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1 Introduction

Let p be a prime, and denote by Nilpy the category of schemes over
Spec(Zp), on which p is locally nilpotent. Let X be a p-divisible group
over [F,. We want to study the functor

M Nilpg, — (Sets)
isomorphism classes of (X, p) where
S+ X/Sis a p-divisible group, and ,
p: X Xgpeck, S — X Xg S a quasi-isogeny

where S is the closed subscheme of S defined by the ideal sheaf p- 5. This
functor is an example of a Rapoport-Zink space. In general, Rapoport-Zink
spaces are moduli spaces of p-divisible groups + quasi-isogenies to a given
X with additional structures. They are representable by formal schemes lo-
cally formally of finite type over Spf(Z,).

In general, a Rapoport-Zink space is attached to a datum (G, K, b, i1), where

e G/Q, is a classical group,

e K C G(Qy) is a parahoric subgroup,

e b is a o-conjugacy class in G(L), where L/Q),, is an unramified finite ex-
tension and o: L — L is an automorphism of L over Q, which induces
the Frobenius automorphism x — 2z on O /p - O,

e 1 is a minuscule cocharacter of G defined over a finite extension E/Q,

satisfying certain conditions (see sections 1.38 and 3.17 in [RZ]).

If the o-conjugacy class b is basic (for definition see e.g. Remark 1.15 in
[RZ]), the Rapoport-Zink spaces uniformise the supersingular locus of the



parahoric reduction of some Shimura varieties of PEL-type.

The functor M defined above corresponds the the following datum:
e G = GLy, where h is the height of the p-divisible group X
o K =GLyp(Zy),

e b can be obtained from the isocrystal (N (X), F) of X by fixing a basis of
N(X). It is then isomorphic to (QI’,‘, b), where b an element of GL,L(Qp).
It is unique up to a base change of N(X), that is, up to (o-)conjugation
with elements of GLj,(Q)), thus its (o-)conjugacy class b is unique.
Here the property of b to be basic is equivalent to the isocrystal (N (X), F')
to be isoclinic.

e ;, depends on the dimension d of X: It sends a t € G,,(R) to the diag-
onal matrix diag(t,...,t,1,...,1) € GLy(R) for any Qp-algebra R. The
number of t’s is d and the number of 1 is A — d. The pair (d,h — d) is
called the signature of u.

There are various results on the geometric structure of the underlying re-
duced subscheme M,qq of the Rapoport-Zink space M for some choices of
(G, K,b, ), that is, the reduced subscheme of M defined by its maximal
ideal of definition.

o If G = GLyq, and b € B(G, p) for a cocharacter p of G (see, e.g section
4 in [Rap] for definition), then Viehmann has determined in [Vie] the
irreducible components and the dimension of M,.q and computed its
étale cohomology.

e For G = Sp,, and b basic Hoeve ([Hoe]) has considered the Ekedahl-
Oort stratification of the Rapoport-Zink space. He has described each
Ekedahl-Oort stratum in the moduli space of principally polarized abe-
lian varieties in terms of fine Deligne-Lusztig varieties.

e Let K/Q), be a quadratic unramified extension, G/Q,, the group of simil-
itudes of a hermitian (K, Q,)-vector space, and E/Q, a quadratic field
extension with G xq, F = GLj XGyy, in fact £ = K. Let u be a
cocharacter of G over E which sends a t € G,,(R) to the element
(diag(t,1,...,1),t) € GLi(R) x Gy, (R) for any E-algebra R.

In this case, Vollaard and Wedhorn have defined a stratification of the
underlying reduced subscheme of any connected component of the asso-
ciated Rapoport-Zink space by locally closed subschemes Ay, where A
runs though the set of vertices of the Bruhat-Tits building of an inner



form of G. Furthermore, they showed that each stratum has the struc-
ture of a Deligne-Lusztig variety [VW].

In this thesis, we consider the same case of G = GLj g, as Viehmann, but
want to have a closer look at the scheme-theoretic structure of M,.q. We
restrict ourselves to the case of signature (2, k), h being odd.

The simpler case would be that of signature (1,h). The corresponding
Shimura variety is the one used by Harris and Taylor in their proof of the
Langlands correspondence for GL,, for p-adic fields in [HT]. In this case, the
underlying topological space of any connected component of M,eq consists
only of one point (see, for example, [Vie]). Thus, the next case to look at
would be that of signature (2, h).

We take here h to be odd because in this case, the isocrystal N(X) of X is
simple, and Oort and de Jong have shown that that the connected compo-
nents of M,.q are irreducible.

Following the idea of Vollaard and Wedhorn, we define a stratification of
the Fj-valued points of any connected component of M by closed subsets
corresponding to certain pairs of lattices. We define projective schemes over
F,n whose E—Valued points are precisely these subsets.

We state the main results:

Proposition 1.1. Let k: M — Z be the morphism which assigns to a
point (X, p) in M(S) the height of the quasi-isogeny p. Then the fibers
M(i) := k71(i) are non-empty. They form the connected components of M
and are isomorphic to each other (see Corollary 3.9).

We set N := M(0) to be the connected component of the identity morphism
id: X — X.

Theorem 1.2. (a) There exists a finite stratification of N(F,) by locally
closed irreducible subsets /\/’ﬁl’al (Fp) with j and | integers satisfying the
inequalities 0 < 7 < % and 0 <1 < j, and oy € IF‘;h if Il > 0 and
oy =0 if 1l =0. The tuple (j,1,q;) is a combinatorial datum which can

be attached to each point of N(Fp) (Lemma 3.13).
Let Njia,(Fp) be the closure of N7, , (Fp) in N(Fp). It is a union of
other strata and we determine precisely the strata contributing to it.

(b) There eist closed subfunctors Njio, — N Xgpe(z,) Si)f(th)’ whose

F,,-valued points are precisely the closed subsets /\/j,lﬂ(lﬁ'p).
The subfunctors Nj ., are represented by projective [ n-schemes (Lem-
mas 3.14 and 3.15).

(¢) There exists a projective Fn-schemeY and a closed immersion of formal

Zyn-schemes 1Y — N Xspt(z,) SPE(Zyn), which induces a bijection
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(k): Y (k) — N(k) for any perfect extension k O F,n. In particular,
we have Yyeqg = Nyeq (Lemma 3.16).

We compute the tangent space at any point of Y(E) and show in Proposition
4.1 and Theorem 4.2:

Theorem 1.3. (a) If h > 5, then Y is not smooth.

(b) We determine precisely the singularity locus of Y and show, that, in
particular, Y is reqular in codimension 1.

(¢) Y is generically reduced, but not reduced in general.

(d) There exists an algebraic group H over Spec(F,n) which acts on'Y such
that the stratification of Y by H-orbits is the singularity stratification of
Y (see Proposition 4.4).

This thesis is organized as follows: In the second section we recall some facts
on the moduli space M of quasi-isogenies of a given p-divisible group and
describe the F)-valued points via Dieudonné theory in terms of semi-linear
algebra.

In the third section we study one connected component N of the mod-
uli space M. We attach to every point of N(F,) a combinatorial datum
(4,1, q) and define a stratification of N'(F,) in terms of this combinatorial
datum by subsets Nj; o, (Fp,). Furthermore, we describe the inclusion rela-
tions of these closed subsets.

We show that these closed subsets are in fact the E—valued points of subfunc-
tors Nj o, of A, and that these subfunctors are representable by projective
FF,n-schemes. We determine one of these subfunctors N’ and its representing

P
projective Fpn-scheme Y, whose associated reduced subscheme is isomorphic

to Afred-

Finally, in the fourth section we consider the scheme Y. We determine
its singular locus and the singularity stratification of Y and show that the
singularity stratification is in fact given by the action of an algebraic group.



2 Moduli space of p-divisible groups

Let k be a perfect field of characteristic p and W = W (k) its ring of Witt
vectors. Denote by Nilpyy ;) the category of schemes S over W (k) such that
p is locally nilpotent on S. For S € Nilpw(k), let S be the closed subscheme
of S defined by the ideal sheaf p - 0.

Let X be a p-divisible group over k. We consider the functor

M Nilpyy gy — (Sets),

which assigns to S the set of isomorphism classes of pairs (X, p), where X
is a p-divisible group over S and p: Xg = X Xgpeck S — X xg 8 a quasi-
isogeny. Two such pairs (X1, p1) and (X3, p2) are isomorphic if pg o pfl can
be lifted to an isomorphism X; — Xo.

If we replace the p-divisible group X by an isogeneous (even quasi-isogeneous)
X'/, we get an isomorphism of the corresponding functors M — M’ by com-
position with the isogeny X' — X.

Let k: M — Z be a morphism, which maps a quasi-isogeny to its height.
Then we can decompose M into open and closed formal subschemes M (i) =
k~L(0), i. e.

M(i)(S) = {isomorphism classes of (X, p) € M(S) | height(p) = i}.
Set N := M(0).

Dieudonné modules

Let k be a perfect field of characteristic p > 0 and W (k) its Witt ring.
Denote by o the Frobenius automorphism on k as well as on W (k) and
Frac(W (k)).

Definition 2.1. A Dieudonné module over k is a finitely generated free
W (k)-module M together with two mappings F and V: M — M which
satisfy

F(am +n) =o(a)F(m) + F(n) and
V(o(a)ym +n) =aV(m)+ V(n) for alla € W(k),m,n € M,

and FV =V F = p.

By Dieudonné theory, one can assign to each p-divisible group X over k
its Dieudonné module D(X). The modules used here will always be con-
travariant Dieudonné modules. With the following theorem, we can describe
p-divisible groups with semi-linear algebra.



Theorem 2.2 (Dieudonné, [Gro]). Let k be a perfect field. Then there is
an equivalence of categories:

(p-divisible groups/k) — (Dieudonné-modules over k)
X s D(X).

An isocrystal over k is a finite-dimensional Frac(W (k))-vector space equipped
with a bijective mapping F' satisfying the same conditions as above. V is
then given by V =p- F~!

Proposition 2.3 (Dieudonné, [Man]). Let k be an algebraically closed field.
Then the category of isocrystals over k is semisimple with simple objects
parametrized by Q in the following manner:

To A =% € Q with (r,s) = 1 corresponds the isocrystal Ny with

0 0 ... 0 p
1 0 0 O

Ny =Frac(W(k))*, Fx=1] 0 . - : ] o
0 ... O 1 0

The rational number X\ is also called the slope of the isocrystal Ny.

Let X be a p-divisible group over k of height h and dimension d. Then
its isocrystal N(X) := D(X) @y (y) Frac(W(k)) has dimension h, and for
any p-divisible group X over k which is quasi-isogeneous to X we have
N(X) = N(X), an isomorphism of isocrystals.

An isocrystal N over k is called isoclinic of slope \ if N @ k is the di-
rect sum of copies of Ny. If [ D k is an algebraic extension, denote by 1V,
the isocrystal (N (X) @ppac(w (k) Frac(W (1)), Fi = F ® o) over I. Thus, if M
is the functor of p-divisible groups quasi-isogeneous to X as before, then we
get via this equivalence of categories:

M(k) = {F- and V-invariant W (k)-lattices M C Nj}.

3 Structure of N (k)

Valuations on Dieudonné modules

From now on let A/ be the open and closed formal subscheme M(0) of M.
We want to consider N first, and then show that every other M(7) is iso-
morphic to N.



To define a stratification on the moduli space N, we consider valuations
on Dieudonné modules as defined by Lau, Nicole and Vasiu in [LNV].

Let k again be a perfect field of characteristic p > 0, W (k) its ring of Witt
vectors and denote by v,: W (k) — RU{oo} the p-adic valuation on W (k).

Definition 3.1. A wvaluation on a W (k)-module M is a map w: M —
R U {oo} that has the following properties:

(1) w(az) = vp(a) +w(z) for alla € W(k) and x € M,
(ii) w(z +y) > min{w(x),w(y)} for all z,y € M.

The valuation w is called non-trivial if w(x) # oo for some x € M. It is
called non-degenerate if w(z) = oo implies = 0.

Definition 3.2. Let F' be a o-linear endomorphism of M. A wvaluation w
on M is called an F-valuation of slope A € R if for all x € M one has

w(Fz) =w(z)+ \

Let now N be an isocrystal over k. The following lemma describes the
existence and uniqueness of F-valuations on isocrystals.

Lemma 3.3 (Lemma 5.3 in [LNV]). There erists a non-degenerate F-
valuation of slope X on N if and only if N is isoclinic of slope \. When
N s simple of slope A\, any two non-trivial F-valuations of slope X on N
differ by the addition of a constant.

Setup

Now we want to fix the setup of this thesis.

Let h be odd, and fix the standard basis {eg,...,ep_1} of (@Z. We define an
isocrystal over I, by

€i+2, OSZSh’_?’?
F(ez) =
P €i—h+2, i:h—z,h—l.
If we change the basis of Q]’; to {ep,€2,...,€p_1,D-€1,D-€3,...,D " €h_2},

then according to this basis F' is given by

2

0O 0 ... 0 »p
1 0 0 0

F = o . - - 0.
0 0 1 0



Thus, (QZ , F') is a simple isocrystal over F), of slope A = %

Define a valuation w: QZ — RU {oo} of slope A on (QZ, F') by setting
{

w(e;) = i=0,...,h—1

and for any v = Z?;ol aje; set w(v) = min;{vp(a;) + £}.
Fix a p-divisible group X over [, with this isocrystal, such that the Dieudon-
né module of X is D(X) = @?:_01 Ly -e;={x € QZ | w(z) > 0}.

Let M/ Spf(Z,) be the associated moduli space of p-divisible groups quasi-
isogeneous to X as defined in the introduction. It is representable by a
formal scheme locally formally of finite type over Spf(Z,) (see Theorem 2.16
in [RZ] and note, that X is decent, i.e. its isocrystal is generated by elements
r with F*(z) = p*z).

From now on let k D F,, be an algebraic closure, W (k) its Witt ring.

Set N := (@Z ®q, Frac(W(k)) and let F' on N be given on the base vec-
tors e, ..., ep_1by the same assignment as before.

Set M := D(X) ®z, W (k) = @Iy W (k) - e;.

We use the same basis {eg, ...,e,_1} for N as before and set e; 1, := p"-¢;
for any n € Z. This gives a system of elements {e;,j € Z} in N such that
every element v € N can be uniquely written as v = . a;]e;, with [a;]
the Teichmiiller representative in W (k) of an a; € k and a; = 0 for j small
enough.

The semimodule of M

Oort and de Jong defined in [dJO] a combinatorial invariant for k-valued
points of Meq.

Recall that N is a simple isocrystal over k of slope A = % For any element
v =3 ezlarler in N there is a j € Z with a; # 0 and a, = 0 for all k& < j.
It is called the first index of v.

Definition 3.4. A subset A C 7Z is called a semimodule if it is bounded
below and satisfies 2+ A C A and (h—2)+ A C A.
If M C N s the Dieudonné module of some X € M(k), then

A(M) :={j € Z]j is the first index of some v € M}



18 a semimodule in 7, called the semimodule of M.

Denote again by w the extension of the fixed valuation w on Q;L to the
isocrystal N = @;‘ ®q, Frac(W (k)) over k.
For any F- and V-invariant lattice M in N we have

AM)=h-w(M) C Z.
This follows directly from the observation that for v € M we have: j is the
first index of v, if and only if v = Zkzj lak]er with a; # 0, if and only if
w(v) = ming{v,([ax]) + £} = % since all [ag] are either O or units in W (k).

A(M) is bounded from below and there exists a N € N with N+N C A(M),
since for j € A(M) we have j +2 € A(M) and j+ (h —2) € A(M). So,
since h is odd, we have j + (h — 3) + N C A(M).
A lattice M in N which is also a Dieudonné module of some p-divisible
group X € M(k) is called a Dieudonné lattice (equivalently: M is F- and
V-invariant).
Definition 3.5. For M, M’ C N lattices set |M/M'| := index of M’ in M,
i.€.

|M/M'| = lgyw iy M/ arnen) = laway (M o)
The index |M/M’| is finite, since both M and M’ are of full rank in N.

The following lemma allows us to compute some invariants of the Dieudonné
lattices using their semimodules.

Lemma 3.6. Let (0) # M be an F- and V-invariant lattice in N with
semimodule A(M).
(1) For any F- and V-invariant sublattice (0) # M’ C M we have:

| M/M'| = #{A(M) \ A(M")}.
(2) For any F- and V-invariant lattice (0) = M’ we have:
|M/M'] = #{AM) \ A(M')} — #{A(M") \ A(M)}.

Proof. (1) Let S = A(M)\ A(M'"). Suppose first that S # 0.
Since both are bounded below and there exists an integer n € N with
n+NC A(M') C A(M), this difference set is finite, so S = {s1,...,8n}
with 51 < s < ... <s,. For s € Slet my = es + > ;. Joyle; € M be
an element of valuation w(ms) = 7 in M.

Then
M C M + (ms, )wiy @ M + (ms,)wy + (Msy_1 ) w S - -

— =

L C MDY (me)way © MDY (mway S M
i=2 =1



is a chain of submodules of length #{S} = #{A(M) \ A(M’)}.

To show the other inequality, consider first the case of M and M’ both
F- and V-invariant lattices in N with M’ C M and A(M) = A(M'),
that is, S := A(M)\ A(M') = (). We want to show that in this situation
only the case M = M’ is possible.

Let 0 #m € M and let m" € M’ be an element of the same valuation.
By multiplying both with suitable units in W, we can achieve for both
to look like

m=e;j+ Z[ai]ei and m' =e; + Z[ﬁz‘]&‘-
i>j i>j
Set m; = m —m’. Then m = m’' + m; and the valuation of m; is
strictly bigger than that of m and m’'. Since A(M') = A(M), we can
find an m) in M’ of the same valuation as m;, such that their difference
mg = m1 —m} has again a strictly bigger valuation. By proceeding, we
get two sequences of elements (m;) and (m}) with m/, € M’ such that

/ / / / !/ /
m=m4imi=m+m;+me=...=m+m;+...+m, +Mpy1 = ...

and w(my,) — oo and w(m),) — oo for n — co. Since W (k) is complete,
so are M and M’, thus m € M’ and, consequently, M’ = M.

If we have a chain of submodules M’ C My C My C ... € M, as in
the case of the lemma, the consideration above gives us a chain of semi-
modules A(M') C A(M;) C A(M2) € ... C A(M) and the length of this
chain is always less or equal to #{A(M) \ A(M’)}.

(2) Follows directly from (1), since A(MNM’) is a subset of (A(M)NA(M"))
with finite complement and the subtraction of this complement in both
terms cancels out.

O

A different way to compute the index of two Dieudonné lattices is given by
the following remark.

Remark 3.7. Let M, M’ lattices in N and g € GLy,(Frac(W (k))) an auto-
morphism of the underlying vector space N with g(M) = M'. Then

|M/M'| = vp(det(g)).

Proof. g is uniquely determined up to multiplication from left and right with
elements of GLy,(W (k)), thus v,(det(g)) is well-defined. If M’ C M, one can

find a basis {my,...,mp} of M and integers 0 < i; < ... < i such that
{p' -mj,1 < j < h} is a basis of M’. Then v,(det(g)) = i1 + ...+ ip =
|M /M. O

10



Theorem 3.8 (Section 3 in [Vie]). The open and closed formal subschemes
M(i) are connected.

Proof. According to Theorem 3.1 of [Vie], the set of connected components
of M can be identified with the set A = M(Xy,) x M(Xg) x Z, where
X = X X Xp; X Xgt is the decomposition of X into its multiplicative, bi-
infinitesimal and étale parts, and M (Xy,) and M (X¢;) are the moduli spaces
corresponding to Xy, and Xg. If S € Nilpy (1) and p: Xg — Xg a quasi-
isogeny to a p-divisible group X over S, we get a morphism X — X¢ with
Xt étale over S, and a quasi-isogeny pet: Xgt — Xg which is functorially
in p. The assignment p — p¢ gives a morphism kg : M — M(Xg).

By duality one obtains also a morphism kp,: M — M(X,,), and by com-
bining both these morphisms with the locally constant height morphism,
one gets

K: M — A,

which sends a pair (X, p) € M(S) to (pm, pet, ht(p)) and identifies the set
of connected components of M with A.

However, in our case the p-divisible group X has only trivial multiplicative
and étale parts, since its isocrystal N(X) is simple, and, if X were multi-
plicative or étale there would exist a basis of N(X) such that F' = p®c with
a € {0,1} according to this basis. Since this is not the case here, we have
A =7, k =ht and M(i) = k(i) is connected.

]

A semimodule A C Z is called normalized if |A\ N| = |N'\ A|. One sees
immediately that there are only finitely many normalized semimodules in
Z: if j € A is the minimal element of A (it exists since A is bounded below),
we have j + (h — 3) + N C A because h is odd, so the number of elements
k> jbut k ¢ Ais bounded by 273,

Thus, for (X, p) in M(k), we have
(X, p) € M(i)(k) <= height(p) =i = vp(det(D(p))) = [D(X)/M].

Corollary 3.9. The open and closed subschemes M(i) are non-empty and
isomorphic to each other.

Proof. For any i € Z let M; = (ei,...,€i4n—1)z,- This is an F- and V-
invariant lattice in N(X) with semimodule A(M;) =i +N, so, M; @z, W (k)
is of index i in M, thus the corresponding p-divisible group (Xj, p) € M(F,)
lies in M(3)(F)).

To show the isomorphism between M (0) and M (i), we have to find a quasi-
isogeny p;: X — X of height 7. Any quasi-isogeny of X to itself gives us an

11



automorphism of the isocrystal (NN, F'), and this group is described by
Attisoe(N, F) = D2 = Qe [/ (" = p*, T-a=a’ T,a € Q).

Here D2 denotes the division algebra over Q, with invariant }2L and o is the
automorphlsm of Q,n which induces z — x on F,» as before. Thus, we
have to find an f € D% with vy (det(f)) = v, (f - J(f) o) =l

Set f = p®-TI® with a,b € Z such that h-a+2-b = i. This is possible,
since h is odd. Then v,(det(f)) = h-vy(f) = h-(a+ % -b) =i. And the
composition with p; gives an isomorphism

M(0)(S) — M(@)(S), (X,p) — (X, p;50p: Xg — Xg).

Structure of lattices M € N (k)

Let M be a Dieudonné lattice in IV which is the Dieudonné module of some
p-divisible group in N (k), that is, M has index 0 in M. Then its semimodule
A(M) is normalized, which means |[A(M) \ N| = [N\ A(M)|. As we have
seen in the previous section, the number of integers which are bigger than
the minimal element of A(M), but are not contained in A(M) is limited by
h=3 . Thus, there exists a 0 < j = j(M) < 253, such that

=(—j+2N)U (j +N).

In fact, thereisan m=e_; + >, a;le; in M, such that

i>— ][
M= <m7F(m)7F2(m)"'-7Fj_1(m)7€j76j+laej+27'-'>W(k)'

The following picture shows the semimodule of a F- and V-invariant lattice
M with index 0 in M = D(X) ® W (k), where the dots stand for points in
A(M) and the boxes for points which are not in A(M), also called ”gaps”.

0 e [ e alternating dots and gaps O e °
—j—=1 —5 ... j—1 7 5+1

By multiplying the elements F(m),0 < i < j, and the e, k > j, with
suitable scalars and subtracting them from m, we can achieve for m to have
the form:

m=e_j+[a_jile_ji1 + [a—jpsle—jrz + ...+ [oy1leja

with «; € k. Thus, we have seen the following

12



Proposition 3.10. Let M C N be a Dieudonné lattice. Then there exists
an index j € Z and an element m € M with

m=e_j+|a_jle_ji1+[a—jpslejrz + ..+ loyaleja
with a; € k, such that
M = <m, F(m), ce ,Fj_l(m), €5, €415 >W(k)
and
A(M) = (—j +2N) U (j + N).
T-invariant lattices

Following the idea of [VW], we first want to define a stratification of N (k)
by suitable pairs of lattices in IN. Here, we choose 7T-invariant lattices, where
T is the operator on N given by

T:=p 2Fh,
If {e;,i € Z} is the system of elements in N defined above then 7 acts on an

element m = 3", ,[axleg as 7(m) = 3oy [0" (o) ex-

To any Dieudonné lattice M C N we attach the following two T-invariant
lattices:

ATM = ZTi(M),
i>0

A M = ﬂ H(M).
i>0

These are again F- and V-invariant lattices in N for 7 commutes with F
and V', but they are, in general, not attached to some p-divisible groups in
N, since their index in M can differ from 0.

We now determine the pairs of lattices (M ™, M ™) that can occur as maxi-
mal resp. minimal 7-invariant lattices of a Dieudonné lattice M C N.

Let M € N (k) be a Dieudonné lattice in N and

m=e_j+[ajplejpi +lajslejrz+.. .+ aja]ej

be the element with M = <m7F(m),...’Fjil(m>7€j’ej+1,...>W(k) as in
Proposition 3.10.
Now
j—1 j—1
T(m) = 7(e—;) + Z T([a—ji2i11]e—jioi1) = e—j + Z[ag};+2i+1]e—j+2i+1’
i=0 i=0
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thus it depends on the coefficients a; € k whether M is T-invariant.

Let now [ € [0,j — 1] NN be the smallest integer with a_j 9141 € b\ Fpn if
such an [ exists, and set [ := j if all a; are in F,n. Then

h
m—7(m) = (la_jro41) = [0y e jrapi+ D>, [Bile
i>—j+2l+1
is an element of ATM with valuation %’ and thus gives the element
—j+2l+1€ A(M™"). By F-invariance of M we now have

ANTM)={ —j,—j+2,—j+4,....,—j+2—2,—j+2I,
—Jj+24+1,—j+204+2,—j+2043,...}

= (—j+2N) U ((—j+20)+N).

If I < 7, none of the elements m, F'(m), ..., F7=!=1(m) are r-invariant, but
a suitable linear combination of F/~!(m) and the e;,i > j is, so

=((j—20)+2N) U (j +N).

So, ATM C M C ATM is a chain of F- and V-invariant lattices in N with
indexes [ATM/M|=|M/A"M|=j—1.

We can now give the precise description of the occurring pairs of lattices
(ATM,A~M):

Lemma 3.11. Let 0 < j < % and 0 <1 < j be integers, and fix a tuple
o= (a1,...,0) EF;h. Ifl=0, then a; := 0.
and A

Jlaq

For each tuple (j,1, cu) define two Z,n-lattices AT

Jihar in the isocrys-
tal (Q), F) @ Quu over Fpu:

S = W=o0la)) = e+ [a]e—jin + anle—jis +. o e jia,

F(v), F2(v),..., F'(v), e_jrors1, e jyaita, - - )2,

— . i1 i—1
Aj,l,ﬂ = (w=w(j, laﬂ) =ej_o t+ [Oz]lo ]6j—2l+1 + [agj ]ej_2l+3 +...

i—1
.o+ [Oé;luJ ]ej_l,

F(w), F3(w), ..., FY(w),ejt1,€j42, . >th

14



Then for every M € N(k), there exists a tuple (4,1, 0q) with 0 < j < %,
0<i<jand o€ IF;,L, such that

ATM = AT ®z,, W(k) and A" M = A7

Jilsou Jilsou

®th W(k)

Proof. Take the element m = e_; + [a—jt1]e—j1 + [o—jqsle—jys + ... +
[aj_1]ej—1 as in Prop 3.10 with M = (m, F(m),...,Fi=Y(m),ej, ... )w k)
and let [ € [0,5 — 1] NN be as before the smallest integer with a_j 941 €

k\ Fu if such an [ exists, and set [ := j if all ; are in Fyn. Then for
o = (1,043, ..., _j2—1) € F;h we have the desired equations of
lattices. ]

Now define a stratification of the set N (k) by subsets of the form

A, ®z, W) C A™M
N (k) == ¢ M € N(k) | and
AYM C AT ®z,, W (k)

Jilou

Before showing some properties of these subsets, we recall some facts on
finite locally free groups over an Fj,-scheme S from [dJ].

Let S be a scheme over Spec(IF,), and denote by fs the absolute Frobe-
nius endomorphism on S. For G a finite locally free group over S denote
by

GP = Hom(G, G, 5)
its Cartier dual. The assignment G — G is a contravariant auto-equiva-

lence of the category of finite locally free group schemes over S.
Let Fg: f5G =: G®) — @G be the Frobenius morphism of the scheme G

over S and Vg := (ng)D: G — G®) the Verschicbung morphism of G.
These two morphisms satisfy Fig o Vg = p-idg and Vg o Fg = p-idge)-
There is the following result by de Jong;:

Proposition 3.12 (Section 2 in [dJ]). Let S be a scheme over SpecF).
Then there is a contravariant equivalence of categories

finite locally free group schemes o locally free Og-modules M —+
G over S with Vg =0 F: M® —s M Og — linear

G~ (ag, F: ag)) = agp) — ag)

where M) = f%(M) is the pullback of the Os-module M via the Frobenius
morphism fs on Os and for G as before the Og-module ag is defined as
ag = Homey(G,Gy5).
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Lemma 3.13. For ecvery 0 < j < %,O <l<jand oy € F;h the subset
Njia (k) is a closed irreducible subset of N'(k) of dimension j — 1.

Proof. In the last section we have seen that the Dieudonné module M of
every X € N (k) is contained in the lattice M™ @ W (k), where

Mt = <e_%,6_¥+1, . ,€¥_1>th
since j < % It also must contain the lattice M~ ® W (k), where

M™ :=(ens3,en ceey e .
(s Cagsnr- - Cd )2

Now p - MT = <€7%+h’€—%+h+l’ . >th C M, so that their quotient
(M*/M"™) is an Fn-vector space.

Let X+ and X~ be p-divisible groups over F,» with Dieudonné modules
D(XT) =M and D(X™) =M.

From the inclusions of Dieudonné modules M~ — D(X) ® Z,n M* we
get an isogeny p: X — X~ of height h — 3 and also two isogenies

pT: Xt — X @, Fn, p: X®p, Fpp — X~
: h—3
of height #5=.

Let N be the functor, which assigns to a scheme S over Spec(F,u) the
set

po(pg)*l:X+XS—>XXS—>Xand
N(S) =1 (X,p) EN(S)| pgo(p)™: X —XxSF—X" xS

are isogenies

Then, according to Proposition 2.9 in [RZ], N’ is a closed subfunctor of
N Xspt(z,) SPE(Zn) with N(k) = N (k), since for X € N (k) with Dieudonné
module D(X) = M we have the inclusions M~ @ W (k) ¢ M C Mt @ W (k),
thus the isogenies X+ X Spec(F, ) Spec(k) — X — X~ X Spec(F 1) Spec(k).

Let X € N'(R) for an F u-algebra R. Then from the definition of N we get

two exact sequences

+
0 — Ker(p%) X% X x 0

0 —Ker(py) X X5 0
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with Ker(p¥) C Ker(pr: X}, — X3), because the composition Xj; —
X — X}, is an isogeny. Since the isogeny ,0} is determined up to isomor-
phism by its kernel, we have to describe the subgroups of Ker(gg) of height
% = height(p¥}).

The Dieudonné module D(Ker(p)) = MT /M~ of Ker(p) is annihilated by
V', since

V(M*Y) = (en-1,...,€3 1)z, CM,
2 2 P

so by Lemma 3.12 the subgroup Ker(p}) of Ker(pg) is uniquely determined
by the associated surjective morphism of Dieudonné modules

D(Ker(5)) — D(Ker(p})).
This one, being surjective, is again uniquely described by its kernel
Ker (D(Ker(p%) < Ker(pr))),

which is a locally free direct summand of D(Ker(pg)) of rank % because

D(Ker(p})) is a locally free R-module of rank %

Thus, we can define a morphism of functors N7 — Grass hs (M*/M™) by
the prescription on R-valued points for any F,.-algebra R:

N'(R) — Grass% (M*/M™)(R),

(X, p) — Ker (D(Ker(p) — Ker(7r))
where Grass hos (M*/M™)(R) denotes the R-valued points of Grassmannian

variety over IF», that is, the set of locally free direct summands of the R-
module ((M*/M™) ®F R) of rank 233,

So, since N'(k) = N'(k), we get a morphism

N(k) — Grass% (M*/M™)(k),
X — DX)/(M™ @ W(k)),

which comes from the morphism of functors N/ — Grass,_s (M*/M™).
2
We can simplify the conditions for M € N (k) being in Nj 4, (k) to

M € Njjo (k) <= Aj

Jslsou

@W(k)Cc M cC A, ®W(k),

gl

since both lattices A;l& ® W (k) and A;fl@ ® W (k) are T-invariant. ATM

being the minimal 7-invariant lattice containing M must therefore be con-
tained in AT, ® W (k) and A~ M, which is the maximal 7-invariant lattice

Jbar
contained in M, must also contain Ay, , @ W(k).
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Both A;rl a @W (k) and A}, o ®@W (k) contain M~ @ W (k) and are contained

in Mt @ W (k), thus correspond to certain subspaces in (M*/M™) ® k. So,
the conditions for M being in Nj; o, (k) above transform into inclusion con-
ditions for subspaces, and both of them define closed subsets in the Grass-
mannian variety of hf—dirnensional subspaces in (M*/M™) ® k.

Let ./\f]"l%(k) be the subset of Nj; o, (k) defined by the condition

Nt (k) = {M € N(k)|A

Jiloq

jlal®W(k):A_M7
ATM =AY, @ Wk}

Jilsou

Then every M € N7, , (k) is of the form

M = (m =v(j,l,q) + [Bir1]e—jyaq1 + ... + [Bilej—1,

F(m),...,ijl(m),ej,ej_s_l,...)w

h
with B111 € K\ Fyn. One sees that m — 7(m) = [5l+1 — Bﬁrl]e,ﬂglﬂ 4+ ...
is an element of valuation %2”1 in ATM, so AT (M) is a submodule of
AT, ®@W(k) with the same semimodule as A+ ® W (k) and by the proof

Jsl,aq 7,l,0y
of Lemma 3.6 we have the equality of lattices A*M = Aj Loy © W (k). So

2 o (k) =2 ATTIH(E) x (Al(k) \ AY(F,n)) is irreducible of dimension j — I.

Jilaq

The quotient AII, o W(k)/Aj, o ® W (k) is a k-vector space of dimen-
sion 2(j — 1) and for any M € Nj 4, (k) the quotient M : M/Ajlal is a
subspace of AT il /A, @ of dimension j — I.

But, of course, not every subspace of dimension j — [ in (AIL o JAT m al) ® k
corresponds to a lattice M € N (k), for it has to be also F-invariant. The
V-invariance does not matter here, because V is zero on the subquotient
( J,laz/A )@k of (M*T/M™) ® k.

This invariance condition is again a closed condition, so we can view N o, (k)

Jloy
as a closed subvariety of Grass;_ l(Ajl o / ey o) (K).

of the basis elements of Ajl o
) ®k con-
sisting of 7- stable elements. Choosing a basis {v;} in this generating system

@k as 7(C " ) = 3970 ol .

JAT

above, they form a generating system of the quotient (A

If we take the residue classes in AT as

Jila /! “ gl

gl /A‘77l7ﬂ

the operator 7 acts on A] ! C”/Aj_’lﬂ

If M € N (k) is an element of N9 lal(k), we see that

A+

j7l7al

@ W(k) = AT (M) = M + (M),
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since m — 7(m) is an element of valuation %Ql“ in M +7(M), F(m) —
7(F(m)) has valuation ﬁ%m’, and so on. Thus M + 7(M) is an F- and
V-invariant sublattice of A*M with the same semimodule as ATM. The
equality follows again from the proof of Lemma 3.6 .

This means that the two subspaces M := M/(A> iy © k) and 7(M) =
(M)/(A]_l o ® k) of (A 2y az) ® k have the property:

Jiloq

Mnr(M)={0}, or, equivalently, M + 7(M) = (A;rl al/A]lal) ® k.

Thus, N7, o (k) is the intersection of the closed subvariety Nj; o, (k) of
Grass;j_; (Ajl az/ A;l az) with the one Deligne-Lusztig variety of maximal

dimension in Grass;_; <A;Cl, o / A;l, o > given by the Weil group element of
maximal length, that is, the set of all subspaces U of dimension j — [ in
(AT 1 al/A] Loy ) ® k fulfilling U N o"(U) = {0}. The latter is an open subva-
riety of Grass;_; (A;l,al/A;l,ﬂ>’ so is Nol az( ) in j,l,ﬂ(k)'

The irreducibility of the Nji.a, (k) will be shown later in the Corollary 3.17.
a O

Inclusion relations between N ., (k)

Let (5,1, cq) and (j',1', Br) be tuples as before and Nj; o, (k) and Ny v g, (k)
the associated closed subsets of N (k). o
Then for Nj o, (k) C Nj v g, (k) we have to require j < j" and distinguish
the two cases:

(a) j —jodd Le. thereexistsak‘ENsuchthatj’:j+2k—|—1.
To get AT, Al 0By and A 1By C A7 we then have to require

I' < k with no further Condltlons on the coefficients «; and g;.

Jilon gl

This is clear if we consider the semimodules of A;Lz o and Aj, By
The inclusion A;rl o C AS 7By of lattices gives an inclusion of semimod-
ules A(A;rl az) C A(A.f v ), so the elements of A(A;rl o ) must already

be contained in A(Aj y 3 ) This means that the gaps of A(A B ) can

only occur to the left 81de of the first dot of A(A;’l o

both semimodules do not overlap. In particular, the number I’ of gaps in
A(A;r,’l,’ 51/) is less than half the distance of the first dots j' and j, which
is k.

The other inclusion A 1By C AT

), since the gaps of

oy does not impose further conditions.
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(b) 7' — j even, i.e. there exists a k € N such that j' = j + 2k.
k k
Then we have to require ' <1+ k and oy = 8} ;a2 =85 ,...,ap_f =
k
55,]{ if I/ — k > 1 for the lattices to be contained in each other.

In this case, the gaps of the semimodules might overlap, but since AJ.C VB

is the bigger lattice, it must contain all the dots of the lesser lattice A ey

which limits the number I’ of gaps in A(A "B ) to I + k = (half the
distance of j and j) 4+ (number of gaps in A(Ajl az))

Also, the coefficients in the gaps of both semimodules are not inde-
pendent. From Lemma 3.11 we have the generators of both lattices:
A;;J/ﬁl/ = <UI = U(j/, l/,&), F(Ul), R ) S P >th and A;—l o =
(v=v0,lL ), Fv),...,e_jio41,--- >th. So, the vector v = v(j,1, )
must either be in the span of the {e_jijopyi,i > 1}, then the coeffi-
cients a,...,0q of v(j,l,0q) do not depend on the 3;, or v(j,l,q) =
FF@') + S ioq[vile—jryor4i- In this case the first I’ — k coefficients
a1, ..., ap_x of v must coincide with the first I/ — k coefficients of Fr@),
which are ﬁfk, . ,ﬂlsz_k

Therefore, N'n—s (k) is the biggest of these subsets, containing all other
2 bl
j\/'jyl’ﬂ(k:) and NV (k) = N%,O,@)(k)'

The subfunctors Nj,

Let (4,1, aq) be tuples and A, ~and A, = be the F- and V-invariant lat-

tices in (Qp, F') ® Q,» associated to these tuples defined in the chapters
before.

+
Let X]la

Jilsou gl

and X,

il be the p-divisible groups of dimension 2 and height

h over F,» with Dieudonné modules AT

T XH
X]’l al
somated quasi—isogenies of height j —[.

resp. A and denote by

Jhlsou? Jhlsou?

— X x Spec(F,u) and p~: X x Spec(F,n) — X,

oy the as-

By the same idea as in the proof of Lemma 3.13 we define a subfunctor
-/V-j,l,ﬂ OfN XSprp SpecIth by
N (R) == {(X,p) € N(R) |p0(pR) X;rlal x R — Xgp — X and

péo(p) X—>XR—>X x R

Loy
are isogenies}
for every FF,n-algebra R.

Lemma 3.14. The functor ./\fj,l’ﬂ is a closed subfunctor of N.
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Proof. This follows from Proposition 2.9 in [RZ]. O

Proposition 3.15. Let 0 < 5 < h 30<1<jand o € ! o 08 before. The
functor Nj; o, s representable by a projective - scheme

Proof. We show the representability similarly as the proof of Lemma 3.13
and give now the description of the projective F n-scheme representing

'A/.'jyl’ﬂ'

Denote by K = Kj;q, the kernel of the isogeny X]’Ll o X]_l o of

p-divisible groups over F,. given by the inclusion of Dieudonné modules
- +

Ajzlval A.]vlaﬂ.

Let R be an Fn-algebra and (X, p) € Njjq, (R). From the description of
the R-valued points of /\/}-717% we have the two exact sequences

OHKRH —_ > —(

+ -
Jlap Jlap

0—Kx —X10,, X 0
and Kx — KRg, since X — X is an isogeny.

Since an isogeny is determined by its kernel up to isomorphism, a pair
(X, p) lying in A/}717%(R) is determined by a subgroup Kx in Kr. Now
K is annihilated by V, since V(AT, ) C A

gl Jlag?
tion 3.12 the inclusion Kx C Kp is determined by the induced morphism
D(Kx) — D(Kpg) of Dieudonné modules. Since Kx — Kpg is injective,
the corresponding morphism of Dieudonné modules is surjective, and there-
fore uniquely determined by its kernel Ker (D(Kgr) — D(Kx)).

so according to Proposi-

Now pAT SO

75 l p1e2a Ajzlvﬂ’

D(K) = A, /A1 = Wit

Jiloq

is a 2(j —I)-dimensional F.-vector space and D(Kg) = Wj 4, ®F o R. Since
the height of the isogeny X Jiay X Spec(E 1) ySpec ® — X is j —1 and D(Kx)
is a locally free R-module of rank j — l the kernel of D(Kyxy — Kpg) is a
direct summand of rank j —l'in Wj;,, ® R.

Since F(A; i az) C Ay o We get an action of the Frobenius endomorphism
F on the quotient Ajlal/Ajla ,

by F. Since the quotient D(Kx) of D(Kpr) also carries an F-action, the
kernel Ker (]D)(K x — K R)) of this projection must be F-invariant.

and will denote this o-linear operator again
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Let Yjiq, € Grassj_l(Wj,lﬂ ) be the closed subscheme defined on R-valued
points, R an F .-algebra, by:

}lezal (R) =

U C Wjia @ Rlocally free | rk(U)=j—1,
direct summand FU°)cU

where Grass; (W) denotes the projective scheme over Fj, whose R-
valued points are the locally direct summands of rank j — I in W, ® R.

Thus, by sending a pair (X, p) to the kernel of D(Kr) — D(Kx) we get a
morphism N o, — Grass;_;(W;q,) which is an isomorphism onto Yj; 4,
N N i

Let d := %, W = Wd,o,@ and Y := Yd,O,(Z)-

The subfunctor N’ defined in the proof of Lemma 3.13 is now the sub-
functor Ny g of N Xsprz, Spf Zyn, since M™ = Ay g and M™ = Ay g, and
we denote by ¢: N' — N x Spf(Z,n) the closed immersion of Spf(Z,)-
schemes. We have again a bijection ¢(k): N’ (k) — N (k) for all perfect
fields k/FF,u, since for every lattice M € N (k) we have

(M~ =A;

00) @ W(k) C M C (Af)y=M") @ W(k).

With the definition of the scheme Y, we obtain the following

Corollary 3.16. There is a closed immersion Y = N' — N x Spf(Z,»)
of the F,n-scheme Y into the formal scheme N, which is a bijection on k-
valued points for every perfect field k D F .

In particular, we get an isomorphism of the associated reduced subschemes

Y;"ed — Nred == M(O)red-

Furthermore, with the precis description of the functors /\/j,l& we get the
following

Corollary 3.17. The closed subsets Nj; o, (k) of N'(k) are irreducible.

Proof. For d = % and | = 0 we have N9 = N’ =2 Y with Yieq = M(0)req
irreducible. So, Y is irreducible itself.

For general choices of (j,1,;) we have seen in Proposition 3.15 that the
subfunctors Nj o, of N'x Spf(Z,) are isomorphic to the F,n-schemes Y;; o,
where

p

Yo (R) = UCWjia®R locally free | rk(U)=j—1,
Sha T direct summand FU°)cU ‘
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The o-linear endomorphism F is given on Wj; o, by the matrix

0
1 0
1 0
F = 0 S MZ(j—Z)(th)
0 1
1 0
according to the basis given by the residue classes of {v = v(j, [, ), F (v),. . .,
Fj_l_l(v),e_j+21+1,e_j+21+3,...,ej_l} in A;:l,ﬂ/Aj_,l,% = Wjiq.- So, for

different j and [ only the size of F' changes, but not the general shape
of the matrix. So, for every choice of (j,1,a;) we have the same modular
description for the subscheme Y;; o, C Grass;_;(W;;,) only with different
vector spaces W o,. Thus, all Yj,l;l are irreducible, and so are the subsets

Nita (k) of N (k). O

4 The scheme Y

Let Y as before be the projective scheme over F,. given by

U c (M*/M") @, Rlocally | tk(U) =d,
direct summand FU?)cU

Y(R) = {

for an [ n-algebra R, and let W := M* /M~ be an [Fn-vector space of di-
mension 2d = h — 3.

We have defined a closed immersion ¢: Y — N X spt(z,) SPE(Zyn) with
t(k): Y (k) — N (k) a bijection for all perfect fields k O F .

A basis of W is given by the images of the elements e_g4,e_g441,...,€4-2,€4-1
in Mt /M~. A matrix of F': W — W according to this basis is given by

Examples h=5and h=7

If h =5, then d = 253 = 1, W%Fih and F = 0. So Y is the whole
Grass; (W) = P} g
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If h =7, then d = 2 and we fix a basis of W = W, given by the im-
ages of the elements {e_g,e_1,€p,€1} in the quotient W = M* /M~ and
also an isomorphism W = (th)4 given by this basis.

To determine the subvariety Y, we consider the open affine covering {U;;,1 <
i < j < 4} of Grasse(W), where a direct summand U C R* lies in U;;(R),
if U is given as the image of a matrix A € Mayx4(R) whose (¢, j)-minor is
invertible, for any F .-algebra R.

There are six of these open affine subsets and we want to determine the
conditions on the closed subscheme Y inside every one of them.

o (i,5) = (1,2):
Let U C R* be a locally free direct summand of rank 2 with U € Up2(R).
Then there exists a unique matrix of the form

S M2><4(R)

o 2 O
QU o= O

such that the columns of A form a basis of U C R*.

In order for U to be F-invariant, the images under F' of these base vectors
have to be linear combinations of the base vectors, in other words, there
has to be a matrix C' € Ma(R) such that

F-A°=A-C.
Thus we get:
0 1 0\° 0 0
0 0 1 oo
1 0 a b 110
0100 ¢ d 0 1

and see, that the columns of the latter matrix can not be a linear com-
bination of the column vectors of A. So, Y does not intersect Uyo at all.

e (i,7) =(1,3):

Let U be the image of A = . By the same computations as

o o e =
Q= o O
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before we get

0 0 10
. 0 0 - a b 0 0
F-A7=11 B 0 1 < 1 0)
a® b’ c d
ifb=0and d =a°’.
Thus, (YﬂUlg)(R) = {B = < CCL aOU > c MQ(R)} = AQ(R)
(,7) = (1,4):
10
Let U be the image of A = CCL 2 . We get again
0 1

F.-A° =

Q R OO

o O O
oo 8 =
— Q o O

o bﬂ)
ifb=0and d ! =a°.

Thus, (Y N U14)(R)J% {B: < a 0 > S MQ(R)} ~ G, (R) x

¢ (a%)
AY(R).
2 (1,5) = (2,3):
a b
. 10
Let U be the image of A = 01 . We have
c d
0 0 a b
- 0 O _ 10 0 0
F-AT=1 00 e N 0 1 '(d—lo)
1 0 c d

ifb=0and d ! =a°.
Thus, (Y N Uss)(R) = {B: < ‘CL (ago)l > S MQ(R)} ~ G, (R) x
AY(R).

: (i,7) = (2,4):

Let U be the image of A = . By the same computations as

OO = Q
— Q O o
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before we get
(00
10

o ) € MQ(R)} ~ A%(R).

= Q O O
SO0 — Q
= Q O o

ifb=0and d =a°.
Thus, (YﬂU24 g {B

S}

o : (i,7) = (3,4):

. By the same computations as

S~ O 2
_ o o

before we get

= O Qo

a
c
Let U be the image of A = (

O~ O R

. a b a’® b"
if < c d ) ' ( c’ d” =0
Thus, (Y NUsy)(R) = {B € M2(R) | B- B =0}

From the computations above we see that the singular locus of Y is con-
tained in Y NUsy := Y34 whose R valued points are Y34(R) = {B € M>(R) |
B - B? =0}, so Y34 = Spec (k[a, b, c, d]/I), where the defining ideal I of Y34
is given by I = (aP*! 4 bcP, ab? + bdP, aPc + cPd, bPc + dPH1).

Let us compute the points in which Y is not smooth.
Let B € Ys4(k) with B # 0. Since B - B = 0, we have that its deter-

minant fulfills det(B)P*! = 0, thus det(B) = 0, since det(B) € k. So, the
image of B is a one-dimensional subspace of k2.
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Denote by k[e] the ring k[T]/(T?), ¢ being the residue class of T. Then

Ty(B) = {C € Ma(k) | B +C € Y (k[])}
={C e My(k) | (B+2C) - (B+eC) =(B+eC)- (B +£PC7)=0}
—{CeMy(k)| (B+2C)-B° =B-B° +<C- B =0}

={C e My(k) | C - B° =0}.

The last condition C' - B° = 0 means that the image of B? is contained in
the kernel of C. Let (v) C k? be the image of B?, then

Ty(B) = {C € My(k) | C - B =0}
= {C € My(k) | (v) C Kex(C)}

=~ Homy, (k2/<v>, kz) ~ |2,
So, Y is smooth in any point B € Y (k) \ {0}.

If we take B = 0, then, following the computations of Ty (B) above, we
see that the condition C' - B = 0 is satisfied for any C' € My(k), so
Ty (0) = Ma(k) = k4.

Thus, the only singular point of Y34 is B = 0 € My(k) corresponding to
the maximal ideal m = (a,b,¢,d) C k[a,b,c,d]/I. This maximal ideal m is
generated by zero divisors in k[a, b, ¢, d]/I, since

a- (aPd — aP~1be) = a(aPd 4 bcPd — bePd — aP~be)
= ("' +bP) - d— (aPc+Pd)-bel,

and b- (abP~t +dP) € I and c- (aP + cP~1d) € I, and also

d-(adP —bed?™") = d - (adP + abPc — abPc — bedP™)
a-(bPc+dP™) —c- (ab? +bdP) € 1,

but none of the polynomials a?d — aP~'be, abP~ ' +dP, aP + P~ 1d, adP — bedP~?
are contained in 1.

Proposition 4.1. Y is generically reduced, but not reduced. In particular,
it is not Cohen-Macaulay.
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Proof. Y is irreducible, so the generic point in Y corresponds to the unique
minimal prime ideal in kla,b,c,d]/I = I'(Y N Us4, Oy). But the maximal
ideal m = (a, b, ¢, d) is generated by zero divisors, so, it is an associated prime
ideal, but not the minimal one (since dim(Y") = 2). Thus, the open subset
Y34\ V(m) C Y34 does not contain all associated prime ideals of I'(Yz4, Oy ) =
kla,b,c,d]/I, and therefore, it is not schematically dense (Lemma 9.23 in
[GW]). Since Y34 \ V(m) is reduced (it is even regular), its closure in Y34 is
also reduced, but is not the whole Y34. Thus Y cannot be reduced. O

Smooth locus of Y

Recall that for any perfect field & D F,» we have a stratification of N (k) by
subsets of the form Nj o, (k), where

Njjo (k) ={X e N(k) | A;lﬂ @ W(k) c D(X) C A;l,ﬂ ® W(k)}.
We also have the equality N'(k) = Ny (k) and an isomorphism Ny o9 =Y
of F,n-schemes. We will denote the stratification of ¥ given via this isomor-
phism again by Nji ., The N ., are closed subschemes of Y of dimension
j — I. The following theorem describes the smooth locus of Y and also

computes the tangent space TyY in every point U € Y (k), k being an
algebraically closed field.

Theorem 4.2. Let k D F,. an algebraically closed field and U € Y (k).
Then'Y is smooth in all points U € Y (k) \ Ng_209(k). In particular, Y is
reqular in codimension 1.

Proof. Denote by W the Fn-vector space M* /M~ and by F again the pro-
jection of the o-linear morphism F: Mt — M™ to W. Fix an isomorphism
W = (th)Qd given by the basis {eg,e_g41,...,e4-1} of W, where the e; are
residue classes of the base vectors e; in Mt and denote by Grass(d, 2d) the
Grassmannian over F,» whose R-valued points are the locally free direct
summands of rank d in R*? for any F,n-algebra R.

Let U € Grass(d,2d)(k). The tangent space of Grass(d,2d) in U can be
computed as

Ty Grass(d, 2d) = Homg (U, (W @ k)/U).

by sending a linear map w: U — W ® k = W}, to the image of @ in
Wiie) = Wi ® kle] = Wi © Wy, where

- ¢ 0
w = < w L ):Uk[a]ZU@EUHWk[a]:Wk@EWk

with ¢: U — Wy, the inclusion map.
The map w — Im(w) is linear and defines a surjective morphism of vector
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spaces Homy (U, Wy,) — Ty Grass(d, 2d), whose kernel consists of those ho-
momorphisms w with w(U) C U.

Now let U € Y (k). Since F(U?) C U, we get a homomorphism
F: (Wi JU) —s Wi, JU
and claim that
TyY = {w € Homy (U, W, /U) | Fow’ =wo F}.

Let Z C Wy, be a complement of U, and let w € Homy(U, Z) be the unique
representative of a morphism w € Homy (U, Wy /U). Then w: Uy = U @
eU — Wy, @ eWy, is given by

w(u1,U2) = (ul, w(ul) + UQ).

So, the submodule Im(w) of Wy lies in Y (k[e]) if Fyp(Im(w0))° C Im(w),

which means
By (ur, w(ur) +ug) = (F(ur), F(d(u1)) + F(u2)) € Im(w),

that is, if there exist 2,y € U with (F(uy), F(w(u1))+F (u2)) = (z, w(z)+y).
So, putting x := F'(u1), we have to find a y = F(w(uy)) + F(u2) —w(F(u1))
inU.

Write F': W — Wy as F = (F|y,Flz): (U® Z) — U @® Z. Then
F|z decomposes into F|z = (fu,fz): 27 — U @ Z, and fz: Z2° — Z is
the unique representative of F': (Wy/U)° — W}, /U in Homy(Z7, Z).

So, for y = F(w(u1)) + F(ug) — w(F(u1)) to be in U, or, equivalently,
y — F(u2) = F(w(uy)) — w(F(u1) to be in U, we have to require that the
Z-part of it is zero, meaning: fz(w(u1)) — W(F(u1)) = 0. This shows the
condition for w € Homy (U, Wy /U) to lie in TyY .

We now compute the tangent space at a point U € Y (k).

First case: j < d —2: Let U € Y (k) correspond to an M € Nj o, (k) with
j < d—2. Recall that M is generated as a W (k)-module by the elements

M=(m=ecj+Y e jrai1, F(m),...FI (m),ej,ej51, ..., en1)w)-
=1

Take as a basis of U the residue classes in W}, of the basis elements of M.
Then U = (u=e_j+> 7, vie—jyoi-1, F(uw), ..., F77 (u),ej, ... ,e4-1)k and
we can take as complement the subspace Z generated by

Z = <6,d, s €51,€6541,€6-543,. .. ,ej_1>k.
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If we rearrange the basis in another order by taking first e_; and its images
under F: e_g42,e_g+4 and so on, as long as the images are in Z, and then
e_q+1 and its images under F' as long as they are in Z, then, according to
this basis, fz: Z2 — Z has the shape:

0
1 . 0
fz = 1 Z° — Z.

where the upper left corner is a (d%j) X (d;j )-matrix and the lower right

corner a (%) X (%)—ma‘urix if d — 7 is even, and, if d — j is odd, the

upper left corner is a (%) X (%)—ma‘crix and the lower right a

(d_g_1> X (d_é_1>—matrix. In any of these cases, fz has rank d — 2.

The basis of U can also be changed in such a manner that

dtj+l

F~=2 (u), d—jodd,
dtj
F—=

)

u, F(u),...,Fi7Y(u), Fi(u),...,
U:< (u) (), F7(u) @),  d—j oven,

€d—2; d — j odd,

€5 €, .
J+15 €543, 7{ Cd1, d—j even.

Then according to this basis, F|y is given by

0
1 . 0
F|U: )

with the upper left corner a (%) X (%)—ma‘crix and the lower right

corner a (d_g_l) X (d_§_1>—matrix if d— j is odd, and the upper left corner

of size (dzﬁ) X (%) and the lower right corner of size (d%]) X (d%]) ifd—j
is even. Just remark that we get a proper decomposition into two blocks

since j < d — 1, so neither of the blocks has size d.

We can now compute the tangent space TyY = {w € Homy (U, Wy /U) |
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Fow’ =wo F|y}.

First case of 7j < d—2" : d — j odd:

Let w € Homy (U, Wy /U), and let its unique representative w: U — Z be
given by a d x d-matrix A = (a;;) € My(k) according to the last chosen
bases of U and Z.

Then fz oW’ =

0 0
P P
aiy 14
P P
@atjer g4 Tarjrr 44
@) =g -t
0 K 0 0
p P
1 a%ﬂ@ G%H,d
1 0
P P
ad,l .. ... add
and wo Fly =
0
1 0
1 0
(aij) 5 =
0 1
1 0
aig - al’d+;’+1 0 a17d+g+1+2 o aqg 0
(0% ad?d+%'+1 0 ag d+%’+1 42 0 Qdd 0
Comparing the coefficients we get conditions on all entries of W = (a;;) but
A1y - -, ad+32'+1’1, aj+27d+g2‘+1+1, e ,ad+%‘+17d+é+1+1, ad+32'+1+1’1, .., aq and
o d+j+1 d—j—1 d—j—1
@iyt g degen gy Qg degen |y which gives us ( z )—i—( z )—i—( z >+
d_%_1> = 1(4d—2j—2) = 2d — j — 1 free entries of . Thus, dim(TyY) =

2d—j—1>d=dimY, since j <d—1.
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Second case of 7j < d —2": d — j even:

Let w € Homy (U, Wy /U), and let its unique representative w: U — Z be
given by a d x d-matrix A = (a;;) € Mg(k) according to the last chosen
bases of U and Z.

Then fz 0w’ =
0 0
D D
0 a1q 1q
1 . 0
ab_. a’_.
1 0 (ap) _ i1 Fl-14d
0 0 0
P e P
0 1 . Paiiqn P14
1 0 :
P D
ad,l ... ... a/dd
and wo Fly =
0
1 0
1 0
a;j =
( ZJ) 0
0 1
1 0
aip - GL% 0 alv%_” aiq 0
a PEEEEY a . O a . PR a 0
@ st 0| g2y, ad
Comparing the coefficients of these two matrices we get conditions on all en-
tries of w = (a;;) but a1, ... VQdg 5 Oy di ey G dsi |y Gy gy ddL
. . d—j d—j d+j
and i g i yqse o Og i which gives us (TJ) + <Tj) + (%) +
<d%j> = 1(4d —2j) = 2d — j free entries of 1. Thus, dim(TyY) = 2d —j >

d=dimY, since j <d— 1.
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Second case: j =d or d — 1:
Let U € Y (k) correspond to an M € Njj o (k) with j = d or d — 1. Take

for Z again the subspace given by either Z = (e_gi11,€_g+3,...,€q-1)k if
j=dor Z ={e_g,e_g+2,...,eq-2)k if j =d — 1. Then Z is an F-invariant
subspace itself and according to this basis, fz is given by
0
1
fz=1|0 27— 7.
010

If we take for U again the basis given by residue classes of the base vectors
of the associated Dieudonné lattice M, that is

J
U= <U =€y + 27i67j+2i717 F(U), s F]_l(u)’ €5y €541y -+, ed—1>k57
i=1
then we see that, since j = d or d — 1, in both cases the last vector in this
basis is F41(u). It is immediately clear if j = d, and if j = d — 1 then
Fa=(y) = F(F92(u)) = F(eg_3 + 'yfd_zed_g) = e4_1. Thus, in both cases
we have

0
1

Flpy=1]0 U — U.

010
Now, having computed both F'|y and fz, which is the unique representative
in Homy, (27, Z) of F: (W,,/U)° — (Wy/U), we can compute the vector
space TyY = {w € Homy (U, Wy /U) | F ow? = wo F}.

Let w € Homy (U, W}, /U) and let its representative w: U — Z be given
by A = (ai;j) € Mg(k) according to the chosen bases of U and Z. Then we
have

0 0 0
1 a . d
fZ o 12)0 — . . (afj) _ 11 1d
10 Ty g e Gy g
and wo Fly =
0 aiz ... ayg O
1 ax» ... asg 0
(i) - . =
1 0 Qg2 ... Q44 0

33



So, by comparing the coefficients we get d free entries ai1,...,aq; of the
matrix A = (a;;), and, consequently, dim(7yY) =d = dim Y.

Thus, the singular locus of Yj consists of those F—invariant subspaces
U C W ® k, which correspond to p-divisible groups X € AN (k) which lie
in Njjq, (k) with j < d— 2. Since all these N, (k) with j < d — 2 are
contained in Ny 50g(k), we get that the set of singular points in Y (k) is
precisely Ny_o09(k). O

Now

Na—209(k) ={U € W & k subspace of dimension d | F(U°) Cc U

and (eg-2,e4-1)k CU C (e—ay2,€-d13,---,€4-2,€d-1 )k}

and the restriction of the morphism F' on W to the subquotient Wy_5 ¢y =

(6_d+2y---,ed—1)/(€q—2,e4—1) has the same shape as F', namely
0
0 .
F = 1 0 : Wg_270’@ — Wd—Q,O,@‘
1 00

So, by the same computation as above, we would get Ny_40¢(k) as the set
of points in which Ny_5 ¢ is not regular. Thus we get the following

Corollary 4.3 (Singularity stratification of V). We get the stratification of
Y by locally closed regular subschemes S; of dimension 1

N10(2)7 d odd,
Y= (V\Wazo0) U Wason \Niaoa) U uf jE00 4ot

S, d odd,

=5y U Sj_o ... U{ So, d even,

such that the closure of any stratum S; consists of the union of this stratum
with all strata of smaller dimension: S; = Ujgi S;, and such that the smooth

locus of S; is precisely S;.

Singularity stratification of YV

Denote again by W the (h — 3)-dimensional F,»-vector space M™ /M.

For any I n-algebra R let Wg and Fr: W§ — Wg denote the base changes.
We want to describe the singularity stratification of Y as a stratification
given by the action of an algebraic group H/ SpecF .
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Consider the algebraic group H over F,. given by:
H(R) = {g € GL(Wg) | g- Fr-(¢°)"" = Fr}.
Then H acts on Y and we want to understand the stratification on Y given
by this group action.
The group H

Choose again a basis for W given by the images of the elements e_g4,e_411,
.o €eq_1 in Mt /M~. We will denote this basis of W again by {e_g,...,eq_1}.
Then F' is given by

with respect to this basis.

Let k O F,n be an algebraically closed field and let g = (a;;) € GLag(k)
an invertible matrix. Then g is in H(k) if and only if g- F' = F' - ¢, i.e.

0 0
0o . 0
(aij)' 1 0 . = 1 0 . ‘(a]ioj)a
1 0 0 1 0 0
which means
ai1s e a172d 0 0 0 0 0
a3 e a2 24 0 0 0 0 0
: : = af; ays a’zljd
asq3 ... agaq 0 0 agd—2,1 agd—2,2 e agd—2,2d
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So, comparing the coefficients on both sides, we get that ¢ is an element of
H(k) if and only if g is of the form

Aq 0 0
Ay A9 0 L. 0
g= : . . : ’
Ag 1 A9, ... Agj” 0
-2 -1
Ag A9 .0 A3

with A; € GLQ(kI) and Ao, ..., Ag € Mg(k)

Proposition 4.4. The stratification on Y by H-orbits is the singularity
stratification of Y.

Proof. Consider the subspace U = (e_g11,€_4+3,---,€d—3,€4—1)k of Wi.
This subspace lies in the stratum N;_; og(k) C Y (k), and its H(k)-orbit
consists of subspaces of the form

d—1
H(l{)U = {U’ = <u, = ae_g + be_d+1 + Z CLkBk,F(U/), . .,Fd_l(ul»k}
k=—d+2

= Y(k) \ Ng—2,00(k)
= smooth locus of Y (k)

since the coefficients a and b form the second column of the upper-left 2 x 2-
corner A; of an element g € H(k), which is invertible, so a and b are not
both equal to 0.

Denote by U; the subspace of the form

Uj = <€_j,6_j+2, ce ey €5-2,€5,€541, .. .,ed_1>k (S ./\[j@@(k),

then by the same computation as above its H (k)-orbit will consist either of
Nit1,00(k) \ Nj_100(k) = smooth locus of N, g(k) if d — j is odd, or
N;0.0(k) \ Nj_2,00(k) = smooth locus of N (k) if d — j is even.

Thus, the H-action on Y gives us a stratification of Y of the following
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type:

Y= H Ui, U H -Uj_3 Uu...u H-Uj
N, if d odd
° U o U...uq 100 ’
) U Nj’lvﬂ ) U Nj’l’ﬂ NO 0 @, lf d evell.
j=d,d—1 j=d—2,d—3 i
0<i<j—1 0<i<j—1
aleFlh CMZGJFlh
- p - P

Niog, ifdodd,
= (Y \Na200) U Na200\Naa09)U... U { 10,0, A0

Noog, if deven.

O

The dimensions of the orbits decrease by 2 with every step, and the orbit of
minimal dimension has dimension 1 if d is odd, or 0 if d is even. In any case,
the smallest stratum N g is contained in the orbit of minimal dimension.

Due to the following proposition, we can restrict ourselves to the small-
est stratum N o g(k) which consists of only one point Uy = (e, ..., e4—1)k
in order to study the regularity properties of Y.

Proposition 4.5. Let X be a scheme and G an algebraic group which acts
on X.

Let U C X be an open subset, such that U is G-invariant (for example,
U = Xyeg or the set of points in which X is Cohen-Macaulay). Then, if U
contains all closed G-orbits in X, then U = X.

Proof. Let x € X. Then the closure Gz of its orbit Gz contains at least one
closed G-orbit in X, so U N Gz # (). But since U N Gz is also open in Gz,
it has to intersect the orbit Gz. And since U is G-invariant, it contains the
whole orbit Gz, thus it contains also x. ]

Let U denote the open subset of the Grassmannian variety Grass(d,2d)
consisting of the subspaces U, which are images of matrices A € Magy (k)
whose lower half minor is invertible. Then U & AdQ, the isomorphism being
given on R-valued points by

A”(R) = My(R) BBHU:Im( Ili ) €U(R),

and Uy corresponds to the matrix B = 0.

To determine the definition ideal of Y NU C U, we compute the condi-
tions on the matrix B € Mgy(k) which imply F(U?) C U.
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The column vectors of < IB ) form a basis of U, so their images under F
d

lie in U if and only if there exists a matrix C' € My(k) with

e(n) - (5)e

Let B = (b;j) € Mg(k). Then there exists a C € My(k) with

0
0 P
ij
g
() 1
d 0 1 0
. .
0 1 0 O
0 e 0
0 - 0 bij
BO'
= 1 0 0= c
1 00 1
if and only if
Ve B 0 0
bs’l - v, 0 0
c=|1 0 0 and B-C = | b SO
100 by 31 bi-2,a
BO'
the first equation given by the lower half of the matrix F - < I ) and the
d

second condition given by the upper half of the same matrix.

From these conditions on the matrix B € My(k) we get the definition ideal
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I C E[Ti;] of Y NU C U. Tt is generated by the polynomials:

Té),l’j'n1+TCZ'n2+E,j+27 1=1,2, j:1>7d_2

T4 1; T+ T4 T, i=12 j=d-1d

T)  Ta+ T To+Tijo—T0, , i=3,....d j=1,...,d—2

T T +T5 T — TP, . i=3,...d j=d-1.4d
and Uy = /\/’0707@(@ corresponds to the maximal ideal m = (7};,1 < 1,5 < d)

in D(Y NU, Oy) = k[T;;]/1.

In the example for h = 7 computed above, we have determined the spe-
cial case of this ideal I, namely the case of d = % = 2. In that special
case, the polynomials generating I were all homogeneous of degree p + 1
and the maximal ideal m = (a,b,c,d) was generated by zero divisors in
kla,b,c,d]/I.

In the general case however, that is h > 11, some of the generating poly-
nomials of I also have terms of degree 1 and in particular none of them
decomposes as a product of polynomials of smaller degree. Unfortunately, I
was not able to show neither that the ideal m = (7;;,1 < ¢,j < d) contains
at least one regular element in k[T;;,1 < ¢,j < d]/I, nor that all T;; were
all zero divisors in k[Tj;]/1.

If one were to find a regular element in m, it would mean the existence of
a regular sequence of length at least 1 in the local ring Oy, = (k:[TU] /1 )m
and thus imply the Serre condition S; for this local ring. Together with the
Serre condition Ry, which means that Y is generically regular and which
holds, since Y is even regular in codimension 1, this would mean that Y is
reduced in the point Uy. And by Proposition 4.5 we would have that Y is
reduced and thus have described M (0);eq.
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Zusammenfassung

Sei Nilp z, die Kategorie der Schemata {iber Spec(Z,) auf denen p nilpotent
operiert und sei X eine p-divisible Gruppe iiber Spec(FF,) der Dimension 2
und Hohe A mit h ungerade. Wir betrachten den Funktor

M: Nilpg, — (Sets)

Isomorphieklassen von Paaren (X, p), wobei
S+ ¢ X eine p-divisible Gruppe iiber S und ,
P X Xgpec(F,) S — X Xg 5 eine Quasiisogenie

wobei S das durch das Ideal p - Og definierte abgeschlossene Unterschema
von S bezeichnet. Dieser Funktor ist darstellbar durch ein formales Schema
lokal formal von endlichem Typ iiber Spf(Z,).

In dieser Arbeit wollen wir genauer das reduzierte Unterschema M .q von
M beschreiben. Oort und de Jong haben in ihrer Arbeit [dJO] gezeigt, dass
jede Zusammenhangskomponente von M,eq irreduzibel ist und Viehmann
hat in [Vie] die Zusammenhangskomponenten von Meq bestimmt.

Sei N die Zusammenhangskomponente der Identitit id: X — X. Sei
k D F, ein algebraisch abgeschlossener Korper. Fiir die Beschreibung von
k-wertigen Punkten von M,eq benutzen wir eine von Oort eingefiihrte In-
variante: den Semimodul assoziiert zum Dieudonné-Modul einer p-divisiblen
Gruppe.

Wir fithren eine Stratifizierung von A(k) durch endlich viele irreduzible
lokal abgeschlossen Teilmengen -j\[ﬁl,al(k) ein, die die Stratifizierung durch

Semimoduln verfeinert. Wir bestimmen die Abschliisse Nj; o, (k) dieser lokal
abgeschlossenen Teilmengen, und auch die Strata, die zum Abschluss beitra-
gen. Desweiteren definieren wir Unterfunktoren N ., von N x Spf(Z,),
deren k-wertige genau die abgeschlossenen Teilmengen Nj; o, (k) von N (k)
sind. Wir zeigen, dass die Unterfunktoren Nj; o, darstellbar sind durch pro-
jektive F »-Schemata und untersuchen im folgenden diese Schemata.

Dabei bestimmen wir den glatten Ort dieser projektiven F,»-Schemata und
zeigen, dass sie, zumindest in Spezialfillen nicht reduziert und auch nicht
Cohen-Macaulay sind.
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