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Abstract

Petri nets are a popular modeling paradigm for discrete event dynamic systems,
that allow to model concurrency and synchronization. Continuous Petri nets have
been introduced as a relaxation in order to deal with the state explosion problem
that typically appears in discrete systems. In this thesis, timed continuous Petri
nets under infinite server semantics (TCPN) are analyzed. They are represented by
a continuous piecewise linear system with polyhedral regions. A special focus is on
the relation between the structure of the underlying net and the system’s dynamics,

in particular with respect to symmetries and bifurcations.

Symmetries in timed continuous Petri nets are defined as graph automorphisms
of the underlying directed, vertex- and edge-labeled graph. These symmetries are
shown to appear also in the associated piecewise linear system which turns out to
be equivariant with respect to the action of a symmetry on the marking space. It is
furthermore shown that symmetries in any continuous piecewise linear system come
with a permutation of the regions with linear dynamics, which is induced by the cor-
responding group action, and similar system matrices for equivalent regions, just as
in the case of TCPNs. Symmetries imply the existence of flow-invariant fixed-point
subspaces. A reduction technique is proposed that reduces the associated piecewise
linear system making use of these and other flow invariant (affine) subspaces. This
idea is then taken further in order to obtain a reduction technique which generates

a smaller TCPN from the original one by removing symmetries.

In addition, parameter-dependent TCPNs are investigated. It has been observed
that performance indicators of TCPNs may decrease discontinuously if firing rates
of transitions are increased. This phenomenon is explained by discontinuity-induced
bifurcations, which may occur when a steady state hits a boundary between regions

upon variation of a bifurcation parameter.

Keywords: continuous Petri net, piecewise linear system, symmetry, equivariant

dynamics, reduction technique, discontinuity-induced bifurcation






Zusammenfassung

Petrinetze sind ein beliebter Formalismus fiir ereignisdiskrete Dynamische Systeme,
die die Modellierung von Nebenldufigkeit und Synchronisation erméglichen. Konti-
nuierliche Petrinetze stellen eine Relaxierung dar, um dem Problem der Zustands-
raumexplosion zu begegnen, das typischerweise in diskreten Systemen auftritt. In
dieser Arbeit werden kontinuierliche, zeitbehaftete Petrinetze, sogenannte ,,timed
continuous Petri nets under infinite server semantics* (TCPN) analysiert. Sie sind
durch ein kontinuierliches, stiickweise lineares System mit polyedrischen Regionen
gegeben. Das Hauptaugenmerk liegt auf der Beziehung zwischen der Struktur des
zu Grunde liegenden Netzes und der Systemdynamik, insbesondere in Bezug auf

Symmetrien und Verzweigungen.

Symmetrien in kontinuierlichen, zeitbehafteten Petrinetzen werden durch Graph-
automorphismen des gerichteten Graphen mit gewichteten Knoten und Kanten be-
schrieben. Es wird gezeigt, dass sich diese Symmetrien im zugehorigen stiickweise
linearen System widerspiegeln, das dquivariant beziiglich der Gruppenwirkung einer
Symmetrie auf den Markierungsraum ist. Es wird auflerdem gezeigt, dass Symme-
trien in beliebigen kontinuierlichen stiickweise linearen Systemen mit einer von ihrer
Gruppenwirkung induzierten Permutation ihrer Regionen und #hnlichen Systemma-
trizen fiir dquivalente Regionen einhergehen, ebenso wie im Fall von TCPNs. Sym-
metrien implizieren die Existenz flussinvarianter Fixpunktunterrdume. Eine Reduk-
tionstechnik wird entwickelt, die das zugehorige stiickweise lineare System reduziert,
indem sie diese und andere invariante (affine) Unterrdume nutzt. Darauf basierend
wird eine Reduktionstechnik entwickelt, die ein kleineres kontinuierliches Petrinetz

vom urspriinglichen groflen Netz erzeugt, in dem Symmetrien beseitigt sind.

Zudem werden parameterabhingige TCPNs untersucht. Es ist bekannt, dass Leis-
tungsindikatoren fiir TCPNs diskontinuierlich abfallen kénnen, wenn die Feuerraten
von Transitionen erh6ht werden. Dieses Phénomen wird mit Hilfe von diskontinuier-
lichen Verzweigungen erklért, die auftreten kénnen, wenn ein Gleichgewichtspunkt

unter Variation des Verzweigungsparameters auf den Rand einer Region trifft.

Stichworte: Kontinuierliches Petrinetz, stiickweise lineares System, Symmetrie,

dquivariante Dynamik, Reduktionstechnik, diskontinuierliche Verzweigung
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Introduction

Petri nets are a popular modeling paradigm for discrete event systems. Areas of
application range from hardware systems and communication protocols to manufac-
turing systems. This thesis studies dynamical properties of timed continuous Petri
nets with infinite server semantics which are mathematically described by continuous
piecewise linear systems. A lot is known about their analysis and control. However,
there remain many open questions concerning their dynamics. Among those, this
work focuses on symmetries and bifurcations. It is illustrated how symmetries affect
the dynamics of timed continuous Petri nets with infinite server semantics and how
this knowledge can be used to obtain reduced models. Reductions are performed
both in order to reduce the computational effort and to have smaller, more manage-
able models. Moreover, discontinuities of performance indicators upon variation of
a parameter are explained in terms of discontinuity-induced bifurcations that occur
at points where the vector field is nonsmooth. This chapter introduces the central
ideas and concepts this thesis is based upon, followed by a description of the thesis

outline together with a short summary of the contributions of each chapter.



1 Introduction

1 T] T] ta
I
Figure 1.1: A simple Petri net with three nodes pi, ps, p3 and transitions tq, to, t3.

The weight of the arc (t3,p1) is equal to 2. All other arc weights are 1.
Place p; contains one token and place po contains three tokens.

Discrete, Continuous, and Hybrid Petri Nets

Petri nets provide a uniform environment for modeling, formal analysis, and design
of discrete event systems [ZZ94]. They allow to model how events can occur concur-
rently, conflict with each other and depend on each other. They go back to the work
of Carl Adam Petri [Pet62] and have been an active area of research since with a
considerable number of applications to real-world problems in various areas. With
the great variety of applications came different requirements on the formalism. For
this reason, numerous variants of Petri nets have been developed. They all have
in common that they provide a graphical representation of the modeled system by
a graph with two types of nodes, namely places and transitions, and directed arcs
between them. An example can be seen in Figure 1.1 where circles represent places

and rectangles represent transitions.

A number of tokens is assigned to each place. This is called a marking of the net
and describes the current state of the system. In high-level Petri nets, e.g., colored
Petri nets, generalizations of tokens are used. A change of the marking occurs if a
transition fires, i.e., tokens are removed from its input places and at the same time
new tokens are added to its output places. Even though this formalism is originally

not equipped with any notion of time, over the last decades time has been included



in various Petri net formalisms. This has turned out to be particularly useful, e.g.,
for the computation of performance indicators such as the throughput or average

usage of a device.

The analysis of a Petri net traditionally requires the enumeration of markings that
can be reached from an initial marking by firing of transitions (respecting the firing
rules of the chosen Petri net formalism). A typical problem is that the number of
reachable discrete markings can be extremely high even for small nets. The number
may even be exponential in the number of nodes of the net [Val98]. For this reason,
continuous Petri nets have been introduced by David and Alla [DA87]. The idea is
that in systems with large markings, these can be approximated by nonnegative real
numbers. An example is a manufacturing system where places represent buffers of
material or semifinished products and transitions represent the machines in between
which process the goods. If the amount of material in the system is large, it may be

acceptable to use real markings as an approximation.

In fact, there exist many systems where timed continuous Petri nets provide an
excellent approximation of performance indicators of timed discrete Petri nets even
if the number of tokens in the system is small or even restricted to 0 and 1. Hybrid
Petri nets have been suggested for systems in which not all integrality conditions
can be relaxed. They contain discrete and continuous nodes and combine discrete
and continuous dynamics [DA05, DFGS08b].

In this thesis, timed continuous Petri nets with infinite server semantics are studied.
P
0

The marking is given by a vector m & R|> where |P| is the number of places. Its

evolution over time is described by

where F' is a piecewise linear continuous vector field with polyhedral regions [SR02,
SJMV11]. The partition into polyhedral regions is due to the fact that a transition
may have more than one input place and its throughput is restricted by the smallest
weighted marking of its input places. The focus of this work is on obtaining a deeper
insight into the dynamic behavior of such a timed continuous Petri net with respect

to the structure of the underlying directed, vertex- and edge-labeled graph.



1 Introduction

Symmetries in Petri Nets and Differential Equations

Many systems to be modeled exhibit some kind of symmetry such as identical com-
ponents or subprocesses coupled symmetrically. Such symmetries will usually also
be present in the resulting Petri nets. Examples from the literature on discrete Petri

nets are, for example,

e parallel production lines that share common resources like robots or buffers
(see [Abe90, p.24] and [MRRSO0S, p.12]),

e protocols with symmetrically coupled agents (see [Sch00a, p.586]), a famous

example being the classic dining philosophers system (e.g., in [Val94]),

e transport by a container crane where loading and unloading correspond to

identical abstract processes (see [Abe90, p.108]),

e a multiprocessor computer system that consists of multiple copies of compo-

nents which are coupled symmetrically (see [ACB84, p.196]).

Formally, a symmetry of a Petri net is a permutation of its nodes that respects the
node type and arcs. Depending on the chosen Petri net formalism, arc weights and
inscriptions to nodes might also have to be preserved by the permutation [Sch00a).
Symmetries are graph automorphisms of the underlying directed graph. They have
been used in discrete Petri nets to work with a reduced set of reachable markings in

the analysis by considering only equivalence classes of markings [Sta91].

For continuous Petri nets, symmetries have not been studied prior to this work.
However, it is not surprising that such symmetries are also reflected in the associated
piecewise linear system. We prove that F' is equivariant with respect to the action of
the symmetries, i.e., if S, is the permutation matrix associated with the permutation

of places of a symmetry, then
F(Sem) = Sz F(m).

Equivariant dynamics are well known in the area of nonlinear smooth dynamical
systems [GSS88, GS03]. Symmetries appear in many dynamical systems modeling
real world phenomena. They can appear due to the system geometry or simplifying

modeling assumptions. It is well known that in systems with symmetries, the action



of any element of the symmetry group maps trajectories to trajectories. All states
along a trajectory have the same isotropy subgroup, i.e., a solution may not “lose”
or “gain” symmetry over time. This implies the existence of flow-invariant sets.
Symmetric systems often exhibit dynamical phenomena which are nongeneric in
systems without these symmetries. Therefore, the knowledge of a system’s symmetry

is vital in order to obtain a profound understanding of its dynamical properties.

Reduction Techniques for Petri Nets

Various reduction and transformation rules for Petri nets have been developed over
the last decades. Since firing in Petri nets follows rules which are local to the
transitions, the rules usually consist in the identification of local structures and
local transformations. Modifications of the net comprise, for example, the fusion
of nodes or the removal of entire subnets such that relevant properties (liveness,
boundedness, etc.) are preserved. Unfortunately, these rules are usually restricted
to a specific Petri net formalism or net class (e.g., nets where all arc weights are
equal to one). In particular, it is rarely possible to apply rules for untimed Petri

nets to those which explicitly model time.

In discrete Petri nets, symmetries have been used to reduce the complexity of the
analysis. They have also been used in [ADFN99] for a reduction of the net in the
way that if a net contains several identical subnets, all but one can be removed.
However, the restrictions both on the structural properties of the subnet and on the
coupling of the subnets to the remaining net are very strict. In this work, a novel
structured procedure for (i) the reduction of the piecewise linear system associated
to a timed continuous Petri net with infinite server semantics to flow-invariant fixed-
point sets and (ii) a reduction of the net itself by removing redundancies induced by
the symmetries are presented. Since symmetries in these nets haven not been studied
before, neither of the two approaches can be found in the literature. However, for the
reduction of the net itself some examples are known. Consider, for example, the two
nets in Figure 1.2 modeling a multi-computer programmable logic controller from
[ZS10]. The three identical subnets in the net on the left hand side, which correspond
to three identical computers, are replaced by a single subnet. Furthermore, the

weight of the output arc of 5 is adapted. In this thesis, a general procedure for such



1 Introduction

Figure 1.2: Original and reduced model of a multi-computer programmable logic
controller (adapted from [ZS10]).

a reduction is developed and its correctness is proved. The reduction to fixed-point
sets is embedded in a more general reduction procedure to flow-invariant (affine)

subspaces.

Bifurcations in Piecewise Smooth Systems and

Parameter-Dependent Petri Nets

Many dynamical systems in physics, engineering, social sciences, etc. depend on
some parameters which can either change or are not known precisely. Roughly
speaking, if the character of a system’s solutions suddenly changes as a parameter
is varied, we call this a bifurcation. Well-known examples that occur in smooth
systems are saddle-node, pitchfork, and Hopf bifurcations [GH83, Wig90, GSSS88].
In systems where the evolution is not everywhere smooth, new types of bifurcations
may arise if invariant sets interact with subsets of the phase space where the system

is nonsmooth. Such bifurcations are called discontinuity-induced.

Discontinuity-induced bifurcations have been studied in the context of piecewise

smooth dynamical systems [BCBKO08]. These are systems with a partition of the



phase space such that the system is smooth in each region but nonsmooth on some
manifolds separating the regions. Many examples of such systems can be found in
electrical and mechanical systems where discontinuities are introduced by saturation,
backlash, or impact but also in mathematical biology and systems in the social and

financial sciences.

One of the simplest examples of piecewise smooth dynamical systems are piece-
wise linear systems such as those describing the dynamics of timed continuous Petri
nets with infinite server semantics. In these nets the performance (in terms of the
throughput of the transitions) usually increases when the firing rates, which are asso-
ciated to the transitions, are increased. As an example, consider a Petri net modeling
a manufacturing system such that its places correspond to buffers of material and
the transitions to machines processing it. The replacement of a machine by a faster
one is modeled by an increase of a firing rate and, intuitively, the performance of
the system should increase. However, there exist continuous Petri nets where, for
specific values of the firing rates, the throughput of the transitions suddenly drops.
This phenomenon has not been explained yet. In this thesis, such jumps in the
throughput are identified with discontinuity-induced bifurcations. They occur when
the steady state marking, which depends on the firing rate, hits a boundary between
regions of the piecewise linear system and loses hyperbolicity. Such bifurcations af-
fect the robustness of the system with respect to a variation of firing rates and can

be critical for control issues.

Contributions and Structure of this Thesis

In this thesis, the dynamics of timed continuous Petri nets with infinite server se-
mantics is studied with respect to the net topology. After an introduction to the
model, this is done with a special focus on symmetries and bifurcations. It has to
be mentioned that parts of this thesis grew out of the publications [MD09, MDH11,
MS12, Mey12], for each of which the author has given a substantial contribution.

The thesis is structured as follows.

Chapter 2 introduces the Petri net model that is used throughout this thesis. As

in the historical development, it starts with a description of the components and
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discrete dynamics of place/transition nets and stochastic Petri nets. Thereafter, the
state explosion problem, which is typical for such discrete event systems, is illus-
trated. This motivates the introduction of timed continuous Petri nets that relax
integrality constraints on the markings and firings. In particular, timed continuous
Petri nets with infinite server semantics (cf. [SR02]) are introduced. They are identi-
fied to be piecewise linear systems with polyhedral regions as observed in [MRRS08].
It is well-known that some of these regions which are naturally deduced from the
underlying Petri net are redundant. It is proved that such redundant configurations
are always due to choices in the net structure. The chapter ends with a summary

of results on the dynamics of such continuous Petri nets from the literature.

In Chapter 3 a definition of symmetry in timed continuous Petri nets is established
and compared with symmetries in place/transition nets. For the discrete case algo-
rithms for the computation of such symmetries have been developed. These can also
be used for timed extensions and are therefore briefly described. Symmetries in the
net structure and timing are shown to be reflected in the induced piecewise linear
system. More precisely, symmetries bring about a permutation of configurations
and, what is more, equivariant dynamics. The piecewise linear system is equivariant
with respect to the group action of certain permutations of nodes on the marking
space. This allows to apply well-known results on properties of general equivariant
dynamical systems such as the existence of flow-invariant fixed-point sets which are
also summarized in this chapter. Finally, general equivariant piecewise linear sys-
tems are studied. The permutations of regions observed for symmetric Petri nets

appear here as well.

Chapter 4 illustrates several reduction techniques for timed continuous Petri nets.
First, a summary of traditional reduction approaches is given. They concentrate on
local graph transformations that preserve certain properties like liveness or bound-
edness. Second, an algebraic reduction technique for the piecewise linear system
associated with a Petri net system is developed. It makes use of the fact that invari-
ants of the Petri net and symmetries induce invariant (affine) subspaces, fixed-point
subspaces in the latter case. This reduction consists in an (affine) linear transforma-
tion of the system that reduces the dimension of the associated dynamical system.
It is demonstrated for P-invariants, symmetries, and the joint case. A proof is pro-

vided that the original system and the reduced system are equivalent in the sense



that trajectories of one system can be transformed into trajectories of the other by

a simple linear transformation.

The reduction with respect to fixed-point sets is then taken a step further. Not only
the corresponding piecewise linear system is reduced but also the net itself is reduced
by removing redundancies introduced by symmetries. More precisely, a smaller net
is constructed whose nodes represent equivalence classes of nodes of the original
net. The procedure includes the construction of the new net structure, the choice
of arc weights, and an adaption of firing rates associated with the transitions of the
reduced net. The method works under mild restrictions on unequal conflicts. In
contrast to the reduction that affects only the piecewise linear system, a reduction
of the net itself is beneficial during the modeling process and allows to apply further

transformations which are known for Petri nets.

Parameter-dependent timed continuous Petri nets are the topic of research that
Chapter 5 deals with. Here, the steady states and throughput of timed continuous
Petri nets are studied in dependence on the firing rate of one transition. For four
examples, discontinuities in these values are explained in terms of discontinuity-
induced bifurcations. These bifurcations are introduced and characterized for the
case of nonsmooth but continuous systems following the works of [BCBKO08, Sim10].
However, the bifurcations observed in timed continuous Petri nets are not generic in
general piecewise smooth systems as they involve more than two regions of smooth
dynamics and involve nonhyperbolic equilibria. Finally, the special role of so-called
critical regions, which appear together with conflicts, is explained in terms of their

sensitivity towards variations of firing rates.

The thesis closes with a summary of the results and a discussion about open problems

and possible future directions of research in Chapter 6.






From Discrete to Continuous Petri Nets

Petri nets have been used successfully to model and analyze systems that exhibit
concurrency, synchronization, or conflicts. Their name goes back to the thesis “Kom-
munikation mit Automaten” of Carl Adam Petri [Pet62]. Since then, hundreds of
different definitions and extensions with numerous features and analysis methods
for different purposes and application areas have been proposed in the literature
[DJO1, PEO1]. In this thesis, timed continuous Petri nets with infinite server seman-
tics as defined in [SR02] are considered. They have been introduced to overcome
the state explosion problem which typically appears in highly populated models.
The structure of continuous Petri nets is the same as that of discrete nets and they
can — under some assumptions — be used as approximations for the performance
analysis of discrete systems. This chapter starts with an introduction to discrete
Petri nets. In Section 2.2, timed continuous Petri nets with infinite server semantics
(TCPNs) are introduced, followed by their representation as piecewise linear sys-
tems in Section 2.3, where also the existence of redundant regions is discussed. The

chapter ends with a summary of known facts about the dynamics of TCPNs.
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2 From Discrete to Continuous Petri Nets

2.1 Discrete Petri Nets

2.1.1 The Petri Net Modeling Paradigm

In their paper “What Is a Petri Net? Informal Answers for the Informed Reader”
[DJO1], Desel and Juhés worked out those aspects of Petri nets which are common
to at least most models.! According to this work, Petri nets are characterized by
being a graphical notion and at the same time a precise mathematical notion. They
are bipartite graphs with two kinds of nodes interpreted as places and transitions.
Graphically, places are represented as circles and transitions as boxes or bars. A
global state of the net is constituted by the discrete local states of all places. A
behavior is then assigned to the net by enabling and firing rules that depend on and
affect the places in the vicinity of a transition. In this section place/transition nets

are defined.

Formally, the structure of a place/transition net? can be described by a tuple
N =(P,T,F,W) (2.1)

where P = {p1,...,ppp|} and T = {t1,..., )7} are disjoint, finite3 sets of places and
transitions, respectively. F' C (PxT)U(T xP) is the set of directed arcs. The weight
function W : F — N assigns a weight to the arcs. We call (P, T, F) the underlying
net graph (cf. [[SO04]). For a node v € PUT we denote by *v = {u: (u,v) € F'}

and v* = {u: (v,u) € F} the set of its input nodes and output nodes, respectively.

'Due to the significant number of different Petri net classes, there are attempts to scientifically
unify the different concepts and approaches. Suggestions on how this could be done can be found
in [EJPRO1]. In terms of formal definitions, the standard ISO/IEC 15909-1:2004 Software and
system engineering - High-level Petri nets - Part 1: Concepts, definitions and graphical notation
has been developed as a basis for the development of a transfer format for High-level Petri nets.
This thesis follows this standard to a great extent. The main difference is that in this thesis,
there is a strict distinction between the net structure and the marking evolution. This is done
in order to interpret Petri nets as dynamical systems. In contrast, the ISO/TEC 15909-1:2004
standard considers the initial marking to be part of the net.

2With such a 4-tuple most low-level Petri nets can be described, not only place/transition nets. If
nets without arc weights are considered, W is omitted. Some Petri net formalisms use inhibitor
arcs as an additional type of arcs. Such nets are not considered in this thesis.

3In general, it is not necessary to restrict to finite sets of places and transitions, respectively. It is
usual though to say that the number of arcs from or to a node is finite. In this thesis, only nets
with finitely many nodes are considered. This allows to describe the arcs by matrices which is
the notation primarily used in this work.

12



2.1 Discrete Petri Nets

ALTERNATIVE Chome/coﬁ attribution
L] L] O
fork join/synchronization

o N

Table 2.1: Elementary conjunctions in Petri nets [Abe90, p. 28].

We assume that each transition has got at least one input place. The possible
elementary conjunctions are stated and named in Table 2.1. In the case of choices,
we say that transitions are in conflict relation if they share at least one common

input place. Depending on the conjunctions and the arc weights, a net is

e join-free or choice-free if is does not have any joins or choices, respectively,

fork-attribution if it is both join-free and choice-free,

ordinary if W (u,v) =1 for all arcs (u,v) € F,

pure if there exist no p and t such that (p,t) € F and (¢,p) € F,

a state machine if |*t] = [t*| =1 for all t € T,

equal conflict if for any transitions ¢,¢' € T with *¢ N *t' # (), it holds that
*t = *t’ and W(p,t) = W(p,t') for all p € °t.

These and more such classes of Petri nets can be found in, e.g., [Mur89, STMV11].

To each place p € P a number of tokens is assigned, the marking. The global state
of the net is then given by the marking vector m = (my,, ... ,mpu,‘)T € Nl)P'. This
state may change due to firing of a transition which is a local action in the net.
First, the transition needs to be enabled. For this, the marking of each input place
has to be at least as big as the weight of the respective connecting arc. An enabled
transition may then fire, changing the values of its adjacent state variables. Tokens
are removed from input places while the number of tokens in the output places is

increased according to the arc weight. Alternatively, firing can be interpreted by

13



2 From Discrete to Continuous Petri Nets

the token flow paradigm where “tokens flow with infinite speed from place to place,

sometimes they mutate, join or split in transitions” [DJO01].

In order to describe the change of the state mathematically, we introduce ma-
trices Pre, Post € NIPIXITI where — assuming a fixed ordering of the nodes —
Prey,t = W(p,t) and Post,; = W(t,p), respectively.® If (p,t) ¢ F ((t,p) ¢ F),
then Pre,; =0 (Postp; = 0). As it is possible to reconstruct F' and W completely
from these matrices, a place/transition net can alternatively be given by the tuple
(P, T, Pre, Post). We define the token flow matriz

C := Post — Pre.

A transition ¢t € T is enabled in a marking m if m, > Pre,; for all p € P. If t fires,
then W (p,t) tokens are removed from all input places p € *t and W (¢, p) tokens are
added at all output places p € t*. The resulting state is

m' =m+ Ce;

where e; € RI71 is a unit vector. We say that m/ is reachable from m and write m/[t >

m’. When several transitions fire sequentially, we obtain an occurrence sequence.

A Petri net N and an initial marking mq form a Petri net system (N, mg). The set
of all markings reachable from mg through occurrence sequences is the reachability
set RS(N,myg). Let v € N‘OT‘ be a vector that denotes for each transition how often
it fires during the occurrence sequence starting in mg, then the sequence results in
the marking

m = mg + Cv. (2.2)

This is known as the fundamental equation. The vector v is called the firing count
vector of the corresponding occurrence sequence. This behavior of place/transition
nets does not include any notion of time. Neither is the behavior deterministic
in the sense that every marking has got a unique subsequent marking. If several

transitions are enabled with respect to one marking, any one of them may fire.

“In order to keep the notation simple, the form Pre,; is used to denote Pre;; with p; = p and
t; = t and analogously for Post. This is possible because of the fixed ordering of the nodes.
Likewise, we denote by e; the |T|-dimensional j-th unit vector if t; = ¢. In this thesis, this
notational principle applies to all matrices or vectors with nodes as indices.
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2.1 Discrete Petri Nets

Moreover, an enabled transition may fire but does not have to. Thus, one wants to
know which occurrence sequences are “accepted” by the Petri net. The sequence
of markings resulting from subsequent firings is traditionally represented by graphs.
The best known examples of such graphs are reachability graphs which are made
up by all markings reachable from mg and arcs labeled with the transition whose
firing cause the change of the marking. If the set of reachable markings is not finite,
coverability graphs provide an over-approximation of the reachability set by using

macro-markings representing sets of possible markings.

From the fundamental equation, invariants can be computed that allow to derive
some structural properties. Let y € Z/P! such that y”C = 0 and let v be the firing
count vector of an arbitrary occurrence sequence firable from the initial marking
myg, then

mi = mio + yTC’v = mio. (2.3)

This means that the weighted number of tokens remains constant throughout any
occurrence sequence. We call y a P-invariant of N and a P-semiflow if y is
nonnegative [Bal07]. We furthermore define the support of a P-semiflow y as
supp(y) = {p € P : y, > 0}. A semiflow is minimal if its support is not a proper
superset of the support of any other semiflow and the greatest common divisor of

its elements is one.

Let us assume that all places of a Petri net are contained in the support of P-
semiflows. Then, the maximum number of tokens in all places is finite for any initial
marking and occurrence sequence and the net is structurally bounded. If there exists
a single P-semiflow that covers all places, the net is said to be conservative. P-
invariants are used in Section 4.2.2 in order to reduce the dimension of the state

space of the continuous model.

Similar invariants can be defined for transitions. A T -invariant is a vector z € ZI7|

such that Cx = 0. If z > 0, it is called T -semiflow. It corresponds to the firing
count vector of an occurrence sequence that does not change the marking, i.e.,
m = mg + Cx = mg. Attention should be paid to the fact, that the existence of a
T-semiflow is just a necessary condition for such a sequence to exist as it depends
on the initial marking if the transitions are enabled. A net with a 7-semiflow > 0

is called consistent.
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2 From Discrete to Continuous Petri Nets

The identification of invariants is just one example of analysis techniques that have
been proposed for Petri nets. Most of them are well supported by computer tools.
Following [DJO01], we just state briefly the most prominent types of techniques. A
first step after the modeling itself is the validation of the model in which the model
is checked against the modeled system or against desired properties of the system.
Validation is used to discover design problems and errors, e.g., it might be detected
that some required event may not occur in the system. If a model is valid, its behav-
ior is assumed to be related to the behavior of the original system in the required
way. Validation often uses simulation. Here, different occurrence sequences are gen-
erated and analyzed. Usually only a part of the systems’ behavior can be analyzed
by simulations due to the fact that Petri nets often accept an astronomical num-
ber of different occurrence sequences (cf. Section 2.1.3). The generated sequences
are used for the identification of unwanted behavior or for performance evaluation.
Proving by formal methods if the net satisfies a given specification is known as ver-
ification. The methods are typically based on the reachability graph of the net or
reduced versions thereof which still provide all information necessary to decide on

the concrete specification.

The analysis of Petri nets is often concerned with the detection of typical structural
or behavioral properties. An example is the identification whether the net belongs
to one of the net classes defined previously. Other properties of Petri net systems

are:

e Reachability, i.e., a marking m is reachable from the initial marking my.

e Reversibility, i.e., mg is reachable from every marking m € RS(N,my).

e Boundedness, i.e., the number of markings in each place is bounded. In gen-
eral, boundedness depends on the initial marking but if a strictly positive
P-semiflow exists, it is independent of my.

e Deadlock-freeness, i.e., there is no marking reachable from mg such that no
transition is enabled.

e Liveness, i.e., for every reachable marking m and every transition ¢ € T there

exists an occurrence sequence containing ¢ that can be fired from m.

Many analysis techniques use semi-decision methods. For instance, reachability of

a marking m can be negated if m does not satisfy Equation (2.3).
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2.1 Discrete Petri Nets

2.1.2 Timed and Stochastic Petri Nets

In order to evaluate the performance and reliability of complex systems, timing
specifications have been added to Petri nets. Petri nets were originally proposed
explicitly without time and, in fact, the introduction of time leads to several dif-
ficulties in the definition of a coherent model [Chi98]. Surveys on this topic are
[ABCT95, Chi98, Bal07]. The introduction of time has led to a great variety of
different formalisms motivated by a number of applications in, e.g., hardware and
computer architecture design and manufacturing systems. To state just one well-
known example, Merlin and Faber [MF76] developed a notion of timing including
maximal time delays in order to model timeouts in communication protocols. We
introduce the concept of stochastic Petri nets which are a powerful formalism for
the performance analysis of discrete event systems while permitting to apply various
analysis techniques. Under some assumptions, performance values of Petri nets of

this type can be approximated by continuous nets.

Petri nets with time add temporal specifications to the basic net model defined in the
previous section. Time may be associated with places or transitions and a change
of the marking may be triggered by external events or after a deterministically or
stochastically determined period of time. In a stochastic Petri net (SPN), to each
transition ¢ a random firing delay is assigned, whose probability density function
is exponentially distributed. The structure and the firing rule do not differ from
place/transition nets. If a transition ¢ is enabled under some marking, the time that
elapses until ¢ fires is exponentially distributed with a rate A\;. So the average time

for t to fire is /\i
t

The introduction of timing through timed transitions has been influenced greatly
by concepts from Queueing Networks [Chi98]. In the terminology of this discipline,
transitions are interpreted as servers and tokens in the input places represent cus-
tomers at the stations. SPN formalisms differ in the queueing policies (race policy,
preselection policy), server semantics (single server, k server, infinite server), and
memory policies (age memory, enabling memory, reset memory). A frequently used
timed formalism is that of generalized stochastic Petri nets (GSPN). They extend
SPNs by the introduction of immediate transitions which fire without delay as soon

as they become enabled. They are used to model the logics of the system rather
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2 From Discrete to Continuous Petri Nets

than the time-consuming activities. However, many GSPNs can be transformed into
equivalent SPNs [ADFN99].

Due to the memoryless property of the exponential distribution of firing delays,
an SPN is isomorphic to a continuous time Markov chain (CTMC) whose state
space corresponds to the reachability set RS(N,mg) and whose transition rates
can be computed from the firing rates of the SPN.? For this reason, SPNs with
exponentially distributed time delays and race policy are also known as Markovian
Petri nets (cf. [VRS08, VS09]). If the net is reversible and its reachability set is
finite, we can compute the steady-state probability distribution vector of the system
which allows us to define a number of performance measures [ACB84]. Typical
performance measures are the expected value for the number of tokens in a given
place or the throughput of a transition given by its mean number of firings per unit
time (cf. [BK02, pp. 133-134]). In [ABCT95, pp. 117-120], reward functions are used

to define more general performance measures.

Example 2.1. The following model of a production line was published in [ZZ94].
The line consists of a buffer of raw materials, machines M; and Ms, robots R; and
Ry, and two conveyors. One of the machines is subject to failure. The corresponding

Petri net is shown in Figure 2.1(a) together with an interpretation of its nodes.

We are interested in the utilization of machine M7 and the system’s average produc-
tion rate which in this net is the throughput of transition t3. In order to compute
these values, we construct the reachability graph and the corresponding Markov
chain (see Figures 2.1(b)-(c)). From the Markov chain we can compute the steady
state probability vector which is (0.05 0.4 0.5 0.05>T. Machine M; is working
if place po is marked. This corresponds to the marking vector m;. The system is in
this state with probability 0.4. The expected utilization of the machine is therefore
40%. Similarly, we may compute how many final products leave the line per time
unit. Transition t3 fires every time a product is completed. This transition is en-
abled in marking mo which has a probability of 0.5. Together with the firing rate of

t3 we obtain a production average of 0.5 - 4 = 2 workpieces per time unit. &

5A definition of the corresponding isomorphism can be found in [Mol82]. For the case of single
servers, the computation of transition rates is described in detail in [ABC"95, BK02]. For
infinite server semantics, the discrete enabling degrees (that is how often a single transition may
fire simultaneously at a given marking) have to be taken into account.
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2.1 Discrete Petri Nets

Pe

D1 131 P2

®
O

P4

Node Interpretation (and firing rate)

D1 Workpieces and pallets available

D2 Machine M; processing a workpiece
D3 Workpiece ready for processing at Mo
P4 M in repair

D5 M, available

D6 Conveyor slots available

t1 Loading involving M; and R; (A, = 40)

to Processing and unloading involving M; and R; (A, = 50)

t3 Loading, processing, and unloading involving My and Ry (Ay; = 4)
7 M; breaks down (A, = 0.5)

ts M is repaired (A, = 4)

(a) The stochastic Petri net system

@ fm\ Aty

SN

) The reachability graph ) The Markov Chain

Figure 2.1: A production line modeled and analyzed with an SPN. The reachable
markings are mo = (1 0 0 0 1 2)",my=(0 1 0 0 0 2)7
me=(0 010 1 1) andmg=(0 0 0 1 0 2)7
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2 From Discrete to Continuous Petri Nets

2.1.3 The State Explosion Problem

In [DJO1], it is argued that Petri nets can manage the complexity of large systems
and are suited to model complex distributed systems. The number of discrete states
in traditional automata often grows exponentially with the size of the system. In
contrast, the global states of Petri nets are combinations of local states and the
number of places and consequently the number of local states grows linearly with
the size of the modeled system. Complex systems can therefore be described in a
compact manner using Petri nets. However, even if the Petri net itself is relatively
small, there often exist so many different runs in a simulation that it is impossible
to execute them all. Similarly, analysis techniques such as reachability graphs that
are based on an exploration of the state space suffer from the fact that the number
of reachable states becomes extremely high very quickly, even exponentially. This
is known as the state explosion problem. It appears in particular for heavily loaded
systems, i.e., if the total number of tokens in the system is high. The computation
of performance indicators using continuous time Markov chains with state space

RS(N,mg) might therefore be computationally expensive or even impossible.

A famous example of this effect is Dijkstra’s n dining philosophers problem which is a
small mutual exclusion protocol for n agents arranged as a ring (see [Sch00a, Val98]).
It has got 4n places with a binary marking, i.e., it grows linearly with the number
of philosophers. The number of reachable markings, on the other hand, is 3" — 1.
A similar problem is that the number of reachable markings may grow quickly with
the initial load of the system. An example is given in [SRO7]. There, a production
system with two machines and a shared buffer is studied. As many as 250 markings
are reachable from mg. If this initial marking is doubled, there exist 6 300 reachable

markings. If it is multiplied by 5, even 2159 136 states can be reached.

One approach to deal with this phenomenon is to relax integrality constraints. The
basic idea is that a sufficiently large number of tokens in a place may be approx-
imated by a nonnegative real number. Instead of the different discrete states, the
evolution of the continuous marking m € ]R'fo‘ is studied. The dimension of the
system is |P| and therefore independent of the initial marking. This has first been
suggested in [DA87]. Hybrid Petri nets combining discrete and continuous markings

have also been suggested in the literature [DA87, DA05, DFGS08a, DFGS08b].
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2.2 Continuous Petri Nets

2.2 Continuous Petri Nets

2.2.1 Relaxing Integrality Constraints

The first step to obtain a continuous model is to relax integrality constraints both
on the marking and the amount in which a transition can be fired. To start with, we
consider untimed (or autonomous) continuous Petri nets, a generalization of classic
discrete place/transition nets where no time is modeled (see [RTS99]). Here, a tran-
sition ¢ is enabled if all its input places are marked. Its continuous enabling degree

under a marking m is
Mp

enab(t,m) = min
(t,m) pe*t Prey,

in contrast to the discrete enabling degree |enab(t,m)|. If ¢ is enabled under m, it

may fire in any amount 0 < o < enab(¢, m) resulting in the new marking m + aCe;.

Boundedness of the continuous net implies boundedness of its discrete counterpart.
Furthermore, a marking is reachable in the discrete Petri net system only if it is
reachable in the continuous one where the continuous reachability space is a convex
set. A detailed discussion of properties of autonomous continuous Petri nets can be
found in [RTS99, SR02, JRS03, RHS10, SIMV11]. The advantage over discrete nets
is that they allow “the use of convex geometry and linear programming instead of
integer programming, making possible the verification of some properties in polyno-
mial time” [JRS03]. And as stated by [DFGS08a], “the design parameters in fluid
models are continuous; hence, it is possible to use gradient information to speed up

”

optimization and to perform sensitivity analysis.” The approach is limited by the
fact that many properties of the discrete and continuous nets are only weakly linked.
For example, liveness of the continuous Petri net is neither sufficient nor necessary

for liveness of its discrete counterpart.

2.2.2 Timed Continuous Petri Nets with Infinite Server Semantics

We now add a timing to continuous Petri nets and write (M, A) for the timed net

where A = (Mg, ... s At )T denotes the firing rates associated with the transitions.%

As in the case of arc weights, if no firing rate is given in the graphical representation of a TCPN,
the rate is equal to 1.
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2 From Discrete to Continuous Petri Nets

Starting point is the fundamental equation m = mgy + Cv of the underlying discrete
net. Now, the marking changes continuously due to a continuous firing flow that
depends on the current marking. The evolution of the continuous marking m =

(mp,, - .. va\m)T € R‘fo‘ is of the form

m = Cf(m) (2.4)

where f(m) € Rg)‘ is the flow of the transitions for a marking m (cf. [DA05]).

The flow through the fluidified transitions has been defined in several ways in
the literature. For a detailed discussion on this question see [DA93, SR04, GG04,
MRS06, MRS09, LL11, SJMV11]. We now consider the continuous evolution of the
marking of timed continuous Petri nets under infinite server semantics’ (TCPN).
The term “infinite servers semantics”, which stems from queueing theory, means
that the flow of a transition is not upper bounded and only restricted by the ac-
tual marking of its input places. TCPN systems can serve as an approximation
of the expected value of the marking of the corresponding Markovian Petri net
[VRS08, SIMV11].

Under infinite server semantics, the flow of each transition ¢ € T is the product of

the firing rate and the current continuous enabling degree. It is given by

mp

fi(m) = Agenab(t,m) = N\ min Preys

(2.5)
If a Petri net is join-free, then f;(m) depends on the marking of its unique input
m
Pre:t

(2.4) is purely linear. If there are joins, the system shows a linear behavior until

place only. Thus, (2.5) can be reduced to f;(m) =\ where *t = {p}. Hence,
the input place of a transition that constrains the flow changes. The dynamics is

piecewise linear.

Timed continuous Petri nets with infinite server semantics are used to approximate
performance indicators of stochastic Petri nets such as the asymptotic mean marking
or the throughput of a transition. In TCPNs, this corresponds to the equilibrium
marking m* — if it exists — and the flow fi(m*) of transition ¢ at this equilibrium
(cf. [SIMV11]). In this case, we call f* = f(m*) the throughput vector of the system.

"These server semantics are also known as variable speed (cf. [STMV11]).
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Let us consider again the production line from Example 2.1. From the initial mark-

T
ing mg = (1 0 001 2) , the system converges to a steady state m* =

T

(0.05 04 0.5 0.05 0.55 1.5) with flow f* = (2 22 0.2 0.2)”. In fact, the
resulting performance measures are the same as for the discrete net. The utilization
of 40% of machine M; follows from the average marking of 0.4 of place py. The flow

of transition t3 in steady state is 2, exactly as the throughput in the discrete case.

It is important to note that the continuous net is not affected by the state explosion
problem. Independent of the initial marking and the size of the corresponding
discrete reachability set, the continuous approximation always requires to solve a
system of differential equations of dimension |P|. Timed continuous Petri nets can
be conveniently simulated with the Matlab toolbox SimHPN which, besides the

simulation, computes invariants and throughput bounds (cf. [JMV12]).

Continuous Petri nets have been reported to result in good approximations of dis-
crete Markovian Petri nets in many applications. Formally, it has been shown in
[VRS08] that the expected marking of an SPN is approximated by the corresponding
continuous net if two conditions hold. First, the places constraining the dynamics
(i.e., those that lead to the minimum value in (2.5)) do not change over time and
second, all transitions of the discrete net are enabled under the markings reached
with probability close to 1. Even though these conditions are by far not necessary,
there exist examples where the approximation via continuous Petri nets is not sat-
isfactory, not even for large initial markings. In [SJMV11], it is argued that in the
case of ordinary join-free Petri nets the approximation by TCPNs is perfect but
since this is a very small net class, this does not provide a satisfactory answer to
the question which Petri net systems can be suitably approximated. This remains
an active field of research. In the case of Petri nets being poorly approximated by
timed continuous Petri nets with infinite server semantics, new semantics, i.e., new
definitions of the flow f, are being developed [SJMV11, LL11].

For discrete Petri nets a number of subclasses have been defined in Section 2.1.1.
These definitions are also valid for continuous Petri nets. In addition, there are
subclasses which are of special importance in a continuous setting. The class of
equal conflict nets can be extended. A net is of type continuous equal conflict
(CEQ) if for any transitions t,t' € T with *¢ N *t' # (0, there exists k > 0 with

23



2 From Discrete to Continuous Petri Nets

Pre,; = k Pre,y for all p € *t. The relaxed enabling condition guarantees that all

transitions in a conflict relation are still simultaneously enabled.

A Petri net is mono-T-semiflow if it is conservative and has a unique minimal 7 -
semiflow whose support contains all transitions (cf. [CCS91]). A generalization of
these nets are mono-T-semiflow reducible nets which have been motivated by the
concept of visit ratios which is classic in queueing theory (see [JRS05] for details).
A net (N, \) belongs to this class if it is consistent, conservative, and the following

system has a unique solution v € R!7

Cv=0

UVt _ Uyt I X
Prep At 7 Prey, yAy for all ¢,#" in CEQ relation
Vg = 1.

In contrast to mono-T-semiflow nets, the visit ratio v may depend on the timing.
However, it is independent of the initial marking. Mono-T-semiflow reducible nets
can be transformed into mono-T-semiflow nets with identical behavior through a

transformation of equal conflicts.

2.3 Continuous Petri Nets as Piecewise Linear Systems

2.3.1 Definition of Piecewise Linear Systems

We have seen that timed continuous Petri nets with infinite server semantics have
piecewise linear dynamics. Therefore, it seems natural to study these systems in the
classic framework of piecewise linear systems which describe the mutual interaction
between continuous dynamics given by ordinary differential equations and discrete
modes. They are characterized by a partition of the state space into cells in which

the dynamics is linear. We start with some basic definitions.?

8The definitions of polyhedral partitions to be found in the literature differ slightly from each other
with respect to the borders of the regions and their dimension (cf. [GTMO08, AMP95, Joh03]).
Here, closed full-dimensional polyhedra are used. The reason is, on the one hand, that closed
sets appear naturally when dealing with TCPNs and, on the other hand, the dimension is
specified for technical reasons in order to exclude redundant degenerate cases when considering
symmetries in general piecewise linear systems.
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2.3 Continuous Petri Nets as Piecewise Linear Systems

Definition 2.2. A family of closed n-dimensional polyhedra (X;)icr, where I is a
finite index set, is called a polyhedral partition of X C R"™ if

(i) UieIXi =X,

(ii) int(X;) Nint(X,;) = 0 if i # 5.
Definition 2.3. A piecewise linear system (PWL) is a pair ((X;)ier, (A, ai)icr)
where I is a finite index set, (X;)icr a polyhedral partition, and (A;,a;)icr denotes
a family of maps R™ — R", x +— Ajx + a; (A; € R™*" a; € R™).

The dynamics of the system is of the form
T = A;jx+ a; for x € X;.

If a; # 0 for some index ¢, such systems are also known as piecewise affine sys-
tems. According to [CFPTO04], “piecewise linear systems seem to present almost
the same dynamical behavior of general nonlinear systems (limit cycles, homoclinic
and heteroclinic orbits, strange attractors, ...).” The dynamics of these systems
is well understood only for special low dimensional cases. However, it is possible
to identify characteristics of higher dimensional piecewise linear systems stemming

from continuous Petri nets due to their special structure.

We focus on continuous systems, i.e., systems where A;x +a; = Ajxz +a; if v €
X; N X;. Even though the resulting vector field is nonsmooth on the boundaries,
it satisfies a local Lipschitz condition. Thus, existence and uniqueness of solutions
are guaranteed. For discontinuous systems this is not always the case. See [Joh03,

pp. 14-20] and [IS00] for solution concepts.

2.3.2 Configurations and System Matrices

Having identified the piecewise linear structure of the system, we aim at finding a
representation of the form ((X;)ier, (Ai, ai)ier); thus, we want to find a description
of the polyhedral partition and the system matrices. In [MRRS08], the notion of
configuration is introduced in order to deal with the different discrete modes or

cells.?

9Several definitions of configurations can be found in the literature. On the one hand, they can be
defined as sets of arcs [MRRS08, MRS09] or as maps 7 — P [SRO7]. In this thesis, the latter
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2 From Discrete to Continuous Petri Nets

Definition 2.4. For a Petri net N, a map K : T — P is called configuration
if K(t) € °t forallt € T. Ky = {Ki1,Ks,...,K,} is the set of all possible
configurations of N" where v =[], |*t|. A configuration K is active under a given
. Pl .
marking m € RL if
- MK (t) . Mmy

Vit P = —_— 2.6
€T Preg ffél-ri Pre,, (26)

and we denote by My C RI;’O\ the set of all markings under which K is active.

These sets M, , ..., My partition the state space R|>7)0" They are closed polyhedra

as for each configuration K there exists a matrix G such that
MK:{mGRQ: GKmSO} (2.7)

where < denotes an element-wise comparison of two vectors. We consider two ways
to construct such a matrix. The first one is to construct a ((3,c+(|°t] — 1)) x |P])-
matrix row by row. For each join ¢ and all p € °t with p # K(t), the matrix Gg

contains a row g ¢, of the form

1 -1
0 0

)

grtp = (0, 0,...,0) (2.8)

) ) c ) )
Preg ) Prey

where the positive and the negative entry are in the columns associated with K(t)
and p, respectively. The rows are normal vectors of the hyperplanes separating two
neighboring regions. The order of the rows is not unique, but the polyhedron given

by {m € R‘ZPO' : Ggm < 0} is independent of the order of the rows.

In [LL11], different matrices are used to describe the regions. They contain many

is used for notational convenience. On the other hand, configurations may be defined either
for net systems and depend on the initial marking or independent of mg (cf. [MRS09, SRO7]).
This difference usually comes along with different definitions of the phase space. Incorporating
the initial marking leads to a restriction to the set of markings {m € R‘fo‘ : 30 <0 €

R!7! such that m = mo + Co}. Otherwise, the entire positive orthant RQ is used. Even
though the first interpretation may be more convenient if we want to define controllability, the
latter is used in this thesis. A definition independent of m¢ does not just seem more natural from
a dynamical systems point of view as it distinguishes between the dynamical system itself and
individual trajectories. The incorporation of the initial marking also imposes an unnecessary
restriction that obstructs one’s view on the global dynamics and may lead to undefined dynamics
in the numerical treatment.
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2.3 Continuous Petri Nets as Piecewise Linear Systems

additional redundant rows but can be written in a compact way by

Mg — g,
Mg — k.

Gk = o (2.9)
Hp — Ik,

The superscript L is used to distinguish this matrix from the one described previ-

ously. Both G and Gf( are suitable to describe the region M.

We check if (Mg ) ke, is the correct choice for the polyhedral partition of the phase
space. Obviously, there is always a configuration active under an arbitrary marking
m € ]R|>PO|. In order to see that condition (ii) of Definition 2.2 holds as well, let us
consider two different configurations K7, Ky of a Petri net N. Let m € Mg, N Mk,.
As Ky # Ko, there exists t € T with K (t) =: p # p' := K»(t). The marking has to

satisfy the inequalities

m. My m My
P P <0and — P P

P P P tp <0
T€p7t rep/’t rep,t ’I”ep/ﬂg

mp My
)
Prep¢ Prey ,

regions. In other words, MK1 N Mg, = OMg, N OMk,.

Therefore , which implies that m lies on the boundary of both

We have verified that (Mg )rek,, satisfies all conditions of Definition 2.2 but the
dimension of the polyhedra. In fact, if the net contains choices, lower dimensional
polyhedra may exist. This issue is discussed in detail in Section 2.3.3 where a subset

K3 € Ky is identified such that (Mg) Keky, is a polyhedral partition.

As a next step, we want to find the system matrices of the timed continuous Petri
net. According to [MRRS08], a configuration K € Ky can be associated with a
matrix [Ix € RITXIPl with

1 .
if K(t) =p,
(]._.[K)t7p — PT’@pyt ( ) p
0 otherwise

for (t,p) € T x P. Let furthermore A = diag(A¢,, ..., At )

With this notation, the evolution of the marking as defined by Equations (2.4)
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2 From Discrete to Continuous Petri Nets

b1
11
D2
2
2
t t
A, = 4

2
t1 —

ps3

Figure 2.2: A TCPN system with three places and two transitions.

and (2.5) can be written as
m = Cf(m)=CAllgm (2.10)

where K is any configuration active under m. If several configurations are active
under m, all of them result in the same vector IIxm of continuous enabling degrees.

The resulting vector field is continuous and may therefore be defined as
F:RY - RPl m s CATlgm for m € M. (2.11)
The system matrix of each configuration K € K is given by
Ar = CAIlg. (2.12)
The piecewise linear vector field can therefore be written as
F:RE) = RIPL m o Agem for m € My (2.13)

Example 2.5. We show how to set up the PWL system for the TCPN in Figure 2.2
which is taken from [JRS05]. The net system is reconsidered later in this thesis with

respect to reductions and parameter-dependent TCPNss.
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2.3 Continuous Petri Nets as Piecewise Linear Systems

The net structure is described by the matrices

2 1 1 2 -1 1
Pre=|0 1|, Post=1|1 0 C = Post — Pre = 1 -1
10 01 -1 1

This net has four different configurations as the two transitions have two input places
each. We denote them by their value pairs and compute the matrices G, and Ilg;
(i=1,...,4):

Ky ={(t1,p1), (t2,p2)} :  GKk, = (_% (1) _(1)> , kg, = (é (1) 8) ;
Ky ={(t1,p1), (t2,p1)} 1 Gy = ( % _(1) _(1)> o Hi, = (% 8 8) )
Ky ={(t.pa), (t2p1)} Gy = (‘1 N ;) L T = ((1) ; ;) ,
Ky={(t1,p3), (t2,p2)} :  Gr, = (:% ? ;) ;o g, = (8 (1) ;) :

Together with A = diag(4,1), the associated dynamical system is given by

1 = CAllgm for m € Mg = {m € R%,: Ggm < 0}

T
with m0:<11 0 10) . o

2.3.3 Redundant Configurations and Choices

Structurally, a net has [, |*t| different configurations. However, in [MRS08] it is
shown that some of these configurations do not contribute to the dynamics of the
system. We show that these redundant configurations only appear in the presence
of certain net structures and that there always exists a cover of Rlzpol by regions

of nonredundant configurations. The contents of this section can also be found in
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2 From Discrete to Continuous Petri Nets

Mp,=(14+e)m ;o om
D1 D2 pa AL E)mey My =Tt
m
g | Mk, Mpo=Tre g | Mkg M
S 2 g 2
1+4+¢ 1+4+¢ Mps=(1+€)myp,
M M
th[ ] [ It2 e o
Mp, Mp,
(a) A Petri net with choices (b) Regions for £ > 0 (c) Regions for —1 <e <0

Figure 2.3: Redundant configurations.

[MDO09).

Definition 2.6. [MRS08] Let K € K be a configuration. K is redundant if

K'eRn\{K}

We denote by K, the set of redundant configurations and by K, = K\ K}, the

set of configurations which are not redundant.

Example 2.7. Figure 2.3(a) shows a Petri net with choices. There are four possi-
ble configurations which we represent by their value pairs: K7 = {(t1,p1), (t2,p2)},
Ky = {(t1,p2), (t2,p1)}, K3 = {(t1,p1), (t2,p1)}, and Ky = {(t1,p2), (t2,p2)}. Fig-
ures 2.3(b)—(c) show the partition of the phase space into the corresponding regions
for e > 0 and —1 < ¢ < 0, respectively. For € > 0, the set Mg, consists only of the
origin and is thus redundant. For negative ¢, region M, vanishes and is redundant.
If £ = 0, both regions coincide, i.e., Mg, = Mg, = {m € ]R‘fo‘ My, = My, +. Then,
both configurations are redundant since they lie within the_boundaries of Mg, and

My, . ¢

We now study some characteristics of redundant configurations, first for general net
structures and then for particular ones (Propositions 2.11 and 2.12). For the sake
of completeness, we include properties (in particular Corollary 2.10) which have
already been studied in [MRS08]. We complement these results by a formal proof
that there always exists a cover of R‘;)OI by the corresponding regions of nonredundant

configurations.
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2.3 Continuous Petri Nets as Piecewise Linear Systems

Lemma 2.8. Let K € K},. Then int(Mg) = 0.

Proof. Let m € Mg. As K is redundant, there exists K’ € Ky, K' # K, with
m € Mgr. Asm € Mg, N Mg, = O0Mg, N OMy,, m cannot be an interior point of
M. O

Redundant regions therefore lie within the hyperplanes separating regions from each

other. As the nonredundant regions are closed sets, they cover the marking space.

Proposition 2.9. The marking space is covered by the set of regions with nonempty
ntertor, i.e.,
Mg =R
K >0°

KeKnr
int(Mg)#0D

Proof. All regions are closed (usually unbounded) convex polyhedra. They are a
cover of ]R'ZPO‘. Let m € ]R'zpol. We show that there exists a configuration K € Ky

with int(Mg) # 0 and m € M.

Let B,(m) denote the ball with center m and radius r > 0 with respect to an
arbitrary vector norm on RIPI. Since the set of regions is finite, there exists a
configuration K € Ky with int(Mg) N B.(m) # (. Furthermore, the regions are
convex. Thus, int(My)NB,.(m) # () for all » > 0. Since M is closed, it contains m.

O

Corollary 2.10. A configuration K is redundant if and only if int(Mg) = 0.

Proof. By the previous proposition, all configurations whose associated regions have
an empty interior are redundant. The equivalence now follows immediately with
Lemma 2.8. O

In Section 2.3.2, it is shown that (Mg)kek, satisfies all conditions of a polyhe-
dral partition according to Definition 2.2 except that polyhedra may not be full-
dimensional. The previous proposition tells us that we may restrict the index set to
the nonredundant configurations and still have a cover of the entire marking space

]R'fol. As nonredundant configurations have full-dimensional regions, (M) Kek3,
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2 From Discrete to Continuous Petri Nets

satisfies Definition 2.2. Therefore, ((Mk)keks,, (CAllk, 0)kexg,) is a piecewise lin-
ear system in the sense of Definition 2.3. The induced dynamical system is governed
by the vector field F.

The following two propositions show that redundant configurations can only exist if
the net has choices. They establish a relation between the structure of a Petri net

and the dimension of its regions.

Proposition 2.11. If a Petri net N is ordinary or CEQ, then My # {0} for all
K e y.

Proof. In an ordinary Petri net, all configurations are active under m # 0 with
Mp, =Mp, = ... = Mp, .

Let now N be CEQ and K € K. We construct a marking m € Mg \ {0}. To start
with, an arbitrary positive marking is assigned to all places without output arcs.
For all transitions ¢ € 7" which do not have choices as input places we set mg ) to

an arbitrary positive value. For the input places p € *t\ {K(t)}, a marking
my > ———mg (2.14)

is chosen.

Let now °t contain a choice. As the net is CEQ, all transitions ¢’ with *t N *t' # ()
share the same input places. We fix their markings simultaneously. We choose a
Pre,,

Prez;:tt My
for all p’ € *t\ {p}. We proceed with the next transition until all components of m

place p € *t and fix m,, to some positive constant. After that, we set m,, =

are set. Because of the special structure of the net, this is always possible without

fixing a component twice.

We need to verify that K is active under m, i.e., that Equation (2.6) holds for all
t € T. This is obvious by construction if none of the input places of ¢ is a choice.
Otherwise, let p and p’ be input places of ¢ and let K(t) = p. There exist t* € p*
and p* € *t* with

Prey 4

My and M,y = ————Mm*.
P P Preps 4+ P

. — Prep i+
p=
Preps 4«

32



2.4 Dynamics of Timed Continuous Petri Nets

As N is CEQ, there exists for ¢ and t* a constant k > 0 with Pre,; = k Prep;» and

Prey = k Prey . Hence,

mp . Mp  Mp*
Preyi  kPrepsy  kPrep

mp/ . mp/ . mp*
Prey 4 a kPrey ¢ - kPreps ¢+

My < ' holds. Tt follows that m € M. O

Prept — Prey,

and

Proposition 2.12. If N is choice-free, then no redundant configurations exist.

Proof. Let K € Kar. We have to show that Mg has an interior point. Then, by
Lemma 2.8, K cannot be redundant. As choice-free nets are in particular CEQ, we
use the construction described in Proposition 2.11 but with inequality (2.14) being
strict. The resulting marking is in int(Mf). O

2.4 Dynamics of Timed Continuous Petri Nets

In this section, central results on the dynamics of TCPNs are summarized.

Positivity and Flow-Invariant Sets. Petri nets are positive systems.

Theorem 2.13. [MP05, Corollary 1] For any choice of the firing rates A > 0, the
continuous marking of a timed continuous Petri net with infinite server semantics
remains nonnegative, i.e., for any mg > 0 the marking at time ™ > 0 satisfies
m(1) > 0.

This is easy to see in the join-free case where the dynamics is purely linear. In this
case, Pre Alli is a diagonal matrix where K is the unique configuration. To see
this, consider

(Pre Mg )y, = Z Prey NIk ) pr-
teT

Prepy and (Il ), are nonzero only if p,p’ € *t. In join-free nets, this implies that
all nondiagonal elements have to be zero. As Post Allx has only nonnegative en-

tries, all nondiagonal elements of the system matrix are nonnegative [MP05, JJS05].
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2 From Discrete to Continuous Petri Nets

Thus, CAllg is a Metzler matrix [FROO, p. 14]. One important consequence is that
its dominant eigenvalue is real and unique. Furthermore, a positive eigenvector
corresponds to this eigenvalue and no other eigenvector can be strictly positive (cf.
[Mit08] and [FROO, p. 36]). Thus, in a bounded net the dominant eigenvector cannot

be positive.

In nets with joins, there exists more than one configuration and C'Allk is generally
not Metzler [JJRS04]. Positivity is proved in [MPO05] by showing that the positive
orthant is a flow-invariant set. Furthermore, necessary and sufficient conditions for
the existence of flow-invariant sets of different types are known for join-free nets
(cf. [MPO05]). In [KMB™08], it is shown how — given a set of initial states — it is
possible to construct by means of formal verification a set of unreachable states, i.e.,
a set such that all trajectories starting from the set of initial states never reach the

latter set.

A well-known flow-invariant set that appears in all TCPNs just like in any discrete or
continuous Petri net is due to P-invariants. Equality (2.3) also holds for continuous
systems (see, e.g., Proposition 2 in [MRRS08]). Thus, a trajectory starting in mqg

cannot leave the affine subspace mg + im(C).

Equilibria. In most simulations, the continuous marking converges quickly to a
steady state. However, the dynamics of TCPNs are richer including periodic orbits
both within a single region and with repetitive switches between regions as well as
convergence to a steady state with infinitely many switches (see [RHS07] for exam-
ples). For conservative and consistent join-free nets, convergence to an equilibrium
is guaranteed [JJS05]. However, for most net classes it is still unknown when an
equilibrium exists and how this is related to the net structure. This issue has been
identified as one of the major open problems concerning the “fluidization” of Petri

nets in [SR05]. Unfortunately, an answer still does not seem to be near.

Monotonicity. Under this header the question is discussed whether performance
measures always increase with respect to an increase in the initial marking or a
firing rate. The flow f(m*) in steady state m™*, which is known as the throughput
vector of the system (in case such a unique equilibrium exists), is the most common

performance indicator in this case. In general, if the firing rates of all transitions
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2.4 Dynamics of Timed Continuous Petri Nets

Throughput in steady state

Figure 2.4: Throughput under variation of the firing rate A¢,.

are multiplied by a factor o > 0, then, by linearity, the throughput of the system is
also multiplied by a [SIMV11, p.32]. However, if only some of the firing rates are

altered, the throughput may be nonmonotonic or even discontinuous.

Example 2.14. Let us reconsider the TCPN from Example 2.5. In [JRS05], this
net illustrates that an increase of the firing rate does not always result in an increase
of the throughput. Figure 2.4 shows the throughput of the system for different firing
rates of transition t;. At A\;; = 2 the throughput drops abruptly. &

In Chapter 5, this example is analyzed in detail. It is shown that such a discontinuity
in the throughput is due to a discontinuity-induced bifurcation. Such undesirable
jumps in the throughput are also observed if the throughput is monotonic (see
Section 5.3.3).

For the same net structure as in the previous example, it is shown in [JRS05] that
a reduction of the initial marking may also lead to the counterintuitive effect that
the throughput may increase. Both with respect to firing rates and with respect
to the initial marking, sufficient conditions for monotonicity of the throughput in
mono-T-semiflow reducible nets are proven in [MRS09]. It is shown that systems
are monotonic if in any steady state a configuration K such that K(7) contains
the support of a P-semiflow is active. Under this condition, the throughput bounds

computed in [JRS05] coincide with the actual throughput in steady state.

In general, it is computationally expensive to check if K(7) contains the support of
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2 From Discrete to Continuous Petri Nets

a P-semiflow. For some subclasses of nets such as equal conflict nets this condition
is satisfied by all configurations under some conditions which are easy to check
[MRS09, p.199].

Comparison of server semantics. A well-known alternative to infinite server se-
mantics are finite server semantics where the flow of each transition is limited by
a maximal firing speed. We do not consider them in this thesis as infinite server
semantics have shown a better approximation of performance indicators of the un-
derlying discrete SPN in many applications. Technically, the following result has

been obtained:

Theorem 2.15. [MRS09, Theorem 1] Let (N, \,mg) be a live mono-T-semiflow
reducible Petri net system where for every K € Knr, K(T) contains the support of
a P-semiflow. For any probability distribution function for the firing of the transi-
tions, the steady state throughput of the discrete model is better approximated by the
continuous relaxation with infinite server semantics than with finite server seman-

tics.

In nets satisfying the conditions of the theorem, the throughput of the continuous
net under infinite server semantics is an upper bound of the throughput in the
discrete counterpart (see [JRS05, Proposition 5]). The addition of white noise to
the transitions flow may improve the approximation of the mean marking of the
corresponding Markovian Petri net (see [SJMV11] where even more modifications of

the semantics are discussed).

Control. Control questions for discrete Petri nets typically deal with the question
which transitions to limit at certain markings in order to meet some safety criteria
such as the avoidance of critical states. For TCPNs, typically, controls of the form
u: R — RI7! such that

m(r) = C(Allgm(1) — u(7))

where 0 < u(7) < Allgm(7) are studied. The control is associated with the tran-

sitions whose flow may be reduced. A transition’s activity may even be stopped
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2.4 Dynamics of Timed Continuous Petri Nets

completely. It might happen that only some of the transitions are controllable. In
that case, the components of u may differ from zero for controllable components
only. A typical question is now if there exists a control function u that drives the
system from mg to some desired marking m’ in finite time. It is immediate to see
that only markings m’ € mg + im(C) can be reached. A detailed survey on defini-
tions of controllability, theoretic results on TCPN control problems, and associated
algorithms is given by [SJMV11].
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Symmetries in TCPNs and
Generalizations to Other PWL Systems

In Section 2.4, we have seen which types of dynamical behavior timed continuous
Petri nets with infinite server semantics (TCPNs) may exhibit and how they are
related to the net structure. In this chapter, the structure under consideration is
induced by symmetries of the net. We study the interplay of symmetries of the net
structure and the corresponding dynamical system. We prove that the symmetries of
the net structure are reflected by symmetries of the dynamical system in the classic
sense of equivariant dynamics. For this reason, this chapter starts with a short
summary of fundamental definitions and results from equivariant dynamical systems
theory before symmetries of the net structure are formally defined and discussed in
Section 3.2, followed by novel results concerning their effect on the corresponding
piecewise linear system (PWL) in Sections 3.3 and 3.4 which are then generalized
to general PWL systems in Section 3.5. Those results specific to TCPNs and the
generalizations of Section 3.5 have already been published in [MD09, MDH11].
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3 Symmetries in TCPNs and Generalizations to Other PWL Systems

3.1 Equivariant Dynamical Systems

Symmetries appear in various dynamical systems and have been subject of intensive
research. In the modeling of real-world phenomena, they appear, for example, due to
the system geometry or simplifying modeling assumptions. Petri nets exhibit sym-
metries, for instance, if the system modeled contains identical components, agents or
subprocesses that are symmetrically coupled. Symmetries may simplify the gener-
ation of analytic solutions to ordinary differential equations (ODESs). They may be
used to increase the efficiency of computational methods or to generate new solutions
from known solutions. Symmetries should also be taken into account as the dynam-
ical behavior of generic nonsymmetric systems usually differs significantly from that
of systems with symmetries. An example are heteroclinic cycles. It might therefore
be necessary to identify the system’s symmetries in order to fully understand its
dynamics (cf. [GS03, HD11] and [Hyd00, p. 187]).

We consider systems of ordinary differential equations
T =g(x) (3.1)

where g : R® — R" is sufficiently smooth.! For such systems, we introduce a
notion of symmetry for the system as a whole and also for its solutions. In this
section, we follow the work of Golubitsky, Stewart, Schaeffer, and Field [GSSS88,
GS03, Fie96]. As we do not want to over-complicate matters unnecessarily, the
presentation is restricted to vector spaces and linear Lie groups, i.e., subgroups of
the general linear group GL(n) consisting of all invertible, real (n x n)-matrices? with
matrix multiplication defining the group operation. When dealing with symmetries
in the net structure, we consider permutation of nodes and therefore deal with the

symmetric group Sym(P UT).

Symmetries in systems of ODEs and their solutions are expressed by transformations

of the variables via group actions.

Definition 3.1. Let ¥ be a linear Lie group and V a vector space. An action of

! Actually, we only require that for any zo € R™ the corresponding initial value problem has got
a unique solution which is guaranteed in our case of continuous PWL systems as F' satisfies a
local Lipschitz condition.

2In this thesis, we use matrices also to denote the associated linear map.
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3.1 Equivariant Dynamical Systems

on V' is a continuous mapping X x V. — V. (0,v) — ov that satisfies
(i) ev = v where e is the identity element of ¥ and
(ii) o1(oav) = (o1092)v

forallv eV and 01,00 € X3. If there exists an action of X on V', we call V' a ¥-set.
The group orbit through v € V is the set Yv = {ov: o € ¥}.

We may now define symmetries of systems of ODEs and their solutions.

Definition 3.2. The group element o € GL(n) is a symmetry of (3.1) if

glow) = og(x) (3:2)

for all x € R™. The set ¥ C GL(n) of all such symmetries is the symmetry group
of the system.

We call (3.2) an equivariance condition and say that g is X-equivariant. It is equiv-
alent to saying that for every solution x(t) also ox(t) is a solution, i.e., to say-
ing that ¢ maps solutions onto solutions. To see this, let y(t) = ox(t). Then,
y(t) = g(y(t)) = g(ox(t)) and at the same time y(t) = oz(t) = og(x(t)). Thus,

g(ox(t)) = og(x(t)) holds for solutions for arbitrary initial values.

Example 3.3. A very simple example of symmetries in systems of ODEs can be
found in every timed continuous Petri net with infinite server semantics, namely the
fact that F' is homogeneous. All cells of the polyhedral partition of the marking
space are cones, meaning that m € Mg implies km € Mg for any x > 0. For
any k > 0, 0 = kljp| € GL(|P|) where I;p| is the identity matrix of dimension |P|.
Within each cone, the dynamics are linear and therefore o F'(m) = F(om) for all

mER‘fOl.

Let X' = {xlp| : & > 0} denote the corresponding infinite subgroup of the symmetry
group. The equivariance immediately implies that if m is a marking trajectory for
the initial marking mg, then xm solves the initial value problem for the initial
marking kmg. In particular, if m is a steady state, so is every element of its group
orbit ¥'m. For this reason, steady states or periodic orbits are never isolated in
TCPNs. ¢
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An important property of equivariant dynamical systems is that they give rise to
flow-invariant sets, the so-called fixed-point subspaces, which are used in the next

chapter for reductions.

Definition 3.4. Let X/ C X be a subgroup. The fixed-point subspace of ¥/ is given

by
Fix(X)={veV: ov=w forallo € ¥'}.

Fix(Y') is in fact a subspace of V' as the name indicates since

Fix(¥) = ﬂ ker(o — I,).
oex!

The important property of these sets is their flow-invariance which is expressed in

the following theorem.

Theorem 3.5. [GS03, Theorem 1.17] Let g : V — V be Y-equivariant and X' C X
a subgroup. Then,
g(Fix(¥)) C Fix(X').

Proof. This follows immediately from the fact that for a 0 € ¥’ and x € Fix(X') the
equality g(z) = g(ox) = og(x) holds, i.e., g(z) € Fix(¥'). O

An immediate consequence is that the “degree of symmetry” cannot increase or
decrease along trajectories. In order to describe this formally we need to define the

symmetry of a state.

Definition 3.6. For a 3-set V' we define the isotropy subgroup (or X -stabilizer) of
YatveV by
Yy, ={0c€eX: ov=u}.

Theorem 3.7. [GS03, Proposition 1.18] Let z(t) be a solution trajectory of an
equivariant ODE. Then,

Yia(t) = Za(0)

for allt € R. This means that isotropy subgroups remain constant along trajectories.
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Proof. We apply Theorem 3.5. As Fix(X,)) is flow-invariant, we have z(t) €
Fix(34(0)). Therefore, ¥, C ;). For the other direction consider that x(0) lies

on a trajectory through x(t) O

3.2 Symmetries in the Net Structure

3.2.1 Definition and Examples of Symmetries of Petri Nets

Intuitively, the Petri nets in Figure 3.1 seem to be somehow symmetric. Below,
this intuition is formalized, and it is shown how this additional knowledge of the
topology of the net helps to understand the dynamics of the continuous marking.
For this purpose, the effects of symmetry on the polyhedral partition and the system
matrices are studied. Combining these results, we obtain a deeper understanding of
the dynamical behavior and show how this can be used for analysis and reduction

purposes.

Symmetries appear naturally in many applications, in particular if the system con-
tains several identical units which interact in some systematically structured net-
work. The study of symmetries in Petri nets goes back to [HJJJ85] and has been
applied to place/transition nets in [Sta90, Sta91, Sch00a, Sch00b, Jun03]. They are

expressed as permutations of places and transitions.
Definition 3.8. Let (N, \) be a timed Petri net and o : (PUT) — (PUT) be a
permutation of its nodes such that o(P) =P and o(T) =T. We say that o

e weakly preserves the structure if Prep s = Preg ) o) for allp € P,t €T,

e strongly preserves the structure if it weakly preserves the structure and, in
addition, Postys = Post, ) ) for allpe Pt €T,

e preserves the timing if Ay = Ay (y) for allt € T.

We denote by X%, and X3, all permutations of the Petri net that weakly and strongly,
respectively, preserve the structure. The set of permutations that strongly preserve

the structure and the timing is denoted by EIENQ\)'

Example 3.9. For the nets N, and N, in Figure 3.1 all three sets coincide. In cycle
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Figure 3.1: Petri nets with symmetries.

notation the symmetry groups are

N, = N, = v, = Lid, (b1 1) (p2p3)}

and
SN, = 2 = S = Lids (p102), (0193), (P203), (P1P23), (D1 P3D2)}-

The net N, can be “rotated by 180°” without changing the structure. This corre-

sponds to
Y. = {id, (p1ps)(t1 t3)(p2 pa)(t2ta) }.

In addition, there exist permutations that only weakly preserve the structure and
N, = EX, U{(p1ps)(tits), (p2pa)(tata)}.

%

X% and E? N consist of graph automorphisms of the directed, bipartite graph A\.
Permutations in 3}, are not necessarily graph automorphisms since only the input
structure of the transitions is preserved. However, it is this structure that defines

the configurations and makes these permutations worth studying. EYZ NN is the
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3.2 Symmetries in the Net Structure

natural choice for defining symmetries of directed, vertex- and edge-labeled graphs
(cf. [Jun03, p.21]). It is easy to see that ¥, X% and E?N,A) form groups under the

composition operation.

Symmetries of the net structure induce equivalence relations on the nodes and states.

Definition 3.10. Let X be a subgroup of X%, X3/, or E?/\/ NE Two nodes v,v' €
(PUT) are equivalent with respect to ¥ (v ~x v') if there exists o € ¥ such that

o(v) ="

For a state m and a symmetry o € ¥ we denote by o(m) the state with (o(m))qp) =

my, for all p € P. Two markings m and m’ are equivalent with respect to ¥ (m ~x,

m’) if there exists a permutation o € ¥ with o(m) =m/'.

By ¥ x RQ — ]R'fo‘, (o,m) +— o(m) a group action of ¥ on the markings as defined
in Section 3.1 is given. Therefore, the terms fixed-point subspace (Fix(X)), isotropy

subgroup (%,,), and group orbit (¥m) carry over naturally.

For the upcoming calculations, we use permutation matrices to describe the group
action. We denote by S, € {0, 1}PIXIPl the permutation matrix of 0|, and by T, €
{0,1}I71XIT1 the permutation matrix of o|,- These two matrices can be conveniently
represented by making use of the Kronecker delta d; ;. They are (Sg)p, = do=1(p)p’
and (T, )¢ = 05-1(1)¢- An action on a marking is then given by o(m) = S,m.

With permutation matrices the definition of symmetries of a timed continuous Petri

net may be stated using matrix equalities.

Lemma 3.11. Let (N, \) be a timed Petri net and o a permutation of its nodes
that preserves the type of nodes.

o€ Xy e S,Pre= Prel, (3.3)
o€ Xy e oeXy and S;Post = PostTy. (3.4)
0 € Xy & 0 € i and T,A = AT, (3.5)

Proof. All equivalences can be proved by matrix multiplication. The matrix equality
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3 Symmetries in TCPNs and Generalizations to Other PWL Systems

SoPre = PreT; is equivalent to Pre,; = Preg () o) for all (p,t) € P x T as

(Se-1Prely)p: = Z 5U(p)’p/(P7“e Ts)pt = (Pre TJ)U(p)’t
p'eP

— Z Preqgpy 0,1y = Preop) o)
t'eT

Likewise, (So—1Post Ty)pt = Post,(p) o(1)- For the timing we obtain
T, 'AT, = diag(Ao(r)s -+ » Aotyr))

which equals A if and only if Ay = Ay for all t € T. O

Remark 3.12. As invariants are defined with respect to the token flow matrix C,
which has just been shown to be symmetric, invariants also have symmetric prop-
erties. Let y be a P-invariant, i.e., y?C = 0, and = a T-invariant of a Petri net N,
i.e., Cx = 0. The lemma states that for every o € X3, the equality S,C = CT,

holds. Therefore, also S,y and T,x are P- and T -invariants, respectively.

3.2.2 Symmetries in Place/Transition Nets and Their Properties

In the literature devoted to place/transition nets (i.e., untimed discrete nets with
weighted arcs and no restrictions on the net topology), typically the class X3, is
studied. Here, symmetries are used to compute a reduced reachability graph. The
idea is that equivalent markings have the same enabling properties as stated in the

following theorem.

Theorem 3.13. Let N be a place/transition net and o € X3,. A transition t € T
may fire in a state m € leo‘ leading to a marking m' if and only if o(t) is enabled

in o(m) and firing leads to the marking o(m'). As a formula,
mt >m' < a(m)[o(t) > o(m'). (3.6)
Proof. See Lemma 1 in [Sta91] or Proposition 1 in [Sch00a]. O

A reduction in the size of the reachability graph is achieved by considering equiv-

alence classes of markings with respect to the symmetries instead of the markings
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3.2 Symmetries in the Net Structure

themselves. Many analysis tasks can be performed on the reduced graph, e.g., a
marking is not reachable if the reduced reachability graph does not contain the
corresponding equivalence class. Weakened forms of deadlock freeness or liveness
can also be checked on the reduced graph [Sta90, Sta91, Sch00a]. Furthermore,
symmetry reductions can be combined with other methods in model checking if the

property to be checked is invariant under the applied symmetry group.?

The analysis of the reduced reachability graph is notedly significant if the isotropy
subgroup of the initial marking is big. In particular, if the reduction is performed
with respect to %,,,, then a marking m is reachable if and only if the reduced

reachability graph contains a node which is equivalent to m [Sta90, p. 66].

The following example shows that reachable markings of a discrete Petri net system
may have different isotropy subgroups. It turns out that in this respect discrete nets
differ significantly from TCPNs.

Example 3.14. The net N, in Figure 3.1(a) is symmetric with
Y, = {id, (t1t2)(p2p3)}-

T
Both transitions are enabled for the initial marking mg = (1 1 0) whose isotropy
T
subgroup is trivial. Firing ¢; leads to the marking (0 2 O) which is not sym-

T
metric either. On the other hand, the marking (0 1 1) resulting from firing
to has a nontrivial isotropy subgroup. Let us now consider the same net for the

initial marking <1 1 1) with isotropy subgroup ¥3,. The subsequent markings

T T
(0 2 1) and <0 1 2) have trivial isotropy subgroup but are equivalent. <

It follows from the equivalence (3.6) that it is a general property of place/transition
nets that firing equivalent transitions from a symmetric marking m results in equiva-
lent markings. If the reduction is performed with respect to some subgroup ¥ C >,

and ¢t is enabled in m = o(m) with m[t > m/, then m[o(t) > o(m’).

The example furthermore shows that firing can create or destroy symmetries of mark-

ings. In continuous Petri nets, the individual firings become somewhat “blurred”

3See [Jun03, pp. 6-8] for an overview of symmetry methods in model checking of Petri nets.
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3 Symmetries in TCPNs and Generalizations to Other PWL Systems

such that the flow through the two transitions is identical. Thus, the isotropy sub-
group of the marking cannot change over time. This fact is discussed in detail in

the course of this chapter and can be used for a reduction.

For the upcoming considerations, we also use the following property.*

Lemma 3.15. Let N be a Petri net and o € X%;. Then o(*t) = *(o(t)) for all
teT.

Proof. Let t € T. We have p € *(o(t)) if and only if Pre, ,) # 0. As o € X%}, this
is equivalent to Pre,—1(,) ; # 0, i.e., o~ 1(p) €°t and therefore p € o(°t). O

3.2.3 Computation of Symmetries

Symmetry reduction is a powerful technique in the analysis and model checking of
highly structured Petri nets. In order to compute the symmetries we may use stan-
dard tools for the graph automorphism problem that support directed and labeled
graphs. However, these are usually not optimized for sparse and directed graphs
[Jun03, p.28]. Against this background, efficient algorithms have been developed
for computing such symmetries and have been implemented, for instance, in the

software LoLA® which is integrated in several Petri net tools.

The algorithm in [Sch00a] is designed for very general classes of Petri nets with
arbitrary inscriptions assigned to arcs and nodes. If we interpret arc weights and
firing rates as inscriptions in this sense, the algorithm can be used in order to

compute X}, and Ei N The principle also works for X%

The computation of symmetries is performed by a backtracking algorithm (see, e.g.,
[Sed88]) which we sketch here. The idea is to systematically generate partial candi-
date solutions which can then be completed to symmetries of the Petri net. It uses
constraints of the form A — B for A, B C (P UT) where a permutation of nodes
o is consistent with A — B if 0(A) = B. A set of constraints forms a symmetry
specification and o is consistent with a symmetry specification if it is consistent with

all constraints contained in it.

“A similar result has been shown in [Sta90, p. 63].
Shttp:/ /wwwteo.informatik.uni-rostock.de/ls_tpp/lola/index.htm
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The condition that permutations have to respect the node type can by expressed
by the two constraints P — P and T — T. The preservation of firing rates can
be assured by constraints of this form with A = B = {t € T : M\ = a} for
every possible firing rate @« > 0. Any symmetry of the net can be defined by
such a symmetry specification. The easiest representation is by singletons, i.e.,
for nodes v,v" € P UT the equality o(v) = v’ is assured by {v} — {v'}. In the
backtracking algorithm, symmetries are gradually constructed by adding constraints

to the symmetry specification.

The computation of symmetries is performed by the exploration of a tree. An
operation called DEFINE corresponds to branching nodes in the tree by adding
constraints. A REFINE-operation is then used to narrow a specification and to prune
the search tree by checking if candidate solutions can be completed to symmetries.
Afterwards, the DEFINE-operation is applied again and so on. This is most easily
understood considering the following example from [Sch00a, Example 2] which shows
the stepwise refinement of constraints until the symmetry specification represents a
single automorphism. For a full definition of the operations, the reader is referred

to the original paper.

Example 3.16. We want to compute the symmetries of the net graph in Fig-
ure 3.2(a). The search tree generated in the backtracking search is shown in Fig-
ure 3.2(b). Initially, it is only required that a solution respects the node type. With
every application of the DEFINE-operation new constraints are added and hence
new branches in the tree are generated. The REFINE-operation then adds con-
straints which necessarily have to be satisfied by the candidate solution. Pruning
with the REFINE-operation avoids an exhaustive search. Finally, two graph auto-
morphism including the trivial symmetry are given by constraints on every single

node. &

The reductions of Chapter 4 sometimes require to compute not the entire symmetry
group of a TCPN but the isotropy subgroup of the initial marking. This can be
achieved by including the constraints A — B with A=B ={p e P : (mg), = a}
for all possible markings a € {(mg), : p € P}.

In [Sch00a, Sch00b, Jun03] it is explained how this algorithm can be used in the

generation of a reduced reachability graph that — for some subgroup of 3, —
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()
U
p1 1
()
U
b2

D3 tg —
()
N

(a) The Petri net
{p1,p2,p3} = {p1,p2,p3}
{t1,t2,t3} — {t1,t2,13}

JREFINE

{p1,p2,p3} = {P1,P2,3}
{t1,t2,t3} = {t1,t2,t3}

\

{p1} = {p1} {p1} = {p2} {p1} — {p3}
{p2; p3} > {p2,p3} {p2; p3} + {p1,p3} {p2,p3} = {p1,p2}
{t1,t2,t3} — {t1,t2,13} {t1,t2,t3} — {t1,t2,13} {t1,t2,t3} = {t1,t2,13}
JREFINE
REFINE REFINE

{p1} = {p}

{p2;p3} = {p2,p3} 0 0

{t1} = {t1}

{tg,tg} — {tz,tg}

/ &EFINE

{p1} = {p1} {p1} = {p1}
{p2} = {p2} {p2} = {ps}
{ps} = {ps} {ps} = {p2}
{t1} = {t:1} {t1} = {t1}
{tz,tg} = {tz,tg} {tQ,tg} = {tz,tg}
J REFINE J REFINE
{p1} = {p1} {p1} = {p1}
{p2} = {p2} {p2} = {ps}
{ps} = {ps} {ps} = {p2}
{t1} = {t:} {t1} = {t1}
{t2} = {t2} {t=} = {t5}
{ts} = {ts} {ts} = {t2}

(b) The search tree

Figure 3.2: Computation of symmetries with a backtracking algorithm (adapted
from [Sch00a, Example 2]).
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contains the markings reachable from mg only up to symmetry. The complexity of
this and related problems is discussed in detail in the latter publication where also

variations of the algorithm are explained.

In [Sta91] a place/transition net with & transition, 2k places, and k - 2% symmetries
is shown. Therefore, it is not possible to find an algorithm that computes all sym-
metries and is polynomial in the size of the net. However, algorithms to compute
generating sets for the symmetries which are polynomial in the size of the net are
known [Sch00a]. For the algorithm sketched above, polynomial implementations
of the split- and refine operations exist. And even though no polynomial-time al-
gorithm is known for computing the symmetries of a net, in practice, even large
problems can be solved efficiently [Sch00a, JK09].

3.3 Permutation of Configurations

Let m € RLPO‘ be a marking such that configuration K € s is active. We apply
a permutation o € XY,. Which configuration K’ is active under the new marking

o(m)? We show that o actually transfers the entire polyhedron My into M.

Theorem 3.17. For a Petri net N let o € X3, and K € Ky. The map
K :T =P, t— oK ()

is a configuration of N. If m € My, then o(m) € M.

Proof. Let t € T. Since K is a configuration, K (c=1(t)) € *(o~1(t)) holds for every
t € T. Application of Lemma 3.15 yields K'(t) = o(K (0 1(t))) € a(c1(°t)) = °t.

Therefore, K’ is a configuration.

Let m € Mg. For Mg to be active under S,m we have to show that for all t € T

and all p € *t
(0(m)) k) < (a(m))p
Pregip: ~ Prepy '

o1
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We fixat e T. As m € Mg, we know that

MEK(t) < mp
PreK(t)’t ~ Prepy

for all p € *t

and

MK (o-1(1)) myp o 1
< for all p e *(o™ " ()).
P'I“CK(O.fl(t))p.fl(t) Prep7071(t) ( ( ))

As *(071(t)) = 071(*t), the second inequality can be written as

ME@ ) Molp)

Prego-1w)o-1t) ~ Pres1p)o1()

for all p € °t.

Therefore, for all p € *t

@m)iwy M) Mol (o(m))p
PreK/(t)J PTeK(a—l(t)),a—l(t) - Preo_l(p),a'_l(t) Prep,t

This means that the map
7o Ky > Ky, K ocoKoo? (3.7)
is a permutation of configurations. Its inverse map is m,-1 as for all K € s
To(my-1(K))=co(c ' oKoo)oo ' =K

since the composition of functions is always associative. It tells us to which region
a marking is mapped by S,. A symmetry as a permutation of the nodes therefore

induces a permutation of the polyhedral cells underlying the piecewise linear vector
field F.

Remark 3.18. An alternative way to state Theorem 3.17 is via the matrices G as
introduced in Section 2.3.2. The basic idea is that m € Mg requires Ggm < 0. For
S,m we then search for the configuration K’ with Gg/S,m < 0. When we study
the matrix product Gi/S,, we observe that G/ S, = G i where = denotes equality
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up to the order of the rows which is irrelevant for the description of the regions. The
map 7, is then defined such that a configuration K is mapped on that configuration
K’ with Gg/S, = Gg. These results are stated in detail in [MDO09].

Using the alternative description of My via matrices Gf( as in Equation 2.9, the
corresponding equality G& =2 G7Lr0 ( K)Sg is easy to prove using the upcoming matrix
equality (3.8).

In this thesis, however, 7, is defined according to (3.7) as it is an immediate appli-
cation of the definition of symmetries without the intermediate step via the regions.
Furthermore, the consideration via regions requires a restriction to nonredundant

configurations introducing unnecessary technical details wherever m, is used.

3.4 Equivariant Dynamics in TCPNs

In the previous section, the effects of symmetries in the net structure on the poly-
hedral partition have been discussed. Now, we address the effects on the dynam-
ics. Recall that the system matrices are of the form Ax = CAllg (K € Ky).
Lemma, 3.11 established a link between the matrices C' and A and the permutation
of the nodes by saying that S,C = CT, and T,A = AT, if ¢ € E€N7>\>' The following

lemma claims a similar connection for Ilx.

Lemma 3.19. Let (N, \) be a timed Petri net and o a permutation of its nodes. If
o € XY, then for all K € Ky

T, Mg = Iy, (k)S0- (3.8)

Proof. Let o € X%;. For (t,p) € T x P

(TUHK)t,p = Z 50*1(t),t’ (HK)t’,p = (HK)Ufl(t),p

teT
1 ; -1 _
_ Prepﬁa_l(t) if K(U (t)) b,
0 otherwise,
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(HWU(K)SU)t,p = Z (HWU(K))t,p’(Scr*l(p’),p = (HWU(K))t,J(p)

p'EP
— P’I"Ei(p)’t lf T[-U(K) (t) = U(p)’
0 otherwise.

The equality of the two matrices follows immediately from Pre, ;-1 = Preg )
and K (o7 '(t)) = p & mo(K)(t) = o(K(07 () = o(p). O

Having studied the effects of symmetries in the net structure on both the polyhedral
partition and the system matrices, we now consider the entire vector field F' as
defined in Equation (2.11).

Theorem 3.20. Let (N, \) be a timed Petri net and o € E?/\/ - Then,

SeoF =FolS,. (3.9)
Proof.
S, F(m) = S,CAILem @22 o1, Allem
D oatytiem % OATL, (10 Som
= F(S,m) O

This is an equivariance condition as in Definition 3.2. That is, F' is equivariant with
respect to the group action of Ei A - Let us note that EIE A7\ 1S & proper subgroup
of the symmetry group of the system. As seen in Example 3.3, any dilation sl
(k > 0) is also a symmetry. In contrast to the group of dilations, Z'Z N is finite as
the number of permutations of the finite set of nodes is bounded by |P|!- |T|! (cf.
[Jun03]).

Due to this theorem, we may apply the results for general equivariant systems that
are stated in Section 3.1 to continuous Petri nets with symmetries. In particular,
we know that isotropy subgroups remain constant along trajectories and that fixed-
point sets

Fix(¥) ={m € ]R'fo‘ : Sem =m for all o € ¥},

where ¥ C E? NN is a subgroup, are invariant under the flow of the vector field F'
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b1

to P3
=%
O ¢
b2

(a)

Figure 3.3: A symmetric Petri net and the corresponding partition of the phase
space. The gray surface represents Fix(22<t N )\>).

We now apply this result to a Petri net in order to illustrate how symmetries can

assist us in the analysis of continuous nets.

Example 3.21. Let us consider the Petri net in Figure 3.3. It has two config-
urations, K with Kj(te) = p1 and Ko with Ky(t2) = pe. It is symmetric with
EIENN = {id,(p1p2)}. The corresponding fixed-point set is Fix(EYZMM) ={m €
R%o : mp, = my,}. This set coincides with the hyperplane separating Mg, and
Mp,. As the fixed-point set is flow-invariant, a trajectory starting in My, cannot
cross it and continue in Mg, and vice versa. Thus, the sets Mg, and Mk, are
flow-invariant, too. Note that this result is independent of the explicit system of

differential equations. &

The equivariance condition tells us that if m is a solution with respect to the initial
marking mg, then S,m solves the system for the initial marking S,mg. In particular,
S, maps steady states onto steady states. If a system with initial marking mq
approaches a steady state with associated flow vector f*, then the system also
converges to a steady state for the initial marking S,mg and the resulting flow
vector is T, f*. More generally, we may deduce from the equivariance condition that
the dynamics in two regions that permute are effectively the same. It is therefore
sufficient to study one region M to understand the behavior in all regions { M () :

o € E? 1% /\>}. In this sense, symmetric systems carry some redundancy. In the
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3 Symmetries in TCPNs and Generalizations to Other PWL Systems

next chapter we explain how to remove this redundancy in symmetric Petri nets by

reducing either the corresponding vector field or the net itself.

3.5 Symmetries in Polyhedral Piecewise Linear Systems

For continuous Petri nets, we have seen that a symmetry in the net structure induces
a permutation of the configurations in a way that configurations are mapped onto
configurations with similar system matrices (A, (k) = SeAx S, D). The vector field
F commutes with the permutation of places. We now consider the situation from
the reverse angle. Suppose that F' satisfies an equivariance condition of the form
(3.9). Does this equivariance come along with a permutation of the configurations?
The answer is yes, and what is more, this is true for general piecewise linear systems

and any linear transformation of variables as the following theorem shows.

Lemma 3.22. Let ((X;)ier, (Ai,a;)icr) be a continuous polyhedral piecewise linear
system in which two neighboring polyhedra have different dynamics, i.e., (A;,a;) #
(Aj,a;) if X; and X; have a common facet. Let G denote the corresponding piecewise
linear vector field defined on X = J;c; Xi CR™ given by G : X = R", 2 +— Ajz+a;
forx € X;.

Let ¢ € GL(n) be such that ¢(X) = X. If ¢ is a symmetry of © = G(x), i.e.,

Go ¢ =¢oG, it maps regions on regions.

Proof. Let © € I. We have to show that there exists an index j € I such that
#(X;) = X;j. We start with a proof by contradiction that boundary points of X;
are mapped onto boundary points. Let x € 0X;. Then, there exists an index j € I
where possibly i = j such that ¢(z) € X;. We assume that ¢(z) € int(Xj;).

Let U C X; be a neighborhood of ¢(x). Since ¢ is a homeomorphism, V := ¢~1(U)
is a neighborhood of x. This means that x is an interior point of X. As it is also on
the boundary of X;, there has to exist k € I such that X; and X}, share a facet and
r € X;NXy. Thus, VN X, has a nonempty interior. It follows from the equivariance
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3.5 Symmetries in Polyhedral Piecewise Linear Systems

condition ¢ o G = G o ¢ that for all 2/ € int(V N X})

H(Arx' + ap) = ¢G(2') = G(¢2') = Ajpx’ + a;
= (AJ¢ — (f)Ak)J}/ = qﬁak — aj.

This linear system of equations can only be satisfied by all 2/ € int(V N Xy) if
Ajp — ¢Ar, = 0 and ¢a, — a; = 0. With the same argument for ' € int(V N X;) it
follows that A; = Ay and a; = a which contradicts the assumption that (A4;,a;) #
(Ag,ar) if X; and X share a facet. Therefore, ¢(x) has to be on the boundary of
X. Since ¢! is also a symmetry, it follows immediately that ¢ maps interior points

of the polyhedra onto interior points.

We have shown that ¢(int(X;)) C U,e;int(X;). Furthermore, ¢(int(X;)) is the
image of a simply connected set under a continuous function and is thus connected
itself. Thus, ¢(X;) € {X;: j e I}. O

Theorem 3.23. Let ((X;)ier, (Ai,ai)icr) and ¢ € GL(n) be the piecewise linear

system and the symmetry from Lemma 3.22, respectively. The map

g1 — I, i+ j such that ¢(X;) = X;

s bijective and 77;1 = my-1. That is, mg is a permutation of the polyhedral cells

duced by ¢.

Proof. Because of the previous lemma 74 is well-defined. Bijectivity follows imme-
diately from the fact that ¢ is bijective and [ is finite. O

The theorem also holds for discontinuous systems if ¢ o G = G o ¢ is interpreted as
an equality of sets where G(z) = {A;z + a; : € X;} and the differential inclusion
& € G(z) is considered. Continuity of G has only been used in the proof of the lemma
which can easily be extended for discontinuous systems. For x € X either |G(z)| =1
and the above reasoning can be used or |G(¢(x))| = |¢(G(x))| > 1 and both = and
¢(x) have to be boundary points. However, results about equivariant dynamics such

as invariant fixed-point subspaces cannot be applied in a straightforward manner.
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Reduction Techniques

Fluidification has been introduced as a technique to deal with the state explosion
problem. Then again, it is claimed in [JTMZ01] that net reduction is one of the most
important techniques to deal with the problem. In this chapter, both approaches
are combined where the reductions are based on the result about symmetry stated
in the previous chapter. We follow two different approaches. First, the piecewise
linear system associated with a TCPN is reduced with respect to flow-invariant
affine subspaces without modifying the net itself. Second, a reduced net is set up
by exploiting symmetries. Each node of the reduced net represents an equivalence
class of nodes of the original one. The derivation of the reduction procedure and the

proof of its correctness is based on the first reduction method.
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4 Reduction Techniques

4.1 Classic Transformations and Reductions

A great variety of transformations of Petri nets are known to simplify verification and
analysis tasks. They range from the fusion of nodes to the removal of entire subnets.
A traditional approach in verification is to apply transformations that preserve a
specific relevant property of the net such as boundedness, safety, or liveness (see
[Ber86, Ber87] and references therein for the case of ordinary Petri nets) or the
support of P-invariants (see [JD93]). The resulting net is expected to be easier to
analyze with respect to that property. With some reduction rules, as in the case
of [HJCO5], the original and the reduced systems are not equivalent with respect to
liveness or boundedness but these properties are easy to verify after the reduction.

The overall behavior of the net may change significantly.

In [LFB87] and [KD91], reduction techniques for general place/transition nets, i.e.,
allowing arc weights different from 1, are formulated. The idea behind these tech-
niques is to condense the net by representing simple subnets by single nodes in a
way that liveness, boundedness, and proper termination are preserved. In contrast
to ordinary nets, arc weights of incoming and outgoing arcs of the subnet might
have to be adapted. A popular technique is the removal of (structural) implicit
places which are redundant places that do not affect the enabling degree of transi-
tions (cf. [STCI8, ES91]). This technique is known for various types of Petri nets
(cf. [SIMV11, RMS06, ADFN99]). Their counterparts in the set of transitions are
structural bypasses (see [ES91]).

Reduction techniques developed for untimed nets are usually not valid for timed
systems. In [JTMZO01], it is illustrated that in time Petri nets, where timing is
associated with places and firing occurs in fixed time intervals, deadlock freeness is
not even preserved in very simple nets. Reduction rules for the class of delay time
Petri nets are suggested guaranteeing schedule and deadlock equivalence. Similarly,
in [SB96], the reduction techniques for ordinary untimed nets described in [Ber86]
are extended to time Petri nets and extended by rules to reduce redundant places.
The reduced net is considered to be equivalent to the original net if occurrence

sequences and safety are preserved.

In stochastic Petri nets, the focus is typically on performance analysis. This task

is directly affected by the state explosion problem as the size of the corresponding
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continuous time Markov chain (CTMC) depends directly on the number of reachable
markings. Reduction rules for such nets are not designed to preserve a specific
property such as liveness. Instead, the reduced net should represent the behavior of
the original one, meaning that its corresponding CTMC aggregates the performance
prediction of the original net without altering the values (see [ADFN99]). This
is sometimes called ezhibited behavior equivalence [SA92]. Some of the reduction
rules defined in the two last mentioned articles remove immediate transitions from
generalized stochastic Petri nets (GSPNs). If all such transitions can be removed
the resulting net is a stochastic Petri net (SPN) with exponentially distributed firing

delays which could then be interpreted as a continuous net.

An example of a reduction technique for (G)SPNs is the deletion of timed transitions
that do not modify the marking (see reduction rule RRs in [ADFN99]). If the firing
of a transition does not change the marking of the net, it may be deleted together
with all its input and output arcs. Other rules, like the deletion of implicit places,
are in general not purely structural as they depend on the initial marking and can

therefore be applied to net systems only.

Let us consider reduction rule RR;; “Folding of identical subnets” in the same
publication as it provides an example of symmetry reduction. We assume that the
net contains identical subnets which are ordinary state machines. We further assume
that input arcs to each subnet go to a single place and that arcs out of each subnet
enter a place common to all subnets. Under these conditions all but one subnet
can be removed. This rule eliminates “symmetries from the underlying stochastic
process, corresponding to a lumping of the CTMC underlying the GSPN” [ADFN99.
The reduction method proposed in Section 4.3 can be understood as an extension
to this rule that can be applied to far more general types of subnets and provides a

structured procedure based on the definitions and results of the previous chapter.

In TCPNs, we use transformations such that the original marking trajectory can
be obtained from that of the reduced system by a linear transformation. Always
assuming infinite server semantics, the easiest such transformations are the 7T -rule
and the P-rule that change the weights of the input and output arc of a transition or

place, respectively.! Take the net in Figure 4.1(a). Multiplying both w; and ws by

'This rule was illustrated by M. Silva in a personal communication in May 2010.
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Figure 4.1: Transformation rules for TCPNs.

some constant k > 0 does not change the dynamical system associated with the net.

To see this, consider, on the one hand, the marking flow that leaves p;. It is given by

Mpy

Prep s = Aty My, , i.e., it is independent of the arc weight.? The marking

mMp,
Prep t

P'repht . )‘tl

flow entering place ps is not affected either as it is given by Post,, ;s =
mpl

mp
/ﬂwg)\tl kwi = ’wz)\tl w,

as in the original net. Similarly, we can multiply the arc
weights in the subnet in Figure 4.1(b) by a factor £ > 0. The computations are
analogous to the previous case. However, also the initial marking of p; has to
multiplied by £ and the original continuous marking of that place is obtained if the
resulting marking m;)l is divided by k. At any time 7 > 0, the marking of the
original system can be obtained from the transformed one by multiplication of its
marking by k£ at that point in time. These rules may not be applied to discrete nets

where the enabling degree is always given by a nonnegative integer.

The transformations considered so far use the following principle: first, a specific
local structure is identified in the net, e.g., implicit places. Then, certain nodes and

arcs are being removed. Finally, arc weights or firing rates might have to be adapted.

2This is a distinctive property of continuous Petri nets where transitions are enabled if all their
input places are marked independent of the particular amount of fluidified tokens. Furthermore,
the enabling degree is a rational number. It is this property that makes some discrete nets being
not well approximated by continuous ones if the enabling degree is generally low.
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In the upcoming sections, two different approaches are presented that take advantage
of the global structure of the net. To start with, reductions are performed on a purely
mathematical level, meaning that the dimension of the system of the associated
piecewise linear system is lowered while the net remains unchanged. The results are
then used to transform the net itself. The advantage over the purely mathematical
reduction is that the net becomes more manageable for the human modeler and

further reduction techniques that use local structures may be performed.

4.2 Reductions of the PWL System Associated with a
TCPN System

4.2.1 Reduction to Flow-Invariant Affine Subspaces

This section is dedicated to a reduction approach that can be applied to the piecewise
linear system associated with a TCPN system. The result is a piecewise linear
system of smaller dimension. The net itself is not changed and, in general, there
exists no direct interpretation of the reduced dynamical system in terms of the Petri
net. However, trajectories of the reduced system provide exact solutions to the
original system after an (affine) linear transformation. The approach has already
been published in an alternative formulation in [MDH11]. It can be applied whenever
there exist flow-invariant (affine) subspaces, i.e., sets such that marking trajectories
with an initial marking in that set remain there for all time. Two such subspaces
we already know of. Since C' appears as the first factor in the system matrices of all
regions (cf. Equation (2.12)), only markings in mg + im(C) can be reached. This is
equivalent to saying that reachable markings satisfy the conservation laws imposed
by P-invariants. Similarly, symmetries in the net structure and initial marking give

rise to a flow-invariant set, namely the fixed-point set Fix(3,,,).

The reduction results in a PWL system whose dimension is the same as the dimension
of the flow-invariant (affine) subspace. However, the benefits are not restricted to
the fact that the new system is of smaller dimension. The reduction with respect
to Fix(3,,,) serves as a basis for a symmetry reduction on the net level later in
this chapter and the reduction with respect to mg + im(C') allows the analysis of

parameter-dependent systems carried out in Chapter 5.
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The idea is the following. Let a flow-invariant, affine, linear subspace containing my
be given by m/ + U for some d-dimensional linear subspace U. Let D € RIPI*d be a
matrix whose columns are a basis of U. Then, for any reachable marking m, there
exists a unique m € R? with m = m/ + Dm. We therefore rewrite the PWL system

associated with the TCPN system in terms of this new variable m.

The reduction uses properties of the Moore-Penrose pseudoinverse which we recall
here briefly. Alternative definitions and numerous properties are stated, e.g., in
[CMT79, Cli79, BG74].

Definition 4.1. (Penrose definition of the generalized inverse) If A € C™*", then

the Moore-Penrose pseudoinverse AT € C**™ s the unique matriz such that
1. AATA=A,
2. ATAAT = AT,
3. AAY and AT A are hermitian.

The following properties of the generalized inverse are used in this chapter.

Lemma 4.2. Let A € C™*" and A" its Moore-Penrose pseudoinverse.
1. Atz =0 ifx € im(A)*.
2. AAT s the orthogonal projector of C™ onto im(A), i.e., AATx = x if x €
im(A) and AATz =0 if x € (im(A))* .

3. If A has full row rank, then At = A*(AA*)™! and AAT = I,,,. If A has full
column rank, then AT = (A*A)™LA* and ATA=1,.

Proof. See [CMT79, p.9] for the first two properties and [Cli79, p.13] for the last

one. O]

We now use these properties for the study of the dynamical system associated with
a TCPN system
m = F(m), m(0)=my (4.1)

with F' : R‘f(]' — R|P|, m +— Agm = CAIlgm for m € Mg. If there exists a flow-
invariant (affine) subspace of dimension d < |P|, then an equivalent initial value

problem can be posed on a d-dimensional space.
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4.2 Reductions of the PWL System Associated with a TCPN System

Theorem 4.3. Let U C Rg be a linear subspace of dimension d and let m' € Rg

be such that mg € m' +U. Let D € RIPIXd be o matriz whose columns are a basis
of U.

If (m"+U)N R'fol 18 flow-invariant with respect to F, then the reduced system

i = DT F(Dm +m') = (DY Ag D) + (DT Aem!) if m’ + Din € My (42)
#(0) = D+ (mo — m') '
is equivalent to the original system in the sense that m : [0,00) — R? is a solution

to the reduced system (4.2) if and only if m = m/' + Dm solves system (4.1).

Proof. The reduced PWL system is also continuous as it results from the composition
of the original continuous system with smooth functions. Thus, the existence and

uniqueness of a solution is guaranteed.

Let m solve the reduced system and m = m’ + Dm. The initial value condition is
satisfied since m(0) = m’ + Dm(0) = m’ + DD (mg — m') = m/ + mo — m’ = my.

The second last equality holds since mg —m’ € U.

In addition, m satisfies the differential equation

Lon(r) = L' + Di(r)) = Dii(r)
= DD F(D(r) +m') = F(Dm(r) + m') = F(m(r))

eU

Let now m solve the original system and let m be such that m = m’ + Dm. The

initial value condition is obviously satisfied since
m(0) = DY Dm(0) = DT (m(0) —m/) = DT (mg —m’).

For the differential equation, we obtain

d d d

() = CZTQ:J;BW%(T) = D (Dm() +m')
- %Dﬂn(ﬂ = D*F(m(r)) = DYF(m' + Dm(7)). -
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In the same way, we say that m : [0,00) — leo solves the original system if and
only if D (m —m') solves the reduced one. This follows immediately from the above
theorem as DT (m—m/) solves the reduced system if and only if m’+ D(D*(m—m'))
solves the original one. As m is a solution, we have m(7) € m’+ U for all 7 > 0 and
therefore m’ + DD (m — m') = m.

In general, the reduced system that we obtain is piecewise affine. The canonical
choice of m’ would then be mg. However, if mo € U, we can choose m’ = 0 and the

affine part DT Agm’ vanishes.

Simulations of the reduced system can be conveniently run using the Matlab tool
PWLTool (cf. [HJ99b, HJ99a]). The tool needs the system matrices and the matrices
describing the reduced polyhedral regions as an input. The reduced system matrices
are obtained from the original system matrices by simple matrix multiplications. The
new regions M Kk (K € KCyr) are again polytopes which can be described by a system

of linear inequalities, namely

Mg ={m eR*: m' + Dim € Mg}
:{ﬁzeRd: m' + Dm > 0 and Gg(m' + Dm) < 0}

-D
={meR%: m < .
GkgD

with G as in (2.7). For some K it might hold that dim(Mg) < d and even My = 0.

This is because some regions do not intersect with the affine subspace.

m/

~Grm/

4.2.2 Reduction to mg + im(C)

In practically all Petri nets, P-invariants appear. These are vectors y € RPl with
yT'C = 0. They serve as conservation laws on the markings in the sense that
yT"m(1) = yTmg for all 7 > 0. In discrete place/transition nets they are — among
other purposes — used to represent markings by fewer components. For example,
if a net with three places has a P-invariant y = (1 0 1)T, then the marking of
place ps is given by my, (1) = yTmo —m,, (1) for all 7 > 0. Therefore, only the first

two components of the marking vector have to be stored.
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4.2 Reductions of the PWL System Associated with a TCPN System

Experiments conducted in [Sch03] suggest that the number of components of the
reduced marking vector typically ranges between 50% and 70% of the original di-
mension |P|. In [KMB*08, VMM™*08, Lefl1], the same idea is used for continuous
Petri nets leading to a piecewise affine system. The piecewise affine system studied
in [KALDOQ9] can also be interpreted as a reduction in that sense if all P-invariants

are due to single servers made explicit.

A marking m is consistent with the P-invariants if and only if m € mg +im(C). So
this affine subspace is flow-invariant and the reduction procedure described above
can be applied. As in the discrete case, we can expect that the dimension of the

reduced system typically ranges between 0.5 - |P| and 0.7 - |P|.

Let C, € RIPI*" be a matrix whose columns are a basis of im(C). We apply the

reduction procedure with D = C,. and m’ = mg and obtain the r-dimensional system

m = CFF(mg + Cpin) if mo 4+ Cpin € Mg
m(0) = 0.

Introducing the matrices and vectors

A = CHAgC, and ax = C;F Agmy (4.3)
with A as in Equation (2.12) as well as the sets

My = {m € R" : mo+ Crin € Mg},
the reduced system is expressed by

= A +ag if m e Mg

(0) = 0.

(4.4)

The reduced regions can again be stated in matrix-vector notation by

]\7[( ={meR": mg+Crm >0 and Gg(mo+ C,m) < 0}

= {m eER": —Cr } ) (4.5)

GkC,
67
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4 Reduction Techniques

Example 4.4. Let us perform the reduction for the TCPN studied in Example 2.5.
With three places, the original system is three-dimensional. As rank(C) = 1, the

reduced system is only one-dimensional. We use

-1
1
o= 1 withcj:§(—1 1 —1).
-1

T
The net is bounded as the support of the P-semiflow (1 2 1) contains all places.

T
For the initial marking mg = (11 0 10) , the reduced phase space consists of
three intervals
—~ 11 ~ 11 ~
MK1: |:O,2:|, MK2: |:279:| 3 MK3:[9,10]

Region My, cannot be reached from this initial marking due to the conservation

law imposed by the P-invariants. Therefore, M, K, = 0.

The system matrices are computed according to Equation (4.3). The resulting dy-
namics is given by
—3m +22 if m e My,
m=< —m +11 if € Mg,,

—3m 429 if m € Mg,.

We see that only region M K, contains a steady state to which the system converges
from m(0) = 0. ¢

The reduction is performed with respect to a specific initial marking. However,
as F' is homogeneous, the qualitative behavior is equivalent to that of the system
with initial marking kmgy (k > 0). Furthermore, the reduced dynamical system

incorporates all markings contained in the affine subspace mg + im(C).

In Chapter 5, this reduction is used as a basis to analyze bifurcations in parameter-
dependent Petri nets as the reduction does not only affect the dimension of the sys-
tem but also removes zero eigenvalues which hamper the analysis. Roughly speaking,

the spectrum of Ag is preserved by the reduction and so are the algebraic and ge-
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4.2 Reductions of the PWL System Associated with a TCPN System

ometric multiplicities of the eigenvalues. The only exception are zero eigenvalues.

We look at the eigenvalues first.

Proposition 4.5. Let x4, and XA, denote the characteristic polynomials of Ak
and EK, respectively. Then,

|P|—=r

Xag (1) = p" 7" x g, (1)

The proof uses a similarity transformation based on the following partition of RI”!

where Y is a matrix whose columns are a basis of the set of all P-invariants.

® im(Cy)*
® im(C)*
@ ker(CT)
@ im(Y)

—1 C+
Lemma 4.6. The matrix (Cr Y) is invertible with (Cr Y) = <Y1>

Proof. Invertibility follows immediately from the above partition of RIP!.

C;r cro, Cry
(¢ v)= .
Y+ YtC, Y'Y
As the columns of C, and Y, respectively, are linearly independent by definition, we
get CFCr =1 and Y'Y = Ijp_,.

Combining the above partition with Property 1 of the Moore-Penrose pseudoinverse
in Lemma 4.2, the equalities CfY = 0 and YTC, = 0 follow immediately. We

obtain
(CJ;) (C Y) ( . O“”’“’) = Iip|- O
Y 0|73‘|—7‘,7" I|79\—r

Proof of Proposition 4.5. Due to the previous lemma
Ci CHAgC, CFfAgY A CrAgY
Ax (C Y) r AK r AK _ K r AK Y
y+ YTAC, YTAKY Op|—rr  Op|—rP|—r
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is a similarity transformation. Thus, Ax and A’ have the same characteristic poly-

nomial. Making use of the block structure of A’ we compute

X (1) = xar(n) = det(plp) — A)
= det(pul, — Ak) - det(udipj—r — Opp—p )
= Xz, (1) - w7 O

We see that the spectrum of Ag is composed of the spectrum of A & and zero eigen-
values. Algebraic multiplicity is preserved by the reduction for all nonzero eigenval-
ues. The following lemma considers the corresponding eigenvectors and geometric

multiplicities which are in fact also preserved — again for nonzero eigenvalues only.

Proposition 4.7. 1. Letvy,...,0 be linearly independent eigenvectors of EK to
the eigenvalue . Then, Cp01,...,C,U, are linearly independent eigenvectors

of A to the same eigenvalue.

2. Let now vy, ..., v be linearly independent eigenvectors of Ax to the eigenvalue
w#0. Then, Cluy,...,Cluy are linearly independent eigenvectors of Ak to

the eigenvalue p.

Proof. 1. Let i € {1,...,k} and Axt; = uv;.  Multiplication with C, yields
C,.Cr Ak Crv; = uCyv;. As AgC,o; € im(C), we obtain with Lemma 4.2 that
C,.CrAKC.v; = AgC,v;. Tt follows that AxC,v; = pC,v;. Linear indepen-

dence is preserved since C) has full column rank.
2. Letnow i € {1,...,k} and Agv; = pv;. We first show that KKC';FUZ- = puCrv;.
Agv; = CANllgv; € im(C,) = pv; € im(C)) u:7é>0 v; € im(C)).

By Property 2 of Lemma 4.2, this implies C,.C;Fv; = v; and we can write

AClvo; = CHARC,CHo; = CF Agv; = pCilo;.

We need to show linear independence of C;fvy, . .., Cfvg. Again, this property
is not influenced by multiplication with C,. and thus follows from C,.C;fv; = v;
which holds by Property 2 as v; € im(C,). O
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The condition i # 0 of the second part of this proposition is vital. The reduction
singles out the dynamics of the original piecewise linear system which take place in
the affine subspace mo+1im(C'). Its flow-invariance results in zero eigenvalues in Ag

which do not appear in Ak any more. We take advantage of this fact in Chapter 5.

4.2.3 Reduction to Fixed-Point Sets

In the previous chapter, we have seen that isotropy subgroups remain constant along
trajectories, i.e.,

Emo = Em(T)

for all 7 > 0 where X,y C Zz N This can be understood as a conservation law for
a system with given initial marking and can be used to reduce the associated PWL
system analogously to the reduction in Section 4.2.1. Let mg be the initial marking
and Y,,, its isotropy subgroup. We reduce the dynamics to the flow-invariant fixed-

point set Fix(X,,,).

Let ¢ € RIPI%5 be a matrix whose columns form a basis of the subspace
{meRPl: Sym=mforall g cX,,}

which contains Fix(%,,,). Flow-invariance of Fix(%,,,) means that m(7) € Fix(Z,,,)
for all 7 > 0. Therefore, there exist unique m(7) € R® such that m(r) = ¢ m(7).
We apply our reduction technique with D = ¢ and m’ = 0 and obtain the reduced
system

m = ¢*F(¢m) = ¢T Agpm if m € ¢~ (M)

(4.6)
m(0) = ¢Tmo

which is equivalent to the original system on Fix(X,,,). Since the flow-invariant
set is not affine, there is no affine part in this PWL system. In the sequel of this
chapter, this reduced system is the starting point for the development of a reduction
technique modifies the net itself. For a particular choice of ¢, this s-dimensional
system is identical to the PWL system induced by the reduced net. In this case, m

has a direct interpretation on the net level.
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Figure 4.2: A Petri net with \E?MA)] = 8.

4.2.4 A Joint Reduction

We have performed reductions to the flow-invariant sets mg + im(C) and Fix(X,,,).
Of course, also their intersection is a flow-invariant affine subspace to which we can

reduce. As ¢¢t is the orthogonal projector onto Fix(3,,,), this set is given by

Pix(Smg) 1 (1m0 +m(C) = (mo + im(9)) N (mo + im(C)) N R
= {mg +m': m' € im(¢) Nim(C)} NRY
= (mo + im(¢p™C)) N Rg{)"

The reduction technique can therefore be applied with U = im(¢¢™C) and m’ = my.

The size of the reduced system with respect to Fix(3,,,) depends on the size of the
isotropy subgroup of mg while the dimension of system (4.4) is independent of my.
It is not surprising that the joint reduction to mg + im(¢¢*C) leads in general to
a system whose dimension is smaller than r or s. This can be seen in the following
example. However, due to the fact that the token flow matrix C' is symmetric itself
(S,C = CT,), the reduction to the flow-invariant set mgo + im(C) already removes
redundancies stemming from symmetries such that the gain of the joint reduction

may be small.
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Example 4.8. Let us consider the net in Figure 4.2. Its token flow matrix is

1 -1 0

1 -1 0

C = 1 0 -1
1 0 -1

-1 1 1

As rank(C) = 3 a reduction with respect to mo + im(C) would yield a three-
dimensional system for any choice of mg. The Petri net is highly symmetric with
]Z'z N /\>| = 8. For the “most symmetric” initial marking where the first four compo-

nents are equal, the symmetry reduction would even yield a two-dimensional system.

T
Let us consider the reduction for the initial marking, mg = (1 2 2 1 1) . The
isotropy subgroup is X,,, = {id, (p1 ps)(p2p3)(t2t3)} and the corresponding fixed-

point subspace is spanned by the columns of

-
I
o = o o =
o O = = O
—_ o o o o

inducing a three-dimensional system just as in the case of a reduction with respect
to mo + im(C). However, rank(¢¢™C) = 2 such that the joint reduction results in

a two-dimensional system. &

4.3 Symmetry Reduction of the Petri Net

4.3.1 Problem Statement and Solution Approach

It has been shown in the previous section that symmetries may be taken advantage
of for reducing the dimension of the state space. We now take this idea a step
further by reducing not just the equations but also the net itself. The model of

a multi-computer programmable logic controller studied in [ZS10, p.53] serves as
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Figure 4.3: Original and reduced model of the MCPLC example.

a motivation. This system has been decolorized using a combination of reduction
techniques and unfolding. The resulting net contains symmetries as there are three
identical subnets (see Figure 4.3(a)). As a last reduction step these three subnets
are substituted by a single subnet and the weight of the new arc (f2,p1) is adapted
accordingly. Figure 4.3(b) shows the resulting net. This section deals with the
question if this last step in the reduction procedure can be performed automatically
for any system of this form. The task includes the selection of nodes, the construction
of arcs between them, and the choice of arc weights and firing speeds. The method
has already been published in [MS12].

The idea to reduce Petri nets if they contain symmetries is not new. In [ACB84], for
instance, a multiprocessor system comprising several identical processors, memories,
and buses is modeled. The net is then replaced by a smaller one that results from
folding subnets representing the common memory accesses without loss of informa-
tion about the associated stochastic process. However, no systematic approach to
the reduction is suggested and the modeler has to check carefully if the folding is
really valid. Furthermore, in the above example, a simple folding of the identical

subnets cannot be applied as it ignores the necessary change of the arc weight.

In Section 4.1 the rule “Folding of identical subnets“ as suggested in [ADFN99] has

been stated as a formalized version of this reduction approach. As the prerequisites
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of this rule are very restrictive we may not apply it in the above example. First, that
rule is designed for ordinary subnets only and does not incorporate any changes of
arc weights. Second, the subnets contain joins and are therefore no state machines.

We are seeking for a more general reduction rule.

In the two articles just mentioned, symmetry is understood in terms of identical or-
dinary subnets which are symmetrically coupled. It seems just natural to extend this
view to the more general definition of symmetry in terms of graph automorphisms
that is used throughout this work. The resulting Petri nets can then be understood
as quotient nets where each node represents an equivalence class of nodes of the
original net. The concept of quotient nets can already be found in the literature on
ordinary Petri nets where they are considered in terms of net morphisms [Des91].
Unfortunately, it is not straightforward to generalize these results to weighted nets.

This is discussed in Section 4.3.9.

A similar method is known from coupled cell systems which are networks of dynami-
cal systems. For such systems it is shown in [GST05] that a symmetry in the network
induces a unique canonical coupled cell network whose nodes represent equivalence
classes of the original nodes. The authors introduce multiple arrows which to a
certain extend corresponds to the change of arc weights we have encountered in the

motivating example.

The reduction technique proposed in this section is based on the same idea as the
reduction with respect to isotropy subgroups shown in Section 4.2.3. The marking
trajectory remains inside the fixed-point set Fix(¥,,,). As the reduction on the
net level also affects the transitions, which do not contribute to the dimension of
the PWL system, we make similar considerations for the transitions. The basic
observation is that a similar conservation law exists for the flow as well.

Let 0 € X, C E?N,A)' Then, m(7) € My implies m(r) = Sym(r) € My (k).
Hence, by Lemmas 3.11 and 3.19

f(m(7)) = Allgm(7) = AL (gym(7) = Al () Som(T)
= AT, xgm(7) = T,Allgm(7) = T, f(m(1))

holds for all 7 > 0. It therefore makes sense to define — in analogy to Fix(X) —
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the set
Fix" (%) = {v € Rg;)l : T,uv=wforall o € E} .

Let now # be a matrix with full column rank whose columns span Fix” (%,,,) and

07 the corresponding pseudoinverse. System (4.6) can then be written as

m=¢TCOOT AT T if m € ¢~ (M) wr

TT”L(O) = ¢+m0. '
We may insert #0" in this way since it is the identity map if restricted to FixT(ZmO)
and as we have seen before f(m) € Fix” (£,,,) if m € Fix(Zpm,).

The idea for the reduction is now the following. Let us introduce the matrices

Pre = ¢+ Pref, Post = ¢ Post§ and A = 0 A 6. (4.8)

System (4.7) can then be written as m = (ﬁ\o/st - ?;‘T?)K9+HK¢ m. The new matri-
ces define a net with less places and transitions. In the case of the MCPLC example,
these matrices describe exactly the expected Petri net. However, for some net struc-
tures containing choices the computation of firing rates is more complicated (or even

impossible). This is discussed in detail in Section 4.3.5.

Example 4.9. To illustrate the idea of the reduction procedure, we consider again
the Petri net system in Figure 4.3 which models a multi-computer programmable
logic controller (cf. [ZS10]). Assuming that the nodes are ordered as p1, paq, Doy, P2c,
D3, Pda, Pabs Pac and t1, tag, top, tae, t3 its net structure and firing rates are described

by the matrices

7/30
7/30
7/30
3/10

Pre = , Post = and A = I5.

o O = O O O = O
o = O O O = O O
_ o O O = O O O
S O O w o o o O
S O B O O O O
O R, O O O O O =
_ o O O O O o =
S O O O O O o w

S O O O o o o+
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4.3 Symmetry Reduction of the Petri Net

The symmetry group of the net contains all possible permutations of the three

subnets and is given by

Sivoy = {id, (D20 P2v) (Paa Pav) (t2a t2b), (P2a P2c)(Pa Pac) (B2a tac),
(p2b P2c) (Pap Pac)(tab tac), (P2a P2b P2c)(Paa Pab Pac)(t2a top tac),
(P24 P2c D2b) (Paa Pac Pav) (t2q tac tap) }-

This is also the isotropy subgroup of the initial marking
T
mo=(3 00001 11).

We choose the following matrices ¢ and 6 to describe the corresponding subspaces:

1 00 0
0100
1 00
01 00
0100 010
0010
010
00 01
0 01
00 01
00 01
We now compute the reduced matrices
1 00 0 3 3
— 010 — 7/30 0 O ~
Pre = , Post = / and A = I3.
0 0 3 3/10 0 0
010 0 10

These matrices ]376, Post and A define a new net up to the labeling of the nodes.

It is shown in Figure 4.3(b).

This is exactly the subnet of the original net one would expect. Also the weight
of the input arc to place p; has changed as expected. We compare the marking

in steady state m* and the corresponding flow f* = f(m*) of the original and the
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Original Petri net
N = (P, T, Pre, Post)
with firing rates A ODE
" m=CAIlgm, m € Mg

Reduction

Reduction Reduced ODE
m = ¢TCANIgpm, m e ¢~ (M)

Reduced Petri net dentical?
N =(P,T, Pre, Post) raentical:
with firing rates A ODE
?g ﬁiZéKHgffL, ﬁlEMf(

Figure 4.4: Schematic representation of the reduction approach.

reduced net system and obtain for the original net

T
m0=(30000111>

m*

T
(1.5 0.35 0.35 035 045 1 1 1)

f*

T
(1.5 0.35 0.35 0.35 0.15)

and for the reduced net

m0:¢+m0:(3 00 1)T

m*:(1.5 0.35 0.45 1)T

f*

(1.5 0.35 0.15)T.

We see that ¢m* = m* and Gf* = f* as required. Thus, the reduced net is

appropriate to analyze the original one. &
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4.3 Symmetry Reduction of the Petri Net

Figure 4.4 summarizes the general approach. The original Petri net system comes
with its associated PWL system. Having identified its symmetries an equivalent
PWL system with smaller phase space can be obtained as described in Section 4.2.3.
From that reduced PWL system a Petri net system with fewer places and transitions
can be deduced as we have just seen. This system again comes with an associated
PWL system. If this PWL system and the reduced PWL system of the original
net are identical, then the reduction is exact. The reduced TCPN system has the
same dynamical properties as the original one and the trajectories of its associated
dynamical systems are identical up to a linear transformation. The reduction on the
ODE level is used for the development of the reduction method and to prove the
correctness of the approach. However, the reduction itself can be performed without

the intermediate step of the reduction of the PWL system.

In the following sections, the deduction of the new Petri net from the reduced PWL
system is formalized. It is shown that in the presence of choices, it might be necessary
to modify the computation of A and that some conflicts require a restriction to a

subgroup of ¥,,,. Afterwards, the equivalence of the two PWL systems is proven.

4.3.2 The Nodes, Arcs, and Arc Weights of the Reduced Net

It must be observed first of all that the reduction approach is always applied with
respect to a group
2 C B C iy

In Section 4.2.3, an arbitrary basis of Fix(X,,,) is used to perform a reduction of
the PWL system to be solved. The state vector in the reduced space might not
have an immediate interpretation on the net level but can be transformed to the
original marking vector by a linear transformation. Here, where we search for a
smaller Petri net, special attention is to be paid to the choice of the basis. First of
all, ¢ and 0 have to be chosen in a way that Pre and Post actually define a new net,
i.e., all entries have to be nonnegative. The same holds for the marking in reduced
space which must not be negative. Second, we want to choose the bases in a way
that allows to draw conclusions from the reduced system about the original system
easily as in the given example, where the marking of nodes in the reduced net is the

marking of the corresponding nodes in the original net.
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4 Reduction Techniques

For this purpose we choose ¢ and 6 in the same way as in the previous example.
We first group the nodes in equivalence classes with respect to 2. Each equivalence
class results in one column of the corresponding matrix as each node in the reduced
net shall represent one equivalence class of nodes of the original net. Let s and ¢
denote the order of the quotient sets P/~x, = {[p|~y, : p € P} and T /~x = {[t]~y :
t € T}, respectively. Let P = {p1,...,Ps} and T = {t1,...,t,} be sets of places and

transitions. In analogy to the traditional canonical projection map we define
p:PUT =PUT

such that u(P) = P, u(T) = T and p(v) = p(v') if and only if v ~x v'. The sets
P/~yx and P are isomorphic as are 7/~yx and T. Let (v) denote the cardinality
of the equivalence class [v].,, for a v € PUT. We use this symbol also to denote
(%) = |p=Y(0)| for all 5 € PUT.

The (|P| x s)-matrix ¢ and the (|7 | x ¢)-matrix 6 are constructed as in Example 4.9
such that each column corresponds to an equivalence class of nodes and thus to one

node in the reduced net:

1 ifp(p) =5 Loifpu(t) =t
Gps = Oup)p = and 0,;=0,, 7= (4.9)
DD w(p),p 0 otherwise bt uit) ¢ 0 otherwise.

The corresponding Moore-Penrose pseudoinverses are

1 = ) 1 _ 7
(&) = Op,u(p) _ )W if pu(p) =p d (6. — 5t,u(t) _ )% if p(t) =t
" )pp B) . and  ( )t,t 7
p 0  otherwise t) 0  otherwise.
For the arcs and arc weights we compute
1
(¢+P7’6 0)ﬁ7£ = Z ﬁéﬁ’“(p) <Z Prep,ﬁu(t)i)
peEP P teT
1 1
= @ Z Z Prent(sﬁ,u(p)éu(t),i = @ Z Pre, ;.
pEP teT (p,t)

en~l@xu=1(®)
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4.3 Symmetry Reduction of the Petri Net

Let p € u~1(p) and o € X, then,
Z Pre,; = Z Pregs( Z Preg(p) .t
tep=1(1) tep=1(f) tep=1(t)

Therefore, for an arbitrary p € u=1(p),

1
(¢+P7‘69 Z Prey; = <— Z Pre,; = Z Pre,; (4.10)
1(;1; >t<)u L(@) ten (@ ten=' @)

’Ex

and the same for Post. That implies that arc weights may increase compared to
the original ones if choices (for Pre) or attributions (for Post) have less output or
input arcs, respectively, after the reduction. Note that the condition that every
transition has at least one input arc is preserved by the reduction. As a result, the
net N' = (P, T, Pre, f/’gs/t) is defined.

4.3.3 Configurations

In order to show that the dynamical system associated with <./\~/' , X> is identical to
System (4.6), we need to compare both the polyhedral partitions involved and the
constraint matrices IIx and their counterparts in the reduced net. These tasks
require a matching of the configurations of the original Petri net and those of the

reduced Petri net.

Considering our initial example given in Figure 4.3(a), we observe that some con-
figurations become redundant in the presence of symmetries. If py, constrains the
flow of transition to,, then at the same time, py, constrains the flow of tg,. That

means that we may neglect a configuration K with, for instance, K (to,) = p4q and
K (tay) = pas-
We may in fact restrict to configurations which are symmetric with respect to the

symmetry group > considered. They are given by
K ={K € Ky : p(K(t)) = p(K(a(t)) forall t € T,o € ©}.

All others do not contribute to the dynamics.
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Lemma 4.10. Let K € Ky \ K% Then, int(¢~(Mg)) = 0.

Proof. For such a configuration, there exist a transition ¢ and a symmetry o with
(K1) # p(K(o(t). Let pi= K(t) and p' i= 0~ (K (a(t))) = 71 (K)(t). We
know that p’ € *t as m,—1(K) is a configuration. Furthermore, t # o(t) and p # p'.

The reduced marking vector m € R, is an element of ¢~ (M) if and only if

Ggom < 0. Matrix G contains rows (cf. Equation (2.8), specifying only nonzero

elements)
IKtp = ( .. #ﬁt ... Pr_e;/,t .. )
T T
p I

— 1 —1
gK,O'(t),O’(p) - (' o P'I‘eg(p/>0(t) Tt Prea(p),a(t) )
T T
o(p) a(p)
—( ! = )
e Preplﬂt N PT‘epyt ced)

Taking into consideration that K ¢ IC/E\/ implies u(p) # p(p’), multiplication with ¢

leads to
1 —1
( 9K t.p' )d) B Prep. Prep’,t
=... o
9K,a(t),0(p) Prept Prey 4
T T
p(p) (@)
Then, gxtpy® = —9Kot)0@p)®- Therefore, ¢ 1(Mg) cannot contain an interior
point. O

With the same reasoning as in Proposition 2.9, which confirms that redundant con-
figurations can in fact be neglected, we may neglect those configurations studied in

the previous lemma.

For a configuration K € ICE[, we define the corresponding configuration K of the
reduced net as
K:T =P, t— u(K(t)) forate p ().
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4.3 Symmetry Reduction of the Petri Net

This map is well-defined as it is independent of the choice of ¢ by definition of the
set IC/%/. Let us confirm that K is really a configuration of N. As for the chosen
t € u~1(f) the inequality ]?7%1?(5)7:?: Zt’e[t}NE Pregy = Pregys > 0 holds, it
follows that u(K(t)) € *t.

This construction defines a map
1 Ky — K.
Lemma 4.11. The map ,uE 18 surjective.

Proof. Choose a K € K. We construct K € KX with pu(K) = K.

Let t € 7. Choose a place p € (u*(K(u(t))) N *t). Let us confirm that this is
always possible. Let p/ € p~1(K (u(t))). We have to show that there exists p € *t
with p ~x p'. From FA’r/eu(p/W(t) = Zt'e[t]NE Prey v > 0, it follows that there exists
o € ¥ with Prey ;) > 0. We choose p = o~ 1(p'). This is an input place of ¢ as
Prep = Prey 51 > 0. It is equivalent to p.

We put K(t) = p. For all ' ~x t choose o € ¥ with ¢’ = o(t) and let K(t') = o(p).
If the values of K are fixed for all transition in that equivalence class, then choose
a transition from another equivalence class and proceed in the same way until K is
defined. By construction, K € K3 and pu(K) = K. O

4.3.4 Polyhedral Regions

Now, as a matching between the regions of the original and the reduced net is

defined, we need to verify that the corresponding regions are related by
M,s ) = ¢~ (Mkg).

. . . . . . Em
In Example 4.9, this equation is satisfied for both configurations in KC,/"°. However,
problems may occur when unequal conflicts are present in the net, i.e, when there
exist transitions with a common input place whose input structures in terms of nodes

or arc weights are not identical. This is illustrated by the following example.

Example 4.12. The Petri net in Figure 4.5 is an example of a net where the
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t D2 to b3 ts
B & B &
N N
4! 2!
—_ { )
D & D &
ta psv ts p6U t6
(a) The original net
2
B . LB )
O=1—O——0C—1H
)\gl ‘ ]34
a2
2 \_/ 2
(b) The reduced net
Original Net Reduced Net
Configuration Region Configuration Region
Ki(t2)=p2, K1(t5)=p5  max(my,,my;) < mp, f:fl(iiz):@ Mpy < 575,
Ks(to ZKQ(t5) =py4 Mipy < min(mPQ,mp5) Kz(tQ) =Py %ﬁ”&m < ﬁlﬁQ

(t2)
K3(ta) =p2, K3(ts)=ps mp, < my, < myp;
Ky(to)=pa, Ka(ts)=ps mp; < my, < mp,

(c¢) Configurations (specifying joins only) and regions

Figure 4.5: The reduction removes the unequal conflict of py. The two nets exhibit
different behavior.
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4.3 Symmetry Reduction of the Petri Net

reduction fails due to the choice py. The set of symmetries of the net is given by
ZIEN)\) = {id, (t1 t1)(p2 ps)(t2 t5)(ps pe)(ts te)}. Let us assume an initial marking
with isotropy subgroup Z? o

Figure 4.5(b) shows the resulting reduced net. Both conflicts p; and p4 are “resolved”
by the reduction. In the case of p;, whose output transitions are in CEQ relation
(cf. Section 2.2.2), this does not cause any problems. Place py, on the other hand,
has output transitions to and t5 which are not in CEQ relation. The solution of
a conflict is therefore marking dependent and as such we can expect that a purely

structural reduction technique does not lead to the expected result.

The reduction changes the weight of one input arc to transition £ to the value 2
while the weight of the other arc remains. In the original net the active configuration
is determined by comparing mj,, and my,. In the reduced net, mj, and %m@l
are compared. Thus, the regions of the reduced net are not simply given by the
preimages of the original regions under ¢. Simulations confirm that the net in
Figure 4.5(b) cannot be used for the study of the original net. However, the reduced

PWL system (4.6) can be used for computations in reduced space. &

This problem occurs only if unequal conflicts are “resolved” by the reduction. We

therefore define the following property.

Definition 4.13. A Petri net (N, ) is of type restricted symmetry conflict (RSC)
with respect to a subgroup ¥ C E’ZNN if any pair of equivalent transitions with a

common input place is in continuous equal conflict relation.

This property is of special importance for symmetry reductions because if weights
of input arcs to a join are changed by the reduction, then all arc weights change in
the same manner. This is made precise below. The easiest examples of nets with

the RSC property are join-free, choice-free, and CEQ nets.

It is important to note that a restriction to RSC nets does not necessarily imply
that unequal conflicts cannot be involved in the reduction. If two or more equiva-
lent but independent unequal conflicts appear, then it might be possible that only
one appears in the reduced net. This depends on the existence of an appropriate

subgroup.
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Figure 4.6: A net that is RSC only with respect to a proper subgroup of its symmetry
group.

Let us consider the net in Figure 4.6. Its symmetry group is given by

Eif\/,/v = {id, (t1t2)(p1p3), (tata)(pape), (t1t2)(t3ta)(p1p3)(Paps),
(t1t3tats)(prapspe)(P2ps), (t1tatats)(p1pspspa)(p2ps),
(t1t3)(t2t4)(p1pa)(P316) (P2 P5), (t1ta)(t2t3)(p1p6)(P3P4)(P2D5)}-

In addition to the identity, only the last two elements of this set satisfy the RSC
condition. They are of order two and therefore each of them builds a subgroup
together with id. The net is RSC with respect to either of these two subgroups.
They can therefore be used for a reduction that reduces the size of the net by
half. The composition of the two permutations does not satisfy the RSC condition.
Therefore no bigger subgroup can be found. This procedure is always possible if the

relevant subnets are not coupled by an unequal conflict.

Below, the following implications of the RSC property are used.

Lemma 4.14. Let N be RSC with respect to ¥ C EIEN -
1. Ift ~x t' are in conflict relation, then Prey; = Prey,y for all p € P.
For two input places p ~x, p' of t € T, the equality Pre,; = Prey ; holds.

Let K € ICJZ\/ and t ~s t'. Then, Pregy e = Preg -

™o

Let p € *t. Then,

Preym) ue)

=p*N[t]~
Pocttll = 19 1 [}

and for p' € *t the equality |p'® N [t]~g| = [p® N [t]~y| holds.
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4.3 Symmetry Reduction of the Petri Net

Proof.

1. Let t,t’ be two transitions in CEQ relation. Equivalence of the transitions
means that there exists ¢ € ¥ such that ' = o(t). As ¢ and ¢’ are in CEQ
relation, there exists & > 0 such that Pre,; = kPre,; for all p € P. Let

p € P. Then,

Prepy = Preq(p) o) (o is symmetry)
=k Pregp)t (t' = o(t) and CEQ)
=k Preg2(p) 1) (o is symmetry)
=k’ Pregz2 ) (' = o(t) and CEQ)
— k;TP'rea-r(p)’t

for r € N. As ¥ is a finite group, there exists r with ¢"(p) = p and therefore
Pre, = k" Prey s and as Prep; > 0 this implies k = 1.

2. Letp,p’ € *tandp' = o(p) forac € ¥. As o is asymmetry, Pre,; = Prey ,«
holds. If o(t) = t, there is nothing to show. Otherwise, ¢ and o(t) are two
transitions in CEQ relation as p’ is a common input place and the net is of type

RSC. The equality Prey 5) = Prey; follows immediately from Property 1.

3. Let 0 € ¥ be such that ¢’ = o(t). Since Pre, k) = Pregw,: > 0, both
o(K(t)) and K(t') are (possibly identical) input places of . By definition of
Kar, they have to be equivalent. Application of Property 2 yields Preg v =
Pres k@) = Prex).s

4. Let p € *t. If there exists ¢’ # ¢t with ¢’ € (p® N [t]~y,), then ¢ and ¢’ are in
CEQ relation and, by Property 1, Pre,y = Pre,;. Therefore,

Preupyutt) _ 2veloy Pt _ Dvernitoy) Prerr
Pre, Pre,; Prey
- Ip® N [t]g| - Prepy
Prep

= [p* N [t~

Let now p’ € *t. If there exist t' # ¢ with t' € (p® N [t]~y), the transitions
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t and ¢’ are in CEQ relation and 0 < Pre,y; = Prey y implies that p’ is an
input place of ¢'. Thus, p®*N[t]~, C p*N[t]~,,. We argue in the same way that
PN [t]~y, C p*N[t]~s. In all other cases obviously |[p"*N[t]~y| = [p*N[t]~s| = 1.

O

The last property states that the arc weights of the reduced net are identical to
the original arc weights up to multiplication by an integer factor. The more equal
conflicts are resolved by the reduction, the bigger is the factor. If the net is not of
type RSC with respect to 3, the property does not hold. For the net in Figure 4.7
with ¥ = {id, (p2 p3)(t2t3)}, for example, we have ]3\776“([,2)’“(,52)/Prep27t2 = %1“’2
which is in general not a natural number. The net in Figure 4.5 is not of type RSC

either and |p§ N [tz],\,z‘ =1#2= ‘pz N [tQ]NZ’ if t9 ~x t5.

The following lemma shows how regions of the original net and the reduced net are
related in RSC nets. More precisely, it is shown that the polyhedral partition induced
by the reduced net A is the same as the one of the reduced PWL system (4.6).

Lemma 4.15. Let N be RSC with respect to ©. Let K € Ky and K = i*(K).
Then, ¢~ (Mg) = M.
Proof. We show that each row # 0 of Gk ¢ appears also in Gz and vice versa using
the definition of G via Equation (2.8). Let g # 0 be a row of Gx¢. It stems from
a 10w grtp of Gx. The condition g # 0 together with Property 2 of Lemma 4.14
implies that u(K(t)) # u(p). Also u(t) has to be a join and pu(K(t)) and u(p) are

among its input places as

Pre iy = Y, Prexww > Prege >0,
Vet vy
ﬁvreu(p)’“(t) = Z Prepﬂg > PT@W > 0.
tElt] vy

By definition, K(u(t)) = wu(K(t)). Therefore, Irtp® and gz (6), () have the

positive and negative elements at the same position and are equal if and only if

Pre,x@).uty = Prexw, and Pre = Prey;. However, we do not need the

w(p),u(t)
rows to be equal in order to define the same set of markings as the description of the

polyhedron by a matrix is not unique. In particular, each row may be multiplied by
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4.3 Symmetry Reduction of the Petri Net

an arbitrary positive constant without changing the polyhedron it describes. The

equality of the elements of Pre and Pre can therefore be weakened to

Preuw)ut _ Préup)

4.11
Preg s Prey, ( )

This condition is always satisfied in RSC nets according to Property 4 of Lemma 4.14.

Let now g Rip be a row of G ;. We show that there exists a corresponding row in
Gi¢. Let t € p~1(f). By definition of K, we get u(K(t)) = K(f) # p. As p € *f,
there exist (p/,t') € (u=1(p),u 1 (f)) with p’ € *. Let o € ¥ be such that t' = o (t).
Then, 0 < Prey y = Pres-1py. Let p = o1 (p'). Tt follows that p € °t and
p(p) = p(p).

The row gk ¢ ¢ has the positive and negative elements at the same position as g Rip
Equality up to multiplication by a positive factor is given again if Equation (4.11)
is satisfied which is guaranteed under the RSC condition. O

The following property follows immediately.

Corollary 4.16. Let N be RSC with respect to ©. Let K, K' € KX be configurations
with P (K) = pP(K'). Then, ¢~ (Myr) = ¢~ (M)

This means that in order to describe M, we may choose any configuration K € IC/%

with 4=(K) = K to describe the corresponding region via ¢~ (M).

The prerequisite that the net is RSC is crucial as the following example shows.

Example 4.17. Let us consider the net in Figure 4.7. Suppose that w; > wy. The
net is symmetric with E? Ny = {id,c} where o = (p2p3)(tats). The equivalent
transitions ¢ and t3 are in an unequal conflict relation. Thus, the net is not RSC
with respect to Z"é NN It is Prey, 1, = w1 # w2 = Prep, 1, even though ps and ps3
are equivalent input places of t5. The previous proof was based on the property of

RSC nets that such arcs have always got the same weight.

The net has four configurations. As u(p2) = u(ps), all configurations are elements

of IC%/ and > maps all these configurations onto the single configuration K =
{(t1,91), (2, P2)}-
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b i C
PaN :
P2 p3 P2 Q
w9 w9
w1 w1 w1 + w2
ta F] F] t3 to E\i
(a) The original net (b) The reduced net

Figure 4.7: A net which is not of type RSC and the corresponding reduction.

We consider the regions that correspond to the configurations

Ky = {(t1,p1), (t2,p2), (t3,p2)} and Kz = {(t1,p1), (t2, p2), (t3,p3)}-

All symmetric markings, i.e., those with m,, = m,,, are contained in region Mp,.

Even though 1~ (K1) = pu~(K>), the preimages of their regions under ¢
¢~ (M) = {m € R%q |y, = 0} and ¢~ (Mg,) = R,

do not coincide. &

4.3.5 Firing Rates

In order to fully describe the reduced net we need to define firing rates. It has been
suggested in Section 4.3.1 to compute A = 6TA6 and use the diagonal elements as
the new firing rates. This is the same as to adopt the firing rates of the original net,
i.e,, Ay = At for all t € T. The following example shows that this does not always

work and suggests a procedure to adapt the firing rates.

Example 4.18. Figure 4.8 shows a Petri net with Zs-symmetry and the corre-
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p1

(a) (b)

=

[ ]
RS
Myl

Il

o

Figure 4.8: A Petri net with symmetry and the corresponding reduced net with
adjusted firing rate.

sponding reduced net we obtain from Pre and Post. Assuming the same firing rates
as in the original net (A = 0TA0, ie, \;, = Ay = Ay, = Land N\, = Ny = 1),
the marking in steady state and the corresponding flow of the original net and the
reduced net do not coincide even though the RSC property holds. Traditional re-
duction techniques for Petri nets like reduction rule RRs in [ADFN99], which covers
a similar scenario, suggest that the firing rate of transition #; should be chosen to
be 2. For this value, the marking in steady state and the throughput are as required.
How can we obtain this change of the firing rate automatically? Our original ap-
proach of A = A cannot be used as it just assigns the original firing rates to
the corresponding transitions of the reduced net. Instead, we consider A and Ilx
jointly. In the original net, there are two configurations K; and Ks. We take the

part of Equation (4.7) that contains both matrices and obtain

A, O
Ot A, ¢ = 0 Al = |~ .
0 A

The reduced net does not have any join, consequently there is only one configuration
K with

ATl =

>
1

2y
2
0

N
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The matrices coincide if 5\51 =2), =2 and 5\52 = A\; = 1. For this choice of firing
rates the reduction is valid. However, this example immediately raises the question
if the firing rates computed with this method change with the configuration. This
is an important issue for the analysis of this method since firing rates should be

independent of the active configuration. &

As in the previous example, we choose A= diag(j\,gl, cee S\,gq) such that for a K € IC/%/
¢ AT d = Al i) (4.12)

If this equality holds for all configurations, then — by the previous results — equality
of the PWL system associated with the reduced net N and the reduced PWL system
(Equation (4.6)) of the original net is guaranteed.

Let K = p®(K). In the original and reduced net,

At i K(t) = » 7/\5){ ifk(f):ﬁ
(AHK)t7p _ ) Prepy 1 ( ) p and (AH[})fﬁ _ ) Pres;
0 otherwise 7 0 otherwise.
Furthermore,
At
(Al @)t = z; M) epup).p = A (UK ) ke (1) Ok (1)) = m%(mt»,ﬁ
and finally
1 1 At
(9+AHK¢)5,15 = Z Téf,u(t) (AHKQb)t,ﬁ = = Z 7(&(}((0),5.
7 ) D enip Tren o

By definition of K3, u(K(t)) = p if and only if K(u(t)) = p. Therefore, the nonzero
elements of the two matrices are at the same positions. We can furthermore simplify
the last term if the net is RSC with respect to X. Then, Property 3 of Lemma 4.14

guarantees that the denominators in the sum are all identical. Thus, for ¢ € u=(),

1 )\t L~ )\t )\t
7 2 P —a = .
) te;;(f) P’reK(t)ﬂf t) PT@K(t),t PT@K(t),t
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4.3 Symmetry Reduction of the Petri Net

We conclude

Prei\(t(t),t if IU’E (K) (E) =p

(0T Al 9);

7ﬁ = .
0 otherwise

where t € p~1(%).

We assume that the net is RSC with respect to ¥. Equality (4.12) holds if for all
teT

Preysuowmue _  2velle, Trexor
)\t - )\t .
Preg ). Preg,;

Aut) = (4.13)

If the net is RSC with respect to X, this formula holds for a transition ¢ if and only
if it holds for a transition equivalent to t. Under the RSC condition, the formula is
also independent of the configuration. This is a direct consequence of Property 4
in Lemma 4.14. Furthermore, Equation (4.13) shows that firing rates have to be

increased only for transitions in conflict relations.

To summarize:

Lemma 4.19. Let N be RSC with respect to X. The firing rates 5\51, .. '7;\iq as

given by Equation (4.13) are such that with A= diag(j\gl, A )‘t},) the equality
¢t AT p = ALz )

holds for all K € IC/%/.

The restriction to nets which are RSC with respect to X is important. In fact,
Equation (4.13) can yield different values for different configurations if ¢ is in an
unequal conflict relation. An example is given by the net in Figure 4.5 which has
been studied in Example 4.12. There exists no firing rate 5\52 such that the matrix

products studied above are equal. Applying formula (4.13) we obtain

Pre; ;

- 7 -

N, = Ay =222 = A, and Xy, =
2 P,r.e 2

p2,t2

for K1 and Ko, respectively. No firing rates independent of the configuration can be

found.

93



4 Reduction Techniques

4.3.6 Case Study I: A Manufacturing System

We apply the reduction technique to a Petri net that models a manufacturing system.
The net, which is shown in Figure 4.9 together with an interpretation of its nodes, is
adapted from [RJS02]. It is a marked graph with two shared resources. The system
describes how two materials are being preprocessed by two machines before being

assembled to the final product by a third machine.

In detail, material of two types A and B is stored in buffers modeled by places py
and pg, respectively. Initially, there are 15 pallets with material of type 4 and B,
respectively, in the two buffers. Both materials are preprocessed by the same ma-
chines M7 and My which are therefore shared resources. However, for material of
type A, machine M; performs the first preprocessing step and Ms the second one
while material of type B is processed by machine M, first and by M, afterwards.
The resulting intermediate goods are stored in buffers modeled by pg and pi4, re-
spectively. Machine M3 assembles the final product from the intermediate goods.

This is then stored in buffer p;g until its removal from the production line.

The manufacturing system is symmetric due to the fact that both materials A and
B are preprocessed in the same way before the final assembly. We may permute
nodes referring to A with those referring to B. The table in Figure 4.9 already
indicates the symmetry as nodes that appear in one row of the table are equivalent.
Therefore, ZIEN)\) = {id, o} with

o = (p1p9)(p2 P10)(P3 P11) (P4 P12) (5 P13) (D6 P14) (P7 Ps) (t1 t5) (t2 t6) (3 t7) (ta ts).

The permutation of p; and pg (i.e., the usage of machines M; and My) reflects the

different order in which the two machines are used for the preprocessing process.

This symmetry satisfies the RSC condition. The only choices in the system are pr
and pg representing the use of machines as shared resources and their output nodes

t1 and t;7 (resp. t3 and t5) are not equivalent.

The net that results from the reduction is shown in Figure 4.10. It contains the
part for preprocessing material only once while the subnet that models the final
assembly remains unchanged. The reduced net has only 11 places and 7 transitions

compared to 18 places and 11 transitions in the original net. Only one place, namely
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4.3 Symmetry Reduction of the Petri Net

ps

Node  Interpretation (and firing rate)

p1, pg  buffers for material A and B, respectively

P2, p1o  material being processed by machines M; and My, respectively

p3, p11  intermediate buffers for material having been processed once

P4, p12  material being processed by machines My and M, respectively

s, P13 capacity of the production lines for materials A and B, respectively
pg, P14 buffers for intermediate goods

p7, ps  availability of shared machines M; and Ms, respectively

D15 availability of machine M3

D16 finished goods in machine M3

p17 capacity of buffer pig

D18 buffer for final good

t1, ts first preprocessing step using the shared machines (\;, = Ay, = 1)
ta, t¢  finish of first preprocessing step (A, = Aty = 3)

ts, t7 second preprocessing step using the shared machines (A; = A, = 1)
t4, tg finish of preprocessing of materials A and B (Ay, = Aty = 4)

tg assembly of final product from preprocessed materials (\;, = 1)

t1o finish of the production process, transport to final buffer (A, = 4)
ti1 removal of final goods (A, = 1)

Figure 4.9: A Petri net system modeling a manufacturing system (adapted from

[RJS02)).
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4 Reduction Techniques

Figure 4.10: A reduced Petri net system to model the manufacturing system.

pr7 is needed in order to model the availability of both machines M7 and Ms. For
this reason, the transitions #5 and #; have a common output place unlike their
counterparts in the original net. Similarly, £; and f3 are now in conflict relation.
This shows that, in general, the new net is not simply a subnet of the original net
which is obtained simply by removing (redundant) nodes and all their connecting
arcs. No arc weights are altered by the reduction. Thus, all firing rates remain as

in the original net as well.

4.3.7 Case Study ll: The Role of Choices

Studying regions and firing rates of the reduced net, the main difficulties are due
to choices. They arise when, by the reduction, places lose their property of being
choices. The reason is that in this case weights of arcs from places to transitions
change. These new arc weights directly affect the matrices I[Ix and the regions as
both are defined via Pre. Moreover, the weak condition of equation (4.11) only
comes into play when there are transitions in CEQ relation whose input places are

not equivalent.

The following example illustrates the entire reduction process. In order to incorpo-
rate the main issues discussed in this chapter, a purely academic example with an

equal conflict is studied.

Let us consider the net in Figure 4.11(a). The corresponding symmetry group is

E?N,A) = {id, (p1p2), (t2t3), (p1p2)(t2t3)}.
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4.3 Symmetry Reduction of the Petri Net

ﬂ
N
&

) The original net

@

NJ

) The reduced net

Original Net

Reduced Net

Configuration Region Configuration Region
Ki(t2) = Ki(ts) = m Mpy <y, Ki(l)=p1 i, < g,
Ko(ta) = Ka(ts) = p2 mp, Sy, Ka(t) =p2 mp, <My,

to

(t2) =
K3(ta) = p1, K3(ts) =p2  myp, = my,
K4( ) D2, K4(t3) =DP1 Mp, = Mp,

(c) Configurations

Figure 4.11: A reduction that resolves an equal conflict.
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T
Its isotropy subgroup at the initial marking mg = (1 2 1) is Xy, = {id, (t2t3)}.

For this subgroup the net is RSC and we perform the reduction with respect to ¥,,,,.

The corresponding matrices are

01 1 100
Pre=10 1 1], Post=11 0 0], ¢ = I3,
100 0 1
0 2 10 10
Pre=10 2], Post=11 0|, 6=10 1
10 0 2 0 1

The reduced net is shown in Figure 4.11(b).

Let us compare the configurations of the two nets. Configurations K3 and K, are
not in lCJZ\/mO as for o = (tat3) we get u(Ks(t2)) = p1 # p2 = u(Ks(o(tz))) and
w(K4(ta)) = p2 # p1 = w(K4(o(te))). The regions corresponding to configurations
K1 and K5 are described by means of

1 -1 0
GKI = GK1¢ = (1 1 0) = _GK2 = _GK2¢'

Their counterparts in the reduced net are

G&:@—%®:%%.

Due to the fact that the arc weights of the input arcs of to differs from those of
to or t3, the rows of the matrices Gk, ¢ and Gf(l (or Gg,¢ and Gf(g) do not coin-
cide. However, they are identical up to multiplication by a positive scalar. That is,

condition (4.11) holds and the regions coincide.

Finally, the firing rate of transition £, has to be adapted to

1. Preﬁl,fz _ Preﬁzfz _
A, =M = o =2\,
T€py,t2 T€po to

according to Equation (4.13) to complete the reduction procedure.
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4.3 Symmetry Reduction of the Petri Net

An alternative way to reduce the Petri net in this example is to remove place py as
it is implicit, i.e., it never constrains the flow of ¢ or t3. The removal of implicit
places is a well-known technique. Here, symmetries help us to identify the implicit
place. As p; and ps are equivalent with respect to Z? N and as isotropy subgroups
are constant along trajectories, the marking of the two places cannot become equal.
Therefore, my, (7) > my, (1) for all 7 > 0 which makes py implicit. Such implicit
places typically appear if two places are equivalent with respect to E? NN but not

with respect to the chosen subgroup .

4.3.8 Consolidation of Results

In nets with symmetry, the corresponding system of ODEs can always be reduced
to an s-dimensional system, where s is the dimension of the fixed-point subspace
induced by the symmetry. In contrast to this purely algebraic reduction given by
system (4.6), the physical reduction of the net allows for easier interpretation and
other reduction techniques can be applied afterwards to reduce the system even
further.

The reduction is always performed with respect to a subgroup 3 C Z'z AN which is
chosen such that the net is RSC with respect to this subgroup. The reduction is

valid for any initial marking mg with ¥ C %,,,.

If the original net is choice-free or none of the output transitions of a choice are
equivalent, then the firing rates in both nets are the same, otherwise they might
have to be increased in the reduced net. If unequal conflicts are “resolved” by
the reduction, then it is in general not possible to adjust the firing rates and the

partitions of the marking spaces do not coincide.

We summarize our results on the evolution in the following theorem which follows
from Equation (4.7) together with all the considerations on the configurations, re-

gions, and firing speeds considered in this section.

Theorem 4.20. Let (N, )\) be a Petri net and mq its initial marking. Let 3 C
Yme C Et(N N be a subgroup such that the net is RSC with respect to X. Let the
reduced net be given as described above with the firing rates adapted accordingly

and let $Tmg be the initial marking of the reduced net. Suppose that m and f
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4 Reduction Techniques

denote the marking evolution and the firing flow of the reduced net, respectively,

then m(7) = ¢m(7) and f(m(r)) = 0f(m(r)) for all T > 0.

The idea behind the procedure is based on fixed-point subspaces which typically
appear for equivariant dynamical systems. Both the concept behind the reduction
technique and the proof of its correctness are based on a reduction of the PWL
system associated with the original continuous Petri net system. However, the im-
plementation of the procedure does not require the intermediate step of the reduced

PWL system. Instead it consists of the following steps:

1. Compute the isotropy subgroup at the initial marking *,,,.

2. Choose a subgroup ¥ C X, s.t. A is RSC with respect to ¥ and define a
mapping p.

3. Compute Pre and Post using (4.8) and (4.9).

4. Compute firing rates with (4.13).

4.3.9 Net Morphisms

In this chapter, a reduction technique has been developed, that — given the TCPN is
symmetric — transforms the original net N = (P, T, Pre, Post) into the reduced net
N = <75, ’7', ¢t Pref, T Post ). Each node of the new net represents an equivalence
class of nodes of the original net. In the context of ordinary Petri nets, a map that
relates a Petri net with a net composed of equivalence classes of nodes and arcs
between them while preserving central structural properties is known as a quotient®
[Des91]. They are special net morphisms. We therefore study in this section if the
symmetry reduction method can be interpreted as a net morphism in order to check
if results from general net theory, where morphisms between nets are considered
instead of single nets, can be applied [Des91, GLT80].

Petri net morphisms are maps from Petri nets to Petri nets. They have been de-
fined first for ordinary Petri nets [GLT80, Des91, GV03]. Extensions are known for
place/transition nets [MMS94, EHPO06] and even high-level nets [DHP91, Pra06].

3In the introduction to Section 4.3 it has been said that in the context of Coupled Cell Systems
the result of a transformation of a net that merges equivalent nodes is called a quotient net.
Analogously, we call A a quotient net.
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4.3 Symmetry Reduction of the Petri Net

Net morphisms are fundamental for many operations on nets such as the composi-
tion of nets or refinements. They are used to define categories of Petri nets (e.g., safe

Petri nets) and hence allow to study the relation between different such categories.

We start with the definition of net morphisms for ordinary Petri nets for which
the term “quotient” is explicitly mentioned in the related literature (e.g., [GV03,
DM91]). We consider ordinary Petri nets of the form ' = (P, T, F') where F denotes

the set of arcs.?

Definition 4.21. [GV03] Let N1 = (P1,T1, F1) and No = (P2, Tz, F2) be two ordi-
nary Petri nets. A mapping ¢ : (P1UT1) = (P2 U7Tz) is a net morphism if

o (u,v) € NP1 xT1) = (p(u),p(v)) € Fon (P2 x T2) or p(u) = p(v) and
o (u,v) € 1N (T X P1) = (p(u),p(v)) € Fan (Ta x P2) or p(u) = ¢(v).

It is a folding if it respects the type of nodes, i.e., o(P1) C Py and ¢(T1) C T2. A
morphism is a quotient if it is surjective and for all (u',v") € Fy there exists an arc

(u,v) € Fy with (u) =u" and p(v) ="

With this definition, morphisms can merge nodes but never delete any. In general,
the node type does not have to be respected. In fact, such morphisms can be
used to describe the fusion of subnets into a single node. An examples is given in
Figure 4.12(a). In the case of our reduction technique, the mapping p: (PUT) —
(73 U %) is a net morphism between the underlying net graphs. This can be deduced
from Equation (4.10) on page 81. It furthermore respects the node type and is
surjective by definition of P and 7. Again from Equation (4.10), it follows that
every arc of the reduced net has at least one counterpart in the original net. Hence,
w1 is in fact a quotient. However, when arc weights come in, the situation is slightly

more difficult.

For the weighted extension, i.e., for place/transition nets, definitions of a morphism
are stated in [EHP06, Pra06]. In contrast to general net morphisms of ordinary
nets, the definition is restricted to maps that respect the node type. The definition
can be stated particularly conveniently if the net is given in the set-based algebraic

notion. In this notation, a place/transition net N = (P, T, pre, post) is given by a

4Cf. expression (2.1) for place/transition nets of which ordinary Petri nets can be seen as a subset.
A weight function is not needed for ordinary nets. The dynamics (i.e., the firing rule) is defined
as for any place/transition net.
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7
oo | :
PV R T T
(a) A quotient [DM91] (b) A place/transition net morphism [Pad09]

Figure 4.12: Examples of net morphisms between Petri nets.

set P of places, a set T of transitions, as well as pre- and post-domain functions®

pre,post : T — PP where P? is the free commutative monoid over P or, in other
words, the set of finite multisets over P. In this notation pre(t;) = 2p1 @ p3 means
that transition £; has two input places p; and p3. The associated arc weights are

2 and 1, respectively. A marking of the net is given by M = ) mpp Where my,

peEP
denotes the number of tokens in place p. In this notation arc weights and markings
are always assumed to take only nonnegative integer values. For a map fp : P1 — Po
between two sets of places, we define the extension ff? : Pfe — 73269 of fp such that

every w = Zpepl Ay p € Py is mapped to fg(w) = Zpepl Mo fr(p).

Definition 4.22. [EHP06] A place/transition net morphism f : N7 — Ny between
two place/transition nets N1 = (Py, T1, pre1, post1) and No = (Pa, T1, pres, posts) is
given by

f=(p:P1—Pofr:T1i—Ta)

compatible with the pre- and post-domain functions, i.e.,
preg o fr = fg oprey and posty o fr = fg o post.

This equation can be represented by the following diagram:

5Lower case letters are used to distinguish the set-based algebraic notation from the matrix nota-
tion with Pre and Post.
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4.3 Symmetry Reduction of the Petri Net

pbrex
T PP
posty
IT /B
prez
T —= Py

posta

An important property of place/transition net morphisms is that they preserve the

firing behavior in the sense that
mlt >m' = fg(m)[fT(t) > f;‘f(m'). (4.14)

This is shown in [Pad09, Theorem 2.20].

Examples of place/transition net morphisms are given in Figure 4.12(b) and in
Figure 4.13 where they affect elementary conjunctions as introduced in Table 2.1.
For these examples, let us consider the symmetric case w; = wy. We can see that for
those conjunctions related to alternatives (choices and attributions) the arc weights
of the original and the transformed net are identical. Meanwhile, for conjunctions
related to concurrency (forks and joins) they are summed up. This is contrary to
the behavior of the symmetry reduction as presented in this thesis where arc weights
increase when choices or attributions have less output or input arcs, respectively,

after the reduction.

To the author’s knowledge, quotients have not been defined for place/transition nets.
It seems natural to require that p should be a place/transition net morphism that
also satisfies the definition of a quotient for ordinary Petri nets. In that sense the
mapping p is not a quotient between AN and N, However, as it is a quotient for the
underlying net graphs and as the nodes of the reduced net represent quotient sets of
nodes of the original net, N could well be called the quotient net of N with respect
to the group .

In addition, the matrices ¢ and 6 can be used to construct a reduced net such
that p is in fact a place/transition net morphism. This can only be achieved if
arc weights are computed in a way that is compatible with the transformation of

elementary conjunctions as depicted in Figure 4.13. In fact, for a place/transition
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(w1 + w2)
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Figure 4.13: Place/transition net morphisms affecting elementary conjunctions. The
dotted lines represent the morphisms.
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net N' = (P,T,Pre, Post) and a group ¥ C X3, the corresponding map p =
(14,5 11,,) defines a place/transition net morphism between N and the smaller net
(P, T, T Pre (61T, ¢T Post (97)T). This can be seen from

1
(¢ Pre (0+)T)157t~ = = Z Prep; = Z Prep

{
) e pep=1(p)
ep— @) xpn=1()

for an arbitrary ¢ € p~'(f) and

(pres o p)(t) = prea(u(t)) = PG Pre@) sy =B | D, Prep: |

pEP peP \rep—1(p)
(u® oprer)(t) = p®(EP Prepip) =P Prepenp) = | D Prep: | .
peP peP peP \pep1(p)

The computation for Post is analogous.

To summarize, n: PUT — P UT defines a mapping from N = (P, T, Pre, Post)

to the reduced nets with s places and ¢ transitions
N = (P, T,¢"Pred, ¢t Post 6)

and
N’ = (P, T,¢" Pre (01)7, ¢ Post (67)7).

Considering the pair A" and N , i.e., the first case, u is a quotient of the underlying
net graphs. In general, it is not a place/transition net morphism. Equivalence of
the dynamics of the original and the reduced net is in the sense of Theorem 4.20.
Thus, the marking of a place p is the same as the marking of each place p € u=(p).
Considering the pair A and ./\N/", i.e., the second case, u is a place/transition net
morphism and the two place/transition nets have the same behavior in the sense of
Equation (4.14).
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4.3.10 Implications for Discrete Nets

The reduction of a Petri net (A, \) to a smaller timed net (A, A) has been devel-
oped for TCPNs. One might ask if the procedure is also valid for discrete nets, in
particular for place/transition nets and SPNs as a timed extension for which TCPNs
can serve as an approximation. A comprehensive answer to this question is beyond

the scope of this thesis, but we can make some observations.

For place/transition nets it has been illustrated by Example 3.14 that — in con-
trast to TCPNs — isotropy subgroups are not constant along occurrence sequences.
However, comparing reachability graphs of original and reduced Petri nets from
the previous sections, one observes that occurrence sequences of the reduced net
correspond to occurrence sequences of the original system by merging the firing of

equivalent transitions.

In order to prove this, we introduce the following concept. Let 7' C T be a set of
transitions. We say that 7 is firable in m if all transitions can fire simultaneously.
This is equivalent to saying that m > Pre (}_,c7 e:). We write m[T’ > m’ where

m/ is the resulting marking.

Theorem 4.23. Let N be a place/transition net with initial marking mg. Let
¥ C Yp, C X3 be a subgroup and matrices ¢,0 defined as before. Let N =
(P,T,d"Pred, ¢ Postf) be the reduced net with respect to S and mg = ¢+mo,
then

m € RSN, mg) = ¢m € RSN, my).

In particular, let TtV . 19) be a firing sequence 0f/\7 which is firable from mg

and let mq, ..., m; be the markings reached, then

mo = ¢l ({) > g, .., i1 [p (V) > ¢

Proof. 1. We first show that for7 =1,...,j the set u‘l(f(i)) is firable from ¢m;_1.
Firability in the reduced net implies m;_1 > ]?r/eeg(i) where e;i) € R? is the

corresponding unit vector. We need to show that ¢m;—1 > Pre(3_,c,-10)) €t)-
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Let now p € P. Then,

Pre Z e = Z Prep7t:PT€H(p)7£(i)
tep=1(ED) p  tEnTH(EY)

< (Mi-1) p(p) = (PMi-1)p-

2. As a second step we show that the sequence of markings is correct. Let m’ be
such that ¢m;_1[n~ (%) > m/. We show that m’ = ¢mn,.

For the original system we have

m' = ¢m;_1 +C Z et | = ¢mi—1 + Clezi
e (I0)

and for the reduced system
m; = M;—1 + 6’6{(;’) =m;_1 + (;5+C'96t~(¢) = om; = ¢my_1 + ¢¢+C(96t~(i).

The equality m’ = ¢m; holds if Cle;i) € Fiz(X) since ¢p¢t is the identity on
this set. As feji) is a column of 0, it is invariant towards multiplication with
T,. Therefore,

Clejiy = CT,0¢e;) = S,Cle;j

for all o € 3. Hence, Cle;iy € Fiz(X).
O

In this way the reduced net exhibits the “symmetric part” of the net behavior.
Special attention should be paid though to the resolution of conflicts that result
in increased arc weights as in those cases when firing rates have to be adapted in
TCPNs. The difference is that the 7-rule (cf. Figure 4.1(a)) does not hold for
discrete nets and changes of the arc weight change the enabling. Therefore, the
overall behavior of the system may change significantly. Consider the Petri net
and its reduction in Figure 4.8 as an example where the weight of an input arc is
changed. For the initial marking (2 0 0>T deadlock markings are reachable in

the original nets if t; or to fire twice in a row. The reduced net, on the other hand,
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that represents only “symmetric” occurrence sequences, is deadlock free. Therefore,
the reduction of discrete Petri nets should be performed primarily with respect to
subgroups of ¥,,, such that transitions in conflict relation are not equivalent. It
remains an open question if under this condition performance measures of SPNs are

preserved by the reduction.
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This chapter analyzes the effect of the variation of a firing rate on the system’s be-
havior. By linearity, there occurs no qualitative change of the dynamics if all firing
rates are increased by the same factor as stated in Section 2.4. However, if only some
of the firing rates are increased, the throughput in steady state can be nonmonotonic
and even discontinuous. We show that the same dynamic effect also appears if the
throughput is monotonic in the firing rate. The jump in the throughput is explained
in terms of discontinuity-induced bifurcations which are bifurcations that occur at
points where the vector field is nonsmooth. For TCPNs this means that a steady
state hits a boundary between regions My when the bifurcation occurs. After an
introduction to these bifurcations in Section 5.2, four TCPNs are analyzed with re-
spect to such bifurcations. They occur when an equilibrium becomes nonhyperbolic
at a boundary. It is conjectured in Section 5.4 that configurations which are not
injective are crucial for these discontinuity-induced bifurcations in TCPNs since the
corresponding regions can contain equilibria only for particular ratios of firing rates.

Thereby, we focus on bifurcations in the class of mono-T-semiflow nets.
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5.1 Motivation

In Example 2.14, the throughput vector of a TCPN under variation of the firing rate
of a transition is studied. The throughput of its transitions in steady state, which
is an important performance indicator, drops abruptly for a specific firing rate.
This is highly undesirable. If, for example, in a manufacturing system a machine
is replaced by a faster one, the performance of the system should not worsen (cf.
[JRS05, MRS09]). Furthermore, thinking of robustness, a system should not be op-
erated at rates close to the critical rate as these are sensitive towards perturbations.

For applications it is thus important to know when such an effect occurs.

The throughput vector of a TCPN depends continuously on the steady state marking
since f is a continuous function. This implies that a discontinuity in the throughput
can only occur if for a small change of the firing rate the equilibrium that the
system converges to is not close to the original steady state marking. In fact, for the
TCPN studied in the previously mentioned Example 2.14 we will observe that for
a specific value of the firing rate A\, the equilibrium of one region disappears while
an equilibrium in another region emerges. In the TCPN literature, jumps in the
throughput are usually considered with respect to monotonicity [JRS05, MRS09,
SJMV11]. In [MRS09], sufficient conditions for monotonicity are proved. In this
contribution, the focus is on the continuity of the throughput vector or, equivalently,

of the steady state marking the system converges to (if it exists).

We explain abrupt changes of the throughput in terms of discontinuity-induced bi-
furcations. They arise from the perturbation of piecewise smooth ODE systems
that have an equilibrium exactly on the border between different regions [Sim10,
BCBKO08]. A study of this phenomenon can advance our understanding of the dy-
namics of TCPNs. In [VS11], for example, similar criteria to those relevant for
bifurcations are studied in order to obtain results on timing and liveness. Further-
more, discontinuity-induced bifurcations often appear together with uncontrollable
poles (cf. [MRRSO08]). A profound knowledge of bifurcations may therefore lead to

advances in control problems for TCPN systems.

Examples furthermore suggest that close to bifurcation points TCPNs do not provide
a good approximation of the mean marking or throughput of the corresponding SPN.

Thus, if we understand the appearance of discontinuity-induced bifurcations, this
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5.2 Bifurcations in Piecewise Smooth Continuous Systems

may also help to develop criteria to decide when it is reasonable to use TCPNs
as approximations of SPNs. This is one of the central open questions concerning

TCPNs though a solution to this problem is beyond the scope of this thesis.

An interesting property of the discontinuity-induced bifurcations studied in this
chapter is that they involve three regions while the theory traditionally deals with
bifurcations involving only two regions. Furthermore, they violate the genericity
condition that border equilibria are always isolated and hyperbolic on boundaries
(cf. [BCBKOS, p.220]). Instead, we study systems where the steady state loses hy-
perbolicity exactly when it hits the boundary as a firing rate is changed. In a generic
piecewise linear system this requires the variation of two parameters (codimension
two, cf. [BCBKO8]) while the topology of a Petri net induces a special structure in
the corresponding dynamical system such that the bifurcations occur also under the

variation of a single parameter.

In this chapter, we study TCPN systems under variation of a single firing rate as
a bifurcation parameter. For this reason we slightly redefine the vector field F' (cf.

Equation (2.11)) such that for a variation of the rate of ¢t € T we write
F:RE) x Rog = RIPI, F(m,\) = CA\Igm for m € M

where A), denotes the usual matrix of firing rates where )\; is the rate of t.

In general, matrices Ax = CA),Ilg (K € K) are singular due to the conservation
laws induced by P-invariants. This makes the application of the traditional theory
on stability of fixed points and discontinuous bifurcations difficult. The problem does
not occur if an equivalent but reduced form of the TCPN system as in Section 4.2.2
is studied. The reduction preserves the spectrum except for zero eigenvalues. There-

fore, all examples in this chapter are studied in the reduced form.

5.2 Bifurcations in Piecewise Smooth Continuous Systems

5.2.1 Piecewise Smooth Systems and Their Equilibria

In many systems of physical interest, the defining equations depend on some param-

eters. Bifurcation theory studies the qualitative change in the character of solutions
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that may occur when one or more of these parameters are varied [GH83|. Bifurca-
tions of smooth vector fields have been studied for decades in the area of nonlinear
systems. Interesting new bifurcation phenomena may arise if the system is only
piecewise smooth. There are various types of systems which are typically modeled
by a piecewise smooth flow. Examples are often found in mechanical or electrical
systems with saturation, backlash, or relays. The article [Kow05] mentions switched
electronic circuits and vibro-impacting machines as examples. They can also be
found in mathematical biology to model genetic regulatory systems [Jon02] and

even in the social and financial sciences [BCBKOS].

Discontinuity-induced bifurcations arise from the perturbation of piecewise smooth
dynamical systems that have an equilibrium exactly on the border between regions
with smooth dynamics [Sim10, BCBKO08]. Formally speaking, “a bifurcation occurs
if an arbitrarily small perturbation produces a topologically nonequivalent system.
The bifurcation is discontinuity-induced if it affects the state portrait in more than

one region, [or in a switching manifold]” [CBHJ11].

Discontinuity-induced bifurcations can either be analogues of smooth bifurcations,
e.g., discontinuous saddle-node bifurcations where two equilibria coexist, collide, and
disappear at the bifurcation, or they can be unique to piecewise-smooth systems, e.g.,
discontinuous Hopf-saddle-node bifurcations which show properties of both Hopf-
and saddle-node bifurcations. In the literature, discontinuity-induced bifurcations
also appear as C bifurcations, boundary equilibrium bifurcations, border-collision
bifurcations, or discontinuous bifurcations (cf. [Sim10]). In this section, relevant
definitions and concepts in the area of discontinuity-induced bifurcations are sum-
marized. It follows to a great extent the work of [BCBKO08| where also numerous
academic and applied examples can be found. The focus is on phenomena that
have been observed in the context of TCPNs. In particular, we concentrate on
nonsmooth but continuous systems and hence exclude interesting phenomena like

pseudoequilibria or sliding.

We consider piecewise smooth continuous systems of the form & = G(z, ) where

G : R"xR — R" is a piecewise smooth continuous vector field, i.e., G is continuous in

both z and A and for some index set I there exist open sets X; and smooth functions’

'Functions G; are defined on R™ x R for simplicity. In fact, it is sufficient to consider some open
set that contains the closure of X;.

112



5.2 Bifurcations in Piecewise Smooth Continuous Systems

Gi : R" x R — R" such that G(z,\) = G;(x,\) for all z € X;. The regions X; are
separated by an (n—1)-dimensional set S which is known as the switching boundary.
It consists of finitely many smooth manifolds intersecting transversely. In the case
of TCPNs, S is built up from hyperplanes. Its piecewise linear dynamics are in

particular piecewise smooth.

We distinguish between different types of equilibria.

Definition 5.1. Let A € R. We call x € R™ an admissible equilibrium of X; if
z € X; and Gi(z,\) = 0. A point x is a virtual equilibrium of X; if G;(z,\) =0
but © ¢ X;. It is a boundary equilibrium if z € S and G(z,\) = 0.

It is important to notice that virtual equilibria may govern the dynamics of a region
even though they lie outside of it. We illustrate these terms with a simple example

which is a special case of the closed-loop control systems with saturation in [APAOO].

Example 5.2. We study the piecewise affine system
T =x — Asat(z)

where A > 0 and sat : R — R, sat(z) = sgn(z) - min(|z|, 1) is the normalized satura-

tion. The system can alternatively be written as

T+ A, ife <-—1
=91 —-Nz, if|z|<1

T — A, ifx > 1.

We now vary the parameter .

e If A < 1, the left and the right region contain a virtual equilibrium each while

0 is an admissible unstable equilibrium of the middle region.

e For A\ =1 the middle region is a dead zone, i.e., all its elements are admissible

equilibria. The points —1 and 1 are border equilibria of the saturated regions.

e For A > 1 each region contains an isolated admissible equilibrium of which

only the central one is stable.

For A\ = 1 the system undergoes a nonsmooth pitchfork bifurcation, which means
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Figure 5.1: Bifurcation diagram of the system & = x — Asat(x).

that “an unstable invariant set is destroyed to create two invariant unstable sets

separated by a stable set” [Gle02]. Figure 5.1 shows the bifurcation diagram. O

Let us see how to check for admissible equilibria of TCPNs. This can be done
using the reduction of Section 4.2.2. It is straightforward if Ak is regular, i.e., the
singularity of Ag is only due to P-invariants. As the reduced system is equivalent to
the original one, we look for an equilibrium marking in reduced space. Equation (4.5)
then provides a system of linear inequalities to check if the result is contained in

Mp. An equilibrium marking m* € R" of configuration K has to satisfy
AVKT?L* +ag =0 m* = *Av;(la[(.
This reduced state is contained in M, x if and only if
~ % —myo
m + <0.
G KMo

With ax = C;F Axgmy this is equivalent to

—C,
GO,

Crgf(leAKmo — my <0
—GKCTAJ[_(ICJAKmO + GKm() -

The following proposition summarizes this observation.
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Proposition 5.3. Let /TK be invertible. There exists m € Mg with Axm = 0 and
m —mg € im(C) if and only if

1—1
Crdg CjAfl_I”" mg < 0.
Gr(Ijp) — CrAy O Ak)

The marking is unique and given by m = mg — CNZ;&’K.

5.2.2 Boundary Equilibrium Bifurcations

Let us consider a generic discontinuity-induced bifurcation that occurs at a smooth
point on a switching manifold upon variation of a single parameter of a piecewise
smooth continuous system. Bifurcations at nonsmooth points of the switching man-
ifold or at the intersection of switching manifolds are generic in systems with higher

codimension only (cf. [Sim10, p.8]). Locally, we can write the system as

G (z,\) if H(z,\) <
G (z,\) if H(z,\)

T =

0,
(5.1)
0,

v

where G, GB) . R" x R — R” and H : R x R — R are sufficiently smooth in all
their arguments. H describes the switching boundary. By continuity G(%) (z,\) =
G (x, \) whenever H(z,\) = 0.

With this notation, z is an admissible equilibrium if either G(*)(z,\) = 0 and
H(x,\) < 0or GH)(x,\) =0and H(z,\) > 0. Analogously, it is a virtual equilib-
rium if either G(X) (2, \) = 0 and H(z,\) > 0 or G (x,\) = 0 and H(z,\) < 0.
Finally, it is a boundary equilibrium if G (z,\) = G (2, \) = 0 and H(z, \) = 0.

In [BCBKO8, p. 220] boundary equilibrium bifurcations are defined:

Definition 5.4. System (5.1) undergoes a boundary equilibrium bifurcation at A =
A* if there exists x* € R™ such that

(1) =* is a boundary equilibrium for \*
(2) G&L)(x*,)\*) and G;R)(x*,)\*) are invertible, and
. 1,
(3) Hy(z*, \*) — Hy(z*, \*) (G(;)(x*,A*)) G (2%, M) £0 fori=L,R.
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With the second condition we require that this boundary equilibrium is isolated
for both vector fields. This allows to apply the implicit function theorem, i.e.,
there exist neighborhoods U and V of A* and z*, respectively, and unique functions
@) 2B . U — V such that z(F)(\*) = 2B (\*) = 2% and GE)(z(B)(\),\) =
G (z(F)(X),\) = 0 for all A € U. If this condition did not hold, an equilibrium
would be nonhyperbolic when hitting the boundary which would be a codimension-
two scenario (cf. [BCBKOS, p.222]). In the same book ([BCBKOS, p.449]), this is
interpreted as a smooth and nonsmooth bifurcation occurring simultaneously, i.e.,

for the same value of the bifurcation parameter.

Condition (3) is a nondegeneracy condition with respect to A. It ensures that curves
of equilibria (&) and z(®) cross through the bifurcation point at A\*. A curve
on the switching manifold along which an equilibrium lies would correspond to a

codimension-two scenario (cf. [Sim10, p.53]).

Generic boundary equilibrium bifurcations can be classified into two scenarios where
the equilibrium can either persist or disappear in a fold-like scenario as it collides
with the discontinuity boundary (cf. [BCBKO0S8, p.221], [BBCT08, p.640], [Sim10,
p. 13]). The system exhibits a persistence (or border-crossing) for A = A\* if a branch
of admissible equilibria and a branch of virtual equilibria cross at the bifurcation
point and exchange their properties. Examples of persistence are discontinuous
Hopf bifurcations, where a single equilibrium persists but turns from a node into a
focus with opposing stability encircled by a periodic orbit, and stability switching

bifurcations, where an attracting node changes to a repelling node.

A boundary equilibrium bifurcation is associated with a nonsmooth fold if branches
of admissible equilibria collide and annihilate at the bifurcation point.? This is ob-
served, e.g., at discontinuous saddle-node bifurcations. Figure 5.2 illustrates the
different scenarios. Conditions for their existence for systems in a canonical form
can be found in [BCBKO08, Sim10]. For the planar case a classification of possible

discontinuity-induced bifurcations is given in [Sim10, pp. 46—49].

The definition of boundary equilibrium bifurcations by [BCBKO0S8| as stated above
does not involve any requirements on eigenvalues or stability. Hence, persistence also

includes the case that a single hyperbolic equilibrium crosses the switching manifold

2This definition slightly differs from the definition of persistence and nonsmooth folds in discon-
tinuous systems where they appear together with pseudoequilibria [DDCK11, CBHJ11].
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5 0| 18 0f .
(@ A7
1tk 4 1L J
| | | | | |
-1 0 1 -1 0 1
A A
(a) Persistence (b) Nonsmooth fold

Figure 5.2: Boundary equilibria in nonsmooth continuous systems (modified from
[BCBKOS, p.224]). Solid (dashed) lines represent admissible (virtual)
equilibria. In each case the boundary between the two regions is at
x = 0 and the bifurcation occurs at (0,0).

and neither of its associated eigenvalues cross the imaginary axis. The number of
invariant sets remains constant and their stability does not change. So, strictly

speaking, this is no bifurcation [Sim10, p. 46].

In the next section, four timed continuous Petri nets are studied with respect to the
variation of one firing rate as a bifurcation parameter. In one of these examples,
we observe border-crossing as defined above (cf. Section 5.3.2). However, since the
respective admissible equilibria are stable on both sides, this is not a bifurcation in
the sense of [Sim10]. Nonsmooth folds are not observed since the dynamics in each
region is linear which excludes the chance of two equilibria existing on exactly one

side of the switching hyperplane.

In the upcoming examples of TCPNs, we observe that jumps in the throughput
vector are due to a special type of discontinuity-induced bifurcations where an ad-
missible equilibrium loses hyperbolicity as it hits a boundary. This violates the
nondegeneracy condition (2) and is not part of the standard literature on the
topic. Furthermore, more than one switching manifold participates in the bifur-

cation.
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Throughput in steady state

b1
11
p2
’ 2
At1 ﬁ Is
p3
0 - - - -
0 1 2 3 4
Aty

(a) The TCPN system (b) The throughput of ¢1 under variation of the
firing rate As,

Figure 5.3: Example of a TCPN system whose throughput is not monotonic under
variation of the firing rate A, .

5.3 Four Examples of Discontinuity-Induced Bifurcations in
TCPNs

5.3.1 Example |

We reconsider the TCPN system in Figure 5.3(a) which has already appeared several
times in this thesis. In Example 2.5, the corresponding PWL system is set up and
Example 2.14 presents the nonmonotonicity of its throughput. In Section 4.2.2 an
alternative formulation of the corresponding PWL system in reduced space has been
obtained. This reduced formulation is also used here. In fact, all examples of the
chapter are studied in the reduced formulation. This is done, on the one hand, in
order to obtain systems of small dimension and, on the other hand, to remove zero
eigenvalues that complicate the analysis. The analysis of the first three examples
has already been published in [Mey12].

The partition of the one-dimensional phase space can be taken from Example 4.4

as it does not depend on the firing rates. The matrices A and Agx (K € Ky)
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8 | .
D) MKz
=
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<
3 4
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Mk,
2 1
0 .
0 1 2 3 4

Figure 5.4: The steady states of the reduced system for different firing rates A¢,. The
dotted line represents infinitely many unstable equilibria that coexist for
A, = 2.

T
accordingly are computed with A = ()\h 1) leading to the dynamics

<1+71>m+ N, if m e Mg,
m=1 (1= m4+ LN, —11 it m e Mg,,
(1= A )+ 10X, — 11 if i € M,

The initial value is m(0) = 0, which is in M, K,- From there, m increases monotoni—

cally in time. The region contains an admissible steady state if 0 < 11/\32 < 2 , that

is, for A\;; < 2. For Ay, = 2, this equilibrium becomes a boundary equilibrium and
M, K, is a dead region (771 = 0). If the value is further increased, the boundary equi-
librium becomes a virtual equilibrium. For Ay, > 2, the marking trajectory leaves
region M, K, towards M, K, where m is monotonically increasing. This region does not
contain a steady state and is thus left towards M, Ks- M, K, contains the admissible
steady state m/\t%l whenever Ay, > 2. It is reached as m increases monotonically

in this interval.

As )¢, is being increased, the position of the steady state in region M K, moves
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Figure 5.5: This TCPN system exhibits a discontinuity-induced bifurcation.

towards the neighboring region M, K,- The discontinuity-induced bifurcation occurs
for A\y; = 2 when it hits the boundary between the regions. Figure 5.4 shows the

corresponding bifurcation diagram.

The Petri net is of type mono-T-semiflow, i.e., a conservative and consistent net
T
with a unique minimal 7-semiflow = = (1 1) . The throughput vector depends

continuously on the steady state and is given by

11y
)‘tl +2$

if A, € (0,2],

At

)\tll—lx if )\t1 > 2.

Its first component is shown in Figure 5.3(b).

5.3.2 Example Il

This example is taken from [MRS09] where it illustrates nonmonotonicity of the

throughput. The net is shown in Figure 5.5(a). We consider variations of the firing

T
rate \,, i.e., the system is studied for A\ = <1 Aty 1)
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There are four configurations given by the table

1 ta 3
Ky |pr p2 p3
Ky | ps p2 p3
K3 | p1 p1s p3
Ky | ps ps ps.

T
We reduce the system with respect to the initial marking mg = (15 11 O)

using the matrix

2 1
1 -1

C. =

" 1 0
2 1

The resulting system is in R? with a partition into regions as shown in Figure 5.5(b).

The dynamics of the reduced system is given by

i 2 H

K= <—1 + Aty —/\t2> ’ = (—1 +>\t2> ’
N _ 1 _

A = (-1 +2)\t2 —Ai) ’ e = (—1 +1)\t2> ’
Ay = <—1 :22 Aty —%\m) ’ e = <i231> ’

Ari = (-1 :22 e, ;i) ’ Ky = <j> '

Possible fixed points are computed by solving the linear system of equations

!

Apm* = —ag (5.2)

for every configuration.

e Configurations K; and Ks: gKl and ZK?) are regular for any value of A,
leading to unique solutions of System (5.2). For A\, € [0, %) the region M K,

contains one admissible steady state and so does M, Ky for Ay, € (42—5, %)
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1.5 1

o
o
0.5 MO o o o o

Throughput in steady state

(a) The steady states of the reduced system for (b) The throughput under variation of A,.
different firing rates A, . The dots represent the throughput of the
corresponding SPN.

Figure 5.6: A discontinuity-induced bifurcation and its effect on the throughput of
the TCPN system in Example II.

e Configuration Ky: For A\, > %, region M, K, contains an admissible equilibrium.
If A, = %, Ag, is singular while rank(Ag,) = r. However, since there exists
no m* for this value of Ay, such that A K, +ag, = 0, the singularity results

in no additional fixed points.

e Configuration Ky4: For A\, # %, the above linear system of equations has the

T
single solution m* = (—1 2) which is not contained in the phase space
since mo + C,m* contains negative components. If Ay, = %, the system is

underdetermined with solution set

5 n | ra€lo1]p.
_74‘@&

T o~ -
This includes the border equilibrium (—% —%) € Mg,NMp, and the border

T —
equilibrium (% —12—5) € Mg, N Mg,. Both border equilibria are connected

via the infinitely many equilibria in M K, that exist if A\, = % (see dotted line

in Figure 5.6(a)).

This results in the following dynamic behavior of the original system. In all simula-

tions that have been carried out for different values of A\, the trajectory approaches
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0.2 T?Ll ,/
virtual (Mg, }”

2 A
15 L .

—0.2 2 admissible (Mg,)

—0.4

—0.6 /. virtual (Mg,)

Jadmissible (M, )
—0.8 ¢/

Figure 5.7: Persistence at the switching boundary M, K, N M, K5- The figure shows
the first component of the equilibria in dependence on A¢,. For A¢, = 4—25,
there is a boundary equilibrium at which admissible and virtual equilibria
exchange their roles.

a steady state m* eventually. For A\, € (0, %] convergence against a steady state
m* € Mg, can be observed. For A, € [Z,3] the steady state is in Mg,. If
Aty = 4%, the steady state is on the boundary of both regions. Virtual and admissi-
ble equilibria of My, and Mg, meet at this value of A\, and the branch of virtual
equilibria becomes admissible and vice versa. This is an example of persistence (or
border-crossing) in TCPNs and is illustrated in Figure 5.7. The steady state changes

continuously with A,.

A different scenario is observed when ), = 3. The steady state that was formerly
in M. hits the boundary Mg, N Mg, and becomes nonhyperbolic. It jumps from
the border My, N Mk, to Mg, N Mg,. The throughput drops significantly.

The resulting throughput vector in steady state depends discontinuously on A, and

is given by
%x if A, < %,
meGT i € [F.5),
By iz

T
where x = (1 1 1) is the minimal T-semiflow of this mono-T-semiflow Petri
net. The corresponding graph is shown in Figure 5.6(b) where in addition the

throughput of the corresponding SPN is drawn. These values have been obtained
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P1

i’,<5> y2! s
—~
- pQU ty DW

Figure 5.8: A TCPN system with an unsatisfactory approximation of the steady
state of the underlying SPN.

with PIPE 2.5.3 It can be seen that close to Ay, = % the throughput of the SPN is
not well approximated by the TCPN.

5.3.3 Example I1lI

In the previous example, the approximation of the SPN’s throughput is particularly
inadequate close to the bifurcation point. Furthermore, it is pointed out in [LL11]
that the approximation of SPNs by TCPNs is particularly unsatisfactory in regions
where a place constrains the flow of more than one transition. In the previous
two examples the jump in the throughput was evoked by the singularity of A K in
regions with exactly that property. This raises the question of how these two aspects
are related and if the example studied in [LL11] has similar properties as the two

previous ones.

T
The TCPN is depicted in Figure 5.8. For the initial marking mg = (5 0 0O 4)

the approximation of the mean marking of the corresponding SPN is reported to be

T
1) . We study the system under variation of

particularly poor for A = (6 2 3 35

T
Ay, ie, With)\:(G Ny 3 %) .

3http://pipe2.sourceforge.net/
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The net has four configurations

t oty t3 1y
Ki|pp p1 p2 b3
Ky | p1 pa p2 p3
K3 |ps p1 p2 D3

of which K, cannot be active due to the conservation laws imposed by the P-
invariants. As rank(C) = 3, the originally 5-dimensional system can be transformed
to a 3-dimensional system. An appropriate matrix C,. is obtained from C by remov-

ing its last column.
As in the previous examples, we compute the steady states of all admissible regions.

e Configuration K: Matrix Ag, is singular if \;, = i, (here Ay, = 3). For

this value there is a line segment

e

1

5 3. T
_5 9
8 8

of steady states in the region. For A¢, # 3 the linear solution of A KM= —ag,
does not lie in the reduced phase space, i.e., the corresponding vector in original

coordinates has negative entries.

e Configurations Ky and K3: Matrices A K, and A K, are regular for any positive
choice of \,. There exists a unique steady state in M, K, if Ay, > 3 and a unique
steady state in M}Q if 0 < A, < 3. For A, = 3 these steady states are border
equilibria as they are equilibria for both M, Kk, and M, Ky O M, K5, Tespectively.
They are connected via the steady states in region M K, In simulations we
also observe that for firing rates just slightly smaller than 3, convergence is

relatively slow.

T
The net is mono-T-semiflow with minimal T-semiflow x = (1 11 1) and the
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Figure 5.9: The throughput under variation of \,.

throughput for different values of ), is given by*

6t .
mw if >\t2 < 3,
2175072511 : _
ritoasaos®  if A, =3,

15, .

mx if >\t2 > 3.

Figure 5.9 contains a plot of this function. We see (and can confirm by inspecting
derivatives) that the throughput is monotonic though not continuous. Therefore,
this phenomenon should not just be considered with respect to monotonicity as in
[JRS05, MRS09] but also with respect to continuity.

A similar behavior is observed when considering the variation of A\, namely for

T
A= ( At, 2 3 %) . For \y; <4 the solution approaches an equilibrium in region

MKQ. For Ay, > 4, region MKs contains a steady state. If A\, = 4, then /TKI is
singular and region M, contains infinitely many fixed points. If \;, = 2%, then
A K is singular. However, this does not result in additional fixed points as for this

value Ag,m + dg, = 0 has no solution.

“The value for A\;, = 3 has been obtained with Maple 15 using matrix exponentials.
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b1
bs
31 P2
to
t3
— 100
b3 t4
D6 P4

O

Figure 5.10: A net with periodic orbits for certain values of A,.

5.3.4 Example IV

We consider the TCPN system in Figure 5.10 which has been reported in [MRRS08]
T

to exhibit oscillatory behavior for A = (1 12 10 1) . This net is not of type

mono-T-semiflow and we can identify new discontinuity-induced bifurcation involv-

ing a center. We consider this system under the variation of A\;,. Bifurcations occur
for A\, equal to 1, 12, and 88.

The net has 16 configurations. These are defined in Table 5.1. Since rank(C) = 2,
the system can be transformed to an equivalent two-dimensional system. When per-
forming the reduction with respect to the initial marking (100 0 100 0 1 l)T,
only 10 regions remain to be considered. Four configurations (Ky, Kig, K12, Ki3)
cannot be active due to the conservation laws imposed by the P-invariants and two

regions, namely M, and M, , appear as a single point in the reduced phase space
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Config. t1 to t3 t4 Remarks

Ky P1 P2 P4 D2

Ky P3s P2 P4 D2

K3 pr Ps P P2

Ky ps ps ps p2 Mg, =(1 nr N

K5 p1 p2 ps P2 Mg, = (11)T, Ak, singular
Ke ps p2 pe P2

Ky p1 Ps pe D2 Ak, singular

Ky p3 Ps Pe P2

Ky pr P2 pa p3 My, =

Ky p3 P2 P4 p3 Mg, =10

K1y p1 Ps Pa P3 N

K9 ps ps P p3 Mi, = 0, Ak,, singular
K3 p1 P2 pe 3 Mg, =10

Ky pP3 P2 DPs P3

Kis pr ps Pe D3

K p3 ps pe D3 Ak, singular

Table 5.1: Configurations of the Petri net of Example IV. In this example, singularity
of a system matrix is always independent of the particular choice of A,.

and can therefore be neglected. For the choice

o O o O =

the corresponding partition of the reduced phase space is shown in Figure 5.11.

The net exhibits discontinuity-induced bifurcations at three different values of A,.

For A, € (0,1] there is a stable node in region M, K- At Ay, = 1 this equilibrium col-

lides with the border M, Ke N M, K Where it remains asymptotically stable. Since the

cigenvalues of A K are £, the node becomes a center for A\;, > 1 and is therefore non-

hyperbolic. It remains stable but not asymptotically stable. When the bifurcation
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5.4 The Role of Critical Regions

100 k=
MI‘<14 |
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Figure 5.11: The bifurcation diagram for Example IV. Solid lines represent stable
nodes, dotted lines represent line segments of nodes and the dashed line
for A+, € (1,12) represents centers. In order to improve the readability
the figure is not to scale.

value is further increased, the center moves towards the region M, K, Whose boundary
is hit for Ay; = 12. Since ‘ZKM is singular, the equilibrium remains nonhyperbolic.
As in previous examples, there exists a line segment of equilibria which connects to

the region MK15. This region contains an admissible node for A, € (12,88).

Another bifurcation occurs at Ay, = 88. This time, the bifurcation resembles those
observed in the Examples I-1II. The matrix A K- is singular for any value of the firing
rate A¢;. The stable node of K15 remains admissible till it hits the boundary of M, K7
at A\¢; = 88. This region contains infinitely many equilibria connecting to region
M, K5 which contains an admissible stable node for A;; > 88. Figure 5.11 shows the

bifurcation diagram.

5.4 The Role of Critical Regions

In the examples of the previous section, bifurcations occur at the boundary of regions

where Ax becomes singular. In Examples I-1I1, these regions share the property, that
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5 Parameter-Dependent Systems

they belong to configurations where one place constrains the flow of more than one
transition in unequal conflict relation. In [LL11], such regions are termed critical.

In analogy we define critical configurations.

Definition 5.5. A configuration K € Ky is critical if it is not injective.

The following lemma states that only in critical regions rank(Ag) < r.

Lemma 5.6. If K is injective, then rank(Ag) = r.

Proof. Fach row of IIx contains a single nonzero entry. As K is not critical, these
entries appear in different columns and rank(Ilg) = [7]. A € RI7TXITl is always

invertible and rank(C') = r.

By Sylvester’s rank inequality,
r > rank(Ag) = rank(CAIlg) > rank(CA) + rank(Ilg) — |T| =r+|T|— |T| =
O

Note that A may be singular even if rank(Ag) = r. This happens only if 0 is an
eigenvalue of Ax with geometric multiplicity smaller than its algebraic multiplicity.
This can be seen, for instance, for Ky in Example II and K7 in Example IV. The

identification of necessary conditions for singularity of Ay is still a topic of research.

Now, let us consider the problem from a slightly different perspective. For a flow f*
to be a steady state flow, it has to satisfy C f* = 0. Furthermore, for a configuration
K such a steady state flow can only appear if f* € im(Allx). Thus, for a steady
state to exist in My, there has to exist f* € R‘;ro‘ Nker(C) Nim(Allg). If K is
uncritical, then im(Allx) = RI7! and ker(C) N imZAHK) = ker(C). If K is critical,
then there are fewer possible steady state flows as im(AIlx ) Nker(C) C ker(C'). This

effect can be observed in Example II.

T
Example 5.7. The Petri net in Example IT has a T-invariant = (1 1 1) that
spans ker(C'). Meanwhile im(Allg,) is spanned by the columns of

00 0 2N
Mg, =10 0 0 A,
00 XN, O
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5.4 The Role of Critical Regions

A nontrivial intersection of the two sets exists only if A\, = 2\, i.e., exactly for the

bifurcation value. &

For mono-T-semiflow nets, this observation can be refined. Let

Uty

Ut

be a T-invariant. Such a vector always exists since mono-T-semiflow nets are con-
sistent. If m* € My is a live steady state, there exists x > 0 with Allgm* = yw.
By components, this yields

MK @)

PT@K(UJ
———— P T2
PTGK(t),t

=\ & m%(t) = XUt N

for all t € T. If K is critical, then there exist ¢, € T with t # t' and K(t) = K(t).

From mj(( H= m;(( ) it follows that

P?“SK(t)ﬂg B PT@K(t’),t' N ﬁ vy PTeK(t’),t’

UVt = .
X )\t/ At Ut PreK(t)yt
Only for this ratio of A\; and Ay, which depends purely on the net structure, there
exist equilibrium markings with nonzero throughput in My. This is exactly the
ratio when the bifurcation occurs in the Examples I-III, in Example II both with

respect to Ay, and A,.

We have shown that critical regions of mono-T-semiflow nets may contain equilibria
only if the firing rates of the respective transitions in conflict relation are in a
special ratio. We may use this ratio to compute candidate values for bifurcations.
It remains a question of future research if this ratio always implies the occurrence of
a discontinuity-induced bifurcation for this net class and if other bifurcation values
can exist. The net in Example IV is not mono-T-semiflow and bifurcations occur

even though t3 is not in conflict relation.
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Conclusion and Outlook

In this thesis, the dynamics of timed continuous Petri nets with infinite server seman-
tics has been studied with respect to the relation with the underlying net structure.
A special focus has been on the study of symmetries and bifurcations. This last
chapter comments on the contributions of this work and discusses future research

questions.

Altogether, this thesis makes four major contributions to the current research in the

dynamics of timed continuous Petri nets with infinite server semantics:
1. The definition of symmetries in TCPNs and proof of an equivariance condition,

2. a reduction technique that results in a piecewise (affine) system of smaller

dimension,

3. areduction technique that transforms the TCPN into a smaller one with fewer

nodes,

4. the identification of discontinuity-induced bifurcations in TCPNs and of special

ratios of firing rates.
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6 Conclusion and Outlook

Symmetries in TCPNs have been defined as a natural extension to the notion of
symmetry in place/transition nets. To the best of the author’s knowledge, this is
the first time that symmetries in TCPNs have been considered. It has been shown
that these symmetries are reflected in the associated dynamical system in the way
that the piecewise linear vector field is equivariant with respect to the group action
of any subgroup of the initial markings isotropy subgroup. This allows to apply
standard results from equivariant systems theory, e.g., it follows the existence of
flow-invariant fixed-point sets. It has furthermore been proved that equivariant
dynamics in piecewise linear systems always come along with a permutation of the
underlying polyhedral partition and similar system matrices just as observed for
TCPNs.

A comparison with the effect of symmetries in place/transition nets, where isotropy
subgroups are not constant along paths in the reachability graph, has been made.
However, algorithms developed for the computation of symmetries in discrete Petri

nets can also be used in continuous nets.

Two reductions have been proposed for TCPNs with symmetries. The first one is an
algebraic reduction resulting in a dynamical system of smaller dimension. Instead of
being |P|-dimensional the reduced dimension is given by the number of equivalence
classes of places with respect to the isotropy subgroup of the initial marking. This
reduction is then combined with a related reduction with respect to P-invariants
in the net. The original and reduced system are equivalent in the sense that the
solution to one system can be obtained from the solution to the other system by a

simple linear transformation.

Taking the idea of this reduction with respect to fixed-point sets a step further, it
has been demonstrated how to reduce the Petri net itself rather than the associated
dynamical system only. Every node of the reduced system represents one equivalence
class of nodes of the original system. The marking of a place in the reduced net is
the same as a marking of one of its counterparts in the original net. Unlike in the
first reduction, this procedure is valid only under restrictions on the net structure,
in particular, on the resolution of choices. For this reason the RSC property has
been introduced. The correctness of the procedure has been proved by showing that
the dynamical system of the original system after a reduction with the first method

and the associated dynamical system of the smaller TCPN system are identical.
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The advantage of the second reduction over the first one lies in the fact that the
smaller net is easier to handle for a human modeler and that it allows to subsequently

apply further reduction or transformation rules which are known for Petri nets.

The second reduction technique extends known techniques (e.g., [ADFN99]) in three
ways. First, the reduction is performed by simple matrix multiplications and can
therefore be performed automatically. An algorithm for the necessary computation
of symmetries is known and implemented in some Petri net tools. Second, its restric-
tions on the net structure are a lot milder. In particular, there is no restriction to
ordinary state machines for the equivalent subnets and an adaption of arc weights
is possible. Third, the reduced net does not have to be a subnet of the original
net as illustrated in the example of a manufacturing system in Section 4.3.6. In
Section 4.3.10 it is discussed how this technique for continuous Petri nets might be
applied to discrete nets. Since the 7T-rule is not applicable in discrete nets, it is in
general not allowed to increase the weight of input arcs to transitions. Therefore,

for discrete nets, the restriction on conflicts have to be stricter.

In the literature on discrete Petri nets, symmetries are likely to be encountered in
colored Petri nets (cf. [JK09]). These are high-level Petri nets which combine the
capabilities of low-level Petri nets such as place/transition nets with the capabil-
ities of a high-level programming language. Symmetries may appear in a natural
way since components with identical dynamical behavior are modeled only once and
the different entities are represented by colors [Jen96]. This is particularly true for
the subclass of symmetric Petri nets, formerly known as stochastic well-formed nets
[ZS10], which can be understood as a colored extension of generalized stochastic
Petri nets. Due to restrictions on the definition of color classes and functions, sym-
metries appear. [ZSlO] deals with the question how such nets can be fluidified. The
MCPLC-example from Section 4.3 is actually a result of this approach. Theoreti-
cally, colored Petri nets can always be transformed into uncolored nets. As the idea
behind fluidization is the approximation of largely populated nets, we do not want
to separate the differently colored markings into different places. Instead, the mark-
ing of one place should be considered as a whole whenever this makes sense, even
if different colors appear. Continuous counterparts of colored Petri nets are still a
very young area of research. A future challenge is to incorporate the considerations

on symmetries of this thesis into the transformation into continuous systems.
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6 Conclusion and Outlook

In Chapter 5, the dynamics of TCPNs depending on the firing rate of one transi-
tion has been studied. In four examples from the literature, discontinuity-induced
bifurcations have been detected. In the case of Examples I and II, we can now
explain the qualitative changes in the system’s dynamics that lead to the jumps in
the throughput that had been reported previously. The third example shows that
not only monotonicity, which jumps in the throughput are traditionally associated
with, but also continuity should be taken into account. The last example exhibits a

bifurcation to a center.

The discontinuity-induced bifurcations observed are degenerate in the sense that,
on the one hand, they need at least three regions to occur and, on the other hand,
a fixed point loses hyperbolicity as it hits the boundary of a polyhedral region. For
mono-T-semiflow nets it is shown that critical regions may contain a steady state

only if the firing rates of the transitions in conflict relation have a special ratio.

To the best of the author’s knowledge, discontinuity-induced bifurcations in TCPNs
have never been studied before. So this area is still in its infancy and several open

questions remain:

e Are jumps in the steady state or throughput always due to discontinuity-

induced bifurcations of the type described in this thesis?
e Does the special ratio of firing rates of Equation (5.3) imply singularity of Ag?

e Is it possible that for one choice of firing rates there are steady states in the
interior of more than one region and what are necessary conditions for the

existence of a single equilibrium?

e How can we predict bifurcations? In other words, what are necessary and
sufficient conditions for the appearance of discontinuity-induced bifurcations
in TCPNs?

e Do there exist more types of bifurcations in TCPNs (discontinuity-induced
or not) than those observed in the examples presented in this thesis? Can
new phenomena be observed if more than one firing rate is considered as a

bifurcation parameter?

e How are the results of Chapter 5 related to the results on monotonicity in
[MRS09]? We have seen in Example III that jumps in the throughput can
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appear in monotonic system. Does nonmonotonicity imply discontinuity? To
which extend do the sufficient conditions for monotonicity proved in [MRS09]

prevent a TCPN from exhibiting discontinuity-induced bifurcations?

e How are the discontinuity-induced bifurcations related to the quality of the

approximation of Markovian Petri nets by TCPNs?

This thesis contributes to the research on nonmonotonicities and discontinuities
in timed continuous Petri nets under variation of a parameter by introducing the
concept of bifurcations. Doing this, it provides a new angle of looking at this phe-

nomenon and can therefore be a starting point for further research in the field.
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