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Zusammenfassung 
In der vorgelegten Dissertation wurden die temperaturabhängigen mechanischen 

Eigenschaften des stabilen bzw. unterkühlten Austenits eines niedrig legierten Stahls 51 CrV4 

(1.8159) ermittelt. Zusätzlich wurde die Abhängigkeit der Umwandlungskinetik des 

Werkstoffs in der Perlit- und Bainitstufe von den Austenitisierungsbedingungen, einachsigen 

Spannungen und plastischen Verformungen des unterkühlten bzw. stabilen Austenits 

untersucht. Weiterhin wurde die Auswirkung der oben genannten Parameter auf die 

Umwandlungsplastizität untersucht. Für die Untersuchungen der Zusammenhänge zwischen 

den lokalen Umwandlungsdehnungen und der dabei entstehenden Mikrostruktur wurde eine 

Kombination aus zweidimensionaler Dehnungsmessung auf Basis Digitaler Bildkorrelation 

und EBSD eingesetzt. 

Mechanische Eigenschaften des stabilen und unterkühlten Austenits sind von der 

Austenitisierungs- und Prüftemperatur abhängig. Die Austenitisierungsdauer spielt dabei eine 

untergeordnete Rolle. Die Auswirkungen der umwandlungsüberlagerten äußeren 

Beanspruchungen sind in der Perlit- und Bainitstufe unterschiedlich. So wird die Kinetik der 

isothermen perlitischen Umwandlung durch eine einachsige Zugspannung verzögert. Die 

Kinetik der bainitischen Umwandlung hingegen wird durch die äußeren Beanspruchungen 

beschleunigt. Diese beeinflussen auch die Umwandlungsplastizität. Zweidimensionale 

Dehnungsmessungen belegen, dass die Bereiche, die große Umwandlungsdehnungen während 

der spannungsüberlagerten Umwandlung zeigen, auf einige wenige ehemalige Austenitkörner 

begrenzt sind. 

 

Abstract 
The present study shows mechanical properties of stable and supercooled austenite of 

commercial heat-treatable low alloy 51 CrV4 steel. Furthermore, the role of austenitization 

and external loads on the kinetics of the perlitic and bainitic phase transformation were 

investigated. The corresponding changes in the microstructures were analyzed. Specifically, 

isothermal austenite-to-bainite phase transformations were characterized by the combination 

of in-situ digital image correlation (DIC) and electron backscatter diffraction (EBSD). 

The mechanical properties of stable and supercooled austenite depend on the prior 

austenitization temperature. The time of the austenitization has only minor influence on the 

austenite properties. External loading always accelerates the isothermal bainitic 

transformation, whereas even small stresses resulted in a delay of the isothermal perlite 

formation. The superimposed load can lead to transformation plasticity. Combined DIC and 

EBSD investigations revealed that on the microstructural scale large transformation plasticity 

strains are concentrated on a few austenite grains only.  
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1 Motivation und Ziele 
Ein idealer Fertigungsprozess hat die Aufgabe, ein für die jeweilige Anwendung 

optimiertes Bauteil, z.B. eine Getriebewelle, möglichst wirtschaftlich zu erzeugen. So ein 

Bauteil wird durch ein Zusammenspiel zwischen Werkstoffeigenschaften und Geometrie 

des Werkstücks definiert. Die Parameter beeinflussen sich gegenseitig und müssen 

deswegen im Verbund betrachtet werden. Gerade bei Stahlwerkstoffen kann durch eine 

geeignete Wärmebehandlung ein breites Spektrum an Mikrostrukturen und damit an 

mechanischen Eigenschaften eingestellt werden. Die dafür notwendige Wärmebehandlung 

ist aber mit einer Phasenumwandlung - und damit mit einer Volumenänderung - 

verbunden. Eine ungeeignete Wärmebehandlung kann zu einer ungleichmäßigen 

Volumenänderung und damit zu einer Veränderung der Geometrie führen. Andererseits 

führt eine für die Wärmebehandlung ungeeignete Bauteilgeometrie zwangsläufig zu einem 

mangelhaften Ergebnis der Wärmebehandlung. Die Einstellung der Werkstückgeometrie 

nach der Wärmebehandlung ist in meisten Fällen aufgrund des Werkzeugverschleißes 

unwirtschaftlich. 

Eine Kombination aus einem Warmumformprozess und einer Wärmebehandlung ist 

ein thermo-mechanisch gekoppelter Prozess. Dieser kann sehr wirtschaftlich gestaltet 

werden, da die Geometrie und die Mikrostruktur in nur einem Prozessschritt mit einer 

einmaligen Wärmezufuhr eingestellt werden. Der thermo-mechanisch gekoppelte Prozess 

bietet aber noch mehr Vorteile gegenüber den konventionellen Wärmebehandlungen. Die 

Kombination aus mechanischen und thermischen Beanspruchungen des Werkstoffs 

während der Umwandlung führt zur einer Änderung des Zeit-Temperatur-

Umwandlungsverhaltens (ZTU) des Werkstoffs [1, 2] und kann zu einer gezielten 

Einstellung der Mikrostruktur ausgenutzt werden. Treten mechanische Beanspruchungen 

lokal auf, wird ein homogener Werkstoff bei einem identischen Temperatur-Zeitverlauf ein 

lokal unterschiedliches ZTU-Verhalten zeigen, was zu Unterschieden in der Mikrostruktur, 

und damit in den mechanischen Eigenschaften führt. Ein idealer thermo-mechanischer 

Prozess nutzt die Umformprozesswärme und -beanspruchungen, um die Mikrostruktur 

lokal in Abhängigkeit der Konstruktionsanforderungen einzustellen, um insbesondere 

solche maßgeschneiderten Mikrostrukturen lokal zu erzeugen, die mit einer 

konventionellen Wärmebehandlung nicht möglich sind.  

Angesichts der Anzahl der Parameter, die einen solchen Prozess beeinflussen, ist für 

die Gestaltung des Prozesses ein physikalisch fundiertes Modell erforderlich. Dieses sollte 

nicht nur den kompletten Prozess kontinuierlich beschreiben, sondern auch die lokalen 

Entwicklungen der Mikrostruktur in Abhängigkeit von externen Einflüssen korrekt 

wiedergeben.  Die für die Entwicklung eines derartigen Modells notwendige Datenbasis 
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war vor der Durchführung der Messungen in dieser Dissertation nicht vorhanden. Diese 

Arbeit sollte somit die ersten experimentellen Untersuchungen und die Erklärungsansätze 

für das beanspruchungsabhängige Umwandlungsverhalten in der Bainit- und Perlitstufe 

eines niedrig legierten Federstahls (51CrV4) liefern. 

Das Ziel der Arbeit war es, für die Gestaltung des thermo-mechanisch gekoppelten 

Prozesses wichtigen Parameter zu identifizieren und deren physikalische Ursachen zu 

klären. Dafür wurde das Verhalten charakteristischer Volumenelemente aus einem thermo-

mechanisch gekoppelten Prozess, der im Rahmen der Sonderforschungsbereichs 

SFB/TRR 30 entwickelt wird, unter Laborbedingungen nachgebildet und untersucht. In 

Abbildung 1.1 ist der Zusammenhang zwischen dem Prozess und den Laborexperimenten 

schematisch dargestellt. Für diese Untersuchungen wurden die im Vorfeld identifizierten 

Volumenelemente durch eine Hohlprobe abgebildet. Diese dünnwandige, präzise gefertigte 

Probe erlaubte eine homogene Einstellung der Temperatur- und Belastungsgrößen, um eine 

höhere Messgenauigkeit erreichen zu können. 

 
 

Abbildung 1.1      Schematische Darstellung der experimentellen Vorgehensweise. In Anlehnung 

an ein Massivumformverfahren mit zeitlich und örtlich variabler Temperaturführung wird ein 

Volumenelement des massiv umgeformten Bauteils durch eine Hohlprobe nachgebildet, um den 

Einfluss der zeitlich veränderlichen Größen wie Temperatur (T(t)), Dehnung ( (t)), Dehnrate ( ̇(t)) 
und Spannung (σ(t)) auf die Phasenumwandlung zu untersuchen [3]. 



 

 

2 Grundlagen 
Die mikrostrukturbasierte Modellierung technischer Umformprozesse wurde in den 

letzten Jahren wesentlich verbessert. Mittlerweile können für ausgewählte Werkstoffe 

Gefügekenngrößen wie Texturausbildung oder Entwicklung der Versetzungsdichten 

während eines Umformprozesses mit hoher Genauigkeit berechnet werden [4-6]. Diese Art 

der Modellierung ist bisher aber auf die Werkstoffe begrenzt, die keine 

Phasenumwandlung während des Prozesses aufweisen. Die Simulation eines 

Warmumformprozesses von Stahlwerkstoffen wird durch die ablaufende 

Phasenumwandlung erschwert. Diese ist die Grundlage der meisten 

Wärmebehandlungsprozesse und ist mit einer Volumenänderung verbunden. Eine 

inhomogene Volumenänderung infolge eines Temperatur - oder Belastungsgradienten führt 

zwangsweise zum Verzug des Bauteils. Die bisherigen Forschungsaktivitäten auf dem 

Gebiet der Wärmebehandlung hatten demzufolge das Ziel den Verzug zu 

minimieren [1, 7-9]. 

Der Fokus der Forschung im Rahmen des Sonderforschungsbereich SFB/Transregio 30 

liegt auf der gezielten Beeinflussung der Mikrostruktur durch hohe Temperatur- und 

Beanspruchungsgradienten. Diese wird durch eine Kombination aus Warmumformung und 

Wärmebehandlung, also einen thermo-mechanisch gekoppelten Prozess, erreicht. Um die 

Vorteile dieser Prozessführung nutzen zu können, müssen gleichzeitig der Umformprozess 

und die Phasenumwandlung simuliert werden können. Durch die gegenseitige 

Abhängigkeit der Teilprozesse wird die Modellierung erheblich komplexer. 

Für eine Simulation, die sowohl die Umformung als auch das durch die 

Phasenumwandlung entstehendes Gefüge abbilden kann, ist eine mikrostrukturell korrekte 

Beschreibung aller Materialumwandlungsvorgänge in Abhängigkeit von der thermo-

mechanischen Belastung des Werkstoffs als Datenbasis notwendig. Hinzu kommt, dass für 

die Simulation des Umformprozesses die temperaturabhängigen mechanischen 

Eigenschaften der beteiligten Phasen notwendig sind. Diese waren vor der Durchführung 

der Messungen nicht vorhanden und mussten für die Simulation abgeschätzt werden. 

Diese Arbeit soll nun die benötigten experimentellen Daten und die physikalischen 

Zusammenhänge für die Modellierung des thermo-mechanischen Prozess im Rahmen des 

SFB/Transregio 30 zur Verfügung stellen. 

In diesem Kapitel wird die Vorgehensweise bei der Ermittlung mechanischer 

Eigenschaften des unterkühlten Austenits sowie das aktuelle Wissen über die 

Phasenumwandlung der niedrig legierten Stähle mit und ohne externer mechanischer 

Beanspruchungen zusammengefast. Desweiteren werden die ausgewählten 

Modellierungsansätze der Phasenumwandlung und der Umwandlungsplastizität vorgestellt.  
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2.1 Mechanische Eigenschaften der für den Prozess 

relevanten Phasen 

Für den ersten Schritt des Prozesses, die Umformung, sind die mechanischen 

Eigenschaften des Gefüges besonders wichtig. Da es sich dabei um eine anfangs freie 

Umformung handelt, müssen bei der Simulation alle beteiligten Phasen berücksichtigt 

werden. Der Temperatur- und Austenitisierungsprozess-Abhängigkeit der Streckgrenze 

und den Verfestigungsverhalten des Austenits kommt somit eine zentrale Rolle zu. Dabei 

kann das Ausmaß der plastischen Verformungen mehrere hundert Prozent betragen. 

Allerdings ist die experimentelle Ermittlung des Spannungs-Dehnungs-Verhaltens des 

unterkühlten Austenits in niedrig legierten Stählen aufgrund kurzer Stabilitätszeiten und 

der daraus resultierenden für die Versuchsdurchführung sehr begrenzten Zeitfenster nur 

bedingt möglich. Daher werden diese Daten in der Regel aus Messungen an hochlegierten 

austenitischen Stählen abgeschätzt [10-11], was Ungenauigkeiten und Differenzen 

zwischen gemessenen und modellierten Daten zur Folge hat [1]. Da in der Literatur keine 

verlässlichen Angaben zum Spanungs-Dehnungs-Verhalten des Austenits des niedrig 

legierten Stahls 51CrV4 zu finden sind, wurden diese im Rahmen dieser Arbeit ermittelt, 

um eine solide Grundlage für die Simulation des Prozesses zu gewährleisten. Dabei wurde 

der Schwerpunkt der Untersuchungen auf die Abhängigkeit der Eigenschaften von den 

Austenitisierungsbedingungen gelegt, da diese bei einem thermo-mechanischen Prozess 

lokal sehr unterschiedlich sind. 

Ein weiteres an der Umformung beteiligtes Gefüge ist das Perlitgefüge aus dem 

Randbereich des Halbzeuges, der während des Aufheizens die Austenitisierungstemperatur 

nicht erreicht. Dieses Gefüge weist auch bei 600 °C eine deutlich höhere Festigkeit als der 

unterkühlte Austenit auf. Aufgrund der Festigkeitsunterschiede wird perlitisches Gefüge 

während freier Umformung kaum verformt. Somit spielt die Temperaturabhängigkeit der 

mechanischen Werte für den Umformprozess keine Rolle und wird im Rahmen dieser 

Arbeit nicht betrachtet. 

2.2 Phasenumwandlung unter Einwirkung externer 

Beanspruchungen 

Die Umwandlung von Stählen kann in allen drei Umwandlungsstufen durch eine 

externe Beanspruchung beeinflusst werden. Dieser Effekt findet bereits seine technischen 

Anwendungen zum Beispiel bei Formgedächtnisslegierungen [13-15], TRIP-Stählen 

(Transformation Induced Plasticity) [13, 14, 16] oder in der Festigkeitssteigerung der 

austenitischen Stähle [17]. Bei niedrig legierten Stählen reichen zwar die mechanischen 

Beanspruchungen nicht aus, um die Phasenumwandlung auszulösen, sie beeinflussen 

jedoch die Umwandlung in allen drei Umwandlungsstufen, nämlich der Perlit-, Bainit- und 

Martenstitbildung. Insbesondere die im Umformprozess auftretenden Kombinationen aus 

hohen elastisch-plastischen Verformungen haben einen großen Einfluss auf die Kinetik der 

Phasenumwandlung, die entstehende Mikrostruktur, die Maßhaltigkeit und die 

mechanischen Eigenschaften des Erzeugnisses [1, 18-21]. 
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Mit dem Bestreben, thermo-mechanische Prozesse mittels numerischer Methoden zu 

modellieren, ist auch die Notwendigkeit verlässlicher experimenteller Daten entstanden. So 

gelten die verfügbaren ZTU-Diagrammen lediglich für kleine Proben, die frei von externen 

Beanspruchungen umwandeln. Für die Modellierung der thermo-mechanischen Prozesse 

sind aber kontinuierliche ZTU-Schaubilder notwendig, die das Umwandlungsverhalten des 

Werkstoffs in Abhängigkeit von der Temperatur, Temperaturänderung und der externen 

Lasten wiedergeben. Diese erhält man durch eine Kombination der isothermen 

Umwandlung bei unterschiedlichen Temperaturen. 

Zur mathematischen Beschreibung der isothermen Umwandlung in der Perlit- und 

Bainitstufe hat sich der Ansatz der Jonson-Mehl-Avrami-Gleichung (JMA) 

  

                         (2.1) 

 

bewährt [22-24]. Dabei ist    der umgewandelte Phasenanteil und   die Umwandlungszeit. 

Die Variablen   und   werden durch Polynomansätze beschrieben. Bei der Berechnung 

des Umwandlungsfortschrittes werden für jeden isothermen Umwandlungsschritt so 

genannte fiktive Inkubationszeiten festgelegt, die die umgewandelten Gefügeanteile aus 

der Vorentwicklung mitberücksichtigen. Damit lässt sich die isotherme Umwandlung ohne 

äußeren Einfluss relativ gut beschreiben. Für die Modellierung einer kontinuierlichen 

Umwandlung muss eine Anpassung des Modells Vorgenohmen werden. Für die 

Berechnung der Gefügeanteile während einer kontinuierlichen Abkühlung wird die 

Addition einzelner isotherm gebildeter Anteile, die wiederum mit der JMA-Gleichung  

 

                 
              (2.2) 

 

berechnet werden, vorgenommen. Da die Werkstoffparameter   und   temperaturabhängig 

sind, muss diese Abhängigkeit mitberücksichtigt werden. Die Berechnung erfolgt dabei 

nach dem folgenden Muster. Beim Beginn der Umwandlung bei der Temperatur    wird 

der Anteil des umgewandelten Gefüges in dem Punkt    berechnet. Mit der Änderung der 

Temperatur      muss die JMA-Gleichung angepasst werden, wobei eine äquivalente 

Haltedauer    bestimmt werden muss. Diese berücksichtigt den Anteil des bereits 

umgewandelten Gefüges zum Zeitpunkt   . Die fiktive Inkubationszeit    bei der 

Temperatur      kann mit der Formel 

 

                        (2.3) 

 

berechnet werden. Dabei ist       die Haltedauer bei der Temperatur     . Die äquivalente 

Haltedauer    wird aus den Werten   ,      und      berechnet. Die zum Zeitpunkt      

entstandenen Gefügemengen lassen sich näherungsweise nach der Gleichung 

 

                              (2.4) 
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berechnen. Diese Gleichung berücksichtigt den Anteil des noch für die Umwandlung zur 
Verfügung stehenden Gefüges und kann zur Berechnung kontinuierlicher ZTU-
Diagrammen eingesetzt werden, setzt aber die Verfügbarkeit der Werkstoffparameter auf 
jedem Temperaturniveau voraus. Weiterhin wird bei dieser Vorgehensweise der Einfluss 
der äußeren Belastungen auf das Umwandlungsverhalten nicht berücksichtigt. Die Ansätze 
der Modellierung der spannungsabhängigen Umwandlungsverhalten sind in 
[1, 2, 20, 24, 25] beschrieben. Ein phänomenologisches Model, das im Rahmen des 
Sonderforschungsbereiches entwickelt wurde, ist in [26] detailliert beschrieben. Ein 
weiteres Model, das in Kooperation zwischen dem Lehrstuhl für Werkstoffkunde 
(Paderborn) und der Advanced Material Group, Koc University (Istanbul, Turkey) 
entwickelt wurde, ist in [27] dargestellt. 

2.2.1 Isotherme Umwandlung in der Perlitstufe

Mit einer hinreichenden Unterkühlung des Halbzeugs während des Umformprozesses 
beginnt auch die temperatur- und/oder belastungsabhängige Umwandlung des Werkstoffs 
in einen stabileren Zustand. Ein perlitisches Gefüge, das bei der isothermen Umwandlung 
im Temperaturbereich zwischen 290 °C und 560 °C gebildet wird, entsteht durch einen 
eutektoiden Zerfall der -Mischkristalle in Ferrit ( ) und Zementit (Fe3C). Da diese 
Reaktion im festen Zustand abläuft, müssen Kohlenstoff und Eisen durch Diffusion 
transportiert werden. Bei dieser diffusionsgesteuerten Reaktion beeinflussen die 
aufgeprägten Spannungen bzw. Verformungen das ZTU-Verhalten des Werkstoffs 
maßgeblich [1, 28]. Das Wachstum der Perlitbereiche erfolgt im Anschluss an eine 
heterogene Keimbildung und ist deswegen abhängig von der Keimstellendichte. Wird 
diese durch Spannungen und/oder Verformungen erhöht, beschleunigt sich auch die 
Kinetik der Umwandlung [1, 29, 30]. Außerdem führen Vorverformungen des unterkühlten 
Austenits zu einer merklichen Verfeinerung des resultierenden Gefüges während der 
perlitischen Umwandlung [29]. 

2.2.2 Isotherme Umwandlung in der Bainitstufe

Die Untersuchungen des Umwandlungsverhaltens mit überlagerten äußeren 
Beanspruchungen sind experimentell sehr aufwändig. Das gilt besonders für die niedrig 
legierten Stähle, da die Phasenumwandlung sehr schnell einsetzt. Dementsprechend liegen 
bisher nur sehr wenige detaillierte Untersuchungen vor, die das Umwandlungsverhalten 
mit und ohne äußere Beanspruchungen beschreiben [1, 20, 31, 32]. Desweiteren wird bei 
der konventionellen Wärmebehandlung angestrebt, den Verzug im Bauteil zu minimieren, 
d. h. die Temperatur- und Spannungsgradienten möglichst niedrig zu halten [1, 7, 8, 33]. 
Für diese Fälle beschränkt man sich auf den Bereich sehr niedriger Spannungen, bzw. 
Verformungen. Im Unterschied dazu werden bei thermo-mechanischen Prozessen gezielt 
hohe Temperatur- und Beanspruchungsgradienten eingestellt, um die Einflüsse hoher 
Spannungen und massiver Plastizität auf die Gefügeausbildung zu nutzen. Dabei stehen 
besonders durch den Herstellungsprozess entstehende massive Verformungen aber auch 
daraus resultierende Spannungen und ihre Einflüsse auf die Mikrostruktur im Mittelpunkt. 
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In der vorliegenden Arbeit werden erste Ergebnisse des Einflusses von Spannungen 

und plastischen Vorverformungen des unterkühlten Austenits auf das 

Umwandlungsverhalten in der Bainit- und Perlitstufe im untersuchten Werkstoff 51 CrV4 

vorgestellt. 

2.3 Umwandlungsplastizität 

Die Umwandlungsplastizität wurde erstmals 1937 durch G. Wassermann an einer 

Eisen-Nickel Legierung beobachtet [34]. Das Phänomen beschreibt die bei 

Phasenumwandlungen auftretenden plastischen Verformungen, die auch dann zu 

beobachten sind, wenn die wirkende Spannung, die aufgrund von thermischen und/oder 

mechanischen Beanspruchungen wirkt, kleiner als die Fließspannung der weicheren Phase 

ist. Dieser Effekt, der bei Stählen sowohl bei isothermer als auch bei kontinuierlicher 

Umwandlung in allen Umwandlungsstufen beobachtet wird, wird für die Anwendungen 

der Formgedächtnislegierungen und auch bei den TRIP-Stählen technisch genutzt. Die 

Ursachen der umwandlungsplastischen Dehnungen liegen in der Volumen- und 

Formänderungen des Eisenkristalls während der Phasenumwandlung. Bei der 

Umwandlung in der Bainit- und Martensitstufe können die umwandlungsplastischen 

Dehnungen durch zwei unterschiedliche Effekte hervorgerufen werden. 

Der Greenwood-Johnson-Effekt [35] besagt, dass durch die Volumen- und 

Formänderung eines Kristalls während der Phasenumwandlung in der Umgebung der 

Umwandlungsfront komplizierte Eigenspannungszustände entstehen, die lokal zu 

plastischen Dehnungen führen können. Dabei muss die weichere Phase des Materials sich 

an die härtere Phase anpassen. Die Aufbringung einer äußeren Spannung beeinflusst die 

Eigenspannungszustände, was zu einer Initiierung bzw. Verstärkung der plastischen 

Verformung in Belastungsrichtung führt. Diese kann anschließend von außen gemessen 

werden [35-37]. 

Ein anderer Effekt, der die Umwandlungsplastizität -  besonders bei der bainitischen 

bzw. martensitischen Phasenumwandlung - hervorrufen kann, wurde durch Magee [38] an 

Martensit beschrieben. Der Magee-Effekt besagt, dass aufgrund der aufgeprägten 

Belastung die Bildung von Bainit- und Martensitplatten in den energetisch günstig 

orientierten Richtungen bevorzugt wird. Demzufolge werden die von Scherumwandlungen 

erzeugten unterschiedlichen Dehnungen nicht eliminiert, was bei einem vielkristallinen 

Werkstoff in Abwesenheit der äußeren Belastung der Fall wäre, sondern weisen eine 

Anisotropie der Dehnungen auf und können gemessen werden. Der Effekt der nicht 

zufälligen Orientierungsverteilung kann auch durch die Messungen der Mikrotextur 

nachgewiesen werden [1, 39]. Der Anteil des jeweiligen Effektes an der gesamten 

umwandlungsplastischen Dehnung ist von der chemischen Zusammensetzung, der 

Umwandlungsart, der Höhe und der Richtung der Belastung und von dem bereits 

umgewandelten Phasenanteil abhängig [31, 40, 41]. 
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Die Beschreibung der Umwandlungsplastizität, die durch eine elastische 

Beanspruchung des Werkstoffs während der Umwandlung entsteht, kann allgemein durch 

die folgende Funktion erfolgen [42]: 

 

                     (2.5) 

 

Dabei ist   eine Materialumwandlungskonstante, die neben der Legierung und der 

Umwandlungstemperatur auch von der Höhe und der Richtung der Belastung abhängig ist. 

Die Funktion      beschreibt die Abhängigkeit der Umwandlungsplastischen Dehnungen 

vom umgewandelten Phasenanteil  .   ist eine einachsige konstante Spannung, die klein 

im Vergleich zur Austenitfließgrenze ist.  

In der Literatur sind mehrere Modelle für die Ermittlung der Konstante   zu finden. Die 

drei wichtigsten sind: 

Das Modell nach Greenwood and Johnson [43]: 

 

   
 

 
 

 

  
 
  

 
         (2.6) 

 

Das Modell nach Leblond [44]: 

 

   
 

 
 

 

  
 
  

 
         (2.7) 

 

Nach Abrassart [45]: 

 

   
 

 
 

 

  
 
  

 
         (2.8) 

 

Zusammenfassend kann die Berechnung des  -Faktors nach dem folgenden Muster 

erfolgen [1, 41]: 

 

     
 

  
 
  

 
         (2.9) 

 

wobei    die Fließspannung des Austenits ist und 
  

 
 die Volumenänderung während der 

Phasenumwandlung beschreibt. Für die Funktion     , die die Abhängigkeit der 

umwandlungsplastischen Dehnung vom umgewandelten Phasenanteil   beschreibt, 

existieren ebenso viele Beschreibungsansätze z.B. von Abrassart [45], Dasalos [46], 

Sjöström [46] oder Fischer [31]. Am weitesten verbreitet sind jedoch die Modelle von 

Denis [48] 

 

                        (2.10) 
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und Leblond [44] 

 

            .        (2.11) 

 

Für die Modellierung des thermo-mechanisch gekoppelten Prozesses, bei dem im 

Bauteil ein mehrachsiger, zeitabhängiger Spannungszustand vorliegt, sind 

dementsprechend komplexere Modellierungsmethoden notwendig. Das Modell, das die 

zeitliche Änderung der umwandlungsplastischen Dehnungen in linearer Abhängigkeit vom 

Spannungszustand, der sich aus einer Kombination von inneren und äußeren Spannungen 

zusammensetzt, berücksichtigt, ist z.B. bei Fischer et al. beschrieben [49]. Die 

Modellierung der Umwandlungsplastizität bleibt jedoch schwierig. So zeigen die Versuche 

mit der Entlastung der Proben während der Phasenumwandlung, dass ein gewisser Teil der 

bereits gebildeten umwandlungsplastischen Dehnung wieder zurückgebildet wird 

[1, 32, 42]. Für dieses Verhalten des Materials gibt es Erklärungsansätze. So gehen Fischer 

et al. [32] davon aus, dass nach der Entlastung die neu gebildeten Varianten an die vorher 

gebildeten Varianten angepasst werden, was letztendlich die rückläufige Formänderung 

bewirkt. Damit ist der Effekt allein auf die durch die Eigenspannung veränderte 

Variantenauswahl zurückzuführen. Im Gegensatz dazu gehen Videau et al. davon aus, dass 

der Effekt der Rückverformung durch das Fließen des noch nicht umgewandelten Austenit 

unter der Einwirkung der Umwandlungsspannungen hervorgerufen wird [42]. 

 

 

 





 
 

3 Experimentelle Details
3.1 Werkstoff und Probenformen

 
Für die Untersuchungen wurde der niedriglegierte Stahl 51CrV4 (Werkstoff-Nummer 

1.8159) verwendet. Dieser Federstahl wurde von dem Einheitslieferanten des 
SFB/TRR  30,  Firma  HMC  H.  Mayer  &  CO,  Düsseldorf,  als  Stangenmaterial  (  25mm, 
Länge 3000mm) im geglühten Zustand mit der Härte 200-215 HV 1, und einer 
Zugfestigkeit zwischen 727-739 MPa bezogen. Die chemische Zusammensetzung des 
Werkstoffs, die an mehreren Proben mittels Spektralanalyse bestimmt wurde, ist in der 
Tabelle 3.1 angegeben.  Die scheinbare Korngröße, ermittelt nach „DIN EN ISO 643: 
Mikrophotographische Bestimmung der scheinbaren Korngröße“, betrug im 
Auslieferungszustand 15 µm. Abbildung 3.1 zeigt a) eine lichtmikroskopische sowie 
b) eine transmissionselektronenmikroskopische Aufnahmen des perlitischen Gefüges des 
Materials im Auslieferungszustand. Die beiden Aufnahmen zeigen exemplarisch, dass das 
Gefüge auf der Makro- und Mikroebene der Probe weitestgehend isotrop und homogen ist. 
Die Homogenität/Isotropie des Gefüges ist wichtig, um die Umwandlungseffekte infolge 
der Vorgeschichte des Werkstoffs auszuschließen. Im Kern des Halbzeuges teilweise 
vorhandene Seigerungen/Zeiligkeit können durch entsprechend angepasste Lage der 
Proben im Halbzeug vernachlässigt werden.  

 
Tabelle  3.1      Chemische Zusammensetzung des Versuchswerkstoffs. Angegeben sind jeweils 
minimale und maximale Werte der Probenanalysen.  

Element C Cr Mn S Pb Si Cu 

Ma.-% 0,5 
0,5 

0,99 
1,07 

0,84 
0,91 

0,005 
0,014 

0,003 
0,005 

0,23 
0,28 

0,22 
0,23 

Element Al Ni Mo Nb Ti P Fe 
Ma.-% 0,01 

0,026 
0,7 
0,7 

0,03 
0,03 

0,06 
0,08 

0 
0,015 

0,002 
0,015 

Rest 
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Für Zugversuche am unterkühlten Austenit vor Umwandlungsbeginn sowie für 

isotherme Umwandlungsversuche mit und ohne externe Belastung wurden präzise 

gefertigte, dünnwandige Hohlproben verwendet. Abbildung 3.2 zeigt eine 

Umwandlungsprobe mit 10 mm Außendurchmesser und einer Gesamtlänge von 130 mm. 

Um die Temperaturgradienten in axialer und radialer Richtung in der Messlänge zu 

reduzieren, wurde eine Wandstärke von 1 mm gewählt und auf die Einhaltung 

entsprechend enger Toleranzen geachtet. In Verbindung mit einer konduktiven Heizung 

konnte so eine Minimierung der Temperaturgradienten auf 4 Kelvin in der Messlänge von 

16 mm erreicht werden. Die Probenfertigung wurde von der Firma PFT (Präzisions-

Fertigungstechnik GmbH) Erwitte durchgeführt.  

 

 

 

 
          a)                                                    b) 

 
Abbildung 3.1     Gefüge des Stahls im Auslieferungszustand, a) lichtmikroskopische Aufnahme, 

b) transmissionselektronenmikroskopische Aufnahme. 

 
 

Abbildung 3.2     Dünnwandige Hohlprobe für die Untersuchung des lastabhängigen 

Umwandlungsverhaltens [1]. 

a

) 

b

) 

0,2 mm 

 

0,4 μm 
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 Für die Ermittlung der Zugfestigkeit wurden die umgewandelten Hohlproben 

nachträglich bearbeitet. Die Anpassung war notwendig, da der Messbereich nach der 

Umwandlung ein bainitisches oder martensitisches Gefüge aufwies und damit eine 

wesentlich höhere Zugfestigkeit besaß als der nicht umgewandelte Rest der Probe. Um die 

Zugversuche zu ermöglichen, wurde daher der Querschnitt der Probe in der Messlänge 

reduziert. Für die Berechnung des notwendigen Querschnittes des Messbereichs, wurden 

die Härten der unterschiedlichen Gefüge gemessen und mit der Näherungsformel  

 

                  (3.1) 

 

in Zugfestigkeit umgerechnet. Die so berechnete Zugfestigkeit betrug in der Messlänge 

etwa 1500 MPa und in dem nicht umgewandelten perlitischen Bereich etwa 700 MPa. 

Diese Werte wurden in Formel (3.2) eingesetzt und damit der maximale Querschnitt der 

Messlänge berechnet. 

 

    
     

  
         (3.2) 

 

Dabei sind    der maximale Querschnitt in der Messlänge,    die Zugfestigkeit des 

bainitischen Gefüges,    der Querschnitt der Probe und    die Zugfestigkeit des 

perlitischen Gefüges. Da die zugrunde gelegten Werte mittels einer Näherungsformel 

berechnet wurden, wurde zusätzlich ein Sicherheitsfaktor 2 in die Rechnung einbezogen. 

Damit betrug der erforderliche Querschnitt der Messlänge etwa 7,5 mm
2
. Durch eine 

Verjüngung der Proben mittels einer Drahterodiermaschine entstand eine Doppelzugprobe 

(Abbildung 3.4). Der dabei entstandene Querschnitt setzte sich zusammen aus zwei 

Flächen, deren Geometrie in Abbildung 3.3 dargestellt ist. Die Breite des Teilquerschnittes 

  wurde mit der Formel (3.3) ermittelt und betrug 3 mm bei einer Teilfläche von 

3,059 mm
2
. 

 

   ∫ (√      √     )
 

 

 
 

 

        (3.3) 
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Zur Beurteilung der flächigen Verteilung der Umwandlungsdehnungen mittels Digitaler 

Bildkorrelation (Digital Image Correlation, DIC) wurden Flachproben verwendet. Dies war 

notwendig, um größere Bereiche der Probe mit einem Lichtmikroskop, das systembedingt 

kleine Schärfentiefe aufweist, abbilden zu können. Bei der Auswertung der Bilder mittels 

DIC ist für die Genauigkeit der Messung die Schärfe des Bildes ausschlaggebend. Um 

gleichzeitig eine rasche Abkühlung und eine homogene Temperaturverteilung zu 

ermöglichen wurde die Probendicke auf ein Millimeter reduziert und die Messlänge auf 55 

mm verlängert. Eine mechanische Beeinflussung des Ausgangsgefüges konnte durch 

Drahterodieren und nachträgliches Schleifen und Polieren der Probenlänge ausgeschlossen 

werden. Letzteres erlaubte zudem eine ebene Oberfläche, die wiederum vorteilhaft für die 

optischen Messungen war. Eine Fertigungszeichnung der Probe ist in Abbildung 3.5 

dargestellt. 

 

 
Abbildung 3.3     Teilquerschnitt der Probe nach dem Erodieren. 

 
Abbildung 3.4     Modifizierte Doppelzugprobe für die Ermittlung der Zugfestigkeit des erzeugten 

Gefüges. 
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Für die Ermittlung der mechanischen Kennwerte von den austenitisch-bainitischen 

bzw. austenitisch-martensitischen Mischgefügen wurden Flach-Rundproben (Abbildung 

3.6) verwendet. Die während des Versuchs entstehenden Phasen sind wesentlich fester als 

die Ausgangsgefüge, was eine Reduzierung des Querschnittes in der Messlänge notwendig 

macht. Gleichzeitig muss aber eine homogene Temperaturverteilung in der ganzen 

Messlänge garantiert werden, um die temperaturbedingten Gradienten der Umwandlung 

auszuschließen.  

  

 
 

Abbildung 3.5     Flache Umwandlungsprobe für die Ermittlung der Umwandlungsdehnungen 

mittels Digitaler Bildkorrelation. 

 
Abbildung 3.6     Flach-Rundprobe Mischgefüge. 
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3.2 Versuchsstände 

3.2.1 Belastungsdilatometer  
Für die Untersuchung des belastungsabhängigen Umwandlungsverhaltens  wurden 

speziell aufgebaute Belastungsdilatometer verwendet. Der Versuchsstand wurde auf der 

Basis einer elektromechanischen Universalprüfmaschine Typ Zwick 1488 realisiert. Eine 

schematische Darstellung des Versuchstandes ist in Abbildung 3.7 skizziert. Mit Hilfe 

dieses Versuchsstandes war es möglich, während einer kontinuierlichen oder isothermen 

Phasenumwandlung einachsige Zug- oder Druckbelastungen aufzuprägen. Die Aufheizung 

der Proben erfolgte konduktiv mittels einer regelbaren Gleichstromquelle Typ ESS-1000 

der Firma LAMBDA EMI (5) mit einer maximalen Stromstärke von 1000 A. Die 

Abkühlung erfolgte ebenfalls geregelt mittels 16, 8 oder 4 auf die Probe gerichteten 

Flachstrahldüsen. Als Abkühlmedium wurde in Abhängigkeit von den 

Versuchsanforderungen Stickstoff, Argon oder Druckluft eingesetzt. Die 

Temperaturmessung wurde in Abhängigkeit vom Temperaturbereich über ein 

Strahlungspyrometer, Typ INFRATHERM IP 120 der Firma IMPAC Electronic 

GmbH (3), mit einem Grundmessbereich von 160 bis 1200 °C oder ein angeschweißtes 

NiCr/Ni-Thermoelement durchgeführt. Das Thermoelement in der Hohlprobe (4) hatte 

keinen direkten Kontakt zur Probe und ermöglichte eine Überprüfung des Pyrometers im 

stationären Zustand. Das Zusammenspiel zwischen der Temperaturmessung, Heizungs- 

 
Abbildung 3.7     Schematische Darstellung des Versuchstandes; 1: Längsdehnungsaufnehmer, 

2: Querdehnungsaufnehmer, 3: Pyrometer, 4: Thermoelement, 5: konduktive Heizung, 

Gasabschreckung und Kraft angedeutet. 

F 

F 
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und Kühlungsregelung wurde durch einen Sollwertprogrammregler 2604 der Firma 

EUROTHERM realisiert. Die aufgezwungene mechanische Belastung der Proben wurde 

über eine in den Laststrang eingebaute Kraftmessdose der Typenreihe Z 12 aus dem Hause 

HBM mit einem Messbereich von ±50 kN gemessen. Die Messung der Längsdehnung 

erfolgte mittels eines Extensometers WAD 88008 der Firma WAZAU (1), das durch 

U. Ahrens [1] zu einem Hochtemperaturextensometer so umgebaut wurde, dass der 

Abstand zur Probe 160 mm betrug. Zur Messung der Probenquerdehnung wurde ein 

wassergekühltes Hochtemperaturextensometer 632.61-F-01 der Firma MTS (2) eingesetzt. 

Beide Extensometer wurden in regelmäßigen Abständen überprüft. Für schnelle, 

versuchsnahe Überprüfung der Extensometer wurde ein Messstand auf Basis eines 

kapazitiven Sensors und eines Messverstärkers aus dem Hause HBM mit einer Auflösung 

von 0,5 µm konstruiert. 

Aus den Messwerten der Längsdehnung    und der Querdehnung    wurden die 

Gesamtdehnung   , die wahre Dehnung   , die Volumenänderung 
  

 
 durch 

    

 
  

 
                         (3.4) 

 

und die umwandlungsplastische Dehnung in Belastungsrichtung     durch 

 

                
  

 
 

 

 
              (3.5) 

 

berechnet. Die Nennspannung    und die wahre Spannung   wurden aus den Messwerten 

der Kraftmessdose unter der Berücksichtigung der Probengeometrie berechnet. 

3.2.2 Belastungsdilatometer für Versuche mit höherer Dynamik 

Für die Untersuchungen der mechanischen Eigenschaften des Austenits bzw. für die 

Untersuchungen des Umwandlungsverhaltens des im austenitischen Zustand vorverformtes 

Werkstoffs war eine höhere Dynamik der Prüfmaschine erforderlich. Aus diesem Grund 

wurde ein zweites Belastungsdilatometer auf der Basis einer servo-hydraulischen 

Prüfmaschine vom Typ MTS 858 Table Top System aufgebaut. Das Wirkprinzip des 

Prüfstandes ist identisch mit dem Belastungsdilatometer „Zwick“. Es wurden, mit 

Ausnahme der im Laststrang eingebauten MTS-Kraftmessdose mit einem Messbereich 

±15 kN, baugleiche Sensoren und Stromquellen verwendet. 

3.2.3 Versuchstand für die mechanische Prüfung des Austenit/Bainit 

Mischgefüges 

 Aufgrund der steigenden Festigkeit des Gefüges mit steigendem Bainitanteil mussten 

das Belastungsdilatometer für Versuche mit höherer Dynamik und die Probengeometrie für 

die geänderte Versuchsführung angepasst werden. Die Probengeometrie ist im Kapitel 3.1 

beschrieben. Da aber ab einem bestimmten Austenit/Bainit-Verhältnis die Festigkeit des 

Probenschafts niedriger als die Festigkeit der Messlänge war, mussten bestimmte Bereiche 
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der Probe außerhalb der Messlänge während des Versuchs zusätzlich gehärtet werden. Um 

eine zusätzliche Härtung der Probe in den Übergangsbereichen zu ermöglichen, wurde der 

bestehende Versuchsstand „MTS“ erweitert. Die Grundeinheit bestand aus Längs- (1) und 

Querdehnungsaufnehmern (2), einem Strahlungspyrometer (3), einer regelbaren 

Gasabschreckung mit Flachdüsen (8) und einer regelbaren Gleichstromquelle (4), montiert 

auf der Prüfmaschine vom Typ MTS 858 Table Top System. Die Erweiterung bestand aus 

einer zweiten Heizungseinheit auf der Basis des Hochfrequenzgenerators der Firma 

Hüttinger Elektronik GMBH von Typ 5,0/300 (5) mit einer doppelten Spule 

(Eigenentwicklung) und einer zweiten Gasabschreckvorrichtung (7) mit Flachdüsen im 

Übergangsbereich. Eine schematische Darstellung des erweiterten Versuchsstandes ist in 

der Abbildung 3.8 skizziert. Die durch (6) angedeutete Kraft wurde durch eine servo-

hydraulische Universalprufmaschine vom Typ MTS 858 erzeugt. 

3.2.4 Belastungsdilatometer und digitale Bildkorrelation 

Um die flächigen Verteilungen der Umwandlungsdehnungen zu untersuchen, wurde 

ein Verfahren der digitalen Bildkorrelation eingesetzt.  Das Verfahren ist eine 

berührungslos arbeitende optische Methode, mit welcher lokale Dehnungen an der 

Oberfläche ermittelt werden können. Beim Vergleichen der Aufnahmen eines 

unverformten und verformten Zustandes werden durch eine Software die Verschiebungen 

einzelner Punkte auf der Oberfläche detektiert und daraus die Dehnungen errechnet. 

Demzufolge werden bei dem Verfahren ganz besondere Anforderungen an die Oberfläche 

 
Abbildung 3.8    Schematische Darstellung des Versuchstandes „Mischgefüge“:  

1: Längsdehnungsaufnehmer, 2: Querdehnungsaufnehmer, 3: Strahlungspyrometer, 4: konduktive 

Heizung, 5: Hochfrequenzgenerator, 6: Kraft, 7: Kühlgas Messlänge, 8: Kühlgas Probenschaft. 
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gestellt. Diese sollte ein feines, unregelmäßiges, Punktemuster aufweisen. Weiterhin sollte 
dieses einen genügend großen Kontrast zur Probenoberfläche besitzen, deren optische 
Werte sich während der ganzen Versuchsdauer nicht ändern. Die Zufälligkeit des Musters 
ist für die spätere Auswertung sehr wichtig, da bei einem regelmäßigen Muster die 
Verschiebungen um ein Vielfachen des Gitterabstandes nicht erkannt werden. Im 
Allgemeinen kann ein Punktemuster durch unterschiedliche Oberflächenbeschichtungen, 
Ätzungen, Sandstrahlen etc. erzeugt werden. Eine besondere Herausforderung war es, ein 
Punktemuster zu realisieren, das bei der Austenitisierungstemperaturen von mehr als 
1000 °C seine optischen Eigenschaften nicht ändert. Versuche eine geeignete 
Probenbeschichtung zu finden, die einerseits die Oberfläche von der 
Hochtemperaturoxidation während der Austenitisierung schützt, andererseits aber die 
Dehnungen an der Oberfläche nicht verhindert bzw. verfälscht, waren nicht erfolgreich. 
Auch Versuche die Probenoberfläche während des Austenitisieren mit einen Schutzmantel 
aus Stickstoff/Argon durch die Abkühldüsen zu schützen waren nicht zielführend. 
Abbildung 3.9 zeigt eine Auswahl der Oberflächen vor und nach dem Austenitisieren. 

Eine  logische  Folge  aus  den  Versuchen  war  es,  den  Prüfstand  so  zu  ändern,  dass  die  
Versuche unter einer Schutzatmosphäre durchgeführt werden konnten. Eine Prinzipskizze 
des Versuchsstandes ist in Abbildung 3.10  und ein Ausschnitt aus dem Arbeitsraum des 
Dilatometers in Abbildung 3.11 dargestellt. Als Maßnahme gegen 
Hochtemperaturkorrosion der Oberfläche wurde eine gasdichte Kammer um die Probe 
angefertigt. Diese wurde während des Versuchs so mit Argon gespült, dass in der Kammer 
ständig ein Überdruck von etwa 0,2 Bar aufrechterhalten wurde. Damit wurde 
sichergestellt, dass kein Sauerstoff von außen eindringen konnte. Die Aufheizung der 
Probe erfolge konduktiv (3). Die Abkühlung  wurde mit durch die Flachdüsen 
einströmendem Argon-Gas realisiert. Das Strahlungspyrometer der Firma IMPAC (2) 
wurde in die Schutzvorrichtung integriert. Das Kernstück der Messtechnik, ein digitales 
Mikroskop VHX der Firma KEYENCE (1) mit dem Objektiv VH-Z50 mit einer 
Brennweite von 80 mm wurde durch einen entspiegelten Polfilter von dem Schutzgas 
getrennt. Zur Auswertung der Messdaten wurde die VIC-2D Software der Firma LIMESS 
Messtechnik GmbH eingesetzt. Für die Ermittlung der Verschiebungen an der Oberfläche 
teilt die Software den Bildbereich in Subsets (quadratische Bereiche). Diese richten sich 
nach dem Oberflächenmuster und müssen vom Bediener vorgegeben werden. Dabei muss 
ein gutes Mittel der Größe des Subsets ermittelt werden. Dies muss einerseits genügend 
charakteristische Punkte beinhalten, um eine sichere Korrelation zu gewährleisten. 
Andererseits sollte das Subset möglichst klein sein, um eine hohe Auflösung erzielen zu 
können. Im weiteren Verlauf muss eine Subset-Schrittweite, die Stepsize, vorgegeben 
werden. Die Stepsize gibt die Größe an, um die Subsets während der Berechnung 
verschoben werden. 
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1a) 

 
2a) 

 
3a) 

 
1b) 

 
2b) 

 
3b) 

Abbildung 3.9     Beispiele für Oberflächen a) vor und b) nach der Austenitisierung 

1) elektrochemische Palladiumbeschichtung, 2) sandgestrahlt und brüniert, 3) polierte Oberfläche 

ohne zusätzliche Schichten. 
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Abbildung 3.10     Schematische Darstellung des Versuchsstandes „DIC“; 1: Digitalmikroskop, 

2: Strahlungspyrometer, 3: Konduktive Heizung, 4: Kraft, Argonschutzatmosphäre durch 

Schraffierung angedeutet. 

 
Abbildung 3.11     Ausschnitt aus dem Arbeitsraum des modifizierten Belastungsdilatometers. 



 
22 Kapitel 3.   Experimentelle Details 

Mit der Verkleinerung des Stepsizes steigt die Auflösung des Verfahrens, aber auch der 

Rechenaufwand. Die Berechnung der Verschiebung erfolgt nach dem folgenden Schema: 

Durch eine Verformung wird der Punkt O (Abbildung 3.12) um folgende Koordinaten 

verschoben 
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Aufgrund der gleichen Verformung ergeben sich die Koordinaten eines exzentrischen 

Punktes P zu  
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  und   beschreiben die Verschiebung des Punktes P in die x- und y-Richtung, die 

Ableitungsquotienten beschreiben die Dehnungen und Verzerrungen des Subsets,    und 

   beschreiben die Abstände des Punktes P zu O. 

Die Berechnung der Dehnungen aus den ermittelten Verschiebungen und Verzerrungen 

folgt nach den folgenden Beziehungen [51]: 
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        (3.8) 

 

Für eine optimale Korrelation wird das aufgenommene Bildmaterial durch das  DIC-

Software optimiert. Dies ist notwendig, weil während eines Versuches die 

 

Abbildung 3.12     Schematische Darstellung einer Verschiebung [50]. 
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Grauwertintensitäten in einem Subset sich ändern können. Solche Intensitätsänderungen 

entstehen vor allem durch das Verschieben eines Punktes über die Subsetgrenze und 

müssen berücksichtigt werden. Der Cross Correlation Koeffizient     
berücksichtigt die 

Grauwertintensitäten und stellt somit eine Verbindung eines Subsets im unverformten und 

verformten Zustand her [50]: 
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Dabei ist          die Grauwertintensität der Referenzaufnahme und     
    

   ist der 

Grauwert nach der Verschiebung. Bei einer exakten Bestimmung der Verschiebungen und 

Verzerrungen würde der Cross Correlation Koeffizient einen Wert von Null annehmen. 

Durch die Interpolationen der Grauwertintensitäten bleibt aber der Cross Correlation 

Koeffizient immer größer Null. Daher ist das Ziel der Versuchs- bzw. 

Auswertugsoptimierung diesen zu minimieren. Das kann durch eine Kombination aus einer 

verbesserten Probenoberfläche mit dem entsprechenden Muster und durch unterschiedliche 

Verfahrensroutinen wie Correlation Coefficient Curve-fitting, Coarse-fine, Newton-

Raphson erreicht werden [51-53]. 

3.3 Versuchsbeschreibungen 

3.3.1 Austenitisierung 

Jeder isotherme Umwandlungsversuch beginnt mit einer vollständigen oder Teil- 

Austenitisierung der Probe. In dieser Arbeit wurden drei verschiedene 

Austenitisierungsstrategien verfolgt. Die erste Austenitisierungsmethode wurde dem Atlas 

für Wärmebehandlung der Stähle [54] entnommen. Dieser empfiehlt für den Werkstoff 

50CrV4 eine isotherme Austenitisierung bei 880 °C für 5 Minuten und eine Aufheizzeit 

von 2 Minuten. Die beiden anderen Austenitisierungsstrategieen sind in Anlehnung an den 

realen Prozess im SFB/TRR 30 gewählt worden, um die Austenitisierungen in den 

verschiedenen Bereichen des Demonstrators realitätsnah abbilden zu können. Dabei 

entspricht die Aufheizrate dem realen Prozess und durch die isotherme Haltezeit wird die 

Transportzeit von der Aufheizeinheit in die Presse nachgebildet. In beiden Fällen wurden 

die Proben innerhalb von 15 Sekunden auf die Haltetemperatur aufgeheizt. Die Haltezeit 

betrug in beiden Fällen 10 Sekunden. Die isothermen Austenitisierungstemperaturen 

betrugen dabei 1050 und 1200 °C. In Abbildung 3.13 ist ein Vergleich der drei 

Austenitisierungen dargestellt. Die wenigen Ausnahmen bei den Austenitisierungen der 

Proben werden an den jeweiligen Stellen separat beschrieben. 
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3.3.2 Isotherme Umwandlung in der Bainitstufe 

Alle isothermen Umwandlungsversuche in der Bainitstufe wurden nach dem folgenden 

Muster durchgeführt. Die Proben wurden, wie oben beschrieben, austenitisiert, auf die 

isotherme Umwandlungstemperatur mittels eines Gasmediums abgeschreckt und bei dieser 

Temperatur gehalten. Die Umwandlung erfolgte dann in Abhängigkeit von der jeweiligen 

Aufgabe unter verschiedenen Beanspruchungen der Probe. In Abbildung 3.14 ist eine 

Übersicht über die verschiedenen Versuchsarten dargestellt. Die erste Reihe der Versuche 

diente dazu, den Einfluss der überlagerten Spannungen auf die isotherme Umwandlung zu 

untersuchen. Dabei wurden die Höhe und das Vorzeichen der Spannungen variiert. Die 

Spannung wurde erst beim Erreichen der Umwandlungstemperatur, aber vor der 

einsetzenden Umwandlung aufgebracht. In Abbildung 3.14 ist dieser Fall mit der Linie 

„Umwandlung überlagert mit Zugspannung“ dargestellt. Um den Einfluss der 

Vorverformung des unterkühlten Austenits auf die isotherme Umwandlung zu untersuchen, 

wurden die Proben beim Erreichen der vorgegebenen Temperatur, in der Regel der 

Umwandlungstemperatur, auf den vorgegebenen Betrag plastisch verformt und sofort 

wieder entlastet, so dass die Umwandlung spannungslos verlief. Die simultane Messung 

der Längs- und Querdehnung stellte sicher, dass die Verformung vor dem Einsetzen der 

Umwandlung abgeschlossen war. Abbildung 3.14 ist diese Versuchsart mit dem Verlauf 

„Vorverformt, Umwandlung spannungsfrei“ dargestellt. Eine weitere Möglichkeit, die 

Umwandlung zu beeinflussen, war es, die beiden Beanspruchungen zu kombinieren. Bei 
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Abbildung 3.13     Vergleich verschiedener Austenitisierungsbedingungen. „880 °C“: Aufgeheizt 

in 2 Minuten auf 880 °C, isotherme Austenitisierung für 5 Minuten. „1050 °C“: Aufgeheizt in 

15 Sekunden auf 1050 °C, isotherme Austenitisierung für 10 Sekunden. „1200 °C“: Aufgeheizt in 

10 Sekunden auf 1200 °C, isotherme Austenitisierung für 10 Sekunden. Die Abkühlphase war bei 

allen Proben mit 17 Sekunden gleich. 
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dieser Versuchsführung wurden die Proben beim Erreichen der Umwandlungstemperatur 

erst vorverformt und dann auf die geforderte Spannung entlastet, so dass die Umwandlung 

spannungsüberlagert erfolgte. In der Abbildung 3.14 ist dieser Versuchsverlauf mit der 

Kurve „Vorverformt“, Umwandlung überlagert mit Zugspannung“ dargestellt. 

3.3.3 Digitale Bildkorrelation (DIC) 

Für Experimente mit Einsatz digitaler Bildkorrelation wurden die Proben vorgedreht, 

drahterodiert und anschließend mechanisch mit bis zu 4000-er Schleifpapier geschliffen. 

Anschließend wurden die Messflächen mit dem für die Auswertung notwendigen 

Punktemuster versehen. Die Vorarbeiten haben gezeigt, dass für eine erfolgreiche 

Auswertung ein dichtes Punktemuster mit einer zufälligen Verteilung von möglichst 

kleinen Punkten/Partikeln, die wegen einer vorgehenden Austenitisierung bei 1000 °C 

temperaturbeständig sein müssen, unverzichtbar ist. Die weiteren Anforderungen an die 

Partikeln sind eine gute zeit- und temperaturunabhängige Haftung an der Oberfläche und 

gleichbleibende optische Eigenschaften. Eine Versuchsreihe hat gezeigt, dass die 

Präparationsmethode mit dem Siliziumdioxid-Pulver für diese Zwecke am geeignetsten ist. 

Dafür wurde das Si02-Pulver mit einer Partikelgröße zwischen 10 und 20 nm in Ethanol 

mit Hilfe eines Ultraschallbades dispergiert und anschließend mittels eines 

Airbrushverfahrens auf eine mit Aceton vorgereinigte Probe aus einem Abstand von etwa 

10 mm aufgetragen. Nach einer sorgfältigen Prüfung des Punktemusters wurden die 

Proben in den Versuchsstand „DIC“ eingebaut. Abbildung 3.15 zeigt einen 

Probenausschnitt mit dem Punktemuster vor und nach dem Versuch. 
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Abbildung 3.14     Prinzipielle Beschreibung der Umwandlungsversuche mit einer überlagerten 

Beanspruchung der Probe während der isothermen bainitischen Umwandlung. 
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Für die Auswertung der lokalen Verteilung der Umwandlungsdehnungen im Material 

in Abhängigkeit von der äußeren Belastung wurde ein Ausschnitt in der Mitte der Probe in 

der Größe von 1,8 x 1,5 mm in einem Zeitabstand von 15 Sekunden aufgenommen. Die 

Vergrößerung des Mikroskops wurde für alle Versuche bei 150-fach festgehalten. Die 

Vorversuche haben gezeigt, dass bei den Vergrößerungen kleiner 100-fach die 

Bilderzerrungen durch die Randbereiche der Linsen zu einer Verfälschung der Auswertung 

führen können. Bei Vergrößerungen größer 200-fach wandert das Betrachtungsfenster 

durch die umwandlungsplastischen Dehnungen aus dem Sichtfeld des Mikroskops. Alle 

hier gezeigten Proben wurden in 2 Minuten auf eine Austenitisierungstemperatur von 

1050 °C konduktiv aufgeheizt, 30 Sekunden bei der Temperatur austenitisiert und 

anschließend in 14 bis 16 Sekunden auf eine isotherme Umwandlungstemperatur von 

340 °C abgekühlt. Die darauffolgende bainitische Umwandlung erfolgte isotherm mit oder 

ohne überlagerte äußere Zugspannung.  

3.3.4 Lichtmikroskopie 

Für eine grundlegende Charakterisierung der Proben im Auslieferungszustand und der 

unter verschiedenen Bedingungen wärmebehandelten Proben wurde ein Lichtmikroskop 

der Firma Zeiss, Modell Axiophot, verwendet. Die zu untersuchenden Schliffe wurden 

dabei in der Abhängigkeit von der Aufgabe mit den folgenden Ätzmitteln vorbehandelt: 

Zur Beurteilung der Ferritkorngrenzen wurde eine 3%-ige HNO3-Lösung (Nital) und zum 

Sichtbarmachen der ehemaligen Austenitkorngrenzen im Bainit und Martensit eine 

wässrige 1%-ige Pikrinsäurelösung mit Entspannungsmittel eingesetzt. Die Bestimmung 

der scheinbaren Korngröße erfolgte nach DIN EN ISO 643:2003 „Mikrophotographische 

Bestimmung der scheinbaren Korngröße“. 

  

 
a) 

 
b) 

Abbildung 3.15     Versuchsprobe mit dem Punktemuster a) vor und b) nach dem Versuch. 

1,5 mm 1,5 mm 
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3.3.5 Rasterelektronenmikroskopie (REM), und Electron Backscatter 

Diffraction (EBSD) 

Zur Beurteilung der mikrostrukturellen Veränderungen der umgewandelten Gefüge 

wurde zusätzlich zum Lichtmikroskop ein Rasterelektronnenmikroskop vom Typ Philips 

XL 40 ESEM eigesetzt. Dabei wurde unter anderem der im System integrierte Rückstreu-

Detektor für Untersuchungen der Kornmorphologie verwendet. Gleichzeitig ermöglichte 

die EBSD-Einheit eine Analyse der Mikrotextur. Für beide Untersuchungsarten wurden die 

Proben mit einem Elektrolyt aus Ethanol mit 5% Perchlorsäure bei -25 °C und einer 

Zellspannung von 30 V elektropoliert. 

3.3.6 Transmissionselektronenmikroskopie (TEM) 

Für die Untersuchungen der Mikrostruktur auf der Korn- und/oder Lamellenebene 

wurde das Transmissionelektronenmikroskop Philips CM 200 eingesetzt. Die Entnahme 

der Proben aus der Wand der Hohlproben erfolgte so, dass die Belastungsachse in der 

Folienebene lag. Aus dem so entnommenen und auf eine Dicke von ca. 150 µm 

geschliffenen Segment wurde eine Scheibe mit einem Durchmesser von 3 mm gestanzt. 

Diese wurde anschließend elektrolytisch im Düsenstrahlverfahren gedünnt. Dabei wurde 

ein Elektrolyt aus Ethanol mit 5% Perchlorsäure bei -40 °C und einer Zellspannung von 

30 V eingesetzt. 

3.3.7 Energy Dispersive X-ray spectroscopy (EDX) 

Für die Untersuchungen lokaler chemischer Zusammensetzungen des Gefüges wurde 

eine EDX-Einheit der Fa. Philips mit einem gekühlten Si(Li)-Detektor am REM bzw. TEM 

eingesetzt.  

 

Die Standardverfahren der Werkstoffprüfung wie Härtemessung, Zugversuch, 

Schleifen und Polieren etc., werden in dieser Arbeit nicht beschrieben. 

3.4 Massivumformprozess in SFB/TRR 30 

Bevor mit der Fertigung von warm umgeformten Bauteilen begonnen werden kann, 

muss die Auslegung des Umformbauteils vorgenommen werden. Dies erfordert einen 

frühen Einsatz einer physikalisch korrekten Simulationsmethode, die alle Schritte des 

Prozesses korrekt abbildet und eine Optimierung des Prozesses bezüglich der 

Endeigenschaften des Produkts erlaubt. Eine weitere Besonderheit der thermo-

mechanischen Prozessführung besteht darin, dass durch die gezielte Ausnutzung der 

Umformvorgänge eine simultane Beeinflussung der Mikrostruktur ausgenutzt werden 

kann. Ziel dieser Arbeit ist es, die Schlüsselfaktoren des Prozesses zu identifizieren, diese 

physikalisch korrekt zu beschreiben und die Interaktionen zwischen den Einzelnen 

Schlüsselfaktoren zu untersuchen. In Abbildung 3.16 ist die Umformsimulationspyramide 

nach Winter [55] dargestellt. 
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Abbildung 3.16     Umformsimulationspyramide [55]. 

 

Diese Abbildung fasst die wesentlichen Einflussfaktoren der Warmumformung 

zusammen, ermöglicht aber keine umfassende Beschreibung einer thermo-mechanischen 

Prozessführung, da die Interaktionen verschiedener Parameter untereinander nicht 

berücksichtigt werden. Die im Transregio TRR 30 angestrebte Vorgehensweise sieht eine 

Simulationsrichtung von Endprodukteigenschaften über die erforderliche Mikrostruktur 

zur gezielten Prozessführung vor. 

In Abbildung 3.17 ist die Herstellung des Demonstrators „Flanschwelle“ dargestellt. Der 

Prozess kann vereinfacht in  drei Schritte unterteilt werden: 

Erwärmen  Umformen  Abkühlen. 

Die Erwärmung des Werkstoffs und die damit verbundene Änderung der Gitterstruktur 

erfolgten lokal, was zur starken Gradierung des Halbzeugs bereits in der 

Austenitisierungs-/Erwärmungsphase führt. Abbildung 3.17 a) zeigt schematisch die 

Temperaturverteilung im Halbzeug während des Erwärmungsschritts des Halbzeugs auf 

1200 °C. Für die mechanische Umformung des Halbzeugs spielen die 

Festigkeitskennwerte des Materials eine wesentliche Rolle. Diese sind sowohl von der 

Temperatur als auch von der Gitterstruktur abhängig. Die Ac1-Temperatur des Werkstoffs 

liegt zwischen 720 und 735 °C [54]. Demzufolge erfolgt bei den Temperaturen unterhalb 

dieser Linie keine Umwandlung des Stahls und die mechanischen Eigenschaften können 

mit einem relativ geringen Aufwand in einem Zugversuch ermittelt werden. Die Ac3-

Temperatur des Werkstoffs liegt zwischen 760 und 780 °C [54]. Im Bereich zwischen den 

beiden Linien liegt eine zeit- und temperaturabhängige Mischung aus  - und  -Eisen vor. 

Die mechanischen Eigenschaften des Werkstoffs in diesem Bereich wurden nicht 

ermittelt, da erst eine Wissensbasis über die mechanischen Eigenschaften und das 

Umwandlungsverhalten reiner Phasen untersucht werden muss, bevor mit der 

Untersuchung von Dualphasen begonnen werden kann. Oberhalb der Ac3-Linie liegt im 

Material reine Austenitphase vor mit oder ohne Karbide in Abhängigkeit von den 

Austenitisierungsbedingungen.  
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Abbildung 3.17     Massivumformprozess im SFB/TRR 30 [21]. 
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4 Experimentelle Ergebnisse 

4.1 Abhängigkeit des mechanischen Verhaltens des 

Austenits von der Temperatur 

Nach dem Aufheizen liegt im Werkstück ein stabiler Austenit in dem 

Temperaturfenster zwischen 780 und 1200 °C vor. Die Abhängigkeit der Festigkeit des 

Gefüges von der Temperatur ist in der Abbildung 4.1 dargestellt. Wie man aus dem 

Diagramm entnehmen kann, liegt die Zugfestigkeit des stabilen Austenits, welcher in 

10 Sekunden bei 1200 °C entstanden ist, bei etwa 20 MPa. Dagegen ist die Zugfestigkeit 

des Austenits nach einem  5-minütigen Austenitisieren bei 880 °C deutlich höher als 90 

MPa. Auffällig ist auch die Verfestigung der oberen Kurve in Vergleich mit den beiden 

Austenitisierungen bei den höheren Temperaturen.  

Dieser Unterschied im Spannungs-Dehnungs-Verhalten kommt durch ein 

Zusammenspiel mehrerer Faktoren zustande. Einerseits ist die Zugfestigkeit des Gefüges 

von der Temperatur abhängig, andererseits von der Korngröße. Eine weitere Einflussgröße 

auf die Festigkeit des Gefüges sind die während der Austenitisierung nicht aufgelösten  
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Abbildung 4.1     Spannungs-Dehnungs-Verhalten des stabilen Austenits in Abhängigkeit von der 

Temperatur. „880 °C“ aufgeheizt in 2 Minuten, isotherme Austenitisierung 5 Minuten. „1200 °C“ 

aufgeheizt in 15 Sekunden, isotherme Austenitisierung 10 Sekunden [3]. 
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Karbide. In Abbildung 4.2 ist ein Ausschnitt aus dem Zeit-Temperatur-Austenitisierung-
Schaubild (ZTA) dargestellt [54]. Laut diesem Schaubild dürfen nach 20 Sekunden bei 
880 °C keine Fe3C Karbide im Gefüge vorliegen. Abbildung 4.3 a) zeigt aber eine 
transmissionselektronenmikroskopische (TEM) -Aufnahme eines martensitischen Gefüges, 
was nach der Austenitisierung bei 880 °C für 5 Minuten entstanden ist. In der Mitte der 

 
 

Abbildung 4.2     Isothermes Zeit-Temperatur-Austenitisierung-Schaubild (Ausschnitt) [54]. 

    
 

Abbildung 4.3     Transmissionselektronische Aufnahme eines Martensitgefüges austenitisiert für 
a) 5 Minuten bei 880 °C und b) 10 Sekunden bei 1200 °C [19]. 
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Abbildung ist ein rundes Karbidteilchen mit einem Durchmesser von etwa 100 nm deutlich 

zu sehen. Es handelt sich dabei um Cr-Karbide, die eine wesentlich höhere 

Temperaturbeständigkeit aufweisen als die Eisenkarbide und zu einer Festigkeitssteigerung 

des Gefüges führen. Eine EDX-Analyse des Teilchens lieferte einen 8-fachen Chromgehalt 

gegenüber der Matrix. Dagegen zeigt die Abbildung 4.3 b) ein Gefüge, das in 10 Sekunden 

bei 1200 °C entstanden ist. Dieses Gefüge enthält keine Karbide. Diese Ergebnisse wurden 

an allen untersuchten Proben bestätigt. 

Eine weitere Einflussgröße auf die Festigkeit des Gefüges ist die Austenitkorngröße. Nach 

der Hall-Petch-Gleichung ist die Festigkeitssteigerung durch Kornfeinung gleich 

 

      
  

√ 
 .         (4.1) 

 

Dabei ist    die kritische Normalspannung des Einkristalls, welche zur Verformung 

notwendig wäre,   wird als Hall-Petch-Konstante bezeichnet und   ist der 

Korndurchmesser. In Abbildung 4.4 sind lichtmikroskopische Aufnahmen der ehemaligen 

Austenitkorngerenzen nach zwei verschiedenen Austenitisierungen dargestellt. Nach der 

isothermen Austenitisierung bei 1200 °C innerhalb von nur 10 Sekunden ist ein Gefüge mit 

dem mittleren Korndurchmesser von 44 µm entstanden (Abbildung 4.4 a)). Ein hingegen 

in 5 Minuten isothermer Austenitisierung bei 880 °C entstandenes Gefüge weist eine 

mittlere Korngrösse von 16 µm auf (Abbildung 4.4 b). In beiden Aufnahmen ist jeweils ein 

Korn exemplarisch rot markiert. Die Auswertung der Aufnahmen wurde nach 

DIN EN ISO 643 vorgenommen. Wie man der Auswertung entnehmen kann, hat die 

Austenitisierungstemperatur einen wesentlich größeren Einfluss auf die Korngröße des 

Austenits als die Austenitisierungsdauer. Dies wird auch im ZTA-Austenitkornwachstum-

Schaubild in Abbildung 4.2 [54] deutlich. 

Noch eine weitere Einflussgröße auf die Festigkeit des Gefüges ist die Temperatur. In 

Abbildung 4.5 ist das Spannungs-Dehnungs-Diagramm des unterkühlten Austenits bei 

verschiedenen Temperaturen dargestellt. Im Rahmen der Vorbereitung auf die eigentlichen 

   
 

Abbildung 4.4     Lichtmikroskopische Aufnahmen von 51CrV 4. a) Austenitisiert für 10 s bei 

1200 °C, Korngröße 44 µm, b) für 5 min bei 880 °C Korngröße 16 µm. 

a) 

 

b) 
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Versuche wurden die Proben in 2 Minuten auf 880 °C aufgeheizt, für  5 Minuten bei 

880 °C isotherm austenitisiert und mit 50 K/s auf die vorgegebene Temperatur abgekühlt. 

Anschließend erfolgte ein Zugversuch bei konstanter Temperatur mit einer Abzugsrate von 

0,2 mm/s. Die Abzugsrate wurde bewusst hoch gewählt, um den Zugversuch noch vor dem 

Einsetzen der Umwandlung durchführen zu können. Die mittlere Korngroße nach dem 

Austenitisieren betrug 16 µm. Die Umwandlung des Werkstoffs während der Zugversuche 

konnte durch eine simultane Messung der Längs- und Querdehnung ausgeschlossen 

werden. Wie erwartet, steigen sowohl die Elastizitätsmodulen als auch die Dehngrenzen 

mit fallender Prüftemperatur an. So bewirkt eine Temperaturerhöhung um  360 °C einen 

Abfall der Zugfestigkeit um mehr als 50 %. In der gleichen Größenordnung liegt auch die 

Absenkung der Dehngrenze. Abbildung 4.6 zeigt die Abhängigkeit der Rp0,2-Grenze und 

des E-Moduls von der Temperatur. 

Mit der steigenden Austenitisierungstemperatur steigt auch die Korngröße des 

Austenits, der Einfluss der Prüftemperatur auf das Spannungs-Dehnungsverhalten wird 

aber geringer. Abbildung 4.7 zeigt ein Spannungs-Dehnungs-Diagramm des unterkühlten 

Austenits nach einer isothermen Austenitisierung bei 1200 °C für 10 Sekunden. Die 

mittlere Korngroße lag bei 44 µm. Wie man dem Diagramm entnehmen kann, ist der 

Einfluss der Temperatur auf das Spannungs-Dehnungs-Verhalten in diesem Fall wesentlich 

geringer als bei der Austenitisierung bei den tieferen Temperaturen. Die mittlere 

Korngroße lag bei 44 µm. Wie man dem Diagramm entnehmen kann, ist der Einfluss der 

Temperatur auf das Spannungs-Dehnungs-Verhalten in diesem Fall wesentlich geringer als 

bei der Austenitisierung bei den tieferen Temperaturen. Aus dem Vergleich der Abbildung 

4.5 mit der Abbildung 4.7 wird deutlich, dass die absoluten Werte für die Zugfestigkeit 

bzw. Streckgrenze des unterkühlten Austenits mit steigender Austenitisierungstemperatur 

verringert werden. 
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Abbildung 4.5     Spannungs-Dehnungs-Verhalten des unterkühlten Austenit in Abhängigkeit 

von der Temperatur bei der Austenitkorngroße von 16 µm. Isotherme Austenitisierung für 5 

Minuten bei 880 °C. 
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Da die Versuche bei den jeweils gleichen Temperaturen durchgeführt wurden, was durch 

gleiche E-Module indirekt bestätigt wurde, ist der Einfluss der Versuchstemperatur auf die 

Ergebnisse auszuschließen. Demzufolge sind die Festigkeitsunterschiede in diesem Fall 

allein durch die Austenitkorngroße und Chromkarbide im Gefüge zu erklären. 

Die Erkenntnisse aus den vorgestellten Experimenten sind in erster Linie  für die 

Modellierung des Umformprozesses, aber auch für die Modellierung des im thermo-

mechanischen Prozess entstehenden Gefüges relevant. Aus der starken 

Temperaturgradierung beim Austenitisieren des Werkstücks resultiert eine starke 
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Abbildung 4.6     Abhängigkeit der Rp0,2-Werte und des E-Moduls (gemessen mit einem 

Hochtemperaturextensometer) des unterkühlten Austenits von der Temperatur. Isotherme 

Austenitisierung für 5 Minuten bei 880 °C. 
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Abbildung 4.7     Spannungs-Dehnungs-Verhalten des unterkühlten Austenit in Abhängigkeit von 

der Temperatur bei der Austenitkorngroße von 44 µm. Isotherme Austenitisierung für 10 s bei 

1200 °C. 
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Gradierung in der Festigkeit des entstehenden Austenits, die im Bereich des stabilen 
Austenits zwischen 20 und 100 MPa liegen kann. Diese Gradierung bleibt auch im 
unterkühlten Austenit erhalten, so dass die resultierende Festigkeit des Gefüges bei  
340 °C zwischen 180 und 300 MPa liegen kann. Mit der einsetzenden Umwandlung 
steigen auch die Festigkeitswerte deutlich an. 

Ein weiteres, am Umformprozess beteiligtes Gefüge ist das Perlitgefüge. Dieses liegt in 
den Bereichen des Umformstückes, die während des Aufheizvorgangs die 
Austenitisierungstemperatur nicht erreicht haben, vor. Abbildung 4.9 zeigt die 
Temperaturverteilungen während des Umformvorgangs. Bei dem betrachteten 
Umformprozess erfolgen die ersten Umformschritte durch freie Umformung, demzufolge 
ist die dabei entstehende Geometrie von den Festigkeiten der einzelnen Bereiche abhängig. 
Für die Zugversuche wurden die Proben  für 5 Minuten bei 880 °C austenitisiert und 
anschließend bei 600 °C isotherm umgewandelt, um rein bainitisches Gefüge zu 
garantieren. Dabei wurden Proben erzeugt, die sowohl durch freie wie auch 
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Abbildung 4.8     Abhängigkeit des mechanischen Verhaltens des unterkühlten Austenits von der 
Korngroße (Austenitisierungsbedingungen) [3]. 

 
 

Abbildung 4.9      Temperaturverteilungen während des betrachteten Umformprozesses [21]. 
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spannungsüberlagerte Umwandlung entstanden. Damit wurde auch ein möglicher 
Fertigungseinfluss auf die Halbzeuge mitberücksichtigt. Die erzeugten Proben wurden 
anschließend bei 600 °C in einem Hochtemperaturzugversuch geprüft.  

Abbildung 4.10 zeigt zwei charakteristische Verläufe der Spannungs-Dehnungs-Kurve 
bei 600 °C. Wie man der Abbildung entnehmen kann, liefert der Zugversuch gleiche 
Festigkeitswerte für ein Gefüge, das isotherm und spannungsfrei entstanden ist, und eins, 
das während der Umwandlung mit 40 MPa Zugspannung überlagert wurde. Demzufolge 
liegt die Zugfestigkeit des Perlits bei 600 °C knapp unterhalb von 400 MPa und ist bei der 
isothermen Umwandlung unabhängig von der äußeren elastischen Belastung während der 
Umwandlung. Da die Festigkeiten des Perlits bei 600 °C um 150 bis 250 MPa wesentlich 
höher als die Festigkeiten des unterkühlten Austenits bei dieser Temperatur ist, wird er 
während einer freien Umformung kaum verformt. Somit wurde an dieser Stelle auf weitere 
Untersuchungen verzichtet. 
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Abbildung 4.10     Spannungs-Dehnungs-Verhalten des bei 600 °C isotherm spannungsfrei bzw. 
bei  = 40 MPa umgewandelten Perlits, Versuchstemperatur 600 °C [56]. 
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4.2 Isothermes Zeit-Temperatur-

Umwandlungsverhalten (ZTU) in der Perlitstufe 

Mit der Absenkung der Temperatur des Werkstücks während bzw. nach dem 

Umformprozess beginnt die Umwandlung des Austenits in Ferrit, Perlit, Bainit oder 

Martensit. Bei der isothermen  Umwandlung ist das resultierende Gefüge abhängig von der 

Umwandlungstemperatur. Der Beginn der Umwandlung ist abhängig von der Temperatur, 

der chemischen Zusammensetzung, aber auch von der äußeren Belastung des Materials. 

Spannungen unterhalb der Fließgrenze des Austenits können den Beginn der Umwandlung 

verzögern oder beschleunigen. Die Phasenumwandlung ist mit einer Volumenänderung 

verbunden, was eine Detektion des Umwandlungsfortschritts ermöglicht. 

Abbildung 4.11 zeigt den Verlauf der normierten Volumenänderung über der Zeit 

infolge einer perlitischen Umwandlung bei einer isothermen Temperatur von 550 °C. Da 

am Ende der Umwandlung 100% Perlit vorliegt, ist in der Abbildung der Perlitanteil über 

der Zeit aufgetragen. Für die Überprüfung des Einflusses überlagerter Spannungen auf die 

Umwandlung wurde in einem weiteren Versuch die Probe nach dem Erreichen der 

Umwandlungstemperatur mit einer Zugspannung von 50 MPa beaufschlagt. Wie in der 

Abbildung 4.11 zu erkennen ist, wird die perlitische Umwandlung durch eine überlagerte 

Zugspannung nicht beschleunigt, sonder erkennbar verzögert. 

In einem weiteren Experiment wurde die isotherme Umwandlungstemperatur auf 

600 °C erhöht. Die in Abbildung 4.12 dargestellten Ergebnisse zeigen, dass die perlitische 

Umwandlung bei 600 °C deutlich schneller erfolgt als bei 550 °C. Aber auch hier verzögert 

die überlagerte Zugspannung die Umwandlung. 
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Abbildung 4.11     Zeitliche Entwicklung des Perlitanteils für T = 550 °C bei spannungsfreier 

Umwandlung sowie bei   = 50 MPa [56]. 
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Zusammenfassend kann festgehalten werden, dass der Startpunkt der isothermen 

Umwandlung in der Perlitstufe von der Umwandlungstemperatur und von der überlagerten 

äußeren Belastung abhängig ist, wobei die überlagerten Zugspannungen den Startpunkt der 

Umwandlung erkennbar nach hinten verschieben und auch teilweise die weitere Kinetik 

verlangsamen. 

4.3 Isothermes Zeit-Temperatur-

Umwandlungsverhalten (ZTU) in der Bainitstufe 

4.3.1 Abhängigkeit von der Austenitisierung 

Die vorhergehende Austenitisierung beeinflusst auch die Umwandlung in der 

Bainitstufe. In Abbildung 4.13 sind die Bainitanteile in Abhängigkeit von der 

Umwandlungszeit bei der isothermen Umwandlung bei 340 °C für drei verschiedene 

Austenitisierungen aufgetragen. Eine Reihe der Proben wurde für 5 Minuten bei 880 °C, 

die andere bei 1050 °C für 10 Sekunden und die nächste bei 1200 °C für 10 Sekunden 

austenitisiert. Um den Einfluss des Schutzgases auszuschließen, wurden bei  den 

Temperaturen von 880 und 1050 °C identische Versuche mit Stickstoff und Argon 

durchgeführt. Aus dem direkten Vergleich ist zu erkennen, dass die Austenitisierung bei 

höheren Temperaturen zu einer deutlichen Verzögerung des Umwandlungsstartpunktes, 

aber auch zu einer Verlangsamung der Umwandlungskinetik führt. So ist die Umwandlung 

der Proben, die bei 880 °C austenitisiert wurden, nach etwa 170 Sekunden vollständig 

abgeschlossen, während die Umwandlung der bei 1050 °C austenitisierten Proben in dieser 

Zeit bis etwa 50 % Bainit fortgeschritten ist. Die Umwandlung der Proben, die bei 1200 °C 
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Abbildung 4.12     Verlauf der normierten Volumendehnung des bei 600 °C isotherm 

spannungsfrei bzw. bei  = 40 MPa umgewandelten Perlits [56].  
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austenitisiert wurden, liegt zu diesem Zeitpunkt noch unter 20%. Dem Diagramm ist auch 

zu entnehmen, dass die Schutzgasart keine Auswirkung auf die Umwandlung des 

Werkstoffs hat. 

Eine weitere Möglichkeit den Umwandlungsprozess zu beeinflussen, ist die 

mechanische Beanspruchung während der Umwandlung. Die einachsige Zugspannung 

während der Umwandlung beeinflusst beispielweise den Startpunkt und die weitere 

Kinetik der Umwandlung nicht nur bei der perlitischen, sondern auch bei der bainitischen 

Umwandlung. In der Abbildung 4.14 ist der Bainitanteil in Abhängigkeit von der Zeit 

während der isothermen Umwandlung bei 340 °C aufgetragen. In dieser Versuchsreihe 

wurden die Proben beim Erreichen der Umwandlungstemperatur mit einer Zugspannung 

von 0, 50 bzw. 100 MPa belastet. Die vorhergehende Austenitisierung erfolgte isotherm 

bei 880 °C für 5 Minuten. Die in Abbildung 4.14 dargestellten Ergebnisse zeigen, dass im 

Unterschied zur perlitischen Umwandlung die Kinetik der Phasenumwandlung 

beschleunigt und der Umwandlungsstartpunkt zu früheren Zeiten verschoben wird. In einer 

weiteren Versuchsreihe wurden die Proben für 10 Sekunden bei 1050 °C isotherm 

austenitisiert. Die entsprechenden Messkurven in Abbildung 4.15 zeigen, dass in diesem 

Fall die Wirkung der einachsigen Zugspannung auf die Umwandlungskinetik und auf den 

Startpunkt der Umwandlung noch deutlicher ausgeprägt ist. 
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Abbildung 4.13     Einfluss der Austenitisierung und des Schutzgases auf  die Kinetik der 

isothermen bainitischen Umwandlung bei   = 340 °C [18]. 
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Um mögliche für den Prozess relevante Parameter zu charakterisieren, wurden die 

Proben für die nächste Versuchsreihe für 10 Sekunden bei 1200 °C austenitisiert und 

während der Umwandlung mit einer einachsigen Zug- bzw. Druckspannung belastet. Wie 

Abbildung 4.16 belegt, wird mit der steigenden Austenitisierungstemperatur nicht nur der 

Umwandlungsstart zu einem späteren Zeitpunkt verschoben, sondern auch die 

Umwandlungskinetik insgesamt deutlich verzögert. Der Einfluss der äußeren Belastung 
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Abbildung 4.14     Einfluss aufgeprägter Zugspannungen auf das Umwandlungsverhalten des 

Stahls 51CrV4 bei 340 °C. Austenitisiert 5 Minuten bei 880 °C [18]. 
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Abbildung 4.15     Einfluss aufgeprägter Zugspannungen auf das isotherme Umwandlungs-

verhalten des Stahls 51CrV4 bei 340 °C. Austenitisiert für 10 Sekunden bei 1050 °C [18]. 
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wird größer. Weiterhin kann aus dem Diagramm entnommen werden, dass die einachsige 

Druckbelastung auch zu einer Beschleunigung der Umwandlungskinetik mit einer 

Verschiebung des Startpunktes zu früheren Zeiten führt. Die Auswirkungen sind aber 

deutlich geringer als bei der Zugspannung mit dem gleichen Betrag. Nach 250 Sekunden 

Umwandlungszeit liegt zum Beispiel der Unterschied in dem bainitischen Anteil des 

Gefüges in den Proben, die mit 100 bzw. -100 MPa belastet wurden, bei etwa 20%. 

Ein Umformprozess wird durch plastische Verformungen des Materials realisiert. 

Deswegen wurde eine weitere Versuchsreihe, die einen Einfluss plastischer Verformungen 

auf das Umwandlungsverhalten aufzeigen sollte, durchgeführt. Dabei wurde für alle drei 

ausgewählten Temperaturen folgende Versuchsführung angewendet: Die Proben wurden 

bei der vorgegebenen Temperatur isotherm austenitisiert und mit etwa 50 K/s auf die 

Umwandlungstemperatur abgekühlt. Beim Erreichen der Umwandlungstemperatur wurde 

die Probe mit einer Dehnrate von 0,2 mm/s verformt und sofort entlastet. Die 

darauffolgende isotherme Umwandlung erfolgte frei von der äußeren Belastung. In 

Abbildung 4.18 sind die Ergebnisse der Umwandlungsversuche nach einer 

Austenitisierung bei 880 °C dargestellt. Diese zeigen deutlich, dass die plastische 

Vorverformung des unterkühlten Austenits die Umwandlungskinetik noch stärker als 

Spannungen, die unter der Streckgrenze des Austenits liegen, beeinflusst. Dieser Trend 

setzt sich auch bei den anderen Temperaturen fort. Abbildung 4.17 zeigt die isotherme 

bainitische Umwandlung bei 340 °C nach einer Austenitisierung für 10 Sekunden bei 

1050 °C. Diese dokumentiert, dass mit der steigenden Austenitisierungstemperatur auch 

der Einfluss der Vorverformung des unterkühlten Austenits größer wird. Der Startpunkt 

der Umwandlung wird zu einem früheren Punkt verschoben, aber auch die 

Umwandlungskinetik wird auch insgesamt deutlich beschleunigt.  
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Abbildung 4.16     Einfluss aufgeprägter einachsiger Spannungen auf das Umwandlungsverhalten 

des Stahls 51CrV4 bei 340 °C. Austenitisiert für 10 Sekunden bei 1200 °C. 
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In Abbildung 4.19 sind die Ergebnisse der Versuche nach einer Austenitisierung bei 

1200 °C für 10 Sekunden zusammengefasst. Auch hier führt die Vorverformung des 

unterkühlten Austenits zu einer Beschleunigung und zu einem früheren Startpunkt der 

Umwandlung. Dabei steigt der Einfluss mit steigender Vorverformung.  

Eine massive Umformung ruft eine Kombination aus plastischen und elastischen 

Verformungen hervor. In Abbildung 4.20 sind deswegen die Umwandlungskurven nach 

einer Austenitisierung bei 1200 °C für 10 Sekunden mit verschiedenen Einflussfaktoren 
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Abbildung 4.17     Einfluss der einachsigen Vorverformung auf die Kinetik der isothermen 

bainitischen Umwandlung bei 340 °C. Austenitisierung: 10 s bei 1050 °C, isotherme Umwandlung 

spannungsfrei [18]. 
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Abbildung 4.18     Einfluss der einachsigen Vorverformung auf die Kinetik der isothermen 

bainitischen Umwandlung bei 340 °C. Austenitisierung: 5 Minuten bei 880 °C, isotherme 

Umwandlung spannungsfrei [18]. 
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zusammengestellt. Dieses Verhalten ist typisch auch für andere hier behandelte 

Austenitisierungstemperaturen. Hier ist ganz deutlich zu sehen, dass die Vorverformung 

einen wesentlich größeren Einfluss auf den Startpunkt aber auch auf die Kinetik der 

Umwandlung insgesamt hat. Die Kombination aus Vorverformung und Zugspannung 

verschiebt zwar nicht mehr den Startpunkt, beschleunigt die weitere Umwandlungskinetik 

aber zusätzlich. 
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Abbildung 4.19     Einfluss einachsiger Vorverformung auf die Kinetik der isothermen 

bainitischen Umwandlung bei 340 °C. Austenitisierung: 10 s bei 1200 °C, isotherme Umwandlung 

spannungsfrei. 
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Abbildung 4.20     Einfluss einachsiger Vorverformung auf die Kinetik der isothermen 

Bainitischen Umwandlung bei 340 °C. Austenitisierung: 10 Sekunden bei 1200 °C, isotherme 

Umwandlung spannungsfrei verglichen mit isothermer Umwandlung mit überlagerter Spannung 

von 100 MPa. 
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4.3.2 Abhängigkeit der Umwandlungskinetik von der chemischen 

Zusammensetzung  

In dieser Arbeit wurde das ZTU-Verhalten des Stahls 51CrV4 untersucht. Die 

ermittelten Einflussgrößen sind auch für die anderen niedriglegierten Stähle relevant, 

unterscheiden sich aber in der Auswirkung auf das ZTU-Verhalten. Als Beispiel ist in 

Abbildung 4.21 ein Vergleich des Umwandlungsverhaltens in der Bainitstufe zwischen 

dem hier untersuchten Stahl 51CrV4 und dem deutlich umwandlungsträgeren Stahl 

40CrMnMoS 8 6 dargestellt. Aus dem Vergleich ist gut zu erkennen, dass bei 51CrV4 die 

Kinetik der isothermen Bainitbildung durch die externe Spannung im Vergleich viel 

geringer beschleunigt wird, während bei dem Stahl 40CrMnMoS 8 6 ein viel 

ausgeprägterer Spannungseffekt zu beobachten ist. Dieser Effekt ist auf die Erhöhung der 

Triebkraft für die Umwandlung und auf die Bildung zusätzlicher Keimstellen 

zurückzuführen. Beim 51CrV4 ist die Triebkraft durch die Unterkühlung bereits so groß, 

dass sie zusätzliche Erhöhung durch die äußeren Spannungen, bzw. zusätzliche 

Keimbildung die Umwandlung weniger deutlich beschleunigen.  
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Abbildung 4.21     Einfluss der chemischen Zusammensetzung auf die Umwandlungskinetik. Zum 

Vergleich ist der Umwandlungsfortschritt mit und ohne externe Spannung von den Werkstoffen 

51CrV4 und deutlich umwandlungsträgeren 40 CrMnMoS 8 6 aufgetragen. 

Austenitisierungstemperatur 880 °C, Umwandlungstemperatur 340 °C [1, 57]. 



 
46 Kapitel 4.   Experimentelle Ergebnisse 

4.4 Umwandlungsplastizität 

Die während der Phasenumwandlungen auftretenden plastischen Verformungen, die 

auch bei den Spannungen deutlich unterhalb der Fließspannung der weicheren Phase zu 

beobachten sind, werden als Umwandlungsplastizität bezeichnet. Mit einer simultanen 

Messung der Längs- und Querdehnung kann die Umwandlungsplastizität, die proportional 

zur Anisotropie der beiden Dehnungen ist, gemäß der Gleichung 3.5 berechnet werden. 

Eine anschauliche Darstellung des Effektes der Umwandlungsplastizität ist in Abbildung 

4.22 dargestellt. Aus dem Verlauf der Dehnungen ist ersichtlich, dass eine mit 100 MPa 

Zugspannung belastete Hohlprobe im Laufe der isothermen bainitischen Umwandlung 

überproportional länger und dünner wird, obwohl die Streckgrenze des unterkühlten 

Austenits deutlich über 150 MPa liegt. Um dieses Phänomen zu untersuchen, wurden 

mehrere Versuche unter Variation verschiedener Parameter durchgeführt. Als wesentliche 

Einflussgrößen wurden mechanische Größen (Spannung, Verformung, Eigenspannungen) 

aber auch Austenitisierungsbedingungen (Temperatur, Zeit) und Umwandlungstemperatur 

identifiziert.  

Die Abhängigkeit der Umwandlungsplastizität von den einachsigen äußeren 

Spannungen während der isothermen bainitischen Umwandlung ist in Abbildung 4.24 

dargestellt. Für diese Versuchsreihe wurden die Proben bei 880 °C für 5 Minuten 

austenitisiert und anschließend in 15 Sekunden auf die Umwandlungstemperatur von 

340 °C abgekühlt. Die Spannung wurde zum Zeitpunkt des Erreichens der 

Umwandlungstemperatur aufgebracht. Die spannungsfrei umgewandelten Proben zeigen 

keine Umwandlungsplastizität. Hingegen weisen die Proben, die unter einer Last 

umgewandelt wurden, eine deutlich ausgeprägte Umwandlungsplastizität auf, die mit der 

steigenden Spannung auch größer wird. Die Ursachen der Umwandlungsplastizität liegen 

in der Ausrichtung der Mikrostruktur in Anhänglichkeit von der äußeren Belastung. 
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Abbildung 4.22     Längs- und Querdehnung über der Zeit. Isotherme bainitische Umwandlung 

unter einer Zugspannung von 140 MPa nach einer Austenitisierung für 10 Sekunden bei 1200 °C, 

aufgeheizt  in 15 Sekunden.  
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Abbildung 4.23 zeigt TEM-Helfeldaufnahmen der bei 340 °C umgewandelten Proben 
bei  a)  einer  spannungsfreien  Umwandlung  bzw.  b)  einer  Umwandlung  bei   =  100  MPa.  
Die Ausrichtung der Mikrostruktur ist bei b) deutlich erkennbar. 

Die nächste Versuchserie dokumentiert den Einfluss der Austenitisierungstemperatur 
auf die Umwandlungsplastizität bei sonst gleichen Umwandlungsbedingungen. Für diese 
Versuchsreihe wurden die Proben in 15 Sekunden auf eine Austenitisierungstemperatur 
von 1050 °C aufgeheizt, bei dieser Temperatur für 10 Sekunden austenitisiert und 
anschließend in 15 Sekunden auf die Umwandlungstemperatur von 340 °C abgekühlt. Die        

 

 
 

Abbildung 4.23     TEM-Helfeldaufnahmen der bei 340 °C umgewandelten Proben. 
a) spannungsfreie Umwandlung, b) Umwandlung bei  = 100 MPa .  
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Abbildung 4.24     Umwandlungsplastizität über der Zeit in Abhängigkeit von der überlagerten 
Spannung. Isotherme bainitische Umwandlung nach einer Austenitisierung für 5 Minuten bei 
880 °C, aufgeheizt  in 2 Minuten [18]. 
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Aufheizzeit und die Austenitisierungstemperatur wurden dabei in der Anlehnung an den 

Umformprozess im SFB/TRR 30 ausgewählt. In Abbildung 4.25 ist die 

Umwandlungsplastizität über der Zeit in Abhängigkeit von den äußeren Spannungen 

aufgetragen. Ein direkter Vergleich der beiden Diagramme aus Abbildung 4.24 und 

Abbildung 4.25 belegt, dass mit steigender Austenitisierungstemperatur und der damit 

verbundenen Vergrößerung der Austenitkorngröße eine Steigerung der 

Umwandlungsplastizität verbunden ist. So liegt die Umwandlungsplastizität bei einer 

überlagerten Spannung von 100 MPa nach einer Austenitisierung bei 880 °C bei etwa 1% 

und nach einer Austenitisierung bei 1050 °C bereits bei über 1,2%.  

Bei einem Umformprozess treten nicht nur Spannungen im elastischen Bereich, 

sondern vielmehr plastische Verformungen des Materials auf. Eine weitere Versuchsreihe 

war notwendig, um den Einfluss der plastischen Verformungen auf die 

Umwandlungsplastizität und damit auf die Maßhaltigkeit von Bauteilen zu untersuchen. 

Dabei wurden sowohl der Einfluss der plastischen Verformungen des stabilen Austenits als 

auch der Einfluss der Verformung des unterkühlten Austenits auf die 

Umwandlungsplastizität untersucht. In Abbildung 4.27 ist die Umwandlungsplastizität 

über der Zeit in Abhängigkeit von der Vorverformung dargestellt. Der 

Austenitisierungsprozess und die Abkühlung waren identisch mit denen aus  Abbildung 

4.24. Bei den Experimenten mit der Verformung des stabilen Austenits wurde die 

Verformung kurz vor der Abkühlphase abgeschlossen. Die Verformung des unterkühlten 

Austenits startete beim Erreichen der Umwandlungstemperatur und wurde mit einer 

Dehnrate von 0,2 mm/s durchgeführt, um die Verformung vor dem Beginn der bainitischen 

Umwandlung abzuschließen. Die darauf folgende isotherme Umwandlung erfolgte lastfrei. 

Wie diese Ergebnisse belegen, hat eine Vorverformung des stabilen Austenits keinen 
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Abbildung 4.25     Umwandlungsplastizität über der Zeit in Abhängigkeit von der überlagerten 

Spannung. Isotherme bainitische Umwandlung nach einer Austenitisierung für 10 Sekunden bei 

1050 °C, aufgeheizt  in 15 Sekunden [18]. 
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Einfluss auf die Umwandlungsplastizität. Im Gegensatz dazu ist die 

Umwandlungsplastizität sehr stark von der Verformung des  

unterkühlten Austenits abhängig. So reichen schon 5,5% plastischer Verformung des 

Austenits bei 340 °C, um eine Umwandlungsplastizität von 1,25% hervorzurufen. Die in 

Abbildung 4.26 dargestellten TEM-Aufnahmen zeigen die Unterschiede in der 

Mikrostruktur zwischen einer spannungsfreien und einer nach der Vorverformung des 

unterkühlten Austenits ablaufenden Umwandlung. 

 
 

Abbildung 4.26     TEM-Helfeldaufnahmen der bei 340 °C umgewandelten Proben. a) 

spannungsfreie Umwandlung, b) Umwandlung nach einer 9%-gen Vorverformung des 

unterkühlten Austenits bei 340 °C .  
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Abbildung 4.27     Umwandlungsplastizität über der Zeit in Abhängigkeit von der Vor-

verformung. Isotherme bainitische Umwandlung nach einer Austenitisierung für 5 Minuten bei 

880 °C, aufgeheizt  in 2 Minuten [18]. 
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Im nächsten Schritt wurde die Abhängigkeit der Umwandlungsplastizität von der 

Austenitisierungstemperatur untersucht. Dabei wurden die gleichen 

Austenitisierungsbedingungen wie in dem Versuch aus der Abbildung 4.25 gewählt. 

Abbildung 4.28 zeigt die Umwandlungsplastizität über der Umwandlungszeit in 

Abhängigkeit von der Vorverformung des stabilen bzw. unterkühlten Austenits nach einer 

Austenitisierung bei 1050 °C. Aus dem Vergleich der Abbildung 4.28 mit Abbildung 4.27 

wird deutlich, dass die Verformung des stabilen Austenits keinen Einfluss auf die 

Umwandlungsplastizität hat und von der Austenitisierungstemperatur unabhängig ist. Die 

Verformung des unterkühlten Austenits, die bei 340 °C erfolgte, hat auch bei diesen 

Austenitisierungsbedingungen einen wesentlichen Einfluss auf die 

Umwandlungsplastizität. So ruft eine 5,5%-ige Verformung des unterkühlten Austenits 

eine Umwandlungsplastizität von 1% hervor. 

4.4.1 Rückverformungseffekte 

Der thermo-mechanische Umformprozess von Stahlbauteilen geht mit stark 

veränderlichen zeit-, orts-, und temperaturabhängigen Spannungs- und 

Verformungsverteilungen im Bauteil einher. Die Auswirkungen derartiger nicht konstanter 

Werkstoffbelastungen auf die umwandlungsplastischen Dehnungen wurden durch die 

Entlastung der Proben während der Phasenumwandlung nachgebildet. In Abbildung 4.29 

ist die Umwandlungsplastizität über der Zeit in Abhängigkeit von der überlagerten 

Spannung aufgetragen. In der ersten Versuchsserie wurden die Proben für 5 Minuten bei 

880 °C austenitisiert und bei 340 °C isotherm gehalten. Nach dem Erreichen des 50%-igen 

Umwandlungsfortschrittes wurde die Zugspannung auf null reduziert, so dass die weitere 

Umwandlung frei von äußeren Lasten erfolgte. Die Zeitpunkte der jeweiligen Entlastung 
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Abbildung 4.28     Umwandlungsplastizität über der Zeit in Abhängigkeit von der Vorver-

formung. Isotherme bainitische Umwandlung nach einer Austenitisierung für 10 Sekunden bei 

1050 °C, aufgeheizt  in 15 Sekunden [18]. 
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wurden in den Vorversuchen ermittelt. Wie Abbildung 4.29 entnommen werden kann, 

haben die überlagerten Spannungen - trotzt der Entlastung - einen erheblichen Einfluss auf 

die Umwandlungsplastizität, die zudem auch von der Höhe der Spannung abhängig ist. So 

geht bei der „50 MPa“-Probe die Umwandlungsplastizität mit der Entlastung um etwa 

0,05 % zurück und verharrt auf diesem Niveau. Bei der „140 MPa“-Probe geht die 

Umwandlungsplastizität im Gegensatz dazu zwar in dem Moment der Entlastung um etwa 

0,1 % zurück, steigt aber mit der vorschreitenden Umwandlung wieder um etwa den 

gleichen Wert. Dieses Verhalten ist u.a. auf die während der Umwandlung gespeicherten 

elastischen Spannungen, die das weitere Umwandlungsverhalten beeinflussen, 

zurückzuführen. Um dieses Verhalten des Materials näher zu untersuchen und die 

Ergebnisse auf den Umformprozess im SFB/TRR 30 zu übertragen, wurden weitere 

Umwandlungsproben bei 1200 °C für 10 Sekunden austenitisiert und mit der Zug- bzw. 

Druckspannung belastet. In Abbildung 4.30 ist die Umwandlungsplastizität über der Zeit in 

Abhängigkeit von der äußeren Belastung aufgetragen. Die gestrichelten Linien zeigen die 

Entwicklung der Umwandlungsplastizität unter einer konstanten Last von 140 

bzw. -140 MPa. Die durchgezogenen Linien zeigen die Ergebnisse aus den Experimenten, 

bei denen die Proben mit der gleichen Spannung beansprucht wurden, die aber bei 

Erreichen des 50%-igen Bainitanteil so entlastet wurden, dass die restliche Umwandlung 

spannungslos ablief. 

In Abbildung 4.32 ist ein Ausschnitt aus dem Druckbereich der Abbildung 4.30 

dargestellt. In der Vergrößerung ist gut sichtbar, dass die mit der Druckspannung belastete 
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Abbildung 4.29     Umwandlungsplastizität über der Zeit in Abhängigkeit von der überlagerten, 

zeitlich veränderlichen Zugspannung. Isotherme bainitische Umwandlung bei 340 °C nach einer 

Austenitisierung für 5 Minuten bei 880 °C, aufgeheizt  in 2 Minuten. 
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Probe eine ganz andere Entwicklung der Umwandlungsplastizität zeigt. Aus der 

Kombinationen der Abbildung 4.30 und der Abbildung 4.32 lässt sich ableiten, dass der 

Betrag der Umwandlungsplastizität im Druckbereich kleiner als im Zugbereich ausfällt. 

Ein weiterer Unterschied zum Zugbereich ist, dass während der Entlastung der Probe die 

Umwandlungsplastizität zurück geht und danach sich nur unwesentlich (um etwa 0,02%) 

weiterentwickelt. 
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Abbildung 4.30     Umwandlungsplastizität über der Zeit in Abhängigkeit von der überlagerten, 

zeitlich veränderlichen Zug- und Druckspannung. Isotherme bainitische Umwandlung bei 340 °C 

nach einer Austenitisierung für 10 Sekunden bei 1200 °C, aufgeheizt in 15 Sekunden. 

1,7

1,75

1,8

1,85

1,9

1,95

2

100 200 300 400 500 600

U
m

w
a

n
d

lu
n
g

s
p
la

s
ti
z
it
ä

t,
 %

Zeit, s

UP bei der 

Entlastung

UP nach der Entlastung 

      (spannungsfrei)

 
 

Abbildung 4.31     Ausschnitt aus der Abbildung 4.30, Zugbereich. 
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4.5 Digitale Bildkorrelation  

Das Ziel der Experimente mit der optischen Dehnungsauswertung war es, mithilfe der 

digitalen Bildkorrelation die lokalen Dehnungsentwicklungen während der freien und 

spanungsüberlagerten bainitischen Phasenumwandlung zu dokumentieren, um diese später 

mit der entstandenen Mikrostruktur zu korrelieren. Für die Untersuchung der Machbarkeit 

wurden die Ergebnisse von einer freien isothermen bainitischen Umwandlung bei 340 °C 

mit den Ergebnissen der Umwandlung, die mit 50 MPa Zugspannung überlagert wurde, 

verglichen. Die Probenform, Probenpräparation und die Versuchsdurchführung wurden im 

Kapitel 0 beschrieben. 

In Abbildung 4.33 a) ist die Probenoberfläche der Probe mit dem Messfeld (grün) für 

die nachträgliche Auswertung der Dehnungsverteilung vor dem Beginn der 

spannungslosen Umwandlungen dargestellt. Abbildung 4.33 b) zeigt die Oberfläche einer 

anderen Probe vor dem Umwandlungsbeginn, die während der Umwandlung mit einer 

äußeren Spannung überlagert wurde. Wie man den Abbildungen entnehmen kann, sind die 

Auswertungsfelder gleich groß. Die Dehnung zum Zeitpunkt 0 s wurde als eine 

gleichmäßige Dehnung von 0 % festgesetzt, da die Probe in dem Moment eine annähernd 

homogene Temperatur aufweist und die Umwandlung noch nicht begonnen hat. Die 

Richtigkeit der Annahmen wurde durch den Vergleich der globalen Längsdehnungen, 

ermittelt mit DIC, und den mit dem Extensometer ermittelten Längsdehnungen (Abbildung 

4.36) bestätigt.  

In Abbildung 4.34 a) und b) sind die gleichen Probenausschnitte nach einer 

Umwandlungszeit von 150 Sekunden dargestellt. Aus dem direkten Vergleich der 

spannungslos umgewandelten Probe a) und der Probe mit überlagerter Zugspannung von 

-1,65

-1,6

-1,55

-1,5

-1,45

-1,4

-1,35

100 200 300 400 500 600

U
m

w
a

n
d

lu
n
g

s
p
la

s
ti
z
it
ä

t,
 %

Zeit, s

UP bei der

 Entlastung

UP nach der Entlastung

       (Spannungsfrei)

 
 

Abbildung 4.32     Ausschnitt aus der Abbildung 4.30, Druckbereich. 
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50 MPa b) wird deutlich, dass in der gleicher Zeit die Längsdehnungsentwicklung in den 

beiden Fällen unterschiedlich ist. Die spanungslose Umwandlung a) weist eine 

homogenere Verteilung der Umwandlungsdehnung auf und die Dehnungszunahme ist im 

Mittel niedriger als im Falle der spannungsüberlagerten Umwandlung. Somit bestätigen die 

Messungen mit DIC die mit den Hohlproben ermittelten Ergebnisse. Auffällig ist, dass die 

lokale Dehnungsverteilung in der spannungsüberlagerten Probe b) wesentlich inhomogener 

ist. Dabei weisen die Werte der Umwandlungsdehnung sowohl positive wie auch negative 

Werte auf. Dieser Trend wird mit fortlaufender Zeit verstärkt. Abbildung 4.35 zeigt die 

lokalen Verteilungen der Umwandlungsdehnung aus der gleichen Experimenten nach 300 s 

Umwandlung. Zu diesem Zeitpunkt sind die Proben fast vollständig umgewandelt. Die 

Unterschiede in der Gesamtdehnung und in der Dehnungsverteilung in beiden 

Referenzproben sind eindeutig. Hiermit liefern die Messungen mit der DIC-Methode eine 

Bestätigung der Annahme, dass die externen Spannungen zu einer Auswahl günstig 

orientierter Varianten im Bainit führen. Dies führt wiederum dazu, dass die günstig 

orientierten Bereiche auf Kosten der ungünstig orientierten Bereiche wachsen, was lokal in 

einer erheblichen Dehnungszunahme  bzw. Abnahme resultiert. 
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Abbildung 4.33     Dehnungsverteilung unmittelbar vor Beginn der Umwandlung. Längsdehnung: 

a) 0MPa, b) 50 MPa. 
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Abbildung 4.34     Umwandlungsvorschritt nach 150 Sekunden. a) 0 MPa, b) 50 MPa. 
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Abbildung 4.35     Umwandlungsvorschritt nach 300 Sekunden. a) 0 MPa, b) 50 MPa. 
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Um die Richtigkeit der ermittelten Umwandlungsdehnungen zu überprüfen, wurden 

diese mit den Umwandlungsdehnungen aus den Experimenten mit den Hohlproben 

verglichen. Abbildung 4.36 a) und b) zeigen jeweils die Flächen in den Proben, über die 

die Umwandlungsdehnungen gemittelt wurden. Abbildung 4.36 c) zeigt einen Vergleich 

der Umwandlungsdehnungen in der Längsrichtung zwischen den Flach- und den 

Hohlproben. Die durchgezogenen Linien dokumentieren jeweils die Entwicklungen der 

Umwandlungsdehnung, die an Hohlproben ermittelt wurden. Die Proben wurden jeweils 

für 10 Sekunden bei 1050 °C austenitisiert und anschließend mit einer Zugspannung von 

50 MPa bzw. lastfrei bei einer Temperatur von 340 °C isotherm umgewandelt. Die 

Austenitisierung der Flachproben für DIC-Experimente erfolgte bei einer Temperatur von 

1000 °C, um die Oxidation der Probenoberflächen möglichst gering zu halten. Die 

Austenitisierungszeit wurde hingegen auf 30 Sekunden erhöht, um annähernd gleich große 

Austenitkörner zu erhalten und damit den Einfluss der Korngröße auf die 
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Abbildung 4.36     Die Aufnahmen a) und b) zeigen die Flächen aus denen die globalen 

Dehnungen ermittelt wurden. a) freie Umwandlung, b) eine Umwandlung die mit 50 MPa 

Zugspannung überlagert wurde. Graph c) zeigt einen Vergleich zwischen den DIC- und 

Extensometerdaten.  

 

a) b) 

1,5 mm 

 

1,5 mm 

 



 
59 Kapitel 4.   Experimentelle Ergebnisse 

Phasenumwandlung auszuschließen. Dehnungswerte aus den DIC Experimenten sind als 

Punkte eingetragen, da die Dehnungswerte mit einem Zeitintervall von 15 Sekunden 

aufgenommen wurden. Abbildung 4.36 c) dokumentiert, dass die mit unterschiedlichen 

Verfahren ermittelten Umwandlungsverläufe trotz unterschiedlicher Probengeometrie sehr 

gut übereinstimmen. Mit dieser Versuchsreihe wurde bestätigt, dass die Dehnungsmessung 

mittels DIC auch für die Messungen der Umwandlungsdehnungen geeignet ist.  

Das primäre Ziel der Dehnungsmessung mittels DIC-Verfahren war die Messung 

lokaler Dehnungsunterschiede, so dass eine Korrelation zwischen lokalen Dehnungen und 

der resultierenden Mikrostruktur ermöglicht wird. Zur Ermittlung der Korngrößen- und 

Mikrostrukturentwicklung hat sich in den Vorversuchen das EBSD-Verfahren bewährt. In 

Abbildung 4.37 ist ein Vergleich zwischen einer DIC- und einer EBSD-Messung bei einer 

Probe, die lastfrei umgewandelt wurde, dargestellt. Der rote Rahmen im DIC-Bild zeigt 

nur die Größe und nicht die Position der EBSD-Aufnahme, die systembedingt nur 

70x70 µm
2
 groß ist. Ein direkter Vergleich der Oberflächen mittels beider Methoden war 

nicht möglich, da die EBSD-Messmethode eine elektropolierte Oberfläche erfordert, was 

zu einem Abtrag der obersten Schicht führt. Deswegen kann an dieser Stelle nur ein 

indirekter Vergleich durchgeführt werden. Bei einer genauen Betrachtung der EBSD-

Aufnahme (Abbildung 4.37 b)) sind die ehemaligen Austenitkörner sichtbar. Ein Korn in 

der Mitte ist zur Verdeutlichung schwarz umrandet. Die in dem ehemaligen Austenitkorn 

entstandenen Bainitvarianten zeigen ähnliche Orientierungen der Mikrostruktur, die man 

an der Einfärbung dieses Bereiches erkennt. Die scheinbare Größe des Kornes hat etwa die 

gleiche Dimension wie die Bereiche der Dehnungslokalisierung in der DIC-Auswertung 

(Abbildung 4.37 a)). Damit bestätigt sich die Annahme, dass die Orientierung des 

Austenits einen großen Einfluss auf die Auswahl der Bainitvarianten während der 

Phasenumwandlung hat. 

In Abbildung 4.38 c) ist ein Vergleich lokaler Dehnungen nach einer Umwandlungszeit 

von 300 Sekunden in Längsrichtung der Probe entlang einer horizontalen Linie dargestellt. 

Die Lage der Linien auf den Proben ist in Abbildung 4.38 a), spannungslos umgewandelt, 

und in der Abbildung 4.38 b), umgewandelt unter einer Zugspannung von 50 MPa, 

dokumentiert. In einem direkten Vergleich ist deutlich zu sehen, dass die unter Spannung 

umgewandelte Probe sowohl eine größere Gesamtdehnung als auch eine stärkere Differenz 

zwischen der maximalen und minimalen lokaler Dehnung aufweist. Diese Messungen 

belegen damit die Annahme, dass die während der Umwandlung aufgeprägte Spannung 

bevorzugt zu Bildung von Bainitplatten führt, die in energetisch günstig orientierten 

Richtungen entstehen. Gleichzeitig wird die Umwandlung in energetisch ungünstig 

orientierten Richtungen verhindert bzw. verlangsamt, was zu einer Volumenzunahme in 

der Längsrichtung und der daraus resultierenden Umwandlungsplastizität führt. 
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Abbildung 4.37     Vergleich  a) DIC und b) EBSD bei 0MPa. 
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Abbildung 4.38     Aufnahmen a) und b) zeigen die Flächen, aus denen die lokalen 

Längsdehnungen (vertikal) Dehnungen entlang eingezeichneten Linien ermittelt wurden. a) freie 

Umwandlung, b) eine Umwandlung, die mit 50 MPa Zugspannung überlagert wurde. Graph c) 

zeigt einen Vergleich der lokalen Dehnungen (durchgezogene Linien), die Durchschnittswerte 

sind jeweils gestrichelt dargestellt.  
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5 Diskussion und Ausblick 

5.1 Mechanisches Verhalten des stabilen und unterkühlten 

Austenits 

Die Austenitisierungs- und Prüftemperatur haben einen großen Einfluss auf das 

Spannungs-Dehnungs-Verhalten des stabilen Austenits, was Abbildung 4.1 bestätigt. Da 

die Zugversuche bei der isothermen Austenitisierungstemperatur im Anschluss an die 

Austenitisierung durchgeführt wurden, sind die Prüftemperaturen unterschiedlich. Mit der 

steigenden Temperatur wird die Höhe der atomaren Bindungskräfte herabgesetzt, was sich 

in der sinkenden Festigkeit des Austenits widerspiegelt. In Abbildung 4.5 ist der Einfluss 

der Temperatur auf das Spannungs-Dehnungs-Verhalten bei sonst gleichen Bedingungen 

dargestellt. Beim Vergleich mit der Abbildung 4.7 wird deutlich, dass in Abhängigkeit von 

den Austenitisierungsbedienungen die Prüftemperatur einen unterschiedlich starken 

Einfluss auf das Spannungs-Dehnungs-Verhalten hat. Demzufolge muss es auch andere 

Faktoren geben, die das mechanische Verhalten von dem stabilen bzw. unterkühlten 

Austenit beeinflussen. 

Um den Einfluss der Prüftemperatur auszuschließen und die gesuchten 

Einflussfaktoren zu identifizieren, wurden unterschiedlich austenitisierte Proben bei 

jeweils gleichen Temperaturen getestet. Ein Vergleich der Abbildung 4.5 mit Abbildung 

4.7 ist in Abbildung 4.8 dargestellt. Diese bestätigt einerseits, dass die Temperatur einen 

wesentlichen Einfluss auf die Festigkeit hat, zeigt aber, dass die Unterschiede im 

Spannungs-Dehnungs-Verhalten nicht allein auf die Temperaturunterschiede 

zurückzuführen sind. Die großen Unterschiede im mechanischen Verhalten sind in erster 

Linie auf zwei weitere Verfestigungsmechanismen zurückzuführen. 

Die Austenitisierungstemperatur  und -dauer sind entscheidend für die Homogenität 

und Korngröße des entstehenden Austenits. Abbildung 4.3 bestätigt, dass die Proben, die 

bei 880 °C austenitisiert wurden, trotz einer 5-minütigen Austenitisierung Cr-Karbide 

aufweisen, die einerseits zur Teilchenverfestigung des Gefüges führen, andererseits den 

Kohlenstoff binden, was zur Verminderung der Mischkristallverfestigung führt. Die 

genaue Höhe des tatsächlichen, während des Austenitisierens gelösten Kohlenstoffgehalts 

konnte allerdings nicht experimentell bestimmt werden. Die Anwesenheit der Karbide 

nach der Austenitisierung bei 880 °C wurde mittels eines 

Transmissionelektronenmikroskops nachgewiesen. Diese Methode erlaubt jedoch keine 

quantitative Aussage über die Volumen- oder  Massenanteile bzw. die Gleichmäßigkeit der 

Verteilung der Karbide in größeren Volumenbereichen. 
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Einen weiteren Verfestigungseffekt bewirken die Unterschiede in der Korngröße des 

entstandenen Austenits. Abbildung 4.4 belegt, dass die mittlere Korngröße des Austenits 

nach einer 5-minütigen Austenitisierung bei 880 °C bei etwa 16 µm liegt, nach einer 

10-sekundigen Austenitisierung bei 1200 °C hingegen bei etwa 44 µm. Die genaue Höhe 

des Festigkeitsabfalls durch die Kornvergröberung bei höheren 

Austenitisierungstemperaturen konnte allerdings nicht bestimmt werden. Die Bestimmung 

der für die Berechnung nach der Hall-Petch-Beziehung notwendigen Konstanten für den 

stabilen bzw. unterkühlten Austenit benötigt zusätzliche, maßgeschneiderte Experimente. 

Die durch die Versuche identifizierten Einflussparameter sind in Abbildung 5.1 

zusammengefast. Weiterhin, kann mithilfe der gewonnenen experimentellen Daten die 

bisherigen an den austenitischen Stählen gemessene Daten [10-12] ersetzt werden und die 

vorhandenen Daten [1] erweitert werden. Dies führt zur Verbesserungen der Modellierung. 

 

  

 
 
Abbildung 5.1     Zusammenfassung der ermittelten Einflussfaktoren, die die mechanische 

Eigenschaften des stabilen bzw. unterkühlten Austenits beeinflussen. 
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5.2 Mechanisches Verhalten des Perlits 

Bei der Massivumformung eines partiell erwärmten Werkstücks entstehen auch 

Bereiche des nicht austenitisierten Werkstoffs, die eine Temperatur bis zu 700 °C 

aufweisen. Das Spannungs-Dehnungs-Verhalten dieser Zonen muss bei der Simulation des 

Umformprozesses, besonders bei der freien Umformung, mitberücksichtigt werden. Das 

mechanische Verhalten des Perlitgefüges bei Raumtemperatur ist bekannt und wurde im 

Rahmen dieser Arbeit nicht untersucht. Um das mechanische Verhalten des reinen Perlits 

bei erhöhten Temperaturen zu untersuchen, wurde das perlitische Gefüge nach einer 

Austenitisierung bei 880 °C für 5 Minuten durch isotherme Umwandlung bei 600 bzw. 

550 °C erzeugt. Dabei wurden einige Proben während der Umwandlung mit einer externen 

Zugspannung von 40 MPa beansprucht, um im Hinblick auf die Vorhersage der späteren 

Bauteileigenschaften den Einfluss der während der Herstellung auftretenden Spannungen 

und Dehnungen auf das resultierende mechanische Verhalten zu untersuchen. Abbildung 

4.10 dokumentiert das Spannungs-Dehnungs-Verhalten des perlitischen Gefüges bei 

600 °C. Obwohl bei der spannungsbeeinflussten perlitischen Umwandlung die 

Zementitbildung eine bevorzugte Orientierung aufweist [1], ist das makroskopische 

Spannungs-Dehnungs-Verhalten bei den Proben, die mit und ohne Spannungsüberlagerung 

umgewandelt wurden, identisch. Das Ausbleiben eines entsprechenden Effekts ist durch 

die unveränderten Mikrostrukturgrößen wie Versetzungsdichten und Karbidgrößen zu 

erklären. Da die überlagerten Spannungen keinen Einfluss auf die mechanischen 

Eigenschaften des Perlits haben und die Festigkeit des Gefüges bei 600 °C die doppelte 

Festigkeit des unterkühlten Austenits bei dieser Temperatur aufweist, wurde an dieser 

Stelle auf weitere Experimente verzichtet. 

5.3 ZTU Verhalten 

5.3.1 Isothermes Zeit-Temperatur-Umwandlung Verhalten in der 

Perlitstufe 

Aus dem Vergleich der Abbildung 4.11 und Abbildung 4.12 ist deutlich zu sehen, dass 

die isotherme Umwandlungstemperatur einen großen Einfluss auf die 

Umwandlungskinetik hat. So verläuft die Umwandlung bei 600 °C wesentlich schneller als 

bei 550 °C. Diese Tatsache ist auf das Zusammenspiel zwischen der chemischen Triebkraft 

durch eine Unterkühlung und die diffusionsgesteuerte Beweglichkeit der chemischen 

Elemente zurückzuführen, was in Lage und Form der „Perlitnase“ im ZTU-Diagramm 

wiedergegeben wird. Weiterhin zeigt sich, dass bei der perlitischen Umwandlung von 

51CrV4 bereits niedrige Beanspruchungen zu einer deutlichen Verzögerung der 

Umwandlung führen. Im Unterscheid hierzu wurde beim umwandlungsträgeren Stahl 

40CrMnMoS 8 6 bei ähnlichen Bedingungen eine leichte Beschleunigung der 

Perlitumwandlung festgestellt [1]. Für diese Unterschiede bei der Umwandlung in der 

Perlitstufe liegen bisher keine zufriedenstellenden Erklärungsansätze vor.  

Perlitisches Gefüge entsteht durch den diskontinuierlichen eutektoiden Zerfall des 

Austenits in ein lamellares Kristallgemisch aus Ferrit und Zementit 



 
66 Kapitel 5.   Diskussion und Ausblick 

(intermetallische Phase Fe3C). Dabei erfolgt die Keimbildung im Austenit durch thermisch 
aktivierte Konzentrationsschwankungen. Da die Kohlenstoffkonzentration in Korngrenzen 
und an den Versetzungen aus energetischen Gründen erhöht ist, bilden sich dort die ersten 
Zementitkeime. Diese entziehen aus der unmittelbaren Nähe den Kohlenstoff, was zur 
Kohlenstoffverarmung nahliegender Bereichen und zur Entstehung der Ferritkeime führt, 
die wiederum den Kohlenstoff in den benachbarten Austenit drücken, sodass dort erneut 
Zementitkeimbildung einsetzt. Ist eine Perlitzelle gebildet, wächst diese senkrecht zu den 
Lammellenenden, wobei der Kohlenstoff in der Grenzfläche Austenit/Perlit zu den 
Zementitlamellen diffundiert (Abbildung 5.2) [58]. 

Aus der Beschreibung der Perlitbildung folgt, dass die Wachstumsrichtungen der 
Perlitphase statistisch verteilt sind. Dabei häng die Kinetik der Umwandlung nur von der 
Beweglichkeit der Elemente und der Unterkühlung ab. Durch die Einwirkung der äußeren 
Belastung (Zugspannung) wird das Austenitgitter elastisch verspannt, was zur Änderung 
der Gitterabstände führt und damit die Kohlenstoffdiffusion in bestimmte Richtungen 
erschwert. Damit bleibt das umzuwandelnde Volumen konstant bei gleichzeitiger 
Verringerung der bevorzugten Wachsrichtungen des Perlitgefüges. Da die Gitterverzerrung 
die Diffusion nicht oder nicht genauso stark beschleunigt, wird die Kinetik der 
Umwandlung verzögert. Dabei sind die Auswirkungen der Gitterverzerrung umso größer, 
je größer die „natürliche“ Kinetik der Umwandlung ist. Ein Vergleich der Abbildung 4.11 
und Abbildung 4.12 bestätigt diese Annahme. Ein weiteres Argument liefern die 
Aufnahmen von U. Ahrens [1] (Abbildung 5.3), die belegen, dass die 
spannungsüberlagerte Umwandlung in der Perlitstufe zu einer Ausrichtung der 
Perlitplatten führt. Die simultanen Messungen der Längs- und Querdehnungen bestätigen 
diese  Beschreibung  zusätzlich.  In  Abbildung  5.4  ist  ein  Vergleich  der  Längs-  und  
Querdehnungen während der isothermen perlitischen Umwandlung dargestellt. Die unter 
der Einwirkung von Zugspannung umgewandelte Probe zeigt eindeutige 
Umwandlungsplastizität.  

 
 
Abbildung 5.2     Schematische Darstellung der Wachstumsfront des Perlits. Die kurzen Pfeile 
zeigen die Richtung der Kohlenstoffdiffusion in der Grenzfläche an [58]. 
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Der oben erwähnte Unterschied zu der Umwandlungskinetik des Stahls 

40CrMnMoS 8 6 [1] kann durch seine Umwandlungsträgheit erklärt werden. Es ist 

möglich, dass die Gitterverzerrungen die Diffusion in den bevorzugten Richtungen 

begünstigen, gleichzeitig aber die ohnehin langsame Diffusion in den anderen Richtungen 

noch mehr verlangsamen. 

 

 

 

 

 
Abbildung 5.3     Perlitisches Gefüge nach isothermer Umwandlung bei 595° C, Stahl mit 0,4 

Ma.-%C. a) ohne äußere Belastung, b) 85 MPa während der Umwandlung. TEM-Hellfeld-

Aufnahmen. U. Ahrens [1]. 
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Abbildung 5.4     Vergleich der Umwandlungsdehnungen einer lastfreien bzw. spannungs-

überlagerten isothermen perlitischen Umwandlung bei 550 °C. 
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5.3.2 Isothermes Zeit-Temperatur-Umwandlungsverhalten in der 

Bainitstufe 

Die isotherme Phasenumwandlung des untersuchten Stahls in der Bainitstufe wird 

durch das Zusammenspiel mehrerer Faktoren beeinflusst. Diese Faktoren wurden auch 

teilweise für die anderen Stahlsorten in den früheren Arbeiten identifiziert wie z.B in [1]. 

Ein wesentlicher Einflussfaktor ist die der Umwandlung vorhergehende Austenitisierung 

des Werkstoffs [18]. 

In Abbildung 4.13 ist der Bainitanteil über der Zeit in Abhängigkeit von der 

vorhergehenden Austenitisierung aufgetragen. Die Umwandlung erfolgte frei von externen 

Beanspruchungen bei einer isothermen Temperatur von 340 °C. Die Verläufe belegen 

eindeutig, dass mit der steigenden Austenitisierungstemperatur die Kinetik der 

Phasenumwandlung deutlich verzögert wird. Dabei spielt die Austenitisierungszeit eine 

untergeordnete Rolle. Diese Tatsache kann folgende Ursachen haben. Die bei der 

Austenitisierung bei 1200 °C entstandenen Austenitkörner weisen eine mittlere Korngröße 

von 44 µm auf. Die nach der Austenitisierung bei 880 °C entstandenen Austenitkörner 

hingegen sind im Mittel nur 16 µm groß (Abbildung 4.4). Demzufolge weist ein in 

5 Minuten bei 880 °C entstandenes Gefüge eine wesentlich höhere Dichte der Keimstellen 

(Korngrenzen) auf, welche die nachfolgende Phasenumwandlung beschleunigen [59]. 

Damit sind aber die Unterschiede in der Umwandlungskinetik zwischen der 5-minütigen 

Austenitisierung bei 880 °C und der 10-sekundigen Austenitisierung bei 1050 °C nicht zu 

erklären, da die Austenitkorngröße in beiden Fällen bei etwa 16 µm liegt [18]. Eine 

mögliche Erklärung dafür liefert Abbildung 4.3 a). Die deutlich zu sehenden Cromkarbide 

beweisen, dass bei einer 5-minütigen Austenitisierung bei 880 °C nicht alle Karbide 

aufgelöst werden. Diese stellen zusätzliche Keime dar, was die nachfolgende 

Phasenumwandlung zusätzlich beschleunigt. Der nächste zu berücksichtigende Faktor ist 

der Gehalt des Kohlenstoffs und der Legierungselemente im Gefüge. Mit steigender 

Austenitisierungstemperatur steigt die Triebkraft zur Auflösung der Karbide sowie 

Diffusionsgeschwindigkeit des Kohlenstoffs und der Legierungselemente. Demzufolge 

steigt der Gehalt des Kohlenstoffs und der Legierungselemente, hauptsächlich von Crom, 

im Gefüge, was wiederum zur Verzögerung der Kinetik der Umwandlung mit steigender 

Austenitisierungstemperatur führt [18, 60]. 

Der der Austenitisierung folgende Umformprozess beinhaltet elastische und plastische 

Beanspruchung des Werkstoffs, was wiederum die ansetzende Umwandlung in der 

Bainitstufe beeinflusst. Abbildung 4.14, Abbildung 4.15 und Abbildung 4.16 

dokumentieren den Einfluss der während der Umwandlung aufgeprägten einachsigen 

Spannungen auf das isotherme Umwandlungsverhalten des untersuchten Werkstoffs in der 

Bainitstufe. Diese belegen, dass die Kinetik der bainitischen Umwandlung durch die 

aufgeprägten äußeren Spannungen, die deutlich niedriger als die Elastizitätsgrenze des 

unterkühlten Austenits sind, deutlich beschleunigt wird. Dieser Effekt, der mit der Höhe 

der aufgebrachten Spannung ansteigt, ist auf die Erhöhung der Triebkräfte für die 

Umwandlung und die Bildung zusätzlicher Keimstellen zurückzuführen [61, 62]. Aus dem 

Vergleich der Umwandlungen nach den unterschiedlichen Austenitisierungen wird 

deutlich, dass der Einfluss der Spannungen, die während der Phasenumwandlung auf die 
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Probe wirken, mit zunehmender Austenitisierungstemperatur immer größer wird. Dieser 

Effekt, der im Hinblick auf die Modellierung des Umwandlungsverhaltens von Bedeutung 

ist, kann durch das geänderte Verhältnis zwischen den für die Umwandlung notwendigen 

chemischen (Unterkühlung) und mechanischen (einachsige Spannung) Triebkräften erklärt 

werden. Nach der Austenitisierung bei 880 °C ist die chemische Triebkraft durch die 

Unterkühlung bei 340 °C bereits so groß, dass die Umwandlung auch ohne äußere 

Spannung bereits nach etwa 17 Sekunden einsetzt (Abbildung 4.13). Daher führt die 

zusätzliche Energie durch die aufgebrachten Spannungen nur zu einer kleineren 

Beschleunigung der Umwandlungskinetik. Nach einer Austenitisierung bei 1200 °C ist die 

Umwandlung im spannungsfreien Zustand deutlich langsamer (Abbildung 4.13), was auf 

eine niedrigere Triebkraft durch die bei 340 °C vorhandene Unterkühlung hinweist. 

Demzufolge haben die überlagerten elastischen Spannungen, die eine zusätzliche Energie 

liefern, einen größeren Einfluss auf die Kinetik der Phasenumwandlung.  

Eine weitere Möglichkeit, die bainitische Umwandlung zu beeinflussen, ist die 

Vorverformung des unterkühlten Austenits, die zur plastischen Verformung der 

Austenitkörner und damit zur Erhöhung der Keimstellendichte im unterkühlten Austenit 

führt [63]. In Abbildung 4.18, Abbildung 4.17 und Abbildung 4.19 ist der Einfluss der 

Vorverformung des unterkühlten Austenits bei 340 °C nach drei verschiedenen 

Austenitisierungen zusammengefast. Die Diagramme belegen, dass für alle drei 

Austenitisierungen folgendes gilt: Die plastische Vorverformung des unterkühlten 

Austenits beschleunigt die Kinetik der bainitischen Umwandlung noch mehr als die 

Spannungen, obwohl die Umwandlung spannungsfrei abläuft. Eine beschleunigte Kinetik 

wird beobachtet, wenn die Triebkraft für die Umwandlung erhöht ist oder zusätzliche 

Keimstellen gebildet werden [61, 62]. Da die plastische Vorverformung einen deutlich 

größeren Effekt als eine während der Umwandlung aufgeprägte Spannung hat (Abbildung 

4.20), scheint hier der Einfluss der Keimstellendichte zu überwiegen. Diese Tatsache wird 

auch dadurch bestätigt, dass mit der steigenden Austenitisierungstemperatur der Einfluss 

der Vorverformung auf die Kinetik der Phasenumwandlung zunimmt. Mit der steigenden 

Austenitisierungstemperatur steigt auch die mittlere Korngröße des Austenits und die 

Eisen- und Chromkarbide werden zunehmend aufgelöst, was eine Reduzierung der 

Keimstellendichte nach sich zieht. Die Vorverformung des Austenits führt zur Erhöhung 

der Keimstellendichte im unterkühlten Austenit [63]. Die erhöhte Keimstellendichte führt 

wiederum zu einer Beschleunigung der Umwandlungskinetik. Dabei spielt die durch die 

Vorverformung im Gefüge gespeicherte elastische Energie eine untergeordnete Rolle.  

Während einer Warmmassivumformung treten nicht nur Spannungen oder plastische 

Verformungen des unterkühlten Austenits auf, sondern vielmehr die Kombination aus den 

beiden Beanspruchungen. Abbildung 4.21 fasst die Auswirkungen verschiedener 

Beanspruchungen des unterkühlten Austenits auf die Kinetik der Phasenumwandlung 

zusammen. Daraus kann auch die Abhängigkeit der Kinetikbeschleunigung von den 

verschiedenen Beanspruchungen abgeleitet werden. Weiterhin ist ersichtlich, dass die nach 

der Vorverformung aufgebrachte Spannung von 100 MPa die Umwandlungskinetik nur 

noch unwesentlich beschleunigt und keine Verschiebung des Startpunktes der 

Umwandlung erzwingen kann. Demzufolge überwiegt auch hier der Einfluss der 

Keimstellendichte. Durch die in Abbildung 4.20 veranschaulichte Beschleunigung der 
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bainitischen Phasenumwandlung in Abhängigkeit von der wirkenden einachsigen 

Beanspruchung wird deutlich, dass herkömmliche ZTU-Diagramme, die an kleinen 

lastfreien Proben ermittelt wurden, nur bedingt auf die Prozesse der thermo-mechanischen 

Fertigung übertragbar sind.  

Des Weiteren wird durch diese Diagramme der Einfluss der fertigungsgerechten 

Austenitisierung, teilweise bei extrem hohen Temperaturen (1200 °C) und kürzeren 

Austenitisierungszeiten, auch nicht berücksichtigt. Aus Abbildung 4.20 ist ersichtlich, dass 

der Umwandlungsverlauf der prozessrelevant (Vorverformung+Spannung) belasteten 

Probe mit der Umwandlung der unbelasteten Probe in keiner Weise übereinstimmt. Der 

maximale Unterschied des zu der gleichen Zeit umgewandelten Bainitanteils liegt in 

diesem Fall bei etwa 80%. Demzufolge wäre eine direkte Verwendung der Daten aus 

herkömmlichen ZTU-Diagrammen für die Modellierung des Herstellungsprozesses mit 

einem entsprechend großen Fehler verbunden. Im Umkehrschluss sind für eine korrekte 

Prozessmodellierung die beanspruchungsabhängigen ZTU-Diagramme zwingend 

erforderlich.  

Die Erstellung solcher Diagramme stellt aber relativ hohe Anforderungen an den 

experimentellen Aufbau, unter anderem an die Messtechnik, und ist dementsprechend 

aufwändig, zumal die Wirkung der mechanischen Beanspruchung von den 

Austenitisierungsbedingungen und der Umwandlungstemperatur abhängig ist, was eine 

Abschätzung erschwert. Die hier vorgestellten Ergebnisse liefern jeweils den Start- und 

Endpunkt der isothermen bainitischen Umwandlung bei 340 °C für die unterschiedlichen 

Austenitisierungen und Belastungsfälle.  

Die Wirkung der aufgeprägten Beanspruchungen ist aber auch von der chemischen 

Zusammensetzung des Werkstoffs abhängig. Der in dieser Arbeit untersuchte Werkstoff 

stammte aus einer Charge, um die Reproduzierbarkeit des Umwandlungsverhaltens des 

Materials zu gewährleisten. Um die Umwandlungsunterschiede deutlich zu machen, wird 

an dieser Stelle ein Vergleich mit einem deutlich umwandlungsträgeren Stahl, 

40CrMnMoS 8 6 [1], angestellt. Abbildung 4.21 zeigt Unterschiede im 

beanspruchungsabhängigen Umwandlungsverhalten zwischen den Werkstoffen 51CrV4 

und 40CrMnMoS 8 6. Aus der Abbildung ist gut zu erkennen, dass bei dem 

umwandlungsträgeren Werkstoff bereits kleine Spannungen zu einer deutlichen 

Beschleunigung der Umwandlungskinetik führen. Insbesondere wird auch der Startpunkt 

der Umwandlung zu einem deutlich früheren Starpunkt verschoben.  

Demzufolge müssen bei der Modellierung der Umwandlung in den thermo-mechanisch 

gekoppelten Prozessen mehrere, sich gegenseitig beeinflussende  Parameter berücksichtigt 

werden. Abbildung 5.5 fasst die wesentlichen Eiflussfaktoren zusammen, die das Zeit-

Temperatur-Umwandlungsverhalten eines niedriglegierten Stahls beeinflussen. 
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5.4 Umwandlungsplastizität 

In den verbreiteten Modellen zur Modellierung der Umwandlungsplastizität ist der K-

Faktor näherungsweise umgekehrt proportional zu der Fließspannung des unterkühlten 

Austenits. Demzufolge müsste das Ausmaß der Umwandlungsplastizität mit sinkender 

Fließspannung des Austenits, in dem Falle mit der steigenden Austenitisierungstemperatur, 

ansteigen. Abbildung 4.24 und Abbildung 4.25 belegen, dass bei der gleichen überlagerten 

Spannung während der Umwandlung und der gleichen Umwandlungstemperatur die 

Proben, die bei höheren Temperatur austenitisiert wurden, auch höhere Werte der 

umwandlungsplastischen Dehnungen aufweisen. Abbildung 4.8 belegt, dass die höhere 

Austenitisierungstemperatur zur Verringerung der Fließspannung des unterkühlten 

Austenits führt, was den oben beschriebenen Effekt hervorruft, da der K-Faktor umgekehrt 

proportional zu der Elastizitätsgrenze der weichen Phase ist [41]. Die ermittelten Daten 

liefern experimentelle Grundlagen zur Berechnung des K-Faktors für die durch die 

elastischen Spannungen hervorgerufenen umwandlungsplastischen Dehnungen für die 

prozessrelevanten Temperaturen. Dabei belegt Abbildung 4.24, dass bei dem untersuchten 

Werkstoff das Spannungsvorzeichen keine Auswirkung auf den Betrag der 

Umwandlungsplastizität hat. Der gleiche Effekt wurde von U. Ahrens [1] am Stahl 

40CrMnMoS 8 6 festgestellt. Die Umwandlung mit einer überlagerten Druckspannung 

 
Abbildung 5.5     Zusammenfassung der Einflussfaktoren, die das Zeit-Temperatur-Umwandlungs-

verhalten eines niedriglegierten Stahls beeinflussen. 
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verläuft zwar langsamer, führt jedoch zur gleichen Umwandlungsplastizität. Eine weitere 

für die Prozessmodellierung wichtige Frage ist die Entwicklung der 

Umwandlungsplastizität im Anschluss an eine plastische Vorverformung des Austenits. 

Abbildung 4.27 und Abbildung 4.28 belegen, dass die Vorverformungen des stabilen 

Austenits bei der Austenitisierungstemperatur, zumindest bei den in dieser Arbeit 

untersuchten Temperaturen, keinen Einfluss auf die umwandlungsplastischen Dehnungen 

aufweisen. Demzufolge kann die Vorverformung des stabilen Austenits bei der 

Modellierung der Umwandlungsplastizität vernachlässigt werden. Die kleinen plastischen 

Verformungen des unterkühlten Austenits hingegen führen bei der 

Umwandlungstemperatur zu einer deutlichen Entwicklung der Umwandlungsplastizität. 

Aus dem Vergleich der Abbildung 4.27 und Abbildung 4.28 ist deutlich zu erkennen, dass 

mit der steigenden Austenitisierungstemperatur der Einfluss der Vorverformung des 

unterkühlten Austenits auf die Umwandlungsplastizität geringer wird. Dies bestätigt die 

Annahme, dass die Umwandlungsplastizität im Wesentlichen durch eine Kombination aus 

äußeren und inneren Spannungen, die das Umklappen des Gitters während der bainitischen 

Umwandlung maßgeblich beeinflussen, hervorgerufen wird [49]. Diese Annahme erklärt 

auch die Steigerung der Umwandlungsplastizität im Falle der überlagerten äußeren 

Spannungen mit der steigenden Austenitisierungstemperatur, die zur Vergrößerung der 

Austenitkörner führt und damit ein ungehindertes Wachstum der bevorzugten 

Umwandlungsvarianten erlaubt. Da mit der steigenden Austenitisierungstemperatur eine 

Verringerung der Festigkeit des unterkühlten Austenits verbunden ist (vgl. Abbildung 4.8), 

sind auch die gespeicherten inneren Spannungen im Gefüge geringer, was zu einer 

kleineren Umwandlungsplastizität führt.  

Für die Simulation der Umwandlungsplastizität während eines thermo-mechanischen 

Prozesses muss aber die Kombination aus plastischer Vorverformung und überlagerten 

Spannungen berücksichtigt werden. In Abbildung 5.6 ist ein direkter Vergleich der 

Verläufe der umwandlungsplastischen Dehnungen nach einer Vorverformung von 5,5%, 

mit überlagerter Zugspannung von 100 MPa, sowie nach einer Vorverformung von 6% und 

überlagerter Zugspannung von 100 MPa dargestellt. Wie man der Abbildung entnehmen 

kann, können in dem Fall die umwandlungsplastischen Dehnungen nach einer 

Vorverformung und im Falle der Spannungsüberlagerung einfach addiert werden, um den 

Wert der umwandlungsplastischen Dehnungen aus dem Kombinationsversuch zu erhalten. 

Dies gilt jedoch nicht für jede Kombination aus Vorverformung des unterkühlten Austenits 

mit anschließender spannungsüberlagerten Umwandlung. In der Arbeiten von 

U. Ahrens [1] und H.-G. Lambers [64] ist dokumentiert, dass bei kleineren plastischen 

Vorverformungen des unterkühlten Austenits und anschließender spannungsüberlagerter 

Umwandlung die umwandlungsplastischen Dehnungen wesentlich größer sind als die 

einfache Addition aus den separaten Versuchen ergeben würde. Desweiteren ist die 

Umwandlungsplastizität auch von der Austenitisierungstemperatur, 

Umwandlungstemperatur und von der Kombination der Belastungen abhängig. 

Demzufolge sind diese Effekte bei der Modellierung der thermo-mechanisch gekoppelten 

Prozesse zu berücksichtigen. 

Dass die Modellierung der Umwandlungsplastizität in einem Umformprozess extrem 

schwierig ist, zeigen bereits Experimente mit einer Probenentlastung während der 
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Phasenumwandlung. Diese sollen einen nicht konstanten Belastungszustand während des 

Prozesses nachbilden. In Abbildung 4.29 sind die Entwicklungen der 

umwandlungsplastischen Dehnungen nach der Entlastung für verschiedene 

Zugspannungen dargestellt. In Abbildung 5.7 ist eine Vergrößerung des Bereiches 

dargestellt, in dem die Proben entlastet wurden. Hier ist deutlich zu erkennen, dass nach 

der Entlastung der Proben bei allen Spannungsniveaus ein Teil der bereits gebildeten 

umwandlungsplastischen Dehnungen zurückgebildet wird (für die „100 MPa-Probe“ 

eingezeichnet). Für diese Rückverformung der plastischen Dehnungen gibt es mehrere 

Erklärungsansätze [32, 42]. Auffallend in dieser Darstellung ist es, dass mit der steigenden 

Spannung der Effekt der Rückverformung schnell von den einsetzenden 

umwandlungsplastischen Dehnungen wettgemacht wird. So ist der Anstieg der 

Umwandlungsplastischen Dehnungen bei der „50 MPa-Probe“ nach der Rückverformung 

kaum messbar. Im Gegensatz dazu geht bei der mit 140 MPa belasteten Probe die 

umwandlungsplastische Dehnung nach der Entlastung auch um etwa 0,01% zurück, steigt 

aber während der Umwandlung fast auf den Wert vor der Entlastung wieder. 

Da die Größe der Rückverformung bei allen drei Spannungsniveaus etwa den gleichen 

Betrag aufweist, ist diese von dem Zustand des Gefüges (Temperatur, Korngröße, Anteil 

der umgewandelten Phase) abhängig. Die Zunahme der umwandlungsplastischen 

Dehnungen nach der Entlastung hingegen ist von den während der Umwandlung 

überlagerten Spannungen abhängig und steigt mit steigender Spannung. Diese Tatsache 

deutet auf die gespeicherten Eigenspannungen in der Probe hin, die während der 

Umwandlung mit überlagerten Spannungen entstanden sind und für eine messbare 

Umwandlungsplastizität sorgen.  
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Abbildung 5.6     Umwandlungsplastizität über der Zeit in Abhängigkeit von der überlagerten 

Spannung, Vorverformung und Kombination aus Spannung und Vorverformung. Isotherme 

bainitische Umwandlung bei 340 °C nach einer Austenitisierung für 10 Sekunden bei 1050 °C, 

aufgeheizt in 15 Sekunden. 
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Da eine positive umwandlungsplastische Dehnung während der Umwandlung im 

belasteten Zustand zu einer positiven Umwandlungsplastizität nach der Entlastung führt, 

kann dieser Effekt nicht mit dem Bauschinger-Effekt erklärt werden und muss durch die 

bevorzugten Umwandlungsrichtungen in der Mikrostruktur hervorgerufen werden. So 

verursachen positive Spannungen, die in der ersten Phase der Umwandlung wirken, auch 

nach dem Entlasten des Werkstücks weitere positive umwandlungsplastische Dehnungen. 

Bei höheren Austenitisierungstemperaturen wird dieser Trend verstärkt. Abbildung 4.30 

zeigt einen Vergleich der umwandlungsplastischen Dehnungen mit und ohne Entlastung 

für Zug- und Druckspannungen nach einer Austenitisierung bei 1200 °C. Daraus ist zu 

entnehmen, dass die gesamten plastischen Dehnungen bei einer entlasteten Probe zwar 

kleiner als bei einer Probe, die nicht entlastet wurde, ausfallen, aber am Ende der 

Umwandlung deutlich größer sind, als zum Zeitpunkt der Entlastung. So ist der 

Rückverformungseffekt im Falle der überlagerten Zugspannung kaum messbar, dafür steigt 

aber die umwandlungsplastische Dehnung trotz der Entlastung um etwa 0,2% (Abbildung 

4.31). Bei der Probe, die bei 880 °C austenitisiert wurde, betrug die nachträgliche 

Steigerung der Dehnung nur etwa 0,07%. Dieses Verhalten kann nicht auf den 

Druckbereich übertragen werden. Aus Abbildung 4.32 ist deutlich zu erkennen, dass die 

umwandlungsplastische Dehnung nach der Entlastung um etwa 0,03% rückgebildet wird. 

Danach nimmt die Umwandlungsplastizität zwar mit der fortschreitenden Umwandlung zu, 
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Abbildung 5.7     Ein Ausschnitt aus der Abbildung 4.29, der Bereich der Rückverformung wurde 

vergrößert. Umwandlungsplastizität über der Zeit in Abhängigkeit von überlagerten, zeitlich 

veränderlichen Zugspannung. Isotherme bainitische Umwandlung bei 340 °C nach einer 

Austenitisierung für 5 Minuten bei 880 °C, aufgeheizt in 2 Minuten. 
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bleibt aber deutlich unter dem vor der Entlastung erreichten Niveau. Die Schwierigkeit der 

Interpretation der Umwandlungsplastizität in technischen Bauteilen ergibt sich aus der 

Interaktion verschiedener Einflussfaktoren. Diese sind in Abbildung 5.8 zusammengefasst. 

Andererseits, ergeben sich durch die gegenseitigen Wechselwirkungen der 

zusammengefasten Faktoren neue Möglichkeiten der Prozessgestaltung. Da die Richtung 

der Umwandlungsplastizität durch die Richtung der Beanspruchung beeinflussbar ist, kann 

durch eine geschickte Prozessführung die plastische Dehnung infolge der 

Phasenumwandlung minimiert bzw. unterdrückt werden.  

5.5 Messungen der lokalen Dehnungen während der 

isothermen bainitischen Umwandlung mittels digitaler 

Bildkorrelation 

Das Umwandlungsverhalten des Stahls wird durch die lokalen Änderungen der 

Mikrostruktur hervorgerufen. Die dabei entstehenden Volumenänderungen können an der 

Probenoberfläche als zweidimensionale Dehnungen detektiert werden. Für diese Aufgabe 

wurde eine berührungslos arbeitende optische Methode der Digitalen Bildkorrelation 

eingesetzt. Die örtliche Auflösung dieses Verfahrens hängt von mehreren 

Faktoren ab [52, 53]. Einige wichtige Einflussfaktoren sind in Abbildung 5.9 

zusammengefast. 

Die ersten Ergebnisse, die in Abbildung 4.33, Abbildung 4.34 und Abbildung 4.35 

dargestellt sind, dokumentieren den Umwandlungsfortschritt einer unbelasteten und einer 

mit 50 MPa Zugspannung belasteten Proben. Den Abbildungen ist zu entnehmen, dass die 

Oberfläche und das Punktemuster während der Umwandlung stabil blieben. Diese Bilder 

wurden nachträglich mit dem Programm VIC2D ausgewertet. Dabei wurde der komplette 

Messbereich korreliert, was die Eignung der Oberfläche-Punktemuster-Kombination 

bestätigt. Um die Eignung dieser Methode zur Messung der Dehnungen während der 

Phasenumwandlung zu überprüfen, wurden die über die gesamte Messlänge ermittelten 

Längs- und Querdehnungen mit den mittels Extensometer ermittelten Daten verglichen 

 
Abbildung 5.8     Einflussfaktoren, die das Umwandlungsplastizität des untersuchten Stahls.  
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(Abbildung 4.36). Die beiden Messmethoden lieferten sehr ähnliche Ergebnisse. Damit ist 

bestätigt, dass die DIC-Messmethode grundsätzlich geeignet ist, um die 

Umwandlungsdehnungen zu messen. Der Hauptvorteil der Methode liegt aber in der 

Messung der lokalen Dehnungen und der Möglichkeit, diese mit den benachbarten 

Regionen direkt zu vergleichen. Aus dem direkten Vergleich der Messdaten in Abbildung 

4.35 geht deutlich hervor, dass die unter einer Zugspannung umgewandelte Probe einen 

deutlich inhomogeneren Zustand der lokalen Umwandlungsdehnungen aufweist als die 

Probe, die lastfrei umgewandelt wurde. Die Auswertung der Dehnungen entlang einer 

horizontalen Linie (Abbildung 4.38) bestätigt, dass bei der unter externer Last 

umgewandelten Probe sowohl die Maximal- wie auch Minimalwerte deutlich größer sind 

als bei der Probe, die der lastfreien Umwandlung unterzogen wurde. Diese Auswertung 

bestätigt noch einmal, dass die aufgeprägten Spannungen zu einer Selektion der sich 

während der Umwandlung bildenden Bainitvarianten führen. 

Die Größenordnung der Bereiche, die die Extremwerte aufweisen, liegt im Bereich 

zwischen 15 und 75 µm. Die Austenitkorngröße nach der Austenitisierung bei 1000 °C 

liegt zwischen 15 und 17 µm. Demzufolge entstehen diese Bereiche sowohl aus den 

einzelnen ehemaligen Austenitkörnern, als auch aus einigen benachbarten 

Austenitkornverbunden, die bereits vor der Umwandlung eine ähnliche Gitterorientierung 

aufweisen. Wie in der EBSD-Aufnahme (Abbildung 4.37) zu sehen ist, weisen diese 

Bereiche eine ähnliche, aber nicht dieselbe Orientierungen der Mikrostruktur auf. 

Für das Klären der Ursachen des Rückverformungseffektes muss die Versuchsführung 

weiter optimiert werden. Dabei sollen die Auflösung der DIC-Messmethode, die 

grundsätzlich für die Messung lokaler Dehnungen geeignet ist, wie folgt weiter verbessert 

werden: Da die mechanische Oberflächenpräparation an ihre Grenzen stößt, muss die 

Rauigkeit der Probenoberfläche evtl. durch Elektropolieren weiter reduziert werden. Das 

Punktemuster muss in bezüglich der Partikelverteilung und Partikelgroße weiter verbessert 

werden. Dazu sind evtl. andere Methoden wie z. B. auftragen eines Musters mittels 

Focused Ionen Beam (FIB) besser geeignet. Und nicht zuletzt muss die Auflösung des 

 
Abbildung 5.9     Faktoren, die die örtliche Auflösung des DIC-Verfahrens limitieren. 
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bildgebenden Verfahrens optimiert werden. Die Lichtmikroskopie ist an dieser Stelle 

scheint wegen der zu geringen Auflösung weniger geeignet zu sein [65]. Eine Kombination 

aus Belastungsdilatometer, Rasterelektronenmikroskop und EBSD-Detektor würde eine 

direkte Korrelation zwischen der Umwandlungsdehnungen und der Mikrostruktur 

ermöglichen. 

Andererseits kann durch eine geeignete Austenitisierung und/oder Werkstoff die 

Korngroße des Austenits vergrößert werden, was wiederum zu geringeren Anforderungen 

an die Messtechnik führen würde. 

Ein weiteres mögliches Einsatzgebiet dieser Messmethode ist die Messung der 

Dehnungen in inhomogen aufgeheizten Proben, die den realen Prozess wesentlich näher 

abbilden. Abbildung 5.10 zeigt das Schema eines sich im Aufbau befindendes 

Versuchsstandes, der für die Untersuchungen der inhomogenen (gradierten) 

Wärmebehandlung eingesetzt werden soll. Das in a) angezeichnete Mikroskop (2) ist 

(noch) nicht integriert. 

Zusammenfassend können die Ergebnisse der Arbeit folgender maßen interpretiert 

werden: Die im Herstellungsprozess entstehende Mikrostruktur kann in allen drei 

Prozessstufen Aufheizen-Umformen-Abkühlen beeinflusst werden. Dabei kann durch eine 

geschickte Prozessführung eine gewisse Optimierung der Bauteileigenschaften realisiert 

werden. Dies setzt eine korrekte, durchgehende Simulation des Prozesses voraus. 

 

 
 

Abbildung 5.10     a) Schematische Darstellung eines Versuchsstandes, der die Umwandlungs-

dehnungen infolge einer inhomogenen Aufheizung und Abkühlung detektiert. 1) Kreisrunde 

Probe, 2) Mikroskop (noch nicht integriert), 3) Wärmebildkamera, 4) Laser (Heizung), 

5) Kühlung. 

b) Wärmebild und die entsprechende Temperaturverteilung in einer dünnen runden Probe. 





 

 

6 Zusammenfassung 
Die vorliegende Arbeit dokumentiert den Einfluss der unterschiedlichen 

Beanspruchungen auf das Umwandlungsverhalten und die Umwandlungsplastizität des 

niedriglegierten Stahls 51CrV4 (1.8159) in Abhängigkeit von der vorhergehenden 

Austenitisierung. Durch eine systematische Untersuchung wurden weitreichende 

Erkenntnisse über die Einflussgrößen der Phasenumwandlung gewonnen. Diese werden 

unter anderem in einem weiteren Schritt für ein physikalisch fundiertes Modell des thermo-

mechanisch gekoppelten Prozesses gebraucht, um eine verbesserte Modellierung zu 

ermöglichen. 

Um den Prozess möglichst realitätsnah zu simulieren, wurden die Proben bei drei 

verschiedenen Temperaturen austenitisiert und in speziell entwickelten Prüfständen mit 

den prozessrelevanten Belastungen während der Umwandlung beaufschlagt. Für eine 

eindeutige Differenzierung zwischen spannungs- und dehnungsinduzierten Effekten wurde 

im ersten Schritt das Spannungs-Dehnungs-Verhalten des unterkühlten Austenits für alle 

relevanten Temperaturen ermittelt. Das Umwandlungsverhalten des Werkstoffs im 

Anschluss an eine Vorverformung des stabilen und unterkühlten Austenits wurde 

systematisch untersucht, ebenso die Auswirkung der äußeren Beanspruchung während der 

Umwandlung auf die Umwandlungsplastizität. Dabei wurde die Bedeutung der 

veränderlichen Belastung, die zu den Rückverformungseffekten führen kann, 

mitberücksichtigt. Die experimentellen Daten wurden bereits für die Optimierung des 

Umformprozesses in dem Teilprojekt A1 in Rahmen des SFB/TRR 30 verwendet. 

Ein Teil der in dieser Arbeit dargestellten Ergebnisse wurden bereits im Rahmen einer 

Kooperation mit dem Lehrstuhl für Technische Mechanik  (LTM Universität Paderborn) 

für die Entwicklung eines phänomenologischen Modells zur Beschreibung bainitischen 

Phasenumwandlung verwendet [26]. Die Modellierung weiterer Phasen befindet sich im 

Entwicklungsstadium. Weiterhin flossen die experimentellen Daten in die Entwicklung 

eines mikrostrukturell basierten Modells ein, das im Rahmen einer Kooperation des 

Lehrstuhls für Werkstoffkunde mit Prof. Canadinc (Koc University, Istanbul, Turkey) 

entwickelt wurde [27]. 

Um die Umwandlungsvorgänge in der Mikrostruktur besser zu verstehen, wurde ein 

Prüfstand aufgebaut, der eine zwei-dimensionale Messung der Umwandlungsdehnungen 

bei den prozessrelevanten Temperaturen und Beanspruchungen ermöglicht. Bei den 

Auswertungen der Messungen wurde eine Software der Firma Limes Messtechnik GmbH 

eingesetzt. 
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Die in dieser Arbeit dargestellten Ergebnisse zeigen, dass bei der Betrachtung der 

belastungsabhängigen Phasenumwandlungen eines niedrig legierten Stahls folgende 

Punkte mitberücksichtigt werden müssen: 

 Das Spannungs-Dehnungs-Verhalten des stabilen Austenits bei der jeweiligen 

Austenitisierungstemperatur ist sehr stark temperaturabhängig und kann bei den 

untersuchten prozessrelevanten Temperaturen einen vierfachen Unterschied in der 

Zugfestigkeit aufweisen. 

 Das gemessene temperaturabhängige Spannungs-Dehnungs-Verhalten des 

Unterkühlten Austenits ist sehr stark von der Temperatur, Korngröße, 

Anwesenheit/Abwesenheit der Karbide im Gefüge und damit von der 

Austenitisierungstemperatur abhängig. Die Austenitisierungszeit spielt dabei eine 

untergeordnete Rolle.  

 Die isotherme Perlitumwandlung des untersuchten Werkstoffs bei untersuchten 

Temperaturen wird durch die einachsigen Zugspannungen verlangsamt. Diese 

Tatsache wiederspricht den Ergebnissen früherer Untersuchungen [1] an einem 

anderen niedriglegierten Stahl. Demzufolge ist die Kinetik der Perlitumwandlung 

nicht nur von der äußeren Belastung, sondern auch von der chemischen 

Zusammensetzung abhängig. Die Einflussgrößen wurden identifiziert und der 

Sachverhalt konnte geklärt werden. Demzufolge führen bei dem untersuchten 

umwandlungsfreudigen Stahl die elastischen Verspannungen des Kristallgitters zu 

einer Erschwerung der Kohlenstoffdiffusion in bestimmten Richtungen.  

 Mit der steigenden Austenitisierungstemperatur wird die Kinetik der isothermen 

bainitischen Umwandlung deutlich verzögert und der Effekt der Kinetik-

beschleunigung durch die während der Umwandlung aufgeprägten äußeren 

Spannungen deutlich verstärkt. 

 Plastische Vorverformung des unterkühlten Austenits bewirkt eine deutliche 

Beschleunigung der Umwandlung. Diese ist noch wesentlich stärker ausgeprägt als 

die Beschleunigung durch die elastischen Spannungen. Die Verformung des 

stabilen Austenits bei der Austenitisierungstemperatur hingegen hat keinen Einfluss 

auf das Umwandlungsverhalten des Werkstoffs. 

 Die während der Umwandlung aufgeprägten elastischen Spannungen führen zu 

einer Entstehung umwandlungsplastischer Dehnungen auch dann, wenn die 

Spannungen deutlich unter der Elastizitätsgrenze des unterkühlten Austenits liegen. 

Die Vorverformung des unterkühlten Austenits führt auch zu einer Entstehung der 

umwandlungsplastischen Dehnungen. Die Vorverformung des stabilen Austenits 

bei der Austenitisierungstemperatur hingegen hat kein Einfluss auf die 

umwandlungsplastischen Dehnungen. Die Höhe der während der Umwandlung 

entstehenden plastischen Dehnungen ist von der Austenitisierungstemperatur, Höhe 

und Richtung der aufgeprägten Spannung, Vorverformungstemperatur des 

unterkühlten Austenits, Vorverformungsbetrag des unterkühlten Austenits und des 

zeitlichen Verlaufs der äußeren Beanspruchung abhängig. 

 Die herkömmlichen ZTU-Diagramme sind für die Beschreibung und Modellierung 

einer lastabhängigen Umwandlung des untersuchten Werkstoffs nicht geeignet. Um 
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das Umwandlungsverhalten des Werkstoffs in einem thermo-mechanischen Prozess 

hinreichend genau beschreiben zu können, sind beanspruchungsabhängige ZTU-

Diagramme notwendig. Die vorliegende Arbeit liefert erste Abhängigkeiten des 

Umwandlungsverhaltens des Werkstoffs 51CrV4 in der Perlit- und Bainitstufe. Die 

Erstellung eines belastungsabhängigen Diagramms ist jedoch mit einem 

erheblichen experimentellen Aufwand verbunden. 

 Das im Rahmen dieser Arbeit aufgebaute „DIC-Belastungsdilatometer“ hat 

zweidimensionale Messungen der Umwandlungsdehnungen während der 

isothermen bainitischen Umwandlung ermöglicht. Diese Messungen haben gezeigt, 

dass die Bereiche, die einen auffallend großen Betrag der Umwandlungsdehnungen 

während einer spannungsüberlagerten Umwandlung aufweisen, auf einige wenige 

ehemalige Austenitkörner bzw. Verbunde aus einigen ehemaligen Austenitkörnern 

begrenzt sind. Die abschließenden EBSD-Messungen haben bestätigt, dass diese 

eine gleiche bzw. ähnliche Orientierung des Kristallgitters aufweisen.  

 





 

 

7 Anhang 

A. Verwendete Symbole 

 

Symbol  Beschreibung Einheit 

Ac1  untere Umwandlungspunkt der alpha-gamma-Umwandlung °C 

Ac3  obere Umwandlungspunkt der alpha-gamma-Umwandlung °C 

Am  maximale Probenquerschnitt mm
2 

   Werkstoffkonstante JMA - Gleichung - 

   Korndurchmesser Hall-Petch-Gleichung m 

    Längsdehnung % 

    Querdehnung % 

    Gesamtdehnung % 

     umwandlungsplastische Dehnung in Belastungsrichtung % 

F  Kraft N 

   Materialkonstante (Umwandlungsplastizität) - 

    Hall-Petch-Konstante - 

   Werkstoffkonstante JMA - Gleichung 
- 

Rm  Zugfestigkeit MPa 

       0,2% - Dehngrenze MPa  

   einachsige Spannung MPa  

    kritische Normalspannung MPa 

    Fließspannung MPa  

    Nennspannung MPa 

   Umwandlungszeit s 

    fiktive Inkubationszeit JMA - Gleichung s 

   Volumen mm
3 

ΔV/V  Volumenänderung - 

 (t)  zum Zeitpunkt t bereits umgewandelter Phasenanteil - 
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B. Verwendete Abkürzungen 

 

BSE  Back Scattered Elektrons  

DIC  Digital Image Correlation 

DIN  Deutsche Industrie-Norm 

EBSD  Electron Backscatter Diffraction 

EDX  Energy Dispersive X-ray spectroscopy  

FIB  Focused Ion Beam 

HV  Vickershärte 

ISO  Internationalen Organisation für Standardisierungen 

JMA  Jonson-Mehl-Avrami (Gleichung) 

LM  Lichtmikroskopie 

REM  Rasterelektronenmikroskopie 

SFB/TR  Sonderforschungsbereich/Transregio 

TEM  Transmissionselektronenmikroskopie 

TRIP  TRansformation Induced Plasticity 

ZTA-Schaubild  Zeit-Temperatur-Austenitisierung-Schaubild 

ZTU-Schaubild  Zeit-Temperatur-Umwandlung-Schaubild 

 

 

C. Firmenverzeichnis / Bezugsquellen 

 

Firma  Anschrift Leistung 

    

HMC H. Mayer & Co.  Düsseldorf Lieferand für Federstahl 

PFT Präzisionsfertigungstechnik 

GmbH 

 Erwitte Probenfertigung 
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