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ZUSAMMENFASSUNG. Sei k ein perfekter Koérper der Character-
istik p > 0, und S ein Schema iiber k. Ein F-zip ist ein lokal
freier Os-Modul vom endlichen Rang versehen mit zwei Filtrierun-
gen und einem Frobenius-linearen Isomorphismus zwischen deren
graduierten Stiicken. Eine natiirliche Verallgemeinerung dieses
Begriffs fiir eine reduktive algebraische Gruppe G/k ergibt einen
“ F-zip mit G-structure”, so genannter G-zip, der zuerst in [PWZ12]
eingefithrt wurde. Ein G-zip [ iiber S liefert die Zerlegung des
Basisschemas S = USI[,w] in Strata, auf denen I lokal eine kon-

w
stante Isomorphieklasse fiir fppf Topologie besitzt. Wir zeigen,
dass SEU] — S affin sind, und geben eine Reihe geometrischer
Anwendungen davon.

ABSTRACT. Let k be a perfect field of characteristic p > 0, and S
an scheme over k. An F-zip is basically a locally free Og-module
of finite rank endowed with two filtration and an Frobenius-linear
isomorphism between their graded pieces. The natural generaliza-
tion of this notion for a reductive algebraic group G/k is an “ F-zip
with G-structure”, a so-called G-zip introduced in [PWZ12]. A G-

zip I over S yields the stratification of the base scheme S = USE”]

in loci, where I has locally a constant isomorphism class for the
fppf topology. We show that SEU] — S are affine and give a num-
ber of geometric applications of this purity result.

INTRODUCTION

Background and motivation. Let k = [, for the sake of simplicity
unless stated otherwise.

Giving a short historical account of purity problems in the algebraic
and arithmetic geometry one should mention the Purity Theorem (2000)
of de Jong-Oort [dJOO00]:

Theorem 0.1. Let S be an integral, excellent scheme in characteristic
p. Let X — S be a Barsotti-Tate group over S. Further let U C S be
the largest (open dense) ' set on which the Newton polygon is constant.
Then, either U = S, or S — U has codimension one in S.

Let us remark that one could require some other regularity /finiteness
conditions instead of “excellence” of S.

Lthese properties are automatically satisfied for a such set, see [Kat79, Thm.
2.3.1, p. 143]



This kind of result is referred by A. Vasiu in [Vas02| as “the weaker
variant of purity”. In fact, he shows a stronger version of the above the-
orem which implies the de Jong-Oort’s result by applying the standard
Hartogs-like yoga:

Theorem 0.2. Let X, U C S are as in Theorem 0.1. Then the open
inclusion U — S is affine.

Afterwards F. Oort gave an alternative proof of the above theorem
in his conference talk (see [Oor02]) similar in flavor to that of A. Vasiu.

The authors of [NVWI0| consider another purity problem for
Barsotti-Tate groups: Pick m € N, and let S an arbitrary scheme over
k. Let X,, be an m-truncated Barsotti-Tate group over S. Further let
S% be the subscheme of S that describes the locus where the X,, is
locally for the fppf topology isomorphic to X' x S, where X' is an m-

truncated Barsotti-Tate group over k. As shown in loc.cit. the assertion

v = S affine holds for all primes p > 5, and under some strong con-
ditions on X’ it holds also for p € {2,3}. One should mention that the
core of the proof is based on the case m = 1; this case readily implies
the case m > 1. For m = 1 this purity result is equivalent to purity
for a special class of F-zips, see below for an informal introduction to
them.

Another motivation for this work comes from the fact that some data
of geometrical origin, e.g., de Rham cohomology groups of certain pro-
jective varieties, has a structure of a so-called F-zip with maybe some
additional structures. The notion of an F-zip was first introduced in
[MWO04]. Its authors B. Moonen and T. Wedhorn studied the de Rham
cohomology HJ,(X/S) of a smooth proper scheme f: X — S. They
showed that under assumption of the so-called condition (D) which says:
i) the higher direct images R* f*Qg( /s for a,b € Ng are locally free Og-
modules of finite rank, and ii) the Hodge-de Rham spectral sequence
degenerates at Ey, follows that M := H; (X/S) carries a structure of
an F-zip, i.e. M is endowed with two filtrations (“Hodge” and “con-
jugate” filtration), and there is a Frobenius-linear morphism between
their graded pieces induced by the Cartier isomorphism. For a general
reductive algebraic group G, R. Pink, T. Wedhorn, P. Ziegler defined
in [PWZ12] the notion of an F-zip with G-structure, called a G-zip
(see Definition 1.5). These additional structures arise naturally: For
instance assume that f: X — S is of pure dimension d with geomet-
rically connected fibers satisfying condition (D). Then the cup pairing
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on the “middle” de Rham cohomology group H, éiR(X /S) gives rise to a

symplectic (resp. a symmetric) pairing for d odd (resp. even). In this

case one obtains a G-zip, where G = CSpy, . (resp. G = COp,x), which

is the group of symplectic simultudes (resp. of orthogonal simultudes)

for h = r%nk HY4:(X/9), see [PWZ12, §8]. Another example are F-zips
S

with additional structures associated to abelian varieties with certain
extra data determined by a Shimura PEL-datum, see [VW12].

A G-zip over S yields a stratification of a base scheme S in similar
fashion as explained above in case of an m-truncated Barsotti-Tate
group over S. In its turn, giving an F-zip of rank n is equivalent to
giving an GL,, ;-zip.

In case of S = Spec k specifying these two filtrations for an F-zip
is equivalent to giving two opposite parabolic subgroups of GL,, 1, and
a Frobenius-linear map between their Levi-factors. The generalization
thereof leads to a concept of algebraic zip datum introduced in [PWZ11],
which is a quadruple Z = (G, P, P’, ), where G is a reductive algebraic
group over k, P and P’ are parabolic subgroups with unipotent radicals
R, P resp. R, P, and an isogeny ¢: P/R,P — P'/R,P’.

One could ask whether (G, P, P’, ) and (G, P, P', 1) define the same
algebraic zip datum up to a change of basis. To tackle this problem one
defines an action of the associated zip group Ez = {(p',p) € P' x P :
¢([p']) = [p]} on G given by ((p/,p), g) = p'gp~'#.

The elements g and ¢’ € G lie on the same orbit whenever they
correspond the same ¢ up to a change of basis.

Let us remark that the notion of (non-connected) algebraic zip datum
considered in [PWZ12| has a more general setting as above with G, P
and P’ playing a role of the neutral components of some, in general
non-connected, algebraic groups. But the purity problem considered
here can be reduced to the case of connected algebraic zip datum, see
also Remark 2.1, hence we limit ourself to study the connected version.

A crucial role in [PWZ12| as well as in this paper plays the algebraic
stack [Ez\G], which is the quotient stack with respect to the above
action.

G-zips are the objects over S that look fibrewise like an algebraic

zip datum. It turns out that their classifying stack is isomorphic to
[Ez\G].

Results. Let k here be a perfect field containing [, and S be a k-
scheme.



Basically in this paper, we prove the following purity result and give
several applications:

Theorem A. Let k be an algebraically closed field. Suppose that G
contains a finite number of Ez-orbits with respect to the action ¢ on it.
Then Ez acts on G with affine orbits.

The above Theorem implies the following easy but important corol-
lary:

Theorem B. Let I be a G-zip of over S. I yields the finite decompo-

sition S = US}w] i loci, where I has locally a constant isomorphism
~7L

class for the fppf topology. Then SEU] < S is affine.

Check section 3 for more details about the index set of the above
decomposition.

We also prove some variant of the lemma which allows to deduce
a weak version of purity from the strong version, i.e. affineness of an
inclusion.

Corollary C. Let X be a scheme, Y be an locally-noetherian scheme,
X <Y be an affine immersion. Denote by X the closure of X inY and
let Z be an irreducible component of X\X # @. Then codim(Z, X) = 1.

In its turn, the above lemma implies the following weak purity result:

Theorem D. Suppose that S is a locally noetherian k-scheme, Z a
closed subscheme of S of codimension > 2, which contains no embedded
components of S that the restriction of I to S\ Z is fppf locally constant,
then I is fppf locally constant.

Next we harvest results in the applications; first we reprove the result
in [NVW10] about the purity of the stratification of a basis scheme S
based on the local isomorphism class of X,, discarding all restrictions
in characteristics 2 and 3:

Theorem E. In the notation of the previous section holds: The inclu-
sion S — S is affine.

Let now X be a smooth proper scheme over S. At the very end
of the paper we give some sufficient conditions and examples when de
Rham cohomology H; (X/S) carries the structure of F-zip making in
particular the purity result applicable in this case.
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Proposition F. Let f: X — S be a smooth proper morphism of
schemes. Suppose that there is a lift of X in zero characteristic (see
Definition 5.9), f: X — S such that X and S are locally noetherian
schemes, f is proper and smooth, and S reduced.

Further assume the Hodge numbers § — dl(I})l HY(X;, Q% % /n(s )) are
locally constant on S for all a,b € Ny.

Then f satisfies condition (D).
We also give examples of application of the last proposition.

Content. This paper is organized as follows. Section 1 contains a short
recollection of basic facts about algebraic zip datum, the associated
quotient stack, and F- and G-zips presented in [PWZ12] and [PWZ11].

Section 2 gives an insight in the geometry of the orbits in Theorem
A, and culminates in its proof.

In section 3 will be explained how Theorem A implies purity results
for the strata of Theorem B, and week purity results of Lemma C and
Corollary D.

Section 4 outlines some applications of the purity results: In subsec-
tions 4.1 and 4.2 we concern us with the purity result of [NVW10], see
Theorem E.

Section 5 focuses on the de Rham cohomology Hl; (X/S) of a proper
smooth variety over S, and on conditions upon which it carries an F-zip
structure. It discusses also some examples.
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also owns my special thanks for the careful reading of this paper, his
comments and corrections, and for the patience treating my knowledge
gaps in algebraic/arithmetic geometry and lack of expertise therein.

I am also grateful to Dr. Ralf Kasprowitz and Prof. Dr. Eike Lau
for many helpful discussions and suggestions.
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1. PRELIMINARIES: GENERAL NOTATION AND BASIC FACTS

Algebraic zip datum. Let k be a field extension of a finite field [
of order g, which is a perfect field, and let S be a scheme over k. We
denote by G a (connected) reductive quasi-split algebraic group over the
field k, fix T' C G a maximal torus and T' C B C G a Borel subgroup.
Further let P, P’ C G be parabolic subgroups such that B C P and
9B C P’ for some fixed element gg € G.

Denote by U and U’ the unipotent radicals of P resp. P’ and by L
and L' their unique Levi-factors verifying T' C L and 97T C L’. In this
way, we obtain two canonical projections wr: P — L, wp: P’ — L.

Furthermore, we restrict our attention to such pairs (P’, P), such
there is an isogeny ¢: L' — L satisfying the constraints p(°B N L') =
BNLand p(°T)=T.

We recall the following central definition introduced in [PWZ11]:

Definition 1.1. 1) A connected algebraic zip datum 3 Z is a quadruple
Z = (G, P,P,p) as above.

2) The linear algebraic group Ez over k given by
(1.1) Ez ={(,p) € P’ x P: p(rp(p))) = m(p)}

is called zip group associated to Z.
The group Ez acts on G by:

(1.2) ((v',p),9) = p'gp" for (p,p)) € Ez,g € G
Or, more explicitly, writing P/ = U'xL' = U'-L' and P=UxL =U-L,
p' = u'l', p = ul, this action becomes:

(', p),9) = wl'gp(l) " u.
Moreover, we impose the following additional condition:

(FC) 1.2. For an algebraic closure k of k there is only a finite number
of Ez(k)-orbits of G(k).

We will see in the section 2 that the condition (FC) is in particular
fulfilled if Lie ¢ = 0, but in fact the latter condition is too strong.

Throughout this paper we consider the algebraic quotient stack
[Ez\G].

The geometric situation described in [PWZ12] leads to some special
kind of algebraic zip datum associated to a cocharacter x: G, — G.

3this definition was originally made in the case of algebraically closed field k
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We assume that the reductive algebraic group G is defined over [, i.e.
G = G}, where G’ is a reductive algebraic group over [F,. Let L be the
centralizer of y in G. Then, there are two opposite parabolic subgroups
P, = L x U4 with the common Levi factor L and the unipotent radicals
U, where the Lie algebras u are directs sums of positive resp. negative
weight spaces in the Lie algebra g under Ad o .

We denote by (.)(q) a pullback of a scheme or a sheaf under ¢- power
absolute Frobenius map S — S resp. k — k.

Clearly, we have G@ = G.

Lemma 1.3. Let G be a reductive algebraic group over k defined over
Fy. Furthermore, let P be a parabolic subgroup of G and L C P be a
Levi subgroup. There exist a mazximal torus T, a Borel subgroup B of
G both already defined over F,, and g € G(k) such that T C 9L and
TCcBCYIP.

Proof. By the assumption, G is a quasi-split algebraic group, thus we
can choose a torus 7" and a Borel subgroup B O T defined over [,.
By [DG64, Exposé XXVI, Lemme 3.8.] there is the parabolic sub-
group P’ such that B € P’ , and P’ is of the same type as P. By
Proposition 1.6 loc.cit. there is the unique Levi subgroup L’ of P’ such
that T'C L’. Then the assertion of the lemma is a direct consequence
of Corollaire 5.5.(iv) loc.cit.. O

A new zip datum (G,9P,YP',int (§) o point (7)) for a g € G(k) is
obviously equivalent to the original one, so we assume by the previous
lemma that there are a maximal torus 7' C L and a Borel subgroup
P > B DT already defined over [F,,.

The relative Frobenius yields the isogeny Frob,: L — L@ =~
Pﬁq) / UEQ) . In this way we obtain an algebraic zip datum:

Definition 1.4. The tuple Zg, = (G,P(q),P+,Frobq) is called the

algebraic zip datum associated to G and x.

Note that due to the choice of an isogeny ¢ = Frob, the condition
(FC) is automatically fulfilled in this case.

The associated zip group to this zip datum is denoted by Eg ,, and
the corresponding quotient stack by [Eg,\G].

Quotient stack [Eg ,\G]. Denote by Transpg,, . the k-scheme

(Egy x G) x G, where pis given by the Eg , - group action 1.2.
p G id



We may think [Eg,\G] as the stack associated to the k-groupoid
{G/Transpy,, }(see [LMBII, (2.4.3)] for details), i.e.: For a k-scheme
S the objects of the k-groupoid are the elements of G(.S) and morphisms
between two objects g1, ge are the S-valued points of the transporter
Transpg,, (91, 92)(S) of Eg,y-action with the composition given by the
multiplication map of Eg .

The underlying topological space of [Eg , \G] has a following common
description [Wed01].

If k = k, the underlying set = is a finite set of Ez(k)-orbits in G(k),
and the topology is induced by a partial order < on it: For two EG,X(E)-
orbits o’ and o one sets o' < 0 if o’ C 0, where 0 denotes the closure of
o in G(k). The open sets in this topology are explicitly defined by the
following property: U is open if and only if for some o € = such that
o/ <o for all o’ € U follows that o € U.

Let now k be an arbitrary field, and I' = Aut (E/ k) be the profi-
nite group of k-automorphisms of k. Then I' acts on Eg , (k)-orbits of
G (k) preserving the order. Therefore, one obtains an induced order on
the I'-orbits of =, and the underlying topological space of [E¢,\G] is
isomorphic to Z := Z/I" with the quotient topology.

More specifically, the topological space = admits the following geo-
metrical description [PWZ11].

Let W := Normg(T)(k)/T(k) be the Weyl group of G, wy be the
element of maximal length in G, and R the corresponding set of simple
reflections with respect to 1}, C By,

Let K C Rs be a subset. We denote by Wi the subgroup of the
Weyl group W generated by K, and let (cf. [Car85, ch. 2.3|)

Ew .= {w e W :w of the minimal length in the right coset Wrw}.

Note that the Frobenius isogeny ¢: G — G induces an automorphism
@ of the Weyl group W.

Let 6p be the element of minimal length in W woWgp).

Let further I C R; be the type of P, and let J C R be the type
of (P_)(Q). Then the restriction ¢ := int (fy) o : W — W induces an
isomorphism of Coxeter systems (W7p,I) and (W, J).

For w',w € TW one sets w' < w if there is v € Wy such that
uw'y(u)~t < w with respect to the Bruhat order on W.

As shown in [PWZ12, Subsection 3.5] E = /W with the topology
induced by the partial order <.
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This quotient stack [Eg,\G] is useful to describe the isomorphism
classes of G-zips of type x.

G-zips and F-zips. For an affine k-group scheme G we mean by G-
torsor a right Gg-torsor over S for the fpqc-topology. In other words, G-
torsor [ is a scheme I over S endowed with a right action of I xg(Gg) —
I written (i, g) — ig such that the morphism I xgGs — I xg I given
by (i,9) — (i,4g) is an isomorphism, and there is a scheme S’ and an
fpge-morphism S — S such that I(S’) # @. Remark that the last
condition can be omitted if the structure morphism I — S is fpqc.

Let H be a closed subgroup scheme of G over k . We say that a
‘H-torsor .J is a subtorsor of G-torsor J if there is an H-equivariant
inclusion J < I, where H acts on I via restriction of the G-action.

We recall the following definition introduced in [PWZ12].

Definition 1.5. 1) A G-zip of type x over Sisa tuple I = (I,I;,1_,1),
where I is a G-torsor over S, I C I a P4 subtorsor, I_ C I a Pfq)

subtorsor, and 7: IS_q) / U_E_q) =1/ U an isomorphism of L(9-torsors.

2) A morphism (I,I;,1_,2) — (I',I},I",7") of G-zips of type x
consists of G resp. Py, Pﬁq) equivariant morphisms I — I’ resp. I+ —
I'. which are compatible with inclusions and the isomorphisms ¢ and 7'.

The morphisms of G-zips of type x over S are isomorphisms, hence
such G-zips form a groupoid denoted by G-Zipy(S).

As shown in [PWZ12, Prop. 3.2|, the groupoids G-Zip}(S) with
the obvious pullback definition form a stack G—Zipjc< fibered over the
category (Sch/k) .

T]he stack G-Zipy is isomorphic to the stack [Eg ,\G] [PWZ12, Prop.
3.11].

The data coming from many interesting geometric objects in nonzero
characteristic carries the structure of so-called F-zips (see [Wed08, Sec-
tion 2]).

First, we recall the definitions.

Definition 1.6. Let M be a locally free Og-module of finite rank.

A descending filtration C® of M is a family {C"M};cz of Og-
submodules of M which are locally direct summands of M such that
CH M c C'M for all i € Z, and C*M = M for i < 0 and C*M =0
for i > 0.

Similarly, an ascending filtration Do of M is a family {D;};cz of Og-
submodules of M which are locally direct summands of M such that
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D, ¢McC DM foralliecZ, and D;M = M for i >0 and DM =0
for 1 < 0.

If S has a finite number of connected components, the condi-
tions of the previous definition imply that the subquotiens gric./\/l =
C'M/CHIM and grP M := D; M /D;_1 M are locally free Og-modules
that vanish outside a finite index range. Note that locally free Og-
modules endowed with a descending resp. an ascending filtration form
a category. Objects of these categories are pairs (M, C*®) resp. (M, D,)
and maps are the morphisms of Og-modules that respect these filtra-
tions.

Definition 1.7. [PWZ12, Definition 6.1.]

1) An F-zip over S is a tuple M = (M, C®, D,, p,), where M is a
locally free Og-module of finite rank, C'* a descending filtration of M,
D, an ascending filtration of M, and ¢;: (griC/\/l)(q) 5 grP M are
Og-linear isomorphisms.

2) A homomorphism  f: M = (M,C® De,pe) — N =
(N,C®, Ds,l,) of F-zips over S is a homomorphism of the under-
lying Og-modules M — N satisfying for all ¢ € Z the constraints
f(C'M) C C°N and f(D;M) C D;N and making the following dia-

gram commute:

The resulting category of F-zips over S is denoted by F-Zip(S). Its
simplest objects are so-called Tate F-zips.

Example 1.8. The Tate F-zip of weight d € Z is the F-zip 1(d) =
(Os,C*, Dy, o), where

i ] Os fori<d, _J0 for i < d,
C_{O fori >d andD,—{Os fori>d (1.3)

with ¢4 is the identity on Og = (Os)(q).

With the natural definition of the tensor product and the duals
[PWZ12, Section 6] the Fy-linear category F-Zip(S) becomes a rigid
tensor category with the unit object 1(0).
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Definition 1.9. An F-zip is called of rank n, or height n if its under-
lying Og-module has constant rank n.

Let n: Z — Ng be a function with finite support. An F-zip M is
called of type n if the graded pieces grgM, or equivalently griD M, are
locally free Og-modules of constant rank n; := n(i) for all ¢ € Z.

Let k = F,, and S be a Fg-scheme. Denote by F-Zip;(S) be a sub-
category of F-Zip(S) whose objects are F-zips of type n and morphisms
are isomorphisms. Since F-zips consist of quasi-coherent sheaves and
the morphisms thereof, they satisfy the effective descent with respect
to any fpgc-morphism of Fg-schemes S — S. Therefore, one obtains
the category F—Zip% fibered in groupoids which is a stack.

Let M = (M, C®, Do, s) be an F-zip of type n over S.

It is immediate from the definition that M is Zariski locally isomor-
phic to the free Og-module (k")s = OF, and the filtered Og-modules
(M, C®) and (M, D,) to (k™,C*®)s resp. (k",Ds)s. Moreover, by a
change of basis, we can assume that grick'" = ngD k™ = k™

Let Py := Aut ((k",C*)) and P_ := Aut ((k"™, D,)). As result, we get
two opposite parabolic subgroups of GLj defined over k = [, together
with the isogeny of their common Levi factor L = P, N P_ induced by
the Frobenius. As usual denote by U, and U_ their unipotent radicals.

Now on obtains the corresponding GLy, p-zip I = (I,11,1_,¢) by
taking

I= Iso((k")s, M),
I = Iso((k",C%)s,(M,C®)),
I = Iso((k",D.)s, (M, D.))

Forgetting filtrations gives the Pi equivariant embeddings 14 <
I. Moreover, the isomorphism ,: (gré./\/l)(q) 5 grP M induces an
isomorphism of L-torsors:

(1)@ /U 2 Iso ((grek™)s, (greM)?) 5 Iso (gr2k")s, grd M)
>~ JU-.

As shown in [PWZ12, Subsection 8.1|, the assignment of an F-zip
to GL,, -zip, which is F4-linearly functorial and compatible with the
pullback, gives rise to an isomorphism of stacks F -Zip% and GLn—Zipz‘ .
Recall that GL,-Zip} = [EGLW,X\GLH,R].

The F-zips with additional structures can also be translated to G-
zips for an appropriate reductive group (see loc. cit.).
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The practical upshot from the above discussion is that the study of
isomorphism classes of F-zips or G-zips of the fixed type reduces to the
study of the stack [Eg,\G].

2. AFFINENESS OF THE ORBITS

Let k = k throughout this subsection. Its aim is to show that under
assumption of the condition (FC) the orbits of the action 1.2 are affine.
As we will see further on, it implies purity of G-zips.

Remark 2.1. An orbit of the action 1.2 on & in the non-connected
setting (see [PWZ12, Definition 3.6.]) is a finite scheme theoretically
disjoint union of locally closed subsets of G which are isomorphic to the
orbits of the related connected zip data given by the neutral components
G of @, and two parabolic subgroups. Hence, as already noted in the
introduction, we can restrict us to the study of the connected case.

We first recall some basic facts.

Theorem 2.2. [Car85, Lang-Steinberg thm., section 1.17] Let G be an
affine connected algebraic group over k, F': G — G an isogeny, such that
G ={g € G:F(g) =g} is finite. Then the morphism of k-varieties
L:G — G,g v g 'F(g) is surjective. In particular, taking for F a
Frobenius map satisfies the condition of the theorem.

Remark 2.3. Going through the proof one can see the theorem holds
if the above finiteness condition is replaced by the condition that Lie F'
is nilpotent.
We suppose now that the conditions of the previous theorem hold.
Then:
(i) By composing with the map g — ¢~
G,g— gF(g)"" is also surjective.
(ii) Let G act on itself by F-conjugation, i.e. (g,x) — gzF(g)~!,
g, € G. Then G coincides with the orbit of 1, hence this action
is transitive.

L we conclude £': G —

The following two easy corollaries will be further useful.

Corollary 2.4. Let F': G — G be an isogeny, and xqg be a point of G.
The following statements are equivalent:
(1) L is surjective
(ii) GF is finite
(iii) Lzg: G — G, g — gxoF(g)~" is surjective
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(iv) G*F == {g € G: guoF(9)~" = wo} is finite
(V) Ly, is a finite morphism

Proof. (ii) = (i) is exactly the statement of Lang-Steinberg theorem.

(i) = (ii): By the previous remark the F-conjugation is transitive.
Then, for the dimension reason, the stabilizers of all points of G, in
particular 1 € G which is gF, are finite.

(i) < (iii): Both statements are equivalent to the transitivity of F-
conjugation.

(iii) = (iv): The F-conjugation is transitive by the previous remark.
Then, for the dimensions reasons, the stabilizers of all points of G, in
particular ng»F, are finite.

(iv) = (iii): Consider F'(g) := z¢ F(g)xy". Then by Lang-Steinberg
theorem the map £ : g + gF'(g)~"! is surjective. Hence L,, = L"x¢
is so as well.

(v) = (iv): G®" is finite as being a fiber of a finite (in particular a
quasi-finite) morphism.

(iv) = (v): Note that £,,: G — G is a (right) G=-F-torsor.

By passing to (G)req we can assume G is smooth. Thus we have the
following Cartesian diagram:

g X ga:o,F L)g

i Trl l‘czo
L

G—2 . g
Here 7 is a projection onto the first factor. The map L, is quasi-finite
and surjective by the foregoing part of the proof, hence it is faithfully
flat as a morphism of smooth varieties. The projection m; is clearly
finite, hence by faithfully flat descent L, is so as well.
O

Corollary 2.5. Let F': G — G be an isogeny. The G-action on G by
F-conjugation (cf.2.53(ii)) is transitive if and only if the stabilizers of
all points of G are finite. Otherwise there exist infinitely many orbits of
G-action by F-conjugation in G.

Proof. The first statement is immediate by Corollary 2.4. Suppose now
there are finitely many orbits of the G-action by F-conjugation. Since G
is connected, one of them lies dense in G. Therefore, for the dimension
reason it has a finite stabilizer. Now by 2.4 follows that the G-action
by F-conjugation is transitive. O
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Now let I € Ry resp. J € R be the types of the parabolic subgroups

9" P’ and P both containing Borel subgroup B. Recall that W and W
are subgroup of Weyl group W generated by sets of simple reflections

I resp. J.
As is well known, we have the following Bruhat decomposition of G:
G= |J PwP,
welwJ

where TW is a system of representatives for W;\W/W in the normal-
izer of T'. By the left translation with gy it yields the decomposition:
G= U PgowP.
welwJ

We now fix some arbitrary w as above. The set P'gowP being P’ x P
orbit in G is locally closed, and obviously stable under the Fz-action
1.2, hence each orbit is contained in exactly one of such pairwise disjoint
pieces. Moreover, it is clear by the definition of Ez-action that each
orbit in P'gywP contains an element of the form g = gowl for some
lelL.

Now consider the right homogeneous space G/U with the action of
P’ on it given by

@, 9]) = ['ge(mr )]

Note that the restriction of the projection P’ x P — P’ gives rise to
the surjective morphism Ez — P’. Via this morphism we obtain the ac-
tion of Ez on G /U making the quotient map G — G /U Ez-equivariant.
Thus, we get the faithfully flat morphism bijectively mapping the Fz-
orbits of G onto the P’-orbits of G/U. Moreover, this map is affine by
[GW10, ch. 12, Prop.12.3.(3)] since G is affine, and, as is well known,
the homogeneous space G/U is a quasi-projective variety 4 (see [SRO5,
Ch. 7, Thm. 4.2|), in particular separated.

Note that the above morphism Ez — P’ induces an isomorphism
t: Stabg, (gowl) — Stabpr([gowl]) with respect to the actions of Ez
resp. P’. The inverse map ¢ ': Stabp/ ([gowl]) — Stabg_ (gowl) is

given by p' (p/, (gowl)flp/)

Clearly, Stabp:([gowl]) € P’ N9%YP, so we have Stabp:([gowl]) =
Stab prrsow p([gowl]).

4G/U is even quasi-affine since U is observable in G (cf. [SR05, Ch. 10, Obser-
vation 2.4.,Thm. 5.4]).
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Remark 2.6. There is a possibility to pass from an original zip datum
Z = (G, P, P, p) to some new zip datum Z, containing the algebraic
groups of lower dimensions.

This reduction process is introduced in [PWZ11, Section 4|, and it
yields a one-to-one closure preserving correspondence between the or-
bits inside a Ez-stable piece P'gowP and the orbits in L with respect
to the Ez -action. The new zip datum is given by Z,, := (L, Q,Q’, ¢),

— —1
where Q := (L' N9"P), Q" :=LN" "% P! are two parabolic sub-
groups of L together with the isogeny
Y= point (gow) |

—1

. w_lgo_ ! / / ow
e go_lL,.Lm L' — (L' N9%YL)
between their Levi factors. Note that Lie ¢ = 0 implies Lie ¢ = 0.

As the dimensions of the algebraic groups get smaller, the reduction
process terminates in a finite number of steps. For a terminating zip
datum holds G = L. Thus, it must be of the form (G,G,G,¢), and
Ez = G acts on G by: (g,7) — gzo(g)~!, g,z € G.

Since we assume the condition (FC) 1.2 it follows that there is the
only finite number of orbits with respect of ¢-conjugate G-action. Then
by Corollary 2.5 we conclude that G acts transitively with finite stabi-

lizers.

This reduction process makes it possible to give an inductive descrip-
tion of the stabilizers of the point gowl € P'gywP.

Lemma 2.7. There is an exact sequence of algebraic groups:
(2.1)
1 — ker €p —> Stabp/mgowp([gowl]) —en> StabEZn (l) —1

where ey, denotes the restriction of the morphism e, : P'N9YP — Ez_

. —1,-1
given by en(p') := (mp.(Y % p'), o(mr (1))
The reduced group scheme (ker ey, )req is isomorphic to U' N9V,

Proof. It’s immediate from the definition of e, that U’ N %“U C
(ker ep)reqa C (kerp - U') N 9%,

Since ¢ is an isogeny between connected algebraic groups, it fol-
lows that (ker ¢)req lies in the center of L’ (see [Spr98, 5.3.5]). Thus,
(ker ¢)req lies in some torus of L', hence (ker ¢)peq N YU = 1. As
U’ N9"7 is smooth, it implies (ker e, )req = U’ NPTV

And finally, the map e, is faithfully flat (we will see below in the
proof of Theorem 2.9 that it is split). O
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Remark 2.8. Let G be an affine connected algebraic group over al-
gebraically closed field k£ and H C G be a smooth closed connected
subgroup. Furthermore let 4y M and gM be the categories of rational
‘H- resp. G-modules.

A closed subgroup H is by definition exact in G if the induction
functor Ind%: M — gM is exact. It is a well known fact that G/H
is affine if and only if H is exact in G [SR05, ch. 11, Theorems 4.5.and
6.7.]. As the induction functor Ind%: yM — gM is an adjoint functor
to the restriction functor Resg: gM — 4y M, and since restriction is
transitive, induction is so as well.

Specifying the exact group theoretical conditions such that H is exact
in G turns out to be a hard problem [CPS77|. Nevertheless, there are
some easy situations, e.g. H is a closed subgroup of the unipotent
radical R,G of G, the case we will study next.

Assume now: ‘H C R,G. Thus, proving that H is exact in G amounts
to showing that H is exact in R,G, and R,G is exact in G. The latter
is obvious as the quotient is an affine (reductive) algebraic group.

The exactness of  in R,G is also clear %: Since unipotent groups
have only trivial characters, there exist a rational module M and a
point x € M such that R,G/H is an R,G-orbit of = (cf.[SR05, Ch.7,
Corollary 3.6.]). Therefore R,G/H being an orbit of a unipotent group
in the affine variety M is closed in M, and hence G/H is affine.

Theorem 2.9. Suppose the condition (FC) 1.2 is verified. Then the
Ez- orbits in G are affine.

Proof. Let O be an Ez-orbit of some element gowl € G. As the quotient
morphism G — G/U is affine, it suffices to show that the corresponding
P’-orbit of [gowl] € G/U is affine.

Consider the inclusion Stab prrsow p([gowl]) %y < Stabprrsow p([gowl])
whose cokernel is a finite algebraic group over k, say . Then 9O is
isomorphic to the quotient of P//Stabp/mgowp([g()wl])?ed by 7.

Thus, we get a finite surjective map P//Stabp/mgowp([go’wl])?ed — 0.
Hence, by Chevalley’s theorem [GW10, Theorem 12.39.| it suffices to
investigate the homogeneous space P,/Stabp/mgowp([go’wl])?ed for affine-
ness.

Claim: Stabp/mgowp([go’wl])?ed is a closed subgroup of U’.

Ssee also [CPS77, Corollary 2.2] for another proof
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Proof of the claim: We proceed inductively. The reduction process
mentioned in Remark 2.6 terminates if P = P’ = G. In this case the
stabilizer is finite by loc. cit..

Therefore the claim obviously holds in this case.

Due to the inductive assumption we have StabQ/([l])Se 4 C RQ =

LN "% [, Note that exact sequence in 2.1 splits, the splitting
morphism is given by the restriction of the map f,: Fz, — P’ N%*P
given by (¢',q) = "¢’

Thus we have f,(R,Q’) C U’, and Stabp/mnp([gowl])?ed is the prod-
uct of two closed subgroups of U’.

Therefore, Stabpinsow p([gowl])?., is a closed connected subgroup of
R.P’, and it is exact in P’ due to the remark 2.8, hence their quotient

is affine. O

If we abandon the condition (FC) 1.2 the claim of the previous the-
orem fails already in simplest cases:

Counterexample 2.10. Consider the zip datum Z =
(GLg2,GLg,GLg,Id).  Hence FEz-action amounts to the conjuga-
tion in GLy. Observe that the morphism of k-varieties A: GLgy — Ay

given on k-valued points by A: (ch Z) — (a + d,ad — bc) is constant

on the GLy-orbits.

Denote by 91 the orbit of the element !

1
(01
2, and by O3 the orbit of Id € GLg, which is just a point. Note that
D1 Uy = A71(2,1) is closed in GLy, and hence affine.

But 97 is not closed in GLg, by conjugating by the matrices

<(1) g) € GLy (t # 0) we conclude that (é i) € O for all t # 0,

therefore we have Id € D1 \ O;.

It follows that 9; has codimension 2 in its closure 91 = A71(2,1).
Thus, 91 is not affine, otherwise it clearly contradicts the algebraic
version of Hartogs’ theorem [GW10, Theorem 6.45.], see also Lemma
3.3.

€ GL3 of dimension

3. PURITY OF G-ZIP STRATIFICATION

Let I be a G-zip of type x over S. Recall that the stack G—Zipiﬂ<
is isomorphic to [Eg,, \G] [PWZ12, Prop. 3.11.] with underlying set
n\w.
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I defines for all T' - orbits [w] locally closed subschemes S}w] 4 5
which are loci, where I has locally the constant isomorphism class [w].
We will recall an exact definition of S}w} below in this section.

There is the following set theoretically disjoint decomposition

(3.1) s= U s

[wle!w/r

First we explain how the previous section implies that the immersion
7 is affine.

We recall construction of S}w] [PWZ12, Subsection 3.6]:

A G-zip I over S defines by Yoneda lemma the 1-morphism ¢: hg —
G—Zipi‘, where hg is the stack associated to the k-scheme S i.e. to its
functor of points.

Due to [PWZ12, Prop. 2.2.] we can consider [w] as a smooth, locally

closed algebraic substack of G—Zipiﬂ‘, let Sj[vw] be the schematic inverse

image ¢ L([u]).

Theorem 3.1. The immersion j: S}w] — S is affine.

Proof. By Prop. 2.2. loc.cit. the I'-orbit of w is a locally closed subset
of underlying topological space = of G-Zip} ® k with no two elements
are comparable with respect to <. Therefore, it is locally closed subset
of Z, and it can be described as a disjoint union of one-point reduced
stacks (cf. [PWZ12, Subsection 2.2]).

Thus, just by the base change we obtain the following scheme-
theoretically disjoint decomposition: S}w} k= || S}”/.
welTw
Clearly, j is affine if and only if each j ® idg| s’ SZ’/ — S is affine

for w’ € Tw.

Thus, without loss of generality we can assume k is algebraically
closed. In this case I' = 1 and [w] corresponds to a single orbit O of G.

The quotient map G — G—Zipi< is a representable faithfully flat
stack morphism. Then the affineness of the morphism O — G (see
[GW10, ch. 12, Prop.12.3.(3)|) implies by faithfully flat descent that
the schematic stack morphism [w] — G-Zip; is affine.

So, we have the following diagram:
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 E——

|

[w]—— G-Zip}

Hence the morphism j: S}w] — S is affine just by the definition.
- O

The affineness of the inclusion 7 implies the following result:

Corollary 3.2. Suppose that S is a locally noetherian k-scheme, Z a
closed subscheme of S of codimension > 2, which contains no embedded
components of S that the restriction of I to S\ Z is fppf locally constant,
then I is fppf locally constant.

Proof. That Z contains no embedded components implies that the
scheme theoretic closure of S\ Z coincides with S. The claim of Corol-
lary is then an immediate consequence from the following lemma and
the fact that faithfully flat morphism preserves the codimensions. [

Lemma 3.3. Let X be a scheme, Y be an locally-noetherian scheme,
X — Y be an affine immersion. Denote by X the schematic closure of
X in'Y and let Z be an irreducible component of X \ X # @. Then
codim(Z, X) = 1.

Proof. Since an affine morphism is quasi-compact, X < Y factorizes
through the inclusion X < Y, and one has an affine open immersion
X < X (cf. [GW10, Remark 10.31.]).

First assume that codim(Z, X) = 0. As Z is closed in X of codimen-
sion 0 it must be an irreducible component of X. But ZNX = &, hence
X is not dense in X. This gives a contradiction to the assumption.

Suppose there is a component Z of X \ X such that codim(Z, X) > 2.
Replacing X by Spec (’)y’ » and X respectively by X N Spec (’)X 5 we
can assume that X = Spec A for a local noetherian ring A of dimension
at least two and X = Spec A\ {z}, where z is a closed point of the
codimension at least two. Again replacing A with the quotient A/p,
where p is a minimal prime ideal of A, we can furthermore assume that
A is integral.

Next, we replace A with the completion A which is possible since the
morphism Spec A — Spec A is faithfully flat (cf.][GW10, Prop. B.40]),
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i.e. it preserves the codimensions, and affine morphisms are stable under
base change, we can assume A is a complete local noetherian ring.

Then Spec A is excellent due to [GW10, Theorem 12.51]. This im-
plies that the normalization Spec A’ — Spec A is a finite morphism
(cf.|GW10, Theorem 12.51]).

Replacing A with its normalization we can assume that A is normal.

Eventually, we get an affine inclusion X := Spec A \ {z} < Spec A
of normal noetherian schemes. By an algebraic analogue of Hartogs’
theorem [GW10, Theorem 6.45.] we conclude that A = I'(X, Ox) which
is clearly a contradiction to X is affine.

O

4. APPLICATIONS

4.1. Purity of level-1-stratification. Let S be an [, -scheme and X
over S be a Barsotti-Tate group. Further let X [1] be the corresponding
truncated Barsotti-Tate group of the level 1, i.e. p-torsion of X . The
strata of level-1-stratification of S corresponds to the loci of S where
X[1] has a constant isomorphism class.

In this subsection we illustrate an easy way to show the purity of
such stratification just utilizing the fact that its covariant Diedonné
crystal carries an F-zip structure. However, this approach turn out
to be unsatisfactory for the study of the higher level stratifications as
the corresponding Diedonné crystals do not carry F-zip structure any
longer.

In the next subsection we will reprove and generalize this result for
stratifications of the higher levels using explicit construction of certain
moduli spaces of Barsotti-Tate groups. Despite of some redundancy
we intend to show both approaches, one presented in this subsection is
preferable for the level-1-stratification due to its simplicity.

We denote by X[1]V the Cartier dual of X[1].

Let D(X) be its covariant Diedonné crystal and M(X) :=
D(X)(S,S,0) be its evaluation at the trivial object (5,S,0) of crys-
talline site.

M(X) is a local free Og- module of the rank equal to the height h
of X.

Moreover, M(X) is endowed with an F-zip structure in the following
way [PWZ12, Subsection 9.3]:

There is an exact sequence (cf. [BBM82, Corollaire 3.3.5., Proposi-
tion 5.3.6]) which is functorial in X and compatible with base change
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S = S
0 —— WX [ —= M(X) — Lie(X[1]) — 0,

where wx)v = €*Qxyv/s5 is the Og-module of invariant differentials
of X[1]V.

The relative Frobenius Fy,g: X — X (?) and the Verschiebung
Vx/s: X®) — X give rise to Og-linear homomorphisms F := M(V) :
M(X)P) - M(X) resp. V := M(F) : M(X) = M(X)®).

Note that the roles of the Frobenius and the Verschiebung are

switched in the covariant Diedonné theory.

(p)
X[
summands of M(X)®) respectively M(X).

One obtains the corresponding F' -zip M(X) = (M(X), C*®, D, @e)
with a descending filtration C° = M(X), C! = wxyv and C? =0 and
an ascending filtration D_y = 0, Dy = ker V and Dy = M(X) with the

isomorphisms g : (C’O/Cl)(p) = M(X)®) /ker F 5HIm F = kerV =

Moreover, Im V = ker F = w v and Im F = kerV are local direct

Do/D-1. and o: (C1/C2)"” =1m V'S Dy/Dy.

As explained in the previous section, an F-zip structure gives a GLj-
zip structure that also gives a decomposition 3.1 of S.

Recall that there is an equivalence of categories between truncated
Barsotti-Tate groups over a perfect field and a the modulo p reductions
of the covariant Diedonné modules.

Therefore the decomposition pieces S*! where M(X) has fppf-locally
a constant isomorphism class are exactly the loci where X[1] has a
constant one.

Now let S be a locally noetherian F, -scheme. The purity of the
inclusion S < S implies in particular that whenever X([1] has a
constant isomorphism class over S\ S’ where S’ is closed of codimension
at least two in S, it has a constant isomorphism class over S overall.

4.2. Purity of level-m-stratifications. Let k be a perfect field of
characteristic p > 0, and BT™ resp. BT%d be the moduli spaces
of Barsotti-Tate groups of dimension d and codimension n — d over k
resp. m-truncated Barsotti-Tate groups of same dimension and codi-
mension over k. That is, for each k-scheme S the groupoids BT™4(S)
resp. BT™4(S) are the categories of the Barsotti-Tate groups resp.
m-~truncated Barsotti-Tate groups over S as above with morphisms in
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BT™4(S) resp. BT™:%(S) being isomorphisms of (truncated) Barsotti-
Tate groups. Moreover, by [Wed01, Prop 1.8.] and by base change,
BT™4 is a smooth algebraic stack of finite type over k.

Our goal here is to sketch briefly the construction of a quotient stack
closely related to the stack B’T%d, to relate latter to some algebraic zip
datum, and to deduce certain purity results.

For a commutative [F,-algebra R and m € N denote by W(R) and
Wi (R) the ring of Witt-vectors resp. the ring of Witt-vectors of length
m with coefficients in R. Furthermore, let og: W(R) — W(R) by the
Frobenius endomorphism induced by the Frobenius endomorphism (i.e.
p-power map) on R and set o := 0. Let by p = (0,1,0,0,...) be the
standard uniformizer of the discrete valuation ring W (k).

Let K be a smooth affine group scheme of finite type over
Spec (W(k)). We denote by W,,,(K) the smooth affine algebraic group
over k which represents the functor R — K(W,,(R)), and by W (K) the
corresponding pro-algebraic group. Let 7T, be the kernel of the projec-
tion : W(K) — W,,(K) given on the k-valued points by the reduction
modulo p™.

Let now D a Barsotti-Tate group over k£ of dimension d and codi-
mension n — d. The height of D is n. Let (M, ¢) be a contravariant
Diedonné module of D, i.e. a free W (k) module of rank n together with
o-linear endomorphism ¢: M — M such that it holds ¢(M) D pM.

Moreover, one has a direct sum decomposition M = My @ M; such
that M;/pM); is isomorphic to the kernel of the ¢: M/pM — M/pM
which is the reduction of ¢ modulo p. Note that Mgy and M; are free
W (k)-modules of rank d resp. n — d. It follows that ¢(My ® M;) =
My ¢ pM;.

Let K = GLym and take K := W(K)(k) = GLm(W (k)). Thus, by
fixing a basis of M we can write ¢ = bo o with b € Ku(p)K, where
14 0
0 Plp—q
wise. A change of basis amounts to o-conjugating by element a € K,
b+ abo(a)™t.

Thus the objects of BT”’d(k) are given by the set K-o conjugation
classes of Ku(p)K.

From the surjectivity of the Frobenius in this case follows that each
of the orbits can by parametrized by the elements in Kpu(p). The K-o
conjugation on K pu(p) K descends to K -0 conjugation on K p(p), where

wu(p) is given by the matrix ( ) and o is applied coordinate-
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K, is the normalizer of the set Kpu(p) C Ku(p)K with respect to the
K-o0 conjugation.
We see that:

K,={aeK:aKu(p)o(a)™ € Ku(p)} ={ac K :*Pq c K}

= {( Adxd | PBand > € K} ,where Agxd, Baxn—d,
Chr—dxd | Dn—dxn—d

Chn—dxds Dn—dxn—ad are sub-matrices over W (k) of size as specified

by the lower indices.

Note that K, is o-invariant.

As explained in [Viell, section 1.4.] the isomorphism classes of m-
truncated Barsotti-Tate groups can be described by classifying the re-
ductions of the Diedonné module (M, ¢) as above modulo p™. Trans-
lated into the group actions it means the following:

Given two K-o conjugation classes, say [g] and [¢'] for some g,¢" €
Ku(p)K, have the same p™-reduction of their Diedonné modules if and
only if there are t,t' € T,,, := Tp, (k) such that [tgt'] = [¢]. As expected,
since Ty, is a normal subgroup of K, this relation remains stable under
K-o conjugation that corresponds to the basis change of M.

Thus, one has a bijection:

{objects of BT™%(k)} ~ {K-o conjugacy classes of Tj,\K 1(p)K/T}n}.

Since T}, is a normal subgroup of K we can as before parametrize
such orbits by the elements of K p(p). Note that that yields a bijection
between a K-o orbit of T),,\ Ku(p)K /Ty, and the corresponding K ,-o-
orbit of T,,,\ Kpu(p).

Moreover, one has the bijection between the sets of orbits. Thus, we
get:

{objects of BT™%%(k)} ~ { K,-0 conjugacy classes of T,,\ K(p)}.

This allows to construct the quotient stack €,,(u) in the follow-
ing manner: Let X, be a smooth affine subgroup scheme of K over
Spec (W(k)) such that IC, (W (k)) = K,,.

Note that

W) e Adxd | Baxn—d >6K} cK
{( PCr—dxd | Dn—dxn—d

Similarly denote by “(p)ICM a smooth affine subgroup scheme of K
over Spec (W (k)) such that #P)C, (W (k) = *PI K ,.
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In an analogous fashion to an zip group 1.1 we define an affine smooth
group scheme & of finite type over Spec W (k) as follows. Let T be a
finite generated W (k)-algebra. Denote by A, ), pu@p) 0: K — K the
scheme endomorphisms given on T-valued points by the right transla-
tion by p(p) resp. left translation by u(p) resp. by the Frobenius o.
By some abuse of notations denote by the same letters restrictions of
these maps to Ky, “(p)lCu.

Let £ be the following fiber product:

E——+wpK,

J{Pu(m
A oo
w(p)

K

Note that £ is a group scheme, and its W (k)-valued points are given
by:

K

EW (k) :={(a,2") € K, x “(p)Kﬂ P g (2) = 2.

Let &, (1) be the quotient stack of W (K, )-o-action on T, \KC = W,,,(K).
This action is given on k-valued points by:

(4.1) (2, [z]) — [/ - - #P) (o(a) M),z € K,2' € K,,.
Note that it is equivalent to the W (E)-action given by:
(42) (@2, [2]) = [ - 2]

Unless stated otherwise, for the rest this subsection we will assume
that k = k.

Example 4.1. Let m = 1. Consider the W (/C,)-o-action on 71\K =
W1 (K) = GLy/pm- As explained before this action is equivalent to the
action of W(€) on GLyy/m- Note that the W (E)-action on GLyg/pm
factors through Wi ().

Let P’ and P be the images of W(K,,) — Wi (K,,) resp. W(*P)KC,) —
Wy (“(p)ICM) under the reduction modulo p. Obviously, they are opposite
parabolic group with the common Levi factor L = P’ N P.

Now consider an zip datum Z = (GLyg/pm, P, P, ), where o2 L —
L is the reduction modulo p of o.

Note that Wi (€) is exactly the zip group associated to Z. Thus, the
orbits of W (IC,)-o-action are affine due to Theorem 2.9.

This example reproves in particular purity of the level-1-
stratification.
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In order to show the purity of level-m-stratification for m > 2 con-
sider the smooth morphism 7,\KC = W, (K) — T:\K = Wy(K), of
algebraic groups over k which is just induced on k-valued points by the
reduction modulo p™~!. Moreover, this morphism is equivariant with
respect to W (E)-action, and therefore it maps each orbit in W,,(K)
onto an orbit in W7(K). Note that for all s € N, W(&)-action on
Ws(K) factors through Ws(&)- action.

Our aim is to establish the affineness of these orbits.

The following general fact [SR05, Ch. 11, Theorem 8.4.] will be
further useful:

Lemma 4.2. Let G be a smooth affine algebraic group over an alge-
braically closed field k and U C G be a closed smooth connected unipo-
tent subgroup.

Then the homogeneous space G/U is an affine variety if and only if
there exist a morphism of varieties ®: G — U such that ®(zu) = ®(z)u
forallz e G andueld.

The proof of the next proposition is largely influenced by [NVW10,
Subsection 5.1.].

Proposition 4.3. W,,(&)-orbits in Wy, (K) are affine for all m € N.

Proof. Let O be an W,,,(&)-orbit in W, (K) that maps to some Ez-orbit
o in GLyg/pm- Let Zp, be the stabilizer of some closed point x of O
and Z be the stabilizer of the image of = in 0. As explained before (cf.
remark 2.8, proof of Theorem 2.9), the orbit O is affine if and only if
Tnl.q is exact in W,(£). We also know that Z0 ; is exact in W1 (€).

re:
Consider the exact sequence of smooth affine algebraic groups:

where N is the kernel of ker(W,,(£) — Wi(€)), which is smooth
connected unipotent algebraic group.

Note that W, (&) is N-torsor over Wi (€) and it is trivial as a tor-
sor of algebraic unipotent group over affine k-scheme. Hence we have
Win(E) 2N x Wi (E).

Pulling back this exact sequence by the inclusion Z2 ; < W1 (&) we
get the following exact sequence of smooth affine algebraic groups:

l—N—U =T —1
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As before we have U = N x Iroedv and U is a smooth unipotent
connected algebraic group.

Since I?ed is exact in W7 (€), there exists by 4.2 a morphism of va-
rieties ®: ZU ; — W1 (&) such that ®(zu) = ®(z)u for all z € Wy (€),
u € I0 . Tt yields the morphism of varieties ®': N'xZ0 ; — N x Wy (€)
given by (Id,®). @’ obviously satisfies the condition of Lemma 4.2.
This implies affineness of the quotient W,,,(€)/U. Therefore U is exact
in Wi, (€).

Now observe that Z,, ; € U and hence unipotent. So Z,,° ; is exact
in U (cf. remark 2.8). Thus we conclude Z,,2 ; is exact in W,,,(£) by
transitivity of induction. Hence O is affine. O

E. Lau shows in [Laul0, Lemma 3.5| that the category Disp,, (k) of
truncated displays of level m over k is equivalent to truncated Diedonné
modules of level m over k. Moreover, fixing the dimension d one gets
Disp,,, 4 = € (p) (see the construction in the proof of loc. cit. Prop.
3.15). The main result of the same paper (see loc. cit. Theorem 4.5.)
establishes a connection between the stack of truncated displays and the
stack of truncated Barsotti-Tate groups: It implies there exists a smooth
morphism A: BT™%4 — Disp,,, 4 & € (p) which is an equivalence on
geometric points.

Note that the underlying topological spaces of stacks &, (u) and
B’Tf,;d for m > 1 contain infinitely many points, hence we cannot just
tacitly repeat the arguments of Section 3 passing from the affineness of
the orbits to the purity of the corresponding strata.

Nevertheless, a slight modification of the arguments makes it possi-
ble. In this part we follow closely to [NVW10, Subsections 2.2-2.3|.

Let X’ be an object in BT%%(k), and X := AX’. Note that (X', k)
and (X, k) define the points of BT resp. €, () in sense of [LMBII1,
Definition 5.2|. The corresponding fppf 1-morphisms of stacks over k
X': Spec k — BT and X : Spec k — €, (1) admit canonical factor-

izations Spec k s X & BT and Spec k 5 X <& € (1), where
X’ and X are residue gerbes of points X’ and X, see [LMB91, Sec-
tion 11]. Note that X’ and X are fppf epimorphisms, and ¢, ' are
monomorphisms.

As B’T,’ll’d and €, (u) are locally noetherian stacks over k, the points
X', X are algebraic by [LMB91, Théoréme 11.3]. Thus X’ and X are
fppf gerbes of finite type over Spec k.
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Further let X,, be a m-truncated Barsotti-Tate group over S. Thus

X, defines the stack morphism (x,,: S — BT™%%.

with 2-Cartesian squares:

Essentially, our situation is summarized by the following diagram
S;(n/ )2'/

VR

§ — gynd s @, (1) <— Win(K)

Let us explain it in more detail:

1) By O is denoted the W,,(€)-orbit of an arbitrary lift of X in
Wi (K).

2) 9O is the fiber product in the right square of the above diagram
by |[LMB91, Exemple 11.2.2].

3) The © is affine by Prop. 4.3 and smooth over k, and
O — Wp(K) is an affine immersion of noetherian schemes
since O is affine and W,,(K) separated (cf. [GW10, ch. 12,
Prop.12.3.(3)]).

4) The quotient map Wy, (K) — €, (1) is smooth and surjective,
in particular a faithfully flat stack morphism.

5) By faithfully flat descent X < ¢n(p) is representable by an
affine immersion of finite presentation.

6) O — X is a smooth and surjective stack morphism by base
change.

7) X is smooth over k since © is smooth over k and by 6).

8) Similarly by smoothness A, X’ is smooth over k since X’ < X
is so, and by 6).

9) Consider the fiber product X x BT Since A is smooth,

Con (1)
and by base change of 5) follows that it is a reduced substack

of BT™4. Moreover, since A induces an equivalence on the
geometrical points, the middle square commutes, so there is a

l-morphism X — X x B7™? which is an isomorphism of the
Cn (1)
reduced one-point stacks.

10) The level m stratum S, of Xy, /S with respect to X' is defined
by the fiber product in the left square of the above diagram.
By the definition of a residue gerbe, the morphism of k-schemes
f:T — S factors through S%, if and only if f*X,, is locally for
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fppf topology isomorphic to X’ x T as m-truncated Barsotti-
k

Tate groups over T

11) S%, — S is an affine immersion of finite presentation by the
base change of the morphism in 4). In particular one can view
S as a subscheme of S.

Let k£ be again an arbitrary perfect field of characteristic p > 0. In
this case we can also define the level m stratum S%, as in 9).
Then we have:

Theorem 4.4. The immersion S%, — S is affine.

Proof. By base change and by 11), we conclude that (S'¢); — (5)z is
an affine immersion of finite presentation, and that it by faithfully flat
descent implies that S%, < S is so as well and, in particular, pure. [J

5. F'-ZIP STRUCTURES ON DE RHAM COHOMOLOGY

Let S be an F,-scheme throughout this subsection.

A vast amount of geometric examples of F-zips comes from the struc-
tures which naturally arise on the de Rham cohomology.

For an arbitrary [, scheme Y denote by Fy:Y — Y the absolute
Frobenius.

Furthermore let X be a smooth proper scheme over S, and denote
by f: X — S a structure morphism, and by F' = Fy/g: X — X @) the
relative Frobenius.

Thus, we have the following commutative diagram.

Fx
X

( Y{Fx/s
\ ox

(p)HX
IV

A\ l Jis2 f
\ e
S——S
We start with a recollection the basic facts (cf. [MWO04, Sect. 6],
[Wed08, Subsect. 1.1.]).
The de Rham cohomology H3 (X/S) := Rf.Q% /5 is the hypercoho-
mology of the complex 25 /s with respect to the left exact functor f,
going from the category of Ox-modules to the category of Og-modules.
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Note that the coboundary maps of QB(/S are f~1(Og)-linear but not
Ox-linear.

There are two exact sequences converging to H3p (X/S), namely the
Hodge-de-Rham sequence

wB = R [.(Q% ) = H{"(X/5)
and the conjugate spectral sequence

E5® = R*[.(H"(Q,5)) = Hi3"(X/S).

conj
Recall there is a morphism of the graded Oy, -algebras:
ASING) 1€Ng

Moreover, if f is smooth, v is an isomorphism denoted by C~! and
called the Cartier isomorphism (cf. [I1196, Section 3]).
In addition, it has the following properties:

(i) C~1 restricts on the zero-graded piece to the algebra isomor-
phism F*: Oy — FiOx.
(i) C~! maps d(oc~1(z)) € Q! to the class of xP~!dz in

x® /s
H Q% -
Note, that C~! induces an isomorphism of Og-modules

ROFP ) o 3 BT HOF0Y o) = R AP F(H0 ) =

R L (H'D%5) = con 5"

conj
Moreover, if we assume that Og-modules R* f*Qg( /g are flat (this
holds in particular if they are locally free), then we have:
a * ~ * a ~ a (p)
=R ip)UXQl%/s = F§f Ry g (HE% )

R fip) Ql;{(p) /s

Thus under this assumption we get an isomorphism:
) ~
(5.1) o (HEi"L) 5 pgb

Remark 5.1. Fix an integer n € Ng. The definition of spectral se-
quence, applied to the case of Hodge-de Rham spectral sequence im-
plies that the limit term M := HJ, (X/S) is endowed with a descending
filtration Fil® such that Fil® such that Fil¥ M /Fil*1 M = nEETTF We
call Fil®* the Hodge filtration.
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On the other hand, the conjugate spectral sequence furnishes us with

the second descending filtration Fil’® such that Fil'*M/Fil**1 M =
kn—k
B .

conjd~oo

Note that g EX"* and COnjE&n_k are in general the subquotients of
kn—k
Ey .

kn—k
uEi resp. .,

In the classical situation, there are some discrete conditions for degen-
eration at F7, which arise directly from the construction of the spectral
sequence:

Remark 5.2. Let K be an arbitrary field. Suppose X is a proper

scheme over K, and let b, := d}(m Hlz (X). We define Hodge numbers

ht for a,b € Ny by and h®b = dim Hb(X,Q“X/K% a,b € Ng. They

satisfy the following inequalities: b, < > h®? for all n € No,
a,bENg,a+b=n

and the Hodge-de Rham spectral sequence degenerates in E if and only

if the latter inequalities are equalities for all n € Ny .

The following remark generalizes the above one:

Remark 5.3. Let R be a commutative ring, and f: X — S be a proper
smooth scheme over S := Spec R. Denote by R-MODjy the category
of R-modules of finite length. We recall that R-MODyg is an abelian
category, and its objects are both Noetherian and Artinian R-modules,
or equivalently, finitely generated and Artinian ones.

Length lg : R-MODg — Ny is additive on exact sequences of objects
in R-MODyg: Hence for two objects M and N in R-MODg such that N
is proper subquotient of M holds: 1g N < lg M.

Suppose that ;E¢® = Rbf*(Qg‘z/S,) and H'%;(X/S) are objects in
0O5-MODgy for all a,b € No, e.g. it is a case if Og is an Artinian ring.

In view of the above and Remark 5.1 we arrive at the following cri-
terion for degeneration the Hodge-de Rham spectral sequence at E7:

We have:

lg Hin(X/9) < Y lg R°f(Q%)9),
a,beNg,a+b=n

and the Hodge-de Rham spectral sequence degenerates in F if and only
if the latter inequalities are equalities for all n € Ny.

Now we recall the following definition.
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Definition 5.4. Let f: X — S be a smooth proper morphism of ar-
bitrary schemes. We say f satisfies condition (D) if the following two
conditions hold:

(a) The Og-modules E® = Rbf*(Q%/S) are locally free of finite
rank for all a,b € Np.
(b) The Hodge-de Rham spectral sequence degenerates at Ej.

Remark 5.5. The part (a) of condition (D) implies that the formation
of HE‘fb commutes with an arbitrary base change S’ — S.

The condition (D) remains true after an arbitrary base change S" — S
(see [Kat72, 2.2.1.11]).

Remark 5.6. Condition (D) implies the isomorphism 5.1, and the con-
jugate spectral sequence also degenerates at Fs (see [Kat72, Proposition
2.3.2]).

Since, by a general principle, the formation of HEffb commutes with
any flat base change, and a condition of the degeneration at F; ex-
pressed as HEfb = HEgb for all a,b € Ny is stable under faithfully flat
descent, holds the following:

Remark 5.7. Let f: X — S as in the above definition, and S” — S be
an fpqc morphism. Then fg: X x S" — S’ satisfies (D) iff f satisfies
S

(D).
These nice properties of the spectral sequence provided f satisfies
condition (D) give birth the following F-zip structure on H3z(X/S).

Construction 5.8. Fix an integer 0 < n < 2dim(X/S).
Suppose f: X — S satisfies condition (D). We associate to f an F-

zip (M, C®, D,, ps) as follows: Set M = HJ(X/S). As the Hodge-

de Rham spectral sequence degenerates at E; we have HE]&’)’"‘_I~C =

HEf’nfk, by Remark 5.6 we also have ConjE&nfk = Conng’nfk.

Let a descending filtration C*® be the Hodge filtration, and we define
an ascending filtration Dy by D'M = Fil"™" M, i € Z, where Fil’ is
defined as in Remark 5.1.

Note that ¢ is given by the isomorphisms 5.1 just by setting ¢; =
SOn_i’i.

Definition 5.9. Let f: X — S be a smooth proper morphism.

We say X is a lift of X in zero characteristic if there exist a scheme

S flat over Spec Zp, and a scheme morphism S — S such that one has

the following diagram with a Cartesian square:
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S

nN<——
\
Uyt <—— >

iflat

Spec Z,,

Presuming the existence of a lift in zero characteristic we are looking
for easily testable sufficient conditions under which the condition (D)
is met. First we will need a few technical facts which essentially only
rephrase the content of [Mum?70, Ch.2, §5|.

Lemma 5.10. Let f: X — S be a proper smooth morphism of locally
noetherian schemes with S = Spec A affine. Furthermore let B be an
arbitrary A-algebra, and Y = Spec B. Then there is a finite complex
0— FO = F! — ... = F™ = 0 of finitely generated projective A-
modules such that one has for all n € Ng the natural isomorphism of
B-modules: Hlp(X >S< Y/Y)= H"(F* (% B).

Proof. Let & = {U,};cr be a finite affine cover of X, and consider the
finite Cech bicomplex C** = C*(4, Q;(/S). Further let F* be a total
complex associated to the bicomplex C*®. As 0% /g are locally free Ox-
modules, and since X is flat over S, they are flat over S. Moreover, as
f: X — S isseparated, hence F* is a complex of flat A-modules, which
represents the complex R f.Q5% /s in the derived category.

Moreover, for all A-algebras B, {U; >S< Y }ier is the cover of X >S< Y, and

C* (4, 0% / ) %) B is the corresponding Cech bicomplex. The associated

total complex is just F* ® B, and so we have: HJp(X x Y/Y) =
A S
R"f.Q% v Iy ~ H"(F* @ B) as required. Moreover, this isomorphism
A

S
is obviously functorial in B. O

The previous lemma leads us to the following semi-continuity result
for the dimension of the cohomology groups of the fibers whose proof
follows verbatim along the same lines as [Mum70, Ch. II, §5, Corollary|.
For the reader’s convenience, we will sketch it.
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Proposition 5.11. Let f: X — S be a proper smooth morphism of
locally noetherian schemes. Then we have:
i) For each n € Ny, the function S — Z defined by s — dl(II)l His (Xs)
K(S

1S Upper semi-continuous. A
ii) The Euler characteristic x: S — Z, s — Z (—=1)/dim H’g (X;)
jENo K(s)
is locally constant on S.

Proof. Since the question is local on S, we may assume S = Spec A,
where A is a local ring. Since all projective modules over a local ring
are free, we can pick a complex F* of finitely generated free A-modules
which furnishes us with the isomorphism in Lemma 5.10. Let d’: F* —
F*1 be the coboundary maps of F*. Then by the previous lemma
holds:

dim Hlg(X,) = dim kerd” @ s(s) — dim Im d" ' ® k(s) =

(s) K(s) A K(s) A
dim F"* ® k(s) — dim Im d" ® k(s) — dim Im d" ! ® k(s).
dim 7" & (s) tin % (s) din & (s)- (1)

dl(H)l F" @ k(s) is constant in s; therefore it amounts to show that the
K(s A

function p: § — Z, s — d?? Im d* ® k(s) is lower semi-continuous for
K(s A

each i € No, i.e. the set M, = {s € S : p(s) <r} is closed in S for each
r € Ng.

Consider now the A-linear map A"d*: A" K* — A" K'™! between
free A-modules of finite rank induced by d?. Clearly, then we have:
M,={s€S:Ad (%) k(s) = 0}. Moreover, the map A"d’ is given by

a matrix with entries in A, which correspond to the global sections of
the structure sheaf on S. Their common zero locus defines a closed set
in S.

The second assertion follows on taking alternating sum of { over
j- O

The following proposition loc. cit. will be further useful.

Proposition 5.12. Let f: X — S be a proper morphism of locally
noetherian schemes, and F a coherent sheaf on X, flat over S. Assume
S is reduced. For each b € Ny the following conditions are equivalent:

(i) s+ dtn)l H(X, Fy) is a locally constant function on S.
K(S
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(ii) RPf.(F) is a locally free sheaf on S, and for all s € S, the
natural map R? f, (F)g@ k(s) — HY( X, Fy) is an isomorphism.
S

Proof. The claim is a part of [Mum?70, Ch.2, Corollary 2]. O

The Mumford’s proof of Proposition 5.12 relies solely on the fact that

HYX x Spec B/Spec B, F®B) with A and B as in Proposition 5.10
Spec A A

can be computed as H*(F®* ® B), where F* is a perfect complex of A-
A
modules. By Proposition 5.10 the same holds true for Hl (X x Y/Y).
S
Thus we have:

Corollary 5.13. Let f: X — S be a smooth proper morphism of locally
noetherian schemes, and S be reduced. For each n € Ngy the following
conditions are equivalent:

(i) s+ dtn)l Hlx (Xs) is a locally constant function on S.
K(S

(i) Hiz(X/S) is a locally free Og-module, and for all s € S, the
natural map HQR(X/S)(%{) k(s) — HJx(X,) is an isomorphism.
S

The constancy of Hodge numbers in fibers of the lift in zero charac-
teristic turns out to be a sufficient for the condition (D) to be met:

Proposition 5.14. Let f: X — S be a smooth proper morphism. Sup-
pose that there is a lift of X in zero characteristic, f: X — S such that
X and S are locally noetherian schemes, f is proper and smooth, and
S reduced.

Further assume the functions 5 — dt(r)l H(X;, Q?@/n(s‘)) are locally

constant on S for all a,b € N.
Then f satisfies condition (D).
Proof. Tt suffices to prove the assertion of the proposition for S is con-

nected. We complete the right column of diagram 5.9 with Cartesian
squares by taking generic fibers of X, S, Spec Z,:

X X .

bk
5 J Sar

S S S

]

Spec Z,, ——Spec Q,
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Note that (QX/S)g =O% e (

Since the open immersions are preserved by a base change, 7: S < S
is an open immersion again; moreover j is dominant by |Gro, IV/2,
Proposition 2.3.7(i)] because Spec Q, < Spec Z,, is dominant and quasi-
compact.

By Prop. 5.12 Rbf*(ng/S) are locally free modules of finite rank for

all a,b € Ny. In particular, their formation commutes with an arbitrary
base change.

Thus Rbf,ﬁ(ng,/S,) = ]*Rbf*(ng/S) are locally free Og-modules of
the same rank. Note that the last isomorphism is true in general since
7 is a flat morphism.

As S’ is of zero characteristic the corresponding Hodge-de Rham se-
quence degenerates at F; by [DI87]. On the other hand, by Proposition

5.11 the function § — dl(rggl H}; (X5) is upper semi-continuous on S.
K(S

e.g. [11196, 1.3]) for all a € Np.

Let s/ € Im 5. As Hodge-de Rham sequence degenerates at Fjp in
zero characteristic, for K = k(s’) holds the equality of Remark 5.2.

Since by Prop. 5.12 the Hodge numbers are constant on S, we have
dt{r)l HE (X5) < d(lH; H%:(Xy). On the other hand Tm 7 is open and
k(8 k(s
dense in S , so Proposition 5.11 forces the equality for all n € Ny. Thus
5+ dir}; HQR(Xg) is a constant function on S.

K(S

Thus Prop. 5.13 implies that Hf (X /S) is locally free Og-module.

In fact, one can test the degeneration of Hodge-de Rham sequence
locally on S, moreover it is sufficient to prove it for S = Spec R, where
R is a local Artinian ring, see the proof of [Kat72, Proposition 2.3.2].

Note that in this case for the only point § € S holds 1g H (X /S) =

b a 3 a .
dtn)l H7:(X5) -1g R and 1ng*(QX/§) %%H(X Q% ) 1B R

Thus, by of Remark 5.3, the Hodge-de Rham sequence is degenerate
for f: X — S.

We see that f: X — S satisfies condition (D) except for S is not in
characteristic p. But Remark 5.5 remains true also in this case, hence
f: X — S also satisfies condition (D).

O

5.1. Applications of Proposition 5.14.

K3 schemes over S. First we recall the definitions (see [Riz06]).
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Definition 5.15. Let K be an arbitrary field, and Y be an arbitrary
base scheme.

i) A smooth proper geometrically connected scheme X over K of
dimension 2 is called a K3 surface if Qi{/K =~ Ox, and HY(X,0x) = 0.

ii) A polarization on a K3 surface X is a global section \ €
Picyx,x (K) that over K is the class of an ample line bundle £z . The de-
gree of L, which is by definition the selfintersection index (L, L) x
is called the polarization degree of X\. A polarization degree is always
an even number.

iii) A K3 scheme over Y is a scheme X together with proper, smooth
morphism f: X — Y whose geometric fibers are K3 surfaces.

iv) A K3 space over a scheme Y is an algebraic space X together
with a proper and smooth morphism f: X — Y such that there is an
étale cover Y/ — Y of Y for which fy/: X 1>§ Y" — Y’ is a K3 scheme

over Y.

v) A polarization on a K3 space f: X — Y is a global section \ €
Picx/y (Y) such that for every geometric point 7 of Y the section \; €
Picy, /n(y)(k(¥)) is a polarization of Xy, see [Riz06, section 1.3.1] for a
definition of relative Picard functor Picx/y-.

We recall also a well-known fact about the Hodge diamond of a K3
surface X, see |Del, Proposition 1.1]:

Remark 5.16. For the Hodge numbers of X/K holds:
A0 = B0 — p21 — 1.2 — .
h0,0 — h2’0 — h0’2 — h2’2 — 1?
At =20.
Note that in particular they do not depend on the field K.

J. Rizov constructs in loc.cit. a separated Deligne-Mumford stack
Moy fibered over (Sch) of polarized pairs (f: X — Y, \), where X is
a K3 space over Y, and A is a polarization of the (constant) degree 2d
on it. Moreover he shows in [Riz06, Proposition 1.4.15] that the moduli
stack My is smooth of relative dimension 19 over Z[55].

This result establishes the following method of the construction of a
lift in zero characteristic:

Corollary 5.17. Let (f: X — S,\) be a polarized K3 scheme with a
polarization of degree 2d. Assume p{2d .
Then f satisfies condition (D).
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Proof. Denote by /\/lgd = Moy %} Z, which is separated, smooth, in
Z .
particular flat, Deligne-Mumford 2sdtauck over Z,. In particular, one has
a étale surjection MJ, — Mgd with MJ, is a smooth scheme over Z,,.
Let X — Mg 4 be the universal K3 space with a polarization of degree
2d. (f: X — S,\) corresponds to the stack morphism F: S — M?%,
such that one has the following Cartesian diagram:

X—X

i,

Let X' :=X x M, S":==8 x M), X=X x M), be the étale
P p p
2d 2d 2d

covers of X resp. S resp. X.
By the base change by M}, — M?% , we obtain the following Cartesian
diagram:

X ——x

fMgdi i
Fyr

2d /
/
S —= M,,

Note that of the diagonal M5, — M?b x M?, of a Deligne-Mumford
stack being a schematic morphism implies that X’ — S’ is a K3 scheme,
and X' — M), is a K3 space.

Note that by Remark 5.7 it suffices to test condition (D) for a K3
scheme X' — §’.

Now by the definition of K3 space we can choose an étale cover
MY, — M}, such that X" := X’ X MY, — MY, is a K3 scheme.

2d
By the same reasoning as above we can test condition (D) for a K3

scheme X" := X' x Ml — S":=5 x M},
Mp, My,
But X" — M, is a lift in zero characteristic of X”/S” in sense
of Definition 5.9 which clearly satisfies the assumptions of Proposition
5.14. This proves the claim. O

Remark 5.18. By utilizing the existence and the regularity properties
of the moduli stack of polarized abelian schemes over Z, see e.g [dJ93],
one can show in a similar vein that an polarized abelian scheme X over
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S under certain restrictions also satisfies condition (D). In fact, the
polarization assumption can be abandoned, and condition (D) holds
true for an arbitrary abelian scheme over S, see [BBM82, § 2.5. Prop

2.5.2].

Lift over Spec W (k). Here we list some examples of proper smooth
schemes X over k where condition (D) holds, i.e., S = Spec k and
S = Spec W (k):

(1)

(4)
(5)

X/k is a proper smooth curve: In fact, there is a proper smooth
lift X — Spec W (k), since the obstructions lie in H2(X, Qg(/k),
and H?(X,Ox), see e.g. [Gro, II1/1, Théoréme 5.1.4].

By Serre duality for Hodge numbers holds h%0 = pl1 = ¢,
h'0 = %1 = ¢, and they are the same on the generic and the
special fiber since the Euler characteristic y = 2¢t—2g is constant
on S by Proposition 5.11(ii), and ¢, which is the number of geo-
metric components, is also constant by [Gro, IV /3, Proposition
15.5.9(ii)].

X/k is a K3 surface: By |Del| there exists a lift to a K3 scheme
over W(k), and the Hodge numbers do not depend on X and
on the ground field.

X/k is an Enriques surface if char(k) # 2. In this case
H?(X,0x) = 0 and it has an étale cover by a K3 sur-
face Y. By Serre duality H?(X, Q}/(/k) = 0 if and only if
HO(X, Qx/r ®wx) = 0. The last equality is true since it holds

for an étale cover Y, see [Lan83, Theorem 1.1.]. Thus a lift
exists for the same reason as in (1).

Note that similar to K3 surfaces the Hodge numbers for En-
riques surfaces over K in char(K) # 2 do not depend on any
choice.

X/k is a smooth complete intersection in P}, see [DK69, Exposé
XI, Théoréme 1.5].
X/k is a smooth proper toric variety, see |Bli01].
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