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Abstract

Local search is one of the most successful approaches for solving hard optimization
problems. In local search, a set of neighbor solutions is assigned to every solution
and one asks for a local optimum, i.e., a solution that has no better neighbor. The
neighborhood relation between the solutions naturally induces standard algorithms that
find a local optimum: Begin with a feasible solution and iteratively move to a better
neighbor until a local optimum is found. Many empirical and theoretical investigations
have shown that these methods quickly terminate in a local optimum for most instances.

For some problems, however, instances were found for which a standard algorithm
can take an exponential number of improving steps if the initial solution and the rule
that chooses among the improving neighbors, i.e., the pivot rule, are unluckily chosen.
Even worse, for some problems, instances and initial solutions were found in which,
independent of the pivot rule, every standard algorithm takes an exponential number
of steps. We say that these problems have the all-exp property. Thus, using a standard
algorithm turns out to be impractical in some cases.

But how hard is computing a local optimum then—using standard algorithms or any
other approach? To encapsulate the complexity of finding local optima, Johnson et
al. (JCSS,1988) introduced the complexity class PLS. Shortly afterwards, Schaffer et
al. (JOC,1991) showed PLS-completeness for several local search problems including
LocarMax-Curt on graphs with unbounded degree with a FLIP-neighborhood in which
one node changes the partition. Moreover, they showed two further results for LocALMax-
Curt: It has the all-exp property and the STANDARDALGORITHMPROBLEM (SAP), i.e., the
problem of finding a local optimum that is reachable from a given pair of an instance
and initial solution via a standard algorithm, is PSPACE-complete. On the positive side,
Poljak (JOC,1995) showed that there are at most O(n?) improving steps possible for
LocaLMax-CuT on cubic graphs. He also posed the question whether it has the all-exp
property on graphs with maximum degree four. Due to the huge gap between the degree
three and an unbounded degree, Ackermann et al. (JACM,2008) asked for the smallest
d € N for which LocaLMax-Cut on graphs with maximum degree d is PLS-complete.

This thesis provides three complexity results for LocaLMax-Cur. First, it has the all-exp
property if restricted to graphs with maximum degree four—this solves the problem
stated by Poljak. Second, the SAP is PSPACE-complete for graphs with maximum degree
four. Third, finding a local optimum is PLS-complete for graphs with maximum degree
five—this solves the problem of Ackermann et al. almost completely since d is narrowed
down to four or five (unless PLS C P). Since LocaLMax-CuT has been the basis for several
PLS-reductions in the literature, the results have impact on further problems. Some of
the reductions directly carry over the degree in some way and transfer the complexity
results to the corresponding problems even for very restricted sets of feasible inputs.
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Zusammenfassung

Die lokale Suche ist einer der erfolgreichsten Ansétze zur Losung schwerer Optimierungs-
probleme. Bei der lokalen Suche ist jeder Losung eine Menge von Nachbarlosungen
zugeordnet. Gesucht ist ein lokales Optimum, das hei3t eine Losung, die keinen besseren
Nachbarn hat. Die Nachbarschaftsbeziehung zwischen den Lésungen induziert auf
natiirliche Weise so genannte Standardalgorithmen, die lokale Optima finden: Beginne
mit einer zulédssigen Losung und wechsle iterativ zu einem besseren Nachbarn bis ein
lokales Optimum gefunden ist. Viele empirische und theoretische Untersuchungen haben
gezeigt, dass diese Methoden bei den meisten Eingaben schnell ein lokales Optimum
erreichen.

Fiir einige Probleme sind allerdings Instanzen gefunden worden, bei denen ein Stan-
dardalgorithmus exponentiell viele Schritte benotigen kann, wenn die initiale Losung und
die sogenannte Pivot-Regel, die unter den verbessernden Losungen auswahlt, ungliicklich
gewdhlt sind. Schlimmer noch, fiir einige Probleme sind Instanzen und initiale Losungen
gefunden worden, in denen unabhéngig von der Pivot-Regel jeder Standardalgorithmus
exponentiell viele Schritte benétigt. Von solchen Problemen sagen wir, dass sie die All-exp
Eigenschaft haben. Insgesamt gilt also, dass es es in einigen Féllen unpraktisch ist, einen
Standardalgorithmus zur Berechnung eine lokalen Optimums zu wéhlen.

Aber wie schwer ist es dann, ein lokales Optimum zu finden—mit Standardalgorith-
men oder einem anderen Ansatz? Um die Komplexitit der Berechnung lokaler Optima
zu kapseln, haben Johnson et al. (JCSS,1988) die Klasse PLS eingefiihrt. Kurz danach
zeigten Schéffer et al. (JOC,1991) PLS-Vollstéandigkeit fiir verschiedene lokale Suchprob-
leme einschliellich des Problems LocaLMax-Cut auf Graphen unbeschriankten Grades
mit FLIP-Nachbarschaft, in der ein Knoten die Partition wechselt. Dariiber hinaus zeigten
sie zwei weitere Ergebnisse fiir LocaLMax-Curt: Es hat die All-exp Eigenschaft und das
Problem, ein lokales Optimum zu berechnen, das ausgehend von einem Paar aus Instanz
und initialer Lésung mit Hilfe eines Standardalgorithmus erreichbar ist (kurz: SAP), ist
PSPACE-vollstindig. Auf der anderen Seite zeigte Poljak (JOC,1995), dass hochstens
0(n?) verbessernde Schritte fiir LocALMax-Cut auf kubischen Graphen méglich sind
bis ein lokales Optimum erreicht wird. Aul’erdem stellte er die Frage, ob LocaLMax-
Cur auf Graphen mit Hochstgrad vier die All-exp Eigenschaft hat. Wegen der grof3en
Liicke zwischen dem Grad drei und einem unbeschrénkten Grad fragten Ackermann et
al. (JACM,2008) nach dem kleinsten d € N, fiir das LocaALMax-CuT auf Graphen mit
Hochstgrad d PLS-vollstiandig ist.

Die vorliegende Arbeit liefert drei Komplexitidtsergebnisse fiir LocALMax-CuT. Er-
stens behilt es die All-exp Eigenschaft auch wenn es auf Graphen mit Hochstgrad vier
eingeschrankt wird—dieses Ergebnis 16st das Problem von Poljak. Zweitens ist das SAP
PSPACE-vollstandig auf Graphen mit Hochstgrad vier. Drittens ist die Berechnung eines



lokalen Optimums PLS-vollstandig fiir Graphen mit Hochstgrad fiinf—dieses Ergebnis
16st das Problem von Ackermann et al. fast vollstindig, da d dadurch entweder vier
oder fiinf ist (aufSer PLS C P). Die Ergebnisse haben Einfluss auf weitere Probleme, da
LocaLMax-Curt in der Literatur als Basis fiir verschiedene PLS-Reduktionen diente. Einige
der Reduktionen behalten den Grad auf bestimmte Weise bei und iibertragen so die
Komplexitdtsergebnisse auf die entsprechenden Probleme auch fiir sehr eingeschrankte
Mengen zulassiger Eingaben.
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Chapter 1
Introduction

Optimization problems occur in many areas of our daily life. If we are at some location
A and want to reach a location B, we usually try to minimize the length of the path
connecting A and B. If we decide between different leisure time options, we mostly try
to maximize our personal utility. When facing an optimization problem, we are often
interested in two measures: the quality of a solution and the time required to find it. If
the expected utility of finding a (better) solution is greater than the expected cost for the
time needed to find it, then it is rational to search for a (better) solution. In this respect,
the required time plays a crucial role in the process of optimization.

For many optimization problems, the computation of an optimum is NP-hard. Since
no polynomial-time algorithm is known that computes optimal solutions for such prob-
lems, several approaches were developed to find at least good solutions. Approximation
algorithms, for instance, compute solutions whose quality is not more than a prede-
termined factor away from an optimum. Unfortunately, some problems even resist
polynomial-time approximation in the sense that a polynomial-time algorithm that com-
putes an approximate solution directly leads to a polynomial-time algorithm computing
an optimum.

A popular approach to tackle such problems is to use metaheuristics. Nearly all
metaheuristics—local search, simulated annealing, evolutionary algorithms, to name
a few popular ones—impose a neighborhood relation on the solutions and use it to
consecutively improve the set of solutions: They compute from a set S of solutions
representing the current state of the computation a new set S’ of solutions among the
neighbors of the solutions of S, where solutions with higher quality are preferred. In
case of the local search approach, the set of solutions representing the current state
contains only a single solution and the preference for better solutions is strict, i.e., the
computation continues only with a strictly better solution. A local search terminates at a
solution that has no better neighbor solution. Such solutions are called locally optimal.

For convex optimization problems, the local search metaheuristic is especially appeal-
ing since local optima coincide with global optima. On the other hand, the advantage
of metaheuristics with non-strict preference for better solutions is that the computation
can escape local optima. This is particularly of use if local optima are frequent in the
solution space but of rather different quality.

In this thesis, we focus on the local search approach and in particular on the complexity
of computing a local optimum. In particular, we consider the so called LocaLMax-CuT
problem, narrow the border lines of certain complexity properties down for LocALMAX-
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Curt, and show the impact our results have on related problems.

1.1 Local search

Local search is a frequently used technique of computing solutions for hard optimization
problems. Its basic approach is to start with an arbitrary solution and iteratively improve
it by local changes defined by a neighborhood relation between the solutions until a local
optimum is found. The structure of local search algorithms is outlined in[Algorithm 1.1]
The approach has been observed to quickly reach local optima for most instances of a
wide range of optimization problems and became very popular due to its simplicity and
its speed—for comprehensive considerations of local search, we refer to [, [2] [5] [47]).

Input:  Instance I of a local search problem I1
Output: Local optimum of [
1: Compute a solution s of I
2: while s is not a local optimum of I do
3: Compute better solution s’ of the neighborhood of s
4 se—s'
5

: return s

Algorithm 1.1: Basic structure of local search algorithms

Successful Applications of Local Search Three outstanding examples for successful
application of the local search approach are the simplex algorithms for solving linear
programs [|9, [58]], k-opt heuristics for finding solutions of the TRAVELLINGSALESMANPROB-
LEM [[1]] and the k-means algorithm for clustering problems [[14} 28]]. In the following,
we take a look at these famous problems and at the complexity results of local search for
them—in particular, we focus on results that are closely related to this thesis.

LINEARPROGRAMMING In a linear program, the input is a matrix A and vectors b, c. The
task is to find a vector x maximizing ¢’ x such that Ax < b. Due to the convexity of
linear programs, local optima coincide with global optima which emphasizes the use
of local search in a natural way. In 1947, Dantzig| [13]] introduced the famous simplex
method which find an optimum by starting at a vertex of the polytope induced by the
constraints Ax < b and iteratively moving to better vertices with respect to ¢ x along
the edges of the polytope until an optimum is reached. Since their invention, simplex
methods were successfully applied to linear programs originating from a wide range of
applications including scheduling problems, production planning, routing problems and
game theory.

In contrast to the short running time of simplex methods observed for practical
instances, Klee and Minty| constructed linear programs for which the simplex method
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with the steepest descent pivoting rule takes an exponential number of steps [|38]]. For
other pivot rules, similar results were shown (some famous examples are in [|58] 37])).
On the other hand, independently from each other [Kalai| [31]]—who built on a result
of Kalai and Kleitman| [32]—and [Matousek et al.| [44]] provided randomized pivot rules
that lead to a subexponential number of pivot steps for the simplex algorithm. Each
result implies that for every initial solution of a linear program there is a sequence of
improving steps to an optimum that has subexponential length. However, a polynomial-
time computable pivot rule that finds a path of subexponential length to an optimum is
not known.

On the positive side, finding an optimum of a linear program is known to be polynomial-
time computable since Khachiyan| [[35]] introduced his Ellipsoid method. He used an
approach different from local search though. Karmarkar| [33]] subsequently introduced
an interior point method which also takes polynomial time and even outperforms the
simplex algorithm in some practical applications.

TRAVELLINGSALESMANPROBLEM In the TRAVELLINGSALESMANPROBLEM (TSP) the input is
an undirected weighted complete graph and the output is a cycle of minimum weight
that visits all nodes of the graph. One of the most frequently used local search heuristics
for this problem is 2-opt. It starts with an initial tour and iteratively improves it by
exchanging two edges of the tour with two different ones as long as such an improving
step is possible. For random and “real-world” Euclidean instances, this heuristic is known
to compute very good tours within a sub-quadratic number of improving steps [29, 51]].

On the other hand, it was shown that there are instances and initial solutions of the
TSP for which the k-opt heuristic for k > 2 can take exponentially many improving
steps [11], [43]]. However, these instances do not fulfill the triangle inequality and the
question whether such instances can be constructed for the metric TSP remained open
for a long time. Finally, Englert et al.| [19] found Euclidean instances for which the 2-opt
heuristic can take exponentially many improving steps.

CLusTERING The CLUSTERING problem asks for a partition of a set of data points into
subsets (the clusters) such that some given measure for the similarity within the clusters
is maximized. The problem occurs, depending on the application, in many applications
including pattern recognition, data compression and load balancing. A well-studied
algorithm for clustering points in the Euclidean space is the k-means algorithm. It starts
with an initial set of k centers for the clusters, where each data point is assigned to its
closest center. Then it improves the solution by repeatedly performing the following
two steps. At first, for each cluster a new center is determined as the average of all
points of the cluster, which is called the mean, and then each point is assigned to the
cluster represented by the closest of the new center points. Note that in each improving
step, the sum of the distances of the data points to their corresponding closest center,
which can be treated as a potential function, decreases. In the Euclidean space, such an
improving step of the k-means algorithm is uniquely determined.

For the k-means algorithm, the number of steps was observed to be linear in the
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number of data points on typical instances stemming from practical applications [[14].
Contrary to this result and similar to the two above-mentioned famous problems, there
are also instances and initial solutions of the clustering problem for which the k-means
algorithm takes an exponential number of improving steps to converge [[59].

PLS For each of the three famous problems mentioned above it was shown that the
local search approach quickly reaches a local optimum for the vast majority of instances—
in particular for instances arising from practical applications. However, for each of
them one could also find instances and initial solutions for which there is a sequence
of improving steps of exponential length. Thus, the local search approach might fail
to compute a local optimum in a feasible amount of time. One might think that this
problem can be circumvented by putting effort on the pivot rule, i.e., the rule that selects
for a given solution the better solution with which the computation is continued (for
a formal definition of pivot rules we refer to [Definition 2.2.1]). The idea is to design a
pivot rule that guarantees a subexponential or even polynomial length of every sequence
of improving steps. Unfortunately, for none of the three famous problems mentioned
above is such a pivot rule known. In case of LINEARPROGRAMMING the question whether
a deterministic pivot rule exists that induces a subexponential number of steps for the
simplex algorithm is one of the most prominent open questions and is restated in many
papers considering pivot rules for simplex (see, e.g., [I31]] or, recently, [22]]). For some
local search problems, putting effort on the pivot rule is even hopeless: They contain
instances and initial solutions for which even the shortest sequence of improving steps
ending up in a local optimum has exponential length (we say that these problems have
the all-exp property). Altogether, it turns out that using local search for finding a local
optimum may not necessarily or even not at all lead to a local optimum in a reasonable
number of steps.

Since local search is not necessarily a successful approach to find a local optimum,
one might speculate whether one can find a local optimum in some other way or, more
generally, what the complexity of computing a local optimum is. For this purpose, John+
son et al.| [[30] introduced the complexity class PLS (for polynomial local search, the class
is formally introduced in which consists of the problems for which local
optimality can be verified in polynomial time. In the same paper they introduced the
problem CircurtFLIP and showed that it is complete for PLS. Subsequently, [Schéaffer
and Yannakakis| [[54] refined the notion of a PLS-reduction and introduced what is
called a tight PLS-reduction which, beyond the functionality of ordinary PLS-reductions,
additionally preserves two properties. First, the all-exp property is preserved. Second,
it preserves the PSPACE-completeness of the STANDARDALGORITHMPROBLEM (SAP), i.e.,
the problem of computing from a given pair of an instance and initial solution a local
optimum that is reachable from the initial solution via improving steps. Then they
showed by means of tight PLS-reductions that several famous local search problems
have the following three properties. First, they are PLS-complete. Second, they have the
all-exp property. Third, their corresponding SAP is PSPACE-complete.



1.1 Local search

LocAaLMax-Cut The LocAaLMax-CuT problem is based on the Max-CuT problem. Max-
Cur takes as input an undirected graph G = (V, E) with weighted edges w : E — N and
asks for a partition of V into two sets V; and V, that maximizes the sum of the weights
of those edges which are incident to one node in V; and one in V,. Max-CuT is one of
the most famous combinatorial optimization problems with a wide range of applications
including statistical physics and circuit layout design (see [8],[50], e.g.) and is known
to be NP-complete—in fact, the decision version of Max-Cut was one of the problems
of [Karp's list of 21 NP-complete problems [[34]. The problem LocAaLMAx-CuT arises from
Max-Curt by imposing a neighborhood relation on the set of solutions, namely what is
called the FLIP-neighborhood. In this neighborhood, two solutions are neighbors if they
can be reached from each other by exchanging exactly one node between the sets V; and
Vy.

A local optimum of LocaLMax-CuT is away from an optimum by a factor of at most
two. This is due to the fact that in a local optimum P the sum of the weights of the
edges incident to a node v € V that are in the cut in P is at least the half of the
sum of the weights of all edges incident to v. Otherwise the flip of v increases the
cut—we say that v is unhappy if its flip increases the cut—which is impossible in local
optima. Schaffer and Yannakakis| [54]] showed that LocaLMax-CuT is PLS-complete by
means of a tight PLS-reduction. The tightness of their reduction additionally implied
that LocaLMax-CuT has the all-exp property and the corresponding SAP is PSPACE-
complete—concurrently to Schaffer and Yannakakis Haken| [26] constructed instances
for LocaLMax-Cut that showed its all-exp property (a description of the instances can be
found in [21]]). However, the reduction of |Schéffer and Yannakakis| constructs graphs for
LocarMax-Cut with unbounded degree.

For graphs with maximum degree three, |Loebl [42] showed that there is a polynomial-
time algorithm that computes a local optimum of LocaALMax-Cut. His algorithm uses an
approach different from local search. The complexity of the local search approach for
cubic graphs was considered by Poljak| [49]. He showed that starting from an arbitrary
solution there are at most O(n?) improving flips possible for LocALMax-CuT until a
local optimum is reached. The property can easily be generalized to arbitrary graphs
with maximum degree three. However, a similar result is not possible for graphs with
maximum degree four. For a problem closely related to LocaLMax-Cut, [Haken and
Luby [27]] showed that there are graphs of maximum degree four and initial solutions
for which there is a sequence of improving steps of exponential length. Inspired by
their result, Poljak| asked whether there are graphs of maximum degree four and initial
partitions for which all sequences of improving flips have exponential length, i.e.,
whether LocaALMax-Cur has the all-exp property for graphs with maximum degree four.
Referring to the PLS-completeness of LocALMAx-CuT for graphs with unbounded degree
and the polynomial-time computability for cubic graphs, Ackermann et al.| [3]] asked for
the minimum degree d € N for which LocaAtMax-CuT is PLS-complete on graphs with
maximum degree d.
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1.2 Contribution of This Thesis

In this thesis, we consider the complexity of LocaLMax-Cur for graphs with maximum
degree four and then its complexity for graphs with maximum degree five. In the
following, we outline our findings and their implications on other problems. At the
beginning of the subsequent chapters, we give more detailed summaries of our results.

Maximum degree four We first introduce three different types of nodes of maximum
degree four classified by means of the relation between the weights of their incident
edges. The classification allows for a node v and a given partition of the corresponding
graph to easily derive the happiness of v from its type, its partition, and the partitions of
its adjacent nodes. The types and the characterization of their happiness are frequently
utilized in the subsequent parts.

For graphs that contain only two of these types, we show the following two results
with a proof that is based on essentially the same construction. First, the problem of
computing a local optimum is P-hard with respect to logspace reduction. Second, for
each polynomial-time computable function f : {0,1}" — {0,1}™ for n,m € N we can
compute with logarithmic space a graph G with weighted edges such that in every local
optimum the output of f can be read from the partitions of the nodes of G. The second
result turns out to be very helpful and finds application in all main results of this thesis.

Building on the second result, we construct an infinite family of pairs of graphs and
initial partitions in which there is a sequence of improving flips of exponential length;
we say that problems in which this is possible have the is-exp property. The graphs in the
proof of this result contain the same two types of nodes as in the above-mentioned results.
Moreover, the construction of the graphs relies on a Boolean circuit that is mapped to
a graph via the reduction function introduced in the aforementioned P-hardness proof.
This property and the result itself has significant impact on the subsequent main results,
since both properties are used in the proofs of the main results for the maximum degree
four.

In preparation of our main results, we develop a technique of extending certain given
graphs and initial partitions by further nodes and edges such that in the resulting graph
an intended behavior for the sequences of improving flips is enforced. More precisely, the
given graphs are obtained from Boolean circuits via the reduction of the P-hardness proof.
The intended behavior is specified by means of a polynomial-time computable function h
that returns for a given partition either one of the possible improving steps, if there is
one, or “nil”—the function h has to return “nil” if its input partition is a local optimum
but is allowed to return “nil” if it is not locally optimal. The function naturally induces
a sequence t of improving steps: Begin at the given pair of graph and initial partition
and let h iteratively choose the improving steps until a partition is reached for which h
returns “nil”. Our technique extends the given graph and initial partition according to
h by polynomially many nodes and edges such that every sequence of improving steps
starting at the resulting pair of graph and initial partition has t as a subsequence. For
this reason, we say that our technique enforces the behavior induced by h.

Using our enforcing technique, we obtain our first main result:
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Theorem 3.6.1l LocarMax-Cut has the all-exp property for graphs with maximum
degree four.

In the proof, we use the circuit and the initial partition developed for the proof of the
is-exp property and show that there is a polynomial-time computable function h that
induces the sequence of exponential length named in that proof. Then our enforcing
technique directly implies the all-exp property. Since there are at most O(n?) improving
steps possible for LocaLMAax-CuT on cubic graphs [49], it follows that the degree four is
the minimum degree for which LocaLMax-Curt has the all-exp property.

Then we prove our second main result:

Theorem 3.7.1l The STANDARDALGORITHMPROBLEM for LocALMAX-CuT is PSPACE-complete
for graphs with maximum degree four.

The proof of this result is done by simulating the computation of a linear bounded
automaton by means of improving steps starting at a graph of maximum degree four
with an initial partition that corresponds to the initial configuration of the automaton.
Then we use our enforcing technique to enforce the intended simulation and use the
construction of the is-exp proof to fuel the simulation process as long as necessary.

Maximum degree five Our main result for graphs with maximum degree five is as
follows.

Theorem 4.4.2l LocaLMax-CuT is PLS-complete for graphs with maximum degree five.

To show this property, we first introduce a technique that substitutes nodes of degree
greater than five which have certain properties—we will call these nodes comparing—by
a subgraph that contains only nodes of maximum degree five. For the graph arising
from the substitution of each comparing node v by the corresponding subgraph, we
show that in certain local optima all nodes of the subgraph that substitutes v and which
are additionally adjacent to a node of the original graph have the same color. Namely,
they have the color that v would have in the corresponding partition of the original
graph if its flip did not increase the weight of the cut. In this respect, the nodes of the
subgraph that substitutes v behave in certain local optima as the original node v. Using
this technique, we prove PLS-completeness via a PLS-reduction from the PLS-complete
problem CircurtFLIp. We map instances of CIRCUITFLIP to graphs with maximum degree
five where some of the subgraphs of the graph arise from our substitution technique.
Then we show that local optima for these graphs induce local optima in the corresponding
instances of CIRcUITFLIP.

Impact on other problems In the literature, several tight PLS-reductions are based
on LocAaLMax-CuT. According to Schaffer and Yannakakis| [54] tight PLS-reductions
not only lead to PLS-hardness of the corresponding problems but also preserve the
following two properties. First, the all-exp property. Second, PSPACE-completeness
of the corresponding SAP. Some of the tight PLS-reductions in the literature preserve
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the degree of the nodes in some sense. Via these reductions our results directly imply
stronger complexity results for the corresponding problems. Namely, we get:

Theorem 5.1.11 For the LocaLMax-2SAT(i) problem, in which the instances are re-
stricted such that each variable occurs in at most i € N clauses, the following complexity
results hold: LocALMax-2SAT(8) has the all-exp property, its corresponding SAP is
PSPACE-complete, and LocALMax-2SAT(10) is PLS-complete.

Theorem 5.2.1l For the problem ConNGNasH(i) of computing a Nash equilibrium in
congestion games in which every strategy contains at most i € N resources, the following
complexity results hold: CoNGNAsH(4) has the all-exp property, its corresponding SAP is
PSPACE-complete, and CoNGNAsH(5) is PLS-complete.

Theorem 5.3.1l The problem PARTITIONING(i) of computing a 2-partition with equally-
sized partitions for graphs with maximum degree i € N maximizing the sum of the
weights of the edges in the cut, has the following properties: PARTITIONING(5) has
the all-exp property, its corresponding SAP is PSPACE-complete and PARTITIONING(6) is
PLS-complete.

Personal contribution and bibliographic notes The constructions of all proofs were,
with the following exceptions, entirely developed by myself. The proof of the is-exp
property for graphs that contain two of the three types of nodes of maximum degree
four (i.e.,[Theorem 3.4.1)) was concurrently and independently developed by Burkhard
Monien and myself. Both of our proofs were inspired by the construction of [Haken and
Luby [27].

The pivot rule in the proof of the all-exp property of LocaLMax-Cur for graphs of
maximum degree four (i.e.,Theorem 3.6.1) was invented by Burkhard Monien and is
simpler than the rule previously designed by myself.

Finally, some subgraphs of the PLS-completeness proof of LocaLMax-CuT for graphs
with maximum degree five were adopted from the construction of [Schaffer and Yan
nakakis| [[54]] and adjusted such that they have maximum degree five. The overall
structure of the proof was inspired by the proof of Krentel| [39]].

A preliminary version of the results for the maximum degree four was published in the
Proceedings of the 7th International Conference on Algorithms and Complexity (CIAC’10)
[46]]. The PLS-completeness of LocALMAX-CuT for graphs with maximum degree five was
published in the Proceedings of the 38th International Colloquium on Automata, Languages
and Programming (ICALP’11) [18]]. Lastly, some parts of this thesis appeared in the
survey on local search published in the Proceedings of the 37th International Colloquium
on Automata, Languages and Programming (ICALP’10) [47].

1.3 Further Related Work

Local Search and PLS By definition of the class PLS, a local optimum of a given
PLS-problem is verifiable in polynomial time. Thus, PLS is a subset of FNP, i.e., the



1.3 Further Related Work

complexity class of search problems whose decision version is NP. It is unlikely that a
PLS-problem is NP-hard, since according to Johnson et al.| [|30] this would imply NP
= co-NP. On the other hand, no polynomial-time algorithm is known that solves a
PLS-hard problem and therefore it is unclear whether PLS is in FP (for Function NP),
i.e., the complexity class of search problems whose decision version is P (since we do
not consider decision problems in this thesis, we do not explicitly distinguish between
the classes FP and P or NP and FNP, respectively). On the positive side, [Orlin et al.
[48]] showed that one can at least compute an approximate local optimum via a fully
polynomial time approximation scheme (FPTAS). For further information on local search,
its complexity, and related problems we refer the reader to [2][56, 61} [62]].

Max-Cut In contrast to LocALMaX-CUT on cubic graphs, which is in P [[42],[49], finding
a global optimum of Max-CuT remains NP-complete for graphs with maximum degree
three according to Yannakakis| [[60]. Even the unweighted case of Max-Cur, i.e., the
case in which all edges have weight 1, was shown to be NP-complete [23]]. This result
also stands in contrast to the complexity of LocALMAx-CUT. A sequence of improving
steps on graphs with unit weights is upper bounded by |E|, since each improving step
increases the number of edges that are in the cut at least by one. Another interesting
fact is that finding a minimum cut is possible in polynomial time by means of computing
a maximum flow [[17].

A major advance in the approximation of Max-CuT was accomplished by |Goemans
and Williamson! [25] who used semidefinite programming to compute solutions with an
approximation factor of about 0.878. Subsequently, it was shown by Khot et al.| [36] that
this approximation factor is even best possible under the assumption that the unique
games conjecture is true. Moreover, the best possible approximation factor holds for the
weighted as well as for the unweighted version of Max-CuT according to [Crescenzi et al.
[2].

Smoothed Complexity It was observed that the running time of local search algo-
rithms, in particular, simplex methods for linear programs, is very low on most instances
occurring in practical applications. Inspired by this observation, the complexity of the
simplex algorithms was investigated for many distributions of random inputs and shown
to be in expected polynomial time [4)} (10, [55]. The same observation was made for
the 2-opt heuristic for computing solutions of the TSP on random instances in the unit
hypercube [0,1]¢ [11]]. However, as for the artificially constructed inputs for which an
exponential number of improving steps are possible, it can be argued that the random
instances may have certain properties that do not reflect the properties of instances
arising in practical applications.

To understand why the running time is polynomial on so many instances stemming
from practical applications, |Spielman and Teng| [57] introduced the notion of smoothed
complexity which measures the expected running time of an algorithm under small
random perturbations of the input. They showed that the simplex algorithm for linear
programs has polynomial smoothed complexity. Subsequently, the notion of smoothed
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complexity was adapted for algorithms of various other local search problems. Famous
problems with polynomial smoothed complexity are the following: The 2-opt heuristic for
Euclidean instances [[19]], the k-means algorithm [7]] and, recently, Elsasser [[18]] showed
that LocaALMAX-CuT has polynomial smoothed complexity on graphs with logarithmic
degree with high probability. The last-mentioned result shows an interesting contrast
to the PLS-completeness for graphs with maximum degree five proven in this thesis.
Although LocarMax-Cur is hard to solve in general on graphs with a logarithmic degree
greater than four, it can be solved in polynomial time for slightly perturbated instances
with high probability.

Constraint Satisfaction Problems In the paper of Johnson et al. [[30], where the class
PLS was introduced, the authors conjectured that a PLS-problem is only PLS-complete
if the corresponding problem of verifying a local optimum is P-hard. In contrast to
this conjecture, Krentel [[40]] showed PLS-completeness for a constraint satisfiability
problem for which the corresponding verification of a local optimum can be done using
logarithmic space. His proof essentially provides the basis of the construction Schéffer
and Yannakakis used to prove the PLS-completeness of LocALMAx-CuT [54]]. The proofs
of |Schaffer and Yannakakis| and |Krentel| are similar in the sense that the degree of
the nodes of the graphs constructed by |Schaffer and Yannakakis| corresponds to the
number of occurrences of the variables in the constraints of Krentel. In both proofs these
numbers—i.e., the degree and the number of occurrences, respectively—are unbounded.

However, in a follow-up paper Krentel| [39] sketched a proof of PLS-completeness for
a constraint satisfiability problem with a constraint length of at most four, at most three
occurrences of any variable and trivalent variables. Inspired by the problem considered
by [Krentel, Dumrauf and Monien| [16]] (alternatively, see [[I5]]) introduced the Maxi-
MUMCONSTRAINTASSIGNMENT (MCA), a generalized version of the problem considered
by [Krentel. The set of feasible inputs to the problem (p,q,r)-MCA for p,q,r € N are
functions (i.e., the constraints) that map assignments for the variables to integers. The
functions are limited in the sense that each constraint has at most p variables, the
maximum occurrence of each variable is q and its valence is r. The neighborhood
of an assignment contains all assignments in which the value of a single variable is
changed. The value of the solution is the sum over the values of the constraint functions
with respect to the given assignment. In these terms, the problem for which Krentel
showed PLS-completeness is (4, 3, 3)-MCA. In their paper, Dumrauf and Monien show
PLS-completeness for (3, 2,3)-MCA, (2, 3,6)-MCA and (6, 2,2)-MCA. Let us remark that
the LocALMaXx-Curt for graphs with maximum degree k, which is in the focus of this thesis
for k =4 and k = 5, can be formulated as a (2, k, 2)-MCA problem with a restricted set
of feasible constraint functions.

Congestion Games Congestion games were introduced by [Rosenthal [[52]] as a model
for the behavior of selfish players that share resources whose cost depend on the number
of players that use the corresponding resource. In his paper, he showed via a potential
function argument that every congestion game has a (pure) Nash equilibrium, i.e., a
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state in which neither player can improve its utility by unilaterally changing its strategy.
Subsequently, Monderer and Shapley| [45]] strengthened the relation of congestion games
to potential functions and showed that congestion games are isomorphic to potential
games, i.e., games in which the players aim to improve a given potential function.

The close relation between congestion games and the class PLS was shown by [Fab{
rikant et al.| [20]]. They proved PLS-completeness for the following three problems. First,
computing a Nash equilibrium in congestion games. Second, computing a Nash equilib-
rium in symmetric congestion games, i.e., congestion games in which the strategies of
all players are the same. Third, computing a Nash equilibrium in network congestion
games, i.e., games in which the strategies of the players correspond to paths in an
underlying network. On the positive side, they showed that a Nash equilibrium for
symmetric network congestion games is polynomial-time computable via min-cost flow
algorithms. This is in particular of interest, since |Ackermann et al.| [3]] subsequently
showed that symmetric network congestion games have the all-exp property. In their
paper, |Ackermann et al. also proved that the number of improving steps in congestion
games is polynomial if the combinatorial structure of the strategies of the players are
based on matroids. Moreover, they simplified the proof of the PLS-completeness of
computing a Nash equilibrium for network congestion games in comparison to the earlier
proof of [Fabrikant et al.| [20]].

11






Chapter 2

Preliminaries

2.1 Basic Notations

Sets The set of natural numbers without zero, i.e., {1,2,3,...}, is denoted by N, the
set of natural numbers including zero is denoted by Ny, the set of rational numbers is
denoted by Q and the set of non-negative rational numbers is denoted by Q.. For the
set of functions that grow polynomially in a variable n € N we write O(poly(n)), i.e.,

O(poly(n)) := ey O(n*) for n € N.

2.2 Local Search

Definition 2.2.1. A local search problem II consists of a set of instances %, a set of
feasible solutions & (I) and an objective function f; : #(I) — Q for every instance I € .#.
In addition, for every solution s € & (I) there is a neighborhood A (s,I) € Z(I). For
an instance I € .#, the problem is to find a local optimum, i.e., a solution s € & (I) such
that for all s" € A (s,I) we have f;(s) > f;(s") in case of maximization and f;(s) < f;(s")
in case of minimization. A standard algorithm [30|] is an algorithm that computes a
local optimum by first computing a feasible solution and then iteratively moving to a better
neighbor until a local optimum is reached. A pivot rule is a function that returns for a
given pair (I,s) of instance I € ¢ and solution s € & (I) a solution in A (s,I) with a better
objective function value than s if there is one, and “nil” otherwise.

PLS

Definition 2.2.2 ([[30]]). A local search problem I is in the class PLS if the following three
polynomial-time algorithms exist: algorithm A computes for every instance I € .# a feasible
solution s € Z (1), algorithm B computes for every I € . and s € & (I) the value f(s), and
algorithm C is a pivot rule.

Definition 2.2.3 ([I30]). A problem I € PLS is PLS-reducible to a problem I1" € PLS if
the following polynomial-time computable functions ® and W exist. The function ® maps
instances I of I1 to instances of I1" and ¥ maps pairs (s,I), where s is a solution of ®(I),
to solutions of I such that for all instances I of T1 and local optima s* of ®(I) the solution
W(s*,I) is a local optimum of 1. Finally, a local search problem II is PLS-complete if T1 €
PLS and every problem in PLS is PLS-reducible to II.

13
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Improving steps

Definition 2.2.4. Let IT be a problem in PLS, .# be the set of its instances, % (I) be the
set of feasible solutions and f; : & (I) — Q be the objective function for I € Z(I). Let
I e $andsy,...,s, € F(I) for n € N such that s;; € A (s;,I) forall 1 <i < n. Then
the sequence s := (s1,...,s,) is called a sequence of steps. If n = 2 then s is also called
a step. Moreover, s is called improving if fi(s;y1) > fi(s;) for all 1 <i < n in case of
maximization and f;(s") < f;(s) for all 1 <i < n in case of minimization. We say that Il
has the is-exp property if there is an infinite family of pairs (I,s) with I € £ and s € (1)
for which there is a sequence of improving steps of exponential lengthE] in I starting from s.
Furthermore, we say that I1 has the all-exp property if there is an infinite family of pairs
(I,s)with I € £ and s € % (I) such that every sequence of improving steps in I starting
from s has exponential length.

Definition 2.2.5 ([[30]]). Let IT be a problem in PLS, .# be the set of its instances, and
Z (1) be the set of feasible solutions. For an instance I € . and a solution s € Z(I) the
StandardAlgorithmProblem asks for a solution s’ € Z(I) for which s’ is reachable from
s via a sequence of improving steps.

Definition 2.2.6 ([[54]]). Let II be a problem in PLS and I be an instance of TI. The
neighborhood graph NG(I) of the instance I is a directed graph with one vertex for each
feasible solution of I and an arc s — t for feasible solutions s,t of I if t € A (s,I). The
transition graph TG(I) is the subgraph of NG(I) that contains the arcs s — t for which
t has a strictly better objective value than s (i.e., greater if Il is a maximization problem
and smaller if it is a minimization problem).

Definition 2.2.7 ([54]). Let I1,II" € PLS and (&, ¥) be a PLS-reduction from II to IT'.
The reduction is called tight if for any instance I of II there is a subset & of the set of
feasible solutions of the image instance J := ®(I) of I’ so that the following properties are
satisfied:

e % contains all local optima of J.

e For every feasible solution p of I, we can construct in polynomial time a solution
q € Z of J such that ¥(q,I) = p.

e Suppose that the transition graph of J, TG(J), contains a directed path ¢ —— ¢q’
such that q,q" € & but all internal path vertices are outside & and let p := ¥(q,I)
and p’ :=W(q’,I) be the corresponding feasible solutions of I. Then either p = p’ or
TG(I) contains an arc from p to p’.

! A sequence is said to have exponential length with respect to the size n of the input I if it contains at
d
least c™ steps for some constants ¢ > 1 and d > 0.

14
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2.3 Local Max-Cut

Definition 2.3.1. The problem LocalMax-Cut is a local search problem. An instance of
LocALMax-Curt is an undirected graph G = (V, E) with positive edge weights w : E — Q..
A feasible solution is a partition of V into two sets V;,V,. The objective is to maximize
the sum of the weights of the edges {u, v} with u,v € V for whichu € V; and v € V,. The
neighborhood of a solution s contains each solution arising from s by moving a single node
from one of the sets V; and V, to the other.

Observation 1. For LocaALMAx-CuT, a pivot rule is a function that maps a partition of a
given graph to an unhappy node and returns “nil” if the partition is a local optimum.

Definition 2.3.2. A generalized pivot rule for LocALMax-CuT is a function that either
maps a partition of a given graph to an unhappy node or returns “nil”.

The difference between a generalized pivot rule and a pivot rule for LocaLMax-CuT is
that a generalized pivot rule may return “nil” in partitions that are not a local optimum.
Note that each pivot rule for LocaLMAax-CuT is also a generalized pivot rule.

Prerequisite: Weighted Graphs In this thesis, we consider the LocaLMax-CuT problem
only with weighted edges. Thus, whenever we introduce a graph G = (V, E), we omit the
attribute “weighted” and assume w : E — Q. to be the function for the edge weights of
the graph.

Degree For a graph G =(V,E) and a node v € V we let degg(v) be the degree of v in
G, i.e., the number of edges incident to v in G. Moreover, we let deg (G) be the degree
of G, i.e., deg(G) := max,cydegs(v).

Partitions Let G = (V,E) be a graph. The graph G together with a 2-partition P
of V into two sets V;,V, C V is called a partitioned graph and denoted by (G, P).
Since all partitions in this thesis are 2-partitions, we simply say partition instead of
2-partition. The set of all partitions of V is denoted by # (V). Let P € #(V). We let
c@,p) - V — {0,1} with ¢ py(u) = 1 for u € V if and only if u € V; with respect to P
and call ¢ p)(u) the color of u. In particular, we say that u is black if (g py(u) = 1 and
that it is white if ¢ py(u) = 0. If the considered graph is clear from the context then we
simply write cp(u), and if the partition is also clear then we even just write c(u). We say
that an edge {u,v} € E is in the cut in P if cp(u) # cp(v). For a vector v := (vy,...,v,)T
of nodes v; € V for 1 <i < n and n € N we let both ¢(v) and c¢(v4,...,V,) refer to the
vector (c(v1),...,c(v,))T. Since all vectors in this thesis are transposed, we from now
on omit the “T” in the exponent. For a subset V' C V we let P| be the partition of V’
such that cp(v) = cp| ,(v) for all v € V',
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Flips Let G = (V,E) be a graph. For a partition P, € #(V) and a sequence s :=
(tg,...,uq) of nodes forq e Nand u; € V for all 1 <i < g we call s a sequence of flips
starting at (G, Py). If the graph is clear from the context then we also say that s is a
sequence of flips in Py, and if the partition is also clear then we even just say that s is a
sequence of flips. If ¢ = 1 then s is called a flip of u;. We denote by P; ; for 1 <i < q the
partition arising from P ;_; by a flip of u; where P ; := P,. If the considered sequence
is clear from the context then we simply write P;. The sequence s of flips is called
improving if the sequence (P,...,P,) of steps is improving. Throughout the thesis
we only consider sequences of flips that are improving and therefore we may omit the
attribute “improving”. The sequence s of flips is called final if P, is a local optimum.
A node u is happy in (G, Py) (or happy in P, if the considered graph is clear from the
context or just happy if even the partition is clear) if the flip of u is not improving in P,
and unhappy in P, otherwise—note that a partition P € (V) is a local optimum if and
only if v is happy in P forallve V. For 1 <i < j < q we let siJ = (uy, ..., u;)—we let s!
for j < i be the empty sequence. For two sequences s = (vy,...,v,) and t = (wy,...,w,)
of flips forq,r e N, v; €V forall1 <i <qgand w; € V for all 1 <i <r the composition
(V1,.+.,Vg,Wq,...,w,) of s and t is denoted by s o t. For a partition P, € 2 (V) and a
generalized pivot rule h starting at (G, Py) we call the sequence (wy, ..., w,) starting at
(G, Py) for which h(P;) = w;, for all 0 < i < q and h(P;) = nil for all 0 <i < q induced
by h. For A,B €V withANB =0 and P, € 2 (V) we write A <p, B if for every sequence
s = (wy,...,w,) starting at (G, Py) with g € N and every 1 < i < q for which w; € B
there is a 1 < j <1 such that w; € A. If the partition is clear from the context then we
just write A < B. For a sequence s of flips and a subset V' C V we let s |y be the sequence
arising from s by deleting the flips the nodes of V \ V’.

2.4 Boolean Circuits and Boolean Formulas

Boolean Circuits In the literature, Boolean circuits are defined in various, conceptually
equivalent ways. In this thesis, we use a definition that is inspired by the definition
of |Arora and Barak [|6]].

Definition 2.4.1. A Boolean circuit C is a directed acyclic graph (V, E) with a maximum
indegree of two for all nodes and a logical operation—i.e., AND, OR, NOT, NAND, NOR,
XOR or XNOR—assigned to each node of V whose indegree is not zero. The nodes with
indegree zero are called input nodes of C, the nodes with outdegree zero are called output
nodes of C and all noninput nodes are called gates. If a logical operation * is assigned to a
gate g € V then we call g a *-gate. The indegree of a node v is called the fan-in of v and
its outdegree is called its fan-out.

Definition 2.4.2. Let C be a Boolean circuit with n € N inputs and m € N outputs. An
input of C is a vector x € {0,1}" and the output of C on input x, denoted by C(x), is
derived by assigning a value val(v) to each node v of C in the following way: If v is an
input node then we let val(v) = x;, otherwise val(v) is the output of the logical operation
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>0 =Do— - 4

(a) NOT- (b) NOR- (c) Input (d) Output
gate gate marker marker

Figure 2.1: A NOT- and a NOR-gate as well as the markers incident to input nodes and
output nodes.

assigned to v with respect to the values of the nodes adjacent to v via an ingoing edge of v.
Then the output C(x) is defined as the vector of the values of the output nodes of C.

A property that we frequently use is the following:

Proposition 2.4.3 (see, e.g., [53[]). Let C be a Boolean circuit with N € N nodes and
n € N input nodes. Then there is a Boolean circuit C’ with O(N) nodes and n input nodes
that contains only NOR-gates with a fan-in of two such that for all x € {0,1}" we have
C(x)=C’'(x).

Throughout the thesis we introduce several Boolean circuits via drawings. In all
Boolean circuits, we only use NOT-gates or NOR-gates. The gates are drawn according to
the ANSI-standard. A NOT-gate is depicted in and a NOR-gate in
We do not draw the input nodes. Instead, the input of the nodes adjacent to the input
nodes are labelled by the marker in On the other hand, the output gates
are drawn. Here, we label the output of the output gates by the marker depicted in

Boolean Formulas For a set W of Boolean variables we let ®(W) be the set of all
Boolean formulas in disjunctive normal form over variables of W. The empty Boolean
formula is denoted by the empty set, i.e., 0. Let ¢ € &(W) with ¢ = \/?:1 M; forneN
and M; = /\;n;1 l; j where m; is the number of literals of monomial M; and [; ; for any
1<i<n,1<j<m;isaliteral over a Boolean variable of W. Let W% C W be the set of
variables of ¢. For an assignment t : W?® — {0, 1} we let val,(¢) be the truth value of
¢ if each variable x of ¢ has the value t(x). We let Mons(¢) be the set of monomials
of ¢, Lits(M) be the set of literals of a monomial M and pos(l) be the function that

returns O if literal | negates its corresponding variable and 1 otherwise.
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Chapter 3

Complexity of Local Max-Cut:
Maximum Degree Four

3.1 Overview of Contribution

In this chapter, we devise several complexity results for LocALMax-CuUT on graphs with
maximum degree four. For this, we first introduce three different types of nodes.
The types classify nodes of maximum degree four based on the relation between the
weights of their incident edges. The classification allows a simple characterization of
the happiness of a node in a given partition. The characterization in turn is frequently
exploited in the subsequent parts.

Then we show two results with basically the same construction for graphs that contain
only two of the introduced types. First, the problem of computing a local optimum is
P-hard with respect to logspace reduction. Second, for each polynomial-time computable
function f : {0,1}" — {0,1}™ for n,m € N one can compute with logarithmic space a
graph G such that in every local optimum the output of f can be read from the colors of
the nodes of G. The second result turns out to be very useful. In fact, it is applied in the
proofs of all main results of this thesis.

As a first application of the result, we construct an infinite family of pairs of graphs
and initial partitions for which there is a sequence of improving flips of exponential
length. The graphs in the proof of this result contain the same two types of nodes
as in the construction for the P-hardness result which implies the is-exp property of
LocatMax-Cut on such graphs. Actually, the construction relies on a Boolean circuit that
is mapped to a graph via the reduction function of the P-hardness proof.

Then we devise a technique of enforcing any polynomial-time computable pivot rule
on certain graphs. More concretely, the technique takes as input a Boolean circuit C,
a partition P of the nodes of the graph G¢ obtained from C via the reduction function
in the P-hardness proof and a polynomial-time computable generalized pivot rule for
G. The generalized pivot rule naturally induces a sequence t of improving flips starting
at (G,P%): Begin with the initial partition P, let the pivot rule choose an improving
flip, perform the flip, get thereby another partition and repeat this procedure until the
generalized pivot rule outputs “nil”. The technique computes in polynomial time a
graph G’ = (V/,E") with V C V’ and an initial partition P’ € 2 (V") such that every final
sequence of flips starting at (G’, P’) has t as a subsequence. In other words, for any
polynomial-time computable generalized pivot rule h for the graph G¢, the technique
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extends G by polynomially many nodes and edges such that—independently of the pivot
rule that is performed in the extended graph—every final sequence of improving flips in
the extended graph has the sequence t as a subsequence. For this reason, we say that
our technique enforces the generalized pivot rule h.

Using our technique, we show the all-exp property for graphs with maximum degree
four. For this, we use the circuit and the initial partition developed for the proof of the
is-exp property and show that there is a polynomial-time computable pivot rule that
induces the sequence of exponential length of the proof of the is-exp property. Then the
enforcing technique directly implies the all-exp property.

Finally, we show the PSPACE-completeness of the STANDARDALGORITHMPROBLEM. We
do this by simulating the computation of a linear bounded automaton within a graph of
maximum degree four by using the enforcing technique and we use the construction of
the is-exp proof to fuel the simulation process as long as necessary.

Prerequisite: Maximum Degree Four Since we only consider graphs with maximum
degree four in this chapter, we assume an implicit statement that the graph has maximum
degree four each time we introduce a graph.

3.2 Basic Properties of Nodes with Maximum Degree Four

Definition 3.2.1. Let G = (V,E) be a graph. For a node u € V and edges a,, b,,c,,d,
incident to u with w(a,) > w(b,) = w(c,) = w(d,) we distinguish the following types for
u:

I, ifw(a,)>w(b,)+w(c,)+w(d,)

if w(a,) +w(d,) >w(b,)+w(c,) and
w(a,) <w(b,)+w(c,) +w(d,)

i, if w(a,)+w(d,) <w(b,)+w(c,).

Typeof u:=4 1II,

These three types do not cover all possible nodes for graphs of maximum degree
four—which is due to the fact that the inequalities are strict—but if a node has one of
these types then we can characterize its happiness in local optima:

Observation 2. For a graph G = (V,E), P € Z(V), u € V and edges a,, b, c,, d,, incident
to u with w(a,) = w(b,) > w(c,) = w(d,) the following three conditions are satisfied:

o Ifuis of Type I then u is happy in P if and only if a, is in the cut.

o Ifuis of Type II then u is happy in P if and only if a, and at least one other edge is in
the cut or by, c, and d,, are in the cut.

o Ifuis of Type IIl then u is happy in P if and only if at least two of the edges a,, b,, c,
are in the cut.
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bll bu bll
a, ay ay
u G u u U
N E) PN
(a) Type I (b) Type II (c) Type III

Figure 3.1: Tllustration of the three types for node u.

Throughout this thesis we introduce several graphs containing nodes of these three
types. To simplify the reading process we introduce the graphs by means of drawings. In
[Figure 3.1)we show how we distinguish the different types of nodes in our illustrations.
A node u of Type I has a little arrow pointing to the heaviest edge incident to u (see
[Figure 3.1a)). If u is of Type II then it has an incident edge which has a thick half (see
[Figure 3.1b). The half-thick edge is the heaviest edge a,, incident to u and the thick half
of a, is adjacent to u. If u is of Type III then the lightest edge incident to u is half-dotted
(see where the dotted half of the edge is adjacent to u.

Besides introducing graphs, the drawings throughout this chapter sometimes simulta-
neously introduce partitions of the nodes. In that case, we give a node a black filling if
its color is black in the corresponding partition and we give it a white filling if its color is
white.

Definition 3.2.2. For a graph G = (V,E) we let V;,V;; and Vi be the sets of nodes of
Type I, II and III, respectively. For two adjacent nodes u,v € V we say that u has influence
on v if one of the following conditions is satisfied:

o v is of Type I and {u, v} is the heaviest edge incident to v.
e v is of Type Il
e v is of Type IIl and {u, v} is not the lightest edge incident to v.

For an edge e := {u, v} we say that e has influence on v if u has influence on v.

Note that the happiness of a node u in a partitioned graph Gp is independent of the
color of a neighbor that has no influence on u.

Definition 3.2.3. Let G = (V,E) be a graph. For a node v € Vj;; to which an edge e is
incident we call e the third edge of v if there are exactly two edges with strictly greater
weight than e incident to v. We let VfH be the set of nodes v € V;;; to which an edge e is
incident that is the third edge of v. We let Tg : VIB}I — V be the function that returns for
a given node v € VISH the node adjacent to v via the third edge of v. Welet Hg : V; =V
be the function that returns for a given node v € V; the node adjacent to v via the heaviest
edge incident to v. The heaviest edge incident to v € V; is called the heaviest edge of v.
Finally, we let Rg : V; U VIB}I — V be the function that returns for a given node v € V; U Vgl
the node Hg(v) if v € V; and Tg(v) otherwise. If the considered graph is clear from the
context then we omit the subscript indicating the graph.
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Comment If a node v € Vj;; has a third edge e then e is the unique third edge of v
since in the case that there is a further edge incident to v with the same weight as e,
node v is not of Type III at all.

3.3 P-hardness for Graphs with Nodes of Type I and III

The theorem in this section is mainly based on the following property of a node u of
Type III in local optima. Assume that one of the neighbors with influence on u is black in
a local optimum. Then u is black if and only if the other two neighbors with influence on
u are white. This property can be used to simulate a NOR-gate of a Boolean circuit since
the output of a NOR-gate is true if and only if both inputs are false. The propagation
of the outputs of a gate to the inputs of other gates is done via nodes of Type I which
resemble NOT-gates since they have the opposite color of the node that has influence on
them in any local optimum.

Theorem 3.3.1 (Constituting Theorem). i) LocaLMAx-CuT is P-hard with respect
to logspace reduction for graphs that contain only nodes of Type I and III.

ii) Let f : {0,1}" — {0,1}™ be a function and C be a Boolean circuit with N € N gates
computing f. Then, using O(logN) space, one can compute a graph G¢ = (V¢ ,E°)
that contains only nodes of Type I and IIl and nodes sq,...,5y,t1,...,t,, € VC
of degree one such that for the vectors s := (s1,...,5,),t := (ty,...,t,;) we have
f(cp(s)) = cp(t) in every local optimum P of G°.

Proof. i) We reduce from the P-complete problem CircuiT-VALUE [[41]]. An instance
of CIRCUIT-VALUE is a Boolean circuit C consisting of N € N gates gy, ..., g; and an
assignment for the inputs of C. The solution is the output of C for the given input
assignment. Without loss of generality we make the following four assumptions.
First, a gate of C is either a NOR-gate with a fan-in of two and a fan-out of one
or a NOT-gate with a fan-in of one and a fan-out of at most two—a circuit that
only contains NOR-gates can be constructed according to |Proposition 2.4.3|and
the main purpose of the NOT-gates is to distribute the output of the NOR-gates.
Second, the gates are ordered topologically such that if g; is an input of g; then
i > j. Third, g,,,...,g; are NOT-gates with a fan-out of one and the vector of
their outputs is the output of C. Fourth, gy,...,gy_ns1 are also NOT-gates and
the vector of their inputs is the input of C. We let I;(g;) and I,(g;) be the input
gates of a NOR-gate g; for 1 <i < N —n, I(g;) be the input gate of a NOT-gate
gi for 1 <i <N —n, and value(g;) be the value of the assignment of the input
corresponding to g; for N —n+1<i<N.

We construct a graph G = (V, E) with weights w : E — N from C as follows. The
set of nodes is V = {vy,...,vay1}. The set E contains for every 1 <i < 3N the
following edges of weight 2':

a) If g; is a NOR-gate then {v;, vy,;} € E and in addition {v;,v;} € E for each
m < j < N for which there is a 1 < k < 2 with I;(g;) = g;-

22
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b) If g; isa NOT-gate for 1 <i < N—nthen {v;,v;} € E for the unique 1 <j <N
for which I(g;) = g;-

c) Foral N—n+1 < i < N: if value(g;) = 1 then {v;,vy40;} € E and
{Vi, vN+2i—1} €E OtherWise.

d) ForalN+1<i<3N: {v,v;;1} €E.

Then the type and degree of any v € V as well as the edges with influence on v
can be seen in(Table 3.1] The nodes v; for N +1 < i < N + 2n are not necessary
for the proof and are only introduced to simplify the description.

Example 3.3.2. For the sake of illustration, let the circuit in[Figure 3.2|be an instance
for C and let value(g,) = 1 and value(gz) = 0. Then the graph G constructed from
the instance of C is as presented in

) Properties of v;
Range of i
Type | Degree Influenced by edge(s)
i=3N+1 I 1 {van+1, van}
N+1Sl§3N I 53 {Vi,vi+1}
N—-n+1<i<N| 1 2 edge introduced in|(c)
1<i<N-n I <3 edge introduced in|(b)
m+1<i<N-n| Il 4 | all three edges introduced in|(a)

Table 3.1: Degrees, types and influences for all nodes in V.

84

&2 &1
&3

Figure 3.2: An instance for the Boolean circuit C.

Let P € #(V) be a local optimum for G. Due to the symmetry of LocALMAx-CUT we
may assume without loss of generality that cp(v5y) = 1. In the following, we use
[Observation 2] to deduce the colors of the remaining nodes. First, cp(v;) # cp(vi11)
for all N +1 < i < 3N. Consequently, cp(Vy49;) = 1 and cp(Vy49;_1) = O for all
1<i<N and cp(v3yy1) =0. Then, foreach N—n+1 <i < N, we have cp(v;) =0
if value(g;) = 1 and cp(v;) = 1 otherwise. Thus, the color of the node v; for any
N —n+1<i <N corresponds to the complement of the input assignment for g;.
Now consider the nodes v; for 1 <i < N —n. If g; is a NOT-gate with I(g;) = g; for
m+1<j <N then cp(v;) # cp(v;). Hence, the color of v; forany 1 <i <N —n
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ii)

11 6
C’*zl“)\z ‘bzw‘bf‘)\zs‘)\i*bz ‘bzsjb

iz V2 Y11 V1o Vo Vg vy Ve Vs

V1

Figure 3.3: The graph G constructed from the instance for C.

corresponds to the output of a NOT-gate with respect to the color of v;. Finally,
if g; is a NOR-gate with I;(g;) = g and I5(g;) = gj form+1 < j <k <N then
cp(v;) = 1 if and only if cp(v;) = cp(vi) = 0 since v; is of Type III and its neighbor
Vnioi is black in P. Thus, the color of v; corresponds to the output of a NOR-gate
with respect of the colors of v; and v;.. Altogether, the colors of each node v; for
1 <i <N — n corresponds to the output of g; in C for the given input assignment
and therefore the colors of the nodes vy, ..., V,, correspond to the output of C.

Now we show that our reduction is in logspace. Notice first that we introduce a
constant number of nodes and edges for each gate. The weights of the edges are
powers of two. Thus, we only need to store the exponents of the weights. If we
write an edge weight to the output tape then we first write the “1” for the most
significant bit of the weight and then we write “0” as often as determined by the
exponent.

Let G = (V, E®) be the graph arising from the graph G that is introduced in[(i)| by
the following three operations. First, we omit the edges introduced by|[(c)] Second,
we add nodes s; for 1 < i < n. Third, we add an edge {s;, Vy_,+;} with weight
2N-n+i for each 1 <i < n. Lets; =vjforN-n+1<j<N,s :=(s],...,s,)
and t; :=v; for 1 < j < m. Then the nodes s; for all 1 <i < n and ¢; for all
1 <i < m are of degree one. Moreover, the node 51/' forany 1 <i <nis of Typel
and influenced by s;. Let P be a local optimum for G. Then cp(s;) # cp(s) for all
1<i<ndueto Let ¢ be the vector of the bitwise complement of
cp(s). As in it follows that f(c) = cp(t). Thus, f(cp(s)) = cp(t). O

Note that G; can be constructed in logarithmic space and thus in polynomial time
for every polynomial-time computable function f. The result and its proof is used in
several contexts in the rest of the thesis. To be able to refer to its parts, we introduce the
following notations.

Definition 3.3.3. For a Boolean circuit C we say that G¢ = (V¢ E®) as constructed in
the proof of the |Constituting Theorem| (i.e., [Theorem 3.3.1) is the graph that constitutes
C. Node v; € VC is said to represent gate g;. Moreover, we call v; a NOT-node if g; is a
NOT-gate in C, a NOR-node if g; is a NOR-gate and a gate-node if it is a NOT-node or a
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NOR-node. The set of NOT-nodes is VS and the set of NOR-nodes is VS, .. For a NOT-node
v; we let I(v;) be the unique node that has influence on v; and if it v; is a NOR-node then
we let I1(v;) and I,(v;) be the nodes representing the input gates of g; in C. For a partition
P € #(V°) and a NOT-node v; € V¢ we say that v; is correct in P if it has the opposite
color of I(v;) in P. Similarly, we call a NOR-node v; € V¢ correct in P if it is black if and
only if the two nodes that represent the inputs of g; in C are white. We call P ordinary
if each node of V¢ that represents an input gate of C is happy in P, the nodes that do
not represent a gate are white in P if they have an odd index and black otherwise. For a
polynomial-time computable function f and a Boolean circuit C that computes f we say
that Gy := G looks at the input nodes s; € V¢ and biases the output nodes t; € VC to
the colors induced by f.

Observation 3. Let C be a Boolean circuit computing a function f : {0,1}" — {0,1}™
for n,m € N, G = (V¢,E®) be the graph that constitutes C, and s := (s, ...,5,),t :=
(t1,...,ty) for s, t; € V¢ forall1 <i<n, 1<j<m be the vectors of nodes for which
f(cp(s)) = cp(t) in any local optimum P € 2 (V°) according to|[Theorem 3.3.1(ii)| Then
node t; has no influence on the unique node adjacent to t; in GC forall1<j<m.

3.4 Is-Exp Property for Graphs with Nodes of Type I and III

In this section, we show the is-exp property for graphs with nodes of Type I and III by
implementing a counter. The central part of the proof is a subgraph for which we show
that it is possible to perform four flips of a certain node of the subgraph for every two
flips of a different node of the subgraph. The construction of the proof is inspired by the
proof of [27] in which Haken and Luby|show the is-exp property for a problem closely
related to LocaLMAx-CuT.

Theorem 3.4.1 (Is-Exp Theorem). LocalMax-CuT has the is-exp property for graphs
that contain only nodes of Type I and III.

Proof. For n € Ny we let C" be the Boolean circuit depicted in We let
G" = (V™ E™) be the graph that constitutes C". Recall that due to the construction in
the proof of the [Constituting Theorem| (i.e., [Theorem 3.3.1)), the graph G" contains a
node v; for every gate g; of C". The graph G" is depicted in [Figure 3.5] Note that we
assumed for graphs that constitute Boolean circuits that the output gates of the circuits
are NOT-gates—in contrast to C". However, if the output link of g; is substituted by two
NOT-gates linked in series, then the output of the thereby arising circuit is the same as
the output of C". For the sake of simplicity, we omit these two gates in our description.
The initial partition P" € (V") can also be seen in [Figure 3.5]

For a sequence s := (v, Vs, - - ., Vs ) of improving flips starting at (G", P") with m €N,
1 <s; <12n+ 13 we write s* for the sequence (Vs;, Vg5, - - Vs ) where s{ :=s; +4 for
all 1 <i < m. Lets(0) := (vy,V5,v;) in G° and s(n) in G™ for n > 1 be the sequence
arising from s(n — 1) by inserting the following sequence of flips directly after the k-th
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8an-1)+4  &4(n-1)+1 84 81
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Figure 3.4: The infinite family of Boolean circuits C".
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Van+a Van+3 Vany2 Vant1 I
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(G :p) V4(n-1)+3 Va(n-1)+2 V3 Vo

Figure 3.5: The graphs G" and their initial partitions P".

flip of v5 ins(n—1)" for all 1 < k < q where q € N is the number of flips of v5 in s(n—1)*:

k is odd: insert tq := (v4,v1,V3)
k is even: insert ty := (v4, V1, Vo, V1, V3, Vo, V1)
For the sake of illustration, we state the first two sequences s(1) and s(2) in

ple 342

Example 3.4.2. *(0) = (0 V2 V1 )
3(1) = (VS, V4,V1,V3, Ve, V5, V4, V1, V2, V1, V3, Vo, vl)

In the following, we prove by induction on n that s(n) is an improving sequence
starting at (G", P") and node v, flips 2"*! times in s(n). For the induction basis, note
that s(0) is an improving sequence starting (G°, P°) and node v; flips 2! times in s(0).
Now assume as induction hypothesis that s(n — 1) is an improving sequence starting at
(G"1,P""1) and v, flips 2" times in s(n — 1). Notice first that after the first flip of vs in
s(n) the sequence t; is improving and that after the second flip of v5 the sequence t, is
improving. Since each node that flips in t; o t, flips an even number of times in t; o t,,
we get the following observation.

Observation 4. Letn > 1, W :={vy,..., v} C V", Qo € Z(V"), s = (wy,...,wy) be a
sequence of flips starting at (G",Qq) for w; € V", g € Nand 1 < j < q be an index for
which sjllw =ty 0ty Then co (V)= cQj(v)for allveWw.

Observation 4| guarantees that the flips of t; are improving after each flip of v5 to the

white color in s(n)—as for its first flip. Thus, s(n) is an improving sequence starting at
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(G™,P™). Since v; flips four times in t; o t,, it follows that v; flips in s(n) twice as often
as vs in s(n — 1)T, i.e., 2" times. Thus, v; flips 2"*! times in s(n).
Since for all n € N, the graph G" contains O(n) nodes, the claim follows. O

Note that the only nodes of degree four in the graphs G" of the above proof are the
nodes vy ;1 for 0 <i < n, i.e., the NOR-nodes. These nodes are of Type III and have,
with the single exception of v, an incident edge that has no influence on their happiness.
If to none of these nodes such an edge was incident, then we would get a graph with a
degree of at most three in which only quadratically many flips are possible [[49]]. Thus,
it is the existence of edges of this kind that allows exponentially long flip sequences
although the edges do not affect the happiness of nodes of Type III.

Definition 3.4.3. For n € N, we introduce the following names for objects introduced in
the proof of the We call the Boolean circuit C" the is-exp circuit of length
n. For the graph G™ = (V", E™) that constitutes C" the initial partition P" € V" is called the
initial is-exp partition of V". The sequence s(n) is called is-exp sequence of dimension n.
The sequence s(n)" is called the shifted is-exp sequence of dimension n, and the sequences
t; and t, are called the first and the second is-exp module, respectively.

3.5 Enforcing Technique for Graphs with Nodes of Type I, II
and III

In this section, we develop a technique of enforcing any polynomial-time computable
generalized pivot rule in certain partitioned graphs. The technique extends a given graph
stepwise by further nodes and edges. In each step, an edge {u, v} of a given graph is
substituted by nodes and edges that, together with the nodes u and v, build up what is
called a basic subgraph. At first, we introduce functions that encapsulate the substitution
operations.

Then we devise a method that builds up a subgraph called filter in place of a heaviest
edge of a node of Type I by iteratively using the substitution functions. The purpose of
the filter is as follows. Let G = (V, E) be a graph, u €V, v € V; and e := {u,v} € E such
that e is the heaviest edge of v. If in a partition P € &2 (V) edge e is in the cut and node
u flips, then node v is instantly unhappy and could perform an improving flip. In the
graph that contains the filter in place of e, node v does not immediately become unhappy
after the flip of u. Instead, all nodes of the filter unequal to u and v must flip before v
becomes unhappy. The method that builds up the filter allows to make the “walk” of the
flips through the filter dependent on the value of an arbitrary Boolean SAT-formula in
disjunctive normal form in which the variables of the formula correspond to nodes of
V. Then, in certain partitions we are interested in, the flips migrate through the filter
towards v if and only if the formula is satisfied with respect to the colors of the nodes
that correspond to its variables.

Using the filters, we develop the technique of enforcing any polynomial-time com-
putable generalized pivot rule in certain partitioned graphs. The given graphs constitute
circuits and therefore contain only nodes of Type I and IIL. In our technique, we control
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the happiness of the nodes of Type I—recall that these nodes represent the NOT-gates—
by means of the filters such that exactly that node of Type I becomes unhappy that is
chosen by the given generalized pivot rule according to the given partition. For the
given circuit, we assume without loss of generality that the inputs and outputs of each
NOR-gate are only NOT-gates. Then we can show that also the nodes of Type IIl—which
represent the NOR-gates—and therefore all nodes of the graph flip exactly when they
are chosen by the generalized pivot rule.

Prerequisite: Types of nodes The graphs considered in this section contain only nodes
of Type I, II and III. For the purpose of succinctness, we assume for each introduced
graph an implicit statement claiming one of the three types for each node.

3.5.1 Basic Subgraphs

The technique makes use of the following functions that extend a given graph by further
nodes and edges.

Definition 3.5.1. Let G = (V,E) be a graph, v € V;, u := Hg(v) and e := {u,v} € E
where w(e) = a for a € Q.. We let G1(G, V) be the graph arising from G by substituting

the edge e by the nodes and edges depicted in The values of €,6 € Q- are
chosen small enough such that the following conditions are satisfied:

e Node v is of Type I in G'(G,v) and Hgi(g ) (V) = g5(v).

e Node g%(v) is of Type Il in G*(G,v) and TG1(G,V)(g%(v)) =

g &M

O——Q——0—0
u HI'..!I..’
Figure 3.6: The subgraph introduced by the function G1(G,v).

Note that the degree of v in G!(G, v) is greater by one than in G.

Comment The purpose of the subgraph G!(-) is to ensure that there is at most one
edge on the path (g%(v), g;(v),v) not in the cut in the partitions we are interested
in. In particular, we choose for the initial partition of the three nodes of this path
that c(v) = c(g%(v)) # c(g;(v)). Then, every sequence of improving flips started at
the initial partition will retain the property that there is exactly one edge of the cycle
(g} (v), g%(v), Vv, g% (v)) not in the cut. The subgraphs that we will introduce below, these
subgraphs may substitute the edges {g%(v), v} and {g}(v), v} by paths, together with
their initial partition, will retain the property that in every sequence of improving flips in
the subgraph arising from G!(-) by adding them, there is in each partition induced by
the sequence exactly one edge of each of the cycles not in the cut.
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Definition 3.5.2. Let G = (V,E) be a graph, v € V; UV}, u:=Rg(v) and e ;= {u,v} €E
where w(e) = a for a € Q. We let G*(G, V) be the graph arising from G by substituting

the edge e by the nodes and edges depicted in The value of € € Qs is chosen
small enough such that v has the same type in G*(G,v) as in G and Rerg(V) = g%(v).

a a—e€ a—2€
u 2 2 v
gi(v)  gv)

Figure 3.7: The subgraph introduced by the function G*(G,v).

Comment The purpose of the subgraph G2(-) is to make the happiness of certain
nodes dependent on the color of certain other nodes. On many occasions, this goal can
be reached by drawing an edge of appropriate weight between the nodes. However,
since we want to construct graphs with maximum degree four, we cannot draw edges
between the nodes as often as it might be desirable. The subgraph G2() is to overcome
this obstacle in the following way. Let u be the node on whose color the happiness
of some other node w is supposed to be made dependent and let G be a graph with
an edge e := {u,v}. We use the subgraph G?(-) to substitute e. For the partitions we
will be interested in, we will ensure that all edges of G?(-) are in the cut. Then node
g%(v) has the same color as u. Thus, to reach the desired goal, we can draw an edge
of appropriate weight between w and g%(v) instead of an edge between w and u—the
weight of the added edge will be chosen to be smaller than € to retain the property that
the heaviest edge of g%(v) is { gf(v), g%(v)}. Moreover, if we want to make the happiness
of w dependent on the opposite color of u then we can draw an edge between w and
g%(v), and if we want to make the happiness of more than one or two nodes dependent
on the color of u then we can even substitute the edge {gg(v), v} by G?(H,v) where H
is the graph arising from G by the substitution of e by G2(G, v).

Definition 3.5.3. Let G = (V,E) be a graph, v € V}, u := H;(v) and e := {u,v} € E
where w(e) = a for a € Q.. We let G3(G, v) be the graph arising from G by substituting
the edge e by the nodes and edges depicted in The value of € € Q. is chosen
small enough such that v is of Type I in G3(G,v) and Hgsgn(v) = gg(v).

@_200/2 ()
(a - 3¢)/2
a a—e€ (afze)/Z")\(a—Be)/Z a—4e
O O3
U g2 gw gy et v

Figure 3.8: The subgraph introduced by the function G3(G, v).
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Comment The purpose of the subgraph G3(+) is to split an edge between u and v up in
two paths. For the initial partition for the subgraph we will choose all edges to be in the
cut. Then, if u flips and does not flip a second time before v flips, then the flips migrate
along the two paths from u to v. Note that node gg(v) only becomes unhappy and flips
when both g3(v) and g3(v) flipped before.

Definition 3.5.4. Let G = (V,E) be a graph, v,w,wy € V;, u:=Hg(v) and e := {u,v} €
E where w(e) = a for a € Q. We let G*(G, v, w1, wy) be the graph arising from G by
substituting the edge e by the nodes and edges depicted in The value of € € Q.
is chosen small enough such that the following conditions are satisfied:

e Node v is of Type I in G*(G,v,wy, ws).
i HG4(G,v,w1,w2)(v) = gg(v)-
e Node w; is of type I in G*(G,v,wy,w,) forall 1 <i<2.

° HG4(G’V,W1’W2)(WL-) =Hgw)forall1<i<2.

Figure 3.9: The subgraph introduced by the function G*(G, v, w,,w,).

Note that due to the weights of their incident edges, node gg’(v) in G3(G,v) is of Type
III and gf(v) in G}(G,v,wy,w,) is of Type II.

Comment The purpose of the subgraph G>(G,v,w;,w,) is to hinder the flips from
migrating from u to v unless at least one of the nodes w, w, has, after the flip of u, the
same color as u. More concretely, suppose that the edges on the simple path from u to v
in G3(G, v, wq,w,) are in the cut. Suppose furthermore that u flips then and does not
flip a second time before v flips for the first time. If at least one of the nodes w,, w5 has,
after the flip of u, the same color as node u and neither w; nor w,, flips prior to the first
flip of v, then the there will be consecutive flips of the nodes gf ), gg (v) and v in every
sequence of improving flips started at the partition after the flip of u. On the other hand,
if both g;‘(v) and gg (v) have the opposite color as u after the flip of u, then at least one
of the two nodes must flip before gf(v) and then gg (v) and then v can flip.

Definition 3.5.5. Let G = (V, E) be a graph. We let G°(G) be the graph arising from G by
introducing two nodes gf , gg and an edge { gf , gg’} with weight 1.

For the identification of certain nodes and edges, we introduce the following notations.

30



3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

Definition 3.5.6. Let G = (V,E) be a graph, ve V; U Vﬁu and wq,wq € V. Let S;(v) for
1 <i < 3 be the subgraph of G'(v) induced by the nodes v, R(v) and g]l.(v)for all j and
S4(v) be the subgraph of G*(v,wy,w,) induced by the nodes v, Hg(v), gf(v) and gg(v).
For each node w of S;(v) for any 1 <i < 4 we call every edge incident to w that is on a
simple path from R;(v) to v in S; a heavy edge of w.

Definition 3.5.7. For all n € N we let
r(n):=[n/2]
pi(A):=(G modn)+1for1<i<n

P, () =((i—2) modn)+1for1<i<n
pri@):= r(p:{(i))for 1<i<n
pr, (i) :=r(p, (i) for 1<i<n.

Definition 3.5.8. Let G = (V,E) be a graph and ¢ € ®(V). We let Nodes(¢) be the set
of all nodes v € V contained in ¢. For a subset W C V and a function ¢ : W — ®(W) we
let D(p) :={veWlp(v) # 0} U,y Nodes(p(v)) and for a literal I over a variable v
we let nod(l) :=v.

In the description of the way in which the subgraphs are combined, we make use of
the following conventions.

Prerequisite: In the rest of the chapter, we treat nodes of a graph G = (V, E) also as
Boolean variables of Boolean formulas and let the values of the variables be induced
by the colors of the nodes in a given partition P € (V). Moreover, for a Boolean
formula ¢ € ®(V) we let valp(¢) := val,(¢) where t is the truth assignment induced
by assigning the value true to a variable v € V if and only if cp(v) = 1.

Properties of the subgraphs

Observation 5. Let G = (V,E) be a graph, v € V; U VI3H, wi,wy € V, u := Rg(v),
G; = (V,E) := G(G,v) for 1 <i <3, Gy = (Vy, E4) := G*G,v,w,w,) and G5 =
(Vs, E5) := G>(G). Then the following conditions are satisfied:

) degg, (v) =degg(v) +1.
it) degg,(v) =degg(v) forall2<i<4.
iii)) degg,(w;) =degg(w;)+1forall1 <i<2.
v) degg (w)=degg(w)forall1<i<5andw eV \{v}
v) degg(w)<4forall1<i<5andw € V;\V.

vi) Node w € V;\'V for any 1 <i < 4 is happy in a partition P € 2 (V;) if a heavy edge
of w with greatest weight among the heavy edges of w and one further heavy edge of
w are in the cut in P.
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3.5.2 Combining the Subgraphs

In this section, we describe the function enf; whose purpose is as follows. If for a
graph G = (V,E) and a node v € V; the node u := Hg(v) flips to the same color as v
and thereby turns v unhappy, then v could flip directly after the flip of u. The aim of
the function enfs is to hinder v from becoming unhappy, and thereby from flipping, as
long as a given condition is not satisfied. In particular, the condition is formulated as
a Boolean SAT-formula ¢ (v) for ¢ : V; — &(V;) in disjunctive normal form. To reach
the desired goal, we substitute the edge {u,v} € E by a subgraph which is iteratively
built up by the subgraphs introduced in the previous section. In fact, the subgraph is
called the filter of v and is the subgraph induced by the nodes u, v and all nodes that are
introduced by the function enfs; and substitute either the edge {u, v} or an edge of the
subgraph that substituted the edge {u, v} (a formal definition of the filter will be given
in [Definition 3.5.9)). The substitutions performed by the function enfs are divided into
five parts.

A rough overview of the filter is illustrated in It shows a mapping of
subgraphs of the filter of a Type I node v to the parts of the function enfs in which
they are added. The main purpose of the filter is to split the edge {u, v} up into several
paths between u to v. There is one path set aside from the others. We call this path the
braid of v. The subgraph induced by the other paths is called the head of v (a formal
definition of the head and the braid will be given in |Definition 3.5.9). The braid can be
seen in [Figure 3.10|as the path between u and v containing only nodes that are added
in the parts one and four. Each path of the head contains a node that is added in part
i for all 1 <i < 5. The purpose of the paths that make up the head is as follows. If in
a given partition the SAT-formula corresponding to v is satisfied, then all nodes of the
head paths can flip their colors consecutively. However, if the formula is not satisfied
then on each head path there is a node that remains happy. Altogether, after a flip of u,
assuming that neither u nor the nodes of the SAT-formula corresponding to v change
their colors, the flips pass the head paths towards v and thereby make v unhappy if and
only if the value of the formula is true.

The description of the five parts is done via the functions enf; for 1 <i < 5. For each
1 < i <5 the function enf; first calls as subroutine the function enf;_; that performs the
parts 1,...,i — 1 and then it adds further subgraphs in place of edges.

oO—\ 1 — — : ——j

Figure 3.10: Parts of the filter of v labelled by the part of enfs in which they are added.
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The pseudo-code for the function enf;, which makes up the first part, is shown in

Algorithm 3.1| In it, we substitute for each v € D(p) the edge {H;(v), v} by the

subgraph introduced by the function G!(+) and let a;(v) and a,(v) be the nodes

introduced by this function—see line [6] of [Algorithm 3.1] We call the set of nodes
{a1(v), ay(v)} the capsule of v.

Input:  graph G = (V, E), function ¢ : V; — &(V;)
Output: graph G’ = (V’,E’)
1: k<1

H° —G
: for all v e D(¢) do

H* — GY(H*1,v) > Add capsule
k—k+1
a;(v) — g1(v); ap(v) < g3 (v) > Rename added nodes

return H*!

Part 2

Part 3

Algorithm 3.1: The function en f;.

The function enf, (see|Algorithm 3.2)) first calls as a subroutine the function enf;

and then it substitutes for all v € D(¢) the edge {v, a;(v)} by a subgraph that is
built up by iteratively introducing subgraphs according to the function G3(-) twice
as often as there are monomials in the formula ¢(v). The nodes of the thereby
introduced subgraphs are called [3}(\/) for1<j<5and1<i<2nwheren is the
number of monomials of ¢(v)—see line [9] of [Algorithm 3.2] The subgraph that
contains the nodes and edges that substitute the edge {v, H;(v)} after the first two
parts of the function enfs is depicted in We call the nodes introduced
in the iteration of the for-loop in lines corresponding to v the splitters of v.

Comment The nodes and edges introduced in the second part substitute the edge
{v, a5(v)} by 2n + 1 simple paths between a,(v) and v.

The third part (see substitutes the heaviest edge of node [o’i(v)
for all 1 <i < 2n introduced in the previous part by a subgraph that is built up
by iteratively adding subgraphs according to G2(-) once more as twice as often
as there are literals in the monomial M, of ¢(v) for r := pr, (i) and call the
new nodes y;,k(v) for1 <j<2r+1,1<k<2—seeline of
Moreover, we call the nodes introduced in the iteration of the for-Ioop in lines
corresponding to v the internal informers of v. The subgraphs are built
up in a way such that instead of the edge {HG(ﬁi(v)), [a’i(v)} for1<i<2n+1
a path is introduced—note that Hg(,(v)) = B5(v) for all 1 <i < 2n. In case
of i = 2n 4+ 1 the edge is not substituted, i.e., the path only consists of a single
edge. Foreach1 <i<2n+1weletp i‘p (v) be the path that substitutes the edge

{He(B4(v)), B4(V)}.
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Part 4

Part 5
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Figure 3.11: The subgraph containing the capsule and the splitters of v.

Comment The purpose of the nodes on the path pf(v) for 1 <i < 2n introduced
in this part is to reflect whether pf (v) was already passed by the flips that migrate
towards v.

In the fourth part, we introduce four subgraphs for each literal [, ; of p(v) of
any v € D(¢) for 1 <r <n,1 <j < m, where m, is the number of literals of
monomial M,—see We call the nodes introduced in the iteration of
the for-loop in lines corresponding to v the external informers of v. Two
of the four subgraphs substitute the heaviest edge of u and together build up a
path in place of that edge. We call the external informers 5;’,((1/) for any r, j, k as
introduced in line%]anterior and the external informers n]r.’k(v) for any r, j, k as
introduced in line [10| posterior.

Comment The purpose of the external informers is to reflect the color of the node
u:=nod(l,;), in a way that is examined closer in the description of the next part,
to the nodes of the filter of v.

In the fifth part we again introduce four subgraphs for each literal [,.; for 1 <r <
n,1<j<m, of (v) of any v € D(y) (see lines[13]and [15| of [Algorithm 3.5) and
for each monomial M, two further subgraphs (see line [20). We call the nodes
introduced in the lines [13| and [15] of the iteration of the for-loop in lines
corresponding to v the delayers of v. The nodes added in line [20| are called the
constants of v. For 1 <r <n,1<j <m,, w:=nod(l,;) and p := p, (2r — 1)
the delayers that correspond to the literal [, ; and the nodes they are adjacent to
are presented in [Figure 3.12] Before describing the purpose of the nodes added in
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Input:  graph G = (V, E), function ¢ : V; — &(V})
Output: a graph G’ = (V',E’)
1: k<1
2: HO — enf,(G) > Execute first step
3: for all v e D(¢) do
4: /J’g(v) —v
5: fori<—1to2-|Mons(p(v))| do
6: H* « G} (HN, B (v) > Add splitters
7 k—k+1
8 for j — 1to5do
9: /a’;(v) — g;’([o’é_l(v)) > Rename added nodes

10: return H<!

Algorithm 3.2: The function en f.

the fifth part, we first introduce some notations. For future reference we give the
pair of prerequisite and definition the name given below:

Filter Definitions (First Part) For the sake of succinctness, we make the follow-
ing assumption:

Prerequisite: In all remaining Definitions, Observations and Lemmas unequal to
the last Lemma, namely the|Filtering Lemmal (i.e., [Lemma 3.5.21)), we let G = (V, E)
be a graph, ¢ : V; — ®(V;), G¥ = (V¥,E¥) := enfs5(G, ), v € D(¢), n” :=
|IMons(¢(v))|, M for 1 <r <n" be the monomials of ¢(v), m/ = |Lits(M)| for
1<r<n’and er,. for 1 < j < mj be the literals of M/, i.e., the elements of the
set Lits(M). If the considered node is clear from the context then we may omit
the superscript that indicates the node.

Definition 3.5.9. We denote by F¥(v) the subset of V¥ containing the following
nodes:

F1) v

F2) I5(v)

F3) a;(v), ay(v)

F4) Bi(v)forall 1<i<2n’,1<j<5

F5) vt (W) forall 1<i<2n’, 1<) <2m)+1forp:=pry,(i)and 1 <k <2

F6) 5§.k(w)forallw €D(p), 1<i<2n",1<j<m)forr:=r(i), 1<k<2
for which nod(livf’j) =v
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Input:

graph G = (V, E), function ¢ : V; — ®(V;)

Output: a graph G’ = (V',E’)

1: k
2: H

—1

0 enf,(G, p) > Execute first two steps

3: for all v e D(¢) do

0 e N h

10:
11:
12:

n < |Mons(¢(v))|
fori—1to2-ndo
B — Bi(v)
r— pry, (i)
M <« r-th monomial of ¢(v)
for j—1to2-|Lits(M)|+ 1 do

H* « G*(H*1,8) > Add internal informers
k_<— k+1 _
y},l(v) — gf([a’); y;,z(v) — g%([a’) > Rename added nodes

13: return H!
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Algorithm 3.3: The function en f3.

F7) ni.k(w)forallw €D(p), 1<i<2n",1<j<m)forr:=r(i),1<k<2
for which nod(livf’j) =v

F8) ¢§,k(v)for al1<i<2n’,1<j<2m/+1forr:=r(i)and1 <k <2

The subgraph of G¥ induced by the nodes of F¥(v) is called the filter of v with respect
to . We write TY(v) for the set of nodes that contains all nodes of and v
itself and we write B¥(v) for the set of nodes that contains all nodes of and v
itself. Moreover, we let H?(v) := (F¥(v) \ B¥(v)) U {v}. We call the subgraph of
GY induced by the nodes of T¥(v) the throat of v with respect to , the subgraph
induced by the nodes of BY(v) the braid of v with respect to @, and the subgraph
induced by the nodes of H¥ (v) the head of v with respect to . Finally, we let R¥(v)
be the set containing the nodes of F¥(v) without the nodes I;(v), a;(v), qb]i.’k(v)for

alli,j,k and /Sé(v)for all i.

Comment Note that since the nodes of T¥(v) \ {v} are added via calls of the
function G2(-) in line 9] of that always substitute the heaviest edge
incident to the node v, the throat of v is a path in F¥(v). Similarly, since the
nodes of B?(v)\ {v} are added via calls of the function G(-) in line 10| that always
substitute the third edge of the node a;(v), the braid of v is also a path.

We now continue with the description of the purpose of the nodes added in the
fifth part. Recall that the idea of the filter of v is to split the edge {u,v} up in
paths and delay the flips on their migration from u to v depending on whether the
corresponding formula is satisfied. The first four parts provided the split-up of the
edge {u, v}, they provided nodes whose colors are supposed to indicate the colors
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Input:  graph G = (V, E), function ¢ : V; — &(V})
Output: a graph G’ = (V',E’)

1: k<1

2: HO — enf5(G, ) > Execute first three steps

3: for all v e D(¢) do

4: n <« |Mons(p(v))|

5 fori < 1to2ndo

6 r«—r(i)

7: M <« r-th monomial of ¢(v)

8 for j — 1 to |Lits(M)| do

9 H* — G2(H* 1, nod(l,;)) > Add anterior external informers
10: H* — G2(H*, ay(nod(1,.}))) > Add posterior external informers
11: k—k+2
12: 53'.’1(1/) — g3(nod(l,)); 5;'.’2(1/) — g5(nod(l,;)) > Rename added nodes
13: 1%, (v) < gilay(nod (1)) | ,(v) < g3(a1(nod(l,.)))

14: return H<!

Algorithm 3.4: The function en fy.

of the nodes that correspond to the literals of ¢(v) and they provided nodes whose
colors are supposed to indicate whether one of the paths pf(v) for 1 <i <2nwas
passed by the flips that migrate through the filter along the head paths from u
to v. In the following, we explain the purposes of the delayers by means of their
supposed functionality with respect to the nodes they are adjacent to.

First, we consider the interaction between the delayers and the constants. In the
partitions of the filter we will be interested in, all edges on the 2n + 1 simple paths
from a;(v) to v containing a node [5}"(1/) along heavy edges, i.e., the head paths,
are in the cut. Then the colors of the nodes on the head paths are determined by
the color x € {0, 1} of v. However, the satisfaction of the formula ¢(v) depends
on the colors of the nodes of Nodes((v)) and does not necessarily depend on
the color of v. Therefore, we introduced two paths Pgr—1(") and pz‘pr(v) for each
monomial M, for 1 < r < n of ¢(v) in the third part and introduce in part five
delayers that let the flips pass towards the paths p;.p(v) forodd1 <j<2n-1
if k = 0 and furthermore introduce delayers in the same part that let the flips
pass towards the paths p;.p (v) for even 2 < j < 2n if k = 1. The delayers for this
purpose are added in line [20|and the corresponding constants in line We will
later assign colors to the constants such that ci(v) is and remains white for odd i
and black for even i.

Second, we explain the interaction between the delayers of v and the external
informers of v. The idea of the external informers of v is to reflect the colors of the
nodes of Nodes(p(v)) to the delayers introduced in lines[13|and [15] However, in
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Figure 3.12: The adjacent nodes of the delayers of v.

some partitions that we will later deal with, we cannot deduce the color of a node
w € Nodes(p(v)) from the color of an arbitrary anterior external informer of v
with respect to w. Therefore, we also introduce the posterior external informers.
We will later see that if an edge between the nodes of T¥(w) is not in the cut,
then all edges between the nodes of BY(w) are in the cut. Then we can conclude
that of two nodes w,,w, for w; € T¥(w) and w, € B¥(w) with equal distance
in F?(w) from w modulo 2 at least one has the same color as w. Therefore,
we introduce in the lines [I3] and [15] one delayer that is adjacent to an anterior
external informer and one delayer that is adjacent to a posterior external delayer
of the node nod(l, ;) for the corresponding literal [,.; for 1 <r <n, 1 < j < m,.
Depending on whether the literal [, ; is negated or not, we alternate between
the distance modulo 2 of the corresponding external informers from nod(l, ;) in

F?(v)—see lines[13]and [15|again.

Third and finally, we describe the interaction between the delayers of v and the
internal informers of v. According to the function G*(-), the nodes qb]‘i’l(v) for
1<i<2n,1<j<2m, forr:=r(i) are, in addition to the two nodes to which
they are adjacent via their heavy edges, adjacent to two further nodes. For one
of the two further nodes, which is either a constant or an external informer, we
already know the purpose. The other node adjacent to (j)l:’l(v) is an internal
informer on the path p;/ for i’ := p,,»(i) according to lines|13|and In some of
the partitions we will be interested in, these edges between the delayers and the
internal informers will be in the cut. Now assume that after such a partition arises
in a sequence of flips, the flips pass the path plf (v). Then all internal informers on
that path change their colors. But then one non-heavy edge of the delayers qﬁil(v)
forall 1 <j <2m, +1 for r := r(i) is not in the cut. Then, the flips can also pass
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towards the path p;p(v). Altogether, all paths can be passed and the flips migrate
towards v. This finishes the description of the function enfs.

Input:  graph G = (V, E), function ¢ : V; — &(V})
Output: a graph G’ = (V',E’)
1: ke1
2: HO — enf,4(G, ) > Execute first four steps
3: for all v e D(¢) do
4: n <« |Mons(p(v))|

5 fori < 1 to 2n do

6 <= 7112(v)

7: p < Py, (1)

8: r—r(i)

9: M <« r-th monomial of ¢(v)
10: t «— |Lits(M)|
11: for j—1tot do
12: q < (pos(l,;) +i) mod 2
13: H* — G*H 1y, 5;'.’2_(1(1/), ng—Lz(V)) > Add delayers
14: ¢éj—1,1(") —gi(y); ¢§j—1,2(") —g3(y) > Rename added nodes
15: HM — G*(HK,y, n§’1+q(v), ygj’z(v)) > Add delayers
16: qbéj’l(v) — gf(y); d)éj,z(v) — gg(y) > Rename added nodes
17: k—k+2
18: H* — G°(H 1) > Add constants
19: ci(v) — gf; cé(v) — gg’ > Rename constants
20: HM — G*(HF,y, ci(v), Y§r+1,2(")) > Add delayers for constants
21: k—k+2
22: ¢£t+1,1(") — gf(y); qbétﬂ’z(v) — g;‘(y) > Rename added nodes

23: G/« HK1

Algorithm 3.5: The function en f;.

Now we introduce some notations that we need for the description of some properties
of the graph arising by the call of the function enfs. For future reference we give the
following block of definitions the name given below:

Filter Definitions (Second Part)

Definition 3.5.10. We let cyf(i)for 1 <i < 2n" be the unique cycle along nodes of F¥(v)
containing the nodes v, a;(v) and [J’j(v). Similarly, we let cy,’ (2n” + 1) be the unique cycle
in F?(v) containing the nodes v, a;(v) and [J’gnv(v). For1<i<2n"+1welet sp:f(i) be
the subpath of cy, (i) starting at the unique node of B¥(v)\ {v} incident to v, containing
a,(v) and ending at v.
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Definition 3.5.11. Let P € #(V¥). We call T¥(v) flat in P if all edges of the cycle cy,’ (1)
incident to nodes of T‘p(v) \ {v} are in the cut in P and, similarly, we call B¥(v) flat in P
if all edges of the cycle cy, (1) incident to nodes of B¥(v) \ {v} are in the cut in P. If the
considered partition is clear from the context then we omit for any of the aforementioned
definitions the expression “in P” for the corresponding partition P.

We say that F¥(v) is straight in P ifcp(c%r(v)) = CP(C%r_l(V)) =1 and CP(C%T(V)) =
cp(cfr_l(v)) =0foralll <r <n". Suppose that F¥(v) is straight in P. Then we call
F?(v) canonical in P if on each cycle cy,l (i) for 1 <i < 2n” + 1 there is exactly one edge
not in the cut. Now suppose that F?(v) is canonical in P. Then we call F¥(v) enterable
in P if exactly one edge between the nodes of B¥(v) U {v, a;(v)} is not in the cut and the
edge {I(v), a;(v)} is in the cut. Furthermore, we call F¥(v) just entered in P if P can be
reached from an enterable partition by a flip of I(v) and we call F¥(v) awaiting in P if it
is enterable or just entered in P.

Definition 3.5.12. Let P € #(V¥) such that F¥(v) is canonical in P, y € BY(v) be
the unique node for which {y,v} € E¥ and 1 < i < 2n” + 1. We denote by e‘p(P i)
the unique edge of cy, (i) that is not in the cut in P. For a node w on the cycle cy, (i)
we let dis?(w,i) be the number of edges of the subpath of spy (i) starting at w and
endlng at v. We let the function n? (B,i) return a node of F¥(v) in the following way If

e/ (B i) ={y,v} then it returns y. Otherwise it returns the node u; for {u;,v;} := eJ (P,i),
u;, v, €vV¢ for which disy (u;,i) < dlsv (v;,1). Furthermore, we denote by t‘p(P i) the node
adjacent to n{ (B,i) via the edge ef (Bi), i.e., e/ (Bi) = {nf(Bi), t{ (B i)}. Finally, we call
d)(P) := 1 ciconryq disy (n,(B1),1) the potentlal of v in P.

Definition 3.5.13. Let P € #(V¥) and P’ € #(V¥) be the partition arising from P by
choosing the colors of the nodes of F¥(v) \ {u} such that F¥(v) is enterable in P’ where the
edge of the braid of v incident to v is not in the cut. For a node x € F¥(v) \ {u} we call
cp/(x) the natural color of x in P and the opposite color its unnatural color in P.

Definition 3.5.14. Let 1 <i <2n"' + 1, P € #(V¥) such that F¥(v) is canonical in P
and y € B‘P(v) be the unique node for which {v,y} € E¥. We call the subpath of spy (i)
startmg at ny (Bi) and ending at v the i-th upper path of F¥(v) in P. The subpath of
¢yl (i) starting at t} (P,i) and ending at y along edges that are not in the i-th upper path
is called the i-th lower path of F¥(v) in P.

Comment The i-th upper path of F¥(v) in P is equal to spy (v) if ny(P,i) = y and

contains only the node v if nY(B,i) = v, i.e., the path has length zero in this case. On the

other hand, the i-th lower path of F¥(v) in P contains for n} (P,i) = y no node and for
n? (B i) = v it contains only the node y.

Properties of the filters In the following, we consider properties of the filters.

Observation 6. Let 1 <i<2n,r:=r(),1<j<2m, and k :=r(j). Then node q’)l 1(1/)

is according to lmes [12H16|of A lgorlthm Algorithm 3.5} ad]acent to the unique external mformer w as
presented in [Table 3.2}—see also
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Lemma 3.5.15. The following conditions are satisfied:

)
ii)

iii)

degge(v) =degg(v)+1 forall v e D(¢)

degge(v) =degs(v) forallv eV \D(p)
degge(v)<4foralveV?\V.

Proof. The graph G¥ arises from G by consecutive calls of the functions GI(-) for 1 <i <

5. Due to only the functions G!(-) and G*(-) increase the degree of a node

with respect to its degree in the input graph.

)

ii)

iii)

There is exactly one call of G!(-,v) in the five parts of enfs. This call is in line |4| of

In no call of G*(-) in any of the five parts node v is an input—all
calls of this function are in the lines[I3]and [15and [20] of [Algorithm 3.5 The calls

of G2(+) and G3(+) in which v is an input do not increase the degree of v due to
[Observation 3.5.8 (i1)l

None of the calls of the functions Gi(-) for 1 <i < 5 in the five parts has a node
v € V \ D() as input. Thus, the claim follows from |[Observation 3.5.8 (iv)|

The only nodes added by the functions G!(+) for 1 < i < 5 that are itself input
for a subsequent call of a function G/(-) for j € {1,4} are the informers and the
constants. None of them is input of a call of G!(-). The constants are only input
for the calls of G*(-) in line 20 of Each constant is input in exactly
one call of G*(-)—in fact, after a constant is added in line [18|it is an input of the
subsequent call of G*() in line|[20|and only of this call. For each pair of anterior
external informers added in line (9| of there is exactly one call of G*(*)
in line [13| of in which one of the two anterior external informers is
an input. Moreover, for each pair of posterior external informers added in line E
of there is exactly one call of G*(-) in line [15|of Elgorithm 3.5|in
which one of the two posterior external informers is an input. Finally, for each pair
of internal informers added in line [10] of [Algorithm 3.3| there is exactly one call of
G*(*) in lines13|and [15|of Algorithm 3.5|in which one of the internal informers is
an input. Thus, the informers have a degree of at most three and the constants a
degree of at most two in G¥. O

i odd even

j odd even odd even

pos(l. )| O 1 0 1 0 1 0 1

w8, |8 ,(0) | mi,(0) | nj (V) |81 ,(0) | 85, (V)| i, (V) | i , (V)

Table 3.2: Node ¢>; ,(v) is adjacent to external informer w.
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Lemma 3.5.16. Let P € Z(V¥) and k := cp(v). Then the following conditions hold:

i) Let w € D(p) and l:’“j € p(w)for1<r <n" 1=<j<mY bea literal for which
var(lw.) =v. Then the following conditions are satisfied:

a) Suppose that T¥(v) is flat in P. Then cp(52r Yw)) = cp(521(w)) =k and
cp(875 1 (w)) = cp(875(w)) =K.

b) Suppose that B¥(v) is flat in P. Then cp(nzr lw)) = cp(njz.’rl(w)) =K and
e (125 () = cp(n(w)) = .

it) Suppose that F¥(v) is awaiting in P. Then the following equations hold:

a) cp(ﬁé(v)) =¥k and cp(ﬁé(v)) = cp(fa’i(v)) =xkforalll <i<2n".

b) CP(Yj-,l(V)) =« and Cp('}/j-’z(v)) =kforall1<i<2n",1<j< 2m; + 1 where
p:=pry, (0.

c) cp(¢>;’1(v)) =k and cp(d)li.’z(v)) =Kforall1<i<2n’,1<j<2m]+1

d) cp(cfr_’((v)) = cp(cgr_f(v)) =k and Cp(C%r_E(V)) = Cp(C%r_K(V)) =K for all
1<r<n"

Proof. i) a) The set T¥(v) consists of the anterior external informers of the nodes
z € D(¢p) for which z € Nodes(¢(v)) and are added in line[9] of [Algorithm 3.4]
Recall that the nodes of T¥(v) and the edges between them form a path
in F¥(v), i.e., the throat of v. The nodes 52r !(w) and 521(w) have even

distance and 6 ]Zr Y(w) and 52r »(w) odd dlstance from v along edges of the
throat. All edges of the throat are in the cut in P due to the emptiness of
T?(v). Thus, the claim follows.

b) The set BY(v) is made up by the posterior external informers of the nodes z €
D(¢) for which z € Nodes(¢(v)) and are added in line [10] of [Algorithm 3.4
The nodes of B¥(v) and the edges between them form a path in F¥(v), i.e.,

the braid of v. The nodes "r)zr Y(w) and nzr (w) have odd distance and

n}zrz l(w) and n ,(w) even d1stance from v along edges of the braid. All

edges of the brald are in the cut in P due to the emptiness of B¥(v). Thus,
the claim follows.

ii) a) Since F¥(v) is awaiting, T¥(v) is flat. Due to and since the unique
edge incident to f82(v) connecting f5(v) with a node of T¥(v) is in the
cut in awaiting partitions, we have cp(f82(v)) = k. Moreover, the edges
{B3(v), Bs(V)} and'{fa’jr(v), [J’g(y)} are in thg cutin P forall 1 <i < 2n"
which implies cp(8,(v)) = cp(B3(v)) # cp(Bs(v)) for all 1 <i < 2n". Finally,
since node /a’éﬂ(v) is adjacent to [53;(1/) for all 1 <i < 2n” and the edge
between them is in the cut since F¥(v) is awaiting in P, we get cp(f35 F1(y)) #

cp(B3(1)).

42



3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

b) The internal informers of v are added in line [10| of |Algorithm 3.3| As the
subgraphs induced by the nodes of TY(v), the internal informers are added

via the function G2(-) and form the paths p;"(v) for 1 <i<2n”in F¥(v).
letl1<i<2n’and1<j< 2m;(i) + 1. Then, according to the definition of
the function G?(-), node y§’1(v) has even and node yj.’z(v) odd distance from
jB,(v) along edges of the path p;p (v). Since all edges on the path pzp(v) are
in the cut in awaiting partitions and cp(f3,(v)) = k due to (i) (a), the claim
follows.

¢) Analogously to [(ii) (b)| it follows that the delayers added in lines and

and [20] of [Algorithm 3.5| form paths in F?(v). Let 1 < i < 2n” and
1<j<2m; + 1. Then node d)]l. 1(v) has even and node qS;. ,(v) odd distance

from )/il’l(v) along edges of its corresponding path. Since all edges on the

path are in the cut in awaiting partitions and cp(}/il’l(v)) =k due to|(ii) (b))}
the claim follows.

d) Since F¥(v) is awaiting in P, it is also straight. Therefore, cp(cfr(v)) =
CP(C%r_l(V)) =1 and cp(cfr_l(v)) = cp(c%r(v)) =0foralll <r<n". O

Lemma 3.5.17. Let 1<r<n’, 1<j<m), w:= nod(l" ), P € #(V¥) such that F¥(v)
is awaiting in P and k := cp(v) Then the followmg condltlons are satisfied:

i) Suppose that TY(w) is flat in P. Then the edge between ¢2r K 1(v) and the unique
node of TY(w) it is adjacent to is in the cut if and only lfvalp(l" ) = false.

ii) Suppose that BY(w) is flat in P. Then the edge between qb%}r ¥(v) and the unique
node of B¥ (w) it is adjacent to is in the cut if and only lfvalp(l" ) = false.

Proof. Let m:=2r —«, 0 :=2j and 7 := cp(w). Since F?(v) is awaiting in P, we have
cp(qbg_l,l(v)) = cp(qbg,l(v)) =k due to |Lemma 3.5.16 (ii) (c)}

i) The emptiness of T¥(w) in P implies cp(5;7’1(v)) =1 and cp(5j77’2(v)) =7 due to
[Lemma 3.5.16 (i)(a)l Since o — 1 is odd and 7 is odd if and only if x = 0, it

follows by that ¢7_, ,(v) is adjacent to 67, (v) if k = pos(l};) and

to 5772(1/)i K 7 pos r]

Assume first that valp(lv ) =false. Then T =0 1fpos(lv )=1 and 7 = 1 otherwise,
ie. pos(l"]) #* 7. Thus 1f dr_ 1118 adjacent to 51”1(1/) then k = pos(l" V£ T =
cp(5 1(v)) and therefore cp(5“1(v)) = «x and if it is adjacent to 5“2(v) then
K # pos(l" Y#ETF# cP(E“Z(V)) Wthh implies cp(5 2(v)) =K.

Now assume that valp(lvj) =true. Thent =0 1fpos(l"J) = 0and 7 = 1 otherwise,
ie., pos(l" )= 7. Hence, if ¢ _1,1 Is adjacent to 5“1(1/) then x = pos(l"]) =1=
cp(67 1(v)) and therefore cp(5“1(v)) = x and if it is adjacent to 5“2(1/) then
K # pos(l" )=1# cp(6”2(v)) which implies cp(5 2(v)) =K.
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ii) The emptiness of BY(w) in P implies cp(n;fl(v)) =7 and cp(fr];.fz(v)) = 7 due to
[Lemma 3.5.16 (i)(b)| Since o is even and 7 is odd if and only if k = 0, it follows

bythat ¢7 1 (v) is adjacent to 07, (v) if x # pos(l} ;) and to n7,(v)

if Kk =pos r]

Assume first that valp(l"J) = false. Thent =0 1fpos(l"1) =1 and 7 = 1 otherwise,
ie. pos(lv ) # 7. Thus, if qb“l is adjacent to nj 2(v) then k = pos(l‘” Y#£ T =
cp(n 2(v)) and therefore cp(n 2(v)) = K and 1f it is adjacent to n; 1(v) then
K # pos(lI]) #T# cp(n 1) which implies cp(n (V) =K.

Now assume that valp(l" )=true. Then T =0 1fpos(lV]) = 0and 7 = 1 otherwise,
ie. pos(lv )=r". Hence, if (o3 118 adjacent to ny T,(v) then xk = pos(lv )=71=
cp(n 2(v)) and therefore cp(n 2(v)) = «x and if it is adjacent to n (v) then
K # pos(lf’]) =T #cp(n ’1(v)) Wthh implies cp(n ,1(")) =K.

Lemma 3.5.18. Let Py € #(V¥) such that F¥(v) is canonical in Py, w € R¥(v) and
s:=(wq,...,wg) for €N, w; € V¥ for 1 <i < q be a final sequence starting at (G,P(;p).
Then the following conditions are satisfied:

i) Node w is unhappy in P, if and only if there is an index 1 < i < 2n" + 1 such that
w =n{ (Py,1).

ii) Suppose that w = wy. Then F¥(v) is canonical in P; and the following properties are
satisfied for all 1 < i < 2n" + 1 for which w is a node of the cycle cy,’ (i):
a) If w#v then df(P;) < d} (Py).
b) If w=v then d; (P;) > dJ (P,).

iii) Suppose that w is unhappy in P,. Then there is an index 1 <i < q such that w = w;.

Proof. The following cases for w € R?(v) are possible—see [Figure 3.11|and [Figure 3.12f

D w=ay).

2) w=pj(v)forany1<i<2n’,1<j<4,

3) w=1y!,(v)foranyi,jk.

4) w=51,(z) for any i, j, k and 5 € D(¢) such that nod(lZ;) = v.

5 w= n§. (z) for any i, j, k and z € D(¢) such that nod(lij) =v.
6) w=uv.

In each of the above cases node w is of Type I. Let 1 <i < 2n" + 1 be such that w is a
node of the cycle cy,’ (i) and x € B¥(v) be the unique node for which {x,v} € E¥.
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Since w is of Type I, it is according to unhappy if and only if its
heaviest edge is not in the cut. In the following, we show that its heaviest edge

{Hge(w),w} is not in the cut in P, if and only if there is an index 1 <i <2n" +1
such that w = n; (P, i) which implies the claim.

In the cases|(1) and[(6)|—for an orientation, see [Figure 3.11]and [Figure 3.12}—
we have disy (Hge(w),i) > dis, (w, i) and therefore w = n} (P,, 1) by definition of
the function n; (-) if and only if {Hg»(w), w} is not in the cut. Now we show the
claim for case If w = x then, also by definition of n} (), we have w = n} (P,, i)
if and only if {Hgz¢(w),w} is not in the cut. And if w € BY(v) \ {x} then we
again have dis) (Hge(w),i) > disy (w, i) and therefore w = n; (P,, ) if and only if
{Hge (w),w} is not in the cut.

Since w is unhappy in P, we have w = nJ (P,, i) for some 1 < i < 2n"+1 according
to We prove the claim by considering the possible cases for w € R¥(v):

. Cases w= [D’;(V) for1<i<2n’,je{l1,3,4}orw = nj.,k(z) for

any i, j, k and z € D(¢p) such that nod(lf,j) =vbutw # x:

Since w is of Type I and unhappy in Py, its heaviest edge e; is not in the cut
in Py. Since F¥(v) is canonical in Py, the lighter edge e, of the two heavy
edges incident to w is in the cut in Py. Therefore, after the flip of w, the edge
ey is in the cut and e, not. Both e; and e, are edges of spy (i) which implies
that F¥(v) is canonical in P;. Since the node adjacent to w via e, has a lower
distance from v along edges of sp,’ (i), we get d,/ (P;) < dy (P,).

o Casew = [J’é(v) forany 1 <i<2n":

Since w is of Type I and unhappy in Py, its heaviest edge e; is not in the cut in
P,. Since F?(v) is canonical in Py, the two non-heaviest edges e,, e incident
to w are in the cut in Py. Thus, after the flip of w, edge e; is in the cut and
e, and e5 are not in the cut. The edges e, and e; are edges of spy (i) and
spy (i +1). However, there is no path sp; (j) for 1 < j < 2n¥ + 1 such that
both e, and e; are edges of spy (j). Thus, F¥(v) is canonical in P;. Moreover,
since the nodes adjacent to w via e, and e; have a lower distance to v with
respect to their corresponding path spy (j) for 1 < j < 2n” + 1 than w, we
get dy (Py) < d)/ (Py).

e Casew =x:
Since w is unhappy in Py, the heaviest edge e; = {w, v} of w is not in the
cut in P,. Since F¥(v) is canonical in P,, the unique edge e, = {w,w’} for
w’ € BY(w) \ {v} is in the cut in P,. Thus, after the flip of w, edge e; is
in the cut and e, is not. The edges e; and e, are both edges of sp; (i) for
1 <i<2n"+1. Thus, F?(v) is canonical in P;. Moreover, w’ has a lower
distance from v along the path sp;’ (i) than w which implies d,/ (P;) < d;} (P,).

e Case[(6)] i.e., w=v:
Since w is unhappy in Py, the heaviest edge e; of w is not in the cut. Since
F?(v) is canonical in Py, the edge e, = (w, x) is in the cut. Thus, after the
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flip of w, edge e; is in the cut and e, is not. The edges e; and e, are edges
of spy (i). Thus, F¥(v) is canonical in P;. Finally, the distance of x from v
along edges of sp;’ (i) is strictly positive which implies d, (P;) > dy (P,) due
to d/ (Py) = 0.

iii) Let 1 <i < 2n" + 1 be an index such that w = n/ (B, i)—from we know that
there is such an index. Since F¥(v) is canonical in Py, all edges of the cycle cy,’ (i)
unequal to the heaviest edge incident to w are in the cut in Py. The node Hgy (V)
is also of Type I—see [Figure 3.11|and [Figure 3.12—and w has no influence on
it. Thus, Hge(v) is happy in P,. For the remaining nodes of the cycle cy,’ (i)
[Observation 3.5.8 (vi)|implies that they are happy in P,. Moreover, the nodes of
the said cycle unequal to w remain happy as long as no node of the cycle flips.
Then, since s is final, there is a flip of w in s. O

Lemma 3.5.19. Let Q, € 2 (V?) such that F?(v) is canonical in Qg and let s = (wy,. .., w,)
starting at (G¥,Q,) for g € Nand w; € V¥ for all 1 <i < q be an improving sequence of
flips. Then F¥(v) is canonical in Q; for all 0 <i <gq.

Proof. Since F¥(v) is canonical in Qy, it is also straight in Q, by definition. For every
1 <i<2n’ node ci(v) and cé(v) are of Type I, Hge (ci(v)) = cé(v), HGw(Cé(V)) = ci(v)
and cq (c;(v)) # cq,(c5(v)). Thus, node c;(v) and cj(v) for all 1 <i < 2n” are happy
in partition Q; for all 0 < j < q. Consequently, no constant node ci(v), cé(v) for
1<i<2n”,ve€D(p)flipsin s and therefore F¥(v) is straight in Q; for all 0 < j <gq.

Now we show by induction on i that F¥(v) is canonical in Q; for all 0 <i < q. As
induction basis, note that it is canonical in Q,. Now assume as induction hypothesis that
F?(v) is canonical in Q; for an arbitrary 0 <i < q. Let x be a node of F¥(v)\ {Hg(v)}
such that x # ny(Q;,j) for all 1 < j < 2n” + 1. Then all heavy edges of x are in
the cut in Q; since F¥(v) is canonical in Q; and therefore x is happy in Q; due to
[Observation 3.5.8 (vi)l Thus, for each 1 <i < q thereisa 1 < k < 2n” + 1 such that
w; = ng(Q;, ).

Now we consider the possible cases for w; and show for each of them that F¥(v)
is canonical in Q; 4. If w; € RY(v) then |Lemma 3.5.18 (ii)l implies the claim for this
case. Now consider the case that w; = a;(v). Then, exactly one of the two edges
{a;(v),a5(v)} and e := {a;(v), Tge(a1(v))} is in the cut in Q;. Thus, after the flip of w;
there is still exactly one of them in the cut which implies the claim for this case. Now we
consider the case that w; = qb]]{’m(v) for any j, k, m. Then exactly one of the two heavy
edges incident to w; is in the cut in Q;. Thus, in Q;, there is still exactly one of them
in the cut whereafter the claim follows for this case. Finally, we consider the case that
w; = /5;(1/) for an arbitrary 1 < j < 2n”—for an overview see Since w;
is of type III, it is only unhappy if at least two edges incident to it are not in the cut.
If the edges {[o’é, /3;} and {[o’i, fo’é} are not in the cut in Q; then the remaining edge e

incident to ﬁé(v) is in the cut in Q; since F¥(v) is canonical in Q;. Thus, after the flip of
w; the edges { [5;, [o’é} and { [J’i, [5;} are in the cut and e is not in the cut anymore, which
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implies that F¥(v) is still canonical. If e is not in the cut in Q; then the remaining edges
incident to w; are in the cut since F¥(v) is canonical in Q;, but then w; is happy, which
is a contradiction. Thus, this case is not possible. O

Lemma 3.5.20. Let w € D(¢) with v #w, Qg € Z(V¥) such that F¥(x) is canonical in
Qo for all x € D(¢p) and assume {v} <q {w}. Then {v} <o, T¥(w).

Proof. Suppose for the sake of contradiction that there is a sequence s = (w,...,w,) for
w; €V¥ 1<i<q,q €N starting at (G¥, Q) such that there is a node x; € T?(w) that
flips prior to the first flip of v in s, i.e., there is an index 1 < j < q such that x; = w;
and w; #v forall 1 <i <j. Lett :=(xq,X,,...,Xx;) for k € N where x;, =w and x; for

1 < i < k be the unique node on which x;_; has influence in G¥—see [Figure 3.12| Since

F?(w) is canonical in Q, it is also canonical in Q;_; due to|Lemma 3.5.19, Therefore,

the sequence s’ Lot started at (G¥,Q) is improving which contradicts the assumption
{v} <q, iw}. Thus, {v} <o, T?(w). O

After characterizing basic properties of the filters, we are ready to formulate the main
tool that we use in the enforcing technique. The statement of the lemma makes use of
notations introduced in the first and in the second part of the definitions for the filter
and the proof also makes use of the definitions of the Basic Subgraphs.

Lemma 3.5.21 (Filtering Lemma). Let G = (V, E) be a graph containing only nodes of
Type I and III, P € (V) and ¢ : V; — ®(V;) be such that for each w € D(¢) node w is of
degree at most three, w has no influence on Hgz(w) and w is happy in (G, P). Then one can
compute in time O(poly(|V|, |¢|)) a graph G¥ = (V¥,E¥) and a partition Q, € #(V¥)
with the following properties:

FL1) G¥ is of maximum degree four.
FL2) V CV¥.

FL3) Each w ¢ D() is influenced in G¥ by the same nodes via edges of the same weights
asin G.

FL5) For each final sequence s = (w1, ..., wq) starting at (G¥,Q,) forq € Nand w; € V¥
forall 1 < j <q and each index 0 <i < g, for which sg does not contain two flips of
Hg(w) for any w € D(p) without an intermediate flip of w, the following properties
hold for all v € D(p) with u := Hg(v):

) If cq,(u) # cq,(v) then {u} <q, {v}
it) Suppose cq (u) = cq, (V).
a) If
e no node of Nodes(¢(v)) flips in sg after the last flip of u

e valy (p(v)) = false
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o {v}<q, {u}
then Nodes(p(v)) <q, {v}
b) If
e valy (p(v)) =true

e {v} <q, Nodes(p(v))U {u}

q
i+1°

then there is a flip of v in s
Comment Recall that the aim of the extension of the graph G by further nodes and
edges is as follows. If a node v € D(y) is happy in a partition of G then it is not
supposed to flip prior to the first flip of u := H;(v) in any sequence starting at the
corresponding partition of the extended graph G¥. This property is encapsulated in
ILemma 3.5.21 (FL5) (i)l On the other hand, for the case that v is unhappy in a partition
of G, a flip of v is supposed to depend in the extended graph on the satisfaction of the
formula ((v) with respect to the colors of the nodes of Nodes(¢(v)). The case in which
¢ (v) is not satisfied is encapsulated in|[Lemma 3.5.21 (FL5)(ii) (a)| and the opposite case
in|[Lemma 3.5.21 (FL5) (i1) (b)|

Proof. We let G¥ := enfs(G, p)—for an orientation, see [Figure 3.11|and [Figure 3.12]
The graph GY is computable in time O(poly(|V|,|p|)) for the following two reasons.
First, each operation performed in enfs(G, ¢ )—including the operations performed
during the execution of the functions enf;(G, ¢), ..., enfs(G, ¢) called by enfs(G, p)—
that substitutes an edge by a subgraph, namely the functions G*(-), ..., G(), require
constant time—see [Definition 3.5.1HDefinition 3.5.5| Second, the number of passes of
each for-loop of enfs(G, ¢), ..., enf1(G, ¢) can be upper bounded linearly in either |V|
or [¢|.

Since each node v € D(p) has by assumption a degree of at most three, the property
follows from The function enfs(-) substitutes no nodes which
implies Moreover, it only substitutes the heaviest edges of the nodes of D(¢). By
assumption, no node v € D(¢) has influence on H;(v) in G. Therefore, we get [(FL3)

The partition Q is computed from P in the following way. We choose cq (W) = cp(w)
for all w € V. This implies The colors of the remaining nodes are chosen such
that for all v € D() all heavy edges of F?(v) but one arbitrary edge of the braid of v
are in the cut in Q. In the following, we prove |(FL5)

FL5i) Since F¥(v) is canonical in Qy, it is also canonical in Q; due to [Lemma 3.5.19
Moreover, due to cq, (1) # cq,(v) it follows that F¥#(v) is enterable in Q;. Conse-
quently, the following properties are satisfied:

E1) The heaviest edge of v is in the cut in Q.
E2) The edges {u, a;(v)} and {a;(v), a,(v)} are in the cut in Q.
E3) All heavy edges of the nodes of H?(v) \ {u, v, a;(v)} are in the cut in Q.
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Since v is of Type I, property [(E1)|implies that node v is happy in Q,. Property
implies that a;(v) is happy due to [Observation 3.5.8 (vi)l Finally, |[(E3)
implies the happiness for the remaining nodes of H”(v) \ {u} due to, again,
[Observation 3.5.8 (vi)l Thus, no node of H¥(v) \ {u}, in particular node v, flips in
s? 41 prior to the first flip of u.

FL5ii) Letk :=cq (v). Since v is happy in (G, P) by assumption, |(FL4)|implies cq (u) =K.
Then, |(FL5) (i)| implies that there is a flip of u in si. Let 1 < k <1 be the greatest
index for which w; = u.

a) Suppose that no node of Nodes(p(v)) flips in s;;+1, valg,(p(v)) = false and
{v} <q, {u}. Since F¥(v) is canonical in Q by assumption and s is improving,
Lemma 3.5.19|implies that F¥(v) is canonical in Q. Then w; = u implies

that F¥(v) is just entered in Q; whereafter we get the following properties
forall1 <r <n”, 1<j<2m;+ 1—for an overview of the corresponding

nodes see [Figure 3.12

JED) cq,($%7' (1)) = cq, ($2,(v)) = k and cq, (¢ (1)) = cq, ($25(v)) =%
due to|[Lemma 3.5.16 (ii) (c)]

JE2) ch(}f?Z;”V (zr_l)(v)) = ch(yfz_z”v (Zr)(v)) =K due to|Lemma 3.5.16 (ii) (b)l

Moreover, for all 1 < r < n” we have

JE3) cq, (¢ (v)) =X due to[Lemma 3.5.16 (ii) (d)|

In the rest of the proof, we make use of a set M C F¥(v) which is determined
as follows. For each 1 < j < 2n” we name a path whose nodes are in M. The
path is a subpath of sp; (j) beginning at some node zj 1= ¢f(j)’1(v) for an
index1 <i(j) < Zm;’(j) that is specified later and ends at v. Welet M~ := M\

U ;1z;}. The purpose of M is to show that Nodes(¢(v)) <o, M which directly
implies Nodes(y(v)) <q, {v} due to v € M. Then, since by assumption no
node of Nodes(¢(v)) flips in s,i(H, we also get Nodes(p(v)) <q, {v} as
postulated by the theorem.

To show Nodes(¢(v)) <q, M we first prove some properties of the nodes in
M. In Q; all heavy edges between the nodes of M are in the cut since F¥?(v)
is just entered in Q. Thus, all nodes of M~ are happy in Q; according to
[Observation 3.5.8 (vi)|and remain happy as long as no node of M flips. Node

z; for any j is of Type II and is therefore happy according to if
the three non-heaviest edges incident to z; are in the cut. In Q; two of these

three edges are in the cut for each z;: the heavy edge {z;, gb{(j) ,(v)} according
to|(JE1)|and the edge between Z; and the internal informer adjacent to 2;
according to[(JEI)|and [JE2)]

Now we specify the indices i(j) and consider the happiness of the correspond-
ing nodes z;. The specification and consideration of the happiness is divided
into two parts.
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In the first part, we specify i(j) for the indices 1 < j < 2n" for which
j =2r(j) — k. For these j, we choose i(j) := 2m‘r’(j) + 1. Then z; is adjacent
to the constant ci—see line [20|of and the edge between them
is in the cut due to[(JEI)|and [JE3)] Thus, all non-heaviest edges incident to
z; are in the cut in Q) which implies that it is happy. The constant c{ does not
flip in s since F¥(v) is canonical and therefore straight in Q; for all0 < b <q.
The other two nodes adjacent to z; via non-heaviest edges incident to z; are
in M~ and remain therefore happy as long as no node of M flips. Thus, z;
also remains happy as long as no node of M flips. Consequently, if a node
of M flips in sZ 1 then the first node of M that flips in SZ 41 is anode z; for
jZx mod 2.

In the second part, we consider the remaining indices 1 < j < 2n”. These
are the indices for which j = 2r(j) —x. Let 1 <t < m‘r’(].) be such that

r(iit :
valy, (¢(v)) = false and no node of Nodes((v)) flips in Spp—and letw :=

nod(l;’(j) ;). We choose i(j) := 2t. Let 1 < j < 2n” with j = 2r(j) — ¥ and
assume that z; is the first node of M that flips in SZ +1- In the following, we
show that prior to the first flip of z; in sZ +1 there is a flip of w. Then, it

follows, as required, that Nodes(p(v)) <q, M.

valy, (1 ) = false—such a literal exists in Mrv(j)(v) since, by assumption,

Since F¥(v) is just entered in Q the edge between z; and the node y]f =

g(j)_l ,(v) adjacent to it via the heaviest edge incident to z; is in the cut,
and the edge between y]f and the node y; := q&f(j)_l ,(v) adjacent to yJ’. via
the heaviest edge incident to yjf is also in the cut in Q. Node yJ’. is of Type L.
Thus, both z; and yJ’. are happy in SZ +1 as long as y; does not flip. Moreover,

it follows that both y; and y]f flip before z; becomes unhappy in SZ e

Now we show that between the flip of y; and the flip of z; there is a flip of w.
Node y; is of Type II and is therefore happy if the three non-heaviest edges
incident to y; are in the cut. Due to |(JE1)| andl(JEZ)l the edge {yj,y]’.} is in
the cut in Qi and the edge between y; and the internal informer adjacent to
Y; is also in the cut. A further node adjacent y; to via a non-heaviest edge is
an anterior external informer p; € T¥(w). Since F¥(w) is canonical in Q,), it
is also canonical in Q;, for all 0 < b < q due to Thus, on the
path from p; to w via the edges of the throat of w there is at most one edge
not in the cut in Q;, for all 0 < b <gq. Let k+ 1 < d < q be such that wy = y;
and wy # y; forallk+1 < d’ < d. Assume for the sake of contradiction that
p; has in Q4_; the same color as in the partition Q’ that arises from Q4_;
by choosing the colors of the nodes of T¥(w) \ {w} such that T¥(w) is flat.
Then the edge {y;,p;} is in the cut in Q" according to|Lemma 3.5.17 (i)l But
then y; is happy in Q' since the three non-heaviest edges incident to it are in
the cut, which is a contradiction. Thus, p; has in Q4_; the opposite color as

in Q’.
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Consequently, T¥(w) is not flat in Q4_;. But then B¥(w) is flat in Q4_,
which implies that the edge between z; and the posterior external informer
p, adjacent to z; is in the cut in Q4_; due to[Lemma 3.5.17 (ii)} Therefore,
the three non-heaviest edges incident to z; are in the cut in Q4_;. Since
the two non-heaviest edges incident to z; unequal to {z;, p,} are in the cut
as long as no node of M flips, it follows that B¥(w) is not flat when g;
flips. By definition of the potential function d,,(-), a canonical partition in
which B¥(w) is not flat has a higher potential than a canonical partition in
which TY(w) is not flat. Then, since T (w) is not flat in Q;_;, it follows by
[Lemma 3.5.18 (ii)| that there is a flip of w between the flip of y; and the flip
of z;.

Suppose that valy, (¢(v)) = true and {v} <, Nodes(p(v))U {u}. Let A be
the greatest index for i < A < g such that w; # v foralli < j < A, 7 be
an index for which i < 7 < A and 1 < r < n” be such that for monomial
M, of ¢(v) we have valy,(M,) = true—the formula ¢(v) contains such a
monomial since valy, (¢(v)) = true—and let p :=2r — k.

We first show for any 1 < o < 2n” 4+ 1 a property of the o-th upper
path and one of the o-th lower path. Since F¥(v) is canonical in Q, due

to [Lemma 3.5.19} the nodes of the o-th upper path, in particular node

ny (Q,,0), have their unnatural colors with respect to Q,. Moreover, all
edges of the o-th upper path are in the cut in Q. On the other hand, all
nodes of the o-th lower path have their natural values with respect to Q,, and
all edges of the o-th lower path are in the cut in Q.

In the following, we distinguish several cases for w € F?(v) \ {u,v}. For all
but the last case, we consider individually the consequences of each of the
following two assumptions:

Al) w =n/(Q,,0) and {w} <q, {tY(Qq,0)} foralll1 <o <2n”+1 for
which w is a node of ¢y, (o).

A2) w is a node of the o-th lower path with respect to Q, forall 1 < o <
2nY + 1 for which w is a node of ¢y, (o).

The above assumptions have the following direct implications that we use
throughout the consideration of the cases:

T1) If|(A1)|is satisfied then {w} <,_{v}, since all edges of the o-th upper
path with respect to Q; are in the cut in Q ;.

T2) If[(A2)|is satisfied then w has its natural color with respect to Q.

With the help of these two observations, we show for all but the last of the
considered cases for w € F¥(v) \ {u, v} that the following two implications
hold:

F1) Suppose that |(Al)|is satisfied. Then there is a flip of w in sﬁ 4 o its
natural color with respect to Q ..
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F2)

Suppose thatis satisfied. Then {v} <q_{w}.

The cases for w are the following:

Cl)

C2)

C3)

C4)

Case w = a;(v):

: Due to w = n{(Q,,0) the edge e/ (Q,,0) = {w,ty(Q,,0)} =
{w, Tge(w)} is not in the cut in Q,. By assumption, node v does not
flip in s, ;. Moreover, due to the assumption {v} <q, {u}, node u does
also not flip in s, ;. Since ¢y (u) = co,(v) and w = n’(Q,,o) has its
unnatural color in Q,, the edge {u,w} is not in the cut in Q,, which
implies that w is unhappy in Q. Due to the assumption {w} <,
{tY(Q,0)} and the property {w} <q, {v} following by node w
remains unhappy as long as it does not flip. Then, since s is final, it

. . A
follows that there is a flip of w in s7_ ;.

Due to all edges of the braid of v are in the cut in Q,, which
implies {v} <,_{Tg»(w)} according to|Observation 3.5.8 (vi)| Then the
assumption {v} <q. {u} implies that neither u nor Tg(w) flips prior to
the first flip of v in 5?1 +1» Which in turn implies that w does not flip prior

to the first flip of v in 5(71:+1' Thus, {v} <q_ {w}.

Case w eR?(v)\ {v}:
(F1} Then w is of Type I and its heaviest edge is not in the cut in Q.

Thus, |Lemma 3.5.18 (iii)l implies that there is a flip of w in sﬁ 41

All nodes of the o-th lower path with respect to Q, unequal to
t7(Q,, o) are happy in Q,, due to|Observation 3.5.8 (vi)l Moreover, w
is happy since it is of Type I and its heaviest edge is in the cut. Thus, all
nodes of the o-th lower path remain happy as long as node v does not
flip.

Case w = qb;{z(v) forl<o<2n",1<j< Zm:(a) +1:

: Since w is of Type I and it is influenced by t,’(Q, o), it remains
unhappy as long as neither itself nor t7 (Q,0) flips. Consequently, the

assumption {w} <q_ {t7(Q,,0)} and |(T1)|together imply that there is
., |
n+1°

(F2);: Since the node that has influence on the Type I node w is a node
of the o-th lower path and all edges of this path are in the cut in Q,,
(Observation 3.5.8 (vi)|implies {v} <,_{w}.

aflipof wins

Case w = ¢§w_1,1(v) forl<w<m:

Let x be the unique anterior external informer adjacent to w and let y €
Nodes(p(v)) such that x € T#(y). By assumption, we have {v} <q {y}
and therefore {v} <, T%(y) according to In particular,
we get {v} <q, {x} since x € T¥(y). Moreover, T¥(y) is flat in Q;,
since otherwise there was an unhappy node of T¥(y) in Q; which would
contradict {v} <q, T¥(y). We let Q € #(V¥) be the partition arising
from Q, by choosing the colors of the nodes of F¥(v)\ {u, v} such that



C5)

C6)
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F?(v) is awaiting in Q.

(F1): Since w = n{ (Q,, o), node w has its unnatural color in Q. In Q,
node w also has its unnatural color and the edge {w, x} is not in the cut
in Q due to[Lemma 3.5.17 (i)|which implies that it is also not in the cut
in Q. By assumption, we have {w} <q_ {t7(Q,,0)} and {v} <q, {y,u}.

Thus, {v} <q, T¥(y) U {u} according to Lemma 3.5.20| and therefore

{v} <q, {x}. Since v does not flip in s7, ;, we get {v} <q_{x} which
implies that w remains unhappy as long as it does not flip. Hence, there
is a flip of w in sﬁﬂ.

The Type I node z adjacent to w via the heaviest edge incident
to w is on the o-th lower path and the heaviest edge incident to z is
also on this path. Since all edges of this path are in the cut in Q,,
|Observation 3.5.8 (Vi)| implies {v} <,_{z}. Since w is on the o-th lower
path, node w has its natural color in Q.. In Q, node w has its unnatural
color and the edge {w, x} is not in the cut in Q due to[Lemma 3.5.17 (i)|
which implies that {w, x} is in the cut in Q. Then, by the assumption
{v} <q, {y} we get {v} <q_{x} due to Consequently,
the two properties {v} <,_{z} and {v} <,_{x} together imply for the
Type I node w that {v} <,_{w}.

Case w = ¢§m¥+1,1(v):
[(FD} Node w has its unnatural color in Q,; and has therefore the same
color as in the partition Q arising from Q, by choosing the colors of
the nodes of F¥(v) \ {u, v} such that F¥(v) is awaiting in Q. According
to |Lemma 3.5.16 (ii) (d)| the constant cf —which is adjacent to w—has
in Q and therefore also in Q, the same color as w, i.e., the color .
Consequently, since w is of Type II, it is unhappy in Q. Then, due to the
assumption {w} <q_{ty(Q,0)} and since ¢} does not flip at all in s,
there is a flip of w in sf[

+1°
(F2); Node w remains happy as long as neither ¢§m¥’2(v) nor cf flips.
Since all edges of the o-th lower path are in the cut in Q,, we have
{v <q. {¢5mv ,(v)} according to |Observation 3.5.8 (vi)} Then, since w

is of Type II, we get {v} <,_{w}.

Case w = ¢ (v)forany 1 <o <2n"+1,1 < w < Zm:(g)+1
with the assumption that ch(yi’z) =« and {v} <q_ {qu,z} for p :=
Pl 20

(F1)t Node w is of Type II and is adjacent to t,’(Q,, o) and YZ) ,- Both of
them have the color k in Q. Since w has its unnatural color in Q, i.e.,
K, it remains unhappy as long as neither any of these two neighbors nor
w itself flips. However, by assumption, we have {v} <,_ {t7(Q,,0)}

and {v} <q_ {on ,}. Thus, |(T1)|implies that there is a flip of w in 5£+1-
(F2)} Since w is of Type II, it remains happy as long as neither on , nor
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C7)

the node x adjacent to w via the heaviest edge incident to w flip. Since
x is on the o-th lower path and all edges of the o-th lower path are in
the cut in Q, we have {v} <o {x} according to|Observation 3.5.8 (vi)|
Then the assumption {v} <q_ {Yi,z} implies {v} <qo_{w}.

Case w =f3J(v) for1 <o <2n":
(F1) Then the two edges {w, 5 (v)} and {w, 87 (v)} are not in the cut
which implies that w is unhappy in Q. Since both nodes 7 (v) and
7 (v) do by assumption not flip prior to the first flip of v in 5;1: +1> node

w remains unhappy as long as none of the two nodes flips. Thus, there

is a flip of w in s}.

Node w remains happy as long as neither 55 (v) nor 87 (v) flips.
Since all edges of the o-th lower path are in the cut in Q,, for each o for
which w is a node of the o-th lower path, we have {v} <,_{B5(v)} and
{v} <q, {B7 (v)} according to|Observation 3.5.8 (vi)} Then, since w is
of Type III, we get {v} <qo_{w}.

Now we consider the last case for w. In it, we prove two properties that are

slightly different compared to [(F1)|and [(F2)l respectively. The first property
has the same premise as|(F1)|but two extra implications. We will denote the

property by [(F1¥)| The second property has the same implication as [(F2)] but
two extra premises—the two extra premises correspond with the two extra

implications of [(F1*)| We will denote the second property by |[(F2*)l The
properties are specified within the case which is as follows:

C8) Casew = ¢§w,1(") forl<w<m:

We let x be the posterior external informer adjacent tow, y € Nodes(¢(v))
be such that x € B¥(y) and Q € #(V¥) be the partition arising from Q
by choosing the colors of the nodes of F?(v)\ {u, v} such that F¥(v) is
awaiting in Q.

F1*) If|(A1)|is satisfied then there is an index i < j < A for which wi=w,

cQj(x) =k and {y} <q, {x}:

Proof. Since w is a node of the o-th upper path, it has its unnatural
in Q. Thus, it has the same color in Q,, as in Q, namely «.

At first we consider the case that e; := {w, x} is in the cut in Q.
The set T¥(y) is flat in Q,, since otherwise one of its nodes could
flip, which contradicts the assumption {v} <q {y} according to
Consequently, B?(y) is not flat in Q,; since otherwise
e; is not in the cut according to|[Lemma 3.5.17 (ii)} Thus, there is
exactly one edge e, on the path t from y to x along nodes of BY(y)
not in the cut. According to|Lemma 3.5.18 (i)|the node x’ € B¥(y)
whose heaviest edge e, is not in the cut is unhappy then and can
flip. No other node of F¥(y) \ {Hs(y)} is unhappy since F¥(y) is

canonical in Q; according to[Lemma 3.5.19] Thus, by induction it
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follows that the nodes on the path from x’ to x flip consecutively.
After their flips, the edge e; is not in the cut. Since w is of Type II,
it is unhappy then. Let = < 7’ < A be the index for which x = w .
Then all edges on the path ¢t are in the cut in Q,/,; and therefore we
have {y} <Q.,, {x} according to |Observation 3.5.8 (Vi)'. Due to the
assumption {v} <q {y} we get {v} <., {x}. Then the assumption

{w} <q. {t/(Q,, o)} implies that there is a flip of w in sﬁﬂ. Due to
node x does not flip prior to the first flip of w in si, .- Hence,
x still has the color k when w flips. Moreover, since neither y nor x
flip in sf[,ﬂ prior to the first flip of w, the property {y} <., {x}
implies {y} <q {x} for the index i < j < A with w; = w.

Now consider the case that e; is not in the cut in Q, i.e., ¢g_(x) =
k. Let Q' be the partition arising from Q, by choosing the colors
of the nodes of B¥(y) \ {y} such that B¢(y) is flat in Q". Then
ILemma 3.5.17 (ii)|implies that e; is not in the cut in Q’. Consequently,
we have cy/(x) =cq_(x). Since F?(y) is according to
canonical in Q ., there is at most one edge of t not in the cut. Thus, it
follows that all edges of t are in the cut which implies {y} <q_ {x}.
Thus, there is a flip of w in sﬁﬂ. Due to {y} <o_ {x} and the
assumption {v} <, {¥}, node x does not flip prior to the first flip of
w in sﬁ +1- Thus, x still has the color x when w flips. Moreover, since
neither y nor x flip in sﬁ 41 prior to the first flip of w, the property
{y} <q, {x} implies {y} <q, {x}fori<j<Awithw;=w.

F2*) If [(A2)]is satisfied, cq (x) =K and {y} <q, {x} then {v} <q_{w}:

Proof. Since w is on the o-th lower path, it has its natural color,
i.e., K. Node z adjacent to w via the heaviest edge incident to w
is on the o-th lower path and all edges of this path are in the cut
in Q. Thus, Observation 3.5.8 (vi)|implies {v} <,_{z}. Then the
properties ¢, (x) =« and {y} <q_{x} together imply {v} <, {w}.

Now we distinguish between the possible cases for w = nf(Q,,0) if w €
F?()\ {u,v} and show for each of them that there is an index 1 < 7 < A
such that the following properties hold:

S1) w=w,_.
S2) {v}<q. {w}

Then, for the node z € F¥(v) \ {u, v} adjacent to v via the heaviest edge

incident to v the properties and imply that z flips to its natural
color in sﬁ +1 and keeps its natural color until v flips. Thus, after the flip
of z there is a flip of v. After the flip of v we get that F¥(v) is enterable
as postulated by the lemma—recall that F¥(v) is canonical in Q. for all

0 < k < q according to[3.5.19|and that u does by assumption not flip prior to
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the first flip of v in s? +1- The consideration of the cases is divided into four

parts

P1)

P2)

Case w € B :=B¥(v)U {a;(v), ay(v)} U UlSSZnVH{[J’{, Ba}:

At first, we consider the case w € BY(v) for which w is adjacent to v.
Then we get {v} <,_{w} since all edges of the o-th lower path are in
the cut and therefore all nodes of the path unequal to w are happy in
Q. due to [Observation 3.5.8 (vi)] Then property [(F1)] of implies
(S1)] whereafter property [(F1)]implies [(S2)] for this case.

We show the remaining cases via induction. In particular, the hypothesis
that {w} <q_ {t7(Q,,0)} for all o for which w is a node of ¢ (o)
implies due to [(F1)] of [(C2)| the property[(S1)] which in turn implies[(S2)

due to of Thus, the two properties and follow for
all nodes of B by induction.

Case w = d)k Morw= yl (v)foranyi,j, k:

The two propert1es and [(S2)] are shown via induction on k. For

the induction basis we cons1der the case k = p and show by induction

on i that the properties (S1)|and [(S2)| hold for w = ¢f (v) for all i,j
J

and then, also by induction on i, that the two properties also hold for

w= yf‘(v) for all i, j, k.

As induction basis, we consider the case w = 4)1 1(v). Then property|(S2)

of |(P1)|and |(F1)| of [(C4)| together imply propertymfor w whereafter
we get [(S2)| from [(F2)| of [[C4)| Then [(F1)] and [(F2)] of [(C2)|imply the
properties |(S1)| and |(S2)| also for w = qbf 2(v). Assume as induction

hypothesis for an arbitrary 1 < i < 2m ot 1 that for d)p 2(v) the

properties (Sl) and|(S2)|hold. If i =2t — 1 foranindex 1 <t <m’ o)
then [(F1)| and (F2) 0 (C4) imply the properties [(S1)| and [(S2)] and if

i = 2t then[(F1¥)| and [(F2¥)| of [(C8)|imply the propertles and[(S2)]
Moreover, if i = 2mr(p) + 1 then the two properties follow from |(F1)
and [(F2)| of [[C5)l Then, analogously to the case i = 1, [(F1)|and |(F2)
of|(C2)| imply|(Sl)| and |(82) for ¢f ,(v). Consequently, the property

(82)|of ¢§my(p)+1,2(") implies [(S1)|for Yf,l(") according to|(F1)|of [(C2)

whereafter we get|(S2)|for the same node. Then |(C2)|implies the two
properties inductively for the remaining nodes yf j(v) for any i, j.

Now assume as induction hypothesis that for an arbitrary 1 < k < 2n”
the properties [(S1)| and [(S2)| hold for all qbl?"j(v) and }fi.‘,’j,(v) fo/r all
i,j,1, j’ We show that the two properties then also hold for all qbk )

and }f b,(v) for all a, b,a’, b’ where k’ := (k mod 2n") + 1. We prove
this statement also by 1nduct10n on i. As induction basis, we consider
the case w = qbl 1(v) Then the induction hypothesis and property
of [(C6)| together imply property | which in turn implies [(S2)| due to
property [(F2)] of [(C6)] Then [(F1)| and [(F2)] of [(C2)|imply the properties
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(S1)|and|(S2)|also for w = ¢11‘:2(v). Assume as induction hypothesis for

an arbitrary 1 <i < Zm:(k,) + 1 that for qblkll’z(v) the conditions|(S1)
and [(S2)|are satisfied. Then the properties[(F1)|and [(F2)| of [(C6)| imply
the properties @ and (—szr)‘ for ¢ f‘ll(v). Then, analogously to the case
k = p, the properties [FI)[and [(F2)] of [[C2)] imply the properties[(ST)
and for (j)lk"z(v).

Case w € (), <j<o,0 183, BS, Bs}:

Again, we show the two properties and [(S2)] by induction on i. For
the induction basis we consider the case i = 2n”. According to [(S2)
of@ we have {v} <, {[J’ZZ”V(V)}. Thus, of implies [(S1)
for [332" (v), whereafter RTZ)‘ of lm implies for the same node.
Propertyl@l of |(P2)|implies for the node z adjacent to ﬁf”v(v) via the
heaviest edge incident to ﬁf"v(v) that {v} <,_{z}. Thenlm oflm
implies for [J’f"v(v), whereafter |(F2)| of |(C2)| implies |(S2)| for it.
Then we get property|(S1)|for ﬁsznv(v) due to @ of |(C7)|whereafter
of implies [(S2)| for it.

As induction hypothesis we assume for an arbitrary 1 <i < 2n” that the
properties @ and are satisfied for 8:7!(v). Then property|(S1)
follows for the node f5(v) according to of whereafter we get
[(S2)|due to|(F2)|of [(C2)| Then, analogously to the induction basis, the
properties [(S1)|and |(S2)| follow for the nodes £(v) and B{(v).

Casew e T?(v)\ {v}:

If w is adjacent to [551 (v) then property follows from and
of whereafter of implies [(S2)] For the remaining
cases the hypothesis tha is satisfied for t(Q,, o) implies due to
of the property for w whereafter of implies
(S2)l Thus, by induction the properties and follow for all
nodes of T¥(v)\ {v}.

This finishes the proof of the [Filtering Lemmal O

3.5.3 Enforcing Pivot-Rules with Combined Subgraphs

Theorem 3.5.22 (Enforcing Theorem). Let C be a Boolean circuit, G¢ = (V¢,E°) be
the graph that constitutes C, n be the number of gates in C, P¢ be an ordinary partition of
VC, h be a generalized pivot rule in G¢ which is computable in O(poly(n)) time and t be
the sequence starting at (G¢, P®) induced by h. Then one can compute in O(poly(n)) time
a graph G" = (V" EM) with V¢ C V" and a partition P, € # (V") with Py|,c = P€ such
that for each final sequence s = (w1, ..., w,) starting at (G, Py) we get

Slvc =t.
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Proof. For the sake of simplicity, we use the same names for the gates in C and the
nodes that represent the gates in G°—recall that each gate is represented by exactly
one node in the graph that constitutes the circuit. Without loss of generality, we make
the following five assumptions. First, a gate of C is either a NOT-gate with a fan-in
of one and a fan-out of at most two or a NOR-gate with a fan-in of two and a fan-out
of one—this assumption can be made due to [Proposition 2.4.3] The NOT-gates are
used to distribute the output of the NOR-gates without violating the condition that all
nodes of the resulting graph have maximum degree four. Second, C contains the gates
&1, 82+, &n for n € N which are topologically sorted such that if g; is input to g; then
i < j. The proof that the following three assumptions can be made without loss of
generality is given after their statement. Third, for any NOR-gate g; of C the inputs of
g;in C are g;_, =:I;(g;) and g;_; =: I5(g;), gate g;,; is the gate whose input is g;, all
three gates g;,1,g;_; and g;_, are NOT-gates and the opposite color of g; in P¢. Fourth,
for each partition P € 2 (V°) in which a NOR-node v is the unique unhappy NOR-node
of G¢ we have h(P) = v. Fifth, for any NOR-node g; € V¢ and any partition P € 2(V°)
we have h(P’) = g;,, if and only if h(P) = g; for the partition P’ € 2(V°) arising from
P by flipping g;.

Now we show that the last three of the above assumptions can be made without loss
of generality. For each NOR-gate g; of C we can construct a circuit C’ from C which
computes the same function as C by iteratively adding NOT-gates and renaming the
nodes as depicted in From P we can construct a partition P’ of the nodes of
the graph G = (V¢ , E®) that constitutes C’ by assigning to the nodes g7, g, , and g/_
the color cp(g;) =: cp/(g/,,) and the opposite color to the nodes g;,,, g/, , and g/, ..

The colors of the remaining NOT-nodes of G are chosen such that they correspond
to the colors of their corresponding NOT-nodes in G¢. From the generalized pivot rule
h we construct a pivot rule h’ in the following way. Let Q' € @) and Q € #(VE)
such that Q'|,c = Q. If h(Q) € V¢ then we let h'(Q’) return the node of Vnco/t that

not

corresponds to h(Q). On the other hand, if h(Q) = g; for g; € V¢ then we let K'(Q’)
return a node of V¢ in the following way. If the NOR-node of V< that corresponds to
g;—for convenience, we let g/, , be this node—is unhappy in Q” then h’(-) returns g;_ ,,
otherwise it returns the unhappy node of the set {g;,..., g/ ¢} \ {g;,,} with the highest
index—note that one of the nodes of the set {g/,...,g! +3} is necessarily unhappy if g; is
unhappy in Q but g/, , is happy in Q. Then a NOR-node of V¢ is returned by K'(-) if it
is the unique unhappy NOR-node of the given partition and node g/ .5 is chosen by R'()
directly after h’(-) chooses g! 4 Since the flips of the added NOT-gates do not occur in
s|yc, the last three assumptions can be made without loss of generality.

The proof in a nutshell We extend the graph G® by extra nodes and edges and name
the initial colors of the added nodes. The purpose of the added nodes is, depending on
the given colors of the nodes of V¢, to allow only that node of V¢ to flip which is chosen
by the generalized pivot rule h. The proof consists of four parts. First, we extend G©
by further nodes and edges and call the hereby arising graph G" = (V", E"). The nodes
and edges added in this step consist of two subsets of nodes and edges. One subset
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/
/ /
8it1 8it2 C
ﬁo_ f f g{+4 gi/+5 g{+6
8i &i 8it3
(a) Gate g; of circuit (b) Gate g;_, in the extended circuit C’
Cc corresponds to gate g; in C

Figure 3.13: Adding NOT-gates allows desired numbering and behavior.

constitutes a Boolean circuit C" whose main purpose is to compute the generalized pivot
rule h. The other one contains nodes and edges which are supposed to hinder that nodes
of V¢ from flipping which are not chosen by the generalized pivot rule h for the next
flip. Second, we name the colors of the nodes of G" in the initial partition P,. Third, we
introduce a function ¢ : VIh - <1>(V1h) whose purpose is, beside some technical purposes,
to ensure by means of the [Filtering Lemma) (i.e., that each node that
represents a gate of C only switches to its correct color with respect to the colors of its
inputs when its input nodes already have their correct colors with respect to the colors
of their corresponding inputs. The graph and the corresponding partition induced by
the [Filtering Lemma| will be called G¥ = (V¥,E¥) and R, respectively. Fourth, we show
for all sequences starting at (G¥,R,) that the nodes of V¢ in fact flip in the order that is
induced by h.

1) Extend G¢ In this part, we add nodes and edges to the graph G¢ whereby we get
the graph G". The description of G" is divided into three steps. In the first two steps
we add gates to the circuit C and call the resulting circuit C'. In the third step we
substitute edges in the graph G' that constitutes C! by further nodes and edges. Let
VE  be the set of nodes of VnCO . without the nodes that represent input nodes of C. For a

core

partition P € Q”(chr JletP'e 2 (V©) in the following be the partition arising from P
by assigning that color to each input node and to each NOR-node such that it is happy.

In the first step we add a separate Boolean circuit C". The circuit C" takes as input
the bitwise complement of the bit vector encoding the colors of the nodes of ch)r ,ina
partition P € & (ch)r .) and returns the bit vector that differs from the input in that and
only that component of the bit vector which corresponds to the node h(P’)—if h(P’") = nil
then each output bit equals its corresponding input bit. For C" we make the following
five assumptions without loss of generality. First, it only contains NOT-gates with a fan-in
of one and a fan-out of at most two and NOR-gates with a fan-in of two and a fan-out of
one—this assumption can be made according to [Proposition 2.4.3| Second, we denote
the gates of C" by y4,...,7,, where m is the number of gates of C" and assume that
the gates are topologically sorted such that i < j if y; is input to y;. Third, similarly to
the circuit C, we assume that the inputs of a NOR-gate y; are NOT-gates y;_, =: I;(y;)
and y;_; =: I5(y;) and each of them has a fan-out of one and as input also a NOT-gate.
Fourth, for each NOR-gate y; the unique gate for which y; is an input is the NOT-gate
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¥j+1 and v;4, is not an output gate of CM. Fifth, for each g; € Vncot the gate y; is the
gate of C" that takes as input the bit of the input assignment that corresponds to g; and
Ym—n+i =: T; the corresponding output gate—this assumption can be made since one
can substitute links by two NOT-gates linked in series without changing the output of
the circuit.

In the second step we add the gates with the white fillings as depicted in
and the corresponding links as shown in the figure. The added gates connect gates of C
with gates of C". The gates with the gray filling are gates of C and C", they are redrawn
to determine the inputs and outputs of some of the added gates. The gray rectangles are
to indicate the gates whose corresponding nodes in G make up the sets of nodes Vio, Vl.1
and Vl.z. We call the resulting circuit C! and let white be the natural color of ,uf’“’ for
all 0 <k <1 and all even 0 < w < 2m and black be their unnatural color. For ,uf’w, all
0<xk<1landallodd 1< w <2m — 1 we let black be their natural color and white be
their unnatural color.

Comment The idea of the gates ,uf’w for all i, k, w is to control, by means of the
ling Lemma) (i.e.,[Lemma 3.5.21) and a function ¢ which is specified later, the stepwise
adaption of the correct colors of the nodes representing the gates of C" with respect
to the colors of their input nodes in ascending order with respect to their topological
order. The insistence on the correction of the gates according to their topological order
is necessary, since if some gate y; does not take its correct color before the gates it is an
input to take their correct color with respect their inputs, then the output of the circuit
C" can be updated incompletely, which can lead to a flip of a node that is unequal to
the one indicated by the generalized pivot rule. The gates will perform their aim in
the following way: Suppose that node g; € VHC0 . flips its color. In the partitions we will

be interested in, the edge {g;, A?’l} and edges between the nodes of Vl.2 are in the cut,
as well as the edges between the nodes of Vl.O and the ones between the nodes of Vil.
Then, after the flip of g;, the nodes in Vl.2 change their colors and in exactly one of the
sets Vl.0 and Vl.1 all nodes take their unnatural colors, as we will see later,—the function
¢ together with the [Filtering Lemma| will ensure that all nodes of this set in fact take
their unnatural colors. In particular, if g; flips to black then the nodes in Vio take their
unnatural colors, and if it flips to white then the nodes in Vl.1 take their unnatural colors.
Let k € {0, 1} be such that the nodes of V;* flipped to their unnatural colors. Then we
let the nodes ;" for all 0 < w < 2m switch back to their natural colors consecutively
in ascending order with respect to w. However, some of the nodes ,uf’w are hindered
via the function ¢ and the [Filtering Lemmal from flipping back to their natural colors
unless some corresponding gate node v; for 1 < k < m has its correct color with respect
to the colors of its inputs. Furthermore, each NOT-node of V<" is hindered from flipping
to its correct color before for a certain 0 < w < 2m the nodes ,uf’“’ for all g; € Vnco .
have their natural colors. Then the gates of C" take their correct colors consecutively ac-
cording to their topological order, with a single exception that is due to a technical reason.

In the third step we substitute in the graph G! that constitutes the circuit C! the edge
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Figure 3.14: The gates that connect a NOT-gate g; of C* with gate y; of C".

{I(g;), g;} for each g; € Vncot for which g; does not represent an input gate of C with
weight a € Q¢ by the nodes and edges presented in [Figure 3.15] The nodes in the figure
that have gray circumcircles were already introduced and are redrawn to determine the
edges of the added nodes. The value of € > 0 is chosen small enough such that the types
of g; and 7; remain the same, 7; is of Type IIl and has no influence on 7; and p; has
influence on g;, i.e., the heaviest edge of g; is {p;, g;}. This finishes the description of

G" = (V" EM). For an overview of the graph G" with the subgraphs G¢ and GC" that

constitute the circuits C and C" see [Figure 3.16

Ti
€
a I 4 a—e a—2e* P\ a—3e
9

I(g) T 0; & Pi 8i

Figure 3.15: Nodes 7;, 0;,&;, p; and incident edges substitute the edge {I(g;), g;} of
G'.

Comment The purpose of the nodes 7;, 6;, &; and p; is as follows. In certain partitions
we will be interested in, node 7; and &; will have the same color as g; whereas 6; and p;
have the opposite color. If the function h chooses g; for the next flip in such a partition
and the colors of the nodes that represent the circuit C" reflect a correct computation
of C" then 7; will have, as we see later, the same color as I(g;) and therefore also the
same color as g;. Then 7; flips followed by a sequence of flip of 0;, £; and p; whereafter
g; becomes unhappy. On the other hand, if h chooses a node unequal to g; for the
next flip then node 7; will have the opposite color of g;, which implies that all five
nodes nt;, 0;,&;, p; and g; are happy. In this way, the added nodes will make the node g;
unhappy if and only if h chooses g; for the next flip. The nodes 6; and &; are only added
to for a technical reason—the above-mentioned behavior could also be achieved if there
was an edge directly connecting 7; and p;.
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Figure 3.16: Overview of the graph G".

2) Assign colors to V' In the following, we name the colors of the nodes of G" in the
initial solution P,. We let Py|;,c = P¢ and use for the colors of the remaining nodes the
following definition.

Definition 3.5.23. A partition P € (V") is called recurring if the following conditions
are satisfied:

RI1) cp(g;) =(cp(gi-1)V cp(gi—2)) for any g; € VC .
R2) Forany g; €V’

R2D) cp(g:) = cp(pi) # cp(&:) # cp(6;) # cp(m) if A(Plyc ) = g; and cp(g;) #
cp(pi) # cp(&;) # cp(6;) # cp(m;) otherwise.
R2i) cp(A%) # cp(A2%) and cp(A7) # cp(I(AF)) for all 1 < j < 2.

k € {0, 1} the following conditions are satisfied:

R2iii) ,u:.{’j has its natural color in P for each 0 < j < 2m.
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R3) cp(y;) # cp(I(yy)) for any y; € VE..
R4) cplry) = ~(cp(L(y)) V ep(Iy(y1))) for any y; € VE..

For a given partition of the nodes of V¢ a recurring partition of V" can be computed in
polynomial time by choosing the colors of the nodes of V*\ V¢ consecutively according to
For P, we choose the colors of the nodes in V" \ V¢ such that P, is recurring
where the colors of the nodes of VC" that do not represent gates of C" are chosen such
that P0|Vch is ordinary—note that the nodes of V" that represent input gates of C" are

happy in P, due to

3) Function ¢ We describe the function ¢ by stating a SAT-formula ¢(v) for each
Ve VIh. For each v € VIh for which we do not explicitly state p(v) we let ¢(v) = 0. The
idea of the function ¢ is to use the [Filtering Lemma) (i.e., to hinder
certain nodes of VIh from flipping in certain partitions. In the following, we informally
describe the supposed functionality of a considered formula, and how it fits in the overall
plan for the sequences of flips and formally introduce it. For this, we let Q be a recurring
partition of V" and h(Q) = g; for g; € VE ..

Comment As we will see later, g; is the only unhappy node of V" in Q and will therefore
flip. After that, there will be a flip of A?’l since /”L?’l has the opposite color of g; in Q
according to |(R2ii)

We first consider the case that g; flipped to black. Then A?’l flips to white whereafter
,u?’o and A?’Z are unhappy. To guarantee that all nodes ,u?"" for 0 < w < 2m flip to their
unnatural colors in ascending order in w, we hinder PL?’Z from flipping to black unless

,u?’zm already has its unnatural color white as opposed to the natural color that it has in

Q according to

Now assume that g; flipped to white. Then, as we will see later, the nodes l?’l, A?’Z,
k?’g and Ail’l flips consecutively—note that ,u?’o does not become unhappy after the flip
of A?’l since A?’l flips to black and y,?’o has its natural color, i.e., white. Then, due to the
flip of Al.l’l to the white color, the nodes ,ul.l’o and 7Ll.1’2 are unhappy and we hinder Al.l’z

from flipping to black unless ,ul.l’zm has its unnatural color.

Altogether, we let

(p(lf’z) = },Z_(’l V ,U,?’Zm for all k € {0, 1},81' = VC

C . (3.5.24)
Comment Note that if for any x € {0, 1} node ,uf’o was unhappy after the flip of Af’l,

then after the subsequent flip of Af’z the node ,uf’o is unhappy again and can flip back
to its natural color white. Now assume that c,(g;) = x for k € {0,1} and that all nodes
of Vl.2 flipped exactly once after the flip of g; and all nodes of V* flipped at least once.

63



Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

In the partitions arising thereby, we want the nodes of V* to act as a control of the
consecutive correction of the gate nodes of ve' according to their topological order.

To guarantee this, we would like to simply hinder each ,u?’zj for y; € Vncoht from
flipping back to its natural color if y; is incorrect with respect to the colors of its input.
Unfortunately, in this case the following problem arises. According to our assumption,
the indices of the NOT-nodes adjacent to a NOR-node y; € vC" are such that its input
nodes are y;_, and y;_; and the node for which y; is the input is y;,,. Assume that
v; has to switch its color if its input nodes take their correct colors and that y;,; has
the opposite color of y;. If all NOT-gates flip to their correct colors according to their
topological order then there is a flip of y; between the flip(s) of its input nodes and
the flip of y;4,. However, if y; already has its correct color with respect to the correct
colors of its input then y; might flip twice. In particular, if the input nodes of y; have
unequal colors, y; is white and the input node that is black flips to white before the
other input node flips, then y; becomes unhappy and can flip to black. If the other input
subsequently flips to black then y; becomes unhappy again and can flip back to white.
But if y; flips twice without an intermediate flip of y;,; then we cannot argue via the
[Filtering Lemma| (i.e., whether v, is hindered from flipping or even
which color v, has.

Therefore, we make a distinction between the NOT-nodes and hinder the input node
of a NOR-node y; with lower index with respect to the topological order, i.e., vj_s,
from flipping to white if the other input node, i.e., y;_;, does not yet have its correct
color. Only when y;_; has its correct color, we allow y;_,—via the [Filtering Lemma—to
flip to its correct color. Then a double flip of y; without an intermediate flip of y;,, is
impossible—in fact, y; does not flip at all in this case. For an overview of the classification

of the NOT-nodes of C" see [Figure 3.17

Definition 3.5.25. The set Ny contains each node vy; that represents an input gate of ch.
The set Ny, contains each node that represents a NOT-gate y; € C" for which Yiio IS @
NOR-gate of C". The set N5 contains each node that represents a NOT-gate y; € C" for
which y;_; is a NOR-gate of C"". The set N4 contains all nodes that represent NOT-gates of
C™ that are not contained in N; for any 1 <i < 3.

Comment Note that the sets N; for 1 <i < 4 are pairwise disjoint due to our assump-
tion that in C" each input of a NOR-gate is a NOT-gate whose input is also a NOT-gate.

For all y; € N; UN3 UN, we hinder y; from flipping unless ,u?’zj ! has its natural color,
i.e., black, for all g; € V¢ and x € {0, 1}:

not

(p(’)/l) = /\ ‘U,;(,Zj_l for all ')/] c N]_ UN3 U N4. (3.5.26)
g;€VE ke{0,1}

not’

K,2j—1
242

k € {0,1} and y; is white or ,uf’ %2 has

Let y; € Ny and I(y;) = yy for vy € Vnch

ot*®

We hinder y; from flipping unless u

has its natural coloy, i.e., black, for all g; € V/ nCO o
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Figure 3.17: The classification of the nodes of C".

its natural color, i.e., white, for all g; € V< ,

k € {0,1} and y; is black:

p ,2j—1 ,2j+2
O e Gy Y AN T VA S AN T b
k€{0,1} g€Ve, kef0,1} (3.5.27)

ot

gi eVnC

ot

for all y; € N, with I(y;) =y for v, € Vrglr'

Comment As in the formula for the nodes of N; UN3 U Ny, the first part of the formula
hinders the node y; from flipping as long as at least one ‘uf’zj ~! has its unnatural color,
i.e., white. The second part is to prevent a double flip of the NOR-node y;,,—see
comment after (3.5.24). For this purpose, the formula ¢(y;) hinders y; from flipping to
white as long as there is a node ,uf’zj *2 for any g; € Vnco .» K € {0, 1} that has its unnatural
color, i.e., white. In this way it is ensured that the other input of the NOR-node 7,
takes its correct color—should it have been incorrect—before y; flips to white. Then a
double flip of y;,, is prevented.

Let g; € Vncot, vj € N; and x € {0, 1}. We hinder ‘u;.(’ZJ from flipping unless u?’zJ_l has

its unnatural color, i.e., white, or y; has the opposite color of A?’l. Formally,

() =p TV (o ARV (ARG
forall g; € Vncot,yj € N;,k €{0,1}.

(3.5.28)

Comment The satisfaction of the formula in the case that u:.(’z] ! for Yj € N; has its

unnatural color, i.e., white, is motivated by the aim to let each node v € V* take its
unnatural color if its corresponding input flipped to the opposite of the unnatural color
of v. The satisfaction for the case that y; has the opposite color than A% stems from
the aim to let the flips back to the natural colors within the set V;* only pass the node

,uf’zj if y; has the same color as g;. However, since g; possibly has a degree of four in
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G", it cannot be in D(¢) for us to apply the [Filtering Lemma| (i.e., Lemma 3.5.21)—for
this, v had to have a degree of at most three. Thus, we instead choose the formula to be

satisfied if y; has the opposite color as ko’l which, as we see later, will have the opposite
K,2j—1

color as g; in the partitions in which ,u I has the same color as Y

Let g; € VC , v; € Ny with I(y;) = vy for v, € V. " and k € {0,1}. We hinder

ur 2] from flipping unless ,u 2771 is white or Y is black or vy is white and y; is black.

Moreover we hinder ,u 273 unless ,uK 22 is black or Yk is white or y} is black and y; is
white.
K,2j K2] 1 —
= VYV ANY;
P ;") = TV (e ATj) (3.5.29)
forall g; € Vnot,}f] € Ny with I(y;) = vy for yi € Vnot, k € {0, 1},
2j+3 K,2j42  — —
el ) =pr 7T VTV (y /\Y')
AR (3.5.30)
for all g; € t,}/] € Ny with I(y;) = vy for yr €V, not, k €{0,1}.
Comment See comment for (3.5.24) and (3.5.27).
Let g; € Ot, vj € N3 and k € {0,1}. We hinder ,u 2 from flipping unless ,uK 271 i
white or y; has the color c(y;_5) V c(7;-3):
K,2] KZ] 1 S —
o(p; ") =u VI AY 2 AT V(rjArji—2) V(Y Arjs) (3.5.31)

forall g; € Ot,'}/JENB,KE{O 1}.

Comment As in the formulas (3.5.28) and (3.5.29) we let the formula of uf’zj for
v;j € N3 be satisfied if its input node has its unnatural color, i.e., white. The remaining

part of the formula is to let the flips back to the natural color within V;* pass u only
if the input node of y; has its correct color with respect to the color of its input node,
i.e., the NOR-node y;_;. However, since y;_; is a NOR-node, it cannot be in D(¢) and
therefore it cannot be a variable of cp(uf’zj ). Instead, we make the flip of uf’zj dependent
on whether y; has the opposite color of y;_; under the assumption that y;_; has the
correct color with respect to the colors of its corresponding inputs, i.e., if y; has the color
c(rj—2) Velyj—s).

Let g; € t, Yj € N4 w1th I(yj) =yi foryp €V, not "and k € {0,1}. We hinder ,uK’Z
from ﬂlppmg unless ,u ! has its unnatural color, i.e., white, or y; has the opposite
color of yy:
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K

ey
forall g; € VnC

o

Y= p TV (r ATV (T AT

0 YVj € Ny with I(y;) =7y for v € Vnch k € {0,1}.

ot?

(3.5.32)

Comment Analogously to (3.5.28), (3.5.29) and (3.5.31) we design cp(,uf’Zj) for
Yj € N4 to be satisfied if its input node has its unnatural color, i.e., white. The re-
maining part of the formula is supposed to let the flips to the natural color within V*

pass ,uf’zj only if the input node of y; has the opposite color as its corresponding input
node.

Finally, we hinder p; for all g; € Vncot from flipping unless u;(’zm for each g; € Vncot,

k € {0, 1} has its natural color, i.e., white:
o(p;) = /\ ,u;.(’zm forall g; e V< . (3.5.33)
g€Vl ,ke{0,1}

not

Comment The aim of the formula ¢(p;) for g; € Vn'“; . is as follows. Assume that node
gk € Vnco . flipped followed by flips of the nodes of sz. Let g; € V¢ be the NOT-node of
V¢ chosen by h for the next flip of a NOT-node after the flip of g;. When all gate-nodes
of VC" took their correct colors after the flip of g and the nodes 7t;, 6; and &; flipped,
then all nodes of the sets ij fork €{0,1}, g; € Vnco . are supposed to have their natural
color again—as in the initial, recurring, partition. Therefore, we let p; only flip if the

nodes ,u;f’zm for all x € {0, 1}, g € Vncot have their natural colors again, i.e., white.

This finishes the description of (. For an overview of the nodes of the formulas of ¢
seeTable 3.3l

In the following, we consider whether the graph G, the partition P, and the function
¢ satisfy the conditions of the [Filtering Lemma| (i.e., and show that
the degrees of the nodes of D(¢) is at most three. By assumption, all NOT-gates of the
circuits C and C" have fan-in one and fan-out at most two. The NOT-gates introduced
in |[Figure 3.14|also have fan-in one and fan-out at most two. Furthermore, all nodes of
Type I introduced in are of degree two—in particular, the nodes p; which
are in D(¢). Due to the gates added in[Figure 3.14| there might be NOT-gates g; € C'
that have a fan-in of one and a fan-out of three—namely the NOT-gates g; € C that have
a fan-out of two in C. However, no node of Vn%t is in D(¢). Thus, in G" all nodes of
D(¢p) have a degree of at most three.

Now we consider the influence of the nodes of D(¢) and their happiness in Py—the
nodes of D(p) can be seen in the first and second column of [Table 3.3 que ,uf’] for
any g; € V¢ ,x € {0,1},1 < j < 2m does not have influence on Hgi(u;”) = y,f”_l
and is happy in P, according to|(R2iii)l Node Af’z for any g; € Vnc0 K € 10,1} has no

influence on HGh(Af’Z) = kf’l and is happy in P, according to [(R2ii)} Similarly, node
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.-k € {0,1} has no influence on HGh(A?’Z), i.e.,, node g; if x =0
and l?’B if x =1, and is happy according to, again, |(R2ii), Each node y; € ve \ N,

not

K,1 C
A" for any g; €V,

has no influence on I(y;) according to the definition of G¢" which constitutes C". The

happiness of y; follows from|(R3)} Each node y; € N; has no influence on Hsr(y;) = 7L11.’2

and is happy due to, again, [(R3)} Finally, node p; for any g; €V, has no influence on
&,—this property is the reason for the existence of the nodes 6; and &;: If «; and p;
were adjacent without the intermediate nodes 6; and &;, then p; had influence on 7;.
The happiness of p; in P, follows from [(R2i)} No further nodes are in D(¢p).

Thus, G", P, and ¢ satisfy the conditions of the Filtering Lemmal We let G¥ = (V¥ E¥)
be the graph and Ry € #(V?) be the partition guaranteed to be polynomial-time

computable from G", P, and ¢ according to the [Filtering Lemmal

4) Phases For the sake of readability, we introduce the following notations.

Definition 3.5.34. For a partition P € 2 (V?), we call P recurring if P|,» is recurring.
Let r be a sequence starting at (G¥,R,). We call r alternating if for each v € D(¢) with
u := Hgn(v) we have rly, 3 = (w,v,u,v,u,...). If r is not alternating then we call it
irregular. Furthermore, in a partition R € Z(V¥) we call v open if cp(u) = cp(v) and
closed otherwise. Finally, for a partition P € 2(V?) we let P* := P|y.c.

Comment The main purpose of the denotation “alternating” is to encapsulate in a
simple name for a condition that implies a condition of the [Filtering Lemma) (i.e.,
[Lemma 3.5.21)), in particular, the condition of that for each node u € D(y) there
are no two flips of the Hg;(u) in the corresponding sequence without an intermediate
flip of u. Similarly, the purpose of the denotations “open” and “closed” is to create a

Node Nodes of formula Conditions
A:;,z A;c,l, ‘u;c,Zm
2j—1
V) [T Yj ENTUN3 UN,
2i—1  x,2j+2
Yi TASRNTASERR Y € Np, v =1(;)
2j 2j—1 0,1
Wi | A v €M
K,Zj K,2j—1 . e VC c {O 1}
‘LLI. .U'i 7Yj7 Yk 8i not? K > N -7
x,2j+3 K212 v €Ny vie =1(v;)
i 'U’i ,Yj7 Yk
K,2j K,2j—1 _
W WY Yk Y €Nay 1 =1(7;)
2j 2j—1
ll’l’f ! ‘U/:( g 3Yj’Yj—2:Yj—3 Y] ENB)YI{:I(Y]')
K,2m
Pi W;

Table 3.3: Variables of the formulas of ¢.
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simple possibility to refer to the two different conditions for [Lemma 3.5.21 (FL5) (i)|and
[Lemma 3.5.21 (FL5) ()|

Definition 3.5.35. Welet 0 : #(V®) — {1,2,...,m} be the following partial function

_ j, ifg; €V, for g; =h(P)
o(P)= { j+1, ifg; Ve forg;=h(P).

Note that o is partial since h(P) = nil for some partitions P € 2 (V°).

Definition 3.5.36. Let PP’ € (V") and Q (@(Vch) be such that cp(g;) = co(r;) for
each g; € Vncot, cqo(g;) # cqI(y;)) for each NOT-gate y; of C" whose input link is not an
input link of C", and crj) # (coi(y;)) V cq(I5(y;))) for all NOR-gates of Ch. For a node
Yj € V<" we call cq(y) the P-correct color of y; and call y; itself P-correct in partition 2
if cp/(vj) = cq(r;), otherwise we call it P-incorrect in P’.

Before turning towards the individual phases we characterize frequently used proper-
ties of recurring partitions of V".

Lemma 3.5.37. Let P be a partition of V¥ such that P|,u is recurring. Then cp(7;) #
cp(m;) forall g; € VE .
Proof. Due to |(R2ii)|we have cp(g;) # cp(kl.l’z). Thus, |(R3)|implies cp(g;) = cp(y;) for
all g; Vn'“;t. Since in P the color of each node that represents a gate of C" is correct

with respect to the colors of the nodes representing its inputs in C", it follows from
and|(R4)|that cp(7;) = cp(g;) for g; = h(P*) and cp(7;) # cp(g;) for all i # j. O

Lemma 3.5.38. Let P be a partition of V¥ such that P|yn is recurring. Then the following
two conditions are satisfied. First, all nodes of D() are closed in P. Second, if h(P*) = nil
then all nodes of V" \ D(y) are happy in P and if h(P*) # nil then h(P*) is unhappy in P
and all other nodes of V" \ D(¢) are happy.

Proof. At first, we consider the nodes of VI1 \ Vncot. According to for each
node v € VI1 \ Vn%t with u := Hgn(v) we have cp(u) # cp(v). No node of Vncot is in
D(¢)—see first and second column of The only nodes of V" \ V! that are in
D() are the nodes p; for g; € Vncot but these nodes are closed due to Thus, all
nodes of D() are closed in P.

Now we consider the remaining nodes of V. The NOR-nodes of V" are happy in P
according tol(R_l)landI(R_4)l The nodes p;, &; and 6; are happy for all g; € VnC0 . according
to (R2i)} The nodes 7t; for g; € Vncot are happy since cp(7;) # cp(6;) according to
and cp(7;) # cp(7;) according to[Lemma 3.5.37] Moreover, [(R2i)|also implies that each
node g; € V¢ is happy in P if h(P*) = nil. Finally, Mimplies that g; is unhappy if

not

h(P*)=g; and that all g; € V. with j # i are happy. O

69



Chapter 3 Complexity of Local Max-Cut: Maximum Degree Four

Lemma 3.5.39. Let r = (xy,...,Xq) for ¢ €N be a final sequence starting at (G¥,R,) and
0 < j < q be an index for which R := Rj|y is recurring. Then node 7; for any g; € Vncot is
happy in each partition R, for j < k < q for which there is no flip of 1; in r]’.‘H.

Proof. Since R is recurring, implies cz(7;) # cg(m;) for all g; € Vncot.
Moreover, [(R2D)|implies c(6;) # cg(7;). Since 6; is of Type I with Hg(6;) = m;—note
that 6; ¢ D(p)—there is no flip of 6; prior to the first flip of 7; in r](.l 41+ However, 7; is of
Type III and therefore happy as long as 7; and 6; do not flip. Thus, the claim follows.O

Now we continue to prove the [Enforcing Theorem| At first, we consider the case that
h(P€) = nil. Then, by definition of Py, we have h(P;) = nil. Since P, is recurring, all

nodes of D(¢) are closed according to [Lemma 3.5.38] Thus, [Lemma 3.5.21 (FL5) (i)|
implies that no node of D(¢) flips prior to the first flip of a node of V" \ D(¢). Then,

also due to [Lemma 3.5.38] no node flips in s|,c. For the case h(P¢) # nil we use the

following invariant.

Lemma 3.5.40. Let O < j < q be such that R; is recurring, r{ is alternating, g; := h(R’J‘f)
for g; € VE | R € #(VE ) be the partition arising from R;‘f by flipping g;. Then there is an

not’ not
index j < k < q such that the following conditions are satisfied:

i) Ry is recurring.
ii) r{‘ is alternating.

iii) In rJ’.‘H, node g; flips exactly once and no other node of Vncot flips.

iv) Ifh(R") € VE then, in r* ., node h(R") flips exactly once and no other node of V<

nor j+1° nor

flips otherwise no node of V,: _flips in Tt

Proof. When arguing about the flips, we make frequent use of the [Filtering Lemmal
in particular of Lemma 3.5.21 (FL5)(ii)l For the sake of succinctness, we make the
following convention.

Prerequisite For a node v € D(¢) and an index j <i < k we say that v is blocked in
R; if we argue by |Le1nma 3.5.21 (FL5)(ii) (a)| that Nodes(p(v)) <g {v} and, similarly,
we say that v is pushed in R; if we argue by|[Lemma 3.5.21 (FL5)(ii) (b)| that there is a

. . k
flip of vin r ;.

To show that a node v € D() is blocked, we have to show that v is open, that
u := Hgn(v) does not flip prior to the first flip of v, that its corresponding formula is
unsatisfied and that no variable of ¢(v) flipped after the flip of u that made v open. To
show that v is pushed, we have to show that it is open, that ¢(v) is satisfied and that
neither u nor any variable of ¢(v) flips prior to the first flip of v.

We divide the consideration of the flips of the nodes of V" in fourteen phases
The phases and their corresponding flips are illustrated in[Table 3.4—the variable p € N
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in the fourth and fifth column and rows of index 10-13 is chosen such that v, := T ;).
The first column of the table contains the enumeration of the phases. The second column
contains flips of nodes that occur in any case in r, and the following columns contain
nodes that flip if the condition in the second row of the corresponding column is satisfied.
The horizontal lines that enclose the nodes from above and below are to determine the
range of phases in which the flips of the corresponding nodes take place. If, for example,
h(R) € Vncor then a flip of h(R’), as specified in the third column, happens within the
phases two to ten. For each set of nodes that is enclosed by such lines there is an absolute
order defined for the nodes. More concretely, the nodes representing the gates of C " are
absolutely ordered by their topological ordering and the nodes u?’l for a given g; € Vnco o
k € {0, 1}, are absolutely ordered according to the second superscript 0 < j < 2m. The
upper line marks the moment at which the first node of the enclosed set with respect
to the corresponding order becomes unhappy and the lower line marks the moment at
which the last node of the set flips at the latest.

We already point out that each node of V" \ D(¢) that becomes unhappy in r]l.ﬂrl
subsequently becomes happy only by its own flip. Similarly, a node of D() that becomes
open within the phases subsequently becomes closed only by its own flip. Moreover, the
nodes of the set V* for g; € Vn(; .» k € {0, 1} flip according to their absolute order with
respect to the second superscript and the nodes that represent the gates of C" flip, with
a single exception that is pointed out later, according to their topological order.

In the following, we keep track of the flips in r|,» by considering the set that contains
the unhappy nodes of V" \ D(¢) and the open nodes of D(¢) and how the set changes
during the phases. It satisfies to focus on this set of nodes due to the following four
properties. First, a happy node of V"' \ D(¢) can obviously not perform the next flip.
Second, if a node v € V" \ D(¢) is happy in a partition P and unhappy in the partition
P’ arising from P by flipping a node w € V" then v is influenced by w—recall that all
nodes of V'\ D(¢) are influenced by the same nodes in G¥ as in G". Third, for an index
j <i <k for which r]l: 1 is alternating, a closed node v € D(¢) can also not perform the
next flip since[Lemma 3.5.21 (FL5) (i)|implies {Hgn(v)} <g, {v} in this case—the property
that r]l: is alternating can in each case be verified by means of according to
the [Filtering Lemmal Fourth, if a node v € D(¢) is closed in P and open in P’ then v is
influenced by w in G". Thus, to keep track of the set of unhappy and open nodes after a
flip of a node w we only need to consider the nodes on which w has influence in G".

P1 Since R; is recurring, [Lemma 3.5.38|implies that node g; is the unique unhappy

node of V" \ D(¢) and that each node of D(¢) is closed. Since r{ is alternating,
the [Filtering Lemma|, in particular [Lemma 3.5.21 (FL5) (i)} implies that no node
of D() flips prior to the first flip of g; in r;.z +1- Therefore, g; flips in r;.l 41 and no
other node of V" flips prior to the first flip of g;. Node g; has influence on A?’l and
at most two nodes of VC.

P2 The flip of g; inmakes A?’l unhappy since g; and A?’l have the same color after
the flip of g; according to (R2ii)
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Flips in case of

P
h(R) eV | c(g)=0 | c(g)=1 |h(R)#ni
1 &i
0,1
2 A;
0,
3 Hi
VO<w=<2m
0,2
4 A
03
A
1,1
6 A
/ 0,w 'U‘le
7 h(R") u;’
| VOZw<2m
e Vo< w<2i
8 Al
)
9 5
VO < w <21
ol 7o forl<w<m ,u?’“’ ,u}’w
and y,, R’-incorrect V2i<w<2p | V2i<w<2p
1 poe b To®)
12 l ‘ O w
V2p fw<2m|V2p < w <2m oK)
13 Sor)
14 Po(r)
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If g; is not an output gate of C then g; has influence on further nodes. There
are two possible cases for further influence of g;. First, g; is an input of a NOR-
gate g for 1 < i’ < nin C. Then g; has influence on gy in G". According to
our assumption that if g,/ is the unique unhappy NOR-node of a given partition
then h returns g;—recall that all NOR-nodes are happy in R; according to
Consequently, g;+ is unhappy after the flip of g; in [P1]if and only if h(R") = g;.
Thus, if g;- is unhappy after the flip of g; then h(R’) = g; and g;- can flip in see
third column in [Table 3.4l The unique node on which g, has influence is ;114

and this node remains happy as long as 7/, ; does not flip due to[Lemma 3.5.39
Second, g; is input of a NOT-gate g;s for 1 <i’ <nin C. Then g; has influence on

1t but 7t;; remains happy as long as 7, does not flip due to, again, [Lemma 3.5.39
Thus, there is a flip of A?’l in rJ’.‘+1 after the flip of g;. Node A?’l has influence on

2% € D(p) and on u° & D(y).

After the flip of A?’l in node A?’z is open. We now distinguish between the two
possible cases for the color of g; in R;.

Assume first cg (g;) = 0—see fourth column of Then g; flipped to black
in [P1)and l?’l to white in Then go(l?’z) is unsatisfied according to (3.5.24)
and therefore A?’z is blocked as long as neither A?’l nor ,u?’zm flips. The other
node on which A?’l has influence is ,u?’o. Since both A?’l and A?’z are white, node
,u?’o is unhappy and will therefore flip to its unnatural color, i.e., black. According
to the equations (3.5.28)-(3.5.32) for each node ,u?"" eD(p)with1 < w <2m

the formula cp(u?’w) is satisfied if ,u?’w_l has its unnatural value. Thus, it follows

by induction on « that the nodes ,u?’w for 1 < w < 2m are consecutively pushed
in ascending order in w and flip to their unnatural colors. The flip of ,u?’zm to the

black color implies (p(?t?’z) is satisfied according to (3.5.24). Since each node of
Vl.0 flips to its unnatural color prior to the flip of its corresponding input node, the
sequence r;.l 1 does not become irregular by a flip of a node of Vl.0 in

Now assume ch(gi) = 1—see fifth column of [Table 3.4} Then g; flipped to white
in [P1)and )L?’l to black in Since A?’Z is black and ,ul.O’O is white, node ,u?’o is
still happy. However, since }L?’l is black, we have, as in the case ch(gi) =0, the
formula cp()L?’z) is satisfied according to (3.5.24).

Since A?’z is open after the flip of A?’l in[P2|and cp(k?’z) is satisfied as shown in
node A?’Z is pushed and flips therefore. Node A?’z has influence on A?’S and

0,0
[T

The flip of k?’z inH makes A?’B unhappy and it makes ,u?’o unhappy if ,u(.)’o flipped
to its unnatural color inwhich is true if and only if ch(gi) = 0—see[Table 3.4

0,0
i -

In the following, we consider the possible flips of the two nodes k?’S and u
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P6

P7

P8

P9
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At first, we consider l?’s. The only node that has influence on A?’3 is A?’Z. Thus,
A?’S remains unhappy as long as neither itself nor A?’Z flips. Node ,u?’o is a node
of Vl.0 and the nodes of Vl.0 have in G" no influence on nodes outside of Vio. Thus,
there is a flip of A?’s. Node A?’B has influence on }kl.l’l and the flip of l?’s makes
Al.l’l unhappy.

Now we consider the possible flips initiated by the unhappiness of ,u?’o in case of
ch(gi) = 0—see fourth column Oo(f All nodes of Vi0 N ODz(cp) are closed
and all nodes of V° \ (D(p) U {u;"}) are ha after the flip of 1> in [P4] Due to
[Lemma 3.5.21 (FLIS)\(E)l Igf 110(1{5 of %/)io N D(cpp)pgips back to iIt)s natural cr before
its corresponding input node in G" flips back to its natural color. Additionally, no
node of Vl.0 \(D(p)U {,u,?’o}) flips back to its natural color before its corresponding
0,2i
1
according to (3.5.28)) as long as y; has the same color as A?’l—recall that y; and
A?’l have opposite colors in R; due to |(R2ii)| and |(R3)| and after the flip of A?’l in
therefore the same color. Thus, even if there is a flip of the input node of ,uO’Zi

) ) i
in G, namely M?’Zl_l, node M?’Zl is blocked.

input node flips back to its natural color. The formula ¢(u.’*") is not satisfied

The flip of A?’g in [P5[makes )Ll.l’l unhappy. As shown in [P5[none of the nodes of
,u?"” for 0 < w < 2m has influence on any node outside of Vl.o. Thus, there is a flip
of Ail’l. Node Al.l’l has influence on ,u,il’o and Al.l’z.

If ch(gi) =1 then A?’B flipped to white in Then, as for the nodes ,u?"" for

0 < w <2m and A?’z in it follows that the nodes ,ul.l’w for0<w < 21172 flip
,2m

. . . . 1,2 . .
consecutively in ascending order in w and A;™ does not flip as long as u,™" is

white.

Analogously to k?’z in [P4|it follows that Al.l’z flips. Node Al.l’z has influence on
vi €D(p) and on 1 ¢ D(¢).

Let k := ch(gl-). The flip of 7Ll.1’2 in [P8|makes y; open—recall that in the recurring
partition R; node v; is closed and neither Ail’z nor v; flip in In the following,

we show that the nodes ,uf’j for 0 < j < 2i flip back to their natural colors and
that their flips are finished before node y; takes the same color to which node g;

flipped in

According to the formula ¢(y;) is unsatisfied if ,ul.l’Zi_l has its unnatural
color, i.e., white. None of the nodes of V* has influence on Al.l’z in G". Thus, i is
blocked as long as uf’Zi_l has its unnatural color. The nodes A?’B, 7Ll.1’1 and 7Ll.1’2

have no influence on the nodes of V° in G" and neither of them is a variable of a
formula ¢(v) for any v € Vio—see Table 3.3| Thus, in the case x = 0 the flips of

the nodes A?’g, ll.l’l and 7&1.1’2 in [P5HP8| do not affect the happiness or the openness
of any of the nodes of Vio.




P10

3.5 Enforcing Technique for Graphs with Nodes of Type I, II and III

We show by induction on w that the nodes u"* for 0 < w < 2i flip back to their
natural colors after the flip of A?’z. As induction basis, note that uf’o became
unhappy after the flip of Af’z and that it remains unhappy as long as neither Af’l
nor kf’z flips. In case of k = 1 neither of the two nodes flips prior to the first flip
of u?’o since there is no node different from ,UJ;.(’O that is influenced by A?’z and can
f’Zi_l that has its
unnatural color. In case of k = 0, the nodes A?’g, Ail’l and 7Ll.1’1 have no influence

flip prior to a flip of ,uf’o—recall that y; is blocked as long as u

on A?’l nor A?’z and do therefore not affect the happiness of u?’o. Thus, there is a
flip of ,u?’o after the flip of A?’z.

The induction hypothesis assumes for an arbitrary 0 < w < 2i that the nodes ,uf"”/
for 0 < w’ < w flip back to their natural colors after the flip of A?’z. If u*“ € D(yp),
then it is pushed since ¢ (u:"*) is satisfied according to (3.5.28)—recall that in
the recurring partition R; node y,, has the opposite color as A?f due to and
and none of these two nodes flips in

Let k € {0,1} = cz.(g;). The flip of Al.l’z inmade y; open and the flip of u
K,21
i

K,21—1
i

that took place in @ at the latest made u;’“ open. In the following, we show:

e For each 2i < w < 2p node ;" flips back to its natural color.

h . e s . .
e For each v, € V¢ node y,, flips exactly once if it is R’-incorrect in R; and
does not flip otherwise.

The claim is proven via induction on w. As induction basis, we show that y;
flips and that the nodes yd:.(’Zi and ,u;.{’ZiH flip back to their natural colors. Notice
first that the nodes of V/ only have influence in G" on nodes of the same set,
i.e., VX itself. The formula np(uf’m) is not satisfied according to (3.5.28) since

y; has the same color as A?’l. Thus, ,ui.(’Zi is blocked. On the other hand, the
formula @(y;) is satisfied due to (3.5.26). Consequently, node y; is pushed. By
assumption, each node y; to which y; is an input in C" is a NOT-node. According
to (3.5.26) and (3.5.27) node uf’zy_l must have its natural value for ¢(y;/) to

be satisfied. Therefore, y;/ is either closed or blocked. The formula (p(,uf’m) is
satisfied according to (3.5.28) since after the flip of y;, node y; has the opposite
color as A"!. Hence, u!* is pushed. After the flip of u}**', node u}"*"**—which is

i i

the only node on which ,uf’Zi has influence in G"—becomes unhappy. Moreover,

node ,uf’m is not a variable of the formulas of any gate for which y; is an input.
K,2i+1
i

Consequently, node u flips.

As induction hypothesis we assume for y,, with i < w < p that
IH].) Case Yw S N1 UNZ UN4:
IH1i) I(y,,) flipped once if y,, was R’-incorrect in R; and the inputs of I(y,,),

should they be in Vch, flipped once if they were R’-incorrect in R; and
did not flip otherwise.
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TH1ii) u**~! flipped back to its natural color.

i

IH2) Case y,, € VC.:

nor”*
IH2i) The input nodes of the input nodes of v, flipped once if they were
R’-correct and did not flip otherwise.

H2ii) ,uf’zw_s flipped back to its natural color.

The induction step is divided into four different cases which are induced by four
disjoint sets in which y,, can be an element, namely vy, € N; for v > 1, vy, €N,,

Yo €ENywithw <iandy, € VC" —see[Table 3.5

nor

. Consideration of (possible) flips
Case Condition of formula
Gate node Node of V;*
. K,20w | K,2w+1
Yo € Nl w>1 Yo i s 4
w < p and 7, has no . .uK’zw MK,2w+1
w 7 5 7
influence on a NOR-node ' '
Yw € N4
w=p ory, has %0
) Yo u;’
influence on a NOR-node '
. K,2w  K,2w+1 = K,20+3
Yw € NZ w>1 Yw i s’ Y s 4
ch K,2W K,20w+3
Yo € Vnor Y Vot ; 5wy Uy

Table 3.5: Distribution of the consideration of the (possible) flips among the cases.
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The case v, € N; for w = i is already covered in the induction basis and for
w < i there is no flip of v, since v, is R’-correct in this case and the flips of the
corresponding nodes ,uf’zw and uf’zwﬂ are covered in for cg (g;) =0 and
infor cr,(g:) = 1. In case of y,, € Ny for w > p, node v, is R’-correct in R’ and
does not flip since its input is also R’-correct in R; and does not flip due to the
induction hypothesis. The flips of the nodes ,uf’w for 2p < w < 2m—these nodes
correspond to the gates y,, for w > p—are covered in[P11HP13] The possible flips
of the nodes of N3 and the flips of the corresponding nodes of V* are covered

. h . .
in the case for v, € Vn(;r. Due to dependencies among the cases, we consider
the cases in the order y,, € N; for w > i, y,, € N4 for w < p, y,, € N, and then

Yo € VnCO’;. For an overview over the relevant nodes for the last three of these cases
see In each of the four cases we show that the corresponding gate
nodes flip once if they are R’-incorrect in R; and that they do not flip otherwise.
The considerations of the flips of the nodes ,u;(’a for 0 < a < 2m are distributed
among the cases as follows. In the case y,, € N; and in the case y,, € N, for w <p
where v, does not have influence on a NOR-node we show that the nodes ,uf’z“’
and ,uf’zwﬂ flip. In the case of y,, € N, where 7, has influence on a NOR-node,
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K,2w+1
i

is not covered by this
K20 | K,2w+1 K,2w+3

we just show that u?’zw flips—the flip of the node u

case. However, in the case for y,, € N, we show that u;"™", u; and u;
flip—the node ,uf’z‘”ﬂ is the node that was not covered in the previous case.
. . ch K,20 K,20+3 -
Finally, in the case of y,, €V, - we show that the nodes u;*", ..., u; flip.
Yw-2 €Ny

DD D—D—D—D— - -

7 A4 7 7 7 A4 7
K,2w0—6 K,2w—5 K,20—4 K,2w—3 K,2w—2 K,2w—1 K,20 K,2w+1 K,20w+2

M M M M M M M M My

Figure 3.18: The relevant nodes for the induction induction step of

e Case v, € N; for w > i:

Since R; is recurring and neither g, nor 7, flipped in node y,, is
R’-correct according to |(R21i)| and |(R3)[ Since I(y,,) = A,;* also did not
flip in .—F @ node 7, is closed and has the opposite color as AZ;Z according
to, again, [(R2ii)| and Iﬁl Thus, the formula ap(uf’zw) is satisfied due to
(3.5.28). According to|(IH1ii)| node ,uf’zw_l flipped back to its natural color.
Consequently, ,uf’z‘” is open and pushed. After its flip, node ,uf’z‘”H—which

is the only node on which ,u:.(’zw has influence in G"—becomes unhappy.

Consequently, node uf’mﬂ flips.
e Casey, € Ny with w <i:

We distinguish between the two possible cases for the R’-correctness of y,,
and show that v, flips if it is R’-incorrect and that it does not flip otherwise.
At first, we consider the case that v, is R’-incorrect. Then the input gate of
v, in C" flipped to its R’-correct color according to and therefore y,,
is open and has the same color as its input node. Since it has the same color
as its input node, the formula (,o(uK’zw) is not satisfied according to (3.5.32)

i
K,2w

which implies that u;”™" is blocked. Thus, node y,, is pushed.

Now we consider the case that y,, is R’-correct. Then the input gate of y,,
in C" did not flip according to [(IH1i)|which implies that y,, is closed. Thus,
[Lemma 3.5.21 (FL5) (i)| implies that there is no flip of y,, prior to the first flip

7
of ;=

In both cases we get a partition in which y,, has the opposite color as its
input. Now we show that when y,, has the opposite color as its input node
then the node ,uf’zw flips. The formula (p(,uk’zw) is satisfied according to

i
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and u?’zw is open due to the flip of uf’zw_l to its natural color. In
the following, we show that the nodes on which y,, has influence—these
nodes might have become unhappy or, if they are in D(¢), open by a flip
of y,—or the flips of the nodes these nodes themselves have influence on,

neither affect the openness of ,uf’z‘” nor the satisfaction of Lp(,uf’z‘”). Then, it
K,20
i

follows that u is pushed.

If y,, is an input to a NOT-gate y,, in C" then the formula ¢(y,,) is not
satisfied according to (3.5.27) since the nodes ;" for 2w’ < a < 2m have
their unnatural values. Hence, y,, is blocked if y,, was R’-incorrect and
flipped or it is closed if y; was R’-correct and did therefore not flip. If
Y is an input to a NOR-gate y;,1 in C " then the formula @(Ywao) is not
satisfied according to ([3.5.26) since node ,u;(’z(wﬂ)_l has its unnatural value.
Thus, y,42 is, depending on whether v, ; flipped after the flip of y,,, either
blocked or closed. In both cases, there is no flip of y,,,, prior to the first
flip of ,u?’zw, Finally, if y,, for w < p is an output gate of C" then y,, has
influence on 7, for some g, € Vncot. Node 7, has only influence on 6, in G".
The sequence of unique influences continues with £, and p,. None of the
nodes 7, 6,, £, and p,, is a variable in a formula of any other node of D(p).
Moreover, the formula ¢(p,) is unsatisfied according to (3.5.33). Thus, p,

is blocked if its input node in G" flips prior to the first flip of ,uf’z‘”. Thus, in
K,20
i

each of the considered cases it follows that u is pushed.

It remains to show that ,uf’z‘”ﬂ flips after the flip of ,u;.(’zw in the case that
Y. has no influence on a NOR-node and w < p. But this follows simply from
. K,20 K,2w+1 . K,2w
the fact that after the flip of u,”*", node u, is unhappy and node u;
has influence only on uf’sz in G" and is not a variable of the formula of

any node in D(¢).

Case v, € N,: We distinguish between the two possible cases for the color
of y,. At first, we consider the case that v, is white. In this case, the
formula ¢(y,,) is according to and satisfied if and only if
the formula ¢(y,,) for the case y,, € N, is satisfied. Thus, the flips of the

nodes v, and ,uf’zw follow as in the case for y,, € N4 where v, is an input to
K,20w+1
i

a NOR-node. Node ,u?’zw has influence only on u and ,uf’zwﬂ becomes

unhappy by the flip of ,u?’zw. The node y,, has only influence on y,,, which
itself has influence only on y,,3. However, the formula ¢(y,,3) is not
satisfied according to ([3.5.26) since node “?,2w+5 has its unnatural color and
therefore v, 3 is, depending on whether the NOR-node v, , flipped after
the flip of y,,, either closed or blocked. In both cases, there is no flip of y, ;3
prior to the flip of ,uf’zwﬂ to its natural color. Thus, node u?’zwﬂ flips back
to its natural color.

Then, according to the case for y,, € N4, node ,uf’2°’+2 flips and node vy,

flips if and only if it is R’-incorrect. A flip of v,,,; may make the NOR-node
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Y w2 Unhappy, but this can only be the case if the flip of v, should v, have
been R’-incorrect, did not make y,,,, unhappy since the happiness of v,
is independent of the color of v, if v, is black. Thus, node y,,, does
not become unhappy for the second time after the flip of y,,, should it have
been R’-incorrect. Hence, 7, does flip twice and does therefore not make r{‘
irregular. Consequently, node v, 3 is, depending on whether y,,,, flipped,
either closed or blocked—recall that the formula ¢(y,,3) is still unsatisfied
since ,uf’z‘”s has its unnatural value. However, the formula go(,uf’zwr?’) is
satisfied according to ([3.5.30) since y,, has the opposite color as its input.
Therefore, ,uf’zw% is pushed.

Now we consider the case that y,, is black. Then the formula ¢(y,,) is not
satisfied according to (3.5.27). Thus, v,, is blocked. On the other hand, the
formula (p(,uf’zw) is satisfied according to (3.5.29) and therefore node w2

i
2% only has influence on u}**** in G" which becomes

K,20

unhappy by the flip of u,
©(Yw)> Yo is still blocked and therefore there is a flip of u

K,20

is pushed. Node u
. Since node ,uf’zw is not a variable of the formula

f’zwﬂ after the flip
. Then, according to the case for y,, € N4 node v, flips if and only

i
if it is R’-incorrect and the node ‘u?,zw+2 also flips. The flip of y,,,; cannot

make the NOR-node , unhappy since y,, is black and y,,,, is therefore

white according to [((R4)| After the flip of ,uk’zm'z to its natural color node

i
K,20w+3 .
,U,i 1S open.

of u

Now we distinguish between the two possible cases for the R’-correctness

of y, inR;. If y,, was R’-correct then it is now closed. Then cp(u?’zwrg) is

satisfied according to and therefore ,u;.(’zw% is pushed. Now consider
the case that y, was R’-incorrect. Then y, is now open and therefore
(p(,uf’sz’S) is not satisfied according to (3.5.30). Consequently, ,u;(’zw% is
blocked. On the other hand, the formula ¢(y,,) is satisfied after the flip of
,uf’zwﬂ to its natural color. Thus, node y,, is pushed. Its flip may make the
NOR-node y,,,, unhappy, which in turn may also flip, but then node y,,, 5 is
blocked according to ([3.5.26) since uf’zw% has its unnatural color. After the

flip of y,, the formula ¢(u***) is satisfied according to (3.5.30), which

i
2w+3

implies that u is pushed.

Case v, € Vnc(f;: According to the induction hypothesis of this case—see
(IH2){—the node uf’z“’_s flipped back to its natural color and the inputs
of the inputs of y,, have their R’-correct colors. According to the cases for
Yo € Ny and y,, € N, the nodes p*™*, ..., u***™" flip after the flip of
,uf’z"’_s to their natural color. In the following we distinguish between the

two possible cases for the R’-correctness of y,, in R i

Assume first that y,, is R’-correct in R;. For this case, we first show that r,,
does not become unhappy by the flips of its input nodes. For the flips of
the input nodes, we have three possibilities: Either none of them flips, one
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of them flips or both of them flip. If none of them flips then y,, obviously
remains happy. If one of them flips then its flip does not make y,, unhappy
since otherwise y,, was R’-incorrect in R;, which is a contradiction. Now
consider the case that both inputs of y,, flip. Then the inputs of y,, have
different colors in R ; since otherwise y,, would, again, have been R’-incorrect
in R;. In case of ch(yw_z, Y w—1) = (0,1) the flip of y,,_,—which is according
to the cases for y,, € N, and y,, € N, the first of the two input nodes of y,,
that flips—to the black color does not make y,, unhappy since ch(yw) =0in
this case. Then y,,_; flips to white whereafter y,, is still happy. Now consider
the case ch(yw_z,yw_l) = (1,0). Then, according to, again, the cases for
Yw € N, and y,, € Ny, node y,,_; first flips to black and then y,,_, flips to
white. Analogously to the case c(y,_2,7—1) = (0, 1) it follows that neither
of the two flips makes v, unhappy. Thus, in neither case there is a flip of the
input nodes of y,, that makes y,, unhappy and therefore y,, does not flip.

w

It remains to show that the nodes ,uf’z yeens uf’2w+3 flip back to their natural

colors. The flip of node uf’zw_l back to its natural color makes the node

,uf’zw—which is the only node on which u:‘(’z“)*l has influence—unhappy.

Since none of the flips of the input nodes of y,,, should they have flipped
at all, make y,, unhappy; it follows that there is a flip of u**“. Node u***

i i
;(’2‘”1 which becomes unhappy by the flip of ,uf’zw.
Analogously to the flip of ,uf’zw it follows that u also flips. Node
,uf’zwﬂ itself has only influence on ,u?’zwﬂ and the formula cp(,uf’zwﬂ)
is satisfied according to (3.5.31). Thus, ,uf’z‘”z is pushed. Node ,uf’z‘”z
K,2w+3
i

has influence only on
K,20w+1
i

has only influence on u whose flip follows analogously to the flip of

K,20w+1
; .

Now we consider the case that y,, is R’-incorrect in R;. Then at least one of
the inputs of y,, flips according to the induction hypothesis. If one of them
flips then its flip makes y,, unhappy. If both of them flip then exactly one of
the two flips makes vy, unhappy since if y,, becomes unhappy after the flip
of the first input node then the flip of the second input node cannot make v,
unhappy again—otherwise y,, would have been R’-correct in R;, which is a
contradiction. Thus, in both cases node v, can flip at most once. Node y,,
has influence only on v, but the formula ¢(y,,) is according to (3.5.26)
not satisfied as long as ,u;.(’zwﬂ has its unnatural color.

Hence, it follows as in the case for the R’-correctness of y,, that there are
flips of the nodes u,:.(’zw and p?“*!. After the flip of u**“*! node p?*+>

L A A

is open. However, the formula cp(uf’zwﬂ)—see (3.5.31)—is not satisfied as
long as v, did not flip and therefore ,uf’z‘”z is blocked. On the other hand,
after the flip of ,uf’z“’ﬂ the formula (1) is satisfied according to (3.5.26))
which implies that y,,, is pushed. The formulas of the nodes on which v,

has influence in VC" are not satisfied according to (3.5.26) and (3.5.27)




P11

P12

P13
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since the nodes ,u;.(’a for 2w + 5 < a < 2m have their unnatural colors and
therefore are, depending on whether or not their corresponding input node
in G" flipped, either closed or blocked. But the formula cp(,u;.(’zwﬂ)—see
(3.5.31)—is satisfied after the flip of y,,,,, which implies that u*“** flips.

i
;<,2w+1 it follows that there is a flip of u?’z‘”?’
K,20w+2

after the flip of u; . This finishes the consideration of the flips of the
R’-incorrect y, for 1 < a < m and of the nodes u}"* for 2i < a < 2p.

Analogously to the flip of u

It remains to show that there is a flip of the NOR-node h(R’) in case of h(R’) € Ve

nor
see third column of [Table 3.4, For this, we assume that h(R') € Ve

op FTOM
we know that there was no flip of 7,z prior to the first flip
of Ty in 1y, . The flip of 7, took the edge {7,(r), @)} out of the cut.
K,2p+1
4
continues up to ,uf’zm. Neither one of the nodes that flipped after the flip of g; in
nor anyone that is equal to a node ,uf’a for p+1 < a < 2m has influence on

h(R"). Thus, there is a flip of h(R’).

2 . . .
Node ,uf’ P has influence only on u and the sequence of unique influences

K,2p+1

The flip of ,ul.(’ZP in made u***! unhappy. Node u; has influence in

i
h K,2p+2
G" only on y,

,uf’zm. Neither of the nodes u!"* for 2p < w < 2m has influence in G on any node

outside of V and the only one of them that occurs as a variable of a formula of a

and the sequence of unique influences continues up to node

node of D(¢)\ V¥ is u?’zm. In particular, ,u?’zm occurs in the formula ¢(p,rH)—
see ([3.5.33). In we will show that the nodes u!"* for 2p < w < 2m flip in
ascending order in w, but since their flips may begin as early as in we already
refer to their flips here.

If h(R") # nil then the flip of y,, in makes 7, gy unhappy since the input node
of g5 in C has the same color as g, gy—the generalized pivot rule only chooses
gates for which this is the case— according to To(r') also has the color of
go(r)- Thus, node 7,z flips. Node 74 only has influence on 6,y and the
sequence of unique influences in G" continues with & o®) and psgy. The formula
¢(po(ry) is unsatisfied according to as long as ,uf’zm has its unnatural
color. Thus, node p g is blocked until u:.(’zm has its natural color in the case that
& o(r) did not yet flip and it is closed otherwise. Altogether, the flip of 7,z and
the flips of the nodes that can be initiated by the flip of 7, /), namely the nodes
0o and &gy, do not affect the happiness of any node of V;* or the satisfaction
of a formula of a node of V*.

The flip of 7,z in made only 6,z unhappy. Since no one of the nodes ;>
for 2p < w < 2m has influence on 6, it follows that there is a flip of 6, /).

Analogously to the flip of 0,z in it follows that there is a flip of £, (z/y. After
the flip of £ ;(z/) node p,(r:y is open. However, the formula ¢(p,(r)) is unsatisfied
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according to ([3.5.33) as long as uf’zm has its unnatural color. Thus, node p, g/ is
blocked until uf’zm has its natural color.

The formulas ¢(u;”) for 2p < w < 2m for which u;"“ € D(y) are satisfied
according to ([3.5.32)) since all nodes 7, for 0(R") < w < n are R'-correct—the
nodes themselves and their inputs were R’-correct in R;. Therefore, as in [P9|for
the unnatural colors it follows that the nodes ,uf"" for 2p < w < 2m that did not
yet flip back to their natural color do it in ascending order in w before p, g flips.

P14 After the flip of &,z in [P13] node p, . is open. The formula ¢(p, &) is

satisfied after the flip of uf’zm in[P1 1HP13L Thus, p,(r) is pushed. This finishes
the consideration of the flips.

Let 1 < k < g be the smallest index such that r{‘ contains the flips of the phases
In the following, we show that the conditions [(DH(@v)| of Lemma 3.5.40| are
satisfied for R; and rf, respectively.

For condition [(i)] we have to show that Ry is recurring and begin with property [(R1)}
Since R; is recurring, property is satisfied in R;. The only nodes that have influence
on NOR-nodes of V¢ are, by assumption, NOT-nodes of V¢. The only NOT-node of V¢
that flips in rJ’fJrl is g;—see If the flip of g; makes a NOR-node unhappy then,
also by assumption, h(R’) is the unhappy NOR-node and flips in [P2-{P10l—see [Table 3.4]
After its flip property [(R1)] is satisfied again. For note that g; flips in [P1]and if
h(R') # nil then the nodes 7, &, 05> Exr) and Py, flip in Property

(R2ii)|is satisfied in R, since, besides g; in , the nodes k?’l, k?’z, k?’B, 7Ll.1’1, 7Ll.1’2 flip
exactly once according to [P2HP8| Property |is satisfied since the nodes of V* flip

exactly twice. Finally, the properties[(R3)] and [(R4)] follow from the flips in
Now we show condition Since R; is recurring, each v € VIh \ {g;} has the opposite

color as u := Hsn(v) in R;. Since r{ is alternating, it follows that each node of D() is
closed in R;. By means of one can verify that for each flip of u there is a flip of

v after the flip of u in rJ'.‘Jrl and node u does not flip a second time before node v flips.

Thus, ri‘ is alternating.
Since node g; flips exactly once in r’.‘Jrl conditionis satisfied and the condition |(iv)
can easily be verified by means of This finishes the proof of [Lemma 3.5.40[0

Lemma 3.5.40| implies the claim of the [Enforcing Theorem| for the remaining case
h(P®) # nil. O

3.6 All-Exp Property

Theorem 3.6.1 (All-Exp Theorem). LocaLMAx-CuT has the all-exp property for graphs
with maximum degree four.

Proof. We adopt several parts of the proof of the [[s-Exp Theorem| (i.e., Theorem 3.4.1)).

In particular, we let C" be the is-exp circuit (see [Definition 3.4.3)), P := P" be the initial
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is-exp partition of the nodes of the graph G" = (V", E") that constitutes C", and s(n) be
the is-exp sequence of dimension n built up on the basis of the shifted is-exp sequence
s(n — 1)" of dimension n — 1 by appropriately adding the first and the second is-exp
modules t; and t,, respectively. For n € N we let s(n) = (wf,. ..,wgn) for g, € N and
w!' € V" for all 1 <i < q,. We show the theorem by means of the [Enforcing Theorem|
(i.e.,[Theorem 3.5.22) and develop for this purpose a polynomial-time computable pivot
rule h,, for any n € N, that induces s(n) in G". The pivot rule makes use of the following
notation.

Definition 3.6.2. ForneNyand Pe (V") anode v, € V" for2<i<4(n—1)+2is
called pausing in P if the following conditions are satisfied:

e i=2 mod4
® cp(vi_1) =cp(v;) =cp(viy1) =0and cp(viy2) =1

e There is a j > i for which v; is unhappy in P.

The pseudo-code of the pivot rule h,, is presented in

Input:  Partition P € #(V") for graph G" = (V" E")
Output: An element of the set V" U {nil}

1: if P is a local optimum for G" then

2 return nil

3: else

4 return node v; with smallest i that is unhappy and not pausing in P

Algorithm 3.6: The pivot rule h,.

In the following, we prove by induction on n that h,, induces s(n) in (G", P{) for all
n €Ny, i.e., h,(P',)=w! forall 1 <i < q,. Before showing the induction basis and the
induction step, we first show a property of (G", P§) for all n € N, that we use to simplify
the argumentation of both the induction basis and the induction step. Each node of
the set S" := {V44s,...,V12,113} is happy in PJ. Neither of them is influenced by any
node of V" \ S". Thus, each of them is happy in P}’ for all 0 < k < q,,. Consequently,
when showing that h,, induces s(n) in (G", P}}) we can ignore the nodes of S" as possible
candidates for an output of h,, in any of the partitions of T" and consider their colors to
be constant throughout the sequence T".

As induction basis, we consider the case n = 0. In the nodes of M? :=
{v1,...,v4} € V° and their corresponding colors in the partitions of T° are drawn. In
the drawing for (M O,Pl.ol o) for 1 <i < 3 the node w?, i.e., the node that flips next in
Pi0 according to s(0), is marked by a black star next to it. Note that v; is never pausing.
Then, one can verify by means of that the sequence induced by h, in (G°, Pg )
is (vy,v9,v;) =s(0).
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d"b’b‘bd‘kb"b'b

V3 Vo Vi V3 Vo
(a) (MO’P(?|MO) (b) (MO’P10|MO)
*
FT——0—D> T——0o—»
Vv, Vs vy v Va4 Vg Vy Vi
(©) (M°, P;|ypo) (d) (M°, P3lypo)

Figure 3.19: The partitions of M° according to s(0) started at (G°, Pg ).

As induction hypothesis (IH1) we assume that h, induces s(n) in (G", P}) for an
arbitrary n € N,. Before showing the induction step, we consider some properties of
s(n+1) and (G™™, P}™) in comparison to s(n) and (G", P}). In G™*! no node of the
set M1 :={v,,...,v,} € V" has influence on any node v; for i > 4. Recall that the
sequence s(n + 1) arises from s(n) by increasing the index of all nodes of s(n) by four
and including the sequence t; after the flips of v5 to white and the sequence t, after
the flips of vs5 to black. Thus, there is a unique function o : {1,...,q,.1} = {1,...,q,}
such that s(n + 1)Il<|vn+1\Mn+1 = s(n)‘f(k) forall 1 <k < q,4;. For o we have the property
that each node v; for j > 4 has the same color in (G™, P for any 0 < k < "' as
Vj_4in (G",P},)- Let P € 2 (V™) such that all nodes of the set M"*! are happy or
pausing in P and Q € 2 (V") such that cy(v;) = cp(vj44) for all j. Then b, 1(P) = vj4
if h,(Q) =v; for 1 <j <12n+ 13 and h,,(P) = nil if h,(Q) = nil. Consequently, the
induction hypothesis (IH1) implies for each partition P"Jrl for 0 <i < q,41 in which
all nodes of M™*! are happy or pausing that hn+1(P”+1) = wl'tlif i < gy, and that

n+1(Pin+1) =nilif i = qpqq-

Now we show the induction step, i.e., we show that h,,; induces s(n + 1) in

(G™1,P}*1). In particular, we show by 1nduct10n on j that hn+1(P”+1) = wf“ for

all 1 < j < q""!. For the induction basis, note that in P"Jrl all nodes of the set M™*! are
happy and therefore hn+1(P"+1) = +1 . As 1nduct10n hypothesis (IH2) we assume for
an arbitrary 0 < j < q"*! that hn+1(P”+1) =wit forall 1<k <j.

At first, we show that for the induction step, we can focus on the nodes of M"*!

and the nodes that have influence on them. For this, we consider the case that w;’H IS

V™ I\ M1, Then each node of M is either happy or pausing in P’”rl since otherwise
h(P”H) e M™1. Assume that anﬂ has no influence on a node of M"™ !, Then each

node of M™*! that is happy in PJT’_+11 is also happy in PJ."H. If v, is pausing in P]T‘_+11 then
it is not pausing in P™*?! only if no node v; for k > 2 is unhappy in PJVH. Due to (IH1)
the function h,(-) only returns nil at the end of the sequence s(n). The last flip of s(n)
is the flip of v; € V" to the black color. Recall that the node v, € V" corresponds to
the node vg € V™, After the flip of vs to the black color, however, node v, is unhappy.

Thus, if v, is pausing in P]."fll then it is also pausing in P]."Jr1 and therefore it remains to
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n+1

show h,, ;1 (Pj”“) = w™! for the cases in which w has influence on a node of M"!

j+1
or W;-H_l €M™t
The only nodes that are not in M™! but have influence on a node of M™"*! are

Vant+1)+6 and vs. We already know that v4(,41)4¢ does not flip in s(n + 1) and therefore
W;.IH # Van+1)+6- Recall that the flips of the nodes of M n+1 are induced by the sequences

t; and t, and that after the execution of t := t; o t, the same partition as in P(’;H is
reached for the nodes of M"*! due to

Since after each of the ten flips of t there is at least one node that flipped an odd
number of times in t, there are ten different partitions of the nodes of M™*! in s(n + 1).
Together with the flips of v5 to the white color that precede the corresponding flips of t;
in M™! and the flips of vs to the black color that precede the corresponding flips of t,
we get twelve different partitions Qy,...,Q; € (M U{vs}) in T}, i.e., for each
0 <i< g, thereisa 0 < j <11 such that P! |y, = Q;.

The twelve partitions Q, ...,Q;; are depicted in[Figure 3.20] where Q is the partition
of M := M™1 U {vs} in PI*Y, e, P!+ = Qq, and partition Q; for i € {1,5}
arises from Q;_; by flipping vs and partition Q; for i € {0,...,11} \ {1, 5} arises from
Qi_1 mod 12 by flipping the corresponding node of t. As in we mark in
(M*,Q;) for 0 <i <11 the node that flips between the partitions Q; and Q;;1 mod 12- In
[Figure 3.20a| and [Figure 3.20¢€] the little star is gray—in contrast to the remaining figures
where it is black—to indicate that the (possibly) following flip of vs is not necessarily the
node that flips next in s(n + 1) but only the next flip of s(n + 1)|,;+—in the remaining
partitions the node that flips next is the same in s(n+ 1) as in s(n+ 1)|;+.

By means of one can verify that hnH(P]TlH) = w?jll as follows: For the
partitions Q for k € {1,...,11} \ {4} one can verify that hnH(P].”H) coincides with
the node that flips next in ¢t and therefore in s(n + 1), i.e., the node marked by the
star. In the partition Q, all nodes of M""! are happy and therefore (IH1) implies that
hn+1(P]~n+1) = Wfill if j < q,41 and hn+1(P]T1+1) = nil otherwise. Finally, in P, the
nodes v, v3 and v, are happy and v, is pausing and therefore, again, (IH1) implies that
P (P = Wi,

Thus, h, induces the sequence s(n) starting at (G", P}). The pivot rule h, is obvi-
ously polynomial-time computable. Consequently, the [Enforcing Theorem| (i.e.,

orem 3.5.22) implies that LocaLMax-Cut has the all-exp property for graphs with
maximum degree four. O

3.7 PSPACE-completeness of the Standard Algorithm Problem

Theorem 3.7.1 (SAPPSC Theorem). The STANDARDALGORITHMPROBLEM for LOCALMAX-
Cur is PSPACE-complete for graphs with maximum degree four.

Proof. Clearly, the problem is computable in polynomial space. We reduce from the
PSPACE-complete problem of deciding whether a linear bounded automaton M halts for
a given input [24]. A configuration of M for inputs of length n consists of the state of M,
the position of the head and a string of length n. Thus, the number of configurations of
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G) (Mt {vs}Qo) & (M™ty {vs} Quo) O (M U {vs},Qq1)

Figure 3.20: The partitions Q; for 0 <i < 11 of M"*! U {vs} occurring in T"*!,

M for inputs of length n is bounded by k" for some constant k. We choose m € N such
that 22 < k" < 2™~1 and let b(c) be a bit vector that encodes a configuration ¢ of M.
Moreover, we let ¢; for i € N be the configuration of M after i steps of M where ¢; = c;
for all j > i if ¢; is a halting configuration.

We let C™ be the is-exp circuit (see [Definition 3.4.3) of length m, add NOT-gates as
depicted in [Figure 3.21|to C™ and call the resulting circuit C*. Let GT = (VT,E") be
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the graph that constitutes C* and V™ be the set of nodes that represent the gates of
C™. For convenience, we use the same name for a node in V' and the gate of C* that it
represents—recall that each gate of C* is represented by exactly one node in V*. We let
y* for 1 < k < 3 be the vector (y7,..., ¥, )-

Proof in a nutshell The reduction uses the [Enforcing Theorem| (i.e., [Theorem 3.5.22)
to simulate the steps of M as a sequence of partitions induced in (G*, Py)—see
lure 3.21]—for a partition P, € 2 (V™) that is specified later. The decision whether M
halts is made by means of the colors of the nodes of G in the local optimum reached at
the end of the sequence of partitions.

More concretely, for the initial partition P, of G* we choose the colors of the nodes of
V™ such that they correspond to the initial is-exp partition (see |Definition 3.4.3)), the
colors of the nodes of x such that each of them is happy, the colors of y3 such that they
encode ¢y, and the colors of the nodes of y! and y? such that the lightest edge incident
to each of its nodes is in the cut. The nodes of y* are supposed to periodically contain
by means of their colors encoding of the current configuration of M. For this purpose,
we introduce a generalized pivot rule f that performs the simulation of M by means of
the colors of the vector y* as follows.

The rule f first chooses flips of the nodes of V' according to the pivot rule h,,—see
until g; flips for the first time, i.e., it flips to the black color. Then it
selects the nodes x; for 1 <i < 2m —1 to flip consecutively in ascending order in i—note
that after these flips the nodes x; are white for all odd j. Let ¢’ be the configuration
of M one step after the configuration c¢ that is encoded by the colors of the nodes of
y3. Then f selects consecutively in ascending order in i those nodes yi1 for1<i<m
that would be black if the colors of y! encoded ¢’. The partitions arising after this step
will, among others, be called recurring. Then f selects nodes of V™ according to h,,
until g; flips back to white. Then it again chooses the nodes of x until all of them are
happy—after that, the nodes x; are black for all odd j. Then it consecutively selects in
ascending order in i the nodes y/! for 1 <i < m that would be white if the colors of y!
encoded c¢’. After that, the vector of colors of y! in fact encodes ¢’. Finally, it chooses
the unhappy nodes of y? and then those of y* to flip consecutively. Then the vector y>
also encodes c’—the partitions arising after this step will, beside the initial partitions, be
called strictly recurring. This procedure is repeated until there are no unhappy nodes
in V™, Then we can show for the local optimum that is finally reached that the vec-
tor of colors of y* equals the vector of colors of y! if and only if M halts if started with c,.

Now we continue with the proof. Let P € & (V") be a partition in which the colors of
the nodes of y encode a configuration ¢ of M. We let d(P) be the vector of the colors of
y3 in P and d*(P) be the bit vector encoding the configuration of M one step after the
configuration that is encoded by d(P). Moreover, for a bit vector z € {0,1}" forn € N
we let z; for 1 <i < n be the i-th component of z.

Definition 3.7.2. A partition P € 2 (V™) is called recurring if forall 1 <i < 2m —1

e Xx; is happy in P
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Figure 3.21: Gates of the Boolean circuit C™.

andforall1<i<m
* Cp(yiz) # CP(.)’?);
® ifcp(g1) =1 then Cp(yil) # Cp(}’iz);
e ifcp(g1)= d;r(P) =0 then Cp(yil) =0.
A recurring partition P € 2 (V") is called strictly recurring if cp(g;) = 1.

Definition 3.7.3. For a partition P € 2(V™), we call y]’.< forany1<j<m, 1<k <3
up-to-date in P if the following conditions are satisfied:

e Case k =1: Ifdj+(P) =cp(g,) =0 then cp(yjl) =0.
e Case k =2: If cp(g;) =1 then yj2 is happy in P.
e Case xk = 3: y]‘? is happy in P.

Otherwise we call y[ outdated.

We choose the partition P, € 2 (V") such that it satisfies the following four conditions:
° cp (V)= cpén(v) for all v € V™ where P{" is the initial is-exp partition of V™.
e d(Py) = b(co).
e Xx; is happy forall 1 <i <2m—1.
. cpo(yl.l) %+ cpo(yl.z) %+ cpo(yf) foralll<i<2m-—1.

Now we introduce a generalized pivot rule f for the graph G whose purpose is for each
step of M to successively change the colors of the nodes of V' such that the colors of
the nodes of the vector y° encode the configuration of M after the corresponding step.
The generalized pivot rule f is presented in It makes use of the pivot rule

h,, as introduced in |Algorithm 3.6
In the rest of the proof we make use of the invariant in|Lemma 3.7.4

88



3.7 PSPACE-completeness of the Standard Algorithm Problem

Input:  Partition Q € (V™) for graph G*
Output: An element of the set V* U {nil}
1: if Q is locally optimal for Gt then

2: return nil

3: else

4: if Q is recurring then

5: return h,,(Q|ym)

6: else

7: if dx; for 1 <i <2m —1 that is unhappy in Q then

8: return x; with smallest i that is unhappy

9: else
10: if 3y for 1 <i <m, 1 <« <3 that is outdated in Q then
11: return y with smallest m - k + i that is outdated
12: else
13: return nil

Algorithm 3.7: The generalized pivot rule f.

Lemma 3.7.4. Lets:=(wy,...,wy) forq €N, w; € VT for all 1 < j < q be the sequence
of improving flips induced by the generalized pivot rule f starting at (G*,Py) and 0 <i <q
be such that the following conditions are satisfied:

o P; is strictly recurring.
e d(P;) = b(c,) for some r € N,
e g flips k times in sifor 0<k<2m-2
Then there is an index i < j < g such that the following conditions are satisfied:
e Pj is strictly recurring.
i d(Pj) =b(cr41)-

o g, flips k+ 2 times in s{.

Proof. The argumentation is divided into nine steps, namely

Stepl Since g; flips k times in sg for 0 < k < 2™ — 2, not all nodes of V,, are happy in

P,—recall that we showed in the proof for|Theorem 3.6.1|that h,, induces 2™ flips
in V,,,. Then, since P; is strictly recurring, the generalized pivot rule f chooses

nodes of V™ as long as g; did not yet flip to white in s? according to line [5| of

i

Step2 After the first flip of g; in s the resulting partition is not recurring anymore since
X1 is unhappy then. Then the function f chooses the nodes x; for 1 <i <2m —1
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to flip in ascending order in i according to line |8| of |]Algorithm 3.7| until all of them
are happy.

Step3 When x; is happy for all i then f chooses those nodes of yl.l for 1 <i <mtoflip
in ascending order in i for which d;(P) # cp( yiS) = 0 according to line where p
is the corresponding partition—note that the flips of the nodes yi1 that satisfy this
condition are in fact improving since the nodes that have influence on them, i.e.,
the nodes x; for odd 1 < j < 2m — 1 are white. After the flips of the nodes yi1 for
the corresponding i, the resulting partition is recurring again.

Step4 As in[Stepl] the generalized pivot rule f chooses flips of the nodes of V™ according
to h,, until g, flips back to black whereafter the resulting partition is not recurring
anymore.

Step5 As in the nodes x; for all 1 <i < 2m — 1 flip exactly once in ascending
order in i.

Step6 Similarly to f chooses that nodes of yl.1 for 1 <i < m in ascending order for
the next flips for which d;(P) # cp( yl.3) =1 for the corresponding partition P. After
these flips, the colors of the nodes of the vector y! encode the next configuration
¢, 41 of M with respect to the configuration encoded by the colors of the nodes of

3 .
y°,ie., c,.

Step7 f chooses the unhappy nodes yl.2 for all 1 <i < m in ascending order in i for the
next flips according to line|11|of |Algorithm 3.7} Then the colors of the nodes yl.2
for all i correspond to the bitwise complement of the encoding of ¢, ;.

Step8 f lets the unhappy nodes yl.3 for all 1 < i < m flip according to, again, line
whereafter the colors of the nodes of y* correspond to the encoding of the
configuration c,,; and the resulting partition is strictly recurring again. O

By definition, P, is strictly recurring and in s(l), i.e., the empty sequence, node g; does

not flip. Then [Lemma 3.7.4]implies for the sequence s induced by f starting at (G*, P,)
the following two conditions:

e Node g, flips 2™ times in s.

e In the partition P after the 2k-th flip of g; in s for any 0 < k < 2™~! we have
d(P) = Ck-

Since node g; flips 2™ times in s, all nodes of V™ are happy in P which implies
f(P) = nil according to line [5| of

Recall that if ¢; for any i € Nj is a halting configuration then ¢; = ¢; for all j > i.
Since f is polynomial-time computable, the [Enforcing Theorem| (i.e., [Theorem 3.5.22)
implies that one can compute in polynomial time a graph G = (V,E) with V* C V and a
partition P € # (V) for which P|,+ = P™ such that for any sequence t of improving flips
starting at (G, P) we have t|,+ =s. Thus, for the local optimum Q € & (V) reached at
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the end of the sequence ¢ starting at (G, P), we have Q|,+ = P;. Consequently, node yi3
for any 1 <i < m has the same color in Q as in P; and therefore the vector of the colors
of y2 in Q encodes the configuration c,m-1. Therefore, if c,n-1 is a halting configuration
then M halts if started with ¢, and if c,m-1 is not a halting configuration then M does not
halt since at least one configuration occurs at least twice in the sequence of partitions
induced by s in (G*,P™) due to 2™~ ! > ¢". Thus, the colors of the nodes yl.3 for alli in
Q encode a halting configuration of M if and only if M halts if started with c,. O
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Chapter 4

Complexity of Local Max-Cut:
Maximum Degree Five

4.1 Overview of Contribution

At first, we introduce a technique by which we substitute graphs whose nodes of degree
greater than five have a certain type—we will call these nodes comparing—by graphs
of maximum degree five. For the graphs arising by this substitution, we show that in
local optima that have a certain property the nodes of the subgraphs that substitute the
comparing nodes have unique colors, i.e. the [Substituting Lemma| (Lemma 4.3.3). In
particular, those nodes of the subgraph substituting a comparing node v that are adjacent
to nodes of the original graph all have the same color. Namely, they have the color that
v had in the corresponding partition of the original graph if it was happy. Thus, from
the viewpoint of the nodes that are adjacent to v in the original graph, the nodes of
the subgraph substituting v behave in certain local optima of the extended graph as the
single node v in the original graph.

Then we prove the PLS-completeness of computing a local optimum of MaAx-CuT
on graphs with maximum degree five by reducing from the PLS-complete problem
CircurtFLIP. In a nutshell, we map instances of CIRCUITFLIP to graphs of degree greater
than five. Some parts of the graphs are adjustments of subgraphs of the PLS-completeness
proof of |Schéffer and Yannakakis| [[54]]. Then, using the [Substituting Lemmal, we show
that local optima for these graphs induce local optima in the corresponding instances of
CirculTFLIP.

4.2 Usage of the P-hardness Reduction

In our technique, as well as in the PLS-completeness proof, we make use of the
(in particular of [Theorem 3.3.1(ii)). The graph Gy, as introduced in the
said proof, can be constructed in logarithmic space and thus polynomial time for any
polynomial-time computable function f. In the rest of the chapter we use the graph G
for several functions f and we will scale the weights of its edges. Then the edges of G¢
give incentives of appropriate weight to certain nodes of the graphs to which we add
Gy. The incentives bias the nodes to take the colors induced by f. We already point out
that for any node v we will introduce at most one subgraph that biases v. However, we
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sometimes introduce more than one subgraph that looks at a node v. For an overview

see

Figure 4.1: Subgraph By biases v and subgraphs L¢ ,...,L; look at v.

In there is a subgraph By that looks at a subset of the nodes of the given
graph and biases v, possibly among other nodes, according to the function f. Moreover,
there are subgraphs Ly ,..., L thatlook at v, possibly among other nodes as well, and
bias some further nodes according to the functions fi,..., f,,. Finally, there are nodes
uy,...,U, adjacent to v that are not contained in any subgraph that biases v or looks
at v. The relations of the weights of the edges incident to v will be such that b < q; for
al1<i<mandb > Z?:l ¢;. If there is no subgraph that biases v then we will have
a; > Z?:l c;foralll <j<m.

4.3 Substituting Certain Nodes of Unbounded Degree

The following definition introduces a notation for a family of (sub-)graphs and a notation
for a factor that is related to the weights of the edges of the corresponding (sub-)graph.
The (sub-)graphs and their factors are needed for the subsequent definition of comparing
nodes.

Definition 4.3.1. Let G = (V,E) be a graph. For n € N we let B(n) be an arbitrary but
fixed subgraph of G that looks at a node v € V and biases nodes uy,...,us,_1 €V in
the following way. The nodes uq,...,Uus, are biased to the opposite color of v and the
nodes U1 1,---,Usn_1 are biased to the same color as v (a possible implementation of B(n)
is a binary tree with appropriate edge weights, where v is the root and the nodes u; for
1 <i <4n—1 are leaves of appropriate height). Let w,,, be the maximum weight of all
edges of B(n) and w,;,, be the corresponding minimum. Then we call b(n) := w4 /Wmnin-

Definition 4.3.2. Let G = (V,E) be a graph. A node v € V—see [Figure 4.2}—is called
comparing if there is an m € N with m > 3 such that the following conditions are satisfied:

i) v is adjacent to nodes u{, bn(v)eV\{v}forl1l<j<m,1<j<2with edge weights
w({ug,v}) =aq;, w({bn(v),v}) =6 for a;,6 € Q- and optionally to a node In(v)
with edge weight w({Iln(v),v}) = € for € € Q..
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ii) a; >2a;,q foralll <i<manda, > 26.
iii) If v is adjacent to [n(v) then 6 > b(m) - €.

For u{ with 1 <i<m,1=<j<2wecall the node ui.‘ with 1 <k <2 and k # j adjacent to
v via the unique edge with the same weight as {u{, v} the counterpart of u{ with respect

to v. The nodes u{ for all i,j and the node In(v)—should it be adjacent to v—are called
receiving nodes of v.

1
1 i i+1®

Figure 4.2: Node v is a comparing node.

Comment The name comparing node stems from its behavior in local optima. If we
treat the colors of the neighbors u%, e, urln of v as a binary number a, where u% is the
most significant bit, and the colors of u%, et ui as the bitwise complement of a binary
number b, then, in a local optimum, the comparing node v is white if a > b, it is black if
a < b, and if a = b then v has the opposite color of bn(v). In this way, the color of v
“compares” a and b in local optima.

optional u

Figure 4.3: The gadget that substitutes a comparing node v.

In the following, we let G = (V, E) be a graph and v € V be a comparing node with

adjacent nodes and incident edges as in [Figure 4.2 We say that we degrade v if we
remove v and its incident edges and add the following nodes and edges. We introduce
nodes vl.kj(v) for1<i<m,1<j<2,1<k<2, nodes vrljll(v) for 1 <k <2 and

V;I,Z(V)' For the purpose of succinctness, we may omit the attached expression “(v)” if
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it is clear from the context which comparing node is substituted. The edges and their
corresponding weights are as depicted in the nodes uf in have
gray circumcircles to indicate that they, in contrast to the other nodes, also occur in G.
Furthermore, we add the subgraph B(m) that looks at u and biases all nodes vl.k1 to the
opposite of the color of u (this is illustrated by short gray edges in[Figure 4.3) and the
nodes Vlkz to the color of u (short gray dashed edges). The weights of the edges of B(m)
are scaled such that the unique edge of B(m) incident to u has the weight 6—this edge
is depicted in [Figure 4.2] We let D(G) = (D(V), D(E)) be the graph arising from G by
iteratively degrading all comparing nodes of G.

Now we introduce several notations for partitions P € & (D(V)) that encapsulate
properties of the nodes that substitute v in D(V). We say that v is weakly indifferent
in P if cp(ul.l) # cp(ul.z) for all 1 <i < m. If v is not weakly indifferent in P then
we call the two nodes ul.l, ul.2 adjacent to v via the edges with highest weight for which
cp(ul.l) = cp(ul.z) the decisive neighbors of v in P. We let V,,,,, € V be the set of comparing
nodes of V and colp : V,,,,, — {0, 1} be the partial function defined by

L) 0, ifcp(vl.jl)=Of0r all i, j.
colp(v) = ,
P 1, ifcp(vl.Jl)zl for all i, j.

We say that v has the color x € {0,1} if colp(v) = k. Moreover, we say that v is
guided in P if v is weakly indifferent in P or v is not weakly indifferent and bn(v) has
the same color as the decisive neighbors of v in P.

Lemma 4.3.3 (Substituting Lemma). Let G = (V,E) be a graph and P € & (D(G)) be
a local optimum in which each comparing node is guided. Then for each comparing node
v €V we have

colp(v) # cp(bn(v)).

Comment Note the restriction that in the local optimum P, node v is guided. In the
proof of the [Completeness Theoreml (i.e., [Theorem 4.4.2) every comparing node v is
designed to be guided in every local optimum. Then we can use the [Substituting Lemma|
to argue about colp(v) in D(G). Moreover, let S(v) be the set containing the nodes vl:’l
for all i, j. The property colp(v) # cp(bn(v)) implies that all nodes of S(v) have the
same color in P, namely colp(v). Thus, from the viewpoint of the receiving nodes of v,
the property means that the nodes of S(v) behave in P as a single node.

Proof (of[Lemma 4.3.3). Let v € V be an arbitrary comparing node with adjacent nodes
and incident edges as depicted in In the following, we show for a local

optimum P € # D(V) that colp(v) # cp(bn(v))—see Then we get colp(w) #

cp(bn(w)) for all comparing nodes w € V since v is chosen arbitrarily.
Let k := cp(bn(v)). For all i, j we call the color of v]l. , correct if cp(v]l. 1) =« and we

call the color of v]l: , correct if cp(vJ‘: ,) = K. Moreover, we call v]l: ;. correct for any i, j, k if
it has its correct color.
Each node vl.k ; is biased by an edge with weight lower than ¢ to its correct color.

Moreover, the edge {In(v), v11 1}, if existing, weighs less than all other edges incident to
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v1 , due to 6 > b(m) - €. Therefore, to show that a node v oy for any i, j, k is correct in
the local optimum P, it suffices to show that it gains at least half of the sum of weights
of the incident edges with weight greater than 6 if it is correct. We prove the Theorem
by means of the following Lemmas which are each proven via straightforward inductive
arguments.

Lemma 4.3.4. Let ¢ < m and cp(ul.l) =k foralli <q. Then vl.l1 and vl.l2 are correct for
alli <gq.

Proof. We prove the claim by induction on i. Due to cp(u%) = Kk we get the correctness
of v11 ,—recall that the edge {In(v), V11 1}, if existing, weighs less than all other edges

incident to vlll. For each i < q the correctness of vl.l1 implies the correctness of v}

,2°
Moreover, for each i < g, the correctness of vl.l2 together with cp (ul.1 1) = k implies the
correctness of v O

i+1,1°

Lemma 4.3.5. Let ¢ < m, node v} i1 and v , be correct for all i < q and v2 o1 be correct.
Then vl.’1 and vl.’2 are correct for all i < q.

Proof. We prove the claim by induction on i. Node vg , and v} 4,1 are correct by assumption.

For each i < ¢, node v2 i Is correct if v2__ . is correct since v, is correct by assumption.

1
i—1,2

assumption. Finally, node V12 | is correct if vlz2 is correct. O

i+1,1 i+1,1

Moreover, for each 1 < i < g, node vi , is correct if vi is correct since v; is correct by

Lem@a 4.3.6. Let g <m. If v;,l and vil are correct then vl.’fj is correct for any j,k and
g<i<m.

Proof. If ¢ = m then the correctness of vrln , implies the correctness of v; ,- The case

g < m is done by induction on i. Node v; , and vjl are correct by assumption. Assume

that v}, and v?, are correct for an arbitrary ¢ <i < m. Then the nodes v}, and v?, are

correct whereafter the correctness of vl.1 11 and vl 11
1 g 1

V1 implies the correctness of v, ,. O

follows. Finally, the correctness of

We first consider the case that v is weakly indifferent. Then, for each i, at least one of
the nodes ul.1 and “1'2 has the color k. Due to the symmetry between the nodes vil. and vl.2~

we may assume without loss of generality that cp(ul.l) =k for all i. Then|Lemma 4.3.4
implies that v}, and v}, are correct for all i. Then the correctness of v} , and v|

together imply the correctness of qu .- Then|[Lemma 4.3.5|implies the correctness of viz1
and vZ, for all i < m.
Now assume that v is not weakly indifferent and let ué and ug be the decisive neighbors

of v. As in the previous case we assume without loss of generality that cp (uil) = k for all
i <q. Then, due to , node v}, and v/, are correct for all i < q. If ¢ = 1 then

c(u%) = k implies the correctness of v12 ,- On the other hand, if ¢ > 1 then the correctness
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of v;_l , and c(ufl) = k together imply the correctness of v(fl. Then [Lemma 4.3.5|implies
the correctness of viz1 and vl.z2 for all i < q. Finally, [Lemma 4.3.6/implies the correctness
ofvl.kj forall j,kandq <i<m. O

4.4 PLS-completeness

Our reduction is based on the following PLS-complete problem CircurtFLIp (in [30] it is
called Frip, which we avoid in this thesis since the neighborhood of LocaLMax-CuT has
the same name).

Definition 4.4.1 ([[30]]). An instance of CIRCUITFLIP is a Boolean circuit C with n input
bits and m output bits. A feasible solution of CIRCUITFLIP is a vector v € {0, 1}" of input
bits for C and the value of a solution is the output of C treated as a binary number. Two
solutions are neighbors if they differ in exactly one bit. The objective is to maximize the
output of C.

Theorem 4.4.2 (Completeness Theorem). LocarMax-Curt is PLS-complete for graphs
with maximum degree five.

Proof. We reduce from the PLS-complete problem CircuiTFLIP. Let C be an instance of
CircurtFLip with input links X4,...,X,,, outputs links Cy,...,C,, and gates Gy, ..., G;.
For the sake of simplicity, we let G; also denote as the output of gate G;. The two inputs
of a gate G; are denoted by I(G;) and I,(G;). Without loss of generality, we make the
following five assumptions. First, all gates are NOR-gates with a fan-in of two (this
assumption can be made due to [Proposition 2.4.3)) and are topologically sorted such
that i > j if G; is an input of G;. Second, the gates G,,..., G, compute the output of

C where G, is the most significant bit and G,,,1, ..., Gy, compute the corresponding
negations of the output bits. Third, the gates Gopy1,---5 Goman a0d Gominats - - - Gamaan
return the same better neighbor solution if there is one and return the input of X5, ..., X,

otherwise. The following two assumptions are made to simplify technical matters. Fourth,
I(G;) = I,(G;)) = X; forall N —n+ 1 < i < N. Fifth and finally, I;(G;) # X for all
1<j<2,1<k<nand1<i<N-—-n.

In the following, we describe a graph G, = (V.,E.) that contains only nodes of
maximum degree five. In our description for G, = (V,E;), we introduce several
comparing nodes of degree greater than five. However, we assume that the graph
Gc = (V¢, Ec) is obtained by iteratively degrading the comparing nodes whereby we get
a maximum degree of five for G.. The proof will show two properties for local optima
P € #(V,). First, every comparing node v is guided in P. Then the [Substituting Lemma|
(.e., implies colp(v) # cp(bn(v)). Second, the colors of the nodes of G
induce a local optimum for C.

The graph G, consists of two isomorphic subgraphs G2, Gé representing copies of
C—the overall structure of the proof is inspired by |Krentel| [39]. For each gate G; in C
there is a subgraph S’ for k € {0, 1} in G.. The subgraphs S are taken from Schaffer
and Yannakakis| [[54]] and adjusted such that they have maximum degree five without
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changing local optima. In particular, each S contains a comparing node g;* whose color
corresponds to the output of G;.

We introduce nodes x for 1 < i < n and call them the input nodes of G. For
1<i<N-ni<j<N,1 SkuweletIk(gi") :=g}’.< if G; = It(G;) in C and for
N-n+1<i<N,1<j<2weletI;(g):=xy,, Welet W;(’l = g§m+i>W;<,2 =
8omingi Or 1 <i<nand g :=g; ; for 1 <i<m. Moreover, we let w} for 1 <j <2
be the vector of nodes induced by wf’ i for 1 <i < m. Each subgraph G contains nodes
¥{, 2 for 0 <i < 2N + 1 which induce vectors y* and z*.

For a partition P € #(V,;) and k € {0, 1} we let Cp(x*) be the output of C on input
cp(x*) and wp(x*) be the better neighbor computed by C on input cp(x*). If the
partition is clear from the context then we omit the subscript indicating the partition.
We call the subgraph Gg the winner and the subgraph Gé the loser if C(x%) > C(x1),
otherwise we call Gg the loser and Gé the winner.

The proof in a nutshell: We show that the colors of the nodes of the subgraphs S¥, in
local optima, either correspond to the correct outputs of NOR-gates or have a reset state,
i.e., a state in which each input node of S} is indifferent with respect to its neighbors in
S¥. For each x € {0,1} we have a subgraph T* that looks at nodes that have, in local
optima, the same colors as the nodes W;fl and Wl’.fz for 1 <i <n, i.e., the nodes that
correspond to the gates that return the improving neighbor with respect to the given
input, and biases each input node of Gg to the color of its corresponding WE , and W:fz.
Finally, we have a subgraph that looks at the input nodes of G2, Gé, decides whose input
results in a greater output with respect to C, and biases the subgraphs S of the winner
to behave like NOR-gates and the subgraphs of the loser to take the reset state. Then we
show that the colors of the subgraphs S of the winner G for x € {0, 1} in fact reflect
the correct outputs with respect to the colors of their inputs and that the input nodes
of the loser in fact are indifferent with respect to their neighbors in the subgraphs S?.
Then, due to the bias of T*, the input nodes of the loser take the colors of the improving
neighbor computed by the winner whereafter the loser becomes the new winner. Hence,
the improving solutions switch back and forth between the two copies until the colors of
the vectors of nodes of x° correspond to a local optimum for C. This finishes the “in a
nutshell” description of the proof.

We introduce the nodes and edges of G via what we call components. A component
of Gc is a tupel (V(, E¢) with V. C V and E_ C E. The components of G have fifteen
types: [Type 1| up to [Type 15 where we say that the nodes, edges and weights of the
edges of the components have the same types as their corresponding components. We
explicitly state weights for the edges of [Type 2| up to [Type 7} However, the weights of
these components are stated only to indicate the relations between edge weights of the
same type. The only edge weights that interleave between two different types are those
of [Type 3|and [Type 4, The edges of [Type 3|and [Type 4| are scaled by the same number.
For all other types we assume that their weights are scaled such that the weight of an
edge of a given type is greater than eight times the sum of the weights of the edges of
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higher types combined. Note that for these types, a lower type implies a higher edge
weight. Moreover, we assume that the weights of the edges of and higher are
scaled such that each edge of one of these types is by the factor 8 - b(4) smaller than any
edge of [Type 1| up to[Type 8—for the definition of the function b(-) see Definition 4.3.1|
To distinguish between the meaning of the explicitly stated edge weights and the final
edge weights, i.e., the weights resulting by the scale, we call the explicitly stated weights
relative edge weights.

The components of [Type 9| up to [Type 15|are subgraphs that look at certain nodes and
bias other nodes. To some nodes more than one subgraph looks at. We assume that the
component of the lowest type which looks at such a node v not only biases the nodes of
which we state that it biases them but also biases extra nodes v{, e, v{(, for k € N great
enough to the same color as v, and the components of higher types look at v1,..., v,’{
instead of the original nodes. In this way, it is ensured that to any node v to which more
than one subgraph looks at, only one edge is incident that is an edge of the subgraphs
that look at v.

The components of some types are introduced via drawings. In the drawings, the
thick black edges and the nodes with black circumcircles are nodes counted among the
components of the introduced type. Gray edges and nodes with gray circumecircles are of
a different type than the component introduced in the corresponding drawing and are
only (re-)drawn to simplify the verification of the proofs for the reader—in particular,
the condition that each node is of maximum degree five. For comparing nodes, we only
redraw such edges in the component in which the corresponding comparing node is
introduced—these nodes have a degree that is greater than five anyway. If for a gray
edge there is no explicit relative weight given, then the edge is among the types 8 — 14.
If a gray edge is dotted then it is of higher type than the non-dotted gray edges of the
same drawing. If a node has a black or a white filling then it is of These nodes
are also (re-)drawn in components for Types higher than 1.

Type 1 contains nodes s, t which are connected by an edge whose weight is greater than
the sum of the weights of all other edges in E.. Assume without loss of generality
c(s)=0and let S and T be the sets of nodes representing the constants 0 and 1.
The component looks at s and biases the nodes of S to the color of s and the nodes
of T to the opposite. In the following, we assume for each constant introduced
in components of higher types, there is a separate node in the sets S, T. In the
drawings that introduce the following components, nodes with a white filling are
in the set S and nodes with a black filling are in T.

Comment Type 1]is to provide the constants 0 and 1 for the components of higher
type.

Type 2 contains the nodes d°, d*,u®, u'—we will see later that d° and d' are comparing
nodes—with edges and relative weights as depicted in [Figure 4.4

Comment The purpose of the edges of is—together with the edges of
[Type 10| and [Type 11}—to guarantee that d° and d* are not both black in local
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Figure 4.4: The component of ,

optima. We will see in [Lemma 4.4.4] that the nodes d° and d! are comparing
nodes.

consists of subgraphs S¥ which are to represent the gates G; of C—see [Figure 4.5
We call the edges {g, u:fj} forall1<i<N,je{2,3,6,7,10,11} corresponding
to g;.

Comment The nodes d°, d!, gi (and I;(gf"), respectively) and x} are the only
nodes which have a degree greater than five—we will see later that they are
comparing. The components of [Type 3|to[Type 7|are to represent the two subgraphs
Gg and Gé. The components are very similar to certain clauses of [54]. There are
three differences between our components and their clauses. First, we omit some
nodes and edges to obtain a maximum degree of five for all nodes unequal to g7,
I,(gf) and I,(g[) for 1 <i < N. Second, we use different edge weights. However,
the weights are manipulated in a way such that the happiness of each node for
given colors of the corresponding adjacent nodes is the same as in [54]]. Third, we
add nodes that we bias and which we look at. Their purpose is to derive the color
that a comparing node g/ would have in a local optimum. To this color node g is
biased.

is depicted in As in [54] we say that the natural value of the nodes
y{ is 1 and the natural value of the nodes 2 is 0.

Comment checks whether the outputs of the gates represented by the com-
ponents of are correct and gives incentives to nodes of other components
depending on the result. The nodes yy 1,2y, 1,--+>Y5,%5 check the correct compu-
tation of the corresponding gates and give incentives to their corresponding gates
depending on whether the previous gates are correct. The nodes y7', 27, v, 2; are
to give incentives to d°, d' depending on whether all gates are correct. Recall that
the weights of the edges of|Type 4| are the only weights that interleave with weights
of edges of a higher type, namely with those of For further comments, see

comment of

contains the nodes and edges depicted in [Figure 4.7|for 1 <i < m and the nodes
and edges depicted in[Figure 4.8

Comment The aim of the component is twofold. On the one hand it is to incite
that one of the nodes d° and d' to become black for which the output of the
corresponding copy Gg and Gé is smaller and the other one to become white. On

101



Chapter 4 Complexity of Local Max-Cut: Maximum Degree Five

Figure 4.5: The components of 1 <i < N. Extra factor for relative edge weights:
912i-2

the other hand, the edges {1,d°}, {1,d°}, {0,d'} and {0, d'} are to break the tie
in favor of Gg if the outputs of Gg and Gé are equal. For further comments, see

comment of
Type 6 contains nodes and edges as depicted in
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; 12i-2
4i+5 :
2 i+ 4(i-1)+5
24(i+1)+2 24i+5 24i+2 24(i—1)+5.
\ O R VyK b
Yait1 2i 2i-1
912i+6

Figure 4.6: The components of
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1

Figure 4.7: First part of the components of , 1<i<m.

Comment The edges {&f, d*} for 1 <i < n are to ensure that col(d*) # c(&f) for
all i and the edges {1,d"} for 1 <i < n are needed to make d* a comparing node.
For further comments, see comment of

Type 7 is depicted in [Figure 4.10]
Commentis to incite the nodes of the vector A" to take the color correspond-
ing to the better neighbor computed by G¢ if col(d") = 0 and col(w:.fl) = col(w;fz).
On the other hand, if col(d*) = 1 then the component incites the nodes Gi’fl and
Qi’fz to have the opposite color of 1} whereafter a flip of a node wf, j for1<j<2
does not decrease the cut by a weight of For further comments, see
comment of

s K K K K
Type 8 looks for each 1 < i < n at the nodes A}, ON_nti1> AN-nti2r ON—ntil and
ON—n+i o and biases x| as follows. The component computes whether x{ is weakly

Figure 4.8: Second part of the components of
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Type 9

Type 10

104

221‘
K 22i ”
& 2

Figure 4.9: The component of , 1<i<n.

Figure 4.10: The components of , 1<i<n.

indifferent and it computes the color p € {0,1} node x} would have if it were not
weakly indifferent. The component biases x| to p if it is not weakly indifferent
and to the color of A} otherwise.

Comment As we will see in [Lemma 4.4.4, the nodes x| are comparing nodes.
Thus, we have to ensure that in every local optimum P, node x} is guided. For

this purpose, the component of looks at all nodes that are adjacent to x;—
except the constants—and biases it appropriately if it is not weakly indifferent.
However, if it is weakly indifferent then it is biased to the color of AY. As we will
see later, x| is weakly indifferent when the subgraph G is supposed to take the
improving neighbor computed by G? as its input. In this case, the nodes of the
vector A* have the colors corresponding to the improving neighbor. Then the bias
of ensures that, due to the weak indifference of the nodes of x*, the nodes
x* also take the colors corresponding to the improving neighbor.

looks at the vectors x°, x! of nodes representing the inputs of Gg and G1C and at

the vectors A%, A! and biases the vectors y°, 2°, y! and 2! in the following way.
The nodes y?,2? for all 0 < i < 2N + 1 are biased to their unnatural value, as
defined in if C(x%) < c(xY), w(x!) = c(A°) and ¢(A°) # col(x?), and to
their natural value otherwise. Similarly, yil,zi1 are biased to their unnatural value
if C(x%) > C(x1), w(x%) =c(A!) and c(A!) # col(x!), and to their natural value
otherwise.

Comment The comparison between C(x°) and C(x!) is used to decide which
circuit is the winner and which one is the loser, and the consideration of the colors
of the other nodes is to avoid certain troublemaking local optima. The nodes x[
are the only comparing nodes to which a subgraph, namely [Type 9] looks at.

looks at yf, yll and at the vectors x° and x! and biases u° and u! as follows.



Type 11

Type 12

Type 13

Type 14

4.4 PLS-completeness

If C(x%) > C(x!) then it biases u° to the color of y? and u® to the opposite.
Otherwise it biases u' to the color of y{ and u° to the opposite.

Comment The idea behind the components of [Type 10|and Type 11]is as follows. In
any local optimum, we want for the nodes d° and d' at most one to be black. The
natural idea to reach this is to use a simple edge between them in the component
of [Type 2| (see [Figure 4.4)) without the intermediate nodes u° and u'. Recall that
we have to ensure that the comparing node d* is biased to the color that it has in
a local optimum. For this, we need to know the colors of the neighbors adjacent to
d* via the edges of the highest weight, which includes the color of d¥. But biasing
d* analogously needs the information about the color of d¥. To solve this problem,
we introduce the intermediate nodes u° and u?, bias them appropriately and use
their colors to bias d° and d .

looks at u®, u! _yl, y1 and at the vectors x° and x' and biases d°® and d! as
follows. If c(yl) = c(y;) = 0 then d° is biased to the color of u’ and d' to the
color of u®. If ¢( Ne 0y £ ¢( J’1) then d° is biased to the color of y1 and d! to the
opposite. If c(y)) = c(y;) = 1 then we distinguish two cases. If C(x°) > C(x?)
then d° is biased to 0 and d! to 1, otherwise d° to 1 and d! to 0.

Comment See comment of [Type 10

K K K K K K K
looks at yJ. 41 for 1 <i < N and biases al 1 %o yl 1 Yio B; 3 Ti Tio and ¢;

> .
to the color of yzlJrl and [51’1, 1’2,)/1,3, 1’1,01’2, 7'[ 61 1 and 51.’2 to the opposite.

Comment is to bias the nodes of [Type 3| to certain preferred colors
depending on whether y,;  ; has its natural value. If it has its natural value then it
biases the subgraph S to colors which reflect the behavior of a NOR-gate for S¥,
otherwise it biases them such that the input nodes I;(g[) and I5(g[) are indifferent
with respect to their neighbors in S¥.

K K K K K K
looks at J’zl+1:yzl l,a 1 and af io and biases ul 1> Ui 3o Ut sy U 7, U g, UL ¥, to white

and ul 9 14, 16, 18, lg,u 1; to black if c(y2 +1) C(J’zl 1) Otherw1se uf 3

u; P4 u; P75 ul py ul 11 ul 1o are biased to their corresponding opp051te and the biases
of the remaining nodes split into the following cases. Node u’ ;1 is biased to c(af 1)
and u¥ i tO the opposite. Similarly, u i5 s biased to c(a},) and u¥ i O the opposite.
F1na11y, uX iols biased to c(a 2) A c(al 2) and u® i10to the opposite.

Comment The aim of the components of [Type 13|up to [Type 15|is to bias every
comparing node g;* such that it is guided in every local optimum P. To reach this,
we need to know the colors of the nodes adjacent to gK Thus, we introduce—
similarly as in the component of extra nodes uj ;, bias them appropriately,
introduce a component that looks at the nodes u} i and use their colors to bias the
nodes g’ such that they are guided.

looks forall 1 <i <mat y5,_ l,al , and af io and biases u¥ P14 10 c(yy_ l)Ac(al DA
c(af,) and uf,, to the opposite. Sumlarly, it looks for alm+1<i<2m
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Type 15

at yé‘i_l,af’l and af’z and biases uf_m’ls to c(yq_1) A (ﬂc(af’l) Y ﬂc(aif’z)) and

uf_m’w to the opposite—recall that g = g; ., forall 1 <i <m, x € {0, 1}.

Comment See comment of

looks at all nodes of type lower than [Type 15| that are adjacent to g/ with the

3 : K : K — K : K K :
single exception of 07 if g = Wi Namely; it looks at U 47495 U5 4j43 for0<j<2
at a;.(,k and a;.(’k if I (g;)" = (g;) for k € {1,2}, at u:.ilg ifi <m, at u:f_m,w if
m+1 < i < 2m. Furthermore, it looks at A} if g/ = w;.“k, at af, and af,. The
component treats the color of AT as if it were the opposite color of 0} if gf = w’, —
J,

we will see in that c(nf) # c(l?) in any local optimum. Then the

component computes whether g is weakly indifferent and computes the color
p €1{0,1} of its decisive neighbors if it is not weakly indifferent. The component
biases g to p if g/ is not weakly indifferent. If g¥ is weakly indifferent then it
biases g to c(af,) Ac(af,).

Comment See comment of

This finishes the description of G.. For an overview showing which nodes a given type

of component biases see [Table 4.1

Type Biases Condition

8 X; xe{0,1},0<i<n

0 VAR k€{0,1},0<i<2N +1

10 u® k €{0,1}

11 aF <01

11 || % Bl Yie Tik k€{0,1},1<i<N,
Thi T 1 6% 1<j<2,1<k<3

13 ug; Ke{0,1},1<i<N,1<j<12

14 Uy k€{0,1},1<i<N,13<j<16

15 g ke€{0,1},1<i<N

Table 4.1: Relation between types of components and nodes that they bias.

Now we consider the colors of the nodes of G in an arbitrary local optimum. All the
remaining Lemmas are assumed to have an inherent statement “for any local optimum
P”. We call a gate g correct if col(g") = —(col(I,(g])) V col(I5(g[)). The following
Lemmas characterize properties of some components.

Lemma 4.4.3. c(u®) # c(u') and c(nf) # c(kif)for alll1<i<n

Proof Due to the weights of the edges incident to u° and u! and since they are biased
to different colors by [Type 10} in each local optimum at least one of them is unhappy if
both have the same color. Thus, we get c(u®) # c(u?).

The claim c(n¥) # c(lif) follows directly from the weights of the edges incident to

Af—see |Figure 4.10 O
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Lemma 4.4.4. Forall1<i<N, 1<j<n, x €{0,1} the nodes d°,d*, gl and x;.( are
comparing nodes.

Proof. In |Tab1e 4.2| and |Tab1e 4.3| we name all nodes adjacent to d°, d!, g/ and x;f for all
1<i<N,1<j<n,xe€{0,I] and the weights of the corresponding edges. By means
of it can be verified that the nodes d°, d*, g; are comparing.

Now consider the nodes xj’f for 1 < j < n. Our assumption that the edges of [Type 9
and higher are scaled such that each edge of one of these types is by the factor 8- b(4
smaller than any edge of lower type ensures that condition |(iii)| of [Definition 4.3.2|is
satisfied for x*. The remaining properties needed for x to be a comparing node can be
verified by means of [Table 4.3] O

Lemma 4.4.5. For all 1 <i < N we have either col(g}) = 0 or col(g}) = 1 and for all
1 < j < n we have either col(x;?) =0or col(x;f) =1

Proof. We first consider the nodes g/. The nodes n? for g}f = w:.fk and any k € {1,2}
are the only nodes (apart from the constants) adjacent to node g¥ to which m
i.e., the component that biases g, does not look at. From [Lemma 4.4.3, we know that
c(n?) # c(/lif). No node adjacent to g is a comparing node—see [Table 4.2} Moreover,
no node to which the component of looks at is a comparing node. Thus, the
color of the decisive neighbors of gf—should g/ not be weakly indifferent—and the
colors of the nodes to which the component of looks at are uniquely determined
in P. Consequently, the component of correctly decides whether g is weakly
indifferent as presented in the description of and biases it to the opposite color of
its decisive neighbors in this case. Therefore, bn(g[) has the same color as the decisive
neighbors of g which implies that g is guided. Hence, the |Substituting Lemma| (i.e.,
implies that either col(g) =0 or col(gl) = 1.

Now we consider the nodes x}'. No node adjacent to g’ is a comparing node—see
Moreover, no node to which the component of looks at, i.e., the
component that biases x, is a comparing node. Thus, the color of the decisive neighbors
of x{—should x/ not be weakly indifferent—and the colors of the nodes to which
the component of looks at are uniquely determined in P. Consequently, the
component of correctly decides whether x7 is weakly indifferent as presented in
the description of and biases it to the opposite color of its decisive neighbors in
this case. Therefore, bn(x[) has the same color as the decisive neighbors of x|, which
implies that x is guided. Hence, the |Substituting Lemma|implies that either col(x[) = 0
or col(xf) = 1. O

Comment Later in the proof, we also show that either col(d*) =0 or col(d*) =1 for
k € {0,1}.

Lemma 4.4.6 (similar to Claims 5.9.B and 5.10.B in [54]). If col(d*) = 1 then nei-

ther flipping w, nor wy, changes the cut by a weight ofM Type 7} If col(d®) = 0 and
col(wf 1) = col(w 2) then col(wl 1) # ().
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Node || Neighbor | Type | R. Weight | Condition
1
e 2 1
OK 93
1 1
= 2
)
Uj 14 2i ;
qx L 2 1<i<m
Uil 5
) 1
K
w6 2% |1sisn
k
981 7 220 |1<i<m
bn(d¥) | 11 1
Node Condition Neighbor | Type | R. Weight Condition
Uy 912i+7
K
Uis
K
1<i<N Y10 o12i+1
K
Ui
Uig 12i-1
K
Uiz
1 3 12j+9
a¥
(J)’l I(gj) =g
212j+7
2(n+m)+1 0;?1
g~ <i<N 0 912j+5
A O.K
i’z I,(g;) = g
912j+1
K
ar,
1<i<m ,9 22
Uias 5
: 1 2(i—m)
m+1<i<2m « 2
Yi—m,a15
2m+n+1< or,
| < N . .
i=2(m+n) j 7 2 ji=i—2m-—n
2m+1< 9}<1
i<2m+n n}(
bn(gf) | 15 1

Table 4.2: Neighborhood of the nodes d°,d! and gl for1<i <N,k e€{0,1}.
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Proof. The proof uses the following claim.
Claim 4.4.7. If col(d*) = p for p € {0, 1} then c(&lf‘) =pforall<i<n

Proof. There are three edges incident to each node &f as introduced in [Type 6| Namely,

one edge of and two edges of Since the weight of the edge of [Type 6]is
greater than the sum of the weights of all edges of higher type, in particular the two

edges of the claim follows. O

Assume col(d*) = 1. Then, by [Claim 4.4.7, we have c(&“) = 0 for all i. Since

col(d*) = 1, the weights of the five edges incident to 6, depicted in [Figure 4.10{imply

6(91, # c(nY¥). Similarly, we can argue that c(GI’ # c(nK) But then neither a flip of
wi, nor a flip of wf, can change the cut by a weight of W
Now assume col(dK) = 0 and col(w D)= col(w ,)- Due to|Claim 4.4.7| we have
c(dK) =1 for all i. The weights of the edges 1nc1dent to 6, and 67, 1mp1y c(9K1) =1
and c(05,) = 0. Since col(w};) = col(w?,) and c(@“l) ;é c(Gl 5)s node Nt is happy if
and only 1f its color is unequal to the color of wl 1 and W O

Lemma 4.4.8 (similar to Lemma 4.1H in [54]). If c(z;f) = 1 then c(yj’?_l) =0. If
c(y]’.() =0 then c(yl’f) =0and c(z;) =1foralp<j.

Proof. The sum of the weights of the edges {z}’f, y]’f_l} and { y}’f_l, 1} is greater than the
sum of all other edges incident to _y]’f_l. Thus, if c(z}‘) =1 then c(y]’.(_l) = 0. Similarly,
we can argue that c(zl’; )=1if¢( yI’f ) = 0 has its unnatural value. Therefore, the claim
follows by induction. O

Lemma 4.4.9 (similar to Lemma 4.1 in [54]). If g¥ is not correct then c(z5;) = 1.

Proof. The proof uses the following claims.

Claim 4.4.10. If c(z5;) = 0 then c(y5;_;) = 1.

Node || Neighbor | Type | R. Weight | Condition
1 .
» 212]+9
i,1
0 .
oF 212]+7
i1 3 ji=N-n+i
s 0 912j+5
3 K
Oia
1 .
y 912j+1
®i2
bn(x[) 8 1
In(x}) 9 1

Table 4.3: Neighborhood of the nodes x for 1 <i <n, x € {0,1}.
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Proof. Assume c(z3;) = c(y5;_,) = 0. If yJ,_, is biased to black by the component of
then c(y}._,) = 1 since c(z};) = 0, which is a contradiction. Thus, yJ._, is
biased to 0. Since zj; and yj; , are biased to opposite colors by [Type 9 node z5; is
biased to 1. Due to the weight of its incident edges it cannot be white then, but this is a
contradiction. O

Claim 4.4.11. If col(I;(g)) = 1 and col(g) = 1 then c(z5;,) = 1. If col(I5(gf')) =1
and col(g}) =1 then c(z5;) = 1.

Proof. Assume for the sake of contradiction col(I;(g})) =1, col(g]') =1 but c(z5,) =

Claim 4.4.10| implies c(y5;,_,) = 1 since c(z};) = 0. Moreover, [Lemma 4.4.8 1mphes

c(yle) = 1 since c(zy;) = 0. Thus, c(y3;,,) =c(y5_,) and therefore the nodes u® i3 and

uf, are biased to 0 and 1, respectively, by the component of [Type 13| Then c(uf 3) =

and therefore c(uf 4) = 1. Due to col(I;(g})) = 1 we have c(a; i1)=0 and therefore
c¢(Bf;) = 1 which implies c(y},) = 0. Consequently, c(z, ;) = 1 according to the

welghts of the edges incident to c(23;,,) =1 and then c(z};) = 1 due to[Lemma 4.4.8§]

which is a contradiction. The proof for col(I5(g;)) = 1 is analogous. O
Claim 4.4.12. If col(I;(g[)) = O then c(5§<’1) =1. If col(I5(g[)) = O then c(5f’2) =1.

Proof. 1f col(I;(gf)) = 0 then c(o},) = 1 since the edges {Il(gf) o ¥} and {‘71 1,0}
combined weigh more than the sum of all other edges incident to ¥ i1 Due to the werght
of the incident edges, it follows that c(7} 1) =0, then ¢(n}) =1, then c(¢f) =0 and
then c(5’< ) = 1. Similarly, col(I,(g[)) = 0 implies c(5 ,)=1 O

Claim 4.4.13. If col(I,(g[)) = col(I5(g[)) = O then c([3 3)=

Proof. Due to Claim 4.4.12] c(6§1) = 0(552) = 1. Since the sum of the weights of the

edges {[31 35 1 .} and {B;,65,} is greater than the sum of all other edges incident to
~,, the claim follows. O

Claim 4.4.14. Suppose col(I,(g[)) = col(I5(g[)) = col(g) = 0. Then c(z},) = 1.

Proof. Assume for the sake of contradiction c(z5;,) = 0. Then [Lemma 4.4.8| implies

c(¥5;11) = 1 since c(z5;) = 0. Moreover, [Claim 4.4.10 implies c(yy._y) = 1. Thus,

c(¥3i41) = c(y3_,) and therefore the nodes uf i11 and u¥ i1 are biased to 1 and O
respectively, by the component of [T 3l Then c(u )= 1 and therefore c(uf;,) =

But then (Claim 4.4.13|implies c(f;) = 0 whereafter we get c(yl ) =1 Consequently,

c(¥5;) = 0 according to the welghts of the edges incident to yJ; and then c(z5;) =1 due
to|[Lemma 4.4.8| which is a contradiction. Thus, the claim follows. O

If col(I,(gf)) = 1 or col(I5(gf)) = 1 then c(z5;) = 1 follows from If
col(I,(g})) = col(I5(g})) = 0 then c(z3;) = 1 follows from Claim 4.4.14 O
Lemma 4.4.15 (partially similar to Lemma 4.2 in [54]). Ifc(y5; ) = 0then c(af’ D=

c(a:.iz) =0and c(ozl) = c(aﬁz) =1
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Proof. Assume c(y3;, ;) = 0. From Lemma 4.4.8 we know that c(z5; ;) = c(z3;) = 1
and c(y5;) = c(y5;_;) = 0. From the component of Type 12/ node 3, is biased to 1

and y}, is biased to 0. From [Lemma 4.4.8 we know that c(y; ;) = c,(yé(i_l) =0 and

c(2;,1) = c(z5;) = 1. Thus, the nodes u,1 and u:f,B are biased to white and uf,z and qu
to black by the component of

Now we show that c([a’“l) =1 and c(y“l) = 0. Assume first that col(g/) = 0. Then
c(uf,) =1 and c(u} 1) = 0. Thus, c(/3’< ) =1 and therefore c(yf 1) = 0. Now assume
that col(gK) = 1. Then c(ulg) =0 and c(ul4) = 1. Thus, c(yl 1) = 0 and therefore
c(Bf)=1

Slnce c([a’Kl) = 1, node af; must be white since it is biased to white bym Type 12| The
proof for al 1 BE ", and re P is analogous

blases Tt 5f1, 85y 0F1, 0F 5 and i} to black and B

K K
20 Oi1 i3 Ti1 Tipand ¢ to
white. Due to c(y3;,,) = C(J’zl—1) = 0 the nodes uiy and uy i1y are biased to black and
uf o and uj, to white by the component of
Now we show that c(/a’xg) =0and c(ng) = 1. Assume first that c(5K )= c(5K2) =
Then both nodes & Kl and & ;<2 are unhappy Therefore, we may assume that at least
one of them is black. If c([J’K ) = C(le) = 1 then ﬁKB is unhappy. Now assume
c([a’ 3) =c(yf3) =0. Then node Ty 5 s unhappy since c( yzl) = 0 has its unnatural value
due to Now assume c(f3";) = 1 and c(ylg) = 0. If col(g) = 0 then
c(ul ;p)=Tandc ul " 1) =0, which is a contradlctlon since y¥ '3 is unhappy in this case.
But if col(gf)=1 then c(uf 10) =0and c(uf,) = 1, which is also a contradiction since
B3 is unhappy in this case. "Thus, c(B3) = 0 and c(yiz)=1
Slnce c(B3) =0, we get c(6F,) = c(5 ) =1 Then a sequence of implications leads
to c(¢f) = C(Tl 5)=0,c(nf) = c(a 2) 1 c(tf 1) =0 and then c(a =1 O

Lemma 4.4.16 (partially similar to Lemma 4.3 in [54]). Assume that c(y}; ;) = 1
and c(yy;_,) = 0. If g is correct then z;, 25, , and y,; have the colors to which they are
biased by |Type 9} If g} is not correct then flipping g; does not decrease the cut by a weight

of an edge of corresponding to g and increases it by a weight of an edge of [Type 15

Proof. The proof uses the following three claims.

Claim 4.4.17. Assume that c(yy;,,) = 1. Then c(al 1) = —col(I1(gf)) and c(alz) =
—col(Iy(gf)). If, in addition, c(y5,_,) = O then c([a’, ) = col(I;,(gf)) and c([a” ) =
col(I5(g{)).

Proof. If col(1,(g})) = 1 then c(af,) = 0. If, on the other hand, col(I;(g})) = 0 then
c(af’l) =1 since a;il is biased to 1 hy

Now assume additionally c(ys;_,) = 0. If col(I;(g{')) = 1 then c(/a’“l) = 1 since
c(af;)=0. Now assume col(Il(gK)) = 0. Due to c(af,) =1 and since [5K is biased to 0
by , it can only be black if y¥ 1 and uf i are both white. But if y 1 is white then
uf,, must be black since y7, is biased to black bylw If col(gf) =1 then c(uf,) =
and c(ul ;) =1dueto the bias of Type 13l, which is a contradiction. On the other hand,
if col(g;') = 0 then c(u;) = 1 and c(u; ig)=0 due to the bias of | which is also a
contradiction. Thus, c([a’l, )=0

The argumentation for af, and 3, is analogous. O
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Claim 4.4.18. Assume c(ysy;,;) = 1 and c(y5;_;) = 0. Then c(/3 3) = col(I,(gf)) v
col(I5(g;)).

Proof. If an input is white then the corresponding 6} i is black due to(Claim 4.4.12{ Thus,

if both inputs are white then 7, is white.

Now assume that at least one input is black. Assume first I;(g) = 1. Since O'El is
biased to white, we have c(af’l) = 0. Analogously, we get c(rf’l) =1, ¢(n}) =0 and
c(¢;)=1. Node 6} is biased to white by If both nodes 6, and &7, are black
then 6 f , is unhappy. Thus, we may assume that at least one of them is white. Since [J’l.’fs
is biased to 1 by|Type 12} it can only be white if y}'; and uf, are both black. But if v} is

black then uf,, must be white since y{ is biased to white by 2| Then, similarly

as in the proof of[Claim 4.4.17} the bias of[Typ 1mplles that if g7 is white then uf

is black and u¥ i 9 1s white, and if g¥ is blac t en uf i 11 is white and u¥ i 12 is black, each
resulting in a contrad1ct1on Thus, c(B;) = 1.

The case for I,(g[') =1 is, apart from the consideration of the colors of the nodes of
nt and ¢ which are obsolete in this case, analogous. O

Claim 4.4.19. Assume c(ys;.;) = 1 and c(y3;,_,) = 0. If g is correct then c(y"l) =
c(}/l o) =1and c(y} 3) = 0. If g is not correct then at least one of the nodes u® 2, 5 has
the same color as gf, at least one of the nodes u¥ e U » has the same color as gf and at

least one of the nodes ul 100 1’11 has the same color as gl

Proof. Assume first that g is correct. From |Claim 4.4.17| we know that c([a’Kl) =

col(I,(g})). Since g is correct, at least one of the two nodes [J’Kl and g’ is white.
In the following, we show that at least one of the nodes [3K1 and u* P48 white. Then

the bias of [Typ implies that c(y} 1) = 1. The case c([a’Kl) =0is clear Now consider
the case that c =1 and therefore col(g'“) = 0. Then, due to[Claim 4.4.17} we have

c(af;)=0. S1nce g! is white and u} i3 and uX i 4 are biased to 1 and 0, respectively, by
, we have c(uf 3) =1 and c(u 4) = 0. Thus, c(yl 1) = 1. Analogously, we can
argue that yf ', is also black

Now we show that at least one of the nodes B 3 and uf P12 is black. Then the bias of
1mpl1es that c(yl ;) =0. Bywe know that c¢(B);) = col(I;(g})) v
col(I5(g})). Since g} is correct, it has the opposite color of 5. The case c([a’l’fs) =1
is clear. Now assume c([a’i’fB) = 0 and therefore col(g}) = 1. Then C(uliu) =0 and
c(uf,,) =1 since they are biased to 0 and 1, respectively, by Thus, c(y}3) =0

Now assume that g’ is not correct. If col(Il(g")) =1 then c(a® i1)=0 and c([a’ D=1
due to [Claim 4.4.17} Moreover, since g is not correct, we have col(gl) = 1. Then
c(af,) =0 and the biases 0f|W|1mply c(uf,) =0and c(uf,) = 1. If col(I1(g})) =

then c(af 1) =1and c([o’“l) =0 due to[Claim 4.4.17} Since o "is biased to 1 by
we get c(yl 1) = 1. Moreover, since c(aj,) =1 the biases of imply c(uf,) = 1,

c(ul 5) =0, c(uf,) =0and c(uf 3) =1. The proof for c(uf ) and c(u} 7) is analogous

By [Claim 4.4.18| we know that c(Bf3) = col(I1(gF)) v col(Iz(glK)) Since g is not

correct, we have col(g!) = c(B];). We con51der the possible cases for the color of gi* and

i 3- Assume first col(g;") = c(f{3) = 0. Due to|Claim 4.4.17, we have c(a},) = c(af,) =
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1. Then the biases of the component of [Typ imply c(uf,) =1 and c(uf,,) = 0. Thus,
uX i 10 has the same color as gI. Now consider the case col(gK) = C(ﬁKB) =1. Then

c(yl’g) = 0 since it is biased to white by Moreover, c(af,) = 0 or c(af,) =

due to Then the biases of the component of imply c(uf,) =0 and
c(ul 10) = 1 as well as c(uf’lz) =1 and c(uﬁu) = 0. Then we have c(uﬁlo) #* c(u:f’n),
which proves the claim. O

Assume c(yy;, ;) =1 and c(y3;_;) = 0. Assume furthermore that g;* is correct. Then,
due to m we have c(y};) = c(y},) =1 and c(yzg) = 0. Thus, if the nodes
y]’f,z]’? for all j are biased to their natural values by [T’ due to c(ng_l) =1 we get
c(25;,1) =0, c(y3;,) =1 and c(z5;) = 0. If, on the other and the nodes y z for all j
are biased to their unnatural values by”then due to c(y5, ;) =0we get C(Zzl) =1,
c(y3)=0and c(z3; ;) =

Now assume that g is not correct. Then [Claim 4.4.19|implies that flipping g does not
decrease the cut by a weight of [Type 3| corresponding to gI since at least one of the nodes

1 +, and ul 5, at least one of the nodes u} i6 and u7, and at least one of the nodes ul 10 and

u;,, has the opposite color of gF. Flnally, Claim 4.4.17|implies c(af ) = —-col(l (g9)

for1< Jj < 2. Thus, flipping g to its correct color gains a weight of [Typ O

Lemma 4.4.20. Assume col(d*) =1, col(d¥) = 0 and that all nodes ¥zl for 0 <i <
2N + 1 are biased to their natural values by [Type 9| Then c(yy) = 1.

Proof. We show that all gates of G are correct. For the sake of contradiction, we assume
that G contains an incorrect gate and let gi° be the incorrect gate with the highest
index.

We first show by induction that the nodes y zJ for j > 2i+1 and yj; , have their
natural values. Since yy, _ ; is biased to its natural value bym we have c(y5,,,) = 1.
Assume c(y5;,,) = 1forany j > i. If any one of the nodes z;; . ;, ¥ ’sz has its unnatural
value thenimplies c(¥3;_,) =0. Then implies that all nodes
zgj +10 ygj,zj ave their natural values whereafter implies c(y5;,_;) =1
which is a contradiction. Thus, c(ygj +1) = 1 implies c(y; i) =1 for any j > i and
therefore it follows by induction that all nodes yJ’f,z]’f for j > 2i+1 and yj,  , have their
natural values.

Since g7 is incorrect, all nodes y;f,z;f for j < 2i — 1 have their unnatural values due
to [Lemma 4.4.9| and [Lemma 4.4.8] According to flipping g does not
decrease the cut by a weight of [Type 3|corresponding to a node g;.( for which I k(g;.‘) =g
for 1 < k < 2. Due to ﬂ correcting g does not decrease the cut by a
weight of corresponding to gI and gains a weight of In the following,
we distinguish between three cases for the index i and show that g is unhappy in each
of the cases. First, if i > 2n + 2m then there are no edges of [Type 5| or [Type 7|incident
to gi'. Thus, g is unhappy in this case. Second, if 2m + 1 < i < 2n + 2m then there
are no edges of incident to g¥. Due to correcting g¥ does not
decrease the cut by a weight of Third, if i < 2m then there are no edges of
incident to gf. Correcting gI does not decrease the cut by a weight of since due
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to the biases of [Type 14| we have c(uf,,) =0, c(uf,3) =1 fori <mand c(u}_, ;) =1,
c(uf_mJS) =0 for m <i < 2m. Altogether, g¥ is unhappy in each of the three cases,
which is a contradiction. Thus, g/ is correct for all i.

Therefore, all nodes y[, 2 for 1 <i < 2N + 1 have their natural values.

Lemma 4.4.21. Suppose c(y;) = c(u*) =0 and c(u®) = 1. Then col(d*) =1, col(d¥) =
0.

Proof. Independently of the color of yf, node d* is biased to 1 and d* to 0 by
implies c(y4) = 0. Since c¢(u*) = 0 and c(y§) = 0, node yg and its
counterpart, namely the constant 0, are decisive for d*. Therefore, bn(d") has the same
color as the decisive neighbors of d* which implies that implies that d* is guided. Hence,
the [Substituting Lemmal implies col(d") = 1.

Since c(u*) = 1, node u* and its counterpart, namely the constant 1, are decisive for
d¥. Again, bn(d"*) has the same color as the decisive neighbors of d* which implies that
d* is guided whereafter the |Substituting Lemma| implies col(d*) = 0. O

Lemma 4.4.22. Assume c(yy) = c(u®) = 0 and c(yf) = c(u®) = c(yg) = 1. Then
col(d®)=0.

Proof. [Lemma 4.4.8| implies c(z;) = 1 since c(y;) = 0. Node d¥ is biased to 0 by
[!ype 1ll Since c(u¥) =0, c(yg) =1 and c(z{) = 1, node z; and its counterpart, i.e., the
constant 1, are decisive for d*. Therefore, bn(d*) has the same color as the decisive

neighbors of d* which implies that d¥ is guided. Hence, the |Substituting Lemmal implies
col(d®) =0. O

Lemma 4.4.23. If c(y;) = 1 and all y[, 2} are biased to their natural values by
then c(z7) = c(z§) =0and c(y§) = 1.

Proof. Due to c(y;) =1 and since 27 is biased to its natural value, i.e., white, we get
c(z}) = 0. Analogously, we get c(y{) =1 and c(z7) = 0. O

Lemma 4.4.24. Assume col(d*) = 1, col(d¥) = 0. Then all nodes ¥{, 2! are biased to
their natural values by

Proof. Assume for the sake of contradiction that all nodes y,z are biased to their
natural values by [Type 9] At first, we show that all y/,z¥ in fact have their unnatural
values. Since col(d*) = 0, the bias byto the unnatural value implies c(z;) = 1.
Then col(d¥) = 1 together with the bias to the unnatural value imply c( ¥5)=0. Then
c(z}) =1 and therefore c(y;) = 0. If c(y]’f_l) =0 for any 2 < j < 2N + 1 then the bias to
the unnatural value implies c(z;f) = 1. Analogously, if c(z]’f) =1forany2<j<2N+1
then ¢( yj’f ) = 0. Thus, it follows by induction that all y*,z! have their unnatural values.
Now we show that c(A¥) = col(xk).implies clay_pyi)=clay_ o) =
Oand c(oy_,,;1)=cloy_, +i’2) = 1. Therefore, x¥ is weakly indifferent. Then, due to
the bias of node x has the color of AX for all 1 <i < n. Thus, c(1*) = col(x").
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But this is a contradiction to the assumption that all nodes y/,z; are biased to their
unnatural values by Thus, all nodes y,z! are biased to their natural values by

O

Lemma 4.4.25. Assume c(y5,_,) =1 and c(a} ) #col(Ij(gf)) forall1<j<2,1<i<
2m. Then c(ul’14) col(gf) and c(uf ,4) = col(g’()for all 1<i<m.

Proof. Let 1 <i < m be arbitrarily chosen. The nodes g and g are correct due to
Lemma 4.4.9and [Lemma 4.4.8|

Since c(y5. ;) = 1, node uK14 is biased to c(af,) A c(af,) by Thus, it is
biased to black if and only if af i1 and af i, are both black. Since c(af i col(I;(gf)) for
all 1 <j <2and gf is black 1f and only if both I;(g[) and I,(g[) are white, node g
is black if and only if a¥ i1 and af i are both black. Thus, uf i14 18 blased to the color of
g; and uf 4 to the opposite. Then col(gf) # c(uf3) # c(ul 14)—see and
therefore col(gK) = c(ul’14)

Now let m+1 <i <2m be arbitrarily chosen. Since c(y5;_;) = 1, node u}_ 15 is
biased to —c(af,) Vv —c(af 2) by [Typ Thus, it is biased to white if and only if af i1 and
al , are both black Since c(a ) co I i(gf)) forall1 < j <2and gf is black 1fand only
if both I,(gf) and I,(g[) are wh1te node g; is black if and only if af ; and af, are both
black. Thus, it follows that u}_ m1s is biased to the opposite color of g;. Since u;_ m.16 1S
blased to the opposite color of u}_ m.15> We have col(g) # c(uf_ m, 15) 7 c(ul m, 16)—S€ee

and therefore col(gf) = c(u}"_ m, 16)- Since, by definition, gr =gk, forall

1 <i<mwe getc(uf,z) =col(g)forall1 <i<m. O

Now we continue to prove the [Completeness Theorem| Let P be a local optimum in
G¢. From|[Lemma 4.4.3|we know that c(u®) # c(u!). In the following, we consider the
possible cases for the vector c( y?, yll) and distinguish within them, if necessary, between
the two cases for c(u®,u!). For the cases in which at least one of the nodes y? and yll
is white, we show that they cannot occur in local optima, and for the case that both
nodes are black we show that the bitwise complement of the colors of the nodes g? for
N —n+1 <i <N induce a local optimum of C.

c(yf,yll) =(0,0): Due to we have c(y) = c(y}) = 0 and c(z]) =
c(z(l)) =1. Let c(u¥,u*)=(0,1) for k € {0, 1}. Then|Lemma 4.4.21|implies col(d*) =1
and col(d*) = 0. Consequently, |Lemma 4.4.24-| implies that the nodes y[,z are biased

to their natural values by Type 9} But then [Lemma 4.4.20|implies that c(y;) = 1, which
is a contradiction.

c(yi‘,yf) =(0,1) for k € {0,1}: According to we have c¢(y;) =0 and

c(z5) =1

Assume first that c(u*,u*) = (0,1). Then [Lemma 4.4.21|implies col(d*) = 1 and

col(d¥) = 0. Then|Lemma 4.4.24|implies that all nodes y{, %} are biased to their natural
values by [Type 9} But then|Lemma 4.4.20|implies c(y;) = 1, which is a contradiction.
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Now assume c(u®, u*) = (1,0). We first show that c( y§ ) =1 in this case. Assume for
the sake of contradiction that c( yo) = 0. If the nodes y, zf< are biased to their natural
values by |Type 9| then |Lemma 4.4. 23| implies c( yo) =1, wh1ch is a contradiction. If they

are biased to their unnatural values then c(zl) =1 since c(yo) = 0—see
whereafter we get c(y] K) = 0, which is also a contradiction. Thus, c(y )=1. Then
Lemma 4.4.22|implies col(d*) = 0. Now we distinguish between the two possible cases

for k. If k = O then [Type 10| biases u’, independently of whether C(x°) > C(xl) or
C(x%) < C(x1), to 1 since c(yl,yl) = (O 1). But then c(u') = 1 due to col(d! ) =0,

which is a contradiction. On the other hand, if x = 1 then [Type 10| biases u°, also

independently of whether C(x°) > C(x!) or C(x°) < C(x!), to 1 since c(yl,yl) = (1 0).

But then c¢(u®) = 1 due to col(d®) = 0, which is also a contradiction.

c(yl,y )=(1,1): Then |Lemrna 4.4.9| and |Lernma 4.4.8| together imply that y[,z
have their natural values for all x € {0,1},2 <i < 2N +1 and all gates in Gg and Gé are
correct. Therefore, we have col(g[) # col(gF) forall1 <i <N, kx € {0,1}.
implies c(af’j) #col(I(gf)) forall1<i<N,1<j<2and« €{0,1}.

In the following, we consider the two cases C(x*) > C(x¥) for some x € {0,1} and
C(x%) = C(x!). We show that the first case cannot occur and that in the second case
the colors of the nodes of x° induce a local optimum for C. Within the two cases,
we argue about the color of the nodes d* for k € {0,1}. No node adjacent to d* is
a comparing node—see [Table 4.2}—and therefore the colors of its adjacent nodes are
uniquely determined. Due to the two constants of adjacent to d*, node d* is not
weakly indifferent. Thus, to show that col(d*) = p for p € {0, 1}, it suffices to show
that the color of the decisive neighbors of d* is p and that the component of [Type 11]
biases d* to p. Then bn(d*) has the same color as the decisive neighbors of d*, which

implies that d* is guided whereafter the [Substituting Lemmal (i.e., [Lemma 4.3.3)) implies
col(d¥)=p

e Case C(x*) > C(x*) for some k € {0, 1}:

Since all gates of G and G, are correct, there is an index 1 < i < m such that
col(gK) = col(g?) for all i < j < m and col(gf) = 1, col(gf) = 0. We let
1 <i < m be this index. Since col(g] ) # col(g;‘) and col(g;() #+ col(gJK) for all
1 <j < m, we have col(gl’() # col(gJ ), col(g] ) # col(g;() foralli < j <m and
col(gl) = col(gf) =1, col(g]) = col(g?) = 0. Then, since c(yfj_l) = c(ygj_l) =
1 for all 1 <j < 2m,|[Lemma 4.4.25[implies c(u;H) #+ c(ufm) c(ufm) # c(uim)
foralli <j<mand c(uf 14) c(ul 16) =1, c(ul 16) = c(ul 14) = 0. [Type 9| biases
the nodes _y] z% ] for all j to their natural values. Thus, [Lemma 4.4.23 implies
c(y5)=1and c(z;5) =

In the following, we first show col(d*) = 0 by naming the decisive neighbors of
d* and showing that their color is black—for an overview of the nodes adjacent

to d* see [Table 4.2] We distinguish three cases. First, if c(u*) = 1 then u* and
its counterpart, i.e., the constant 1, are decisive for d*. Second, if c(u*) = 0 and
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c(zg) = 1 then neither u* and its counterpart nor yj—which is black—and its
counterpart are decisive. Instead, zg and its counterpart, i.e., the constant 1, are
decisive. Third, if c(u*) = 0 and c(zg) = 0 then the node zg and its counterpart
are also not decisive—besides the nodes u* and y; and their corresponding
counterparts. Moreover, due to c(u}il D F c(ufl()) for all i < j < m, the nodes
u}il 4 and their counterparts uim for all i < j < m are also not decisive. But the
two nodes uf’l 4 and ufm—which are both black—are decisive for d*. In all three
cases the decisive neighbors of d* are black. Thus, col(d*) = 0. By

node d* is biased to 0. Then the bias of implies due to col(d*) = O that
c(u®,u*)=(1,0).

Now we show that col(d*) = 1. Due to c(u*) = 0 node c(u*) and its counterpart,
i.e., the constant 1, are not decisive for d*. We distinguish two cases. First, if
c( yg ) =0 then yg and its counterpart, i.e., the constant 0, are decisive. Second, if
c( yg ) =1 then due to c(zf) = 0 the nodes u®, yg and z{ and their corresponding

counterparts are not decisive. Furthermore, due to c(u}"m) # c(u}f’ 14) for all

i < j <m, the nodes u}f16 and their counterparts ufl 4 foralli < j < mare also not
decisive. Thus, the two nodes uflé and ul.f1 4—Wwhich are both white—are decisive
for d*. In both cases the decisive neighbors of d* are white. Thus, col(d¥) = 1. By

Type 11|node d* is biased to 1.

Since all gates of G}, are correct, we have w(x*) = col(w}) = col(w5).
and together imply that col(w}) = col(w}) = ¢(A*) and therefore
w(x*) = c(A%). If c¢(A¥) # col(x*) then the nodes y?, zf are biased to their
unnatural values by[Type 9| But|[Lemma 4.4.24|implies that they are biased to their
natural values, which is a contradiction. Thus, we in fact have c¢(A¥) = col(x¥)
and therefore w(x*) = col(x*), but this is a contradiction to the assumption that
C(x*) > C(x™).

C(x®)=c(xY:

Since all gates of G and G? are correct, we have col(g?) = col(gl.l) for all
1 <i < m. Since col(g?) # col(g?) and col(g}) # col(g}) forall 1 <i < m,
we have col(g?) # col(gil), col(gio) # col(gil) for all 1 < i < m. Then, since
c(ygj_l) = c(yzlj_l) =1forall 1 <j < 2m, |[Lemma 4.4.25| implies c(u?,M) #

c(uil,w), c(ugm) # c(uil’14) for all 1 <i < m. [Type 9|biases all nodes y?,z? to their

natural values. Thus, [Lemma 4.4.23|implies c(yg) = 1 and c(z]) = 0.

In the following, we first show col(d®) = 0 by naming the decisive neighbors of
d° and showing that their color is black—for an overview of the nodes adjacent
to d° see We distinguish three cases. First, if c(u®) = 1 then u® and
its counterpart, i.e., the constant 1, are decisive for d°. Second, if c(u®) = 0 and
c(z&) = 1 then due to c(yg) = 1 the nodes u° and yg and their corresponding
counterparts are not decisive. Thus, node zé and its counterpart, i.e., the constant
1, are decisive. Third, if c(u®) =0, c(zé) =0 then zé and its counterpart are also
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not decisive—besides the nodes u°® and yg and their corresponding counterparts.
Moreover, due to c(uf,,) # c(uj ) for all 1 < i < m, the nodes u),, and their
counterparts ul.l16 for all 1 <i < m are also not decisive. Then the neighbors of

[Type 5| representing the constant 1 adjacent to d° via edges of relative weight 1 are
decisive for d°. In each of the above cases the decisive neighbors of d° are black.
Thus, col(d®) = 0. By[Type 11|node d° is biased to 0. Then, due to col(d®) =0,

the bias of [Type 10|implies c(u®,u') = (1,0).

Now we show that col(d') = 1. Since c(u!) = 0, node u! and its counterpart, i.e.,
the constant 1, are not decisive. We distinguish two cases. First, if c( yé) =0 then
y& and its counterpart, i.e., the constant 0, are decisive. Second, if c( y&) =1 then
due to c(zg ) =0 the node 28 and its counterpart, i.e., the constant 1, are also not
decisive—besides u'! and yé and their corresponding counterparts. Furthermore,
due to c(uglé) # c(uil,M) for all 1 < j < m, the nodes u?’m and their counterparts

uil1 4 forall 1 < j < m are also not decisive. Thus, the neighbors of

representing the constant 0 adjacent to d! via edges of relative weight 1 are
decisive for d!. In both cases the decisive neighbors of d' are white. Thus,

col(d') = 1. By|Type 11{node d* is biased to 1.

Since all gates of G? are correct, we have w(x?) = col(w?) = col(wg). Then,
[Lemma 4.4.3| and [Lemma 4.4.6| together imply that col(w?) = col(w3) = c(A1)
and therefore w(x?) = c(AD). If c(A!) # col(x?) then the nodes yil,:zi1 are biased
to their unnatural values by But implies that they are
biased to their natural values, which is a contradiction. Thus, we in fact have
c(A1) = col(x!) and therefore w(x®) = col(w?) = col(w3) = col(x). Due to our
assumption that C returns its input as better neighbor if and only if the input is a
local optimum, the colors of x° induce a local optimum of C. O




Chapter 5

Impact of the Results on Other Problems

In this section, we discuss three problems on which our results have direct impact due
to PLS-reductions from the literature that are based on LocaLMax-Cut. For this, we
make use of the following result essentially equivalent to Lemma 3.3 of Schaffer and
Yannakakis| [[54]:

Theorem 5.0.1 ([54]]). Let I1 and IT’ be problems in PLS and let ®, ¥ define a tight
PLS-reduction from II to T’. Then the following properties are satisfied:

i) If P has the all-exp property then I1' has the all-exp property.

ii) If the STANDARDALGORITHMPROBLEM is PSPACE-complete for I1 then it is also PSPACE-
complete for T1'.

The direct impact of our results is always due to the following two properties of the
PLS-reductions:

e They are tight.

e They preserve the degree of the LocaALMax-CUT instance in some sense.

5.1 Max-2SAT with FLIP-neighborhood

An instance of LocALMAX-2SAT is a Boolean SAT-formula in conjunctive normal form
with weighted clauses containing at most two literals. A solution is an assignment of
truth values to the variables and the objective is to maximize the sum of the weights of
the satisfied clauses. The neighborhood of a solution contains all solutions in which the
value of exactly one variable is switched.

Schaffer and Yannakakis| [54]] show that LocALMax-2SAT is PLS-complete by reducing
from LocAaLMax-Cut. They introduce for each node u € V of a given instance G = (V, E)
of LocALMAX-CuUT a variable ii and for each edge {u,v} € E for v € V two clauses (ii V 7)
and (i vV 7), where the two clauses have the same weight as the edge {u,v}. Then
they show that a local optimum in the resulting Boolean formula corresponds to a
local optimum in the LocaLMax-Cur instance. Since their reduction is tight and each
variable occurs twice as often in the resulting formula as the corresponding node in the
LocaLMax-Cut instance has incident edges, we obtain the following results from the
[ATl-Exp Theorem| (i.e., Theorem 3.6.1)), the SAPPSC Theorem| (i.e., Theorem 3.7.1) and
the [Completeness Theorem| (i.e., [Theorem 4.4.2]).
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Theorem 5.1.1. For the LocALMAX-2SAT(i) problem, arising from LoCALMAX-2SAT by
restricting the inputs such that each variable occurs in at most i € N clauses, the following
complexity results hold: LocaLMAX-2SAT(8) has the all-exp property, its corresponding SAP
is PSPACE-complete, and LocaLMax-2SAT(10) is PLS-complete.

5.2 Congestion Games

A congestion game [[52]] is a tuple (N, E, (S;)ien, (de)ecr), Where N = {1,...,n} is the set
of players, E = {1,...,m} is the set of resources, S; C 2F is the set of strategies of player
i and d, : N — Z is the delay function of resource e. Let s := (sq,...,s,) withs; €S, be a
state and let f;(e) :=|{i : e €s;}| be the congestion of resource e in s. The private cost of
a player i in state s is defined by ¢;(s) := ZeESi d,(f;(e)). The problem is to find a pure
Nash equilibrium, i.e., a state in which the private cost of each player does not decrease
if the player unilaterally deviates from its strategy.

Fabrikant et al.| [[20]] showed PLS-complexity for the problem of finding a Nash equi-
librium in congestion games via reduction from a problem called PosNAE3SAT [54],
which is essentially very similar to LocaLMax-Cut—in fact, Schaffer and Yannakakis
[54]] showed that they can easily be reduced to each other. Ackermann et al.| [3]] in-
troduced a subclass of congestion games called threshold games as a vehicle to prove
PLS-completeness for the computation of Nash equilibria in congestion games. In thresh-
old games, each player i has exactly two strategies. One strategy contains a single
resource e; which is not an element of any other strategy (including the strategies of the
other players). The other strategy is a subset of the set of resources E not containing
e; for any player i. Moreover, in threshold games no resource is an element of more
than two strategies. The authors show that the computation of Nash equilibria in thresh-
old games is PLS-complete via reduction from LocALMax-CuT. In their reduction they
construct a threshold game I' in which every node v of the LocaALMAx-CuUT instance G
corresponds to a player i in I" such that no strategy of S; consists of more resources than
there are edges incident to v in G. Due to the tightness of their reduction the
[Theorem), the [SAPPSC Theorem|and the [Completeness Theorem| cause the following
result.

Theorem 5.2.1. For the problem CoNGNasH(i) of computing a Nash equilibrium in con-
gestion games in which every strategy contains at most i € N resources, the following
complexity results hold: CONGNASH(4) has the all-exp property, its corresponding SAP is
PSPACE-complete, and CoNGNasH(5) is PLS-complete.

5.3 Partitioning with SWAP-neighborhood

An instance for the problem ParTITIONING [30] is a graph G = (V, E) with weighted edges
and maximum degree i € N and an even number of vertices. A feasible solution is a
partition of V into two sets V;, V, of equal size. In the neighborhood of a solution s are
all solutions that can be obtained from s by exchanging one node in V; by one node in
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V,. The objective is the weight of the cut and the goal is to minimize or to maximize the
objective (Johnson et al.| [30] note that the two alternatives are equivalent).

Schaffer and Yannakakis [[54] prove the PLS-completeness of PARTITIONING by means
of a reduction from LocaLMax-CuT. From an instance G of LocaLMax-CuT they construct
a graph G’ for which deg(G’) = deg(G) + 1. Since their reduction is tight, due to the
[All-Exp Theorem)| the [SAPPSC Theorem|and the [Completeness Theorem|we get:

Theorem 5.3.1. For the problem PARTITIONING(i) arising from PARTITIONING by restricting
the input graphs to maximum degree i € N, we have the following properties: PARTITIONING(5)
has the all-exp property, its corresponding SAP is PSPACE-complete and PARTITIONING(6) is
PLS-complete.
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Chapter 6
Conclusion and Open Problems

It was known that LocaLMax-Cut is hard in general. It was also known that it becomes
easy if the input is restricted to cubic graphs. However, the border lines of its complexity
were unknown. In this thesis, we have shown that LocaALMAax-CuT already becomes hard
for graphs with very small degree.

For graphs with nodes of maximum degree four with what we call Types I and III (for
a formal definition, see [Definition 3.2.1), we have shown that LocALMax-Cur is already
P-hard. It would be interesting to know whether a local optimum can be computed in
polynomial time for such graphs. Then the problem would become P-complete.

In contrast to cubic graphs, where the local search approach always leads to a local
optimum in a quadratic number of steps, we could show that LocaALMAx-CuT has the
is-exp property for graphs with nodes of Type I and III. However, our instances and initial
solutions allow very short sequences of improving steps that lead to a local optimum. It
remains open whether LocALMAx-CuT has the all-exp property for graphs with nodes of
Type I and III.

The enforcing technique that we have developed in this thesis extends graphs and
initial solutions by further nodes and edges according to some given generalized pivot
rule. For the resulting graph and initial partition, we get for every sequence s of
improving steps starting at the initial partition the following property. If one deletes
from s the steps of the nodes that are added by the extension, one obtains the sequence
induced by the pivot rule in the original graph. Our technique turned out to be powerful
enough to easily deduce the all-exp property and the PSPACE-completeness of the
STANDARDALGORITHMPROBLEM (SAP) for LocaLMax-CuT on graphs with maximum degree
four: Having the enforcing technique available, we could achieve these two results, in
essence, by merely designing a generalized pivot rule that is polynomial-time computable
and induces the desired behavior. In this respect, the enforcing technique has proven
to be a very helpful tool for showing complexity results, in particular, as in our case, to
construct worst case instances or reductions. Since it was designed by means of nodes of
degree four and since there are only quadratically many improving steps possible for
cubic graphs, our technique and the complexity results derived from it may be helpful to
shed light on border lines of hardness results in other problems.

For graphs with maximum degree five, we have shown PLS-completeness for LocALMAX-
Curt. This result restricts the possibility for the minimum degree for which LocaLMax-CuT
is PLS-complete to either four or five (unless PLS C P). Thus, the naturally remaining
questions concern the complexity of LocaLMax-CuT on graphs with maximum degree
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four. Is it in P? Is it PLS-complete? Is it neither of the two?

Via existing tight PLS-reductions in the literature we have directly transferred our
results to other problems and strengthened the previously known borders of hardness in
these problems. One of the most important local search problems is the TRAVELLINGSALES-
MANPROBLEM (TSP) with k-opt neighborhood. Via a PLS-reduction from LocALMax-CuT
to the TSP that transfers the degree of the instance of LocaLMax-CuT to the size of
the neighborhood of the TSP, one might get closer to borders of complexity properties.
In particular, one could get closer to the minimum d € N for which TSP with d-opt
neighborhood is PLS-complete, the minimum for which it has the all-exp property, and
the minimum for which its corresponding SAP is PSPACE-complete.

124



Bibliography

Note: Each entry is followed by a list of the pages from which there was a reference to
that entry.

[1]

[2]

[10]

E. Aarts and J. Lenstra. Local Search in Combinatorial Optimization. Princeton
University Press, 2003. —

E. H. L. Aarts, J. Korst, and W. Michiels. Theoretical Aspects of Local Search. Springer,
2007. — 2} 9

H. Ackermann, H. Roéglin, and B. Vocking. On the impact of combinatorial struc-
ture on congestion games. J. ACM, 55(6):1-22, 2008. DOI: 10.1145/1455248.

1455249, — [5} [T} [T20)

I. Adler, R. M. Karp, and R. Shamir. A simplex variant solving an m X d linear
program in O(min(m?, d?)) expected number of pivot steps. Journal of Complexity,
3(4):372-387, 1987. DOI: |10.1016/0885-064X (87)90007-0. — E]

E. Angel. A survey of approximation results for local search algorithms. In Efficient
Approximation and Online Algorithms, volume 3484 of LNCS, pages 30-73. Springer,
2006. DOI:10.1007/11671541 2, —

S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009. —

D. Arthur, B. Manthey, and H. Roglin. Smoothed analysis of the k-means method.
Journal of the ACM, 58(5), 2011. DOI: 10.1145/2027216.2027217. —

E Barahona, M. Grotschel, M. Jiinger, and G. Reinelt. An application of combi-
natorial optimization to statistical physics and circuit layout design. Operations
Research, 36(3):493-513, 1988. URL: http://www. jstor.org/stable/170992,
— [l

R. E. Bixby. Solving real-world linear programs: A decade and more of progress.
Operations Research, 50(1):3-15, 2002. URL: http://www. jstor.org/stable/
3088443. —

K. H. Borgwardt. Mathematical Developments Arising from Linear Programming,
volume 114 of Contemporary Mathematics, chapter Probabilistic Analysis of Simplex
Algorithms, pages 21-34. American Mathematical Society, 1990. — 9]

125


http://dx.doi.org/10.1145/1455248.1455249
http://dx.doi.org/10.1145/1455248.1455249
http://dx.doi.org/10.1016/0885-064X(87)90007-0
http://dx.doi.org/10.1007/11671541_2
http://dx.doi.org/10.1145/2027216.2027217
http://www.jstor.org/stable/170992
http://www.jstor.org/stable/3088443
http://www.jstor.org/stable/3088443

Bibliography

[11]

[12]

[13]

[14]

126

B. Chandra, H. J. Karloff, and C. A. Tovey. New results on the old k-opt algorithm
for the traveling salesman problem. SIAM Journal on Computing Computing, 28(6):
1998-2029, 1999. DOI: [10.1137/50097539793251244. — [3|[9]

P. Crescenzi, R. Silvestri, and L. Trevisan. On weighted vs unweighted versions
of combinatorial optimization problems. Information and Computation, 167(1):
10-26, 2001. DOI:|10.1006/inco.2000.3011. —[9]

G. Dantzig. Programming in linear structure. Technical report, U.S. Air Force,
Washington, D.C., 1948. —

R. O. Duda, P E. Hart, and D. G. Stork. Pattern Classification. John Wiley & Sons,
Inc., 2000. —[2 4]

D. Dumrauf. On the Hardness of Computing Local Optima. PhD thesis, University of
Paderborn, 2011. —

D. Dumrauf and B. Monien. On the pls-complexity of maximum constraint
assignment. submitted, 2008. URL: http://homepages.uni-paderborn.de/
dumrauf/MCA.pdf. — [I0]

J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency
for network flow problems. Journal of the ACM (JACM), 19(2):248-264, 1972.
DOI:/10.1145/321694.321699. —[9]

R. Elsésser and T. Tscheuschner. Settling the complexity of local max-cut (almost)
completely. In Proceedings of the 38th International Colloquium on Automata,
Languages and Programming (ICALP), volume 6755 of LNCS, pages 171-182.
Springer, 2011. DOI: [10.1007/978-3-642-22006-7_15. — [8}[10]

M. Englert, H. R6glin, and B. Vocking. Worst case and probabilistic analysis of
the 2-opt algorithm for the TSP. Electronic Colloquium on Computational Com-
plexity (ECCC), 13(092), 2006. URL: http://doi.acm.org/10.1145/1283383 |
1283522. —[3}[I0]

A. Fabrikant, C. H. Papadimitriou, and K. Talwar. The complexity of pure nash
equilibria. In Proceedings of the thirty-sixth annual ACM symposium on Theory of
computing (STOC), pages 604-612, 2004. DOI:|10.1145/1007352.1007445. —

[T} [120]

P Floreen and P Orponen. Complexity issues in discrete hopfield networks. Techni-
cal Report NC-TR-94-009, Neuro-COLT, October 1994. URL: http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.53.2598, —

O. Friedmann, T. Hansen, and U. Zwick. Subexponential lower bounds for ran-
domized pivoting rules for the simplex algorithm. In Proceedings of the 43rd
annual ACM symposium on Theory of computing, pages 283-292. ACM, 2011. DOI:
10.1145/1993636.1993675. —


http://dx.doi.org/10.1137/S0097539793251244
http://dx.doi.org/10.1006/inco.2000.3011
http://homepages.uni-paderborn.de/dumrauf/MCA.pdf
http://homepages.uni-paderborn.de/dumrauf/MCA.pdf
http://dx.doi.org/10.1145/321694.321699
http://dx.doi.org/10.1007/978-3-642-22006-7_15
http://doi.acm.org/10.1145/1283383.1283522
http://doi.acm.org/10.1145/1283383.1283522
http://dx.doi.org/10.1145/1007352.1007445
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.2598
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.2598
http://dx.doi.org/10.1145/1993636.1993675

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

Bibliography

M. Garey and D. Johnson. Some simplifiednp-completegraphproblems. Theoretical
Computer Science, 1(3):237-267, 1976. DOI:|10.1016/0304-3975(76)90059-1.
—

M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory
of NP-Completeness. Mathematical Sciences Series. W. H. Freeman & Co., New York,
1990. —

M. X. Goemans and D. P Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal
of the ACM (JACM), 42(6):1115-1145, 1995. DOI: 10.1145/227683.227684. —
Ol

A. Haken. Connectionist networks that need exponential time to stabilize. Technical
report, University of Toronto, Canada, 1989. —

A. Haken and M. Luby. Steepest descent can take exponential time for symmetric
connection networks. Complex Systems, 2(2):191-196, 1988. URL: https://www.
complex-systems.com/pdf/02-2-3.pdf. —

A. K. Jain, M. N. Murty, and P J. Flynn. Data clustering: A review. ACM Computing
Surveys (CSUR), 31(3):264-323, 1999. DOI: 10.1145/331499.331504. —>

D. S. Johnson and L. A. McGeoch. The Traveling Salesman Problem: A Case
Study. In E. H. L. Aarts and J. K. Lenstra, editors, Local Search in Combinatorial
Optimization, pages 215-310. Wiley and Sons, New York, 1997. —

D. S. Johnson, C. H. Papadimtriou, and M. Yannakakis. How easy is local search?
Journal of Computer and System Science, 37(1):79-100, 1988. DOI: |10.1016/

0022-0000(88)90046-3. — [ [} 20|

G. Kalai. A subexponential randomized simplex algorithm. In Proceedings of the
Twenty Fourth Annual ACM Symposium on Theory of Computing (STOC), pages
475-482. ACM, 1992. DOI:10.1145/129712.129759. —[3| (4]

G. Kalai and D. Kleitman. A quasi-polynomial bound for the diam-
eter of graphs of polyhedra. American Mathematical Society, 26(2):
315-316, 1992. URL: http://www.ams.org/journals/bull/1992-26-02/
S0273-0979-1992-00285-9/S0273-0979-1992-00285-9.pdf. —

N. Karmarkar. A new polynomial-time algorithm for linear programming. In
Proceedings of the sixteenth annual ACM symposium on Theory of computing (STOC),
volume 4, pages 302-311. ACM, 1984. DOI:|10.1145/800057 .808695. —

R. M. Karp. Reducibility among combinatorial problems. In R. Miller and
J. Thatcher, editors, Complexity of Computer Computations, pages 85-103. Plenum
Press, New York, 1972. DOI: 10.1007/978-3-540-68279-0_8. —

127


http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://dx.doi.org/10.1145/227683.227684
https://www.complex-systems.com/pdf/02-2-3.pdf
https://www.complex-systems.com/pdf/02-2-3.pdf
http://dx.doi.org/10.1145/331499.331504
http://dx.doi.org/10.1016/0022-0000(88)90046-3
http://dx.doi.org/10.1016/0022-0000(88)90046-3
http://dx.doi.org/10.1145/129712.129759
http://www.ams.org/journals/bull/1992-26-02/S0273-0979-1992-00285-9/S0273-0979-1992-00285-9.pdf
http://www.ams.org/journals/bull/1992-26-02/S0273-0979-1992-00285-9/S0273-0979-1992-00285-9.pdf
http://dx.doi.org/10.1145/800057.808695
http://dx.doi.org/10.1007/978-3-540-68279-0_8

Bibliography

[35]

[36]

128

L. Khachiyan. A polynomial algorithm in linear programming. Doklady Akademia
Nauk SSSR, pages 1093-1096, 1979. —

S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability
results for max-cut and other two-variable csps. In Proceedings of the 45th IEEE
Symposium on Foundations of Computer Science, pages 146-154, 2004. DOI:
10.1109/F0CS.2004.49. —[9]

V. Klee and P Kleinschmidt. The d-step conjecture and its relatives. Mathematics
of Operations Research, 12(4):718-755, 1987. URL: http://www.jstor.org/
stable/10.2307/3689926. —[3]

V. Klee and G. Minty. How good is the simplex algorithm? Inequalities, 3:159-175,
1972. —

M. W. Krentel. Structure in locally optimal solutions. In Proceedings of the 30th
Annual Syposium on Foundations of Computer Science (FOCS), pages 216-221. IEEE,
1989. DOI: [10.1109/SFCS. 1989 .63481. — [8[10,[08]

M. W, Krentel. On finding and verifying locally optimal solutions. SIAM Journal on
Computing, 19(4):742-749, 1990. DOI:10.1137/0219052. —[10|

R. Ladner. The circuit value problem is log space complete for P. SIGACT News, 7
(1):18-20, 1975. DOI:|10.1145/990518.990519. —

M. Loebl. Efficient maximal cubic graph cuts. In Proceedings of the International
Colloquium on Automata, Languages and Programming (ICALP), volume 510 of
LNCS, pages 351-362. Springer, 1991. DOI: |10.1007/3-540-54233-7_147. —

B o

G. S. Lueker. Unpublished manuscript. Princeton University, Princeton, NJ, 1975.

—[3

J. Matousek, M. Sharir, and E. Welzl. A subexponential bound for linear pro-
gramming. Algorithmica, 16(4/5):498-516, October / November 1996. DOI:
10.1007/BF01940877. —[3]

D. Monderer and L. S. Shapley. Potential games. Games and Economic Behavior, 14
(1):124-143, 1995. DOI: [10.1006/game . 1996 .0044. —[1]]

B. Monien and T. Tscheuschner. On the power of nodes of degree four in the local
max-cut problem. In Proceedings of the 7th International Conference on Algorithms
and Complexity, Rome, Italy, volume 6078 of LNCS, pages 264-275. Springer, 2010.
DOI:/10.1007/978-3-642-13073-1_24. —

B. Monien, D. Dumrauf, and T. Tscheuschner. Local search: simple, successful,
but sometimes sluggish. In Proceedings of the 37th International Colloquium on
Automata, Languages and Programming (ICALP), number 6198 in LNCS, pages
1-17. Springer, 2010. DOI:10.1007/978-3-642-14165-2_1. — 2 [§|


http://dx.doi.org/10.1109/FOCS.2004.49
http://www.jstor.org/stable/10.2307/3689926
http://www.jstor.org/stable/10.2307/3689926
http://dx.doi.org/10.1109/SFCS.1989.63481
http://dx.doi.org/10.1137/0219052
http://dx.doi.org/10.1145/990518.990519
http://dx.doi.org/10.1007/3-540-54233-7_147
http://dx.doi.org/10.1007/BF01940877
http://dx.doi.org/10.1006/game.1996.0044
http://dx.doi.org/10.1007/978-3-642-13073-1_24
http://dx.doi.org/10.1007/978-3-642-14165-2_1

(48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

Bibliography

J. B. Orlin, A. P Punnen, and A. S. Schulz. Approximate local search in combinato-
rial optimization. In Proceedings of the fifteenth annual ACM-SIAM symposium on
Discrete algorithms (SODA), pages 587-596. SIAM, 2004. — [9]

S. Poljak. Integer linear programs and local search for max-cut. SIAM Journal on
Computing, 24(4):822-839, 1995. DOI:|10.1137/50097539793245350. —[5] [7}

ol 27

S. Poljak and Z. Tuza. Maximum cuts and largest bipartite subgraphs. In Combina-
torial Optimization, pages 181-244. American Mathematical Society, Providence,
RI, 1995. —[5

G. Reinelt. TSPLIB - a traveling salesman problem library. INFORMS Journal on
Computing, 3(4):376-384, 1991. DOI:[10.1287/ijoc.3.4.376, — 3]

R. W. Rosenthal. A class of games possessing pure-strategy nash equilibria. Inter-
national Journal of Game Theory, 2:65-67, 1973. DOI: |10.1007/BF01737559. —

10} [T20]
C. H. Roth Jr. Fundamentals of logic design. Brooks/Cole Pub Co, 2009. —

A. A. Schiffer and M. Yannakakis. Simple local search problems that are hard to
solve. SIAM Journal on Computing, 20(1):56-87, 1991. DOI: 10.1137/0220004.

— (4 5} [7, 8} [10} [14, 93} [98 [10T}, [107} 109} [T10} [T11} [119} [120} [121]

S. Smale. On the average number of steps in the simplex method of linear
programming. Mathematical Programming, 27:241-262, 1983. DOI: |10.1007/
BF02591902. —

R. Solis-Oba. Local search. In T. E Gonzalez, editor, Handbook of Approximation
Algorithms and Metaheuristics. Chapman & Hall/CRC, 2007. — [9]

D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM, 51(3):385-463,
2004. DOI:[10.1145/990308.990310. —[9]

M. Todd. The many facets of linear programming. Mathematical Programming, 91
(3):417-436, 2001. DOI: 10.1007/s101070100261. —

A. Vattani. k-means requires exponentially many iterations even in the plane. In
Proceedings of the 25th ACM Symposium on Computational Geometry (SCG), pages
324-332, 2009. DOI: 10.1145/1542362.1542419, —

M. Yannakakis. Node-and edge-deletion np-complete problems. In Proceedings of
the tenth annual ACM symposium on Theory of computing (STOC), pages 253-264.
ACM, 1978. DOI:|10.1145/800133.804355. —[9]

129


http://dx.doi.org/10.1137/S0097539793245350
http://dx.doi.org/10.1287/ijoc.3.4.376
http://dx.doi.org/10.1007/BF01737559
http://dx.doi.org/10.1137/0220004
http://dx.doi.org/10.1007/BF02591902
http://dx.doi.org/10.1007/BF02591902
http://dx.doi.org/10.1145/990308.990310
http://dx.doi.org/10.1007/s101070100261
http://dx.doi.org/10.1145/1542362.1542419
http://dx.doi.org/10.1145/800133.804355

Bibliography

[61] M. Yannakakis. The analysis of local search problems and their heuristics. In
Proceedings of the 7th Annual Symposium on Theoretical Aspects of Computer Science
(STACS), volume 415 of LNCS, pages 298-311. Springer, 1990. DOI: 10.1007/
3-540-52282-4_52| —>E]

[62] M. Yannakakis. Equilibria, fixed points, and complexity classes. Computer Science
Review, 3(2):71-85, 2009. DOI:[10.1016/j . cosrev.2009.03.004. —[9]

130


http://dx.doi.org/10.1007/3-540-52282-4_52
http://dx.doi.org/10.1007/3-540-52282-4_52
http://dx.doi.org/10.1016/j.cosrev.2009.03.004

	Introduction
	Local search
	Contribution of This Thesis
	Further Related Work

	Preliminaries
	Basic Notations
	Local Search
	Local Max-Cut
	Boolean Circuits and Boolean Formulas

	Complexity of Local Max-Cut: Maximum Degree Four
	Overview of Contribution
	Basic Properties of Nodes with Maximum Degree Four
	P-hardness for Graphs with Nodes of Type I and III
	Is-Exp Property for Graphs with Nodes of Type I and III
	Enforcing Technique for Graphs with Nodes of Type I, II and III
	Basic Subgraphs
	Combining the Subgraphs
	Enforcing Pivot-Rules with Combined Subgraphs

	All-Exp Property
	PSPACE-completeness of the Standard Algorithm Problem

	Complexity of Local Max-Cut: Maximum Degree Five
	Overview of Contribution
	Usage of the P-hardness Reduction
	Substituting Certain Nodes of Unbounded Degree
	PLS-completeness

	Impact of the Results on Other Problems
	Max-2SAT with FLIP-neighborhood
	Congestion Games
	Partitioning with SWAP-neighborhood

	Conclusion and Open Problems
	Bibliography

