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Zusammenfassung. Sei k ein perfekter Körper der Character-
istik p > 0, und S ein Schema über k. Ein F -zip ist ein lokal
freierOS-Modul vom endlichen Rang versehen mit zwei Filtrierun-
gen und einem Frobenius-linearen Isomorphismus zwischen deren
graduierten Stücken. Eine natürliche Verallgemeinerung dieses
Begriffs für eine reduktive algebraische Gruppe G/k ergibt einen
“F -zip mitG-structure”, so genannterG-zip, der zuerst in [PWZ12]
eingeführt wurde. Ein G-zip I über S liefert die Zerlegung des
Basisschemas S =

⋃
w

S
[w]
I in Strata, auf denen I lokal eine kon-

stante Isomorphieklasse für fppf Topologie besitzt. Wir zeigen,
dass S

[w]
I ↪→ S affin sind, und geben eine Reihe geometrischer

Anwendungen davon.

Abstract. Let k be a perfect field of characteristic p > 0, and S
an scheme over k. An F -zip is basically a locally free OS-module
of finite rank endowed with two filtration and an Frobenius-linear
isomorphism between their graded pieces. The natural generaliza-
tion of this notion for a reductive algebraic group G/k is an “F -zip
with G-structure”, a so-called G-zip introduced in [PWZ12]. A G-
zip I over S yields the stratification of the base scheme S =

⋃
w

S
[w]
I

in loci, where I has locally a constant isomorphism class for the
fppf topology. We show that S[w]

I ↪→ S are affine and give a num-
ber of geometric applications of this purity result.

Introduction

Background and motivation. Let k = Fp for the sake of simplicity
unless stated otherwise.

Giving a short historical account of purity problems in the algebraic
and arithmetic geometry one should mention the Purity Theorem (2000)
of de Jong-Oort [dJO00]:

Theorem 0.1. Let S be an integral, excellent scheme in characteristic
p. Let X → S be a Barsotti-Tate group over S. Further let U ⊂ S be
the largest (open dense) 1 set on which the Newton polygon is constant.
Then, either U = S, or S − U has codimension one in S.

Let us remark that one could require some other regularity/finiteness
conditions instead of “excellence” of S.

1these properties are automatically satisfied for a such set, see [Kat79, Thm.
2.3.1, p. 143]
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This kind of result is referred by A. Vasiu in [Vas02] as “the weaker
variant of purity”. In fact, he shows a stronger version of the above the-
orem which implies the de Jong-Oort’s result by applying the standard
Hartogs-like yoga:

Theorem 0.2. Let X, U ⊂ S are as in Theorem 0.1. Then the open
inclusion U ↪→ S is affine.

Afterwards F. Oort gave an alternative proof of the above theorem
in his conference talk (see [Oor02]) similar in flavor to that of A. Vasiu.

The authors of [NVW10] consider another purity problem for
Barsotti-Tate groups: Pick m ∈ N, and let S an arbitrary scheme over
k. Let Xm be an m-truncated Barsotti-Tate group over S. Further let
SmX′ be the subscheme of S that describes the locus where the Xm is
locally for the fppf topology isomorphic to X ′ ×

k
S, where X ′ is an m-

truncated Barsotti-Tate group over k. As shown in loc.cit. the assertion
SmX′ ↪→ S affine holds for all primes p ≥ 5, and under some strong con-
ditions on X ′ it holds also for p ∈ {2, 3}. One should mention that the
core of the proof is based on the case m = 1; this case readily implies
the case m > 1. For m = 1 this purity result is equivalent to purity
for a special class of F -zips, see below for an informal introduction to
them.

Another motivation for this work comes from the fact that some data
of geometrical origin, e.g., de Rham cohomology groups of certain pro-
jective varieties, has a structure of a so-called F -zip with maybe some
additional structures. The notion of an F -zip was first introduced in
[MW04]. Its authors B. Moonen and T. Wedhorn studied the de Rham
cohomology Hn

dR(X/S) of a smooth proper scheme f : X → S. They
showed that under assumption of the so-called condition (D) which says:
i) the higher direct images Raf∗Ωb

X/S for a, b ∈ N0 are locally free OS-
modules of finite rank, and ii) the Hodge-de Rham spectral sequence
degenerates at E1, follows that M := Hn

dR(X/S) carries a structure of
an F -zip, i.e. M is endowed with two filtrations (“Hodge” and “con-
jugate” filtration), and there is a Frobenius-linear morphism between
their graded pieces induced by the Cartier isomorphism. For a general
reductive algebraic group G, R. Pink, T. Wedhorn, P. Ziegler defined
in [PWZ12] the notion of an F -zip with G-structure, called a G-zip
(see Definition 1.5). These additional structures arise naturally: For
instance assume that f : X → S is of pure dimension d with geomet-
rically connected fibers satisfying condition (D). Then the cup pairing
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on the “middle” de Rham cohomology group Hd
dR(X/S) gives rise to a

symplectic (resp. a symmetric) pairing for d odd (resp. even). In this
case one obtains a G-zip, where G = CSph,k (resp. G = COh,k), which
is the group of symplectic simultudes (resp. of orthogonal simultudes)
for h = rank

OS
Hd

dR(X/S), see [PWZ12, §8]. Another example are F -zips

with additional structures associated to abelian varieties with certain
extra data determined by a Shimura PEL-datum, see [VW12].

A G-zip over S yields a stratification of a base scheme S in similar
fashion as explained above in case of an m-truncated Barsotti-Tate
group over S. In its turn, giving an F -zip of rank n is equivalent to
giving an GLn,k-zip.

In case of S = Spec k specifying these two filtrations for an F -zip
is equivalent to giving two opposite parabolic subgroups of GLn,k, and
a Frobenius-linear map between their Levi-factors. The generalization
thereof leads to a concept of algebraic zip datum introduced in [PWZ11],
which is a quadruple Z = (G,P, P ′, ϕ), where G is a reductive algebraic
group over k, P and P ′ are parabolic subgroups with unipotent radicals
RuP resp. RuP ′, and an isogeny ϕ : P/RuP → P ′/RuP

′.
One could ask whether (G,P, P ′, ϕ) and (G,P, P ′, ψ) define the same

algebraic zip datum up to a change of basis. To tackle this problem one
defines an action of the associated zip group EZ = {(p′, p) ∈ P ′ × P :
ϕ([p′]) = [p]} on G given by ((p′, p), g) 7→ p′gp−1�.

The elements g and g′ ∈ G lie on the same orbit whenever they
correspond the same ϕ up to a change of basis.

Let us remark that the notion of (non-connected) algebraic zip datum
considered in [PWZ12] has a more general setting as above with G, P
and P ′ playing a rôle of the neutral components of some, in general
non-connected, algebraic groups. But the purity problem considered
here can be reduced to the case of connected algebraic zip datum, see
also Remark 2.1, hence we limit ourself to study the connected version.

A crucial rôle in [PWZ12] as well as in this paper plays the algebraic
stack [EZ\G], which is the quotient stack with respect to the above
action.
G-zips are the objects over S that look fibrewise like an algebraic

zip datum. It turns out that their classifying stack is isomorphic to
[EZ\G].

Results. Let k here be a perfect field containing Fp, and S be a k-
scheme.
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Basically in this paper, we prove the following purity result and give
several applications:

Theorem A. Let k be an algebraically closed field. Suppose that G
contains a finite number of EZ-orbits with respect to the action � on it.
Then EZ acts on G with affine orbits.

The above Theorem implies the following easy but important corol-
lary:

Theorem B. Let I be a G-zip of over S. I yields the finite decompo-
sition S =

⋃
w
S

[w]
I in loci, where I has locally a constant isomorphism

class for the fppf topology. Then S[w]
I


↪→ S is affine.

Check section 3 for more details about the index set of the above
decomposition.

We also prove some variant of the lemma which allows to deduce
a weak version of purity from the strong version, i.e. affineness of an
inclusion.

Corollary C. Let X be a scheme, Y be an locally-noetherian scheme,
X ↪→ Y be an affine immersion. Denote by X the closure of X in Y and
let Z be an irreducible component of X\X 6= ∅. Then codim(Z,X) = 1.

In its turn, the above lemma implies the following weak purity result:

Theorem D. Suppose that S is a locally noetherian k-scheme, Z a
closed subscheme of S of codimension ≥ 2, which contains no embedded
components of S that the restriction of I to S\Z is fppf locally constant,
then I is fppf locally constant.

Next we harvest results in the applications; first we reprove the result
in [NVW10] about the purity of the stratification of a basis scheme S
based on the local isomorphism class of Xm discarding all restrictions
in characteristics 2 and 3:

Theorem E. In the notation of the previous section holds: The inclu-
sion SmX′ ↪→ S is affine.

Let now X be a smooth proper scheme over S. At the very end
of the paper we give some sufficient conditions and examples when de
Rham cohomology Hn

dR(X/S) carries the structure of F -zip making in
particular the purity result applicable in this case.
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Proposition F. Let f : X → S be a smooth proper morphism of
schemes. Suppose that there is a lift of X in zero characteristic (see
Definition 5.9), f̃ : X̃ → S̃ such that X̃ and S̃ are locally noetherian
schemes, f̃ is proper and smooth, and S̃ reduced.

Further assume the Hodge numbers s̃ 7→ dim
κ(s̃)

Hb(X̃s̃,Ω
a
X̃s̃/κ(s̃)

) are

locally constant on S̃ for all a, b ∈ N0.
Then f satisfies condition (D).

We also give examples of application of the last proposition.

Content. This paper is organized as follows. Section 1 contains a short
recollection of basic facts about algebraic zip datum, the associated
quotient stack, and F - and G-zips presented in [PWZ12] and [PWZ11].

Section 2 gives an insight in the geometry of the orbits in Theorem
A, and culminates in its proof.

In section 3 will be explained how Theorem A implies purity results
for the strata of Theorem B, and week purity results of Lemma C and
Corollary D.

Section 4 outlines some applications of the purity results: In subsec-
tions 4.1 and 4.2 we concern us with the purity result of [NVW10], see
Theorem E.

Section 5 focuses on the de Rham cohomology Hn
dR(X/S) of a proper

smooth variety over S, and on conditions upon which it carries an F -zip
structure. It discusses also some examples.

Acknowledgement. 2 I would like to express my deep gratitude to
my PhD thesis advisor Prof. Dr. Torsten Wedhorn. This work would
not have been possible without his encouragement and support. He
also owns my special thanks for the careful reading of this paper, his
comments and corrections, and for the patience treating my knowledge
gaps in algebraic/arithmetic geometry and lack of expertise therein.

I am also grateful to Dr. Ralf Kasprowitz and Prof. Dr. Eike Lau
for many helpful discussions and suggestions.

2This work was partially supported by the German Research Foundation (DFG)



6

1. Preliminaries: General notation and basic facts

Algebraic zip datum. Let k be a field extension of a finite field Fq
of order q, which is a perfect field, and let S be a scheme over k. We
denote by G a (connected) reductive quasi-split algebraic group over the
field k, fix T ⊂ G a maximal torus and T ⊂ B ⊂ G a Borel subgroup.
Further let P, P ′ ⊂ G be parabolic subgroups such that B ⊂ P and
g0B ⊂ P ′ for some fixed element g0 ∈ G.

Denote by U and U ′ the unipotent radicals of P resp. P ′ and by L
and L′ their unique Levi-factors verifying T ⊂ L and g0T ⊂ L′. In this
way, we obtain two canonical projections πL : P → L, πL′ : P ′ → L′.

Furthermore, we restrict our attention to such pairs (P ′, P ), such
there is an isogeny ϕ : L′ → L satisfying the constraints ϕ(g0B ∩ L′) =
B ∩ L and ϕ(g0T ) = T .

We recall the following central definition introduced in [PWZ11]:

Definition 1.1. 1) A connected algebraic zip datum 3 Z is a quadruple
Z = (G,P, P ′, ϕ) as above.

2) The linear algebraic group EZ over k given by

(1.1) EZ = {(p′, p) ∈ P ′ × P : ϕ(πL′(p
′)) = πL(p)}

is called zip group associated to Z.

The group EZ acts on G by:

(1.2) ((p′, p), g) 7→ p′gp−1 for (p, p′) ∈ EZ , g ∈ G
Or, more explicitly, writing P ′ = U ′oL′ = U ′·L′ and P = UoL = U ·L,
p′ = u′l′, p = ul, this action becomes:

((p′, p), g) 7→ u′l′gϕ(l′)−1u−1.

Moreover, we impose the following additional condition:

(FC) 1.2. For an algebraic closure k̄ of k there is only a finite number
of EZ(k̄)-orbits of G(k̄).

We will see in the section 2 that the condition (FC) is in particular
fulfilled if Lie ϕ = 0, but in fact the latter condition is too strong.

Throughout this paper we consider the algebraic quotient stack
[EZ\G].

The geometric situation described in [PWZ12] leads to some special
kind of algebraic zip datum associated to a cocharacter χ : Gm,k → G.

3this definition was originally made in the case of algebraically closed field k
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We assume that the reductive algebraic group G is defined over Fq i.e.
G = G′k, where G

′ is a reductive algebraic group over Fq. Let L be the
centralizer of χ in G. Then, there are two opposite parabolic subgroups
P± = LnU± with the common Levi factor L and the unipotent radicals
U±, where the Lie algebras u± are directs sums of positive resp. negative
weight spaces in the Lie algebra g under Ad ◦ χ.

We denote by (.)(q) a pullback of a scheme or a sheaf under qth- power
absolute Frobenius map S → S resp. k → k.

Clearly, we have G(q) = G.

Lemma 1.3. Let G be a reductive algebraic group over k defined over
Fq. Furthermore, let P be a parabolic subgroup of G and L ⊂ P be a
Levi subgroup. There exist a maximal torus T , a Borel subgroup B of
G both already defined over Fq, and ḡ ∈ G(k) such that T ⊂ ḡL and
T ⊂ B ⊂ ḡP .

Proof. By the assumption, G is a quasi-split algebraic group, thus we
can choose a torus T and a Borel subgroup B ⊃ T defined over Fq.

By [DG64, Exposé XXVI, Lemme 3.8.] there is the parabolic sub-
group P ′ such that B ⊂ P ′ , and P ′ is of the same type as P . By
Proposition 1.6 loc.cit. there is the unique Levi subgroup L′ of P ′ such
that T ⊂ L′. Then the assertion of the lemma is a direct consequence
of Corollaire 5.5.(iv) loc.cit.. �

A new zip datum (G, ḡP, ḡP ′, int (ḡ) ◦ϕ ◦ int
(
ḡ−1
)
) for a ḡ ∈ G(k) is

obviously equivalent to the original one, so we assume by the previous
lemma that there are a maximal torus T ⊂ L and a Borel subgroup
P ⊃ B ⊃ T already defined over Fq.

The relative Frobenius yields the isogeny Frobq : L → L(q) ∼=
P

(q)
− /U

(q)
− . In this way we obtain an algebraic zip datum:

Definition 1.4. The tuple ZG,χ = (G,P
(q)
− , P+,Frobq) is called the

algebraic zip datum associated to G and χ.

Note that due to the choice of an isogeny ϕ = Frobq the condition
(FC) is automatically fulfilled in this case.

The associated zip group to this zip datum is denoted by EG,χ, and
the corresponding quotient stack by [EG,χ\G].

Quotient stack [EG,χ\G]. Denote by TranspEG,χ the k-scheme
(EG,χ ×G) ×

µ G id
G, where µ is given by the EG,χ - group action 1.2.
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We may think [EG,χ\G] as the stack associated to the k-groupoid
{G/TranspEG,χ}(see [LMB91, (2.4.3)] for details), i.e.: For a k-scheme
S the objects of the k-groupoid are the elements of G(S) and morphisms
between two objects g1, g2 are the S-valued points of the transporter
TranspEG,χ(g1, g2)(S) of EG,χ-action with the composition given by the
multiplication map of EG,χ.

The underlying topological space of [EG,χ\G] has a following common
description [Wed01].

If k = k̄, the underlying set Ξ is a finite set of EZ(k̄)-orbits in G(k̄),
and the topology is induced by a partial order � on it: For two EG,χ(k̄)-
orbits o′ and o one sets o′ � o if o′ ⊂ o, where o denotes the closure of
o in G(k̄). The open sets in this topology are explicitly defined by the
following property: U is open if and only if for some o ∈ Ξ such that
o′ � o for all o′ ∈ U follows that o ∈ U .

Let now k be an arbitrary field, and Γ = Aut
(
k̄/k

)
be the profi-

nite group of k-automorphisms of k̄. Then Γ acts on EG,χ(k̄)-orbits of
G(k̄) preserving the order. Therefore, one obtains an induced order on
the Γ-orbits of Ξ, and the underlying topological space of [EG,χ\G] is
isomorphic to Ξ := Ξ/Γ with the quotient topology.

More specifically, the topological space Ξ admits the following geo-
metrical description [PWZ11].

Let W := NormG(T )(k̄)/T (k̄) be the Weyl group of G, w0 be the
element of maximal length in G, and Rs the corresponding set of simple
reflections with respect to Tk̄ ⊂ Bk̄.

Let K ⊂ Rs be a subset. We denote by WK the subgroup of the
Weyl group W generated by K, and let (cf. [Car85, ch. 2.3])

KW := {w ∈W : w of the minimal length in the right coset WKw}.

Note that the Frobenius isogeny ϕ : G → G induces an automorphism
ϕ of the Weyl group W .

Let θ0 be the element of minimal length in WJw0Wϕ(I).
Let further I ⊂ Rs be the type of P+ and let J ⊂ Rs be the type

of (P−)(q). Then the restriction ψ := int (θ0) ◦ ϕ : W → W induces an
isomorphism of Coxeter systems (WI , I) and (WJ , J).

For w′, w ∈ IW one sets w′ � w if there is u ∈ WI such that
uw′ψ(u)−1 ≤ w with respect to the Bruhat order on W .

As shown in [PWZ12, Subsection 3.5] Ξ ∼= IW with the topology
induced by the partial order �.
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This quotient stack [EG,χ\G] is useful to describe the isomorphism
classes of G-zips of type χ.

G-zips and F -zips. For an affine k-group scheme G we mean by G-
torsor a right GS-torsor over S for the fpqc-topology. In other words, G-
torsor I is a scheme I over S endowed with a right action of I×S (GS)→
I written (i, g) 7→ ig such that the morphism I ×S GS → I ×S I given
by (i, g) 7→ (i, ig) is an isomorphism, and there is a scheme S′ and an
fpqc-morphism S′ → S such that I(S′) 6= ∅. Remark that the last
condition can be omitted if the structure morphism I → S is fpqc.

Let H be a closed subgroup scheme of G over k . We say that a
H-torsor J is a subtorsor of G-torsor J if there is an H-equivariant
inclusion J ↪→ I, where H acts on I via restriction of the G-action.

We recall the following definition introduced in [PWZ12].

Definition 1.5. 1) A G-zip of type χ over S is a tuple I = (I, I+, I−, ı),
where I is a G-torsor over S, I+ ⊂ I a P+ subtorsor, I− ⊂ I a P (q)

−
subtorsor, and ı : I(q)

+ /U
(q)
+

∼→ I−/U
(q)
− an isomorphism of L(q)-torsors.

2) A morphism (I, I+, I−, ı) → (I ′, I ′+, I
′
−, ı
′) of G-zips of type χ

consists of G resp. P+, P
(q)
− equivariant morphisms I → I ′ resp. I± →

I ′± which are compatible with inclusions and the isomorphisms ı and ı′.

The morphisms of G-zips of type χ over S are isomorphisms, hence
such G-zips form a groupoid denoted by G-Zipχk (S).

As shown in [PWZ12, Prop. 3.2], the groupoids G-Zipχk (S) with
the obvious pullback definition form a stack G-Zipχk fibered over the
category (Sch/k) .

The stack G-Zipχk is isomorphic to the stack [EG,χ\G] [PWZ12, Prop.
3.11].

The data coming from many interesting geometric objects in nonzero
characteristic carries the structure of so-called F -zips (see [Wed08, Sec-
tion 2]).

First, we recall the definitions.

Definition 1.6. LetM be a locally free OS-module of finite rank.
A descending filtration C• of M is a family {CiM}i∈Z of OS-

submodules of M which are locally direct summands of M such that
Ci+1M⊂ CiM for all i ∈ Z, and CiM =M for i� 0 and CiM = 0
for i� 0.

Similarly, an ascending filtration D• ofM is a family {Di}i∈Z of OS-
submodules of M which are locally direct summands of M such that
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Di−1M⊂ DiM for all i ∈ Z, and DiM =M for i� 0 and DiM = 0
for i� 0.

If S has a finite number of connected components, the condi-
tions of the previous definition imply that the subquotiens griCM :=
CiM/Ci+1M and grDi M := DiM/Di−1M are locally free OS-modules
that vanish outside a finite index range. Note that locally free OS-
modules endowed with a descending resp. an ascending filtration form
a category. Objects of these categories are pairs (M, C•) resp. (M, D•)
and maps are the morphisms of OS-modules that respect these filtra-
tions.

Definition 1.7. [PWZ12, Definition 6.1.]
1) An F -zip over S is a tuple M = (M, C•, D•, ϕ•), where M is a
locally free OS-module of finite rank, C• a descending filtration ofM,
D• an ascending filtration of M, and ϕi :

(
griCM

)(q) ∼→ grDi M are
OS-linear isomorphisms.

2) A homomorphism f : M = (M, C•, D•, ϕ•) → N =
(N , C•, D•, ϕ′•) of F -zips over S is a homomorphism of the under-
lying OS-modules M → N satisfying for all i ∈ Z the constraints
f(CiM) ⊂ CiN and f(DiM) ⊂ DiN and making the following dia-
gram commute:

(
griCM

)(q) ϕi
∼

//

(griCf)
(q)

��

grDi M

grDi f

��(
griCN

)(q) ϕi
′

∼
// grDi N

The resulting category of F -zips over S is denoted by F -Zip(S). Its
simplest objects are so-called Tate F -zips.

Example 1.8. The Tate F -zip of weight d ∈ Z is the F -zip 1(d) =
(OS , C•, D•, ϕ•), where

Ci =

{
OS for i ≤ d,
0 for i > d

and Di =

{
0 for i < d,
OS for i ≥ d (1.3)

with ϕd is the identity on OS = (OS)(q).
With the natural definition of the tensor product and the duals

[PWZ12, Section 6] the Fq-linear category F -Zip(S) becomes a rigid
tensor category with the unit object 1(0).
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Definition 1.9. An F -zip is called of rank n, or height n if its under-
lying OS-module has constant rank n.

Let n : Z → N0 be a function with finite support. An F -zip M is
called of type n if the graded pieces griCM, or equivalently grDi M, are
locally free OS-modules of constant rank ni := n(i) for all i ∈ Z.

Let k = Fq, and S be a Fq-scheme. Denote by F -Zip
n
k(S) be a sub-

category of F -Zip(S) whose objects are F -zips of type n and morphisms
are isomorphisms. Since F -zips consist of quasi-coherent sheaves and
the morphisms thereof, they satisfy the effective descent with respect
to any fpqc-morphism of Fq-schemes S′ → S. Therefore, one obtains
the category F -Zip

n
k fibered in groupoids which is a stack.

LetM = (M, C•, D•, ϕ•) be an F -zip of type n over S.
It is immediate from the definition thatM is Zariski locally isomor-

phic to the free OS-module (kn)S = OnS , and the filtered OS-modules
(M, C•) and (M, D•) to (kn, C•)S resp. (kn, D•)S . Moreover, by a
change of basis, we can assume that griCk

n = grDi k
n = kni .

Let P+ := Aut ((kn, C•)) and P− := Aut ((kn, D•)). As result, we get
two opposite parabolic subgroups of GLk defined over k = Fq together
with the isogeny of their common Levi factor L = P+ ∩ P− induced by
the Frobenius. As usual denote by U+ and U− their unipotent radicals.

Now on obtains the corresponding GLn,k-zip I = (I, I+, I−, ϕ) by
taking

I = Iso ((kn)S ,M) ,
I+ = Iso ((kn, C•)S , (M, C•)) ,
I− = Iso ((kn, D•)S , (M, D•))

Forgetting filtrations gives the P± equivariant embeddings I± ↪→
I. Moreover, the isomorphism ϕ• : (gr•CM)(q) ∼→ grD•M induces an
isomorphism of L-torsors:

(I+)(q) /U+
∼= Iso

(
(gr•Ck

n)S , (gr•CM)(q)
)
∼→ Iso

(
(grD• k

n)S , grD•M
)

∼= I−/U−.

As shown in [PWZ12, Subsection 8.1], the assignment of an F -zip
to GLn,k-zip, which is Fq-linearly functorial and compatible with the
pullback, gives rise to an isomorphism of stacks F -Zip

n
k and GLn-Zipχk .

Recall that GLn-Zipχk
∼=
[
EGLn,k,χ\GLn,k

]
.

The F -zips with additional structures can also be translated to G-
zips for an appropriate reductive group (see loc. cit.).
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The practical upshot from the above discussion is that the study of
isomorphism classes of F -zips or G-zips of the fixed type reduces to the
study of the stack [EG,χ\G].

2. Affineness of the orbits

Let k = k̄ throughout this subsection. Its aim is to show that under
assumption of the condition (FC) the orbits of the action 1.2 are affine.
As we will see further on, it implies purity of G-zips.

Remark 2.1. An orbit of the action 1.2 on Ĝ in the non-connected
setting (see [PWZ12, Definition 3.6.]) is a finite scheme theoretically
disjoint union of locally closed subsets of Ĝ which are isomorphic to the
orbits of the related connected zip data given by the neutral components
G of Ĝ, and two parabolic subgroups. Hence, as already noted in the
introduction, we can restrict us to the study of the connected case.

We first recall some basic facts.

Theorem 2.2. [Car85, Lang-Steinberg thm., section 1.17] Let G be an
affine connected algebraic group over k, F : G → G an isogeny, such that
GF = {g ∈ G : F (g) = g} is finite. Then the morphism of k-varieties
L : G → G, g 7→ g−1F (g) is surjective. In particular, taking for F a
Frobenius map satisfies the condition of the theorem.

Remark 2.3. Going through the proof one can see the theorem holds
if the above finiteness condition is replaced by the condition that Lie F
is nilpotent.

We suppose now that the conditions of the previous theorem hold.
Then:

(i) By composing with the map g 7→ g−1 we conclude L′ : G →
G, g 7→ gF (g)−1 is also surjective.

(ii) Let G act on itself by F -conjugation, i.e. (g, x) 7→ gxF (g)−1,
g, x ∈ G. Then G coincides with the orbit of 1, hence this action
is transitive.

The following two easy corollaries will be further useful.

Corollary 2.4. Let F : G → G be an isogeny, and x0 be a point of G.
The following statements are equivalent:

(i) L is surjective
(ii) GF is finite
(iii) Lx0 : G → G, g 7→ gx0F (g)−1 is surjective
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(iv) Gx0,F := {g ∈ G : gx0F (g)−1 = x0} is finite
(v) Lx0 is a finite morphism

Proof. (ii) ⇒ (i) is exactly the statement of Lang-Steinberg theorem.
(i) ⇒ (ii): By the previous remark the F -conjugation is transitive.

Then, for the dimension reason, the stabilizers of all points of G, in
particular 1 ∈ G which is GF , are finite.

(i) ⇔ (iii): Both statements are equivalent to the transitivity of F -
conjugation.

(iii)⇒ (iv): The F -conjugation is transitive by the previous remark.
Then, for the dimensions reasons, the stabilizers of all points of G, in
particular Gx0,F , are finite.

(iv)⇒ (iii): Consider F ′(g) := x0 F (g)x−1
0 . Then by Lang-Steinberg

theorem the map L′′ : g 7→ gF ′(g)−1 is surjective. Hence Lx0 = L′′x0

is so as well.
(v) ⇒ (iv): Gx0,F is finite as being a fiber of a finite (in particular a

quasi-finite) morphism.
(iv) ⇒ (v): Note that Lx0 : G → G is a (right) Gx0,F -torsor.
By passing to (G)red we can assume G is smooth. Thus we have the

following Cartesian diagram:

G × Gx0,F

π1

��

π1 // G
Lx0

��
G

Lx0 // G
Here π1 is a projection onto the first factor. The map Lx0 is quasi-finite
and surjective by the foregoing part of the proof, hence it is faithfully
flat as a morphism of smooth varieties. The projection π1 is clearly
finite, hence by faithfully flat descent Lx0 is so as well.

�

Corollary 2.5. Let F : G → G be an isogeny. The G-action on G by
F -conjugation (cf.2.3(ii)) is transitive if and only if the stabilizers of
all points of G are finite. Otherwise there exist infinitely many orbits of
G-action by F -conjugation in G.

Proof. The first statement is immediate by Corollary 2.4. Suppose now
there are finitely many orbits of the G-action by F -conjugation. Since G
is connected, one of them lies dense in G. Therefore, for the dimension
reason it has a finite stabilizer. Now by 2.4 follows that the G-action
by F -conjugation is transitive. �
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Now let I ∈ Rs resp. J ∈ Rs be the types of the parabolic subgroups
g−1
0 P ′ and P both containing Borel subgroup B. Recall thatWI andWJ

are subgroup of Weyl group W generated by sets of simple reflections
I resp. J .

As is well known, we have the following Bruhat decomposition of G:

G =
⋃

w∈IWJ

P ′wP,

where IW J is a system of representatives forWI\W/WJ in the normal-
izer of T . By the left translation with g0 it yields the decomposition:
G =

⋃
w∈IWJ

P ′g0wP .

We now fix some arbitrary w as above. The set P ′g0wP being P ′×P
orbit in G is locally closed, and obviously stable under the EZ -action
1.2, hence each orbit is contained in exactly one of such pairwise disjoint
pieces. Moreover, it is clear by the definition of EZ -action that each
orbit in P ′g0wP contains an element of the form g = g0wl for some
l ∈ L.

Now consider the right homogeneous space G/U with the action of
P ′ on it given by

(p′, [g]) 7→ [p′gϕ(πL′(p
′))−1].

Note that the restriction of the projection P ′ × P → P ′ gives rise to
the surjective morphism EZ → P ′. Via this morphism we obtain the ac-
tion of EZ onG/U making the quotient mapG→ G/U EZ -equivariant.
Thus, we get the faithfully flat morphism bijectively mapping the EZ -
orbits of G onto the P ′-orbits of G/U . Moreover, this map is affine by
[GW10, ch. 12, Prop.12.3.(3)] since G is affine, and, as is well known,
the homogeneous space G/U is a quasi-projective variety 4 (see [SR05,
Ch. 7, Thm. 4.2]), in particular separated.

Note that the above morphism EZ → P ′ induces an isomorphism
ι : StabEZ (g0wl) → StabP ′([g0wl]) with respect to the actions of EZ
resp. P ′. The inverse map ι−1 : StabP ′([g0wl]) → StabEZ (g0wl) is
given by p′ 7→ (p′, (g0wl)−1

p′).
Clearly, StabP ′([g0wl]) ⊂ P ′ ∩ g0wP , so we have StabP ′([g0wl]) =

StabP ′∩g0wP ([g0wl]).

4G/U is even quasi-affine since U is observable in G (cf. [SR05, Ch. 10, Obser-
vation 2.4.,Thm. 5.4]).
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Remark 2.6. There is a possibility to pass from an original zip datum
Z = (G,P, P ′, ϕ) to some new zip datum Zn containing the algebraic
groups of lower dimensions.

This reduction process is introduced in [PWZ11, Section 4], and it
yields a one-to-one closure preserving correspondence between the or-
bits inside a EZ -stable piece P ′g0wP and the orbits in L with respect
to the EZn-action. The new zip datum is given by Zn := (L,Q,Q′, ψ),
where Q := ϕ(L′ ∩ g0wP ), Q′ := L ∩ w−1g−1

0 P ′ are two parabolic sub-
groups of L together with the isogeny

ψ := ϕ ◦ int (g0w) |
L∩w

−1g−1
0 L′

: L ∩ w−1g−1
0 L′ → ϕ(L′ ∩ g0wL)

between their Levi factors. Note that Lie ϕ = 0 implies Lie ψ = 0.
As the dimensions of the algebraic groups get smaller, the reduction

process terminates in a finite number of steps. For a terminating zip
datum holds G = L. Thus, it must be of the form (G,G,G, ϕ), and
EZ ∼= G acts on G by: (g, x) 7→ gxϕ(g)−1, g, x ∈ G.

Since we assume the condition (FC) 1.2 it follows that there is the
only finite number of orbits with respect of ϕ-conjugate G-action. Then
by Corollary 2.5 we conclude that G acts transitively with finite stabi-
lizers.

This reduction process makes it possible to give an inductive descrip-
tion of the stabilizers of the point g0wl ∈ P ′g0wP .

Lemma 2.7. There is an exact sequence of algebraic groups:
(2.1)

1 // ker en // StabP ′∩g0wP ([g0wl])
en // StabEZn (l) // 1

where en denotes the restriction of the morphism en : P ′ ∩ g0wP → EZn

given by en(p′) := (πL(w
−1g−1

0 p′), ϕ(πL′(p
′))).

The reduced group scheme (ker en)red is isomorphic to U ′ ∩ g0wU .

Proof. It’s immediate from the definition of en that U ′ ∩ g0wU ⊂
(ker en)red ⊂ (kerϕ · U ′) ∩ g0wU .

Since ϕ is an isogeny between connected algebraic groups, it fol-
lows that (kerϕ)red lies in the center of L′ (see [Spr98, 5.3.5]). Thus,
(kerϕ)red lies in some torus of L′, hence (kerϕ)red ∩ g0wU = 1. As
U ′ ∩ g0wU is smooth, it implies (ker en)red = U ′ ∩ g0wU .

And finally, the map en is faithfully flat (we will see below in the
proof of Theorem 2.9 that it is split). �
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Remark 2.8. Let G be an affine connected algebraic group over al-
gebraically closed field k and H ⊂ G be a smooth closed connected
subgroup. Furthermore let HM and GM be the categories of rational
H- resp. G-modules.

A closed subgroup H is by definition exact in G if the induction
functor IndGH : HM → GM is exact. It is a well known fact that G/H
is affine if and only if H is exact in G [SR05, ch. 11, Theorems 4.5.and
6.7.]. As the induction functor IndGH : HM→ GM is an adjoint functor
to the restriction functor ResHG : GM → HM, and since restriction is
transitive, induction is so as well.

Specifying the exact group theoretical conditions such thatH is exact
in G turns out to be a hard problem [CPS77]. Nevertheless, there are
some easy situations, e.g. H is a closed subgroup of the unipotent
radical RuG of G, the case we will study next.

Assume now: H ⊂ RuG. Thus, proving that H is exact in G amounts
to showing that H is exact in RuG, and RuG is exact in G. The latter
is obvious as the quotient is an affine (reductive) algebraic group.

The exactness of H in RuG is also clear 5: Since unipotent groups
have only trivial characters, there exist a rational module M and a
point x ∈ M such that RuG/H is an RuG-orbit of x (cf.[SR05, Ch.7,
Corollary 3.6.]). Therefore RuG/H being an orbit of a unipotent group
in the affine variety M is closed in M , and hence G/H is affine.

Theorem 2.9. Suppose the condition (FC) 1.2 is verified. Then the
EZ- orbits in G are affine.

Proof. LetO be an EZ -orbit of some element g0wl ∈ G. As the quotient
morphism G→ G/U is affine, it suffices to show that the corresponding
P ′-orbit of [g0wl] ∈ G/U is affine.

Consider the inclusion StabP ′∩g0wP ([g0wl])
0
red ↪→ StabP ′∩g0wP ([g0wl])

whose cokernel is a finite algebraic group over k, say γ. Then O is
isomorphic to the quotient of P ′/StabP ′∩g0wP ([g0wl])

0
red by γ.

Thus, we get a finite surjective map P ′/StabP ′∩g0wP ([g0wl])
0
red → O.

Hence, by Chevalley’s theorem [GW10, Theorem 12.39.] it suffices to
investigate the homogeneous space P ′/StabP ′∩g0wP ([g0wl])

0
red for affine-

ness.
Claim: StabP ′∩g0wP ([g0wl])

0
red is a closed subgroup of U ′.

5see also [CPS77, Corollary 2.2] for another proof
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Proof of the claim: We proceed inductively. The reduction process
mentioned in Remark 2.6 terminates if P = P ′ = G. In this case the
stabilizer is finite by loc. cit..

Therefore the claim obviously holds in this case.
Due to the inductive assumption we have StabQ′([l])

0
red ⊂ RuQ

′ =

L ∩ w−1g−1
0 U ′. Note that exact sequence in 2.1 splits, the splitting

morphism is given by the restriction of the map fn : EZn → P ′ ∩ g0wP
given by (q′, q) 7→ g0wq′.

Thus we have fn(RuQ′) ⊂ U ′, and StabP ′∩nP ([g0wl])
0
red is the prod-

uct of two closed subgroups of U ′.
Therefore, StabP ′∩g0wP ([g0wl])

0
red is a closed connected subgroup of

RuP ′, and it is exact in P ′ due to the remark 2.8, hence their quotient
is affine. �

If we abandon the condition (FC) 1.2 the claim of the previous the-
orem fails already in simplest cases:

Counterexample 2.10. Consider the zip datum Z =
(GL2,GL2,GL2, Id). Hence EZ -action amounts to the conjuga-
tion in GL2. Observe that the morphism of k-varieties λ : GL2 → A2

given on k-valued points by λ :

(
a b
c d

)
7→ (a + d, ad − bc) is constant

on the GL2-orbits.

Denote by O1 the orbit of the element
(

1 1
0 1

)
∈ GL2 of dimension

2, and by O2 the orbit of Id ∈ GL2, which is just a point. Note that
O1 ∪O2 = λ−1(2, 1) is closed in GL2, and hence affine.

But O1 is not closed in GL2, by conjugating by the matrices(
1 0
0 t

)
∈ GL2 (t 6= 0) we conclude that

(
1 t
0 1

)
∈ O1 for all t 6= 0,

therefore we have Id ∈ O1 \O1.
It follows that O1 has codimension 2 in its closure O1 = λ−1(2, 1).

Thus, O1 is not affine, otherwise it clearly contradicts the algebraic
version of Hartogs’ theorem [GW10, Theorem 6.45.], see also Lemma
3.3.

3. Purity of G-zip stratification

Let I be a G-zip of type χ over S. Recall that the stack G-Zipχk
is isomorphic to [EG,χ\G] [PWZ12, Prop. 3.11.] with underlying set
Γ\IW .



18

I defines for all Γ - orbits [w] locally closed subschemes S[w]
I


↪→ S

which are loci, where I has locally the constant isomorphism class [w].
We will recall an exact definition of S[w]

I below in this section.
There is the following set theoretically disjoint decomposition

(3.1) S =
⋃

[w]∈IW/Γ

S
[w]
I .

First we explain how the previous section implies that the immersion
 is affine.

We recall construction of S[w]
I [PWZ12, Subsection 3.6]:

A G-zip I over S defines by Yoneda lemma the 1-morphism ζ : hS →
G-Zipχk , where hS is the stack associated to the k-scheme S i.e. to its
functor of points.

Due to [PWZ12, Prop. 2.2.] we can consider [w] as a smooth, locally
closed algebraic substack of G-Zipχk , let S

[w]
I be the schematic inverse

image ζ−1([w]).

Theorem 3.1. The immersion  : S[w]
I → S is affine.

Proof. By Prop. 2.2. loc.cit. the Γ-orbit of w is a locally closed subset
of underlying topological space Ξ of G-Zipχk ⊗ k̄ with no two elements
are comparable with respect to �. Therefore, it is locally closed subset
of Ξ, and it can be described as a disjoint union of one-point reduced
stacks (cf. [PWZ12, Subsection 2.2]).

Thus, just by the base change we obtain the following scheme-
theoretically disjoint decomposition: S[w]

I ⊗ k̄ =
⊔

w′∈Γw

Sw
′

I .

Clearly,  is affine if and only if each  ⊗ idk̄|Sw′I : Sw
′

I → S is affine

for w′ ∈ Γw.
Thus, without loss of generality we can assume k is algebraically

closed. In this case Γ = 1 and [w] corresponds to a single orbit O of G.
The quotient map G → G-Zipχk is a representable faithfully flat

stack morphism. Then the affineness of the morphism O ↪→ G (see
[GW10, ch. 12, Prop.12.3.(3)]) implies by faithfully flat descent that
the schematic stack morphism [w]→ G-Zipχk is affine.

So, we have the following diagram:
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S
[w]
I

� �  /

��

S

ζ

��
[w] �

� / G-Zipχk

Hence the morphism  : S
[w]
I → S is affine just by the definition.

�

The affineness of the inclusion  implies the following result:

Corollary 3.2. Suppose that S is a locally noetherian k-scheme, Z a
closed subscheme of S of codimension ≥ 2, which contains no embedded
components of S that the restriction of I to S\Z is fppf locally constant,
then I is fppf locally constant.

Proof. That Z contains no embedded components implies that the
scheme theoretic closure of S \Z coincides with S. The claim of Corol-
lary is then an immediate consequence from the following lemma and
the fact that faithfully flat morphism preserves the codimensions. �

Lemma 3.3. Let X be a scheme, Y be an locally-noetherian scheme,
X ↪→ Y be an affine immersion. Denote by X the schematic closure of
X in Y and let Z be an irreducible component of X \ X 6= ∅. Then
codim(Z,X) = 1.

Proof. Since an affine morphism is quasi-compact, X ↪→ Y factorizes
through the inclusion X ↪→ Y , and one has an affine open immersion
X ↪→ X (cf. [GW10, Remark 10.31.]).

First assume that codim(Z,X) = 0. As Z is closed in X of codimen-
sion 0 it must be an irreducible component of X. But Z∩X = ∅, hence
X is not dense in X. This gives a contradiction to the assumption.

Suppose there is a component Z of X \X such that codim(Z,X) ≥ 2.
Replacing X by Spec OX,Z and X respectively by X ∩ Spec OX,Z we
can assume that X = Spec A for a local noetherian ring A of dimension
at least two and X = Spec A \ {z}, where z is a closed point of the
codimension at least two. Again replacing A with the quotient A/p,
where p is a minimal prime ideal of A, we can furthermore assume that
A is integral.

Next, we replace A with the completion Â which is possible since the
morphism Spec Â→ Spec A is faithfully flat (cf.[GW10, Prop. B.40]),
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i.e. it preserves the codimensions, and affine morphisms are stable under
base change, we can assume A is a complete local noetherian ring.

Then Spec A is excellent due to [GW10, Theorem 12.51]. This im-
plies that the normalization Spec A′ → Spec A is a finite morphism
(cf.[GW10, Theorem 12.51]).

Replacing A with its normalization we can assume that A is normal.
Eventually, we get an affine inclusion X := Spec A \ {z} ↪→ Spec A

of normal noetherian schemes. By an algebraic analogue of Hartogs’
theorem [GW10, Theorem 6.45.] we conclude that A ∼= Γ(X,OX) which
is clearly a contradiction to X is affine.

�

4. Applications

4.1. Purity of level-1-stratification. Let S be an Fp -scheme and X
over S be a Barsotti-Tate group. Further let X[1] be the corresponding
truncated Barsotti-Tate group of the level 1, i.e. p-torsion of X . The
strata of level-1-stratification of S corresponds to the loci of S where
X[1] has a constant isomorphism class.

In this subsection we illustrate an easy way to show the purity of
such stratification just utilizing the fact that its covariant Diedonné
crystal carries an F -zip structure. However, this approach turn out
to be unsatisfactory for the study of the higher level stratifications as
the corresponding Diedonné crystals do not carry F -zip structure any
longer.

In the next subsection we will reprove and generalize this result for
stratifications of the higher levels using explicit construction of certain
moduli spaces of Barsotti-Tate groups. Despite of some redundancy
we intend to show both approaches, one presented in this subsection is
preferable for the level-1-stratification due to its simplicity.

We denote by X[1]∨ the Cartier dual of X[1].
Let D(X) be its covariant Diedonné crystal and M(X) :=

D(X)(S, S, 0) be its evaluation at the trivial object (S, S, 0) of crys-
talline site.
M(X) is a local free OS- module of the rank equal to the height h

of X.
Moreover,M(X) is endowed with an F -zip structure in the following

way [PWZ12, Subsection 9.3]:
There is an exact sequence (cf. [BBM82, Corollaire 3.3.5., Proposi-

tion 5.3.6]) which is functorial in X and compatible with base change
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S′ → S:

0 // ωX[1]∨ //M(X) // Lie(X[1]) // 0,

where ωX[1]∨ = e∗ΩX[1]∨/S is the OS-module of invariant differentials
of X[1]∨.

The relative Frobenius FX/S : X → X(p) and the Verschiebung
VX/S : X(p) → X give rise to OS-linear homomorphisms F :=M(V ) :

M(X)(p) →M(X) resp. V :=M(F ) :M(X)→M(X)(p).
Note that the roles of the Frobenius and the Verschiebung are

switched in the covariant Diedonné theory.
Moreover, Im V = kerF = ω

(p)
X[1]∨ and Im F = kerV are local direct

summands ofM(X)(p), respectivelyM(X).
One obtains the corresponding F -zipM(X) = (M(X), C•, D•, ϕ•)

with a descending filtration C0 =M(X), C1 = ωX[1]∨ and C2 = 0 and
an ascending filtration D−1 = 0, D0 = kerV and D1 =M(X) with the
isomorphisms ϕ0 :

(
C0/C1

)(p)
= M(X)(p)/ kerF F→

∼
Im F = kerV ∼=

D0/D−1. and ϕ0 :
(
C1/C2

)(p)
= Im V V −1

→
∼

D1/D0.
As explained in the previous section, an F -zip structure gives a GLh-

zip structure that also gives a decomposition 3.1 of S.
Recall that there is an equivalence of categories between truncated

Barsotti-Tate groups over a perfect field and a the modulo p reductions
of the covariant Diedonné modules.

Therefore the decomposition pieces S[w] whereM(X) has fppf-locally
a constant isomorphism class are exactly the loci where X[1] has a
constant one.

Now let S be a locally noetherian Fp -scheme. The purity of the
inclusion S[w] ↪→ S implies in particular that whenever X[1] has a
constant isomorphism class over S\S′ where S′ is closed of codimension
at least two in S, it has a constant isomorphism class over S overall.

4.2. Purity of level-m-stratifications. Let k be a perfect field of
characteristic p > 0, and BT n,d resp. BT n,dm be the moduli spaces
of Barsotti-Tate groups of dimension d and codimension n − d over k
resp. m-truncated Barsotti-Tate groups of same dimension and codi-
mension over k. That is, for each k-scheme S the groupoids BT n,d(S)
resp. BT n,dm (S) are the categories of the Barsotti-Tate groups resp.
m-truncated Barsotti-Tate groups over S as above with morphisms in
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BT n,d(S) resp. BT n,dm (S) being isomorphisms of (truncated) Barsotti-
Tate groups. Moreover, by [Wed01, Prop 1.8.] and by base change,
BT n,dm is a smooth algebraic stack of finite type over k.

Our goal here is to sketch briefly the construction of a quotient stack
closely related to the stack BT n,dm , to relate latter to some algebraic zip
datum, and to deduce certain purity results.

For a commutative Fp-algebra R and m ∈ N denote by W (R) and
Wm(R) the ring of Witt-vectors resp. the ring of Witt-vectors of length
m with coefficients in R. Furthermore, let σR : W (R) → W (R) by the
Frobenius endomorphism induced by the Frobenius endomorphism (i.e.
p-power map) on R and set σ := σk. Let by p = (0, 1, 0, 0, . . .) be the
standard uniformizer of the discrete valuation ring W (k).

Let K be a smooth affine group scheme of finite type over
Spec (W (k)). We denote by Wm(K) the smooth affine algebraic group
over k which represents the functor R 7→ K(Wm(R)), and by W (K) the
corresponding pro-algebraic group. Let Tm be the kernel of the projec-
tion : W (K) → Wm(K) given on the k-valued points by the reduction
modulo pm.

Let now D a Barsotti-Tate group over k of dimension d and codi-
mension n − d. The height of D is n. Let (M, φ) be a contravariant
Diedonné module of D, i.e. a freeW (k) module of rank n together with
σ-linear endomorphism φ : M→M such that it holds φ(M) ⊇ pM.

Moreover, one has a direct sum decomposition M = M0 ⊕M1 such
that M1/pM1 is isomorphic to the kernel of the φ̄ : M/pM→M/pM
which is the reduction of φ modulo p. Note that M0 and M1 are free
W (k)-modules of rank d resp. n − d. It follows that φ(M0 ⊕M1) =
M0 ⊕ pM1.

Let K = GLM and take K := W (K)(k) = GLM(W (k)). Thus, by
fixing a basis of M we can write φ = b ◦ σ with b ∈ Kµ(p)K, where

µ(p) is given by the matrix
(
1d 0
0 p1n−d

)
and σ is applied coordinate-

wise. A change of basis amounts to σ-conjugating by element a ∈ K,
b 7→ abσ(a)−1.

Thus the objects of BT n,d(k) are given by the set K-σ conjugation
classes of Kµ(p)K.

From the surjectivity of the Frobenius in this case follows that each
of the orbits can by parametrized by the elements in Kµ(p). The K-σ
conjugation onKµ(p)K descends toKµ-σ conjugation onKµ(p), where
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Kµ is the normalizer of the set Kµ(p) ⊂ Kµ(p)K with respect to the
K-σ conjugation.

We see that:

Kµ = {a ∈ K : aKµ(p)σ(a)−1 ∈ Kµ(p)} = {a ∈ K : µ(p)a ∈ K}

=

{(
Ad×d pBd×n−d
Cn−d×d Dn−d×n−d

)
∈ K

}
,where Ad×d, Bd×n−d,

Cn−d×d, Dn−d×n−d are sub-matrices over W (k) of size as specified
by the lower indices.

Note that Kµ is σ-invariant.
As explained in [Vie11, section 1.4.] the isomorphism classes of m-

truncated Barsotti-Tate groups can be described by classifying the re-
ductions of the Diedonné module (M,φ) as above modulo pm. Trans-
lated into the group actions it means the following:

Given two K-σ conjugation classes, say [g] and [g′] for some g, g′ ∈
Kµ(p)K, have the same pm-reduction of their Diedonné modules if and
only if there are t, t′ ∈ Tm := Tm(k) such that [tgt′] = [g′]. As expected,
since Tm is a normal subgroup of K, this relation remains stable under
K-σ conjugation that corresponds to the basis change of M.

Thus, one has a bijection:

{objects of BT n,dm (k)} ' {K-σ conjugacy classes of Tm\Kµ(p)K/Tm}.

Since Tm is a normal subgroup of K we can as before parametrize
such orbits by the elements of Kµ(p). Note that that yields a bijection
between a K-σ orbit of Tm\ Kµ(p)K/Tm and the corresponding Kµ-σ-
orbit of Tm\ Kµ(p).

Moreover, one has the bijection between the sets of orbits. Thus, we
get:

{objects of BT n,dm (k)} ' { Kµ-σ conjugacy classes of Tm\Kµ(p)}.

This allows to construct the quotient stack Cm(µ) in the follow-
ing manner: Let Kµ be a smooth affine subgroup scheme of K over
Spec (W (k)) such that Kµ(W (k)) = Kµ.

Note that

µ(p)Kµ =

{(
Ad×d Bd×n−d

pCn−d×d Dn−d×n−d

)
∈ K

}
⊂ K.

Similarly denote by µ(p)Kµ a smooth affine subgroup scheme of K
over Spec (W (k)) such that µ(p)Kµ(W (k)) = µ(p)Kµ.
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In an analogous fashion to an zip group 1.1 we define an affine smooth
group scheme E of finite type over Spec W (k) as follows. Let T be a
finite generated W (k)-algebra. Denote by λµ(p), ρµ(p) σ̃ : K → K the
scheme endomorphisms given on T -valued points by the right transla-
tion by µ(p) resp. left translation by µ(p) resp. by the Frobenius σ.
By some abuse of notations denote by the same letters restrictions of
these maps to Kµ, µ(p)Kµ.

Let E be the following fiber product:

E //

��

µ(p)Kµ
ρµ(p)

��
Kµ

λµ(p)◦σ̃ // K

Note that E is a group scheme, and its W (k)-valued points are given
by:

E(W (k)) := {(x′, x′′) ∈ Kµ × µ(p)Kµ : µ(p)σ(x′) = x′′}.
Let Cm(µ) be the quotient stack ofW (Kµ)-σ-action on Tm\K ∼= Wm(K).
This action is given on k-valued points by:

(4.1) (x′, [x]) 7→ [x′ · x · µ(p)
(
σ(x′)−1

)
], x ∈ K,x′ ∈ Kµ.

Note that it is equivalent to the W (E)-action given by:

(4.2) ((x′, x′′), [x]) 7→ [x′ · x · x′′−1]

Unless stated otherwise, for the rest this subsection we will assume
that k = k̄.

Example 4.1. Let m = 1. Consider the W (Kµ)-σ-action on T1\K ∼=
W1(K) ∼= GLM/pM. As explained before this action is equivalent to the
action of W (E) on GLM/pM. Note that the W (E)-action on GLM/pM

factors through W1(E).
Let P ′ and P be the images ofW (Kµ)→W1(Kµ) resp. W (µ(p)Kµ)→

W1(µ(p)Kµ) under the reduction modulo p. Obviously, they are opposite
parabolic group with the common Levi factor L = P ′ ∩ P .

Now consider an zip datum Z = (GLM/pM, P, P
′, σ̄), where σ̄ : L→

L is the reduction modulo p of σ.
Note that W1(E) is exactly the zip group associated to Z. Thus, the

orbits of W (Kµ)-σ-action are affine due to Theorem 2.9.
This example reproves in particular purity of the level-1-

stratification.
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In order to show the purity of level-m-stratification for m ≥ 2 con-
sider the smooth morphism Tm\K ∼= Wm(K) → T1\K ∼= W1(K), of
algebraic groups over k which is just induced on k-valued points by the
reduction modulo pm−1. Moreover, this morphism is equivariant with
respect to W (E)-action, and therefore it maps each orbit in Wm(K)
onto an orbit in W1(K). Note that for all s ∈ N, W (E)-action on
Ws(K) factors through Ws(E)- action.

Our aim is to establish the affineness of these orbits.
The following general fact [SR05, Ch. 11, Theorem 8.4.] will be

further useful:

Lemma 4.2. Let G be a smooth affine algebraic group over an alge-
braically closed field k and U ⊂ G be a closed smooth connected unipo-
tent subgroup.

Then the homogeneous space G/U is an affine variety if and only if
there exist a morphism of varieties Φ: G → U such that Φ(xu) = Φ(x)u
for all x ∈ G and u ∈ U .

The proof of the next proposition is largely influenced by [NVW10,
Subsection 5.1.].

Proposition 4.3. Wm(E)-orbits in Wm(K) are affine for all m ∈ N.

Proof. Let O be anWm(E)-orbit inWm(K) that maps to some EZ -orbit
o in GLM/pM. Let Im be the stabilizer of some closed point x of O
and I be the stabilizer of the image of x in o. As explained before (cf.
remark 2.8, proof of Theorem 2.9), the orbit O is affine if and only if
Im0

red is exact in Wm(E). We also know that I0
red is exact in W1(E).

Consider the exact sequence of smooth affine algebraic groups:

1 // N // Wm(E)
mod pm−1

// W1(E) // 1

where N is the kernel of ker(Wm(E) → W1(E)), which is smooth
connected unipotent algebraic group.

Note that Wm(E) is N -torsor over W1(E) and it is trivial as a tor-
sor of algebraic unipotent group over affine k-scheme. Hence we have
Wm(E) ∼= N oW1(E).

Pulling back this exact sequence by the inclusion I0
red ↪→ W1(E) we

get the following exact sequence of smooth affine algebraic groups:

1 // N // U // I0
red

// 1
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As before we have U ∼= N o I0
red, and U is a smooth unipotent

connected algebraic group.
Since I0

red is exact in W1(E), there exists by 4.2 a morphism of va-
rieties Φ: I0

red → W1(E) such that Φ(xu) = Φ(x)u for all x ∈ W1(E),
u ∈ I0

red . It yields the morphism of varieties Φ′ : NoI0
red → NoW1(E)

given by (Id,Φ). Φ′ obviously satisfies the condition of Lemma 4.2.
This implies affineness of the quotient Wm(E)/U . Therefore U is exact
in Wm(E).

Now observe that Im0
red ⊂ U and hence unipotent. So Im0

red is exact
in U (cf. remark 2.8). Thus we conclude Im0

red is exact in Wm(E) by
transitivity of induction. Hence O is affine. �

E. Lau shows in [Lau10, Lemma 3.5] that the category Dispm(k) of
truncated displays of levelm over k is equivalent to truncated Diedonné
modules of level m over k. Moreover, fixing the dimension d one gets
Dispm,d

∼= Cm(µ) (see the construction in the proof of loc. cit. Prop.
3.15). The main result of the same paper (see loc. cit. Theorem 4.5.)
establishes a connection between the stack of truncated displays and the
stack of truncated Barsotti-Tate groups: It implies there exists a smooth
morphism Λ : BT n,dm → Dispm,d

∼= Cm(µ) which is an equivalence on
geometric points.

Note that the underlying topological spaces of stacks Cm(µ) and
BT n,dm for m > 1 contain infinitely many points, hence we cannot just
tacitly repeat the arguments of Section 3 passing from the affineness of
the orbits to the purity of the corresponding strata.

Nevertheless, a slight modification of the arguments makes it possi-
ble. In this part we follow closely to [NVW10, Subsections 2.2-2.3].

Let X ′ be an object in BT n,dm (k), and X := ΛX ′. Note that (X ′, k)
and (X, k) define the points of BT n,dm resp. Cm(µ) in sense of [LMB91,
Definition 5.2]. The corresponding fppf 1-morphisms of stacks over k
X ′ : Spec k → BT n,dm and X : Spec k → Cm(µ) admit canonical factor-

izations Spec k
X̄′
� X̊ ′

ı′
↪→ BT n,dm and Spec k

X̄
� X̊

ı
↪→ Cm(µ), where

X̊ ′ and X̊ are residue gerbes of points X ′ and X, see [LMB91, Sec-
tion 11]. Note that X̄ ′ and X̄ are fppf epimorphisms, and ı, ı′ are
monomorphisms.

As BT n,dm and Cm(µ) are locally noetherian stacks over k, the points
X ′, X are algebraic by [LMB91, Théorème 11.3]. Thus X̊ ′ and X̊ are
fppf gerbes of finite type over Spec k.
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Further let Xm be a m-truncated Barsotti-Tate group over S. Thus
Xm defines the stack morphism ζXm : S → BT n,dm .

Essentially, our situation is summarized by the following diagram
with 2-Cartesian squares:

SmX′ //
� _

�

X̊ ′� _

�

// X̊� _

�

Ooo
� _

�
S

ζXm // BT n,dm
Λ // Cm(µ) Wm(K)oo

Let us explain it in more detail:

1) By O is denoted the Wm(E)-orbit of an arbitrary lift of X in
Wm(K).

2) O is the fiber product in the right square of the above diagram
by [LMB91, Exemple 11.2.2].

3) The O is affine by Prop. 4.3 and smooth over k, and
O ↪→ Wm(K) is an affine immersion of noetherian schemes
since O is affine and Wm(K) separated (cf. [GW10, ch. 12,
Prop.12.3.(3)]).

4) The quotient map Wm(K) → Cm(µ) is smooth and surjective,
in particular a faithfully flat stack morphism.

5) By faithfully flat descent X̊ ↪→ Cm(µ) is representable by an
affine immersion of finite presentation.

6) O → X̊ is a smooth and surjective stack morphism by base
change.

7) X̊ is smooth over k since O is smooth over k and by 6).
8) Similarly by smoothness Λ, X̊ ′ is smooth over k since X̊ ′ ↪→ X̊

is so, and by 6).
9) Consider the fiber product X̊ ×

Cm(µ)
BT n,dm . Since Λ is smooth,

and by base change of 5) follows that it is a reduced substack
of BT n,dm . Moreover, since Λ induces an equivalence on the
geometrical points, the middle square commutes, so there is a
1-morphism X̊ → X̊ ×

Cm(µ)
BT n,dm which is an isomorphism of the

reduced one-point stacks.
10) The level m stratum SmX′ of Xm/S with respect to X ′ is defined

by the fiber product in the left square of the above diagram.
By the definition of a residue gerbe, the morphism of k-schemes
f : T → S factors through SmX′ if and only if f∗Xm is locally for
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fppf topology isomorphic to X ′ ×
k
T as m-truncated Barsotti-

Tate groups over T .
11) SmX′ ↪→ S is an affine immersion of finite presentation by the

base change of the morphism in 4). In particular one can view
SmX′ as a subscheme of S.

Let k be again an arbitrary perfect field of characteristic p > 0. In
this case we can also define the level m stratum SmX′ as in 9).

Then we have:

Theorem 4.4. The immersion SmX′ ↪→ S is affine.

Proof. By base change and by 11), we conclude that (SmX′)k̄ ↪→ (S)k̄ is
an affine immersion of finite presentation, and that it by faithfully flat
descent implies that SmX′ ↪→ S is so as well and, in particular, pure. �

5. F -zip structures on de Rham cohomology

Let S be an Fp-scheme throughout this subsection.
A vast amount of geometric examples of F -zips comes from the struc-

tures which naturally arise on the de Rham cohomology.
For an arbitrary Fp scheme Y denote by FY : Y → Y the absolute

Frobenius.
Furthermore let X be a smooth proper scheme over S, and denote

by f : X → S a structure morphism, and by F = FX/S : X → X(p) the
relative Frobenius.

Thus, we have the following commutative diagram.

X
F=FX/S

!!DD
DD

DD
DD

FX

��

f

**

X(p)
σX //

f (p)

��

X

f

��
S

FS // S

We start with a recollection the basic facts (cf. [MW04, Sect. 6],
[Wed08, Subsect. 1.1.]).

The de Rham cohomology H•dR(X/S) := Rf∗Ω
•
X/S is the hypercoho-

mology of the complex Ω•X/S with respect to the left exact functor f∗
going from the category of OX -modules to the category of OS-modules.
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Note that the coboundary maps of Ω•X/S are f−1(OS)-linear but not
OX -linear.

There are two exact sequences converging to H•dR(X/S), namely the
Hodge-de-Rham sequence

HE
ab
1 = Rbf∗(Ω

a
X/S)⇒ Ha+b

dR (X/S)

and the conjugate spectral sequence

conjE
ab
2 = Raf∗(Hb(Ω•X/S))⇒ Ha+b

dR (X/S).

Recall there is a morphism of the graded OX(p)-algebras:

γ :
⊕
i∈N0

Ωi
X(p)/S

→
⊕
i∈N0

HiF∗Ω•X/S .

Moreover, if f is smooth, γ is an isomorphism denoted by C−1 and
called the Cartier isomorphism (cf. [Ill96, Section 3]).

In addition, it has the following properties:
(i) C−1 restricts on the zero-graded piece to the algebra isomor-

phism F ∗ : OX(p) → F∗OX .
(ii) C−1 maps d(σ−1(x)) ∈ Ω1

X(p)/S
to the class of xp−1dx in

H1F∗Ω
•
X/S .

Note, that C−1 induces an isomorphism of OS-modules

Raf
(p)
∗ Ωb

X(p)/S

∼→ Raf
(p)
∗ (HbF∗Ω•X/S) = Raf

(p)
∗ F∗(HbΩ•X/S) =

Raf∗(HbΩ•X/S) = conjE
ab
2

Moreover, if we assume that OS-modules Raf∗Ωb
X/S are flat (this

holds in particular if they are locally free), then we have:

Raf
(p)
∗ Ωb

X(p)/S
∼= Raf

(p)
∗ σ∗XΩb

X/S
∼= F ∗Sf∗R

aΩb
X/S
∼=
(
HE

ba
1

)(p)

Thus under this assumption we get an isomorphism:

(5.1) ϕab :
(
HE

ba
1

)(p) ∼→ conjE
ab
2

Remark 5.1. Fix an integer n ∈ N0. The definition of spectral se-
quence, applied to the case of Hodge-de Rham spectral sequence im-
plies that the limit termM := Hn

dR(X/S) is endowed with a descending
filtration Fil• such that Fil• such that FilkM/Filk+1M ∼= HE

k,n−k
∞ . We

call Fil• the Hodge filtration.
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On the other hand, the conjugate spectral sequence furnishes us with
the second descending filtration Fil′• such that Fil′kM/Fil′k+1M ∼=
conjE

k,n−k
∞ .

Note that HE
k,n−k
∞ and conjE

k,n−k
∞ are in general the subquotients of

HE
k,n−k
1 resp. conjE

k,n−k
2 .

In the classical situation, there are some discrete conditions for degen-
eration at E1, which arise directly from the construction of the spectral
sequence:

Remark 5.2. Let K be an arbitrary field. Suppose X̄ is a proper
scheme over K, and let bn := dim

K
Hn

dR(X̄). We define Hodge numbers

ha,b for a, b ∈ N0 by and ha,b := dim
K

Hb(X̄,Ωa
X̄/K

), a, b ∈ N0. They

satisfy the following inequalities: bn ≤
∑

a,b∈N0,a+b=n

ha,b for all n ∈ N0,

and the Hodge-de Rham spectral sequence degenerates in E1 if and only
if the latter inequalities are equalities for all n ∈ N0 .

The following remark generalizes the above one:

Remark 5.3. Let R be a commutative ring, and f : X̃ → S̃ be a proper
smooth scheme over S̃ := Spec R. Denote by R-MODfl the category
of R-modules of finite length. We recall that R-MODfl is an abelian
category, and its objects are both Noetherian and Artinian R-modules,
or equivalently, finitely generated and Artinian ones.

Length lg : R-MODfl → N0 is additive on exact sequences of objects
in R-MODfl: Hence for two objects M and N in R-MODfl such that N
is proper subquotient of M holds: lg N < lg M .

Suppose that HE
ab
1 = Rbf∗(Ω

a
X̃/S̃

) and Hn
dR(X̃/S̃) are objects in

OS̃-MODfl for all a, b ∈ N0, e.g. it is a case if OS̃ is an Artinian ring.
In view of the above and Remark 5.1 we arrive at the following cri-

terion for degeneration the Hodge-de Rham spectral sequence at E1:
We have:

lg Hn
dR(X̃/S̃) ≤

∑
a,b∈N0,a+b=n

lg Rbf∗(Ω
a
X̃/S̃

),

and the Hodge-de Rham spectral sequence degenerates in E1 if and only
if the latter inequalities are equalities for all n ∈ N0.

Now we recall the following definition.
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Definition 5.4. Let f : X → S be a smooth proper morphism of ar-
bitrary schemes. We say f satisfies condition (D) if the following two
conditions hold:

(a) The OS-modules HE
ab
1 = Rbf∗(Ω

a
X/S) are locally free of finite

rank for all a, b ∈ N0.
(b) The Hodge-de Rham spectral sequence degenerates at E1.

Remark 5.5. The part (a) of condition (D) implies that the formation
of HE

ab
1 commutes with an arbitrary base change S′ → S.

The condition (D) remains true after an arbitrary base change S′ → S
(see [Kat72, 2.2.1.11]).

Remark 5.6. Condition (D) implies the isomorphism 5.1, and the con-
jugate spectral sequence also degenerates at E2 (see [Kat72, Proposition
2.3.2]).

Since, by a general principle, the formation of HE
ab
r commutes with

any flat base change, and a condition of the degeneration at E1 ex-
pressed as HE

ab
1 = HE

ab
2 for all a, b ∈ N0 is stable under faithfully flat

descent, holds the following:

Remark 5.7. Let f : X → S as in the above definition, and S′ → S be
an fpqc morphism. Then fS′ : X ×

S
S′ → S′ satisfies (D) iff f satisfies

(D).

These nice properties of the spectral sequence provided f satisfies
condition (D) give birth the following F -zip structure on H•dR(X/S).

Construction 5.8. Fix an integer 0 ≤ n ≤ 2 dim(X/S).
Suppose f : X → S satisfies condition (D). We associate to f an F -

zip (M, C•, D•, ϕ•) as follows: Set M = Hn
dR(X/S). As the Hodge-

de Rham spectral sequence degenerates at E1 we have HE
k,n−k
∞ =

HE
k,n−k
1 , by Remark 5.6 we also have conjE

k,n−k
∞ = conjE

k,n−k
2 .

Let a descending filtration C• be the Hodge filtration, and we define
an ascending filtration D• by DiM = Fil′n−iM , i ∈ Z, where Fil′ is
defined as in Remark 5.1.

Note that ϕ is given by the isomorphisms 5.1 just by setting ϕi =
ϕn−i,i.

Definition 5.9. Let f : X → S be a smooth proper morphism.
We say X̃ is a lift of X in zero characteristic if there exist a scheme

S̃ flat over Spec Zp, and a scheme morphism S → S̃ such that one has
the following diagram with a Cartesian square:
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X

f

��

// X̃

f̃
��

S // S̃

flat
��

Spec Zp

Presuming the existence of a lift in zero characteristic we are looking
for easily testable sufficient conditions under which the condition (D)
is met. First we will need a few technical facts which essentially only
rephrase the content of [Mum70, Ch.2, §5].

Lemma 5.10. Let f : X → S be a proper smooth morphism of locally
noetherian schemes with S = Spec A affine. Furthermore let B be an
arbitrary A-algebra, and Y = Spec B. Then there is a finite complex
0 → F0 → F1 → . . . → Fm → 0 of finitely generated projective A-
modules such that one has for all n ∈ N0 the natural isomorphism of
B-modules: Hn

dR(X ×
S
Y/Y ) ∼= Hn(F• ⊗

A
B).

Proof. Let U = {Ui}i∈I be a finite affine cover of X, and consider the
finite Čech bicomplex Č•• = Č•(U,Ω•X/S). Further let F• be a total
complex associated to the bicomplex Č••. As Ωa

X/S are locally free OX -
modules, and since X is flat over S, they are flat over S. Moreover, as
f : X → S is separated, hence F• is a complex of flat A-modules, which
represents the complex Rf∗Ω

•
X/S in the derived category.

Moreover, for all A-algebras B, {Ui×
S
Y }i∈I is the cover of X×

S
Y , and

Č•(U,Ω•X/S)⊗
A
B is the corresponding Čech bicomplex. The associated

total complex is just F• ⊗
A
B, and so we have: Hn

dR(X ×
S
Y/Y ) =

Rnf∗Ω
•
X×
S
Y/Y
∼= Hn(F• ⊗

A
B) as required. Moreover, this isomorphism

is obviously functorial in B. �

The previous lemma leads us to the following semi-continuity result
for the dimension of the cohomology groups of the fibers whose proof
follows verbatim along the same lines as [Mum70, Ch. II, §5, Corollary].
For the reader’s convenience, we will sketch it.
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Proposition 5.11. Let f : X → S be a proper smooth morphism of
locally noetherian schemes. Then we have:

i) For each n ∈ N0, the function S → Z defined by s 7→ dim
κ(s)

Hn
dR(Xs)

is upper semi-continuous.
ii) The Euler characteristic χ : S → Z, s 7→

∑
j∈N0

(−1)jdim
κ(s)

Hj
dR(Xs)

is locally constant on S.

Proof. Since the question is local on S, we may assume S = Spec A,
where A is a local ring. Since all projective modules over a local ring
are free, we can pick a complex F• of finitely generated free A-modules
which furnishes us with the isomorphism in Lemma 5.10. Let di : F i →
F i+1 be the coboundary maps of F•. Then by the previous lemma
holds:

dim
κ(s)

Hn
dR(Xs) = dim

κ(s)
ker dn ⊗

A
κ(s)− dim

κ(s)
Im dn−1 ⊗

A
κ(s) =

dim
κ(s)
Fn ⊗

A
κ(s)− dim

κ(s)
Im dn ⊗

A
κ(s)− dim

κ(s)
Im dn−1 ⊗

A
κ(s). (†)

dim
κ(s)
Fn⊗

A
κ(s) is constant in s; therefore it amounts to show that the

function ρ : S → Z, s 7→ dim
κ(s)

Im di ⊗
A
κ(s) is lower semi-continuous for

each i ∈ N0, i.e. the set Mρ = {s ∈ S : ρ(s) < r} is closed in S for each
r ∈ N0.

Consider now the A-linear map ∧rdi :
∧rKi →

∧rKi+1 between
free A-modules of finite rank induced by di. Clearly, then we have:
Mρ = {s ∈ S : ∧rdi ⊗

A
κ(s) = 0}. Moreover, the map ∧rdi is given by

a matrix with entries in A, which correspond to the global sections of
the structure sheaf on S. Their common zero locus defines a closed set
in S.

The second assertion follows on taking alternating sum of † over
j. �

The following proposition loc. cit. will be further useful.

Proposition 5.12. Let f : X → S be a proper morphism of locally
noetherian schemes, and F a coherent sheaf on X, flat over S. Assume
S is reduced. For each b ∈ N0 the following conditions are equivalent:

(i) s 7→ dim
κ(s)

Hb(Xs, Fs) is a locally constant function on S.



34

(ii) Rbf∗(F ) is a locally free sheaf on S, and for all s ∈ S, the
natural map Rbf∗(F )⊗

OS
κ(s) −→ Hb(Xs, Fs) is an isomorphism.

Proof. The claim is a part of [Mum70, Ch.2, Corollary 2]. �

The Mumford’s proof of Proposition 5.12 relies solely on the fact that
Hb(X ×

Spec A
Spec B/Spec B,F⊗

A
B) with A and B as in Proposition 5.10

can be computed as Hb(F• ⊗
A
B), where F • is a perfect complex of A-

modules. By Proposition 5.10 the same holds true for Hn
dR(X ×

S
Y/Y ).

Thus we have:
Corollary 5.13. Let f : X → S be a smooth proper morphism of locally
noetherian schemes, and S be reduced. For each n ∈ N0 the following
conditions are equivalent:

(i) s 7→ dim
κ(s)

Hn
dR(Xs) is a locally constant function on S.

(ii) Hn
dR(X/S) is a locally free OS-module, and for all s ∈ S, the

natural map Hn
dR(X/S)⊗

OS
κ(s) −→ Hn

dR(Xs) is an isomorphism.

The constancy of Hodge numbers in fibers of the lift in zero charac-
teristic turns out to be a sufficient for the condition (D) to be met:
Proposition 5.14. Let f : X → S be a smooth proper morphism. Sup-
pose that there is a lift of X in zero characteristic, f̃ : X̃ → S̃ such that
X̃ and S̃ are locally noetherian schemes, f̃ is proper and smooth, and
S̃ reduced.

Further assume the functions s̃ 7→ dim
κ(s̃)

Hb(X̃s̃,Ω
a
X̃s̃/κ(s̃)

) are locally

constant on S̃ for all a, b ∈ N0.
Then f satisfies condition (D).

Proof. It suffices to prove the assertion of the proposition for S̃ is con-
nected. We complete the right column of diagram 5.9 with Cartesian
squares by taking generic fibers of X̃, S̃, Spec Zp:

X

f

��

// X̃

f̃
��

X ′? _o

f ′

��
S // S̃

flat
��

S′? _
o

��
Spec Zp Spec Qp? _o
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Note that (Ωa
X̃/S̃

)s̃ ∼= Ωa
X̃s̃/κ(s̃)

(e.g. [Ill96, 1.3]) for all a ∈ N0.

Since the open immersions are preserved by a base change,  : S′ ↪→ S̃
is an open immersion again; moreover  is dominant by [Gro, IV/2,
Proposition 2.3.7(i)] because Spec Qp ↪→ Spec Zp is dominant and quasi-
compact.

By Prop. 5.12 Rbf̃∗(Ωa
X̃/S̃

) are locally free modules of finite rank for
all a, b ∈ N0. In particular, their formation commutes with an arbitrary
base change.

Thus Rbf ′∗(Ωa
X′/S′)

∼= ∗Rbf̃∗(Ω
a
X̃/S̃

) are locally free OS′-modules of
the same rank. Note that the last isomorphism is true in general since
 is a flat morphism.

As S′ is of zero characteristic the corresponding Hodge-de Rham se-
quence degenerates at E1 by [DI87]. On the other hand, by Proposition
5.11 the function s̃ 7→ dim

κ(s̃)
Hn

dR(Xs̃) is upper semi-continuous on S̃.

Let s′ ∈ Im . As Hodge-de Rham sequence degenerates at E1 in
zero characteristic, for K = κ(s′) holds the equality of Remark 5.2.

Since by Prop. 5.12 the Hodge numbers are constant on S̃, we have
dim
κ(s̃)

Hn
dR(X̃s̃) ≤ dim

κ(s′)
Hn

dR(X̃s′). On the other hand Im  is open and

dense in S̃, so Proposition 5.11 forces the equality for all n ∈ N0. Thus
s̃ 7→ dim

κ(s̃)
Hn

dR(X̃s̃) is a constant function on S̃.

Thus Prop. 5.13 implies that Hn
dR(X̃/S̃) is locally free OS̃-module.

In fact, one can test the degeneration of Hodge-de Rham sequence
locally on S̃, moreover it is sufficient to prove it for S̃ = Spec R, where
R is a local Artinian ring, see the proof of [Kat72, Proposition 2.3.2].

Note that in this case for the only point s̃ ∈ S̃ holds lg Hn
dR(X̃/S̃) =

dim
κ(s̃)

Hn
dR(X̃s̃) · lg R and lg Rbf̃∗(Ω

a
X̃/S̃

) = dim
κ(s̃)

Hb(X̃s̃,Ω
a
X̃s̃/κ(s̃)

) · lg R

Thus, by of Remark 5.3, the Hodge-de Rham sequence is degenerate
for f̃ : X̃ → S̃.

We see that f̃ : X̃ → S̃ satisfies condition (D) except for S̃ is not in
characteristic p. But Remark 5.5 remains true also in this case, hence
f : X → S also satisfies condition (D).

�

5.1. Applications of Proposition 5.14.

K3 schemes over S. First we recall the definitions (see [Riz06]).
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Definition 5.15. Let K be an arbitrary field, and Y be an arbitrary
base scheme.

i) A smooth proper geometrically connected scheme X over K of
dimension 2 is called a K3 surface if Ω2

X/K
∼= OX , and H1(X,OX) = 0.

ii) A polarization on a K3 surface X is a global section λ ∈
PicX/K(K) that over K̄ is the class of an ample line bundle LK̄ . The de-
gree of LK̄ , which is by definition the selfintersection index (LK̄ ,LK̄)XK̄ ,
is called the polarization degree of λ. A polarization degree is always
an even number.

iii) A K3 scheme over Y is a scheme X together with proper, smooth
morphism f : X → Y whose geometric fibers are K3 surfaces.

iv) A K3 space over a scheme Y is an algebraic space X together
with a proper and smooth morphism f : X → Y such that there is an
étale cover Y ′ → Y of Y for which fY ′ : X ×

Y
Y ′ → Y ′ is a K3 scheme

over Y ′.
v) A polarization on a K3 space f : X → Y is a global section λ ∈

PicX/Y (Y ) such that for every geometric point ȳ of Y the section λȳ ∈
PicXȳ/κ(ȳ)(κ(ȳ)) is a polarization of Xȳ, see [Riz06, section 1.3.1] for a
definition of relative Picard functor PicX/Y .

We recall also a well-known fact about the Hodge diamond of a K3
surface X, see [Del, Proposition 1.1]:

Remark 5.16. For the Hodge numbers of X/K holds:
h1,0 = h0,1 = h2,1 = h1,2 = 0;
h0,0 = h2,0 = h0,2 = h2,2 = 1;
h1,1 = 20.

Note that in particular they do not depend on the field K.

J. Rizov constructs in loc.cit. a separated Deligne-Mumford stack
M2d fibered over (Sch) of polarized pairs (f : X → Y, λ), where X is
a K3 space over Y , and λ is a polarization of the (constant) degree 2d
on it. Moreover he shows in [Riz06, Proposition 1.4.15] that the moduli
stackM2d is smooth of relative dimension 19 over Z[ 1

2d ].
This result establishes the following method of the construction of a

lift in zero characteristic:

Corollary 5.17. Let (f : X → S, λ) be a polarized K3 scheme with a
polarization of degree 2d. Assume p - 2d .

Then f satisfies condition (D).
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Proof. Denote by Mp
2d = M2d ⊗

Z[ 1
2d

]
Zp which is separated, smooth, in

particular flat, Deligne-Mumford stack over Zp. In particular, one has
a étale surjection M ′2d →M

p
2d with M ′2d is a smooth scheme over Zp.

Let X→Mp
2d be the universal K3 space with a polarization of degree

2d. (f : X → S, λ) corresponds to the stack morphism F : S → Mp
2d

such that one has the following Cartesian diagram:

X

f

��

// X

��
S

F //Mp
2d

Let X ′ := X ×
Mp

2d

M ′2d, S
′ := S ×

Mp
2d

M ′2d, X
′ := X ×

Mp
2d

M ′2d be the étale

covers of X resp. S resp. X.
By the base change byM ′2d →M

p
2d we obtain the following Cartesian

diagram:

X ′ //

fM′
2d

��

X′

��
S′

FM′
2d // M ′2d

Note that of the diagonalMp
2d →M

p
2d×M

p
2d of a Deligne-Mumford

stack being a schematic morphism implies that X ′ → S′ is a K3 scheme,
and X′ →M ′2d is a K3 space.

Note that by Remark 5.7 it suffices to test condition (D) for a K3
scheme X ′ → S′.

Now by the definition of K3 space we can choose an étale cover
M ′′2d →M ′2d such that X′′ := X′ ×

M ′2d

M ′′2d →M ′′2d is a K3 scheme.

By the same reasoning as above we can test condition (D) for a K3
scheme X ′′ := X ′ ×

M ′2d

M ′′2d → S′′ := S′ ×
M ′2d

M ′′2d.

But X′′ → M ′′2d is a lift in zero characteristic of X ′′/S′′ in sense
of Definition 5.9 which clearly satisfies the assumptions of Proposition
5.14. This proves the claim. �

Remark 5.18. By utilizing the existence and the regularity properties
of the moduli stack of polarized abelian schemes over Z, see e.g [dJ93],
one can show in a similar vein that an polarized abelian scheme X over
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S under certain restrictions also satisfies condition (D). In fact, the
polarization assumption can be abandoned, and condition (D) holds
true for an arbitrary abelian scheme over S, see [BBM82, § 2.5. Prop
2.5.2].

Lift over Spec W (k). Here we list some examples of proper smooth
schemes X over k where condition (D) holds, i.e., S = Spec k and
S̃ = Spec W (k):

(1) X/k is a proper smooth curve: In fact, there is a proper smooth
lift X̃ → Spec W (k), since the obstructions lie in H2(X,Ω∨X/k),
and H2(X,OX), see e.g. [Gro, III/1, Théorème 5.1.4].

By Serre duality for Hodge numbers holds h0,0 = h1,1 = t,
h1,0 = h0,1 = g, and they are the same on the generic and the
special fiber since the Euler characteristic χ = 2t−2g is constant
on S̃ by Proposition 5.11(ii), and t, which is the number of geo-
metric components, is also constant by [Gro, IV/3, Proposition
15.5.9(ii)].

(2) X/k is a K3 surface: By [Del] there exists a lift to a K3 scheme
over W (k), and the Hodge numbers do not depend on X and
on the ground field.

(3) X/k is an Enriques surface if char(k) 6= 2. In this case
H2(X,OX) = 0 and it has an étale cover by a K3 sur-
face Y . By Serre duality H2(X,Ω∨X/k) = 0 if and only if
H0(X,ΩX/k ⊗ ωX) = 0. The last equality is true since it holds

for an étale cover Y , see [Lan83, Theorem 1.1.]. Thus a lift
exists for the same reason as in (1).

Note that similar to K3 surfaces the Hodge numbers for En-
riques surfaces over K in char(K) 6= 2 do not depend on any
choice.

(4) X/k is a smooth complete intersection in Pnk , see [DK69, Exposé
XI, Théorème 1.5].

(5) X/k is a smooth proper toric variety, see [Bli01].
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