bn(xκi) 8 1
ln(xκi) 9 1

Table 4.3: Neighborhood of the nodes xκi for 1≤ i ≤ n, κ ∈ {0, 1}.

109

Chapter 4 Complexity of Local Max-Cut: Maximum Degree Five

Proof. Assume c(zκ2i) = c(yκ2i−1) = 0. If yκ2i−1 is biased to black by the component of
Type 9 then c(yκ2i−1) = 1 since c(zκ2i) = 0, which is a contradiction. Thus, yκ2i−1 is
biased to 0. Since zκ2i and yκ2i−1 are biased to opposite colors by Type 9, node zκ2i is
biased to 1. Due to the weight of its incident edges it cannot be white then, but this is a
contradiction. ut

Claim 4.4.11. If col(I1(gκi)) = 1 and col(gκi) = 1 then c(zκ2i) = 1. If col(I2(gκi)) = 1
and col(gκi) = 1 then c(zκ2i) = 1.

Proof. Assume for the sake of contradiction col(I1(gκi)) = 1, col(gκi) = 1 but c(zκ2i) = 0.
Claim 4.4.10 implies c(yκ2i−1) = 1 since c(zκ2i) = 0. Moreover, Lemma 4.4.8 implies
c(yκ2i+1) = 1 since c(zκ2i) = 0. Thus, c(yκ2i+1) = c(yκ2i−1) and therefore the nodes uκi,3 and
uκi,4 are biased to 0 and 1, respectively, by the component of Type 13. Then c(uκi,3) = 0
and therefore c(uκi,4) = 1. Due to col(I1(gκi)) = 1 we have c(ακi,1) = 0 and therefore
c(βκi,1) = 1 which implies c(γκi,1) = 0. Consequently, c(zκ2i+1) = 1 according to the
weights of the edges incident to c(zκ2i+1) = 1 and then c(zκ2i) = 1 due to Lemma 4.4.8,
which is a contradiction. The proof for col(I2(gκi)) = 1 is analogous. ut

Claim 4.4.12. If col(I1(gκi)) = 0 then c(δκi,1) = 1. If col(I2(gκi)) = 0 then c(δκi,2) = 1.

Proof. If col(I1(gκi)) = 0 then c(σκi,1) = 1 since the edges {I1(gκi),σ
κ
i,1} and {σκi,1, 0}

combined weigh more than the sum of all other edges incident to σκi,1. Due to the weight
of the incident edges, it follows that c(τκi,1) = 0, then c(πκi) = 1, then c(φκi) = 0 and
then c(δκi,1) = 1. Similarly, col(I2(gκi)) = 0 implies c(δκi,2) = 1. ut

Claim 4.4.13. If col(I1(gκi)) = col(I2(gκi)) = 0 then c(βκi,3) = 0.

Proof. Due to Claim 4.4.12, c(δκi,1) = c(δκi,2) = 1. Since the sum of the weights of the
edges {βκi,3,δκi,1} and {βκi,3,δκi,2} is greater than the sum of all other edges incident to
βκi,3, the claim follows. ut

Claim 4.4.14. Suppose col(I1(gκi)) = col(I2(gκi)) = col(gκi) = 0. Then c(zκ2i) = 1.

Proof. Assume for the sake of contradiction c(zκ2i) = 0. Then Lemma 4.4.8 implies
c(yκ2i+1) = 1 since c(zκ2i) = 0. Moreover, Claim 4.4.10 implies c(yκ2i−1) = 1. Thus,
c(yκ2i+1) = c(yκ2i−1) and therefore the nodes uκi,11 and uκi,12 are biased to 1 and 0,
respectively, by the component of Type 13. Then c(uκi,11) = 1 and therefore c(uκi,12) = 0.
But then Claim 4.4.13 implies c(βκi,3) = 0 whereafter we get c(γκi,3) = 1. Consequently,
c(yκ2i) = 0 according to the weights of the edges incident to yκ2i and then c(zκ2i) = 1 due
to Lemma 4.4.8, which is a contradiction. Thus, the claim follows. ut

If col(I1(gκi)) = 1 or col(I2(gκi)) = 1 then c(zκ2i) = 1 follows from Claim 4.4.11. If
col(I1(gκi)) = col(I2(gκi)) = 0 then c(zκ2i) = 1 follows from Claim 4.4.14. ut

Lemma 4.4.15 (partially similar to Lemma 4.2 in [54]). If c(yκ2i+1) = 0 then c(ακi,1) =
c(ακi,2) = 0 and c(σκi,1) = c(σκi,2) = 1.

110

4.4 PLS-completeness

Proof. Assume c(yκ2i+1) = 0. From Lemma 4.4.8 we know that c(zκ2i+1) = c(zκ2i) = 1
and c(yκ2i) = c(yκ2i−1) = 0. From the component of Type 12 node βκi,1 is biased to 1
and γκi,1 is biased to 0. From Lemma 4.4.8 we know that c(yκ2i+1) = c(yκ2i−1) = 0 and
c(zκ2i+1) = c(zκ2i) = 1. Thus, the nodes uκi,1 and uκi,3 are biased to white and uκi,2 and uκi,4
to black by the component of Type 13.

Now we show that c(βκi,1) = 1 and c(γκi,1) = 0. Assume first that col(gκi) = 0. Then
c(uκi,2) = 1 and c(uκi,1) = 0. Thus, c(βκi,1) = 1 and therefore c(γκi,1) = 0. Now assume
that col(gκi) = 1. Then c(uκi,3) = 0 and c(uκi,4) = 1. Thus, c(γκi,1) = 0 and therefore
c(βκi,1) = 1.

Since c(βκi,1) = 1, node ακi,1 must be white since it is biased to white by Type 12. The
proof for ακi,1,βκi,2 and γκi,2 is analogous.

Type 12 biases γκi,3, δκi,1, δκi,2, σκi,1, σκi,2 and πκi to black and βκi,3, τκi,1, τκi,2 and φκi to
white. Due to c(yκ2i+1) = c(yκ2i−1) = 0 the nodes uκi,9 and uκi,11 are biased to black and
uκi,10 and uκi,12 to white by the component of Type 13.

Now we show that c(βκi,3) = 0 and c(γκi,3) = 1. Assume first that c(δκi,1) = c(δκi,2) = 0.
Then both nodes δκi,1 and δκi,2 are unhappy. Therefore, we may assume that at least
one of them is black. If c(βκi,3) = c(γκi,3) = 1 then βκi,3 is unhappy. Now assume
c(βκi,3) = c(γκi,3) = 0. Then node γκi,3 is unhappy since c(y2i) = 0 has its unnatural value
due to Lemma 4.4.8. Now assume c(βκi,3) = 1 and c(γκi,3) = 0. If col(gκi) = 0 then
c(uκi,11) = 1 and c(uκi,12) = 0, which is a contradiction since γκi,3 is unhappy in this case.
But if col(gκi) = 1 then c(uκi,10) = 0 and c(uκi,9) = 1, which is also a contradiction since
βκi,3 is unhappy in this case. Thus, c(βκi,3) = 0 and c(γκi,3) = 1.

Since c(βκi,3) = 0, we get c(δκi,1) = c(δκi,2) = 1. Then a sequence of implications leads
to c(φκi) = c(τκi,2) = 0, c(πκi) = c(σκi,2) = 1, c(τκi,1) = 0 and then c(σκi,1) = 1. ut

Lemma 4.4.16 (partially similar to Lemma 4.3 in [54]). Assume that c(yκ2i+1) = 1
and c(yκ2i−1) = 0. If gκi is correct then zκ2i , zκ2i+1 and yκ2i have the colors to which they are
biased by Type 9. If gκi is not correct then flipping gκi does not decrease the cut by a weight
of an edge of Type 3 corresponding to gκi and increases it by a weight of an edge of Type 15.

Proof. The proof uses the following three claims.

Claim 4.4.17. Assume that c(yκ2i+1) = 1. Then c(ακi,1) = ¬col(I1(gκi)) and c(ακi,2) =
¬col(I2(gκi)). If, in addition, c(yκ2i−1) = 0 then c(βκi,1) = col(I1(gκi)) and c(βκi,2) =
col(I2(gκi)).

Proof. If col(I1(gκi)) = 1 then c(ακi,1) = 0. If, on the other hand, col(I1(gκi)) = 0 then
c(ακi,1) = 1 since ακi,1 is biased to 1 by Type 12.

Now assume additionally c(yκ2i−1) = 0. If col(I1(gκi)) = 1 then c(βκi,1) = 1 since
c(ακi,1) = 0. Now assume col(I1(gκi)) = 0. Due to c(ακi,1) = 1 and since βκi,1 is biased to 0
by Type 12, it can only be black if γκi,1 and uκi,1 are both white. But if γκi,1 is white then
uκi,4 must be black since γκi,1 is biased to black by Type 12. If col(gκi) = 1 then c(uκi,2) = 0
and c(uκi,1) = 1 due to the bias of Type 13, which is a contradiction. On the other hand,
if col(gκi) = 0 then c(uκi,3) = 1 and c(uκi,4) = 0 due to the bias of Type 13, which is also a
contradiction. Thus, c(βκi,1) = 0.

The argumentation for ακi,2 and βκi,2 is analogous. ut

111

Chapter 4 Complexity of Local Max-Cut: Maximum Degree Five

Claim 4.4.18. Assume c(yκ2i+1) = 1 and c(yκ2i−1) = 0. Then c(βκi,3) = col(I1(gκi)) ∨
col(I2(gκi)).

Proof. If an input is white then the corresponding δκi, j is black due to Claim 4.4.12. Thus,
if both inputs are white then βκi,3 is white.

Now assume that at least one input is black. Assume first I1(gκi) = 1. Since σκi,1 is
biased to white, we have c(σκi,1) = 0. Analogously, we get c(τκi,1) = 1, c(πκi) = 0 and
c(φκi) = 1. Node δκi,1 is biased to white by Type 12. If both nodes δκi,1 and δκi,2 are black
then δκi,1 is unhappy. Thus, we may assume that at least one of them is white. Since βκi,3
is biased to 1 by Type 12, it can only be white if γκi,3 and uκi,9 are both black. But if γκi,3 is
black then uκi,12 must be white since γκi,3 is biased to white by Type 12. Then, similarly
as in the proof of Claim 4.4.17, the bias of Type 13 implies that if gκi is white then uκi,10
is black and uκi,9 is white, and if gκi is black then uκi,11 is white and uκi,12 is black, each
resulting in a contradiction. Thus, c(βκi,3) = 1.

The case for I2(gκi) = 1 is, apart from the consideration of the colors of the nodes of
πκi and φκi which are obsolete in this case, analogous. ut

Claim 4.4.19. Assume c(yκ2i+1) = 1 and c(yκ2i−1) = 0. If gκi is correct then c(γκi,1) =
c(γκi,2) = 1 and c(γκi,3) = 0. If gκi is not correct then at least one of the nodes uκi,2, uκi,3 has
the same color as gκi , at least one of the nodes uκi,6, uκi,7 has the same color as gκi and at
least one of the nodes uκi,10, uκi,11 has the same color as gκi .

Proof. Assume first that gκi is correct. From Claim 4.4.17 we know that c(βκi,1) =
col(I1(gκi)). Since gκi is correct, at least one of the two nodes βκi,1 and gκi is white.

In the following, we show that at least one of the nodes βκi,1 and uκi,4 is white. Then
the bias of Type 12 implies that c(γκi,1) = 1. The case c(βκi,1) = 0 is clear. Now consider
the case that c(βκi,1) = 1 and therefore col(gκi) = 0. Then, due to Claim 4.4.17, we have
c(ακi,1) = 0. Since gκi is white and uκi,3 and uκi,4 are biased to 1 and 0, respectively, by
Type 13, we have c(uκi,3) = 1 and c(uκi,4) = 0. Thus, c(γκi,1) = 1. Analogously, we can
argue that γκi,2 is also black.

Now we show that at least one of the nodes βκi,3 and uκi,12 is black. Then the bias of
Type 12 implies that c(γκi,3) = 0. By Claim 4.4.18 we know that c(βκi,3) = col(I1(gκi))∨
col(I2(gκi)). Since gκi is correct, it has the opposite color of βκi,3. The case c(βκi,3) = 1
is clear. Now assume c(βκi,3) = 0 and therefore col(gκi) = 1. Then c(uκi,11) = 0 and
c(uκi,12) = 1 since they are biased to 0 and 1, respectively, by Type 13. Thus, c(γκi,3) = 0.

Now assume that gκi is not correct. If col(I1(gκi)) = 1 then c(ακi,1) = 0 and c(βκi,1) = 1
due to Claim 4.4.17. Moreover, since gκi is not correct, we have col(gκi) = 1. Then
c(ακi,1) = 0 and the biases of Type 13 imply c(uκi,1) = 0 and c(uκi,2) = 1. If col(I1(gκi)) = 0
then c(ακi,1) = 1 and c(βκi,1) = 0 due to Claim 4.4.17. Since γκi,1 is biased to 1 by Type 12,
we get c(γκi,1) = 1. Moreover, since c(ακi,1) = 1 the biases of Type 13 imply c(uκi,1) = 1,
c(uκi,2) = 0, c(uκi,4) = 0 and c(uκi,3) = 1. The proof for c(uκi,6) and c(uκi,7) is analogous.

By Claim 4.4.18 we know that c(βκi,3) = col(I1(gκi)) ∨ col(I2(gκi)). Since gκi is not
correct, we have col(gκi) = c(βκi,3). We consider the possible cases for the color of gκi and
βκi,3. Assume first col(gκi) = c(βκi,3) = 0. Due to Claim 4.4.17, we have c(ακi,1) = c(ακi,2) =

112

4.4 PLS-completeness

1. Then the biases of the component of Type 13 imply c(uκi,9) = 1 and c(uκi,10) = 0. Thus,
uκi,10 has the same color as gκi . Now consider the case col(gκi) = c(βκi,3) = 1. Then
c(γκi,3) = 0 since it is biased to white by Type 12. Moreover, c(ακi,1) = 0 or c(ακi,2) = 0
due to Claim 4.4.17. Then the biases of the component of Type 13 imply c(uκi,9) = 0 and
c(uκi,10) = 1 as well as c(uκi,12) = 1 and c(uκi,11) = 0. Then we have c(uκi,10) 6= c(uκi,11),
which proves the claim. ut

Assume c(yκ2i+1) = 1 and c(yκ2i−1) = 0. Assume furthermore that gκi is correct. Then,
due to Claim 4.4.19, we have c(γκi,1) = c(γκi,2) = 1 and c(γκi,3) = 0. Thus, if the nodes
yκj , zκj for all j are biased to their natural values by Type 9 due to c(yκ2i+1) = 1 we get
c(zκ2i+1) = 0, c(yκ2i) = 1 and c(zκ2i) = 0. If, on the other hand, the nodes yκj , zκj for all j
are biased to their unnatural values by Type 9 then due to c(yκ2i−1) = 0 we get c(zκ2i) = 1,
c(yκ2i) = 0 and c(zκ2i+1) = 1.

Now assume that gκi is not correct. Then Claim 4.4.19 implies that flipping gκi does not
decrease the cut by a weight of Type 3 corresponding to gκi since at least one of the nodes
uκi,2 and uκi,3, at least one of the nodes uκi,6 and uκi,7 and at least one of the nodes uκi,10 and
uκi,11 has the opposite color of gκi . Finally, Claim 4.4.17 implies c(ακi, j) = ¬col(I j(gκi))
for 1≤ j ≤ 2. Thus, flipping gκi to its correct color gains a weight of Type 15. ut

Lemma 4.4.20. Assume col(dκ) = 1, col(dκ) = 0 and that all nodes yκi , zκi for 0 ≤ i ≤
2N + 1 are biased to their natural values by Type 9. Then c(yκ1) = 1.

Proof. We show that all gates of GκC are correct. For the sake of contradiction, we assume
that GκC contains an incorrect gate and let gκi be the incorrect gate with the highest
index.

We first show by induction that the nodes yκj , zκj for j > 2i+ 1 and yκ2i+1 have their
natural values. Since yκ2N+1 is biased to its natural value by Type 9, we have c(yκ2N+1) = 1.
Assume c(yκ2 j+1) = 1 for any j > i. If any one of the nodes zκ2 j+1, yκ2 j , zκ2 j has its unnatural
value then Lemma 4.4.8 implies c(yκ2 j−1) = 0. Then Lemma 4.4.16 implies that all nodes
zκ2 j+1, yκ2 j , zκ2 j have their natural values whereafter Claim 4.4.10 implies c(yκ2i−1) = 1,
which is a contradiction. Thus, c(yκ2 j+1) = 1 implies c(yκ2 j−1) = 1 for any j > i and
therefore it follows by induction that all nodes yκj , zκj for j > 2i + 1 and yκ2i+1 have their
natural values.

Since gκi is incorrect, all nodes yκj , zκj for j ≤ 2i − 1 have their unnatural values due
to Lemma 4.4.9 and Lemma 4.4.8. According to Lemma 4.4.15 flipping gκi does not
decrease the cut by a weight of Type 3 corresponding to a node gκj for which Ik(gκj) = gκi
for 1 ≤ k ≤ 2. Due to Lemma 4.4.16, correcting gκi does not decrease the cut by a
weight of Type 3 corresponding to gκi and gains a weight of Type 15. In the following,
we distinguish between three cases for the index i and show that gκi is unhappy in each
of the cases. First, if i > 2n+ 2m then there are no edges of Type 5 or Type 7 incident
to gκi . Thus, gκi is unhappy in this case. Second, if 2m+ 1 ≤ i ≤ 2n+ 2m then there
are no edges of Type 5 incident to gκi . Due to Lemma 4.4.6, correcting gκi does not
decrease the cut by a weight of Type 7. Third, if i ≤ 2m then there are no edges of Type 7
incident to gκi . Correcting gκi does not decrease the cut by a weight of Type 5 since due

113

Chapter 4 Complexity of Local Max-Cut: Maximum Degree Five

to the biases of Type 14 we have c(uκi,14) = 0, c(uκi,13) = 1 for i ≤ m and c(uκi−m,16) = 1,
c(uκi−m,15) = 0 for m < i ≤ 2m. Altogether, gκi is unhappy in each of the three cases,
which is a contradiction. Thus, gκi is correct for all i.

Therefore, all nodes yκi , zκi for 1≤ i ≤ 2N + 1 have their natural values.

Lemma 4.4.21. Suppose c(yκ1) = c(uκ) = 0 and c(uκ) = 1. Then col(dκ) = 1, col(dκ) =
0.

Proof. Independently of the color of yκ1 , node dκ is biased to 1 and dκ to 0 by Type 11.
Lemma 4.4.8 implies c(yκ0) = 0. Since c(uκ) = 0 and c(yκ0) = 0, node yκ0 and its
counterpart, namely the constant 0, are decisive for dκ. Therefore, bn(dκ) has the same
color as the decisive neighbors of dκ which implies that implies that dκ is guided. Hence,
the Substituting Lemma implies col(dκ) = 1.

Since c(uκ) = 1, node uκ and its counterpart, namely the constant 1, are decisive for
dκ. Again, bn(dκ) has the same color as the decisive neighbors of dκ which implies that
dκ is guided whereafter the Substituting Lemma implies col(dκ) = 0. ut

Lemma 4.4.22. Assume c(yκ1) = c(uκ) = 0 and c(yκ1) = c(uκ) = c(yκ0) = 1. Then
col(dκ) = 0.

Proof. Lemma 4.4.8 implies c(zκ0) = 1 since c(yκ1) = 0. Node dκ is biased to 0 by
Type 11. Since c(uκ) = 0, c(yκ0) = 1 and c(zκ0) = 1, node zκ0 and its counterpart, i.e., the
constant 1, are decisive for dκ. Therefore, bn(dκ) has the same color as the decisive
neighbors of dκ which implies that dκ is guided. Hence, the Substituting Lemma implies
col(dκ) = 0. ut

Lemma 4.4.23. If c(yκ1) = 1 and all yκi , zκi are biased to their natural values by Type 9
then c(zκ1) = c(zκ0) = 0 and c(yκ0) = 1.

Proof. Due to c(yκ1) = 1 and since zκ1 is biased to its natural value, i.e., white, we get
c(zκ1) = 0. Analogously, we get c(yκ0) = 1 and c(zκ0) = 0. ut

Lemma 4.4.24. Assume col(dκ) = 1, col(dκ) = 0. Then all nodes yκi , zκi are biased to
their natural values by Type 9.

Proof. Assume for the sake of contradiction that all nodes yκi , zκi are biased to their
natural values by Type 9. At first, we show that all yκi , zκi in fact have their unnatural
values. Since col(dκ) = 0, the bias by Type 9 to the unnatural value implies c(zκ0) = 1.
Then col(dκ) = 1 together with the bias to the unnatural value imply c(yκ0) = 0. Then
c(zκ1) = 1 and therefore c(yκ1) = 0. If c(yκj−1) = 0 for any 2≤ j ≤ 2N +1 then the bias to
the unnatural value implies c(zκj) = 1. Analogously, if c(zκj) = 1 for any 2≤ j ≤ 2N + 1
then c(yκj) = 0. Thus, it follows by induction that all yκi , zκi have their unnatural values.

Now we show that c(λκ) = col(xκ). Lemma 4.4.15 implies c(ακN−n+i,1) = c(ακN−n+i,2) =
0 and c(σκN−n+i,1) = c(σκN−n+i,2) = 1. Therefore, xκ is weakly indifferent. Then, due to
the bias of Type 8, node xκi has the color of λκi for all 1≤ i ≤ n. Thus, c(λκ) = col(xκ).

114

4.4 PLS-completeness

But this is a contradiction to the assumption that all nodes yκi , zκi are biased to their
unnatural values by Type 9. Thus, all nodes yκi , zκi are biased to their natural values by
Type 9. ut

Lemma 4.4.25. Assume c(yκ2i−1) = 1 and c(ακi, j) 6= col(I j(gκi)) for all 1≤ j ≤ 2, 1≤ i ≤
2m. Then c(uκi,14) = col(gκi) and c(uκi,16) = col(ĝκi) for all 1≤ i ≤ m.

Proof. Let 1 ≤ i ≤ m be arbitrarily chosen. The nodes gκi and ĝκi are correct due to
Lemma 4.4.9 and Lemma 4.4.8.

Since c(yκ2i−1) = 1, node uκi,14 is biased to c(ακi,1) ∧ c(ακi,2) by Type 14. Thus, it is
biased to black if and only if ακi,1 and ακi,2 are both black. Since c(ακi, j) 6= col(I j(gκi)) for
all 1 ≤ j ≤ 2 and gκi is black if and only if both I1(gκi) and I2(gκi) are white, node gκi
is black if and only if ακi,1 and ακi,2 are both black. Thus, uκi,14 is biased to the color of
gκi and uκi,13 to the opposite. Then col(gκi) 6= c(uκi,13) 6= c(uκi,14)—see Figure 4.7—and
therefore col(gκi) = c(uκi,14).

Now let m+ 1 ≤ i ≤ 2m be arbitrarily chosen. Since c(yκ2i−1) = 1, node uκi−m,15 is
biased to ¬c(ακi,1)∨¬c(ακi,2) by Type 14. Thus, it is biased to white if and only if ακi,1 and
ακi,2 are both black. Since c(ακi, j) 6= col(I j(gκi)) for all 1≤ j ≤ 2 and gκi is black if and only
if both I1(gκi) and I2(gκi) are white, node gκi is black if and only if ακi,1 and ακi,2 are both
black. Thus, it follows that uκi−m,15 is biased to the opposite color of gκi . Since uκi−m,16 is
biased to the opposite color of uκi−m,15, we have col(gκi) 6= c(uκi−m,15) 6= c(uκi−m,16)—see
Figure 4.7—and therefore col(gκi) = c(uκi−m,16). Since, by definition, ĝκi = gκi+m for all
1≤ i ≤ m we get c(uκi,16) = col(ĝκi) for all 1≤ i ≤ m. ut

Now we continue to prove the Completeness Theorem. Let P be a local optimum in
GC . From Lemma 4.4.3 we know that c(u0) 6= c(u1). In the following, we consider the
possible cases for the vector c(y0

1 , y1
1) and distinguish within them, if necessary, between

the two cases for c(u0, u1). For the cases in which at least one of the nodes y0
1 and y1

1
is white, we show that they cannot occur in local optima, and for the case that both
nodes are black we show that the bitwise complement of the colors of the nodes g0

i for
N − n+ 1≤ i ≤ N induce a local optimum of C .

c(y0
1 , y1

1) = (0, 0): Due to Lemma 4.4.8 we have c(y0
0) = c(y1

0) = 0 and c(z0
0) =

c(z1
0) = 1. Let c(uκ, uκ) = (0,1) for κ ∈ {0,1}. Then Lemma 4.4.21 implies col(dκ) = 1

and col(dκ) = 0. Consequently, Lemma 4.4.24 implies that the nodes yκi , zκi are biased
to their natural values by Type 9. But then Lemma 4.4.20 implies that c(yκ1) = 1, which
is a contradiction.

c(yκ1 , yκ1) = (0, 1) for κ ∈ {0, 1}: According to Lemma 4.4.8 we have c(yκ0) = 0 and
c(zκ0) = 1.

Assume first that c(uκ, uκ) = (0,1). Then Lemma 4.4.21 implies col(dκ) = 1 and
col(dκ) = 0. Then Lemma 4.4.24 implies that all nodes yκi , zκi are biased to their natural
values by Type 9. But then Lemma 4.4.20 implies c(yκ1) = 1, which is a contradiction.

115

Chapter 4 Complexity of Local Max-Cut: Maximum Degree Five

Now assume c(uκ, uκ) = (1, 0). We first show that c(yκ0) = 1 in this case. Assume for
the sake of contradiction that c(yκ0) = 0. If the nodes yκi , zκi are biased to their natural
values by Type 9 then Lemma 4.4.23 implies c(yκ0) = 1, which is a contradiction. If they
are biased to their unnatural values then c(zκ1) = 1 since c(yκ0) = 0—see Figure 4.6—
whereafter we get c(yκ1) = 0, which is also a contradiction. Thus, c(yκ0) = 1. Then
Lemma 4.4.22 implies col(dκ) = 0. Now we distinguish between the two possible cases
for κ. If κ = 0 then Type 10 biases u1, independently of whether C(x0) ≥ C(x1) or
C(x0) < C(x1), to 1 since c(y0

1 , y1
1) = (0,1). But then c(u1) = 1 due to col(d1) = 0,

which is a contradiction. On the other hand, if κ = 1 then Type 10 biases u0, also
independently of whether C(x0)≥ C(x1) or C(x0)< C(x1), to 1 since c(y0

1 , y1
1) = (1, 0).

But then c(u0) = 1 due to col(d0) = 0, which is also a contradiction.

c(y0
1 , y1

1) = (1, 1): Then Lemma 4.4.9 and Lemma 4.4.8 together imply that yκi , zκi
have their natural values for all κ ∈ {0, 1}, 2≤ i ≤ 2N +1 and all gates in G0

C and G1
C are

correct. Therefore, we have col(gκi) 6= col(ĝκi) for all 1≤ i ≤ N , κ ∈ {0, 1}. Claim 4.4.17
implies c(ακi, j) 6= col(I j(gκi)) for all 1≤ i ≤ N , 1≤ j ≤ 2 and κ ∈ {0, 1}.

In the following, we consider the two cases C(xκ) > C(xκ) for some κ ∈ {0,1} and
C(x0) = C(x1). We show that the first case cannot occur and that in the second case
the colors of the nodes of x0 induce a local optimum for C . Within the two cases,
we argue about the color of the nodes dκ for κ ∈ {0,1}. No node adjacent to dκ is
a comparing node—see Table 4.2—and therefore the colors of its adjacent nodes are
uniquely determined. Due to the two constants of Type 5 adjacent to dκ, node dκ is not
weakly indifferent. Thus, to show that col(dκ) = ρ for ρ ∈ {0,1}, it suffices to show
that the color of the decisive neighbors of dκ is ρ and that the component of Type 11
biases dκ to ρ. Then bn(dκ) has the same color as the decisive neighbors of dκ, which
implies that dκ is guided whereafter the Substituting Lemma (i.e., Lemma 4.3.3) implies
col(dκ) = ρ.

• Case C(xκ)> C(xκ) for some κ ∈ {0, 1}:
Since all gates of GκC and GκC are correct, there is an index 1 ≤ i ≤ m such that
col(gκj) = col(gκj) for all i < j ≤ m and col(gκi) = 1, col(gκi) = 0. We let

1 ≤ i ≤ m be this index. Since col(gκj) 6= col(ĝκj) and col(gκj) 6= col(ĝκj) for all

1 ≤ j ≤ m, we have col(gκj) 6= col(ĝκj), col(ĝκj) 6= col(gκj) for all i < j ≤ m and

col(gκi) = col(ĝκi) = 1, col(ĝκi) = col(gκi) = 0. Then, since c(yκ2 j−1) = c(yκ2 j−1) =
1 for all 1 ≤ j ≤ 2m, Lemma 4.4.25 implies c(uκj,14) 6= c(uκj,16), c(uκj,16) 6= c(uκj,14)

for all i < j ≤ m and c(uκi,14) = c(uκi,16) = 1, c(uκi,16) = c(uκi,14) = 0. Type 9 biases
the nodes yκj , zκj for all j to their natural values. Thus, Lemma 4.4.23 implies
c(yκ0) = 1 and c(zκ0) = 0.

In the following, we first show col(dκ) = 0 by naming the decisive neighbors of
dκ and showing that their color is black—for an overview of the nodes adjacent
to dκ see Table 4.2. We distinguish three cases. First, if c(uκ) = 1 then uκ and
its counterpart, i.e., the constant 1, are decisive for dκ. Second, if c(uκ) = 0 and

116

4.4 PLS-completeness

c(zκ0) = 1 then neither uκ and its counterpart nor yκ0 —which is black—and its
counterpart are decisive. Instead, zκ0 and its counterpart, i.e., the constant 1, are
decisive. Third, if c(uκ) = 0 and c(zκ0) = 0 then the node zκ0 and its counterpart
are also not decisive—besides the nodes uκ and yκ0 and their corresponding
counterparts. Moreover, due to c(uκj,14) 6= c(uκj,16) for all i < j ≤ m, the nodes

uκj,14 and their counterparts uκj,16 for all i < j ≤ m are also not decisive. But the

two nodes uκi,14 and uκi,16—which are both black—are decisive for dκ. In all three
cases the decisive neighbors of dκ are black. Thus, col(dκ) = 0. By Type 11
node dκ is biased to 0. Then the bias of Type 10 implies due to col(dκ) = 0 that
c(uκ, uκ) = (1,0).

Now we show that col(dκ) = 1. Due to c(uκ) = 0 node c(uκ) and its counterpart,
i.e., the constant 1, are not decisive for dκ. We distinguish two cases. First, if
c(yκ0) = 0 then yκ0 and its counterpart, i.e., the constant 0, are decisive. Second, if
c(yκ0) = 1 then due to c(zκ0) = 0 the nodes uκ, yκ0 and zκ0 and their corresponding
counterparts are not decisive. Furthermore, due to c(uκj,16) 6= c(uκj,14) for all

i < j ≤ m, the nodes uκj,16 and their counterparts uκj,14 for all i < j ≤ m are also not

decisive. Thus, the two nodes uκi,16 and uκi,14—which are both white—are decisive

for dκ. In both cases the decisive neighbors of dκ are white. Thus, col(dκ) = 1. By
Type 11 node dκ is biased to 1.

Since all gates of GκC are correct, we have w(xκ) = col(wκ1) = col(wκ2). Lemma 4.4.3
and Lemma 4.4.6 together imply that col(wκ1) = col(wκ2) = c(λκ) and therefore
w(xκ) = c(λκ). If c(λκ) 6= col(xκ) then the nodes yκi , zκi are biased to their
unnatural values by Type 9. But Lemma 4.4.24 implies that they are biased to their
natural values, which is a contradiction. Thus, we in fact have c(λκ) = col(xκ)
and therefore w(xκ) = col(xκ), but this is a contradiction to the assumption that
C(xκ)> C(xκ).

• C(x0) = C(x1):
Since all gates of GκC and GκC are correct, we have col(g0

i) = col(g1
i) for all

1 ≤ i ≤ m. Since col(g0
i) 6= col(ĝ0

i) and col(g1
i) 6= col(ĝ1

i) for all 1 ≤ i ≤ m,
we have col(g0

i) 6= col(ĝ1
i), col(ĝ0

i) 6= col(g1
i) for all 1 ≤ i ≤ m. Then, since

c(y0
2 j−1) = c(y1

2 j−1) = 1 for all 1 ≤ j ≤ 2m, Lemma 4.4.25 implies c(u0
i,14) 6=

c(u1
i,16), c(u0

i,16) 6= c(u1
i,14) for all 1≤ i ≤ m. Type 9 biases all nodes y0

i , z0
i to their

natural values. Thus, Lemma 4.4.23 implies c(y0
0) = 1 and c(z0

0) = 0.

In the following, we first show col(d0) = 0 by naming the decisive neighbors of
d0 and showing that their color is black—for an overview of the nodes adjacent
to d0 see Table 4.2. We distinguish three cases. First, if c(u0) = 1 then u0 and
its counterpart, i.e., the constant 1, are decisive for d0. Second, if c(u0) = 0 and
c(z1

0) = 1 then due to c(y0
0) = 1 the nodes u0 and y0

0 and their corresponding
counterparts are not decisive. Thus, node z1

0 and its counterpart, i.e., the constant
1, are decisive. Third, if c(u0) = 0, c(z1

0) = 0 then z1
0 and its counterpart are also

117

Chapter 4 Complexity of Local Max-Cut: Maximum Degree Five

not decisive—besides the nodes u0 and y0
0 and their corresponding counterparts.

Moreover, due to c(u0
i,14) 6= c(u1

i,16) for all 1 ≤ i ≤ m, the nodes u0
i,14 and their

counterparts u1
i,16 for all 1 ≤ i ≤ m are also not decisive. Then the neighbors of

Type 5 representing the constant 1 adjacent to d0 via edges of relative weight 1 are
decisive for d0. In each of the above cases the decisive neighbors of d0 are black.
Thus, col(d0) = 0. By Type 11 node d0 is biased to 0. Then, due to col(d0) = 0,
the bias of Type 10 implies c(u0, u1) = (1, 0).

Now we show that col(d1) = 1. Since c(u1) = 0, node u1 and its counterpart, i.e.,
the constant 1, are not decisive. We distinguish two cases. First, if c(y1

0) = 0 then
y1

0 and its counterpart, i.e., the constant 0, are decisive. Second, if c(y1
0) = 1 then

due to c(z0
0) = 0 the node z0

0 and its counterpart, i.e., the constant 1, are also not
decisive—besides u1 and y1

0 and their corresponding counterparts. Furthermore,
due to c(u0

i,16) 6= c(u1
i,14) for all 1≤ j ≤ m, the nodes u0

i,16 and their counterparts
u1

i,14 for all 1 ≤ j ≤ m are also not decisive. Thus, the neighbors of Type 5
representing the constant 0 adjacent to d1 via edges of relative weight 1 are
decisive for d1. In both cases the decisive neighbors of d1 are white. Thus,
col(d1) = 1. By Type 11 node d1 is biased to 1.

Since all gates of G0
C are correct, we have w(x0) = col(w0

1) = col(w0
2). Then,

Lemma 4.4.3 and Lemma 4.4.6 together imply that col(w0
1) = col(w0

2) = c(λ1)
and therefore w(x0) = c(λ1). If c(λ1) 6= col(x1) then the nodes y1

i , z1
i are biased

to their unnatural values by Type 9. But Lemma 4.4.24 implies that they are
biased to their natural values, which is a contradiction. Thus, we in fact have
c(λ1) = col(x1) and therefore w(x0) = col(w0

1) = col(w0
2) = col(x1). Due to our

assumption that C returns its input as better neighbor if and only if the input is a
local optimum, the colors of x0 induce a local optimum of C . ut

118

Chapter 5

Impact of the Results on Other Problems

In this section, we discuss three problems on which our results have direct impact due
to PLS-reductions from the literature that are based on LOCALMAX-CUT. For this, we
make use of the following result essentially equivalent to Lemma 3.3 of Schäffer and
Yannakakis [54]:

Theorem 5.0.1 ([54]). Let Π and Π′ be problems in PLS and let Φ, Ψ define a tight
PLS-reduction from Π to Π′. Then the following properties are satisfied:

i) If P has the all-exp property then Π′ has the all-exp property.

ii) If the STANDARDALGORITHMPROBLEM is PSPACE-complete for Π then it is also PSPACE-
complete for Π′.

The direct impact of our results is always due to the following two properties of the
PLS-reductions:

• They are tight.

• They preserve the degree of the LOCALMAX-CUT instance in some sense.

5.1 Max-2SAT with FLIP-neighborhood

An instance of LOCALMAX-2SAT is a Boolean SAT-formula in conjunctive normal form
with weighted clauses containing at most two literals. A solution is an assignment of
truth values to the variables and the objective is to maximize the sum of the weights of
the satisfied clauses. The neighborhood of a solution contains all solutions in which the
value of exactly one variable is switched.

Schäffer and Yannakakis [54] show that LOCALMAX-2SAT is PLS-complete by reducing
from LOCALMAX-CUT. They introduce for each node u ∈ V of a given instance G = (V, E)
of LOCALMAX-CUT a variable ũ and for each edge {u, v} ∈ E for v ∈ V two clauses (ũ∨ ṽ)
and (ũ ∨ ṽ), where the two clauses have the same weight as the edge {u, v}. Then
they show that a local optimum in the resulting Boolean formula corresponds to a
local optimum in the LOCALMAX-CUT instance. Since their reduction is tight and each
variable occurs twice as often in the resulting formula as the corresponding node in the
LOCALMAX-CUT instance has incident edges, we obtain the following results from the
All-Exp Theorem (i.e., Theorem 3.6.1), the SAPPSC Theorem (i.e., Theorem 3.7.1) and
the Completeness Theorem (i.e., Theorem 4.4.2).

119

Chapter 5 Impact of the Results on Other Problems

Theorem 5.1.1. For the LOCALMAX-2SAT(i) problem, arising from LOCALMAX-2SAT by
restricting the inputs such that each variable occurs in at most i ∈ N clauses, the following
complexity results hold: LOCALMAX-2SAT(8) has the all-exp property, its corresponding SAP
is PSPACE-complete, and LOCALMAX-2SAT(10) is PLS-complete.

5.2 Congestion Games

A congestion game [52] is a tuple (N , E, (Si)i∈N , (de)e∈E), where N = {1, . . . , n} is the set
of players, E = {1, . . . , m} is the set of resources, Si ⊆ 2E is the set of strategies of player
i and de : N→ Z is the delay function of resource e. Let s := (s1, . . . , sn) with si ∈ Si be a
state and let fs(e) := |{i : e ∈ si}| be the congestion of resource e in s. The private cost of
a player i in state s is defined by ci(s) :=

∑

e∈si
de(fs(e)). The problem is to find a pure

Nash equilibrium, i.e., a state in which the private cost of each player does not decrease
if the player unilaterally deviates from its strategy.

Fabrikant et al. [20] showed PLS-complexity for the problem of finding a Nash equi-
librium in congestion games via reduction from a problem called POSNAE3SAT [54],
which is essentially very similar to LOCALMAX-CUT—in fact, Schäffer and Yannakakis
[54] showed that they can easily be reduced to each other. Ackermann et al. [3] in-
troduced a subclass of congestion games called threshold games as a vehicle to prove
PLS-completeness for the computation of Nash equilibria in congestion games. In thresh-
old games, each player i has exactly two strategies. One strategy contains a single
resource ei which is not an element of any other strategy (including the strategies of the
other players). The other strategy is a subset of the set of resources E not containing
ei for any player i. Moreover, in threshold games no resource is an element of more
than two strategies. The authors show that the computation of Nash equilibria in thresh-
old games is PLS-complete via reduction from LOCALMAX-CUT. In their reduction they
construct a threshold game Γ in which every node v of the LOCALMAX-CUT instance G
corresponds to a player i in Γ such that no strategy of Si consists of more resources than
there are edges incident to v in G. Due to the tightness of their reduction the All-Exp
Theorem, the SAPPSC Theorem and the Completeness Theorem cause the following
result.

Theorem 5.2.1. For the problem CONGNASH(i) of computing a Nash equilibrium in con-
gestion games in which every strategy contains at most i ∈ N resources, the following
complexity results hold: CONGNASH(4) has the all-exp property, its corresponding SAP is
PSPACE-complete, and CONGNASH(5) is PLS-complete.

5.3 Partitioning with SWAP-neighborhood

An instance for the problem PARTITIONING [30] is a graph G = (V, E) with weighted edges
and maximum degree i ∈ N and an even number of vertices. A feasible solution is a
partition of V into two sets V1, V2 of equal size. In the neighborhood of a solution s are
all solutions that can be obtained from s by exchanging one node in V1 by one node in

120

5.3 Partitioning with SWAP-neighborhood

V2. The objective is the weight of the cut and the goal is to minimize or to maximize the
objective (Johnson et al. [30] note that the two alternatives are equivalent).

Schäffer and Yannakakis [54] prove the PLS-completeness of PARTITIONING by means
of a reduction from LOCALMAX-CUT. From an instance G of LOCALMAX-CUT they construct
a graph G′ for which deg(G′) = deg(G) + 1. Since their reduction is tight, due to the
All-Exp Theorem, the SAPPSC Theorem and the Completeness Theorem we get:

Theorem 5.3.1. For the problem PARTITIONING(i) arising from PARTITIONING by restricting
the input graphs to maximum degree i ∈ N, we have the following properties: PARTITIONING(5)
has the all-exp property, its corresponding SAP is PSPACE-complete and PARTITIONING(6) is
PLS-complete.

121

Chapter 6

Conclusion and Open Problems

It was known that LOCALMAX-CUT is hard in general. It was also known that it becomes
easy if the input is restricted to cubic graphs. However, the border lines of its complexity
were unknown. In this thesis, we have shown that LOCALMAX-CUT already becomes hard
for graphs with very small degree.

For graphs with nodes of maximum degree four with what we call Types I and III (for
a formal definition, see Definition 3.2.1), we have shown that LOCALMAX-CUT is already
P-hard. It would be interesting to know whether a local optimum can be computed in
polynomial time for such graphs. Then the problem would become P-complete.

In contrast to cubic graphs, where the local search approach always leads to a local
optimum in a quadratic number of steps, we could show that LOCALMAX-CUT has the
is-exp property for graphs with nodes of Type I and III. However, our instances and initial
solutions allow very short sequences of improving steps that lead to a local optimum. It
remains open whether LOCALMAX-CUT has the all-exp property for graphs with nodes of
Type I and III.

The enforcing technique that we have developed in this thesis extends graphs and
initial solutions by further nodes and edges according to some given generalized pivot
rule. For the resulting graph and initial partition, we get for every sequence s of
improving steps starting at the initial partition the following property. If one deletes
from s the steps of the nodes that are added by the extension, one obtains the sequence
induced by the pivot rule in the original graph. Our technique turned out to be powerful
enough to easily deduce the all-exp property and the PSPACE-completeness of the
STANDARDALGORITHMPROBLEM (SAP) for LOCALMAX-CUT on graphs with maximum degree
four: Having the enforcing technique available, we could achieve these two results, in
essence, by merely designing a generalized pivot rule that is polynomial-time computable
and induces the desired behavior. In this respect, the enforcing technique has proven
to be a very helpful tool for showing complexity results, in particular, as in our case, to
construct worst case instances or reductions. Since it was designed by means of nodes of
degree four and since there are only quadratically many improving steps possible for
cubic graphs, our technique and the complexity results derived from it may be helpful to
shed light on border lines of hardness results in other problems.

For graphs with maximum degree five, we have shown PLS-completeness for LOCALMAX-
CUT. This result restricts the possibility for the minimum degree for which LOCALMAX-CUT

is PLS-complete to either four or five (unless PLS ⊆ P). Thus, the naturally remaining
questions concern the complexity of LOCALMAX-CUT on graphs with maximum degree

123

Chapter 6 Conclusion and Open Problems

four. Is it in P? Is it PLS-complete? Is it neither of the two?
Via existing tight PLS-reductions in the literature we have directly transferred our

results to other problems and strengthened the previously known borders of hardness in
these problems. One of the most important local search problems is the TRAVELLINGSALES-
MANPROBLEM (TSP) with k-opt neighborhood. Via a PLS-reduction from LOCALMAX-CUT

to the TSP that transfers the degree of the instance of LOCALMAX-CUT to the size of
the neighborhood of the TSP, one might get closer to borders of complexity properties.
In particular, one could get closer to the minimum d ∈ N for which TSP with d-opt
neighborhood is PLS-complete, the minimum for which it has the all-exp property, and
the minimum for which its corresponding SAP is PSPACE-complete.

124

Bibliography

Note: Each entry is followed by a list of the pages from which there was a reference to
that entry.

[1] E. Aarts and J. Lenstra. Local Search in Combinatorial Optimization. Princeton
University Press, 2003. → 2

[2] E. H. L. Aarts, J. Korst, and W. Michiels. Theoretical Aspects of Local Search. Springer,
2007. → 2, 9

[3] H. Ackermann, H. Röglin, and B. Vöcking. On the impact of combinatorial struc-
ture on congestion games. J. ACM, 55(6):1–22, 2008. DOI: 10.1145/1455248.
1455249. → 5, 11, 120

[4] I. Adler, R. M. Karp, and R. Shamir. A simplex variant solving an m× d linear
program in O(min(m2, d2)) expected number of pivot steps. Journal of Complexity,
3(4):372–387, 1987. DOI: 10.1016/0885-064X(87)90007-0. → 9

[5] E. Angel. A survey of approximation results for local search algorithms. In Efficient
Approximation and Online Algorithms, volume 3484 of LNCS, pages 30–73. Springer,
2006. DOI: 10.1007/11671541_2. → 2

[6] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009. → 16

[7] D. Arthur, B. Manthey, and H. Röglin. Smoothed analysis of the k-means method.
Journal of the ACM, 58(5), 2011. DOI: 10.1145/2027216.2027217. → 10

[8] F. Barahona, M. Grötschel, M. Jünger, and G. Reinelt. An application of combi-
natorial optimization to statistical physics and circuit layout design. Operations
Research, 36(3):493–513, 1988. URL: http://www.jstor.org/stable/170992.
→ 5

[9] R. E. Bixby. Solving real-world linear programs: A decade and more of progress.
Operations Research, 50(1):3–15, 2002. URL: http://www.jstor.org/stable/
3088443. → 2

[10] K. H. Borgwardt. Mathematical Developments Arising from Linear Programming,
volume 114 of Contemporary Mathematics, chapter Probabilistic Analysis of Simplex
Algorithms, pages 21–34. American Mathematical Society, 1990. → 9

125

http://dx.doi.org/10.1145/1455248.1455249
http://dx.doi.org/10.1145/1455248.1455249
http://dx.doi.org/10.1016/0885-064X(87)90007-0
http://dx.doi.org/10.1007/11671541_2
http://dx.doi.org/10.1145/2027216.2027217
http://www.jstor.org/stable/170992
http://www.jstor.org/stable/3088443
http://www.jstor.org/stable/3088443

Bibliography

[11] B. Chandra, H. J. Karloff, and C. A. Tovey. New results on the old k-opt algorithm
for the traveling salesman problem. SIAM Journal on Computing Computing, 28(6):
1998–2029, 1999. DOI: 10.1137/S0097539793251244. → 3, 9

[12] P. Crescenzi, R. Silvestri, and L. Trevisan. On weighted vs unweighted versions
of combinatorial optimization problems. Information and Computation, 167(1):
10–26, 2001. DOI: 10.1006/inco.2000.3011. → 9

[13] G. Dantzig. Programming in linear structure. Technical report, U.S. Air Force,
Washington, D.C., 1948. → 2

[14] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley & Sons,
Inc., 2000. → 2, 4

[15] D. Dumrauf. On the Hardness of Computing Local Optima. PhD thesis, University of
Paderborn, 2011. → 10

[16] D. Dumrauf and B. Monien. On the pls-complexity of maximum constraint
assignment. submitted, 2008. URL: http://homepages.uni-paderborn.de/
dumrauf/MCA.pdf. → 10

[17] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency
for network flow problems. Journal of the ACM (JACM), 19(2):248–264, 1972.
DOI: 10.1145/321694.321699. → 9

[18] R. Elsässer and T. Tscheuschner. Settling the complexity of local max-cut (almost)
completely. In Proceedings of the 38th International Colloquium on Automata,
Languages and Programming (ICALP), volume 6755 of LNCS, pages 171–182.
Springer, 2011. DOI: 10.1007/978-3-642-22006-7_15. → 8, 10

[19] M. Englert, H. Röglin, and B. Vöcking. Worst case and probabilistic analysis of
the 2-opt algorithm for the TSP. Electronic Colloquium on Computational Com-
plexity (ECCC), 13(092), 2006. URL: http://doi.acm.org/10.1145/1283383.
1283522. → 3, 10

[20] A. Fabrikant, C. H. Papadimitriou, and K. Talwar. The complexity of pure nash
equilibria. In Proceedings of the thirty-sixth annual ACM symposium on Theory of
computing (STOC), pages 604–612, 2004. DOI: 10.1145/1007352.1007445. →
11, 120

[21] P. Floreen and P. Orponen. Complexity issues in discrete hopfield networks. Techni-
cal Report NC-TR-94-009, Neuro-COLT, October 1994. URL: http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.53.2598. → 5

[22] O. Friedmann, T. Hansen, and U. Zwick. Subexponential lower bounds for ran-
domized pivoting rules for the simplex algorithm. In Proceedings of the 43rd
annual ACM symposium on Theory of computing, pages 283–292. ACM, 2011. DOI:
10.1145/1993636.1993675. → 4

126

http://dx.doi.org/10.1137/S0097539793251244
http://dx.doi.org/10.1006/inco.2000.3011
http://homepages.uni-paderborn.de/dumrauf/MCA.pdf
http://homepages.uni-paderborn.de/dumrauf/MCA.pdf
http://dx.doi.org/10.1145/321694.321699
http://dx.doi.org/10.1007/978-3-642-22006-7_15
http://doi.acm.org/10.1145/1283383.1283522
http://doi.acm.org/10.1145/1283383.1283522
http://dx.doi.org/10.1145/1007352.1007445
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.2598
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.2598
http://dx.doi.org/10.1145/1993636.1993675

Bibliography

[23] M. Garey and D. Johnson. Some simplifiednp-completegraphproblems. Theoretical
Computer Science, 1(3):237–267, 1976. DOI: 10.1016/0304-3975(76)90059-1.
→ 9

[24] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory
of NP-Completeness. Mathematical Sciences Series. W. H. Freeman & Co., New York,
1990. → 85

[25] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal
of the ACM (JACM), 42(6):1115–1145, 1995. DOI: 10.1145/227683.227684. →
9

[26] A. Haken. Connectionist networks that need exponential time to stabilize. Technical
report, University of Toronto, Canada, 1989. → 5

[27] A. Haken and M. Luby. Steepest descent can take exponential time for symmetric
connection networks. Complex Systems, 2(2):191–196, 1988. URL: https://www.
complex-systems.com/pdf/02-2-3.pdf. → 5, 8, 25

[28] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing
Surveys (CSUR), 31(3):264–323, 1999. DOI: 10.1145/331499.331504. → 2

[29] D. S. Johnson and L. A. McGeoch. The Traveling Salesman Problem: A Case
Study. In E. H. L. Aarts and J. K. Lenstra, editors, Local Search in Combinatorial
Optimization, pages 215–310. Wiley and Sons, New York, 1997. → 3

[30] D. S. Johnson, C. H. Papadimtriou, and M. Yannakakis. How easy is local search?
Journal of Computer and System Science, 37(1):79–100, 1988. DOI: 10.1016/
0022-0000(88)90046-3. → 4, 9, 10, 13, 14, 98, 120, 121

[31] G. Kalai. A subexponential randomized simplex algorithm. In Proceedings of the
Twenty Fourth Annual ACM Symposium on Theory of Computing (STOC), pages
475–482. ACM, 1992. DOI: 10.1145/129712.129759. → 3, 4

[32] G. Kalai and D. Kleitman. A quasi-polynomial bound for the diam-
eter of graphs of polyhedra. American Mathematical Society, 26(2):
315–316, 1992. URL: http://www.ams.org/journals/bull/1992-26-02/
S0273-0979-1992-00285-9/S0273-0979-1992-00285-9.pdf. → 3

[33] N. Karmarkar. A new polynomial-time algorithm for linear programming. In
Proceedings of the sixteenth annual ACM symposium on Theory of computing (STOC),
volume 4, pages 302–311. ACM, 1984. DOI: 10.1145/800057.808695. → 3

[34] R. M. Karp. Reducibility among combinatorial problems. In R. Miller and
J. Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum
Press, New York, 1972. DOI: 10.1007/978-3-540-68279-0_8. → 5

127

http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://dx.doi.org/10.1145/227683.227684
https://www.complex-systems.com/pdf/02-2-3.pdf
https://www.complex-systems.com/pdf/02-2-3.pdf
http://dx.doi.org/10.1145/331499.331504
http://dx.doi.org/10.1016/0022-0000(88)90046-3
http://dx.doi.org/10.1016/0022-0000(88)90046-3
http://dx.doi.org/10.1145/129712.129759
http://www.ams.org/journals/bull/1992-26-02/S0273-0979-1992-00285-9/S0273-0979-1992-00285-9.pdf
http://www.ams.org/journals/bull/1992-26-02/S0273-0979-1992-00285-9/S0273-0979-1992-00285-9.pdf
http://dx.doi.org/10.1145/800057.808695
http://dx.doi.org/10.1007/978-3-540-68279-0_8

Bibliography

[35] L. Khachiyan. A polynomial algorithm in linear programming. Doklady Akademia
Nauk SSSR, pages 1093–1096, 1979. → 3

[36] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability
results for max-cut and other two-variable csps. In Proceedings of the 45th IEEE
Symposium on Foundations of Computer Science, pages 146–154, 2004. DOI:
10.1109/FOCS.2004.49. → 9

[37] V. Klee and P. Kleinschmidt. The d-step conjecture and its relatives. Mathematics
of Operations Research, 12(4):718–755, 1987. URL: http://www.jstor.org/
stable/10.2307/3689926. → 3

[38] V. Klee and G. Minty. How good is the simplex algorithm? Inequalities, 3:159–175,
1972. → 2, 3

[39] M. W. Krentel. Structure in locally optimal solutions. In Proceedings of the 30th
Annual Syposium on Foundations of Computer Science (FOCS), pages 216–221. IEEE,
1989. DOI: 10.1109/SFCS.1989.63481. → 8, 10, 98

[40] M. W. Krentel. On finding and verifying locally optimal solutions. SIAM Journal on
Computing, 19(4):742–749, 1990. DOI: 10.1137/0219052. → 10

[41] R. Ladner. The circuit value problem is log space complete for P. SIGACT News, 7
(1):18–20, 1975. DOI: 10.1145/990518.990519. → 22

[42] M. Loebl. Efficient maximal cubic graph cuts. In Proceedings of the International
Colloquium on Automata, Languages and Programming (ICALP), volume 510 of
LNCS, pages 351–362. Springer, 1991. DOI: 10.1007/3-540-54233-7_147. →
5, 9

[43] G. S. Lueker. Unpublished manuscript. Princeton University, Princeton, NJ, 1975.
→ 3

[44] J. Matousek, M. Sharir, and E. Welzl. A subexponential bound for linear pro-
gramming. Algorithmica, 16(4/5):498–516, October / November 1996. DOI:
10.1007/BF01940877. → 3

[45] D. Monderer and L. S. Shapley. Potential games. Games and Economic Behavior, 14
(1):124–143, 1995. DOI: 10.1006/game.1996.0044. → 11

[46] B. Monien and T. Tscheuschner. On the power of nodes of degree four in the local
max-cut problem. In Proceedings of the 7th International Conference on Algorithms
and Complexity, Rome, Italy, volume 6078 of LNCS, pages 264–275. Springer, 2010.
DOI: 10.1007/978-3-642-13073-1_24. → 8

[47] B. Monien, D. Dumrauf, and T. Tscheuschner. Local search: simple, successful,
but sometimes sluggish. In Proceedings of the 37th International Colloquium on
Automata, Languages and Programming (ICALP), number 6198 in LNCS, pages
1–17. Springer, 2010. DOI: 10.1007/978-3-642-14165-2_1. → 2, 8

128

http://dx.doi.org/10.1109/FOCS.2004.49
http://www.jstor.org/stable/10.2307/3689926
http://www.jstor.org/stable/10.2307/3689926
http://dx.doi.org/10.1109/SFCS.1989.63481
http://dx.doi.org/10.1137/0219052
http://dx.doi.org/10.1145/990518.990519
http://dx.doi.org/10.1007/3-540-54233-7_147
http://dx.doi.org/10.1007/BF01940877
http://dx.doi.org/10.1006/game.1996.0044
http://dx.doi.org/10.1007/978-3-642-13073-1_24
http://dx.doi.org/10.1007/978-3-642-14165-2_1

Bibliography

[48] J. B. Orlin, A. P. Punnen, and A. S. Schulz. Approximate local search in combinato-
rial optimization. In Proceedings of the fifteenth annual ACM-SIAM symposium on
Discrete algorithms (SODA), pages 587–596. SIAM, 2004. → 9

[49] S. Poljak. Integer linear programs and local search for max-cut. SIAM Journal on
Computing, 24(4):822–839, 1995. DOI: 10.1137/S0097539793245350. → 5, 7,
9, 27

[50] S. Poljak and Z. Tuza. Maximum cuts and largest bipartite subgraphs. In Combina-
torial Optimization, pages 181–244. American Mathematical Society, Providence,
RI, 1995. → 5

[51] G. Reinelt. TSPLIB - a traveling salesman problem library. INFORMS Journal on
Computing, 3(4):376–384, 1991. DOI: 10.1287/ijoc.3.4.376. → 3

[52] R. W. Rosenthal. A class of games possessing pure-strategy nash equilibria. Inter-
national Journal of Game Theory, 2:65–67, 1973. DOI: 10.1007/BF01737559. →
10, 120

[53] C. H. Roth Jr. Fundamentals of logic design. Brooks/Cole Pub Co, 2009. → 17

[54] A. A. Schäffer and M. Yannakakis. Simple local search problems that are hard to
solve. SIAM Journal on Computing, 20(1):56–87, 1991. DOI: 10.1137/0220004.
→ 4, 5, 7, 8, 10, 14, 93, 98, 101, 107, 109, 110, 111, 119, 120, 121

[55] S. Smale. On the average number of steps in the simplex method of linear
programming. Mathematical Programming, 27:241–262, 1983. DOI: 10.1007/
BF02591902. → 9

[56] R. Solis-Oba. Local search. In T. F. Gonzalez, editor, Handbook of Approximation
Algorithms and Metaheuristics. Chapman & Hall/CRC, 2007. → 9

[57] D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–463,
2004. DOI: 10.1145/990308.990310. → 9

[58] M. Todd. The many facets of linear programming. Mathematical Programming, 91
(3):417–436, 2001. DOI: 10.1007/s101070100261. → 2, 3

[59] A. Vattani. k-means requires exponentially many iterations even in the plane. In
Proceedings of the 25th ACM Symposium on Computational Geometry (SCG), pages
324–332, 2009. DOI: 10.1145/1542362.1542419. → 4

[60] M. Yannakakis. Node-and edge-deletion np-complete problems. In Proceedings of
the tenth annual ACM symposium on Theory of computing (STOC), pages 253–264.
ACM, 1978. DOI: 10.1145/800133.804355. → 9

129

http://dx.doi.org/10.1137/S0097539793245350
http://dx.doi.org/10.1287/ijoc.3.4.376
http://dx.doi.org/10.1007/BF01737559
http://dx.doi.org/10.1137/0220004
http://dx.doi.org/10.1007/BF02591902
http://dx.doi.org/10.1007/BF02591902
http://dx.doi.org/10.1145/990308.990310
http://dx.doi.org/10.1007/s101070100261
http://dx.doi.org/10.1145/1542362.1542419
http://dx.doi.org/10.1145/800133.804355

Bibliography

[61] M. Yannakakis. The analysis of local search problems and their heuristics. In
Proceedings of the 7th Annual Symposium on Theoretical Aspects of Computer Science
(STACS), volume 415 of LNCS, pages 298–311. Springer, 1990. DOI: 10.1007/
3-540-52282-4_52. → 9

[62] M. Yannakakis. Equilibria, fixed points, and complexity classes. Computer Science
Review, 3(2):71–85, 2009. DOI: 10.1016/j.cosrev.2009.03.004. → 9

130

http://dx.doi.org/10.1007/3-540-52282-4_52
http://dx.doi.org/10.1007/3-540-52282-4_52
http://dx.doi.org/10.1016/j.cosrev.2009.03.004

	Introduction
	Local search
	Contribution of This Thesis
	Further Related Work

	Preliminaries
	Basic Notations
	Local Search
	Local Max-Cut
	Boolean Circuits and Boolean Formulas

	Complexity of Local Max-Cut: Maximum Degree Four
	Overview of Contribution
	Basic Properties of Nodes with Maximum Degree Four
	P-hardness for Graphs with Nodes of Type I and III
	Is-Exp Property for Graphs with Nodes of Type I and III
	Enforcing Technique for Graphs with Nodes of Type I, II and III
	Basic Subgraphs
	Combining the Subgraphs
	Enforcing Pivot-Rules with Combined Subgraphs

	All-Exp Property
	PSPACE-completeness of the Standard Algorithm Problem

	Complexity of Local Max-Cut: Maximum Degree Five
	Overview of Contribution
	Usage of the P-hardness Reduction
	Substituting Certain Nodes of Unbounded Degree
	PLS-completeness

	Impact of the Results on Other Problems
	Max-2SAT with FLIP-neighborhood
	Congestion Games
	Partitioning with SWAP-neighborhood

	Conclusion and Open Problems
	Bibliography

