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Data deduplication systems discover and remove redundancies between data blocks.
The search for redundant data blocks is often based on hashing the content of a block
and comparing the resulting hash value with already stored entries inside an index.
The limited random IO performance of hard disks limits the overall throughput of such
systems, if the index does not fit into main memory.

This paper presents the architecture of the dedupvl deduplication system that uses
solid-state drives (SSDs) to improve its throughput compared to disk-based systems.
dedupvl is designed to use the sweet spots of SSD technology (random reads and se-
quential operations), while avoiding random writes inside the data path. This is achieved
by using a hybrid deduplication design. It is an inline deduplication system as it per-
forms chunking and fingerprinting online and only stores new data, but it is able to
delay much of the processing as well as IO operations. An important advantage of the
dedupvl system is that it does not rely on temporal or spatial locality to achieve high
performance. But using the filter chain abstraction the system can easily be extended
to facilitate locality to improve the throughput.



1 Introduction

Data deduplication systems discover redundancies between different data blocks and
remove these redundancies to reduce capacity demands. Data deduplication is often
used in disk-based backup systems since only a small fraction of files changes from week
to week, introducing a high temporal redundancy [1,2].

A common approach for data deduplication is based on the detection of exact copies
of existing data blocks. The approach is called fingerprinting- or hash-based deduplica-
tion and works by splitting the data into non-overlapping data blocks (chunks). Most
systems build the chunks using a content-defined chunking approach based on Rabin’s
fingerprinting method [2,3]. For most data sets, content-defined chunking delivers a bet-
ter deduplication ratios than simple static-sized chunks [4]. The system checks for each
chunk, whether another already stored one has exactly the same content. If a chunk is a
duplicate, the deduplication system avoids storing the content. The duplicate detection
is usually not performed using a byte-by-byte comparison between the chunks and all
previously stored data. Instead, a cryptographic fingerprint of the content is calculated
and the fingerprint is compared with all already stored fingerprints using an index data
structure, often called chunk index.

The size of the chunk index limits the usable capacity of the deduplication system.
With a chunk size of 8 KB, the chunk size grows per 1 TB unique data by 2.5 GB (without
considering any overheads or additional chunk meta data). A large scale deduplication
system can easily exceed an economical feasible main memory capacity. Therefore, it
can become necessary to store the fingerprint index on disk. In this case, the limited
random IO performance of disks leads to a significant throughput drop of the system.

In this paper, we evaluate how solid-state drives (SSDs) might help to overcome the
disk bottleneck. Solid-state drives promise an order of magnitude more read IOPS and
faster access times than magnetic hard disk. However, most current SSDs suffer from
slow random writes.

We present a deduplication system architecture that is targeted at solid-state drives
as it relies on the sweat spots of SSDs while avoiding random writes on the critical data
path. We propose using the concept of an in-memory auxiliary index to move write
operations into a background thread and a novel filter chain abstraction that makes it
easy for developers and researcher to modify redundancy checks to either improve the
security of the deduplication or to speed up the processing.

This paper is organized as follows: After describing related work in Section 2, we
explain the architecture of the SSD-based deduplication system dedupvl in Section 3.
In Section 4, we present our evaluation methodology and environment, which includes
a scalable approach to generate deduplication traffic, before we state the performance
results. In Section 5, we give a conclusion and describe possible areas for further work.



2 Background and Related Work

The ability to lookup chunks fingerprints in the chunk index is usually the performance
bottleneck for disk-based deduplication systems. The bottleneck is caused by the limited
number of IOPS (IO operations per second) possible with magnetic hard disks. Even
enterprise class hard disks can hardly deliver more than 300 IOPS [5]. Because of that,
solid state drives have gained traction in server environments as they promise an order
of magnitude higher IOPS, high throughput, and low access times [6, 7].

Nowadays SSDs are usually built on NAND flash memory. Most SSDs — including
those used for the evaluation section — are connected via standard disk interfaces like
SATA or SAS. Some enterprise SSDs like the Fusion-io ioDrive use PCI-Express interface
[8].

Current state-of-the-art SSDs are reported to allow 3,000 to 9,000 read IOPS per
second, which is equivalent to a disk array with 10 to 30 high-end disks [5]. In addition,
SSDs allow a high sequential throughput (usually over 100 MB/s). The weak point of
most SSDs is the limited number of random writes. Narayanan et al. report around
350 random writes per second for an enterprise SSD [5]. Birrel et al. believe that the
explanation for this behavior is that usually a large logical page size is used to map
sectors to flash pages, which cases significant re-reads and re-writes for small request
sizes [9)].

While the price per read 10 is usually better for SSDs than for enterprise-class hard
disks, the capacity remains low and the price per GB high. However, in our deduplication
setting the size of the chunk index — the most performance critical component of a
deduplication system — is too large to be hold in main memory in a cost effective way,
but can be hold on a single or a low number of SSDs.

Research on deduplication systems deals with the deduplication strategy, the resulting
deduplication ratio, as well as the deduplication performance.

The most prominent deduplication strategies are fingerprinting and delta encoding.
Fingerprinting is based on the detection of exact replicas, comparing the fingerprint of
already stored blocks with the fingerprint of a new block. Static chunking assumes that
each block has exactly the same size [4], while content-defined chunking, which is based
on Rabin’s fingerprinting [10], is able to deliver a better deduplication ratio [2,3,11]. The
usage of hash values can lead to hash collisions, identifying two chunks as duplicates,
even if their contents differ (for a discussion, see [12,13]).

The main bottleneck of fingerprinting approaches appears, if the fingerprint index does
not fit into main memory and has to be stored on disk, inducing a strong performance
drop. Using 20 Byte SHA-1 hash values already needs 2.5 GB of main memory for each
TB of unique data, filling up main memory quite fast. Several heuristics for archiving
systems have been introduced to overcome this drawback. Zhu et al. use bloom filters
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to keep a compressed index, simplifying the detection of unique data [2]. Furthermore,
they introduce locality-preserving caching, where indexes are stored in containers, which
are filled based on the data sequence, preserving locality in backup streams. Lillibridge
et al. do not keep the complete chunk index in main memory, but divide the index
into “segments” of 10 MB chunks. For each segment, they choose k& champions and
the lookup is only performed inside the champion index [14]. In this case, the authors
trade deduplication ratio (not all duplicates can be detected) for performance. Trading
deduplication ratio for performance has also been proposed for a parallel setting in [15].

Delta encoding-based data deduplication tries to find near duplicates and only stores
the resulting delta. It is based on standard technologies from the area of information
retrieval. The shingling-process calculates a set of hash values over all fixed-sized win-
dows and selects e.g. the biggest results as shingles or features [16]. The resemblance of
two chunks is then defined as the number of joint features divided by their union [17].
Douglis and Iyengar claim that the delta encoding has become extremely efficient and
it should not be the bottleneck of deduplication environments [18]. The big advantage
of delta-encoding environments is that the index can be made as small as four MB for
a 1 TB environment [19]. Nevertheless, the reconstruction of chunks can trigger the
reconstruction of additional chunks and slowdown both reading and writing data. The
problem even becomes worse, if the system gets older and the depth of deduplication
tree increases [20]. This problem can be limited by clean-up processes or a restriction of
the maximum tree depth.

Deduplication ratios have been analyzed in several papers [1,21-23]. Most previous
works that introduce new deduplication techniques or other improvements provide eval-
uations using real data sets, including web crawls, source trees or e-mail files or selected
data of specific file types [3,18,20,24-26]. Only some works also use real world user files
for their evaluation [1,3,18,26].

It is hard to compare different throughput results for deduplication systems, because
there is no unified test-set. Additionally to the used traffic data, the deduplication ratio
of the data, and the used hardware have also an impact on the throughput results.

Quinlan et al. reported for their Venti deduplication system with two cores, 2 GB
RAM and 8 disks a throughput of 3.7 MB/s for new data, and 6.5 MB/s for redundant
data [4]. This data corresponds clearly with the disk-based performance. Zhu et al.
have presented various techniques to avoid expensive index lookups including a bloom
filter and special caching schemes [2]. Some of these techniques assume that in every
backup run the data is written in nearly the same order. They achieved a throughput
of 113 MB/s for a single data stream and 218 MB/s for four data streams on a system
with 4 cores, 8 GB RAM and 16 disks with a deduplication ratio of 96%.

Lillibridge et al. have presented a deduplication approach using sampling and sparse
indexing. They have reported a throughput of 90 MB/s (1 stream) and 120 MB/s (4
streams) using 6 disks and 8 GB RAM [14]. While based on similar assumptions as Zhu
et al., they have detected less redundancy, but their throughput is not decreasing if the
locality is weaker.

Lui et al. achieved a throughput of 90 MB/s with one storage node (8 cores, 16 GB
RAM, 6 disks) and an archival server (4 cores, 8 GB RAM) [24]. Since it is not clear
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how the disk bottleneck has been handled, we assume that chunk lookups are directly
answered from cache.

The throughput achieved by Zhu et al. and the deduplication quality of Lillibridge
et al. are based on techniques that highly depend on the specific locality assumptions,
which are only valid in backup scenarios. The approaches presented in this paper do
not depend on data locality, making deduplication more attractive for scenarios where
no such locality exists.



3 Architecture of the dedupvl System

We have developed dedupvl to evaluate and compare the performance impact of solid-
state technology in deduplication systems. The high-level architecture of the system is
shown in Figure3.1.

The dedupvl system is based on the generic SCSI target subsystem for Linux (SCST)
[27]. The dedupvl userspace daemon communicates with the SCST subsystem via ioctl
calls. Using SCST allows us to export deduplicated volumes via iSCSI. The data dedupli-
cation is therefore transparent to the user of the SCSI target. A similar SCSI integration
for user-space devices is provided via the tgt Storage Target Framework that could easily
be used in our environment [28].

3.1 Chunking and Fingerprinting

The chunking component splits the request data into smaller chunks. These chunks
usually have a size between 4 KB and 32 KB and build the deduplication unit. Each
chunk has to be checked whether its data has already been stored or if the content is
new. A limitation is that redundancies cannot be detected if only parts of the chunk
have been previously stored. The choice of the chunk size is therefore a tradeoff between
possible deduplication ratio and metadata size, as smaller chunk sizes lead to more
fingerprints in the index structures.

We have implemented different, configurable chunking strategies inside the chunking
component. Usually, we use content-defined chunking (CDC) based on Rabin’s finger-
printing method with an average chunk size of 8 KB [10]. The CDC strategy, also called
variable-sized chunking, calculates a hash value for all substrings of a fixed size (usually
48 bytes) of the file. The chunk ends if it holds for the hash value f of the substring
that

fmodn = ¢ for a constant 0 < ¢ < n.

The chunks generated by this method have a variable size with an expected size n. CDC
is used by nearly all deduplication systems [2,3,29,30]. Minimal and maximal chunk
sizes are enforced to avoid too small and too large chunks [31].

Alternatively, static sized-chunks can be used. The calculation of static-sized chunks
is significantly faster, but usually results in a reduced deduplication rate [1].

Each chunk is fingerprinted after the chunking process using a cryptographic hash
function like SHA-1 or SHA-256. Our default is SHA-1, but our system is not limited
to that choice.
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Figure 3.1: Architecture of the dedupvl deduplication system

3.2 Filter Chain

The filter chain component decides if the content of a chunk is a duplicate or if the
chunk content has not been stored before. The filter chain can execute a series of filters.
After each filter step, the result of the filter determines which filter steps are executed
afterwards. The design is similar to the “Chain of Responsibility” pattern [32].

Each filter step returns with one of the following results:

EXISTING:
The current chunk is an exact duplicate, e.g. a filter that has performed a byte-
wise comparison with an already stored chunk returns the result. The execution
of the filter chain is stopped if a filter step returns this result.

STRONG-MAYBE:
There is a very high probability that the current chunk is a duplicate. This is
a typical result after a fingerprint comparison. Other filter that cannot provide
any better result than STRONG-MAYBE are not able provide a better information
than that it is very likely that the chunk is a duplicate. Therefore after this result, it
only makes sense to execute filters that can return EXISTING. STRONG-MAYBE
filters are skipped.

WEAK-MAYBE:
The filter cannot make any statement about the duplication state of the chunk.
All filter steps later in the chain are executed.

NON-EXISTING:
The filter rules out the possibility that the chunk is already known, e.g. after a
chunk index lookup returns a negative result. The execution of the filter chain is
canceled if a filter returns this result.
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If the chain classifies a chunk as new, the system runs a second time through the filter
chain so that filters can update their internal state.

This flexible duplicate detection enables the development and evaluation of new ap-
proaches and requires minimal implementation efforts. The currently implemented filters

are:

Chunk Index Filter:

The chunk index filter (CIF) is the basic deduplication filter. It checks for each
chunk whether the fingerprint of the chunk is already stored in the chunk index.
The filter returns STRONG-MAYBE, if a chunk fingerprint is found in the chunk
index. Otherwise, the chunk is unknown and the filter returns NOT-EXISTING.
Afterwards, during the update-run, the chunk index filter stores the new fingerprint
inside the index structures.

This filter performs an index lookup for each check, which often hits the SSD or the
disk storing the chunk index. If possible, other filters should be executed before
the chunk index filter so that this filter is only executed if no other filter returns a
positive answer.

Block Index Filter:

Byte

The block index filter (BIF) checks the current chunk against the block mapping
of the currently written block that is already present in main memory. If the same
chunk is written to the same block as before, the block index filter is able to avoid
the chunk index lookup.

In a backup scenario, we are able to clone the blocks of the previous backup run
using a fast server-side copy approach to the volume that will hold the new backup
data. When the current backup data is written to the clone volume and if the data
stays at the same block, the block index filter is able to avoid some chunk index
checks.

The block index filter can always be activated as the operation is very fast and
does not perform any IO operations.

Compare Filter:

The byte compare filter (BCF) performs an exact byte-wise comparison of the
current chunk and an already stored chunk with the same fingerprint. While this
introduces additional load on the storage systems, it also eliminates the possibility
of unnoticed hash collisions.

Bloom Filter:

We have implemented this and the container cache filter described next to test the
flexibility of the filter chain concept and to show how easy deduplication optimiza-
tions can be implemented using this programming abstraction. Both optimizations
have been presented by Zhu et al. [2].

A bloom filter is a compact data structure to represent sets. However, a member-
ship test on a bloom filters has a certain probability of an false positive [33,34].
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The probability of a false positive can be bounded after the insertion of n objects,
using k£ hash functions and m bits of main memory by

L\ ki
(1= (1= )y
In the context of data deduplication, bloom filter can be applied as follows: The
fingerprint of each known chunk is inserted into the bloom filter. For each chunk,
the bloom filter is checked for the fingerprint. If the membership test is negative,
we are sure that the chunk is unknown and NON-EXISTING is returned. If the
membership test is positive, the filter returns WEAK-MAYBE, as there is the
possibility of false positives. The bloom filter helps to accelerate the writing of
unknown chunks, e.g. in a first backup generation because expensive chunk index
lookups are avoided.

Container Cache Filter:
The container cache filter is also an implementation of concepts presented by Zhu
et al. [2]. It compares a fingerprint with all entries of a LRU read cache. The
read cache uses containers, where each container includes a set of fingerprints. If
the check is successful, a STRONG-MAYBE result is returned and other filters,
especially the chunk index filter, are not executed.

If the check is negative, a WEAK-MAYBE result is returned. After the filter chain
is finished and the result has been a STRONG-MAYBE (e.g. based on a chunk
index lookup), a last artificial filter claiming that it allows an EXISTING result is
responsible for loading the fingerprint data of the container of the chunk into the
cache. The result of this post process filter is also a STRONG-MAYBE.

Zhu et al. assume that data is often written in the same order week after week in
a backup scenario. Therefore chunks that are processed within a short time-span
at their first occurrence are likely to be processed within a short time-span in later
backup runs. These chunks are likely to be stored in the same container. If the
first chunk is checked, a chunk index lookup reveals the container id and the post
process filter loads the corresponding fingerprint data for the container. Later
requests to other chunks in that container already find the cached fingerprint data
and can avoid expensive chunk index lookups.

To illustrate the filter chain concept, let us consider an example configuration for
the filter chain that consists of a bloom filter, a block index filter, chunk index filter,
and a byte compare filter. An already known chunk will be detected by the bloom filter.
However, since the bloom filter might return a false positive, this only leads to a WEAK-
MAYBE. Therefore, the block index filter is executed. If the previous block mapping
of the current block also contains a chunk with the same fingerprint, the filter returns
a STRONG-MAYBE and the chunk index filter and any other filter that can at best
return a STRONG-MAYBE result are skipped because it would not provide any new
information and we can be reasonably sure that the chunk is known. If a chunk with
the same fingerprint is not been used in the block before, WEAK-MAYBE is returned.

10
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Figure 3.2: Illustration of the filter chain control flow (example)

If that is the case, the chunk index filter performs an index lookup, finds the chunk
index entry for the given fingerprint and returns STRONG-MAYBE together with the
container id of the container that stores the chunk (see the next subsection for a de-
scription of containers). If the byte compare filter is executed and it reads the container
data of the chunk and performs a byte-wise comparison, which probably leads to an
EXISTING result.

If a filter returns NON-EXISTING, the chunk is unknown. In this case, the system
stores the data in a new container and inserts the chunk into the auxiliary index of the
chunk index. If we avoid using a bloom filter, the chunk index filter would perform an
index lookup to return the same result. In both cases, we do not perform any index
update operations in this critical path of the execution, which would lead to a random
write on the persistent chunk index.

Figure 3.2 illustrate the possible control flow with the example configuration

11
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FpP Offset Size
Chunk 1 0 KB 9 KB
Chunk 2 9 KB 6 KB
Chunk 3 15 KB 5 KB
Chunk 4 20 KB 7 KB
Meta data
Chunk 500 | 3970 KB 7 KB
Chunk 501 3977 KB 5 KB
Chunk data 1
Chunk data 2
Chunk data 3
Chunk data 4
Chunk data

Chunk data 500
Chunk data 501

Figure 3.3: Structure of a container

3.3 Storage

The chunk data is stored using a subsystem called chunk storage. The chunk storage
collects chunk data until a container of a specific size (often 4 MB) is filled up and then
writes the complete container to disk.

A container includes a metadata section and a data section. The metadata section
stores the fingerprints and the position and size of the chunk data in the data section.
The data section contains the chunk data and further metadata, e.g. the compression
type if one is used. The structure of a container is illustrated in Figure 3.3.

If a currently open container becomes full, the container is handed over to a back-
ground thread that writes the data to the attached storage devices. The background
thread notifies the system about the committed container using the log. Other compo-
nents, e.g. the chunk index, can now assume that the data is stored persistently. The
chunks of containers that are not yet committed to disk have to be stored in the auxiliary
index and must not be stored persistently until the chunk index receives a notification
from the container store.

The dedupvl system supports compressing the container data using zlib and bz2
compression to further reduce the needed storage capacity.

The chunk storage is similar to the chunk container of Zhu et al. [2] and Lillibridge et
al. [14]. Even the Venti system used a similar data structure called “arena” [4].

12
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3.4 Chunk Index

A major component of the system is the chunk index that stores all known chunk fin-
gerprints and other chunk meta data. The lookup key of the index is a (20 byte for
SHA-1, 32 byte for SHA-256) fingerprint. In addition, each chunk entry contains the
storage address of the chunk in the chunk store and a usage counter used by the garbage
collection.

The chunk index uses two index structures, the persistent index and an in-memory
auxiliary index. The persistent index is stored in a paged disk-based hash table. Since the
chunk index keys are cryptographic fingerprints, we cannot assume any spatial locality
so that an ordered data structure like a B-Tree variant would not provide its benefits.

The auxiliary chunk index stores chunk entries for all chunks whose containers are not
yet written to disk (non-committed chunks) as such chunk entries are only allowed to
be stored persistently after the chunk data is committed. In addition, the in-memory
auxiliary index is used to take index writes out of the critical path. It also stores chunk
entries that are ready to be committed, but are not yet written to disk. If the auxiliary
index grows beyond a certain limit or if the system is idle, a background thread moves
chunk metadata from the auxiliary index to the persistent index. In case of a system
crash, the chunk index is recovered by importing the recently written chunks from the
chunk store.

The design of the chunk index is influenced by the LSM tree data structure that also
maintains a persistent and an in-memory index [35,36]. However, the goals are different.
The goal of an LSM tree is to minimize the overall IO costs, e.g. by optimizing the
merging of the in-memory index and the persistent index using a special on-disk format.
This is important in an OTLP setting where no idle times can be assumed. Our goal is
to delay the IO such that the update operations can be done outside the critical path
or for highly redundant backups even after the backup itself. Figure 3.4 visualizes what
chunk data is stored in the persistent and the auxiliary chunk index and when entries
are moved between them.

/x
v
Log Replay
] ) Auxiliary Index Full Auxiliary Chunk
Persistent Chunk index |« index
(SSD) (RAM)
~ - Fingerprints of non-commited chunks

- Fingerprints of commited chunks,

- Committed Chunk Fingerprints but not written back

Figure 3.4: Illustration of the persistent chunk index and the auxiliary chunk index

13
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| Block 1 | Block 2 |

| Chunk1 Chunk 2 | Chunk 3 | Chunk4 | Chunk1 |

(a) Illustration of a data stream split up into blocks of a fixed length and chunks
of variable length

Block Chunk Offset | Size | Container
Block 1 | Chunk 1
Chunk 2
Chunk 3
block 2 | Chunk 3
Chunk 4
Chunk 1

(b) Visualization of the block mapping that results from
the data stream shown above
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Figure 3.5: Example of a block mapping

3.5 Block Index

The block index stores the metadata that is necessary to map a block of the iSCSI device
to the chunks of varying length that from the most recent version of the block data. We
call such a mapping the “block mapping”.

The purpose is very similar to the data block pointers of a file in a file system. In a
file system the data block pointers denote which data blocks contain the logical data of
a file. A block mapping denotes which chunks represent the logical data of a block. In
contrast to a file system where usually all data blocks have the same length, the chunks
have different lengths and often there is no alignment between chunks and blocks. So a
block mapping consists of an ordered list of chunk fingerprints and an offset / size pair
denoting the data range within the chunk that is used by the block. Additionally, we
store the container id in the block mapping item, which is the foundation of the block
index filter and a high read performance. Figure 3.5 illustrates how an example data
stream is split into static-sized blocks and variable sized chunks (a) and how the block
mapping for such a data stream looks like (b). Figure 3.6 shows how the chunk index
and the block index data is stored on disk.

The size of a block can be set independently from the device block size of the iSCSI
device (often 4 KB). Usually a much higher block size is chosen (64 KB to 1 MB) so that
a block mapping contains multiple full chunks. This reduces the meta data overhead
and also decreases the number of block index reads. Write and reads requests smaller
than the block size are possible, but multiple accesses to the same block are serialized
using a reader-writer locking scheme.

As the chunk index, the block index consists of a persistent and an in-memory index.
As persistent data structure, we use the Tokyo Cabinet implementation of a B+ tree [37].
In a backup scenario, we assume largely sequential access so that each B+ tree read
operation fetches multiple consecutive block mappings into the memory, which are likely

14
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Chunk Index:

‘ SHA-1 fingerprint (20 Byte) h‘ container id (max 8 Byte) | usage count (max 4 Byte) ‘

Block Index:
‘ block id (8 Byte) h chunk fingerprint 1 (20 Byte) offset (2 Byte) | size (2 Byte) |container id (max 8 Byte)

chunk fingerprint 2 (20 Byte) offset (2 Byte) | size (2 Byte) |container id (max 8 Byte)

chunks of a
block

‘ chunk fingerprint x (20 Byte) ‘ offset (2 Byte) ‘ size (2 Byte) ‘container id (max 8 Byte) ‘

Figure 3.6: Chunk index and block index data structures (using SHA-1 for clarity)

to be used by later requests. The in-memory index stores all block mappings that
are updated, but are not yet allowed to be committed since referenced chunk data are
not committed to disk. We also hold fully committed block mappings in the auxiliary
index to avoid expensive write operations in the critical path. It should be noted that
consistency is still guaranteed because all operations are written in the operations log.

3.6 Log

The log is a shared operations log that is used for two purposes: To recover from system
crashes and to delay write operations.

If the dedupvl system crashes, a replay of the operations log ensures a consistent
state, meaning especially, but not limited to this, that no block references a chunk that
is not stored in the chunk index and that no chunk index entry references container
storage data that has not been written to disk. The log also helps to delay may write
operations so that the amount of IO operations in the critical path is minimized because
the log assures that the delayed operations can be recovered either in case of an crash
and because the system can process logged operations during a background log replay,
e.g. the garbage collection must not update its state inline.

The log triggers certain events in the system and a) writes the events to an opera-
tions log and b) notifies the other system components directly of the event. The most
important event types that are logged are:

Container Commit:
A container commit event denotes that the system guarantees that the chunk data
stored inside a particular container is persistently written to disk. Any chunk and
block information that relies on chunk data stored in a container that is not yet
committed is now allowed to be stored permanently. After the other components
have received a container commit event, this data is free to be stored on disk, too.
Observers of this event are the block index and the chunk index.

Block Mapping Written:
After a block mapping has been updated during a write request, the modified

15
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version and the original version of the block mapping are logged. The block index
uses the event to restore the up-to-data version of the block index if the system has
crashed. The garbage collection uses the event to update the chunk usage count
information.

The entries of the event log are eventually sent to the component a second time when
they are replayed. This happens on the one hand if the system crashes and the compo-
nents recover their state using the operations log (crash replay) or if the system is idle
(background replay). If an event is replayed at least once, it is deleted from the log.

3.7 Garbage Collection

While a complete description of the garbage collection process is not the focus of this
paper, we only give a short description.

A background thread observes, using the operations log, which blocks are written
and calculates the difference between the previous block mapping and the current block
mapping. The difference denotes which chunks were used in the previous block and
which are no longer in the current block or which chunks are now referenced more often
than before. With this information, the background thread updates the chunk usage
count based on this data.

If a chunk has a usage count of zero, the chunk is marked as a “garbage collecting
candidate”. We cannot be sure that the chunk is really not used at this point, because
the system is still processing the log and the chunk might be referenced afterwards and
because storage requests might be processed concurrently to the garbage collection. To
overcome this, chunks without references are rechecked when the system is completely
idle and the operations are fully replayed. If a garbage collecting candidate has still
a usage count of zero, the chunk is flagged as deleted. Nevertheless, the data is not
overwritten immediately.

The chunk store has a separated garbage collection strategy that registers the deletion
and eventually merges multiple containers with deleted entries into a new container. The
selection strategy for merging containers is still on-going research. A greedy strategy is
to merge random containers that are filled less than 50%. If the containers have had the
ids 1000 and 1010 before being merged, the new container has both ids assigned so that
requests to container 1010 still have access to the container with the data of 1010, but
at that time merged with the data of 1000. This merging concept has the advantage
that the chunk index and the block index never need to be updated. A storage address
that is valid at one point will be valid forever.

16



4 Evaluation

In this section, we first describe the methodology and the environment used to evaluate
the SSD-based deduplication architecture proposed in the previous section. Afterwards,
we present performance benchmarks with various index configurations, number of clients,
and other configuration parameters that are of interest.

4.1 Evaluation Methodology and Environment

Often the evaluation of existing deduplication storage systems is based on measurements
of operational systems [2,4,14]. It is hard to compare the results since these measure-
ments are not repeatable. Only Zhu et al. also used a synthetic benchmark to evaluate
their caching techniques [2]. However, even that benchmark is not available in public.
As long as no agreed deduplication benchmark exists, the best we can do is to setup our
own benchmarking environment.

We distinguish the first backup generation and further backup generations. The stor-
age system has not stored any data before the first backup generation and the first backup
run cannot utilize any temporal redundancy. In the second (and later) generations, the
deduplication system can use chunk fingerprints already stored in the index.

For the first backup generation, we used a 128 GB subset of files stored on a file server
used at our institute. The file system contains scientific scratch data as well as workgroup
data.

Based on this real data, we generated the changes that are introduced within a week
for the second generation traffic data. Based on traces used in a recent study [1], we
have calculated the run-length distribution of unique data (U), internal redundant data
(IR) and temporal redundant data (TR). The run length of data in a given state is the
length of a data block in which all data is detected to be from the same state. The
run-length distribution of a state is the empirical probability distribution that describes
the randomly chosen length of data block in the state. We also extracted the empirical
probability distribution to switch from one of these three states to any other from the
trace data.

Using these probabilities, we generated a synthetic second generation of traffic data
that resembles the characteristics of real world data. Given an initial random state (U,
IR, TR), we at first assign a randomly chosen — according to the matching probability
distribution — size of the next data range and generated the data for this range. For
example, to generate temporal redundant data (TR state), we copy data from the pre-
vious generation traffic data. Next, we randomly chose the next state, also according to
the observed probability distribution. We repeat this until the chosen amount data is
generated (here: 128 GB).
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Figure 4.1: Tllustration of the data pattern of the second backup generation. TR =
temporal redundant data, IR = internal redundant data, U = unique data.
The length of the blocks are randomly chosen according to a probability
distribution extracted from real world data.

Figure 4.1 illustrates the data pattern for the second generation. A major advantage
of such an approach is the scalability. We are able to generate arbitrary amounts of data
for an arbitrary number of data generations.

The traffic data files contain on average 32.5% redundancy within a single backup run
(internal redundancy) and 97.6% redundancy, if previous backup runs are also utilized
(temporal redundancy).

Since we only benchmark the first and the second generations, we are not able to
observe long-term effects.

The evaluation hardware consists of a server with an 8-core Intel Core i7 CPU, 16 GB
main memory, a fibre channel interconnect to a SAN with 11 disks a 1 TB configured
as RAID-5 with one spare disk, a 10 GB network interconnect, and four 2nd generation
Intel X25-M SSDs with 160 GB capacity each. The SSDs and the SAN are used with
the ext3 file system, mounted using the noatime-flag. The filesystem on the SSD is
formatted using a 1 KB block size. The server uses Linux operating system with Ubuntu
9.04 using a 2.6.28 Linux kernel with SCST patches and SCST 1.0.1.

Up to four worker nodes are concurrently writing backup data to the deduplication
system. The worker nodes are 4-core Xeon servers, with 12 GB RAM, a 1 GB network
interface, and two 500 GB hard disks where the operating system is installed on the first
and the traffic data is stored on the second hard disk. The 128 GB data is spitted into
four tar files so that each worker node holds a 32 GB portion of the overall data. The
evaluation setup is illustrated in Figure 4.2.

The base configuration is based on Content-defined Chunking (CDC) with an expected
chunk size of 8 KB, a container size of 4 MB using no compression, and a chunk index
initiated with a size 32 GB and 2 KB pages. The size is chosen large enough to hold
over 750 million chunks, which is equivalent over 5 TB of raw data when we consider
a maximum fill ratio of 70% and 32 byte data per chunk. The chunk index, the block
index, and the operations log are spread to all SSDs The chunk data is always stored on
attached SAN. We allow the auxiliary (in-memory) chunk index to contain all chunks of
a run. Additionally, we allow in the base configuration, to hold all written block index
data in-memory before it is written back. The only filter we use until otherwise noted
is the chunk index filter. The block size is set to 128 KB.

We performed five measurements for each configuration and calculated the confidence
intervals using 0.95 confidence level. All values are reported as averages in its steady
state. Here we refer to the steady state as the interval where all worker nodes are
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Figure 4.2: Evaluation setup

actively writing data. This is important because a newly restarted system take some
time to initialize its caches (e.g. the container read cache). Also before the steady state,
a fast node might write while other nodes are still pre-fetching traffic data. After the
steady state, the fast nodes have already written all traffic data (32 GB per node), while
a slow node is still writing.

We restarted the system and cleared all OS caches and the cache of SAN before each
measurement and between the first and second generation run. We also limited the
available main memory capacity to 8 GB.

4.2 Results: Index Storage System

We evaluated the system by varying the storage system of the index. Besides the base
configuration with four X-25M SSDs, we also evaluated the system using only one and
two SSDs of the same kind. Additionally, we also evaluated a configuration with a
completely main-memory based chunk index and a SAN-based block index.

Figure 4.3 shows the average throughput using the floating traffic and the block traffic
for different index storage systems.

The base configuration with 4 SSDs achieves 167.2 MB/s (4+/—3.4MB/s) in the first
data generation and slightly less with 160.3 MB/s (+/— 4.3 MB/s) in the second gener-
ation. The four SSDs provide 2,848 (+/— 64) read IOPS per SSD during the deduplica-
tion. Additionally to the raw SSD speed, the throughput is increased by caching effects
due to the OS page cache and the auxiliary chunk index that allows chunk index checks
for around 30% of the chunks (internal redundancy). With 2 SSDs, the throughput is
reduced to 88.4MB/s (+/—1.2MB/s) and 83.3 (+/— 1.5 MB/s) for the two inspected
backup generations.

Interestingly, the throughput with only a single SSD is not significantly lower than
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Figure 4.3: Throughput using different index storage systems

using two SSDs. The first generation is written with an average throughput of 87.8 MB/s
(+/—1.8MB/s) and the second generation is written with an average throughput of
82.3MB/s (+/—1.7MB/s). This is caused by a much higher number of performed read
IOPS in that configuration.

The reason for this quite unexpected behavior is that instead of around 3,000 IOPS
per SSD executed by the 2- and 4-SSD system, the single-SSD system executed 5,375
(+/—54) reads per second. In additional raw IO measurements we noticed that a higher
10 queue length — that is the number of concurrent requests that are issued to the disk
— leads to a much higher number of performed requests per second for the Intel X25-M
SSDs (around 9 — 12 on average). Since all requests are split to multiple SSDs in the
other configuration, the IO queue length is smaller (around 5 — 6 on average) here.

If the complete chunk index fits in memory and the block index is stored on disk,
the system achieves a throughput of 162 MB/s (4/— 8.5 MB/s) for the first generation,
respectively 242.7MB/s (+/—4.4MB/s) for the second generation. Surprisingly, this
is not much faster than the SSD-based system. In that configuration, the block index
builds the bottleneck.

The bottlenecks of all four setups are visible in the profiling data, which is shown in
Figure 4.4. The figure shows the shares of different system components on the overall
wall clock time on the data path. The profiling data also clearly shows that in none of
the configurations the CPU-intensive chunking and fingerprinting (shown in the Figure
as “Chunking”) is the bottleneck of our system. In all SSD-based configurations, the
chunk index is the major bottleneck. In the RAM-based system, other bottlenecks
become dominant: The disk-based block index and the storage component. “Lock”
denotes the time that a request thread is blocked in order to avoid concurrent accesses
to the same block. We believe that further investigations into these bottlenecks might
help to further improve the performance.

We do not show the full results for a completely disk based system as the system
relies heavily on the characteristics of solid-state drives. If we do store all data (chunk
index, block index, chunk storage and operations log) on the SAN, we measured only

20



4 FEvaluation

[ Chunking

g ! . 1 Chunk Index A
s . ._ 3 Block Index
%’ - [ Storage
‘=§° I lLog
k] I lLock
]
<
'_

155D 25D 455D RAM

Figure 4.4: Average ratios of system components on the overall runtime in the data
path. The left bars denotes the first generation runs, the right bars denote
the second generation runs

a throughput of 12.9MB/s for the first and 13.3 MB/s for the second generation. This
results confirms to the results and estimates published before [2,4].

4.3 Results: Client Node Count

In this section, we evaluate how the number of clients influences the throughput of our
system. The results with a single, two, and four clients are shown in Figure 4.5. With
a single client, the system is clearly limited by the 1 GB network interconnect. The
throughput is 83.0MB/s (+/—1.2) and 84.1 MB/s (4+/—2.0 MB/s). For a single client
system even a one or two SSD system would provide enough performance. In contrast
to that 4 clients increase the throughput only by 16% and 8% compared to the 2 worker
performance of 145.0 MB/s (+/—3.0MB/s) and 148.7MB/s (+/— 4.2 MB/s).

4.4 Results: Chunk Sizes

In this section, we evaluate the system with a larger chunk size. A larger chunk size has
two effects. On the one hand, it reduces the number of requests performed on the (chunk)
index. On the other hand, larger chunk sized lead to a decreased redundancy. Figure
4.6 clearly indicates that — from a throughput perspective — 16 KB chunks are better.
In the first generation the 16 KB chunks configurations has a throughput of 209.4 MB/s
(+/—13.3 MB/s) and in the second generation it has 250.5 MB/s (+/— 11.4 MB/s). This
improvement can be explained by looking at how much data is additionally classified as
new and written to disk. In the first generation, the 8 KB chunks variant classified 87 GB
of the 128 GB working set as unknown (deduplication ratio of 32%). When the chunk
size is doubled, only 3 GB more are classified as unknown (deduplication ratio of 29%).
In the second generation, on average 14.8 GB are classified as unknown (deduplication
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Figure 4.5: Throughput using base configuration (4 SSDs) with a varied number of client
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Figure 4.6: Throughput using an average chunk size of 8 KB (base configuration) and 16
KB

ratio of 89%) with 8 KB chunks while the system stores 25.8 GB when 16 KB chunks are
used (deduplication ratio of 80%).

4.5 Results: Auxiliary Index Size

Up to now, we have assumed that all new chunk and block data of a run can be hold in
RAM and is written to disk after the backup run itself finished. This is advantageous
as we so can avoid slow random write operations during the backup run. However,
in some large-scale settings this might not be possible — especially in the first backup
generation where a lot of unknown data must be processed. We additionally performed
measurements allowing only extremely small auxiliary indexes. We limit the auxiliary
block index to 1K block mappings in RAM and the chunk index to 16K chunks in RAM.

22



4 FEvaluation

180
160/ |EEE Generation 1
[ Generation 2

HH

-
B
o

=
o ® o N
S © & o

Throughput MB/s

N
o

N
o o

minimal auxiliary index full auxiliary index

Figure 4.7: Throughput using a auxiliary index that large enough for all run data (full
auxiliary index) and with a minimal auxiliary index (block index: max 1K
items, chunk index: max 16 K items)

If the size of an index grows larger, multiple background threads write the data to disk.
It should be noted that even in this configuration the auxiliary indexes store data that
is not allowed to be written to disk because the container data is not yet committed.

The results are shown in Figure 4.7. As expected, the throughput decreases in
the first generation run due to the high amount of new chunk data that has to be
merged into the persistent chunk index. On average, the system processes 74.9 MB/s
(+/—2.6 MB/s) using a minimal chunk index in the first generation in contrast to
167.2MB/s (+/—2.6 MB/s) with a full chunk index. However, post-processing time
needed is reduced from on average 60 minutes to 2 minutes. In the second genera-
tion, the throughput reduces by 13% from 159.3 MB/s (+/—4.2MB/s) to 133.3MB/s
(+/—1.1MB/s) and the post-processing time reduces from 10 minutes on average to 1.2
minutes.

4.6 Discussion

It is hard to compare different throughput results for deduplication systems, because
there is no unified test-set. However, the performance results of our SSD-based dedupli-
cation system are promising.

Zhu et al. presented various techniques to avoid expensive index lookups including a
bloom filter and special caching schemes [2]. They assume that in every backup run the
data is written in nearly the same order. This request order locality is only given in
backup scenarios. They achieved a throughput of 113 MB/s for a single data stream and
218 MB/s for 4 data streams on a system with 4 cores, 8 GB RAM and 16 disks with a
deduplication ratio of 96%. The throughput would degenerate in low-locality settings.
Lillibridge et al. presented a deduplication approach using sampling and sparse indexing.
They reported a throughput of 90 MB/s (1 stream) and 120 MB/s (4 streams) using 6
disks and 8 GB RAM [14] based on similar assumptions as Zhu et al.. We achieve more
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than 160 MB/s without depending on locality.

Lui et al. achieved a throughput of 90 MB/s with one storage node (8 cores, 16 GB
RAM, 6 Disks) and an archival server (4 cores, 8 GB RAM) [24]. It is not clear how
the disk bottleneck has been handled, but we assume that chunk lookups are directly
answered from cache.

This comparison shows that it is possible to build a deduplication system using solid-
state drives that are able to provide a performance that is on-par with state-of-the-art
deduplication systems.
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5 Conclusion

The evaluation shows that current SSD technology can build the basis for high-throughput
fingerprint-based data deduplication. Without depending on locality, the system achieves
over 160 MB/s in all backup generations with a single node system. If a larger chunk size
is used, even more than 200 MB/s are possible. The system is build around the specific
characteristics of SSDs such as using additional in-memory index structures that are
inspired by LSM trees to avoid random writes. The system can easily be extended by a
flexible and powerful filter chain approach.

A future research focus may lie on the long-term behavior of deduplication systems
considering aging effects as well as compression approaches for the block index and
further scaling aspects.
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