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Bjorn Lange

Limatierungen der p-Dotierbarkeit von Galliumnitrid - FEine Defektstudie wvon
GaN:Mg auf Basis der Dichtefunktionaltheorie

Dissertation, Department Physik, Fakultéat fiir Naturwissenschaften, Universitéit Pa-
derborn (2012), 166 Seiten, 50 Abbildungen, 30 Tabellen

Kurzfassung

Galliumnitrid (GaN) basierte Verbindungen haben sich zur bevorzugt verwendeten
Materialklasse fiir die Konstruktion lichtemittierender Dioden (LEDs) entwickelt.
Grund dafiir ist ihre grofe, einstellbare Bandliicke, welche fast das komplette sicht-
bare Spektrum abdeckt und somit den Zugang zu Blau- und Weifslicht-LEDs er-
moglicht. Eine Verbesserung der p-Leitfahigkeit in dieser Materialklasse wiirde die
Herstellung effizienterer und hellerer LEDs ermdoglichen. Die vorliegende Disserta-
tion untersucht basierend auf ab initio Methoden die Limitierungen in der GaN
p-Dotierbarkeit mittels Magnesium. Zur Untersuchung dieser limitierenden Fakto-
ren werden Defektenergien unter Verwendung der Dichtefunktionaltheorie (DFT)
berechnet, welche sich besonders zur Modellierung von Punktdefekten eignet. Ausge-
dehnte Defekte, wie zum Beispiel die in hoch p-dotiertem GaN experimentell nach-
gewiesenen Inversionsdoménen (IDs), lassen sich auf Grund ihrer Dimension von
einigen nm?® in dieser Theorie nicht mehr effizient modellieren. Hier bilden coarse-
grained Methoden eine alternative Moglichkeit. In ihrer Genauigkeit hingen diese
jedoch von den zu Grunde liegenden atomzentrierten, atomaren Basissédtzen ab. Das
in dieser Dissertation vorgestellte QUAMOL Konzept generiert atomzentrierte nu-
merische Basisfunktionen auf Grundlage von Ebenen-Wellen DFT-Beschreibungen.
An einfachen halbleitenden und metallischen Systemen wird die Erzeugung solcher
QUAMOLSs demonstriert und ihre Genauigkeit und Transferabilitéit in weiteren Un-
tersuchungen herausgestellt. Weiter werden die in GaN dominanten Punktdefekte
untersucht. Basierend auf den berechneten Bildungsenergien lassen sich Stickstoff-
vakanzen als potentielle Kompensationszentren in Magnesium dotierten GaN iden-
tifizieren. Eine Gradwanderung zwischen einem ausreichenden Stickstoffangebot zur
Vermeidung der Vakanzbildung und einem Unterangebot an Stickstoff zur Verhinde-
rung der Phasenseparation Galliumnitrid/Magnesiumnitrid bei hohen Magnesium-
konzentrationen limitiert schlussendlich die p-Dotierbarkeit.
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p-doping limitations of galliumnitride - A defekt study of GaN:Mg based on density-
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PhD Thesis, Department of Physics, Faculty of Science, University of Paderborn
(2012)

166 pages, 50 figures, 30 tables

Abstract

Gallium nitride (GaN) based alloys have evolved into the material class of choice for
blue and white light-emitting diodes (LEDs). The reason is the large, tunable band
gap, which allows light emission of nearly the whole visible spectrum. Improving the
p-conductivity of GaN would allow for more efficient and brighter LEDs based on
this material class. In the present PhD Thesis limitations in the p-doping of GaN
were investigated. The examination is carried out by calculating defect energetics
by means of density-functional theory (DFT), which is the state-of-the-art ab initio
method for modeling and describing point defects. Large defects, such as the ex-
perimentally observed inversion domains (IDs) in p-type GaN:Mg, are not feasible
to model within the framework of DFT. An alternative are coarse-grained methods
employing accurate, atom-centered atomic orbitals. However, the construction of
accurate and, in particular, transferable atomic orbital basis sets is far away from
being trivial. Within this PhD thesis the QUAMOL concept is introduced, which
constructs atom-centered, numerical orbitals based on plane-wave DF'T calculations.
The applicability and performance of the developed approach is demonstrated for
semiconducting and metallic test systems, which show that the constructed orbi-
tals are accurate and transferable. Further, the dominant point defects in GaN are
studied in detail. Based on calculated formation energies nitrogen vacancies have
been identified as possible compensators aside hydrogen in GaN:Mg. A tightrope
walk between providing as much nitrogen as needed to avoid vacancy formation and
providing as less nitrogen as possible to hinder the phase separation GaN/MgsN,
at high Mg concentrations has finally been identified as the theoretical limitation of
p-doping in GaN.
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1. Motivation

Es st absolut moglich, dass jenseits der Wahrnehmung unserer Sinne
ungeahnte Welten verborgen sind.

Albert Einstein, Physiker und Nobelpreistrager, 1879-1955

In Folge der Nuklearkatastrophe im Kernkraftwerk Fukushima Daiishi im Friihjahr
2011 hat die Regierung der Bundesrepublik Deutschland den endgiiltigen Ausstieg
aus der Kernenergie bis zum Jahre 2022 beschlossen. Dringender denn je ist die
Frage zu beantworten wie Deutschland sich in der globalen Energielandschaft
positioniert und wie die gesteckten Ziele des Ausstiegs erreicht werden sollen.
Ein Fliigel bildet der Ausbau der regenerativen Energien, die den Wegfall der
deutschen Atomreaktoren kompensieren sollen. Es ist jedoch ebenso wichtig, auf
energiesparende und effizienzsteigernde Mafnahmen zu setzen. In diesem Kontext
ist die gestaffelte Abschaffung der traditionellen Gliihbirne zu sehen. Eine Alterna-
tive zur Gliihbirne stellt die lichtemittierende Diode (LED) dar. Solche Elemente
besitzen zwar hohere Anschaffungskosten, haben jedoch mit ca. 30-140 lm/Watt
eine signifikant hohere Lichtausbeute gegeniiber handelsiiblichen Gliithbirnen mit
ungefdhr 13-20 lm/Watt. Auch die Lebensdauer von bis zu 45.000 h ist der von
handelstiblichen Glithlampen von bis zu 2000 h deutlich {iberlegen. Die Lebensdauer
einer LED héngt jedoch empfindlich von den Umgebungsparametern wie z.B.
Temperatur, Feuchtigkeit und — insbesondere auch — von den durchfliefenden
elektrischen Stromen[l] ab. Wihrend die Temperatur und die Feuchtigkeit durch
Kiihlkérper und die Kapselung der LED mit korrosionsresistenten Materialen gut
in den Griff zu bekommen sind, héngen die notwendigen elektrischen Stréme von
der Leitfahigkeit des gewachsenen Halbleitermaterials ab. Das Design geeigneter
LED-Materialien mit geringen ohmschen Widerstand ist deswegen in den zentralen
Blickpunkt der Forschung gelangt. Geringere Widerstande bedeuten eine geringere
Wérmeumwandlung und geringere Betriebsstrome. Insofern ist der Bau von niedrig-
ohmigen LEDs gerade im Hinblick auf die Effizienz und die Lebensdauer interessant.

Fiir den Bau von LEDs spielen heutzutage insbesondere Halbleitermaterialen
basierend auf dem III-VI Halbleiter Galliumnitrid (GaN) eine grofe Rolle. Grund
hierfiir ist die Bandliicke von 3.4 eV dieses Materials, welche durch geeignete
Legierung mit den Borgruppenmetallen Aluminium (Al) und Indium (In) so
beeinflusst werden kann, dass Lichtemission im gesamten sichtbaren Spektrum
moglich ist. Grob gesprochen besteht eine GaN-LED aus einer lichtaktiven Schicht
von AliIn,Ga,_,_,N, die zwischen n-leitendem und p-leitendem GaN eingebettet
ist (vgl. Abbildung 1.1). GaN, welches mittels Metallorganischer Gasphasenepita-
zie(MOVPE)|2] hergestellt wurde, ist naturgeméss n-leitend|3|. Durch Dotierung
mit Silizium (Si) oder Sauerstoff (O) kann die Anzahl der Donatoren erhoht und
die Leiteigenschaft weiter verbessert werden[4]. Um p-leitendes GaN herzustellen
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1 Motivation

p-Kontakt

p-leitendes GaN:Mg
hv

n-leitendes GaN

Abb. 1.1:

Schematischer vereinfachter Aufbau einer LED. Auf einem Substrat werden durch
Epitaxie drei Doménen von Galliumnitrid erzeugt. Das n-leitende GaN steht mit der
Elektrode im Kontakt. Diese Doméne wird dann mit der lichtaktiven Schicht iiber-
wachsen. Abgeschlossen wird das Wachstum mit einer p-leitenden GaN Schicht auf
der die Kathode angebracht wird.

bedarf es einer Dotierung mittels des Erdalkalimetalls Magnesium (Mg). Dies
besitzt ein Valenzelektron weniger als Gallium und fiigt sich, anders als die anderen
Bormetalle, ins Wirtsgitter ohne drastische Verspannungen zu bewirken. Die
Loslichkeit von reinem Mg in GaN ist im Rahmen der MOVPE jedoch gering. Die
Molekularstrahlepitaxie (MBE) erlaubt deutlich héhere Magnesiumkonzentratio-
nen, setzt allerdings fiir den Betrieb Ultrahochvakuum voraus und ist somit fiir
die industrielle Massenproduktion nur bedingt geeignet. Der Durchbruch gelang
durch die Erkenntnis, dass in mit MOVPE gewachsenen Proben Magnesium in
Form eines neutralen [Mgg,H|- Komplexes eingebaut wird und in einem weiteren
Wirmebehandlungsschritt durch Austreibung des Wasserstoffes aktiviert werden
muss.

Dieser Effekt gilt als wohl verstanden [5, 4, 6, 7, 8]: Mg alleine baut sich als negativ
geladenes, substitionelles Mg, im Kristallgitter ein. Die Ladung dieses Defektes
bedingt ladungskompensierende Zentren zur Erreichung der Ladungsneutralitét.
Durch die Zugabe von Protonen (H") werden nun diese kompensierenden Zentren
mitgeliefert, was im Rahmen des klassischen Modells den Einbau des Magnesiums
durch die Bildung neutraler [MgH| Komplexe erleichtern sollte. Allerdings kénnen
diese Defekte nicht aktiv an der Leiteigenschaft teilnehmen, da das entsprechende
Defektniveau in der Bandliicke besetzt ist. Wasserstoff besitzt aber die Eigenschaft
schon bei Temperaturen von 500° C - 800° C in diesem Material mobil zu sein, so
dass er sich in einem anschliessenden Prozessschritt thermisch austreiben lésst[6, 8].

12



0000000 0000000000000 0000000
9990000 0000000000000 9000000

992&3332;:;;gg33:§: §88888°°
99’1888%:%%%%£888'888881’99
100 0i coocﬁoaﬁbéaoﬁ$cooaa Y
Seretiocbeteteovovieost
sy

80036560,
00009990000
R R R R A PPOQIQPQQPQPQQ

60004 (11.22)

97999900000e /o2 0000009
2990900909909 99099909099099
999099990900000090900999090
P999999909000000009909909099

PQQQ
2 399QQ9Q
T (1126) )
PPQPRPQPQQQPQQ

Abb. 1.2:
Die linke Abbildung zeigt die auftauchenden pyramidalen Inversionsdoménen in einer

Querschnitts-TEM Aufnahme. Rechts wird ein moglicher atomarer Aufbau der Inversi-
onsdoméne gezeigt. Die braunen Kugeln stellen hierbei Ga-Atome da, die roten Kugeln
visualisieren Mg-Atome und in blau werden die Stickstoffatome dargestellt. Die Bilder
sind der Referenz|[11] entnommen.

Dies bedeutet dann die Aktivierung des zuvor durch den Wasserstoff passivierten
Magnesiums.

Neuere Erkenntnisse riitteln jedoch an diesem Bild und zeigen Limitierungen, die
sich in diesem Modell nicht erkldren lassen: Experimentell beobachtet man bei
Magnesiumkonzentrationen oberhalb von 10 cm™
Wasserstoffkonzentration. Das Wasserstoff-zu-Magnesium Verhéltnisses fillt von

einen Einbruch der relativen

ca. 0.7-0.9 auf nur noch 0.2 ab, wie mittels Sekundérionenmassenspekroskopie
(SIMS) beobachtet wird|9] (vgl. Abbildung 1.3). Eine anschliessende Aktivierung
ist nun nicht mehr moglich, die Magnesiumakzeptorniveaus bleiben passiviert und
sind fiir die Erzeugung der p-Leitfahigkeit verloren. Dies deutet auf einen anderen
Kompensationsmechanismus als Protonierung hin, um den das bisherige Bild
erweitert werden muss. Zudem zeigen experimentell hergestellte, hoch magnesium-
dotierte Proben eine deutliche rauere Oberflichenbeschaffenheit. Hochaufgeloste
Transmissionselektronenmikroskopie (HR-TEM) zeigt hierbei das Auftreten von
Inversionsdoménen (ID) in welcher die GaN-Wachstumsrichtung schlagartig
umgekehrt wird (vgl. Abbildung 1.2). Die Grenzen dieser Inversionsdoménen
(IDB) werden dabei durch eine Magnesiumnitrid-(MgzNs)-artige Schicht gebildet
[10, 11, 12, 13, 14].

Aus experimenteller Sicht allein ist eine Kldrung dieses Phénomens schwierig, da
sich die Menge des Wasserstoffes in der Probe zwar nachweisen lésst, die genaue

13



1 Motivation

Relative Wasserstoffkonzentration in GaN:Mg

1.0 ! ! LINLELEL L I = T T T T Trrr] T T T T T T 17
I * nach Wachstum |
0.8 = nach Aktivierung|
CRCI L " |, Wasserstoffdrop*
- ys Y VASSErsStorarop
T | : -
S 04} - -
0.2 I - . [ : - L] —
0'0 1 Lol 1 L ¥l 1 TR R B B A
10]8 10]9 1020 1021
c(Mg) [em”)
Abb. 1.3:

Relative Wasserstoffkonzentration in Abhéngigkeit der Magnesiumkonzentration. Die
Daten wurden mittels SIMS-Messungen erhoben|9]. Der schwarze Pfeil zeigt die unge-
fahre Position des Kompensationswechsels der als ,Wasserstoffdrop” bezeichnet wird.

Position oder Art des Defektes sowie seine Bildungsenergie dem Experimentator
aber verschlossen bleiben. Die Kldarung dieses Phdnomens ist nun zentrale Aufga-
be dieser Dissertation. Eine quantentheoretische Betrachtung moglicher Defekte in
GaN mittels Dichtefunktionaltheorie (DFT) stellt heutzutage die geeignetste Mog-
lichkeit dar, akkurate Defektenergetiken zu erhalten. Hinter den Mechanismen ste-
hende wichtige Punktdefekte und Defektkomplexe konnen so identifiziert werden
[5, 10, 11, 6, 7, 15, 16, 4]. Dabei ist die DFT als ab initio Theorie unabhéngig von
experimentellen Daten und erlaubt eine alternative Sichtweise auf das Problem, ins-
besondere auch auf die Facetten, die dem Experimentator verborgen bleiben. Eine
Problembetrachtung mittels der DFT ist somit oftmals wegweisend fiir weitere Ex-
perimente und wird in dieser Dissertation verwendet, um die obige Problematik zu
analysieren, die gewonnenen Erkenntnisse zu diskutieren und das anerkannte Bild
des Wasserstoftkodotierungsmodells einer Revision zu unterziehen.
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2. Zusammenfassende Kapiteliibersicht

[-..] hier stehe ich nun, zusammen mit euch, meine furchtlos lesenden
Freunde! Und [...] hier fingt die Geschichte erst richtig an.

Hildegunst von Mythenmetz, Zamonischer Dichter und Buchautor
iibersetzt aus dem Zamonischen von Walter Moers, Comic-Zeichner, Illustrator
und Autor, 1957 -

Die vorliegende Dissertation untersucht die Grenzen der p-Dotierbarkeit von
Galliumnitrid (GaN) mittels Magnesium (Mg) basierend auf theoretischen ab
initio Berechnungen. Ausgangspunkt sind hierbei die in Kapitel 1 vorgestellten
experimentell beobachteten limitierende Phanomene. Zum einem bilden sich in hoch
mit Magnesium dotierten Proben Inversionsdoménen (ID) aus, deren Grenzen aus
einer magnesiumnitridartigen Schicht bestehen und die p-Leitfdhigkeit durch ihre
Polarisationsumkehr storen. Zum anderen zeigen Messungen mittels Sekundéario-
nenspektroskopie (SIMS), dass die Passivierung der Magnesiumakzeptoren nicht
ausschlieflich durch das Kodotiermaterial Wasserstoff (H) gegeben ist. Dies ist
ein Widerspruch zu dem bisherigen anerkannten Modell, welches die Verbesserung
der Magnesiumloslichkeit in GaN allein {iber die Bildung von neutralen [MgH]|-
Defektkomplexen erklért. Besonders drastisch fallt der Einbruch der relativen
Wasserstoffkonzentration ab einer Magnesiumkonzentration von ca. 3 - 10! cm™3
ins Gewicht. Eine thermische Aktivierung des Materials ist nicht mehr mdoglich.

Gerade der letztere Aspekt ist ein herber Riickschlag, da die Magnesiumakzeptoren
die zentrale Rolle in der Verbesserung der p-Leitfahigkeit darstellen. Die Erhohung
der Loslichkeit von Mg in GaN ist nur dann sinnvoll, wenn das zusétzlich ein-
gebrachte Magnesium seine Rolle als Akzeptor wahrnehmen kann. Da diese aber
auch ohne Wasserstoff passiviert sind, muss neben dem Wasserstoff ein weiterer
Kompensationsmechanismus eine Rolle spielen. Die experimentellen Daten lassen
aber eine direkte Bestimmung dieses Mechanismus nicht zu. Deswegen bietet es
sich an, auf eine theoretische Modellierung der Problemstellung basierend auf der
Dichtefunktionaltheorie (DFT) als ab initio Theorie zuriickzugreifen. Die aus der
Theorie gewonnenen Erkenntnisse iiber die in p-GaN auftauchenden Defekte helfen
die Details im Experiment genauer zu verstehen, um so praktische Anweisungen fiir
die weitere experimentelle Forschung zu geben.

Die in dieser Dissertation verwendeten Modellierungen bedingen geeignete Modi-
fikationen géngiger Algorithmen oder die Entwicklung neuer Ansétze. Dies setzt
ein grundlegendes Verstindnis der DFT, sowie des verwendeten mathematischen
Kalkiils voraus. Kapitel 3 stellt die notwendigen mathematischen Konzepte dar, die
in der DFT und — besonders auch — fiir die in dieser Dissertation andiskutierten
optimierten Basissétze eine Rolle spielen. Kapitel 4 fiihrt dann in die Konzepte der
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2 Zusammenfassende Kapiteliibersicht

Dichtefunktionaltheorie ein, wiahrend das Kapitel 5 detailliert die DFT kristalliner
Systeme und die Modellierung von Punktdefekten und Defektkomplexen behandelt.

Géngige Programmpakete, wie das weit verbreitete Vienna ab initio simulation
package (VASP)[17] oder die am Max-Planck-Institut fiir Eisenforschung GmbH
entwickelte Multiskalenbibliothek S/PHI/nX[18], benutzen in ihren Algorithmen
der Dichtefunktionaltheorie eine Ebene-Wellen-Basis fiir die quantenmechanische
Wellenfunktion. Dieser Ansatz bedingt eine Beschreibung des Problems im rezi-
proken Raum, hat aber den Charme, dass nur ein einziger Kontrollparameter zur
Einstellung der Genauigkeit des Basissatzes benétigt wird. Dies vereinfacht die
Modellierung ungemein. Die quantenmechanische Beschreibung von groften Defek-
ten mit mehreren Nanometer Ausdehnung, wie sie beispielsweise die in GaN:Mg
auftretende Inversionsdoméne besitzt, ist in diesem Ansatz jedoch sehr zeitin-
tensiv. Typische Algorithmen skalieren kubisch mit der Systemgréfe. Eine volle
Modellierung der Inversionsdoméne mit mehreren 10.000 bis 100.000 Atomen wére
folglich nur auf High Performance Computing Systemen mit entsprechender Paralle-
lisierung denkbar und wiirde selbst dann Monate bis Jahre an Rechenzeit bendtigen.

Wesentlich effizienter sind coarse grained Realraummethoden, die mit geeigneten
atomzentrierten Basissédtzen hantieren. Diese Methoden skalieren zu grofen Teilen
linear mit den Basisfunktionen und erlauben damit die effiziente Modellierung
von Systemen, deren Ausmafe einige Kubiknanometer und mehr erreichen. Die
Genauigkeit solcher Methoden stehen jedoch in direkter Verbindung zu dem ver-
wendeten atomzentrierten Basissatz. Dieser bietet — im Gegensatz zu den ebenen
Wellen — keine systematisch kontrollierbare Genauigkeit. Vielmehr wird durch
Hinzunahme weiterer Funktionen ,yersucht” den Basissatz weiter zu komplettieren.
Weitere Funktionen bedeuten aber nicht unbedingt einen konsequenten Gewinn an
Genauigkeit. Ware es nun méglich die einfach zu kontrollierende Vollstéandigkeit
einer Ebenen-Wellen-Basis auf eine atomzentrierte Orbitalbasis zu iibertragen, wére
eben diese grofte Schwiche der atomaren Basissétze behoben.

In Kapitel 6 wird daher eine Methode vorgestellt, die aus einer Ebenen-Wellen-
Rechnung geeignete atomzentrierte Basisfunktionen, sogenannte Quamols, erzeugt
und so optimiert, dass die besetzten Unterrdume nahezu identisch sind. Nach
einer kurzen Einfilhrung atomzentrierter Basisfunktionen in Kapitel 6.1 wird diese
,Nahezu-Identitat“ der Unterrdume iiber die Spillage in Kapitel 6.2 quantifiziert.
Diese gilt es nun zu minimieren. Dabei sollen den Orbitalfunktionen so wenig
Einschrankungen wie moglich auferlegt werden. Lediglich die sphérische Symmetrie
der Orbitale wird gefordert. Entgegen fritherer Arbeiten, in denen atomzentrierte
Orbitalfunktionen iiber Gaufsfunktionen oder Besselfunktionen als zu Grunde
liegenden Basissatz dargestellt wurden, sind die hier verwendeten Orbitalfunktionen
basissatzfrei als Punkte auf einem logarithmischen Radialgitter reprisentiert.
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Eine besondere Herausforderung in der Entwicklung des Algorithmus stellt dabei
die Berechnung von Uberlappintegralen der atomzentrierten Basisfunktionen
mit den Zustdnden in der Ebenen-Wellen-Repriasentation dar. Dies bedeutet
die Fouriertransformation von radialen Ortsraumfunktionen auf das kartesische
reziproke Raumgitter der ebenen Wellen. Diese beiden Gitter gentigen jedoch vollig
unterschiedlichen Anspriichen. Die sich daraus ergebenden numerischen Schwie-
rigkeiten wurden im Rahmen der Doktorarbeit durch den geschickten Einsatz
von Spline-Funktionen kompensiert. Die notwendigen Schritte zum eigentlichen
Algorithmus werden in Kapitel 6.3 und Kapitel 6.4 detailliert behandelt. An einigen
ausgewahlten Beispielen demonstriert Kapitel 6.5 anschliefend die Erzeugung
der optimierten Basisfunktionen. Diese werden auf ihrer Eigenschaften beziiglich
Genauigkeit und Transferabilitdt untersucht. Die Ergebnisse sind vielversprechend:
Es zeigt sich eine qualitativ hochwertige Ubereinstimmung mit den Ebenen-Wellen-
Resultaten beziiglich der Bandstruktur. Auch physikalische Grofen, welche die
Berechnung an modifizierten Geometrien benétigen, wie die Gitterkonstante, der
Bulkmodulus oder auch Elastizitdtskonstanten lassen sich mit diesen an nur einer
einzigen Struktur generierten Orbitalen sehr gut beschreiben. Die fiir verschiedenste
Modellierungsaufgaben so grundlegende Transferabilitdt ist also gewéhrleistet.
Damit ist es gelungen, akkurate und transferable atomzentrierte Basissidtze
zu erzeugen. Durch die Minimierung der Spillage fiihrt die Hinzunahme weite-
rer Funktionen zu einer systematisch kontrollierbaren Verbesserung der Genauigkeit.

Mit den Quamols ist der Grundstein zur Entwicklung oder Adaption von effi-
zienten Realraummethoden gelegt. Kapitel 6.6 diskutiert einige Entwicklungen
beziiglich der Verwendung von den Quamols in einem Tight-Binding-Modell. Die
Herausforderung besteht darin die Basisfunktionen weiter zu lokalisieren, damit die
Beriicksichtigung von nur einigen wenigen Nachbarn quantitativ gute Ergebnisse
liefert. Dies ist der néchste Meilenstein zur Entwicklung eines Algorithmus mit
dem auch die Modellierung groffer Systeme wie beispielsweise der Inversionsdo-
méne effizient vollzogen werden kann. Allerdings entfiel in dieser Dissertation die
Notwendigkeit einer entsprechenden Entwicklung, da die Ergebnisse in Kapitel 7
eine explizite Behandlung der Inversionsdoménen nicht erforderlich machten.
Zur Beantwortung der technologisch wichtigen Frage der p-Leitfahigkeit in GaN
findet in Kapitel 7.1 eine Diskussion des Phdnomens anhand der Literatur statt.
Kapitel 7.2 fasst die experimentellen Randbedingungen beim Kristallwachstum
mittels Metallorganischer Gasphasenepitaxie (MOVPE) zusammen. Da die Ande-
rung des Kompensationsmechanismus mit dem Auftauchen der Inversionsdoméanen
einhergeht, riicken zunéchst die magnesiumnitridartigen Inversionsdoménengrenzen
in den Fokus der Untersuchung. Es stellt sich die Frage, inwieweit die sich schlag-
artig dndernde chemische Umgebung Modifikationen der Wasserstoffverteilung
im Material bewirken kann. In Kapitel 7.3 erfolgt eine erste Abschatzung iiber
die Modellierung von Magnesiumnitrid in der Antibixbyitephase. Dabei werden
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2 Zusammenfassende Kapiteliibersicht

erstmals Bildungsenergien von Punktdefekten und Defektkomplexen in diesem
Material mittels DFT bestimmt. Basierend auf dieser Defektenergetik lassen sich
Aussagen iiber die Defektkonzentrationen unter den GaN Wachstumsbedingungen
treffen. Die dort erzielten Ergebnisse legen nahe, dass durch die Inversionsdoménen
keine signifikante Modifikation der Wasserstoffkonzentration erreicht werden kann.
Die geringe Wasserstoffadsorption, gepaart mit dem geringen Konzentrationsanteil
der IDB in GaN fithren zu Wasserstoffkonzentrationen weit unterhalb der expe-
rimentellen Befunde. Es zeigt sich aber, dass der Wasserstoff in diesem Material
vornehmlich an Vakanzen bindet, was die Frage motiviert inwiefern Vakanzen in
GaN eine Rolle spielen.

In Folge dessen féllt in Kapitel 7.4 der Fokus auf die Defektenergetik von GaN.
Da GaN ein in der Literatur viel diskutiertes Material ist, sind schon komplette
Datensatze vorhanden, mit denen verglichen werden kann. In Kapitel 7.4.1 zeigen
wir diese vergleichende Gegeniiberstellung der nicht modifizierten Bildungsenergien
einzelner Defekte. Es zeigen sich erhebliche qualitative Unterschiede. Dies motiviert
eine detaillierte Analyse der zu Grunde liegenden Berechnung, da eine akkurate
Berechnung von Defektkonzentrationen mit diesen Daten fragwiirdig erscheint.
Die Verlasslichkeit der Aussagen basierend auf diesen Datensétzen steht deswegen
auf dem Priifstand. Nach einer Einfiihrung in die verwendete Defektnomenklatur
in Kapitel 7.4.2 findet in den Kapiteln 7.4.3 — 7.4.6 eine Entwicklung von Kor-
rekturtermen statt, welche die Schwéchen der unterschiedlichen Austausch- und
Korrelationsfunktionale korrigieren und eine Validierung der Datensétze erlauben.
Dazu ist es notwendig eine konsequente Korrektur der durch den Superzellen-
ansatz auftretenden langreichweitigen Ladungswechselwirkung durchzufiihren.
Weiter schldgt das Bandliickenproblem der DFT voll zu Buche, wenn die mit
unterschiedlichen Funktionalen berechneten Defektenergien verglichen werden.
In dieser Arbeit ist es gelungen das Umladungsniveau der Stickstoffvakanz als
funktionaliibergreifende Referenz fiir das Ferminiveau zu identifizieren, welches
unabhéngig von den Bandeigenschaften des Materials ist. Damit lassen sich die
mit den unterschiedlichen Funktionale berechneten Ergebnisse in Einklang bringen.
Zudem ist durch die Anwendung neuster Entwicklungen der DFT wie des von
Heyd, Scuseria und Ernzerhof entwickelte Hybridfunktional HSE und der Super-
zellenkorrektur fiir geladene Defekte die Genauigkeit der Defektbildungsenergien
signifikant verbessert worden.

Basierend auf der validierten HSE Defektenergetik findet dann in Kapitel 7.4.7 die
Berechnung der Defektkonzentrationen fiir hoch Mg-dotiertes GaN statt. Dabei
werden alle Prozesse beleuchtet, die eine Modifikation der Wasserstoftkonzentration
bewirken koénnen, um ein komplettes Bild dieses Phénomens zu zeichnen. Es
wird aus theoretischer Sicht gezeigt, dass Stickstoffvakanzen in vergleichbaren
Konzentrationen zum Wasserstoff auftreten und zudem dessen Kompensationsrolle
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iibernehmen. Damit ist ein Kompensationsmechanismus identifiziert, der den
gewiinschte Aktivierungsmechanismus der Wasserstoffaustreibung erheblich stort.
Stickstoffvakanzen sind in GaN nicht mobil und lassen sich im Gegensatz zum
Wasserstoff somit nicht thermisch austreiben. Zudem wurde in Kapitel 7.4.8
erstmals die Bildung von Magnesiumnitrid als Grenze fiir die im Wachstumspro-
zess beteiligten die chemischen Potentiale diskutiert. Es gelingt in diesem Bild
eine qualitative und quantitative Reproduktion des experimentellen Phénomens.
Schlussendlich entpuppt sich das Wechselspiel zwischen Stickstoffvakanzbildung
und der Phasenseparation GaN/MgsN, als eigentlich limitierender Faktor der
p-Dotierbarkeit von Galliumnitrid. Damit sind die zentralen zuséatzlichen Effekte
aufgedeckt, um welche das urspriingliche Modell der Wasserstoffkodotierung ergénzt
werden muss, um eine Erklarung der experimentellen Befunde zu erlauben.

Abschliefsend findet in Kapitel 8 eine Zusammenfassung der Ergebnisse statt.
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3 Mathematische Vorbetrachtungen

3. Mathematische Vorbetrachtungen
Physik verhdlt sich zu Mathematik wie Sex zu Selbstbefriedigunyg.
Richard P. Feynman, Physiker und Nobelpreistriger, 1918-1988

Zur Betrachtung der in der Einleitung diskutierten Fragestellungen bedient sich
diese Dissertation aktueller Methoden der Festkorpertheorie, welche allesamt auf
der in den 20er Jahren des vorherigen Jahrhunderts entwickelten Quantenmechanik
basieren. Einen kompletten Abriss dieser Thematik zu liefern ist in diesem Rahmen
nicht moglich, so dass lediglich auf einige wenige Eckpfeiler der Theorie eingegangen
wird, um ein Verstiandnis der in dieser Arbeit getiitigten Uberlegungen zu ermogli-
chen. Fiir eine fundierte Diskussion empfiehlt sich die Lektiire der in den einzelnen
Themenkomplexen angegebenen Literatur. Um insbesondere auf die Herleitung der
Algorithmen der quantitativ optimierten Orbitalfunktionen vorzubereiten, erfolgt
zundchst eine mathematische Vorbetrachtung, die an die hervorragende Einfithrung
von Ballentine[19] angelehnt ist. Diese ist auch fiir das Verstindnis der in Kapitel 4
dargestellten physikalischen Eckpfeiler der Dichtefunktionaltheorie hilfreich.

3.1. Vektorraume

Die Quantenmechanik benutzt in ihrer mathematischen Beschreibung einen spezi-
ellen Vektorraum: den Hilbertraum. Im allgemeinen besteht ein Vektorraum V' aus
einem Satz von Elementen, sogenannten Vektoren ¢, und ist geschlossen beziiglich
der Addition und der Multiplikation mit Skalaren c¢. Das bedeutet:

Definition 3.1 Seien ¢ und ¢o Elemente des Vektorraumes V und ¢, und cy Ska-
lare der komplexen Zahlen C, so ist ¢ mit

¢ = 101 + Cay

ebenfalls ein Element des Vektorraumes V.

Aus der Vielzahl von moglichen Vektorrdumen sind nun in der Physik zwei von ganz
besonderem Interesse. Der Vektorraum der

1. n-dimensionalen diskreten Vektoren, in welchem die Elemente als Spalten kom-
plexer Zahlen a; reprasentiert werden kénnen, z.B.

a1

a2
b = e (al,ag,...,an)T.




3.1 Vektorraume

2. ausgezeichneten Funktionen, in welchem die Elemente tiber Funktionen mit
bestimmten Eigenschaften, wie zum Beispiel Polynome oder 2-fach differen-
zierbare Funktionen, dargestellt werden.

Diesen Vektoren konnen nun weitere Eigenschaften zugeschrieben werden.

Definition 3.2 FEine Teilmenge von Vektoren aus V' bildet einen Unterraum U von
V', wenn diese Teilmenge geschlossen beziiglich der Addition und der Multiplikation
mit Skalaren ist.

Definition 3.3 FEin Satz von Vektoren {¢,} heifst linear unabhéingig, wenn die Glei-

ch¢n =0

n

nur die triviale Losung ¢, = 0 fiir alle n besitzt.

chung

Wenn die obige Gleichung eine weitere Losung besitzt, spricht man von linear abhén-
gigen Vektoren. Das hat zur Folge, dass ein Vektor eines linear abhéngigen Satzes
in Form einer Linearkombination der verbleibenden Vektoren ausgedriickt werden
kann. Dies ist der Basisgedanke.

Definition 3.4 FEin Satz linear unabhingiger Vektoren, der in der Lage ist jeden
Vektor des Vektorraumes abzubilden heifst vollstindige Basis des Vektorraumes.

Analog konnen auch in Unterrdumen des Vektorraumes Basen definiert werden.
Diese werden mit Bezug auf den Vektorraum als unvollstdndige Basen bezeichnet.

Weiter wird das innere Produkt definiert.

Definition 3.5 Fine Zuordnung (¢,v) — ¢ auf den Vektorraum V mit (¢,1 €
V', c € C) heifst inneres Produkt oder skalares Produkt, wenn es die folgenden Figen-
schaften erfillt:

1. (¢, 0) = (¥, 9)"
2. (¢, 1901 + cata) = c1(d, 1) + c2(9, ¢h2)
3. (¢,0) > 0.

Fiir die obigen zwei Félle von Vektorrdaumen haben die inneren Produkte die folgende
Gestalt

1. Seien ¢ und ¢ Elemente der diskreten Vektoren, dargestellt als Spalten mit
den komplexen Zahlen aq,--- ,a,, bzw. by,--- ,b,, so gilt

(¢7 ¢) - G’Tbl + a;bZ + o+ a;brw

2. Seien ¢ und ¢ Elemente eines Vektorraumes der Funktionen von x und w(x)
eine positiv reelwertige Gewichtungsfunktion, so gilt

(0, 0) = /qb*(x)l/)(x)w(x)dx.
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3 Mathematische Vorbetrachtungen

3.2. Funktionale und Diracnotation

Weiterhin existieren Zuordnungen, welche einem Vektor eines Vektorraumes eine
komplexe Zahl zuordnen, die sogenannten Funktionale. Man spricht von linearen
Funktionalen, wenn fiir das Funktional F

F(Cl¢1 + CQ¢2) = ClF(¢1) + CQF((bQ) (31)

gilt. Gilt zudem fiir die Summe zweier Funktionale

(F1+ F2)(¢) = Fi(¢) + Fu(o), (3.2)

so bilden die Funktionale ihrerseits einen linearen Raum V', der Dualraum des Vek-
torraumes der Vektoren ¢,, genannt wird. Uber die Bezichung dieser Funktionale zu
den Vektoren, welche letztendlich die berithmte Diracnotation begriindet, trifft das
Riesz Theorem eine Aussage.

Theorem 3.1 Riesz Theorem: Es existiert eine eins-zu-eins Entsprechung zwi-
schen linearen Funktionalen F in V' und Vektoren f in V, sodass alle linearen
Funktionale als

F(¢) = (f.¢) (3.3)

dargestellt werden kénnen. Dabei sei | ein fester Vektor und ¢ ein beliebiger Vektor
des Raumes V.

Der Beweis des Riesz Theorems geschieht in zwei Schritten. Zunéchst ist zu zeigen,
dass jedem Vektor f ein Funktional F' zuzuordnen ist. Dieses ist aber iiber die
jeweilige Definition des inneren Produktes eines Vektorraumes explizit gegeben und
somit trivial erfiillt. Es bleibt folglich noch zu zeigen, dass sich fiir jedes Funktional
F ein entsprechender Vektor f konstruieren lédsst. Dazu nehmen wir an, dass die
{¢n} eine orthonormale Basis des Vektorraumes V' bilden, also (¢, ¢m) = 0pnm gilt.
Somit lasst sich jeder beliebige Vektor 1 in dieser Basis ausdriicken als

¢ - Z Cn¢n~

Es folgt fiir lineare Funktionale nach Gleichung (3.1)

F() =Y caF(¢n).

n

Wenn man nun den Vektor f als

F=> [F(6n)] on

konstruiert, ergibt sich fiir das skalare Produkt
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3.3 Lineare Operatoren

Die Diracnotation nennt nun Vektoren des linearen Vektorraumes V' ket-Vektoren
und bezeichnet sie mit |¢). Die linearen Funktionale F' des Dualraumes V' werden
als bra-Vektoren bezeichnet und (F'| geschrieben. Das komplexwertige Ergebnis eines
Funktionals wird nun

F(¢) = (F|¢) (3.4)

geschrieben. Geméaf dem Riesz Theorem sind nun das Funktional F' und der ent-
sprechende Vektor f gleichwertig, so dass beide mit dem gleichen Buchstaben be-
zeichnet werden kénnen. Die Verwendung des bra (F| oder des ket |F') ermoglicht
nun die Unterscheidung, in welchem Raum das Objekt F' beheimatet ist. Geméfs
Gleichung (3.3) gilt entsprechend

(Flo) = (F, ). (3.5)

Deshalb wird das braket (F|¢) in der Physik formal als weitere Darstellung des

inneren Produktes verwendet. Es ist aber zu beachten, dass {iber das Risz Theorem
eine antilineare Entsprechung

A(F|+ 5 (F| <> c1|F) + | F) (3.6)

von bra und ket gegeben ist.

3.3. Lineare Operatoren

Neben den Funktionalen gibt es eine Klasse von Objekten, die Vektoren des Vektor-
raumes V wieder auf Vektoren abbilden: die sogenannten Operatoren.

Definition 3.6 Seien |¢)) und |¢) Elemente eines Vektorraumes V. Das Objekt A
mat der Eigenschaft

~

) = Al¢)
heifit Operator.

Ein Operator heifst linear wenn er, angewendet auf eine Linearkombination von
Vektoren, geméf

A(ertr) + ealibn)) = c1Algn) + coAlan) (3.7)

zerfillt. Weiter besitzen lineare Operatoren — im folgenden nur noch als Operatoren
bezeichnet — die folgenden interessanten Eigenschaften.
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3 Mathematische Vorbetrachtungen

Die Gleichheit zweier Operatoren A und B ist dann gegeben, wenn ihre Wirkung
auf beliebige Vektoren [¢) identisch ist, d.h

Alyp) = BJib).

Dies wird durch die Kurzschreibweise A = B ausgedriickt. Damit lasst sich das
Produkt und die Summe von Operatoren definieren. Es gilt

(A+B)le) = Al) + Blv) (38)
ABly) = A(B|y)) (3.9)
Aus dieser Definition folgt unmittelbar, dass die Multiplikation von Operatoren as-
soziativ ist, A(BC) = (AB)C. Jedoch besitzt das Kommutativgesetz in der Regel
keine Giiltigkeit: AB # BA.
Bisher ist nur die Wirkung von Operatoren auf ket-Vektoren diskutiert worden. Thre
Wirkung auf bra-Vektoren wird in der Diracnotation iiber die Beziehung

({olA)[y) = (2l(A]¥)) (3.10)

definiert. Untersuchen wir dieses Definition aus der Sichtweise der lineare Funktio-
nale und verwenden das Riesz Theorem

Fy() = (9, ¢). (3.11)

Die Wirkung des Operators A auf das lineare Funktional F, ist dann analog zu
Gleichung (3.1) als

AF, () = Fy(Ay) (3.12)

definiert. Dariiber hinaus ist das neue Funktional AF¢ definiert. Folgt man dem
Riesz Theorem, muss ein ket-Vektor |y) existieren mit

AFy(1) = (x, ) = Fy(¥). (3.13)

Da nun aber |x) im selben Vektorraum wie |¢) beheimatet ist, muss ein Operator
AT existieren, so dass |x) = AT|¢) gilt. Damit folgt

AFy = Fy,

und weiter

(Alg, ) = (¢, Av).

Letzteres ist aber gerade die Definition der Adjunktion eines Operators iiber das
skalare Produkt, welche sich hier ganz natiirlich aus der Diracnotation ergibt. Dies
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3.4 Selbstadjungierte Operatoren

hat zur Folge, dass der korrespondierende bra-Vektor (w| des ket-Vektors |w) = A|¢)
als (w| = (¢| AT gegeben ist. Verwendet man nun, dass (w|y)* = (¥|w) folgt hieraus

(@l AT|y)* = (| Alg). (3.14)
Zusitzlich zum inneren Produkt (¢|y) kann nun ein dufseres Produkt |1)(¢| definiert
werden, welches seinerseits einen Operator darstellt. Dies wird klar, wenn man die
Wirkung dieses Objektes auf einen ket-Vektor betrachtet. Mittels Assoziativgesetz
folgt

() (@DIA) = (WI({2IA) = (],
——
ceC
was eine Abbildung des Vektors |A) auf ¢(¢)| bedeutet. Diese Konstrukte werden

uns in Kapitel 6 als Projektoren wieder begegnen. Unter Verwendung von Glei-

chung (3.14) ergibt sich aus (A2|1)(d|A1) = ((\i])(¥[A2))" = (Nal(|0) (])T[ A1) die
Identifizierung

(o)D) = [¥){el- (3.15)

3.4. Selbstadjungierte Operatoren

Erfiillt ein Operator die Beziehung

(Wl Alp) = (ol Alp)" (3.16)
so heiftt er selbstadjungiert. Selbstadjungierte Operatoren nehmen in der Physik eine

besondere Rolle ein. Durch diese werden messbare Observablen, wie zum Beispiel die
Energie eines Systems, der Drehimpuls oder der Ort eines Teilchens représentiert.

Theorem 3.2 Das Eigenwertspektrum eines selbstadjungierten Operators ist rein
reell:
Ala) = ala) mit a € R

Der Beweis erfolgt direkt unter Verwendung der Definition selbstadjungierter Ope-
ratoren. Sei |«) ein beliebiger Eigenvektor von A zu dem Eigenwert a. Dann gilt die

Folgerung:
alala) = (alaa) = (a|Ala) (3.17)
= (a]Alo)* = (a]ac)* (3.18)
= a*{a|a) (3.19)

Daraus folgt sofort die Identitit a = a*, was nur giiltig ist fiir a € R.
Weiter gilt fiir selbstadjungierte Operatoren, dass Eigenvektoren zu unterschiedli-
chen Eigenwerten orthogonal aufeinander stehen.

25



3 Mathematische Vorbetrachtungen

Theorem 3.3 Seien |ay) und |ag) Eigenvektoren des selbstadjungierten Operators
A mit den Eigenwerten a; und as. Dann gilt

(ao|a) = 0 fiir a; # as

Auch hier verwendet man die Definition selbstadjungierter Operatoren. Aus

0 = (o] Alay) — (o] Alas)* (3.20)
= ay{(ae|ay) — ag(ag|ag)” (3.21)
= (a1 — ag)(az|ay) (3.22)

folgt unmittelbar die Aussage des Theorems.

Diese mathematischen Vorbetrachtungen bilden den Grundstock zum Verstdndnis
der mathematischen Formulierung der Quantenmechanik. Auf dieser fusst die nun
im Folgenden beschriebene Dichtefunktionaltheorie.
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4. Dichtefunktionaltheorie - Eine Einfiihrung

Elektronen im Bohrschen Atommodell sind stehende Materiewellen. Um
das zu verstehen, stellen Sie sich einen Elektrozaun vor, nur ohne Draht
und Pfosten.

Vince Ebert, dt. Physiker und Kabarettist, 1968 -

4.1. Beschreibung von Vielteilchensystemen

Die Modellierung von Molekiilen und Festkérpern — und insbesondere von De-
fekten — ist zentraler Bestandteil aktueller Forschung und zur Beantwortung der
zentralen Fragestellung dieser Dissertation unabdingbar. Besonders die Entwicklung
der Dichtefunktionaltheorie (DFT) in den 60er Jahren und ihre kontinuierlichen
Verbesserungen bis in unsere heutige Zeit haben dafiir gesorgt, dass die moderne
theoretische Festkorperphysik heutzutage einen immensen Stellenwert hat. Nur
sie erlaubt es effiziente und quantitativ akkurate Modelle von Punktdefekten
zu entwickeln und damit fiir die Experimentatoren wegweisende Ergebnisse zu
produzieren. Im Folgenden werden die Konzepte dieser méchtigen Theorie erdrtert
und dargestellt.

Atomare Ensemble kénnen als ein Satz positiv geladener Kerne verstanden wer-
den, welche ihrerseits von Elektronen umgeben sind. Die bindende Kraft zwischen
Kernen und Elektronen ist die Coulombkraft Frouomn, hervorgerufen durch das ent-
sprechende Coulombpotential Vogyiomp. Fiir Punktladungen ¢;, ¢; im Vakuum, die
sich im Abstand r; ; voneinander befinden, ist dieses iiber die Beziehung

_ 1oy
47'('60 ri,j

VCoulomb (Tz',j) (41)

gegeben. Aus der Kenntnis des Potentials und den damit verbundenen Kréften lasst
sich nun klassisch die Dynamik des Systems iiber die Differentialgleichung beschrei-
ben, die empirisch von Sir Isaac Newton bestimmt wurde und als zweites Newton-
sches Axiom Beriithmtheit erlangt hat. Im Falle zeitlich unverénderlicher Massen
lésst sich diese als

dp d’r

= -_-— m_

dt dt?

schreiben. Fiir die Beschreibung klassischer Partikel, die sich in unserer alltagli-

(4.2)

chen Groéfsenordnung bewegen, leistet diese Gleichung hervorragende Ergebnisse.
Allerdings versagt dieser Ansatz bei der Beschreibung des Mikrokosmos. Zu Beginn
des 20. Jahrhunderts gelang es Erwin Schrodinger eine Gleichung aufzustellen,
welche das Verhalten von quantenmechanischen Partikeln, zu denen die Elektronen
gehoren, korrekt beschreibt. Dazu war es notwendig den Begriff des Teilchens
fallenzulassen und quantenmechanische Objekte mittels einer komplexwertigen

27



4 Dichtefunktionaltheorie - Eine Einfiihrung

Wellenfunktion W zu beschreiben. Eine anschauliche Bedeutung hat hierbei nur das
Betragsquadrat dieser Wellenfunktion, welches als Aufenthaltswahrscheinlichkeit
des quantenmechanischen Objektes am Ort r aufgefasst wird.

Die Dynamik dieser Wellenfunktion wird durch die Schrédingergleichung

o (4.3)

beschrieben. Die zeitliche Propagation der Wellenfunktion beschreibt der sogenannte
Hamiltonoperator H (r,t), in welchem nun Ausdriicke fiir die kinetische Energie und
die Potentiale stecken. In vielen Féllen hdngen die Potentiale nicht explizit von der
Zeit ab, so dass der Hamiltonoperator H(r,t) = H(r) zeitunabhéngig angesetzt wer-
den kann. In diesen Situationen wéhlt man die Wellenfunktion als Produktfunktion
U(r,t) = ¢(r)T'(t). Dies fithrt zur sogenannten zeitunabhéngigen Schrodingerglei-
chung

Hy(r) = Ey(r) (44)
U(r,t) = o(r)eF0 4.5

Das Auffinden von Losungen der zeitunabhéngigen Schrodingergleichung ist eine
zentrale Aufgabe der Quantenmechanik. Fiir ein einziges Teilchen ist der Hamilton-
operator H die Summe der Operatoren der kinetischen Energie T und Energie des
Teilchens im externen Potential V. In der Ortsraumdarstellung ist der Operator der
kinetischen Energie als

gegeben. Dabei bezeichnet A = V-V den Laplace Operator. Die potentielle Energie,
welche aufgrund der obigen Seperabilitdt der Wellenfunktion als zeitunabhéngig
anzunehmen ist, ist eine Funktion des Ortes 1:

H = T+V(r) (4.7)
= —%A+V(r) (4.8)

Fiir Fragestellungen in der Festkorperphysik gilt es primér eine Vielzahl von Teilchen
zu modellieren, welche ihrerseits miteinander durch die Coulombkraft wechselwirken.
Deshalb betrachten wir an dieser Stelle die Schrodingergleichung von N durch die
Coulombkraft wechselwirkenden Elektronen in einem externen Potential. Die Wel-
lenfunktion des Systems ist damit eine Vielteilchenwellenfunktion der N Elektronen.
Die Wechselwirkung der Elektronen untereinander wird durch das Coulombpotential

28



4.1 Beschreibung von Vielteilchensystemen

1N q2

47eg by |r; — 15

VCoulomb - (49)
beschrieben und ist ein Zweiteilchenpotential. Dies hat gerade im Falle von Elek-
tronen einen interessanten Effekt zur Folge. Auf Grund des Pauli-Prinzips muss
die Wellenfunktion eines Systems von N Elektronen antisymmetrisch beziiglich der
Vertauschung zweier Koordinaten

U (T, ooy Ty eilhy ooy ) = =11, oy Ty ooy Ty oy ) (4.10)

sein. Nur so ist gewéahrleistet, dass keine zwei Elektronen in all ihren Quantenzahlen
iibereinstimmen. Der Einfachhalt halber beschrankt man sich im Folgenden auf ein
System von zwei Elektronen. In der Hartree-Fock Theorie wird diese antisymmetri-
sche Gesamtwellenfunktion ¥ anhand einer Slaterdeterminante

Y1(r1)  a(r1)
P1(r2)  Pa(ra)

bestehend aus Einteilchenwellenfunktionen v konstruiert. Die Couloumbenergie des

@(Tl, 7”2) =

= 1 (r1)a(ra) — P1(re)ha(r). (4.11)

Systems beinhaltet dann die folgenden Energieausdriicke. Zum einem die sogenannte
Hartree-Energie Ey, wo selbe Orbitale am selben Ort lokalisiert sind

1
T —Te
1

rs—7mT2

o <¢1< (1)

G a(r2)

; <w1<r2>w2< )

ba(ra) >> (4.12)

als auch solche Beitrége, wo der Ort bei selben Orbitalen ausgetauscht ist

Ex =— <¢1( J2(r2)

i)

1
T — T2
1

L —T2

- <w1<w>w2< )

(1 )¢2(7’2)> . (4.13)

Dieser letzte Energiebeitrag wird als Austauschenergie Ex bezeichnet. Die Néahe-
rung der Vielteilchenwellenfunktion iiber eine einzige Slaterdeterminante ist in der
Regel zu grob, so dass in der Hartree-Fock Theorie die Summe aus Hartree-Energie
und Austausch-Energie ca. 99% der tatsdchlichen Vielteilchen-Coulombenergie
ausmachen|20] . Diese Energiedifferenz wird als Korrelationsenergie E¢ bezeichnet
und ist in ihrer analytischen Form nicht bekannt. Das Auffinden entsprechender
Funktionale fiir die Austausch- und Korrelationsenergie ist auch heute noch
eine zentrale Fragestellung in der DFT. An spéterer Stelle werden die gidngigen
Néaherungen fiir diese diskutiert.
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4 Dichtefunktionaltheorie - Eine Einfiihrung

Um nun aber zur Beschreibung von Atomen, Molekiilen und Festkérpern zu kom-
men, miissen die Kerne in der Gleichung berticksichtigt werden. Die Kerne sind aus
Protonen und Neutronen aufgebaut, wobei jedes dieser Bestandteile ungefahr um
den Faktor 1800 schwerer ist, als ein einzelnes Elektron. Born und Oppenheimer
haben gezeigt, dass die Gesamtenergie von Molekiilen in Form einer Entwicklung

nach Potenzen von f/ MElektronen/ MKerne geschrieben werden kann|21]. Energiebei-
trage basierend auf einer gekoppelten Elektronen-Kern-Bewegung tauchen erst in
vierter Ordnung und héher in dieser Entwicklung auf, so dass diese gegeniiber den
anderen Energieausdriicken basierend auf einer reinen Kern- oder Elektronenbewe-
gung vernachléssigt werden konnen. Erst im Falle von speziellen Randbedingungen,
wie sie z.B. bei der Tieftemperatursupraleitung auftreten, sind die massenskalierten
Energiegrofen vergleichbar und eine Vernachléssigung nicht gerechtfertigt. Fiir die
in dieser Dissertation betrachteten Randbedingungen ist diese Naherung aber statt-
haft. Daraus resultiert eine Entkopplung der Kernbewegung von der Bewegung der
Elektronen im Rahmen der im folgenden diskutierten Born-Oppenheimer Naherung.

4.2. Die Born-Oppenheimer Ndherung

Zerlegt man den obigen Hamiltonoperator explizit in seine Kern- und seine Elektro-
nenanteile, so besitzt er die folgende Gestalt:

H=T+V =Tk + T, + Vix + Vix + Vee. (4.14)

Es bezeichnen hierbei 7} Kk und T . die Operatoren der kinetischen Energie fiir Kerne
und Elektronen und VKK, VeK und Vee die Operatoren der potentielle Energien der
Wechselwirkungen Kern-Kern, Elektron-Kern und Elektron-Elektron. Der elektro-
nische Hamiltonoperator H,

Ho=H —Tx — Vi = To + Vie + Vi (4.15)

ist nun Bestandteil weiterer Betrachtungen. In diesen flieflen die Kernkoordinaten
nur noch als Parameter ein, so dass eine Unterscheidung zwischen elektronischen
Koordinaten und Kernkoordinaten sinnig ist. Dazu sei an dieser Stelle x = {r;} X,
und X = {Rk},ivﬁl definiert. N, bezeichnet hierbei die Anzahl der Elektronen, Ny
die Anzahl der Kerne. Das rein elektronische Teilproblem lautet dann

A

Ho(x; X)hi(x; X) = &(X)hi(x; X) (4.16)
mit

(ilthy) = dsy. (4.17)

Unter der Annahme, dass dieses elektronische Problem bereits gelost ist, bilden die
1; eine Basis des Hilbertraumes. Die Gesamtwellenfunktion des Systems lasst sich
dann gemélfs
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4.3 Dichtefunktionaltheorie

Vges (%, X) sz Ji(x; X) (4.18)

entwickeln. Setzen wir dies in die obige Hamlltonglelchung des Gesamtsystems ein
und bilden das Produkt mit (¢;| gewinnen wir als Schrédingergleichung

<¢j|f{|wges> = Eges<¢j|¢ges> (419)
= (X)W Ho + Tic + Vi |¥) = Bges 305 X:(X) (05 ]11) (4.20)
— <€j (X) + 32, (5| T lbi) + T + VKK) X (X) = Egesxj(X).  (4.21)

An dieser Stelle greift nun die aus|21] motivierte Vernachliassigung der Kopplungs-
terme (1;|Tx|v;) gegeniiber den anderen Ausdriicken. Die sich daraus ergebene Né-
herung

(€;(X) + Tk + Vi) Xi(X) & Egesx;(X) (4.22)

ist die sogenannte adiabatische Néherung oder Born-Oppenheimer Naherung|21].
Hier entkoppeln Kernbewegung und Elektronenbewegung vollstdandig und es gilt
das Problem des rein elektronischen Hamiltonoperators Hy zu lsen. Dieser Ope-
rator beinhaltet die kinetische Energie der Elektronen, sowie die Potentiale der
Coulombinteraktion der Elektron-Elektron Wechselwirkung und der Kern-Elektron
Wechselwirkung und besitzt die Gestalt:

N Ne,Nk

= -, Z -3 A (193)
- 2m 47r60 5 \rl — r]\ |ri — x| r]\
N—— < (.
Tee ‘/ee VeK

4.3. Dichtefunktionaltheorie

Zur Losung des oben diskutierten elektronischen Problems werden zwei Klassen von
Verfahren angewendet. Die Hartree-Fock-Anséitze und die daraus resultierenden
Verfahren finden in der Quantenchemie bei der Berechnung einzelner Molekiile
Verwendung. Da die typischen Verfahren jedoch vom Rechenaufwand wie N* und
hoher mit ihrer Systemgrofie skalieren, sind sie zur Beschreibung von Festkérpern
mit bis zu hundert Atomen fiir Defektzellen nur beschréankt bis gar nicht einsetzbar.

Ein anderer Ansatz zur Losung des elektronischen Problems basiert auf der Einfiih-

rung der ortsaufgelosten Elektronendichteverteilung n(r). Diese ist tiber die Glei-
chung

= N/ . / U*(r, vy, ..., vn)U(r,ro, ..., ) drodPrs . .. 1y (4.24)
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4 Dichtefunktionaltheorie - Eine Einfiihrung

definiert. Der Faktor N bezeichnet die Gesamtzahl der zu behandelnden Teilchen
und dient somit der Erhaltung der Teilchenzahl. Es gilt folglich der Zusammenhang

N = / n(r)dr. (4.25)

Man bezeichnet die Teilchenanzahl N hierbei auch als Funktional der Elektronen-
dichte n und schreibt N = Nn|. Ebenso ist die Elektronendichte n aufgrund ihrer
obigen Definition ein Funktional der N-Teilchenwellenfunktion .

Um jedoch die Wellenfunktion durch die Elektronendichte zu ersetzen, benotigt man
zwischen diesen beiden Gréfen eine eineindeutige Abbildung. Uber diese Eigen-
schaft und einige weitere, die zur Losung des obigen Problems beitragen, treffen die
Hohenberg-Kohn-Theoreme Aussagen.

4.3.1. Die Hohenberg-Kohn-Theoreme

Die Hohenberg-Kohn Theoreme[22] sind das Herzstiick der Dichtefunktionaltheorie.
Nach Capelle|23] lassen sich 3 Hauptaussagen treffen.

Theorem 4.1 Hohenberg-Kohn (1)
Im Fulle eines nichtentarteten Grundzustandes kann die Grundzustandswellenfunk-
tion als ein erweitertes Funktional’

Uo(ry,ro, ..., ry) = YUing(r)] (4.26)

der Grundzustandselektronendichte dargestellt werden.

Aus diesem ersten Theorem folgen samtliche wichtigen physikalischen Verankerun-
gen um die Einteilchenelektronendichte als einzige notwendige Grofse zu etablieren.
Aufgrund dieser eineindeutigen Funktionalabbildung tragt die Elektronendichte ge-
nau den gleichen Informationsgehalt wie die N-Teilchenwellenfunktion. Weiter sind
alle physikalischen Erwartungswerte O von Observablen O, welche vorher Funktio-
nale der Wellenfunktion waren, nun auch Funktionale der Elektronendichte. Dies
folgt direkt aus der Definition des quantenmechanischen Erwartungswertes

Op = Olng) = <\If[no] )O ‘ \IJ[no]> (4.27)

einer Observablen. Der Beweis dieses aussagekréftigen Theorems ist im Folgenden
skizziert.

!Entgegen der in Abschnitt 3.2 getiitigten Definition eines Funktionals findet hier nun eine Zu-
ordnung eines Skalars aus dem Zahlenkoérper R auf den Raum der zwei mal differenzierbaren
und quadratintegrablen N-dimensionalen Funktionen LV statt. Ein solches Funktional wird als
erweitertes Funktional bezeichnet.
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4.3 Dichtefunktionaltheorie

Angenommen es gibe zwei Potentiale V(r) und V’(r), die sich um mehr als eine
additive Konstante unterscheiden, aber die gleiche Einteilchenelektronendichte n(r)
als Grundzustandsdichte besitzen. Diese Potentiale definieren zwei verschiedene Ha-

miltonoperatoren H und H’ mit zwei unterschiedlichen Eigenfunktionen |¥) und
|W"). Fiir diese gilt:

<xp ’ i ) \11> - E (4.28)

v

Wendet man nun die Wellenfunktion ¥’ auf den Hamiltonoperator H an, ist der

IfI/

\1ﬂ> - B, (4.29)

erhaltene Energieeigenwert echt grofer als die Grundzustandsenergie Fy. Dies folgt
aus dem Variationsprinzip der Quantenmechanik.

= Ey+ /n(r) [v(r) — o' (r)] d*r (4.30)

Zum selben Schluss kommt man auch fur die Wellenfunktion ¥ und den Hamilton-

E, < <\1ﬂ b -

operator H

E{)<<\I/‘FI’

o) = (s]]6)(a] s

¥)
— By / n(r) [o(r) — o/ (x)] dPr- (4.31)
Eine Addition beider Ungleichungen fiihrt zu der Ungleichung:
Ey+ E| < Ey + Ej. (4.32)
Dies stellt einen offensichtlichen Widerspruch dar. Zu zwei Potentialen, die sich
um mehr als eine additive Konstante unterscheiden, miissen folglich auch zwei
verschiedene Grundzustandssdichten n gehoren.
Das zweite Hohenberg-Kohn-Theorem motiviert das Variationsprinzip.
Theorem 4.2 Hohenberg-Kohn(II)
FEs existiert eine Grundzustandsladungsdichte ng zur Grundzustandsenergie
Eo = E[no] = <\If[n0] ‘ i ‘ \If[no]> . (4.33)

Jede andere Ladungsdichte n' liefert eine Energie, die grofier oder gleich der Grund-
zustandsenergie ist:

Elno] < E[n). (4.34)
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Diese Aussage entspricht dem Variationsprinzip der Wellenfunktion und schrénkt
die berechnete Energie eines Variationsprozesses nach unten ein. Beim Vollzug der
Minimierung der Energie E ist jedoch stets darauf zu achten, dass die Teilchenzahl
N des Systems, sprich die Normierung der Teilchendichte, erhalten bleibt. Um dies
zu bewerkstelligen wird nicht E[n| variiert, sondern E[n] — pu( [ n(r)dr — N). Solche
Nebenbedingungen werden in der Variationsrechnung iiber sogenannte Lagrangepa-
rameter u eingebracht, denen eine physikalische Bedeutung zugeschrieben werden
kann. In diesem Fall wird p als chemisches Potential der Elektronen interpretiert.

Eine weitere Aussage treffen die Hohenberg-Kohn-Theoreme {iber das Funktional
der potentiellen Energie.

Theorem 4.3 Hohenberg-Kohn (111)

Wenn Ausdriicke fiir die Operatoren der kinetischen Energie T, der Wechselwir-
kungsenergie Ve, und der Energie des externen Potentials V.x bekannt sind, existie-
ren auch ihre Funktionale T'[n], Ve[n], sowie Vex[n] und es gilt

Eln] = Tln] + Vuln] + Viln] = Fln] + Vucln. (4.35)

Zwar wird hier die Existenz der Funktionale belegt, jedoch keine Aussagen iiber
deren explizite Gestalt getroffen. Dies ist gerade fiir die essentiellen Funktionale der
kinetischen Energie und der Elektron-Elektron-Wechselwirkung kritisch, fiir welche
bis heute keine exakte Form bekannt ist. Fiir das externe Potential V.x[n]| hingegen
lasst sich sofort ein Funktional hinschreiben:

Viln] = / (1) v (1) dPr- (4.36)

4.3.2. DFT in der Anwendung: Die Kohn-Sham Gleichungen

Die Hohenberg-Kohn Theoreme zeigen, dass ein Wechsel von der Mehrteilchenwel-
lenfunktion zur Einteilchenladungsdichte theoretisch méglich ist und samtliche Ope-
ratoren auch als Funktionale der Einelektronendichte existieren. Die moglichen Lo-
sungsverfahren dieses Problems sind vielfiltig. Die Minimierung des Energiefunk-
tionals nach der Elektronendichte stellt hierbei jedoch einen ineffektiven Ansatz
dar. Weit verbreitet ist deswegen heute die Methode von Kohn und Sham|[24, 23].
Das Vielteilchenproblem wird, wie in der Hartree-Fock-Theorie, auf ein effektives
Einteilchenproblem reduziert. Dabei wird das wechselwirkende System durch ein
wechselwirkungsfreies System in einem effektiven Einteilchenpotential ersetzt. Zu
diesem Ansatz wird man geradezu gedriangt, da die einzelnen Energiefunktionale

Eln] = Tn] + Vee[n] + Vek[n] (4.37)

nicht bekannt sind und man gezwungen ist diese durch geeignete Wahl zu nahern.
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Eine explizite Darstellung des Funktionals der Elektron-Kern-Wechselwirkung ist
tiber die Gleichung (4.36) bereits gegeben. Probleme bereiten die Funktionale der ki-
netischen Energie und der Elektron-Elektron-Wechselwirkung. Aus der Hartree-Fock
Theorie ist bekannt, dass Vielteilcheneffekte bzw. Korrelationseffekte eine Rolle spie-
len und diese sich in diesen Funktionalen widerspiegeln miissen. Ohne Kenntnis der
expliziten Form formuliert man das Problem dergestalt um, dass man auf Bekanntes
aus der Hartee-Fock-Theorie zuriickgreifen kann: Man zerlegt die Funktionale in ihre
Einteilchenanteile und Vielteilchenanteile:

E[n] = Tiingieln] + Vit[n] + Vi [n] + Exe[r]. (4.38)

Die Vielteilcheneffekte werden nun durch ein einziges Funktional Fy. beschrieben,
welches die Austausch- und Korrelationsenergie enthélt. Das Funktional der kine-
tischen Einteilchenenergie ist jedoch nur ein implizites Funktional der Elektronen-
dichte. Da schon dieses in der expliziten Form nicht bekannt ist, verwendet man die
Darstellung iiber Einteilchenwellenfunktion
R
Tiingle[n] = Tiingle[{Pi}] = 5 (©;|AD;). (4.39)

Das Potential Vg fiir die Ladungswechselwirkung der Elektronen wird aus der
Hartee-Fock-Theorie ibernommen:

L @ [[n@n@) 5,
Vg=——-=— ————=dr'd’r. 4.40

i 47‘(’602// |r — 1| rar (4.40)
Unbekannt bleibt nun lediglich das Austausch- und Korrelationsfunktionalfunktio-
nal. Gangige Naherungen fiir dieses werden im néchsten Abschnitt diskutiert.

Um nun das elektronische Problem zu 16sen, ist die Variation der Elektronendichte

OE[n)|  _ 0Lwgelnl| | SVulnl| | SVexln)| | Bl Ly
5”(1‘) no B 5n(r> no 571,([') no 677,(]?) no 6n(r) 10 N ‘
111:[20} 'Ue;[rno} ”x?[:m}

von Noéten. Die Herren Kohn und Sham gingen hier allerdings einen pragmatischen
Weg. Sie fiihrten ein nichtwechselwirkendes System in einem effektiven Einteilchen-
potential veg([n]) ein. Die daraus resultierende Minimierungsvorschrift

OF|n) L0 (4.42)

on(r)

o 6Tsingle [n]
= on(r)

) ‘/;ﬂ‘ [n]

on(r) |,
—_——

Vesr[n0]

+

no

no
zeigt eine Identitat mit der Losung des Vielteilchenproblems, wenn

Ueﬁ[no] = VH [no] + VeK [ng] + Vxc [no] (443)
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erfiillt ist. Dies kann fiir physikalische Systeme immer erreicht werden. Damit ist
nun die Losung des effektiven Einteilchenproblems

(_j_mA N v;ﬁ[no]) 1By(0)) = 6] (1)) (1.44)

von Interesse. Bei bekannter Grundzustandselektronendichte ng lasst sich dieses Pro-
blem durch geeignete Standardverfahren 16sen. Doch genau dort liegt das Problem.
Die Grundzustandselektronendichte ist unbekannt und zudem noch ein Funktional
der Orbitalfunktionen:

no(r) = Z [®i(x)]. (4.45)

Die Kohn-Sham-Gleichungen sind somit nichtlinear. Solche Gleichungen kénnen aber
iterativ selbstkonsistent gelost werden, indem die Dichte in jedem Berechnungs-
schritt konsistent zu den Wellenfunktionen gewéahlt wird und das Gleichungssystem
solange gelost wird, bis die Dichte konvergiert ist. Die Gesamtenergie des Problems
berechnet? sich dann zu

E[n] = Tyngie[n] + Vex[n] + Va[n] + Ex[n]
= Tsingle[n] + / Vel — VHN — Vxen dr + Vir[n] + Exc[n]

:n@m+%wwnmw—/mmm+ww+&m] (4.46)

= Zei — Valn] — /vxcn dr + Ex[n).

An dieser Stelle erkennt man, dass die Gesamtenergie nicht durch einfache Summa-
tion der Kohn-Sham Orbitalenergien gegeben ist. Das bedeutet, dass die mit dem
Kohn-Sham-Schema berechnete Losung keine vollsténdige Losung des wechselwir-
kenden Systems ist. Lediglich die Grundzustandselektronendichte und die Grund-
zustandsenergie kommen identisch heraus. Die Kohn-Sham-Energien stimmen je-
doch zumindest qualitativ mit dem echten Energiespektrum iiberein|[25]. Aus die-
sem Grund werden auch Bandstrukturen und Bandliicken mit den Kohn-Sham-
Energieeigenwerten berechnet. Man muss sich jedoch im klaren dariiber sein, dass
diese keinen realen Bezug haben miissen. Dies fillt besonders gravierend in der
Unterschatzung von Bandliicken ins Gewicht, welche bei den gingigen Naherung
des Austausch- und Korrelationsfunktionals auftauchen. Diesen Naherungen wid-
men sich nun die nachsten Abschnitte.

Dabei wird der Zusammenhang Veg[n] = [ vef[n]ndr  verwendet. Es st
allerdings zu  beachten, dass die Integration 1iiber das  Hartree-Potential
Jvuln(r)n(r)dr = [[n(r)n(r')/|r —r'|dr’ dr = 2Vi[n] (atomare Einheiten: 4meg = ¢ = 1)
ergibt. Uber die Integration des Austausch- und Korrelationspotentials vy, lisst sich an dieser
Stelle noch keine Aussage treffen.
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Kristall Bandliicke [eV] Al |A]
LDA PBE Art exp® Art exp?
Diamant 4.14 4.16 indirekt 5.4  indirekt  3.55
Si 0.48 0.58 indirekt 1.17 indirekt  5.43
Ge 0.06 0.07 direkt 0.744 indirekt 5.66

Ge(I' - L) | 006 0.20 indirekt 0.744 indirekt 5.66
GaN (ZB) 1.79 1.75  direkt 3.2 direkt 4.52
GaP 1.47 1.63 indirekt 2.32 indirekt  5.45
GaAs 0.41 0.58  direkt 1.52  direkt 5.65

* Referenz|26]
b Referenz|27]

Tab. 4.1:

Die mit den géngigen Funktionalen LDA und PBE berechneten Bandliicken zeigen eine
deutliche Unterschatzung. Die Unterschéitzung kann sogar bis zu einer volligen Fehl-
beschreibung des Materials gehen, wie im Falle des Germaniums, welches in den DF'T
Rechnungen nahezu metallisch ist. Die Berechnung erfolgten an der experimentellen
Gitterkonstante.

4.3.3. Die lokale Dichtendherung (LDA)

In Ermangelung einer geschlossenen analytischen Form fiir das Austausch- und
Korrelationsfunktional ist man gezwungen ein solches geeignet zu konstruieren.
Die lokalen Dichtendherungen sind dabei solche, bei denen das Austausch- und
Korrelationsfunktional allein von der Elektronendichte abhédngt — im Gegensatz zu
den spéter beschriebenen Korrekturverfahren, die noch den Gradienten der Dichte
einbauen.

Basierend auf dem Modell eines homogenen Elektronengas von Thomas und Fermi
lasst sich das Austauschfunktional im Falle geschlossener Schalen — also gleicher

Elektronenanzahl mit ,,Spin up“ und ,Spin down* — zu
3 (3\" 4/3 33
Eln] = -2\ = (n(r))* d’r (4.47)
T

berechnen|28]. Fiir offene Schalen — also bei unterschiedlicher Anzahl von ,,Spin up“
und ,,Spin down“ Elektronen — ergibt sich jenes zu

E.n] = —g (%)1/3; / (g (r))Y3d%r. (4.48)

Der Laufindex o bezeichnet hierbei die zwei moglichen Spineinstellungen[29)].

Obwohl diese Ausdriicke schon 1930 bekannt waren, brauchte es weitere 50 Jahre bis
Vosko, Wilk und Nusair das Korrelationsfunktional hinreichend genau bestimmen
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konnten. Ceperley und Alder entwickelten spéter basierend auf Quantum Monte-
Carlo-Rechnungen einen weiteren Ausdruck fiir das Korrelationsfunktional|30]. Per-
dew und Zunger schlugen ein Verfahren vor um die fehlerhafte Beschreibung der
Selbstwechselwirkung zu korrigieren|31]. Die Addition beider Ausdriicke zu einem
Austausch- und Korrelationsfunktional

EPN = E,[n] + ES[n] (4.49)

ist heute der géngige Ausdruck zur Berechnung von Materialeigenschaften auf dem
LDA Niveau.

Im Vergleich zu den experimentellen Befunden neigt die LDA dazu Gitterkonstan-
ten und Bindungsléangen tendenziell zu unterschitzen|29|. Bindungsenergien werden
tendenziell iiberschitzt, weswegen LDA tendenziell zum sogenannten Owerbinding
neigt. Bandliicken werden deutlich unterschétzt, wie die Datensammlung in Tabel-
le 4.1 zeigt.

4.3.4. Gradientenkorrekturen und das PBE-Funktional

Um den Inhomogenitédten in realen Ladungsverteilungen Rechnung zu tragen, wur-
den auf Basis der Weizsdckerschen Inhomogenitatskorrektur

B |Vn|2

nCOI‘I‘ -

n
Versuche unternommen, LDA zu verbessern. 1988 formulierte Becke[29], basierend
auf einer Arbeit von Herman, van Dyke und Ortenberger|32|, sein Austauschfunk-

tional.
2
[gBecke1 _ pLDAT1 /n4/3 Ty 4.50
-~ 2l B; 7 14 6Bz, sinh™ z, (4.50)
mit
|V,
o= "3 (4.51)
Ne

welches den korrekten asymptotischen Coulombverlauf im Unendlichen besitzt.
Der Parameter [ ist ein Fit-Parameter. Becke bestimmte ihn, indem er den
exakten Hartree-Fock Austausch fiir die Edelgasatome bestimmte und den Pa-
rameter mittels eines least-square-Fits an diese Daten anpasste. Die mit diesem
semi-empirischen Austauschfunktional berechneten Austauschenergien fiir andere
Atome und 3d-Ubergangselemente sind erstaunlich gut. Dies liegt daran, dass die
Korrektur erst fiir grofe z, beginnt, eine Rolle zu spielen. Groke z, bedeuten
eine stark fluktuierende Elektronendichte n, wie sie beispielsweise in gerichteten
Bindungen auftritt. Die Korrektur wirkt subtraktiv zum LDA Austausch und
bewirkt somit eine Reduzierung der Elektronendichte, was zu einer Abschwéchung
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der Bindung fiihrt. Dem Overbinding wird folglich entgegengewirkt.

1986 gelang es Perdew das Funktional der Korrelationsenergie weiter zu
verbessern|33]. Die Kombination von Perdews Korrelationsfunktional und Beckes
Austauschfunktional wird als BP86 bezeichnet und war lange Zeit das Standard
Austausch- und Korrelationsfunktional. Jedoch besitzt dieses Funktional beziiglich
des Korrelations- und Austauschloches das falsche Abklingverhalten in der Zweiteil-
chenelektronendichte

na(ry,ra) = N (N — 1) / U*(ry,ro,...,ry)U(ry,re, ..., ry)drs...dry.  (4.52)

Aufgrund des Pauliverbotes und der Coulombabstofsung diirfen sich zwei Elektronen
nicht beliebig nahe kommen, so dass

lim TLQ(I‘l,I'Q) =0 (453)
ri—ro

gelten muss. Die Art der Nullstelle ist aber essentiell unterschiedlich. Das Pauli- Loch
— die Elektronen besitzen den gleichen Spin — besitzt die Eigenschaft

dns(ry ® 8,13 ® s)
d’f’12

=0, (4.54)

r12=0

wahrend das Coulomb-Loch — die Elektronen besitzen einen unterschiedlichen Spin
— eine Nullstelle mit der Eigenschaft

dna(ry @ s1,T2 @ S7)
d?”12

= +o00 (4.55)

r12=0

besitzt. Bei der Konstruktion eines neuen Austausch- und Korrelationsfunktionals
haben Perdew und Wang dieses Abklingverhalten beriicksichtigt und das PW91
Funktional geschaffen|[34]. 1996 beseitigte Perdew einige Schwichen seine Funktio-
nals. Insbesondere die Zahl der Parameter wurde deutlich reduziert um das Funk-
tional verstandlicher und durchschaubarer zu machen, ohne dabei etwas an Genau-
igkeit einzubiifen|35]. Das als GGA-PBE bekannte Funktional gilt heutzutage als
Standardfunktional der Dichtefunktionaltheorie in der generalisierten Gradienten-
ndherung.

4.3.5. Hartee-Fock Austausch und Hybrid-Funktionale

LDA und PBE liefern sehr gute Strukturdaten. Allerdings versagen diese Funktio-
nale bei der Vorhersage von physikalischen Observablen, die einen direkten Bezug
zur Bandliicke besitzen. Aktuelle Veroffentlichungen zeigen zudem, dass auch die
relativen Lage des Valenzbandmaximums zum mittleren elektrostatischen Potential
fehlerhaft beschrieben wird[39, 40, 41]. Der Grund fiir dieses Versagen ist eine zu
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Kristall Bandliicke [eV]

HSE  Art exp Art
GaN (WZ) | 3.24 direkt 3.5% direkt
MgsNy 2.76 direkt 2.8 »¢  direkt®/indirekt®

* Referenz|36]
b Referenz[37]
¢ Referenz|38]

Tab. 4.2:

Die mit HSE berechneten Bandliicken an der optimierten LDA Struktur fiir GaN und
an der optimierten PBE Struktur von MgsNy zeigen eine gute Ubereinstimmung zu
den experimentellen Befunden. Die leichte Unterschétzung der Bandliicke von GaN ist
der LDA Struktur mit der durchs Overbinding zu geringen Gitterkonstante geschuldet.
Rechnungen an der PBE Struktur ergeben eine Bandliicke von 3.46 eV.

starke Lokalisierung des Austauschlochs in der LDA und der PBE. Hybridfunktiona-
le, welche zu dem PBE-Austausch einen gewissen Betrag an Hartree-Fock Austausch
mischen, zeigen ein deutlich delokalisiertes Austauschloch und beschreiben die Band-
liicke sowie die relative Position des Valenzbandmaximums besser|[42, 43, 44]. Die
Konstruktion des Hybridfunktionals geschieht dabei nach der Vorschrift

B = aBYY 4 (1 — o) EXBE  EEBE. (4.56)

Im Falle von o = 0.25 erhélt man das Austauschfunktional, das als PBE0[45, 46, 47,
48] in der Literatur bezeichnet wird. Die Verwendung des wie r~!-abklingenden Aus-
tauschpotentials fiihrt jedoch zu einem eklatanten Problem fiir metallische Systeme:
Wiéhrend Molekiile, Halbleiter und Isolatoren ein exponentielles Abklingverhalten in
der Wellenfunktion besitzen, welches das r~! Verhalten dimpft, schligt in Metallen
dieses Abklingverhalten voll zu Buche und fiihrt zu divergierenden Integralen und
langsamer Konvergenz. Praktisch wird versucht dies durch ein abgeschirmtes Cou-
lombpotential zu umgehen, welches eine geringere Reichweite als das r~!-Potential
besitzt. Heyd, Scuseria und Ernzerhof (HSE) zerlegten dazu das r~!'-Potential in
einen langreichweitigen und einen kurzreichweitigen Anteil:

1 erfc(wr) N erf(wr)‘ (4.57)
r T r

Dabei bezeichnet der Ausdruck

2 [ .
erf(wr) = —= [ eV dt (4.58)
=/
0

die Fehlerfunktion und projiziert den langreichweitigen Anteil aus dem Coulombpo-
tential. Die komplementére Fehlerfunktion
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2 [
erfe(wr) = —= [ e Vdt (4.59)
e /

projiziert den kurzreichweitigen Anteil aus dem Coulombpotential. Im Falle w — 0
geht die Fehlerfunktion gegen Null und die komplementéare Fehlerfunktion gegen 1.
Fiir grosse w ist es genau umgekehrt. Der Parameter w erlaubt folglich eine Einstel-
lung der Reichweite des kurzreichweitigen Potentials und ist von HSE auf Basis von
zahlreichen Rechnungen justiert worden|43, 44]. Fiir den Hartree-Fock Austausch
ist war = 0.15/1/(2)ag" verwendet worden, der PBE Austausch wird mit einem
wppg = 0.15 x 21/ 3aa ! abgeschirmt. Der Mischungsparameter « ist identisch zu dem
in PBEQO. Basierend auf diesen Rechnungen konnten HSE zeigen, dass die langreich-
weitige (LR) Beimischung des Hartree-Fock Austausches nur einen geringen Einfluss
auf die numerischen Ergebnisse besitzt. Das eigentliche HSE-Funktional mischt folg-
lich nur kurzreichweitig (SR) den Hartree-Fock Austausch mit dem PBE Austausch

E}I;I(SJE _ aE}f(IF,SR (11— a)E;’BE,SR n E)P(BE,LR 4 EgBE (4.60)

Eigene Testrechnungen unter Verwendung der HSE Implementierung in VASP|[17]
liefern fiir die in dieser Dissertation betrachteten Materialien eine signifikante Ver-
besserung in der Beschreibung der Bandliicke (vgl. Tabelle 4.2). Insbesondere fiir
Mg3zNj ist somit HSE eine echte Alternative zur Berechnung von Eigenschaften der
Bandstruktur im Vergleich zur aufwendigen und rechenzeitintensiven Modellierung
der primitiven Zelle mit 40 Atomen mit dem GW-Ansatz[49, 50|, welcher vor HSE
als akkurater Standart zur Berechnung von Bandstruktureigenschaften ohne Band-
liickenproblem galt.
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5. Dichtefunktionaltheorie fiir kristalline Systeme

Man hat den Eindruck, dass die moderne Physik auf Annahmen beruht,
die irgendwie dem Ldcheln einer Katze gleichen, die gar nicht da ist.

Albert Einstein, Physiker und Nobelpreistrager, 1879-1955

5.1. Der Impulsraum-Formalismus

Im Blickpunkt der Festkorpertheorie stehen die Eigenschaften von kristallinen Struk-
turen. Diese zeichnen sich durch ihre Symmetrien aus. Insbesondere die Ausnutzung
der Translationssymmetrie erlaubt die Einfiihrung periodischer Randbedingungen
nach Born und Karman[51, 52|, durch welche die Kristalle in primitiven Zellen be-
schrieben werden konnen. Im Allgemeinen werden Symmetrietransformationen des
dreidimensionalen Raumes mittels Operationen der Gestalt

r'= Rr+t=:{RJt}r (5.1)

vollzogen. Dabei bezeichnet R eine Operation aus der Punktgruppe O(3) — zum Bei-
spiel Drehungen und Spiegelungen — und t eine beliebige Translation. Im Rahmen
gruppentheoretischer Betrachtungen kann man zeigen, dass solche Raumoperatio-
nen eine Gruppe bilden und die Translationen {F|t}r eine invariante Untergruppe
der Raumtransformationen sind. F ist hierbei die identische Abbildung. Lésst man
bei den Raumtransformationen nur diskrete Translationsvektoren der Gestalt

3
t = Zniai n; € Z {a;};_, ist Basis des R? (5.2)
i=1

zu, so nennt man die Gruppe der Raumtransformationen Raumgruppe.

Um nun Darstellungen der Translationsgruppe 7' zu finden, untersucht man Trans-
lationen des Kristalls entlang seines ersten primitiven Gittervektors a;. Fiithrt man
nun zwei Translationen t; und t, hintereinander aus, so ist anschaulich klar, dass
eine solche Translation auch als direkte Translation t3 = t; + to ausfithrbar ist.
Um nun eine Darstellung dieser Gruppe zu finden benétigt man Abbildungen der
Translationsoperatoren auf unitdre Matrizen I', so dass die Abbildungsvorschrift

tl + t2 = t3 — F(tl)r(tg) = F(ts) Y tl,tg,tg eT (53)

erfiillt ist. Die Gruppe der Translation ist abelsch, da die Vektoraddition kommuta-
tiv ist. Fiir abelsche Gruppen, zu denen die Gruppe der Translationen gehort, sind
die entsprechenden unitdren Matrizen Skalare.

Betrachten wir nun im folgenden eine primitive Kristallzelle mit dem Volumen
Q0 = a; - (ag x ag). Zur Beschreibung des Kristalls verwenden wir N; Zellen in
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a;-Richtung, Ny Zellen in as-Richtung sowie N3 Zellen in az-Richtung. Das Kris-
tallvolumen berechnet sich nun zu V = N;{NyN3Q) = Nf). Betrachtet man nun
Translationen um den primitiven Gittervektor a;, so ist anschaulich klar, dass ei-
ne solche Verschiebung den Kristall auf sich selbst abbildet. Auch eine N;-fache
Anwendung des dieser Translation bildet den Kristall auf sich selbst ab. Folglich gilt

Ma; =0 — [[(ay))M = 1. (5.4)

Daraus lasst sich nun die Darstellung dieser Translation zu

P(ar) = W1 —T(ay) = e ™™™ 0 <my <Ny -1 (5.5)

ableiten. In der Verallgemeinerung auf dreidimensionale Translationen der Gestalt

t = nia; + Neds + nzasg (56)

ergibt sich somit fiir deren Darstellung

F(t) _ (6—27rim1/N1)n1 (6—27rim2/N2)n2 (6—27rim3/N3)n3 ) (57)

Diese Darstellung hat die Form

[(t) = e ™t (5.8)
wenn k als
3 m.
k = F:b,» (5.9)

i=1
angesetzt wird und die b; die primitiven Gittervektoren des reziproken Gitters be-
zeichnen. Die reziproken Gittervektoren werden iiber die Gleichung

bi ca; = 271'(5@']' (510)

definiert.

Da nun der Hamiltonoperator mit der Translationsoperation vertauscht, besitzen
beide Operatoren einen gemeinsamen Satz von Eigenfunktionen. Somit bilden die
elektronischen Wellenfunktionen eine Basis der Eigenfunktionen des Translations-
operators und konnen mit einen entsprechenden Reziprokraumvektor k indiziert
werden. Wendet man nun den Translationsoperator auf eine solche Wellenfunktion
an

i(r — t) = o (r) = T(t)g(r) = e ou(r) (5.11)
folgt auf vollig natiirliche Weise das Bloch-Theorem der Festkorperphysik:
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P (r +t) = e ou(r). (5.12)

In der Festkorpertheorie wird nun der Vektor k auf die erste Brillouinzone be-
schrankt. Dadurch wird der Bandindex n eingefiihrt, um fiir ein festes k eine Zuord-
nung des Energiewertes treffen zu kénnen. Fiir die Wellenfunktion wird der Ansatz

D (r) = Ui (r)e™ (5.13)

gemacht. Die Funktion u,k(r) besitzt hierbei die Periodizitat des Gitters und lasst
sich gemaéss

Onk(r) = % D G)e G (5.14)
G

nach ebenen Wellen entwickeln. Dies stellt eine Fourierentwicklung der Wellenfunk-
tion mit den Fourierkoeffizienten c¢,x(G) dar. Im Rahmen numerischer Methoden
bedarf es eines Abbruchkriteriums fiir diese Fourierentwicklung. Hier findet sich die
in zahlreichen Konvergenztests verwendete Cutoffenergie E., wieder. Man nimmt
in der Fourierentwicklung nur solche G-Vektoren mit, welche die Relation

h2

erfiillen und priift durch sukzessives Erhohen dieser Cutoffenergie die Konvergenz
der Fourierreihenentwicklung.

Mit |G + k) werden die Basisfunktionen der ebenen Wellen des Impulsoperators
zum Eigenwert i(G + k) definiert. Diese geniigen der Orthonormierung

<G + k‘GI + k/> = 5GG’5kk’ (516)
und in der Konvergenz der Vollstédndigkeitsrelation

> |G +k)(G+k|=1. (5.17)

Im Ortsraum lasst sich die Wellenfunktion als

1 .
<I"G + k> = ﬁez(G—i—k)r (518)

darstellen. Damit formuliert sich die Beziehung (5.14) zu

6uic) = Y _ enc(G) |G + k). (5.19)

G

Die umformulierte Kohn-Sham-Gleichung
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2
5 (=g & Fonlal + v+ vnslr) ) G 4K)(@ + Kl
Gk (5.20)
= ) endlG +K)(G + Kb
G/ K/
lasst sich durch Multiplikation mit (G + k| in die numerisch gut zu behandelnde
Matrixgleichung

2

;—m((} +k)?cu(G)

+ 13 (G — @) +1:e(G — G) + 0ps(G — G)) | ca(G) (5.21)
=

= €nkCnk (G)

uberfithren. Hierbei wurde als Kurzschreibweise

v(G — G') = (G +kjv|G'+ k) (5.22)
benutzt. Aus den Entwicklungskoeffizienten ¢, (G) und den aus einer Fermivertei-
lung berechneten Besetzungszahlen f,, kann dann die Elektronendichte im rezipro-
ken Raum zu

2
n(G)=—=> fu Y cm(Ge(G+G) (5.23)
vaQ n,k G’
berechnet werden. Aufgrund der besseren Skalierung wird die Elektronendichte oft-
mals direkt im Ortsraum berechnet und ergibt sich dort zu

(5.24)

n(r) = o3 fue| S (G
n,k G

Die einzelnen Fouriertransformierten der Potentiale lassen sich mittels FFT berech-
nen. Vereinzelt ist es auch moglich analytische Ausdriicke direkt anzugeben.

Das Matrixeigenwertproblem (5.21) ist nun iterativ selbstkonsistent zu losen, da
die Potentiale ihrerseits von der Elektronendichte n(G) abhéngen, welche tiber die
Losungen ¢,k (G) gegeben ist.

5.1.1. Diskrete Integration iiber die Brillouinzone

Brillouinzonenintegrale der Form

I = /f(k)d3k; - (2;;)3]? (5.25)
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Abb. 5.1:
Die Methode zur k-Punkt Verteilung nach Monkhorst und Pack: Die Brillouinzone
(rot umrandet) wird dquidistant aufgeteilt. Gezeigt ist in dieser Skizze ein 4x4 Gitter.

Mitthilfe eines Satzes von erzeugenden k-Punkten (hier ein einzelner Punkt mit den
Koordinaten (33)) wird das Gitter aufgebaut. Dabei ist darauf zu achten, dass Hoch-
symmetriepunkte sowie die Brillouinzonengrenze ausgespart bleiben. Die problemspe-
zifischen Kristallsymmetrien kénnen an dieser Stelle verwendet werden um die Anzahl
der k-Punkte zu reduzieren.

sind ein Standardproblem im Impulsraumformalismus. Unter der begriindeten An-
nahme, dass die Wellenfunktionen langsam mit k variieren, gilt der Mittelwertsatz
der Integralrechnung. Aus einer geeigneten Niherung des Mittelwertes f kann das
Integral numerisch effizient ausgewertet werden, ohne die komplette Brillouinzo-
ne abscannen zu miissen. Mogliche Verfahren zur Approximation dieses Mittelwer-
tes sind unter anderen von Baldereschi, sowie von Chadi und Cohen vorgeschlagen
worden|53, 54|. Dabei wird das Integral {iber einen geeigneten Satz von k-Punkten
gemass

I = /f(k)dk ~ @ zi:wif(ki) (5.26)
mit

> wi=1 (5.27)

approximiert. Heutzutage findet das Verfahren von Monkhorst und Pack am meisten
Verwendung. Hier wird der Hauptwert f iiber ein dquidistantes Netz von k-Punkten
genahert[55] (vgl. Abbildung 5.1).
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5.2. Die Methode der Pseudopotentiale

Die Behandlung von Vielteilchensystemen erfolgt in der Praxis numerisch und ist
ein nichtlineares Problem. Typische Dichtefunktionalalgorithmen mit einer Ebenen-
Wellen-Basis skalieren quadratisch bis kubisch mit der Anzahl der ebenen Wellen.
Diese wachsen linear mit der Anzahl der Atome und miissen die Wellenfunktionen
addquat nachbilden kénnen. Problematisch ist hierbei das starke Coulombpotential
der Kerne, welches zur Lokalisierung der Wellenfunktion fiihrt. Die Orthogonali-
tatsforderung der Wellenfunktionen bedingt starke Oszillationen in Kernndhe. Um
diese Oszillationen darstellen zu kénnen, bedarf es einer grofsen Anzahl von Ebenen-
Wellen-Basisfunktionen, wodurch die Behandlung aufwendig und speicherintensiv
wird. Diese Probleme werden in heutigen Implementierungen der Dichtefunktio-
naltheorie durch die Verwendung der unverinderlichen Ionenndherung, sowie der
Einfiihrung von Pseudopotentialen, die in der Kernregion glatte Wellenfunktionen
liefern, iiberwunden. Diese Konzepte werden nun vorgestellt.

5.2.1. Die Ndherung der unverdnderlichen lonen

In der grofen Gesamtheit von molekularen Systemen und Festkorpern wird die che-
mische Bindung durch die Valenzelektronen dominiert. Die Rumpfelektronen spielen
dabei eine eher untergeordnete Rolle. Dies motiviert die Frage, ob es nicht zuléssig ist
die an der Bindung nur schwach teilnehmenden Rumpfelektronen durch ihre atoma-
ren Wellenfunktionen zu beschreiben und in der elektronischen Optimierung allein
die Valenzelektronen zu variieren. Dies fithrt zur Néaherung der unverianderlichen To-
nen: Man teilt die Elektronendichte in zwei rdumliche Bereiche. Der Rumpfbereich
enthélt die N, Rumpfelektronen mit der Rumpfdichte

Ncore

Necore = Z |¢i(r)|2; (528)

der Valenzbereich erhélt die fiir die Bindung interessanten Valenzelektronen und
somit die Valenzdichte

N

Mvalence = Z |¢z(r)|2 (529>

Ncore+1
Nun findet eine Abseparation des Kernbereichs in den Kohn-Sham-Gleichungen ge-
méfs

Ueﬁ[n] (I') = VH [nvalence] (I‘) + Uxc {nvalence] (I‘) + Vcore [nvalencea ncore] (I‘) (530)

statt. Dabel sei vgpe definiert als

Vcore [nvalencea ncore] (I‘) = Un [ncore] (I‘) + Uxe [nvalence + ncore] (I‘)

— Uxc [nvalence]<r) + U(I'). (531>
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atom
core

Hier findet nun die Ndherung ne... ~n

Vcore [nvalence] (I‘) = VH [nig?én]( ) + Vxc [nvalence + n?(tfr)?] (I‘)

v [emtence) (1) + (x). (5:82)

statt, in der die tatsédchliche Rumpfdichte durch die Superposition atomarer Rumpf-
dichten
Ncore

atom
Teore

genédhert wird. Durch diese Ndherung ist das effektive Kernpotential veq. lediglich

(5.33)

ein Funktional der Valenzelektronen. Die Rumpfelektronendichte n.q.. wird durch

atom

aomt ersetzt und variationell ,eingefroren”. Dies bezeichnet

die atomare Rumpfdichte n
man als frozen core approximation[56]. Die Kohn-Sham Gleichungen

h2
<—2m + vy [nvalenz] (I‘) + Uxe [nvalence] (I‘) + Ucore(r)> ’gbz(r)) =& |¢l(r)> (534)
enthalten nun nur noch Funktionale der Valenzelektronendichte. Bei der selbstkon-
sistenten Bestimmung von n,en, ist allerdings nach wie vor zu beachten, dass die
Orthogonalitdt der Valenzorbitale mit den atomaren Rumpforbitalen erhalten bleibt.

Der Vorteil dieses Verfahrens liegt in der deutlichen Reduktion der Systemgrofe,
da nur noch die Valenzelektronen — je nach Atomsorte in der Grofenordnung 10
pro Atom — in die selbstkonsistente Behandlung des Problems einfliefken. Die Ab-
weichungen einer Rechnung mit festgehaltenem Kernbereich im Vergleich zu einem
explizit behandeltem Kernbereich in den einzelnen Energiebeitrégen sind zwar ekla-
tant, jedoch hat eine Studie gezeigt, dass sich diese Fehler im Mittel gegenseitig
aufheben und Gesamtenergien in der Regel Abweichungen von nur einigen 10 meV
zeigen|[506].

5.2.2. Das Konzept der Pseudopotentiale

Mittels des Konzeptes der unverdnderlichen Ionen ist zwar die Anzahl der zu
behandelnden Elektronen deutlich verringert worden, jedoch bleiben die in Kern-
nahe starken Oszillationen, die einer grofien Basis fiir ihre Beschreibung bediirfen,
bestehen. Unter der Annahme, dass zur chemischen Bindung nur die Teile der
Wellenfunktion beitragen, die sich am Ort der Bindung befinden, kénnen die stark
oszillierenden Anteile durch eine glatte Wellenfunktion ersetzt werden. Dabei wird
das im vorherigen Abschnitt eingefiihrte Kernpotential durch eines ersetzt, welches
hinreichend glatt ist und fiir » — 0 nicht singuldr wird. Die genaue Art der Kon-
struktion solcher Potentiale kann mit Hilfe der gingigen Literatur[57, 58, 59, 60, 61]
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nachvollzogen werden.

Insgesamt gilt es vier wohldefinierte Bedingungen zu erfiillen, um dieses Vorgehen
zu legitimieren|62].

1. Die durch das Pseudopotential generierten Pseudowellenfunktionen sind in
ihrem radialen Anteil RFT knotenfrei.

2. Fir einen vorher gewahlten Kernradius r., der in der Regel zwischen dem
letzten Knoten und dem folgenden Maximum des Radialteils der Allelektro-
nenwellenfunktion zu wahlen ist|61], ist die Pseudowellenfunktion identisch zu
der Allelektronenwellenfunktion

R (r) = RpF(x)  fiir r > ry. (5.35)

3. Die im Bereich des Cutoffabstandes r. eingeschlossene Ladung muss fiir beide
Wellenfunktionen identisch sein

Tel

Tel
/‘Rglp(r)frzdrz/|RQZE(7’)|2T2dr. (5.36)
0

0

4. Die Orbitalenergien ¢; sind identisch

PP — AF (5.37)

In der gingigen Praxis werden Pseudopotentiale dadurch erzeugt, dass zunéchst
die Energien, Wellenfunktionen und das atomare Potential der Atomsorte iiber die
explizite Losung der Kohn-Sham-Gleichung in Form einer Allelektronenrechnung
beschrieben werden. Anhand der Allelektronenwellenfunktionen werden nun die
Kernradien r. definiert. Hierbei gilt: Je kleiner der Radius, umso &hnlicher ist
die Pseudowellenfunktion der Allelektronenwellenfunktion. Andererseits steigt mit
kleinem Kernradius auch die Anzahl der benétigten Basisfunktionen, so dass ein
entsprechender Mittelweg gefunden werden muss. Sind die r; festgesetzt, wird die
Allelektronenvalenzwellenfunktion so variiert, dass sie im Kernbereich knotenfrei
wird. Dabei ist die Erhaltung der Ladung im Kernbereich einzuhalten. Die Variation
geschieht hierbei unter Verwendung von analytischen Fits. Aus der Kenntnis der
Eigenwerte und der neuen Wellenfunktion kann nun die Schrodingergleichung
invertiert und das zugehorige Potential bestimmt werden.

Neben der Methode der normerhaltenen Pseudopotentiale haben sich an bestimmte
Problemstellungen angepasste Varianten entwickelt. So gibt es Pseudopotentiale, die
neben den obigen Bedingungen Stetigkeit und stetige Differenzierbarkeit bis hin zur
zweiten Ableitung des Potentials verlangen, sowie solche, die eine verschwindende
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Kriimmung am Kern fordern[57].

Von besonderer Schwierigkeit sind die Elemente der ersten Reihe des Perioden-
systems. Aufgrund der starken Lokalisierung der Zustidnde in Kernnédhe ist der
Kernradius sehr gering zu wahlen. Eine wirkliche Reduzierung der Basisfunktionen
mittels normerhaltenden Pseudopotentialen ist damit nicht méglich. Von Van-
derbilt wurden sogenannte ultrasofte Pseudopotentiale eingefiihrt, welche auf die
Normerhaltung im Kernbereich verzichten|60]. Der Verlauf der Wellenfunktion kann
somit deutlich weicher modelliert werden und sorgt damit fiir eine Verringerung der
notwendigen Basisfunktionen.

Pseudopotentiale sind aber dennoch mit Vorsicht zu geniefen und ihre Aussage-
kraft immer an wohldefinierten physikalischen Referenzen zu erproben, da sie in
ihrer Konstruktion samtlichen Informationsgehalt zum physikalischen Kernbereich
verlieren. Eine bessere Alternative stellen die im néchsten Kapitel diskutierten PAW-
Potentiale dar.

5.2.3. Die Projector Augmented Wave (PAW) Methode

Von Bl6chl|63] stammt die als Projector Augmented Wave (PAW) Methode bekannte
Erweiterung der Pseudopotentiale, welche sich das Ziel setzt eine exakte Abbildung
zwischen den pseudoisierten Wellenfunktionen (PS) und den Allelektronenwellen-
funktionen (AE) zu schaffen. Im Gegensatz zu der Pseudopotentialmethode stellt
also die PAW-Methode im Rahmen der Néherung der unverdnderlichen Ionen
eine trickreiche Allelektronenrechnung dar. Die Grundideen werden im Folgenden
skizziert.

Basis der PAW-Methode ist die Existenz eines Operators 7, welcher die in Kern-
nihe glatte Pseudowellenfunktion |¥¥S) in die oszillierende, effektive Kohn-Sham-
Einteilchenwellenfunktion |WAE) iiberfiihrt

|TAEY = T W) (5.38)

Diese Transformation ist dahingehend interessant, dass sie analog zum Wechsel von
dem Schrédinger Bild zum Heisenberg Bild die Berechnung des Erwartungswertes
(A) eines Operators A nun auf zwei Arten erlaubt: Zum einem direkt tiber die
Kohn-Sham-Finteilchenwellenfunktionen, zum anderen iiber die Einfiihrung eines
Pseudooperators A der iiber

(A) = (UAE|A|UAE)
= (UPS|A|TPS) mit A =TTAT
definiert ist. So kann die PAW-Methode mit minimalem Aufwand durch Neudefi-
nition der Wirkung eines Projektors auf die Pseudowellenfunktion in bestehende

(5.39)
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Abb. 5.2:
Separation des atomaren Umgebung in Valenzbereich und Kernbereich. Dargestellt ist

ein regelméfbiges atomares Gitter zweier Atomsorten. Die Bereichen 27 und s stellen
den Kernbereich der Atome dar. Ausserhalb dieses Bereiches variiert die Wellenfunk-
tion langsam und verlauft glatt.

DFT-Codes, welche auf der Pseudopotentialmethode basieren, implementiert
werden. Dazu ist lediglich der Projektionsoperator T zu definieren.

Wie schon in der Pseudopotentialmethode wird der Raum in zwei Bereiche unter-
teilt, den Bereich in dem hauptséchlich die atomare Bindung stattfindet und die
Wellenfunktionen glatt verlaufen und dem, in dem sich das oszillierende Verhalten
der Wellenfunktion auf Grund der Kernnéhe abspielt, der sogenannte Augmentati-
onsbereich (vgl. Abbildung 5.2). Da sich die Pseudowellenfunktion und die Kohn-
Sham-FEinteilchenwellenfunktion nur in diesem Augmentationsbereich unterscheiden,
kann der Operator 7 als Identitdt dargestellt werden, der gemélfs

T=1+> Tr (5.40)
R

additive Korrekturen im Augmentationsbereich Qg erfihrt. Die Allelektronenlo-
sung |¢*E) — von Blchl als Partialwelle bezeichnet — ergibt sich dementsprechend
aus einer computertechnisch gut zu behandelnden pseudoisierten Partialwelle |¢F®)
als
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[677) = (1+ Tr)le}™). (5.41)

Insbesondere kann nun jede Pseudowellenfunktion |[UF) in die pseudiosierten Par-
tialwellen entwickelt werden

WSy = Z |pF5)¢;  innerhalb von Q. (5.42)

Aufgrund der Transformationseigenschaften 7 gilt dies aber auch fiir die Wellen-
funktion |[WAF) und die Partialwellen

|TAEY = Z |¢2¢;  innerhalb von Qp (5.43)
mit den gleichen Entwicklungskoeffizienten c;. Blochl fithrt an dieser Stelle Projek-
torfunktionen |p;) ein, welche die Eigenschaften (p;|¥F®) = ¢; besitzen und zudem
auf Grund der Vollstdndigkeitsrelation innerhalb des Augmentationsbereiches die

Eigenschaft (pi|gz5}D )y = §;; erfiillen. Mit Hilfe dieser Projektorfunktionen kann 7
definiert werden:

[UAR) = WS =% [orS)e; + ) [o1F)e
= U4 D (1607 — 1007 (i 07)

= <1 + Z (167" — |¢fs>)<pi|> T%) (5.44)

T

5.3. LCAO Initialisierung

Der iterative LoOsungsansatz zur akkuraten Beschreibung der elektronischen
Struktur bedingt im ersten Schritt schon ein effektives Potential und somit eine
Initialisierung der Wellenfunktionen und der Dichte. Rechnungen aus dem Alltag
zeigen, dass Algorithmen zur Minimierung der Gesamtenergie in ihrer Funktions-
weise erheblich verbessert werden, wenn ein gute Initialisierung der Wellenfunktion
erfolgt. Zufallszahlen liefern fiir metallische Systeme, in denen die Elektronendichte
nahezu gleich verteilt im Kristall vorliegt sicherlich einen gute Initialisierung.
Im Falle von Systemen, die durch gerichtete Bindungen dominiert werden, ist
ein solcher Ansatz jedoch denkbar schlecht. Hier lokalisieren die Elektronen in
Bindungsorbitalen, die es zu beschreiben gilt.

Eine Moglichkeit besteht hierbei diese Bindungsorbitale in eine atomzentrierte Or-
bitalbasis zu entwickeln|[64|. Da im Rahmen der Pseudopotentialmethode die Elek-
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tronenverteilung fiir die Pseudoatome bestimmt worden ist, bieten sich die dort
berechneten Pseudoatomorbitale |u;) als Basis an. Definiert man nun durch

Hij = (| H|5) (5.45)

die Hamiltonmatrix des Systems und durch

Sij = (il py) (5.46)

den Uberlappoperator der Pseudoatomorbitale, so ergibt sich das verallgemeinerte
Eigenwertproblem

Hlcy) = enS|cn). (5.47)

Da S eine positiv definite, hermitesche Matrix ist, existiert von dieser die Choles-
kyzerlegung S = LL', so dass sich das verallgemeinerte Eigenwertproblem in das
gewOhnliche Eigenwertproblem

HllXﬂ) = €n|Xn> (5'48)

mit

H =L H(LH™ und |x,) = L'|c,) (5.49)

transformiert. Dessen Eigenvektoren konnen als gute Initialisierung der Wellenfunk-
tion verwendet werden. Auch die in dieser Dissertation in Kapitel 6 diskutierten opti-
mierten Basisfunktionen kénnen mit Vorteil als Initialisierungsfunktionen verwendet
werden. Da in diesen Orbitalen schon Kenntnisse iiber die atomaren Nachbarn ver-
ankert sind, konvergieren die mit Quamols initialisierten Rechnungen schneller und
sparen erfahrungsgeméf in dem verwendeten S/PHI/nX Code bis zu 10 iterative
Schritte in der elektronischen Konvergenz. Normalerweise werden fiir die elektroni-
sche Konvergenz der hier betrachteten Systeme 15-35 Schritte beobachtet.

5.4. Bildungsenergien von Defekten

Die Bildungsenergie eines Defektes ist die zentrale Gréfe bei der theoretischen Ana-
lyse von Punktdefekten. Uber jene lassen sich Defekte beziiglich ihrer Stabilitit
vergleichen und Defektkonzentrationen abschétzen. Die Bildungsenergie E7 ist iiber

Efy = Et[Bulk:X] — Eior[Bulk] = > " nigti + ¢(€permi + Evin) (5.50)

definiert[4]. Dieser Ausdruck ist vornehmlich eine Energiedifferenz des modellierten
Defektes und seiner Edukte: des vorherrschenden Wirtssystems, sowie die zum
Defekt notwendigen addierten oder subtrahierten Atome und Ladungen. Die
einzelnen Bestandteile der Bildungsenergie sind in Abbildung 5.3 noch einmal
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Abb. 5.3:
Die Bildungsenergie ist definiert als Differenzenergie des Defektes und seiner Edukte:

>

Hostsystem (blau), Defektatom (rot) und zusétzliche Elektronen (schwarz).

zusammengefasst.

Wiéhrend die Gesamtenergien einzelner Geometrien durch das zu Grunde liegenden
DFT-Programm ermittelt werden, ist die Wahl des chemischen Potentials der
Atomreservoirs nicht eindeutig bestimmt. Diese konnen iiber Rechnungen einzelner
Atome, Gasphasenmolekiile oder {iber mittlere Energien einzelner Atome in stabilen
Phasen abgeschétzt werden. An dieser Stelle erlaubt die Theorie eine Ankniipfung
an die im Experiment realisierten Bedingungen (wie z.B. Temperatur, Partialdriicke
der einzelnen Elemente, usw.).

Im Falle geladener Defekte bedarf es eines Reservoirs der Elektronen. Das chemische
Potential ist iiber die Fermienergie im System gegeben, welche nach allgemeiner
Konvention auf das Valenzbandmaximum Fygy referenziert wird. Die Lage des
Ferminiveaus in der Bandliicke wird iiber die Gesamtheit der Defekte im Wirts-
system bestimmt, so dass die Berechnung eines einzelnen Defektes nicht ausreicht
um dessen Position des Ferminiveaus im Gesamtsystem zu erhalten. Aus diesem
Grund wird die Bildungsenergie eines Defektes in Abhéngigkeit zur Lage des
Ferminiveaus aufgetragen, wie es Abbildung 5.4 zeigt. In solchen Diagrammen
kann in Abhéngigkeit des Ferminiveaus die Stabilitdt einzelner Defekte bewertet
werden. Die Steigung der einzelnen Graden gibt dabei den Ladungszustand des
entsprechenden Defektes an. Kreuzen sich gleiche Defektsorten zu unterschiedlichen
Ladungen, so heisst dieser Punkt Umladungsniveau.

Da die Bandliicke in den theoretischen Rechnungen massgeblich unterschétzt wird,
ist in solchen Diagrammen héufig die experimentelle Bandliicke eingetragen. Dies ist
insofern mit Vorsicht zu geniessen, da ein Ferminiveau oberhalb der theoretischen
Leitungsbandkante zu Besetzungen der Leitungsbénder fiithrt und die berechneten
Energien nicht vertrauenswiirdig sind. In praktischen Rechnungen kann hier aber
die diskrete Beschreibung des k-Punktgitters aushelfen, indem k-Punkte niedrig
liegender Leitungsbandzustdnde ausgespart werden und so die Rechnung blind fiir
die tatsdchliche theoretische Bandliicke ist.
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Wasserstoff in GaN und Mg,N
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Abb. 5.4:

Die Bildungsenergien von Wasserstoffverunreinigungen in GaN und MgsNs als Funk-
tion des Ferminiveaus. Der rote Kreis markiert das Umladungsniveau H™ /H™ in GaN.
Die farbigen Flachen im unteren Bereich des Graphen geben die Defekte geringster
Bildungsenergie wieder.

5.4.1. Superzellenkorrektur geladener Defekte

Versucht man in einem Superzellenansatz einen geladenen Defekt zu beschreiben, so
ist es notwendig die Ladung ¢ des Defektes durch einen homogenen Ladungshinter-
grund zu kompensieren, da ansonsten die elektrostatische Energie divergiert. Durch
die langreichweitige Coulombwechselwirkung, interagiert der Defekt mit seinen
periodischen Bildern und dem homogenen Ladungshintergrund, so dass die Formati-
onsenergie in Abhéngigkeit zur Superzellenldnge L nur sehr langsam konvergiert|65].

Folglich sind in einem direkten Ansatz sehr grofe Superzellen von Noten um die For-
mationsenergie des isolierten Defektes bestimmen zu kénnen. Damit die Zellen bere-
chenbar bleiben, wurden viele Versuche unternommen, um die Wechselwirkungsener-
gie des Defektes mit seinen periodischen Bildern und den elektrischen homogenen
Hintergrund zu bestimmen und nachtréglich zu korrigieren. Eine erste Abschétzung
kann iiber die Madelungenergie
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Abb. 5.5:
Ein geladener Defekt in einem Festkorper akkumuliert Ladung entgegengesetzten Vor-
zeichens, welche sein Coulombpotential abschwécht.

aq?

5.51
2¢L ( )

E Madelung —

gemacht werden. Dabei bezeichnet « die von der Superzelle abhéngige Madelung-
konstante.

Makov und Payne berechneten fiir ein Gitter von isolierten Ionen einen weiteren
Korrekturterm, der wie L™3 skaliert. In realen Systemen ist diese Korrektur dann
noch durch die dielektrische Konstante zu skalieren. Jedoch fiihrt dies nicht immer
zum gewiinschten Erfolg, sodass im praktischen Vorgehen die Vorfaktoren wie freie
Parameter behandelt und zudem noch weitere Korrekturterme L~" hinzugefiigt
werden. Dabei geht jedoch ein beachtlicher Teil Physik verloren.

Interessant ist daher der Ansatz von Freysoldt|66, 67|, der ein Korrekturschema
auf elementaren elektrostatischen Uberlegungen aufbaut. Ein geladener Defekt wird
von einer kompensierenden Ladungsakkumulation in seinem Potential abgeschwécht
(vgl. Bild 5.5). Sein langreichweitiges Potential ist dann {iber

1 model (,./
V18 (r) = = / n—(r)d?’r’ (5.52)

€ lr —r/|
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in atomaren Einheiten gegeben. Die in diesem Ausdruck eingefiithrte Ladungsdich-

model Iann fiir lokalisierte Defektladungen durch eine Gaufladung modelliert

te n
werden. Das komplette Defektpotential v%(r) wird dann als Summe des langreich-

weitigen Teils und einer kurzreichweitigen Modulation

vi(r) = "8 (r) + V() (5.53)

geschrieben. Praktisch kann das Defektpotential als Differenz der elektrostatischen
Potentiale

vd(r) = vel[Xq] (r) — vel[XO] (r) (5.54)

berechnet werden. Das kurzreichweitige Potential ist damit

VR (r) = v [ XY (r) — v [XO(r) — 0" (x) + Su. (5.55)

Der Offset dv sorgt dafiir, dass v*"(r) fiir grofe Entfernungen vom Defektzentrum
gegen Null abklingt. Aus dem langreichweitigen Verhalten kann nun die Madelun-

model]

genergie EYiter[n bestimmt werden. Der kurzreichweitige Teil bestimmt die

Wechselwirkungsenergie mit dem kompensierenden Hintergrund

/ —%vkurz(r)d?’r = —gEVV, (5.56)
Q

Nach Freysoldt|67] herrscht nun die Identitit E™W = dv, so dass sich die Bildungs-
energie des isolierten Defektes entsprechend Gleichung (5.50) zu

B, = B [Bulk : X9 — Eyo[Bulk] = > " nipt; + q( Epermi + Eviu)
i (5.57)
. EGitter[qmodel] +q51}

ergibt. Das Trickreiche an der Identitit EWVW

= v ist ihre Unabhéngigkeit von dem
Referenzsystem, so dass in der Praxis die Bildungsenergie des isolierten geladenen
Defektes allein aus der Superzellenrechnung des Bulks und des geladenen Defektes

bestimmt werden kann.

5.4.2. Bestimmung der dielektrischen Konstanten

Die Anwendung des eben diskutierten Korrekturverfahrens zur Berechnung der
Bildungsenergie von isolierten geladenen Defekten setzt die Kenntnis der dielektri-
schen Konstante € voraus. Diese kann zum Beispiel aus dem Experiment genommen
werden. Konsistenter ist es jedoch die Konstante fiir das modellierte Material
theoretisch zu bestimmen. Dazu dient das folgende Computerexperiment.
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Vsawtooth
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Abb. 5.6:

Entlang einer Kristallachse wird ein sigezahnformiges Potential Vs2Wtooth angelegt,
welches einem konstanten Erregungsfeld D entspricht. Der Kristall antwortet auf dieses
Feld iiber die Auspriagung eines elektrischen Feldes E, welches im elektrostatischen
Potential als Sdgezahnpotential wahrgenommen werden kann. Die farbigen Verlaufe
symbolisieren hierbei die Feldvektoren mit ihrer Richtung von rot nach griin. Das
Verhiltnis der Feldamplituden entspricht gerade der dielektrischen Konstanten.

Setzt man einen Festkorper einer konstanten elektrischen Erregung D aus, so regiert
dieser durch den Aufbau des elektrischen Feldes E. Diese beiden Felder sind iiber
die Materialgleichung

D=¢E+P (5.58)

miteinander verkniipft. Im Falle eines isotropen und linearen Kristalls ist die Pola-
risierbarkeit P als

P = ¢\E (5.59)

gegeben. Damit vereinfacht sich die Materialgleichung zu

D = ¢y(1+ x)E = €¢E, (5.60)

so dass sich die dielektrische Konstante als ¢ = |D|/|E| ergibt. Andert man die
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Materialsystem dielektrische Konstante ‘f—;]

€ €co
GaN (LDA) 103 5.6
GaN (PBE) 118 6.2
GaN (exp) 10.4¢ 5.8°
Mg;N, (LDA)  13.6 5.1
Mg;N, (PBE) 9.9 5.2
MgsNsy (exp) — 4.45¢

“[68], °[69], “[70]

Tab. 5.1:

Dielektrische Konstanten fiir die Materialsysteme GaN und MgsNy. Die theoretischen
Werte sind mit dem im Text beschriebenen Verfahren ermittelt worden. €5, entspricht
der dielektrischen Konstanten im Falle hochfrequenter Wechselfelder, so dass die Ionen

der elektrischen Anregung nicht folgen (woo > Wphonon)-

Orientierung der elektrischen Erregung mit der Zeit, so konnen die Ionen diesem
sich &ndernden Feld ab einer Frequenz w., (wWeo > Wphonon) nicht mehr folgen
und die elektrische Abschirmung wird allein von den Elektronen bestimmt. Dies
entspricht der dielektrischen Konstanten e.,.

Dieses Experiment kann auch im Rahmen der Dichtefunktionaltheorie vollzogen
werden. Dabei wird in die Superzelle entlang einer Hauptachse ein Sagezahnpoten-
tial induziert (siehe Abbildung 5.6). Die Elektronendichte und die Ionen reagieren
entsprechend und bilden ein entsprechendes elektrostatisches Potential aus, welches
auch die Ségezahncharakteristik zeigt. Aus den Steigungen der jeweiligen Flanken
konnen die Stdrken der elektrischen Erregung und des resultierenden elektrischen
Feldes extrahiert werden. Zur Bestimmung der rein elektronischen Abschirmung
werden die Ionen in der DFT Rechnung fixiert und diirfen nicht auf Grund des
angelegtem Potentials relaxieren.

Fiir die in dieser Dissertation relevanten Materialsysteme GaN und MgzN, wurden
nach diesem Verfahren die dielektrischen Konstanten bestimmt (Tabelle 5.1).

5.5. Berechnung der Defektkonzentration im thermischen
Gleichgewicht

Die Fermienergie in Gleichung (5.50) ist ein freier Parameter, jedoch in der Gesamt-
heit des Systems implizit iiber die Ladungsneutralitét

c(h) —c(e) + Y _qe(X) =0 (5.61)
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5 Dichtefunktionaltheorie fiir kristalline Systeme

Abb. 5.7:

Ein Defekt (schwarz) wird in einem 2-dimensionalen Kristall (griin) in einer 2 Ato-
me enthaltenen Superzelle beschrieben. Der Defekt besitzt in dieser Zelle eine weiter
dquivalente Positionen (gelb). Die Anzahl Zu jeder Position gibt es weitere drei dqui-
valenter Konfigurationen (blau). Die Gesamtzahl der Defektpositionen ist somit zwet,
mit jeweils vier moglichen Konfigurationen.

definiert. Im Falle des thermodynamischen Gleichgewichtes kann die Konzentration
¢(X9) eines Defektes X im Ladungszustand ¢ tiber die Boltzmannverteilung

c(X?) = NoNeont €xp (—M) (5.62)
ka

berechnet werden. N, bezeichnet hierbei die Anzahl mdglicher Defektpositionen,

Neons die Anzahl moglicher Konfigurationen des Defektes in der betrachteten

Superzelle (vgl. Abbildung 5.7). Der Ausdruck k,T" quantifiziert die thermische

Energie zur Temperatur 7.

Die Konzentrationen der freien Ladungstréger sind unter der Annahme eines para-
bolischen Bandes iiber die Beziehungen

“ky T\
c(e) =2 (";W 7; ) e Brermi=Ecp) kT (5.63)
und
T\
c(h) =2 (”;’;T 7;’2 ) e BB~ Eermi) kT (5.64)

gegeben|26]. Damit sind fiir die Gesamtheit der Defekte und der freien Ladungstré-
ger Bestimmungsgleichungen gegeben, welche eine eindeutige Losung fiir die Fermi-
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5.5 Berechnung der Defektkonzentration im thermischen Gleichgewicht

energie und Defektkonzentrationen liefern. Die S/PHI/nX Bibliothek|[18] 16st dieses
numerisch schlecht konditionierte Problem iiber ein Bisektionsverfahren.
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6 Quantitativ optimierte Atomorbitale — Quamols

6. Quantitativ optimierte Atomorbitale —
Quamols

The important thing in science is not so much to obtain new facts as to
discover new ways of thinking about them.

Das Bedeutsame an der Wissenschaft ist nicht unbedingt die Erzeugung
neuer Ergebnisse, als vielmehr die Entdeckung neuer Wege tiber sie nach-
zudenken.

Sir William Lawrence Bragg, australischer bzw. britischer Physiker, 1890 - 1971

6.1. Atomzentrierte Orbitalfunktionen

Ein atomzentriertes Orbital ist das Paradebeispiel einer lokalisierten, das bedeutet
am Atom verankerten und in der Reichweite beschrinkten, Funktion. Thre mathe-
matische Form besteht aus dem Produkt einer radialen Funktion R,;(r) mit einer
Kugelflachenfunktion Y,,(r)

pa(r) = Ry(r)Yim(T) mit a = {7, n,l,m}. (6.1)

Dabei beschreibt r den Abstandsvektor mit Richtung r zum atomaren Zentrum
7, | die Drehimpulsquantenzahl und m die magnetische Quantenzahl. Der Index n
entspricht der Hauptquantenzahl, kann aber in der kommenden Verallgemeinerung
als Zahlindex der Radialfunktionen zur zugehérenden Drehimpulsquantenzahl inter-
pretiert werden. Die Losungen atomarer Schrodingergleichungen ergeben, dass die
radiale Form der Orbitale sich in Kernnihe wie 7! verhilt und fiir groffe Abstéinde

exponentiell abklingt. Einen natiirlichen Ansatz bilden deswegen die sogenannten
Slaterorbitale[71] (STO)

STO ~ ol Z Cpie ST (6.2)

Diese geben das korrekte Abklingverhalten wieder, besitzen aber den Nachteil, dass
die Berechnung von Mehrzentrenintegralen nicht analytisch vollzogen werden kann,
sondern numerisch ausgewertet werden muss. Dies war zu Beginn der computer-
gestiitzten Modellierungen ein gravierendes Problem, weswegen die sogenannten

Gauforbitale|72] (GTO)

RETO(r) ~ ¢ Z Cpie it (6.3)

eingefiihrt wurden, welche eine analytische Beschreibung der Mehrzentrenintegrale
erlauben. Allerdings besitzen diese GTOs im Gegensatz zu den STOs zwei we-
sentliche Nachteile. Zum einen erlauben die GTOs im kernnahen Bereich keine
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6.1 Atomzentrierte Orbitalfunktionen

diskontinuierliche Ableitung, die sich dort aber aus der Quantenmechanik ergibt.
Zum anderen besitzen die GTOs gegeniiber den STOs ein zu starkes Abkling-
verhalten. Zwar kann mit beiden Orbitaltypen eine komplette Basis aufgebaut
werden, aber grundlegend werden mehr GTOs benétigt, als STOs. Die Koeffi-
zienten c,;, B, und (,; werden dabei an Losungen des atomaren Problems angepasst.

Diese atomaren Orbitale bilden einen chemisch intuitiven Basissatz, da sie — im
Gegensatz zu ebenen Wellen — an Losungen der atomaren Schrodingergleichung
angelehnt sind. Allerdings ist die quantitative Verbesserung eines atomaren Basis-
satzes zur Beschreibung der chemischen Bindung bei Molekiilen und Festkérpern
nicht trivial, da es hier eine Vielzahl von méglichen Stellschrauben gibt. Die Anzahl
der Basisfunktionen pro [-Kanal, die radiale Form, sowie der maximale Drehimpuls
[ spielen in der Optimierung solcher Basisséitze eine entscheidende Rolle. Allerdings
neigen atomzentrierte Basissitze zu dem Problem der Uberbestimmtheit. Generell
wiirde ein an einem einzigen Zentrum lokalisierter Basissatz geniigen, um eine akku-
rate Beschreibung auch an anderen Zentren zu ermoglichen. Durch die Verankerung
des Bausatzes an vielen Zentren lduft man in Gefahr lineare Abhéngigkeiten zu
erschaffen, was gerade fiir grofse Basissidtze ein Problem darstellt. Reduziert man
die Basissétze, neigen die atomaren Orbitale dazu auch Unzulédnglichkeiten in der
Beschreibung von nahe liegenden Fremdatomen auszugleichen — der sogenannte
Basissatzsuperpositionsfehler (BSSE). Der BSSE macht sich dann besonders bei
sich &ndernden Strukturen bemerkbar, durch eine deutliche Verschlechterung der
Genauigkeit bemerkbar. Die Transferabilitiat leidet immens.

Neuere Ansédtze gehen deswegen dazu iiber Atomorbitale auf Basis von Ebene-
Wellen-Rechnungen zu erzeugen. So soll sichergestellt werden, dass fiir eine kleine
Basis die einzelnen Atomorbitale optimal die Ebenen-Wellen-Zusténde beschreiben.
Dies kann beispielsweise mittels einer unitdren Transformation geschehen, was zu
den sogenannten Wannierorbitalen|73, 74, 75| fithrt. Diese unitére Transformation
hat jedoch die Schwéche, dass die erzeugten Orbitale alle Informationen iiber das
Referenzsystem besitzen und die sphérische Symmetrie der Orbitale aufgegeben
wird. Die Basis biikt deswegen bei strukturellen Verdnderungen des Systems
sofort signifikant an Beschreibungskraft ein. Bei Beibehaltung der Symmetrie stellt
sich die Frage unter welchen Randbedingungen die Orbitalfunktionen optimiert
werden. Die im néchsten Abschnitt vorgestellte Spillage|76] wird hierbei in einigen
Arbeiten|77, 78, 79, 80, 81] als Optimierungskriterium verwendet. Allerdings
beschrianken sich diese Arbeiten auf eine Optimierung beziiglich einer zu Grunde
liegenden Basis wie STOs, GTOs oder Besselfunktionen. Die dadurch eingebiifite
Flexibilitat der Orbitalfunktionen ist schwer abzuschétzen.

In dieser Dissertation soll nun erstmals die Optimierung von numerischen — das
bedeutet basisfreien — Orbitalfunktionen unter Verwendung des Spillagegedanken
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|p2) |2

P

|P31>

\r

\#2)

|#1)

Abb. 6.1:

Im 2-dimensionalen lasst sich die Spillage als Normverlust eines Zustandes interpretie-
ren. Der Kreis reprisentiert alle moglichen normierten Zustéinde des R?, aus der ein
Représentant (rot) gewédhlt worden ist. up und pg bezeichnen eine vollstéandige Basis
des R?. Im Falle einer nicht vollstindigen Basis ist nun nur noch ein einziger Basis-
vektor — hier ;3 — zur Beschreibung des Zustandes vorhanden. Eine Projektion des
Zustandes auf diesen Basisvektor resultiert nun in einem Normverlust: der Spillage.

vollzogen werden.

6.2. Ein quantitatives Mass fiir Basisqualitat: Die Spillage

Das Ziel des Quamol Ansatzes ist es Basisfunktionen zu generieren, die in der Lage
sind gegebene Zustande in der Darstellung ebener Wellen akkurat nachzubilden. Die
Entwicklung eines ebenen Wellenzustandes in eine nicht-orthogonale, lokalisierte Ba-
sis |pa) lasst sich analog zur Entwicklung in orthogonale Basisfunktionen herleiten.
Sei |¥,,) der zu entwickelnde Zustand und |u,) ein Element der neuen Basis mit
Sas = (lalps) als entsprechender Uberlappmatrix. Gesucht sind im folgenden die
Koeffizienten ¢,, so dass die Basisentwicklung

|\Iln> = ann|ﬂa> (6-4>

gilt. Die Multiplikation mit (pg| fithrt zu

(1| Wn) = Y CanSpa it Spa = {uglua)- (6.5)

«

Um sich der Uberlappmatrix auf der rechten Seite der Gleichung zu entledigen,
multipliziert man mit S;Bl und summiert iiber . Das rechtsseitige Matrixprodukt
der Uberlappmatrix und ihres Inversen liefert das Kroneckersymbol d.,,. Dieses fiihrt
in der Summe und anschliessender Variablensubstitution v — « zu

Con = 3 Sb a0, (6.6)
B
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6.2 Ein quantitatives Mass fiir Basisqualitdt: Die Spillage

Das Gleichheitszeichen der Entwicklung (6.4) besitzt natiirlich nur dann Giiltigkeit,
wenn die zugrundeliegende lokalisierte Basis vollstandig ist. Ist sie nicht vollstandig,
projiziert die Transformation (6.6) den Zustand |¥,,) in den entsprechenden Raum
der lokalisierten Basis, von dem im weiteren angenommen wird, dass dieser ein
Unterraum zu dem urspriinglichen Raum der ebenen Wellen ist. Um nun zwischen
Projektion und urspriinglichen Zustand unterscheiden zu kénnen, verwendet man an
dieser Stelle [¥FPW) zur Kennzeichnung des Zustandes im Raum der ebenen Wellen
und |¥#) zur Kennzeichnung der Projektion. Diese sind {iber

() =Y [pa) S (s TL W) (6.7)
o,
= P|oPW) (6.8)

miteinander verkniipft. Der so definierte Projektionsoperator P ist idempotent

PP =" |pa)Sas{uslin) S (sl (6.9)
a,B,y,0
= 110)Gar S (1] (6.10)
a,y,0

= |t} S (1| (6.11)
a,d
— F (6.12)

und selbstadjungiert

Z ‘Mﬁ a,B ,uoz‘ (613)
= Zmﬁ Sl (614
o,

= P. (6.15)
Die Qualitét dieser Projektion wird iiber die sogenannte Spillage

(UL — PlopW)
(U wRY)

quantifiziert. Da der Raum der Orbitalfunktionen ein Unterraum des Raumes der

Sy = (6.16)

ebenen Wellen ist, gilt

0 < (UEV|PIUEWY) < (BEW WPV = 1, (6.17)

und somit
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0<S, <1. (6.18)

Dabei bedeutet S,, = 0 eine verlustfreie Projektion des Zustandes |¥F'W), wihrend
S, = 1 bedeutet, dass der Zustand |¥F'W) keine Komponente im Unterraum {, }
hat. Abbildung 6.1 zeigt eine visuelle Interpretation dieser Grofe.

Die fiir einen einzelnen Zustand |¥F'W) definierte Spillage lésst sich fiir eine Gesamt-
heit von Zustdnden als

1 A
S = o D S (W1 = PUEY) (6.19)

generalisieren, wobei die f,, als Filterfaktoren fungieren und

= fulTV]EWY) (6.20)

eine Normierungsgrofe darstellt: die sogenannte Raumnorm. Die Filterfaktoren
fn erlauben eine Selektion der zu beschreibenden Zusténde. Ersetzt man jene
beispielsweise durch die Besetzungszahlen geméss einer Fermi-Dirac-Verteilung
gibt die Spillage die Qualitdat der Projektion beziiglich des besetzten Kohn-Sham-
Unterraumes an.

Mit der Spillage als quantitatives Mafl der Projektionsgiite ist nun ein Vergleich ver-
schiedener Orbitalbasen direkt moglich. Zudem erlaubt die Variationsrechnung die
Bestimmung von Gradienten und somit die Mdoglichkeit eines gradientengestiitzten
Optimierungsverfahrens fiir die Basis. Die Variation der Spillage S im Hinblick auf
die Orbitale ist hierbei die zentrale Grosse und wird nun im Folgenden bestimmt.
Kennt man die Variation der inversen Uberlappmatrix im Hinblick auf die atomaren
Basisfunktionen (Anhang D) lésst sich damit die Variation des Projektors P nach
den Orbitalen (u,| zu

(6.21)

Zma
:—Zlua o |16} S5 u5|+2|ua (6.22)

a,fB,e

=3 o) S22 - P) (6.23)

berechnen. Die Variation der Spillage beziiglich des Orbitals (u.,| liefert somit
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6.3 Periodische Systeme

A

a1 rwl| P | opw
dlps| NPW;f” <\Ij" I > (6.24)
= —N%w > Fa1=PY )Y (T |a) S (6.25)
= o O St~ P, (6.26)

Den zentralen Beitrag zu diesem Gradienten bildet das Residuum (1 — P)[¥PW),
welches im allgemeinen keinerlei sphérische Symmetrie mehr aufweist. Diesbeziiglich
ist Variation der Spillage nach den Radialfunktionen der Orbitale von Interesse.
Diese ergibt sich durch Anwendung der Ketternregel der Differentiation zu

ds S diu,|
= . . 06.27
ARl ~ a0 d(Ru] (6.27)

d{pir]
d<Rnl I

und die Projektion auf die radiale Basis. Die explizite Form wird an spéaterer Stelle

Der Operator

beinhaltet die Multiplikation mit den Kugelflichenfunktionen

formuliert werden.

6.3. Periodische Systeme

Durch die periodischen Randbedingungen, welche zur Losung der Festkorper ange-
nommen werden, ergibt sich fiir die Eigenzustdnde des Systems die Beschreibung
durch Blochwellen |UFW) — |WPW) Eine vergleichbare Beschreibung ist nun auch
fiir den Projektor P erforderlich um dessen Anwendung auf die Zustéinde technisch
realisieren zu konnen. Dazu fithrt man an dieser Stelle atomare Blochwellen (AO-
Blochwellen)

) = 3 ol = R)eR (6.29)

ein. R ist hierbei ein Gittervektor des periodischen Systems. Die entsprechende AO-
Blochwelle im reziproken Raum erreicht man durch die Fouriertransformation

1 .
il G +10 = 7 / A1 (r)e (G (6.29)
Q

wobei 2 das Volumen der periodischen Zelle bezeichnet. Mit diesen Grofen lasst
sich nun der k-Punkt abhéngige Projektor

Be =) " |ftak) Sicms (ol (6.30)
af

angeben, welcher in den Ausdriicken fiir die Spillage
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numerische Integration Spline Interpolation

\4 A\ 4

Ra(r) Ra(g) flak(G + k)

A A

numerische Integration | gefitteter Spline

Realraumfunktion auf reziproke Splinefunktion reziproke aton'lare Blochwelle
logarithmischen Radialgitter auf radialem Gitter (siehe Text)| | aufdem 3D Gitter
der ebenen Wellen
Ry (|G +K|) ¢ -
/:La(‘G+k’) - N T N N N N R R R R T AR N T
0
|IG+KI
Abb. 6.2:

Darstellung der Repréisentationskette der Orbitalfunktionen in dem entwickelten Algo-
rithmus. Das jeweils genutzte Verfahren zum Représentationswechsel ist an den Pfeilen
angegeben. Der untere Graph illustriert die Regelméfigkeit des radialen Gitters im re-
ziproken Raum, verglichen mit der radialen Projektion des Blochwellengitters.

1

S = NPW Zwkfnk@iﬁv!l — B oY) (6.31)
nk
und dem Gradienten
dS 1 . .
d(lu ‘ - _NPW Z wkfnkck,Tn(l - Pk)|\IJEl\(N> (632)
T nk

Verwendung findet. Mit wy werden die k-Punkt-Gewichte der diskretisierten Bril-
louinzone bezeichnet.

6.4. Algorithmus

Mit den in den vorherigen Kapiteln eingefiihrten Grofsen kann nun die Beschrei-
bung des eigentlichen Algorithmus erfolgen. Ausgehend von einer atomzentrierten
Orbitalfunktionen der Gestalt

fa(r) = Ry (r)Yim (T) (6.33)
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| reziproke, radiale Splinefunktionen

\4

@—' reziproke, atomare
y Blochwellen

| !

| berechne Spillage | DFT-PW

Realraum
. s
Spillage konvergiert? transformation
|berechne symmetrisierte Gradienten | |
A
optimiere Basis B reziproke, radiale Splinefunktionen QUAntgat;.\; (}_}J)thlerte
(conjugate gradient) b der Gradienten QUiAi\'leOis
Abb. 6.3:

Flussdiagramm des Optimierungsverfahrens. Die gewdhlten Farben zeigen die zugrun-
deliegende Reprisentation der Orbitalfunktionen geméf Abb. 6.2.

soll der auf einem Gitter numerisch représentierte, radiale Teil R,,;(r) bei festgehal-
tenen Y}, (1) dergestalt variiert werden, dass die Spillage beziiglich der zu Grunde
liegenden Referenz der Ebenen-Wellen-Zustédnde minimal wird. Diese optimierten
Orbitalfunktionen werden hier als QU Antitativ optimierte AtoMOrbitaLe, kurz
Quamols, bezeichnet.

Die Berechnung der Spillage und ihres Gradienten bedingen Auswertung von Uber-
lappintegralen der Gestalt

alVEY) = 3 une S a( G+ K) WG + ). (6:34)
k G

Dies bedarf einer Transformation der Orbitale in den reziproken Raum der ebe-
nen Wellen. Der Gradient selber muss dann seinerseits zuriick in eine radiale Form
gebracht werden um die sphérische Symmetrie nicht zu brechen. Dies setzt in je-
dem Schritt der Optimierung eine Transformation in den radialen Raum voraus,
welche auf Grund der ungleichméfigen Stiitzpunktverteilung im (G + k)-Raum zu
verrauschten Radialfunktionen fiihrt. Diese Transformationen sind zudem auf Grund
der Vielzahl von Gitterpunkten (a 40.000) rechenintensiv. Um das Rauschen zu mi-
nimieren und um die Anzahl an Stiitzpunkten deutlich zu reduzieren, fithren wir an
dieser Stelle radiale Orbitalfunktionen im reziproken Raum ein. Diese werden durch
kubische Splines auf einem Hilfsgitter représentiert, welches eine deutlich homoge-
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nere Stiitzstellenverteilung aufweist und in der Anzahl der Gitterpunkte signifikant
geringer ist. In der Regel reichen 100 Punkte zur akkuraten Beschreibung aus. Abbil-
dung 6.2 zeigt eine Gegeniiberstellung der beiden Gitter. Die Transformationen aus
dem radialen Ortsraum in den radialen reziproken Raum und vice versa sind hierbei
durch eine ebene Wellenentwicklung in Kugelwellen gegeben. Die Transformation in
den reziproken Raum geschieht iiber die Transformationsvorschrift

Roulg) = \/g / Roa(r)julgr)r2dr. (6.35)

Die Riicktransformation geschieht iiber die Vorschrift

Ry (r) = \/g / Ru(9)ji(gr)g*dg. (6.36)

Die j; bezeichnen die sphérischen Besselfunktionen erster Art. Diese Transforma-
tionen kénnen durch eine numerische Integration erfolgen und sind in ihren Kosten
durch die geringere Anzahl an Gitterpunkten (= 100) deutlich moderater als die
direkte Transformation u(G + k) — R(r).

Die Auffaltung der radialen Orbitalfunktionen im reziproken Raum geschieht in
zwei Schritten. Zunéchst wird R,; auf die |G + k|-Stiitzstellen im (G + k)-Raum
iiber kubische Splines interpoliert. Die Beschreibung dieser Methode befindet sich
im Anhang E. Aus diesen ergeben sich dann die atomaren Blochwellen zu

(G + k) =

27)3 ~ G +k )
BT |G + KV (| o k|> (G (6.37)

Dabel bezeichnet r. die Position des Atoms 7 in der Zelle und Y, sind die
reellwertigen, normierten Kugelflichenfunktionen.

Die Riicktransformation der aufgefalteten Orbitale in den radialen reziproken Raum
geschieht ebenfalls in zwei Schritten. Zunéchst erfolgt die Berechnung der radialen
Blochwellen

Ru(ge) =Y 6(g¢ — |G + k])

G+k

l
1 /202 G+k .
- - E ek (G +K)Y,, [ ——— ) e UGH)rr )
. nT(2l+1)7m:—l T ! k( i ) l <|G+k|>e (6 38)

tiber eine Mittelung aller beitragenden Atomzentren 7 und aller (2 4+ 1) Orbitale
zur Drehimpulsquantenzahl [. Die Projektion mit den Kugelflachenfunktionen Y,
garantiert die Bewahrung der sphérischen Symmetrie und ist bei der analogen
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Berechnung der radialen Gradienten im reziproken Raum essentiell. Im zweiten
Schritt muss nun auf die Stiitzstellen des radialen Gitters riickgerechnet werden.
Eine Interpolation fiihrt nun jedoch nicht ans Ziel, da die obigen berechneten
radialen Blochwellen signifikanten numerischen Schwankungen unterliegen. Des-
wegen wird an dieser Stelle die Methode des Splinefittens verwendet, welche in
Anhang F genauer erldutert wird. Da die Anzahl der Punkte fir |G+ k| — 0
abnimmt und sogar leere Intervalle moglich sind, behilft man sich an dieser Stelle
damit, Intervalle adaptiv zusammenfiihren, bis jedes neue Intervall zumindest einen
Punkt beheimatet. Zudem wird R,,;(g) symmetrisch nach —oo fortgesetzt, was das
Verfahren weiter stabilisiert. Bei ungeraden [ ist die Punktsymmetrie zu wahlen,
bei geradem [ die Achsensymmetrie.

Dieses Verfahren kann ebenso fiir die Transformation des Gradienten verwendet
werden. Eleganter ist es den resultierenden Gradienten direkt geméss Kettenregel
der Differentiation zu berechnen. Dieser ergibt sich zu

s d<an(9§) L pad(GHE)| ds (6.39)

A(Rulgs)|  d{Rulgn)|  d(Fulg)| — dalGFRL

Die expliziten Formen sind mit

d (porc(G + k)| _ /(25)3 3 196)e (Y|G4 k)G + K (6.40)

und
d<Rnl(g£)’ dXi,p . A\D
d<an(g;p) = % |9x>m (9¢() — 92(2))"(ge| (6.41)

gegeben. Der letzte Ausdruck ergibt sich aus der Variation der Splinekoeffizienten
beziiglich der Funktionswerte an den Stiitzstellen. Fiir weitergehende Lektiire sei
hier auf den Anhang E und F verwiesen.

Mit diesen Transformationen ist es nun moglich den Algorithmus aufzubauen, der
basierend auf der Spillage und des entsprechenden Gradienten die Orbitale anhand
der Methode der konjugierten Gradienten optimiert. Das Flussdiagramm ist in Ab-
bildung 6.3 dargestellt. Dieser Algorithmus ist in die S/PHI/nX Bibliothek|[18] im-
plementiert worden.

6.4.1. Initialisierung der lokalisierten Basis

Die Optimierung der Orbitalfunktionen ist — vergleichbar zur Optimierung der
elektronischen Struktur — hochgradig nichttrivial. Ein gute Initialisierung der
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Basis sowohl in der Form, als auch in der Anzahl der Basisfunktionen, ist auf
Grund der komplexen Spillage-Oberflache wichtig. Beziiglich der Anzahl der Basis-
funktionen ist es gut, dem Konzept des balancierten Basissitze|20| zu folgen. Die
wesentlichen Beitrage zur Elektronenverteilung werden durch s- und p-Funktionen
gegeben. Hohere Funktionen im Sinne der Drehimpulsquantenzahl dienen, mit
Ausnahme der Beschreibung von Ubergangselementen, der Polarisation. So ist eine
3s2pld-Basis balanciert, wahrend eine 1s2pld-Basis ein zu hohes Gewicht auf die
Polarisierungsfunktionen legt und somit als uberpolarisiert gilt. Eine 5s4pld-Basis
hingegen legt ein zu schwaches Gewicht auf die Polarisationsfunktionen und
gilt als unterpolarisiert. Erfahrungsgemafs stellt eine balancierte Basis eine gute
Initialisierung dar. Ein zu hohes Gewicht auf den Polarisationsfunktionen kann in
der Optimierung dazu fiihren, dass Unzulénglichkeiten in den s- und p-Anteilen in
den hoheren Funktionen ausgeglichen werden, was zu Artefakten in der Darstellung
fithren kann. Dies werden wir am Beispiel des Stickstoffdimers in Abschnitt 6.5.1
und am Beispiel des Silizium in Abschnitt 6.5.2 diskutieren.

Gleichermaften wichtig ist die radiale Form der Initialisierung. Atomare Losungen
des Atoms, beziehungsweise des Pseudoatoms bei der Verwendung von Pseudopoten-
tialen, bilden hierbei erfahrungsgeméf gute Initialisierungen, die um weitere Gauf-
funktionen der Gestalt

2

Ru(r)=rl-er (6.42)

oder gar um Linearkombinationen

Ry(r) =1 Z cie (6.43)

ergdnzt werden konnen. Einen fundierten Datensatz bildet hierbei der EMSL Basis-
set Exchange|82], welcher eine Bandbreite unterschiedlichster Orbitale bereithélt,
die in dieser Arbeit als Initialisierung fiir Polarisationsfunktionen gedient haben.

In dieser Arbeit werden die Basisfunktionen aus einer Mischung der pseudoisierten
Atomorbitale und weiteren Gaufsfunktionen, entnommen aus Jensens polarization
consistent (PC) Basissatz[82], initialisiert. Eine solche Initialisierung wird dann als
pseudoisierter PC-Basissatz bezeichnet.

6.4.2. Typische Parameter

Zur Erzeugung der Eigenzustinde |FW) in der Darstellung ebener Wellen werden
Dichtefunktionalrechnungen durchgefiihrt. Die Art der Beschreibung des Austausch-
und Korrelationsfunktionals wird zu Beginn der Diskussion des Materialsystems an-
gegeben, wie auch der benutzte Energiecutoff der ebene Wellen und das k-Punkt
Gitter. Wéhrend fiir Dichtefunktionalrechnungen nicht-zentrierte k-Punkt Gitter
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Basisname

Sinit SOpt Etot [eV] AEtot [eV]

4.68-1072 1.02-107% -540.6616 4.56
3.29-1072 3.29-107% -543.4634 1.76
6.39-107% 2.29-1073 -543.6593 1.56
3.57-107% 3.43-1073 -543.0280 2.20
pseudoisierter PC1 (2s2pld) 3.97-107% 9.99-107° -545.1124 0.112
balancierter PC1 (3s2pld) 3.16-107% 6.97-107° -545.1287 0.095
balancierter PC2 (4s3p2d1f) | 30 1.67-107% 8.08-107% -545.2076 0.016
unterpolarisiert (4s3pld) | 18 1.98-107% 5.61-107° -545.1341 0.090
iiberpolarisiert (1s3p2d1f) | 27 4.69-107% 2.34-10"* -544.8947 0.329

minimal (1s1p)
minimal + d (1slpld)
pseudoisierter PCO (2s2p)
balancierter PCO (2s1p)

D obo Ot 00 © Tk

Tab. 6.1:
Vergleich der Spillage nach Initialisierung und Optimierung fiir unterschiedlich Basis-
grofen. Gegeben ist zudem die Anzahl der Funktionen (#) sowie die Gesamtenergie
berechnet in einem LCAO Ansatz und der Vergleich dieser mit der Ebenen-Wellen-
Rechnung.

bevorzugt werden, sind fiir die Splineinterpolation zentrierte k-Punkt Gitter vorteil-
haft. Die explizite Mitnahme des I'-Punktes erlaubt die Nutzung der physikalischen
Eigenschaften der Orbitalfunktionen an diesem Punkt, wie

Ru(0)=0 V 1>0 (6.44)

und

nl

1 (0)=0 V 1>1. (6.45)

Weiterhin liefern dichte k-Punkt Gitter mehr Punkte nahe des I'-Punktes, was
die Stabilitdt des Splinefittens verbessert. Deswegen werden die Eigenzusténde bei
konstant gehaltener Elektronendichteverteilung fiir den Quamolansatz an dichteren,
zentrierten k-Punkt Gitter nachgerechnet um obige Vorteile nutzen zu kénnen. Die
typischen Gittergrofsen belaufen sich auf 500...1000 Punkte fiir das logarithmische
Gitter der Radialfunktionen im Ortsraum, und 50...200 Punkte fiir das lineare
Gitter der Radialfunktionen im reziproken Raum.

Die Filterfaktoren f, werden — soweit nicht anders spezifiziert — in Ubereinstim-
mung mit den Besetzungszahlen des physikalischen Systems gewéhlt.

6.5. Ausgewdhlte Beispiele
6.5.1. Minimale versus erweiterte Basis - Stickstoffdimer

Zur Illustration des Quamolansatzes verwenden wir zu Beginn ein wohl verstandenes
System und diskutieren den Einfluss der Basissatzgrofte an einem einfachen Molekiil
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Grofe Os o Tp op

Islp | 451-107% 1.43-107* 9.48-10~* 3.60-1073
Islpld | 1.60-107% 1.38-10"° 2.56-10~* 1.16-1073
252p 1.95-107* 3.62-107° 9.11-107* 2.37-107*
2s1p 1.00-107% 8.13-107° 1.00-10=* 3.36-10*
252pld | 2.97-107° 1.42-107% 2.78-107° 1.33-107°
3s2pld | 1.38-107° 1.42-107% 2.11-10° 1.22-107°
4s3p2d1f | 1.64-107% 2.93.1077 2.19-107¢ 1.77-107¢
4s3pld | 1.06-107° 1.02-107% 1.89-107° 6.69-107°
1s3p2d1f | 1.41-107* 7.25-1077 8.71-107% 7.55-107°

Tab. 6.2:
Vergleich der Zustandsspillage fiir verschiedene Basissédtze. Die Beitrage sind auf die
Gesamtspillage normiert.

Grofke d [bohr] Ad [%] Eiot [€V] AFEi [€V]
ebene Wellen | 2.085 — -545.2239 —
1slp 2.233 +7.1  -541.0198 4.20
1slpld 2.126 +2.0  -543.4987 1.73
2s2p 2.124 +1.8  -543.6892 1.53
2slp 2.137 +2.5  -543.0879 2.14
2s2pld 2.088 +0.11  -545.1124 112-1073
3s2pld 2.088  +0.12 -545.1314 93-1073
4s53p2d1 f 2.086 +0.03  -545.2076  16-1073
4s3pld 2.087 +0.09 -545.1341 90-1073
1s3p2d1 f 2.077 -0.4  -544.8974 327-1073

Tab. 6.3:
Vergleich der Ergebnisse der Strukturoptimierung von Ny unter Verwendung unter-
schiedlicher optimierter Basissatze.

mit o- und m-Bindungen: das Stickstoffdimer. Die elektronische Struktur dieses
Systems ist im Sinne des LCAO-Bildes gut verstanden. Die s- und p-Orbitale des
Stickstoffes priagen bei der atomaren Bindung drei o— und zwei m-Molekiilorbitale
aus, die mit Elektronen gefiillt werden. Ein minimaler Basissatz besteht somit aus
einer s- und einer p-Funktion.

Die Modellierung des Systems mittels DFT erfolgt unter Verwendung der lokalen
Dichtendherung (LDA). Konvergierte Ergebnisse lassen sich mit einer Cutoffenergie
von 35 Ry erreichen. Das Molekiil wird in einer Box der Kantenlinge 15 Bohr
beschrieben, weswegen eine I'-Punkt Rechnung im Sinne der k-Punkt-Konvergenz
ausreichend ist. Der berechnete Bindungsabstand belduft sich auf 2.085 Bohr in
guter Ubereinstimmung mit dem experimentellen Befund von 2.074 Bohr|[27].
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Islp 2slp Islpld
[ [ np*
252p 2s2pld 3s2pld % Sp

Hoth w
@ @ 4 s

4s3p2d1f 4s3pld 1s3pldlf

s f

Abb. 6.4:

Links: Visualisierung der Residualdichte. Blaue Bereiche zeigen fehlende Dichte im
Vergleich zur Ebenen-Wellen-Basis. Rote Bereiche zeigen additive Dichte an. Die Iso-
fliche betriigt: 5- 1073 ¢/A?

Rechts: LCAO-Termschema des Stickstoffdimers mit Besetzung.

Fiir unterschiedliche Basissatzgrofsen fiihren wir nun Optimierungen der Basisfunk-
tionen aus. Zudem sind die pathologischen Fille einer unter- und einer iiberpolari-
sierten Basis betrachtet worden, um ihre Effekte zu studieren. Die Spillage, sowie
Gesamtenergie und die Abweichung zur ebenen Wellenrechnung sind in Tabelle 6.1
angegeben. Fiir die Diskussion ebenfalls interessant ist die zustandsaufgeloste Spil-
lage

U,|1 — P|T,)
NPW

s, = & (6.46)

in Tabelle 6.2.

Eine Optimierung der minimalen Basis reduziert die anfingliche Spillage der aus
dem PAW-Potential entnommenen Orbitalfunktionen um einen Faktor 5 auf 1-1072,
was energetisch immer noch eine Diskrepanz von 4.6 eV bedeutet. Die dominanten
Beitrage zur Spillage stammen von den bindenden oy und o, Zustand. Die Hinzu-
nahme einer d-Funktion zur Polarisierung senkt die Spillage aller Zustande, wéhrend
eine weitere s-Funktion — allein, oder in Kombination mit einer p-Funktion — sich
einzig positiv auf die Beschreibung der o-artigen Zustande auswirkt, jedoch auf den
mp Zustand keinen signifikanten Effekt hat. Eine Kombination beider Erweiterun-
gen zu einer 2s2pld Basis liefert eine Spillage von 1 - 10~ mit einer energetischen
Diskrepanz von 110 meV. Das Hinzufiigen weitere Funktionen zu einer balancierten
4s3p2d1 f Basis senkt die Spillage um eine weitere Grofsenordnung. Die energeti-
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Abb. 6.5:
Vergleich der Basisfunktionen aus der Initialisierung und nach der Optimierung. Ver-
wendet wurde die minimale sp-Basis fiir das Stickstoffmolekiil.

sche Abweichung betragt nun nur noch 14 meV. Die verbesserte Beschreibung der
Zustéande lasst sich iiber die Residualdichte

R(r) =) wifo (Lol (1)U (1) — Up (1) Ul (r)) (6.47)

visuell darstellen. Abbildung 6.4 zeigt diese fiir die unterschiedlichen Basisgrossen.
Blaue Bereiche zeigen hierbei fehlende Dichte im Vergleich zur Ebenen-Wellen-
Referenz. Rote Bereiche hingegen sind zusétzliche Dichte, hervorgerufen durch
den beschrankten atomaren Basissatz. Dies wird beispielsweise durch eine Mangel-
kompensation einer s-artigen Funktion durch eine am Nachbaratom lokalisierten
p-Funktion hervorgerufen. Mit zunehmender Basisgrofse reduzieren sich beide
Effekte. Zu sehen ist ebenfalls, dass eine unterpolarisierte Basis ein qualitativ
vergleichbares Bild liefert, wiahrend eine {iberpolarisierte Basis — sowohl in der
1s1pld-Basis aber dominant in der 1s3p2d1 f-Basis — die Beschreibung qualitativ
verdndert. Dieser visuelle Unterschied lasst sich auch an der Beschreibung der
Bindung quantitativ fassen, wenn die Ergebnisse der Geometrieoptimierung in
Tabelle 6.3 betrachtet werden. Wéhrend der Bindungsabstand mit steigender
Basisgrofse von oben gegen das Ergebnis der Ebenen-Wellen-Rechnung konvergiert,
kommt die Bindung fiir die iiberpolarisierte Basis zu kurz heraus. Zwar wird der
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Abb. 6.6:
Vollstandigkeitsprofil der Basisfunktionen nach der Initialisierung und nach der Opti-
mierung fiir die 2s2pld-Basis zur Beschreibung des Stickstoffmolekiils.

experimentelle Wert zufillig besser reproduziert, jedoch nicht auf Grund einer
exakteren physikalischen Beschreibung. Weder energetisch noch in der Spillage
lasst sich diese fehlerhafte Beschreibung direkt herauslesen. Bei der Beschreibung
des Siliziums an spéterer Stelle werden weitere Artefakte, induziert durch eine
iiberpolarisierte Basis, sichtbar.

Der Effekt der Optimierung lésst sich an der radialen Form der Orbitalfunktio-
nen diskutieren. Im Falle der minimalen sp-Basis sind die Radialfunktion in Ab-
bildung 6.5 wiedergegeben. Man erkennt, dass hauptsichlich der Radialteil der p-
Funktion von der Optimierung durch Kontraktion modifiziert worden ist. Eine signi-
fikante Modifizierung der s-Funktion lasst sich nicht beobachten. Im Falle mehrerer
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Basisfunktionen pro [-Kanal ldsst sich ein direkter Vergleich der radialen Initial-
funktionen und ihrer optimierten Gegenstiicke nicht mehr ziehen. Die Verwendung
mehrerer Funktionen und die fehlenden Forderung nach Orthogonalitit erlaubt das
Bilden von Linearkombinationen, so dass eine optimierte Funktion nicht mehr ein-
deutig einer Initialisierungsfunktion zugeordnet werden kann. Abhilfe schafft hier der
Ubergang zu den sogenannten completeness-Profilen nach Chong|83]. Abbildung 6.6
zeigt solche Profile fiir die 2s2pld-Basis. Dem Grundgedanken nach wird hier die
Représentation von Gauffunktionen mit unterschiedlichen Exponenten ~ abgefragt.
Je néher die durch I'/(+y) evaluierte Projektion

D) = > (ghltta)Sa s (1slgi) (6.48)

a7ﬁ7m

an eins liegt, umso besser ist diese Gauffunktion reprasentiert. Die dargestellten
Profile zeigen, dass durch die Optimierung in diesem Fall mehr Exponenten besser
reprisentiert werden, als in der Initialisierung. Dies kann sogar dazu fiihren,
dass, wie im Falle der d-Funktion, die Reprisentation eines einzelnen Exponenten
abgesenkt wird, um eine groftere Breite zu erreichen. In der praktischen Anwendung
ist das aber nicht problematisch, da die Orbitalfunktion und nicht die Gauftfunktion
bestmoglich repréasentiert werden muss.

Nach Betrachtung des Stickstoffmolekiils lassen sich die folgenden Kernaussagen
treffen.

e Minimale Basissétze sind selbst nach der Optimierung nicht ausreichend um
quantitativ hochwertige Ergebnisse zu erzielen.

e Balancierte Basissdtze sind den nicht balancierten Basissatzen vorzuziehen, da
sich in diesen Artefakte einschleichen konnen, die zu unphysikalischen Sach-
verhalten fiihren.

e Eine Vergroferung des Basissatzes liefert eine systematische Konvergenz der
Spillage um circa eine Gréfsenordnung pro hinzugenommener Schale.

6.5.2. Kristalle - Silizium

Silizium kristallisiert in der Diamantstruktur und ist ein kovalent gebundenes
Materialsystem. Jedes Siliziumatom pragt zu seinen néchsten Nachbarn vier
identische Bindungen aus. Von diesen ist bekannt, dass die bindenden Orbitale
durch sp3-Hybride beschrieben werden kénnen. Ein sp-Basissatz bildet folglich in
diesem System die minimale Basis. Silizium ist in der Literatur ein viel diskutiertes
Materialsystem und erlaubt somit einen Vergleich mit anderen Ansétzen, die
ebenfalls auf einer Optimierung der Spillage basieren.
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Basisname Grofse Sinit Sopt
minimal basis 1slp 4.1-1072 6.2-1073
minimal basis +d  1slpld 2.2-1072 1.7-107*
PC1 - Pseudo 2s52pld 7.1-1074 1.1-107*
PC2 - Pseudo 3s3p2dlf 2.2-107* 2.8-107°
PC2 - Reduced  2s2pldlf 6.3-107° 3.7-1075
PC2 - Reduced  1s2pldlf 7.3-107° 5.4-107°

Basisname Grofe Sopt Sopt / Sﬁ?;fm‘”
STO[77] Islp  7.6-10°° 1.23
PLATO[78] 2s2pld A~ 2.7-1072  245.45
MIN S[77] 1slp  44-1073 0.71
MIN S[77] 1slpld 1107 0.59

Tab. 6.4:
Gesamtspillage fiir unterschiedliche Basissétze am Beispiel des Silizium. MIN S ist die
theoretisch berechnete untere Schranke fiir die Spillage|77] (vgl. Text).

Zur Modellierung des Materialsystems findet die lokale Dichtenéherung (LDA)
zur Beschreibung des Austausch- und Korrelationfunktionals Verwendung. Ein
entsprechendes PAW-Potential ist der VASP-Datenbank|84] entnommen worden.
Konvergierte Ergebnisse erreicht man bei Verwendung eines Energiecutoffs von
20 Ry und eines 4x4x4 Monkhorst-Pack k-Punktgitters. Zur Stabilisierung des
Splinefittens sind die Wellenfunktionen bei festgehaltener Dichte auf einem I'-
zentrierten 10x10x10 k-Punktgitter berechnet worden. Fiir das radiale Gitter im
reziproken Raum sind 100 Punkte verwendet worden.

Neben einem minimalen Basissatz sind erweiterte Basissétze erzeugt worden.
Als Ausgangspunkt dienen hierbei balancierte Basissétze der pseudoisierten PC-

Method ¢y |GPa] c¢yp [GPa] cf, [GPa] ¢y [GPa] By |GPa
DFT-PW 160.6 61.6 103.2 73.5 94.6
LCAO sp 174.0 66.3 124.1 89.1 102.2
LCAO spd 171.3 68.3 110.9 77.9 102.7

LCAO 2s2pd 168.6 60.3 107.3 76.6 96.4
LCAO 2s2pdf | 165.2 61.4 106.2 75.7 96.0
DFT-PW|78] 162.0 63.19 107.4 77.22 96.13
Plato sp|78] 186.8 75.03 139.5 91.45 112.3
Plato 2s2pd|78] 156.9 59.84 111.9 76.85 92.19
Tab. 6.5:

Elastische Konstanten fiir Silizium. ¢, bezieht sich auf die c44 Konstante ohne ionische
Relaxationen.
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Abb. 6.7:

Darstellung des optimierten 2s2pdf Basissatzes.

Variante. Um mit anderen Basissédtzen aus der Literatur vergleichbar zu sein, sind
diese anschliessend in ihrer Groéfse reduziert worden. Da das Weglassen einzelner
Funktionen die Spillage signifikant verschlechtert, ist hierbei eine Eigenwertzerlegung
verwendet worden, um die Funktionen zu identifizieren, die einen minimalen Bei-
trag zur Spillagereduktion liefern. Das Verfahren wird an dieser Stelle grob skizziert.

Der Beitrag einer einzelnen Basisfunktion zur Zustandsentwicklung ist geméf Glei-
chung (6.4) iiber die Entwicklungskoeffizienten c,,, gegeben. Da die zugrundeliegende
Basis nicht orthonormal ist, ist nun die Koeffizientenmatrix

Pag = Z wkfnkci';mck,ﬂn (649)

n,k

aufzustellen. Eine Diagonalisierung dieser Matrix liefert Eigenwerte mit hinzugeho-
renden Eigenfunktionen. Die Eigenwerte geben ein quantitatives Kriterium fiir die
Wichtigkeit der einzelne Eigenfunktion zur Beschreibung des Zustandsraumes. Al-
lerdings mischen dabei in die Eigenfunktionen beliebige I-Komponenten und Atom-
sorten, so dass die sphérische Symmetrie sowie die Atomzugehorigkeit nicht mehr
zuzuordnen sind. Um diese Information zu bewahren, definiert man eine Koeffizien-
tenmatrix, die als zusétzliche Indizes die Spezies i, und die Drehimpulszahl [ erhélt
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Abb. 6.8:
Silizium Bandstruktur berechnet unter Verwendung unterschiedlicher Basissétze. Das
Valenzbandmaximum ist hierbei auf 0 eV referenziert.
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Diese Koeffizientenmatrix unterlduft hierbei einer Mittelung iiber alle Atome zur
Atomsorte i4, sowie der 2] + 1 Orbitalfunktionen zur Drehimpulsquantenzahl [. o’
und [’ sind hierbei nur noch als Nummerierung der einzelnen Orbitalfunktionen
zu einer festgehaltenen Atomsorte und zu einer festgehaltenen Drehimpulszahl [
zu verstehen. Diese Matrizen lassen sich diagonalisieren, ohne einer Vermischung
unterschiedlicher [-Komponenten oder Atomsorten zu unterliegen. Allerdings gehen
in diese Koeffizientenmatrizen nur die entsprechenden on-site Beitrage ein. Jene
bilden damit nur eine grobe Abschétzung der tatsédchlich reduzierten Basis. Durch
eine nachtrégliche Optimierung dieser neuen Basis kann dieser Makel aber beseitigt
werden. Als Richtwert konnen solche Funktionen aus der Basis entfernt werden,
deren Eigenwert kleiner ist, als das Produkt aus Spillage und maximalen Eigenwert.

Die so konstruierten Basissétze sind mit der resultierenden Spillage in Tabelle 6.4
wiedergegeben. Ein Vergleich mit anderen auf der Spillage basierenden Optimie-
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Abb. 6.9:

Die Vergrofserung des untersten Bandes der Siliziumbandstruktur zeigt nahe des I'-
Punktes einen signifikanten Fehler (rote Kreise), wenn die unterpolarisierte 1s2pld1 f-
Basis verwendet wird. Die balancierte 2s2pldl f-Basis (griine Quadrate) ist frei von
diesem Fehler und reproduziert das Ergebnis der ebenen Wellen (schwarze Linie).

rungsmethoden zeigt, dass die hier optimierten Funktionen durchweg eine geringere
Spillage aufweisen und stellenweise sogar die von Sanchéz-Portal|77| vorhergesagte
theoretische untere Schranke erreichen. Diese hiangt jedoch von den Details der zu
Grunde liegenden Ebenen-Wellen-Rechnung ab. Insbesondere das zugrunde liegen-
de k-Punkt Gitter spielt hier eine Rolle, denn die in [77] verwendete punktweise
Minimierung unterschétzt die untere Schranke fiir endliche k-Punktsétze stérker
als die hier diskutierte spline-gestiitzte Variante. Diskrepanzen lassen sich auf diese
Unterschatzung zuriickfiihren.

Es stellt sich die Frage, ob die Orbitale auch eine ausreichende Transferabilitét
besitzen, oder ob durch die Optimierung die Orbitale nur fiir das System, fiir
welches sie optimiert wurden, akkurat sind. Um die Transferabilitdt der Orbitale
zu priifen, werden in der Regel nicht symmetrische Verzerrungen des Materials
berechnet. Tabelle 6.5 zeigt die mit den optimierten Basisfunktionen berechneten
Elastizititskonstanten. Diese besitzen eine vergleichbar gute Ubereinstimmung mit
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Abb. 6.10:
Entwicklung der Eigenwerte der Uberlappmatrix S(k) entlang des Pfades X —T' — L
flir den unterpolarisierten 1s2p1d1 f-Basissatz. Die starke rote Linie hebt den Eigenwert

B

hervor, welcher nahe des I'-Punktes rapide singuldr wird und das Problem um einen
Freiheitsgrad beraubt.

anderen Ebenen-Wellen-Resultaten|78]. Von einer deutlichen Verminderung der
Transferabilitdt kann also nicht gesprochen werden.

Die optimierten Orbitalfunktionen besitzen auch im Falle des unendlich ausgedehn-
ten Kristalls eine Lokalisierung, wie Abbildung 6.7 zeigt. Ein deutliches Signal in der
radialen Funktion lésst sich aufserhalb von 10 Bohrradien nicht wahrnehmen. Die
Reproduktion der Bandstruktur ist in Abbildung 6.8 wiedergegeben. Die besetzten
Zustiande werden mit einem Maximalfehler von 50 meV korrekt beschrieben. Mit
steigender Grofe des Basissatzes nimmt zudem die qualitative Beschreibung der
unbesetzten Zustdnde zu.

Im Falle einer iiberpolarisierten Basis, die hier mit dem oben beschriebenen Verfah-
ren der Eigenwertzerlegung erzeugt wurde, liefert die Bandstruktur ein interessantes
Bild. Anhand der Spillage allein stellt sich die konstruierte 1s2pldlf-Basis als
gute Basis dar. Thre Spillage ist gerade mal doppelt so grok wie die der fast
balancierten 3s3p2d1 f-Basis. Die Bandstruktur (Abbildung 6.9) zeigt jedoch eine
minderwertige Beschreibung des niedrigsten, s-artigen Bandes nahe dem I'-Punkt.
Die Erkldarung hierfiir ist die erzwungene Beschreibung eines s-artigen Zustandes
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durch am Nachbaratom lokalisierte p-Funktionen. Dies gelingt zwar iiber weite
Teile der Bandstruktur recht gut, fiihrt aber am I'-Punkt zu eklatanten Fehlern, da
sich hier die p-Funktionen symmetriebedingt aufheben. Der zustindige Uberlapp
wird singuldr und verliert somit einen Freiheitsgrad wie Abbildung 6.10 zeigt.
Solche Artefakte in der Bandstruktur kénnen also auf eine fehlerhafte Beschreibung
eines Zustandes durch Funktionen héherer Drehimpulsquantenzahlen zuriickgefiihrt
werden und bilden ein sicheres Kriterium dafiir, dass die verwendete Basis tiberpo-
larisiert ist.

Im folgenden sind die Kernaussagen dieses Abschnittes noch einmal zusammenge-
fasst.

e Eine Eigenwertzerlegung nach on-site Beitragen erlaubt die Reduktion der
Basissatzgrofe ohne die Spillage wesentlich zu verschlechtern.

e Uberpolarisierte Basisfunktionen neigen zu einem unphysikalischen Ausgleich
von Unzuldnglichkeiten von Orbitalfunktionen niedrigeren Drehimpulses durch
Orbitalfunktionen hoheren Drehimpulses, welche an einem anderem Zentrum
lokalisiert sind (Superpositionsfehler). Diese Fehler fallen besonders bei der
Betrachtung von Hochsymmetriepunkten ins Auge.

e Die optimierten Orbitalfunktionen weisen fiir das Materialsystem Silizium eine
geringere Spillage auf als andere in der Literatur diskutierte Basisfunktionen,
die unter der Minimierung der Spillage erzeugt wurden. Zudem besitzen die
optimierten Orbitalfunktionen eine gute Transferabilitét.

6.5.3. Wahl der Filterfaktoren - Aluminium

Metalle eignen sich in idealer Weise fiir das Studium der Filterfaktoren, da die
Verwendung von Besetzungszahlen nun Bénder abschneidet, die das Ferminiveau
kreuzen. Aluminium bietet sich hierbei als Materialsystem an. Es kristallisiert in der
kubischen flichenzentrierten Form. Die Modellierung des elektronischen Austausch-
und Korrelationsfunktionals geschieht hier auf dem Niveau der generalisierten
Gradientennéherung (GGA-PBE). Ein entsprechendes PAW-Potential ist der
VASP-Datenbank[84| entnommen worden.

Metallische Systeme benotigen deutlich hohere k-Punkt Gitter zur Konvergenz,
was dem Quamolansatz zu Gute kommt. Ein 24x24x24 k-Punkt Gitter und ein
Energiecutoff von 24.25 Ry (330 eV) liefern konvergierte Ergebnisse. Erneut wird
die elektronische Dichte an einem nichtzentrierten k-Punkt Gitter erzeugt um dann
die Wellenfunktionen fiir das zentrierte Gitter zu bestimmen.

In einem ersten Schritt werden die Filterfaktoren in Ubereinstimmung mit den
Besetzungszahlen des Materialsystem gesetzt. Um einen relativ weichen Ubergang
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Basisname Grofe Sopt AE [meV]
PCO0 - Pseudo 252p 1.7-1073
PCO - Reduced 1slp 2.5-1073 396
PC1 - Pseudo 2s2pld  1.2-1074
PC1 - Reduced 1slpld 1.4-1074 125
PC2 - Pseudo  3s3p2d1f 1.9-107°
PC2 - Reduced 2s2pldlf 2.8-107° 112
PC2 - Reduced* 2s2pldlf 1.9-107% 117
Basisname Grofe Sopt Sopt/ SSP‘;amOI
PAO[77] 1slp  157-102 628
PAO[77] 1slpld  7-10°* 5.00
MIN S]|77] Lslp 9-10~* 0.36
MIN S|[77] l1slpld  2.9-10°° 0.20

Tab. 6.6:
Spillage und Differenz der Gesamtenergie (selbst-konsistente LCAO vs. ebene-Wellen)
fiir Aluminium. Der "*’ bezeichnet einen Wechsel der Filterfaktoren in der PC2 Basis.

zu gewahrleisten ist hierbei ein Fermiverteilung von 0.05 eV verwendet worden.
Die optimierten Orbitalfunktionen werden — wie schon beim Silizium — generiert
und anschliessend {iber die Eigenwertzerlegung in ihrer Grofse reduziert. Tabelle 6.6
zeigt die hier erreichte Spillage sowie einen Vergleich mit Literaturwerten. Es zeigt
sich eine signifikante Verbesserung. Die theoretische untere Schranke wird diesmal
nicht erreicht. Allerdings stellt Aluminium deutlich gréfere Anspriiche an das
k-Punktgitter als Silizium, so dass die in [77] mit nur 10 irreduziblen k-Punkten
berechnete untere Schranke wahrscheinlich deutlich unterschétzt wird. Die hier
zugrunde liegenden Ebenen-Wellen-Rechnungen fiir Aluminium verwenden ca. 400
irreduzible k-Punkte.

Die mit diesen optimierten Orbitalfunktionen berechnete Bandstruktur (Ab-
bildung 6.11) zeigt eine gute Ubereinstimmung des besetzten Unterraumes.
Abweichungen sind hier nicht gréfser als 48 meV. Energetisch hoher liegende
Zustdnde werden bis 20 eV iiber dem Fermi Level zumindest noch qualitativ
gut beschrieben, auch wenn Abweichungen bis zu einigen eV verzeichnet werden
kénnen. Eine Anderung der Besetzungszahlen in Ubereinstimmung mit einem
kiinstlichen Ferminiveau 13 eV oberhalb des tatséchlichen — ebenfalls mit einer
Fermiverteilung von 0.05 ¢V — und entsprechender Optimierung hebt die Spillage
zwar um eine Grofenordnung an, verschlechtert die Energetik aber nur minimal wie
Tabelle 6.6 zeigt. Die Bandstruktur zeigt im neu definierten Unterraum deutliche
Verbesserungen. Die quantitative Ubereinstimmung der Bénder bis zum kiinstlichen
Ferminiveau ist nun auch innerhalb eines Fehlers von 45 meV. Die qualitative
Beschreibung hoher liegender Bénder reicht entsprechend weiter in den hohen
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Abb. 6.11:
Bandstrukturrechnung fiir Aluminium mit unterschiedlichen Filterfaktoren. Die Ener-
gien sind hierbei auf das Ferminiveau referenziert.

Energiebereich.

Die Filterfaktoren erlauben folglich eine gewichtete Fokussierung auf Teile der Band-
struktur, denen ein gesondertes Interesse gilt. So wiirden zur Effektivmassenbere-
chung von Elektronen und Lochern nur den Bandkanten der Bandliicke von Null
verschiedene Filterfaktoren zugewiesen werden.

6.5.4. Transferabilitat

Eine wichtige Eigenschaft eines atomaren Basissatzes ist seine Transferabilitét.
Die erzeugten Orbitalfunktionen sollen nicht nur eine addquate Beschreibung des
Systems ermoglichen, fiir welches sie generiert wurden, sondern ebenfalls Struk-
turoptimierungen zulassen. Dazu darf eine Verzerrung der atomaren Struktur die
Beschreibung durch den Basissatz nicht eklatant verschlechtern. Bereits am Silizium
liefs sich erkennen, dass mit den Orbitalfunktionen die Elastizitdtskonstanten in
guter Qualitdt bestimmt werden. Ein nicht ganz so stringenter, jedoch ebenfalls
aussagekriftiger Schnelltest ist die Bestimmung der optimalen Gitterkonstante und
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Si Al
Basis 1slpld 1slpld
DFT-PW LCAO A DFT-PW LCAO A
Ei [H] -8.0389  -8.0368 57 meV | -2.10564 -2.1047 19 meV
ag [bohr] 10.217 10.223  40.06 % 7.636 7.6364 +0.01 %
By |GPa| 94.6 102.7 +8.6% 79 96 +22%
Basis 2s2pld1f 2s2pld1f
DFT-PW LCAO A DFT-PW LCAO A
Ei [H] -8.0389  -8.0382 19 meV | -2.1054 -2.1053 3 meV
ag [bohr| 10.217 10.218  40.01 % 7.636 7634  0.03%
By |GPa| 94.6 96.0 +1.5% 79 82 +4%

Tab. 6.7:

Vergleich der strukturellen Eigenschaften von Silizium und Aluminium. Zur Berech-
nung sind Gesamtenergieberechnungen fiir verschiedene Gitterkonstanten durchgefiihrt
worden. Die daraus erhaltene Energieoberfliche ist dann an die Murnaghansche Zu-
standsgleichung gefittet worden. DFT-PW betitelt die Ebenen-Wellen-Referenzdaten.
LCAO betitelt die selbstkonsistente LCAO Berechnung unter Verwendung der ange-
gebenen Basis.

des Bulkmodulus durch Fitten der Energieoberfliche an die Zustandsgleichung
nach Murnaghan|85]. Tabelle 6.7 und Tabelle 6.8 geben hier die Ergebnisse fiir die
Festkorpersysteme Si und Al, sowie fiir GaN und NaCl wieder. Schon ein minimaler
Basissatz liefert qualitativ richtige Ergebnisse. Der Bulkmodulus zeigt jedoch noch
Abweichungen von bis zu 20%. Durch Hinzunahme weiterer Funktionen kann die
quantitative Ubereinstimmung jedoch gesteigert werden. Bei der Verwendung einer
252pldlf Basis erreichen wir eine Ubereinstimmung bis auf wenige Prozent. Zur
Bestimmung des Bulkmodulus werden in der Regel Variationen der Gitterkonstante
bis hin zu 2% verwendet.

Drastischere Anderungen der atomaren Struktur ergeben sich beispielsweise bei
der Modellierung der NHjz wmbrella Schwingungsmode bis zum molekularen
Umklapp-Prozess. Als optimierter Basissatz ist hierbei eine 2s2pld-Basis fiir den
Stickstoft, sowie eine 1s1p-Basis fiir den Wasserstoff gewahlt worden. Die Basissétze
wurden an der molekularen Gleichgewichtsstruktur optimiert. Zur Bestimmung
der Energiebarriere startet man von dem planaren Molekiil und bewegt das
Stickstoffatom senkrecht aus dieser Ebene heraus. Die Wasserstoffatome diirfen in
ihrer Ebene frei relaxieren. Der entsprechende Energieverlauf ist in Abbildung 6.12
gezeigt. Die Lage des Energieminimums und die Hohe der Energiebarriere sind in
Tabelle 6.9 zusammengefasst. Wéhrend die Gesamtenergiedifferenz mit 1.32 eV
grofs ist, wird die Energiebarriere bis auf 19 meV reproduziert.
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GaN NaCl
Basis 1slpld + 1slpld 1slp + 1slpld
DFT-PW  LCAO A DFT-PW LCAO A

Ew [H] | -24.8054 -24.7975 215 meV | -15.4976 -15.4946 82 meV
ao [bohr] | 6.041 6.047  +0.1% | 10.6878 10.7411 +0.5%

By |GPa| 211 233 +11% 24.3 29.3 +21%
Basis 282pld1f + 2s2pldlf 2s2pldlf + 1slpldlf
DFT-PW LCAO A DFT-PW LCAO A

Ewt |H| | -24.8054 -248037 46 meV | -15.4976 -15.4976 6 meV
ao [bohr| | 6.041 6.043  10.03% | 10688  10.688  0.00 %
By [GPa] | 211 215 +2 % 24.3 255  +5%

Tab. 6.8:
Vergleich der strukturellen Eigenschaften von Galliumnitrid und Natriumchlorid. Die

Berechnung der Daten erfolgte analog zu Tabelle 6.7

AEqy [&V] dxm, [A] Esarriere [méV]
DFT-PW 0.00 0.37 157
LCAO initial guess 10.08 0.67 1630
LCAO Quamol 1.32 0.38 176

Tab. 6.9:

Vergleich unterschiedlicher Kerndaten der NH3 umbrella Schwingungsmode. Als LCAO
Basis ist fiir das Stickstoff eine 2s2pd und fiir den Wasserstoff eine sp-Basis verwendet
worden. Der Abstand dn.pm, bezeichnet den optimalen Abstand des Stickstoffes von
der Hz-Ebene. AFE,,; bezeichnet die Energiedifferenz der optimierten Struktur in der
Ebenen-Wellen-Rechnung und der optimierten Struktur in der LCAO Rechnung unter
Verwendung des atomaren Basissatzes. Eparricre beziffert die berechnete Energiebar-

riere des Umklapprozesses wie in Abb. 6.12 dargestellt.

Ein weiterer Transferabilititstest ist die Reaktion der Basis auf eine sich &ndernde
chemische Umgebung im Sinne von Bindungswinkeln und insbesondere Mehr-
fachbindungen. Fiir diesen Test sind Silan, Silen und Silin zur Modellierung in
der trans-Konfiguration, vgl. Abbildung 6.13, gewéhlt worden. Die Si-Si Bindung
andert sich hierbei von einer Einfachbindung bis hin zu einer Dreifachbindung
mit einer entsprechen Verkiirzung der Bindungslange. Der H-Si-Si Bindungswinkel
variiert zwischen 110° und 125°. Als Basis ist fiir das Si eine 2s2pldl f-Basis und
fiir den Wasserstoff eine 2s2pld-Basis gewéahlt worden. Diese Basis wird fiir jeweils
eine Geometrie optimiert und dann auf die zwei verbleibenden Konfigurationen
angewandt. Die Spillage, sowie die Unterschiede in der Gesamtenergie im Hinblick
auf das Resultat der Ebenen-Wellen-Rechnung sind in Tabelle 6.11 zusammenge-
fasst. Signifikante Einfliisse der Referenzstruktur lassen sich nicht feststellen, die
Gesamtenergie wird mit jeder Basis innerhalb von 40 meV reproduziert.

88



6.5 Ausgewihlte Beispiele

040 — . . . . . . . . —
0,353— | ,, ,, | | |
= 0.25 - g
2, 5 §
= 020 &
g L i
84 - ]
0 0.15¢
0.10F =
F o DFT-PW e
0.05 - + LCAO Quamol ]
0 OO - | - | | 1 | | | 1 | | | 1 - 1 ]
10 -08 06 04 -02 00 02 04 06 08 10
dN_H3 [bohr]
Abb. 6.12:

Energieoberfliche der NHs umbrella Mode. Der Reaktionspfad ist oberhalb der Kurve
visualisiert.

Zusammenfassend lésst sich also sagen:

e Moderate Verzerrungen der ionischen Struktur lassen sich mit den optimierten
Orbitalfunktionen abbilden und energetisch richtig beschreiben.

e Moderate Anderungen der chemischen Umgebung (unterschiedliche Anzahl
der Bindungspartner und closed-shell Bindungsgeometrien) werden durch die
optimierten Orbitalfunktionen innerhalb geringer energetischer Fehler gut be-

schrieben.
dsisi [A] dsim [A] amsisi [7]  ouwsin [°)
trans-SisHo 2.09 1.50 125.3 —
trans-SigHy 2.15 1.49 119.5 113.4
trans-SigHg 2.32 1.50 110.4 108.5

Tab. 6.10:

Strukturelle Eigenschaften von trans-Disilan, trans-Disilen und trans-Disilin. Berech-

net wurden diese mittels eines ebenen-Wellen LDA-DFT Ansatzes.
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Abb. 6.13:

Visualisierung von trans-Disilin (links), ¢rans-Disilen (mitte) und trans-Disilan

(rechts). Die gelben Sphéren stellen die Siliziumatome dar, die weifen Sphéren ent-
sprechen den Wasserstoffatomen..

SioH, Basis SioHo SioHy SioHg
Spillage | 4.93-107% 5.13-107° 4.41-107°
AE [meV] 20 26 33
SioH, Basis SioHo SioHy SioHg
Spillage 7.26-107° 4.37-107°% 3.45-107°
AE [meV] 22 25 29
SioHg Basis SioHo SioHy SioHg
Spillage 7.40-107° 591-107% 3.40-107°
AE [meV| 29 31 28

Tab. 6.11:

Sich ergebene Spillage und Energiedifferenzen der selbstkonsistenten LCAO Berech-
nung im Vergleich zur Ebenen-Wellen-Rechnung. Die verwendete atomare Basis ist in
der linken Spalte angegeben.

6.6. Lokalisierung und Tight-Binding - Ein Ausblick

Die optimierten Orbitalfunktionen zeigen eine natiirliche Lokalisierung. Betrachtet
man jedoch die abstandsabhéngige Entwicklung der Diagonalelemente der Hamil-
tonmatrix und der Uberlappmatrix, so ist kein exponentielles Abklingverhalten
erkennbar (vgl. Abbildung 6.14). Folglich liefert der Uberlapp von Orbitalfunktionen
an entfernten Atomen einen nicht verschwindenden Beitrag. Dies spiegelt sich in
minimalen Fluktuationen im langreichweitigen Teil der radialen Orbitalfunktionen
wieder. Die Auswirkungen dieser Fluktuationen fiir einen Tight-Binding Ansatz, der
in der Regel nur Wechselwirkungen bis zum tibernéchsten Nachbar beriicksichtigt,
werden nun im Folgenden diskutiert.

Dazu werden die Hamiltonmatrizen fiir Silizium basierend auf einer optimierten
2s1pld-Basis im reziproken Raum an verschieden k-Punkten konstruiert. Die ab-
standsabhingigen Beitriage werden bis zu einem Radius von 10 Bohr beriicksichtigt.
Die Losung des verallgemeinerten Eigenwertproblems der k-abhéngigen Hamilton-
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Abb. 6.14:

Entwicklung der Hauptdiagonalelemente der entfernungsabhingigen Hamiltonmatri-
zen fiir bulk Silizium. Als Basissatz ist eine 2s1pld-Basis verwendet worden, die fiir
den besetzten Unterraum optimiert wurde.

matrizen gibt die Eigenwerte an den entsprechenden k-Punkten wieder und somit die
Bandstruktur. Ein Vergleich dieser Bandstruktur mit der LCAO Bandstruktur zeigt
eklatante, qualitative Abweichungen (vgl. Abbildung 6.15). Sollen die Quamols fiir
Tight-Binding-Zwecke eingesetzt werden, ist es unabdingbar, diese Fluktuationen
im langreichweitigen Teil der Orbitalfunktionen zu ddmpfen. Tatséchlich lassen sich
die Fluktuationen fiir Molekiile beseitigen, in dem Superzellen mit einer Kantenlan-
ge von 40 Bohr und mehr verwendet werden, um die Wechselwirkung der Atome
mit ihren periodischen Abbildern zu reduzieren. Dies ist jedoch bei der Beschrei-
bung von Festkorpern nicht mdoglich. Hier bedarf es eher einer in den Algorithmus
eingebetteten Lokalisierungsbedingung, um die Wechselwirkungen mit weit entfern-
ten Atomen zu dampfen. Ein erster Schritt wére die Definition von Cutoffradien,
hinter denen die Orbitalfunktionen auf Null gesetzt werden. Dies wiirde jedoch zu
harten Spriingen in den Orbitalfunktionen fithren und somit zu einem unkontrol-
lierbarem Verhalten in den Fouriertransformationen. Vielmehr bietet es sich an das
HSE-Konzept fiir das Austauschpotential[43] auf die Quamols zu iibertragen und
die Orbitalfunktionen zu abzuschirmen. Dafiir verwenden wir an dieser Stelle als
Abschirmfunktion die Fermi-Dirac-Funktion
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Abb. 6.15:

Vergleich der Bandstrukturen fiir bulk Silizium berechnet in der Ebenen-Wellen Basis,
der 2s1pld-Quamolbasis und dem in dieser Basis verwendeten Tight-Binding-Ansatz,
welcher Wechselwirkungen innerhalb einer 10 Bohr Sphére mitnimmt.

1

II(r;ro, B) = T oo
Diese variiert zwischen 0 und 1. Dabei gibt 7y die Position an, an der die Funktion
den Wert 0.5 hat, der Cutoffradius. 3 ist mit der Breite des Uberganges verkniipft.
Hierbei ist der Ubergang umso hirter, je grofer 3 ist. Weiterhin hat die Fermi-Dirac-
Funktion, im Vergleich zu einer Stufenfunktion, den Vorteil der Differenzierbarkeit
in jedem Punkt und wird somit keine Kanten in die Radialfunktionen induzieren.
Die Lokalisierung R(r) des Radialteils R(r) einer Orbitalfunktion lisst sich nun {iber

(6.51)

R(r) = (1 =1(r;ro, B)) R(r) (6.52)
erreichen. Das Optimierungsfunktional ist nun durch
F=S
+ 1) (alla(r)|pa)
— D cap ({taltis) — dap) (6.53)

B (I(e)
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Abb. 6.16:

Entwicklung der Hauptdiagonalelemente der entfernungsabhingigen Hamiltonmatri-
zen fiir bulk Silizium. Als Basissatz ist eine 2s1pld-Basis verwendet worden, die fiir
den besetzten Unterraum ohne (schwarz) und mit (griin) Anwendung des Lokalisie-

rungskriteriums optimiert wurden.

zu ersetzen. Die Spillage wird nun um einen additiven Term ergénzt, der die Lo-
kalisierung bewertet. Da dies jedoch fiir unterschiedliche Normierungen der Orbi-
talfunktionen zu unterschiedlichen Gewichtungen fithren wiirde, ist nun eine expli-
zite Orthonormalisierung erforderlich. Dafiir sorgt der dritte Term im Funktional.
Mit « kann die Lokalisierungsbedingung gewichtet werden. Unsere Rechnung haben
gezeigt, dass die Optimierung nicht sensibel auf s reagiert, wenn x in einem Bereich
von 0.1 - 1.0 gewahlt wird. Deutlich h6here Werte legen ein zu starkes Gewicht auf die
Lokalisierung und verhindern die Optimierung. Deutlich kleinere Werte schwéchen
die Lokalisierung so weit ab, dass die langreichweitigen Fluktuationen der Funktion
wieder auftreten. Der Lagrangeparameter €, bestimmt sich iiber das Stabilitatskri-
terium zu

1)

Vollzieht man nun mit diesem Funktional die Optimierung der Radialfunktionen

B a1 fir I() = (6.54)

o

= {usl 7= a0

fiir Silizium und wéahlt als Cutoffradius 10 Bohr sowie eine Breite der Fermivertei-
lung von einem Bohr, so erhédlt man Orbitalfunktionen, die deutlich besser loka-
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Abb. 6.17:
Vergleich der Bandstrukturen fiir bulk Silizium berechnet in der Ebenen-Wellen-Basis,
der 2s1pld-Quamolbasis und dem in dieser Basis verwendeten Tight-Binding-Ansatz,
welcher Wechselwirkungen innerhalb einer 10 Bohr Sphére mitnimmt. Die Basisopti-
mierung ist unter Verwendung der Lokalisierungsbedingung fiir einen Cutoffradius von
10 Bohr und einer Ubergangsbreite von einem Bohr vollzogen worden.

lisiert sind, aber noch eine akzeptable Spillage aufweisen. Die Matrixelemente der
Hamiltonmatrix klingen deutlich schneller ab, wie Abbildung 6.16 zeigt. Berechnet
man nun die Bandstruktur mittels eines Tight-Binding-Ansatzes und nimmt alle
Wechselwirkungen innerhalb von 10 Bohr (sechstnéchster Nachbar) mit, so ergibt
sich die Bandstruktur in Abbildung 6.17. Diese zeigt eine gute Ubereinstimmung
mit der LCAO Bandstruktur. Die vorherigen qualitativen Differenzen fiir den opti-
mierten Unterraum sind mit diesen neuen Funktionen beseitigt. Jedoch bleibt eine
quantitative Abweichung in der Umgebung von X und K in den untersten unbe-
setzten Béndern, welche vor Beriicksichtigung der Lokalisierungsbedingung nicht
vorhanden war. Eine explizite mullikensche Populationsanalyse|86] offenbart einen
signifikanten d-Charakter des Bandes (~ 30% pro Atom) an diesen k-Punkten,
wo hingegen die unbesetzten Bandabschnitte, die eine gute Ubereinstimmung zur
Ebenen-Wellenrechnung zeigen, von s- und p-Beitragen dominiert werden. Dies legt
die Interpretation nahe, dass die Lokalisierung das d-Orbital in der Optimierung so
einschrankt, dass es lediglich seine Aufgabe als Polarisationsfunktion wahrnehmen
kann und die quantitative Ubereinstimmung in der nicht lokalisierten Variante durch
langreichweitige Wechselwirkungen zufillig erzeugt wurde. Eine explizite Hinzunah-
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me der 4 untersten unbesetzten Bander durch Auffiillen mit kiinstlichen Elektronen
verbessert die Ubereinstimmung in der lokalisierten Variante auch ohne Vergrofe-
rung des Basissatzes signifikant.

6.7. Zusammenfassung und Ausblick

In diesem Kapitel ist eine Methode vorgestellt worden, um atomare Orbitalfunk-
tionen basierend auf Ebenen-Wellen-Rechnungen zu generieren und optimieren.
Grundlage der Optimierung bildet als quantitatives Mak die Spillage: der gewichtete
Normverlust bei der Projektion eines Ebenen-Wellen-Zustandes auf die atomzen-
trierte Basis. Dabei verwenden die hier vorgestellten Orbitale keine reprasentierende
Basis, was sie im Vergleich zu anderen spillagbasierten Verfahren unterscheidet. Der
analytische Ausdruck der Spillage ermdglicht den Zugang zu gradientenbasierten
Minimierungsverfahren. Eine Herausforderung stellt hier die Berechnung der
Projektionen der im reziproken Raum beheimateten ebenen Wellen mit den im
Ortsraum beheimateten Radialfunktionen dar. Das sich aus den abgespeicherten
G + k Vektoren der ebenen Wellen ergebene reziproke radiale Gitter ist nahe des
Ursprunges nicht dicht genug um die reziproken Orbitalfunktionen repréasentieren
zu konnen. Dafiir verfiigt es iiber eine extrem dichte Anzahl an Stiitzpunkten in
dem Bereich, wo die Radialfunktionen schon ldangst abgeklungen sind. Dies macht
eine direkte Fouriertransformation zwischen diesen beiden R&umen instabil und
rechenintensiv. Erst der in dieser Arbeit verwendete Ubergang zu reziproken Spli-
nefunktionen ermoglicht eine effiziente und stabile Fouriertransformation zwischen
diesen beiden Rédumen und erlaubt einen stabilen Algorithmus zu Erzeugung der
Quamols.

Die optimierten Basisfunktionen sind fiir unterschiedliche chemische Umgebungen
bestimmt und die entsprechenden LCAQO Resultate mit den Ebenen-Wellen-
Resultaten verglichen worden. Es zeigt sich durchgehend eine gute Ubereinstim-
mung. Beziiglich der Spillage unterbieten die Quamols andere Verfahren deutlich
und reichen vereinzelt sogar an die theoretisch vorhergesagt untere Schranke
heran. Die Diskrepanzen zu dieser lassen sich auf die Details der zu Grunde
liegenden Ebenen-Wellen-Rechnung zuriickfiihren und sind keine Unzulénglichkei-
ten des Quamolansatzes. Die erzeugten Funktionen sind auch fiir elektronischen
Berechnungen von abweichenden atomaren Strukturen ohne grofe Einbufsen an
Genauigkeit verwendbar und in diesem Sinne transferabel. Elastizitétskonstanten,
Bulkmoduli und Schwingungsmoden unterschiedlicher Systeme stimmen mit den
Ebenen-Wellen-Resultaten bis auf wenige Prozent iiberein.

Um grofse Systeme zu betrachten ist die Anzahl der betrachteten Wechselwirkungen
im System zu reduzieren. Dies ist im Falle gut lokalisierter Orbitale in einem
Tight-Binding-Ansatz moglich. Aus den mit den Quamols erzeugten Hamiltonma-
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trizen folgt jedoch, dass die natiirliche Lokalisierung der Orbitalfunktionen nicht
ausreichend ist, um akkurate Ergebnisse zu erzielen. Es zeigen sich gravierende
Abweichungen in der Bandstruktur verglichen mit den Ebenen-Wellen-Resultaten.
Um nun eine explizite Lokalisierung zu fordern ist das Minimierungsfunktional um
eine Lokalisierungsbedingung erweitert worden. Dem Grundgedanken nach bestraft
diese Bedingung Signal in der Radialfunktion ausserhalb eines festgelegten Radius.
Dabei ist sicherzustellen, dass der Ubergang stetig und differenzierter erfolgt.
Am Beispiel des Siliziums wurde gezeigt, dass mit diesen Lokalisierungsverfahren
gute Ergebnisse erzieht werden, wenn bei der Konstruktion des Tight-Binding-
Hamiltonians Wechselwirkungen bis hin zum gewéhlten Cutoffradius beriicksichtigt
werden.

Zu Beginn dieser Dissertation sind die Quamols entstanden mit dem Ziel, Defekte
in grofen Superzellen zu berechnen. Gerade der Tight-Binding-Ansatz erlaubt hier
die effektive Behandlung mehrerer tausend Atome. Die Quamols fungieren dabei
als akkurater, atomzentrierter Basissatz. Allerdings haben die mit der Modellierung
von Magnesiumnitrid erhaltenden Ergebnisse gezeigt, dass die Inversionsdoméne
nicht fiir die signifikante Modifikation der Wasserstoftkonzentration in magnesi-
umdotiertem Galliumnitrid verantwortlich ist. Aus diesem Grund sind die nétigen
Entwicklungen, um effizient atomare Strukturen mit mehreren 10.000 Atomen zu
berechnen nicht weiter angegangen worden. In dieser Dissertation verbleiben die
Quamols als Orbitalfunktionen zu Analysezwecken, sowie geeignete Initialisierungs-
funktionen fiir die Ebenen-Wellen Rechnungen beziiglich des magnesiumdotierten
Galliumnitrids und seiner Defekte.

Dennoch ist mit der Entwicklung der Quamols der Grundstein gelegt grofe Systeme
effizient und akkurat zu behandeln. Die Quamols lassen sich aber auch hervorra-
gend zu Analysezwecken einsetzen. Fiir die Mullikensche Populationsanalyse von
Ebenen-Wellen-Resultaten bilden sie einen systemnédheren Basissatz als die sonst
Verwendeten atomaren Losungen der einzelnen beteiligten Atomsorten. Ebenso fin-
den sie auch in der Bandstrukturanalyse zur Charakterbestimmung eines Zustandes
Anwendung. Besonders interessant ist die Erzeugung von abstandsabhéngigen Ha-
miltonmatrizen mit der Moglichkeit gezielt Wechselwirkungen einzelner Orbitale an-
und abzuschalten um so beispielsweise den Einfluss der besetzten Gallium d-Orbitale
in GaN zu analysieren.
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7. Ableitung theoretischer Grenzen in der
p-Dotierbarkeit von GaN:Mg

Give me a fruitful error any time, full of seeds, bursting with its own
corrections. You can keep your sterile truth for yourself.

Vilfredo Frederico Pareto, italienischer Ingenieur und Soziologe, 1848 - 1923

7.1. Einleitung

Die Verbindung von Elementen der dritten Hauptgruppe (Al, Ga und In) mit Stick-
stoff — die sogenannten Gruppe-III-Nitride — sind die vornehmlich verwendeten
Materialsysteme fiir die Entwicklung von Licht emittierenden Dioden (LEDs)|[87, 5.
Grund dafiir ist die grofe Bandliicke dieser Materialsysteme, welche durch geeig-
nete Legierungen Licht des kompletten sichtbaren Spektrums emittieren kénnen.
Ein Durchbruch in der Entwicklung der Galliumnitrid (GaN) basierten Dioden
konnte durch die Erkenntnis erzielt werden, dass eine hohe p-Leitfdhigkeit in mit
Magnesium (Mg) dotiertem GaN durch ein thermische Aktivierungsverfahren nach
dem Wachstum erreicht werden kann. Im theoretischen Modell bindet Wasserstoff
an den Magnesiumakzeptor in Form eines neutralen [MgH| Defektkomplexes und
passiviert diesen|5, 4, 6, 7]. Allerdings ist die Loslichkeit des neutralen Komplexes
in GaN signifikant grofer als die des Akzeptors allein, womit mehr Magnesium in
das Wirtssystem gebracht werden kann. In der thermischen Aktivierung dissoziiert
dann der Komplex in das gewiinschte Mg, und ein mobiles H*, welches schon bei
verhéltnisméafig niedrigen Temperaturen durch das Material diffundieren kann und
an der Oberfliche gasformigen Wasserstoff bildet|6, 8.

Dieses theoretische Konzept bildet aktuell die Grundlage experimenteller Forschung.
Die Befunde weisen aber darauf hin, dass der Aktivierungseffekt durch die Magne-
siumkonzentration limitiert ist. Experimentell zeigt sich ein verminderter Wasser-
stoffeinbau ab Magnesiumkonzentrationen oberhalb von 10' ¢cm™[9]. Eine nach-
tragliche Aktvierung fiihrt nur zu einer minimalen Steigerung der p-Leitfédhigkeit.
Experimentelle Resultate deuten auf drei Mechanismen fiir diese Beobachtung hin:

1. Ab einer Magnesiumkonzentration von 10 ¢cm™ bilden sich Inversionsdomi-
nen (vgl. Abb. 7.1), an deren Grenzen sich eine parasitire Magnesiumnitrid
(MgsNy) Phase befindet|[12, 10, 13, 14]. Das in dieser Phase gebundene Ma-
gnesium ist als Akzeptor verloren. Weiter ist unklar, in welcher Art und Weise
diese Phase Wasserstoff binden kann und sich somit negativ auf die Bildung
der [MgH] Komplexe auswirkt.

2. Die thermische Austreibung des Wasserstoffes geschieht nicht vollstandig. Ex-
perimentelle Messungen mittels Sekunddrionenmassenspektroskopie (SIMS)
zeigen ein relatives Wasserstoff-zu-Magnesium-Verhéltnis von 10-20 %.
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Abb. 7.1:

Aufbau einer GaN Diode. Im p-leitenden GaN:Mg kann es bei hohen Magnesiumkon-
zentrationen zur Ausformung von Inversionsdoménen kommen, deren Grenzen durch
Magnesiumnitrid gebildet werden.

3. Neben dem Wasserstoff sind noch andere kompensierende Mechanismen denk-
bar, die bei hohen Magnesiumkonzentrationen zu Tage treten und die Rolle
des Wasserstoffes ibernehmen, jedoch keine oder eine schwierigere thermische
Aktivierung erlauben.

Die Analyse und das Verstédndnis dieser einschrinkenden Mechanismen, ebenso
wie die Moglichkeit die Mechanismen zu kontrollieren sind der Schliissel dazu, die
heutigen Limitierungen der p-Dotierung zu iiberwinden und die Effizienz solcher
Bauelemente signifikant zu steigern. Dabei muss das bisherige Bild eine Revision
erfahren, da es die drei zentralen experimentellen Beobachtungen nicht erkléren
kann. In den folgenden Abschnitten werden nun mittels einer Dichtefunktionalstudie
mogliche Mechanismen untersucht um ein erklarendes Modell zu entwickeln.

7.2. Kristallwachstum mittels MOVPE — Die
experimentellen Randbedingungen

Zum Verstandnis der einschrénkenden Mechanismen in der p-Dotierbarkeit von
GaN werden typische Defekte in GaN und — fiir die Inversionsdoménengrenzen
— in MgsNy betrachtet. Aus deren Defektenergetiken konnen unter Annahme
des thermodynamischen Gleichgewichtes Konzentrationsprofile erstellt werden.
Dabei ist es notwendig die vorherrschenden experimentellen Parameter zu kennen,
die implizit in den chemischen Potentialen, beziiglich der Temperatur aber auch
explizit in der Boltzmannverteilung eine Rolle spielen. An dieser Stelle wird nun
die Kristallwachstumsmethode MOVPE grob umrissen.
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7.2 Kristallwachstum mittels MOVPE — Die experimentellen Randbedingungen

Die metall-organische Gasphasenepitaxie — metal organic vapor-phase epitaxy
(MOVPE) — wurde in ihrem Ursprung von Manasevit entwickelt|2| und gilt heut-
zutage als Standardverfahren zum Wachstum von Bauelementen, deren Anwendung
von Laserdioden und LEDs bis hin zu Solarzellen reicht[88]. Die treibende Reaktion
jedes MOVPE Wachstumsprozesses lasst sich als

R,M(v) + ER) (v) = ME(s) + nRR'(v) (7.1)

darstellen. Dabei reprisentieren R und R’ jeweils ein organisches Radikal (wie z.B.
Methyl, Ethyl oder hohere Kohlenstoffradikale), Wasserstoff oder ihre Kombinatio-
nen. M ist ein Gruppe-II- oder Gruppe-III-Metall und E ein Element der fiinften
oder sechsten Hauptgruppe. Der Index n gibt an, ob das entsprechende Wachstum
ein II-VI Wachstum (n=2) oder ein III-V Wachstum (n=3) ist. Mit (v) und (s)
wird schlussendlich die Gasphase, beziehungsweise die feste Phase bezeichnet.

Galliumnitrid wird in der Regel aus Galliumtrimethyl und Ammoniak hergestellt.
Die Reaktion hat die Gestalt

Ga(CHs)s(v) + NHz(v) — GaN(s) + 3C Hy(v). (7.2)

Im Experiment wird Galliumtrimethyl und Ammoniak iiber separate Rohrleitungen
in die Reaktorkammer gebracht. Der Fluss kann dabei iiber die Zuleitungen gesteu-
ert werden. In der Reaktorkammer befindet sich ein Substrat als Wachstumskeim,
an welchem die obige Reaktion stattfindet. Die Reaktorkammer ist dabei beheizt.
Bei Galliumnitrid betrégt diese Wachstumstemperatur ca. 1275 K|9].

Die Dotierung mit Magnesium geschieht iiber die Zuschaltung einer Magnesiumquel-
le, wie zum Beispiel Dicyclopentadienylmagnesium Mg(CsH;)2|89]. Experimentell

kénnen dabei Dotierungen von 10'%-10%° cm—3

erreicht werden|90, 9]. Eine neuere
Arbeit erreicht sogar qualitativ hochwertige Proben mit einer Magnesiumkon-
zentration von 2 - 10 em™3 unter Verwendung der Metall-Modulations-Epitaxie
(MME)[91]. Den Proben ist gemein, dass sie anschliessend thermisch aktiviert
werden miissen. Hierbei beobachtet man, dass die benotigte Aktivierungstemperatur
mit steigender Magnesiumkonzentration sinkt. Sind fiir moderat dotierte Proben
mit einer Magnesiumkonzentration von 10*¥-10' ecm = Temperaturen bis zu 725° C
notwendig, erreicht man die thermische Aktivierung von hoch dotierten Proben
schon bei 500° C[91]. Dies deutet auf einen sich &ndernden Passivierungsmechanis-
mus oder eine sich dndernde Wasserstoffkinetik hin und kann eine Ursache des im

Experiment|9] beobachteten verminderten Wasserstoffeinbaus sein.

Um die theoretische Modellierung dieses Prozesses so einfach wie moglich zu hal-
ten, werden die chemischen Reservoire der Prozessedukte iiber sogenannte chemische
Potentiale reprisentiert. Diese werden auf moglichst einfache Systeme referenziert.
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Das chemische Potential des Gallium beispielsweise referenziert man auf die Galli-
umbulkphase anstatt auf das Galliumtrimethyl um die Gesamtheit der an der Reak-
tion beteiligten chemischen Potentiale auf das notwendige Minimum zu beschrénken.
Die chemischen Potentiale sind dann in der theoretischen Modellierung frei wéahl-
bare Parameter, deren Wertebereich im Zusammenspiel mit dem Experiment sinnig
abzustecken ist.

Die vorgestellte Theorie betrachtet das Kristallwachstum im thermischen Gleichge-
wicht. Es ist jedoch gezeigt worden, dass durch kinetische Prozesse an der Oberfla-
che die Defektkonzentration dort signifikant von der im thermischen Gleichgewicht
abweichen kann[92]. Durch Uberwachsen gelangen dann diese Defekte in den Bulk-
bereich, so dass die Ergebnisse hier grundlegend kritisch in diesem Zusammenhang
zu diskutieren sind. Auch die Behandlung der Referenzsysteme bei 0 K induziert sys-
tematische Fehler in die berechneten Konzentrationen und die auf den chemischen
Potentialen basierenden Phasendiagramme. Abschétzungen zu Folge belduft sich die
Ungenauigkeit im Vergleich zum Ubergang zu endlichen Temperaturen auf einige
Zehntel eV. So besitzen Magnesiumnitrid und Magnesium in der 0 K Beschreibung
bei dem zur Dotierung notwendigen chemischen Magnesiumpotential schon stabile
Bulkphasen, die aber experimentell nicht in Erscheinung treten. Magnesiumnitrid
zersetzt sich bei den Wachstumstemperaturen und reines Magnesium liegt in einer
fliilssigen Phase vor. Auch hier sind folglich die Phasengrenzen kritisch zu hinterfra-
gen und zu diskutieren.

7.3. Den Inversionsdomanengrenzen auf der Spur

Im Folgenden wird zunédchst Magnesiumnitrid in den Fokus der Untersuchung
geriickt. Leichtmetallnitride, zu denen auch Mg3zNy; gehort, werden im Hinblick
ihrer Eigenschaften als Wasserstoffspeichermedien in der aktuellen Forschung
diskutiert[93, 94, 95]. Typischerweise bedingt die reversible Wasserstoffspeicherung
in diesen Materialien eine Kristallphasentransformation, welche in den Inversionsdo-
ménengrenzen nicht beobachtet wird. Das wirft die Frage auf, ob es andere Mecha-
nismen gibt, welche den Einbau von Wasserstoff in die Inversionsdoménengrenzen
begiinstigen. Da jedoch schon das Bulkmaterial in der Literatur kaum behandelt
wird, fokussieren wir uns an dieser Stelle auf MgzNs in der thermodynamisch stabi-
len Antibixbyitstruktur. Die Diskussion der wasserstoffbeinhaltenden Defekte und
nativer Punktdefekte in diesem Bulkmaterial geschieht hier nun erstmals auf dem
Niveau der Dichtefunktionaltheorie und erlaubt die Vorhersage chemischer Trends
fiir die Inversionsdoménengrenzen.

7.3.1. Magnesiumnitrid in der Antibixbyitstruktur

Magnesiumnitrid kristallisiert als MgzNy in der Antibixbyitstruktur|[96, 97|, welche
im Folgenden untersucht wird. Nach Mokhtari und Akbarzadeh kann die Antibixby-
itstruktur iiber die Kalziumfluoridstruktur konstruiert werden[98]. Kalziumfluorid
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Mg Mg

Abb. 7.2:

In der idealen Antibixbyitstruktur unterscheiden sich die beiden indquivalenten Stick-
stofftypen durch die Lage der Magnesiumstrukturvakanzen in dem umgebenen Magne-
siumkubus. Liegen die Strukturvakanzen auf einer Flichendiagonalen handelt es sich
um den Stickstofftyp 1 (Nj), liegen sie auf der Raumdiagonalen handelt es sich um
den Typ 2 (Ng).

(CaFy) kristallisiert in einer kubischen Struktur. Dabei bilden die Kalziumkationen
ein fecc-Gitter, dessen Tetraederliicken von den Fluoranionen gefiillt werden.
Ein kiinstliches MgoN vertauscht nun die Rolle von Anionen und Kationen und
resultiert in einer Anti-Kalziumfluoridstruktur. Die Stickstoffatome bilden dann ein
fec-Gitter dessen acht Tetraederliicken von Magnesiumatomen besetzt werden.

Um nun die richtige Stéchometrie des Magnesiumnitrid (MgsN2) zu gewéhrleisten,
miissen zwei Magnesiumatome so entfernt werden, dass jedem Stickstoffatom sechs
Nachbarn verbleiben. Diese Strukturvakanzen richtig einzufiihren ist nicht trivial
und gelingt in der kubischen Zelle erst in einer 2x2x2 Superzelle mit einer Gesamt-
zahl von 80 Atomen. Die Koordinaten dieser Strukturvakanzen sind im Anhang A zu
finden. Diese Zelle ldsst sich symmetriebedingt in eine primitive bee Zelle mit 40 Ato-
men reduzieren. Interessant hierbei ist, dass die Stickstoffatome nicht mehr ununter-
scheidbar sind. Je nachdem ob die von den acht Magnesiumatomen in der Anti-CaFo-
Struktur eingefiihrten zwei Strukturvakanzen auf einer Flachendiagonalen oder auf
einer Raumdiagonalen liegen, spricht man nun zur Unterscheidung von den Stick-
stofftypen Ny und Ny (vgl. hierzu auch Abbildung 7.2). Dabei ist der Stickstoff vom
Typ 1 dreimal haufiger anzutreffen, als der des Typs 2. Trotz dieser indquivalen-
ten Stickstoffatome verhalten sich die Magnesiumatome alle dquivalent zueinander.
Ein jedes bindet zu drei Stickstoffatomen des Typs 1 und zu einem Stickstoffatom
des Typs 2. Diese ideale Antibixbyitstruktur, dargestellt in Abbildung 7.3, stellt
die Initialisierungsstruktur fiir die Bestimmung der Bulkeigenschaften dar. In den
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Abb. 7.3:

Visualisierung der idealen Antibixbyitstruktur von MgsNsy. Die grauen Atome zeigen
die Magnesiumpositionen im Gitter an. Die kleineren kolorierten Atome zeigen die
Positionen der Stickstoffatome vom Typ 1 (blau) und vom Typ 2 (griin).

folgenden Rechnungen darf diese Struktur frei relaxieren.

7.3.2. Bestimmung der Konvergenzparameter

Fir die Berechnung der Bulkeigenschaften ist die Multiskalenbibliothek
S/PHI/nX[18] verwendet worden. Zum Zeitpunkt der Berechnungen waren
mit diesem Programmpaket DFT-basierende Berechnungen lediglich mittels nor-
merhaltenden Pseudopotentialen moglich. Zur Modellierung sind im Rahmen dieser
Arbeit entsprechende Potentiale mit dem Programm FHI98PP[99] generiert® worden.
Die Modellierung des Austausch- und Korrelationsfunktionals geschieht mittels des
GGA-PBE Funktionals. Ein Energiecutoff von 680 eV (50 Ry) und ein k-Punkt
Gitter von 2 x 2 x 2 (offcenter) geniigen, um eine Energiekonvergenz innerhalb von
1 meV zu gewéhrleisten. Die in der Tabelle 7.1 angegebenen Werte der theoretischen
Gitterkonstante und des Bulkmodulus sind innerhalb von 0.01 A und 1 GPa aus-
konvergiert. Die Gitterkonstante, der Bulkmodulus, sowie der Parameter Bj sind
durch Fit der Energiekurve an die Murnaghansche Zustandsgleichung|85] bestimmt
worden und zeigen eine sehr gute Ubereinstimmung zu anderen theoretischen
Rechnungen|98] und auch zu experimentellen Befunden|[96, 38, 37|. Die berechnete

? Fiir die Potentiale sind als cut-off Radien (r$"*, r¢", g™, 7$**) in atomaren Einheiten verwendet
worden:
N 252p3d° (1.5,1.5,1.5) Troullier-Martin Type,
Mg 3s%p°d° (1.2,1.6,1.5) Haman-Type,

H 15'2p°3d%4f° (1.276,1.276,0.350,1.276) Troullier-Martin Type.
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diese Arbeit FP-LAPW [98] Exp. [96, 38, 37|

alae |A] 9.977 10.037 9.9528
B, |GPal 108 110 —
B, 3.76 4.02 —

Bandliicke [eV] 1.59 (I'-T) 1.56 (I'-I") 3.15, 2.8(direkt)
2.85(indirekt)

Distanz [A]

Mg—N1 (2x) 2.09 2.10 2.084
Mg—N1 (2x) 2.17 2.18 2.160
Mg—N1 (2x) 2.19 2.20 2.179
Mg—N2 (6x) 2.15 2.16 2.145
Int. Koordinaten

v 0.969 0.969 0.9784
X 0.389 0.389 0.3890
y 0.153 0.153 0.1520
z 0.382 0.383 0.3823

Tab. 7.1:
Vergleich der strukturellen, elastischen und elektronischen PBE-Parameter von Magne-
siumnitrid mit verfiigbaren theoretischen und experimentellen Daten der Literatur.

Bandliicke zeigt die typische Unterschéatzung durch die Verwendung des PBE
Funktionals.

Die Relaxation verzerrt die in Abbildung 7.2 dargestellten Kuben dergestalt, dass
der Stickstoff des Typs 2 sechs identisch lange Bindungen zu seinen néchsten
Magnesiumnachbarn auspriagt und diese Unterstruktur die hohe Dj; Symmetrie
aufweist. Die Stickstoffe des Typs 1 finden sich in der geringeren C Symmetrie
wieder. Sie pragen 3 x 2 identische Bindungen aus (vgl. Abbildung 7.4). Dieses
Verhalten wird durch vier interne Parameter beschrieben, die ebenfalls in sehr guter
Ubereinstimmung zu den experimentellen Befunden und anderen theoretischen
Arbeiten sind.

Auffillig ist die Dehnung der Bindung im Vergleich zur Summe der kovalenten
Radien (2.05 A[? |. Diese liisst sich in einem Zwei-Zentren Bild erkliren: Da die
Koordinationszahl doppelt so grof ist, wie es die Anzahl der Valenzelektronen
vermuten ldsst, sind die bindenden Orbitale mit jeweils einem einzigen Elektron
besetzt. Dies resultiert in einer schwicheren chemischen Bindung und hat den
langeren Bindungsabstand im Vergleich zu vollbesetzten Bindungsorbitalen zur

103



7 Ableitung theoretischer Grenzen in der p-Dotierbarkeit von GaN:Mg

o
2 N
06)6 N1 Y,
2
'L\@ &7
&2 P
Y- oy
Mg

Abb. 7.4:

Bindungsldngen (in A) der relaxierten Koordinationspolyeder im Magnesiumnitrid.
Die Kuben geben die Positionen der Magnesiumatome in der idealisierten Antibixby-
itstruktur wieder. Grundlage der Daten bilden die PBE-Geometrien.

Folge.

Eine weitere Eigenart dieser Struktur sind die verzerrten Oktaederliicken, wie sie in
Abbildung 7.5 dargestellt sind. Diese Liicken, die sich zwischen zwei Stickstoffatomen
des Typ 2 befinden, stellen geeignete Positionen dar, um kleinere Atome (wie z.B.
Wasserstoff) als Storstellen einzufangen und werden in der Bestimmung moglicher
Punktdefekte eine Rolle spielen.

Defektabstand Defektabstand
A] A]
Mg—Vy, (2x) 215 (+2.9%) VueNp (2x)  2.28 (+9.1%)
Mg—Vn, (2x) 229 (+5.8%) Vame—N; (2x)  2.35 (+8.6%)
Mg—Vn, (2x) 232 (+6.2%) Vame—N; (2x)  2.38 (+9.0%)
Mg—Vn, (6x) 2.27 (+5.9%) Vmg—Na (6x) 2.33 (+8.4%)
Tab. 7.2:

Mg—Vy Distanzen der N1/N2 Vakanz im einfach positiv geladenen Ladungszustand
und Vyig—N Abstdnde der Mg Vakanz im 2-fach negativ geladenen Zustand in MgzNs.
Die prozentualen Angaben beziehen sich auf die Abstdnde im Bulk. Die geklammer-
ten Ausdriicke (2x) bzw. (6x) geben die Anzahl der dquivalenten Bindungen an. Die
Absténde basieren auf den PBE-Geometrien.
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Abb. 7.5:
Die verzerrte Oktaederliicke in Mg3Ns. Links: Die relaxierte Struktur mit der symbo-

lisierten Liicke in der No—Ns Verbindungslinie. Rechts: Idealisierte Darstellung des
Oktaederkifigs.

7.3.3. Intrinsische Punktdefekte

Zu den intrinsischen Punktdefekten in MgsN, gehoren Fehlstellen und Zwischen-
gitterbesetzungen der Elemente Magnesium und Stickstoff. Wir diskutieren im
folgenden die Magnesiumvakanz Vi, die Besetzung der Strukturvakanz mit
Magnesium Iy, die Stickstoffvakanz vom Typ 1 Vy,und Typ 2 Vy,, sowie die
sogenannten Splitinterstitials des Stickstoffs Iy, ,. Bei letzterem handelt es sich
um die Ersetzung eines Stickstoffatoms durch ein Stickstoffmolekiil. Abbildung 7.6
zeigt diese intrinsischen Defekte schematisch.

Diese Defekte sind in der 40 Atome enthaltenden primitiven Zelle als auch in
der 80 Atome enthaltenden kubischen Superzelle modelliert und berechnet wor-
den. Die Bildungsenergie ergibt sich hierbei geméf Gleichung (5.50) plus der
Superzellenkorrektur|67]|. Fir die chemischen Potentiale sind magnesiumreiche Be-

dingungen angenommen worden. Die konkurrierenden Systemphasen sind Mgy,
und MggNQ.

M(Mg) - Etot[Mg7bulk] (73)
2p1(N) = Eior[Mg3Na,bulk] — 3u(Mg)

Fiir die relevanten Defekte stimmen die ladungskorrigierten Bildungsenergien in-
nerhalb von 0.1 €V in beiden Superzellen iiberein. Vereinzelt sind die Abweichungen
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Abb. 7.6:

Visualisierung der intrinsischen Punktdefekte in Mg3sNq. Gezeigt sind die Magnesium-
vakanz und der Magnesiumstorstelle (oben), sowie die Stickstoffvakanzen und Stick-
stoffstorstellen des Typ I (mitte) und des Typ II (unten).
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Ini/n2 Abstand

[A]
Ladungszustand -1 0 +1
Mg—NT1 (2x) 1.95 199 204
Mg—NT1 (2x) 205 208 212
Mg—NI1 (2x) 211 221 232
Mg—N1 (2x) 217 222 2.28
N1—N1 1.576 1.409 1.301
Mg—N2 (6x) 2.00 207 215
N2—N2 1.58 1.41 1.30

Inig Abstand

[A]
Ladungszustand 0 +1 +2
Mg—N (3x) 209 209 2.09
Mg—N 217 216  2.16

Tab. 7.3:

N—Mg Absténde des Stickstoffsplitinterstitials und der Magnesiumstorstelle fiir un-
terschiedliche Ladungszustiande in MggNy berechnet in der PBE Néherung. (nx) gibt
die Anzahl dquivalenter Bindungen an.

etwas grofer. Die Diskrepanz iibersteigt aber nicht 0.4 eV.

Die charakteristischen Bindungslangen des Defektes zum néchsten Nachbarn sind
in Tabelle 7.2 fiir die Vakanzen und in Tabelle 7.3 fiir die Storstellen wiedergegeben.
Fiir die Vakanzen beobachten wir eine Relaxation der umgebenden Atome weg vom
Defektzentrum. Die Abstéinde erhohen sich um 0.06—0.19 A (3—9%) im Vergleich
zum defektfreien System. Grund hierfiir ist die Abnahme der Koordinationszahl und
daher eine Zunahme der Elektronen in jeder Zwei-Zentren Bindung. Der kovalente
Anteil der Bindungen zu den benachbarten Atomen wird gestédrkt. Auch der ioni-
sche Bindungsanteil wird durch die kiirzeren Absténde zu diesen Nachbarn verstérkt.

Die Stickstoffstorstellen ihrerseits bilden No-Komplexe. Unabhéngig vom Stick-
stofftyp in der atomaren Struktur variiert die N—N Bindungslange zwischen
1.57 A im negativ geladenen Fall und 1.30 A im positiv geladenen Fall. Typische
vergleichbare Komplexe weisen eine deutlich kiirzere Bindungslinge auf, z.B.
Hydrazin (HoN—NH,: 1.45 A) oder Diazin (HN=NH: 1.24 A). Energetisch ist die
Storstelle des Typs 2 jener des Typs 1 bevorzugt. Dies lasst sich mit der nahezu
storungsfreien Integration der Storstelle des Typs 2 in die umgebene Struktur
begriinden. Die Typ 1 Storstelle hingegen findet eine spezielle Umgebung vor, die
nur durch entsprechende Verzerrungen besetzt werden kann.
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Bildungsenergie [eV]
bee-Zelle 40 Atome  sc-Zelle 80 Atome
Defekt DFT + Ealign DFT + Ealign

VMg
—2 4.61 6.11 4.97 6.33
-1 4.63 5.16 4.85 5.27
0 4.85 4.85 4.88 4.88
Tnie
0 4.18 4.18 3.84 3.84
+1 1.13 1.48 1.26 1.63
+2 —1.74 -0.33 —1.35 —0.07
VN1
-1 5.17 5.60 4.99 5.24
0 241 241 2.49 2.49
+1 —0.08 0.08 —0.03 0.14
+2 —0.75 0.16 —0.60 0.20
+3 —1.49 0.70 —1.17 0.70
VN2
-1 4.88 5.26 4.96 5.24
0 2.46 2.46 2.45 2.45
+1 —0.09 0.09 —0.04 0.16
+2 —0.89 0.03 —0.72 0.23
+3 —1.89 0.33 —1.52 0.69
IN1
-1 5.76 6.09 0.82 6.01
0 4.39 4.39 4.44 4.44
+1 3.29 3.78 3.41 3.68
In,
-1 5.04 9.39 0.08 5.31
0 3.91 3.91 3.96 3.96
+1 2.96 3.36 3.10 3.39

Tab. 7.4:
Berechnete Bildungsenergien stabiler intrinsischer Defekte in MggNs geméf PBE-DFT

Superzellenrechnung sowie nach Anwendung der Superzellenkorrektur fiir geladenen
Defekte (Ealign)-
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Mg

Abb. 7.7:

Darstellung der denkbaren Wasserstoffstorstellenkonfigurationen in Magnesiumnitrid.
Vergleichbar zum GaN gibt es im MgsNs fiir den Wasserstoff die Moglichkeit an den
Stickstoff zu binden. Dabei kann er eine sogenannte anti-bindende Position (links)
besetzen, oder eine bindungszentrierte Position (rechts).

Die Magnesiumstorstelle bindet an der Position der Strukturvakanz zu den um-
gebenden vier Stickstoffatomen. Dabei entsprechen drei dieser Bindungen der ty-
pischen kurzen Mg—N;-Bindung. Die vierte Bindung reagiert geringfiigig auf den
Ladungszustand und variiert zwischen 2.17 A im ladungsfreien Zustand und 2.16 A
im zweifach positiv geladenen Zustand. In diesem Zustand liegt das Magnesiumatom
vergleichbar zu den anderen Magnesiumatomen vor und fiigt sich am besten in das
System ein.

7.3.4. Wasserstoffdefekte und Defektkomplexe

Fiir den Wasserstoff gibt es verschiedene Positionen zur Adsorption. Die Struk-
turvakanz [Vy,—nH]| sowie die Oktaederliicke Hyy bieten genug freien Raum um
den Wasserstoff aufzunehmen. Weiter betrachten wir die sogenannte anti-bindende
Position Hy ap, und die bindungszentrierte Position Hype (vgl. Abbildung 7.7) zum
Stickstoff. Diese Defekte sind im folgenden fiir unterschiedliche Ladungszusténde
modelliert worden.

Das chemisches Wasserstoffpotential ist auf das halbe Wasserstoffmolekiil fiir
T = 0 K referenziert:

2p(H) = Eyo[H, T = 0 K]. (7.5)

Im positiven Ladungszustand (H™) ist die anti-bindende Position nahe des Stick-
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Bildungsenergie [eV]
bee-Zelle 40 Atome
Defekt DFT + Eatign

Hx, b
—1 4.55 4.86
0 1.62 1.62
+1 —1.09 —0.74
Hx, b
—1 4.49 4.77
0 1.54 1.54
+1 —1.18 —0.81
Hows
—1 2.42 2.78
0 2.05 2.05
+1 1.49 1.84
Hs okt
0 1.44 1.44

Tab. 7.5:

Bildungsenergien der wasserstoffbeinhaltenden Defekte in MgsNs. Angegeben sind die
Werte als direktes Resultat der PBE-DFT Superzellenrechnung und nach Addition der
Superzellenkorrektur fiir geladenen Defekte (Ealign).

stoffatoms am stabilsten. Der Unterschied in der Bildungsenergie beziiglich des
Stickstofftyps betragt hier 0.1 eV zugunsten des Typ 2. Der Bindungsabstand des
Wasserstoffes zum Stickstoff ist charakteristisch fiir eine kovalente Bindung, wie sie
beispielsweise im Hydrazin (dx.g = 1.03 A) auftaucht. Das Wasserstoffion in der
bindungszentrierten Position relaxiert ohne Barriere in die anti-bindende Position
und ist damit thermodynamisch nicht stabil. Das negativ geladene Wasserstoffion in
der Oktaederliicke bildet den energetisch stabilsten negativ geladenen Defekt. Die
Absténde des Wasserstoffatoms zu den benachbarten Magnesiumatomen variieren
zwischen 1.96 A und 2.52 A. Fiir eine kovalente Mg—H Bindung sind diese
Abstédnde zu lang, so dass hier rein ionische Aspekte den Wasserstoff auf seiner
Position halten. Das Wasserstoffion in der Strukturvakanz relaxiert barrierefrei in
die Oktaederliicke, so dass dieser Defekt thermodynamisch ebenfalls nicht stabil
ist. Die berechneten Bildungsenergien sind in Tabelle 7.5 wiedergegeben. Die so
identifizierten stabilen Wasserstoffdefekte stimmen gut mit bekannten Wasserstoff-
defekten in anderen Nitriden iiberein[5, 6, 7, §].

In Kombination mit den intrinsischen Defekten lassen sich Defektkomplexe bilden,
die den eben diskutierten Wasserstoffdefekten recht dhnlich sind. Die Stickstoffva-
kanz bietet eine vergleichbare Umgebung zur Oktaederliicke: Eine Leerstelle umge-
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[Vn—H]-Komplex [Vmg—H]-Komplex
Distanz [A] N-H Distanz [A]
Mg H(2x)  2.10 [Vaig-H] 1.04
Mg H(2x)  2.46 [Vaig-2H] 1.03 1.03
Mg—H(2x) 2.48 Vag-3H]  1.04 1.04 1.04
Mg—H(6x)  2.36 [Vyg-4H] 1.03 1.03 1.03 1.03

Tab. 7.6:
Berechnete Absténde der Wasserstoffstorstelle in MggNy zum néchstgelegenen Nach-
baratom.

ben von sechs Magnesiumatomen, welche von einem negativ geladenen Wasserstoffi-
on besetzt werden kann. Die Magnesiumvakanz ihrerseits lasst vier Stickstoffatome
als potentielle Bindungspartner fiir den Wasserstoff zuriick. Diese Adsorptionszen-
tren sind auf ihre energetischen und geometrischen Eigenschaften untersucht worden.
Die berechneten Absténde néchster Nachbarn gibt Tabelle 7.6 wieder. Wahrend der
Wasserstoff in der Stickstoffvakanz an der Stickstoffposition verharrt, bindet er in
der Magnesiumvakanz stark an die umgebenen Stickstoffatome und formt [N—H]|-
Komplexe. Definiert man die Bindungsenergie gemaéfs

E" = E'[Vig] + nE! 0| — ET[[Vyg+nH]" 7, (7.6)

so ergibt sich fiir das erste Wasserstoffatom eine Bindungsenergie von 2.35 eV. Das
zweite Wasserstoffatom bindet mit 1.33 eV, das dritte mit 0.82 eV und das vierte
noch mit 0.02 eV. Der [Vy+H]-Defekt bietet dagegen eine Bindungsenergie

E’ = E'[V{] + E[H{,] — E/[[VN-+H]*"] (7.7)

von 0.33 eV. Aufgrund der hohen Bindungsenergie im [Vy,+H] '-Defektkomplex
ist es zu erwarten, dass die Bildung von Magnesiumvakanzen in MgszNs in einer
wasserstoffhaltigen Atmosphére erheblich gefordert wird.

7.3.5. MgzN, Einschliisse in GaN

Um nun aus den im vorherigen Kapitel dargestellten Ergebnissen Hinweise auf das
Verhalten der Magnesiumnitrideinschliisse in Galliumnitrid zu gewinnen, bedarf es
zundchst einer Umreferenzierung der chemischen Potentiale. Diese waren auf die
Referenzphasen (Mgpu, MgzNs und Hy fiir T = 0 K) fiir pures MgzN, im magnesi-
umreichen Wachstum gesetzt worden. Da sich die Magnesiumnitrideinschliisse unter
GaN Wachstumsbedingungen bilden, sind die entsprechende Referenzsysteme fiir
galliumreiches Wachstum

u(Ga) = Eiot[Ga,bulk] (7.8)
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Bildungsenergie [eV]
bee-Zelle 40 Atome
Defekt DFT + Ealign

[ng + H]
—1 2.48 2.95
0 2.72 2.72
+1 2.95 3.11
[V + 2H]
0 0.81 0.81
+1 0.73 0.90
+2 1.05 2.08
Vg + 3H]
+1 —1.04 —0.82
+2 —0.87 0.19
+3 —0.58 2.08
[VMg + 4H]
+1 —0.52 —0.21
+2 —3.01 —1.65
+3 —2.77 0.51
+4 —2.44 2.52
[VNI + H]
+1 0.41 0.59
+2 —1.96 —1.02
+3 —1.89 0.40
[Vx, + H]
+1 0.37 0.57
+2 —2.06 —1.06
+3 —-1.95 0.48

Tab. 7.7:

Berechnete Bildungsenergie der Wasserstoffdefektkomplexe in Mgz Ns als unmittelbares
Resultat der PBE-DFT Superzellenrechnung sowie nach Addition der Superzellenkor-
rektur fiir geladenen Defekte (Ealign ).
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Wachstum ohne Wasserstoff

Wachstum in Wasserstoffatmosphére

Defekt ¢ [em™3] Defekt ¢ [em™3|
Vi 1.6-10" Vy 1.7- 10"
Vg 8.8 10" Vg 7.8 - 101
In 4.9-10% Iy 4.8-108
Inig 4.2-10% Ty 4.6 - 108

Hy ap 1.7-10%
Vy + H 7.5-108
Hoxe 2.0- 101
[Vmg+H] 1.7-10%
[Vmg+2H]| 1.8-10"
et 1.6-101 et 1.6-10%
Fermi Energie 1.74 eV Fermi Energie 1.73 eV

Tab. 7.8:

Konzentrationen der ausgewéhlten Punktdefekte in MgsNo, sowie Lage des Ferminive-
aus beim Wachstum ohne (links) und mit (rechts) Wasserstoffumgebung. Die Wachs-
tumsbedingungen sind im Text genauer spezifiziert (T' = 1275 K, p = 1 bar).

eine realistischere Wahl fiir die Simulation. Das chemische Stickstoffpotential ist
demnach in Gleichgewicht zu dem chemischen Potential von GaN

u(N) = Eiot[GaN,bulk] — u(Ga) (7.9)

zu wahlen und das chemische Magnesiumpotential entsprechend im Gleichgewicht
mit dem Magnesiumnitrideinschluss

31(Mg) = Eior[MgsNa,bulk] — 2(N). (7.10)

Das chemische Wasserstoffpotential wird dann im thermischen Gleichgewicht mit
den Wachstumsbedingungen zu

kT
2(H) = Byoy[Ho, T — 0 K] + kyT'ln (p—%) T (”—> (7.11)

kT 20
bestimmt[20]. V, bezeichnet hierbei das Phasenraumvolumen
orh? \*?
Vg = . 7.12
q ( mHka) ( )

Die Rotationskonstante des Wasserstoff ist der experimentellen Literatur entnom-
men und betrigt 59.339 cm™![100]. Zur Simulation realistischer Wachstumsbedin-
gungen wird eine Temperatur von 1275 K und ein Wasserstoffgasdruck von 1 bar
angenommen. Diese Werte reprasentieren eine obere Schranke zu den normalerweise
in der metallorganischen Gasphasenepitaxie vorherrschenden Bedingungen|9].
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Abb. 7.8:

Bildungsenergien der intrinsischen Punktdefekte in MgsNo aufgetragen iiber der Posi-
tion des Ferminiveaus. Grundlage bilden die in PBE berechneten Gesamtenergien der
Defekte in der bec-Einheitszelle mit 40 Atomen. Die Superzellenkorrektur fiir geladene
Defekte ist angewandt worden.

Die Bildungsenergien wurden nun fiir diese experimentellen Randbedingungen
berechnet und in Abbildung 7.8 fiir die intrinsischen Defekte graphisch dargestellt.
Gezeigt ist in der Auftragung die Bildungsenergie in Abhéingigkeit der Lage
des Ferminiveaus. Der Defekt niedrigster Bildungsenergie ist dann der dominant
vorherrschende Defekt in diesem Bereich. Der Abbildung ist zu entnehmen, dass
iiber einen weiten Bereich die Vakanzbildung favorisiert wird. Fiir n-leitende
Bedingungen bilden sich vermehrt Magnesiumvakanzen, fiir p-leitende Bedingungen
spielen Stickstoffvakanzen eine bedeutende Rolle. Im Falle eines niedrigen Fermi-
levels (Frermi < 0.3 €V) wird die Auffiillung der Strukturvakanzen mit Mg relevant.

Wenn wihrend des Wachstums Wasserstoff in signifikanten Mengen vorhanden ist,
bildet der positiv geladene Wasserstoffdefekt am Stickstoff in der anti-bindenden
Position den energetisch stabilsten Defekt fiir p-leitende Bedingungen (vgl.
Abbildung 7.9). Fiir n-leitenden Bedingungen spielen die negativ geladenen Was-
serstoffdefekte, sowie die pure Magnesiumvakanz eine wichtige Rolle. Betrachtet
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Abb. 7.9:

Bildungsenergien der wasserstoffbeinhaltenden Punktdefekte in MgsNo aufgetragen
iiber der Position des Fermilevels. Zusétzlich ist noch die Bildungsenergie der reinen
Magnesiumvakanz als stabilster Defekt fiir ein hohes Fermilevel eingezeichnet. Grund-
lage bilden die in PBE berechneten Gesamtenergien der Defekte in der bee-Einheitszelle
mit 40 Atomen. Die Superzellenkorrektur fiir geladene Defekte ist angewandt worden.

man das System im thermischen Gleichgewicht und berechnet die Konzentrationen
wie in Abschnitt 5.5 diskutiert, ergeben sich die Zahlenwerte der Tabelle 7.8.

Im wasserstofffreien Wachstum ist die einfach positiv geladene Stickstoffvakanz
mit 1.6 - 10 cm ™3 der Defekt groRter Konzentration. Die Fermienergie liegt mit
1.74 €V knapp unterhalb des Vx/ Vi, Schnittpunktes bei ca. 1.9 eV. Allerdings wird
die Ladungsneutralitdt nicht von der zweifach negativ geladenen Stickstoffvakanz
iibernommen. Die Konzentration ist mit 8.8 - 10* em™3 hier um GréRenordnun-
gen zu klein. Es zeigt sich, dass die Ladungskompensation von freien Lochern
bewerkstelligt wird. Dies ist moglich, da die auftretenden Konzentrationen mit der
Grofenordnung 10 cm™3 deutlich geringer sind, als typische Konzentrationen in
dotierten Materialien (typischerweise 10'® — 10?' cm™2). Die Storstellen spielen
generell eine untergeordnete Rolle.
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Abb. 7.10:

Verlauf der Konzentrationen dominanter Defekte in MgsNs im Hinblick auf das che-
mische Potential des Wasserstoffs zur Simulation der thermischen Austreibung. Die
Absenkung des chemischen Wasserstoffpotential von 0 eV auf -2 eV bedeuten eine An-
derung des Ha-Partialdruckes von 1 bar auf 10710 bar bei einer konstanten Temperatur
von 900 K.

Im Wachstum innerhalb einer vorhandenen wasserstoffhaltigen Atmosphére dndert
sich das Bild. Zwar weisen die intrinsischen Defekte keine signifikanten Anderungen
in ihrer Konzentration auf, aber der Einbau von Wasserstoff begiinstigt Magnesi-
umvakanzen um den negativ geladenen [Vy, + H]-Defektkomplex zu bilden, so dass
ein Anstieg der Vakanzen um nahezu drei Gréflenordnungen zu verzeichnen ist. Der
kompensierende Defekt beziiglich Ladung ist der positiv geladene Wasserstoft an der
Stickstoff anti-bindenden Postion. Der Schnittpunkt dieser beiden Defekte liegt na-
he des im intrinsischen Fall bestimmten Fermilevels von 1.74 €V, so dass hier keine
signifikante Anderung des Ferminiveaus zu erwarten ist.

7.3.6. Thermische Austreibung

Die thermische Austreibung von Wasserstoff ist der Schliisselprozess zur Akti-
vierung der Akzeptorniveaus im p-GaN. Die exakte theoretische Modellierung
dieses Prozesses ist nicht trivial, da eine Vielzahl von Effekten die thermische
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Austreibung begleiten. Eine Abschidtzung kann gewonnen werden, indem man
vereinfachte Annahmen macht. So wird im weiteren angenommen, dass sich mit
Ausnahme des Wasserstoffes keine Atome durch den Kristall bewegen und somit
die Magnesium- und Stickstoffdefekte in ihrer Position verharren und in ihrer
Konzentration konstant bleiben. Die Austreibung kann dann durch Absenken des
chemischen Potentials fiir Wasserstoft fiir eine feste Temperatur modelliert werden.

Im folgenden wird eine Temperatur von 900 K angenommen. Diese Temperatur
ist charakteristisch fiir den so genannten rapid thermal annealing Prozess|9].
Weiterhin wird angenommen, dass sich die Wasserstoffatome frei durch den Kristall
bewegen konnen, sobald sie sich aus ihren Defektzentren gelost haben. Die sich so
ergebende Wasserstoffkonzentration in Abhéngigkeit des Wasserstoffpartialdruckes
ist in Abbildung 7.10 wiedergegeben. Der Abbildung ist zu entnehmen, dass der
Wasserstoff in einem Zweischrittverfahren ausgetrieben wird. Zunéchst findet eine
geringe Austreibung statt. Diese resultiert in der Entvolkerung der Hy,, und
Hoxy Defekte, sowie aus der Reduktion des [V, + 2H] Defektkomplexes zu dem
[Vmg+H] Defektkomplex. Der einzelne Wasserstoff in der Magnesiumvakanz bleibt
durch seine hohe Bindungsenergie von 2.35 eV stabil, bis der Partialdruck 10~® bar
unterschreitet.

Es sind folglich drastische Bedingungen von Né&ten, um eine Austreibung von Was-
serstoff aus Magnesiumnitrid zu realisieren.

7.3.7. Zusammenfassung

In diesem Kapitel sind die intrinsischen und wasserstoffinduzierten Punktdefekte
in Magnesiumnitrid unter Anwendung der Dichtefunktionaltheorie identifiziert und
modelliert worden. Basierend auf den Bildungsenergien wurden Defektkonzentratio-
nen unter der Annahme galliumreicher Wachstumsbedingungen bestimmt, um eine
Beziehung zu dem Wachstum von Galliumnitrid herzustellen. Im thermodynami-
schen Gleichgewicht stellt sich heraus, das ein einkristallines Magnesiumnitrid ein
nahezu defektfreier Isolator ist. Die Stickstoffvakanz ist mit einer Defektkonzentra-
tion von 2 x 10* cm~3 der vornehmlich vorkommende Defekt. Unter Einfluss einer
Wasserstoffumgebung wird die Bildung von stark gebundenen [N—H]-Komplexen
begiinstigt. Dabei bildet der Wasserstoff eine starke Bindung zu vorhandenen
Stickstoffatomen aus, oder belegt negativ geladene Magnesiumvakanzen. Die
maximale Konzentration von Wasserstoff ist nichtsdestotrotz mit 4 x 10> cm= als
klein zu bezeichnen. Insbesondere ein Vergleich mit den typischen Konzentrationen
des [MgH]-Komplexes in GaN:Mg (10'® ¢cm™ und mehr) macht dies deutlich.
Dies zusammen mit der Tatsache, dass das Magnesiumnitridvorkommen in den
Inversionsdoméanengrenzen in GaN nur einen aduflerst geringen Volumenbruchteil
ausmachen, ldsst die Schlussfolgerung zu, dass eine signifikante Modulation der
Wasserstoffverteilung in aktuellen Proben nicht durch die Magnesiumnitridein-
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schliisse hervorgerufen werden kann.

Die Modellierung einer Inversionsdoméne wire im Zusammenhang der Untersuchung
der verminderten Wasserstoffkonzentration sicherlich interessant, jedoch wiirde dies
die simultane Beschreibung von einigen 1000 Atomen bedeuten. Fiir solche Rech-
nungen ist die Dichtefunktionaltheorie in ihrer Ebenen-Wellen-Beschreibung nicht
ausgelegt. Typische Algorithmen skalieren kubisch mit der Elektronenzahl. Die Ver-
wendung von Realraumanséitzen, die im idealen Falle linear skalieren, wéren hier
eher Methode der Wahl. Mit den QUAMOLs sind geeignete Basisidtze vorhanden
um solche Systemgrofen akkurat und effizient zu modellieren. Dies setzt jedoch noch
die Entwicklung eines effizienten LCAO Codes oder die Erzeugung geeigneter Tight-
Binding-Hamiltonmatrizen voraus, deren Entwicklung zeitintensiv gewesen wére und
nicht im zentralen Fokus dieser Dissertation liegen. Entscheidender ist es, sich dem
eigentlichen Materialsystem zu widmen, um nun weitere Griinde fiir die experimen-
tell beobachtete Limitierung der p-Dotierbarkeit zu finden. Zugang zu modernen
physikalischen Ansétzen, wie der Ladungskorrektur und die Modellierung géangiger
Defekte auf HSE Niveau erlauben nun eine akkurate Beschreibung dieser Defekte
unabhéngig von dem Bandliickenproblem in einer LDA oder PBE Modellierung.

7.4. Hohe Mg-Akzeptorkonzentration: Gratwanderung
zwischen Kompensation und Phasentrennung

7.4.1. Einleitung

In Kapitel 7.3.5 sind die Eigenschaften von Magnesiumnitrid hinsichtlich des Was-
serstoffeinbaus untersucht worden. Es wurde gezeigt, dass reines Magnesiumnitrid
Wasserstoff nur im geringen Mafe bindet. Eine deutliche Steigerung des Einbaus
durch die geometrischen Verdnderungen, die sich bei Magnesiumnitrid in Form von
Inversionsdoménengrenzen ergeben, ist nicht zu erwarten. Weiterhin machen die
Inversionsdoméanengrenzen nur einen geringen Teil des gewachsenen Galliumnitrids
aus, so dass eine signifikante Storung des Wasserstoffeinbaus nicht zu erwarten ist.
Deswegen wird nun im Folgenden die Modifikation der Wasserstoffkonzentration
mit Hinblick auf die Defektbildung im Galliumnitrid untersucht.

Die Defektenergetik ist in vielen Arbeiten|5, 6, 7, 4, 101] diskutiert worden und
gilt als verstanden. Jedoch kdnnen die mit unterschiedlichen Methoden berechne-
ten Bildungsenergien stark voneinander abweichen, wie Abbildung 7.11 illustriert.
Bei solchen Differenzen, die je nach Defekt und Methode einige eV umfassen kon-
nen, stellt sich natiirlich die Frage nach der Aussagekraft und der Berechtigung des
Vertrauens in diese Zahlenwerte. Das folgende Kapitel wird sich — nach einer Ein-
fiihrung der wichtigsten Defekte des mit Magnesium und Wasserstoff dotierten GaN
— der Frage widmen wie unterschiedlich die berechneten Bildungsenergien tatséch-
lich sind und welche Ursachen diese eklatanten Abweichungen haben. Die Kenntnis
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Abb. 7.11:

Unterschiede der Defektenergetik wichtiger Defekte in GaN:Mg von LDA und PBE zu
HSE. Die schwarze Linie gibt den Fall perfekter Ubereinstimmung an. Die roten Sym-
bole geben den Vergleich der LDA Daten, die griinen den Vergleich der PBE Daten[101]
an. Die unterschiedlichen Symbole verweisen auf den jeweilige Ladungszustand des De-
fektes (ohne Vorzeichen).

der Ursachen erlaubt hier erstmals die Einfiihrung geeigneter Korrekturen, welche
zu einer besseren Ubereinstimmung der Defektenergetik (bis auf wenige Zehntel eV)
fithren. Dies wird dabei am Beispiel der Datensétze demonstriert. Aus den Bildungs-
energien werden dann Defektkonzentrationen im Falle des GaN Wachstumsprozesses
berechnet, welche dann den Grund des verminderten Wasserstoffeinbaus bei hohen
Mg-Konzentrationen und den damit verbundenen wechselnden Kompensationsme-
chanismus aufzeigen.

7.4.2. Defekte in GaN

Dieser Abschnitt widmet sich der Nomenklatur der betrachteten Defekte in GaN
und soll durch Abbildung 7.12 ein visuelles Verstédndnis der Defekte ermoglichen.

Die intrinsische Stickstoffvakanz Vy wird durch das Entfernen eines Stickstoffatoms
aus dem atomaren Gitter erzeugt. Der bevorzugte Ladungszustand ist der einfach
positiv geladene Zustand. Fiir p-leitende Bedingungen wird zudem noch der dreifach
positiv geladene Zustand vorhergesagt|4, 101]. Das Umladungsniveau liegt dabei ca.
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Abb. 7.12:
Darstellung einiger wichtiger Defekte in GaN: (Ga griin, N blau, Mg braun)
a) bulk b) Vx ¢) Mgaa d) Hy(ab) e) Hy(be) f) Hy g) MgV h) [MgH] (ab)
i) [MgaaHJ(be) k) [MgaaHx] 1) [MgaaVNH]j(ab) m) [Mgg.VnH]; (bc)
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0.4-0.5 eV oberhalb der Valenzbandkante. Ein weiterer Punktdefekt von Interesse
in GaN:Mg ist das substitutionelle Magnesium auf einen Galliumgitterplatz Mgg..
Dieser Defekt tritt hauptséchlich in einem einfach negativ geladenen Zustand auf.
Experimentelle Befunde geben ein Umladungsniveau von 0.16 eV oberhalb des
Valenzbandmaximums an, unter welchem substitutionelles Magnesium in einem
neutralen Ladungszustand vorliegt[102]. Wasserstoff besetzt Zwischengitterplét-
ze. Experimentell wird er in das Material gebracht um den negativ geladenen
Magnesiumdefekt zu kompensieren, weswegen hier nur der positiv geladene Wasser-
stoffdefekt H* diskutiert wird. Der negativ geladene Wasserstoffdefekt, sowie der
neutrale, spielen fiir n-leitende Bedingungen eine Rolle, wo sich das Ferminiveau
ndher am Leitungsbandminimum befindet. Aufgrund seiner positiven Ladung bindet
der Wasserstoff an den elektronegativeren Stickstoff im Kristall. Dabei unterscheidet
man zwischen der anti-bindenden (AB) Position, in welcher der Wasserstoff in einer
Ga-N-H Kette bindet, und der sogenannten bindungs- zentrierten (BC) Position,
in welcher der Wasserstoff die Ga-N Bindung bricht und sich anstelle des Galliums
als Bindungspartner anbietet. Aufgrund der ausgezeichneten Kristallrichtungen in
der Wurtzitstruktur werden diese Wasserstoffdefekte noch weiter unterschieden. So
existieren solche deren formale Bindungsachse parallel zur c-Richtung des Kristalls
liegt (]|) und solche deren formale Bindungsachse eine deutlichen Anteil senkrecht
zur c-Achse besitzt (L).

Weiter ist noch substitutionieller Wasserstoff an der Stickstoffposition Hy denkbar,
welcher formal schon als erster Defektkomplex einer Stickstoffvakanz mit Wasser-
stoff aufgefasst werden kann. Aufgrund der zwei positiven Ladungszustinde der
Stickstoffvakanz sind zwei Ladungszustdnde von Hy interessant. Im 2-fach positiven
Ladungszustand paart sich eine 3-fach positiv geladene Stickstoffvakanz mit einem
negativ geladenen Wasserstoff. Im neutralen Zustand paart sich V¥ mit H™. Unsere
Rechnungen zeigen, dass das Umladungsniveau mit 2.01 eV im energetisch hoheren
Bereich der Bandliicke sitzt. Der H{-Defekt spielt also fiir die hier gemachten
Betrachtungen keine Rolle.

Neben dem eher formellen Defektkomplex Hy gibt es eine Reihe tatséchlicher
Defektkomplexe, die beim Wachstum von Magnesium dotiertem GaN eine Rolle
spielen. Zu den Komplexen bestehend aus zwei Punktdefekten zdhlen hierbei [MgVy]
im Ladungszustand +2 und 0, sowie der neutrale [MgH|-Komplex. Neben den
Defektkomplexen, welche aus zwei Punktdefekten bestehen, diskutieren wir noch
solche, die aus drei Punktdefekten bestehen, die sogenannten [MgHVy|-Komplexe.
Die Anzahl moglicher Komplexkonfigurationen nimmt hier schon deutlich zu. Die
Nomenklatur wird dabei mit den eingefithrten Groften fortgesetzt.

Nach der Darstellung der wichtigsten Punktdefekte und ihrer Komplexe folgt nun
in den nichsten Abschnitten die Suche nach den Ursachen der offensichtlichen
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Bildungsenergie [eV]
Defekt PAW-LDA PAW-HSE USPP-PBEJ[101]
Megg, 0.00 0.00 0.00
Vi 0.65 —0.18 0.43
Vit 1.18 —-1.13 —0.35
H;f (be) —0.24 —-0.95 —0.45
Mgc.H]9 (ab Mg ) —1.34 ~1.97 —0.75
[Mga. V]9 —0.26 —-1.13 0.29
[Mgga Va3t —0.45 —2.83 —0.61
Hy —0.25 —-1.71 —0.95
[MegcaHylif —1.61 —3.16 —1.21
[MggaHy] T —1.62 —-3.13 —1.03
[Mga.HVx]| (ab Mg) —~1.12 —2.52 —0.75
[MgGaHVN]ﬁ+(ab Mg) —0.94 —3.74 —1.40

Tab. 7.9:

Bildungsenergien einiger ausgewahlter Defekte im wasserstoffkompensierten GaN:Mg.
Als Referenzsystem ist das GaN ;| Galliummetall, der negativgeladene Mg~ Defekt und
das Wasserstoffmolekiil gewahlt worden. Die Fermienergie ist auf das Valenzbandma-
ximum referenziert.

Diskrepanzen der mit den unterschiedlichen Funktionalen LDA, PBE und HSE
berechneten Defektbildungsenergien. Dabei sind die PBE Daten der Literatur|[101]
entnommen worden. Die HSE Daten entstammen einer Kooperation mit der
Universitéat Californien — Santa Barbara.

7.4.3. Vergleich der Methoden

Betrachtet man die in der Tabelle 7.9 vorgestellte Defektenergetiken fiir die
verschiedenen Funktionale genauer, so féllt auf, dass die relativen Unterschiede
innerhalb einzelner Defektklassen mit gleicher Ladung gar nicht so eklatant sind, wie

Umladungsniveau [eV]
Defekt PAW-LDA PAW-HSE USPP-PBE[101]
Vit —0.27 0.48 0.39
MgV3? 0.12 0.85 0.45
MgHVE7* | —0.09 0.33 —0.34

Tab. 7.10:
Vergleich der Umladungsniveaus wichtiger Defekte in GaN:Mg referenziert auf das
Valenzbandmaximum fiir LDA, PBE und HSE.
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Abb. 7.13:

Unterschiede der Defektenergetik in LDA, HSE und PBE fiir MgH und HT. Jede Siule
steht flir eine berechnete Defektkonfiguration innerhalb der Defektklasse. Die Héhen
der Saulen gibt die Bildungsenergiedifferenz in eV relativ zum stabilsten Defekt dieser
Klasse an.

zunéchst zu vermuten ist. Im Falle des neutralen MgH Komplexes und der positiv
geladenen Wasserstoffstorstelle stimmen geméft Abbildung 7.13 sowohl Reihenfolge
der Stabilitét, als auch die Bildungsenergie bis auf 0.2 eV iiberein. Vergleicht man
jedoch unterschiedlich geladene Defekte, zum Beispiel anhand des Umladungsnive-
aus wie in Tabelle 7.10, ergibt sich ein geradezu erniichterndes Bild. Die Umladung
findet an derart qualitativ unterschiedlichen Positionen im Energiespektrum statt,
dass von einem vertrauenswiirdigem Datensatz nicht gesprochen werden kann. Zwar
zeigt das Umladungsniveau der Stickstoffvakanz zwischen HSE und PBE eine gute
Ubereinstimmung, jedoch ist die erwartete Vorhersagegenauigkeit zwischen HSE
und PBE nicht gleichwertig. Diese Ubereinstimmung ist — auch mit Sicht auf die
Diskrepanz der anderen Niveaus — eher als zuféllig zu bewerten.

Die Betrachtung lasst den Schluss zu, dass die Unterschiede der einzelnen Defek-
tenergetiken vornehmlich mit der Ladung korrelieren. An der Gleichung der Bil-
dungsenergie geladener Defekte

EI[XY = By [bulk: X — Eo [bulk]
- Z T g + ECorr[Q] + Q(EVBM + EFermi) (713)

erkennt man, dass die Ladung nur in der Superzellenkorrektur und in der Positio-
nierung des Ferminiveaus als chemisches Potential der Elektronen eine Rolle spielt.
Aber auch die Referenzen der chemischen Potentiale konnen in den einzelnen Me-
thoden unterschiedlich beschrieben werden und somit zu quantitativen Differenzen
fithren. So ist bekannt, dass gerade Molekiile in der LDA, der PBE und nicht zu-
letzt auch auf dem Niveau von HSE recht unterschiedlich beschrieben werden, was
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Ladung | Ladungskorrektur [eV]
ENiadeuns Klign
min  max
1 021  —0.09 0.00
0.86 —0.30 —-0.23
3 1.93 —-0.77 —-0.49

Tab. 7.11:

Ladungskorrekturen fiir Defekte in GaN aufgeteilt in den Madelungbeitrag und Ali-
gnmentbeitrag. Der Madelungbeitrag wurde fiir die in PBE verwendete 72 Atomzelle
explizit berechnet. Der Alignmentbeitrag kann ohne Neuberechnung der Defektgeome-
trie nur abgeschétzt werden. Dafiir dienen die Alignmentkorrekturen der LDA Rech-
nungen, welche gemiss 1/L3 von der 96 Atomzelle auf die 72 Atomzelle skaliert wurden.
Da das Alignment defektspezifisch ist , sind hier der jeweils kleinste und grofite Wert
fiir die Defekte der jeweiligen Ladungsklasse angegeben.

zu der Diskrepanz in der Vorhersage der Bildungsenthalpie von GaN fiihrt[5]. Die-
se Uberlegungen werden nun im Folgenden weiter ausgearbeitet. Basierend auf den
Erkenntnissen werden Korrekturen entworfen, um den Unzulédnglichkeiten der Funk-
tionale entgegenzuwirken.

7.4.4. Einfluss der Superzellenkorrektur

Laaksonen hat gezeigt, dass das Umladungsniveau der Stickstoffvakanz empfindlich
von der Superzellengrofe abhingt, wenn keine superzellenspezifische Ladungskor-
rektur angewendet wird|[103]. Thre theoretischen Betrachtungen der Stickstoffvakanz
auf LDA Niveau und die Interpolation zu unendlich ausgedehnten Superzellen erge-
ben ein Umladungsniveau unterhalb der Valenzbandkante. Das bedeutet, dass der
Vit-Defekt bei einem Fermilevel oberhalb der Valenzbandkante kein stabiler Defekt-
zustand ist. Dies steht im Widerspruch zum experimentellen Befund, aber auch zu
fritheren theoretischen Betrachtungen. Auch die hier berechneten LDA Ergebnisse
zeigen diesen Befund. Dies lasst den Schluss zu, dass die Position des Umladungsni-
veaus fritherer Arbeiten auf die Superzellengréfe und die Wechselwirkung des De-
fektes mit seinen periodischen Bildern zuriickzufiihren ist. Die Superzellenkorrektur
fiir geladene Defekte ist folglich zwingend erforderlich um konsistente Ergebnisse
in den theoretischen Methoden zu erhalten. Da die PBE Daten der Literatur keine
Ladungskorrektur erfahren haben, ist diese nun nachtréiglich anzuwenden. Die hier
in dieser Dissertation verwendete Superzellenkorrektur kann gemaft Kapitel 5.4.1 als
ag?

E T o E ign 14
Co 26L+ Alig (7 )

dargestellt werden. Der typischerweise dominante Madelungterm héangt dabei
nur von der Geometrie der Superzelle ab und kann leicht berechnet werden. Das
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Bildungsenergie [eV]
Defekt USPP-PBE ~ PAW-LDA

Ref.[101]  corr. COLT.
Mg, 0.00 0.00 0.00
Vi 0.43 0.55 0.65
Vit —0.35 0.98 1.18
Hif (be) —0.45 —025  —0.24
HY (be) -0.22  —0.02  —0.09
Hif (ab) —0.06 0.16  —0.04
HT (ab) —024 —0.03  —0.18
HZ —0.95 —0.33  —0.25
[MgcaHJfj (be) —0.99 —117  —1.26
[Mgc.HJ{(ab) -0.80 —0.98  —1.13
[Mga.H]9 (be Mg)) —0.75  —0.93  —1.02
[Mgc.H]Y (ab Mg, ) ~1.07 —-125 —1.34
Mgc.H]{ (ab Gay) ~0.75  —0.93  —1.08
[Mga.H]Y (ab Ga,) -0.83 —101  —1.13
[Mgaa V] 001 —0.17  —0.24
[Mgaa V]9 —0.03 —021  —0.26
Mgaa Vai* —0.64 —026  —0.50
[Mgca Va3t —0.93 —0.55  —0.45
MgcaHylf -135 —139  —1.61
[Mga.Hy|T ~153 —156  —1.62
Mga.HVN]/ (ab Mg) | —0.75  —0.77  —1.17
Mg HVy]j"(ab Mg) | —1.40 —042  —0.94

Tab. 7.12:
Vergleich der Bildungsenergien in GaN:Mg in PBE mit LDA vor und nach Anwendung
der Ladungskorrektur.

Alignment hingegen bendtigt die elektronische Dichteverteilung des Defektes.
Nun ist es nicht praktikabel diese zu erzeugen, indem alle Defekte der Literatur
nachgerechnet werden. Wir verwenden deswegen hier als Abschitzung die typi-
schen Grofen, die in der LDA Behandlung berechnet wurden und skalieren diese
entsprechend mit der Superzellengrofe. Ziel ist es an dieser Stelle nicht mdoglichst
akkurate Defektenergetiken fiir PBE zu erzeugen, sondern vielmehr zu zeigen, dass
die Diskrepanzen zwischen LDA und PBE vornehmlich auf der nicht verwendeten
Ladungskorrektur der PBE Daten beruhen. Die berechneten Zahlenwerte fiir die
Ladungskorrektur sind ladungsspezifisch in Tabelle 7.11 zusammengefasst. Die
damit korrigierten PBE Daten sind in Tabelle 7.12 zusammengefasst.
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Die Anwendung der Ladungskorrekturen verbessert die Ubereinstimmung zwischen
den LDA und den PBE signifikant. Die meisten Bildungsenergien weisen nur noch
Differenzen von unter 0.2 ¢V auf. Allerdings gibt es auch einige Defekte, die trotz
der Ladungskorrektur grofere Differenzen aufweisen. Zunéchst einmal fallt auf, dass
die Ubereinstimmung der Wasserstoffstorstellen in der anti-bindenen Position sich
mit der Ladungskorrektur verschlechtert haben. Eigene Berechnungen des Defektes
mittels PAW-PBE zeigen hingegen eine zu LDA vergleichbare Energetik, so dass
das Funktional nicht Ursache dieser Diskrepanz sein kann. Vielmehr scheint der
Unterschied in der Behandlung der Elektron-Kern-Wechselwirkung zu bestehen.
Diese Arbeit verwendet den PAW Ansatz im Unterschied zu den Literaturdaten,
die mit ultrasoften Pseudopotentialen erzeugt worden sind. Wahrend PAW als ge-
naherte Allelektronenrechnung physikalisch korrekte Wellenfunktionen in Kernnéhe
liefert, ist das ultrasofte Pseudopotential eher ,trickreich® in der Beschreibung des
Wasserstoffes mit moglichst wenigen ebenen Wellen. Die Reaktion dieses Potentials
auf die sich hier drastisch &ndernde chemische Umgehung ist nicht bekannt und
kann durchaus die Ursache der Diskrepanz sein. Einen &hnlichen Grund kann
auch die unterschiedliche Beschreibung des MgVx" und des MgH; haben. In der
PAW-LDA zeigen sich diese Defekte nahezu entartet, wihrend in der USPP-PBE
Variante die Niveaus um 0.25—0.3 eV aufspalten. Hierbei ist die Aufspaltung des
MgHj; sicherlich auf die des MgVy" zuriickzufiihren, da dieser Bestandteil jenes
Defektkomplexes ist.

Auch die Diskrepanzen der ausgedehnten [Mgg,HVy]-Komplexe kénnten auf die
Pseudoisierung von Stickstoff und Wasserstoff zuriickzufiihren sein, jedoch md&chte
ich an dieser Stelle anmerken, dass die Ausdehnung des Defektes hier schon eine
Grofse erreicht, welche die Beschreibung in der aktuellen Superzelle, sowie die
Verwendung der Ladungskorrektur fragwiirdig erscheinen lassen. Zudem findet die
Behandlung in Superzellen unterschiedlicher Grofe statt, so dass die endliche Grofke
der Superzelle sicherlich quantitativ spiirbar wird. Fiir eine akkurate Beschreibung
dieses Defektes ist eine Behandlung in einer grofseren Defektzelle anzuraten, jedoch
ist diese erheblich rechenintensiver weswegen an dieser Stelle darauf verzichtet wird.

Trotz dieser kleinen verbleibenden Diskrepanzen ist belegt, dass der Unterschied
zwischen LDA und PBE hauptséchlich auf die fehlende Ladungskorrektur der PBE
Daten zuriickgefiihrt werden kann. Die Umladungsniveaus zeigen nun eine deutlich
bessere Ubereinstimmung zwischen beiden Ansitzen, so dass nun lediglich noch die
Unterschiede zwischen LDA /PBE und HSE zu betrachten sind.

7.4.5. Das Bandliickenproblem — LDA/PBE versus HSE

Der Unterschied zwischen den ,klassischen* Funktionalen LDA/PBE und dem Hy-
bridfunktional HSE liegt in der Beimischung des exakten Hartree-Fock-Austausches
fiir den kurzreichweitigen Teil der Coulombwechselwirkung. In Folge dessen deloka-
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Tab. 7.13:

Bildungsenergie [eV]
Defekt PAW-LDA PAW-HSE

Mgg, 0.00 0.00
Vi 0.38 0.29
Vit 0.38 0.29
H; (be) —0.51 —0.26
H* (be) —0.36 —0.05
H{ (ab) —0.31 —0.07
HT (ab) —0.45 —0.22
HZNJr —0.79 —0.76
[MgaaH]f (be) —1.52 —1.41
[Mgc.HJ{ (ab) —1.39 —1.26
[Mgc.H]Y (be Mg.,) —1.29 —1.22
Mga.H]Y (ab Mg ) —1.60 —1.50
[Mgc.H]} (ab Gay) —1.34 —1.24
Mgg.H|} (ab Ga,) —1.40 —1.39
Mgca V] —0.50 —0.64
[MgcaVa]? —0.53 —0.66
[Megca Vi —1.30 —1.38
[Mgaa V]2t —1.25 —1.41
[MgoaHy] —2.14 —2.21
Mg, Hx|T —2.15 —2.18
[MgcHV]| (ab Mg) —1.65 —1.58
[MgaHVy] T (be Mgy) ~1.58 ~1.55
[Mgc.HVn]T (ab Mg)) —1.41 —1.33
Mg HVy]# (ab Mg) —2.01 —1.85
Mg HVN]3F (be Mg) —1.50 —1.55
Mg HVx]3 (ab Mgy) | —1.52 —1.61

Mit LDA und HSE berechnete Bildungsenergien der vornehmlich vorkommenden De-

fekte in Wasserstoff kompensierten GaN:Mg. Die Referenzzustdnde sind Ga Metall,

3+/+

GaN, Mg, , sowie das halbe Wasserstoffdimer. Das Ferminiveau ist auf das Vi
Umladungsniveau gesetzt.
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Abb. 7.14:

Wechsel der Fermilevel Referenz vom Valenzbandmaximum zum Umladungsniveau
der Stickstoffvakanz flir LDA, PBE und HSE. Die roten Bereiche symbolisieren die
Leitungsbander, die griinen Bereiche die Valenzbénder. Dargestellt ist die Position des
Umladungsniveaus der Stickstoffvakanz.

lisiert das Austauschloch mehr als in der LDA /PBE Behandlung, was zu einer Auf-
spaltung der Bandliicke in halbleitenden Materialien fithrt. Durchforstet man die Li-
teratur trifft man auf einige Arbeiten, welche die géngige Ansicht vertreten, dass die
Aufspaltung durch eine Verschiebung des Leitungsbandminimuns in einen héheren
Energiebereich erreicht wird[104, 105, 106]. In Folge dessen sind Defekte prozentual
gemals ihres leitungsbandéhnlichen Charakter zu korrigieren. Heutzutage hat man
jedoch einige berechtigte Zweifel an diesem Bild. So haben beispielsweise Alkauskas
und Pasquarello anhand der Sauerstoftvakanz in ZnO gezeigt, dass die mit ver-
schiedenen Methoden berechneten tiefen Umladungsniveaus eine deutlich geringere
Diskrepanz haben, wenn sie auf das mittlere elektrostatische Potential referenziert
werden[40]. Auch fiir andere Materialen ist dies eine geeignete Wahl|41]|. Nun stellt
das mittlere elektrostatische Potential aus experimenteller Sicht keine gut messbare
Grofse dar. Wir wahlen hier den pragmatischen Weg das Ferminiveau direkt auf das
Umladungsniveau der Stickstoffvakanz zu referenzieren (Abbildung 7.14). Zwar ist
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das Umladungsniveau der Stickstoffvakanz nach der Ladungskorrektur kein tiefes
Defektniveau mehr, allerdings ist es in der Modellierung in der endlichen Superzelle
auf LDA Niveau vor der Korrektur durchaus als solches zu sehen und erfiillt somit
das Kriterium von Alkauskas und Pasquarello. Tabelle 7.13 zeigt die Bildungsener-
gien von LDA und HSE in dieser neuen Referenzierung. Die Diskrepanzen belaufen
sich nun nur noch auf 0.2 eV fiir den Grossteil der Defekte. Eine Ausnahme stellt
hier wieder der Wasserstoff auf den Zwischengitterplatzen dar, der aber auch in-
nerhalb von 0.3 eV eine gute Ubereinstimmung zeigt. Generell scheint die LDA die
Bildungsenergie dieser Wasserstoffdefekte zu unterschitzen.

7.4.6. Feinjustierung — Die chemischen Potentiale

Die vorangegangen Kapitel haben gezeigt, dass die Diskrepanzen zwischen LDA,
PBE und HSE hauptséchlich auf die nicht vorgenommene Ladungskorrektur der
PBE-Daten und der Referenzierung des Fermilevels auf das Valenzbandmaxi-
mum, welches zwischen LDA/PBE und HSE unterschiedlich beschrieben wird,
zuriickzufithren sind. Vollzieht man eine Umreferenzierung des Fermilevels auf
das Umladungsniveau der Stickstoffvakanz lassen sich die Defektenergetiken bis
auf 0.3 eV in Einklang bringen, wobei die reinen Wasserstoffdefekte die grofste
Diskrepanz aufweisen. Eine letzte Stellschraube stellen hier die chemischen Poten-
tiale der einzelnen Atomsorten dar. Die Referenzierung auf molekulare Systeme,
wie im Falle des Wasserstoffes, kann hier noch zu Diskrepanzen zwischen den
mit unterschiedlichen Funktionalen berechneten Defektenergetiken fiithren. Schon
Myers nutzt zur Referenzierung des chemischen Potentials fiir Magnesium den
Magnesiumdefekt|[101]. An dieser Stelle soll nun untersucht werden, in wie fern
sich eine komplette Referenzierung aller chemischen Potentiale auf Defektzustande
positiv auf die Defektenergetiken auswirkt. Im folgenden werden nun das substi-
tutionelle Magnesium auf einem Galliumgitterplatz, die Stickstoffvakanz und der
stabilste MgH-Defektkomplex als Referenzsysteme fiir die chemischen Potentiale
eingefiihrt. Die Stickstoffvakanz begriindet sich mit der schon vollzogenen Refe-
renzierung auf ihr Umladungsniveau fiir das Fermilevel. Der MgH-Komplex stellt
experimentell den bedeutendsten Defekt dar um die Loslichkeit von Magnesium
in GaN zu erhdhen und scheint eine geeignete Wahl zu sein. Die so referenzierte
Defektenergetik ist fiir LDA und HSE in Tabelle 7.14 zusammengefasst. Die
Diskrepanzen zwischen den Wasserstoffstorstellen sind kleiner geworden. Insgesamt
stimmt nun die Defektenergetik bis auf maximal 0.2 eV {iberein.

Damit ist eine Validierung der Defektbildungsenergien gelungen, wenn entsprechen-
de Korrekturterme mit einbezogen werden. Allerdings bietet nur HSE die Moglich-
keit, die hier gewahlten Referenzdefekte konsistent mit experimentell verfiigharen
Referenzen, wie dem Valenzbandmaximum, zu beschreiben. Die mit LDA und PBE
berechneten Bildungsenergien kénnen aber einen gute Uberblick liefern, um inter-
essante Defekte und Mechanismen zu identifizieren, die dann auf dem akkuraterem
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Bildungsenergie [eV]
Defekt PAW-LDA PAW-HSE

Mg, 0.00 0.00
Vi 0.00 0.00
VF 0.00 0.00
[Mga.H]Y (ab Mg, ) 0.00 0.00
H;f (be) 1.09 1.24
H (bc) 1.25 1.45
H;f (ab) 1.29 1.43
HT (ab) 1.16 1.28
HH 0.43 0.44
[Mgc.HJj (be) 0.08 0.09
[Mgc.HJj (ab) 0.21 0.24
[Mga.H]% (bc Mg, ) 0.32 0.28
MgcH]Y (ab Gay) 0.26 0.26
[Mgc.H]) (ab Ga,) 0.20 0.11
[Mgca V]| —0.88 —0.93
[Mgga Va9 —0.91 —0.95
[Megca Vi ~1.68 ~1.67
[Mga. Va3t —~1.63 —1.70
[MgcaHx] | —0.92 —1.01
[MggaHx T —0.93 —0.97
Mg HVn] | (ab Mg) —0.43 —0.37
Mg HVyT (be Mg)) —0.35 —0.34
[Mgc.HVx]T (ab Mg) —0.19 —0.12
[Mgc. HVn] " (ab Mg) —0.79 —0.64
Mg HVn] 3 (be Mgy) | —0.28 —0.34
[Mgc. HVy]3t (ab Mgy)) —0.29 —0.40

Tab. 7.14:

Mit LDA und HSE gerechnete Bildungsenergien der hauptséchlich vorkommenden De-
fekte in Wasserstoff kompensierten GaN:Mg. Die Referenzzustéinde sind Ga Metall,
Vi, Mgg,, sowie [MggaH]9 (ab Mg, ). Das Ferminiveau ist auf das V3N+/ * Umladungs-
niveau gesetzt.
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Abb. 7.15:

Position des Ferminiveaus in GaN:Mg basierend auf der HSE Defektenergetik in Ab-
héngigkeit der Magnesiumkonzentration. Die farbigen Linien zeigen die Umladungsni-
veaus der entsprechenden Defekte.

— aber auch erheblich aufwendigerem — HSE Niveau nachgerechnet werden sollten.

7.4.7. Die Kompensationsmechanismen in p-GaN

Der Wechsel in ein addquates Referenzsystem hat es ermoglicht zu zeigen, dass die
berechneten Defektenergetiken nahezu methodenunabhéngig sind und somit das
Vertrauen in diese Zahlenwerte deutlich gestdrkt. Um nun jedoch die Effekte der
hohen Magnesiumdotierung zu studieren ist der Wechsel zuriick in das Standar-
treferenzsystem unumgénglich. An dieser Stelle ist es nun moglich experimentelle
Befunde oder Resultate der vertrauenswiirdigsten Methode beziiglich Bandstruktur
und molekularer Systeme zur Referenzierung zu verwenden. In dieser Arbeit stehe
nun die HSE Daten im Vordergrund.

Die Bestimmung der Defektkonzentrationen geschieht iiber die in Abschnitt 5.5
vorgestellte Methode. Als MOVPE-Wachstumstemperatur sind hierbei 1275 K
angesetzt worden|9]. Das chemische Potential des Wasserstoffes entspricht dieser
Wachstumstemperatur bei einem Partialdruck von 0.1 bar. Das chemische Potential
des Stickstoffs ist so justiert worden, dass die gemessene Wasserstoffkonzentration
fiir eine Magnesiumkonzentration von [0.7 — — —0.9] x 10'® cm™3 reproduziert wird.

Die Ergebnisse werden unter der Annahme des thermodynamischen Gleichgewichtes
diskutiert. Anhand der Boltzmannverteilung
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Abb. 7.16:

Relative Defektkonzentration basierend auf der HSE Defektenergetik in GaN:Mg bei
unterschiedlichen Mg Konzentrationen. Die einzelnen Defektkonzentrationen wurden
mit ihrer Ladung multipliziert und werden im Plot aufsummiert dargestellt. Der rote
Bereich gibt hierbei den Storstellenwasserstoff an. Der griine Bereich reprisentiert den
Wasserstoff, der an die Stickstoffvakanz bindet. Der blaue und gelbe Bereich zeigt die
ladungsmultiplizierte Konzentration freier Stickstoffvakanzen im Ladungszustand +1
und +3. Der mit h' indizierte braune Bereich reprisentiert die freien Locher. Die
schwarze Linie zeigt die sich ergebene relative Wasserstoffkonzentration.

(7.15)

EO Xq ermi
C(Xq) = NONconfeXp <_ [ ] i g )

kyT'

lasst sich schon eine erste Aussage iiber den Effekt steigender Magnesiumkonzentra-
tion treffen: Damit die Anzahl der negativen Magnesiumdefekte steigen kann muss
zur Kompensation auch die Konzentration der positiven Defekte (oder auch freien
Locher) steigen. Dies ist jedoch nur durch eine Absenkung des Ferminiveaus €gepm;
im System moglich. Exakt diesen Trend kann man in Abbildung 7.15 erkennen. Das
Ferminiveau sinkt kontinuierlich bis es bei einer Magnesiumkonzentration von ca.
5 x 101 cm™2 das [MgVy]%?* Umladungsniveau erreicht und dort fixiert wird.

Die relative Konzentration von Wasserstoff, der Stickstoffvakanzen und der Locher
kann der Abbildung 7.16 entnommen werden. Um die Kompensation zu zeigen,
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ist dort die relative Konzentration mit der Ladung des entsprechenden Defektes
multipliziert worden. Um zwischen Stickstoffvakanzen und Storstellen leicht zu
unterscheiden bezeichnen wir an dieser Stelle jeglichen Storstellenwasserstoff — das
sind alle HT-Defekte sowie [Mgg,H|-Komplexe — mit HT, alle Stickstoffvakanzen
— allein oder gepaart mit Magnesium — mit Vg/ 3+, sowie die gemischten mit H2N+.
Es ist zu erkennen, dass iiber den gesamten Konzentrationsbereich die dominante
Kompensation durch die Wasserstoffstorstellen geleistet wird. Nur ein geringer
Anteil (ca. 20—30%) der Magnesiumakzeptoren werden durch andere Defekte
kompensiert. Freie Ladungstréger in Form von Lochern spielen keine Rolle.

Im Konzentrationsbereich von 10'"—10'"® ¢cm™ wird diese Sekundirkompensation
von den einfach geladenen Stickstoffvakanzen iibernommen. Ab einer Konzentration
von 10Y em™ beginnen die dreifach geladenen Stickstoffvakanzen etwas mehr
Bedeutung zu gewinnen. Es bilden sich zudem die Defekte der H%{“—Klasse. Dieser
Defekt ist zweifach positiv geladen und vermindert die Notwendigkeit freien Was-
serstoff in das Material einzubauen um die Akzeptoren zu passivieren. Allerdings
besitzt dieser Defektkomplex eine um ca. 0.5 eV hohere Barriere um den Wasserstoff
freizusetzen|101] und sollte unter diesem Gesichtspunkt thermisch schwieriger
auszutreiben sein. Im Bereich hoher Magnesiumkonzentrationen werden fast 35%
der Akzeptoren durch stickstoffvakanzartige Defekte kompensiert. Die reinen
Wasserstoffstorstellen weichen von ihrem Maximum von knapp 70% der Kompensa-
tion zuriick auf 65%. Die Gesamtwasserstoffkonzentration sinkt aber kaum merklich.

Die Rechnungen liefern eine qualitative Reproduktion des experimentellen Befundes
und liefern einen mdéglichen Mechanismus fiir den verminderten Wasserstoffeinbau.
Durch das absinkende Ferminiveau findet eine Umladung der Stickstoffvakanzen
aus den einfach geladenen Zustand in den dreifach geladenen statt. Dadurch ver-
dréngen die Vakanzen den Wasserstoff geringfiigig aus seiner Rolle als Passivator
der Magnesiumakzeptoren zur Erreichung der Ladungsneutralitdt. Im Gegensatz
zu den Rechnungen zeigt sich der experimentelle Ubergang aber deutlich schérfer
und dominanter, sodass nun im folgenden eine weitere Untersuchung der Ergebnisse
stattfindet um das Modell zu erweitern und die experimentellen Befunde besser zu
reprasentieren.

7.4.8. Kopplung der chemischen Potentiale

In den im vorherigen Abschnitt vollzogenen Uberlegungen waren keinerlei Ein-
schrankungen beziiglich des Wertebereiches der chemischen Potentiale enthalten.
Damit vernachléssigt man jedoch die Bildung neuer stabiler Phasen, welche bei der
Justierung der Potentiale auftreten kénnen. In Abbildung 7.17 ist die Variation
des chemischen Potentials fiir Magnesium im Hinblick auf die Magnesiumkon-
zentration gegeben. Um die Magnesiumkonzentration in GaN zu erhohen, muss
das chemische Potential sukzessive erhoht werden. Dabei durchschreitet es jedoch

133



7 Ableitung theoretischer Grenzen in der p-Dotierbarkeit von GaN:Mg

0.8 [T
0.6 g
0.4 .
02 .
00 .
02+ .

0.4 ,,Hydrogen drop* -

H(Mg) - u(Mgbulk) [CV]

0.6F Bildung von i
< bulk Mg.N, 1

-0.8

-10
10" 108 10" 102 102 102

c(Mg) [cm ]

Abb. 7.17:

Notwendiges chemisches Potential zum Einstellen der Magnesiumkonzentration in GaN
basierend auf der HSE Defektenergetik. Dargestellt sind weiter der theoretisch be-
rechnete Bildungsbereich von Mg3zNg, sowie das chemische Potential, bei welchem der
,Hydrogen Drop“ auftaucht.

die Stabilitdtsgrenzen von MgzNy und Mg (vgl. Tabelle 7.15). An dieser Stelle
erkennt man deutlich die Schwéche des rein thermodynamischen Bildes. Nach dieser
Aussage wiirde Magnesium ab einer Konzentration von 7 - 10'7 ¢cm™3 in der ma-
gnesiumnitridartigen Phase vorliegen und ab einer Konzentration von 2 - 10! cm™3
als reine Metallphase. Temperatureffekte konnen eine mogliche Erklarung sein,
weswegen GaN dennoch die stabile Phase bleibt. Eine Abschitzung der thermischen
Energie (Phasenumwandlung und Wérmekapazitit) gibt hier einen Spielraum von
bis zu 0.4 eV vor. Experimentell zersetzt sich reines Magnesiumnitrid bei den
Wachstumstemperaturen und Magnesium liegt in einer fliissigen Phase vor. Auch
der Einfluss kinetischer Effekte kann hier eine Rolle spielen. An dieser Stelle lassen
wir uns folglich von den experimentellen Befunden fithren um einen interessanten

Aspekt zu motivieren.

Die Bildung eines magnesiumnitridartigen Filmes ist experimentell anhand der
Inversionsdoménen (vgl. Abschnitt 7.1) belegt. Unter der Berticksichtigung von
kinetischen und thermischen Effekten ist es durchaus moglich, das die Bildungs-
energie dieser Inversionsdoménengrenzphase (IDB-MgsNy) vergleichbar ist zu der
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Bildungsenergie [eV]
theoretisch experimentell

GaN —1.533 —1.625%
MgsN, —4.429 —4.773°
1(MgsNq) - u(Mg) —0.454 —0.508
a[107], b[108]

Tab. 7.15:

Bildungsenergien von GaN und MgsNy bezogen auf das entsprechende Metall(bulk)
und Ny in der Gasphase. Die theoretischen Werte wurden mittels PAW-LDA bestimmt.
Aus den Bildungsenergien lésst sich die Differenz des chemischen Potentials fiir Mg
gemiif 11(MgsNo) — u(Mg) = (Ef[MgsNs] — 2E/[GaN])/3 berechnen.

Energie, an welcher die Wasserstoffkonzentration zusammenbricht. Im weiteren
identifizieren wir deswegen die Bildungsenergie von IDB-Mg3Ns mit der Energie des
Zusammenbruchs der Wasserstoffkonzentration. Diese Inversionsdoménen sind im
Wachstum zu vermeiden. Dies kann bei steigenden Magnesiumpotential nur durch
eine Absenkung des Stickstoffpotentials geschehen. Es ist folglich notwendig das
chemische Potential des Stickstoffes an das des Magnesiums zu koppeln, um der
Bildung der Inversionsdoménen entgegenzuwirken. Die Wirkung dieser Kopplung
wird nun untersucht und mit dem experimentellen Befund verglichen.

Im Referenzsystem GaN und Magnesiumnitrid sind die gekoppelten Relationen

p(Ga) < 0 Bildung von Ga (bulk) (7.16)
p(Ga) + p(N) > 0 Bildung von GaN (7.17)
3u(Mg) + 2u(N) < 0 Bildung von MgsN, (7.18)

fiir die chemischen Potentiale zu 16sen. Damit ist eine Abhéngigkeit des chemischen
Potentials fiir Stickstoff von dem chemischen Potential des Magnesiums wie in
Abbildung 7.18 gegeben. Fiir geringe Magnesiumkonzentrationen stiinde dem
Experimentator die gesamte Variationsbreite des chemischen Stickstoffpotentials
zur Verfiigung. Mit steigender Magnesiumkonzentration muss die Bildung von
dem am Rand der Inversionsdoménen auftauchenden filmartigen Magnesiumnitrid
unterdriickt werden, so dass die Variationsbreite mehr und mehr eingeschrénkt
wird und das chemische Potential des Stickstoffes abgesenkt werden muss. Dies
hat deutliche Folgen fiir die Verteilung der Konzentrationen wie Abbildung 7.19
zeigt. Bei einer Magnesiumkonzentration von 3 x 10* em™ bricht nun die relative
Wasserstoftkonzentration zu Gunsten der Bildung von Stickstoffvakanzen deutlich
ein. Die Ubereinstimmung mit dem Experiment ist qualitativ und quantitativ
gut. Der Grund fiir dieses Verhalten ist die Begiinstigung des Stickstoffvakanzen
durch das sinkende chemische Stickstoffpotential. Der Abbildung 7.19 ist ein
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Abb. 7.18:

Phasendiagramm des GaN Wachstums in Abhéngigkeit der chemischen Potentiale fiir
Stickstoff und Magnesium. Die jeweiligen Bereiche geben die jeweils stabile Phase an.
Die hellblaue Linie zeigt einen moglichen Einstellungspfad der chemischen Potentiale
fiir das Wachstum von Magnesium dotierten GaN mit unterschiedlichen Magnesium-

konzentrationen.

klarer Zugewinn der positiv geladenen Stickstoffvakanzen und des Wasserstoff-
Stickstoffvakanzkomplexes zu entnehmen.

7.4.9. Zusammenfassung

In diesem Kapitel ist die Limitierung der p-Dotierbarkeit von GaN mit Magnesium
als Dotiermaterial auf Basis von DFT Berechnungen von Defektbildungsenergien
untersucht worden. Ausgangspunkt der Untersuchung stellt das anerkannte Bild
dar, welches die gute Loslichkeit von Magnesium in GaN mit der Bildung von
[MgH]-Defektkomplexen erkldrt. Experimentelle Befunde aber zeigen, dass mit
zunehmender Magnesiumdotierung die relative Wasserstoftkonzentration abnimmt.
Ist diese Konzentration fiir moderate Dotierungen immerhin noch nahe bei 70%, so
fallt sie fiir hoch dotierte Proben auf einen Wert von ca. 20% ab. Eine thermische
Austreibung des Wasserstoffes und somit eine Aktivierung der passivierten Magne-
siumakzeptoren ist dann nicht mehr moglich. Dies steht im klaren Widerspruch zu

136



7.4 Hohe Mg-Akzeptorkonzentration: Gratwanderung zwischen Kompensation
und Phasentrennung

1.2 T T T T TTTT T T IIIIII| T T IIIIII| T T T T T 17711
[ — c(H)/c(Mg)| ]
ht V3

p—
o

q c/cMg)le]
o
o)

o
~

<
o0

029 H this work
e H experimental
0.0
10" 108 10" 10% 102
c¢(Mg) [em~]
Abb. 7.19:

Relative Defektkonzentration basierend auf der HSE Defektenergetik in GaN:Mg bei
unterschiedlichen Mg-Konzentrationen und variierenden chemischen Stickstoffpotenti-
al. Die einzelnen Defektkonzentrationen sind mit ihrer Ladung multipliziert und werden
im Plot aufsummiert dargestellt. Der rote Bereich gibt hierbei den Storstellenwasser-
stoff an. Der griine Bereich représentiert den Wasserstoff, der an die Stickstoffvakanz
bindet. Der blaue und gelbe Bereich zeigt die ladungsmultiplizierte Konzentration frei-
er Stickstoffvakanzen im Ladungszustand +1 und +3. Der mit h* indizierte braune
Bereich représentiert die freien Locher. Die schwarze Linie zeigt die sich ergebene re-
lative Wasserstoffkonzentration.

dem allgemein anerkanntem Bild, dass Magnesium und Wasserstoff vornehmlich
als [MgH]-Defektkomplex im GaN-Wirtssystem eingebaut werden. Dieses Bild
erfihrt durch die in dieser Dissertation getitigten Uberlegungen eine Revision.
Dazu wurden zunéchst die bei hohen Magnesiumkonzentrationen experimentell
nachgewiesenen Inversionsdoménen diskutiert. In den Inversionsdoménengrenzen
bildet sich eine magnesiumnitridartige Zwischenschicht, die auf ihre Eigenschaften
der Wasserstoffbindung untersucht wurde. Da eine vollstdndige Modellierung
der Inversionsdoménen auf DFT-Niveau sehr aufwendig und rechenintesiv ist,
wurden zundchst die Eigenschaften von reinem Magnesiumnitrid in der bulk-Phase
bestimmt, um auf chemische Trends fiir die Inversionsdoméanengrenze zu schliessen.
Die Eigenschaften der Wasserstoffadsorption sind hier jedoch minimal im Vergleich
zu den typischen Wasserstoffkonzentrationen, die in magnesiumdotiertem GaN
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7 Ableitung theoretischer Grenzen in der p-Dotierbarkeit von GaN:Mg

wahrend des Wachstums herrschen. Deswegen konnten die magnesiumnitridartigen
Inversionsdoméanengrenzen als relevante Modifikatoren der Wasserstoffkonzentration
ausgeschlossen werden.

Da die Inversionsdoménengrenzen nur einen schwachen direkten Einfluss auf
die Wasserstoffkonzentration ausiiben, ist der Ursprung des Phénomens in der
Defektenergetik des Wirtssystems zu suchen. Zwar sind in der Literatur schon
komplette Datensédtze zur GaN-Defektenergetik vorhanden, allerdings haben
jingste Entwicklungen es moglich gemacht die Genauigkeit der berechneten
Bildungsenergien deutlich zu verbessern. Hier ist die Superzellenkorrektur fiir
geladene Defekte zu nennen, welche die im Superzellenansatz der DFT ungewollte
Defekt-Defekt-Wechselwirkung geladener Defekte korrigiert, sowie die Verfiigharkeit
besserer Austausch- und Korrelationsfunktionale wie HSE, welche in einem weitaus
geringerem Mafe vom Bandliickenproblem betroffen sind. Eine vergleichende
Defektenergetik wichtiger Defekte in p-GaN zwischen den Literaturdaten und den
in dieser Dissertation getétigten Rechnungen mit LDA und HSE zeigt deutliche
Abweichungen, die fiir sich genommen das Vertrauen in die Berechnung von Defek-
tenergetiken mittels DFT zundchst einmal erschiittern. In dieser Dissertation ist es
aber gelungen Korrekturen zu entwickeln, welche die Literaturdaten, sowie die hier
mit LDA berechneten Defektenergien mit dem HSE Datensatz in Einklang bringen.
Dafiir ist eine konsequente Anwendung der Superzellenkorrektur geladener Defekte
notwendig, sowie die Umreferenzierung der Ferminiveaus von der Valenzbandkante
hin zu den Umladungsniveaus tiefer Defekte. Mit diesen Korrekturen variieren die
Bildungsenergien der betrachteten Defekte in einem Bereich von 0.2 eV je nach
Defektart und liefern somit vergleichbare Ergebnisse.

Fir die Untersuchung der Defektkonzentrationen in Abhéngigkeit zur Magne-
siumkonzentration sind die HSE Ergebnisse verwendet worden. Bei steigender
Magnesiumkonzentration sinkt das Ferminiveau bis es durch das Umladungsniveau
des [MgVy]-Defektkomplexes fixiert wird. Hier laden Vj; Defekte in V" Defekte
um. Durch die Erzeugung der dreifach positiv geladenen Defekte verliert der
Wasserstoff als positiver Defekt geringfiigig an Notwendigkeit. Die relative Was-
serstoffkonzentration sinkt minimal. Aus Sicht der Defektenergetik allein kann die
Verminderung der relativen Wasserstoffkonzentration folglich nicht erklart werden.
Die Defektenergetik ist in Einklang mit dem anerkannten Bild des Magnesiumein-
baus und den anschliessenden thermischen Austreibung des Wasserstoffes.

Eine detaillierte Analyse des chemischen Magnesiumpotentialverlaufes hingegen
zeigt, dass zur Einbringung des Magnesiums der Bereich der Bildung von Magne-
siumnitrid iiberschritten wird. Experimentell wird tatsdchlich Magnesiumnitrid in
Form von Inversionsdoménengrenzen beobachtet, denen Bildung generell entgegen-
gewirkt werden muss. Dies kann in der theoretischen Modellierung durch eine Kopp-
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7.4 Hohe Mg-Akzeptorkonzentration: Gratwanderung zwischen Kompensation
und Phasentrennung

lung des chemischen Stickstoffpotentials an das chemische Magnesiumpotential ge-
schehen, um in der Summe unterhalb der Bildungsenergie von Magnesiumnitrid und
insbesondere des magnesiumnitridartigen Filmes in den Inversionsdoménengrenzen
zu bleiben. Da die Bildungsenergie der magnesiumnitridartigen Grenzschicht nicht
bekannt ist, wurde diese iiber das chemische Magnesiumpotential an der experimen-
tell bestimmten Stelle des Wasserstoffeinbruchs berechnet. Dabei wird angenommen,
dass der dieser relative Konzentrationseinbruch eine indirekte Konsequenz der Inver-
sionsdoméanenbildung ist. Reines Magnesiumnitrid besitzt jedoch eine theoretische
Bildungsenergie die ca. 0.45 eV unter der hier angenommenen liegt. Diese Differenz
kann jedoch zum einen in strukturellen Verspannungen begriindet sein, da GaN das
eigentliche Wirtssystem bildet. Weiter gehen in die Betrachtung keine Temperatur-
effekte oder kinetischen Effekte ein, die eine Verschiebung des Stabilitédtsbereiches
von Magnesiumnitrid in hohere Konzentrationsbereiche durchaus zulassen. Eine Be-
rechnung der Defektkonzentrationen unter diesen Randbedingungen offenbart eine
scharfe und signifikante Verminderung der relativen Wasserstoffkonzentration ver-
gleichbar zu den experimentellen Daten. Die Passivierung der Magnesiumakzepto-
ren wird nun durch Stickstoffvakanzen iibernommen, welche durch das Absenken
der chemischen Stickstoffpotentials dem Wasserstoff gegeniiber bevorzugt sind. Der
Aspekt der Vermeidung der Inversionsdoménen erweitert folglich das urspriingliche
Bild der Magnesiumdotierung:

Die p-Dotierbarkeit von GaN mittels Magnesium lasst sich nicht mittels Wasser-
stoffkodotierung in beliebige Hohen treiben, sondern wird durch die Gratwanderung
zwischen Stickstoffvakanzbildung und Inversionsdoménenbildung limitiert.
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8. Zusammenfassung

Die Wissenschaft fingt eigentlich erst da an, interessant zu werden, wo
sie aufhort.

Justus von Liebig, deutscher Chemiker, 1803 - 1873

Die vorliegende Dissertation hat es sich zum Ziel gesetzt Ursachen der aktuellen
Limitierungen in der p-Dotierbarkeit von Galliumnitrid (GaN) mit theoretischen
Mitteln zu ergriinden und zu erkldaren. Ausgangspunkt stellte dabei der experi-
mentell beobachtete Einbruch der relativen Wasserstoffkonzentration in hoch mit
Magnesium dotierten Proben dar. Dieser Befund steht im Widerspruch zu dem
anerkannten Bild, dass sich die Magnesiumloslichkeit in GaN deutlich erhoht, wenn
mit Wasserstoff kodotiert wird und Magnesium als neutraler [MgH]-Defektkomplex
im Wirtssystem eingebaut wird. Der Einbruch der relativen Wasserstoffkonzen-
tration deutet auf einen weiteren Kompensationsmechanismus hin. Messungen
mittels Sekundéarionenspektroskopie konnten aber keinen geeigneten Kandidaten
feststellen, der die Rolle des Wasserstoffes iibernimmt.

An dieser Stelle erlaubte es das computergestiitzte Materialdesign durch die
Verwendung von ab initio Methoden, wie der Dichtefunktionaltheorie (DFT), tiber
die Berechnung von Defektenergetiken die Informationen iiber das Materialsystem
zu gewinnen, welche dem Experimentator in der Regel verschlossen bleiben. Auch
wenn die in dieser Dissertation durchgehend verwendete Annahme eines thermo-
dynamischen Gleichgewichtes die kinetischen Effekte vernachlissigt, so erlaubt sie
dennoch wichtige Trends abzuleiten und dem Experimentator neue Zielsetzungen
fiir notwendige weitere Experimente aufzuzeigen.

Da der beobachtete Einbruch der relativen Wasserstoftkonzentration mit der
Bildung von Inversionsdoménen begleitet wird, riickten diese zunéchst in den
Fokus der theoretischen Betrachtung. Eine Inversionsdoméne kann Ausmafse von
einigen Kubiknanometern und mehr annehmen. Dies bedeutet eine herausfordernde
Modellierung eines Systems von 10.000 bis 100.000 Atomen und entsprechender
Rechenzeit. Um relativ ziigig erste Aussagen zu erhalten, ist ein zweigleisiger
Ansatz gewdhlt worden: Eine effiziente Modellierung von Superzellen in dieser
Grofse ist auf Basis der DFT-Verfahren nicht mdglich, deswegen sind sie durch
sogenannte ‘coarse-grained’ Verfahren zu ersetzen. Dabei soll aber nach Moglichkeit
die Genauigkeit der Aussagen mit denen der DFT konkurrieren kénnen, weswegen
der Blick auf die Konstruktion akkurater atomzentrierter Basissidtze, den Quamols,
fiel. Auf der anderen Seite war iiber das Material, welches die Inversionsdomé-
nengrenze bildet — Magnesiumnitrid — in der Literatur recht wenig bekannt.
Eine komplette Defektenergetik dieses Materials in der Antibixbyitephase sollte
Aufschluss dariiber geben, inwiefern Magnesiumnitrid die Wasserstoffkonzentration
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in GaN modifizieren kann.

Atomzentrierte Basisséitze leiden unter dem Manko, dass sie im Vergleich zu
ebenen Wellen keine systematisch kontrollierbare Genauigkeit im Sinne einer
Konvergenz aufweisen. Die Quamols wurden mit dem Anspruch entwickelt akkurat
und transferabel zu sein und zudem durch die Verbindung zu einer zu Grunde
liegenden Ebenen-Wellen-Basis die systematisch kontrollierbare Genauigkeit die-
ser zu besitzen. Um besonders die Transferabilitdt zu gewéhrleisten wurde die
Beibehaltung der sphérischen Symmetrie gefordert. Da zudem nicht abzuschétzen
ist, inwieweit ein zu Grunde liegender Basissatz, in welchen Atomorbitale generell
entwickelt werden konnen, Einschriankungen in der Flexibilitdt bedeutet, sind die
Quamols basissatzfrei als numerische Funktionen definiert worden. Als Optimie-
rungskriterium wurde die von Sanchez-Portal 1995 eingefiihrte Spillage gewéhlt:
die Basisraumdifferenz zwischen Zustdnden in der Ebenen-Wellen-Darstellung und
den Zustédnden in der Atomorbital-Darstellung. Die physikalischen Vorteile der
basissatzfreien Reprasentation stehen hierbei jedoch einer deutlich komplexeren
Numerik gegeniiber, so dass die in allen fritheren Arbeiten genutzten analytische Pa-
rametrisierungen — die allerdings nur bedingt flexibel sind — nicht zur Verfiigung
standen. Die effiziente Berechnung von Uberlappintegralen zwischen Zustinden
in der Ebenen-Wellen-Darstellung und der Quamol Repréisentation stellte eine
Herausforderung dar, die mittels des geschickten Einsatzes von Splinefunktionen
gelost werden konnte. Den Daten dieser Dissertation kann entnommen werden, dass
mit den Quamols ein akkurater und transferabler Basissatz geschaffen wurde, der
im Gegensatz zu allen fritheren Methoden vollkommen flexibel ist.

Die Identifizierung und Berechnung der Defektenergetik wichtiger Punktdefekte
in Magnesiumnitrid erfolgte erstmals auf DF'T-Niveau unter Verwendung normer-
haltender Pseudopotentiale und des PBE Korrelation- und Austauschfunktionals.
Unter Anwendung des thermodynamischen Gleichgewichtes konnten Defektkon-
zentrationen bestimmt werden, welche, zusammen mit der geringen Konzentration
von dem in Inversionsdoménen gebundenen Magnesiumnitrid, eine signifikante
Modifikation Wasserstoftkonzentration in GaN:Mg nicht erkldren kénnen. Von einer
kompletten Modellierung der Inversionsdoméne wurde somit Abstand genommen,
da auch die strukturellen Anderungen von der Antibixbyitephase zur Inversons-
doménengrenzphase keine Anderung der Wasserstoffkonzentration um mehrere
Grofsenordnungen bedeutet hatten. Die Ursache der modifizierten Wasserstoftkon-
zentration muss also im Galliumnitrid selbst liegen.

GaN ist ein deutlich intensiver diskutiertes Materialsystem als Magnesiumnitrid.
Hier lassen sich schon komplette Defektenergetiken in der Literatur finden. Jiingste
Entwicklungen, wie die Ladungskorrektur fiir geladenen Defekte in Superzellen,
sowie die bessere Verfiigbarkeit des Hybridfunktionals HSE, welches Bandliicken
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in Ubereinstimmung mit den experimentellen Befunden berechnet und somit
die DFT von ihrem Bandliickenproblem befreit, motivierten die Frage, inwiefern
deren Anwendung die Genauigkeit der Defektenergetiken weiter steigern kann. Die
Gegeniiberstellung der mit diesen neuen Methoden berechneten Defektenergetiken
mit den Literaturdaten war jedoch sehr erniichternd. Weder quantitativ noch
qualitativ lief sich eine Ubereinstimmung ausmachen. Dies stellte natiirlich die
Verlasslichkeit von mit DFT berechneten Bildungsenergien generell in Frage, die fiir
eine akkurate Beschreibung von Defektkonzentrationen unumgénglich sind. Eine
Validierung der Defektenergetiken musste vorgenommen werden. Dazu wurden die
Formeln zur Bestimmung von Bildungsenergien analysiert, um Korrekturterme
zu entwickeln, welche die Schwéchen der alten Funktionale abmildern sollten.
In dieser Dissertation ist es gelungen die qualitative und innerhalb von 0.3 eV
auch quantitative Ubereinstimmung der mit den unterschiedlichen Methoden
berechneten Defektenergien zu zeigen. Wichtig hierfiir ist die konsequente An-
wendung der Ladungskorrektur fiir geladene Defekte in Superzellen, sowie eine
physikalisch motivierte und transparente Umreferenzierung des Ferminiveaus
von der, durch das Bandliickenproblem fehlerhaften, Valenzbandkante zu dem
funktionaliibergreifenden gut beschrieben Umladungsniveau der Stickstoffvakanz.
Mit diesen Erkenntnissen wird es moglich, einen Grofteil der Fehler in der DFT zu
identifizieren und durch geeignete Transformationsvorschriften zu beheben. Durch
die Verwendung neuester Techniken im Bereich der Dichtefunktionaltheorie wie der
Verwendung des HSE Hybridfunktionals, sowie die Anwendung der Superzellenkor-
rektur fiir geladene Defekte konnte zudem die Genauigkeit signifikant verbessert
werden und eine verlassliche Datenbasis geschaffen werden um die Fragestellung zu
untersuchen.

Mit den validierten Defektdaten wurden unter Annahme des thermodynami-
schen Gleichgewichtes Konzentrationsprofile erstellt. Diese Profile zeigen, dass
Stickstoffvakanzen in vergleichbaren Konzentrationen zum Wasserstoff auftreten
und auf Grund ihrer Ladung die Kompensation des Magnesiums iibernehmen
konnen. Allerdings sind die berechneten Konzentrationsdnderungen nach wie
vor zu gering, um die experimentell beobachteten Verhéltnisse zu erkléren. Erst
die Beriicksichtigung der Phasenseparation GaN/MgsNy und eine entsprechende
Kopplung der chemischen Potentiale untereinander, fiihrte zu einer quantitativen
Ubereinstimmung der theoretischen Resultate mit den experimentellen Daten. Die
Gradwanderung zwischen einem ausreichendem Stickstoffangebot zur Vermeidung
der Vakanzbildung und einem Unterangebot an Stickstoff um die Phasenseparation
Galliumnitrid/Magnesiumnitrid bei hohen Magnesiumkonzentrationen zu verhin-
dern, ist schlussendlich als eigentliche Limitierung der p- Dotierbarkeit identifiziert
worden.

Die in dieser Dissertation geschaffen Quamols sind in ihrem Potential bei weitem
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noch nicht erschopft. Thre Moglichkeiten bei der Verwendung von coarse-grained
Methoden sind dabei nur ein moglicher weiterer Entwicklungsstrang der beschritten
werden konnte. Schon jetzt haben sich die Quamols zu analytischen Zwecken be-
wahrt. Sei es bei der Mullikenschen Populationsanalyse oder der orbitalaufgelosten
Bandstrukturanalyse. Dadurch, dass die Quamols den entsprechenden Unterraum
praktisch verlustfrei aufspannen, bilden sie einen systemnéheren Basissatz, als es
die Orbitalfunktionen der Pseudoatome tun, die oftmals zur Analyse von Ebenen-
Wellen-Rechnungen eingesetzt werden. Ein solcher Basissatz erlaubt weiter die orts-
aufgeloste Analyse von Energiebeitragen zur Gesamtenergie eines Systems. Eine
Vielzahl von Fragestellungen kann mit Hilfe dieses Basissatzes angegangen werden
und wird Bestandteil weiterer Forschung mit spannender Physik sein.
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A Mg3Ns in der idealen Antibixbyitestruktur

A. Mg3Ns in der idealen Antibixbyitestruktur

Abb. A.1:

Magnesiumnitrid in der idealen, nichtrelaxierten Antibixbyitestruktur. Die Struktur
ist in vier Atomlage aufgeteilt, die die Superzelle bilden. Die kleinen Kugeln stehen
dabei fiir die Positionen der Stickstoffatome, die groflen Kugeln symbolisieren die Po-
sitionen der Magnesiumatome. Die einzelnen Lagen sind entlang der (100) und der
(010) Richtung verdoppelt worden um ein besseres Verstiandnis fiir die Symmetrie der
einzelnen Lagen zu geben.

Magnesiumnitrid kristallisiert in Antibixbyitestruktur. Diese Struktur besitzt in ih-
rer idealen Form eine grosse Ahnlichkeit zur Kalziumfluoridstruktur. Den Unter-
schied bilden die zur Erhaltung der richtigen Stochometrie einzubringenden Struk-
turvakanzen. Abbildung A.1 zeigt die einzelnen Lagen der kubischen Superzelle.
Wie hier zu sehen ist, ergeben sich die Lagen 3 und 4 aus Translationen der Lagen
1 und 2, so dass diese Superzelle auf eine primitive fec-Zelle reduziert werden kann,
die nur noch 40 Atome enthalt. Eine entsprechende Struktur ist in [109] gegeben.
Die A; 3 bezeichnen die Gittervektoren der kubischen Zelle. Die 32 Stickstoffato-
me Ni 3o bilden ein fce-Untergitter. Die 48 Magnesiumatome Mgy 45 besetzen die
Tetraederliicken, wobei in jeder Lage vier dieser Liicken unbesetzt bleiben und die
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sogenannten Strukturvakanzen Vi _ 16 bilden. Die Koordinaten dieser Strukturvakan-
zen in der idealen Antibixbyitestruktur fiir Magnesiumnitrid lauten

5 1 1 3 3 1

‘/1:§A1+§A2+gA3 ‘/2:§A1+§A2+§A3
7 ) 1 1 7 1

‘/3:§A1+§A2+§A3 ‘/4:§A1+§A2+§A3
7 1 3 1 3 3

‘/5:§A1—|—§A2+§A3 %:gAl—{—gAg—f—gAg
) 5) 3 3 7 3

V7 - gAl + §A2 —|— §A3 ‘/8 - gAl + §A2 + §A3
3 1 5) 5) 3 )

‘/9 - gAl —|— §A2 + §A3 ‘/10 — §A1 + §A2 —|— §A3
1 ) ) 7 7 5)

‘/11 — gAl + §A2 + gAg ‘/12 — §A1 + §A2 + §A3
1 1 7 7 3 7

‘/13 - §A1 + §A2 + §A3 ‘/14 - gAl + §A2 —|— §A3
3 ) 7 ) 7 7

‘/15 — gAl + §A2 + §A3 ‘/16 — gAl + §A2 + §A3

B. Effektivmassenberechnung

Die effektiven Massen von Elektronen und Lochern sind notwendige Grofen zur
Berechnung freier Ladungstragerkonzentrationen wie sie zum Beispiel im Lehrbuch
von Kittel|26] angegeben werden

ke T\

Co =2 (n;;f; ) 6(EFermi—ECBM)/ka7 (B.l)
kT

cp = <n;;lﬂ;2 ) e(BEveM—Erermi)/kpT (BQ)

Die effektiven Massen konnen iiber Hallmessungen experimentell bestimmt werden.
An dieser Stelle wird ein Verfahren vorgestellt, welches den Wert der effektiven
Massen theoretisch abschétzt. Im Allgemeinen verwendet man als Definition der
effektiven Masse m*

11

m* R
¢(k) bezeichnet hierbei die Banddispersion, die erhalten wird, indem in der Um-
gebung des VBM oder des CBM ein parabolischer Fit vollzogen wird. Mit Ay ist

A e(k). (B.3)
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B Effektivmassenberechnung
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Abb. B.1:

Effektive Massen der Locher und der Elektronen in Magnesiumnitrid in Abhéngigkeit
der thermischen Energie. Die linke Skala beziffert die Lochmassen, die rechte die Elek-
tronenmassen. Die Legende gibt das fiir die jeweilige Berechnung verwendete k-Punkt
Gitter wieder.

der Laplaceoperator beziiglich der k-Vektoren bezeichnet. Uber einen parabolischen
Fit an die Bandstruktur kann die effektive Masse des Bandes am entsprechenden
k-Punkt abgeschitzt werden. Allerdings ist dieses Verfahren problematisch im Falle
vieler flacher Bander, wo der Fit individueller Bander zu einer falschen Zustands-
dichte fiihrt. Besser ist es in einer solchen Situation die Zustandsdichte als Eingangs-
grofse zu verwenden, um die effektiven Massen abzuschétzen. Die energieabhéngige
Zustandsdichte D(FE) ist iiber die Beziehung

n<EFermi) = / f(E - EFermi>D(E)dE (B4)

mit der Teilchenzahldichte n verkniipft. Die energieabhéngige Funktion f stellt hier-
bei die elektronische Besetzung der Zustiande dar und wird iiber die Fermi-Dirac Ver-
teilung modelliert. In der numerischen Betrachtung wird die Zustandsdichte iiber

D(E) =) wid(E — €u) (B.5)
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gendhert, wobei €, die Eigenenergien des Systems sind und die wy die k-Punkt
Gewichtung der diskretisierten Brillouin Zone bezeichnet. Damit ergibt sich die Teil-
chenzahldichte numerisch zu

n(EFermi> - Z wkf<€nk - EFermi)- (B6)
n,k

Die folgenden Betrachtungen gelten fiir die Elektronen. Sie lassen sich aber in analo-
ger Weise auf die Locher iibertragen. Unter der Annahme, dass die Energiedifferenz
zwischen Ferminiveau und Leitungsbandminimum deutlich grofer ist als die ther-
mische Energie

Ecem — Erermi
1 B.7
. b (B.7)

kann die Fermi-Dirac-Verteilungsfunktion iiber die Boltzmannverteilung abgeschétzt

werden. Nimmt man weiter an, dass elektronischen Anregungen hauptsachlich von
Defektelektronen vollzogen werden, so ist die Anzahl der Valenzelektronen Ny kon-
stant. Dies ist erfiillt wenn die Energiedifferenz von der Valenzbandkante zur Fermi-
energie deutlich grofer ist als die Energiedifferenz der Fermienergie zum Leitungs-
bandminimum

Erermi — Evem > Ecm — Erermi- (B.8)

Beide Bedingungen zusammen definieren einen sinnvollen Bereich fiir die Wahl des
Ferminiveaus

1
§(EVBM + Ecgm) > Erermi > Ecgm — kT (B.9)
Auch die Wahl der thermischen Energie ist damit sinnvoll eingegrenzt. Zum einen
muss sie gering genug sein um obige Bedingung zu erfiillen, zum anderen grofs genug
um ein grobes k-Punkt Gitter zu rechtfertigen.
Setzt man Ecgy = 0 als Referenzenergie an, so ergibt sich die Anzahl der Leitungs-
elektronen pro Volumenelement zu

Ne & eEF“mi/ka/e_e/kaD(e)de. (B.10)

0

~
Degr(kpT)

Fiir ein freies Elektronengas mit der effektiven Masse m? kann die effektive Zu-
standsdichte D.g analytisch zu

2 *
Des(kyT) = 75 (2mmk,T)** (B.11)
berechnet werden. Mit dieser Beziehung und der Leitungselektronenzahl N, = n.(Q

— mit € als Zellvolumen — ergibt sich die effektive Masse zu
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C Pulay Krifte

91/3],2
- Q2/3(Je,T)5/3

Die Fermienergie geht in die obige Gleichung als Parameter ein und ist zum jetzi-

(kyTIn N, — Epermi) . (B.12)

Mk

gen Zeitpunkt der Berechnungen nicht bekannt. Um sinnvolle Werte fiir die effek-
tive Masse zu erhalten, wird in der Praxis das exponentielle Verhalten von Glei-
chung (B.10) iiber die Konstanz von k,T'In N, — Fpemi abgefragt und die Fermiener-
gie in diesem Bereich gesetzt.

Wir demonstrieren diesen Ansatz an Magnesiumnitrid, dessen Bandstruktur sich
durch eine Vielzahl flacher Bander nahe der Valenzbandkante auszeichnet. Abbil-
dung B.1 zeigt die berechneten effektiven Massen in Abhéangigkeit der thermischen
Energie. Die Qualitéit der effektiven Masse hiangt stark von der zu Grunde liegen-
den Zustandsdichte ab. Eine Approximation der Zustandsdichte iiber d-Funktionen
resultiert in Artefakten, wenn die Peakabstdnde vergleichbar oder sogar grofer als
kyT werden. Dies kann durch eine hohere Temperatur oder ein hoheres k-Punkt
Gitter vermieden werden. Dieses Verhalten sieht man insbesondere bei der elektro-
nischen effektiven Masse, wo das k-Punkt Gitter ausgehend von einem 6x6x6 zu
einem 20x20x20 Gitter mittels k - p Methode[110] interpoliert wurde. Die effektiven
Lochmassen hingegen konvergieren schneller. Eine Erhohung der Auflésung jenseits
eines 12x12x12 Gitters liefert keinerlei signifikante Anderung der Masse, was eine Fol-
ge der Dispersionsfreiheit dieser Zustande nahe der Valenzbandkante ist. Die starke
Temperaturabhéngigkeit ist eine Folge des Freien-Loch-Modells. Hier wird die wahre
Zustandsdichte iiber eine Quadratwurzelfunktion modelliert. Im Falle von Magnesi-
umnitrid reprasentiert eine Stufenfunktion die Zustandsdichte in diesem Energiebe-
reich besser. Ein solcher Ansatz liefert fiir die effektive Zustandsdichte D g o< kT,
was dann fiir die effektive Masse eine thermische Abhiingigkeit m} oc (k,T)~'/% be-
deutet. Genau dieses Verhalten ist in Abbildung B.1 zu sehen. An dieser Stelle gehen
wir dann den pragmatischen Weg: Fiir Berechnungen an spezifischen Temperaturen
wahlen wir die effektive Masse, die fiir die gegebene Temperatur die Zustandsdichte
am besten reprasentiert.

C. Pulay Krafte

Durch den Ubergang zu lokalisierten Basisfunktionen bedarf das Hellmann-Feynman
Theorem einer Erweiterung, welche Pulay|111] erstmals fiir die Hartree-Fock Theorie
einfiihrte und die nun im Folgenden diskutiert wird.

Geméak dem Ehrenfestschen Theorem ldsst sich der Erwartungswert der Kraft als
Ableitung des Erwartungswertes der Energie im Bezug auf die Atomkoordinaten

—F; = VR, E = (¢| VR, H|p) + 2R(Vr,0|H|0). (C.1)

beschreiben. Der erste Ausdruck in der rechten Seite der Gleichung bezeichnet hier-
bei die Hellmann-Feynman Kraft. Der zweite Ausdruck wird als Pulay Kraft be-
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Abb. C.1:

Dissozationskurve des Stickstoffdimers. In blau ist die abstandsabhéngige Gesamtener-
gie aufgetragen. Die rote und die griine Kurve zeigt den Betrag der berechneten Kraft
einmal nach dem Hellman-Feynman Theorem und einmal unter Berticksichtigung der
Pulaybeitrage. Als atomarer Basissatz sind das atomare s- und das atomare p-Orbital
des Potentials verwendet worden. Da diese Orbitale nicht auf das Problem angepasst
sind erhélt man einen deutlichen Beitrag in der Pulay Kraft.

zeichnet und resultiert aus der Verschiebung der Basisfunktionen mit den Atomen.
Diese Kraft ist eine Pseudokraft, aber notwendig zur akkuraten Beschreibung von
Kréften in elektronischen Strukturberechnungen mit lokalisierten Basisfunktionen.
Satoko[112] hat den obigen Ausdruck fiir die Pulay Kraft speziell fir die Kohn-
Sham Gleichungen der Dichtefunktionaltheorie zu

FPU — _oR Z fa dXT|H—enS|¢n> (C.2)

berechnet. An dieser Gleichung lassen sich zwei Eigenschaften der Pulay-Krifte se-
hen:

1. Die Pulay-Krifte verschwinden, wenn das Residuum H —e,,S |t} verschwindet.

2. Die Pulay-Kréfte verschwinden, wenn die Basisfunktionen unabhéngig von den
Atomkoordinaten sind und somit dX* = 0 gilt.
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E Spline-Interpolation

Das erste Argument gilt fiir die exakten Molekiil- oder Festkorperorbitalfunktionen
und bildet somit ein Kriterium zur Bewertung der Qualitéit der Orbitalentwicklung.
Das zweite Argument hingegen gilt insbesondere fiir den Ebenen-Wellenansatz und
verdeutlicht noch einmal, warum fiir diese Methode die Pulay Krifte keine Rolle
spielen.

Die Relevanz der Pulay Kréfte lasst sich am Beispiel des Stickstoffdimers wunder-
bar illustrieren. Abbildung C.1 zeigt die Dissotiationskurve des Molekiils, berech-
net mittels selbstkonsistenter LCAO und dem potentialeigenen s-und p-Orbital als
Basisfunktionen. Dieser nichtoptimierte Basissatz ist verwendet worden um einen
moglichst groften Beitrag zur Pulay Kraft zu bekommen und dennoch ein einiger-
massen physikalisches Bild der Bindung zu erhalten. Eine Strukturoptimierung ohne
die Verwendung der Pulay Kréfte resultiert in einer fehlerhaften Bestimmung der
Gleichgewichtsgeometrie. Anstelle einer Bindungslidnge von 2.233 Bohr liefert die
Kraftoptimierung eine Bindungslédnge von 3.195 Bohr. Erst unter Beriicksichtigung
der Pulay Kréfte lasst sich das Energieminimum bestimmen und somit die Bin-
dungslange korrekt vorhersagen.

D. Variation der inversen Uberlappmatrix

Die Variation der inversen Uberlappmatrix S~! in Abhéngigkeit der Orbitalfunktio-
nen lisst sich iiber die Matrix-Identitéit SS~ = 1 bestimmen. Mit

dSap o1 dsﬁ_l
0= S 4+ S, 2 D.1
] (D-1)
d 71
—Z S dSaﬁs L S, Sap (D.2)

7 d{p |
a,fB

dSaﬁ —1> dSe_wl
o + D.3
Z ( d{p d{pr| (D-3)

folgt daraus

-1

= Z Md 765 ! (D.4)
= 077 Z |:“e Se_ﬁ (D'5)

E. Spline-Interpolation

Sei im folgenden die Funktion ¢ im Intervall [a,b] durch ein Gitter {g,}x mit den
Datenpunkten ¢, = ¢(g,) beschrieben. Ein weiteres Gitter {g¢}= spanne dasselbe
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Intervall auf, jedoch mit einer groferen Menge an Datenpunkten. Es gilt folglich
X < E. Gesucht werden nun Datenpunkte ¢ = ¢(ge). Diese sollen durch eine
kubische Spline-Interpolation berechnet werden. Dabei zerlegt man das Intervall
[a,b] in X — 1 Teilintervalle auf denen kubische Spline-Funktionen

3
Sa(9e) = Y Xeilge — 92)"  mit go < ge < gap (E.1)
=0

definiert werden. Eine kubische Spline-Funktion besitzt nach [113]| die folgenden
Eigenschaften:

S2(9z) = o V 0<z<X-1 (E.2)
S2(get1) = Set1(gwi1) V 0<x< X -1 (E.3)
Sp(gas1) = Spii(ger1) ¥V 0<z<X—1 (E.4)
S(Ger1) = Sii(ge) ¥V 0<a<X -1 (E.5)

Zudem wird noch eine der folgenden Randbedingungen erfiillt:

Natiirliche Randbedingung;:

So(g0) = Sk _1(gx) =0 (E.6)
Hermite Randbedingung;:
So(90) = 0
A
Sx1(9x) = Ik (E.7)

Aus diesen Eigenschaften lassen sich geméf [113] die Spline-Koeffizienten y,; be-
rechnen. Aus der Bedingung (E.2) folgt sofort, dass sich die i = 0 Koeffizienten
zu

Xa0 = Qo (E.8)

ergeben. Weiter lésst sich iiber die Bedingungen (E.3)-(E.5) und der Hilfsbezeich-
nung

he = get1 — Gz (E9>
die Beziehungen
Xz41,0 = Xa,0 T aXa1 + hiX:I:,Z + hiX:(:,S (E.10)
Xx-‘rl,l - Xx,l + 2h:L’X:C,2 + 3hi$7 3 (Ell)
Xz+1,2 = thXa:,S + Xz,2 (ElZ)
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E Spline-Interpolation

herleiten, welche die Koeffizienten aneinander koppeln. Eine Verkniipfung von Be-
ziehung (E.12) in (E.11) liefert weiter

Xz+1,1 = X:v,l + hx(X:v—l—l,Q + Xx,Q) (El?))
und Beziehung (E.11) in (E.10) liefert

h2
Xa+1,0 = Xz,0 T NaXaa + ?(Xﬂc—f—lg + 2Xz2) (E.14)
Aus Gleichung (E.14) lassen sich nun Bestimmungsgleichungen fiir
1 h
Xz = h_(Xerl,O — Xz0) — ?(Xr+1,2 + 2Xz,2) (E.15)

und - durch Indexverschiebung - fiir

1 [

] (Xx+2,0 - Xx+1,0) - %(Xw+2,2 + 2Xm+1,2) (E'16>
T+

Xz+1,1 = A

angeben. Diese in Gleichung (E.13) eingesetzt, liefert als Bestimmungsgleichung fiir
die Gesamtheit der {x,2}—', wenn der Index nachtriglich noch um eins reduziert
wird
3 3
Po—1Xa—12 + 2(he—1 + ha)Xe2 + heXoy12 = h_<Xx+1,0 — Xz,0) — . (Xas 0 = Xz-1,0)
T z—1
(E.17)

Fir xo2 und xx2 muss nun eine der Nebenbedingungen beachtet werden. Die na-
tiirliche Nebenbedingung (E.6) ihrerseits fiithrt zu

Xo2 = 0 (E.18)
XXx2 = O, (Elg)

wihrend die Hermite Nebenbedingung (E.7) auf

2 1 1
Shoxoz + hox1,2 = —(x1.0 — X00) — R (E.20)
3 3 ho
1 p , 1
_hX—1XX—1,2 + _hX—1XX,2 = ¢X - (XX,O - XX—LO) (E'21)
3 3 hx_1

schliessen lasst. Diese Gleichungen bilden ein geschlossenes lineares Gleichungssys-
tem der Form

[los!

X, = 5. (E.22)

dessen Losung die Gesamtheit der {x,2}X, festlegt. Aus diesen wiederum lassen
sich dann die iibrigen Spline-Koeffizienten bestimmen. Die bendtigten Bestimmungs-
gleichungen seinen an dieser Stelle noch mal zusammengefasst:
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Xz,2 = (z_l é)x (E24)
1 <

Xea1 = 3= (Xat10 = Xa0) — = (12 + 2xe.2) (E.25)
1

X$,3 — %(Xﬂ:-{-lﬂ - Xa:,Q) (E26)

Die Werte fiir x x; und x x 3 lassen sich aus den obigen Gleichungen nicht berechnen,
besitzen aber auch fiir die Spline-Interpolation keine Relevanz, da ihr zugehoriger
Spline nicht im Intervall [a,b] liegt. Es sei an dieser Stelle angemerkt, dass alle
Spline-Koeffizienten linear von den erzeugenden Knotenpunkten ¢, abhéngen. Eine
Taylorentwicklung

aXa:, 0..3
Xz,{0.3} = Z —aq{bi ) i (E.27)

ist somit vollstandig.

Mittels des oben beschriebenen Verfahrens lassen sich auf einem Intervall [a, b] gege-
benen Gitter beliebige Punkte in diesem Intervall interpolieren. Davon wird in dem
Quamolverfahren bei der Auffaltung der radialen Funktion im reziproken Raum auf
das dreidimensionale reziproke Gitter der Wellenfunktionen exzessiv Gebrauch ge-
macht. Die Zusammenfaltung konnte mit dem selben Ansatz von statten gehen. Da
sich aber im reziproken Raum der Wellenfunktionen das Signal durch die Projektio-
nen und Rechenoperationen mit einem numerischen Rauschen iiberlagert, ist dies
kein sinnvoller Weg, wie Abb. F.1 eindrucksvoll zeigt. Durch die Spline-Interpolation
pflanzt sich der Fehler im radialen Raum fort und stort dort die Optimierung erheb-
lich. Um diesen Fehler zu minimieren bietet sich das Verfahren des Spline-Fittens
an, welches im Folgenden beschrieben wird.

F. Spline-Fitten

Die Ausgangslage bei diesem Verfahren ist umgekehrt zur Spline-Interpolation. Die
Funktion ¢ sei nun eine gestorte Funktion, die auf einem dichten Gitter g im In-
tervall [a,b] iiber ¢ = ¢(ge) gegeben ist. Gesucht werden nun die Knotenpunkte
fz = f(gz), welche auf dem weniger dichtem Gitter g, einen Spline der Art erzeu-
gen, so dass das Residuum

R=""[p¢ — S(ge) (F.1)
:

minimal wird. Die Variation des Residuums beziiglich eines Knotenpunktes f; lasst
sich zu
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)

Abb. F.1:

Spline-Interpolation und Spline-Fitten am Profil der Sphinx. Die Abbildung der Sphinx
ist mit einem Stiitzstellengitter belegt worden, dessen Spline-Interpolation ihr Profil
reproduziert. Die Interpolation ist dann mit einen Rauschen (griin) iiberlagert worden.
Die blauen Punkte zeigen die sich aus diesem verrauschten Signal ergebenen neuen

Stiitzstellen. Die orangenen Punkte geben die Stiitzstellen wieder, die das Verfahren
des Spline-Fittens liefert.

8fz Z Z Xz,p g;,q g - gz)p—i-q

13 pq—O

) Sp Lt L (g - ) (F.2)

& p=0

berechnen. Da nun die Spline-Koeffizienten linear von den Knotenpunkten abhéngen
(Gl (E.27)) und das lokale Minimum des Residuums iiber die hinreichende Bedin-

gung g—g = 0 gegeben ist, ergibt sich das folgende lineare Gleichungssystem zur
Bestimmung der f,
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Simulationsschritt | Mittelwert Varianz
Rauschen 0.0082 0.1243
Splineinterpolation 0.0646 0.1064
Splinefitting 0.0008 0.0018

Tab. F.1:

Der durch das Profil der Sphinx gelegte Spline wurde mit einem Rauschen iiberlagert.
Vollzieht man nun an diesem Signal eine Spline-Interpolation und berechnet Mittelwert
und Varianz der Differenz zum rauschfreien Ursprungssignal, so erkennt man einen
deutlichen Fehler. Durch das Spline-Fitting wird dieser Fehler reduziert und die Effekte
des Rauschens minimiert.

> feAii = b (F.3)
k
. OXz.p OXaz
mit Ay, YXz,p UXz,q — g, ptq
. Z ;0 of. 0f; )
und b =) Z P g;p 9e — 9a)"-
¢ p=0 v

Die entsprechenden Ableitungen der Spline-Koeffizienten nach den Knotenpunkten
lassen sich iiber

d;(ﬁ” = (F.4)
df;fi’l — hiz((sm,i — 0i) — %(dX;;’2 + 2d§22) (F.5)
Doz _ 0D, (¥.6)
T A =)

berechnen. Das Méchtigkeit dieses Verfahrens lésst sich an Abbildung F.1 demons-
trieren. Uber das Profil der Sphinx ist ein Stiitzstellengitter gelegt worden, welches
mittels Spline-Interpolation das Profil nachbildet. Diese Spline-Interpolation wurde
dann mit einem Rauschen iiberlagert. Die direkte Verwendung dieses Signals zur
Riickrechnung der Stiitzstellen resultiert in einem deformierten Profil. Durch die
Verwendung des Spline-Fittens lassen sich die Stiitzstellen nahezu perfekt rekon-
struieren. Tabelle F.1 zeigt die berechneten Varianzen der durch Spline-Fitten und
Spline-Interpolation rekonstruierten Stiitzstellen und den Initialstiitzstellen. Durch
die Verwendung des Spline-Fittens kann der Fehler und die Varianz des Rauschens
signifikant reduziert werden.
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