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Abstract

Hydrogenated amorphous silicon (a-Si:H) is an attractive material for low-cost solar cells. However, the
light-induced formation of metastable defects leads to a degradation of the conversion e�ciency with
time. After more than 30 years of research, the common notion is that the 'dangling-bond' (db) defect
plays an important role in it but the speci�c underlying mechanisms of this Staebler-Wronski e�ect
(SWE) are still unknown. The db-defect is a singly under-coordinated silicon atom, that gives rise to
a state in the band gap. If the state is singly occupied, it can be detected by electron spin resonance
(EPR), which probes for the unpaired spin in an external magnetic �eld. In a-Si:H, the resulting
absorption spectrum is characterized by the coupling of the unpaired spin with the external magnetic
�eld (described by the g-tensor) and the hyper�ne coupling to the central nucleus of the defect.

The complexity of the material makes it impossible to directly extract information about the local
defect structure from the spectrum. To solve this problem, this thesis analyses the role of electronic
and structural e�ects on the EPR-parameters of the silicon dangling bond by means of state-of-the-art
ab initio computational methods. By their application, we are able to compute the EPR-parameters
for realistic defect models and study their statistics. On the other hand, we can also study the in�uence
of the further defect surrounding in a systematic way. The complementary statistical and systematic
modelling is crucial for understanding the paramagnetic characteristics in such a complex material as
a-Si:H, in which structural disorder leads to a strong in�uence of the network and to an huge variety of
di�erent local bond geometries.

First we establish the accuracy of our approach by considering small molecular and crystalline (c-
Si) db-systems. We compare our method with another theoretical approach and we obtain excellent
agreement with experiment for carefully selected c-Si dangling bonds. Consequently, we are able to
relate the measured EPR-parameters to speci�c atomistic defect models and characterize the e�ect of
a symmetry-lowering Jahn-Teller distortion.

We then use the molecular and c-Si db-systems to study the in�uence of the local defect geometry
on the EPR-parameters in a systematic way. The g-tensor reacts sensitively to energy di�erences of
the local electronic structure, which cannot be always interpreted intuitively. In contrast to this, the
hyper�ne interaction is characterized by the interplay between the expected sp-hybridization of the
db-orbital as well as the spin delocalization, which can only be captured by our network models.

Since the generation of realistic amorphous structures is di�cult, we can only calculate the EPR-
parameters for a moderate number of defect con�gurations (∼ 50 models). Within the limitations of
this small statistics, we are still able to understand recent experimental �ndings and obtain insights
into the role of the EPR-tensors speci�c to the amorphous defect environment. Yet the experimentally
observed red-shift of the hyper�ne satellites in a-Si:H can only be reproduced in part.

From the categorization of the a-Si:H dangling bonds by carefully chosen criteria, we show that they
di�er substantially from their crystalline counterparts. In contrast to the vacancy-related c-Si db-defect,
it forms rather spontaneously in the network at suitable geometric distortions. For the modelling of the
SWE by the db-defect, this suggests that the local structural disorder is an important in�uence.

Finally, we look at the e�ect of strain on the hyper�ne interaction of our crystalline and amorphous
db-models. Whereas the c-Si db-models follow essentially the intuitive trends expected from an sp-
hybridization of the db-orbital, the a-Si:H db undergoes delocalization for compressive strain. This
illustrates again the di�erent origins of the db-defect in both phases of silicon. The investigation also
suggests strain as a possible mechanism behind the remaining discrepancy between theoretical and
experimental results, and our calculations point out the importance of this question, which has to be
clari�ed by future experiments.





Zusammenfassung

Wassersto�haltiges amorphes Silizium (a-Si:H) ist ein vielversprechendes Material für kostengünstige
Solarzellen. Jedoch führt die lichtinduzierte Erzeugung von metastabilen Defekten mit der Zeit zu
einer Degradierung der Stromumwandlungse�zienz. Nach mehr als dreiÿigjähriger Forschung ist die
gängige Au�assung, dass der 'dangling bond' (db) Defekt eine wichtige Rolle spielt, aber die genauen
Mechanismen dieses 'Staebler-Wronski'-E�ektes (SWE) sind noch immer unbekannt. Der db-Defekt
kennzeichnet ein einfach-unterkoordiniertes Siliziumatom, welches zu einem Zustand in der Bandlücke
führt. Wenn dieser Zustand einfach besetzt ist, ist er mit Elektronenspinresonanz detektierbar, wobei
diese experimentelle Methode auf der Messung des ungepaarten Spins in einem externen Magnetfeld
basiert. In amorphen Silizium wird das resultierende Absorptionsspektrum von der Wechselwirkung
des ungepaarten Spins mit dem externen Magnetfeld (charakterisiert durch den g-tensor) und die Hy-
perfeinkopplung mit dem Zentralatom des Defektes geprägt.

Die Komplexität des Materials macht es unmöglich, direkte Informationen über die lokale Defekt-
struktur aus dem Spektrum abzuleiten. Aus diesem Grunde beschäftigt sich diese Arbeit mit dem Ein-
�uss elektronischer und struktureller E�ekte auf die EPR-Parameter für den Silizium dangling bond.
Dazu werden hochmoderne Computermethoden angewandt, die es uns ermöglichen, die EPR-Parameter
für realistische Defektmodelle zu berechnen. Insbesondere können wir damit auch den Ein�uss der
weiteren Defektumgebung in einer systematischen Art und Weise untersuchen. Die komplementäre
statistische und systematische Modellierung ist essenziell, um die paramagnetischen Eigenschaften in
so einem komplexen Material wie a-Si:H zu verstehen, da die strukturelle Unordnung zu einem starken
Ein�uss des Netzwerkes und einer Vielzahl lokaler Bindungsgeometrien führt.

Zunächst erbringen wir den Nachweis über die Genauigkeit unseres Zuganges, in dem wir einfache
molekulare und kristalline (c-Si) db-Systeme betrachten. Wir vergleichen unsere Methode mit einem an-
derem theoretischen Ansatz, und erhalten exzellente Übereinstimmung mit dem Experiment für sorgsam
gewählte c-Si dangling bonds. Wir sind daher in der Lage, die gemessenen EPR-Parameter spezi�s-
chen atomistischen Defektmodellen zuzuordnen und E�ekte wie z.B eine Symmetrie-reduzierende Jahn-
Teller-Verzerrung zu charakterisieren.

Desweiteren verwenden wir die molekularen und c-Si db-Systeme, um systematisch den Ein�uss der
lokalen Defektgeometrie auf die EPR-Parameter zu untersuchen. Der g-Tensor reagiert sensitiv auf
Energiedi�erenzen in der lokalen elektronischen Struktur, die nicht immer intuitiv erklärbar sind. Im
Gegensatz dazu ist die Hyperfein-Wechselwirkung durch das Zusammenspiel der erwartungsgemäÿen
sp-Hybridisierung des db-Orbitals sowie der Spindelokalisierung gekennzeichnet. Letztere kann nur
durch unsere Netzwerkmodelle erfasst werden.

Da die Generierung von realistischen amorphen Strukturen schwierig ist, können wir die EPR-
Parameter nur für eine moderate Anzahl von Defektkon�gurationen berechnen (ca. 50 Modelle). Trotz
dieser statistischen Einschränkung sind wir in der Lage kürzlich gefundene experimentelle Ergebnisse
zu erklären und erhalten Einblicke in die Rolle der EPR-Tensoren in der amorphen Defektumgebung.
Die experimentell beobachtete Rotverschiebung der Hyperfein-Satelliten in a-Si:H können wir nur zum
Teil reproduzieren.

Durch die Klassi�zierung der a-Si:H dangling bonds durch sorgsam gewählte Kriterien zeigen wir, dass
sich diese substantiell von ihren kristallinen Gegenstücken unterscheiden. Im Gegensatz zu den Vakanz-
basierten c-Si db-Defekten, entstehen die a-Si:H spontan im Netzwerk an geeigneten geometrischen
Verzerrungen. Für die Modellierung des SWE bedeutet dies, dass die lokale strukturelle Unordnung
einen wichtigen Ein�uss darstellt.

Zuletzt betrachten wir den E�ekt von elastischer Verspannung auf die Hyperfein-Wechselwirkung in
unseren kristallinen und amorphen db-Modellen. Während die c-Si db-Modelle praktisch dem intuitiven



Trend gemäÿ der sp-Hybridisierung des db-Orbitals folgen, delokalisieren die a-Si:H unter Kompression.
Dies veranschaulicht wiederum die verschiedenen Ursprünge des db-Defekts in beiden Phasen von Siliz-
ium. Unsere Untersuchung regt auch an, dass Verspannungen die verbleibende Diskrepanz zwischen
theoretischen und experimentellen Ergebnissen zumindest teilweise erklären könnten und weist auf die
Bedeutung dieser Fragestellung hin, die durch zukünftige Experimente abgeklärt werden sollte.





Contents

1 Introduction: a-Si:H solar cells 10

2 Electron paramagnetic resonance 18

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 EPR-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 The electron Zeeman interaction . . . . . . . . . . . . . . . . . . . 23
2.2.3 The hyper�ne interaction . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Theoretical modelling of EPR-parameters 31

3.1 Density-functional theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.1 Fundamental concepts . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Practical aspects of DFT-calculations . . . . . . . . . . . . . . . . 34

3.2 The g-tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Hyper�ne parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Dangling bonds in molecular and crystalline silicon systems 50

4.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Quanti�cation of the accuracy . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Convergence tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Comparison to an all-electron method . . . . . . . . . . . . . . . . 56
4.2.3 Comparison to experiment . . . . . . . . . . . . . . . . . . . . . . 56

4.3 General characteristics of the db-defect . . . . . . . . . . . . . . . . . . . 62
4.3.1 Molecular dangling bonds . . . . . . . . . . . . . . . . . . . . . . 62
4.3.2 Crystalline dangling bonds . . . . . . . . . . . . . . . . . . . . . . 64
4.3.3 Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Bond-parameter trends of EPR-parameters . . . . . . . . . . . . . . . . . 67
4.4.1 Bond-parameter dependence of the tetrasilyl radical . . . . . . . . 67
4.4.2 Bond-angle dependence of c-Si models . . . . . . . . . . . . . . . 70
4.4.3 Strain dependence of c-Si models . . . . . . . . . . . . . . . . . . 74

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Dangling bonds in hydrogenated amorphous silicon 77

5.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Statistical analysis of EPR-parameters . . . . . . . . . . . . . . . . . . . 81

8



5.3 Structural aspects of dangling bonds in a-Si:H . . . . . . . . . . . . . . . 86
5.3.1 Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.2 Localized db-defects . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.3 Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 The discrepancy between theory and experiment . . . . . . . . . . . . . . 93
5.4.1 Methodological aspects . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.2 Charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4.3 Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9



1 Introduction: a-Si:H solar cells

The e�cient storage and conversion of energy has become a key problem for our civ-
ilization, since fossil energy sources lack sustainability. For illustration, 80% of global
primary energy is produced using fossil fuels (coal, oil, gas), and this percentage is
expected to decrease only marginally in the next two decades [1]. The rest is shared
between biomass and waste energy (10%), nuclear energy (6%), hydro energy (2%) and
non-hydro modern renewable technologies including wind, solar, geothermal, tide and
wave energy (2%). Within the last category, wind and solar power are the most promising
future energy sources. For example, the International Energy Agency aims to increase
the solar-energy contribution to 10% within the next 40 years [2].
At �rst glance, it is peculiar that solar energy contributes only a small part to the

overall production, since in a single hour the sun provides enough energy to meet the
annual global energy demand [2, 3]. The rather simple reason for this is that the retail
price of solar-generated electricity is high even when compared to other renewable energy
resources such as hydro, biomass or wind. Consequently, an important goal is to make
photovoltaics more competitive. This can essentially be accomplished by improving the
conversion e�ciency and lowering the production costs.
There are three ways to use the sun's energy [2, 4]. First, there is direct conversion

to electricity in photovoltaic cells, which is rather �exible and also suited for small-scale
applications. Second, 'concentrated power systems' focus the solar energy to heat a
receiver to high temperatures. The heat is then transfered �rst to mechanical energy
(e.g. by turbines) and later to electricity. This approach also has the advantage of
thermal storage, which makes it more adaptable to peak loads of electricity demand.
Third and �nally, one can directly use the thermal energy of the sun to heat or cool
buildings.
The presented work is motivated by questions related to solar cells. Therefore let us

brie�y discuss the working principle of this device as sketched in Figure 1.1(a) [5, 6, 7, 8,
9]. Let us �rst consider the e�ect of doping in silicon. Group-V elements (phosphorus,
arsenic, antimony) contribute one weakly-bond electron to the host lattice, which can
be promoted to the conduction band by interacting with phonons. The impurity is thus
an electron donor and the material is called 'n-doped'. Conversely, Group-III elements
(boron, aluminum, gallium, indium) remove free electrons from the crystal lattice, i.e.
contribute hole states. These impurities consequently act as electron acceptors and the
material is then p-doped. If both, p- and n-type silicon are brought in contact, a pn-
junction is created. In this device, the higher free-electron concentration in the n-type
material leads to a di�usion of electrons to the p-type layer. Similarly, free holes move
from the p- to the n-type material. However, the �xed donor and acceptor impurity
ions (now charge-unbalanced) create an internal electrostatic �eld, which prevents the

10



(a) (b)

Figure 1.1: (a): Sketch of a solar cell with an intrinsic layer. Light creates electron-hole
pairs, which drift towards opposite layers due to the internal electric �eld
between the n- and p-layer. Figure (b) illustrates the charge distribution in
a pin-junction in more detail.

complete di�usion of electrons and holes. Instead, a region with a net positive charge
(on the n-doped side) and one with a net negative charge (on the p-doped side) builds
up. Consequently, in thermal equilibrium no current will �ow. However, light can create
electron-hole pairs in the interface. The internal �eld then causes the electron to move
to the n-side (making it negative) and the hole to the p-side (making it positive). In
result, a bias between the ends of the device appears.
Hydrogenated amorphous silicon (a-Si:H) solar cells actually have a pin-device struc-

ture, where a-Si:H is usually used only for the intrinsic absorption layer and microcrys-
talline silicon for the contacts [10, 11, 12]. The n- and p-type layers are much smaller
(<100 nm) than the i-layer (typically a few hundred nanometers) [8]. The pin-layout
is necessary, since doped a-Si:H has a high defect density and therefore minority photo-
carriers cannot move over a large range. The electronic characteristics of a pin-junction
is depicted in Figure 1.2(a). Across the device, the bands are bent upwards in the di-
rection of the electric �eld. The absorption of a photon promotes an electron from the
valence- to the conduction band, leaving a hole behind. The electron then drifts to the
minimum of the conduction band (on the n-doped side) and the hole to the maximum
of the valence band (on the p-doped side).
A key characteristic of a solar cell is its conversion e�ciency, which is de�ned as the

ratio between the power output and the incident power [6, 13]. The power input is
de�ned as the product of the device area and the total energy of the incident photons
summed over all wavelengths. The power output depends on the product between the
short-circuit current and the open-circuit voltage as well as a �ll factor characterizing
various loss e�ects with respect to the maximum power. One can then show that the
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Solar-cell material ηprod (%) ηR&D (%) World production 2007 (MW)
Bulk solar cells

Single crystal Si 13-18 25.0 (4 cm2) 1.355 (37%)
Multicrystalline Si 13-15 20.4 (1 cm2) 1.837 (51%)
GaInP/GaAs/Ge-

-
41.1 (0.05 cm2)

-
Triple junction [454 suns]

Thin-�lm solar cells

a-Si 6-7 9.5 (1 cm2) 168 (5%) [part]
a-Si/µ-Si

9-10 15.0 (1 cm2)
168 (5%) [part]

Double junction
Cu(InGa)Se2 10-11 19.4 (1 cm2) 40 (1%)

CdTe 10-11 16.7 (1 cm2) 219 (6%)
Dye-sensitized - 10.4 (1 cm2) -

Organic semiconductor - 5.15 (1 cm2) -

Table 1.1: Conversion e�ciency η for various solar-cell materials at the production level
ηprod as well as at the R&D-level ηR&D . Additionally, we show the total world
production in 2007 to compare the market share of all approaches (from [18]).

optimal e�ciency ηmax is obtained for a material with a band gap of 1.3-1.5 eV and
that it is about 30% (Shockley-Queisser limit) [13, 14, 15, 16]. In practice, the materials
used have a band gap in the range of 1.0-1.7 eV [10]. Furthermore, ηmax is much lower
than the ideal thermodynamic (Carnot) e�ciency ηCarnot = 86% [16]. This illustrates
that in a single-junction solar cell most of the incident photons are not used for the
electron-hole generation due to their energetic (band gap) mismatch. This low e�ciency
can be improved by multijunction cells (tandem and triple junctions), which are serially
connected solar cells with di�erent band gaps [6, 16, 17]. The cells are arranged so that
the band gap decreases successively from the top solar cell to the bottom one, and a
larger part of the solar spectrum can be absorbed. Further improvement is achieved by
concentrating the light with optical devices such as lenses or mirrors.
Table 1.1 shows that today almost all solar-based electricity is produced by bulk

crystalline Si (c-Si) solar cells [2, 10, 17]. This can be explained by their relatively
high e�ciency, their proven, abundant and reliable technology, and their long lifetimes.
However, c-Si has a low optical absorption coe�cient, since it is an indirect band-gap
material, and consequently the commonly used wafer-based modules have to be rela-
tively thick (several µm) to absorb most of the incident light. Due to the thickness
of the absorber layer, light-induced electrons and holes have to move over a larger dis-
tance before reaching the contacts. Since defects can induce the recombination of these
electron-hole pairs, one needs highly puri�ed silicon with a low defect concentration.
However, this in turn also makes c-Si solar cells rather expensive.
The second established solar-cell technology is based on thin-�lm materials, which

have the following advantages [2, 8]. Most profoundly, they require less raw material,
since they are typically 100 times thinner than Si-wafers. They can also be deposited
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(a) (b)

Figure 1.2: Left side: Sketch of the energetics in a pin-junction and the corresponding
drift of light-induced electron-hole pairs. Right side: Sketch of the Density-
of-States (DoS) for an amorphous semiconductor. Characteristic features are
tail states as well as a continuous distribution of localized defect states in
the band gap.

on cheaper substrates (glass, metal, plastic) continuously over large areas at much lower
temperatures (200-500◦C compared to ∼ 1400◦C for c-Si). Furthermore, they may also
contain a higher impurity concentration, are more �exible and easier to integrate into
buildings, and they have a high automation and production e�ciency. However, they
su�er from lower conversion e�ciencies, a less-developed general knowledge and techno-
logical base, and missing long-term studies of performance [2, 8]. Common features of
thin-�lm solar cells are the usage of a transparent-conducting oxide (TCO) for the front
contact as well as a re�ective contact material on the back surface, and the fabrication
of the devices on foreign substrates in either a substrate or superstrate con�guration.
In the substrate con�guration, the solar cell is deposited starting from the back re�ec-
tor to the top TCO-layer [10]. In the superstrate con�guration, the cell is created the
other way round from a TCO-based glass substrate (as e.g. convenient for integration
into buildings). So far, the following materials have been used for thin-�lm solar cells
[10, 17]: silicon (hydrogenated amorphous silicon, microcrystalline (µc-Si), polycrys-
talline), cadmium telluride (CdTe), copper-indium (gallium-)diselenide (CuIn(Ga)Se2),
and dye-sensitized solar cells. With respect to conversion e�ciency, cadmium telluride
and copper-indium (gallium-)diselenide perform best (Table 1.1) but their drawbacks
are the toxicity of cadmium and the scarcity of indium and tellurium. Overall, there is
no superior thin-�lm material and it is therefore likely that all of the options mentioned
will have a share in the market.
The for thin-�lm solar cells relevant phases of silicon are amorphous, poly- or mi-

crocrystalline. Amorphous means the absence of any crystallinity and any long-range
periodic ordering of the atoms [19]. However, the atoms are still bound covalently, and
there is short-range order up to the third- or fourth-nearest neighbor. Furthermore, the
average parameters for coordination (see Figure 1.3), bond length and bond angle, are
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Figure 1.3: Random-network model of a-Si:H illustrating various local structural charac-
teristics. The colors indicate coordination (white: 1 (hydrogen), red: 3-fold
(dangling bond), blue: 4-fold, green: 5-fold (�oating bond)).

rather similar to the crystalline phase (Section 5.3.2). Polycrystalline has many sepa-
rate grains with inclined crystal planes that meet at grain boundaries (the grain size is
larger than 1 µm) [8, 20]. Microcrystalline silicon contains regions of crystalline silicon
immersed in an amorphous matrix with grain sizes on the micro- and nanometer scale
[10, 20]. In practice, the grain size depends strongly on the processing temperature Tp.
The microcrystalline phase is obtained for Tp < 550−600◦C, and larger (polycrystalline)
grains with increasing Tp (up to the melting point) [8, 20].
Hydrogenated amorphous silicon was �rst produced in 1969, and was soon also used

for solar cells, with the �rst device reported in 1976 [8, 12, 21]. The hydrogen atoms
play the important role of passivating defects, which are likely to occur due to the
random network structure of the material (Figure 1.3). Besides that, they also passivate
dopants and can cause a reconstruction of the network by breaking and removing weak
Si-Si bonds in particular during growth [12]. Typical device applications of a-Si:H are
solar cells, thin-�lm transistors in liquid-crystal displays, position and color sensors, and
scanners [8, 10].
Hydrogenated a-Si thin-�lms are typically produced by vapor-phase deposition (CVD)

such as plasma-enhanced CVD (PECVD) and hot-wire CVD (HWCVD) [8, 10, 11, 12].
The key idea is to decompose silane gas with other gases added for doping and alloying
above a solid surface (substrate), on which the gas mixture is deposited. In the case
of PECVD, the plasma acts as an energy source to dissociate the silane molecules (by
inelastic collisions with these high-energetic electrons) at comparatively low tempera-
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tures (150-350◦C). Important growth parameters are pressure, substrate temperature,
and electrode spacing, as well as the reduction of contaminants (e.g. oxygen, carbon,
nitrogen). Lower pressure results in a uniform deposition, whereas higher pressure is
required for microcrystalline growth (typical pressure range: 0.05-2 Torr) [8]. The sub-
strate temperature Td determines the hydrogen concentration and the optical band gap
(as described below). A small electrode spacing leads to a uniform deposition, whereas
a larger spacing makes it easier to maintain the plasma [8]. For HWCVD, the required
energy is provided by hot metal wires (e.g. tungsten, tantalum), which are heated to
temperatures larger than the melting point of silicon (>1500◦C). The advantages of
the latter approach are higher deposition rates, the absence of dust and ion damage, a
better deposition uniformity, a wider selection of substrates and a better utilization of
the process gases, but in turn, for example, it is more di�cult to control the substrate
temperature due to the exposure of the �lms to thermal radiation [10].
The global structural disorder leads to the following fundamental electronic character-

istics of a-Si:H (Figure 1.2(b)) [11, 12, 19]. The optical band gap is broadened by about
0.6-0.8 eV (c-Si: 1.12 eV, hydrogenated a-Si: 1.7-2.0 eV), which in particular depends
on the deposition temperature Td (i.e. on the hydrogen content) [11]. In particular,
the aforementioned lower limit corresponds to Td = 300◦C (7% at.-H) and the upper
limit to Td = 75◦C (33% at-H). Furthermore, a-Si:H contains a continuous distribution
of localized states in the gap (tail and defect states) as illustrated in Figure 1.2(b). The
'mobility edge' separates the localized and extended states, and it is important for the
transport properties of the material. The Fermi level EF lies in the mobility gap, and
conduction only occurs via thermal activation from EF above the mobility edge, hop-
ping in between localized states at non-zero temperatures and hopping conduction at
EF . Optical transitions can also occur via tail states, for example in the absence of de-
fect states in the gap, electrons and holes relax �rst to localized states in the gap before
they recombine radiatively. In contrast to the crystalline phase, the momentum needs
not be conserved in electronic transitions, which leads to a much larger absorption in
the amorphous phase. Speci�cally, whereas the absorption coe�cient α of c-Si is only on
the order of 100 cm−1 for photon energies larger than the band gap, a-Si:H has α > 105

cm−1 correspondingly [10]. This means that a-Si:H layers of 1 µm are su�cient for the
absorption of visible light [11].
Hydrogenated a-Si solar cells are particularly interesting because it is possible to

deposit the cells on large areas (more than 1 m2) and by a roll-to-roll manufacturing
process [8, 17]. This means that the stainless-steel substrate is unrolled before each
production step and rolled up again afterwards. It is appealing that in comparison to
other thin-�lm technologies [8], a-Si:H has the largest knowledge base regarding long-
term performance. Second, it is non-toxic and readily available, which makes solar-cell
production consequently also rather cheap.
The major drawbacks of a-Si:H solar cells are their low conversion e�ciency η (com-

merical solar modules have η = 5−6% compared to laboratory cells with η ∼ 12% [10]),
and -related to that- the light-induced degradation of the cells with time, the 'Staebler-
Wronski e�ect' (SWE). This e�ect was discovered in 1977 and initially characterized the
decrease of the photo- and the dark conductivity of a-Si:H solar cells exposed to light
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for a long time [22]. Due to the SWE, a single-junction solar cell loses about 30% of its
initial e�ciency after 1000h of illumination [8]. The SWE is metastable and annealing
at 100-250◦C restores the conversion e�ciency within a few minutes [12]. Similarly, one
observes seasonal �uctuations in real-life a-Si:H solar cells, with a partial recovery of η
in the summer months [17].
So far, the following strategies have been developed to reduce the SWE in single-

junction solar cells [23, 24, 25]. Directly related ways are operation at elevated tem-
peratures (60-90◦C) (i.e. stimulation of the annealing process) and minimization of the
thickness of the intrinsic layer (i.e. shortening of the di�usion path of the photoinduced
electron-hole pairs, thus reducing their recombination rate). Chemically, one can sup-
press the light-induced degradation partly by using protocrystalline a-Si:H, by reducing
the hydrogen concentration (and thus also the H-di�usion), or by using deuterium in-
stead of hydrogen. On the technological side, the most powerful alternative consists
in producing multijunction solar cells [8, 10]. This device structure not only has the
previously mentioned advantage of more e�cient light absorption, but the �lms can also
be made thinner. Consequently, the internal electric �eld is larger, which increases the
carrier collection rate. An optimal tandem design is a-Si:H/µc-Si:H (see also Table 1.1),
with the amorphous cell on top, since it has the larger band gap. Alternatively, for
the lower band-gap cell, alloys with germanium can be used, in particular in the combi-
nations a-Si:H/a-SiGe:H and a-Si:H(1.8 eV)/a-SiGe:H(1.6 eV)/a-SiGe:H(1.4 eV), where
the band gap of the lower two layers is adjusted by the silicon-to-germanium ratio [26].
Comparing the microcrystalline with the germanium-based approach, one �nds again
that both concepts have their advantages (higher e�ciency of Ge-based cells, negligible
light degradation in the case of µc-Si) and trade-o�s (e.g. usage of expensive, toxic
Germane source-gas, thicker µc-Si intrinsic layer).
The SWE is related to structural changes in the material, i.e. the formation of meta-

stable defects. However, a full understanding of the relevant processes has not been ob-
tained so far. One of the reasons is that the notion of a structural defect is conceptually
complicated in the amorphous phase. Initially, it is only characterized by the corre-
sponding deviation from the ideal nearest-neighbor coordination N = 4 (see Figure 1.3).
However, the complex local structure often makes a clear distinction between di�erent
kinds of defects (e.g. dangling bond, broken bond, �oating bond) di�cult. Commonly,
the SWE is believed to be related to the creation of a dangling bond (db), i.e. a three-
fold coordinated silicon atom with the remaining electron being unpaired. But there is
no consensus on the speci�c defect-creation mechanism and several models exist. We
now sketch only the most popular ones [23, 24]. The 'hydrogen bond-switching' model
suggests that some of the photoexcited electron-hole pairs recombine at weak Si-Si bond
sites. The phonon energy released subsequently breaks the bond and a back-bonded
hydrogen moves in to spatially separate the two dangling bonds. In one variant of this
principle, the hydrogen atom subsequently switches further bonds so that the distance
between both dangling bonds is increased [11]. The 'charge-transfer' model is based on
the assumption that natively charged dangling bonds are converted to neutral dangling
bonds by capturing excess carriers, which leads to large structural distortions in the
network. The 'H-collision' model assumes that the photoexcited carriers create mobile
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hydrogen, which mostly rebinds with native dangling bonds. However, in some cases
two of the hydrogen atoms collide, which then results in the formation of a metastable
complex with two Si-H bonds close by and two separated dangling bonds. In the '�oating
bond' model, alternatively, mobile �oating bonds (5-fold coordinated silicon atoms) move
around in the network and can convert to dangling bonds by bond breaking. However,
all these models explain only part of the large amount of accumulated phenomenological
knowledge about the SWE.
It is clear that information about the defect microstructure is crucial for a better

understanding of the Staebler-Wronski e�ect. Experimentally, this can in particular be
obtained by 'Electron paramagnetic resonance' (EPR), which probes for the local atomic
structure of defects with unpaired spins, such as the silicon dangling bond. Within the
EPR-Solar project, state-of-the-art experiments are carried out to measure the relevant
spectral parameters with an unprecedented resolution [27, 28]. However, the structural
disorder of the material leads to a broad spectral distribution, which cannot be assigned
to a speci�c defect structure. Further insights into the relevant features can only be
obtained by comparing experimental results with theoretical calculations. In this work
we present a corresponding ab initio study of the EPR-parameters of the dangling bond
in a-Si:H. The most important novelties of our approach are an accuracy which is superior
to existing methods for systems with periodic boundary conditions, the unambiguous
assignment of measured EPR-data to structural features of c-Si dangling bonds, the
systematic study of the in�uence of the local defect geometry on the EPR-parameters
(in particular regarding the e�ect of the network), and a statistical study of a su�ciently
large number of a-Si:H db-models with a variety of di�erent defect geometries.
The organization of this work is as follows. In the next chapter we will describe the

EPR-technique as well as introduce the characteristic parameters. In Chapter 3, we
establish the theoretical framework for the computation of these parameters. In doing
so, we acknowledge that most of these topics have been already outlined extensively in
the literature. For that reason, we will put our focus on only those aspects, which are
of imminent importance for the understanding of this study, while referencing to some
of the many well-written texts for a broader description. As mentioned, the db-defect
is not a well-de�ned concept in an amorphous surrounding. It is therefore indispensable
to start with a structurally simpler situation as, for example, provided by molecules or
in a crystalline environment (Chapter 4). It gives us the possibility to establish the nec-
essary computational parameters, and we can also conveniently quantify the achievable
accuracy with respect to another theoretical approach and to experiment. Furthermore,
in these crystalline environments one can systematically vary the local defect geometry,
and consequently look at the e�ect of such changes on the EPR-parameters. In the last
Chapter we turn to the computation of the EPR-parameters for the a-Si:H dangling
bond. In particular, we show in which way the notion of an amorphous dangling bond
deviates from its crystalline counterpart. This result is also of great importance for the
understanding of the SWE, since it helps in identifying the relevant in�uences, which
are unique to the amorphous phase. We conclude with an in-depth discussion of the re-
maining discrepancies between theory and experiment, and how they can be addressed
by future studies.
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2 Electron paramagnetic resonance

2.1 Introduction

Electron paramagnetic resonance is a key technique for the study of systems with one or
more unpaired spins and a corresponding magnetic dipole moment µ [29, 30, 31, 32]. In
such a system, electromagnetic radiation can induce dipole transitions, which results in
an absorption (EPR-)spectrum. A sketch of an experimental setup is shown in Figure 2.1.
The most important parts of the apparatus are the radiation source, the resonator inside
a magnetic �eld and the detector [31]. Typical applications of EPR are free radicals in
the solid, liquid, or gaseous phase, transition-metal ions including actinide ions, systems
with more than one unpaired electron (e.g. biradicals, which have two spatially well-
separated unpaired electrons) or su�ciently localized point defects in solids. For the
latter, EPR can be used to obtain information about the defect structure as well as
some of their dynamic properties as a function of temperature [30]. Most importantly,
EPR can give hints on the defect symmetry (e.g. whether it is isotropic or not) and its
chemical identity.
Let us �rst consider the simple case of a free electron in a magnetic �eld aligned in

z-direction (B = B0ez). Then the dipole energy for the two levels reads

E± = −µ ·B = ±(1/2)geµBB0 (2.1)

where ge is the electronic g-factor1 and µB the Bohr magneton2. The absorption of a
photon with energy E = ~ω (~ ... Planck constant3, ω ... angular frequency) promotes
the electron from the lower to the higher energy state. From both equations, one obtains
the following resonance condition (c ... speed of light4)

~ω = 2π~c/λ = geµBB0 (2.2)

This shows that the angular frequency of the photon is directly proportional to the
magnetic �eld (or equivalently, the wave length λ is inversely proportional to B0). Con-
sequently, there are two ways of inducing a transition from the lower to the upper energy
level [31]. First, one can �x the frequency (usually in the microwave range) and vary
the magnetic-�eld strength until resonance is obtained. This is cost-saving and easy to
implement, since the �eld strength can be controlled by the current in an electromagnet.

1ge = 2.0023193043718 (adapted from [31])
2µB = e~/2me = 9.27400949× 10−24 JT−1 (adapted from [31])
3~ = 1.05457168× 10−34 Js (adapted from [31])
4c = 2.99792458× 108 ms−1 (adapted from [31])
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Figure 2.1: Sketch of a simple EPR-spectrometer. Radiation from a source S (usually a
klystron, i.e. vacuum tube, or a Gunn oscillator) passes through a resonator
R (usually a resonant cavity) containing the sample inside a magnetic �eld.
The cavity is a rectangular metal box, and its length is on the order of one
wavelength of the absorbed microwave radiation [32]. In this case, resonance
occurs, which minimizes the power loss. Dipole transitions between energy
levels lead to an absorption spectrum in the detector D. One usually plots
the �rst-derivative spectrum, since it has a better resolution.

On the other hand, the variation of the frequency for a constant magnetic �eld is also
feasible by using pulsed microwave sources and Fourier-transformation techniques. One
of the advantages of this approach is that a single-pulse spectrum can be recorded on a
short time scale (∼ 1 ms), which makes it suitable for the study of the kinetics of a spin
system.
In practice, if we extend the two-level model to N spins, the emission of photons will

occur as well [30, 32]. The characteristic quantity is then the population di�erence ∆N ,
which follows a Boltzmann distribution in thermal equilibrium. In the high-temperature
approximation E � kT , one obtains the relation ∆N = NgµBB0/2kT where k de-
notes the Boltzmann factor5, and T the temperature. Therefore, the sensitivity of the
spectrometer increases with the total number of spins, for larger magnetic �elds and at
lower temperatures. Due to the proportionality of the magnetic �eld and the frequency
(2.2), we would now suspect that the sensitivity improves with larger frequencies as
well. But in this case, the corresponding waveguides become smaller, which means that
the samples have to be smaller too. Consequently, they also contain fewer detectable
spins N , and this parameter is usually the more important one. Besides that, several
aspects restrict the used frequency range to the microwave region [31]. For example, in
the high-frequency regime, it is di�cult to produce su�ciently homogeneous magnetic
�elds and it is expensive to shrink the microwave components. On the other hand, in a
real material system, not all of the EPR-detectable mechanisms are �eld-dependent (i.e.
frequency-dependent). Consequently, it is bene�cial to measure some parameters at low
�elds whereas others at high �elds as e.g. done in the EPR-Solar project [27, 28]. An
overall good compromise is the 'X'-band, which corresponds to an operating frequency

5k = 1.3806505× 10−23 JK−1 (adapted from [31])
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Band Label Frequency f = ω/2π (GHz) Wavelength λ (cm) Field B0 (mT)
L 1.5 20 54
S 3.0 10 110
C 6.0 5 220
X 9.5 3 340
K 23 1 820
Q 36 0.8 1300
V 50 0.6 1800
W 95 0.3 3400

Table 2.1: Typical microwave frequencies used in EPR-experiments (adapted from [31])

of about 10 GHz (further frequency bands are listed in Table 2.1). As a rule-of-thumb,
one can then detect about 1012 spins at room temperature [32].
Interesting information from the EPR-spectrum results from the coupling of the un-

paired electron spin to the magnetic environment. First, the electromagnetic �elds of
other electrons and nuclei give rise to local magnetic �elds, which add to the applied
magnetic �eld, thus shifting the g-value from its free-electron value [31]. These �elds can
be either induced by B (i.e. magnitude- and orientation-dependent) or permanent (only
orientation-dependent). Most notably, they are anisotropic. In this general case, the g-
factor becomes a 3× 3 matrix, which is most conveniently described by its eigensystem
consisting of 3 eigenvalues with corresponding principle axis. For an isotropic system all
eigenvalues coincide. Uniaxial symmetry means that there is a linear rotational symme-
try (at least three-fold) about a unique axis. In this case, two of the eigenvalues are the
same. The most general situation, i.e. that all principal values are di�erent, is referred
to as rhombic. Overall, the anisotropy of the g-tensor re�ects the local symmetry of a
point defect. Furthermore, if the g-factor is su�ciently distinctive, one can identify the
paramagnetic species by the line position in the spectrum.
The spin of the unpaired electron (or hole) also interacts with neighboring nuclear

dipole moments I, resulting in the so-called hyper�ne splitting. Due to this coupling,
2nI + 1 (n ... number of equivalent nuclei) equally spaced lines appear in the spectrum,
which consequently gives information on the speci�c isotope [30]. The intensities are
characterized by a Pascal triangle6 for I = 1/2 (in general by a binomial series). Thus
the largest intensity is observed either as a single, central peak or as two equal, symmetric
peaks respectively. The hyper�ne interaction is commonly also orientation-dependent,
i.e. it is characterized by a 3× 3-matrix and it can be decomposed in an isotropic part
(independent of the �eld-orientation) and an anisotropic contribution. The interaction
with the lattice surrounding (superhyper�ne interaction) is usually smaller but can be
useful to determine the site of the impurity as well as several further structural details.
However, in solids, these interactions are rarely resolved due to the inhomogeneous
line width, which arises from the superposition of all homogeneous EPR-lines of the
surrounding nuclei.

6The intensity ratio is therefore 1, 1:1,1:2:1,1:3:3:1,1:4:6:4:1, etc. for increasing N .
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A further important characteristics is that the line shape depends upon the broadening
mechanism. A Lorentzian line shape is caused by a homogeneous broadening mecha-
nism, which means that all dipoles are subjected to the same static and time-averaged
magnetic �elds but di�erent instantaneous magnetic �elds [29, 31, 32]. This is the case
for systems with no hyper�ne broadening, low concentrations of paramagnetic centers
(e.g. amorphous silicon with a natural abundance of 17Si of 4.68% [28]) and dynamic
averaging (e.g. by spin exchange in liquid solutions). An inhomogeneous broadening is
caused by small di�erences in the local magnetic �eld, and it can be described by a Gaus-
sian. This can be due to the already mentioned unresolved superhyper�ne interaction,
an inhomogeneous external magnetic �eld, anisotropic interactions in randomly oriented
systems in the solid state and dipolar couplings with other paramagnetic centers.
The spectral lines of a time-averaged response (e.g. paramagnetic species in solutions)

are narrower than those of a space-averaged one (e.g. powder-spectra) [31]. In the latter
case, the EPR-signal is an envelope of all orientation-dependent resonance positions
of all centers. The homogeneously broadened line width can be heuristically reasoned
by the energy-time uncertainty relation ∆E · τ ≥ ~ where ∆E is the uncertainty of
the energy level and τ the lifetime of the state [29, 30, 31, 33]. Thus a long lifetime
corresponds to a small ∆E with a narrow line width, and a short lifetime to a large
one. Physically, τ is the spin-lattice relaxation time T1. This is the characteristic time
for the coupling of the spin system to the surrounding by electron-phonon interactions.
These couplings stabilize the population di�erence, which would otherwise gradually
vanish due to saturation. Consequently, a long T1 also means that the system is only
weakly coupled to the environment. Several di�erent phonon mechanisms contribute to
T1 (e.g. direct absorption/emission of a phonon, phonon scattering, etc.) in dependence
of the temperature and the magnetic-�eld strength. Overall, T1 becomes larger for lower
temperatures. Another important adiabatic coupling mechanism is the dephasing of the
electron spins, which results in a further broadening of the EPR-lines. It is characterized
by a separate relaxation time T2, which is in solids usually much smaller as T1.
Analogously to the dipole transitions of unpaired electron spins, it is possible to in-

duce resonant transitions between energy levels of nuclear dipoles [30, 31, 33, 34]. The
occurrence of such a transition requires a nonzero nuclear-spin quantum number (I 6= 0),
which excludes all isotopic nucleus with an even number of protons and an even number
of neutrons (e.g. 12C, 16O). However, as for EPR, for these elements, suitable isotopes
(e.g. 13C, 17O) can be detected. One can also derive a similar resonance condition
as for the unpaired electron (in the style of Equation (2.2)), but due to the smaller
level splitting, the (usually pulsed) electromagnetic �elds are now typically in the ra-
dio frequency-range (10 MHz to 1 GHz). One advantage of this 'nuclear paramagnetic
resonance' (NMR) technique is that the number of superhyper�ne lines is signi�cantly
reduced. For comparison, for an electron spin-1/2 defect coupled to N nuclei, one ob-
serves 2N superhyper�ne lines in the EPR-spectrum but only 2 lines in the corresponding
NMR-spectrum (neglecting further small splittings due to the nuclear quadrupole inter-
action). But the downside of NMR is that it is not sensitive enough and therefore one
needs a signi�cantly larger number of nuclei (on the order of 1019). One way to over-
come all these problems is to use a technique called 'electron nuclear double resonance'
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(ENDOR) [30, 31, 32]. It works by partially saturating an EPR-transition for a �xed
�eld while simultaneously sweeping the NMR-frequency through nuclear-spin transitions
until resonance with an appropriate NMR-transition occurs. Whenever this happens,
one observes an increases in the intensity of the saturated EPR-transition, thus basically
mapping the NMR-transition to a change in the EPR-spectrum. With this method, one
obtains a gain in sensitivity on the order of 103-104 compared to conventional NMR.
Overall, EPR and ENDOR yield information on the symmetry of the defect (g-tensor)

and on the shell containing the nuclei as well as the nuclear spin and the number of
interacting nuclei (hyper�ne interaction) [30]. Further structural insights are obtained
from the superhyper�ne interaction, when it can be resolved. For systems with I > 1/2,
ENDOR-spectra yield information on the chemical identity of the neighboring nuclei
(magnitude of the nuclear g-value for each neighboring nuclei) as well as the charge
state of the defect (by knowledge of the electric �elds around the defect as derived from
the quadrupole interaction of neighboring nuclei with local electric-�eld gradients).

2.2 EPR-parameters

2.2.1 Overview

We now turn to the formal description of the relevant processes which a�ect the EPR
spectrum [30]. First, for conventional EPR, it is su�cient to consider only the electronic
ground state, since the energy di�erence between the ground and excited states of the
defect system (on the order of eV) is signi�cantly higher than the one between the
dipole transitions (in the range of µeV-meV). Furthermore, one introduces an e�ective
spin (Seff = S) to simplify the complex coupling between the actual spin, the orbital
momenta and the magnetic �eld. It uses the same algebraic concepts as the conventional
spin (i.e. Pauli matrices), even though it di�ers from the actual spin in particular if there
are signi�cant orbital contributions to the total angular momentum. In the absence of a
zero-�eld splitting and S > 1/2, the defect ground state has a (2S + 1)-fold degeneracy
[30, 35], and the Hamiltonian characterizing the coupling to a single nucleus reads (gn
... nuclear g-factor, µn ... nuclear magneton7)

H(r) ≡ H = HZ +HFS +HHF +HNZ +HQ (2.3)

HZ = µBB
T · g · S ... electron Zeeman interaction (2.4)

HFS = ST ·D · S ... �ne-structure interaction (2.5)

HHF = ST ·A · I ... hyper�ne interaction (2.6)

HNZ = −µnBT · gn · I ... nuclear Zeeman interaction (2.7)

HQ = IT · P · I ... nuclear quadrupole interaction (2.8)

7µn = e~/2mp = (me/mp)µB ∼ µB/1836 (adapted from [30])
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where g,D (�ne-structure tensor), A and P (nuclear quadrupole coupling tensor) are
symmetrical, three-dimensional matrices, which can be diagonalized and are character-
ized by their principal values and eigenvectors. Commonly, one sorts the eigenvalues by
gX ≥ gY ≥ gZ , DZ > DX ≥ DY , and AZ > AY ≥ AX respectively. The matrix character
of P is denoted by an asymmetry parameter, which quanti�es the deviation from uniax-
ial symmetry [31]. In experiments, it is easier to obtain the relative signs for the matrix
elements (e.g. gij) than the overall one (e.g. g) [31]. From the above equations, we see
that HZ depends on the magnetic �eld but not HHF . This characteristics is exploited
within the EPR-Solar project to resolve both EPR-tensors at a higher accuracy [27, 28].
In the presence of g-strain (broadening of the g-values in a frozen solution or powder
spectrum [32]), it is better to obtain the hyper�ne tensor at low magnetic �elds and
corresponding frequencies (S- and X-band), whereas the g-tensor is measured at high
frequencies (Q- and W-band).
The �ne-structure and nuclear quadrupole interaction occurs in spin systems with

S > 1/2. The �ne-structure coupling originates from the in�uence of the electrical
crystal �eld felt by the spins through the spin-orbit interaction as well as the magnetic
dipole-dipole interaction between the unpaired electrons [30]. Since this interaction
does not depend on the magnetic �eld, it is also called 'zero-�eld splitting'. However,
EPR-relevant splittings have to be on the order of the microwave energy (1 cm−1), and
depend on the defect symmetry, the spin and on the relative energy di�erence with
respect to the Zeeman interaction. The D-tensor is traceless, since it only describes
a non-detectable shift of the ground-state multiplet energy. Even though the e�ect of
this coupling can be non-trivial, it still yields useful information on the spin multiplicity
and thus often also on the charge state of the defect as well as the symmetry of the
defect wavefunction. The nuclear quadrupole interaction is the analogue to the �ne-
structure splitting for the nuclear spin I [30, 31]. It denotes the coupling between the
nuclear quadrupole moment (occurring for a non-spherical charge distribution in the
nucleus) with the electric-�eld gradient of the local electron distribution (e.g. charged
defect, low-symmetry lattice). In general, there is a competition to align the nuclear
spin according to the local electric-�eld gradient, the local magnetic �eld caused by the
unpaired electron(s) and the externally applied �eld. The nuclear quadrupole tensor can
also be measured by EPR, and it yields very detailed information about the electron
distribution close to the nucleus.

2.2.2 The electron Zeeman interaction

Let us start with the relation of the g-tensor to the defect symmetry [31]. The Zeeman
interaction is independent of the orientation of the magnetic �eld in an isotropic medium.
In this case, the g-tensor is actually a scalar, and the Hamiltonian (2.4) reads H =
gµB(BxSx + BySy + BzSz). For uniaxial (i.e. tetragonal) symmetry, there are two
components of the g-tensor, a parallel- (g‖) and a normal (g⊥) component with respect to
the symmetry axis (gxx = gyy = g⊥, gzz = g‖). For the general case of rhombic symmetry,
let us �rst consider the dipole energy (2.2) again, which follows from the expectation
value of Equation (2.4). The Hamiltonian can be interpreted as an interaction between
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the spin and an e�ective magnetic �eld de�ned by BT
eff = BT · g/ge. The magnitude of

this �eld is given by (n = B/B0)

Beff = [(gT ·B)T · (gT ·B)]1/2/ge = [BT · g · gT ·B]1/2/ge

= {[nT · (g · gT ) · n]1/2/ge︸ ︷︷ ︸
g

}B = gB0

Consequently, for a spin-1/2 system, the energy values read E± = ±(1/2)gµBB0 where
the g-factor is de�ned by

g ≡ g(n) = [nT · (g · gT ) · n]1/2/ge (2.9)

Thus the g-factor only depends on the direction of the magnetic �eld, and it is positive
for systems, which do not deviate signi�cantly from ge [31]. The dipole-transition energy
∆E = E+−E− follows from the experimental determination of the g-factor and depends
consequently on the orientation of B. Furthermore, it is evident that the product
g · gT ≡ gg is the actually relevant quantity . In fact, due to the asymmetry of the
matrix elements (as well as their relative signs), it is in general not possible to obtain
g from gg, since its principle system is non-orthogonal and does not coincide with
gg anymore. Strictly speaking, in such low-symmetry systems (monoclinic, triclinic
symmetry) g (as well as A) is a matrix but not a tensor [36, 37]. In contrast, gg and
A ·AT ≡ AA are always tensors of rank 2.
For the formal discussion of the g-shift, let us consider a free atom with zero nuclear

spin. The total magnetic-moment operator then reads µ(r) = −µB(L+ geS), where L
is the total electronic orbital angular-momentum operator for the ground-state con�gu-
ration of the atom. Furthermore, we have to take the spin-orbit interaction into account,
which characterizes the interaction between the magnetic �eld due to the electric �eld of
the proton and the dipole moment of the electron [38, 39]. The basic idea can already be
understood in a simple classical picture of hydrogen. In this system, the electron orbits
the proton, and the proton is seen as a current in the electron's rest frame, which thus
gives rise to a magnetic �eld in accordance with the Biot-Savart law8. All together, we
arrive at the following Hamiltonian [31]

H = HZ +HSO = µBB
T · (L+ geS) + λLT · S

In this equation, λ stands for the spin-orbit constant, which depends on the chemical
element. From second-order perturbation theory, one can now derive for an orbitally
non-degenerate ground state, HFS (2.5) as well asHZ (2.4) with the following expression
for the g-tensor

8To see that the spin-orbit coupling is essentially also a dipole-energy term, let us sketch how it is
derived for hydrogen [39]. The magnetic �eld in the electron's rest frame reads B = const · (v ×
(−r)) = const · l. For the dipole-energy term then follows (µs = s) E = −µs · B = const · (s · l).
Notably, the relativistic transformation back into the rest frame of the nucleus yields the well-known
factor 1/2 due to the Thomas precession of the electron.
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g = ge1− 2λ
∑
n6=G

〈G,mS|L |n,mS〉 〈n,mS|L |G,mS〉
E

(0)
n − E(0)

G

(2.10)

where G, n denotes the spatial wavefunctions of the ground and excited states respec-
tively, and mS stands for the spin state. This expression illustrates that the g-shift
originates from the orbital angular momentum from excited states [30, 31]. As can be
seen, the shift depends on the spin-orbit constant (the larger it is, the larger the de-
viation from ge) and on the di�erence of the energy splitting between the ground and
excited states (the smaller they are, the larger the deviation). Overall, we can distinguish
between [30]

• ∆g ≈ 10−5 − 10−2: typical for defects with a weak spin-orbit coupling (λ ≈
1− 100 cm−1) in a strong crystal �eld. This applies for example to light impurity
atoms in ionic crystals and defects with an s-ground state, which in principle do
not have a spin-orbit coupling at all.

• ∆g ≈ 10−2−a few 10−1: typical for transition-metal ions with a 3dn-con�guration
(λ ≈ 102 − 103 cm−1) in a strong crystal �eld (e.g. ionic crystals)

• ∆g ≈ 1: the concept of a g-shift is no longer applicable. This is for example the
case for rare-earth ions with a 4fn-orbital con�guration

The following two aspects a�ect the sign of the g-shift [30, 32]. First, the spin-orbit
constant is typically positive for systems with a less than half-�lled valence shell (negative
g-shift), and negative otherwise (positive g-shift). Furthermore, the coupling to �lled
shells gives a positive contribution to ∆g (since E(0)

n < E
(0)
G ), whereas the coupling to

empty shells gives a negative one.

2.2.3 The hyper�ne interaction

The hyper�ne interaction characterizes the interaction between the spin of the unpaired
electron with the nuclear magnetic moment [29]. This gives rise to dipole transitions,
which can occur between levels ful�lling the optical selection rules ∆mS = ±1, ∆mI = 0
for the electron- and nuclear-spin quantum number respectively. A simple example for
the e�ect of the hyper�ne coupling in an EPR-spectrum is given in Figure (2.2). In the
case of NMR-transitions, the selection rules are actually just the opposite, i.e. ∆mS = 0,
∆mI = ±1.
In analogy to gg, one can derive a symmetric matrix for the hyper�ne tensor in

Equation (2.6) [30, 31]. Experimentally, one can then obtain the magnitude of the
elements from the square root of the principal values of the AA-tensor. The relative
signs of the principal values can be measured for large magnetic �elds from the nuclear
Zeeman interaction. Besides that, it is also common use to decompose the A-tensor
into its isotropic and anisotropic parts, hence A = a1 + T where T denotes a traceless,
symmetric matrix. Formally, the A-tensor can also be described by the following set of
hyper�ne parameters
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Figure 2.2: Illustration of the two most important coupling mechanisms of an electron
spin (S = 1/2) to a nucleus (I = 1/2). (a): Level diagram for su�ciently
high constant magnetic �elds. Whereas the coupling of the electron spin
to the magnetic �eld gives rise to a single transition (dashed line), there are
two possible transitions (blue lines) due to the coupling between electron and
nuclear spin. Both transitions ful�ll the optical selection rules ∆mS = ±1,
∆mI = 0. The illustrated ordering assumes that the triplet state lies above
the singlet state. Notably, it cannot be distinguished from the other case
in the EPR-spectrum. The isotropic hyper�ne parameter a characterizes
in �rst order the spacing between the nuclear spin states. (b): Level di-
agram at constant microwave frequency as a function of applied magnetic
�eld. Absorption occurs, when B matches the resonance frequency. The
aM -parameter (in magnetic-�eld values) is proportional to the spacing be-
tween the resonant �eld values of both transitions. (concept adapted from
[30, 31])
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a = tr(A)/3 (2.11)

= (AX + AY + AZ)/3 ... Fermi contact interaction (2.12)

b = [AZ − (AX + AY )/2]/3 ... Uniaxiality parameter (2.13)

c = (|AY | − |AX |)/2 ... Asymmetry (rhombicity) parameter (2.14)

First, note that a is essentially the trace of the A-matrix, and it can be therefore
directly obtained from the A-tensor without diagonalization. Furthermore, the param-
eters re�ect the symmetry of the A-tensor [30, 31]. In the case of cubic symmetry
(AX = AY = AZ , b and c are zero, thus these parameters truly quantify the deviation
from this symmetry. On the other hand, when the two smaller eigenvalues AX , AY
coincide (uniaxial symmetry), c vanishes, which illustrates that this parameter indeed
characterizes the deviation from this kind of symmetry. For uniaxial symmetry, one can
also separate the eigenvalues into a normal and a parallel �eld-component. They are
related to the hyper�ne parameters by A‖ = a+2b, A⊥ = a−b. Since uniaxial symmetry
is also the most important case, we mention the corresponding angular dependence of
the AA-tensor, which reads A2(θ) = A2

‖ cos2(θ) + A2
⊥ sin2(θ) with θ being the angle be-

tween the symmetry axis and the magnetic �eld. Note that a similar relation also holds
for a uniaxial g-tensor. Finally, the hyper�ne parameters have the SI-units of energy
(Joule), but since the energies are small, they are usually measured in frequency (MHz)
or wavenumber units (10−4cm−1) [30, 32]. As indicated in Figure (2.2), the isotropic
coupling constant is related to the spacing between the resonance �elds of both transi-
tions. For that reason, one also uses magnetic-�eld units, hence aM = a/geµB with aM
measured in Gauss or millitesla9.
The sign of a determines the order of the zero-�eld levels, and it is related to the

alignment of the nuclear and electron magnetic moment [31]. For example, for hydrogen,
it is positive, when the triplet state lies above the singlet state and negative in the other
case. Both situations yield the same EPR-spectrum, even though one could in principle
distinguish them by NMR (i.e. at su�ciently low magnetic �elds and temperatures).
It is much easier to obtain the relative sign between the hyper�ne parameters a and b,
which consequently should also be checked for in theoretical calculations.
Formally, the isotropic hyper�ne interaction is de�ned by the Hamiltonian [31]

HHF =
2µ0

3
gngµnµB |ψ(R = 0)|2 ST · I

where ψ(r) stands for the one-particle wavefunction at the atomic site R. This means
that it is proportional to the probability of presence at the position of the nucleus. Since
only s-wavefunctions are nodeless at R, this implies that the a-parameter arises from
only such contributions and thus e�ectively probes for the s-like character of a system. As
discussed below, experimentally one frequently estimates the s-character of the unpaired

9Useful conversion factors: a(MHz) = 2.8025(g/ge)a(G), a(10−4cm−1) = 0.93480(g/ge)a(G), 1 mT =
10 G (adapted from [32])
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electron by considering the ratio of the experimental and theoretical a-value, where the
latter is computed for atomic wavefunctions [29]. In general, |ψ(R = 0)|2 has to be
replaced by the spin density, which is denoted by the di�erence between spin-up and spin-
down electrons, i.e. m(r) = n↑(r)− n↓(r). From Equation (2.6) and the decomposition
of the A-tensor, we see that the isotropic hyper�ne constant can also be written in the
non-relativistic limit as

a =
2µ0

3
gngµnµBm(R) (2.15)

In multi-electron systems, the outer electrons cause a spin-alignment of the inner elec-
trons (parallel/antiparallel), which is referred to as 'core polarization'. In this situation,
the net electron-spin polarization determines the sign of a. The e�ect of core polarization
is particularly important for transition-metal defects [30]. Finally, as we will discuss in
the next chapter, a scalar-relativistic approach causes a modi�cation of Equation (2.15),
since the relativistic s-wavefunctions diverges at R = 0.
From Equation (2.15) we also see that the a-parameter depends on the nuclear gn-

factor. This means that two magnetic isotopes of the same chemical element have two
distinctive isotropic hyper�ne couplings (with the same ratio as the corresponding gn-
factors). Additionally, their line intensities are proportional to the isotope abundances.
Together, one can use these �ndings to identify the impurity (e.g. Te in silicon [30]).
The anisotropic dipole interaction is described by the following Hamiltonian [30, 31]

Hdip(r) =
µ0

4π
gngµnµB

[
3(IT · r)(ST · r)

r5
− S

T · I
r3

]
where r is the distance vector between the electron and nucleus. From the corresponding
expectation value, one can derive an explicit expression for the anisotropic tensor

T =
µ0

4π
gngµnµB

∫
m(r)

3r ⊗ r − r21
r5

d3r (2.16)

An important situation is again the case of uniaxial symmetry [31, 32]. When the
electron is in a pure p-orbital centered on the interacting nucleus and the magnetic �eld
is aligned along z, one can write the dipolar coupling as

Hdip =
µ0

4π
gngµnµB

〈
3 cos2 θ − 1

r3

〉
SzIz

where θ denotes the angle between z and the axis of the p-orbital. Furthermore, the
corresponding expression for the uniaxiality parameter b reads [40]

b =
µ0

4π
gngµnµB

∫
m(r)

3 cos2 θ − 1

2r3
d3r (2.17)

The factor (3 cos2 θ − 1)/2 is a d-like (l = 2) spherical harmonic. Therefore the
b-parameter projects out these contributions from the spin density, thus it e�ectively
probes in sp-bonded systems such as silicon for the p-like character of the defect orbital.
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A second important application of relation (2.17) is that one can use it to estimate
the distance R between the db-atom (more precisely: the center-of gravity of the spin
density) and a second atom with a su�ciently small isotropic coupling [30]. When
additionally, the hyper�ne tensor of the second atom points towards the defect, it is
reasonable to assume that there is no magnetization density at this atom. In this case,
one can replace the defect by a point dipole (in the defect center), and one obtains the
following classical relation [41]

b = gngµnµB/R
3 ⇒ R = 3

√
b

gngµnµB
(2.18)

It is also common practice to approximate the defect wavefunction by a LCAO-model
('linear combination of atomic orbitals'), which for silicon reads [42, 43, 44, 45]

|ψ〉 =
∑

i
αi (σi |s〉+ πi |p〉) (2.19)

where |s〉 and |p〉 stand for the atomic s- and p- valence states, i indexes all atoms
belonging to the defect complex, and the expansion coe�cients αi, σi, πi ful�ll the
normalization conditions

∑
i α

2
i = 1, σ2

i +π2
i = 1. For uniaxial symmetry and su�ciently

localized defects (so that at the site i only contributions from orbitals centered on atom
i itself have to be taken into account), the hyper�ne parameters are given by

ai =
2µ0

3
gngµnµB · α2

iσ
2
i |ψs(0)|2 bi =

µ0

4π
gngµnµB · α2

iπ
2
i

2

5
〈ψp| r−3 |ψp〉

The quantities |ψs(0)|2, 〈ψp| r−3 |ψp〉 are computed from atomic wavefunctions. Over-
all, when a and b are known from experiment, one can then estimate the s-character
fraction σ2

i , the p-character fraction π
2
i as well as the degree of localization α

2
i . For exam-

ple, for the dangling-bond defect in hydrogenated amorphous silicon, the following values
have been deduced from experiment [45]: α2

0 = 47− 67%, σ2
0 = 6− 9%, π2

0 = 91− 94%.
With respect to an ideal sp3-hybrid10, we see that the amorphous dangling bond is more
delocalized, has a smaller s- and a larger p-character [12]. With such estimates for the
db-character, it is possible to make further conclusions on the bond angle of the defect
atom [46]. However, this approach neglects many e�ects such as the spin polarization
or the spin delocalization into the network. The latter can be very important as we will
show later on for dangling-bond defects in crystalline and amorphous silicon.
In a complex material such as amorphous silicon, the spectral broadening is large.

In this case, the already mentioned multi-frequency approach can improve the accuracy
of the EPR-parameters [27, 28]. However, for the experimental determination of these
quantities, it is necessary to carry out numerical simulations of the EPR-spectrum based
on the spin Hamiltonian (2.3). In particular, for the hyper�ne interaction this becomes
di�cult, since it is not possible to include all nuclei, and therefore further approximations
have to be made. For example, one has to specify the line shape of the unresolved
hyper�ne interaction (by an empirical broadening function), or one has to assume that

10α2 = 100%, σ2 = 25%, π2
0 = 75%
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the g- and A-tensor are collinear to each other. Even though these simpli�cations are
reasonable, they introduce an uncertainty in the analysis. Furthermore, due to the
structural disorder in amorphous silicon, it is unclear, how the experimental values are
related to the defect microstructure. Both aspects require insights from theoretical
studies, and this also characterizes the fundamental motivation for our work.

2.3 Summary

In this chapter, we have discussed the EPR-technique, which can be exploited to study
defects with one or more unpaired electron spins. From such experiments one gets in-
formation on the defect symmetry and the chemical identity of the defect. The most
important couplings of the EPR-spectrum are the Zeeman interaction (interaction of the
unpaired electron spin with the external magnetic �eld) and the hyper�ne interaction
(interaction of the unpaired spin with the nuclear spin of atoms of the defect surround-
ing). Both can be expressed as 3×3-matrices, and can be therefore upon diagonalization
characterized by three principal values with corresponding eigenvectors, or alternatively
by parameters that re�ect the symmetry of the matrix.
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3 Theoretical modelling of

EPR-parameters

3.1 Density-functional theory

3.1.1 Fundamental concepts

For the theoretical computation of the EPR-parameters, we have to specify the under-
lying description of paramagnetic defects in solids. This in turn brings us to the most
general starting point, the formal description of interacting electrons and nuclei. The
corresponding Hamiltonian reads [47, 48]

H = Te + TI + Vee + VeI + VII (3.1)

with the following terms (in Hartree atomic units, i.e. ~ = me = e = 4π/ε0 = 1)

• Te, TI : kinetic energies of the electrons and nuclei (Te/I = − 1
2m

∑
i∇2

i wherem = 1
for electrons and m = mI for protons)

• Vee: Coulomb interaction between electrons (Vee = 1
2

∑
i 6=j

1
|ri−rj |)

• VeI : Coulomb interaction between electrons and nuclei (VeI = −1
2

∑
i,I

ZI

|ri−RI |
)

• VII : Coulomb interaction between nuclei (VII = 1
2

∑
I 6=J

ZIZJ

|RI−RJ |
)

In these equations, lower-case subscripts and upper-case subscripts stand for electrons
and nuclei, respectively. With this Hamiltonian at hand it is possible to state the formal
eigenvalue problem, i.e. the time-independent Schrödinger equation. However, it cannot
be solved directly and simpli�cations are required. The �rst step consists in neglecting
the only small term in the Hamiltonian, the nuclear kinetic energy [30, 47, 48]. This
'Born-Oppenheimer' or 'adiabatic' approximation is usually physically reasonable since
the time scale associated with the motion of nuclei is usually much slower than that
associated with electrons1. Physically, it means that the electrons follow the motion of
the nuclei instantaneously while remaining always in the same stationary state of the
electronic Hamiltonian. In this case one can separate the wavefunction into a product
of an electronic wavefunction Ψi({r}) (in which the nuclear positions only enter as �xed

1Since the kinetic energy is inversely proportional to the mass, we can also see this point by considering
the mass ratio mI/me. Already for a single proton, it is 1836:1, hence mI � me, and therefore
TI � Te [47].
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parameters) and a nuclear wavefunction. This ansatz reduces the complexity of the
electronic problem, and it is reasonable as long as the electronic excitation energy Ee
is su�ciently larger as the vibrational excitation energy [47]. This condition is usually
ful�lled for insulators and semiconductors, since Ee is then determined by the band gap
(typically on the order of a few eV). On the other hand, metals posses a continuous
excitation spectrum and in this case, the adiabatic approximation is in principle only
applicable with auxiliary conditions. However, for typical temperatures (between room
temperature and a few thousand degrees) it is usually still valid [47].
The two key e�ects characterizing the many-body problem are exchange and correla-

tion [47, 48, 49]. In a single-particle picture, the Pauli principle states that two electrons
must not have the same set of quantum numbers. This implies that the many-electron
wavefunction must be antisymmetric under particle exchange and two electrons of the
same spin cannot be at the same position at the same time. This leads to a spatial
separation of corresponding electrons, which reduces the Coulomb energy of the system
by an amount called 'exchange energy'. A similar e�ect occurs for electrons of opposite
spin, which also try to maximize their spatial separation due to Coulomb repulsion.
This phenomenon is called 'correlation', and we will specify the corresponding energy
contribution below.
The solution of the electronic eigenvalue problem remains di�cult despite the Born-

Oppenheimer approximation, and there is no universal approach for all materials and
phenomena [30, 47, 48, 49, 50]. The two most accurate approaches are post-Hartree-Fock
(HF) quantum chemistry and quantum Monte-Carlo methods (QMC). Within HF one
writes the electronic wavefunction as a Slater determinant of single-particle spin-orbitals
(each being a product of a spatial and a spin wavefunction), and subsequently looks for
the single determinant that minimizes the total energy for the Hamiltonian (3.1). The
HF-approach naturally includes the exchange interaction but not electron correlation.
However, these (small but not necessarily unimportant) e�ects2 can be incorporated
in a post-HF method such as 'Con�guration interaction' or Møller-Plesset perturbation
theory [47]. In fact, correlation is often de�ned as the di�erence between the full ground-
state energy (obtained with the true many-body wave function) and the total Hartree-
Fock energy. Alternatively to HF, QMC uses statistical sampling techniques to directly
evaluate quantum mechanical observables such as the energy [49].
Density-functional theory (DFT) provides a simpler and less expensive alternative to

post-HF- and QMC-methods [30, 47, 48, 50, 51]. The key idea consists in reformulating
the many-body problem in terms of the electron density. This is possible due to the
Hohenberg-Kohn theorems [48]

I) The ground-state particle density n0(r) determines the external potential Vext(r) ≡
Vext [n(r)] uniquely up to a constant.

II) A universal functional for the energy E[n] in terms of the density n(r) can be
de�ned and the exact ground-state energy of the system is the global minimum

2For example, for a nitrogen molecule, the correlation energy is only 0.5% of the total energy but 50%
of the molecular binding energy [49].
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value of this functional.

The external potential includes the Coulomb interaction between the electrons and
the nuclei and any external �eld applied to the whole system. The �rst theorem states
that all properties of the system are completely characterized by n0(r). The second one
relates the total energy of the system to the density and determines the ground state.
The total energy is fundamental to the formalism, since further quantities such as atomic
forces3 are derived from it.
For our purposes it is particularly important that these theorems can be easily ex-

tended to include an external magnetic �eld, which acts only on the spins but not on
the orbital motion [47, 48, 51]. In this case the above statements are generalized to two
kinds of density, the particle density n(r) and spin density m(r)

n(r)
spin−−→

{
n(r) = n(r, ↑) + n(r, ↓)
m(r) = n(r, ↑)− n(r, ↓) E[n(r)]

spin−−→ E[n(r),m(r)]

The description by two spin densities does not work for non-collinear magnetism,
which can occur e.g. due to spin-orbit coupling, and such e�ects can only be treated by
a relativistic approach [51]. But the corresponding formalism is more complicated than
spin-DFT. Alternatively also a non-relativistic current-DFT turns out to be useful. It is
based explicitly on the spin density and the non-relativistic paramagnetic current-density
vector.
Since the exact density-functional expressions for the electron kinetic- and exchange-

correlation (XC) energies are unknown, one has to introduce approximations either by
solving for the density in orbital-free (OF) DFT or by solving for a single-electron con-
�guration in Kohn-Sham (KS) DFT. The OF-DFT approach requires only the den-
sity, which however means that the kinetic energy must be approximated in terms of
n(r) [50, 52]. Consequently, the usage is limited to conceptually simple local situa-
tions (e.g. Thomas-Fermi approach for the free-electron gas). The key idea of KS-DFT
[30, 47, 48, 50, 51] is to map the ground-state density n0(r) for interacting particles to the
density n(r) for a system of noninteracting particles (see Figure 3.1). The latter density
is then expanded in terms of single-particle orbitals ϕn(r), i.e. n(r) =

∑N
n=1 |ϕn(r)|2.

The kinetic energy can be calculated quite accurately from ϕn(r) (except for small con-
tributions from exchange and correlation to the many-body kinetic energy). The mini-
mization of the corresponding total energy yields the following 'Kohn-Sham equations'
(vi(r) ≡ vi[n(r)]) [

1

2
∇2 + vext(r) + vH(r) + vxc(r)

]
ϕn(r) = εnϕn(r) (3.2)

where vext(r) is the external potential, vH(r) the Hartree potential and the exchange-
correlation potential vxc(r) = δExc[n(r)]/δn(r). The advantage of this formulation is
that the signi�cant local terms (kinetic energy, vext(r), vH(r)) are treated exactly, and

3For the derivative of the energy with respect to any parameter λ holds ∂λEn = 〈Ψλ| ∂λH |Ψλ〉 where
En(λ) and ψn(λ) are the eigenvalues and eigenfunctions of H(λ) (Feynman-Hellmann theorem) [38].
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Figure 3.1: Schematic representation of the Kohn-Sham ansatz. The many-body prob-
lem in terms of the density is mapped on a system of noninteracting particles
(concept adapted from [48]).

that only the exchange-correlation term must be approximated. The latter cannot be
neglected but at least it is smaller compared to the other contributions. As for the
Hartree-Fock orbitals, one can write the exchange part explicitly in terms of the Kohn-
Sham orbitals ϕn(r). However the same thing is in general not possible for the density.
Thus the problem again consists in describing the e�ect of correlation.
The KS-eigenvalues do not have a true physical meaning, with the only exception of

the highest occupied eigenvalue, which corresponds to the negative of the �rst ionization
energy [48, 50, 51, 52]. But this relation only holds strictly for the exact functional.
For calculations with an approximate XC-functional, the ionization energy is actually
in better agreement with experiment, when it is computed by total-energy di�erences,
i.e. I = E0(N − 1) − E0(N) [50]. Nevertheless, the KS-eigenvalues do provide an
empirical �rst approximation to the actual energy levels (typically in the presence of
fermionic quasi-particles and absence of strong correlations). This resemblance is ex-
ploited in band-structure calculations, for which one considers Equation (3.2) as a true
physical approximation to the many-body problem. A more accurate approach is the
GW -method, which is based on a set of Green's functions equations and an approxima-
tion for the electron's self-energy [53].

3.1.2 Practical aspects of DFT-calculations

We will now outline how density-functional theory is implemented in practice. The most
important point here is that the numerical solution of the KS-equations (3.2) further
broadens the methodological spectrum by a variety of di�erent approaches. Overall the
determination of the KS-DFT ground state contains the following ingredients [30, 47,
48, 51, 54, 55, 56, 57]

• kinetic energy : this might be either non-relativistic (Schrödinger equation), scalar-
relativistic (relativistic kinetic-energy operator and other simple relativistic cor-
rections but not spin-orbit coupling) or relativistic (Dirac equation including spin-
orbit coupling).

• external potential vext(r): for the electron-nuclear interaction one has the choice in
between treating all electrons equally (all-electron method) or removing the core
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electrons and the Coulomb singularity from the atomic nuclei by substituting the
external potential with a smooth pseudopotential around each atom.

• exchange-correlation potential vxc(r): the exchange energy can be expressed in
terms of the single-particle orbitals but its actual computation is rather unfeasible.
On the other hand, there is no way of calculating the correlation energy at a
comparable level of accuracy. Consequently the basic strategy consists in �nding
an approximation for the overall e�ect as outlined below.

• basis set : the expansion of the KS-orbitals requires the choice of a basis set, which
can be distinguished according to the localization of the basis set [47]. Extended
basis sets exploit delocalized basis functions, either �oating (independent of the
nuclear position) or centered at the nuclear positions. They sample all space
equally and are therefore in particular useful for condensed phases such as solids or
liquids. Typical representatives are plane waves (PW), �oating Gaussians (which
are spatially �xed) or Lagrange polynomials. On the other hand, localized basis
functions are centered e.g. at the atomic positions, and are consequently most
suitable for the description of molecular systems. The used basis functions can
be e.g. atomic orbitals, Slater-type orbitals, or Gaussian-type orbitals. Both
approaches can be combined, either in a mixed basis set (including both kind of
basis functions) or by augmenting an extended or atomic-centered basis set with
atomic-like wavefunctions in spherical regions around the nuclei (e.g. 'augmented
plane waves' or 'linearized mu�n-tin orbital method'). The choice of the basis set
is correlated to the one for the external potential, since e.g. an huge number of
plane waves is necessary to model the Coulomb singularity at the nuclei. Therefore
within the PW-approach it becomes convenient to replace the nuclear potential by
a pseudopotential.

• self-consistency : the KS-equations must be solved self-consistently (SCF), since the
potentials depend on the density (Figure 3.2). In this scheme, one starts with a trial
density and constructs the e�ective potential. This potential is plugged into the
KS-equations, which can then be solved. From the resulting wavefunctions one can
compute a new density, which is compared to the initial guess. If both agree within
the prede�ned accuracy, one has found the solution to the problem. In the other
case, one computes a new initial density (by mixing the old with the new density)
and starts all over again. Many numerical concepts and parameters are connected
to the SCF-cycle such as the construction of the initial density (atomic orbitals,
etc.), the minimization method (steepest descent, conjugate gradient, etc.) or
the density-mixing scheme (linear, etc.). Noteworthy, structural relaxation follows
from the SCF-cycle by adding another outer loop, in which the atomic forces are
minimized.

Pseudopotentials

The ab initio pseudopotential (PP) approach is based on the idea that only the
outer (valence) electrons participate in chemical bonding whereas the inner (core)
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Initial guess: nσ(r)

Calculate e�ective potential

vσeff (r) = vext(r) + vH(r) + vσxc(r)

Solve KS-equations[
−1

2
∇2 + vσeff (r)

]
ϕσi (r) = εσnϕ

σ
n(r)

Calculate electron density

nσ(r) =
∑

n f
σ
n |ϕσn(r)|2

Self-

consistent?

Output quantities

energy, force, stress, ...

yes

no

Figure 3.2: Work-�ow of the SCF-solution of the KS-equations. For spin-polarized sys-
tems the loop has to be done for each spin component σ =↑, ↓ separately.
The Fermi distribution is denoted by fσn ≡ fσ(εn). (adapted from [48])
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Figure 3.3: Pseudo and all-electron radial wavefunctions for a silicon potential (scalar-
relativistic Hamann-type) generated with the fhi98-PP code [58]. The dashed
lines show the pseudo wavefunctions and the solid lines the all-electron wave-
functions. Two features are important. First, the pseudo wavefunctions are
nodeless in the core region. Secondly, they match the all-electron wavefunc-
tions outside a cuto�-radius rC (with rC increasing with increasing angular-
momentum component).
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Figure 3.4: Illustration of the supercell-based point-defect model. The original defect (re-
moved atom in the middle indicated by a white circle) is repeated throughout
space (gray circles) due to periodic boundary conditions.

electrons stay in an approximately atomic-like, environment-independent con�guration.
Consequently, one only considers the valence electrons. The Hartree and XC-potential
become functionals of the valence density nv. The external potential is replaced by a
pseudopotential vPPext according to a two-step procedure [51, 58]. First, one generates an
e�ective pseudopotential vPPs [nv] = vPPext + vH [nv] + vxc[nv] from an atomic calculation,
so that for a suitable reference con�guration, the pseudo wavefunctions are equal to
the corresponding all-electron valence wavefunctions outside a cuto� radius and that
their logarithmic derivatives lead to the same scattering properties. Thus the valence
densities of the pseudo and the all-electron atom are the same. In the second step one
subtracts the atomic valence contributions of the Hartree and exchange potential from
vPPs [nv]. This 'unscreening' is necessary to make the pseudopotential independent of the
chemical environment ('transferable'), but it can be done exactly only for the Hartree
potential (linear dependence in the density). There are several ways to construct pseu-
dopotentials and many additional choices can be made. For example, pseudopotentials
can be either local or nonlocal, include relativistic e�ects, be norm-conserving, or
include non-linear core corrections. Local means that one uses the same potential for
all angular-momentum components whereas a nonlocal potential is angular-dependent.
One common practice is to consider only low-angular momenta as nonlocal whereas the
others are treated as local (e.g. the d-component in the case of silicon). Relativistic
e�ects become in particular important for heavier atoms from the �fth row onwards [47].
Norm-conservation requires that the norm of the true and pseudo wavefunctions is the
same inside the pseudized region [47]. Finally, non-linear core corrections are important
when the valence orbitals of one atom overlap with the core orbitals of other atoms as
in II-VI semiconductor compounds [47]. Along with these aspects, there are a variety
of parameters, that a�ect the quality of the pseudopotential. For instance, one has
to specify the electronic con�guration (most commonly the neutral atom), the states
included in the valence and core respectively, the maximal nonlocal angular-momentum
component, or the radius of the core region rc. The latter parameter illustrates also an
important aspect in the PP-generation, the trade-o� between accuracy and hardness
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of the pseudopotential. A small value for rc results in a hard potential, but which
is also more transferable from one to the other chemical environment. However, as
mentioned, such a potential requires a larger number of plane waves. On the other
hand, a smooth pseudopotential works with a smaller number of plane waves but
it consequently also less accurately describes e�ects due to the core region. Overall
the generation of pseudopotentials is a complex matter, and its usage has always to
be tested critically. This can be done by carrying out a PP-calculation for a simple
test system and then comparing it with a corresponding all-electron calculation. The
latter can be accomplished by comparing the PP test-calculation with a corresponding
all-electron calculation (e.g. see Subsection 4.2.2). The EPR-parameters sensitively
depend on the wavefunctions in the core region. They cannot be computed directly
from a pseudopotential calculation, but it is still possible to reconstruct the missing
all-electron information as we will discuss below.

The XC-Functional

The simplest approach is the 'local density approximation' (LDA), which takes the
inhomogeneous electron gas as locally homogeneous [47]. The exchange energy is then
proportional to the integral of (n(r))4/3 over r. However, even in this elementary
case one cannot compute the correlation energy analytically. It is usually estimated
by parameterizations of QMC-calculations for the electron gas. The resulting overall
XC-functional yields in general reasonable results, even for systems that are quite
di�erent from the homogeneous electron gas [51]. This can be explained by a systematic
error cancellation since LDA underestimates the correlation energy but overestimates
the exchange energy at the same time4. Noteworthy, the LDA-functional can conve-
niently be extended to include spin polarization (LSDA). The approximation of the
true electron distribution by a locally homogeneous density results in the following
general trends [47]. L(S)DA-calculations overestimate the binding energy of molecules
and the cohesive energy of solids. The geometric properties of systems with strong
bonds (covalent, ionic, metallic) are described within a few percent in comparison to
experiment. However, the over-binding problem leads in general to an underestimation
of bond lengths. Similar trends are also found for the elastic constants and phonon
frequencies. On the other hand, LDA fails to cancel the self-interaction in the Hartree
term, which is signi�cant for strongly localized states (e.g. electron density of atoms
in the core region), and underestimates the band gap in semiconductors typically by
about 30-50% [59]. In small-gap materials such as Ge the system actually becomes
metallic [47].
The generalized-gradient approximation (GGA) incorporates semi-local electronic
e�ects by including the gradient into the XC-functional. Remarkably, the main strategy
here is to look for general functions f(n(r), |∇n(r)|) of the density and its gradient,
whereas a systematic power expansion in terms of gradients does not improve the

4The conceptual reason behind it is that the exchange-correlation hole nLDAxc (r, r′) (characterizing
the reduction of probability of an electron at r′ given a second one at r) obeys the sum rule∫
nLDAxc (r, r′)d3r = −1 [51].
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accuracy compared to LDA [51]. However, these general functions can be obtained in
di�erent ways, which results in a variety of GGA-functionals. In chemistry, the typical
approach consists in �tting the necessary parameters to experimental molecular data
(e.g. BLYP). In contrast to that, in physics one aims at incorporating formal properties
and limits (e.g. Perdew-Burke-Ernzerhof (PBE) functional [60]). The GGA-XC energy
is lower than for LDA [48]. This e�ect is more pronounced in atoms than in condensed
matter due to the more rapidly varying density, and it leads to an overall better
agreement with experiment. GGA-functionals improve binding energies, atomic ener-
gies, bond parameters, the gap energy and dielectric constant (but not substantially).
However, they also do not compensate satisfactorily for the self-interaction present in
the Hartree term [47].
Conceptually more advanced functionals have been developed as well. For example,
meta-GGAs include the kinetic-energy density (i.e. higher derivatives of the density)
in the XC-functional. This improves in particular atomization energies, however,
within this approach open questions remain (such as the incomplete cancellation of
the self-energy [47]). Hybrid functionals incorporate some Hartree-Fock exchange into
the DFT XC-functional so that the exchange-correlation energy becomes dependent
on EDFT

xc [n(r)], EHF
xc [n(r)] and mixing parameters. A popular example for molecular

applications is the B3LYP-functional, which is able to reproduce the geometry and
binding energies at the same level as post-HF methods [47]. But the mixing parameters
are obtained by �tting to molecular data, which is conceptually unsatisfactory. The
HSE-functional has turned out to be quite successful for molecules and semiconductors
[61]. The concept of this functional is to separate the XC-potential into short and
long-range parts by an error function with a characteristic screening length ∼ 10 Å. In
the former region one mixes the PBE- with with the nonlocal Hartree-Fock exchange
potential in the ratio 75/25. The long-range part is described purely by PBE, which is
also used for the overall characterization of correlation. The HSE-functional improves
the band gap for many materials but it is computationally expensive and there is
still some arbitrariness in the choice of the mixing parameters. Besides meta-GGAs
and hybrid functionals there are a number of other important approaches to the
XC-Functional [48] such as SIC (self-interaction correction), LDA/GGA+U, OEP
(optimized e�ective potential), ADA (average-density approximation) and WDA
(weighted-density approximation).

Plane-wave basis set

Bloch's theorem states that we can write each electronic wavefunction in an external
periodic potential v(r) = v(r + ai) (ai ... unit vector) as a sum of plane waves [47]

ψk(r) = eikruk(r) with uk(r) = uk(r + ai) =⇒ ψk(r) = eikr
∑

G
ck+Ge

iGr

where G stands for all reciprocal lattice vectors and ck+G for the Fourier coe�cients.
This makes it then possible to map the problem of calculating the wavefunction of all
electrons of the in�nite solid to the one of calculating the wavefunction for a �nite number
of electrons in the unit cell for an in�nite number of k-vectors [56]. The corresponding
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KS-equations (3.2) in reciprocal space read∑
G′

[
1

2
|k + G|2 δGG′ + vDFT (G−G′)

]
ci,k+G = εici,k+G

where vDFT (G−G′) includes the external, Hartree and XC-potential.
In this equation, the kinetic energy is diagonal whereas, on the other hand, the po-

tential term is almost local (up to the nonlocal component of the pseudopotential) in
real space [47]. Taking advantage of that, one usually solves the KS-equations by con-
structing the e�ective potential by a combined real- and reciprocal-space approach. First
one computes the Hartree potential and the local external pseudopotential in recipro-
cal space and transforms this to real space to include the exchange-correlation potential
term. Then one applies the total local-potential part to the wavefunction and transforms
the product back to reciprocal space to incorporate the contribution from the nonlocal
PP-component as well as the kinetic energy. This scheme heavily relies on the fast-
Fourier-transform, which makes an e�cient transformation between real and reciprocal
space possible (the scaling is O(M logM) whereM denotes the number of plane waves).
Two important approximations have to be made for the actual PW-based calculation.

First, one cannot compute the wavefunctions for an in�nite number of k-vectors, but
only for a �nite set of k-points ('Brillouin-zone sampling') [47]. One of the mostly used
approaches for that purpose is the 'Monkhorst-Pack' mesh, which creates a uniform k-
grid for all crystals [48]. In practice it is (particularly for cubic lattices) advantageous
not to include the highest symmetry points in the mesh (such as the Γ-point). However,
the application of symmetry operations can reduce the calculation time signi�cantly.
For example, in cubic crystals, a mesh with 216 k-points in the Brillouin zone can be
mapped to 10 k-points in the irreducible Brillouin zone, which is the smallest fraction of
the Brillouin zone that is su�cient to determine all the information on the excitations
of the crystal [48]. One important aspect of k-point sampling is to check that the
quantity of interest is converged with respect to the mesh (see Section 4.2.1). This
depends, among other things, also on the system, since metals need a much denser grid
than semiconductors. However, this problem can be solved by smearing the occupations
near the Fermi level [47, 57], which removes instabilities in the convergence of the self-
consistent procedure. But on the other hand, this also leads to an additional convergence
parameter ('electronic Fermi temperature').
The second approximation is related to the representation of the wavefunction by an

in�nite PW-basis set. In practice, one has to truncate the series at a certain energy
('cuto� energy' EC), and include only plane waves with a kinetic energy smaller as EC
(formally: (1/2) |k +G|2 < EC). As for the k-point sampling, one has to systematically
increase EC until the quantity of interest converges to a speci�c value (see Section 4.2.1).
As a starting point, it is useful to look at the cuto� dependence of the pseudo atom,
which is often included in the output of the generated pseudopotential (e.g. in the case
of the fhi98PP-code [58]). As discussed before, the number of plane waves is related
to the hardness of the pseudopotential. In systems with di�erent chemical species, it is
important to keep in mind that EC is indeed determined by the hardest pseudopotential,
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and consequently this potential should be the �rst choice for optimization of the overall
cuto� dependence [47].
Plane waves have the advantage that they incorporate the periodicity within a system

naturally and the calculation of the energy and its derivatives (force, stress) is analytic
and rather simple [47]. On the other hand, they are not optimized for non-periodic
systems (e.g. molecules, surfaces) and systems with rapidly varying wavefunctions close
to the nucleus (e.g. �rst-row elements).

Supercells

Picking up the last point let us brie�y specify how to model defects in solids. For
Green's function methods the defect is incorporated into an otherwise perfect crystal
[30]. Within PW-DFT, periodic boundary conditions lead to the notion of supercells.
As illustrated in Figure 3.4, the idea is to represent the defect surrounded by a certain
amount of bulk. This unit is then repeated periodically throughout space, which
essentially means that the solid is idealized by a homogeneous arrangement of the
considered defect system. Obviously this raises the problem of a spurious interaction
between periodic defect images. This arti�cial coupling causes a dispersion of the
defect bands, long-range elastic e�ects originating from structural distortions around
the defect, and for charged defects, an arti�cial Coulomb interaction between the image
charges and between them and the charge-compensating background. The latter e�ect
is more important than the elastic interaction, since it scales with 1/L (compared with
1/L3) where L stands for the length scale of the supercell [62]. To address this problem,
several correction schemes for the defect-formation energy have been proposed [62, 63].
In practice, one has to assure that these arti�cial interactions are negligible. For that
purpose, one computes the quantity of interest for di�erent supercell sizes and studies
the corresponding convergence trend (Section 4.2.1). In doing so, it is important to
keep the mesh density constant among di�erent supercell sizes i. It can be estimated
from the ratio (pa/pb)

3 = Ωb/Ωa where pi is the mesh parameter and Ωi the volume of
the corresponding reciprocal lattice [64].
Within the supercell approach, surfaces (and interfaces) can be modeled by a crystal

slab which are separated from each other by a vacuum layer. In this case, further aspects
have to be considered such as the thickness of the slab and the vacuum layer, the number
of actual surface layers as well as the passivation of dangling bonds in the bulk region
(i.e. the other surface of the slab). As for bulk defects, the biggest problems arise
from charge and polarization e�ects [47]. The modelling of bulk amorphous systems
by supercells is even more challenging, since they are extended in all spatial directions
but without any periodicity. It is therefore di�cult to match this structural features to
periodic boundary conditions. We will return to this point in Section 5.1.
It has several advantages to use supercells for studying defects compared to the cluster

approach [65, 66], which is particularly suited for molecular problems. First, in a cluster
or nanocrystal the HOMO-LUMO gap can be considerably larger than the gap in the
bulk material due to quantum con�nement. Consequently, cluster models result in a
smaller g-shift (Equation (2.10)) compared to a network model. Furthermore, localized
surface states a�ect the electronic properties in the bulk region (typically according
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to an exponential decay). One solution to this problem consists in passivating the
surface with hydrogen, i.e. shifting these states deep into the valence band [30]. Besides
that, insu�ciently large clusters have a spurious macroscopic electric �eld. It is more
important compared to the e�ect of surface states, since it converges to the bulk value
with cluster size according to a power law. In principle, such electrostatic e�ects can be
compensated by an external electric �eld. However, for that, the cluster size should be
on the order of at least one crystalline unit cell.
In practice DFT-calculations include a variety of methodological and numerical ap-

proximations, which reveals the true complexity of the theoretical many-body problem
stated in the beginning. Not all aspects are well understood and consequently there
remains an element of empiricism in corresponding theoretical studies of material prop-
erties. In this sense, ab initio calculations reassemble many facets of experiments carried
out in a laboratory. As for a real-world measurement apparatus, it is important to be
aware of the accuracy and limitations of the used approach. Since computer experi-
ments can also be expensive (in both, calculation time and money), they require careful
planning and design before the actual submission to a computer. In doing so, it often
helps to start with a simpli�ed situation of the actual problem, which can give ideas for
further more elaborated studies.

3.2 The g-tensor

Cluster-based approaches are computationally unfeasible for the characterization of para-
magnetic defects in solids. It is far more e�cient to study these systems by the sketched
PW-method utilizing supercells with periodic boundary conditions and norm-conserving
pseudopotentials. However, this raises conceptual problems for the computation of the
EPR-parameters as we will outline in the following.
The �rst obstacle consists in reconstructing the all-electron information from the pseu-

dopotential calculation. As mentioned, the pseudo wavefunction is smoother than the
true wavefunction (and for norm-conserving PPs in principle even node-less [47]) in the
core region. However, it is clear that such information is crucial for e.g. the isotropic hy-
per�ne parameter (Equation (2.15)), which essentially depends on the spin density at the
position of the nucleus. The solution to this problem is given by the projector-augmented
method (PAW), which relates the computationally more e�cient PW-approach with the
more accurate concept of augmentation around each nucleus. Formally, the all-electron
wavefunction

∣∣ψAE〉 is build from the smooth pseudo wavefunction
∣∣ψPS〉 extending

throughout space and localized contributions in a mu�n-tin sphere centered around
each nucleus. The corresponding linear transformation reads [47, 48, 67, 68]∣∣ψAE〉 =

∣∣ψPS〉+
∑

R,j

(∣∣φAER,j〉− ∣∣φPSR,j

〉) 〈
pR,j

∣∣ ψPS〉 = T
∣∣ψPS〉 (3.3)

where
∣∣φAER,j〉 and ∣∣φPSR,j

〉
denote the atomic all-electron- and pseudo partial waves respec-

tively. The projector functions pR,j are orthogonal to the corresponding atomic pseudo
partial waves (〈pR,j | φR′,j′〉 = δR,R′δj,j′) and are located in the augmentation region
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around each nucleus. The summation runs over all atomic sites R, angular momenta
(l,m) and projector functions per angular-momentum channel. One typical choice is to
use two projectors per l-channel with one for the bound and one for the unbound state
[67, 69, 70]. By using the transformation (3.3), one can obtain the density and energy,
which split into parts on either a Cartesian grid (pseudized contribution) or on radial
grids (localized contributions). Consequently and advantageously, known concepts for
pseudopotentials and mu�n-tin potentials can be applied. From the energy, one can
derive a corresponding expression for the forces and subsequently also a formulation of
molecular dynamics [68]. Thus the PAW-transformation is the cornerstone for a whole
formalism, which combines the e�ciency of the pseudopotential plane-wave method with
the accuracy of the augmented-waves methods.
To apply the PAW-formalism to the computation of the g-tensor, we �rst need to

specify the formal problem. As mentioned in Chapter 2.2.2, the g-tensor can be obtained
from second-order perturbation theory of Equation (2.4) [71, 72] (with the �ne-structure
constant5 α)

g =
2

α

∂2 〈Ψ|H |Ψ〉
∂B∂S

∣∣∣∣
B=S=0

(3.4)

This means that the components of the g-tensor are obtained from the derivation of the
Hamiltonian H with respect to the external magnetic �eld B and the net electron-spin
component S. Two aspects are important. First, the order in which the derivatives are
taken can be interchanged [71, 73]. Secondly, the contributing terms in the Hamiltonian
have to be linear in the electron spin operator or the external magnetic �eld or bilinear
in both perturbations [73].
The magnetic �eld is usually incorporated into the unperturbed Hamiltonian (3.1)

by the principle of minimal coupling according to which one substitutes the electron
momentum operator by p+αA [73, 74]. Within a non-relativistic treatment, this leads
to the following form for H within the BO-approximation [73, 74, 75]

H = Te + Vee + Vel + VII +HSO +HZ +HZKE +HSOO (3.5)

with the following contributions (g′ = 2(ge − 1))

• Te: modi�ed kinetic energy of the electrons (Te = −1
2

∑
i [pi + αA(ri)]

2)

• HSO: spin-orbit coupling (HSO = α2g′

4

∑
i Si · (∇Vee +∇VeI)× [pi + αA(ri)])

• HZ : electron Zeeman energy (HZ = αge
2

∑
i Si ·B)

• HZKE: electron Zeeman kinetic-energy correction (HZKE = −α3ge
2

∑
i
p2i
2
Si ·B)

• HSOO: spin-other-orbit energy (HSOO = α2
∑

j 6=i Si · ∇Vee × [pj + αA(rj)])

5α = e2

4πε0~c = 7.297353× 10−3 (from [39])
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The spin-orbit terms can also be interpreted as the cross-product (−1/2)S[p × E −
E × p] between the momentum operator and the electric �eld Ei(r) = −∇Vi(r) due
to the electronic/nuclear potential [73]. As discussed in Section 2.2.2, the spin-orbit
interaction is caused by the magnetic �eld of the ions and other electrons as seen by the
unpaired electron. The spin-other-orbit term characterizes the screening of the external
magnetic �eld by the induced electronic currents again in the unpaired electron's system
[75]. The electron Zeeman kinetic-energy correction is a relativistic e�ect [74]. Notably,
further terms (such as the diamagnetic corrections to the spin-orbit and spin-other-
orbit coupling [74] or further relativistic corrections [73]) can be included in a more
sophisticated approach.
The following two problems arise for the DFT-calculation of the g-tensor [74]. First,

the XC-energy becomes a functional of the relativistic four-current density (EXC [ρ] →
EXC [ρ, j]). However, so far there are no indications that this is a crucial aspect in the
case of silicon [76]. Secondly and more importantly, one has to de�ne the origin of the
vector potential, which is however not unique ('gauge-problem'). This characteristics is
crucial for the induced current density, which characterizes the response of the system
to an uniform external magnetic �eld, and which consequently depends on A. The
current density is only for an in�nite basis set truly gauge-invariant as expected from
any physically observable quantity [77]. For a �nite basis set, several techniques have
been developed in the context of molecular EPR- and NMR-chemistry to circumvent this
problem. Speci�cally, these concepts include 'gauge invariant atomic orbitals' (GIAO,
a local gauge origin is incorporated in each wavefunction), the 'continuous set of gauge
transformations' method (CSGT, a continuous shift of the gauge origin in real space
by a parametric function) and 'individual gauges for atoms and molecules' (IGAIM, a
discrete shifting of the gauge origin from one nuclei to the other) [74, 77].
However it has also become possible to account for the gauge problem within the

PAW-formalism [67], which is best suited for defects in solids. One common choice for
the gauge is A(r) = (1/2)B× r so that the coordinate origin coincides with an atomic
site (center of a single augmentation region). This has the advantage that the number
of partial waves to describe the valence all-electron eigenstates in the augmentation
region is minimized. However, the description of other augmentation regions (atomic
sites) requires correspondingly large partial-wave basis sets. This can also be seen from
applying a translation to the all-electron wavefunction by a vector t, which reads6

ψ′AE(r− t) ≡ exp[it · p′]ψAE(r− t) = exp[(i/2c)r · t×B]ψAE(r)

The problem of the original PAW-formulation (3.3) is that the pseudo wavefunction
does not transform accordingly. One can �x it by adding the phase factor to the aug-
mentation spheres, which means that the correspondingly modi�ed PAW-transformation
operator TB is denoted by

TB = 1 +
∑

R,j
e(i/2c)r·R×B

[∣∣φAER,j〉− ∣∣φPSR,j

〉]
〈pR,j|e−(i/2c)r·R×B (3.6)

6A translation is de�ned by the operator f(r− t) = U(t)f(r) = exp[−it · p′]f(r) [78]
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This operator is the fundamental building block of the so-called GIPAW-approach
('gauge-including projector augmented waves'). From this transformation one can eval-
uate the all-electron operators OAE required for the g-tensor from the corresponding
pseudo-electron operators by OPS = T +

B O
AETB [67, 68]. However, to illustrate the

complexity of the subsequent derivation of the g-tensor, let us consider the signi�cant
contributions, which are obtained from perturbation theory for the Hamiltonian (3.5)
[72, 74, 75, 79]

g = 1ge + ∆gZKE + ∆gSO + ∆gSOO

with

• ∆gZKExy = −α2ge(T
↑ − T ↓)δxy (T σ is the unperturbed kinetic energy)

• ∆gSOxy = α(ge − 1)
∫ [

j↑x(r)×∇V
↑
KS(r)− j↓x(r)×∇V

↓
KS(r)

]
y
d3r

(jσi is the spin-dependent induced current density)

• ∆gSOOxy = 2
∫
B′xy(r)

(
ρ↑(r)− ρ↓(r)

)
d3r

(B′xy(r) is the magnetic �eld due to the total induced current j(r) including a
self-interaction correction)

The spin-orbit coupling terms require the calculation of the induced current and mag-
netic �eld. Within the GIPAW-approach, one applies the transformation operator (3.6)
to the all-electron current operator J(r) = −(1/2) {p, |r〉 〈r|} − (A(r)/c) |r〉 〈r| where
{} stands for the anti-commutator [67, 77]. Within �rst-order perturbation theory, the
�rst term causes a paramagnetic current contribution, which depends on the �rst-order
perturbed wavefunction. The second term results in a diamagnetic contribution, which
only depends on the unperturbed charge density, which can be further processed by
using density-functional perturbation theory [67]. The induced magnetic �eld follows
then from the �rst-order induced current by using Biot-Savart's law.
In conclusion, the computation of the g-tensor requires elaborate theoretical concepts

and the actual implementation is tedious. In the following, we will use Quantum Espresso
[80] for that purpose. For completeness, we mention that the GIPAW-approach was
originally developed for the computation of the conceptually similar NMR-parameters
[67]. Furthermore, there are two important alternatives to the sketched perturbative
g-tensor calculation in periodic systems. One is based on writing the g-tensor in terms
of the orbital magnetization [81], in which one essentially interchanges the order of the
derivatives in Equation (3.4) and evaluates the derivative to S numerically from a �xed-S
calculation with SO-coupling in the self-consistent Hamiltonian. In the other approach,
one uses maximally localized Wannier orbitals to compute the current densities [72].
Besides that, corresponding approaches for Gaussian and augmented plane-waves [79]
as well as for atomic orbitals [82] have been developed.
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3.3 Hyper�ne parameters

The hyper�ne tensor follows analogously to the g-tensor from second-order perturbation
theory with respect to the nuclear-spin angular-momentum and the electron spin [73]

A =
∂2 〈Ψ|H |Ψ〉

∂I∂S

∣∣∣∣
B=S=0

(3.7)

which is then often decomposed into an isotropic and an anisotropic part (as discussed
in Chapter 2.2.3). In contrast to the g-tensor there are no methodological problems to
solve, but instead the main challenges arise from including e�ects such as relativistic
corrections or core polarization.
Within spin-DFT one usually starts from the Dirac equation by making the same sub-

stitution for the momentum operator p+αA as for the g-tensor [30, 83, 84]. First-order
perturbation theory and rewriting of the small two-component Pauli spinor in terms of
the large spinor Φ1 (feasible for light atoms) yields then the following expectation value
for the hyper�ne interaction

EHF = Econtact + Eorb + Edip

where the terms read explicitly

• Econtact = −4π
3
〈Φ1|U(r)µI · σδ(r) |Φ1〉+ 〈Φ1| 1

r4
∂U
∂r

[µI · σr2 − (µI · r)(σ · r)] |Φ1〉

• Eorb = −αµI · 〈Φ1| U(r)·L
r3
|Φ1〉

• Edip = 1
2
〈Φ1| U(r)

r5
[σ · µIr2 − 3(µ · r)(µI · r)] |Φ1〉

with U(r) = [1 + α2

2
(E − V (r))] and where µI = gNµNI is the magnetic moment of

the nucleus, and σ the Pauli spin matrices.
Let us �rst discuss the contact term Econtact for a pure Coulomb potential V (r) =
−Z/r [30, 83, 85]. In the non-relativistic limit U(r)→ 1 only the �rst term contributes,
which also corresponds to the classical �nding that the contact energy just depends
on the density at the nucleus (see also Equation (2.15)). However, in the relativistic
case this term vanishes, since U(r) ∼ r. For the second term, it is important to note
that the derivative ∂U(r)/∂r yields a broadened delta-function, which then modi�es the
de�nition of the isotropic coupling

Hcontact = aST · I, a =
4π

3S
gngµnµB

∫
m(r)δTH(r)d3r (3.8)

where the smeared delta-function is given by

δTh(|r|) =
1

4πr2
∂U

∂r
=

1

4πr2
Zα2/2

[(1 + α2E/2)r + Zα2/2]2

To summarize, the isotropic hyper�ne coupling is averaged over a sphere with radius
Zα2, which is about ten times the size of the nucleus [30]. It is clear that such relativistic
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corrections become more important for heavier atoms. However, they also solve the
problem of the divergence occurring for relativistic s1/2- and p1/2-wavefunctions, which
scale close to the nucleus like Φ(r) ∼ rλ−1 with λ = (1−α2Z2)1/2 [85]. This also implies
that the scalar-relativistic correction becomes in practice larger, the more we move the
origin of the radial grid closer to r = 0.
The orbital momentum is quenched if the ground state of the defect is a single-

determinant orbital singlet, i.e. the ground state corresponds to only one Slater de-
terminant and is non-degenerate except for spin degeneracy [30, 83]. In this case the
orbital hyper�ne coupling Eorb essentially vanishes. The degeneracy of an orbital multi-
plet is removed by either a Jahn-Teller distortion (see Section 4.1) or interactions such
as (most importantly) the spin-orbit coupling.
Within the PAW-formalism, one can compute the isotropic coupling from Equation

(3.8) where the corresponding density is obtained from mAE(r) = mPS(r) + mAE
at (r) −

mPS
at (r), i.e. the pseudo density mPS(r) and the atomic all-electron/pseudo densities

mPS
at (r), mAE

at (r) as obtained from the PAW partial waves. The anisotropic contribution
can be computed from (2.16) by the following expression [86]

Tij(R) =
µ0

4π
gngµnµB

∫ (
∂i∂j −

1

3
δij∇2

)∣∣∣∣
R

m(r′)

|r− r′|
d3r

Noteworthy, if one considers only one partial wave per angular momentum and site
[40], the expressions for the hyper�ne coupling simplify signi�cantly. In particular, the
spin density at the nucleus is then given by

mAE(R) = mPS(R)
∣∣φAE(R)

∣∣2/∣∣φPS(R)
∣∣2 (3.9)

which essentially means that the all-electron spin density is the rescaled pseudo density.
This form has the advantage that it is easy to implement also if scalar-relativistic e�ects
(3.8) are taken into account. Furthermore, it is often su�cient for conceptual studies
such as the dependence of the hyper�ne parameters on the local defect geometry in
silicon [87].
On the other hand, it is important to be aware of the limitations of this single-

projector approach. For that purpose, let us consider the silyl-radical (SiH3), which will
be further characterized in the next chapter. The implementation of Equation (3.9) into
S/PHI/nX reveals the following important de�ciencies. First, the isotropic hyper�ne
shows a signi�cant dependence on the cuto� energy and convergence is only obtained
for EC > 100 Ry. However, this problem can be solved by rescaling the spin density
mAE(R) with the spin density of a free atom computed in a large supercell and at
the same cuto� energy [40, 88]. This improves the convergence trend dramatically and
follows the same principle of error cancellation as also observed for total energies and
their di�erences respectively. Besides that, there are two other problems related to the
usage of only one projector. If we compute the a-parameter from the projection over a
�nite range rPAW on the radial grid, we obtain the trends shown in Figure 3.5. We learn
from it, that there is a strong dependence on the used functional and pseudopotential
type. The latter is resolved for projections over a su�ciently large region. However,
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Figure 3.5: Dependence of the isotropic hyper�ne parameter on the radius of the PAW-
reconstruction for the SiH3 radical. We consider the LDA- and PBE-
functional and Hamann (h) and Troullier-Martin (tm) pseudopotentials gen-
erated with the fhi98-PP code [58] using default values. We use the same re-
laxed structure for both pseudopotentials to remove geometrical e�ects (even
though they are small). The projector cuto� function is a step function.

we also see that the a-parameter depends sensitively on rPAW and we consequently do
not obtain a reliable value. Notably, similar e�ects are also observed for the anisotropic
hyper�ne parameter. These problems are only solved by using more projectors, and we
will use a corresponding implementation (Quantum Espresso [80]) in the following to
assure that our �ndings are independent from such in�uences.
Core polarization can also be incorporated into the pseudopotential-based compu-

tation of the hyper�ne parameters. In one approach one solves the unrestricted KS-
equations only for core states in the external potential of the spin-dependent frozen va-
lence densities [89]. The second method consists of a two-step procedure [90]. First, one
reconstructs the frozen-core all-electron wavefunctions by using the PAW-transformation
(3.3). From these wavefunctions one computes a local spin-dependent perturbing po-
tential, which is subsequently used for the calculation of the spin-polarized core levels
within �rst-order perturbation theory. Most notable applications of these schemes are
�rst-row based molecules (e.g. CH3 [89, 90], fullerenes [91]), and transition-metal com-
plexes [90]. However, for our silicon-based defects, core polarization can be in general
neglected.
The computation of the hyper�ne parameters has a long history within all-electron

approaches, since it can be obtained directly from the spin density. In chemistry, it has
been applied to the study of molecular radicals and technical aspects such as the basis
set or the XC-functional have been studied extensively [65, 92, 93]. Recent concepts
applicable to periodic boundary conditions include a Green's function approach using
a linear mu�n-tin potential [83], a mixed basis-set approach (i.e. localized nucleus-
centered orbitals and plane waves) [90], a hybrid Gaussian and augmented plane-wave
scheme (all-electron treatment of the nuclei of interest and a pseudopotential approx-
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imation for the remaining atoms) [72], and a Bloch basis set consisting of numerical
and Slater-type atomic orbitals [94]. This illustrates that also the computation of the
hyper�ne parameters is still an active �eld.

3.4 Summary

Density-functional theory is a powerful practical approximation to the many-body prob-
lem of electronic-structure theory. In the most important realization of DFT, one solves
the Kohn-Sham equations for an auxiliary system of noninteracting particles in a self-
consistent way. In practice, several additional approximations, both conceptual and nu-
merical, are required. One convenient method for solids is a pseudopotential approach
combined with a plane-wave basis set.
The computation of the EPR-parameters within a pseudopotential approach is only

possible by reconstructing the all-electron wavefunction in the core region. The PAW-
transformation provides the necessary framework, which, however, in its original formu-
lation does not account for the gauge-freedom of the vector potential. For the computa-
tion of the g-tensor it is therefore necessary to modify the transformation by appropriate
phase factors in the augmentation regions (GIPAW-formalism). In contrast to that, it
is rather easy to obtain the hyper�ne parameters from the all-electron density. Within
a pseudopotential approach, the parameters can be computed by making again use of
the PAW-reconstruction scheme. For the isotropic hyper�ne parameter it is impor-
tant to account for the divergence of scalar-relativistic wavefunctions at the nucleus by
averaging the corresponding density over a region slightly larger as the core radius. Fur-
thermore, the a-parameter depends critically on the choice of the projector within the
single-projector approximation. Consequently, this simpli�ed approach is only useful for
the characterization of general trends.
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4 Dangling bonds in molecular and

crystalline silicon systems

4.1 Modelling

Before we address to the dangling bond in the amorphous matrix, let us consider its
crystalline counterpart. In this case, the dangling bond is embedded in a homogeneous
network and can therefore be characterized by the local defect structure. This gives
us the possibility of considering the in�uence of the bonding geometry at the db-atom
on the EPR-parameters in a systematic way. Furthermore, some crystalline db-systems
have been studied experimentally by EPR, and from these db-defects we can get an
estimate for the achievable agreement between theory and experiment.
From the theoretical point of view, the simplest dangling-bond test systems are small

radicals such as the silyl- (SiH3), disilyl- (Si2H5), trisilyl- (Si3H7), and tetrasilyl (Si4H9)
radical. The silyl and the tetrasilyl radical are particularly interesting, since they char-
acterize the bonding of the db-atom to only hydrogen or to only silicon respectively.
Consequently, the overall db-structure is also homogeneous, which makes it easier to
study the in�uence of the structural parameters on the EPR-parameters. Unfortunately
it is di�cult to isolate these radicals experimentally. For example, the silyl radical is
obtained by the reaction of silane (SiH4) with H produced by the photolysis of hydro-
gen iodide (HI) in a host matrix such as argon, xenon, or krypton at low temperatures
[95, 96]. However, the rare-gas matrix exerts an important in�uence as can be seen
from Table 4.2. Similar reasoning holds for the other mentioned radicals and it is there-
fore not possible to use these systems for the purpose of comparison between theory
and experiment. Despite that, we can employ these cluster models to benchmark the
GIPAW-method with a more accurate all-electron approach (Section 4.2.2). Addition-
ally they are valuable for simple conceptual studies (as e.g. in the previous chapter or
in Section 4.3.1 and 4.4.1).
The e�ect of the further defect surrounding on the EPR-parameters can only be

investigated by su�ciently large cluster models. But they have several drawbacks such
as the (possibly arti�cial) termination of surface bonds or the overestimation of the
electronic gap due to quantum con�nement (Chapter 3.1.2). These problems can be
circumvented by using supercells with periodic boundary conditions, which we will use
in the following. For that purpose we have to generate the db-defect in the continuous
crystalline network. In doing so, the �rst step consists in removing a silicon atom from
the lattice (Figure 4.1(a)). This cuts 4 Si-Si bonds, and creates up to four dangling
bonds in very close proximity. Notably the resulting monovacancy V in its charge states
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Figure 4.1: Illustration of the db-defect in silicon. (a): The creation of a db-defect in
bulk. (b): Molecular db-system (tetrasilyl) with principal values for the
EPR-tensors and spin density (yellow color). (c): The db-defect in the crys-
talline network. The turquoise color indicates hydrogen and the red color a
strong isotropic hyper�ne interaction.
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is also EPR-active [43] but for theory it is di�cult to obtain a reliable relaxed structure
due to the �at energy surface [30, 97, 98, 99]. In the second step we have to �nd a
way to remove three of the electrons in the vacancy, so that only one unpaired electron
remains. One possibility is to passivate the corresponding bonds with hydrogen yielding
the defect con�guration V (SiH)3 (the defect neighbors are given in brackets). This
defect (Figure 4.1(c) and Figure 4.2(b)) has in fact been detected by Fourier-transform
infrared [100, 101, 102] and Raman [103, 104] spectroscopy. We also apply the same
idea of hydrogen passivation to a larger vacancy V4(SiH)9, since this corresponds to a
more open defect con�guration inside the vacancy. Another approach to remove three of
the excessive electrons consists in replacing the vacancy neighbors by impurities, e.g. by
phosphorus V (P3) or aluminum V (Al2SiH). Besides these bulk-based db-defects, we also
consider the extreme case that there are no atoms opposite the dangling bond. This is
achieved by creating the defect on a H-passivated Si(111) surface, and it can be thought
of as removing all layers above the db-atom in Figure 4.1(c).
There is no EPR-data available for the sketched db-models. With the exception of

the V (SiH)3 defect, this is not surprising, since the models are rather arti�cial and
unlikely to be stable in nature. Thus the problem of �nding a good test system for
the comparison with experiment remains. It is solved by the vacancy-oxygen complex
(the A-center) when an additional hydrogen binds to one of the silicon defect neighbors
(V (SiHO), Figure 4.2(a)). The EPR-parameters of this system have been measured
successfully [41]. Besides that, there are two defect complexes, which have also shown a
db-character in experiment [42, 105]: the vacancy with substitutional phosphorus (the
E-center, V (Si3P), Figure 4.2(d)) and with a single hydrogen trapped inside the vacancy
(V (Si3H), Figure 4.2(c)). The novelty of both is that the geometrical arrangement of the
three equivalent silicon defect neighbors causes a symmetry-lowering Jahn-Teller (JT)
distortion1 during relaxation. We will show in the following section that theory can
reproduce the observed characteristics even for these JT-distorted systems quite well.

4.2 Quanti�cation of the accuracy

4.2.1 Convergence tests

To quantify the accuracy of our supercell-based DFT-approach we have to test the corre-
sponding computational and physical approximations. As discussed in Section 3.1.2, the
relevant parameters are checked by convergence tests, which means that one computes
the dependence of the quantity of interest (e.g. the principal values of the g-tensor) on
the numerical input parameters (e.g. the cuto� energy). Ideally, one carries out such
tests for all parameters. In practice this also depends on the problem at hand. For ex-
ample, a well-relaxed atomic structure is not so crucial for the study of bond-parameter
dependencies (see Section 4.4), where relaxation is mainly used to recover the correct

1Every nonlinear molecule or crystal defect that has orbital electronic degeneracy when the nuclei are
in a symmetrical con�guration is unstable with respect to at least one asymmetric distortion of the
nuclei which lifts the degeneracy. (cited from [106])
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Figure 4.2: (a): The V (SiHO) db-model: oxygen (red color) bonds to two neighbors
(black color) of the vacancy. The hydrogen atom (in blue) passivates the
broken bond of the third neighbor, leaving one unpaired electron, which
is located on the fourth neighbor of the vacancy (as indicated by the spin
density in yellow). Notably there is also spin polarization on the oxygen
atom. (b): The V (SiH)3 db-model: three hydrogen atoms passivate the
corresponding broken bonds of the vacancy. (c): The V (Si3H) db-model:
Two neighbors (JT) of the vacancy form a long bond, whereas the third is
again passivated by hydrogen. (d): V (Si3P) db-model: Again two silicon
atoms (JT) combine. Substitutional phosphorus (green color) removes the
third electron from the vacancy.
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Figure 4.3: Convergence of the isotropic gIso-value with respect to the cuto� energy EC
(Si4H9 radical) and k-point sampling (V (SiHO) db-model). Note that the
y-scale in (a) is already one magnitude smaller than usually required.

distance between the db-atom and its neighbors.
However, as discussed in Section 3.1.2, k-point sampling and cuto� energy EC are

two key parameters, which always have to be converged. To check for the dependence
of the EPR-parameters on these quantities, we have carried out calculations with the
Quantum Espresso [80] (v4.2.1) DFT-code for the tetrasilyl radical and the V (SiHO)
defect. As always, we take the Perdew-Burke-Ernzerhof (PBE)-functional [60]. The
norm-conserving pseudopotentials (including the GIPAW-reconstruction data) have been
generated by Ari P. Seitsonen. The potential for silicon also includes a scalar-relativistic
correction as described in Chapter 3.3. In order to minimize artifacts due to the defect-
band dispersion in small supercells, we constrain the total magnetization, which yields
full occupation of the defect band in the spin majority channel and empty occupation in
the minority channel, respectively. For the computation of the EPR-parameters we usu-
ally increase the convergence threshold for self-consistency from 10−8 used for structural
relaxation by at least two magnitudes. The calculation of the tetrasilyl radical is done
in a cubic cell with a length of 10.58 Å and for the k-point k = (1/4, 1/4, 1/4). The
k-point sampling test for the crystalline db-model is carried out in a 2× 2× 2 supercell
at 30 Rydberg and with a k-point grid o�set.
As illustrated in Figure 4.3(a), the isotropic gIso-value shows only a weak dependence

on the cuto� energy and it is converged to within 2·10−5 for 30 Rydberg. On the contrary,
there is a strong dependence on the k-point mesh. We have to use a 6 × 6 × 6 mesh
to obtain an accuracy on the order of 10−4. For the hyper�ne parameters we observe
the following trends. In contrast to the single-projector approach, a small cuto� energy
of (again) 30 Rydberg already yields reliable results. The corresponding dependence on
the k-point sampling is not as signi�cant as for the g-tensor, and one usually obtains
converged values for a 3×3×3 mesh. Since a coarser grid also decreases the computation
time dramatically, we use it in the following whenever we are not interested in the g-
tensor. The hyper�ne parameters of hydrogen have similar dependencies on EC and
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V (SiHO) V (SiH)3
gIso a (MHz) b (MHz) gIso a (MHz) b (MHz)

2× 2× 2 2.0064 -374 -51 2.0086 -340 -54
3× 3× 3 2.0071 -367 -51 2.0103 -329 -53

∆ 0.0007 2% 0 0.0017 3% 2%

Table 4.1: Comparison of a 2×2×2 (64 Si atoms without the defect) with a 3×3×3 (216
Si atoms without the defect) supercell for two db-models. The silicon atoms
are kept �xed at the ideal lattice positions, whereas the relaxed positions of
oxygen and hydrogen are transfered from one supercell size to the other. This
ensures that the overall geometry is the same in both supercells.

SiH3 Si4H9

gIso a (MHz) b (MHz) gIso a (MHz) b (MHz)
G03 2.0044 -633 -85 2.0063 -337 -81

QE (4.2.1) 2.0037 -540 -86 2.0056 -293 -82
∆ 0.0007 19% 1% 0.0007 13% 1%

Experiment

Ar-matrix [96] 2.0038 665 166 - - -
Ar-matrix [107] 2.0036 - - - - -
Kr-matrix [108] 2.0013 745 - - - -
Kr-matrix [107] 2.0013 - - - - -
Xe-matrix [95] 2.0030 517 - - - -
Xe-matrix [109] 2.0030 532 - - - -

Table 4.2: EPR-parameters of small radicals computed with Quantum Espresso [80]
(v4.2.1) and Gaussian03 [110]. For the PP-calculation, we take the relaxed
atomic structure from the all-electron calculation. For the silyl radical we
also show experimental results for di�erent host matrices.

the k-point sampling. Furthermore, we veri�ed to note that the convergence trends
discussed here are representative for all db-models.
Within the supercell approach it is necessary to check for the interaction between the

defect and its periodically repeated images. For that purpose we consider the EPR-
parameters of the V (SiHO) and V (SiH)3 defect for di�erent supercell sizes. In doing so,
we keep the overall geometry �xed (Figure 4.1) to decouple electronic from structural
e�ects. We see from Table 4.1 that the di�erence between the small and the large
supercell is only signi�cant for the g-tensor. Consequently, as for the k-point sampling,
we will use larger supercells whenever we also need well-converged g-eigenvalues.
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4.2.2 Comparison to an all-electron method

As mentioned in Section 3.1.2, to check for the quality of a pseudopotential, one should
carry out test calculations and compare them with corresponding all-electron calcula-
tions. For that purpose, we compute the EPR-parameters for the silyl and tetrasilyl
radical with Gaussian03 [110] using again a PBE-functional [60]. To ensure conver-
gence with respect to the Gaussian basis set we employ a 6-311+G(d) set for the non-
relativistic structural optimization. For the calculation of the EPR-parameters we use
an uncontracted WTBS basis set for silicon and the EPR-III basis set for hydrogen,
with a Douglas-Kroll-Hess 0-order relativistic Hamiltonian. To disentangle methodolog-
ical from structural e�ects, we take the relaxed Gaussian03 structure2 also for the
GIPAW-calculation.
For the comparison of both methods we consider gIso as well as the hyper�ne pa-

rameters (Table 4.2). We obtain reasonable agreement for the isotropic g-value (within
10−3), and for the anisotropic hyper�ne parameter (about 1%). In contrast, there is a
signi�cant deviation for the a-parameter. It can be partly explained by the neglect of
core polarization in our pseudopotential approach. The hyper�ne parameters for hy-
drogen have a similar accuracy, speci�cally the deviations for a are only slightly larger
(28% [SiH3], 15% [Si4H9]) and for the b-parameter they are on the same order as for the
db-atom.
Furthermore, Table 4.2 illustrates the large scattering in the measured EPR-para-

meters for SiH3. The gIso-value depends on the host matrix, since di�erent experiments
on the same rare-gas matrix deviate from each other by 2 ·10−4 at the most. For gIso and
a there is actually acceptable agreement between the experiment in an Ar-matrix [96]
and the all-electron calculation. Notably, in both cases the relative sign between a and
b is also the same. However the discrepancy in the anisotropic parameter is very large
(bExp v 2bTheory), but a detailed analysis of this deviation requires further experimental
con�rmation of bExp . We also see from the table that the a-parameter has a considerable
variation amongst di�erent measurements. Additionally, to our knowledge, there is no
experimental EPR-data available for the Si4H9 radical. Both aspects illustrate that we
can use these small radicals only for a theory-theory comparison.

4.2.3 Comparison to experiment

As we have just seen, molecular systems cannot be used to validate theory against
experiment. However, as mentioned, the EPR-parameters for the V (SiHO) c-Si db-
system have been measured with a su�cient accuracy [41]. Two other defect systems
have shown a db-character in experiment [42, 105], namely the V (SiH) and the V (Si3P)
defect. But in these systems the defect geometry should be lowered by a JT-distortion
and it is a priori unclear whether we can reproduce this e�ect properly.
In silicon essentially three kinds of JT-systems have been studied so far, namely the

monovacancy [30, 97, 98, 99], the E-center [42, 105, 111], and the divacancy [112, 113,

2Actually both yield similar relaxed structures. The bond angles deviate only by 0.2◦ and the bond
lengths by 0.01 Å.
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V (SiHO) V (SiH)3 V (Si3H) V (Si3P)

gIso

theory 2.0059 2.0074 2.0060 2.0068
exp. [41, 42, 105] 2.0061 - 2.0070 2.0071
∆ -0.0002 - -0.0010 -0.0003

gX

theory 2.0082 2.0108 2.0121 2.0128
exp. [41, 42, 105] 2.0086 - 2.0114 2.0112
∆ -0.0004 - 0.0007 0.0016

gY

theory 2.0081 2.0108 2.0063 2.0079
exp. [41, 42, 105] 2.0084 - 2.0090 2.0096
∆ -0.0003 - -0.0027 -0.0017

gZ

theory 2.0013 2.0005 1.9995 1.9996
exp. [41, 42, 105] 2.0013 - 2.0006 2.0005
∆ 0 - -0.0011 -0.0009

Θ
theory 39.1◦ 35.3 ◦ 27.2◦ 30.6◦

exp. [41, 42, 105] 39.2◦ - 32.4◦ 32◦

∆ -0.1◦ - -5.2◦ -1.4◦

Table 4.3: Comparison of ab initio calculations with experiment for the g-tensor for
various deep-level defects in crystalline silicon. The isotropic component is
denoted by gIso , and gX , gY , gZ stand for the eigenvalues associated with the
corresponding principle axis. Θ is the angle between Z and the [110]-axis.

114, 115]. For the E-center and the divacancy, there has been a long debate concerning
the true symmetry-lowering relaxation mode of the ground state, which can be either
resonant or pairing [99, 116]. In the case of the pairing JT-distortion two defect neighbors
form a long Si-Si bond, so that the distance between these atoms d1 becomes smaller
than their common distance to the third neighbor d2 (i.e. d1 < d2). The resonant JT-
relaxation mode corresponds to the opposite case: two atoms move apart while the third
neighbor moves towards both atoms, so that �nally there are two shorter distances and a
larger one (i.e. d1 > d2). As ab initio calculations have shown, both con�gurations have a
similar formation energy and have consequently a comparable stability [99, 117, 118, 119].
First we have to specify the computational parameters for relaxation. Structural

convergence3 is achieved on a 3 × 3 × 3 k-point mesh and for a plane-wave cuto� of
30 Rydberg. The initial structures re�ect the perfect D3d defect symmetry, and in
particular, we do not place any symmetry constraints on the expected JT-distortion for
the V (Si3H) and V (Si3P) db-model. The maximum force on an atom is below 4 meV/Å
which is adequate for getting the characteristics of the db-models.
The relaxation pattern strongly depends on the chemical composition of the defect

complex. In the case of V (SiHO) the two silicon atoms bonded to the oxygen move into
the vacancy, while in turn, the db-atom and the neighbor with the attached hydrogen
move outwards. The resulting defect symmetry is C1h in accordance with previous
�ndings [41, 121]. The bond lengths of the db-atom to its next neighbors are shorter in

3The a-parameter is usually a good indicator for the convergence of the defect structure.
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V (SiHO) V (SiH)3 V (Si3H) V (Si3P)

a (MHz)

theory -292 -314 -337 -350
exp. [41, 42, 105] -297 - -328 -347
∆ 5 (2%) - -9 (3%) -3 (1%)
theory [120] (tb) - -498 -457, -464 -

b (MHz)

theory -61 -60 -52 -52
exp. [41, 42, 105] -61 - -53 -52
∆ 0 - 1 (3%) 0
theory [120] (tb) - -56 -47, -44 -

AX (MHz)
theory -230 -253 -285 -300
exp. [41, 42, 105] -236 - -275 -295

AY (MHz)
theory -231 -253 -285 -300
exp. [41, 42, 105] -236 - -275 -295

AZ (MHz)
theory -414 -434 -442 -451
exp. [41, 42, 105] -418 - -435 -450

Θ

theory 34.7◦ 35.3◦ 35.4◦ 35.4◦

exp. [41, 42, 105] 35.3◦ - 35.3◦ 35.3◦

∆ -0.6◦ (2%) - 0.1◦ (0%) -0.1◦ (0%)
theory [120] (tb) - 35.3◦ 35.3◦, 35.5◦ -

Table 4.4: Comparison of ab initio calculations with experiment for the A-tensor for
various deep-level defects in crystalline silicon. a stands for the isotropic and
b for the anisotropic hyper�ne parameter. In addition to that, the eigenvalues
of the A-tensor, AX , AY , AZ , are reported. Θ is the angle between Z and the
[110]-axis. The di�erence between experiment and theory is given by ∆. For
completeness we also mention the results from a self-consistent, semi-empirical
tight-binding (tb) calculation [120] for the hydrogen-vacancy db-defects.
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comparison to bulk silicon whereas the corresponding bond angles are larger. Thus the
db-atom is essentially pressed into the network. Such a tendency can also be seen for the
V (SiH)3 db-model, for which all defect neighbors actually move away from each other
due to the small space in the vacancy. In this case, the relaxed defect symmetry is C3v,
and the db-geometry is again rather planar. For the V (Si3H) and V (Si3P) db-model one
obtains the experimentally observed C1h defect-symmetry [105] as well as the formation
of a long Si-Si bond with a length of 3.08 Å and 2.95 Å, respectively. The relaxation
corresponds in both cases to a pairing JT-distortion with the larger defect-neighbor
distance being 3.67 Å and 3.59 Å, respectively. The db-atom remains essentially at
the bulk lattice site. However, whereas the SiH group of V (Si3H) moves outwards, the
phosphorus atom of the V (Si3P) db-model relaxes towards the defect center. The db-
geometry of both models is not uniform with respect to the backbond neighbors. On
average the angles are smaller compared to the V (SiHO) and V (SiH)3 model. This is
also re�ected in the hyper�ne parameters as we will discuss below.
We note in passing that the relaxation pattern is rather insensitive to the computa-

tional details. At �rst glance, this is surprising, since the modelling of the monovacancy
shows the opposite tendency [97, 98, 99, 122]. Apparently the presence of an impurity
stabilizes the JT-distortion.
We compare in Table 4.3 the results of our g-tensor calculations with experimental

data. The overall agreement is on the same order as the above mentioned methodological
di�erences between the GIPAW- and the all-electron calculation for small molecular
systems. In general, the theoretical eigenvalues tend to underestimate the experimental
ones, and the di�erences are slightly larger for the systems with a JT-distortion. The
angle Θ between Z and the [110]-axis shows a negligible deviation for the V (SiHO) defect
and a large one for the V (Si3H) defect. The gIso-value has a smaller variation among
di�erent db-defects compared to surface db-defects [123]. Besides this one can clearly
see how the JT-distortion a�ects the g-tensor. First, it breaks the uniaxial symmetry
observed for the V (SiHO) and V (SiH)3 model. This is intuitively clear, since the bonding
state lowers the electronic symmetry, which is crucial for the g-tensor [30, 31]. Secondly,
the Z-axis is oriented di�erently for the JT-distorted systems, since Θ is larger than
the ideal value (35.3◦) for the V (SiHO) model but smaller for the V (Si3H) and V (Si3P)
defect.
The calculated hyper�ne tensor agrees very well with experiment (see Table 4.4) with

an error on the order of 10 MHz for the isotropic coupling and a practically vanishing
one for the anisotropic coupling. The larger discrepancy for the a-parameter is ex-
pected, since this quantity depends on the spin density ρ(r) close to the nucleus [30],
whereas the b-parameter is an inherently integrated quantity [30, 40]. Consequently, the
isotropic parameter should also be more sensitive to di�erences in ρ(r). Interestingly,
the agreement between theory and experiment is much better than expected from the
pure theoretical error bar derived from our molecular test systems. We attribute this
to a less pronounced e�ect of core polarization in the crystalline environment, since
the spin density is able to delocalize into the network and it is consequently smaller in
magnitude at the db-atom. The variation in the hyper�ne parameters among the con-
sidered models is larger than for the surfaces [123], which can be explained by the larger
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Figure 4.4: The relation between the isotropic hyper�ne constant and the mean bond
angle between the db-atom and its backbond neighbors. The trend follows
the expectation of sp-hybridization of the db-orbital (as discussed in detail
in Section 4.4). The bond lengths among the db-models vary insigni�cantly
(on the order of 0.02 Å).

variations in the db-geometry as well as the e�ect of the long Si-Si bond in the case of
the JT-distorted systems. The a-parameter indicates the s-like character of the wave-
function [40], which in turn is related to the bond angle between the db-atom and the
backbond atoms (Figure 4.4). As visible, the coupling becomes smaller with increasing
bond angle in agreement with the sp-hybridization picture of the db-orbital. However,
one does not observe a corresponding increase of the b-parameter (which probes for the
p-like character in sp-bonded systems like silicon), since this quantity is more a�ected by
the long Si-Si bond in the case of the JT-distorted systems (Table 4.4) as expected from
its stronger spatial dependence on the defect surrounding compared to a. It is interest-
ing to note that the JT-distortion has no e�ect on the symmetry and the orientation
of the A-tensor. Overall these �ndings clearly show that the g-tensor is sensitive to the
electronic structure beyond the spin-carrying db-orbital, and the hyper�ne tensor to the
local spin-density distribution.
It is also illuminating to consider the superhyper�ne coupling of neighbors because

it gives a better understanding of the spin distribution within the network. For that
purpose we list the isotropic hyper�ne coupling of relevant Si atoms in Table 4.5. First,
we recognize that the net coupling between the atoms forming the weak bond is almost
the same for the V (Si3H) and V (Si3P) model. The rather small value agrees well with
the expectation of a long Si-Si bond between both atoms. Furthermore, for the V (Si3P)
defect, there is again excellent agreement with the experimental value aExp = 37 MHz
[42], with the di�erence thus being only 5 MHz. This again proves that we are able
to reproduce the measured defect geometry unambiguously. From the results it is also
obvious that some spin leaks out into the local environment of the weak Si-Si bond, since
each atom has one neighbor with a signi�cant isotropic coupling. Besides these e�ects
speci�c to the V (Si3H) and V (Si3P) model, one obtains in general a strong superhy-
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Si-H

SiJT

Si

SiJT

-----------------
2nd / 3rd bb

SiJT-bb

SiJT-bb
atom V (SiHO) V (SiH)3 V (Si3H) V (Si3P)
Si (JT) - - -40 (2) -40, -42
Si (JT-bb) - - -24 (2) -28 (2)
Si (H) -25 -11, -12 (2) -4 -
Si (2nd-bb) -31,-35 (2) -35 (3) -29, -32 (2) -29, -31 (2)
Si (3rd-bb) -21 (3) -17, -18 (2) -14, -15 (2) -13, -14 (2)

Table 4.5: On the left side: Illustration of the characteristic defect atoms for the V (Si3H)
model. Two vacancy neighbors [Si (JT)] form a long Si-Si bond. Each bond
partner has one backbond neighbor with a signi�cant isotropic coupling [Si
(JT-bb)]. One vacancy neighbor is passivated by hydrogen [Si (H)]. Further
characteristic atoms are located at the backbond side of the dangling bond
[Si (2nd-bb), Si (3rd-bb)]. On the right side: Table listing the corresponding
isotropic hyper�ne couplings for the db-models considered in this section. The
number of Si-atoms is given in brackets.

per�ne coupling on the second backbond neighbors of the db-atom, which has already
been observed in previous studies [123, 124]. For the V (Si3H) model, the deviation from
experiment [125] is again rather small (3 MHz). Overall, the isotropic coupling at the
backbonds is determined by the bond angle at the db-atoms. The larger the bond an-
gle (see Figure 4.4), the larger the isotropic hyper�ne coupling at the backbonds. This
observation is in agreement with the expectation that for large bond angles more spin
density is pressed into the network.
For completeness we mention that the hyper�ne parameters for the hydrogen and

phosphorus atom are also close to their experimental counterparts. In the case of hy-
drogen it is important to use a functional based on the general-gradient approximation
[126] to obtain a reasonable isotropic coupling constant. For the V (SiHO) defect (the
only model with a signi�cant a-coupling) it then di�ers by 1 MHz compared to the ex-
perimental value [41], whereas the b-parameter shows a discrepancy of about 0.6 MHz.
The hyper�ne interaction of the phosphorus atom [42] is also reproduced well by theory
(the di�erence is practically vanishing).
Concerning the relative orientation of the g- and A-tensor, it is interesting to note that

they are perfectly aligned (the angle α between gZ and AZ is zero) only for the V (SiH)3
defect with C3v-symmetry. For the V (SiHO) and V (Si3P) defect with C1h-symmetry,
both tensors have slightly di�erent orientations with α being 4.45◦ and 4.80◦ respectively.
The V (Si3H) has an even larger angle (α = 8.22◦). In particular the deviation for the
V (SiHO) db-model is remarkable, since it shows that collinearity is not always ful�lled
when both tensors are uniaxial.
In this section we have established the convergence of the input parameters. Addition-

ally we have compared the GIPAW-formalism with an all-electron approach and with
experiment. In particular the excellent agreement between our theoretical method and
experiment is remarkable (∆gIso = 0.001, ∆a = 3%, ∆b = 3%), so that we conclude
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radical
gIso gX gY gZ AX/Y AZ a b

(MHz) (MHz) (MHz) (MHz)
SiH3 2.0038 2.0046 2.0046 2.0022 -484 -743 -535 -86
Si2H5 2.0043 2.0065 2.0044 2.0021 -357 -611 -442 -85
Si5H7 2.0049 2.0076 2.0052 2.0020 -276 -525 -359 -83
Si4H9 2.0056 2.0075 2.0075 2.0019 -213 -457 -294 -82
Experiment

a-Si:H [28] 2.0058 2.0079 2.0061 2.0034 -151 -269 -190 -39
a-Si:H [44] 2.0067 2.0080 2.0080 2.0040 -154 -305 -205 -50
a-Si:H [45] 2.0056 2.0065 2.0065 2.0039 -143 -333 -206 -63

Table 4.6: EPR-tensors for small silicon radicals. From top to bottom, hydrogen at
the backbond of the dangling bond is successively replaced by SiH3-groups.
Furthermore, we compare the values with experimental data on a-Si:H.

that our approach is able to characterize db-defects in crystalline silicon. Additionally
we have shown that the EPR-parameters provide new insights into structure-related
aspects such as the e�ect of a pairing JT-distortion.

4.3 General characteristics of the db-defect

4.3.1 Molecular dangling bonds

In this section we discuss the characteristics of molecular and crystalline dangling bonds.
This knowledge is also crucial for understanding the actual e�ect of the amorphous en-
vironment in the case of the a-Si:H dangling bond. Let us start by considering the
molecular db-models described in Section 4.1, which correspond to the simple exper-
imental picture [42, 43, 44, 45] of a dangling bond with a localized wavefunction of
dominant p-character.
The trends for the EPR-tensors are reported in Table 4.6. We see that the gIso-value

increases with the size of the cluster. At the same time, the energy di�erence EGap

between the highest unoccupied and the db-orbital becomes smaller (Figure 4.5(a)).
This inverse trend between gIso and EGap re�ects the relation between g and EGap

in the second-order perturbation picture (Equation (2.10)). We also recognize that
gZ successively becomes smaller the more we replace the backbond hydrogen atoms by
silicon. The a-parameter also decreases with the cluster size, and for such simple systems
we obtain an almost linear relation between a and gIso (Figure 4.5(b)). Furthermore,
the b-parameter becomes smaller from the silyl to the tetrasilyl radical. Overall this
characterizes a spin delocalization, which is related to the polarization of hydrogen.
Figure 4.1(b) visualizes this e�ect for the tetrasilyl radical. In this illustration, only
hydrogen atoms oriented along the AZ-axis are covered with spin density thus indicating
a strong isotropic coupling. To quantify this e�ect, let us consider Table 4.7, which
shows the a-value of these hydrogen atoms. As we see the net spin polarization of
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Figure 4.5: Relation between the isotropic value of the g-tensor and (a) the energy be-
tween the highest occupied and the lowest unoccupied orbital, and (b) the
a-parameter respectively. From silyl to tetrasilyl, hydrogen at the backbond
is successively replaced by silicon.

# a (MHz) r (Å) β
SiH3 3 18 1.49 72.3◦

Si2H5 1 72 3.22 47.7◦

Si5H7 2 67 3.22 50.4◦

Si4H9 3 63 3.20 52.4◦-52.5◦

Table 4.7: Signi�cant isotropic hyper�ne couplings of hydrogens oriented on the back-
bond side of small db-clusters. The number of atoms is given in the column
marked by '#'. The distance between the hydrogen atom and the db-atom
is denoted by r, and β is the angle between the Si-H bond direction and the
AZ-axis of the db-atom. Note that the sign of the coupling is caused by the
positive nuclear gn-factor of hydrogen.

these hydrogen atoms increases systematically with cluster size, and their orientation
with respect to the db-atom is practically the same. Thus there is a net spin transfer
from the db-atom to AZ-oriented hydrogen, which becomes more signi�cant with the
number of accordingly aligned hydrogen atoms (i.e. the cluster size), and it reduces the
a-parameter on the db-atom.
The silyl and tetrasilyl radical also exemplify the textbook notion of a dangling bond.

First, for these radicals both EPR-tensors are uniaxial (Table 4.6) and collinear (Figure
4.1(b)). Secondly, we can describe the db-orbital by a linear combination of atomic
orbitals (Equation (2.19)). In particular, as we will discuss later on, this means that the
bond-angle trend is characterized by a simple sp-hybridization picture. However, not all
of these characteristics also occur for the other radicals, which have a chemically-mixed
backbond con�guration. The g-tensor of the Si2H5 and Si5H7 radical is rhombic and
there is a small deviation from collinearity for the EPR-tensors (on the order of 2◦-3◦).
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db-model
gIso gX gY gZ AX AY AZ a b

(MHz) (MHz) (MHz) (MHz) (MHz)
2× 2× 2

V4(SiH)9 2.0071 2.0109 2.0109 2.0014 -233 -233 -427 -297 -65
Si(111):H 2.0070 2.0100 2.0100 2.0010 -233 -233 -427 -298 -65
V (SiHAl2) 2.0156 2.0206 2.0196 2.0066 -139 -140 -262 -180 -41
V (SiP)3 2.0091 2.0130 2.0130 2.0013 -332 -332 -502 -389 -57
3× 3× 3

V (SiHO) 2.0059 2.0082 2.0081 2.0013 -230 -231 -414 -292 -61
V (SiH3) 2.0074 2.0108 2.0108 2.0005 -253 -253 -434 -314 -60
Experiment

a-Si:H [28] 2.0058 2.0079 2.0061 2.0034 -151 -151 -269 -190 -39
a-Si:H [44] 2.0067 2.0080 2.0080 2.0040 -154 -154 -305 -205 -50
a-Si:H [45] 2.0056 2.0065 2.0065 2.0039 -143 -143 -333 -206 -63

Table 4.8: EPR-tensors for crystalline db-models in 64-atom supercells (without the de-
fect) and 216-atom supercells (without the defect, taken from Section 4.2.3)
in comparison to experimental values for a-Si:H.

Finally, does the tetrasilyl radical indeed describe well the experimental results for
a dangling bond in a-Si:H? From our results (Table 4.6) we conclude that the cluster
model is able to reproduce the characteristics only in parts. For example, since the
structure is symmetric, its g-tensor does not show the recently observed rhombicity
[27, 28]. Despite that, the theoretical hyper�ne parameters are too large and indicate a
too strong localization of the spin density. This aspect is remarkable since the relaxed
geometry of the radical is already close to planar (bond angles are around 116◦). Thus it
is not possible to overcome the discrepancy between theory and experiment by changes
in the local geometry alone (further details are given in Section 4.4.1). Consequently,
a small db-model (such as the tetrasilyl radical) is insu�cient for characterizing the
a-Si:H dangling bond as assumed in previous studies [44, 45, 127, 128]. The in�uence of
the defect surrounding plays an important role and its e�ect can only be captured by
network models to which we will turn in the next subsection.

4.3.2 Crystalline dangling bonds

We use 2×2×2 supercells (defect-free: 64 silicon atoms) for the db-models described in
Section 4.1. Furthermore, we include the already discussed �ndings for the V (SiHO) and
V (SiH)3 db-model carried out in 3×3×3 supercells (defect-free: 216 silicon atoms). The
dangling bond at the H-passivated Si(111) surface is modeled by a 2×2 slab consisting of
8 layers of silicon atoms, where we only relax the surface atoms. To remove the arti�cial
interaction with periodic images we also include a su�ciently large vacuum layer (9
layers). For the g-tensor it is important to keep in mind that there is a supercell e�ect
on the order of 10−3 (Table 4.1). However, this accuracy is su�cient for our purposes,
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in particular, since we are more interested in the less sensitive hyper�ne tensor.
Again let us �rst look at the general trends among the db-models (Table 4.8). We

recognize that essentially all of them have uniaxial g- and A-tensors. The only exception
is the V (SiHAl2) defect with a rhombic g-tensor. However the corresponding db-state is
close to the valence-band maximum as e.g. visible from the giso-value [129]. Therefore
it should also couple to a larger number of orbitals, and this complex coupling can
easily reduce the symmetry of g. The isotropic g-value of the other localized db-models
varies by 0.003 but e.g. the defects with only hydrogen are grouped together in a
smaller interval. Thus the chemical environment marks an important in�uence on gIso .
Furthermore, we note that gZ is smaller than the free-electron value 2.0023 for these
db-models.
The a-parameter of the localized db-models is relatively constant at around -300 to

-400 MHz, with the b-parameter in between -57 to -65 MHz. The bond parameters of the
db-atom re�ect this rather small variation. The bond lengths deviate by only 0.03 Å,
and the bond angles by up to 3.4◦ from the tetrahedral angle. This rather homogeneous
picture also holds for the spin distribution in the network. Among the models, the
second-nearest neighbors show the strongest isotropic superhyper�ne coupling on the
order of -30 to -40 MHz (10%). The EPR-tensors for the db-models with only hydrogen
are collinear. But for the other db-models (V (SiHAl2), V (SiHO), V (SiP)3) deviations
occur and they are therefore related to the presence of the corresponding impurities and
the lower defect symmetry.
The comparison between the theoretical molecular and crystalline dangling bonds

reveals two interesting aspects. The gIso-value of the cluster models is in general smaller
than for the crystalline db-defects. This can be explained by their larger (HOMO-
LUMO) gap, which causes smaller deviations from the free-electron value (Equation
(2.10)). Secondly, the tetrasilyl radical has a lower isotropic and a larger anisotropic
hyper�ne coupling compared to the crystalline models. As we will discuss in Section
4.4.2, this is caused by the defect geometry and can be understood by an sp-hybridization
picture of the db-orbital.
Finally, let us turn to the question of how accurate such db-models can describe the

EPR-parameters of the a-Si:H dangling bond. For the g-tensor we see from Table 4.8 that
the crystalline models tend to have larger values. Furthermore, they also do not capture
the observed rhombicity. The a-parameter of the crystalline db-models is by about 100
MHz larger than the experimental �nding but as mentioned before more-or-less constant
among di�erent theoretical models. On the other hand, the b-parameter deviates among
di�erent measurements too much to be conclusive. However, both hyper�ne parameters
together show that theory points to a higher degree of spin localization as observed
in experiment. In this context it is interesting that the db-atom has su�ciently small
hyper�ne couplings in the case of V (SiHAl2). However the g-values clearly show the
di�erent driving forces behind the delocalization. For the V (SiHAl2) defect it is caused
by the hybridization of the db-orbital with valence-band states. On the contrary, the
delocalization mechanism in a-Si:H preserves the mid-gap character of the defect.
In conclusion, vacancy-based c-Si dangling bonds can be used to study the in�uence of

the further defect surrounding and they have a relatively characteristic EPR-�ngerprint.
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Figure 4.6: Distance dependence of the hyper�ne parameters of hydrogen on top of a
Si(111)-surface. Three di�erent molecules (H2, SiH4, Si2H6) are considered.
The disilane molecule is oriented in such a way so that the three hydro-
gen atoms are actually separated from the db-atom by the same distance
d. The distance ddb is measured from the db-atom, and dCoG from the
center-of-gravity of the spin density. The black line denotes the point-dipole
approximation according to Equation (2.18).

However they do not capture all features of the a-Si:H dangling bond and di�er most
notably by a higher degree of spin localization.

4.3.3 Hydrogen

We have seen that backbond hydrogen can have a signi�cant spin polarization. Therefore
it is interesting to ask, whether the same e�ect is also observable on the opposite side.
To answer this question we consider H-containing molecules over the dangling bond on a
hydrogenated Si(111)-surface (Section 4.3.2). For the molecule we use the dihydrogen-,
the silane- (with one Si-H bond aligned to the z-direction), and the disilane molecule
(with three of the hydrogens spanning a plane parallel to the surface). We compute the
distance dependence of the hyper�ne parameters for a �xed surface geometry to remove
structural e�ects. However, we have also checked the trends for relaxation and they lead
to the following intuitive picture. The closer the molecule gets to the dangling bond the
more this atom is pressed into the network, thus the db-geometry becomes planar. The
in�uence of such a bond-angle variation will be studied systematically in Section 4.4.2.
Figure 4.6 shows that minority spin density builds up at the hydrogen atom the closer

it gets to the dangling bond in the case of the dihydrogen and silane molecule. The
upper hydrogen of the H2 molecule has a signi�cant majority spin polarization and the
corresponding isotropic coupling is on the order of several hundred MHz. Similarly, the
a-parameter of the silicon atom of the SiH4 radical increases for ddb → 1.5 Å. Only for
the disilane molecule, we observe a (majority) spin polarization of the closest hydrogen
atoms. Overall the conclusion is that hydrogen can be polarized for small distances from
the db-atom. However the results strongly depend on the atoms to which the closest
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hydrogen is bound to and there is no unique trend.
Experimentally the point-dipole approximation (Equation (2.18)) is used for estimat-

ing the distance dCoG between the closest hydrogen atom and the center-of-gravity of the
spin density [41, 130]. However, the range of applicability is unclear, and our systematic
study actually clari�es this open question. As we see from Figure 4.6, the anisotropic
coupling of the hydrogen atom agrees well with the classical picture for dCoG > 2.8−3.5
Å. In this case, the point-dipole approximation yields a good estimate for the spatial
separation between the hydrogen atom and the dangling bond.

4.4 Bond-parameter trends of EPR-parameters

4.4.1 Bond-parameter dependence of the tetrasilyl radical

So far we have only discussed the phenomenology of our molecular and crystalline models.
However, their true value consists in providing a homogeneous environment for studying
systematically the e�ect of changes in the local db-geometry on the EPR-parameters.
Such conceptual investigations are particularly useful for the interpretation of the EPR-
parameters in a-Si:H, where the defect geometry is far more complex.
Let us start by considering the tetrasilyl radical, which is the simplest db-system

with a Si3 backbond con�guration. For the study of the bond-length dependence of
the EPR-parameters, we systematically vary the distance between the db-atom and
its three neighbors for three di�erent, �xed bond angles (as depicted in Figure 4.7).
For the bond-angle dependence, we carry out the following procedure to minimize the
accompanied change in the bond lengths. First we move the db-atom perpendicular to
the plane spanned by its neighbors. In a second step we relax the system with S/PHI/nX
(with a PBE XC-Functional, Troullier-Martin pseudopotential) with the constraint that
all atoms can change their positions only along the bond lengths l. Thanks to this
procedure, l only varies by 0.06 Å from the tetrahedral to the planar con�guration.
Figure 4.7 shows the bond-length dependence of the g-tensor. We see that the nor-

mal g-tensor component linearly decreases the more we stretch the radical. This trend
becomes more pronounced the larger the bond angle. In an interval of about 10% of the
relaxed bond length l0, we can describe this by

g⊥(l) = kg(l0 − l) + g0

where kg =0.0038, 0.0047, 0.0054 (1/Å) and g0 =2.0083, 2.0074, 2.0073 for α =109.5◦,
115.9◦, 120◦ respectively. Notably, this trend cannot be related directly to the energy
gap between the db-orbital and the lowest unoccupied orbital (or the other orbitals). A
linear l-dependence is also found for the isotropic hyper�ne coupling (Figure 4.8) in the
range of 1.8 and 2.3 Å, i.e.

a(l) = ka(l0 − l) + a0

with ka =-272, -284, -149 (MHz/Å) and a0 =-477, -294, -135 MHz for α =109.5◦, 115.9◦,
120◦ respectively. Thus the gradient is stronger for a non-planar db-geometry. Overall

67



1.8 2.0 2.2 2.4 2.6 2.8
2.002

2.004

2.006

2.008

2.010

bond length HÞL

g 109.5°-g¬ �þ

115.9°-g¬ �þ

120.0°-g¬ �þ

Figure 4.7: Relation between the bond length l and the eigenvalues of the g-tensor for
the tetrasilyl radical for three di�erent bond angles. The gray line indicates
the relaxed bond length lr, and the dot-dashed lines a variation of about 4%
with respect to lr.

1.8 2.0 2.2 2.4 2.6 2.8

-400

-300

-200

-100

bond length HÞL

a
HM

H
zL

1.8 2.0 2.2 2.4 2.6 2.8

-95

-90

-85

-80

-75

-70

-65

bond length HÞL

b
HM

H
zL

109.5°
115.9°
120.0°

Figure 4.8: Relation between the bond length l and the hyper�ne parameters for the
tetrasilyl radical for three di�erent bond angles. The gray line indicates the
relaxed bond length lr, and the dot-dashed lines a variation of about 4%
with respect to lr.

68



90 95 100 105 110 115 120

2.005

2.010

2.015

2.020

2.025

2.030

bond angle HdegL

g

g¬

gþ

Figure 4.9: Relation between the bond angle α and the eigenvalues of the g-tensor for
the tetrasilyl radical. The gray line indicates the relaxed bond angle αr, and
the dot-dashed lines a variation of about 4% with respect to αr.

the trends for the hyper�ne parameters depend on the db-orbital character and the
already discussed spin-polarization e�ect of hydrogen oriented along AZ . The db-orbital
for the non-planar geometry becomes more s-like with increasing bond length for l-values
not larger than 7-18% whereas the b-parameter decreases at the same time. For hydrogen
aligned to AZ , the stretching of the radical has the e�ect that the spin polarization
becomes smaller due to the movement away from the spin density. Consequently the
coupling between these hydrogen atoms and the dangling bond reduces with increasing
l and this explains the trends at the db-atom. The db-orbital is purely p-like4 in the
planar con�guration and thus there is essentially an increase in the b-parameter for
tensile strain. The coupling to the AZ-oriented hydrogen is overall smaller due to the
large bond angle. In this case one observes a rather small spin redistribution to the other
hydrogen atoms for larger l-values. For all bond angles, we essentially obtain a build-up
of majority spin density on the silicon db-neighbors the more we stretch the radical and
this is caused by the breaking of the Si-Si bond.
The bond-angle dependence of the g-tensor is illustrated in Figure 4.9. It shows that

the parallel component of g falls o� gradually with bond angle α. Quantitatively the
g-tensor is more sensitive to changes in α than l. The trend can be explained by the
energy di�erence between the LUMO and HOMO, which increases with bond angle thus
causing smaller g-values (Equation (2.10)). The admixture of s-character to the db-
orbital lowers the energy of the corresponding state and therefore the di�erence to the

4In a planar con�guration (α = 120◦), the Si-Si bond orbitals are sp2-hybrids [9, 39, 131] while the
db-orbital is a pure p-state. At the tetrahedral angle (α = 109.5◦) the backbond orbitals and the
db-orbital are equivalent sp3-hybrids (25% s, 75% p).
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magnitude (α1 = α2). The lines indicate gX , gY , and the gray line the
relaxed bond parameters.

bonding states. This simple energetic picture is completed by the hyper�ne parameters,
which we will discuss and compare in the next subsection with the crystalline db-models.
For completeness, we mention that a comparable dependence of the g-tensor has also
been obtained with a tight-binding approach [132]. However this study predicts a larger
deviation of gZ from the free-electron g-value with α.
As mentioned, a recent a-Si:H multifrequency EPR-study [27, 28] indicated a rhom-

bic g-tensor, whereas it is uniaxial for our localized crystalline db-models (Table 4.8).
The tetrasilyl radical is an ideal test system to investigate how changes in the bond
parameters can lower the symmetry of the g-tensor. For that purpose, we elongate the
molecule either by varying one or two bond lengths or two bond angles (so that these
two angles remain the same) respectively. The results are reported in Figure 4.10, and
they essentially illustrate that �uctuations in the bond parameters can indeed cause a
rhombic g-tensor. Quantitatively, the corresponding deviation between gX and gY is on
the order of a few 1/1000ths. The trend is slightly stronger when we only change one of
the lengths instead of two simultaneously. In principle it would also be possible to study
the e�ect of more complicated bond-parameter distortions systematically. However this
would not add further insights into the rhombicity of the g-tensor. The important mes-
sage here is that such �uctuations in the local bond parameters reduce the symmetry of
the g-tensor.

4.4.2 Bond-angle dependence of c-Si models

Small clusters are ideal to study the e�ect of the local bond geometry on the EPR-
parameters [46, 128, 133]. However they cannot capture the e�ect of the further defect
surrounding. For that reason we now turn to a conceptually similar study for selected
crystalline db-models. Here we focus on the hyper�ne parameters, which yield the
relevant information on the spin distribution in the network.
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To study the in�uence of the bond angle on the hyper�ne parameters, we again con-
sider 2 × 2 × 2 supercells using the following relaxation scheme. First we displace the
db-atom from its lattice position. We then relax only the backbond atoms so that the
bond length �uctuates only by 0.06 Å at the most. This scheme is carried out for all
models at the ideal lattice structure to make the comparison independent of other geo-
metrical e�ects. Only the hydrogen atoms are relaxed to recover the correct Si-H bond
length to ensure that the corresponding bonding states are well below the valence-band
edge. To reduce the erroneous occupation of defect resonances below the topmost va-
lence band, we use a 7× 7× 7 k-point grid. An alternative strategy to circumvent this
problem consists in using a smearing function [87].
The bond angle α determines the sp-hybridization at the db-center. As discussed in

the previous section, the db-orbital becomes purely p-like for 120◦. For the hyper�ne pa-
rameters this implies that the dipolar coupling increases with α whereas the a-parameter
decreases at the same time. Indeed, such trends are obtained for the tetrasilyl radical
(Figure 4.11) but signi�cant deviations occur for some of the crystalline db-models. For
small bond angles, both hyper�ne parameters decrease, indicating a delocalization of the
spin away from the db-atom. This e�ect can be rationalized as follows. The variation
of the bond angle does not just in�uence the sp-hybridization but it also a�ects the
energetic position of the db-level. With respect to a pure p-orbital, an admixture of s-
character implies a lower energy. However, as the db-level approaches the valence-band
edge, it starts to hybridize with the network states and to delocalize. At which angle
this occurs depends on the original position of the state in the relaxed con�guration
and thus on the chemical environment of our models. Electronegative elements such
as phosphorus raise the db-level due to Coulombic repulsion, and thus delocalization
comes into play only at small bond angles. Electropositive elements like aluminum, on
the other hand, pull the level close to the valence band. Therefore, the singly occupied
level is delocalized already for bond angles slightly below 120◦. Note that this e�ect
is largely absent in small cluster models, since quantum con�nement increases the gap
between the occupied and unoccupied states.
For further illustration let us look at the partial density-of-states de�ned by

D(E) =

∫ ∑
n

δ(E − εn(k))
∑
i=s,p

|〈ψn(k) | φi〉|
2
dk (4.1)

where ψn(k) and εn(k) correspond to the wavefunctions and eigenvalues obtained from
the pseudopotential calculation, and φi to projector functions constructed from the
atomic partial waves [40].
For the actual implementation into S/PHI/nX, we replace the integral in Equation

(4.1) by a sum and the δ-function by a Gaussian (broadening 0.1 eV). Figure 4.12 shows
the spin-resolved density-of-states D↑ (majority spin) and −D↓ (minority spin) for three
characteristic models and three bond angles respectively. One can clearly see the down-
shift of the defect levels with decreasing bond angle for the V (P3) and V4(SiH)9 db-model.
If the level falls below the valence-band maximum due to the chemical environment, i.e.
for the V (Al2SiH) model, the features are broadened and ultimately disappear.
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Figure 4.12: Illustration of the delocalization mechanism. Calculation of the projected
density-of-states D(E) as implemented in S/PHI/nX for three di�erent
bond angles α and for three di�erent db-models. For clarity, we plot D↑(E)
and −D↓(E) separately. The dashed line indicates the scaled total density-
of-states (scaling factor 0.035). The energies are aligned to the valence-band
maximum of c-Si.
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An ab initio study on small clusters [46] has shown that the empirical LCAO-picture is
not accurate enough to distill the bond-angle range [45] from the hyper�ne parameters
alone. However, these models cannot capture the e�ect of delocalization due to the
width of the band gap and the small number of neighbors. The crystalline db-models do
not have these limitations and it is therefore elucidating to consider the relation between
the hyper�ne parameters and the bond-angle range with respect to this question. For
this we consider again amorphous silicon, for which theory [134, 135] and experiment
[136, 137, 138] estimate bond-angle variations of up to 15◦. Considering an interval
of ±8% around the tetrahedral bond angle, one obtains the following characteristics
for the change of a and b. Within a non-self-consistent, single-site LCAO-model [45],
where the dangling bond is restricted to the under-coordinated Si atom only, the isotropic
parameter varies by 55−80% and the anisotropic parameter by 18−27%. In comparison
to that, we get from our DFT-calculations for a delocalized defect, i.e. the V (Al2SiH)
db-model, a variation on the order of 21−41% for the a-parameter and 18−59% for the
b-parameter. For a localized model, i.e. V (P3), there are dramatical �uctuations of the
isotropic hyper�ne parameter with bond angle (by 44 − 66%) whereas the b-parameter
varies by 8− 31%. This quantitatively illustrates that the isotropic hyper�ne parameter
is more sensitive to changes in the local structure for deep-level defects. Furthermore,
it shows that the single-site LCAO-model overestimates in particular the change of the
isotropic hyper�ne coupling and therefore predicts a smaller bond-angle range for a given
∆a-interval compared to self-consistent calculations.
The analysis of the superhyper�ne interaction yields additional information about the

defect (such as its coordination in the case of the disordered a-Si structure [139, 140]).
For that reason, we consider the bond-angle dependence of the �rst- and second-nearest
neighbors of the c-Si models (Figure 4.13). Here we focus on the isotropic coupling,
which measures the spin distribution within the network. The �rst-nearest neighbors
show the following trends. For the localized defects, a large coupling is obtained for
small bond angles. With increasing bond angle one observes a change from majority to
minority spin density, which is almost independent of the model. This has been observed
before in the context of small molecular radicals [124] (and references therein) and can be
explained by spin-polarization e�ects. On the other hand, the second-nearest neighbors
show a continuous increase of a for larger bond angles. Pictorially speaking this corre-
sponds to the situation that the spin density is pressed more and more into the network.
Consequently, the isotropic hyper�ne coupling of these atoms is mainly in�uenced by
the db-geometry. However, the magnitude depends on the chemical environment, and
it is the largest for the hydrogen-saturated vacancies. With the exception of the V (P3)
db-model, the second-nearest neighbor hyper�ne coupling is in general larger than the
�rst-neighbor one. This is in good agreement with previous �ndings [123, 124].
In conclusion, we have seen that the bond-angle dependence of the hyper�ne param-

eters can be explained by two e�ects, namely the sp-hybridization of the db-orbital (in
particular important for deep-level defects) and spin delocalization. The latter occurs
for small bond angles and depends on the relative electronic position of the db-orbital
with respect to the band edges.
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Figure 4.13: Dependence of the hyper�ne parameters on the variation of the bond angle
for the backbond neighbors of the Si4H9 molecule as well as for the c-Si
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4.4.3 Strain dependence of c-Si models

The systematic study of the in�uence of the bond angle on the hyper�ne parameters
gives us the possibility of tackling the more complex situation, in which both bond
length and bond angle change and are correlated with each other. This investigation
of the dependence of the hyper�ne parameters on hydrostatic strain is also of practical
relevance, since it is in principle also accessible by experiment.
We compute the hyper�ne parameters for 2 × 2 × 2 supercells with the parameters

as used previously. The e�ect of strain is modeled by rescaling the supercell with the
relaxed geometry (lattice constant x0) at a slightly di�erent lattice constant x and then
relaxing the structure again, so that the overall force per atom is not larger than 4
meV/Å. The strain is then given by (x− x0)/x0. For compressive strain we expect that
at some point the band gap closes and the system becomes metallic. In this situation
we could in principle apply a similar strategy as for the bond-angle dependence, i.e. use
a signi�cantly denser k-point mesh. However, the notion of a localized dangling bond
is no longer applicable for such strains. For that reason, we consider only an amount of
strain for which we can clearly identify the db-character from the hyper�ne parameters.
Typically the transition from the db- to the metallic character of the system is rather

sharp, which means that a slight decrease of the lattice constant causes a dramatic drop
of a and b to zero. But as visible from Figure 4.14, this happens for every model for
a di�erent amount of strain. It is clear that this result is correlated to the band gap
of the corresponding db-model, since we can compress the V (P3) much more than e.g.
the V (Al2SiH) db-defect. Thus a larger band gap results in a larger stability of the
db-orbital under compression. When we now increase the lattice constant, the localized
db-models gradually change from a large s- to a large p-character. On the contrary, the
rather delocalized V (Al2SiH) model shows a small decrease of the isotropic parameter
for less than 5% deviation strain. Quantitatively, we see that for tensile strain on the
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Figure 4.14: Dependence of the hyper�ne parameters on strain.

order of 10%, the a-parameter of all models reaches the experimental value of a-Si:H.
But the theoretically obtained hybridization picture implies a large anisotropic coupling
(65-70 MHz), whereas a recent study yielded a signi�cantly smaller one (b = −39 MHz)
[27, 28]. However, it should be noted that it is di�cult to distill the b-coupling from
the measured EPR-spectrum unambiguously due to the wide statistical variation of A-
tensors (as indicated by the experimental results in Table 4.14).
To explain the hyper�ne parameters in terms of the local db-geometry, let us look

at the dependence of the bond parameters on strain (Figure 4.15). The bond length
becomes larger the more we stretch the lattice and the bond angle becomes planar at
the same time. In particular for tensile strain, the trends for the hyper�ne parameters
result from the bond-angle variation (Figure 4.11). However, from the latter study we
have also obtained a signi�cantly smaller p-character in case of the delocalized V (Al2SiH)
defect. Therefore for this model, the signi�cantly larger b-parameter for tensile strain
has to originate from spin-localization e�ects due to the increase in bond length.
The a-parameter shows a rather small variation among the localized c-Si db-models

(Table 4.8), which also implies that quite di�erent db-environments result in a similar
local db-geometry. However, consequently they cannot explain the lower isotropic cou-
pling observed in a-Si:H. With respect to this open question, our results suggests strain
as a possible mechanism for the down-shift of a. Indeed, such a picture has been already
proposed in the context of a-Si:H previously [44, 127]. In this model, the discrepancy
between the Pb-center at the Si/SiO2 interface (a ∼ −300 MHz) and the a-Si:H dan-
gling bond is caused by the relaxation to a more planar geometry in the latter case [28].
As is visible from our �ndings such a mechanism enhances the p- over the s-character.
Furthermore we can quantify the necessary amount of tensile strain, which has to be on
the order of 10% independent of the speci�c db-model. But here we have to point out
that the crystalline models do not capture the asymmetry in the db-geometry [127] and
therefore only represent the ideal situation. We will consider a more realistic case in the
next chapter, where we will carry out an analogous study for our a-Si:H db-models.
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Figure 4.15: Dependence of the bond parameters on strain.

4.5 Summary

In this chapter we have elucidated the characteristic features of the silicon dangling bond
in a well-de�ned (and thus controllable) environment, namely in small molecules and in
decorated vacancy defects in c-Si. We have determined how critical parameters of the
DFT-calculations must be set to ensure numerical convergence. Then we have validated
our approach to an all-electron method and experiment. Most notably, we were able
to relate the experimental �ndings to speci�c atomistic defect models, and we showed
explicitly how a symmetry-lowering Jahn-Teller distortion a�ects the EPR-parameters.
Systematic studies of the in�uence of the local geometry on the EPR-parameters were

presented and used to reason recently found experimental results. The g-tensor reacts
sensitively to energy di�erences of the local electronic structure, which cannot be always
interpreted intuitively. In contrast to this, the hyper�ne interaction is characterized by
the interplay between the expected sp-hybridization of the db-orbital as well as the spin
delocalization, which can be only captured by our network models.
We then used these �ndings to interpret the more complex but also more experimen-

tally relevant situation of hydrostatic strain. All crystalline db-models essentially follow
the same systematic trend, which is dominated by electronic e�ects for compressive
strain and sp-hybridization for tensile strain.
It is also important to note that the hyper�ne values of the crystalline dangling bonds

fall in a narrow range around 300 MHz (isotropic) and 60-70 MHz (anisotropic). The
experimental results for the a-Si:H dangling bond indicate a larger degree of spin delo-
calization. We therefore conclude that the c-Si dangling bond cannot capture all features
that are crucial for the understanding of the db-defect in the amorphous matrix.
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5 Dangling bonds in hydrogenated

amorphous silicon

5.1 Modelling

Crystalline dangling bonds are local structural distortions in an otherwise homogeneous
network. Consequently, it is rather easy to set up the models and obtain a reliable atomic
structure. The existence of a unique reference structure guarantees that the defect and
its properties are well-de�ned. The situation becomes dramatically more complex in the
amorphous case. Not only do the properties of defects strongly vary between di�erent
positions within the heterogeneous matrix, but also the structure of the defect-free ma-
trix is only known in terms of structural 'features' (such as a four-fold coordination of
silicon atoms, monohydride or dihydride saturation of other silicon atoms, bond-length
and bond-angle ranges). These structural motifs then form a continuous random net-
work. The usage of periodic-boundary conditions yields in comparison to cluster models
a more accurate description of the overall electronic and structural characteristics, but it
also introduces the problem of matching the structurally disordered models to their pe-
riodic images. Besides that, many facets (e.g. the accurate description of forces, criteria
for the quality of the structural model) have to be taken into account, which all together
make the generation of realistic a-Si:H models very challenging. Since the mastering
of these aspects is beyond the scope of our study, we have searched for collaborations
with experts in this �eld instead. We are very grateful that F. Inam, D. Drabold, and
K. Jarolimek have o�ered help and provided us with a-Si:H models and dangling bonds
within. To provide some insights into the challenges, strategies and possible limitations,
we start this chapter with a brief overview on the generation of theoretical a-Si:H models.
There are essentially two approaches to obtain amorphous models: the direct and indi-

rect approaches [141]. The direct methods use an interatomic potential (either empirical
or ab initio) and then perform a molecular dynamics, Monte-Carlo (or variants thereof)
simulation to �nd a non-crystalline con�rmation that is a local minimum of the energy
functional. On the other hand, inverse methods build upon experimental data. The
key idea of this approach is to start with a con�guration that satis�es a set of suitable
constraints. Then the atoms are displaced randomly until the input experimental data
(such as x-ray di�raction, neutron scattering and extended x-ray absorption) as well
as further constraints match with the data obtained from the generated con�guration.
Thus the overall concept consists in solving a minimization problem by Monte-Carlo
techniques ('reverse Monte Carlo'). The additional constraints can be both geometrical
or topological and are used to reduce the number of unphysical con�gurations that are
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mathematically correct solutions.
The advantage of the direct methods is that they are completely unbiased [141, 142],

which however can also mean that they disagree completely with experimental data.
For this approach, the choice of the interaction potential is crucial. Whereas ab ini-

tio potentials are accurate but computationally expensive, empirical potentials are, as
mentioned before, limited by the structural database used to �t the potential. Thus for
an amorphous material with its wide range of bonding environments, the transferabil-
ity of these potentials to di�erent local structural characteristics becomes an important
aspect. For silicon, many interatomic potentials have been developed, that are accurate
for a single topology (and small variations around it), since it has a clear tendency to
sp3-bonds and therefore also to tetrahedral geometries. The tight-binding method is a
compromise between the empirical potentials and the ab initio methods, even though it
is in this case challenging to obtain a transferable tight-binding Hamiltonian [141].
The reverse Monte-Carlo approach does not require an interatomic potential [141, 142],

and it allows the comparison of structural information obtained by di�erent experiments
(by using it as input in separate calculations). However, this method relies on the
availability of useful structural, electronic and spectroscopic data as well as on some
known topological properties of the material under study. Furthermore, the data needs
to be included e�ectively, since too little information results in unrealistic con�gurations,
whereas on the other hand, the inclusion of too much information makes it di�cult
to solve the optimization problem. These obstacles can be partly overcome by the
'Experimentally Constrained Molecular Relaxation' (ECMR) method [141], in which
one employs additionally an approximate energy functional to reduce the number of
unphysical con�gurations. This technique improves the convergence towards realistic
structures. The procedure works self-consistently by minimizing �rst the con�guration
according to the experimental information, and then in a second step according to a
total-energy minimization (either ab initio or otherwise). The scheme is repeated until
the models obtained from both steps converge towards the same con�guration. One of
the �rst applications of this method has been pure a-Si [143] as well as a-Si:H [144], in
which good agreement with a more elaborated construction scheme as well as experiment
was found. An alternative to the ECMR-method is the 'Hybrid reverse Monte Carlo'
(HRMC) method, which is based on the minimization of the total energy while keeping
consistency with di�raction data [145].
Within the direct method, several strategies exist to obtain amorphous structures

[141, 142, 146], most notably the 'cook and quench' molecular-dynamics simulation, the
'Wooten-Winer-Wearie' (WWW) approach, and the 'activation-relaxation technique'
(ART). The idea of the melt-quench method is to simulate a liquid phase of the desired
stoichiometry, and then gradually decrease the temperature below the melting point,
thus quenching the system to some disordered state. Evidently, this works best for
systems where the structure of the amorphous phase is similar to the liquid one, and when
the ordering is quite local, i.e. both phases have small building blocks. For example,
this technique works well for SiO2, but it fails for a-Si, since in this case the liquid is a
6-fold coordinated metal, whereas the amorphous phase is a 4-fold coordinated insulator
[141]. Also experimentally, a-Si cannot be produced by a melt-quench approach, but
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Figure 5.1: Illustration of the basic principle of the Wooten-Weaire-Winer method for
the construction of amorphous structures.

rather with ion bombardment or chemical-vapor deposition techniques (see Chapter 1).
A severe problem of the melt-quench method is that one can usually simulate only for
an unphysical quench rate and an inadequate length of simulation time. This can result
in structures which do not compare well with experimental �ndings (e.g. the structure
factor) or which contain too many defects. However, in the case of hydrogenated a-Si,
two strategies have been proposed to overcome this de�ciency. One possibility involves
of heating the crystalline sample just below the melting point and then cooling it down
to 0 K with subsequent annealing and quenching cycles [147]. The temperatures in this
procedure are chosen to correspond to the experimental conditions. A second approach
uses a su�ciently slow cooling rate and a three time-steps procedure [135]. With this
method, good agreement with experiment (structure factor, radial distribution functions)
is found already for small supercells (Si64H8).
An important alternative to the 'cook and quench' technique is the 'Wooten-Wearie-

Winer' (WWW) procedure, which generates a 'continuous random network' (CRN) with
periodic boundary conditions [142, 146, 148]. A CRN-model is a random arrangement
of atoms, with the only condition that they are perfectly coordinated. Furthermore,
one can characterize the quality of a CRN-model by the amount of strain as measured
by the local deviations from the crystalline environment. Thereby, the ideal CRN is
typically de�ned by having the lowest spread in the bond-parameter distributions. The
WWW-method works by switching bonds among four neighbors as illustrated in Figure
5.1. For a bonded pair of atoms BC, a pair of nearest neighbors A and D is chosen,
so that A is the neighbor of B and not the neighbor of C, and D is the neighbor of C
and not the neighbor of B. Then bonds AB and CD are broken and new bonds AC and
BD are created, thus B and C exchange neighbors. After such a randomization of the
network by a large number of bond transpositions without relaxation, the network is
relaxed through a sequence of bond transpositions using a Metropolis annealing and a
Keating interatomic potential. The great advantage of this approach is that there are
per de�nition no coordination-related defects, and the bond angles are constraint to be
close to the tetrahedral angle.
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A third important technique to generate amorphous structures is called 'activation-
relaxation' technique (ART) [142, 146], and it focuses on the jumps of a system from
one to the other metastable state. These events can be characterized by the activation
energy, which is the energy needed to bring a con�guration from a local con�gurational
minimum to a nearby saddle-point. Within this scheme, moving from one to the other
local minimum is considered as a two-step process:

1. The activation, during which a con�guration is pushed from a local minimum to
a nearby saddle-point.

2. The relaxation of the con�guration from this saddle-point to a new local minimum.

The advantage of this method is that it de�nes moves directly in the con�gurational
energy landscape, and it is independent of the interaction potential and material-speci�c
properties. Another appealing aspect is that it requires only the calculation of the force,
which makes it scalable with the size of the system. In general, this method is useful for
studying rare events in disordered media such as di�usion and relaxation mechanisms.
In the case of a-Si, it provided new insights into the cause of the liquid-like nature of
structures obtained from empirical-potential based molecular dynamics [149].
Besides the general obstacles of creating an amorphous structure, another question

arises in the case of a-Si:H, namely the incorporation of hydrogen. This is also non-
trivial, since it broadens the con�gurational space by parameters such as the hydrogen
concentration and the local hydrogen environment. In NMR experiments on a-Si:H
[150, 151], the H-concentration can vary between 8-32%, and there is consequently also
a certain �exibility for this parameter in theoretical simulations. Furthermore, hydro-
gen can be incorporated into the network in several ways. In silicon monohydride it
favorably passivates 'dangling bonds' (isolated Si-H), but it can also occur as bond-
centered hydrogen or it forms platelet-like structures [152]. Additionally, hydrogen can
also appear in its molecular form [153]. The spectrum is further enriched by the pres-
ence of di- and tri-hydrides as well as (SiH2)n chains [154, 155]. This broad range of
possible hydrogen microstructures emphasizes the complexity of the material, which in
turn makes theoretical modelling very di�cult. One possibility of H-incorporation is to
start from a pure a-Si network and then add an appropriate amount of hydrogen atoms
at random positions [142]. In a second step one simulates the molecular dynamics at
a given temperature, which leads to a reorganization of the structure. A similar idea
exploits the annealing of an a-Si sample [147], to which hydrogen has been added in an
evenly distributed manner. For the ECMR-approach [144], hydrogen is used to passivate
naturally occurring dangling and �oating bonds respectively. Then the model is relaxed
again, and this 'relax and clean' procedure is carried out until the defect concentration
is su�ciently low. In contrast to this, within the step-wise 'cook-and-quench' molecular
dynamics [135], hydrogen is already included in the initial structure, and thus it is not
necessary to insert it arti�cially.
The dangling-bond models used in the following are created from a-Si:H supercells

by removing one hydrogen atom, and then relaxing the structure again [135, 141, 156].
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As mentioned, for our study we use db-models created by our collaborators F. Inam,
D. Drabold and K. Jarolimek. One important question of the modelling process is re-
lated to the defect concentration. Experimentally, the dangling-bond defect density is of
the order of 1015-1019 defects/cm3 [11]. The actual magnitude depends in particular on
the temperature during �lm-growth with the minimum being reached for around 250◦C.
From the measured defect concentration, we can deduce an estimate for the average spa-
tial separation between two dangling bonds by assuming a homogeneous db-distribution.
If we further consider the volume of one single dangling bond to be spherical, we get
for the db-db distance the value 60-140 Å. However the largest computationally feasible
supercells in our calculations have a lattice constant of about 16 Å, and thus we have a
signi�cantly stronger interaction between dangling bonds. Despite this de�ciency, recent
studies [135, 156] have not observed supercell-size e�ects for key properties such as the
radial distribution function, the band gap and tail states.
What we have learned here is that it is nontrivial to generate amorphous structures.

In particular, there is no straightforward 'cooking recipe', and the method of choice
depends on the problem at hand. The inclusion of hydrogen makes the situation even
worse, since it couples to the network in a large variety of ways. Furthermore, present-
day simulations overestimate the coupling between dangling bonds due to limitations of
the supercell size.

5.2 Statistical analysis of EPR-parameters

In the crystalline environment we can unambiguously assign the dangling bond to a
speci�c atom. The situation changes dramatically for an amorphous material, in which
the defect structure is much more complex. In this case, only a spin-polarized calculation
yields the necessary information to identify the actual db-atom. Furthermore, to take the
element of structural randomness into account, we need to consider a large db-ensemble.
However, the mentioned complexity in the generation of the models means that one can
create only a small set of possible con�gurations. Consequently we have to work with a
limited number of db-models and the basic challenge in the analysis consists in making
conclusions which are not so dependent on the statistics.
For our investigation we use 26 small (64Si-7H) as well as 28 large db-models (216Si-

29H). These ratios between silicon and hydrogen atoms yield a hydrogen concentration
on the order of 11-13%. Experimentally it can have a much larger �uctuation in between
7-30% [28, 45]. The computational parameters are chosen according to the established
dependencies on convergence and accuracy (Section 4.2.1). The dense k-point mesh re-
quired for the g-tensor has the e�ect that the calculations are very resource-demanding.
The large supercells have been therefore computed on a powerful IBM Power6 575 cluster
at the Rechenzentrum Garching. The processor clock is 4.7 GHz and the peak perfor-
mance/processor is 18.8 GFlops/s. For the hyper�ne parameters, the limiting factors
are the time of the self-consistent calculation (on the order of 12 hours for 20 proces-
sors) and the memory demand for the post-processing step to obtain the parameters (4
GB/processor). In contrast to that, the g-tensor calculation itself has a computation
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Figure 5.2: Statistical distribution of the theoretical g-values, which are sorted according
to their magnitude. For the comparison to a recent multi-frequency experi-
ment [28], we �t the histogram by a normal distribution (solid line).

time of 1.5 days on 112 processors with a similar memory requirement as for the hy-
per�ne parameters. Overall we see that the calculation of the EPR-parameters itself is
quite demanding. As mentioned, in this context it is an important observation that the
hyper�ne parameters need much less CPU-time than the g-tensor.
For the basic statistical analysis, it is the best strategy to start with the assumption

that the removal of one hydrogen atom from an ideal a-Si:H supercell with a subse-
quent relaxation step creates a db-defect. Within this unbiased approach, we obtain
from our db-ensemble a distribution for the principal values of the g-tensor (Figure 5.2)
and the A-tensor (Figure 5.3). In these �gures we compare our results with a recent
multi-frequency EPR-experiment [28], which was most notably able to resolve the prin-
cipal values of the g-tensor with a higher accuracy. This was achieved by resolving
the spectrum at higher microwave frequencies. As discussed in Chapter 2, only the g-
tensor is �eld-dependent. Due to the presence of g-strain, i.e. a statistical distribution
of g-tensors, it is advantageous to measure the principal values of the A-tensor at low
magnetic �elds and corresponding frequencies (S-band, X-band), and the ones of the
g-tensor at high frequencies (Q-band, W-band). To compare these results with our sta-
tistical approach, we �t a normal (Gaussian) distribution to our data. This approach is
motivated by the procedure to extract the EPR-parameters experimentally. It requires
spectrum simulations, in which one �ts model parameter distributions to best reproduce
the measured data. In doing so, one has to assume that the statistics of the principal
values can be described by a Gaussian distribution, which is however not based on a
fundamental reason and thus might not be justi�ed.
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db-model
gIso gX gY gZ AX AY AZ a b

(MHz) (MHz) (MHz) (MHz) (MHz)
Theory
Si4H9 2.0056 2.0075 2.0075 2.0019 -213 -213 -457 -294 -82
c-Si 2.0073 2.0106 2.0106 2.0011 -256 -256 -441 -318 -62
a-Si:H 2.0065 2.0096 2.0065 2.0035 -214 -216 -338 -256 -41

- (0.0090) (0.0062) (0.0030) (156) (157) (190) - -
[0.0006] [0.0010] [0.0007] [0.0004] [18] [18] [22] [19] [4]

Theory - a-Si:H (supercell size)
64Si-7H 2.0064 2.0093 2.0064 2.0035 -214 -216 -327 -252 -37
216Si-29H 2.0066 2.0099 2.0066 2.0034 -214 -216 -348 -260 -44
Theory - (localized db-models)

2.0067 2.0100 2.0067 2.0034 -216 -218 -360 -265 -48
[0.0009] [0.0015] [0.0011] [0.0004] [24] [24] [26] [24] [3]

Theory - (not-triply coordinated db-models)
2.0057 2.0082 2.0058 2.0030 -218 -221 -326 -255 -35
[0.0010] [0.0015] [0.0013] [0.0007] [55] [54] [54] [63] [11]

Theory - (delocalized db-models)
2.0065 2.0095 2.0062 2.0039 -216 -219 -293 -243 -25
[0.0009] [0.0016] [0.0009] [0.0007] [34] [34] [44] [37] [7]

Experiment - a-Si:H
rhombic [28] 2.0058 2.0079 2.0061 2.0034 -151 -151 -269 -190 -39

- (0.0054) (0.0022) (0.0018) (46) (46) (118) - -
axial [28] 2.0057 2.0065 2.0065 2.0042 -149 -149 -265 -188 -39

- (0.0047) (0.0047) (0.0019) (47) (47) (113) - -
axial [44] 2.0067 2.0080 2.0080 2.0040 -154 -154 -305 -205 -50

- (0.0029) (0.0029) (0.0022) (28) (28) (56) - -
axial [45] 2.0056 2.0065 2.0065 2.0039 -143 -143 -333 -206 -63

- - - - (56) (56) (73) - -

Table 5.1: Comparison of theoretical and experimental results for the EPR-tensors (prin-
cipal values and hyper�ne parameters). The values for the crystalline models
corresponds to the average over the localized db-models in Figure 4.8. In
the case of a-Si:H, the statistics includes 54 db-models. The value in round
brackets indicates the full-width half maximum (FWHM), and the value in
rectangular brackets the con�dence interval (95% probability). For the ex-
perimental determination of the g-tensor either uniaxial or no symmetry (i.e.
rhombicity) is assumed. The resulting principle values have an accuracy on
the order of two ten-thousandths [28]. The principal values of the A-tensor
have an experimental uncertainty of up to 30 MHz, the isotropic coupling of
about 10 MHz, and the anisotropic coupling of about 10 MHz. Localized,
not-triply coordinated and delocalized db-models refer to subsets of 33, 11
and 16 db-models according to the criteria discussed in Section 5.3.1.
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Figure 5.3: Statistical distribution of the theoretical A-values, which are sorted accord-
ing to their magnitude. For the comparison to a recent multi-frequency
experiment [28], we �t the histogram by a normal distribution (solid line).

Figure 5.2 shows the g-value distribution. As visible, for gX and gY , the scattering
of the values is rather large. The �tted curve is a rather crude estimate and disguises
an actual two-peak structure in the histogram. But from the statistics it is not clear
whether the inclusion of more models would enhance this double-peak shape or lead to
a single peak right in the middle of the maximum of the �t. In contrast to this, the
gZ-distribution is rather narrow. Despite the statistical de�ciencies, there is surprisingly
good agreement between the theoretical and experimental g-values (Table 5.1). For
example, the discrepancy for the isotropic g-value is on the order of 2-9·10−4, which is on
the same order as the scatter among di�erent experiments. Quantitatively, it seems as if
the tetrasilyl radical �ts the best to the experimental value. But it fails to reproduce the
rhombicity of the g-tensor, which one obtains from symmetry-unconstrained simulations
of the measured spectrum [28]. In contrast to that, we see that our �ndings for the
amorphous models support this recent experimental outcome, since the corresponding
gX- and gY -values do clearly not coincide.
The g-tensor rhombicity can be reasoned by second-order perturbation theory [28].

For the sake of simplicity, let us assume that the singly-occupied db-orbital ψp is given
by a pure |pz〉 orbital and the other orbitals |px,y〉 are also of atomic type. We de�ne
the Cartesian coordinate system such that the z-axis coincides with the axis of the db-
orbital. By this we can show that the paramagnetic contribution vanishes for αβ = zz,
since Lz |pz〉 = 0. Signi�cant deviations from ge (Equation 2.10) are therefore only
expected for gX ≡ gxx and gY ≡ gyy given by
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∆gX = 2
〈pz|λLx |py〉 〈py|Lx |pz〉

εpz − εpy
= 2

λ

εpz − εpy

∆gY = 2
〈pz|λLy |py〉 〈px|Ly |pz〉

εpz − εpx
= 2

λ

εpz − εpx

From these expressions it is clear that if the degeneracy of the px- and py-orbitals is
lifted, the gX and gY -values will deviate from each other too. This can be caused e.g.
by �uctuations in the bond parameters as observed e.g. for the tetrasilyl radical (Figure
4.10). To conclude, the rhombicity of the g-tensor in a-Si:H is an important new insight,
which can be motivated by �uctuations in the local defect structure.
The comparison of the theoretical and experimental hyper�ne tensor is included in

Table 5.1. First, it is obvious that there is a signi�cant discrepancy between theory
and experiment for the isotropic hyper�ne interaction on the order of 50-66 MHz (24-
35%). This is much larger than the deviation for the crystalline models (on the order
of 3%, Table 4.4). However we do not see a similar discrepancy for the anisotropic
coupling. Thus we do not expect that the larger theoretical a-value is caused by a
fundamental conceptual problem of our approach. Indeed, from our �ndings we would
tend to attribute it rather to a physical e�ect.
Despite this open problem, theory is able to reproduce the correct symmetry of the

A-tensor. In both theory and experiment, the tensor is uniaxial. This is an interesting
�nding, since it is in principle not intuitive, how such a symmetry can be related to a
rhombic g-tensor. In the crystalline environment we have found this constellation only
for JT-distorted systems (Table 4.4). To rationalize the symmetry of the A-tensor, we
have to consider that it depends directly on the ground-state spin density. Therefore it is
strongly dominated by the local orbital character (spx-hybrid) of the db-state at the site
of the trivalent Si atom. Structural variations due to the amorphous matrix a�ects its
orientation and possibly the degree of sp-hybridization, but do not alter the fundamental
spx-character of the db-orbital. Consequently, its axial symmetry is maintained even in
the presence of large disorder-induced �uctuations of bond lengths and bond angles (as
is the case in a-Si:H).
At this point, let us discuss further aspects of the statistics (Table 5.1). First, we

see that there is no signi�cant di�erence between the small and large supercells. This
result con�rms the observation made for other properties such as the radial distribution
function [135, 156]. Secondly, the width for the mean values is smaller in experiment
than in theory. Thus a larger number of theoretical db-models would be preferable.
However, there are no clear indications that this is the main reason for the discrepancy
between theory and experiment.
In conclusion, within the realms of our limited statistics, we can deduce the following

properties of a-Si:H dangling bonds. First, theory and experiment agree on the sym-
metry of the EPR-tensors. It is found that the g-tensor is rhombic and the A-tensor
uniaxial. This characteristics can be related to the di�erent underlying physical mech-
anisms behind the tensors. The hyper�ne tensor depends on the spin density, and is
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Figure 5.4: Coordination at the db-site. The �gure on the left side shows the number of
db-neighbors at a certain distance rcut from the db-atom. The black color
indicates the trends for a Si3 backbond con�guration, and the blue color for a
Si2H con�guration. The thick lines stand for the corresponding mean-values.
The �gure on the right side characterizes the bonding situation of hydrogen
to the db-atom. It shows the distance rdb,H between the db-atom and the
closest hydrogen versus the distance d3rd,4th between the third and fourth
db-neighbor. Hydrogen is only bonded to the db (Si2H con�guration), if
d3rd,4th is su�ciently large for a correspondingly small distance rdb,H .

thus basically dictated by the sp-hybrid character of the db-orbital. The g-tensor, on
the other hand, depends on all orbitals contributing to the g-shift (Equation (2.10))
and these orbitals (in particular their energies) do sensitively react to �uctuations in
the backbond geometry. Secondly, the hyper�ne parameters of the db-atom are lower in
a-Si:H than in c-Si, which means that the spin is more delocalized. However, theory is
only partly able to reproduce this down-shift of the isotropic parameter.

5.3 Structural aspects of dangling bonds in a-Si:H

5.3.1 Categorization

The statistical analysis yields only a basic understanding of the EPR-parameters and
their correlation to structural features. Going beyond this picture, it is important to
�nd ways to classify the db-models. For that we emphasize again that the db-atom in
an amorphous model is characterized by having the largest isotropic hyper�ne interac-
tion. Further aspects are a priori unknown, which means that one has to check for the
coordination, i.e. that the defect has indeed only three neighbors. Besides that, we will
consider the overall spin distribution in the models (to clarify the degree of localization)
as well as the backbond con�guration, which might include hydrogen atoms.
First let us consider the defect coordination. It is characterized by the number of

atoms at a speci�c distance rcut from the db-atom. Here we distinguish between db-
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Figure 5.5: The e�ect of delocalization in the db-models. The �gure on the left side
shows the relation between the largest (adb) and the second-largest (a2nd)
isotropic hyper�ne interaction. The red line marks the mean value for a2nd .
The right side shows the relation between the hyper�ne parameters at the
db-atom. Here we distinguish between localized and delocalized models by
their a2nd . For localized db-models a2nd is not larger than -80 MHz.

models, which have a hydrogen atom among its three nearest neighbors, and the rest.
For that matter, we have to consider two parameters, namely the distance rdb,H between
the db-atom and the closest hydrogen atom, as well as the distance between the third
and fourth db-neighbor. As shown on the right side of Figure 5.4, in only 4 cases, d3rd,4th
is large enough so that the db-atom is indeed bonded to hydrogen. For rdb,H > 1.5 Å,
there are a number of models with a four-fold con�guration (3 silicon, 1 hydrogen) at the
db-atom, and for rdb,H > 2.5 Å with a three-fold con�guration (3 silicon) respectively.
Interestingly, for such rdb,H-values, there is a gradual increase of the distance between
the third and fourth neighbor. In that sense, the dangling bond gains its true 3-fold
coordinated character the further the closest hydrogen.
The left side of Figure 5.4 illustrates the dependence of the coordination number N

on the cuto� distance rdb,H . We recognize from the trend for the mean coordination that
N increases drastically for distances in the range 2.3-2.4 Å, whereas the slope becomes
smaller for larger values of rdb,H . This implies that most db-models are truly three-fold
coordinated with a bond length around 2.43 Å. However, some models show signi�cant
deviations, and e.g. have four neighbors at comparative distances. Since these bonding
situations do not correspond to a db-defect, we introduce the following criteria: a db-
defect is characterized by having exactly 3 neighbors within a cuto�-radius of 2.42 Å.
To quantify the degree of localization, let us look at the relation between the largest

and the second-largest a-coupling. For the crystalline models, it was relatively constant
at around -30 MHz (Table 4.5, Figure 4.13), and it could be unambiguously assigned to
the second backbond neighbor. Even though the situation in a-Si:H is far more complex,
one would expect that for a truly localized dangling bond, the second-largest value a2nd

should be signi�cantly smaller than adb . To analyze the relation between both in detail,
we plot their correlation in Figure 5.5. One can see that for the majority of the models,
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a2nd is not larger than -70 MHz. However some models have a2nd > −100 MHz, and
we would thus consider these cases to be too delocalized to be a db-defect. Overall,
to draw a line between both situations, -80 MHz is a reasonable cuto� value. When
applying this criteria to the hyper�ne values of the db-atom, we see that the delocalized
db-models are also characterized by an a-parameter usually smaller as -250 MHz and
a b-parameter, which is generally not larger than -30 MHz. On the other hand, there
is no clear correlation between the parameters sets ({adb , a2nd}, {a, b}), since they are
distributed rather homogeneously among the range of values.
When applying the established criteria to our db-models, we �nd that 4 models (7%)

have backbond hydrogen, 11 models (20%) are not-triply coordinated, and 16 models
(30%) are delocalized. Thus in total 33 models (61%) correspond to a localized, 3-fold
coordinated db-defect either bonded to three silicon neighbors or to two silicon and one
hydrogen atom respectively. Most importantly, we learn from this categorization that
the amorphous host matrix gives rise to a much broader spectrum of db-like defects than
observed in crystalline silicon. On the one hand, the removal of one hydrogen from the
system does not necessarily lead to the creation of a true db-defect. Furthermore, the
spin density is rather delocalized in a signi�cant number of cases. Correspondingly, the
actual coordination as well as spin delocalization are important features of the a-Si:H
db-defect.
It is also interesting to note how the categorization a�ects the statistics (Table 5.1).

First, we see that there is no signi�cant change in the g-tensor for the localized db-
models. However for the hyper�ne parameters we obtain a slight trend to a larger spin
localization at the db-atom. The not-triply coordinated db-models are characterized by
a smaller gIso-value, which indicates that the db-level is shifted towards the conduction-
band tail [129]. Furthermore, their hyper�ne parameters imply that the db-orbital of
these models has a smaller p-like character. A similar characteristic is also observed
for the delocalized models, in which case the shift in the b-parameter is even larger.
However, neither kind of db-models has a substantially smaller isotropic coupling.

5.3.2 Localized db-defects

The localized db-models show a great diversity in spite of their small number. In this
context, it is important to characterize the bond parameters of the db-atom. For that
purpose we plot the statistical distribution of bond lengths (Figure 5.6) and bond angles
(Figure 5.7) along with their deviation from the symmetric case, in which all bond
lengths and bond angles are the same (i.e l1 = l2 = l3, α1 = α2 = α3). As we see, most
db-models have rather homogeneous bond lengths, �uctuating by only 0.08 Å at the
most. It is interesting that the dangling-bond bond length deviates by only 0.05 Å from
the overall bond length obtained in other theoretical studies [134, 135]. Similarly, it is
rather close to the experimental �nding l = 2.35 − 2.37 Å (summarized in [135]). This
illustrates that the lengths of the bonds at the db-atom are not distinguishable from
the rest of the network. In other words, they are not characteristic for a local defect
environment.
The mean bond angle is given by 109.72◦, and thus deviates insigni�cantly from the
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Figure 5.6: Bond-length statistics for localized dangling bonds. On the left side we plot
the statistical distribution of the three bond lengths. The �gure on the right
side shows the correlation between the shortest bond length lMin and the
other two lengths (lMid , lMax ).
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Figure 5.8: (a): Example of a localized dangling bond with a strong isotropic hyper�ne
interaction on the �rst neighbor. (b): The dependence of the isotropic hy-
per�ne coupling abb on the distance d from the db-atom. We only consider
couplings, which are larger than -10 MHz, and we distinguish between op-
posite (positive parameter-range) and backbond (negative parameter-range)
atoms. Details of this classi�cation scheme are described in the text.

tetrahedral angle. First let us mention that the overall bond angle averaged over ideal a-
Si:H models [135] corresponds to 108.89◦ with a standard deviation of σ = 13.57◦. Thus
the db bond-angle distribution appears to have the same geometric properties as the
rest of the network. But this is only a heuristic argument, since for a true comparison,
one would have to compute the angle distribution function for the db-models. We note
for completeness that the experimental standard deviation typically obtained from high-
energy X-ray di�raction (tabulated in [135]) is signi�cantly smaller (σ = 7.9 − 9.63◦),
which means that theory tends to overestimate this parameter.
Within our context, it is more important that the local bond-angle geometry is rather

inhomogeneous (Figure 5.7). For example, the deviation between the shortest and the
largest bond angle is more than 10◦. When we now compare this with the angular de-
pendence of the hyper�ne parameters for our crystalline db-models (Figure 4.11), we
recognize that �uctuations of that order can have a drastic e�ect. Consequently, it
becomes quite complex to relate a and b to the bond parameters. Indeed, as closer
inspection reveals, there is no clear trend in between the hyper�ne- and structural pa-
rameters.
In a similar way, there is also a greater variety in the hyper�ne couplings of backbond

atoms. The most important aspect for the a-Si:H db-models is that, in contrast to their
crystalline counterparts, one also observes strong isotropic couplings for atoms, which
are not second-nearest neighbors. This is illustrated in Figure 5.8(a), which shows a
dangling bond with a signi�cant spin density at the �rst backbond neighbor. To quantify
the complexity of the spin distribution in the network, we depict in Figure 5.8(b) the
dependence of the isotropic superhyper�ne coupling on the distance from the db-atom.
In doing so, we also apply a criteria to distinguish between the backbond and the opposite
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(a) g-tensor: 2.0103, 2.0064, 2.0035
A-tensor: -195, -176, -170 (MHz)

(b) g-tensor: 2.0097, 2.0064, 2.0035
A-tensor: -437, -288, -285 (MHz)

Figure 5.9: Example of a delocalized and a localized db-model with similar g-values.

db-side. For that reason, we �rst compute the centroid of the triangle spanned by the
three nearest neighbors, the 'backbond'-atoms. Then we compare the distance ddb,n
between an atom (with a > 10 MHz) and the db-atom with the distance dc,n between
the centroid and the atom. If the atom is closer to the centroid, dc,n < ddb,n, we consider
it as on the 'backbond'-site, and as opposite otherwise. In the former case we assign a
minus to the distance, and in the latter case a plus respectively. Overall this gives us
the following basic notion of the spatial spin distribution in the supercell. The most
signi�cant trend characterizes the shell-structure of the network. It manifests itself by
a clustering of large a-values at certain distances. As expected, the strongest couplings
occur around the second-nearest neighbor distance, even though there is no di�erence
between 'opposite' and 'backbond', since for both cases the superhyper�ne interaction
is similar in magnitude. This again indicates that in our simulations dangling bonds
appear rather randomly at sites with an appropriate geometric distortion in the network
with a consequently rather homogeneous distribution of neighbors. They di�er in this
aspect from their crystalline counterparts, which are typically related to the presence
of a vacancy (Chapter 4). In this context, it is reasonable but still interesting, that
the superhyper�ne coupling is on average larger than in the crystalline environment.
Apparently, this is another manifestation of the delocalization, which is -as we have
seen- a characteristic feature of a-Si:H dangling bonds.
So far we have only looked at the hyper�ne parameters, since the spin density is related

in a -more or less- complex way to the local defect structure. To illustrate that one cannot
get such kind of information from the g-tensor, let us consider the db-models depicted
in Figure 5.9. As we see, the g-tensor is similar in both cases, even though both have
completely di�erent spin distributions with correspondingly di�erent principal values
for the A-tensor. We can deduce from this that the g-tensor can be similar for quite
di�erent degrees of spin localization. A related point is that in the delocalized case, the
g-tensor is closer to the experimental value [129] of a db-defect (g = 2.0055) than the
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Figure 5.10: Distance dependence of the hyper�ne parameters of hydrogen for 33 lo-
calized db-models. The black line denotes the point-dipole approxima-
tion (Equation 2.18). We distinguish between opposite (positive parameter
range) and backbond (negative parameter range) atoms according to the
categorization established in the previous subsection.

valence-band tail (g = 2.012). That shows that here again, spin delocalization is not
only triggered by electronic e�ects but also by the local geometry. Both �ndings imply
that, in the presence of g-strain, the g-tensor provides no additional information on the
local defect structure. It is therefore convenient to focus on the hyper�ne parameters,
which are also far less expensive to compute.
The orientation of the g- and A-tensor gives further information on the correlation

between both quantities. One characteristic of the db-models is that in some cases both
axes are not aligned at all (e.g. as in Figure 5.9(a)). In other words, gZ does not enclose
the smallest angle with AZ . However, for 17 (52%) db-models, the angle between gZ
and AZ is smaller than 20◦, and a further 9 (27%) db-models have an angle in between
20◦ − 30◦. This implies that in general collinearity between gZ and AZ is preserved for
localized db-models.

5.3.3 Hydrogen

To complete our structural picture, we now look at the distance dependence of the
hyper�ne parameters of the hydrogen atoms. This is in particular important, since it
has been suggested that hydrogen actively participates in the creation of light-induced
dangling bonds [157]. As mentioned in Chapter 1, the idea is that hydrogen is bound
to a silicon atom with a weak Si-Si bond. Under steady-state illumination, holes will be
trapped, breaking this bond. In a second step, the hydrogen atom stabilizes the bond, so
that the system ends up in a con�guration of either two separate dangling bonds or one
dangling bond + one Si-H-Si complex. It is clear that this mechanism requires hydrogen
to be close by.
In this context, one general observation is that only 3 (9%) db-models have a hy-

drogen atom as backbond neighbor. Therefore, in our simulations, it is not the most
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likely occurring db-con�guration, and it supports the �ndings of recent experimental
studies [130, 158]. However, even this small number of models shows a great diversity
in the EPR-parameters. The isotropic g-value is in between 2.0038-2.010, the a-value
in between -233 MHz to -342 MHz, and the b-parameter in between -37 to -63 MHz.
Thus there is no distinction of db-atoms with a Si2H con�guration and those with Si3
neighbors respectively, and the EPR-parameters of both are essentially determined by
the same geometrical and electronic e�ects. The isotropic coupling of the backbond
hydrogen is comparable to the tetrasilyl radical (Table 4.7).
From the overall isotropic couplings plotted in Figure 5.10 we see the same features as

for neighboring silicon atoms. First, hydrogen can have a signi�cant spin polarization.
Furthermore, it is distributed homogeneously with respect to the distance from the db-
atom, which is again in agreement with a recent experimental observation [130]. For
distilling the distance dependence of hydrogen from the measured EPR-spectrum, it
is crucial to know the range of applicability of the point-dipole approximation. With
respect to this question, our studies of the anisotropic coupling for the molecule over
the Si(111)-surface as well as the a-Si:H-db-models can give a corresponding estimate.
For the former we have found in Section 4.3.3 a minimum distance of 2.8-3.5 Å, and as
obvious from the right-hand side of Figure 5.10, this is also a reasonable estimate for
the a-Si:H db-models.
Even though our db-set is small, it still characterizes a variety of geometrical and

electronic constellations, which in turn cause a corresponding broad distribution in the
EPR-parameters. This also implies that there is no unique structural model of a dangling
bond in amorphous silicon, and the measured trends have to be interpreted in terms of
a defect ensemble capturing the relevant characteristics. With respect to this, the most
striking feature of the theory-experiment comparison is the discrepancy in the isotropic
hyper�ne coupling by 50-70 MHz to which we will turn to in the following.

5.4 The discrepancy between theory and experiment

5.4.1 Methodological aspects

Our statistical approach for the db-defect in a-Si:H is able to explain many of the experi-
mentally observed features. However, measurements indicate a larger spin delocalization
as obtained for the theoretical db-models. In this section we will address the question
of possible in�uences, which also gives a perspective for future work.
For that reason we start by clarifying the signi�cance of the deviation of the dis-

crepancy between theory and experiment. For the crystalline models we have obtained
an accuracy on the order of 10 MHz (Table 4.4). This remarkable agreement origi-
nates at least partly from the deep-level character of the considered db-defects and the
corresponding high degree of localization. The hyper�ne parameters are consequently
determined by the local defect geometry, which was comparatively easy to obtain due
to the comparable stable electronic structure. In contrast to that, the appearance of
spin delocalization requires an accurate modeling of a much larger defect surrounding
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and this makes it intrinsically more di�cult to reproduce the experimental values well.
On the other hand, the theoretical values for our a-Si:H db-models are almost halfway
in-between the experimental �ndings for c-Si and a-Si:H. Overall, we get the impression
that we are able to characterize some features of this a-shift but we are also missing
some important aspects.
At this point, it is most natural to question the choice of the theoretical parameters.

With respect to that, one key parameter is the exchange functional. The most popular
alternative to the PBE-functional is the LDA-functional, but from previous �ndings
[126], we have no indication that it would improve the agreement. For hydrogen, it
would actually make things worse. The inclusion of Hartree-Fock exchange by hybrid
functionals increases the band gap whereas the defect levels change only slightly as has
been shown for the dangling bond in silicon [159]. Localized dangling bonds with a
deep state in the gap should therefore not change much when hybrid functionals were
used. More shallow, delocalized defects, on the other hand, might get deeper and thus
become more localized at the hybrid-functional level of theory, which then leads to larger
a-values. Another important choice is the pseudopotential, and the associated neglect
of core polarization. Yet the good agreement for c-Si defects (Section 4.2.3) suggests
that this is not a critical approximation. It is unlikely that pseudopotential errors are
strongly enhanced by the amorphous environment.
The situation is more complex with respect to the modelling paradigm of pure a-

Si:H (see Section 5.1), which can be divided into three parts. First, one has to obtain a
realistic description of the amorphous silicon network by any of the described procedures.
Then, hydrogen has to be incorporated, which can form a lot of structural complexes
[152, 153, 154, 155, 160, 161]. Thirdly, defects such as dangling bonds, �oating bonds
[162], but also vacancies [150, 163] have to be identi�ed and either be removed or added in
dependence of whether one wants to study them or not. Overall, this leads to a variety of
structural e�ects, which could explain in some way the discrepancy for the a-parameter.
With respect to this point, it would be desirable to have a broader range of statistics for
each of these aspects. However, since this would also require a lot of computation time,
one should also consider alternative strategies. First, it can be bene�cial to study the
change of structural properties under an external physical in�uence. One example for
such an approach is the change of the EPR-parameters under the in�uence of hydrostatic
strain, which will be discussed in the next subsection. Secondly, it would be very helpful
to have an overview of the atomic structures used in publications in the form of a
database (comparable to the database for EPR-centers in semiconductors [164]). This
would make it convenient to separate structural features speci�c to the generational
method from those which are of a more universal character. Di�erences between both
could then also be identi�ed by applying new theoretical techniques (such as the GIPAW-
formalism) as they become available.
A second important �nding of a recent multi-band EPR-study [27] is that the number

of Si atoms with a resolved hyper�ne interaction >100 MHz is about 2 rather than 1
for an ideal db-defect. This suggests that a more delocalized defect complex such as
the �oating bond (fb) contributes to the observed EPR-spectrum. In principle, this is
reasonable since they appear naturally in theoretical simulations on an equal footing
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to dangling bonds [135, 165, 166, 167]. It is also clear that in a real material both,
dangling and �oating bonds, occur and possibly also interact with each other. Thus the
true problem consists in �nding the defect with the most signi�cant in�uence on the
EPR-signal. However, we have seen that the a-Si:H db-defect originates from a vari-
ety of di�erent local structures, and therefore one would expect the same thing for the
�oating bond. Consequently, one would assume that these defects are on average more
delocalized, but there is no obvious reason why only two silicon atoms should have a
strong hyper�ne coupling. Indeed, theoretical calculations of the hyper�ne parameters
[140, 165] support the picture of a complex spin distribution for �oating bonds. Fur-
thermore, neither our classi�cation of not-triply coordinated nor the one of delocalized
defects (Table 5.1) yields a clear indication of a systematic shift towards signi�cantly
smaller a-values. Besides that, a fb-defect ensemble should yield a g-distribution shifted
to larger g-values, since theoretical calculation have shown that the defect level is closer
to the conduction-band edge [166, 167]. It should also have a lower b-parameter, which
most likely means that the agreement between theory and experiment gets worse com-
pared to the db-defect (for which ∆b = 2 MHz). Overall, we can take from this that the
fb-defect cannot be the only reason for the experimental a-shift.
It is however possible that a mixture of fb- and db-models comes closer to the exper-

imental observations. Even though this might also be the more realistic description, it
would make it hard to identify crucial facets, since one would tremendously increase the
number of spin-distribution con�gurations. Furthermore, it is unclear how to determine
the right ratio between fb- and db-models.
In principle, what the experimental results indicate is not just a simple delocalization

of spin, but rather a coupling between two silicon atoms. Thinking along this lines, there
are two possible scenarios. First, there could be some kind of coupling between nearby
dangling bonds, as they appear in theoretical simulations [147, 168, 169] and modelling
of the light-induced defect-creation [158]. However, this also addresses the question of
stability, since two dangling bonds too close together will likely form a new bond. The
second scenario is inspired by the �nding that a-Si regions of strained bonds can also
act as traps for charge carriers [170, 171]. Here one can imagine a situation in which a
long Si-Si bond (with an appropriate geometrical distortion) leads to a localization of
unpaired electrons. For completeness, we mention that it is possible that these weak
Si-Si bonds are charged, even though corresponding cluster-calculations showed that
these defects are related to other g-values appearing in the light-induced ESR-spectrum
[128, 172].

5.4.2 Charging

It is also important to study the properties of existing defect ensembles, since we can
learn from this how sensitive the EPR-parameters are to e�ects like charging or external
in�uences such as hydrostatic strain. This gives new insights in the structural charac-
teristics of the material, and can be useful for �nding the relevant mechanisms behind
the theory-experiment discrepancy.
First let us consider the charge stability of the dangling bond. A db-state can exist in
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Figure 5.12: Correlation between the isotropic hyper�ne parameter and the charge-
stability region. The stability region of the neutral state is indicated by
a bar for each defect. The Fermi energy de�nes the origin on the x-axis.
Defects in the neutral state have a region of stability across the Fermi level.
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three charge states D+, D0, and D− corresponding to zero, one or two electrons in the
db-orbital [12, 156, 173, 174]. To get the stability range of the neutral, EPR-active state
we have to compute the correlation energy U , which is de�ned as the di�erence between
the charge-transition levels ε(0/−) and ε(0/+). Charge-transition levels correspond to
speci�c values of the electron chemical potential for which two charge states have equal
formation energies. They are de�ned by the total energies of the defect system ED

T in
the charge states q, q′ referenced to the valence-band maximum EV

ε(q/q
′) =

ED,q
T − ED,q′

T

q′ − q
− EV

Physically, U characterizes two situations of the defect reaction 2D0 
 D+ + D− as
sketched in Figure 5.11. If it is negative, two neutral dangling bonds convert into D+

and D−, which are not spin-active. Thus, the detection of the neutral, EPR-active state
requires a positive correlation energy. With respect to this, it is interesting that only 37%
have a positive U -value. To exploit the relation between stability and isotropic coupling
in more detail, we reference U to the Fermi energy. The Fermi level is consistently
determined from our charge-transition levels by the condition of charge neutrality for
the complete ensemble. From Figure 5.12 we see that only 11 db-models are stable
in the neutral charge state, whereas the majority of defects only exist in the negative
or positive charge state in thermal equilibrium. This �nding is in agreement with the
defect-pool model [175]. However, there is no correlation between the sub-ensemble of
stable dangling bonds and the isotropic hyper�ne coupling, since they are homogeneously
distributed over the parameter range.

5.4.3 Strain

For the c-Si models, we have seen that the e�ect of strain on the hyper�ne parameters is
characterized by the interplay of band gap and hybridization (Chapter 4.4.3). To obtain
a better understanding of the db-stability, it is interesting to carry out an analogous
study for the amorphous db-models. For that reason, we apply again hydrostatic strain
to our db-models. We only consider the smaller 64Si-7H supercells, since the relaxation
of a db-model at di�erent lattice constants costs a lot of computation time. However, we
do not expect drastic di�erences for the larger supercells, because the EPR-parameter
statistics of both are quite similar (Table 5.1).
One general aspect of the resulting strain dependence is their larger structural sensi-

tivity. Consequently there are small relaxational e�ects even at the ideal lattice constant.
Furthermore, in particular for large strains (tensile or compressive) one observes a redis-
tribution of the spin density, and the dangling bond hops from one to the other atom. To
take this into account, we consider for each model only the range in which the dangling
bond is stable. Practically, this is implemented by �rst determining the db-atom at the
ideal lattice constant. Then one monitors whether it is still the atom with the largest
a-value as a function of the applied strain. Furthermore, since the bonding parameters
of Si-H bonds cannot be compared to Si-Si bonds, we only consider those cases in which
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Figure 5.13: The dependence of bond length and bond angle on the elongation x from the
ideal lattice constant x0. For the rhombic supercells, x0 corresponds to the
mean lattice constant of the three axis (x1, x2, x3). The bond parameters
are de�ned by the average over the three nearest neighbors. The thick blue
line indicates the trend for the mean value. Kinks in this curve can occur
when the number of included db-models changes with respect to strain. For
comparison the thick orange line shows the dependence of the c-Si V (SiH3)
db-model. Values of pressure are included for the experimentally relevant
range of strains.
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Figure 5.14: The dependence of the hyper�ne parameters on the elongation x from the
ideal lattice constant x0. For the rhombic supercells, x0 corresponds to the
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the dangling bond has 3 silicon atoms as neighbors.
First let us look at the structural parameters of the db-atom as depicted in Figure

5.13. For the mean bond length we recognize that the amorphous db-models show on
average the same trends as their crystalline counterparts. In particular, for compressive
strain they have a comparable range of stability, and besides that, the increase of l for
tensile strain is on the same order. Signi�cant deviations from this are only observed
for l > 2.6 Å when the model is not triply coordinated at the ideal lattice constant. A
similar correspondence is also found for the bond angle α in the case of tensile strain,
since the a-Si:H db-models also favor a rather planar geometry. On the other hand, the
diverse picture for compressive strain can be explained by inhomogeneities in the three
bond angles which are not captured by the mean parameter. To exemplify this point let
us look at the db-model with the largest deviation from the overall trend (α = 109.6◦

for ∆x = 0.1). Even though the stability of the dangling bond is very sensitive to tensile
strain, it is three-fold coordinated and localized at the ideal lattice constant, i.e. a true
db-model. At x = x0, the bond angles vary by ±5◦ from the right angle, and for large
tensile strain (∆x = 0.1) this tendency is enhanced, since in this case α is in between
101 and 116 Degrees. The large variation among the three bond angles illustrates that
the mean value is indeed only an approximative measure of an actually more complex
bonding geometry. Despite this de�ciency, we learn from Figure 5.13 that the bond
parameters in general show the same trends as for the crystalline db-models, and that
the bond angles are more sensitive to compressive strain than the bond lengths.
The isotropic hyper�ne interaction has no clear trend (Figure 5.14), since we are

considering all db-models (despite their coordination and spin localization) on equal
footing. Consequently, it can happen that the spin density at the db-atom increases or
decreases with applied strain, or that it is rather delocalized over the whole range. In
one case, the dangling bond is only stable in between ∆x = [−0.004, 0] before it starts
to bond to hydrogen. On the other hand, the trend for the b-parameter is rather homo-
geneous for almost all models and corresponds to the one observed for the crystalline
models with a shift of about 20 MHz. The only exceptions are caused by delocalization,
under-coordination and a very small bond angle. However, the true information here is
obtained again from the averaged trends. The a-parameter stays rather constantly in
between 200 and 250 MHz throughout the strain range, and there is no obvious depen-
dence on the magnitude of the applied strain. This aspect distinguishes the a-Si:H-db
from their crystalline counterparts, and it might be explained by their di�erent origins.
The crystalline dangling bond is related to a vacancy complex, which essentially means
that it is characterized by the interplay of electronic e�ects (due to impurities) and the
local defect geometry. On the other hand, the amorphous dangling bond is a network
defect, which is consequently essentially in�uenced by spin delocalization into the local
environment as well as structural features of the wider surrounding. Thus the trend for
the a-parameter can be explained by spin delocalization for small strains and the planar
local db-structure for large tensile strain. This picture is also consistent with the trend
for the anisotropic hyper�ne coupling, which shows a gradual increase in p-character of
the db-orbital with increasing strain. Overall, we learn from this that for compressive
strains delocalization is important and for tensile strains the db-character is enhanced.
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Let us now discuss the main implication of this conceptual study for the discrepancy
in the a-parameter. Compressive strain on the order of a few percent can lower the
isotropic coupling, so that the di�erence between both becomes reasonable. However,
in this case one should also observe a corresponding shift in the b-parameter, i.e. the
agreement between theory and experiment should become better as well. Since this is
not observed, one cannot consider strain as a exclusive explanation. But at least it
gives a clear perspective that strain might have an observable in�uence on the hyper�ne
parameters, and consequently may play an important role for the defect mechanisms in
the material.
Furthermore, it addresses the following questions for future experiments. First, the

value for the anisotropic coupling needs to be clari�ed, since it currently deviates in
between [-39,-63] MHz among di�erent experiments (Table 5.1). This is a very important
point, since we have seen that a low and a large anisotropic coupling correspond to two
opposite strain situations with rather similar isotropic couplings. Secondly, the strain
dependence of the hyper�ne parameters needs to be measured, since we could then
compare the experimental and theoretical trends at least quantitatively. This would
yield further insights into the quality of the current theoretical models. Two aspects are
important here. First, the study of biaxial strain [176] is probably more realistic than
hydrostatic strain. However, test calculations did not yield signi�cant deviations from
the case of uniaxial strain. Secondly, the suggested experiment appears to be feasible
and corresponding guiding principles do exist. For example, a recent semi-empirical
model [177] was able to relate the deposition conditions to internal stress. It suggested
that stress originates from the balance between deposition ion momentum (particularly
important for compressive stress) and hydrogen void destruction (signi�cant for tensile
stress).

5.5 Summary and Outlook

In this chapter we have shown that the concept of the a-Si:H db-defect is far more com-
plex than previously assumed [44, 45]. By comparison with a recent multi-frequency
EPR-study [27, 28] we were able to clarify some of the experimental observations such
as the rhombicity of the g-tensor or the uniaxiality of the A-tensor. We have also seen
that the g-tensor can be quite similar for di�erent kinds of spin localization. Further-
more, the removal of one hydrogen from a pure a-Si:H model does not necessarily result
in a true localized db-defect, but can relax towards not-triply or delocalized defects.
Localized db-models tend to have three silicon backbond neighbors with a rather homo-
geneous bond-length distribution. On the contrary, their bond angles do have a rather
broad distribution, and this is the main reason for the rather complex relation between
hyper�ne- and structural parameters. In contrast to the crystalline environment, a large
superhyper�ne interaction is not restricted to the second-nearest backbond neighbor
but can occur at both sides of the dangling bond. A similar result is found for the
a-distribution of hydrogen. Both �ndings emphasize that the amorphous dangling bond
is a network defect, which is most likely to occur for suitable geometrical conditions.
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However, the lower experimentally observed isotropic hyper�ne coupling as well as
the number of silicon atoms with an isotropic coupling larger than 100 MHz remain as
open problems. On the other hand, we have shown that strain could have an important
in�uence on the hyper�ne parameters. With respect to this assumption, a more reliable
experimental value for the b-parameter is decisive, since it would clarify whether the
observed hyper�ne couplings originate from spin delocalization or from dangling bonds
in a planar geometry. Overall, these open questions yield the following perspective for
future experimental and theoretical research.
Experimentally, it is necessary to repeat the multi-frequency EPR-approach [27, 28]

for 29Si-enriched samples1 [127]. First, this would yield further insights into the spin
localization and elucidate the number of silicon atoms with a > 100 MHz, which is
still under debate [27, 44, 45]. Secondly, a thoroughly analysis of the experiments so
far [27, 44, 45] has to be carried out to better understand the large variations in the
anisotropic coupling. For that purpose, one will not only have to look at the experimental
conditions but also at the used spectrum-�tting procedures. In addition to that, it
would be interesting to see whether the theoretical strain dependence of the hyper�ne
parameters can be veri�ed experimentally.
Besides these rather speci�c aspects, it would also be important to investigate whether

only a subset of possible db-con�gurations gives rise to the small a-coupling and thus
is observed in EPR. For that purpose, one should alter the experimental conditions in
a controlled way. For example, one should vary the method to create dangling bonds
(e.g. via light, electron bombardment, currents) at low temperatures to reduce possible
equilibration after the creation. Another possibility consists in systematically varying
the hydrogen or defect concentration in the samples. The kinetic or thermodynamic
stability of the db-ensemble can be investigated by recording the EPR-spectrum at
di�erent temperatures in a similar way as has been done for vacancy db-defects in c-Si
[41, 42, 105].
From a theoretical point of view, the following tasks lie ahead. First, it would be de-

sirable to increase the number of db-models, so that the statistics become more reliable.
Furthermore, one should compute the EPR-parameters of other potentially important
defect complexes (�oating bond, coupled dangling bonds, etc.). As for our study it will
be necessary to consider a su�ciently large defect ensemble, because defect complexes in
the amorphous environment will always have a certain structural diversity. Here again,
the bottleneck will be the computationally expensive generation of the corresponding a-
Si:H-models. Besides that, it will be an ongoing task to improve the structural modelling
of the amorphous phase. In the case of a-Si:H, one key question is the incorporation
of hydrogen into the disordered network. For that purpose it could be bene�cial to
compute the NMR-parameters of a-Si:H models by using the GIPAW-formalism, then
comparing the results for example with other rudimentary theoretical studies [150, 163].
A complementary approach consists in studying the in�uence of external parameters

on a defect ensemble. As we have shown for strain, this yields new insights into the
structural characteristics of the defect and can raise new questions, which can be then

1The natural abundance of silicon is 4.69% [31]. Isotope-enriched samples contain 9.1-93% [44, 45].
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tested experimentally. One open aspect of the strain-dependence is, whether �oating
bonds are more likely to form for compressive strain and dangling bonds for tensile strain.
One heuristic argument for that is that the coordination should naturally increase for
shorter bond lengths and decrease for larger ones. In this context, we mention that at
least for shear deformation of a-Si one observes an increase of 5-fold coordination with
increasing strain [178].
It is di�cult to predict whether it will be possible to resolve all open questions re-

garding the Staebler-Wronski e�ect, i.e. the light-induced degradation of a-Si:H solar
cells. However, as mentioned in the introduction (Chapter 1), several strategies exist to
reduce its in�uence on the conversion e�ciency. Future research will doubtlessly lead to
further improvements. From our work, the most important lesson is that the amorphous
dangling bond di�ers from its molecular and crystalline counterpart substantially. It
appears spontaneously at suitable geometrical distortions in the network, and the local
defect structure plays an important role in the db-formation. Yet, this theoretical notion
is missing some relevant aspects and can explain the observed EPR-parameters only in
part. To resolve the remaining discrepancies between theory and experiment and bring
them to quantitative agreement will be a key challenge for the theoretical modelling of
the Staebler-Wronski e�ect in the future.
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