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Kurzfassung

Der digitale Phasenregelkreis beinhaltet komplexe Funktionsgruppen, die nichtlinear in
verschiedenster Form sind. Dabei ergeben sich fiir die Modellierung im Kontext der Verhal-
tensbeschreibung zum einen nichtlineare Kennlinien, pulsweitenmoduliertes Verhalten und
zum anderen inhérente Verzogerungen. Die analytischen Modelle, die bislang existieren,
basieren auf idealisierten Annahmen und/oder Linearisierungen des Regelkreises und sind
aufgrund ihrer Form verschiedenen Beschrankungen unterworfen. Analytische und exakte
Verhaltensbeschreibungen zur Analyse des Systems unter Beriicksichtigung verschiedener
Nichtlinearitaten sind dabei nur vereinzelt dargelegt worden. Neben den komplexen Funk-
tionen des dynamischen Systems ergeben sich Probleme hinsichtlich der Simulation auf
Transistorebene. Zwar lasst sich durch die Verwendung und Kombination verschiedenster
Simulationsumgebungen eine gewisse Zeitersparnis erzielen, jedoch kann durch die mathe-
matische, ereignisgesteuerte Modellierung dies drastisch verbessert werden. Zudem liefert
diese Modellierungstechnik eine effiziente Mdoglichkeit, das System zu analysieren und zu
charakterisieren. Dabei konnen auch die Nichtidealitdten und Nichtlinearitdten berticksich-
tigt werden.

In dieser Arbeit sind analytische Modelle und Simulationsmodelle dargelegt, die einige
Formen der Nichtlinearitdaten beinhalten. Dabei wird eine Methodik zur modularen Mo-
dellierung eingefiihrt und erweitert. Der Grundgedanke der Modellierung basiert auf der
Betrachtung der Phasengleichungen, die von einer digitalen Logik ausgewertet werden,
um den Frequenz- und Phasenfehler anzugeben. Diese Logik wird als endlicher Automat
dargestellt und so erweitert, dass bestimmte Nichtlinearitdten oder Nichtidealitdten durch
virtuelle Zustande dargestellt werden konnen. Damit kann der andere Teil des Regelkrei-
ses, der durch ein Differenzialgleichungssystem beschrieben wird, durch Diskretisierung zu
den Schaltzeitpunkten der digitalen Logik ausgewertet werden. Dieses Verfahren wird dabei
hinreichend abstrakt dargestellt, so dass sich Erweiterungen der Topologie des Regelkreises
(Filter-Topologie, Ordnung des Filters, nichtlineare Charakteristik des spannungsgesteu-
erten Oszillators, usw.) einfacher implementieren lassen.

Neben den Simulationsmodellen werden analytische Modelle fiir Regelkreise der Ordnung
Zwei mit ausgewéhlten Nichtidealitdten entwickelt, um das Verhalten des Regelkreises
durch systemtheoretische Betrachtungen zu analysieren. Des Weiteren wird ein analytisches
Modell eines Regelkreises fiir beliebige Schleifenfilter angegeben. Dabei werden Gleichun-
gen zur Beschreibung des Regelkreises derart entwickelt, dass sich autonome, nichtlineare,
schaltende, dynamische Systeme ergeben. Fiir diese analytischen Modelle werden entspre-
chende Stabilitatsgrenzen hergeleitet.
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Abstract

Digital phase-locked loops comprise complex functional elements which are nonlinear in
various forms. Hence, the modelling approach needs to consider static nonlinear cha-
racteristics, pulse widths modulated behaviour and intrinsic delays. Standard analytical
models are based on idealized assumptions and/or linearizations of the phase-locked loop
equations. Thus, these models are limited by various restrictions. Analytical and proper
behavioural models for analysis are sporadically introduced due to the complex nonlinea-
rities. Beside the complex switching and nonlinear properties transistor level simulations
are critical in terms of time. By using combinations of miscellaneous simulation tools a
gain of time can be achieved. The mathematical event driven modelling technique can
be used to analyze, characterize and simulate the nonlinearities and nonidealities of the
system very efficiently.

In this thesis analytical modelling approaches are introduces for the characterization of
phase-locked loops with selective nonidealities/nonlinearities. A method is explained and
extended which is efficient and modular. The fundamental idea is based on the considera-
tion of the phase equations and the evaluation by a digital logical device to calculate the
error in phase and frequency. The digital device is represented by finite state machines
and some nonidealities can be introduced only by the insertion of virtual states or the
adaption of the state machine’s output function. The analog part of the control loop is
represented by a differential equation system and is discretized at the switching times of
the digital device. This approach is considered to be more abstract so that introducing
changes in topology (Filter topology, order of the filter, nonlinear characteristic of the
voltage controlled oscillator, etc.) gets very elementary.

Beneath this modelling technique for simulation analytical models of a second order loop
with selected nonlinearities are introduced. In addition an analytical model for arbitrary
loop filter configuration is presented. These models are constituted as autonomous, non-
linear, switching, time discrete, dynamical systems providing stability bounds for design.
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Verwendete Symbole und Abkiirzungen

Typographische Kennzeichnungen

Vektoren Kleinbuchstaben in Fettschrift
Matrizen Grofbuchstaben in Fettschrift
Anderungen einer Groke Vorangestelltes A

Transposition eines
oder einer Matrix

Vektors Hochgestelltes T

Approximation einer Grofe Dach iiber einem Buchstaben

Fallende Flanke eines Signals Hochgestellter Pfeil nach unten als Index

Steigende Flanke eines Signals  Hochgestellter Pfeil nach oben als Index

Invertierung eines Signals Strich iiber einem Buchstaben

Zeitliche Ableitung einer Grofe Punkt iiber einem Buchstaben

Mathematische Operatoren, Mengen und Symbole

Symbol

> < <

>|

Bedeutung
Nicht-ausschliefsendes Oder
Nicht-Oder-(NOR)-Verkniifung
Und-Verkniifung
Nicht-Und-(NAND)-Verkniifung

Eingabemenge eines endlichen Automatens

z.B. b
z.B. A
z.B. Ay
z.B. AT

7z.B. x
z.B. ut
z.B. ul



Verwendete Symbole und Abkiirzungen

@)
S
Si

L.
[.

]
|

Ausgabemenge eines endlichen Automatens

Zustandsmenge eines endlichen Automatens
Anfangszustand eines endlichen Automatens
Abrunden einer Zahl

Aufrunden einer Zahl

det {-} Determinante

grad {-} Gradient einer skalaren Grofe:
grad {V (z1,...,x,)} = .

0 0
—V ey —V
axl (.flfl,SCQ, an>7 ) 81:” (SL’l,SEQ, 7$n)

Im{-} Imaginérteil

lim {-} Grenzwert-Operator

max {-,-} Max-Operator: Bestimmt das Maximum zweier
reeller Werte

min {-, -} Min-Operator: Bestimmt das Minimum zweier
reeller Werte

mod {-} Modulo-Operator

Re{-} Realteil

round {-} Runden einer Zahl

remainder {-, -} remainder {x,y} = = — round {%} Yy

sign {-} Sign-Operator: Bestimmt das Vorzeichen einer
reellen Grofe

sup{-} Supremum

d = d(e) Funktion in Abhéngigkeit von e

€ Konstante

e(t —to) Einheitssprung zum Zeitpunkt ¢

0 Funktion zur Berechnung des nachsten Zustan-
des innerhalb eines endlichen Automatens

n Funktion zur Berechnung der néchsten Ausga-
be innerhalb eines endlichen Automatens

A Eigenwert

o(k) Schaltsequenz zu den Zeitpunkten k

d() Transitionsmatrix
Spektralradius

vi

Kanditat einer LyAPUNOV-Funktion



Verwendete Symbole und Abkiirzungen

T
LR

ZpFD

Symbole

Symbol

B
d
)

Awpo

AWPO

+
AwPO

Zustandsvektor eines Systems
Ruhelage eines Systems

6-Tupel-Beschreibung eines Phasen- und
Frequenz-Detektors

Bedeutung

Rauschbandbreite

Déampfungsbeiwert

Tastverhéltnis

Ausrastbereich bezogen auf die Kreisfrequenz
Untere Grenze des Ausrastbereichs

Obere Grenze des Ausrastbereichs
Ausrastbereich bezogen auf die Regelspannung

Konstante fiir die ereignisgesteuerte
Modellierung

Konstante fiir die ereignisgesteuerte
Modellierung mit Dead-Zone
Ruhefrequenz eines spannungsgesteuerten
Oszillators

Minimalwert einer Frequenz

Maximalwert einer Frequenz
Referenzfrequenz
Zielfrequenz

Ausgangsfrequenz des spannungsgesteuerten
Oszillators
Ubertragungsfunktion

Fehleriibertragungsfunktion
Ubertragungsfunktion des Schleifenfilters
LAPLACE-Tranformierte des Signals yef(t)
LAPLACE-Tranformierte des Signals ¢yco(t)
LAPLACE-Tranformierte des Signals ¢yar(t)
LAPLACE-Tranformierte des Signals ¢e(t)

Charge- Pump-Strom

Einheit

Hz

rad Hz

rad Hz

rad Hz

rad

rad

Hz
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Verwendete Symbole und Abkiirzungen

I, Amplitude des Charge-Pump-Stromes A

Ian Amplitude des DN-Zweig-Stromes A

Lup Amplitude des UP-Zweig-Stromes A

Iy, Amplitude des Leckstromes A

We Kreisfrequenzfehler rad Hz

Wn Natiirliche Kreisfrequenz des geschlossenen rad Hz
Phasenregelkreises

Wref Referenzkreisfrequenz rad Hz

Wref 2 Das Zweifache der Referenzkreisfrequenz rad Hz

Wref,10 Das Zehnfache der Referenzkreisfrequenz rad Hz

Wyeo Kreisfrequenz des spannungsgesteuerten rad Hz
Ostzillators

wo,veo Ruhekreisfrequenz des spannungsgesteuerten rad Hz
Oszillators

N Teilungsbeiwert

Ny Fraktionaler Teilungswert des Teilungswertes
eines Phasenregelkreises

Ny Ganzzahliger Teilungswert des Teilungswertes
eines Phasenregelkreises

P Teilungsbeiwert des Vorteilers (Prescaler)

Ve Phasenfehler rad

Pe,s Statischer Phasenfehler rad

Oref Phase des Referenzsignals rad

Oveo Phase des Ausgangssignals des spannungsge- rad
steuerten Oszillators

Pvco,0 Phase des Ausgangssignals des spannungsge- rad
steuerten Oszillators zum Zeitpunkt g

Pdiv Phase des Teilerausgangssignals rad

Pals Phase des Alias-Signals rad

) Phasenkonstante fiir den eingerasteten Bereich rad
eines Phasendetektors

K Schleifenverstiarkung

KN Normierte Schleifenverstarkung
des VAN PAEMEL-Modells

K, Steigung der linearen (oder stiickweise linea- Hz/V

ren) Oszillatorkennlinie
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Verwendete Symbole und Abkiirzungen

Tref

Tk

TA; B

Th

™

Trst

Td

1
TIN

u u
P 7.dn TP 7_dn

T, setr 'rsty ‘rst

set”
Uave
Uctl
Uctl,Id
Uctl,Nid

Uctl,Spectre

Steigung der linearen (oder stiickweise linea-
ren) Oszillatorkennlinie

Verstarkungsbeiwert des Phasen- und
Frequenz-Detektors und der Charge-Pump
Zeitpunkt eines Phasennulldurchganges

Zeitdauer einer Periode
Einrastzeit

Pull-In-Zeit

Zeitdauer einer fallenden Flanke
Zeitdauer einer steigenden Flanke

Periodendauer des Sample-Signals der Alias-
Locked Loop

Periodendauer des Ausgangssignals des
spannungsgesteuerten Oszillators
Periodendauer des Referenzsignals

Diskreter Zustand in den Phasenregelkreis-
Modellen nach VAN PAEMEL
Zeitdauer eines virtuellen Zustandes

Vorgegebene Zeit zwischen zwei aufeinander
folgenden steigenden /fallenden Flanken der Si-
gnale uper und ugiy

Messzeit

Laufzeit des UND-Gatters des Phasen- und
Frequenz-Detektors

Laufzeit, die benétigt wird, um das UP-Signal
des Phasen- und Frequenz-Detektors zu inver-
tieren

Zeitkonstante eines RC-Gliedes (11 = R1C})

Normierte Zeitkonstante eines RC-Gliedes
(rin = R1Cy/T)
Zeitdauer eines virtuellen Zustandes

Durchschnittliche Regelspannung
Regelspannung

Ideale Regelspannung
Nichtideale Regelspannung

Regelspannung, ermittelt durch eine Spectre-
Simulation

rad/V

A /rad

wn

< < < < <

X
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Uy

Ut
Uyef

Uvco

Udiv
ur,
Umax
Umin
Ur

Uvar

Upulse

Uopol

Uld

UCy,0

Uk

Ck

Spannungspegel logisch Eins (high)
Zielspannung der Regelspannung
Periodisches Referenzsignal

Periodisches Ausgangssignal des spannungsge-
steuerten Oszillators
Periodisches Teilerausgangssignal

Spannungspegel logisch Null (low)
Maximalwert einer Spannung
Minimalwert einer Spannung
Ausgangssignal des m-Detektors

Periodisches Signal (entweder Teiler- oder Aus-
gangssignal des spannungsgesteuerten Oszilla-
tors)

Spannungsausgangssignal der logischen Ver-
kniipfung zwischen den UP- und DN-Signalen
Digitales Spannungssignal fiir die Ausrastde-
tektion

Digitales Spannungssignal fiir die Phasennull-
durchgangdetektion

Digitales Spannungssignal der Einrastdetektion

Spannung iiber der Kapazitdt C] zum Zeit-
punkt g

Diskreter Spannungswert (Zustand) in den
Phasenregelkreis-Modellen

Diskreter Phasenfehler (Zustand) in den erwei-
terten Phasenregelkreis-Modellen

< < < <

< < < < < <

rad
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Abkiirzungen

Abkiirzung

ALL
ADPLL

APLL

CDR

CP
CP-PLL

DPLL

DZ
IC

LF
LPLL

LTI
MASH
MOS
PD
PFD
PLL
PWA
SFDR

VCO

Bedeutung

Alias-Locked Loop

Komplett digitaler Phasenregelkreis
(All Digital Phase-Locked Loop)

Analoger Phasenregelkreis
(Analog Phase-Locked Loop)

Takt- und Datenriickgewinnung
(Clock and Data Recovery)

Ladungspumpe ( Charge-Pump)

(Digitaler) Phasenregelkreis mit Ladungspumpe
(Charge-Pump Phase-Locked Loop)

Digitaler Phasenregelkreis
(Digital Phase-Locked Loop)

Tote Zone (Dead Zone)
Integrierte Schaltung (Integrated Circuit)
Schleifenfilter (Loop Filter)

Linearer Phasenregelkreis
(Linear Phase-Locked Loop)

Linear und zeitinvariant (Linear Time Invariant)
Multiple stAge Noise SHaping
Metall-Oxid-Halbleiter (Metal Ozide Semiconductor)
Phasen-Detektor

Phasen- und Frequenz-Detektor

Phasenregelschleife (Phase-Locked Loop)

Stiickweise affin (Piece Wise Affine)

Storungsfreier dynamischer Bereich
(Spurious Free Dynamic Range)

Spannungsgesteuerter Oszillator
(Voltage Controlled Oscillator)
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KAPITEL ]_

Einleitung

In diesem einfiihrenden Kapitel wird die Motivation zur Modellie-
rung gemischt analoger und digitaler Phasenregelkreise dargelegt.
Insbesondere werden dabei die Probleme des Entwurfs, der Simu-
lation und Analyse erortert. Des Weiteren werden die Ziele dieser
Arbeit vorgestellt und die Inhalte der verschiedenen Kapitel kurz
angegeben.

1.1. Motivation

Phasenregelkreise oder auch Phase-Locked Loops (PLL) stellen einen wichtigen Bestand-
teil fiir eine Vielzahl von Anwendungen innerhalb der Elektrotechnik dar. Insbesondere in
der Kommunikationstechnik werden sie zur Frequenzsynthese [1-8], Modulation, Demo-
dulation [2,9] und zur Rekonstruktion des Taktes oder von Daten [3,10-12] verwendet.
Die Verbreitung dieser Regelkreise ist darin begriindet, dass sie eine robuste Regelung und
eine hohe Frequenzreinheit des Ausgangssignals ermoglichen. Dabei stellt die Frequenz-
reinheit in der Frequenzsynthese ein wichtiges Entwurfsmerkmal dar. Diese Randbedin-
gung ldsst sich nur schwierig mittels der direkten Frequenzsynthese erzeugen [13|. Die
wohl verbreitetste Architektur ist der digitale Phasenregelkreis mit Ladungspumpe, auch
Charge-Pump Phase-Locked Loop (CP-PLL) genannt. Im Allgemeinen steht bei dem Ent-
wurf einer CP-PLL das Schleifenfilter im Vordergrund, da dieses das dynamische Verhalten
mafsgeblich beeinflusst. Wird das Filter sehr schmalbandig ausgelegt, so ergeben sich zwar
gute Rauschfiltereigenschaften, jedoch wird dadurch die Ausregelzeit vergréfert. Diesbe-
ziiglich ist die Wahl des Filters oder der Filterbandbreite so anzusetzen, dass ein gutes
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Filterverhalten und eine geringe Ausregelzeit gewéhrleistet wird. Hinsichtlich dieses Sach-
verhaltes werden haufig Filter hoherer Ordnung verwendet, wodurch die Stabilitdtsanalyse
stark erschwert wird [2,6, 14, 15]. In der Regel werden fiir den Entwurf sogenannte ,, Dau-
menregeln oder lineare Abschétzungen verwendet [16-18], wobei diese mit zunechmender
Ordnung der Regelschleife und unter Beriicksichtigung der verschiedenen Nichtlinearité-
ten des Systems meist nicht die gewiinschten Voraussagen liefern. Die Problematik der
Analyse eines Phasenregelkreises beschriankt sich dabei nicht nur auf die Ordnung der
Schleife oder auf den nichtlinearen spannungsgesteuerten Oszillator im Regelkreis, sondern
beinhaltet bei gemischt digitalen und analogen Architekturen auch pulsweitenmoduliertes
Verhalten (Abtastverhalten). Dieses Abtastverhalten erschwert zusétzlich die Analyse in
Bezug auf die Dynamik sowie auf die Stabilitdt. Die meisten Analyseverfahren fiir diese
Klasse der Mized-Signal-Systeme beschranken sich auf lineare Methoden mit sehr einge-
schriankter Giiltigkeit [13, 16,19, 20|. Ferner sind neben den genannten Nichtlinearitéiten
weitere zu erwahnen, die eine genaue Analyse erschweren. Zwar wurden Nichtidealitdten
wie Leckstrom, Stromungleichgewicht oder Stromversatz in der Ladungspumpe sowie ver-
schiedene Formen von Kennlinien fiir den Phasendetektor und den spannungsgesteuerten
Ostzillator unter bestimmten Annahmen untersucht, jedoch wurden detailierte Stabilitats-
analysen der einzelnen Nichtidealitdten oder Nichtlinearitdten nicht durchgefiihrt, da es
grofbtenteils an addquaten Modellen und /oder Analyseverfahren fehlt. Im Allgemeinen wer-
den diese Phasenregelkreise, nachdem die Parameter geeignet ausgewahlt wurden, mit Hilfe
von Transistorsimulationen, Verhaltensbeschreibungen oder aus Kombination dieser Me-
thoden (SPICE, Spectre, VHDL-AMS, Verilog, usw.) bewertet und durch die Erfahrung
des Schaltungsdesigners optimiert. Durch die Architektur der Regelkreise ergeben sich ex-
trem hohe Simulationszeiten, die bis zu mehrere Tage und Wochen dauern konnen [21-23|.
Selbst die Verhaltensmodelle mittels Simulink oder Verilog liefern je nach Beschaffenheit
der Regelschleife zwar eine Verringerung der Simulationszeit, jedoch kénnen auch hier zum
Teil mehrere Stunden bis Tage angesetzt werden, wobei meist nicht alle Nichtidealitdten
und Nichlinearitdten modelliert werden. Aus diesem Grund werden in dieser Arbeit ver-
schiedene Modelle dargelegt sowie entwickelt und hinsichtlich ihrer Giiltigkeit iiberpriift.

1.2. Stand der Forschung/Technik

Ein Phasenregelkreis stellt sich in der Frequenzsynthese im Allgemeinen als ein Mized-
Signal-System dar. Demnach besteht es aus analogen und digitalen Funktionsblocken und
verhélt sich wie ein nichtlineares Abtastsystem [16]. Daraus ergeben sich spezielle Anfor-
derungen an den Entwurf, um die Stabilitit des Systems zu gewéhrleisten. Da sich das
Mizxed-Signal-System zusétzlich aus einem Hochfrequenz- und einem Niederfrequenzteil
zusammensetzt, entstehen innerhalb der Entwurfsphase hohe Simulationszeiten fiir das
Gesamtsystem [24-28]. Hinzukommend zum schaltenden Verhalten der Differenzialglei-
chungen weist das System unterschiedliche Nichtidealitdten auf, wodurch sich wiederum
besondere Forderungen an das Design stellen. Dabei werden diese Nichtidealitdten bislang
innerhalb der linearen kontinuierlichen Approximation als statisch betrachtet [29,30]. Of-
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fensichtlich sind diese jedoch dynamischer Natur [25,31]. In [25,31] wurden Ansétze zur
Modellierung der Dead-Zone sowie zur nichtlinearen (ereignisgesteuerten) Modellierung
der Charakteristik des spannungsgesteuerten Oszillators vorgestellt. Dabei wird die Dead-
Zone durch parasitire Verzogerungszeiten innerhalb des Phasen- und Frequenz-Detektors
(PFD) modelliert. Genauere Untersuchungen zur Stabilitét sind nicht durchgefiihrt wor-
den.

Hinsichtlich der Stabilitdtsanalyse eines digitalen Phasenregelkreises sind drei Arbeiten
von entscheidender Bedeutung [16,32,33|. GARDNER konnte in [16] durch das Aufstellen
einer linearisierten Differenzengleichung das Abtastverhalten des Phasen- und Frequenz-
Detektors berticksichtigen. Dadurch konnte anschaulich gezeigt werden, inwieweit die Ein-
gangsfrequenz des Regelkreises eine Auswirkung auf das Stabilitdtsverhalten hat, und es
konnten Stabilitatsgrenzen fiir den Regelkreis zweiter und dritter Ordnung angegeben wer-
den. In [32] konnte VAN PAEMEL ein autonomes, nichtlineares, schaltendes Differenzen-
gleichungssystem aufstellen. Dieses wurde in einem der vier Sektoren linearisiert. Die Sta-
bilitdtsgrenze von GARDNER fiir den Regelkreis zweiter Ordnung konnte mittels des linea-
risierten Modells nach VAN PAEMEL bestétigt werden. In [33] fithrte ACCO seinerseits eine
Normierung fiir das Modell nach VAN PAEMEL ein und linearisierte das Modell in allen
Sektoren. Eine Untersuchung der charakteristischen Polynome des linearisierten Modells
ergab, dass die von GARDNER eingefiihrte Grenze eine zumindest konservative Stabili-
tatsgrenze darstellt. Es wurde jedoch nicht iiberpriift, ob die Linearisierung valide ist und
welcher Linearisierungsfehler sich ergibt. Auch Erweiterungen des Modells nach VAN PAE-
MEL wurden bislang nicht weiter verfolgt, um beispielweise die Dead-Zone-Charakteristik
des Phasen- und Frequenz-Detektors oder den Leckstrom der Charge-Pump zu modellie-
ren.

Das Konzept der ereignisgesteuerten Modellierung liefert die Moglichkeit, das schaltende
(pulsweitenmodulierte) Verhalten &ufserst effizient und mit hoher Genauigkeit zu simulie-
ren, wodurch sich im Vergleich zu Simulationen auf Transistorebene oder auch mittels Dif-
ferenzialgleichungen ein signifikanter Geschwindigkeitsgewinn ergibt. Gleichzeitig konnen
die Systeme sehr prizise charakterisiert werden [15,24,25,32-36]. Das Prinzip der ereig-
nisgesteuerten Modellierung liegt in der Diskretisierung des Differenzialgleichungssystems
(DGLS) zu den Zeitpunkten, an denen der Phasen- und Frequenz-Detektor (PFD) schaltet,
d. h. ein Ereignis aufgetreten ist (eine steigende oder fallende Flanke des Referenz- bzw. des
Teilerausgangssignals des Phasenregelkreises) [24,25,32,34|. Es ergibt sich ein nichtlineares,
diskretes System mit variabler Abtastzeit. Durch diese Diskretisierung ist es nicht erforder-
lich, das DGLS des Regelkreises zu 16sen. Es ist ausreichend, zu diskreten Zeitpunkten ein
Differenzengleichungssystem auszuwerten. Die Arbeiten von [24,25,32,33, 35| beschranken
sich auf die Frequenzsynthese mit PFD und einem ganzzahligen Teiler. Dabei wurden die
Fraktional- NV Frequenzsynthesizer und Daten- und Taktriickgewinnungsarchitekturen oder
auch Clock and Data Recovery-Architekturen (CDR) bislang nicht mit Hilfe der ereignisge-
steuerten, mathematischen Modellierung betrachtet. Hinzukommend existieren verschiede-
ne Varianten der Phasendetektoren fiir die Frequenzsynthese und CDR, die innerhalb des
Modellierungskonzepts nicht umgesetzt wurden. Des Weiteren wurden die Nichtidealitaten
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innerhalb der Charge-Pump und des Phasendetektors nicht tiefergehend modelliert. Bei der
Analyse der Nichtidealitdten wird zumeist der ausgeregelte Fall betrachtet und mittels der
FOURIER-Reihenentwicklung die Auswirkung auf das Ausgangsspektrum durch geschickte
Umformungen bestimmt [1,7, 13,37, 38|. Dieser Ansatz liefert hinsichtlich der Nebento-
ne im Spektrum eine Aussage iiber die Frequenzreinheit, jedoch werden die Effekte wie
Current-Mismatch, Leckstrom oder Dead-Zone nicht weiter modelliert, wodurch sich dann
Prognosen verschiedener Verhaltensmodelle nicht einhalten lassen, da diese Nichtidealité-
ten in der Simulation unberticksichtigt bleiben. Zudem wurden keine analytischen Modelle
fiir solche Randbedingungen angegeben. Es ist ersichtlich, dass gerade das Schleifenfilter die
Komplexitéit der zu losenden Gleichungen bestimmt, da das Filter das dynamische Verhal-
ten des Systems mafgeblich festlegt. Fiir eine PLL zweiter Ordnung kénnen Gleichungen
mit analytischer Losung bestimmt werden [24,32|. Fiir Regelkreise hoherer Ordnung ergibt
sich im Allgemeinen eine nicht-bijektive Abbildung beziiglich der Phaseninformation und
der Zeit, wodurch das Losen der Differenzengleichungen durch nichtlineare Naherungsver-
fahren erfolgen muss. In [25] wurde ein ereignisgesteuertes Modell einer CP-PLL dritter
Ordnung analysiert, wobei die Phasengleichung des spannungsgesteuerten Oszillators mit
Hilfe eines NEWTON-Verfahrens gelost worden ist. Simulationsmodelle fiir Filter beliebiger
Ordnung innerhalb dieser Modellierung sind ausgeblieben. D.h., ein allgemeiner Ansatz
zur mathematischen Verhaltensmodellierung wurde nicht angegeben.
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1.3. Ubersicht der Kapitel

Im Folgenden soll die Struktur dieser Arbeit dargelegt werden.

Kapitel 2 (Grundlagen dynamischer Systeme): In diesem Kapitel werden die wich-
tigsten Grundlagen dynamischer Systeme behandelt, die zum Versténdnis dieser Ar-
beit notwendig sind. Es werden grundlegende Definitionen dynamischer Systeme ein-
gefithrt. Dabei werden Systeme betrachtet, in denen Parameter, Differenzen- bzw.
Differenzialgleichungen schalten. Diesbeziiglich werden sogenannte schaltende Sys-
teme untersucht. Die Konzepte der LyYAPUNOV-Theorie, wie LYAPUNOV-Funktionen
und insbesondere Common-LYAPUNOV- und Multiple-LYAPUNOV-Funktionen wer-
den erlautert.

Kapitel 3 (Grundlagen digitaler Phasenregelkreise): Da es bei den Phasenregel-
kreisen eine Vielzahl von Architekturen gibt, sollen in diesem Kapitel die fiir diese
Arbeit wichtigen erldutert werden. Der Fokus des Kapitels liegt dabei in der Dar-
stellung der Nichtlinearitdten und des dynamischen Verhaltens digitaler Phasenre-
gelkreise zur Frequenzsynthese. Ein Teil ist dabei die Beurteilung des digitalen und
des analogen Verhaltens des Regelkreises.

Kapitel 4 (Analyse und Stabilitit digitaler Phasenregelkreise): In diesem Ab-
schnitt werden vier analytische Modelle vorgestellt und deren Ergebnisse miteinander
verglichen. An geeigneter Stelle werden tiefergehende Betrachtungen oder Modeller-
weiterungen und Vereinfachungen eingefiihrt. Diesbeziiglich werden zwei analytische
Modelle zur Beschreibung des nichtlinearen Verhaltens der Dead-Zone und eines zur
Darstellung des Leckstromes entwickelt und analysiert. Des Weiteren wird ein Kon-
zept und eine allgemeines Modell angegeben, mit dem die Modellierung von Phasen-
regelkreisen hoher Ordnung mittels Approximation analytisch beschrieben werden
kann. Durch dieses Modell wird abschliefend die dauraus resultierende Stabilitéts-
grenze mit der von GARDNER fiir einen Regelkreis der Ordnung Drei verglichen.

Kapitel 5 (Modellierung und Simulation digitaler Phasenregelkreise):

Hier wird der Ansatz von HEDAYAT bzw. DEMIR verwendet, um die Komple-
xitat und die Nichtlinearitat effizient zu modellieren und zu simulieren. Dazu werden
verschiedene Architekturen, Schleifenfilter beliebiger Ordnung und die inhérenten
Nichtlinearitdten und Nichtidealitdten auf Basis des von HEDAYAT vorgeschlagenen
Ansatzes modelliert. Insbesondere die Einfliisse der einzelnen Nichtlinearitdten wer-
den hinsichtlich der Dynamik und Frequenzreinheit der Ausgangssignale untersucht
und mittels Simulink- und Spectre-Simulationen werden die Ergebnisse validiert.

Abschliefsend sind die Ergebnisse dieser Arbeit zusammengefasst und es ist ein Ausblick
auf weitere Forschungs- und Entwicklungsarbeiten dargelegt.
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KAPITEL 2

Theoretische Grundlagen

Innerhalb dieses Kapitels sollen die Grundlagen dynamischer Sys-
teme, die zum Verstindnis dieser Arbeit notwendig sind, vorgestellt
werden. Insbesondere sollen verschiedene Verfahren zur Untersu-
chung der Stabilitit nichtlinearer Systeme erdrtert werden, um 1m
Verlauf der Arbeit zu zeigen, inwiefern und unter welchen Randbe-
dingungen diese Ansdtze zur Charakterisierung eines digitalen Pha-
senregelkreises verwendet werden kénnen. Dabei werden die Stabi-
litdtstheorie von LYAPUNOV und die Erweiterungen fiir schaltende
Systeme erortert.

2.1. Dynamische Systeme

Der erste Abschnitt diese Kapitels dient zur Einordnung und Definition dynamischer Sys-
teme. Dazu werden zeitdiskrete und zeitkontinuierliche Systeme betrachtet, wobei sich
verschiedene Definitionen und Resultate als sehr dhnlich darstellen (siehe [39-42]).

Definition 2.1 (Dynamische Systeme) Sei f4: R" — R"”, dann wird
x(k+1) = fq(xz(k)) oder auch xpi1 = fq(xy) (2.1a)

als autonomes, zeitdiskretes, dynamisches System bezeichnet mit @ € R™ und k € Z.. Fir
feo: R™ — R"™ ergibt sich fiir den kontinuierlichen Fall

&(t) = f(z(t)), (2.1b)

wobei t € R gilt.
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Abbildung 2.1.: Betrachtung auf der Zustandsebene: Die gestrichelte Linie zeigt stabiles Ver-
halten nach Definition 2.3, da die e-Umgebung nicht verlassen wird, jedoch
der Ursprung auch nicht erreicht wird. Die rote Linie zeigt das dynmische
Verhalten eines asymptotisch stabilen Systems.

Zur Charakterisierung dynamischer Systeme hinsichtlich ihrer Stabilitat ist die Ruhelage
des Systems von wichtiger Bedeutung.

Definition 2.2 (Ruhelage) Es werde xg = 0 als Ruhelage bezeichnet, wenn
0= f(xr) (2.2)

gilt. Im Falle des diskreten Systems nach Gleichung (2.1a) ist die Ruhelage der Fixpunkt
der Rekursionsgleichung.

Definition 2.3 (Stabilitidt) Eine Ruhelage xr = 0 werde als stabil bezeichnet, wenn zu
jedem € > 0 ein d(e) existiert, so dass ||x(t)|| < € gilt, sofern ||x(to)| < & mit ty < t.

Definition 2.4 (Asymptotische Stabilitit) FEine Ruhelage xy = 0 werde als asym-
ptotisch stabil bezeichnet, wenn diese stabil ist und wenn

lim z(t) = 0 (2.3)

t—00

gilt. Kann gezeigt werden, dass Gleichung (2.3) fiir alle Anfangsbedingungen xq gilt, so
werde die Ruhelage xy als global asymptotisch stabil (im Sinne von LYAPUNOV ) bezeichnet.

Abbildung 2.1 beschreibt die eingefiihrten Stabilitatsbegriffe nach den Definitionen 2.3 und
2.4.
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/ (1) Trajektorie

Abbildung 2.2.: Zur LYAPUNOV-Funktion und Zustandsebene

Definition 2.5 (Exponenzielle Stabilitidt) Fine Ruhelage xg = 0 eines Systems nach
Definition 2.1 werde als exponenziell stabil bezeichnet, wenn die reellen Konstanten M > 1
und B > 0 existieren, so dass

l(t)]| < Me™"||z(0)]] (2.4)
gilt fiirt > 0 und fiir alle Losungen des Systems nach Definition 2.1.

Definition 2.6 (Einzugsbereich) Die Gesamtheit aller Anfangspunkte im Zustands-
raum, die fiirt — oo gegen die Ruhelage konvergieren, wird als Einzugsbereich bezeichnet.

2.1.1. Direkte und indirekte Methode von LYAPUNOV

Existiert eine positiv definite Funktion an der Stelle der Ruhelage, so wird, wenn entlang
der Losung des gestorten Systems diese Funktion monoton fallend ist, die Zustandsgrofse
in die Ruhelage zuriickkehren. Diese positiv definiten Funktionen werden als LYAPUNOV-
Funktionen bezeichnet. In Abbildung 2.2 ist schematisch eine LYAPUNOV-Funktion und
deren Beziehung zur Zustandsebene dargestellt.

Satz 2.1 (Direkte Methode von LyApuNovV fiir kontinuierliche Systeme)
Besitzt die Differenzialgleichung nach Definition 2.1 mit der Ruhelage xr = 0 zu jedem
Anfangswert xy € 21 eine stetige eindeutige Lisung und existiert dann eine Funktion

V(x) mit

V(0) =0, (2.5a)
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die in einer Umgebung 2o C Q) stetig ist, stetige partielle Ableitungen besitzt und dort mait
Ausnahme von x = 0 die Bedingungen

V(z) >0 (2.5b)

und

Vix)=algrad {V(z)} = leg;/ <0 (2.5¢)
i=1

erfillt, so ist die Ruhelage xr im Sinne von LYAPUNOV stabil. Ist das Gleichheitszeichen
bei der Randbedingung (2.5¢) auszuschlieflen, so ist die Ruhelage Ty sogar asymptotisch
stabil.

Ahnlich wie im kontinuierlichen Fall kann die direkte Methode auch bei zeitdiskreten Sys-
temen angewendet werden.

Satz 2.2 (Direkte Methode von LYApuUNoOV fiir zeitdiskrete Systeme) Euxistiert
fiir die zeitdiskrete Differenzengleichung (2.1a) eine kontinuierliche radial unbegrenzte
Funktion V : R™ — R, so dass

V(x) > 0Vx #0, (2.6a)

V(0) =0 (2.6b)
und

V(xpi1) — V(xg) <0V #£0, (2.6¢)

gelten, so wird die Ruhelage xgr = 0 als global asymptotisch stabil bezeichnet.

Tiefergehende Darstellungen zur direkten Methode von LYAPUNOV sind in [39, 40, 42-44]
angegeben. Im Gegensatz zur direkten Methode wird bei der indirekten nicht das nichtli-
neare Modell analysiert, sondern das linearisierte Modell in der Nidhe der Ruhelage. Die
Idee hinter der indirekten Methode von LYAPUNOV liegt darin, die Dynamik des lineari-
sierten Systems um die Ruhelage zu untersuchen und nicht die des nichtlinearen Systems,
da es héufig schwierig bis unméglich ist, die direkte Methode anzuwenden. In [39,42-44|
wird dieses Verfahren genauer dargestellt. Das dynamische System nach Gleichung (2.1b)
lasst sich durch die TAYLOR-Reihenentwicklung durch

b= (@)= flan) + ~f@)| (@ on) +glo) 2.7

LT=IR

darstellen. Mit g = 0 und f(xr) = 0 kann

z=f(x)=Jx+g(x) (2.8)

10
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angegeben werden, wobei J die JACOBI-Matrix bezeichnet. Dabei strebt g(a) immer
schneller gegen 0 fiir € — 0 als ||z||, d. h. es gilt

g(x)
lz||—0 |||

(2.9)

Somit ist es offensichtlich, dass der lineare Anteil um die Ruhelage g bestimmend ist und
es lasst sich das folgende Satz aufstellen.

Satz 2.3 (Indirekte Methode von LYAPUNOV) Das System
& = Ax + h(x) (2.10)

habe die Ruhelage xr = 0. Ferner sei h(x) stetig und jeder Anfangswert xqg in einer
Umgebung der Ruhelage fiihre zu einer stetigen und eindeutigen Trajektorie. Zusdtzlich
erfullt das System

h(z) _

— = (2.11)
2|0 |||

Ist dann die Matrix J eine HURWITZ-Matriz, so ist die Ruhelage asymptotisch stabil. Wenn
J mindestens einen Eigenwert mit positivem Realteil besitzt, so ist die Ruhelage instabil.
Liegen Figenwerte auf der imagindren Achse, so hingt die Stabilitit oder Instabilitit von

der Form von h(-) ab.

Das zeitdiskrete Analogon unterscheidet sich ausschlieflich in der Betrachtung der JA-
coBI-Matrix J der TAYLOR-Reihenentwicklung des zeitdiskreten Systems. Dabei ist es
erforderlich, dass das charakteristische Polynom der Matrix J ein Einheitskreispolynom
ist, d.h., dass alle Eigenwerte im Inneren des Einheitskreises liegen. Die Matrix J wird
dann als SCHUR-Matrix bezeichnet.

2.1.2. Stabilitat linearer Systeme

Wird das lineare kontinuierliche System

z(t)=Ax(t) ,t >0 (2.12)
betrachtet, so kann die quadratische Funktion

V(z) =x! Pz (2.13)
als Kandidat fiir die LyAPUNOV-Funktion angesetzt werden. Mit

Viz) =2 Px+a" P = 7 (ATP + PA) x=—z'Qx (2.14)
ergibt sich somit die LYAPUNOV-Gleichung

ATP+PA=—-Q (2.15)

fiir kontinuierliche Systeme.

11
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Satz 2.4 (LyApuNoOV-Gleichung) Euxistiert fir die LYAPUNOV-Gleichung (2.15) eine
positiv definite Matriz P = PT bei einer vorgegebenen positiv semidefiniten Matriz Q =
QT so ist V(x) eine LYAPUNOV-Funktion und das System nach Gleichung (2.12) ist
stabil. Sind die Matrizen P und Q beide positiv definit, wird V(x) als strenge LYAPUNOV -
Funktion bezeichnet und das System ist asymptotisch stabil.

Satz 2.5 (Stabilitdt kontinuierlicher Systeme) Fiir ein lineares autonomes System
nach Gleichung (2.12) sind die folgenden Aussagen dquivalent:

(a) das System ist asymptotisch stabil
(b) das System ist exponenziell stabil
(c) die Matriz A ist eine HURWITZ-Matriz
(d) die LYAPUNOV-Gleichung
ATP+PA=-Q (2.16)
besitzt eine eindeutige Losung, wobei P und Q positiv definite Matrizen sind.
Fiir zeitdiskrete Systeme
Tpi1 = Az kel (2.17)
ergibt sich
V(eks1) —V(eg) < 0
& xf Pxjq—xf Pz < 0 (2.18)
& xz,(ATPA-P)z, < 0
und somit kann die zeitdiskrete LYAPUNOV-Gleichung
ATPA-P——Q (2.19)
angegeben werden.

Satz 2.6 (Stabilitéit zeitdiskreter linearer Systeme) Fir ein lineares autonomes
System nach Gleichung (2.17) sind die folgenden Aussagen dquivalent:

(a) das System ist asymptotisch stabil
(b) das System ist exponenziell stabil
(c) die Matriz A ist eine SCHUR-Matriz
(d) die diskrete LYAPUNOV-Gleichung
ATPA—P=-Q (2.20)

besitzt eine eindeutige Losung, wobei P und Q positiv definite Matrizen sind.

12
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2.2. Schaltende dynamische Systeme

In diesem Kapitel sollen die grundlegenden Definitionen und Stabilitétseigenschaften schal-
tender Systeme erortert werden. Detailliertere Beschreibungen sind in [45-50] zu finden.

Definition 2.7 (Schaltendes dynamisches System) Sei jede Funktion
fai:Pi—R"miti € Z und P; CR", dann wird

w(k+1) = fq,(x(k)) oder auch xpi1 = fqi(wk) (2.21a)

als autonomes, diskretes, dynamisches System bezeichnet mit € € R™ und k € 7. Fir
fei:Pi— Py miti € Z ergibt sich fiir den kontinuierlichen Fall

o(t) = fei(z(t)), (2.21b)
wobei t € R gilt.

Es sei darauf hingewiesen, dass im Falle der schaltenden Systeme zwischen kontinuierlichen
und zeitdiskreten Systemen Unterschiede existieren. Dabei gibt es im Allgemeinen bei kon-
tinuierlichen Systemen eine Menge M}y, zwischen zwei benachbarten Gebieten P; und Pa,
die diese separiert, jedoch gelten My, C P; und My, C Py. Der Ubergang des Zustands x
erfolgt von einem zum anderen Gebiet stetig. Bei zeitdiskreten Systemen existiert ebenfalls
eine solche Grenze, wobei die Funktionen f, sich auf sich selbst und auf andere Gebiete
abbilden konnen.

Das Schalten dynamischer Systeme kann unterschiedlich begriindet sein. Zum einen kann
ein System durch eine bestimmte Sequenz o (k) geschaltet werden, um beispielsweise das
System zu stabilisieren oder um eine gewiinschte Funktionalitat zu erhalten. Zum anderen
kann es auch ein zustandsabhéngiges Schalten sein, d.h, dass sich der Zustandsraum in
Bereiche aufteilt, in denen eine unterschiedliche Beschreibung des dynamischen Systems
vorliegt. Im Folgenden sollen kurz die wichtigsten Sachverhalte eruiert werden.

Beliebiges Schalten: Die einzelnen Subsysteme kénnen beliebig hin und her geschaltet
werden, wodurch sich fiir jedes System a priori asymptotische Stabilitiat voraussetzen
lassen muss, damit das schaltende System auch fiir eine konstante Schaltsequenz
stabil ist, wobei dann zusétzlich fiir jede beliebige Schaltsequenz die Stabilitdt auch
gewdahrleistet sein muss [45-47,49].

Zeitabhingiges Schalten: Hierbei wird ein Schaltsignal mit vorgegebenen Zeitinterval-
len angegeben. Dabei wird in der Regel angenommen, dass jedes Subsystem stabil ist.
Zur Analyse werden meist das Dwell-Time-Verfahren [45-47| oder multiple LYAPU-
NOV-Funktionen-Ansétze verwendet [45,51].

Zustandsabhingiges Schalten: Diese Schaltvorgéinge erfolgen in Abhéngigkeit des Zu-
standes des Systems. Dabei ist der Zustandsraum in Regionen unterteilt. Durch das
Uberschreiten einer Grenze von einem Subsystem zum néchsten wird das Verhalten
gemék der Differenzialgleichungen oder Differenzengleichungen geéndert.

13
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Stabilisierendes Schaltsignal: Ziel ist es, fiir ein instabiles System eine Schaltsequenz
zu finden, die ein stabiles Verhalten zur Folge hat.

Fiir die folgenden Betrachtungen ist insbesondere das zustandsabhéngige Schalten von
Bedeutung.

2.2.1. Schaltende lineare Systeme
Es sei

Ty = Asy@r , k€N (2.22)
das schaltende, zeitdiskrete, autonome, dynamische System und

x(t) = Ay (t) , >0 (2.23)

das schaltende, kontinuierliche, autonome, dynamische System mit der Menge
A={A;:i €N} und o(k) sei die Schaltsequenz mit A,;) € A. Es lassen sich
verschiedene Beispiele erzeugen, bei denen jedes einzelne Subsystem asymptotisch stabil
ist, jedoch ldsst sich trotzdem zeigen, dass das schaltende System instabil sein kann [45,46].
Dementsprechend kann ganz allgemein formuliert werden, dass asymptotische Stabilitét
der einzelnen Systeme Stabilitdt oder asymptotische Stabilitit fiir das schaltende System
nicht impliziert.

Fiir ein zeitdiskretes System nach Gleichung (2.17) sei der Spektralradius einer Matrix A
definiert als

p(A) = max {|\| : det {\I — A} =0}. (2.24)

Die Verallgemeinerung beziiglich Gleichung (2.23) ergibt sich mit

k
pi(A) = sup {p (H&) tAje AV <z’<k} (2.25)
=1

zu

ESE

p(A) = limsup {py(A)}

k—o0

(2.26)

Allgemein gilt, dass, wenn der Zustand x; fiir k£ gegen Unendlich gegen Null strebt und
somit der Spektralradius p kleiner Eins ist, so ist das System gleichméfig asymptotisch
stabil. Fiir das System nach Gleichung (2.23) gilt Entsprechendes. Es ergibt sich

lim &y =0 ,Vo(k). (2.27)

k—oo

14
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t

1=2 1=1 1=2 1=1

Abbildung 2.3.: Verlauf zweier LYAPUNOV-Funktionen, wobei die jeweilige Funktion immer
dann aktiv ist, wenn auch das zugehiorige Subsystem aktiv ist. Wihrend
das Subsystem 1 aktiv ist, ist die zugehdrige LYAPUNOV-Funktion mono-
ton fallend und zu den Zeitpunkten, bei denen ein Schalten auftritt, gilt
dann Vo, y(@(t;)) = Vo, (x(t;)). Wenn sich eine monoton fallende multiple
LYAPUNOV-Funktion ergibt, so ist das schaltende System asymptotisch stabil.

Demnach soll die Trajektorie fiir alle Schaltsequenzen in den Ursprung miinden. Das be-
deutet, dass das Produkt aller Matrizen gegen Null konvergiert. Es ergibt sich somit

lim A, - Ayt - - Agp) = 0. 2.28
Hm Ag gy - A1 (1) (2.28)
Ist der Spektralradius p(.A) kleiner Eins, so ist das System nach Gleichung (2.23) gleichmé-
fsig asymptotisch stabil. Tiefergehende Beschreibungen zum verallgemeinerten Spektralra-
dius sind in [52] zu finden.

2.2.2. Stabilitatstheorie schaltender Systeme

In diesem Abschnitt sollen zwei wichtige Konzepte basierend auf der LYAPUNOV-
Stabilitatstheorie dargelegt werden. Insbesondere die Problematik, dass asymptotische
Stabilitat der Einzelsysteme die Stabilitdt des schaltenden Systems nicht impliziert, wird
erortert. Die Erweiterungen (gemeinsame und multiple LYAPUNOV-Funktionen), die im
Folgenden beschrieben werden, basieren auf der direkten Methode von LYAPUNOV. Der
Grundgedanke hinter den gemeinsamen LYAPUNOV-Funktionen ist der, dass, wenn sich
die Menge A gerade eine quadratische LYAPUNOV-Funktion teilt, das schaltende System
asymptotisch stabil ist, da entlang der Trajektorie des Systems die Energie abnimmt. Aus-
fiihrliche Informationen sind in [45,46| dargelegt.

Satz 2.7 (Gemeinsame LYAPUNOV-Funktion: kontinuierlich) Existiert eine sym-
metrische und positiv definite Matrix P als Losung von

ATP 4+ PA; <0VieN, (2.29)
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2. Theoretische Grundlagen

V(x)A

Abbildung 2.4.: Verlauf zweier LYAPUNOV-Funktionen, wobei die jeweilige Funktion immer
dann aktiv ist, wenn auch das zugehorige Subsystem aktiv ist. Wihrend das
Subsystem 1 aktiv ist, ist die zugehiorige LYAPUNOV-Funktion monoton fal-
lend, wober fir das inaktive System durchaus die zugehdrige LYAPUNOV-
Funktion steigen kann. Wenn die Anfangswerte fiir die jeweilige LYAPUNOV-
Funktion tmmer kleiner werden, so ist das schaltende System asymptotisch
stabil.

dann wird V(x) = 2’ Px als LYAPUNOV-Funktion des Systems nach Gleichung (2.23)
oder als gemeinsame LYAPUNOV-Funktion der Subsysteme bezeichnet und das System ist
somit quadratisch stabil.

Satz 2.8 (Gemeinsame LyApUNoOV-Funktion: zeitdiskret) Existiert eine symmetri-
sche und positiv definite Matriz P als Lésung von

ATPA, —P<0VieN, (2.30)

dann wird V(zy) = xf Pxy, als LYAPUNOV-Funktion des Systems nach Gleichung (2.22)
oder als gemeinsame LYAPUNOV-Funktion der Subsysteme bezeichnet und das System ist
somit quadratisch stabil.

Existiert keine gemeinsame LYAPUNOV-Funktion oder ist sie unbekannt, so ist es moglich,
fiir jeden Sektor im Zustandsraum eine eigene LyAPUNOV-Funktion zu bestimmen. Dabei
sind dann die Stabilitdtseigenschaften des Systems mit dem Schaltsignal verkniipft. Wenn
also fiir jedes Subsystem eine LYAPUNOV-Funktion angegeben werden kann und die Werte
der Funktion zu den Schaltzeiten gerade

Vot (@(ti) = Vg (2(ti) (2.31)

sind, so ergibt sich eine kontinuierliche LYAPUNOV-Funktion und das schaltende System
ist somit asymptotisch stabil.

Satz 2.9 (Multiple LyApUNoOV-Funktion) Angenommen, zu jedem Paar von Schalt-
zeiten (tg,t;), k < 1 mit o(ty) = o(t;) = 0 und o(ty,) # @ fir ty <ty < t; ergibt sich

16



2.2. Schaltende dynamische Systeme

Vi((t1)) — Vi((tr)) < Wp(a(t:)), (2.32)
dann ist das schaltende System asymptotisch stabil.

In den Abbildungen 2.3 und 2.4 sind die zwei Ansédtze zu den multiple LYAPUNOV-
Funktionen dargelegt.

2.2.3. S-Methode

Im Allgemeinen ist es ausreichend, eine LYAPUNOV-Funktion fiir jedes Teilgebiet des Zu-
standsraums anzugeben, die sich ausschlieklich auf das Gebiet bezieht. Es ist also nicht er-
forderlich, fiir jedes Gebiet eine globale LYAPUNOV-Funktion zu finden. Demnach muss jede
LyApUNOV-Funktion auf dem Gebiet fallend sein. Ein Verfahren, welches dieses bertick-
sichtigt wird als S-Methode (.S-Procedure) bezeichnet, welche im Folgenden kurz dargelegt
werden soll. Tiefergehende Informationen sind in [45,46,51, 53| zu finden.

Satz 2.10 (S-Lemma) Seien A und B symmetrische Matrizen (A, B € R"*"), und es
set angenommen, dass die quadratische Ungleichung

zl Az >0 (2.33)
fur einen beliebigen Vektor T erfillt ist. Die Implikation

x’ Az > 0= x' Bx >0 (2.34)
ist dann giiltig, sofern es eine Zahl o € R™* gibt, so dass

B>cA (2.35)
qgilt.

Definition 2.8 (S-Methode und erweiterte S-Methode) Es sei
p P
qi (X) = Z w;‘FQZa:J + QbZT Z Tj+c (2.36)
j=1 j=1

mit Q; € SX, i =0,1,....,m, j=1,2,....,p und X = (x1, x2, ey Xp), mit
F={XeM,p[R):¢X)>0,i=1,2,...,m}, (2.37)

dabei wird g;(x;) als quadratische Funktion bezeichnet. S,IE{ st definiert als Menge aller
reellen, symmetrischen n x n-Matrizen, wobei jede Matriz A € S, A > 0 (A > 0) positiv
semidefinit (positiv definit) ist. Des Weiteren sei My, ,(R) angegeben als der Raum von
reellen n X p-Matrizen. Im Folgenden sollen zwei Bedingungen betrachtet werden:

(S1) qo(X) > 0VX € F
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m

(S2) 3s € R : qo(X) — ZSiQi(X) >0, VX € Mpp(R)
i=1

Wird (S1) durch (S2) nachgewiesen und ist p = 1, so wird dieses Verfahren als S-Methode
bezeichnet, ist p > 1 so lautet das Verfahren erweiterte S-Methode.

Dieses Verfahren ldsst es auch zu, den Zustandsraum weiter zu unterteilen, um so fiir die
neuen Subsysteme entsprechende LYAPUNOV-Funktionen zu entwickeln. Dabei verdndert
sich das vorgestellte Verfahren nicht, es sind nur mehr Regionen im Zustandsraum zu

betrachten.
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KAPITEL 3

Grundlagen digitaler Phasenregelkreise

In diesem Kapitel werden die wichtigsten Architekturen digita-
ler Phasenregelkreise sowie deren Funktionsweise erldutert. Dabei
liegt der Fokus auf der Frequenzsynthese. Diesbeziiglich werden die
Grundlagen von Integer-N - und Fraktional-N -Synthesizern darge-
legt. Im Abschluss des Kapitels wird der Begriff des Finrastens und
Ausrastens genau definiert und das logische Verhalten des Phasen-
und Frequenz-Detektors analysiert. Zudem werden Schaltungen ent-
wickelt, die in der Frequenzsynthese, in Fast-Locking-Anwendungen
und insbesondere fiir automatisierte Simulationen verwendet wer-
den konnen.

3.1. Grundlagen

Da eine Vielzahl von Phasenregelkreis-Architekturen existiert [2-6,9-12, 28, 54-57], soll
eine kurze Begriffsklarung sowie Kategorisierung erfolgen. Insbesondere sollen dabei die
Integer-N und Fraktional-N Frequenzsynthesizer erldutert werden. Die einfachste Form
eines Phasenregelkreises besteht aus drei Komponenten: Phasendetektor (PD = Phase De-
tector), Schleifenfilter (LF = Loop Filter) und spannungsgesteuertem Oszillator (VCO =
Voltage Controlled Oscillator). In der Frequenzsynthese wird zusétzlich noch ein Teiler in
die Schleife eingebracht, auf den im Folgenden jedoch aus Griinden der Einfachheit verzich-
tet werden soll. Der Phasendetektor vergleicht das Referenzsignal mit dem Ausgangssignal
des spannungsgesteuerten Oszillators und liefert zum entsprechenden Phasenfehler ein pro-
portionales Ausgangssignal in Form einer Spannung oder eines Stromes. Diese Spannung
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3. Grundlagen digitaler Phasenregelkreise

Uret (1)
> ip(t) e (1) Uyeo(t)
wi() |PFD/CP L— 5] LF |F——>] VCO

Abbildung 3.1.: Schematischer Aufbau eines Phasenregelkreises zur Frequenzsynthese be-
stehend aus einem Phasen- und Frequenz-Detektor mit Ladungspumpe
(PFD/CP), einem Schleifenfilter (LF), einem spannungsgesteuerten Oszilla-
tor (VCO) und einem Teiler (N)

oder dieser Strom ist das Eingangssignal des Schleifenfilters, der das Signal in der Art
ausfiltern soll, dass am Eingang des spannungsgesteuerten Oszillators im ausgeregelten
Fall eine Gleichspannung anliegt. Je nach verwendetem Phasendetektor ergeben sich Ne-
benténe auf der Eingangsspannung des spannungsgesteuerten Oszillators. Die Grofse am
Eingang des spannungsgesteuerten Oszillators entspricht der Regelspannung. Durch die-
se Gleichspannung wird die Frequenz des spannungsgesteuerten Oszillators mafgeblich
bestimmt. Die Phasenregelkreise lassen sich in analoge, digitale und vollstiandig digitale
Architekturen einteilen. Im Allgemeinen wird von einem analogen Phasenregelkreis (Ana-
log Phase-Locked Loop: APLL) gesprochen, sobald ein Multiplizierer als Phasendetektor
angesetzt wird |2]. Dabei ist das Eingangs-/Referenzsignal sinusférmig und wird mit einem
rechteck- oder sinusféormigen Signal multipliziert. In der Literatur wird héufig der Begriff
Linear Phase-Locked Loop (LPLL) verwendet und dies direkt mit den APLL in Verbin-
dung gebracht. Hierbei sind die analogen Phasenregelkreise jedoch keineswegs linear, denn
durch die Multiplikation der Signale uye(t) und uyco(t) ergibt sich insgesamt ein hochgera-
dig nichtlineares Differenzialgleichungssystem. Aus diesem Grund ist das Akronym APLL
sinnvoller. Ein digitaler Regelkreis liegt genau dann vor, wenn ein digitaler Phasendetek-
tor verwendet wird, wobei das Filter oder der spannungsgesteuerte Oszillator durchaus
analoge und/oder digitale Bauelemente sein konnen. Obgleich der Regelkreis in diesem
Fall sich als gemischt Analog-Digital-System darstellt, soll es hier als Digital Phase-Locked
Loop (DPLL) bezeichnet werden, was auch der géngigen Begrifflichkeit entspricht [2]|. Sind
alle Komponenten des Regelkreises digital realisiert, wird von einem vollsténdig digitalem
Phasenregelkreis (All Digital Phase-Locked Loop: ADPLL) gesprochen. In dieser Arbeit
werden ausschlieflich DPLL betrachtet.

3.1.1. Integer-N Phasenregelkreise

Die Frequenzsynthese stellt ein grofes Anwendungsgebiet fiir die Phasenregelkreise dar
12,5,6,13,19,37,55,58]. In Abbildung 3.1 ist die Architektur eines Integer-N Frequenz-
synthesizers angegeben. Im Folgenden sollen kurz die grundlegenden Modelle und Arbeits-
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Abbildung 3.2.: Schematischer Aufbau des Phasen- und Frequenz-Detektors mittels einer
Flipflop-Schaltung und zugehdrigem Zustandsautomaten

weisen der einzelnen Funktionsblocke erlautert werden. Bei den DPLL sowie auch bei
den ADPLL gibt es verschiedene Moglichkeiten fiir die Realisierung des Phasendetektors.
Prinzipiell hat sich der sogenannte Phasen- und Frequenz-Detektor (PFD oder auch Tri-
State-PFD) durchgesetzt. Obgleich andere Varianten von Phasendetektoren (XOR-PD,
JK-Flipflop-PD, 5-State-PFD, etc.) auch genutzt werden, soll sich die Betrachtung an
dieser Stelle auf den PFD nach Abbildung 3.2 beschrinken. Ein Grund fiir die Verwen-
dung des PFD liegt in der Eigenschaft, dass, wenn die Schleife als vollstdndig idealisiert
angenommen wird, der Bereich, in dem der Regelkreis einrasten kann, unendlich grofs
ist [2,58]. Insbesondere in Verbindung mit einer Charge-Pump (Ladungspumpe) ist diese
Architektur wohl die weitverbreitetste. Ausfiihrliche Beschreibungen der gédngigen Pha-
sendetektoren sind in [2, 8,58, 59| zu finden und sollen an dieser Stelle ausgespart wer-
den. Der PFD ist ein digitales, flankengesteuertes Bauelement mit sequenzieller Logik.
Der Zustandsautomat sowie eine Représentation durch logische Gatter sind in Abbildung
3.2 dargestellt. Der endliche Automat des PFD nach Abbildung 3.2(a) werde durch das
6-Tupel Zppp = (Z,0,S8,S;,n,7) beschrieben mit der Eingabemenge Z = (uﬁef,ufhv),
wobei der hochgestellte nach unten zeigende Pfeil darauf hinweist, dass es sich um fal-
lende Flanken handelt. Zwar gibt es auch Architekturen, bei denen die Eingabemenge
durch steigende Flanken definiert wird, jedoch soll im Folgenden ausschlieftlich der Fall
der fallenden Flanken berticksichtigt werden. Des Weiteren ergibt sich die Ausgabemenge
O = (0-1,00,041) mit 041 = [ug,ug], 09 = [ur,ur] und o_; = [up, uy), die Zustands-
menge S = (S-1,80, S+1) und dem Anfangszustand S; € S, der Funktion v : Z — S zur
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(a) Ladungspumpe mit Spannungsquellen (b) Ladungspumpe mit Stromquellen
und zusatzlichem Widerstand Ro

Abbildung 3.3.: Schematischer Aufbau der Ladungspumpe mit Schileifenfilter

Berechnung des néchsten Zustandes mit

1

(
S1—81 ,wenn wug

S1—-8 ,wenn “ief

L So—S-1 , wenn uiﬁv | (3.1)
So — S+1 , wenn uief
Si1—8 , wenn uiiv
[ S41 = 841, wenn “ief

Wenn der endliche Automat sich im Zustand S; = Sp befindet und eine fallende Flanke
ut auftritt, so wechselt der Zustand von Sy zu S41. Die Ausgabefunktion 1 : Z — O lésst

ref
sich in diesem Fall kompakter durch i : § — O darstellen und kann somit durch

o1 ,wenn Sp—S_1VS 1 —~85
n = 0y ,wenn Sy1 — SgVS_1 — S (3.2)
oy1 ,wenn Sy — Sy VS — St

angegeben werden. Offensichtlich werden in diesem Modell die Gatterlaufzeiten, die insbe-
sondere durch den Riickkopplungszweig im PFD (siche Abbildung 3.2(b)) wichtig werden
sowie die endlichen Flankensteilheiten vernachléassigt.

Im Allgemeinen wird dem PFD eine Charge-Pump nachgeschaltet. Dabei wird der Regel-
kreis dann als Charge-Pump Phase-Locked Loop (CP-PLL) bezeichnet. Auf die einzelnen
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Abbildung 3.4.: Schematische Darstellung eines passiven PLL-Schleifenfilters n-ter Ordnung,
wobei der Widerstand Rg weggelassen wird, sobald eine Charge-Pump mit
Stromquellen verwendet wird.

Architekturen der Ladungspumpen soll im Folgenden nicht genauer eingegangen werden.
Ausfiihrliche Betrachtungen der Charge-Pump fiir PLL-Systeme sind in [13,37] zu finden.
Es lassen sich generell zwei Klassen angeben: die Ladungspumpe mittels Spannungsquelle
(sieche Abbildung 3.3(a)) und mit Hilfe von Stromquellen (siehe Abbildung 3.3(b)). Die
Ladungspumpe mit einer Spannungsquelle stellt bei kostengiinstigen Anwendungen eine
einfache Losung dar. In der Regel werden als Schalter MOS-Transistoren verwendet. Da-
bei wird der UP-Zweig durch einen p-Kanal-Transistor geschaltet, wodurch das Signal wuy,,
invertiert werden muss. Bei dem DN-Zweig wird dann ein n-Kanal-Transistor verwendet.
Der PFD steuert dabei zwei Schalter, die mit der Versorgungsspannung und Masse ver-
bunden sind. Im Falle, dass der PFD im Zustand Sy ist, liefert die Ladungspumpe keine
Ausgangsspannung und das Potenzial am Eingang des VCO entspricht dem der Kapazitéat
des Filters, wenn ein Filter erster Ordnung verwendet wurde. Wenn Filter hoherer Ord-
nung verwendet werden, ergeben sich Ausgleichsstrome, wodurch das Filterausgangssignal
im Zustand Sp nicht mehr konstant ist. Bei der Charge-Pump mit Stromquellen werden
bezogen auf das digitale Signal des PFD ein Strom in das Schleifenfilter eingeprégt. In Ab-
bildung 3.3(b) ist dieser Sachverhalt durch spannungsgesteuerte Stromquellen dargestellt.
Dabei liefern die Stromquellen entsprechend der logischen Zustédnde der Signale w,;,(¢) und
uqn(t) einen Strom i,(t), wobei der Charge- Pump-Strom iy (t) nur die Werte —1I;,, 0 A oder
+1,, annehmen kann. D.h. die Ausgabe o_; des eingefiihrten PFD nach Abbildung 3.2(a)
entspricht einem Strom i, = —1I,, 0 ergibt einen Strom i, = 0 A und die Ausgabe o_; lie-
fert einen Strom i, = +1I,. Damit ist die Information des Phasenfehlers in den Pulsbreiten
des Stromes i, oder im Falle einer CP-PLL mit Spannungsquelle in den Pulsbreiten der
Spannung u, kodiert. Im Allgemeinen kann nahezu jedes Filter verwendet werden, wobei
auf die Struktur der Ladungspumpe zu achten ist. Ist im Entwurf eine bestimmte Schlei-
fenverstarkung vorgesehen, oder muss auf Grund der verwendeten IC-Komponenten die
gefilterte Regelspannung verstiarkt werden, kann ein aktives Filter eingesetzt werden. Es
sei auf [13,37,55,58] verwiesen. In dieser Arbeit werde die Filtertopologie nach Abbildung
3.4 verwendet. Es handelt sich um ein passives Filter n-ter Ordnung. Dabei entspricht der
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3. Grundlagen digitaler Phasenregelkreise

Widerstand Ry genau dem in Abbildung 3.3(a), der ausgespart wird, sobald eine Ladungs-
pumpe mit Stromquellen verwendet wird.

Der spannungsgesteuerte Oszillator ist ein nichtlineares Bauelement der Elektrotechnik mit
einer grofsen Anzahl an Realisierungen [60-62]. Fiir diese Arbeit soll dabei der Oszillator
als systemtheoretisches Modell eingefiihrt werden. Allgemein ldsst sich der spannungsge-
steuerte Oszillator durch die Phasengleichung

t+7
Oveolt +T) = Pyeo(t) + 27 /t fluen(t))dt’ (3.3)

definieren, wobei f(-) eine nichtlineare Charakteristik aufweist und von der Eingangsgrofie
uct1(t) abhéngt. Der spannungsgesteuerte Oszillator liefert beziiglich der Regelspannung
uet1(t) und unter dem Einfluss der nichtlinearen Kennlinie f(-) ein proportionales Phasen-
signal @yeo(t). Ist das Ausgangssignal des spannungsgesteuerten Oszillators sinusformig,
ergibt sich tyeo(t + 7) = sin (@veo(t + 7)), wobei ein Tastverhéltnis von 50% anzusetzen
ist. Der Teiler ist nichts anderes als ein digitaler Zéahler, der die fallenden bzw. steigenden
Flanken des VCO-Signals uyco(t) zéhlt und bei Erreichen des Wertes N € IN die entspre-
chende Flanke des VCO-Signals uyeo(t) an den Eingang des PFD weiterleitet.

Durch die Wahl des Teilungsbeiwertes N stellt sich eine konstante Frequenz und Phase
am Ausgang des VCO ein, sobald die Signale uy(t) und wugiy(¢) absolut phasensynchron
sind. Die VCO-Frequenz kann dann durch fyeo = N - fref angegeben werden. Offensicht-
lich kann, wenn N € IN, die Ausgangsfrequenz des VCO nur in f.r-Schritten verstellt
werden. Dementsprechend ist fiir eine hohe Frequenzauflésung innerhalb eines vorgegebe-
nen Intervalls (auch Channel Spacing genannt) eine niedrige Referenzfrequenz erforderlich.
Dies hat zur Folge, dass das Filter mit fallender Referenzfrequenz immer schmalbandiger
werden muss. Die Konsequenz ist im Allgemeinen eine langere Einschwingzeit und somit
ergeben sich direkt Probleme, wenn schnelle Frequenzwechsel von Noten sind oder eine
vorgegebene Bandbreite einzuhalten ist. Hinzukommend kénnen die vom VCO verursach-
ten Rauschanteile nicht mehr so gut ausgefiltert werden, wodurch sich die Frequenzreinheit
ebenfalls verschlechtert. Auch kénnen durch den Phasendetektor Nebentone um die VCO-
Ausgangsfrequenz entstehen, die ausgefiltert werden miissen. Diese Probleme fiihren zum
Einsatz von Filtern héherer Ordnung und zu den Fraktional-N Phasenregelkreisen. Bevor
diese jedoch dargelegt werden, soll aus den vorgestellten Einzelblécken das lineare kontinu-
ierliche Modell angegeben werden. Es ist dazu erforderlich, dass der PFD linearisiert wird.

Wird das Tastverhéltnis des Stromes i,(t) oder der Signale wuup(t) und uqy(t) betrach-
tet, lasst sich zeigen, dass fiir einen idealen Phasen- und Frequenz-Detektor im Mittel
und fiir einen Phasenfehler |pe(t)| < 2w der Phasensignale @ye(t) und ¢qiy(t) der PFD
lineares Verhalten aufweist. Genauere Beschreibungen dieses Sachverhaltes sind in |2, 58|
zu finden. Demnach stellt der PFD eine Subtraktionsstelle der Phasensignale yq(¢) und
@div(t) dar und die Charge-Pump kann als Proportionalglied modelliert werden. Wird die
Kennlinie des VCO durch f(uc1(t)) = Kyuet(t) + foveo angegeben, ergibt sich ein linea-
rer Zusammenhang zwischen der Regelspannung uc(t) und der Ausgangsfrequenz fyco
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Abbildung 3.5.: Schematischer Aufbau eines linearisierten Phasenregelkreises zur Frequenz-
synthese: Der PEFD mit Ladungspumpe ist durch eine Subtraktionsstelle mit
Proportionalglied dargestellt. Das Filter wird durch eine Ubertragungsfunktion
Hyr(s) definiert. Der spannungegesteuerte Oszillator kann durch ein Propor-
tionalglied, eine Additionsstelle fiir die Ruhefrequenz foyvco und einem Inte-
grator modelliert werden. Der Teiler stellt sich als Porportionalglied dar.

des spannungsgesteuerten Oszillators. Der Teiler kann an dieser Stelle auch als Propor-
tionalglied modelliert werden. In Abbildung 3.5 ist das Blockschaltbild eines linearisierten
Modells einer CP-PLL dargestellt. Demnach kann die Phaseniibertragungsfunktion

Wo,veco

_ CI>div(s) _ KHLF(S) i

Hi(s) (3.4)

(I)mf(s) % + s+ KHLF(S)

mit wo veo = 27 fo,veo angegeben werden. Wird die Ruhefrequenz des Oszillators fo veo zu
Null gesetzt, lassen sich die in der Literatur [2,13] zu findende Phaseniibertragungsfunktion

_ chiv<S) . KHLF(S)

H(s = 3.5a
(s) (bref(S) s+ KHLF(S) ( )
und die Fehleriibertragungsfunktion
(I)e(s) S
H,(s) = =1-H(s) = ——F— 3.5b
e( ) (I)ref(s) ( ) s+ KHLF(S) ( )

angeben, wobei K = I,Ky,/(2rN) ist und Hyp die Ubertragungsfunktion des Schleifen-

filters darstellt. Wird das Filter erster Ordnung nach Abbildung 3.4 und die Charge-Pump

nach Abbildung 3.3(b) verwendet, so ergibt sich die Phasentibertragungsfunktion zu
2dwns + w?

H(s) = .
(s) $2 + 2dwy s + w? (3.6a)

und die Fehleriibertragungsfunktion zu

g2

H, = .6b
¢ 82 4 2dwys + w2’ (3.6b)
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Abbildung 3.6.: Vergleich der linearen kontinuierlichen Approzimation einer CP-PLL zweiter
Ordnung mit einer nichtlinearen CP-PLL. Modell mit linearem VCO, idealem
PFD und einer idealen Ladungspumpe. In den Abbildungen (a) bis (d) sind
diese Modelle mit unterschiedlichen Ddmpfungsbeiwerten d gegeniibergestellt.

wobel
T =RC1 , wn=—F+

sind. Aus Griinden der Ubersichtlichkeit seien die Regelkreise hoherer Ordnung nicht
weiter betrachtet. Tiefergehende Untersuchungen zur Analyse und zum Entwurf sind
in 2,17,20,58,63-68| dargelegt. In den Abbildungen 3.6(a) bis 3.6(d) ist ersichtlich, dass die
Approximation im Vergleich zu einer idealen, jedoch nichtlinearen PLL fiir grofere Damp-
fungsbeiwerte d auch zunehmend ungenauer im dynamischen Verhalten wird. Generell
stellt das linearisierte Modell das durchschnittliche Verhalten des Regelkreises dar. Dies ist
darin begriindet, dass das schaltende Verhalten des Phasen- und Frequenz-Detektors einen
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3.1. Grundlagen

wichtigen Beitrag zur Dynamik liefert. An dieser Stelle sei erwahnt, dass das Abtastverhal-
ten auch hinsichtlich der Stabilitdt einen nicht zu vernachléssigenden Einfluss hat [13,16],
worauf in Kapitel 3.1.3, 4 und 5 genauer eingegangen wird. In der Regel werden bei der Ver-
wendung der linearen, kontinuierlichen Approximation sogenannte ,, Daumenregeln® (rules
of thumb [18]) verwendet. Eine dieser Regeln besagt, dass die Kreisfrequenz des Referenz-
signals wyer im Vergleich zur Eigenkreisfrequenz w, des Regelkreises hinreichend klein sein
muss [13,16,18]. Uber die Rauschbandbreite B lisst sich eine dhnliche Regel formulieren.
Vorab seien jedoch grundlegende Betrachtungen zur Definition der Rauschbandbreite kurz
erlautert. Im Folgenden soll der Rauschprozess n(t) als stationdr angenommen werden.
Des Weiteren sei der zeitliche Mittelwert von n(t) gerade gleich Null. Die spektrale Leis-
tungsdichte ist durch die FOURIER-Transformierte der Autokorrelationsfunktion gegeben.
Es gilt somit

400 =T
Lolw) = / lim {% /+ o+ 7) dt}ej“”dr (3.7)

[e.9]

L, (w) ist eine gerade Funktion und kann somit durch eine einseitige Dichte beschrieben
werden. Da ein Phasenregelkreis nichts anderes ist als ein Filter mit der Ubertragungs-
funktion H(jw), ergibt sich fiir die einseitige spektrale Leistungsdichte am Ausgang der
Zusammenhang

Lo(w) = [H(jw)[*Li(w) (3.8)

mit der einseitigen spektralen Leistungsdichte £i(w) am Eingang des Regelkreises. Die
Varianz am Ausgang wird dann durch

2 1 >~

ot = —
27T0

|H (jw) |2£i(w) dw (3.9)

beschrieben. Wird weifies Rauschen £i(w) = Ny angesetzt, so ist

o2 = N0 [ ) P dw, (3.10)
2 0
Dabei wird
=L [T |G (3.11)
~2 /. Jjw)|* dw :

als Rauschbandbreite definiert und ist ein Mals fiir die Storbefreiung. Wird ein CP-PLL
zweiter Ordnung betrachtet, kann die Regel
1 oo

n 1 ¢
B [H(jo)? oo = 22 (d+ —) o« el (3.12)

:ﬁ 0 4d Q

definiert werden, wobei v im Allgemeinen zwischen Fiinf und Zehn liegt, d. h. die Rausch-
bandbreite B des Systems soll kleiner ein Fiinftel (ein Zehntel) der Referenzkreisfrequenz
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3. Grundlagen digitaler Phasenregelkreise

Minimum der Rauschbandbreite
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d

Abbildung 3.7.: Rauschbandbreite fiir einen Regelkreis 2. Ordnung mit einem Minimum bei
d=0,5

sein. Abbildung 3.7 zeigt die Rauschbandbreite eines Regelkreises 2. Ordnung, normiert
durch wy,, aufgetragen tiber der Dampfung d. Es zeigt sich, dass sich fiir d = 0,5 ein Mi-
nimum in der Rauschbandbriete B = wy,/2 ergibt. Die Dampfung d wird in der Regel
zu 0,7 gewdhlt, da dieser Wert hinsichtlich des Einschwingens und Uberschwingens einen
sehr guten Kompromiss liefert und beziiglich der Rauschbandbreite noch sehr nahe am
Minimum liegt. Da meist die Referenzfrequenz anfangs definiert wird und je nach Anwen-
dung die Dampfung sich geméaf der Rauschbandbreite ergibt, so kann durch Festlegen von
wy und d ein entsprechender Entwurf fiir die PLL-Parameter angegeben werden. Ahnli-
che Annahmen wurden auf Regelkreise hoherer Ordnung erweitert. Beispielsweise soll bei
Verwendung des Filters zweiter Ordnung der Wert von Cs ein Zehntel des Wertes von C}
besitzen, wodurch zusétzlich eine Phasenreserve von 40° bis 45° erzielt wird [18].

3.1.2. Fraktional-N Phasenregelkreise

Die angesprochenen Nachteile der Integer-N Frequenzsynthesizer (wie grofe Teilerwer-
te, d. h. Verschlechterung des Phasenrauschens der PLL und hohe Kosten, eingeschrénkte
Frequenzauflosung, die gerade gleich der Eingangsfrequenz ist, die Verkniipfung der Band-
breite mit der Ausregelzeit sowie die Problematik, dass bei schmalbandiger Auslegung des
Regelkreises das Phasenrauschen des VCO nicht ausreichend ausgefiltert werden kann)
ergeben hinsichtlich schmalbandiger Anwendungen, wie GSM oder Bluetooth Probleme,
wodurch sich bestimmte Spezifikationen nicht einhalten lassen. Anders ausgedriickt, wird
die Schleifenbandbreite niedrig gewahlt, damit die Oberwellen des Referenztaktes ausge-
filtert werden konnen, so wird die Zeit, die der Regelkreis zum Einschwingen benoétigt,
vergrofert. Insgesamt ist es wiinschenswert, beliebige rationale Teilerwerte einzustellen,
damit auch beliebige rationale Frequenzen am Ausgang des Regelkreises synthetisiert wer-
den kénnen.
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Abbildung 3.8.: Schematischer Aufbau eines Y A-Phasenregelkreises zur Frequenzsynthese

Das grundlegende Konzept eines Fraktional-N Phasenregelkreises zur Frequenzsynthese
ist recht einfach. Damit ein mehr oder weniger beliebiges Teilungsverhéltnis zwischen der
Frequenz der Referenzspannung wu,.¢(t) und der des VCO-Signals uyeo(t) eingestellt werden
kann, wird der Teilungswert N zwischen zwei ganzzahligen Werten moduliert, so dass sich
im Mittel das gewilinschte Teilerverhéltnis und somit die gewiinschte Ausgangsfrequenz
einstellt. In vielen Architekturen werden mehr als zwei Werte des Teilungswertes verwen-
det, wobei das Prinzip jedoch erhalten bleibt. Generell liegt die Problematik darin, dass
eine geeignete Sequenz zum Schalten des Teilers gefunden werden muss und die damit ver-
bundenen Unreinheiten des Frequenzspektrums am Ausgang des Regelkreises unterdriickt
werden miissen. Diese Unreinheiten, oder auch Fractional Spurs (niederfrequent) werden
durch die Schaltsequenzen des Teilers (Dual-Modulo- oder Multimodulo-Teiler) hervor-
gerufen und konnen innerhalb der Schleifenbandbreite liegen, wodurch sich verschiedene
Konzepte der Stortonunterdriickung ergeben haben, da ansonsten dieses Konzept wiederum
Vorgaben an die Frequenzreinheit nicht erfiillen wiirde. Insbesondere konnen die folgenden
Verfahren hervorgehoben werden [1,8,13,37,55,69]:

(1) Phasenschitzung mit einem Digital-Analog-Umsetzer
(2) Erzeugung von Zufallszahlen

(3) Phaseninterpolation

(4) Erzeugung von Pulsen

(5) Ausblenden von Pulsen
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(a) Einfache Darstellung zur Erzeugung der Schalt- (b) Modulation des Teilungswertes

sequenzen mit Hilfe einer ALU und eines Regis-
ters. Nr ist der fraktionale Teil des gewiinschten
Teilungswertes und das Register wird entweder
durch wurer(t) oder ugiv(t) getaktet.

Abbildung 3.9.: Schematische Darstellung der Schaltung zur Erzeugung der Teiler-
sequenzen (a) sowie die zeitlichen Verldufe der Signale X +Y und N; + ¢ (b)

(6) X A-Rauschformung

An dieser Stelle soll ausschlieflich das Verfahren mittels der Y A-Rauschformung betrachtet
werden. Die Prinzipschaltung einer ¥ A-Fraktional-N PLL ist in Abbildung 3.8 dargestellt.
Ausfiihrliche Beschreibungen zu den einzelnen Verfahren und zu Fraktional-N Phasenre-
gelkreisen sind in [13,37,55,70-72| dargelegt. Grundlegend fiir die folgende Betrachtung ist
Abbildung 3.9. Damit beliebige fraktionale Teilerverhélnisse erzeugt werden kénnen, wird
der erwiinschte Teilungswert in einen ganzzahligen Anteil Nt und in einen fraktionalen Teil
Ny zerlegt. Der fraktionale Teil Np ist ein Eingangssignal (X = Ny) einer ALU (Arithme-
tic Logic Unit) mit einem maximalen Wert 1, wobei die Summe der Signale in ein Register
geschrieben wird, welches durch das Referenz- oder das Riickkopplungssignal getaktet ist.
Der Ausgang des Registers wird auf den Eingang Y der ALU zuriickgekoppelt. Dadurch
liefert der Carry-Ausgang bei einem Uberlauf gerade eine Teilerwertinderung. Dieses Prin-
zip entspricht gerade dem eines X A-Modulators. Die Motivation fiir die Verwendung von
Y A-Modulatoren liegt in deren Eigenschaft, die spektrale Leistungsdichte bei niedrigen
Frequenzen zu vermindern und bei hohen Frequenzen zu erhohen. Dieser Vorgang wird
als Rauschformung oder Noise Shaping bezeichnet. Allgemein kann gesagt werden, dass,
je groker die Ordnung des Y A-Modulators ist, desto besser ist die Rauschformung, wobei
dann insbesondere die Stabilitét des Y A-Modulators iiberpriift werden muss [13,55]. Aus-
nahmen stellen dabei die MASH-Architekturen (Multiple stAge Noise SHaping) dar, bei
denen die Stabilitdt immer gewéhrleistet ist [13,37,55,69].

3.1.3. Nichtlinearitaten in digitalen Phasenregelkreisen

Im Folgenden werden die inhérenten Nichtlinearitdten einer CP-PLL dargelegt. Es
lassen sich dabei die durch die Mixed-Signal-Architektur gegebenen Nichtidealité-
ten/Nichtlinearitaten (das Schalten des Stromes sowie des Teilers, die nichtlineare Kenn-
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linie des spannungsgesteuerten Oszillators und die von der Charge-Pump und dem PFD
verursachten Nichtidealitdten) unterscheiden. Diese Betrachtungen werden insbesondere im
Kapitel 5 aufgenommen und in ein erweitertes Konzept zur Simulation und Analyse einge-
arbeitet, um dann genauere Untersuchungen der einzelnen Nichlinearitdten beziiglich des
dynamischen Verhaltens sowie deren Beitrage zur Verschlechterung der Frequenzreinheit
anzugeben.

Schaltende Parameter

Da sich der Phasendetektor als ein digitales Bauelement darstellt und die Signale des Pha-
sendetektors im idealen Fall die Ladungspumpe von einem zu einem anderen Wert ideal
schalten, wobei dies proportional zum Phasenfehler der Eingangssignale geschieht, ergibt
sich am Ausgang der Ladungspumpe ein pulsweitenmoduliertes Signal. D.h., der Regel-
kreis ist als offen anzusehen, sobald ein Ereignis (ein Wechsel der Signale am Eingang der
Ladungspumpe) erfolgt. Durch diesen Sachverhalt ist es schwierig, genaue Stabilitdtsunter-
suchungen anzuwenden, die diese Form der Nichtlinearitat mit beriicksichtigt. Insbesondere
ergibt sich dadurch, wie von GARDNER [16] beschrieben, dass die Eingangsfrequenz einen
Einfluss auf die Stabilitdt des Systems ausiibt. Der Phasenregelkreis verhilt sich dann wie
ein Abtastsystem und es ist erforderlich, zumindest ein linearisiertes zeitdiskretes Modell
zu verwenden, um die Stabilitat fiir kleinere Eingangsfrequenzen zu gewahrleisten oder zu
bestimmen.

Ein dhnliches Problem ergibt sich, wenn ein Integer-N Phasenregelkreis zur Frequenzsyn-
these nicht mehr ausreicht, um den Anspriichen des zu entwerfenden Systems zu geniigen.
In diesem Fall konnen die Fraktional-/V Frequenzsynthesizer verwendet werden. Wie schon
erwahnt, wird bei diesen Architekturen der Teilerwert gerade so geschaltet, dass sich im
Mittel auch rationale Teilerverhéltnisse der Eingangsfrequenz synthetisieren lassen. Durch
dieses Schalten ergibt sich eine periodische oder auch stochastische Variation der Schleifen-
verstiarkung, wodurch innerhalb des Entwurfes insbesondere die Architektur und Ordnung
des Schleifenfilters betroffen sind [6,13,18,27,55,69|, damit die Nebentone im Spektrum
des Ausgangssignals minimiert werden.

Diese beiden durch den Digitalteil verursachten Nichtlinearitdten (Schalten des Stromes
und des Teilerwertes) lassen sich innerhalb der Modellierung als schaltende Parameter
annehmen, wodurch sich ein lineares, kontinuierliches, schaltendes oder ein nichtlineares,
schaltendes, zeitdiskretes Modell ergibt. Insbesondere wird sich zeigen, dass die zeitdiskrete
Variante fiir die Simulation und die Stabilitdtsuntersuchungen von Bedeutung ist.

Charakteristik des spannungsgesteuerten Oszillators

Der spannungsgesteuerte Oszillator stellt in sich ein nichtlineares Bauelement dar, wobei
eine Vielzahl von Architekturen existieren, auf die hier jedoch nicht genauer eingegangen
werden soll. Tiefergehende Behandlungen kénnen in |8, 60-62] nachgelesen werden. An
dieser Stelle soll ein einfaches nichtlineares Modell eines spannungsgesteuerten Oszillators
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Abbildung 3.10.: Charakteristiken des spannungsgsteuerten Oszillators: Die schwarze gestri-
chelte Linie stellt eine lineare Funktion dar, die durch die Frequenz fo vco und
die Steigung K (Verstirkungsbeiwert) definiert ist. Die rote Charakteristik
ist eine stiickweise lineare Darstellung, bestimmt durch den Verstdrkungsbei-
wert Ky, die minimale und mazximale Spannung umin bzw. Umax sowie durch
die minimale und mazimale Ausgangsfrequenz fmin und fmax. Die schwar-
ze Funktion ist eine typische nichtlineare Charakteristik eines VCO, gegeben

durch die Funktion f(-) (siehe Gleichung (3.13)).

vorgestellt werden:

uvco(t) =49 (SOO,VCO + 27T[(V/O f (uctl(T)) dT) ) (313>

wobei g eine reelle periodische Funktion ist, pgveo die Phase zum Zeitpunkt ¢ = 0 angibt,
K als Verstarkungsbeiwert bezeichnet wird und die nichtlineare Charakteristik f des VCO
durch die Spannung u)(t) geregelt wird. In Abbildung 3.10 sind drei Charakteristiken der
Funktion f dargestellt. Wird der VCO innerhalb des Regelkreises betrachtet, ist ersicht-
lich, dass sich die Schleifenverstarkung mit der Funktion f &ndert. Hinzukommend lésst
sich bei Verwendung des stiickweise linearen Modells feststellen, dass sich eine Art von
Stellgrofsenbeschrankung ergibt, wodurch der Wind-Up-Effekt auftreten kann. Da sich der
Zustand des Regelkreises nur zu diskreten Zeitpunkten dndert und dieser zwischen zwei
Ereigniszeitpunkten ohnehin als offen anzusehen ist, wird sich dieser Effekt anders als bei
kontinuierlichen Systemen ausbilden. Ist die Zielfrequenz grofer fiax, so wird der Wind-
Up-Effekt vollstandig auftreten, jedoch ist dann auch der Entwurf schlecht gewahlt. Ist die
Zielfrequenz noch unterhalb der Maximalfrequenz und wird die Stellgréfenbeschrankung
aufgrund des Einschwingvorganges der Regelgrofe uc(t) aktiv, wird sich der Effekt etwas
abmildern.
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Abbildung 3.11.: Schematische Darstellung der Charakteristik des PFD beziiglich des Phasen-
fehlers e und des Tastverhdltnisses §. Fir einen Phasenfehler p_ < po <
w4+ ist die Dead-Zone als Konsequenz der Laufzeiten aktiv und in den Be-
reichen p__ < po < @_ und ¢4 < po < @iy ergibt sich eine Anderung der
Steitgung als Folge der endlichen Flankensteilheiten.

Nichtlineare Charakteristik des PFD

Die Charakteristik des Phasen- und Frequenz-Detektors ist bei genauer Betrachtung eine
Nichtidealitét /Nichtlinearitét, die sich zum einen aus den Laufzeiten des PFD und zum
anderen aus den Flankensteilheiten der Signale ergibt. D. h. fiir kleine Phasenfehler zwi-
schen den Eingangssignalen ue(t) und wug;y (t) kann der Phasendetektor keine dquivalente
Pulsbreite des Stromes i,(¢) oder der Spannung ugy(t) liefern, wodurch sich der Regel-
kreis in diesem Bereich nicht mehr steuern lasst. Zur Charakterisierung des PFD kann das

Tastverhaltnis
T,
§=-2 (3.14)
Tg

angesetzt werden, wobei T}, die Pulsbreite von uyy(t) bzw. ug,(t) bezeichnet und 7y ist die
Periodendauer, die sich von einem Puls zum néchsten Puls von wyp(t) bzw. ugy(t) ergibt.
Wird das Tastverhéltnis § iiber den Phasenfehler aufgetragen, so ergibt sich die Charak-
teristik nach Abbildung 3.11. Dabei ist die reine Dead-Zone eine Folge der Verzogerungen
und zum Teil die Folge der endlichen Flankensteilheiten oder genauer der nichtidealen Puls-
form. Die endlichen Flankensteilheiten stellen insbesondere eine Anderung der Steigung in
der Charakteristik dar, wobei an dieser Stelle von idealen Schaltern fiir die Ladungspumpe
ausgegangen wird. Diese Anderung bewirkt auch hier eine Variation der Schleifenverstir-
kung des Regelkreises. Insbesondere im ausgeregelten Zustand ergibt sich dadurch eine
geringere Schleifenverstarkung.
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(a) Stromungleichgewicht zwischen den Signalen wup(t) (b) Zeitliche Diskrepanz zwischen %up(t) und wan(t)
und udn(t) durch die Invertierung des UP-Signals wyp(t)

Abbildung 3.12.: Schematische Darstellung der Auswirkung des Stromungleichgewichts zwi-
schen uup(t) und ugn(t) (a) sowie der zeitlichen Diskrepanz zwischen Uy (t)
und ugn(t) durch die Invertierung des UP-Signals uy,(t) (b)

Charge- Pump-Ungleichgewicht

Die reale Ladungspumpe legt einen bestimmenden Anteil der Reference Spurs fest, wodurch
sich die Frequenzreinheit entsprechend verschlechtert. Ein wichtiges Problem ist dabei
das Ungleichgewicht der UP- und DN-Stréme, d.h. |[luyp| # |l4n|- Bei Betrachtung der
Architektur des PFD (siehe Abbildung 3.12), wenn der Regelkreis ausgeregelt ist und der
Zustand von S 1 nach Sy oder von S_1 nach &y wechselt, ergibt sich fiir die Zeit 7,5, die der
PFD zum Zuriicksetzen der Flipflops bendtigt, ein ungewollter Strom AJ,. Dies wiederum
hat zur Folge, dass sich die Ladung in den Kapazitaten des Filters andern, wodurch sich
dementsprechend auch die Regelspannung u. andert. Damit wird sich eine periodische
Modulation der Regelspannung ergeben, die sich als Nebenténe im Spektrum des Signals
Uyeo ausbilden. Abbildung 3.12(a) beschreibt gerade diesen Zusammenhang hinsichtlich
der Signale uqy, Uup, ip und uet, wobei der Einfachheit halber ein Regelkreis der Ordnung
Zwei angesetzt wurde. Ein anderer Effekt, der als Effect of Skew bezeichnet wird, tritt dann
auf, wenn aufgrund der verwendeten MOS-Transistoren das UP-Signal des PFD invertiert
werden muss, wodurch sich eine Verzogerung 74 ergibt. D. h. durch die Verzégerung 74 zur
Invertierung des Signals u,p wird der UP-Zweig der Ladungspumpe verzogert und pragt
somit den Strom I, yp, zeitlich versetzt in das Filter ein. Dadurch wird iiber die Zeit 74
der DN-Strom dominierend. Der DN-Strom wird dann etwas spater durch das Schalten
des UP-Zweiges aufgehoben bis der UP-Zweig dominiert. In Abbildung 3.12(b) ist dieser
Sachverhalt dargelegt. Dieser Effekt beschreibt demnach auch das zeitliche Ungleichgewicht
(Timing Mismatch) [27].
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Abbildung 3.13.: Schematische Darstellung beziiglich der Auswirkung eines Leckstromes in-
nerhalb der Charge-Pump auf die Regelspannung und somit auf die
Ausgangsfrequenz

Leckstrom

Eine wichtiges Problem innerhalb des Entwurfs von Ladungspumpen ist der Leckstrom,
der die Regelspannung u. direkt beeinflusst [73]. Der Leckstrom kann zum einen durch
die Ladungspumpe selbst oder auch durch On-Chip-Varaktoren hervorgerufen werden. Der
Einfluss des Leckstromes lésst sich mit Hilfe der Abbildung 3.13 beschreiben. Im Grunde
ergibt sich durch den Leckstrom fiir den Phasenregelkreis, dass sich ein Strom I, einstellt,
obgleich sich der PFD im Zustand Sy befindet und eigentlich kein Strom in das Filter
eingepréigt werden sollte. Durch diesen Sachverhalt wird ein Phasenfehler im ausgeregel-
ten Zustand des Systems durch den Phasendetektor erkannt und entsprechend korrigiert.
Dadurch wird der Regelkreis kontinuierlich dazu gezwungen, den Leckstrom zu kompen-
sieren und es entstehen somit wieder Nebentone im Spektrum des Ausgangssignals tyeo ()
mit einem Abstand von =+ fof zur Grundschwingung. Anders ausgedriickt, um die durch
den Leckstrom verursachte Frequenzverschiebung auszugleichen, ergibt sich ein konstanter
Phasenfehler, der den Leckstrom durchschnittlich kompensiert.

3.2. Untersuchung des Einrastverhaltens

Grundlegend fiir die folgende Betrachtung sei die Architektur nach Abbildung 3.2 mit
einem Tri-State-PFD als Phasendetektor. Im Allgemeinen stellt sich die Frage, wann ein
Phasenregelkreis eingerastet (locked) ist. Je nachdem, wie dieser Begriff aufgefasst wird,
ergeben sich unterschiedliche Definitionen oder Ansichten [74].

Definition 3.1 (Signale: locked) FEin Phasenregelkreis wird als eingerastet oder locked
bezeichnet, falls die Signale upes(t) und ugyy(t) locked sind, d.h. die Signale upes(t) und
Udiv(t) sind zueinander phasensynchron.
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Abbildung 3.14.: Zum Einrast- und Ausregelverhalten von digitalen Phasenregelkreisen

Definition 3.2 (System: locked) FEin Phasenregelkreis ist eingerastet oder locked, wenn
der Phasenfehler |pe| der Signale uyet(t) und uqiv(t) kleiner als die Konstante ¢ ist und
dieser, sofern keine Anderung am Teilungsverhdltnis, Filter oder am Eingangssignal vor-
genommen wurde, in dem Bereich @ < ¢ bleibt. ¢ ist dabei eine Konstante, die von der
Architektur des Phasendetektors abhdngt. Fir einen Tri-State-PFD nach Abbildung 3.2 ist
¢ =2m.

Die Definition 3.1 kann aus systemtheoretischer Betrachtung gerade als der Zustand an-
gesehen werden, bei dem der Regelkreis vollstdndig ausgeregelt (settled) ist. Im Folgenden
werde ausschlieflich Definition 3.2 verwendet. Offensichtlich ergibt sich aus Definition 3.2
direkt der Bereich, in dem der Phasenregelkreis ausgerastet (out-of-lock) ist.

Definition 3.3 (System: out-of-lock) Der Phasenregelkreis wird als ausgerastet (out-
of-lock) bezeichnet, wenn der Phasenfehler ¢o(t) der Signale upe(t) und ugiy(t) grofer
oder gleich ¢ ist.

In der Literatur [24,25,75] wird das Verhalten im ausgerasteten Zustand des Phasenregel-
kreises haufig als nichtlinear und chaotisch bezeichnet und, wenn der Regelkreis eingerastet
ist, als linear. Es sei jedoch darauf hingewiesen, dass, obgleich der Regelkreis eingerastet
ist, das Abtastverhalten des Phasendetektors weiterhin ein Schalten der Strome liefert.
Wenn die Eingangsfrequenz hinreichend klein gegeniiber der Eigenfrequenz f,, des Systems
ist, so lasst sich der ,,lineare” Bereich auch nicht mehr durch das vorgestellte linearisierte
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Abbildung 3.15.: Simulation einer CP-PLL zweiter Ordnung mit einer Frequenzrampe am FEin-
gang. Im Bereich der Frequenzrampe ist ersichtlich, dass der Regelkreis der
Steigung nicht folgen kann. Dieser Bereich ist durch eine graue Box kennt-
lich gemacht und es ldsst sich an dieser Stelle das nichtlineare Verhalten
erkennen.

kontinuierliche Modell beschreiben (sieche Abschnitt 3.1.1). Die Dynamik des nichtlinea-
ren Bereichs, oder auch Ziehbereich genannt, ist im eigentlichen Sinne durch das endliche
Gedéachtnis des Phasendetektors bestimmt. Wird der vorgestellte PFD als Phasendetektor
verwendet, so konnen nur Phasenfehler o, (t) kleiner oder gleich 27 berechnet werden. D. h.
der PFD ist nicht in der Lage, einen Phasenfehler grofer 27 zu detektieren, auch wenn
ein grofter Frequenzunterschied offensichtlich ist. Aus diesem Grunde sind gerade die Zeit-
punkte charakteristisch, bei denen ein Phasenfehler von . = ¢ durch den Phasendetektor
angegeben wurde. In Abbildung 3.15 ist eine Simulation einer CP-PLL zweiter Ordnung
dargestellt. Dabei wurde eine Frequenzrampe fiir das Eingangssignal wu,.¢(t) definiert, so
dass der Regelkreis der Steigung nicht mehr folgen kann und somit ausrastet. Sobald der
Regelkreis eingerastet ist und keinerlei Anderung am Eingang erfolgt, konvergiert die Tra-
jektorie gegen die entsprechende Ruhelage. Im ausgerasteten Zustand jedoch zeigt sich
insbesondere beim Phasenfehler ein starkes nichtlineares Verhalten. Durch das Betrach-
ten eines Regelkreises zweiter Ordnung ldsst sich hinzukommend auch das Schalten des
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Abbildung 3.16.: Vergleich der Pull-In-Zeit Tpr aus Gleichung (3.16) und dem nichtlinearen
idealen Modell einer CP-PLL zweiter Ordnung

Charge- Pump-Stromes gut erkennen. Innerhalb des Phasendiagramms ist dies durch einen
Spannungssprung der Hohe R/, gekennzeichnet. Im Hinblick auf den Entwurf einer CP-
PLL ist die Ausregelzeit ein wichtiges Kriterium. Fiir diese Betrachtung ist es erforderlich,
eine hinreichend gute Abschéatzung fiir die Einrastzeit und Ausregelzeit zu finden.

Definition 3.4 (Einrastzeit oder Lock-Zeit) Die Einrastzeit Ty, sei die Zeit, die der
Regelkreis benotigt, um vom ausgerasteten Zustand in den eingerasteten Zustand zu gelan-
gen.

Sobald der Regelkreis eingerastet ist, konnen verschiedene Abschétzungen fiir die Aus-
regelzeit angegeben werden [13], wobei die Einrastzeit 71, nicht beriicksichtigt wird. Die
exakte Bestimmung dieser Zeit ist aufgrund der Sensibilitdt der Anfangsbedingungen des
Systems, wie die gespeicherte Ladung im Schleifenfilter, die Anfangsphase des Referenz-
und des VCO-Signals sowie der Anfangszustand des PFD, nicht moglich. Im Allgemei-
nen wird eine lineare Abschétzung der Steigung des nichtlinearen Bereiches vorgenommen
(siche Abbildung 3.14). In [13] wurde dazu fiir einen Regelkreis zweiter Ordnung und mit
N =1 die Gleichung

Ip
=LK, 3.15
“T a0 (3.15)
angegeben. Mit dem Frequenzsprung Af ergibt sich somit fiir die Pull-In-Zeit
20AfF  2nAf
Tpr = = . 3.16
TR, T W2 (3.16)

In Abbildung 3.16 ist die nach Gleichung (3.16) angegebene Pull-In-Zeit Tpy einer Simula-
tion eines nichtlinearen idealen Modells einer CP-PLL zweiter Ordnung gegeniibergestellt.
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Es ist ersichtlich, dass die Abhéngigkeit von wy, eine gute Ubereinstimmung zeigt, jedoch ist
trotzdem innerhalb des nichtlinearen Modells auch eine Abhéngigkeit beziiglich des Damp-
fungsbeiwertes d zu erkennen. Es ist offensichtlich, dass die Approximation der Pull-In-Zeit
etwas optimistischer veranschlagt ist. Da aber fiir den Entwurf meist nur eine Abschétzung
benotigt wird, stellt diese Approximation einen guten Ansatz dar.

3.2.1. Pull-Out-Bereich Awpg

Wird das linearisierte Modell angenommen, so lasst sich aus Definition 3.3 der Pull-Out-
Bereich Awpp bestimmen. Dieser gibt an, welcher Frequenzsprung notwendig ist, um den
Regelkreis zum Ausrasten zu bringen. Wird ein Frequenzsprung mit der Hohe Awpg auf die
Fehleriibertragungsfunktion gegeben, das Maximum im Zeitbereich bestimmt, dann gleich
27 gesetzt und abschlieffend nach Awpg aufgelost, ist der Pull-Out-Bereich bestimmt. Ein
Sprung in der Frequenz bedeutet eine Rampe fiir die Phase. Aus

1 A
max {% 7{ %He(s) e st ds} = max {re(t)} 2 2, (3.17)
kann somit der Pull-Out-Bereich Awpgo berechnet werden, wobei r(t) die Rampenantwort
des Systems darstellt. Wird von der Phaseniibertragungsfunktion eines Regelkreises 2.
Ordnung (sieche Gleichung (3.6b)) die inverse LAPLACE-Transformierte bestimmt, wobei
am Eingang eine Rampe mit der Steigung Awpg anliegt, ergibt sich die Rampenantwort

[ Awpg e~ %ntgin (\/1 — d? wnt) g
<
V1 — d?wy
—wnt _
re(t) =  Awrole = (3.18)
Awpg e~ %t ginh (\/ d? — 1wnt) g
>
d? — 1w,
\
In dem Punkt
o (77
arctan | ——
d<1
vV 1—d?w,
1
bmax = { - d=1 (3.19)
d? —1
Artanh (T)
d>1
vV d?— 1wy,
\
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Abbildung 3.17.: Gegeniiberstellung des Pull-Out-Bereiches Awpo(d) des linearen kontinu-
terlichen Modells und der simulativ berechneten Kurven fir Awf{o(d) und
Awpe(d) des nichtlinearen idealen Modells

hat ro(t) ein Maximum. Wird dann ¢y, in die Funktion r.(¢) eingesetzt und nach Awpg
aufgelost, so ergibt sich

( d (1 — d2>
2arctan d
2mwpe 1—d d<1

27w e d=1

d <d2 — 1)
2—Artanh p
\ 2mwne = —1 d>1

Unter Verwendung des 7Tri-State-PFD lasst sich durch die Bestimmung des Pull-Out-
Bereiches das maximale Uberschwingen bestimmen. Problematisch bei der Berechnung
des Pull-Out-Bereiches ist das Abtastverhalten des Regelkreises. Dies hat nicht nur Aus-
wirkungen auf die Stabilitét [13,16], sondern auch auf die Dynamik des Systems. Wenn die
Eingangsfrequenz wesentlich grofer der Eigenfrequenz des Systems ist, so hat das Abtast-
verhalten weniger Einfluss und die lineare Approximation stellt eine immer besser werdende
Néaherung dar. Des Weiteren ergeben sich innerhalb des nichtlinearen Modells eine obere
Grenze Awgo und eine untere Grenze Awp, fiir den Pull-Out-Bereich. Dies lisst sich durch
den Sachverhalt erkldren, dass, wenn die Regelgrofse sich unterhalb der Zielfrequenz befin-
det, der Einfluss des Eingangssignals u,f(f) dominiert. Fiir den anderen Fall, dass sich die
Regelgrofse oberhalb der Zielfrequenz befindet, liegt eine Dominanz des riickgekoppelten
Signals wyeo(t) vor. Insbesondere fiir die untere Grenze Awp ergibt sich diese Abhén-
gigkeit der Eingangsfrequenz f,of. In Abbildung 3.17 ist dieser Sachverhalt dargelegt. Es

Awpo = 4 (3.20)
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3.2. Untersuchung des Einrastverhaltens

ist ersichtlich, dass die im vorigen Kapitel eingefiihrten Faustformeln zum Entwurf eines
Phasenregelkreises mittels der linearen kontinuierlichen Approximation zutreffend sind.

3.2.2. Dynamik und Logik des Regelkreises

Innerhalb dieses Abschnittes werden verschiedene Zustandssequenzen des PFD angegeben
werden, die das dynamische Verhalten des Systems charakterisieren. Zudem werden pas-
sende Zustandsgraphen zur Detektion dieser Sequenzen entwickelt.

Da der PFD ein flankengesteuertes digitales Bauelement darstellt und sich somit Ande-
rungen der Regelung nur zu diskreten Zeitpunkten ergeben, verhalt sich der geschlossene
Regelkreis ansonsten wie ein offener Regelkreis, wobei der Zustand des PFD die Richtung
des Ziehprozesses angibt. Offensichtlich ergibt sich bei einer Zustandsdnderung von S-_1
zu Sy Uber &y zumindest in ndherer Umgebung ein Minimum in der Frequenz. Diese
Zustandsfolge sei mit S_ = {S_1,8p,S+1} bezeichnet. Die Sequenz liefert einen Phasen-
nulldurchgang des Phasenfehlers ¢, und es dndert sich an dieser Stelle das Vorzeichen des
Charge- Pump-Stromes. In den Abbildungen 3.19 wird dieser Sachverhalt anhand der Re-
gelspannung uc1, dem Phasenfehler ¢, und dem Zustand des PFD visualisiert. Wird der
Zusammenhang von Phase und Frequenz innerhalb des Regelkreises betrachtet, ergibt sich
intuitiv fiir einen Phasenregelkreis zweiter Ordnung bei einem Nulldurchgang des Phasen-
fehlers ein Extremum in der Frequenz. Bei Regelkreisen héherer Ordnung verschiebt sich
das Extremum aufgrund der Tatsache, dass sich Umladevorgénge ergeben. Des Weiteren ist
ein weiterer Nullduchgang des Phasenfehlers bei der Zustandsfolge S1 = {S41,S0,S5-1}
zu identifizieren. Die néchsten beiden Sequenzen lassen sich ebenfalls mit Hilfe der Ab-
bildungen 3.19 und der Definition 3.3 finden. Fiir den PFD kann die Konstante ¢ = 27
angegeben werden. Offensichtlich ergibt sich dieser Wert, wenn zweimal eine fallende oder
steigende Flanke des Referenzsignals u..s oder Teilerausgangssignals wug;y hintereinander
erfolgt. Fiir den PFD lassen sich dadurch die Zustandsfolgen

Soot = {S5-1,8-1} (3.21a)
und

Sool2 = {S+1,S+1} (3.21b)
finden. Zusammenfassend konnen so zwei Folgerungen angefiihrt werden.

Folgerung 3.1 Erfolgen die Zustandssequenzen S+ =1{8+1,850,5-1} oder
S_ ={85.1,850,8+1} des PFD, so entspricht dies einem Phasennulldurchgang des
Phasenfehlers o, wober S— als negativer Phasennulldurchgang und S4 als positiver
Phasennulldurchgang bezeichnet werde.

Folgerung 3.2 Treten die Zustandsfolgen Soon = {S—1,5-1} oder Spoi2 = {S+1,5+1}
auf, so entpricht dies einem Phasenfehler po von 2.
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Abbildung 3.18.: Trajektorie eines Phasenregelkreises zweiter Ordnung mit identifizierten
Phasennulldurchgdingen

In Abbildung 3.18 ist eine Trajektorie eines Phasenregelkreises zweiter Ordnung mit ent-
sprechend identifizierten Phasennulldurchgéngen dargestellt. Die Abbildungen 3.19(a) und
3.19(b) zeigen die Phasennulldurchgéinge beziiglich der Spannung wucy () und des Pha-
senfehlers @e(t) sowie der Spannung ucy(t) und des Zustandes S des PFD. Der Regel-
kreis ist eingerastet, wenn Definition 3.2 erfiillt ist. Bei Betrachtung des Ziehprozesses
und Folgerung 3.2 ldsst sich erkennen, dass, wenn Sy, oder Syop direkt vor Sy oder
S_ auftreten, so ist der Regelkreis eingerastet, wobei zu diesem Zeitpunkt von einem
idealem System ausgegangen wird. Durch diese Folgerungen kann demnach der Einrast-
zeitpunkt bestimmt werden sowie bei Kenntnis der Dynamik auch der Ausregelzeitpunkt
detektiert werden. Insbesondere hinsichtlich eines vertrauenswiirdigen Taktsignals und fiir
Fast-Locking-Anwendungen [13,76-80] ist dies von grofser Bedeutung, denn es lisst sich
so der Zeitpunkt bestimmen, an dem die Bandbreite des Systems geméf den Vorgaben
gewechselt werden kann.

3.2.3. Lock/Settling-Detektor

Durch die im vorangegangenen Abschnitt dargelegten Ergebnisse sollen im Folgenden zwei
sequenzielle Automaten vorgestellt werden, um die Sequenzen S—, Sy, Spo11 Und Syep0 zu
identifizieren. Des Weiteren wird eine Schaltung angegeben, die sich insbesondere fiir Fast-
Locking-Anwendungen anbietet [13,76, 78-84|. Vorerst jedoch sollen kurz die wichtigsten
schaltungstechnischen Verfahren zur Einrastidentifikation dargelegt werden.

Es existieren verschiedene Arten von Lock-Detektoren (In-Lock-Detektoren). Eine Varian-
te basiert auf der Zeitmessung zwischen zwei folgenden fallenden oder steigenden Flanken
der Signale uye(t) und ugiy(t). Die Messung wird mehrmals durchgefiihrt und wenn die
Messzeit Ty jedesmal kleiner einer vorgegebenen Zeit 7, ist, so wird angezeigt, dass der Re-
gelkreis eingerastet ist [2,85|. Im Sinne der eingefiihrten Definitionen wird hier iiberpriift,
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durchlaufen wird, kann die Sequenz Soo11 identifiziert
werden.

Abbildung 3.19.: Zum logischen und dynamischen Verhalten von CP-PLL-Systemen mit PFD,
wobei exemplarisch ein Regelkreis der Ordnung Zwei angesetzt wurde.

ob die Signale u(t) und ug;y, phasensynchron sind, d.h., ob der Regelkreis ausgeregelt
ist.

Ein sehr dhnliches Verfahren basiert auf programmierbaren Teilern durch Pulsweitenmes-
sung des UP-Signals uyp(t) und des DN-Signals uqy,(t) (siehe [84]). Dabei dient das VCO-
Signal uyeo(t) als Eingangssignal (clk-Eingang) des ersten Teilers und der Enable-Eingang
des Teilers ist verschaltet mit der Verkniipfung wyp(t) V ugn(t). Das Carry-Signal des Tei-
lers wird dann als Enable-Signal eines zweiten Teilers verwendet, wobei dieser durch das
Referenzsignal getaktet wird. Wenn also die Weite der UP- und DN-Pulse kleiner dem
eingestellten Preset-Wert entspricht, so wird der zweite Zahler aktiviert und der zweite
Teiler zéhlt zu jeder Referenzperiode die Werte der Pulsbreite, die kleiner der Preset-Zeit
sind. Eine dhnliche Variante ist in [86] zu finden.

Ein weiteres Verfahren zur Bestimmung des ausgeregelten Zustandes ist in [87] beschrie-
ben. Dabei werden die Pulsbreiten der UP- und DN-Signale verglichen. Dieser Ansatz ist
dahingehend begriindet, dass, wenn die Eingangssignale des PFD phasensynchron sind, die
Pulsbreiten von wyp,(¢) und ugy,(t) gleich sind.

Eine andere Variante basiert auf der Filterung des Signals upyise(t) = tdn (t)Vuup(t) [88].
Wenn die Pulse der UP- und DN-Signale sehr schmal werden, werden diese Pulse durch ein
Filter ausgefiltert und durch einen nachgeschalteten SCHMITT-Trigger kann dann angezeigt
werden, wann die Signale mehr oder weniger phasensynchron sind.
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Abbildung 3.20.: Darstellung der endlichen Automaten zur Identifikation der Sequenzen nach
den Folgerungen 3.1 und 3.2

Endlicher Automat zu Folgerung 3.1

Offensichtlich kénnen die Zustandssequenzen S; und S— mittels des endlichen Automaten
des PFD identifiziert werden. Der im Folgenden erlduterte endliche Automat ist in Ab-
bildung 3.20(a) dargestellt. An dieser Stelle wird das Eingabealphabet durch die Signale
Unp(t) und ugy(t) deﬁniert da sie direkt den Zustand des PFD wiedergeben. Demnach
ergibt sich Z = (uup, ut o). Des Weiteren kann die Ausgabemenge O = (041, 0x1,0B1) mit
0A1 = up, ox1 = ug und og; = ug, die Zustandsmenge S = (Sa1,SB1, Sx1) mit dem
Anfangszustand S; € S, der Funktion v : Z — S zur Berechnung des néchsten Zustandes

mit
( Sa1 — Sa1 , wenn uén
Sa1 — Sx1 , wenn uﬁp
L Sx1 — Sa1 , wenn uin (3.22)
Sx1 — S1 , wenn uﬁp
SBI — SXl , wenn uiln
Sp1 — Sp1 , wenn uﬁp

\

angegeben werden. Die Ausgabefunktion 7 : Z — O lésst sich wieder durch n : § — O
darstellen und kann somit durch

oAa1 , wenn Sxp — Sa1 V. Sa1 — Sai
n = oxi ,wenn Sp1 — Sx1 VS — Sx1 (3.23)
og1 ,wenn Sx; — Sp1V Sl — SB1

beschrieben werden.
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Endlicher Automat zu Folgerung 3.2

Abbildung 3.20(b) beschreibt den Zustandsautomaten zur Identifikation der Sequenzen
Sooi1 und Syo12. Das Eingabealphabet ist gegeben durch Z = (uief, u‘i,ar), wobei der hochge-
stellte nach unten zeigende Pfeil darauf hinweist, dass es sich um fallende Flanken handelt.
Des Weiteren ergibt sich die Ausgabemenge O = (0a2,0x2,0B2) mit 0a2 = opy = uy,
oxe = uy, die Zustandsmenge S = (Sa92, Sp2, Sx2) mit dem Anfangszustand S; € S und
der Funktion v : Z — S zur Berechnung des néchsten Zustandes mit

( Spo — Sy, wenn ufef
Sao — Sxo , wenn ufhv

- Sxo — Spo , wenn ufﬁv | (3.24)
Sxo2 — Sy, wenn uief
Spos — Sxo , wenn ufef
Spa — Sas , wenn ufhv

\

Die Ausgabefunktion n : Z — O lasst sich wieder durch n : § — O darstellen und kann
somit durch

0A2 , wenn Sps — Sao V Sxo — Sas
n = oxy , wenn Spa — Sxo VSas — Sxo (3.25)

ogs , wenn Spo — Spo V Sxo — Spa

beschrieben werden.

Schaltung zur Einrast- und Ausregel-Identifikation

Um sicher zu sein, dass der Regelkreis eingerastet ist, ist die Identifikation eines Pha-
sennulldurchganges nicht ausreichend, da insbesondere wihrend des Einschwingens des
Regelkreises ein Nulldurchgang des Phasenfehlers auftreten kann. Hinzukommend ist es
in verschiedenen Anwendungen erforderlich, die Ausgangsfrequenzen durch den Teiler zu
modulieren, beziehungsweise zu wechseln. Wéahrend eines solchen Wechsels der Ausgangs-
frequenz kann sich der Regelkreis im ausgerasteten Zustand befinden. Abbildung 3.21 zeigt
die schematische Realisierung zur Identifikation des internen Zustandes (eingerastet, ausge-
rastet oder ausgeregelt). Die Sequenzen Syo1; und Syo12 werden dabei mit Hilfe der Signale
Upef (1), Uvco(t), Uup(t) und ugy(t) mittels zweier D-Flipflops und eines nachgeschalteten
Oder-Gatters identifiziert. Diese Schaltung zur Bestimmung des Ausrastzeitpunktes wurde
schon in [89] zur Erweiterung des PFD verwendet. Die Topologie des Zustandsgraphen zur
Identifikation der Folgen &4 und S— ist identisch und somit kann dieser endliche Automat
durch die in Abbildung 3.2 dargestellte Variante des PFD représentiert werden, wobei die
beiden Ausginge mit einer Ezclusive-Oder-Verkniipfung verschaltet sind. Damit ergeben
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Abbildung 3.21.: Schematische Darstellung des Detektors zur Identifikation des Zustandes des
Regelkreises (eingerastet, ausgerastet oder ausgeregelt)

sich die Signale uy,c(t) und wueei(t). Diese werden mit Hilfe der nachfolgenden Logik ausge-
wertet. Dabei wird tiberpriift, ob die Sequenz Sy (oder S_) direkt nach Syo1 (oder Syo12)
aufgetreten ist. Falls Syo11 und Syo0 nicht aufgetreten sind, wird ein zweiter Nulldurch-
gang gezihlt, bis das Signal u)q(t) auf logisch Eins gesetzt wird und somit der Regelkreis
eingerastet ist. Um festzustellen, ob der Regelkreis ausgeregelt ist, konnen die Phasennull-
durchgénge S; und S_ gezéhlt werden.

In Abbildung 3.22 ist eine Spectre-Simulation (mit einer 90 nm Technologie) einer CP-PLL
dritter Ordnung und der Einrastidentifikation dargestellt. Es ist ersichtlich, dass der wahre
Einrastzeitpunkt nicht bestimmt wurde, jedoch wurde nach dem ersten Nulldurchgang des
Phasenfehlers der Einrastzeitpunkt angegeben. Bei hinreichender Dampfung des Systems
kann dann der Ausregelzeitpunkt durch den zweiten Nulldurchgang der Phase identifiziert
werden.

Detektion des Phasenfehlers fiir ganzzahlige Vielfache von

Durch die digitale Logik des PFD lassen sich mittels der Folgerungen 3.1 und 3.2 Nulldurch-
giange des Phasenfehlers sowie Phasenfehler mit ganzzahligen Vielfachen von 27 einfach
identifizieren. Wird bei den Signalen uyef(t) und wuyeo(t) jeweils von einem Tastverhéltnis
von 50% ausgegangen, so konnen auch Phasenfehler mit Vielfachen von m bestimmt wer-
den. Dabei lisst sich die Detektion mit Hilfe des PFD und zweier zusétzlicher D-Flipflops
(DFF1 und DFF2) realisieren. Die Ausgénge der D-Flipflops sind die Eingénge des PFD.
uret (1) liegt am clk-Eingang von DFF1 und wy,,(t) liegt am rst-Eingang an. Genau umge-
kehrt beziiglich der Signale wyef(t) und wuyar(t) ist dann DFF2 beschaltet. Der clk-Eingang
ist dabei flankengesteuert und der rst-Eingang pegelgesteuert. Die beiden Ausginge des
PFD sind die Eingénge eines Ezclusive-Oder-Gatters. Das Blockschaltbild ist in Abbildung
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Abbildung 3.22.: Spectre-Simulation der Einrastidentifikation fiir einen digitalen Phasenregel-
kreis dritter Ordnung

47



3. Grundlagen digitaler Phasenregelkreise

0,5F \

0,45 |-

0,35 -

0,3}

0,25

Uctl /V

Eingerastet IEinrastdetektion

0 001 02 03 04 05 06 07 08 09 1

0 001 02 03 04 05 06 07 08 09 1

>
—~—
E
S
0 i

0 001 02 03 04 05 06 07 08 009 1

| S == o = -

ur /V

t/us

Abbildung 3.23.: Spectre-Simulation der Einrastidentifikation und w-Detektor fiir einen digi-
talen Phasenregelkreis dritter Ordnung
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Abbildung 3.24.: Schematische Darstellung des w-Detektors

3.24 dargestellt. In Abbildung 3.23 ist eine Spectre-Simulation des m-Detektors angegeben
sowie die Simulationen zu den Schaltungen nach den Folgerungen 3.1 und 3.2.

Zusammenfassung

Dieses vorgestellte Verfahren zur Identifikation des internen Zustandes eines digitalen Pha-
senregelkreises mit Tri-State-PFD liefert die Moglichkeit, das transiente Verhalten auf der
Ebene der logischen Zustéinde des PFD zu analysieren und festzustellen, ob das System
eingerastet und/oder ausgeregelt ist. Weiter konnen die vorgestellten Zustandsautomaten
dazu verwendet werden, die Bandbreite so zu adaptieren, dass sogenannte Fust-Locking-
Anwendungen erméglicht werden. Dazu ist es erforderlich, den Charge- Pump-Strom oder
das Filter zu schalten. Eine grofere Bandbreite kann dann beispielsweise wahrend des
Wechsels von einer zu einer anderen Frequenz benutzt werden, d.h. durch das Variieren
des Charge-Pump-Stromes oder durch die Anderung der Eigenschaften des Filters. Wenn
der Regelkreis eingerastet ist, kann die Bandbreite verwendet werden, die fiir die entspre-
chende Anwendung vorgesehen ist. In [13,76,84,90] sind tiefergehende Erlauterungen zu
Fast-Locking-PLL-Systemen zu finden.

Neben der angefiihrten Schaltung lasst sich dieses Verfahren fiir Simulationen verwenden,
da dadurch eine Abbruchbedingung fiir verschiedene Simulationen gegeben ist. Dadurch
lasst sich insbesondere bei Parametervariationen die Simulationszeit drastisch verkiirzen.
Die vorgestellten Zustandsautomaten wurden beispielsweise zur numerischen und automa-
tisierten Bestimmung des Pull-Out-Bereiches im vorangegangenen Kapitel 3.2.1 verwendet.
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KAPITEL 4

Modellierung und Analyse digitaler
Phasenregelkreise

Da fiir Filtertypen hoherer Ordnung die Phasengleichung des span-
nungsgesteuerten Oszillators nicht bijektiv ist und somit die Modelle
ausschliefilich mittels numerischer Verfahren geldst werden miissen,
werden in diesem Abschnitt Phasenregelkreise der Ordnung Zwei be-
trachtet und geeignete Approxzimationen vorgestellt, um analtische
Modelle zu erhalten. Dabei werden die Modelle von GARDNER, VAN
PAEMEL, ACCO und HEDAYAT zundchst eingefiihrt und an geeigne-
ter Stelle erginzt. Hinzukommend werden zwei Modelle angegeben,
die das Dead-Zone-Verhalten und die Leckstromproblematik ana-
lytisch beschreiben. Als Grundlage der Betrachtungen dienen die
Modelle von VAN PAEMEL und HEDAYAT. Des Weiteren wird ein
Ansatz zur Modellierung digitaler Phasenregelkreise mit beliebiger
Ordnung vorgestellt.

4.1. Modellierung und Analyse von Phasenregelkreisen

Im Laufe der letzten 30 Jahre wurden verschiedene Modelle zur Beschreibung, Charakte-
risierung und zum Entwurf von Phasenregelkreisen entwickelt. Jedes dieser Modelle kann
fiir unterschiedliche Betrachtungen herangezogen werden. Generell liefert jedes Modell fiir
ein System unter bestimmten Randbedingungen unterschiedliche Aussagen im Hinblick auf
Stabilitat und Parameterbestimmung oder Simulation. Haufig werden beim Entwurf oder
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4. Modellierung und Analyse digitaler Phasenregelkreise

bei der Simulation die Randbedingungen, auf denen das Modell beruht, nicht beriicksich-
tigt, was unter Umsténden zu Problemen im spéteren System fithren kann. Im Folgenden
sollen deshalb die wichtigsten nichtlinearen Modelle fiir Regelkreise zweiter Ordnung erléu-
tert und beziiglich ihrer Randbedingungen und Grenzen dargelegt werden. 1980 wurde von
GARDNER [16] erstmals eine Stabilitdtsgrenze fiir Regelkreise der Ordnung Zwei und Drei
unter Beriicksichtigung des Abtastverhaltens der Phasenregelkreise durch gezielte Linea-
risierung bestimmt. Die grundlegende Betrachtung liegt dabei in den Phasensignalen. Die
Grenze fiir die Stabilitdt von Regelkreisen der Ordnung Zwei konnte dann 1994 von VAN
PAEMEL [32] auf Basis eines nichtlinearen Modells bestétigt werden. Es wurde ein nicht-
lineares schaltendes Modell mit zwei Zustidnden angegeben - den Pulsbreiten des Charge-
Pump-Stromes und der Regelspannung. Die Linearisierungen waren den GARDNERS nicht
undhnlich. 2001 wurde das Modell von VAN PAEMEL durch Acco [33] normalisiert und in
allen Sektoren einzeln mittels der TAYLOR-Reihenentwicklung linearisiert, wodurch auch
dort die von GARDNER bestimmte Stabilitdtsgrenze validiert wurde. Ein etwas anderer
Ansatz als bei VAN PAEMEL wurde 1997 von HEDAYAT beschrieben, wodurch auf Ba-
sis der Phasengleichungen und der internen Logik des PFD ein analytisches Modell fiir
den Phasenregelkreis der Ordnung Zwei beschrieben wurde, wobei hier insbesondere die
ereignisgesteuerte Modellierung im Vordergrund stand. Dieses Modell wird im Folgenden
dahingehend modifiziert, dass eine &hnliche Analyse wie bei ACccoO erfolgen kann.

4.1.1. Modellierung und Stabilitat des Modells nach GARDNER

Das grundlegende Problem der Analyse von digitalen Phasenregelkreisen ist der schaltende
Strom 4, € (+1,,0A, 1), der durch den PFD gesteuert wird. Diese Problematik wird
durch die komplexe Beziehung der Schaltzeitpunkte zu der Referenzphase ¢.o¢ und der
VCO-Phase @y, erschwert. Von GARDNER [16] wurde erkannt, dass, sobald eine fallende
oder steigende Flanke an einem der Eingénge des PFD erfolgt und der Charge-Pump-
Strom geschaltet wurde, der Regelkreis als offen angesehen werden kann. Zudem wird das
System zwischen zwei Schaltzeitpunkten durch ein lineares Differenzialgleichungssystem
mit konstanten Koeffizienten beschrieben. Durch diesen Ansatz (siehe [16]) konnte die
nichtlineare Differenzengleichung

oK, [ . ipt? iptits
cpvco(tz) = @vco(tO) + Wycola + v ZpR1t1 — P2 + uc, (to)tQ + P (4.1)
N 2C4 &

angegeben werden. Dabei wurde angenommen, dass das System nahe dem Fixpunkt ist.
Die Charge-Pump wurde durch i, = I, - sign {e } modelliert. Hinzukommend wurden die

Annahmen
t = ‘906|7 (4.2a)
Wref
ity = I, -2 (4.2b)
Wref
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Abbildung 4.1.: Wurzelortskurve und Stabilititsgrenze des linearisierten, zeitdiskreten Modells
fiir einen digitalen Phasenregelkreis zweiter Ordnung

und

2T

Wref

(4.2¢)

to =

zur Linearisierung angeben. Gleichung (4.2a) lasst sich aus dem Sachverhalt ableiten, dass
im Zustand S_; bei einem Phasenfehler ¢ = @y, durch die néchste fallende (steigende)
Flanke des Referenzsignals uef(t) der Zustand Sy erreicht wird. Wird aber angenommen,
dass sich zum Zeitpunkt ¢y der PFD im Zustand S_; befindet und eine fallende Flanke
des VCO-Signals erfolgt, so ist die Annahme der Gleichung (4.2a) nicht mehr zutreffend,
da die Phase des spannungsgesteuerten Oszillators durch die Schleife (Regelung) bestimmt
wird. Somit ist auch Gleichung (4.2¢) wiahrend des Zustandswechsels eine Approximation,
die, insofern die Frequenzen und Phasen am Eingang des PFD naherungsweise gleich sind,
als sinnvoll erscheinen. Mit we = Wyef — Wyeo UNA e = Yref — Pveo SOWie den angegebenen
Approximationen konnen die linearen Differenzengleichungen

We 2K Iype(to) ( 27 (2m)2 Kyuc, (to)
t2) = pelto) + 2m — R+ — 4.3a
Qpe< ) e( ) Wref Nwrer Wrefcl Nwref ( )
und
@e(to)lp
to) = t —_— 4.3b
e, (12) = gy (t0) + 2 (4.3b)
aufgestellt werden. Entsprechend kann das Differenzengleichungssystem
Tp1 = Ax, + b (4.4)
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angegeben werden, mit der Systemmatrix

R+ —2"
1 — 20K T ! Nwrefcl . (27T)2KV
A= vep Wref Nwret , (4.5)
I
P 1
wrefcl

T
dem Zustandsvektor xj, = [@eyk,ﬂctl’k] = [gpk,vk]T und dem Vektor b = [27mwe /wyer, 0] .
Wird nun das charakteristische Polynom der Matrix A mit Hilfe des JURY-Kriteriums auf
ein Einheitkreispolynom gepriift, ergeben sich die Ungleichung

1
K' < , (4.6)
T T
1+
Wref T1 < WrefT1 )
und
K/ 1 4 7
<5 (4.7)
WrefT1

wobei K’ = K11 durch

Ky lpR

K/
N

1

definiert ist. Wenn die Ungleichung (4.6) eingehalten ist, so gilt auch die Ungleichung (4.7).
In den Abbildung 4.1 ist die Wurzelortkurve dargestellt sowie die berechnete Stabilitéts-
grenze nach Ungleichung (4.6).

In derselben Verdffentlichung [16] wurde eine Stabilitdtsgrenze basierend auf den eben vor-
gestellten Verfahren fiir einen Regelkreis der Ordnung Drei dargelegt. Das Kriterium ergibt

sich zu

Kn < i1+ a) , (4.82)

2m(B — 1) (27r(1 + ) N 2(1 — a)(B — 1))
BuwrerTt WrefT1 B
mit
- 2n

o= e WrefTl (4.8b)
und

=1+ % (4.8¢)
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4.1. Modellierung und Analyse von Phasenregelkreisen

Die Problematik, die sich an dieser Stelle zeigt, ist, dass die Linearisierung zwar ober-
flachlich betrachtet als schliissig zu werten ist, jedoch konnte bislang keine Abschétzung
des Fehlers bei der Linearisierung erbracht werden. Die Annahmen, die GARDNER zur
Linearisierung angesetzt hatte, die im mathematischen Sinne nicht den Anspriichen zur
Charakterisierung des Systems geniigen, sollen im Laufe dieser Arbeit noch diskutiert wer-
den. Da jedoch die Grundlagen fiir diese Betrachtung erst spater durch das Modell von
VAN PAEMEL [32] und durch Acco [33] aufgezeigt wurden, sollen diese Arbeiten zunéchst
vorgestellt werden.

4.1.2. Modellierung und Stabilitidt des Modells nach VAN PAEMEL

Im Folgenden soll das von VAN PAEMEL eingefiihrte Modell dargelegt werden [32]|. Durch
die Eingangssignale uyet(t) und uyar(t) des PFD werden die Pulsweiten 7, des Stromes iy,
der Charge-Pump innerhalb des Regelkreises bestimmt. Wird fiir die Pulsbreite des Signals
uup(t) ein positives Vorzeichen und fiir die Pulsbreite des Signals wugy(t) ein negatives
Vorzeichen angenommen, so kann der Charge-Pump-Strom durch

I, -sign{r,} V7, #0
ip = (4.9)
0A V1,=0

beschrieben werden. Offensichtlich ist 75 ein Zustand des Differenzialgleichungssystems.
Der andere Zustand ist die Spannung iiber der Kapazitit des Schleifenfilters. Damit kann
das Differenzialgleichungssystem in ein Differenzengleichungssystem mit zwei Zustédnden
tiberfiihrt werden, wobei vier Sequenzen betrachtet werden (siehe Abbildung 4.2(a) bis
4.2(d)). Das Modell beinhaltet innerhalb der Publikation [32] zwar sechs Fallunterschei-
dungen, jedoch wird durch die anderen beiden Fallunterscheidungen der Ziehbereich in der
Simulation mit betrachtet, d.h. wenn fiir den Phasenfehler || > 27 gilt. Da die Puls-
weiten des Charge- Pump-Stromes betrachtet werden, lasst sich die folgende Beziehung zur
Bestimmung der Zustandsvariablen 7 angeben:

THTre1—Tk
/ fvco(t) dt =1, (4.10)
0

wobel T' = 1/ frer und fyeo(t) die Ausgangsfrequenz des spannungsgesteuerten Oszillators
darstellt. Es gilt

fvco(t) =Ky - Uctl(t) (4.11)

mit der Steuerspannung uc(¢) und dem Verstarkungsbeiwert K. Es ergibt sich die Glei-
chung

I
Vi1 = Vg + Fprkﬂ (4.12)
1
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A . . A . .
Uref (f) 1 1 Uref (f) | 1
Uyeo(t) : : Uyeo(t) : :
Zp(t) 1 1 1 1
i Vk41 ! ! ! !
o . wealt) | vk-1 | | o
L IR R T
= —— —,
Tk+1 Tk Tk+1
I I P
T T

(a) Fall 1: Mit 7% > 0 und 7x4+1 > 0 gelten die Gleichun- (b) Fall 2: Mit 7 < 0 und 7x+1 < 0 gelten die Gleichun-

gen (4.12) und (4.13a). gen (4.12) und (4.13b).
A A
Uret () : : Uret (1) | |
Uyeo(t) E | | E Uyeo(t) E :
ip(t) o in(t) i i

et (1) uen(t) | Vk—1

Vk+1

\/

(c¢) Fall 3: Mit 7 > 0 und 7x+1 < 0 gelten die Gleichun- (d) Fall 4: Mit 7 < 0 und 7x+1 > 0 gelten die Gleichun-
gen (4.12) und (4.13c). gen (4.12) und (4.13d).

Abbildung 4.2.: Behandlung der Fallunterscheidungen, die sich bei der Betrachtung der Glei-

chung (4.10) und der méglichen Zustinde ergeben, wobei hier ausschliefSlich
der eingerastete Bereich beriicksichtigt wird.

fiir die Spannung iiber der Kapazitét, wobei diese offensichtlich von der zu bestimmenden
Zustandsgrofe 751 abhéngt. Aus Gleichung (4.10) und Abbildung 4.2 kénnen die folgenden
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4.1. Modellierung und Analyse von Phasenregelkreisen

Beziehungen fiir den Zustand 75,1 hergeleitet werden:

21 1
— (IpRy + o) + 4 | (IpRy + vg)* = Fp (Uk: (T —7%) — ?)
F1 ! v (4.13a)
Th+1 — .
Ip
Ch
1 Iy}
— — [.Rim. — 2k
F o K TR0 (4.13b)
k+1 k oL
e o= T+ ! (4.13c)
k+1 k K, v, ’
F4 . — (IpRl + Uk)
Te+1 = T
p
Ch
5 ’ 3 (4.13d)
I 2y 2R —T) 4+ — —1 —k
(pR1+Uk) +C (Uk(Tk )+KV p(RlTk+2C>>
Iy
Ch
Somit ergibt sich
( T]fil V 7% 2>0, Tp41 >0
T,;Ffl V 1 <0, 7p1 <0
T = 4 | (4.14)
Tlf—il v TkZO, Tk+1§0
L Tgfl V 7 <0, 7p+1 >0

Die Gleichungen (4.13a), (4.13b), (4.13c) und (4.13d) lassen sich dabei mit Hilfe der Ab-
bildungen 4.2(a), 4.2(b), 4.2(c) und 4.2(d) herleiten. Dazu ist es erforderlich, die grau
unterlegten Flachen zu bestimmen und nach 731 aufzuldsen.

Um die Stabilitdt des Systems nach Gleichung (4.14) analytisch zu untersuchen und einen
geschlossenen Ausdruck auf der z-Ebene zu erhalten, wurde von VAN PAEMEL [32] eine
Linearisierung eingefiihrt. Unter der Annahme, dass der Term ’7']3 vernachlassigt werden
kann, ergibt sich aus den Gleichungen (4.12) und (4.13b)

Th+1 = —Tap + 7 (1 — IpRlKvT (1 — ak))
EL . IpKVT y (415)
+1 = Qg+ 1 Tk+1

o7



4. Modellierung und Analyse digitaler Phasenregelkreise

wobei die Substitution vy = (1 + ag)/(KvT) und die Approximation

1
— = KT (1—ay) (4.16)
Uk

angesetzt wurden. Durch das Einsetzen von 75,1 (siehe Gleichung (4.15)) in ap.1 (siche
Gleichung (4.15)) und durch (ay — ag—1)C1/(EKyI,T) ~ 0 ergibt sich

K
a1+ (T—N + KN — 2) ar + (1 — Kn)ag-1 =0 (4.17)
IN
mit Ky = [, R1 KT und 75 = R1C}/T. Damit kann fiir die Nullstellen des Polynoms

K
D(z)222+(T—N+KN—2)Z+(1—KN)>0 (4.18)
1IN

die Bedingung

KN < ——— (4.19)
1+

27—1N

angegeben werden. Durch einfache Umformungen kann die Stabilitdtsgenze (4.19) nach
VAN PAEMEL in die von GARDNER (4.6) iiberfithrt werden. Die Problematik des Ansatzes
nach VAN PAEMEL ist dhnlich wie die bei GARDNER. Auch hier wurde keine Fehlerab-
schitzung angegeben. Es wurde letztendlich angenommen, da sich das Gleichungsystem
(4.14) in vier Gebiete unterteilt und die Linearisierung genau auf der Grenze aller Gebiete
durchgefiihrt wurde, dass es ausreicht, die Stabilitdt einer Gleichung zu iiberpriifen. Es
wurde die Annahme zu Grunde gelegt, dass, wenn die Stabilitdt fiir den Fall 2 gezeigt
ist, dann werden auch die anderen Félle sowie das Schalten zwischen den einzelnen Fil-
len stabil sein. Diese Annahme ist im Allgemeinen falsch, da es selbst, wenn zwei lineare,
autonome und stabile Systeme untereinander geschaltet werden, vorkommen kann, dass
das resultierende System instabil ist. Dementsprechend konnte zwar eine Stabilitdtsgrenze
angegeben werden, diese konnte jedoch nicht in voller Konsequenz bewiesen werden und
es wurde beziiglich der Linearisierung keine Abschétzung des Fehler angegeben.

4.1.3. Modellierung und Stabilitat des Modells nach Acco

Die Arbeiten von Acco [33-35| hinsichtlich der Modellierung basieren auf dem Modell
nach VAN PAEMEL [32]. Dabei wurden die Gleichungen normiert und der Fixpunkt in
den Ursprung verschoben, wodurch sich eine kompaktere Schreibweise mit verschiedenen
Vorteilen gegeniiber den urspriinglichen Gleichungen ergibt. Insbesondere vereinfacht
diese Darstellung die Betrachtung der Stabilitdt mittels Linearisierung erheblich.
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4.1. Modellierung und Analyse von Phasenregelkreisen

(a) Bereichsdefinition der Transformation T' im Zustands- (b) Regioneniibergangsdiagramm zur Be-
raum mit den zugehorigen Zonen R schreibung der Punkttransformation
T

Abbildung 4.3.: Bereichsdefinition und Regioneniibergangsdiagramm der Transformation T im
Zustandsraum mit den zugehorigen Zonen Ry bis Ry mit R; € R? und
i€ (1,2,3,4)

Im Folgenden soll kurz das zugehorige normierte und in den Nullpunkt verschobene Modell
angegeben werden, um innerhalb der Stabilitdtsanalyse mittels der zugehorigen JACOBI-
Matrizen kompaktere Ausdriicke mit ausschiefslich zwei Parametern zu erhalten. Durch die
Normierung 7 = 7 /7', die Verschiebung o) = T Kyv; — 1 und die beiden Substitutionen

a= KR T (4.20a)
und
b= KolpT® (4.20D)
N 2C4 ’

kénnen die Gleichungen (4.13a) bis (4.13d) von VAN PAEMEL umgeschrieben werden:

b1 (O tat+ )+ (T tat1)?—4b((0p+1) (1—7) — 1)
Tk—i—l - 2b

(4.21a)

= g1(Tg, Ug)
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4. Modellierung und Analyse digitaler Phasenregelkreise

- )
1 — a7 — b7

i = Tk 14 1+ O (4.21b)
= g2(T, Ug)
1
hin = Tkl 1+ 0y, (4.21c)
= 93(Tk Uk)
%]chl _ — (g —|2—ba + 1)+
V@ +a+1)2 =4 (5 + 1) (1= 7) — 1+ (a7 +b72)) (4.21d)
2b
= ga(T, Ug)

Somit ergibt sich das vollstiandige Diffenerenzengleichungssystem zu

( 7-1§+11 A (%kaﬁk) € Ry
) T2V (Fh,U) € Ry
Fri1 = 4 L (4.22a)
Tkil (T, 0g) € R3
\ %If—él (T, Ug) € Ra
und
Uka1 = U + 2bTg4 1. (4.22b)

Dabei wird der Zustandsraum durch

LC() : %k:O (4.23&)

—147 =0 V 7. <0
o1 + Tk : TR <

LCy Tir1 =0 & (4.23b)

(0+1)(1—F) +af+077 —1=0, V 7 >0
aufgeteilt. Innerhalb der Arbeiten von VAN PAEMEL liegt der Fixpunkt auf der Koordi-
nate [1x,vi] = [0s,1/(K,T)]. Durch 7 = 7;/T und v = TKyvp, — 1 ergibt sich fiir die
Gleichungen nach Acco [7y, 0] = [0, 0]. Die Gleichungen (4.21a) bis (4.21d) konnen in die
Matrix-Darstellung
Tht1 9i(Tk, Ur) o
N - = T'§(7y, 0x) = Ti(w) (4.24)
Uk+1

vy + 2bg;(Tx, Ug)
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umgeformt werden, mit i € (1,2,3,4). Durch die Einfiihrung einer Punkttransformationen
T;, definiert durch Gleichung (4.22a) oder (4.24), kann die Topologie analysiert werden.
Dabei beschreibt Abbildung 4.3(a) den in vier Gebiete unterteilten Zustandsraum und
Abbildung 4.3(b) zeigt die Ubergiéinge von einem Gebiet in ein anderes, beschrieben durch
die Punkttransformationen T';. Hinsichtlich der Punkttransformation wurde von Acco [35]
auch das inverse Modell eingefiihrt, welches die topologischen Eigenschaften des Systems
tiefergehend charakterisiert, wobei an dieser Stelle nicht weiter darauf eingegangen wird.
Mittels der TAYLOR-Approximation kann das Gleichungssystem

o . . Ja . .
a7, 9T t) 5701k O)
LTe+1 = 9 T — Aia:k (4.25)

L 0 L
a—%kgi(ﬂc,vk) 1+2ba—2~]kgi(ﬂc,vk)

angegeben werden mit dem Zustandsvektor xy = [T, ﬁk]T und den JACOBI-Matrizen Aj;,
wobei i € (1,2,3,4) ist. Es ergeben sich

1 ~1
A=t [ ], (4.26a)

Ltalop 14a4-2
[ 1—a —1

Ay = : (4.26b)
2b(1 —a) 1—2b
C 1 -1

As = (4.26¢)
| 26 1-2b

und

1 l1—a —1

Ay = . (4.26d)
T+al op1—a) 14+a—2b

In [33] wurden vier Félle unterschieden, wobei alle Grenzen nicht korrekt bestimmt wur-
den: Die beiden moglichen a-periodischen Grenzfélle (Fall 1 und Fall 2) und der Schwingfall
(wenn der Fall 3 zu Fall 4 fithrt und umgekehrt). Zu diesem Zweck wurden die charakte-
ristischen Polynome der Matrizen A, A, A3y = A3z- Ay und Ay3 = Ay - A3z berechnet
und die Einschrankungen erortert, die sich fiir die Parameter a und b ergeben, damit die
charakteristischen Polynome Einheitskreispolynome darstellen. Fiir die Matrix A; ergibt
sich das charakteristische Polynom zu

2—2—aq 1
Di()\) = \2 A —
1() + a-+1 +a—i—1

0, (4.27)

wobei fiir a > 0, b > 0 und a —b > —2 Gleichung (4.27) ein Einheitskreispolynom darstellt.
Fiir die Matrix Ao kann das charakteristische Polynom

Do(\) =N+ (20— 2+ a)A+ (1 —a) =0 (4.28)
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(a) Charakteristisches  Polynom (b) Charakteristisches ~ Polynom (c) Charakteristisches Polynom
Di(A):a—b> -2 Day(A\):a+b<2 Dss(N): b< 2

Abbildung 4.4.: Wertebereiche der Parameter a und b, bei denen die zugehdrigen charakteristi-
schen Polynome Einheitskreispolynome sind. Die hellgrauen Gebiete bezeich-
nen die Bereiche der Parameter a und b, indem das entsprechende charakte-
ristische Polynom ein Finheitskreispolynom ist. Die dunkelgrau gekennzeich-
neten Fldchen sind die Bereiche, bei denen das betrachtete charakteristische
Polynom kein Einheitskreispolynom ist.

angegeben werden, wobei die Eigenwerte fiir a > 0, b > 0 und a + b < 2 innerhalb des
Einheitskreises liegen. Wiederum kann gezeigt werden, dass die Bedingung a + b < 2 sowie
die Bedingungen nach GARDNER [16] und VAN PAEMEL [32] iibereinstimmen. An dieser
Stelle kann festgestellt werden, dass die Linearisierung nach GARDNER und VAN PAEMEL
Linearisierungen innerhalb des Gebietes Ry sind. Fiir die Matrizen A3 und A4 ergeben
sich die charakteristischen Polynome

D3(A\) = X2 4+ (26 —2) A+ 1 (4.29)

und

26-2)A 1-—a

) 4.30
1+a +1—|—a ( )

Dy(\) = A2 +

Das charakteristische Polynom Ds(\) liefert fiir 0 < b < 2 ausschlieklich Nullstellen auf
dem Einheitskreis. Fiir a > 0 und 0 < b < 2 ist D4(\) ein Einheitskreispolynom. Werden
die Matrizen A43 und Asy betrachtet, ergibt sich das charakteristische Polynom

—2 — 4b% + 8b 1—a
A = 0. 4.31
a—+1 +a+1 0 ( 3)

D3s(\) = Dys(z) = X2 +

Das Polynom nach Gleichung (4.31) stellt sich als Einheitskreispolynom dar, wenn die
Beziehungen a > 0 und b < 2 gelten.

Da weder von GARDNER, VAN PAEMEL noch von ACCO untersucht wurde, inwieweit die
Linearisierung giiltig ist, oder ob sie iiberhaupt angesetzt werden darf (siehe Theorem 2.3),
soll dies hier erfolgen. Dazu soll das Restglied nach LAGRANGE angegeben werden, um den
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Fehler der TAYLOR-Approximation zu beschreiben. Da ein TAYLOR-Polynom 1. Ordnung
angegeben wurde (siche Gleichung (4.25)) und ausschliefslich die Funktionen g;(7,v) von
Interesse sind, kann die Betrachtung des Fehlers auf die Funktionen g; beschrinkt werden.
Das Restglied nach LAGRANGE (1. Ordnung) ergibt sich fiir die Funktionen g;(-,-) zu

B ) = 220700072 + -2 gu07 0557 + L2 0u(07. 00)5 (4.32)
1\7, _28%292 T, T 8%8ﬁgZ T, T 28'17292 T, ) .
wobei 6 € (0,1) gilt. Es gilt:
— )2 a-+1)2+20—1)70 72
RFL( 5) = (a+1 b)vg+ (< ) S)T X b7 - (4.33)
§<%767a’b) 6(7767a’7b) 5(7:’67a7b70)
mit
E(7,0,a,b,0) = (a+1)% + 0 (407 + 2(a — 2b + 1)) + 0%(0? + 4b70). (4.34)
~2 ~ ~92
T L (139
(0v+1) (0o+1) (0v+1)
F3 @2
RY3(7,0) = 4.36
1°(7,0) 651 1) (4.36)
1= ((a+1D2—=(a+1)+b(1—a))70 (2b(1+ a?)) 7>
RF (7. 5) = (a+ )v3+(( )" —(a+1) (3 ) N (26( ) L (437)
X(%7ﬁ7a7b) X(%767a7b> X(%7ﬁ7a7b70)
mit

X(7,0,a,b,0) = (a+1)2+6 (4b(1 — a)7 + 2(a — 2b + 1)D) + 62 (0 +4b(70 — b7?)). (4.38)

Insbesondere durch die Gleichungen (4.33), (4.35) und (4.37) ergeben sich Abhéngigkeiten
des Fehlers beziiglich der Parameter a und b. Eine dhnliche Abhéngigkeit konnte in den
Abbildungen 3.6(a) bis 3.6(d) dargelegt werden. D. h., dass die Eingangsfrequenz und die
Démpfung des Systems einen Einfluss auf die Validitat oder Giite der Approximation des
linearen Modells haben.

4.1.4. Modellierung und Stabilitat des Modells nach HEDAYAT

Im Gegensatz zu den Arbeiten von VAN PAEMEL und ACCO wurden beziiglich des folgen-
den Modells keinerlei analytische Stabilitdtsbetrachtungen durchgefiihrt. Die Grundlagen
der Modellierung, die in [24] beschrieben wurden, sind dabei die Phasensignale des Refe-
renzsignals @er(t) und des VCO-Signals et (f) (bzw. des Teilerausgangssignals). Obgleich
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Tabelle 4.1.: Dargestellt sind die Zusammenhdinge zwischen den Zustinden des Phasen- und

Frequenzdetektors, der Ereignisse des Eingangssignals urer, des Ausgangssignals
Uyveo und des sprunghaften Spannungsabfalls iber dem Widerstand Ry des Schlei-
fenfilters erster Ordnung.

Zustand des Ereignis zum Zustand des Kontrollspannung
PFD zum Zeitpunkt ¢, PFD zum uert ()
Zeitpunkt ¢ Zeitpunkt ¢
So uk St uen(ty) + Ry - I,
St g St tert ()
S+ Whco So Uetl () — R+ Iy
So U¥co S uen(ty) = Bu- I
S U¥co S Ueti (tr,)
S_1 ul So uen(t;) + Ry - Iy

DEMIR [91] schon einen dhnlichen Ansatz publiziert hatte, wurde von HEDAYAT ein analy-
tisches Modell fiir den Regelkreis zweiter Ordnung [24] angegeben und fiir den Regelkreis
dritter Ordnung [25] ein Algorithmus entwickelt. Im Folgenden soll das Modell zweiter
Ordnung ohne Teiler angegeben und kurz erldutert werden. Der Sachverhalt, dass kein
Teiler verwendet wird, stellt keinerlei Einschrankung hinsichtlich der Allgemeinheit dar,
da der Verstarkungsbeiwert K, nur durch den Teilungsbeiwert dividiert werden miisste.
Innerhalb dieses Verfahrens sollen ausschliefslich die Zeitpunkte berechnet werden, in de-
nen der PFD einen Zustandswechsel durchfiihrt. Es kann fiir das Referenzsignal mit einer
konstanten Frequenz die Phasengleichung

Pref (tn—i—l) = Pref (tn) + 277'fref (tn—i—l - tn) (439>

aufgestellt werden, sowie deren Losung

Pref (tn)

1 fretirn/

2
—fref ) (4.40)

tfzej-l =ln +
Fiir den spannungsgesteuerten Oszillator des Regelkreises ergeben sich je nach Zustand
des PFD unterschiedliche Strome, wodurch die Kontrollspannung () moduliert wird.
Erfolgt ein Zustandswechsel innerhalb des PFD, so bewirkt dies einen sprunghaften Span-
nungsabfall iiber dem Widerstand R; des passiven Filters erster Ordnung. Damit lassen
sich die Spannungsgleichung

Uett(tny1) = et (th) + o+ (tng1 — 1) (4.41)
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und die Phasengleichung
akK
©veco (tn+1> = @vco(tn) + 27 - TV (t%—q—l - t?%) +

(f(),vco - Ky [Oétn - Uctl(ﬁ{)}) (tnt1 — tn) (4.42)

angeben, wobei o = i, /Cy (mit i, € (+1,, 0A, —1;,)) ist und das hochgestellte ,+* den
Zeitpunkt bezeichnet, der direkt nach einem Ereignis liegt (das hochgestellte ,,—“ bezeich-
net den Zeitpunkt, der direkt vor einem Ereignis liegt). Der néchste Zeitpunkt, an dem ein
Transitionswechsel (eine fallende Flanke des VCO) erfolgt, ergibt sich aus der Phasenglei-
chung des VCO (siche Gleichung (4.41)) und aus der Tabelle 4.1:

(

—&(tH) + \/gzm +2-a-K, (1 — %20—7(:")>
v =ty + 4 a- Ky VS {50} (4.43)
1— Sovco(tn)
\ é(t;; s

Dabei ist £(t)) = (Ky - uetn(t;) + fo,veo). Die Menge der Zustéinde des PFD wird mit
S € (8-1, So, S+1) bezeichnet. Abschliefend muss der kleinste Wert von t;efrl und ;%)
bestimmt werden, wodurch sich

tne1 = min {5, 00 } (4.44)
ergibt. Die Stabilitdtsuntersuchungen dieses Modells stellen sich ungleich schwerer dar als
die fiir die vorher angegebenen Modelle. Zwar liefert die Phasenbetrachtung ein intuitives
Modell und insbosonder ein Modell, mit dem variable Simulationen effizient durchgefiihrt
werden kénnen, jedoch ergeben sich 3+n-Zustandsgleichungen, wobei n die Anzahl der Zu-
stande im Schleifenfilter angibt. Im Folgenden soll das von HEDAYAT beschriebene Modell
fiir den Phasenregelkreis zweiter Ordnung in eine kompaktere Form geschrieben werden.
Das Modell wird in ein schaltendes, autonomes, nichtlineares Differenzengleichungssystem
umgeschrieben. Zu diesem Zweck werden die Zustédnde vy und (i definiert, vy kann ana-
log zu den Betrachtungen von VAN PAEMEL verstanden werden und (; entspricht dem
Phasenfehler zwischen den Signalen ¢,ef und @yeo. Sei foveo = 0. Des Weiteren werden
die Zustandswechsel von Sy nach Sy iiber S41 oder iiber S_1 betrachtet. Abbildung 4.5
beschreibt dieses Vorgehen, wobei ausgehend vom Zeitpunkt ¢, der Phasenfehler { und
die Spannung v zum Zeitpunkt t:{ 1 bestimmt wird. Offensichtlich ergeben sich vier Diffe-
renzengleichungssysteme:

LK, K,
— Ky (0 + RiLy) 4 | K2 (v, + RyIp)* +2 22 (14 G Ko
Cl 2m fref

__r Ky
2nCh fref
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uref(t)

Uvyco (t)

Uet] (t)

Uref (f)

Uvyco (f) |

Uet] (t)

Abbildung 4.5.:
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e = —¥vco
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Pe = Pref
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Uk+1
A
>
tho1 ty = )© tnpr = 1
L | |
[ I 1
So S, So

(c) Fall 3 mit dem Phasenfehler ¢, <0

Uet] (t)

urcf(t)

Uyco (f)

Uet] (t)

\ Pe = Pref Pe = Pref

Pe = —Pvco

A Pe = Pref Pe = —Pvco
I I
I
I
|
I

Uk+1
A
>
tho1 ty = t)© tnp =t
} % %
So S So

(d) Fall 4 mit dem Phasenfehler {; > 0

Fall 4 eine fallende Flanke des VCO-Signals.

Behandlung der Fallunterscheidungen: (a) und (b) also Fall 1 und 2 unter-
scheiden sich nur zum Zeitpunkt t,,_1 bzgl. ihres Phasenfehlers. Bei Fall 1 sei
zum Zeitpunkt t,—1 eine fallende Flanke des Referenzsignals erfolgt, bei Fall
2 eine fallende Flanke des VCO-Signals. (c) und (d) also Fall 3 und 4 unter-
scheiden sich ebenfalls zum Zeitpunkt t,,_1 bzgl. thres Phasenfehlers. Bei Fall
3 sei zum Zeitpunkt t,—1 eine fallende Flanke des Referenzsignals erfolgt, bei
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C
128
21, K,
—Ky (v + Rilp) + | K2 (0 + Rily)* + =2 1 — Kyo——2T
Cl fref
Cht1 = A (4.45b)
i A
27701fref
Rll 4+ —
(F3 Ck: L v |- leref n I 1
k1™ 47TK Cl VL ClKv UI%
Rilp + —— Iy
K, RiLK, LK, ! I, 1
orl1— Vg + 1ip + - leref P — (445C)
f ref fref 2C’I ref VU 2K C’1 Uy
I, K K (1 K\ L
— R, + | — - Kt
C]H_l 4 ref Ck <( ) Jret (Uk: fref> Olfref) ¢
! + Ry 1
K Ky fogCp @ HP I
or | 1+ 2= — (v — RyI,) — — Led D 4.45d
chfref ( B ) fref Vg QUI%KVCI ( )
F1 k+1
_ P 4.45
k1 = Uk * Cl 27 fref ( e)
I, Gt
F2 Sk+1
= 4.45f
k1 = Yk o Cl 27Tfref ( )
I 1 Cr 1
F3 P
S 1+ 2= 4.4
k1 vk Cl (fref ( * 27?) vak) ( 5g)
I G\ 1 1
F4 P k
= - — 1-— 4.45h
Ea o Ch (( ) fref vak) ( )

Fall 1 und Fall 3 beziehen sich auf die Falle mit (; < 0 und Fall 2 und 4 gelten, wenn ;. > 0
ist. Der Zustandsraum lasst sich in vier Gebiete unterteilen. Die Frage, die sich nun stellt,
ist, wie sich der Zustandsraum beziiglich dieser Gebiete unterteilt. Bei Betrachtung der
vier Félle ist es offensichtlich, dass sich bei dem Phasenfehler ( = 0 der Zustandsraum in
zwei Teile zerlegen lésst. Liegt ein positiver Phasenfehler (; > 0 vor, so konnen zwei Félle
unterschieden werden: Wenn (11 < 0 ist oder (;41 > 0 ist. Dementsprechend kann formal
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der Zeitpunkt berechnet werden, bei dem sich (;; = 0 ergibt und somit die Félle 2 und 4
identisch sind. Offensichtlich liegt ein Phasenfehler von (. ; = 0 vor, wenn zum Zeitpunkt
t,, eine fallende Flanke des Referenzsignals und des VCO-Signals erfolgt. Es ergibt sich

) 1+ C;l
tn =tn_1+ =ty 1 + —=. 4.46
" " fref " Kyvp—1 ( )

Liegt ein negativer Phasenfehler (;, < 0 vor, so kdnnen wieder zwei Fille unterschieden
werden: Wenn (1 < 0oder (1 > 0ist. Auch hier ist gerade der Zeitpunkt zu bestimmen,
bei dem (x4 = 0 gilt. Es kann

1 — Cn—l
27
th =tp—1+ ——=— =ty . 4.47
" 1t Jret o1t Kyvp—q ( )
angegeben werden. Somit ergibt sich die Aufteilung des Zustandsraumes durch
LCy: (=0 (4.48)
und
.
Ck‘ fref
14+ = V(<0
( + 2 | Ky Gk <
LCY : (py1 = 0= v = < . . (4.49)
Ck fref
1—= V(>0
\ ( o K. Cr >

Durch die Substitutionen nach den Gleichungen (4.20a) und (4.20b) kann das Gleichungs-
system ausschliefslich in Abhéngigkeit der normierten Zustédnde v und ¢ sowie der Para-
meter a und b beschrieben werden:

—(ﬁk+1+a)+\/(6k+1+&)2+4b(fk—6k)

~F1
Coy1 = % (4.50a)

i —(p+1+a)+ /(O +1+a)+4b(1— (1 +7) (1-C
i \/ ' o ( QAD) (4.50D)

*2
- C2b . a+2b 2
= — 1 —
Gt e+ 12 T Gk ( ol (D)2
a+2b b

— U+ a+b— — + 4.50¢
Ok +1 (ﬁk+1)2( )

68



4.1. Modellierung und Analyse von Phasenregelkreisen

. Y - 1
Cigr = Cib+ G (@H1—a+2b<~ - —1>>+

Vg +

b _2b+a
(o +1)* T +1

—0p+a+b (4.50d)

Es ergibt sich die Form

Ch1 _ 9i (G, Uk (4.51)
Vg1 Uk + 2bf;(Ce, Uk) .

mit i € (1,2,3,4),

91(Ce, k) = f1(Ce k) = Chias
92(Cry 1) = f2(Cp ) = (e,
93(Ch, k) = iy,
94(Crr ) = Gy 1,

G+ 1
v +1

f3(Chy ) = 1 —
und

- 1 -
) =1 — ——— — (%
fa (G Or) 1 Ck
Die Aufteilung des Zustandsraumes ist gegeben durch

LCy: (=0 (4.52)

und

LCY : Goyr1 = 0= 0y = § . (4.53)
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AU}
R R4
/ =
// 51@
R1 Rs

Abbildung 4.6.: Einteilung des Zustandsraum in vier Sektoren R; mit i € (1,2,3,4)
Entsprechend ergibt sich der Zustandsraum nach Abbildung 4.6.
Damit kann im Ursprung durch die TAYLOR-Reihenentwicklung das linearisierte Modell
LT+1 = Ai:ck (4.54)

aufgestellt werden, wobei die vier JACOBI-Matrizen durch

1 1 —1
J1:A1:A2: 4.55a
1+a[2b 1+a2b] (4-852)

l—a —(1—a)
Jo=A3=A4= (4.55Db)

2b 1—2b
gegeben sind. Das charakteristische Polynom der Matrix J ist gegeben durch
2b—2—a 1

Di(\) = M 4.56
1) L IR (4.56)

wobei fiir a > 0, b > 0 und a —b > —2 D;(\) ein Einheitskreispolynom ist. Diese Randbe-

dingung ist identisch zu der von Acco fiir das charakteristische Polynom nach Gleichung
(4.27). Das Polynom

Do(\) =X+ (2b—24+a)A+1—a (4.57)

besitzt genau dann ausschlieflich Nullstellen im Einheitskreis, wenn a > 0, b > 0 und
a+ b < 2 erfiillt ist. Die Aussagen von GARDNER (siehe Gleichung (4.6)), VAN PAEMEL
(siche Gleichung (4.19)) und Acco (siche Gleichung (4.28)) werden dadurch bestétigt.
Werden abschlieftend noch die Félle J19 = J1 - Jo und Jo; = Jo - J1 betrachtet, wobei
sich das charakteristische Polynom

—2 + 8h — 4b? 1—a
A+

Di2(A\) = Doy ()\) = \2
12(A) 21(}) + 1+a 1+a

(4.58)
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0,55
0,45

0,35

Gemeinsame LyaArPuNov-Funktion

0,25
0,15

0,05

0,2 06 1 1,4 1,8
a
Abbildung 4.7.: Parameterraum zur gemeinsamen LYAPUNOV-Funktion Vi = 2T Pix

aufstellen lasst und fiir a > 0, b > 0 und b < 2 dieses sich als Einheitskreispolynom
darstellt. Dies entspricht den Aussagen, die im vorangegangenen Kapitel 4.31 beschrieben
wurden. Damit kann festgestellt werden, dass, wenn a > 0, b > 0 und b > 2 gelten, der
Phasenregelkreis instabil ist.

Fiir die JACOBI-Matrix J; kann eine LYAPUNOV-Funktion V5 = &” Pz bestimmt werden
mit

1+2a+2b+a? a’+2a—2ba—2b—1
+2—b 2a(a+2—0b
po-| , clar2=b tlotz=h) (4.59)
a2+2a—2ba—2b—1 ad>+2a2+4ba+a+4b+2
2a (a+2—b) da(a+2—-10)b

als Losung der diskreten LYAPUNOV-Gleichung, wobei hier die Ungleichung a — b > —2
gelten muss. Fiir die Ungleichungen

(4a+4)bz+(3—a2+2a)b—3a+a3—2

<0 4.60
a+2—-9b ( )
und
arb® 4+ agb? + (—4a® —2a*+12a+10) b+ «
_oab? a4 ; Joras (4.61)
(a+2-0)

mit

a1 = —8@—8,

g = 19+ 11a®> +26a
und

a3:—7+2a4—14a+4a3—5a2
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ergibt sich eine gemeinsame LYAPUNOV-Funktion fiir 1 = J1xg und o1 = Joxk. In
Abbildung 4.7 ist der Parameterraum dargestellt, fiir den die Matrix P; eine gemeinsame
LAypPuUNOV-Funktion fiir das schaltende Differenzengleichungssystem ist. Offensichtlich ist
diese Randbedingung an die Parameter wesentlich strenger, als die von GARDNER ein-
gefiihrte Stabilitdtsgrenze. Es sei an dieser Stelle angemerkt, dass es wohl noch andere
gemeinsame LYAPUNOV-Funktionen gibt, die einen groferen oder anderen Parameterbe-
reich abdecken.

4.2. Phasenregelkreis mit Dead-Zone-Charakteristik

In diesem Kapitel wird das Modell nach VAN PAEMEL und HEDAYAT hinsichtlich der
Dead-Zone-Charakteristik des PFD erweitert. Die Dead-Zone wird dabei mittels Verzoge-
rungszeiten, die sich beim Zustandstibergang von Sy nach Sy; (S—1) bzw. von Sy nach
Sy ergeben, modelliert. Des Weiteren wird der Sachverhalt des Leckstromes in das ideale
Modell nach VAN PAEMEL integriert.

4.2.1. Erweiterung des Modells nach VAN PAEMEL: Dead-Zone

Zur Modellierung der Dead-Zone wird das Modell nach VAN PAEMEL [32] mit dem Zu-
standsautomaten nach [31] kombiniert (sieche auch Kapitel 5.2.1). An dieser Stelle sei an-
genommen, dass ausschlieflich der Ubergang von Zustand Sg nach S_; sowie von Sy nach
S41 jeweils eine Verzogerung aufweist. Es sei erwahnt, dass, wenn beispielsweise der PFD
im Zustand Sy ist und eine fallende Flanke des Referenzsignals erfolgt, innerhalb des Zeit-
raums der entsprechenden Verzogerung kein Wechsel im Ausgangssignal zu verzeichnen ist.
Ergibt sich innerhalb der Verzogerungszeit, beginnend mit der fallenden Flanke des Refe-
renzsignals, keine fallende Flanke des riickgekoppelten Signals, so erfolgt der Wechsel auf
Zustand S11. Wenn jedoch genau in der definierten Verzogerungszeit eine fallende Flanke
des riickgekoppelten Signals auftritt, so bleibt der PFD im Zustand Sp. Zur Beschreibung
des eingerasteten Bereiches ergeben sich 16 mogliche Falle, die in den Abbildungen 4.8 bis
4.13 dargestellt sind. Da im urspriinglichen Modell von VAN PAEMEL die Pulsbreite 7
und die Spannung vy, als Zustandsgrofen eingefithrt wurden und fiir das Modell nach [31]
zusatzliche Verzogerungen innerhalb des Zustandsautomaten integriert wurden, ist es er-
forderlich, die Zustandsgréfen neu zu definieren. Dabei wird 75 die Zeit sein, die zwischen
einer fallenden Flanke des Referenzsignals und des VCO-Signals liegt. Des Weiteren werde
vk definiert als die Zeit, in der ein Strom %, in oder aus dem Schleifenfilter fliefit, d. h. die
Zustandsgrofe vy ist genau die Strompulsbreite. Das Vorzeichen von 7 oder 75,1 ist dabei
positiv, wenn zum Zeitpunkt tg die Referenzspannung und zum Zeitpunkt ¢; die VCO-
Spannung eine fallende Flanke aufweist, wobei ¢y < t; gilt. Ein negatives Vorzeichen ergibt
sich, wenn zum Zeitpunkt tg das VCO-Signal und zum Zeitpunkt ¢; das Referenzsignal eine
fallende Flanke aufweist. Weiter sei 7o g < 73 oder 7o B < 7j4+1, dann kann das gleiche
Vorzeichen fiir j, bzw. ;41 angegeben werden. Ist jedoch 7o g > 73, oder 7oA B > 741, SO
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4.2. Phasenregelkreis mit Dead-Zone-Charakteristik

Uref (1) Uref (1)

i Uyeo ()

Uvco (t)

(a) Fall 1.1 mit 7% > 74 > 0 und 7%41 > 74 > 0 und (b) Fall 1.2: mit 7 > 74 > 0 und 7o > 7k4+1 > 0 und

den Gleichungen (4.63a) fiir die Fliche Fpyz, (4.63b) den Gleichungen (4.64a) fiir die Fliche Fpz, (4.64Db)
fiir den Zustand yi+1, (4.63¢) fiir den Zustand 7x41 fiir den Zustand vg41, (4.64c) fiir den Zustand 7441
und (4.62) fiir die Spannung vi41 iber Cy und (4.62) fiir die Spannung vk41 iber Cy

Abbildung 4.8.: Behandlung der Fdlle 1.1 und 1.2: Die roten Linien des Stromes iy(t) und
der Spannung ue) (t) beschreiben die durch uyet(t) und wuyay(t) mit Dead-Zone
verursachten Verliufe. Die schwarzen Verliufe von iy(t) und ucy(t) ergeben
sich, wenn der PFD als ideal angenommen wird und somit keine Dead-Zone
beinhaltet. Hervorgehoben ist die resultierende Fliche Fpy.

ist 7, = 0 bzw. 711 = 0. Dadurch ergibt sich die Spannung

i
Vpy1 = Uk + C—”wykﬂ. (4.62)
1

Das Modell von VAN PAEMEL basiert auf der Bestimmung der Fléche unter der Regel-
spannung ue)(t) innerhalb einer Periode des VCO-Signals. Im Detail miissen 16 Fille
unterschieden werden, die jedoch aufgrund verschiedener Symmetrien in Untergruppen ein-
geteilt werden und sich sechs Gleichungssysteme ergeben werden. Die Abbildungen 4.8(a)
und 4.8(b) zeigen die Fille 1.1 und 1.2. Es folgen fiir die Zustandsgrofen beider Fille
die Nebenbedingungen 7, > 7o > 0 und ~; > 0. Des Weiteren ergibt sich fiir Fall 1.1
Ti+1 > 7A > 0 und %1 > 0, wodurch sich

M) _ (4.634)

1
Uk(T—Tk+Tk+1)+[p (Rl (Tk+1—TA)+ 50, ?V

und

%1;1_11 = et — TA (4.63b)
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4. Modellierung und Analyse digitaler Phasenregelkreise

A B B A B B
Uref (t) : : : Uref (t) : : : :
ol B 1 et B i
ip(t)
uctl(t)

(a) Fall 2.1 mit 7, < —m8 < 0 und 7441 < —78 < 0 und (b) Fall 2.2: mit 7 < —78 < 0 und —78 < 741 < 0 und

den Gleichungen (4.65a) fiir die Flache Fpz, (4.65b) den Gleichungen (4.65a) fiir die Flache Fpz, (4.66)
fiir den Zustand vx+1, (4.65¢) fiir den Zustand 7541 fiir den Zustand ~yx+1, (4.65¢) fiir den Zustand 74+1
und (4.62) fiir die Spannung vi11 tber Cy und (4.62) fiir die Spannung vi1 tber Cy

Abbildung 4.9.: Behandlung der Fille 2.1 und 2.2: Die roten Linien des Stromes ip(t) und
der Spannung ucy(t) beschreiben die durch uyes(t) und wyar(t) mit Dead-Zone
verursachten Verliufe. Die schwarzen Verliufe von iy(t) und uey(t) ergeben
sich, wenn der PFD als ideal angenommen wird und somit keine Dead-Zone
beinhaltet. Hervorgehoben ist die resultierende Fldche Fpy.

angeben lassen, wobei sich aus Gleichung (4.63a) dann der Zustand

(v + IpR1) — \/(Uk + IpR1)2 + Qé—p <U}€ (s =T —7a) + KL>
SFLL ! N
k+1 A Ip
1
ergibt. Aus Abbildung 4.8(b) kann die Relation 74 > 741 > 0 fiir Fall 1.2 abgeleitet
werden und es gelten

(4.63c)

1
O (T — T + 1) = ré (4.64a)
v
und
Tiit =0. (4.64D)

Aus Gleichung (4.64a) ergibt sich

1
7']21_-12 =T+, + Koor (4.64c)
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4.2. Phasenregelkreis mit Dead-Zone-Charakteristik

‘k TAI 7_]3I ‘k TAI I 7-]3I

Uref (t) i i Uryef (t) i i i i
i i - i

Pl P poi P

Uyeo(1) P 3 Uyeo(t) o .
i — il ——

P P

in(t) L in(t) B

e () et (1)

(a) Fall 3.1 mit 0 < 74 < 7 und 741 < —78 < O und (b) Fall 3.2: mit 0 < 74 < 7% und —78 < 741 < 0 und

den Gleichungen (4.67a) fiir die Fliache Fpz, (4.67b) den Gleichungen (4.67a) fiir die Fliche Fpz, (4.68)
fiir den Zustand vx4+1, (4.67¢) fiir den Zustand 7441 fiir den Zustand vx41, (4.67¢) fiir den Zustand 7541
und (4.62) fiir die Spannung vi41 tiber Cy und (4.62) fiir die Spannung vj41 tiber Cy

Abbildung 4.10.: Behandlung der Fdlle 3.1 und 3.2: Die roten Linien des Stromes iy(t) und
der Spannung uc(t) beschreiben die durch uyet(t) und uyar(t) mit Dead-Zone
verursachten Verldufe. Die schwarzen Verldufe von iy(t) und ue(t) ergeben
sich, wenn der PFD als ideal angenommen wird und somit keine Dead-Zone
beinhaltet. Hervorgehoben ist die resultierende Fldche Fpy.

Die Félle 2.1 und 2.2 kénnen den Abbildungen 4.9(a) und 4.9(b) entnommen werden. Somit
lassen sich fiir den Fall 2.1 die Randbedingungen 7, < —m3 < 0, 7341 < —7 < 0 und die
Zustandsgleichungen aufstellen. Es ergibt sich

I + 1
B (U}mLM) H I8 (1 + 78) + 0 (T = T + The1) = 7= (4.65a)
1 v
als gesuchte Fliache unter der Regelspannung uc(t), wobei die Funktion £(-) durch
2
T
— 2Ry 4+ —
E(x)=aRy + 50,

definiert ist. Hinzukommend ist
V2L =+ 7B, (4.65b)
Aus Gleichung (4.65c) kann

I
1 IpR1(Tk+TB)+%(Tg—T§)
TH =T - T (4.65¢)

1)



4. Modellierung und Analyse digitaler Phasenregelkreise

B TA

Uyef (t) :

cho(t)

in(t) ]

Uect] (t)

(a) Fall 4.1 mit 7 < —78 < 0 und 741 > 7a > 0 und
den Gleichungen (4.69a) fiir die Flache Fpz, (4.69b)
fiir den Zustand vx+1, (4.69¢) fiir den Zustand 7541
und (4.62) fiir die Spannung vi11 tber Cy

B TA

Uyef (t)

Uvyco (t)

in(0) o

uctl(t)

(b) Fall 4.2: mit 7 < —78 < 0 und 7o > Tk41 > 0 und
den Gleichungen (4.70a) fiir die Fliache Fpz, (4.70b)
fiir den Zustand ~yx+1, (4.70¢) fiir den Zustand 7441
und (4.62) fiir die Spannung vi41 tiber C4

Abbildung 4.11.: Behandlung der Fille 4.1 und 4.2: Die roten Linien des Stromes iy(t) und
der Spannung uc(t) beschreiben die durch uyes(t) und uyay(t) mit Dead-Zone
verursachten Verldufe. Die schwarzen Verldufe von iy(t) und ucy(t) ergeben
sich, wenn der PFD als ideal angenommen wird und somit keine Dead-Zone
beinhaltet. Hervorgehoben ist die resultierende Fldche Fpy.

abgeleitet werden. Die Flache zum Fall 2.2 wird wie Fall 2.1 durch (4.65a) beschrieben und
somit wird der Zustand 751 durch die Gleichung (4.65¢) bestimmt. Im Gegensatz zu Fall

2.1 (vergleiche Gleichung (4.65b)) ist

F2.2
Te+1 = YUs

(4.66)

wobei 7, < —7m3 < 0 und —73 < Ty < 0 gelten. Werden die Gebiete 7, > 74 > 0
und 75411 < —mB < 0 betrachtet, konnen die folgenden Gleichungen zu Fall 3.1 aufgestellt

werden:
1
V(T = T + Thy1) = )
v
Vhil = Th+1 + 7B
el = T+ !
k+1 vak'
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(4.67a)

(4.67b)

(4.67¢)



4.2. Phasenregelkreis mit Dead-Zone-Charakteristik

A TA TA A TA B
trer(1) | N tret (1) N ]
! L L -
I | I I | I I | I ! |
Ureo(t) | | tveo(t) | B
P P P i
i i o P
in(t) l | ip(1) | B
] P P i
P R P ]
iq i P P
Uen(t) ; ! U (1) A ]
i W |/ 5 I
P o r
F . I P Fpz
| B i i
D i P i
! ! I ! I ! I ! I
P Pt Pt
o w H 7k H =0
KTk KTk VR Tt
| | |
T T

(a) Fall 5.1 mit 7o > 7% > 0 und 74 > 7k41 > 0 und (b) Fall 5.2: mit 7o > 7% > 0 und —78 < 741 < 0 und

den Gleichungen (4.71a) fiir die Flache Fpz, (4.71b) den Gleichungen (4.71a) fiir die Fliche Fpz, (4.71b)
fiir den Zustand yg41, (4.71¢) fir den Zustand 741 fiir den Zustand vx41, (4.71c) fiir den Zustand 741
und (4.62) fiir die Spannung vi41 tiber Cy und (4.62) fiir die Spannung vj41 tiber Cy
A ™ ™ A s s
Uyef (t) : | i Uyef (t)
i i i
Bw o
Uveo (t) : : : : Uvco (t)
R e
. ] ; ,
in(0) 1 L w0
_I i P
i i
ml R
et (1) : : : : ()

L o0

T

(c) Fall 5.3 mit —m8 <7, <O und 7o > 7% > 0 und den (d) Fall 5.4: mit —78 < 7% < 0 und —78 < TK4+1 < 0 und

Gleichungen (4.71a) fiir die Flache Fpz, (4.71b) fiir den Gleichungen (4.71a) fiir die Flache Fpz, (4.71b)
den Zustand k11, (4.71c) fiir den Zustand 7441 und fiir den Zustand 7i+1, (4.71c) fiir den Zustand 7441
(4.62) fiir die Spannung vi41 Uber Cy und (4.62) fiir die Spannung vj41 tiber Cy

Abbildung 4.12.: Behandlung der Fille 5.1, 5.2, 5.3 und 5.4: Die roten Linien des Stromes
ip(t) und der Spannung uc(t) beschreiben die durch uyet(t) und wyay(t) mit
Dead-Zone verursachten Verliufe. Die schwarzen Verldufe von iy(t) und
uct1(t) ergeben sich, wenn der PFD als ideal angenommen wird und somit
keine Dead-Zone beinhaltet. Hervorgehoben ist die resultierende Fliche Fpy.

7



4. Modellierung und Analyse digitaler Phasenregelkreise

Uref (1) : : : Uref (1) : :
1 1 1 1 1
= — SiB 1
uvco(t) i i i uvco(t) i i P
| + | | ’ —
| ul . i 0
ip(t) ! ip(t) ] ! !
0 3 N
I/ I I I I/ I I I I
U (t) : e (t) E N
! Fpy i N .
: ' i DZ
| | aa
1 1 1 1
I i y t b i N t
T I_\_’Yk+1 o I_\_’Yk+1 =0
| ®_ Tk Tk | w_ Tk Thtl
| 1 | 1
T T

(a) Fall 6.1 mit 74 > 7% > 0 und 7x41 > 74 > 0 und (b) Fall 6.2: mit 74 > 7 > 0 und 741 < —78 < 0 und

den Gleichungen (4.72a) fiir die Flache Fpz, (4.72b) den Gleichungen (4.73a) fiir die Flache Fpz, (4.73b)
fiir den Zustand vyx+1, (4.72¢) fiir den Zustand 7541 fiir den Zustand ~yx41, (4.73c¢) fiir den Zustand 7441
und (4.62) fiir die Spannung vi11 tber Cy und (4.62) fiir die Spannung vi41 tiber C4
y 8 TA A 8 , 8
Uref (t) uref(t) : | :
T o
cho(t) uVCO(t) : : :
1 o
in(t) in(t) L RN
ik
L b
e (1) et (1) P : ; I :
I i
Fpy
i
P LI ¢
H "%+ =0
xn

Tk+1l

T

(c) Fall 6.3 mit —m8 < 7 < 0 und 741 > 7a > 0 und (d) Fall 6.4: mit —78 < 7 < 0 und 7441 < —78 < 0 und

den Gleichungen (4.72a) fir die Flache Fpz, (4.72b) den Gleichungen (4.73a) fiir die Fliache Fpz, (4.73b)
fiir den Zustand g1, (4.72¢) fiir den Zustand 7441 fiir den Zustand vi41, (4.73¢) fiir den Zustand 7441
und (4.62) fiir die Spannung vi41 tber Cy und (4.62) fiir die Spannung vi41 tiber C4

Abbildung 4.13.: Behandlung der Fille 6.1, 6.2, 6.3 und 6.4: Die roten Linien des Stromes

78

ip(t) und der Spannung ucy(t) beschreiben die durch uyes(t) und v (t) mit
Dead-Zone verursachten Verliufe. Die schwarzen Verldufe von iy(t) und
uct1(t) ergeben sich, wenn der PFD als ideal angenommen wird und somit
keine Dead-Zone beinhaltet. Vorgehoben ist die resultierende Fldiche Fpy.



4.2. Phasenregelkreis mit Dead-Zone-Charakteristik

Offensichtlich entspricht Fall 3.1 einem Nulldurchgang des Phasefehlers, da sich der Zu-
stand des PFD von S84 iiber Sp nach S_1 édndert. Dieser Fall tritt genau dann auf, wenn die
Trajektorie noch relativ weit vom Fixpunkt entfernt ist und die Dead-Zone nur einen ge-
ringen Einfluss hat. Fiir 7, > 74 > 0 und —75 < 7341 < 0 kann die Fldche nach Gleichung
(4.67a) und der Zustand 7,11 nach Gleichung (4.67c) fiir den Fall 3.2 nach Abbildung
4.10(b) angegeben werden. Fiir die Pulsbreite y;41 wird

75_3;12 —0 (4.68)

gesetzt. Der Fall 4.1 entspricht wie der Fall 3.1 einem Nulldurchgang des Phasefehlers, wo-
bei der Zustandswechsel von §_1 iiber Sg nach Sy erfolgt. Damit kann durch 7, < —m3 < 0
und 7541 > 7A > 0 die Flache

B (Uk + M) + 1, (&(me +18) + &(Tpr1 — TA)) +

1
(4.69a)
1
Ve (T — T + Ty 1) = ?V
angegeben werden und es folgt
Vitl = Thel — TA (4.69D)
sowie
]2
P (2 _ 2
ot Ruly) (v + Rilp) Yoo (Tk — TB> + QFh(vk, )
F4.1 _ k 14p 1
Thrl = TA 7 7 (4.69c¢)
b b
01 C(1
mit
1
h(vg, ) = vg (Tk — T — T') — IRy (1 + TB) + = (4.69d)
A\

Mit 7, < —m3 < 0 und 74 > 7%+1 > 0 konnen die Gleichungen fiir den Fall 4.2 aufgestellt

werden:

L, (1, + 7 1
™ (Uk + 1)(le]3)> + ]pg(Tk + TB) + +vg (T — Tr + Tk+1) = ? (470&)

A%
751.12 —0 (4.70b)

oo o
1 ]pR1(Tk+TB)+20 (Tk TB)

Tka&f =7 — T+ Koor + " . (4.70¢)
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4. Modellierung und Analyse digitaler Phasenregelkreise

Aus den Abbildungen 4.12(a), 4.12(b), 4.12(c) und 4.12(d) ist ersichtlich, dass sich sowohl
fiir 7,41, Va1 und vy dieselben Gleichungen fiir die Falle 5.1, 5.2, 5.3 und 5.4 ergeben.
Somit gelten die Gleichungen

1

O (T = T + Tpy1) = I (4.71a)
A%
und
F5 1
Top1 =Tk — 1T + Koo (4.71c)
v

Offensichtlich findet gerade bei diesen Fallunterscheidungen keine Regelung statt, da keine
Strompulse aufgrund des kleinen Phasenfehlers zwischen den Phasensignalen ¢.q¢(¢) und
©Oveo(t) erzeugt werden konnen und somit die Spannung am Ausgang des Schleifenfilters
konstant bleibt. Formal gelten jedoch fiir den Fall 5.1 die Ungleichungen 0 < 75, < 7a
und 0 < 741 < 7A. Fiir den Fall 5.2 ergibt sich 0 < 7, < 7p und —7m < 7341 < 0. Fall
5.3 ist fiir den Bereich —m/3 < 7, < 0 und 0 < 7341 < 7a definiert. Abbildung 4.12(d)
liefert —m3 < 7, < 0 und —73 < 741 < O fiir Fall 5.4. Wird der Bereich verlassen, in
dem keine Regelung stattfindet, ergeben sich die letzten vier Fallunterscheidungen. D. h.
die Strompulsbreite v41 ist grofer Null. Fiir die Félle 6.1 und 6.3 konnen die folgenden
Gleichungen ermittelt werden:

1 —74)? 1
O (T — 73 + They1) + Ip (Tk+1—TA)R1+_M == (4.72a)
2 Ch K,
F6.1/F6.3
7k;+1/ = Tpi1 — TA (4.72Db)
F6.1/F6.3 — (v + IpR1)
T =TA + —7F7—7—
e I
C1

21 1
\/(vk + IpR1)2 + Ff (Uk (g —ma —T) + E)

Iy
Ch

+ (4.72¢)

Dabei gelten fiir den Fall 6.1 74 > 7, < 0 und 7,47 > 74 > 0. Entsprechend ergibt sich
—718 < 7 < 0 und 741 > 7o > 0 fiir den Fall 6.3. Die letzten beiden Fallunterscheidungen
6.2 und 6.4 werden durch die Flache

O (T = T + Tp1) = i (4.73a)
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4.2. Phasenregelkreis mit Dead-Zone-Charakteristik

Spannung v /V

Strompulsbreite v /ps Zeitspanne 7, /us

Abbildung 4.14.: Dreidimensionaler Zustandsraum mit der Strompulsbreite i, der Zeitspanne
T, zwischen zwei Ereignissen und der Regelspannung uet).

die Zustandsgrofen

F6.2/F6.4
’Yk+1/ = Tk+1 + 7B (4.73b)
und
1
T:E.l2/F6.4 =T (4.73c)

Kv'Uk

beschrieben, mit 74 > 7, > 0 und 7341 < —7p < 0 fiir den Fall 6.2 und —m3 < 73, < 0 und
Tpr1 < —mg < 0 fiir Fall 6.4.

Es sei darauf hingewiesen, dass der Zustand ~; im Grunde ein virtueller Zustand ist.
Jedoch kann unter Betrachtung der Zustdnde v und 73 sowie des virtuellen Zustandes ~;
die Dead-Zone schon wahrend der Simulation im Mittel gut dargestellt und charakterisiert
werden. Definitionsgeméf stellt 7, die Differenz der Zeitpunkte einer fallenden Flanke des
Referenzsignals und einer fallenden Flanke des VCO-Signals dar und ~; ist gerade das
Zeitintervall, bei dem der Strom i, einen Wert ungleich Null annimmt. Abbildung 4.14
zeigt den dreidimensionalen Zustandsraum, wobei drei Projektionen dargestellt werden.
Auf der Projektionsebene v — 7 ist nicht zu erkennen, ob das System eine Dead-Zone
aufweist oder nicht. In der Ebene vy, — 73, ist ersichtlich, dass im Bereich —13 < 73 < 75 die
Spannungswerte v konstant sind und somit in diesem Bereich keine Regelung stattfindet.
Die Ebene v — 71 stellt gerade das mittlere Verhalten der Dead-Zone dar. Es entspricht
dabei dem Tastverhéltnis d. Die angegebenen Gleichungen zur Beschreibung des Verhaltens
konnen kompakter geschrieben werden. Hierfiir wird der eingefiithrte Zustand 4 nicht mehr
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4. Modellierung und Analyse digitaler Phasenregelkreise

A C B D
Abb. 4.16(a) Abb. 4.16(c) Abb. 4.16(b) Abb. 4.16(d)
Y Y Y Y

Th+1, UVk+1

\/

Abbildung 4.15.: Ablaufdiagramm des Algorithmus’ zur Simulation des Phasenregelkreises mit
Dead-Zone auf Basis der Arbeiten von VAN PAEMEL. In den Bldcken A
bis D erfolgt die Bestimmung der Menge im Phasenraum. Fine detaillierte
Beschreibung der Blicke A bis D ist in den Abbildungen 4.16(a) bis 4.16(d)

zu finden.

explizit ausgeschrieben. Dadurch lassen sich die Gleichungssysteme ausschliefslich durch
den Zustand v und 73 beschreiben. Dabei kénnen die 16 betrachteten Félle durch sechs
Gleichungssysteme beschrieben werden.
Fiir die Félle 1.1, 4.1, 6.1 und 6.3 kann

ey Tl U
l vii ] B l vg + Oéfglle((iij) —7a) | Fralm, ve) (4.742)
bestimmt werden, wobei die Relationen
Fall 1.1 Fall 6.1 Fall 6.3 Fall 4.1
KTk > TA > OI\/KTA > T > OEVK—TB <7 < OEVKT/C < —1B < Oi
£ () £ () £ () FoTen)

und
Thk+1 > TA > 0

gelten. Des Weiteren werde den Féllen 1.1, 6.1 und 6.3 die Funktion g (7, vg) zugewiesen
und dem Fall 4.1 die Funktion g4(7%,vt). Fir das Gleichungssystem

Tht1 92,3(Tk, Vi)
- 7 - Tk, U 4.74b
l Uk+1 1 l v + a (92,3(7, vx) + TB) F23(7k: vr) ( )
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4.2. Phasenregelkreis mit Dead-Zone-Charakteristik

T >0, T >7A, % >0 T <0, =T > T, Y <0

Te+1 <0 Th+1 = 0

Fall 1.1 Fall 3.1 Fall 2.1 Fall 4.1
Tht1 > TAA > Tpy1 "B Tk+*‘fB < Th1  —TB > Tk+1—TB <7y TAS Tk‘+TA 2 Th1
Fall 1.1 Fall 1.2 Fall 3.1 Fall 3.2 Fall 2.1 Fall 2.2 Fall 4.1 Fall 4.2
l Tha1> Ve und vpq 1 Th1s Vi1 und vg4q
(a) Algorithmus zu Block A (b) Algorithmus zu Block B

T >0, TA 2 Tk, Yo =0 Te <0, =18 < 7, Y =0

Tr+1 <0 Th+1 <0

Fall 5.1 Fall 5.2 Fall 5.3 Fall 5.4
Tea1 < TAA <Tky1 —TBS Tk+*7'B > Tt TA > Tk+lTA <Tky1 —TBS Tk+*TB > Tt
Fall 5.1 Fall 6.1 Fall 5.2 Fall 6.2 Fall 5.3 Fall 6.3 Fall 5.4 Fall 6.4
I Th41, Ve+1 und vy 1 Th41, Vh+1 und vgyq
(¢) Algorithmus zu Block C (d) Algorithmus zu Block D

Abbildung 4.16.: Die Algorithmen der Blicke A bis D zur Fallunterscheidung basierend auf
dem Zustand Ty41

kénnen die Bedingungen

Fall 3.1 Fall 2.1 Fall 6.2 Fall 6.4
(g >7mA>0) V(< —mB<0)V(TA > >0) V(-3 <7 <0)
£ 3(T,vr) Fo(Tr,vr) £3(Th,08) f3(Tr,v8)

und
T+l < —TB < 0

aufgestellt werden, wobei den Féllen 3.1, 6.2 und 6.4 die Funktion ga(7%, vx) und dem Fall
2.1 die Funktion g3(7x,vy) zugewiesen wird. Das letzte Gleichungssystem beschreibt den

83



4. Modellierung und Analyse digitaler Phasenregelkreise

Sachverhalt, wenn der Phasenfehler zwischen den Eingangssignalen des PFD so klein ist,
dass keine Regelung stattfindet. Es ergibt sich

[ ZZE ] - [ 9273(5:’%) } = f5.6(7k: vk) (4.74c)
mit den Relationen
Fall 5.1 Fall 5.3 Fall 1.2 Fall 4.2
KTA > T > OEVZ—TB <7 < OIVZTk > TA > OE\/ETk < —1B < Oi
Fo(rewn) £o(reswn) £ i) Folriwn)
und
TA = Tt1 >0
oder
Fa&5.2 Fa&5.4 Fa&Z.Q Fa&?).?

,(TA > T > 0)‘\/z—7']3 <7< 0)\\/,(714; < —1B < O)\\/,(—TB > TA > 05

F5(mh,0k) I5(7i,08) Fo(Tic,v) F5(7i,vk)

und
—7B < Tky1 < 0.

Dabei gilt fiir die Falle 3.2, 5.1, 5.2, 5.3, 5.4 und 1.2 die Funktion go(7, vx). Die Fille 2.2,
4.2 sind mit der Funktion g3(7, vx) verkniipft.

4.2.2. Analyse des erweiterten Modells nach VAN PAEMEL:
Dead-Zone

Im Folgenden soll formal eine Punkttransformation T'(-) eingefiihrt werden, wobei das

Differenzengleichungssystem vorab normiert wird. Durch die Normierung 7, = 7 /7, die
Verschiebung v, = T'Kyv;, — 1 und die beiden Substitutionen

a=K,,RT (4.75a)
und
K, I,T?
b — p 4.75b
20, ( )

sowie 75 = 7o /T und 7 = 75/T ergeben sich fiir Funktionen g;(7, vx) mit i € (1,2,3,4)
die folgenden Gleichungen:

(a+@k+1)+\/(a+@k+1)2—4b((1+@k)(1—%k+%3)—1)

Tk 50 (4.76a)

Tk+1 — "B~

= g1 (7%, )
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4.2. Phasenregelkreis mit Dead-Zone-Charakteristik

b 1—a(%k+%B)—b(%,§—%§)

= F -1

it T TeT A 1+ 05 (4.76b)
= G2 (T, 0p)

~F3 ~

T = T — 1+ —

k1 " 1+ 0 (4.76¢)
= 93 (T, Ug)

P4 R (a + 0 + 1) \/(CL + U, + 1)2 — 4bh(7~']€, ﬁk)

[ L 2 (4.76d)

= g4 (Tx, U)

mit

(7, ) = (14 0) (1 — 7o+ 78) — L+ a (7 + 78) + b (7 — 75)

ol = G2 (T Up) (4.76¢)
o = 33Tk, Uk) (4.76f)

Die Punkttransformation T werde durch

( Ti(zy) , Vo€ M
To(zy) , V) € Mo
ppr = Tay) = O vmE M (4.77)
Ty(xy) , Vape My
Ts(zy) , Ve Ms
| To(z) . V2 e Mg

definiert, wobei der Zustandsvektor durch x; = [%k,f;k]T angegeben wird und die Trans-

formationen T'1 4 durch die Gleichungen

l Pl 1 _ l . +2b§1,4(%k,17k) 1 = FraFe ), (4.78)

Uk+1 (G1.4(74, 1) — 78)
T3 durch
- Th+1 ] [ G2.3(Tk, ) . o
~ = ~ N’ " v ~ = T ’v 479
| Ok+1 | | Ok +20(92,3(7k, Ok) + 7B) ] F23(Th: ) (4.79)

und T'5 ¢ durch

Tt | | 923(7k %) ] = f5.6(7k: 1) (4.80)
| Uk+1 Uk 7
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-TB 0 TA

Abbildung 4.17.: Bereichsdefinition der Transformation T im Zustandsraum mit den zugehd-
rigen Mengen M

definiert sind. Abbildung 4.18 zeigt das zugehorige Regioneniibergangsdiagramm, wobei
die schwarzen Blocke mit den Mengen M; bis M,y und den schwarz gekennzeichneten
Ubergiingen der Punkttransformationen T bis T4 sich zu dem Diagramm ergeben, was
von AcCco in [33] erarbeitet wurde. Die roten Ubergéinge und Mengen sind die Folge der
modellierten Dead-Zone durch die Verzogerungen 74 und 7. Die Grenzen der Gebiete
konnen durch

LA
zi(1) =7 = Ta, (4.81a)
A
wi(l) = 7% = —Ts, (4.81b)
N A
Tp11(1) = Tp1 = Ti(xy) =0, (4.81c)
N N
Ti11(1) = 71 = Ti(@p) = 7a, (4.81d)
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4.2. Phasenregelkreis mit Dead-Zone-Charakteristik

Abbildung 4.18.: Regioneniibergangsdiagramm zur Beschreibung der Punkttransformation T.
Die schwarz gekennzeichneten Mengen und Transitionen sind die des ur-
spriinglichen Modells nach VAN PAEMEL. Die rot gekennzeichneten Blocke
und Transitionen sind die, die sich durch das Hinzufiigen der Verzégerungen
7o und T ergeben, wodurch sich der Finfluss der modellierten Dead-Zone
charakterisieren ldsst.

und durch

N AL
xpr1(1) = Tpg1 = Ti(x) = —7B

(4.81e)

berechnet werden, wobei die Grenze zwischen zwei Gebieten beiden zugehorig ist. Diese
Grenzen unterteilen den Phasenraum in 16 Gebiete. Dabei beschreibt Abbildung 4.18 die
Ubergangstransitionen und Abbildung 4.17 zeigt schematisch die Mengen und Grenzen
auf, die tiber die Gleichungssysteme definiert wurden. Es ergeben sich fiir den Bereich

—718 < 7 < 1 die Gleichungen
1

o) = T
o 1
00,1(7) = 1_%—1

und
o 1
(7)== !

(4.82a)

(4.82D)

(4.82¢)
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4. Modellierung und Analyse digitaler Phasenregelkreise

Fiir —73 > 7. > —1 konnen die Beziehungen

_ 1—a(f+78) — b(72 — 72)

Ta(F) = P —1 (4.82d)
. 1—a(f+78) — b7} — 7}
s (7) = L=k 1B2 - G =) (4.82¢)
und
1 — a(y, + 78) — b(72 — 72
b a(7) = T ) Z BT 7 T) (4.82f)

1—-7+7
angegeben werden. Offensichtlich ldsst sich mittels der Darstellung der Mengen M und der

Punkttransformation der Algorithmus (siehe Abbildung 4.15) zur Auswahl der Gleichungen
vereinfachen.

[ Ti(ai) = F1(Fr ) 5 Oan > T .~ <A<
To(xy) = fol Tk, Ur) , B2 < Uk , —1< 7 < 7B
T3(xr) = f3(Th: k) » B2 < U, , —mB<Tp <1
el = g Ty(xy) = Fa(Th, 0k) 5 a2 > Uy , —1<7 <78 (4.83)
Ts5(xy) = f5(T6,0r) , oA <0, <0B1 , —-TBST<1
k To(xy) = fo(Tr k) , Uap <0y <tp2 , —1<7, <—7p

Trivialerweise liegt der Ursprung auf der Grenze der Gebiete M51, M52, M5z und My
und bildet fiir 7, = 7. € (—7,7a) und 9, = ¥ = 0 (fiir das nichtnormalisierte Modell
ergibt sich vy = 1/(K,T) und 7, = 7, € (—7B,74)) sich selbst auf [7, 7|7 ab.

Mit der Menge M, = {7:—-7T3<7<7a AU =0} ergibt sich die Abbildung
T : M. — M., wobei sogar jeder Punkt (7,0 = 0) € M, sich auf sich selbst abbildet.
M stellt somit eine Menge von Fixpunkten dar. Somit ist offensichtlich die Linearisierung
um die Menge M, erforderlich. Fiir das System auf der Menge M erfolgt die Linearisie-
rung um v = 0 und 7 = T, wodurch sich

TA

Tht1 1 1 —1 Tk A~ 1+a
= : + .
Tt I+a| op 14a-2p o 2077 (4.84)
1+a
Tpr1 = Az tb
ergibt. Wird das Differenzengleichungssystem der Menge Mo um v = 0 und 7 = —7p
linearsiert, so liefert die TAYLOR-Reihenentwickung
[ﬁﬂ] x -1 ] [ﬁc] [(X—l)ﬁa]
= . +
Thy 1 2bx 1—2b U 2bTeX : (4.85)

Tht1 = Aoz + by
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4.2. Phasenregelkreis mit Dead-Zone-Charakteristik

mit y = 1 — a + 2b7g. Innerhalb der Menge M3 befindet sich ein Fixpunkt an der Stelle

v =0 und 7 = —7g und es kann das lineare Differenzengleichungssystem
Tht1 1 -1 Tk 0
= : +
Vgt 1 2b 1—2b Vg, 2bTp Y (4.86)
Tl = Az + b3

angegeben werden. Der Bereich M5 beinhaltet die Menge von Fixpunkten Me. Wird um
den Fixpunkt v = 0 und 7, € M5 linearisiert, so kann

ol L
f}k+1 0 1 Vg, (4.87)

Tp1 = Aszp

bestimmt werden. Wird das Differenzgleichungssystem der Menge Mg betrachtet, so lasst

sich das nichtlineare Differenzengleichungssystem um v = 0 und 7 = —7p linearisieren. Es
gilt
Tht1 x —1 Tk B(x—1)
= . +
Vk+1 0 1 Uk 0 (4.88)
Thi1 = Agxy + bg.

Da auf der Menge M, kein Fixpunkt liegt, soll das nichtlineare Differenzengleichungssys-
tem auf My nicht linearisiert werden. Dementsprechend ist die Linearisierung an dieser
Stelle abgeschlossen. Im Vergleich zu den vorher behandelten Linearisierungen, handelt es
sich hier um ein sogenanntes stiickweise affines System (PWA = Piecewise Affine).

Da sich der Zustandsraum des schaltenden, linearisierten Differenzengleichungssystems be-
ziliglich der Grenzen im Vergleich zum schaltenden, nichtlinearen Differenzengleichungssys-
tem unterscheidet und somit auch die Mengen sich dndern, ist es erforderlich, die Mengen
des linearisierten Modells zu definieren. Das Differenzengleichungssystem der Menge M;
werde linearisiert. Die sich ergebene Menge, auf dem die Linearisierung giiltig ist, wer-
de mit N; bezeichnet. Hinsichtlich der Stabilitdtsbetrachtungen ist es ersichtlich, dass die
linearisierte Transformation auf der Menge N5 problematisch ist. Wird die Matrix As be-
trachtet, so ergeben sich die Eigenwerte A1 2 = 1. Damit liegen beide Eigenwerte auf dem
Einheitskreis. Es ist jedoch offensichtlich, unter Beriicksichtigung der Topologie des Zu-
standsraums und der Matrix As, dass der Spannungswert v immer konstant ist, wahrend
7 auf dem Gebiet wachst. Da jedoch das Gebiet N5 begrenzt ist und die Berechnungen
durch Az nur Zusténde liefert, die in N5, N3 oder N liegen, ist es hinreichend, wenn
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die Transformationen auf Ny und N3 stabil sind, wobei das Schalten untereinander be-
riicksichtigt werden muss. Des Weiteren gilt diese Betrachtung analog fiir den Ubergang
von Ng nach Ni. Demnach kann die Uberlegung angestellt werden, dass, wenn N7, N
und N3 und deren Ubergéinge zu den begrenzten Gebieten asymptotisch stabil sind, auch
das Gesamtsystem asymptotisch stabil ist. Ergibt sich fiir die Gebiete N7, N5 und N3
eine multiple LYyYAPUNOV-Funktion, so kann auf quadratische Stabilitdt geschlossen werden
trotz der Problematik der zunechmenden Pulsbreite 7 auf dem Gebiet N5. Letztendlich ist
die Pulsbreite durch die Zeitverzogerungen 7o und 7 begrenzt. Im ersten Schritt sollen
die charakteristischen Polynome der Matrizen A;, Ao, A3, As und Ag auf Einheitskreis-
polynome untersucht werden. Diesbeziiglich sollen die Terme b; unberiicksichtigt bleiben.
Fir die Matrix A; ergibt sich das charakteristische Polynom zu

2b—a—2 n 1
1+a (1+a)

Di(\) = A2+ (4.89)

und stellt fir b > 0, a > 0 und @ — b > —2 ein Einheitskreispolynom dar. Damit das
Differenzengleichungssystem mit der Matrix As asymptotisch stabil ist, muss das Polynom

Do(N) = A2 + (a+2b—2 — 2b7)A + 1 — a + 2b7 (4.90)
den Ungleichungen

1> |1 —a+ 2b7g] (4.91)
und

0<@mp—1)b+2—a (4.92)

geniigen. Diese Ungleichungen stellen komplexere Randbedingungen an die Parameter als
die, die in Kapitel 4.1 dargelegt wurden. In Abbildung 4.19 sind diese fiir das Polynom
Doy () grafisch fiir drei feste Werte von 7g dargestellt. Die Betrachtung der Matrix As ist
etwas komplizierter, da sich die Eigenwerte

Aa=1-b+/b2—2b (4.93)

ergeben. Damit liegen die Eigenwerte fiir 0 < b < 2 auf dem Einheitskreis, wobei fiir b = 0
gar keine Regelung stattfindet, da somit der Charge-Pump-Strom I, = 0 A, der Verstér-
kungsbeiwert des VCO K, = 0 oder die Referenzfrequenz f.of = 0 wére. Die Matrix As
besitzt hingegen zwei Eigenwerte direkt auf dem Einheitskreis (A;2 = 1), wodurch dieses
Differenzengleichungssystem gerade kein Einheitskreispolynom darstellt. Fiir die Matrix
Ag ergeben sich die Eigenwerte

AM=1—a+2bmg (4.94)
und

Ay =1, (4.95)
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4.2. Phasenregelkreis mit Dead-Zone-Charakteristik

a a a
(a) 1< [1—a+2b7s| mit 73 = 0,01 (b) 1 < |1 —a+2bfs| mit 75 = 0,1  (c) 1 < |1 —a+ 2bF| mit 75 = 0,3

3 3 3
2
) = =
1
% 1 % 1 % 1
a a a
()0 < (273 —1)b+2—afg mit  (e) 0 < (273 — 1)b+2 —afs mit  (f) 0 < (278 — 1)b + 2 — aFp mit
73 =0,01 73 =0,1 75 =0,

Abbildung 4.19.: Projektion der Parameter a und b bei festem 7g, damit das charakteristische
Polynom D2 () ein Finheitskreispolynom ist. Die hellen Flichen bezeichnen
die Werte fiir a und b, bei denen Dao(X\) ein Einheitskreispolynom darstellt.
Die dunklen Fldchen entsprechen demmnach den Parameterwerten a und b,
bei denen Dy(\) kein Einheitskreispolynom darstellt.

wodurch sich auch hier kein Einheitskreispolynom ergibt. Zur Beurteilung der Stabilitat
ist es erforderlich, die Topologie des Zustandsraumes und die Transitionen, die von einem
Gebiet in ein anderes fiithren, zu untersuchen. Fiir diese Betrachtung werde angenommen,
dass hinsichtlich des nichtlinearen Modells die Trajektorien so verlaufen, dass das Gebiet
Ny nicht erreicht wird. Dies entspricht der Tatsache, dass alle Zustidnde und somit nur die
Trajektorien im eingerasteten Bereich in einer hinreichend kleinen Umgebung der Menge
N, liegen. Demnach wird das Gebiet Ny durch die Gerade

1

=—F-1 4.96
1+7A+7 ( )

b
9N (T )

begrenzt und von nun an mit A bezeichnet (siche Abbildung 4.20). Ahnlich wird auch
das Gebiet N5 begrenzt. Die obere Grenze ist gegeben durch

1

=——1 4.97
1—7a—1Tp ( )

b
In(7)

Fiir die Gewéhrleistung der Stabilitdt muss der verallgemeinerte Spektralradius pg(.A)
kleiner Eins sein mit A = {A; :i € (1,2,3,5,6)}. Es muss sichergestellt werden, dass die
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Abbildung 4.20.: Bereichsdefinition der Linearisierung der  Transformation T  im
Zustandsraum

Transition von dem Gebiet s zum begrenzten Gebiet N stabil ist und dass

X1 = Aoy, + by € N (4.98)
gilt. Des Weiteren ergibt sich

1 = Agx) + b ¢ Ny (4.99)

Der Ubergang von Gebiet N ist durch g}{% und durch 7, < —7p begrenzt. Da der Zustands-
raum eingeteilt ist, miissen die zustandsabhéngigen Transitionen untersucht werden. Die
Problematik, dass auf der Menge N5 die Matrix As nur Eigenwerte auf dem Einheitskreis
besitzt, ldsst die Stabilitdtsuntersuchung komplizierter werden, da fiir dieses System keine
LyAapuNoOV-Funktion existiert. Aufgrund des SYLVESTER-Kriteriums fiir positiv definite
Matrizen miissen alle Hauptminoren grofser Null sein. Es ldsst sich zeigen, dass dies nicht
der Fall ist. Fiir den ersten Hauptminor oder in diesem Fall fiir die Matrix-Elemente [1, 1]
wiirde sich p11 = —q1,1 ergeben, wobei nach dem SYLVESTER-Kriterium p;; > 0 und
q1,1 > 0 zu wiahlen sind. Diese beiden Forderungen an die Parameter schliefen sich hier
jedoch gegenseitig aus. Wird der Ubergang von Gebiet N nach N betrachtet, ergibt sich

Tp41 = Asx), = AsAx)_1 + Asb;. (4.100)
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Das charakteristische Polynom der Matrix As; = AsA; ist gegeben durch

db—q—2 1
AL

Ds1(\) = \? .
51(M) T 1. 1+a

(4.101)

Fiir 0 < 2+ a — 2b ist D51(\) ein Einheitskreispolynom. Mit dem Ubergang von N] nach
N3 kann das Polynom

2ab —a — 4b% — 2+ 8b 1
A+

D31(\) = \?
1 (M) + 1+a l+a

(4.102)

angegeben werden. Mit 0 < a — 2b+ 4 und 0 < 2b> — (a + 4)b + 2 + a besitzt D31 ())
ausschlieflich Nullstellen im Einheitskreis. Bei der Betrachtung der Transition von Gebiet
N5 nach N3 konnen die Eigenwerte

Ao=1—20+2y/—b+0b2 (4.103)

der Matrix Ass; = AszAs angegeben werden. Demnach ist diese Transition genau dann
stabil, wenn 0 < b < 1 gilt. Der Ubergang von N3 nach A5 liefert das Polynom

Dy3(A) = A* + (=24 a + 8b + 47gb* — 4b” — 2b7p — 2ab) A+ 1 — a + 2b7z. (4.104)

Gelten die Ungleichungen

0 < 4+ 2b7g — 2b — a, (4.105)

0< (=27 +2)0> + (44273 +a)b+2—a (4.106)
und

1> |1 —a+ 2b7g|, (4.107)

liegen die Nullstellen von Da3(A) im Inneren des Einheitkreises. In Abbildung 4.21 sind
die Randbedingungen fiir drei feste Werte von 7g dargestellt, damit D23(\) ein Einheits-
kreispolynom ist. Die Ungleichung (4.107) entspricht gerade der Ungleichung (4.91). Mit
A62 = A6A2 kann
Dg2(A) = N+ (4b7g(b+a— 1 —b7g) +2b(2 —a) — 1 — (a — 1)) M+
4b(1 — a + 78)78 + (a — 1)* (4.108)

angegeben werden und stellt fiir

0 < —a+ 2b7p + 2, (4.109)

0 < (478 — 27)0* + (—47Ra + 478 — 2+ a)b + 2 — 2a + a* (4.110)
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a a a
(a) 0 < 4 + 2b7g — 2b — a mit (b) 0 < 44 2bfp — 2b — @ mit (¢) 0 < 4+ 2b7g — 2b — a mit
75 = 0,01 5 =0,1 75 =0,3
3 3 3
2 2 2
= = =
1 1 1
% % %
a a a
(d) 0 < (=278 +2)b% 4+ (4427 +  (e) 0 < (=278 +2)b* +(—4+278+  (f) 0 < (=27 +2)b*> + (—4+ 278 +
a)b+2 —a mit 78 = 0,01 a)b+2—amit 78 =0,1 a)b+2 —a mit 78 = 0,3

Abbildung 4.21.: Projektion der Parameter a und b bei festem Tg, damit das charakteristische
Polynom Dy3(\) ein Einheitskreispolynom ist. Die hellen Flichen bezeichnen
die Werte fir a und b, bei denen Da3(\) ein Einheitskreispolynom darstellt.
Die dunklen Fldchen entsprechen demnach den Parameterwerten a und b,
bei denen Da3(\) kein Einheitskreispolynom darstellt.

und
1> [4b(1 — a + bi)7s + (a — 1)?| (4.111)

ein Einheitskreispolynom dar. In Abbildung 4.23 sind die Randbedingungen fiir drei feste
Werte von 7 dargestellt, damit Dg2(A) ein Einheitskreispolynom ist. Das Modell liefert
den Ubergang von Gebiet Mg nach Gebiet Ni. Dadurch ergibt sich das charakteristische
Polynom

4b — 2btg — 2 1+2b73 —a
Dg1(N\) = \2 A . 4.112
61(N) Y T (4.112)
Mit
0<1+ (7 —1)b (4.113)
und
1-— 2bT
1> ‘ﬂ (4.114)
1+a
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(8) 0< 14+ (fs—1)bmit 75 = 0,01  (b) 0< 1+ (Ffg — D)bmit 75 =0,1  (c) 0 < 1+ (7 — 1)b mit 73 = 0,3

Abbildung 4.22.: Projektion der Parameter a und b bei festem 75, damit das charakteristische
Polynom Dg1 () ein Einheitskreispolynom ist. Die hellen Fldchen bezeichnen
die Werte fiir a und b, bei denen Dgi(\) ein Einheitskreispolynom darstellt.
Die dunklen Flichen entsprechen demnach den Parameterwerten a und b,
bei denen Dg1(\) kein Einheitskreispolynom darstellt.

ist Dg1(A) ein Einheitskreispolynom. Der Ubergang von der Menge A3 nach N liefert das
charakteristische Polynom

Dg3 = N2 4 (=2 + a — 2b7p + 4b)\ + 1 — a + 2b7g, (4.115)
wobei

0< (2B —2)b+2—a (4.116)
und

1> |1 —a+ 2b7g] (4.117)

die Bedingingen sind, damit Dg3 nur Nullstellen im Einheitskreis aufweist. Abbildung 4.24
beschreibt den Zusammenhang (4.117) mit 78 = 0,01, 73 = 0,1 und 78 = 0,3. Der
Ubergang von Gebiet N3 nach A liefert das charakteristische Polynom

Dsa(A) = X* + (=2 +a — 2b7g + 4b — 2ab + 475 b*) A+ 1 — a + 2b7. (4.118)

Diese Transition ist genau dann stabil, wenn Ds2(A) den Ungleichungen

0 < —a+ 2b7p + 2, (4.119)

0< —27pb> 4+ (278 —2+a)b+2—a (4.120)
und

1> |1 —a+ 2b7g] (4.121)
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(a) 0 < —a+2bFg+2mit 73 = 0,01 (b) 0 < —a+2bFz+2mit 75 = 0,1 () 0 < —a+2bFp +2 mit 75 = 0,3

3 3 3
2 2 2
< < <
1 1 1
OO 00 OO
a a a
(d) Gleichung (4.110) mit 78 = (e) Gleichung (4.110) mit 78 = 0,1 (f) Gleichung (4.110) mit 78 =0, 3
0,01
3
2
<
1
00
a a a
(g) Gleichung (4.111) mit 78 = (h) Gleichung (4.111) mit 78 = 0,1 (i) Gleichung (4.111) mit 78 = 0,3

0,01

Abbildung 4.23.: Projektion der Parameter a und b bei festem Tg, damit das charakteristische
Polynom Dga(\) ein Einheitskreispolynom ist. Die hellen Flichen bezeichnen
die Werte fiir a und b, bei denen Dga2(\) ein Einheitskreispolynom darstellt.
Die dunklen Fldchen entsprechen demnach den Parameterwerten a und b,
bei denen Dga(\) kein Einheitskreispolynom darstellt.

geniigt. Abbildung 4.25 zeigt den Parameterbereich fiir @ und b bei drei festen 75-Werten
auf, bei dem das Polynom Dsa(\) ausschliefslich Nullstellen innerhalb des Einheitskreises
aufweist, wobei nur die Gleichung (4.120) dargestellt ist, da die Randbedingungen (4.119)
und (4.121) schon durch die Betrachtung der Polynome Dga(A) und Da(\) (bzw. Dag(M))
abgedeckt wurden. Der Ubergang von A nach A ergibt das Polynom

Dss(\) = X2+ (—2+a — 2b7g) A+ 1 — a + 2b7p (4.122)
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3 3 3
2 2 2
= = <
1 1 1
00 1 2 3 0O 1 2 3 00 1 2 3

a a a

2 —a+2F —Dbmit (b)0 < 2—a+2(f — b mit (¢c)0 < a + 2(7s — 1)b mit
0,01 73 =0,1 Pz =

(@0 <

Abbildung 4.24.: Projektion der Parameter a und b bei festem 75, damit das charakteristische
Polynom Dg3(\) ein Einheitskreispolynom ist. Die hellen Fldchen bezeichnen
die Werte fiir a und b, bei denen Dgz(\) ein Einheitskreispolynom darstellt.
Die dunklen Fldchen entsprechen demmnach den Parameterwerten a und b,
bei denen Dg3(\) kein Einheitskreispolynom darstellt.

3 3 3
2 2 2
= = =
1 1 1
00 1 2 3 O0 1 2 3 00 1 2 3

a a a

(a) Gleichung (4.120) mit 78 = (b) Gleichung (4.120) mit 78 = 0, 1 (¢) Gleichung (4.120) mit 78 =0, 3
0,01

Abbildung 4.25.: Projektion der Parameter a und b bei festem g, damit das charakteristische
Polynom Dsa(\) ein Einheitskreispolynom ist. Die hellen Flichen bezeichnen
die Werte fiir a und b, bei denen Ds2(\) ein Einheitskreispolynom darstellt.
Die dunklen Fldchen entsprechen demmnach den Parameterwerten a und b,
bei denen Dsa(N\) kein Einheitskreispolynom darstellt.

mit den Eigenwerten

M =1—a+2b7p (4.123)
und

Ay = 1. (4.124)

Die letzte mogliche Transition erfolgt von Menge N3 nach N7, wobei darauf hinzuweisen
ist, dass diese praktisch nicht auftritt, jedoch der Vollsténdigkeit halber dargelegt wird. Es
ergib sich das charakteristische Polynom zu

(—2b7g — 2+ 475 0% +8b —4b?) A 1 —q + 2b
14+a + 14a

Dia(A) = M\ + (4.125)
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3 3 3

2 2 2
= = =

1 1 1

00 1 2 3 O0 1 2 3

00 1 2
a a a

(a) 0 < 2bFs + 4 — 2b mit  (b) 0 < 2bFs+4—2bmit 2675 = 0,1  (c) 0 < 2bFp+4—2b mit 2b7s = 0, 3
2b = 0,01

3 3 3

2 2 2
= < =

1 1 1

00 1 2 3 0O 1 2 3

w

% 1 2 3
a a a
(d) 0 < 2+(—273+2)b°+(278—4)b () 0 < 2+(—27+2)b°+ (27 —4)b  (f) 0 < 2+(—27+2)b”+ (273 —4)b
mit 2b7g = 0,01 mit 2b7p = 0,1 mit 2b7s = 0,3
3 3 3
2 2 2
= o ~
1 1 1
% 1 2 3 % 1 2 3 %
a a a
1—a+ 2bis . 1—a-+2b7s . . 1—a+2b7s .
2b7p = 0,01 2b7 = 0,1 2b75 = 0,3

Abbildung 4.26.: Projektion der Parameter a und b bei festem Tg, damit das charakteristische
Polynom D13(\) ein Einheitskreispolynom ist. Die hellen Flichen bezeichnen
die Werte fiir a und b, bei denen D12(\) ein Einheitskreispolynom darstellt.
Die dunklen Fldchen entsprechen demnach den Parameterwerten a und b,
bei denen D1a(\) kein Einheitskreispolynom darstellt.

Di2(\) ist ein Einheitskreispolynom, wenn

0<big+2—b (4.126)

0< 1+ (1—7B)b*+ (78 — 2)b, (4.127)
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Abbildung 4.27.: Zur Instabilitit des Phasenregelkreises mit Dead-Zone
und
1 —a+ 2bm
1> 'TB (4.128)
a

gelten. In Abbildung 4.26 sind genau die Randbedingungen an die Parameter dargestellt.
Es lasst sich zeigen, dass bei Betrachtung der dargelegten Ungleichungen die folgenden
Beziehungen die strengsten Bedingungen darstellen, damit der Phasenregelkreis mit Dead-
Zone stabil ist. Es ergeben sich

0<(2/3—2)b+2—a (4.129)
und
1>]1—a+2b7g|. (4.130)

Werden die Ungleichungen (4.129) und (4.130) eingehalten, so ist das erweiterte VAN PAE-
MEL-Modell und damit der Phasenregelkreis mit Dead-Zone-Modell stabil.
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pe/(2)

-0,5

t/us

(a) Darstellung einer Simulation eines Phasenregelkreises mit instabilem (R1 = 02) Verhalten

Pe/(27)

t/us

(b) Darstellung einer Simulation eines Phasenregelkreises mit stabilem (rote Kurve mit 78/71 = 1) und grenzstabilem

(schwarze Kurve mit 78 /71 ~ 2) Verhalten

Abbildung 4.28.: Zur Stabilitit, Grenzstabilitit und Instabilitit eines Phasenregelkreises mit
Dead-Zone
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4.2. Phasenregelkreis mit Dead-Zone-Charakteristik

Diese Grenzen lassen sich auch hinsichtlich der Schleifenverstirkung betrachten, wie es von
GARDNER vorgeschlagen wurde (siche Kapitel 4.1.1 oder [16]). Entsprechend ergeben sich

B < T1, (4.131)
1
Kr < (4.132)
s LB
WrefT1 < Tl)
und
1
Kr < (4.133)

s T 2T .
1- 24
WrefT1 T1 WrefT1

Wird das von GARDNER vorgeschlagene Verfahren hinsichtlich der Dead-Zone durchge-
fiihrt, so kann

1

T ™ 0
1——+
WrefT1 71 WrefT1

angegeben werden.

K <

(4.134)

Dieses Ergebnis ist kohdrent mit den vorangegangenen Untersuchungen, da sich der An-
satz von GARDNER als Linearisierung der Gleichungen des Sektors Mo des erweiterten
Modells nach VAN PAEMEL mit Dead-Zone interpretieren ldsst und somit das charakte-
ristische Polynom Ds zu analysieren ist. Offensichtlich liefert jedoch der Ubergang von A3
nach Ny die strengste Bedingung, damit sich fiir jeden Ubergang und fiir jedes Gebiet ein
stabiles Differenzengleichungssystem ergibt. In Abbildung 4.27 ist eine Simulation eines
Phasenregelkreises mit Dead-Zone dargestellt. Dabei ergibt sich durch die Nichtidealitéat
instabiles Verhalten. Die Regelspannung und der Phasenfehler divergieren solange bis der
Regelkreis ausrastet und somit sich ein Phasenfehler grofser 27 einstellt. Nachdem der
Regelkreis ausgerastet ist, rastet dieser jedoch direkt wieder ein, wobei die Trajektorie
dann wieder divergiert. Zum Zeitpunkt des Wiedereinrastens liefert der Regelkreis einen
Phasenfehler ¢, ~ 0 rad. Mit den Abbildungen 4.28(a) und 4.28(b) zeigt sich, dass die be-
stimmte Stabilitdtsgrenze (siche Gleichungen (4.129) und (4.130)) konservativer ist als die
des nichtlinearen Systems. Entsprechend konnte hier eine Mdoglichkeit dargelegt werden,
das Stabilitatsverhalten eines Regelkreises der Ordnung Zwei mit Dead-Zone zu bestim-
men. Unter Beriicksichtigung verschiedener Simulation kann die Grenze nach Gleichung
4.131 etwas strenger angesetzt werden. Es sei

™ < 27]. (4.135)

Dieser Sachverhalt ist auch in den Abbildungen 4.28(a) und 4.28(b) dargelegt. Es ergibt
sich, dass die Simulation mit 75/7; &~ 2 ein grenzstabiles Verhalten aufweist, d.h., dass
sich ein weder divergentes noch konvergentes Verhalten ergibt. Wird jedoch /7 = 1
angesetzt, so ergibt sich ein eindeutig stabiles Verhalten.
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4. Modellierung und Analyse digitaler Phasenregelkreise

4.2.3. Dead-Zone im erweiterten Modell nach HEDAYAT:
Modellierung

Durch die Annahme, dass die Ubergéinge des Zustandsautomaten von Sg nach Sy und von
von &p nach S_1 nicht instantan erfolgen, sondern eine gewisse Zeit 7o g benotigen, konnen
die in Abbildung 4.29 und 4.30 dargestellten Fallunterscheidungen angegeben werden. Diese
Betrachtung der Verzogerungen erfolgt analog zu Kapitel 4.2.1, wobei das erweiterte Modell
nach HEDAYAT angesetzt wird (siehe Kapitel 4.1.4). Dabei werden die Phasensignale des
spannungsgesteuerten Oszillators und die des Referenzsignals in die Form

Cht1 = Pref(trr1) — Pveo(trst) (4.136)

gebracht, wobei nur die Transitionen betrachtet werden, die beginnend vom Zustand Sy
auch wieder in den Zustand Sy zuriickfiihren. Es ergeben sich somit insgesamt acht Fallun-
terscheidungen. In den Féllen 1 bis 4 werden die Zustandstransitionen von Zustand Sy iiber
eine Verzogerung 7o in Sy1 und zuriick nach Sy betrachtet sowie von Sy iiber eine Verzo-
gerung 7g in S_1 und zuriick nach Sy. Je nachdem, wie der Zustand Sy zum Zeitpunkt tg
erreicht wurde, d. h. durch eine fallende Flanke des Referenzsignals oder des VCO-Signals,
ergeben sich unterschiedliche Anfangsbedingungen. Damit konnen die Gleichungen fiir den
Phasenfehler der ersten vier Falle angegeben werden:

Fl _ — Ky (v + Rulp)
k+1 ]pKv
277-6’1fref
I, K, (i Ky
K2 RyI,)? +22 142 -2 E K
\/ V(vk+ ! p) " C(1 * 2m fref vORTA
e (4.137a)
27TC(1fref
po  — Ky (v + Ralp)
<I<:+1 - [pKV
2'/Tcylflref
I, K, Ky, Cr
K2 Ril)? +22Y (11— 1-22) + K,
\/ k= (?)k + [ p) + o oot o + VETA
e (4.137b)
27T01fref
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A A
Pe = —Pvco  Pe = —Pvco Pe = Pref Pe = Pref Pe = —Pvco  Pe = Pref
Uref (1) : Urer(t) | :
uvco(t) uvco(t)
ip(t) NONETEEE
uctl(t) uctl(t)
UVk4+1
H Vk+1
T - t - t
tn—1 tp n +7a  tnta tn—1 ty tn+7a  tntl
l l l l — l l
So Si1 So So S+ So

(a) Fall 1 mit dem Phasenfehler ¢, < 0 und (b) Fall 2 mit dem Phasenfehler ¢, > 0 und
tn+1 > tn + Ta, wobei t, = tff und tny1 = thyy ist. tn+1 > tn + Ta, wobei t, = tfff und tny1 = tp ist.

A A
Pe = —Pvco  Pe = Pref Pe = Pref Pe = Pref

—| Pe = —Pvco Upef (t)

Pe = —Pvco

Uref (t)

uvco(t) uvco(t)
MO p@ || B
Uctl(t) uctl(t)
Vk+1 Vk+1
i >, i > ¢
tph—1 ty ln + 78 lnt1 th—1 ty ln+ 78  tnt1
l l l l — l l
So S So So S So

(c) Fall 3 mit dem Phasenfehler ¢, < 0 und (d) Fall 4 mit dem Phasenfehler ¢, > 0 und
tni1 > tn + 78, wobei t, = i und t,11 = tioh, tn1 > tn + 78, wobei t, = tv° und tn41 = i,
ist. ist.

Abbildung 4.29.: Behandlung der Fallunterscheidungen: Fall 1 und 2 unterscheiden sich nur
zum Zeitpunkt t,_1 bzgl. thres Phasenfehlers. Bei Fall 1 sei zum Zeitpunkt
tn—1 eine fallende Flanke des Referenzsignals erfolgt, bei Fall 2 eine fallende
Flanke des VCO-Signals. Fall 8 und 4 unterscheiden sich ebenfalls zum Zeit-
punkt t,_1 bzgl. ihres Phasenfehlers. Bei Fall 8 sei zum Zeitpunkt t,_1 eine
fallende Flanke des Referenzsignals erfolgt, bei Fall 4 eine fallende Flanke
des VCO-Signals.
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Uryef (t)

Uvco (t)

ip(?)

uctl(t)

Pe = Pref

Pe = Pref
Uref (t)

Uvyco (t) |

ip(t)

et (1) Vkt1

t
tn—1 tn tpt1 tp+7TA ln—1 th lny1 tp+7TA
So So So So

(a) Fall 5 mit dem Phasenfehler ¢, < 0, wobei t,, = t'*' (b) Fall 6 mit dem Phasenfehler ¢x > 0, wobei t, = '

und tpy1 = thy ist.

A
Pe = Pref

Uyef (t)

Uvyco (t)

ip(t)

uctl(t)

und tp41 =ty ist.

A

Pe = —Pvco Pe = Pref Pe = —Pvco

uref(t) : Pe = Pref

Uvyco (t)

ip(t)

uctl(t)

th—1 tn th+1 th+ 7B tn—1 tn th+1 th+ 7B
— — — —
So So So So

(c¢) Fall 7 mit dem Phasenfehler (; < 0, wobei ¢, = ¢;°° (d) Fall 8 mit dem Phasenfehler (;, > 0, wobei ¢,, = ¢;°°

und tn41 = tﬁfj_l ist.

und tp41 = tff_l ist.

Abbildung 4.30.: Behandlung der Fallunterscheidungen innerhalb der Dead-Zone: Fall 5 und

6 unterscheiden sich nur zum Zeitpunkt t,_1 bzgl. ihres Phasenfehlers. Bei
Fall 5 sei zum Zeitpunkt t,—1 eine fallende Flanke des Referenzsignals erfolgt,
bei Fall 6 eine fallende Flanke des VCO-Signals. Fall 7 und 8 unterscheiden
sich ebenfalls zum Zeitpunkt t,—1 bzgl. ihres Phasenfehlers. Bei Fall 7 sei
zum Zeitpunkt t,—1 eine fallende Flanke des Referenzsignals erfolgt, bei Fall
8 eine fallende Flanke des VCO-Signals.
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G\
14 2%
I, Ky 1 92
—2n Kyupm + 21> -1 - —L
Ck—H 2Ch fref vak
2o = Buly) | — == 3: (4.137¢)
re A\
LK Lo Sk ?
1 _or
—o2nKyupmp + 2m 2" — 5 — —=<0L
Ck+1 . 2Ch fref b vak
1 .
2K (v = Ruly) | 1= =8 = 5: (4.137d)
re: v
Die Regelspannungen der ersten beiden Fille
F1
v 4.138a
E+1 — 2 fre C, C/H—l ( )
und
Uig1 = Uk +

P
27 fre Cl Ck—H

(4.138b)
konnen direkt durch den Phasenfehler ClljilF
ausgedriickt werden.

der entsprechenden Fallunterscheidungen
I 1
UlE—?—l = vp — = (

1 Ck
— 1+— | -7
Jret  Kyug < 27) B)

(4.138c¢)
L /1 e 1

F4 p

— _ — 1 —

Ykl = %k T A ( Tt ( 27r) Koor TB)

(4.138d)
Es lasst sich zeigen, dass, wenn die Verzogerungen 7o g = 0 gewahlt werden, sich das Modell
nach Kapitel 4.1.4 ergibt. Im Folgenden werden Gleichungen zu den in Abbildungen 4.30
dargestellten Fallunterscheidungen angefiihrt

F5 fref Ck .
Che1 = 27 (vak ( 27T> 1>

(4.139)
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fref Ck

G = (vak to- T 1) (4.139b)
Ky

T = < fr;’“ _ 24—; _ 1) (4.139¢)

Kyvg, Ck
(8, = 1—=]-1 4.139d
k}—l—l fref o ( )
Die Spannungsgleichungen fiir die Falle Fiinf bis Acht kénnen durch
v,lj_?_lFS = v (4.140)

beschrieben werden. An dieser Stelle sei erwahnt, dass die Falle Fiinf bis Acht natiirlich
auch jeweils den Sachverhalt fiir (; = 0 mit beschreiben. Neben den dargelegten Differen-
zengleichungen fiir die Zustédnde  und v ist die Topologie des Zustandsraumes von wichtiger
Bedeutung. Wie schon in den vorigen Kapiteln erlautert, sind die Grenzen zwischen den
einzelnen Gebieten zu bestimmen. Es ergeben sich die folgenden Randbedingungen aus
den ersten vier Fallen. Fiir die ersten beiden Fille kann

el oa < Ve, (4.141a)
angegeben werden und fiir die Félle 3 und 4 kann
toeo g < tref, (4.141b)

bestimmt werden. Damit ergeben sich die Funktionen

1+ =

vpy = 27 (4.142)

1 )
Ky | 7a +
v( fref)

1

Vp2 = > (4143)

- S
K 2m + 7A
fref

1+

2n (4.144)

VF3 = 1 )
Kv — 7B
(fref )

Vp4 = C s (4.145)
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vpy = —2T (4.146)

und

f ref

Up2 = )
C
K, (1—=
V< 2T

die den Zustandsraum in acht Gebiete unterteilen. Mit der Einfiihrung der Punkttransfor-
mation T ergibt sich

(4.147)

T (Grvr) ¥ G < 0Awg < vpy
TF2(Ck7Uk) V (> 0Av < vpg
T ((ovp) VG <0 A v, > vy
Tii1 = [ e ] = TE:(CMC) Yook DA (4.148)
Uk+1 T°(Cksvr) ¥V G <0Awvp <vg < opi
T (Cpovp) ¥V G >0 Avps < vp < vpg
T (Govr) VG <0Awp1 < v < vpg
T"(Govr) VG > 0Avpg < v < vpy

\

4.2.4. Dead-Zone im erweiterten Modell nach HEDAYAT: Analyse

Auch hier sollen die Gleichungen des nichtlinearen Diffenrenzengleichungssystems verein-
facht und normiert werden. Wiederum kénnen die Gleichungen aus Kapitel 4.1.3 angesetzt
werden.

o 1@ @ 1@+ 2 (14 G- B+ D+ )
i1 = 5% (4.149a)

5531 _ —(0p +14a)+ \/(fik +1+ a)i;— 4b (1 — (0 +1)(1 = ¢ + %A)) (4.143b)

~ o 5 1+th
F3
Ck+1——(1+vk)TB+b<1—TB— 1+@k)

—(1+ 0 — a) (1—%3— 11@) (4.149¢)

Uk
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Ck;+1 = —(1+v,)T1B+0 (1 — B —

Cion

Gt

Gt

Cisr =

~F1
Uk+1

~F2
Uk+1

~F3
Uk+1

~F4
Uk+1

1
g Sk

o + =
v +1 v+ 1

1

=-1
+<k+vk+1

= (p + Uk

—(1 =)+ 1) +1
= Ok + 20} 14
= U + 2b§;§f1
—ﬁk—Qb(l-i-TB—C

—Uk 2b<1_7—B_<I€

1

U + 1

1

g+ 1

)
)

1 — (g

1+ v

;

—(1—|—17k—a) (1—7~'B—

Offensichtlich ergibt sich aus den Féllen Fiinf bis Acht die Gleichung

Des Weiteren kann die Einteilung des Zustandsraumes durch die Kurven
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VF1 +1+7~_Aa
1
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4.2. Phasenregelkreis mit Dead-Zone-Charakteristik

Abbildung 4.31.: Unterteilung des Zustandsraums durch sechs Funktionen oOp; mit
i€(1,2,3,4,5,6) des erweiterten und normierten Modells einer CP-
PLL mit Dead-Zone-Charakteristik. Es ergeben sich acht Mengen M; mit
je(1,2,..,8), die den Zustandsraum definieren.

1
pg= 14— 4.151d
1—(+7a ( )
ip1 = ¢ (4.151e)
und
1
tpy = —1+ ——= 4.151f
D2 —¢ ( )

angegeben werden. In Abbildung 4.31 ist der Zustandsraum mit den Mengen M darge-
stellt, wobei j € (1,2, ...,8). Der Index ist den entsprechenden Fillen zuzuordnen. Wie bei
der Erweiterung des Modells nach VAN PAEMEL ergibt sich auch fiir dieses Modell eine
Menge von Fixpunkten M, bzw. eine Fixpunktlinie.

Mit der Menge M, = {7:—-T3<7<7aAU =0} ergibt sich die Abbildung
T: Mg — M., wobei sogar jeder Punkt (7.,vp = 0) € M, sich auf sich selbst abbil-
det. M, stellt somit eine Menge von Fixpunkten dar. D.h. das erweiterte Modell mit
DEAD-ZONE basierend auf dem VAN PAEMEL-Modell liefert den gleichen Sachverhalt wie
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4. Modellierung und Analyse digitaler Phasenregelkreise

das in diesem Kapitel vorgestellte. Wie fiir das erweiterte Modell nach VAN PAEMEL im
Abschnitt 4.2.2 betrachtet, soll an dieser Stelle das normierte Modell linearisiert und hin-
sichtlich der Stabilitdt untersucht werden. Da eine Fixpunktlinie in den Gebieten Mg und
My gegeben ist, die Differenzengleichungssysteme auf den Mengen M5 und Mg sich einen
Fixpunkt zpp, € M, im Ursprung teilen, M3 den Fixpunkt zpp, € M, und M3z den
Fixpunkt zgp, € M, aufweist und die Differenzengleichungssysteme auf M; und My
keine Fixpunkte auf der Zustandsebene besitzen, sind nur die Differenzengleichungen auf
den Gebieten Ms, M3, Mg, M7 und Mg zu linearisieren. Die Linearisierung mittels
TAYLOR-Reihenentwicklung (siehe Kapitel 4.1.4 und 4.2.2) auf der Menge My liefert

1 —1 ~
=
]mk—i- A

2% 1+a—2b L+a

1 —1

1+a

Thtl = = Aoz + by, (4.152)

—2b

wobel x; = [@, o]7 den Zustandsvektor bezeichnet. Entsprechend ergibt sich das affine
Differenzengleichungssystem

[1—@ —%B—(l—a)(l—’ﬁg)] [—CMN'B
Tpt1 = T +

2b 1—2b(1 — 75) —2b7s

= Asxj, + b3 (4.153)

auf der Menge M3. Fiir die Mengen M5, Mg, M~ und Mg kann

1 -1
LTr+1 = [ ] T = Aowk (4.154)
0 1

angegeben werden, wobei A9 = A; = Ag = Ay = Ag gilt. Wie schon bei
der Erweiterung des Modells nach VAN PAEMEL ergibt sich auch hier ein PWA-
Differenzengleichungssystem. Im Folgenden soll der Zustandsraum des linearisierten Sys-
tems dargelegte werden und die wichtigen Transitionen, die von einem in ein anderes Gebiet
erfolgen, hinsichtlich der Stabilitdt untersucht werden. In Abbildung 4.32 ist der Zustands-
raum fiir das PWA-System dargestellt, welches die Grundlage fiir die folgende Betrachtung
darstellt.

Um die Stabilitat zu untersuchen, werde angenommen, dass die Trajektorie nahe der Menge
N sei. Es ist offensichtlich, dass, wenn die Mengen A7 und N erreicht werden, so ist das
System instabil oder die Giiltigkeit des lineariserten Modells ist verlassen worden. Des
Weiteren werden im Folgenden die Zustandsiibergéinge von der Menge N3 nach Ay und
umgekehrt sowie von der Menge N3 nach Ay und umgekehrt untersucht. Neben diesen
Transitionen sind natiirlich auch die Abbildungen auf sich selbst wichtig. Entsprechend
werden die drei Systeme auf Ny, N und N3 betrachtet. Beginnend mit den Matrizen Ay,
As und Aj konnen die charakteristischen Polynome

No(\) = A2 =2\ +1, (4.155)

% —a—2 1
72N

No(A) = A + T Mo

(4.156)

110



4.2. Phasenregelkreis mit Dead-Zone-Charakteristik

Abbildung 4.32.: Unterteilung des Zustandsraums hinsichtlich der Linearisierung

und
N3(\) = X2+ (=24 a+2b—2b7g)A + 1 + 2b7g — a (4.157)

angegeben werden. No(A) liefert somit die Eigenwerte A o = 1. Damit Na(\) ein Einheits-
kreispolynom darstellt, muss

0<2+a—b (4.158)
gelten. Fiir N3(\) konnen die Ungleichungen

0<(—=1+27)b+2—a (4.159)
und

1> |1 — a+ 2bfg| (4.160)

angegeben werden. Der Ubergang von Gebiet N5 nach Gebiet Aj liefert das charakteristi-
sche Polynom

Ab—q—2 1
K

Noa(N) = \2
02(}) T, 1+a

(4.161)
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mit der Randbedingung
0<2+4+a—2b (4.162)

fiir ein Einheitskreispolynom. Der Ubergang von der Menge Ny nach A3 (bzw. von N3
nach N ) liefert das Polynom

Noz(A\) = A2 + (=24 a +4b — 2b7p)A + 1 — a + 2b7p. (4.163)

Damit Np3(A) ausschlieflich Nullstellen innerhalb des Einheitskreises aufweist, sind die
Ungleichungen

0<(-242)b+2—a (4.164)
und
1>|1—a+ 2b7g| (4.165)

einzuhalten. Im Folgenden soll kurz auf die Aquivalenz zwischen den Ungleichungen aus
Kapitel 4.2.2 und denen, die in diesem Kapitel dargelegt wurden, eingegangen werden.
Offensichtlich entspricht das Polynom Ny(\) gerade Ds(\). Dies ist bei beiden der Bereich,
in dem keine Regelung stattfindet. Des Weiteren ergeben sich D1(A) = Na(A) und Da(\) =
N3()). Fiir die in diesem Kapitel dargelegten Ubergiéinge gelten

D51 = Nog, (4.166)

D3g = Nos (4.167)
und

D1 = Nas. (4.168)

Demnach liefert diese Betrachtung das gleiche Ergebnis wie die Behandlung in Kapitel
4.2.2. Es gilt somit

0< (2 —2)b+2—a (4.169)
und
1> |1 —a+ 2b7s). (4.170)

Werden die Ungleichungen (4.169) und (4.170) eingehalten, so ist das erweiterte HEDAYAT-
Modell mit Dead-Zone und damit der Phasenregelkreis mit Dead-Zone-Modell stabil.

Die in diesem Kapitel dargelegten Resultate entsprechen denen des erweiterten Modells
nach VAN PAEMEL mit Dead-Zone. Entsprechend ergeben sich hier zwar weniger Unglei-
chungen, jedoch liefert auch dieses Modell hinsichtlich einer gewissermafien konservativen
Betrachtung das gleiche Ergebnis.
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4.3. Erweiterung des Modells nach VAN PAEMEL:
Leckstrom

Die Erweiterung des VAN PAEMEL-Modells inklusive Leckstrom liefert wahrend des Zu-
standes Sy gerade den Leckstrom ¢, Demnach ergibt sich eine Steigung der Spannung
wahrend des Zustandes Sy, wodurch sich die Dynamik stark veréndert.

Im Folgenden soll ein analytisches Modell auf der Basis des Abschnittes 4.1.2 aufgestellt
werden, das das Auftreten des Leckstroms innerhalb der Charge-Pump oder durch Varak-
toren mitberticksichtigt. Auch wenn sich der PFD im Zustand Sy befindet, wird ein Strom
11, in das Filter eingepragt. Durch den Ansatz von VAN PAEMEL konnen auch fiir diesen
Fall vier Unterscheidungen und somit vier Gebiete im Zustandsraum identifiziert werden.
Diese Félle sind in den Abbildungen 4.33(a) bis 4.33(d) dargestellt. Der Unterschied zu
dem von VAN PAEMEL eingefithrten Modell ist insbesondere in der Definition des Zustan-
des v ersichtlich. Bei dem Standardmodell ist v in einem gewissen Bereich immer konstant.
Durch die Einfiihrung des Leckstromes iy, ergibt sich fiir jeden Sektor eine in der Struktur
unterschiedliche Gleichung beziiglich der Spannungen. Die Fléchen unter der Regelspan-
nung uc; sowie die Zustandsgleichungen fiir v nach den Abbildungen 4.33(a) bis 4.33(d)
lassen sich durch die folgenden Gleichungen bestimmen. Nach Abbildung 4.33(a) ergibt
sich die Flache unter ug zu

2 2
Tk I, (T — 7 1
v (T + Tp1 — ) + Ip (RlTk+1 + 2211 ) — <201 ) e (4.171a)
sowie
I, (T - Tk) [p Tk+1
v = U — + 4.171b

mit 7, > 0 und 7541 > 0. Fiir den zweiten Fall mit 7, < 0 und 741 < 0 kann die Gleichung

L I (T+ 7))’ 1
v (T + Ty — 7x) + 501 - 20, + (Ip— ) Rt = ?V (4.172a)
angegeben werden. Des Weiteren kann
I, (T 1

Vg1 = Vg —
M Cq Cq

mittels Abbildung 4.33(b) bestimmt werden. Die Flédche fiir 7, > 0 und 7341 < 0 ist durch

I, (T —n)? 1
Ok (T + Thy1 — Th) — L +27—glrl e b (4.1734a)
v
und die Spannung durch
I (T + 71 — 7r) n Iy Th41 (4.173D)

Vk+1 — Vg —
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Uref (T)

Uyeo (t) ' i

Tk Tk+1

(a) Fall 1: Mit 7 > 0 und 7x4+1 > 0 gelten die Gleichun-
gen (4.13a) und (4.12).

A

Uref (t)

uvco(t) ' '

ip(t)

Uet] (t)

(c¢) Fall 3: Mit 7 > 0 und 7x+1 < 0 gelten die Gleichun-
gen (4.13c) und (4.12).

Uref (f)

Uvyco (t) ' '

(b) Fall 2: Mit 7 < 0 und 7x+1 < 0 gelten die Gleichun-
gen (4.13b) und (4.12).

A

Uref(t)

uvco(t) ' '

ip(t)

uctl(t)

(d) Fall 4: Mit 7. < 0 und 741 > 0 gelten die Gleichun-
gen (4.13d) und (4.12).

Abbildung 4.33.: Behandlung der Fallunterscheidungen, die sich bei der Betrachtung der Glei-
chung (4.10), der maglichen Zustinde und des Leckstromes ergeben, wobei
hier ausschlieflich der eingerastete Bereich beriicksichtigt wird.

mittels der Abbildung 4.33(c) zu berechnen. Nach Abbildung 4.33(d) ergeben sich fiir
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T < 0 und 7541 > 0 die Gleichungen

2 2
Ti T Th41 >

v (T + Th1 — ) + Ip <R1 (The + Tpa1) + 5

und

BT | Dy

= v — 4.174b
Vi1 = Vg c; ) ( )

Der Zustandsraum wird implizit durch die Funktionen LCy und LC; getrennt, wodurch
das zustandsabhéngige Schalten der Differenzengleichungen angegeben wird. Diese werden
durch

LCy: 17,=0

LCl LT+l = 0

L2 ILT? 1
— — L Rim=— N7.>0
20, 207 LItk Ky T =

(T — 71) + Rilpmy, +

L (T—7m)? 1
Uk(T—Tk)—%:? V7, <0

(4.175)

beschrieben. Offensichtlich ist die Topologie des Zustandsraumes mit der des idealen Mo-
dells vergleichbar und recht &hnlich. Auch das schaltende Verhalten ergibt sich, wie es in
Kapitel 4.1.3 dargelgt wurde. Mit den Substitutionen

P = % (4.176)

p = TRyvp — 1, (4.177)

a = K ,RiT, (4.178)

b= M, (4.179)
201

a = Ky RiT (4.180)
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und
K L T?
= 4.181
b= (4.181)
kénnen die normalisierten Gleichungen fiir den Zustand 7 bestimmt werden:
_F1 —(Ok + 1+ a) — /(0 + 1+ a)2 +4b (7 + 0p(Fx — 1) + B(7x — 1)2)
Ty = (4.182a)
2b
<F2 —(1+ o) + 28
Th+1 = 2(b — B)
V(1 +0)2 = 4B(1 + (0 — o — 1) + 4bh(Fx, B))
+ 4.182b
20— ) (4.182b)
mit
h(Tk, O) = 0p(T — 1) + (L + @ —a) + B
1+268(7,—1) — v 1)2 -4
Thi1 = G 14260 = 1) — V(@ 1? ~ 49 (4.182¢)
20
F4 (0 +1+a)
Th+1 = 2%
VO 1+ a)? +4b (84 7 (1= @ = a) + 0 (0 — 1) +b73)) (4.1824)
2b
Ferner ergeben sich
Upty = Uk + 268(1 — Fx) + 2071, (4.183a)
Up2y =+ 28(1 + FE2)) + 2670 2, (4.183Db)
Upsy =0+ 268(1 + 72y — ) + 2670, (4.183¢)
und
ka =0, + 20+ 2b7k+1 (4.183d)

Durch die Normierungen ist es erforderlich, die Grenzen der Gebiete auch zu normieren.
Es gilt

LCy: 7. =0

@+ 1)1 =) — Bl —7)2=1 v >0 (4184)

LCy: Tpy1=0 = .
O+ 1)1 —F)+a—a—-B+bii=1 V7 <0
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AU
Ro R3
Uﬁ" >
Ts | %k
/
//
R4 R1

Abbildung 4.34.: Bereichsdefinition der Transformation T im Zustandsraum mit den zugehd-
rigen Sektoren R; mit i € (1,2,3,4)

Mit der Einfiihrung der Punktransformation T;(Txi1,0p11) = [T,filvk +1]T, wobei
€ (1,2,3,4) ist, kann
[ T1(Fs10p1) ¥ (7 B) € Ry
o To(Te410k41) YV (Th, 0k) € Ra
T(Th410k+1) = o (4.185)
T3(Trt10k+1) ¥V (Th,0) € R3
( Ta(Te10k41) YV (T, Uk) € Ry

definiert werden. Die Definition der Mengen R, Ro, R3 und R4 lésst sich der Abbildung
4.34 entnehmen. Offensichtlich ist & = [7,9]7 = [0,0]7 kein Fixpunkt des Systems. Dies
ist darin begriindet, dass der Zustand Sy durch den Leckstrom I7, immer einen Beitrag zur
Regelung liefert. In [16,92] wurde ein formaler Zusammenhang beziiglich des Leckstromes
und des statischen Phasenfehlers angegeben. Fiir die Pulsbreite bedeutet dies, dass sich
diese periodisch wiederholt. D.h. der Strom I, wihrend eines Pulses gleicht gerade den
Leckstrom I, innerhalb einer Periode T' = 1/ fiof aus. Durch eine einfache Rechnung kann
das Aquivalent zum statischen Phasenfehler angegeben werden:

~ Ts I, o B

p—— pm— 4-1
TT I+, b+p (4.186)

Hinzukommend zum statischen Phasenfehler ¢ oder der eingefiihrten statischen Puls-
breite Ty ergibt sich auch ein statischer Fehler in der Spannung und somit in der Frequenz.
Dieser kann bestimmt werden, indem

Z od =
Tt s, B oder 7./ o LT I+ I (4.187)
Ip —+ IL
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B
2

-

38,2
38,1
38,00 zpp
0o 05 1 15 2 25 3
7/n8

Abbildung 4.35.: Zum Fizpunkt des erweiterten Modells nach VAN PAEMEL mit Leckstrom

angesetzt wird und die Losung fiir v, angegeben wird. Fiir den normierten Fall kann

I6; (—bz+ba+b6~l—ﬁa)

Do = — 4.188
- B2+ 208 + 12 (4.188)
berechnet werden, bzw. fiir den nichtnormierten
T2+ 2R O\T) I, 12+ (2 RiChT — T?) L%, 1
Us:_( 1O\ T) I I* + (2 RiCy ) LI (4.189)

21T (I, + I)? KT

Fiir das erweiterte Modell mit dem Leckstrom Iy, ergibt sich der Fixpunkt zu &pp = [7, 775}T
(xpp = [75,v5)7). In Abbildung 4.35 ist dies anschaulich dargestellt.

4.4. Regelkreise hoher Ordnung: Modellierung durch
Approximation

In diesem Abschnitt wird eine Moglichkeit dargelegt, einen digialen Phasenregelkreis ho-
her Ordnung (d.h., dass die Ordnung grofer zwei ist) so zu modellieren, dass sich ein
analytisches, nichtlineares, schaltendes Differenzengleichungssystem ergibt. Dazu wird das
Verfahren verwendet, welches in den Kapiteln 4.1.4 und 4.2.3 eingefiihrt wurde.

4.4.1. Allgemeines Modell n-ter Ordnung

Der grundlegende Gedanke basiert auf der Linearisierung der Losung des Differenzialglei-
chungssystems des Schleifenfilters. Da sich das Filter innerhalb dieser Arbeit als lineares,
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zeitinvariantes System darstellt und somit durch

z(t) = Axm(t)+ bip(t)
DI (4.190)
y(t) = cla(t)
beschrieben wird, ergibt sich die Losung
t
x(t) = ®(t — to)x(to) + / ®(t — 7)biy(7)dr, (4.191)
to

wobei ®(-) die Transitionsmatrix darstellt. Wird die Phasengleichung des VCO-
Ausgangssignals betrachtet und wenn dann der Zeitpunkt der néchsten fallenden Flan-
ke bestimmt werden soll, so ist die Losung des Differenzialgleichungssystems des Filters
ausschlaggebend, ob es eine analytische Losung gibt oder ob auf numerische Verfahren
zuriickgegriffen werden muss. Demnach ist es erforderlich, dass die Phasengleichung des
VCO-Ausgangssignals bijektiv ist. Da die Transitionsmatrix des Zustandsraummodells
nach Gleichung (4.190) fiir diese Betrachtung entscheidend ist, soll die Transitionsma-
trix so linearisiert werden, dass sich eine bijektive Phasengleichung des Ausgangssignals
des spannungsgesteuerten Oszillators ergibt. Die Transitionmatrix kann durch ihre Potenz-
reihe dargestellt werden. Es ergibt sich

B(t) = Al = i AT (4.192)

n!
n=0

Aufgrund der Tatsache, dass die Nullstellen bei Polynomen der Ordnungen gréfter Vier im
Allgemeinen nicht geschlossen analytisch anzugeben sind, erfolgt die Festlegung der Ord-
nung der Phasengleichung des spannungsgesteuerten Oszillators auf die Ordnung Zwei.
Zwar lédsst sich mittels der Formeln von CARDANO fiir ein Polynom dritten Grades eine
analytische Losung angeben, jedoch soll an dieser Stelle darauf verzichtet werden. Auch
konnen fiir das Polynom vierten Grades die Nullstellen analytisch bestimmt werden. Da-
mit sich jedoch eine quadratische Phasengleichung des spannungsgesteuerten Oszillator-
ausgangssignals ergibt, ist es erforderlich, die Transitionsmatrix mittels Gleichung (4.192)
abzuschétzen. Es konnen verschiedene Varianten der Linearisierung angesetzt werden. Zum
einen kann die Losung des Filters linearisert werden, wodurch sich hinsichtlich der Zu-
stdande ausschlieflich lineare Gleichungen ergeben wiirden und somit eine quadratische
VCO-Phasengleichung angegeben werden kann. Eine anderer Ansatz konnte iiber die Li-
nearisierung der Phasengleichung des spannungsgesteuerten Oszillators erfolgen. Dabei soll
dann jedoch nur die entsprechende Phasengleichung linearisert werden, nicht die Losung
des Differenzialgleichungsystems des Schleifenfilters. Im Folgenden sollen beide Ansétze
angegeben werden.

Die Linearisierung der Losung des Schleifenfilters ldsst sich mittels der Potenzreihe leicht
durchfithren, da sie eine TAYLOR-Reihe darstellt. Entsprechend kann
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X ANy 1 \n E2 AT — )
2(t) = Zwm(ton/ ZA(tn—')bzp(T)dT (4.193)
=0 _ 0 n=0 _
%I—‘r;r(t—to) %VI
t
~ [T+ A(t — to)] =(to) + biy / 1dr (4.194)
to
~ @(to) + (Ax(to) + biy) (t — to) = &(1) (4.195)

angegeben werden, wobei der Strom i, € (+1p,0A, —1I;) im Intervall [to, t] konstant ist. Des
Weiteren ist der Integrand aus Gleichung (4.193) durch die Einheitsmatrix abzuschétzen
und die Transitionsmatrix des Summanden vor dem Intagral der Gleichung (4.193) durch

Bt —to) ~ I+ At — 1) (4.196)

zu approximieren. Dies liefert eine quadratische Gleichung fiir das Phasensignal des span-
nungsgesteuerten Oszillators, da somit

t

Oveo(t) = Yveo(to) + 21Ky Ue) () AT (4.197)
to

t
A veolto) + 21Ky [ cla(r)dr (4.198)
to

1
~ preolto) + 2Kvel ((t0) (¢~ to) + 5 (Ad(to) + bip) (¢~ 10)*) (4.199)
gilt. Demnach konnen die diskretisierten Gleichungen

T(tnt1) = ®(n) + (@) (lns1 — tn) (4.200)

Gveo(tns1l) = Pveoltn) + 2Kyl (w(tn)(th —ta) + @(lﬁn+1 — tn)2> (4.201)

angegeben werden, wobei
¥(@n) = y(®(tn)) = AZ(tn) + bip (4.202)

ist. Nachdem die Losung des Schleifenfilters linearisiert wurde und somit auch die des
VCO-Phasensignals, entspricht Gleichung (4.201) gerade 27 und ist nach ¢,41 aufzulsen.
Es ergibt sich

ycoll
—Kveld, + \/(chTrfcn)2 + 2K, Ty () <1 - —QDVCQO( ”)>
™

Kyel~v(z),)
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Liegt der Fall v(&,,) = 0 vor, so gilt
1— @vco(tn)
I E— 1 S (4.204)

K,cl'z,

Fiir das Referenzsignal mit einer konstanten Frequenz fof kann

Spref(th) = Soref<tn) + 27 fref (tn+1 - tn) (4.205)
und
1— Soref(tn)
el =ty + — 2T (4.206)
fref

angegeben werden. An dieser Stelle sei erwéihnt, dass mit den hergeleiteten Gleichungen
fiir die Zustéande des Filters, der VCO-Phase, der Berechnung der Zeitpunkte, an denen
die Phasensignale des VCO und des Referenzsignals gleich 27 sind, sich der Algorithmus
zur Bestimmung der néichsten Zeitpunkte geméf [24] ergibt. Demnach ist der néchste
Ereigniszeitpunkt durch

tne1 = min {60, 60 ) (4.207)
gegeben. Nach Kapitel 4.1.4 ergibt sich fiir den ersten Fall ( = (, = —@veoltn),
Cn—i—l = _¢VCO(tn+1)7 Ck—i—l = €n+2 = @ref(tn—&—Q)u tpy1 = tzej_l und tpto = t;ﬁ(_)? Damit
kénnen

—CTBlii:k

F1
=27 fref —7—~

T ~ N2 T ~ Ck KVCT
(KVC Blwk) + 2Kc bg(wk) 14+ = - (I + B1) Ty
27 2fref
27 fy - 4.208
7Tf ef KVCTb2<.’.C]€) ( a)
und
F1 le}rl
T = Bz +bo(x)) —— 4.208b
k1 12 + ba( k>271'fref ( )
mit
ba(xy) = AB1x), + bi, (4.208¢)
und
1
By =1+ A (4.208(1)
fref
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angegeben werden. Der zweite Fall ist gegeben durch (¢ = (¢, = @ret(tn),
Cnt1 = _@vco(tn—l—l)? Cktr1 = Cny2 = @ref(tn—m)» tht1 = tf]eil und t,40 = tx(f? Es ergibt
sich
le—%l _ —f;TB?)(CkA)aA:k
¢ by (G, %)
27 fret

\/ (KveT Bs(()r)” + 2Ky e by (G, 1) h(G, )

4.209a
Kyelby (¢, ) ( )
27Tfref
mit
_ S
h(Gr @) = 1= Kv 20 (I + Bs(y)) &, (4.209b)
ref
und
F2 C11;21
@11 = B3(Go)@g + ba(CG, @) oo (4.209¢)
27Tfref
mit
b4(Ck7 ﬁ?k) = ABg(C}C)CiJk + pr (4.209d)
und
1_ Sk
Bs(G) =T+—2T 4 (4.209¢)
fref
Der dritte Fall ist gegeben durch ( = (. = —@Pveo(tn), G+l = Pref(tn+1),
Cht1 = Gur2 = —Pveol(tnt2), the1 = tﬁ& und t,40 = tff_fw. Damit kénnen die folgenden
Gleichungen angegeben werden:
A\ 1 .
(i2) = —2nKyc! B (G, 1)@ (f - f(Ck;«’Bk))
re

1
f ref

2
- QWKV%CTbG(gkafik’) ( - f(Ck,fik)) (4.210a)

1

ref

@h3 | = Bs(Cp, @) + be(Cp, ) (f — f (G ﬁﬁk)) (4.210D)
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mit

b6 (Ck, 1) = AB5(Ck, Tk) Tk — by, (4.210c)

Bs (G @) = T + (G, @x) A (4.210d)

und

—KVCTik + \/(KVCTik)Q +2K,cT Az, (1 + 2<_k:>
™

K.cT Az,

f(Crs ) = (4.210e)

Mit Ck = Cn = @ref(tn)a Cn—H = @ref(tn—i—l)a CkJrl = Cn—i—? = _¢vco(tn+2)a tn—H = tﬁ)l und
thto = tff_ﬁ2 ergibt sich der vierte Fall und es konnen die Gleichungen

1 Sk
b = 21K e Br(&)ay, foW —g(xy)
Lo Sk ?
1 L
—onKy=clbg(ay) | —2T — g(z;) | (4.211a)
2 fref
und
_ S
&ht) = Br(@y) @y + bs(@r) ; fﬂ — g(d) (4.211D)
re:
angegeben werden, wobei
bg(ﬁ)k) = AB7(@]€)@]€ — pr, (4.2110)
B7(@k) =TI+ g(ik)A (4.211d)
und
. —KVCTCi:k + \/(KVCTZ%k)Q + QKVCTAiik
g(xr) = (4.211e)

KVCTAﬁik

gelten. Damit ist das schaltende Differenzengleichungssystem aufgestellt, wobei der Zu-
standsraum unterteilt werden muss, damit die Vorschrift des zustandsabhéngigen Schaltens
angegeben werden kann. Da die Dimension des Zustandsraumes eine Dimension grofser ist
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als die des Filters und es vier Mengen innerhalb des Zustandsraumes gibt, auf denen ge-
rade die hergeleiteten Differenzengleichungssysteme agieren, ergeben sich Mengen, die die
vier Mengen unterteilen. Die Vorschrift zur Bestimmung dieser Trennmengen ist prinzipiell
schon in den Kapiteln 4.1.3, 4.1.4, 4.2.1, 4.2.2, 4.2.3 und 4.3 dargelegt worden. Entspre-
chend muss der Phasenfehler ¢, = 0 sein. Des Weiteren sollte fiir die n-dimensionale Menge
(k1 = 0 gelten. Dies ist dquivalent zu dem Sachverhalt, dass die Zeitpunkte, an denen das

Referenz- und das VCO-Signal schalten, identisch sind und es muss tifjfrl = t;01 gelten.
Die Unterteilung des Zustandsraumes ist gegeben durch
LCy: (=0
LC1: G =0& ) =6
r 1 R
= f(@k, k) V<0 (4.212)
fref
= ]
_ Sk
— 2 — (@) V(>0
\ fref
Ist v = 0, so gilt
LCy: (=0
LCy: Gy =0 & i) =67,
(
clay, = Jret (4 + Sy G <0 (4.213)
K 2

-1
cl'zy = Jret <1 C—k) V>0

Cor
Damit ist ein autonomes, diskretes, schaltenden, dynamisches System zur Beschreibung

eines CP-PLL-Systems beliebiger Ordnung auf Basis der Approximation der Losung des
Differenzialgleichungssystems des Schleifenfilters dargelegt worden.

Es ist auch moglich, dass nicht die Losung des Filters linearisiert wird, sondern ausschliefs-
lich die Phasengleichung des spannungsgesteuerten Oszillators auf eine Form gebracht wird,
so dass die Phasengleichung bijektiv ist. Es ergibt sich das diskretisierte Differenzenglei-
chungssystem fiir das Schleifenfilter zu

tn+1
Etni1) = B(tns1 — to)z(tn) + / B(ty 1 — 7) d7 bi, (4.214)
tn

wobei i, € (+1p,0A, —I,) zwischen den Zeitpunkten ¢, und ¢, konstant ist. Fiir die
Phasengleichung des Ausgangssignals des spannungsgesteuerten Oszillators kann Gleichung
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4.4. Regelkreise hoher Ordnung: Modellierung durch Approximation

(4.201) angesetzt werden und somit ergibt sich Gleichung (4.203) fiir die Bestimmung des
Zeitpunktes, an der das VCO-Signal eine fallende Flanke aufweist. Damit kann auch hier
der Algorithmus nach [24] angewendet werden. Es sei an dieser Stelle darauf hingewiesen,
dass eine quadratische Phasengleichung zu Grunde gelegt wurde, wobei mittels der For-
meln von CARDANO durchaus auch eine Losung fiir eine Phasengleichung der Ordnung
Drei bestimmbar ist. Des Weiteren existiert auch noch die Moglichkeit, eine Phasenglei-
chung der Ordnung Vier zu 16sen, was an dieser Stelle jedoch aufgrund des Umfanges nicht
erfolgen soll. Wie bei dem vorhergegangen Betrachtungen soll auch hier ein Eingangssi-
gnal mit konstanter Frequenz verwendet werden, wodurch die Gleichungen (4.205) fiir das
Phasensignal und Gleichung (4.206) fiir die Bestimmung der Schaltzeitpunkte gelten. Ent-
sprechend den zuvor dargelegten Betrachtungen kann hier ein autonomes, nichtlineares,
schaltendes, Differenzengleichungssystem angegeben werden.

4.4.2. Stabilitat des CP-PLL-Modells dritter Ordnung

Der zu betrachtende Phasenregelkreis besitze einen idealen Phasen- und Frequenz-Detektor
mit idealer Ladungspumpe, einem Schleifenfilter der Ordnung Zwei (siche Abbildung 4.36)

mit den Zustandsraummatrizen
1 1

_ 0
RiCy R C
ALp = 11 ! 111 s br=1| 1 |
— — (4.215)
Rlcg R1CQ C2
C{F:[O 1}, dLFZO
und einen spannungsgesteuerten Oszillator mit
fvco(t) = Kvuctl(t)~ (4.216)

Der Teiler werde nicht realisiert, wobei der Teilungsbeiwert auch in den Verstarkungsbei-
wert K des spannungsgesteuerten Oszillators modelliert werden kénnte und sich somit
keinerlei Einschrankungen ergeben. Es ist offensichtlich, dass die Félle Drei und Vier mit
dem Filter 2. Ordnung sich nicht in eine TAYLOR-Reihe um die Ruhelage

T

s 1T 1 1
= = — 0 4.217
TR |: T1,R, T2R, CR } |: KVT7 KVT7 ] ( )

entwickeln lassen, wobei ¢ = ¢ /(27) ist. Entsprechend sollen ausschieklich die Fille Eins
und Zwei dargelegt werden und hinsichtlich des Stabilitdtsverhaltens untersucht werden.
Des Weiteren lasst sich zeigen, dass die JACOBI-Matrizen der Fille Eins und Zwei identisch
sind. Es ergibt sich

al — 1 i 0
al al
1—by bo —1 2by
= 1-20b — 4.21
J as 2+ as KT |’ ( §)
KT KT(1-2a)
| 2&2 2@2 i
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)
p ——O
Ry
——c |
(T
- O

Abbildung 4.36.: Schematische Darstellung des Filters 2. Ordnung

wobel
RC
a = lT L (4.219)
R, C
ag = lT 2 (4.220)
und
K I,T?
by = — P 4.221
27 a0, (4.221)

gelten. Somit 1aft sich das charakteristische Polynom

1 1 1
D) = A3+ (—+——3+b2 (2—-)) s
ar  a» as

2 2 2 1 1 1
(3————+b2 <—+——2>>)\+—+——1 (4.222)
al as ai as a1 az
der Matrix J angeben.

Damit die Gleichung (4.222) ein Einheitskreispolynom darstellt, ist es erforderlich, dass

0<by <2, (4.223)
1 1 1 1

‘1————<1:0<—+—<2 (4.224)
al a9 a a2

und

|b2 (a1a2(2a1 — 1) — CL%) + (CL1 + a2)2 — 2&1&2(&1 + (12)‘

(ara2)’

|2a1a2(a1 + ag) — (a1 + a2)2|

(a1a2)2 (4.225)
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(a) Vereinfachte Darstellung der Randbedingung (b) Randbedingung (4.224)
(4.224)

Abbildung 4.37.: Zur Randbedingung (4.224), wobei die hellgrauen Flichen andeuten, dass die
Bedingung erfillt ist und die dunkelgrauen zeigen den Bereich, bei dem die
Bedingung nicht erfillt ist.

eingehalten werden. Gleichung (4.225) stellt eine komplexe Bedingung an die Parameter
dar, welche im Folgenden untersucht und vereinfacht werden soll. Abbildung 4.37 beschreibt
den Zusammenhang (4.224). Es kann gezeigt werden, dass sich Gleichung (4.225) durch

b2 foay, az) — fi(a, az)|
| f1(a1,a2)|

beschreiben ldsst, wobei die Funktionen fi(aj,a2) und fa(ai, az) durch

<1 (4.226)

fl(al, ag) = — (a1 + a2)2 +2a1 a9 (a1 + ag) (4.227)
und
fg(al, ag) = a1 ag (2 al — 1) — CL12 (4.228)

definiert wurden. Entsprechend muss

fa(a1, az)

2
fi(a1,az)
gelten. Es ist ersichtlich, dass der Parameter by der Ungleichung

fa(a, az)
fi(a1,a2)

gentigen muss, damit die Ungleichung (4.229) eingehalten wird. Es ergibt sich

|b 1| <1 (4.229)

0 < by <2 (4.230)

ai

by < 2 (1 + @) . (4.231)
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1010 : : 108 : : :
——Glg. (4.8a) ——Glg. (4.8a)
1084 - - - Glg. (4.232) 106§ - - - - Glg. (4.232) ]
——Glg. (4.233) —— Glg. (4.233)
106+ : 104+ ‘ : 1
y <
a 104} < 102t
102+ 100t =
1 0 i P P 1 -2 i i i
0100 10! 102 103 104 0 100 10! 102 102 10
WrefT1 WrefT1
(a) B=1,1 (b) B=1,9
108 ‘ ; 106 : :
——Glg. (4.8a) ——Glg. (4.8a)
106]] - - - Glg. (4.232) 1044 - - - Glg. (4.232)
—— Glg. (4.233) — Glg. (4.233)
104} 102} : :
c ay
M 102} M 100}
100+ 102}
1072 : : i 10—4 : : :
100 10! 102 103 104 0 100 10! 102 103 104
WrefT1 WrefT1
(c) B=3 (d) g =51

Abbildung 4.38.: Vergleich zwischen Gleichung (4.225), (4.231) und der Grenze von GARD-
NER (siehe Gleichung (4.8a) aus Kapitel 4.1.1 oder [16])

Die Bedingung (4.225) ist somit dquivalent zu Bedingung (4.231). Des Weiteren ist die
Bedingung (4.223) strenger als (4.231). Geht der Parameter as gegen Null, so sind die
Randbedingungen (4.223) und (4.231) identisch. Zur Validierung der Randbedingungen
werde das von GARDNER hergeleitete Stabilitatskriterium fiir einen Regelkreis der Ordnung
Drei betrachtet. Es gilt somit Gleichung (4.8a) aus Kapitel 4.1.1. Die Gleichungen (4.223)
und (4.231) sollen zur besseren Vergleichbarkeit an die Notation von GARDNER angepasst
werden. Gleichung (4.223) wird zu

1 1
K7 < ————wlr? 4.232
71 2 (5 — 1>wref7—1 ( )
und die Bedingung (4.231) liefert
1 ﬁ 2 2
Kr < —— " 4.233
Tl 7T2 (6 _ 1>2wref7-1 ( )
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104 :
v Ruhelage
1031 — GARDNER
——Glg. (4.232)

102}

y

&101 3
100+ v

107! : :

100 10! 102 103
WrefT1

(a) Stabilitdtsgrenze mit frer = 40 MHz

104 :
v Ruhelage
103 | — GARDNER
—— Glg. (4.232)
102}
S0t}
"
100} v
10-1
1072 i i
100 10t 102 103
WrefT1

(c) Stabilitdtsgrenze mit fror = 18 MHz

106 ‘ :
v Ruhelage
104] ——— GARDNER ||
—— Glg. (4.232)
102}
=
8
100+ v
10—2
10—4 : : : :
10-1 100 10! 102 103 10
WrefT1

(e) Stabilitdtsgrenze mit fref = 8,16 MHz

1,5

0,5 0,5

1 w
0] (2) Al

(b) Konvergiernde Trajektorie im Zustandsraum
(fret = 40 MHz)

1,4

0,6
ul/V

0,5
pe/(2m)

1 0,2

(d) Konvergiernde Trajektorie im Zustandsraum
(fret = 18 MHz)

> 0,4
~
B
ﬁ 0,3
=
3

0,2

21 ,

-0,5 0 0,6
0.5 0,2
o/ (2) w/V

(f) Trajektorie im Zustandsraum (fres = 8,16 MHz),
wobei der Fixpunkt nicht erreicht wird.

Abbildung 4.39.: Zur Stabilitit eines Phasenregelkreises der Ordnung Drei
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4. Modellierung und Analyse digitaler Phasenregelkreise

mit § = 1+ C1/Cy. Des Weiteren ergibt sich fiir Gleichung (4.224)
1
b < —WrefT1. (4.234)
T

In Abbildung 4.38 sind die hergeleiteten Grenzen (4.232), (4.233) und GARDNERs Stabi-
litdtsgrenze nach Gleichung (4.8a) gegeniibergestellt. Es zeigt sich, dass sich die Bedin-
gung (4.232) an die GARDNER-Grenze annahert. Des Weiteren ist ersichtlich, dass (4.232)
strenger ist als (4.233). Sind die Bedingungen (4.223) und (4.224) bzw. (4.232) und (4.234)
erfiillt, so ist der ideale Phasenregelkreis der Ordnung Drei ohne Nichtidealitéaten stabil.Die
Bedingung (4.223) bzw. (4.232) ist konservativer als die von GARDNER aufgestellte Stabi-
litdtsgrenze nach Gleichung (4.8a).

Aus den Abbildung 4.39 (a) bis (f) lassen sich die Resultate hinsichtlich der Schleifen-
verstarkung sowie der Trajektorien im Zustandsraum ablesen. Die Trajektorien ergeben
sich, wenn ein idealisiertes Modell ohne Linearisierungen und Nichtlinearitaten oder Nich-
tidealitéten angesetzt wird. Die Parameter wurden durch I, = 65 pA, K, = 40MHz/V,
C1 =0,1pF R; = 10k, (5 = 1pF und N = 2 angegeben. Dabei wird die Referenzfre-
quenz entsprechend den Abbildungen 4.39 (a) bis (f) variiert.
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KAPITEL 5

Modellierung und Simulation digitaler
Phasenregelkreise

Fiir den Entwurf digitaler Phasenregelkreise ist die Simulation ein
entscheidender Bestandteil geworden. Aus diesem Grund sind ef-
fiziente Modelle erforderlich. Besonders durch die Aufteilung des
Regelkreises in einen Niederfrequenz- und in einen Hochfrequenz-
teil ergeben sich hohe Simulationszeiten. In diesem Kapitel soll ei-
ne allgemeine Modellierungsmethodik fiir digitale Phasenregelkreise
vorgestellt werden. Die Basis bilden dabei die Arbeiten von DE-
MIR [91] und HEDAYAT [2/, 25].

5.1. Grundlegendes Konzept

Abbildung 5.1 zeigt den schematischen Aufbau des Phasenregelkreises. Dabei sei ange-
merkt, dass der Analogteil im ersten Schritt als linear angenommen werden soll, obgleich
der spannungsgesteuerte Oszillator oder auch die MOS-Kapazitidten nichtlineare Bauele-
mente darstellen. Das Modell des Phasenregelkreises, d. h. der Analogteil sowie der Digi-
talteil, wird jedoch im Laufe des Kapitels durch verschiedene Nichtlinearitéiten ergénzt.
Der Digitalteil wird im Allgemeinen mittels der BoOLschen Logik und durch Zustandsau-
tomaten beschrieben. In Kapitel 3.1.1 ist ein Zustandsautomat des Phasen- und Frequenz-
Detektors angegeben. Dabei ist die Phaseninformation der Eingangssignale des Phasende-
tektors der Ausgangspunkt der Modellierung. Es lassen sich die Phasensignale

t+T
Oref(t + T) = pres(t) + 27T/ Jret(T)dT (5.1a)
t
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Digital Analog

Pref

Entscheider

So var

Abbildung 5.1.: Modellierung des Phasenregelkreises: Digitalteil mittels BooLscher Logik,
Analogteil als nichtlineares Differenzialgleichungssystem

und
t+T

Prar(t +T) = Pyar(t) + 27 Fveo(tcti (7)) AT (5.1b)
t

: R™ — RR"™ lasst sich durch die nichtlineare Charakteristik
des spannungsgesteuerten Oszillators und verschiedene Teilerstufen représentieren. Es sei

angeben. Die Funktion f .,
angemerkt, dass die Gleichung (5.1b) in Form einer Matrixgleichung angegeben ist, da
es fiir verschiedene Anwendungen (z. B. in der Frequenzsynthese mit Phaseninterpolation
und in speziellen Architekturen der CDR) notwendig ist, mehr als ein Phasensignal des
Regelkreises zu verwenden. Zur Bestimmung der néchsten Ereignisse ist es notwendig,
die Zeitpunkte dieser zu berechnen. Dies erfordert die Betrachtung der Logik sowie das
Losen von im Allgemeinen transzendenten Gleichungen. Der Einfachheit halber wird im
Folgenden eine Konstante £ eingefiihrt.

Definition 5.1 & (€) sei gerade der Wert (Vektor) unter Bericksichtigung der Phasenin-
formationen von Qrer und Pyar (Pyar)s der eine Anderung (ein Ereignis) am Ausgang des
Entscheiders hervorruft.

Im Folgenden werde davon ausgegangen, dass nur ein Phasensignal des VCO benétigt wird.
Mit Hilfe der Phaseninformationen und der Konstanten £ ist somit die Gleichung

bt
vaar(tn) + 27T/ fvco(T) dr=¢& (52)
tn

fiir die jeweiligen Phasensignale ¢.of und vy zu losen, wobei t,11 der zu bestimmende
Zeitpunkt ist. Im Allgemeinen ist die Berechnung fiir das Referenzsignal unproblematisch,
da es meist in Form von vorgegebenen Daten vorliegt oder im Falle der Frequenzsynthese
sich durch eine bijektive Funktion darstellen ldasst. Anders liegt der Fall zur Bestimmung
der Phase fiir den Analogteil. Das Filter und der VCO lassen sich im einfachsten Fall durch
das lineare Differenzialgleichungssystem der Form

{m(t) = Ax(t) + buy(t)
Yo

(5.3)
y(t) = cla(t) + dup(t)
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darstellen. Dabei ist dann die Phasengleichung des VCO gegeben durch

o t+T
Sovar(t + T) = Spvar(t) + F/ Kvuctl(T) + fO,Vco dT; (54)
t

wobei @y, einem Zustand aus dem Zustandsvektor @ entspricht. Diese Gleichung liefert
den selben Sachverhalt, der in Kapitel 3.1.3 vorgestellt wurde. Bei dieser Betrachtung
sollen vorerst alle Nichtlinearitdten (VCO-, PFD- und CP-Charakteristik) unberticksichtigt
bleiben, wobei dies in den folgenden Unterkapiteln nachgeholt wird. Die Phasengleichung
(5.1a) ldsst sich mit der Losung des Differenzialgleichungssystems (5.3) durch

tn+1
Yltnt1) = I ®u(tnin —tn)z(ty) + CT/ D, (tnt1 — 7)bup(r) dr + duy, (5.5)
tn :

= Pvar (tn+1 )

darstellen, wobei ®,(-) die Transitionsmatrix ist. Somit ist die im Allgemeinen transzen-
dente Matrixgleichung

tn+1

@, (th1 — tn)x(tn) + cT/ ®,(tpr1 — T)bu(r)dr = & (5.6)
tn

zur Bestimmung der néchsten Ereigniszeit zu losen. Fiir das Losen der Gleichung ist es
erforderlich, nichtlineare Optimierungs- und numerische Integrationsmethoden zu verwen-
den. Da es sich bei komplexen Filterstrukturen schon als recht aufwendig erweist, das
Integral iiber die Transitionsmatrix zu bestimmen, ist es zweckmaéfig, auch im Sinne der
Automatisierung, die Integration mit Hilfe numerischer Verfahren durchzufiihren. Da w(t)
idealisiert als Konstante angenommen werden kann, wird das Losen des Integrals etwas
vereinfacht. Beinhaltet das CP-PLL-System eine Ladungspumpe mit Stromquellen, so ent-
spricht u(t) gerade dem Charge-Pump-Strom ip(t). Wird der VCO als nichtlinear ange-
setzt, so ist die Modellierung direkt iiber die Phasengleichung sinnvoller. Es ergibt sich das
Differentialgleichungssystem des Schleifenfilters zu

a(t) = Appx(t) + bLFip(t)
YLF - ‘ : (5.7)
uel(t) = cipx(t) + drpip(t)
mit der Losung
t
uet1(t) = CT(I)LF(t — to)xo + dip(t) + CT/ Prp(t— T)b’ip(T) dr, (5.8)
to

wobei ®rp(-) die Transitionsmatrix des Differenzialgleichungsystems des Schleifenfilters
ist. An dieser Stelle sei darauf hingewiesen, dass sich das modifizierte Knotenpotenzial-
verfahren als Moglichkeit ergibt, das Differenzialgleichungssystem nach Gleichung (5.7)
aufzustellen, um einen hoheren Grad der Automatisierung zu erreichen [93|. Wie zuvor ist
dann ¢yeo(tn+1) = € zu 16sen. Insbesondere wenn die VCO-Charakteristik approximiert
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wurde, bietet sich das Sekanten-Verfahren zur Bestimmung des néchsten Zeitpunktes an,
da hier keine Ableitung berechnet werden muss. Es gilt:

tn - tn—l
SOVar(tn) - @Var(tn—l

tht1 =ty — ) : (vaar(tn) - 27T> (59)
Es lassen sich auch andere Abstiegsverfahren verwenden, die zum Teil eine bessere Kon-
vergenz aufweisen. Bei den verschiedenen NEWTON-Verfahren ist die Berechnung der Ab-
leitung erforderlich. Dieser Rechenschritt kann durch das Sekanten-Verfahren eingespart
werden. Dabei hat sich gezeigt, dass, obgleich das NEWTON-Verfahren eine bessere Kon-
vergenz aufweist, sich aber kein Geschwindigkeitsgewinn aufgrund der Berechnung der Ab-
leitung ergibt. Fiir die Auswertung des Integrals kénnen im Grunde beliebige numerische
Integrationsverfahren verwendet werden. In dieser Arbeit wurde die Trapezregel

b
/ flz)dz ~ h

implementiert, wobei n die Anzahl der Stiitzstellen ist, h = (b—a)/M, a = tj, und b = ¢, .

Durch das Lésen der Gleichung (5.6) wird der Zeitpunkt #%", berechnet, bei dem ein

Ereignis am Eingang des Phasendetektors erfolgt. Da fiir das Eingangssignal der Zeitpunkt
tff_l in Datenform oder anhand einer einfachen bijektiven Gleichung bestimmt wird, ist es

noch erforderlich, den kleineren Wert der Zeitpunkte #;%, und t};eil zu bestimmen:

M—-1
Jla)+ /() ;L o) | S" f(a+ kh) (5.10)
k=1

k41 = min {tﬁl, ‘]:;aﬁl (5.11)

Dadurch kann der Phasendetektor entsprechend seiner Logik das Kontrollsignal fiir die
Ladungspumpe generieren bzw. seinen internen Zustand dndern und mittels der Phasen-
gleichungen des VCO und des Eingangssignals (bzw. der Daten) kann die Losung des Diffe-
renzialgleichungssystem ausgewertet werden. An dieser Stelle lésst sich erkennen, dass der
Phasenregelkreis mit digitalen Phasendetektoren ein System ist, in dem die Information
der Regelung oder im Fall eines modulierten Eingangssignals in dem Pulsweitenverhalt-
nis von up(t) bzw. ip(t) kodiert ist. Anders ausgedriickt, sobald ein Ereignis erfolgt ist,
ist der Regelkreis als offen anzusehen und letzten Endes wird der Regelkreis nur zu den
Ereigniszeitpunkten wieder geschlossen.

5.2. Modellierung der Nichtlinearitaten

Ein Phasenregelkreis weist verschiedenste Nichtlinearitdten auf, wobei das Verhalten des
Phasendetektors, die Charakteristik der Charge-Pump und die des VCO zu nennen sind.
In Bezug auf den Phasendetektor wird hier der Phasen- und Frequenz-Detektor untersucht
und eine inhdrente Nichtlinearitéit, die Dead-Zone, mittels Zeitverzogerungen modelliert.
Dabei wird sich zeigen, dass auch Current- und Timing-Mismatches der Charge-Pump
durch dieses Modell der Dead-Zone in modifizierter Form beriicksichtigt werden kénnen.
Neben Current- und Timing-Mismatches werden auch der Leckstrom und die endlichen
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Flankensteilheiten des Stromes betrachtet. Die VCO-Charakteristik wird mit Hilfe einer
statischen Kennlinie modelliert. Im Grunde stellt das Schalten des Teilers bei Fraktional-/N
PLL-Systemen oder auch bei Alias-Locked Loops ebenfalls eine Nichtidealitét (zeitlich va-
riierende Parameter) dar und es ergibt sich dadurch ein lineares zeitvariantes Differenzi-

algleichungssystem. Diese Problemstellung wird jedoch separat im nachfolgenden Kapitel
behandelt.

5.2.1. Phasen- und Frequenz-Detektor

Eine Flipflop-Schaltung sowie der zugehorige endliche Automat sind in Abbildung 3.2(b)
und 3.2(a) dargestellt. Dabei werden die Flipflops durch die Signale uye(t) und wyay(t) je-
weils bei einer fallenden (bzw. steigenden) Flanke zuriickgesetzt. Theoretisch verlduft der
Wechsel von einem Zustand in den néachsten zu einem Zeitpunkt. Praktisch ist dies jedoch
nicht moglich, da die logischen Gatter immer eine gewisse Laufzeit aufweisen. Wenn also die
Zeit von einem Reset zum nédchsten in dem Bereich der Laufzeit liegt, so kann der PFD kei-
ne Phasendifferenz zwischen den Signalen w,e(¢) und wy,;(¢) bestimmen. Dabei bezeichne
Uvar(t) entweder das VCO-Ausgangssignal uyeo(t) (z. B. bei Synchronisationsanwendungen
und bei Nachlauffilterung) oder das Teilerausgangssignal wug;y(t) (Frequenzsynthese) des
Phasenregelkreises. Neben der Problematik der Laufzeit weisen reale Signale eine endliche
Steilheit auf, wodurch unterschiedlich viel Strom in das Filter injiziert wird und somit die
Regelgrofe (Kontrollspannung ue(t) des VCO) und die Schleifenverstarkung beeinflusst
werden. Abbildung 5.2 zeigt den Vergleich zwischen einem realen und idealen Strompuls
der Charge-Pump und veranschaulicht die Laufzeit der logischen Gatter. In [25] wurde
darauf hingewiesen, dass sich das reine Verhalten der Dead-Zone durch die inhdrenten
Verzogerungen im PFD ergibt.

Von ABRAMOVITCH [29,30] wurde die nichtlineare Charakteristik in Form einer statischen
Kennlinie in das linearisierte kontinuierliche Modell eingefiigt, um mit Hilfe der LYAPUNOV-
Theorie das System hinsichtlich der Stabilitit zu charakterisieren. Dabei wird die Kennlinie
mit Hilfe der Pulsweiten bestimmt und liefert somit ausschlieflich ein gemitteltes Verhalten
innerhalb eines bestimmten Bereiches des Phasenfehlers. Es wird sich noch herausstellen,
dass sich das mittlere Verhalten von dem schaltenden gravierend unterscheidet, da das
Abtastverhalten des PFD, wie es GARDNER [16] beschrieben hat, eine entscheidende Rol-
le hinsichtlich der Stabilitét darstellt (siehe auch Kapitel 4.1). D. h., dass sich neben den
makroskopischen Parametern (Charge-Pump-Strom iy(t), VCO-Verstérkungsbeiwert K
und den Filterparametern) hinzukommend die Referenzfrequenz auf die Stabilitéat des Sys-
tems auswirkt. Bevor die endliche Steilheit des Strompulses der Charge-Pump untersucht
und modelliert wird und somit insbesondere die in den Filter injizierte Ladung betrachtet
wird, soll vorerst ein Modell zur Beriicksichtigung der Laufzeiten der Gatter vorgestellt
werden. Da es sich bei dem PFD um einen Zustandsautomaten mit sequenzieller Logik
handelt, konnen die Verzogerungen der logischen Baugruppen als parasitire oder virtuelle
Zustinde angenommen werden, um die Anderung am Eingang und die damit verbundene
nicht-instantane Anderung am Ausgang zu modellieren (siche Abbildung 5.3). Es lassen
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sich insgesamt vier virtuelle Zustdnde des PFD angeben: Svpse‘m SV _ Sf}nse

Der virtuelle Zustand von Sy nach Sy oder S41 mit der Verzogerung Set P wird mit S\]fpset

bezeichnet. Offensichtlich werden die virtuellen Zustiande entweder durch deren Laufzeit

tundSn

v,rst

oder durch ein erfolgtes Ereignis in einen nicht-virtuellen Logikzustand {iberfiihrt. Hin-
sichtlich der Dead-Zone sind insbesondere die virtuellen Zustédnde mit den Verzégerungen
Selt) und T, Set von Wichtigkeit. Es ergeben sich fiir das Eingabealphabet Z = (u ief, u‘i,ar), das
Ausgabealphabet O = (0_1, 09, 041) mit o_1 = [ur,, ug|, 09 = [up, ur] und o041 = [ug, ug),
die Zustandsmenge S = (S-1, S0, S+1, Sy het Sy st Sdn et SV ") mit dem Anfangszustand
Si € (5-1,80,S8+1) und der Funktion v :Z — S zur Berechnung des néchsten Zustandes
mit

( u
Sp— S }) , wenn U;Lef(tk-_i_l)

S = Sy, wenn uyar(bpr) mit tyy < b + 7o

u
SV = St wenn tpyq >t A+ T
d
Sy — Svflset , wenn u%ar(tk+1)

Sd’nset — Sy, wenn ief(tlﬁ'l) mit tk—|—1 <t +T set

y S_1—85.1 ,wenn U/;J//ar(tk_i_l) (5.12)
T S_1— nglrst , wenn uief(tkﬂ) . .
Sf,lf}st — 8y, wenn mit ¢y, >t + 70
Sfiﬂst — &1 , wenn uiar(tkﬂ) mit tyq <t + W
Si1—> 841, wenn uief(tkﬂ)
Sy — S;l’prst , wenn u%,ar(tkﬂ)
S\l,lﬂst -8y ,wenn tgpq >t + T rst

u
N Sv,prst —+ &1, wenn ;I,ef<tk_|_1> mit tgy) < tg + Togp

Die Ausgabefunktion n : Z — O lasst sich wieder durch n : § — O darstellen und kann
somit durch

(

11— S ) (81_>S rst)
Sy = 8-1) V(S ,— S-1)

Vv, se

o_1 , wenn

S_
So— S v, set) \ (80 _>S set)

, 5.13
nset — SO) (S ,set - 80) ( )

041 , wenn + = 841) V (S41 = Sh) V

v, rst - S‘H) (Supset - S+1>

(
(
oyp ,wenn (
(S
(S
(S, v,

\

beschrieben Werden Hinzukommend wird dem endlichen Automaten eine Zeitmenge

T = (T;It), Ti‘tl, Trst, rst ,tr, tpe1) beigefiigt. Es ist ersichtlich, dass gerade die virtuellen Zu-
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A "
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|
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Abbildung 5.2.: Idealer und realer Strompuls der Charge-Pump sowie die Visualisierung der
Gatter-Laufzeiten

stinde Sy und S dazu verwendet werden konnen, die Laufzeiten des Teilers mit zu
berticksichtigen.

Unter Verwendung der Phasengleichung (5.1b) und unter der Annahme, dass der Strom
der Charge-Pump Kkonstant ist, ergibt sich die Losung des Differenzialgleichungssystems
Y (siehe Gleichung (5.3)) und der Phasengleichung des VCO inklusive Teilungsfaktor zu

tn+1
CT/ @(tn+1 — T)b dT[P’ s S+1
tn

Ovar(tn1) = T ®(tyr —tp)x(ty) +< 0 LSy - (5.14)

tn+1
—CT/ Q(thrl_T)de[p y 871
\ tn

Dabei wird, sobald der Zustand Sy erreicht wird, der Strom i, (t) = +1, eingeprégt. Wenn
sich der PFD im Zustand Null (Sp) befindet, wird kein Strom eingepragt (i,(t) = 0 A) und
wenn der PFD in S_y ist, so ist 4,(t) = —1,. Da jedoch von einem Zustand zum néchsten
die Transition tiber einen virtuellen Zustand verlauft, muss £ geeignet gewahlt werden.
D.h. fiir jeden Zustandswechsel, wobei der Reset durch eine fallende Flanke erzielt wird,
ergibt sich eine andere Konstante:

( d
27T7—se1%fref 9 SO — S*l

up
27T7—rst fref ) S—H — SO

Epz = 2w+ < (5.15)

up
27TTset fref ) SO — 8+1

d
(| 27Tt fret 5 S—1 = So
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/ Virtuelle Zustiande \

Uyar 4 ‘0—1 Uref 4 |0+1

AN

S

Abbildung 5.3.: Modifiziertes Modell eines (Tri-State) Phasen- und Frequenz-Detektors mit
Dead-Zone

Virtuelle Zusténde

Wird die steigende Flanke als ereignisauslosendes Moment verwendet, so dndert sich der
Wert 27 in Gleichung (5.15) zu w. Nachdem die Losungen der im Allgemeinen transzen-
denten Gleichungen yar(tn+1) = Epz und @ree(tnr1) = Epz berechnet wurden, ist es
erforderlich, zu bestimmen, welcher Ereigniszeitpunkt als erstes erfolgt ist. Es ergibt sich

ts1 = min {10, 0591 } (5.16)

Ist der Phasenreglkreis quasi ausgeregelt, so dass eine fallende (bzw. steigende) Flanke des
Eingangs- oder des Ausgangssignal erfolgt und der Phasenfehler gerade so klein ist, dass
dieser innerhalb der Dead-Zone liegt und dass sich der PFD im Zustand Sg befindet, kann
die nichtlineare Dynamik genutzt werden, um einen Geschwindigkeitsgewinn innerhalb
des Simulationsmodells zu erzielen. Wenn der PFD sich im Zustand Sy befindet, ergeben
sich aufgrund der Tatsache, dass das Integral {iber die Transitionsmatrix nicht gelost wer-
den muss, relativ einfache Gleichungen bzgl. der zu berechnenden Ereigniszeitpunkte. Im
Folgenden soll der einfachste Fall untersucht werden. Das Referenzsignal wu,.¢(¢) habe die
konstante Frequenz f,of, die VCO-Charakteristik sei linear angenommen, d.h. mit einem
konstanten Verstérkungsbeiwert K, sowie einer Ruhefrequenz fo yco und als Filter sei das
passive RC-Glied angesetzt (sieche Abbildung 3.4).

Werden dann die Phasensignale ¢yef(tn+1) und oyar (tn+1) dem Wert Eg%t = Epyz+2m(M-1)
gleichgesetzt, ergeben sich die Gleichungen

. QDref(tn)
ref __ 2 — M +b 17
tn+1 = tn -+ = Myyef + ref, (5 a)
fref
f,DZ
ey =ty 4 bz = Mger - M+ bref, D7 (5.17b)

138



5.2. Modellierung der Nichtlinearitaten

thi1(N)

tref, DZ (N)

tn+1 Y e

Zeit t

™DZ

SP

set

Abbildung 5.4.: Zur Optimierung beziiglich des Zustandswechsels von Sy nach Si1

und

M— Pvar (tn>

var — t _|_ 27T =m . M _|_ b s 5.18a
n+1 n Kvuctl(t;%_) + fO,vco var var ( )

tfi’lDZ =tp + t;;a—iiDZ + ™z = Myar - M + byar, Dz, (5.18b)

. u u . . ref, DZ
wobei Tz € T = (T30, Thet, Tees Tear) ist und M € IN\ {0}. Gilt 2| < 2, < %" und

Myar > Myef, SO Wird der virtuelle Zustand mit der Verzogerung Tﬁf,t erreicht und durch eine
fallende Flanke des Signals wyar(t) zuriickgesetzt. Dies tritt solange auf bis ¢}, > t;efr’lDZ
ist. Das ist gleichbedeutend mit der Tatsache, dass, obgleich Ereignisse erfolgt sind, keine
Regelung stattgefunden hat. Dieser Sachverhalt wird in Abbildung 5.4 dargelegt. Unter
Berticksichtigung aller Moglichkeiten ergeben sich fiinf zu unterscheidende Falle. Mit Ab-
bildung 5.4 lassen sich zwei erkliren: der Ubergang von dem Zustand Sy zu S41 und analog
dazu die Transition von Zustand Sy zu S_1. Abbildung 5.5 beschreibt die Moglichkeit, dass
der virtuelle Zustand szlset vom Zustand Sy zu S;l})set iiber Sy erreicht werden kann. Analog
dazu existiert ein Transitionswechsel zum Zustand SyY. Falls die Steigungen der Gerade
(5.18a) und (5.17a) gleich sind (myef = Myar), existieren keine Schnittpunkte, da dann der
Regelkreis vollstandig ausgeregelt wire und somit der Zustand Sy zu keinem zukiinftigen
Zeitpunkt mehr verlassen wird.

Es ergeben sich die folgenden Lésungen zur Berechnung der Schnittpunkte, wobei zu beach-

ten ist, dass aufgrund der ereignisbasierten Regelung die Schnittpunkte zu dem néchsten
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tn+1 ]

Zeit t

T™DZ

Abbildung 5.5.: Zur Optimierung beziiglich des Zustandswechsels von So nach S_1

ganzzahligen M gerundet werden miissen:

+ _
;?fr _ @ref(tn) (Kvuctl(tn) + f07VC0) (Pvar(tn)fref (5.19&)
2 (Kvuctl(t?{) + fO,vco - fref)

Dz _ (SOref(tn) + 27T etfref) (K Uet1 (t,) ) + fo vco) — Ovar(tn) fref (5.19b)
ref 2T (K uCﬂ( ) + fO V€O fref) ‘
rof. DZ = (spref( n) + 277, etfmf) (K ucn(ty) + fo VCO) — $rar(fn) fret (5.19¢)

2m (K uctl( ) + fO vco fref)

Demnach werden die Ereignisse, die keine Regelung zur Folge haben, also keinen Zustands-
wechsel im endlichen Automaten bewirken, iiber das Auswerten der Geradengleichungen
(5.17a), (5.17b), (5.18a) und (5.18b) iibersprungen und ausschlieflich die Ereignisse be-
stimmt, wodurch sich der Zustand des PFD und somit des Systems veréndert.

Wie in Abbildung 5.2 ersichtlich, ergeben sich neben den Laufzeiten der logischen Gat-
ter auch endliche Steilheiten der Strompulse der Charge-Pump. Obgleich dies ein Teil der
Dead-Zone-Problematik ist, wird dies in einem nachfolgenden Kapitel behandelt, da die
Charge-Pump noch zusétzliche Nichtidealitdten aufweist, die im Hinblick auf die Charak-
terisierung sogenannter Reference Spurs eine entscheidende Rolle spielen.

Eine andere und etwas pragmatischere Modellierung lésst sich unter dem Sachverhalt an-
geben, dass der ideale PFD, wie er in Kapitel 3.1.1 vorgestellt wurde, weiter verwendet
werden soll und dass die Dead-Zone ausschlieklich fiir kleine Phasenfehler eine Auswirkung
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Abbildung 5.6.: Auswirkung der Verzigerungen 1ok und 73 auf den Zustand des PFD

auf die Dynamik hat, wobei im vorher erarbeiteten Modell die Verzégerungen bei jeder Be-
rechnung berticksichtigt werden. D.h. der Algorithmus zur Simulation wird so, wie er im
vorigen Kapitel erldutert wurde, ausschlieflich bei der Berechnung des nédchsten Ereig-
nisses abgewandelt. Demnach ist es erforderlich, die Gleichung (5.11) durch eine andere
( up _dn _up dn)

T. T T T

Formulierung zu ersetzen, die im Folgenden erlautert wird. Sei Ty = (Tyor, Taots Trsts Trst ) s

so ergibt sich fiir die Zeitbestimmung

: ref vCo ref £veo
t min {tlc+1’ e , vV |szle k+1| >T€eT (5.20)
k+1 = . .
ref vCco ref vco
max {tkﬂv s o Vi —Hal<TeT

Neben dieser Anderung ist es erforderlich, dass der PFD, wenn \t]gjfl ol >1eTy

gilt, den Zustand nicht &dndert, d.h. S(tx) = S(txr1). Soll sich das Modell so verhalten
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Abbildung 5.7.: Auswirkung der Verzigerungen Ty und 793 auf den Zustand des PFD

rst

wie das vorgestellte mit dem erweiterten endlichen Automaten (siche Abbildung 5.2), so
miissen die Zeitpunkte und Phasen angepasst werden. Dies kann auch wieder innerhalb
der Zeitberechnung erfolgen. Es ergibt sich

, min {7, G0 FHT o VB -G > TEeT 5
kil = . ,
max { £, 1} } , Vg - <TeT,

Offensichtlich ist es nun von Néten, die Phasengleichungen mit dem Modulo-Operator zu
versehen, da Phasenwerte grofer 27 auftreten werden. Damit ergibt sich fiir die Phasen
des VCO- und des Referenzsignals @¢(t,+1) = mod {p(tn41),27}. Diese Operation ist
sowohl nach der Zeitberechnung von Gleichung (5.20) als auch von (5.21) erforderlich.
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5.2.2. Charge-Pump-Charakteristik

Im Falle der Frequenzsynthese oder spezieller CDR-~Verfahren wird meist der PFD ver-
wendet und es treten die folgenden Nichtidealitdten auf, wobei auch bei anderen Phasen-
detektoren (z. B. HOGGE- oder ALEXANDER-PD) innerhalb verschiedener CDR-Verfahren
dhnliche Probleme auftreten:

Current-Mismatch ergibt sich dadurch, dass der Strom des UP-Zweiges I,,;, betragsmé-
fsig ungleich dem des DN-Zweiges g, ist, wodurch sich unterschiedliche Schleifenver-
starkungen fiir die beiden Zweige einstellen.

Timing-Mismatch ist eine Folge der Laufzeiten des PFD sowie des Unterschiedes der
Schaltgeschwindigkeiten im UP- und DN-Zweig. Dies kann bewirken, dass die UP-
und DN- Signale des PFD sich nicht autheben kénnen.

Leckstrom liefert im Zustand Sy, bei dem im Idealfall keine Ladung in das Filter einge-
pragt werden soll, einen Strom, der direkt auf die Regelgrofe wirkt.

Charge- Pump-Balance beschreibt, wie konstant sich der Charge-Pump-Strom verhélt,
wahrend die Charge-Pump-Spannung variiert. Dementspechend ergibt sich eine Ab-
héngigkeit des Stromes beziiglich der Ausgangsspannung oder der in den Filter inji-
zierten Ladung.

Endliche Flankensteilheit: Zwar liefle sich diese Problematik im Mittel durch das vor-
gestellte Konzept im vorigen Abschnitt 16sen, jedoch ergeben sich im ausgeregelten
Zustand zuséatzliche Ladungsbeitréage, die auf die Regelgrofse wirken, wodurch sich die
PFD/CP-Charakteristik insbesondere fiir kleine Phasenfehler anders verhélt als die
Dead-Zone alleine. Damit ergibt sich nahe des ausgeregelten Zustandes eine geringere
Schleifenverstarkung.

Im Allgemeinen liegt das Bestreben darin, eine vollstandig ausgeglichene Charge-Pump
zu entwerfen. Jedoch stellen die beschriebenen Nichtidealitdten ausschlieflich ein zu mi-
nimierendes Problem dar. Zudem treten meist alle Effekte simultan auf, wobei sie sich je
nach Architektur unterschiedlich stark ausbilden. Im Folgenden sollen die unterschiedlichen
Effekte modelliert und in die ereignisgesteuerte Simulationstechnik integriert werden.

Current-Mismatch

Der Stromversatz zwischen dem UP- und dem DN-Zweig wurde in Kapitel 3.1.3 erlautert.
Demnach ist der Strom, der vom UP-Zweig in das Filter eingeprigt wird, ungleich dem
des DN-Zweiges. Zuséatzlich ergibt sich durch die Laufzeit 75y der Gatter eine Verzogerung,
die bei einem Zustandswechsel von §11 nach Sy sowie von S_1 nach Sy erfolgt. Dazu wird
der Zustandsautomat des idealen PFD (siehe Kapitel 3.1.1) so abgeéndert, dass zum einen
die Ladungspumpe mit in das Modell integriert wird und zum anderen kann dadurch sehr
einfach der endliche Automat des PFD inklusive Ladungspumpe mit der Nichtidealitat -
Current-Mismatch - erweitert werden. Dabei ergibt sich die Eingabemenge Z = (uief, uiar),

143



5. Modellierung und Simulation digitaler Phasenregelkreise

die Ausgabemenge O = (—1,,0A,+1}), die Zustandsmenge S = (S_1,Sp, S+1) mit dem
Anfangszustand S; € S, die Zustandsiibergangsfunktion

(S_; - S_1 wenn uiar
S 1—>8) wenn “ﬁef
Sp—S_1 wenn uiar
74 (5.22)
So— S41 wenn u;Lef
Si1— Sy wenn uiar
[ S+1 — 541 wenn uief
und die Ausgabefunktion
—Ip wenn S_1 =+ S_1 V S —~ S
hd = 0A wennS_1 — & V S41—+ Sy . (5.23)

+I, wenn S41 — 841 V Sp — S41

Durch den eingefiihrten Zustandsautomaten mit Ladungspumpe wird der Current-
Mismatch durch eine Anderung der Ausgangsfunktion ;4 adaptiert. Damit ist die Ausgabe-
funktion fiir den Zustandsautomaten mit Ladungspumpe und Current-Mismatch gegeben
durch

( —1I, wenn S 1 —>851 V S — 51

Al_(e(t —mst) —1) wenn S_1 — Sp

Nem = 3 , (5.24)
Al (et — mst) — 1) wenn Sy — Sop

L +Ip wenn Sy — S41 V. Sp — St

wobei Al_ und AI; gerade den Current-Mismatch zwischen dem UP- und DN-Zweig
darstellen. Des Weiteren ist 7 = (tg, 11, Trst). In der Regel gilt AI_ = Al und €(+)
wird als Einheitssprung bezeichnet. Diese Anderung des Stromes bei den Ubergéingen in
den Zustand Sp haben zur Folge, dass die Losung fiir das Differenzialgleichungssystem
des Schleifenfilters oder des gesamten analogen Teils des Systems mit einer zusétzlichen
Integration verkniipft ist, da sich wahrend des Zustandes Sy ein Strom i, (t) einstellt, wobei
hinsichtlich Gleichung (5.25) der Strom iy (¢) stiickweise konstant ist.

Leckstrom

Der durch die Ladungspumpe oder den Varaktor injizierte Leckstrom lésst sich ebenfalls
durch eine einfache Anderung des endlichen Automaten modellieren. Dabei flieft dann im

144



5.2. Modellierung der Nichtlinearitaten

Zustand Sy gerade der Leckstrom I;, und es ergibt sich die Ausgabefunktion
—]p + I, wenn S 1 —>8 1V S —>8

Me = I1, wenn S_1 — &g V S41—+ Sy . (5.25)

+Ip, + 11, wenn Sy1— 841V So— St

Ahnlich wie bei der vorigen Betrachtung des Current-Mismatches wird ebenfalls eine zu-
sétzliche Integration notig, wobei hier der Strom fiir jeden Zustand konstant jedoch un-
gleich Null ist.

Timing-Mismatch

Der zeitliche Versatz innerhalb der Ladungspumpe wird erzeugt durch eine Inverterstufe,
somit durch eine Verzogerung im UP-Zweig und durch die Gatterlaufzeiten. Dies hat zur
Folge, dass sich die Strome nicht aufheben. Es entsteht eine zeitliche Diskrepanz zwischen
dem UP-Strom und dem DN-Strom. Dies léasst sich durch eine Modifikation des Zustands-
automaten, der zur Modellierung der Dead-Zone angegeben wurde, durchfiihren. Dabei
ergibt sich die Eingabemenge 7 = (uﬁef,uiar), die Ausganbemenge O = (—1Ip,0A,+1},),
die Zustandsmenge S = (S_1,80,S+1,S7,1,5-2) mit dem Anfangszustand & € S, der

Zeitmenge T = (Tyst, Td, tk, tf_ﬁl, tir,), der Zustandsiibergangsfunktion

.
S_1— 5.1 wenn uiar

!

S.1— Sr2 wenn up

Sro2— Sy  wenn (uiar AN =t < Ta) V trk(zf’lvar >t + Tost + Ta

Sr1— Sy1 wenn Tpiq >t +

Ym : § Sr1— Sp wenn uiar ANtpr1 <tp+ 71 (5.26)
So —+Sr1 wenn ur

ref

Sop—S_.1 wenn uiar

Si1— 8y wenn uiar

!

Si1— Sp1 wenn up

und der Aus\gabefunktion
(I, wemn (Sp = S_1) V (S.1—8.1) V (S_1 — Sra)
0A wenn (Sy1 — So) V (So — Sr1)
Mm =14 m  wenn Sr1 — So , (5.27)

72 wenn Sy — S

+[p wenn (S—i-l — S—H) V (87-,1 — S—H)
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Virtueller Zustand \
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Virtueller Zustand

Abbildung 5.8.: Modifizierter endlicher Automat des PF'D mit modelliertem Timing-Mismatch

wobei die Funktionen 7; und 7y im Folgenden definiert werden. Die Ausgabe n; erfolgt
dann, wenn der Zustand von S; 2 nach Sy wechselt und es gilt

m = ip(t) = Iy (=€ (t = [1a = mp]) + € (t = 7a)) +

Iy (e(t — [Ta + Test — Tp1]) € (t — [Ta + Trst])),  (5.28)

wobei 7q die Laufzeit des Inverters fiir das Signal u,p ist, 7t bezeichnet die Laufzeit, die

bendtigt wird, um die Flipflops des PFD zurtickzusetzen, mit 7,1 = 7q — (t%irl — tze_il) und
¢(+) ist der Einheitssprung. Fiir die Ausgabe 7y ergibt sich
e = ip(t) = Ip (e (t — [ra — 7a]) — e (t — 7a)) . (5.29)

Der entsprechende endliche Automat des PED mit Timing-Mismatch ist in Abbildung 5.8
dargestellt.

Endliche Flankensteilheit

Wie bereits erwahnt, ist in einem digitalen Phasenregelkreis auch die Flankensteilheit eine
Nichtidealitat. Da der Charge-Pump-Strom i, ein pulsweitenmoduliertes Signal ist und
somit die Ladung im Schleifenfilter direkt beeinflusst, ergibt sich fiir ein Signal mit ei-
ner endlichen Flankensteilheit eine geringere Schleifenverstarkung des Regelkreises. Diese
geringere Schleifenverstarkung bewirkt, dass insbesondere fiir kleine Phasenfehler weniger
Strom in das Filter eingepriagt wird. Die endliche Flankensteilheit ldsst sich durch das
Betrachten der Gleichung (5.8) des ereignisgesteuerten Modells einfach hinzufiigen. Dies-
beziiglich kann dem Strom 7, () eine Signalform zugewiesen werden, die im Grunde beliebig
sein kann, wobei der Aufwand zum Losen des Integrals der Gleichung (5.8) zu beriicksich-
tigen ist. Eine einfache Variante ist es, eine Gerade g;(t) fiir steigende Flanken und eine
Gerade g¢o(t) fiir fallende Flanken anzusetzen. Damit konnen die Parameter der Geraden
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g1(t) und g¢2(t) einfach iiber die Amplitude des Stromes I,,, den gegenwértigen Zeitpunkt
t., die Anstiegszeiten Tyise und T,y bestimmt werden. Das Integral der Gleichung (5.8) ist
dann entsprechend einfach mittels der Trapezregel zu 16sen, wobei auch hier der néchste
Zeitpunkt tg 1 durch das Sekanten-Verfahren bestimmt wird.

5.2.3. Spannungsgesteuerter Oszillator

Bisher wurde der spannungsgesteuerte Oszillator als ein lineares, zeitinvariantes System
angenommen, obgleich der VCO ein hochgradig nichtlineares Bauelement darstellt. In
diesem Fall ergibt sich fiir die ereignisgesteuerte Modellierung die Problematik, dass der
Analogteil des Regelkreises durch eine nichtlineare Differenzialgleichung beschrieben wird.
Liegt die Funktion f(-) in Form von Messpunkten oder Simulationen vor, so ldsst sie sich
durch ein Intervallpolynom gut approximieren. Es ist darauf zu achten, dass sich nicht zu
viele Oszillationen um die Stiitzstellen bilden, da Polynomapproximationen dazu neigen,
zu schwingen und somit die Schleifenverstarkung stérker variiert als es durch die Mess-
werte erwartet wird. Demnach ist es nicht erfoderlich, eine grofse Anzahl an Stiitzstellen
zu verwenden. Das Integral der Gleichung (5.6) muss entsprechend ausgewertet werden.
Liegt dann ein Filter hoherer Ordnung vor, so ist eine analytische Berechnung meist nur
schwierig moglich. Aus diesem Grund kann auf numerische Integrationsverfahren, wie die
Trapez-, Rechteck oder SIMPSON-Regel zuriickgegriffen werden, um die Gleichung effizient
auswerten zu kénnen. Eine ausfiihrliche Darstellung der Integrationsverfahren ist in [94]
angegeben. An dieser Stelle sei darauf hingewiesen, dass in [25] als Modell eine stiickweise
lineare VCO-Charakteristik vorgeschlagen wurde, da sich dadurch die Gleichungen der er-
eignisorientierten Modellierung nicht verdndern. Problematisch dabei ist jedoch, dass sich
dadurch der Rechenaufwand erhoht. Der Grund dafiir liegt darin, dass innerhalb einer
bestimmten Zeit sich die Regelspannung des Systems &ndert und somit der Verlauf der
Regelspannung und damit die Abbildung durch die VCO-Charakteristik integriert werden
muss. Da aber eine stiickweise lineare Beschreibung vorliegt, ist diese zu beriicksichtigen.
Es ist erforderlich, je nach Diskretisierung der VCO-Kennlinie kleinere Schrittweiten zu
verwenden, wodurch die Phasengleichung des riickgekoppelten Signals mehrfach ausge-
wertet werden muss. Werden hinzukommend keine idealen Stréme fiir die Ladungspumpe
angesetzt, d.h. wenn endliche Flankensteilheiten oder auch beliebige Impulsformen ange-
setzt werden, so liefert die Approximation der Kennlinie einen wesentlich einfacheren und
effizienteren Algorithmus. Aus diesen Griinden ist eine Approximation der VCO-Kennlinie
sinnvoller.

5.3. Modellierung und Simulation ausgewahlter
CP-PLL-Architekturen

In diesem Kapitel sollen verschiedene Phasenregelkreis-Architekturen mittels des vorge-
stellten Verfahrens simulativ analysiert werden. Dabei sollen Vergleiche zwischen Spectre-
Simulationen, Simulink-Simulationen und dem ereignisorientierten Verhaltensmodell an-
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gegeben werden. Diesbeziiglich wird sich zeigen, dass der systemtheoretische Ansatz das
Verhalten, d.h. die Nichidealitdten und Nichtlinearitédten, sehr gut darstellt. Zudem wird
sich zeigen, dass dieser Ansatz zur Modellierung hochgradig effizient ist. Dazu werden
Fallbeispiele untersucht - eine Alias-Locked Loop-Architektur (ALL) [95, 96|, Integer-N
Frequenzsynthesizer sowie ein Fraktional-N Frequenzsynthesizer. Im Fall der ALL wird
vorerst ein nichtlineares Modell vorgestellt und dann das ereignisgesteuerte Modell ange-
geben. Des Weiteren wird auf Basis der Stabilitdtsgrenze von GARDNER fiir Regelkreise
zweiter und dritter Ordnung ein simulativer Vergleich dargelegt, um zu zeigen, inwiefern
die Stabilitdtsgrenze des linearisierten Modells auf das nichtlineare Modell anzuwenden
sind.

5.3.1. Alias-Locked Loops

Alias-Locked Loops (ALL) unterscheiden sich zu CP-PLL dadurch, dass der Teiler durch
ein flankengesteuertes D-Flipflop ersetzt wird. Dabei ist der D-Eingang mit dem Ausgang
des VCO verschaltet und an dem Clock-Eingang des Flipflops wird ein zusétzlicher Oszil-
lator mit der Frequenz fs., angeschlossen. Das Phasenausgangssignal des Flipflops werde
im Folgenden mit ¢y, bezeichnet. Das Blockschaltbild einer ALL ist in Abbildung 5.9
dargestellt. Der Begriftf Alias-Locked Loop wird dahingehend angegeben, weil das flanken-
gesteuerte D-Flipflop das VCO-Signal abtastet, wobei fiir die Frequenz foam < fveo gilt. Die
ALL wurde erstmals in [95] beschrieben und ein mathematisches Modell erstellt, welches
im Folgenden kurz dargelegt werden soll. Dieses Modell stiitzt sich auf die Arbeiten in [97].
Diese Modellierung setzt voraus, dass der Regelkreis eingerastet ist, da angenommen wird,
dass sich der PFD beziiglich der Signale yof und .15 linear verhélt, d.h. der PFD wird
durch

Pe(t) = Ky (Pref(t) — @ais(t)) (5.30)

ndherungsweise (linearisiert) angenommen, wobei K, als Verstiarkungsbeiwert bezeichnet
wird. Des Weiteren wird das Modell durch vier Zustandsvariablen definiert:

e ) beschreibt die zeitliche Differenz zwischen einer fallenden Flanke des VCO-Signals
Uyeo(t) und der des Abtastsignals usam ().

e 7 ist die Differenz zwischen einer fallenden Flanke des Referenzsignals u,.¢ und der
des Alias-Signals wu,s(t), wobei somit in 7 der Phasenfehler kodiert ist.

o ugy stellt gerade die Regelspannung am Ausgang des Schleifenfilters dar.

® Uye ist die durchschnittliche Regelspannung am Ausgang des Schleifenfilters, damit
die mittlere Periode des VCO-Signals angegeben werden kann.

In Abbildung 5.10 ist das Verhalten der ALL anhand der wichtigsten Signale wiedergege-
ben. Es ergibt sich das Differenzengleichungssystem:

Op41 = Ok + Ni - remainder { Tyam, Tveoyk } — Tvcork (5.31)
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/T\
“sam(t)

Abbildung 5.9.: Schematischer Aufbau einer ALL-Architektur zur Frequenzsynthese

Tk+1 = Tk — Nk ' Tsam - Tref (532)
Ip
Uetl k1 = Uetlk + O Tk (5.33)
1
I 1Tkt1]  Tret — |Tht1]
v = R 5.34
Uave,k+1 Tt Ti+1 1 ( 1+ 20, + Cy + Uctl i ( )

Dabei ist Tyam die Abtastperiodendauer und Ty die Periodendauer des Referenzsignals
Uref- Tyco ist die durchschnittliche Periodendauer des VCO-Signals wuyeo und berechnet
sich durch

1
fO,vco + Kvuave,k'

Tvco,k = (535)

Die Anzahl der Abtastwerte N} ergibt sich zu

Tocok — 0
N, = co,k k ’ (536)
remainder {Tsam, Tvco,k}

wobei der Operator remainder {-, -} definiert ist durch

remainder {x,y} =  — round {g} - . (5.37)

Wie bereits angemerkt, ist das Modell in [95] auf den Bereich des eingerasteten Zustandes
des Regelkreises beschréankt. Im Folgenden wird ein exaktes mathematisches Modell der
ALL auf Basis der inhérenten Nichtlinearitdten eingefithrt und abschliefend mit dem ein-
gefiihrten Modell verglichen und analysiert.
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Tk+1

Tref
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uref(t)

Uals (t)
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Uvco (t)

uctl(t)

Abbildung 5.10

.2 Zeitverlaufsdiagramm der Signale in der ALL-Architektur

Da der Unterschied zwischen einer CP-PLL und der ALL in der Implementierung des
Teilers liegt, soll einfiihrend das D-Flipflop modelliert werden. Der Zustandsautomat des
D-Flipflops ist in Abbildung 5.11 angegeben und ist definiert durch das Eingabealphabet
I = (uiam, uy,, ugg), das Ausgabealphaphet O = (ur, up), die Zustandsmenge S = (51, S2)
mit dem Anfangszustand S; € S, der Funktion v : Z — S zur Berechnung des néchsten

Zustandes mit

( S1—>S1
31—>$2

82—)82

( So = &1

, wenn

, wenn

, wenn

, wenn

sowie der Ausgabefunktion

(

\

4 _
Usam V Uyco = UL,

Uiam V Uyco = UH
1

Usam V Uyco = UL,

4 _
Ugam V Uyco = U,

ug , wenn &1 — So
ug , wenn Sy — So
ur, ,wenn Sy — S

ur, , wenn &1 — 81

(5.38)

(5.39)

Wenn am Eingang des PFD eine fallende Flanke des Signals u,5(t) anliegt, entspricht dies
genau dem Zeitpunkt, bei dem der Zustandsautomat des D-Flipflops von Zustand Sy in

150



5.3. Modellierung und Simulation ausgewahlter CP-PLL-Architekturen

4 _
Usam V Uyco = UH|UH

uiam V Uyeo = UL’UL C Uiam V Uyeo = UH|UH

4 _
Usam V Uyco = UL|UL

Abbildung 5.11.: Endlicher Automat des D-Flipflops, wobei uyco am D-Eingang und usam am
clk-FEingang liegt.

den Zustand S; wechselt. Es ist erforderlich, in Abhéngigkeit des Phasensignals pgam ()
den Zeitpunkt zu bestimmen, bei dem @gay = 27 ist. Dies zeigt, dass fiir die Berechnung
der Zeitpunkte, an denen der PFD durch das riickgekoppelte Signal schaltet, keinerlei
numerische Verfahren benotigt werden, da die Phasengleichung des spannungsgesteuerten
Oszillators nicht nach ¢, 1 umgestellt werden muss. Dies gilt auch, wenn Filter hoherer
Ordnungen verwendet werden. Ausschlieklich die Phasengleichung von ugam(t) sollte bi-
jektiv sein. Fiir eine konstante Eingangsfrequenz kann die folgende Gleichung angesetzt
werden:

‘psam(tiini) = ‘Pals(tk) + 27 fsam (tls{ini - tk) =21 M (5.40)
_ Sosam(tk)
S B =t + f—% (5.41)
sam

wobei M € N ist. Die allgemeine Phasengleichung des VCO ist gegeben durch Gleichung
(5.6). Damit die néchste fallende Flanke von u,)s bestimmt werden kann, wird das M so-
lange um Eins erhoht und Gleichung (5.41) in Gleichung (5.40) eingesetzt, bis eine fallende
Flanke des Signals u,s erfolgt. Demnach muss genau das M; mit ¢ € IN gefunden werden,
das die Bedingung

< mod {@sm (5 (M;)),2r} < 2w, bei S1— S (5.42)
oder

0< mod {@eam (G (M;)), 27} <, bei S — 8 (5.43)
erfiillt. Wenn der Zeitpunkt der fallenden Flanke von u,(t) bestimmt wurde und #3%
kleiner tf{e_fl ist, so miissen nur noch die neuen Anfangszustéinde (@rer(1i2]), Uct1(tiy)

und Sppp(t])) berechnet werden. Somit unterscheidet sich diese Architektur zur

Standard-CP-PLL durch die Bestimmung der Ereigniszeit des riickgekoppelten Signals
Uats(t).

Die Abbildungen 5.12 zeigen das ereignisgesteuerte Modell, ein dquivalentes Simulink-
Modell und das in [95] vorgeschlagene nichtlineare Modell mit Approximation der Span-
nungsgleichung. Diese Simulationen wurden mit den Parametern aus [95,96] durchgefiihrt.
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Abbildung 5.12.: Vergleich zwischen dem eingefiihrten ereignisorientierten Modell, einem
Simulink-Modell und dem nichtlinearen approzimierten Modell nach [95]

Dabei ist die Eingangsfrequenz f,of = 100 MHz, die Abtastfrequenz fg.mm = 1 GHz, die
VCO-Ruhefrequenz fyveo = 10 GHz, der Verstérkungsbeiwert des VCO K, = 1GHz/V,
der Charge-Pump-Strom I, = 20 pA und die Kapazitat C1 = 1,27 nF. Der Widerstand Ry
wurde fiir diese Simulationen variiert. Werden die Abbildungen 5.12(c) mit Ry = 89 Q2 und
5.12(d) mit Ry = 1202 betrachtet, so ergibt sich eine sehr #hnliche Dynamik fiir alle drei
Modelle. Werden jedoch kleine Werte fiir den Widerstand gewéhlt, so wird das dynamische
Verhalten des approximierten Modells immer schlechter. Insbesondere zeigt sich in Abbil-
dung 5.12(b) mit R; = 11 ein instabiles Verhalten, obgleich das Simulink- als auch das
ereignisorientierte Modell stabiles abklingendes Verhalten aufweisen. In Abbildung 5.12(a)
mit Ry = 02 wird die Grenze der nichtlinearen Approximation sehr deutlich, denn das
ereignisorientierte und das Simulink-Modell iiberschreiten fiir einen kurzen Zeitraum den
Pull-Out-Bereich (hier in einen Spannungswert umgerechnet), wodurch der Regelkreis, so-
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Abbildung 5.13.: Vergleich zwischem dem ereignisgesteuerten exakten mathematischen Modell
und der nichtlinearen Approzximation auf der Zustandsebene. Dabei ist auf
der x-Achse die Pulsbreite der Strompulse von iy (t) und auf der y-Achse die
Regelspannung ucy () aufgetragen.

bald der Frequenzfehler minimal und somit der Phasenfehler maximal wird, ausrastet,
jedoch gleich wieder einrastet. Das nichtlineare approximierte Modell weist ausschliefslich
instabiles Verhalten auf.

In [96] wurde fiir ein gegebenes Parametersetup das Einzugsgebiet fiir das nichtlineare
approximative Modell einer ALL zweiter Ordnung numerisch bestimmt. Zwar liefert diese
Betrachtung eine Idee iiber das Verhalten des Modells, jedoch ist der Einzugsbereich dieses
Modells grofer als die Giiltigkeit beziiglich des Systems. In [95] wurde darauf hingewie-
sen, dass das nichtlineare approximative Modell nur innerhalb des eingerasteten Bereiches
giiltig ist. Insbesondere stellt dann der Pull-Out-Bereich eine wichtige Eigenschaft des Sys-
tems dar. Zudem konnte in [96] auch gezeigt werden, dass es fiir diese Architektur mehr
als einen Fixpunkt gibt, was in der Standardarchitektur einer CP-PLL nicht der Fall ist.
Damit ergeben sich die Fragen, fiir welche Anfangswerte welcher Fixpunkt attraktiv ist und
wie grof der Pull-Out-Bereich ist. In Abbildung 5.13(b) ist der Zustandsraum sowie Simu-
lationen der beiden Modelle dargestellt. Es zeigt sich, dass das Modell von [95] mit dem
erwahnten Parametersetup sich durch einen recht grofen Bereich auszeichnet, indem das
Modell stabil ist. Hinzukommend ist ersichtlich, dass der Ziehprozess nicht im Modell ent-
halten ist. Des Weiteren kann in Abbildung 5.12 erkannt werden, dass das Modell von [95] a
priori nicht global stabil ist. Zwar liefert dass Modell in diesem Fall auch aufserhalb des ein-
gerasteten Bereiches ein stabiles Verhalten, jedoch ist die Giiltigkeit eigentlich durch die
Pull-Out-Grenzen definiert, da auflerhalb der Grenze keinerlei Erkenntnisse hinsichtlich
des dynamischen Verhaltens der ALL angestellt werden kénnen. In Abbildung 5.14 sind
die Pull-Out-Grenzen des Systems dargestellt. Abbildung 5.14 zeigt die Grenze auf, bei
der entweder die Ruhelage o oder die Ruhelage xo attraktiv fiir das nichtlineare System
ist.
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stellung des Bereiches, an dem entweder die obere
Ruhelage oder die untere Ruhelage anziehend ist.

Abbildung 5.14.: Pull-Out-Grenze in Abhdngigkeit der Anfangsphase des Referenzoszillators
und Bereich der Attraktion zweier Fizpunkte

5.3.2. Integer-N Frequenzsynthesizer

In diesem Kapitel werden die verschiedenen modellierten Nichtidealitdten des PFD und
der Charge-Pump anhand von Integer-N Frequenzsynthesizern untersucht. Dabei sollen
die einzelnen modellierten Charakteristika, wie mittleres Verhalten und der Einfluss auf
die spektrale Reinheit des Signals, dargelegt werden.

CP-PLL 2. Ordnung: PFD Charakteristik

Im Folgenden sollen die Modelle, die in Kapitel 5.2.1 fiir die PFD-Charakteristik mo-
delliert wurden, etwas genauer simulativ untersucht werden. Zur Modellierung der PFD-

Charakteristik wurden virtuelle Zustdnde in den endlichen Automaten eingefiigt. Dabei

dn

stellen diese virtuellen Zustinde mit den Verzégerungszeiten 7., und 7% bezogen auf die

set

Dead-Zone eine Rolle. Die virtuellen Zustinde S;l};st und Sf}frlst ergeben ausschliefslich ei-

ne hoéhere mittlere Schleifenverstarkung, da sich entsprechend breitere Strompulse bei den
Zustandswechseln von S_; nach Sy bzw. von Sy nach Sy ergeben. Dieser Sachverhalt
wird offensichtlich, wenn im ersten Schritt ausschlieflich die virtuellen Zustinde S;> . und

Sdn . ausgelassen werden oder fiir die Laufzeiten entsprechend 7o = 0 und 7% = 0 an-
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Abbildung 5.15.: Zum Einfluss der Verzogerungszeiten des erweiterten Zustandsautomaten

nach Abbildung 5.3: (a) zez’gt eine Trajektorie einer CP-PLL zweiter Ord-
nung (Bild unten) mit 7o = 730 % = 0 und 7 = 0 sowie im oberen
Bild ein Vergleich der idealen (pe — Qp)-Kennlinie (schwarz) des PFD nach
Abbildung 3.2 und der des erweiterten Zustandsautomaten (rot). (b) zeigt
ebenfalls eine Trajektorie emer CP-PLL zweiter Ordnung (Bild unten) mit

b = s — 0 und M = 0 und im oberen Bild die Kennlinie des

sty ‘set

idealen PFD (schwarz) und die des erweiterten PFD (rot) gegeniibergestellt.

gesetzt werden. Es ldsst sich feststellen, dass sich fiir die Pulsbreiten des Stromes i, ein
Bereich ergibt, in dem keinerlei Regelung stattfindet. Des Weiteren ergibt sich fiir die La-
dung @), ein entsprechender Versatz in der Kennlinie, der betragsméafig kleiner dem der
idealen Kennlinie ist. Abbildung 5.15(a) beschreibt diesen Sachverhalt. Dabei wurden je-
doch nicht die Pulsbreiten betrachtet, sondern der Phasenfehler ¢, und die Ladung Q).
Abbildung 5.15(b) beschreibt den Sachverhalt fiir 7o = 738 7' = 0 und 78" = 0. Of-
fensichtlich ergibt sich keine Dead-Zone. Es lasst sich sowohl an der Trajektorie als auch
am Vergleich der gemittelten Kennlinien erkennen, dass mehr Ladung pro Zeit in das Fil-
ter injiziert wird, Wodurch sich entsprechend eine hohere Schleifenverstéarkung ergibt. Gilt
TP = rdn = TS%I% = T # 0, so kann die Charakteristik nach Abbildung 5.16(a) iden-
tifiziert werden. Dabei weist die (pe — @p)-Kennlinie eine Dead-Zone auf und aukerhalb
dieser Zone eine Charakteristik, die Wieder der des idealen PFD entbpricht. Abbildung
5.16(a) beschreibt den Sachverhalt, wenn 7o = 791 7% — 0 und 78 = 0 gelten. Werden

rst — ‘rsty ‘set T

die Abbildungen 5.16(a) und 5.16(b) miteinander verglichen, ist es offensichtlich, dass die
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Abbildung 5.16.: Zum Einfluss der Verzégerungszeiten des erweiterten Zustandsautomaten
nach Abbildung 5.3: (a) zeigt ez’ne Trajektorie einer CP-PLL zweiter Ord-

dn _ .dn _
nung mit Ty = T4 = 70 = 770 =£ 0 sowie im oberen Bild einen Vergleich

der idealen (we — Qp)-Kennlinie (schwarz) des PFD nach Abbildung 3.2 und
der des erweiterten Zustandsautomaten (rot). (b) zeigt ebenfalls eine Trajek-

torie emer CP-PLL zweiter Ordnung (Bild unten) mit 7o = 738 7% =0

und T = 0 und im oberen Bild die Kennlinie des idealen PFD (schwarz)
und die des erweiterten PFD (rot) gegeniibergestellt.

Trajektorie aus Abbildung 5.16(a) eine kleinere Schleifenverstarkung aufweist als die in
Abbildung 5.16(b).

CP-PLL 3. Ordnung: Current-Mismatch

Fir die Betrachtung des Current-Mismatches wird der endliche Automat des PFD nach
Kapitel 5.2.2 (siehe auch Gleichungen (5.26), (5.25) und (5.27)) verwendet und die Schlei-
fenordnung sei mit Drei angegeben. Wird der Regelkreis mit dem modifizierten PFD mit
dem PFD nach Abbildung 5.17(a) verglichen, so ist ersichtlich, dass sich aufgrund des
Current-Missmatches und der Laufzeit fiir das Zuriicksetzen des PFD gerade Nebentone
im Spektrum des Ausgangssignals bilden. Die Nebentone treten im Abstand von fiof zum
Trager auf. Ein wichtiges Mafs zur Charakterisierung dieser Nebentone ist der sogenannte
spurious free dynamic range (SFDR) oder auch stérungsfreier dynamischer Raum, der den
Abstand der grofiten Storung zum Trager angibt. Innerhalb dieser Betrachtungen kann
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(a) Leistungsdichtespektren eines idealen nichtlinearen (b) Simulierte und theoretische Werte fiir den stérungs-
CP-PLL-Modells dritter Ordnung und ein dquiva- freien dynamischen Raum
lentes Modell mit Current-Mismatch

Abbildung 5.17.: Simulationen und Vergleich zwischen dem idealen Modell ohne Current-
Mismatch und dem Modell mit Current-Mismatch.

mittels der FOURIER-Reihenentwicklung des Signals i(f) im ausgeregelten Bereich und
der Ubertragungsfunktion des Schleifenfilters mit linearem VCO der Wert bestimmt wer-
den. Diesbeziiglich wird im Allgemeinen die Grundschwingung des Signals ij,(t) verwendet.
Zumeist werden dann noch geeignete Vereinfachungen eingefiihrt. Nach [37] ergibt sich der
storungsfreie dynamische Raum zu

(5.44)

K AL 72
SFDR = 20log;, (V—T> .

20

In Abbildung 5.17(b) sind simulierte Werte fiir den stérungsfreien, dynamischen Raum
gegen die Laufzeit 7 fiir das Zuriicksetzen des PFD aufgetragen, verglichen mit den Wer-
ten, die durch Gleichung 5.44 bestimmt werden. Simulativ kann das SFDR aus der Phase
des VCO-Signals im ausgeregelten Zustand der Schleife bestimmt werden. Da Gleichung
(5.44) unter verschiedenen Vereinfachungen hergeleitet wurde, unter anderem unter der
Annahme, dass nur die erste Harmonische von Interesse ist, kann ein sinusoidales Aus-
gangssignal des VCO angesetzt werden. Damit kann dann das Spektrum mittels der FOU-
RIER-Transformation bestimmt werden. Der marginale Unterschied der simulierten und
theoretischen Werte ist dahingehend zu begriinden, dass Gleichung (5.44) eine Approxi-
mation darstellt. Es zeigt sich jedoch, dass die Modellierung des Current-Mismatches durch
die Erweiterung des endlichen Automaten valide ist und somit zuverlassige Ergebnisse lie-
fert.
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Abbildung 5.18.: Zur Charakterisierung einer CP-PLL zweiter Ordnung mit Leckstrom

CP-PLL 2. und 3. Ordnung: Leckstrom

In einer realen Charge-Pump ergibt sich der Sachverhalt, dass, auch wenn der PFD im
Zustand Sy ist, ein Strom fliet. Dadurch ist es offensichtlich, dass die angestrebte Fre-
quenz mit einem Phasenfehler ¢, = 0 nie erreicht werden kann. D.h., selbst wenn fiir
den Phasenfehler v, = 0 und f; = fyco gelten, so liefert der zusétzliche Beitrag Iy, eine
zusétzliche Regelung, die dafiir sorgt, dass sich der Phasenfehler sowie die Regelspannung
andert. Dementsprechend ergibt sich im ausgeregelten Fall kein konstantes Verhalten. Des
Weiteren bewirkt der Strom I7,, dass im ausgeregelten Fall kein DN-Signal bzw. UP-Signal
mehr erzeugt wird, da der notige Beitrag gerade durch Iy, abgedeckt wird. Nach GARD-
NER [16,92] ergibt sich fiir einen Regelkreis der Ordnung Zwei ein statischer Phasenfehler
mit

I
Pes = 27rj_—L. (5.45)
p

In Abbildung 5.18 ist das Zustandsraumdiagramm einer CP-PLL 2. Ordnung dargestellt.
Es zeigt das Ausbleiben der Regelung durch das DN-Signal im ausgeregeltem Zustand sowie
den statischen Phasenfehler nach Gleichung (5.45). Abbildung 5.19 zeigt den ausgeregelten
Fall einer CP-PLL 3. Ordnung mit Leckstrom im Phasenraum, wobei die Gleichung (5.45)
an dieser Stelle nicht mehr giiltig ist, sich jedoch auch hier ein statischer Phasenfehler
ergibt.
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Abbildung 5.19.: Zustandsraum einer CP-PLL der Ordnung Drei mit Leckstrom

CP-PLL 4. Ordnung: Current-Mismatch, Leckstrom und Nichtlinearer VCO

In diesem Kapitel wird der VCO durch eine nichtlineare Kennlinie beschrieben. In Abbil-
dung 5.20(a) ist die Charakteristik des VCO dargestellt. Die Charakteristik wurde durch
ein Intervallpolynom zehnten Grades approximiert. Die Nichtidealitdten des PFD und der
Charge-Pump pragen sich im Allgemeinen unterschiedlich stark aus, wobei bei Betrachtung
der einzelnen Komponenten sich die Werte fiir das ereignisorientierte Modell einfach ablesen
lassen. In Abbildung 5.20(b) ist das ereignisorientierte Modell mit und ohne Nichtidealité-
ten modelliert und der Spectre-Simulation gegeniibergestellt. Das ideale ereignisgesteuerte
Modell beinhaltet einen stiickweise linear modellierten VCO. Es zeigt sich, dass die Re-
gelspannung sich im ausgeregelten Fall unterscheidet. Dies ist eine Folge der nichtlinearen
Charakteristik des VCO. Die Unterschiede zwischen dem nichtidealen ereignisorientierten
und dem Spectre-Modell sind &hnlich begriindet, da zwar die VCO-Charakteristik durch
ein Polynom approximiert wurde, jedoch auch nur 17 Stiitzstellen verwendet wurden. Die
Problematik an dieser Stelle ergibt sich durch die Genauigkeit der Approximation, bzw.
durch den Sachverhalt, dass zwischen zwei Stiitzstellen sich entsprechende Oszillationen
ausbilden kénnen. Es ist offensichtlich, dass die Oszillation und dementsprechend die Ne-
bentone im Spektrum des Ausgangssignals durch das erweiterte nichtlineare ereignisorien-
tierte Modell gut modelliert sind (siehe Abbildung 5.20(b)). Insbesondere stellt bei dieser
Architektur der Leckstrom die dominante Nichtidealitdt hinsichtlich der Nebentone dar.
Des Weiteren zeigt sich, dass das dynamische Verhalten des Systems durch diese Verhal-
tensmodellierung nicht nur eine gute Charakterisierung liefert, sondern auch beziiglich des
Entwurfs die Moglichkeit gibt, sehr einfach vorherzusagen, welche Komponenten optimiert
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tiertes Modell

Abbildung 5.20.: Zur Auswirkung der VCO-Charakteristik und der Nichtidealititen der
Charge-Pump und des PFD

werden miissen oder, ob eine Anderung des Schleifenfilters ausreicht, um die Nebentone zu
minimieren.

5.3.3. Integer-N Frequenzsynthesizer: Nichtlineare Dynamik

In diesem Kapitel soll untersucht werden, wie sich die Dynamik nahe der von GARDNER
vorgeschlagenen Stabilitdtsgrenze verhélt. Das Stabilitdtskriterium basiert auf einem linea-
risierten, zeitdiskreten Modell und beriicksichtigt die Eingangsfrequenz des Referenzsignals.
Dieses Kriterium zeigt eine Grenze, die eingehalten werden muss, damit das linearisierte,
zeitdiskrete System nur Pole im Einheitskreis besitzt. Die Problemstellung, die dieses Ver-
fahren nicht berticksichtigt, zeigt sich, wenn die PLL-Parameter gerade so gewéhlt sind,
dass sich das System in der unmittelbaren Umgebung der Stabilitatsgrenze nach Gleichung
(4.8a) befindet. Soll das nichtlineare Modell — das Simulink-, das Spectre-, oder das ereig-
nisgesteuerte Modell — in dieser Umgebung das Kriterium iiberpriifen, so ist die Simulation
an sich problematisch, da bei Betrachtung der Phasengleichung des spannungsgesteuerten
Ostzillators haufig die Phase in die falsche Richtung dreht. Dies ist dahingehend zu begriin-
den, dass negative Spannungswerte fiir ucy(t) auftreten (wobei fyeo(t) = Kyucy(t) gilt).
Hinzukommend ergeben sich bei der Beurteilung der Stabilitdt hinsichtlich des dynami-
schen Verhaltens gewisse Probleme, die im Folgenden diskutiert werden sollen. Werden
die Entwurfsparameter so gewahlt, dass sich das System in der Néhe der Stabilitatsgren-
ze befindet, so kann das System zwar stabil sein, jedoch ist es meist nicht mdoglich, dies
simulativ zu zeigen. Die Abbildungen 5.21 beschreiben diesen Sachverhalt. Dadurch, dass
die Eingangsfrequenz f..s verringert wird, wird auch die dquivalente Zielspannung der
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dell

Abbildung 5.21.: Vergleich einer Simulation in der Néihe der Stabilititsgrenze mit Simulink-,
Spectre- und dem ereignisgesteuerten Modell

Regelspannung kleiner. Ist dann die Differenz des Pull-Out-Bereichs (Aupp) und der Ziel-
spannung (uy = fref/ Ky mit fyeo = Kyuet) kleiner Null, so ergibt sich fiir alle Werte
uet] < 0 eine rechtsdrehende Phase ¢yco, die nicht sinnvoll ist. Es zeigt sich (siche Ab-
bildung 5.21(a)), dass das ereignisgesteuerte, das Simulink- als auch das Spectre-Modell
solange libereinstimmen, bis die Regelspannung kleiner Null ist und somit ein physikalisch
sinnloser Zusammenhang entsteht, wobei dann das Simulink- und das Spectre-Modell die
Differenzialgleichungen 16sen und im Falle von Simulink das Ergebnis divergiert. Das er-
eignisgesteuerte Modell bricht an dieser Stelle ab. Es ist somit wichtig, bei der Beurteilung
der Stabilitdt mittels Gleichung (4.8a) die Giltigkeit und somit die Phasendrehrichtung
mit zu beriicksichtigen. Das Stabilitdtskriterium von GARDNER nach Gleichung (4.8a) ba-
siert auf der Linearisierung in einer Umgebung nahe der Ruhelage. Bei der Linearisierung
werden keinerlei Randbedingungen an den Zustandsraum gekniipft, wodurch diese Proble-
matik auch verstandlich wird. Das néchste Problem, welches diskutiert werden soll, ist der
Sachverhalt der Konvergenz oder der Stabilitéit des nichtlinearen Modells.

Da eine Analyse hinsichtlich aller Zustdnde im Zustandsraum angegeben werden miisste
und schon bei der Ordnung Drei der CP-PLL fiinf Anfangsbedingungen (Referenzphase,
VCO-Phase, Ladung auf den Kapazitaten und PFD-Zustand) untersucht werden miissten,
soll an dieser Stelle vorerst ein Regelkreis der Ordnung Zwei betrachtet werden, wodurch
dann die Grenze nach Gleichung (4.6) angesetzt werden muss. Des Weiteren sei auf samtli-
che Nichtlinearitdten und Nichtidealitdten verzichtet. Aus der Kenntnis der Phasendrehung
lasst sich der Zustandsraum in Gebiete unterteilen, in denen das Modell simuliert werden
kann. Obgleich das betrachtete System die Ordnung Zwei aufweist, ist es erforderlich,
die verschiedenen Anfangsphasen des Referenz- und des VCO-Signals zu beriicksichtigen.
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Abbildung 5.22.: Stabilititsgrenze einer CP-PLL zweiter Ordnung mit Ky = 120 MHz/V,
I, =50pA, Ry =5009Q, C1 = 1pF und fref = 41.43 MHz (Wyef = 27 fref)

Beispielsweise existieren fiir einen Phasenfehler oe(t) von 7 unendlich viele Moglichkei-
ten, diesen hinsichtlich der Signale @pef(f) und @yar(t) zu berechnen, die den Verlauf auf
unterschiedliche Weise beeinflussen. Durch die verschiedenen Folgerechnungen des Diffe-
renzengleichungssystems ergeben sich andere dynamische Verlaufe, die entweder in Gebie-
ten bleiben, in denen eine Simulation hinsichtlich der erwéhnten Plausibilitdtsbetrachtung
(rechtsdrehende oder linksdrehende Phase) erfolgen kann oder die Simulation als nicht
sinnvoll gewertet wird.

In Abbildung 5.22 ist die Stabilitdtsgrenze nach GARDNER fiir einen Regelkreis der Ord-
nung Zwei dargestellt. Die Parameter fiir einen Entwurf wurden mit K, = 120 MHz/V,
I, =50 A, Ry = 500Q, C1 = 1pF und fief ~ 41.43 MHz gewihlt. Wird als Referenz-
kreisfrequenz wyer = 27 frof angegeben, so ist der Entwurf auf der Stabilitdtsgrenze und es
ergeben sich die in den Abbildungen 5.23 dargestellten Verlaufe hinsichtlich der Plausibi-
litatspriiffung. Fir wyer2 = 2wrer konnen die Abbildungen 5.24 angegeben werden. Wird
dann wyer, 190 = 10wrer angesetzt, so ergeben sich keine nichtplausiblen Simulationen als
vereinzelte Gebiete, sondern ausschlieflich, wenn Phasenwerte und/oder der PFD-Zustand
ungiinstig in der Umgebung der Null-Volt-Grenze liegen. Dies ist jedoch an dieser Stelle
hinsichtlich der Stabilitatsbetrachtung nicht von so groker Bedeutung, da die Stabilitats-
grenze nach GARDNER ohnehin nur den Bereich der nahen Umgebebung der Ruhelage
betrachtet und die nichtplausiblen Gebiete hinreichend klein sind.
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Abbildung 5.23.: Darstellung der Bereiche mit linksdrehenden Phasen (hellgrau) und
mit rechtsdrehender Phase (dunkelgrau). Bei diesen Simulationen wur-
de Wref = Wret,2 gerade so gewdhlt, dass der Entwurf direkt auf der von
GARDNER. beschiebenen Grenze fiir einen Regelkreis der Ordnung Zwei liegt.
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Abbildung 5.24.: Darstellung der Bereiche mit linksdrehenden Phasen (hellgrau) und
mit rechtsdrehender Phase (dunkelgrau). Bei diesen Simulationen wurde
Wref = Wref,2 gewdhlt.
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Abbildung 5.25.: Dargestellt sind die Bereiche des Zustandsraums, in denen eine rechtsdrehen-
de Phase (dunkelgrau) auftritt, eine linksdrehende Phase mit streng monoton
fallender Spannung zu den Zeitpunkten der Phasennulldurchgdinge vorliegt
(hellgrau) und sich eine linksdrehende Phase mit einer Oszillation auf der
Spannung zu den Zeitpunkten der Phasennulldurchgdnge ergibt (rot).

Im Folgenden soll gezeigt werden, wie sich der Zustandsraum hinsichtlich simulativer Be-
trachtungen zur GARDNER-Stabilitdtsgrenze verhalt. Demnach soll untersucht werden, in-
wierfern sich neben den nichtplausiblen Startwerten im Zustandsraum plausible befinden,
bei denen die Simulation in den Fixpunkt konvergiert, d. h., dass das System ein stabiles
Verhalten aufweist. Dazu ist es erforderlich, eine geeignete Bedingung zu finden, die den
Algorithmus terminiert. Ein sinnvolles Kriterium zur Beurteilung der Stabilitit des Regel-
kreises liefert Folgerung 3.1. Kénnen die Spannungswerte fiir ucg(t,c %) zu den Zeitpunkten
tzer mit k € IN, an denen ein Nulldurchgang des Phasenfehlers identifiziert wurde, durch
eine (streng) monoton fallende Funktion beschrieben werden, die in den Fixpunkt konver-
giert, so ist der Regelkreis asymptotisch stabil. Da das System hinsichtlich der Phasen-
nulldurchgénge auch eine Oszillation auf der Regelspannung beinhalten kann, ist es sogar
erforderlich, dass iiber eine gewisse Anzahl von Phasennulldurchgédngen gemittelt werden
muss, um zu iiberpriifen, ob das System konvergiert. Mit zunehmender Eingangsfrequenz
fret werden auch die Bereiche grofser, in denen das Modell beziiglich der Phasennulldurch-
génge streng monoton fallend in die Ruhelage konvergiert.

Unter Beriicksichtigung, dass im Allgemeinen fiir den Entwurf ohnehin eine der verschie-
denen Faustformeln angesetzt werden, ist die Grenze von GARDNER jedoch als erster An-
satzpunkt eine gute Naherung.
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Pref (tO)/rad

(e) Referenzphase uc, =

[e=]

oV,

@veo = 0 und PFD Anfangs-
zustand S; = Sp

uct1(to)/V

2 4
pveo(to)/rad
(h) Referenzphase uc, = u¢/2V,

pref = ™ und PFD Anfangs-
zustand S; = Sy

uct1(to) /V

2 4 6
Pveo(to)/rad

(k) Referenzphase uc, = u¢/2V,
¢ret = 0 und PFD Anfangszu-
stand S; = Sy

U1 (to)/V

2 4
Pref (tO)/rad

(c) Referenzphase wuc, = wut,
Yveo = m und PFD Anfangs-
zustand S; = Sy

Uetl (to)/V

2 4 6
@ref (to) /rad

(f) Referenzphase uc, = 1,5 - ug,
¢veo = 0 und PFD Anfangszu-
stand S; = Sp

Uerl(to)/V

2 4 6
$Pvco (tO)/rad
(i) Referenzphase uc, = wV,

pret = m und PFD Anfangszu-
stand S; = Sp

Uetl (to)/V

2 4 6
Pvco (t())/l‘ad
(1) Referenzphase uc, = wV,

¢ret = 0 und PFD Anfangszu-
stand S; = Sp

Abbildung 5.26.: Darstellung der Bereiche mit linksdrehenden Phasen (dunkelgrau) und
mit rechtsdrehender Phase (hellgrau). Bei diesen Simulationen wurde

fret = 20,1 MHz gewdhlt.
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5.3. Modellierung und Simulation ausgewahlter CP-PLL-Architekturen

Im Folgenden werde ein Regelkreis der Ordnung Drei angesetzt, wobei dann die Glei-
chung (4.8a) zur Stabilitdtsanalyse verwendet werden muss. Die Entwurfsparameter wur-
den nach [25| mit [, = 30 pA, N = 3, K, = 233,45MHz/V, C = 10pF, Ry = 20,98k
und Co = C1/10 gewdhlt. Fiir eine Referenzfrequenz fiof = 20 MHz liegt der Entwurf auf
der Stabilitatsgrenze. Da hier ein Teilungswert N > 1 angesetzt wurde und somit in diesem
Fall die Eingangsspannungen fiir kleinere Eingangsfrequenzen auch noch recht grof sind,
ergeben sich auch weniger Bereiche, in denen die Phase des VCO-Signals in die falsche
Richtung dreht. Es ergibt sich jedoch ein dhnlicher Sachverhalt wie bei dem Regelkreis
der Ordnung Zwei. Demnach kann die Stabilitétsgrenze nach GARDNER zwar als valide
bezeichnet werden, jedoch ergibt sich durch die physikalische Randbedingung der links-
drehenden Phasen eine gewisse Einschrankung. In der ndheren Umgebung dieser Grenze
liefert nicht jeder Anfangszustand eine plausible Losung des Differenzialgleichungssystems.
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5. Modellierung und Simulation digitaler Phasenregelkreise
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Zusammenfassung

In dieser Arbeit wurde das dynamische Verhalten digitaler Phasenregelkreise untersucht.
Dabei wurde die digitale und analoge Dynamik des Systems hinsichtlich der Schaltsequen-
zen des Phasen- und Frequenz-Detektors in Zusammenhang mit den Nulldurchgéngen des
Phasenfehlers sowie des Ausrastens des Regelkreises gebracht. Durch diese Analyse konn-
te eine Charakterisierung des Einrast- und Ausrastverhaltens dargelegt und entsprechen-
de Zustandsautomaten entwickelt werden, die fiir Fust-Locking-Anwendungen verwendet
werden konnen. Insbesondere kénnen diese endlichen Automaten dazu gebraucht werden,
Charakteristika, wie Stabilitdt und den Pull-Out-Bereich des Regelkreises simulativ zu
identifizieren und somit auch fiir aufwendige Parameteroptimierungen oder Variationen
benutzt werden. Dabei dienen die Zustandssequenzen und somit die Zustandsautomaten
als Abbruchkriterium innerhalb der Simulation.

Bei der Untersuchung von Phasenregelkreisen zweiter Ordnung wurden die Modelle und
Stabilitdatsuntersuchungen von GARDNER, VAN PAEMEL und AccCO vorgestellt. Hinsicht-
lich der von GARDNER und VAN PAEMEL hergeleiteten Grenzen konnte schon von Acco
dargelegt werden, dass es sich bei beiden Linearisierungen um eine Linearisierung im Sek-
tor Zwei handelt. Die Erweiterungen von ACCO, d. h. die Linearisierung der Einzelgebiete,
ergaben genauere Erkenntnisse iiber die Stabilitdt und den Parameterraum. Dabei konn-
te hier gezeigt werden, dass der durch die Linearisierung entstehende Fehler bis auf den
Sektor Drei parameterabhéngig ist, wodurch sich gerade fiir das lineare, kontinuierliche
Modell der Unterschied zum idealen jedoch nichtlinearen Modell hinsichtlich des Damp-
fungsbeiwertes erkléren ldsst. Des Weiteren konnte das ereignisgesteuerte Modell nach
HEDAYAT fiir einen Regelkreis der Ordnung Zwei so erweitert werden, dass sich ein schal-
tendes, nichtlineares, autonomes Differenzengleichungssystem ergibt. Dieses wurde mittels
der TAYLOR-Reihenentwicklung linearisiert und es konnten exakt die Ungleichungen fiir
die Parameter a und b gefunden werden, die von Acco fiir das Modell nach VAN PAEMEL
bestimmt wurden. Ferner wurden fiir die Parameter ¢ und b Bedingungen gefunden, fiir
die eine gemeinsame LYAPUNOV-Funktion existiert. Somit konnte gezeigt werden, dass das
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Zusammenfassung

schaltende linearisierte Modell fiir bestimmte Parameterwerte a und b quadratisch stabil
ist.

Fiir den Regelkreis der Ordnung Zwei wurde ein analytisches Modell mit Dead-Zone auf Ba-
sis des Modells nach VAN PAEMEL (bzw. des normierten Modells nach ACCO) eingefiihrt.
Dieses Modell stellt sich als schaltendes, nichtlineares, autonomes Differenzengleichungs-
system dar. Das Differenzengleichungssystem wurde hinsichtlich der Topologie untersucht.
Somit konnte das Verhalten des Dead-Zone-Modells genau dargelegt werden. Des Weite-
ren hat sich herausgestellt, dass dieses Modell nicht mehr einen Fixpunkt besitzt, vielmehr
beinhaltet dieses Modell eine Fixpunkt-Linie, d. h. eine Linie um den Ursprung, wobei jeder
Punkt dieser Linie gerade einem Fixpunkt entspricht. Das linearisierte Modell ergab sich als
ein stiickweise affines System. Unter Betrachtung der charakteristischen Polynome konnten
zwei Bedingungen fiir die Stabilitdt des Systems angegeben werden. Die Betrachtung des
neu eingefithrten Modells mit Dead-Zone basierend auf der ereignisgesteuerten Modellie-
rung lieferte die gleiche Schlussfolgerung hinsichtlich der Stabilitat wie das neu dargelegte
Modell mit Dead-Zone nach VAN PAEMEL. Hinzukommend wurde das Modell nach VAN
PAEMEL durch das nichtideale Auftreten eines Leckstromes erweitert. Dabei konnte ge-
zeigt werden, dass das System nicht mehr im Ursprung den kritischen Punkt beinhaltet,
sondern dieser ausschlieflich in Sektor Eins liegt. Auf Basis der Erweiterung des ereignisori-
entierten Konzeptes und der Approximation der Losung des Differenzialgleichungssystems
des Filters, bzw. der Phasengleichung des spannungsgesteuerten Oszillators konnte ein er-
eignisgesteuertes analytisches Modell fiir einen Filter der Ordnung n angegeben werden.
Zudem konnte dies in ein nichtlineares, autonomes, schaltendes Differenzengleichungssys-
tem umgeschrieben werden. Basierend auf diesem Modell wurde eine Stabilitdtsgrenze fiir
einen Regelkreis der Ordnung Drei ermittelt und mit der von GARDNER verglichen. Die
neu eingefiihrte Grenze stellt sich als wesentlich einfachere Randbedingung dar, wobei sie
aber als etwas konservativer zu werten ist.

Hinsichtlich der Simulation digitaler Phase-locked Loop-Architekturen wurde die ereignis-
gesteuerte Modellierung nach HEDAYAT oder DEMIR verallgemeinert. Diesbeziiglich wur-
den insbesondere Nichtlinearitdten und Nichtidealitdten, wie Dead-Zone, endliche Flanken-
steilheiten der Strompulse, Timing-Mismatch, Current-Mismatch und Leckstrom in diese
Modellierungsmethodik integriert. Dabei konnte durch die Einfiihrung einer detaillierten
Notation des digitalen Phasendetektors eine einfachere und effizientere Modellierung erfol-
gen. Durch das Einfiigen neuer Zustédnde im sequenziellen Automaten koénnen verschiedene
Formen der Nichtidealitdten des Regelkreises als effizientes Verhaltensmodell abgebildet
werden. Es wurde eine zusétzliche Menge fiir die verschiedenen Nichtidealititen definiert,
damit auch die Zeit fiir den endlichen Automaten identifiziert werden kann. Durch diese
Modellierung kénnen Parameteroptimierungen sowie Studien effizient durchgefiihrt wer-
den.

Als Sonderbeispiel wurde das nichtlineare approximative Alias-Locked Loop-Modell dem
ereignisgesteuerten Modell gegeniibergestellt. Beziiglich der ereignisgesteuerten Modellie-
rung ergab sich der Sachverhalt, dass keine transzendente Gleichung mit Hilfe numerischer
Verfahren gelost werden muss. Vielmehr konnte die Modellierung der Digitalkomponenten

170



Zusammenfassung

ausgenutzt werden. Somit ergibt sich hier gerade bei Verwendung Filter hoher Ordnung
ein sehr einfaches Modell, bei dem auch die eingefiihrten Modelle der Nichtidealitaten den
Algorithmus nicht erschweren oder verkomplizieren. Hinzukommend kann die Berechnung
aller Zeitpunkte vollstdndig analytisch erfolgen, da ausschlieflich die beiden Referenzsi-
gnale die Zeitpunkte der Berechnung vorgeben. Zudem konnte gezeigt werden, dass der
Einzugsbereich der nichtlinearen Approximation kleiner des Pull-Out-Bereiches des nicht-
linearen Modells ist und somit fiir praktische Betrachtungen nicht relevant ist. Des Weiteren
wurde durch das ereignisgesteuerte Modell simulativ eine Grenze fiir den Einzugsbereich
zweier Ruhelagen bestimmt.

Bei der Simulation digitaler Phasenregelkreise mit Filtern zweiter und dritter Ordnung
wurde das dynamische Verhalten in der Néhe der Stabilitdtsgrenzen von GARDNER un-
tersucht. Es konnte gezeigt werden, dass die Stabilitdtsgrenzen von GARDNER hinsichtlich
der simulativen Untersuchungen nur schwierig zu bestétigen sind, sofern sich die Regel-
spannung in der Ndhe der Nullgrenze befindet, da sich der Zustandsraum dann in Bereiche
aufteilt, in denen zum Teil keine plausible Simulation duchgefiihrt werden kann. Als Plausi-
biltatskriterium wurde dabei die linksdrehende Phase angesetzt. Die Anfangsbedingungen
definieren gerade die Bereiche, bei denen eine physikalisch plausible Simulation moglich
ist. Dabei konnte gezeigt werden, dass die sogenannten Faustformeln oder Daumenregeln
hinsichtlich dieser Grenze insofern zu interpretieren sind, dass, wenn diese eingehalten wer-
den, die Bereiche, in denen die Plausibilitdtspriifung nicht standhélt, nur an Randgebieten
(wenn die Spannung mit Null initialisiert ist und die Phasen ungiinstig zueinander liegen
und/oder der Phasen- und Frequenz-Detektor im Zustand S_; beginnt) zu finden und nicht
verstreut im Zustandsraum sind. Des Weiteren sind diese Gebiete dann im Allgemeinen
auch sehr klein gegeniiber dem Zustandsraum.
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Ausblick

Hinsichtlich der gemeinsammen LYAPUNOV-Funktionen fiir Regelkreise zweiter Ordnung
kann untersucht werden, ob es weitere LYAPUNOV-Funktionen gibt, die einen gréfteren
Parameterraum abdecken oder weitere bestimmen, um tiefergehende Aussagen iiber die
globale Stabilitdt zu erhalten.

Innerhalb der analytischen Modellierung der Regelkreise zweiter Ordnung kénnen auch die
Nichtidealitdten, Current-Mismatch und Timing-Mismatch auf &hnliche Weise modelliert
werden, wie es bei dem Dead-Zone-Modell oder dem Modell mit Leckstrom erfolgt ist.
Dadurch kénnten die Auswirkungen der Nichtidealitédten auf die Stabilitat mittels analyti-
scher Ausdriicke beschrieben werden, wodurch sich auch der Entwurf erheblich vereinfachen
lieke. Auferdem kann die nichtlineare Charakteristik des spannungsgesteuerten Oszillators
durch eine stiickweise lineare Darstellung in das Modell nach VAN PAEMEL oder auch in das
erweiterte Modell nach HEDAYAT integriert werden, um diesbeziiglich Stabilitdtsaussagen
zu erhalten. Damit wird jeder Sektor entsprechend der Aufteilung der Kennlinie unter-
teilt und es werden sich somit mehr Mengen ergeben, auf denen Punkttransformationen
definiert sind, die sich entsprechend des Verstarkungsbeiwertes des spannungsgesteuerten
Ostzillators unterscheiden. Hinzukommend sollte iiberpriift werden, ob inverse Modelle zu
den verschiedenen Modellen existieren.

Hinsichtlich der Stabilitdt und der Modellierung von Phasenregelkreisen hoherer Ordnung
kann durch Linearisierung der Phasengleichung des spannungsgesteuerten Oszillators durch
die TAYLOR-Reihenentwicklung ein autonomes, nichtlineares Modell bestimmt werden, um
eine bijektive Abbildung angeben zu kénnen. Diesbeziiglich miisste untersucht werden, in-
wieweit sich die Linearisierung als konservativer herausstellt als die, die von GARDNER
beschrieben wurde. Die Phasengleichung des Oszillators liefie sich auch linearisieren, indem
die Differenziale durch Differenzen ersetzt werden. Des Weiteren miissten diese Gleichungen
ebenfalls mittels der TAYLOR-Reihenentwicklung vereinfacht werden, damit die analytische
Bestimmung des ndchsten Zustandes erméglicht wird. Insbesondere kénnen diese beiden
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Verfahren dazu verwendet werden, digitale Phasenregelkreise mit einer Charge-Pumyp mit
Spannungsausgang zu modellieren und so auch fiir verschiedene Phasendetektoren analy-
tische Modelle und Stabilitdtsgrenzen zu berechnen. Dazu ist es erforderlich, die Topologie
der verschiedenen Zustandsrdume zu untersuchen. Eine andere Variante der Modellierung
digitaler Phasenregelkreise hoherer Ordnung kénnte die Betrachtung des Modells nach
VAN PAEMEL liefern. Dazu konnte das Integral der Regelspannung mittels einer Form
der NEWTON-COTES-Formel oder der TAYLOR-Reihenentwicklung approximiert werden,
so dass mittels der Formeln von CARDANO oder den Losungen fiir ein Polynom 4. Grades
sich eine bijektive Abbildung bestimmen lédsst. Durch diese geeignet zu wihlende Approxi-
mation liefen sich die zu betrachtenden Gleichungen hinsichtlich der Zustdnde umformen,
wodurch sich ein analytischer Ausdruck ergeben wiirde. Dieser muss dann hinsichtlich To-
pologie und Stabilitat untersucht werden. Neben der Erh6hung der Ordnung des Filters, lie-
fse sich das approximierte, autonome, schaltende Differenzengleichungssystem durch einen
schaltenden Teiler erweitern. Dementsprechend wiirden sich die Gleichungen abéndern und
es ergeben sich zusétzliche Differenzengleichungen, die das Schalten des Teilungswertes be-
stimmen.

Zwar hat sich gezeigt, dass die ereignisorientierte Modellierung ein effektiver und recht
intuitiver Ansatz zur Modellierung der inhérenten Nichtlinearitdten und verschiedener
Schleifenordnungen ist, jedoch ist eine vollstindige Umsetzung der vorgestellten Model-
lierungen derzeit nur in Matlab erfolgt. Gerade durch die Einfiihrung der Notation des
Digitalteils bietet sich ein objektorientierter Ansatz unter C++ an, was gerade in Bezug
auf die Modularitdt ein grofer Vorteil wéire. Dadurch liefse sich der allgemeine Ansatz der
ereignisorientierten Modellierung zur Losung des Differenzialgleichungssystems verwenden
und nur die Modelle der einzelnen Funktionsgruppen wiirden sich d&ndern.
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ANHANG A

Theoretische Grundlagen

A.1. Definitheit von Matrizen

Tiefergehende Darstellung beziiglich der Definitheit von Funktionen und Matrizen sind
in [39,40,42,43, 98| dargelegt.

Definitheit: Eigenwerte
Eine symmetrische Matrix A € R"*" wird als
e positiv definit bezeichnet, wenn alle Eigenwerte \; mit i € IN grofer Null sind.

e positiv semidefinit bezeichnet, wenn alle Eigenwerte \; mit i € IN grofer oder gleich
Null sind.

e negativ definit bezeichnet, wenn alle Eigenwerte \; mit ¢ € IN kleiner Null sind.

e negativ semidefinit bezeichnet, wenn alle Eigenwerte \; mit ¢ € IN kleiner gleich Null
sind.

e indefinit bezeichnet, wenn mindestens ein Eigenwert grofser Null ist und mindestens
ein Eigenwert kleiner Null ist.
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A. Theoretische Grundlagen

SYLVESTER-Kriterium

Eine symmetrische Matrix A € R™*"™ besitzt n Hauptminoren, die wie folgt definiert sind:

aip - aig
[Ail =] P | VieN (A.1)

ap e Qg
Fiir eine symmetrische Matrix A € R™*" lassen sich die folgenden Aussagen treffen:

e Sind alle Hauptminoren positiv, d. h. es gilt |A;| > 0 Vi € IN, so wird A als positiv
definit bezeichnet.

e Sind alle Hauptminoren alternierend negativ und positiv, so wird A als negativ definit
bezeichnet.

A.2. Das JURY-Kriterium

Dieser Abschnitt ist [40] entnommen. Mit Hilfe des folgenden Verfahrens lédsst sich unter-
suchen, ob ein Polynom der Form

P(z) = apz" + an_lz”_l + ot ag? +agzr + ag (A.2)

ein Einheitskreispolynom darstellt, wobei a,, > 0. Des Weiteren werden die Koeffizienten
nach Tabelle A.1 angeordnet. Das JURY-Kriterium wird auch als Determinantenverfahren
nach SCHUR-COHN-JURY bezeichnet, denn die Koeffizienten der Tabelle A.1 werden durch

ap ap—j bo  bp—1—k o Cp—o—k
by = , Cp = , dp = ;
Qnp ag bn—l bk Cn—2 Ck
Po P3 Po P2 pPo P1
qo = ) q1 = 5 q2 =
p3 bo p3 b p3 by

berechnet. Das charakteristische Polynom nach (A.2) mit a,, > 0 besitzt genau dann nur
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A.3. Endlicher Automat

Tabelle A.1.: Stabilititskriterium nach SCHUR-COHN-JURY

20 21 22 N IR L

1 ap ai ao Q) - QAp—2 Ap—1 G

2 p  Gp—1 Gp—2 a . a ap  ag

3 bo b1 b3 cbp—1—g .. bp_o b1 —

4 bp-1 bn_2 bn_3 by b1 bo —

) co c1 c2 cCpeo—fk -+ Cp—1 — —

6 Cn—2 Cn—3 Cp_4 e co — —
2n=5| po  p1 P2 p3 — - -
2n—4| p3 p2  m Po — - -
2n—=31| po m P2 - — - -

Nullstellen im Einheitskreis, wenn die folgenden n + 1 Bedingungen erfiillt sind:

P(z=1)>0

P(z=-1)>0 Vn gerade

P(z=—1) <0 Vn ungerade

lag| > an, mit a, >0

bo| > |bn—1]

col > |en—2]

[q0] > |q2|

Wird beispielsweise ein Polynom der Ordnung Zwei angesetzt mit

N(z) = agz® + a1z + ao,

(1)
(2a)
(20)
(3)
(4)
(5)

(n+1)

(A.3)

so ist es hinreichend, wenn ag > 0, ag > |ag|, N(1) > 0 und N(—1) > 0 gelten, damit N(z)

ein Einheitskreispolynom ist.

A.3. Endlicher Automat

Im Folgenden sollen die grundlegenden Definitionen eines Zustandsautomaten von MEALY
und MOORE dargestellt werden.

Definition A.1 (Endlicher Zustandsautomat nach MEALY) Ein endlicher Automat wird

durch einen 6-Tupel

ZMEALY = (Ia 07 S? Sia w, 5)

(A4)
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beschrieben, wobeit I die endliche Fingabemenge, O die endliche Ausgabemenge, S die end-
liche Zustandsmenge, S; den Anfangszustand mit S; € S, w die Funktion zur Berechnung
der aktuellen Ausgabe und & die Funktion zur Berechnung des Folgezustands beschreiben.

Definition A.2 (Endlicher Zustandsautomat nach MOORE) FEin endlicher Automat wird
durch einen 5-Tupel

ZMOORE - (I7Sa8i7f7 5) (A5)

beschrieben, wobei Z die endliche FEingabemenge, S die endliche Zustandsmenge, S; den
Anfangszustand mit S; € S, F die Menge von Endzustinden mit F C S und 6 die Funktion
zur Berechnung des Folgezustands beschreiben.

Es sei angemerkt, dass beide Definitionen dquivalent sind und sich ineinander iiberfiihren
lassen. Der dquivalente MOORE-Automat besitzt soviele Zustdnde wie der entsprechende
MEALY- Automat verschiedene Paare an Folgezustdnden und Ausgaben aufweist.
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ANHANG B

Erganzungen zur Modellierung von
Regelkreisen hoher Ordnung

Auf der Grundlage des in Kapitel 4.4 dargelegten Verfahrens sollen im Folgenden kurz die
Ergebnisse fiir einen Regelkreis der Ordnung Vier und Fiinf dargelegt werden.

B.1. Stabilitatstest zum Modell vierter Ordnung

Das Filter werde durch die Matrix

— _ 1 1 O —
01 R1 C1 Rl
1 1 1 1
Arp — _ _ B.1
LF Rl 02 Rg CQ Rl 02 R3 02 ( )
0 1 B 1
| Cg R3 03 R3 -
und die Vektoren
1 T
brp — [ 0 — 0 ] , B.2
w=[0 (B2
dp=[00 1] (B.3)

definiert, wobei d = 0 gilt. Dies entspricht dem Filter 3. Ordnung nach Abbildung
B.1. Entsprechend den Betrachtungen aus Kapitel 4.4.2 ergibt sich bei der TAYLOR-
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B. Erginzungen zur Modellierung von Regelkreisen hoher Ordnung

Ry

Ry

— O — Cs fetl

O

Abbildung B.1.: Schematische Darstellung eines Filters 3. Ordnung

Reihenentwicklung die JACOBI-Matrix

i T T
1-— 0 0
RlCl RICI
T LKT? T o T LK T? KT LT I,T
- CoRq 205C3Rs C9Rq R3Cy 2C95C3Rs Coy R3Cy (9
0 I 1 I 0
RgCg R3C3
K, T? K, T?
0 — —K,T 1
| 2R3C4 + R3Cs
Des Weiteren kann das charakteristische Polynom
D(A) = paX* + p3A® + paA® + p1d + po (B.4)
mit den Koeflizienten
Cy + C3 + Cy) T?
p0:1+( >+ C3+Ch)
Ry C1 R3C3C,
(—Cl R3(C3 —R1C1Cy — R3C3Cy — Ry C4 Cg)T (B 5)
R1C1 R3C5Cy ’ .
_ oy D KT LKT? (4G —4C5-40)T?
n= 2R1C1 R3C3Cy  2R3C3C9 2R C1 R3 C3CYy
(6C1R3C3+6R C1Co+6R C1C3+6R3C3C) T (B.6)
2R C1 R3 C3Cy ’ .
I, K,T* (2C1+2C5+2Cy) T?
p2 =06+ +
2R C1 R3 C3CY 2R, C1 R3 C3Cy
(=6R1C1Cy—6R3C3C, —6RC1C3—6C) R3C3) T (B.7)

2R C1 R3 C5CY ’
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B.2. Stabilitatstest zum Modell fiinfter Ordnung

I, K,T?

— —4 _—
Ps 9 Rs O O

(2R1C1C3+2R3C3C, +2C1 R3C3+2R1 C1Cy) T
2R, C1 R3 C3Cy

(B.8)

und
pe=1 (B.9)

angegeben werden. Durch das JURI-Kriterium (siche Anhang A.2) kann tiberpriift werden,
ob das Polynom nach Gleichung B.4 ein Einheitskreispolynom ist. Da sich jedoch die Aus-
wertung der Fiinf Bedingungen als recht kompliziert und ldnglich darstellt, liefert diese
Untersuchen keine leicht auszuwertende Stabilitdtsgrenze, jedoch zumindest einen nume-
risch auszuwertenden Test. Damit kann recht einfach tiberpriift werden, ob der durchge-
fiihrte Entwurf eines Phasenregelkreises 4. Ordnung die Stabilitdtsanforderung erfiillt, und
inwieweit die einzelnen Parameter variiert werden konnen.

B.2. Stabilitatstest zum Modell fiinfter Ordnung

Das Filter werde durch die Matrix

— 1 1 —
- 0 0
Ch Ry Ch Ry
1 B 1 B 1 1 0
o Ry (9 Ry Cy R3 (Y Rs Cy
Ap = . 1 ] ] ] (B.10)
R3 C3 R3 Cs R4 Cs3 R4 C5
1 1
0 0 —
| Cy Ry Cy Ry A
und die Vektoren
1 T
bir=|0 — 0 0 B.11
LE [ Cy ] ’ (B.11)
clp=[000 1] (B.12)

definiert. Es gilt d = 0, wobei dies dem Filter 4. Ordnung nach Abbildung B.2 entspricht.
Nach den Betrachtungen aus Kapitel 4.4.2 ergibt sich bei der TAYLOR-Reihenentwicklung
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Abbildung B.2.: Schematische Darstellung eines Filters 4. Ordnung

die JACOBI-Matrix

[ 1
1 — —
a1l
1
ai2
J = 0
0
0
mit
K I,T?
by =
20
und
RiCj
aij - T P

2a44

2b9
KT

(B.13)

(B.14)

wobei 7,5 € IN. Aufgrund der Ubersichtlichkeit sei hier das charakteristische Polynom
nicht angegeben. Genau wie im vorigen Kapitel lasst sich auch hier mittels des JURI-
Kriteriums die Stabilitdat testen und hinsichtlich einzelner Parameter die Stabilitatsanfor-

derungen iiberpriifen
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ANHANG C

Validitat des Modells eines Phasenregelkreises

2. Ordnung

Im Folgenden wird das ereignisgesteuerte Modell nach HEDAYAT beziiglich seiner Validi-
téat, d. h. der Giiltigkeit untersucht. Dabei ist die Validitdtsgrenze insbesondere dann von

Wichtigkeit, wenn die Dead-Zone mit modelliert wurde, da der Phasenregelkreis dort durch

die Nichtlinearitat ausrasten kann.

Auf Basis des Kapitels 5.1 oder unter Beriicksichtigung von [24| kann die Phasengleichung

ak
Pvar (tn+1) = @var(tn) + 27 - TV (t%Jrl + t%) +

(oseo — T [t — tea(t5)]) (bt — m} )

des Signals uyar(t) mit Ky = K, /N und den zugehérigen Losungen des nichsten Ereignis-

zeitpunktes

(

i1 = tn =+ S

Eth) + \/52(t$) +2-a-K, (1 - —%errt"))

— s
1— Spvar(tn)
2t VS

&(tn)
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angegeben werden, wobei £(t,}) = (Ky - uct1(t;)) + fo.veo) und

I
+Fp ) S+1
1
a= (C.3)
‘[p
_a ) 871

sind, mit dem Charge-Pump-Strom I, der Kapizitit C des Schleifenfilters und den Zu-
stdnden S;1 und S_1 des PFD.

C.1. Herleitung der Validitatsgrenzen

Der Giiltigkeitsbereich ldsst sich durch die abschnittsweise definierte Gleichung (C.2) be-
stimmen. Offensichtlich darf das Argument der Wurzel nicht kleiner Null werden. Ausge-
hend, dass Kv, fo.veos Ips C1€ Ry \. {0}, ¢var(tn) € [0, 27[ und ue(t)) € R sind, kann die
Ungleichung

(Ko - tea(t) + forveo)” + 20K, (1 - 9"2—('5”)) >0 (C.4)

™

angegeben werden. Wegen o ergeben sich zwei zu unterscheidende Fille. Da jedoch der
zweite Summand der Ungleichung, sofern sich der Regelkreis im Zustand S;; befindet,
nicht kleiner Null werden kann, ist es ausreichend, wenn der Zustand S_; betrachtet wird.
Des Weiteren kann dann die Abschétzung pyar(t,) = 0 nach unten angesetzt werden und
es ergibt sich

%F o fO,vco _ Qﬁwn - fO,vco
i YK,y Ky '
Fir den Zustand S_; muss zusétzlich noch

\/ﬁz(tﬁ) 12.a-Ky (1 N sovar(tn)) 2 &) (C.6)

2m aKy

uctl(tj;) Z (05)

gelten. Die linke Seite der Gleichung kann nach unten abgeschétzt werden und es lésst sich
die folgenden Beziehung fiir den Zustand S_; aufstellen:

uen () > —f‘%vco (C.7)

Offensichtlich ist Gleichung (C.5) strenger als (C.7). Wird der Zustand Sy der Gleichung
C.2 untersucht, ergibt sich gerade die Ungleichung (C.7). Auch fiir den Zustand S ergibt
sich eine Restriktion:

21 FV Dy, r(tn> fO vCco
+ D _ Pva __Jo,
uctl<tn) > \/ o1 <1 o > Fv (CS>

Wird der Grenzwert des Wurzelausdrucks fiir ¢yar(t,) — 27 gebildet, ergibt sich auch fiir
diesen Zustand die Einschrankung nach Ungleichung (C.7).
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C.2. Validitat und nichtlinearer spannungsgesteuerter

Oszillator

Abbildung C.1.: Nichtlineare Modellierung des spannungsgesteuerten Oszillators. Der span-
nungsgesteuerte Oszillator werde mittels einer statischen nichtlinearen Kenn-
linie, einem Proportionalglied und einem Integrator modelliert.

Es werde der spannungsgesteuerte Oszillator mittels einer statischen nichtlinearen Kenn-
linie, einem Proportionalglied und einem Integrator modelliert (siche Abbildung C.1). Im
Folgenden sei ein einfacher Fall einer nichtlinearen VCO-Kennlinie betrachtet. Damit ana-
lytisch gezeigt werden kann, dass sich der Validitdtsbereich durch die Nichtlinearitit N L
vergrofern wird, soll sich die Kennlinie in Form einer Séttigungskennlinie darstellen, wo-
bei diese hier als stiickweise linear angenommen wird. D.h., eine minimale (maximale)
Eingangsspannung iy (Umax) liefert eine entspechende minimale (maximale) Ausgangs-
frequenz fyco, min (fvco, max). Wird die minmale (maximale) Eingangsspannung tmin (tmax)
unterschritten (iiberschritten), so bleibt die Ausgangsspannung . konstant und somit
ist das Frequenzsignal fy., gegeben durch die minimale (maximale) Frequenz fyco, min
(fvco, max ). Der Bereich zwischen upin und umax besitze die Steigung K- (siehe Abbildung
C.2). Damit ergibt sich die Phasengleichung des VCO zu

(

tn+1
/ ﬂctl(t) dt  uey) < Umin @
tn

st
vaco(thrl) = vaco(tn> + 27Ky < / uctl(t) dt y Umin < Uctl(t) < Umax @ . (CQ)
tn

tn+1
/ Ut () At Uyl > Umax @
tn

\

Wird das passive Filter erster Ordnung verwendet (sieche Abbildung 3.4), so ergibt sich fiir
den Bereich zwischen wupyiy und umax die Phasengleichung (C.1). Ferner kénnen dann fiir
diesen Bereich die Gleichungen (C.5) und (C.7) eingesetzt werden.
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fmax -

Frequenz fyco
—
=3
(=]
I

fO,Vco

Spannung et

Abbildung C.2.: Nichtlineare u — f-Charakteristik des spannungsgesteuerten Oszillators

Da fiir die Abschnitte (&) und (¢) nach Abbildung C.2 keine Restriktionen gelten, ergibt
sich fiir den mittleren Abschnitt (b) ein Giiltigkeitsbereich nach Gleichung (C.5). Gilt

2mwy + fO vco
—n ° JY, Ve C.10
Ky : (C.10)

Umin =

so ist das ereignisgesteuerte Modell immer valide.
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