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1 Introduction

Let p be a prime, and denote by NilpZp
the category of schemes over

Spec(Zp), on which p is locally nilpotent. Let X be a p-divisible group
over Fp. We want to study the functor

M : NilpZp
−→ (Sets)

S 7−→


isomorphism classes of (X, ρ) where
X/S is a p-divisible group, and
ρ : X×SpecFp S̄ −→ X ×S S̄ a quasi-isogeny

 ,

where S̄ is the closed subscheme of S defined by the ideal sheaf p ·OS . This
functor is an example of a Rapoport-Zink space. In general, Rapoport-Zink
spaces are moduli spaces of p-divisible groups + quasi-isogenies to a given
X with additional structures. They are representable by formal schemes lo-
cally formally of finite type over Spf(Zp).

In general, a Rapoport-Zink space is attached to a datum (G,K, b, µ), where

• G/Qp is a classical group,

• K ⊂ G(Qp) is a parahoric subgroup,

• b is a σ-conjugacy class in G(L), where L/Qp is an unramified finite ex-
tension and σ : L −→ L is an automorphism of L over Qp which induces
the Frobenius automorphism x 7−→ xp on OL/p · OL,

• µ is a minuscule cocharacter of G defined over a finite extension E/Qp

satisfying certain conditions (see sections 1.38 and 3.17 in [RZ]).
If the σ-conjugacy class b is basic (for definition see e.g. Remark 1.15 in
[RZ]), the Rapoport-Zink spaces uniformise the supersingular locus of the
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parahoric reduction of some Shimura varieties of PEL-type.

The functor M defined above corresponds the the following datum:

• G = GLh, where h is the height of the p-divisible group X

• K = GLh(Zp),

• b can be obtained from the isocrystal (N(X), F ) of X by fixing a basis of
N(X). It is then isomorphic to (Qh

p , b̃), where b̃ an element of GLh(Qp).
It is unique up to a base change of N(X), that is, up to (σ-)conjugation
with elements of GLh(Qp), thus its (σ-)conjugacy class b is unique.
Here the property of b to be basic is equivalent to the isocrystal (N(X), F )
to be isoclinic.

• µ depends on the dimension d of X: It sends a t ∈ Gm(R) to the diag-
onal matrix diag(t, . . . , t, 1, . . . , 1) ∈ GLh(R) for any Qp-algebra R. The
number of t’s is d and the number of 1 is h − d. The pair (d, h − d) is
called the signature of µ.

There are various results on the geometric structure of the underlying re-
duced subscheme Mred of the Rapoport-Zink space M for some choices of
(G,K, b, µ), that is, the reduced subscheme of M defined by its maximal
ideal of definition.

• If G = GLh,Qp and b ∈ B(G,µ) for a cocharacter µ of G (see, e.g section
4 in [Rap] for definition), then Viehmann has determined in [Vie] the
irreducible components and the dimension of Mred and computed its
étale cohomology.

• For G = Sp2g and b basic Hoeve ([Hoe]) has considered the Ekedahl-
Oort stratification of the Rapoport-Zink space. He has described each
Ekedahl-Oort stratum in the moduli space of principally polarized abe-
lian varieties in terms of fine Deligne-Lusztig varieties.

• Let K/Qp be a quadratic unramified extension, G/Qp the group of simil-
itudes of a hermitian (K,Qp)-vector space, and E/Qp a quadratic field
extension with G ×Qp E

∼= GLh×Gm, in fact E ∼= K. Let µ be a
cocharacter of G over E which sends a t ∈ Gm(R) to the element
(diag(t, 1, . . . , 1), t) ∈ GLh(R)×Gm(R) for any E-algebra R.
In this case, Vollaard and Wedhorn have defined a stratification of the
underlying reduced subscheme of any connected component of the asso-
ciated Rapoport-Zink space by locally closed subschemes NΛ, where Λ
runs though the set of vertices of the Bruhat-Tits building of an inner
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form of G. Furthermore, they showed that each stratum has the struc-
ture of a Deligne-Lusztig variety [VW].

In this thesis, we consider the same case of G = GLh,Qp as Viehmann, but
want to have a closer look at the scheme-theoretic structure of Mred. We
restrict ourselves to the case of signature (2, h), h being odd.
The simpler case would be that of signature (1, h). The corresponding
Shimura variety is the one used by Harris and Taylor in their proof of the
Langlands correspondence for GLn for p-adic fields in [HT]. In this case, the
underlying topological space of any connected component of Mred consists
only of one point (see, for example, [Vie]). Thus, the next case to look at
would be that of signature (2, h).
We take here h to be odd because in this case, the isocrystal N(X) of X is
simple, and Oort and de Jong have shown that that the connected compo-
nents of Mred are irreducible.
Following the idea of Vollaard and Wedhorn, we define a stratification of
the Fp-valued points of any connected component of M by closed subsets
corresponding to certain pairs of lattices. We define projective schemes over
Fph whose Fp-valued points are precisely these subsets.

We state the main results:

Proposition 1.1. Let κ : M −→ Z be the morphism which assigns to a
point (X, ρ) in M(S) the height of the quasi-isogeny ρ. Then the fibers
M(i) := κ−1(i) are non-empty. They form the connected components of M
and are isomorphic to each other (see Corollary 3.9).

We set N :=M(0) to be the connected component of the identity morphism
id: X −→ X.

Theorem 1.2. (a) There exists a finite stratification of N (Fp) by locally
closed irreducible subsets N ◦j,l,αl

(Fp) with j and l integers satisfying the

inequalities 0 ≤ j ≤ h−3
2 and 0 ≤ l ≤ j, and αl ∈ Fl

ph
if l > 0 and

αl = ∅ if l = 0. The tuple (j, l, αl) is a combinatorial datum which can

be attached to each point of N (Fp) (Lemma 3.13).
Let Nj,l,αl

(Fp) be the closure of N ◦j,l,αl
(Fp) in N (Fp). It is a union of

other strata and we determine precisely the strata contributing to it.

(b) There exist closed subfunctors Nj,l,αl
−→ N ×Spf(Zp) Spf(Zph), whose

Fp-valued points are precisely the closed subsets Nj,l,αl
(Fp).

The subfunctors Nj,l,αl
are represented by projective Fph-schemes (Lem-

mas 3.14 and 3.15).

(c) There exists a projective Fph-scheme Y and a closed immersion of formal
Zph-schemes ι : Y −→ N ×Spf(Zp) Spf(Zph), which induces a bijection

3



ι(k) : Y (k) −→ N (k) for any perfect extension k ⊃ Fph. In particular,
we have Yred ∼= Nred (Lemma 3.16).

We compute the tangent space at any point of Y (Fp) and show in Proposition
4.1 and Theorem 4.2:

Theorem 1.3. (a) If h > 5, then Y is not smooth.

(b) We determine precisely the singularity locus of Y and show, that, in
particular, Y is regular in codimension 1.

(c) Y is generically reduced, but not reduced in general.

(d) There exists an algebraic group H over Spec(Fph) which acts on Y such
that the stratification of Y by H-orbits is the singularity stratification of
Y (see Proposition 4.4).

This thesis is organized as follows: In the second section we recall some facts
on the moduli space M of quasi-isogenies of a given p-divisible group and
describe the Fp-valued points via Dieudonné theory in terms of semi-linear
algebra.
In the third section we study one connected component N of the mod-
uli space M. We attach to every point of N (Fp) a combinatorial datum
(j, l, αl) and define a stratification of N (Fp) in terms of this combinatorial

datum by subsets Nj,l,αl
(Fp). Furthermore, we describe the inclusion rela-

tions of these closed subsets.
We show that these closed subsets are in fact the Fp-valued points of subfunc-
tors Nj,l,αl

of N , and that these subfunctors are representable by projective
Fph-schemes. We determine one of these subfunctors N ′ and its representing
projective Fph-scheme Y , whose associated reduced subscheme is isomorphic
to Nred.
Finally, in the fourth section we consider the scheme Y . We determine
its singular locus and the singularity stratification of Y and show that the
singularity stratification is in fact given by the action of an algebraic group.
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2 Moduli space of p-divisible groups

Let k be a perfect field of characteristic p and W = W (k) its ring of Witt
vectors. Denote by NilpW (k) the category of schemes S over W (k) such that

p is locally nilpotent on S. For S ∈ NilpW (k), let S̄ be the closed subscheme
of S defined by the ideal sheaf p · OS .
Let X be a p-divisible group over k. We consider the functor

M : NilpW (k) −→ (Sets),

which assigns to S the set of isomorphism classes of pairs (X, ρ), where X
is a p-divisible group over S and ρ : XS̄ = X ×Spec k S̄ −→ X ×S S̄ a quasi-
isogeny. Two such pairs (X1, ρ1) and (X2, ρ2) are isomorphic if ρ2 ◦ ρ−1

1 can
be lifted to an isomorphism X1 −→ X2.

If we replace the p-divisible group X by an isogeneous (even quasi-isogeneous)
X′, we get an isomorphism of the corresponding functorsM−→M′ by com-
position with the isogeny X′ −→ X.
Let κ : M −→ Z be a morphism, which maps a quasi-isogeny to its height.
Then we can decomposeM into open and closed formal subschemesM(i) =
κ−1(i), i. e.

M(i)(S) = {isomorphism classes of (X, ρ) ∈M(S) | height(ρ) = i}.

Set N :=M(0).

Dieudonné modules

Let k be a perfect field of characteristic p > 0 and W (k) its Witt ring.
Denote by σ the Frobenius automorphism on k as well as on W (k) and
Frac(W (k)).

Definition 2.1. A Dieudonné module over k is a finitely generated free
W (k)-module M together with two mappings F and V : M −→ M which
satisfy

F (am+ n) = σ(a)F (m) + F (n) and

V (σ(a)m+ n) = aV (m) + V (n) for all a ∈W (k),m, n ∈M,

and FV = V F = p.

By Dieudonné theory, one can assign to each p-divisible group X over k
its Dieudonné module D(X). The modules used here will always be con-
travariant Dieudonné modules. With the following theorem, we can describe
p-divisible groups with semi-linear algebra.
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Theorem 2.2 (Dieudonné, [Gro]). Let k be a perfect field. Then there is
an equivalence of categories:

(p-divisible groups/k) −→ (Dieudonné-modules over k)

X 7−→ D(X).

An isocrystal over k is a finite-dimensional Frac(W (k))-vector space equipped
with a bijective mapping F satisfying the same conditions as above. V is
then given by V = p · F−1

Proposition 2.3 (Dieudonné, [Man]). Let k be an algebraically closed field.
Then the category of isocrystals over k is semisimple with simple objects
parametrized by Q in the following manner:
To λ = r

s ∈ Q with (r, s) = 1 corresponds the isocrystal Nλ with

Nλ = Frac(W (k))s, Fλ =


0 0 . . . 0 pr

1 0 . . . 0 0

0
. . .

. . .
...

...
. . .

. . .
...

0 . . . 0 1 0

 · σ.

The rational number λ is also called the slope of the isocrystal Nλ.

Let X be a p-divisible group over k of height h and dimension d. Then
its isocrystal N(X) := D(X) ⊗W (k) Frac(W (k)) has dimension h, and for
any p-divisible group X over k which is quasi-isogeneous to X we have
N(X) ∼= N(X), an isomorphism of isocrystals.

An isocrystal N over k is called isoclinic of slope λ if N ⊗ k̄ is the di-
rect sum of copies of Nλ. If l ⊃ k is an algebraic extension, denote by Nl

the isocrystal (N(X)⊗Frac(W (k)) Frac(W (l)), Fl = F ⊗ σ) over l. Thus, ifM
is the functor of p-divisible groups quasi-isogeneous to X as before, then we
get via this equivalence of categories:

M(k̄) = {F - and V -invariant W (k̄)-lattices M ⊂ Nk̄}.

3 Structure of N (k)

Valuations on Dieudonné modules

From now on let N be the open and closed formal subscheme M(0) of M.
We want to consider N first, and then show that every other M(i) is iso-
morphic to N .
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To define a stratification on the moduli space N , we consider valuations
on Dieudonné modules as defined by Lau, Nicole and Vasiu in [LNV].
Let k again be a perfect field of characteristic p > 0, W (k) its ring of Witt
vectors and denote by vp : W (k) −→ R∪{∞} the p-adic valuation on W (k).

Definition 3.1. A valuation on a W (k)-module M is a map w : M −→
R ∪ {∞} that has the following properties:

(i) w(ax) = vp(a) + w(x) for all a ∈W (k) and x ∈M ,

(ii) w(x+ y) ≥ min{w(x), w(y)} for all x, y ∈M .

The valuation w is called non-trivial if w(x) 6= ∞ for some x ∈ M . It is
called non-degenerate if w(x) =∞ implies x = 0.

Definition 3.2. Let F be a σ-linear endomorphism of M . A valuation w
on M is called an F -valuation of slope λ ∈ R if for all x ∈M one has

w(Fx) = w(x) + λ.

Let now N be an isocrystal over k. The following lemma describes the
existence and uniqueness of F -valuations on isocrystals.

Lemma 3.3 (Lemma 5.3 in [LNV]). There exists a non-degenerate F -
valuation of slope λ on N if and only if N is isoclinic of slope λ. When
N is simple of slope λ, any two non-trivial F -valuations of slope λ on N
differ by the addition of a constant.

Setup

Now we want to fix the setup of this thesis.

Let h be odd, and fix the standard basis {e0, . . . , eh−1} of Qh
p . We define an

isocrystal over Fp by

F (ei) =


ei+2, 0 ≤ i ≤ h− 3,

p · ei−h+2, i = h− 2, h− 1.

If we change the basis of Qh
p to {e0, e2, . . . , eh−1, p · e1, p · e3, . . . , p · eh−2},

then according to this basis F is given by

F =


0 0 . . . 0 p2

1 0 . . . 0 0

0
. . .

. . .
...

...
. . .

. . .
...

0 . . . 0 1 0

 · σ.
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Thus, (Qh
p , F ) is a simple isocrystal over Fp of slope λ = 2

h

Define a valuation w : Qh
p −→ R ∪ {∞} of slope λ on (Qh

p , F ) by setting

w(ei) :=
i

h
, i = 0, . . . , h− 1

and for any v =
∑h−1

i=0 aiei set w(v) = mini{vp(ai) + i
h}.

Fix a p-divisible group X over Fp with this isocrystal, such that the Dieudon-

né module of X is D(X) =
⊕h−1

i=0 Zp · ei = {x ∈ Qh
p | w(x) ≥ 0}.

Let M/Spf(Zp) be the associated moduli space of p-divisible groups quasi-
isogeneous to X as defined in the introduction. It is representable by a
formal scheme locally formally of finite type over Spf(Zp) (see Theorem 2.16
in [RZ] and note, that X is decent, i.e. its isocrystal is generated by elements
x with F h(x) = p2x).

From now on let k ⊃ Fp be an algebraic closure, W (k) its Witt ring.

Set N := Qh
p ⊗Qp Frac(W (k)) and let F on N be given on the base vec-

tors e0, . . . , eh−1by the same assignment as before.

Set M := D(X)⊗Zp W (k) =
⊕h−1

i=0 W (k) · ei.

We use the same basis {e0, . . . , eh−1} for N as before and set ei+nh := pn · ei
for any n ∈ Z. This gives a system of elements {ej , j ∈ Z} in N such that
every element v ∈ N can be uniquely written as v =

∑
j∈Z[aj ]ej , with [aj ]

the Teichmüller representative in W (k) of an aj ∈ k and aj = 0 for j small
enough.

The semimodule of M

Oort and de Jong defined in [dJO] a combinatorial invariant for k-valued
points of Mred.
Recall that N is a simple isocrystal over k of slope λ = 2

h . For any element
v =

∑
k∈Z[ak]ek in N there is a j ∈ Z with aj 6= 0 and ak = 0 for all k < j.

It is called the first index of v.

Definition 3.4. A subset A ⊂ Z is called a semimodule if it is bounded
below and satisfies 2 +A ⊂ A and (h− 2) +A ⊂ A.
If M ⊂ N is the Dieudonné module of some X ∈M(k), then

A(M) := {j ∈ Z | j is the first index of some v ∈M}
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is a semimodule in Z, called the semimodule of M .

Denote again by w the extension of the fixed valuation w on Qh
p to the

isocrystal N = Qh
p ⊗Qp Frac(W (k)) over k.

For any F - and V -invariant lattice M in N we have

A(M) = h · w(M) ⊂ Z.

This follows directly from the observation that for v ∈M we have: j is the
first index of v, if and only if v =

∑
k≥j [ak]ek with aj 6= 0, if and only if

w(v) = mink{vp([ak]) + k
h} = j

h since all [ak] are either 0 or units in W (k).

A(M) is bounded from below and there exists a N ∈ N with N+N ⊂ A(M),
since for j ∈ A(M) we have j + 2 ∈ A(M) and j + (h − 2) ∈ A(M). So,
since h is odd, we have j + (h− 3) + N ⊂ A(M).
A lattice M in N which is also a Dieudonné module of some p-divisible
group X ∈ M(k) is called a Dieudonné lattice (equivalently: M is F - and
V -invariant).

Definition 3.5. For M,M ′ ⊂ N lattices set |M/M ′| := index of M ′ in M ,
i.e.

|M/M ′| = lgW (k)

(
M/(M∩M ′)

)
− lgW (k)

(
M ′/(M∩M ′)

)
.

The index |M/M ′| is finite, since both M and M ′ are of full rank in N .

The following lemma allows us to compute some invariants of the Dieudonné
lattices using their semimodules.

Lemma 3.6. Let (0) 6= M be an F - and V -invariant lattice in N with
semimodule A(M).
(1) For any F - and V -invariant sublattice (0) 6= M ′ (M we have:

|M/M ′| = #{A(M) \A(M ′)}.

(2) For any F - and V -invariant lattice (0) 6= M ′ we have:

|M/M ′| = #{A(M) \A(M ′)} −#{A(M ′) \A(M)}.

Proof. (1) Let S = A(M) \A(M ′). Suppose first that S 6= ∅.
Since both are bounded below and there exists an integer n ∈ N with
n+N ⊂ A(M ′) ⊂ A(M), this difference set is finite, so S = {s1, . . . , sn}
with s1 < s2 < . . . < sn. For s ∈ S let ms = es +

∑
j>s[αj ]ej ∈ M be

an element of valuation w(ms) = s
h in M .

Then

M ′ (M ′ + 〈msn〉W (k) (M ′ + 〈msn〉W (k) + 〈msn−1〉W (k) ( . . .

. . . (M ′ +
n∑
i=2

〈msi〉W (k) (M ′ +
n∑
i=1

〈msi〉W (k) ⊆M

9



is a chain of submodules of length #{S} = #{A(M) \A(M ′)}.

To show the other inequality, consider first the case of M and M ′ both
F - and V -invariant lattices in N with M ′ ⊆ M and A(M) = A(M ′),
that is, S := A(M) \A(M ′) = ∅. We want to show that in this situation
only the case M = M ′ is possible.
Let 0 6= m ∈ M and let m′ ∈ M ′ be an element of the same valuation.
By multiplying both with suitable units in W , we can achieve for both
to look like

m = ej +
∑
i>j

[αi]ei and m′ = ej +
∑
i>j

[βi]ei.

Set m1 = m − m′. Then m = m′ + m1 and the valuation of m1 is
strictly bigger than that of m and m′. Since A(M ′) = A(M), we can
find an m′1 in M ′ of the same valuation as m1, such that their difference
m2 = m1 −m′1 has again a strictly bigger valuation. By proceeding, we
get two sequences of elements (mi) and (m′i) with m′i ∈M ′ such that

m = m′+m1 = m′+m′1 +m2 = . . . = m′+m′1 + . . .+m′n +mn+1 = . . .

and w(mn)→∞ and w(m′n)→∞ for n→∞. Since W (k) is complete,
so are M and M ′, thus m ∈M ′ and, consequently, M ′ = M .

If we have a chain of submodules M ′ ( M1 ( M2 ( . . . ( M , as in
the case of the lemma, the consideration above gives us a chain of semi-
modules A(M ′) ( A(M1) ( A(M2) ( . . . ( A(M) and the length of this
chain is always less or equal to #{A(M) \A(M ′)}.

(2) Follows directly from (1), since A(M∩M ′) is a subset of
(
A(M)∩A(M ′)

)
with finite complement and the subtraction of this complement in both
terms cancels out.

A different way to compute the index of two Dieudonné lattices is given by
the following remark.

Remark 3.7. Let M,M ′ lattices in N and g ∈ GLh(Frac(W (k))) an auto-
morphism of the underlying vector space N with g(M) = M ′. Then

|M/M ′| = vp(det(g)).

Proof. g is uniquely determined up to multiplication from left and right with
elements of GLh(W (k)), thus vp(det(g)) is well-defined. If M ′ ⊂M , one can
find a basis {m1, . . . ,mh} of M and integers 0 ≤ i1 ≤ . . . ≤ ih such that
{pij · mj , 1 ≤ j ≤ h} is a basis of M ′. Then vp(det(g)) = i1 + . . . + ih =
|M/M ′|.
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Theorem 3.8 (Section 3 in [Vie]). The open and closed formal subschemes
M(i) are connected.

Proof. According to Theorem 3.1 of [Vie], the set of connected components
of M can be identified with the set ∆ = M(Xm) × M(Xét) × Z, where
X = Xm × Xbi × Xét is the decomposition of X into its multiplicative, bi-
infinitesimal and étale parts, andM(Xm) andM(Xét) are the moduli spaces
corresponding to Xm and Xét. If S ∈ NilpW (k) and ρ : XS̄ −→ XS̄ a quasi-
isogeny to a p-divisible group X over S, we get a morphism X −→ Xét with
Xét étale over S, and a quasi-isogeny ρét : Xét −→ Xét which is functorially
in ρ. The assignment ρ 7−→ ρét gives a morphism κét : M−→M(Xét).
By duality one obtains also a morphism κm : M −→M(Xm), and by com-
bining both these morphisms with the locally constant height morphism,
one gets

κ : M−→ ∆,

which sends a pair (X, ρ) ∈ M(S) to (ρm, ρét, ht(ρ)) and identifies the set
of connected components of M with ∆.

However, in our case the p-divisible group X has only trivial multiplicative
and étale parts, since its isocrystal N(X) is simple, and, if X were multi-
plicative or étale there would exist a basis of N(X) such that F = pασ with
α ∈ {0, 1} according to this basis. Since this is not the case here, we have
∆ = Z, κ = ht and M(i) = κ−1(i) is connected.

A semimodule A ⊂ Z is called normalized if |A \ N| = |N \ A|. One sees
immediately that there are only finitely many normalized semimodules in
Z: if j ∈ A is the minimal element of A (it exists since A is bounded below),
we have j + (h − 3) + N ⊂ A because h is odd, so the number of elements
k > j but k /∈ A is bounded by h−3

2 .

Thus, for (X, ρ) in M(k), we have

(X, ρ) ∈M(i)(k)⇐⇒ height(ρ) = i = vp(det(D(ρ))) = |D(X)/M|.

Corollary 3.9. The open and closed subschemes M(i) are non-empty and
isomorphic to each other.

Proof. For any i ∈ Z let Mi = 〈ei, . . . , ei+h−1〉Zp . This is an F - and V -
invariant lattice in N(X) with semimodule A(Mi) = i+N, so, Mi⊗Zp W (k)
is of index i in M, thus the corresponding p-divisible group (Xi, ρ) ∈M(Fp)
lies in M(i)(Fp).

To show the isomorphism betweenM(0) andM(i), we have to find a quasi-
isogeny ρi : X −→ X of height i. Any quasi-isogeny of X to itself gives us an

11



automorphism of the isocrystal (N,F ), and this group is described by

Autisoc(N,F ) ∼= D 2
h

= Qph [Π]/
(
Πh = p2,Π · a = aσ ·Π, a ∈ Qph

)
.

Here D 2
h

denotes the division algebra over Qp with invariant 2
h and σ is the

automorphism of Qph which induces x 7−→ xp on Fph as before. Thus, we

have to find an f ∈ D 2
h

with vp(det(f)) = vp(f · σ(f) · . . . · σh−1(f)) = i.

Set f = pa · Πb with a, b ∈ Z such that h · a + 2 · b = i. This is possible,
since h is odd. Then vp(det(f)) = h · vp(f) = h · (a + 2

h · b) = i. And the
composition with ρi gives an isomorphism

M(0)(S) −→M(i)(S), (X, ρ) 7−→ (X, ρi,S̄ ◦ ρ : XS̄ −→ XS̄).

Structure of lattices M ∈ N (k)

Let M be a Dieudonné lattice in N which is the Dieudonné module of some
p-divisible group in N (k), that is, M has index 0 in M. Then its semimodule
A(M) is normalized, which means |A(M) \ N| = |N \ A(M)|. As we have
seen in the previous section, the number of integers which are bigger than
the minimal element of A(M), but are not contained in A(M) is limited by
h−3

2 . Thus, there exists a 0 ≤ j = j(M) ≤ h−3
2 , such that

A(M) = {−j,−j + 2,−j + 4, . . . , j − 4, j − 2, j, j + 1, j + 2, j + 3, . . . }

= (−j + 2N) ∪ (j + N).

In fact, there is an m = e−j +
∑

i>−j [ai]ei in M , such that

M = 〈m,F (m), F 2(m), . . . , F j−1(m), ej , ej+1, ej+2, . . . 〉W (k).

The following picture shows the semimodule of a F - and V -invariant lattice
M with index 0 in M = D(X) ⊗W (k), where the dots stand for points in
A(M) and the boxes for points which are not in A(M), also called ”gaps”.

. . . � • � • alternating dots and gaps � • • . . .

. . . −j − 1 −j . . . j − 1 j j + 1 . . .

By multiplying the elements F i(m), 0 < i < j, and the ek, k ≥ j, with
suitable scalars and subtracting them from m, we can achieve for m to have
the form:

m = e−j + [α−j+1]e−j+1 + [α−j+3]e−j+3 + . . .+ [αj−1]ej−1

with αi ∈ k. Thus, we have seen the following

12



Proposition 3.10. Let M ⊂ N be a Dieudonné lattice. Then there exists
an index j ∈ Z and an element m ∈M with

m = e−j + [α−j+1]e−j+1 + [α−j+3]e−j+3 + . . .+ [αj−1]ej−1

with ai ∈ k, such that

M = 〈m,F (m), . . . , F j−1(m), ej , ej+1, . . . 〉W (k)

and
A(M) = (−j + 2N) ∪ (j + N).

τ-invariant lattices

Following the idea of [VW], we first want to define a stratification of N (k)
by suitable pairs of lattices in N . Here, we choose τ -invariant lattices, where
τ is the operator on N given by

τ := p−2F h.

If {ei, i ∈ Z} is the system of elements in N defined above then τ acts on an
element m =

∑
k∈Z[αk]ek as τ(m) =

∑
k∈Z[σh(αk)]ek.

To any Dieudonné lattice M ⊂ N we attach the following two τ -invariant
lattices:

Λ+M :=
∑
i≥0

τ i(M),

Λ−M :=
⋂
i≥0

τ i(M).

These are again F - and V -invariant lattices in N for τ commutes with F
and V , but they are, in general, not attached to some p-divisible groups in
N , since their index in M can differ from 0.

We now determine the pairs of lattices (M+,M−) that can occur as maxi-
mal resp. minimal τ -invariant lattices of a Dieudonné lattice M ⊂ N .

Let M ∈ N (k) be a Dieudonné lattice in N and

m = e−j + [α−j+1]e−j+1 + [α−j+3]e−j+3 + . . .+ [αj−1]ej−1

be the element with M = 〈m,F (m), . . . , F j−1(m), ej , ej+1, . . . 〉W (k) as in
Proposition 3.10.
Now

τ(m) = τ(e−j) +

j−1∑
i=0

τ([a−j+2i+1]e−j+2i+1) = e−j +

j−1∑
i=0

[ap
h

−j+2i+1]e−j+2i+1,

13



thus it depends on the coefficients ai ∈ k whether M is τ -invariant.

Let now l ∈ [0, j − 1] ∩ N be the smallest integer with α−j+2l+1 ∈ k \ Fph if
such an l exists, and set l := j if all αi are in Fph . Then

m− τ(m) = ([α−j+2l+1]− [αp
h

−j+2l+1])e−j+2l+1 +
∑

i>−j+2l+1

[βi]ei

is an element of Λ+M with valuation −j+2l+1
h , and thus gives the element

−j + 2l + 1 ∈ A(M+). By F -invariance of M+ we now have

A(Λ+M) = { −j,−j + 2,−j + 4, . . . ,−j + 2l − 2,−j + 2l,

− j + 2l + 1,−j + 2l + 2,−j + 2l + 3, . . . }

= (−j + 2N) ∪
(
(−j + 2l) + N

)
.

If l < j, none of the elements m,F (m), . . . , F j−l−1(m) are τ -invariant, but
a suitable linear combination of F j−l(m) and the ei, i ≥ j is, so

A(Λ−M) = {j − 2l, j − 2l + 2, . . . , j − 2, j, j + 1, j + 2, . . . }

=
(
(j − 2l) + 2N

)
∪ (j + N).

So, Λ−M ⊂M ⊂ Λ+M is a chain of F - and V -invariant lattices in N with
indexes |Λ+M/M | = |M/Λ−M | = j − l.
We can now give the precise description of the occurring pairs of lattices
(Λ+M,Λ−M):

Lemma 3.11. Let 0 ≤ j ≤ h−3
2 and 0 ≤ l ≤ j be integers, and fix a tuple

αl = (α1, . . . , αl) ∈ Fl
ph

. If l = 0, then αl := ∅.

For each tuple (j, l, αl) define two Zph-lattices Λ+
j,l,αl

and Λ−j,l,αl
in the isocrys-

tal (Qh
p , F )⊗Qph over Fph:

Λ+
j,l,αl

:= 〈v = v(j, l, αl) = e−j + [α1]e−j+1 + [α2]e−j+3 +. . .+ [αl]e−j+2l−1,

F (v), F 2(v), . . . , F l(v), e−j+2l+1, e−j+2l+2, . . . 〉Z
ph

Λ−j,l,αl
:= 〈w = w(j, l, αl) = ej−2l + [αp

j−l

1 ]ej−2l+1 + [αp
j−l

2 ]ej−2l+3 +. . .

. . .+ [αp
j−l

l ]ej−1,

F (w), F 2(w), . . . , F l(w), ej+1, ej+2, . . . 〉Z
ph

14



Then for every M ∈ N (k), there exists a tuple (j, l, αl) with 0 ≤ j ≤ h−3
2 ,

0 ≤ l ≤ j and αl ∈ Fl
ph

, such that

Λ+M = Λ+
j,l,αl

⊗Z
ph
W (k) and Λ−M = Λ−j,l,αl

⊗Z
ph
W (k).

Proof. Take the element m = e−j + [α−j+1]e−j+1 + [α−j+3]e−j+3 + . . . +
[αj−1]ej−1 as in Prop 3.10 with M = 〈m,F (m), . . . , F j−1(m), ej , . . . 〉W (k),
and let l ∈ [0, j − 1] ∩ N be as before the smallest integer with α−j+2l+1 ∈
k \ Fph if such an l exists, and set l := j if all αi are in Fph . Then for

αl = (α−j+1, α−j+3, . . . , α−j+2l−1) ∈ Fl
ph

we have the desired equations of
lattices.

Now define a stratification of the set N (k) by subsets of the form

Nj,l,αl
(k) :=

M ∈ N (k) |
Λ−j,l,αl

⊗Z
ph
W (k) ⊂ Λ−M

and
Λ+M ⊂ Λ+

j,l,αl
⊗Z

ph
W (k)

 .

Before showing some properties of these subsets, we recall some facts on
finite locally free groups over an Fp-scheme S from [dJ].

Let S be a scheme over Spec(Fp), and denote by fS the absolute Frobe-
nius endomorphism on S. For G a finite locally free group over S denote
by

GD = Hom(G,Gm,S)

its Cartier dual. The assignment G −→ GD is a contravariant auto-equiva-
lence of the category of finite locally free group schemes over S.
Let FG : f∗SG =: G(p) −→ G be the Frobenius morphism of the scheme G

over S and VG :=
(
FGD

)D
: G −→ G(p) the Verschiebung morphism of G.

These two morphisms satisfy FG ◦ VG = p · idG and VG ◦ FG = p · idG(p) .
There is the following result by de Jong:

Proposition 3.12 (Section 2 in [dJ]). Let S be a scheme over SpecFp.
Then there is a contravariant equivalence of categories(

finite locally free group schemes
G over S with VG = 0

)
→
(

locally free OS-modules M +

F : M (p) −→M OS − linear

)
G 7→ (αG, F : α

(p)
G
∼= αG(p) −→ αG)

where M (p) = f∗S(M) is the pullback of the OS-module M via the Frobenius
morphism fS on OS and for G as before the OS-module αG is defined as
αG = HomOS

(G,Ga,S).
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Lemma 3.13. For every 0 ≤ j ≤ h−3
2 , 0 ≤ l ≤ j and αl ∈ Fl

ph
the subset

Nj,l,αl
(k) is a closed irreducible subset of N (k) of dimension j − l.

Proof. In the last section we have seen that the Dieudonné module M of
every X ∈ N (k) is contained in the lattice M+ ⊗W (k), where

M+ := 〈e−h−3
2
, e−h−3

2
+1, . . . , eh−3

2
−1〉Zph

since j ≤ h−3
2 . It also must contain the lattice M− ⊗W (k), where

M− := 〈eh−3
2
, eh−3

2
+1, . . . , eh−3

2
+(h−1)〉Zph

.

Now p ·M+ = 〈e−h−3
2

+h, e−h−3
2

+h+1, . . . 〉Zph
⊂ M−, so that their quotient(

M+/M−
)

is an Fph-vector space.

Let X+ and X− be p-divisible groups over Fph with Dieudonné modules

D(X+) = M+ and D(X−) = M−.

From the inclusions of Dieudonné modules M− ↪→ D(X) ⊗ Zph ↪→ M+ we
get an isogeny ρ̃ : X+ −→ X− of height h− 3 and also two isogenies

ρ+ : X+ −→ X⊗Fp Fph , ρ− : X⊗Fp Fph −→ X−

of height h−3
2 .

Let N ′ be the functor, which assigns to a scheme S over Spec(Fph) the
set

N ′(S) =

(X, ρ) ∈ N (S) |
ρ ◦ (ρ+

S )−1 : X+ × S −→ X× S −→ X and
ρ−S ◦ (ρ)−1 : X −→ X× S −→ X− × S
are isogenies


Then, according to Proposition 2.9 in [RZ], N ′ is a closed subfunctor of
N×Spf(Zp)Spf(Zph) with N ′(k) ∼= N (k), since for X ∈ N (k) with Dieudonné
module D(X) = M we have the inclusions M−⊗W (k) ⊂M ⊂M+⊗W (k),
thus the isogenies X+ ×Spec(F

ph
) Spec(k) −→ X −→ X− ×Spec(F

ph
) Spec(k).

Let X ∈ N ′(R) for an Fph-algebra R. Then from the definition of N ′ we get
two exact sequences

0 // Ker(ρ+
X) // X+

R

ρ+X // X // 0

0 // Ker(ρ−X) // X
ρ−X // X−R // 0
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with Ker(ρ+
X) ⊂ Ker(ρ̃R : X+

R −→ X−R), because the composition X+
R −→

X −→ X−R is an isogeny. Since the isogeny ρ+
X is determined up to isomor-

phism by its kernel, we have to describe the subgroups of Ker(ρ̃R) of height
h−3

2 = height(ρ+
X).

The Dieudonné module D(Ker(ρ̃)) = M+/M− of Ker(ρ̃) is annihilated by
V , since

V (M+) = 〈eh−1
2
, . . . , e3·h−1

2
〉Z

ph
⊂M−,

so by Lemma 3.12 the subgroup Ker(ρ+
X) of Ker(ρ̃R) is uniquely determined

by the associated surjective morphism of Dieudonné modules

D(Ker(ρ̃R)) −→ D(Ker(ρ+
X)).

This one, being surjective, is again uniquely described by its kernel

Ker
(
D(Ker(ρ+

X) ↪→ Ker(ρ̃R))
)
,

which is a locally free direct summand of D(Ker(ρ̃R)) of rank h−3
2 because

D(Ker(ρ+
X)) is a locally free R-module of rank h−3

2 .
Thus, we can define a morphism of functors N ′ −→ Grassh−3

2
(M+/M−) by

the prescription on R-valued points for any Fph-algebra R:

N ′(R) −→ Grassh−3
2

(
M+/M−

)
(R),

(X, ρ) 7−→ Ker
(
D(Ker(ρ+

X) ↪→ Ker(ρ̃R))
)

where Grassh−3
2

(
M+/M−

)
(R) denotes the R-valued points of Grassmannian

variety over Fph , that is, the set of locally free direct summands of the R-

module
(
(M+/M−)⊗F

ph
R
)

of rank h−3
2 .

So, since N (k) = N ′(k), we get a morphism

N (k) −→ Grassh−3
2

(
M+/M−

)
(k),

X 7−→ D(X)/(M− ⊗W (k)),

which comes from the morphism of functors N ′ −→ Grassh−3
2

(M+/M−).

We can simplify the conditions for M ∈ N (k) being in Nj,l,αl
(k) to

M ∈ Nj,l,αl
(k)⇐⇒ Λ−j,l,αl

⊗W (k) ⊂M ⊂ Λ+
j,l,αl

⊗W (k),

since both lattices Λ−j,l,αl
⊗W (k) and Λ+

j,l,αl
⊗W (k) are τ -invariant. Λ+M

being the minimal τ -invariant lattice containing M must therefore be con-
tained in Λ+

j,l,αl
⊗W (k) and Λ−M , which is the maximal τ -invariant lattice

contained in M , must also contain Λ−j,l,αl
⊗W (k).
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Both Λ+
j,l,αl
⊗W (k) and Λ−j,l,αl

⊗W (k) contain M−⊗W (k) and are contained

in M+ ⊗W (k), thus correspond to certain subspaces in (M+/M−)⊗ k. So,
the conditions for M being in Nj,l,αl

(k) above transform into inclusion con-
ditions for subspaces, and both of them define closed subsets in the Grass-
mannian variety of h−3

2 -dimensional subspaces in
(
M+/M−

)
⊗ k.

Let N ◦j,l,αl
(k) be the subset of Nj,l,αl

(k) defined by the condition

N ◦j,l,αl
(k) = {M ∈ N (k)|Λ−j,l,αl

⊗W (k) = Λ−M,

Λ+M = Λ+
j,l,αl

⊗W (k)}.

Then every M ∈ N ◦j,l,αl
(k) is of the form

M = 〈m = v(j, l, αl) + [βl+1]e−j+2l+1 + . . .+ [βj ]ej−1,

F (m), . . . , F j−1(m), ej , ej+1, . . . 〉W

with βl+1 ∈ k \ Fph . One sees that m− τ(m) =
[
βl+1 − βp

h

l+1

]
e−j+2l+1 + . . .

is an element of valuation −j+2l+1
h in Λ+M , so Λ+(M) is a submodule of

Λ+
j,l,αl
⊗W (k) with the same semimodule as Λ+

j,l,αl
⊗W (k) and by the proof

of Lemma 3.6 we have the equality of lattices Λ+M = Λ+
j,l,αl

⊗W (k). So

N ◦j,l,αl
(k) ∼= Aj−l−1(k)× (A1(k) \ A1(Fph)) is irreducible of dimension j − l.

The quotient Λ+
j,l,αl

⊗ W (k)/Λ−j,l,αl
⊗ W (k) is a k-vector space of dimen-

sion 2(j − l) and for any M ∈ Nj,l,αl
(k) the quotient M := M/Λ−j,l,αl

is a

subspace of Λ+
j,l,αl

/Λ−j,l,αl
of dimension j − l.

But, of course, not every subspace of dimension j − l in
(
Λ+
j,l,αl

/Λ−j,l,αl

)
⊗ k

corresponds to a lattice M ∈ N (k), for it has to be also F -invariant. The
V -invariance does not matter here, because V is zero on the subquotient
(Λ+

j,l,αl
/Λ−j,l,αl

)⊗ k of (M+/M−)⊗ k.

This invariance condition is again a closed condition, so we can viewNj,l,αl
(k)

as a closed subvariety of Grassj−l(Λ
+
j,l,αl

/Λ−j,l,αl
)(k).

If we take the residue classes in Λ+
j,l,αl

/Λ−j,l,αl
of the basis elements of Λ+

j,l,αl
as

above, they form a generating system of the quotient
(
Λ+
j,l,αl

/Λ−j,l,αl

)
⊗k con-

sisting of τ - stable elements. Choosing a basis {vi} in this generating system,

the operator τ acts on Λ+
j,l,αl

/Λ−j,l,αl
⊗ k as τ(

∑2(j−l)
i=1 aivi) =

∑2(j−l)
i=1 ap

h

i vi.

If M ∈ N (k) is an element of N ◦j,l,αl
(k), we see that

Λ+
j,l,αl

⊗W (k) = Λ+(M) = M + τ(M),
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since m − τ(m) is an element of valuation −j+2l+1
h in M + τ(M), F (m) −

τ(F (m)) has valuation −j+2l+3
h , and so on. Thus M + τ(M) is an F - and

V -invariant sublattice of Λ+M with the same semimodule as Λ+M . The
equality follows again from the proof of Lemma 3.6 .

This means that the two subspaces M := M/
(
Λ−j,l,αl

⊗ k
)

and τ(M) :=

τ(M)/
(
Λ−j,l,αl

⊗ k
)

of
(
Λ+
j,l,αl

/Λ−j,l,αl

)
⊗ k have the property:

M ∩ τ(M) = {0}, or, equivalently, M + τ(M) =
(
Λ+
j,l,αl

/Λ−j,l,αl

)
⊗ k.

Thus, N ◦j,l,αl
(k) is the intersection of the closed subvariety Nj,l,αl

(k) of

Grassj−l

(
Λ+
j,l,αl

/Λ−j,l,αl

)
with the one Deligne-Lusztig variety of maximal

dimension in Grassj−l

(
Λ+
j,l,αl

/Λ−j,l,αl

)
given by the Weil group element of

maximal length, that is, the set of all subspaces U of dimension j − l in
(Λ+

j,l,αl
/Λ−j,l,αl

)⊗ k fulfilling U ∩ σh(U) = {0}. The latter is an open subva-

riety of Grassj−l

(
Λ+
j,l,αl

/Λ−j,l,αl

)
, so is N ◦j,l,αl

(k) in Nj,l,αl
(k).

The irreducibility of the Nj,l,αl
(k) will be shown later in the Corollary 3.17.

Inclusion relations between Nj,l,αl
(k)

Let (j, l, αl) and (j′, l′, βl′) be tuples as before and Nj,l,αl
(k) and Nj′,l′,βl′ (k)

the associated closed subsets of N (k).
Then for Nj,l,αl

(k) ⊂ Nj′,l′,βl′ (k) we have to require j ≤ j′ and distinguish
the two cases:

(a) j′ − j odd, i.e. there exists a k ∈ N such that j′ = j + 2k + 1.
To get Λ+

j,l,αl
⊂ Λ+

j′,l′,βl′
and Λ−j′,l′,βl′

⊂ Λ−j,l,αl
, we then have to require

l′ ≤ k with no further conditions on the coefficients αi and βi.

This is clear if we consider the semimodules of Λ+
j,l,αl

and Λ+
j′,l′,βl′

:

The inclusion Λ+
j,l,αl

⊂ Λ+
j′,l′,βl′

of lattices gives an inclusion of semimod-

ules A(Λ+
j,l,αl

) ⊂ A(Λ+
j′,l′,βl′

), so the elements of A(Λ+
j,l,αl

) must already

be contained in A(Λj′,l′,βl′ ). This means that the gaps of A(Λ+
j′,l′,βl′

) can

only occur to the left side of the first dot of A(Λ+
j,l,αl

), since the gaps of

both semimodules do not overlap. In particular, the number l′ of gaps in
A(Λ+

j′,l′,βl′
) is less than half the distance of the first dots j′ and j, which

is k.
The other inclusion Λ−j′,l′,βl′

⊂ Λ−j,l,αl
does not impose further conditions.
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(b) j′ − j even, i.e. there exists a k ∈ N such that j′ = j + 2k.

Then we have to require l′ ≤ l + k and α1 = βp
k

1 , α2 = βp
k

2 , . . . , αl′−k =

βp
k

l′−k if l′ − k ≥ 1 for the lattices to be contained in each other.

In this case, the gaps of the semimodules might overlap, but since Λ+
j′,l′,βl′

is the bigger lattice, it must contain all the dots of the lesser lattice Λ+
j,l,αl

,

which limits the number l′ of gaps in A(Λ+
j′,l′,βl′

) to l + k = (half the

distance of j′ and j) + (number of gaps in A(Λ+
j,l,αl

)).

Also, the coefficients in the gaps of both semimodules are not inde-
pendent. From Lemma 3.11 we have the generators of both lattices:
Λ+
j′,l′,βl′

= 〈v′ = v(j′, l′, βl′), F (v′), . . . , e−j′+2l′+1, . . . 〉Z
ph

and Λ+
j,l,αl

=

〈v = v(j, l, αl), F (v), . . . , e−j+2l+1, . . . 〉Z
ph

. So, the vector v = v(j, l, αl)

must either be in the span of the {e−j′+2l′+i, i ≥ 1}, then the coeffi-
cients α1, . . . , αl of v(j, l, αl) do not depend on the βi, or v(j, l, αl) =
F k(v′) +

∑
i≥1[γi]e−j′+2l′+i. In this case the first l′ − k coefficients

α1, . . . , αl′−k of v must coincide with the first l′−k coefficients of F k(v′),

which are βp
k

1 , . . . , βp
k

l′−k.

Therefore, Nh−3
2
,0,∅(k) is the biggest of these subsets, containing all other

Nj,l,αl
(k) and N (k) = Nh−3

2
,0,∅(k).

The subfunctors Nj,l,αl

Let (j, l, αl) be tuples and Λ+
j,l,αl

and Λ−j,l,αl
be the F - and V -invariant lat-

tices in (Qp, F ) ⊗ Qph associated to these tuples defined in the chapters
before.
Let X+

j,l,αl
and X−j,l,αl

be the p-divisible groups of dimension 2 and height

h over Fph with Dieudonné modules Λ+
j,l,αl

, resp. Λ−j,l,αl
, and denote by

ρ+ : X+
j,l,αlk

−→ X × Spec(Fph) and ρ− : X × Spec(Fph) −→ X−j,l,αlk
the as-

sociated quasi-isogenies of height j − l.

By the same idea as in the proof of Lemma 3.13 we define a subfunctor
Nj,l,αl

of N ×Spf Zp SpecFph by

Nj,l,αl
(R) := {(X, ρ) ∈ N (R) |ρ ◦

(
ρ+
R

)−1
: X+

j,l,αl
×R −→ XR −→ X and

ρ−R ◦ (ρ)−1 : X −→ XR −→ X−j,l,αl
×R

are isogenies}

for every Fph-algebra R.

Lemma 3.14. The functor Nj,l,αl
is a closed subfunctor of N .
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Proof. This follows from Proposition 2.9 in [RZ].

Proposition 3.15. Let 0 ≤ j ≤ h−3
2 , 0 ≤ l ≤ j and αl ∈ Fl

ph
as before. The

functor Nj,l,αl
is representable by a projective Fph-scheme.

Proof. We show the representability similarly as the proof of Lemma 3.13
and give now the description of the projective Fph-scheme representing
Nj,l,αl

.

Denote by K = Kj,l,αl
the kernel of the isogeny X+

j,l,αl
−→ X−j,l,αl

of

p-divisible groups over Fph given by the inclusion of Dieudonné modules

Λ−j,l,αl
⊂ Λ+

j,l,αl
.

Let R be an Fph-algebra and (X, ρ) ∈ Nj,l,αl
(R). From the description of

the R-valued points of Nj,l,αl
we have the two exact sequences

0 // KR
// X+

j,l,αlR
// X−j,l,αlR

// 0

0 // KX
//

OO

X+
j,l,αlR

// X // 0

and KX ↪→ KR, since X −→ X−R is an isogeny.

Since an isogeny is determined by its kernel up to isomorphism, a pair
(X, ρ) lying in Nj,l,αl

(R) is determined by a subgroup KX in KR. Now

K is annihilated by V , since V (Λ+
j,l,αl

) ⊂ Λ−j,l,αl
, so according to Proposi-

tion 3.12 the inclusion KX ⊂ KR is determined by the induced morphism
D(KX) −→ D(KR) of Dieudonné modules. Since KX −→ KR is injective,
the corresponding morphism of Dieudonné modules is surjective, and there-
fore uniquely determined by its kernel Ker (D(KR) −→ D(KX)).

Now pΛ+
j,l,αl

⊂ Λ−j,l,αl
, so

D(K) = Λ+
j,l,αl

/Λ−j,l,αl
=: Wj,l,αl

is a 2(j−l)-dimensional Fph-vector space and D(KR) = Wj,l,αl
⊗F

ph
R. Since

the height of the isogeny X+
j,l,αl
×Spec(F

ph
) Spec R© −→ X is j− l and D(KX)

is a locally free R-module of rank j − l, the kernel of D(KX −→ KR) is a
direct summand of rank j − l in Wj,l,αl

⊗R.

Since F (Λ−j,l,αl
) ⊂ Λ−j,l,αl

, we get an action of the Frobenius endomorphism

F on the quotient Λ+
j,l,αl

/Λ−j,l,αl
, and will denote this σ-linear operator again

by F . Since the quotient D(KX) of D(KR) also carries an F -action, the
kernel Ker

(
D(KX −→ KR)

)
of this projection must be F -invariant.
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Let Yj,l,αl
∈ Grassj−l(Wj,l,αl

) be the closed subscheme defined on R-valued
points, R an Fph-algebra, by:

Yj,l,αl
(R) :=

{
U ⊂Wj,l,αl

⊗R locally free | rk(U) = j − l,
direct summand F (Uσ) ⊂ U

}
where Grassj−l(Wj,l,αl

) denotes the projective scheme over Fph whose R-
valued points are the locally direct summands of rank j − l in Wj,l,αl

⊗R.

Thus, by sending a pair (X, ρ) to the kernel of D(KR) −→ D(KX) we get a
morphism Nj,l,αl

−→ Grassj−l(Wj,l,αl
) which is an isomorphism onto Yj,l,αl

.

Let d := h−3
2 , W := Wd,0,∅ and Y := Yd,0,∅.

The subfunctor N ′ defined in the proof of Lemma 3.13 is now the sub-
functor Nd,0,∅ of N ×Spf Zp Spf Zph , since M− = Λd,0,∅ and M+ = Λd,0,∅, and
we denote by ι : N ′ −→ N × Spf(Zph) the closed immersion of Spf(Zph)-
schemes. We have again a bijection ι(k) : N ′(k) −→ N (k) for all perfect
fields k/Fph , since for every lattice M ∈ N (k) we have(

M− = Λ−d,0,∅
)
⊗W (k) ⊂M ⊂

(
Λ+
d,0,∅ = M+

)
⊗W (k).

With the definition of the scheme Y , we obtain the following

Corollary 3.16. There is a closed immersion Y ∼= N ′ −→ N × Spf(Zph)
of the Fph-scheme Y into the formal scheme N , which is a bijection on k-
valued points for every perfect field k ⊃ Fph.
In particular, we get an isomorphism of the associated reduced subschemes
Yred −→ Nred =M(0)red.

Furthermore, with the precis description of the functors Nj,l,αl
we get the

following

Corollary 3.17. The closed subsets Nj,l,αl
(k) of N (k) are irreducible.

Proof. For d = h−3
2 and l = 0 we have Nd,0,∅ = N ′ ∼= Y with Yred

∼=M(0)red

irreducible. So, Y is irreducible itself.
For general choices of (j, l, αl) we have seen in Proposition 3.15 that the
subfunctors Nj,l,αl

of N×Spf(Zph) are isomorphic to the Fph-schemes Yj,l,αl
,

where

Yj,l,αl
(R) :=

{
U ⊂Wj,l,αl

⊗R locally free | rk(U) = j − l,
direct summand F (Uσ) ⊂ U

}
.
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The σ-linear endomorphism F is given on Wj,l,αl
by the matrix

F =



0

1
. . . 0
1 0

0

0 1
. . .

1 0


∈ M2(j−l)(Fph)

according to the basis given by the residue classes of {v = v(j, l, αl), F (v),. . .,
F j−l−1(v), e−j+2l+1, e−j+2l+3, . . . , ej−1} in Λ+

j,l,αl
/Λ−j,l,αl

= Wj,l,αl
. So, for

different j and l only the size of F changes, but not the general shape
of the matrix. So, for every choice of (j, l, αl) we have the same modular
description for the subscheme Yj,l,αl

⊂ Grassj−l(Wj,l,αl
) only with different

vector spaces Wj,l,αl
. Thus, all Yj,l,αl

are irreducible, and so are the subsets
Nj,l,αl

(k) of N (k).

4 The scheme Y

Let Y as before be the projective scheme over Fph given by

Y (R) =

{
U ⊂

(
M+/M−

)
⊗F

ph
R locally | rk(U) = d,

direct summand F (Uσ) ⊂ U

}
for an Fph-algebra R, and let W := M+/M− be an Fph-vector space of di-
mension 2d = h− 3.

We have defined a closed immersion ι : Y −→ N ×Spf(Zp) Spf(Zph) with
ι(k) : Y (k) −→ N (k) a bijection for all perfect fields k ⊃ Fph .

A basis of W is given by the images of the elements e−d, e−d+1, . . . , ed−2, ed−1

in M+/M−. A matrix of F : W −→W according to this basis is given by

F =


0

0
. . .

1 0
. . .

. . .

1 0 0

 ◦ σ.

Examples h = 5 and h = 7

If h = 5, then d = h−3
2 = 1, W ∼= F2

ph
and F = 0. So Y is the whole

Grass1(W ) = P1
F
ph

.
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If h = 7, then d = 2 and we fix a basis of W = Wd,0,∅ given by the im-
ages of the elements {e−2, e−1, e0, e1} in the quotient W = M+/M− and
also an isomorphism W ∼= (Fph)4 given by this basis.

To determine the subvariety Y , we consider the open affine covering {Uij , 1 ≤
i < j ≤ 4} of Grass2(W ), where a direct summand U ⊂ R4 lies in Uij(R),
if U is given as the image of a matrix A ∈ M2×4(R) whose (i, j)-minor is
invertible, for any Fph-algebra R.

There are six of these open affine subsets and we want to determine the
conditions on the closed subscheme Y inside every one of them.

• (i, j) = (1, 2):
Let U ⊂ R4 be a locally free direct summand of rank 2 with U ∈ U12(R).
Then there exists a unique matrix of the form

A =


1 0
0 1
a b
c d

 ∈ M2×4(R)

such that the columns of A form a basis of U ⊂ R4.
In order for U to be F -invariant, the images under F of these base vectors
have to be linear combinations of the base vectors, in other words, there
has to be a matrix C ∈ M2(R) such that

F ·Aσ = A · C.

Thus we get: 
0
0
1 0
0 1 0 0

 ·


1 0
0 1
a b
c d


σ

=


0 0
0 0
1 0
0 1


and see, that the columns of the latter matrix can not be a linear com-
bination of the column vectors of A. So, Y does not intersect U12 at all.

• (i, j) = (1, 3):

Let U be the image of A =


1 0
a b
0 1
c d

. By the same computations as
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before we get

F ·Aσ =


0 0
0 0
1 0
aσ bσ

 =


1 0
a b
0 1
c d

 · ( 0 0
1 0

)

if b = 0 and d = aσ.

Thus, (Y ∩ U13)(R) ∼=
{
B =

(
a 0
c aσ

)
∈ M2(R)

}
∼= A2(R).

• (i, j) = (1, 4):

Let U be the image of A =


1 0
a b
c d
0 1

. We get again

F ·Aσ =


0 0
0 0
1 0
aσ bσ

 =


1 0
a b
c d
0 1

 · ( 0 0
d−1 0

)

if b = 0 and d−1 = aσ.

Thus, (Y ∩ U14)(R) ∼=
{
B =

(
a 0
c (aσ)−1

)
∈ M2(R)

}
∼= Gm(R) ×

A1(R).

• : (i, j) = (2, 3):

Let U be the image of A =


a b
1 0
0 1
c d

. We have

F ·Aσ =


0 0
0 0
aσ bσ

1 0

 =


a b
1 0
0 1
c d

 · ( 0 0
d−1 0

)

if b = 0 and d−1 = aσ.

Thus, (Y ∩ U23)(R) ∼=
{
B =

(
a 0
c (aσ)−1

)
∈ M2(R)

}
∼= Gm(R) ×

A1(R).

• : (i, j) = (2, 4):

Let U be the image of A =


a b
1 0
c d
0 1

. By the same computations as
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before we get

F ·Aσ =


0 0
0 0
aσ bσ

1 0

 =


a b
1 0
c d
0 1

 · ( 0 0
1 0

)

if b = 0 and d = aσ.

Thus, (Y ∩ U24)(R) ∼=
{
B =

(
a 0
c aσ

)
∈ M2(R)

}
∼= A2(R).

• : (i, j) = (3, 4):

Let U be the image of A =


a b
c d
1 0
0 1

. By the same computations as

before we get

F ·Aσ =


0 0
0 0
aσ bσ

cσ dσ

 =


a b
c d
1 0
0 1

 · ( aσ bσ

cσ dσ

)

if

(
a b
c d

)
·
(
aσ bσ

cσ dσ

)
= 0.

Thus, (Y ∩ U34)(R) ∼= {B ∈ M2(R) | B ·Bσ = 0}

From the computations above we see that the singular locus of Y is con-
tained in Y ∩U34 := Y34 whose R valued points are Y34(R) = {B ∈M2(R) |
B ·Bσ = 0}, so Y34 = Spec

(
k[a, b, c, d]/I

)
, where the defining ideal I of Y34

is given by I = (ap+1 + bcp, abp + bdp, apc+ cpd, bpc+ dp+1).

Let us compute the points in which Y is not smooth.

Let B ∈ Y34(k) with B 6= 0. Since B · Bσ = 0, we have that its deter-
minant fulfills det(B)p+1 = 0, thus det(B) = 0, since det(B) ∈ k. So, the
image of B is a one-dimensional subspace of k2.
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Denote by k[ε] the ring k[T ]/(T 2), ε being the residue class of T . Then

TY (B) = {C ∈ M2(k) | B + εC ∈ Y (k[ε])}

= {C ∈ M2(k) | (B + εC) · (B + εC)σ=(B + εC) · (Bσ + εpCσ)=0}

= {C ∈ M2(k) | (B + εC) ·Bσ = B ·Bσ + εC ·Bσ = 0}

= {C ∈ M2(k) | C ·Bσ = 0}.

The last condition C · Bσ = 0 means that the image of Bσ is contained in
the kernel of C. Let 〈v〉 ⊂ k2 be the image of Bσ, then

TY (B) = {C ∈ M2(k) | C ·Bσ = 0}

= {C ∈ M2(k) | 〈v〉 ⊂ Ker(C)}

∼= Homk

(
k2/〈v〉, k2

) ∼= k2.

So, Y is smooth in any point B ∈ Y (k) \ {0}.

If we take B = 0, then, following the computations of TY (B) above, we
see that the condition C · Bσ = 0 is satisfied for any C ∈ M2(k), so
TY (0) = M2(k) ∼= k4.
Thus, the only singular point of Y34 is B = 0 ∈ M2(k) corresponding to
the maximal ideal m = (a, b, c, d) ⊂ k[a, b, c, d]/I. This maximal ideal m is
generated by zero divisors in k[a, b, c, d]/I, since

a · (apd− ap−1bc) = a(apd+ bcpd− bcpd− ap−1bc)

= (ap+1 + bcp) · d− (apc+ cpd) · b ∈ I,

and b · (abp−1 + dp) ∈ I and c · (ap + cp−1d) ∈ I, and also

d · (adp − bcdp−1) = d · (adp + abpc− abpc− bcdp−1)

= a · (bpc+ dp+1)− c · (abp + bdp) ∈ I,

but none of the polynomials apd−ap−1bc, abp−1 +dp, ap+cp−1d, adp−bcdp−1

are contained in I.

Proposition 4.1. Y is generically reduced, but not reduced. In particular,
it is not Cohen-Macaulay.
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Proof. Y is irreducible, so the generic point in Y corresponds to the unique
minimal prime ideal in k[a, b, c, d]/I = Γ(Y ∩ U34,OY ). But the maximal
ideal m = (a, b, c, d) is generated by zero divisors, so, it is an associated prime
ideal, but not the minimal one (since dim(Y ) = 2). Thus, the open subset
Y34\V (m) ⊂ Y34 does not contain all associated prime ideals of Γ(Y34,OY ) =
k[a, b, c, d]/I, and therefore, it is not schematically dense (Lemma 9.23 in
[GW]). Since Y34 \ V (m) is reduced (it is even regular), its closure in Y34 is
also reduced, but is not the whole Y34. Thus Y cannot be reduced.

Smooth locus of Y

Recall that for any perfect field k ⊃ Fph we have a stratification of N (k) by
subsets of the form Nj,l,αl

(k), where

Nj,l,αl
(k) = {X ∈ N (k) | Λ−j,l,αl

⊗W (k) ⊂ D(X) ⊂ Λ+
j,l,αl

⊗W (k)}.

We also have the equality N (k) = Nd,0,∅(k) and an isomorphism Nd,0,∅ ∼= Y
of Fph-schemes. We will denote the stratification of Y given via this isomor-
phism again by Nj,l,αl

The Nj,l,αl
are closed subschemes of Y of dimension

j − l. The following theorem describes the smooth locus of Y and also
computes the tangent space TUY in every point U ∈ Y (k), k being an
algebraically closed field.

Theorem 4.2. Let k ⊃ Fph an algebraically closed field and U ∈ Y (k).
Then Y is smooth in all points U ∈ Y (k) \ Nd−2,0,∅(k). In particular, Y is
regular in codimension 1.

Proof. Denote by W the Fph-vector space M+/M− and by F again the pro-
jection of the σ-linear morphism F : M+ −→M+ to W . Fix an isomorphism
W ∼= (Fph)2d given by the basis {ed, e−d+1, . . . , ed−1} of W , where the ei are
residue classes of the base vectors ei in M+ and denote by Grass(d, 2d) the
Grassmannian over Fph whose R-valued points are the locally free direct

summands of rank d in R2d for any Fph-algebra R.
Let U ∈ Grass(d, 2d)(k). The tangent space of Grass(d, 2d) in U can be
computed as

TU Grass(d, 2d) = Homk(U, (W ⊗ k)/U).

by sending a linear map w : U −→ W ⊗ k = Wk to the image of w̃ in
Wk[ε] = Wk ⊗k k[ε] ∼= Wk ⊕ εWk, where

w̃ =

(
ι 0
w ι

)
: Uk[ε] = U ⊕ εU −→Wk[ε] = Wk ⊕ εWk

with ι : U −→Wk the inclusion map.
The map w 7−→ Im(w̃) is linear and defines a surjective morphism of vector
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spaces Homk(U,Wk) −→ TU Grass(d, 2d), whose kernel consists of those ho-
momorphisms w with w(U) ⊂ U .

Now let U ∈ Y (k). Since F (Uσ) ⊂ U , we get a homomorphism

F̄ : (Wk/U)σ −→Wk/U

and claim that

TUY = {w ∈ Homk(U,Wk/U) | F̄ ◦ wσ = w ◦ F}.

Let Z ⊂Wk be a complement of U , and let ŵ ∈ Homk(U,Z) be the unique
representative of a morphism w ∈ Homk(U,Wk/U). Then w̃ : Uk[ε] = U ⊕
εU −→Wk ⊕ εWk is given by

w̃(u1, u2) = (u1, ŵ(u1) + u2).

So, the submodule Im(w̃) of Wk[ε] lies in Y (k[ε]) if Fk[ε](Im(w̃))σ ⊂ Im(w̃),
which means

Fk[ε](u1, ŵ(u1) + u2) = (F (u1), F (ŵ(u1)) + F (u2)) ∈ Im(w̃),

that is, if there exist x, y ∈ U with (F (u1), F (ŵ(u1))+F (u2)) = (x, ŵ(x)+y).
So, putting x := F (u1), we have to find a y = F (ŵ(u1)) +F (u2)− ŵ(F (u1))
in U .

Write F : W σ
k −→ Wk as F = (F |U , F |Z) : (U ⊕ Z)σ −→ U ⊕ Z. Then

F |Z decomposes into F |Z = (fU , fZ) : Zσ −→ U ⊕ Z, and fZ : Zσ −→ Z is
the unique representative of F̄ : (Wk/U)σ −→Wk/U in Homk(Z

σ, Z).
So, for y = F (ŵ(u1)) + F (u2) − ŵ(F (u1)) to be in U , or, equivalently,
y − F (u2) = F (ŵ(u1)) − ŵ(F (u1) to be in U , we have to require that the
Z-part of it is zero, meaning: fZ(ŵ(u1)) − ŵ(F (u1)) = 0. This shows the
condition for w ∈ Homk(U,Wk/U) to lie in TUY .

We now compute the tangent space at a point U ∈ Y (k).

First case: j ≤ d − 2: Let U ∈ Y (k) correspond to an M ∈ Nj,l,αl
(k) with

j ≤ d− 2. Recall that M is generated as a W (k)-module by the elements

M = 〈m = e−j+

j∑
i=1

[γi]e−j+2i−1, F (m),. . ., F j−1(m), ej , ej+1, . . . , eh−1〉W (k).

Take as a basis of U the residue classes in Wk of the basis elements of M .
Then U = 〈u = e−j+

∑j
i=1 γie−j+2i−1, F (u), . . . , F j−1(u), ej , . . . , ed−1〉k and

we can take as complement the subspace Z generated by

Z = 〈e−d, . . . , e−j−1, e−j+1, e−j+3, . . . , ej−1〉k.
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If we rearrange the basis in another order by taking first e−d and its images
under F : e−d+2, e−d+4 and so on, as long as the images are in Z, and then
e−d+1 and its images under F as long as they are in Z, then, according to
this basis, fZ : Zσ −→ Z has the shape:

fZ =



0

1
. . . 0
1 0

0

0 1
. . .

1 0


: Zσ −→ Z.

where the upper left corner is a (d−j2 ) × (d−j2 )-matrix and the lower right

corner a
(
d+j

2

)
×
(
d+j

2

)
-matrix if d − j is even, and, if d − j is odd, the

upper left corner is a
(
d+j+1

2

)
×
(
d+j+1

2

)
-matrix and the lower right a(

d−j−1
2

)
×
(
d−j−1

2

)
-matrix. In any of these cases, fZ has rank d− 2.

The basis of U can also be changed in such a manner that

U =

〈 u, F (u), . . . , F j−1(u), F j(u), . . . ,

{
F

d+j+1
2 (u), d− j odd,

F
d+j
2 (u), d− j even,

,

ej+1, ej+3, . . . ,

{
ed−2, d− j odd,
ed−1, d− j even.

〉

Then according to this basis, F |U is given by

F |U =



0

1
. . . 0
1 0

0

0 1
. . .

1 0


,

with the upper left corner a
(
d+j+1

2

)
×
(
d+j+1

2

)
-matrix and the lower right

corner a
(
d−j−1

2

)
×
(
d−j−1

2

)
-matrix if d−j is odd, and the upper left corner

of size
(
d+j

2

)
×
(
d+j

2

)
and the lower right corner of size (d−j2 )×(d−j2 ) if d−j

is even. Just remark that we get a proper decomposition into two blocks
since j < d− 1, so neither of the blocks has size d.

We can now compute the tangent space TUY = {w ∈ Homk(U,Wk/U) |
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F̄ ◦ wσ = w ◦ F |U}.

First case of ”j ≤ d− 2” : d− j odd:
Let w ∈ Homk(U,Wk/U), and let its unique representative ŵ : U −→ Z be
given by a d × d-matrix A = (aij) ∈ Md(k) according to the last chosen
bases of U and Z.
Then fZ ◦ ŵσ =



0

1
. . . 0
1 0

0

0 1
. . .

1 0


·(apij) =



0 0
ap11 · · · · · · ap1d
...

...
apd+j+1

2
−1,1

· · · · · · apd+j+1
2
−1,d

0 0
apd+j+1

2
+1,1

· · · · · · apd+j+1
2

+1,d

...
...

apd,1 · · · · · · apdd


and ŵ ◦ F |U =

(aij) ·



0

1
. . . 0
1 0

0

0 1
. . .

1 0


=



a12 · · · a
1, d+j+1

2
0 a

1, d+j+1
2

+2
· · · a1d 0

...
...

...
...

...
...

...
...

...
...

...
...

ad2 · · · a
d, d+j+1

2
0 a

d, d+j+1
2

+2
· · · add 0


.

Comparing the coefficients we get conditions on all entries of ŵ = (aij) but
a11, . . . , a d+j+1

2
,1

, a
j+2, d+j+1

2
+1
, . . . , a d+j+1

2
, d+j+1

2
+1

, a d+j+1
2

+1,1
, . . . , ad1 and

a d+j+1
2

+1, d+j+1
2

+1
, . . . , a

d, d+j+1
2

+1
, which gives us

(
d+j+1

2

)
+
(
d−j−1

2

)
+
(
d−j−1

2

)
+(

d−j−1
2

)
= 1

2(4d− 2j− 2) = 2d− j− 1 free entries of ŵ. Thus, dim(TUY ) =

2d− j − 1 > d = dimY , since j < d− 1.
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Second case of ”j ≤ d− 2”: d− j even:
Let w ∈ Homk(U,Wk/U), and let its unique representative ŵ : U −→ Z be
given by a d × d-matrix A = (aij) ∈ Md(k) according to the last chosen
bases of U and Z.
Then fZ ◦ ŵσ =



0

1
. . . 0
1 0

0

0 1
. . .

1 0


·(apij) =



0 0
ap11 · · · · · · ap1d
...

...
apd−j

2
−1,1

· · · · · · apd−j
2
−1,d

0 0
apd−j

2
+1,1

· · · · · · apd−j
2

+1,d

...
...

apd,1 · · · · · · apdd


and ŵ ◦ F |U =

(aij) ·



0

1
. . . 0
1 0

0

0 1
. . .

1 0


=



a12 · · · a
1, d+j

2
0 a

1, d+j
2

+2
· · · a1d 0

...
...

...
...

...
...

...
...

...
...

...
...

ad2 · · · a
d, d+j

2
0 a

d, d+j
2

+2
· · · add 0


.

Comparing the coefficients of these two matrices we get conditions on all en-
tries of ŵ = (aij) but a11, . . . , a d−j

2
,1

, a
1, d+j

2
+1
, . . . , a d−j

2
, d+j

2
+1

, a d−j
2

+1,1
, . . . , ad1

and a d+j
2

+1, d+j
2

+1
, . . . , a

d, d+j
2

+1
, which gives us

(
d−j

2

)
+
(
d−j

2

)
+
(
d+j

2

)
+(

d−j
2

)
= 1

2(4d− 2j) = 2d− j free entries of ŵ. Thus, dim(TUY ) = 2d− j >
d = dimY , since j < d− 1.
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Second case: j = d or d− 1:
Let U ∈ Y (k) correspond to an M ∈ Nj,l,αl

(k) with j = d or d − 1. Take
for Z again the subspace given by either Z = 〈e−d+1, e−d+3, . . . , ed−1〉k if
j = d or Z = 〈e−d, e−d+2, . . . , ed−2〉k if j = d− 1. Then Z is an F -invariant
subspace itself and according to this basis, fZ is given by

fZ =


0
1
0

. . .

0 1 0

 : Zσ −→ Z.

If we take for U again the basis given by residue classes of the base vectors
of the associated Dieudonné lattice M , that is

U = 〈u = e−j +

j∑
i=1

γie−j+2i−1, F (u), . . . F j−1(u), ej , ej+1, . . . , ed−1〉k,

then we see that, since j = d or d − 1, in both cases the last vector in this
basis is F d−1(u). It is immediately clear if j = d, and if j = d − 1 then

F d−1(u) = F (F d−2(u)) = F (ed−3 + γp
d−2

1 ed−2) = ed−1. Thus, in both cases
we have

F |U =


0
1
0

. . .

0 1 0

 : Uσ −→ U.

Now, having computed both F |U and fZ , which is the unique representative
in Homk(Z

σ, Z) of F̄ : (Wk/U)σ −→ (Wk/U), we can compute the vector
space TUY = {w ∈ Homk(U,Wk/U) | F̄ ◦ wσ = w ◦ F}.

Let w ∈ Homk(U,Wk/U) and let its representative ŵ : U −→ Z be given
by A = (aij) ∈ Md(k) according to the chosen bases of U and Z. Then we
have

fZ ◦ ŵσ =


0
1

. . .

1 0

 · (apij) =


0 . . . 0
ap11 . . . ap1d
...

...
apd−1,1 . . . apd−1,d

 .

and ŵ ◦ F |U =

(aij) ·


0
1

. . .

1 0

 =


a12 . . . a1d 0
a22 . . . a2d 0
...

...
...

ad2 . . . add 0

 .
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So, by comparing the coefficients we get d free entries a11, . . . , ad1 of the
matrix A = (aij), and, consequently, dim(TUY ) = d = dimY .

Thus, the singular locus of Yk consists of those F−invariant subspaces
U ⊂ W ⊗ k, which correspond to p-divisible groups X ∈ N (k) which lie
in Nj,l,αl

(k) with j ≤ d − 2. Since all these Nj,l,αl
(k) with j ≤ d − 2 are

contained in Nd−2,0,∅(k), we get that the set of singular points in Y (k) is
precisely Nd−2,0,∅(k).

Now

Nd−2,0,∅(k) = {U ∈W ⊗ k subspace of dimension d | F (Uσ) ⊂ U
and 〈ed−2, ed−1〉k ⊂ U ⊂ 〈e−d+2, e−d+3, . . . , ed−2, ed−1 〉k}

and the restriction of the morphism F on W to the subquotient Wd−2,0,∅ =
〈e−d+2, . . . , ed−1〉/〈ed−2, ed−1〉 has the same shape as F , namely

F =


0

0
. . .

1 0
. . .

. . .

1 0 0

 : W σ
d−2,0,∅ −→Wd−2,0,∅.

So, by the same computation as above, we would get Nd−4,0,∅(k) as the set
of points in which Nd−2,0,∅ is not regular. Thus we get the following

Corollary 4.3 (Singularity stratification of Y ). We get the stratification of
Y by locally closed regular subschemes Si of dimension i

Y =
(
Y \ Nd−2,0,∅

)
∪
(
Nd−2,0,∅ \ Nd−4,0,∅

)
∪ . . . ∪

{
N1,0,∅, d odd,
N0,0,∅, d even,

= Sd ∪ Sd−2 ∪ . . . ∪
{
S1, d odd,
S0, d even,

such that the closure of any stratum Si consists of the union of this stratum
with all strata of smaller dimension: Si =

⋃
j≤i Sj, and such that the smooth

locus of Si is precisely Si.

Singularity stratification of Y

Denote again by W the (h− 3)-dimensional Fph-vector space M+/M−.
For any Fph-algebra R let WR and FR : W σ

R −→WR denote the base changes.
We want to describe the singularity stratification of Y as a stratification
given by the action of an algebraic group H/SpecFph .
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Consider the algebraic group H over Fph given by:

H(R) =
{
g ∈ GL(WR) | g · FR · (gσ)−1 = FR

}
.

Then H acts on Y and we want to understand the stratification on Y given
by this group action.

The group H

Choose again a basis for W given by the images of the elements e−d, e−d+1,
. . ., ed−1 in M+/M−. We will denote this basis of W again by {e−d,. . ., ed−1}.
Then F is given by

F =



0

0
. . .

1 0
. . .

. . .
. . .

. . .

1 0 0


◦ σ,

with respect to this basis.

Let k ⊃ Fph be an algebraically closed field and let g = (aij) ∈ GL2d(k)
an invertible matrix. Then g is in H(k) if and only if g · F = F · gσ, i.e.

(aij) ·



0

0
. . .

1 0
. . .

. . .
. . .

. . .

1 0 0


=



0

0
. . .

1 0
. . .

. . .
. . .

. . .

1 0 0


· (apij),

which means
a13 . . . a1,2d 0 0
a23 . . . a2,2d 0 0
...

...
...

...

a2d,3 . . . a2d,2d 0 0

 =


0 0 . . . 0
0 0 . . . 0
ap11 ap12 . . . ap1d
...

...
...

ap2d−2,1 ap2d−2,2 . . . ap2d−2,2d

 .
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So, comparing the coefficients on both sides, we get that g is an element of
H(k) if and only if g is of the form

g =


A1 0 . . . 0
A2 Aσ1 0 . . . 0
...

. . .
. . .

. . .
...

Ad−1 Aσd−2 . . . Aσ
d−2

1 0

Ad Aσd−1 . . . Aσ
d−2

2 Aσ
d−1

1

 ,

with A1 ∈ GL2(k) and A2, . . . , Ad ∈ M2(k).

Proposition 4.4. The stratification on Y by H-orbits is the singularity
stratification of Y .

Proof. Consider the subspace U = 〈e−d+1, e−d+3, . . . , ed−3, ed−1〉k of Wk.
This subspace lies in the stratum Nd−1,0,∅(k) ⊂ Y (k), and its H(k)-orbit
consists of subspaces of the form

H(k).U =

{
U ′ = 〈u′ = a e−d + b e−d+1 +

d−1∑
k=−d+2

akek, F (u′), . . . , F d−1(u′)〉k

}
= Y (k) \ Nd−2,0,∅(k)

= smooth locus of Y (k)

since the coefficients a and b form the second column of the upper-left 2×2-
corner A1 of an element g ∈ H(k), which is invertible, so a and b are not
both equal to 0.

Denote by Uj the subspace of the form

Uj = 〈e−j , e−j+2, . . . , ej−2, ej , ej+1, . . . , ed−1〉k ∈ Nj,0,∅(k),

then by the same computation as above its H(k)-orbit will consist either of
Nj+1,0,∅(k) \ Nj−1,0,∅(k) = smooth locus of Nj+1,0,∅(k) if d − j is odd, or
Nj,0,∅(k) \ Nj−2,0,∅(k) = smooth locus of Nj,0,∅(k) if d− j is even.

Thus, the H-action on Y gives us a stratification of Y of the following
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type:

Y = H · Ud−1 ∪ H · Ud−3 ∪ . . . ∪ H · U0

=
⋃

j=d,d−1
0≤l≤j−1
αl∈Fl

ph

N ◦j,l,αl
∪

⋃
j=d−2,d−3
0≤l≤j−1
αl∈Fl

ph

N ◦j,l,αl
∪ . . . ∪

{
N1,0,∅, if d odd,
N0,0,∅, if d even.

=
(
Y \ Nd−2,0,∅

)
∪
(
Nd−2,0,∅ \ Nd−4,0,∅

)
∪ . . . ∪

{
N1,0,∅, if d odd,
N0,0,∅, if d even.

The dimensions of the orbits decrease by 2 with every step, and the orbit of
minimal dimension has dimension 1 if d is odd, or 0 if d is even. In any case,
the smallest stratum N0,0,∅ is contained in the orbit of minimal dimension.

Due to the following proposition, we can restrict ourselves to the small-
est stratum N0,0,∅(k) which consists of only one point U0 = 〈e0, . . . , ed−1〉k
in order to study the regularity properties of Y .

Proposition 4.5. Let X be a scheme and G an algebraic group which acts
on X.
Let U ⊂ X be an open subset, such that U is G-invariant (for example,
U = Xreg or the set of points in which X is Cohen-Macaulay). Then, if U
contains all closed G-orbits in X, then U = X.

Proof. Let x ∈ X. Then the closure Gx of its orbit Gx contains at least one
closed G-orbit in X, so U ∩Gx 6= ∅. But since U ∩Gx is also open in Gx,
it has to intersect the orbit Gx. And since U is G-invariant, it contains the
whole orbit Gx, thus it contains also x.

Let U denote the open subset of the Grassmannian variety Grass(d, 2d)
consisting of the subspaces U , which are images of matrices A ∈ M2d×d(k)
whose lower half minor is invertible. Then U ∼= Ad2 , the isomorphism being
given on R-valued points by

Ad
2
(R) ∼= Md(R) 3 B 7−→ U = Im

(
B
Id

)
∈ U(R),

and U0 corresponds to the matrix B = 0.

To determine the definition ideal of Y ∩ U ⊂ U , we compute the condi-
tions on the matrix B ∈ Md(k) which imply F (Uσ) ⊂ U .
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The column vectors of

(
B
Id

)
form a basis of U , so their images under F

lie in U if and only if there exists a matrix C ∈ Md(k) with

F ·
(
B
Id

)σ
=

(
B
Id

)
· C.

Let B = (bij) ∈ Md(k). Then there exists a C ∈ Md(k) with

F ·
(
B
Id

)σ
=



0

0
. . .

1 0
. . .

0 1 0
. . .

. . .
. . .

. . .
. . .

0 1 0 0


·


bpij

1
. . .

1



=



0 . . . 0
0 . . . 0

Bσ

1 0 . . . 0
. . .

1 0 0


=


bij

1
. . .

1


· C

if and only if

C =


bpd−1,1 . . . bpd−1,d

bpd,1 . . . bpdd
1 0 . . . 0

. . .

1 0 0

 and B ·C =


0 . . . 0
0 . . . 0
bp11 . . . bp1d
...

...
bpd−2,1 . . . bpd−2,d

,

the first equation given by the lower half of the matrix F ·
(
Bσ

Id

)
and the

second condition given by the upper half of the same matrix.

From these conditions on the matrix B ∈ Md(k) we get the definition ideal
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I ⊂ k[Tij ] of Y ∩ U ⊂ U . It is generated by the polynomials:

T pd−1,j · Ti1 + T pdj · Ti2 + Ti,j+2, i = 1, 2, j = 1, . . . , d− 2

T pd−1,j · Ti1 + T pdj · Ti2, i = 1, 2, j = d− 1, d

T pd−1,j · Ti1 + T pdj · Ti2 + Ti,j+2 − T pi−2,j , i = 3, . . . , d, j = 1, . . . , d− 2

T pd−1,j · Ti1 + T pdj · Ti2 − T
p
i−2,j , i = 3, . . . d, j = d− 1, d

and U0 = N0,0,∅(k) corresponds to the maximal ideal m = (Tij , 1 ≤ 1, j ≤ d)
in Γ(Y ∩ U ,OY ) = k[Tij ]/I.

In the example for h = 7 computed above, we have determined the spe-
cial case of this ideal I, namely the case of d = h−3

2 = 2. In that special
case, the polynomials generating I were all homogeneous of degree p + 1
and the maximal ideal m = (a, b, c, d) was generated by zero divisors in
k[a, b, c, d]/I.
In the general case however, that is h ≥ 11, some of the generating poly-
nomials of I also have terms of degree 1 and in particular none of them
decomposes as a product of polynomials of smaller degree. Unfortunately, I
was not able to show neither that the ideal m = (Tij , 1 ≤ i, j ≤ d) contains
at least one regular element in k[Tij , 1 ≤ i, j ≤ d]/I, nor that all Tij were
all zero divisors in k[Tij ]/I.
If one were to find a regular element in m, it would mean the existence of
a regular sequence of length at least 1 in the local ring OY,U0 =

(
k[Tij ]/I

)
m

and thus imply the Serre condition S1 for this local ring. Together with the
Serre condition R0, which means that Y is generically regular and which
holds, since Y is even regular in codimension 1, this would mean that Y is
reduced in the point U0. And by Proposition 4.5 we would have that Y is
reduced and thus have described M(0)red.
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[GW] Ulrich Görtz and Torsten Wedhorn. Algebraic geometry I. Ad-
vanced Lectures in Mathematics. Vieweg + Teubner, Wiesbaden,
2010. Schemes with examples and exercises.

[Hoe] Maarten Hoeve. Ekedahl-Oort strata in the supersingular locus. J.
Lond. Math. Soc. (2), 81(1):129–141, 2010.

[HT] Michael Harris and Richard Taylor. The Geometry and Cohomology
of Some Simple Shimura Varieties, volume 151 of Annals of Mathe-
matics Studies. Princeton University Press, 2001.

[LNV] Eike Lau, Marc-Hubert Nicole, and Adrian Vasiu. Stratifications
of Newton polygon strata and Traverso’s conjectures on p-divisible
groups. http://arxiv.org/abs/0912.0506v1.

[Man] Juri Manin. Theory of commutative formal groups over fields of finite
characteristic. Uspehi Mat. Nauk, 18(6 (114)):3–90, 1963.

[Rap] Michael Rapoport. A guide to the reduction modulo p of Shimura
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Zusammenfassung

Sei NilpZp
die Kategorie der Schemata über Spec(Zp) auf denen p nilpotent

operiert und sei X eine p-divisible Gruppe über Spec(Fp) der Dimension 2
und Höhe h mit h ungerade. Wir betrachten den Funktor

M : NilpZp
−→ (Sets)

S 7−→


Isomorphieklassen von Paaren (X, ρ), wobei
X eine p-divisible Gruppe über S und
ρ : X×Spec(Fp) S̄ −→ X ×S S̄ eine Quasiisogenie

 ,

wobei S̄ das durch das Ideal p · OS definierte abgeschlossene Unterschema
von S bezeichnet. Dieser Funktor ist darstellbar durch ein formales Schema
lokal formal von endlichem Typ über Spf(Zp).
In dieser Arbeit wollen wir genauer das reduzierte Unterschema Mred von
M beschreiben. Oort und de Jong haben in ihrer Arbeit [dJO] gezeigt, dass
jede Zusammenhangskomponente von Mred irreduzibel ist und Viehmann
hat in [Vie] die Zusammenhangskomponenten von Mred bestimmt.
Sei N die Zusammenhangskomponente der Identität id : X −→ X. Sei
k ⊃ Fp ein algebraisch abgeschlossener Körper. Für die Beschreibung von
k-wertigen Punkten von Mred benutzen wir eine von Oort eingeführte In-
variante: den Semimodul assoziiert zum Dieudonné-Modul einer p-divisiblen
Gruppe.
Wir führen eine Stratifizierung von N (k) durch endlich viele irreduzible
lokal abgeschlossen Teilmengen N ◦j,l,αl

(k) ein, die die Stratifizierung durch

Semimoduln verfeinert. Wir bestimmen die AbschlüsseNj,l,αl
(k) dieser lokal

abgeschlossenen Teilmengen, und auch die Strata, die zum Abschluss beitra-
gen. Desweiteren definieren wir Unterfunktoren Nj,l,αl

von N × Spf(Zph),
deren k-wertige genau die abgeschlossenen Teilmengen Nj,l,αl

(k) von N (k)
sind. Wir zeigen, dass die Unterfunktoren Nj,l,αl

darstellbar sind durch pro-
jektive Fph-Schemata und untersuchen im folgenden diese Schemata.
Dabei bestimmen wir den glatten Ort dieser projektiven Fph-Schemata und
zeigen, dass sie, zumindest in Spezialfällen nicht reduziert und auch nicht
Cohen-Macaulay sind.
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