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1 Introduction

Liquid crystals are a vivid example of the late success of a scientific discovery. Already
in 1888, Friedrich Reinitzer [1] and Otto Lehmann [2] (excerpted from [3]) discovered this
special state of matter appearing between the crystalline and the liquid phase, but not before
the 1960s an interest in these materials for technological applications started. After cathode
ray tubes had been already well established for display applications, research focused on new
display technologies for smaller displays and perceived liquid crystals as versatile materials
because of their special optical and dielectric properties. The first commercially successful
liquid crystal display technology was patented by Helfrich and Schadt [4] in 1970 and utilized
the field-induced reorientation of nematic liquid crystals between crossed polarizers as a
switchable light shutter. Until nowadays, nematic liquid crystals still are one of the most
frequently used materials in liquid crystal display technology.

During the last decades, manifold research has been carried out to overcome drawbacks
of the first generations of LC-displays like small viewing angle or slow switching times. Im-
provements took place by the invention of new switching modes, new electronic technologies
(e.g. thin film transistors) for addressing single pixels but also by tuning the physical prop-
erties of the liquid crystalline materials itself. Desired properties are low switching voltages
for high energy efficiency and fast response times, which may be achieved by tuning the
dielectric, elastic and viscous properties of the liquid crystalline material.

A relatively young research field of increasing interest to provide materials with unique
physical properties is the doping of liquid crystals with nanoparticles. It is known that fer-
roelectric nanoparticles can enhance the dielectric anisotropy [5] and the orientational order
[6] of nematic liquid crystals. Dispersions of ultra-small magnetic needles [7] or platelets [§]
result in ferronematics, which can be reoriented by weak magnetic fields and allow threshold-
less optical switching in electric fields [9]. Carbon nanotubes are found to be very well com-
patible with nematic hosts because of their anisometric shape [10]. Although the presence
of carbon nanotubes strongly influences on the nematic properties of the host, a decreased
light transmittance and increased switching voltages prohibit their use in display technology
[11].

The examples mentioned so far utilize nanoparticles with additional special physical prop-
erties like ferroelectricity, magnetism or anisotropic shapes. For this reason it is difficult to
distinguish between nanoparticle-induced effects due to these properties, or effects that are
caused by the simple presence of nanoparticles in the nematic host. The influence of the
latter effect on the liquid crystal can be revealed by investigating dispersions of spherical
particles with no additional physical properties.

Recently, Hegmann and co-workers reported that doping a nematic liquid crystal with
spherical nanoparticles with diameters smaller than 5nm made of gold or semiconductors
can significantly change the electro-optical properties of the host [12], [13]. While gold



nanoparticles also offer the possibility of obtaining metamaterials [14] and are therefore not
only of interest for display applications, the luminescence of semiconducting quantum dots
can be used as an analytical tracer to study the distribution of nanoparticles in a nematic
dispersion [13].

Nanoparticles in this size regime are not particularly stable because of their high surface
to volume ratio and tend to agglomerate. Therefore an organic ligand shell is necessary,
which deactivates the surface and sterically prevents agglomeration. It is known that this
organic coating plays a key role in the interaction of dopant and nematic host. Consequently,
the coating has not only an important impact on the stability of dispersed particles within
a nematic host, but also on the electro-optical behavior of the liquid crystalline material.
Another key factor for the interaction between nanoparticles and host molecules is the
diameter of the particle core. As recently reported by Kinkead et al. for CdSe nanoparticles
of different core sizes, there seems to be a very specific relationship between particle size and
changes in alignment and electro-optical properties [13]. However, a deep understanding of
the impact of size on the interaction between nanoparticles and host is still missing. A
third effect influencing the stability of nanoparticle dispersions is the nature of nematic
liquid crystals themselves. Being an ordered liquid of rod-like molecules, the nematic liquid
crystal shows a tendency to expel spherical dopants of certain size which disturb the nematic
order, and therefore supports the agglomeration of particles [15].

The precise mechanisms of interplay between the properties of functionalized nanoparti-
cles and the nematic host that lead to stable dispersions are not fully understood yet. For
this reason, actual research needs to address compatibility and miscibility of the nanoscale

materials in nematic liquid crystals prior to integration in electro-optic applications.

This work is intended to investigate the influence of particle size, core material and organic
ligand shell of functionalized spherical nanoparticles in a size regime d < 5nm on the
miscibility and stability of nanoparticle / liquid crystal dispersions. The goal is to identify
important physical properties of functionalized particles and host molecules to give well
dispersed systems, and pave the way for stable dispersions with improved electro-optical
performance for display applications.

For this purpose, dispersions of differently functionalized gold and CdSe nanoparticles are
prepared in two nematic hosts with different polarity, and investigated by optical microscopy
and dielectric analysis. In particular, the influence of nanoparticles on the alignment of the
liquid crystal at confining substrates as well as characteristic physical properties of a ne-
matic liquid crystal like threshold voltage, dielectric properties and switching times are
studied. By comparing effects on these quantities caused by different ligand shell function-
alizations, core diameters or core materials, conclusions about the molecular interactions

between nanoparticles and host molecules are drawn.



2 Background

2.1 Liquid crystals - The fourth state of matter

Depending on the thermodynamic conditions, atoms and molecules can arrange to different
states of matter which are characterized by different degrees of orientational and positional
order. The three classic states of matter are the crystal state, the liquid state and the gas
state. The crystalline phase is the highest ordered state and shows a long-range positional
order of its building blocks as well as a long-range orientational order for anisometrically
shaped constituents. Each building block oscillates around a certain point in a three di-
mensional periodic lattice, which defines the crystal structure. Hence, the symmetry of the
repetition unit corresponds to the symmetry of the whole crystal. Increasing the energy
within the system leads to a melting of the crystal and the formation of a liquid phase. The
liquid state is characterized by a complete absence of long-range order, and thereby appears
fluid. Yet, depending on the constituents, attractive interactions between building blocks
can lead to the formation of short-range order. The gas state is the classical high energy
state of matter and characterized by a total absence of long-range or short-range order. The
building blocks have a high translational energy and move randomly and with arbitrary ori-
entation through a given volume, with a high rate of collisions with other building blocks.

The liquid crystal state is often referred as the fourth state of matter and features a
long-range orientational order and a reduced or even absent positional order of molecules
compared to a crystal phase. Thus, the liquid crystal state is classified to lay between the
crystal state and the liquid state. Within the liquid crystal state, a general distinction is
made between thermotropic, barotropic and lyotropic liquid crystals. The latter materi-
als form liquid crystal phases as a result of their concentration within a solvent, while for
barotropic materials the mesogenic phase is induced depending on the pressure. In ther-
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Figure 2.1: Liquid crystals as the fourth state of matter are located between the highly ordered
crystalline phase and the isotropic liquid phase.
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Figure 2.2: Schematic drawing of the general molecular structure of a rod-like liquid crystal
molecule. In this work, the rod-like structure of a single molecule is depicted as
elongated ellipsoid.

motropic liquid crystals, mesophases occur at different temperatures, the appearance of
differently ordered states is a function of temperature. As in this work only thermotropic
liquid crystals are used, a more detailed overview over these materials is given below.
Essential for all thermotropic liquid crystals is an anisometric molecule shape, which allows
the formation of orientationally ordered phases. In general, one can observe calamitic (rod-
like), discotic (disc-like), sanidic (board-like) and bent-core (banana-shaped) molecules to
form thermotropic phases. As in this work only calamitic liquid crystals are used, discotic,
sanidic and bent-core materials will not be discussed.

Calamitic molecules exhibit one long dimension and two short dimensions. In addition,
their molecule structure shows a sophisticated interplay between rigidity and flexibility
which allows the formation of mesophases. The rigidity maintains the rod-like structure
of the molecules and thereby allows the formation of orientationally ordered mesophases
by strong intermolecular interactions. However, a too high rigidity of molecules would
energetically favor the formation of a crystalline phase. Hence, the simultaneous presence
of flexible side chains supports the formation of fluid mesophases.

As a consequence of these requirements, calamitic liquid crystals often consist of molecules
with a rigid core of two or more ring systems, and one or two flexible side chains X and Y (see
figure 2.2). The core is often built by phenyl- or cyclohexane-rings, but also heterocycles as
pyrimidine can serve as stabilizing core units. A linking group A can influence the electronic
structure of the core system. The side chains are usually given by alkyl- or alkoxy chains of
different length. By introducing functional groups to the side chains or the core, the physical
properties of the molecules can be tuned. While for example a cyano-group replacing one
side chain increases the polarizability o along the long axis of the molecules and therefore
can lead to a high positive dielectric anisotropy of the material, fluorine groups in lateral
ring positions can lead to negative dielectric anisotropies.

Rod-like molecules are found to form several mesophases with different degrees of posi-
tional and orientational order. Some common liquid crystalline mesophases for calamitic
molecules are shown in figure 2.3. While smectic phases exhibit a layer structure with
no translational freedom between the layers, the nematic phase is characterized by three-
dimensional translational freedom. Both nematic and smectic phases show a long-range
orientational order. As in this work only nematic liquid crystals are investigated, the fol-
lowing sections aim to give a short overview about the special properties of this phase.

10
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Figure 2.3: Schematic drawing of different liquid crystalline phases of a calamitic thermotropic
liquid crystal.

2.2 The nematic phase

The nematic phase is the least ordered liquid crystalline phase and features a long-range
orientational order only. This order is relatively weak, so the nematic phase is quite similar
to the isotropic liquid phase with a small additional amount of order. For example, the
latent heat for the phase transition of cholesteryl benzoate from crystalline to nematic is
272 J/g, but the latent heat for the transition from the nematic to the isotropic phase is only
29J/g [16]. This shows that only comparable little energy is needed to overcome the nematic
order, and stresses the similarity of the nematic phase with an isotropic fluid. The molecules
in the nematic phase can freely rotate about all their axes. However, the relaxation times
for the rotation about the short axes of the molecules is several magnitudes faster than
for the rotation about the long axes (107''s~! vs. 106s7!). As a result, all molecules in
the nematic phase point on average in the same direction. This orientational order in the
nematic phase can be characterized by a pseudo-vector n, which is called the director and
depicts the local preferable direction of molecules.

The degree of orientational order in the nematic phase can be expressed by a scalar order
parameter S, which is given by equation 2.1

S = % (3cos? (0) —1). (2.1)

The angle 0 is thereby given by the angle between the director n denoted for a given volume
V and the long axis of the molecules within this volume. In the nematic phase the directions
n and -n are physically equivalent, so the average over all angles 6 vanishes. Equation 2.1
represents the quadrupole average, which is the lowest multipole giving a non-trivial solution
[17].

The nematic order parameter .S is a function of temperature, with increasing temperature
the degree of orientational order decreases. In the approach by Maier and Saupe to describe
S (T), the average potential of every single molecule in a given volume with respect to
the position and orientation of all other molecules is considered [18]. The Van-der-Waals-
interactions between the molecules are replaced by a mean internal field, in which every

11



—— approximation; o5CB;27CB;=50CB;+ 7TOCB;
1

i
0.8
062" ° gADO@o i
0 & 0:

0.4} =B

0.2 |

| | | l
8.96 097 098 0.99 1 1.01

Figure 2.4: Temperature dependency of the order parameter S as calculated from equation 2.4.
Experimental data are taken from reference [19].

molecule has a potential energy E, (equation 2.2) depending on its orientation in the field.
1 2
Epot (S,0;) = i B-S (3 cos” 0; — 1) (2.2)

The constant B in equation 2.2 is a factor depending on the molar volume of the molecules
and S refers to the nematic order in the vicinity of the single molecule i. By applying Boltz-
mann statistics, the temperature dependency of the angular distribution can be estimated
and the function S (T') is given by

/2 .
S(T) = 3 IK /2 exp (= Epot/kpT) cos® 0 sin 6df B 1 (2.3)

2 fOW/Q exp (—Epot/kpT) sin 6df 2

This self-consistent integral equation can only be solved numerically. An analytic approxi-
mation is given by equation 2.4

TV2 0.22
S(T)=[1-098—" 12— 2.4
(1) ( vanz,N) , (24)

where Tny represents the clearing temperature, V,,, the molar volume of the respective ne-
matic liquid crystal and V;,, ny7 the molar volume at the clearing temperature T ;. Equation
2.4 provides an universal temperature dependency of the nematic order parameter .S, which
is found to be valid for most nematic materials. Results for the order parameter calculated
for the liquid crystal 5CB by equation 2.4 as well as experimental data for comparable ne-

matogens are plotted in figure 2.4.
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2.3 The Frank-Oseen energy

Although the nematic phase is characterized by a long range orientational order where all
molecules point on average in the same direction, surface interactions as well as influences
of external electric or magnetic fields can lead to strongly distorted director fields. However,
the distance L, over which significant changes in the local director n occur, is usually much
larger than the molecular dimension a of a single molecule. If the condition in equation
2.5 is fulfilled, the deformations in the director field can be mathematically described like a
continuum.

‘%‘ << 1. (2.5)

According to Frank [20] and Oseen [21], the minimum in the free energy Fy of a nematic
liquid crystal is given by a uniform director field. Every distortion of this initial state leads to
an increase of the total free energy. Considering surface interactions and external electrical
fields as possible sources for director field distortions, the total free energy F' of a nematic
liquid crystal is given by equation 2.6

F= FO + / (felast + felec) av + / fsurdAa (26)
\% A

where fejast, felee and fsyr represent the bulk elastic free energy density, the electric field

energy density and the surface anchoring energy density, respectively.

2.3.1 The elastic free energy density

The bulk elastic free energy density in equation 2.6 is contributing to the elastic properties
of the nematic phase. For calamitic molecules in a nematic phase, only three independent
deformations of the director field (splay, twist and bend) influence the elastic energy density,
as shown in figure 2.5. Therefore, the three first-order elastic moduli K1; (splay), Kaa (twist)
and K33 (bend) are needed to describe the elastic response of liquid crystals. Additionally,
a chirality induced twist of the director field has to be considered for chiral nematics, by

introducing the cholesteric pitch length ¢p. If the nematic-nematic interactions in the bulk

splay twist bend

Figure 2.5: Schematic drawing of the three fundamental elastic deformations splay, twist and
bend in a nematic liquid crystal.
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are of comparable magnitude as the surface-bulk interactions, also the second-order saddle-
splay elastic modulus Ko4 contributes to the elastic energy density. The total elastic free
energy density is then given by equation 2.7

1 1 1
Jelast :f0+§K11 (VTL)2—{—§K22 (TLV Xn—q0)2—|—§K33 (TLX \V4 Xn)2 ( )
2.7
1
+§(K24—K22)V- n(V-n)+nxVxn].

For a simplifying estimation of the elastic free energy density in a non-chiral nematic liquid
crystal, the one-constant approximation can be used [17]. In this approach it is assumed
that Koy = 0 and K = K11 = Ko = K3z, as all elastic moduli are in the same order of

magnitude. Hence, the elastic free energy density can be approximated by equation 2.8

felast = fO + %K ((VH)Q + (V X n)2> . (28)

2.3.2 The electric free energy density

The electrostatic energy density within a dielectric medium is given by the electric field E
and the induced displacement field D over the relation 2.9

1
felec = _QE -D. (29)

In a nematic liquid crystal, the magnitude of f.. depends on the anisometric permittivity
tensor €, and therefore can change depending on the orientation of the liquid crystal mo-
lecules in an external electric field. Assuming that the liquid crystal is filled into a plate
capacitor as liquid crystal test cell, which is connected to a power source with constant
voltage, the reorientation of molecules results in work which has to be done by the power
supply. Taking this energy into account, the electric field energy density fe. in equation
2.6 can be described by

1

felec = 9

2 1 =) 2
ecoE —ieer (Eﬁ) : (2.10)

The first term in equation 2.10 is independent from the director orientation and therefore
considered as the isotropic contribution of the electric energy density. The second term of
equation 2.10 depends on the director field distribution as well as on the dielectric aniso-
tropy Ae of the nematic liquid crystal. For materials with positive dielectric anisotropy
(Ae > 0), the minimum in free energy density is given for a director orientation parallel to
the external electric field, while for a material with negative dielectric anisotropy (Ae < 0)
a director orientation perpendicular to the external field is energetically favored.

The equilibrium director field distribution in the absence of external fields is given by the

boundary conditions and the elastic properties of the nematic liquid crystal only. An exter-
nal electric field gives rise to an additional term in the total free energy and can change the

14



director field distribution with a minimum in the Frank-Oseen energy. As a nematic liquid
crystal is a fluid medium, sufficiently large fields can induce a reorientation of the director
field, which can be controlled by the external electric field. The equilibrium director field
distributions under external fields as well as the dynamics of field-induced deformations are
discussed in sections 2.5.1 and 2.5.2 of this chapter.

2.3.3 Surface interactions and alignment

Nematic liquid crystals can easily be aligned by specific interactions of molecules with the
confining boundary surfaces of a given volume. The surface induced alignment is then
transferred into the bulk of the liquid crystal by elastic forces, and the resulting director
field distribution in the bulk represents the state with a minimum in the free energy F. In
general, there are three possible alignment modes, as shown in figure 2.6. While homeotropic
alignment is characterized by the director n perpendicular to the surface (fp = 0), planar
alignment is given for n parallel to the surface (6p = 7/2). An intermediate state between
homeotropic and planar alignment is the tilted alignment mode, where the long axis of
molecules orients in a defined angle to the substrate (0 < 0y < 7/2).

The actual alignment of nematic liquid crystals on a surface depends on several factors
including intermolecular interactions, steric factors, surface topography and the elasticity of
the liquid crystal molecules [22]. It is known that the spontaneous orientation of a nematic
liquid crystal to a substrate depends on the relative magnitude of the surface energy of
the surface and the surface tension of the liquid crystal [23]. If the surface tension of the
liquid crystal is higher than the surface energy of the substrate, homeotropic alignment is
energetically favored. For high surface energies and lower surface tension, planar alignment
of the liquid crystal molecules is expected. Additionally, topographical structuring of the
surface can influence on the alignment of molecules.

Homeotropic alignment on glass substrates is usually achieved by the use of surfactants
[24]. Coating the glass substrates of a liquid crystal test cell with an amphiphilic surfactant
like phospholipids (for example Lecithine) or fatty acids results in a monomolecular layer of
surfactants on the surface, with the hydrophilic endgroups pointing to the glass substrate
and the hydrophobic chains reaching into the volume of the test cell (see figure 2.7, (a)).
The alignment of calamitic molecules is then given by steric interactions of the side chains of

homeotropic tilted planar
W === s
homogeneous free

Figure 2.6: Schematic drawing of the three fundamental alignment modes of calamitic liquid
crystals on an interface, with an additional distinction between free planar align-
ment and homogeneous planar alignment.

15



i/, ' NI TV S,
Wy 290497

(b) (c)

Figure 2.7: Schematic drawings of three different liquid crystal / surface interactions to induce
homeotropic (a) or homogeneous planar ((b),(c)) alignment. (a) The amphiphil
lecithine forms a monolayer on the surface, inducing homeotropic alignment due to
topological interactions with the liquid crystal molecules. (b) Chatelain’s method
of rubbing a coating with high surface energy induces homogeneous planar align-
ment. (c¢) Oblique evaporation of metals or oxides leads to the formation of parallel
topological stairs, which also induce homogeneous planar alignment.

molecules with the surfactant as well as by the reduction of surface energy in the hydrophobic
part of the coating.

Tilted alignment modes can be achieved either by using surfactants [24] or by pure topo-
logical effects using oblique evaporation of thin Au or SiO films at very large angles (80-90°)
[25].

Surface coatings with high surface energy can lead to the formation of strong planar
anchoring of molecules to the substrates. However, an unstructured coating does not provide
an easy direction for the orientation of molecules, so that the azimuthal angle ¢ is not defined
and therefore arbitrary. A common method to achieve homogeneous planar alignment is the
mechanical rubbing of the surface with paper or cloth, the so called Chatelain’s method [24].
The mechanical rubbing results in parallel microscratches on the surface, which promote an
orientation of molecules parallel to the scratches (see figure 2.7, (b)). Another method of
inducing homogeneous planar alignment is the oblique evaporation of metals or oxides (e.g.
Si0) under small angles onto the surface, which leads to the formation of parallel topological
stairs along the crystal growth direction of the evaporated material (see figure 2.7, (c)).

For homogeneous planar alignment (§y = 7/2, for definitions of angles see figure 2.8),
Berreman showed that the alignment of molecules parallel to the rubbing direction of the
surface minimizes the elastic free energy density fejqs: of the liquid crystal [26]. This direction

VA

Figure 2.8: Definitions of the polar angle 6y and the azimuthal angle ¢ describing the align-
ment of a nematic liquid crystal on a surface (sketch adapted from reference [24]).
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is referred to as the easy direction of the surface, and denoted with the azimuthal angle
©o. The minimum free surface energy Fj,, is then given for an orientation along this
easy direction (6 = 6y, ¢ = o), every deviation from this orientation increases the surface
energy. The energy needed for a director deviation away from the easy direction is given by
the anchoring energy W, chor-

Rapini and Papoular introduced the two independent anchoring energies mehor and
an chor [24] in order to estimate the free surface energy Fj,, depending on the deviation

from the easy direction, as shown in equation 2.11

1

0 0 :
Four = §Wanchor sin® (9 - 00) )
1 (2.11)
Fgﬂ“ = iwfnchor sin? (()0 - @0) :

Hence, the increase in free energy is proportional to the anchoring energy and has its max-
imum for a deviation of 7/2.

High anchoring energies lead to strong boundary conditions, where even large external fields
lead to only small deviations from the easy direction. For W,,cnor = 00, the director cannot
be deviated from the easy direction at the surface. Low (or finite) anchoring energies allow
a field-dependent deviation from the easy direction. In order to describe the influence of the
boundary conditions on the alignment in the bulk, the extrapolation length b can be used,
which connects the anchoring energy with the elastic properties of the nematic material [17].

o K Ubuik
X a
Wanchor Wanchor

b=ua (2.12)
The quantity a represents the average molecular dimension of the nematic material, and
Upwik is a measure of the nematic-nematic interactions in the bulk.

For the case the anchoring energy Wi,chor is comparable or even larger than Uy, the
extrapolation length b is comparable to the molecular dimension a. As according to the con-
tinuum theory deformations of the director field are considered on a scale much larger than a,
the extrapolation length can be neglected and the anchoring is strong. If We,ehor << Upuik,
the extrapolation length b can be considerably larger than the molecular dimension a. In
this case, an external constraint can lead to a deformation of molecules in the surface region,
and the anchoring is considered weak.

An experimental approach for the determination of the anchoring conditions is given by
the analysis of angle distribution 6 (z) during a field-induced reorientation of molecules.
As discussed in detail in section 2.5, an external electric field can induce an orientation of
molecules which contradicts the preferred alignment of molecules to the substrates. The
degree of reorientation in the vicinity of the surfaces depends on the anchoring energy
Wanehor- Considering opposite molecular orientations by surface forces and dielectric forces
and solving the resulting equation of motion by applying Lagrangian mechanics yields the
tilt angle distribution 6 (z, E) given by

0 (z, E) = 2arctan (eié> , (2.13)
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Figure 2.9: Director field distribution 6 (z) of a Fréedericksz-transition for strong anchoring
(solid line) and weak anchoring (dashed line). For weak anchoring conditions, the
orientation of molecules at the boundaries is a function of the external field, thereby
the cell thickness d appears larger. The difference between the solid line and the
dashed line is a measure of the anchoring energy Wenchor [27].

with £g being the field coherence length defined as

(1 [Fu
ETEV eAe

If the external field is sufficiently large, the field coherence length g becomes comparable

(2.14)

to the surface extrapolation length b (g ~ b). This condition represents the second thresh-
old of complete reorientation of molecules even in the vicinity of the surface, and allows b
and consequently Wo,chor to be calculated [27].

2.4 Physical properties of nematic liquid crystals

Nonionizing liquid crystals can show a very low intrinsic electrical conductivity (down to
10 Q~Lem ™!, [24]) and therefore can be considered as dielectric media. Due to the par-
tial order of the anisometric building blocks, liquid crystals can exhibit macroscopically
anisotropic physical properties. For example, the effective refractive index n or the effective
permittivity € depend on the orientation of molecules to an external field. In consequence,
n and € of nematic materials are not scalar values, but need to be described as tensors of
second order. This tensor differs for different ordered phases, the number of independent
components is given by the symmetry of the liquid crystalline phase. As the symmetry of
the thermotropic nematic phase is given by the point group Dy, the permittivity tensor
¢ has only two independent components € and €, which correspond to the permittivity

parallel and perpendicular to the director n, respectively.

ng 0 0 e, O 0
n=|0 n; O e=10 € O
0 0 0 O
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Figure 2.10: Schematic drawing of a calamitic molecule with the angle 3 between the total
dipole moment p and the long axis of molecule and the angle 6 between the long
axis and the director n. The quantities y; and u, depict the longitudinal and
transversal part of u, respectively.

2.4.1 Dielectric anisotropy

When a liquid crystal is placed between the plates of a capacitor, the capacitance of the
capacitor increases. In vacuum, the capacitance Cj of a plate-capacitor (plate area A,
distance d) in vacuum is given by equation 2.15
€pA
00:9:762 :%:L, (2.15)
U FE-d Q4 d
€A
As for any dielectric, the increase in capacitance is proportional to the factor €, which
represents the permittivity tensor of the dielectric material

C= €'€0§~ (2.16)

The increase of capacitance is caused by electrical counter-fields, which arise in the dielectric
material due to the presence of an external electric field E. This electric displacement field
is denoted as D and given by the electric field F and the induced polarization P

D = ¢yeE = ¢gE + P. (2.17)

The polarization P describes the electric dipole moment per volume. It is attributed by a
permanent dipole moment p and a field-induced dipole moment p;nduced = Elocal, Which
occurs due to a displacement of electrons and cores in an external field. A degree of this
displacement is given by the molecular polarizability c.

N
P = V (aElocal + ,U,) . (218)

A connection between the microscopic properties polarizability o and permanent dipole

moment g of a single molecule with the macroscopic quantity e is given by the Debye
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equation 2.19

e—1 PN 4 2
_ . 2.19
et2  3Me <O‘ T kst (2.19)

As in polar liquids, the local electric field strength Ej,.,; depends on the dielectric surround-
ing and usually differs from the applied electric field E. Onsager developed the relation 2.20
[28]

NFh F?
e=1 A 2.20
‘=1t v, [O‘ + SkBT] (220
with
_ 3 _ -1 _ 1
h_26j17 F—(l—fOé) ’ andf—m’

considering the interactions between dipoles in a condensed liquid phase as well as their
volume. Equation 2.20 considers average values of € and « and therefore is valid only for
isotropic media. For the nematic phase, the dielectric tensor has to be used, whose elements
€| and € are related to the molecular polarizabilities parallel o and perpendicular a | to
the director, the angle 8 between the long axis of the calamitic molecules and a permanent
dipole moment g and to the scalar order parameter S. This relation is given by the Maier-
Meier equations 2.21 and 2.22.

NFh[_ 1 gi 1 F 1 )
—-1)= A 1+-(1- 2.21
(ex —1) - _oz+3 aS + 3T +2( 3cos”B) S (2.21)
NFh[_ 2 glu2r 1 )
(e —1) = o o+ gAaS + SkpT 1+ 3 (1—3cos”B) S (2.22)

with Aa = a; — oy The dielectric anisotropy of the nematic liquid crystal is then given by
equation 2.23

Ae=¢ —€L = N::h [(al — ) — M22I<:};T (1 — 3cos? 6)} S. (2.23)
According to equation 2.23, the dielectric anisotropy Ae scales linearly with the order param-
eter S. As S decreases with increasing temperature, Ae (7") is a monotonously decreasing
function with a vanishing dielectric anisotropy at T' = Tlx7.

The relation between the macroscopically observable values for €, and ¢ and the molec-
ular quantities ay, oy and py, py is given by the order parameter S. Considering an ordered
phase with S = 1, the molecular polarizabilities oy and «; equal the macroscopic values for
ay and o). Hence, the order parameter S can be described as

_Y el

S = (2.24)

ap— oy
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2.4.2 Birefringence

For electromagnetic fields at optical frequencies, the polarization P reduces to

N
P = VaElocah (225)

as the permanent dipole moments can not follow the fast switching of sign of the external
field and do not contribute to the total polarization P. Connecting the Maxwell relation

€ =n? (2.26)

with the Debye equation for y = 0 gives the Lorentz-Lorenz equation 2.27, which connects
the refractive index of the dielectric to the molecular polarizability « by

n?—1 PN 4
= o.
n?4+2 3Me

(2.27)

Taking into account the nematic order of calamitic building blocks and different polariz-
abilities o and a parallel and perpendicular to the director, the Lorentz-Lorenz equation
2.27 leads to two observable refractive indices

2
nj —1 N.
l PINA
— , 2.28
72 +2  3Me | (2.28)
n? —1  pNy
P = 3l (2.29)
. _o nﬁ+2ni
with n° = — 3 -

Hence, a nematic liquid crystal is an uniaxial birefringent medium with the optical axis

parallel to the director n. The two principle refractive indices are given by n| = n. and
n| = My, the birefringence can be described by An = n. — n,. Typical values for An of
nematic liquid crystals are 0.05-0.45.
The optical axis of the nematic phase is parallel to the director n, whose distribution can
be strongly distorted in a given volume V. Therefore the effective refractive index n.s; for
linearly polarized light passing through the liquid crystal also depends on the director field
distribution and can be described as

1
Neff = V/n(w,y, z)dV. (2.30)

As shown in section 2.5, the director distribution n(z,y, z) can be manipulated by external
electric fields, so that also the optical birefringence of the nematic liquid crystal can be
electrically controlled. Considering the initial geometry given in section 2.5 (homogeneously
planar alignment parallel to the y-axis, external electric field parallel to z) and assuming
linearly polarized light of wavelength A\ passing through the sample along the z-direction
with the orientation of the electric field £ under an angle of g to the y-axis gives rise to an
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initial birefringence An = n.—n,. At sufficiently strong external fields, the initial alignment
is distorted and the director describes a function 6 (z).

This does not affect the ordinary refractive index n,, as the director remains perpendicular
to the x-axis. However, the extraordinary refractive index n. decreases, tending towards
no. The magnitude of n, depends on the degree of deviation from the initial alignment and
therefore depends on 6 (z) by the equation

NeMNo
Neeff (2) = . (2.31)

el V/n2cos? 0 (z) +n2sin 0 (2)
In consequence, also the effective birefringence Ancfs(2) = neefr(2) — no depends on

the angle distribution 6 (z) and decreases with increasing field strength. The total phase
retardation between ordinary and extraordinary beam passing through the sample in this

geometry is given by
. 27rdAn€ff (Z)

A
In order to detect the effective birefringence of the sample, a polarizer can be placed be-

5 (2.32)

hind the sample under an angle of 90° with respect to the initial polarization state of the
transmitting light. The detectable light intensity is then given by equation 2.33

1 J
I = 510 sin? (2¢) sin’ (2) , (2.33)

where Iy is the initial light intensity. According to equation 2.33, the maximum light
transmission between crossed polarizers is given for ¢y = 45° and the field-dependent light
transmission is an oscillating signal. The contrast ratio between I,,;, and I,,,, is not
limited in theory, but usually restricted in experiment by the quality of the initial director
orientation [24].

2.5 The Fréedericksz-transition

For a single calamitic molecule in free space the minimum electrostatic energy is given by
an orientation of the long axis of the molecule parallel to the electric field for molecules with
€ > €, as this maximizes the electric displacement field D. However, the volume of the
nematic phase is always confined by substrates, and hence the director field distribution is
connected to the boundary conditions at the surfaces. In the equilibrium state, the director
field distribution minimizes the free energy F of the volume, which in the absence of external
fields is given by equation 2.34

F:/ felaSth+/fSurd3- (234)
|4 s

Any field-induced reorientation of molecules then creates additional distortions in the di-
rector field, which increase the elastic part of the free energy density fe.st and therefore
give rise to an elastic restoring torque that tends to resist this reorientation. As a result,

the equilibrium director field distribution under the influence of electric fields does not only
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Figure 2.11: Schematic drawings of the three fundamental geometries for a Fréedericksz-
transition for materials with positive dielectric anisotropy. The upper images
show the undistorted initial alignment in the field OFF state, while the lower im-
ages show the distorted states, which correspond to a splay deformation (left), a
pure twist deformation (middle) and a bend deformation (right).

depend on the applied electric field, but also on the elastic properties of the liquid crystal
and the boundary conditions at the surfaces.

Hence, the analysis of field-induced distortions of the director field can reveal information
as well on the boundary conditions and the elastic properties of the nematic material as on its
dielectric properties. In a typical experiment, an external electric field is used to distort an
uniformly aligned nematic liquid crystal, and changes in the director field distribution are
detected by birefringence or capacitance measurements. However, this approach requires
a well-defined initial director field. In this work, this is usually achieved by using liquid
crystal test cells featuring strong parallel planar anchoring conditions, which lead to an
homogeneously planar aligned liquid crystal.

This field-induced reorientation of the nematic director was at first investigated in detail
by V. Fréedericksz and V. Zolina [29] and is therefore referred to as Fréedericksz-transition.
There are three fundamental geometries for the Fréedericksz-transition which correspond to

a splay deformation, a bend deformation and a pure twist deformation (see figure 2.11).

2.5.1 Static director field distribution under influence of an electric field

In order to simplify the theoretical derivations of the field-induced switching behavior and
because of the close relation to the experiments performed in this work, only the splay-
type Fréedericksz-transition is considered in the following section. Therefore the initial
equilibrium director field is assumed to be given by an homogeneously planar aligned nematic
phase parallel to the y-axis of the sample. Applying electric fields parallel to the z-direction
then creates distortions in the director field, but reduces the director distribution to a one-
dimensional function depending on z only. A similar approach is possible for any initial
director configuration and for any geometry of the Fréedericksz-transition. Using the initial
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geometry described above, the elastic part of the free energy density simplifies from equation
2.7 to equation 2.35, as only bend and splay deformations of the director field can occur

do
fetast = fo+ 5 (Kn cos? © + K3zsin® ©) (dz) : (2.35)

For the undistorted liquid crystal, the slope of the tilt angle ©/dz is zero and hence fejqst
equals the minimum energy fy. Any deformation of the director field increases the elastic
free energy density proportional to the square of the slope of the tilt angle. As shown in
reference [22], the elastic torque density originating from such deformations is connected to
the elastic free energy density by equation 2.36
0 d 0
Telast — a felast+ dz (79) felast- (236)
By combining equations 2.35 and 2.36, the resulting elastic restoring torque density is given
by equation 2.37

2

2
Telast = (K33 — K11) sin © cos © (i;j) + (Ku cos? © + Ks3 sin 9) s (2.37)

22
On the other hand, the presence of an external electric field tends to minimize the electric
part of the free energy density fee. by reorienting the molecules with their long axis parallel
to the z-direction. The resulting electrostatic torque density acting on the liquid crystal
molecules is given by equation 2.38

0 d 0
Telec = _%Afelec dZ ( ) feleca (238)

with the change in the electric field energy density A fei.. given by the expression

D? 1 D?
z 2 (2.39)

1
Afuree = =
Jetee 2 (e” sin?© + € cos?©)  2¢

With the initially chosen uniform alignment in the xy-plane, the dielectric tensor € reduces
to a function of z only. As the the electric field within the liquid crystal correlates to the
local distribution of €, it also becomes a function of z. In consequence, the z-component of
the displacement field vector D is constant, and hence the second term is independent of the
director orientation © (z). Using only the left part of equation 2.39 for the differentiation
of equation 2.38 yields the expression 2.40

Dz (e) — 1)

Telec = sin © cos ©, (2.40)
o (eH sin? © + ¢ cos? @)2

which can be simplified to equation 2.41

Telee = (e” —€1) E?sin © cos O. (2.41)
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The equilibrium director field distribution under the influence of electric fields is given by
an orientation O (z) where electric and elastic torque sum up and the total torque vanishes

Telec T Telast = 0. (242)

In the simplified geometry treated here, this equilibrium condition is given by equation

do\?
(e” - eL) E?sin©cos© + (K33 — K11) sin © cos © <d)
& (2.43)
+ (K11 cos® © + K3 sin @) el 0.
z

This nonlinear differential equation gives the static equilibrium director distribution ©(z)
in the liquid crystal cell. Even in this simple geometry, analytical solutions are not available
and the equation can only be solved numerically.

Assuming only very small distortions of the director field (@ << 1) leads to a pure
splay deformation of the director field, while larger displacements are dominated by a splay
deformation with an admixture of bend deformations. Thus, the restriction to © << 1
omits the bend deformation and equation 2.43 can be approximated by the linear differential

equation
2

d-e 9
KIIW + €0A€E ©=0. (244)
One solution of equation 2.44 is given by

O(z) = Oy sin ((%)) , (2.45)

where O is a constant (©¢p << 1) and d is the cell gap. Substitution of this solution in
equation 2.43 and considering only first-order terms yields

2
coAeE?sin © cos © — Ky ((g)) 6 =0, (2.46)

For sufficiently small distortions sin © cos ©® < O, so that nontrivial solutions of equation
2.46 require

E*> == =FE%,. (2.47)

With the relation F = V/d, the threshold voltage of the deformation of a uniformly aligned

nematic liquid crystal is given by
| K11
Vry, = . 2.48
Th = T o\ ( )

Only above this threshold voltage V7, the destabilizing electric torque 7. oOvercomes the

stabilizing restoring elastic torque 7., and a deformation of the director field occurs. This
field-induced rotation is degenerate, clockwise and anticlockwise rotation are equally proba-
ble [27]. In order to avoid domain walls separating regions with different rotation directions
within the bulk, rubbed alignment layers which induce small, well-defined pretilt angles to
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the molecules at the interface can be used. This leads favorable direction of rotation, as the

displacement field D degenerates.

The threshold voltage Vpp, for the Fréedericksz-transition of a nematic material is a sim-
ply accessible physical property which allows the determination of the elastic constants the
liquid crystal. A larger elastic constant Kj;; corresponds to a stiffer medium that requires
higher electric torques to distort the liquid crystal. On the other hand a large difference
between ¢; and ¢; goes along with a large dielectric anisotropy Ae and therefore increases
the electric torque on the molecules. By measuring the threshold voltage Vpp,, information
on the ratio between elastic torque and electric torque is obtained, and for known values of
Ae the elastic constant K;; of the respective director deformation can be determined.

Although the relation for the threshold voltage Vi, given by equation 2.48 is widely used,
it should be noted that it is connected to several restrictions:

e Restriction to small distortions

The simplifying assumptions made for the electric part of the free energy density
given by equation 2.39 are only valid for homogeneously aligned molecules and small
distortions. In a strongly deformed director field, the displacement field D is no longer
parallel to the applied external field, but non-uniformly distributed over the cell gap.
This gives rise to additional electric torques, which can induce a rotation of molecules
out of the (y, z)-plane in the geometry stated above. Because of the large anisotropy
between € and € compared to the magnetic anisotropy of typical nematic materials,
this effect has to be taken into account for a reorientation in electric fields, while it
can be neglected for a reorientation in magnetic fields.

e Conductivity

For conducting samples an additional contribution to the electric torque due to an an-
isotropy of conductivity has to be considered [30]. Additionally, samples with sufficient
amounts of charged dopants can build electric double layers at the interfaces, which
can reduce the local field strength FEj,. and therefore influence on the displacement
field D [31]. In consequence, higher external voltages have to be applied to overcome
the restoring elastic torque of the liquid crystal, which simulates higher appearing
threshold voltages.

e Boundary conditions
The derivation of threshold voltage Vi, assumes strong boundary conditions with
infinite anchoring energy, which is denoted by a director orientation of

n=(z=0)=n(z=d)=n(0, 1, 0) (2.49)

for any given field strength E. As discussed in section 2.3.3 (see figure 2.9), a finite
anchoring energy (Wynchor < 00) results in an increase in the apparent thickness of

the cell, what influences on the critical field strength for the Fréedericksz-transition

Ern
ETh,weak = 761 —,:t;éng . (250)
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Figure 2.12: Field-dependent light transmission characteristics of an homogeneously planar
aligned nematic liquid crystal without pretilt angle (left) and with pretilt angle
(right) to the substrates.

Hence, weak anchoring conditions decrease the critical field strength Frpp, but do not
influence on the elastic properties of the liquid crystal. This has to be considered when
using equation 2.48 to estimated changes in elastic properties due to observed changes
of threshold.

It should also be noted that a threshold Vpp is only defined for zero pretilt angle
of the director at the limiting boundaries [32]. Only an initial director orientation
perpendicular to the external field requires a critical electric torque to overcome the
restoring elastic torque of the nematic material. For any finite pretilt angle, even
small electric torques are sufficient for a reorientation of molecules, thus a continuous
distortion of director field instead of a Fréedericksz-transition occurs as shown in the

right diagram of figure 2.12.

According to equation 2.45, the function © (z) in the regime of small distortions is given by
a sinusoidal increase of ©. The maximum tilt angle ©g = ©,,,4, in the midlayer of the liquid
crystal test cell depends on the applied field, and reaches a saturation value of 7/2 for very
large electric fields.

In order to obtain the z-dependent director distribution over the cell gap, equation 2.43

is integrated to

0> D?
2 in2 =
(Kn cos” © + K33sin @) (dz) - (GH sin® © + €, cos? @)

D?
(e” sin? ©,,40 + € cos? @mw)

(2.51)

A numerical integration of equation 2.51 yields the function © (z) for different applied volt-

ages, some tilt angle distributions are plotted in figure 2.13.

2.5.2 Dynamic of field-induced director deformations

The dynamic of field-induced director deformations is given by the solution of the equation
of motion which considers besides elastic and electric torques also viscous forces. In a general
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Figure 2.13: Diagram showing director tilt angle distributions for the nematic liquid crystal
5CB at different applied voltages. The distortion of the initially parallel planar
director field by an electric field parallel to the z-axis sets in above the threshold
voltage, a maximum tilt angle of 7 /2 is reached for V = 5Vpy,.

approach, this equation of motion is given by the expression 2.52

do
elec elast — 7 2.52
Telec + Telast = M~ (2.52)

where 7 represents the rotational viscosity of the nematic material.

The viscosity is an internal resistance to flow, which rises from intermolecular forces in
a fluid. The rotational viscosity y; describes the resistance to the rotational motion of
the molecules under the influence of external fields. For the experimental determination of
v, usually a pure twist-deformation is investigated, as the reorientation of molecules in a
twist-deformation is not connected to changes in the position of the centers of gravity of
molecules and therefore free of convection [33]. For the two fundamental other deformations
splay and bend, the boundary conditions to the substrates induce a velocity profile along the
cell gap, so that molecules rotate at different angular velocities. While molecules in the bulk
can freely rotate, the angular velocity vanishes at the restricting surfaces. This gradient in
angular velocity leads to an inhomogeneous rotation of the director and causes back-flow
effects of molecules, which attribute to additional friction. Therefore, the rotational viscosity
71 obtained from measurements of splay or bend deformations is smaller than the rotational
viscosity obtained for a pure twist deformation [34], and is depicted as effective rotational
viscosity ﬁf !, Detailed studies on the reorientation behavior of nematic liquid crystals in

magnetic fields show that the effective rotational viscosity 'yff I can be as small as 25 % of

71[35].
For the case discussed above, substituting equations 2.41 and 2.37 for the torques yields

equation 2.53
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y de
1 —
dt i (2.53)
+ (Kll cos’ © + K33 sin? @) L

2

= egAeE?sin© cos © + (K33 — K11)sin© cos © (Cfg)
]
dz?

This equation of motion is a nonlinear differential equation of O (z,t) and can only be solved
numerically using some simplifying assumptions.

For the case of a relaxation process from a distorted director field to the field-off distri-
bution, the dielectric part of equation 2.53 can be omitted and the time evolution of the
relaxation is given by equation 2.54

d@( t) = (K33 — K11)sin© cos © 46 2+(K 20 + K33sin” ©) O (2.54)
—0O (z,t) = — sin © cos — cos sin —. .

m i ) 33 11 dz 11 33 p)
Assuming that the electric field only induced a small distortion in the director field, the
equation for the director relaxation can be approximated to equation 2.55

do 2
NG = —Kn (3) ©. (2.55)

The solution of this differential equation gives an exponential decay of the director field
distortion (equation 2.56)

O(t) = O (t = 0) cap < —t ) (2.56)

Tdecay

with the time constant Tgecay
2
m (d
Tdecay = 7[(11 <7T> . (257)

For the analysis of rise time 7,;s¢, an initially undistorted director field is assumed, so that
O (z,t=0) 0. (2.58)

Assuming only small field induced deformations, the angle distribution after a time ¢ can
be approximated by the relation 2.59

O (2,1) = Op () sin (%Z) (2.59)

and the equation of motion simplifies to 2.60

do 9 T 2
Ny = €0AeE°O — K11 <E) O. (2.60)

Again, a solution of this differential equation is given by an exponential function 2.61 de-

scribing an exponential increase of the director distortion over time.

Q0 (t) = © (0) eap < —t ) (2.61)

Trise
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The time constant 7,5, of this evolution is given by equation 2.62

<E)2 _ 1] B . (2.62)
Erp

The equations 2.57 and 2.62 are, similar to equation 2.48 for the threshold voltage Vpp,

d271

Trise = Ky 2

connected to several restrictions.

The derivation of switching times is only valid for small deviations from the initial director
field distribution. At first, large displacements represent a combination of splay and bend
deformation and can not be treated with one single elastic constant only. More striking is
that for large distortions in the director field the electric torque is not strictly parallel to the
z-direction, which influences on the direction of rotation. In this case, all three fundamental
director field distortions as well as all components of the displacement field vector D have
to be considered for the calculation of switching times.

As noted above by equation 2.50, weak anchoring conditions result in an increase of the
apparent thickness of the cell. As the switching times 7;.;5c and 7gecqy depend on the square
of the cell thickness, weak boundary conditions increase the switching times of the liquid

crystal.

2.6 Nematic liquid crystals and doping

The effect of doping a nematic liquid crystal with spherical dopants strongly depends on the
dimensions of the dopant. This section aims to give a short overview over different mecha-
nisms of interactions between spherical dopants and a nematic host for different size regimes.

2.6.1 Size effects of dopants in the nematic phase

Colloidal particles with diameters of several um induce topological defects to the director
field of a nematic liquid crystal [36]. This is caused by surface interactions of liquid crystal
molecules on the spherical particles, which constraint the formation of defects in an homoge-
neous initial director field. The particles then carry a radial hedgehog defect of charge 1 in
their interior, which requires the additional formation of defects in the nematic surrounding
to give a configuration with total charge zero. For particles with homeotropic boundary
conditions, theoretical calculations predict three different possible director distortions [37],
[36]. They are given by an hyperbolic hedgehog (figure 2.14,(a)), a hyperbolic disclination
ring (figure 2.14,(b)) or a quadrupolar Saturn-ring defect (figure 2.14,(c)). As shown by
Fukuda and co-workers [38], the particle radius r influences on the energy of the Saturn-
ring effect only, while the energy of the hyperbolic disclination ring is not affected by particle
size. For decreasing r the energy of the Saturn-ring defect decreases logarithmically, so for
small particle this defect type gives a minimum in the free energy F. Detailed experimental
investigations on these defects by confocal fluorescence polarizing microscopy are given by
Matthias et al. in reference [39]. Colloidal particles with strong degenerate planar anchor-
ing conditions induce a pair of point defects called boojums [40]. In recent own work, a
comparable director field distribution around microdisc resonators with planar boundary
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(a) (b)
Figure 2.14: Schematic drawings of the three possible particle induced distortions in the direc-
tor field around a spherical colloidal particle with strong homeotropic anchoring

conditions. (a) Hyperbolic hedgehog, (a) hyperbolic disclination ring and (c)
Saturn-ring configuration. Drawings adapted from reference [36].

(c)

Figure 2.15: Schematic drawing of the particle induced distortion in the director field around
a spherical colloidal particle with strong planar anchoring conditions.

conditions has been verified experimentally by fluorescence confocal polarizing microscopy
[41].

Poulin et al. showed that colloidal particles in this size regime can arrange to one-
dimensional arrays by sharing topological defects [37]. The driving force for this self-
assembly of particles is the minimization of the elastic part of free energy density, as topo-
logical defects represent a highly distorted director field. As shown by Ravnik et al. in
reference [42], this tendency to minimize the elastic free energy density can be used to
entangle colloidal particles and to obtain one-, two- or even three-dimensional arrays of

entangled particles.

Comparing the surface alignment energy given by the Rapini-Papoular energy multiplied
by the surface of a single particle with the elastic free energy density of the bulk reveals
that the surface energy scales as a?, while the bulk energy scales as a only. In consequence,
the influence of surface energy decreases with decreasing particle size, and the director ori-
entation on the surface is more and more dominated by the bulk properties. Lubensky et
al. estimated a critical particle radius r.; above which strong anchoring conditions can be
assumed to be ~ 300nm [36]. Below this value, the above mentioned formation of topolog-
ical defects is less likely to occur, and for significantly smaller particles an influence of the
boundary conditions of the particles on the director field is not expected.

However, also particles with smaller diameters than d = 2-7.; show an attraction to-

wards topological defects and areas of high elastic energy density in nematic liquid crystals,
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Figure 2.16: Schematic drawing illustrating size effects of dopants in a nematic liquid crystalline
host. With decreasing radius dimension, at first the formation of defects due to
strong anchoring conditions vanishes. Secondly, no accumulation of particles in
defect free regions of the director field is observed, while particles smaller than
10nm even cannot be dragged by the nematic to isotropic phase front. The radii
of all particles investigated in this work are smaller than 10nm, and therefore
located at the very right end of this scheme.

as shown by Voloschenko et al. in reference [43]. Driving force for this mechanism is the
elimination of nematic order within the volume of the particle. The authors estimate the
energy gain of placing a particle at a location with highly distorted director field and find
a sufficient reduction of elastic free energy density in the excluded volume in order to trap
particles. This mechanism holds down to a critical particle radius of 7.2 ~ 20nm at room
temperature to occupy regions with high elastic energy. For smaller particles the gain in
free energy is not sufficient to overcome the Brownian motion of molecules, and the particles
are expected be randomly dispersed in the liquid crystalline host.

A third critical radius of 7.3 ~ 10nm is given by West and co-workers in reference [44]
for the drag of particles along an nematic-isotropic interface. In the isotropic phase, elastic
forces due to orientational ordering of molecules are absent, while the nematic order can
induce these elastic forces on a dispersed particle. West et al. showed that the onset of
elastic forces at a moving interface between the nematic and isotropic phase can drag par-
ticles along the interface. While the elastic force scales as a?, the opposing viscous drag
scales as a. The authors showed that in consequence only for particles larger than r.3 the
elastic forces can overcome the viscous drag and move the particles. Smaller particles are
not affected by the moving phase interface.

In conclusion, spherical nanoparticles in a size regime smaller than 10 nm should neither
induce topological defects, nor be attracted by regions of high elastic energy. However, the
reduction of dimension also gives rise to new interactions which can prevent the homoge-
neous dispersion in a nematic host. Therefore, some special physical properties of nanoscopic
particles are presented in the following subsection.
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2.6.2 Nanoparticles

While the physical properties of macroscopic objects are mainly determined by the bulk
atoms, the ratio of surface atoms increases for very small objects and the physical properties
can dramatically change. The ratio ]]\\;—‘S/ between surface atoms and bulk atoms can roughly
be estimated for transition metals by the empirical law

Ns 1

~— 2.
Ny ¥ oR (2.63)

where R is the radius of a single nanoparticle in nm [45]. As can be seen from equation
2.63, the number of surface atoms scales with the diameter and for small particles a high
ratio of particles is located at the surface. This leads to a strong influence of the surface
atoms on the physical properties of the nanoparticles, which are dominated by the tendency
to minimize the surface tension by changing shape and size or by agglomeration.

In the synthesis of nanoparticles, the shape and the size distribution of particles depends
on the growth conditions. Below the melting temperature of a material the formation of a
crystalline structure from solution gains the melting enthalpy AG,, of the crystal, which is
the driving force of crystal growth. However, for very small nuclei the increase in surface
energy by the formation of clusters requires energy. The following derivation follows the
classical nucleation theory, a detailed overview is, for example, given in reference [31].

The gain in enthalpy AGy by the crystallization of atoms to a cluster depends on the

size of particles and therefore scales as 3

4
AGy = —§7T7°3 |AG,] . (2.64)

On the other side, the formation of particles increases the surface enthalpy AG4 = vAA,
which therefore scales as 72

AG 4 = 4nry. (2.65)

Combining equations 2.64 and 2.65 yields the total enthalpy change AGyy, which is shown
by equation 2.66

4
AGi = AGy + AGy = §7TT‘2AGm + 472y, (2.66)

As can be seen from figure 2.17, the different scaling of AGy and AG 4 with the radius
r results in a critical radius 7., above which the growth of particles reduces the total free
enthalpy AGyy. This radius is given by equation 2.67

2y

Ao (2.67)

Te =
and depends on the ratio of surface tension v and the melting enthalpy AG,,. The forma-
tion of a small nuclei requires energy and therefore at first increases the total free enthalpy
AGie. Only above a certain critical radius r. of particles the gain in AG,,, dominates and
thermodynamically stable nanoparticles are formed. This influence of size on the stability
of particles leads to a growth process called Ostwald-ripening, where after an initial nucle-

ation step small particles below the critical radius r. can resolve in order to release atoms
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Figure 2.17: Qualitative size dependence of AGy, AG 4 and AGy,; from the particle radius r.
Only above a critical radius r. a stable nucleus is formed, which can grow to a
macroscopic crystal.

which then assemble to larger clusters. Assuming this mechanism of particle growth, the
number of particles growing above the critical radius is smaller than the number of initial
nuclei. Additionally, the size distribution is not monodisperse, as Ostwald-ripening leads to
a broadening of size distribution.

Under conditions of thermodynamic equilibrium, the shape of a crystal is determined by a
minimum in the total surface energy Eg

Eq = Z%‘Ai = min, (2.68)

where the index ¢ addresses different crystal surfaces A; with the specific surface energies ~;
[45]. While for liquids this condition of minimizing the total surface energy Eg leads to the
formation of spherical droplets, a nanometric crystal cannot be fully spherical. The stability
of nanoparticles then depends on the number of particles at the surface with missing neigh-
bors. This number is minimized for particles building a periodically layered polyhedron.
Such particles are in particular stable, the number of atoms required for such particles are
referred to as magic numbers. An overview over the series of magic numbers associated with

different polyhedra is given in table 2.1.

Table 2.1: Magic numbers of different polyhedra.

Polyhedron magic numbers

Icosa-/cubo-octahedron 13 55 147 309 561 923 561 923
Truncated decahedron 75 100 146 192 238 247 268 318
Truncated octahedron 38 116 201 225 314 405 807 1289

In order to stabilize nanoparticles with small diameters and prevent agglomeration or
Ostwald-ripening, an organic ligand shell can be used to deactivate the surface. The choice
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of ligands has a significant influence on the chemical compatibility with solvents or liquid
crystalline hosts. While hydrophobic ligands increase the solubility in organic solvents, ionic
ligands can be used to obtain charged particles dissoluble in water [46]. The use of later-
ally [47] or terminally [48] bound mesogenic units in the ligand shell can lead to a liquid
crystalline behavior of nanoparticles themselves, and also improve the intermolecular inter-
actions between liquid crystalline host molecules and the ligand shell [49].

The nanoparticles used in this work feature core diameters between 1.6 nm and 5.4 nm and
are all coated with an hydrophobic organic ligand shell. The dimensions of the functionalized
particles can be therefore estimated to be slightly larger than the core diameters. For
comparison, the molecular size of the host 5CB is given by &~ 2.5 nm in length and ~ 0.5 nm
in width.

2.7 Microscopy on liquid crystals

Optical microscopy is a very versatile tool for investigations on liquid crystals. In the frame
of this work, polarizing optical microscopy as well as confocal microscopy techniques are
used to investigate the influence of nanoparticles on nematic liquid crystals. Therefore the
following section aims to give a brief overview over these techniques and their benefits in
investigating nematic liquid crystals.

2.7.1 Polarizing optical microscopy

Polarizing optical microscopy is a standard tool in the identification of liquid crystalline
phases, phase transition temperatures or alignment and defect studies in liquid crystalline
materials. It consists of a conventional light microscope with additional polarizers, which
allow to study the birefringence of samples placed between them. By rotating or tilting the
liquid crystalline sample between crossed polarizers, the optical axes of the material can be
identified.

One fundamental drawback of polarizing optical microscopy in the investigation of director
fields is the lack of resolution along the axis of observation. The intensity at any lateral
point in the observation plane represents only the integrated birefringence over the complete
sample thickness. Information about the birefringence at different axial positions is not

accessible with conventional microscopy.

2.7.2 Confocal microscopy techniques

Since the 1950s, other microscope techniques allow to overcome the restriction in axial res-
olution in conventional microscopes. For example, in 1955 Marvin Minsky invented the
confocal microscope technique that allows to resolve images not only laterally, but also
axially [50] (patented 1957, [51]). Since then, the basic principle of confocal microscopy
remained unchanged: Light of a point-like light source or a laser is focused onto the sample
using a high aperture objective. The reflected or re-emitted light is then collected by the
same objective and focused on a pinhole, which is located in front of the light detector.

With this setup, only light from the focal plane can pass the pinhole and be registered in
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Figure 2.18: Schematic working principle of a confocal microscope: Only light from the focal
plane can pass the pinhole in front of the detector, light from other planes is
blocked and can not reach the detector.

the detector, light coming from other planes will be filtered by the pinhole. The principle
setup of this microscope technique is shown in figure 2.18. This technique is named confocal
microscopy, since the focal points of excitation light and reflected light coincide. Being a
scanning probe microscope technique, the confocal microscopy does not give a direct image
of the sample, but requires a point-by-point measurement. Unlike other scanning probe
microscope techniques such as atomic force microscopy, the scanning probe in confocal mi-
croscopy is a small volume of highly focused light, the so-called voxel. For at least partially
transparent samples, this offers the opportunity of arbitrary scans through the material
without being restricted by the samples surface.

Fluorescence confocal microscopy

When samples show fluorescence by themselves or if they can be doped with small amounts
of fluorescent dyes, fluorescence confocal microscopy is a powerful tool for three- dimensional
imaging. Especially biologists use this technique for investigations on bacteria, living cells
or in-situ measurements in living organisms [52]. In the research field of liquid crystals,
fluorescence confocal microscopy can be used to image the spatial distribution of fluorescent
species dispersed in a liquid crystal, for example of luminescent quantum dots in a nematic
nanoparticle dispersion.

Fluorescence confocal microscopy requires an additional filter in front of the detector to
extract the excitation wavelength, so that only re-emitted fluorescence light is detected.
Considering that fluorescent light usually consists of a broad energy distribution, for practi-
cal applications only the fluorescence wavelength with highest intensity is used to estimate

the maximum resolution in a fluorescence confocal microscope measurement. The theoretical
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resolution is then given by

1.26 -1 Agm
AZconf = 6NT;12 z
(2.69)
ap 08220
conf — NA

with Agm = vAez - Aem [53].

The resolutions given by equations 2.69 assume an arbitrary small pinhole diameter, which
allows highly selective detection of light of the focal plane only. In practice, only finite
pinhole diameters can be used, and the choice of diameter influences on the resolution of
the confocal measurement. In order to quantify this effect, the normalized pinhole diameter
v, can be used, which is given by relation 2.70

o= 20y, (2.70)

Aeg * M

with d being the physical diameter of the pinhole, m the magnification of the Objective and
N A the numerical aperture of the objective. High resolution measurements are possible for
normalized diameters v, < 2.5, above v, > 4 only the axial resolution of a conventional
bright field microscope is obtained [54].

Fluorescence confocal polarizing microscopy

By adding polarizers to a fluorescence confocal microscope, the benefits of optical polarizing
microscopy and fluorescence confocal microscopy are combined. This technique is a powerful
method to visualize the director field distribution in three-dimensions, as in contrast to
normal polarizing microscopy the confocal setup allows to detect birefringence not only
laterally, but also along the axis of observation. As liquid crystals usually show no suitable
fluorescence, a small amount of an anisometric dichroic dye is added to the nematic phase.
According to the guest-host mechanism, the dye molecules orient along the local director of
the nematic phase [24]. If the orientation of the transition dipole moment M of the dye to
the long axis of the dye molecule is known, the detection of fluorescence intensity between
crossed polarizers allows the three-dimensional imaging of the director field distribution for
an homogeneous distribution of dye.

Assuming the transition dipole moments for absorption ]\Zfabs and emission ]\Zfem are parallel
to the long axis of dye molecules and the excitation light Ey is linearly polarized, the
absorbed light intensity is given by

—

Tops <Mabsﬁo>2 = ( Maps Eo‘ cos (C))Q- (2.711)

Assuming further that the rotational relaxation time 7, of the dye is slow compared to
the lifetime Tegeire Of the excited state, the orientation ¢’ of dye during re-emittance of
light can be considered identical to the orientation ¢ during absorption. For the dichroic
dye BTBP (n,n’-bis(2,5-di-tert-butylphenyl)-3,4,9,10-perylendicaboximid) used in this work,
Lavrentovich showed that this is a reasonable assumption [55], so that the rotation of dye
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Figure 2.19: Schematic drawings of detectable fluorescence intensity I4.; for different orienta-
tions of fluorescent dye in a nematic host. If the transition dipole moment of the
dye M and the polarization of the incoming excitation beam E are perpendicular
to each other, no fluorescence intensity is detected. For a parallel orientation of M
and E the highest intensity is detected, in the general case the intensity depends
on Ie o< cos? (€).

can be neglected. The detectable light intensity is then given by

Lier = Laps (]\_jemp)2 = Labs ( Mabs E C052 (C,)) . (272)
With ¢ = ¢’ follows
- . o =) 2
Lict = (| Mats | [ Mo [ Eo| [E|)” - cos (¢). (2.73)

In consequence, the detectable light intensity scales with the angle ¢ between the excitation

light and the transition dipole moment M over the relation 2.74
Tjer o cos? Q). (2.74)

The high sensitivity of Iz to the angle « allows the detection of even very small director
field fluctuations. Four fundamental orientations of dye and excitation field are shown in
figure 2.19. In cases where M is perpendicular to the plane of polarization of the exciting
light, no fluorescence intensity can be detected. For parallel alignment of M and E, the
maximum fluorescence intensity can be detected. In the general case of arbitrary orientation
of M and E , the intensity scales by cos® (¢) as given by equation 2.74.

The spatial resolution of fluorescence confocal polarizing microscopy is given by equation
2.69. However, as liquid crystals can form optically anisotropic phases birefringence has to
be considered, which reduces the spatial resolution. This effect increases with increasing
scanning depth d, and can roughly be estimated by equation 2.75

_An

Az =—-d. 2.75
z=— (2.75)

Additionally, nematic liquid crystals strongly scatter light, which reduces the detectable
fluorescence intensity. This effect also scales with the scanning depth d and can only partially
be compensated by an increase of excitation light intensity. A high spatial resolution with
good contrast is obtained for materials with low birefringence and for measurements using
small scanning depths only.
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3 Experimentals

3.1 Materials

In this work, nanoparticles made of gold or CdSe with different core sizes, dispersity and
functionalization are dispersed in two different nematic hosts. The synthesis of these par-
ticles is not part of this work. They are either purchased from Sigma Aldrich or kindly
provided by Prof. Hegmann’s group! and Prof. Goodby’s group?. Details on synthesis and
characterization are reported in the respective citations given below. The following section

provides a short overview of the materials used.

3.1.1 Nanoparticles
Gold nanoparticles

Nanoparticles with gold cores are found to be promising candidates for metamaterials if ar-
ranged regularly in a liquid crystalline host [14]. Spherical gold particles with core diameters
< 10nm are easily accessible via the Brust-Schiffrin method [56], and a variety of functional-
ization methods have been reported recently [49], [57], [58]. In this work, alkylthiol capped
gold particles with different core sizes are investigated (particles AuSH6, AuSH12, see table
3.1), based on earlier work by Prof. Hegmann. As a comparison, mesogenic coated particles
with very similar core diameters (AuCB) are investigated to compare the effect of meso-
genic or non-mesogenic coating of particles on the properties of nanoparticle / liquid crystal
dispersions. Finally, hydrophobic silanized gold particles (AuSi) are studied, which exhibit
a more stable ligand binding compared to the aliphatic or mesogenic coated particles. This
allows to draw conclusions about the role of ligand stability on dispersion properties. The

nanoparticles with gold cores used in this work are listed in table 3.1.

Table 3.1: Investigated gold nanoparticles

Particles  Functionalization Diameter [nm] Source
AuSH6 hexanethiol 1.6 Hegmann et al. [59]
AuSH12, dodecanethiol 1.93 +0.47 Hegmann et al. [60]
AuSH12,, dodecanethiol 3.82 Sigma Aldrich
AuSH12(, dodecanethiol 5.4 Hegmann et al. [59]
AuCB 50CB-undecylthiol 2.36 Goodby et al. [14]
AuSi octadecyl-silane 4.24+0.58 Hegmann et al. [61]

'Prof. Dr. Torsten Hegmann, Department of Chemistry, University of Manitoba, Winnipeg, Canada and
Liquid Crystal Institute, Kent State University, Kent, USA
2Prof. Dr. John W. Goodby, Department of Chemistry, University of York, York, England
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The hexanethiol capped particles AuSH6, the small diameters dodecanethiol functional-
ized particles AuSH12(,) and the large diameter dodecanethiol capped particles AuSH12;
were synthesized in Prof. Hegmann’s group by Dr. Hao Qi, following a Brust-Schiffrin
approach [56]. Characterization data can be found in reference [62]. The dodecanethiol
capped particles AuSH12(,,) with medium core diameter were purchased from Sigma Aldrich
as a 2 % (w/v) solution in toluene. Mesogenic functionalized particles capped with 11-
(4‘cyanobiphenyl-4-yloxy)undecylthiol (AuCB) were synthesized by Dr. Michael Draper
following the Hutchinson ligand exchange method [63] and were kindly provided by Prof.
Goodby’s group. The characterization of these particles can be found in references [49]
and [14]. Gold particles conjugated by octadecyl-silane (AuSi) were synthesized by Javad
Mirzaei in Prof. Hegmanns group. A detailed characterization of the latter is given in
reference [61].

CdSe nanoparticles

Semiconductor nanoparticles are promising candidates for use in medical or photonic appli-
cations because of their interesting electronic and photonic properties. Dispersions of semi-
conductor nanoparticles in liquid crystalline materials have been studied over the last years.
A recent review is given in reference [64]. For the experimental investigation of nanoparticle
/ liquid crystal dispersions, one benefit of the use of fluorescent CdSe particles is the pos-
sibility to perform fluorescence confocal microscopy studies to investigate the distribution
of particles within the dispersion. Particles of the Lumidot™- series from Sigma-Aldrich
with a maximum emission wavelength of 590 nm (CdSe590) have been shown to exhibit
distinct effects on alignment and electro-optic properties [13]. In this work, these particles
are dispersed in two different nematic hosts to investigate host effects. In addition, slightly
larger CdSe particles with a maximum emission wavelength of 610 nm (CdSe610) are dis-
persed in the same two hosts as well, to study effects of different core sizes in different hosts.
The influence of polydispersity is investigated by the use of magic sized CdSe nanoparticles
with very narrow size distributions (msCdSe). A slight modification of core composition
reveals additional information about the influence of core material (msCdSe:Zn). The in-
vestigated nanoparticles with semiconducting CdSe or CdSe:Zn cores are shown in table 3.2.

Table 3.2: Investigated CdSe nanoparticles

Particles  Functionalization Diameter [nm)| Source
CdSeb590 hexadecylamine 4.0-4.3 Sigma Aldrich
CdSe610 hexadecylamine 4.7—-5.2 Sigma Aldrich
msCdSe myristic acid 2.0+0.1 Hegmann et al. [65]
) myristic acid /
msCdSe:Zn trioctylphosphine 20+0.1 Hegmann et al.[65]

The hexadecylamine capped quantum dots CdSe590 and CdSe610 were purchased from
Sigma-Aldrich as a 5 % (w) solution in toluene. They belong to the Lumidot™- series
and exhibit a maximum in fluorescence emission at 590 nm or 610 nm, respectively. The
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monodisperse magic size quantum dots msCdSe and msCdSe:Zn were synthesized by Javad
Mirzaei in Prof. Hegmann’s group, the characterization of these particles can be found in
reference [65].

3.1.2 Liquid crystalline hosts

The liquid crystalline materials 4-cyano-4’-pentylbiphenyl (5CB, Synthon Chemicals) and
5-n-heptyl-2-(octyloxy-phenyl)pyrimidine (FELIX-2900-03, Synthon Chemicals) are used
as nematic hosts for dispersing the nanoparticles. The liquid crystal 5CB is one of the
workhorses in liquid crystal research and therefore numerous physical properties for the
pure compound as well as studies on several nanoparticle dispersions with this host are
available in literature. Thus, this host material is well suited to compare physical properties
of the pure liquid crystal with nanoparticle doped samples and to classify the results in
comparative studies on other nanoparticle / 5CB dispersions.

The host material FELIX-2900-03 provides superior solubility of different hydrophobic
nanoparticles compared to 5CB ([12], [13], [61], [65]). Although literature does not provide
a complete characterization of physical properties, this material is a promising candidate for
stable dispersions. An overview of important physical properties of these two host materials
is given in table 3.3.

Table 3.3: Nematic LC hosts

LC host Phase sequence An Ae

5CB Cr 22,5 N 35 Iso 0.19 +11.76
FELIX-2900-03 Cr 52 (SmA 45) N 72Tso 0.14 +0.55

3.2 Dispersion preparation

For investigating the effects of nanoparticle doping on nematic liquid crystals, the nanopar-
ticles need to be homogeneously dispersed in the nematic host material. The dispersions
of AuSi-particles in FELIX-2900-03 as well as msCdSe and msCdSe:Zn particles in FELIX-
2900-03 were prepared by Javad Mirzaei in Prof. Hegmann’s group and provided already
filled in liquid crystal test cells (LC Vision, USA). The dispersion of AuSH12,) in FELIX-
2900-03 was prepared by Brandy Kinkead in Prof. Hegmann’s group and provided filled
in test cells from Instec, Inc (USA). Dispersions of AuSH6 and AuSH12;y in FELIX-2900-
03 were prepared in our laboratory in collaboration with and under guidance of Brandy
Kinkead. Dispersions of the remaining gold (AuSH12(,,), AuCB) and CdSe (CdSe590,
CdSe610) nanoparticles are prepared in own work by dispersing the particles in the nematic
hosts 5CB and FELIX-2900-03. An overview over the dispersions investigated in this work
is given in table 3.4.

To ensure that only property changes due to nanoparticle doping are investigated in micro-
scopic and electro-optical studies, a complete removal of organic solvents has to be ensured.
Thus, the liquid crystal 5CB is solved in a small amount of dichloromethane and the liquid
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Table 3.4: Overview of the nanoparticle / liquid crystal dispersions and the respective concen-
trations investigated in this work.

Particles Host

FELIX-2900-03  5CB
[So(w/w)]  [%(w/w)]

AuSHG6 3.0
AuSHlZ(S) 5.0
AuSH12(m) 0-25
AuSH12(l) 3.0
AuCB 0-5.0
AuSi 0-75
CdSe590 0-25 0-25
CdSe610 0-5.0 0-25
msCdSe 0-5.0
msCdSe:Zn 0-5.0

crystal FELIX-2900-03 is dissolved in toluene, followed by subsequently removal of solvent
under varying conditions. A method that restores the initial phase transition temperatures
compared to the undissolved liquid crystals is then considered to completely remove all sol-
vent. However, due to the reactive properties of small nanoparticles, special requirements
have to be fulfilled.

As it is known that the treatment of functionalized nanoparticles under high temperatures
in the presence of other ligand molecules may lead to ligand exchange reactions [58], high
temperatures were avoided. Although ligand exchange reactions are very useful and utilized
in the synthesis of different kinds of functionalized particles, they are not desired in the
preparation of dispersions. Furthermore, high temperatures enhance the rate of Oswald
ripening, thereby changing the core parameters of the nanoparticles. It is shown in literature
that boiling dodecanethiol capped gold particles with small cores in toluene for several hours
leads to gold particles with larger core diameters (see references [61], [66]).

In consequence, high temperatures are avoided where possible in the preparation of dis-
persions to prevent ligand exchange reactions and Oswald ripening. It is found that stirring
the solution of liquid crystal and solvent at a temperature just below the boiling point
of the solvent for 24-36 hours in a steady flow of argon (Method A) does not completely
remove the solvent (see figure 3.1). Only an additional treatment under reduced pressure
(p < 5.0-1073 Pa, Method B) leads to the complete removal of solvent. This is confirmed
by identical phase transition temperatures and electro-optical switching parameters of the
solvent treated sample compared to the pure 5CB. It should be noted that the use of vacuum
in the preparation of solvents might change the composition of nematic host, when the host
material is not a pure compound but a mixture of different liquid crystals. In this work
only pure compounds are used for dissolving nanoparticles. Thus, the use of vacuum can
not affect the solvent-free liquid crystal composition.

In a first step of preparation, the particles are dissolved to a homogeneous, agglomerate free
solution. As the particles AuSH12,,), CdSe590 and CdSe610 purchased from Sigma-Aldrich
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Figure 3.1: Study of the influence of solvent on the clearing temperature Tn;. The clearing

temperature is investigated optically for pure 5CB (left column), solvent treated
5CB (center columns) and nanoparticle doped 5CB (right columns). It is found that
temperature treatment only (Method A) does not completely remove the solvent,
as the phase transition temperature remains lowered. Only additional removal of
solvent under low pressure (p < 5.0-1072 Pa, Method B) restores the initial phase
transition temperatures. It is then assumed that the decrease and broadening of
phase transition in the nanoparticle doped sample after treatment with Method B
is not an effect of solvent, but caused by the presence of nanoparticles.
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are already solved in toluene, only the particles AuCB have to be solved in our laboratory.
The solvent dichloromethane is reported to exhibit a good solubility for these particles [14].
Thus, a small amount of particles (typically 3-5 mg) was dissolved in ~ 500-1000 nL solvent
under mechanical stirring and mild temperatures (max 40 °C). In addition, ultra-sonication
is used to promote the solution process by applying short pulses (Bandelin Sonorex RK 255,
160 W, 35 kHz, 15 s every 60 min). As ultra-sonication leads to a mechanical rubbing of
particles and therefore might lead to a loss of ligands, it is considered not suitable for long
term use in the preparation of dispersions.

Subsequently, the nanoparticle / liquid crystal dispersions are prepared by mixing the
nanoparticle solution and a solution of dissolved liquid crystal in the desired ratio and re-
moving the solvent under mechanical stirring at moderate temperatures and low pressure
treatment (Method B). The resulting dispersions are found to differ in stability, even under
identical treatment. The same particle / host dispersion can sometimes show severe agglom-
eration, while another preparation attempt gives a optically homogeneous dispersion with
no signs of agglomeration. Only dispersions with no signs of agglomeration were filled into
test cells and used for further experiments. It should be noted that once a homogeneous
dispersion has been filled in a test cell without visible agglomeration, agglomeration is not
found to occur within the test cell even after long time and the sample can be considered
stable.

Test cells

For investigating the alignment and electro-optical properties of dispersions, different home
made or commercially available test cells are filled with the liquid crystalline dispersion by
capillary forces. For this purpose, the dispersions are heated to the isotropic phase and a
small droplet of the mixture is placed by a glass capillary next to the cover glass of the test
cell, in a way that the liquid floats into the cell gap. It is found that filling the test cells
in the isotropic phase gives less agglomeration than filling in the nematic phase, due to a
higher solubility of particles in the isotropic phase.

For alignment studies on uncoated glass substrates, cleaned standard microscope glass
slides (Carl Roth, 76x76 mm, cut edges) covered by microscopy cover slips (Menzel Cover
Slips, 18x18 mm) are used. The substrates are successively cleaned with demineralized water
and aceton, followed by treatment in Os-plasma (Harrick Plasma Cleaner/Sterilizer model
PDC-32G, 150-300 s excitation time) to completely remove organic residues. After the
cleaning procedure, the glass slide and cover slip are mounted to a cell using 10 pm mylar
spacer foil, clamped with inverse metal tweezers and fixed with epoxy glue (Pattex 2K). The
homemade test cells usually yield cell gaps typically between 11 and 20 pm. The larger cell
gap compared to the spacer thickness is explained by glue floating between substrate and
cover slip before hardening, and therefore slightly lifting the cover slip.

Cell gaps are measured by placing the sample perpendicular in the beam path of a
Lambda 19 UV/VIS spectrometer and measuring the transmission intensity while scanning
the wavelength range between 400-800 nm. This gives an oscillating transmission spectrum
due to wavelength dependent constructive or destructive interference of transmitted and on
the glass / air interface reflected waves (see, for example, physics of Fabry-Pérot-Etalon,
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Figure 3.2: Left: Sketch of a self-made test cell with untreated glass for alignment studies.
Right: Sketch of a commercially available electro-optic test cell (EHC).

[67]). For perpendicular light incidence as given here, the cell gap can be calculated from

the wavelength difference between two adjacent transmittance minima or maxima, using the

1 1 1
= [———). 1
dgp 9 (/\2 Al) (3 )

In practice, the gap thickness dyq, is calculated for at least ten adjacent maxima in the

equation

spectrum and the arithmetic mean is considered as cell thickness, typically giving standard
deviations smaller than 5 %. This value is mainly determined by the wavelength resolution
of the spectrometer (AX = 0.4nm).

The cell gap is measured twice for each test cell at different positions of the sample, and
only those test cells are used for experiments where the mean gap thickness of the two
measurements differ less than the standard deviation of both measurements. This ensures
a constant cell thickness over the complete cell area.

Electro-optic experiments on samples prepared in our laboratory are performed using
commercially available liquid crystal test cells from E.H.C Co.,Ltd (Tokyo, Japan). The
test cells are coated with anti-parallel rubbed polyimide alignment layers for strong planar
anchoring conditions (KSRP-X X /A111PINSS05, XX = 04, 10 or 25, indicating cell gaps
of 4, 10, or 25 pm, respectively). The pretilt angle of these cells is smaller than 1° [68]. The
active I'TO-electrode area is 10x10 mm with a resistivity of 100 (2.

Before filling the test cells, the capacitance of the empty cell is measured on a LCR
bridge (HP4274A or HP4284A, see section 3.5.1) at room temperature and a test frequency
of 1kHz with an amplitude of 0.3 V5. The cell gap is determined by the interference
method described above using a Lambda 19 UV /VIS spectrometer. As shown by Wu et al.
in reference [69], cell gap and capacitance of the empty cell are insensitive to temperature
within the temperature range of experiments (25-75°C) and therefore can be measured at
room temperature.

Dispersions prepared in Prof. Hegmann’s group are filled in commercially available
electro-optic test cells either from Instec Inc, USA, or LC Vision, USA. Both test cell types
exhibit cell gaps of 4pm and parallel or anti-parallel rubbed polyimide layers for strong
anchoring conditions. The pretilt angle is stated to be between 1-3° [13]. As these cells were
sent to our laboratory already filled with liquid crystal / nanoparticle dispersions, data for
capacitance and cell thickness of the empty cells were measured in an LCAS 1 automated
liquid crystal analyzer (LC vision, USA) in Prof. Hegmann’s laboratory and then provided

for own measurements.
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Figure 3.3: Schematic structure and beam path of the ALPHA300 in the configuration for
confocal measurements (adapted from [54]). 1) xy-positioning unit 2) scanning
table 3) objective revolver 4) LED-light beam splitter 5) laser-light beam splitter
6) edge filter 7) camera 8) adjusting unit for pinhole fiber 9) switch camera /
fiber 10) polarization state remaining mono-mode optical fiber 11) argon ion laser
12) white LED 13) axial height control unit of microscope 14) multi-mode optical
fiber 15) avalanche photo diode

3.3 Microscopy

3.3.1 Polarizing optical microscopy

Polarizing optical microscopy was carried out either on a Leitz Ortholux II Pol-BK micro-
scope with sodium-gas lamp or on a Leica DM4500P microscope with halogen lamp and
daylight filter. Macroscopic studies were performed on a Leica S6D macroscope with halo-
gen lamp illumination. Images were captured either with a Nikon D90 consumer camera
with self made microscope mount or a Leica DFC295 microscopy camera in combination
with Leica Application Suite software.

3.3.2 Fluorescence confocal microscopy techniques

For fluorescence confocal measurements, the scanning microscope ALPHA300 (WITec
GmbH, Germany) is used. This modular microscope combines several scanning microscope
techniques like atomic force microscopy, scanning optical near field microscopy or confocal
microscopy. The configuration for confocal fluorescence measurements is shown in figure 3.3.
The ALPHA300 microscope does not exhibit a separate pinhole in front of the detector for
confocal imaging, as the multi-mode optical fiber with a diameter of 25 num serves as pinhole.
This simplifies adjustment and ensures confocal measurements, as only light from the focal
plane is focused on the fiber and therefore registered in the detector. However, the fixed

diameter of the fiber allows no adjustment of pinhole diameter and therefore no resolution

46



80%

70% ~N

60%

50% (/ \\

40% // \\

30% / \

20% / \

10% f \
300 400 500 600 700 800 900 1000 1100

wavelength [nm]

photon detection efficiency

Figure 3.4: Spectral sensitivity of the avalanche photo diode [54].

maximization in combination with different microscope objectives can be carried out. An
argon-ion laser (A¢; = 488 nm) is used for excitation of fluorescent species and an edge filter
transmitting light only for A > 520 nm is used to separate the excitation wavelength from
re-emitted fluorescent light before light detection.

The detector for total fluorescence intensity measurements is an avalanche photo diode
(Hamamatsu H6240-01). Its spectral sensitivity is shown in figure 3.4. For wavelength
resolved measurements, a SpectraPro-2300i spectrograph (Princeton Instruments / Acton,
f = 300mm, f/3.9 imaging, grating: 600 lines/mm~!) with a Peltier-cooled Andor CCD
detector (model DV-401-BV) is available. In order to enable the ALPHA300 for fluorescence
confocal polarizing microscopic measurements, the confocal setup has to be equipped with
a polarization control unit. Therefore, the beam splitter cube is replaced by an interference
beam splitter for A = 488 nm that preserves the state of polarization. In addition, a quarter
wave plate for the excitation wavelength of 488 nm is placed between beam splitter and
objective. By adjusting the angle between the optical axis of the wave plate and the plane
of polarization of the exciting laser to an angle of 45°, the linearly polarized laser light is
transformed into a circular polarization state. By adding a rotating linear polarizer between
beam splitter and pinhole fiber, any plane of polarization of re-emitted light can be selected
to be detected in the photo-diode or spectrograph. The result of experimental verification
of circular polarization is shown in figure 3.5.

In a first step, the p-angle dependent light transmission of the excitation laser through
a linear polarizer is measured without retardation plate. The resulting data is then fitted
to a simple model of light transmission of linear polarized light through a linear polarizer.
This measurement indicates a deviation of the plane of laser light polarization of 2.8° from
the x-axis of the microscope. In a second step, the same measurement is repeated with the
retardation plate in the beam path under an angle of 47.8° to the x-axis of the microscope.
For circular polarized light, theory predicts I(¢) to be 50 % for any given angle ¢. Al-
though the experimental data show small deviations from this ideal behavior, the quality of

polarization state is seen to be sufficient for confocal polarizing microscope imaging, as the
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Figure 3.5: Experimental verification of circularly polarized excitation beam. By fitting the
experimental transmittance data of laser light passing through a linear polarizer
(black dots) to the theoretical model (black line), a deviation of the plane of laser
light polarization of 2.8° from the z-axis of the microscope is found. By placing a
A/4 retardation plate in the beam path, the linearly polarized light is transformed
to circularly polarized light (blue dots), whose transmission intensity is predicted
to be independent of polarizer orientation (blue line).

light intensity is higher than 40 % for any plane of polarization. However, these deviations
do not allow a direct comparison of measured fluorescence intensities for different states of
polarization.

The resolution of confocal fluorescence measurements depends also on the proper choice
of microscope objective and pinhole diameter. As mentioned above, the pinhole diameter
of the experimental setup is given by the diameter of the optical fiber and therefore fixed
at 25um. In table 3.5, the available objectives and their reachable theoretical lateral and

axial resolutions (A r, A z) are listed.

Table 3.5: Summary of calculated objective parameters

Objective Cover slip correction v, Ar [nm] Az [nm)]
Nikon 40x/0.60 yes (variable) 2.42 273 1882
Nikon 60x/0.80 yes (0.17 mm) 2.15 205 1058
Nikon 100x/0.90 no 1.45 182 836

Nikon 100x/1.25 oil yes (0.17 mm) 2.01 131 433

As in confocal measurements the actual depth resolution of the microscope is of particular
interest, Az is determined experimentally for all four objectives by moving a silver mirror
along the axial z-direction of the microscope and measuring the reflected light intensity with
respect to the mirror position. The reflecting surface of the mirror represents an optical 4-
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Figure 3.6: Experimental determination of depth resolution for different objectives in confocal
measurements by detecting light reflected from a mirror from different axial posi-
tions. A narrow peak width indicates a high depth resolution. This is found for
the Nikon 100/0.9 objective.

function in z-direction, that is blurred by the point spread function of the microscope and
therefore depicted as broadened peak. The shape and peak width depend on the shape of
point spread function and allow to draw conclusions on the axial resolution. A narrow peak
width indicates a high axial resolution. The results of this study are shown in figure 3.6. In
general, a high depth resolution is achieved using objectives with high numerical aperture.
However, the choice of objective is also restricted by other factors. As the investigation of
liquid crystalline materials often requires the use of a microscope cover slip, high resolu-
tion images can only be obtained with objectives that feature a cover slip correction. In
addition, the use of oil immersion objectives is not suitable at high temperatures, as the
viscosity and surface tension of the immersion oil changes with temperature. Consequently,
the oil does not sufficiently wet the objective, but spreads on the sample surface at high
temperatures. In conclusion, the Nikon 60/0.8 objective is found to be most suitable for

confocal measurements on liquid crystalline samples.

3.4 Phase transition temperatures

For the determination of phase transition temperatures, polarizing optical microscopy is
used. The dispersions are filled in polyimide coated electro-optic test cells by capillary
forces and then rapidly heated into the isotropic phase, followed by a slow cooling to room
temperature. This ensures an equilibrium state of dispersion defined by the boundary condi-
tions of the test cell, and overcomes a possible ordered state due to filling effects. Afterwards,
the samples are slowly heated in a heating stage with a controlled heating rate of 1 °C/min.
Phase transition temperatures are obtained by observing changes in the microscopic tex-

tures between crossed polarizers.
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Figure 3.7: Comparison of phase transition temperatures of the pure compound FELIX-2900-
03, measured by differential scanning calorimetry and optical polarizing microscopy.
In general, both methods give similar transition temperatures. The optical method
allows the detection of biphasic regions and thus is preferred in this work.

The use of polarizing optical microscopy over differential scanning calorimetry for mea-
suring phase transition temperatures is justified by possible influences of local alignment
changes or particle agglomerations on the phase transition temperature. These cannot be
detected by DSC measurement, but are accessible by the spatial resolution of an optical
method. In addition, DSC does not register the appearance of biphasic regions, while the
optical detection thereof is very simple. To prove the equivalence of DSC and optical tech-
niques, the pure compound FELIX-2900-03 characterized by DSC as well as by microscopic
investigations. DSC measurements are performed on a Perkin Elmer Pyris 1 DSC at a heat-
ing rate of 1°C/min. The resulting phase transition temperatures from DSC measurements
and optical detection are found to be comparable, the results are shown in figure 3.7.

3.5 Electro-optic characterization

By means of electro-optic characterization, the physical quantities threshold voltage Vpp,
permittivity perpendicular and parallel to the director (e, , €), dielectric anisotropy (Ae)
and rise and decay times (7rise; Tdecay) Of liquid crystals and their dispersions with nanopar-
ticles are measured.

For this purpose, two different experimental approaches are described in the literature, the

Single-Cell-method [69] and the Two-Cell-Method [70]. In the latter method, two different
test cells are prepared with rubbed planar and homeotropic alignment and characterized by
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dielectric measurements. The benefits of this approach are measurements of true planar and
homeotropic alignment. Consequently, data for dielectric anisotropy can be very precise.
Furthermore, the preparation of samples with positive and negative dielectric is identical,
switching experiments can either be performed with the planar alignment cell (Ae > 0)
or the homeotropic sample (Ae < 0). A drawback of this technique is that the accuracy
depends on the quality of alignment layers of two samples. Thus, for a given material to be
analyzed, both a high quality planar alignment layer as well as a high quality homeotropic
alignment layer are needed.

The Single-Cell methods uses only one test cell with either rubbed planar (Ae > 0) or
homeotropic (Ae < 0) alignment layer. By applying strong external fields, the initial di-
rector alignment is reoriented from planar to homeotropic or vice versa, and thus dielectric
measurements parallel and perpendicular to the director are possible. This methods benefits
from the use of one cell only. Only one high quality alignment layer is needed and errors
due to the comparison of different test cells do not occur. The drawback of incomplete
reorientation of director under external fields can be overcome by extrapolation to infinite
field strength. Even at high field strengths, the director in the vicinity of the strong bound-
ary surface, represented by an interfacial layer {p (see equation 2.14), remains untilted,
and lower values for Ae are measured. In order to obtain true values for Ae, a linear ex-
trapolation of capacitance at infinite field is performed. It has been shown experimentally
[69],[71] and theoretically [72] that results using the Single-Cell-Method are comparable to
results obtained from the Two-Cell-Method. However, the use of test cells with large cell
gap (d > 20 pm) is recommended to keep the influence of the surface induced orientation

small and to obtain high quality data for linear extrapolation.

In this work, electro-optic test cells are characterized by the Single-Cell-Method as de-
scribed by Wu et al. [69], with additional simultaneous measurement of light transmittance
in a polarizing microscope. As is it known that dispersed nanoparticles can move to and
reside on the substrate / liquid crystal interface, changing the properties of the initial align-
ment layer [62], it is virtually impossible to prepare two different test cells with identical
surface coverage of particles, as it would be required for the Two-Cell-Method. Furthermore,
dielectric measurements for both methods require homogeneous, strong alignment over the
complete electrode area. As this condition can also not be guaranteed for all dispersions,
additional optical measurements of local birefringence are necessary.

All investigated nematic liquid crystalline materials exhibit positive dielectric anisotropy.
Thus, samples are prepared with anti-parallel rubbed polyimide alignment layers for strong
planar anchoring conditions. Applying an external electric field perpendicular to the sub-
strates then leads to an reorientation of the liquid crystal molecules to homeotropic align-
ment, causing a field dependent increase of capacitance and decrease of birefringence. As
only test cells with smaller cell gap (4 pum or 10 pm) than recommended are used, the mea-
sured values for €| and Ae are expected to be up to 2 % smaller than actual values [69].

The experimental setup used for electro-optical characterization consists of a test cell

holder with fixed connectors for electrical contacting, which is connected to a high precision
LCR bridge (HP4274A or HP4284A) and placed within a heating stage. For temperature
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Figure 3.8: Example of data recorded in a combined capacitance / transmittance measurement
for a 4 pm sample with pure FELIX-2900-03 at T' = 58 °C.

control, a Linkam LTS 350 heating stage with TMS 94 controller or a Mettler FP 5 heating
stage are used. To perform simultaneous transmission measurements, the sample is posi-
tioned under an azimuthal angle of 45° between crossed polarizers in the beam path of a
Leitz Ortholux II Pol-BK microscope, which is equipped with an Oriel photomultiplier tube
for light detection. A Rhode & Schwarz AFS arbitrary function generator with Krohn &
Hite amplifier model 7500 serves as additional bias supply for switching experiments. More
detailed information about capacitance and transmission measurements are given in the
following sections 3.5.1 and 3.5.2. A typical example of data obtained in a combined field

dependent capacitance-transmission measurement is shown in figure 3.8.

3.5.1 Capacitance measurements

Capacitance measurements were either performed on a HP4274A LCR bridge or on a
HP4284A LCR bridge, each at a test frequency of 1 kHz. The HP4274A LCR bridge is
capable of a maximum test signal level of 5 V,,s only, which is not sufficient to completely
reorient the liquid crystal within the test cell. Thus, for measurements of the quantity ¢
an external DC bias of up to 35 V was used for reorientation. For this purpose, a Rhode &
Schwarz AFS arbitrary function generator in combination with a Krohn & Hite model 7500
amplifier were connected to the external bias port of the LCR bridge. All measurements on
the HP4274A LCR bridge were performed using an AC test level amplitude of 0.3 V,.,,s and
a stepwise increasing DC bias from 0 to 35 V. The AC test level amplitude is small with
respect to the threshold voltage for the Fréedericksz transition and therefore neglectable.
For the analysis of data, the measured capacitance values are plotted versus the applied DC

bias.
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Figure 3.9: The use of a fixed connector to electrically contact the EHC test cells allows to
overcome parasitic capacitance effects. The connector contacts the ITO-electrodes
of the sample by rounded brass screws, that are connected to the LCR bridge using
always the same wires.

The HP4284A LCR bridge with built-in power amplification (option HP4284A-001) is
capable of a maximum test signal level of 20 V,,,,s. No external DC bias for reorientation of
the liquid crystal is needed in this case. Measurements are performed by stepwise increasing
the AC test level amplitude from 0.05 Vs t0 19.95 V.

When performing capacitance measurements to determine the capacitance of the liquid
crystal, a parasitic capacitance of the measuring circuit has to be taken into account. The
precision LCR bridges offer an internal compensation, which considers the parasitic capac-
itances on the bridge side of the connector port. Thus, when connecting a sample to this
interface, only the parasitic capacitance of the wires and contacts to the test cell have to
be estimated. Assuming that the area, resistance and capacitance of the electrode material
of the EHC test cells is identical on all samples, using a fixed connector (see figure 3.9) al-
lows the determination of the parasitic capacitance of the experimental setup. Considering
the parallel-plate-model for a capacitor, the capacitance of a test cell with infinite cell gap
should be zero (see equation 3.2) in absence of a parasitic capacitance.

A

CZET'GO‘E (3.2)

By measuring the cell gap thickness as well as the cell capacitance of several empty test
cells and performing a linear extrapolation of these data to infinite cell gap gives a residual
capacitance, which can be considered as the parasitic capacitance of the measuring circuit.

While the standard deviation in capacitance measurements is usually smaller than 0.1 %
and therefore neglectable, the standard deviation in cell gap measurements has to be con-
sidered for the linear extrapolation calculations. Therefore, a weighted linear regression
calculation with uncertainty in x-direction is performed to obtain the residual capacitances
for both LCR bridges. The results are shown in figure 3.10. The parasitic capacitances for
measurements with the LCR bridges HP4274A and HP4284A are determined to be 2.6 pF
and 8.2 pF, respectively.
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Figure 3.10: Determination of parasitic capacitances in the experimental setup for the
HP4274A (left) and HP4284A (right) LCR bridges. The parasitic capacitance of
dielectric measurements with the HP4274A LCR bridge was found to be 2.6 pF.
For measurements with the HP4284A LCR bridge the parasitic capacitance was
found to be 8.2 pF.

The improvement in accuracy of calculated permittivities when considering the parasitic
capacitance leads to changes by +0.02 for the HP4274A LCR bridge and 40.08 for the
HP4284A LCR bridge. Thus considering parasitic capacitances does slightly increase €
and ¢, but does not significantly change their values [73].

To obtain the permittivity perpendicular to the long axis of the molecules, the average

value of the capacitance plateau at small voltages is used in the equation

Cfilled - Cparasitic
€] =

. 3.3
Cempty - Cparasitic ( )
To define the initial capacitance plateau and obtain its average value, all data points from
Vims = 0V till Vs = 0.8 - Vi, are considered.

The permittivity ¢ parallel to the long axis is obtained by extrapolation of capacitance
for infinite field strength. This is done by plotting the capacitance versus normalized inverse
voltage (see figure 3.11), followed by linear regression and determination of axis intercept.
The permittivity can then be calculated using the equation

o Cfilled,V—wo — Uparasitic
s —C —. (3.4)
empty parasitic

In a plot shown in figure 3.11, a linear correlation is predicted for small % [72]. In practice,
the best line fit changes value depending on the amount of data points considered for fitting
calculation. A different choice of considered data results in different intersections of line fit
with the ordinate and therefore yields different extrapolated capacitances for infinite field
strength. To overcome this problem, a detailed correlation analysis is performed. There-
fore, the Pearson correlation coefficient 7 is calculated for each linear fit with an increasing
number of considered data points, starting with the value obtained for the highest applied
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Figure 3.11: Capacitance data shown in figure 3.8 replotted as a function of V‘T/". This plot
allows the extrapolation of capacitance at infinite field strength and hence the
calculation of the permittivity parallel to the the liquid crystal molecules, €.

voltage (i.e. the lowest values for %) (see figure 3.12). In the same manner also the result-
ing ordinate intersections with the linear fit and their standard deviations are determined
(figure 3.13). A combination of these data allows to chose a rational dataset for extrapola-
tion calculus: As the Pearson coefficient should be close to —1 for a good linear correlation
and the standard deviation of ordinate intersection decreases with increasing number of
considered data points, the best choice for linear fit in the given example is to consider all
data with % < 0.5. This choice is confirmed by the calculated ordinate intersections, as

% = 0.5 represents the upper limit of a capacitance plateau.

In general, capacitance data can also be used to determine the threshold voltage Vry of
the Fréedericksz transition. For this purpose, the threshold V7, is defined by a deviation of
5 % of the normalized capacitance

C d— Cmi
C _ “measure min ) 3.5
e Cmaa: - sz’n ( )

Yet, dielectric measurements require a homogeneous, planar initial alignment with strong
boundary conditions over the complete electrode area, which could not be fulfilled for all
samples investigated in this work. Therefore, an additional method to determine V7, is
realized by transmission measurements (see chapter 3.5.2). Where necessary, additional
indices D and T are used to distinguish between values obtained by Dielectric (Vi p) or
Transmittance (Vyp r) measurements.
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Figure 3.12: Calculated Pearson coefficients r for linear regression calculus with different num-
ber of data points. In general, a good linear correlation can be confirmed as
predicted in theory [72]. However, the best linear correlation in this example is

found for considering values from the highest applied voltage to 0.4 < % < 0.5.
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Figure 3.13: Calculated ordinate intersections (right) and corresponding standard deviations
for linear regression calculus with different number of data points. As the standard
deviation decreases with increasing number of data points, the best choice for
linear extrapolation is considering all data points that fulfill ‘YL:L < 0.5.
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Figure 3.14: Transmission spectrum of the interference filter used for monochromatic illumi-
nation. The maximum of the transmittance peak is at 542 nm, the FWHM is
10.8 nm.

3.5.2 Transmittance measurements

Light transmission measurements were performed on a Leitz Ortholux IT Pol-BK microscope
with the easy axis oriented at an azimuthal angle of 45° between crossed polarizers. For
illumination, a halogen lamp (XENOPHOT, Osram) with interference filter for transmis-
sion at 542 nm (FWHM 10.8 nm, see figure 3.14) was used. The use of white light and
interference filter is preferred over the use of a monochromatic illumination and legitimated
by the requirements for dynamic measurements (see section 3.5.3): The sodium gas-lamps
with monochromatic light at a wavelength of 589 nm that were available for this work, are
not sufficiently DC stabilized, so that measurements of the dynamics of Fréedericksz tran-
sition in the millisecond regime are not possible. Thus, to obtain comparability of data,
not only dynamic measurements but also the field-dependent transmittance measurements
were performed using the DC stabilized halogen lamp with interference filter. For light
detection, a photomultiplier (Oriel) was used. To ensure a birefringence detection from the
liquid crystals thermodynamic equilibrium state, a latency period of 250-500 ms is used for
each applied voltage before data acquisition. This latency is one magnitude higher than the
switching times of the nematic liquid crystals 5CB and Felix-2900-03, therefore a completion
of director reorientation can be expected after this period. No hysteresis between signals
on increasing and decreasing voltage is found, which proves that transmittance is measured
under equilibrium conditions.

The number of intensity oscillations in the recorded transmittance characteristics is di-
rectly related to the total phase retardation ¢ of the sample. With given material properties
(e.g. A ness) and illumination wavelength A, the phase retardation and thus the number
of oscillations increases with the cell thickness d. As for this work only test cells with 4 pm

or 10 pm were used, the number of intensity extrema typically varies between two and six,
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Figure 3.15: Measured transmission intensity for a 10 um cell. Each extreme value represents
an additional phase retardation of 7.

respectively. Each extreme value represents an additional phase retardation of 7, as can be
seen in figure 3.15. For the calculation of threshold voltage from transmittance data, Vzj, r,

it is necessary to convert the oscillating intensity data to the phase retardation §

d = 2- arcsin ( d ) , (3.6)

Imax

which is a monotonically decreasing function of the applied voltage. The threshold Vrj r is
then defined by a decrease of phase retardation by 5 %.

In contrast to the ideal predictions of theory, the relative light intensity found at the
extreme value deviates from the predicted values 0 and 1. The contrast ratio between I,,,q;
and Iy, is restricted to the quality of the initial director orientation [24] and therefore
connected to the quality of the polyimide alignment layers of the electro-optic test cells.
This deviation has to be considered when performing the previously mentioned conversion
of light intensity to phase retardation, as in the interval [0,1] the arcsin(z)-function can
be considered linear only for small arguments close to 0, but not for arguments close to 1.
Thus it is crucial to correctly scale the intensity data over the complete range between [0,1]
as predicted by theory. Otherwise, the calculated values for phase retardation would be
considered to be too small.

To obtain correct values for phase retardation, the extreme values of the intensity oscil-
lations are determined and a stepwise scaling of intensity is performed for every interval
between two extreme values. The result can be seen in figure 3.16. Scaling the intensity
data correctly also allows the determination of the effective birefringence of the test cell,

VoA 21
An—/oo g aresin I av. (3.7)

using the equation
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Figure 3.16: Left: Measured transmission intensity and correctly scaled transmission intensity.
Right: Total phase retardation calculated from experimental data and correctly
scaled data.

The initial birefringence of the 5CB test cell investigated in figure 3.16 (d = 10.55 pm,25 °C)
is then found to be An.sr = 0.17, which is in good agreement with literature (see reference
[19]).

3.5.3 Dynamic measurements

The dynamics of the Fréedericksz transition is investigated by transmission measurements
only, since the data acquisition rates of the HP4274A and HP4284A LCR bridges are too
slow for measurements in the millisecond regime. The applied switching voltages were
delivered by a Rhode & Schwarz AFS arbitrary function generator with Krohn & Hite
amplifier model 7500. Intensity data is recorded using a Picoscope 3206 A USB oscilloscope
with 100 Ms/s sampling rate. According to the theoretical derivation of rise and decay times
of nematic liquid crystals [22], the commonly used formulas 3.8 and 3.9 are only valid for
small distortions in the director field and negligible backflow effects (see chapter 2.5.2).

(V‘;h)z _ 1] _ (3.9)

Tdecay = m (39)

v d?
Trise = —5—— -
rise 7'['2-K

In practice, these restrictions are usually considered by measuring the switching times be-
tween a voltage V,, just below the threshold voltage V7j, 7, and a voltage V}, corresponding to
the first extreme value in the field dependent transmission oscillation([70]). The transmis-
sion intensity at the voltage V, corresponds to the initial director field distribution without
distortions due to external fields and depends on the total phase retardation in the sam-
ple. This is, for a certain wavelength, given by the cell thickness and the effective index of
refraction An.r¢. In case the combination of cell gap and birefringence leads to an initial
transmission close to transmission at the first extreme value, no sufficient contrast between
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Figure 3.17: Left: Example of determination of V, and V, in the transmission characteristic
of a 4pm EHC cell with pure FELIX-2900-03 at 58 °C. The choice close to the
extreme values of oscillation ensures good contrast, but requires proper scaling of
data. Right: Example of switching characteristics. By switching between V, and
Vb, a good contrast is observed that allows determination of rise and fall times.

the director field distribution at V, and Vj, can be observed. In reference [70] this problem
is overcome by a modification of cell thickness until sufficient contrast is achieved. How-
ever, due to the choice of EHC test cells with fixed cell gaps of 4 pm or 10 pm, this is not
applicable for the characterization of nanoparticle dispersions in this work.

Thus, switching experiments are performed between a voltage V, just above the voltage of
the first minimum in intensity and a voltage V; below the following maximum. As with in-
creasing temperature the birefringence and thus the number of oscillations decreases, V, and
V}, are chosen on an oscillation that remains over the complete temperature interval of inter-
est. The frequency of switching voltage is 10 kHz and therefore light modulations caused by
the AC field are at least one magnitude faster than the switching times. To obtain a smooth
signal, a low band filter was used, filtering all oscillations at frequencies of 10 kHz and higher.

The choice of V, and Vj, close to the extreme values gives a good contrast for the determi-
nation of switching times. However, the measured intensities have to be properly scaled as
described above to prevent errors in the calculation of normalized phase retardation due to
the non-linear behavior of the arcsin function. For this purpose, a field-dependent transmit-
tance characteristic is measured at least twice before every switching experiment to ensure
proper choice of V,, and Vj, and to be able to scale the intensity data in switching experiments.

Switching times are defined as the time between a change in voltage between V, to V;
or vice versa and a change of normalized phase retardation of 90 %. Figure 3.17 gives an
overview of the determination of switching times for a 4 um cell with pure FELIX-2900-03
at b8 °C.

As seen in equation 3.9, at a given cell thickness the decay time Tge.qy depends on the
ratio of rotational viscosity v, and an effective elastic constant K.;p. It is independent

of applied voltages V, and V3. Thus, the ratios K”;f of different samples can directly be
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Figure 3.18: The field dependent rise times are characterized by measuring switching times
between V, and V; for at least four values V}, followed by a linear regression
calculus.

compared by dividing the measured decay times by the square of sample thickness d2. All
decay time data given in this work represent average values of at least four measurements.

In contrast to 7gecqy, the rise time 7.5 does depend on the applied voltages V; and V,
and their amplitude compared to the threshold voltage V. Therefore, the rise time is

9 -1
characterized by plotting 7.5 versus |:<V‘C[/:h) — 1] . This results in a linear correlation.

The slope divided by Z—z represents the ratio K’:‘f' For calculating the slope by linear
regression, at least four data pairs of different voltages V;, are used.
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4 Results and discussion

4.1 General observations

Doping a liquid crystalline material with nanoparticles can cover a wide range of doping
concentrations. Podgornov et al. utilized only 0.1 % (w) of gold nanorods to significantly
increase the internal electric field within ferroelectric liquid crystals [74]. On the other end
of the doping spectrum, Vardanyan et al. recently reported defect-free nanocomposites con-
taining up to 90 % (w) gold nanoparticles in 6CB [75]. In this work, dispersions with a

nanoparticle amount between 0.25 % (w) and 7.5 % (w) are investigated.

In comparison to the weight percentage of particles in a dispersion, the molar fraction of
particles is several magnitudes smaller. This is due to the high molar mass of functionalized
metal or semiconductor particles. For example, the molar mass of the mesogenic function-
alized AuCB particles was determined by Draper et al. to be 164727 g/mol [14], while the
molar mass of the nematic host 5CB is only 249.35¢g/mol [19]. This gives a molar mass
ratio between nanoparticle and host molecule of over 660:1. The high ratio of molar masses
leads to mole fractions of particles in the range of 107* — 1076 when preparing dispersions
between 0.25 % (w) and 7.5 % (w) of nanoparticles.

Considering the mole fractions and the volume of a single host molecule and a nanoparticle,
the mean distance r of particles in the dispersion can be estimated by using a simple hard
sphere model. In this model, the particle’s diameter is given by the solid core’s diameter
deore pPlus an additional length due to the organic capping dgpe;. The effective volume of
the organic shell around the particle varies with the amount of interdigitation of ligands
and host molecules. In a simple model, dgpy is assumed to be only 50 % of the length of a
single ligand molecule, taking into account a certain degree of interdigitation. The average
volume of one particle is then given by

VNP = ST (dcore + dshell)3 . (41)

=

The average volume of a single host molecule can be estimated by

orc -
Ve — < .NA> , (4.2)

where 07 is the density of the liquid crystal, Mpc the molar mass and N4 Avogadro’s
constant. With Muyp being the molar mass of the nanoparticles and = being the mass

fraction of particles in the dispersion, the mean distance r between two nanoparticles in a
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Figure 4.1: Diagram showing the average mean distance between two nanoparticles in a homo-
geneous dispersion for different mass fractions of particles. The results shown here
are based on a simple model of hard spheres in a nematic host. For the calculation,
physical properties of AuCB given in reference [14] and date for the host 5CB found
in reference [19] are used for the calculation.

homogeneous dispersion is given by the equation

; Mpc-z 1 17"
=V _—= . Vic. 4.3
r \/ NP+[ 1— 2 MNP] LC (4.3)

One precondition for treating the nematic phase as a continuum is that significant changes in
the nematic director take place on a length scale L much larger than the molecular dimension
a (see equation 2.5). As it is shown in figure 4.1, the mean distance for all concentrations
investigated in this work is smaller than 50 nm. In consequence, the mean distance between
single particles can be assumed to be smaller than the length L for any concentration inves-
tigated in this work. Therefore it can be expected that the presence of particles can have
a direct influence on the order parameter S or the elastic constants of deformation Kj; of
the nematic phase. Equation 4.3 can also be used to estimate the minimum concentration
of particles required to give a mean particle distance lower than the length scale L with
significant changes in the director field. Assuming a length L of ~ 300 nm, a mean distance
between single particles is given by 0.001 % (w) of homogeneously dispersed particles. This
is well below the typical doping concentrations used in this work, but as shown below in
this section the actual particle concentration in the bulk can be dramatically reduced by

agglomeration or particle interactions with the surface.

In accordance with thermodynamical considerations, mixtures of nematogens and isotro-
pic solutes show a higher concentration of solute in the isotropic phase than in the nematic
phase ([76], [77]). As a result, a higher miscibility of nanoparticle solution in a liquid crys-
talline host is observed for temperatures where the liquid crystal is in the isotropic state,
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Figure 4.2: Photographs of a mixture of AuSH12,,) particles dissolved in toluene and added
to 5CB in a V-vial during the preparation process. (a) At room temperature the
host 5CB is in the nematic phase and does not mix with the toluene solution with
nanoparticles. (b) After heating the mixture to the isotropic phase, mixing of
5CB and the toluene / particle solution occurs, even without additional mechanical
stirring.

rather than in the nematic phase. In figure 4.2, two photographs of a mixture of 5CB and
a solution of AuSH12,,) particles in toluene are shown. While the liquid crystal is in the
nematic phase (figure 4.2 (a)), a phase separation occurs and the liquid crystal does not
dissolve in the dispersion. Only after heating the sample slightly over the phase transition
temperature of 5CB, a homogeneous mixture is obtained (figure 4.2 (b)).

For this reason, dispersions are prepared and filled into the test cells at temperatures above
the clearing temperature of the nematic host. However, agglomeration of nanoparticles is
occasionally observed to occur during the evaporation process of solvent, resulting in a solid
precipitate on the ground of the V-vial. This effect has been observed for all nanoparticle /
liquid crystal combinations prepared in this work, only with differences in the aggregation
rate during preparation. As the experimental parameters like temperature, stirring rate
and low pressure treatment are kept constant, the agglomeration seems to occur randomly.
Even the use of steady argon flow over the V-vial, to keep away reactive gases like oxygen
from the mixtures, does not increase the rate of stable dispersions.

This indicates a general lack of experimental control over the formation of homogeneous
dispersions. In consequence, only dispersions with no visible signs of agglomeration were
filled into test cells and investigated in this work, dispersions with visible signs of agglomer-
ation are discarded. However, under a microscope with high magnification objective almost
every test cell reveals areas with small particle agglomerates. As visible agglomerates repre-
sent areas with a very high particle density, their appearance decreases the average particle
concentration of homogeneously dispersed nanoparticles in the liquid crystal.

Additionally, even with no visible agglomeration, a small ratio of particles resides at the
surface of the V-vial during the preparation process. For the strongly luminescent CdSe
particles CdSe590 and CdSe610, this effect can even be seen with the naked eye by a thin
orange layer residing on the glass after removing the dispersion from the V-vial (see figure
4.4 (a)). This residue leads to an additional decrease of particle concentration in the dis-

persion. Consequently, the precise concentration of particles in a test cell is unknown, but
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certainly smaller than the concentration expected from the weighted quantities.

To reveal the magnitude of this depletion effect, two stable dispersions of 0.5 % (w)
AuSH12(,,) particles in 5CB are prepared and filled into two untreated glass cells and two
EO-test cells each. For comparison of their properties, textures between crossed polariz-
ers are studied for the untreated glass cells, and the threshold voltage of the EO-test cells
is measured (see figure 4.3). It is found that test cells filled with a dispersion from the
same batch show similar textures and comparable threshold voltages. Test cells filled with
a dispersion prepared in another batch, however, slightly differ in textures and threshold
voltages. This indicates that during the evaporation process of solvent different degrees of
particle depletion occur in different batches. As samples filled with dispersions from the
same batch show comparable results, depletion effects during the filling process seem to be
negligible.

Depletion effects have to be taken into account when comparing changes in the liquid crys-
talline properties due to the presence of different concentrations of dispersed nanoparticles.
In order to allow proper data interpretation, several assumptions are made:

e The actual particle concentration of the dispersion in a test cell is unknown, but lower
than expected by the weighted quantities of liquid crystal and dopant.

e For stable dispersions, the depletion of particles is considered proportional to the
initial concentration, assuming constant ratios of particles residing on the V-vial or
forming small agglomerates. The particle concentration of dispersions showing visible
agglomeration in the bulk even before being filled in a test cell cannot be estimated,
as the degree of agglomeration cannot be determined. Hence, dispersion with visible

agglomeration in the bulk cannot be used for further experiments and are discarded.

e As a consequence of the first two assumptions, higher weighted quantities of dopant
should lead to a higher particle concentration in the dispersion. Hence, comparability
of concentration dependent changes of dispersion properties is remained.

4.2 Stability and solubility of nanoparticles in dispersions

The miscibility and compatibility of nanoparticles in a nematic host and the stability of the
dispersions are determined from the bulk dispersion in a V-vial. Visible agglomeration of
particles or the visible settling of particles on the glass interface indicates incompatibility,
while the formation of a homogeneous mixture with no visible particles indicates the forma-
tion of a stable dispersion.

Dispersions of AuSH12(,,y and AuCB in 5CB show a dark red or black color with slight
opaque glint. This has also been reported by Qi et al. (see reference [78]) recently and is put
down to the surface plasmon resonance of the gold nanoparticles. These particles give homo-
geneous dispersions for concentrations up to 2.5 % (w) or 5 % (w), respectively. At higher
concentrations, the formation of agglomerates is observed during the preparation process.
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Figure 4.3: Comparison of polarizing optical microscopy (POM) textures and threshold volt-
ages of two batches of 0.5 % (w) AuSH12,,) in 5CB. While the results obtained for
different test cells filled with dispersion from the same batch are well comparable,
results obtained from dispersion prepared in another batch slightly differ. This
effect is ascribed to different degrees of particle depletion during the preparation
process of the dispersions.
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The dispersions are stable in the range of a few hours only, as after one night (14 hours) all
dispersions show severe agglomeration and settling of particles on the bottom of the V-vial.
Similar observations are reported by Kinkead et al. (see reference [13]), who found compa-
rably low solubility of alkylthiol capped gold particles in polar nematics like 5CB or 8CB
compared to more apolar mesogens like FELIX-2900-03. A possible explanation for lower
solubility of alkylthiol capped particles could be polar interactions of the cyanobiphenyl
units of the host molecules, which prevent strong interaction to the apolar alkylchains of
AuSH particles. For the mesogenic capped particles AuCB, a strong interaction between
the ligands and the mesogenic host 5CB could be expected due to a high chemical similarity.
An experimental verification has been given by Draper et al. recently, who report a high
miscibility and stability of the mesogenic capped gold particles AuCB in the host 5CB (see
reference [14]). In own experiments, the dispersions of AuCB in 5CB indeed show a good

miscibility, but no superior stability compared to aliphatic capped particles.

Interestingly it is found that the stability of dispersions in the bulk can differ from the
stability of dispersions filled into test cells. Although the mixtures of AuSH12,,) and AuCB
in 5CB show no good long term stability in the bulk, once a stable dispersion is filled into
test cells without signs of agglomeration, the dispersion remains stable and does not show
signs of agglomeration within the cell even for years. This could be caused by a lower mo-
bility of particles in a test cell, as convection is reduced within the test cell and the diffusion
of particles presumably is not sufficient to lead to high local particle concentrations and

agglomeration.

Mixtures of CdSe590 and CdSe610 nanoparticles in the hosts 5CB and FELIX-2900-03
result in homogeneous orange or reddish dispersions up to 2.5 % (w). Again, higher con-
centrations lead to the formation of visible agglomerations during the preparation process,
what is in accordance with results found by Kinkead et al. (see reference [13]) before. The
authors report extensive aggregation of hexadecylamine capped particles with different core
diameters in the host FELIX-2900-03 at a concentration of 5 % (w).

Dispersions of CdSe590 and CdSe610 in 5CB are found to be stable for several days,
while dispersions in FELIX-2900-03 show agglomeration within a few hours. This is again
in accordance with the earlier work of Kinkead et al. [13], as inferior miscibility and aggre-
gation behavior in the host FELIX-2900-03 is reported for hexadecylamine capped CdSe590
quantum dots compared to similar particles with different core diameters. However, this
reference reports good stability for the CdSe610 particles in FELIX-2900-03, which could
not be confirmed in own experiments. In this work, the difference of core diameter between
the smaller CdSe590 particles and the larger CdSe610 is found to have no influence on the
stability of nanoparticle / liquid crystal dispersions.

4.3 Phase transition temperatures

Solute impurities in nematic liquid crystals depress the nematic to isotropic phase transition
temperature and lead to the formation of a two-phase region ([76], [79]). Hence, also com-

mercially available pure compounds exhibit a small temperature range of coexisting phases
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Figure 4.4: Photographs of a dispersion of 2.5 % (w) CdSe590 in FELIX-2900-03 in a V-vial. (a)
After removing of all solvent and with the dispersion in the isotropic phase, (b) at
Tnr—T = 12K, directly after cooling to the nematic phase, (¢) at Tnyy —T = 12K,
4 hours after cooling to the nematic phase and (d) at Ty; —7 = 12K, 6 hours after
cooling to the nematic phase.

due to small amounts of impurities or chemical decomposition [77]. For the nematic hosts
FELIX-2900-03 and 5CB, this biphasic region is found to be in the range of 0.2°C at a
heating rate of 1°C/min.

Applying the thermodynamic model derived in references [76] and [79], doping these hosts
with spherical nanoparticles in the size regime of a few nanometers would lead to a further
decrease of clearing temperature, and a broadening of the biphasic region.

This effect is experimentally observed for most of the nanoparticle dispersions investi-
gated in this work. In general, the onset temperatures of phase transition in the nematic
host 5CB decrease as well for gold nanoparticles as for CdSe particles, results are shown in
figures 4.5 and 4.6. For the mesogenic coated gold particles AuCB, the most distinct de-
crease is observed for the lowest concentration of 0.5 % (w) nanoparticles. The dispersions
with higher concentrations also show a decrease of onset temperature, but it is only half as
pronounced as for the lowest concentration. For comparison with data from literature, only
phase transition temperatures of the AuCB particles in the nematic host 8CB are reported
by Draper in reference [49]. Assuming that the general behavior between 5CB and 8CB is
comparable due to the similar chemical structure of the molecules, a very similar behav-
ior is reported here: The doping of small amounts of nanoparticles leads to a decrease of
phase transition temperature. With increasing concentration this effect is reversed and even
higher phase transition temperatures than for the pure host can be observed at concentra-
tions higher than 10 % [49]. Draper explains this concentration dependence by a knock-on
effect, where the nanoparticles can stabilize the liquid crystalline host in the vicinity of
the particle above a certain particle concentration [49]. If the particles are well-dispersed
and distributed homogeneously over the sample, this stabilization process superimposes the
decrease of clearing temperature, and sufficiently high particle concentrations lead to higher
phase transition temperatures.

The biphasic temperature range increases for all AuCB dispersions to the same amount
compared to the pure host. It is found to be between 0.3-0.4 °C at a heating rate of 1 °C/min.
For the given mole fractions of particles, this temperature range is large compared to the
theoretical predictions for spherical particles in a nematic host. Assuming that the theo-
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retical model for small spherical molecules like BuySn or PrySn reported by Oweimreen in
references [76] and [79] can also be applied to nanoparticles with diameters 10 to 15 times
larger, a biphasic temperature range of only 0.02-0.03 K would be expected. The over one
magnitude larger temperature interval of 0.3-0.4°C found in experiments could indicate a
higher mole fraction of solute impurities in the nematic host than the sole mole fraction of
particles. This could be caused by external impurities as well as by chemical deposition and
ligand loss of the mesogenic functionalized particles. It is known that ligand exchange takes
place even at low temperatures, as this method is used for the synthesis of functionalized
gold nanoparticles with prescribed compositions of different ligands [57]. In consequence
it can be assumed that dissolving AuCB particles in dichloromethane and mixing with the
nematic host 5CB also leads to an uncertain amount of free ligands in the dispersion.

The aliphatic coated gold particles AuSH12,,) are found to decrease the onset of clearing
temperature and exhibit a pronounced broadening of the biphasic region. However, also un-
der consideration of data from literature given by Qi et al. in reference [12], a concentration
dependent trend of increase or decrease cannot be found in the investigated concentration
range. It might be possible that the same knock-on of stabilization effect as observed for
AuCB particles would occur at higher particle concentrations. But due to agglomeration
effects and solubility problems in dispersions of AuSH in 5CB, data for higher concentra-

tions than 2.5 % are not available.

The hexadecylamine capped CdSe particles CdSe590 and CdSe610 do not show a very
pronounced effect on the phase transition temperatures in 5CB, but the effects are of com-
parable magnitude for the two systems: Both slightly decrease the onset temperature with
increasing concentration, and exhibit biphasic regions of a magnitude comparable to the dis-
persions with gold particles in 5CB. As the CdSe590 and CdSe610 particles are chemically
identical, and no difference can be observed between the smaller CdSe590 particles and the
CdSe610 particles with larger diameters, the size of particles seems to have no considerable
influence on the phase transition temperatures of nanoparticle dispersions in the nematic
host 5CB.
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Figure 4.5: Phase transition diagrams of dispersions of AuCB, AuSH12(,,), CdSe590 and
CdSe610 particles in 5CB, respectively. The dashed red line indicates the clear-
ing temperature of the pure liquid crystalline host, biphasic regions are shown as
dotted bars.
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In contrast, the different diameters of hexadecylamine functionalized CdSe particles seem
to have an influence on the phase transition behavior in the nematic host FELIX-2900-03.
The smaller CdSe590 particles show a slight decrease of onset temperature with increasing
concentration and only slight broadening of biphasic region, their behavior is comparable
to the dispersions in 5CB. This is also the case for the magnitude of the biphasic region for
CdSe610 / FELIX-2900-03 dispersions, however, the latter particles induce a very distinct
decrease of the onset temperature of phase transition of more than 1.5°C. While the sample
with 1 % (w) CdSe610 particles shows the lowest onset of phase transition, the sample with
2.5 % (w) has the highest onset temperature of all dispersions investigated. It is not clear
if these observations are connected to the stability of the dispersions, or represent artefacts
from the preparation of samples. As shown in figure 4.55 later in this work, samples with
CdSe610 quantum dots dispersed in FELIX-2900-03 show an ambiguous effect of nanopar-
ticle doping on the threshold voltage Vpp, while other electro-optical data are not accessible
due to a lack of stability of dispersion. In conclusion, my own data for CdSe610 in FELIX-
2900-03 seem to be unreliable. However, Kinkead et al. published data about the same
particle / host combination in reference [13], which will be considered to draw conclusions

where necessary.

The decrease of phase transition onset of the magic sized CdSe in FELIX-2900-03 is more
pronounced than for the CdSe590 and CdSe610 particles, but the range of biphasic region
is comparable. The Zn doped magic sized CdSe particles however do show a completely
different behavior than all other CdSe particles. An increase of onset temperature up to
1°C is found for a particle concentration of 2.5 % (w), while the sample containing 5.0 %
(w) of particles still has a slightly higher onset of phase transition temperature. As for
CdSe610 particles in FELIX-2900-03, it is not clear if this is connected to an influence of
nanoparticles on the stability of the dispersion. Similar samples have been investigated by
Mirzaei et al. before and the results are published in reference [65], but the authors do not
report a stabilization effect of Zn doped CdSe particles on the nematic host.
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Figure 4.6: Phase transition diagrams of dispersions of CdSe590, CdSe610, msCdSe and
msCdSe:Zn particles in FELIX-2900-03, respectively.
cates the clearing temperature of the pure liquid crystalline host, biphasic regions
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Dispersions of silanized gold particles AuSi in FELIX-2900-03 are found to stabilize the
nematic phase to higher temperatures in a concentration range of 0.5-1.0 %(w), while lower
or higher concentrations lead to decreasing onset temperatures for the phase transition. The
magnitude of the biphasic temperature region is found to increase with increasing particle
concentration, as predicted by theory [76]. The stabilization effect of the mesogenic phase at
medium particle concentrations has been experimentally confirmed by DSC measurements
recently reported by Mirzaei et al., and it is found to occur as well on heating as on cooling.
In addition, DSC measurements also reveal a stabilization of the smectic A phase at lower

temperatures (see reference [61]).

Comparable stabilizing effects due to particle doping have been reported for anisomet-
rically shaped dopants like carbon nanotubes [80], polar ferroelectric nanoparticles [81],
and mesogenic functionalized spherical gold particles [49]. For latter particles, a model is
presented by Draper et al., wherein the spherical particles can transform to anisometri-
cally shaped particles due to anisotropic interactions of the mesogenic capped ligands with
the surrounding [14]. The electric dipole moment of spherical ferroelectric nanoparticles
investigated by Lopatina et al. in reference [81] is assumed to cause an anisometrically
shaped electric field within the surrounding nematic phase of the particle, which leads also
to anisometric interactions between particles and host. The shape of carbon nanotubes as
investigated by Duran et al. in reference [80] is anisometric by itself, so that all three sys-
tems reported to feature comparable stabilizing effects comprise anisometric particle / host
interactions. Therefore, it could be concluded that also the silanized gold particles AuSi
show anisometric interaction with the FELIX-2900-03 host molecules. This could be caused
by a deformation of the spherical ligand shell to an ellipsoid, similar to the model proposed
by Draper et al. for mesogenic coated particles AuCB [14]. While the authors assume a
specific interaction of the mesogenic end-groups with the polar core of the host molecules
5CB that leads to a deformation of the spherical particles, a similar mechanism is possible
for the interaction of the aliphatic endgroups of AuSi particles with the hydrocarbon side-
chains of the non-polar host FELIX-2900-03.

In all aforementioned cases, the stabilization of mesophases due to doping requires homo-
geneously and well-dispersed particles in the respective host. In general, a high compatibility
and high stability of particles in the liquid crystalline host is required to obtain stabilizing
effects, as discussed by Khatua et al. in reference [82]. Taking this into account, one can
conclude that the silanized gold nanoparticles AuSi in FELIX-2900-03 are well miscible in
this nematic host and form a homogeneous dispersion. At 0.25 % (w) of particles, the mean
distance between the dispersed particles is around 50 nm (see figure 4.1) and obviously too
large for a stabilization of the nematic mesophase. In consequence, the phase destabilization
due to the presence of particles still dominates. At higher concentrations the mean distance
decreases, and a concentration regime of mesophase stabilization occurs. The decrease of
onset temperature of phases transition observed for concentrations higher than 2.5 % (w)
could be caused by the formation of particle aggregates at high concentrations, which would
reduce the mean distance between particles again. This model would be in agreement with
the general observation, that only small fractions of gold nanoparticles up to 5 % (w) can
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Figure 4.7: Phase transition temperatures of dispersions of AuSi in FELIX-2900-03 at different
particle concentrations. The dashed red line indicates the clearing temperature of
the pure liquid crystalline host, biphasic regions are shown as dotted bars.

be homogeneously dispersed in a nematic liquid crystal [57].

Another approach to explain the phase stabilization by the presence of nanoparticles is
given by Vardanyan et al. in reference [75]. The authors of latter study propose a stabiliza-
tion mechanism of the nematic phase by the formation of gold-gold aggregates at medium
concentrations. The formation of clusters leads to a parallel packing of molecules within
the clusters, which increases the nematic order of the dispersion. This ordering process gets
distorted by a further increase of particle concentration, so that higher concentrations again
show a decrease of clearing temperature. According to this model, it could also be possible
that the formation of aggregates in the investigated AuSi dispersions occurs at particle con-
centrations blow 1 % (w), and a further increase of particle density disturbs the formation
of gold-gold clusters. However, although the experimental observations by Vardanyan et al.
concerning a concentration dependent increase and decrease of phase transition are similar
to the results for AuSi particles in FELIX-2900-03, their effects occur at concentrations one
magnitude higher than investigated in this work. At particle concentrations up to 7.5 %
(w) and therefore comparable to the AuSi dispersions, the authors report no stabilization
of the mesogenic phases [83].

74



ferroelectric NPs gold NPs silanized gold NPs

Figure 4.8: Schematic drawings of nanoparticles dispersed in a nematic host. The examples
shown here are examples for particles with assumed anisometric particle / host
interactions that stabilize the nematic phase and increase the onset temperature
of the nematic to isotropic phase transition. (a) Carbon nanotubes as reported by
Duran et al. in reference [80], (b) Ferroelectric particles as presented by Lopatina et
al. in reference [81], (¢) Mesogenic capped gold nanoparticles as reported by Draper
et al. in reference [14] and (d) Silanized gold nanoparticles AuSi investigated in this
work. Due to similar phase stabilization effects, anisometric interactions between
latter particles and the nematic host are assumed.

4.4 Textures and alignment studies

Microscopic textures of nanoparticle / liquid crystal dispersions between crossed polarizers
are investigated to reveal information about the distribution of particles in the dispersion.
Between confining substrates, the interactions of liquid crystal molecules with the inter-
face define the director distribution of the nematic phase in the bulk. If the presence of
nanoparticles influences on these boundary conditions, this is a clear sign for interactions of
particles with the substrate’s surface. For this reason, the pure hosts and the nanoparticle
dispersions are investigated by polarizing optical microscopy and results are compared to
obtain information about the localization of nanoparticles in the samples.

4.4.1 Alignment on untreated glass

Between untreated glass slides, the pure nematic hosts 5CB and FELIX-2900-03 show un-
ordered textures as shown in figure 4.9. The polar host 5CB shows a bright texture which
is rich of inhomogeneities (see figure 4.9, (a)). However, classic defect lines like typically
found in a nematic schlieren texture are not found. By rotating the sample between crossed
polarizers, the observable colors change between purple and green, but the observable light
intensity remains unchanged. This indicates a random planar orientation of molecules on
the substrates with no preferred easy direction of alignment.

The apolar liquid crystal FELIX-2900-03 shows a similar texture, however the image ap-
pears dark with gray defects (see figure 4.9, (b)). By rotating the sample between crossed
polarizers dark and bright domains change, but there is no complete dark or homogeneous
bright state. This indicates a general homeotropic alignment of molecules on the substrates,

again with many defects and no preferred easy direction of alignment.
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pure FELIX-2900-03

Figure 4.9: Macroscopic images of the nematic hosts 5CB (left) and FELIX-2900-03 (right)
in self-built plain glass cells between crossed polarizers. Images are obtained at
Tny — T = 8K for white light illumination.

For the nematic host 5CB, the concentration dependent alignment and texture changes
on plain glass are investigated for dispersions of AuCB, AuSH12,,), CdSe590 and CdSe610
nanoparticles. Dispersions of silanized gold particles AuSi and the magic size quantum dots
msCdSe and msCdSe:Zn in the host FELIX-2900-03 are investigated in collaboration with
Javad Mirzaei from Prof. Hegmann’s group. The respective results for these dispersions
have been published in references [65] and [61]. Textures of CdSe590 and CdSe610 particles
in the host FELIX-2900-03 are not studied in this work, as a detailed texture study on these
dispersions is given in reference [13] by Kinkead et al..

All textures are investigated after cooling the samples from the isotropic into the nematic
phase. It is found that the cooling rate plays a crucial role in the formation of different
textures. While fast cooling rates (e.g. 5°C/min or faster) often lead to several domains
with different alignment, homogeneous alignment can be achieved by slow cooling (typically
1°C/min or lower). The importance of cooling rate has also been reported earlier by Qi et
al., who found that the formation of birefringent stripe patterns in dispersions of alkylthiol
capped gold nanoparticles is only observed for sufficiently slow cooling rates, while larger
cooling rates lead to homeotropic domains or areas with schlieren textures [12].

Dispersions of the mesogenic capped gold particles AuCB in 5CB show homeotropic align-
ment on plain glass between crossed polarizers for the complete range of investigated concen-
trations (see figure 4.10). While at a low concentration of 0.5 % (w) almost no agglomeration
is observed between parallel polarizers, increasing the particle concentration also increases
the number of visible agglomerates in the sample.

This result is an example of an general observation made for nanoparticle / liquid crystal
dispersions. On the one hand, it has been reported earlier by Qi et al. [78] that usually low
particle concentrations below 1 % (w) give well dispersed nanoparticle dispersions with no
significant textural effects, while agglomeration and unusual textural features appear only
at higher concentrations. On the other hand, the appearance of homeotropic alignment due
to nanoparticle doping has also been reported by different groups for different nanoparticle
/ liquid crystal systems before. For mesogenic coated gold particles similar to the inves-
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0.5 % AuCB in 5CB 1.0 % AuCB in 5CB 2.5 % AuCB in 5CB

Figure 4.10: Polarizing optical microscopy images of dispersions of AuCB particles in the host
5CB. The images were obtained at room temperature between crossed polarizers
(large images) and parallel polarizers (small images). The white arrows indicate
the position of polarizer and analyzer, respectively.

o W] N 7

0.5 % AuSH in 5CB 1.0 % AuSH in 5CB 2.5 % AuSH in 5CB

Figure 4.11: Polarizing optical microscopy images of dispersions of AuSH particles in the host
5CB. The image were obtained at room temperature between crossed polarizers
(large images) and parallel polarizers (small images). The white arrows indicate
the position of polarizer and analyzer, respectively.

tigated AuCB, Draper et al. reported homeotropic alignment due to nanoparticle doping
in the nematic host 8CB (references [49] and [14]). Bezrodna et al. reported partially
homeotropic domains due to the doping of 5CB with functionalized montmorillonite clay in
reference [84]. Qi et al. found homeotropic alignment in various experiments for dispersions
of alkylthiol capped gold particles in the nematic hosts 5CB, 8CB or FELIX-2900-03 (ref-
erences [12], [62]). The origin of the homeotropic alignment is presumably the deposition
of particles on the substrate interface. Qi et al. showed in reference [78] that preloading
the substrate surface with nanoparticles and filling the cell with a pure liquid crystal also

induces homeotropic alignment.

Dispersions of AuSH12,,) in 5CB also show homeotropic alignment on plain glass (fig-
ure 4.11). In addition, the appearance of birefringent stripes is observed with increasing
concentration of particles. This confirms that also in the host 5CB the appearance of bire-
fringent stripes depends on the particle concentration, as suggested by Qi et al. [12] for the
host FELIX-2900-03. These birefringent stripes form during the phase transition from the
isotropic to the nematic phase, and have been reported by Qi et al. in several publications
before ([12], [62], [78]). A detailed study on the origin and the director field topology of
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0.5 % CdSe610 in 5CB 1.0 % CdSe610 in 5CB 2.5 % CdSe610 in 5CB

Figure 4.12: Polarizing optical microscopy images of dispersions of CdSe610 particles in the
host 5CB. The image were obtained at room temperature between crossed po-
larizers (large images) and parallel polarizers (small images). The white arrows
indicate the position of polarizer and analyzer, respectively.

these birefringent stripes is given in section 4.4.2.

In contrast to the observations by Qi et al., a temperature dependent alignment change
from planar to homeotropic as reported for dodecanethiol capped particles in the host
FELIX-2900-03 [78] could not be observed in 5CB. The AuSH12,,) doped samples show
homeotropic alignment immediately after the phase transition from isotropic to nematic.
An explanation could be given by the different phase transition temperatures of 5CB and
FELIX-2900-03. As the clearing temperature of 5CB is almost 40°C lower compared to
FELIX-2900-03, the particle / substrate interaction during the phase transition takes place
at significant lower temperatures in 5CB. This might simplify the separation of particles
onto the substrates in 5CB, as the particles carry less thermal energy and are more likely to
precipitate. Studying the samples between parallel polarizers shows that at a concentration
of 0.5 % (w) almost no visible agglomerates of particles appears, while the samples with
concentrations of 1.0 % (w) and 2.5 % (w) show numerous black agglomerates.

The particles CdSe610 induce homogeneous homeotropic alignment and show almost no
visible signs of agglomeration for low particle concentrations (figure 4.12). Only at the high-
est concentration of 2.5 % (w), severe agglomeration is observed. At this high concentration,
the texture also shows homeotropic alignment in general, but the alignment is disturbed by
the presence of macroscopic agglomerates of nanoparticles. These results in birefringent
regions on the sample between crossed polarizers, which, however, show a different texture
than the birefringent stripes observed for alkylthiol capped gold particles.

Dispersions of CdSe590 particles with identical capping but smaller core diameter than
the CdSe610 particles show inferior solubility in the host 5CB, as even for the lowest con-
centration of 0.5 % (w) agglomerates of particles can be observed (figure 4.13). It is found
that the amount of agglomerates increases with concentration. These observations are in
accordance with results reported by Kinkead et al. in reference [13]. The authors report an
inferior miscibility of CdSe590 particles in the nematic host FELIX-2900-03, while CdSe610
particles are better soluble and form homogeneous dispersions. Being identically capped
with hexadecylamine, the only difference between both particles is the core diameter, which
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0.5 % CdSe590 in 5CB 1.0 % CdSe590 in 5CB 2.5 % CdSe590 in 5CB

Figure 4.13: Polarizing optical microscopy images of dispersions of CdSe590 particles in the
host 5CB. The images were obtained at room temperature between crossed po-
larizers (large images) and parallel polarizers (small images). The white arrows
indicate the position of polarizer and analyzer, respectively.

is slightly larger for the CdSe610 particles. This indicates that even slight changes of the
core diameter can have a dramatic influence on the miscibility and stability of a nanoparticle
/ liquid crystal dispersion.

As reported in [13], also the alignment between dispersions of CdSe590 and CdSe610
differs dramatically. As seen in figure 4.12, CdSe610 particles induce almost defect free
homeotropic alignment at low concentrations. For dispersions with CdSe590 particles, this
is found only for the dispersion with 1.0 % (w) of particles, the samples with 0.5 % (w) and
2.5 % (w) nanoparticles show an inhomogeneous texture with large birefringent areas. The
appearance of birefringent stripes is not observed for any cooling rate between 0.2 °C/min
and 2°C/min.

A texture analysis for msCdSe and msCdSe:Zn particles in the host FELIX-2900-03 can
not be given here, as the dispersions have been prepared by Javad Mirzaei in Prof. Heg-
mann’s group and have been directly filled into polyimide coated electro-optic test cells.
However, a detailed texture analysis is given in reference [65]. While the particles msCdSe
induce a schlieren texture between untreated glass slides, the Zn doped msCdSe:Zn parti-
cles induce homeotropic alignment with an increasing number of birefringent stripes with
increasing particle concentration. This shows how specific the interactions between dopants
and substrate’s interface react on slight changes on the composition of the ligand shell.
While the msCdSe particles are capped with myristic acid only, msCdSe:Zn feature an addi-
tional small percentage of trioctylphosphine ligands. This obviously decreases the miscibility
within the nematic host or facilitates the interaction with the surface, so that latter particles
reside on the interface and induce homeotropic alignment, while msCdSe particles do not
show this effect.

4.4.2 Birefringent stripe textures

As shown in figure 4.11, the presence of nanoparticles in a nematic liquid crystal can lead
to the formation of birefringent stripe patterns in an homeotropic environment. Their
appearance depends on the particle concentration, it is found that higher concentrations
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Figure 4.14: POM image of a dispersion of 3% AuSH12(;y in FELIX-2900-03. The image was
obtained using monochromatic light (A = 589nm) between crossed polarizers.

facilitate the formation of disclination lines. The formation of birefringent stripes is usually
observed connected to a phase transition under a slow heating or cooling rate. In FELIX-
2900-03, they appear as well on cooling from the isotropic phase as, but less pronounced,
on heating from the smectic A phase. All these phenomena have been reported firstly by
Qi et al. in reference [12]. The authors not only found these birefringent textures on plain
glass samples, but also in polyimide coated electro-optic test cells. This requires a strong
tendency of the dispersion to form homeotropic alignment with birefringent stripes, as the
strong boundary conditions of the rubbed polyimide alignment layers have to be overcome
during this process.

In order to clarify the origin and the director field topology of these birefringent stripes as
well as their stabilization process, detailed studies by means of polarizing optical microscopy
and fluorescence confocal polarizing microscopy are performed. The results of this study

have been published in reference [59] already.

In a representative experiment, a dispersion of 3 % (w) of AuSH12(;) in FELIX-2900-03
is prepared and filled into a 10pm self-made cell, consisting of an untreated microscope
slide and a glued cover slip. The sample is then heated to the isotropic phase and slowly
(2°C/min) cooled down to Ty; — T = 3K.

After preparation, the sample appears dark between crossed polarizers and exhibits sev-
eral bright stripes. Under rotation of the sample between polarizers, the dark areas remain
dark. This indicates a homeotropic alignment, where the director is aligned perpendicular
to the glass substrates. In contrast, the intensity profile of the bright stripes changes during
rotation, depending on the angle ¢ between the stripe axis and the plane of polarization
of the incident light. The stripes appear dark if the angle is 0° or 90°, and they exhibit
a varying, but always symmetric, intensity profile for 0° < ¢ < 90°, with maximum
brightness at |p| = 45°. This typical birefringent behavior indicates a planar, or at least
partially planar alignment in the center of the stripes. So the stripes represent a change
of the director field from homeotropic in the surrounding to at least partially planar in the
center of the stripe.
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Figure 4.15: Schematic drawing of the three possible director deformations that can lead to
birefringent stripes appearing in a homeotropic alignment. (a) Director field with
bend deformation; (b) A combination of splay, twist and bend deformation; and
(c) Twist deformation, respectively.

In general, there are three different kinds of director deformations that can lead to this
transition from homeotropic to planar. The director may bend (figure 4.15, (a)), twist (fig-
ure 4.15, (c)), or show a combination of splay, twist and bend (see figure 4.15, (b)). By
polarizing optical microscopy, the latter case can be excluded, as it would result in a non-
symmetrical intensity distribution between crossed polarizers. In addition, the complete
extinction of the transmitted light along the transverse direction observed for ¢ = 0° and
@ = 90° indicates that either the director component along the stripe axis or the compo-
nent perpendicular to the stripe axis remains zero while the director changes gradually from
homeotropic to planar. In order to reveal the director deformation and distinguish between
a bend or twist deformation, a three-dimensional imaging of the director distribution is re-
quired. Therefore, fluorescence confocal polarizing microscopy (FCPM) measurements are
performed with different states of excitation polarization.

The FCPM image obtained with circular polarized excitation light shows two intersecting
vertical and horizontal bright stripes on a dark background with few bright spots (figure
4.16, (a)). These bright spots are caused by agglomerations of undissolved fluorescence
dye and not of interest for further investigations. The overall intensity profile confirms
the homeotropic alignment in the uniform-appearing areas of the cell, while the orientation
of the director within the stripes has planar components. By performing two additional
measurements with linearly polarized light, additional information about the director in-
formation is obtained. While using excitation light polarized parallel to the z-axis of the
(z,y)-scan leads to fluorescence signal only from the horizontal parts of the stripes (figure
4.16, (b)), using excitation light that is polarized parallel to the y-axis shows only the ver-
tical parts thereof (figure 4.16, (c)). This strongly indicates that the director within the
stripes is oriented parallel to the wall of stripe. Hence, the birefringent stripes most likely
correspond to twist disclinations.
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Figure 4.16: Fluorescence confocal polarizing microscopy images of a sample containing 3%
(w) AuSH12(;) nanoparticles and 0.01% (w) of the dichroic fluorescent dye BTBP
in FELIX-2900-03. Excitation illumation exhibits (a) circularly polarized light,
(b) linearly polarized light (E horizontal) and (c) polarized light (E vertical),
respectively.

Figure 4.17: (a) Fluorescence confocal polarizing microscopy (FCPM) top view [(x,y) plane]
and (b) FCPM side view [(x,z) plane] of a gold nanoparticle dispersion containing
3% (w) AuSHG6 nanoparticles and 0.01% (w) of the dichroic fluorescent dye BTBP
in Felix-2900-03. The dashed line indicates a shared cross-section between both
images.
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Figure 4.18: Fluorescence confocal polarizing microscopy image of a sample containing 1% (w)
CdSe610 nanoparticles and 0.01% (w) of the dichroic fluorescent dye BTBP in
FELIX-2900-03. (a)Total fluorescence intensity, (b) fluorescence intensity in the
spectral range of 542-552 nm, representing the emission of the dichroic dye BTBP
and (c) fluorescence intensity in the spectral range of 605-615 nm, originating from
CdSe nanoparticles only.

In order to obtain information about the axial depth of the birefringent regions within
the cell gap, additional (x,z)-scans are performed in a FELIX-2900-03 sample doped with 3
% (w) of hexanethiol capped AuSH6 particles. The bright spherical signal spot in the right
side of the (z,y)-scan in figure 4.17 is caused by an agglomeration of undissolved BTBP dye.
Its size along the z-direction is roughly 10 pm and therefore corresponds approximately to
the thickness of the cell. In contrast, the two left signals in the (z,z)-scan are caused by
a birefringent stripe, and their deepness is noticeably smaller than the cell gap. Although
the position of the glass substrates cannot be seen due to the homeotropic alignment of the
liquid crystal, it is striking that the upper limits of all signals share the same altitude in
the (x,z)-scan. This can be seen as a strong hint that the upper substrate is located at
this height. In conclusion, this experiment indicates that the birefringent stripes do not
fill the cell gap completely, but seem to be fixed at only one substrate of the cell. This
interaction of the birefringent stripes with the substrate might even lead to a stabilization
of the disclination line.

In order to get more information about stabilization processes of the birefringent stripes,

wavelength resolved FCPM measurements are performed. With this technique, a distinc-
tion between fluorescence emission from the dichroic dye BTBP and from the luminescent
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quantum dots can be made. This allows not only to reveal the local director orientation by
analyzing the dye signal, but also to map the particle density of quantum dots.

In general, it is found that closed loops of defect lines are more stable than open-ended
stripes. The latter ones are usually unstable and disappear several seconds or minutes after
the phase transition from the isotropic phase. However, very few open-ended stripes show
a very high stability, even higher than usually observed for closed loops. Their stabilization
process is investigated in a sample of FELIX-2900-03 doped with 0.001 % (w) of the dichroic
dye BTBP and 1 % (w) of CdSe610 nanoparticles. Using a SpectraPro-2300i spectrograph,
the fluorescence intensities from the dye (Apgz = 540nm) and the luminescent particles
(Amaz = 610nm) are separated. The resulting wavelength-resolved FCPM images reveal
that these very stable open-ended stripes are stabilized by agglomerations of nanoparticles.

While images obtained by measuring the total fluorescence intensity show both the bright
disclination lines and bright spots at their end (figure 4.18, (a)), the wavelength-resolved
images show either the stripes (for A\ = 540 nm) (figure 4.18, (b)) or the bright spots at their
end (A = 610nm) (figure 4.18, (c)). In addition, the bright areas at A = 610nm appear
dark at A = 540nm, indicating a lack of dichroic dye at these positions. In conclusion, the
bright spots at 610 nm appear to be agglomerations of CdSe nanoparticles, stabilizing the
ends of open disclination lines pinned to them.

Qi et al. suggest an enhancement of the nanoparticles concentration within the twist
disclination lines (see reference [12]). The authors argue that the separation into particle-
poor, homeotropic domains and particle-rich, birefringent domains could initially be driven
by a drag of gold clusters along the phase separation lines during cooling from the isotropic
phase. As a result, a lower concentration of particles leads to a lower stripe density in the
nematic phase. The authors also refer to a work by West et al. published in reference [44],
where West and his co-workers report such a drag for silica nanoparticles. However, the
authors of latter study also predict a critical particle radius 7.3, which is required for a
drag of particles along the nematic / isotropic interface. Only for larger particles the elastic
forces of the nematic phase are large enough to overcome the viscous drag of particles. For
the host 5CB, the authors calculate this critical radius to be r.3 ~ 10nm, and therefore
larger than the radius of nanoparticles used in this study. Additionally, Voloschenko et al.
showed that although strong distortions of the director field can attract small particles, a
critical radius of more than 20 nm is necessary to overcome thermal fluctuations of Brownian
motion [43]. Hence, a drag of particles due to the elastic forces of the ordered nematic phase
can presumably be excluded due to the small diameters of the particles used in this work.

However, Soulé and co-workers report the formation of nanoparticle networks as a conse-
quence of different solubility of particles in the nematic and the isotropic phase [85]. When
slowly cooling from the isotropic phase, dispersed droplets of a nematic phase nucleate
and coalesce coming into contact. This leads to isotropic domains being confined between
nematic droplets, and a higher particle concentration due to higher solubility within the iso-
tropic phase. The formation of birefringent stripes follows a similar mechanism, the stripes
represent coalescence lines of former nematic droplets in an isotropic surrounding. Hence,

the assumption of higher particle concentration within the stripes is not unreasonable. Sim-

84



1,500 + :

1,000 S

Intensity [counts / s]

500 J/f N
- I

| | | |
500 520 540 560 580 600 620

A [nm)]

Figure 4.19: Spatially resolved fluorescence intensity spectra obtained from the sample shown in
figure 4.18. The fluorescence emission is measured in the homeotropically aligned
area (green plot), at the position of a birefringent stripe (blue plot) and at the
position of a CdSe610 agglomerate (red plot), respectively. The gray areas indicate
the wavelength intervals considered for the calculation of intensities in figure 4.18.

ilar observations are reported by da Cruz et al. in reference [86], where the authors report
the formation of particle-rich and particle-poor domains in a dispersion of y-FeoOgs in the
host 5CB. The size of particles used in this study is comparable to the particle size in this
work, but in contrast to gold or CdSe particles the detection of y-FesO3 particles within
a nematic or isotropic domain is possible via the magnetic properties of these domains. A
linear self-assembly of gold nanoparticles comparable to AuSH12 ;) in smectic 8CB on struc-
tured MoSy surfaces have recently reported by Coursault and co-workers in reference [87],
indicating that a selective ordering of very small particles is possible at the substrate’s inter-
face. A recent example of a self-organization of octanethiol functionalized gold nanoparticles
with 3 nm diameter in a cholesteric template is given by Bitar et al. in reference [88]. In
conclusion, the self-organization of nanoparticles in a nematic host has been proven in lit-
erature, although the driving force for this process differs from the mechanism for colloidal
particles. The minimization of elastic free energy by a particle drag to locations with high
distortions in the director field requires a certain size of particles (d > 40nm, [43]). Smaller
particles obviously follow another mechanism of ordering, presumably connected to specific

interactions of their functionalization and the host molecules.

Admittedly, on the basis of confocal fluorescence polarizing microscopy measurements
performed here, the question if an enhancement of the nanoparticle concentration within
the twist deformation occurs cannot be answered. With proper contrast settings, a slight
accumulation of fluorescence signal at A = 610 nm within the region of the birefringent stripe
can be found. However, these signals might also be caused by the dichroic dye BTBP, which
features a very broad fluorescence spectrum and therefore also contributes to the fluores-

cence intensity at A = 610 nm, as shown in figure 4.19.
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Figure 4.20: Macroscopic images from the nematic host 5CB in an electro-optic test cell be-
tween crossed polarizers obtained at room temperature. The angle ¢ represents
the angle between the rubbing direction of the cell and the plane of polarization
of the incident light. The white arrows represent the orientation of polarizer and
analyzer, the red bar represents the easy direction of the test cell.

4.4.3 Alignment in electro-optic test cells

The electro-optic test cells used in this work are coated with a rubbed polyimide layer,
which induces a homogeneous, strong planar anchoring of the liquid crystal molecules on
the surface. Between crossed polarizers this results in a complete dark state for an angle ¢
between the rubbing direction of the sample and the plane of polarization of the incident
light of ¢ = 0° or ¢ = 90° (see figure 4.20, left) and a homogeneous bright state with
maximum light transmission for an angel of ¢ = 45° (see figure 4.20, right).

The dispersions of AuCB, AuSH12,,), CdSe590 and CdSe610 in the nematic host 5CB
are found not to alter this behavior. After preparing the dispersions, they are filled into the
test cell by capillary forces, being in the isotropic state. After filling, the samples are cooled
down to room temperature, heated to the isotropic phase again, and then investigated by
polarizing optical microscopy in the nematic phase at room temperature. This temperature
treatment should allow the liquid crystal to overcome the initial alignment caused by the
filling procedure, and align in accordance to the thermodynamical equilibrium state defined
by the boundary conditions of the alignment layers. As a result, a homogeneous planar
alignment is obtained over the complete cell area for all particle dispersions mentioned
above and for all concentrations investigated. The appearance of birefringent stripes after
slow cooling from the isotropic phase, as observed for uncoated glass cells (see section 4.4.1)
or reported also in FELIX-2900-03 for polyimide coated test-cells [12] could not be observed.

Dispersions with different concentration of CdSe590 in the nematic host FELIX-2900-
03 show striking effects on the polyimide alignment layer of the electro-optic test cells.
In addition, a filtering effect occurs, especially for samples with 4 pm cell gap. For these
samples, macroscopic images taken without polarizers (see figure 4.21, bottom) show a
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homogeneous filling of the cells without visible agglomerations. However, textures obtained
between crossed polarizers (see figure 4.21, top) reveal homeotropic alignment close to the
filling point and an alignment change to planar more far away of the filling point. The size
of the homeotropic area seems to be correlated to the amount of particles in the respective
dispersion.

In contrast to 4 pm cells, images taken from dispersions of CdSe590 in FELIX-2900-03 in
10 pm cells without polarizers (figure 4.22, bottom) reveal precipitation of reddish particles
from the filling point along the floating direction of the dispersion. The area covered by
particles is found to be larger for higher particle concentrations. Images obtained between
crossed polarizers (figure 4.22, top) show homeotropic alignment in these areas with visible
surface coverage, and inhomogeneous planar alignment in the rest of the cells. A homoge-
neous planar alignment as expected from the polyimide alignment layer of the test cell does
not occur with this cell thickness at any concentration.

The semicircular spreading of particles which cover the surface along the floating direction
during filling indicates that the dispersions of CdSe590 particles in the host FELIX-2900-
03 are not stable. In consequence, a movement of particles from the liquid crystal to the
interface occurs while the liquid crystal floats into the cell gap. Assuming this depletion of
particles is proportional to the amount of particles in the bulk, the surface coverage of the
polyimide alignment layer with nanoparticles should decrease with increasing distance from
the filling point. This is also indicated by the textures obtained between crossed polarizers,
as the alignment of the liquid crystal is more likely to be homogeneous planar far away from
the filling point, and homeotropic in areas with a visible surface coverage with particles.
This indicates that a precipitation of nanoparticles on the substrates can superimpose the
effect of the polyimide alignment layer and induces homeotropic alignment. Only in areas
far away from the filling point, the particle concentration is not sufficiently high to induce
homeotropic alignment.

A filtering effect on the cell gap is observed especially for 4 um cells and indicates that
most visible agglomerates are larger than 4 pm. Consequently, they cannot enter the cell gap
and hence accumulate at the substrate on the filling side of the sample. This effect is very
striking for dispersions of CdSe610 in FELIX-2900-03. Images obtained without polarizers
from samples with 4 pm cell gap (figure 4.23, bottom) all show a homogeneous filling of the
test cells without visible agglomerations in the cell gap. But especially the samples with 2.5
% (w) and 5.0 % (w) CdSe610 exhibit a very strong accumulation of particles on the left
side of the substrate, which is the filling side of the test cells.

This strong accumulation of particles outside of the cell gap makes it impossible to predict
the concentration of particles in the center of the sample. Although under a microscope
the cells appear homogeneously filled and agglomerate free within the electrode area, this
additional depletion due to agglomerates has to be considered for the electro-optical analysis
of the samples. As mentioned in section 4.1, it is assumed that the amount of precipitation is
proportional to the particle concentration. This is in fairly good accordance with the visible
amounts of agglomerates seen in the bottom images of figure 4.23. Hence, electro-optical
data obtained from these samples can only give a general trend of concentration dependent
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Figure 4.21: Macroscopic images of 4um electro-optic test cells filled with dispersions of
CdSeb90 in FELIX-2900-03. The test cells were filled from the left side. Images
were obtained without polarizers (bottom) or between crossed polarizers (top) at
a temperature Ty — T = TK. The white arrows represent the orientation of
polarizer and analyzer, the red bar represents the easy direction of the test cell.

changes of physical properties, a comparison to other nanoparticle / liquid crystal systems
is difficult as the actual concentration range is unknown.

However, Kinkead et al. report the successful preparation of stable dispersions of CdSe590
and CdSe610 particles in FELIX-2900-03 and also provide electro-optical data in reference
[13]. The difference between samples reported in reference [13] and own samples is the use
of different electro-optic test cells. While Kinkead et al. use antiparallel rubbed polyimide
coated test cells from LC Vision, USA, own samples are prepared in antiparallel rubbed
polyimide coated test cells from E.H.C Co., Ltd, Japan. Without having further details
from the manufacturers, the polyimide layer of both types of test cells differs: The pretilt
angle for LC Vision cells is given by 1-3° [13], the pretilt angle for E.H.C cells is below 1°
[68]. It can be concluded that the different textures of CdSe590 / FELIX-2900-03 are caused
by different interactions between the nanoparticles and the polyimide alignment layer.

Images of CdSe610 in FELIX-2900-03 in 4 pm cells obtained between crossed polarizers
(figure 4.23, top) show a similar influence of the nanoparticles on the alignment layer as found
for CdSeb90 particles. The influence of the polyimide alignment layer is not visible, and
with increasing particle concentration, the size of areas with homeotropic alignment also in-
creases. At the highest concentration investigated for CdSe610 (5 % (w)), only homeotropic
alignment occurs. Similar results concerning filtering effects and textures between crossed
polarizers are found for dispersions of CdSe610 in FELIX-2900-03 in 10 pm cells (see figure
4.23).

From our observations made for dispersions of CdSe590 and CdSe610 in FELIX-2900-03,
a model is developed to explain the changes in alignment. In general, the textures observed
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Figure 4.22: Macroscopic images of 10 pm electro-optic test cells filled from the left side with
dispersions of CdSe590 in FELIX-2900-03. Images were obtained without polariz-
ers (bottom) or between crossed polarizers (top) at a temperature Ty —T = 7K.
The white arrows represent the orientation of polarizer and analyzer, the red bar
represents the easy direction of the test cell.

1.0 % CdSe610 2.5 % CdSe610 5.0 % CdSe610

Figure 4.23: Macroscopic images of 4 pum electro-optic test cells filled from the left side with
dispersions of CdSe610 in FELIX-2900-03. Images were obtained without polariz-
ers (bottom) or between crossed polarizers (top) at a temperature Ty —T = TK.
The white arrows represent the orientation of polarizer and analyzer, the red bar
represents the easy direction of the test cell.

89



1.0 % CdSe610 2.5 % CdSe610 5.0 % CdSe610

Figure 4.24: Macroscopic images of 10 pm electro-optic test cells filled from the left side with
dispersions of CdSe610 in FELIX-2900-03. Images were obtained without polariz-
ers (bottom) or between crossed polarizers (top) at a temperature Ty —T = 7K.
The white arrows represent the orientation of polarizer and analyzer, the red bar
represents the easy direction of the test cell.

between crossed polarizers can be divided into three regions (see figure 4.25). In the area
very close to the filling point, usually homeotropic alignment is observed (region (A)). This
region covers a semicircular area around the filling point, the diameter of this field varies
from cell to cell. The neighboring region (B) is an intermediate region with partially planar
alignment. In this region, the molecules are mostly aligned parallel to the substrates, but
by rotating the sample between crossed polarizers it can be shown that the alignment differs
from the polyimide induced homogeneous planar alignment in region (C). It is found that
the size of these three regions and their ratio vary for different cells and different concen-
trations, a clear concentration dependent trend could not be confirmed. For example, cells
filled with a dispersion of 5 % (w) CdSe610 in FELIX-2900-03 only exhibit region (A), while
the 4 pm cell filled with 1 % (w) CdSe610 in FELIX-2900-03 does not show a region (A)
at all. This is connected to different amounts of particles residing on the surface during the
filling process and cannot be controlled experimentally.

By measuring the electrical field-dependent light transmission between crossed polarizers
in the regions (A), (B) and (C), additional information about the alignment of the liquid
crystal and the position of nanoparticles within the test cell can be obtained (see figure
4.26). In region (A), the light transmission remains zero under external electrical fields,
which is proof for the homeotropic alignment of the liquid crystal molecules in this area. In
region (B), a Fréedericksz transition from planar to homeotropic alignment occurs with in-
creasing external field. However, the Fréedericksz transition does not exhibit a well-defined
threshold voltage Vi, where the deformation of the initial director field begins. This is
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Figure 4.25: Schematic drawing of an electro-optical test cell with different regions of alignment
as found for dispersions of CdSe590 and CdSe610 in FELIX-2900-03. Although
the size of the different regions varies for different cells, in general the three regions
(A) with homeotropic alignment, an intermediate region (B) and an area with
planar alignment (C) are found to occur.

usually found only for samples featuring a tilted alignment of molecules to the substrates,
which is most likely caused by partial coverage of particles on the surface. This partial
coverage then reduces the surface energy of the interface and, together with topological ef-
fects, induces tilted alignment. Transmission characteristics obtained from region (C) show
a Fréedericksz transition with well defined threshold voltage. In addition to an observation
of planar alignment parallel to the easy axis of the cell by rotating the sample between
crossed polarizers, this indicates strong boundary conditions caused by the initial polyimide
alignment layer.

An experimental proof of CdSe particles residing at the liquid crystal / glass interface is
given by confocal fluorescence microscopy analysis (figure 4.27). The (x,z)-scan shown here
is obtained from a sample of 1 % (w) CdSe610 in FELIX-2900-03 between untreated glass
plates. The polarizing optical microscopy image of this sample shows homeotropic alignment
comparable to the image given in figure 4.13. The bright intensity signals are caused by
small agglomerates of particles, while the signals with lower intensity are probably caused
by single quantum dots. The asymmetric shape of the fluorescence signals is caused by the
point spread function of the confocal microscope, which is always elongated along the axial
direction. The fluorescence signals form two lines of equal height, which are separated by
a distance of roughly 10 pm. This corresponds to the cell gap of the sample, what strongly
indicates that the particles reside on the interface in areas with homeotropic alignment.

To summarize the statement of the model developed here, the different textures for
CdSe590 and CdSe610 particles in FELIX-2900-03 observed between crossed polarizers are
caused by different amounts of nanoparticles residing on the liquid crystal / substrate in-
terface. When the particle coverage is sufficiently high, homeotropic alignment is induced,
while only partial coverage of particles leads to tilted alignment. The surface coverage de-
creases with increasing distance to the filling point. Only at very low or no particle coverage,
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Figure 4.26: Electro-optical response of a dispersion of 1 % CdSe610 in FELIX-2900-03. The
light transmission is measured in the three predefined regions (A), (B) and (C),
respectively (top), and a model about surface / liquid crystal interactions is de-
rived from these observations (bottom).

Figure 4.27: Confocal fluorescence microscopy image obtained from a sample of 1 % (w)
CdSe610 in FELIX-2900-03. The intensity distribution in the (x,z)-plane strongly
indicates that the luminescent nanopatricles are residing on the liquid crystal /
glass interface.
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Figure 4.28: Macroscopic images of 4 um electro-optic test cells filled dispersions of AuSi in
FELIX-2900-03. Images were obtained between crossed polarizers at a tempera-
ture Ty —71 = 7K. The black arrows on the lower right represent the orientation
of polarizer and analyzer, the red bar represents the easy direction of the test cell.

the alignment induced by the initial polyimide alignment layer is retained.

Mixtures of silanized AuSi particles in FELIX-2900-03 show an homogeneous planar align-
ment over the complete concentration range from 0.25 % (w) to 7.5 % (w) (figure 4.28).
However, at particle concentrations higher than 2.5 % (w), an increasing number of black
domains is observed, which remain after cooling from the isotropic phase. As these dark
domains also remain dark when tilting the samples between crossed polarizers to polar an-
gles up to 60°, homeotropic alignment can be excluded. Hence, these domains are identified
to be isotropic domains. In addition, fluorescence confocal polarizing microscopic studies
performed by Javad Mirzaei in Prof. Hegmann’s group revealed a higher solubility of the
dichroic dye BTBP in these dark domains than in the nematic surrounding [61]. It is known
that the dichroic dye shows a higher solubility in the isotropic phase than in the nematic
phase, which allows to conclude that for particle concentrations higher than 2.5 % (w),
a coexistence of nematic and isotropic phase occurs even for temperatures far below the
clearing temperature of the dispersions. Another observation reported by Prof. Hegmann’s
group is the enrichment of particles in these isotropic domains [61]. This indicates that the
well-known depletion effect of particles from the nematic into the isotropic phase also occurs
at high concentrations in dispersions of silanized gold particles in the host FELIX-2900-03.
However, these instabilities only occur at concentrations of 5 % (w) or higher, which is
higher than the typical solubility limit of nanoparticles in a nematic host [57].

Dispersions of magic sized quantum dots msCdSe and msCdSe:Zn in FELIX-2900-03 are
filled in 4 pm LC Vision electro-optic test cells and do not show precipitation effects as seen
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Figure 4.29: Polarizing optical microscopy images of dispersions of msCdSe particles in FELIX-
2900-03 at Ty — T = 4K. Images are obtained between crossed polarizers,
with the easy direction of the test cell under an angle ¢ = 45° to the the plane
of polarization of the incident light (large images) or parallel to the plane of
polarization of the incident light (small images). The magnification is M = 5z.

for CdSeb90 and CdSe610 particles in E.H.C test cells before. Dispersions of msCdSe show
homogeneous planar alignment for 1 % (w) and 2.5 % (w), and a schlieren texture for 5
% (w) of particles (see figure 4.29)). In contrast to all other nanoparticle / liquid crystal
dispersions investigated in this work, the birefringent stripes investigated in section 4.4.2
are found to occur also in electro-optic test cells after slowly cooling down from the isotropic
phase. But in contrast to the birefringent stripes observed for AuSH12,,) particles between
plain glass, these stripes appear in an homogeneous planar alignment, as clearly can be seen
by rotating the samples between crossed polarizers. While the background appears bright
under an angle ¢ = 45° to the the plane of polarization of the incident light for 1 % (w) and
2.5 % (w) of msCdSe particles, the background is dark for ¢ = 0° or ¢ = 90°. At the highest
concentration of 5 % (w) msCdSe particles, the effect of the polyimide alignment layer is
superimposed by the nanoparticles, and the birefringent stripes appear in an inhomogeneous

schlieren texture surrounding.

Polarizing optical microscopy images from dispersions of msCdSe:Zn particles in FELIX-
2900-03 show similar textures as obtained for msCdSe dispersions. At 1.0 % (w) and 2.5 %
(w) of particles, the uniform alignment of the rubbed polyimide layer remains. At 5.0 %
(w) of nanoparticles numerous planar aligned areas occur, probably caused by particles re-
siding on the interface. The test cells filled with msCdSe:Zn / FELIX-2900-03 dispersions
show numerous visible agglomerates at all three concentrations investigated. This indicates
that the miscibility or stability of the Zn doped msCdSe:Zn particles in the liquid crys-
talline host is inferior to the msCdSe particles. As the interaction between particle and host
mainly takes place over the ligand shell, this can most likely be attributed to the additional
trioctylphosphine ligands on the Zn doped particles. These are sterically more demanding
than the aliphatic amine and therefore seem to reduce the degree of interdigitation between
ligand shell and host molecules.
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1.0 % msCdSe:Zn

Figure 4.30: Polarizing optical microscopy images of dispersions of msCdSe:Zn particles in
FELIX-2900-03 at Ty;—T = 7K. Images are obtained between crossed polarizers,
with the easy direction of the test cell under an angle ¢ = 45° to the the plane
of polarization of the incident light (large images) or parallel to the plane of
polarization of the incident light (small images). The magnification is M = 10z.

4.5 Behavior under the influence of electric fields

4.5.1 Field-induced alignment changes

Besides studying the alignment of nanoparticle / liquid crystal dispersions in polyimide
coated electro-optical test cells directly after filling, an influence of nanoparticles on the
initial alignment layers under external electric fields is investigated. Of particular interest
are changes of alignment that remain after the electric field is switched off again, as this
indicates a change of boundary conditions due to the presence of nanoparticles.

Applying an electric field to a nematic liquid crystal filled in an electro-optic test cell
usually leads to a reorientation of the liquid crystalline material only, but does not alter
the alignment layer of the test cell. The boundary conditions remain unchanged, and after
removing the external field the liquid crystal shows the same alignment again as before the
switching experiment. Applying an electric field to a nanoparticle / liquid crystal dispersion,
however, can modify the surface anchoring of the liquid crystals on the substrate interface
of the test cell. As noted in section 4.4.3, dispersions of AuCB, AuSH12,,), CdSe590 or
(CdSe610 in 5CB show a homogeneous planar alignment induced by a rubbed polyimide
alignment layer after filling into electro-optic test cells by E.H.C Co., Ltd (Tokyo, Japan).
Dispersions of AuSi and low concentrations of the magic sized quantum dots msCdSe and
msCdSe:Zn in FELIX-2900-03 filled in test cells by LC Vision in general also exhibit a ho-
mogeneous planar alignment, besides the appearance of birefringent stripes in dispersions
with msCdSe particles. As a consequence of the homogeneous planar alignment, all these
samples appear bright between crossed polarizers with the easy axis of the test cells oriented
under an azimuthal angle of ¢ = 45° to the plane of polarization of incident light. How-
ever, after one electro-optic measurement cycle it is found that dispersions of AuCB and
AuSH12(,,) in 5CB show gradual color changes within the electrode area between crossed
polarizers. Dispersions containing AuCB particles even change to a non-birefringent black
state after up to 10 cycles (see figure 4.32). An electro-optic measurement cycle is given by
a sine voltage of 1 kHz whose amplitude is stepwise increased from 0.05 Vs to 19.85 V.6
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Macroscopic photographs of electro-optic test cells filled with dispersions of 0.5
% (w) CdSe590 in 5CB (top) and 0.5 % (w) AuSi in FELIX-2900-03 (bottom)
before and after treatment in electric field. The images are taken at Tny;—1T = 8K
using a white light source between crossed polarizers. The orientation of the cell’s
rubbing direction with respect to the crossed polarizers is indicated by the bars
and arrows, respectively.
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Macroscopic photographs of electro-optic test cells filled with dispersions of 0.5 %
(w) AuSH12(,,) particles (top) and 1.0 % (w) AuCB particles (bottom) in the ne-
matic host 5CB. The images are taken at Ty —7T = 8 K using a white light source
between crossed polarizers. The orientation of the cell’s rubbing direction with
respect to the crossed polarizers is indicated by the bars and arrows, respectively.

96



(see section 3.5.1, measurement of threshold voltage Vrp, and dielectric anisotropy Ae). In
contrast, dispersions of the semiconductor particles CdSe590 and CdSe610 in 5CB as well as
dispersions of msCdSe and msCdSe:Zn in FELIX-2900-03 do not show field induced align-
ment changes (see figure 4.31). Dispersions of the gold particles AuSi in FELIX-2900-03
are also found to be stable under the influence of an electric field, and do not change the

properties of the polyimide alignment layer.

These field-induced alignment changes occur only within the active I'TO-electrode areas
of the electro-optic test cells, and exhibit a sharp boundary line to the unaltered planar
alignment in the surrounding. In figure 4.33, microscopic photographs of one edge of a
sample of 2.5 % AuCB in the nematic mixture EN18 (Chisso Corporation, Ae = -6 at
T = 25°C, [89]) after treatment in electric fields are shown. The nematic mixture EN18 is
used as a host material for the analysis of phase gratings (see section 4.5.1), and features a
negative dielectric anisotropy Ae. However, similar alignment changes are obtained in the
host 5CB. By rotating the sample by 45° between crossed polarizers (figure 4.33 (a) and
(b)), it can clearly be seen that the homogeneous planar alignment outside of the electrodes
remains unaltered, while the area within the electrodes is optically isotropic and remains
dark. Without polarizers, a yellowish to brownish precipitate is found to reside on the elec-
trodes. Small birefringent domains within the electrodes occur only on positions where this
precipitate is absent (compare figures 4.33 (b) and (c¢)). As in electro-optic test cells used for
these investigations (E.H.C Co., Ltd Tokyo, Japan) the upper and lower transparent elec-
trode areas have different dimensions, a small frame of the larger electrode has no directly
opposing counter electrode, and the electric field strength in this area is significantly lower
than between both electrodes. As shown in figure 4.33 (c), this ITO-frame is visible under a
microscope, but features no alignment changes of the liquid crystal molecules. This strongly
indicates that the alignment changes are caused under influence of an applied electric field,
and are not related to an initially different surface anchoring of molecules on the polyimide
coated ITO electrode compared to the polyimide coated glass without electrode material.

The appearance of a yellowish to brownish precipitate on the active ITO electrodes after
applying electrical fields indicates a drag of particles to the surfaces. However, an elec-
trophoresis requires a charged interface between the nanoparticles and the nematic host,
which allows the particles to move under the influence of an external electric field. The
direction of movement would then depend of the sign of charges. By applying a DC voltage
of 30 V for 1 hour on a sample containing 5 % (w) of AuCB particles in 5CB, a yellowish
precipitate on the active electrode area of the test cell is observed. Breaking the test cell
open reveals that this precipitation covers both substrates, what is somewhat unexpected:
Charged particles with only positive or negative charges would move into one direction un-
der the influence of a DC bias only. Interestingly, this precipitation also occurs under the
influence of an AC field of 1 kHz, which should not lead to a directed drag of particles onto
the surface at all. Because of these surprising observations, a closer look on possible origins
of charges within the nanoparticle / liquid crystal dispersions appears necessary.
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Figure 4.33: Polarizing optical micrographs of a sample containing 2.5 % (w) AuCB particles in
the nematic host EN18 after applying a sinusoidal AC field of 1 kHz at 25 V., for
30 min. Images are obtained under white light illumation at room temperature,
arrows and red bars indicate the orientation of polarizers and the cell’s rubbing
direction, respectively, the bars on the bottom of each picture represent 100 pm.
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It is striking that these precipitation effects are only observed for metallic gold nanoparti-
cles, while all semiconductor nanoparticles investigated in this work do not show an altering
of alignment layers under the influence of electric fields. However, the metallic core of a
functionalized gold nanoparticle is initially uncharged, and a resulting net charge of the
functionalized particle can only be caused by the adsorption of ions on the particle sur-
face or the desorption of charged ligands, as stated by Turkevich et al. in reference [90].
The authors of this study suggest that the chemically bound organic ligands are sources
for positive or negative charges, which form a Stern layer on the particle’s surface. This
Stern layer is then surrounded by a diffuse Debye atmosphere of counter ions, whose Debye
length ! depends on the total ion concentration in the nematic host. In consequence, the
core material has no direct influence on the charge of particles, but can only promote or
hinder the adsorption, chemisorption or desorption of charged ligands. For all gold particles
investigated in this work, thiol-groups are used to anchor ligands onto the core. It is well-
known that sulfur has a high affinity to gold, and the resulting Au-S bond has a homolytic
bond strength of ca 210kJ/mol [91]. Compared to a typical S-S homolytic bond strength
of a dialkyl disulfides of ca. 240kJ/mol [92], the Au-S bond can be considered a strong
covalent bond. In comparison, the functionalization of CdSe590 and CdSe610 particles with
hexadecylamine results in a highly uniform distribution of amino groups that are strongly
hydrogen-bonded to Cd and Se atoms of the core [93]. The typical hydrogen bonding energy
on a Cd or Se surface is in the order of 10-100 kJ/mol [94], and therefore significantly smaller
than the bonding energy between Au and S. However, as the altering of alignment layers
only occurs for thiol-capped particles, the ligand exchange for these particles is expected to

be more vivid than for the semiconducting CdSe particles.

As a drag of particles in only observed for gold species, charges on CdSe particles in
dispersion seem to be neglectable. Hence, the different synthesis routes for AuSi, AuCB
and AuSH12(,,) particles are analyzed for possible sources of ionic impurities and charges
on the particles, which cause a drag of latter in external electric fields.

Dodecanethiol functionalized nanoparticles AuSH12(,,) are synthesized following a Brust-
Schiffrin approach [56]. In this procedure, an aqueous solution of chloroauric acid HAuCly
is reduced by sodium borhydride NaBHy4 in the presence of tetraoctly-ammoniumbromide as
phase transfer agent, yielding small nanoparticles in an apolar solvent like toluene. At first,
the nanoparticles are stabilized by tetraoctly-ammoniumbromide ligands, which are only
loosely bound and can easily be replaced by thiol ligands. However, latter phase transfer
agent is in general a problematic impurity and can barely be completely removed from the
reaction product [49]. An insufficient cleaning procedure of the nanoparticles gives rise to a
ionic contamination by tetraoctly-ammoniumbromide.

The AuCB particles are synthesized via the Hutchinson-method as reported in refer-
ence [63], which utilizes triphenylphosphine capped particles as an intermediate species.
Therefore the Hutchinson method is a two-step method, which is still closely related to
the well-known Brust approach. Again, the first step is the reduction of chloroauric acid
HAuCly by sodium borhydride NaBHy in the presence of tetraoctly-ammoniumbromide as
phase transfer agent, so the aforementioned impurity problem also occurs in this approach.
In addition, Weare et al. showed that the average empiric molecular formula of nanoparti-
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cles synthesized via this method is Aujg; (PPhs)21Cls, giving rise to 3.7 % (w) of not fully
reduced gold species [63].

The synthesis of AuSi particles requires several additional steps for the silanization of
silane-ligand shell as described in reference [95]. However, the initial functionalization of
gold nanoparticles is again carried out with silanized thiol-ligands in a one-phase synthesis as
described in reference [96], and uses tetrabutylammonium borohydride as reducing reagent.
So also in this approach ionic impurities could be expected, but the silanized AuSi particles
show a high stability under the influence of electric fields.

In conclusion, the origin of electrophoresis in dispersions containing AuCB and AuSH12,,)
particles is presumably less connected to additional ionic impurities by contaminants, but
more to charges on the particles itself. These could be caused a loss of thiol ligands for latter
particles, while the desorption of ligands is prevented by the silanization of AuSi particles.
As shown above, the Au-S in general is relatively strong. However, vivid ligand exchange re-
actions of thiol-ligands on gold particles occur and can be used for the synthesis of particles
with prescribed compositions of different ligands [57]. It can be assumed that the breaking
of the Au-S bond during the desorption of thiol-ligands is heterolytic, yielding negatively
charged thiol-endgroups instead of thiol radicals. This could be one source of charges in the
dispersion, leading to positively charged gold cores and negatively charged ions in the host.
The different degree of electrophoresis then depends on the Debye length x~! around the
single particles, which correlates with the total amount of ionic impurities.

Another observation that supports the hypothesis of ligand loss as source for charged
species is the change from birefringent to non-birefringent behavior in areas with high ag-
glomerate density. As shown before, the field induced altering of the polyimide alignment
layer can lead to an optically isotropic alignment of molecules on the substrates, where the
resulting dark state within the electrode area remains dark under rotation of the sample be-
tween crossed polarizers. Hence, either the alignment is changed to homeotropic alignment,
or the liquid crystalline order vanishes and the isotropic phase occurs. By tilting the sample
between crossed polarizers to polar angles up to 8 = 45°, a coexistence of both states can
be confirmed: While some domains clearly show birefringence at large polar angles, other
areas remain dark for every orientation between crossed polarizers.

The appearance of isotropic domains is found to be associated to high particle concen-
trations. In a 10pm test cell filled with a dispersion of 2.5 % (w) AuCB in the nematic
mixture EN18, a semicircular circlet of agglomerated particles at constant distance to the
filling point appears. This observation is strongly related to the semicircular precipitation
of CdSeb90 and CdSe610 particles in the host FELIX-2900-03 as reported in section 4.4.3.
The semicircular shape can be explained by the filling procedure, where single droplets of
dispersion are stepwise placed near the cell gap between the glue spacers of the test cell.
Due to a depletion effect, agglomerates of particles are not dispersed in the nematic liquid
crystal, but reside on the liquid crystal / air interface that floats through the cell gap by
capillary forces. After the first droplet of dispersion has completely entered the cell, but
before the second droplet is placed near the cell gap, the agglomerates are expelled from
the nematic phase and reside on the interface, forming a semicircular circlet on the surface.
After the second droplet is placed near the cell gap, the filling continues with no or less
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Figure 4.34: Mosaic pictures of a dispersion of 2.5 % (w) AuCB particles in the nematic host
EN18, assembled of 130 single polarizing optical microscopy images obtained with
a M=5 objective under white light illumination at room temperature. Arrows
and red bars indicate the orientation of polarizers and the cell’s rubbing direc-
tion, respectively, the bars on the bottom of each picture represent 1 mm. The
white framed inlay in the left picture (a) is a magnification of the marked area,
visualizing the presence of agglomerates of particles in a semicircular circlet from
the filling point. Image (b) is obtained by rotating the sample shown in image (a)
by an azimuthal angle of 45°, image (c) shows the same sample after applying a
sinusoidal AC field of 1 kHz at 25V, to the sample for 30 min.

agglomerates residing at the liquid crystal / air interface.

Mosaic pictures of this sample are shown in figure 4.34, depicting a large part of the
polyimide coated test cell. These images are obtained by assembling 130 single polarizing
optical microscopy photographs each, and allow a very high resolution for details within
the test cell. The aforementioned circlet of particles can easily be spotted between crossed
polarizers, with an angle ¢ between the easy direction of the cell and the plane of polar-
ization of the incident light of 0° or 90° (see figure 4.34, (a)). By rotating the polarizers
to an azimuthal angle of ¢ = 45° to the easy direction of the sample (figure 4.34, (b)),
the agglomerates are harder to spot, but the initial homogeneous planar alignment of the
molecules due to the rubbed polyimide alignment layer gets clearly visible. After applying
an sinusoidal AC field of 1kHz at 25 V,,,s to the sample for 30 min, the alignment within
the active electrode area changes to an optically isotropic state, with only few birefringent
domains left. Conspicuously, no birefringent domains appear in the area of the semicircular
agglomeration circlet. In this area, the sample appears completely dark and the dispersion
exhibits isotropic phase behavior only, as proved by tilting the sample between crossed po-
larizers. Hence, it is found that under the influence of external electric AC fields, a locally
high particle concentration of AuCB particles leads to a loss of nematic order, while lower

particle concentrations of AuCB induce homeotropic alignment.
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Figure 4.35: Polarizing optical microscopy images of an field-induced Fréedericksz transition
of EN18 molecules from homeotropic (left, field OFF) to planar (right, field ON)
alignment. Images are obtained under white light illumination at room temper-
ature, arrows and red bars indicate the orientation of polarizers and the cell’s
rubbing direction, respectively.

Considering the observations made for AuCB and AuSH12,,) particles in 5CB, a model
is developed that explains the behavior of these dispersions under influence of an electric
field. The particles carry positive charges, due to the desorption of anionic thiol ligands.
Under the influence of an electric field, the particles and ligands move along a field gradient
within the cell to the liquid crystal / substrate interface. By residing on the substrates, they
superimpose the effect of the polyimide alignment layer and induce homeotropic alignment.
After exposure to high field strengths or after long exposure to the electric field, a large
amount of ligands moves from the particles into the liquid crystalline host. Above a certain
concentration of dissolved ligands, this process leads to a loss of liquid crystalline properties.
Taking into account the number of ligands per nanoparticle as determined by Draper et al.
in reference [14], a particle concentration of 5 % (w) AuCB in 5CB can lead to a maximum
molar fraction of ligands of 1.71 x 10~2 in the dispersion.

The field induced deposition of nanoparticles or ligand molecules onto the surface can be
used to intentionally superimpose the effect of the polyimide alignment layer of the electro-
optical test cell and induce homeotropic alignment. In nematic hosts with negative dielectric
anisotropy Ae, this offers the possibility to achieve an electrical switching of molecules also
in polyimide coated and therefore planar aligned cells. An experimental proof of principle
is given in figure 4.35, where optical polarizing microscopy images of a dispersion of 2.5 %
(w) AuCB in EN18 in a polyimide coated electro-optical test-cell are shown. By applying
electrical AC fields, the polyimide alignment layer has been superimposed by nanoparticles
and ligands, and homeotropic alignment is obtained (figure 4.35, left). By applying an AC
field (1kHz, 20 V,.,,5), a Fréedericksz transition is induced in the right part of the sample,
which leads to a birefringent schlieren texture (figure 4.35, right). Obviously the switching
does not take place over the whole sample, which is presumably attributed to a loss of liquid
crystalline properties in the non-switching areas shown in figure 4.35.
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Possible applications: Switchable phase gratings

As shown in the previous section 4.5, the nanoparticles AuSH12(,,y and AuCB can be in-
tentionally precipitated from the dispersion onto the substrate’s surface by applying electric
fields to the test cell. This feature of nanoparticle / liquid crystal dispersions can be used
for the preparation of two-dimensional phase gratings. The following section aims to give a
short overview over different approaches for the utilization of liquid crystals in phase grat-
ings, and presents first experimental results with nanoparticle / liquid crystal dispersions.

Phase gratings are optical devices that manipulate the phase of transmitting light by
adding a phase retardation to the propagating wave. By adjusting the spatial distribution
and the magnitude of phase retardation added, complex diffraction phenomena can be gen-
erated. These devices find applications in projection displays, beam steering, slitting or
filtering devices as well as in light shutters [97].

In order to obtain gratings with a tunable phase retardation, the use of liquid crystalline
materials is a common tool. Liquid crystals can offer a high birefringence, which allows
applications with thin film gratings, and their birefringence is electrically adjustable.

The first types of liquid crystalline phase gratings make use of a sinusoidal director dis-
tribution in electrohydrodynamic instabilities. In 1973, Kashnow and Bigelow reported
that weakly conducting nematic liquid crystal can be used as a phase grating material [98].
The authors utilize convection rolls in the Williams regime or two-dimensional patterns in
the chevron regime of electrohydrodynamic instabilities in nematic materials with negative
dielectric anisotropy (see reference [99]).

Another approach for tunable phase gratings and more commonly used in technology is a
Fréedericksz-type reorientation of a nematic liquid crystal in an electric field to adjust the
optical phase retardation. In reference [100], Resler et al. present an one-dimensional beam
steerer for infrared wavelengths. A planar aligned nematic liquid crystal is used as active
medium, and deliberately reoriented by a one-dimensional array of electrodes. The resulting
one-dimensional phase grating allows the deflection of an incident plane wave perpendicular
to the electrode grating. A two-dimensional phase grating for the visible range is reported
by Sakata et al. in reference [101]. The authors utilize one-dimensional groove gratings to
homogeneously orient a nematic liquid crystal, and present a two-stack device with crossed
grating directions that works as a light shutter without additional polarizers.

The approach followed in this work utilizes a two-dimensional array of homeotropically and
planar aligned surfaces, that are prepared by the selective deposition of AuCB nanoparticles
on the dispersion / substrate interface. The use of a structured alignment layer for a two-
dimensional phase grating is also reported in references [102] and [97]. However, the authors
of these studies use photoalignment techniques to obtain structured alignment layers, while
this work aims to utilize the special properties of nanoparticle doped liquid crystals.

The deposition of particles onto the surface is caused by electric fields, thus structured elec-
trodes are needed for the selective deposition of particles. Therefore, a comb like structure
of ITO-on-glass electrodes is used. Assembling the substrates by an angle of 90° gives a cell

with a regularly arranged pattern of squared pixels that can be used for a Fréedericksz-type
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reorientation of molecules. The general idea of this phase grating with patterned electrodes
is shown on top of figure 4.36. For a nematic liquid crystal with negative dielectric aniso-
tropy as the mixture EN18 (Chisso Corporation, Ae = -6 at 25°C, [89]), the substrates are
prepared with lecithine to obtain homeotropic alignment. By applying an external electric
field above the threshold voltage of the Fréedericksz transition, a reorientation of the liquid
crystal molecules perpendicular to the field direction occurs, and between crossed polariz-
ers the pixel appears bright due to a birefringent schlieren texture. A schematic model of
the molecular reorientation is shown on bottom of figure 4.36 below the experimental results.

The structured electrodes are prepared by photo-lithography using a photoresist (POSI-
TIV 20) and ink-jetted photo masks for selective UV-light exposure. For the preparation,
ITO-substrates are coated with the photoresist and dried at 70°C for 60 min. Then the
photo-masks are placed onto the substrates, and the substrates are exposed to UV-light for
150 s. The unexposed photoresist is removed by washing the substrates in 1 molar NaOH
solution. In order to selectively remove ITO via etching, the substrates are etched with
3 molar hydrochloric acid and zinc powder. Due to very high etching rates, etching times
of more than 3-5 s lead to a strong underetching of the photoresist. A buffered NaHCOj3
aqueous solution is used to immediately stop the etching process. Finally, the photoresist is
removed by acetone, and the substrates are cleaned as described in the experimental section.

The use of ink-jetted photo masks gives rise to a minimum lattice constant of the ITO elec-
trodes to ca. 500 pm. This is at least one magnitude too large for control over plane waves
in the visible range, as reported in reference [103]. In addition, the patterned electrodes give
rise to fringing-fields, which do not allow a precise control of the spatial phase retardation
distribution of the cell (see reference [104]). In conclusion, the experiments shown here
can only be a proof of principle that the intentional spatial deposition of nanoparticles is a
suitable method for obtaining structured alignment layers.

When using a sample with initial planar alignment, a similar switching effect can be
achieved for liquid crystalline materials with a positive dielectric anisotropy. However, the
use of materials with a negative dielectric anisotropy offers the utilization of the special
properties of nanoparticle / liquid crystal dispersions with AuCB particles: In a sample
with initial planar alignment, high electric fields can be used to deposit the nanoparticles
onto the active electrode pixels. This results in a regularly array of pixels with homeotropic
alignment in a planar surrounding. After deposition, the liquid crystal material can be
electrically switched as schematically shown in figure 4.37. In contrast to the grating shown
in figure 4.36, such a grating would be active with no applied electric field, and the contrast
of spatial phase retardation can be decreased by applying voltages above the threshold
voltage of the Fréedericksz transition.

However, the implementation of this idea in experiment has not been successful. For
this experiment, a dispersion of 1 % (w) AuCB in EN 18 is used and filled in a self-made
test cell with structured electrodes and a polyvinylalcohol alignment layer for initial planar
alignment. The lower concentration of particles compared to the results shown in section 4.5
above is justified to avoid a decomposition of particles and a loss of nematic order. However,
the targeted deposition of nanoparticles onto the active pixels after applying as well AC and
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Figure 4.36: Scheme of the general idea of a phase grating using nematic liquid crystals and pat-
terned electrodes. Top: Schematic drawing of a self-built test cell. Two comb like
electrodes are placed under an angle of 90° to give a regularly array of square pix-
els. Middle: Experimental realization of this concept for a cell with homeotropic
alignment, filled with the liquid crystal mixture EN18 featuring a negative dielec-
tric anisotropy. Bottom: Schematic model of the field-induced molecular reorien-
tation.
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Figure 4.38:

Schematic model of a targeted deposition of AuCB nanoparticles onto the active
ITO electrodes, which induces an alignment change of the nematic host from
initially planar alignment to homeotropic alignment.
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Polarizing optical micrographs of a phase grating after targeted deposition of
particles from a dispersion of 1.0 % (w) AuCB particles in EN18. Images are
obtained under white light illumation at room temperature, arrows and red bars
indicate the orientation of polarizers and the cell’s rubbing direction, respectively.
The lack of switching contrast between the field OFF state (left) and the field ON
state (right) indicates an insufficient deposition of nanoparticles onto the surface.
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Figure 4.39: Top: Polarizing optical micrographs of a short-circuited phase grating containing a
dispersion of 1.0 % (w) AuCB particles in the host EN18, before (a), immediately
after (b) and a few seconds after switching on an external electric field (¢). Arrows
and red bars indicate the orientation of polarizers and the cell’s rubbing direction,
respectively. Bottom: Schematic drawing of the loss of nematic order due short-
circuiting heat.

DC fields up to 30 V is not sufficient to superimpose the initial planar alignment layer
and induce homeotropic alignment. As can be seen in figure 4.38, polarizing microscopy
images obtained between crossed polarizers only show slight color changes on the active
pixels instead of an array of black squares. This indicates that the deposition of particles
has only induced a slight change in alignment, but the planar alignment layer still dominates
the overall orientation of the liquid crystal molecules.

Another problematic effect is illustrated in figure 4.39, which shows the short-circuiting
of a test cell. The gold nanoparticles AuCB do not exhibit a very good solubility and misci-
bility in the host EN18, which leads to the formation of agglomerates. These agglomerates
are not filtered by the cell gap, which is estimated to be ca. 15 pnm in this case, and therefore
can enter the cell gap. Here they form a conductive connection between the electrodes on
the upper and lower substrate, and applying a voltage causes a short-circuit current. In
consequence, the gold agglomerates as well as the ITO electrodes serve as heating resistors,
which get heated by the current flow. In consequence, an electrical switching of the phase
grating is not possible, and the increasing temperature in the surrounding of the agglom-
erate heats the liquid crystalline host into the isotropic phase. This can clearly be seen in
polarizing optical microscopy images shown in figure 4.39 (top). A molecular model of the
spatial spreading of the isotropic phase is shown in below the experimental results in figure
4.39. As Schnabel et al. argue that coated gold nanoparticles act as non-conductive par-
ticles because of their dense insulating organic ligand shell [105], the conductive properties
observed here can be seen as additional indication of a strong desorption of ligands from
the particles.
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4.5.2 Reverse switching - Electroconvection via nanoparticle doping

As firstly reported by Qi et al. in reference [62], doping the nematic host FELIX-2900-03
with alkylthiol capped gold nanoparticles can completely reverse the electro-optic response
of the dispersion compared to the pure host. The authors found that AuSH6 or AuSH12y)
gold particles in FELIX-2900-03 can induce homeotropic alignment in an electro-optic test
cell, when the mixture is slowly (1°C/min) cooled down from the isotropic phase. When
applying external electric fields to the sample, the dispersion switches from homeotropic to
a birefringent alignment. This is usually only found for nematic liquid crystalline materials
with a negative dielectric anisotropy, although experiments clearly prove a positive dielectric
anisotropy of the nanoparticle / liquid crystal dispersion. However, when the mixture is
cooled down from the isotropic to the nematic phase under the influence of an external
electric field and the field is switched off after cooling, the dispersion shows planar alignment
comparable to an undoped sample. Being in this state, an external electric field switches
the alignment from planar to homeotropic, as expected for a nematic material with positive
dielectric anisotropy. In order to reveal the origin of this unusual switching behavior, detailed
electro-optical studies on dispersions of AuSH12(,) in FELIX-2900-03 are performed. The
results of this study have been published in reference [60] already.

The electro-optic test cells (LC vision, USA) were prepared and filled with by Brandy
Kinkead in Prof. Hegmann’s group, electro-optic experiments were performed in own work.
Before measurement, the test cells are heated up to the isotropic phase and then slowly
(1°C/min) cooled down. All electro-optical measurements shown here are performed at
Tny—T = 3K. While the undoped FELIX-2900-03 shows a homogeneous planar alignment
induced by the rubbed polyimide alignment layer of the electro-optic test cell, the mixture
doped with 5 % (w) of AuSH12(,) shows mainly homeotropic alignment, in agreement with
the observations by Qi et al. cited above (see figure 4.40 for POM images).

The electrical switching behavior of both samples changes fundamentally with the fre-
quency of the applied external AC bias. At a test frequency of 1kHz, the pure FELIX-2900-
03 shows a typical Fréedericksz transition from planar to homeotropic alignment, while the
nanoparticle dispersion shows almost no response to the external field. This can simply be
explained by the initial homeotropic alignment of liquid crystal molecules in the dispersion,
which is stabilized by the external field perpendicular to the substrates. However, at test
frequencies below 1Hz, only the field-dependent light transmission of the undoped sam-
ple remains unaltered, while the doped sample shows a clear switching of alignment to a
birefringent state.

The switching characteristic for both samples in this low frequency regime is shown in
figure 4.41. The pure liquid crystal switches from a birefringent bright state, caused by
parallel alignment of the molecules to the substrates, through some intensity oscillations to
a non-birefringent or homeotropic dark state. This represents a typical field-dependent light
transmission characteristic of a Fréedericksz transition for nematic materials with positive
dielectric anisotropy and initial planar alignment. The critical voltage Vry 7 for this tran-
sition is calculated to be 4.3 V,,,s. The nanoparticle dispersion, however, shows a reversed
switching behavior. While the director is homeotropically aligned in the field-off state, the
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(a) (b)

Figure 4.40: Polarizing optical microscopy images of (a) the pure liquid crystal FELIX-2900-
03 and (b) a mixture of 5% (w) of AuSH12(,y in FELIX-2900-03. The white bar
represents 100 pm, the arrows the position of polarizer and analyzer, respectively.
The rubbing direction of the cells was adjusted at an azimuthal angle of ¢ = 45°
between crossed polarizers. Both samples were heated up to the isotropic phase
and then cooled at a rate of 1°C/min to T = Tx; — 3K, a white light source
was used for illumination.

director distribution changes to a birefringent state above a threshold voltage of roughly
10 Vs, without undergoing intensity oscillations. As reported by Qi et al. in reference
[62], this threshold for the inverse switching is independent from the particle concentration
in the dispersion. The observed switching from homeotropic to seemingly planar alignment
for the doped sample is very surprising, as the liquid crystal host FELIX-2900-03 exhibits
a positive dielectric anisotropy, so that external electric fields perpendicular to the sub-
strates should lead to a stabilization of homeotropic alignment, and not to switching to a
birefringent state. The switching is completely reversible, as the director reorients back to
homeotropic alignment when the applied voltage drops below the threshold voltage or when
the external field is turned off.

The homeotropic alignment in the doped mixture presumably is caused by gold particles
residing at the liquid crystal / substrate interface, forming a monolayer and superimposing
the orientational effects of the polyimide alignment layer (see section 4.4.3). In the bire-
fringent bright state, polarizing microscopy images show parallel stripes perpendicular to
the rubbing direction of the cell, as depicted in figure 4.42 at different magnifications. The
distance between two parallel stripes is determined to be 8-9 pm, and therefore in the range
of the cell gap. These regular patterns are identified to be electrohydrodynamic instabilities,
which can emerge at sufficiently low AC frequencies and above a certain threshold amplitude
[98].

The transition from the dark state shown in figure 4.40 (b) to a bright state as shown in
figure 4.42 indicates that the homeotropic alignment induced by the nanoparticles becomes
unstable when applying an external field perpendicular to the substrates, which leads to a
rotation of the long axes of the molecules away from the direction of the external electric
field. Finally, this instability leads to the formation of convection rolls. These convection
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Figure 4.41: Electro-optic characteristic of (left) the undoped FELIX-2900-03 and (right)
FELIX-2900-03 doped with 5% (w) of AuSH12(,) at an AC frequency of 0.01 Hz.
The measurement is performed with an interference filter for monochromatic light
(A =579nm).

(a) (b)

Figure 4.42: Parallel convection rolls due to electrohydrodynamic instabilities in FELIX-2900-
03 doped with 5% (w) of AuSH12(,y at an applied DC bias of 30 V. The white
bar represents 100 pm, the arrows the position of polarizer and analyzer, respec-
tively.(a) Magnification 10x, (b) magnification 32x. The convection rolls have a
spacing of 8-9 pm.
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rolls reproducibly form parallel stripes, what indicates that the polyimide alignment layer
still has an effect on the liquid crystal alignment, in spite of the homeotropic alignment
induced by the nanoparticles.

The reverse switching behavior and the appearance of electrohydrodynamic instabilities
are similar to recent experimental observations made on electroconvection by Buka et al.
as reported in references [106], [107] and [108]. In all three cases, the authors report the
appearance of electroconvection in a nematic liquid crystal with positive dielectric aniso-
tropy, negative conductivity anisotropy and initial homeotropic alignment. Convection rolls
similar to results shown in figure 4.42 are reported to appear at low frequencies, while higher
frequencies lead to the formation of square patterns, which could not be observed in the
nanoparticle dispersions investigated here.

To test whether the present nanoparticle/liquid crystal dispersion is indeed an example
for a (+, -) nematic system according to [107], the dielectric anisotropy in the temperature
range near the phase transition temperature is measured. The dielectric permittivities par-
allel ¢ and perpendicular €, to the director are shown in figure 4.43 for the temperature
range from T" = Tyn; — 14K to the isotropic phase for the pure liquid crystal FELIX-
2900-03. At the temperature of the electro-optic measurements, the dielectric anisotropy is
found to be positive with an absolute value of about Ae = 40.55. A reliable measurement
of the conductivity anisotropy Ao has not been successful, as conductivity measurements
with the LCR bridge HP4284A did not give reproducible data. In consequence, only two
preconditions (homeotropic alignment and positive dielectric anisotropy Ae) for electrocon-
vection in a (+, -) nematic system are obviously fulfilled, while the negative conductivity
anisotropy remains to be proven. A simplified schematic model of the nanoparticle induced
formation of convection rolls is shown in figure 4.44.

In order to point out the dual alignment modes of the nanoparticle dispersion reported
by Qi et al. in reference [62], measurements at a more typical frequency for electro-optical
experiments of 1kHz instead of 0.01 Hz are performed. At this frequency, the pure FELIX-
2900-03 shows again the characteristic of a typical Fréedericksz transition from planar to
homeotropic alignment. This indicates that the DC behavior of the liquid crystalline host
does not generally differ from its AC behavior. However, the reverse switching of the doped
samples does not appear at high AC frequencies. As the director is homeotropically aligned
in the initially field-free state, this orientation is even stabilized by the applied field, resulting
in a completely dark characteristic.

A different switching characteristic is observed when the doped liquid crystal is rapidly
cooled from the isotropic phase (10°C/min). In this case, the homeotropic alignment does
not appear, but the liquid crystal orients parallel to the substrates due to the polyimide
alignment layer of the cell. For this initial alignment, the doped liquid crystal shows also
the typical characteristics of a usual Fréedericksz transition similar to the undoped liquid
crystal. The behavior shown in figure 4.45 confirms that the nanoparticle / liquid crystal
dispersion exhibits a positive dielectric anisotropy as the undoped compound. In both cases,
the positive dielectric anisotropy drives the molecules to orient parallel to the electric field.
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Figure 4.43: Measurement of the permittivities parallel ¢| and perpendicular € to the director
in a sample filled with the host FELIX-2900-03. The dielectric anisotropy Ae is
proved to be comparable small, but positive for this host.

Figure 4.44: Simplified model of electroconvection rolls in a gold nanoparticle dispersion with
nanoparticle induced homeotropic alignment.
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Figure 4.45: Electro-optic characteristic of (left) the undoped FELIX-2900-03 and (right)
FELIX-2900-03 doped with 5% (w) of AuSH12(,) at an AC frequency of 1 kHz.
While the cooling rate has no influence on the switching characteristic of the un-
doped sample, the doped sample shows a clear difference in the field dependent
light transmission. All measurements are performed with an interference filter for
monochromatic light (A = 579 nm).

As stated by Qi et al. in reference [62], nanoparticle induced homeotropic alignment and
the formation of convection rolls are more likely to be observed in thinner cells. The au-
thors contribute this to a more advantageous interface to bulk ratio, as a certain amount
of particles is required to reside on the interface in order to induce homeotropic alignment.
However, the formation of convection rolls is also a bulk property, as nanoparticles influence
on the conductivity properties of the bulk. As demonstrated by Kashnow and Bigelow in
reference [98], a sufficiently conducting nematic liquid crystal is required for the formation
of electrohydrodynamic instabilities. Hence, the role of nanoparticles in the bulk of the
dispersion is presumably connected to an increase of charges, as discussed in section 4.5.1.
Additionally, an homogeneous charge carrier distribution is required for the formation of
convection rolls, which is confirmed again by observations of Qi and co-workers in reference
[62]. The authors point out the crucial role of a high miscibility of nanoparticles in the
respective host, as reverse switching has only be observed for well dispersible alkylthiol-
capped gold particles in the apolar host FELIX-2900-03, while in the more polar hosts 5CB
or 8CB with less miscibility of aliphatic capped particles reverse switching has barely been
observed. In another work of these authors (see reference [78]), the authors report that the
reverse switching mode has not only been observed for functionalized gold particles, but
also for silver or CdSe particles of a similar size regime. This underlines that the choice
of core material is less crucial for the appearance of convection rolls, but presumably the
ability of nanoparticles to induce homeotropic alignment and increase the conductivity of
the host material. Assuming the nanoparticle dispersion to be a (+, -) nematic system, a
negative Ac = o — o is required. According to Blinov and Chigrinov, the anisotropy of
the conductivity Ao depends on the type of dopant [24]. As the conductivity of a material
is connected to the charge carrier mobility, it is directly related to the diffusion coefficients
of charge carriers. Therefore for the nematic phase, a negative Ao requires a larger diffusion
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coeflicient perpendicular to the director n than parallel to n. This seems unlikely for com-
parable large nanoparticles, so presumably the anisotropy of conductivity is not caused by
the particles themselves, but only mediated by the generation of charged molecular dopants
like charged thiol-ligands or other impurities.

4.6 Discussion of electro-optic properties

This section gives an overview over the electro-optical data threshold voltage Vi, dielectric
anisotropy Ae and switching times 7,jse and Tgecqy of the nanoparticle / liquid crystal dis-
persions investigated in this work. As shown in section 4.3, nanoparticle doping can induce
a shift of phase transition temperatures. Therefore all data is plotted versus T — Ty, as
according to results by Kurochkin et al. the change in nematic properties depends on the
reduced temperatures only, and not on the absolute values [109]. Taking into account the
results about alignment and behavior in electric fields presented in the previous sections
as well as data from literature, conclusions about the correlation between particle or host
properties and the resulting electro-optical properties of the dispersions are drawn.

The electro-optic results for AuCB particles in the host 5CB are shown in figure 4.46.
For this nanoparticle / liquid crystal combination, doping of the nematic host clearly in-
creases the threshold voltage of the Fréedericksz transition. In the concentration regime
investigated, this increase in threshold is found to be proportional to the particle concen-
tration. In addition, the temperature dependence of Vi, is reversed due to the presence of
nanoparticles. While the pure host shows a slight decrease of threshold voltage with increas-
ing temperature, all dispersions show an increase of threshold with increasing temperature.
This is presumably connected to the electric properties of the dopant, an explanation model
for these observations is given later in this section.

The observations on the threshold of the Fréedericksz transition presented here are in clear
contradiction to results reported for the same nanoparticle / host combination by Draper et
al.. In reference [14], the authors report a large reduction of Vi, for dispersions containing
AuCB particles, or similar mesogenic functionalized gold nanoparticles.

However, although the composition of the nanoparticle/ liquid crystal dispersion is iden-
tical in both studies, the methodical approach in the determination of threshold differs.
Draper et al. use the analysis of field dependent capacitance change for the determination
of threshold (V7y,p), while the data shown here are calculated from transmittance measure-
ments (Vrp, 7). As presented in section 4.5, dispersions of AuCB particles in 5CB are not
stable under the influence of an external electric field, but nanoparticles tend to precipitate
onto the substrates. The surface coverage of particles on top of the initial polyimide align-
ment layer reduces its surface energy, and can even act as an additional alignment layer for
homeotropic alignment. This effect is pronounced differently in different areas of the active
electrode area. While transmission measurements can now selectively choose small regions
without noticeable surface coverage for data acquisition, the capacitance is measured always

over the complete electrode area and cannot consider local changes in alignment. As an in-
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Figure 4.46: Plots of electro-optic data (Vrp, Trise and Tdecay) vs. T — Tny for dispersions
of AuCB particles in 5CB at different particle concentrations. The plot of Ae
vs. T — Ty is missing, as dielectric data are not available due to field-induced
alignment changes.

dicator for the absence of surface coverage in transmission measurements, a well-defined
threshold in the field-dependent light transmission characteristics is used. In conclusion,
threshold voltages Vrp 7 obtained from transmission measurements are more reliable in
these AuCB / 5CB dispersions with instable alignment properties.

As a consequence of these instabilities, reliable capacitance data are only accessible for
small test signal amplitudes clearly below the threshold voltage of the Fréedericksz transi-
tion. Hence, only the permittivity perpendicular to the molecules can be measured, while
the analysis of ¢ and the dielectric anisotropy Ae is not possible in these dispersions. The
temperature dependent permittivities for a 1 % (w) doped AuCB sample and the pure host
5CB are shown in figure 4.47.

For capacitance measurements perpendicular to the molecules, Draper et al. report a
large reduction in capacitance up to negative capacitances of -4 nF when gold nanoparticles
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Figure 4.47: Results of temperature dependent capacitance measurements for 10 pm test cells
filled with the pure host 5CB and a dispersion of 1 % (w) AuCB in 5CB.

are present in the mixture (see reference [49]). The authors attribute this observation to
the plasmon properties of the gold particles being coupled to the applied field. However,
own measurements cannot confirm the appearance of negative capacitances perpendicular
to the molecules. Instead, positive values in the range between 5-7nF are obtained (see
figure 4.47), which roughly correspond to the absolute values of the capacitances given by
Draper et al. in reference [49]. This pronounced increase of measured permittivity for the
doped sample compared to the pure host in general does not match physical models about
the influence of dopants on the effective permittivity. As reported by Barbero et al. in
reference [110], the effective dielectric constant of a dispersion with small concentrations of
dopant is independent of the doping. This could be confirmed by own measurements of the
silanized particles AuSi in FELIX-2900-03, as discussed later in this section (see figure 4.61).

The analysis of switching times via light transmission measurement reveals a clear de-
crease in rise times 7,45 for doped samples. A particle concentration dependent trend for
decay times Tgeeqy is hardly given. While the decay time of the dispersion with 0.5 % (w)
AuCB is comparable to the pure host 5CB, the dispersion with 1.0 % (w) shows slower decay
times and the dispersion with 2.5 % significantly faster decay times than the pure host. The
general decrease of rise times 7,5 could either be related to a decrease of the rotational
viscosity 71, an increase of the effective elastic constant K or a combination thereof. How-
ever, decay times Tgecqy do not confirm a clear trend for v or K. Additionally, the strong

increase of Vy, v and missing data for Ae prevent a reliable interpretation of switching times.

Doping the host 5CB with dodecanethiol capped particles AuSH12,, also increases the
threshold voltage Vrp, as can be seen in the upper left plot of figure 4.48. The magnitude
of increase depends on the amount of added nanoparticles, a higher concentration leads to
higher threshold voltages. However, the increase is less pronounced than for the mesogenic
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Figure 4.48: Plots of electro-optic data (Vrp, A€, Trise and Tgecay) vs. T — Ty for dispersions
of AuSH12,, particles in 5CB at different particle concentrations.
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Figure 4.49: Left: Comparison of temperature dependent permittivity of the pure host 5CB
(black plot) and a dispersion of 1 % (w) AuSH12,, particles in 5CB. Right: Field
dependent light transmission characteristics for AuSH12,,, doped 5CB at different
particle concentrations. The colors correspond to the concentrations shown in
figure 4.48, measurements are performed at Ty — T = 3K with an interference
filter for monochromatic light (A = 542 nm).

doped particles AuCB: While a concentration of 2.5 % (w) AuCB increases the threshold of
the mixture by the factor 10-12, 2.5 % (w) of AuSH12,, particles lead only to an increase
by the factor 2-3. The temperature dependency of threshold is again reversed, so that the
effect of nanoparticle doping on the threshold voltage Vpp is more pronounced at high tem-

peratures.

Measurements of the dielectric anisotropy of mixtures doped with AuSH12,, particles in-
dicate that Ae is decreased by the presence of nanoparticles in the dispersion. However, it
should be noted that also the gold particles AuSH12,,, at least partially cover the surface of
the alignment layer (see figure 4.32, section 4.5). Especially at higher doping concentrations,
this effect leads to incorrect measurements, which manifests in a discontinuous decrease of
Ae. Only for samples with 0.5 % (w) AuSH12,, a smooth decay of Ae is obtained. For the
interpretation of data, the focus is put on this curve, but also the two noisy measurements
for 1.0 % (w) and 2.5 % (w) of particles confirm the general trend of a decrease of Ae by
doping with AuSH12,, particles.

As shown in the left diagram of figure 4.49, the presence of 1 % (w) AuSH12,, nanopar-
ticles increases both €, and €| However, a stronger increase for €| leads to the decrease
in Ae. This influence of nanoparticles on €| can only partially be explained by an effect of
nanoparticles on the alignment layer. Increasing the pretilt angle of the molecules leads to a
proportion of ¢ to the capacitance measured perpendicular to the molecules, and therefore
increases the resulting value for €;. The general increase of both permittivities parallel
and perpendicular to the molecules, however, cannot be explained by surface effects: The
maximum value of ¢ for the host is given by ¢ for a nematic order parameter of S = 1,
which corresponds to perfectly parallel aligned molecules. In this case, only ¢; contributes
to the measurement of €|. Under these conditions, resulting values for ¢ larger than ¢ are
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physically impossible, which indicates that other effects are present.

The results shown here for alkylthiol capped gold particles in 5CB partially differ from
results published for alkylthiol capped particles dispersed in the host FELIX-2900-03 by
Prof. Hegmann‘s group before. Qi et al. report no distinct differences for the dielectric
anisotropy compared to the pure LC, as well as very similar threshold voltages for the
Fréedericksz transition [62]. This shows the importance of the nematic host for changes
in electro-optical properties, as the results shown here for the host 5CB clearly indicate a
strong influence of particles on the electro-optical properties of the mixture. Considering
aliphatic and mesogenic capped gold particles in the hosts 5CB and 8CB, the authors only
note a small influence on the electro-optical response [78]. However, the idea of nanopar-
ticles residing on the initial alignment layer and therefore changing the pretilt angle of the
molecules is also discussed in this reference as possible source of changes of electro-optic
properties. The authors then conclude that the slight changes in electro-optic behavior are
caused by nanoparticles altering the alignment layer, and that the nanoparticles dispersed in
the bulk of the mixture do not influence on the electro-optic properties. The own analysis
of field-dependent light transmission characteristics reveals the presence of a well-defined
threshold for the Fréedericksz transition (see figure 4.49), which indicates strong boundary
conditions and very small pretilt angles. In conclusion, an influence of nanoparticles on the
alignment layers of the electro-optical test cells during measurement can be neglected for
AuSH12,, particles in 5CB.

The analysis of switching times again shows a decrease of rise times for doped samples,
while the obtained data for decay times show no clear trend due to nanoparticle doping.
As the increase in threshold is presumably not directly connected to changes in the elastic
properties of the dispersion, but to charge effects on the interface (see discussion below), a
reliable interpretation of switching times appears not feasible.

A possible explanation model for the increase of threshold voltages and permittivity values
for AuCB and AuSH12,, particles is given by the formation of electric double layers at the
interfaces between the active electrode areas and the bulk dispersion. As shown in section
4.5.1 by analyzing field-induced alignment changes, these particles presumably give rise to
high charge carrier concentrations when dispersed in 5CB. Assuming these charge carriers
form electric double layers as proposed by Stern [111] at the electrode interfaces explains
the increase in threshold as well as high capacitances in these samples.

The Stern layer model combines the ideas of an immobile Helmholtz layer of adsorbed
ions at the interface and a diffuse Gouy-Chapman layer of mobile ions in the bulk [112]. In
consequence, a Stern double layer within an electro-optic test cell can be described as two
capacitors in series (equation 4.4)

1 1 1
+

= : 4.4
Cpr  Cuu  Cao (44)
The capacitance C'irpr of the immobile Helmholtz layer can be estimated by the simple

equation 2.15 for a plate capacitor. The two plates are given by the electrode interface and
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Figure 4.50: Schematic representation of a liquid crystal test cell as capacitor without (left) and
with (right) electric double layer at the interfaces. In the diagrams on the top the
voltage drop (black lines) and the respective field strength E (blue lines) within
a test cell of thickness d are shown, the lower images represent the equivalent
circuits of the test cells. The presence of electric double layers causes a voltage
drop at the two interfaces, which leads to a lower electric field strength F in the

bulk of the liquid crystal.
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the layer of adsorbed ions, so the gap between the two plates can be estimated to be in the
range of a few nm only. According to equation 2.15, this very thin gap gives rise to a very
high capacitance of the Helmholtz layer.

The capacitance Cge of the diffuse Gouy-Chapman layer depends on the spatial distri-
bution of ions pjen (2, ¥y, z) in the electric potential ¥ (x,y, z) within the cell gap, which can
be estimated by the Poisson-Boltzmann equation 4.5

e ey (x,y, 2) e (x,y, 2)
V) = . <exp <M> — exp <—M>> , (4.5)

using ¢g as the bulk concentration of charged particles. For the simple geometry of
an electro-optic test cell, the Poisson-Boltzmann equation reduces to an one-dimensional

problem along the z-axis, whose solution is given by

Y =1y exp (—kz). (4.6)

The decay length of the exponential decrease of ¢ is given by the Debye length Ap = ™+

with

€2 9
K= \/eeok:BT Z CZ:. (4.7)

Here, ¢; denotes the concentration of ion sort ¢ and Z; denotes its valency. The capacitance
Cace of the diffuse Gouy-Chapman layer can then be estimated by equation 4.8 [112]
Cac = ;ﬂ (4.8)
D
Hence, the capacitance Cgo depends on the temperature as well as on the concentra-
tion of ions in the bulk. The observed increase of capacitance with increasing temperature
(see figure 4.47 and figure 4.49, left) indicates that the concentration of ions in the bulk is
strongly temperature dependent. At higher temperatures, more charged species contribute
to the total capacitance of the test cell.

The temperature-dependent increase of capacitance also explains the increase of thresh-
old voltage as well as the inversion of temperature dependency, as observed for dispersions
of AuCB and AuSH12,, particles in 5CB. It is known that the presence of electric double
layers within a capacitor as discussed above leads to a potential drop at the electrode / elec-
trolyte interface [113]. Thereby, the electric field strength E in the bulk of the nanoparticle
dispersion is significantly reduced, as can be seen in the upper plots in figure 4.50. This
explains the apparent increase of threshold voltage, as higher external voltages are needed to
achieve the critical field strength within the bulk, which is necessary to overcome the elastic
repulsion force of the nematic order and to reorient the liquid crystal molecules along the
field direction. As the extent of this reduction is not known, conclusions about the influence
of nanoparticles of the elastic properties of the host should not be drawn from the threshold
data obtained for AuCB and AuSH12,, dispersions. Presumably the concentration of ions
and thereby also the influence of the Gouy-Chapman layer on the total capacitance increase

with increasing temperature. As a result, the local field strength is lowered further and
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higher external voltages are needed to overcome the elastic restoring torque of the nematic
liquid crystal. This presumably causes the inversion of temperature dependency of Vipp
compared to the pure compound 5CB.

The model of a Stern double layer on the active electrodes explains the higher capacitance
values for the AuCB and AuSH12,, doped samples compared to the pure host as well as
higher threshold voltages. Hence, the nanoparticle induced changes of nematic properties
Vi, and Ae are presumably not caused by the presence of particles in the bulk, but domi-
nated by the presence of ions at the interfaces. Besides altering the liquid crystal alignment
by surface coverage, the formation of electric double layers is an additional influence of
nanoparticle doping on the properties of the resulting dispersions.

Presumably, also the observed reversed switching of dispersions containing AuSH12; in
FELIX-2900-03 (see section 4.5.2) is connected to unusual electric properties of the nanopar-
ticle dispersion. The reverse switching is identified to correspond to the formation of electro-
convection rolls in a (+,-) material. Hence, the dispersion is expected to exhibit a negative
anisotropy of conductivity, which is caused by the presence of gold nanoparticles. Although
also the negative anisotropy of conductivity could not be confirmed by experiment, the
reverse switching is an example of a bulk property of charged nanoparticles in a nematic
host.

In conclusion, it is found that charged nanoparticles can influence on the dielectric re-
sponse of a nematic liquid crystal by altering the bulk properties as well as influencing on
the alignment layers. Effects by charged dopants are more pronounced in the polar host
5CB, but can also occur in the apolar host FELIX-2900-03.

Comparing the results for dispersions of AuCB and AuSH12,, in 5CB, the experimental
data shown here do not reveal an advantage of mesogenic capped particles over the use of
aliphatic functionalized particles, as stated in reference [14] by Draper et al.. The general
idea proclaimed in latter reference is that mesogenic capped particles are chemically more
similar to the nematic host, and therefore promise a better solubility and stability.

It has been shown in several publications that the interaction between the surface func-
tionalization of nanoparticles and the respective host molecules requires a more sophisticated
fine tuning. As shown in a theoretical study by Soulé et al. [85], mixed monolayers of meso-
genic and aliphatic ligands on nanoparticles are expected to show the highest miscibility in
a nematic host. When the nanoparticles are in a size regime comparable to the size of single
host molecules, the authors consider entropic effects like mixing entropy and entropy-driven
self-assembly to be relevant for the formation of homogeneous dispersions. Hence, their
model does not consider the nanoparticles as hard spheres, but as particles with a soft shell
that can be partially penetrated by the host molecules. By fine adjusting the ratio of shorter
aliphatic ligands and longer mesogenic ligands to the core diameter, an optimal overlap of
ligand molecules and host molecules is enabled. This maximizes the mixing entropy of the
binary mixture of particles and host, and thus leads to the formation of stable dispersions.
A schematic drawing of this soft-shell-model is shown in figure 4.51.

122



Soulé [85] Draper [14] combined model

Figure 4.51: Schematic drawings of interaction models between the particle’s ligand shell and
the nematic host molecules. Left: Soft sphere model for mixed monolayers of
mesogenic and aliphatic capped gold particles, adapted from Soulé et al. from
reference [85]. Middle: Tactoidal deformation of spherical gold nanoparticles with
purely mesogenic capping, adapted from Draper et al. from reference [14]. Right:
New model combining the tactoidal deformation and the soft ligand shell.

This soft-shell model has been experimentally proven by Milette et al., the respective
data is given in reference [57]. The results presented in this study confirm that a proper
combination of core diameter, ligand chain length and ligand shell composition leads to a
high miscibility of functionalized particles in a nematic host. However, a spherical ligand
shell is less compatible with the unidirectional order of the nematic host than an anisometric
soft shell. As shown by Draper et al. in reference [14], the fully mesogenic functionalized
nanoparticles AuCB can form tactoidal ligand shells, which promise a better miscibility
in an anisometric host (see figure 4.51, middle). Additionally, Wojcik et al. showed that
an anisometric mesogenic ligand shell around spherical particles supports the formation of
mesophases by particles and is therefore energetically favored over an isometric spherical
ligand shell (see reference [48]). This process of nanoparticles forming anisometric ligand
shells and forming mesophases has recently been optimized by Mang and co-workers, who
report the formation of regular nanoparticle arrays for different combinations of mesogenic
ligand and co-ligands in reference [114]. Hence, two setscrews of optimizing the interaction
of nanoparticles with the nematic host have been identified, namely a penetrable soft lig-
and shell of long mesogenic ligand and shorter co-ligand and the possibility to deform the
spherical ligand shell to a tactoidal shape. Combining the soft-shell model by Soulé and the
tactoidal deformation model by Draper and Wojcik, an advanced model is obtained, which is
believed to show the best miscibility and stability in a nematic phase (see figure 4.51, right).

Besides utilizing a mixed ligand shell with shorter aliphatic ligands and longer mesogenic
capped ligands to promote the interaction between nanoparticles and host molecules, also
the curvature of the nanoparticles has an influence on the possible degree of interdigitation.
Following the argumentation of Milette et al. [57], the high surface curvature of 2 nm
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Figure 4.52: Schematic drawings illustrating the influence of radius curvature on the possible
degree of interdigitation between ligand shell and host molecules (adapted from
Coursault et al. [87]).

AuSH12, particles provides sufficient free space between the ligands for interactions with
the hydrocarbon chain of 5CB, or both side chains of FELIX-2900-03. Larger particles show
a denser packing of ligands, and hence lower miscibility in a nematic host. As illustrated
by Coursault et al., a flat surface (radius of curvature co) results in a very dense monolayer
packing of ligands and prevents an interdigitation with ligand molecules. With decreasing
curvature, the packing gets less dense and allows more interaction between ligand shell and
host molecules. This principle is shown in figure 4.52, adapted from reference [87].

Hence, this model indeed gives an explanation for the higher miscibility of alkylthiol-
capped particles in FELIX-2900-03 compared to 5CB, as reported by Qi. et al. in reference
[78]. Milette et al. also report a miscibility of dodecanethiol functionalized gold particles
in the size regime of AuSH12,, in 5CB only for low concentrations, while higher concentra-
tions lead to the formation of agglomerates. The authors show by surface plasmon resonance
analysis that at low concentrations the dodecanethiol capping features a higher mobility and
hence allows the penetration of hydrocarbon chains. At high concentrations, a red shift of
the surface plasmon resonance frequency indicates a closer packing of ligands, which pre-
vents interdigitation of ligands and host molecules and finally leads to a phase separation.
As shown by Khathua et al. in reference [82], dodecanethiol functionalized gold particles
with even larger core diameters (d > 6nm) have a too densely packed ligand shell and
therefore do not show a distinct surface plasmon resonance band due to precipitation.

As the curvature of nanoparticles has been identified to play an important role for the
degree of possible interdigitation of ligands and host molecules, this influence should be
observable in a comparison of CdSe590 and CdSe610 particles, which are chemically identical
but only differ in the diameter of the CdSe core. The electro-optical results for dispersions
of CdSe610 particles in the host 5CB are shown in figure 4.53. The presence of CdSe610
nanoparticles leads only to very slight decreases in threshold voltage Vrp and dielectric
anisotropy Ae of the mixture compared to the pure host. The decrease of Vpp is more
pronounced at lower temperatures, but in contrast to dispersions of AuCB and AuSH12,,
in 5CB, nanoparticle doping with CdSe610 does not alter the temperature dependency of
V. For all doping concentrations the threshold decreases with increasing temperature.
The magnitude of decrease is not correlated to the particle concentration, however mixtures

with higher amounts of particles show a less smooth decrease of Vpp and Ae.
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Figure 4.53: Plots of electro-optic data (Vrp, A€, Trise and Tgecay) vs. T — Tvr for dispersions
of CdSe610 particles in 5CB at different particle concentrations.
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Figure 4.54: Plots of electro-optic data (Vrp, A€, Trise and Tgecay) vs. T — Tvr for dispersions
of CdSeb90 particles in 5CB at different particle concentrations.

The analysis of switching times reveals an increase of rise times for doped samples, and a
decrease of decay times. This is in contrast to observations made for the gold nanoparticles
AuCB and AuSH12,, in the same host. However, again a reliable interpretation of these
data appears difficult. A decrease of decay times is either connected to an increase of the
effective elastic constant K of the Fréedericksz transition, or a decrease of the rotational
viscosity 1. However, the observed increase in rise times indicates the opposite behavior,
as Vpp, and Ae show almost no changes compared to the pure host.

The electro-optical analysis of dispersions of CdSe590 particles in 5CB gives very similar
results compared to CdSe610 particles, as can be seen in figure 4.54. Again, the presence of
nanoparticles leads to a very slight decrease of threshold voltage, which is more pronounced
at low temperatures. The temperature dependence of Vry, is not altered compared to the
pure host. Almost no impact of nanoparticle doping on the dielectric anisotropy Ae is
found, except of slightly higher values for the mixture containing 1 % (w) of CdSe590. The
impact of CdSe590 doping in 5CB on the switching times of the mixture is comparable to
the effects observed for CdSe610 particles. While the rise time is slightly increased, decay
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Figure 4.55: Left: Plot of threshold voltages Vrp 7 vs. T — Ty for CdSe590 nanoparticles in
the host FELIX-2900-03. Right: Plot of threshold voltages Vry 7 vs. T'— Ty for
CdSe610 nanoparticles in the host FELIX-2900-03.

times of doped samples are faster than for the pure host.

Comparing these results to effects on the electro-optic response when doping a nematic
host with CdSe590 or CdSe610 particles reported by Kinkead et al. in reference [13], sev-
eral similarities occur. The authors of latter study report that especially CdSe590 particles
have no distinct effect on the threshold voltage or the elastic constants of the nematic host
FELIX-2900-03 used in their study. This can be confirmed also for the host 5CB by the
results presented here. However, Kinkead et al. also report a more pronounced effect for
the larger CdSe610 particles on the electro-optical performance of the mixture, and suggest
a unique relationship between the size of the particles and observable electro-optical effects.
This could not be confirmed for the host 5CB, as both particles CdSe610 and CdSe590
induce roughly the same changes in the electro-optical response.

Own data of threshold voltages for dispersions of CdSe590 and CdSe610 in the nematic
host FELIX-2900-03 are shown in figure 4.55. However, as reported in section 4.4.3, these
particles have a strong influence on the polyimide alignment layer of the electro-optical
test cells used for these experiments. The nanoparticles cause a strong surface coverage
on the initial alignment layer and thereby induce homeotropic alignment or reduce the
strong boundary conditions to weak anchoring. As a result, dielectric measurements are not
possible, and light transmission measurements can only be performed on regions with no

detectable surface coverage.

The threshold data obtained for CdSe590 particles are plotted in the left diagram of fig-
ure 4.55 and show only slight changes of Vi, with increasing particle concentration. At the
lowest doping concentrations of 0.5 % (w) and 1.0 % (w), the threshold is slightly increased,
while for all higher concentrations Vpy, is slightly lower than for the pure host. This concen-
tration dependency is in accordance to the model of surface coverage shown in figure 4.26, as
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Figure 4.56: Plots of Vry vs. T — Ty (left) and Ae vs. T — Ty for dispersions containing
different concentrations of msCdSe quantum dots in the host FELIX-2900-03.

a slight surface coverage with onsetting loss of threshold leads to lower calculated threshold
voltages. In general, although the area for measuring the field dependent light transmission
between crossed polarizers is chosen very carefully, the obtained data is connected to com-
parable large uncertainities. Hence, small changes in Vpp should not be overemphasized.
This is also valid for data obtained for dispersions containing CdSe610 nanoparticles, as
shown in the right diagram of figure 4.55.

Referring to the considerations about a connection between core diameters, ligand shell
composition and the miscibility of particles in a nematic host, a difference in miscibility and
stability between the larger CdSe610 particles and the smaller CdSe590 particles would be
expected. However, in the polar host 5CB both particles show similar miscibility, stability
and electro-optical properties. In the non-polar host FELIX-2900-03, the strong interac-
tion between the particles and the polyimide alignment layer of the electro-optic test cells
prevents both the proper observation of stability and the measurement of electro-optical
properties.

The observed similarities between CdSe590 and CdSe610 despite different core diameters
can be explained by the small difference in core diameters between CdSe590 and CdSe610
of only 0.8 nm. Although Kinkead et al. suggest an unique relationship between the size of
the CdSe particles and observable electro-optical effects (see reference [13]), and Soulé et al.
and Milette et al. support this expectations with their work, a certain size difference seems
to be necessary to obtain visible effects. Additionally, CdSe590 and CdSe610 particles are
not monodisperse, but feature a certain width of size diameter distribution. This hampers
size effects to be clearly visible, as an interaction of particles with different cores sizes occurs.

The magic sized quantum dots msCdSe and msCdSe:Zn overcome the problem of poly-
dispersity, as they feature very narrow size distributions.
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Figure 4.57: Plot of Vpp vs. T — Ty for dispersions containing different concentrations of
msCdSe:Zn nanoparticles in the host FELIX-2900-03.

The electro-optical analysis of dispersions of FELIX-2900-03 containing the magic-sized
quantum dots msCdSe and msCdSe:Zn has been performed in collaboration with Javad
Mirzaei from Prof. Hegmann‘s group, results have been published in reference [65] al-
ready. As reported in latter reference, neither msCdSe particles nor msCdSe:Zn particles
show a significant effect on the threshold voltage of the Fréedericksz transition Vry p, when
determined by dielectric measurement. However, threshold voltages obtained by light trans-
mission measurements show a clear decrease of V1 for doped samples (see figures 4.56
(left), and figure 4.57). The origin of this contradiction can be found by a close analysis of
the field-dependent light transmission characteristics (see figure 4.58). The doped samples
both of msCdSe and msCdSe:Zn mixtures do not exhibit a sharp threshold as the undoped
host, but show a gradually increase of light transmission with increasing field strength.
This loss of threshold occurs independently from the particle concentration, and is proba-
bly caused by a partial surface coverage of nanoparticles on the polyimide alignment layer
of the electro-optic test cell, as discussed in section 4.4.3. This effect is more pronounced
for the more sensitive light transmission measurements as for dielectric measurements. In
consequence, the calculated threshold voltages Vrj, v appear lower than data obtained from
dielectric measurements, Vrp, p.

The partial surface coverage and the thereby altered alignment conditions also influence on
the dielectric anisotropy values. As reported in reference [65], an increasing concentration of
nanoparticles gradually lowers the dielectric anisotropy compared to the pure host. Except
for a concentration dependency, own measurements confirm lower dielectric anisotropies for
msCdSe doped samples (see figure 4.56, right). However, this decrease in Ae is caused more
by an increase of € than by a decrease of ¢ (see figure 4.59). This again indicates that the
strong boundary conditions in the electro-optic test cell are weakened, and the molecules
are not strongly bound parallel to the surface. An increased tilt angle would lead to con-
tributions of ¢ to the measurement of €, and hence gives an explanation for the observed
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Figure 4.58: Left: Temperature dependent light transmission characteristics of the liquid crys-
tal FELIX-2900-03 doped with different amounts of msCdSe nanoparticles. Right:
Temperature dependent light transmission characteristics of the liquid crystal
FELIX-2900-03 doped with different amounts of msCdSe:Zn nanoparticles. All
measurements are performed at Ty; — T = 3K with an interference filter for
monochromatic light (A = 542nm).

permittivity changes.

Referring to the influence of core curvature and monodispersity, the particles msCdSe
and msCdSe:Zn would be promising candidates for stable dispersions in a apolar host like
FELIX-2900-03. With core diameter of 2.04+0.1 nm they should feature enough spacing
between the ligands for sufficient interaction with the aliphatic side chains of the nematic
host. However, the data obtained from these dispersions do not confirm this impression.
Dispersions of both particles show defect textures when filled in electro-optical test cells,
and the electro-optical data obtained do not give a reliable trend for threshold voltage or
dielectric anisotropy. Although only a limited number of samples could be investigated, as
the samples were prepared by Javad Mirzaei in Prof. Hegmann’s group and kindly provided
for own experiments, this might indicate that a certain size distribution of diameters even

facilitates the interaction between particles and host.

The electro-optic results for AuSi particles in the nematic host FELIX-2900-03 are shown
in figure 4.60. Neglecting the dispersions with 5.0 % (w) and 7.5 % (w) of particles which
show a coexistence of nematic and isotropic domains (see section 4.4.3), the presence of AuSi
nanoparticles slightly reduces the threshold voltage of the Fréedericksz transition. The tem-
perature dependency of Vpj, remains approximately unchanged by nanoparticle doping, with
increasing temperatures the threshold decreases comparable to the pure host FELIX-2900-
03. Especially the mixture containing 1.0 % (w) of AuSi particles shows the most distinct
reduction in threshold, and it should be noted that this mixture also shows the most distinct
stabilization of the nematic phase as shown by phase transition temperatures in section 4.3.

The same concentration of AuSi particles also leads, together with the sample containing
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Figure 4.59: Left: Plot of €, vs. temperature for test cells filled with the liquid crystal FELIX-
2900-03 doped with different concentrations of msCdSe nanoparticles. Right: Plot
of €| vs. temperature for test cells filled with the liquid crystal FELIX-2900-03
doped with different concentrations of msCdSe nanoparticles.

2.5 % (w) of particles, to the most distinct increase of dielectric anisotropy. In general, for
concentrations up 2.5 % (w) of nanoparticles, an increase of Ae is found, while samples con-
taining 5.0 % (w) and 7.5 % (w) of particles reduce the dielectric anisotropy. A closer look
on the permittivities perpendicular and parallel to the director (¢, and ||, respectively, see
figure 4.61) reveals that latter samples deviate from the expected temperature dependency.
While samples with lower particle concentrations show an increase of €, and a decrease of
€| similar to the pure host for increasing temperatures, dispersions with 5.0 % (w) and 7.5
% (w) of AuSi particles show a general increase of € and ¢ (see figure 4.61). This behavior
has also been observed to occur even more pronounced for all concentrations of AuSH12,,
particles in 5CB (see figure 4.49) and is presumably connected to the formation of charged
particles at higher concentrations. As discussed for latter particle dispersions, the maximum
value of ¢ for the host is given by ¢ for a nematic order parameter of S = 1. According
to Barbero et al. (see reference [110]), the presence of gold nanoparticles does not affect
the permittivity of the dispersion. Hence, the observation of increasing permittivities for
highly doped dispersions is most likely connected to the formation of electric double layers,
as reported for AuCB and AuSH12,, particles before.

For the same reason, the increase of Ae at medium concentrations of AuSi particles is
surprising. Assuming that the slight shift of €, and ¢ to higher values (see left diagram
in figure 4.61) is connected to very low concentrations of charged particles forming electric
double layers, this effect seems to be negligible compared to effects reported for AuCB and
AuSH12,, particles. Higher values for Ae are then presumably caused by an increase of
the nematic order parameter S. As shown by the Maier-Meier equation 2.23, the dielectric
anisotropy Ae scales linearly with the order parameter S. However, the elastic constant
K11 is proportional to the square of the order parameter, K11 o< S?(T) [24]. According
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Figure 4.60: Plots of electro-optic data (Vrp, A€, Trise and Tgecay) vs. T — Ty for dispersions
of AuSi particles in FELIX-2900-03 at different particle concentrations.
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Figure 4.61: Analysis of temperature dependent permittivity changes for dispersions of AuSi
nanoparticles in the host FELIX-2900-03.
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Figure 4.62: Schematic drawings of the expected tactoidal deformation of ligand shell of AuSi
particles in the nematic host FELIX-2900-03. Left: Spherical ligand shell of single
particle. Right: Tactoidal deformation by a folding of equatorial ligands of the
particle due to anisometric interactions with the host molecules.

to equation 2.48 for the threshold voltage, an increase of the nematic order parameter S
should then lead to higher values of V. The observed decrease is presumably attributed
to the presence of dispersed nanoparticles in the bulk, which facilitate the reorientation of
host molecules by specific interactions with the ligand shell and thereby decrease the elastic
constant K1;. Considering the model about anisometric particles shown in figure 4.8 and
the notes about the importance of interactions between ligands and host molecules in a soft
ligand shell, a model is derived to explain a possible increase in S and decrease in Vpy due
to the presence of AuSi nanoparticles.

The increase of nematic order by the presence of AuSi particles could be connected to
anisometrically shaped nanoparticles, similar as depicted in the combined model in figure
4.51. A tactoidal ligand shell would induce additional orientational order parallel to the long
axis of the ligand shell, and therefore increase the total order parameter S in the dispersion.
The anisometric shape presumably originates by aliphatic chains in the axial position of
the particle being fully unfolded, while ligands in the equatorial region fold to coils. By
applying external electric fields, small distortions in the surrounding director field could
induce a flip of equatorial and axial orientation, where coils unfold and unfolded ligands
fold up. In this manner, the reorientation of host molecules is facilitated by the presence
of AuSi nanoparticles even without a rotation of the particle’s core, but by anisometric
interactions of ligands and host molecules. Hence, the formation of anisometrically shaped
ligand shells would also be responsible for the observed slight decrease in threshold voltages.

In analogy to the tactoidal particle shape reported by Draper et al. (see reference [14]),
it is assumed that the spherical ligand shell of AuSi particles deforms to a tactoidal shape
what also facilitates the interdigitation between ligand molecules and host molecules. A
schematic illustration of this ligand shell deformation is given in figure 4.62.

The silanization step in the synthesis of AuSi particles also influences positively on the
stability and miscibility in the nematic host FELIX-2900-03. The additional cross-linking
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Figure 4.63: Schematic drawing of a silanized AuSi particle with different core and shell di-
ameters. While the curvature of the smaller gold core determines the density of
ligands, the outer silanization shell fixes the ligands to the molecules and stabilizes
the spatial separation of single coils.

of ligands via Si-O bondings increases the stability of the ligand shell and prevents a loss
of ligands or ligand exchange reactions. This gives rise to a high stability also under the
influence of electric fields and prevents the decomposition of particles and precipitation onto
the substrate’s surface as observed for AuCB and AuSH12,,, particles. The cross-linking via
silanization also influences positively on the ligand density on the particle’s surface. As
shown in figure 4.63, the silane shell forms a second rigid surface with lower curvature than
the gold core. However, the amount of ligands on one particle is determined by the Au-S
bondings of ligands onto the smaller core. This leads to a general increase of spatial dis-
tance between the aliphatic Cig-carbon chain ligands on the silane shell, which promotes
the interdigitation with the aliphatic side chains of the FELIX-2900-03 host molecules.

The analysis of switching times of AuSi doped FELIX-2900-03 samples reveals a temper-
ature dependency of nanoparticle induced changes on rise and decay times. Concerning rise
times, nanoparticle doping increases the switching speed compared to the pure host only
for temperatures far away from the clearing temperature, while they show slower switching
speed at higher temperatures. However, clear concentration dependencies could not be iden-
tified. Decay times slightly decrease for all doped samples, showing a stronger temperature
dependency than the pure nematic host. Again the doped samples show faster switching
times than the undoped host especially at low temperatures.

A concentration of approximately 5.0 % (w) AuSi particles presumably represents the
upper doping concentration leading to improved electro-optic properties. The optimum
concentration for doping the host FELIX-2900-03 with AuSi particles could be identified to
be at around 1.0 % (w) of particles. Mixtures containing this amount of nanoparticles show

improved stability of the nematic phase as well as superior electro-optical switching behavior.
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5 Conclusions and outlook

In this work, the influence of nanoparticle doping on the physical properties of a nematic
host was investigated by alignment studies and analysis of electro-optical properties. A
measuring setup for the simultaneous measurement of field-induced permittivity and bire-
fringence changes was set up, and the data analysis routine following the Single-Cell method
by Wu et al. [69] was developed to yield reliable switching times from transmission measure-
ments. Confocal microscope techniques were used to study the distribution of luminescent
quantum dots within nematic dispersions and to clarify the director field distribution in
particle induced-disclination lines. Conventional optical polarizing microscopy was used to
study phase transition temperatures and the influence of nanoparticles on the alignment of
the liquid crystalline host between plain glass slides and in polyimide coated electro-optic
test cells.

The dispersions investigated in this work cover metallic gold particles and semiconducting
CdSe particles of different diameters up to 5nm and with different hydrophobic organic
functionalizations. The investigated gold particles exhibit thiol-ligands with aliphatic or
mesogenic capped spacer chains of different chain length, as well as particles with aliphatic
ligands and an additional silanization shell around the gold core. The CdSe particles exhibit
aliphatic chains as ligands, bound to the semiconducting core by amino- or acid groups. As
host materials, the polar mesogen 5CB and the apolar mesogen FELIX-2900-03 were used
to study the interactions of hydrophobic ligands with hosts of different polarity.

The passivation of nanoparticles by organic functionalization was found not to fully pre-
vent agglomeration of particles during the preparation process of nematic dispersions. Ad-
ditionally, the concentration of particles in the bulk of the nematic material is reduced by
particles residing at the interfaces of preparation vial or liquid crystal test cell. In conse-
quence, the actual nanoparticle concentration within a sample is lower than the weighted
amount of particles. A study of reproducibility showed that although the precise concen-
tration within the dispersions is unknown, test cells filled with dispersions from the same
batch show very good agreement in physical properties, while the physical properties of test
cells filled with separately prepared dispersions can slightly differ. In any case, a general
concentration trend is maintained, a higher weighted amount of particles leads also to a

higher particle concentration in the dispersion.

It was found that the interactions between organic capping and host molecules are crucial
for the miscibility and stability of the host. In general, alkylthiol capped gold particles
showed higher miscibility and stability in the apolar host FELIX-2900-03 than in 5CB,
which is presumably connected to the hydrophobic character of host and ligand shell. A pure
mesogenic ligand shell facilitates a tactoidal deformation of the ligand shell, but does not
improve the miscibility or stability of dispersions. A comparison with data from literature
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showed that the highest miscibility of functionalized nanoparticles in a nematic host can be
expected for mixed ligand shells with longer mesogenic ligands and shorter aliphatic ligands.
A very high stability was observed for silanized particles with Cig ligand chain length, so
it can be assumed that also the length of functionalization influences on the interactions
between particles and host molecules. An influence of the core material on the stability or
physical properties of the dispersion could not be confirmed. No general difference between
gold and CdSe particles was found. A possible explanation is the high density of ligands on
the surface of the nanoparticles, which prevents a direct interaction between core material
and host molecules. Therefore it should be possible to replace the core material without
changing the liquid crystalline properties of the dispersion, which can be used to change for
example the wavelength regime of plasmon resonances of metallic cores.

The particle size influences the interactions between ligand shell and host molecules due
to different surface curvatures. While small core diameters show a high curvature and allow
interdigitation between ligands and host molecules, the ligand shell of larger particles shows
similarity to a dense monolayer of ligands which prevents interdigitation. However, this
effect is not visible for small differences in core diameter, as the particles usually show a
comparably broad size distribution. The analysis of magic sized, truly monodisperse CdSe
particles did not show an improvement of stability or electro-optic properties. So it can be
assumed that a certain size distribution is not a disadvantage for the interaction between
particles and host.

On untreated glass, all nanoparticles investigated in this work induce homeotropic align-
ment, indicating that even a slight surface coverage of hydrophobic coated particles suffices
to reduce the surface energy of the glass interface. An insufficient chemical compatibility
between ligand shell and nematic host leads to a strong deposition of particles from the bulk
onto the substrates and induces homeotropic alignment also in electro-optical test cells by
superimposing initial alignment layers for planar alignment. Partial surface coverage was
found to induce a tilted alignment of molecules at the interface, which leads to a loss of
threshold of the Fréedericksz-transition.

The analysis of nanoparticle-induced birefringent stripe textures in homeotropic surround-
ing by means of confocal fluorescence polarizing microscopy revealed that the birefringent
stripes correspond to twist disclination lines, which form during the phase transition from
the isotropic to the nematic phase and can be stabilized by agglomerations of nanoparticles.
An accumulation of particles within the stripes as suggested by Qi et al. [12] could nei-
ther be confirmed nor negated by confocal fluorescence measurements on luminescent CdSe

quantum dots in FELIX-2900-03, so that further research on this question seems necessary.

Results obtained for mesogenic capped gold particles and dodecanethiol capped gold par-
ticles in the host 5CB indicate the formation of charged species, which form electric double
layers at the interfaces of the electro-optic test cells. This leads to an appearing increase
of €, and €| as well as to high threshold voltages for the Fréedericksz-transition. Applying
sufficiently high fields induces an irreversible alignment change from homogeneous planar to
homeotropic alignment and after long exposure to external fields to an optically isotropic
behavior. This is presumably caused by particles being driven and precipitated onto the
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initial alignment layer and decomposed under the influence of external electric fields. The
origin of charged species has not been successfully enlightened, but is presumably connected
to different bonding mechanisms of ligands onto the particle’s cores. Another open question
is the sign of charges, as the precipitation of particles occurs under DC fields as well as AC
fields of a frequency of 1kHz. The targeted deposition of nanoparticles for the fabrication
of a two-dimensional liquid crystal phase grating was not successful due to a lack of control
over the deposition process. Certainly the question of charged species in a nanoparticle
/ liquid crystal dispersion requires additional research, also with respect to possible ap-
plications of nanoparticles in electric double-layer capacitors with comparable high energy
storage capacitance.

Presumably, the reverse switching modes of alkylthiol capped gold particles in the host
FELIX-2900-03 as reported by Qi et al. in reference [62] is also connected to charged dopants
in the nematic host. The reverse switching was identified to be an example of electroconvec-
tion rolls in a (+,-) material with positive dielectric anisotropy Ae and negative anisotropy
of conductivity Ao. As the nematic host is intrinsically non-conductive, the necessary con-
ductivity as well as the unusual sign of Ao are presumably caused by nanoparticle doping.

A clear stabilization of the nematic phase by the presence of nanoparticles was only found
for silanized gold particles in the apolar host FELIX-2900-03 at medium concentrations of
particles, while the presence of other particles slightly decreases the clearing temperature
of the dispersions and leads to a broadening of the biphasic temperature region. According
to observations reported in literature, a stabilization of nematic order can be expected
especially for anisometrically shaped particles, therefore also for the silanized particles a
tactoidal deformation of the ligand shell is assumed.

Evidently, the silanization between ligands is a versatile tool to increase the stability of
the ligand shell and to prevent ligand losses and the formation of charged particles by het-
erolytic breaking of bonds. An additional benefit from the silane conjugation is the lower
ligand density on the silane shell, which supports the interdigitation between ligands and
host molecules. Dispersions of silanized gold particles in FELIX-2900-03 also showed an
improved electro-optical performance due to lower threshold voltages for the Fréedericksz-
transition and larger dielectric anisotropies.

Future research therefore should focus on the synthesis and analysis of nanoparticles with
stabilized ligand shells, which combine the benefits of mixed ligand shells of mesogenic
and aliphatic ligands, the possibility of tactoidal deformation of the ligand shell and a high
chemical compatibility with the desired host material. According to the results of this work,
these materials are expected to enable overcoming problems in miscibility and stability and
lead to new materials with superior electro-optical properties.

137



Appendix

A. List of symbols

Symbol

Explanation

> @

ATconf
AZconf
Ae

€0

S

index I

molecular polarizability

angle between p and a nematogen’s long axis
phase retardation

birefringence

lateral resolution in confocal microscopy
axial resolution in confocal microscopy
dielectric anisotropy

anisotropy of conductivity

permittivity tensor

permittivity of vacuum

surface tension

effective rotational viscosity

rotational viscosity

inverse Debye length

wavelength

Debye length

dipole moment of a molecule

density

conductivity

decay time of the Fréedericksz-transition
elastic torque density

electrostatic torque density

rise time of the Fréedericksz-transition
polar angle

5—0

polar angle of the easy direction
azimuthal angle

azimuthal angle of the easy direction
transition dipole moment

transition dipole moment of absorbtion
transition dipole moment of emission
field coherence length

angle between M and E

quantity parallel to n
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index |
index ;

index 4

e OQ o=

Epot
Erp
F
Fou
Féu
Jelast
Jelec
fsur
Fy

fo

S L

Neff

quantity perpendicular to n

quantity parallel to the molecule’s long axis
quantity perpendicular to the molecule’s long axis
molecular lengthscale

surface extrapolation length

capacitance

electric displacement field

cell gap, thickness of liquid crystal material
electric field

potential mean field energy

critical field strength for the Fréedericksz-transition
Frank-Oseen energy

polar surface energy

azimuthal surface energy

elastic free energy density

electric free energy density

surface anchoring energy density
Frank-Oseen energy of undistorted liquid crystal
free energy density of undistorted liquid crystal
light intensity

elastic constant of splay deformation

elastic constant of twist deformation
saddle-splay elastic constant

elastic constant of bend deformation
Boltzmann’s constant

lengthscale of significant changes in n
molar mass

nematic director

refractive index

number of molecules

effective refractive index

Avogadro’s constant

extraordinary refractive index

ordinary refractive index

numerical aperture

polarization

charge

cholesteric pitch length

critical radius for Ostwald-ripening

scalar order parameter

temperature

clearing temperature

potential difference

energy of nematic bulk interactions
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Vin
Vi, N1
Vrn,
Up
anchor
anchor

Wanchor

molar volume

molar volume at T = Ty

threshold voltage for the Fréedericksz-transition
normalized pinhole diameter

polar part of the anchoring energy

azimuthal part of the anchoring energy
anchoring energy

B. List of abbreviations

Symbol Explanation
5CB 4-n-pentyl-4’-cyanobiphenyl
BTBP n,n’-bis(2,5-di-tert-butylphenyl)-3,4,9,10-perylendicaboximid
DCM Dichloromethane
DSC Differential scanning calorimetry
FCM Fluorescence confocal microscopy
FCPM Fluorescence confocal polarizing microscopy
FELIX-2900-03  5-n-heptyl-2-(octyloxy-phenyl)pyrimidine
FWHM Full width at half maximum
ITO Indium tin oxide
POM Polarizing optical microscopy

C. Molecular structures of nematic hosts and dichroic dye

CH-{ )X )CN

5CB

CH, 0K )-CH, ﬁz 8.8 :if%r

FELIX-2900-03 BTBP

Figure 5.1: Molecular structures of the two nematic hosts 5CB (left) and FELIX-2900-03 (mid-
dle) and the dichroic dye BTBP (right) used in this work.
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