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Kurzfassung

Galliumnitrid (GaN) basierte Verbindungen haben sich zur bevorzugt verwendeten
Materialklasse für die Konstruktion lichtemittierender Dioden (LEDs) entwickelt.
Grund dafür ist ihre große, einstellbare Bandlücke, welche fast das komplette sicht-
bare Spektrum abdeckt und somit den Zugang zu Blau- und Weißlicht-LEDs er-
möglicht. Eine Verbesserung der p-Leitfähigkeit in dieser Materialklasse würde die
Herstellung effizienterer und hellerer LEDs ermöglichen. Die vorliegende Disserta-
tion untersucht basierend auf ab initio Methoden die Limitierungen in der GaN
p-Dotierbarkeit mittels Magnesium. Zur Untersuchung dieser limitierenden Fakto-
ren werden Defektenergien unter Verwendung der Dichtefunktionaltheorie (DFT)
berechnet, welche sich besonders zur Modellierung von Punktdefekten eignet. Ausge-
dehnte Defekte, wie zum Beispiel die in hoch p-dotiertem GaN experimentell nach-
gewiesenen Inversionsdomänen (IDs), lassen sich auf Grund ihrer Dimension von
einigen nm3 in dieser Theorie nicht mehr effizient modellieren. Hier bilden coarse-
grained Methoden eine alternative Möglichkeit. In ihrer Genauigkeit hängen diese
jedoch von den zu Grunde liegenden atomzentrierten, atomaren Basissätzen ab. Das
in dieser Dissertation vorgestellte QUAMOL Konzept generiert atomzentrierte nu-
merische Basisfunktionen auf Grundlage von Ebenen-Wellen DFT-Beschreibungen.
An einfachen halbleitenden und metallischen Systemen wird die Erzeugung solcher
QUAMOLs demonstriert und ihre Genauigkeit und Transferabilität in weiteren Un-
tersuchungen herausgestellt. Weiter werden die in GaN dominanten Punktdefekte
untersucht. Basierend auf den berechneten Bildungsenergien lassen sich Stickstoff-
vakanzen als potentielle Kompensationszentren in Magnesium dotierten GaN iden-
tifizieren. Eine Gradwanderung zwischen einem ausreichenden Stickstoffangebot zur
Vermeidung der Vakanzbildung und einem Unterangebot an Stickstoff zur Verhinde-
rung der Phasenseparation Galliumnitrid/Magnesiumnitrid bei hohen Magnesium-
konzentrationen limitiert schlussendlich die p-Dotierbarkeit.
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Abstract

Gallium nitride (GaN) based alloys have evolved into the material class of choice for
blue and white light-emitting diodes (LEDs). The reason is the large, tunable band
gap, which allows light emission of nearly the whole visible spectrum. Improving the
p-conductivity of GaN would allow for more efficient and brighter LEDs based on
this material class. In the present PhD Thesis limitations in the p-doping of GaN
were investigated. The examination is carried out by calculating defect energetics
by means of density-functional theory (DFT), which is the state-of-the-art ab initio
method for modeling and describing point defects. Large defects, such as the ex-
perimentally observed inversion domains (IDs) in p-type GaN:Mg, are not feasible
to model within the framework of DFT. An alternative are coarse-grained methods
employing accurate, atom-centered atomic orbitals. However, the construction of
accurate and, in particular, transferable atomic orbital basis sets is far away from
being trivial. Within this PhD thesis the QUAMOL concept is introduced, which
constructs atom-centered, numerical orbitals based on plane-wave DFT calculations.
The applicability and performance of the developed approach is demonstrated for
semiconducting and metallic test systems, which show that the constructed orbi-
tals are accurate and transferable. Further, the dominant point defects in GaN are
studied in detail. Based on calculated formation energies nitrogen vacancies have
been identified as possible compensators aside hydrogen in GaN:Mg. A tightrope
walk between providing as much nitrogen as needed to avoid vacancy formation and
providing as less nitrogen as possible to hinder the phase separation GaN/Mg3N2

at high Mg concentrations has finally been identified as the theoretical limitation of
p-doping in GaN.
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1. Motivation

Es ist absolut möglich, dass jenseits der Wahrnehmung unserer Sinne
ungeahnte Welten verborgen sind.

Albert Einstein, Physiker und Nobelpreisträger, 1879-1955

In Folge der Nuklearkatastrophe im Kernkraftwerk Fukushima Daiishi im Frühjahr
2011 hat die Regierung der Bundesrepublik Deutschland den endgültigen Ausstieg
aus der Kernenergie bis zum Jahre 2022 beschlossen. Dringender denn je ist die
Frage zu beantworten wie Deutschland sich in der globalen Energielandschaft
positioniert und wie die gesteckten Ziele des Ausstiegs erreicht werden sollen.
Ein Flügel bildet der Ausbau der regenerativen Energien, die den Wegfall der
deutschen Atomreaktoren kompensieren sollen. Es ist jedoch ebenso wichtig, auf
energiesparende und effizienzsteigernde Maßnahmen zu setzen. In diesem Kontext
ist die gestaffelte Abschaffung der traditionellen Glühbirne zu sehen. Eine Alterna-
tive zur Glühbirne stellt die lichtemittierende Diode (LED) dar. Solche Elemente
besitzen zwar höhere Anschaffungskosten, haben jedoch mit ca. 30-140 lm/Watt
eine signifikant höhere Lichtausbeute gegenüber handelsüblichen Glühbirnen mit
ungefähr 13-20 lm/Watt. Auch die Lebensdauer von bis zu 45.000 h ist der von
handelsüblichen Glühlampen von bis zu 2000 h deutlich überlegen. Die Lebensdauer
einer LED hängt jedoch empfindlich von den Umgebungsparametern wie z.B.
Temperatur, Feuchtigkeit und — insbesondere auch — von den durchfließenden
elektrischen Strömen[1] ab. Während die Temperatur und die Feuchtigkeit durch
Kühlkörper und die Kapselung der LED mit korrosionsresistenten Materialen gut
in den Griff zu bekommen sind, hängen die notwendigen elektrischen Ströme von
der Leitfähigkeit des gewachsenen Halbleitermaterials ab. Das Design geeigneter
LED-Materialien mit geringen ohmschen Widerstand ist deswegen in den zentralen
Blickpunkt der Forschung gelangt. Geringere Widerstände bedeuten eine geringere
Wärmeumwandlung und geringere Betriebsströme. Insofern ist der Bau von niedrig-
ohmigen LEDs gerade im Hinblick auf die Effizienz und die Lebensdauer interessant.

Für den Bau von LEDs spielen heutzutage insbesondere Halbleitermaterialen
basierend auf dem III-VI Halbleiter Galliumnitrid (GaN) eine große Rolle. Grund
hierfür ist die Bandlücke von 3.4 eV dieses Materials, welche durch geeignete
Legierung mit den Borgruppenmetallen Aluminium (Al) und Indium (In) so
beeinflusst werden kann, dass Lichtemission im gesamten sichtbaren Spektrum
möglich ist. Grob gesprochen besteht eine GaN-LED aus einer lichtaktiven Schicht
von AlxInyGa1−x−yN, die zwischen n-leitendem und p-leitendem GaN eingebettet
ist (vgl. Abbildung 1.1). GaN, welches mittels Metallorganischer Gasphasenepita-
xie(MOVPE)[2] hergestellt wurde, ist naturgemäss n-leitend[3]. Durch Dotierung
mit Silizium (Si) oder Sauerstoff (O) kann die Anzahl der Donatoren erhöht und
die Leiteigenschaft weiter verbessert werden[4]. Um p-leitendes GaN herzustellen
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1 Motivation

Abb. 1.1:
Schematischer vereinfachter Aufbau einer LED. Auf einem Substrat werden durch
Epitaxie drei Domänen von Galliumnitrid erzeugt. Das n-leitende GaN steht mit der
Elektrode im Kontakt. Diese Domäne wird dann mit der lichtaktiven Schicht über-
wachsen. Abgeschlossen wird das Wachstum mit einer p-leitenden GaN Schicht auf
der die Kathode angebracht wird.

bedarf es einer Dotierung mittels des Erdalkalimetalls Magnesium (Mg). Dies
besitzt ein Valenzelektron weniger als Gallium und fügt sich, anders als die anderen
Bormetalle, ins Wirtsgitter ohne drastische Verspannungen zu bewirken. Die
Löslichkeit von reinem Mg in GaN ist im Rahmen der MOVPE jedoch gering. Die
Molekularstrahlepitaxie (MBE) erlaubt deutlich höhere Magnesiumkonzentratio-
nen, setzt allerdings für den Betrieb Ultrahochvakuum voraus und ist somit für
die industrielle Massenproduktion nur bedingt geeignet. Der Durchbruch gelang
durch die Erkenntnis, dass in mit MOVPE gewachsenen Proben Magnesium in
Form eines neutralen [MgGaH]- Komplexes eingebaut wird und in einem weiteren
Wärmebehandlungsschritt durch Austreibung des Wasserstoffes aktiviert werden
muss.

Dieser Effekt gilt als wohl verstanden [5, 4, 6, 7, 8]: Mg alleine baut sich als negativ
geladenes, substitionelles Mg−Ga im Kristallgitter ein. Die Ladung dieses Defektes
bedingt ladungskompensierende Zentren zur Erreichung der Ladungsneutralität.
Durch die Zugabe von Protonen (H+) werden nun diese kompensierenden Zentren
mitgeliefert, was im Rahmen des klassischen Modells den Einbau des Magnesiums
durch die Bildung neutraler [MgH] Komplexe erleichtern sollte. Allerdings können
diese Defekte nicht aktiv an der Leiteigenschaft teilnehmen, da das entsprechende
Defektniveau in der Bandlücke besetzt ist. Wasserstoff besitzt aber die Eigenschaft
schon bei Temperaturen von 500o C - 800o C in diesem Material mobil zu sein, so
dass er sich in einem anschliessenden Prozessschritt thermisch austreiben lässt[6, 8].

12



Abb. 1.2:
Die linke Abbildung zeigt die auftauchenden pyramidalen Inversionsdomänen in einer
Querschnitts-TEM Aufnahme. Rechts wird ein möglicher atomarer Aufbau der Inversi-
onsdomäne gezeigt. Die braunen Kugeln stellen hierbei Ga-Atome da, die roten Kugeln
visualisieren Mg-Atome und in blau werden die Stickstoffatome dargestellt. Die Bilder
sind der Referenz[11] entnommen.

Dies bedeutet dann die Aktivierung des zuvor durch den Wasserstoff passivierten
Magnesiums.

Neuere Erkenntnisse rütteln jedoch an diesem Bild und zeigen Limitierungen, die
sich in diesem Modell nicht erklären lassen: Experimentell beobachtet man bei
Magnesiumkonzentrationen oberhalb von 1019 cm−3 einen Einbruch der relativen
Wasserstoffkonzentration. Das Wasserstoff-zu-Magnesium Verhältnisses fällt von
ca. 0.7-0.9 auf nur noch 0.2 ab, wie mittels Sekundärionenmassenspekroskopie
(SIMS) beobachtet wird[9] (vgl. Abbildung 1.3). Eine anschliessende Aktivierung
ist nun nicht mehr möglich, die Magnesiumakzeptorniveaus bleiben passiviert und
sind für die Erzeugung der p-Leitfähigkeit verloren. Dies deutet auf einen anderen
Kompensationsmechanismus als Protonierung hin, um den das bisherige Bild
erweitert werden muss. Zudem zeigen experimentell hergestellte, hoch magnesium-
dotierte Proben eine deutliche rauere Oberflächenbeschaffenheit. Hochaufgelöste
Transmissionselektronenmikroskopie (HR-TEM) zeigt hierbei das Auftreten von
Inversionsdomänen (ID) in welcher die GaN-Wachstumsrichtung schlagartig
umgekehrt wird (vgl. Abbildung 1.2). Die Grenzen dieser Inversionsdomänen
(IDB) werden dabei durch eine Magnesiumnitrid-(Mg3N2)-artige Schicht gebildet
[10, 11, 12, 13, 14].

Aus experimenteller Sicht allein ist eine Klärung dieses Phänomens schwierig, da
sich die Menge des Wasserstoffes in der Probe zwar nachweisen lässt, die genaue
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1 Motivation

Abb. 1.3:
Relative Wasserstoffkonzentration in Abhängigkeit der Magnesiumkonzentration. Die
Daten wurden mittels SIMS-Messungen erhoben[9]. Der schwarze Pfeil zeigt die unge-
fähre Position des Kompensationswechsels der als „Wasserstoffdrop“ bezeichnet wird.

Position oder Art des Defektes sowie seine Bildungsenergie dem Experimentator
aber verschlossen bleiben. Die Klärung dieses Phänomens ist nun zentrale Aufga-
be dieser Dissertation. Eine quantentheoretische Betrachtung möglicher Defekte in
GaN mittels Dichtefunktionaltheorie (DFT) stellt heutzutage die geeignetste Mög-
lichkeit dar, akkurate Defektenergetiken zu erhalten. Hinter den Mechanismen ste-
hende wichtige Punktdefekte und Defektkomplexe können so identifiziert werden
[5, 10, 11, 6, 7, 15, 16, 4]. Dabei ist die DFT als ab initio Theorie unabhängig von
experimentellen Daten und erlaubt eine alternative Sichtweise auf das Problem, ins-
besondere auch auf die Facetten, die dem Experimentator verborgen bleiben. Eine
Problembetrachtung mittels der DFT ist somit oftmals wegweisend für weitere Ex-
perimente und wird in dieser Dissertation verwendet, um die obige Problematik zu
analysieren, die gewonnenen Erkenntnisse zu diskutieren und das anerkannte Bild
des Wasserstoffkodotierungsmodells einer Revision zu unterziehen.
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2. Zusammenfassende Kapitelübersicht

[...] hier stehe ich nun, zusammen mit euch, meine furchtlos lesenden
Freunde! Und [...] hier fängt die Geschichte erst richtig an.

Hildegunst von Mythenmetz, Zamonischer Dichter und Buchautor
übersetzt aus dem Zamonischen von Walter Moers, Comic-Zeichner, Illustrator

und Autor, 1957 -

Die vorliegende Dissertation untersucht die Grenzen der p-Dotierbarkeit von
Galliumnitrid (GaN) mittels Magnesium (Mg) basierend auf theoretischen ab
initio Berechnungen. Ausgangspunkt sind hierbei die in Kapitel 1 vorgestellten
experimentell beobachteten limitierende Phänomene. Zum einem bilden sich in hoch
mit Magnesium dotierten Proben Inversionsdomänen (ID) aus, deren Grenzen aus
einer magnesiumnitridartigen Schicht bestehen und die p-Leitfähigkeit durch ihre
Polarisationsumkehr stören. Zum anderen zeigen Messungen mittels Sekundärio-
nenspektroskopie (SIMS), dass die Passivierung der Magnesiumakzeptoren nicht
ausschließlich durch das Kodotiermaterial Wasserstoff (H) gegeben ist. Dies ist
ein Widerspruch zu dem bisherigen anerkannten Modell, welches die Verbesserung
der Magnesiumlöslichkeit in GaN allein über die Bildung von neutralen [MgH]-
Defektkomplexen erklärt. Besonders drastisch fällt der Einbruch der relativen
Wasserstoffkonzentration ab einer Magnesiumkonzentration von ca. 3 · 1019 cm−3

ins Gewicht. Eine thermische Aktivierung des Materials ist nicht mehr möglich.

Gerade der letztere Aspekt ist ein herber Rückschlag, da die Magnesiumakzeptoren
die zentrale Rolle in der Verbesserung der p-Leitfähigkeit darstellen. Die Erhöhung
der Löslichkeit von Mg in GaN ist nur dann sinnvoll, wenn das zusätzlich ein-
gebrachte Magnesium seine Rolle als Akzeptor wahrnehmen kann. Da diese aber
auch ohne Wasserstoff passiviert sind, muss neben dem Wasserstoff ein weiterer
Kompensationsmechanismus eine Rolle spielen. Die experimentellen Daten lassen
aber eine direkte Bestimmung dieses Mechanismus nicht zu. Deswegen bietet es
sich an, auf eine theoretische Modellierung der Problemstellung basierend auf der
Dichtefunktionaltheorie (DFT) als ab initio Theorie zurückzugreifen. Die aus der
Theorie gewonnenen Erkenntnisse über die in p-GaN auftauchenden Defekte helfen
die Details im Experiment genauer zu verstehen, um so praktische Anweisungen für
die weitere experimentelle Forschung zu geben.

Die in dieser Dissertation verwendeten Modellierungen bedingen geeignete Modi-
fikationen gängiger Algorithmen oder die Entwicklung neuer Ansätze. Dies setzt
ein grundlegendes Verständnis der DFT, sowie des verwendeten mathematischen
Kalküls voraus. Kapitel 3 stellt die notwendigen mathematischen Konzepte dar, die
in der DFT und — besonders auch — für die in dieser Dissertation andiskutierten
optimierten Basissätze eine Rolle spielen. Kapitel 4 führt dann in die Konzepte der
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2 Zusammenfassende Kapitelübersicht

Dichtefunktionaltheorie ein, während das Kapitel 5 detailliert die DFT kristalliner
Systeme und die Modellierung von Punktdefekten und Defektkomplexen behandelt.

Gängige Programmpakete, wie das weit verbreitete Vienna ab initio simulation
package (VASP)[17] oder die am Max-Planck-Institut für Eisenforschung GmbH
entwickelte Multiskalenbibliothek S/PHI/nX[18], benutzen in ihren Algorithmen
der Dichtefunktionaltheorie eine Ebene-Wellen-Basis für die quantenmechanische
Wellenfunktion. Dieser Ansatz bedingt eine Beschreibung des Problems im rezi-
proken Raum, hat aber den Charme, dass nur ein einziger Kontrollparameter zur
Einstellung der Genauigkeit des Basissatzes benötigt wird. Dies vereinfacht die
Modellierung ungemein. Die quantenmechanische Beschreibung von großen Defek-
ten mit mehreren Nanometer Ausdehnung, wie sie beispielsweise die in GaN:Mg
auftretende Inversionsdomäne besitzt, ist in diesem Ansatz jedoch sehr zeitin-
tensiv. Typische Algorithmen skalieren kubisch mit der Systemgröße. Eine volle
Modellierung der Inversionsdomäne mit mehreren 10.000 bis 100.000 Atomen wäre
folglich nur auf High Performance Computing Systemen mit entsprechender Paralle-
lisierung denkbar und würde selbst dann Monate bis Jahre an Rechenzeit benötigen.

Wesentlich effizienter sind coarse grained Realraummethoden, die mit geeigneten
atomzentrierten Basissätzen hantieren. Diese Methoden skalieren zu großen Teilen
linear mit den Basisfunktionen und erlauben damit die effiziente Modellierung
von Systemen, deren Ausmaße einige Kubiknanometer und mehr erreichen. Die
Genauigkeit solcher Methoden stehen jedoch in direkter Verbindung zu dem ver-
wendeten atomzentrierten Basissatz. Dieser bietet — im Gegensatz zu den ebenen
Wellen — keine systematisch kontrollierbare Genauigkeit. Vielmehr wird durch
Hinzunahme weiterer Funktionen „versucht“ den Basissatz weiter zu komplettieren.
Weitere Funktionen bedeuten aber nicht unbedingt einen konsequenten Gewinn an
Genauigkeit. Wäre es nun möglich die einfach zu kontrollierende Vollständigkeit
einer Ebenen-Wellen-Basis auf eine atomzentrierte Orbitalbasis zu übertragen, wäre
eben diese große Schwäche der atomaren Basissätze behoben.

In Kapitel 6 wird daher eine Methode vorgestellt, die aus einer Ebenen-Wellen-
Rechnung geeignete atomzentrierte Basisfunktionen, sogenannte Quamols, erzeugt
und so optimiert, dass die besetzten Unterräume nahezu identisch sind. Nach
einer kurzen Einführung atomzentrierter Basisfunktionen in Kapitel 6.1 wird diese
„Nahezu-Identität“ der Unterräume über die Spillage in Kapitel 6.2 quantifiziert.
Diese gilt es nun zu minimieren. Dabei sollen den Orbitalfunktionen so wenig
Einschränkungen wie möglich auferlegt werden. Lediglich die sphärische Symmetrie
der Orbitale wird gefordert. Entgegen früherer Arbeiten, in denen atomzentrierte
Orbitalfunktionen über Gaußfunktionen oder Besselfunktionen als zu Grunde
liegenden Basissatz dargestellt wurden, sind die hier verwendeten Orbitalfunktionen
basissatzfrei als Punkte auf einem logarithmischen Radialgitter repräsentiert.
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Eine besondere Herausforderung in der Entwicklung des Algorithmus stellt dabei
die Berechnung von Überlappintegralen der atomzentrierten Basisfunktionen
mit den Zuständen in der Ebenen-Wellen-Repräsentation dar. Dies bedeutet
die Fouriertransformation von radialen Ortsraumfunktionen auf das kartesische
reziproke Raumgitter der ebenen Wellen. Diese beiden Gitter genügen jedoch völlig
unterschiedlichen Ansprüchen. Die sich daraus ergebenden numerischen Schwie-
rigkeiten wurden im Rahmen der Doktorarbeit durch den geschickten Einsatz
von Spline-Funktionen kompensiert. Die notwendigen Schritte zum eigentlichen
Algorithmus werden in Kapitel 6.3 und Kapitel 6.4 detailliert behandelt. An einigen
ausgewählten Beispielen demonstriert Kapitel 6.5 anschließend die Erzeugung
der optimierten Basisfunktionen. Diese werden auf ihrer Eigenschaften bezüglich
Genauigkeit und Transferabilität untersucht. Die Ergebnisse sind vielversprechend:
Es zeigt sich eine qualitativ hochwertige Übereinstimmung mit den Ebenen-Wellen-
Resultaten bezüglich der Bandstruktur. Auch physikalische Größen, welche die
Berechnung an modifizierten Geometrien benötigen, wie die Gitterkonstante, der
Bulkmodulus oder auch Elastizitätskonstanten lassen sich mit diesen an nur einer
einzigen Struktur generierten Orbitalen sehr gut beschreiben. Die für verschiedenste
Modellierungsaufgaben so grundlegende Transferabilität ist also gewährleistet.
Damit ist es gelungen, akkurate und transferable atomzentrierte Basissätze
zu erzeugen. Durch die Minimierung der Spillage führt die Hinzunahme weite-
rer Funktionen zu einer systematisch kontrollierbaren Verbesserung der Genauigkeit.

Mit den Quamols ist der Grundstein zur Entwicklung oder Adaption von effi-
zienten Realraummethoden gelegt. Kapitel 6.6 diskutiert einige Entwicklungen
bezüglich der Verwendung von den Quamols in einem Tight-Binding-Modell. Die
Herausforderung besteht darin die Basisfunktionen weiter zu lokalisieren, damit die
Berücksichtigung von nur einigen wenigen Nachbarn quantitativ gute Ergebnisse
liefert. Dies ist der nächste Meilenstein zur Entwicklung eines Algorithmus mit
dem auch die Modellierung großer Systeme wie beispielsweise der Inversionsdo-
mäne effizient vollzogen werden kann. Allerdings entfiel in dieser Dissertation die
Notwendigkeit einer entsprechenden Entwicklung, da die Ergebnisse in Kapitel 7
eine explizite Behandlung der Inversionsdomänen nicht erforderlich machten.
Zur Beantwortung der technologisch wichtigen Frage der p-Leitfähigkeit in GaN
findet in Kapitel 7.1 eine Diskussion des Phänomens anhand der Literatur statt.
Kapitel 7.2 fasst die experimentellen Randbedingungen beim Kristallwachstum
mittels Metallorganischer Gasphasenepitaxie (MOVPE) zusammen. Da die Ände-
rung des Kompensationsmechanismus mit dem Auftauchen der Inversionsdomänen
einhergeht, rücken zunächst die magnesiumnitridartigen Inversionsdomänengrenzen
in den Fokus der Untersuchung. Es stellt sich die Frage, inwieweit die sich schlag-
artig ändernde chemische Umgebung Modifikationen der Wasserstoffverteilung
im Material bewirken kann. In Kapitel 7.3 erfolgt eine erste Abschätzung über
die Modellierung von Magnesiumnitrid in der Antibixbyitephase. Dabei werden
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2 Zusammenfassende Kapitelübersicht

erstmals Bildungsenergien von Punktdefekten und Defektkomplexen in diesem
Material mittels DFT bestimmt. Basierend auf dieser Defektenergetik lassen sich
Aussagen über die Defektkonzentrationen unter den GaN Wachstumsbedingungen
treffen. Die dort erzielten Ergebnisse legen nahe, dass durch die Inversionsdomänen
keine signifikante Modifikation der Wasserstoffkonzentration erreicht werden kann.
Die geringe Wasserstoffadsorption, gepaart mit dem geringen Konzentrationsanteil
der IDB in GaN führen zu Wasserstoffkonzentrationen weit unterhalb der expe-
rimentellen Befunde. Es zeigt sich aber, dass der Wasserstoff in diesem Material
vornehmlich an Vakanzen bindet, was die Frage motiviert inwiefern Vakanzen in
GaN eine Rolle spielen.

In Folge dessen fällt in Kapitel 7.4 der Fokus auf die Defektenergetik von GaN.
Da GaN ein in der Literatur viel diskutiertes Material ist, sind schon komplette
Datensätze vorhanden, mit denen verglichen werden kann. In Kapitel 7.4.1 zeigen
wir diese vergleichende Gegenüberstellung der nicht modifizierten Bildungsenergien
einzelner Defekte. Es zeigen sich erhebliche qualitative Unterschiede. Dies motiviert
eine detaillierte Analyse der zu Grunde liegenden Berechnung, da eine akkurate
Berechnung von Defektkonzentrationen mit diesen Daten fragwürdig erscheint.
Die Verlässlichkeit der Aussagen basierend auf diesen Datensätzen steht deswegen
auf dem Prüfstand. Nach einer Einführung in die verwendete Defektnomenklatur
in Kapitel 7.4.2 findet in den Kapiteln 7.4.3 — 7.4.6 eine Entwicklung von Kor-
rekturtermen statt, welche die Schwächen der unterschiedlichen Austausch- und
Korrelationsfunktionale korrigieren und eine Validierung der Datensätze erlauben.
Dazu ist es notwendig eine konsequente Korrektur der durch den Superzellen-
ansatz auftretenden langreichweitigen Ladungswechselwirkung durchzuführen.
Weiter schlägt das Bandlückenproblem der DFT voll zu Buche, wenn die mit
unterschiedlichen Funktionalen berechneten Defektenergien verglichen werden.
In dieser Arbeit ist es gelungen das Umladungsniveau der Stickstoffvakanz als
funktionalübergreifende Referenz für das Ferminiveau zu identifizieren, welches
unabhängig von den Bandeigenschaften des Materials ist. Damit lassen sich die
mit den unterschiedlichen Funktionale berechneten Ergebnisse in Einklang bringen.
Zudem ist durch die Anwendung neuster Entwicklungen der DFT wie des von
Heyd, Scuseria und Ernzerhof entwickelte Hybridfunktional HSE und der Super-
zellenkorrektur für geladene Defekte die Genauigkeit der Defektbildungsenergien
signifikant verbessert worden.

Basierend auf der validierten HSE Defektenergetik findet dann in Kapitel 7.4.7 die
Berechnung der Defektkonzentrationen für hoch Mg-dotiertes GaN statt. Dabei
werden alle Prozesse beleuchtet, die eine Modifikation der Wasserstoffkonzentration
bewirken können, um ein komplettes Bild dieses Phänomens zu zeichnen. Es
wird aus theoretischer Sicht gezeigt, dass Stickstoffvakanzen in vergleichbaren
Konzentrationen zum Wasserstoff auftreten und zudem dessen Kompensationsrolle
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übernehmen. Damit ist ein Kompensationsmechanismus identifiziert, der den
gewünschte Aktivierungsmechanismus der Wasserstoffaustreibung erheblich stört.
Stickstoffvakanzen sind in GaN nicht mobil und lassen sich im Gegensatz zum
Wasserstoff somit nicht thermisch austreiben. Zudem wurde in Kapitel 7.4.8
erstmals die Bildung von Magnesiumnitrid als Grenze für die im Wachstumspro-
zess beteiligten die chemischen Potentiale diskutiert. Es gelingt in diesem Bild
eine qualitative und quantitative Reproduktion des experimentellen Phänomens.
Schlussendlich entpuppt sich das Wechselspiel zwischen Stickstoffvakanzbildung
und der Phasenseparation GaN/Mg3N2 als eigentlich limitierender Faktor der
p-Dotierbarkeit von Galliumnitrid. Damit sind die zentralen zusätzlichen Effekte
aufgedeckt, um welche das ursprüngliche Modell der Wasserstoffkodotierung ergänzt
werden muss, um eine Erklärung der experimentellen Befunde zu erlauben.

Abschließend findet in Kapitel 8 eine Zusammenfassung der Ergebnisse statt.
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3 Mathematische Vorbetrachtungen

3. Mathematische Vorbetrachtungen

Physik verhält sich zu Mathematik wie Sex zu Selbstbefriedigung.

Richard P. Feynman, Physiker und Nobelpreisträger, 1918-1988

Zur Betrachtung der in der Einleitung diskutierten Fragestellungen bedient sich
diese Dissertation aktueller Methoden der Festkörpertheorie, welche allesamt auf
der in den 20er Jahren des vorherigen Jahrhunderts entwickelten Quantenmechanik
basieren. Einen kompletten Abriss dieser Thematik zu liefern ist in diesem Rahmen
nicht möglich, so dass lediglich auf einige wenige Eckpfeiler der Theorie eingegangen
wird, um ein Verständnis der in dieser Arbeit getätigten Überlegungen zu ermögli-
chen. Für eine fundierte Diskussion empfiehlt sich die Lektüre der in den einzelnen
Themenkomplexen angegebenen Literatur. Um insbesondere auf die Herleitung der
Algorithmen der quantitativ optimierten Orbitalfunktionen vorzubereiten, erfolgt
zunächst eine mathematische Vorbetrachtung, die an die hervorragende Einführung
von Ballentine[19] angelehnt ist. Diese ist auch für das Verständnis der in Kapitel 4
dargestellten physikalischen Eckpfeiler der Dichtefunktionaltheorie hilfreich.

3.1. Vektorräume

Die Quantenmechanik benutzt in ihrer mathematischen Beschreibung einen spezi-
ellen Vektorraum: den Hilbertraum. Im allgemeinen besteht ein Vektorraum V aus
einem Satz von Elementen, sogenannten Vektoren φ, und ist geschlossen bezüglich
der Addition und der Multiplikation mit Skalaren c. Das bedeutet:

Definition 3.1 Seien φ1 und φ2 Elemente des Vektorraumes V und c1 und c2 Ska-
lare der komplexen Zahlen C, so ist φ mit

φ = c1φ1 + c2φ2

ebenfalls ein Element des Vektorraumes V .

Aus der Vielzahl von möglichen Vektorräumen sind nun in der Physik zwei von ganz
besonderem Interesse. Der Vektorraum der

1. n-dimensionalen diskreten Vektoren, in welchem die Elemente als Spalten kom-
plexer Zahlen aj repräsentiert werden können, z.B.

φ =


a1

a2

...
an

 ≡ (a1, a2, . . . , an)T .
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3.1 Vektorräume

2. ausgezeichneten Funktionen, in welchem die Elemente über Funktionen mit
bestimmten Eigenschaften, wie zum Beispiel Polynome oder 2-fach differen-
zierbare Funktionen, dargestellt werden.

Diesen Vektoren können nun weitere Eigenschaften zugeschrieben werden.

Definition 3.2 Eine Teilmenge von Vektoren aus V bildet einen Unterraum U von
V , wenn diese Teilmenge geschlossen bezüglich der Addition und der Multiplikation
mit Skalaren ist.

Definition 3.3 Ein Satz von Vektoren {φn} heißt linear unabhängig, wenn die Glei-
chung ∑

n

cnφn = 0

nur die triviale Lösung cn = 0 für alle n besitzt.

Wenn die obige Gleichung eine weitere Lösung besitzt, spricht man von linear abhän-
gigen Vektoren. Das hat zur Folge, dass ein Vektor eines linear abhängigen Satzes
in Form einer Linearkombination der verbleibenden Vektoren ausgedrückt werden
kann. Dies ist der Basisgedanke.

Definition 3.4 Ein Satz linear unabhängiger Vektoren, der in der Lage ist jeden
Vektor des Vektorraumes abzubilden heißt vollständige Basis des Vektorraumes.

Analog können auch in Unterräumen des Vektorraumes Basen definiert werden.
Diese werden mit Bezug auf den Vektorraum als unvollständige Basen bezeichnet.

Weiter wird das innere Produkt definiert.

Definition 3.5 Eine Zuordnung (φ, ψ) → c auf den Vektorraum V mit (φ, ψ ∈
V ; c ∈ C) heißt inneres Produkt oder skalares Produkt, wenn es die folgenden Eigen-
schaften erfüllt:

1. (φ, ψ) = (ψ, φ)∗

2. (φ, c1ψ1 + c2ψ2) = c1(φ, ψ1) + c2(φ, ψ2)

3. (φ, φ) ≥ 0.

Für die obigen zwei Fälle von Vektorräumen haben die inneren Produkte die folgende
Gestalt

1. Seien φ und ψ Elemente der diskreten Vektoren, dargestellt als Spalten mit
den komplexen Zahlen a1, · · · , an, bzw. b1, · · · , bn, so gilt

(φ, ψ) = a∗1b1 + a∗2b2 + · · ·+ a∗nbn,

2. Seien φ und ψ Elemente eines Vektorraumes der Funktionen von x und w(x)

eine positiv reelwertige Gewichtungsfunktion, so gilt

(φ, ψ) =

∫
φ∗(x)ψ(x)w(x)dx.
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3 Mathematische Vorbetrachtungen

3.2. Funktionale und Diracnotation

Weiterhin existieren Zuordnungen, welche einem Vektor eines Vektorraumes eine
komplexe Zahl zuordnen, die sogenannten Funktionale. Man spricht von linearen
Funktionalen, wenn für das Funktional F

F (c1φ1 + c2φ2) = c1F (φ1) + c2F (φ2) (3.1)

gilt. Gilt zudem für die Summe zweier Funktionale

(F1 + F2)(φ) = F1(φ) + F2(φ), (3.2)

so bilden die Funktionale ihrerseits einen linearen Raum V ′, der Dualraum des Vek-
torraumes der Vektoren φn genannt wird. Über die Beziehung dieser Funktionale zu
den Vektoren, welche letztendlich die berühmte Diracnotation begründet, trifft das
Riesz Theorem eine Aussage.

Theorem 3.1 Riesz Theorem: Es existiert eine eins-zu-eins Entsprechung zwi-
schen linearen Funktionalen F in V ′ und Vektoren f in V , sodass alle linearen
Funktionale als

F (φ) = (f, φ) (3.3)

dargestellt werden können. Dabei sei f ein fester Vektor und φ ein beliebiger Vektor
des Raumes V .

Der Beweis des Riesz Theorems geschieht in zwei Schritten. Zunächst ist zu zeigen,
dass jedem Vektor f ein Funktional F zuzuordnen ist. Dieses ist aber über die
jeweilige Definition des inneren Produktes eines Vektorraumes explizit gegeben und
somit trivial erfüllt. Es bleibt folglich noch zu zeigen, dass sich für jedes Funktional
F ein entsprechender Vektor f konstruieren lässt. Dazu nehmen wir an, dass die
{φn} eine orthonormale Basis des Vektorraumes V bilden, also (φn, φm) = δn,m gilt.
Somit lässt sich jeder beliebige Vektor ψ in dieser Basis ausdrücken als

ψ =
∑
n

cnφn.

Es folgt für lineare Funktionale nach Gleichung (3.1)

F (ψ) =
∑
n

cnF (φn).

Wenn man nun den Vektor f als

f =
∑
n

[F (φn)]∗φn

konstruiert, ergibt sich für das skalare Produkt
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3.3 Lineare Operatoren

(f, ψ) =
∑
n,m

F (φn)cmδn,m =
∑
n

F (φn)cn = F (ψ). q.e.d

Die Diracnotation nennt nun Vektoren des linearen Vektorraumes V ket-Vektoren
und bezeichnet sie mit |φ〉. Die linearen Funktionale F des Dualraumes V ′ werden
als bra-Vektoren bezeichnet und 〈F | geschrieben. Das komplexwertige Ergebnis eines
Funktionals wird nun

F (φ) = 〈F |φ〉 (3.4)

geschrieben. Gemäß dem Riesz Theorem sind nun das Funktional F und der ent-
sprechende Vektor f gleichwertig, so dass beide mit dem gleichen Buchstaben be-
zeichnet werden können. Die Verwendung des bra 〈F | oder des ket |F 〉 ermöglicht
nun die Unterscheidung, in welchem Raum das Objekt F beheimatet ist. Gemäß
Gleichung (3.3) gilt entsprechend

〈F |φ〉 = (F, φ). (3.5)

Deshalb wird das braket 〈F |φ〉 in der Physik formal als weitere Darstellung des
inneren Produktes verwendet. Es ist aber zu beachten, dass über das Risz Theorem
eine antilineare Entsprechung

c∗1〈F |+ c∗2〈F | ↔ c1|F 〉+ c2|F 〉 (3.6)

von bra und ket gegeben ist.

3.3. Lineare Operatoren

Neben den Funktionalen gibt es eine Klasse von Objekten, die Vektoren des Vektor-
raumes V wieder auf Vektoren abbilden: die sogenannten Operatoren.

Definition 3.6 Seien |ψ〉 und |φ〉 Elemente eines Vektorraumes V . Das Objekt Â
mit der Eigenschaft

|ψ〉 = Â|φ〉

heißt Operator.

Ein Operator heißt linear wenn er, angewendet auf eine Linearkombination von
Vektoren, gemäß

Â(c1|ψ1〉+ c2|ψ2〉) = c1Â|ψ1〉+ c2Â|ψ2〉 (3.7)

zerfällt. Weiter besitzen lineare Operatoren — im folgenden nur noch als Operatoren
bezeichnet — die folgenden interessanten Eigenschaften.
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Die Gleichheit zweier Operatoren Â und B̂ ist dann gegeben, wenn ihre Wirkung
auf beliebige Vektoren |ψ〉 identisch ist, d.h

Â|ψ〉 = B̂|ψ〉.

Dies wird durch die Kurzschreibweise Â = B̂ ausgedrückt. Damit lässt sich das
Produkt und die Summe von Operatoren definieren. Es gilt

(Â+ B̂)|ψ〉 = Â|ψ〉+ B̂|ψ〉 (3.8)

ÂB̂|ψ〉 = Â(B̂|ψ〉) (3.9)

Aus dieser Definition folgt unmittelbar, dass die Multiplikation von Operatoren as-
soziativ ist, Â(B̂Ĉ) = (ÂB̂)Ĉ. Jedoch besitzt das Kommutativgesetz in der Regel
keine Gültigkeit: ÂB̂ 6= B̂Â.
Bisher ist nur die Wirkung von Operatoren auf ket-Vektoren diskutiert worden. Ihre
Wirkung auf bra-Vektoren wird in der Diracnotation über die Beziehung

(〈φ|A)|ψ〉 = 〈φ|(A|ψ〉) (3.10)

definiert. Untersuchen wir dieses Definition aus der Sichtweise der lineare Funktio-
nale und verwenden das Riesz Theorem

Fφ(ψ) = (φ, ψ). (3.11)

Die Wirkung des Operators Â auf das lineare Funktional Fφ ist dann analog zu
Gleichung (3.1) als

ÂFφ(ψ) = Fφ(Âψ) (3.12)

definiert. Darüber hinaus ist das neue Funktional ÂFφ definiert. Folgt man dem
Riesz Theorem, muss ein ket-Vektor |χ〉 existieren mit

ÂFφ(ψ) = (χ, ψ) = Fχ(ψ). (3.13)

Da nun aber |χ〉 im selben Vektorraum wie |φ〉 beheimatet ist, muss ein Operator
Â† existieren, so dass |χ〉 = Â†|φ〉 gilt. Damit folgt

ÂFφ = FÂ†φ

und weiter

(Â†φ, ψ) = (φ, Âψ).

Letzteres ist aber gerade die Definition der Adjunktion eines Operators über das
skalare Produkt, welche sich hier ganz natürlich aus der Diracnotation ergibt. Dies
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3.4 Selbstadjungierte Operatoren

hat zur Folge, dass der korrespondierende bra-Vektor 〈ω| des ket-Vektors |ω〉 ≡ Â|φ〉
als 〈ω| ≡ 〈φ|Â† gegeben ist. Verwendet man nun, dass 〈ω|ψ〉∗ = 〈ψ|ω〉 folgt hieraus

〈φ|Â†|ψ〉∗ = 〈ψ|Â|φ〉. (3.14)

Zusätzlich zum inneren Produkt 〈φ|ψ〉 kann nun ein äußeres Produkt |ψ〉〈φ| definiert
werden, welches seinerseits einen Operator darstellt. Dies wird klar, wenn man die
Wirkung dieses Objektes auf einen ket-Vektor betrachtet. Mittels Assoziativgesetz
folgt

(|ψ〉〈φ|)|λ〉 = 〈ψ|(〈φ|λ〉︸ ︷︷ ︸
c∈C

) = c〈ψ|,

was eine Abbildung des Vektors |λ〉 auf c〈ψ| bedeutet. Diese Konstrukte werden
uns in Kapitel 6 als Projektoren wieder begegnen. Unter Verwendung von Glei-
chung (3.14) ergibt sich aus 〈λ2|ψ〉〈φ|λ1〉 = (〈λ1|φ〉〈ψ|λ2〉)∗ = 〈λ2|(|φ〉〈ψ|)†|λ1〉 die
Identifizierung

(|φ〉〈ψ|)† = |ψ〉〈φ|. (3.15)

3.4. Selbstadjungierte Operatoren

Erfüllt ein Operator die Beziehung

〈ψ|Â|φ〉 = 〈φ|Â|ψ〉∗ (3.16)

so heißt er selbstadjungiert. Selbstadjungierte Operatoren nehmen in der Physik eine
besondere Rolle ein. Durch diese werden messbare Observablen, wie zum Beispiel die
Energie eines Systems, der Drehimpuls oder der Ort eines Teilchens repräsentiert.

Theorem 3.2 Das Eigenwertspektrum eines selbstadjungierten Operators ist rein
reell:

Â|α〉 = a|α〉 mit a ∈ R

Der Beweis erfolgt direkt unter Verwendung der Definition selbstadjungierter Ope-
ratoren. Sei |α〉 ein beliebiger Eigenvektor von Â zu dem Eigenwert a. Dann gilt die
Folgerung:

a〈α|α〉 = 〈α|aα〉 = 〈α|Â|α〉 (3.17)

= 〈α|Â|α〉∗ = 〈α|aα〉∗ (3.18)

= a∗〈α|α〉 (3.19)

Daraus folgt sofort die Identität a = a∗, was nur gültig ist für a ∈ R.
Weiter gilt für selbstadjungierte Operatoren, dass Eigenvektoren zu unterschiedli-
chen Eigenwerten orthogonal aufeinander stehen.
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3 Mathematische Vorbetrachtungen

Theorem 3.3 Seien |α1〉 und |α2〉 Eigenvektoren des selbstadjungierten Operators
Â mit den Eigenwerten a1 und a2. Dann gilt

〈α2|α1〉 = 0 für a1 6= a2

Auch hier verwendet man die Definition selbstadjungierter Operatoren. Aus

0 = 〈α2|Â|α1〉 − 〈α1|Â|α2〉∗ (3.20)

= a1〈α2|α1〉 − a2〈α1|α2〉∗ (3.21)

= (a1 − a2)〈α2|α1〉 (3.22)

folgt unmittelbar die Aussage des Theorems.

Diese mathematischen Vorbetrachtungen bilden den Grundstock zum Verständnis
der mathematischen Formulierung der Quantenmechanik. Auf dieser fusst die nun
im Folgenden beschriebene Dichtefunktionaltheorie.

26



4. Dichtefunktionaltheorie - Eine Einführung

Elektronen im Bohrschen Atommodell sind stehende Materiewellen. Um
das zu verstehen, stellen Sie sich einen Elektrozaun vor, nur ohne Draht
und Pfosten.

Vince Ebert, dt. Physiker und Kabarettist, 1968 -

4.1. Beschreibung von Vielteilchensystemen

Die Modellierung von Molekülen und Festkörpern — und insbesondere von De-
fekten — ist zentraler Bestandteil aktueller Forschung und zur Beantwortung der
zentralen Fragestellung dieser Dissertation unabdingbar. Besonders die Entwicklung
der Dichtefunktionaltheorie (DFT) in den 60er Jahren und ihre kontinuierlichen
Verbesserungen bis in unsere heutige Zeit haben dafür gesorgt, dass die moderne
theoretische Festkörperphysik heutzutage einen immensen Stellenwert hat. Nur
sie erlaubt es effiziente und quantitativ akkurate Modelle von Punktdefekten
zu entwickeln und damit für die Experimentatoren wegweisende Ergebnisse zu
produzieren. Im Folgenden werden die Konzepte dieser mächtigen Theorie erörtert
und dargestellt.

Atomare Ensemble können als ein Satz positiv geladener Kerne verstanden wer-
den, welche ihrerseits von Elektronen umgeben sind. Die bindende Kraft zwischen
Kernen und Elektronen ist die Coulombkraft FCoulomb, hervorgerufen durch das ent-
sprechende Coulombpotential VCoulomb. Für Punktladungen qi, qj im Vakuum, die
sich im Abstand ri,j voneinander befinden, ist dieses über die Beziehung

VCoulomb(ri,j) =
1

4πε0

qiqj
ri,j

(4.1)

gegeben. Aus der Kenntnis des Potentials und den damit verbundenen Kräften lässt
sich nun klassisch die Dynamik des Systems über die Differentialgleichung beschrei-
ben, die empirisch von Sir Isaac Newton bestimmt wurde und als zweites Newton-
sches Axiom Berühmtheit erlangt hat. Im Falle zeitlich unveränderlicher Massen
lässt sich diese als

F =
dp

dt
= m

d2r

dt2
(4.2)

schreiben. Für die Beschreibung klassischer Partikel, die sich in unserer alltägli-
chen Größenordnung bewegen, leistet diese Gleichung hervorragende Ergebnisse.
Allerdings versagt dieser Ansatz bei der Beschreibung des Mikrokosmos. Zu Beginn
des 20. Jahrhunderts gelang es Erwin Schrödinger eine Gleichung aufzustellen,
welche das Verhalten von quantenmechanischen Partikeln, zu denen die Elektronen
gehören, korrekt beschreibt. Dazu war es notwendig den Begriff des Teilchens
fallenzulassen und quantenmechanische Objekte mittels einer komplexwertigen
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4 Dichtefunktionaltheorie - Eine Einführung

Wellenfunktion Ψ zu beschreiben. Eine anschauliche Bedeutung hat hierbei nur das
Betragsquadrat dieser Wellenfunktion, welches als Aufenthaltswahrscheinlichkeit
des quantenmechanischen Objektes am Ort r aufgefasst wird.

Die Dynamik dieser Wellenfunktion wird durch die Schrödingergleichung

Ĥ(r, t)Ψ(r, t) = i}
∂Ψ(r, t)

∂t
(4.3)

beschrieben. Die zeitliche Propagation der Wellenfunktion beschreibt der sogenannte
Hamiltonoperator Ĥ(r, t), in welchem nun Ausdrücke für die kinetische Energie und
die Potentiale stecken. In vielen Fällen hängen die Potentiale nicht explizit von der
Zeit ab, so dass der Hamiltonoperator Ĥ(r, t) ≡ Ĥ(r) zeitunabhängig angesetzt wer-
den kann. In diesen Situationen wählt man die Wellenfunktion als Produktfunktion
Ψ(r, t) = ψ(r)T (t). Dies führt zur sogenannten zeitunabhängigen Schrödingerglei-
chung

Ĥψ(r) = Eψ(r) (4.4)

Ψ(r, t) = ψ(r)e−iEt/~. (4.5)

Das Auffinden von Lösungen der zeitunabhängigen Schrödingergleichung ist eine
zentrale Aufgabe der Quantenmechanik. Für ein einziges Teilchen ist der Hamilton-
operator Ĥ die Summe der Operatoren der kinetischen Energie T̂ und Energie des
Teilchens im externen Potential V . In der Ortsraumdarstellung ist der Operator der
kinetischen Energie als

T̂ = − ~2

2m
4 (4.6)

gegeben. Dabei bezeichnet4 = ∇·∇ den Laplace Operator. Die potentielle Energie,
welche aufgrund der obigen Seperabilität der Wellenfunktion als zeitunabhängig
anzunehmen ist, ist eine Funktion des Ortes r̂:

Ĥ = T̂ + V (r) (4.7)

= − ~2

2m
4+V (r) (4.8)

Für Fragestellungen in der Festkörperphysik gilt es primär eine Vielzahl von Teilchen
zu modellieren, welche ihrerseits miteinander durch die Coulombkraft wechselwirken.
Deshalb betrachten wir an dieser Stelle die Schrödingergleichung von N durch die
Coulombkraft wechselwirkenden Elektronen in einem externen Potential. Die Wel-
lenfunktion des Systems ist damit eine Vielteilchenwellenfunktion der N Elektronen.
Die Wechselwirkung der Elektronen untereinander wird durch das Coulombpotential
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4.1 Beschreibung von Vielteilchensystemen

VCoulomb =
1

4πε0

N∑
i,j<i

q2

|ri − rj|
(4.9)

beschrieben und ist ein Zweiteilchenpotential. Dies hat gerade im Falle von Elek-
tronen einen interessanten Effekt zur Folge. Auf Grund des Pauli-Prinzips muss
die Wellenfunktion eines Systems von N Elektronen antisymmetrisch bezüglich der
Vertauschung zweier Koordinaten

Ψ(r1, ..., rj, ...rk, ..., rN) = −Ψ(r1, ..., rk, ..., rj, ..., rN) (4.10)

sein. Nur so ist gewährleistet, dass keine zwei Elektronen in all ihren Quantenzahlen
übereinstimmen. Der Einfachhalt halber beschränkt man sich im Folgenden auf ein
System von zwei Elektronen. In der Hartree-Fock Theorie wird diese antisymmetri-
sche Gesamtwellenfunktion Ψ anhand einer Slaterdeterminante

Ψ(r1, r2) =

∣∣∣∣ψ1(r1) ψ2(r1)

ψ1(r2) ψ2(r2)

∣∣∣∣ = ψ1(r1)ψ2(r2)− ψ1(r2)ψ2(r1). (4.11)

bestehend aus Einteilchenwellenfunktionen ψ konstruiert. Die Couloumbenergie des
Systems beinhaltet dann die folgenden Energieausdrücke. Zum einem die sogenannte
Hartree-Energie EH, wo selbe Orbitale am selben Ort lokalisiert sind

EH =

〈
ψ1(r1)ψ2(r2)

∣∣∣∣ 1

r1 − r2

∣∣∣∣ψ1(r1)ψ2(r2)

〉
+

〈
ψ1(r2)ψ2(r1)

∣∣∣∣ 1

r1 − r2

∣∣∣∣ψ1(r2)ψ2(r1)

〉
(4.12)

als auch solche Beiträge, wo der Ort bei selben Orbitalen ausgetauscht ist

EX =−
〈
ψ1(r1)ψ2(r2)

∣∣∣∣ 1

r1 − r2

∣∣∣∣ψ1(r2)ψ2(r1)

〉
−
〈
ψ1(r2)ψ2(r1)

∣∣∣∣ 1

r1 − r2

∣∣∣∣ψ1(r1)ψ2(r2)

〉
. (4.13)

Dieser letzte Energiebeitrag wird als Austauschenergie EX bezeichnet. Die Nähe-
rung der Vielteilchenwellenfunktion über eine einzige Slaterdeterminante ist in der
Regel zu grob, so dass in der Hartree-Fock Theorie die Summe aus Hartree-Energie
und Austausch-Energie ca. 99% der tatsächlichen Vielteilchen-Coulombenergie
ausmachen[20] . Diese Energiedifferenz wird als Korrelationsenergie EC bezeichnet
und ist in ihrer analytischen Form nicht bekannt. Das Auffinden entsprechender
Funktionale für die Austausch- und Korrelationsenergie ist auch heute noch
eine zentrale Fragestellung in der DFT. An späterer Stelle werden die gängigen
Näherungen für diese diskutiert.
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4 Dichtefunktionaltheorie - Eine Einführung

Um nun aber zur Beschreibung von Atomen, Molekülen und Festkörpern zu kom-
men, müssen die Kerne in der Gleichung berücksichtigt werden. Die Kerne sind aus
Protonen und Neutronen aufgebaut, wobei jedes dieser Bestandteile ungefähr um
den Faktor 1800 schwerer ist, als ein einzelnes Elektron. Born und Oppenheimer
haben gezeigt, dass die Gesamtenergie von Molekülen in Form einer Entwicklung
nach Potenzen von 4

√
mElektronen/MKerne geschrieben werden kann[21]. Energiebei-

träge basierend auf einer gekoppelten Elektronen-Kern-Bewegung tauchen erst in
vierter Ordnung und höher in dieser Entwicklung auf, so dass diese gegenüber den
anderen Energieausdrücken basierend auf einer reinen Kern- oder Elektronenbewe-
gung vernachlässigt werden können. Erst im Falle von speziellen Randbedingungen,
wie sie z.B. bei der Tieftemperatursupraleitung auftreten, sind die massenskalierten
Energiegrößen vergleichbar und eine Vernachlässigung nicht gerechtfertigt. Für die
in dieser Dissertation betrachteten Randbedingungen ist diese Näherung aber statt-
haft. Daraus resultiert eine Entkopplung der Kernbewegung von der Bewegung der
Elektronen im Rahmen der im folgenden diskutierten Born-Oppenheimer Näherung.

4.2. Die Born-Oppenheimer Näherung

Zerlegt man den obigen Hamiltonoperator explizit in seine Kern- und seine Elektro-
nenanteile, so besitzt er die folgende Gestalt:

Ĥ = T̂ + V̂ = T̂K + T̂e + V̂KK + V̂eK + V̂ee. (4.14)

Es bezeichnen hierbei T̂K und T̂e die Operatoren der kinetischen Energie für Kerne
und Elektronen und V̂KK, V̂eK und V̂ee die Operatoren der potentielle Energien der
Wechselwirkungen Kern-Kern, Elektron-Kern und Elektron-Elektron. Der elektro-
nische Hamiltonoperator Ĥ0

Ĥ0 = Ĥ − T̂K − V̂KK = T̂e + V̂ee + V̂eK (4.15)

ist nun Bestandteil weiterer Betrachtungen. In diesen fließen die Kernkoordinaten
nur noch als Parameter ein, so dass eine Unterscheidung zwischen elektronischen
Koordinaten und Kernkoordinaten sinnig ist. Dazu sei an dieser Stelle x = {ri}Ne

i=1

und X = {Rk}NK
k=1 definiert. Ne bezeichnet hierbei die Anzahl der Elektronen, NK

die Anzahl der Kerne. Das rein elektronische Teilproblem lautet dann

Ĥ0(x;X)ψi(x;X) = εi(X)ψi(x;X) (4.16)

mit

〈ψi|ψj〉 = δij. (4.17)

Unter der Annahme, dass dieses elektronische Problem bereits gelöst ist, bilden die
ψi eine Basis des Hilbertraumes. Die Gesamtwellenfunktion des Systems lässt sich
dann gemäß
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4.3 Dichtefunktionaltheorie

ψges(x,X) =
∑
i

χi(X)ψi(x;X) (4.18)

entwickeln. Setzen wir dies in die obige Hamiltongleichung des Gesamtsystems ein
und bilden das Produkt mit 〈ψj| gewinnen wir als Schrödingergleichung

〈ψj|Ĥ|ψges〉 = Eges〈ψj|ψges〉 (4.19)

⇐⇒
∑

i χi(X)〈ψj|Ĥ0 + T̂K + V̂KK|ψi〉 = Eges
∑

i χi(X)〈ψj|ψi〉 (4.20)

⇐⇒
(
εj(X) +

∑
i 〈ψj|T̂K|ψi〉+ T̂K + V̂KK

)
χj(X) = Egesχj(X). (4.21)

An dieser Stelle greift nun die aus[21] motivierte Vernachlässigung der Kopplungs-
terme 〈ψj|T̂K|ψi〉 gegenüber den anderen Ausdrücken. Die sich daraus ergebene Nä-
herung

(εj(X) + TK + VKK)χj(X) ≈ Egesχj(X) (4.22)

ist die sogenannte adiabatische Näherung oder Born-Oppenheimer Näherung[21].
Hier entkoppeln Kernbewegung und Elektronenbewegung vollständig und es gilt
das Problem des rein elektronischen Hamiltonoperators Ĥ0 zu lösen. Dieser Ope-
rator beinhaltet die kinetische Energie der Elektronen, sowie die Potentiale der
Coulombinteraktion der Elektron-Elektron Wechselwirkung und der Kern-Elektron
Wechselwirkung und besitzt die Gestalt:

Ĥ0 =
N∑
i

− ~2

2m
∆i︸ ︷︷ ︸

Tee

+
1

4πε0


n∑

i,j<i

q2

|ri − rj|︸ ︷︷ ︸
Vee

−
Ne,NK∑
i,k

Zkq
2

|ri − rj|︸ ︷︷ ︸
VeK

 . (4.23)

4.3. Dichtefunktionaltheorie

Zur Lösung des oben diskutierten elektronischen Problems werden zwei Klassen von
Verfahren angewendet. Die Hartree-Fock-Ansätze und die daraus resultierenden
Verfahren finden in der Quantenchemie bei der Berechnung einzelner Moleküle
Verwendung. Da die typischen Verfahren jedoch vom Rechenaufwand wie N4 und
höher mit ihrer Systemgröße skalieren, sind sie zur Beschreibung von Festkörpern
mit bis zu hundert Atomen für Defektzellen nur beschränkt bis gar nicht einsetzbar.

Ein anderer Ansatz zur Lösung des elektronischen Problems basiert auf der Einfüh-
rung der ortsaufgelösten Elektronendichteverteilung n(r). Diese ist über die Glei-
chung

n(r) := N

∫
. . .

∫
Ψ∗(r, r2, . . . , rN)Ψ(r, r2, . . . , rN)d3r2d

3r3 . . . d
3rN (4.24)
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4 Dichtefunktionaltheorie - Eine Einführung

definiert. Der Faktor N bezeichnet die Gesamtzahl der zu behandelnden Teilchen
und dient somit der Erhaltung der Teilchenzahl. Es gilt folglich der Zusammenhang

N =

∫
n(r)d3r. (4.25)

Man bezeichnet die Teilchenanzahl N hierbei auch als Funktional der Elektronen-
dichte n und schreibt N = N [n]. Ebenso ist die Elektronendichte n aufgrund ihrer
obigen Definition ein Funktional der N-Teilchenwellenfunktion Ψ.

Um jedoch die Wellenfunktion durch die Elektronendichte zu ersetzen, benötigt man
zwischen diesen beiden Größen eine eineindeutige Abbildung. Über diese Eigen-
schaft und einige weitere, die zur Lösung des obigen Problems beitragen, treffen die
Hohenberg-Kohn-Theoreme Aussagen.

4.3.1. Die Hohenberg-Kohn-Theoreme

Die Hohenberg-Kohn Theoreme[22] sind das Herzstück der Dichtefunktionaltheorie.
Nach Capelle[23] lassen sich 3 Hauptaussagen treffen.

Theorem 4.1 Hohenberg-Kohn (I)
Im Falle eines nichtentarteten Grundzustandes kann die Grundzustandswellenfunk-
tion als ein erweitertes Funktional1

Ψ0(r1, r2, . . . , rN) = Ψ[n0(r)] (4.26)

der Grundzustandselektronendichte dargestellt werden.

Aus diesem ersten Theorem folgen sämtliche wichtigen physikalischen Verankerun-
gen um die Einteilchenelektronendichte als einzige notwendige Größe zu etablieren.
Aufgrund dieser eineindeutigen Funktionalabbildung trägt die Elektronendichte ge-
nau den gleichen Informationsgehalt wie die N-Teilchenwellenfunktion. Weiter sind
alle physikalischen Erwartungswerte O von Observablen Ô, welche vorher Funktio-
nale der Wellenfunktion waren, nun auch Funktionale der Elektronendichte. Dies
folgt direkt aus der Definition des quantenmechanischen Erwartungswertes

O0 = O[n0] :=
〈

Ψ[n0]
∣∣∣ Ô ∣∣∣Ψ[n0]

〉
(4.27)

einer Observablen. Der Beweis dieses aussagekräftigen Theorems ist im Folgenden
skizziert.

1Entgegen der in Abschnitt 3.2 getätigten Definition eines Funktionals findet hier nun eine Zu-
ordnung eines Skalars aus dem Zahlenkörper R auf den Raum der zwei mal differenzierbaren
und quadratintegrablen N-dimensionalen Funktionen LN statt. Ein solches Funktional wird als
erweitertes Funktional bezeichnet.
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4.3 Dichtefunktionaltheorie

Angenommen es gäbe zwei Potentiale V (r) und V ′(r), die sich um mehr als eine
additive Konstante unterscheiden, aber die gleiche Einteilchenelektronendichte n(r)

als Grundzustandsdichte besitzen. Diese Potentiale definieren zwei verschiedene Ha-
miltonoperatoren Ĥ und Ĥ ′ mit zwei unterschiedlichen Eigenfunktionen |Ψ〉 und
|Ψ′〉. Für diese gilt:

〈
Ψ
∣∣∣ Ĥ ∣∣∣Ψ〉 = E0 (4.28)〈

Ψ′
∣∣∣ Ĥ ′ ∣∣∣Ψ′〉 = E ′0. (4.29)

Wendet man nun die Wellenfunktion Ψ′ auf den Hamiltonoperator Ĥ an, ist der
erhaltene Energieeigenwert echt größer als die Grundzustandsenergie E0. Dies folgt
aus dem Variationsprinzip der Quantenmechanik.

E0 <
〈

Ψ′
∣∣∣ Ĥ ∣∣∣Ψ′〉 =

〈
Ψ′
∣∣∣ Ĥ ′ ∣∣∣Ψ′〉+

〈
Ψ′
∣∣∣ Ĥ − Ĥ ′ ∣∣∣Ψ′〉

= E ′0 +

∫
n(r) [v(r)− v′(r)] d3r (4.30)

Zum selben Schluss kommt man auch für die Wellenfunktion Ψ und den Hamilton-
operator Ĥ ′:

E ′0 <
〈

Ψ
∣∣∣ Ĥ ′ ∣∣∣Ψ〉 =

〈
Ψ
∣∣∣ Ĥ ∣∣∣Ψ〉− 〈Ψ

∣∣∣ Ĥ − Ĥ ′ ∣∣∣Ψ〉
= E0 −

∫
n(r) [v(r)− v′(r)] d3r. (4.31)

Eine Addition beider Ungleichungen führt zu der Ungleichung:

E0 + E ′0 < E0 + E ′0. (4.32)

Dies stellt einen offensichtlichen Widerspruch dar. Zu zwei Potentialen, die sich
um mehr als eine additive Konstante unterscheiden, müssen folglich auch zwei
verschiedene Grundzustandssdichten n gehören.

Das zweite Hohenberg-Kohn-Theorem motiviert das Variationsprinzip.

Theorem 4.2 Hohenberg-Kohn(II)
Es existiert eine Grundzustandsladungsdichte n0 zur Grundzustandsenergie

E0 = E[n0] =
〈

Ψ[n0]
∣∣∣ Ĥ ∣∣∣Ψ[n0]

〉
. (4.33)

Jede andere Ladungsdichte n′ liefert eine Energie, die größer oder gleich der Grund-
zustandsenergie ist:

E[n0] ≤ E[n′]. (4.34)
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Diese Aussage entspricht dem Variationsprinzip der Wellenfunktion und schränkt
die berechnete Energie eines Variationsprozesses nach unten ein. Beim Vollzug der
Minimierung der Energie E ist jedoch stets darauf zu achten, dass die Teilchenzahl
N des Systems, sprich die Normierung der Teilchendichte, erhalten bleibt. Um dies
zu bewerkstelligen wird nicht E[n] variiert, sondern E[n]− µ(

∫
n(r)dr−N). Solche

Nebenbedingungen werden in der Variationsrechnung über sogenannte Lagrangepa-
rameter µ eingebracht, denen eine physikalische Bedeutung zugeschrieben werden
kann. In diesem Fall wird µ als chemisches Potential der Elektronen interpretiert.

Eine weitere Aussage treffen die Hohenberg-Kohn-Theoreme über das Funktional
der potentiellen Energie.

Theorem 4.3 Hohenberg-Kohn (III)
Wenn Ausdrücke für die Operatoren der kinetischen Energie T , der Wechselwir-
kungsenergie Vee und der Energie des externen Potentials VeK bekannt sind, existie-
ren auch ihre Funktionale T [n], Vee[n], sowie VeK[n] und es gilt

E[n] = T [n] + Vee[n] + VeK[n] = F [n] + VeK[n]. (4.35)

Zwar wird hier die Existenz der Funktionale belegt, jedoch keine Aussagen über
deren explizite Gestalt getroffen. Dies ist gerade für die essentiellen Funktionale der
kinetischen Energie und der Elektron-Elektron-Wechselwirkung kritisch, für welche
bis heute keine exakte Form bekannt ist. Für das externe Potential VeK[n] hingegen
lässt sich sofort ein Funktional hinschreiben:

VeK[n] =

∫
n(r)veK(r)d3r. (4.36)

4.3.2. DFT in der Anwendung: Die Kohn-Sham Gleichungen

Die Hohenberg-Kohn Theoreme zeigen, dass ein Wechsel von der Mehrteilchenwel-
lenfunktion zur Einteilchenladungsdichte theoretisch möglich ist und sämtliche Ope-
ratoren auch als Funktionale der Einelektronendichte existieren. Die möglichen Lö-
sungsverfahren dieses Problems sind vielfältig. Die Minimierung des Energiefunk-
tionals nach der Elektronendichte stellt hierbei jedoch einen ineffektiven Ansatz
dar. Weit verbreitet ist deswegen heute die Methode von Kohn und Sham[24, 23].
Das Vielteilchenproblem wird, wie in der Hartree-Fock-Theorie, auf ein effektives
Einteilchenproblem reduziert. Dabei wird das wechselwirkende System durch ein
wechselwirkungsfreies System in einem effektiven Einteilchenpotential ersetzt. Zu
diesem Ansatz wird man geradezu gedrängt, da die einzelnen Energiefunktionale

E[n] = T [n] + Vee[n] + VeK[n] (4.37)

nicht bekannt sind und man gezwungen ist diese durch geeignete Wahl zu nähern.
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4.3 Dichtefunktionaltheorie

Eine explizite Darstellung des Funktionals der Elektron-Kern-Wechselwirkung ist
über die Gleichung (4.36) bereits gegeben. Probleme bereiten die Funktionale der ki-
netischen Energie und der Elektron-Elektron-Wechselwirkung. Aus der Hartree-Fock
Theorie ist bekannt, dass Vielteilcheneffekte bzw. Korrelationseffekte eine Rolle spie-
len und diese sich in diesen Funktionalen widerspiegeln müssen. Ohne Kenntnis der
expliziten Form formuliert man das Problem dergestalt um, dass man auf Bekanntes
aus der Hartee-Fock-Theorie zurückgreifen kann: Man zerlegt die Funktionale in ihre
Einteilchenanteile und Vielteilchenanteile:

E[n] = Tsingle[n] + VH[n] + VeK[n] + Exc[n]. (4.38)

Die Vielteilcheneffekte werden nun durch ein einziges Funktional Exc beschrieben,
welches die Austausch- und Korrelationsenergie enthält. Das Funktional der kine-
tischen Einteilchenenergie ist jedoch nur ein implizites Funktional der Elektronen-
dichte. Da schon dieses in der expliziten Form nicht bekannt ist, verwendet man die
Darstellung über Einteilchenwellenfunktion

Tsingle[n] = Tsingle[{Φi}] = − ~2

2m

N∑
i

〈Φi|∆Φi〉. (4.39)

Das Potential VH für die Ladungswechselwirkung der Elektronen wird aus der
Hartee-Fock-Theorie übernommen:

VH =
1

4πε0

q2

2

∫∫
n(r)n(r′)

|r− r′|
d3r′d3r. (4.40)

Unbekannt bleibt nun lediglich das Austausch- und Korrelationsfunktionalfunktio-
nal. Gängige Näherungen für dieses werden im nächsten Abschnitt diskutiert.

Um nun das elektronische Problem zu lösen, ist die Variation der Elektronendichte

δE[n]

δn(r)

∣∣∣∣
n0

=
δTsingle[n]

δn(r)

∣∣∣∣
n0

+
δVH[n]

δn(r)

∣∣∣∣
n0︸ ︷︷ ︸

vH[n0]

+
δVeK[n]

δn(r)

∣∣∣∣
n0︸ ︷︷ ︸

veK[n0]

+
δExc[n]

δn(r)

∣∣∣∣
n0︸ ︷︷ ︸

vxc[n0]

!
= 0 (4.41)

von Nöten. Die Herren Kohn und Sham gingen hier allerdings einen pragmatischen
Weg. Sie führten ein nichtwechselwirkendes System in einem effektiven Einteilchen-
potential veff([n]) ein. Die daraus resultierende Minimierungsvorschrift

δE[n]

δn(r)

∣∣∣∣
n0

=
δTsingle[n]

δn(r)

∣∣∣∣
n0

+
δVeff[n]

δn(r)

∣∣∣∣
n0︸ ︷︷ ︸

veff[n0]

!
= 0 (4.42)

zeigt eine Identität mit der Lösung des Vielteilchenproblems, wenn

veff[n0] = vH[n0] + veK[n0] + vxc[n0] (4.43)
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4 Dichtefunktionaltheorie - Eine Einführung

erfüllt ist. Dies kann für physikalische Systeme immer erreicht werden. Damit ist
nun die Lösung des effektiven Einteilchenproblems(

− ~2

2m
∆ + Veff[n0]

)
|Φi(r)〉 = εi|Φi(r)〉 (4.44)

von Interesse. Bei bekannter Grundzustandselektronendichte n0 lässt sich dieses Pro-
blem durch geeignete Standardverfahren lösen. Doch genau dort liegt das Problem.
Die Grundzustandselektronendichte ist unbekannt und zudem noch ein Funktional
der Orbitalfunktionen:

n0(r) =
N∑
i

|Φi(r)|2. (4.45)

Die Kohn-Sham-Gleichungen sind somit nichtlinear. Solche Gleichungen können aber
iterativ selbstkonsistent gelöst werden, indem die Dichte in jedem Berechnungs-
schritt konsistent zu den Wellenfunktionen gewählt wird und das Gleichungssystem
solange gelöst wird, bis die Dichte konvergiert ist. Die Gesamtenergie des Problems
berechnet2 sich dann zu

E[n] = Tsingle[n] + VeK[n] + VH[n] + Exc[n]

= Tsingle[n] +

∫
veffn− vHn− vxcn dr + VH[n] + Exc[n]

= Tsingle[n] + Veff[n]− 2VH[n]−
∫
vxcn dr + VH[n] + Exc[n]

=
∑
i

εi − VH[n]−
∫
vxcn dr + Exc[n].

(4.46)

An dieser Stelle erkennt man, dass die Gesamtenergie nicht durch einfache Summa-
tion der Kohn-Sham Orbitalenergien gegeben ist. Das bedeutet, dass die mit dem
Kohn-Sham-Schema berechnete Lösung keine vollständige Lösung des wechselwir-
kenden Systems ist. Lediglich die Grundzustandselektronendichte und die Grund-
zustandsenergie kommen identisch heraus. Die Kohn-Sham-Energien stimmen je-
doch zumindest qualitativ mit dem echten Energiespektrum überein[25]. Aus die-
sem Grund werden auch Bandstrukturen und Bandlücken mit den Kohn-Sham-
Energieeigenwerten berechnet. Man muss sich jedoch im klaren darüber sein, dass
diese keinen realen Bezug haben müssen. Dies fällt besonders gravierend in der
Unterschätzung von Bandlücken ins Gewicht, welche bei den gängigen Näherung
des Austausch- und Korrelationsfunktionals auftauchen. Diesen Näherungen wid-
men sich nun die nächsten Abschnitte.
2Dabei wird der Zusammenhang Veff[n] =

∫
veff[n]ndr verwendet. Es ist

allerdings zu beachten, dass die Integration über das Hartree-Potential∫
vH[n(r)]n(r) dr =

∫∫
n(r)n(r′)/|r− r′| dr′ dr = 2VH[n] (atomare Einheiten: 4πε0 = q = 1)

ergibt. Über die Integration des Austausch- und Korrelationspotentials vxc lässt sich an dieser
Stelle noch keine Aussage treffen.
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Kristall Bandlücke [eV] alat [Å]
LDA PBE Art expa Art expb

Diamant 4.14 4.16 indirekt 5.4 indirekt 3.55
Si 0.48 0.58 indirekt 1.17 indirekt 5.43
Ge 0.06 0.07 direkt 0.744 indirekt 5.66
Ge (Γ→ L) 0.06 0.20 indirekt 0.744 indirekt 5.66
GaN (ZB) 1.79 1.75 direkt 3.2 direkt 4.52
GaP 1.47 1.63 indirekt 2.32 indirekt 5.45
GaAs 0.41 0.58 direkt 1.52 direkt 5.65
a Referenz[26]
b Referenz[27]

Tab. 4.1:
Die mit den gängigen Funktionalen LDA und PBE berechneten Bandlücken zeigen eine
deutliche Unterschätzung. Die Unterschätzung kann sogar bis zu einer völligen Fehl-
beschreibung des Materials gehen, wie im Falle des Germaniums, welches in den DFT
Rechnungen nahezu metallisch ist. Die Berechnung erfolgten an der experimentellen
Gitterkonstante.

4.3.3. Die lokale Dichtenäherung (LDA)

In Ermangelung einer geschlossenen analytischen Form für das Austausch- und
Korrelationsfunktional ist man gezwungen ein solches geeignet zu konstruieren.
Die lokalen Dichtenäherungen sind dabei solche, bei denen das Austausch- und
Korrelationsfunktional allein von der Elektronendichte abhängt — im Gegensatz zu
den später beschriebenen Korrekturverfahren, die noch den Gradienten der Dichte
einbauen.

Basierend auf dem Modell eines homogenen Elektronengas von Thomas und Fermi
lässt sich das Austauschfunktional im Falle geschlossener Schalen — also gleicher
Elektronenanzahl mit „Spin up“ und „Spin down“ — zu

Ex[n] = −3

4

(
3

π

)1/3 ∫
(n(r))4/3d3r (4.47)

berechnen[28]. Für offene Schalen — also bei unterschiedlicher Anzahl von „Spin up“
und „Spin down“ Elektronen — ergibt sich jenes zu

Ex[n] = −3

2

(
3

4π

)1/3∑
σ

∫
(nσ(r))4/3d3r. (4.48)

Der Laufindex σ bezeichnet hierbei die zwei möglichen Spineinstellungen[29].

Obwohl diese Ausdrücke schon 1930 bekannt waren, brauchte es weitere 50 Jahre bis
Vosko, Wilk und Nusair das Korrelationsfunktional hinreichend genau bestimmen
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4 Dichtefunktionaltheorie - Eine Einführung

konnten. Ceperley und Alder entwickelten später basierend auf Quantum Monte-
Carlo-Rechnungen einen weiteren Ausdruck für das Korrelationsfunktional[30]. Per-
dew und Zunger schlugen ein Verfahren vor um die fehlerhafte Beschreibung der
Selbstwechselwirkung zu korrigieren[31]. Die Addition beider Ausdrücke zu einem
Austausch- und Korrelationsfunktional

ELDA
xc = Ex[n] + ECA

c [n] (4.49)

ist heute der gängige Ausdruck zur Berechnung von Materialeigenschaften auf dem
LDA Niveau.

Im Vergleich zu den experimentellen Befunden neigt die LDA dazu Gitterkonstan-
ten und Bindungslängen tendenziell zu unterschätzen[29]. Bindungsenergien werden
tendenziell überschätzt, weswegen LDA tendenziell zum sogenannten Overbinding
neigt. Bandlücken werden deutlich unterschätzt, wie die Datensammlung in Tabel-
le 4.1 zeigt.

4.3.4. Gradientenkorrekturen und das PBE-Funktional

Um den Inhomogenitäten in realen Ladungsverteilungen Rechnung zu tragen, wur-
den auf Basis der Weizsäckerschen Inhomogenitätskorrektur

ncorr =
|∇n|2

n

Versuche unternommen, LDA zu verbessern. 1988 formulierte Becke[29], basierend
auf einer Arbeit von Herman, van Dyke und Ortenberger[32], sein Austauschfunk-
tional.

EBecke
x [n] = ELDA

x [n]− β
∑
σ

∫
n4/3
σ

x2
σ

1 + 6βxσ sinh−1 xσ
(4.50)

mit

xσ =
|∇nσ|
n

4/3
σ

(4.51)

welches den korrekten asymptotischen Coulombverlauf im Unendlichen besitzt.
Der Parameter β ist ein Fit-Parameter. Becke bestimmte ihn, indem er den
exakten Hartree-Fock Austausch für die Edelgasatome bestimmte und den Pa-
rameter mittels eines least-square-Fits an diese Daten anpasste. Die mit diesem
semi-empirischen Austauschfunktional berechneten Austauschenergien für andere
Atome und 3d-Übergangselemente sind erstaunlich gut. Dies liegt daran, dass die
Korrektur erst für große xσ beginnt, eine Rolle zu spielen. Große xσ bedeuten
eine stark fluktuierende Elektronendichte n, wie sie beispielsweise in gerichteten
Bindungen auftritt. Die Korrektur wirkt subtraktiv zum LDA Austausch und
bewirkt somit eine Reduzierung der Elektronendichte, was zu einer Abschwächung
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4.3 Dichtefunktionaltheorie

der Bindung führt. Dem Overbinding wird folglich entgegengewirkt.

1986 gelang es Perdew das Funktional der Korrelationsenergie weiter zu
verbessern[33]. Die Kombination von Perdews Korrelationsfunktional und Beckes
Austauschfunktional wird als BP86 bezeichnet und war lange Zeit das Standard
Austausch- und Korrelationsfunktional. Jedoch besitzt dieses Funktional bezüglich
des Korrelations- und Austauschloches das falsche Abklingverhalten in der Zweiteil-
chenelektronendichte

n2(r1, r2) = N (N − 1)

∫
Ψ∗(r1, r2, . . . , rN)Ψ(r1, r2, . . . , rN)dr3 . . . drN . (4.52)

Aufgrund des Pauliverbotes und der Coulombabstoßung dürfen sich zwei Elektronen
nicht beliebig nahe kommen, so dass

lim
r1→r2

n2(r1, r2) = 0 (4.53)

gelten muss. Die Art der Nullstelle ist aber essentiell unterschiedlich. Das Pauli-Loch
— die Elektronen besitzen den gleichen Spin — besitzt die Eigenschaft

dn2(r1 ⊗ s, r2 ⊗ s)

dr12

∣∣∣∣
r12=0

= 0, (4.54)

während das Coulomb-Loch — die Elektronen besitzen einen unterschiedlichen Spin
— eine Nullstelle mit der Eigenschaft

dn2(r1 ⊗ s1, r2 ⊗ s2)

dr12

∣∣∣∣
r12=0

= ±∞ (4.55)

besitzt. Bei der Konstruktion eines neuen Austausch- und Korrelationsfunktionals
haben Perdew und Wang dieses Abklingverhalten berücksichtigt und das PW91
Funktional geschaffen[34]. 1996 beseitigte Perdew einige Schwächen seine Funktio-
nals. Insbesondere die Zahl der Parameter wurde deutlich reduziert um das Funk-
tional verständlicher und durchschaubarer zu machen, ohne dabei etwas an Genau-
igkeit einzubüßen[35]. Das als GGA-PBE bekannte Funktional gilt heutzutage als
Standardfunktional der Dichtefunktionaltheorie in der generalisierten Gradienten-
näherung.

4.3.5. Hartee-Fock Austausch und Hybrid-Funktionale

LDA und PBE liefern sehr gute Strukturdaten. Allerdings versagen diese Funktio-
nale bei der Vorhersage von physikalischen Observablen, die einen direkten Bezug
zur Bandlücke besitzen. Aktuelle Veröffentlichungen zeigen zudem, dass auch die
relativen Lage des Valenzbandmaximums zum mittleren elektrostatischen Potential
fehlerhaft beschrieben wird[39, 40, 41]. Der Grund für dieses Versagen ist eine zu
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Kristall Bandlücke [eV]
HSE Art exp Art

GaN (WZ) 3.24 direkt 3.5a direkt
Mg3N2 2.76 direkt 2.8 b,c direktb/indirektc
a Referenz[36]
b Referenz[37]
c Referenz[38]

Tab. 4.2:
Die mit HSE berechneten Bandlücken an der optimierten LDA Struktur für GaN und
an der optimierten PBE Struktur von Mg3N2 zeigen eine gute Übereinstimmung zu
den experimentellen Befunden. Die leichte Unterschätzung der Bandlücke von GaN ist
der LDA Struktur mit der durchs Overbinding zu geringen Gitterkonstante geschuldet.
Rechnungen an der PBE Struktur ergeben eine Bandlücke von 3.46 eV.

starke Lokalisierung des Austauschlochs in der LDA und der PBE. Hybridfunktiona-
le, welche zu dem PBE-Austausch einen gewissen Betrag an Hartree-Fock Austausch
mischen, zeigen ein deutlich delokalisiertes Austauschloch und beschreiben die Band-
lücke sowie die relative Position des Valenzbandmaximums besser[42, 43, 44]. Die
Konstruktion des Hybridfunktionals geschieht dabei nach der Vorschrift

EHybrid
XC = αEHF

X + (1− α)EPBE
X + EPBE

C . (4.56)

Im Falle von α = 0.25 erhält man das Austauschfunktional, das als PBE0 [45, 46, 47,
48] in der Literatur bezeichnet wird. Die Verwendung des wie r−1-abklingenden Aus-
tauschpotentials führt jedoch zu einem eklatanten Problem für metallische Systeme:
Während Moleküle, Halbleiter und Isolatoren ein exponentielles Abklingverhalten in
der Wellenfunktion besitzen, welches das r−1 Verhalten dämpft, schlägt in Metallen
dieses Abklingverhalten voll zu Buche und führt zu divergierenden Integralen und
langsamer Konvergenz. Praktisch wird versucht dies durch ein abgeschirmtes Cou-
lombpotential zu umgehen, welches eine geringere Reichweite als das r−1-Potential
besitzt. Heyd, Scuseria und Ernzerhof (HSE) zerlegten dazu das r−1-Potential in
einen langreichweitigen und einen kurzreichweitigen Anteil:

1

r
=

erfc(ωr)
r

+
erf(ωr)
r

. (4.57)

Dabei bezeichnet der Ausdruck

erf(ωr) =
2√
π

ωr∫
0

e−t
2

dt (4.58)

die Fehlerfunktion und projiziert den langreichweitigen Anteil aus dem Coulombpo-
tential. Die komplementäre Fehlerfunktion
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erfc(ωr) =
2√
π

∞∫
ωr

e−t
2

dt (4.59)

projiziert den kurzreichweitigen Anteil aus dem Coulombpotential. Im Falle ω → 0

geht die Fehlerfunktion gegen Null und die komplementäre Fehlerfunktion gegen 1.
Für grosse ω ist es genau umgekehrt. Der Parameter ω erlaubt folglich eine Einstel-
lung der Reichweite des kurzreichweitigen Potentials und ist von HSE auf Basis von
zahlreichen Rechnungen justiert worden[43, 44]. Für den Hartree-Fock Austausch
ist ωHF = 0.15/

√
(2)a−1

0 verwendet worden, der PBE Austausch wird mit einem
ωPBE = 0.15× 21/3a−1

0 abgeschirmt. Der Mischungsparameter α ist identisch zu dem
in PBE0. Basierend auf diesen Rechnungen konnten HSE zeigen, dass die langreich-
weitige (LR) Beimischung des Hartree-Fock Austausches nur einen geringen Einfluss
auf die numerischen Ergebnisse besitzt. Das eigentliche HSE-Funktional mischt folg-
lich nur kurzreichweitig (SR) den Hartree-Fock Austausch mit dem PBE Austausch

EHSE
XC = αEHF,SR

X + (1− α)EPBE,SR
X + EPBE,LR

X + EPBE
C (4.60)

Eigene Testrechnungen unter Verwendung der HSE Implementierung in VASP[17]
liefern für die in dieser Dissertation betrachteten Materialien eine signifikante Ver-
besserung in der Beschreibung der Bandlücke (vgl. Tabelle 4.2). Insbesondere für
Mg3N2 ist somit HSE eine echte Alternative zur Berechnung von Eigenschaften der
Bandstruktur im Vergleich zur aufwendigen und rechenzeitintensiven Modellierung
der primitiven Zelle mit 40 Atomen mit dem GW-Ansatz[49, 50], welcher vor HSE
als akkurater Standart zur Berechnung von Bandstruktureigenschaften ohne Band-
lückenproblem galt.
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5. Dichtefunktionaltheorie für kristalline Systeme

Man hat den Eindruck, dass die moderne Physik auf Annahmen beruht,
die irgendwie dem Lächeln einer Katze gleichen, die gar nicht da ist.

Albert Einstein, Physiker und Nobelpreisträger, 1879-1955

5.1. Der Impulsraum-Formalismus

Im Blickpunkt der Festkörpertheorie stehen die Eigenschaften von kristallinen Struk-
turen. Diese zeichnen sich durch ihre Symmetrien aus. Insbesondere die Ausnutzung
der Translationssymmetrie erlaubt die Einführung periodischer Randbedingungen
nach Born und Kármán[51, 52], durch welche die Kristalle in primitiven Zellen be-
schrieben werden können. Im Allgemeinen werden Symmetrietransformationen des
dreidimensionalen Raumes mittels Operationen der Gestalt

r′ = Rr + t =: {R|t}r (5.1)

vollzogen. Dabei bezeichnet R eine Operation aus der Punktgruppe O(3) — zum Bei-
spiel Drehungen und Spiegelungen — und t eine beliebige Translation. Im Rahmen
gruppentheoretischer Betrachtungen kann man zeigen, dass solche Raumoperatio-
nen eine Gruppe bilden und die Translationen {E|t}r eine invariante Untergruppe
der Raumtransformationen sind. E ist hierbei die identische Abbildung. Lässt man
bei den Raumtransformationen nur diskrete Translationsvektoren der Gestalt

t =
3∑
i=1

niai ni ∈ Z {ai}3
i=1 ist Basis des R3 (5.2)

zu, so nennt man die Gruppe der Raumtransformationen Raumgruppe.

Um nun Darstellungen der Translationsgruppe T zu finden, untersucht man Trans-
lationen des Kristalls entlang seines ersten primitiven Gittervektors a1. Führt man
nun zwei Translationen t1 und t2 hintereinander aus, so ist anschaulich klar, dass
eine solche Translation auch als direkte Translation t3 = t1 + t2 ausführbar ist.
Um nun eine Darstellung dieser Gruppe zu finden benötigt man Abbildungen der
Translationsoperatoren auf unitäre Matrizen Γ, so dass die Abbildungsvorschrift

t1 + t2 = t3 −→ Γ(t1)Γ(t2) = Γ(t3) ∀ t1, t2, t3 ∈ T (5.3)

erfüllt ist. Die Gruppe der Translation ist abelsch, da die Vektoraddition kommuta-
tiv ist. Für abelsche Gruppen, zu denen die Gruppe der Translationen gehört, sind
die entsprechenden unitären Matrizen Skalare.

Betrachten wir nun im folgenden eine primitive Kristallzelle mit dem Volumen
Ω = a1 · (a2 × a3). Zur Beschreibung des Kristalls verwenden wir N1 Zellen in
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a1-Richtung, N2 Zellen in a2-Richtung sowie N3 Zellen in a3-Richtung. Das Kris-
tallvolumen berechnet sich nun zu V = N1N2N3Ω = NΩ. Betrachtet man nun
Translationen um den primitiven Gittervektor a1, so ist anschaulich klar, dass ei-
ne solche Verschiebung den Kristall auf sich selbst abbildet. Auch eine N1-fache
Anwendung des dieser Translation bildet den Kristall auf sich selbst ab. Folglich gilt

N1a1 = 0 −→ [Γ(a1)]N1 = 1. (5.4)

Daraus lässt sich nun die Darstellung dieser Translation zu

Γ(a1) =
N1
√

1 −→ Γ(a1) = e−2πim1/N1 0 ≤ m1 ≤ N1 − 1 (5.5)

ableiten. In der Verallgemeinerung auf dreidimensionale Translationen der Gestalt

t = n1a1 + n2a2 + n3a3 (5.6)

ergibt sich somit für deren Darstellung

Γ(t) =
(
e−2πim1/N1

)n1
(
e−2πim2/N2

)n2
(
e−2πim3/N3

)n3
. (5.7)

Diese Darstellung hat die Form

Γ(t) = e−ikt, (5.8)

wenn k als

k =
3∑
i=1

mi

Ni

bi (5.9)

angesetzt wird und die bi die primitiven Gittervektoren des reziproken Gitters be-
zeichnen. Die reziproken Gittervektoren werden über die Gleichung

bi · aj = 2πδij (5.10)

definiert.

Da nun der Hamiltonoperator mit der Translationsoperation vertauscht, besitzen
beide Operatoren einen gemeinsamen Satz von Eigenfunktionen. Somit bilden die
elektronischen Wellenfunktionen eine Basis der Eigenfunktionen des Translations-
operators und können mit einen entsprechenden Reziprokraumvektor k indiziert
werden. Wendet man nun den Translationsoperator auf eine solche Wellenfunktion
an

φk(r− t) = t̂φk(r) = Γ(t)φk(r) = e−iktφk(r) (5.11)

folgt auf völlig natürliche Weise das Bloch-Theorem der Festkörperphysik:
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φk(r + t) = eiktφk(r). (5.12)

In der Festkörpertheorie wird nun der Vektor k auf die erste Brillouinzone be-
schränkt. Dadurch wird der Bandindex n eingeführt, um für ein festes k eine Zuord-
nung des Energiewertes treffen zu können. Für die Wellenfunktion wird der Ansatz

φnk(r) = unk(r)eikr (5.13)

gemacht. Die Funktion unk(r) besitzt hierbei die Periodizität des Gitters und lässt
sich gemäss

φnk(r) =
1√
Ω

∑
G

cnk(G)ei(G+k)r (5.14)

nach ebenen Wellen entwickeln. Dies stellt eine Fourierentwicklung der Wellenfunk-
tion mit den Fourierkoeffizienten cnk(G) dar. Im Rahmen numerischer Methoden
bedarf es eines Abbruchkriteriums für diese Fourierentwicklung. Hier findet sich die
in zahlreichen Konvergenztests verwendete Cutoffenergie Ecut wieder. Man nimmt
in der Fourierentwicklung nur solche G-Vektoren mit, welche die Relation

~2

2m
(G + k)2 ≤ Ecut (5.15)

erfüllen und prüft durch sukzessives Erhöhen dieser Cutoffenergie die Konvergenz
der Fourierreihenentwicklung.

Mit |G + k〉 werden die Basisfunktionen der ebenen Wellen des Impulsoperators
zum Eigenwert i(G + k) definiert. Diese genügen der Orthonormierung

〈G + k|G′ + k′〉 = δGG′δkk′ (5.16)

und in der Konvergenz der Vollständigkeitsrelation∑
G+k

|G + k〉〈G + k| = 1. (5.17)

Im Ortsraum lässt sich die Wellenfunktion als

〈r|G + k〉 =
1√
Ω
ei(G+k)r (5.18)

darstellen. Damit formuliert sich die Beziehung (5.14) zu

|φnk〉 =
∑
G

cnk(G) |G + k〉. (5.19)

Die umformulierte Kohn-Sham-Gleichung
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∑
G′+k′

(
− ~2

2m
4+vH [n] + vxc[n] + vPS(r)

)
|G′ + k′〉〈G′ + k′|φnk〉

=
∑
G′+k′

εnk|G′ + k′〉〈G′ + k′|φnk〉
(5.20)

lässt sich durch Multiplikation mit 〈G + k| in die numerisch gut zu behandelnde
Matrixgleichung

~2

2m
(G + k)2cnk(G)

+

[∑
G′

(vH(G−G′) + vxc(G−G′) + vPS(G−G′))

]
cnk(G)

= εnkcnk(G)

(5.21)

überführen. Hierbei wurde als Kurzschreibweise

v(G−G′) = 〈G + k|v|G′ + k〉 (5.22)

benutzt. Aus den Entwicklungskoeffizienten cnk(G) und den aus einer Fermivertei-
lung berechneten Besetzungszahlen fnk kann dann die Elektronendichte im rezipro-
ken Raum zu

n(G) =
2√
Ω

∑
n,k

fnk
∑
G′

c∗nk(G′)cnk(G + G′) (5.23)

berechnet werden. Aufgrund der besseren Skalierung wird die Elektronendichte oft-
mals direkt im Ortsraum berechnet und ergibt sich dort zu

n(r) =
2

Ω

∑
n,k

fnk

∣∣∣∣∣∑
G

cnk(G)eiGr

∣∣∣∣∣
2

(5.24)

Die einzelnen Fouriertransformierten der Potentiale lassen sich mittels FFT berech-
nen. Vereinzelt ist es auch möglich analytische Ausdrücke direkt anzugeben.

Das Matrixeigenwertproblem (5.21) ist nun iterativ selbstkonsistent zu lösen, da
die Potentiale ihrerseits von der Elektronendichte n(G) abhängen, welche über die
Lösungen cnk(G) gegeben ist.

5.1.1. Diskrete Integration über die Brillouinzone

Brillouinzonenintegrale der Form

I =

∫
BZ

f(k)d3k =
(2π)3

Ω
f̄ (5.25)
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Abb. 5.1:
Die Methode zur k-Punkt Verteilung nach Monkhorst und Pack: Die Brillouinzone
(rot umrandet) wird äquidistant aufgeteilt. Gezeigt ist in dieser Skizze ein 4x4 Gitter.
Mitthilfe eines Satzes von erzeugenden k-Punkten (hier ein einzelner Punkt mit den
Koordinaten (1

2
1
2)) wird das Gitter aufgebaut. Dabei ist darauf zu achten, dass Hoch-

symmetriepunkte sowie die Brillouinzonengrenze ausgespart bleiben. Die problemspe-
zifischen Kristallsymmetrien können an dieser Stelle verwendet werden um die Anzahl
der k-Punkte zu reduzieren.

sind ein Standardproblem im Impulsraumformalismus. Unter der begründeten An-
nahme, dass die Wellenfunktionen langsam mit k variieren, gilt der Mittelwertsatz
der Integralrechnung. Aus einer geeigneten Näherung des Mittelwertes f̄ kann das
Integral numerisch effizient ausgewertet werden, ohne die komplette Brillouinzo-
ne abscannen zu müssen. Mögliche Verfahren zur Approximation dieses Mittelwer-
tes sind unter anderen von Baldereschi, sowie von Chadi und Cohen vorgeschlagen
worden[53, 54]. Dabei wird das Integral über einen geeigneten Satz von k-Punkten
gemäss

I =

∫
BZ

f(k)dk ≈ (2π)3

Ω

∑
i

wif(ki) (5.26)

mit

∑
i

wi = 1 (5.27)

approximiert. Heutzutage findet das Verfahren von Monkhorst und Pack am meisten
Verwendung. Hier wird der Hauptwert f̄ über ein äquidistantes Netz von k-Punkten
genähert[55] (vgl. Abbildung 5.1).
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5.2. Die Methode der Pseudopotentiale

Die Behandlung von Vielteilchensystemen erfolgt in der Praxis numerisch und ist
ein nichtlineares Problem. Typische Dichtefunktionalalgorithmen mit einer Ebenen-
Wellen-Basis skalieren quadratisch bis kubisch mit der Anzahl der ebenen Wellen.
Diese wachsen linear mit der Anzahl der Atome und müssen die Wellenfunktionen
adäquat nachbilden können. Problematisch ist hierbei das starke Coulombpotential
der Kerne, welches zur Lokalisierung der Wellenfunktion führt. Die Orthogonali-
tätsforderung der Wellenfunktionen bedingt starke Oszillationen in Kernnähe. Um
diese Oszillationen darstellen zu können, bedarf es einer großen Anzahl von Ebenen-
Wellen-Basisfunktionen, wodurch die Behandlung aufwendig und speicherintensiv
wird. Diese Probleme werden in heutigen Implementierungen der Dichtefunktio-
naltheorie durch die Verwendung der unveränderlichen Ionennäherung, sowie der
Einführung von Pseudopotentialen, die in der Kernregion glatte Wellenfunktionen
liefern, überwunden. Diese Konzepte werden nun vorgestellt.

5.2.1. Die Näherung der unveränderlichen Ionen

In der großen Gesamtheit von molekularen Systemen und Festkörpern wird die che-
mische Bindung durch die Valenzelektronen dominiert. Die Rumpfelektronen spielen
dabei eine eher untergeordnete Rolle. Dies motiviert die Frage, ob es nicht zulässig ist
die an der Bindung nur schwach teilnehmenden Rumpfelektronen durch ihre atoma-
ren Wellenfunktionen zu beschreiben und in der elektronischen Optimierung allein
die Valenzelektronen zu variieren. Dies führt zur Näherung der unveränderlichen Io-
nen: Man teilt die Elektronendichte in zwei räumliche Bereiche. Der Rumpfbereich
enthält die Ncore Rumpfelektronen mit der Rumpfdichte

ncore =
Ncore∑

1

|φi(r)|2, (5.28)

der Valenzbereich erhält die für die Bindung interessanten Valenzelektronen und
somit die Valenzdichte

nvalence =
N∑

Ncore+1

|φi(r)|2. (5.29)

Nun findet eine Abseparation des Kernbereichs in den Kohn-Sham-Gleichungen ge-
mäß

veff[n](r) = vH [nvalence](r) + vxc[nvalence](r) + vcore[nvalence, ncore](r) (5.30)

statt. Dabei sei vcore definiert als

vcore[nvalence, ncore](r) = vH[ncore](r) + vxc[nvalence + ncore](r)

− vxc[nvalence](r) + v(r).
(5.31)
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Hier findet nun die Näherung ncore ≈ natomcore

vcore[nvalence](r) = vH[natomcore ](r) + vxc[nvalence + natomcore ](r)

− vxc[nvalence](r) + v(r).
(5.32)

statt, in der die tatsächliche Rumpfdichte durch die Superposition atomarer Rumpf-
dichten

natomcore (r) =
Ncore∑

1

∣∣φatomi (r)
∣∣2 (5.33)

genähert wird. Durch diese Näherung ist das effektive Kernpotential vcore lediglich
ein Funktional der Valenzelektronen. Die Rumpfelektronendichte ncore wird durch
die atomare Rumpfdichte natomcore ersetzt und variationell „eingefroren“. Dies bezeichnet
man als frozen core approximation[56]. Die Kohn-Sham Gleichungen

(
− ~2

2me

+ vH[nvalenz](r) + vxc[nvalence](r) + vcore(r)

)
|φi(r)〉 = εi |φi(r)〉 (5.34)

enthalten nun nur noch Funktionale der Valenzelektronendichte. Bei der selbstkon-
sistenten Bestimmung von nvalenz ist allerdings nach wie vor zu beachten, dass die
Orthogonalität der Valenzorbitale mit den atomaren Rumpforbitalen erhalten bleibt.

Der Vorteil dieses Verfahrens liegt in der deutlichen Reduktion der Systemgröße,
da nur noch die Valenzelektronen — je nach Atomsorte in der Größenordnung 10
pro Atom — in die selbstkonsistente Behandlung des Problems einfließen. Die Ab-
weichungen einer Rechnung mit festgehaltenem Kernbereich im Vergleich zu einem
explizit behandeltem Kernbereich in den einzelnen Energiebeiträgen sind zwar ekla-
tant, jedoch hat eine Studie gezeigt, dass sich diese Fehler im Mittel gegenseitig
aufheben und Gesamtenergien in der Regel Abweichungen von nur einigen 10 meV
zeigen[56].

5.2.2. Das Konzept der Pseudopotentiale

Mittels des Konzeptes der unveränderlichen Ionen ist zwar die Anzahl der zu
behandelnden Elektronen deutlich verringert worden, jedoch bleiben die in Kern-
nähe starken Oszillationen, die einer großen Basis für ihre Beschreibung bedürfen,
bestehen. Unter der Annahme, dass zur chemischen Bindung nur die Teile der
Wellenfunktion beitragen, die sich am Ort der Bindung befinden, können die stark
oszillierenden Anteile durch eine glatte Wellenfunktion ersetzt werden. Dabei wird
das im vorherigen Abschnitt eingeführte Kernpotential durch eines ersetzt, welches
hinreichend glatt ist und für r → 0 nicht singulär wird. Die genaue Art der Kon-
struktion solcher Potentiale kann mit Hilfe der gängigen Literatur[57, 58, 59, 60, 61]
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nachvollzogen werden.

Insgesamt gilt es vier wohldefinierte Bedingungen zu erfüllen, um dieses Vorgehen
zu legitimieren[62].

1. Die durch das Pseudopotential generierten Pseudowellenfunktionen sind in
ihrem radialen Anteil RPP

nl knotenfrei.

2. Für einen vorher gewählten Kernradius rc, der in der Regel zwischen dem
letzten Knoten und dem folgenden Maximum des Radialteils der Allelektro-
nenwellenfunktion zu wählen ist[61], ist die Pseudowellenfunktion identisch zu
der Allelektronenwellenfunktion

RPP
nl (r) = RAE

nl (r) für r > rcl. (5.35)

3. Die im Bereich des Cutoffabstandes rc eingeschlossene Ladung muss für beide
Wellenfunktionen identisch sein

rcl∫
0

∣∣RPP
nl (r)

∣∣2 r2dr =

rcl∫
0

∣∣RAE
nl (r)

∣∣2 r2dr. (5.36)

4. Die Orbitalenergien εi sind identisch

εPPnl = εAEnl . (5.37)

In der gängigen Praxis werden Pseudopotentiale dadurch erzeugt, dass zunächst
die Energien, Wellenfunktionen und das atomare Potential der Atomsorte über die
explizite Lösung der Kohn-Sham-Gleichung in Form einer Allelektronenrechnung
beschrieben werden. Anhand der Allelektronenwellenfunktionen werden nun die
Kernradien rcl definiert. Hierbei gilt: Je kleiner der Radius, umso ähnlicher ist
die Pseudowellenfunktion der Allelektronenwellenfunktion. Andererseits steigt mit
kleinem Kernradius auch die Anzahl der benötigten Basisfunktionen, so dass ein
entsprechender Mittelweg gefunden werden muss. Sind die rcl festgesetzt, wird die
Allelektronenvalenzwellenfunktion so variiert, dass sie im Kernbereich knotenfrei
wird. Dabei ist die Erhaltung der Ladung im Kernbereich einzuhalten. Die Variation
geschieht hierbei unter Verwendung von analytischen Fits. Aus der Kenntnis der
Eigenwerte und der neuen Wellenfunktion kann nun die Schrödingergleichung
invertiert und das zugehörige Potential bestimmt werden.

Neben der Methode der normerhaltenen Pseudopotentiale haben sich an bestimmte
Problemstellungen angepasste Varianten entwickelt. So gibt es Pseudopotentiale, die
neben den obigen Bedingungen Stetigkeit und stetige Differenzierbarkeit bis hin zur
zweiten Ableitung des Potentials verlangen, sowie solche, die eine verschwindende
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Krümmung am Kern fordern[57].

Von besonderer Schwierigkeit sind die Elemente der ersten Reihe des Perioden-
systems. Aufgrund der starken Lokalisierung der Zustände in Kernnähe ist der
Kernradius sehr gering zu wählen. Eine wirkliche Reduzierung der Basisfunktionen
mittels normerhaltenden Pseudopotentialen ist damit nicht möglich. Von Van-
derbilt wurden sogenannte ultrasofte Pseudopotentiale eingeführt, welche auf die
Normerhaltung im Kernbereich verzichten[60]. Der Verlauf der Wellenfunktion kann
somit deutlich weicher modelliert werden und sorgt damit für eine Verringerung der
notwendigen Basisfunktionen.

Pseudopotentiale sind aber dennoch mit Vorsicht zu genießen und ihre Aussage-
kraft immer an wohldefinierten physikalischen Referenzen zu erproben, da sie in
ihrer Konstruktion sämtlichen Informationsgehalt zum physikalischen Kernbereich
verlieren. Eine bessere Alternative stellen die im nächsten Kapitel diskutierten PAW-
Potentiale dar.

5.2.3. Die Projector Augmented Wave (PAW) Methode

Von Blöchl[63] stammt die als Projector Augmented Wave (PAW) Methode bekannte
Erweiterung der Pseudopotentiale, welche sich das Ziel setzt eine exakte Abbildung
zwischen den pseudoisierten Wellenfunktionen (PS) und den Allelektronenwellen-
funktionen (AE) zu schaffen. Im Gegensatz zu der Pseudopotentialmethode stellt
also die PAW-Methode im Rahmen der Näherung der unveränderlichen Ionen
eine trickreiche Allelektronenrechnung dar. Die Grundideen werden im Folgenden
skizziert.

Basis der PAW-Methode ist die Existenz eines Operators T , welcher die in Kern-
nähe glatte Pseudowellenfunktion |ΨPS〉 in die oszillierende, effektive Kohn-Sham-
Einteilchenwellenfunktion |ΨAE〉 überführt

|ΨAE〉 = T |ΨPS〉 (5.38)

Diese Transformation ist dahingehend interessant, dass sie analog zum Wechsel von
dem Schrödinger Bild zum Heisenberg Bild die Berechnung des Erwartungswertes
〈A〉 eines Operators A nun auf zwei Arten erlaubt: Zum einem direkt über die
Kohn-Sham-Einteilchenwellenfunktionen, zum anderen über die Einführung eines
Pseudooperators Ã der über

〈A〉 = 〈ΨAE|A|ΨAE〉
= 〈ΨPS|Ã|ΨPS〉 mit Ã = T †AT

(5.39)

definiert ist. So kann die PAW-Methode mit minimalem Aufwand durch Neudefi-
nition der Wirkung eines Projektors auf die Pseudowellenfunktion in bestehende
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Abb. 5.2:
Separation des atomaren Umgebung in Valenzbereich und Kernbereich. Dargestellt ist
ein regelmäßiges atomares Gitter zweier Atomsorten. Die Bereichen Ω1 und Ω2 stellen
den Kernbereich der Atome dar. Ausserhalb dieses Bereiches variiert die Wellenfunk-
tion langsam und verläuft glatt.

DFT-Codes, welche auf der Pseudopotentialmethode basieren, implementiert
werden. Dazu ist lediglich der Projektionsoperator T zu definieren.

Wie schon in der Pseudopotentialmethode wird der Raum in zwei Bereiche unter-
teilt, den Bereich in dem hauptsächlich die atomare Bindung stattfindet und die
Wellenfunktionen glatt verlaufen und dem, in dem sich das oszillierende Verhalten
der Wellenfunktion auf Grund der Kernnähe abspielt, der sogenannte Augmentati-
onsbereich (vgl. Abbildung 5.2). Da sich die Pseudowellenfunktion und die Kohn-
Sham-Einteilchenwellenfunktion nur in diesem Augmentationsbereich unterscheiden,
kann der Operator T als Identität dargestellt werden, der gemäß

T = 1 +
∑
R

TR (5.40)

additive Korrekturen im Augmentationsbereich ΩR erfährt. Die Allelektronenlö-
sung |φAEi 〉— von Blöchl als Partialwelle bezeichnet — ergibt sich dementsprechend
aus einer computertechnisch gut zu behandelnden pseudoisierten Partialwelle |φPSi 〉
als
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|φAEi 〉 = (1 + TR)|φPSi 〉. (5.41)

Insbesondere kann nun jede Pseudowellenfunktion |ΨPS〉 in die pseudiosierten Par-
tialwellen entwickelt werden

|ΨPS〉 =
∑
i

|φPSi 〉ci innerhalb von ΩR. (5.42)

Aufgrund der Transformationseigenschaften T gilt dies aber auch für die Wellen-
funktion |ΨAE〉 und die Partialwellen

|ΨAE〉 =
∑
i

|φAEi 〉ci innerhalb von ΩR (5.43)

mit den gleichen Entwicklungskoeffizienten ci. Blöchl führt an dieser Stelle Projek-
torfunktionen |pi〉 ein, welche die Eigenschaften 〈pi|ΨPS〉 = ci besitzen und zudem
auf Grund der Vollständigkeitsrelation innerhalb des Augmentationsbereiches die
Eigenschaft 〈pi|φPSj 〉 = δij erfüllen. Mit Hilfe dieser Projektorfunktionen kann T
definiert werden:

|ΨAE〉 = ΨPS −
∑
i

|φPSi 〉ci +
∑
i

|φAEi 〉ci

= ΨPS +
∑
i

(|φAEi 〉 − |φ〉PSi )〈pi|ΨPS〉

=

(
1 +

∑
i

(|φAEi 〉 − |φPSi 〉)〈pi|

)
︸ ︷︷ ︸

T

|ΨPS〉 (5.44)

5.3. LCAO Initialisierung

Der iterative Lösungsansatz zur akkuraten Beschreibung der elektronischen
Struktur bedingt im ersten Schritt schon ein effektives Potential und somit eine
Initialisierung der Wellenfunktionen und der Dichte. Rechnungen aus dem Alltag
zeigen, dass Algorithmen zur Minimierung der Gesamtenergie in ihrer Funktions-
weise erheblich verbessert werden, wenn ein gute Initialisierung der Wellenfunktion
erfolgt. Zufallszahlen liefern für metallische Systeme, in denen die Elektronendichte
nahezu gleich verteilt im Kristall vorliegt sicherlich einen gute Initialisierung.
Im Falle von Systemen, die durch gerichtete Bindungen dominiert werden, ist
ein solcher Ansatz jedoch denkbar schlecht. Hier lokalisieren die Elektronen in
Bindungsorbitalen, die es zu beschreiben gilt.

Eine Möglichkeit besteht hierbei diese Bindungsorbitale in eine atomzentrierte Or-
bitalbasis zu entwickeln[64]. Da im Rahmen der Pseudopotentialmethode die Elek-
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tronenverteilung für die Pseudoatome bestimmt worden ist, bieten sich die dort
berechneten Pseudoatomorbitale |µi〉 als Basis an. Definiert man nun durch

Hij = 〈µi|Ĥ|µj〉 (5.45)

die Hamiltonmatrix des Systems und durch

Sij = 〈µi|µj〉 (5.46)

den Überlappoperator der Pseudoatomorbitale, so ergibt sich das verallgemeinerte
Eigenwertproblem

H|cn〉 = εnS|cn〉. (5.47)

Da S eine positiv definite, hermitesche Matrix ist, existiert von dieser die Choles-
kyzerlegung S = LL†, so dass sich das verallgemeinerte Eigenwertproblem in das
gewöhnliche Eigenwertproblem

H ′|χn〉 = εn|χn〉 (5.48)

mit

H ′ = L−1H(L†)−1 und |χn〉 = L†|cn〉 (5.49)

transformiert. Dessen Eigenvektoren können als gute Initialisierung der Wellenfunk-
tion verwendet werden. Auch die in dieser Dissertation in Kapitel 6 diskutierten opti-
mierten Basisfunktionen können mit Vorteil als Initialisierungsfunktionen verwendet
werden. Da in diesen Orbitalen schon Kenntnisse über die atomaren Nachbarn ver-
ankert sind, konvergieren die mit Quamols initialisierten Rechnungen schneller und
sparen erfahrungsgemäß in dem verwendeten S/PHI/nX Code bis zu 10 iterative
Schritte in der elektronischen Konvergenz. Normalerweise werden für die elektroni-
sche Konvergenz der hier betrachteten Systeme 15-35 Schritte beobachtet.

5.4. Bildungsenergien von Defekten

Die Bildungsenergie eines Defektes ist die zentrale Größe bei der theoretischen Ana-
lyse von Punktdefekten. Über jene lassen sich Defekte bezüglich ihrer Stabilität
vergleichen und Defektkonzentrationen abschätzen. Die Bildungsenergie Ef ist über

Ef
Xq = Etot[Bulk:Xq]− Etot[Bulk]−

∑
i

niµi + q(εFermi + EVBM) (5.50)

definiert[4]. Dieser Ausdruck ist vornehmlich eine Energiedifferenz des modellierten
Defektes und seiner Edukte: des vorherrschenden Wirtssystems, sowie die zum
Defekt notwendigen addierten oder subtrahierten Atome und Ladungen. Die
einzelnen Bestandteile der Bildungsenergie sind in Abbildung 5.3 noch einmal
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Abb. 5.3:
Die Bildungsenergie ist definiert als Differenzenergie des Defektes und seiner Edukte:
Hostsystem (blau), Defektatom (rot) und zusätzliche Elektronen (schwarz).

zusammengefasst.

Während die Gesamtenergien einzelner Geometrien durch das zu Grunde liegenden
DFT-Programm ermittelt werden, ist die Wahl des chemischen Potentials der
Atomreservoirs nicht eindeutig bestimmt. Diese können über Rechnungen einzelner
Atome, Gasphasenmoleküle oder über mittlere Energien einzelner Atome in stabilen
Phasen abgeschätzt werden. An dieser Stelle erlaubt die Theorie eine Anknüpfung
an die im Experiment realisierten Bedingungen (wie z.B. Temperatur, Partialdrücke
der einzelnen Elemente, usw.).

Im Falle geladener Defekte bedarf es eines Reservoirs der Elektronen. Das chemische
Potential ist über die Fermienergie im System gegeben, welche nach allgemeiner
Konvention auf das Valenzbandmaximum EVBM referenziert wird. Die Lage des
Ferminiveaus in der Bandlücke wird über die Gesamtheit der Defekte im Wirts-
system bestimmt, so dass die Berechnung eines einzelnen Defektes nicht ausreicht
um dessen Position des Ferminiveaus im Gesamtsystem zu erhalten. Aus diesem
Grund wird die Bildungsenergie eines Defektes in Abhängigkeit zur Lage des
Ferminiveaus aufgetragen, wie es Abbildung 5.4 zeigt. In solchen Diagrammen
kann in Abhängigkeit des Ferminiveaus die Stabilität einzelner Defekte bewertet
werden. Die Steigung der einzelnen Graden gibt dabei den Ladungszustand des
entsprechenden Defektes an. Kreuzen sich gleiche Defektsorten zu unterschiedlichen
Ladungen, so heisst dieser Punkt Umladungsniveau.

Da die Bandlücke in den theoretischen Rechnungen massgeblich unterschätzt wird,
ist in solchen Diagrammen häufig die experimentelle Bandlücke eingetragen. Dies ist
insofern mit Vorsicht zu geniessen, da ein Ferminiveau oberhalb der theoretischen
Leitungsbandkante zu Besetzungen der Leitungsbänder führt und die berechneten
Energien nicht vertrauenswürdig sind. In praktischen Rechnungen kann hier aber
die diskrete Beschreibung des k-Punktgitters aushelfen, indem k-Punkte niedrig
liegender Leitungsbandzustände ausgespart werden und so die Rechnung blind für
die tatsächliche theoretische Bandlücke ist.
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5.4 Bildungsenergien von Defekten

Abb. 5.4:
Die Bildungsenergien von Wasserstoffverunreinigungen in GaN und Mg3N2 als Funk-
tion des Ferminiveaus. Der rote Kreis markiert das Umladungsniveau H+/H− in GaN.
Die farbigen Flächen im unteren Bereich des Graphen geben die Defekte geringster
Bildungsenergie wieder.

5.4.1. Superzellenkorrektur geladener Defekte

Versucht man in einem Superzellenansatz einen geladenen Defekt zu beschreiben, so
ist es notwendig die Ladung q des Defektes durch einen homogenen Ladungshinter-
grund zu kompensieren, da ansonsten die elektrostatische Energie divergiert. Durch
die langreichweitige Coulombwechselwirkung, interagiert der Defekt mit seinen
periodischen Bildern und dem homogenen Ladungshintergrund, so dass die Formati-
onsenergie in Abhängigkeit zur Superzellenlänge L nur sehr langsam konvergiert[65].

Folglich sind in einem direkten Ansatz sehr große Superzellen von Nöten um die For-
mationsenergie des isolierten Defektes bestimmen zu können. Damit die Zellen bere-
chenbar bleiben, wurden viele Versuche unternommen, um die Wechselwirkungsener-
gie des Defektes mit seinen periodischen Bildern und den elektrischen homogenen
Hintergrund zu bestimmen und nachträglich zu korrigieren. Eine erste Abschätzung
kann über die Madelungenergie
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Abb. 5.5:
Ein geladener Defekt in einem Festkörper akkumuliert Ladung entgegengesetzten Vor-
zeichens, welche sein Coulombpotential abschwächt.

EMadelung =
αq2

2εL
(5.51)

gemacht werden. Dabei bezeichnet α die von der Superzelle abhängige Madelung-
konstante.

Makov und Payne berechneten für ein Gitter von isolierten Ionen einen weiteren
Korrekturterm, der wie L−3 skaliert. In realen Systemen ist diese Korrektur dann
noch durch die dielektrische Konstante zu skalieren. Jedoch führt dies nicht immer
zum gewünschten Erfolg, sodass im praktischen Vorgehen die Vorfaktoren wie freie
Parameter behandelt und zudem noch weitere Korrekturterme L−n hinzugefügt
werden. Dabei geht jedoch ein beachtlicher Teil Physik verloren.

Interessant ist daher der Ansatz von Freysoldt[66, 67], der ein Korrekturschema
auf elementaren elektrostatischen Überlegungen aufbaut. Ein geladener Defekt wird
von einer kompensierenden Ladungsakkumulation in seinem Potential abgeschwächt
(vgl. Bild 5.5). Sein langreichweitiges Potential ist dann über

vlang(r) =
1

ε

∫
nmodel(r′)

|r− r′|
d3r′ (5.52)

56



5.4 Bildungsenergien von Defekten

in atomaren Einheiten gegeben. Die in diesem Ausdruck eingeführte Ladungsdich-
te nmodel kann für lokalisierte Defektladungen durch eine Gaußladung modelliert
werden. Das komplette Defektpotential vd(r) wird dann als Summe des langreich-
weitigen Teils und einer kurzreichweitigen Modulation

vd(r) = vlang(r) + vkurz(r) (5.53)

geschrieben. Praktisch kann das Defektpotential als Differenz der elektrostatischen
Potentiale

vd(r) = vel[Xq](r)− vel[X0](r) (5.54)

berechnet werden. Das kurzreichweitige Potential ist damit

vkurz(r) = vel[Xq](r)− vel[X0](r)− vlang(r) + δv. (5.55)

Der Offset δv sorgt dafür, dass vkurz(r) für große Entfernungen vom Defektzentrum
gegen Null abklingt. Aus dem langreichweitigen Verhalten kann nun die Madelun-
genergie EGitter[nmodel] bestimmt werden. Der kurzreichweitige Teil bestimmt die
Wechselwirkungsenergie mit dem kompensierenden Hintergrund∫

Ω

− q
Ω
vkurz(r)d3r = −qEWW. (5.56)

Nach Freysoldt[67] herrscht nun die Identität EWW = δv, so dass sich die Bildungs-
energie des isolierten Defektes entsprechend Gleichung (5.50) zu

Ef
Xq = Etot[Bulk : Xq]− Etot[Bulk]−

∑
i

niµi + q(EFermi + EVBM)

− EGitter[qmodel] + qδv

(5.57)

ergibt. Das Trickreiche an der Identität EWW = δv ist ihre Unabhängigkeit von dem
Referenzsystem, so dass in der Praxis die Bildungsenergie des isolierten geladenen
Defektes allein aus der Superzellenrechnung des Bulks und des geladenen Defektes
bestimmt werden kann.

5.4.2. Bestimmung der dielektrischen Konstanten

Die Anwendung des eben diskutierten Korrekturverfahrens zur Berechnung der
Bildungsenergie von isolierten geladenen Defekten setzt die Kenntnis der dielektri-
schen Konstante ε voraus. Diese kann zum Beispiel aus dem Experiment genommen
werden. Konsistenter ist es jedoch die Konstante für das modellierte Material
theoretisch zu bestimmen. Dazu dient das folgende Computerexperiment.
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5 Dichtefunktionaltheorie für kristalline Systeme

Abb. 5.6:
Entlang einer Kristallachse wird ein sägezahnförmiges Potential V sawtooth angelegt,
welches einem konstanten ErregungsfeldD entspricht. Der Kristall antwortet auf dieses
Feld über die Ausprägung eines elektrischen Feldes E, welches im elektrostatischen
Potential als Sägezahnpotential wahrgenommen werden kann. Die farbigen Verläufe
symbolisieren hierbei die Feldvektoren mit ihrer Richtung von rot nach grün. Das
Verhältnis der Feldamplituden entspricht gerade der dielektrischen Konstanten.

Setzt man einen Festkörper einer konstanten elektrischen Erregung D aus, so regiert
dieser durch den Aufbau des elektrischen Feldes E. Diese beiden Felder sind über
die Materialgleichung

D = ε0E + P (5.58)

miteinander verknüpft. Im Falle eines isotropen und linearen Kristalls ist die Pola-
risierbarkeit P als

P = ε0χE (5.59)

gegeben. Damit vereinfacht sich die Materialgleichung zu

D = ε0(1 + χ)E = εE, (5.60)

so dass sich die dielektrische Konstante als ε = |D|/|E| ergibt. Ändert man die
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Materialsystem dielektrische Konstante [ As
V m

]
ε ε∞

GaN (LDA) 10.3 5.6

GaN (PBE) 11.8 6.2

GaN (exp) 10.4a 5.8b

Mg3N2 (LDA) 13.6 5.1

Mg3N2 (PBE) 9.9 5.2

Mg3N2 (exp) — 4.45c

a[68], b[69], c[70]

Tab. 5.1:
Dielektrische Konstanten für die Materialsysteme GaN und Mg3N2. Die theoretischen
Werte sind mit dem im Text beschriebenen Verfahren ermittelt worden. ε∞ entspricht
der dielektrischen Konstanten im Falle hochfrequenter Wechselfelder, so dass die Ionen
der elektrischen Anregung nicht folgen (ω∞ � ωPhonon).

Orientierung der elektrischen Erregung mit der Zeit, so können die Ionen diesem
sich ändernden Feld ab einer Frequenz ω∞ (ω∞ � ωPhonon) nicht mehr folgen
und die elektrische Abschirmung wird allein von den Elektronen bestimmt. Dies
entspricht der dielektrischen Konstanten ε∞.

Dieses Experiment kann auch im Rahmen der Dichtefunktionaltheorie vollzogen
werden. Dabei wird in die Superzelle entlang einer Hauptachse ein Sägezahnpoten-
tial induziert (siehe Abbildung 5.6). Die Elektronendichte und die Ionen reagieren
entsprechend und bilden ein entsprechendes elektrostatisches Potential aus, welches
auch die Sägezahncharakteristik zeigt. Aus den Steigungen der jeweiligen Flanken
können die Stärken der elektrischen Erregung und des resultierenden elektrischen
Feldes extrahiert werden. Zur Bestimmung der rein elektronischen Abschirmung
werden die Ionen in der DFT Rechnung fixiert und dürfen nicht auf Grund des
angelegtem Potentials relaxieren.

Für die in dieser Dissertation relevanten Materialsysteme GaN und Mg3N2 wurden
nach diesem Verfahren die dielektrischen Konstanten bestimmt (Tabelle 5.1).

5.5. Berechnung der Defektkonzentration im thermischen
Gleichgewicht

Die Fermienergie in Gleichung (5.50) ist ein freier Parameter, jedoch in der Gesamt-
heit des Systems implizit über die Ladungsneutralität

c(h)− c(e) +
∑
Xq

qc(Xq) = 0 (5.61)
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Abb. 5.7:
Ein Defekt (schwarz) wird in einem 2-dimensionalen Kristall (grün) in einer 2 Ato-
me enthaltenen Superzelle beschrieben. Der Defekt besitzt in dieser Zelle eine weiter
äquivalente Positionen (gelb). Die Anzahl Zu jeder Position gibt es weitere drei äqui-
valenter Konfigurationen (blau). Die Gesamtzahl der Defektpositionen ist somit zwei,
mit jeweils vier möglichen Konfigurationen.

definiert. Im Falle des thermodynamischen Gleichgewichtes kann die Konzentration
c(Xq) eines Defektes X im Ladungszustand q über die Boltzmannverteilung

c(Xq) = N0Nconf exp

(
−E

f (Xq)

kbT

)
(5.62)

berechnet werden. N0 bezeichnet hierbei die Anzahl möglicher Defektpositionen,
Nconf die Anzahl möglicher Konfigurationen des Defektes in der betrachteten
Superzelle (vgl. Abbildung 5.7). Der Ausdruck kbT quantifiziert die thermische
Energie zur Temperatur T .

Die Konzentrationen der freien Ladungsträger sind unter der Annahme eines para-
bolischen Bandes über die Beziehungen

c(e) = 2

(
m∗ekbT

2π~2

)3/2

e(EFermi−ECBM)/kbT (5.63)

und

c(h) = 2

(
m∗hkbT

2π~2

)3/2

e(EVBM−EFermi)/kbT (5.64)

gegeben[26]. Damit sind für die Gesamtheit der Defekte und der freien Ladungsträ-
ger Bestimmungsgleichungen gegeben, welche eine eindeutige Lösung für die Fermi-
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energie und Defektkonzentrationen liefern. Die S/PHI/nX Bibliothek[18] löst dieses
numerisch schlecht konditionierte Problem über ein Bisektionsverfahren.
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6 Quantitativ optimierte Atomorbitale — Quamols

6. Quantitativ optimierte Atomorbitale —
Quamols

The important thing in science is not so much to obtain new facts as to
discover new ways of thinking about them.

Das Bedeutsame an der Wissenschaft ist nicht unbedingt die Erzeugung
neuer Ergebnisse, als vielmehr die Entdeckung neuer Wege über sie nach-
zudenken.

Sir William Lawrence Bragg, australischer bzw. britischer Physiker, 1890 - 1971

6.1. Atomzentrierte Orbitalfunktionen

Ein atomzentriertes Orbital ist das Paradebeispiel einer lokalisierten, das bedeutet
am Atom verankerten und in der Reichweite beschränkten, Funktion. Ihre mathe-
matische Form besteht aus dem Produkt einer radialen Funktion Rnl(r) mit einer
Kugelflächenfunktion Ylm(r̂)

µα(r) = Rnl(r)Ylm(r̂) mit α = {τ, n, l,m}. (6.1)

Dabei beschreibt r den Abstandsvektor mit Richtung r̂ zum atomaren Zentrum
τ , l die Drehimpulsquantenzahl und m die magnetische Quantenzahl. Der Index n
entspricht der Hauptquantenzahl, kann aber in der kommenden Verallgemeinerung
als Zählindex der Radialfunktionen zur zugehörenden Drehimpulsquantenzahl inter-
pretiert werden. Die Lösungen atomarer Schrödingergleichungen ergeben, dass die
radiale Form der Orbitale sich in Kernnähe wie rl verhält und für große Abstände
exponentiell abklingt. Einen natürlichen Ansatz bilden deswegen die sogenannten
Slaterorbitale[71] (STO)

RSTO
nl (r) ∼ rl

∑
i

cnie
−ζnir. (6.2)

Diese geben das korrekte Abklingverhalten wieder, besitzen aber den Nachteil, dass
die Berechnung von Mehrzentrenintegralen nicht analytisch vollzogen werden kann,
sondern numerisch ausgewertet werden muss. Dies war zu Beginn der computer-
gestützten Modellierungen ein gravierendes Problem, weswegen die sogenannten
Gaußorbitale[72] (GTO)

RGTO
nl (r) ∼ rl

∑
i

cnie
−βnir2 (6.3)

eingeführt wurden, welche eine analytische Beschreibung der Mehrzentrenintegrale
erlauben. Allerdings besitzen diese GTOs im Gegensatz zu den STOs zwei we-
sentliche Nachteile. Zum einen erlauben die GTOs im kernnahen Bereich keine
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6.1 Atomzentrierte Orbitalfunktionen

diskontinuierliche Ableitung, die sich dort aber aus der Quantenmechanik ergibt.
Zum anderen besitzen die GTOs gegenüber den STOs ein zu starkes Abkling-
verhalten. Zwar kann mit beiden Orbitaltypen eine komplette Basis aufgebaut
werden, aber grundlegend werden mehr GTOs benötigt, als STOs. Die Koeffi-
zienten cni, βni und ζni werden dabei an Lösungen des atomaren Problems angepasst.

Diese atomaren Orbitale bilden einen chemisch intuitiven Basissatz, da sie — im
Gegensatz zu ebenen Wellen — an Lösungen der atomaren Schrödingergleichung
angelehnt sind. Allerdings ist die quantitative Verbesserung eines atomaren Basis-
satzes zur Beschreibung der chemischen Bindung bei Molekülen und Festkörpern
nicht trivial, da es hier eine Vielzahl von möglichen Stellschrauben gibt. Die Anzahl
der Basisfunktionen pro l-Kanal, die radiale Form, sowie der maximale Drehimpuls
l spielen in der Optimierung solcher Basissätze eine entscheidende Rolle. Allerdings
neigen atomzentrierte Basissätze zu dem Problem der Überbestimmtheit. Generell
würde ein an einem einzigen Zentrum lokalisierter Basissatz genügen, um eine akku-
rate Beschreibung auch an anderen Zentren zu ermöglichen. Durch die Verankerung
des Bausatzes an vielen Zentren läuft man in Gefahr lineare Abhängigkeiten zu
erschaffen, was gerade für große Basissätze ein Problem darstellt. Reduziert man
die Basissätze, neigen die atomaren Orbitale dazu auch Unzulänglichkeiten in der
Beschreibung von nahe liegenden Fremdatomen auszugleichen — der sogenannte
Basissatzsuperpositionsfehler (BSSE). Der BSSE macht sich dann besonders bei
sich ändernden Strukturen bemerkbar, durch eine deutliche Verschlechterung der
Genauigkeit bemerkbar. Die Transferabilität leidet immens.

Neuere Ansätze gehen deswegen dazu über Atomorbitale auf Basis von Ebene-
Wellen-Rechnungen zu erzeugen. So soll sichergestellt werden, dass für eine kleine
Basis die einzelnen Atomorbitale optimal die Ebenen-Wellen-Zustände beschreiben.
Dies kann beispielsweise mittels einer unitären Transformation geschehen, was zu
den sogenannten Wannierorbitalen[73, 74, 75] führt. Diese unitäre Transformation
hat jedoch die Schwäche, dass die erzeugten Orbitale alle Informationen über das
Referenzsystem besitzen und die sphärische Symmetrie der Orbitale aufgegeben
wird. Die Basis büßt deswegen bei strukturellen Veränderungen des Systems
sofort signifikant an Beschreibungskraft ein. Bei Beibehaltung der Symmetrie stellt
sich die Frage unter welchen Randbedingungen die Orbitalfunktionen optimiert
werden. Die im nächsten Abschnitt vorgestellte Spillage[76] wird hierbei in einigen
Arbeiten[77, 78, 79, 80, 81] als Optimierungskriterium verwendet. Allerdings
beschränken sich diese Arbeiten auf eine Optimierung bezüglich einer zu Grunde
liegenden Basis wie STOs, GTOs oder Besselfunktionen. Die dadurch eingebüßte
Flexibilität der Orbitalfunktionen ist schwer abzuschätzen.

In dieser Dissertation soll nun erstmals die Optimierung von numerischen — das
bedeutet basisfreien — Orbitalfunktionen unter Verwendung des Spillagegedanken
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Abb. 6.1:
Im 2-dimensionalen lässt sich die Spillage als Normverlust eines Zustandes interpretie-
ren. Der Kreis repräsentiert alle möglichen normierten Zustände des R2, aus der ein
Repräsentant (rot) gewählt worden ist. µ1 und µ2 bezeichnen eine vollständige Basis
des R2. Im Falle einer nicht vollständigen Basis ist nun nur noch ein einziger Basis-
vektor — hier µ1 — zur Beschreibung des Zustandes vorhanden. Eine Projektion des
Zustandes auf diesen Basisvektor resultiert nun in einem Normverlust: der Spillage.

vollzogen werden.

6.2. Ein quantitatives Mass für Basisqualität: Die Spillage

Das Ziel des Quamol Ansatzes ist es Basisfunktionen zu generieren, die in der Lage
sind gegebene Zustände in der Darstellung ebener Wellen akkurat nachzubilden. Die
Entwicklung eines ebenen Wellenzustandes in eine nicht-orthogonale, lokalisierte Ba-
sis |µα〉 lässt sich analog zur Entwicklung in orthogonale Basisfunktionen herleiten.
Sei |Ψn〉 der zu entwickelnde Zustand und |µα〉 ein Element der neuen Basis mit
Sαβ = 〈µα|µβ〉 als entsprechender Überlappmatrix. Gesucht sind im folgenden die
Koeffizienten cα, so dass die Basisentwicklung

|Ψn〉 =
∑
α

cαn|µα〉 (6.4)

gilt. Die Multiplikation mit 〈µβ| führt zu

〈µβ|Ψn〉 =
∑
α

cαnSβα mit Sβα = 〈µβ|µα〉. (6.5)

Um sich der Überlappmatrix auf der rechten Seite der Gleichung zu entledigen,
multipliziert man mit S−1

γβ und summiert über β. Das rechtsseitige Matrixprodukt
der Überlappmatrix und ihres Inversen liefert das Kroneckersymbol δγα. Dieses führt
in der Summe und anschliessender Variablensubstitution γ → α zu

cαn =
∑
β

S−1
αβ 〈µβ|Ψn〉. (6.6)
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Das Gleichheitszeichen der Entwicklung (6.4) besitzt natürlich nur dann Gültigkeit,
wenn die zugrundeliegende lokalisierte Basis vollständig ist. Ist sie nicht vollständig,
projiziert die Transformation (6.6) den Zustand |Ψn〉 in den entsprechenden Raum
der lokalisierten Basis, von dem im weiteren angenommen wird, dass dieser ein
Unterraum zu dem ursprünglichen Raum der ebenen Wellen ist. Um nun zwischen
Projektion und ursprünglichen Zustand unterscheiden zu können, verwendet man an
dieser Stelle |ΨPW

n 〉 zur Kennzeichnung des Zustandes im Raum der ebenen Wellen
und |Ψµ

n〉 zur Kennzeichnung der Projektion. Diese sind über

|Ψµ〉 =
∑
α,β

|µα〉S−1
αβ 〈µβ|Ψ

PW
n 〉 (6.7)

= P̂ |ΨPW
n 〉 (6.8)

miteinander verknüpft. Der so definierte Projektionsoperator P̂ ist idempotent

P̂ P̂ =
∑
α,β,γ,δ

|µα〉S−1
αβ 〈µβ|µγ〉S

−1
γδ 〈µδ| (6.9)

=
∑
α,γ,δ

|µα〉δαγS−1
γδ 〈µδ| (6.10)

=
∑
α,δ

|µα〉S−1
αδ 〈µδ| (6.11)

= P̂ (6.12)

und selbstadjungiert

P̂ † =
∑
α,β

|µβ〉(S−1)†αβ〈µα| (6.13)

=
∑
α,β

|µβ〉S−1
βα 〈µα| (6.14)

= P̂ . (6.15)

Die Qualität dieser Projektion wird über die sogenannte Spillage

Sn =
〈ΨPW

n |1− P̂ |ΨPW
n 〉

〈ΨPW
n |ΨPW

n 〉
(6.16)

quantifiziert. Da der Raum der Orbitalfunktionen ein Unterraum des Raumes der
ebenen Wellen ist, gilt

0 ≤ 〈ΨPW
n |P̂ |ΨPW

n 〉 ≤ 〈ΨPW
n |ΨPW

n 〉 = 1, (6.17)

und somit
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0 ≤ Sn ≤ 1. (6.18)

Dabei bedeutet Sn = 0 eine verlustfreie Projektion des Zustandes |ΨPW
n 〉, während

Sn = 1 bedeutet, dass der Zustand |ΨPW
n 〉 keine Komponente im Unterraum {µα}

hat. Abbildung 6.1 zeigt eine visuelle Interpretation dieser Größe.

Die für einen einzelnen Zustand |ΨPW
n 〉 definierte Spillage lässt sich für eine Gesamt-

heit von Zuständen als

S =
1

NPW

∑
n

fn〈ΨPW
n |1− P̂ |ΨPW

n 〉 (6.19)

generalisieren, wobei die fn als Filterfaktoren fungieren und

NPW =
∑
n

fn〈ΨPW
n |ΨPW

n 〉 (6.20)

eine Normierungsgröße darstellt: die sogenannte Raumnorm. Die Filterfaktoren
fn erlauben eine Selektion der zu beschreibenden Zustände. Ersetzt man jene
beispielsweise durch die Besetzungszahlen gemäss einer Fermi-Dirac-Verteilung
gibt die Spillage die Qualität der Projektion bezüglich des besetzten Kohn-Sham-
Unterraumes an.

Mit der Spillage als quantitatives Maß der Projektionsgüte ist nun ein Vergleich ver-
schiedener Orbitalbasen direkt möglich. Zudem erlaubt die Variationsrechnung die
Bestimmung von Gradienten und somit die Möglichkeit eines gradientengestützten
Optimierungsverfahrens für die Basis. Die Variation der Spillage S im Hinblick auf
die Orbitale ist hierbei die zentrale Grösse und wird nun im Folgenden bestimmt.
Kennt man die Variation der inversen Überlappmatrix im Hinblick auf die atomaren
Basisfunktionen (Anhang D) lässt sich damit die Variation des Projektors P̂ nach
den Orbitalen 〈µτ | zu

P̂

d〈µτ |
=
∑
α,β

|µα〉
dS−1

αβ

d〈µτ |
〈µβ|+

∑
α

|µα〉S−1
ατ (6.21)

= −
∑
α,β,ε

|µα〉S−1
ατ |µε〉S−1

εβ 〈µβ|+
∑
α

|µα〉S−1
ατ (6.22)

=
∑
α

|µα〉S−1
ατ (1− P̂ ) (6.23)

berechnen. Die Variation der Spillage bezüglich des Orbitals 〈µτ | liefert somit
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dS
d〈µτ |

= − 1

NPW

∑
n

fn

〈
ΨPW
n

∣∣∣∣∣ P̂

d〈µτ |

∣∣∣∣∣ΨPW
n

〉
(6.24)

= − 1

NPW

∑
n

fn(1− P̂ )|ΨPW
n 〉

∑
α

〈ΨPW
n |µα〉S−1

ατ (6.25)

= − 1

NPW

∑
n

fnc
∗
τn(1− P̂ )|ΨPW

n 〉. (6.26)

Den zentralen Beitrag zu diesem Gradienten bildet das Residuum (1 − P̂ )|ΨPW
n 〉,

welches im allgemeinen keinerlei sphärische Symmetrie mehr aufweist. Diesbezüglich
ist Variation der Spillage nach den Radialfunktionen der Orbitale von Interesse.
Diese ergibt sich durch Anwendung der Ketternregel der Differentiation zu

dS
d〈Rnl|

=
dS
d〈µτ |

· d〈µτ |
d〈Rnl|

. (6.27)

Der Operator d〈µτ |
d〈Rnl|

beinhaltet die Multiplikation mit den Kugelflächenfunktionen
und die Projektion auf die radiale Basis. Die explizite Form wird an späterer Stelle
formuliert werden.

6.3. Periodische Systeme

Durch die periodischen Randbedingungen, welche zur Lösung der Festkörper ange-
nommen werden, ergibt sich für die Eigenzustände des Systems die Beschreibung
durch Blochwellen |ΨPW

n 〉 → |ΨPW
nk 〉. Eine vergleichbare Beschreibung ist nun auch

für den Projektor P̂ erforderlich um dessen Anwendung auf die Zustände technisch
realisieren zu können. Dazu führt man an dieser Stelle atomare Blochwellen (AO-
Blochwellen)

µαk(r) =
∑
R

µα(r−R)eikR (6.28)

ein. R ist hierbei ein Gittervektor des periodischen Systems. Die entsprechende AO-
Blochwelle im reziproken Raum erreicht man durch die Fouriertransformation

µ̃αk(G + k) =
1√
Ω

∫
Ω

dΩµαk(r)e−i(G+k)r, (6.29)

wobei Ω das Volumen der periodischen Zelle bezeichnet. Mit diesen Größen lässt
sich nun der k-Punkt abhängige Projektor

P̂k =
∑
αβ

|µ̃αk〉S−1
k,αβ〈µ̃βk| (6.30)

angeben, welcher in den Ausdrücken für die Spillage
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6 Quantitativ optimierte Atomorbitale — Quamols

Abb. 6.2:
Darstellung der Repräsentationskette der Orbitalfunktionen in dem entwickelten Algo-
rithmus. Das jeweils genutzte Verfahren zum Repräsentationswechsel ist an den Pfeilen
angegeben. Der untere Graph illustriert die Regelmäßigkeit des radialen Gitters im re-
ziproken Raum, verglichen mit der radialen Projektion des Blochwellengitters.

S =
1

NPW

∑
nk

wkfnk〈ΨPW
nk |1− P̂k|ΨPW

nk 〉 (6.31)

und dem Gradienten

dS
d〈µτ |

= − 1

NPW

∑
nk

wkfnkc
∗
k,τn(1− P̂k)|ΨPW

nk 〉 (6.32)

Verwendung findet. Mit wk werden die k-Punkt-Gewichte der diskretisierten Bril-
louinzone bezeichnet.

6.4. Algorithmus

Mit den in den vorherigen Kapiteln eingeführten Größen kann nun die Beschrei-
bung des eigentlichen Algorithmus erfolgen. Ausgehend von einer atomzentrierten
Orbitalfunktionen der Gestalt

µα(r) = Rnl(r)Ylm (r̂) (6.33)
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Abb. 6.3:
Flussdiagramm des Optimierungsverfahrens. Die gewählten Farben zeigen die zugrun-
deliegende Repräsentation der Orbitalfunktionen gemäß Abb. 6.2.

soll der auf einem Gitter numerisch repräsentierte, radiale Teil Rnl(r) bei festgehal-
tenen Ylm (r̂) dergestalt variiert werden, dass die Spillage bezüglich der zu Grunde
liegenden Referenz der Ebenen-Wellen-Zustände minimal wird. Diese optimierten
Orbitalfunktionen werden hier als QUAntitativ optimierte AtoMOrbitaLe, kurz
Quamols, bezeichnet.

Die Berechnung der Spillage und ihres Gradienten bedingen Auswertung von Über-
lappintegralen der Gestalt

〈µα|ΨPW
n 〉 =

∑
k

wk

∑
G

µ∗αk(G + k)Ψnk(G + k). (6.34)

Dies bedarf einer Transformation der Orbitale in den reziproken Raum der ebe-
nen Wellen. Der Gradient selber muss dann seinerseits zurück in eine radiale Form
gebracht werden um die sphärische Symmetrie nicht zu brechen. Dies setzt in je-
dem Schritt der Optimierung eine Transformation in den radialen Raum voraus,
welche auf Grund der ungleichmäßigen Stützpunktverteilung im (G + k)-Raum zu
verrauschten Radialfunktionen führt. Diese Transformationen sind zudem auf Grund
der Vielzahl von Gitterpunkten (≈ 40.000) rechenintensiv. Um das Rauschen zu mi-
nimieren und um die Anzahl an Stützpunkten deutlich zu reduzieren, führen wir an
dieser Stelle radiale Orbitalfunktionen im reziproken Raum ein. Diese werden durch
kubische Splines auf einem Hilfsgitter repräsentiert, welches eine deutlich homoge-
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6 Quantitativ optimierte Atomorbitale — Quamols

nere Stützstellenverteilung aufweist und in der Anzahl der Gitterpunkte signifikant
geringer ist. In der Regel reichen 100 Punkte zur akkuraten Beschreibung aus. Abbil-
dung 6.2 zeigt eine Gegenüberstellung der beiden Gitter. Die Transformationen aus
dem radialen Ortsraum in den radialen reziproken Raum und vice versa sind hierbei
durch eine ebene Wellenentwicklung in Kugelwellen gegeben. Die Transformation in
den reziproken Raum geschieht über die Transformationsvorschrift

R̃nl(g) =

√
2

π

∞∫
0

Rnl(r)jl(gr)r
2dr. (6.35)

Die Rücktransformation geschieht über die Vorschrift

Rnl(r) =

√
2

π

∞∫
0

R̃nl(g)jl(gr)g
2dg. (6.36)

Die jl bezeichnen die sphärischen Besselfunktionen erster Art. Diese Transforma-
tionen können durch eine numerische Integration erfolgen und sind in ihren Kosten
durch die geringere Anzahl an Gitterpunkten (≈ 100) deutlich moderater als die
direkte Transformation µ(G + k)→ R(r).

Die Auffaltung der radialen Orbitalfunktionen im reziproken Raum geschieht in
zwei Schritten. Zunächst wird R̃nl auf die |G + k|-Stützstellen im (G + k)-Raum
über kubische Splines interpoliert. Die Beschreibung dieser Methode befindet sich
im Anhang E. Aus diesen ergeben sich dann die atomaren Blochwellen zu

µαk(G + k) =

√
(2π)3

Ω
R̃nl(|G + k|)Ylm

(
G + k

|G + k|

)
ei(G+k)rτ . (6.37)

Dabei bezeichnet rτ die Position des Atoms τ in der Zelle und Ylm sind die
reellwertigen, normierten Kugelflächenfunktionen.

Die Rücktransformation der aufgefalteten Orbitale in den radialen reziproken Raum
geschieht ebenfalls in zwei Schritten. Zunächst erfolgt die Berechnung der radialen
Blochwellen

R̃nl(gξ) =
∑
G+k

δ(gξ − |G + k|)

× 1

nτ (2l + 1)

l∑
τ,m=−l

√
2Ω

π
µαk(G + k)Ylm

(
G + k

|G + k|

)
e−i(G+k)rτ (6.38)

über eine Mittelung aller beitragenden Atomzentren τ und aller (2l + 1) Orbitale
zur Drehimpulsquantenzahl l. Die Projektion mit den Kugelflächenfunktionen Ylm
garantiert die Bewahrung der sphärischen Symmetrie und ist bei der analogen
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Berechnung der radialen Gradienten im reziproken Raum essentiell. Im zweiten
Schritt muss nun auf die Stützstellen des radialen Gitters rückgerechnet werden.
Eine Interpolation führt nun jedoch nicht ans Ziel, da die obigen berechneten
radialen Blochwellen signifikanten numerischen Schwankungen unterliegen. Des-
wegen wird an dieser Stelle die Methode des Splinefittens verwendet, welche in
Anhang F genauer erläutert wird. Da die Anzahl der Punkte für |G + k| → 0

abnimmt und sogar leere Intervalle möglich sind, behilft man sich an dieser Stelle
damit, Intervalle adaptiv zusammenführen, bis jedes neue Intervall zumindest einen
Punkt beheimatet. Zudem wird Rnl(g) symmetrisch nach −∞ fortgesetzt, was das
Verfahren weiter stabilisiert. Bei ungeraden l ist die Punktsymmetrie zu wählen,
bei geradem l die Achsensymmetrie.

Dieses Verfahren kann ebenso für die Transformation des Gradienten verwendet
werden. Eleganter ist es den resultierenden Gradienten direkt gemäss Kettenregel
der Differentiation zu berechnen. Dieser ergibt sich zu

dS

d
〈
R̃nl(gx)

∣∣∣ =
d
〈
R̃nl(gξ)

∣∣∣
d
〈
R̃nl(gx)

∣∣∣ × d 〈µαk(G + k)|

d
〈
R̃nl(gξ)

∣∣∣ × dS
d 〈µαk(G + k)|

. (6.39)

Die expliziten Formen sind mit

d 〈µαk(G + k)|

d
〈
R̃nl(gξ)

∣∣∣ =

√
(2π)3

Ω

∑
τ,m

|gξ〉ei(G+k)rτ 〈Ylm|G + k〉〈G + k| (6.40)

und

d
〈
R̃nl(gξ)

∣∣∣
d
〈
R̃nl(gx)

∣∣∣ =
∑
i,p

|gx〉
dχi,p

dRnl(gx)
(gξ(i)− gx(i))p〈gξ| (6.41)

gegeben. Der letzte Ausdruck ergibt sich aus der Variation der Splinekoeffizienten
bezüglich der Funktionswerte an den Stützstellen. Für weitergehende Lektüre sei
hier auf den Anhang E und F verwiesen.

Mit diesen Transformationen ist es nun möglich den Algorithmus aufzubauen, der
basierend auf der Spillage und des entsprechenden Gradienten die Orbitale anhand
der Methode der konjugierten Gradienten optimiert. Das Flussdiagramm ist in Ab-
bildung 6.3 dargestellt. Dieser Algorithmus ist in die S/PHI/nX Bibliothek[18] im-
plementiert worden.

6.4.1. Initialisierung der lokalisierten Basis

Die Optimierung der Orbitalfunktionen ist — vergleichbar zur Optimierung der
elektronischen Struktur — hochgradig nichttrivial. Ein gute Initialisierung der
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6 Quantitativ optimierte Atomorbitale — Quamols

Basis sowohl in der Form, als auch in der Anzahl der Basisfunktionen, ist auf
Grund der komplexen Spillage-Oberfläche wichtig. Bezüglich der Anzahl der Basis-
funktionen ist es gut, dem Konzept des balancierten Basissätze[20] zu folgen. Die
wesentlichen Beitrage zur Elektronenverteilung werden durch s- und p-Funktionen
gegeben. Höhere Funktionen im Sinne der Drehimpulsquantenzahl dienen, mit
Ausnahme der Beschreibung von Übergangselementen, der Polarisation. So ist eine
3s2p1d-Basis balanciert, wahrend eine 1s2p1d-Basis ein zu hohes Gewicht auf die
Polarisierungsfunktionen legt und somit als überpolarisiert gilt. Eine 5s4p1d-Basis
hingegen legt ein zu schwaches Gewicht auf die Polarisationsfunktionen und
gilt als unterpolarisiert. Erfahrungsgemäß stellt eine balancierte Basis eine gute
Initialisierung dar. Ein zu hohes Gewicht auf den Polarisationsfunktionen kann in
der Optimierung dazu führen, dass Unzulänglichkeiten in den s- und p-Anteilen in
den höheren Funktionen ausgeglichen werden, was zu Artefakten in der Darstellung
führen kann. Dies werden wir am Beispiel des Stickstoffdimers in Abschnitt 6.5.1
und am Beispiel des Silizium in Abschnitt 6.5.2 diskutieren.

Gleichermaßen wichtig ist die radiale Form der Initialisierung. Atomare Lösungen
des Atoms, beziehungsweise des Pseudoatoms bei der Verwendung von Pseudopoten-
tialen, bilden hierbei erfahrungsgemäß gute Initialisierungen, die um weitere Gauß-
funktionen der Gestalt

Rnl(r) = rl · e−γr2 (6.42)

oder gar um Linearkombinationen

Rnl(r) = rl ·
∑
i

cie
−γir2 (6.43)

ergänzt werden können. Einen fundierten Datensatz bildet hierbei der EMSL Basis-
set Exchange[82], welcher eine Bandbreite unterschiedlichster Orbitale bereithält,
die in dieser Arbeit als Initialisierung für Polarisationsfunktionen gedient haben.

In dieser Arbeit werden die Basisfunktionen aus einer Mischung der pseudoisierten
Atomorbitale und weiteren Gaußfunktionen, entnommen aus Jensens polarization
consistent (PC) Basissatz[82], initialisiert. Eine solche Initialisierung wird dann als
pseudoisierter PC-Basissatz bezeichnet.

6.4.2. Typische Parameter

Zur Erzeugung der Eigenzustände |ΨPW
n 〉 in der Darstellung ebener Wellen werden

Dichtefunktionalrechnungen durchgeführt. Die Art der Beschreibung des Austausch-
und Korrelationsfunktionals wird zu Beginn der Diskussion des Materialsystems an-
gegeben, wie auch der benutzte Energiecutoff der ebene Wellen und das k-Punkt
Gitter. Während für Dichtefunktionalrechnungen nicht-zentrierte k-Punkt Gitter
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Basisname # Sinit Sopt Etot [eV] ∆Etot [eV]
minimal (1s1p) 4 4.68 · 10−2 1.02 · 10−2 -540.6616 4.56

minimal + d (1s1p1d) 9 3.29 · 10−2 3.29 · 10−3 -543.4634 1.76
pseudoisierter PC0 (2s2p) 8 6.39 · 10−3 2.29 · 10−3 -543.6593 1.56
balancierter PC0 (2s1p) 5 3.57 · 10−2 3.43 · 10−3 -543.0280 2.20

pseudoisierter PC1 (2s2p1d) 13 3.97 · 10−3 9.99 · 10−5 -545.1124 0.112
balancierter PC1 (3s2p1d) 14 3.16 · 10−3 6.97 · 10−5 -545.1287 0.095

balancierter PC2 (4s3p2d1f) 30 1.67 · 10−3 8.08 · 10−6 -545.2076 0.016
unterpolarisiert (4s3p1d) 18 1.98 · 10−3 5.61 · 10−5 -545.1341 0.090
überpolarisiert (1s3p2d1f) 27 4.69 · 10−3 2.34 · 10−4 -544.8947 0.329

Tab. 6.1:
Vergleich der Spillage nach Initialisierung und Optimierung für unterschiedlich Basis-
größen. Gegeben ist zudem die Anzahl der Funktionen (#) sowie die Gesamtenergie
berechnet in einem LCAO Ansatz und der Vergleich dieser mit der Ebenen-Wellen-
Rechnung.

bevorzugt werden, sind für die Splineinterpolation zentrierte k-Punkt Gitter vorteil-
haft. Die explizite Mitnahme des Γ-Punktes erlaubt die Nutzung der physikalischen
Eigenschaften der Orbitalfunktionen an diesem Punkt, wie

Rnl(0) = 0 ∀ l > 0 (6.44)

und

R′nl(0) = 0 ∀ l > 1. (6.45)

Weiterhin liefern dichte k-Punkt Gitter mehr Punkte nahe des Γ-Punktes, was
die Stabilität des Splinefittens verbessert. Deswegen werden die Eigenzustände bei
konstant gehaltener Elektronendichteverteilung für den Quamolansatz an dichteren,
zentrierten k-Punkt Gitter nachgerechnet um obige Vorteile nutzen zu können. Die
typischen Gittergrößen belaufen sich auf 500 . . . 1000 Punkte für das logarithmische
Gitter der Radialfunktionen im Ortsraum, und 50 . . . 200 Punkte für das lineare
Gitter der Radialfunktionen im reziproken Raum.

Die Filterfaktoren fn werden — soweit nicht anders spezifiziert — in Übereinstim-
mung mit den Besetzungszahlen des physikalischen Systems gewählt.

6.5. Ausgewählte Beispiele

6.5.1. Minimale versus erweiterte Basis - Stickstoffdimer

Zur Illustration des Quamolansatzes verwenden wir zu Beginn ein wohl verstandenes
System und diskutieren den Einfluss der Basissatzgröße an einem einfachen Molekül
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Größe σs σ∗s πp σp
1s1p 4.51 · 10−3 1.43 · 10−4 9.48 · 10−4 3.60 · 10−3

1s1p1d 1.60 · 10−3 1.38 · 10−5 2.56 · 10−4 1.16 · 10−3

2s2p 1.95 · 10−4 3.62 · 10−5 9.11 · 10−4 2.37 · 10−4

2s1p 1.00 · 10−3 8.13 · 10−5 1.00 · 10−3 3.36 · 10−4

2s2p1d 2.97 · 10−5 1.42 · 10−6 2.78 · 10−5 1.33 · 10−5

3s2p1d 1.38 · 10−5 1.42 · 10−6 2.11 · 10−5 1.22 · 10−5

4s3p2d1f 1.64 · 10−6 2.93 · 10−7 2.19 · 10−6 1.77 · 10−6

4s3p1d 1.06 · 10−5 1.02 · 10−6 1.89 · 10−5 6.69 · 10−6

1s3p2d1f 1.41 · 10−4 7.25 · 10−7 8.71 · 10−6 7.55 · 10−5

Tab. 6.2:
Vergleich der Zustandsspillage für verschiedene Basissätze. Die Beiträge sind auf die
Gesamtspillage normiert.

Größe d [bohr] ∆d [%] Etot [eV] ∆Etot [eV]
ebene Wellen 2.085 — -545.2239 —

1s1p 2.233 +7.1 -541.0198 4.20
1s1p1d 2.126 +2.0 -543.4987 1.73
2s2p 2.124 +1.8 -543.6892 1.53
2s1p 2.137 +2.5 -543.0879 2.14

2s2p1d 2.088 +0.11 -545.1124 112 · 10−3

3s2p1d 2.088 +0.12 -545.1314 93 · 10−3

4s3p2d1f 2.086 +0.03 -545.2076 16 · 10−3

4s3p1d 2.087 +0.09 -545.1341 90 · 10−3

1s3p2d1f 2.077 -0.4 -544.8974 327 · 10−3

Tab. 6.3:
Vergleich der Ergebnisse der Strukturoptimierung von N2 unter Verwendung unter-
schiedlicher optimierter Basissätze.

mit σ- und π-Bindungen: das Stickstoffdimer. Die elektronische Struktur dieses
Systems ist im Sinne des LCAO-Bildes gut verstanden. Die s- und p-Orbitale des
Stickstoffes prägen bei der atomaren Bindung drei σ− und zwei π-Molekülorbitale
aus, die mit Elektronen gefüllt werden. Ein minimaler Basissatz besteht somit aus
einer s- und einer p-Funktion.

Die Modellierung des Systems mittels DFT erfolgt unter Verwendung der lokalen
Dichtenäherung (LDA). Konvergierte Ergebnisse lassen sich mit einer Cutoffenergie
von 35 Ry erreichen. Das Molekül wird in einer Box der Kantenlänge 15 Bohr
beschrieben, weswegen eine Γ-Punkt Rechnung im Sinne der k-Punkt-Konvergenz
ausreichend ist. Der berechnete Bindungsabstand beläuft sich auf 2.085 Bohr in
guter Übereinstimmung mit dem experimentellen Befund von 2.074 Bohr[27].
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Abb. 6.4:
Links: Visualisierung der Residualdichte. Blaue Bereiche zeigen fehlende Dichte im
Vergleich zur Ebenen-Wellen-Basis. Rote Bereiche zeigen additive Dichte an. Die Iso-
fläche beträgt: 5 · 10−3 e/Å3

Rechts: LCAO-Termschema des Stickstoffdimers mit Besetzung.

Für unterschiedliche Basissatzgrößen führen wir nun Optimierungen der Basisfunk-
tionen aus. Zudem sind die pathologischen Fälle einer unter- und einer überpolari-
sierten Basis betrachtet worden, um ihre Effekte zu studieren. Die Spillage, sowie
Gesamtenergie und die Abweichung zur ebenen Wellenrechnung sind in Tabelle 6.1
angegeben. Für die Diskussion ebenfalls interessant ist die zustandsaufgelöste Spil-
lage

Sn =
〈Ψn|1− P̂ |Ψn〉

NPW (6.46)

in Tabelle 6.2.

Eine Optimierung der minimalen Basis reduziert die anfängliche Spillage der aus
dem PAW-Potential entnommenen Orbitalfunktionen um einen Faktor 5 auf 1 ·10−2,
was energetisch immer noch eine Diskrepanz von 4.6 eV bedeutet. Die dominanten
Beiträge zur Spillage stammen von den bindenden σs und σp Zustand. Die Hinzu-
nahme einer d-Funktion zur Polarisierung senkt die Spillage aller Zustände, während
eine weitere s-Funktion — allein, oder in Kombination mit einer p-Funktion — sich
einzig positiv auf die Beschreibung der σ-artigen Zustände auswirkt, jedoch auf den
πp Zustand keinen signifikanten Effekt hat. Eine Kombination beider Erweiterun-
gen zu einer 2s2p1d Basis liefert eine Spillage von 1 · 10−4 mit einer energetischen
Diskrepanz von 110 meV. Das Hinzufügen weitere Funktionen zu einer balancierten
4s3p2d1f Basis senkt die Spillage um eine weitere Größenordnung. Die energeti-
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Abb. 6.5:
Vergleich der Basisfunktionen aus der Initialisierung und nach der Optimierung. Ver-
wendet wurde die minimale sp-Basis für das Stickstoffmolekül.

sche Abweichung betragt nun nur noch 14 meV. Die verbesserte Beschreibung der
Zustände lässt sich über die Residualdichte

R(r) =
∑
n,k

wkfn
(
ΨPW
nk (r)ΨPW*

nk (r)−Ψµ
nk(r)Ψµ∗

nk(r)
)

(6.47)

visuell darstellen. Abbildung 6.4 zeigt diese für die unterschiedlichen Basisgrössen.
Blaue Bereiche zeigen hierbei fehlende Dichte im Vergleich zur Ebenen-Wellen-
Referenz. Rote Bereiche hingegen sind zusätzliche Dichte, hervorgerufen durch
den beschränkten atomaren Basissatz. Dies wird beispielsweise durch eine Mangel-
kompensation einer s-artigen Funktion durch eine am Nachbaratom lokalisierten
p-Funktion hervorgerufen. Mit zunehmender Basisgröße reduzieren sich beide
Effekte. Zu sehen ist ebenfalls, dass eine unterpolarisierte Basis ein qualitativ
vergleichbares Bild liefert, während eine überpolarisierte Basis — sowohl in der
1s1p1d-Basis aber dominant in der 1s3p2d1f -Basis — die Beschreibung qualitativ
verändert. Dieser visuelle Unterschied lässt sich auch an der Beschreibung der
Bindung quantitativ fassen, wenn die Ergebnisse der Geometrieoptimierung in
Tabelle 6.3 betrachtet werden. Während der Bindungsabstand mit steigender
Basisgröße von oben gegen das Ergebnis der Ebenen-Wellen-Rechnung konvergiert,
kommt die Bindung für die überpolarisierte Basis zu kurz heraus. Zwar wird der
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Abb. 6.6:
Vollständigkeitsprofil der Basisfunktionen nach der Initialisierung und nach der Opti-
mierung für die 2s2p1d-Basis zur Beschreibung des Stickstoffmoleküls.

experimentelle Wert zufällig besser reproduziert, jedoch nicht auf Grund einer
exakteren physikalischen Beschreibung. Weder energetisch noch in der Spillage
lässt sich diese fehlerhafte Beschreibung direkt herauslesen. Bei der Beschreibung
des Siliziums an späterer Stelle werden weitere Artefakte, induziert durch eine
überpolarisierte Basis, sichtbar.

Der Effekt der Optimierung lässt sich an der radialen Form der Orbitalfunktio-
nen diskutieren. Im Falle der minimalen sp-Basis sind die Radialfunktion in Ab-
bildung 6.5 wiedergegeben. Man erkennt, dass hauptsächlich der Radialteil der p-
Funktion von der Optimierung durch Kontraktion modifiziert worden ist. Eine signi-
fikante Modifizierung der s-Funktion lässt sich nicht beobachten. Im Falle mehrerer
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Basisfunktionen pro l-Kanal lässt sich ein direkter Vergleich der radialen Initial-
funktionen und ihrer optimierten Gegenstücke nicht mehr ziehen. Die Verwendung
mehrerer Funktionen und die fehlenden Forderung nach Orthogonalität erlaubt das
Bilden von Linearkombinationen, so dass eine optimierte Funktion nicht mehr ein-
deutig einer Initialisierungsfunktion zugeordnet werden kann. Abhilfe schafft hier der
Übergang zu den sogenannten completeness-Profilen nach Chong[83]. Abbildung 6.6
zeigt solche Profile für die 2s2p1d-Basis. Dem Grundgedanken nach wird hier die
Repräsentation von Gaußfunktionen mit unterschiedlichen Exponenten γ abgefragt.
Je näher die durch Γl(γ) evaluierte Projektion

Γl(γ) =
∑
α,β,m

〈gγlm|µα〉S
−1
α,β〈µβ|g

γ
lm〉 (6.48)

an eins liegt, umso besser ist diese Gaußfunktion repräsentiert. Die dargestellten
Profile zeigen, dass durch die Optimierung in diesem Fall mehr Exponenten besser
repräsentiert werden, als in der Initialisierung. Dies kann sogar dazu führen,
dass, wie im Falle der d-Funktion, die Repräsentation eines einzelnen Exponenten
abgesenkt wird, um eine größere Breite zu erreichen. In der praktischen Anwendung
ist das aber nicht problematisch, da die Orbitalfunktion und nicht die Gaußfunktion
bestmöglich repräsentiert werden muss.

Nach Betrachtung des Stickstoffmoleküls lassen sich die folgenden Kernaussagen
treffen.

• Minimale Basissätze sind selbst nach der Optimierung nicht ausreichend um
quantitativ hochwertige Ergebnisse zu erzielen.

• Balancierte Basissätze sind den nicht balancierten Basissätzen vorzuziehen, da
sich in diesen Artefakte einschleichen können, die zu unphysikalischen Sach-
verhalten führen.

• Eine Vergrößerung des Basissatzes liefert eine systematische Konvergenz der
Spillage um circa eine Größenordnung pro hinzugenommener Schale.

6.5.2. Kristalle - Silizium

Silizium kristallisiert in der Diamantstruktur und ist ein kovalent gebundenes
Materialsystem. Jedes Siliziumatom prägt zu seinen nächsten Nachbarn vier
identische Bindungen aus. Von diesen ist bekannt, dass die bindenden Orbitale
durch sp3-Hybride beschrieben werden können. Ein sp-Basissatz bildet folglich in
diesem System die minimale Basis. Silizium ist in der Literatur ein viel diskutiertes
Materialsystem und erlaubt somit einen Vergleich mit anderen Ansätzen, die
ebenfalls auf einer Optimierung der Spillage basieren.
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Basisname Größe Sinit Sopt
minimal basis 1s1p 4.1 · 10−2 6.2 · 10−3

minimal basis + d 1s1p1d 2.2 · 10−2 1.7 · 10−4

PC1 - Pseudo 2s2p1d 7.1 · 10−4 1.1 · 10−4

PC2 - Pseudo 3s3p2d1f 2.2 · 10−4 2.8 · 10−5

PC2 - Reduced 2s2p1d1f 6.3 · 10−5 3.7 · 10−5

PC2 - Reduced 1s2p1d1f 7.3 · 10−5 5.4 · 10−5

Basisname Größe Sopt Sopt / SQuamol
opt

STO[77] 1s1p 7.6 · 10−3 1.23
PLATO[78] 2s2p1d ≈ 2.7 · 10−2 245.45
MIN S[77] 1s1p 4.4 · 10−3 0.71
MIN S[77] 1s1p1d 1 · 10−4 0.59

Tab. 6.4:
Gesamtspillage für unterschiedliche Basissätze am Beispiel des Silizium. MIN S ist die
theoretisch berechnete untere Schranke für die Spillage[77] (vgl. Text).

Zur Modellierung des Materialsystems findet die lokale Dichtenäherung (LDA)
zur Beschreibung des Austausch- und Korrelationfunktionals Verwendung. Ein
entsprechendes PAW-Potential ist der VASP-Datenbank[84] entnommen worden.
Konvergierte Ergebnisse erreicht man bei Verwendung eines Energiecutoffs von
20 Ry und eines 4x4x4 Monkhorst-Pack k-Punktgitters. Zur Stabilisierung des
Splinefittens sind die Wellenfunktionen bei festgehaltener Dichte auf einem Γ-
zentrierten 10x10x10 k-Punktgitter berechnet worden. Für das radiale Gitter im
reziproken Raum sind 100 Punkte verwendet worden.

Neben einem minimalen Basissatz sind erweiterte Basissätze erzeugt worden.
Als Ausgangspunkt dienen hierbei balancierte Basissätze der pseudoisierten PC-

Method c11 [GPa] c12 [GPa] c0
44 [GPa] c44 [GPa] B0 [GPa]

DFT-PW 160.6 61.6 103.2 73.5 94.6
LCAO sp 174.0 66.3 124.1 89.1 102.2
LCAO spd 171.3 68.3 110.9 77.9 102.7

LCAO 2s2pd 168.6 60.3 107.3 76.6 96.4
LCAO 2s2pdf 165.2 61.4 106.2 75.7 96.0
DFT-PW[78] 162.0 63.19 107.4 77.22 96.13
Plato sp[78] 186.8 75.03 139.5 91.45 112.3

Plato 2s2pd[78] 156.9 59.84 111.9 76.85 92.19

Tab. 6.5:
Elastische Konstanten für Silizium. c0

44 bezieht sich auf die c44 Konstante ohne ionische
Relaxationen.
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6 Quantitativ optimierte Atomorbitale — Quamols

Abb. 6.7:
Darstellung des optimierten 2s2pdf Basissatzes.

Variante. Um mit anderen Basissätzen aus der Literatur vergleichbar zu sein, sind
diese anschliessend in ihrer Größe reduziert worden. Da das Weglassen einzelner
Funktionen die Spillage signifikant verschlechtert, ist hierbei eine Eigenwertzerlegung
verwendet worden, um die Funktionen zu identifizieren, die einen minimalen Bei-
trag zur Spillagereduktion liefern. Das Verfahren wird an dieser Stelle grob skizziert.

Der Beitrag einer einzelnen Basisfunktion zur Zustandsentwicklung ist gemäß Glei-
chung (6.4) über die Entwicklungskoeffizienten cαn gegeben. Da die zugrundeliegende
Basis nicht orthonormal ist, ist nun die Koeffizientenmatrix

Pαβ =
∑
n,k

wkfnkc
∗
k,αnck,βn (6.49)

aufzustellen. Eine Diagonalisierung dieser Matrix liefert Eigenwerte mit hinzugehö-
renden Eigenfunktionen. Die Eigenwerte geben ein quantitatives Kriterium für die
Wichtigkeit der einzelne Eigenfunktion zur Beschreibung des Zustandsraumes. Al-
lerdings mischen dabei in die Eigenfunktionen beliebige l-Komponenten und Atom-
sorten, so dass die sphärische Symmetrie sowie die Atomzugehörigkeit nicht mehr
zuzuordnen sind. Um diese Information zu bewahren, definiert man eine Koeffizien-
tenmatrix, die als zusätzliche Indizes die Spezies is und die Drehimpulszahl l erhält
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6.5 Ausgewählte Beispiele

Abb. 6.8:
Silizium Bandstruktur berechnet unter Verwendung unterschiedlicher Basissätze. Das
Valenzbandmaximum ist hierbei auf 0 eV referenziert.

P is,l
α′β′ =

1

nAtoms

1

2l + 1

∑
n,k

∑
ia,m

wkfnc
∗
k,α′,n,is,ia,l,mck,β′,n,is,ia,l,m. (6.50)

Diese Koeffizientenmatrix unterläuft hierbei einer Mittelung über alle Atome zur
Atomsorte is, sowie der 2l + 1 Orbitalfunktionen zur Drehimpulsquantenzahl l. α′

und β′ sind hierbei nur noch als Nummerierung der einzelnen Orbitalfunktionen
zu einer festgehaltenen Atomsorte und zu einer festgehaltenen Drehimpulszahl l
zu verstehen. Diese Matrizen lassen sich diagonalisieren, ohne einer Vermischung
unterschiedlicher l-Komponenten oder Atomsorten zu unterliegen. Allerdings gehen
in diese Koeffizientenmatrizen nur die entsprechenden on-site Beitrage ein. Jene
bilden damit nur eine grobe Abschätzung der tatsächlich reduzierten Basis. Durch
eine nachträgliche Optimierung dieser neuen Basis kann dieser Makel aber beseitigt
werden. Als Richtwert können solche Funktionen aus der Basis entfernt werden,
deren Eigenwert kleiner ist, als das Produkt aus Spillage und maximalen Eigenwert.

Die so konstruierten Basissätze sind mit der resultierenden Spillage in Tabelle 6.4
wiedergegeben. Ein Vergleich mit anderen auf der Spillage basierenden Optimie-
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6 Quantitativ optimierte Atomorbitale — Quamols

Abb. 6.9:
Die Vergrößerung des untersten Bandes der Siliziumbandstruktur zeigt nahe des Γ-
Punktes einen signifikanten Fehler (rote Kreise), wenn die unterpolarisierte 1s2p1d1f -
Basis verwendet wird. Die balancierte 2s2p1d1f -Basis (grüne Quadrate) ist frei von
diesem Fehler und reproduziert das Ergebnis der ebenen Wellen (schwarze Linie).

rungsmethoden zeigt, dass die hier optimierten Funktionen durchweg eine geringere
Spillage aufweisen und stellenweise sogar die von Sanchéz-Portal[77] vorhergesagte
theoretische untere Schranke erreichen. Diese hängt jedoch von den Details der zu
Grunde liegenden Ebenen-Wellen-Rechnung ab. Insbesondere das zugrunde liegen-
de k-Punkt Gitter spielt hier eine Rolle, denn die in [77] verwendete punktweise
Minimierung unterschätzt die untere Schranke für endliche k-Punktsätze stärker
als die hier diskutierte spline-gestützte Variante. Diskrepanzen lassen sich auf diese
Unterschätzung zurückführen.

Es stellt sich die Frage, ob die Orbitale auch eine ausreichende Transferabilität
besitzen, oder ob durch die Optimierung die Orbitale nur für das System, für
welches sie optimiert wurden, akkurat sind. Um die Transferabilität der Orbitale
zu prüfen, werden in der Regel nicht symmetrische Verzerrungen des Materials
berechnet. Tabelle 6.5 zeigt die mit den optimierten Basisfunktionen berechneten
Elastizitätskonstanten. Diese besitzen eine vergleichbar gute Übereinstimmung mit
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6.5 Ausgewählte Beispiele

Abb. 6.10:
Entwicklung der Eigenwerte der Überlappmatrix S(k) entlang des Pfades X → Γ→ L

für den unterpolarisierten 1s2p1d1f -Basissatz. Die starke rote Linie hebt den Eigenwert
hervor, welcher nahe des Γ-Punktes rapide singulär wird und das Problem um einen
Freiheitsgrad beraubt.

anderen Ebenen-Wellen-Resultaten[78]. Von einer deutlichen Verminderung der
Transferabilität kann also nicht gesprochen werden.

Die optimierten Orbitalfunktionen besitzen auch im Falle des unendlich ausgedehn-
ten Kristalls eine Lokalisierung, wie Abbildung 6.7 zeigt. Ein deutliches Signal in der
radialen Funktion lässt sich außerhalb von 10 Bohrradien nicht wahrnehmen. Die
Reproduktion der Bandstruktur ist in Abbildung 6.8 wiedergegeben. Die besetzten
Zustände werden mit einem Maximalfehler von 50 meV korrekt beschrieben. Mit
steigender Größe des Basissatzes nimmt zudem die qualitative Beschreibung der
unbesetzten Zustände zu.

Im Falle einer überpolarisierten Basis, die hier mit dem oben beschriebenen Verfah-
ren der Eigenwertzerlegung erzeugt wurde, liefert die Bandstruktur ein interessantes
Bild. Anhand der Spillage allein stellt sich die konstruierte 1s2p1d1f -Basis als
gute Basis dar. Ihre Spillage ist gerade mal doppelt so groß wie die der fast
balancierten 3s3p2d1f -Basis. Die Bandstruktur (Abbildung 6.9) zeigt jedoch eine
minderwertige Beschreibung des niedrigsten, s-artigen Bandes nahe dem Γ-Punkt.
Die Erklärung hierfür ist die erzwungene Beschreibung eines s-artigen Zustandes
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6 Quantitativ optimierte Atomorbitale — Quamols

durch am Nachbaratom lokalisierte p-Funktionen. Dies gelingt zwar über weite
Teile der Bandstruktur recht gut, führt aber am Γ-Punkt zu eklatanten Fehlern, da
sich hier die p-Funktionen symmetriebedingt aufheben. Der zuständige Überlapp
wird singulär und verliert somit einen Freiheitsgrad wie Abbildung 6.10 zeigt.
Solche Artefakte in der Bandstruktur können also auf eine fehlerhafte Beschreibung
eines Zustandes durch Funktionen höherer Drehimpulsquantenzahlen zurückgeführt
werden und bilden ein sicheres Kriterium dafür, dass die verwendete Basis überpo-
larisiert ist.

Im folgenden sind die Kernaussagen dieses Abschnittes noch einmal zusammenge-
fasst.

• Eine Eigenwertzerlegung nach on-site Beiträgen erlaubt die Reduktion der
Basissatzgröße ohne die Spillage wesentlich zu verschlechtern.

• Überpolarisierte Basisfunktionen neigen zu einem unphysikalischen Ausgleich
von Unzulänglichkeiten von Orbitalfunktionen niedrigeren Drehimpulses durch
Orbitalfunktionen höheren Drehimpulses, welche an einem anderem Zentrum
lokalisiert sind (Superpositionsfehler). Diese Fehler fallen besonders bei der
Betrachtung von Hochsymmetriepunkten ins Auge.

• Die optimierten Orbitalfunktionen weisen für das Materialsystem Silizium eine
geringere Spillage auf als andere in der Literatur diskutierte Basisfunktionen,
die unter der Minimierung der Spillage erzeugt wurden. Zudem besitzen die
optimierten Orbitalfunktionen eine gute Transferabilität.

6.5.3. Wahl der Filterfaktoren - Aluminium

Metalle eignen sich in idealer Weise für das Studium der Filterfaktoren, da die
Verwendung von Besetzungszahlen nun Bänder abschneidet, die das Ferminiveau
kreuzen. Aluminium bietet sich hierbei als Materialsystem an. Es kristallisiert in der
kubischen flächenzentrierten Form. Die Modellierung des elektronischen Austausch-
und Korrelationsfunktionals geschieht hier auf dem Niveau der generalisierten
Gradientennäherung (GGA-PBE). Ein entsprechendes PAW-Potential ist der
VASP-Datenbank[84] entnommen worden.

Metallische Systeme benötigen deutlich höhere k-Punkt Gitter zur Konvergenz,
was dem Quamolansatz zu Gute kommt. Ein 24x24x24 k-Punkt Gitter und ein
Energiecutoff von 24.25 Ry (330 eV) liefern konvergierte Ergebnisse. Erneut wird
die elektronische Dichte an einem nichtzentrierten k-Punkt Gitter erzeugt um dann
die Wellenfunktionen für das zentrierte Gitter zu bestimmen.

In einem ersten Schritt werden die Filterfaktoren in Übereinstimmung mit den
Besetzungszahlen des Materialsystem gesetzt. Um einen relativ weichen Übergang
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Basisname Größe Sopt ∆E [meV]
PC0 - Pseudo 2s2p 1.7 · 10−3

PC0 - Reduced 1s1p 2.5 · 10−3 396
PC1 - Pseudo 2s2p1d 1.2 · 10−4

PC1 - Reduced 1s1p1d 1.4 · 10−4 125
PC2 - Pseudo 3s3p2d1f 1.9 · 10−5

PC2 - Reduced 2s2p1d1f 2.8 · 10−5 112
PC2 - Reduced* 2s2p1d1f 1.9 · 10−4 117

Basisname Größe Sopt Sopt/SQuamol
opt

PAO[77] 1s1p 1.57 · 10−2 6.28
PAO[77] 1s1p1d 7 · 10−4 5.00
MIN S[77] 1s1p 9 · 10−4 0.36
MIN S[77] 1s1p1d 2.9 · 10−5 0.20

Tab. 6.6:
Spillage und Differenz der Gesamtenergie (selbst-konsistente LCAO vs. ebene-Wellen)
für Aluminium. Der ’*’ bezeichnet einen Wechsel der Filterfaktoren in der PC2 Basis.

zu gewährleisten ist hierbei ein Fermiverteilung von 0.05 eV verwendet worden.
Die optimierten Orbitalfunktionen werden — wie schon beim Silizium — generiert
und anschliessend über die Eigenwertzerlegung in ihrer Größe reduziert. Tabelle 6.6
zeigt die hier erreichte Spillage sowie einen Vergleich mit Literaturwerten. Es zeigt
sich eine signifikante Verbesserung. Die theoretische untere Schranke wird diesmal
nicht erreicht. Allerdings stellt Aluminium deutlich größere Ansprüche an das
k-Punktgitter als Silizium, so dass die in [77] mit nur 10 irreduziblen k-Punkten
berechnete untere Schranke wahrscheinlich deutlich unterschätzt wird. Die hier
zugrunde liegenden Ebenen-Wellen-Rechnungen für Aluminium verwenden ca. 400
irreduzible k-Punkte.

Die mit diesen optimierten Orbitalfunktionen berechnete Bandstruktur (Ab-
bildung 6.11) zeigt eine gute Übereinstimmung des besetzten Unterraumes.
Abweichungen sind hier nicht größer als 48 meV. Energetisch höher liegende
Zustände werden bis 20 eV über dem Fermi Level zumindest noch qualitativ
gut beschrieben, auch wenn Abweichungen bis zu einigen eV verzeichnet werden
können. Eine Änderung der Besetzungszahlen in Übereinstimmung mit einem
künstlichen Ferminiveau 13 eV oberhalb des tatsächlichen — ebenfalls mit einer
Fermiverteilung von 0.05 eV — und entsprechender Optimierung hebt die Spillage
zwar um eine Größenordnung an, verschlechtert die Energetik aber nur minimal wie
Tabelle 6.6 zeigt. Die Bandstruktur zeigt im neu definierten Unterraum deutliche
Verbesserungen. Die quantitative Übereinstimmung der Bänder bis zum künstlichen
Ferminiveau ist nun auch innerhalb eines Fehlers von 45 meV. Die qualitative
Beschreibung hoher liegender Bänder reicht entsprechend weiter in den hohen
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Abb. 6.11:
Bandstrukturrechnung für Aluminium mit unterschiedlichen Filterfaktoren. Die Ener-
gien sind hierbei auf das Ferminiveau referenziert.

Energiebereich.

Die Filterfaktoren erlauben folglich eine gewichtete Fokussierung auf Teile der Band-
struktur, denen ein gesondertes Interesse gilt. So würden zur Effektivmassenbere-
chung von Elektronen und Löchern nur den Bandkanten der Bandlücke von Null
verschiedene Filterfaktoren zugewiesen werden.

6.5.4. Transferabilität

Eine wichtige Eigenschaft eines atomaren Basissatzes ist seine Transferabilität.
Die erzeugten Orbitalfunktionen sollen nicht nur eine adäquate Beschreibung des
Systems ermöglichen, für welches sie generiert wurden, sondern ebenfalls Struk-
turoptimierungen zulassen. Dazu darf eine Verzerrung der atomaren Struktur die
Beschreibung durch den Basissatz nicht eklatant verschlechtern. Bereits am Silizium
ließ sich erkennen, dass mit den Orbitalfunktionen die Elastizitätskonstanten in
guter Qualität bestimmt werden. Ein nicht ganz so stringenter, jedoch ebenfalls
aussagekräftiger Schnelltest ist die Bestimmung der optimalen Gitterkonstante und
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Si Al
Basis 1s1p1d 1s1p1d

DFT-PW LCAO ∆ DFT-PW LCAO ∆

Etot [H] -8.0389 -8.0368 57 meV -2.1054 -2.1047 19 meV
a0 [bohr] 10.217 10.223 +0.06 % 7.636 7.6364 +0.01 %
B0 [GPa] 94.6 102.7 +8.6% 79 96 +22%
Basis 2s2p1d1f 2s2p1d1f

DFT-PW LCAO ∆ DFT-PW LCAO ∆

Etot [H] -8.0389 -8.0382 19 meV -2.1054 -2.1053 3 meV
a0 [bohr] 10.217 10.218 +0.01 % 7.636 7.634 0.03 %
B0 [GPa] 94.6 96.0 +1.5 % 79 82 +4%

Tab. 6.7:
Vergleich der strukturellen Eigenschaften von Silizium und Aluminium. Zur Berech-
nung sind Gesamtenergieberechnungen für verschiedene Gitterkonstanten durchgeführt
worden. Die daraus erhaltene Energieoberfläche ist dann an die Murnaghansche Zu-
standsgleichung gefittet worden. DFT-PW betitelt die Ebenen-Wellen-Referenzdaten.
LCAO betitelt die selbstkonsistente LCAO Berechnung unter Verwendung der ange-
gebenen Basis.

des Bulkmodulus durch Fitten der Energieoberfläche an die Zustandsgleichung
nach Murnaghan[85]. Tabelle 6.7 und Tabelle 6.8 geben hier die Ergebnisse für die
Festkörpersysteme Si und Al, sowie für GaN und NaCl wieder. Schon ein minimaler
Basissatz liefert qualitativ richtige Ergebnisse. Der Bulkmodulus zeigt jedoch noch
Abweichungen von bis zu 20%. Durch Hinzunahme weiterer Funktionen kann die
quantitative Übereinstimmung jedoch gesteigert werden. Bei der Verwendung einer
2s2p1d1f Basis erreichen wir eine Übereinstimmung bis auf wenige Prozent. Zur
Bestimmung des Bulkmodulus werden in der Regel Variationen der Gitterkonstante
bis hin zu 2% verwendet.

Drastischere Änderungen der atomaren Struktur ergeben sich beispielsweise bei
der Modellierung der NH3 umbrella Schwingungsmode bis zum molekularen
Umklapp-Prozess. Als optimierter Basissatz ist hierbei eine 2s2p1d-Basis für den
Stickstoff, sowie eine 1s1p-Basis für den Wasserstoff gewählt worden. Die Basissätze
wurden an der molekularen Gleichgewichtsstruktur optimiert. Zur Bestimmung
der Energiebarriere startet man von dem planaren Molekül und bewegt das
Stickstoffatom senkrecht aus dieser Ebene heraus. Die Wasserstoffatome dürfen in
ihrer Ebene frei relaxieren. Der entsprechende Energieverlauf ist in Abbildung 6.12
gezeigt. Die Lage des Energieminimums und die Höhe der Energiebarriere sind in
Tabelle 6.9 zusammengefasst. Während die Gesamtenergiedifferenz mit 1.32 eV
groß ist, wird die Energiebarriere bis auf 19 meV reproduziert.
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GaN NaCl
Basis 1s1p1d + 1s1p1d 1s1p + 1s1p1d

DFT-PW LCAO ∆ DFT-PW LCAO ∆

Etot [H] -24.8054 -24.7975 215 meV -15.4976 -15.4946 82 meV
a0 [bohr] 6.041 6.047 +0.1 % 10.6878 10.7411 +0.5 %
B0 [GPa] 211 233 +11% 24.3 29.3 +21%
Basis 2s2p1d1f + 2s2p1d1f 2s2p1d1f + 1s1p1d1f

DFT-PW LCAO ∆ DFT-PW LCAO ∆

Etot [H] -24.8054 -24.8037 46 meV -15.4976 -15.4976 6 meV
a0 [bohr] 6.041 6.043 +0.03 % 10.688 10.688 0.00 %
B0 [GPa] 211 215 +2 % 24.3 25.5 +5%

Tab. 6.8:
Vergleich der strukturellen Eigenschaften von Galliumnitrid und Natriumchlorid. Die
Berechnung der Daten erfolgte analog zu Tabelle 6.7

∆Eopt [eV] dN-H3 [Å] EBarriere [meV]
DFT-PW 0.00 0.37 157

LCAO initial guess 10.08 0.67 1630
LCAO Quamol 1.32 0.38 176

Tab. 6.9:
Vergleich unterschiedlicher Kerndaten der NH3 umbrella Schwingungsmode. Als LCAO
Basis ist für das Stickstoff eine 2s2pd und für den Wasserstoff eine sp-Basis verwendet
worden. Der Abstand dN-H3 bezeichnet den optimalen Abstand des Stickstoffes von
der H3-Ebene. ∆Eopt bezeichnet die Energiedifferenz der optimierten Struktur in der
Ebenen-Wellen-Rechnung und der optimierten Struktur in der LCAO Rechnung unter
Verwendung des atomaren Basissatzes. EBarriere beziffert die berechnete Energiebar-
riere des Umklapprozesses wie in Abb. 6.12 dargestellt.

Ein weiterer Transferabilitätstest ist die Reaktion der Basis auf eine sich ändernde
chemische Umgebung im Sinne von Bindungswinkeln und insbesondere Mehr-
fachbindungen. Für diesen Test sind Silan, Silen und Silin zur Modellierung in
der trans-Konfiguration, vgl. Abbildung 6.13, gewählt worden. Die Si-Si Bindung
ändert sich hierbei von einer Einfachbindung bis hin zu einer Dreifachbindung
mit einer entsprechen Verkürzung der Bindungslänge. Der H-Si-Si Bindungswinkel
variiert zwischen 110o und 125o. Als Basis ist für das Si eine 2s2p1d1f -Basis und
für den Wasserstoff eine 2s2p1d-Basis gewählt worden. Diese Basis wird für jeweils
eine Geometrie optimiert und dann auf die zwei verbleibenden Konfigurationen
angewandt. Die Spillage, sowie die Unterschiede in der Gesamtenergie im Hinblick
auf das Resultat der Ebenen-Wellen-Rechnung sind in Tabelle 6.11 zusammenge-
fasst. Signifikante Einflüsse der Referenzstruktur lassen sich nicht feststellen, die
Gesamtenergie wird mit jeder Basis innerhalb von 40 meV reproduziert.
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Abb. 6.12:
Energieoberfläche der NH3 umbrella Mode. Der Reaktionspfad ist oberhalb der Kurve
visualisiert.

Zusammenfassend lässt sich also sagen:

• Moderate Verzerrungen der ionischen Struktur lassen sich mit den optimierten
Orbitalfunktionen abbilden und energetisch richtig beschreiben.

• Moderate Änderungen der chemischen Umgebung (unterschiedliche Anzahl
der Bindungspartner und closed-shell Bindungsgeometrien) werden durch die
optimierten Orbitalfunktionen innerhalb geringer energetischer Fehler gut be-
schrieben.

dSi-Si [Å] dSi-H [Å] αH-Si-Si [o] αH-Si-H [o]
trans-Si2H2 2.09 1.50 125.3 —
trans-Si2H4 2.15 1.49 119.5 113.4
trans-Si2H6 2.32 1.50 110.4 108.5

Tab. 6.10:
Strukturelle Eigenschaften von trans-Disilan, trans-Disilen und trans-Disilin. Berech-
net wurden diese mittels eines ebenen-Wellen LDA-DFT Ansatzes.
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6 Quantitativ optimierte Atomorbitale — Quamols

Abb. 6.13:
Visualisierung von trans-Disilin (links), trans-Disilen (mitte) und trans-Disilan
(rechts). Die gelben Sphären stellen die Siliziumatome dar, die weißen Sphären ent-
sprechen den Wasserstoffatomen..

Si2H2 Basis Si2H2 Si2H4 Si2H6

Spillage 4.93 · 10−5 5.13 · 10−5 4.41 · 10−5

∆E [meV] 20 26 33
Si2H4 Basis Si2H2 Si2H4 Si2H6

Spillage 7.26 · 10−5 4.37 · 10−5 3.45 · 10−5

∆E [meV] 22 25 29
Si2H6 Basis Si2H2 Si2H4 Si2H6

Spillage 7.40 · 10−5 5.91 · 10−5 3.40 · 10−5

∆E [meV] 29 31 28

Tab. 6.11:
Sich ergebene Spillage und Energiedifferenzen der selbstkonsistenten LCAO Berech-
nung im Vergleich zur Ebenen-Wellen-Rechnung. Die verwendete atomare Basis ist in
der linken Spalte angegeben.

6.6. Lokalisierung und Tight-Binding - Ein Ausblick

Die optimierten Orbitalfunktionen zeigen eine natürliche Lokalisierung. Betrachtet
man jedoch die abstandsabhängige Entwicklung der Diagonalelemente der Hamil-
tonmatrix und der Überlappmatrix, so ist kein exponentielles Abklingverhalten
erkennbar (vgl. Abbildung 6.14). Folglich liefert der Überlapp von Orbitalfunktionen
an entfernten Atomen einen nicht verschwindenden Beitrag. Dies spiegelt sich in
minimalen Fluktuationen im langreichweitigen Teil der radialen Orbitalfunktionen
wieder. Die Auswirkungen dieser Fluktuationen für einen Tight-Binding Ansatz, der
in der Regel nur Wechselwirkungen bis zum übernächsten Nachbar berücksichtigt,
werden nun im Folgenden diskutiert.

Dazu werden die Hamiltonmatrizen für Silizium basierend auf einer optimierten
2s1p1d-Basis im reziproken Raum an verschieden k-Punkten konstruiert. Die ab-
standsabhängigen Beiträge werden bis zu einem Radius von 10 Bohr berücksichtigt.
Die Lösung des verallgemeinerten Eigenwertproblems der k-abhängigen Hamilton-
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Abb. 6.14:
Entwicklung der Hauptdiagonalelemente der entfernungsabhängigen Hamiltonmatri-
zen für bulk Silizium. Als Basissatz ist eine 2s1p1d-Basis verwendet worden, die für
den besetzten Unterraum optimiert wurde.

matrizen gibt die Eigenwerte an den entsprechenden k-Punkten wieder und somit die
Bandstruktur. Ein Vergleich dieser Bandstruktur mit der LCAO Bandstruktur zeigt
eklatante, qualitative Abweichungen (vgl. Abbildung 6.15). Sollen die Quamols für
Tight-Binding-Zwecke eingesetzt werden, ist es unabdingbar, diese Fluktuationen
im langreichweitigen Teil der Orbitalfunktionen zu dämpfen. Tatsächlich lassen sich
die Fluktuationen für Moleküle beseitigen, in dem Superzellen mit einer Kantenlän-
ge von 40 Bohr und mehr verwendet werden, um die Wechselwirkung der Atome
mit ihren periodischen Abbildern zu reduzieren. Dies ist jedoch bei der Beschrei-
bung von Festkörpern nicht möglich. Hier bedarf es eher einer in den Algorithmus
eingebetteten Lokalisierungsbedingung, um die Wechselwirkungen mit weit entfern-
ten Atomen zu dämpfen. Ein erster Schritt wäre die Definition von Cutoffradien,
hinter denen die Orbitalfunktionen auf Null gesetzt werden. Dies würde jedoch zu
harten Sprüngen in den Orbitalfunktionen führen und somit zu einem unkontrol-
lierbarem Verhalten in den Fouriertransformationen. Vielmehr bietet es sich an das
HSE-Konzept für das Austauschpotential[43] auf die Quamols zu übertragen und
die Orbitalfunktionen zu abzuschirmen. Dafür verwenden wir an dieser Stelle als
Abschirmfunktion die Fermi-Dirac-Funktion
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6 Quantitativ optimierte Atomorbitale — Quamols

Abb. 6.15:
Vergleich der Bandstrukturen für bulk Silizium berechnet in der Ebenen-Wellen Basis,
der 2s1p1d-Quamolbasis und dem in dieser Basis verwendeten Tight-Binding-Ansatz,
welcher Wechselwirkungen innerhalb einer 10 Bohr Sphäre mitnimmt.

Π(r; r0, β) =
1

1 + eβ(r0−r)
. (6.51)

Diese variiert zwischen 0 und 1. Dabei gibt r0 die Position an, an der die Funktion
den Wert 0.5 hat, der Cutoffradius. β ist mit der Breite des Überganges verknüpft.
Hierbei ist der Übergang umso härter, je größer β ist. Weiterhin hat die Fermi-Dirac-
Funktion, im Vergleich zu einer Stufenfunktion, den Vorteil der Differenzierbarkeit
in jedem Punkt und wird somit keine Kanten in die Radialfunktionen induzieren.
Die Lokalisierung R̄(r) des Radialteils R(r) einer Orbitalfunktion lässt sich nun über

R̄(r) = (1− Π(r; r0, β))R(r) (6.52)

erreichen. Das Optimierungsfunktional ist nun durch

F = S

+ κ
∑
α

〈µα|Πα(r)|µα〉

−
∑

α,β′(l(α))

εαβ (〈µα|µβ′〉 − δαβ′) (6.53)
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Abb. 6.16:
Entwicklung der Hauptdiagonalelemente der entfernungsabhängigen Hamiltonmatri-
zen für bulk Silizium. Als Basissatz ist eine 2s1p1d-Basis verwendet worden, die für
den besetzten Unterraum ohne (schwarz) und mit (grün) Anwendung des Lokalisie-
rungskriteriums optimiert wurden.

zu ersetzen. Die Spillage wird nun um einen additiven Term ergänzt, der die Lo-
kalisierung bewertet. Da dies jedoch für unterschiedliche Normierungen der Orbi-
talfunktionen zu unterschiedlichen Gewichtungen führen würde, ist nun eine expli-
zite Orthonormalisierung erforderlich. Dafür sorgt der dritte Term im Funktional.
Mit κ kann die Lokalisierungsbedingung gewichtet werden. Unsere Rechnung haben
gezeigt, dass die Optimierung nicht sensibel auf κ reagiert, wenn κ in einem Bereich
von 0.1 - 1.0 gewählt wird. Deutlich höhere Werte legen ein zu starkes Gewicht auf die
Lokalisierung und verhindern die Optimierung. Deutlich kleinere Werte schwächen
die Lokalisierung so weit ab, dass die langreichweitigen Fluktuationen der Funktion
wieder auftreten. Der Lagrangeparameter εαβ bestimmt sich über das Stabilitätskri-
terium zu

εαβ = 〈µβ|
dS
d〈µα|

〉+ κ〈µβ|Πα(r)|µα〉 für l(α) = l(β). (6.54)

Vollzieht man nun mit diesem Funktional die Optimierung der Radialfunktionen
für Silizium und wählt als Cutoffradius 10 Bohr sowie eine Breite der Fermivertei-
lung von einem Bohr, so erhält man Orbitalfunktionen, die deutlich besser loka-

93



6 Quantitativ optimierte Atomorbitale — Quamols

Abb. 6.17:
Vergleich der Bandstrukturen für bulk Silizium berechnet in der Ebenen-Wellen-Basis,
der 2s1p1d-Quamolbasis und dem in dieser Basis verwendeten Tight-Binding-Ansatz,
welcher Wechselwirkungen innerhalb einer 10 Bohr Sphäre mitnimmt. Die Basisopti-
mierung ist unter Verwendung der Lokalisierungsbedingung für einen Cutoffradius von
10 Bohr und einer Übergangsbreite von einem Bohr vollzogen worden.

lisiert sind, aber noch eine akzeptable Spillage aufweisen. Die Matrixelemente der
Hamiltonmatrix klingen deutlich schneller ab, wie Abbildung 6.16 zeigt. Berechnet
man nun die Bandstruktur mittels eines Tight-Binding-Ansatzes und nimmt alle
Wechselwirkungen innerhalb von 10 Bohr (sechstnächster Nachbar) mit, so ergibt
sich die Bandstruktur in Abbildung 6.17. Diese zeigt eine gute Übereinstimmung
mit der LCAO Bandstruktur. Die vorherigen qualitativen Differenzen für den opti-
mierten Unterraum sind mit diesen neuen Funktionen beseitigt. Jedoch bleibt eine
quantitative Abweichung in der Umgebung von X und K in den untersten unbe-
setzten Bändern, welche vor Berücksichtigung der Lokalisierungsbedingung nicht
vorhanden war. Eine explizite mullikensche Populationsanalyse[86] offenbart einen
signifikanten d-Charakter des Bandes (∼ 30% pro Atom) an diesen k-Punkten,
wo hingegen die unbesetzten Bandabschnitte, die eine gute Übereinstimmung zur
Ebenen-Wellenrechnung zeigen, von s- und p-Beiträgen dominiert werden. Dies legt
die Interpretation nahe, dass die Lokalisierung das d-Orbital in der Optimierung so
einschränkt, dass es lediglich seine Aufgabe als Polarisationsfunktion wahrnehmen
kann und die quantitative Übereinstimmung in der nicht lokalisierten Variante durch
langreichweitige Wechselwirkungen zufällig erzeugt wurde. Eine explizite Hinzunah-
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me der 4 untersten unbesetzten Bänder durch Auffüllen mit künstlichen Elektronen
verbessert die Übereinstimmung in der lokalisierten Variante auch ohne Vergröße-
rung des Basissatzes signifikant.

6.7. Zusammenfassung und Ausblick

In diesem Kapitel ist eine Methode vorgestellt worden, um atomare Orbitalfunk-
tionen basierend auf Ebenen-Wellen-Rechnungen zu generieren und optimieren.
Grundlage der Optimierung bildet als quantitatives Maß die Spillage: der gewichtete
Normverlust bei der Projektion eines Ebenen-Wellen-Zustandes auf die atomzen-
trierte Basis. Dabei verwenden die hier vorgestellten Orbitale keine repräsentierende
Basis, was sie im Vergleich zu anderen spillagbasierten Verfahren unterscheidet. Der
analytische Ausdruck der Spillage ermöglicht den Zugang zu gradientenbasierten
Minimierungsverfahren. Eine Herausforderung stellt hier die Berechnung der
Projektionen der im reziproken Raum beheimateten ebenen Wellen mit den im
Ortsraum beheimateten Radialfunktionen dar. Das sich aus den abgespeicherten
G + k Vektoren der ebenen Wellen ergebene reziproke radiale Gitter ist nahe des
Ursprunges nicht dicht genug um die reziproken Orbitalfunktionen repräsentieren
zu können. Dafür verfügt es über eine extrem dichte Anzahl an Stützpunkten in
dem Bereich, wo die Radialfunktionen schon längst abgeklungen sind. Dies macht
eine direkte Fouriertransformation zwischen diesen beiden Räumen instabil und
rechenintensiv. Erst der in dieser Arbeit verwendete Übergang zu reziproken Spli-
nefunktionen ermöglicht eine effiziente und stabile Fouriertransformation zwischen
diesen beiden Räumen und erlaubt einen stabilen Algorithmus zu Erzeugung der
Quamols.

Die optimierten Basisfunktionen sind für unterschiedliche chemische Umgebungen
bestimmt und die entsprechenden LCAO Resultate mit den Ebenen-Wellen-
Resultaten verglichen worden. Es zeigt sich durchgehend eine gute Übereinstim-
mung. Bezüglich der Spillage unterbieten die Quamols andere Verfahren deutlich
und reichen vereinzelt sogar an die theoretisch vorhergesagt untere Schranke
heran. Die Diskrepanzen zu dieser lassen sich auf die Details der zu Grunde
liegenden Ebenen-Wellen-Rechnung zurückführen und sind keine Unzulänglichkei-
ten des Quamolansatzes. Die erzeugten Funktionen sind auch für elektronischen
Berechnungen von abweichenden atomaren Strukturen ohne große Einbußen an
Genauigkeit verwendbar und in diesem Sinne transferabel. Elastizitätskonstanten,
Bulkmoduli und Schwingungsmoden unterschiedlicher Systeme stimmen mit den
Ebenen-Wellen-Resultaten bis auf wenige Prozent überein.

Um große Systeme zu betrachten ist die Anzahl der betrachteten Wechselwirkungen
im System zu reduzieren. Dies ist im Falle gut lokalisierter Orbitale in einem
Tight-Binding-Ansatz möglich. Aus den mit den Quamols erzeugten Hamiltonma-
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trizen folgt jedoch, dass die natürliche Lokalisierung der Orbitalfunktionen nicht
ausreichend ist, um akkurate Ergebnisse zu erzielen. Es zeigen sich gravierende
Abweichungen in der Bandstruktur verglichen mit den Ebenen-Wellen-Resultaten.
Um nun eine explizite Lokalisierung zu fordern ist das Minimierungsfunktional um
eine Lokalisierungsbedingung erweitert worden. Dem Grundgedanken nach bestraft
diese Bedingung Signal in der Radialfunktion ausserhalb eines festgelegten Radius.
Dabei ist sicherzustellen, dass der Übergang stetig und differenzierter erfolgt.
Am Beispiel des Siliziums wurde gezeigt, dass mit diesen Lokalisierungsverfahren
gute Ergebnisse erzieht werden, wenn bei der Konstruktion des Tight-Binding-
Hamiltonians Wechselwirkungen bis hin zum gewählten Cutoffradius berücksichtigt
werden.

Zu Beginn dieser Dissertation sind die Quamols entstanden mit dem Ziel, Defekte
in großen Superzellen zu berechnen. Gerade der Tight-Binding-Ansatz erlaubt hier
die effektive Behandlung mehrerer tausend Atome. Die Quamols fungieren dabei
als akkurater, atomzentrierter Basissatz. Allerdings haben die mit der Modellierung
von Magnesiumnitrid erhaltenden Ergebnisse gezeigt, dass die Inversionsdomäne
nicht für die signifikante Modifikation der Wasserstoffkonzentration in magnesi-
umdotiertem Galliumnitrid verantwortlich ist. Aus diesem Grund sind die nötigen
Entwicklungen, um effizient atomare Strukturen mit mehreren 10.000 Atomen zu
berechnen nicht weiter angegangen worden. In dieser Dissertation verbleiben die
Quamols als Orbitalfunktionen zu Analysezwecken, sowie geeignete Initialisierungs-
funktionen für die Ebenen-Wellen Rechnungen bezüglich des magnesiumdotierten
Galliumnitrids und seiner Defekte.

Dennoch ist mit der Entwicklung der Quamols der Grundstein gelegt große Systeme
effizient und akkurat zu behandeln. Die Quamols lassen sich aber auch hervorra-
gend zu Analysezwecken einsetzen. Für die Mullikensche Populationsanalyse von
Ebenen-Wellen-Resultaten bilden sie einen systemnäheren Basissatz als die sonst
Verwendeten atomaren Lösungen der einzelnen beteiligten Atomsorten. Ebenso fin-
den sie auch in der Bandstrukturanalyse zur Charakterbestimmung eines Zustandes
Anwendung. Besonders interessant ist die Erzeugung von abstandsabhängigen Ha-
miltonmatrizen mit der Möglichkeit gezielt Wechselwirkungen einzelner Orbitale an-
und abzuschalten um so beispielsweise den Einfluss der besetzten Gallium d-Orbitale
in GaN zu analysieren.
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7. Ableitung theoretischer Grenzen in der
p-Dotierbarkeit von GaN:Mg

Give me a fruitful error any time, full of seeds, bursting with its own
corrections. You can keep your sterile truth for yourself.

Vilfredo Frederico Pareto, italienischer Ingenieur und Soziologe, 1848 - 1923

7.1. Einleitung

Die Verbindung von Elementen der dritten Hauptgruppe (Al, Ga und In) mit Stick-
stoff — die sogenannten Gruppe-III-Nitride — sind die vornehmlich verwendeten
Materialsysteme für die Entwicklung von Licht emittierenden Dioden (LEDs)[87, 5].
Grund dafür ist die große Bandlücke dieser Materialsysteme, welche durch geeig-
nete Legierungen Licht des kompletten sichtbaren Spektrums emittieren können.
Ein Durchbruch in der Entwicklung der Galliumnitrid (GaN) basierten Dioden
konnte durch die Erkenntnis erzielt werden, dass eine hohe p-Leitfähigkeit in mit
Magnesium (Mg) dotiertem GaN durch ein thermische Aktivierungsverfahren nach
dem Wachstum erreicht werden kann. Im theoretischen Modell bindet Wasserstoff
an den Magnesiumakzeptor in Form eines neutralen [MgH] Defektkomplexes und
passiviert diesen[5, 4, 6, 7]. Allerdings ist die Löslichkeit des neutralen Komplexes
in GaN signifikant größer als die des Akzeptors allein, womit mehr Magnesium in
das Wirtssystem gebracht werden kann. In der thermischen Aktivierung dissoziiert
dann der Komplex in das gewünschte Mg−Ga und ein mobiles H+, welches schon bei
verhältnismäßig niedrigen Temperaturen durch das Material diffundieren kann und
an der Oberfläche gasförmigen Wasserstoff bildet[6, 8].

Dieses theoretische Konzept bildet aktuell die Grundlage experimenteller Forschung.
Die Befunde weisen aber darauf hin, dass der Aktivierungseffekt durch die Magne-
siumkonzentration limitiert ist. Experimentell zeigt sich ein verminderter Wasser-
stoffeinbau ab Magnesiumkonzentrationen oberhalb von 1019 cm−3[9]. Eine nach-
trägliche Aktvierung führt nur zu einer minimalen Steigerung der p-Leitfähigkeit.
Experimentelle Resultate deuten auf drei Mechanismen für diese Beobachtung hin:

1. Ab einer Magnesiumkonzentration von 1019 cm−3 bilden sich Inversionsdomä-
nen (vgl. Abb. 7.1), an deren Grenzen sich eine parasitäre Magnesiumnitrid
(Mg3N2) Phase befindet[12, 10, 13, 14]. Das in dieser Phase gebundene Ma-
gnesium ist als Akzeptor verloren. Weiter ist unklar, in welcher Art und Weise
diese Phase Wasserstoff binden kann und sich somit negativ auf die Bildung
der [MgH] Komplexe auswirkt.

2. Die thermische Austreibung des Wasserstoffes geschieht nicht vollständig. Ex-
perimentelle Messungen mittels Sekundärionenmassenspektroskopie (SIMS)
zeigen ein relatives Wasserstoff-zu-Magnesium-Verhältnis von 10-20 %.
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Abb. 7.1:
Aufbau einer GaN Diode. Im p-leitenden GaN:Mg kann es bei hohen Magnesiumkon-
zentrationen zur Ausformung von Inversionsdomänen kommen, deren Grenzen durch
Magnesiumnitrid gebildet werden.

3. Neben dem Wasserstoff sind noch andere kompensierende Mechanismen denk-
bar, die bei hohen Magnesiumkonzentrationen zu Tage treten und die Rolle
des Wasserstoffes übernehmen, jedoch keine oder eine schwierigere thermische
Aktivierung erlauben.

Die Analyse und das Verständnis dieser einschränkenden Mechanismen, ebenso
wie die Möglichkeit die Mechanismen zu kontrollieren sind der Schlüssel dazu, die
heutigen Limitierungen der p-Dotierung zu überwinden und die Effizienz solcher
Bauelemente signifikant zu steigern. Dabei muss das bisherige Bild eine Revision
erfahren, da es die drei zentralen experimentellen Beobachtungen nicht erklären
kann. In den folgenden Abschnitten werden nun mittels einer Dichtefunktionalstudie
mögliche Mechanismen untersucht um ein erklärendes Modell zu entwickeln.

7.2. Kristallwachstum mittels MOVPE — Die
experimentellen Randbedingungen

Zum Verständnis der einschränkenden Mechanismen in der p-Dotierbarkeit von
GaN werden typische Defekte in GaN und — für die Inversionsdomänengrenzen
— in Mg3N2 betrachtet. Aus deren Defektenergetiken können unter Annahme
des thermodynamischen Gleichgewichtes Konzentrationsprofile erstellt werden.
Dabei ist es notwendig die vorherrschenden experimentellen Parameter zu kennen,
die implizit in den chemischen Potentialen, bezüglich der Temperatur aber auch
explizit in der Boltzmannverteilung eine Rolle spielen. An dieser Stelle wird nun
die Kristallwachstumsmethode MOVPE grob umrissen.
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7.2 Kristallwachstum mittels MOVPE — Die experimentellen Randbedingungen

Die metall-organische Gasphasenepitaxie — metal organic vapor-phase epitaxy
(MOVPE) — wurde in ihrem Ursprung von Manasevit entwickelt[2] und gilt heut-
zutage als Standardverfahren zum Wachstum von Bauelementen, deren Anwendung
von Laserdioden und LEDs bis hin zu Solarzellen reicht[88]. Die treibende Reaktion
jedes MOVPE Wachstumsprozesses lässt sich als

RnM(v) + ER′n(v)→ME(s) + nRR′(v) (7.1)

darstellen. Dabei repräsentieren R und R′ jeweils ein organisches Radikal (wie z.B.
Methyl, Ethyl oder höhere Kohlenstoffradikale), Wasserstoff oder ihre Kombinatio-
nen. M ist ein Gruppe-II- oder Gruppe-III-Metall und E ein Element der fünften
oder sechsten Hauptgruppe. Der Index n gibt an, ob das entsprechende Wachstum
ein II-VI Wachstum (n=2) oder ein III-V Wachstum (n=3) ist. Mit (v) und (s)

wird schlussendlich die Gasphase, beziehungsweise die feste Phase bezeichnet.

Galliumnitrid wird in der Regel aus Galliumtrimethyl und Ammoniak hergestellt.
Die Reaktion hat die Gestalt

Ga(CH3)3(v) +NH3(v)→ GaN(s) + 3CH4(v). (7.2)

Im Experiment wird Galliumtrimethyl und Ammoniak über separate Rohrleitungen
in die Reaktorkammer gebracht. Der Fluss kann dabei über die Zuleitungen gesteu-
ert werden. In der Reaktorkammer befindet sich ein Substrat als Wachstumskeim,
an welchem die obige Reaktion stattfindet. Die Reaktorkammer ist dabei beheizt.
Bei Galliumnitrid beträgt diese Wachstumstemperatur ca. 1275 K[9].

Die Dotierung mit Magnesium geschieht über die Zuschaltung einer Magnesiumquel-
le, wie zum Beispiel Dicyclopentadienylmagnesium Mg(C5H5)2[89]. Experimentell
können dabei Dotierungen von 1018-1020 cm−3 erreicht werden[90, 9]. Eine neuere
Arbeit erreicht sogar qualitativ hochwertige Proben mit einer Magnesiumkon-
zentration von 2 · 1020 cm−3 unter Verwendung der Metall-Modulations-Epitaxie
(MME)[91]. Den Proben ist gemein, dass sie anschliessend thermisch aktiviert
werden müssen. Hierbei beobachtet man, dass die benötigte Aktivierungstemperatur
mit steigender Magnesiumkonzentration sinkt. Sind für moderat dotierte Proben
mit einer Magnesiumkonzentration von 1018-1019 cm−3 Temperaturen bis zu 725o C
notwendig, erreicht man die thermische Aktivierung von hoch dotierten Proben
schon bei 500o C[91]. Dies deutet auf einen sich ändernden Passivierungsmechanis-
mus oder eine sich ändernde Wasserstoffkinetik hin und kann eine Ursache des im
Experiment[9] beobachteten verminderten Wasserstoffeinbaus sein.

Um die theoretische Modellierung dieses Prozesses so einfach wie möglich zu hal-
ten, werden die chemischen Reservoire der Prozessedukte über sogenannte chemische
Potentiale repräsentiert. Diese werden auf möglichst einfache Systeme referenziert.
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Das chemische Potential des Gallium beispielsweise referenziert man auf die Galli-
umbulkphase anstatt auf das Galliumtrimethyl um die Gesamtheit der an der Reak-
tion beteiligten chemischen Potentiale auf das notwendige Minimum zu beschränken.
Die chemischen Potentiale sind dann in der theoretischen Modellierung frei wähl-
bare Parameter, deren Wertebereich im Zusammenspiel mit dem Experiment sinnig
abzustecken ist.
Die vorgestellte Theorie betrachtet das Kristallwachstum im thermischen Gleichge-
wicht. Es ist jedoch gezeigt worden, dass durch kinetische Prozesse an der Oberflä-
che die Defektkonzentration dort signifikant von der im thermischen Gleichgewicht
abweichen kann[92]. Durch Überwachsen gelangen dann diese Defekte in den Bulk-
bereich, so dass die Ergebnisse hier grundlegend kritisch in diesem Zusammenhang
zu diskutieren sind. Auch die Behandlung der Referenzsysteme bei 0 K induziert sys-
tematische Fehler in die berechneten Konzentrationen und die auf den chemischen
Potentialen basierenden Phasendiagramme. Abschätzungen zu Folge beläuft sich die
Ungenauigkeit im Vergleich zum Übergang zu endlichen Temperaturen auf einige
Zehntel eV. So besitzen Magnesiumnitrid und Magnesium in der 0 K Beschreibung
bei dem zur Dotierung notwendigen chemischen Magnesiumpotential schon stabile
Bulkphasen, die aber experimentell nicht in Erscheinung treten. Magnesiumnitrid
zersetzt sich bei den Wachstumstemperaturen und reines Magnesium liegt in einer
flüssigen Phase vor. Auch hier sind folglich die Phasengrenzen kritisch zu hinterfra-
gen und zu diskutieren.

7.3. Den Inversionsdomänengrenzen auf der Spur

Im Folgenden wird zunächst Magnesiumnitrid in den Fokus der Untersuchung
gerückt. Leichtmetallnitride, zu denen auch Mg3N2 gehört, werden im Hinblick
ihrer Eigenschaften als Wasserstoffspeichermedien in der aktuellen Forschung
diskutiert[93, 94, 95]. Typischerweise bedingt die reversible Wasserstoffspeicherung
in diesen Materialien eine Kristallphasentransformation, welche in den Inversionsdo-
mänengrenzen nicht beobachtet wird. Das wirft die Frage auf, ob es andere Mecha-
nismen gibt, welche den Einbau von Wasserstoff in die Inversionsdomänengrenzen
begünstigen. Da jedoch schon das Bulkmaterial in der Literatur kaum behandelt
wird, fokussieren wir uns an dieser Stelle auf Mg3N2 in der thermodynamisch stabi-
len Antibixbyitstruktur. Die Diskussion der wasserstoffbeinhaltenden Defekte und
nativer Punktdefekte in diesem Bulkmaterial geschieht hier nun erstmals auf dem
Niveau der Dichtefunktionaltheorie und erlaubt die Vorhersage chemischer Trends
für die Inversionsdomänengrenzen.

7.3.1. Magnesiumnitrid in der Antibixbyitstruktur

Magnesiumnitrid kristallisiert als Mg3N2 in der Antibixbyitstruktur[96, 97], welche
im Folgenden untersucht wird. Nach Mokhtari und Akbarzadeh kann die Antibixby-
itstruktur über die Kalziumfluoridstruktur konstruiert werden[98]. Kalziumfluorid
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Abb. 7.2:
In der idealen Antibixbyitstruktur unterscheiden sich die beiden inäquivalenten Stick-
stofftypen durch die Lage der Magnesiumstrukturvakanzen in dem umgebenen Magne-
siumkubus. Liegen die Strukturvakanzen auf einer Flächendiagonalen handelt es sich
um den Stickstofftyp 1 (N1), liegen sie auf der Raumdiagonalen handelt es sich um
den Typ 2 (N2).

(CaF2) kristallisiert in einer kubischen Struktur. Dabei bilden die Kalziumkationen
ein fcc-Gitter, dessen Tetraederlücken von den Fluoranionen gefüllt werden.
Ein künstliches Mg2N vertauscht nun die Rolle von Anionen und Kationen und
resultiert in einer Anti -Kalziumfluoridstruktur. Die Stickstoffatome bilden dann ein
fcc-Gitter dessen acht Tetraederlücken von Magnesiumatomen besetzt werden.

Um nun die richtige Stöchometrie des Magnesiumnitrid (Mg3N2) zu gewährleisten,
müssen zwei Magnesiumatome so entfernt werden, dass jedem Stickstoffatom sechs
Nachbarn verbleiben. Diese Strukturvakanzen richtig einzuführen ist nicht trivial
und gelingt in der kubischen Zelle erst in einer 2x2x2 Superzelle mit einer Gesamt-
zahl von 80 Atomen. Die Koordinaten dieser Strukturvakanzen sind im Anhang A zu
finden. Diese Zelle lässt sich symmetriebedingt in eine primitive bcc Zelle mit 40 Ato-
men reduzieren. Interessant hierbei ist, dass die Stickstoffatome nicht mehr ununter-
scheidbar sind. Je nachdem ob die von den acht Magnesiumatomen in der Anti-CaF2-
Struktur eingeführten zwei Strukturvakanzen auf einer Flächendiagonalen oder auf
einer Raumdiagonalen liegen, spricht man nun zur Unterscheidung von den Stick-
stofftypen N1 und N2 (vgl. hierzu auch Abbildung 7.2). Dabei ist der Stickstoff vom
Typ 1 dreimal häufiger anzutreffen, als der des Typs 2. Trotz dieser inäquivalen-
ten Stickstoffatome verhalten sich die Magnesiumatome alle äquivalent zueinander.
Ein jedes bindet zu drei Stickstoffatomen des Typs 1 und zu einem Stickstoffatom
des Typs 2. Diese ideale Antibixbyitstruktur, dargestellt in Abbildung 7.3, stellt
die Initialisierungsstruktur für die Bestimmung der Bulkeigenschaften dar. In den
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Abb. 7.3:
Visualisierung der idealen Antibixbyitstruktur von Mg3N2. Die grauen Atome zeigen
die Magnesiumpositionen im Gitter an. Die kleineren kolorierten Atome zeigen die
Positionen der Stickstoffatome vom Typ 1 (blau) und vom Typ 2 (grün).

folgenden Rechnungen darf diese Struktur frei relaxieren.

7.3.2. Bestimmung der Konvergenzparameter

Für die Berechnung der Bulkeigenschaften ist die Multiskalenbibliothek
S/PHI/nX[18] verwendet worden. Zum Zeitpunkt der Berechnungen waren
mit diesem Programmpaket DFT-basierende Berechnungen lediglich mittels nor-
merhaltenden Pseudopotentialen möglich. Zur Modellierung sind im Rahmen dieser
Arbeit entsprechende Potentiale mit dem Programm FHI98PP[99] generiert3 worden.
Die Modellierung des Austausch- und Korrelationsfunktionals geschieht mittels des
GGA-PBE Funktionals. Ein Energiecutoff von 680 eV (50 Ry) und ein k-Punkt
Gitter von 2 x 2 x 2 (offcenter) genügen, um eine Energiekonvergenz innerhalb von
1 meV zu gewährleisten. Die in der Tabelle 7.1 angegebenen Werte der theoretischen
Gitterkonstante und des Bulkmodulus sind innerhalb von 0.01 Å und 1 GPa aus-
konvergiert. Die Gitterkonstante, der Bulkmodulus, sowie der Parameter B′0 sind
durch Fit der Energiekurve an die Murnaghansche Zustandsgleichung[85] bestimmt
worden und zeigen eine sehr gute Übereinstimmung zu anderen theoretischen
Rechnungen[98] und auch zu experimentellen Befunden[96, 38, 37]. Die berechnete
3 Für die Potentiale sind als cut-off Radien (rcuts , rcutp , rcutd , rcutf ) in atomaren Einheiten verwendet
worden:
N 2s2p3d0 (1.5,1.5,1.5) Troullier-Martin Type,
Mg 3s3p0d0 (1.2,1.6,1.5) Haman-Type,
H 1s12p03d04f0 (1.276,1.276,0.350,1.276) Troullier-Martin Type.
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diese Arbeit FP-LAPW [98] Exp. [96, 38, 37]
alat [Å] 9.977 10.037 9.9528
B0 [GPa] 108 110 —
B′0 3.76 4.02 —

Bandlücke [eV] 1.59 (Γ-Γ) 1.56 (Γ-Γ) 3.15, 2.8(direkt)
2.85(indirekt)

Distanz [Å]
Mg—N1 (2x) 2.09 2.10 2.084
Mg—N1 (2x) 2.17 2.18 2.160
Mg—N1 (2x) 2.19 2.20 2.179
Mg—N2 (6x) 2.15 2.16 2.145

Int. Koordinaten
v 0.969 0.969 0.9784
x 0.389 0.389 0.3890
y 0.153 0.153 0.1520
z 0.382 0.383 0.3823

Tab. 7.1:
Vergleich der strukturellen, elastischen und elektronischen PBE-Parameter von Magne-
siumnitrid mit verfügbaren theoretischen und experimentellen Daten der Literatur.

Bandlücke zeigt die typische Unterschätzung durch die Verwendung des PBE
Funktionals.

Die Relaxation verzerrt die in Abbildung 7.2 dargestellten Kuben dergestalt, dass
der Stickstoff des Typs 2 sechs identisch lange Bindungen zu seinen nächsten
Magnesiumnachbarn ausprägt und diese Unterstruktur die hohe D3d Symmetrie
aufweist. Die Stickstoffe des Typs 1 finden sich in der geringeren C2 Symmetrie
wieder. Sie prägen 3 x 2 identische Bindungen aus (vgl. Abbildung 7.4). Dieses
Verhalten wird durch vier interne Parameter beschrieben, die ebenfalls in sehr guter
Übereinstimmung zu den experimentellen Befunden und anderen theoretischen
Arbeiten sind.

Auffällig ist die Dehnung der Bindung im Vergleich zur Summe der kovalenten
Radien (2.05 Å[? ]. Diese lässt sich in einem Zwei-Zentren Bild erklären: Da die
Koordinationszahl doppelt so groß ist, wie es die Anzahl der Valenzelektronen
vermuten lässt, sind die bindenden Orbitale mit jeweils einem einzigen Elektron
besetzt. Dies resultiert in einer schwächeren chemischen Bindung und hat den
längeren Bindungsabstand im Vergleich zu vollbesetzten Bindungsorbitalen zur
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Abb. 7.4:
Bindungslängen (in Å) der relaxierten Koordinationspolyeder im Magnesiumnitrid.
Die Kuben geben die Positionen der Magnesiumatome in der idealisierten Antibixby-
itstruktur wieder. Grundlage der Daten bilden die PBE-Geometrien.

Folge.

Eine weitere Eigenart dieser Struktur sind die verzerrten Oktaederlücken, wie sie in
Abbildung 7.5 dargestellt sind. Diese Lücken, die sich zwischen zwei Stickstoffatomen
des Typ 2 befinden, stellen geeignete Positionen dar, um kleinere Atome (wie z.B.
Wasserstoff) als Störstellen einzufangen und werden in der Bestimmung möglicher
Punktdefekte eine Rolle spielen.

Defektabstand Defektabstand
[Å] [Å]

Mg—VN1 (2x) 2.15 (+2.9%) VMg—N1 (2x) 2.28 (+9.1%)
Mg—VN1 (2x) 2.29 (+5.8%) VMg—N1 (2x) 2.35 (+8.6%)
Mg—VN1 (2x) 2.32 (+6.2%) VMg—N1 (2x) 2.38 (+9.0%)
Mg—VN2 (6x) 2.27 (+5.9%) VMg—N2 (6x) 2.33 (+8.4%)

Tab. 7.2:
Mg—VN Distanzen der N1/N2 Vakanz im einfach positiv geladenen Ladungszustand
und VMg—N Abstände der Mg Vakanz im 2-fach negativ geladenen Zustand in Mg3N2.
Die prozentualen Angaben beziehen sich auf die Abstände im Bulk. Die geklammer-
ten Ausdrücke (2x) bzw. (6x) geben die Anzahl der äquivalenten Bindungen an. Die
Abstände basieren auf den PBE-Geometrien.
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7.3 Den Inversionsdomänengrenzen auf der Spur

Abb. 7.5:
Die verzerrte Oktaederlücke in Mg3N2. Links: Die relaxierte Struktur mit der symbo-
lisierten Lücke in der N2—N2 Verbindungslinie. Rechts: Idealisierte Darstellung des
Oktaederkäfigs.

7.3.3. Intrinsische Punktdefekte

Zu den intrinsischen Punktdefekten in Mg3N2 gehören Fehlstellen und Zwischen-
gitterbesetzungen der Elemente Magnesium und Stickstoff. Wir diskutieren im
folgenden die Magnesiumvakanz VMg, die Besetzung der Strukturvakanz mit
Magnesium IMg, die Stickstoffvakanz vom Typ 1 VN1und Typ 2 VN2 , sowie die
sogenannten Splitinterstitials des Stickstoffs IN1/2

. Bei letzterem handelt es sich
um die Ersetzung eines Stickstoffatoms durch ein Stickstoffmolekül. Abbildung 7.6
zeigt diese intrinsischen Defekte schematisch.

Diese Defekte sind in der 40 Atome enthaltenden primitiven Zelle als auch in
der 80 Atome enthaltenden kubischen Superzelle modelliert und berechnet wor-
den. Die Bildungsenergie ergibt sich hierbei gemäß Gleichung (5.50) plus der
Superzellenkorrektur[67]. Für die chemischen Potentiale sind magnesiumreiche Be-
dingungen angenommen worden. Die konkurrierenden Systemphasen sind Mgbulk
und Mg3N2.

µ(Mg) = Etot[Mg,bulk] (7.3)

2µ(N) = Etot[Mg3N2,bulk]− 3µ(Mg) (7.4)

Für die relevanten Defekte stimmen die ladungskorrigierten Bildungsenergien in-
nerhalb von 0.1 eV in beiden Superzellen überein. Vereinzelt sind die Abweichungen
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Abb. 7.6:
Visualisierung der intrinsischen Punktdefekte in Mg3N2. Gezeigt sind die Magnesium-
vakanz und der Magnesiumstörstelle (oben), sowie die Stickstoffvakanzen und Stick-
stoffstörstellen des Typ I (mitte) und des Typ II (unten).

106



7.3 Den Inversionsdomänengrenzen auf der Spur

IN1/N2 Abstand
[Å]

Ladungszustand -1 0 +1
Mg—N1 (2x) 1.95 1.99 2.04
Mg—N1 (2x) 2.05 2.08 2.12
Mg—N1 (2x) 2.11 2.21 2.32
Mg—N1 (2x) 2.17 2.22 2.28
N1—N1 1.576 1.409 1.301
Mg—N2 (6x) 2.00 2.07 2.15
N2—N2 1.58 1.41 1.30

IMg Abstand
[Å]

Ladungszustand 0 +1 +2
Mg—N (3x) 2.09 2.09 2.09
Mg—N 2.17 2.16 2.16

Tab. 7.3:
N—Mg Abstände des Stickstoffsplitinterstitials und der Magnesiumstörstelle für un-
terschiedliche Ladungszustände in Mg3N2 berechnet in der PBE Näherung. (nx) gibt
die Anzahl äquivalenter Bindungen an.

etwas größer. Die Diskrepanz übersteigt aber nicht 0.4 eV.

Die charakteristischen Bindungslängen des Defektes zum nächsten Nachbarn sind
in Tabelle 7.2 für die Vakanzen und in Tabelle 7.3 für die Störstellen wiedergegeben.
Für die Vakanzen beobachten wir eine Relaxation der umgebenden Atome weg vom
Defektzentrum. Die Abstände erhöhen sich um 0.06—0.19 Å (3—9%) im Vergleich
zum defektfreien System. Grund hierfür ist die Abnahme der Koordinationszahl und
daher eine Zunahme der Elektronen in jeder Zwei-Zentren Bindung. Der kovalente
Anteil der Bindungen zu den benachbarten Atomen wird gestärkt. Auch der ioni-
sche Bindungsanteil wird durch die kürzeren Abstände zu diesen Nachbarn verstärkt.

Die Stickstoffstörstellen ihrerseits bilden N2-Komplexe. Unabhängig vom Stick-
stofftyp in der atomaren Struktur variiert die N—N Bindungslänge zwischen
1.57 Å im negativ geladenen Fall und 1.30 Å im positiv geladenen Fall. Typische
vergleichbare Komplexe weisen eine deutlich kürzere Bindungslänge auf, z.B.
Hydrazin (H2N NH2: 1.45 Å) oder Diazin (HN NH: 1.24 Å). Energetisch ist die
Störstelle des Typs 2 jener des Typs 1 bevorzugt. Dies lässt sich mit der nahezu
störungsfreien Integration der Störstelle des Typs 2 in die umgebene Struktur
begründen. Die Typ 1 Störstelle hingegen findet eine spezielle Umgebung vor, die
nur durch entsprechende Verzerrungen besetzt werden kann.
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Bildungsenergie [eV]
bcc-Zelle 40 Atome sc-Zelle 80 Atome

Defekt DFT + Ealign DFT + Ealign

VMg

−2 4.61 6.11 4.97 6.33

−1 4.63 5.16 4.85 5.27

0 4.85 4.85 4.88 4.88

IMg

0 4.18 4.18 3.84 3.84

+1 1.13 1.48 1.26 1.63

+2 −1.74 −0.33 −1.35 −0.07

VN1

−1 5.17 5.60 4.99 5.24

0 2.41 2.41 2.49 2.49

+1 −0.08 0.08 −0.03 0.14

+2 −0.75 0.16 −0.60 0.20

+3 −1.49 0.70 −1.17 0.70

VN2

−1 4.88 5.26 4.96 5.24

0 2.46 2.46 2.45 2.45

+1 −0.09 0.09 −0.04 0.16

+2 −0.89 0.03 −0.72 0.23

+3 −1.89 0.33 −1.52 0.69

IN1

−1 5.76 6.09 5.82 6.01

0 4.39 4.39 4.44 4.44

+1 3.29 3.78 3.41 3.68

IN2

−1 5.04 5.35 5.08 5.31

0 3.91 3.91 3.96 3.96

+1 2.96 3.36 3.10 3.39

Tab. 7.4:
Berechnete Bildungsenergien stabiler intrinsischer Defekte in Mg3N2 gemäß PBE-DFT
Superzellenrechnung sowie nach Anwendung der Superzellenkorrektur für geladenen
Defekte (Ealign).
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Abb. 7.7:
Darstellung der denkbaren Wasserstoffstörstellenkonfigurationen in Magnesiumnitrid.
Vergleichbar zum GaN gibt es im Mg3N2 für den Wasserstoff die Möglichkeit an den
Stickstoff zu binden. Dabei kann er eine sogenannte anti-bindende Position (links)
besetzen, oder eine bindungszentrierte Position (rechts).

Die Magnesiumstörstelle bindet an der Position der Strukturvakanz zu den um-
gebenden vier Stickstoffatomen. Dabei entsprechen drei dieser Bindungen der ty-
pischen kurzen Mg—N1-Bindung. Die vierte Bindung reagiert geringfügig auf den
Ladungszustand und variiert zwischen 2.17 Å im ladungsfreien Zustand und 2.16 Å
im zweifach positiv geladenen Zustand. In diesem Zustand liegt das Magnesiumatom
vergleichbar zu den anderen Magnesiumatomen vor und fügt sich am besten in das
System ein.

7.3.4. Wasserstoffdefekte und Defektkomplexe

Für den Wasserstoff gibt es verschiedene Positionen zur Adsorption. Die Struk-
turvakanz [VMg—nH] sowie die Oktaederlücke Hokt bieten genug freien Raum um
den Wasserstoff aufzunehmen. Weiter betrachten wir die sogenannte anti-bindende
Position HN,ab und die bindungszentrierte Position HN,bc (vgl. Abbildung 7.7) zum
Stickstoff. Diese Defekte sind im folgenden für unterschiedliche Ladungszustände
modelliert worden.

Das chemisches Wasserstoffpotential ist auf das halbe Wasserstoffmolekül für
T = 0 K referenziert:

2µ(H) = Etot[H2,T = 0 K]. (7.5)

Im positiven Ladungszustand (H+) ist die anti-bindende Position nahe des Stick-
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Bildungsenergie [eV]
bcc-Zelle 40 Atome

Defekt DFT + Ealign

HN1,ab

−1 4.55 4.86

0 1.62 1.62

+1 −1.09 −0.74

HN2,ab

−1 4.49 4.77

0 1.54 1.54

+1 −1.18 −0.81

Hokt

−1 2.42 2.78

0 2.05 2.05

+1 1.49 1.84

H2,okt

0 1.44 1.44

Tab. 7.5:
Bildungsenergien der wasserstoffbeinhaltenden Defekte in Mg3N2. Angegeben sind die
Werte als direktes Resultat der PBE-DFT Superzellenrechnung und nach Addition der
Superzellenkorrektur für geladenen Defekte (Ealign).

stoffatoms am stabilsten. Der Unterschied in der Bildungsenergie bezüglich des
Stickstofftyps beträgt hier 0.1 eV zugunsten des Typ 2. Der Bindungsabstand des
Wasserstoffes zum Stickstoff ist charakteristisch für eine kovalente Bindung, wie sie
beispielsweise im Hydrazin (dN-H = 1.03 Å) auftaucht. Das Wasserstoffion in der
bindungszentrierten Position relaxiert ohne Barriere in die anti-bindende Position
und ist damit thermodynamisch nicht stabil. Das negativ geladene Wasserstoffion in
der Oktaederlücke bildet den energetisch stabilsten negativ geladenen Defekt. Die
Abstände des Wasserstoffatoms zu den benachbarten Magnesiumatomen variieren
zwischen 1.96 Å und 2.52 Å. Für eine kovalente Mg—H Bindung sind diese
Abstände zu lang, so dass hier rein ionische Aspekte den Wasserstoff auf seiner
Position halten. Das Wasserstoffion in der Strukturvakanz relaxiert barrierefrei in
die Oktaederlücke, so dass dieser Defekt thermodynamisch ebenfalls nicht stabil
ist. Die berechneten Bildungsenergien sind in Tabelle 7.5 wiedergegeben. Die so
identifizierten stabilen Wasserstoffdefekte stimmen gut mit bekannten Wasserstoff-
defekten in anderen Nitriden überein[5, 6, 7, 8].

In Kombination mit den intrinsischen Defekten lassen sich Defektkomplexe bilden,
die den eben diskutierten Wasserstoffdefekten recht ähnlich sind. Die Stickstoffva-
kanz bietet eine vergleichbare Umgebung zur Oktaederlücke: Eine Leerstelle umge-
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[VN—H]-Komplex [VMg—H]-Komplex
Distanz [Å] N-H Distanz [Å]

Mg—H(2x) 2.10 [VMg-H] 1.04
Mg—H(2x) 2.46 [VMg-2H] 1.03 1.03
Mg—H(2x) 2.48 [VMg-3H] 1.04 1.04 1.04
Mg—H(6x) 2.36 [VMg-4H] 1.03 1.03 1.03 1.03

Tab. 7.6:
Berechnete Abstände der Wasserstoffstörstelle in Mg3N2 zum nächstgelegenen Nach-
baratom.

ben von sechs Magnesiumatomen, welche von einem negativ geladenen Wasserstoffi-
on besetzt werden kann. Die Magnesiumvakanz ihrerseits lässt vier Stickstoffatome
als potentielle Bindungspartner für den Wasserstoff zurück. Diese Adsorptionszen-
tren sind auf ihre energetischen und geometrischen Eigenschaften untersucht worden.
Die berechneten Abstände nächster Nachbarn gibt Tabelle 7.6 wieder. Während der
Wasserstoff in der Stickstoffvakanz an der Stickstoffposition verharrt, bindet er in
der Magnesiumvakanz stark an die umgebenen Stickstoffatome und formt [N—H]-
Komplexe. Definiert man die Bindungsenergie gemäß

Eb = Ef [V−2
Mg] + nEf [H+

N2
]− Ef [[VMg+nH]n−2], (7.6)

so ergibt sich für das erste Wasserstoffatom eine Bindungsenergie von 2.35 eV. Das
zweite Wasserstoffatom bindet mit 1.33 eV, das dritte mit 0.82 eV und das vierte
noch mit 0.02 eV. Der [VN+H]-Defekt bietet dagegen eine Bindungsenergie

Eb = Ef [V+
N] + Ef [H+

N2
]− Ef [[VN+H]2+] (7.7)

von 0.33 eV. Aufgrund der hohen Bindungsenergie im [VMg+H]−1-Defektkomplex
ist es zu erwarten, dass die Bildung von Magnesiumvakanzen in Mg3N2 in einer
wasserstoffhaltigen Atmosphäre erheblich gefördert wird.

7.3.5. Mg3N2 Einschlüsse in GaN

Um nun aus den im vorherigen Kapitel dargestellten Ergebnissen Hinweise auf das
Verhalten der Magnesiumnitrideinschlüsse in Galliumnitrid zu gewinnen, bedarf es
zunächst einer Umreferenzierung der chemischen Potentiale. Diese waren auf die
Referenzphasen (Mgbulk, Mg3N2 und H2 für T = 0 K) für pures Mg3N2 im magnesi-
umreichen Wachstum gesetzt worden. Da sich die Magnesiumnitrideinschlüsse unter
GaN Wachstumsbedingungen bilden, sind die entsprechende Referenzsysteme für
galliumreiches Wachstum

µ(Ga) = Etot[Ga,bulk] (7.8)
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Bildungsenergie [eV]
bcc-Zelle 40 Atome

Defekt DFT + Ealign

[VMg + H]

−1 2.48 2.95

0 2.72 2.72

+1 2.95 3.11

[VMg + 2H]

0 0.81 0.81

+1 0.73 0.90

+2 1.05 2.08

[VMg + 3H]

+1 −1.04 −0.82

+2 −0.87 0.19

+3 −0.58 2.08

[VMg + 4H]

+1 −0.52 −0.21

+2 −3.01 −1.65

+3 −2.77 0.51

+4 −2.44 2.52

[VN1 + H]

+1 0.41 0.59

+2 −1.96 −1.02

+3 −1.89 0.40

[VN2 + H]

+1 0.37 0.57

+2 −2.06 −1.06

+3 −1.95 0.48

Tab. 7.7:
Berechnete Bildungsenergie der Wasserstoffdefektkomplexe in Mg3N2 als unmittelbares
Resultat der PBE-DFT Superzellenrechnung sowie nach Addition der Superzellenkor-
rektur für geladenen Defekte (Ealign).
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Wachstum ohne Wasserstoff Wachstum in Wasserstoffatmosphäre
Defekt c [cm−3] Defekt c [cm−3]

VN 1.6 · 1014 VN 1.7 · 1014

VMg 8.8 · 1011 VMg 7.8 · 1011

IN 4.9 · 108 IN 4.8 · 108

IMg 4.2 · 108 IMg 4.6 · 108

HN,ab 1.7 · 1015

VN + H 7.5 · 108

Hokt 2.0 · 1014

[VMg+H] 1.7 · 1015

[VMg+2H] 1.8 · 1013

e+ 1.6 · 1014 e+ 1.6 · 1013

Fermi Energie 1.74 eV Fermi Energie 1.73 eV

Tab. 7.8:
Konzentrationen der ausgewählten Punktdefekte in Mg3N2, sowie Lage des Ferminive-
aus beim Wachstum ohne (links) und mit (rechts) Wasserstoffumgebung. Die Wachs-
tumsbedingungen sind im Text genauer spezifiziert (T = 1275 K, p = 1 bar).

eine realistischere Wahl für die Simulation. Das chemische Stickstoffpotential ist
demnach in Gleichgewicht zu dem chemischen Potential von GaN

µ(N) = Etot[GaN,bulk]− µ(Ga) (7.9)

zu wählen und das chemische Magnesiumpotential entsprechend im Gleichgewicht
mit dem Magnesiumnitrideinschluss

3µ(Mg) = Etot[Mg3N2,bulk]− 2µ(N). (7.10)

Das chemische Wasserstoffpotential wird dann im thermischen Gleichgewicht mit
den Wachstumsbedingungen zu

2µ(H) = Etot[H2,T = 0 K] + kbT ln

(
pVq
kbT

)
− kbT ln

(
kbT

2Θ

)
(7.11)

bestimmt[20]. Vq bezeichnet hierbei das Phasenraumvolumen

Vq =

(
2π~2

mHkbT

)3/2

. (7.12)

Die Rotationskonstante des Wasserstoff ist der experimentellen Literatur entnom-
men und beträgt 59.339 cm−1[100]. Zur Simulation realistischer Wachstumsbedin-
gungen wird eine Temperatur von 1275 K und ein Wasserstoffgasdruck von 1 bar
angenommen. Diese Werte repräsentieren eine obere Schranke zu den normalerweise
in der metallorganischen Gasphasenepitaxie vorherrschenden Bedingungen[9].
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Abb. 7.8:
Bildungsenergien der intrinsischen Punktdefekte in Mg3N2 aufgetragen über der Posi-
tion des Ferminiveaus. Grundlage bilden die in PBE berechneten Gesamtenergien der
Defekte in der bcc-Einheitszelle mit 40 Atomen. Die Superzellenkorrektur für geladene
Defekte ist angewandt worden.

Die Bildungsenergien wurden nun für diese experimentellen Randbedingungen
berechnet und in Abbildung 7.8 für die intrinsischen Defekte graphisch dargestellt.
Gezeigt ist in der Auftragung die Bildungsenergie in Abhängigkeit der Lage
des Ferminiveaus. Der Defekt niedrigster Bildungsenergie ist dann der dominant
vorherrschende Defekt in diesem Bereich. Der Abbildung ist zu entnehmen, dass
über einen weiten Bereich die Vakanzbildung favorisiert wird. Für n-leitende
Bedingungen bilden sich vermehrt Magnesiumvakanzen, für p-leitende Bedingungen
spielen Stickstoffvakanzen eine bedeutende Rolle. Im Falle eines niedrigen Fermi-
levels (EFermi < 0.3 eV) wird die Auffüllung der Strukturvakanzen mit Mg2+ relevant.

Wenn während des Wachstums Wasserstoff in signifikanten Mengen vorhanden ist,
bildet der positiv geladene Wasserstoffdefekt am Stickstoff in der anti-bindenden
Position den energetisch stabilsten Defekt für p-leitende Bedingungen (vgl.
Abbildung 7.9). Für n-leitenden Bedingungen spielen die negativ geladenen Was-
serstoffdefekte, sowie die pure Magnesiumvakanz eine wichtige Rolle. Betrachtet
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7.3 Den Inversionsdomänengrenzen auf der Spur

Abb. 7.9:
Bildungsenergien der wasserstoffbeinhaltenden Punktdefekte in Mg3N2 aufgetragen
über der Position des Fermilevels. Zusätzlich ist noch die Bildungsenergie der reinen
Magnesiumvakanz als stabilster Defekt für ein hohes Fermilevel eingezeichnet. Grund-
lage bilden die in PBE berechneten Gesamtenergien der Defekte in der bcc-Einheitszelle
mit 40 Atomen. Die Superzellenkorrektur für geladene Defekte ist angewandt worden.

man das System im thermischen Gleichgewicht und berechnet die Konzentrationen
wie in Abschnitt 5.5 diskutiert, ergeben sich die Zahlenwerte der Tabelle 7.8.

Im wasserstofffreien Wachstum ist die einfach positiv geladene Stickstoffvakanz
mit 1.6 · 1014 cm−3 der Defekt größter Konzentration. Die Fermienergie liegt mit
1.74 eV knapp unterhalb des VN/VMg Schnittpunktes bei ca. 1.9 eV. Allerdings wird
die Ladungsneutralität nicht von der zweifach negativ geladenen Stickstoffvakanz
übernommen. Die Konzentration ist mit 8.8 · 1011 cm−3 hier um Größenordnun-
gen zu klein. Es zeigt sich, dass die Ladungskompensation von freien Löchern
bewerkstelligt wird. Dies ist möglich, da die auftretenden Konzentrationen mit der
Größenordnung 1014 cm−3 deutlich geringer sind, als typische Konzentrationen in
dotierten Materialien (typischerweise 1018 − 1021 cm−3). Die Störstellen spielen
generell eine untergeordnete Rolle.
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Abb. 7.10:
Verlauf der Konzentrationen dominanter Defekte in Mg3N2 im Hinblick auf das che-
mische Potential des Wasserstoffs zur Simulation der thermischen Austreibung. Die
Absenkung des chemischen Wasserstoffpotential von 0 eV auf -2 eV bedeuten eine Än-
derung des H2-Partialdruckes von 1 bar auf 10−10 bar bei einer konstanten Temperatur
von 900 K.

Im Wachstum innerhalb einer vorhandenen wasserstoffhaltigen Atmosphäre ändert
sich das Bild. Zwar weisen die intrinsischen Defekte keine signifikanten Änderungen
in ihrer Konzentration auf, aber der Einbau von Wasserstoff begünstigt Magnesi-
umvakanzen um den negativ geladenen [VMg + H]-Defektkomplex zu bilden, so dass
ein Anstieg der Vakanzen um nahezu drei Größenordnungen zu verzeichnen ist. Der
kompensierende Defekt bezüglich Ladung ist der positiv geladene Wasserstoff an der
Stickstoff anti-bindenden Postion. Der Schnittpunkt dieser beiden Defekte liegt na-
he des im intrinsischen Fall bestimmten Fermilevels von 1.74 eV, so dass hier keine
signifikante Änderung des Ferminiveaus zu erwarten ist.

7.3.6. Thermische Austreibung

Die thermische Austreibung von Wasserstoff ist der Schlüsselprozess zur Akti-
vierung der Akzeptorniveaus im p-GaN. Die exakte theoretische Modellierung
dieses Prozesses ist nicht trivial, da eine Vielzahl von Effekten die thermische
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Austreibung begleiten. Eine Abschätzung kann gewonnen werden, indem man
vereinfachte Annahmen macht. So wird im weiteren angenommen, dass sich mit
Ausnahme des Wasserstoffes keine Atome durch den Kristall bewegen und somit
die Magnesium- und Stickstoffdefekte in ihrer Position verharren und in ihrer
Konzentration konstant bleiben. Die Austreibung kann dann durch Absenken des
chemischen Potentials für Wasserstoff für eine feste Temperatur modelliert werden.

Im folgenden wird eine Temperatur von 900 K angenommen. Diese Temperatur
ist charakteristisch für den so genannten rapid thermal annealing Prozess[9].
Weiterhin wird angenommen, dass sich die Wasserstoffatome frei durch den Kristall
bewegen können, sobald sie sich aus ihren Defektzentren gelöst haben. Die sich so
ergebende Wasserstoffkonzentration in Abhängigkeit des Wasserstoffpartialdruckes
ist in Abbildung 7.10 wiedergegeben. Der Abbildung ist zu entnehmen, dass der
Wasserstoff in einem Zweischrittverfahren ausgetrieben wird. Zunächst findet eine
geringe Austreibung statt. Diese resultiert in der Entvölkerung der HN,ab und
Hokt Defekte, sowie aus der Reduktion des [VMg + 2H] Defektkomplexes zu dem
[VMg+H] Defektkomplex. Der einzelne Wasserstoff in der Magnesiumvakanz bleibt
durch seine hohe Bindungsenergie von 2.35 eV stabil, bis der Partialdruck 10−8 bar
unterschreitet.

Es sind folglich drastische Bedingungen von Nöten, um eine Austreibung von Was-
serstoff aus Magnesiumnitrid zu realisieren.

7.3.7. Zusammenfassung

In diesem Kapitel sind die intrinsischen und wasserstoffinduzierten Punktdefekte
in Magnesiumnitrid unter Anwendung der Dichtefunktionaltheorie identifiziert und
modelliert worden. Basierend auf den Bildungsenergien wurden Defektkonzentratio-
nen unter der Annahme galliumreicher Wachstumsbedingungen bestimmt, um eine
Beziehung zu dem Wachstum von Galliumnitrid herzustellen. Im thermodynami-
schen Gleichgewicht stellt sich heraus, das ein einkristallines Magnesiumnitrid ein
nahezu defektfreier Isolator ist. Die Stickstoffvakanz ist mit einer Defektkonzentra-
tion von 2× 1014 cm−3 der vornehmlich vorkommende Defekt. Unter Einfluss einer
Wasserstoffumgebung wird die Bildung von stark gebundenen [N—H]-Komplexen
begünstigt. Dabei bildet der Wasserstoff eine starke Bindung zu vorhandenen
Stickstoffatomen aus, oder belegt negativ geladene Magnesiumvakanzen. Die
maximale Konzentration von Wasserstoff ist nichtsdestotrotz mit 4× 1015 cm−3 als
klein zu bezeichnen. Insbesondere ein Vergleich mit den typischen Konzentrationen
des [MgH]-Komplexes in GaN:Mg (1018 cm−3 und mehr) macht dies deutlich.
Dies zusammen mit der Tatsache, dass das Magnesiumnitridvorkommen in den
Inversionsdomänengrenzen in GaN nur einen äußerst geringen Volumenbruchteil
ausmachen, lässt die Schlussfolgerung zu, dass eine signifikante Modulation der
Wasserstoffverteilung in aktuellen Proben nicht durch die Magnesiumnitridein-
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schlüsse hervorgerufen werden kann.

Die Modellierung einer Inversionsdomäne wäre im Zusammenhang der Untersuchung
der verminderten Wasserstoffkonzentration sicherlich interessant, jedoch würde dies
die simultane Beschreibung von einigen 1000 Atomen bedeuten. Für solche Rech-
nungen ist die Dichtefunktionaltheorie in ihrer Ebenen-Wellen-Beschreibung nicht
ausgelegt. Typische Algorithmen skalieren kubisch mit der Elektronenzahl. Die Ver-
wendung von Realraumansätzen, die im idealen Falle linear skalieren, wären hier
eher Methode der Wahl. Mit den QUAMOLs sind geeignete Basisätze vorhanden
um solche Systemgrößen akkurat und effizient zu modellieren. Dies setzt jedoch noch
die Entwicklung eines effizienten LCAO Codes oder die Erzeugung geeigneter Tight-
Binding-Hamiltonmatrizen voraus, deren Entwicklung zeitintensiv gewesen wäre und
nicht im zentralen Fokus dieser Dissertation liegen. Entscheidender ist es, sich dem
eigentlichen Materialsystem zu widmen, um nun weitere Gründe für die experimen-
tell beobachtete Limitierung der p-Dotierbarkeit zu finden. Zugang zu modernen
physikalischen Ansätzen, wie der Ladungskorrektur und die Modellierung gängiger
Defekte auf HSE Niveau erlauben nun eine akkurate Beschreibung dieser Defekte
unabhängig von dem Bandlückenproblem in einer LDA oder PBE Modellierung.

7.4. Hohe Mg-Akzeptorkonzentration: Gratwanderung
zwischen Kompensation und Phasentrennung

7.4.1. Einleitung

In Kapitel 7.3.5 sind die Eigenschaften von Magnesiumnitrid hinsichtlich des Was-
serstoffeinbaus untersucht worden. Es wurde gezeigt, dass reines Magnesiumnitrid
Wasserstoff nur im geringen Maße bindet. Eine deutliche Steigerung des Einbaus
durch die geometrischen Veränderungen, die sich bei Magnesiumnitrid in Form von
Inversionsdomänengrenzen ergeben, ist nicht zu erwarten. Weiterhin machen die
Inversionsdomänengrenzen nur einen geringen Teil des gewachsenen Galliumnitrids
aus, so dass eine signifikante Störung des Wasserstoffeinbaus nicht zu erwarten ist.
Deswegen wird nun im Folgenden die Modifikation der Wasserstoffkonzentration
mit Hinblick auf die Defektbildung im Galliumnitrid untersucht.

Die Defektenergetik ist in vielen Arbeiten[5, 6, 7, 4, 101] diskutiert worden und
gilt als verstanden. Jedoch können die mit unterschiedlichen Methoden berechne-
ten Bildungsenergien stark voneinander abweichen, wie Abbildung 7.11 illustriert.
Bei solchen Differenzen, die je nach Defekt und Methode einige eV umfassen kön-
nen, stellt sich natürlich die Frage nach der Aussagekraft und der Berechtigung des
Vertrauens in diese Zahlenwerte. Das folgende Kapitel wird sich — nach einer Ein-
führung der wichtigsten Defekte des mit Magnesium und Wasserstoff dotierten GaN
— der Frage widmen wie unterschiedlich die berechneten Bildungsenergien tatsäch-
lich sind und welche Ursachen diese eklatanten Abweichungen haben. Die Kenntnis
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Abb. 7.11:
Unterschiede der Defektenergetik wichtiger Defekte in GaN:Mg von LDA und PBE zu
HSE. Die schwarze Linie gibt den Fall perfekter Übereinstimmung an. Die roten Sym-
bole geben den Vergleich der LDA Daten, die grünen den Vergleich der PBE Daten[101]
an. Die unterschiedlichen Symbole verweisen auf den jeweilige Ladungszustand des De-
fektes (ohne Vorzeichen).

der Ursachen erlaubt hier erstmals die Einführung geeigneter Korrekturen, welche
zu einer besseren Übereinstimmung der Defektenergetik (bis auf wenige Zehntel eV)
führen. Dies wird dabei am Beispiel der Datensätze demonstriert. Aus den Bildungs-
energien werden dann Defektkonzentrationen im Falle des GaN Wachstumsprozesses
berechnet, welche dann den Grund des verminderten Wasserstoffeinbaus bei hohen
Mg-Konzentrationen und den damit verbundenen wechselnden Kompensationsme-
chanismus aufzeigen.

7.4.2. Defekte in GaN

Dieser Abschnitt widmet sich der Nomenklatur der betrachteten Defekte in GaN
und soll durch Abbildung 7.12 ein visuelles Verständnis der Defekte ermöglichen.

Die intrinsische Stickstoffvakanz VN wird durch das Entfernen eines Stickstoffatoms
aus dem atomaren Gitter erzeugt. Der bevorzugte Ladungszustand ist der einfach
positiv geladene Zustand. Für p-leitende Bedingungen wird zudem noch der dreifach
positiv geladene Zustand vorhergesagt[4, 101]. Das Umladungsniveau liegt dabei ca.
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a) b) c) d)

e) f) g) h)

i) k) l) m)

Abb. 7.12:
Darstellung einiger wichtiger Defekte in GaN: (Ga grün, N blau, Mg braun)
a) bulk b) VN c) MgGa d) H‖(ab) e) H‖(bc) f) HN g) MgVN h) [MgH]‖(ab)
i) [MgGaH]‖(bc) k) [MgGaHN] l) [MgGaVNH]‖(ab) m) [MgGaVNH]‖(bc)
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0.4-0.5 eV oberhalb der Valenzbandkante. Ein weiterer Punktdefekt von Interesse
in GaN:Mg ist das substitutionelle Magnesium auf einen Galliumgitterplatz MgGa.
Dieser Defekt tritt hauptsächlich in einem einfach negativ geladenen Zustand auf.
Experimentelle Befunde geben ein Umladungsniveau von 0.16 eV oberhalb des
Valenzbandmaximums an, unter welchem substitutionelles Magnesium in einem
neutralen Ladungszustand vorliegt[102]. Wasserstoff besetzt Zwischengitterplät-
ze. Experimentell wird er in das Material gebracht um den negativ geladenen
Magnesiumdefekt zu kompensieren, weswegen hier nur der positiv geladene Wasser-
stoffdefekt H+ diskutiert wird. Der negativ geladene Wasserstoffdefekt, sowie der
neutrale, spielen für n-leitende Bedingungen eine Rolle, wo sich das Ferminiveau
näher am Leitungsbandminimum befindet. Aufgrund seiner positiven Ladung bindet
der Wasserstoff an den elektronegativeren Stickstoff im Kristall. Dabei unterscheidet
man zwischen der anti-bindenden (AB) Position, in welcher der Wasserstoff in einer
Ga-N-H Kette bindet, und der sogenannten bindungs- zentrierten (BC) Position,
in welcher der Wasserstoff die Ga-N Bindung bricht und sich anstelle des Galliums
als Bindungspartner anbietet. Aufgrund der ausgezeichneten Kristallrichtungen in
der Wurtzitstruktur werden diese Wasserstoffdefekte noch weiter unterschieden. So
existieren solche deren formale Bindungsachse parallel zur c-Richtung des Kristalls
liegt (‖) und solche deren formale Bindungsachse eine deutlichen Anteil senkrecht
zur c-Achse besitzt (⊥).

Weiter ist noch substitutionieller Wasserstoff an der Stickstoffposition HN denkbar,
welcher formal schon als erster Defektkomplex einer Stickstoffvakanz mit Wasser-
stoff aufgefasst werden kann. Aufgrund der zwei positiven Ladungszustände der
Stickstoffvakanz sind zwei Ladungszustände von HN interessant. Im 2-fach positiven
Ladungszustand paart sich eine 3-fach positiv geladene Stickstoffvakanz mit einem
negativ geladenen Wasserstoff. Im neutralen Zustand paart sich V+

N mit H−. Unsere
Rechnungen zeigen, dass das Umladungsniveau mit 2.01 eV im energetisch höheren
Bereich der Bandlücke sitzt. Der H0

N-Defekt spielt also für die hier gemachten
Betrachtungen keine Rolle.

Neben dem eher formellen Defektkomplex HN gibt es eine Reihe tatsächlicher
Defektkomplexe, die beim Wachstum von Magnesium dotiertem GaN eine Rolle
spielen. Zu den Komplexen bestehend aus zwei Punktdefekten zählen hierbei [MgVN]
im Ladungszustand +2 und 0, sowie der neutrale [MgH]-Komplex. Neben den
Defektkomplexen, welche aus zwei Punktdefekten bestehen, diskutieren wir noch
solche, die aus drei Punktdefekten bestehen, die sogenannten [MgHVN]-Komplexe.
Die Anzahl möglicher Komplexkonfigurationen nimmt hier schon deutlich zu. Die
Nomenklatur wird dabei mit den eingeführten Größen fortgesetzt.

Nach der Darstellung der wichtigsten Punktdefekte und ihrer Komplexe folgt nun
in den nächsten Abschnitten die Suche nach den Ursachen der offensichtlichen
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Bildungsenergie [eV]
Defekt PAW-LDA PAW-HSE USPP-PBE[101]

Mg−Ga 0.00 0.00 0.00

V+
N 0.65 −0.18 0.43

V3+
N 1.18 −1.13 −0.35

H+
‖ (bc) −0.24 −0.95 −0.45

[MgGaH]0⊥(ab Mg⊥) −1.34 −1.97 −0.75

[MgGaVN]0⊥ −0.26 −1.13 0.29

[MgGaVN]2+
⊥ −0.45 −2.83 −0.61

H2+
N −0.25 −1.71 −0.95

[MgGaHN]+‖ −1.61 −3.16 −1.21

[MgGaHN]+⊥ −1.62 −3.13 −1.03

[MgGaHVN]+‖ (ab Mg) −1.12 −2.52 −0.75

[MgGaHVN]3+
‖ (ab Mg) −0.94 −3.74 −1.40

Tab. 7.9:
Bildungsenergien einiger ausgewählter Defekte im wasserstoffkompensierten GaN:Mg.
Als Referenzsystem ist das GaN , Galliummetall, der negativgeladene Mg− Defekt und
das Wasserstoffmolekül gewählt worden. Die Fermienergie ist auf das Valenzbandma-
ximum referenziert.

Diskrepanzen der mit den unterschiedlichen Funktionalen LDA, PBE und HSE
berechneten Defektbildungsenergien. Dabei sind die PBE Daten der Literatur[101]
entnommen worden. Die HSE Daten entstammen einer Kooperation mit der
Universität Californien — Santa Barbara.

7.4.3. Vergleich der Methoden

Betrachtet man die in der Tabelle 7.9 vorgestellte Defektenergetiken für die
verschiedenen Funktionale genauer, so fällt auf, dass die relativen Unterschiede
innerhalb einzelner Defektklassen mit gleicher Ladung gar nicht so eklatant sind, wie

Umladungsniveau [eV]
Defekt PAW-LDA PAW-HSE USPP-PBE[101]
V3+/+

N −0.27 0.48 0.39

MgV2+/0
N 0.12 0.85 0.45

MgHV3+/+
N −0.09 0.33 −0.34

Tab. 7.10:
Vergleich der Umladungsniveaus wichtiger Defekte in GaN:Mg referenziert auf das
Valenzbandmaximum für LDA, PBE und HSE.
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Abb. 7.13:
Unterschiede der Defektenergetik in LDA, HSE und PBE für MgH und H+. Jede Säule
steht für eine berechnete Defektkonfiguration innerhalb der Defektklasse. Die Höhen
der Säulen gibt die Bildungsenergiedifferenz in eV relativ zum stabilsten Defekt dieser
Klasse an.

zunächst zu vermuten ist. Im Falle des neutralen MgH Komplexes und der positiv
geladenen Wasserstoffstörstelle stimmen gemäß Abbildung 7.13 sowohl Reihenfolge
der Stabilität, als auch die Bildungsenergie bis auf 0.2 eV überein. Vergleicht man
jedoch unterschiedlich geladene Defekte, zum Beispiel anhand des Umladungsnive-
aus wie in Tabelle 7.10, ergibt sich ein geradezu ernüchterndes Bild. Die Umladung
findet an derart qualitativ unterschiedlichen Positionen im Energiespektrum statt,
dass von einem vertrauenswürdigem Datensatz nicht gesprochen werden kann. Zwar
zeigt das Umladungsniveau der Stickstoffvakanz zwischen HSE und PBE eine gute
Übereinstimmung, jedoch ist die erwartete Vorhersagegenauigkeit zwischen HSE
und PBE nicht gleichwertig. Diese Übereinstimmung ist — auch mit Sicht auf die
Diskrepanz der anderen Niveaus — eher als zufällig zu bewerten.

Die Betrachtung lässt den Schluss zu, dass die Unterschiede der einzelnen Defek-
tenergetiken vornehmlich mit der Ladung korrelieren. An der Gleichung der Bil-
dungsenergie geladener Defekte

Ef [Xq] = Etot[bulk:Xq]− Etot[bulk]

−
∑
i

niµi + ECorr[q] + q(εVBM + εFermi) (7.13)

erkennt man, dass die Ladung nur in der Superzellenkorrektur und in der Positio-
nierung des Ferminiveaus als chemisches Potential der Elektronen eine Rolle spielt.
Aber auch die Referenzen der chemischen Potentiale können in den einzelnen Me-
thoden unterschiedlich beschrieben werden und somit zu quantitativen Differenzen
führen. So ist bekannt, dass gerade Moleküle in der LDA, der PBE und nicht zu-
letzt auch auf dem Niveau von HSE recht unterschiedlich beschrieben werden, was
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Ladung Ladungskorrektur [eV]
EPBE

Madelung ELDA
Align

min max
1 0.21 −0.09 0.00

2 0.86 −0.30 −0.23

3 1.93 −0.77 −0.49

Tab. 7.11:
Ladungskorrekturen für Defekte in GaN aufgeteilt in den Madelungbeitrag und Ali-
gnmentbeitrag. Der Madelungbeitrag wurde für die in PBE verwendete 72 Atomzelle
explizit berechnet. Der Alignmentbeitrag kann ohne Neuberechnung der Defektgeome-
trie nur abgeschätzt werden. Dafür dienen die Alignmentkorrekturen der LDA Rech-
nungen, welche gemäss 1/L3 von der 96 Atomzelle auf die 72 Atomzelle skaliert wurden.
Da das Alignment defektspezifisch ist , sind hier der jeweils kleinste und größte Wert
für die Defekte der jeweiligen Ladungsklasse angegeben.

zu der Diskrepanz in der Vorhersage der Bildungsenthalpie von GaN führt[5]. Die-
se Überlegungen werden nun im Folgenden weiter ausgearbeitet. Basierend auf den
Erkenntnissen werden Korrekturen entworfen, um den Unzulänglichkeiten der Funk-
tionale entgegenzuwirken.

7.4.4. Einfluss der Superzellenkorrektur

Laaksonen hat gezeigt, dass das Umladungsniveau der Stickstoffvakanz empfindlich
von der Superzellengröße abhängt, wenn keine superzellenspezifische Ladungskor-
rektur angewendet wird[103]. Ihre theoretischen Betrachtungen der Stickstoffvakanz
auf LDA Niveau und die Interpolation zu unendlich ausgedehnten Superzellen erge-
ben ein Umladungsniveau unterhalb der Valenzbandkante. Das bedeutet, dass der
V3+

N -Defekt bei einem Fermilevel oberhalb der Valenzbandkante kein stabiler Defekt-
zustand ist. Dies steht im Widerspruch zum experimentellen Befund, aber auch zu
früheren theoretischen Betrachtungen. Auch die hier berechneten LDA Ergebnisse
zeigen diesen Befund. Dies lässt den Schluss zu, dass die Position des Umladungsni-
veaus früherer Arbeiten auf die Superzellengröße und die Wechselwirkung des De-
fektes mit seinen periodischen Bildern zurückzuführen ist. Die Superzellenkorrektur
für geladene Defekte ist folglich zwingend erforderlich um konsistente Ergebnisse
in den theoretischen Methoden zu erhalten. Da die PBE Daten der Literatur keine
Ladungskorrektur erfahren haben, ist diese nun nachträglich anzuwenden. Die hier
in dieser Dissertation verwendete Superzellenkorrektur kann gemäß Kapitel 5.4.1 als

ECorr =
αq2

2εL
+ EAlign, (7.14)

dargestellt werden. Der typischerweise dominante Madelungterm hängt dabei
nur von der Geometrie der Superzelle ab und kann leicht berechnet werden. Das
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Bildungsenergie [eV]
Defekt USPP-PBE PAW-LDA

Ref.[101] corr. corr.
Mg−Ga 0.00 0.00 0.00

V+
N 0.43 0.55 0.65

V3+
N −0.35 0.98 1.18

H+
‖ (bc) −0.45 −0.25 −0.24

H+
⊥(bc) −0.22 −0.02 −0.09

H+
‖ (ab) −0.06 0.16 −0.04

H+
⊥(ab) −0.24 −0.03 −0.18

H2+
N −0.95 −0.33 −0.25

[MgGaH]0‖(bc) −0.99 −1.17 −1.26

[MgGaH]0‖(ab) −0.80 −0.98 −1.13

[MgGaH]0⊥(bc Mg⊥) −0.75 −0.93 −1.02

[MgGaH]0⊥(ab Mg⊥) −1.07 −1.25 −1.34

[MgGaH]0⊥(ab Ga‖) −0.75 −0.93 −1.08

[MgGaH]0⊥(ab Ga⊥) −0.83 −1.01 −1.13

[MgGaVN]0‖ 0.01 −0.17 −0.24

[MgGaVN]0⊥ −0.03 −0.21 −0.26

[MgGaVN]2+
‖ −0.64 −0.26 −0.50

[MgGaVN]2+
⊥ −0.93 −0.55 −0.45

[MgGaHN]+‖ −1.35 −1.39 −1.61

[MgGaHN]+⊥ −1.53 −1.56 −1.62

[MgGaHVN]+‖ (ab Mg) −0.75 −0.77 −1.17

[MgGaHVN]3+
‖ (ab Mg) −1.40 −0.42 −0.94

Tab. 7.12:
Vergleich der Bildungsenergien in GaN:Mg in PBE mit LDA vor und nach Anwendung
der Ladungskorrektur.

Alignment hingegen benötigt die elektronische Dichteverteilung des Defektes.
Nun ist es nicht praktikabel diese zu erzeugen, indem alle Defekte der Literatur
nachgerechnet werden. Wir verwenden deswegen hier als Abschätzung die typi-
schen Größen, die in der LDA Behandlung berechnet wurden und skalieren diese
entsprechend mit der Superzellengröße. Ziel ist es an dieser Stelle nicht möglichst
akkurate Defektenergetiken für PBE zu erzeugen, sondern vielmehr zu zeigen, dass
die Diskrepanzen zwischen LDA und PBE vornehmlich auf der nicht verwendeten
Ladungskorrektur der PBE Daten beruhen. Die berechneten Zahlenwerte für die
Ladungskorrektur sind ladungsspezifisch in Tabelle 7.11 zusammengefasst. Die
damit korrigierten PBE Daten sind in Tabelle 7.12 zusammengefasst.
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Die Anwendung der Ladungskorrekturen verbessert die Übereinstimmung zwischen
den LDA und den PBE signifikant. Die meisten Bildungsenergien weisen nur noch
Differenzen von unter 0.2 eV auf. Allerdings gibt es auch einige Defekte, die trotz
der Ladungskorrektur größere Differenzen aufweisen. Zunächst einmal fällt auf, dass
die Übereinstimmung der Wasserstoffstörstellen in der anti-bindenen Position sich
mit der Ladungskorrektur verschlechtert haben. Eigene Berechnungen des Defektes
mittels PAW-PBE zeigen hingegen eine zu LDA vergleichbare Energetik, so dass
das Funktional nicht Ursache dieser Diskrepanz sein kann. Vielmehr scheint der
Unterschied in der Behandlung der Elektron-Kern-Wechselwirkung zu bestehen.
Diese Arbeit verwendet den PAW Ansatz im Unterschied zu den Literaturdaten,
die mit ultrasoften Pseudopotentialen erzeugt worden sind. Während PAW als ge-
näherte Allelektronenrechnung physikalisch korrekte Wellenfunktionen in Kernnähe
liefert, ist das ultrasofte Pseudopotential eher „trickreich“ in der Beschreibung des
Wasserstoffes mit möglichst wenigen ebenen Wellen. Die Reaktion dieses Potentials
auf die sich hier drastisch ändernde chemische Umgehung ist nicht bekannt und
kann durchaus die Ursache der Diskrepanz sein. Einen ähnlichen Grund kann
auch die unterschiedliche Beschreibung des MgV2+

N und des MgH+
N haben. In der

PAW-LDA zeigen sich diese Defekte nahezu entartet, während in der USPP-PBE
Variante die Niveaus um 0.25—0.3 eV aufspalten. Hierbei ist die Aufspaltung des
MgH+

N sicherlich auf die des MgV2+
N zurückzuführen, da dieser Bestandteil jenes

Defektkomplexes ist.

Auch die Diskrepanzen der ausgedehnten [MgGaHVN]-Komplexe könnten auf die
Pseudoisierung von Stickstoff und Wasserstoff zurückzuführen sein, jedoch möchte
ich an dieser Stelle anmerken, dass die Ausdehnung des Defektes hier schon eine
Größe erreicht, welche die Beschreibung in der aktuellen Superzelle, sowie die
Verwendung der Ladungskorrektur fragwürdig erscheinen lassen. Zudem findet die
Behandlung in Superzellen unterschiedlicher Größe statt, so dass die endliche Größe
der Superzelle sicherlich quantitativ spürbar wird. Für eine akkurate Beschreibung
dieses Defektes ist eine Behandlung in einer größeren Defektzelle anzuraten, jedoch
ist diese erheblich rechenintensiver weswegen an dieser Stelle darauf verzichtet wird.

Trotz dieser kleinen verbleibenden Diskrepanzen ist belegt, dass der Unterschied
zwischen LDA und PBE hauptsächlich auf die fehlende Ladungskorrektur der PBE
Daten zurückgeführt werden kann. Die Umladungsniveaus zeigen nun eine deutlich
bessere Übereinstimmung zwischen beiden Ansätzen, so dass nun lediglich noch die
Unterschiede zwischen LDA/PBE und HSE zu betrachten sind.

7.4.5. Das Bandlückenproblem — LDA/PBE versus HSE

Der Unterschied zwischen den „klassischen“ Funktionalen LDA/PBE und dem Hy-
bridfunktional HSE liegt in der Beimischung des exakten Hartree-Fock-Austausches
für den kurzreichweitigen Teil der Coulombwechselwirkung. In Folge dessen deloka-
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Bildungsenergie [eV]
Defekt PAW-LDA PAW-HSE

Mg−Ga 0.00 0.00

V+
N 0.38 0.29

V3+
N 0.38 0.29

H+
‖ (bc) −0.51 −0.26

H+
⊥(bc) −0.36 −0.05

H+
‖ (ab) −0.31 −0.07

H+
⊥(ab) −0.45 −0.22

H2+
N −0.79 −0.76

[MgGaH]0‖(bc) −1.52 −1.41

[MgGaH]0‖(ab) −1.39 −1.26

[MgGaH]0⊥(bc Mg⊥) −1.29 −1.22

[MgGaH]0⊥(ab Mg⊥) −1.60 −1.50

[MgGaH]0⊥(ab Ga‖) −1.34 −1.24

[MgGaH]0⊥(ab Ga⊥) −1.40 −1.39

[MgGaVN]0‖ −0.50 −0.64

[MgGaVN]0⊥ −0.53 −0.66

[MgGaVN]2+
‖ −1.30 −1.38

[MgGaVN]2+
⊥ −1.25 −1.41

[MgGaHN]+‖ −2.14 −2.21

[MgGaHN]+⊥ −2.15 −2.18

[MgGaHVN]+‖ (ab Mg) −1.65 −1.58

[MgGaHVN]+⊥(bc Mg‖) −1.58 −1.55

[MgGaHVN]+⊥(ab Mg‖) −1.41 −1.33

[MgGaHVN]3+
‖ (ab Mg) −2.01 −1.85

[MgGaHVN]3+
⊥ (bc Mg‖) −1.50 −1.55

[MgGaHVN]3+
⊥ (ab Mg‖) −1.52 −1.61

Tab. 7.13:
Mit LDA und HSE berechnete Bildungsenergien der vornehmlich vorkommenden De-
fekte in Wasserstoff kompensierten GaN:Mg. Die Referenzzustände sind Ga Metall,
GaN, Mg−Ga, sowie das halbe Wasserstoffdimer. Das Ferminiveau ist auf das V3+/+

N
Umladungsniveau gesetzt.
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Abb. 7.14:
Wechsel der Fermilevel Referenz vom Valenzbandmaximum zum Umladungsniveau
der Stickstoffvakanz für LDA, PBE und HSE. Die roten Bereiche symbolisieren die
Leitungsbänder, die grünen Bereiche die Valenzbänder. Dargestellt ist die Position des
Umladungsniveaus der Stickstoffvakanz.

lisiert das Austauschloch mehr als in der LDA/PBE Behandlung, was zu einer Auf-
spaltung der Bandlücke in halbleitenden Materialien führt. Durchforstet man die Li-
teratur trifft man auf einige Arbeiten, welche die gängige Ansicht vertreten, dass die
Aufspaltung durch eine Verschiebung des Leitungsbandminimuns in einen höheren
Energiebereich erreicht wird[104, 105, 106]. In Folge dessen sind Defekte prozentual
gemäß ihres leitungsbandähnlichen Charakter zu korrigieren. Heutzutage hat man
jedoch einige berechtigte Zweifel an diesem Bild. So haben beispielsweise Alkauskas
und Pasquarello anhand der Sauerstoffvakanz in ZnO gezeigt, dass die mit ver-
schiedenen Methoden berechneten tiefen Umladungsniveaus eine deutlich geringere
Diskrepanz haben, wenn sie auf das mittlere elektrostatische Potential referenziert
werden[40]. Auch für andere Materialen ist dies eine geeignete Wahl[41]. Nun stellt
das mittlere elektrostatische Potential aus experimenteller Sicht keine gut messbare
Größe dar. Wir wählen hier den pragmatischen Weg das Ferminiveau direkt auf das
Umladungsniveau der Stickstoffvakanz zu referenzieren (Abbildung 7.14). Zwar ist
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das Umladungsniveau der Stickstoffvakanz nach der Ladungskorrektur kein tiefes
Defektniveau mehr, allerdings ist es in der Modellierung in der endlichen Superzelle
auf LDA Niveau vor der Korrektur durchaus als solches zu sehen und erfüllt somit
das Kriterium von Alkauskas und Pasquarello. Tabelle 7.13 zeigt die Bildungsener-
gien von LDA und HSE in dieser neuen Referenzierung. Die Diskrepanzen belaufen
sich nun nur noch auf 0.2 eV für den Grossteil der Defekte. Eine Ausnahme stellt
hier wieder der Wasserstoff auf den Zwischengitterplätzen dar, der aber auch in-
nerhalb von 0.3 eV eine gute Übereinstimmung zeigt. Generell scheint die LDA die
Bildungsenergie dieser Wasserstoffdefekte zu unterschätzen.

7.4.6. Feinjustierung — Die chemischen Potentiale

Die vorangegangen Kapitel haben gezeigt, dass die Diskrepanzen zwischen LDA,
PBE und HSE hauptsächlich auf die nicht vorgenommene Ladungskorrektur der
PBE-Daten und der Referenzierung des Fermilevels auf das Valenzbandmaxi-
mum, welches zwischen LDA/PBE und HSE unterschiedlich beschrieben wird,
zurückzuführen sind. Vollzieht man eine Umreferenzierung des Fermilevels auf
das Umladungsniveau der Stickstoffvakanz lassen sich die Defektenergetiken bis
auf 0.3 eV in Einklang bringen, wobei die reinen Wasserstoffdefekte die größte
Diskrepanz aufweisen. Eine letzte Stellschraube stellen hier die chemischen Poten-
tiale der einzelnen Atomsorten dar. Die Referenzierung auf molekulare Systeme,
wie im Falle des Wasserstoffes, kann hier noch zu Diskrepanzen zwischen den
mit unterschiedlichen Funktionalen berechneten Defektenergetiken führen. Schon
Myers nutzt zur Referenzierung des chemischen Potentials für Magnesium den
Magnesiumdefekt[101]. An dieser Stelle soll nun untersucht werden, in wie fern
sich eine komplette Referenzierung aller chemischen Potentiale auf Defektzustände
positiv auf die Defektenergetiken auswirkt. Im folgenden werden nun das substi-
tutionelle Magnesium auf einem Galliumgitterplatz, die Stickstoffvakanz und der
stabilste MgH-Defektkomplex als Referenzsysteme für die chemischen Potentiale
eingeführt. Die Stickstoffvakanz begründet sich mit der schon vollzogenen Refe-
renzierung auf ihr Umladungsniveau für das Fermilevel. Der MgH-Komplex stellt
experimentell den bedeutendsten Defekt dar um die Löslichkeit von Magnesium
in GaN zu erhöhen und scheint eine geeignete Wahl zu sein. Die so referenzierte
Defektenergetik ist für LDA und HSE in Tabelle 7.14 zusammengefasst. Die
Diskrepanzen zwischen den Wasserstoffstörstellen sind kleiner geworden. Insgesamt
stimmt nun die Defektenergetik bis auf maximal 0.2 eV überein.

Damit ist eine Validierung der Defektbildungsenergien gelungen, wenn entsprechen-
de Korrekturterme mit einbezogen werden. Allerdings bietet nur HSE die Möglich-
keit, die hier gewählten Referenzdefekte konsistent mit experimentell verfügbaren
Referenzen, wie dem Valenzbandmaximum, zu beschreiben. Die mit LDA und PBE
berechneten Bildungsenergien können aber einen gute Überblick liefern, um inter-
essante Defekte und Mechanismen zu identifizieren, die dann auf dem akkuraterem
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Bildungsenergie [eV]
Defekt PAW-LDA PAW-HSE

Mg−Ga 0.00 0.00

V+
N 0.00 0.00

V3+
N 0.00 0.00

[MgGaH]0⊥(ab Mg⊥) 0.00 0.00

H+
‖ (bc) 1.09 1.24

H+
⊥(bc) 1.25 1.45

H+
‖ (ab) 1.29 1.43

H+
⊥(ab) 1.16 1.28

H2+
N 0.43 0.44

[MgGaH]0‖(bc) 0.08 0.09

[MgGaH]0‖(ab) 0.21 0.24

[MgGaH]0⊥(bc Mg⊥) 0.32 0.28

[MgGaH]0⊥(ab Ga‖) 0.26 0.26

[MgGaH]0⊥(ab Ga⊥) 0.20 0.11

[MgGaVN]0‖ −0.88 −0.93

[MgGaVN]0⊥ −0.91 −0.95

[MgGaVN]2+
‖ −1.68 −1.67

[MgGaVN]2+
⊥ −1.63 −1.70

[MgGaHN]+‖ −0.92 −1.01

[MgGaHN]+⊥ −0.93 −0.97

[MgGaHVN]+‖ (ab Mg) −0.43 −0.37

[MgGaHVN]+⊥(bc Mg‖) −0.35 −0.34

[MgGaHVN]+⊥(ab Mg‖) −0.19 −0.12

[MgGaHVN]3+
‖ (ab Mg) −0.79 −0.64

[MgGaHVN]3+
⊥ (bc Mg‖) −0.28 −0.34

[MgGaHVN]3+
⊥ (ab Mg‖) −0.29 −0.40

Tab. 7.14:
Mit LDA und HSE gerechnete Bildungsenergien der hauptsächlich vorkommenden De-
fekte in Wasserstoff kompensierten GaN:Mg. Die Referenzzustände sind Ga Metall,
V+
N, Mg−Ga, sowie [MgGaH]0⊥(ab Mg⊥). Das Ferminiveau ist auf das V3+/+

N Umladungs-
niveau gesetzt.
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Abb. 7.15:
Position des Ferminiveaus in GaN:Mg basierend auf der HSE Defektenergetik in Ab-
hängigkeit der Magnesiumkonzentration. Die farbigen Linien zeigen die Umladungsni-
veaus der entsprechenden Defekte.

— aber auch erheblich aufwendigerem — HSE Niveau nachgerechnet werden sollten.

7.4.7. Die Kompensationsmechanismen in p-GaN

Der Wechsel in ein adäquates Referenzsystem hat es ermöglicht zu zeigen, dass die
berechneten Defektenergetiken nahezu methodenunabhängig sind und somit das
Vertrauen in diese Zahlenwerte deutlich gestärkt. Um nun jedoch die Effekte der
hohen Magnesiumdotierung zu studieren ist der Wechsel zurück in das Standar-
treferenzsystem unumgänglich. An dieser Stelle ist es nun möglich experimentelle
Befunde oder Resultate der vertrauenswürdigsten Methode bezüglich Bandstruktur
und molekularer Systeme zur Referenzierung zu verwenden. In dieser Arbeit stehe
nun die HSE Daten im Vordergrund.

Die Bestimmung der Defektkonzentrationen geschieht über die in Abschnitt 5.5
vorgestellte Methode. Als MOVPE-Wachstumstemperatur sind hierbei 1275 K
angesetzt worden[9]. Das chemische Potential des Wasserstoffes entspricht dieser
Wachstumstemperatur bei einem Partialdruck von 0.1 bar. Das chemische Potential
des Stickstoffs ist so justiert worden, dass die gemessene Wasserstoffkonzentration
für eine Magnesiumkonzentration von [0.7−−−0.9]×1018 cm−3 reproduziert wird.

Die Ergebnisse werden unter der Annahme des thermodynamischen Gleichgewichtes
diskutiert. Anhand der Boltzmannverteilung
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Abb. 7.16:
Relative Defektkonzentration basierend auf der HSE Defektenergetik in GaN:Mg bei
unterschiedlichen Mg Konzentrationen. Die einzelnen Defektkonzentrationen wurden
mit ihrer Ladung multipliziert und werden im Plot aufsummiert dargestellt. Der rote
Bereich gibt hierbei den Störstellenwasserstoff an. Der grüne Bereich repräsentiert den
Wasserstoff, der an die Stickstoffvakanz bindet. Der blaue und gelbe Bereich zeigt die
ladungsmultiplizierte Konzentration freier Stickstoffvakanzen im Ladungszustand +1
und +3. Der mit h+ indizierte braune Bereich repräsentiert die freien Löcher. Die
schwarze Linie zeigt die sich ergebene relative Wasserstoffkonzentration.

c(Xq) = N0Nconf exp

(
−E

0[Xq] + qεFermi

kbT

)
(7.15)

lässt sich schon eine erste Aussage über den Effekt steigender Magnesiumkonzentra-
tion treffen: Damit die Anzahl der negativen Magnesiumdefekte steigen kann muss
zur Kompensation auch die Konzentration der positiven Defekte (oder auch freien
Löcher) steigen. Dies ist jedoch nur durch eine Absenkung des Ferminiveaus εFermi

im System möglich. Exakt diesen Trend kann man in Abbildung 7.15 erkennen. Das
Ferminiveau sinkt kontinuierlich bis es bei einer Magnesiumkonzentration von ca.
5× 1019 cm−3 das [MgVN]0/2+ Umladungsniveau erreicht und dort fixiert wird.

Die relative Konzentration von Wasserstoff, der Stickstoffvakanzen und der Löcher
kann der Abbildung 7.16 entnommen werden. Um die Kompensation zu zeigen,
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ist dort die relative Konzentration mit der Ladung des entsprechenden Defektes
multipliziert worden. Um zwischen Stickstoffvakanzen und Störstellen leicht zu
unterscheiden bezeichnen wir an dieser Stelle jeglichen Störstellenwasserstoff — das
sind alle H+-Defekte sowie [MgGaH]-Komplexe — mit H+, alle Stickstoffvakanzen
— allein oder gepaart mit Magnesium — mit V+/3+

N , sowie die gemischten mit H2+
N .

Es ist zu erkennen, dass über den gesamten Konzentrationsbereich die dominante
Kompensation durch die Wasserstoffstörstellen geleistet wird. Nur ein geringer
Anteil (ca. 20—30%) der Magnesiumakzeptoren werden durch andere Defekte
kompensiert. Freie Ladungsträger in Form von Löchern spielen keine Rolle.

Im Konzentrationsbereich von 1017—1018 cm−3 wird diese Sekundärkompensation
von den einfach geladenen Stickstoffvakanzen übernommen. Ab einer Konzentration
von 1019 cm−3 beginnen die dreifach geladenen Stickstoffvakanzen etwas mehr
Bedeutung zu gewinnen. Es bilden sich zudem die Defekte der H2+

N -Klasse. Dieser
Defekt ist zweifach positiv geladen und vermindert die Notwendigkeit freien Was-
serstoff in das Material einzubauen um die Akzeptoren zu passivieren. Allerdings
besitzt dieser Defektkomplex eine um ca. 0.5 eV höhere Barriere um den Wasserstoff
freizusetzen[101] und sollte unter diesem Gesichtspunkt thermisch schwieriger
auszutreiben sein. Im Bereich hoher Magnesiumkonzentrationen werden fast 35%
der Akzeptoren durch stickstoffvakanzartige Defekte kompensiert. Die reinen
Wasserstoffstörstellen weichen von ihrem Maximum von knapp 70% der Kompensa-
tion zurück auf 65%. Die Gesamtwasserstoffkonzentration sinkt aber kaum merklich.

Die Rechnungen liefern eine qualitative Reproduktion des experimentellen Befundes
und liefern einen möglichen Mechanismus für den verminderten Wasserstoffeinbau.
Durch das absinkende Ferminiveau findet eine Umladung der Stickstoffvakanzen
aus den einfach geladenen Zustand in den dreifach geladenen statt. Dadurch ver-
drängen die Vakanzen den Wasserstoff geringfügig aus seiner Rolle als Passivator
der Magnesiumakzeptoren zur Erreichung der Ladungsneutralität. Im Gegensatz
zu den Rechnungen zeigt sich der experimentelle Übergang aber deutlich schärfer
und dominanter, sodass nun im folgenden eine weitere Untersuchung der Ergebnisse
stattfindet um das Modell zu erweitern und die experimentellen Befunde besser zu
repräsentieren.

7.4.8. Kopplung der chemischen Potentiale

In den im vorherigen Abschnitt vollzogenen Überlegungen waren keinerlei Ein-
schränkungen bezüglich des Wertebereiches der chemischen Potentiale enthalten.
Damit vernachlässigt man jedoch die Bildung neuer stabiler Phasen, welche bei der
Justierung der Potentiale auftreten können. In Abbildung 7.17 ist die Variation
des chemischen Potentials für Magnesium im Hinblick auf die Magnesiumkon-
zentration gegeben. Um die Magnesiumkonzentration in GaN zu erhöhen, muss
das chemische Potential sukzessive erhöht werden. Dabei durchschreitet es jedoch

133



7 Ableitung theoretischer Grenzen in der p-Dotierbarkeit von GaN:Mg

Abb. 7.17:
Notwendiges chemisches Potential zum Einstellen der Magnesiumkonzentration in GaN
basierend auf der HSE Defektenergetik. Dargestellt sind weiter der theoretisch be-
rechnete Bildungsbereich von Mg3N2, sowie das chemische Potential, bei welchem der
„Hydrogen Drop“ auftaucht.

die Stabilitätsgrenzen von Mg3N2 und Mg (vgl. Tabelle 7.15). An dieser Stelle
erkennt man deutlich die Schwäche des rein thermodynamischen Bildes. Nach dieser
Aussage würde Magnesium ab einer Konzentration von 7 · 1017 cm−3 in der ma-
gnesiumnitridartigen Phase vorliegen und ab einer Konzentration von 2 · 1019 cm−3

als reine Metallphase. Temperatureffekte können eine mögliche Erklärung sein,
weswegen GaN dennoch die stabile Phase bleibt. Eine Abschätzung der thermischen
Energie (Phasenumwandlung und Wärmekapazität) gibt hier einen Spielraum von
bis zu 0.4 eV vor. Experimentell zersetzt sich reines Magnesiumnitrid bei den
Wachstumstemperaturen und Magnesium liegt in einer flüssigen Phase vor. Auch
der Einfluss kinetischer Effekte kann hier eine Rolle spielen. An dieser Stelle lassen
wir uns folglich von den experimentellen Befunden führen um einen interessanten
Aspekt zu motivieren.

Die Bildung eines magnesiumnitridartigen Filmes ist experimentell anhand der
Inversionsdomänen (vgl. Abschnitt 7.1) belegt. Unter der Berücksichtigung von
kinetischen und thermischen Effekten ist es durchaus möglich, das die Bildungs-
energie dieser Inversionsdomänengrenzphase (IDB-Mg3N2) vergleichbar ist zu der
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Bildungsenergie [eV]
theoretisch experimentell

GaN −1.533 −1.625a

Mg3N2 −4.429 −4.773b

µ(Mg3N2) - µ(Mg) −0.454 −0.508
a[107], b[108]

Tab. 7.15:
Bildungsenergien von GaN und Mg3N2 bezogen auf das entsprechende Metall(bulk)
und N2 in der Gasphase. Die theoretischen Werte wurden mittels PAW-LDA bestimmt.
Aus den Bildungsenergien lässt sich die Differenz des chemischen Potentials für Mg
gemäß µ(Mg3N2)− µ(Mg) = (Ef [Mg3N2]− 2Ef [GaN])/3 berechnen.

Energie, an welcher die Wasserstoffkonzentration zusammenbricht. Im weiteren
identifizieren wir deswegen die Bildungsenergie von IDB-Mg3N2 mit der Energie des
Zusammenbruchs der Wasserstoffkonzentration. Diese Inversionsdomänen sind im
Wachstum zu vermeiden. Dies kann bei steigenden Magnesiumpotential nur durch
eine Absenkung des Stickstoffpotentials geschehen. Es ist folglich notwendig das
chemische Potential des Stickstoffes an das des Magnesiums zu koppeln, um der
Bildung der Inversionsdomänen entgegenzuwirken. Die Wirkung dieser Kopplung
wird nun untersucht und mit dem experimentellen Befund verglichen.

Im Referenzsystem GaN und Magnesiumnitrid sind die gekoppelten Relationen

µ(Ga) ≤ 0 Bildung von Ga (bulk) (7.16)

µ(Ga) + µ(N) ≥ 0 Bildung von GaN (7.17)

3µ(Mg) + 2µ(N) ≤ 0 Bildung von Mg3N2 (7.18)

für die chemischen Potentiale zu lösen. Damit ist eine Abhängigkeit des chemischen
Potentials für Stickstoff von dem chemischen Potential des Magnesiums wie in
Abbildung 7.18 gegeben. Für geringe Magnesiumkonzentrationen stünde dem
Experimentator die gesamte Variationsbreite des chemischen Stickstoffpotentials
zur Verfügung. Mit steigender Magnesiumkonzentration muss die Bildung von
dem am Rand der Inversionsdomänen auftauchenden filmartigen Magnesiumnitrid
unterdrückt werden, so dass die Variationsbreite mehr und mehr eingeschränkt
wird und das chemische Potential des Stickstoffes abgesenkt werden muss. Dies
hat deutliche Folgen für die Verteilung der Konzentrationen wie Abbildung 7.19
zeigt. Bei einer Magnesiumkonzentration von 3× 1019 cm−3 bricht nun die relative
Wasserstoffkonzentration zu Gunsten der Bildung von Stickstoffvakanzen deutlich
ein. Die Übereinstimmung mit dem Experiment ist qualitativ und quantitativ
gut. Der Grund für dieses Verhalten ist die Begünstigung des Stickstoffvakanzen
durch das sinkende chemische Stickstoffpotential. Der Abbildung 7.19 ist ein
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7 Ableitung theoretischer Grenzen in der p-Dotierbarkeit von GaN:Mg

Abb. 7.18:
Phasendiagramm des GaN Wachstums in Abhängigkeit der chemischen Potentiale für
Stickstoff und Magnesium. Die jeweiligen Bereiche geben die jeweils stabile Phase an.
Die hellblaue Linie zeigt einen möglichen Einstellungspfad der chemischen Potentiale
für das Wachstum von Magnesium dotierten GaN mit unterschiedlichen Magnesium-
konzentrationen.

klarer Zugewinn der positiv geladenen Stickstoffvakanzen und des Wasserstoff-
Stickstoffvakanzkomplexes zu entnehmen.

7.4.9. Zusammenfassung

In diesem Kapitel ist die Limitierung der p-Dotierbarkeit von GaN mit Magnesium
als Dotiermaterial auf Basis von DFT Berechnungen von Defektbildungsenergien
untersucht worden. Ausgangspunkt der Untersuchung stellt das anerkannte Bild
dar, welches die gute Löslichkeit von Magnesium in GaN mit der Bildung von
[MgH]-Defektkomplexen erklärt. Experimentelle Befunde aber zeigen, dass mit
zunehmender Magnesiumdotierung die relative Wasserstoffkonzentration abnimmt.
Ist diese Konzentration für moderate Dotierungen immerhin noch nahe bei 70%, so
fällt sie für hoch dotierte Proben auf einen Wert von ca. 20% ab. Eine thermische
Austreibung des Wasserstoffes und somit eine Aktivierung der passivierten Magne-
siumakzeptoren ist dann nicht mehr möglich. Dies steht im klaren Widerspruch zu
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Abb. 7.19:
Relative Defektkonzentration basierend auf der HSE Defektenergetik in GaN:Mg bei
unterschiedlichen Mg-Konzentrationen und variierenden chemischen Stickstoffpotenti-
al. Die einzelnen Defektkonzentrationen sind mit ihrer Ladung multipliziert und werden
im Plot aufsummiert dargestellt. Der rote Bereich gibt hierbei den Störstellenwasser-
stoff an. Der grüne Bereich repräsentiert den Wasserstoff, der an die Stickstoffvakanz
bindet. Der blaue und gelbe Bereich zeigt die ladungsmultiplizierte Konzentration frei-
er Stickstoffvakanzen im Ladungszustand +1 und +3. Der mit h+ indizierte braune
Bereich repräsentiert die freien Löcher. Die schwarze Linie zeigt die sich ergebene re-
lative Wasserstoffkonzentration.

dem allgemein anerkanntem Bild, dass Magnesium und Wasserstoff vornehmlich
als [MgH]-Defektkomplex im GaN-Wirtssystem eingebaut werden. Dieses Bild
erfährt durch die in dieser Dissertation getätigten Überlegungen eine Revision.
Dazu wurden zunächst die bei hohen Magnesiumkonzentrationen experimentell
nachgewiesenen Inversionsdomänen diskutiert. In den Inversionsdomänengrenzen
bildet sich eine magnesiumnitridartige Zwischenschicht, die auf ihre Eigenschaften
der Wasserstoffbindung untersucht wurde. Da eine vollständige Modellierung
der Inversionsdomänen auf DFT-Niveau sehr aufwendig und rechenintesiv ist,
wurden zunächst die Eigenschaften von reinem Magnesiumnitrid in der bulk-Phase
bestimmt, um auf chemische Trends für die Inversionsdomänengrenze zu schliessen.
Die Eigenschaften der Wasserstoffadsorption sind hier jedoch minimal im Vergleich
zu den typischen Wasserstoffkonzentrationen, die in magnesiumdotiertem GaN
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7 Ableitung theoretischer Grenzen in der p-Dotierbarkeit von GaN:Mg

während des Wachstums herrschen. Deswegen konnten die magnesiumnitridartigen
Inversionsdomänengrenzen als relevante Modifikatoren der Wasserstoffkonzentration
ausgeschlossen werden.

Da die Inversionsdomänengrenzen nur einen schwachen direkten Einfluss auf
die Wasserstoffkonzentration ausüben, ist der Ursprung des Phänomens in der
Defektenergetik des Wirtssystems zu suchen. Zwar sind in der Literatur schon
komplette Datensätze zur GaN-Defektenergetik vorhanden, allerdings haben
jüngste Entwicklungen es möglich gemacht die Genauigkeit der berechneten
Bildungsenergien deutlich zu verbessern. Hier ist die Superzellenkorrektur für
geladene Defekte zu nennen, welche die im Superzellenansatz der DFT ungewollte
Defekt-Defekt-Wechselwirkung geladener Defekte korrigiert, sowie die Verfügbarkeit
besserer Austausch- und Korrelationsfunktionale wie HSE, welche in einem weitaus
geringerem Maße vom Bandlückenproblem betroffen sind. Eine vergleichende
Defektenergetik wichtiger Defekte in p-GaN zwischen den Literaturdaten und den
in dieser Dissertation getätigten Rechnungen mit LDA und HSE zeigt deutliche
Abweichungen, die für sich genommen das Vertrauen in die Berechnung von Defek-
tenergetiken mittels DFT zunächst einmal erschüttern. In dieser Dissertation ist es
aber gelungen Korrekturen zu entwickeln, welche die Literaturdaten, sowie die hier
mit LDA berechneten Defektenergien mit dem HSE Datensatz in Einklang bringen.
Dafür ist eine konsequente Anwendung der Superzellenkorrektur geladener Defekte
notwendig, sowie die Umreferenzierung der Ferminiveaus von der Valenzbandkante
hin zu den Umladungsniveaus tiefer Defekte. Mit diesen Korrekturen variieren die
Bildungsenergien der betrachteten Defekte in einem Bereich von 0.2 eV je nach
Defektart und liefern somit vergleichbare Ergebnisse.

Für die Untersuchung der Defektkonzentrationen in Abhängigkeit zur Magne-
siumkonzentration sind die HSE Ergebnisse verwendet worden. Bei steigender
Magnesiumkonzentration sinkt das Ferminiveau bis es durch das Umladungsniveau
des [MgVN]-Defektkomplexes fixiert wird. Hier laden V+

N Defekte in V3+
N Defekte

um. Durch die Erzeugung der dreifach positiv geladenen Defekte verliert der
Wasserstoff als positiver Defekt geringfügig an Notwendigkeit. Die relative Was-
serstoffkonzentration sinkt minimal. Aus Sicht der Defektenergetik allein kann die
Verminderung der relativen Wasserstoffkonzentration folglich nicht erklärt werden.
Die Defektenergetik ist in Einklang mit dem anerkannten Bild des Magnesiumein-
baus und den anschliessenden thermischen Austreibung des Wasserstoffes.

Eine detaillierte Analyse des chemischen Magnesiumpotentialverlaufes hingegen
zeigt, dass zur Einbringung des Magnesiums der Bereich der Bildung von Magne-
siumnitrid überschritten wird. Experimentell wird tatsächlich Magnesiumnitrid in
Form von Inversionsdomänengrenzen beobachtet, denen Bildung generell entgegen-
gewirkt werden muss. Dies kann in der theoretischen Modellierung durch eine Kopp-
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lung des chemischen Stickstoffpotentials an das chemische Magnesiumpotential ge-
schehen, um in der Summe unterhalb der Bildungsenergie von Magnesiumnitrid und
insbesondere des magnesiumnitridartigen Filmes in den Inversionsdomänengrenzen
zu bleiben. Da die Bildungsenergie der magnesiumnitridartigen Grenzschicht nicht
bekannt ist, wurde diese über das chemische Magnesiumpotential an der experimen-
tell bestimmten Stelle des Wasserstoffeinbruchs berechnet. Dabei wird angenommen,
dass der dieser relative Konzentrationseinbruch eine indirekte Konsequenz der Inver-
sionsdomänenbildung ist. Reines Magnesiumnitrid besitzt jedoch eine theoretische
Bildungsenergie die ca. 0.45 eV unter der hier angenommenen liegt. Diese Differenz
kann jedoch zum einen in strukturellen Verspannungen begründet sein, da GaN das
eigentliche Wirtssystem bildet. Weiter gehen in die Betrachtung keine Temperatur-
effekte oder kinetischen Effekte ein, die eine Verschiebung des Stabilitätsbereiches
von Magnesiumnitrid in höhere Konzentrationsbereiche durchaus zulassen. Eine Be-
rechnung der Defektkonzentrationen unter diesen Randbedingungen offenbart eine
scharfe und signifikante Verminderung der relativen Wasserstoffkonzentration ver-
gleichbar zu den experimentellen Daten. Die Passivierung der Magnesiumakzepto-
ren wird nun durch Stickstoffvakanzen übernommen, welche durch das Absenken
der chemischen Stickstoffpotentials dem Wasserstoff gegenüber bevorzugt sind. Der
Aspekt der Vermeidung der Inversionsdomänen erweitert folglich das ursprüngliche
Bild der Magnesiumdotierung:
Die p-Dotierbarkeit von GaN mittels Magnesium lässt sich nicht mittels Wasser-
stoffkodotierung in beliebige Höhen treiben, sondern wird durch die Gratwanderung
zwischen Stickstoffvakanzbildung und Inversionsdomänenbildung limitiert.
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8. Zusammenfassung

Die Wissenschaft fängt eigentlich erst da an, interessant zu werden, wo
sie aufhört.

Justus von Liebig, deutscher Chemiker, 1803 - 1873

Die vorliegende Dissertation hat es sich zum Ziel gesetzt Ursachen der aktuellen
Limitierungen in der p-Dotierbarkeit von Galliumnitrid (GaN) mit theoretischen
Mitteln zu ergründen und zu erklären. Ausgangspunkt stellte dabei der experi-
mentell beobachtete Einbruch der relativen Wasserstoffkonzentration in hoch mit
Magnesium dotierten Proben dar. Dieser Befund steht im Widerspruch zu dem
anerkannten Bild, dass sich die Magnesiumlöslichkeit in GaN deutlich erhöht, wenn
mit Wasserstoff kodotiert wird und Magnesium als neutraler [MgH]-Defektkomplex
im Wirtssystem eingebaut wird. Der Einbruch der relativen Wasserstoffkonzen-
tration deutet auf einen weiteren Kompensationsmechanismus hin. Messungen
mittels Sekundärionenspektroskopie konnten aber keinen geeigneten Kandidaten
feststellen, der die Rolle des Wasserstoffes übernimmt.

An dieser Stelle erlaubte es das computergestützte Materialdesign durch die
Verwendung von ab initio Methoden, wie der Dichtefunktionaltheorie (DFT), über
die Berechnung von Defektenergetiken die Informationen über das Materialsystem
zu gewinnen, welche dem Experimentator in der Regel verschlossen bleiben. Auch
wenn die in dieser Dissertation durchgehend verwendete Annahme eines thermo-
dynamischen Gleichgewichtes die kinetischen Effekte vernachlässigt, so erlaubt sie
dennoch wichtige Trends abzuleiten und dem Experimentator neue Zielsetzungen
für notwendige weitere Experimente aufzuzeigen.

Da der beobachtete Einbruch der relativen Wasserstoffkonzentration mit der
Bildung von Inversionsdomänen begleitet wird, rückten diese zunächst in den
Fokus der theoretischen Betrachtung. Eine Inversionsdomäne kann Ausmaße von
einigen Kubiknanometern und mehr annehmen. Dies bedeutet eine herausfordernde
Modellierung eines Systems von 10.000 bis 100.000 Atomen und entsprechender
Rechenzeit. Um relativ zügig erste Aussagen zu erhalten, ist ein zweigleisiger
Ansatz gewählt worden: Eine effiziente Modellierung von Superzellen in dieser
Größe ist auf Basis der DFT-Verfahren nicht möglich, deswegen sind sie durch
sogenannte ‘coarse-grained’ Verfahren zu ersetzen. Dabei soll aber nach Möglichkeit
die Genauigkeit der Aussagen mit denen der DFT konkurrieren können, weswegen
der Blick auf die Konstruktion akkurater atomzentrierter Basissätze, den Quamols,
fiel. Auf der anderen Seite war über das Material, welches die Inversionsdomä-
nengrenze bildet — Magnesiumnitrid — in der Literatur recht wenig bekannt.
Eine komplette Defektenergetik dieses Materials in der Antibixbyitephase sollte
Aufschluss darüber geben, inwiefern Magnesiumnitrid die Wasserstoffkonzentration
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in GaN modifizieren kann.

Atomzentrierte Basissätze leiden unter dem Manko, dass sie im Vergleich zu
ebenen Wellen keine systematisch kontrollierbare Genauigkeit im Sinne einer
Konvergenz aufweisen. Die Quamols wurden mit dem Anspruch entwickelt akkurat
und transferabel zu sein und zudem durch die Verbindung zu einer zu Grunde
liegenden Ebenen-Wellen-Basis die systematisch kontrollierbare Genauigkeit die-
ser zu besitzen. Um besonders die Transferabilität zu gewährleisten wurde die
Beibehaltung der sphärischen Symmetrie gefordert. Da zudem nicht abzuschätzen
ist, inwieweit ein zu Grunde liegender Basissatz, in welchen Atomorbitale generell
entwickelt werden können, Einschränkungen in der Flexibilität bedeutet, sind die
Quamols basissatzfrei als numerische Funktionen definiert worden. Als Optimie-
rungskriterium wurde die von Sanchez-Portal 1995 eingeführte Spillage gewählt:
die Basisraumdifferenz zwischen Zuständen in der Ebenen-Wellen-Darstellung und
den Zuständen in der Atomorbital-Darstellung. Die physikalischen Vorteile der
basissatzfreien Repräsentation stehen hierbei jedoch einer deutlich komplexeren
Numerik gegenüber, so dass die in allen früheren Arbeiten genutzten analytische Pa-
rametrisierungen — die allerdings nur bedingt flexibel sind — nicht zur Verfügung
standen. Die effiziente Berechnung von Überlappintegralen zwischen Zuständen
in der Ebenen-Wellen-Darstellung und der Quamol Repräsentation stellte eine
Herausforderung dar, die mittels des geschickten Einsatzes von Splinefunktionen
gelöst werden konnte. Den Daten dieser Dissertation kann entnommen werden, dass
mit den Quamols ein akkurater und transferabler Basissatz geschaffen wurde, der
im Gegensatz zu allen früheren Methoden vollkommen flexibel ist.

Die Identifizierung und Berechnung der Defektenergetik wichtiger Punktdefekte
in Magnesiumnitrid erfolgte erstmals auf DFT-Niveau unter Verwendung normer-
haltender Pseudopotentiale und des PBE Korrelation- und Austauschfunktionals.
Unter Anwendung des thermodynamischen Gleichgewichtes konnten Defektkon-
zentrationen bestimmt werden, welche, zusammen mit der geringen Konzentration
von dem in Inversionsdomänen gebundenen Magnesiumnitrid, eine signifikante
Modifikation Wasserstoffkonzentration in GaN:Mg nicht erklären können. Von einer
kompletten Modellierung der Inversionsdomäne wurde somit Abstand genommen,
da auch die strukturellen Änderungen von der Antibixbyitephase zur Inversons-
domänengrenzphase keine Änderung der Wasserstoffkonzentration um mehrere
Größenordnungen bedeutet hätten. Die Ursache der modifizierten Wasserstoffkon-
zentration muss also im Galliumnitrid selbst liegen.

GaN ist ein deutlich intensiver diskutiertes Materialsystem als Magnesiumnitrid.
Hier lassen sich schon komplette Defektenergetiken in der Literatur finden. Jüngste
Entwicklungen, wie die Ladungskorrektur für geladenen Defekte in Superzellen,
sowie die bessere Verfügbarkeit des Hybridfunktionals HSE, welches Bandlücken
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in Übereinstimmung mit den experimentellen Befunden berechnet und somit
die DFT von ihrem Bandlückenproblem befreit, motivierten die Frage, inwiefern
deren Anwendung die Genauigkeit der Defektenergetiken weiter steigern kann. Die
Gegenüberstellung der mit diesen neuen Methoden berechneten Defektenergetiken
mit den Literaturdaten war jedoch sehr ernüchternd. Weder quantitativ noch
qualitativ ließ sich eine Übereinstimmung ausmachen. Dies stellte natürlich die
Verlässlichkeit von mit DFT berechneten Bildungsenergien generell in Frage, die für
eine akkurate Beschreibung von Defektkonzentrationen unumgänglich sind. Eine
Validierung der Defektenergetiken musste vorgenommen werden. Dazu wurden die
Formeln zur Bestimmung von Bildungsenergien analysiert, um Korrekturterme
zu entwickeln, welche die Schwächen der alten Funktionale abmildern sollten.
In dieser Dissertation ist es gelungen die qualitative und innerhalb von 0.3 eV
auch quantitative Übereinstimmung der mit den unterschiedlichen Methoden
berechneten Defektenergien zu zeigen. Wichtig hierfür ist die konsequente An-
wendung der Ladungskorrektur für geladene Defekte in Superzellen, sowie eine
physikalisch motivierte und transparente Umreferenzierung des Ferminiveaus
von der, durch das Bandlückenproblem fehlerhaften, Valenzbandkante zu dem
funktionalübergreifenden gut beschrieben Umladungsniveau der Stickstoffvakanz.
Mit diesen Erkenntnissen wird es möglich, einen Großteil der Fehler in der DFT zu
identifizieren und durch geeignete Transformationsvorschriften zu beheben. Durch
die Verwendung neuester Techniken im Bereich der Dichtefunktionaltheorie wie der
Verwendung des HSE Hybridfunktionals, sowie die Anwendung der Superzellenkor-
rektur für geladene Defekte konnte zudem die Genauigkeit signifikant verbessert
werden und eine verlässliche Datenbasis geschaffen werden um die Fragestellung zu
untersuchen.

Mit den validierten Defektdaten wurden unter Annahme des thermodynami-
schen Gleichgewichtes Konzentrationsprofile erstellt. Diese Profile zeigen, dass
Stickstoffvakanzen in vergleichbaren Konzentrationen zum Wasserstoff auftreten
und auf Grund ihrer Ladung die Kompensation des Magnesiums übernehmen
können. Allerdings sind die berechneten Konzentrationsänderungen nach wie
vor zu gering, um die experimentell beobachteten Verhältnisse zu erklären. Erst
die Berücksichtigung der Phasenseparation GaN/Mg3N2 und eine entsprechende
Kopplung der chemischen Potentiale untereinander, führte zu einer quantitativen
Übereinstimmung der theoretischen Resultate mit den experimentellen Daten. Die
Gradwanderung zwischen einem ausreichendem Stickstoffangebot zur Vermeidung
der Vakanzbildung und einem Unterangebot an Stickstoff um die Phasenseparation
Galliumnitrid/Magnesiumnitrid bei hohen Magnesiumkonzentrationen zu verhin-
dern, ist schlussendlich als eigentliche Limitierung der p- Dotierbarkeit identifiziert
worden.

Die in dieser Dissertation geschaffen Quamols sind in ihrem Potential bei weitem
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noch nicht erschöpft. Ihre Möglichkeiten bei der Verwendung von coarse-grained
Methoden sind dabei nur ein möglicher weiterer Entwicklungsstrang der beschritten
werden könnte. Schon jetzt haben sich die Quamols zu analytischen Zwecken be-
währt. Sei es bei der Mullikenschen Populationsanalyse oder der orbitalaufgelösten
Bandstrukturanalyse. Dadurch, dass die Quamols den entsprechenden Unterraum
praktisch verlustfrei aufspannen, bilden sie einen systemnäheren Basissatz, als es
die Orbitalfunktionen der Pseudoatome tun, die oftmals zur Analyse von Ebenen-
Wellen-Rechnungen eingesetzt werden. Ein solcher Basissatz erlaubt weiter die orts-
aufgelöste Analyse von Energiebeiträgen zur Gesamtenergie eines Systems. Eine
Vielzahl von Fragestellungen kann mit Hilfe dieses Basissatzes angegangen werden
und wird Bestandteil weiterer Forschung mit spannender Physik sein.
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A. Mg3N2 in der idealen Antibixbyitestruktur

Abb. A.1:
Magnesiumnitrid in der idealen, nichtrelaxierten Antibixbyitestruktur. Die Struktur
ist in vier Atomlage aufgeteilt, die die Superzelle bilden. Die kleinen Kugeln stehen
dabei für die Positionen der Stickstoffatome, die großen Kugeln symbolisieren die Po-
sitionen der Magnesiumatome. Die einzelnen Lagen sind entlang der (100) und der
(010) Richtung verdoppelt worden um ein besseres Verständnis für die Symmetrie der
einzelnen Lagen zu geben.

Magnesiumnitrid kristallisiert in Antibixbyitestruktur. Diese Struktur besitzt in ih-
rer idealen Form eine grosse Ähnlichkeit zur Kalziumfluoridstruktur. Den Unter-
schied bilden die zur Erhaltung der richtigen Stöchometrie einzubringenden Struk-
turvakanzen. Abbildung A.1 zeigt die einzelnen Lagen der kubischen Superzelle.
Wie hier zu sehen ist, ergeben sich die Lagen 3 und 4 aus Translationen der Lagen
1 und 2, so dass diese Superzelle auf eine primitive fcc-Zelle reduziert werden kann,
die nur noch 40 Atome enthalt. Eine entsprechende Struktur ist in [109] gegeben.
Die A1...3 bezeichnen die Gittervektoren der kubischen Zelle. Die 32 Stickstoffato-
me N1...32 bilden ein fcc-Untergitter. Die 48 Magnesiumatome Mg1...48 besetzen die
Tetraederlücken, wobei in jeder Lage vier dieser Lücken unbesetzt bleiben und die
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sogenannten Strukturvakanzen V1...16 bilden. Die Koordinaten dieser Strukturvakan-
zen in der idealen Antibixbyitestruktur für Magnesiumnitrid lauten
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B. Effektivmassenberechnung

Die effektiven Massen von Elektronen und Löchern sind notwendige Größen zur
Berechnung freier Ladungsträgerkonzentrationen wie sie zum Beispiel im Lehrbuch
von Kittel[26] angegeben werden

ce = 2

(
m∗ekbT

2π~2

)3/2

e(EFermi−ECBM)/kbT , (B.1)

ch = 2

(
m∗hkbT

2π~2

)3/2

e(EVBM−EFermi)/kbT . (B.2)

Die effektiven Massen können über Hallmessungen experimentell bestimmt werden.
An dieser Stelle wird ein Verfahren vorgestellt, welches den Wert der effektiven
Massen theoretisch abschätzt. Im Allgemeinen verwendet man als Definition der
effektiven Masse m∗

1

m∗
=

1

~2
4k ε(k). (B.3)

ε(k) bezeichnet hierbei die Banddispersion, die erhalten wird, indem in der Um-
gebung des VBM oder des CBM ein parabolischer Fit vollzogen wird. Mit 4k ist
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B Effektivmassenberechnung

Abb. B.1:
Effektive Massen der Löcher und der Elektronen in Magnesiumnitrid in Abhängigkeit
der thermischen Energie. Die linke Skala beziffert die Lochmassen, die rechte die Elek-
tronenmassen. Die Legende gibt das für die jeweilige Berechnung verwendete k-Punkt
Gitter wieder.

der Laplaceoperator bezüglich der k-Vektoren bezeichnet. Über einen parabolischen
Fit an die Bandstruktur kann die effektive Masse des Bandes am entsprechenden
k-Punkt abgeschätzt werden. Allerdings ist dieses Verfahren problematisch im Falle
vieler flacher Bänder, wo der Fit individueller Bänder zu einer falschen Zustands-
dichte führt. Besser ist es in einer solchen Situation die Zustandsdichte als Eingangs-
größe zu verwenden, um die effektiven Massen abzuschätzen. Die energieabhängige
Zustandsdichte D(E) ist über die Beziehung

n(EFermi) =

∞∫
−∞

f(E − EFermi)D(E)dE (B.4)

mit der Teilchenzahldichte n verknüpft. Die energieabhängige Funktion f stellt hier-
bei die elektronische Besetzung der Zustände dar und wird über die Fermi-Dirac Ver-
teilung modelliert. In der numerischen Betrachtung wird die Zustandsdichte über

D(E) =
∑
n,k

wkδ(E − εnk) (B.5)

146



genähert, wobei εnk die Eigenenergien des Systems sind und die wk die k-Punkt
Gewichtung der diskretisierten Brillouin Zone bezeichnet. Damit ergibt sich die Teil-
chenzahldichte numerisch zu

n(EFermi) =
∑
n,k

wkf(εnk − EFermi). (B.6)

Die folgenden Betrachtungen gelten für die Elektronen. Sie lassen sich aber in analo-
ger Weise auf die Löcher übertragen. Unter der Annahme, dass die Energiedifferenz
zwischen Ferminiveau und Leitungsbandminimum deutlich größer ist als die ther-
mische Energie

ECBM − EFermi

kbT
� 1, (B.7)

kann die Fermi-Dirac-Verteilungsfunktion über die Boltzmannverteilung abgeschätzt
werden. Nimmt man weiter an, dass elektronischen Anregungen hauptsachlich von
Defektelektronen vollzogen werden, so ist die Anzahl der Valenzelektronen NV kon-
stant. Dies ist erfüllt wenn die Energiedifferenz von der Valenzbandkante zur Fermi-
energie deutlich größer ist als die Energiedifferenz der Fermienergie zum Leitungs-
bandminimum

EFermi − EVBM � ECBM − EFermi. (B.8)

Beide Bedingungen zusammen definieren einen sinnvollen Bereich für die Wahl des
Ferminiveaus

1

2
(EVBM + ECBM)� EFermi � ECBM − kbT. (B.9)

Auch die Wahl der thermischen Energie ist damit sinnvoll eingegrenzt. Zum einen
muss sie gering genug sein um obige Bedingung zu erfüllen, zum anderen groß genug
um ein grobes k-Punkt Gitter zu rechtfertigen.
Setzt man ECBM = 0 als Referenzenergie an, so ergibt sich die Anzahl der Leitungs-
elektronen pro Volumenelement zu

nc ≈ eEFermi/kbT

∞∫
0

e−ε/kbTD(ε)dε

︸ ︷︷ ︸
Deff(kbT )

. (B.10)

Für ein freies Elektronengas mit der effektiven Masse m∗e kann die effektive Zu-
standsdichte Deff analytisch zu

Deff(kbT ) =
2

h3
(2πm∗ekbT )3/2 (B.11)

berechnet werden. Mit dieser Beziehung und der Leitungselektronenzahl Nc = ncΩ

— mit Ω als Zellvolumen — ergibt sich die effektive Masse zu
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C Pulay Kräfte

me∗ =
21/3h2

Ω2/3(kbT )5/3
(kbT lnNc − EFermi)

2/3. (B.12)

Die Fermienergie geht in die obige Gleichung als Parameter ein und ist zum jetzi-
gen Zeitpunkt der Berechnungen nicht bekannt. Um sinnvolle Werte für die effek-
tive Masse zu erhalten, wird in der Praxis das exponentielle Verhalten von Glei-
chung (B.10) über die Konstanz von kbT lnNc−EFermi abgefragt und die Fermiener-
gie in diesem Bereich gesetzt.
Wir demonstrieren diesen Ansatz an Magnesiumnitrid, dessen Bandstruktur sich
durch eine Vielzahl flacher Bänder nahe der Valenzbandkante auszeichnet. Abbil-
dung B.1 zeigt die berechneten effektiven Massen in Abhängigkeit der thermischen
Energie. Die Qualität der effektiven Masse hängt stark von der zu Grunde liegen-
den Zustandsdichte ab. Eine Approximation der Zustandsdichte über δ-Funktionen
resultiert in Artefakten, wenn die Peakabstände vergleichbar oder sogar größer als
kbT werden. Dies kann durch eine höhere Temperatur oder ein höheres k-Punkt
Gitter vermieden werden. Dieses Verhalten sieht man insbesondere bei der elektro-
nischen effektiven Masse, wo das k-Punkt Gitter ausgehend von einem 6x6x6 zu
einem 20x20x20 Gitter mittels k · p Methode[110] interpoliert wurde. Die effektiven
Lochmassen hingegen konvergieren schneller. Eine Erhöhung der Auflösung jenseits
eines 12x12x12 Gitters liefert keinerlei signifikante Änderung der Masse, was eine Fol-
ge der Dispersionsfreiheit dieser Zustande nahe der Valenzbandkante ist. Die starke
Temperaturabhängigkeit ist eine Folge des Freien-Loch-Modells. Hier wird die wahre
Zustandsdichte über eine Quadratwurzelfunktion modelliert. Im Falle von Magnesi-
umnitrid repräsentiert eine Stufenfunktion die Zustandsdichte in diesem Energiebe-
reich besser. Ein solcher Ansatz liefert für die effektive Zustandsdichte Deff ∝ kbT ,
was dann für die effektive Masse eine thermische Abhängigkeit m∗h ∝ (kbT )−1/3 be-
deutet. Genau dieses Verhalten ist in Abbildung B.1 zu sehen. An dieser Stelle gehen
wir dann den pragmatischen Weg: Für Berechnungen an spezifischen Temperaturen
wählen wir die effektive Masse, die für die gegebene Temperatur die Zustandsdichte
am besten repräsentiert.

C. Pulay Kräfte

Durch den Übergang zu lokalisierten Basisfunktionen bedarf das Hellmann-Feynman
Theorem einer Erweiterung, welche Pulay[111] erstmals für die Hartree-Fock Theorie
einführte und die nun im Folgenden diskutiert wird.
Gemäß dem Ehrenfestschen Theorem lässt sich der Erwartungswert der Kraft als
Ableitung des Erwartungswertes der Energie im Bezug auf die Atomkoordinaten

− Fi = ∇Ri
E = 〈φ|∇Ri

H|φ〉+ 2<〈∇Ri
φ|H|φ〉. (C.1)

beschreiben. Der erste Ausdruck in der rechten Seite der Gleichung bezeichnet hier-
bei die Hellmann-Feynman Kraft. Der zweite Ausdruck wird als Pulay Kraft be-
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Abb. C.1:
Dissozationskurve des Stickstoffdimers. In blau ist die abstandsabhängige Gesamtener-
gie aufgetragen. Die rote und die grüne Kurve zeigt den Betrag der berechneten Kraft
einmal nach dem Hellman-Feynman Theorem und einmal unter Berücksichtigung der
Pulaybeiträge. Als atomarer Basissatz sind das atomare s- und das atomare p-Orbital
des Potentials verwendet worden. Da diese Orbitale nicht auf das Problem angepasst
sind erhält man einen deutlichen Beitrag in der Pulay Kraft.

zeichnet und resultiert aus der Verschiebung der Basisfunktionen mit den Atomen.
Diese Kraft ist eine Pseudokraft, aber notwendig zur akkuraten Beschreibung von
Kräften in elektronischen Strukturberechnungen mit lokalisierten Basisfunktionen.
Satoko[112] hat den obigen Ausdruck für die Pulay Kraft speziell für die Kohn-
Sham Gleichungen der Dichtefunktionaltheorie zu

FPulay
i = −2<

[∑
n,τ

fnc
∗
nτ 〈

dχτ
dRi

|Ĥ − εnŜ|ψn〉

]
(C.2)

berechnet. An dieser Gleichung lassen sich zwei Eigenschaften der Pulay-Kräfte se-
hen:

1. Die Pulay-Kräfte verschwinden, wenn das Residuum Ĥ−εnŜ|ψn〉 verschwindet.

2. Die Pulay-Kräfte verschwinden, wenn die Basisfunktionen unabhängig von den
Atomkoordinaten sind und somit dχτ

dRi
= 0 gilt.
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E Spline-Interpolation

Das erste Argument gilt für die exakten Molekül- oder Festkörperorbitalfunktionen
und bildet somit ein Kriterium zur Bewertung der Qualität der Orbitalentwicklung.
Das zweite Argument hingegen gilt insbesondere für den Ebenen-Wellenansatz und
verdeutlicht noch einmal, warum für diese Methode die Pulay Kräfte keine Rolle
spielen.
Die Relevanz der Pulay Kräfte lässt sich am Beispiel des Stickstoffdimers wunder-
bar illustrieren. Abbildung C.1 zeigt die Dissotiationskurve des Moleküls, berech-
net mittels selbstkonsistenter LCAO und dem potentialeigenen s-und p-Orbital als
Basisfunktionen. Dieser nichtoptimierte Basissatz ist verwendet worden um einen
möglichst großen Beitrag zur Pulay Kraft zu bekommen und dennoch ein einiger-
massen physikalisches Bild der Bindung zu erhalten. Eine Strukturoptimierung ohne
die Verwendung der Pulay Kräfte resultiert in einer fehlerhaften Bestimmung der
Gleichgewichtsgeometrie. Anstelle einer Bindungslänge von 2.233 Bohr liefert die
Kraftoptimierung eine Bindungslänge von 3.195 Bohr. Erst unter Berücksichtigung
der Pulay Kräfte lässt sich das Energieminimum bestimmen und somit die Bin-
dungslänge korrekt vorhersagen.

D. Variation der inversen Überlappmatrix

Die Variation der inversen Überlappmatrix S−1 in Abhängigkeit der Orbitalfunktio-
nen lässt sich über die Matrix-Identität SS−1 = 1 bestimmen. Mit

0 =
∑
β

dSαβ
d〈µτ |

S−1
βγ + Sαβ

dS−1
βγ

d〈µτ |
(D.1)

=
∑
α,β

S−1
εα

dSαβ
d〈µτ |

S−1
βγ + S−1

εα Sαβ
dS−1

βγ

d〈µτ |
(D.2)

=
∑
α,β

(
S−1
εα

dSαβ
d〈µτ |

S−1
βγ

)
+
dS−1

εγ

d〈µτ |
(D.3)

folgt daraus

dS−1
αβ

d〈µτ |
= −

∑
γ,ε

S−1
αγ

dSγε
d〈µτ |

S−1
εβ (D.4)

= −S−1
ατ

∑
ε

|µε〉S−1
εβ (D.5)

E. Spline-Interpolation

Sei im folgenden die Funktion φ im Intervall [a, b] durch ein Gitter {gx}X mit den
Datenpunkten φx = φ(gx) beschrieben. Ein weiteres Gitter {gξ}Ξ spanne dasselbe
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Intervall auf, jedoch mit einer größeren Menge an Datenpunkten. Es gilt folglich
X < Ξ. Gesucht werden nun Datenpunkte φξ = φ(gξ). Diese sollen durch eine
kubische Spline-Interpolation berechnet werden. Dabei zerlegt man das Intervall
[a, b] in X − 1 Teilintervalle auf denen kubische Spline-Funktionen

Sx(gξ) =
3∑
i=0

χx,i(gξ − gx)i mit gx ≤ gξ ≤ gx+1 (E.1)

definiert werden. Eine kubische Spline-Funktion besitzt nach [113] die folgenden
Eigenschaften:

Sx(gx) = φx ∀ 0 ≤ x < X − 1 (E.2)

Sx(gx+1) = Sx+1(gx+1) ∀ 0 ≤ x < X − 1 (E.3)

S ′x(gx+1) = S ′x+1(gx+1) ∀ 0 ≤ x < X − 1 (E.4)

S ′′x(gx+1) = S ′′x+1(gx+1) ∀ 0 ≤ x < X − 1 (E.5)

Zudem wird noch eine der folgenden Randbedingungen erfüllt:

Natürliche Randbedingung:

S ′′0 (g0) = S ′′X−1(gX) = 0 (E.6)

Hermite Randbedingung:

S ′0(g0) = φ′0

∧
S ′X−1(gX) = φ′X (E.7)

Aus diesen Eigenschaften lassen sich gemäß [113] die Spline-Koeffizienten χx,i be-
rechnen. Aus der Bedingung (E.2) folgt sofort, dass sich die i = 0 Koeffizienten
zu

χx,0 = φx (E.8)

ergeben. Weiter lässt sich über die Bedingungen (E.3)-(E.5) und der Hilfsbezeich-
nung

hx = gx+1 − gx (E.9)

die Beziehungen

χx+1,0 = χx,0 + hxχx,1 + h2
xχx,2 + h3

xχx,3 (E.10)

χx+1,1 = χx,1 + 2hxχx,2 + 3h2
xx, 3 (E.11)

χx+1,2 = 3hxχx,3 + χx,2 (E.12)
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E Spline-Interpolation

herleiten, welche die Koeffizienten aneinander koppeln. Eine Verknüpfung von Be-
ziehung (E.12) in (E.11) liefert weiter

χx+1,1 = χx,1 + hx(χx+1,2 + χx,2) (E.13)

und Beziehung (E.11) in (E.10) liefert

χx+1,0 = χx,0 + hxχx,1 +
h2
x

3
(χx+1,2 + 2χx,2) (E.14)

Aus Gleichung (E.14) lassen sich nun Bestimmungsgleichungen für

χx,1 =
1

hx
(χx+1,0 − χx,0)− hx

3
(χx+1,2 + 2χx,2) (E.15)

und - durch Indexverschiebung - für

χx+1,1 =
1

hx+1

(χx+2,0 − χx+1,0)− hx+1

3
(χx+2,2 + 2χx+1,2) (E.16)

angeben. Diese in Gleichung (E.13) eingesetzt, liefert als Bestimmungsgleichung für
die Gesamtheit der {χx,2}X−1

x=1 , wenn der Index nachträglich noch um eins reduziert
wird

hx−1χx−1,2 + 2(hx−1 + hx)χx,2 + hxχx+1,2 =
3

hx
(χx+1,0 − χx,0)− 3

hx−1

(χx, 0− χx−1,0)

(E.17)
Für χ0,2 und χX,2 muss nun eine der Nebenbedingungen beachtet werden. Die na-
türliche Nebenbedingung (E.6) ihrerseits führt zu

χ0,2 = 0 (E.18)

χX,2 = 0, (E.19)

während die Hermite Nebenbedingung (E.7) auf

2

3
h0χ0,2 +

1

3
h0χ1, 2 =

1

h0

(χ1,0 − χ0,0)− φ′0 (E.20)

1

3
hX−1χX−1,2 +

2

3
hX−1χX,2 = φ′X −

1

hX−1

(χX,0 − χX−1,0) (E.21)

schliessen lässt. Diese Gleichungen bilden ein geschlossenes lineares Gleichungssys-
tem der Form

T χ
2

= β, (E.22)

dessen Lösung die Gesamtheit der {χx,2}Xx=0 festlegt. Aus diesen wiederum lassen
sich dann die übrigen Spline-Koeffizienten bestimmen. Die benötigten Bestimmungs-
gleichungen seinen an dieser Stelle noch mal zusammengefasst:
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χx,0 = φx (E.23)

χx,2 = (T−1 β)x (E.24)

χx,1 =
1

hx
(χx+1,0 − χx,0)− hx

3
(χx+1,2 + 2χx,2) (E.25)

χx,3 =
1

3hx
(χx+1,2 − χx,2) (E.26)

Die Werte für χX,1 und χX,3 lassen sich aus den obigen Gleichungen nicht berechnen,
besitzen aber auch für die Spline-Interpolation keine Relevanz, da ihr zugehöriger
Spline nicht im Intervall [a, b] liegt. Es sei an dieser Stelle angemerkt, dass alle
Spline-Koeffizienten linear von den erzeugenden Knotenpunkten φx abhängen. Eine
Taylorentwicklung

χx,{0..3} =
∑
i

∂χx,{0..3}
∂φi

φi (E.27)

ist somit vollständig.
Mittels des oben beschriebenen Verfahrens lassen sich auf einem Intervall [a, b] gege-
benen Gitter beliebige Punkte in diesem Intervall interpolieren. Davon wird in dem
Quamolverfahren bei der Auffaltung der radialen Funktion im reziproken Raum auf
das dreidimensionale reziproke Gitter der Wellenfunktionen exzessiv Gebrauch ge-
macht. Die Zusammenfaltung könnte mit dem selben Ansatz von statten gehen. Da
sich aber im reziproken Raum der Wellenfunktionen das Signal durch die Projektio-
nen und Rechenoperationen mit einem numerischen Rauschen überlagert, ist dies
kein sinnvoller Weg, wie Abb. F.1 eindrucksvoll zeigt. Durch die Spline-Interpolation
pflanzt sich der Fehler im radialen Raum fort und stört dort die Optimierung erheb-
lich. Um diesen Fehler zu minimieren bietet sich das Verfahren des Spline-Fittens
an, welches im Folgenden beschrieben wird.

F. Spline-Fitten

Die Ausgangslage bei diesem Verfahren ist umgekehrt zur Spline-Interpolation. Die
Funktion φ sei nun eine gestörte Funktion, die auf einem dichten Gitter gξ im In-
tervall [a, b] über φξ = φ(gξ) gegeben ist. Gesucht werden nun die Knotenpunkte
fx = f(gx), welche auf dem weniger dichtem Gitter gx einen Spline der Art erzeu-
gen, so dass das Residuum

R =
∑
ξ

[φξ − S(gξ)]
2 (F.1)

minimal wird. Die Variation des Residuums bezüglich eines Knotenpunktes fi lässt
sich zu
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F Spline-Fitten

Abb. F.1:
Spline-Interpolation und Spline-Fitten am Profil der Sphinx. Die Abbildung der Sphinx
ist mit einem Stützstellengitter belegt worden, dessen Spline-Interpolation ihr Profil
reproduziert. Die Interpolation ist dann mit einen Rauschen (grün) überlagert worden.
Die blauen Punkte zeigen die sich aus diesem verrauschten Signal ergebenen neuen
Stützstellen. Die orangenen Punkte geben die Stützstellen wieder, die das Verfahren
des Spline-Fittens liefert.

∂R

∂fi
=2
∑
ξ

3∑
p,q=0

χx,p
∂χx,q
∂fi

(gξ − gx)p+q

− 2
∑
ξ

3∑
p=0

φξ
∂χx,p
∂fi

(gξ − gx)p (F.2)

berechnen. Da nun die Spline-Koeffizienten linear von den Knotenpunkten abhängen
(Gl. (E.27)) und das lokale Minimum des Residuums über die hinreichende Bedin-
gung ∂R

∂fi
= 0 gegeben ist, ergibt sich das folgende lineare Gleichungssystem zur

Bestimmung der fx
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Simulationsschritt Mittelwert Varianz
Rauschen 0.0082 0.1243

Splineinterpolation 0.0646 0.1064
Splinefitting 0.0008 0.0018

Tab. F.1:
Der durch das Profil der Sphinx gelegte Spline wurde mit einem Rauschen überlagert.
Vollzieht man nun an diesem Signal eine Spline-Interpolation und berechnet Mittelwert
und Varianz der Differenz zum rauschfreien Ursprungssignal, so erkennt man einen
deutlichen Fehler. Durch das Spline-Fitting wird dieser Fehler reduziert und die Effekte
des Rauschens minimiert.

∑
k

fkAki = bi (F.3)

mit Aki =
∑
ξ

3∑
p,q=0

∂χx,p
∂fk

∂χx,q
∂fi

(gξ − gx)p+q

und bi =
∑
ξ

3∑
p=0

φξ
∂χx,p
∂fi

(gξ − gx)p.

Die entsprechenden Ableitungen der Spline-Koeffizienten nach den Knotenpunkten
lassen sich über

dχx,0
dfi

= δx,i (F.4)

dχx,1
dfi

=
1

hx
(δx+1,i − δx,i)−

hx
3

(
dχx+1,2

dfi
+ 2

dχx,2
dfi

) (F.5)

dχx,2
dfi

= (T−1
dβ

dfi
)x (F.6)

dχx,3
dfi

=
1

3hx
(
dχx+1,2

dfi
− dχx,2

fi
) (F.7)

berechnen. Das Mächtigkeit dieses Verfahrens lässt sich an Abbildung F.1 demons-
trieren. Über das Profil der Sphinx ist ein Stützstellengitter gelegt worden, welches
mittels Spline-Interpolation das Profil nachbildet. Diese Spline-Interpolation wurde
dann mit einem Rauschen überlagert. Die direkte Verwendung dieses Signals zur
Rückrechnung der Stützstellen resultiert in einem deformierten Profil. Durch die
Verwendung des Spline-Fittens lassen sich die Stützstellen nahezu perfekt rekon-
struieren. Tabelle F.1 zeigt die berechneten Varianzen der durch Spline-Fitten und
Spline-Interpolation rekonstruierten Stützstellen und den Initialstützstellen. Durch
die Verwendung des Spline-Fittens kann der Fehler und die Varianz des Rauschens
signifikant reduziert werden.
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