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Uns ist in alten maeren wunders vil geseit
von helden lobebaren, von grézer arebeit,

(Nibelungenlied)

1. Summary

In experimental implementations of photonic quantum systems parametric down-con-
version (PDC) is omnipresent, yet despite its widespread deployment the theoretical
treatment of PDC remains challenging.

In this thesis we address this problem and develop a theoretical model of ultrafast
waveguided PDC extending the current perturbation approaches to include the spatial
and spectral degree of freedom [1, 2]. We further investigate PDC beyond the pertur-
bation approximation and put forward a rigorous theoretical description as well as a
simplified analytical model [3], which also enables the theoretical treatment of frequency
conversion processes.

This theoretical framework of PDC enables us to research future applications for PDC
in quantum enhanced applications: We explore the limits of PDC to serve as a source
of single photons [4], present a new approach to engineer the spectral properties of
PDC sources independently of the dispersion properties of the applied nonlinear crystal
[5] and put forward a new method to characterize PDC sources in the lab, which is
robust, simple and most importantly loss independent [6]. Finally, we develop a new
multiplexed quantum communication protocol which, based on the multi-mode nature
of PDC, enables exponentially higher quantum communication rates than the standard
single-mode coding [7].






2. Zusammenfassung

In der Quantenoptik gib es kaum einen Prozess der ofter eingesetzt wird als die Parametri-
sche Fluoreszenz (PDC). Doch trotz der weiten Verbreitung bereitet die theoretische
Beschreibung der PDC noch immer Schwierigkeiten.

In dieser Dissertation beschaftigen wir uns mit diesem Problem und erweitern die
gegenwartige storungstheoretische Beschreibung von “ultrafast” PDC in Wellenleitern
um sowohl den rdumlichen als auch den spektralen Freiheitsgrad [1, 2]. Weiterhin
gehen wir iiber diese storungstheoretischen Betrachtungen hinaus und entwickeln eine
numerische und eine vereinfachte analytisches rigorose theoretische Modellierung der
PDC, die sich iiberdies zur Beschreibung von Frequenzkonversion eignet [3].

Dieses tiefgreifende Verstandnis der PDC ermoglicht es uns zukiinftige Anwendun-
gen der PDC im Bereich der Quanteninformation zu erforschen: Wir untersuchen wie
gut PDC eine deterministische Einphotonenquelle anndhern kann [5], priasentieren eine
neue Methode die spektralen Eigenschaften der PDC unabhéangig von der Dispersion im
Kristall zu verdndern [5] und entwickeln einen neuen Ansatz um PDC, robust, einfach
und, vor allem, verlustunabhéngig zu charakterisieren [6]. Schlielich stellen wir ein
gemultiplextes Quantenkommunikationsprotokoll vor welches, basierend auf den mul-
timodigen Eigenschaften der PDC, exponentiell hohere Datenraten, als vergleichbare
einmodige Protokolle erméglicht [7].






Everything starts somewhere, although
many physicists disagree.

(Terry Pratchett)

3. Introduction

The history of quantum mechanics dates back to the very beginning of the 20th century
when, in the year 1900, Max Planck postulated that the energy of light is emitted and
absorbed in discrete quanta, to explain the spectrum of black body radiation [8]. Planck
however insisted that his quantization of light was merely a mathematical construct
which has no connection to physical reality whatsoever. In 1905, however, Einstein in-
terpreted his idea realistically and used Planck’s model of quantized light to describe the
photoelectric effect. This sparked the development of quantum theory by Max Planck,
Niels Bohr, Werner Heisenberg, Louis de Broglie, Arthur Compton, Albert Einstein,
Erwin Schrodinger, Max Born, John von Neumann, Paul Dirac, Wolfgang Pauli, David
Hilbert, Wilhelm Wien, Satyendra Nath Bose, Arnold Sommerfeld and others during the
first half of the 20th century [9], but it was not until 1977 that Kimble et. al. performed
the first experimental observation of the quantized nature of light [10].

The term “photon”, to describe the quantized nature of light, coined by G.N. Lewis,
dates back to the year 1926, where it should be noted that Lewis explicitly denied any
connection of his “photons” to the concepts of Planck and Einstein. Still the word
“photon” caught on and is now universally used to describe the quantized nature of
light [11].

Since the advent of quantum mechanics these “photons” are one of the main tools
to experimentally investigate quantum mechanics, they offer insights into the quantum
nature of light, while also serving as a fundamental building block for quantum enhanced
applications.

To date the most prominent method to create photonic quantum states is parametric
down-conversion (PDC). The history of PDC dates back to the year 1961 when it was first
predicted by Lousiell et. al. [12], and subsequently investigated by others [13, 14, 15, 16,
17, 18]. In 1969 Zeldovich and Klyshko proposed an experiment to observe the created
photon-pairs during PDC and suggested its use as a source of non-classical states of light
[19]. In 1970 Burnham and Weinberg performed the first observation of pair production
from PDC [20]. The usage of PDC in the framework of quantum information theory was
sparked in 1987 by Hong, Ou and Mandel [21]. Their experiment, now known as “Hong-
Ou-Mandel Dip”, forms one of the basic building blocks of optical quantum information
processing [22].

Since then quantum optics developed into a flourishing field with PDC serving as one
of the major sources of quantum states of light. From the year 1987 onward the amount
of papers published on the subject of PDC is growing at a staggering rate. The process
is not only omnipresent as a source of single quanta of light [21, 23, 24, 25, 26, 27],
but its quantum nature further enables the creation of other fundamental quantum
states of light: Bell-states in the form of entangled photon-pairs [28, 29, 30], squeezers
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3. Introduction 12

[31, 32] featuring quantum fluctuation below the standard Heisenberg limit and the
omnipresent EPR-states [33, 6] introduced by Einstein, Podolsky and Rosen in 1935
[34]. However, despite its widespread applications, the theoretical treatment of PDC
still remains challenging.

In this thesis we address this problem and present a rigorous theoretical description
of ultrafast waveguided PDC, taking into account the spatial, spectral and photon-
number degree of freedom. This detailed theoretical description of PDC enables us
to build, develop and propose enhanced sources for quantum information processing:
We explore the limits of PDC as a source of single-photon Fock states, put forward a
scheme to create single-mode PDC states independent of the applied material, develop a
loss independent method to effectively probe PDC states in the laboratory and present
a multiplexed quantum communication protocol featuring an exponentially enhanced
quantum communication rate in comparison to the standard single-mode coding.

This cumulative dissertation is structured as follows: After a general introduction
into the theory of PDC in Chap. 4 the following chapters give short summaries of the
individual works, each followed by the corresponding publication(s):

Chap. 4 reviews a basic model of PDC, based on the widespread first-order pertur-
bation theory treatment. Despite its simplicity it already features all important process
properties required for working with PDC sources and enables us to introduce all nec-
essary concepts and formulas.

Chap. 5 starts the summaries of the individual publications and extends Chap. 4 to
PDC in waveguides. Taking into account the spatial degree of freedom our theoretical
model enables us to evaluate the impacts of waveguiding structures on the PDC process
[1]. We unveil an intricate interplay between the spatial and spectral properties of the
generated PDC states, which facilitates the creation of hyperentangled quantum states
[2]. This model was not only successfully tested in the laboratory [1, 2], but has also
already been extended to describe two-photon quantum walks in waveguide arrays [35].

However, when first-order perturbation theory is not sufficient any more, the theoret-
ical description of PDC becomes challenging. Especially the multi-photon components,
as well as the explicit time-dependence of the involved Hamiltonians hamper an effi-
cient theoretical description of PDC. In Chap. 6 we investigate these effects and build
two models which enable a of full description of ultrafast PDC in the high gain regime.
Firstly we present a rigorous numerical model, which relies on the solution of coupled
integro-differential equations and covers the complete dynamics of the process. Secondly
we put forward a simplified model that, at the expense of neglecting time-ordering ef-
fects, enables an analytic solution [3].

Furthermore we show that our developed theoretical framework is not restricted to
PDC processes, but can also be applied to describe frequency conversion (FC), which
enables us to benchmark the performance of FC as a quantum pulse gate.

This concludes our theoretical investigation of the PDC process. The developed theo-
retical framework of ultrafast waveguided PDC enables us to research future applications
for PDC in for quantum information processing applications:

In Chap. 7 we discuss the heralding of single-photons from PDC sources. We bench-
mark the purity of the heralded signal photons and the achievable rates, for the first
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time, taking into account the spectral and the photon number degree of freedom. This
enables us to determine the limits of PDC sources for pure single-photon generation. Our
calculations unveil that, using perfect photon-number resolving detectors and an optimal
source, PDC is able to supply single-photon Fock states with a heralding probability of
25%. Consequently an array of 17 switched PDC sources is required to approximate a
pure deterministic single-photon source (> 99% emission probability) [5].

In Chap. 8 we turn to the problem of source engineering. As discussed in Chap. 7,
very specific PDC states are required to herald pure single-photon states. Unfortunately
only very few nonlinear crystals feature the required dispersion properties. Here we
present a new method to engineer the PDC process, not relying on specific dispersion
curves, but instead by creating the signal and idler waves in opposite directions. This
enables the use of nonlinear materials which previously where deemed unsuitable for this
task [5].

Chap. 9 elaborates on the issue of characterizing ultrafast PDC states in the labo-
ratory. For this purpose, we put forward a new characterization procedure based on
measuring broadband time-integrated correlation functions [6]. This approach enables
the fast, robust, straightforward, and, most importantly, loss independent probing of
PDC sources and has already established itself as a standard tool in our laboratory [36].

Finally, in Chap. 10, we investigate continuous-variable (CV) quantum communica-
tion. Hereby the major challenge resides in the transmission of quantum information
with high rates over long distances in the presence of loss. We explore the possibility
to multiplex CV quantum communication by encoding the information on multiple op-
tical pulse modes simultaneously. Our research reveals that our multi-mode PDC states
are optimally suited for this multiplexing which leads to an enhanced energy efficiency
achieving an exponential increase in the quantum communication rate in comparison to
the standard single-mode coding.

Chap. 11 summarizes our findings and discusses the prospects of ultrafast waveguided
parametric down-conversion in the framework of quantum information applications. Ap-
pendix A contains additional calculations. Appendix B collects additional publications
sorted by date.
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It's a magical world Hobbes, ol’ buddy
... let's go exploring.

(Calvin and Hobbes)

4. Theory of PDC
in the two-photon picture

4.1. Introduction

The first theoretical description of PDC dates back to the year 1961 [12]. The model,
introduced by Lousiell et. al., sparked many other early contributions to the theory of
PDC in the sixties and seventies [13, 14, 15, 16, 17, 18] and the first observation of PDC
by Burnham and Weinberg in 1970 [20]. Since then the theoretical framework of PDC
has been continuously expanded to span a variety of different theoretical approaches
which focus on a multitude of topics: different nonlinear materials, various types of PDC
processes, quasi-phase-matching, and the spatial, spectral and photon number degrees
of freedom. Each model features different advantages and disadvantages depending on
its intended application.

In this chapter we start off with an investigation of PDC using first-order perturbation
theory [37, 38, 39]. Due to its simplicity this model forms the basis of almost all modern
theoretical investigation and enables us to introduce all the necessary concepts and
formulas.

4.2. The PDC Hamiltonian

Fig. 4.1 sketches the basic principle of PDC: A photon of an incident pump field spon-
taneously decays, inside a crystal exhibiting a y(?-nonlinearity, into two photons, for
historical reasons, labelled signal and idler.!

On an atomic level the pump photons, in the medium, are continuously absorbed and
re-emitted by the atoms in the material, or to be more precise, they interact with the
individual atoms in the crystal lattice. This matter-wave interaction leads to optical

IThe concept of the photon is a difficult one indeed. A photon is neither a particle nor a wave, but
a quantum field amplitude that exhibits a quantized nature upon detection. A historical overview
of the evolution of the term photon, its original meaning and common misunderstandings is given
in the paper “Anti-photon” by W.E. Lamb, Jr. [11]. In fact photons do not spontaneously decay
into photon pairs at some point inside a nonlinear crystal. PDC is a fully deterministic unitary
process where two quantum field amplitudes signal and idler are created. Their amplitudes give
the probabilities to detect two quanta of light after the nonlinear interaction. This, quite involved,
explanation of PDC is usually abbreviated to “A pump photon spontaneously decays into a photon-
pair inside the nonlinear crystal”, which has the advantage of being accessible and giving an intuition
of the process. One should however keep in mind its limitations.

17



4. Theory of PDC in the two-photon picture 18

Nonlinear ‘

crystal Idler

Figure 4.1.: In the process of PDC a pump photon spontaneously decays, inside a
medium exhibiting a y®-nonlinearity, into two photons, for historical rea-
sons, labelled signal and idler.

effects such as refraction, absorption, and, as we will see, PDC. It is however very
difficult to describe PDC on an atomic level due to the sheer number of atoms and
photons involved. Consequently the process of PDC is usually modelled neglecting the
quantum mechanical properties of the atoms.

In this simplified picture we approximate the atoms in the material as an array of
dipoles. The incoming pump wave excites these dipoles and drives them to emit electro-
magnetic radiation. The frequency and direction of the emitted light are determined by
the constraint that all dipoles have to constructively interfere to build up a significant
amount of electromagnetic radiation. Mathematically this interaction is described by a
time-varying dipole moment p (t) induced in the material via the incoming pump wave.

If we assume that the atoms or dipoles act as perfect harmonic oscillators the energy
transfer from the pump field to the dipoles and the following emission merely leads to
a delay of the pump light which gives rise to the well known process of refraction. At
high pump intensities, however, they show a nonlinear response. In this case it is not
sufficient to describe the atoms in the medium by harmonic oscillators, but the nonlinear
response represented by anharmonic oscillations has to be considered as well.

For this purpose it is useful to write down the dipole moment P per unit volume as a
power series [40]:

Pty =co | S XSVE ) + Y XGE OB + Y XELE () Bt Ei(t) + ..

ki
= PV 4+ P (4.1)

The term Pi(l) describes the harmonic response which leads to the process of refrac-
tion, whereas the time-varying nonlinear polarization terms PN" act as a source of new

components of the electromagnetic field. This is evident from the wave equation in a
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nonlinear optical medium [40]

g WOE 1 0P 42
2 Ot? €oc?  Ot?
where n is the index of refraction and ¢ the speed of light. This expression can be
regarded as a dipole emitting light E driven by the nonlinear polarization PN* induced
by the pump wave in the medium.

The PDC emission stems from the y®)-nonlinearity. It features the advantage to be
much stronger than the higher-order nonlinear terms and enables an efficient nonlinear
interaction.? Note that y(®-nonlinearities are only present in crystal materials featuring
noncentrosymmetric crystal structures [40].> The most commonly used crystals for PDC
generation are BBO, LiNbO3, and KTP.

In order to develop a quantum mechanical description of PDC we first have to derive
the Hamiltonian of the process, given by the energy inside the material. According to
Poynting’s theorem the energy of an electric field inside a medium is given as [44]:

&= % /V d&3r (Eﬁ + éﬁ) (4.3)

In our case we are not interested in the contribution by the magnetic component, since
the PDC interaction stems from the electric displacement field D. We obtain [40]

1 S o
Sz—/d3rE(p)D
2 Jv

— / d3r <€_OX<1> EPWE 4 9, F®) Eg)
v 2 3

€ * € *
S EORULEETE D ot BT B

ij ijk

where we explicitly labelled the incoming wave E® and the i jk subscripts describe the
polarization of the individual beams.*

The corresponding Hamiltonian is directly obtained from Eq. (4.4) by quantising the
involved electric fields. Here we restrict ourselves to an interaction in one dimension, i.e.
we assume a fully collinear propagation of the electric fields through the medium in a
single spatial mode.® We first separate the quantized electric field into its positive and
negative frequency parts:

E(z,t) = ED(z,t) + EO(2,1) (4.5)

2The x®)-nonlinearity enables four-wave-mixing. While it is not as strong as the x(®-nonlinearity has
the advantage of being present in optical fibers [41, 42]. x® and even higher-order nonlinearities
are, to our knowledge, currently not investigated.

30ut of the 32 different crystal classes 21 are noncentrosymmetric [43].

4More information on the polarization ]5(75) and nonlinear optics in the classical regime is given in the
book “Nonlinear Optics” by Robert W. Boyd [40].

A three dimensional treatment of PDC in waveguides is given in Chap. 5.
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Inside a nonlinear medium they are of the form [45]
E®)(z,t) = EO(2,1)

. (L) : [wvBenltw: —wlaw), 140

dmeqc An(wo)

where A labels the transverse quantization area in the material [46]. Here we use the
slowly varying envelope approximation, i.e. the bandwidth Aw of the considered electric
fields is small compared to their central frequency wy (Aw < wp) and hence move
the dispersion term in front of the integral and treat it as a constant n(wp). This
approximation is justified, since we only consider electric fields not too broad in frequency
and take into account the rather flat dispersion in nonlinear crystals. Finally a(w) is the
photon annihilation operator which destroys one photon at frequency w and obeys:

[a(@, d(w')q 5w —w)  [a(w),aw)] =0 (4.7)

In our case we are not interested in the effects of free propagation and only regard the
Hamiltonian of the nonlinear interaction inside the crystal.® It is given by the energy
inside the material created by the pump, signal and idler fields interacting through the
x®-nonlinearity of the crystal [47, 40, 48] According to Eq. (4.4) it reads”

A 60 ~ N
N Z,; @ / 42 B (2 05 0 Bz, ), (4.8)
ij 2

where we assume a crystal of length L extending from —=% to L . The x;; 1)6 tensor enables

a multitude of nonlinear interactions in the medium. In the scope of thls thesis we as-
sume a propagation of all electric fields along one crystal axis. Depending on the applied
crystal and its corresponding Xg,)g—tensor, this leads to a variety of different polarizations
interacting with each other. In quantum optics two distinct PDC processes are usually
considered: in type-I PDC the signal and idler photons are emitted in the same po-
larization, whereas during type-I1I PDC the photon-pairs are generated into orthogonal
polarizations and hence different optical modes.® In the scope of this thesis we restrict
ourselves to a discussion of type-II PDC.? For type-1I interactions the Hamiltonian reads

L

A(h) = 20 / Y4z By (2, ) Ey(z, ) i, 8), (4.9)

SISl

SEffectively this means that we move into the interaction picture (see Chap. 6).

"It is possible to have different constants in front of the Hamiltonian, €;/3 in our case, depending on
the exact definition of the electric fields and the energy density inside a nonlinear medium. In the
scope of this thesis we use the conventions from “Nonlinear Optics” by Robert W. Boyd [40]

81n classical optics there also exists the notion of a type-0 process: In this special case the pump
exhibits the same polarisation as signal and idler, whereas type-I describes a process where the
pump polarization is orthogonal to the signal and idler polarization. This distinction, however,
got lost during the transition of PDC into the quantum domain, where all process where signal
and idler share the same polarizations are labelled as type-I processes, independently of the pump
polarization.

9All the presented calculations in this thesis can be straightforwardly extended to type-I PDC. In most
cases it is in fact easier to work with type-I PDC processes.
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where the fact that the two created fields are of orthogonal polarization is highlighted
by the two subscripts s and i for signal and idler fields. The term x® in this equation
labels the corresponding nonlinearity. Finally we expand the electric fields into their
positive and negative frequency parts, according to Eq. (4.5) and Eq. (4.6):

L
N 2 N N
() = 93 [ dz (B9t + B9 )

L
2

x (E§—>(z, t) + EC)(z, t)) (E)H(z, 1)+ Bz, t)) (4.10)

The EM)(z, t) terms include photon annihilation operators, whereas the E()(z,t) terms
involve photon creation operators. The eight resulting terms lead to a variety of dif-
ferent nonlinear processes. PDC stems from the operator combination describing the
destruction of a pump photon and the creation of a signal and an idler photon and the
reverse process where signal and idler photon fuse into a pump photon.!® We obtain the
PDC Hamiltonian:

A

L
Hppe(t) = %0)((2) /2 dz EN (2, ) EO) (2, )BT (2, 1) + hec. (4.11)

p

[t

The remaining terms lead to processes such as frequency conversion [3, 49]. In the scope
of this thesis, however, we use the rotating wave approximation [33], i.e. we assume that
due to a properly adjusted pump only the PDC process is excited whereas the other
nonlinear optical processes oscillate so fast that their net impact on the output state is
zero.' This enables us to solely regard the parametric down-conversion terms of the
nonlinear interaction neglecting the other nonlinear optical processes.

4.3. Modelling PDC using first-oder perturbation theory

In this chapter we treat the parametric down-conversion process using first-order pertur-
bation theory. Firstly parametric down-conversion is a very inefficient process, depending
on the x® nonlinearity and length of the crystal, only every 10° to 10'' pump photon
decays into a photon-pair. Hence, in order to achieve a significant number of down-
conversion events the incoming pump field has to be a bright wave. We consequently
treat it as a classical field:

EM(z,t) = B (2,t) = A, / dk o [w(k)] exp [1(kz — w(k)t)] (4.12)

p p

10The reverse process has to be included in order to form a hermitian Hamiltonian.

11 The easiest way to see this is to perform the calculations from Sec. 4.3 with one of the three remaining
Hamiltonians. The time-integration over the frequency mismatch between the three waves, must be
zero to give an efficient interaction. When this is the case for the PDC Hamiltonian the frequency
mismatch is far from zero for the other Hamiltonians. Performing the time-integration over these
terms will consequently result in an integration over a fast oscillation, which yields zero. This fact
enables us to only regard the PDC interactions, while neglecting the other processes.
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Here A, labels the pump amplitude and a [w(k)] its spectral distribution ranging from
d(w — w,) for cw-laser sources up to more complicated forms in the case of ultrafast
pulsed laser systems, which are in the main focus of this thesis. We also assume that the
pump field is not depleted during propagation through the crystal, since only a minor
part of the strong pump beam is lost during the PDC process. We obtain the unitary
transformation .

UPDC = Texp |:—7%/ dt ﬁppc(t)l , (4.13)
where 7 is the time-ordering operator since the electric fields in the PDC Hamiltonian
do not commute in time [50, 51]. We further extended the time-integration to plus
and minus infinity, which is justified since we regard the state long after the nonlinear
interaction in the medium.

In the Schrodinger picture the generated PDC state is given by the formula

o0

) ppe = Uppc |0) = T exp [—% /_ dt IflpDC(t)} 0) . (4.14)

o0

In most cases the nonlinear interaction during the process of PDC is not very strong
and it is hence sufficient to perform a first-order expansion of Eq. (4.14)

V) ppe A~ 10) — %/_OO dt Hppe(t) [0) (4.15)

o0

which gives us the emitted, but not normalized two-photon PDC state.'? Following the
presentation in [37, 38, 39] and combining Eq. (4.6), (4.11), (4.12) and (4.15), we arrive
at

/ dthDC / dt/Ldz ///dcupdwsdwZ (wp) exp [~ (wp — ws — w;) t]

x exp [¢ (ky(wp) — ks(ws) — ki(wi)) 2] @ (WS)bT(wz) + h.c.
(4.16)

where we merged all constants into an overall factor B and mark the signal and idler
creation operators a'(w,) and b'(w;) respectively.’® Performing the z-integration we
obtain:

/_Z dt Hppe(t) / dt /// dew,dw,dw; a(w,) exp [—1 (wy — ws — w;) 1]

x L sinc {(kp(wp) — ks(ws) — ki(w;)) g at (we)bl (w) + hee.  (4.17)

12Higher order expansion terms are discussed in Chap. 6.
13Sometimes signal and idler are operators are labelled af(w,) and &Z(wi) as well. For the sake of
consistency, however, we choose the af(w,) and bf(w;) convention.
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The integration over the time-dependence ¢ results in a delta function 276 (w, — ws — w;)
and we subsequently perform the integral over the pump frequencies w,:

/ dt f{pDc(t) = BI // dws dwl- a(ws +wi)

[e.9]

I .
x L sinc [Ak(ws, w,)g] a' (we )bt (w;) + h.c. (4.18)
Here we have introduced the shorthand relation Ak(ws, w;) = ky(ws+w;) —ks(ws) — ki(w;)
and B" = 27 B. Using Eq. (4.15) and Eq. (4.18), we are able to write down the not
normalized PDC state as:

Do =100+ B [ [ i+ wnsine |8k i) 5 | 1005 () 0

(. /
-~

q>(“-’57wi)

=10) + B’ // dwsdw; a(ws +w¢)¢(ws,wi)dT(Ws)6T(wi) 0)

= |0) + B’ // dwsdwif(ws,wi)dT(ws)Z)T(wi) |0) (4.19)

The overall efficiency of the down-conversion process is given by the constant B" o< A, L,
which depends linearly on the crystal length L and the field amplitude A, of the pump
field.

The created photon-pairs feature an intricate spectral structure dependent on the
joint-spectral-amplitude (JSA) f(ws,w;) consisting of two terms: the pump distribution
a(ws+w;) and the phase-matching function ®(w;,w;). The pump distribution represents
the energy conservation condition w, = ws + w; and is defined by the incoming pump
wave. The phase-matching function results from momentum conservation k,(w,) =
ks(ws) + ki(w;) and is dependent on the dispersion properties of the applied material and
the length of the crystal (see Fig. 4.2).

Signal .
k .
p —_—)
o> v . £y
Nonlinear . wp = Ws + W kp = ks + ki
crystal Idler

Figure 4.2.: In the PDC process the spectral properties of the generated photon-pair
are constrained by momentum and energy conservation between the three
interacting photons, which yield the joint spectral distribution f(ws,w;) of
the signal and idler photon-pair.
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Figure 4.3.: Exemplary pump spectrum «(ws + w;), phase-matching function ®(ws, w;)
and joint-spectral amplitude distribution f(ws,w;) of a generic PDC state.

In Fig. 4.3 we plotted the three functions for a generic PDC process. Due to the
energy conservation condition the pump distribution o(ws + w;) is always aligned along
the —45° axis, where the width of the function gives the width of the applied pump laser.
In the case of a continuous-wave (cw) laser source it is a line which gets broader when
pulsed laser systems are applied. The slope of the phase-matching function ®(wy, w;) is
dependent on the group velocities of the three interacting waves — pump, signal and
idler — in the medium and can, in principle, feature any angle [52]. Its width is given
by the length of the nonlinear crystal. The longer the crystal the narrower the phase-
matching function. Together they form the joint-spectral distribution function f(ws, w;)
describing the spectral properties of the generated photon pairs.

In order to simplify further calculations with the two-photon PDC state the sinc
structure of the phase-matching function ®(w;,w;) is often approximated by a Gaussian
distribution of the form [52]

sinc(x) /& exp (—7302) ~v =~ 0.193. (4.20)

Eq. (4.20) enables us to rewrite the PDC output state in Eq. (4.19) as:

) ppe = 10) + B’ // dwsdw; a(ws + w;) exp 5

—y (Ak (ws, w;) 5)] it (we)b (ws) [0)

/

-

(D(W.Sawi)
(4.21)

For Gaussian pump pulses, as created by our ultrafast laser systems, this approximation
of the sinc function recasts the joint-spectral-amplitude distribution f(ws,w;) into a
two-dimensional Gaussian distribution, which is mathematically much easier to handle

53, 52].
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4.3.1. Normalizing PDC states

One major drawback of the PDC state in Eq. (4.19) is the fact that the state is not
normalized, since we truncated the perturbation expansion after the first order. Fur-
thermore the vacuum term of the zero-oder perturbation expansion does not give any
insights into the process properties. It is hence very common to renormalise the quan-
tum state from Eq. (4.19) by post-selecting on a successful detection of a photon pair.
This enables us to drop the vacuum component and renormalise the quantum state by
adding a normalization constant in front of the two-photon term. We obtain

1 L
V) ppe = \/_N // dwsdwif(ws,wi)aT(ws)bT(wi) |0), (4.22)

with N being the normalization factor defined as:

N = / / e, dwy |f (w5, ) (4.23)

4.4. Ultrafast PDC in the broadband mode picture

In the scope of this thesis we consider ultrafast PDC, i.e. PDC processes pumped by
ultrafast lasers systems. The created spectral distribution function f(ws,w;) of the
ultrafast PDC state in Eq. (4.22) conceals an intricate mode structure, caused by
the spectral correlations between signal and idler. In order to reveal it we have to
perform a Schmidt or singular-value decomposition [54] (see App. A) of the joint-
spectral-amplitude \/LN f(ws,w;) and rewrite PDC in the so-called broadband mode pic-
ture [55, 37, 52, 56]:

\/Lﬁf wsywz ZAkdjk Ws gbk(wz) (424)
Here {¢p(ws)} and {¢p(w;)} each form a complete and orthonormal basis set whereas
the \; are real positive values (\, € Rj) . Since \/LN f(ws, w;) is a normalized distribution

the g values satisfy >, A7 = 1.
Using Eq. (4.22) and Eq. (4.24) we rewrite the PDC state as

) poe = / / s, 37 M)l ) ) 0)
-Tn [ttt [ asoai o

N

-~

Ak Bk:
=> MABL0), (4.25)
k

where we defined the new broadband mode operators [37, 52, 56]:

A

Al = / dws p(ws)af(ws) Bl = / dw; ¢ (w;)bT (w;) (4.26)
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These broadband photon creation operators AL and B,:, behave exactly as the standard
monochromatic operators af(w) and b'(w):

[4(w), 61 ()] = b [Ak,Aﬂ = 5 (4.27)

The only difference is that a(w) creates a photon at the specific frequency w whereas
Ay, creates a single photon into the broadband mode v (ws). The switch between the
two representations is identical to a basis transformation from an operator basis using
monochromatic frequencies to a set of broadband modes spanning the frequency range.

Rewriting the PDC state using broadband mode operators reveals its internal struc-
ture. According to Eq. (4.25) PDC emits two photons into a superposition of ultrafast
pulse modes Ak and Bk This ultrafast multi-mode structure of PDC is sketched in Fig.
4.4.

Nonlinear
crystal

Figure 4.4.: Including the frequency degree of freedom into the description of ultrafast
PDC, the pump photon featuring a certain spectral distribution decays into
two photons forming a superposition of ultrafast optical pulse modes.

If the signal photon is detected in mode A}, the idler photon will be found the corre-
sponding optical mode Bj. The effective number of optical modes K in a PDC state is

given via the relation [57, 58]:
1

YRV
K =1 describes the PDC state with exactly one single frequency mode |¢)) = AEBS |0).

For values K > 1 the created photon-pair is entangled in frequency since the detection
of a idler photon in a specific mode By, immediately reveals that the corresponding
signal photon is located in the corresponding Ay mode. Rising numbers of K indicate

higher and higher amounts of frequency entanglement. The overall amount of frequency
entanglement in a given PDC states can be quantified via the entropy of entanglement:

S==) Mlog; (4.29)
k

K (4.28)

It is directly dependent on the shape of the joint spectral amplitude function f(ws,w;). If
the joint spectral amplitude f(ws,w;) assumes a circular form or an elliptical distribution
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oriented along the signal or idler axis the Schmidt decomposition will yield exactly a
single optical mode for signal and idler each since the photons are not correlated in
frequency. Detecting the signal photon at a certain frequency ws does not reveal any
information about the frequency of the idler photon. However, as soon as the frequency
spectrum between signal and idler becomes correlated the Schmidt decomposition will
yield higher-order terms, the created photon pair is frequency entangled. For more
details, please have a look at the papers [37, 52].

4.5. Quasi phase-matching

In the process of PDC it is vital to have a fine degree of control over the created signal
and idler wavelengths. Depending on the application it is necessary to create both
photons in the telecom regime, at 1550 nm, for transmission with minimal losses over
long distances, or both at 800 nm enabling efficient detection, or signal at 1550 nm and
idler at 800 nm to bridge the gap between the two wavelengths. Sometimes other, more
“exotic”, wavelengths like 532 nm and 1330 nm have to be generated as well.

Phasematching
10 -5 0 5 10

“Ih X(2) A w 5 k/‘f 5

_: 0 0

Pump Nonlinear 3 -5 JkA -5
crystal

10 -5 0 5 10
Ws arb . units

Figure 4.5.: A periodic modulation of the x(® nonlinearity of the crystal enables an
almost arbitrary displacement of the phasematching function ®(ws,w;) in
frequency space.

Unfortunately it is not straightforward to tune the joint-spectral-amplitude f(ws, w;)
of a given down-conversion process. While the pump function a(ws+w;) is easily adjusted
by modifying the pump wavelength the position of phase-matching function ®(ws,w;) is
dependent on the dispersion inside the medium, which introduces a severe restriction of
the available signal and idler frequencies.

To resolve this issue quasi-phase-matching was proposed in 1962, by Armstrong et.
al. [59] (see Fig. 4.5). In this process an additional k-vector kj is introduced in the
phase mismatch Ak(ws, w;) which enables an (almost) arbitrary placement of the phase-
matching function in frequency space [60]. This is achieved by a periodic modulation of
the crystal nonlinearity x(?(z), i.e. the Hamiltonian from Eq. (4.11) reads:

ol

Hppe(t) = %0 / dz x@(2)ES) (2, ) B (2, ) B (2,1) + hec. (4.30)

|~
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In order to understand the physical impact of this periodic variation of x(?(z) it is useful
to consider the simplest case of a sinusoidal x(?(2) variation with a period of A:

. (27 1 2w 2w
xP(2) = XéQ) sin (KZ) = X(()Z)Z {exp (’LKZ) — exp <_ZKZ)] (4.31)

The calculations from Sec. 4.3 using the Hamiltonian in Eq. (4.30) with x?)(2) as given
in Eq. (4.31) modify Eq. (4.11) to:

L
2

/ dt Hppe(t) = B’/ dt / dz /// dw,dwsdw; a(wy) exp [—1 (wp — ws — w;) ]
—00 —00 7%
1

= (exp [@ <k:p(wp) ~ kuws) — ki) + QX”) Z]

—exp [1 () = R = ) = 37 ) 2]
x af (ws )bl (w;) + h.c. (4.32)

The created PDC state reads:

V) ppe = 10) + B’ // dwsdw; a(ws + w;)

L (e R (e )
x ' (w; )bl (wi) |0) (4.33)

From Eq. (4.33) it is evident that the inclusion of periodic poling modifies the k-vector
mismatch Ak about ky = j:%”. In consequence the phase-matching function is split into
two parts which are shifted into opposite directions from the original position. With an
accordingly adjusted pump it is possible to select only one of the two new phase-matching
functions which enables us to to drop the second term. We remain with:

1
V) ppe = 10) + B/Z // dw,dw; a(ws + w;)

« sinc ({Ak (e, ) + zﬂ g) it (w,)b (w3) [0) (4.34)

This allows the (almost) arbitrary displacement of the phase-matching function in fre-
quency space and consequently the engineering of arbitrary signal and idler frequencies
independent of the applied material. The quasi-phase-matching however comes at a
cost. Since the phasematching function is split into two its amplitude is scaled down by
a factor of 1/2 and each process consequently features a reduced photon-pair generation
rate.

Furthermore it is currently not possible to produce a sinusoidal y®-modulation. In
practice rectangular variations of y(? are created via the process of periodic poling. In
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this procedure the Y nonlinearity is periodically inverted via the application of strong
electric fields [61]. The resulting x® modulation is a square-wave function which reads:

XP(2) = x§sgn (sin(2))

4 & 1 . (27(2k — 1)
_ @2
_Xow;(zk—nsm( A 2)

1 gt e (2 (0]

k=1

From its Fourier expansion in Eq. (4.35) it is evident that a rectangular periodic in-
version of y® introduces a variety of different additional ks vectors, yet with ever
decreasing down-conversion efficiency scaling with 1/(2k — 1). The first term k& = 1
directly corresponds to the discussed sinusoidal poling, whereas higher-oder terms intro-
duce increasing quasi-phase-matching vectors ky = [27(2k — 1)]/A.

4.6. Conclusion

The presented theoretical model of ultrafast PDC is the current workhorse for almost
all experimental implementation of PDC. The first-order perturbation theory offers a
straightforward modelling of the process, especially its spectral structure, while still
being precise enough to describe the majority of experimental setups. Furthermore
the broadband mode formalism gives direct access to the inherent ultrafast pulse mode
structure of the parametric down-conversion process and enables us to evaluate the
generated frequency entanglement. Finally quasi-phase-matching enables a tuning of
the signal and idler wavelenghts via a displacement of the phase-matching function in
frequency space. This theoretical description forms the basis for our investigations of
PDC and, in the remainder of this thesis, we will successively expand the presented ideas
and concepts.






Wisdom begins in wonder.

(Socrates)

5. Spatial modes in waveguided PDC

5.1. Introduction

The first PDC experiments where performed using bulk crystals and, to date, these
bulk crystal PDC sources are still the most common method to create PDC states. In
the past years, however, attention has fallen on enhancing the down-conversion process
using waveguiding structures.

2
X( )
* e
Pump Nonlinear
crystal

Figure 5.1.: Sketch of waveguided parametric down-conversion: A waveguide channels
the light through the material, which gives rise to an enhanced down-
conversion rate and a collinear propagation of all involved fields in well
defined spatial modes.

The principle of waveguided PDC is sketched in Fig. 5.1: A waveguide channels the
light through the nonlinear crystal which restricts the pump, signal and idler fields to
a well-defined set of spatial modes. This provides a straightforward method to control
the spatial emission pattern from bulk-crystal down-converters and, due to the tight
confinement of the fields inside the waveguide, leads to an enhanced down-conversion
efficiency [23, 62, 63, 64, 38, 65].

!This chapter is a summary of the paper “Spatial modes in waveguided parametric down-conversion”
by Andreas Christ, Kaisa Laiho, Andreas Eckstein, Thomas Lauckner, Peter J. Mosley, and Christine
Silberhorn [1] and the paper “Direct Measurement of the Spatial-Spectral Structure of Waveguided
Parametric Down-Conversion” by Peter J. Mosley, Andreas Christ, Andreas Eckstein, and Christine
Silberhorn [2].

31
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5.2. Theory of PDC in waveguides

The first challenge when analysing PDC in waveguides is to calculate the eigenmodes
of the system. Depending on the geometry of the waveguide, there exist various ap-
proaches: Assuming rectangular or circular waveguides with perfect conducting edges?
is the most simplistic model and possesses an analytic solution. Including the effects
of finite refractive index steps An a completely analytical solution is not possible any
more, but a semi-analytical approach, as presented in [66], has to be applied. As soon as
more complex waveguide geometries, such as non-rectangular waveguide structures with
slowly varying refractive indices An are considered, full numerical theories have to be
utilized. Mode solving techniques based on finite elements approaches [67] are common
and various software packages are available for this purpose.

Having derived the eigenmodes f*)(z,y) of the waveguide we are able to write down
the quantized signal and idler fields in a straightforward extension of Eq. (4.6) [68]

EG (1) = B ) = A 1, y) / deoyexp |1 (B (wai)z = wyit) | 6 /69w,
k
(5.1)

where we, similar to the frequency degree of freedom, sum over all individual waveguide
modes fgﬁ) (z,y) with corresponding longitudinal propagation vectors ﬁg’?. Here we
neglect the frequency dependence in the spatial mode distributions fs(fz) (x,y), because
we assume fields which are not too broad in frequency Aw < w. Further note that both
the spatial field distribution fgﬁ) (z,y) and the effective k-vector ,Bgz-) are dissimilar for
the signal and idler, due to their varying wavelengths and polarizations.

Again we treat the strong pump field as a classical wave:

E[(,Jr)(F, t) = Ez(,_)*(f’, t) = AZszk)(x, Y) /dwpoz(wp) exp [z (51(,]“)(%,)2 — wpt)] (5.2)
k

To calculate the two-photon state emitted during the process of waveguided parametric
down-conversion we extend the PDC Hamiltonian in Eq. (4.11) to include the transverse
degrees of freedom:

A

Fppe(t) = 2 / & B (7, ) B (7, ) EC) (7, 6) + hee. (5.3)
1%

Following the discussion in Chap. 4 and using Eq. (5.1), Eq. (5.3) and Eq. (5.2) we
arrive at the normalized waveguided PDC state:

V) ppe = \/LN > Avim / / dwsdw; frm (ws, wi)a® (w )™ (w;) |0) (5.4)

klm

2This corresponds to the mathematical analog of modes inside an infinitely deep potential well.
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Here the joint spatio-spectral distribution [y, (ws,w;), of the created photon-pair, is
defined as:

Jrim(ws, w;) = a(w,s + w;)sine [Aﬁklm (ws, w;) g} (5.5)

Taking into account the spatial degree of freedom in waveguided PDC, the created
photon-pair is not only emitted into a superposition of frequencies ws and w;, but also
into a superposition of spatial modes [ and m, where the spatial and spectral degree of
freedom are connected via the phase-mismatch A Sy, (ws, w;):

ABM™ (w,, 1) = BB (wy) — B (ws) — B™ (w;) (5.6)

This phase-mismatch AB*™) (w,, w;) translates different interacting spatial mode triplets
of pump £, signal [ and idler m into distinct signal and idler spectra. Furthermore a
new overlap integral over the three interacting spatial modes appears:

A = / / dady £ (2, ) FO* (2, ) £ (2, ) (5.7)

Hence the efficiency of the down-conversion is dependent on the spatial shapes of the
interacting mode triplet. If pump, signal and idler propagate in similar modes the
output state will be generated with high efficiency, but if signal and idler are dissimilar
the photon pair generation efficiency will be strongly suppressed.

The derived PDC state exiting the waveguiding structure in Eq. (5.4) enables us, for
the first time, to accurately model, predict and engineer the PDC process in waveguiding
structures including both the spatial and the spectral degree of freedom. Depending
on the application it is either necessary to ensure a spatially single-mode behaviour,
for example for the heralding of single-photons from PDC (see Chap. 7), or we are
able to harness the spatial degree of freedom for advanced quantum state preparation
techniques, such as the creation of quantum states hyperentangled in the spatial and
spectral domain [2].

5.3. Experimental investigation

In order to probe the validity of our theoretical description of waveguided PDC we put
our model to the test in the laboratory and measured the spectral and spatial distribution
of a spatially and spectrally multi-mode waveguided PDC source.

Fig. 5.2 (a) shows the observed spectral distribution of the signal and idler photons.
The labels A to E mark the individual down-conversion processes. Each peak stems from
a different triplet of interacting spatial pump, signal and idler modes, which shift the
spectrum into its distinct positions. The corresponding observed spatial modes of signal
and idler are presented in Fig. 5.2. These measurements are the first direct observation
of the interplay between the spatial and spectral degree of freedom in waveguided PDC
and in very good accordance with our theory (see [2] for details).
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Signal

800
Wavelength (nm)

Figure 5.2.: (a) Spectrum of signal and idler photons in spatially multi-mode waveguided
PDC. Each peak from A to E corresponds to a down-conversion process in
different spatial modes, which shift the spectrum into the individual posi-
tions. (b) Spatial modes of the individual down-conversion processes. It is
evident that higher spatial modes lead to an increasing shift in frequency
with respect to the PDC process in the fundamental mode (A) [2].

5.4. Conclusion

In conclusion we developed a theoretical model of waveguided PDC, in the two-photon
picture, taking into account both the spectral and spatial degree of freedom [1]. Our
investigations revealed an intricate interplay between the spatial and spectral degree of
freedom, which enables the design of spatially single-mode PDC sources, e.g. for the
heralding pure single photon states and can be be harnessed to generate photon states
hyperentangled in the spatial and spectral degree of freedom. Our theoretical investiga-
tions lead to the first direct observation of the spatial-spectral coupling in waveguided
PDC [2] and has already been extended to describe two-photon quantum walks in waveg-
uide arrays [35].
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The propagation of several spatial modes has a significant impact on the structure of the emission from
parametric down-conversion in a nonlinear waveguide. This manifests itself not only in the spatial correlations
of the photon pairs but also, due to new phase-matching conditions, in the output spectrum, radically altering
the degree of entanglement within each pair. Here we investigate both theoretically and experimentally the
results of higher-order spatial-mode propagation in nonlinear waveguides. We derive conditions for the cre-

ation of pairs in these modes and present observations of higher-order mode propagation in both the spatial and

spectral domains. Furthermore, we observe correlations between the different degrees of freedom and finally

we discuss strategies for mitigating any detrimental effects and optimizing pair production in the fundamental

mode.

DOI: 10.1103/PhysRevA.80.033829

I. INTRODUCTION

The process of parametric down-conversion (PDC) is
widely used in quantum optics and quantum information as a
source of photon pairs. These photon pairs are generated
inside a nonlinear crystal when a pump photon decays into
signal and idler photons; typically the signal photon is used
to herald the availability of an idler photon that can be used
in subsequent experiments. The distribution of the pump
photon energy between the daughter photons is determined
by momentum conservation or, using the language common
in optics, by the phase-matching conditions.

After some initial discussion, experiments have demon-
strated that for PDC in bulk crystals the orbital angular mo-
mentum (OAM) of the pump beam is conserved [1,2].
Hence, by controlling the spatial mode of the interacting
beams a new degree of freedom becomes available for quan-
tum information processing. It can be used to generate mode-
entangled [2,3] and even hyperentangled biphoton states for
quantum metrology [4] or quantum information-processing
applications [5,6].

In recent years attention has fallen on PDC in waveguid-
ing structures [7-10]. The resulting implicit spatial-mode
control has significant benefits for photon-pair production.
Due to the tight confinement of the fields inside the wave-
guide (WG) the effective down-conversion rate into useful
spatial modes increases substantially. This, in turn, allows
such sources to be pumped at greatly reduced power levels
while still achieving high photon fluxes relative to bulk crys-
tal down-converters. In the ideal case only the fundamental
spatial mode is present, and the waveguide output is natu-
rally suited for efficient coupling to fibers yielding a robust
high-brightness photon-pair source.

However, real-world waveguide sources usually deviate
significantly from this ideal. Typical waveguides support the
propagation of several spatial modes for the interacting
pump, signal, and idler photons which can assume any of the
spatial modes guided at their respective wavelengths [11]. In

*andreas.christ@mpl.mpg.de; URL: http://mpl.mpg.de

1050-2947/2009/80(3)/033829(7)

033829-1

PACS number(s): 42.65.Tg, 42.50.Dv, 42.50.Ex

the standard case of a roughly rectangular waveguide, the
radial symmetry of the system is broken and hence the OAM
conservation condition is reduced to that of parity conserva-
tion between the spatial modes of the three fields. Therefore
OAM is no longer a useful parameter. Instead the fields must
be decomposed into the waveguide transverse field mode
solutions.

In addition to the modification of the spatial characteris-
tics introduced by the waveguide, the spectral properties of
the PDC process are also affected. The energy distribution
between the signal and idler photons, and hence their wave-
lengths, is governed by the phase matching of the longitudi-
nal components of the wave vector. Every spatial mode cor-
responds to a different transverse—and therefore also
longitudinal—momentum, so for every set of three spatial
modes of pump, signal, and idler we observe photon pairs
with a specific distribution of wavelengths. The resulting
output from the waveguide contains many of these distribu-
tions coherently superimposed on one another. For various
applications this can be a significant problem if a heralded
single photon in a single well-defined spatiotemporal mode
is needed. Likewise second-harmonic generation (SHG), the
reverse process of PDC, is affected.

In this paper, we present a study of the impact of discrete
spatial-mode structure on PDC in a nonlinear waveguide. We
consider the connection between the spatial and spectral de-
grees of freedom as well as both the challenges and benefits
that arise from using a waveguided PDC photon-pair source
in quantum information processing. In Secs. II and III we
present the theoretical groundwork for dealing with discrete
spatial modes in PDC. In Sec. IV we investigate the spa-
tiospectral mode structure of our waveguide utilizing SHG.
We present experimental results on the spectral impact of
spatial multi-mode PDC and theoretical predictions in Sec.
V. Section VI discusses our findings with respect to spa-
tiospectral correlations.

II. THEORETICAL BACKGROUND

We analyze the process of PDC in the interaction picture.
In order to derive the two-photon state of the down-

©2009 The American Physical Society
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FIG. 1. (Color online) Schematic picture of waveguided PDC in
a periodically poled rectangular waveguide.

converted fields we follow an approach used in [12-14]. As-
suming a nonlinear dielectric crystal with length L, a con-
stant waveguide cross section A, and propagation along the z
direction (Fig. 1), the down-converted biphoton quantum
state |4) (within first-order perturbation theory) is then given
by

t' A
) ~ f dt f dVxP(EPESET|0,0). (1)
0 \4

The susceptibility y*(z) indicates the second-order nonlin-
earity, V is the volume of the waveguide, and ¢’ denotes the

interaction time. The three interacting fields E W(u=p,s,i)
identify the pump field and the down-converted signal and
idler waves, respectively. Note that we neglected the vacuum
state which is of no interest in the scope of this paper.

The boundary conditions imposed on the fields propagat-
ing inside a waveguide define a discrete and finite set of
allowed transverse field modes. This is in contrast to the
infinite continuous set of transverse modes possible in bulk
crystal PDC. We derive the joint spatio-spectral wave func-
tion of the photon pair by quantizing the fields of the signal
and idler beams in the waveguide basis [15]. For a fixed
frequency we denote the spatial waveguide modes in terms
of a discrete set of orthonormal mode functions u,(r) (n
=1,...,N), where r=(x,y) is the position in the transverse
direction and z is the propagation direction of the pump
beam. The vector q,=(k,,k,) indicates the transverse mo-
mentum associated with the nth spatial mode of the field, and
the reduced longitudinal wave numbers of pump, signal, and
idler beams are given by BY*)(w)=\[wn(w)/c]~|q,
Their positive and negative frequency parts can now be writ-
ten as

(=) _ T
E, (r,z,t)—EM (r,z,1)
=B'> deluu;'“)(r)
n

Xexp{il B¥(w,)z — 0,1 (w,),  (2)

where u=(s,i) labels the signal and idler fields and the sum
embraces all spatial modes propagating inside the wave-
guide. In Eq. (2) all constants and slowly varying field am-
plitudes have been merged into the overall parameter B’, and
the operator fsz‘”(wﬂ) corresponds to the creation of one
photon with a given frequency in one discrete spatial mode.
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If we treat the electric field of the strong pump beam
classically with the approximation of an undepleted pump it
can be written as

E,(rzn)=2 f dwa(w)APulP(r)
1 0

Xexp{z[ﬂ}”)(w)z —ot]}+c.c. (3)

In the general case of ultrashort pump pulses the laser source
can exhibit a broad-band frequency structure which is mod-
eled by the pump function a(w). In the following the field
amplitude of each pump spatial mode ugp)(r) is denoted by
Aff’ (in the experiment this may be tuned by changing the
coupling into the waveguide).

Using Egs. (1)—=(3) and following Grice and Walmsley
[13] we find for the two-photon state,

lyy=B>, AV f f dw,dw,
0

Imn

X f drul? () ul P ul(r) alw,+ o)

A _
N
Almn
X SinC[Aklmn(wsv wi)L/z]exp[lAﬁlmn(wy (1),)L/2:|
— _J
~
d’lmn(ws’wi)
xa¥ (wy)d" (w;)|0, (4)

with B defining an overall constant. The indices /mn label the
triplet of the pump mode /, signal mode m, and idler mode n.

In Eq. (4) we introduced the value ApB,,,(w,, ;)
=B (w,+ @)~ B ()~ B () = Bpy, which corresponds
to a momentum mismatch between the different propagation
constants. This is corrected by the quasi-phase-matching vec-
tor Bypy arising from a periodic variation in the x? nonlin-
earity in the z direction fabricated in the waveguide to
achieve perfect phase-matching [16]. The spectrum of the
down-converted photon pairs is given by the joint spectral
amplitUde (JSA) flmn(ws > wi) = a(ws+ wi) X d)lmn(ws > (U,‘),
where a(w,+ ;) is the pump distribution and ¢,,,,,(w,, ®;) is
the phase-matching function.

Note that Eq. (4) is similar to the two-photon state of
collinear plane-wave PDC, neglecting the spatial structure of
the propagating waves [13]. However, by explicitly consid-
ering the spatial modes propagating inside the waveguiding
material, we can see that the generated biphotonic state is
emitted into a superposition of interacting mode triplets
(Imn). Bach triplet typically exhibits a different overall
down-conversion generation efficiency due to the overlap be-
tween the three interacting fields A;,,,. Moreover the triplet
possesses a unique spectrum f,,,(w,, ;) because of the dif-
ferent longitudinal wave vectors satisfying the phase-
matching condition Apy,,(w,,»;)=0. In the experiment the
spread of the photons into different spatial modes can be
tuned by controlling the preparation of the incoming pump
wave into different waveguide modes AE”). In conclusion the
multi-mode PDC state is represented as
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750 800 850 750 800 850 750 800 850

FIG. 2. Different spatial modes excited in the down-conversion
process lead to a superposition of Gaussian shaped frequency dis-
tributions in the generated two-photon state. (a) pump function, (b)
phase-matching function, and (c) JSA.

|¢> = BE A;p)Almnf f dwsdwiflmn(ws’wi)
0

Imn

X a9 (w)a? (w;)

0,0). (5)

The JSA of a typical two-photon state with only three differ-
ent mode triplets is plotted in Fig. 2. As can be seen the
differences in the momentum mismatch lead to slightly
shifted phase-matching functions and the photons are gener-
ated in a superposition of these three frequency amplitudes.
Hence the down-converted photon pairs are emitted into a
composite state entangled in frequency and spatial mode (or
transverse momentum).

II1. WAVEGUIDE MODEL

To model numerically the properties of the generated two-
photon state for a given waveguide architecture and down-
conversion process, we assume a rectangular waveguide with
width W, height H, a difference in the refractive index be-
tween the waveguide and substrate materials of An and a
poling period A. The waveguide dimensions and the differ-
ence in the index of refraction are deduced from a measure-
ment of waveguide’s numerical aperture. The extracted pa-
rameters suggest a rectangular waveguide with parameters
H=6 um, W=4 um, and An=0.01. In addition to the re-
fractive index difference An between the waveguide and the
substrate, our model also takes into account the air boundary
at the upper edge of the waveguide. The waveguides have an
effective poling period of A=7.59 um. The estimates for the

Coordinate system

Crystal basis

FIG. 3. (Color online) Microscope image of the waveguide
cross section. The height and the width (HX W=6 x4 um?) given
by the numerical aperture measurement are in good agreement with
the image. Note the different nomenclature for the biaxial crystal
basis and the coordinate system used for the calculations.
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FIG. 4. (Color online) The first four z’ polarized spatial field
modes at 800 nm propagating in our waveguide.

waveguide dimensions were verified with a microscope as
shown in Fig. 3.

In our type-1II PDC process y’ polarized pump photons
near 400 nm are down converted into y’ and z’ polarized
signal and idler photons around 800 nm. The spatial modes
propagating in this waveguide architecture can be calculated
with a semi-analytical dielectric waveguide model [17]. The
solutions of the transverse wave equations correspond to sine
and cosine functions followed by an exponential decay into
the surrounding material (see Fig. 4).

The spatial modes and their respective transverse mo-
menta can be conveniently labeled by the number of nodes in
the transverse x and y directions (x nodes, y nodes). Our
waveguide architecture shows multi-mode behavior at the
spectral range of interest and supports spatial modes from
(0,0) up to (3,5) and (1,2) at 400 and 800 nm, respectively.
For given field modes we can readily evaluate both the
propagation constant ,85,’"”7 (v=I0,m,n) and the coupling
constant A,,,, for each mode triplet in Eq. (4) (cf. Table I).

In the special case of a rectangular waveguide the parity
between the interacting modes is conserved ([;+n;+m;
=2N, N eN) similarly to the conversion of OAM in bulk
crystal PDC. All down-conversion processes violating the
parity conservation exhibit a vanishing coupling coefficient
A However perfect parity conservation would only be
given if signal, idler, and pump waves propagate in the same
mode basis, which in general is not the case due to their
different polarizations and wavelengths. Hence weak cou-

TABLE I. Five selected coupling constants for different down-
conversion processes possible in our WG architecture.

EV(I, L) —>E(“)(mx,my)+E(")(nx,ny) A (1079
(0,0)—(0,0)+(0,0) 53.96
(0,0)—(0,1)+(0,0) 0.11
(0,0)—(0,1)+(0,1) 53.66
(1,0)—(1,0)+(0,0) 42.55
(0,2)—=(0,0)+(0,0) 4.72
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FIG. 5. Frequency distribution of the two-photon state for the 60
most important mode triplets. The PDC spectra are spread over a
range of more than 200 nm.

pling exists between mode triplets that do not conserve par-
ity.

Altogether we expect for this configuration that the down-
converted fields will be emitted in a superposition of 720
different mode triplets each having a distinct JSA and cou-
pling efficiency. With a 1.14 nm pump bandwidth the fre-
quency spectra are spread over 200 nm in wavelength as can
be seen in Fig. 5.

IV. STUDY OF SPATIAL STRUCTURE BY SECOND-
HARMONIC MEASUREMENTS

SHG is a useful tool to analyze the spectral effects of
spatial-mode propagation in our waveguides because, unlike
PDC, all three fields are intense. Hence it is easy to measure
both their spectral and spatial characteristics. In this way we
can anticipate the spatio-spectral structure of the PDC emis-
sion from the waveguide by studying its SH response. The
rich modal structure of the potassium titanyl phosphate
(KTP) waveguides has been studied in the past by Roelofs
et al., who reported the existence of higher-order spatial
modes by investigating frequency doubling [18].

In SHG, the signal and idler modes at the fundamental
frequency are combined to form a second-harmonic mode at
the doubled frequency. Thus the wavelengths of pump and
output are reversed and in analogy to PDC this process is
phase matched at the same frequencies: an SHG signal will
only be present at wavelengths where pump and phase-
matching functions overlap. Tuning the pump (fundamental)
frequency moves the pump function along a +45° line in the
joint frequency space as shown in Fig. 6. As this pump func-
tion crosses each individual phase-matching function a SH
signal will be observed. If we use a pump with a sufficiently
narrow bandwidth and align the pump beam such that we
excite multiple waveguide modes, we can probe the position
of the phase-matching functions for each spatial-mode trip-
let.

PHYSICAL REVIEW A 80, 033829 (2009)
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FIG. 6. (Color online) Schematic of SHG. The two gray (red)
lines represent the two pump fields and the three black curves are
three different phase-matching functions for three mode triplets.
The black (blue) line at 45° is the locus of points picked out by the
pump function as the fundamental wavelength is scanned. SH signal
can be generated at the intersections of this line and the three phase-
matching functions.

In our first experiment we pumped a 2.1-mm-long type-II
PP-KTP (periodically poled) waveguide with a narrow-band
Ti:sapphire laser [0.6 nm full width at half maximum
(FWHM), 2.6 ps autocorrelation length, and ~1.5 MHz rep-
etition rate] and measured the second-harmonic response
with a spectrometer (Ocean Optics, Mikropack) while tuning
the pump from 780 to 820 nm. Simultaneously, we recorded
the spatial structure of the frequency doubled mode with a
beam profiler charge-coupled device (CCD) camera (uEye,
IDS Imaging). We observed a SH response at four different
wavelengths (Table II). The corresponding spatial modes can
be identified as (0,2), (0,0), (0,1), and (0,0) as shown in Fig.
7 and the SH spectra of the different spatial modes lie 2-5
nm apart. These modes propagate in the waveguide and
could therefore be exploited to pump down-conversion pro-
cesses.

With the help of the SH signal we verified the results of
our model (Sec. III), specifically that it correctly predicts the
separation between different SH peaks. In order to match
exactly the absolute wavelength values from our model with
the measured values, we introduced a small correction into
the pump momentum. This was used as a fitting parameter to
correct a discrepancy between the Sellmeier equations [19]
calculated for a rectangular waveguide and those for the real
waveguide used in the experiment. It should be noted that the
value of this correction was only around 0.4% of the pump
momentum and was the only free parameter in the model.

TABLE II. Spectral correspondence of different spatial modes in
SHG. The second column states the mode triplets that yield the
recorded wavelengths. The third and fourth columns show the mea-
sured and predicted positions of the SH modes.

Experiment Theory
AsHG AsHG
Mode EV2) 4 1)y E(SHG) (nm) (nm)
1 (0,0)+(0,0)—(0,2) 393.9 395.1
2 (0,0)+(0,0)—(0,0) 397.9 398.0
3 (0,0)+(0,1)—(0,1) 400.0 399.3
4 (0,1)+(0,2)—(0,0) 404.6 404.1
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FIG. 7. (Color online) Observed second-harmonic modes. The
modes (1) (0,2), (2) (0,0), (3) (0,1), and (4) (0,0) were recorded at
wavelengths of 393.9, 397.9, 400.0, and 404.6 nm, respectively.
(Axis labels correspond to the coordinate system in Fig. 3.)

The measured and predicted positions of the SH peaks were
then in very good agreement as shown in Table II.

V. MEASUREMENT OF SPATIAL-TO-SPECTRAL
COUPLING IN PDC

In our next experiment we investigated the spatial struc-
ture of the signal and idler photons from PDC more directly
by measuring the spectrum of the single counts in both signal
and idler arms. Measuring the single counts of only one arm
discards the events in the other. However the corresponding
spectral peaks of the two measured down-conversion distri-
butions can be connected by energy conservation. This type
of spectral marginal measurement corresponds to an integra-
tion over one spectral dimension of the JSA.

We pumped our down-converter with the SH of a mode-
locked Ti:sapphire laser (798 nm, 10 nm FWHM, and 250
kHz repetition rate). A fairly narrow-band pump was re-
quired in order to resolve the spectral peaks arising in the
marginal distributions from different spatial modes; hence
the SH had a spectral width of 1.1 nm centered around 399
nm. Our nonlinear medium was a 3.5-mm-long type-II PP-
KTP waveguide similar to the one studied in Sec. I'V. Signal
and idler were separated at a polarizing beam splitter; one
arm was coupled into a single-mode (SM) fiber, while the
other was coupled into a multi-mode (MM) fiber. The fiber
outputs were connected to a high-sensitivity spectrograph
(Andor) as shown in Fig. 8. By rotating a half-wave plate
before the polarizing beam splitter we could direct either
signal or idler beam to the MM or SM fiber.

Coupling to MM fibers allowed the spectra of all of the
different PDC spatial modes to be observed simultaneously.
The large number of spectral peaks indicates that several
spatial modes were excited inside the WG (Fig. 9). As ex-
pected, the peaks in the multi-mode signal and idler spectra
could be accurately paired according to energy conservation.
When coupling to SM fiber the main spectral peak corre-
sponding to (0,0) mode in signal (790 nm) and idler (806
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DM WG DM

Ti:Sa
250kHz *

FIG. 8. (Color online) Experimental setup for measuring the
spectral marginals of the signal and idler. BBO, B-barium borate
crystal for SHG; DM, dichroic mirror; CF, color glass filter; HWP,
half-wave plate; WG, waveguide; PBS, polarizing beam splitter;
MM, multi-mode fiber; SM, single-mode fiber; and SG, spec-
trograph with CCD camera.

nm) dominates indicating that only the fundamental spatial
mode is efficiently coupled.

A crucial factor in influencing the structure of the photon
pairs is the coupling of the pump mode into the waveguide.
We examined the overlap between the incident free-space
Gaussian pump mode and the corresponding pump modes in
the waveguide basis, AY)= [ ,dru'”(r)E") (r). For a Gaussian
pump beam with the correct beam waist properly aligned
with the center of the waveguide almost all of the energy is
deposited into the (0,0) waveguide mode and very little is
coupled into higher-order waveguide modes. Nevertheless
given that small pump misalignments were present we esti-
mated a relative coupling into each higher-order pump mode
of 10% of the energy coupled into the (0,0) mode. Taking
into account this coupling of the beam into the waveguide in
conjunction with the conversion efficiency of all the interact-
ing mode triplets and their respective phase-matching func-
tions, we calculated the generated JSA. Hence we were also
able to predict the measured marginal spectra with very high

| [arb. units]
1.0

0.8

0.6

; A; [nm]
700 750 800 850 900

| [arb. units]

0.0 S

i} As [nm]
650 700 750 800 850 900 950

FIG. 9. (Color online) The observed noise-subtracted signal and
idler marginals in black (blue) are in very good accordance with the
predicted spectra in gray (red).
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TABLE III. Spectral correspondence of different spatial modes
observed in the marginal measurements of the PDC.

}\s )\i

Proc. EW) 5 E®) 4 ED (nm) (nm)
1 (0,0)—(0,0)+(0,0) 788.1 806.2
2 (0,0)—(0,1)+(0,1) 827.0 7003
3 (0,0)— (1,0)+(1,0) 816.5 742.9
4 (0,0)—(1,1)+(1,1) 895.0 719.4

accuracy. We observed that the output is dominated by four
main down-conversion processes (Table III); the coupling to
other possible down-conversion processes is suppressed such
that they cannot be seen above the noise level in the mea-
surement. The remaining small deviations from the predicted
marginal measurements can be explained by the different
coupling efficiencies of the various modes into the MM fi-
bers and the differences between the real waveguide investi-
gated and our rectangular waveguide model. Note that the
predicted spectra of the SHG and the PDC measurements are
in very good agreement with each other. Our model requires
only one fitting parameter which is the small constant offset
in the effective Sellmeier equations for the waveguide.

VI. DISCUSSION

Our results from the previous sections demonstrate that
higher-order spatial-mode propagation has significant conse-
quences for photon-pair generation in waveguide architec-
tures. The majority of quantum optics experiments require
single photons in a well-controlled single mode in any given
degree of freedom [20,21]. Consequently, in most single
photon experiments, it is desirable to suppress all higher-
order spatial-mode processes and to promote the emission of
the photon pairs into the fundamental mode [(0,0)— (0,0)
+(0,0)].

In order to achieve this with waveguided PDC, we first
turn our attention to the measures one can take to promote
the coupling of the pump beam into the fundamental wave-
guide mode. The pump beam should be spatially filtered to
have a Gaussian profile either by the use of a pinhole and
lens pair or a single-mode fiber. This mode should be care-
fully matched to the waveguide diameter either by choosing
the appropriate lenses for efficient coupling into the wave-
guide or by directly butt coupling a single-mode fiber tip to
the waveguide. In general a spot size with a diameter larger
than the waveguide profile provides pump propagation that is
closer to single mode, whereas a smaller beam will tend to
exhibit more multi-mode effects. Fine tuning the coupling of
the pump beam into the waveguide has a large impact on the
modal structure of the pump and the optimum position can
be found by monitoring the PDC spectrum. In our experi-
ments we have found that this careful pump coupling can
very effectively suppress all down-conversion processes
originating from higher-order pump modes.

Having implemented these changes, any spectral peaks
observed in the output spectrum beyond those of the funda-
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FIG. 10. (Color online) Noise subtracted SM fiber measurement
(gray, red) and MM fiber (black, blue) marginal measurements. In
these graphs the impact of spatial filtering on the spectral measure-
ments can clearly be seen. The SM fibers select the signal and idler
photons in the ground mode and suppress the side peaks from
higher-order spatial-mode signal and idler photons.

mental modes originate from the down-conversion of the
pump photons from the fundamental mode into higher-order
signal and idler modes, as already shown in Fig. 9. Due to
the different spectra connected to the different spatial modes,
the output can be filtered in the spatial or the spectral domain
to ensure collection of emission from the fundamental signal
and idler mode only. By coupling the output beams into
single-mode fibers one can affect a spatial-mode filter with
relatively high contrast. The impacts on the frequency spec-
trum of such a spatial-mode filter can clearly be seen in
Fig. 10 where the coupling of the down-converted photons
was changed from MM to SM fiber. This demonstrates that
the spectra of the beam can be manipulated by operations in
the spatial domain. On the other hand, a frequency filter may
be used to operate on the spatial structure of the photon pairs
and could be adjusted to only transmit photons with spectra
originating from fundamental mode propagation.

Alternatively this problem can be addressed in the pro-
duction process by reducing the size of waveguide cross sec-
tion to only guide signal and idler beams in the fundamental
mode. However since the wavelength of the down-converted
pairs is approximately twice that of the pump, the light in-
evitably propagates not only in the fundamental waveguide
mode but also in several higher-order spatial modes. There-
fore multi-mode propagation effects still have to be taken
into account, yet the number or the excited different down-
conversion processes will be significantly reduced.

It is conceivable that the high down-conversion efficiency
possible with a waveguide source in addition to these addi-
tional degrees of freedom may be used to create a multi-
plexed photon-pair source by simple spatial or spectral filter
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operations on the generated biphotonic states. On the other
hand these modes could be utilized as an information-
processing degree of freedom and hence achieving control
over the spatial emission profile is of paramount importance.
For example, the spatial correlations may be applied in the
generation of hyperentangled states offering new possibilities
in the production of Bell states and additional robustness in
quantum error correction due to the enlarged Hilbert space.

VII. CONCLUSION

In this paper we have derived the two-photon state gener-
ated in waveguided parametric down-conversion, explicitly
taking into account the spatial mode propagating inside the
waveguide material. We have shown how the propagation of
a multitude of pump, signal, and idler modes affects the spa-
tial and spectral structure of photon pairs emitted from a
nonlinear waveguide. We have observed these effects both
through measurements of the spectra of second-harmonic
light generated in a KTP waveguide as well as in marginal
measurements of down-converted photon pairs. The spectra
derived from the multi-mode treatment of the SHG and the
down-conversion fit the measured data extremely well, yield-

PHYSICAL REVIEW A 80, 033829 (2009)

ing the possibility to precisely engineer further experiments.
Furthermore we have shown that we can influence the spec-
tra of the generated biphotonic states by operations in the
spatial domain.

We suggested how these effects may be controlled to give
a truly single-mode photon source in the spatial domain by
either careful experimental design or waveguide engineering.
These findings are of significance for quantum information
experiments where nonlinear waveguides are used to gener-
ate photon pairs and may be harnessed to generate hyperen-
tangled photon states or may be applied to design multi-
plexed photon-pair sources.

Note added: Recently, we became aware of an indepen-
dent theoretical examination of spatial entanglement in
waveguided PDC [22]. Furthermore a recent experimental
investigation of higher-order spatial modes in KTP
waveguides with sum frequency generation was brought to
our attention [23].
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We present a study of the propagation of higher-order spatial modes in a waveguided parametric down-
conversion photon-pair source. Observing the multimode photon-pair spectrum from a periodically poled
KTiOPO, waveguide allowed us to isolate individual spatial modes through their distinctive spectral
properties. We have measured directly the spatial distribution of each mode of the photon pairs,
confirming the findings of our waveguide model, and demonstrated by coincidence measurements that
the total parity of the modes is conserved in the nonlinear interaction. Furthermore, we show that we can
combine the advantages of a waveguide source with the potential to generate spatially entangled photon

pairs as in bulk-crystal down-converters.

DOI: 10.1103/PhysRevLett.103.233901

The prevalence of parametric down-conversion (PDC)
as a source of photon pairs is due not only to the high
quality of the photons produced but also its experimental
simplicity relative to other methods of generating single
photons. Its ubiquity may lead one to believe that PDC is a
technique with little scope for improvement. However,
bulk-crystal down-conversion sources suffer from a signifi-
cant drawback: the photon pairs are emitted in a cone-
shaped pattern making efficient collection difficult. This
limits both the absolute count rate for a given pump power
(stimulating the purchase of ever larger and more expen-
sive laser systems) and, more importantly, the heralding
efficiency of any bulk-crystal PDC source.

By confining photon-pair generation to a channel wave-
guide in a nonlinear optical material one can restrict the
down-converted light to a well-defined set of spatial modes
rather than allowing the emission to propagate at the
natural phase-matching angles. This provides a straightfor-
ward method of controlling the messy spatial emission
pattern from bulk-crystal down-converters and increases
the down-conversion collection rate significantly [1-5].
However, as the wavelength of the down-converted pairs
is approximately twice that of the pump, the light inevita-
bly propagates not only in the fundamental waveguide
mode but also in several higher-order spatial modes [6—
8]. Because of the coupling between the spatial and spec-
tral properties of the photon pairs imposed by
phase matching, these higher-order waveguide modes
have a significant impact on the spectrum of the photon
pairs and can markedly degrade source performance
[9,10]. Optimal source design requires that we both under-
stand and control the interaction of higher-order modes in
waveguides [11]. On the other hand, the multimode spatial
structure in the down-converted beams offers new oppor-
tunities for advanced quantum state preparation [12].
Recent experiments utilize entanglement of the orbital
angular momentum of the photon pairs prepared by bulk-
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crystal PDC, but they rely on heavy filter operations by
means of holographic state selection [13,14]. Waveguided
PDC can directly provide entangled higher-order spatial
modes in analogy to orbital angular momentum (OAM)
entangled modes of photon pairs generated in bulk PDC
experiments. OAM modes and their applications have been
extensively studied recently [15—18] with a view to access-
ing higher-dimensional Hilbert spaces via the generation of
hyperentangled photon pairs [19-24].

In this Letter we report the first direct observation of
photon pairs generated in higher-order spatial modes by
waveguided parametric down-conversion. We assign spe-
cific mode labels to each process by applying a numerical
model and confirm parity conservation between the inter-
acting mode triplets. Furthermore, we show that our source
can generate spatially entangled two-photon states, while
retaining the virtues of a waveguided device.

In general, down-converted photon pairs from wave-
guides are entangled in both frequency and spatial mode.
Because of the dependence of the mode propagation con-
stants on wavelength, spatial mode and spectrum are linked
through the phase-matching conditions. Hence entangle-
ment in these degrees of freedom cannot usually be sepa-
rated [11]. A key property of our source presented in this
Letter is its particular modal dispersion inside the wave-
guide which fulfills all the requirements to generate Bell-
states in the spatial domain. By spectrally filtering the
down-converted beams this source allows for the genera-
tion of photon pairs whose spatial entanglement is sepa-
rated from the spectral domain. Hence hyperentangled
photon-pairs are emitted:

| )fierea = B’ Al P, o) @ W) (1)
x

with |©) and Iqﬁgk)) denoting the spectral properties and
| W) denoting a Bell state for higher-order spatial modes.
Equation (1) is derived by applying a spectral Schmidt

© 2009 The American Physical Society
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decomposition and introducing broadband frequency
modes | %), quf-k)) to highlight the decoupling of the
spectral and spatial degrees of freedom [25].

Our source is a 10 mm z-cut periodically poled
KTiOPO, (PPKTP) waveguide from AdvR with a nominal
poling period of 8.72 um, pumped by a spatially filtered
pulsed diode laser at 403.3 nm with a bandwidth of 0.8 nm.
Input coupling was through a 20X microscope objective
and the pump was observed to be mainly (though not
exclusively) in the fundamental mode of the waveguide.
Output coupling was by an aspheric lens with a focal
length of 6.24 mm, set to image the output face of the
waveguide to a plane about 800 mm away. The type-II
phase-matching conditions ensured that we obtained al-
most degenerate photon pairs, with the horizontally polar-
ized pump (y-polarized in the crystal basis) yielding signal
and idler with horizontal (y) and vertical (z) polarizations,
respectively. After the crystal the pump was removed with
long-pass filters and the signal and idler photons were
separated at a polarizing beam splitter (PBS).

Initially, signal and idler beams were coupled into two
multimode fibers attached to a spectrometer with single-
photon sensitivity. The multimode fibers allowed us to
monitor simultaneously a range of spatial modes generated
in the waveguide. The spectra for signal and idler are
shown in Fig. 1. The spectral signatures of several spatial
modes are clearly present: five individual peaks can be
identified in both spectra. The peaks in the signal arm are
paired with those in the idler through energy conservation.
Each pair of peaks corresponds to a particular spatial mode
set of pump, signal, and idler. Using the single-photon
spectra, two sets of spectral filters (one for the signal
with central wavelengths of 808 and 830 nm and band-
widths of 3 nm and the other for the idler with central
wavelengths 810, 830, and 860 nm and bandwidths of
10 nm) were calibrated such that each spectral peak could
be individually selected by inserting and angle tuning a
particular filter.

In order to assign specific mode labels to peaks A to E
we developed a model of down-conversion in a step-index
waveguide with a rectangular profile, bounded by a uni-
form dielectric on three sides and by air at the fourth.
Although the production method of the waveguides results
in a graded index distribution orthogonal to the air inter-
face [4] our model yielded a simplified, semianalytic so-
lution which has been proven as sufficient to describe the
experimental results [11]. Although a more precise model
would cause slight alterations to the predicted peak heights
and spatial mode distributions, the more salient features—
the central wavelengths of the spectral peaks—would re-
main virtually unchanged. By adjusting the index contrast,
the waveguide dimensions, and the poling period as free
parameters we fitted the calculated spectra to the measured
marginal spectra of signal and idler (Fig. 2). Note that the
spectral widths of the signal and idler marginal distribu-
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FIG. 1 (color online). (a) Experimental setup. LD, laser diode;
SF, spatial filter; HWP, half-wave plate; MO, microscope objec-
tive; KTP, PPKTP waveguide; AL, aspheric lens; LWP, long-
wave pass filter; PBS, polarizing beam splitter; Fs, Fi, inter-
ference filters; FM, flipper mirrors; MMF, multimode fiber;
APD, avalanche photodiode; GS, grating spectrometer.
(b) Background-subtracted spectra with correlated peaks labeled
A to E. Colored lines show filtered spectral peaks (heights
adjusted for ease of viewing).

tions are set by the overlap of the pump bandwidth with the
modal phase-matching functions of the crystal. Here the
relatively broadband pump results in photon pairs with
wider bandwidths than in similar experiments utilizing
continuous-wave lasers [4]. From the theoretical modeling
we identified each of the mode triplets listed in Table I;
they are labeled with the number of nodes in the horizontal
and vertical directions (x, y), respectively.

The principal mode pair A, is the result of the interaction
between the fundamental modes of all three fields. This
triplet has the most widely separated spectral components
and was fitted by adjusting the poling period in the model.
This effective poling period of 8.92 wm serves as a global
correction to allow for the difference between the wave-
guide in the lab and the empirical Sellmeier equations [26].
The remaining free parameters were adjusted to reproduce
the observed marginal spectra of the photon pairs. With
waveguide dimensions of 4.1 X 9.3 pm and an index con-
trast of 0.008 we obtained a very good agreement between
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FIG. 2 (color online). Comparison of modeled spectra with
measured data. Labels A to E correspond to labels in Fig. 1.

theory and experiment (see Fig. 2). These dimensions were
verified under an optical microscope.

According to our model, mode pairs A, C, and E origi-
nate from the (0,0) component of the pump (see Table ). E
stems from photon pairs generated both in modes (1,0) and
(0,2) with overlapping spectral distributions. As a result of
this frequency degeneracy and the coherence of the PDC
process, the signal and idler pairs in E are entangled in
spatial mode. Further mode pairs occur at B and D pumped
by the fraction of the pump intensity in the (0,1) mode
(37.5%). In these cases, the signal and idler are in differ-
ent—though still parity conserving—modes. Peaks B and
D each consist of two down-conversion processes with
almost identical spectra each entangled in spatial mode.
The two pairs of peaks in the modeled spectra not mirrored
in the measured data are from down-conversion events into
higher-order spatial modes [up to (1,2)]. These modes
couple poorly into the collection fibers and hence are not
seen in the data. The discrepancies in peak height between
theory and experiment in Fig. 2 stem from our rectangular
waveguide model and the falling collection efficiencies for
higher-order spatial modes.

Next the high-sensitivity CCD camera was removed
from the spectrometer and placed in the image plane of
the f = 6.24 mm aspheric to measure the spatial intensity
distribution of each mode. Both output beams from the
waveguide were directed simultaneously to separate areas
of the sensor yielding magnified images (approximately
130X) of the spatial modes of both signal and idler in the

TABLE I. Processes giving rise to the five observed mode
spectra.

A (Or O)p - (O, 0)9 + (O’ 0)[

B (0,1), — (0,0), + (0, 1); and (0, 1); + (0, 0);
C 0,0), — (0, 1), + (0, 1);

D 0,1), — (0, 1); +(0,2); and (0, 2); + (0, 1),
E (0,0), — (1,0), + (1,0); and (0, 2); + (0,2);

waveguide. Figure 3 shows the characteristic distributions
of individual spatial modes, recorded by tuning the spectral
filters to pick out spatial modes through their unique spec-
tra. This demonstrates the strong correlation between the
spatial and spectral degrees of freedom in this system.

In these measurements, a high level of background was
present from the long-lived, unphasematched fluorescence
emitted by the waveguide that could not be removed by
time gating due to the slow speed of the camera. Instead the
fluorescence level was measured for each spatial mode by
rotating the pump polarization to vertical, hence removing
any phase matching. However, this background could not
be subtracted directly as the fluorescence was higher for a
vertically polarized pump. Therefore, auxiliary measure-
ments for both polarizations were made with an unpoled
waveguide in which no phasematched processes could take
place. The ratio between these fluorescence signals al-
lowed us to introduce a correction for the scaling of the
background in the PDC spatial mode images recorded with
the poled waveguide. Subtracting this adapted background
from the spatial mode images yielded a realistic measure-
ment of the true distribution of the PDC in the various
spatial modes as shown in Fig. 3.

It is apparent from Fig. 3 that each of the five mode pairs
A to E has its own characteristic spatial intensity distribu-
tion, with peaks B to E exhibiting obvious signs of higher-
order mode propagation. All of the recorded spatial distri-
butions agree very well with those found in the spectral
degree of freedom through the model as listed in Table I: A
and C are pure (0,0) and (0,1), respectively; B is a sum of
(0,0) and (0,1) where two processes overlap spectrally; D is
also a sum of two processes, (0,1) and (0,2); E, the super-
position of the (1,0) and (0,2) modes, is the only case to
show a higher-order mode in the horizontal direction.
Furthermore one can see the deviation of the waveguide
from a rectangular structure: the fundamental mode sits at
the top of the guide close to the air boundary, while higher-
order modes spread down into the chip where there is an
exponential decay in the refractive index contrast not
present in our model.

Finally, we performed a coincidence measurement be-
tween the different spatial modes. With both beams once
again coupled into the multimode fibers the photons were
sent to two silicon avalanche photodiodes (APD). The
time-gated single count rate of each APD was monitored
along with the rate of coincidence counts between the two
as the filters were set to select every combination of the five
spatial modes in both the signal and idler arms. The results
are shown in Fig. 3 with the background of accidental
coincidences—calculated as the product of the singles
rates divided by the laser repetition rate (1 MHz)—sub-
tracted from the coincidence rates. The presence of only
diagonal elements in the corrected coincidence rates dem-
onstrates the strict correlation between the spatial modes: if
the signal photon is emitted into a particular spatial mode
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FIG. 3 (color online).
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(a) Plots of the background-subtracted spatial mode distributions for signal (top) and idler (bottom) arms along

with their marginal distributions. The air interface is towards the top of each frame, and the decay of the waveguide structure into the
chip can clearly be observed towards the bottom. (b) Coincidence count rate between different pairs of spatial modes. Labels A to E

correspond to labels in Fig. 1.

then the idler will always be found in the corresponding
mode. This confirms the requirement for parity conserva-
tion between the three interacting modes.

Our measurements demonstrate that the generation of
higher-order spatial mode entanglement can be easily ac-
complished in waveguided PDC. For our source this can be
achieved by filtering processes B, D, or E and postselecting
on successful coincidence events. For example, by choos-
ing only process B we find

) = B'Y My, o)
k

® \(|(0> l)m (0) O)l> + |(0) O)m (0) 1)l>)l (2)
[¥)

Similarly, filtering peaks D and E yields the Bell states
|¥+) and |®), respectively.

In conclusion, we have directly imaged spectrally re-
solved spatial modes of PDC in a PPKTP waveguide. We
have identified the individual spatial mode contributions
and demonstrated that our model accurately reproduces the
photon-pair spectra. This shows that waveguided PDC
sources have the potential to be used as bright sources of
photon pairs entangled in spatial mode. These photon pairs
may have many applications from testing the Bell inequal-
ities in the spatial domain to distributing Bell pairs over
free space links for quantum key distribution applications.

This work was supported by the EC under the FET-Open
grant agreement CORNER, No. FP7-ICT-213681.
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Any fool can make something complicated.
It takes a genius to make it simple.

(Woody Guthrie)

6. PDC and FC
in the high gain regime

6.1. Introduction

To date most theoretical treatments of PDC restrict themselves to the application of
first-order perturbation theory. However, with the advent of waveguided PDC and high
power laser sources, the first-order perturbation theory approaches are not sufficient any
more. Higher-order terms, which describe the emission of multiple photon-pairs, have
to be taken into account.’

In this chapter we address this problem and build two theoretical models for PDC
including higher-order photon-number effects: a rigorous numerical model, based on the
theoretical framework of Kolobov [69], and a simplified analytical approach. We analyse
their performance and the quality of their predictions which enables us to suggest when
a simple analytic modelling of PDC is sufficient and when the rigorous approach has to
be applied.

Furthermore, we extended the developed theoretical framework to frequency conver-
sion (FC) processes. These frequency conversion setups enable us to build quantum
pulse gates [49, 70, 71], where our theoretical model enables us to benchmark their
performance.

6.2. The PDC process in the high-gain regime

In Chap. 4 (Eq. (4.13)) we already stated that the unitary transformation generated by
the PDC process is given by the formula

o0

UPDC = TeXp |:—%/ dt prc(t):| y (61)

but restricted ourselves to a discussion of PDC using perturbation theory, i.e. we only
considered the generation of a single photon-pair. In the high gain regime, however, we
have to take into account the possibility that two or more pump photons can simulta-
neously decay into several photon-pairs.

IThis chapter is a summary of the paper “Theory of quantum frequency conversion and parametric
down-conversion in the high gain regime” by Andreas Christ, Benjamin Brecht, Wolfgang Mauerer,
and Christine Silberhorn [3].
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PDC in the high gain regime has already been studied in detail using simplified rep-
resentations [46, 72| and continuous-wave laser sources [69]. Here we go beyond these
standard monochromatic descriptions and consider ultrafast broadband PDC in the high
gain regime.

In order to mathematically describe this situation we develop a rigorous model of the
process. For this purpose it is useful to consider PDC in the Heisenberg picture, as
depicted in Fig. 6.1: in this picture two input beams @™ (signal) and p(in) (idler) are,
via the process of parametric down-conversion, converted into the two output beams
d(out) and b(out)'

atin) Signal alout)
W’ - P Iww

4 -

. R jout)
Nonlinear
crystal Idler

Figure 6.1.: Type-II PDC in the Heisenberg picture: two input beams a® and plin)
are, via the process of parametric down-conversion, converted into the two
output beams a(®**) and b,

The PDC Hamiltonian in Eq. (4.11) already gives valuable information about the
properties of PDC. Treating the strong pump as a classical field PDC is described by
a bilinear Hamiltonian mixing photon creation and destruction operators from different
optical modes. Hence the solution is a linear operator transformation of the form [73, 74]

aom) (W) = /dw’Ua(w,w') a™ (W) + /dw'%(w,w’) b (')
b () = / dw' Uy (w, w') b (W) + / dw' Vi (w, w') a1 (W), (6.2)
where the matrices U,, Uy, V, and V} carry the physical properties of the system.
Furthermore Eq. (6.2) has to form a canonical transformation. Under this constraint,

and with the help of the singular-value decomposition, we are able to rewrite it as (see
appendix in [3])

Béout) = cosh(ry,) B@}im) + sinh(ry,) Akm), (6.3)

where A and B, are broadband single-photon destruction operators as defined in Eq.
(4.26). Consequently, without actually solving the PDC process, we are able to deduce
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that a PDC source emits a multitude of EPR states or twin-beam squeezed states in
ultrafast optical pulse modes with squeezing parameters ry [33].

If we assume that the input and output modes are of identical shape, we are able to
recast Eq. (6.3), from the Heisenberg picture, into the general unitary transformation?:

UPDC = ®€Xp |:7”k (ALB;L — Akék>] (64)
k

6.2.1. PDC process parameters

Eq. (6.3) and Eq. (6.4) fully describe the PDC process and directly give its most
important parameters: The individual mode distributions Ay, and By and the squeezing
amplitudes r,. The r, distribution gives both the number of excited optical modes
and the amount of generated squeezing. In order to be able to investigate the number
of emitted squeezers independent of the efficiency of the down-conversion process we
separate the ry distribution as follows:

Ty = BAg (6.5)

Here ) is a normalized mode distribution satisfying >, A7 = 1 and B depicts the overall
optical gain. From this )\, distribution we are able to evaluate the effective number of
optical modes K emitted from the PDC state via [57, 58]:

1
2k A

This normalized A\, distribution is then transformed into the actual squeezer distribution
rr via the overall optical gain B. This splitting of r, enables us to treat the efficiency
of the down-conversion process B separately from the number of excited modes A\, and
benchmarks PDC states via two simple numbers.3

K (6.6)

6.3. Theory of PDC in the high gain regime

In order to obtain the actual squeezing amplitudes r; and mode shapes Ak, By, we have
to evaluate Eq. (6.1). Here the main issue is the time-ordering operator 7', which takes
into account that the electric fields, in the PDC Hamiltonian, do not commute in time.*

2This is a subtle approximation. It is, in fact, not required that the shapes of the input modes A,gm)

/ B,im) are identical to the output modes fl;:ut) / B,im“"). We are, however, not aware of any actual
physical PDC processes where this takes place.

3How to determine these benchmarks from an actual PDC source is described in Chap. 9.

4A detailed discussion of the time-ordering effects in PDC, using a Dyson series approach, was per-
formed by Agata M. Branczyk in [51, 75]).
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6.3.1. Analytic model

The most straightforward method to obtain the PDC parameters from Eq. (6.1) is to
simply neglect the effects from the time-ordering operator 7. We remain with:

N 72 o0 N
Uppc = exp {_7_1/ de HPDC(t)} (6.7)
This enables us to directly perform the time-integration in the exponent of Eq. (6.7).
Following Sec. 4.3 we obtain:

Orve = e |+ ([ dun [dun floniteia+he)|  o3)

Using the singular-value decomposition, similar to Sec. 4.4, we are able to rewrite Eq.
(6.8) in the broadband mode formalism [6]

Uppc = ®exp |:7“k (ALB,Z — Akékﬂ , (6.9)
k

which is exactly the form requested in Eq. (6.4) and directly yields the desired PDC
parameters.

This “no time-ordering“ approximation enables the straightforward analytic solution
of the PDC process in the high gain regime, at the expense of neglecting the time-
ordering effects.

6.3.2. Rigorous numerical model

To obtain a rigorous solution of the PDC process, including time-ordering effects, we
follow the approach by Mikhail I. Kolobov in [69] and perform our calculations using the
Heisenberg equation of motion. As a first step we transform the electric field operators
from Eq. (4.6) to the simplified electric fields [69]:

iz 1) = \/2171% / dk /() exp [o (k= — w(k))] a(k) (6.10)

b(z,t) = \/QLW_% / Ak J/w (k) exp [1 (kz — w(k)t)] b(k) (6.11)

The time-dependence of the electric field operators a(z,t) is then given via the relation

d 1

ralzt) = 1 [ﬁo(t)+ﬁppc(t),a(z,t) , (6.12)

where we have to include the effects of free propagation via the Hamiltonian Hy(t) [69).

Solving Eq. (6.12) and moving into the interaction picture

€a(2,t) = a(z,t) exp [—1k,(w)]
&(z,t) = b(z, t) exp [—1hky(w)] , (6.13)
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we obtain two operator valued integro-differential equations describing the down-conversion
process

a ~ / / A /
&ea(z,w) = /dw flw, W', 2) (2,0

0

2 fzw) = / Ao * (o0, 2) €6 (2, ), (6.14)
y4

with f(w,w’, z) defined as

flw,' 2) = —%Deé”(z, w+ w') exp 1Ak(w,w")z], (6.15)

where D collects all constants and e}f)(z, w + w’) describes the pump distribution. The
structure of this result is very similar to the equations derived by [76, 77, 78|, which
serves as a cross check of our calculations.

One method to solve linear operator valued differential equations is the widely used
split-step Fourier inversion technique [78, 79]. We use a different approach, based on
our knowledge of the structure of the PDC process: using Eq. (6.2) and Eq. (6.14) we
obtain the four classical differential equations [76]

0

aUa(z,w,w”) = /dw'f(w,w’,z)Vb*(z,w',w")

0

a\/})(z,w,w") = /dw'f(w’,w,z)U:(z,w',w”) (6.16)

and

%Ub(z,w,w”) = /dw'f(w’,w,z)‘/a*(z,w/,w”)
0

aVa(z,w,w”) = /dw'f(w,w’,z)U,;"(z,w’,w"), (6.17)

which we solve using the iterative approach put forward by Mauerer in [77].°

6.3.3. Comparison between analytical and rigorous approach

In order to quantify the discrepancies between the simplified analytical and rigorous
numerical model we simulated an (almost) uncorrelated PDC process. The resulting
squeezing values (squeezing [dB] = —101og;, (¢72*)) and broadband modes shapes are
depicted in Fig. 6.2 (a) to (c). In the low gain regime of about 2dB of squeezing both
models yield identical results (Fig. 6.2 (a)). When squeezing values of about 12dB are
reached the two models start to differ from each other (Fig. 6.2 (b)). The rigorous
model predicts higher squeezing values and broader mode shapes, than the simplified
analytical model. Significant discrepancies occur in the high gain regime about 20 dB of
squeezing (Fig. 6.2 (c)).

>The program code is available online and can be downloaded from the publications section on our web-
site. The current url is https://physik.uni-paderborn.de/ag/ag-silberhorn/publications/
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Figure 6.2.: Comparison between the rigorous and the analytical approach for an (al-
most) uncorrelated parametric down-conversion process. For low down-
conversion rates, presented in (a), both approaches evaluate to identical
results. Only in the case of rising squeezing values in (b), with squeez-
ing values about 12dB, the two approaches start to show minor differences,
which become more prominent when even higher squeezing values are con-

sidered (c).

6.4. Expansion to frequency conversion

The presented approaches to solve PDC in the high gain regime, are not restricted
to parametric down-conversion processes. They are, in fact, applicable to all bilinear
Hamiltonians. This enables us to adapt the presented methods to the process of quantum
frequency conversion [3].

6.4.1. The frequency conversion process

The general frequency conversion process is depicted in Fig. 6.3: driven by a strong pump
field two input beams @™ and ¢ are, inside a medium featuring a x?-nonlinearity,
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interconverted into the two output beams a(®*) and ¢ 6

d(”l) (out)

*a ¥y

4>

Pump <

o Nonlinear elont)
crystal

Figure 6.3.: Frequency conversion process: two input beams @ and ¢ are intercon-
verted into the two output beams a©* and ¢&(v),

alin)

The Hamiltonian of the frequency conversion process is very similar to the PDC
Hamiltonian” and given by

L
Hro = 32X / " dz B (2, ) B (2, ) B (2,8) + e, (6.18)

NI

where we again assume a strong, undepleted, classical pump field. Similar to parametric
down-conversion the bilinear frequency conversion Hamiltonian gives rise to a linear
operator transformation:

alom) (W) = /dw’Ua(w,w') al™ (W) +/dw’Va(w,w’) &M (W
o) (1) — / /U, o) 899 () + / Ao Vi, ') 4 (o) (6.19)

Here the matrices U,, U., V, and V, carry the physical properties of the system. How-
ever, unlike parametric down-conversion in Eq. (6.2), frequency conversion creates a
passive linear optical transformation, i.e. the overall photon-number is preserved. In
the broadband mode picture, and under the constraint that Eq. (6.19) must form a
canonical transformation, we are able to recast the frequency conversion process in the
broadband mode picture:

A,(:ut) = cos(r) A,(;n) + sin(ry,) C ]im)
L) = cos(ry,) O™ + sin(ry,) AU (6.20)

When the input photon fuses with the pump photon to create the output photon this process is
labelled sum-frequency conversion wgy: = wp + win. When an output photon with frequency wey: =
win —wp is emitted this process is referred to as difference frequency generation. Every crystal always
supports both process and we consequently refer to the overall process as frequency conversion.

"In fact the frequency conversion Hamiltonian is already present in Eq. (4.10).
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If we, again, assume that the input and output modes are of the same shape we are able
to write the frequency conversion unitary as

Ure = ®exp [ <AkC A,ték)] . (6.21)

According to Eq. (6.20) and Eq. (6.21) frequency conversion acts similar to a beam-
splitter operation on the ultrafast pulse modes A, and C}.

6.4.2. Frequency conversion as a quantum pulse gate

Depending on the efficiency of the process the ultrafast pulses are partly transmitted
through the crystal and partly converted into another optical mode. This enables the
creation of quantum pulse gates [49, 70, 71], which convert, from a multi-mode input
{A}, a single optical mode A; with unit efficiency into the mode C; (see Fig. (6.4)),
whereas the remaining {A;} \ A; are transmitted unperturbed.

This can be achieved by engineering a single-mode frequency conversion process, i.e.
all ry elements in Eq. (6.21), but one, are zero. By adjusting the pump amplitude to
yield unit conversion efficiency for the remaining process we obtain the desired result.

~(out)

atin) Quantum pulse gate al
# +*
P Ha @ 5 M

M
Pump <A
etin) 0 e Nonlinear elout)
0)
crystal

Figure 6.4.: Frequency conversion enables the creation of an ultrafast quantum pulse
gate, where one optical pulse, of a multi-mode input beam, is converted
with unit efficiency, whereas the rest is transmitted through the crystal
unperturbed.

Since the Hamiltonians of frequency conversion in Eq. (6.18) and of parametric down-
conversion Eq. (4.11) are very similar we are able to directly extend our developed
theoretical framework for PDC to frequency conversion. Following the discussion in 6.3
we build a simplified analytical model, neglecting time-ordering effects, and rigorous
numerical model, including time-ordering effects, of frequency conversion in the high
gain regime [3].



55 6. PDC and FC in the high gain regime

6.4.3. Quantum pulse gate performance

This developed theoretical framework enables us to benchmark frequency conversion as
a quantum pulse gate. For this purpose we engineered an almost uncorrelated frequency
conversion process with varying pump powers and evaluated the achievable conversion
amplitudes sin(ry) and mode functions Ak and ék The results are depicted in Fig.
(6.5).
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Figure 6.5.: Comparison between the rigorous numerical and simplified analytical model
for an (almost) uncorrelated frequency conversion process. For rising con-
version efficiencies the time-ordering effects introduce additional multi-mode
contributions, which decrease the performance of quantum pulse gates,
based on frequency conversion processes.

In principle we aim at engineering a single-mode frequency conversion process, where
only the very first r, mode rq is excited. However already in the low gain regime, depicted
in Fig. (6.5) (a), the frequency conversion process is not perfectly single-mode. This
multi-mode character stems from the side-peaks introduced by the sinc function in the
phase-matching function, which can, in principle, be removed via the use of hypergrating
structures [80]. In the high gain regime however (Fig. (6.5) (b) and (c)), it is evident
that the time-ordering effects, considered in the rigorous numerical model, introduce an
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additional multi-mode character when unit conversion efficiency is approached.

Consequently, our investigations revealed, that standard frequency conversion pro-
cesses will not be able to create a perfect quantum pulse gate. Both the sinc side-peaks,
as well as the time-ordering effects limit its performance. Whether hypergrating struc-
tures, adapted pump shapes or other enhancements are able to resolve this issue remains
an open research question.

6.5. Conclusion

In conclusion we developed two models for ultrafast PDC in the high-gain regime: A
simplified analytical and a rigorous numerical model. Our analysis revealed that the
analytical model yields the correct PDC process parameters up to squeezing values
about 12 dB.

The developed theoretical framework permits us to effectively work with PDC in the
high gain regime (see Chap. 9 and 10) and enables us to perform new benchmarks of
PDC in the framework of quantum information applications (see Chap. 10).

Furthermore we were able to extend the presented theoretical framework to the process
of frequency conversion, which enabled us to benchmark the prospects of engineered
frequency processes to serve as a quantum pulse gate.
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Abstract. Frequency conversion (FC) and parametric down-conversion (PDC)
are among the most widely used nonlinear processes for the implementation of
quantum optical experiments. Parametric down-conversion enables the efficient
creation of quantum states ranging from photon-number states over squeezers to
EPR-states. Frequency conversion gives rise to technologies enabling efficient
atom-photon coupling, ultrafast pulse gates and enhanced detection schemes.
However, despite their widespread deployment, their theoretical treatment
remains challenging. Especially the multi-photon components in the high gain
regime, as well as the explicit time-dependence of the involved Hamiltonians
hamper an efficient theoretical description of these nonlinear optical processes.

In this paper we investigate these effects and put forward two models which
enable a full description of FC and PDC in the high gain regime. We present a
rigorous numerical model relying on the solution of coupled integro-differential
equations which covers the complete dynamics of the process. And, as an
alternative, we develop a simplified model that, at the expense of neglecting time-
ordering effects, enables an analytical solution which approximates the correct
solution with high fidelity in a broad parameter range.

The developed fundamental understanding of frequency conversion and
parametric down-conversion gives valuable insights into the quantum properties
of the processes, extends the current theoretical descriptions, and simplifies
considerably the engineering process for future quantum information applications
using FC and PDC.
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1. Introduction

A fundamental building block of quantum information and quantum communication
applications are nonlinear optical processes. In experimental implementations
of photonic quantum systems parametric down-conversion (PDC) and frequency
conversion (FC) are omnipresent. Parametric down-conversion enables the generation
of various quantum states ranging from single photons [1, 2, 3, 4, 5] over entangled
photon-pairs [6, 7, 8] up to squeezers [9, 10] and EPR-states [11, 12]. Frequency
conversion is applied for frequency translations between different wavelengths [13, 14,
15] which enables interfaces between quantum systems, in particular atom-photon
coupling [16, 17], quantum pulse gates [18, 19, 20], and efficient quantum state
detection [21, 22, 23, 24, 25].

Their deployment in quantum enhanced applications requires a detailed
theoretical understanding of the corresponding nonlinear interactions. A variety of
models have been developed for PDC [26, 27, 28, 29, 12, 30] and FC [18, 19, 20, 15, 31].
They vary from straightforward perturbation approaches to much more rigorous
treatments. The crucial issue in these derivations is firstly the fact that multi-photon
effects have to be considered during the interaction, and secondly the problem that
the involved electric field operators and consequently Hamiltonians do not commute
in time. In this paper we address these issues and build two theoretical models for
FC and PDC: a rigorous numerical model based on the theoretical framework of
Mikhail I. Kolobov [32], and a simplified analytical approach. Both models take into
account higher-order photon number effects and are hence suitable to describe FC and
PDC in the high gain regime. We analyse their performance and the quality of their
predictions over a broad parameter range which enables us to suggest when a simple
analytic modelling of the processes is sufficient and when the rigorous approach has
to be applied.

The paper is structured into two main parts: In sections 2 to 9 we study frequency
conversion. Our investigation of this process is divided into eight sub chapters: After a
short description of the basic principles of frequency conversion in section 2, section 3
discusses the Hamiltonian of the process. The general properties of the conversion are
outlined in section 4. In section 5 we introduce the no time-ordering approximation
which forms the basis for the analytical solution of the frequency conversion process
and elaborate on its implications. In section 6 we derive the analytic solution excluding
time-ordering effects. In section 7 we put forward the rigorous approach relying on
the solution of coupled integro-differential equations. The differences between the two
models are quantified in section 8. Finally, in section 9, we elaborate on the impacts
of our work on the design and performance of frequency conversion processes for
quantum enhanced applications. The same reasoning is then applied to the process of
parametric down-conversion in sections 10 onward. Section 18 concludes the paper and
summarizes our findings. Appendix A to Appendix F contain additional information
and further calculations.

2. FC: Overview

A general frequency conversion process is sketched in figure 1. Mediated by the
nonlinearity of the crystal and a strong pump beam two input fields 4 and ¢
are interconverted into two output fields a(°**) and ¢(©*). This frequency conversion
process is more commonly known as sum frequency generation (SFG), when the input
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beam in combination with the pump beam generates an output field at a higher
frequency woyr = win + wyp, or difference frequency generation (DFG), when a field
with frequency wour = win — wp is created.}

The distinction between sum-frequency and difference frequency generation arises
via the input wave which is fed in either the a(®™ or ¢ port. In the scope of this
paper a(™ — &out) depicts a sum-frequency generation process and ¢ — glout)
labels difference frequency generation. Each crystal configuration always supports
both processes simultaneously and we refer to the overall system as frequency

conversion.
ain) alout)
i“ 2 *I
D> N X @) P 4

s

Pump <
étm e Nonlinear élout)
crystal

Figure 1. Sketch of the frequency conversion process. Mediated by the strong
pump field and the x@-nonlinearity of the medium parts of the fields a(i™) and

¢ are interconverted into the two output fields () and alout),

In this paper we go beyond the standard monochromatic single-mode description
of frequency conversion and consider a multitude of frequencies interacting with each
other during the frequency conversion process. This becomes especially important
for pulsed frequency conversion experiments where wave packets, spanning several
nanometers in width, interact with each other. In the following chapters we derive
the properties of this transformation and compare the accuracy of different theoretical
models.

3. FC: Hamiltonian

We first define the electric field operators of an optical wave inside a nonlinear medium
as [33]

E(+)(z,t) - E(’”(z,t)

he 3 P
_, (m) / dk ok expu(kz —w(k))] alk), (1)

where A labels the transverse quantization area in the material [34]. We use the
slowly varying envelope approximation, i.e. the bandwidth Aw of the considered
electric fields is small compared to their central frequency wy (Aw < wp) and hence
treat the dispersion term in front of the integral n(ko) in (1) as a constant, using
the value at the central wave vector ko. This approximation is justified since, in the
remainder of this paper, we only consider electric fields not too broad in frequency,
compared to their central frequency, and take into account the rather flat dispersion

1 In classical nonlinear optics, DFG is understood as a stimulated process. The bright pump field has
the highest frequency and the process is seeded with a weak input field, which is enhanced through
continuous conversion of pump photons. We, in contrast, assume a weak input field, which has the
highest frequency and the ‘seed’ is the bright pump field (see [18] for details).
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in nonlinear crystals. Finally a(k) is the standard single-photon annihilation operator
which destroys a single-photon in mode k and obeys

[a(k), a(k/ﬂ — ok — k') la(k), a(k")] = 0. 2)

In this paper we restrict ourselves to electric fields in one dimension, this means
we assume a fully collinear propagation of the interacting fields along one axis in a
single-spatial mode, since a three dimensional treatment does not offer further physical
insight into the properties of the process and clutters the calculations.

The Hamiltonian of the frequency conversion process consists of two parts:
The Hamiltonian Hém) describing the free propagation of the electromagnetic waves
through the medium for each of the involved fields [32]

R 2¢0An3, . R
(0 = =7 [ 4 B0 0B o), Q

where the factor in front of the Hamiltonian appears due to the normalization of the
electric fields operators in (1) [32]. The interaction Hamiltonian of the frequency
conversion process is given by [35, 36, 18, 19]

HYO(t) = ¢ / dz X (2) ESD (2, ) ESD (2, ) EC) (2, 8) + heee. (4)

El(f)(z, t) labels the pump field driving the frequency conversion process and
E(g+)(z,t),E'§_)(z,t) are the two fields which are interconverted. In the derivation
of this Hamiltonian we used the rotating wave approximation and hence only regard
the frequency conversion terms of the nonlinear optical process while neglecting
the parametric down-conversion and further nonlinear interactions. The pump field
driving the frequency conversion process is a strong optical wave. We hence treat it
as a classical field:

EI(,+)(Z, t) = E;_)*(z7 t)=Ap, / dk a [w(k)] exp [o(kz — w(k)t)] (5)

Here A, labels the pump amplitude and « [w(k)] its spectral distribution ranging from
0(w —w,) for cw-laser sources up to more complicated forms in the case of pulsed laser
systems. We further assume that the pump field is not depleted during propagation
through the crystal since only a minor part of the strong pump beam is lost during
the frequency conversion process. The interaction Hamiltonian (4) becomes:

B0 = [dax® @) BV E0ED OB @0 the. (O

Combining (3) and (6) the process of frequency conversion is described by the overall
Hamiltonian:

Hre(t) = B () + B () + A7 (1) (7)

There are a variety of different constants involved in the definition of the frequency
conversion Hamiltonian in (7) (see (1), (3), (5) and (6)). However most are dependent
on the initial definitions of the interacting fields. In the remainder of this paper we
merge all of them into a coupling value depicting the overall efficiency of the frequency
conversion process rendering the presented calculations independent of individual
notations.
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4. FC: General properties

The frequency conversion Hamiltonian in (7) generates the unitary transformation
~ 7 A
Urc =T exp [ﬁ/dt Hpc(t)] . (8)

In (8) the time-ordering operator T is crucial, because the electric field operators in
Hpe(t) are time-dependent. In turn, the Hamiltonian does not commute at different
points in time, which renders finding a solution difficult. The structure of (8) already
gives valuable insights into the properties of the system. The Hamiltonian in (8) is
bilinear in its electric field operators — the pump is treated as a classical wave — and
the solution hence takes the form of a linear operator transformation [37, 38, 39].§ In
the monochromatic picture the solution is of the form [18]:

a®") (W) = cos(r)al™ (w) + sin(r)e™ (W)

¢ (') = cos(r)e™ (w') — sin(r)a™ (w) (9)
A single frequency (") (w) has a certain conversion amplitude sin(r) which defines
which part of the beam will be converted to ¢(°“®) (w’), via sum-frequency or difference
frequency generation, whereas the rest is transmitted without change to a(**Y(w).
This mathematical structure is very similar to the transmissivity and reflectivity of a
beam-splitter [40]. In the frequency conversion case, however, not two spatial modes
but two optical modes at different frequencies are coupled with each other.

This behavior is not immediately visible in the multimode regime, where we have

to consider the conversion of many frequencies:

ale" () = /dw’Ua(w,w') alm (W) +/dw’Va(w,w')é(m)(w')

e () = / dw'Up(w, w') e (W) — / dw'Ve(w,w') a"™ (W) (10)

Here the functions U,/ (w,w’) in (10) define which parts of the different frequencies
of the input beams pass the crystal unperturbed, whereas the V,.(w,w’) functions
give the portions of the beams which are converted via sum frequency or difference
frequency generation.

In order to unravel the underlying structure we use the constraint that the
frequency conversion process is a unitary transformation and hence (10) has to form
a canonical transformation [38, 39]. This imposes several conditions on the properties
of the solution which we study in detail in Appendix A. Under this constraint and
with the help of the Bloch-Messiah decomposition we rewrite (10) as

/Al;:ut) = cos(ry,) A,(Cm) + sin(ry) C',(Cm)
CA’IEOM) = cos(ry) C’,gi") — sin(ry) /1,(;”), (11)

where A, and C, are broadband single-photon destruction operators [41] defined as:

A}(ﬂout) _ /dw @k(w) d(out)(w) é}gout) — /dw fk(w) é(out)(w)

A = / dow 1y (w) ™) () G = / do () € (1) (12)

§ Solving the process via the Heisenberg equation of motion (see section 7), yields a linear operator
valued differential equation. Linear operator valued differential equations are solved by linear
Bogoliubov transformation, i.e. the solution will be of the form (10). Furthermore with the help
of the Bloch-Messiah reduction, discussed in Appendix A, we are able to rewrite the general linear
Bogoliubov transformation [39] into the form depicted in (11).
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This means that broadband frequency conversion is equivalent to the transformation
of an orthonormal set of optical pulses given by the broadband mode shapes in
(12). Each individual pulse is, independently from the rest, partially converted and
partially transmitted. According to (11) we consequently are able to regard the overall
frequency conversion process as a quantum pulse gate [19, 18, 20] which, depending on
the efficiency of the process, transmits the incoming pulses unperturbed or switches
them via frequency conversion.

The crucial parameters of this transformation are firstly the conversion amplitudes
7 which give the efficiency of the process — conversion efficiency = sin®(r) — and
secondly the broadband mode shapes ¢ (w), &k(w), ¥r(w) and ¢ (w) that define the
range of frequencies which are interconverted.

5. FC: Time-ordering approximation

In order to obtain some first insights into the frequency conversion process we use
perturbation theory. In the case of a time-dependent Hamiltonian a Dyson series
expansion is necessary [42]. This approach was studied in detail by Agata M. Braniczyk
in [30] and [43]. Here we shortly recapitulate the general approach, starting with the
Dyson series expansion of (8):

Upc = T exp {_; / dt ﬁpc(t)]

1 [ .
:]lfﬁ/ dtlHFc<t1)

+ (%)2/00 dt; [:IFC'(tl)/tl dts Hrc(t2) + - - (13)

— 00 — 00
In our case we regard the system long after the interaction in the crystal has taken
place and consequently use plus and minus infinity as the overall bounds for the time-
integration.

Unfortunately it is not trivial to perform the Dyson series expansion for FC,
because coupled time integrals appear. To simplify this evaluation we introduce
the time-ordering approximation. Hereby we approximate (8) by ignoring the time-
ordering operator 7. By dropping 7 in (8) a simple Taylor series expansion becomes
sufficient:

1

Urc = exp [—ﬁ/dt f{FC’(t)]

1 [ .
:]lfﬁ/ dtalc(tl)

+ % (%)2/_0; dty ﬁpc(h)/_o:o dty Hpe(t2) + - - (14)

Note the differences in the integration ranges and the expansion coefficients in (13)
and (14) when terms of second order and higher are considered.

To investigate the differences between the two approaches we explicitly calculate
the perturbation series up to second order. For this purpose it is beneficial to work
with the electric field operators of (1) in the w-representation [33]:

E®) (z,t) = B (2, 1)
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— (#) [ vBexp bikw)z - w)a(w) (15)

4mege An(wp)

We also perform our calculations in the interaction picture, this means we move into
a new reference frame where the effects of free propagation are not present and hence
do not need to consider the free propagation Hamiltonians. Finally we assume a
crystal featuring a constant x(?)-nonlinearity extending from f% to % The frequency
conversion Hamiltonian from (7) takes the form
L
HFO (1) = ¢ox? / dz BE{P (2,t1) EST (2,11) ES) (2,11) + hec.

2

A aswe) L
= eoX(Q)L/dwp/dwa/dwc a(wp) sinc <W>

X exp (—1Awt) a(wg )ét (we) + h.c.

where we introduced the two abbreviations Ak(wp,wa,we) = kp(wp) + ka(wq) — ke(we)
and Aw = wp + wg — We.

The approximations performed when ignoring time-ordering effects are located in
the time-integrations in the term exp (—2Awt). The time-integration of the first-order
term gives identical results for both the Taylor and Dyson series expansion:

/00 exp (—1Awt) = 276 (Aw) (17)

o]

From a physical point of view the obtained delta function §(Aw) describes the energy
conservation between the three interacting photons: the input, the pump, and the
output photon.

In the second order expansion the time integrals in two perturbation approaches
start to deviate from each other. The time-integration of the Taylor series in (14)
yields

/ dtl/ dts exp (—1Awty) exp (—1Aw'ty)
= §(Aw)§(AL") (18)

which is just two times the result of the first-order expansion. In the Dyson series
however we obtain a different result [30]:

'] t1
/ dt; / dts exp [—1Awt] exp [—1Aw'ts]

2 / / 1 1

=27 5(Aw+Aw)<5(Aw Aw)+7rAwAw’> (19)
This term shows the crucial difference between the inclusion and the exclusion of time-
ordering effects. When we exclude time-ordering effects the time-integrations in every
order yield delta functions 6(w;, +w, —w.) between three different frequencies. We can
interpret this mathematical expression by a physical process where only three photons
interact with each other. This means that even in the case of a multitude of photon
conversions take place in the overall process the energy is still conserved in each photon
triplet. Effectively this means that the spectral properties of the interacting photons
are identical in every order of the perturbation series.
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This is quite different from the Dyson expansion. Here delta functions of the
form §(Aw 4+ Aw’) appear in the second-order expansion. From a physical point of
view this delta function describes energy conservation which does not occur between
the three but between six photons. Either the SFG (DFG) of two photons takes place
simultaneously or a SFG (DFG) with successive DFG (SFG) conversion of a single-
photon takes place.|| This enables an enhanced flexibility in the available energy range
and modifies the solution, especially its spectral properties, with respect to the Taylor
expansion. Since the energy, in these terms, only has to be conserved for the overall
process and not the individual photon triplets the constraints imposed by energy
conservation are relaxed. A graphical representation of this effect in the third-order
expansion is shown in figure 2.

(a

~—

Creation
Destruction

(b)

Creation
Destruction

Time-ordering

Figure 2. Schematic diagrams depicting the energy conservation during
successive SFG and DFG processes neglecting time-ordering effects (Analytic
model) (a) and including time-ordering (Rigorous model) (b). Neglecting time-
ordering effects the energy is conserved between the three photons in each
individual SFG/DFG process, whereas the rigorous model including time-ordering
effects only requires energy conservation during the overall process [30].

The time-ordering approximation will consequently give accurate results as long
as the conversion efficiency is not too high and the first-order perturbation expansion
is the dominant term in the solution.

6. FC: Analytic model excluding time-ordering effects

The huge advantage of neglecting time-ordering effects in frequency conversion is the
fact that it enables us to build an analytical model of frequency conversion, which
|| The individual orders n of the perturbation expansion do not directly correspond to the conversion

of n photons, multiple back and forth conversions of a single-photon can appear as well. In order to
obtain the full dynamics of the process all orders have to be considered.
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is highly beneficial since it enables quick and straightforward access to the process
properties:

2

fre = exp {—ﬁ / at H}F@(t)} (20)

This formula is identical to (8) except that we dropped the time-ordering operator
T and work in the interaction picture. It enables us to directly perform the time-
integration in the exponential function. As in the previous section we perform our
calculations in the w-representation and again we assume a crystal featuring a constant
x®-nonlinearity extending from —% to L. After a straightforward calculation we

2
obtain

/dt 2P 1) = /dteox(Q)

= B/dwa /dwca(wc—wa)

X sinc (M) i(wa)él (we) + hec. (21)

where we merged all constants into the overall factor B and Ak(wq,we) = kp(we —
wq) + ka(wa) — ke(we). Details of this calculation are given in [18]. Defining

L
2

dz ESO (2, ) ESP (2, 6)ES) (2,8) + hee.
2

f(waawc) =Ba (wc - Wa) sinc (M) ) (22)
the unitary transformation generated by (20) takes on the form:
Oro — exp [_% < / dwq / Ao f (s we)i(wa)é (we) + hc)} (23)

With the help of the singular-value-decomposition theorem [44] we recast this solution
in the broadband mode formalism presented in (11). At first we diagonalize the
Hamiltonian by decomposing the exponent in (23), via a Schmidt decomposition, as:

_ %f(wa,wc) = (=rk) U (wa) S5 (we)

k

— 2 waswe) = Y et (wa)n (we) (24)
k

Here both {tx(wa)} and {¢(w.)} each form a complete set of orthonormal functions
and r, € RT. Employing equation (24) we rewrite the unitary frequency conversion
transformation in (23) as:

Ure =ew | () [ dwainwniten) [ dudiwodt ()
b [ i)l ) | dwcqsk(wc)é(wc)] (25)

With the help of the broadband mode operators defined in (12) it takes on the form

UFC = exp |:Z(T’k) (Akéli — ALC’]@)
k

= ®exp {(—rk) (AkCA'Z — Aiék)} . (26)
k
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The solution of (26) is well known and, in the Heisenberg pictures, it reads [37]:
A,(:ut) = cos(rk)/l,(cm) + sin(rk)é,gm)
C‘,gom) = cos(rk)CA’,im) - sin(rk)flém) (27)
This simplified analytic model features exactly the structure required by the canonical
commutation relations discussed in section 4. Only the additional fact that the input
modes and output modes in this simplified model are always of identical shape differs
from the general solution (11).

It is evident that this treatment ignoring time-ordering effects enables a
straightforward analytic solution of the frequency conversion process. In contrast
to the perturbation approach in section 5 we do not require to evaluate a perturbation
series up to infinite order and, in some cases, even the SVD can be performed
analytically and hence no computational effort is required at all [45]. This enables
the efficient engineering and design of frequency conversion processes as long as the
applied approximations hold.

7. FC: Rigorous theory including time-ordering effects

In order to obtain a rigorous solution of frequency conversion we have to include the
effects of time-ordering and the corresponding relaxed energy conservation conditions
into our calculations. For this purpose we change our analysis method and regard the
frequency conversion process in the Heisenberg picture. This approach was already
utilized for frequency conversion in nonlinear optical fibers in [14, 20] and is common
for parametric down-conversion [32, 29, 27, 28, 46, 47, 48, 49, 50]. In order to solve
the corresponding Heisenberg equations of motion we adapt the work of Mikhail I.
Kolobov on PDC in [32] to frequency conversion. It enables the complete time-ordered
solution of the frequency conversion process without having to perform the Dyson
series expansion up to infinite orders. As a first step we redefine the electric field
operators in (1) according to [32]

a(z,t) = m/dk’ Vw(k)exp i (kz —w(k)t)] a(k) (28)
é(z,t) = m /dk: Vw(k)exp i (kz — w(k)t)] é(k) (29)

The Heisenberg equation of motion for a(z,t) reads:
d .
(= 1) = 1 | Hre(t). (=) (30)

We first calculate the commutator of a(z,t) with the free space Hamiltonian ﬁéa’c) (t).
The commutation relation with the free space Hamiltonian ﬁéc)(t) directly results in
zero whereas the commutator with I;[éa)(t) yields [32]:

% [ﬁé“)(t),&(z,t)] - % [hko / d2'at (2, a2, t), alz,t)
:zko/dz [a’(2',t),a(z,t)] a(2',t) (31)

The crucial part in (31) is the commutator between the electric fields, at the same
time, but at two different points in the medium:

[&(z,t),df(z',t)] = % /dk w]if) exp [tk(z — 2')] (32)
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In order to solve the integral in (32) we Taylor expand the dispersion relation up to
first-order and obtain:

[A (z,1), &T(z’, t)]

_ 217r Z‘j dk <1 Lk 0’“) exp [tk(z — 2')]

_ %:—S/dk: exp [1h(z — 2)]

- %%} dk ;—Oagcxp[zk(z—ﬂ}

— ;—;n—i%d(z—z’) (33)

Using (33) the free space commutation relation in (31) evaluates to:

1 Ar(a) R } c 0 N

—HY ¢ B = ———=—a(z,t 34

P 867 ®.a(0)] = - a0 (34)
Next we calculate the commutator of a(z,t) with the nonlinear interaction Hamiltonian
f[}Fc)(t) in (6). To simplify this problem we treat w(k) as a constant w(kg) using the
slowly varying amplitude approximation. The commutator consequently evaluates to
a delta function:

[a(2,1),41 (/,1)] = nioa(z e

We obtain:
v [A(FC .
= [A79 ), az1)| =
— [D / ' ESD (2 a2 el () + h.c.,d(z,t)}

L [ a1+ 0a(e,0] B )0

— %D* /dz’ ES (2 t) e, 1) (C) 6z —2")

no

1 C o, _ .
- _ﬁn_oD E{7) (2,t) &(2,1) (35)

Here we merged all constants into the overall variable D. The Heisenberg equation of
motion in (30) then reads:

d c 0 1 C
Bl _ =Y. v * (=) ~
a(z,t) = a(z,t) noD E, (z,1)é(z,t) (36)

Since we are interested in the spectral distribution of the output we perform a Fourier
transformation into the frequency domain. We regard the created electric fields long
after the interaction and therefore integrate the time dependence from minus to plus
infinity, as already performed in the analytic solution in section 6:

d c 0
a. _ _c 0. _rc * (=) R
F [dta(z,t)} F { ~ aZa(z,t)] hnof [D By (2,t)é(2,t)
i _c9 _ Ll p- "EC) (20 — w)é
wa(z,w) = ~ 8Za(z w) hnoD /dw By (2,0 —w)é(z,w) (37)
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We further separate the interaction from the propagation effects by transforming our
operators into the interaction picture, similar to the analytic solution in section 6. For
this purpose we introduce the electric fields:

€a(z,w) = a(z,w) exp [—1kq(w)z]

€c(z,w) = é(z,w) exp [—1k.(w)z]

6;7)(2,’,0.1) = E](;)(z,w) exp [thy(w)z] (38)
With the help of (38) we transform the differential equation in (37) into the interaction
picture:

%éa(z,w) = — %D*/dw'eé_)(z,w' —w)é.(z,w)

x exp {—t [kp(w' — w) — ke(w') + ko (w)] 2} (39)

In a similar manner we calculate the differential equation of the second beam and
obtain:

%éc(z,w) = - %D/dw'egf)(z,w —w)éq(z,w")
exp {1 [kp(w — w') + ka (W) — ke(w)] 2} (40)

Finally we introduce the abbreviation Ak(w,w’) = ky(w' —w) — ke(w') + kq(w). The
two coupled differential equations describing the frequency conversion process read:

9, L S T _ Ne (o
826u(z’w) = hD /dw € (2w —w)exp [—1Ak(w,w)z] éc(2, W)
%éc(z7w) = —%D/dw’el(f) (z,w — W) exp fAk(W,w)2] & (2,w") (41)

Note the inversion of the w and w’ factors in the Ak and €, functions between the two
formulas. By defining

flw,w' 2) = —%D*eé_)(z,w/ — w) exp [—1Ak(w,w)z] (42)

we may write (41) in a more compact notation:
0, .
sréae) = [ (0w 2)elew)

%éc(z,w) =_ /dw’f*(w’,w,z)éa(z,w’) (43)

7.1. Solving the differential equations

In order to obtain the dynamics of the frequency conversion process the differential
equations in (43) have to be solved. Usually operator valued differential equations
cannot readily be evaluated and, in the case of FC, this is complicated by the fact
that we have to solve integro-differential equations, since we consider the conversion
of many frequencies simultaneously. Note, that (41) is linear in its operators and
hence classical solution methods like the split-step Fourier inversion method have
been applied [20, 27, 28]. In the special case of a cw-pump laser the integral in (41)
vanishes and it is even possible to find analytic solutions [32].

In this paper we apply a different approach — introduced by Wolfgang Mauerer
in [46] — exploiting the fact that the structure of the solution is already known: it
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is a linear operator transformation (10). Using (10) and (43) we obtain two pairs of
classical integro-differential equations [29]

w(z,w,0") = f/dw/f(w,w/,z)%(z,w/,w”)

0z

D Vit = [ AW Wl ) (1)
and

8 1 ! px ! ! "

S Ulzsn ) = = [ 4l (0, 2)Valy ')

%Va(z,w,w”) = /dw'f(w,w',z)Uc(z,w’,w") (45)

which cover the complete dynamics of the frequency conversion process.

We solve these coupled integro-differential equations using an iterative approach.
For the pair in (44) this means we first formally integrate both differential equations
along z, where we assume a medium of length L, as in in the analytic solution discussed
in section 6,

L
Uy(z,w,0") = §(w — ') 7/2 dz /dw/f(w,w’,z)VC(z7w/,w”)
L

L

Ve(z,w,w™) :/2 dz /dw'f*(w'7w,z)Ua(z,w'7w”). (46)
L
-3

Here we also included our knowledge about the initial solution. If no interaction
takes place the process is described by the identity operation a(**!) (w) = (") (w) and
élout) () = ¢lm) (W) from which follows:

Uu(z,w,0") = Up(z,w,0") = §(w — ")
Valz,w,w") = Vo(z,w, ") =0 (47)

Starting with the initial solution for U, (z,w,w”) we then perform the two integrations
in (46) and obtain a preliminary V.(z,w,w”). This is then used to obtain a new
Uy(z,w,w”). We repeat this iterative procedure till the functions converge.

The same method is applied to the second set of differential equations defining
Ue(z,w,w”) and V(z,w,w’) which gives us the complete time-ordered solution of
the frequency conversion process. The implementation of this algorithm is discussed
in Appendix D, where we also elaborate on the numerical accuracy of the applied
method. The program code is available on our website.q

8. FC: Comparison between simplified analytical and rigorous approach

In sections 6 and 7 we presented two models describing frequency conversion taking
into account the higher-order moments: a simplified analytic model excluding time-
ordering effects and a rigorous numerical model including time-ordering. While the
analytic method is straightforward and only requires minimal computational effort,
it is only an approximation to the rigorous model. In this section we compare these
two approaches in order to investigate the validity of the simplified theory for the

9 The program code can be downloaded from the publications section on our website. The current
url is http://physikwww.uni-paderborn.de/ag/ag-silberhorn/publications.html.
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modelling of frequency conversion processes and the effects of time-ordering present
in the rigorous solution.

From the discussion in section 6 we are able to directly deduce that the analytic
solution features constant mode shapes connected to conversion amplitudes which
oscillate with a sinusoidal pattern. In the low gain regime, when a first-order expansion
is sufficient, the rigorous solution of section 7 gives the identical result. However, as
soon as the higher-order moments yield a significant contribution to the frequency
conversion process, the rigorous solution will feature a reshaped frequency spectrum
due to the relaxed energy conservation condition discussed in section 5.

Analytic model

V, (v,V)|
(a) 03 (b) | 09 (©) .
-15 032 0.8 -15 :
-10 0.28 0.7 -10 0.75
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V v a u 1/
DFG out * fSFG in .
Rigorous model
Figure 3. Comparison of the conversion amplitudes |Vg(w,w’)| between

the rigorous and the simplified analytical model of a correlated frequency
conversion process, with rising conversion efficiencies from (a) to (c¢). For low
conversion efficiencies depicted in (a) both models yield identical results. When
conversion efficiencies of unity are approached in (b) the rigorous model starts
to deviate from the analytic approach due to the relaxed energy conservation
condition. Significant differences occur when conversion efficiencies beyond unity
are considered (c).

In order to quantify the discrepancies between the two approaches we simulate two
frequency conversion processes: a correlated frequency conversion where many optical
modes 7 are converted and an almost uncorrelated frequency conversion process where
only a few optical modes r, are present [18]. The frequency conversion process is
defined by the incoming pump laser and the applied nonlinear crystal, i.e. the length
of the material and its dispersion properties. These parameters can be represented
by just six values: The length of the crystal, the group velocities of the three beams
and the width and the amplitude of the Gaussian pump beam of our ultrafast laser
system driving the frequency conversion process. The details of this procedure and
the applied process properties are given in Appendix C.

The crucial parameter in the solution are the ‘Va Je(w,w' )| amplitudes in the
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Analytic model
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Rigorous model

Figure 4. Comparison of the conversion amplitudes |Vg(w,w’)| between
the rigorous and the simplified analytical model of an uncorrelated frequency
conversion process, with rising conversion efficiencies from (a) to (c). For low
conversion efficiencies in depicted in (a) both models yield identical results. When
conversion efficiencies of unity are approached in (b) the rigorous model starts
to deviate from the analytic approach due to the relaxed energy conservation
condition. Significant differences occur when conversion efficiencies beyond unity
are considered (c).

general solution in (10) which describe the conversion amplitude — conversion
efficiency = |conversion amplitude|?> — at individual frequencies. The |V, (w,w’)]
amplitudes for the correlated frequency conversion case are presented in figure 3.
Figure 3(a) gives |V,(w,w’)| at a low conversion rate. In this regime both models
yield identical results. At efficiencies approaching unity, as depicted in figure 3 (b),
minor deviations between the two models appear. Figure 3 (c) shows |V, (w,w’)| for
a conversion efficiency beyond unity. In this regime the time-ordering approximation
breaks down and the two theories predict significantly different results. While the
analytic model predicts a dip in the conversion efficiency about the central frequencies,
the rigorous model still shows a Gaussian shape.

For the case of uncorrelated frequency conversion the |V, (w,w’)| amplitudes are
given in figure 4. As in the correlated case 4 (a) presents the process at low conversion
efficiencies where both models are identical, (b) depicts near unit conversion efficiency
with minor deviations between the two approaches and (c) visualizes the discrepancies
between the two models arising at conversion rates beyond unity. In this uncorrelated
frequency conversion case the discrepancies between the different models are much
more prominent than in the correlated frequency conversion case. In the analytic
model the side peaks are much more prominent as in the rigorous model. Furthermore
the rigorous model shows a broadening and along the +45° axis, which is a direct result
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of the relaxed energy conservation conditions in this model.

The corresponding frequency conversion amplitudes sin(rx) and mode shapes
are displayed in figure 5 for correlated and in figure 6 for uncorrelated frequency
conversion. The figures in the column on the left show the conversion amplitudes
sin(ry,) — conversion efficiency = sin?(r;) — whereas the two columns on the right
present the corresponding mode functions ¢1(v), 1 (v), ¢1(v) and & (v) for the first
optical mode featuring the highest conversion efficiency, where ;1 (v) and ¥ (v) as
well as ¢1(v) and & (v) are of identical shape.

(a) FC amplitudes ey I/ 121 (v)| N |1 ()|/1€ (v)]
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EEm Rigorous model
e
o R R R R () 005 5 o -5 -10 -15 0O

v (aAu.)

Figure 5. Comparison between the rigorous and the analytical approach in
correlated many mode ultrafast frequency conversion. In the low conversion
regime, presented in (a) (15%/15% conversion efficiency in the first mode in
the analytic / rigorous model), both approaches evaluate to identical results.
Approaching unit efficiency in (b) (86%/86% conversion efficiency in the first
mode) the two approaches start to show differences, which become significant
when optical gains beyond unity are considered in (c). (100%/99% conversion
efficiency in the first mode)

In the conversion regime up to unity (a) both approaches yield almost identical
conversion amplitudes sin(ry) and corresponding mode functions ¢1(v), 1 (v), ¢1(v)
and & (v). At conversion rates about unity minor discrepancies in the mode shapes and
sin(ry) amplitudes start to appear. Significant differences between the two theories,
however, are only present when we consider rates beyond unit conversion efficiency as
depicted in (c).

Interestingly the time-ordering effects affect the correlated and uncorrelated
frequency conversion in a different manner: in the correlated case the rigorous
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Figure 6. Comparison between the rigorous and the analytical approach in
uncorrelated few mode ultrafast frequency conversion. In the low conversion
regime, presented in (a), both approaches evaluate to identical results (6.4%/6.3%
conversion efficiency in the first mode in the analytic / rigorous model).
Approaching unit efficiency in (b) the two approaches start to show differences
(100%/89% conversion efficiency in the first mode), which become significant when
optical gains beyond unity are considered in (c) (30%/99% conversion efficiency
in the first mode).

model predicts a considerably faster drop of the conversion amplitudes sin(ry) than
the analytical approach. Diamentral to this behaviour the sin(ry) amplitudes of
decorrelated case in the rigorous model, presented in 6(c), remain at unit conversion
efficiency once they reach this value. In general it is not possible to associate the time-
ordering effects with a specific behaviour of the broadband conversion amplitudes
sin(rg). Consequently each frequency conversion process has to be investigated
individually.

Both correlated and uncorrelated down-conversion, however, share the property
that the rigorous model predicts a significant broadening in the corresponding mode
shapes in the high gain regime. Please note, that in figure 5 (c) the first mode of the
analytic model is not the Gaussian from 5 (a) and (b) any more since we always plot
the modes with the highest conversion efficiency and, in this power regime, this is not
a Gaussian any more.

In summary the analytical model accurately describes frequency conversion in
the low gain regime up to unit conversion efficiency, where minor deviations start
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to appear. Only in the high gain regime, when conversion efficiencies beyond unity
are reached, complicated non-trivial deviations from the analytical model have to
be taken into account and a rigorous treatment of frequency conversion is required.
For most experimental setups and applications it is hence perfectly justified to apply
the simplified analytic model to minimize the computational effort, as long as its
limitations are kept in mind.

9. FC: Outlook

These time-ordering effects have practical implications for the deployment of frequency
conversion processes. Especially affected are frequency conversion processes which
serve as quantum pulse gates [18, 19, 20]. In theory a perfect quantum pulse gate
converts a single optical mode with unit efficiency. Actually building a quantum pulse
gate, however, is complicated by time-ordering effects. As is evident from figure 6 the
relaxed energy conditions move the frequency process from the single-mode regime
towards a more multimode behaviour. This effect fundamentally limits the gate
performance at high conversion efficiencies. One could, in principle, use advanced
engineering techniques, such as hypergrating structures to reduce the amount of
multimodeness in the state [51], yet still the time-ordering effects seem to remain a
fundamental limitation. Whether or not it is actually possible to engineer single-mode
pulse gates including the effects of time-ordering remains an open research question.

10. PDC: Overview

Having discussed frequency conversion we now extend our investigations to the second
important nonlinear optical process: parametric down-conversion. The principle of
PDC is sketched in figure 7. A strong pump beam decays inside a nonlinear optical
material into two beams commonly labelled signal and idler. The output state formed
by the two beams is known as finitely squeezed EPR-state or twin-beam state™. As

atim ﬁ Signal “ atoun)
2
- X >
Mg
Pump <> R
bim) ¥ Nonlinear beut
crystal \dler

Figure 7. Sketch of the parametric down-conversion process. A strong pump
beam decays inside the nonlinear optical material into two beams usually labelled
signal @ and idler b, forming a finitely squeezed EPR-state.

in the frequency conversion case, we do not restrict ourselves to a discussion of the
parametric down-conversion process in the monochromatic picture, but extend the
theories to the multimode picture including the interaction of many frequencies. This
is especially important when the PDC process is pumped by pulsed laser systems.

+ PDC is also able to create squeezed states. This process is discussed in [27, 28].
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11. PDC: Hamiltonian

The interaction Hamiltonian of the PDC process — using electric field operators as
defined in (1) and the rotating wave approximation — takes on the form:

ﬁ}PDC) (t) =eo /dz x?(2) EA'ZE"')(Z7 HE (=, t)EA'éf)(z, t)+ h.c.. (48)

As in the frequency conversion process we assume a strong pump field exceeding the
amplitudes of the signal and idler fields by several orders of magnitude and hence
treat it as a classical field propagating undepleted through the medium (see (5)). This
transforms the interaction Hamiltonian to:

APPO @) = ¢ / Az (2) B (2, ) B (2, 0B (20 1) + heee . (49)

Using the free space propagation Hamiltonian from (3) and the interaction
Hamiltonian from (49) the process of parametric downconversion is given by the overall
Hamiltonian:

Hppe(t) = Hy (t) + Hy (t) + B (1) (50)

While, at first glance, the process of parametric down-conversion seems very different
from the process of frequency conversion, comparing the interaction Hamiltonian of
PDC in (49) and FC in (6) reveals that they both feature bilinear Hamitonians — the
pump is treated as a classical field — with an almost identical structure and hence
share many mathematical properties.

It is therefore straightforward to extend our presented calculations corresponding
frequency conversion to parametric down-conversion. In order to avoid repetition we
are going to only state the results and elaborate on the differences and similarities
to the process of frequency conversion. The detailed calculations will be presented in
[52].

12. PDC: General properties

The general solution of (50) takes on the form of a linear operator transformation
[38, 39

aem () = /dw/Ua(w,w/) alm (W' +/dw/Va(w,w/) bt (W)

bl (W) = / dw' Uy (w, ) 50 (W) + / dw' Vi (w,w') a1 (W) (51)

This solution is constrained by the fact that it has to form a canonical transformation
[38, 39, 27]. Under this restriction we are able to rewrite it as:

AL = cosh(r) AU™ + sinh(ry ) BU™T
B = cosh(ry) BU™ + sinh(ry,) AT (52)
where A, and By, are defined as broadband single-photon destruction operators [41]:

Al(cout) _ /dw SDk(W) &(Out)(w) B](Qout) _ /dw gk(w) i)(aut)<w)

A = / dw ¢y (w) 4™ () B = / dw g (w) ™) () (53)
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The details of this procedure are given in Appendix B.

According to (52) the parametric downconversion process is a broadband twin-
beam squeezer transformation. However, not a single finitely squeezed EPR state,
but a multitude of twin beam states are emitted into broadband ultrafast pulse
modes Ak and Bk. The crucial parameters of this transformation are firstly the
amplitudes 7, which give both the amount of generated EPR entanglement —
squeezing[dB] = —10log;, (¢e72"*) — and the number of emitted EPR states, and
secondly the mode shapes pr(w), &kx(w), Yr(w), and ¢r(w) which define the form of
the optical modes in which the states are created.

13. PDC: Time-ordering approximation

To obtain some first insights into the parametric down-conversion process given by
(50) we applied perturbation theory, as performed in the case of frequency conversion,
discussed in section 5. The mathematics are identical to the ones presented in section
5. Including time-ordering and performing a Dyson series expansion is involved yet
gives an enhanced flexibility in the energy conservation condition, whereas neglecting
time-ordering enables a straightforward Taylor expansion. An extensive discussion of
Dyson series vs. Taylor series for PDC was performed by Agata M. Brariczyk in [30]
and [43].

14. PDC: Analytic model excluding time-ordering effects

As in the frequency conversion case, presented in section 6, we first solve the process
excluding time-ordering effects. Again we use the electric fields in the frequency
domain (15) and move into the interaction picture:

Uppc = exp [—% / dt FI}PDC)(t)} (54)

Retracting the steps from section 6 we obtain

Uppc = exp {; </ dw, /dwb f(wa,wb)dT(wa)BT(wb) + h.c.)} , (55)
where f(wg,wp) is defined as

J(@a, @) = B ofw, + wp) sine <M)

2
and Ak(wg,wsy) = kp(we + wp) — ka(we) — kp(ws).

In the broadband mode formalism this process evaluates to
UPDC = exp |:Z Tk (AZB;; - AkBk)
k
= @exp i (ALB] - AuBe)| = @ S (o) (57)
k k

which, in the Heisenberg formalism (57), takes on the form:

A,(Cout) = Cosh(rk)fl,(f") + sinh(rk)B;(m)
B’l(com) = cosh(rk)]%,(cm) + sinh(rk)/l;(m) (58)
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The details of this calculation are given in [12].

This result exhibits exactly the structure imposed by the canonical commutation
relation in (52), except for the fact that, as in the frequency conversion case, the input
and output modes are of identical shape.

In conclusion the analytic model ignoring time-ordering effects enables a
straightforward solution of the parametric down-conversion process, which enables
the efficient engineering and design of frequency conversion processes as long as the
applied approximations hold.

15. PDC: Rigorous theory including time-ordering effects

Having elaborated on solving parametric down-conversion neglecting time-ordering
effects we now explicitly include these effects into our analysis. For this purpose we
adapt the approach presented in section 7. We first define new electric field operators
according to [32]

a2, t) = \/%—ko / ks /() exp [o (k> — w(k)t)] (k)
b(z,t) = L [ Vw(k)exp [1 (kz — w(k)t)] b(k). (59)

\/271']6()

In terms of (59) the Heisenberg equation of motion for a(z,t) takes on the form:
d X
—alz1) = = [ Hppo(t),a(z1)] (60)
Repeating exactly the same steps as in section 7 we obtain two operator valued integro-
differential equations describing the downconversion process
0 ,
8—€a(z,w) = —%D/dw’ exp [1Ak(w,w')2] ESP (2,0 + W) ) (2,0)
z
0
8—€ (z,w) = —%D/dw' exp 1Ak(w',w)z2] El(f)(z,w + W) éE(z,W)  (61)
z
where we introduced the shorthand Ak(w,w’) = ky(w + w') — kq(w) — kp(w’). The
structure of this result is very similar to the equations derived by [29, 46, 27] which
serves as a nice cross check of our calculations. Also please take note of the switch of
w and w’ in the second equation.
By defining

flw,w' 2) = —%DEZS+)(z,w +w') exp Ak(w, w')z] (62)

we rewrite the differential equations in a compact form:
2 ~ ( o d / / ~t /
55 ¢ zZ,w) = W f(w,w',2) € (z,w')

%éb(z,w) = /dw’f(w’,w,z)él(z,w') (63)

15.1. Solving the differential equations

Since the structure of the two differential equations describing the PDC process in
(63) is identical to the ones describing the frequency conversion process (41) and (43),
we apply the same solution method as presented in section 7.1.
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We obtain four classical integro-differential equations. Two for U,(z,w,w’) and
Vi (z,w,w’):

%Ua(z,mw”) = /dw/f(w,w’7z)Vb*(z7w/,w”)

%%(zw,uﬂ) = /dw'f(wﬂw,Z)UZ‘(Z,W’»W") (64)

And two for Up(z,w,w’) and V,(z,w,w’):

& Uz, u) = / A F (o, 2V (2 "

%Va(z7w,w”) = /dw'f(w,w’,z)UIf(z,w',w”) (65)

The initial conditions are:
Uu(z,w,0") = Up(w,w", 2) = 6(w — w”
Vo(z,w,w") = Vy(w,w",2) =0 (66)

As in the frequency conversion case they can be solved via an iterative approach.
Details of this calculation and the numerical errors in the solution method are give in
Appendix F. The program code is available, together with the frequency conversion
code, on our website.

16. PDC: Comparison between simplified analytical and rigorous
approach

In sections 14 and 15 we presented two models describing parametric down-conversion:
a simple analytic model excluding time-ordering effects and a complex numerical
model including time-ordering. As in the frequency conversion case the analytic
method is straightforward and only requires minimal computational effort while the
rigorous approach demands the solution of coupled integro-differential equations. In
this section we compare these two approaches in order to test the validity of our
simplified theory for the modelling of parametric down-conversion and the effects of
time-ordering present in the rigorous approach.

As in the frequency conversion case, presented in section 8, we consider a
correlated and an almost uncorrelated process pumped by ultrafast pump lasers (see
Appendix E for the process properties and Appendix F for details on the numerical
implementation).

The crucial parameters in the solution are the ’Va Jo(w,w’ )’ amplitudes in the
general solution in (51) which describe the amount of EPR-squeezing that is generated
during the nonlinear interaction.

The resulting |V, (w,w’)| for a correlated parametric down-conversion process is
depicted in figure 8. The results for uncorrelated parametric down-conversion are
visualized in figure 9. Similar to the frequency conversion case we choose to depict
the low down-conversion regime in (a), the regime where first discrepancies occur in
(b) and the effects in the high down-conversion regime in (c).

The corresponding EPR squeezing values and mode shapes are depicted in figures
10 and 11 for rising down-conversion rates from (a) to (c). The figures in the
column on the left shows the squeezing squeezing values obtained via the relation:
squeezing[dB] = —101log;, (6’2“@) and the corresponding mean-photon number of the
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Figure 8. Comparison of the process amplitudes |V, (w,w’)| between the rigorous
and the simplified analytical model for a correlated parametric down-conversion
process. In the low squeezing regime in (a) both models yield identical results
((n) = 0.59/0.60 in the analytic / rigours model.). Only at EPR squeezing
values of 12 dB, presented in (b), minor discrepancies start to appear ((n) =
44.14/53.18). Significant differences are only present for extremely high down-
conversion rates visualized in (¢) ((n) = 1708.16/3328.27).

complete state, whereas the two columns on the right present the corresponding mode
functions ¢1(v),¥1(v), ¢(v) and & (v) for the first optical mode, where ¢;(r) and
P1(v) as well as ¢1(v) and & (v) are of identical shape. “Analytic model” labels the
solution excluding time-ordering effects, as presented in section 14 and the “Rigorous
model” label marks the rigorous solution from section 15.

Up to squeezing values of 12dB presented in (b) the two approaches give identical
results, only when squeezing values beyond this bound are considered significant
differences between the two models start to appear. The rigorous model predicts
more squeezing than the analytic model and the relaxed energy conservation condition
induces a broadening of the spectral distributions }Va /p(w,w’ )} which leads to a
broadening of the mode shapes in the high gain regime. In general the impacts of
time-ordering on correlated PDC are much weaker than the changes present in the
uncorrelated PDC case.

In summary the analytical model accurately describes parametric down-
conversion in the low gain regime up to two-mode squeezing values of 12dB, where
minor deviations start to appear. Only for extremely high squeezing values, in the
range of 20dB and higher, complicated non-trivial deviations from the analytical
appear and give significant contribution which require a rigorous treatment of
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Figure 9. Comparison of the process amplitudes |V, (w,w’)| between the rigorous
and the simplified analytical model for an almost uncorrelated parametric down-
conversion process. In the low squeezing regime in (a) both models yield identical
results ((n) = 0.07/0.07 in the analytic / rigours model.). Only at EPR
squeezing values of 12 dB, presented in (b), minor discrepancies start to appear
({n) = 2.80/4.08). Significant differences are only present for extremely high
down-conversion rates visualized in (c) ((n) = 39.39/279.87).

parametric down-conversion. For most experimental setups and applications it is
hence perfectly justified to apply the simplified analytic model to minimize the
computational effort, as long as its limitations are kept in mind.

7. PDC: Outlook

The time-ordering effects on PDC have practical implementations for the deployment
of PDC sources in quantum optical experiments. In contrast to FC, however, the
time-ordering effects are beneficial to the performance of the sources. They lead to
much higher EPR squeezing values as predicted by the simplified analytic model.

18. Conclusion

In conclusion we developed two models for the nonlinear optical processes of frequency
conversion and parametric down-conversion taking into account higher-order photon
number effects. The presented rigorous numerical model relies on the solution of
coupled differential equations, whereas ignoring time-ordering effects enabled us to
construct an analytical solution.

Our analysis revealed that the analytic model gives accurate results for frequency
conversion processes up to unit conversion efficiency and parametric down-conversion
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Figure 10. Comparison between the rigorous and the analytical approach in
correlated many mode parametric down-conversion. For low down-conversion
rates, presented in (a), both approaches evaluate to identical results. Only in the
case of rising squeezing values in (b), with squeezing values about 12dB, the two
approaches start to show minor differences, which become more prominent when
even higher squeezing values are considered (c).

process up to 12dB of squeezing. However as soon as we go beyond these bounds, the
relaxed energy conservation conditions, induced by the time-ordering effects, require
a rigorous treatment of these processes.

The developed fundamental understanding of frequency conversion and
parametric down-conversion gives valuable insights into the quantum properties of
the nonlinear optical processes, extends the current theoretical descriptions of FC
and PDC, and simplifies considerably the engineering process for future quantum
information applications.
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Figure 11. Comparison between the rigorous and the analytical approach in
(almost) uncorrelated few mode parametric down-conversion. For low down-
conversion rates, presented in (a), both approaches evaluate to identical results.
Only in the case of rising squeezing values in (b), with squeezing values about
12dB, the two approaches start to show minor differences, which become more
prominent when even higher squeezing values are considered (c).

Appendix A. FC: Canonical transformation conditions

The frequency conversion process in (10) is a unitary transformation, hence the
generated output modes must preserve the canonical commutation relations. This
imposes several restrictions on the structure of the solution. We evaluate these by
extending the calculations from [38, 39] to frequency conversion. At first we rewrite
(10) in the more compact notation

&Z(_out) _ UE?)d_g’m) + Uz(;)égln)
) 0m _0)m (A1)

where ¢ and j label the individual frequencies of the electric fields and summation over
repeated indices is understood. These two input-output relations must preserve:

[aa” - {ccﬂ =5,

las,éf] =0 (A2)
Using (A.1) and (A.2) we obtain three conditions for frequency conversion:

UaU(er + VaVaT = UCU(I + VchJr =1 (A.3)
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UVl -V, Ul =0 (A.4)
Furthermore the commutation relations have to be preserved for the inverse
transformation as well:

&Ezn) _ u;‘(a)&gout) _ U;i(c)é;out)

égzn) _ u;i(c)é;out) + U;i(a)d;out). (A5)
With (A.5) the canonical commutation conditions in (A.2) yield the restrictions:

UlU, + VIV, = UlU. + V]V, =1 (A.6)

Ulv, -viu. =0 (A7)

The equations (A.3), (A.4), (A.6) and (A.7) impose several constraints on the solution.
However they are rather unintuitive representations of the symmetries governing the
frequency conversion process, yet with the help of the Bloch-Messiah reduction [39]
it is possible to unravel their underlying structure: As a first step we decompose the
four matrices U,, V,,U., V. as

U, = A“D"B* V, = AUD’BYT

U= A'D'BY V.= A'D!B! (A8)
where A and B are unitary matrices and D is a diagonal matrix with real entries.
This definition is equivalent to a singular-value decomposition except for the fact that
we allow the individual elements in D to exhibit negative values.*

The matrices U,U} and V, V.| are Hermitian and (A.3) implies that they commute

hence both are diagonalised by the same unitary matrix P:

PU,UIP' =D PV, ViP =D (A.9)
With the help of the decomposition in (A.8) they take on the form:
PA'DYAY' Pt =D  PA'DY AV Pt =D (A.10)

And we obtain A% = AY. From (A.3) using U.U] and V.V, we infer in a similar
manner AY = AY. Evaluating the conditions for the inverse transformation using
(A.6) yields BY = BY and B = BY. Consequently the decomposition in (A.8) can be
written as:

U, = A,D"B} U.= A.D"B!

V, = A,D’BI V.= A.D'B] (A.11)
Using the matrices in (A.11) in conjunction with the conditions in (A.3) we further
obtain:

2 2 2 2

DY +D) =1 DY + DY =1. (A.12)

This implies that the individual elements of the D matrices have to obey cos(rx) and

sin(ry) behaviour. Applying the conditions in (A.6) to the transformation matrices in
(A.11) results in:

D' + D% =1 D+ DY =1 (A.13)
From which we conclude D;‘z = Dé‘z = D" and D32 = Dgz = Dv". Taking everything
into account the final decomposed frequency conversion matrices read:
U, = A,D"B] U.= A.D"B!
V, = A,D"B] V.= A.D'B]
p¥ + DY =1 (A.14)

* The reason for this extension of the singular-value decomposition becomes clear in (A.16).
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In the original representation they take on the form:

Ua(w,w') = Zk: P (w) cos(r )i (w')
Va(w,w') = Z%’Z(w ) sin(ri) ¢ (w')
Ue(w,w) ka cos(ri) b (')
ka ) sin(ry)r (W) (A.15)

From these symmetry relatlons the frequency conversion process in (10) must take on
the form of multiple beam-splitter relations in orthogonal modes

A = cos(ri) AY™ + sin(ry,) G
CL = cos(r) O™ — sin(ry ) AU (A.16)
where we defined:

A](:Ut) _ /dw Ok (w)a(out) (w) Cﬁ]iout) _ /dw fk(w)é(out) (w)
A = / dw e (w)al™ (w) o = / dw ¢, (w)e™ (w) (A.17)

Note however that the canonical commutation relations do not demand that the input
and output modes are of identical shape. In principle the input modes A(™ and
output modes C(in) could feature completely different spectral mode functions ¢y (w)
and ¥ (w) but still form a canonical and hence unitary solution.

Appendix B. PDC: Canonical transformation conditions

As in the case of frequency conversion the parametric down-conversion process is a
unitary transformation, hence it must preserve the canonical commutation relations.
Retracting the calculation in (Appendix A) for parametric down-conversion they read:

U Ul =V Vi = U =WV =1 (B.1)

UViF = v,ul =0 (B.2)
For the inverse transformation they evaluate to:

UiU. — (V)" = UfU, — (Vjv)" =1 (B.3)

ULVe — (U V)T = 0 (B.4)

With the help of the singular-value-decomposition theorem and (B.1), (B.2) and (B.4)
the four matrices of a general parametric down-conversion process in (51) take on the
form:

Ua(w,w') = Zso?; (w) cosh(ry )ik (w')
Va(w,w') Zwk ) sinh(ry) ¢ (w')
ng ) cosh(ry,) dx (')
ng ) sinh(rg )95 (w') (B.5)
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From these symmetry relations the parametric down-process (51) consists of multiple
twin-beam squeezers in orthogonal optical modes:f

A,(Qout) = cosh(rk)flgn) + Sinh(rk)ﬁéin)T
B,&O“t) = cosh(rk)Béin) + sinh(rk)/l](:n” (B.6)

where we defined:

A](Cout) _ /dw QDk(W)d(OUt)(w) BI(Cout) _ /dw £k(w)6(out)(w)

AP = [wn@a™@ B = e @) (B.7)

Note however that, as in the frequency conversion case, the canonical commutation
relations do not demand that the input and output modes are of identical shape.

Appendix C. FC: Simulated frequency conversion processes

In our simulation of frequency conversion we did not restrict ourselves to a specific
crystal material or wavelength range, but created a generic model of the process. For
this purpose we first moved from the (w,w’)-system to the parameter range (v,1’)
relative to the central frequencies of the frequency conversion process (wo,w(). In the
simulation we work with a Gaussian pump distribution, as created by pulsed laser
systems. The pump distribution in (22) and (41) takes on the form

202

where I, labels the pump amplitude and o the pump width. The second function we
have to adapt is the phasematching function Ak(w,w’) = kp(w' —w) — ke(w') + ko (w).
As a first step we perform a Taylor expansion of the individual k(w) terms up to first
order about their central frequency wy:

a(v — V') = B, exp {—M} , (C.1)

k(w) =~ k(wo) + %k(wo) (w — wo) (C.2)

v

This is justified since we restrict ourselves to nonlinear processes not to broad in
frequency (slowly varying envelope approximation Aw < wp) far off any singularities in
the dispersion relation. At the central frequencies the process, per definition, displays
perfect phasematching ky,(w( — wo) — ke(w)) + ka(wo) = 0 and the phasematching
function simplifies to:

d

Ak(v, V) = %kp(wé —wo)(V —v) — ikc((,u(/)) v+ %ka(wo) v (C.3)

dw
The three remaining parameters %kp (wh —wo), %kc(w{)) and %ka(wo) — the inverse
group velocities of the three interacting beams — define the material properties of the
system and can be adjusted accordingly.

This compact notation enables us to simulate any frequency conversion process
with the help of just 6 parameters: The width and amplitude of the pump beam, the
group velocities of the three interacting waves and the length of the nonlinear medium.

# In principle the twin-beam squeezer has a phase degree of freedom [11] which we absorb in the
definition of the electric field operators Ay and By.
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In order to evaluate a correlated FC with many modes 7, as presented in figure
3 and 5, we use the parameters o = 4.0, %k‘p(w(’) —wp) = 0.5, dwk (wgy) = 3.0,
%ka (wo) = 4.5 and a crystal of length L = 2. The pump amplitude E, is adjusted to
give the targeted down-conversion rates.

For the (almost) uncorrelated case with few optical modes ry, as depieted in figure
4 and 6, we applied o = 0.98190, Lk, (w)—wo) = 3.0, “Lke(wp) = 1.5, Lk, (wo) = 4.5
and a crystal of length L = 2. Again the pump amplitude F, is adjusted to give the
desired down-conversion rates.

Appendix D. FC: Numerical implementation

In order to obtain the time-ordered solutions we solved the classical differential
equations in (44) and (45) which give the functions U,(z,w,w”), U.(z,w,w”),
Va(z,w,w"), and V.(z,w,w”) describing the frequency conversion process.

In the numerical implementation of frequency conversion we used a sampling
of 500 points for each frequency degree of freedom and 500 points in z-direction
to discretize the functions U, (z,w,w”), U.(z,w,w”), Vi(z,w,w”), Vo(z,w,w”) and
f(w,w’, z). We evaluated the successive integrations in (46) via the trapezoid rule until
the solutions converged. The actual solution defining the overall process properties is
given by the matrices at the end of the crystal Uy(z = %w,w”), Uz = %w,w”)7
Va(z = £ 0,w"), and Vo(z = &, w,0")

We Checked the accuracy of the result in a variety of ways: At first we evaluated
the canonical transformation conditions in (A.3), (A.4), (A.6), and (A.7). For example
in the case of (A.4) we calculated:

L L
/dwan(z = 5,00,(&1,)‘/6(2 = 57“]//7(“'}/)*
L L
- /dw’Va(z = E,w,w’)Uc(z = E,w”,w’)*

. L
= DUl (5 = 57%(‘0/) (D.1)

and determined the distance of D(@/f) (2 = %,w,w’ ) from the expected zero matrix
and consequently the error in the solution via:

fdwfdw’D(diff)(z =L ww)

error = D.2
0.5 [ dw [dw!|Va(z = L w,w/ |—|—fdwfdw’\U z=L w W) (D-2)

In all presented cases the obtained error was below 0.0085.
We also checked the numerical Schmidt decompositions of U,(z = %,w,w”),

Uz = %,w,w”), Va(z = %,w,w”), and V.(z = é,w,w”) to verify the mode properties

derived in Appendix A. During this process the decompositions of U,(z = %,w, w'),

Uz = 2,w,w”) showed numerical issues these however could be resolved by
decomposmg Ualz = L w,0"UJ(z = £ w,0"), Ul(z = L w,0"U(z = £ w,w"),
Ulz = 2w,0Ul(z = %w,w"), Ul(z = L wwUc(z = £ w,w”) instead.

The obtalned modes from these four matrices provided a much improved stability
especially in the high gain regime. Using these Schmidt modes we verified that the
obtained Schmidt values of the U and V matrices behaved like cos(ry)? +sin(rg)? = 1
with errors below 0.0063. We also asserted that the decompositions yielded the
functions g, ¥, Pr, & with symmetries as detailed in (A.15), which were fulfilled
within numerical accuracy.



Theory of quantum FC and PDC in the high gain regime 31

The program code, published on our website, is able to directly create the
investigated frequency conversion processes and also performs all mentioned tests.

Appendix E. PDC: Simulated down-conversion process

As in the simulation of frequency conversion processes in Appendix C we didn’t restrict
ourselves to a specific crystal material and wavelength range but created a generic
model of the process. Again we first move from the (w,w’)-system to the parameter
range (v,v') relative to the central frequencies of the parametric down-conversion
process (wp,w(). As in the frequency conversion case we used a Gaussian pump
distribution for the simulation, which in (56) and (61) take on the form
(v+v)?
202 } ’

where I, labels the pump amplitude and ¢ the pump width. The second function we
have to adapt is the phase-matching function Ak(w,w’) = ky(w +w') — ke (w) — kp(w’).
As a first step we perform a Taylor expansion of the individual k(w) terms up to first
order about their central frequency wy:

alv+v') = E,exp {— (E.1)

k(w) =~ k(wo) + dik(wo) (w — wo) (E.2)
W N—_——
1%

This is justified since we restrict ourselves to nonlinear processes not to broad in
frequency (slowly varying envelope approximation Aw < wp) far off any singularities
in the dispersion. At the central frequencies the process, per definition, displays perfect
phasematching k,(w{ + wo) — kq(wo) — kp(w)) = 0 and the phasematching function
simplifies to:

d d d
Ak(v, V) = %kp(wf) +wo)(V +v) — %ka(wg) v— %kb(w{)) v (E.3)

The three remaining parameters =k, (wh +wo), = kq(wo) and =k (wp) — the inverse
group velocities of the three interacting beams — define the material properties of the
system and can be adjusted accordingly.

This compact notation enables us to simulate any parametric down-conversion
conversion process with the help of just 6 parameters: The width and amplitude of
the pump beam, the group velocities of the three interacting waves and the length of
the nonlinear medium.

In order to evaluate a correlated PDC with many modes 7, as presented in
figure 8 and 10, we use the parameters o = 4.0, 4=k, (w) +wo) = 0.5, -k, (wo) = 3.0,
%kb(w{)) = 4.5 and a crystal of length L = 2. The pump amplitude E,, is adjusted to
give the targeted conversion efficiencies.

For the (almost) uncorrelated case with few optical modes ry, as depicted in
figures 9 and 11, we applied o = 0.96231155, %kp(wo +w)) = 3.0, %kza(wo) =45,
%kzb(w(’)) = 1.5 and a crystal of length L = 2. Again the pump amplitude £, is
adjusted to give the desired conversion efficiencies.

Appendix F. PDC: Numerical implementation

In order to obtain the time-ordered solutions we solved the classical differential
equations in (64) and (65) which give the functions U,(z,w,w”), Up(z,w,w”),
Vo(z,w,w”), and Vj(2,w,w”) describing the parametric down-conversion process.
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In the numerical implementation of parametric down-conversion we used a
sampling of 500 points for each frequency degree of freedom and 500 points in z-
direction to discretize the functions U, (z,w,w”), Up(z,w,w”), Va(z,w,w”), Vo (z,w,w"”)
and f(w,w’,z). As in the frequency conversion case we evaluated the successive
integrations via the trapezoid rule until the solutions converged. The actual solution
defining the overall process properties is given by the matrices at the end of the crystal
Ud(z = %7w,w”)7 Up(z = %,w,w”), Valz = %w,w”), and V,(z = %,w,w”)

We checked the accuracy of the result in a variety of ways: At first we evaluated
the canonical transformation conditions in (B.1), (B.2), (B.3), and (B.4). For example
in the case of (B.2) we evaluated:

[t = F 0wtz = 20"w)
— /dw'Va(z = g,w,w/)Ub(z = éﬂduvwl)

, L
= DN (5 = g,w,w') (F.1)

and determined the distance of D@/ ) (z = %,Mw’) from the expected zero matrix
and consequently the error in the solution via:

Jdw [dw' DD (2 =L w, W)
0.5 [[dw [dw'|Va(z = £ w,0)| + [ dw [ dw'|Up(z = £, w,w)]]
In all presented cases the obtained error was below 0.00019.

We also checked the numerical Schmidt decompositions of Ug(z,w,w”),
Up(z,w,w"), Vi(z,w,w”), and Vy(z,w,w”) to verify the mode properties de-
rived in Appendix B. During this process the decompositions of U,(z,w,w”),
Up(z,w,w”) showed numerical issues, these however could be resolved by de-
composing Uy (2, w,w” ) Ul (z,w,w"), Ul (z,w,w" U, (z,w,w"), Ub(z,w,w”)U,j(z,w,w”),

error = (F.2)

UJ (z,w,w")Up(z,w,w”) instead. The obtained modes from these four matrices pro-
vided a much improved stability especially in the high gain regime. Using these
Schmidt modes we verified that the obtained Schmidt values of the U and V' matrices
behaved like cosh(r)? —sinh(r)? = 1 with errors below 0.00006. We also asserted that
the decompositions yielded the functions ¢, ¥r, ¢k, & with symmetries as detailed in
(B.5), which where fulfilled within numerical accuracy.

The program code, published on our website, is able to directly create the
investigated parametric down-conversion processes and also performs all mentioned
tests.
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It's easier to ask forgiveness
than it is to get permission.

(Grace Hopper)

7. Limits on PDC
as a single-photon source

7.1. Introduction

The developed theoretical framework of PDC in Part I enables us to engineering the
PDC process for the generation of photonic quantum states. Among the most important
states for quantum enhanced applications are pure single-photon states, also known as
single-photon Fock states. These are an essential ingredient for quantum information
technologies such as quantum communication [81], quantum enhanced measurements
[82] and quantum computing [83].!

There exist a variety of methods to produce pure single-photon states including
semiconductor quantum dots [84, 85|, trapped atoms [86, 87], trapped ions [88, 89]
and four-wave-mixing processes [90, 91, 92, 93, 94, 95, 96, 97]. The most prominent
source to create single-photon states, however, is parametric down-conversion (PDC)
21, 98, 25, 23, 99, 24, 36, 100, 101, 102].

7.2. Heralding single-photons from PDC

The general heralding process is sketched in Fig. 7.1. As already discussed in Chap. 4,
during the process of parametric down-conversion, a pump photon of a strong incoming
pump pulse, decays inside a nonlinear optical material, into a signal and idler photon
pair. Detecting the idler photon consequently enables us to herald the presence of a
signal photon and effectively creates a heralded single-photon source.

PDC however has two main limitations which impede its use as a deterministic pure
single-photon source, both depicted in Fig. 7.1: firstly it is not guaranteed that only
a single photon-pair is emitted.? Only vacuum or multiple-pairs simultaneously might
leave the crystal as well. Furthermore most detectors are not able to discriminate be-
tween the arrival of a single or several idler photons. Hence the heralded signal state
is projected into a mixture of photon-number states [103, 104, 105, 106, 107, 108, 109,
110, 111, 112].

IThis chapter is a summary of the paper “Limits on the deterministic creation of pure single-photon
states using parametric down-conversion” by Andreas Christ and Christine Silberhorn [4].

2PDC is a unitary transformation and completely deterministic. The detection of the photons, however
is not. For pedagogical purposes it is useful to move this non-deterministic detection into the source
and talk about the number of photon-pairs leaving the crystal, even if this description is formally
not correct.
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Figure 7.1.: Herald single-photon states using PDC: one or more photons of an incoming
pump pulse decay, inside a nonlinear medium, into several signal and idler
photon pairs in multiple optical modes. Detecting the idler photons enables
us to herald the presence of the signal.

The second feature of the PDC process detrimental to the heralding of single-photons
is its multi-mode spatio-spectral nature already discussed in Sec. 4.4 and Chap. 5.
Standard single-photon detectors are not able to resolve in which spatial or spectral mode
the heralded photon resides consequently they herald the signal state into a mixture of
spatio-spectral modes, which limits the fidelity of the heralded signal state against a
pure single-photon state [52, 24].

To quantify the achievable rates and pure single-photon fidelities we perform a rigorous
investigation of single-photon state creation via PDC, which enables us to determine the
limits of PDC to serve as a source of deterministic pure single-photon states.

7.2.1. PDC in the Schrodinger picture

In order to investigate the photon-number properties of the PDC states it is useful to
work in the Schrodinger picture. In this picture the spectral multi-mode PDC state, as
derived in Chap. 6 is given by [33]:

¥) ppe = Uppc [0) = ) exp [Tk (AITCB;Z - Akékﬂ 0)
k

= ® sech (1) Z tanh(ry)" \n,iA), niB)> (7.1)
k n=0
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From this equation the photon-number properties of PDC are not immediately recog-
nizable so we explicitly write down the first few terms of Eq. (7.1)

) ppc = A0)
+A Z tanh(ry) ]1,(;4); 1,(€B)>
k

+A Z tanh(ry) tanh(r},) |1,(€A), 1,(;‘); 1,&3), lgf)) +

k<k’

+A Y tanh(ry) tanh(rf) tanh(rg) 177, 107, 1605 187,107 107
k<k/<k'"

T (7.2)

where A and |0) equal to
A=]]sech(r)  10)=)I0),. (7.3)
k

From this formula it is evident that PDC always emits photons in pairs. Depending on
the efficiency of the process it is possible to detect vacuum, a single pair, two pairs, three
pairs and so on, where each pair is completely independent form the other. Furthermore
the spectral properties of the generated photons are independent from the number of
generated photon-pairs. The signal and idler photons always reside in the same set of
signal modes {A4;} and idler {Bj}.

7.2.2. Heralding single-photons from single-mode PDC sources

As a first step we regard the heralding of single-photons from a spatially and spectrally
pure PDC state, which yields:

|¢>PDC:exp[ATBT—rAB] 10) = sech (r Ztanh” ) rg, m3) (7.4)

The positive-operator valued measure (POVM) of a binary avalanche photodetector with
detection efficiency 7 is defined as [113]:

[e.o]

fenoctiae = 3 (1=1)" |n) {n
n=0

oo = 3 (L= (1= )] |n) (n] (7.5)

n=0

The POVM elements of a photon-number resolving detector are given by [114, 105]

i) = 3 (V) 00— o, (7.6

n
N=n
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where we assume for each photon the equal loss probability . Comparing Eq. (7.5) and
Eq. (7.6) we notice that both are of identical form and can be expressed as
I, =Y ¢uln) (n], (7.7)
n=0
where the ¢, coefficients define the efficiency and type of the detector. Using the defini-
tion of single-mode PDC state in Eq. (7.4) and the general POVM in Eq. (7.7) we are
able to calculate the heralding probability:

p(r,c) = poc (V| 1o, [) ppe = sech(r) Y ¢, tanh® (r) (7.8)
n=0

The fidelity of the heralded signal state p, against a pure single-photon state is defined
as:

¢y tanh?(r)
Fire) = Wlp ) = s s
These two values, the heralding probability p (7, ¢, ) and the fidelity F(r,c,) of the her-
alded state, enable us to benchmark the performance of our PDC sources.

In Fig. 7.2 (a) we visualized these two benchmarks using a binary detector with
varying detection efficiency n and in Fig. 7.2 (b) using a photon-number resolving
detector with efficiency . On the x-axis we plotted the achievable fidelity F'(r,¢,) and
on the y-axis the heralding probability p (r,¢,). A perfect pure and deterministic single-
photon source resides in the upper right corner of these graphs. The shaded areas in
the graphs give the achievable regions using either binary or photon-number resolved
detection.

Binary detection, depicted Fig. 7.2 (a), features an inherent trade-off between the
fidelity and the heralding. The reason for this behaviour is the fact that a binary
detector cannot distinguish between the arrival of a single or multiple photons. Hence,
in order to get rid of higher-order photon-number contributions we have to reduce the
pump power to ensure that only photon-pairs are created. This achieves unit fidelity,
yet at the cost of vanishing heralding probabilities. Similarly we are able to achieve unit
heralding probability, but at the cost of a vanishing fidelity, because a huge mean-photon
number is required to ensure a deterministic triggering of the heralding detector.

Photon-number resolved detectors, as depicted in Fig. 7.2(b), perform much better,
since they are able to distinguish single-pair from multi-pair emissions. Using a perfect
photon number resolving detector they enable the heralding of pure single-photons with
a probability of 25%. This constraint stems directly from the thermal photon-pair
distribution of a singleemode PDC source. The corresponding optimal PDC source
features an amplitude of » = 0.88, corresponding to a squeezing value of 7.64dB and a
mean-photon number of (n,,) = 1.

From Fig. 7.2 it is further evident that equally important to driving a single-mode
PDC source with the optimal parameters is using detectors with high detection efficien-
cies, since detectors with non-unit detection efficiency n severely diminish the achievable
rates and fidelities, as depicted by the dashed and dotted lines in Fig. 7.2 (a) and (b).

(7.9)
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Figure 7.2.: Heralding probabilities, p(heralding), and single-photon Fock-state fideli-
ties, Flidelity, of the state created using a single-mode PDC source in con-
junction with an (a) binary and (b) photon-number-resolving detector fea-
turing various detection efficiencies, 7.

7.2.3. Heralding single-photons from multi-mode PDC

In order to investigate the impacts of multi-mode effects on the heralding probabilities
p (r,¢,) and pure single-photon fidelities F'(r, ¢,,) we extended our model from Sec. 7.2.2
to incorporate spectral multi-mode effects. According to Eq. (7.1) a multi-mode PDC
state, in the Schrodinger picture, is of the form:

VY ppe = ®sech (s Ztanh“ )|t nl) (7.10)

In this case, not a single twin-beam squeezed state, as depicted in Eq. (7.4), is generated,
but a multitude of twin-beam squeezers with amplitudes r; in broadband frequency
modes Aj, and By, [56] are emitted.

Extending our calculations from the previous section we arrive at the heralding prob-
ability

p(ri, cn) = coA? + 1 A? Ztanh () + cu A® Z tanh?(r) tanh?(ry) 4+ ..., (7.11)
k<k'

where A =[], sech (r;). The fidelity of the heralded state evaluates to
1
F(rg,cn) = NO tanh?(rg), (7.12)

with the normalization constant /N defined as:

N=c+a Z tanh?(ry,) + ¢ Z tanh?(r) tanh?(ry) + . . . (7.13)
K<k’
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Figure 7.3.: Heralding probabilities, p(heralding), and single-photon Fock-state fideli-
ties, Flidelity, of the state created using various multi-mode PDC sources
in conjunction with an (a) binary and (b) photon-number resolving detec-
tor featuring unit detection efficiency n = 1. Multiple frequency modes
K = 2,5,10 severely limit the achievable maximum fidelities

We visualized the achievable rates in Fig. 7.3 using a variety of effective optical mode
numbers K = 1,2,5,10 and binary as well as photon-number resolved detection with
unit efficiency n = 1. It is evident that the introduced frequency mixing in the heralded
signal states severely reduces the achievable fidelities of the heralded states. It is hence of
utmost importance to engineer PDC sources with a spectrally and spatially single-mode
emission for the heralding of pure single-photon states. Alternatively filtering the idler
beam can be applied, yet at the expense of severe losses which lead to reduce heralding
rates in the idler arm and additional photon-number components in the heralded signal
state, since only a fraction of the idler photons are transmitted trough the filter and
impinge on the detector [108, 115, 116].

These multi-mode effects in the spectral degree of freedom can be directly extended
to the spatial degree of freedom, which is, from a mathematical point of view, identical.
The same detrimental effects to the fidelity of the heralded signal state are present.

7.2.4. Deterministic pure single-photon generation with switched
PDC sources

While it is impossible to deterministically create pure single-photon states using a single
PDC source it has been noted that multiple PDC sources in a switched configuration
are able to solve this issue [26, 117, 118, 119]. In this approach we use multiple PDC
sources to herald single-photons. When one successfully signals the heralding a pure
single-photon this photon is routed to the output. Given a photon heralding probability
of v and lossless routing the overall heralding probability in a switched setup—as a
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function of the number of applied PDC sources n—is:
p("switched”) =1 — (1 —v)" (7.14)

Given our optimal PDC sources with perfect photon-number resolved-detection (v =
25%) 17 PDC setups are required to approximate a deterministic pure single-photon

source (> 99%).
Deterministic
photon source
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single-photon source
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0.8
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Figure 7.4.: Heralding probabilities, p(heralding), and fidelities, Fidelity, accessible
using a single-mode PDC source in conjunction with a binary detector
(orange-shaded region), a photon-number resolving detector (red-shaded re-
gion), and multiplexing (yellow-shaded region). For an optimal source and
a perfect photon-number-resolving detector with heralding probability of
v = 25% 17 PDC sources are required to obtain a deterministic single-
photon source (> 99% emission probability). The arrows point out the
achievable heralding rates using a multiplexed setup of 1, 2, 5, and 10 single
photon sources.

Fig. 7.4 summarizes our findings and shows the achievable rates using a multiplexed
setup of 1, 2, 5, and 10 single photon sources and classifies the different regimes accessible
using “Binary heralding”, “Photon-number resolved heralding”, and “Multiplexing”.

In order to create a pure deterministic single-photon source based on PDC it is firstly
necessary to build bright single-mode PDC sources which achieve the necessary mean
photon-number (n) = 1 and secondly to move from the current binary detection to
efficient photon number resolved detectors. Finally, once these are in place, multiplexing
several sources and the efficient routing of single photons will enable the final goal of
building a deterministic pure single-photon source based on PDC.
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7.3. Conclusion

In conclusion we investigated the prospects and limitations for PDC to serve as a source
of pure deterministic single-photon states and, for the first time, included the spatio-
spectral as well as the photon-number degree of freedom into the analysis. Our calcu-
lations revealed that an optimal single-mode PDC source, in conjunction with a perfect
photon-number resolving detector is able to herald pure single-photon states with a
probability of 25%. Consequently an array of 17 individual sources is necessary to ap-
proximate a pure deterministic single-photon source with > 99% emission probability.
While the requested sources and detectors are beyond the reach of current technology
our work clearly lays out the path for further engineering and research towards creation
of a deterministic pure single photon source using PDC.
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Parametric down-conversion (PDC) is one of the most widely used methods to create pure single-photon
states for quantum information applications. However, little attention has been paid to higher-order photon
components in the PDC process, yet these ultimately limit the prospects of generating single photons of high
quality. In this paper we investigate the impact of higher-order photon components and multiple frequency
modes on the heralding rates and single-photon fidelities. This enables us to determine the limits of PDC sources
for single-photon generation. Our results show that a perfectly single-mode PDC source in conjunction with a
photon-number-resolving detector is ultimately capable of creating single-photon Fock states with unit fidelity
and a maximal state creation probability of 25%. Hence, an array of 17 switched sources is required to build a
deterministic (>99% emission probability) pure single-photon source.
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I. INTRODUCTION

Pure single-photon states are an essential ingredient for
quantum information technologies such as quantum com-
munication [1], quantum enhanced measurements [2], and
quantum computing [3]. In the past decades various sources
have been investigated to produce the required pure single-
photon states, including semiconductor quantum dots [4,5],
trapped atoms [6,7], trapped ions [8,9], and four-wave-mixing
processes [10-17]. To date, however, the most widely used
sources for the creation of single photons are still based
on parametric down-conversion (PDC) [18-22] where sub-
stantial efforts haven been made over the past several years
to engineer photon pairs with single-mode characteristics
[23-27].

PDC sources feature many advantages: The setups are
compact, cost-effective, robust, operate at room temperature,
and can be integrated in optical circuits. However, they
also possess some inherent drawbacks: First, the photon
heralding is a statistical process and, hence, PDC always only
approximates a deterministic single-photon source. Second,
multi-photon-pair emission [28—37] limits the heralding rates
and the fidelity of the generated single-photon states. Finally,
the spectral properties of the source may lead to a heralding of
single photons in a mixture of frequency modes, diminishing
the purity of the heralded state.

In this paper we investigate the trade-off between heralding
rates and the fidelity of the heralded states using PDC
processes extending the work presented in Refs. [38] and [30].
We consider both binary avalanche photodiode detectors, as
currently employed in laboratories, but also extend our analysis
to incorporate the rapidly growing field of photon-number-
resolved detection [39-43]. Our results quantify the definitive
limits of parametric down-conversion sources to create pure
single-photon states and show how well they are able to
approximate deterministic behavior.
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II. PDC STATE GENERATION

Figure 1 sketches the process of parametric down-
conversion using a pulsed laser system. The incoming pump
interacts with the crystal material featuring a x ® nonlinearity
creating two down-converted beams usually labeled signal
and idler. These two beams exhibit perfect correlation in
photon number, which means that during the interaction a
certain number of photon pairs is generated, depending on the
efficiency of the PDC.

The process is, in the interaction picture, described by the
following Hamiltonian:

Hppe o x@ f d*r EQGHEDFHET 7.0+ He.,

where we consider both the spatial and spectral-temporal de-
gree of freedom. Solving this Hamiltonian [44,45], assuming a
nondepleted classical pump laser to drive the down-conversion
process, we obtain the following PDC state:

[¥)epc = exp [—,f; (B > [ [ ao.dor sistonon
k,l
X &,i”*<ws>a}"”<wi>+H.c.ﬂ 0. (1)

The operators &,(fﬁ(ws) and [1,(' T (w;) create photons with spatial
mode numbers k and [ and frequencies w; and w; into the signal
and idler beam, respectively. The exact form of the output state
is given by the function f; ;(ws,®;) describing its spectral and
spatial structure depending on the applied pump beam and
nonlinear optical material [46].

The spectral and spatial degrees of freedom are the first
obstacle for the heralding of pure single-photon states. Since
the photons are emitted into a multitude of spatial and spectral
modes the detection of the idler beam to herald the presence
of the signal results in a projection of the signal state into a
mixture of spatial and spectral modes. Hence, the heralded
signal does not form a pure single-photon state.

©2012 American Physical Society
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FIG. 1. (Color online) Schematic of the PDC process used to
herald single-photon states: An incoming pump pulse decays inside a
nonlinear medium into two beams labeled signal and idler which
feature a perfect photon-number correlation. The idler beam is
subsequently detected to herald the presence of the signal state.

The easiest solution to cope with this problem is to apply
heavy spectral and spatial filtering in the heralding arm
[33,47,48]. This will eliminate all distinguishing features and
project the heralded signal into a spectrally as well as spatially
pure state. However, one should be aware of the fact that
the applied filter absorbs the main part of the generated idler
photons and, hence, leads to significantly lower heralding
rates and, furthermore, increases the higher-order photon
components in the signal arm, negatively affecting the state
fidelity in the photon number degree of freedom.

A more elegant approach relies on engineering the down-
conversion process to emit PDC states occupying a single
spectral and spatial mode. In the spatial degree of freedom
waveguides can be used to restrict the signal and idler beams to
the fundamental mode [45]. In the spectral degree of freedom,
however, a pulsed laser system, appropriately chosen materials
and wavelengths have to be applied [23,49].

For PDC processes which are engineered to emit beams
into a single spatial and spectral mode, the generated output
state corresponds to a twin-beam squeezed state [50]

[¥)ppc = explrA' B — rAB]|0)

= sech (r) Z tanh”(r) |ng,n;) , )

n=0

where we set the phase factor to  as it is unimportant within
the scope of this paper. We used capital operators A and B
for the signal and idler beam [51] to highlight the pulsed
nature of the output state. With this state devoid of multiple
spatial and spectral modes the remaining limitations for the
heralding of single photons stem from higher-order photon-
number components: Detecting the photons in idler projects
the signal into a mixture of photon-number states and, hence,
decreases the purity of the heralded state.

III. HERALDING SINGLE PHOTONS
FROM SINGLE-MODE PDC SOURCES

Following the discussion of PDC in the previous chapter
we now calculate the attainable heralding rates and single-
photon fidelities using the state in Eq. (2) and either binary or
photon-number-resolving detectors.

The most common method to herald single-photon states
from PDC employs binary avalanche photo detection. Depend-
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ing on its efficiency 7 it yields a “Click” event when photons
are measured and a “NoClick” event when no photons are
detected. Its measurement operators—as a positive operator
valued measure (POVM)—are given by [52]

o]

Flexo cliekr = Y _(1=n)"n) (n]
n=0

3

o0

Mecioe = Y _[1 =1 =" n) (n].

n=0

Another approach relies on performing photon-number-
resolved measurements in the heralding arm, which are able to
enhance the heralding of single-photon states by suppress-
ing the higher photon number components. In past years
great advances have been made in photon-number-resolved
detection and state-of-the-art detectors feature high detection
efficiencies and exhibit an increasing fidelity resolving higher
photon numbers. The POVM elements of a general photon-
number-resolving detector measuring n photons are given
by [30,53]

[ee]

. N
i) =) (n)(l — """ IN) (N, “)

N=n

where we assume that each photon has a loss probability of
n. Individual detection systems may differ from this POVM
but all converge to [1(n) = |n) (n| for perfect photon-number-
resolved detection. In the scope of this paper we restrict
ourselves to the heralding of single photons, hence, n = 1.

Comparing Eqgs. (3) and (4) we notice that both operations
have the same structure and are of the form

oo

M, = culn) (n, 5)

n=0

where the ¢, coefficients depend on the applied detector and its
efficiency 1. We note that in this formalism dark count events
of imperfect detectors could also be included by adapting the
¢ coefficient.

Starting with the single-mode PDC state in Eq. (2) and
the general measurement operator in Eq. (5), we calculate the
probability of a successful heralding event to be

p (r,co) = poc (Y| I, [¥)ppe

= sech?(r) ) _ ¢, tanh®(r) (6)

n=0

and the heralded signal state after a successful detection takes
the form

tl’i(ﬁcn [¥)epcppe (V1)
poc (W] I, 1) ppe
Z:O:() Cn tanth(r) |ns> <ns|

= . 7
3% cn tanh?' (1) @

The fidelity of the heralded signal state in Eq. (7) against a
pure single photon is [54]:

ps(r,cn) =

¢y tanh?(r)

F(rc,) = (1| ps 11) = m
n=0"*n

®)
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FIG. 2. (Color online) Heralding probabilities, p(heralding), and
single-photon Fock-state fidelities, Fidelity, of the state created using
a single-mode PDC source in conjunction with a binary detector
featuring various detection efficiencies, n. In this configuration one
has to balance either high single-photon fidelities or high state
generation rates.

Equations (6) and (8) form our benchmarks for the state
generation: The heralding probability per pulse p (r,c,) and
the fidelity of the generated signal state F'(r,c,).

In Fig. 2 we plotted these benchmarks for a binary detector
as given in Eq. (3) exhibiting various detection efficiencies
n. The x axis depicts the achievable fidelities and the y axis
the corresponding heralding probabilities. A source creating
perfectly pure single-photon Fock states would appear on
the right a source with unit creation probability on the top
of the figure. The desired pure deterministic single-photon
source resides in the upper right corner of the graphic. The
shaded region in Fig. 2 depicts the general area available using
PDC in conjunction with binary detectors and presents an
inherent trade-off between signal creation rate and fidelity of
the heralded state. Even with perfect detectors n = 1, either the
PDC process only emits photon pairs (» < 0.1), which yields
near unit fidelities but low heralding rates, or one can choose
PDC states with higher-order photon-number components
leading to heralding probabilities approaching unity (r > 2)
yet at the cost of low fidelities due to the occurring mixing in
photon number.

In Fig. 3 we plotted the heralding probability p(r,c,) and
the state fidelity F(r,c,) using a photon-number-resolving
detector as defined in Eq. (4) for various detection efficiencies
n. It is evident that photon-number-resolving detectors are
superior to binary detectors. They enable unit fidelities in
conjunction with heralding rates up to 25% only constrained
by the thermal photon-number distribution emitted by the
down-conversion process (pgj‘ (1) = 25%). In the case of
perfect detection n = 1, this figure gives the fundamental
limit of PDC sources. Creating perfectly pure single-photon
Fock states the maximum achievable heralding rate is 25%.
The corresponding PDC source features an amplitude of
r = 0.88, corresponding to a squeezing value of 7.64 dB and
a mean-photon number of (np,) = 1.

Pure and deterministic
single-photon source

Deterministic
photon source

o PDC
=== n=0.06
0.8 == 1=0.30
1=0.70
[=] -
c - 1=1.00
£ 06
o
[4]
£ 04
o
0.0 0.2 0.4 06 08 1.0

Fidelity (Pure single-photon source)

FIG. 3. (Color online) Heralding probabilities, p(heralding), and
single-photon Fock-state fidelities, Fidelity, of the state created using
a single-mode PDC source in conjunction with a photon-number-
resolving detector featuring various detection efficiencies, 1. These
detectors suppress higher-order photon numbers and, hence, enable
high fidelities in conjunction with heralding rates ranging up to 25%.

IV. HERALDING SINGLE PHOTONS
FROM MULTIMODE PDC SOURCES

We now turn our attention to the impact of spectral
multimode effects on the heralding rates and single-photon
fidelities. While it is relatively straightforward to get rid of
spatial multimode effects in the PDC state emission, it is
not trivial to construct a source which only emits into a
single spectral mode [23,24]. Hence, we extend our analysis
and investigate spectrally multimode PDC as a source of
single-photon states in order to evaluate to which degree
multimode spectral components can be tolerated.

Including multiple spectral modes the PDC state in Eq. (2)
takes the form [44]:

e = e |~ (B [ [ do.dor fonan
x a9 (wy)a " (w;) + Hc>] |0)

= ®exp[rk14,tl§,ir — rkArBi110) ®
k

= ) sech(r) Y _ tanh" () [n”.ni’).  (10)
k

n=0

In this case, not a single twin-beam squeezed state, as depicted
in Eq. (2), is generated, but a multitude of twin-beam squeezers
with amplitudes r; in broadband frequency modes A; and
l?k [51] are emitted. For common PDC sources the squeezer
distribution r; follows an exponential decay [55] and is defined
by

ry = B)»k
(11)

M=y1—ppt 0<pu<l,
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where B is optical gain depending on the applied nonlinearity,
on the pump power in the PDC process and A, corresponds
to the normalized mode distribution. The effective number
of optical modes in the state is quantified by the parameter
K =1/, At [56].

The properties of the PDC state in Eq. (10) become
clearer if we sort the terms according to their photon-number
components,

[¥)epe = A10) + A Y tanh(ry) |1 1)
k

+A Ztanh(rk) tanh(rp) |15, 1prs 15, 1) + - -+,

k<K’
12)

where A = [, sech(r;), 10) = ), 10x) and ¢ = 7. Accord-
ing to Eq. (12) the PDC state now consists of multiple
photon-pair components emitted into an array of spectral
modes k.

Given a multimode PDC state as defined in Egs. (10) and
(12), we calculate the heralding rates and fidelities similar to
Sec. III. In order to perform this calculation we extend the
measurement operators given in Egs. (3), (4), and (5) to the
multimode regime:

A

M, = ¢ 10) (0] + 1 Y 1) (1l
k

+er Y o le) (o Ll 4+, (13)
k<k’

where the ¢, terms are identical to the single-mode case
as we assume that the detector cannot distinguish different
frequencies due to limited time resolution. Using Eqs. (12)
and (13) we obtain a multimode heralding probability of

p(re,cn) = coA2 + c1A2 Z tanhz(rk)
k

+ A2 Z tanh?(rg) tanh?(re) 4+ - -+ (14)

k<k'
and the heralded signal state takes on the form,
1
pr = €010} O + 1 ;tanhz(ru 1) (1l

e 3 anh () tanh? ) |16, 1) (i Ll 4+

k<k/
(15)
with the normalization constant N defined as
N = co+ ¢ Ztanhz(rk)
k
+cy Y tanh*(ry) tanh*(re) + -+ - (16)

k<k!

The corresponding fidelity of the heralded photon state against
a single-photon Fock state evaluates to

1
F(ri,cn) = 5 tanh?(rg). 17

Equations (14) and (17) enable us to benchmark multimode
PDC processes as a source of heralded single-photon states via
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FIG. 4. (Color online) Heralding probabilities, p(heralding), and
single-photon Fock-state fidelities, Fidelity, of the state created using
various multimode PDC sources in conjunction with a binary detector
featuring unit detection efficiency n = 1. Multiple frequency modes
K = 2,5,10 severely limit the achievable maximum fidelities.

the heralding probability p(ry,c,) and the fidelity F(r¢,c,) of a
heralded state including both the spectral and photon-number
degree of freedom. Note that the performance of spectrally
filtered PDC states will lie below a spectrally single-mode
source.

We visualized the obtained rates and fidelities using a binary
detector with efficiency n = 1 in Fig. 4. In this figure we use
four exemplary PDC states with rising effective mode numbers
K =1,2,5,10, where K = 1 corresponds to the single-mode
case discussed in Sec. III. Figure 4 shows that the mixing in
frequency diminishes the maximal attainable fidelities over the
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FIG. 5. (Color online) Heralding probabilities, p(heralding), and
single-photon Fock-state fidelities, Fidelity, of the state created using
various multimode PDC sources in conjunction with a photon-
number-resolving detector featuring unit detection efficiency n = 1.
Again, multiple frequency modes K = 2,5,10 severely limit the
achievable maximum fidelities.
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whole range of heralding rates (K = 2, 5, and 10 plotted up
to B = 1.36).

This mixing in frequency modes also negatively af-
fects photon-number-resolved detection. Figure 5 depicts the
heralding of single photons from a multimode PDC state using
a photon-number-resolving detector with efficiency n = 1.
Again the maximum achievable fidelities are constrained by
the number of optical modes in the PDC.

In total multimode spectral effects ultimately limit the
achievable heralded single-photon fidelities. This issue con-
sequently must be addressed by generating the PDC state in
a single spectral mode as discussed in Sec. III. Alternatively,
filtering the idler beam can be applied to create single photons
in a single spectral mode, yet at the expense of severe losses
in photon number.

V. DETERMINISTIC PURE-SINGLE-PHOTON
GENERATION WITH SWITCHED PDC SOURCES

Our previous calculations showed that it is impossible
to build a pure deterministic single-photon source using a
single PDC process. However, it has been noted that multiple
PDC sources in a switched setup may be able to create a
source approximating deterministic behavior [57-60]. This
approach employs multiple PDC single-photon sources: When
one signals the successful heralding of a single-photon state,
the photon is routed to the output. Given a photon heralding
probability of v and lossless routing the overall heralding
probability in a switched setup—as a function of the number

Deterministic Pure and deterministic
photon source single-photon source

PDC
1.0 *
0.8 _@
3
£ 06
o
0.2 O

PNR heralding

0.0 0.2 0.4 0.6 0.8 1.0
Fidelity

G’ure single-photon source]

FIG. 6. (Color online) Heralding probabilities, p(heralding), and
fidelities, Fidelity, accessible using a single-mode PDC source in
conjunction with a binary detector (orange-shaded region), a photon-
number-resolving detector (red-shaded region), and multiplexing
(yellow-shaded region). For an optimal source and a perfect photon-
number-resolving detector with heralding probability of v = 25% 17
PDC sources are required to obtain a deterministic single-photon
source (>99% emission probability). The arrows point out the
achievable heralding rates using a multiplexed setup of 1, 2, 5, and
10 single photon sources.
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of applied PDC sources n—is
p(“switched”) =1 — (1 — v)". (18)

Figure 6 presents the impacts of multiplexing on the rates
and fidelities and summarizes our results. A single-mode
PDC source in conjunction with binary detectors suffers from
an inherent trade-off between high heralding rates and high
fidelities (orange-shaded region). Photon-number-resolving
detectors solve this issue and enable heralding efficiencies up
to 25% and unit fidelities (red-shaded region). Multiplexing
these single PDC setups enables access to sources featuring
high heralding rates in conjunction with unit fidelities (yellow-
shaded region). The achievable rates for the multiplexing of 1,
2,5, and 10 PDC sources are displayed in Fig. 6.

The overhead in the number of PDC sources is, of
course, quite significant. Hence, the most practicable route
to create deterministic pure single-photon Fock states us-
ing PDC is first to move from binary to photon-number-
resolved detection which enables unit fidelities and sig-
nificant heralding rates for a single source. Multiplexing
these setups gives access to the desired pure deterministic
behavior. Given optimal PDC sources with perfect photon-
number-resolved detection (v = 25%) 17 PDC setups are
required to approximate a deterministic pure single-photon
source (>99%).

VI. CONCLUSION

In conclusion, we determined the prospects for PDC
to serve as a pure deterministic single-photon source. We
investigated the effects of the spectral and the photon-number
degree of freedom on heralding pure single-photon states from
PDC. Our findings show that the spectral degree of freedom
limits the achievable fidelities of the heralded signal states and,
hence, spectral effects have to be negated by engineering of
the PDC process to occupy a single spectral mode.

For a PDC state free of multiple spectral modes the
remaining limitations stem from the higher-order photon
components and the applied detectors. Binary detectors feature
an inherent trade-off between high heralding probability and
near unit state fidelity, whereas photon-number-resolving
detectors are able to herald pure single-photon Fock states with
aprobability of up to 25%, given unit detection efficiencies and
an optimal PDC state with a twin-beam squeezing of 7.64 dB
((npn) = 1). This forms the fundamental limit on heralding
pure single-photon states using PDC. Applying a switched
PDC setup to increase the heralding rate 17 individual sources
are, hence, required to approximate a pure deterministic
single-photon source (>99% emission probability).

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme FP7/2007-2013 under the grant agreement Q-Essence
248095. The authors thank Kaisa Laiho, Malte Avenhaus,
Helge Riitz, and Benjamin Brecht for useful discussions and
helpful comments.

023829-5



ANDREAS CHRIST AND CHRISTINE SILBERHORN

[1] N. Gisin and R. Thew, Nat. Photon. 1, 165 (2007).

[2] V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330
(2004).

[3] 1. A. Walmsley and M. G. Raymer, Science 307, 1733
(2005).

[4] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M.
Petroff, L. Zhang, E. Hu, and A. Imamoglu, Science 290, 2282
(2000).

[5] C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and
Y. Yamamoto, Nature 419, 594 (2002).

[6] A. Kuhn, M. Hennrich, and G. Rempe, Phys. Rev. Lett. 89,
067901 (2002).

[7] J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin,
A. Browaeys, and P. Grangier, Nature 440, 779 (2006).

[8] P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N.
Matsukevich, and C. Monroe, Nat. Phys. 3, 538 (2007).

[9] H. G. Barros, A. Stute, T. E. Northup, C. Russo, P. O. Schmidt,
and R. Blatt, New J. Phys. 11, 103004 (2009).

[10] J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. Russell,
Opt. Express 13, 534 (2005).

[11] J. Chen, K. F. Lee, C. Liang, and P. Kumar, Opt. Lett. 31, 2798
(2006).

[12] J. Fan and A. Migdall, Opt. Express 15, 2915 (2007).

[13] J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G.
Rarity, Phys. Rev. Lett. 99, 120501 (2007).

[14] B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and 1. A.
Walmsley, Opt. Express 17, 23589 (2009).

[15] A.Ling, J. Chen, J. Fan, and A. Migdall, Opt. Express 17, 21302
(2009).

[16] C. Soller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky,
N. Y. Joly, P. S. J. Russell, and C. Silberhorn, Phys. Rev. A 81,
031801 (2010).

[17] C. Soller, O. Cohen, B. J. Smith, I. A. Walmsley, and
C. Silberhorn, Phys. Rev. A 83, 031806 (2011).

[18] C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044
(1987).

[19] S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall,
Metrologia 43, S56 (2006).

[20] T. Pittman, B. Jacobs, and J. Franson, Opt. Commun. 246, 545
(2005).

[21] A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley,
Phys. Rev. Lett. 93, 093601 (2004).

[22] A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek,
and S. Schiller, Phys. Rev. Lett. 87, 050402 (2001).

[23] P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B.
U’Ren, C. Silberhorn, and I. A. Walmsley, Phys. Rev. Lett. 100,
133601 (2008).

[24] A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, Phys.
Rev. Lett. 106, 013603 (2011).

[25] T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy,
E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink,
W.P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller,
Optics Express 19, 24434 (2011).

[26] P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and
J. Schaake, Phys. Rev. Lett. 105, 253601 (2010).

[271 H. S. Poh, J. Lim, I. Marcikic, A. Lamas-Linares, and
C. Kurtsiefer, Phys. Rev. A 80, 043815 (2009).

[28] P. Sekatski, N. Sangouard, F. Bussieres, C. Clausen, N. Gisin,
and H. Zbinden, e-print arXiv:1109.0194 (2011).

[29] J. Huang and P. Kumar, Phys. Rev. A 40, 1670 (1989).

PHYSICAL REVIEW A 85, 023829 (2012)

[30] M. N. O’Sullivan, K. W. C. Chan, V. Lakshminarayanan, and
R. W. Boyd, Phys. Rev. A 77, 023804 (2008).

[31] P. P. Rohde, J. G. Webb, E. H. Huntington, and T. C. Ralph, New
J. Phys. 9, 233 (2007).

[32] P. P. Rohde, e-print arXiv:quant-ph/0703238 (2007).

[33] Y. P. Huang, J. B. Altepeter, and P. Kumar, Phys. Rev. A 84,
033844 (2011).

[34] W. Wasilewski, C. Radzewicz, R. Frankowski, and K. Banaszek,
Phys. Rev. A 78, 033831 (2008).

[35] D. Achilles, C. Silberhorn, and I. A. Walmsley, Phys. Rev. Lett.
97, 043602 (2006).

[36] W. Mauerer, M. Avenhaus, W. Helwig, and C. Silberhorn, Phys.
Rev. A 80, 053815 (2009).

[37] M. A. Broome, M. P. Almeida, A. Fedrizzi, and A. G. White,
Optics Express 19, 22698 (2011).

[38] S. Virally, S. Lacroix, and N. Godbout, Phys. Rev. A 81, 013808
(2010).

[39] M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, Phys.
Rev. A 68, 043814 (2003).

[40] A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni,
F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva,
G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Levy, and
A. Fiore, Nat. Photon. 2, 302 (2008).

[41] B. E. Kardynal, Z. L. Yuan, and A. J. Shields, Nat. Photon. 2,
425 (2008).

[42] M. Micuda, O. Haderka, and M. Jezek, Phys. Rev. A 78, 025804
(2008).

[43] M. Fujiwara and M. Sasaki, Appl. Phys. Lett. 86, 111119 (2005).

[44] A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and
C. Silberhorn, New J. Phys. 13, 033027 (2011).

[45] A. Christ, K. Laiho, A. Eckstein, T. Lauckner, P. J. Mosley, and
C. Silberhorn, Phys. Rev. A 80, 033829 (2009).

[46] In the high-gain regime time-ordering effects have to be
considered in the derivation of Eq. (1) [61].

[47] J. Smirr, M. Deconinck, R. Frey, I. Agha, E. Diamanti, and
I. Zaquine, e-print arXiv:1108.5884 (2011).

[48] A. M. Branczyk, T. C. Ralph, W. Helwig, and C. Silberhorn,
New J. Phys. 12, 063001 (2010).
[49] W. P. Grice and 1. A. Walmsley, Phys. Rev. A 56, 1627 (1997).
[50] S. M. Barnett and P. M. Radmore, Methods in Theoretical
Quantum Optics (Oxford University Press, Oxford, 2003).
[51] P. P. Rohde, W. Mauerer, and C. Silberhorn, New J. Phys. 9, 91
(2007).

[52] C. Silberhorn, Contemp. Phys. 48, 143 (2007).

[53] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and
G. J. Milburn, Rev. Mod. Phys. 79, 135 (2007).

[54] R. Jozsa, J. Mod. Opt. 41, 2315 (1994).

[55] A. B. U’Ren, K. Banaszek, and I. A. Walmsley, Quantum Inf.
Comput. 3, 480 (2003).

[56] J. H. Eberly, Laser Phys. 16, 921 (2006).

[57] A. L. Migdall, D. Branning, and S. Castelletto, Phys. Rev. A 66,
053805 (2002).

[58] T. B. Pittman, B. C. Jacobs, and J. D. Franson, Phys. Rev. A 66,
042303 (2002).

[59] X.-s. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger,
Phys. Rev. A 83, 043814 (2011).

[60] T. Jennewein, M. Barbieri, and A. G. White, J. Mod. Opt. 58,
276 (2011).

[61] W. Wasilewski, A. 1. Lvovsky, K. Banaszek, and C. Radzewicz,
Phys. Rev. A 73, 063819 (2006).

023829-6



Dass ich erkenne, was die Welt
Im Innersten zusammenhalt.

(Faust I, Vers 382 f)

8. PDC source engineering

8.1. Introduction

As we have discussed in Chap. 7, any multi-mode PDC character poses a severe hin-
drance for the heralding of pure single-photon states from PDC. Furthermore most PDC
states are not suitable for quantum communication applications due to the fact that the
multitude of generated EPR-states from a PDC source share only marginal squeezing
amplitudes (see Chap. 10). It is hence vital to develop PDC sources which emit, de-
pending on the intended application, all their photons into a single or very few optical
modes. For this purpose a multitude of approaches have been investigated under the
label of source engineering.'»>

In waveguided PDC, however, all current approaches rely on favorable dispersion
properties, only present in a few nonlinear crystal materials. Especially the widely
deployed lithium niobate crystals do not allow for a single-mode emission

In this chapter put forward an alternative approach and explore a promising method
to create single-mode PDC-states at arbitrary signal and idler wavelengths almost inde-
pendent of the applied nonlinear material by generating the signal and idler beams into
opposite directions. Our investigations reveal that these down-converted PDC states
carry minimal spectral correlations and further feature the additional advantage of an
inherent separation of the signal and idler beams.

8.2. Source engineering

As discussed in Sec. 4.4 we require a PDC process with a phase-matching function
featuring a positive slope, or being aligned along one axis, in frequency space. Using
an appropriately shaped pump beam this enables us to create a decorrelated frequency
spectrum f(wg,w;) which, in turn, leads to single-mode emission. The exact slope of the
phase-matching function is given by the formula [52]

f = —arctan [VS — i} ; (8.1)

Vi — Vp Vs

"'While the term source engineering could in principle refer to any engineering of the down-conversion
process it has been established as a label for the design of PDC sources emitting a single optical
mode.

2This chapter is a summary of the paper “Pure single photon generation by type-I PDC with backward-
wave amplification” by Andreas Christ, Andreas Eckstein, Peter J. Mosley, and Christine Silberhorn
[5].
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where v labels the group velocity of the individual beams. From Eq. (8.1) it is evident
that we require a PDC process where the group velocities of the signal v4 or the idler
v; pulse are as fast or slower than the pump pulse v,. This leads to a phase-matching
function which has a positive slope, or is aligned along one axis in frequency space.

Achieving this, however, is not an easy feat. In all standard nonlinear optical materials
the dispersion is monotonically decreasing with wavelength. In consequence beams at
higher wavelengths travel faster through the material than waves at lower wavelengths.
Since the signal and idler waves are approximately at double the wavelengths of the
pump it seems impossible to achieve group velocity matching. Fortunately a lot of
nonlinear optical materials are birefringent, which enables us to slow down the group
velocity of the signal or idler wave by emitting the field in a polarization orthogonal
to the pump. Still the range of the available materials is restricted. As of now only
KTP has been shown to emit waveguided PDC states with single-mode characteristics
(37, 52, 24, 36, 100]. Alternatively Bragg waveguides can be applied to modify the
effective dispersion properties for the involved optical beams [120]. A review of group
velocity matching is given in [52].

8.3. Source engineering via counterpropagating PDC

From the discussion in Sec. 8.2 one would naively suggest, that the constraint that either
the signal or idler wave has to travel through the crystal beyond the pump wave, can
alternatively be fulfilled by generating the signal and idler beams in opposite directions.
While this suggestion seems, at first glance, ridiculous, it in fact gives, as we will show,
the desired result.

The idea to generate signal and idler photons in opposite directions is almost as old
as the first theoretical description of PDC and was first proposed in 1966 by S. E.
Harris in the framework of three-wave-mixing processes [121]. For the generation of
counterpropagating photon pairs in PDC this approach was revisited by Booth et. al.
in 2002 [122].

Signal i ];QPM
Idler 2) g < <
X ] ——»
Pump " .
Nonlinear
crystal 0=k, —ks+ ki —kgrm

Figure 8.1.: Counterpropagating waveguided PDC. Signal and idler are leaving the crys-
tal at opposite ends.

The general counterpropagating PDC process is sketched in Fig. 8.1. In this scenario
the signal and idler photons are leaving the waveguide at opposite ends. This has a
drastic effect on the phase-matching conditions. In the standard configuration, discussed
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in Chap. 4 the momentum of the pump pulse has to be compensated by the momentum
of the signal and idler photons, with a small additional quasi-phase-matching vector. In
the counterpropagating scenario, however, the situation is different. As depicted in Fig.
8.1 the idler photon is propagating backwards, which means that now the signal and idler
momenta almost cancel each other and the pump momentum has to be accounted for by
the quasi-phase-matching. This requires grating periods in the sub-micron regime about
0.2 -0.6 um. While technologically challenging these have already been demonstrated in
planar semiconductor waveguides [123, 124] and KTP crystals [125].

Mathematically we have to alter the phase-mismatch Ak from Sec. 4.3 to take into
account, the backward propagation of the idler photon. We obtain

Ak =k, — ky+k; — 27 /A, (8.2)

where we included a plus instead of a minus sign in front of k; to model the backward
propagating of the idler photon. This minus sign affects the angle 6 of the phase-
matching function in frequency space:

0 = —arctan [VS — b ﬂ} (8.3)

VitV Vs

Considering the relative group velocities of the signal, idler and pump beams the terms in
the numerator will almost cancel each other, while the denominator will have a significant
value. We hence obtain a horizontal phase-matching function (6 ~ 0).

Pump Phasematching JSA
1553 1553, 1553,

1551 1551

A; [nm]
A; [nm]
A; [nm]

1549 1549

1547

: 1547 1547
1547

1549 1551 1553 1547 1549 1551 1553 1547 1549 1551 1553
Ay [nm] Ay [nm] Ay [nm]

Figure 8.2.: Pump envelope, Phasematching function and JSA plotted in the Gaussian
approximation; Parameters: LN, type-I PDC, e-polarized rays, pump central
wavelength A\, = 775nm, FWHM of the pump intensity distribution A\, =
0.58 nm, waveguide dimensions: 4 ym x 4 ym x 5mm, grating period A =
0.35 pm.

Fig. 8.2 illustrates the pump distribution and phase-matching function of a coun-
terpropagating PDC process in periodically poled LN. The narrow horizontal phase-
matching function together with the broad pump beam yields a decorrelated JSA distri-
bution oriented along the signal axis. The generated photon pairs are decorrelated and
consequently the source emits PDC states in a single optical mode.
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We further note that this decorrelation process is independent from the material and
its dispersion properties since the angle of the phase-matching is no longer determined
by the material properties but, in the first place, by the counterpropagating nature of
the signal and idler beams.

8.4. Numerical analysis

We quantify the single-mode character of counterpropagating signal and idler photons
by numerically investigating periodically poled KTP and periodically poled LN (PPLN)
in a waveguided PDC setup.

In PPLN we chose the type-I down-conversion process with the highest nonlinearity,
where extraordinary—]golarized pump photons decay into extraordinary-polarized signal

and idler photons (Xe?e = 63pm/V). In KTP we analyzed strictly z-polarized signal,

idler and pump waves making use of the largest tensor element x\%. = 27.4pm JV [47].

We investigated two different scenarios, depicted in Fig. 8.3. In Fig. 8.3 (a) we tune
the signal and idler wavelengths from 800nm to 1600nm, with corresponding pump
wavelength A\, = Ay ,;/2 and grating period A = 27/(k, — ks + k;) about A ~ 0.5 ym. For
each parameter set we adjust the pump width A\, in the range A\, = 0.02 — 0.35nm
to give a maximal decorrelation. The figure gives the probability of the photon-pairs to
be emitted in the first-optical mode.

Similarly we quantified the amount of decorrelation in Fig. 8.3 (b), yet here we fixed
the idler wavelength at 1550 nm and only adjusted the signal wavelength optimizing the
pump width from A\, = 0.02 — 0.35 nm.

(@) Degenerate (Ag=A\;) counterpropagating PDC (b) Nondegenerate (A;=const.) counterprop. PDC
= 1 3 i ;
o H—-P-HFH-H‘T‘— Y R EaRAAANEEEEAR NS EEENAESEEEEEEEEEEELALERELEEELEREEL L
% ﬁ_—..’-’ﬂ'ﬂ-'—'ﬁﬁ o §
g 09 — g 09
E s E o8
[53 [53
(%] 193}
® k)
= 0.7 = 0.7
Q Q
s s
S 06 S 06
= P — £ TP ——
2 PPLN »eeeveee 2 PPLN »:reenee
= 05 = 05 L
800 900 1000 1100 1200 1300 1400 1500 1600 1300 1350 1400 1450 1500 1550 1600 1650
Signal/ldler wavelength [nm] Signal wavelength [nm]

Figure 8.3.: (a) In counterpropagating PDC it is possible to generate separable degen-
erate signal and idler photons in the range from 800 to 1600 nm. (b) The
separability is maintained for nondegenerate PDC (\; = 1550 nm).

Our results show that this approach achieves a high degree of separability in a broad
frequency range, almost independent of the applied material and dispersion relations.
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8.5. Conclusion

In conclusion we presented a new method to create single-mode PDC sources based on
emitting the signal and idler photon pairs in opposite directions. This enables us to
use almost every nonlinear material, independent of its dispersion relation, in a broad
frequency range for single-mode PDC, as long as the required grating periods can be
produced.
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Abstract:  We explore a promising method of generating pure heralded
single photons. Our approach is based on parametric downconversion in
a periodically-poled waveguide. However, unlike conventional downcon-
version sources, the photon pairs are counter-propagating: one travels with
the pump beam in the forward direction while the other is backpropagating
towards the laser source. Our calculations reveal that these downcon-
verted two-photon states carry minimal spectral correlations within each
photon-pair. This approach offers the possibility to employ a new range of
downconversion processes and materials like PPLN (previously considered
unsuitable due to its unfavorable phasematching properties) to produce
heralded pure single photons over a broad frequency range.
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1. Introduction

Linear optical quantum computing (LOQC) schemes, such as continuous variable entangle-
ment distillation [1] or single photon quantum gates [2] require sources of pure heralded single
photons. Such single photon sources may be realized via photon pair generation by parametric
downconversion (PDC). The photon number correlation between the resulting fields, typically
labelled signal and idler, can be exploited to herald the existence of one photon by detection
of its partner. However the purity of the heralded photon is limited by spatial and spectral cor-
relations within each photon pair arising from energy and momentum conservation between
pump, signal and idler photons. One possibility of generating pure heralded single photons
without spectral filtering and a reduction in the source brightness is group velocity matching
[3]. However this approach to generate separable photon pairs is limited to a few materials and
wavelength ranges.

Most PDC experiments to date have been performed in bulk crystals, yet lately a lot of
attention has been focused on PDC in waveguides. The main advantage of PDC in rectangular
waveguides is the strict collinear propagation of the pump, signal and idler fields, in contrast
to angular dispersion in bulk crystal setups. Along with the high modal confinement inside
the waveguide this leads to a large increase in collection efficiency [4] and the elimination of
spatial correlations. Furthermore, due to the strict collinear propagation of pump, signal and
idler beams these sources are much more convenient to handle in the laboratory.

The spectral properties of PDC states are governed by the phasematching properties of the
nonlinear material and this determines the frequencies of the downconverted photons. In a
bulk nonlinear crystal one can exploit noncollinear PDC to achieve perfect phasematching,
but this approach cannot be used in a waveguide structure as the direction of propagation is
fixed. Instead, one must adopt quasi-phasematching (QPM) [5, 6]: A spatial periodic variation
of the xi(ji)-nonlinearity in the crystal introduces a new so called quasiphasematching vector
(kopm = 21/ A), for a sinusoidal poling with period A. In that way it is in principle possible to
choose the signal and idler wavelengths freely, under the restriction of energy conservation.

The generation of backward-wave oscillations in three-wave-mixing processes was proposed
in 1966 [10]. For the generation of correlated photon pairs in waveguided PDC this approach
was revisited in 2002 by Booth et. al. [11]. In this configuration almost all the momentum of
the pump photon has to be compensated by the QPM poling structure within the crystal. This
requires grating periods in the sub-micron range (0.2 -0.6 um) for signal and idler photons
generated in the range from 800 to 1600 nm.

Quasiphasematched PDC processes with counterpropagating signal and idler photons and
a perpendicularly propagating pump in planar semiconductor waveguides have already been
observed [12, 13], and their respective quantum properties have been studied [14]. However,
to date, the high absorption in semiconductor materials and tiny interaction volume limit the
achievable photon flux. In dielectric materials a breakthrough has been made towards sub-
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micron poling periods in the past year: Backward-wave oscillation in potassium titanyl phos-
phate (KTP) has been reported [15], and simultaneously in lithium niobate (LN) new sub-
micron poling techniques have been explored [16]. Therefore the required crystals are within
reach.

In this paper, we consider a collinear waveguided PDC setup with counterpropagating signal
and idler fields. We show that this configuration allows the generation of pure heralded single
photons in a large range of nonlinear materials and wavelengths.

2. ThePDC state

The frequency structure of a downconverted copropagating two-photon state is found to be [7]:

2
" + Wi — . L L R R
vei) = [0)+ [ [dosdorexp [—(“’5262“] sinc (zAk) exp {—IZA@ al ()a] (o) 0)
o ws+ay) (s, 01)

1)
The pump distribution o (ws + ;) is given by the incoming laser. In our case we assume a
mode-locked pulsed laser system with a Gaussian frequency distribution, centered around @,
with width o. The phasematching function ¢ (ws, i) is governed by the waveguide dimensions
and crystal dispersion, ensuring momentum conservation (Ak = kp — ks — ki — kgpm). Because
of the strict collinear propagation inside the waveguide the transverse wavevector mismatch
does not enter Eq. (1). The product of these two functions gives the joint spectral amplitude
(JSA): f(ws, i) = o(ws + i) - ¢(ws, ;). For analytic calculations the two-photon state is
often simplified with the Gaussian approximation (sinc(x) ~ exp(—yx?) where y ~ 0.193).
Heralding one photon of this PDC-state will in general lead to a mixed heralded single photon
state, due to correlations in the JSA (f (ws, ;)) [8]. Pure heralded single photons are created
if and only if the downconverted two-photon state can be written as a product state |ys i) =
|ws) @ |yi). This requires a separable JSA: f(ws, ;) = f(ws)f(w;). In order to quantify the
separability of the generated PDC states one has to perform a Schmidt decomposition [9], i.e.
a basis transformation into a set of orthonormal Schmidt modes, |yg' (ws)) and |y (@;)):

Wsi(@s, @) = X v/ 20 W2 (@6)) @ [y (a1)) )

The probability to emit a photon pair into one specific pair of Schmidt modes |y (@s)) ®
[y ()) is given by Ay, which is monotonically decreasing for successive higher order modes.
Thus a perfectly separable state corresponds to a state where the full weight of the probability
distribution accumulates on the first pair of Schmidt modes (19 = 1).

3. Backward-wave oscillations

(@) (2) (b) X (c)
pump X e i Fame
photon 3
o> o« == > e “p _,_,"
A — -
idler photon signal photon wj ks kp
—_—
L v
waveguide chip wp = We + W 0= kyp— ks + ki — kgpu

Fig. 1. Waveguided parametric downconversion with one backward-wave oscillation: (a)
Process scheme, (b) Energy conservation, (c) Momentum conservation.
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Figure 1 illustrates the generation of counterpropagating photon pairs and the corresponding
energy and momentum conservation conditions. To account for the backward propagating wave
in our formalism (Eq.(1)), we have to alter the momentum conservation condition:

Ak =Ky — ks+ki — 27 /A. 3)

This has a significant effect on the properties of the generated two-photon-states. The biggest
advantage over copropagating PDC are the different requirements to generate separable two-
photon states. With the Gaussian approximation and expansion of the wave vector mismatch
Ak as a Taylor series up to the first order, we are able to analytically derive a condition for
separability from Eq. (1) and (3) (analogous to [8]):

2 2 1 1 11
0= 25+ (6 —K) (ky ) = 25+ (Vp - v) (vp+vi> | @
Therefore a waveguide in which the pump pulses propagate faster than the downconverted
forward propagating signal pulses (vs < vp) will generate separable photon pairs. Note that
this requirement is much easier to satisfy than that for the usual copropagating case, where the
group velocities must satisfy either vs < vp < vj or vi < vp < vs [8].
Further insight is obtained by deriving the angle of the phasematching function in the
{ ws, wi }-plane:

KK v
6 = —arctan | -— | = —arctan [vsvp v.] (5)
Ky +Ki Vi+Vp Vs

Here 6 is defined as the angle between the phasematching function and the signal axis. As
can be deduced from Eq. (4) and (5), the condition for factorability requires a phasematching
angle between 0° < 6 < 90°. Considering the relative magnitude of the numerator and denom-
inator in Eq. (5), identical group velocities for the signal, idler and pump waves will result in
a horizontally orientated phasematching function and a factorable JSA. This is in very good
agreement with the small group velocity dispersion in common nonlinear materials over the
relevant wavelength region vs(ws) ~ vi(mi) ~ vp(ws + ;). These requirements are opposed
to copropagating decorrelation proposals which rely on different group velocities for the sig-
nal, idler and pump waves. In the counterpropagating case very similar group velocities are
demanded, a requirement that is much more robust and easier to fulfill.

The highly nonlinear crystal LN, commonly used in PDC experiments to generate photon
pairs is unable to produce factorable copropagating photon pairs, but can be used to gener-
ate separable pairs in the backward-propagating regime. Figure 2 illustrates this particular ex-
ample of a separable counterpropagating two-photon state. It demonstrates several benefits of
the backward-wave approach simulated using periodically poled LN (PPLN) as the nonlinear
medium. The momentum mismatch changes to a much stricter condition in comparison with
copropagating PDC. This leads to an extremely narrow spectral width of the backpropagating
photons, almost one order of magnitude smaller than the spectral distribution of the forward
propagating photon. In this case, the FWHM of the wavelength distribution is 0.09 nm for
the backpropagating photon and 0.73 nm for the forward propagating photon. The narrow fre-
quency bandwidth of the backpropagating photon makes it very well suited for long distance
transmission in optical fibers.

It has to be noted that according to [17], the total photon pair production rate will decrease
with respect to sources that create strictly forward propagating photons, but the effective gener-
ation rate can still exceed bulk crystal setups due to the high nonlinearity and higher collection
efficiencies in a waveguide architecture.

(C) 2009 OSA 2March 2009/ Vol. 17, No. 5/ OPTICS EXPRESS 3444



Pump Phasematching JSA

1553 1553, 1553

1551 1551 1551

A; [nm]
A; [nm]
A; [nm]

1549 1549 1549

1547 1547 1547
1547 1549 1551 1553 1547 1549 1551 1553 1547 1549 1551 1553

A [nm] A [nm] A [nm]

Fig. 2. Pump envelope, Phasematching function and JSA plotted in the Gaussian approxi-
mation without phase; Parameters: LN, type-1 PDC, e-polarized rays, pump central wave-
length A, = 775 nm, FWHM of the pump intensity distribution A4, = 0.58 nm, waveguide
dimensions: 4 um x 4 um x 5 mm, grating period A = 0.35 um.

In more general terms we would like to emphasise that the separability of a downconverted
photon pair is almost independent of the signal and idler frequencies (Fig. 3(a)). With appropri-
ate grating periods it is possible to generate separable degenerate signal and idler photons from
800 nm (where detectors are most efficient) to 1550 nm (the wavelength with minimal loss in
optical fibers). This can be used to create a tuneable pure heralded single photon source. As
depicted in Fig. 3(b), for a fixed grating period different pump wavelengths lead to a change in
the downconverted signal wavelength, whereas the separability and the idler frequency remain
constant. Hence the wavelength of the signal photon can be tuned by changing the pump wave-
length, without impact on the idler frequency and with very little change in the separability.

4. Numerical analysis

To quantify the stated benefits, we numerically investigated periodically poled LN (PPLN)
and periodically poled KTP (PPKTP) as sources of separable counterpropagating photon pairs.
In PPLN we chose the type-l1 downconversion process with the highest nonlinearity, where
extraordinary-polarized pump photons decay into extraordinary-polarized signal and idler pho-

tons (Xe(ge) =63 pm/V). In KTP we analyzed strictly z-polarized signal, idler and pump waves

making use of the largest tensor element xz(zzz) =27.4 pm/V.

The rectangular waveguide embedded in the crystal material was modelled with standard
dimensions of 4 um x 4 um x 5 mm and a realistic refractive index step between waveguide
and surrounding material of 0.01 . To simulate the propagation of our signal, idler and pump
waves inside the waveguide we calculated the spatial modes of signal, idler and pump fields
according to [18, 19]. The resulting decomposition of the wavevector into its longitudinal and
transverse components enabled us to correct the bulk crystal Sellmeier equations and to obtain
a modified JSA. In the scope of this paper we assume that the signal, idler and pump fields
propagate in the fundamental waveguide mode.

We investigated the possibility of generating decorrelated and degenerate photon pairs in
the range of 800 nm to 1600 nm. For each studied signal and idler degeneracy wavelength the
pump wavelength was chosen appropriately (Ap = Asi/2), and the grating was matched to give
phasematching at the degeneracy point (A = 27 /(kp — ki —ks)). For each parameter set (As =
Ai = 2A4p, A(2s,Ai)) we optimized the pump width AAp in the range from AL, = 0.02—0.35
nm to yield a state with maximum separability. The optimum value of A4, was determined by
performing a Schmidt decomposition according to Eq. (2) for every set of parameters.

The results are depicted in Fig. 3(a): The overall probability of the generated photon pairs
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Fig. 3. (@) In counterpropagating PDC it is possible to generate separable degenerate signal
and idler photons in the range from 800 to 1600 nm. (b) The separability is maintained for
nondegenerate PDC (4; = 1550 nm).

to be emitted in the first pair of Schmidt modes (A) is very high and only differs slightly for
KTP and PPLN. The general improvement in separability for higher wavelengths is due to the
fact that in this region the group velocities of the signal, idler and pump waves almost perfectly
equal each other.

In a similar manner we checked the feasibility of this setup as a frequency-tuneable pure
heralded single photon source using nondegenerate PDC (Fig. 3(b)). For a constant grating pe-
riod A yielding phasematching at 1550 nm for signal and idler, we investigated the impacts
of tuning the pump central frequency. Due to the horizontal orientation of the phasematching
function the frequency distribution of the idler photons remains unchanged. However the fre-
quency of the forward propagating signal photon shifts with the pump frequency. Again the
pump width was chosen to yield a maximally separable two-photon states, now in the range
from AAp = 0.22 — 0.34 nm. Once more our results are almost independent of the chosen non-
linear crystal and the constant high level of separability shows that with this setup it will indeed
be possible to create a tuneable pure heralded single photon source.

5. Conclusion

We have examined the spectral properties of downconverted counterpropagating two-photon
states in rectangular waveguides. The major differences in comparison with copropagating
downconverted photon-pairs allow us to exploit a wide range of processes and materials for
heralded single photon generation. This technique provides separable two-photon states for a
wide range of degenerate and non-degenerate signal and idler wavelengths which will be useful
for practical purposes such as LOQC. Due to the progress in the production of microstructured
waveguides an experimental implementation of our proposal will be feasible in the near future.

The authors would like to thank Wolfgang Mauerer for his support on the numerical analysis.
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It would be so nice if something
made sense for a change.

(Alice in Wonderland)

9. Probing PDC states using
correlation functions

9.1. Introduction

For the deployment of parametric down-conversion sources in the laboratory it is vital to
assess the quality of the generated quantum states. However, as we have seen in Sec. 4.4
the generated EPR states exhibit, in general, multi-mode characteristics. This inherent
multi-mode character renders these states powerful for coding quantum information (see
Chap. 10), yet the same feature impedes a proper experimental characterization. Due
to the sheer vastness of the corresponding Hilbert space, standard quantum tomography
methods become time-consuming and ineffective. It is neither easy to determine the
degree of squeezing in each mode, nor the amount of generated twin-beam squeezers.
Nonetheless, these are the key benchmarks defining the potential of a source for quantum
information applications (see Sec. 6.2.1). In this chapter we present a new method
to characterize ultrafast multi-mode PDC states based on broadband time-integrated
correlation function measurements.’

9.2. Correlation functions

The n-th order (normalized) correlation function ¢(™(ty,ty,...,t,) is generally defined
as a time-dependent function of the electromagnetic field. It can be expressed as [126,
46, 72, 127

g(n)(tltha L) 7tn) -

ff” ) (9.1)

and measures the (normalized) n-th order temporal correlations at different points in
time independent of coupling losses and detection efficiencies [128].

The main problem with time-resolved correlation function measurements are the ap-
plied detectors which do not offer a perfect time-resolution. This impedes the measure-
ment of time-resolved correlation functions and limits its experimental applications. We,
however, exploit this exact drawback of standard correlation function measurements and

I This chapter is a summary of the paper “Probing multimode squeezing with correlation functions” by
Andreas Christ, Kaisa Laiho, Andreas Eckstein, Katitscia N. Cassemiro, and Christine Silberhorn
[6].
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t
a) tp b) D

— Optical pulse

— Detection gate

>

Figure 9.1.: a) perfect time-resolved detection; b) broadband time-integrated detection
gate exceeding the pulse duration.

define broadband time-integrated correlation functions using photo-detectors exhibiting
flat detection windows, exceeding the length of the investigated pulses. We obtain:

) [dty...dt, (aT t1 at(tn)a(ty) ... alt,))
7 Tt (af (t)al fdt (@t (ty)a(tn))

In order to be able to perform straightforward calculations with our broadband time-
intergrated correlation function rneasurements we perform a Fourier transform from the

9.2)

time domain into the frequency domain ( f dw a(w)e™"):
= [dw; ... dw, (@ T(cul) &T(wn)&( 1) - a(wy))
[ dw; (af(wi)a(wr)) . .. [ dw, (@l (ws)a(wy))
_ Ut o 03

< J dwaf(w >

Here (: --- :) indicates normal ordering of the enclosed photon creation and destruction
operators. We further adapt the correlation function measurement to the broadband
mode basis discussed in Sec. 4.4 and remain with:

(n) <: (Z’“ ALA'C) :>
g\ = T (9.4)
<Zk AkAk>
Similarly, if we want to measure the correlations between two different beams, we are

able to derive broadband time-integrated cross-correlation function measurements which
evaluate to:

(: (J dwal @)a(w))" = (f dwbl @)b(w)) " )
(J dwit(@)a(w))" ([ dwbt(@)b(e))”
(A (2 Bl
(S ALAY (5, BB

(n,m)

g ’ =

(9.5)
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Eq.(9.1) and Eq. (9.2) stress the key difference between time-resolved and time-integrated
correlation function measurements. In a time-resolved correlation function measurement
we probe the optical pulse at a specific point in time. In our broadband time-integrated
correlation function measurement we probe the full pulse.

9.3. Probing PDC states via correlation functions

Using the broadband time-integrated correlation functions, as defined in Sec. 9.2, we
are able to effectively probe our multi-mode PDC states. The two benchmarks we are
interested in are firstly the overall optical gain B and the number of optical modes K
defined in Sec. 6.2.1.

9.3.1. Probing the number of modes via g/?-measurements

In order to probe the number of emitted modes K we have to perform a ¢g(*-measurement
as depicted in Fig. 9.2.

Frequency multimode twin-beam squeezer 9(2)-measurement

Signal

120

NS

10309

Pump Nonllnear
crystal

\
Ao

Idler

Detector

Figure 9.2.: Setup to measure ¢ of a multi-mode twin-beam squeezer.

Using PDC states, as defined in Eq. (6.3), we obtain:

® =14 s () 9.6
g + [Zk Sinhg(rk)] 2 ( )

In the low gain regime (sinh(ry) ~ rp = BA\y) Eq. (9.6) simplifies to:

9(2)%1+M: 14+ &=k R kal _|_E )\4
2
(> B2AY) (3 A2)°
1
=1+ = .
- 9.7)

We are consequently able to directly obtain the number of modes via K = 1/(g® —1).
A single-mode PDC state (K = 1) yields g = 2 whereas a state with infinitely modes
gives ¢ = 1. The correspondence between K and ¢ is depicted in Fig. 9.3.
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Figure 9.3.: Plot of the effective mode number K as a function of ¢® for various multi-

mode PDC states.

Probing the optical gain B of a PDC state via ¢(") measurements

To probe the optical gain B we have to perform a ¢! measurement as depicted in Fig.

9.4.

Frequency multimode
twin-beam squeezer

Nonlinear
crystal

g( 1’1)-measurement

103993197

1039913Q

Figure 9.4.: Schematic setup to measure gt") of a multi-mode twin-beam squeezer gen-

erated via PDC.

Using our developed broadband time-integrated correlation function formalism we
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obtain:

W Zk,l sinh?(ry,) sinh? (1) + Dok sinh?(ry,) cosh?(ry)

g =
[>2, sinh?(r4)]?
1 inh*
=1t st 2. 5i0b () (9.8)
2 Snb (i) [, snﬁl (re)]”
1/{n) g1

This measure is dependent on the optical gain B and the number of modes K via the ¢(-
measurement appearing. In the low gain regime (sinh(ry) ~ r, = B);), gV simplifies
to

4
1) 1 DM @ 1y
AR SN
kk <9 N~~~
= 1
o >
1.0
1.0,
0.8
0.8} -
LDA
0.2]
0.67 0 2 4k6 8 10
0 "
0.8
0.4} 0.6
0.4
0.2
|
0 2 4 6 8 10
0.2} x <
0.0 20 40 60 80 100

Figure 9.5.: The optical gain B plotted as a function of ¢V, For small values of B the
correlation function ¢(t'Y) assumes a high value, yet rapidly decreases when
the high gain regime is approached.

Hence, the optical gain is — in the low gain regime — obtained from the g¢(b-
measurement via the simple relation B & 1/4/¢(t1). In figure 9.5 we plot the dependence
of the overall coupling value B on ¢(Ywhich gives a high value for small optical gains
B but rapidly decreases when the high gain regime is approached.
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9.4. Conclusion

In conclusion we presented a new method to characterize ultrafast multi-mode PDC
states using broadband time-integrated correlation function measurements. They enable
a simple, straightforward and most importantly loss independent access to the PDC
process parameters and have already be proven to be a useful tool in the laboratory
(129, 36].
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Abstract. Broadband multimode squeezers constitute a powerful quantum
resource with promising potential for different applications in quantum
information technologies such as information coding in quantum communication
networks or quantum simulations in higher-dimensional systems. However,
the characterization of a large array of squeezers that coexist in a single
spatial mode is challenging. In this paper, we address this problem and
propose a straightforward method for determining the number of squeezers and
their respective squeezing strengths by using broadband multimode correlation
function measurements. These measurements employ the large detection
windows of the state of the art avalanche photodiodes in order to simultaneously
probe the full Hilbert space of the generated state, which enables us to benchmark
the squeezed states. Moreover, due to the structure of correlation functions, our
measurements are not affected by losses. This is a significant advantage, since
detectors with low efficiencies are sufficient. Our approach is less costly than
tomographic methods relying on multimode homodyne detection, which is based
on much more demanding measurement and analysis tools and appear to be
impractical for large Hilbert spaces.
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1. Introduction

The study of correlation functions has a long history and lies at the heart of coherence theory [1].
Intensity correlation measurements were first carried out by Hanbury Brown and Twiss in
the context of classical optics [2]. Since then correlation functions have become a standard
tool in quantum optical experiments for studying the properties of laser beams [3], parametric
downconversion (PDC) sources [4, 5] or heralded single photons [6]—[8]. Current state of the
art experiments are able to measure correlation functions up to the eighth order [9], giving
access to diverse characteristics of photonic states. The normalized second-order correlation
function g®(0) probes whether the generated photons are bunched or anti-bunched, with
2?@(0) < 1 being a genuine sign of non-classicality [10]. The measurement of all unnormalized
moments G of a given optical quantum state provides complete access to the photon-number
distribution for arbitrary single-mode input states [1]. Moreover, it is possible to perform a full
state tomography with the help of correlation function measurements [11].

The measurement of these correlation functions is, in general, carried out in a time-resolved
manner g™ (), t,, ..., t,). Limited time resolution has been considered as a detrimental effect
and treated as experimental imperfection [6]. In contrast to previous work, we employ the
finite-time resolution of photodetectors to gain access to the spectral character of broadband
multimode quantum states. Our scheme for measuring broadband multimode correlation
functions of pulsed quantum light is especially useful for probing squeezed states. These states
are commonly generated via the interaction of light with a crystal exhibiting a x ‘¥ -nonlinearity,
a process referred to as PDC [12]-[17] or with optical fibers featuring a x ®’-nonlinearity called
four-wave mixing (FWM) [18, 19].

In general, the generated squeezed states exhibit multimode characteristics in the spectral
degree of freedom, i.e. a set of independent squeezed states is created with each squeezer

New Journal of Physics 13 (2011) 033027 (http://www.njp.org/)
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residing in its own Hilbert space. This inherent multimode character renders these states
powerful for coding quantum information, yet the same feature impedes a proper experimental
characterization in a straightforward manner. Due to the sheer vastness of the corresponding
Hilbert space, standard quantum tomography methods become time consuming and ineffective.
It is not easy to determine either the degree of squeezing in each mode, or the amount of
generated independent squeezers. Nonetheless, these are the key benchmarks defining the
potential of a source for quantum information and quantum cryptography applications. In the
following, we investigate how to overcome these issues and elaborate on an alternative approach
for determining the properties of multimode squeezed states based on measuring the broadband
multimode correlation functions.

This paper is structured as follows. In section 2, we revisit the general structure of
multimode twin-beam squeezers drawing special attention—but not restricting ourselves—to
states generated by PDC and FWM. Section 3 presents the formalism of correlation functions,
introduces the intricacies of finite-time resolution and defines broadband multimode correlation
measurements. Section 4 combines the findings of sections 2 and 3: we analyze the relation
between the number of generated squeezers, their respective squeezing strengths and broadband
multimode correlation functions, which leads us to propose a scheme for characterizing
multimode squeezing with the aid of broadband multimode correlation functions.

2. Multimode squeezers

In a squeezed state of light, one quadrature of the field exhibits an uncertainty below the
standard quantum level at the expense of an increased variance in the conjugate quadrature,
such that Heisenberg’s uncertainty relation holds at its minimum attainable value. The standard
description of squeezed states usually considers two different types of squeezers: single-beam
squeezers and twin-beam squeezers. Single-beam squeezers create the squeezing into a single
optical mode S = exp(—¢d'+¢*a*), whereas twin-beam squeezers consist of two beams
with inter-beam squeezing S = exp(— g“aTbT +*ab) [20]. In these equations, ¢ labels the
squeezing strength and the operators 4" and b' create photons in distinct optical modes.

In this section, we go beyond the standard description and discuss the theory of squeezed
states, which are generated by the interaction of ultrafast pump pulses with nonlinear crystals or
optical fibers. Here, we concentrate on the spectral structure of the broadband output beams. In
general, the utilized optical processes, typically called optical parametric amplification (OPA)
or PDC, do not generate one but a variety of different squeezers in multiple frequency modes. A
whole set of independent squeezed beams is generated in broadband orthogonal spectral modes
within an optical beam. We refer to these states as frequency multimode single- or twin-beam
squeezers [14]. Here the multimode prefix indicates that more than one squeezer is present in
the optical beam and the term single- or twin-beam identifies whether one squeezed beam or
two entangled squeezed beams are created. Due to the single-pass configuration of our sources,
losses are negligible; hence, we restrict ourselves to the analysis of pure squeezed states.

2.1. Multimode twin-beam squeezers

The subject of our analysis is twin-beam squeezing generated by the propagation of an ultrafast
pump pulse through a nonlinear medium (single-beam squeezers are discussed in appendix B).
For simplicity we focus on the collinear propagation of all involved fields, each generated into
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a single spatial mode. This description is rigorously fulfilled for PDC in waveguides [21, 22],
but can also be applied to other experimental configurations, since the approximation carries all
the complexities of the multimode propagation in the spectral degree of freedom. If the pump
field is undepleted, we can neglect its quantum fluctuations and describe this OPA process by
the effective quadratic Hamiltonian (see appendix A for a detailed derivation)

Hopa= A /dws fdwi f(ws, wi)d\;r(ws)dj(wi) +h.c., (1)

in which the constant A denotes the overall efficiency of the OPA, the function f(ws, w;)
describes the normalized output spectrum of the downconverted beam, which—in many cases—
is close to a two-dimensional (2D) Gaussian distribution. The operators a; (w;) and cif (w;) are
the photon creation operators in the different twin-beam arms, in general labeled the signal and
the idler, respectively.

The unitary transformation generated by the effective OPA Hamiltonian in equation (1) can
be written in the form

Uopa = exp[—% <A / daw, / dw; f(ws, )] (a)s)d?(winh.c.)] . )

By virtue of the singular value decomposition theorem [23], we decompose the two terms in the
exponential of equation (2) as

A0 = Y s @),

z ¢ 3)
— AT [0 0) = = ) r (@) gu@).

k

Here both {(ws)} and {¢:(w;)} each form a complete set of orthonormal functions. The
amplitudes of the generated modes ¥ (w,) and ¢;(w;) are given by the r;, € R* distribution.
Employing equation (3) and introducing a new broadband mode basis [24] for the generated
state as

Ay = f dog(w)dy(w;) and B, = f dwigi (01)d; (w;), (4)
we obtain the unitary transformation [13]

l’}opA = eXp |:Z rkA]tB\]t — hC:|

k

= ® exp[rkAZEZ — h.c.] 5)
k

= Q) S (—ro).
k

In total, the OPA generates a tensor product of distinct broadband twin-beam squeezers as
defined in [20] with squeezing amplitudes r; related to the available amount of squeezing via
squeezing [dB] = —101og,,(e ). The Heisenberg representation of the multimode twin-beam

squeezers is given by independent input—output relations for each broadband beam
Ak = Cosh(rk)Ak + sinh(rk)éT, ©)
By = cosh(r) By +sinh(r) A .
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Figure 1. Visualization of the singular value decomposition in equation (3). The
frequency distribution —3 Af (ws, ;) of the generated state defines the shape of
the signal and idler modes ¥ (w;), ¢r(w;) and the squeezer distribution ry.

Note that the squeezer distribution r; and basis modes f\k and B « are unique and well-defined
properties of the generated twin beam. Their exact form is given by the Schmidt decomposition
of the joint spectral amplitude —5 A f (ws, ;). This mathematical transformation directly yields

the physical shape of the generated optical modes vy (ws), ¢r(w;) with each pair Ak and ék
being strictly correlated.

In figure 1, we illustrated one possible squeezer distribution and corresponding broadband
modes. The joint spectral distribution f(wy, w;) of the generated twin beams shown in figure 1
defines the shape of the broadband signal and idler modes A and By. In the special case
of a Gaussian spectral distribution, the form of the squeezing modes resembles the Hermite
functions. The number of different squeezer modes is closely connected with the frequency
correlations between the signal and idler beams. In the presented case, the spectrally correlated
beams lead to over 20 independent squeezers. The total amount of squeezing depends on the
constant A appearing in the Hamiltonian in equation (1), which is directly related to the applied
pump power I and the strength of the nonlinearity x ® in the medium (A o< /1, x ).

The OPA state is mainly characterized by the number of squeezed modes and the overall
gain of the process, both being determined by the distribution of the individual squeezing
amplitudes r;. In order to analyze the number of generated squeezers independently of the
amount of squeezing, we split the distribution of squeezing weights r; into a normalized
distribution A; (>, A7 = 1) that characterizes the probability for occupation of different
squeezers in the respective optical quantum state, and an overall gain of the process B € R¥,
quantifying the total amount of generated squeezing according to

I"k:B)\.k. (7)
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The characterization of these two fundamental properties of a multimode twin-beam state is
a major experimental challenge. While these states are easily generated in the laboratory, a
tomography by means of homodyne detection would require us to match for each squeezed
mode A, and By different local oscillator beams with adapted temporal-spectral pulse shapes.
Multimode homodyning [25] may provide a route to circumvent this difficulty; however, an
experimental implementation still appears challenging.

3. Correlation functions

The nth-order (normalized) correlation function g™ (¢, ¢, ...,1,) is generally defined as a
time-dependent function of the electromagnetic field. For quantized electric field operators, it
can be expressed as [1, 10, 26, 27]

<E(_)(t1) L EOWED @) . .. E(+)(t,,)>

(EowEo ). (B ED @)

and it measures the (normalized) nth-order temporal correlations at different points in time. Note
that this definition of the correlation functions is independent of coupling losses and detection
inefficiencies, yielding a loss resilient measure [9]. Realistic detectors, however, suffer from
internal jitter and finite gating times. We accommodate these resolution effects by weighting
the correlation function with the appropriate detection window 7 (¢) of the applied detectors as
presented in [6], and obtain

§W (i, t, . 1) = (8)

g(n)([h I, ..., tn) =
JanT@)... fd T (EOw) ... EO@ED () ... B9 )

Jan T (ECO@ED ). [anT @) (EO @) EO )

€))

If the employed photodetectors exhibit flat detection windows, exceeding the length of the
investigated pulses (7 (#) — const), equation (9) can be simplified to

N [dt, ...ds, (E“’(rl) D EOW)ED @) . .. E(+>(tn)> )
g = — - - :
Jan (ED@ED@)). .. fdn (B @) E@ )

This theoretical model is adequate for the detection of ultrafast pulses with standard
avalanche photodetectors. Furthermore, equation (10) exhibits the convenient property of
time independence and represents our generalized broadband multimode correlation function.
Despite its similarity to the common correlation functions as defined in equation (8), the
broadband multimode correlation function in equation (10) should no longer be considered as
a naive general measure of nth-order coherence. In figure 2, we illustrate the main difference
between the time-integrated and time-resolved correlation measurements.

Equation (10) is still not optimal for our studies of squeezed light fields. We transform
it further by replacing the electric field operators by photon number creation and destruction
operators (E ®(t,) o< d(t,)) and perform a Fourier transform from the time domain into the
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Figure 2. (a) Perfect time-resolved detection; (b) finite detection gate;
(c) broadband detection gate exceeding the pulse duration giving rise to different
types of correlation measures.

frequency domain (a(t) = f dw a(w)e™*"). Equation (10) is then rewritten as

o _ Jdor.. do, (@' (@) ... d @)d@) ... dwy))

8 pw - - -
[dw (@"(@Dd(wy)). .. [do, (@ (w,)d(o,))
_{ (fdowd"(@)d(w))" ) an
([dwdt (@i (o))"
in which (:---:) indicates normal ordering of the enclosed photon creation and destruction

operators. In addition, we adapt the correlation function to the basis of the measured quantum
system, i.e. we perform a general basis transform from d(w) to the basis of the measured
multimode twin-beam squeezers Ay. This results in

(i)

m _ \ A\ TETE)
g = v (12)

<Zk AkAk>

Equations (10)—(12) stress the key difference between time-resolved and time-integrated
correlation function measurements. While time-resolved correlation functions probe specific
temporal modes, time-integrating detectors directly measure a superposition of all the different
modes. This specific feature of broadband multimode detection is essential for our analysis.

The simultaneous measurement of all different optical modes gives us direct loss-independent
access to the squeezer distribution of the probed state.

3.1. Broadband multimode cross-correlation functions

In the previous section, we restricted ourselves to intra-beam correlations. To allow
for measurements of correlations between different beams we extend our analysis. The
identification of such inter-beam correlations is of special importance in quantum optics and
quantum information applications, since they quantify the continuous variable entanglement
between different subsystems, in our case the analyzed optical beams. In section 2, we
have already discussed one of the most widely employed entanglement sources: twin-beam
squeezers. These states are entangled not only in their quadratures, but also in their spectral
and spatial degrees of freedom [28]. To probe higher-order cross-correlations between the two
different beams [27] or subsystems a and b of orders n and m, respectively, we generalize
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equation (8) to
g fO 9P P ) =

<E§;>(tf">) EO GO ED @) EW @) x EO Py ... EY (z,gb>)>

- - ~ - - ~ . (13)
(EC @ EP ) (EO G ESD @) x - (BP0 a!)

Taking into account broadband detection windows—exceeding the pulse duration—the above
formula can be reformulated as

(nm) _ <: (fdt Eg_)(t)ééﬂ(t))n : (fdt Eé_)(t)ﬁ"ﬁ,ﬂ(t))m 1> 14
8 N <fdt EAE,_)(I)EL(;)(I)Y <fdf EAZ_)(I)EAI(,H(;‘)Y . (14)

Again we perform the same simplifications as in equation (11) of section 3: namely we replace
the electric field operators by photon creation and destruction operators, apply the Fourier
transform from the time to the frequency domain and finally we adapt the measurement basis to
the given optical state. We find an extended version of equations (11) and (12),

(: ( dod'@ai@)" s ([ dob @b@) )
([ doit@i@)' (] dobr@b@)

() s (A

(S AA] (oBe]

Further extensions of cross-correlation measurements to systems consisting of more than two
different beams are possible [1], but are not necessary within the scope of this paper.

(nm) _

(15)

(16)

4. Probing frequency multimode squeezers via correlation functions

Using the theoretical description of squeezers as well as the derived broadband multimode
correlation functions, we now combine the findings of sections 2 and 3. We establish a
connection between the broadband multimode correlation functions and the properties of the
squeezing, i.e. the mode distribution A; and the optical gain B.

4.1. Probing the number of modes via g® -measurements

The most important property of frequency multimode squeezers is the number of independent
squeezers in the generated twin-beam state, which is specified by the mode distribution ;. In
contrast to the optical gain B, which is easily tuned by adjusting the pump power, the mode
distribution X, is heavily constricted by the dispersion in the nonlinear material and hence, in
general, not easily adjustable*. The effective number of modes in the multimode twin-beam

* One method for changing the mode distribution is to perform spectral filtering on the signal and idler beams [41].
However, this process leads to impurities and the generated states are not represented by pure twin-beam squeeze
any more [40]. Hence, this analysis is outside the scope of this paper.
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Frequency multimode twin-beam squeezer g(z)—measurement
Signal
‘ o
(2) ' 2
X > > ©
> ud : g
Pump “Nonlinear
crystal

Detector

Figure 3. Setup for measuring the g® of a multimode twin-beam squeezer.

state 1s given by the Schmidt number or cooperativity parameter K as defined in [29, 30] with
K=1/Y i (17)
k

Under the assumption of an independent uniform squeezer distribution, it directly reflects the
number of occupied modes. The mode number K of a multimode twin-beam squeezer can be
directly accessed by measuring the broadband multimode g®-correlation function in the signal
or idler arm as depicted in figure 3. This is a result of the structure of the second-order correlation
function, which—by using (12) and (6)—can be expressed as

sinh*(ry)
@14 Zk_ ——. (18)
[>", sinh*(ry) ]
For our further analysis, it is useful to distinguish the low gain from the high gain regime,
corresponding to low and high levels of squeezing. In the low gain regime corresponding to

biphotonic states typically referred to in the context of PDC experiments, sinh(r;) & r;, = By,
and we are able to simplify equation (18) to

8

444 4
(Zk B2)‘%) (Zk)‘/%) k
1

Consequently, the effective number of modes is directly available from the correlation function
measurement via K = 1/(g® — 1). For a single twin-beam squeezer (K = 1) g® = 2, whereas
for higher numbers of squeezers (K > 1) the contributions from the term ), A} become
negligible and g® approaches one. This direct correspondence between g® and the effective
number of modes K is presented in figure 4(a).

Another way of interpreting equation (19) is to approach the correlation function
measurement from the photon-number point of view. The g®-value of a single twin-beam
squeezer, which exhibits a thermal photon-number distribution, evaluates to g® =2. If
more squeezers are involved the detector cannot distinguish between the different thermal
distributions, i.e. it measures a convolution of all the different thermal photon streams,
which gives a Poissonian photon-number distribution [13, 31]. In fact, one can show that the
g?P-correlation function in equation (18) is the convolution of the second-order moments of
each individual squeezer.

New Journal of Physics 13 (2011) 033027 (http://www.njp.org/)



10

a)

I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

100
|

80

401

20t

1.0
0.8
0.6

N

0.4|

=

0 5

1
k

LT
0 15 20

1.0
0.8

0.6

0.4 |
1] 5 10 15 20
k

1.0
0.8
0.6

2
0.4
0.2

1.0

b)
1.0

1.2

0.8+

H

0.4F

1.0,
0.8
0.6

=
0.4]
0.2

0

IIIIII'I"“lllllu'
510005 g

20

1.0,

0.8,
0.6}
<
0.4
0.2

0.2

T
1

1.0 1.2 1.8 2.0

Figure 4. (a) Plot of the effective mode number K as a function of g® for
various effective numbers of modes. (b) Visualization of 4 as a function of g
for different thermal squeezer distributions.

Once more, we stress that the g®-measurement does not give access to the exact
distribution of squeezers A, but to the effective number of modes under the assumption that
all squeezed states share an identical amount of squeezing. This is a rather crude model and
does not fit very well to many experimental realizations. Fortunately, there is a common class
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Figure 5. Schematic setup for measuring the ¢"'" of a multimode twin-beam
squeezer generated via PDC.

of squeezed states, for which a much more refined mode distribution A, is accessible: in the
case of a 2D Gaussian joint-spectral distribution f(ws, @;), the distribution A, is thermal A, =
/1 — u2pk, and thus it can be characterized by a single distribution parameter  [32]. The latter
can be retrieved from a g®-measurement via u = /2/g® — 1, as depicted in figure 4(b), where
we illustrate how the detection of the g®-function can provide us directly with comprehensive
knowledge of the underlying spectral mode structure of the analyzed state.

In conclusion, we have shown that by measuring the second-order correlation function
g of a multimode broadband twin-beam state, one can probe the corresponding distribution
of spectral modes A;. Our method displays the advantage that correlation functions can be
measured in a very practical way [33], resulting in an approach that is much easier than realizing
homodyne measurements, which require addressing individual modes. As a side remark we
would like to point out that one can also determine the effective number of squeezers from the
higher moments g™, n > 2, similar to the presented approach, yet g® is already sufficient for
our purposes.

4.2. Probing the optical gain B of a multimode twin-beam squeezer via g'""V measurements

In section 4.1, we determined the number of modes in a loss resilient way by measuring g
for low gains B. Here we investigate the amount of the generated squeezing determined by the
overall optical gain B. In order to probe this value the setup has to be changed to measure the
correlation function gV of the generated twin-beam squeezer as presented in figure 5. Using
equations (16) and (6), we obtain for gV the form

Dok sinh?(r;) sinh?(r;) + 3 ' sinh?(r;) cosh?(ry)
[, sinh*(r) ]’

. 14
s 1 N >, sinh™(ry) . (20)

> sinh’(n) [, sinh’(r)]”

1/{n) g1

L _

8
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Figure 6. The optical gain B plotted as a function of g"-V. For small values of B
the correlation function gV takes on a high value, yet rapidly decreases when
the high gain regime is approached.

The relevant characteristic we exploit from this measurement is its dependence on both,
the number of modes in the system, as given by the g -function, and the mean photon number
in each arm, which is closely connected with the coupling coefficient B. In the low gain regime
(sinh(ry) ~ ry), gD simplifies to

4
(1’1)%1+L+Mm (2)+Lm

1
2 2 2 YR
B ow] = 8 8
— >1

g®@—1

8 (21)

Hence, the optical gain is—in the low gain regime—obtained from the g!!-"-measurement via
the simple relation B ~ 1/,/g(l:). Mode dependences of the coupling value B only occur at
high squeezing strengths, where the relation diverges from equation (21) and takes on a more
complicated form. In figure 6, we plot the dependence of the overall coupling value B on
g"D—as presented in equation (20)—which takes on a high value for small optical gains B
but rapidly decreases when the high gain regime is approached.

In total measuring gV gives direct loss-independent access to the optical gain B. This
enables a loss tolerant probing of the generated mean photon number which, in the low gain
regime, is even independent of the underlying mode structure.

Taking into account the prior knowledge we gained from section 4.1, we can now
ascertain all parameters needed for fully determining the highly complex multimode state.
The optical gain B defines not only the photon distribution, but quantifies the generated
twin-beam squeezing, i.e. the available CV entanglement in each mode. Note that all modes
exhibit different entanglement parameters. Depending on the state and its respective mode
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distribution determined by the g®-measurement, all the entanglement could be generated in
a single spectral mode where it is readily available for quantum information experiments or in a
multitude of different squeezed modes. Note, however, that after the state generation process
multiple squeezers cannot be combined into a single optical mode by using only Gaussian
operations, since this operation would be equivalent to continuous-variable entanglement
distillation [34]-[36].

5. Outlook

In this paper, we focused on the state characterization of ultrafast twin-beam squeezers in the
time domain and their experimental analysis. The presented approach, however, is not limited
to twin-beam squeezers:

On the one hand, our measurement technique also applies to probing the squeezing of
ultrafast multimode single-beam squeezers as presented in appendix B. On the other hand,
our approach is easily adapted to spatial multimode squeezed states [37]-[39]. These are
characterized by measuring correlation functions that are broadband in the spatial domain, in
direct analogy to the spectral degree of freedom analyzed in this work.

6. Conclusion

We elaborated on the generation of multimode squeezed beams and their characterization
with multimode broadband correlation functions. We expanded the formalism of correlation
functions by including the effects of finite time resolution. These extended correlation function
measurements serve as a versatile tool for characterizing optical quantum states such as twin-
beam squeezers. They provide a simple, straightforward and loss-independent way to investigate
the characteristics of multimode squeezed states. Our findings are important for the field of
efficient quantum state characterization and have already proven to be a useful experimental
tool in the laboratory [33, 40].
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Appendix A. Multimode twin-beam squeezer generation via nonlinear optical processes

A.l. Generation of multimode twin-beam squeezers via parametric
downconversion (PDC)

In the process of PDC, squeezed states are generated by the interaction of a strong pump
field with the x ®-nonlinearity of a crystal. Regarding the generation of twin-beam squeezers,
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the Hamiltonian of the corresponding three-wave-mixing process is given by the equation
[13, 41, 42]

Hppe = / dz xPEP (2, HE (2, E{ (2. 1) +hec., (A.1)
—L)2
where we focused on a collinear interaction of all three beams. In equation (A.1) L labels the
length of the medium, x ® the nonlinearity of the crystal and E{”(z, 1), E{7(z, 1) and E Sz, 1)
the pump, the signal and the idler fields. The electric field operators used in equation (A.1) are
defined as follows:

EQ @ n=EP(z,n=C / dw, exp[—1 (k. (0)z +wt)]d(w), (A2)

in which we have merged all constants and slowly varying field amplitudes in the overall
parameter C. To simplify the Hamiltonian, we treat the strong pump field as a classical wave

EQ(z.1) = Ey(z.1) :fdwpa(wp) exp[1 (kp(@p)z +wpt)] (A-3)

Here a(w,) = Apexpl(w, — 11p)*/ (20132)] is the Gaussian pump envelope function generated by
an ultrafast laser system, consisting of a field amplitude A, a central pump frequency pu,
and a pump width o,.

The PDC Hamiltonian in equation (A.1) generates the following unitary transformation:

0= exp[—% / dr’ FIPDC(H)] . (A4)
In the low downconversion regime, we can ignore the time ordering of the electric field
operators [14, 15] and directly evaluate the time integration. This yields a delta-function
27§ (ws + w; — wp) and hence allows us to perform the integral over the pump frequency wy.
Equation (A.4) can be re-expressed as

A

L2
U= exp|:—% (A// , dz/da)s / dw; a(ws + w;) explt Akz] dz(ws)dj(a)i)+h.c.) ] ., (AS5)
L

in which Ak = ky(ws + ;) — ks(ws) — ki(w;) is the so-called phase mismatch and A’
accumulates all constants. Finally, we perform the integration over the length of the crystal
and obtain

A

U= exp|:—% (A / dws / dw; a(ws + w;) P (ws, a)i)dz (a)s)dj(a)i) +h.c.)i| , (A.6)
where ¢ (w;, ;) = sinc (#5%) is referred to as the phase-matching function. The latter
combined with the pump distribution « (w, + w;) gives the overall frequency distribution or joint
spectral amplitude f(ws, @;) of the generated state. The final unitary squeezing operator of the
downconversion process is

U =exp —% (A/da)S/da)if(a)S, a)i)dZ(a)S)diT(wi)+h.c.> . (A7)

Heg
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The sinc function appearing in equation (A.7) can be approximated by a Gaussian

distribution
Ak(w,, ;)L Ak(wg, w) L\
b (s, ;) = sinc (%) ~ exp|:—0.193 ((‘Ufa))) } . (A8)

With this simplification the joint frequency distribution f(ws, ;) takes on the form of a 2D
Gaussian distribution. Applying this approximation the exact squeezer distribution is accessible
as presented in section 4.

A.2. Generation of multimode twin-beam squeezers via four-wave mixing (FWM)

In an FWM process, two strong pump fields interact with the y®-nonlinearity of a fiber to
create two new electric fields. If the two generated fields are distinguishable, the Hamiltonian
of the process is given by the equation [43]

N L2 . . . .
Hypwm = / dz xVEN (2, E D (2. ) ES) (2, 1) E{ (2, 1) +hec. (A.9)
—L)2

Again, we assume a collinear interaction of all interacting beams. The electric fields for the
signal, the idler and the pump are defined in equations (A.2) and (A.3). Performing the same
steps as in appendix A.1, we obtain a similar unitary transformation

U:exp —% (Afdwsfdwi fFWM(a)S,w,')c?Z(ws)ciiT(a)i)+h.c.> ) (A.10)

H g

Equation (A.10) resembles equation (A.7) with the exception of the joint frequency distribution
Sfrwm (s, @;), which takes on a more complicated shape in comparison to the PDC case

Ak(wp, w5, w) L (A.11)
2 . .

On a comparison of the unitary transformation in equations (A.6) and (A.10), it is apparent
that the two different processes both create the same fundamental quantum state: multimode
twin-beam squeezers.

Srwm (s, i) = / dw, a(wp)o(ws + w; — w,) sinc <

Appendix B. Multimode single-beam squeezers

In the main body of the paper, we discussed the characterization of multimode twin-beam
squeezers. Here we call attention to the fact that the broadband multimode correlation function
formalism is also applicable to probing multimode single-beam squeezed states.

B.1. Generation of multimode single-beam squeezers

Single-beam squeezers are created by PDC and FWM processes similar to the twin-beam states.
The difference between twin-beam and single-beam squeezer generation is that in the latter the
generated beams are emitted into the same optical mode, whereas in the former two different
optical modes are generated as discussed in appendix A.
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Figure B.1. Schematic setup to measure (a) g and (b) g@ of a frequency
multimode single-beam squeezer.
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Figure B.2. g as a function of g@ for various multimode single-beam
squeezers. The effective number of modes and the thermal mode distributions
parameter u of a multimode single-beam squeezer are encoded in the
slope.

The PDC Hamiltonian generating a single-beam squeezer is given by
N L2 R R R
H= / dz xPEP (2, NET (2, HET (2, 1) +hec. (B.1)
—L)2

Performing the same steps as in the case of twin-beam generation, we obtain the unitary
transformation

0 = exp —% (A f do, / do f(ws,wi)&*(ws)cﬂ(a)i)+h.c.> . (B.2)

Hest
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Figure B.3. (a) Effective mode number K as a function of the slope of g¥g@].
(b) Thermal mode distribution 1 as a function of the slope of g®[g®] for
multimode single-beam squeezed states.

If the joint spectral distribution f(ws, w;) is engineered to be symmetric under permutation of
the signal and the idler, the Schmidt decomposition is given by

—Af (@ 0) = Y ndl @4 @) (B.3)

k
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Figure B.4. Optical gain B as a function of g for a multimode single-beam
squeezed state.

and

— A (@0 0) == Y ridi (@) (@), (B.4)

k

Introducing broadband modes, we obtain the multimode broadband unitary transformation

U = exp Zrkﬁ,iflz —h.c.
k

= ® exp[rkAZAZ — h.C.]
k
k

This is exactly the form of a frequency multimode single-beam squeezed state [20]. Or written
in the Heisenberg picture:

Ay = cosh(r) Ay +sinh(r ) A (B.6)

Single-beam squeezers are—Ilike twin-beam squeezers—widely employed in quantum optics
experiments [44, 45]. As in the twin-beam squeezer case, the same states are generated by
properly engineered FWM processes.
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B.2. Probing frequency multimode single-beam squeezers via correlation
function measurements

To characterize the generated states, we have to determine the optical gain B and mode
distribution A; as in the case of multimode twin-beam squeezers (see section 4). Therefore,
we adapt the scheme presented in section 4 and probe the correlation functions g® and g® as
sketched in figure B.1. For a multimode single-beam squeezer they can be written as

<14
g? =1+2 2 sinh (rk)2+ .1 2
[>°, sinh?(r)]” 2 sinh”(re)
1/{n)

and (B.7)

>, sinh*(ry) ' g >, sinh®(ry)
[y sinb?(ro]” Xy sinb’(r0)]’

-
N .3 2 .6 > sinh™(ry) 5
>y sinh™(ry) [Zk sinhz(rk)]

g? =1+6

(B.8)

In the single-beam case, however, g® does not directly yield the effective number of modes
K or thermal mode distribution parameter p as for the multimode twin-beam squeezers in
equation (19). A joint measurement of g® and g® is necessary, as sketched in figure B.2.
Clearly, the effective mode number K and the thermal mode distribution p are given by the
slope s of g® versus g@. In figure B.3, we plotted the explicit dependence of K and p on the
slope s. Surprisingly, the functions exhibit almost the same shape as in the twin-beam squeezer
case.

In order to obtain the gain of a multimode single-beam squeezer, a single g*-measurement
is sufficient that is sensitive to the coupling value B as presented in figure B.4 (similar to the
g"D-measurement in the twin-beam squeezer case). In the low gain regime it is given via the
relation B =1/ \/F . Again, while describing a different system, the shape of the function
B[g@] is very similar to the twin-beam squeezer case.

In total, the theoretical description and derivation of multimode single-beam squeezers are
very similar to the mathematics behind multimode twin-beam states. These similarities translate
to multimode correlation functions, which are able to probe the generated optical gain B and
mode distribution A; as in the twin-beam case.
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And now for something
completely different.

(Monty Python)

10. Exponentially enhanced
quantum communication rate by
multiplexing CV teleportation

10.1. Introduction

As discussed in Chap. 6 PDC emits a multitude of finitely squeezed EPR states in
ultrafast optical pulse modes. These multi-mode EPR-states are perfectly suited to
multiplex continuous-variable (CV) quantum teleportation [130, 131], which enables a
drastic increase in the corresponding quantum communication rate.!

10.2. Single-mode communication

The standard continuous-variable (CV) single-mode quantum teleportation protocol is
depicted in Fig. 10.1. An EPR state is distributed to Alice and Bob, which use the
shared entanglement in conjunction with classical communication to transmit an un-
known quantum state from the sender (Alice) to the receiver (Bob).

Y T \

. (") g 6()]
Teleportation channel i |
Sy

Xa 7 /

X

Figure 10.1.: The standard single-mode CV teleportation protocol: An EPR state in
conjunction with classical communication is used to transmit an unknown
quantum state from Alice to Bob.

IThis chapter is a summary of the paper “Exponentially enhanced quantum communication rate
by multiplexing continuous-variable teleportation” by Andreas Christ, Cosmo Lupo, and Christine
Silberhorn [7].
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This teleportation effectively creates a quantum channel between Alice and Bob. In
fact continuous-variable quantum teleportation is mathematically equivalent to a ther-
malizing quantum channel [132]

o) = / drdyf(z,y)D(z, y)pD' (z. ), (10.1)

where D(z,y) is the displacement operator
D(x,y)(G+10)D'(x,y) = (4 — ) + (b — ), (10.2)

which shifts the input state p in its quadratures ¢ and p according to the function f(z,y)
given by the structure of the channel. Consequently, Bob will receive the input state
from Alice plus some phase-space displacements depending on the exact form of the CV
teleportation.

We are interested in the amount of quantum information which can be transmitted
through the established quantum channel. In full generality the capacity of a quantum
channel ¢ between Alice and Bob is given by the formula [133, 134]2

1
() = max {O, Zlirélo 7 sup I(¢®, ,(3)} , (10.3)

p

where ¢®¢ indicates ¢ parallel uses of the quantum channel. The entropic function

1(6™, p) = S[6%(p)] — S[(6™ @ ide)(|¥), (W ])], (10.4)

is known as the coherent information. Here, S denotes the von Neumann entropy, S|[p] =
—Tr(plnp) (measured in g-nats®). |¢), is a purification of p, involving an auxiliary
quantum system denoted C', and id¢ is the identity quantum channel acting on C'.

In general, it is very hard to evaluate the quantum capacity of a given channel, since
one has to optimize Eq. (10.3) over all possible input states p in the limit of infinite uses
of the channel ¢. An analytic formula for the quantum capacity is only known for few
specimens of CV quantum channels [135]. It is however possible to evaluate upper [135]
and lower bounds [136], @4 and Q¢ respectively, of the quantum channel capacity, if we
restrict ourselves to the use of Gaussian resource states and a single use of the channel.

For the continuous-variable teleportation protocol we obtain the upper Q4 and lower
bounds Q¢:

Qc = max{0,2r — 1}, (10.5)
Qs = max{0,2r +In(1 —e?)}. (10.6)

2The quantum channel capacity formula works as follows: Alice starts with an entangled quantum
state p and transmits one half through the quantum channel ¢ to Bob. The remaining entanglement
optimized over all possible input states p in the limit of infinite uses of the channel ¢®! gives the
quantum channel capacity Q.

3In order to obtain compact formulas for the quantum channel capacity bounds, we use natural
logarithms, In = log,.
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10.3. Multi-mode quantum communication

Using our multi-mode PDC states we are able to multiplex the single-mode quantum
communication protocol, i.e. we use our multi-mode PDC sources to simultaneously
submit many EPR-states to Alice and Bob. In conjunction with multi-mode detection
and displacements this enables a multiplexing of the teleportation protocol, as depicted
in Fig. 10.2.

Figure 10.2.: Performing quantum teleportation using multi-mode PDC states in con-
junction with multi-mode detection and displacements on Alice and Bob’s
side multiplexes the teleportation protocol.

Since all EPR-states are in orthogonal optical modes we are able to straightforwardly
extend the upper and lower bounds obtained for single-mode quantum communication
in Eq. (10.5) and Eq. (10.6) into the multi-mode domain:

Qe = Y max{0,2r, — 1} (10.7)
k=1

Qs = Z max{0, 2r; + In (1 — 6_27"’“)} (10.8)
k=1

10.4. Single-mode vs. multi-mode coding

The limiting factor when performing quantum communication are firstly the losses dur-
ing the quantum state distribution to Alice and Bob and secondly the amount of energy
which can be transmitted between the sender (Alice) and the receiver (Bob) per use
of the channel. We consequently benchmark the single vs. the multi-mode coding by
comparing the upper and lower bounds of the quantum channel capacities using a fixed
amount of energy or mean-photon number (n,y,).

A comparison between the optimal multi-mode coding and the standard single-mode
coding is given in Fig. 10.3 (a) with the number of required modes K for the multi-mode
coding depicted in Fig. 10.3 (b).
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Figure 10.3.: (a) Q4 and Q¢ channel capacities, measured in g¢-nats, for single-mode
and optimal multi-mode coding. (b) Number of modes K required for the
optimal multi-mode coding. Adapted multi-mode codes achieve quantum
channel capacities outperforming single-mode approaches.

It is evident that the single-mode coding scales logarithmically with energy, whereas
the multi-mode coding features a linear increase. Effectively this means that our multi-
mode protocol enables exponentially higher quantum communication rates than the stan-
dard single-mode coding. Furthermore this exponential increase not only remains when
we take into account losses during the quantum state transmission, but in fact features
an enhanced loss resilience.

10.5. Conclusion

In summary we developed a multiplexed quantum communication protocol, optimally
suited for ultrafast multi-mode PDC states. In comparison to the standard single-mode
coding our protocol features not only an exponentially enhanced quantum communi-
cation rate, but also exhibits an enhanced loss resilience with respect to the standard
single-mode coding.
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Abstract. A major challenge of today’s quantum communication systems
lies in the transmission of quantum information with high rates over long
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1. Introduction

Quantum communication refers to the process of transferring quantum information between
two parties commonly called Alice and Bob. This information transfer forms the cornerstone
of many quantum information technologies, most importantly quantum cryptography [1, 2],
enabling secure communication, quantum dense coding [3], boosting the data rates with
respect to classical transmission and quantum networking [4]. A major challenge in all these
quantum communication protocols is to achieve high rates over long distances in the presence
of unavoidable losses. For this purpose, we investigate continuous-variable (CV) quantum
teleportation [5, 6], as an established method of transferring an unknown quantum state between
two parties, using only entanglement and classical communication, which was originally
introduced in 1993 by Bennett et al [7] in the discrete variable regime.

In general, all quantum communication protocols are limited by the amount of energy that
can be transferred between the sender (Alice) and the receiver (Bob) per use of the channel.
Consequently, the challenge in quantum communication resides in encoding the information as
energy efficiently as possible without sacrificing loss resilience. For this purpose, we expand
the standard single-mode CV quantum teleportation protocol to incorporate multiplexing. Our
research shows that by encoding the information on multiple instead of a single mode the
information transfer is not only more energy efficient, leading to exponentially enhanced
quantum channel capacity in comparison to the standard single-mode protocol, but it also
features enhanced loss resilience.

New Journal of Physics 14 (2012) 083007 (http://www.njp.org/)
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Figure 1. Sketch of the standard single-mode CV teleportation protocol. An
EPR state in conjunction with classical communication is used to transmit an
unknown quantum state from Alice to Bob.

Furthermore, we propose a practical setup to implement the proposed multiplexing by
encoding the information on ultrafast optical pulse modes®. There exist a wide variety of
sources capable of creating the required entangled states suitable for CV quantum teleportation,
ranging from optical parametric oscillators [8-10] over four-wave mixing in optical fibers
featuring a x® nonlinearity [11, 12] to parametric downconversion (PDC) in nonlinear yx ®
crystals [13—-17]. We employ—without loss of generality—an ultrafast pumped PDC source
that changes a set of Einstein—Podolsky—Rosen (EPR) states into ultrafast orthogonal frequency
pulse modes, that can directly be applied for multiplexed quantum teleportation.

We structured this paper into three main parts. In sections 2 and 3, we review the
standard single-mode CV quantum teleportation protocol to introduce all necessary concepts
and formulae. Section 4 extends the standard protocol to include multiplexing. In section 5,
we compare the achievable quantum communication rates in the multiplexed regime with
standard single-mode teleportation. Section 6 concludes the paper and summarizes our
findings.

2. Single-mode continuous-variable (CV) quantum communication

Before we present our multiplexed quantum communication protocol we first briefly review the
established single-mode CV quantum teleportation scheme and the corresponding achievable
quantum communication rates in order to introduce the required concepts and formulae.

2.1. Teleportation as a quantum channel

The standard single-mode CV quantum teleportation protocol [5, 6] is illustrated in figure 1.
Alice intends to teleport a (unknown) quantum state p from her side to Bob. To this aim,

3 Ultrafast optical pulses are extremely short light pulses featuring durations in the femtosecond regime. Using
these as carriers of quantum information enables the rapid succession of states in transmission further boosting the
quantum communication rate.

New Journal of Physics 14 (2012) 083007 (http://www.njp.org/)
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Alice and Bob share a bipartite entangled state—in most cases a finitely squeezed EPR
state—associated with the operators {a, a'} on Alice’s side, and {13, lAﬁ} on Bob’s side obeying
canonical commutation relations [, a'] = [b, b'] = 1. We denote the corresponding conjugate
quadrature operators by g, = (@+a")/v2, pa=(@—a") /12 and Gz = (b+b") /N2, ps =
(b—b" /1+/2 for Alice and Bob, respectively.

The CV teleportation protocol works as follows: Alice first superimposes her part of the
shared bipartite state—we label it y—with the to be teleported state p. She then measures the
resulting quantum system on her side and transmits the measurement result through classical
communication to Bob. According to the data retrieved from Alice, Bob subsequently performs
local operations on his part of the bipartite state x and obtains the teleported state py.

In the scope of this paper, we are not interested in the details of the apparatus; hence
we regard the whole protocol as a quantum channel which enables us to send a (unknown)
quantum state p from Alice to Bob. Then, we characterize the quantum channel defined by the
teleportation protocol in terms of its quantum communication capacity. A reformulation of CV
quantum teleportation as a quantum channel has been introduced by Ban et al [18], extending
that of Bowen and Bose [19] on qubit teleportation. According to [18] the CV teleportation
protocol with arbitrary resources is formally described as a generalized thermalizing channel
¢ (D) = P, in Which thermal-like noise decreases the teleportation quality®:

6(p) = / dx dy £(r, DG, HD (x, ). )

Here D(x, y) is the displacement operator

D(x, Y)(G+1p)D (x, y) = (G —x)+1(p—y), 2)

which shifts the input state p in its quadratures ¢ and p according to the function f(x, y) given
by the structure of the channel. Consequently, Bob will receive the input state from Alice plus
some extra phase-space displacements depending on the exact form of CV teleportation. The
input state from Alice is distorted from its original form. The exact structure of the mapping
function f(x, y) is dependent on the shared bipartite state x and is defined as

£, y) =Tr{[1®D(x, »)I(EPR*)EPR*DI1 @ D' (x, 113}, 3)
where |[EPR*) denotes the not-normalized EPR state
[EPR*) = (27)~'/? f dq 19)419) s, )
and |q) 4, |q)  are the eigenstates of the quadrature operators, g4|q)a = qlq) 1, 48lq9)s = qlq) 5.
Perfect teleportation is achieved for an infinitely squeezed EPR state y = |[EPR)(EPR],
which yields f(x,y) =38(x)8(y). Hence, the input state o from Alice is transmitted to Bob
with unit fidelity, ¢ (p) = p.

2.2. CV teleportation with Gaussian resources

In the remainder of this paper, we restrict ourselves to a Gaussian resource x shared between
Alice and Bob, as is the case for the most common CV entangled state, the EPR state. The

® For the qubit teleportation channel, the use of non-ideal resources induces depolarization [19].

New Journal of Physics 14 (2012) 083007 (http://www.njp.org/)
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Gaussian state  is conveniently described in the Wigner function representation:

v L T
Wx(qA,pA,qB,pB)—(Zn)MeXp[ 2(5 m)y (& m)]

:G(m,)/)(qAa pAa (IB, pB)’ (5)

where £ is defined as the vector £ = (g4, pa, 9g, ps), m labels the first-order moments and y the
second-order moments or covariance matrix (CM) of the state x, which completely characterize
the Gaussian state. We have introduced short-hand notation G, ) in (5), where G marks the
function as Gaussian in its variables, and the subscripts m and y inside the brackets identify
the first- and second-order moments of the state.

The first step toward evaluating the output state of the teleportation channel is to derive
the explicit form of the noise function f(x, y) for a given Gaussian teleportation resource .
Starting from the general form of f(x, y) in (3) the function is given by the convolution integral

fG,y)=m / d& Wepr+(qa, pa. g — X, pp — ) G(m,y)(lIA, DAs 4B, PB), (6)

where dé =dgsdpadgpdpp and Wgpg+ denotes the Wigner function of the not-normalized
EPR state in (4).

To compute the convolution integral in (6), it is convenient to change to the collective
quadratures (¢—, p—, ¢+, p+), defined as

gs = q4atqs by = PAL P o

In terms of the collective variables, the Wigner function of the teleportation resource ¥ now
reads

W, (G, p—rqsr P3) = Gy (@ P—, Gss 1) (8)
where m = (m, ,m, ,m, ,m, ) =mR, with

1 (1, 1,
R=— , 9
i E o
1, being the unit matrix of size 2, and
Yoao Yar- Vaa Vap
7= R'yR= )ipqu 71177177 32177% Jipfm ' (10)
yq+q_ qu— )/(1+(1+ y(j+P+

)71—7#]7 f/[’ﬂl’f )7P+f1+ )7P+P+
In terms of the collective variables, the Wigner function of the not-normalized EPR state in (4)
reads

Wpr: (G-, P 4s, P+) =27 8(q-)3(ps). (1D
We arrive at the final form of the mapping function f(x, y) for the shared Gaussian resources

1
Feen =3 [ 8@ 4x/VDS( = 3V DG 5GP p2)

1
= EG(mf,)/f)(x/\/E9 y/\/i)

= G(\fsz,zyf)(xa y), (12)

New Journal of Physics 14 (2012) 083007 (http://www.njp.org/)
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where m y = (m,_, m,,) and

y; = (75614— Vq—m) . (13)

Voa- Vpips

This gives us a convenient closed formula for f(x, y) defined by the first moments m and CM
y of the shared resource ¥ between Alice and Bob. In particular, given a Gaussian state p on
Alice’s side with the Wigner function

W,(q, P) =Gm,.y,)(q, P), (14)

the teleported state ¢ (p) arriving at Bob’s side evaluates to

Wiy (q, p) = fdx dy f(x, ) Gim,y,(q@—x, p— )

= / dxdy G (/zm, 29X G mpyn(@ =X, p—y)

= G(m,,+ﬂmf,yﬂ+2yf)(q7 p) (15)

Equation (15) fully determines the CV teleportation process in the Gaussian framework (i.e.
teleportation of Gaussian states using Gaussian resources). The transformation of the Gaussian
input state through the teleportation channel can be calculated by adding the first moments and
the CM matrix of the channel to the first moments and CM of the initial state. In the limiting
case of a perfect teleportation both v/2m ¢ and 2y are zero and the initial state is retrieved.

2.3. Information theoretical characterization of CV quantum teleportation

There exist different figures of merit to quantify the accuracy of CV teleportation. Among others
there is the fidelity of quantum teleportation, detailing how closely the state arriving at Bob’s
side resembles the original state from Alice. Another example is the classical communication
capacity, given the amount of classical information that can be pushed through the teleportation
channel. In general, the choice of a figure of merit is motivated by its operational meaning.

In the scope of this paper, we characterize the teleportation channel in terms of its quantum
capacity [20, 21], this means the highest rate at which quantum information can be reliably
transmitted through the channel when Alice and Bob make use of error correction to convey
quantum information through the noisy channel. This choice seems to be the most natural and
appropriate, if quantum teleportation should be used to establish a true quantum link.

For comparison purposes, we consider the two-way distillable entanglement as another
figure of merit in appendix B. In this scenario, Alice and Bob also exchange classical
information in a two-way fashion to extract maximally entangled states. In the main part
of the paper, however, we will not allow two-way classical communication between Alice
and Bob, because this approach delivers tighter bounds on the properties of the required
resources.

Indeed, the thermal-like noise added by non-ideal teleportation can be counteracted by
employing quantum error correction codes. These can increase the quality of the communication
(e.g. in terms of the fidelity) at the cost of reducing the communication rate. The highest rate of
reliable quantum communication, i.e. allowing asymptotically unit fidelity, is by definition the

New Journal of Physics 14 (2012) 083007 (http://www.njp.org/)
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quantum capacity of the teleportation channel. The quantum capacity of Gaussian channels has
been widely studied and characterized from an information theoretical perspective [22, 23].
In full generality, the quantum capacity of a quantum channel ¢ is given by the following
expression [20, 21]:

1
Q = max 10, lim 7 sup 1(¢%", ,a)} , (16)
—00 p)

where ¢®* indicates £ parallel uses of the quantum channel. The entropic function

1(9%, p) = S[¢®*(P)] = S[(¢®* ®idc) (1Y), (¥ DI, 7)

is known as coherent information. Here, S denotes von Neumann entropy, S[p] = —Tr(p In p)
(measured in g-nats’). |{), is a purification of p, involving an auxiliary quantum system
denoted C, and id¢ is the identity quantum channel acting on C. In general, it is very hard
to evaluate the quantum capacity of a given channel, because one has to optimize (17) over
all possible input states p in the limit of infinite uses of the channel ¢. An analytic formula
for quantum capacity is only known for a few specimens of CV quantum channels [23]. It is
however possible to evaluate upper and lower bounds of quantum channel capacity.
In the following, we put

2y = (1(\)’ 2) . (18)

This thermal-like form for the channel CM is the relevant one in several cases, as for the finitely
squeezed EPR states with and without losses, where the parameter N contains the entanglement
properties of the resource state.

2.3.1. Lower bound. A lower bound on the quantum capacity can be obtained by restricting
ourselves in (17) to maximizing over Gaussian states pg, and by considering only a ‘single use’
of the channel, i.e.

Q > max {0, sup 1 (¢, /30)} =: 0g- (19)

PG

Clearly, a lower bound on quantum capacity still provides an achievable rate of reliable
communication®. This lower bound can be computed efficiently for Gaussian channels [22].
For the teleportation channel, it is a function of the noise CM in (13). For a thermal-like noise
with CM (18), such a quantity was computed in [22], yielding:

Ocg = max{0, —1 —In N}. (20)
The derivation of (20) is presented in appendix A.

7 In order to obtain compact formulae for quantum channel capacity bounds, we use natural logarithms, In = log, .
8 For the case of Gaussian channel, a natural conjecture is that Gaussian states saturate the maximization in (16).
However, it is in principle possible that the coherent information has a global maximum on non-Gaussian states.
Moreover, as the coherent information might be super-additive for parallel channels, the regularized limit over # is
in general necessary for computing the quantum capacity [24].
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2.3.2. Upper bound. An upper bound on the quantum capacity can be calculated by noting
that the thermal-like noise with CM (18), for N < 1, can be simulated by the action of a
linear amplifier with amplification factors 1/n, followed by a linear attenuating channel with
attenuating factor 7. In fact, the composition of these channels transforms the input CM y, to

1—n 0
w( 0 1_,7>, 1)

which coincides with the thermal-like channel by setting n =1 — N. Due to the fact that the
composition of channels cannot increase the quantum capacity, the capacity of the thermal-like
channel is upper bounded by that of the attenuating channel.

Using the results of [23], we can write

O <max{0,In(1—N)—InN}=: Qa. (22)

3. Single-mode quantum channel capacity analysis

With formulae (20) and (22), we are now able to evaluate bounds on the available quantum
channel capacities of the standard one-mode quantum teleportation protocol.
At first, we assume that the shared bipartite entangled state is a finitely squeezed EPR state,

¥ )epc = explr(a’b’ — ab)1|0), (23)

where the parameter r describes the generated squeezing amplitude (we assume without loss
of generality r > 0), which can be transformed into the squeezing value by the relation:
squeezing [dB] = —101log,,(e™>"). Secondly, we study the effect of losses in the quantum
capacity of the teleportation channel by assuming that the modes {a, a'}, {l;, lAaT} are attenuated
by a factor 7.

3.1. Quantum channel capacity without losses

If we neglect losses, which can occur during the EPR state distribution to Alice and Bob, the
parameter in CM (18) reads N = e~%", where r labels the squeezing amplitudes of the shared
EPR state. The bounds on the quantum channel capacities in (20) and (22) evaluate to the
expressions:

Q¢ = max{0, 2r — 1}, (24)
04 =max{0, 2r +In (1 —e ). (25)

The limiting factor in the CV teleportation protocol is that EPR sources are constrained by the
maximum amount of entanglement, and hence energy, that they are able to emit. For the case
of PDC processes, this is equivalent to the overall optical gain of the down-conversion process.
Furthermore, the channels used to transmit the EPR states to Alice and Bob are constrained
by the amount of energy that they can carry. For example, in the case of the ubiquitous optical
fibers, the most prevalent method for quantum state distribution, transmitted pulses exceeding a
certain power level undergo nonlinear optical processes in the fiber and subsequently lose part
of their entanglement.

New Journal of Physics 14 (2012) 083007 (http://www.njp.org/)



9 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Single-mode coding capacity

1.5

< 1.0r

0.5¢

1.0 2.0

(n;nh>

Figure 2. Upper Q4 and lower Qg bounds for the quantum channel capacity
(measured in g-nats) of CV quantum teleportation using a single-mode EPR
state. The minimum squeezing required in order to reliably transmit quantum

information resides between 3.01 and 4.34dB. (K = 1: a single EPR state is
transmitted.)

It is hence vital to develop quantum communication protocols that encode quantum
information as energy efficiently as possible. For this purpose, we benchmark quantum
communication by evaluating the quantum channel capacity as a function of the energy,
i.e. mean-photon number (n,;) inside the channel. In the case of an EPR state this mean photon
number is given as

(npn) = sinh?(r). (26)

Figure 2 displays the calculated upper and lower bounds Q 4 and Qg, as defined in (24) and (25),
as a function of the mean photon number (n,,) inside the channel.

This figure shows the minimum requirements for an EPR state to enable reliable quantum
information transfer of the teleportation channel. The upper bound Q, remains zero up to
mean photon numbers (n,) = 0.125 corresponding to squeezing values of 3.01 dB, whereas
the lower bound Qg is zero up to (np,) ~ 0.27 equivalent to 4.34 dB of squeezing. Hence, the
minimum squeezing in EPR state allowing reliable quantum information transfer resides in the
range between 3.01 and 4.34 dB. The situation changes if additional resources—Ilike unbounded
two-way classical communication—are allowed (see discussion in appendix B).

3.2. Quantum channel capacity including losses

Analyzing quantum teleportation in the framework of realistic applications, for example, the
ubiquitous quantum state x distribution through optical fibers, the impact of losses has to be
considered. We model these losses by the standard beam splitter interactions, a — /na+
J1—n7,, bh— \/ﬁl;+~/1 — 1 U, during the distribution of the state to Alice and Bob, as
displayed in figure 3, and evaluate the robustness of state distribution as a function of the
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Figure 3. CV teleportation setup including standard beam splitter like losses
during the distribution of the EPR state to Alice and Bob.

Single-mode coding loss resilience

[9)]

— E=1
4t
3_
<&
2,
1_
8 06 07 08 009 1.0

Y

Figure 4. Upper Q4 and lower Qg bounds for the quantum channel capacity
(measured in g-nats) as a function of the transmissivity n for CV quantum
teleportation using a single-mode EPR state including loss. The quantum channel
capacity quickly degrades under loss until it reaches zero at loss rates exceeding
50%. (K = 1: a single EPR state is transmitted.)

—2r

transmissivity of channel 5. With these conditions N =ne™ " + (1 — n), the channel capacity

formulae evaluate to:
Qg =max{0, —1 —In[1—n(1 —e )]}, 27
04 =max{0,In[n(l —e )] —In[l —n(l —e )]} (28)

Figure 4 depicts the quantum channel capacity as a function of the transmissivity n for an
EPR state with a mean photon number of (np,) = 30.

Starting from a quantum channel capacity between 4 and 5 g-nats, it quickly degrades for
decreasing transmissivities 7 until it reaches 0O at loss rates exceeding 50%.
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Figure 5. (a) Schematic PDC process: an incoming ultrafast pump pulse is
down converted into two squeezed and entangled signal and idler waves.
(b) The generated PDC state incorporates a multitude of EPR states in orthogonal
ultrafast pulse modes.

4. Multi-mode Einstein—-Podolsky—Rosen state generation and teleportation

Having reviewed and established CV teleportation and the corresponding quantum communi-
cation rates in the single-mode regime we now expand the protocol to incorporate multiplexing.

As discussed in the introduction there exist a variety of sources to create multi-mode EPR
states. In the scope of this paper, we will focus on the properties of PDC as a source of pulsed
multi-mode EPR states in ultrafast frequency modes [25, 26]. Yet our findings could also be
adapted to other methods of squeezer generation as well.

Figure 5(a) sketches the state generation process. An incoming ultrafast pump pulse decays
inside a medium with x ®-nonlinearity into two beams usually labeled signal and idler, which
represent the two modes of the generated finitely squeezed EPR state. These states are well
suited for quantum teleportation as they enable high repetition rates due to the ultrafast nature
of the created pulses.

However, this PDC process pumped by a pulsed laser system produces not only a
single EPR state but, as sketched in figures 5(a) and (b), also a multitude of ultrafast finitely
squeezed EPR states into broadband frequency pulse modes. Each output pulse consists of a
multitude of EPR states in different orthogonal modes [27, 28], formally described as

Ve = @ exp [re (48]~ Ack) ] 01, 29)
k=1

where A, and B label the different ultrafast pulse modes in the signal and idler arms, and the
parameters 7, > 0 describe the generated squeezing amplitudes. A detailed derivation of (29)
is given in [25]. For common PDC sources the squeezing parameters r; form an exponentially
decaying distribution, which can be engineered from emitting a single EPR state to creating a
whole array of twin-beam squeezed states (see [29]).

The standard protocol for single-mode CV teleportation [6] requires CV Bell-
measurements, one-way classical communication and local phase-space displacements. In order
to multiplex the teleportation protocol, these operations have to be performed on several pulse
modes parallel. There is a certain arbitrariness in that, because in principle different multi-mode
orthogonal basis sets can be chosen for quantum information encoding by the communicating
parties Alice and Bob. However, in the following we are focusing on broadband entangled states
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Figure 6. Performing quantum teleportation using multi-mode PDC states in
conjunction with multi-mode detection and displacements on Alice and Bob’s
side, effectively multiplexes the teleportation protocol.

produced via PDC, for which a unique natural mode basis Ay By arises from the Schmidt
decomposition as given in (29). In this basis each pair of modes A, and By forms a finitely
squeezed EPR state and we can hence treat each teleportation independently of the others.
One could in principle also perform teleportation on a different basis; this however would lead
to correlations between all individual modes, reduce the individual mode entanglement and
consequently lower the overall quality of teleportation. It is hence natural to conjecture that the
basis of the Schmidt modes optimizes teleportation capacity. A detailed discussion on this issue
will be presented elsewhere [30].

These multi-mode PDC states are hence optimally suited to multiplex CV quantum
teleportation as a single source is sufficient for creating many EPR states in multiple orthogonal
ultrafast frequency modes. The general multiplexed protocol is depicted in figure 6. From
the source a multitude of EPR states is transmitted to Alice and Bob. Alice now encodes
the state she wants to teleport in the {A:} modes of the source, superimposes the two beams
at a beam splitter and then measures all optical modes separately. This can be implemented
by either splitting the frequency modes into different spatial modes [31-34] and guiding the
light to independent measurement setups or by performing multi-mode homodyne detection
[35, 36]. These measurement results are then transmitted to Bob who performs the according
displacements on each individual B, mode. He then retrieves the teleported multi-mode
state Py

The experimental implementation of multi-mode teleportation represents the main
challenge for a deployment of our multi-mode coding protocol. Alice has to implement
homodyne measurements in multiple orthogonal modes simultaneously on exactly the same
basis as imposed by the multi-mode EPR source. Furthermore, the phase reference of the
local oscillator beams has to be kept stable over all optical modes. Any errors in the
measurement basis or phase mismatch between the individual modes will decrease the quantum
communication rate. The same reasoning also applies to Bob who has to perform phase-locked
displacements in exactly the same basis. Although experimentally challenging, this problem is
already addressed by various researchers working on multi-mode homodyne detection [35, 36]
and quantum pulse gates [31-34].

Eventually, this approach of expanding the EPR source and the detection apparatus to
incorporate multiple modes allows us to perform multiplexed quantum teleportation. This in
turn leads to several independent CV teleportation protocols being performed simultaneously.
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5. Multiplexed quantum channel capacity analysis

In this section, we characterize the multiplexed CV teleportation channel in terms of its quantum
capacity.

We consider two remarkable settings. Firstly, we assume that the teleportation resource
is given by the multi-mode EPR state in equation (29). Secondly, we introduce a loss model
in which each Schmidt mode is independently (and identically) attenuated by a standard beam
splitter interaction with attenuation parameter 7.

In both cases, the resulting multi-mode teleportation channel coincides with n parallel
single-mode teleportations. Hence, proceeding as in sections 2.3.1 and 2.3.2 we obtain the lower
bound on the multiplexed quantum channel capacity

Oc = Z max{0, —1 —In N, }, (30)
k=1

and the upper bound on the multiplexed quantum channel capacity

O :ZmaX{O, In(1—Ny) —In Ny}, (31)

k=1

for suitable parameters N; > 0.

5.1. Multi-mode teleportation

Neglecting losses during the EPR state distribution to Alice and Bob, the parameters N, are
given by N, =e~%*, where r; labels the individual squeezing amplitudes of the multi-mode
squeezed state in (29). The bounds on the quantum channel capacities in (30) and (31) evaluate
to the straightforward expressions:

Qc =Y max{0, 2r — 1}, (32)
k=1
Qa= Y max{0,2r +In (1 —e )}, (33)

k=1

The amount of energy of the multi-mode EPR state arriving at either Alice or Bob’s side is
related to the mean-photon number in each arm given by:

(npn) = _ sinh? (). (34)
k

In analogy to the single-mode case, we analyze the teleportation channel as a function of the
corresponding energy that is now expressed by the mean-photon number (7,;,) of all the modes
involved in the teleportation protocol.

In order to compare the standard single-mode teleportation with our multiplexed coding,
we simulated a PDC source creating EPR states multi-mode in frequency, based on the source
employed in [26]. The source is able to operate in various degrees of multi-modeness and is
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Figure 7. Three different squeezer distributions A; normalized via >, A7 =1
with varying degrees of multi-modeness. Depending on the source properties
states ranging from a single squeezer (a) up to a whole range of EPR states
in orthogonal optical modes are generated. Here k labels the number of the
generated finitely squeezed EPR state and A, its amplitude relative to the other
modes. A, can be converted to the actual squeezing amplitudes r; via the overall
optical gain B of the source: ry = BAy.

hence perfectly suited for comparison purposes. We designed it to produce three different PDC
states with varying numbers of modes as presented in figure 7, which shows the three normalized
exponentially decaying mode distributions and their different weights, which we use for this
analysis. These normalized mode distributions can be directly converted to the corresponding
EPR state distributions, by multiplying them with the overall optical gain B of the process
rv = BAy (see [26] for details on the PDC source and [25]). We first simulate a purely single-
mode source (figure 7(a)), which only emits a single EPR state recreating the single-mode
communication discussed in section 3 [6]. Figures 7(b) and (c) present states with rising multi-
mode character, many EPR states generated in orthogonal pulse modes. Their effective mode
numbers K =1/, )\i [37] are K =1, 2 and 6, where it should be stressed that, due to the
generation process, not all modes share the same squeezing, but the entanglement follows an
exponential decay toward higher-order modes.

Using (32) and (33) we derive the lower and upper quantum channel capacity bounds Qg
and Q 4 for the different squeezer distributions presented in figure 7. The obtained quantities are
plotted in figure 8 as a function of the mean photon number or energy inside the channel.

It is evident that multiplexed teleportation relying on several less squeezed optical modes
results in significantly higher bounds on channel capacities with respect to standard single-mode
coding as soon as a certain energy threshold is exceeded. While the blue shaded area, which
corresponds to single-mode teleportation, with the complete energy being concentrated in a
single mode, never reaches quantum channel capacities above 5 g-nats in the considered energy
range, encoding information on multiple modes shows significantly higher quantum channel
capacities’.

The underlying reason for this behavior is the efficiency of the EPR state distribution.
Following the discussion in [25] one finds that it is far more efficient, in terms of energy content,
to utilize several EPR states with a low amount of squeezing than one EPR state with a high
squeezing value. A similar effect is also observed in other contexts such as energy efficient

% As an alternative to frequency multiplexing one could also transmit multiple weakly squeezed EPR states in
succession instead of one strongly squeezed EPR state. Mathematically both approaches are equivalent.
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Figure 8. Quantum channel capacity bounds (in g-nats) for multi-mode
transmission. From bottom to top K = 1, 2, 6. Applying multi-mode EPR states
for teleportation gives a significant increase in the available quantum channel
capacity as soon as a certain energy threshold is exceeded. This is due to the
increased energy efficiency of multi-mode coding in conjunction with the fact
that a minimum amount of squeezing has to be present in each optical mode to
achieve positive quantum channel capacities (see section 3).

entanglement creation [38], quantum reading [39, 40] and entanglement distribution [41].
However, the fact that a certain energy is required to achieve a positive quantum channel
capacity (see section 3) counteracts the enhanced energy efficiency of multi-mode coding and
consequently there exists a trade-off between using as many optical modes as possible for
enhanced energy efficiency and sufficiently few optical modes to achieve positive quantum
channel capacities.

5.2. Optimal multi-mode coding

In order to achieve the optimal quantum channel capacity one has to carefully balance the
splitting of the energy into different modes. As discussed in section 3 the upper bound Q 4 will
drop to zero as soon as the applied EPR state is below 3.01 dB. Hence, in order to maximize
the quantum channel capacity of CV teleportation, one has to distribute the energy over as
many EPR states as possible while the created EPR states still bear sufficiently high squeezing
values.

We analyzed the optimal number of modes for multiplexing that achieves maximal
quantum channel capacities for a given amount of energy (mean photon number (n.y)). Our
following discussion of the encoding into the optimal number of modes is split into two parts:
first we will elaborate on PDC sources that can be realized in a straightforward manner by the
use of existing setups, and discuss their optimal design. Then we turn our attention to the global
optimum where the necessary squeezer distributions would require further engineering of the
source.

5.2.1. Common EPR sources. Given a common source of multi-mode EPR states—as
presented in [26]—we optimize the capacities Q4 and Qg over all possible effective mode
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Figure 9. (a) Q4 and Qg channel capacities (in g-nats) for single-mode and
optimal multi-mode coding given a common EPR source. (b) Effective mode
number K required for optimal multi-mode coding. Adapted multi-mode codes
achieve quantum channel capacities outperforming single-mode approaches.

numbers K for each mean photon number (n,,) under the restriction of a mode distribution ry
given by the formula [29]:

re=By1—p2ut, 0<u<l 35)

The results are depicted in figure 9. Figure 9(a) shows the Q4 and Qg bounds for the
standard single-mode CV teleportation in comparison with the obtained optimized multi-mode
coding. In the case of low energies both approaches yield identical rates. However, given
mean-photon numbers above (n,,) ~ 0.94 (7.47dB) and (n,,) ~ 2.40 (10.61dB) for Q4 and
Qg respectively the optimized multi-mode coding outperforms the single-mode approach in
each bound individually. Finally, the lower bound Qg of the optimized multi-mode encoding
surpasses the upper bound Q 4 of single-mode coding at (n,) ~ 5.37 (13.70dB).

Most importantly, however, the optimal coding bounds show a linear increase in channel
capacity with energy, whereas the single-mode quantum capacity bounds exhibit a logarithmic
growth for high mean photon numbers. Consequently, the multi-mode coding enables an
exponential increase of the quantum communication rate over single-mode coding in the
presence of energy constraints. The effective mode number K corresponding to the optimal
bounds in figure 9(a) is presented in figure 9(b). As the channel capacities they feature a (mostly)
linear increase with energy.

5.2.2. Optimal encoding with EPR sources. The main drawback of the currently available
PDC sources emitting EPR states is that they feature exponentially decaying squeezing
amplitudes r; for higher-order modes, as already depicted in figure 7. This is not the optimal
encoding because a certain number of squeezers will always reside below the bound to
create positive quantum channel capacities. Hence, they do not contribute to the quantum
communication rate while still occupying energy.

We can negate this drawback by applying multi-mode EPR states exhibiting a flat
distribution r;, = r with a mode number K. Experimentally these states can be approximated
by engineering the pump pulse and phase-matching of the PDC process. This flat distribution
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Figure 10. (a) Q4 and Qg channel capacities, measured in g-nats, for single-
mode and optimal multi-mode coding given a flat mode distribution. (b) Effective
mode number K required for optimal multi-mode coding. Adapted multi-mode
codes achieve quantum channel capacities outperforming single-mode
approaches.

offers the great advantage that all EPR states contribute to the overall channel capacity and no
energy is lost in weakly squeezed modes with zero capacity. Indeed, it can be proven to provide
optimal distribution of the squeezing amplitudes, see appendix C.

In the optimal case of flat mode distributions the formulae for Qg and Q 4, as a function of
the mode number K and mean photon number (n,,), evaluate to:

Og = max {0, K |:2 arcsinh < %) — 1i| } , (36)
0 4 = max {O, K |:2 arcsinh ( m{?’)) +1In (1 —exp (—2 arcsinh ( <n£h>>)>i| } . (37

We analyze the achievable channel capacities in this optimized configuration by
maximizing over the mode number K for given energies or mean photon numbers (n,,). The
results are displayed in figure 10. Similar to the common EPR state distributions discussed in
section 5.2.1 they feature the advantage of showing a linear gain with mean photon number
(npn) instead of the logarithmic growth present in the single-mode coding case and hence an
exponential growth in quantum communication rate. The achievable channel capacities surpass
the quantum communication rates available using common EPR states as displayed in figure 9,
since no energy is located in weakly squeezed EPR states that do not contribute to the overall
quantum channel capacity.

Furthermore (36) enables us to directly assess the optimal number of modes K, required
to encode information for optimal capacity given a certain mean photon number (n):

Kopi(Qc) ~ 1.1133 (npn),  Kop(Qa) = 2.7523 (npn). (38)

From equation (38) we conclude that for the optimum mode number the squeezing of individual
modes stays fixed between 4.96 and 7.33 dB. Consequently using energy to achieve squeezing
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Figure 11. Frequency multi-mode teleportation setup including standard beam-
splitter like losses during the distribution of the EPR states to Alice and Bob.

values above this threshold is actually detrimental for the overall quantum capacity and it is
much more resourceful employing it to create EPR states in additional modes.

5.3. Multi-mode analysis under loss

We finally consider the impact of loss for multi-mode coding similar to the single-mode case
discussed in section 3. For a first analysis of the robustness under losses, we assume that all the
modes are attenuated by the same attenuation factor n. The more realistic setting of frequency
depending attenuation will be considered elsewhere [30]. Under these conditions the channel
capacity formulae evaluate to:

Qc =) max{0, =1 —In[l — (1 —e )]}, (39)
k=1

Q=) max{0,In[n(l —e )] —In[l —n(l —e )]}, (40)
k=1

Using (39) and (40) we determine the loss resilience of the three exemplary states. We start
by tuning the three test states to exhibit identical mean-photon numbers (n,,) = 30 and study
their behavior under loss. Our results are visualized in figure 12 where we plot the quantum
channel capacity as a function of the transmissivity 7. Clearly an enhanced loss resilience
is observed for multi-mode coding with respect to the single-mode protocol, which quickly
degenerates under loss. The reason for this advantage is well known: Strongly squeezed EPR
states are highly susceptible to loss whereas the encoding of information on multiple weakly
squeezed states is much more robust against this type of noise (see, e.g., [38]).

5.4. Optimal multi-mode coding under loss

In a similar manner to the discussion in section 5.2, we search for the optimal number of modes
to encode information yet including loss during the EPR state transmission.
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Figure 12. The loss resilience of the quantum information transmission rate
visualized for multi-mode and single-mode coding. From bottom to top K =
1,2, 6. Multi-mode coding offers the advantage of an increased loss resilience
and gives significantly higher rates over almost the whole 7 range in comparison
to the single-mode approach.
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Figure 13. (a) Q4 and Qg channel capacities (measured in g-nats) for single-
mode and optimal multi-mode coding given a common mode distribution as a
function of loss. (b) Effective mode number K required for optimal multi-mode
coding. Adapted multi-mode codes outperform single-mode approaches in the
low-loss regime.

For this purpose, we use an input state with mean photon number (n,,) =30 and in
dependence of the transmissivity 1 optimize the channel capacity over all possible input
mode distributions. In figure 13(a), we display the achievable rates using common squeezer
distributions readily available in the lab, as already discussed in section 5.2.1. Figure 13(b)
depicts the effective mode numbers required to achieve optimal coding. This analysis shows
that in the case of losses the optimal squeezing values differ from the ones for lossless coding
(see section 5.3) and the advantages of multiplexing are partially lost depending on the amount
of loss in the system. In the low-loss regime the optimized multi-mode coding outperforms
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Figure 14. (a) Q4 and Qg channel capacities (in g-nats) for single-mode and
optimal multi-mode coding given an optimal flat mode distribution as a function
of loss. (b) Effective mode number K required for optimal multi-mode coding.
Adapted multi-mode codes outperform single-mode approaches in the low-loss
regime.

the standard single-mode approach. However, in the case of high losses approaching 50%—the
exact value depends on the initial energy or the mean photon number—the single-mode coding
surpasses our multi-mode approach. This is to be expected for the applied CV quantum
communication protocol since it is not designed for transmission under extreme loss but for
low-loss applications. Its optimal operational area is the transmission of large amounts of
quantum information over short distances where it excels. For quantum communication over
longer distances—without repeater stations—other quantum communication protocols are more
suitable.

However, these results are still not optimal. For this purpose, we investigated attainable
quantum channel capacities using a flat mode distribution as discussed in section 5.2.2. The
attainable rates are presented in figures 14(a) and (b). Again the optimized coding on flat mode
distributions outperforms single-mode coding in the low-loss regime and achieves higher rates
than the use of common squeezer distributions.

Next, we turn our attention to the quantum communication rates as a function of the energy
for a constant loss rate. In figure 15(a), we plot the optimal multi-mode coding quantum channel
capacities for a transmissivity of n = 0.8 for common squeezer distributions as a function of
energy. The linear dependence of multi-mode quantum communication on energy for lossless
coding (see section 5.2) remains in this setting including losses during state transmission. The
single-mode coding also still features a logarithmic growth as a function of energy similar to
that of the one observed for lossless state transmission. Consequently, the multi-mode protocol
achieves an exponential increase over single-mode coding even in the presence of loss, as long
as a certain minimum amount of energy is used in the communication.

This effect is even more prominent when we consider optimal flat multi-mode EPR
state distributions, as depicted in figure 16(a). It achieves higher quantum communication
rates in comparison to the multi-mode coding on common squeezer distribution, while still
featuring linear growth as a function of energy as present in the lossless coding discussed in
section 5.2.2.

However, to achieve the optimal quantum channel capacity, the squeezing values of the
individual EPR states in the communication protocol have to be adapted to the losses in the
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Figure 15. (a) Q4 and Qg (measured in g-nats) for single-mode and optimal
multi-mode coding given a common mode distribution as a function of energy
for a constant loss rate of n =0.8. (b) Effective mode number K required for
optimal multi-mode coding. Even when considering losses multi-mode coding
shows a linear increase with energy, which constitutes an exponential increase
over the logarithmic growth of the single-mode protocol.
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Figure 16. (a) Q4 and Qg (measured in g-nats) for single-mode and optimal
multi-mode coding given a flat mode distribution as a function of energy for a
constant loss rate of n = 0.8. (b) Effective mode number K required for optimal
multi-mode coding. Even when considering losses multi-mode coding shows a
linear increase with energy, which constitutes an exponential increase over the
logarithmic growth of the single-mode protocol.

channel. Starting from the aforementioned 4.96 dB and 7.33 dB discussed in section 5.2.2 for
lossless communication, rising amounts of EPR squeezing are required for optimal coding. The
exact values, as a function of the transmissivity 7, are depicted in figure 17.

In summary, even in the presence of loss, multi-mode coding not only gives an exponential

increase in the observed quantum communication rate in comparison to the single-mode coding
as a function of energy, but also features enhanced loss resilience.
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Figure 17. The optimal squeezing values, in r (a) and dB (b), for the individual
EPR states in the multiplexed protocol adapted to the losses in the channel.

6. Conclusion

In conclusion, we expanded the theory of CV quantum teleportation into the multi-mode
domain and presented a practical approach to implement the proposed multiplexing protocol.
We calculated upper and lower bounds on the attainable quantum channel capacities by
encoding information on multiple optical modes. Our analysis reveals that multiplexing not
only features enhanced energy efficiency leading to an exponential increase in the achievable
quantum communication rates in comparison to single-mode coding, but also gives improved
loss resilience.

However, as reliable quantum information transfer is achieved only for squeezed modes
above a certain threshold value, a careful optimization of the number of used coding modes is
needed.

Our findings show that EPR states with squeezing values between 3.01 and 4.34 dB are
required for having reliable quantum information transfer through the teleportation channel.
Due to the energy constraints inside a quantum channel the optimum is reached when EPR states
with squeezing values in the range from 4.96 up to 7.33 dB are employed. Creating squeezing
above this bound is actually detrimental to the overall quantum communication rate. It is much
more resourceful to invest the excess energy in creating EPR states in multiple optical modes.
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Appendix A. Calculation of the lower bound Qg

For computing Qg, we have to maximize the coherent information over the Gaussian states. In
this case, we can assume without loss of generality that |) ,, is an EPR state with the squeezing
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parameter s, shared between the subsystem A and the auxiliary subsystem C, described by the
Wigner function,

Wiv),ow1(@a, Pai qc, pc) = Go,yacy(qa, Pai qc, Po), (A.1)
where
cosh 2s 0 sinh 2s 0
1 0 cosh 2s 0 — sinh 2s
ac _ L
Vs =35 | sinh2s 0 cosh 2s 0 (A.2)
0 — sinh 2s 0 cosh 2s

The action of the channel transmitting the state of subsystem A from Alice to Bob, transforms
this state to

WD) (), w0 @85 PB: dc, Pc) = G0, (gB, P8 qcs Pc)s (A.3)
with
2N +cosh2s 0 sinh 2s 0
1 0 2N +cosh2s 0 — sinh 2s
Bc _ 1
Vi =35 | sinh2s 0 cosh 2s 0 ' (A4)
0 — sinh 2s 0 cosh 2s

which is known as the Choi—Jamiotkowski (CJ) state associated with the channel. After tracing
out the C subsystem the reduced state of subsystem B takes on the form

Ws0) (@B, PB) = G(0.9%)(qB: PB), (A.5)
with
1 (2N +cosh2s 0
B ——
Vs = 2 ( 0 2N +cosh 2s) ' (A.6)

In order to evaluate Qg, we have to determine the von Neumann entropy of the two states
in (A.3) and (A.5). In the case of Gaussian states this is a straightforward calculation, because
the state is defined by its CM and the von Neumann entropy is determined by their symplectic
eigenvalues [22, 42]. Then we have

S[p(p)]=gw® —1/2), (A7)

where g(w) := (w+ 1)In(w +1) — wInw, and v? is the symplectic eigenvalue of the CM )/SB.
The symplectic eigenvalue is calculated from the matrix Qy, where Q = 10, is the symplectic

form, with
0 —1
10, = (1 0 ) . (A.8)
In particular, the eigenvalues of Qy? are +1v5.
Similarly,
SHe DY), (D] =gl —1/2) +g(WE —1/2), (A.9)

where vEC are the symplectic eigenvalues of the CM yBC, where £1v5¢ and +:1v5¢ are the
eigenvalues of (Q @ Q)yBC.
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The resulting coherent information is an increasing function of s:

v? = N + 1 cosh2s, (A.10)

VB¢ = 1/14+2N2 42N cosh2s + 2N+/1+ N2+2N cosh 2s. (A.11)
In the limit of an infinitely squeezed state (s — 00), we obtain

VB~ N+ %ez‘v, (A.12)
and

pBC ~ @ +N. (A.13)
Finally, after straightforward algebra, we obtain

0 = max {0, lim g(v” —1/2) — g —1/2) — g (2~ 1/2)]

= max{0, —1 —In N}. (A.14)

Appendix B. Classical communication allowed

In the main part of the paper, we have considered a scenario in which Alice and Bob make
use of error correction to convey quantum information through the noisy teleportation channel.
Alternatively, if they are also allowed to exchange classical information in a two-way fashion,
they can perform a protocol of entanglement purification to extract maximally entangled
states up to a rate equal to the two-way distillable entanglement [43], denoted D,, of the CJ
state (A.3). Alice and Bob can then use the maximally entangled states to establish a perfect
teleportation channel, allowing reliable quantum communication up to arate Q, = D, [43]. The
assistance of two-way classical communication can in general augment the quantum capacity'?,
ie. 0, > QO [43].

We then compute the logarithmic negativity of the CJ state, denoted Q g, which is an upper
bound for D, [44]. To compute the logarithmic negativity, first we have to apply the operation
of partial time reversal, denoted I", on the CJ state (A.3), which transforms the CM (A.4) to

2N +cosh2s 0 sinh 2s 0

I (y ¢y = 1 0 2N +cosh2s 0 sinh 2s
s 2 sinh 2s 0 cosh 2s 0

0 sinh 2s 0 cosh 2s

Then, we compute its symplectic eigenvalues:

1
dy = 5\/2N2 +2N cosh2s +cosh 4s & (N + cosh 2s)y/4N2 — 2 +2 cosh 4s. (B.1)

The logarithmic negativity of the CJ state equals max{0, — In (2d4_)}. Taking the limit s — oo,
after straightforward algebra, we obtain

QOr =max{0, —In N}. (B.2)

10 That does not hold true for one-way classical communication [43].
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Figure B.1. Upper QO and lower Qg bounds, in g-nats, for the quantum channel

capacity of CV quantum teleportation using a single-mode EPR state when
classical communication between Alice and Bob is allowed.

Finally, generalizing this expression to the multi-mode setting, and putting N; = e~>* we
obtain

Qr=2) ri (B.3)
k=1

Figure B.1 shows the bounds Qg < Q> < QO as functions of (np,). The analysis of
subsections 5.1-5.3 can be repeated for the quantity O, leading to similar results: the only
qualitative difference relies on the fact that the upper bound Qg is strictly non-zero for all
non-vanishing values of the squeezing. In order to maximize this bound it is hence optimal to
distribute the energy over as many modes as possible since there is no trade-off between the
multi-mode structure and having zero quantum capacity [38].

Appendix C. Optimal squeezing distributions

Our aim is to optimize the squeezing distribution under energy constraint. Let us denote

K
Q:=) q(n). D
k=1

(K integer) the function to be optimized. We want to consider general distributions, including
those with an infinite number of non-zero squeezers (K — 00). To fix the ideas, we consider
the case of lossless teleportation (the extension to the lossy case is straightforward). Hence, the
optimization of the lower and upper bounds on the lossless quantum teleportation capacity is
recovered by identifying the function ¢ (r) with

qc(r) = max{0, 2r — 1} (C.2)
or

g4(r) = max{0, 2r +log (1 —e™2")}. (C.3)
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These functions are zero if the value of r is below a certain threshold. It hence follows that it
is sufficient to consider a finite number of squeezers corresponding to values of the squeezing
parameters above the threshold; hence we can assume without loss of generality that K < oo
in (C.1). That also allows us to substitute the functions gg, g4 with

gc(r) :=2r —1, (C.4)
Ga(r) :=2r+log (1 —e™ ). (C.5)

In order to optimize the quantum capacity bounds under the constraint

K
(npn) = Y _ sinh’ ry, (C.6)
k=1

we introduce the Lagrange function

K K
F(ri.ry,....te,)) =Y _G(r) — A Y _sinh’ry, (C.7)
k=1 k=1

with A being the Lagrange multiplier, whose value is determined by (n,;), and g stands for either
gc or g 4. Differentiating with respect to r;, we get the Lagrange equations

dg (r)
drk

= Asinh (2ry), (C.8)

which implies
1 dq (ry) —)
sinh (2rk) dl"k
That means that the optimal distribution is that in which the function Sinhl(zrk) d%(rz ¥ js constant for

all values of k. It hence follows that the flat distribution of the squeezing parameters is optimal.
To check the uniqueness of the solution, we first note that

1 dg)  dgr(ng)

(C.9)

; = (C.10)
sinh (2I"k) dl’k dl’lk
where r (n;) = arcsinh,/n;. The Lagrange equations are then rewritten as follows:
P
dgrime) _ (C.11)
dnk

A sufficient condition for the uniqueness of the solution is that the function g (r (n;)) has a given
concavity as a function of n;. The derivatives with respect to ny,

dgc(r(ng)) 1
v 1 (C.12)
dga(r(ng))  ePeesinnvie 1 (C.13)

dn, T elarcsinh/mg _ ] m’

are both monotonically decreasing functions of n;, which proves the concavity of gg(r(ny)),
and g4 (r(ny)), as functions of ny.

In conclusion, we have proven that, for any given integer K, the flat distribution is the
unique optimal squeezing distribution over the modes, as long as all individual modes feature a
positive quantum channel capacity. Then, the optimal mode number K can be evaluated for any
given (npy), yielding the expressions presented in (38).
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11. Conclusion and Outlook

In this thesis we expanded the formalism of ultrafast waveguided parametric down-
conversion to include the spatial, spectral and photon-number degree of freedom. Our
rigorous theoretical description of PDC enabled us to build, develop and propose en-
hanced sources for quantum information processing: we explored the limits of PDC to
serve as a source of single-photon Fock states, put forward a scheme to create single-mode
PDC states independently of the applied material, presented a loss resilient method to
effectively probe PDC states in the laboratory and, based on the multi-mode nature of
PDC, developed a multiplexed quantum communication protocol featuring an exponen-
tially enhanced quantum communication rate in comparison to the standard single-mode
coding.

After a short introduction into the theory of PDC in Chap. 4 we included the spatial
degree of freedom for waveguided PDC [1, 2] in Chap. 5. This enabled a complete
description of the spatial-spectral interplay during the process of waveguided parametric
down-conversion, which leads to the creation of hyperentangled quantum states [2], and is
vital for the engineering of integrated PDC sources for quantum information processing.
Currently our developed model serves not only as a tool to model waveguided PDC,
but also forms the basis to engineer integrated two-photon quantum walks in waveguide
arrays [35].

We further extended the current models of PDC, based on first-order perturbation
approaches, to include higher-order contributions which, based on the solution of cou-
pled integro-differential equations, enables a rigorous description of the ultrafast down-
conversion process. Additionally we developed a simplified model that, at the expense
of neglecting time-ordering effects, enables an analytic solution which accurately de-
scribes the down-conversion process in a broad parameter range. These models enable
us to incorporate higher-order photon number effects into the theoretical descriptions
of ultrafast PDC and consequently lead to an enhanced precision when evaluating their
performance for quantum enhanced applications [3]. Furthermore our developed theo-
retical framework of PDC is also able to describe the process of frequency conversion,
which enabled us to benchmark the performance of FC processes serving as quantum
pulse gates.

The rigorous PDC description enabled us to derive the fundamental limits of paramet-
ric down-conversion to serve as a single-photon source. Our investigations reveal that
an optimal PDC source in conjunction with a perfect photon number resolving detector
is able to herald a pure single-photon state with 25% probability. For the creation of a
deterministic (> 99%) single-photon source consequently an array of 17 switched PDC
sources is required [4].

To date, however, the creation of single-mode PDC states is difficult, since the applied
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nonlinear crystal material has to feature very specific dispersion properties. In order to
circumvent this problem we propose creating PDC states with counterpropagating signal
and idler photons, which enables the creation of single-mode PDC states independent
of the applied nonlinear material [5].

In order to characterize the developed PDC sources in the laboratory quantum state
tomography is required. This, however, demands complex setups and long measure-
ment times, due to the multi-mode structure of PDC. As an alternative we developed
a new state characterization tool based on broadband, time-integrated correlation func-
tion measurements. It enables the robust, fast and most importantly loss independent
characterization of down-conversion requiring only broadband time-integrated ¢® and
¢! measurements [6].

Finally we turned to the question of quantum communication using parametric down-
conversion. Our knowledge of the spectral properties of PDC enabled us to propose
parametric down-conversion as a fundamental building block of a multiplexed CV quan-
tum communication protocol which features an exponential increase in the achievable
quantum communication rate in comparison to the standard single-mode CV coding
protocols [7].

Still the process of parametric down-conversion offers many interesting open ques-
tions for future research. Concerning our theoretical treatment of PDC and the spatial-
spectral interplay in waveguides and waveguide arrays the created quantum states offer
the possibility to create hyperentangled quantum states in the spatial and spectral do-
main. However, a detailed characterization and optimisation of this entanglement has
yet to be performed.

Furthermore it would be very interesting to include the effects of intra-crystal losses
during the state creation into our theoretical description of PDC. These intra crystal
losses are one of the limiting factors for the creation of highly squeezed EPR states and
their inclusion would give an enhanced precision in benchmarking the prospects of PDC
in the framework of quantum information. While limited models of this issue already
exist, merging the spectral degree of freedom and losses into a unified picture still poses
an open research question.

Additionally parasitic processes, like fluorescence decrease the quality of the emitted
PDC states. To date however only a few of these have been identified and their theoret-
ical description is still under debate [137, 138]. Yet a theoretical investigation of these
is necessary to effectively cope with this additional noise and to design sources which
minimize their impact on the output states.

Concerning our discussion of frequency conversion and quantum pulse gates in Sec. 6.4
it is still unclear if adapted pump shapes and hypergrating structures are able to improve
the performance of frequency conversion as a quantum pulse gate. Whether or not it
is possible to remove the limitations imposed by the sinc structure and time-ordering
effects is an open research question.

Finally, in our multiplexed quantum communication protocol, we currently describe
the losses during the state distribution using the widespread approach of modelling them
via a beam-splitter transformation with a varying transmissivity n. This however is only
an approximation to an actual optical fiber which features frequency dependent loss
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rates. An inclusion of these frequency dependent loss effects is currently under way.
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Somewhere, something incredible
is waiting to be known.

(Carl Sagan)

A. The singular value
decomposition

Throughout this thesis, especially in Chap. 4 and Chap. 6, we performed singular value
decompositions (SVD) to decompose PDC processes in their amplitudes and correspond-
ing mode functions. In its most general form the singular value decomposition of our
joint-spectral amplitudes reads

Flo,w) = Mdn(w)vhe(w), (A1)
k=0

where A, € R, Ay > 0, and {¢x(w)} and {¢x(w’)} each from an orthonormal basis. In
the special case of two-dimensional Gaussian functions it is straightforward to evaluate
the SVD since an analytic formula exists [139]:

14 p? 2001 UT1 T

= /1 = ,u2 Z M”un(alxl)un(aﬂg) (AQ)

o |- e

Here 0 < p1 < 1, u,(x) = (2"n!) "2 H, () exp(—22/2) and H,(z) is the n™ order Hermite
polynomial.

Care however has to be taken to when performing these decompositions numerically.
In this case we have to use a discretized versions of f(w,w’):

fw,w') = fouw (A.3)
Decomposing f,, . we obtain three matrices
fw,w’ - Z Aw,kakBk,w’7 (A4)
k

where A and B are unitary matrices which store the normalized basis vectors in their
rows and columns and the diagonal matrix D holds the singular values. However, despite
the resemblance of Eq. A.1 to Eq. A.4, the result of the numerical SVD on a grid is not
identical to an analytical SVD. The problem arises due to the fact that the norms work
differently in the continuous and discrete space:

/dw @ =1 v S Agl=1 (A.5)
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While in the discrete regime the sum over all matrix elements absolute value squared in
one row / column, depending on how the mode functions are stored, has to evaluate to
one, in the continuous regime the integral over a mode function absolute values squared
must yield one. Consequently the amplitudes of the basis functions, from the different
regimes, differ by a factor of square root of the applied step size Aw used during the
discretization of f(w,w’). In order to obtain the correct continuous mode amplitudes
from the matrices A and B we consequently have to multiply each matrix with 1/ VAW
and, furthermore, we have to readjust the singular values in D via multiplication with
Aw to transform them into the continuous picture:

In total, after having performed a numerical SVD on a grid with step size Aw, all
parameters have to be readjusted via:

Aw,k/m = ¢k(w>
Biw [V AW = (o) (A7)
DkkAw = Tk

The same normalization hast to be applied when working with the U(w,w’) and V (w,w’)
matrices.
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Abstract. Full control over the spatiotemporal structure of quantum states of
light is an important goal in quantum optics, to generate, for instance, single-
mode quantum pulses or to encode information on multiple modes, enhancing
channel capacities. Quantum light pulses feature an inherent, rich spectral
broadband-mode structure. In recent years, exploring the use of integrated
optics as well as source engineering has led to a deep understanding of the
pulse-mode structure of guided quantum states of light. In addition, several
groups have started to investigate the manipulation of quantum states by
means of single-photon frequency conversion. In this paper, we explore new
routes towards complete control of the inherent pulse-modes of ultrafast pulsed
quantum states by employing specifically designed nonlinear waveguides with
adapted dispersion properties. Starting from our recently proposed quantum
pulse gate (QPG), we further generalize the concept of spatiospectral engineering
for arbitrary x®-based quantum processes. We analyse the sum-frequency
generation-based QPG and introduce the difference-frequency generation-based
quantum pulse shaper (QPS). Together, these versatile and robust integrated
optical devices allow for arbitrary manipulations of the pulse-mode structure
of ultrafast pulsed quantum states. The QPG can be utilized to select an
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arbitrary pulse mode from a multimode input state, whereas the QPS enables the
generation of specific pulse modes from an input wavepacket with a Gaussian-
shaped spectrum.
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1. Motivation

Ultrafast pulsed quantum states of light play an increasingly important role in quantum
information and quantum communication as they allow for efficient network synchronization
and high data transmission rates. In general, they feature a rich spectral mode structure, which
is most naturally described on a broadband pulse-mode basis. This is not a new result in either
classical or quantum optics [1]. For classical states, all basis sets are formally equivalent and no
specific choice can be distinguished. In contrast, it has been shown that pulsed quantum states
of light exhibit an inherent pulse-mode structure, which is solely determined by their generation
process [2]. Different kinds of applications require specifically tailored pulsed quantum states,
be it single-mode states for linear optical quantum computation [3] or multimode states for high-
capacity quantum information encoding. Thus, a thorough understanding of the spatiospectral
modal structure of ultrafast quantum states as well as the ability to exercise full control over that
structure is an important goal in today’s quantum optical research.

In this paper, we investigate the potential of engineered nonlinear waveguides for the
manipulation of pulsed quantum states, which cannot be achieved within the framework of
linear optics. Special emphasis is put on an accurate description of the x ®-process inside the
guide, which takes into account rigorously the spatial and spectral degrees of freedom. Thus
quantitative measures can be derived for the efficiency of practical quantum optical devices.

New Journal of Physics 13 (2011) 065029 (http://www.njp.org/)
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This paper is organized as follows. In section 2, we review the state-of-the-art methods
for generating ultrafast pulsed quantum states and manipulating their inherent pulse-mode
structure in bulk crystals and waveguides. We briefly discuss the latest developments and
introduce new ideas by combining dispersion engineering techniques, which have become
established by now for photon-pair preparation, with current methods of state manipulation
utilizing x ®-nonlinearities. In this context, we analyse the experimental implementation of
our recently proposed quantum pulse gates (QPG) [4] and extend the formalism further by
presenting the concept of a quantum pulse shaper (QPS). In sections 3 and 4, we develop a
theoretical framework for our devices. We start with the linear operator transformations for sum-
and difference-frequency generation and derive the interaction Hamiltonian of these processes
considering spatial and temporal degrees of freedom. Our analysis results in a completely
quantitative model. Section 5 is dedicated to merging the derived theoretical framework with
dispersion engineering methods known from state preparation, thus paving the way for real-
world applications, the performance of which is investigated in section 6. Here, we introduce
realistic experimental parameters for our waveguide devices and demonstrate the capability to
fully control the pulse-mode structure of ultrafast pulsed quantum states of light. Finally, in
section 7, we highlight the most important results of this work, and end with an outlook on the
use of QPG and QPS in continuous variable quantum information processing.

2. Introduction

In recent years, different approaches have been introduced to prepare and manipulate ultrafast
pulsed quantum states of light. One of the most common sources for the generation of photonics
quantum states is parametric down-conversion (PDC) in nonlinear crystals. This is mainly due
to the rather simple experimental implementation of PDC sources and their ability to achieve
high photon-pair generation rates. When pumped by ultrafast pulses, PDC processes generate
pulsed bi-photons with broad spectra. However, these states are usually highly correlated due to
the constraints imposed by energy and momentum conservation [5, 6]. Hence, photon pairs
are typically emitted into many inter- and intra-correlated spatial-spectral modes, the exact
structure of which can be retrieved by applying a Schmidt decomposition to the biphoton
amplitude distribution [7]. Upon the detection of one of the photons, the other one is projected
onto a mixed state of all possible modes, rendering it ill-suited to linear optical quantum
computation applications [8]. The common way of overcoming this limitation has been to use
narrow-band spectral filtering to force the photons into one optical mode [9, 10]. However, this
approach prohibitively lowers the photon generation rate as most of the generated signal is lost
in the filtering process. It is thus not feasible in the case of large-scale quantum information
applications [8]. In addition, only in the limit of infinitely narrow filtering one monochromatic,
temporally de-localized mode is selected, and the photon’s pulse characteristic is lost.

2.1. Preparation of ultrafast pulsed quantum states with waveguides

Recently, two new developments have made it possible to tackle the aforementioned problems.
The use of integrated waveguide sources has a major impact on the structure of PDC photon
pair states. In a bulk crystal, the generated photons are emitted at the natural phase-matching
angles. This poses two problems. Firstly, the collection of photons pairs is experimentally
challenging and typically inefficient. Secondly, the pump field always couples to an infinite

New Journal of Physics 13 (2011) 065029 (http://www.njp.org/)
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number of spectral—spatially correlated modes, and thus the probability of creating a photon
pair in one distinct mode becomes very low. In contrast, the emission in nonlinear waveguides
is restricted to a well-defined set of discrete spatial modes defined by the waveguide, ideally
allowing only the propagation of one individual mode in a single-mode waveguide®. It turns
out that the probability of generating a photon pair in a distinct spatial mode is enhanced by
several orders of magnitude [11, 12], since the total number of allowed modes is dramatically
reduced inside the waveguide. Moreover, it also leads to an effective decoupling of the spatial
from the spectral degree of freedom, since any spatial-spectral correlation necessitates more
than one spatial mode. Even if other spatial modes apart from the ground mode are guided in
the waveguide, modal waveguide dispersion usually ensures that both photons in those modes
are created at different frequencies. Thus they can readily be removed by applying broadband
spectral filters on the output state [13].

The second step on the way to achieving complete control over the modal structure of
the generated quantum states of light is spectral source engineering. It has been proposed
that by choosing adapted dispersion properties, photon pair generation can be tailored such
that the signal and the idler are emitted into a single spectral pulse mode each [8, 14]. Later
this was experimentally demonstrated for bulk crystal sources [15—-17] and photonic crystal
fibre sources [18-20]. Only recently has this been realized in a waveguided PDC source
in a KTiOPO, crystal [21]. In this setup, the use of a waveguiding structure has led to an
unprecedented brightness for sources of separable photon-pair states. Note that narrow-band
spectral filtering is not necessary with these sources as the generation process itself only allows
a single spectral pulse mode. Thus, the generated photon pairs are genuine quantum pulses and
are completely separable, spectrally as well as spatially.

2.2. Manipulation of the pulse-mode structure of ultrafast quantum states

Until now, research on the manipulation of pulsed quantum states has mostly focused on
shifting their central frequency. It has been shown that the sum-frequency generation (SFG)
of single photons, in combination with subsequent photodetection, surpasses the efficiency of
direct detection of near-infrared single photons [22-25]. Additionally, SFG has been proven
to conserve the quantum characteristics of the input photon [26-28] and has already been
utilized to implement measurement schemes with very high timing resolution, which overcomes
the long integration times of current single-photon detectors [16]. Only last year, SFG was
demonstrated for single-photon Fock states [29]. Note that recently also four-wave mixing in
photonic crystal fibres has also been employed to demonstrate coherent frequency translation of
single photons [30]. This highlights the broad interest in and numerous application possibilities
for these techniques. With more and more single-photon sources available in the visible
range, difference-frequency generation (DFG) has now attracted increasing interest. Recent
experiments employ DFG to implement wavelength interfaces for quantum networks [31-33],
which equivalently to the SFG process preserve the quantum characteristics of the input
state.

Despite this considerable progress, the generation of ultrafast pulsed quantum states with
a specific pulse-mode structure, be it the number of excited modes or their shape, has not been

4 Here we only consider guided modes, neglecting any contributions that could be present due to phase-matched
substrate modes. This simplification is justified, because the continuous distribution of substrate modes can be
easily filtered out by spectral or spatial filters.
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Figure 1. Schematic diagram of (a) a QPG and (b) a QPS. The QPG is based
on an engineered ultrafast SFG in nonlinear optical waveguides. By shaping an
ultrafast gating pulse, one specific pulse mode from a pulsed multimode input
state is selected and shifted to another frequency. Then it can easily be split off
while leaving the rest of the state untouched. The QPS is based on engineered
ultrafast difference-frequency generation in nonlinear optical waveguides. An
input pulse mode can be converted into an arbitrary output pulse mode by
nonlinear interaction with an ultrafast shaping pulse. The output pulse mode’s
shape is given by the mode of the shaping pulse.

explored yet. Although the rich inherent mode structure of ultrafast optical quantum states is
well known, before the QPG [4] there was no feasible way of controlling and manipulating the
different modes separately.

2.3. Quantum pulse gate (QPG) and quantum pulse shaper (QPS)

We now combine findings from the field of quantum-state generation with techniques from
state manipulation. Applying source engineering to frequency conversion reveals fascinating
possibilities to achieve the desired goal of complete control over the pulse-mode structure of
ultrafast quantum states. In [4], we have already proposed a QPG, a device based on engineered
ultrafast SFG in nonlinear waveguides. This device enables us to address different inherent pulse
modes of an ultrafast pulsed quantum state of light individually, as illustrated in figure 1(a). We
would like to highlight that the QPG operation does not have any impact on the residual pulse-
mode structure. This sets it apart from other experiments that focus on a direct manipulation
of the spectral broadband-mode structure of ultrafast pulsed quantum states and that employ
pulse shaping of photon-pair states [34—36]. This alternative approach also leads to highly
interesting results for entanglement-based applications. Still, the manipulation is not pulse mode
sensitive in the sense of accessing and separating out a single-mode quantum state with a specific
temporal profile. In contrast, the QPG achieves mode selection by shaping an ultrafast, coherent
gating pulse instead of the pulsed quantum state. The addressed mode is converted to the sum-
frequency of the input pulse and gating pulse and is thus easily accessible. In addition, different
orthogonal pulse modes can be interconverted into each other, rendering interference between
them possible.

In this paper, we elaborate on the QPG concept and come up with another fundamental
device, the QPS based on engineered ultrafast DFG. While the QPG addresses single pulse
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modes, the QPS enables us to convert an input quantum state with a Gaussian-shaped spectrum
into a single-mode quantum state with arbitrary shape (see figure 1(b)). Here, an arbitrarily
chosen pulse form of the coherent shaping pulse defines the output pulse mode. We would like
to mention that a similar idea of shaping quantum pulses by means of frequency conversion
with dispersion matching has been proposed in [37]. In contrast to this earlier work, we put
special emphasis on the engineering of the dispersion characteristics of the nonlinear medium
used, such that single-mode operation can be ensured, avoiding the insertion of any unwanted
vacuum contributions.

Using QPG and QPS, pulsed quantum states can be generated and selected with unit
efficiency in arbitrary pulse forms, and the encoding of quantum information in broadband
mode basis and the successive read-out become possible. Therefore QPG and QPS will enable
the implementation of quantum communication protocols, which exploit the rich pulse-mode
structure of ultrafast states.

3. Linear transformations for sum-frequency generation (SFG) and difference-frequency
generation (DFG) in comparison with parametric down-conversion

In this section, we qualitatively discuss the nonlinear three-wave mixing processes SFG, DFG
and PDC, highlighting their formal similarities as well as examining their differences. In such
a three-wave mixing process, three electrical fields interact inside a nonlinear medium, and the
interaction Hamiltonian in the rotating-wave approximation is of the form

H,, x@)/ ErEQFE NES F HEOF, 1) +hee. (1)

The EE” (7, t) describe the positive frequency parts of the interacting electric fields and x @
is the second-order nonlinearity of the medium. In PDC and single-photon SFG and DFG,
two of the three fields are generally considered quantum mechanically. The remaining field
is a bright, immutable pump field that can be treated classically. In this case, the interaction
Hamiltonian becomes bilinear and Heisenberg’s equation of motion yields linear input—output
transformations for the creation and annihilation operators. Depending on which of the three
fields is defined as a pump, one can distinguish between two flavours of processes that are
characterized by different linear operator transformations.
This can be derived when considering a single-mode approximation to equation (1),

H,, ocab'¢t +athe. )

Firstly, we assume that the field E,(r, r) is the classical coherent pump field. We insert its
classical amplitude « into the above equation and find that

Hi o b'éT + o bé. 3)
The resulting operator formally corresponds to a two-mode squeezing operator (compare
e.g. [38]), which means that this case describes PDC. Depending on the pump power of
the bright field, either the photon pair characteristics (low-power regime) or the squeezer

characteristics (high-power regime) dominate the PDC output state. The linear transformations
between input and output operators evaluate to

b — cosh(¢)b — sinh(¢)¢é", 4
¢ — —sinh(¢)b" + cosh(¢)é, (5)
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(a) (b) (c)
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s%_w

Figure 2. Schematic diagrams illustrating two different flavours of second-order
nonlinear process. All processes are pumped by a classical undepleted field at
a frequency w,, and the dashed arrows indicate vacuum modes. (a) In a PDC
process, two photons are created and the evolution operator for this process is a
two-mode squeezing operator. (b, ¢) In an SFG or DFG process, one incoming
photon is annihilated and an outgoing photon at another frequency is created.
Assuming that the frequencies involved in the two processes are equal, one
can readily see that SFG and DFG are similar yet reversed processes, which
is indicated in the schematics by the different directions that the arrows point
to. The corresponding evolution operator for these processes is equivalent to a
beamsplitter. For further details, see the text.

where the parameter ¢ depends on the pump power and is related to the amount of squeezing in
the generated pair state. This is discussed, for instance, in [39].

We find the other flavour of x ® processes by assuming that the field Ey (7, ) corresponds
to the pump field. We substitute its classical amplitude § in (2) and obtain

Hin o Baé" + g*ate. (6)

This expression is formally equivalent to an optical beamsplitter Hamiltonian and we can use
the well-known beamsplitter input/output transformations for the operators a and ¢,

a — cos(@)a —isin(0)c, (7
¢ — —isin(0)a +cos(9)C. (8)

We identify 6 with the beamsplitter angle, which depends on the pump power and the
strength of the nonlinear interaction. This will be discussed later in great detail. We interpret this
xP-process as a beamsplitter that diverts optical beams into different frequency output
ports depending on their initial frequency. Note that in single-photon quantum optics, this
Hamiltonian describes SFG as well as DFG. In classical nonlinear optics, however, DFG is
understood as a stimulated process. The bright pump field has the highest frequency and the
process is seeded with a weak input field, which is enhanced through continuous conversion
of pump photons. In that case, operator transformations similar to those for PDC are valid and
the process could also be interpreted as seeded PDC. In contrast, we assume a single (or a
few)-photon input state, which has the highest frequency and the ‘seed’ field is the bright field.
By pinning the pump field to a fixed value in our process model, we exclude that stimulation
can occur and the process becomes formally equivalent to SFG. Note that the usual no-pump-
depletion approximation (0E,/0z =0) needs to be interpreted as a no-pump-enhancement
approximation in this case. These findings are shown schematically in figure 2.

We move on to the derivation of the interaction Hamiltonian for quantum mechanical
frequency conversion inside an optical waveguide.
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4. Quantitative derivation of the SFG and DFG interaction Hamiltonian

4.1. Spatial mode considerations in a monochromatic approach

The interaction Hamiltonian of a frequency conversion process can be expressed as
Hin = —desreg f ErE,F OEP G 0ED F, 1) +hee, 9)

where d.; denotes the effective nonlinearity, E;, is the classical pump field, and E i(” and E f)‘)
denote the operator expressions for the input signal and the converted output, respectively. As
the interaction happens inside a nonlinear optical waveguide, the propagation of the fields is
restricted to one direction, which is given by the waveguide axis and which we define as the
z-direction. The ultrafast pump field then reads

E,(F, 1) = Ay fo(x, ¥) f dwpo (w,)e Pz, (10)

Here, o (w)) is the normalized spectral amplitude of the pump. The function f,(x, y) describes
the transverse spatial distribution of the pump field with [ d*r|f,(x,y)|*=1 and B, is
the propagation constant of the corresponding transverse mode. By requiring that the area
integration over the field intensity / = %c nyeo| E|*, where n, denotes the refractive index at
the pump frequency, corresponds to a power, we find that the amplitude A, is related to the
average pump pulse peak power P, by

A —( 2Py )1/2 (1
P \ceonp(wp)| [ dopa(w,))? .

We implicitly make use of the slowly varying envelope approximation in this calculation, which
is valid as we consider only pulses with Aw < wy. This also means that we can neglect the
frequency dependence of the propagation constant 8, in (10).

To derive expressions for the quantized fields in a nonlinear waveguide, we start from the
electric field operator for a propagating field in a dielectric with finite cross-section area A,
given in [40]. Note that we assume the wavevector components &, and k, of the quantum field
to have fixed, finite values.

A hw 12 o
E(+) V.7 1) = / d ~ —1wt+1(kxx+kyy+kzz)' 12
%y, 2,0 =1 w<4n80cn(a))A) d(@)e (12)

In a nonlinear waveguide with field propagation along the z-direction, the solution of the
Helmholtz equation yields a discrete spectrum of valid propagation constants B,,, = k""" and a
set of allowed, localized transverse modes { f,,,(x, y)}, determined by the boundary conditions
of the guiding geometry. The indices m and n denote the order of the transverse mode in the
x- and y-directions. Each g, corresponds to exactly one mode and, in the case of a symmetric
situation, the B,,, for the corresponding modes (e.g. By, and B;9) become degenerate. For better
readability, we only use one index m to describe the modes. The spatial localization of the
fields implies continuous spectra of the individual wavevector components k" and k{", given

by f m(ky, ky) = FT [ fnlx, y)1.° The electric field inside a nonlinear waveguide is accordingly

5 We deploy the symmetric definition of the Fourier transform, that is, f (k) = ﬁ [ dx f (x)e~** and accordingly
fx) = %27[ dk f (k)e'*.
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comprised of a superposition of quantum fields of the form given in (12), each corresponding to
a single propagation direction. Summing over the transverse waveguide modes and integrating
over k™ and k;”’), we find that

N ‘ Ao 2 o
E(+)(x, Yy, <, f):lZ/dw(m) am(a))e—lwtﬂﬂmz

x / k™ Ak F ey, Ky e (13)
This can—due to the Fourier relationship between position and momentum—be written as
EOG,y.z.0)=1) 2mfu(x.y) / dw(h—w> mém (w)e™ @ tibnz, (14)
— dmegce ny, (w)

We would like to point out that we account for the cross-sectional area by the spatial
distributions f,(x, y), which are normalized such that [ dx dy| f,,(x, y)|* = 1 and which have
units of inverse metres. Moreover, we assume that within the frequency range of the considered
fields the variation in the spatial properties is negligible, due to the narrow-band approximation
Aw < wy. We substitute the electric field operators into (9) and rephrase the interaction
Hamiltonian for single-photon frequency conversion as

A d hTL’ w;iw, ) .
H=—"—Ap ) [— / A dyfy(r, ) fi (s ) f (5, ) / d B hum:
¢ I.m niNom

X / dw, dw; dw,a(wp)e =T G ()¢, (w,) +h.c., (15)

where we discriminate between SFG and DFG. Here, labels 1 and o denote input and output
fields, whereas indices / and m describe the transverse spatial modes of input and output fields
respectively.

Now we move on to the calculation of the time evolution of the input quantum state during
the conversion process. Note that the interaction of the Hamilton operator of equation (15) is
time dependent and thus the exact solution has to take into account time-ordering effects. Here
we present an approximate solution that neglects time-ordering effects, in order to emphasize the
conceptual structure and to illustrate the main idea. In the appendix, we validate this approach
by comparing the approximate solution with rigorous calculations we performed. We find that
the shape of the mode functions does not change significantly when taking into account time
ordering, but the maximum conversion efficiency drops to 90%. Still, these findings confirm that
the analytical solution leads to reasonable results and can safely be applied. Hence, we write the
time evolution of the quantum state during the conversion process

1Y) out = U (1) |¥)0 = exp(—% / drﬁlima)) ¥ )o. (16)

Thus, we need to perform a time integration of the interaction Hamiltonian given in (15). This
is a well-known procedure discussed, for PDC, in great detail in [8]. We only present the result
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here, as the calculation, including the waveguide aspects, is straightforward,

2deffh7[ [OHON 1 N AF
dt Hin (1) = —"—A LZ da; dweet (i) Pr.m (@i, o)1 (@) & (o) +h.c.

niNo,m /Al(eff)
(17)

Here, L is the length of the nonlinear waveguide. The function o (wj,) is the spectral pump
distribution defined as o (w, — w;) for SFG and o(w; — w,) for DFG, respectively, whereas the
function ¢y ,, (w;, w,) characterizes the phase-matching and is given by

P
&1.m(wi, w,) = sinc <A'3;'"L> A exp|:—0.193 : (A'B;'"L) i| (18)

The expression Ap;,, describes the phase-mismatch of the propagation constants and
evaluates t0 ABy,, = B+ Bis — Bon — == for SFG and ABy,u = By — Bii + Bon — = for DFG,
respectively. Finally, A is an optional poling period for quasi-phase-matching inside the

. . . . L . fi
waveguide. Following the usual conventions, we define an effective interaction area Al(emf),

2
A(efﬂ [ f dx dy (6, ) s ¥) fi . y)] (19)
Note that this should not be mistaken as a geometric area defined, for instance, by the waveguide
cross-section. Instead it describes the overlap of the transverse spatial modes of the three
interacting fields inside the nonlinear waveguide. This result also implies that simply using a
smaller waveguide—while not changing the modal overlap characteristics—will not alter A©™
and will therefore not have any impact on the efficiencies of the processes. The product of
pump distribution and phase-matching function is conveniently defined as the joint spectral
distribution function,

1
Gim(wi, w,) = N—a(wio)¢l,m(wi, w,), (20)
I,m

which describes the mapping between input and output frequencies for a specific pair of spatial
modes [, m. The normalization factor N, ,, reads ([ dw; dw,|a (io)Prm (@i, wo)|*)'/2.

4.2. Broadband pulse mode picture

The description derived so far has been in terms of monochromatic creation and annihilation
operators. However, since we concentrate on x »-interactions between ultrafast pulses, a much
more natural approach is to consider broadband pulse modes. A suitable pulse-mode basis is
found by applying a Schmidt decomposition to the joint spectral distribution function,

Grm(@i, o) = Ykl (@)™ (wo). 1)
J

Equation (21) yields two correlated sets of orthonormal broadband pulse-mode functions
{@®“™ ()} and {“™(w,)}. The diagonal values K;l’m) are the real and positive Schmidt

coefficients and satisfy i (KJ(.l’m) )2 = 1. It is well known, for PDC, that the basis sets of the
Schmidt decomposition, and thus the modal structure of the photons, are uniquely defined [2].
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The same argument can also be applied here in the context of SFG and DFG. As for PDC, we
define broadband creation and annihilation operators,

Ajim= f do; "™ (@)1 (@), (22)

Ciim= f oo Y™ (6)é (o). (23)

Substituting those, we rewrite the expression for the time-integrated interaction Hamiltonian
from (17), and arrive at the broadband pulse-mode picture,

A 2dghm? wiw, Ny m) A A
f dtHim(z):%ApLZ o L Z(KJ(-I’ "Aj1mCy, +hec)
I,m

I’li’ﬂ’lo,m /A(eft) -
I,m J

L IR
=1 Y 0jum(AjunCl,, + AL, Crim) (24)
Ibm j

By introducing the effective coupling constant 6, ; ,, into (24), we reveal the simple beamsplitter
structure of the Hamiltonian [41], as already announced in (6). In contrast to a conventional
beamsplitter, however, this Hamiltonian does not couple two k-modes (or beam paths), but
rather two broadband pulse modes A jim and C j1.m at different frequencies! This is a unique
feature of ultrafast frequency conversion processes and makes them ideal candidates for the
implementation of the QPG and QPS.

5. Pushing towards applications

5.1. General non-engineered SFG and DFG

QPG and QPS are unique in their single-mode operation on broadband pulse modes. In this
section, we discuss the implementation of genuine QPG or QPS in a feasible experimental setup.
We restrict the analysis to only one pair of transverse spatial modes (/, m), which simplifies the
notation but does not change the underlying physics. In the experimental setting, the selection
of one spatial mode can be accomplished by broadband spectral filtering [13]. In this case, the
time-integrated, effective SFG and DFG Hamiltonian from (24) reads

f dtHin () =1 ) 0;(A;CT+AC), (25)
J
with the broadband operators defined as
A= [ dongy @i, 26)
€= [ donv @iy, @7)

The complete, orthonormal function sets {¢;(w;)} and {;(w,)} represent the intrinsic pulse-
mode structure of the SFG or DFG processes, obtained from the Schmidt decomposition of
the joint spectral distribution function G (w;, ®,) = a(wi,)@ (w;, w,). On the one hand, these
are determined by the pump pulse characteristics, but on the other hand they also depend
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Figure 3. Conversion efficiencies n;, joint spectral distribution functions
G (wji, w,) and Schmidt coefficients «; for the first four pairs of pulse modes
(j=0,...,3). (a) Non-engineered process with several «; # 0. For a given
overall beamsplitter angle 6, all modes are converted to a certain extent given
by n; = sin(k; - 0)*. However, an overall unit efficiency can generally not be
accomplished. (b) Source-engineered process with one predominant «; ~ 1. By
choosing an appropriate 6, pulse mode ¢(w;) can be converted into pulse mode
¥ (w,) with unit efficiency, allowing for QPG operation.

critically on the nonlinear waveguide’s material and modal dispersion properties. We have
already stressed the formal equivalence between the expression from (25) and a sum of optical
beamsplitter Hamiltonians. Hence the linear transformation for the broadband operators can be
readily written as

Aj — cos(0,)A; —isin(;)C;, (28)

corresponding to a pulse mode conversion between ¢;(w;) and V¥ ;(w,) with efficiency
n;= sin’ (0;). According to (24), the coupling constant 6; is given by

2deff7T ZLN 2a)ia)o P P
91-:/(.,-- > ; :Kj'e. (29)
c ¢ gonphin,| [ dwpa(wp)|> V' ACH

Here, 6 is an overall beamsplitter angle defined by the process parameters. Its impact on the
different modes j is given by 6;, where, for each mode, the overall beamsplitter angle is
weighted with the corresponding Schmidt coefficient «;. In figure 3(a), we illustrate a general,
non-engineered SFG. We show the joint spectral distribution function G(w;, ®,) as well as
the Schmidt coefficients «; for the first four pairs of pulse modes and plot the conversion
efficiencies n; versus the beamsplitter angle 6. It is obvious that for any given value of 6, all
pulse modes with k; # 0 are converted to a certain extent. Yet, in general, single-mode operation
is not achievable, nor can conversion with ; =1 for different pulse modes simultaneously be
accomplished. We note an exception to this rule: under certain conditions (e.g. a cw pump),
input and output modes are perfectly correlated. Then all «; share the same value and all modes
are converted with the same efficiency. The process is then highly multimode but the overall
efficiency can reach unity for high pump powers.
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5.2. Source-engineered SFG and DFG: towards genuine QPG and QPS

We have shown that SFG and DFG in general are multimode processes. But for QPG and QPS
we require single-mode operation in order to avoid the signal degradation introduced by vacuum
contributions and to achieve unit efficiency. Reducing the intrinsic pulse-mode structure of a
x ®-nonlinear process to only one pair of modes has been extensively studied in PDC, where
source engineering led to the desired results [8, 15, 16]. Experimentally, this is accomplished
by group-velocity matching inside the nonlinear medium. If the pump and either the signal or
the idler share the same group velocity, the phase-matching function becomes parallel to one of
the axes when plotted in an (ws, w;)-diagram. Then, the Schmidt decomposition yields—given
that the process is pumped by an ultrafast pump—only one pair of pulse modes that is excited
with unit efficiency.

We transfer this insight to our analysis of SFG and DFG and employ it for spectral
engineering of the conversion. The time-integrated Hamiltonian from (25) for our special case
reduces to

/ dtH, = ho(ACT+ ATC) (30)

and can be interpreted as a beamsplitter operating on only one pair of pulse modes ¢(w;) and
¥ (w,). As an example, we show an engineered case in figure 3(b), where pump and input
signals are group-velocity matched. Note that, in contrast to the previous non-engineered case,
the joint spectral distribution function now shows no spectral correlations between input and
output frequencies; that is, it is oriented along the axes of the diagram. As in PDC, this is
a direct consequence of the horizontally oriented phase-matching function and thus of the
group-velocity matching. The distribution of «; reveals that only one coefficient, «y, differs
significantly from zero. This is also reflected in the plot of the conversion efficiencies. Only a
single pulse mode is addressed and, by choosing 6 = 7, converted with unit efficiency, and no
vacuum is coupled into the signal beam. Hence we find that by group-velocity matching the
pump and either the input or the output, we can achieve genuine single-mode operation and
therefore implement QPG and QPS. Note that the data in figure 3 have been calculated using
our modelling and realistic experimental parameters, which are specified in section 6.
Knowing how to achieve single-mode operation of SFG and DFG, the next step is to
investigate how we can exact complete control over the pulse modes ¢ (w;) and ¥ (w,). A QPG
selects a specific pulse mode from an input state and a QPS generates an arbitrary pulse mode
from a Gaussian input mode. Hence, for QPG we require control over ¢(w;), whereas for QPS
we require the shaping of ¥ (w,), respectively. In figures 4(a)—(c), we consider QPG. Shown
are the phase-matching and pump functions as well as the resulting joint spectral distribution
function. Note that the axes are given wavelength units rather than frequency for convenience.
We find that the output mode v (w,) is defined solely by the phase-matching. We performed
calculations for three different spectral shapes of the pump and it is obvious that the input
mode ¢ (w;) has the form of the respective pump mode. Thus, in a QPG, spectrally shaping the
bright gating pulse leads to the selection of an arbitrary pulse mode. In contrast, figures 4(d)—(f)
illustrate the situation for QPS. Now, the pump and the output are group-velocity matched,
causing a vertical phase-matching function. Again we calculated three different spectral pump
distributions. We find that the spectral shape of the pump now defines the output mode ¥ (w,) of
the QPS and the input mode ¢(w;) is fixed by the phase-matching. Summing up these findings,
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Figure 4. Joint spectral distribution, pump and phase-matching function as well
as pulse modes ¢(w;) and ¥ (w,) for QPG (a—c) and QPS (d-f). Note that the
functions are plotted against wavelengths for reasons of convenience. In a QPG,
the intrinsic pulse mode ¢(w;) can be manipulated by shaping the bright gating
pulse, whereas the pulse mode 1 (w,) is fixed by the phase-matching function.
Therefore, arbitrary input modes are mapped to the same output mode, allowing
for interference of formerly orthogonal modes. In contrast, in a QPS, shaping
the bright pulse defines the output pulse mode 1 (w,). The input pulse mode is
now defined by the phase-matching function. Thus, an arbitrary mode can be
generated from an input that is matched to ¢(w;). The data presented here are
calculated using realistic experimental parameters, as specified in section 6.

we end up with the following correspondences,

a(wp) = (@), ¢ (wi, w,) = Y(w,) for QPG, (31
¢ (wi, o) > (@), a(wy) = Y(w,) for QPS. (32)

We have demonstrated that we can achieve complete control over the required pulse mode of the
QPG or QPS by shaping the bright gating pulse or shaping pulse, respectively. Note, however,
that we considered only the intrinsic modes of the QPG and QPS, which do not necessarily have
to coincide with the pulse-mode structure of an input signal.
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Figure 5. (a) Mode-matched QPG. The bright gating pulse has the same duration
as the input signal, leading to matching of the input pulse-mode structure and
¢ (w;) of the QPG. Only a single pulse mode of the input—the one that overlaps
with ¢(w;)—is selected and converted with unit efficiency. (b) Mode-mismatch
in a QPG. The gating pulse and input signal have different durations, leading to
an overlap of ¢ (w;) with all input signal modes with the same parity. Hence, all
of those modes are selected and converted to a certain degree. QPG operation is
then not possible.

(a) Gating pulse (b) Gating pulse

QPG QPG

Input Input

5.3. Mode matching a QPG or a QPS

Given a specific QPG or QPS, the input signal’s pulse-mode structure must coincide with the
pulse modes {¢(w;)} accepted by the device, in order to guarantee mode selectivity and high
conversion efficiency. We first discuss this for the QPG. We have shown that the QPG can be
easily adapted to a wide range of input signals by spectrally shaping the coherent gating pulse.
The output mode ¥ (w,) is solely defined by the phase-matching function and is independent of
the pump pulse shape. It can typically be approximated by a Gaussian spectrum [8]. Hence any
selected mode from an input state is mapped to the same output mode.

In figure 5(a), we illustrate this situation. The input signal and gating pulse share the same
duration and the QPG is mode-matched to the input. Only the desired mode from the input signal
is selected and converted with unit efficiency. In contrast, figure 5(b) demonstrates the impact
of a mode mismatch on the QPG operation. The gating pulse duration significantly differs from
the input pulse duration and the intrinsic QPG pulse mode ¢ (w;) overlaps with all signal modes
of the same parity. We end up with a case similar to multimode SFG, with the only difference
being that the diverse conversion efficiencies for the modes are due to the different overlaps
between ¢(w;) and the corresponding signal-state modes. Because an overall efficiency of unity
cannot be achieved here and the process is not mode-selective anymore, it becomes clear that
careful mode-matching is vital for a successful QPG implementation.

The situation is different for QPS: the phase-matching function is vertical in the
(w;, w,)-plane (compare figures 4(c)—(f)) and the input mode ¢(w;) is now defined by the
phase-matching function alone. The QPS accepts only Gaussian input modes that are matched to
¢ (w;). However, shaping the bright pulse allows for defining the output mode ¥ (w,), rendering
it possible to generate any pulse mode from an input pulse with a Gaussian spectrum. If the
input state is not matched to ¢(w;), this does not change the spectral form of the output pulse.
The drawback is that it is not the complete input that gets converted and vacuum contributions
are introduced.

We note that the same physical nonlinear waveguide device could be used as QPG or QPS,
depending on whether SFG or DFG is implemented: this shows that QPG and QPG can be
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Figure 6. Group velocities of the fundamental waveguide modes in a Ti-
indiffused PPLN waveguide. For a 1550 nm input oriented along the ordinary
axis, an extraordinarily polarized pump pulse centred on 870 nm is group-
velocity matched. For a QPG, this consequently leads to an output at 557 nm
that has to be oriented along the ordinary axis. It becomes obvious that for a
wide range of input signal wavelengths, group-velocity matched gating pulses
can be found that still satisfy feasible experimental parameters.

seen as reverse operations of each other. The results illustrate that QPG and QPS are versatile
tools that can be easily adapted to a large range of input and output states, making them highly
flexible and appealing for many applications.

6. Performance of QPG and QPS considering realistic experimental parameters

We conclude our analysis demonstrating the experimental feasibility of a QPG and derive, with
the help of the theoretical model outlined in sections 3-5, an expression for the pump power for
maximally efficient operation. The results of the calculation apply to QPS as well, since both
devices can be implemented in the same nonlinear waveguide. SFG phase-matching implies an
existing DFG phase-matching; only the roles of input and output fields are interchanged. The
coupling constant 6 is the same for both processes. The bright pulse, used as a gating or shaping
pulse depending on the application, will be called a pump in this paragraph for ease of reading.
The input field is at 1550 nm and the third field is referred to as the output.

As a key point for the experimental setup, we require that it can be operated at 1550 nm.
The constraint of group-velocity matching determines the pump wavelength as soon as the
input wavelength gets fixed, which in turn then also defines the output wavelengths due to
energy conservation. We assume that the conversion takes place in a Ti-indiffused PPLN
waveguide with a length of L = 10 mm and at a temperature of 7 = 190°C to prevent the impact
of photorefraction. The effective Sellmeier equations for the three participating fields were
obtained by calculating the effective refractive indices of ordinary and extraordinary polarized
fields with a finite-element method described in [42]. The effective equations were then fitted
against the calculated values. Note that the following calculations are based on these effective
Sellmeier equations.
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Figure 7. Transverse spatial mode profiles of the fundamental waveguide modes
in a Ti-indiffused PPLN waveguide. The mode profiles were calculated using a
finite elements method. The overlap between the pump and the output exceeds
99% because the guiding for ordinarily polarized fields is not as strongly
pronounced as for extraordinarily polarized fields.

In figure 6, we plot the group velocities for the ordinary and extraordinary crystal axes
and assume for our modelling that all fields propagate in the fundamental transverse waveguide
mode. If the input light is ordinarily (TE-)polarized with a central wavelength of 1550 nm,
we find that the group-velocity matched pump has to be extraordinarily (TM-) polarized and
centred on 870 nm. The ordinarily polarized output is then at 557 nm. From figure 6, we can
clearly recognize that a group-velocity matched pump can be found for any input, as long as the
input is o-polarized. The effective refractive indices of the participating fields were calculated to
be n, =2.18, n; =2.21 and n, = 2.32 and we derive a periodic poling period of A ~4.28 um
required for quasi-phase-matching inside the waveguide.

In figure 7, we plot the transverse spatial distributions of the input, pump and output
modes, also obtained with the finite-element method from [42]. From these we calculate the
effective interaction area A“™ ~ 64 yum?. The conversion efficiency for a single-mode operation
is n = sin*(#) and the condition for unit efficiency can be specified by

| T
0= > (33)
| c 2 ¢ gonpnin,| [ dawpa(wy) > ACH
P (47TdeffLN) 26()16()0 '

(34)

Assuming an input pulse duration of roughly 300 fs, we calculate a required pump peak power of
P, ~ 22 W for optimal conversion efficiency. If a pump laser system with a repetition frequency
of 76 MHz is used, we obtain an average pump power of P,, =~ 0.5 mW inside the waveguide.
This leads to required average pump powers of a few mW in front of the QPG or QPS, taking
into account realistic waveguide coupling losses. These values are lower than formerly reported
pump powers for similar experiments [22-24, 27, 29], owing to the careful source engineering
that we applied to our process. This grants a significant advantage over experiments without
spectrally engineered SFG, even though we employ a cross-polarized process with an effective
nonlinearity that is lower by one order of magnitude than that of a process where all three fields
are oriented along the extraordinary crystal axis.
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7. Conclusion and outlook

In conclusion, we have presented a feasible way to achieve complete control over the pulse-
mode structure of ultrafast pulsed quantum states of light. We combined findings from
quantum state generation and techniques from state manipulation, by applying spectral-source
engineering and integrated optics to frequency conversion of ultrafast single photons. We
showed that single-mode ultrafast SFG and DFG in x ®-nonlinear materials are possible and
analysed two highly flexible and versatile devices, namely QPG and QPS. The QPG is based
on ultrafast SFG and offers the possibility of selecting arbitrary pulse modes from an ultrafast
multimode input state. The selected mode gets converted with unit efficiency and is mapped
onto a Gaussian output mode. The residual mode structure of the input is left intact, allowing
for cascaded operation to convert multiple modes. As all input modes are mapped onto the same
output mode, interference of formerly orthogonal states becomes possible. In contrast, the newly
introduced QPS is based on DFG and implements the reverse operation of a QPG. It enables us
to generate an arbitrary pulse form from a Gaussian input mode. The output mode is defined by a
bright shaping pulse; thus highly flexible state preparation can be achieved. We have presented
a quantitative analysis of QPG and QPS and derived feasible experimental parameters with
which the proposed devices can be implemented, rendering them practical instead of merely
conceptual.

As a final remark, we would like to point out that our analysis is in no way constrained to
single-photon states. Although we consider single-photon input states, the introduced concepts
can be generalized to classical and non-classical multi-photon states. In this framework, the
use of QPG and QPS provides us with an attractive opportunity to successively select and
spatially separate arbitrary pulse modes from a multimode input state while leaving the residual
beam intact. Employing a series of QPGs operating on the same pulse mode in each arm
of a multimode twin-beam squeezer source allows for a feasible implementation of non-
Gaussian operations and thus constitutes an important step towards the realization of multimode
continuous variable entanglement distillation. QPS, on the other hand, can be used to synthesize
multimode continuous variable Gaussian states in a mode-by-mode fashion. The prepared states
can then be transmitted as a bundle, since they do not interact with each other and since they all
experience the same dispersion during transmission and therefore stay orthogonal. This paves
the way for dense channel multiplexing in continuous variable quantum communication.
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Appendix. Impact of time ordering

Since the interaction of the Hamilton operator of equation (15) is time dependent, it might be
assumed that time-ordering effects have a major impact on the intrinsic mode structure of the
process, in particular if a perturbative solution is not sufficient. This case is associated with
unit conversion efficiency, needed for perfect QPG and QPS operation. In our analysis, we have
nevertheless deployed the approximate solution that neglects time ordering. The impact of time
ordering on the process of ultrafast PDC has been thoroughly investigated in [43], with the result
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Figure A.1. Input modes ¢ (w;) as well as output modes ¥ (w,) of the considered
processes, obtained from the analytical solution (blue) and rigorous calculation
(red), respectively. Obviously, time ordering has only a small impact on the
actual mode shape. This can simply be corrected for in our schemes by adjusting
the spectrum of the bright pump pulse. Note that the oscillations in the output
modes originate from the sinc function that describes the phase matching.

that time ordering mostly affects the amplitudes but not the shapes of the intrinsic pulse modes.
In [37], the authors actually study a three-wave mixing process and find in their numerical
simulation no major discrepancy with their analytical solution. This already indicates that, at
least for low conversion efficiencies where a perturbative solution is sufficient, time ordering
can be neglected. However, since we aim at conversion efficiencies of unity and cannot conclude
for sure that the above results remain valid in our case, we performed rigorous numerical
simulations that take into account all time-ordering effects. Note that the results presented are all
obtained for the case of maximum conversion efficiency. Additionally, the simulated processes
are the ones discussed in this work. That is, the pump pulse and the input pulse are group-
velocity matched and the processes have decorrelated joint spectral distribution functions, as is
the case in figure 3(b).

Figure A.1 depicts the analytical as well as the rigorous input modes @.u.(w;) and @rg(@;)
and the corresponding output modes ¥,na(w,) and Vi, (w,), respectively. It nicely illustrates that
time ordering has only a slight impact on the shape of the modes, as expected from [43]. The
change in the modes can easily be compensated for, in our proposed scheme, by adjusting the
spectrum of the bright gating pulse. Note that the oscillations in the output modes originate from
the sinc function that describes the phase-matching. These also cause the slight multi-modeness
that can be seen in the Schmidt coefficients in figure A.2, where the first higher-order mode is
also excited with a certain probability. Comparing again analytical and rigorous solutions, we
find that time ordering slightly shifts the weights between the different modes. However, we
want to note that no new modes occur in the process due to time ordering. The main difference
is found when considering the maximum conversion efficiency. It turns out that this value
drops in the rigorous solution to 90%, instead of the unit efficiency obtained with the analytical
approach.

This behaviour will be thoroughly analysed in [44]. We want to stress here that all
characteristics introduced by the side lobes of the sinc function can be washed out through
careful design of the nonlinearity inside the waveguide, as shown in [45]. Therefore the device
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Figure A.2. Schmidt coefficients A; obtained from the analytical as well as the
rigorous solution. Time ordering causes a slight shift in the excitation of the
different modes. In addition, it leads to a drop in the maximum conversion
efficiency to 90%, as compared with the unit conversion efficiency reached in
the analytical solution.

performance calculated here only represents a lower bound and might be increased in the future,
for instance by implementing a Gaussian-shaped phase-matching function.

In conclusion, we find by comparing analytical and numerical solutions that the assumption
that time ordering can be neglected is, in fact, a rather good approximation, even for the cases
of high conversion efficiencies analysed in this work.
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We experimentally investigate the mode characteristics of multimode radiation fields propagating through
frequency-dependent Gaussian channels. After manipulating the twin beams emitted from a conventional para-
metric downconversion source via spectral filtering, we study the changes in their mode characteristics, utilizing
the joint normalized correlation functions. While filtering reduces the number of spectral modes, it also leads to an
apparent mode mismatch, which destroys the perfect photon-number correlation between the twin beams, and
influences the mode properties of heralded states. © 2011 Optical Society of America

OCIS codes: 270.5290, 270.6570, 190.4975.

Quantum channels are basic building blocks of many
quantum optical applications, in particular of quantum
communication protocols. Often, these communication
channels, such as optical fibers, are Gaussian channels,
which introduce losses and thus lead to decoherence,
limiting the channel performance [1]. This becomes a
more prominent problem if channel multiplexing is taken
into account, especially for pulsed light exhibiting a
broad spectrum. Therefore, efficient and robust methods
for characterizing quantum optical multimode (MM) light
fields gain importance in future quantum communication
systems. In the past, loss-tolerant photon counters have
been used for exploring the mode structure of quantum
light [2-6]. Nonetheless, determining the mode number
from photon statistics without a priori knowledge of
the mode distribution is a challenging task.

In this Letter we experimentally investigate the nor-
malized correlation functions (nCFs) [7], which provide
loss-independent techniques for characterizing the effec-
tive numbers of the excited modes. The nCFs are closely
related to the factorial moments of the photon number
and can also disclose the spatiotemporal mode proper-
ties of the quantum states [8-10]. The measurement of
nCFs is typically realized by splitting the light field in
a beam splitter network, followed by coincidence photon
counting [7]. This technique probes the complete photon-
number content of the state. Thus, it has a distinct
advantage over two-photon quantum interference experi-
ments that normally explore only the single-photon com-
ponents of the interfering states and regard the higher
photon-number contributions as undesired background
[6,11,12]. The nCFs have successfully been employed
to study the photon-number content of quantum states
[7,13,14], to investigate the single-mode (SM) properties
of nonclassical light fields [8,15-17], and to demonstrate
the temporal photon-number correlation between photon
pairs [18,19].

Twin beams, produced in parametric downconversion
(PDC), exhibit strict photon-number correlation but are
conventionally also highly correlated in the spectral de-
gree of freedom; in other words, they possess spectral
entanglement [20]. This might be especially appealing
for channel multiplexing, since a set of squeezed states

0146-9592/11/081476-03$15.00/0

is generated in orthogonal modes that can be transmitted
simultaneously [21]. However, if MM radiation is used
without care in the standard quantum-key-distribution
protocols, they can introduce a severe security risk [22]:
the mode characteristics can be manipulated in the chan-
nel, e.g., by spectral filtering. Contrariwise, regarding the
preparation of heralded nonclassical states of light, such
as photon-number Fock states [23,24], decorrelation of
the used twin beams is essential. Therefore, spectral
and spatial filtering are often involved in the state genera-
tion to ensure the SM characteristics.

Spectral filtering can be rigorously described as a
frequency-dependent beam splitter, which destroys the
perfect photon-number correlation between the twin
beams [25]. Moreover, filtering disrupts the orthogonality
of the previously independent modes, and it is not trivial
to predict the remaining number of modes. Here, we
determine the mode properties of spectrally correlated
twin beams by measuring their joint, low-order nCFs
in a time-integrated form. After modifying the mode
structure by spectral filtering, we record different effec-
tive mode numbers for the twin beams. This indicates
that any model that regards the filtered twin-beam state
simply as a product of pure two-mode squeezers with a
reduced number of modes incorrectly assumes equal
mode numbers for the conjugate beams. Additionally,
we investigate the mode characteristics of heralded
quantum states of light.

The spectral structure of unfiltered twin beams, de-
noted as signal (s) and idler (7), is described by the joint
correlation function f (v, v;) in terms of the frequencies
v, (u = s,17). The properties of f (v, v;) are defined by the
energy and momentum conservation laws [20]. The for-
mer is determined by the spectral shape of the pump
field, and the latter by the dispersion of the nonlinear
medium, resulting in the so-called phase-matching func-
tion. According to our earlier studies [6], the employed
source—a 1.45mm long periodically poled type-II KTP
waveguide (WG)—produces highly spectrally anticorre-
lated twin beams. Because of the type-II process, the sig-
nal and idler marginals also exhibit different spectral
widths, and thus filtering has different impacts on them.

© 2011 Optical Society of America
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The broadband mode structure of pure twin-beam
states is accessible by means of a singular-value decom-
position, f(vs,v;) = > A (vs)wi(vi), where {dy(vs)}
and {y,(v;)} each form a set of orthonormal functions
[26]. The normalization is chosen such that Y42 = 1.
This decomposition is unique, and it guarantees a perfect
mode correlation between signal and idler. The number
of excited modes can be determined with the K para-
meter K = 1/ ",./+, which indicates the effective number
of uniformly occupied modes [27]. We gain information
of this mode structure by exploring the joint nCFs [7].
In our time-integrated measurements, they probe a
superposition of all modes and provide information of
the complete mode structure [10]:
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The operators A} (A,) and B} (B) describe the creation
(annihilation) of a photon in the kth broadband signal
and idler modes.

In the experiment, illustrated in Fig. 1(a), Ti:sapphire
laser pulses (796 nm, 10 nm bandwidth, 4 MHz repetition
rate) were frequency doubled in a nonlinear crystal
(NLC) and employed as a pump for the PDC process.
The residual pump fields were blocked with spectral
filters (SFs), and signal and idler were separated in a
polarizing beam splitter (PBS). One of the twin beams,
selected by the setting of a half-wave plate (HWP), was
directed to a 1 nm broad interference filter (IF) and then
detected with an avalanche photodiode (APD). The other
one was optionally filtered to a desired bandwidth of 1,
2.5, or 10 nm with exchangeable spectral filters and then
split by a symmetric beam splitter (BS) and launched to
two APD detection arms. The spatial SM characteristics
of the twin beams were ensured by utilizing SM fibers.
We recorded the coincidence and single counts for the
evaluation of the nCFs from the measured raw counts
according to [7]. Furthermore, nanosecond time gatings
were used in all the detection channels to suppress back-
ground and dark count events.

First, we evaluate the second order moments g% and

92 shortly g\”. They obey 1 < g < 2, with the bound-
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Table 1. The K Parameters of the Signal (K,)

and the Idler (K;) for the Different Filter Bandwidths

Bandwidth (nm) 1 2.5 10 0o

K, 2.63(3) 3332 127(4)  26(2)
K, 2.03(3) 267(2) 104(4) 27.3(8)

aries indicating the MM (Poissonian) and SM (thermal)
behavior of the marginal beams [4]. The measured values
are shown in Fig. 1(b) with respect to the bandwidths of
the marginal beams, estimated by the filter bandwidths or
the spectral widths of the unfiltered marginal distribu-
tions. Assuming a loss-free PDC generation process,
we can extract the effective mode number in each twin
beam without a priori information of the weights of
the mode distribution [10]: in the low-power regime
gff) is independent of the pump power and related to the

corresponding K parameter by g,(,z) =1+1/K,. By re-

peating the measurement at different pump powers,

we confirm that the value of gf,z) is unchanged, as shown
in Figs. 1(c) and 1(d). The K parameters extracted from
the measurements are shown in Table 1 with an accuracy
given by the statistical fluctuations of gf,z). As expected,
the unfiltered marginal beams exhibit a large number of
modes. Moreover, the mode numbers of the unfiltered
twin beams coincide due to the perfect photon-number
correlation of pure two-mode squeezed states. Spectral
filtering leads to different effective mode numbers in
signal and idler, which can only be explained by the fact
that the perfect photon-number correlation between
them is destroyed. Overall, g,(,z) provides a sensitive mea-
sure of the mode number mismatch and directly indicates
that the filtered state is not perfectly two-mode squeezed
anymore.

Next, we examine the joint, low-order nCFs g2 and
9V, For a pure twin-beam state, the SM and MM char-
acteristics are predicted by gé;’f) =4¢g1) ~ 2 and gl(v}ﬁ) =
2951 — 1. Our results, illustrated in Fig. 2(a), lie in
between these boundaries. Furthermore, one clearly re-
cognizes the linear behavior of the curves, whose slope is

ideally governed by 29,(,2). The linear fits are in good

agreement with the measured values of giz). At higher

gains several modes can be excited simultaneously,
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Fig. 2. (Color online) (a) g!? versus gV, Solid lines are
linear fits. (b) g%, versus g, Solid curves are predicted
by the fits in (a). Symbols indicate measured values, and dashed
(dash-dotted) lines/curves illustrate the MM (SM) boundaries.
The shaded area shows the boundaries for lossless detection.
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and tight spectral filtering employed in only one of the
twin beams is not sufficient to ensure the SM behavior
of the joint state [Fig. 2(a), squares]. The mode structure
is modified if filtering in both arms is introduced
[Fig. 2(a), triangles]. Intriguingly, these results of the fil-
tered twin-beam states are similar to those expected for
photon-number correlated twin-beam states. Therefore,
the loss-independent nCFs are partly insensitive to the
disappearance of the strict photon-number correlation.

Regarding the preparation of heralded single photons,

we investigate the conditional second order moment ggi)ck
of the idler, triggered by a click in signal. In Fig. 2(b) we
present g(ji)ck with respect to g(1:V). A decrease in the pump
power increases gV, which indicates a high photon-
number correlation between signal and idler, a desirable
feature for heralding [10]. Nevertheless, the complete sup-
pression of the higher photon-number contributions in the
heralded state is experimentally challenging and happens
at the cost of the source brightness. Unlike the joint nCFs,
gfjﬁck depends on the efficiency in the trigger arm. Accord-
ing to our earlier studies [6], the second conditional mo-
ment is expressed in the low-efficiency regime as

g% = ¢12)/[g1D]2 for photon-number correlated twin

beams. We predict the behavior of ggi)ck with the help
of the linear fits in Fig. 2(a) and find good agreement with
the measurement. This indicates that the MM structure is

still visible in the higher photon-number contributions of

the heralded state. Moreover, the values of ggi)ck, as illu-
strated in Fig. 2(b), are significantly larger than expected
for a lossless detection in the trigger arm.

We studied the changes in the mode structure of twin
beams by investigating their joint nCFs. We quantified
the effective mode number in the twin beams with the
K parameter after modifying their spectral properties
in frequency-dependent Gaussian channels. Our results
show that the perfect photon-number correlation be-
tween signal and idler is lost. Furthermore, we gain a
deeper insight into the spectral mode structure of the stu-
died states, although the nCFs cannot resolve the weights
of the individual modes. Our results can have a signifi-
cant impact on controlling the mode properties by spec-
tral filtering and will become important for quantum
communication protocols implemented in optical fibers.
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discussions and useful comments. This work was sup-
ported by the European Commission under the grant
agreement CORNER (FP7-ICT-213681). K. N. Cassemiro
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We report the realization of a bright ultrafast type Il parametric down-conversion source of twin beams
free of any spatiotemporal correlations in a periodically poled KTiOPO, (PP-KTP) waveguide. From a
robust, single-pass setup it emits pulsed two-mode squeezed vacuum states: photon-number entangled
pairs of single-mode pulses or, in terms of continuous variables quantum optics, pulsed Einstein-
Podolsky-Rosen states in the telecom wavelength regime. We verify the single-mode character of our
source by measuring Glauber correlation functions g and demonstrate with a pump energy as low as

75 pJ per pump pulse a mean photon number of 2.5.

DOI: 10.1103/PhysRevLett.106.013603

The main obstacle to the real-world deployment of wide
area quantum communication networks is the limited dis-
tance of guaranteed security between communication part-
ners. In order overcome it, quantum repeaters [1] are
needed to counter the security-degrading effects of trans-
mission losses. For continuous variable (CV) quantum
communication, these protocols heavily rely on the con-
catenation of non-Gaussian states and squeezed Gaussian
states [2], namely, EPR states produced by parametric
down-conversion (PDC) combined with photon counting
[3]. In general though, PDC does not produce single-mode
(SM) but multimode (MM) EPR states, requiring addi-
tional post-processing for optimal fidelity. Their MM struc-
ture is intrinsic to their generation process [4], and only
direct manipulation of that process allows for the produc-
tion of SM states.

For the generation of photon pairs, PDC sources have
become an established standard: Inside a y®-nonlinear
medium, a pump photon decays into one signal and one
idler photon. Recent works have shown that PDC source
engineering [5,6] is capable of producing spectrally sepa-
rable two-photon states |1), ® |1);, allowing for the prepa-
ration pure heralded single photons [7]. Going beyond the
single photon pair approximation, PDC in general can be
understood as a source of squeezed states of light [8,9].
First observed by Slusher er al. [10] in 1985, squeezed
states originally garnered interest for the noise reduction in
their quadrature observables X s Y below the classical shot
noise level, applicable in quantum-enhanced interferome-
try [11]. With the availability of mode locked lasers, MM
pulsed squeezed states [12] became accessible [13].
Measuring with detectors incapable of resolving this MM
structure, such as avalanche photo diodes (APD) imple-
menting non-Gaussian operations [14], introduces mixed-
ness which degrades the quantum features of the state [15].
Spectral engineering [5—7,16] made it possible to generate
ultrafast photon pairs without spectral correlations in one
spectral broadband mode [17]. Until now, PDC experi-
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ments relied on spatial [7] or narrow spectral [18] filtering
of MM [9,12] squeezers to approximate SM biphotonic
states, with severe loss of source brightness. In recent
years, waveguide PDC sources [19] have become more
and more popular as a means of achieving higher bright-
ness [20] in a single-pass configuration, as well as for their
easy integrability into miniaturized quantum optical
experiments.

In this Letter, we demonstrate a waveguided single-pass
type II PDC source of ultrafast SM EPR states of unpre-
cedenced brightness in the telecom wavelength regime. For
low pump powers ({n) << 1), it doubles as a source of pure
heralded single photons. By utilizing a SM PP-KTP wave-
guide, the output states can be used without narrow spatial
filtering, and spectral engineering lets us avoid narrow
spectral filtering, boosting source brightness considerably.
The ultrafast, broadband nature of the pump beam makes
spectral broadband modes a natural choice to describe our
system. Our source emits pairs of spectrally broadband SM
pulses. This we corroborated by a measurement of spectral
separability, a g measurement of one of the output arms
to ensure the expected photon statistics, and a sinh? gain in
mean photon number. In contrast to MM PDC sources, the
generated photons are not scattered over a number of
broadband modes but concentrated in one mode. The re-
sulting squeezing of several broadband modes cannot be
trivially combined into one mode, as this would amount to
entanglement distillation, which has been shown to be
impossible using Gaussian operations [2]. But spectral
engineering and a SM waveguide allow us to efficiently
emit all output light into one spatiospectral mode, thus
leading to a mean photon number (n) = 2.5 per mode
when pumping with picosecond pulses of only 75 pJ.

It has been shown early on in the experimental explora-
tion of squeezing that PDC produces squeezed vacuum
states of light [8]. In photon number representation, a
two-mode squeezed vacuum state or SM EPR state has
the form

© 2011 The American Physical Society
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where a and b are two orthogonal modes, ga,b is the two-
mode squeezing operator, and I-AIW7 = zath’ + He. is its
effective Hamiltonian. It is a coherent superposition of
strictly photon number correlated Fock states, and exhibits
thermal photon statistics in both modes a and b. Its mean
photon number (n) in each output beam is a measure of

how much two-mode is generated s =

ln%?O) a sinh(4/(n)). The photon number correlation between

both modes allows for heralding pure single photons with
binary detectors. However, the underlying bilinear effec-
tive Hamiltonian ﬁa‘b describes only a special case of
PDC.

In general, the effective PDC Hamiltonian has a richer
spatiospectral structure, and emits a continuum of momen-
tum modes. Waveguided PDC, due to the boundary con-
ditions of the guiding structure, exhibits a discrete spatial
mode spectrum. In principle, any combination of pump,
signal and idler waveguide modes will contribute to the
overall PDC process. Their coupling strength is determined
by their “overlap” integral [21], and multiple nonzero
coupling coefficients between existing modes will result
in a complex spectral structure of the output state. But
using a SM waveguide allows us to restrict our analysis to
one spatial mode for each beam, and we find

squeezing

Hoppe = ffdwl [dwzf(a)l, wy)at (w)bt(w,) + He,
(2)

which generates a generalized version of the two-mode
squeezed vacuum in Eq. (1) with spectrally correlated
output beams. The coupling constant ¢ determines the
strength of this interaction, while spectral correlations
between photons of the pairs produced are governed by
the normalized joint spectral amplitude f(w;, @,).

By applying a Schmidt decomposition to the joint am-
plitude f(wi, w,) = Y icrei(w) P i(w,), we obtain two
orthonormal basis sets of spectral amplitude functions
{gi(w)} and {(w,)} and a set of weighting coefficients
{ci} with ¥, lci|> = 1. For ultrafast pumped type II PDC,
the ¢;, ¢, are in good approximation to the Hermite
functions [5,17]. Now the PDC Hamiltonian can be ex-
pressed in terms of broadband modes

Hppe = Y Hy = gzck(AZf}}: + AB)). (3)
% P

Each broadband mode operator A 1 B describes a temporal
pulse mode, or equivalently, an ultrafast spectral mode. It is
defined as superposition of monochromatic creation/anni-
hilation operators d(w), b(w) operators weighted with a
function from the Schmidt basis: AZ = [dwgi(w)at (o)
and B}: = [dw Y1 (0)bT (w). The effective Hamiltonians

H, do not interact with each other (since [H,, H;] = 0),
and thus the PDC squeezing operator represents in fact an
ensemble of independent two-mode squeezing operators

A

S.p=efme =8, p ®S, 5 ®...where the coefficients

¢, determine the relative strength of all squeezers as well as

spectral correlation between signal and idler beams. This

correlation is characterized by the source’s effective mode

number K = ﬁ [6,22]. We note that as the overall
k

mean photon number 7 is shared between all modes, the
amount of two-mode-squeezing has to be considered for
each mode separately. For ¢, = 1 and all other ¢, = 0, K
assumes its minimum value of 1, and the PDC process can
be described as a two-mode squeezer according to Eq. (1),
and also optimal squeezing performance can be expected.

In our waveguided source pumped by an ultrafast pulsed
laser beam we can manipulate spectral correlations of the
photon pair joint spectra, thus the coefficients ¢y, and as a
result minimize K by simply adjusting the spectral width of
the pump pulses [5,6,22].

We verified this by measuring the joint spectral intensity
(JSI) of generated photon pairs at different spectral pump
widths, to show the dependence of bi-photon frequency
correlations on the pump width. The setup in Fig. 1(a)
illustrates the PDC source: Ultrafast pump pulses at
768 nm are prepared with a Ti:sapphire mode locked laser
system, spectrally filtered with a variable bandpass filter 4 f
setup, and then used to pump a type II PDC process within
the PP-KTP waveguide with a poling period of 104 um
and 4 um X 6 um size. Its length is 10 mm but an effec-
tive length of 8 mm is used to correctly predict the mea-
surement results in Figs. 2 and 3, since manufacturing
imperfections in poling period and waveguide diameter
lead to a widened phasematching distribution ®(w;, w,)
as if from a shorter waveguide. The generated photon pairs

7" (a) Squeezed light source
i Tisa@76MHz /= \pwe pas

P~ S

~ \B, SF-4f Bs 9515

AOM @ 1 MHz

PPKTP
waveguide chip

’ (b) Fiber, spectrometer

PBS DCF, e
APD1 @
[ ]
s = ¥ @ qE) APD
DCF, Y
7 S
> m @ ¥ § :
:‘ E SF12 -
27 (c) g® measurement A .
P1 PBS
/\  sf2 2 *{’ m o l E\
e
-
‘ va e m ¥ N P
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FIG. 1 (color online). Experimental setup: (a) PP-KTP wave-
guide source of two-mode squeezed vacuum states. (b) Fiber
spectrometer for JSI measurement. (c) g® measurement setup.
(d) Mean photon number (n) measurement.
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(a) Pump FWHM 0.70nm (b) Pump FWHM 1.95nm (c) Pump FWHM 4.00nm
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FIG. 2 (color online). Two-photon spectral intensities from the
setup 1(b) with pump width below, equal to and above photon
pair separability width at 1.95 nm FWHM. Green: 50% intensity.
Violet: phase matching width. Blue: pump width. Bright blue:
theoretical 50% intensity.

are analyzed in a fiber spectrometer [23] [Fig. 1(b)]: After
separating signal and idler photons by polarization, they
independently travel through long dispersive fibers, and are
detected by a pair of idQuantique id201 avalanche photo
diodes (APDs). Because of the chromatic dispersion of the
fibers, the photons’ group velocity and arrival time at the
APDs depend on their wavelength. Thus we are able to
determine the spectral intensity distribution of a stream of
single photons from its arrival time spread. For a spectral
pump FWHM of 0.70, 1.95, and 4.0 nm, we observe in
Fig. 2 negative spectral correlations, an uncorrelated spec-
trum, and positive spectral correlations between signal and
idler photons, respectively. For a fully uncorrelated state
with just one contributing Schmidt mode pair ¢, ¥ the
marginal spectra of the biphoton amplitude are given by
l©ol?, |o]?. InFig. 3 (left), their shapes according to Fig. 2
(middle) are in good agreement with the Gaussian marginal
distributions of their theory curve, indicating that the domi-
nant Schmidt functions of the generated state are, up to
phase, Gaussians as well. We have demonstrated control
over spectral entanglement between signal and idler by
filtering the pump spectrum, and found minimal spectral
correlations of photon pairs around 1.95 nm pump FWHM.

To prove the genuine two-mode squeezer character of
our source, an uncorrelated JSI is necessary but not suffi-
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FIG. 3 (color online). Left: Marginal spectra of signal, idler
beams from Fig. 2(b). Middle: ¢@ values from setup 1(c) (red)
with theory curve (blue) and background corrected theory curve
(violet); (a), (b) and (c) mark pump FWHM of the JSI from
Fig. 2. Right: Mean photon number from setup 1(d) (red) with
the theoretical gain of a two-mode squeezer (blue) and the linear
gain of a highly MM squeezer (violet).

cient. It is proportional to the modulus square of the com-
plex joint amplitude |f(w;, w,)|? of the photon pair, so all
phase information is lost in an intensity measurement. In
order to detect phase entanglement between signal and
idler, we need to measure an additional quantity sensitive
to the source’s mode number K, which is unity only in the
absence of entanglement on the photon pair level, and
larger otherwise.

The second order correlation function g can be used to
discriminate between beams with thermal (g(z) = 2) and
Poissonian photon statistics (g(z) = 1) from a PDC source
[18]. As has been noted above, type II PDC can in general
be understood as an ensemble of two-mode squeezers, each
of them emitting two beams with thermal photon statistics.
In our waveguided type II setup, all broadband modes, A,
or By, share one polarization mode, a and b or, respec-
tively. A detector with a spectral response function much
wider than the characteristic width of the broadband modes
cannot resolve them. It ““sees” a convolution of the thermal
photon statistics of all broadband modes, and in the limit of
a large number of modes, this is a Poissonian distribution
[24]. But if there is only one mode per polarization to begin
with (which is only true for a two-mode squeezer), the
detector receives a thermal distribution of photon numbers.
Therefore, with the assumption that PDC emits a pure
state, we can infer from g = 2 measured in either output
beam a two-mode squeezer source. Indeed, for low pump
power and thus low coupling strength ¢, we can find a
simple connection between the g correlation function on
the one hand, and the broadband mode structure of our
source and the effective mode number K on the other:
g2 =1+3 el =1+1.

Figure 1(c) illustrates the g measurement: Idler is
discarded, and the signal beam is split by a 50/50 beams-
plitter. Its output modes are fed into APDs, single (p;, p»)
and coincidence (p.) click probabilities for different
spectral pump widths are recorded. When using binary
detectors far from saturation, rather than intensity mea-

surements, one finds g(z) = % ~ ﬁ As has been
demonstrated, frequency correlations between signal and
idler beam and thus squeezer mode number K can be
controlled by manipulation of the pump width. In Fig. 3
(middle) measurement results show a maximum g®@ value
at 1.95 nm pump FWHM, in accordance with Fig. 2. When
departing from the optimum pump width, g? decreases as
predicted. Because of uncorrelated, residual background
events from waveguide material fluorescence and detector
dark counts that make up 5% of the total single event
counts, we obtain a maximum of g? = 1.8, and g® =
1.95 after background correction. This highlights the
next-to-perfect SM EPR states our source emits, and the
degree of control we exact over the mode number and
photon statistics of the system. Note that the two-mode
character is shown with respect to frequency as well as
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spatial degrees of freedom. Owing to the waveguide nature
of our source, signal and idler beam occupy a single
waveguide mode.

Nonlinear waveguides allow for dramatically higher
source brightness when compared to bulk sources [20]:
Instead of coupling to a continuum of spatial modes, inside
a waveguide structure the generated waves couple to a
discrete spectrum, and ideally to just one mode, boosting
self-seeding of the PDC process and greatly simplifying
collection of the output light. Adjusting our setup with a
CW laser beam shows collection efficiency of the wave-
guide output mode into SM fibers up to 80%, indicating in
good approximation a Gaussian mode profile. At mean
photon numbers of (n) = 1 per mode we will be able to
observe the superlinear gain of a two-mode squeezer
sinh?(r) caused by self-seeding of signal and idler along
the waveguide length, further corroborating our source’s
SM character. With a pump FWHM of 1.95 nm producing
separable photon pairs, we measured the mean photon
number (n) = an“k of the signal beam [Fig. 1(d)] by record-
ing the power dependent APD click probability p;.. For
binary detectors far from saturation, this is proportional to
(n), with an overall quantum efficiency 7 of the setup. The
source gain in Fig. 3 (right) exhibits with increasing pump
power the departure from the linear gain profile that would
be expected for a highly MM squeezer, while it is in very
good agreement with the theoretical prediction for a two-
mode squeezer gain. Mean photon numbers of up to 2.5
were achieved. Assuming ideal photon collection and de-
tectors, this is equivalent to 11 dB of two-mode squeezing,
in a pulsed, single-pass setting, demonstrating the potential
of our source for future CV experiments. For an optimized
setup we observed an overall detection efficiency of 15%.
For a specified APD quantum efficiency of 25% at
1550 nm, this makes a photon collection efficiency into
SM fiber of 60%, with our waveguide output facet not
antireflection coated.

In conclusion, we have applied spectral engineering to a
waveguided PDC source to create a bright, genuinely ultra-
fast pulsed two-mode squeezer in the telecom wavelength
regime with mean photon number as high as 2.5, with only
75 pJ pump pulse energy. In future experiments, this value
can be easily scaled up to harvest even higher photon
numbers. It features near thermal photon statistics with
g(z) = 1.95 after background correction, or an effective
mode number of K = 1.05. A collection efficiency of
60% into SM fibers demonstrates the high spatial mode
quality of our waveguide device and shows its potential
for inclusion into integrated optical networks. Because of
its true two-mode character and brightness, we expect
widespread adoption of our source in continuous variable
quantum communication, where high squeezing values,
purity and low-loss fiber transmission are prerequisite for
efficient quantum cryptography [25], teleportation [26,27],

and ultimately entanglement distillation [3,14] to over-
come transmission losses in wide area quantum communi-
cation networks, a vital building block of quantum
repeaters [1].
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