
A Dynamically Reconfigurable

Hard-Real-Time Communication Protocol

for Embedded Systems

Thesis submitted to the

Faculty of Computer Science, Electrical Engineering and Mathematics

of the

University of Paderborn

in partial fulfillment of the requirements for the

degree of Dr. rer. nat.

by

Eng. André Luiz de Freitas Francisco

April 2012

Acknowledgments

This thesis is a result of my research activities at the International Graduate School of

Dynamic Intelligent Systems of the University of Paderborn in Germany. I am grateful to

Prof. Dr. Franz Rammig, the supervisor of this thesis, who not only gave me the chance to

pursue my Ph.D. but also provided valuable feedback and suggestions during this work.

I thank Prof. Dr. Ansgar Trächtler for the time I spent with his working group Control

Engineering and Mechatronics and for his comments on my research. I would like to

dedicate this thesis to the memory of Prof. Dr. Joachim Lückel, who will be remembered

for his exemplarily enthusiastic and passionate attitude towards life and his work.

I am thankful to Siemens AG for granting me the fellowship for my Ph.D. studies and

to Mr. Jürgen Bermann for his technical support. I also would like to thank the staff

of the International Graduate School for their continuous assistance with the necessary

formalities. I appreciate the support from Dr. Karl-Peter Jäker that made possible the

implementation of the prototypes of this work and also the precious secretarial assis-

tance of Mrs. Annette Bökamp-Gros. I thank Mauro Zanella for all the support and for

encouraging me to accomplish this work.

This work was carried out in an interdisciplinary environment so I am deeply thankful

for the many discussions with colleagues of the working groups Control Engineering and

Mechatronics, Design of Distributed Embedded Systems and also Power Electronics and

Electrical Drives. Moreover, I appreciate the help of all students that actively participated

in this project.

Last, but not least I just cannot express enough gratitude to my parents for their uncon-

ditional support during this work and also to my wife for her lovely assistance and for

encouraging me at all times.

i

Abstract

Real-time communication is a basic requirement for many distributed embedded systems.

However, for an emerging new class of applications not only real-time behavior but also

flexibility and adaptability will become necessary system attributes. Although the time-

triggered paradigm has been successfully employed with a variety of real-time applications,

it imposes some challenges with respect to dynamic reconfiguration, since the modification

of certain communication parameters, such as transmission cycles, may potentially require

the complete rearrangement of a global scheduling plan.

In order to increase the flexibility of real-time communication systems a new protocol

called TrailCable was designed. It takes advantage of the properties of Earliest Deadline

First (EDF) scheduling, which include optimal utilization bounds and the possibility to

cope with heterogeneous task sets. A communication network is built with full-duplex,

point-to-point links, and nodes can route packets to allow multi-hop message delivery.

The so-called virtual real-time channels are unidirectional logical paths mapped on the

physical network topology that transport data within specified latency times. This work

introduces methods for automatically mapping real-time channels on a given network

directly from communication requirement specifications.

The activation of real-time channels in the network is permitted only after a successful

schedulability analysis, which can be executed automatically by a tool that checks XML-

based network configuration models. At run-time, the characteristics of all incoming

packets are checked against their specification by an admission control technique called

bandwidth guardian, which is used to ensure that occasional faults will not impair the

timeliness of other real-time channels.

Time-critical functions of the communication protocol, such as scheduling, admission

control, packet routing, and clock synchronization, are implemented by means of dedicated

hardware. A fully operational FPGA-based prototype was built and used in different

measurement experiments to validate the real-time behavior of the protocol under real

conditions.

ii

Zusammenfassung

Echtzeitkommunikation ist eine Grundanforderung für viele verteilte eingebettete Sys-

teme. Für eine neue Klasse von Anwendungen sind jedoch nicht nur Echtzeitfähigkeit,

sondern auch Flexibilität und Anpassungsfähigkeit notwendige System-Attribute. Obwohl

zeitgesteuerte Kommunikation bereits in einer Vielfalt von Echtzeitsystemen erfolgreich

eingesetzt wurde, kann dadurch die Aufgabe, ein dynamisches System zu rekonfigurie-

ren, erschwert werden. Der Grund dafür ist, dass unter Umständen eine Modifikation

bestimmter Parameter wie z. B. des Sendezyklus dazu führen kann, dass die gesamte

Kommunikationsplanung angepasst werden muss.

Um die Flexibilität zu erhöhen, wurde in dieser Arbeit ein neues Kommunikationsprotokoll

namens TrailCable konzipiert. Es profitiert von den Eigenschaften des Earliest Deadline

First Scheduling-Verfahrens, wie z. B. der optimalen Ausnutzung von Ressourcen und der

Unterstützung von heterogenen Tasks. Ein Kommunikationsnetzwerk wird aufgebaut mit

Hilfe von voll-Duplex-, Punkt-zu-Punkt-Verbindungen, wobei die Knoten Datenpakete

weiterleiten können, um eine Multi-hop Übertragung zu gewährleisten. Die sogenannten

virtuellen Echtzeit-Kanäle sind unidirektionale, logische Pfade, die auf die Netzwerk-

Topologie abgebildet werden, um Daten innerhalb der vorgegebenen Latenzzeiten zu

übermitteln. Es werden Methoden vorgestellt, die es erlauben, automatisch die Kom-

munikationsanforderungen erfüllende Echtzeit-Kanäle auf das Netzwerk abzubilden.

Echtzeit-Kanäle können nur dann aktiviert werden, wenn im Voraus ein Akzeptanztest

erfolgreich durchgeführt wurde. Solch eine Prüfung kann mittels eines Tools automatisch

erfolgen. Alle dafür notwendigen Netzwerkinformationen werden aus XML-Dateien ein-

gelesen. Zur Laufzeit prüft ein Mechanismus, der Bandbreitenwächter genannt wird,

ob die eingelesenen Pakete mit ihrer Spezifikation übereinstimmen, damit Fehler die

Echzeitfähigkeit anderer Kanäle nicht beeinträchtigen können.

Zeitkritische Funktionen des Kommunikationsprotokolls, wie Scheduling, Bandbrei-

tenwächter, Routing und Uhrsynchronisation, sind mittels dedizierter Hardware imple-

mentiert. Ein voll funktionsfähiger FPGA-basierter Prototyp wurde aufgebaut und in

zahlreichen Tests evaluiert, um das Echtzeit-Verhalten des Protokolls unter realen Bedin-

gungen zu testen und zu analysieren.

iii

À minha famı́lia

Contents

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 Research Motivation . 2

1.2 Chapter Outline . 3

2 Background and Related Work 4

2.1 Paradigms Overview . 4

2.1.1 Event-Triggered . 4

2.1.2 Time-Triggered . 5

2.1.3 Discussion . 5

2.2 Network Architectures . 6

2.3 Overview of Protocols . 7

2.4 Discussion of Real-Time Communication Systems 14

3 The TrailCable Communication Protocol 17

3.1 The Sporadic-Triggering Paradigm . 17

3.2 TrailCable Protocol Rationale . 19

3.3 Virtual Real-Time Communication Channels 21

3.4 Preemption Mechanism . 25

3.5 Schedulability Analysis . 27

3.6 Run-Time Admission Control . 30

3.7 Clock Synchronization . 37

3.8 Non-Real-Time Communication . 38

vi

CONTENTS vii

4 The TrailCable Verifier Tool 40

4.1 Communication System Modeling . 40

4.1.1 Communication Engine Properties 42

4.1.2 Network Topology . 42

4.1.3 Real-Time Channels . 44

4.1.4 Routing . 45

4.2 Tool Flow . 46

4.3 Configuration Data and Code Generation 48

5 Dynamic Reconfiguration 49

5.1 Classification . 50

5.2 Reconfiguration Framework . 51

5.2.1 Data Interface . 52

5.2.2 Configuration Database . 52

5.2.3 Configuration Manager . 54

5.2.4 Channel Establishment . 56

5.3 Network Configurations . 56

5.3.1 EDF Deadline Assignment . 57

5.3.2 Mapping of Real-Time Channels . 63

5.3.3 The Fit Minimum Laxity First Algorithm 67

5.4 Chapter Summary . 69

6 The Communication Engine Hardware 70

6.1 Communication Engine Architecture . 71

6.2 Host Port . 72

6.2.1 Host Interface . 72

6.2.2 Time Unit . 73

6.2.3 Real-Time Module . 75

6.3 Communication Port . 75

6.3.1 Physical Layer . 76

6.3.2 Receiver . 77

6.3.3 Admission Control . 78

viii CONTENTS

6.3.4 Scheduler . 79

6.3.4.1 Priority Queue . 80

6.3.4.2 Balanced Priority Queues 87

6.3.4.3 Scheduler Hardware Architecture 89

6.3.5 Dispatcher . 90

6.3.5.1 Packet Construction . 90

6.3.5.2 Fetching Transmission Data 91

6.3.5.3 Updating Timestamps . 92

6.3.6 Sender . 93

6.4 Design Space Exploration . 94

6.5 Chapter Summary . 99

7 Experimental Results 101

7.1 Latency Times of Virtual Real-Time Channels 101

7.1.1 Single Task Experiment . 102

7.1.2 Multiple Nodes Experiment . 104

7.1.3 Preemption Experiment . 106

7.2 Distinctness of Reaction . 107

7.2.1 Single Node Experiment . 109

7.2.2 Multiple Nodes Experiment . 111

7.3 Clock Synchronization . 114

7.3.1 Measurement Setup . 114

7.3.2 Interpretation of the Results . 115

8 An Application Example: The RailCab Test Track 118

8.1 The RailCab Train System . 118

8.1.1 Linear Drive . 119

8.2 Test Track Network Architecture . 121

8.2.1 Centralized Control Architecture 122

8.2.2 Distributed Control Architecture 123

8.3 Test Track Implementation . 127

8.3.1 Hardware Components . 128

CONTENTS ix

8.3.1.1 ECU Module . 128

8.3.1.2 SSI Module . 133

8.3.1.3 Fiber-Optic Adapter . 137

8.3.2 Software Tools . 138

8.3.2.1 RailControl Tool . 139

8.3.2.2 RailView Tool . 140

8.3.3 System Software . 141

8.3.3.1 Motor Control . 142

8.3.3.2 Status Identification . 144

8.3.3.3 Data Tunneling . 145

8.4 Chapter Summary . 146

9 Conclusion 147

9.1 Outlook . 149

A Network-modeling DTD Files 151

A.1 Communication Engine Properties . 151

A.2 Network Topology . 152

A.3 Real-Time Tasks . 152

A.4 Routing . 153

Author’s Publications 153

References 156

List of Figures

2.1 CAN arbitration example . 8

2.2 FlexRay communication cycle . 10

2.3 An example of an AFDX network . 11

2.4 An example of an EtherCAT network . 13

3.1 Triggering paradigms . 19

3.2 The TrailCable node . 20

3.3 Network infrastructure . 21

3.4 Parameters of a real-time task . 23

3.5 Scheduling example . 24

3.6 Packet-forwarding timing parameters . 24

3.7 Format of a real-time packet . 26

3.8 Packet preemption . 26

3.9 Guard intervals . 31

3.10 Admission control with preemption . 33

3.11 Hold Variable . 34

3.12 Admission control flow . 36

3.13 Multiple clock domains . 38

4.1 A brake-by-wire network . 41

4.2 Example of a communication engine properties file 42

4.3 Example of a network topology file . 43

4.4 Example of a real-time tasks file . 44

4.5 Example of a routing file . 46

4.6 The TrailCable Verifier Flow . 47

x

LIST OF FIGURES xi

4.7 Section of automatically generated C-code 48

5.1 Dynamic reconfiguration scheme . 50

5.2 Classification of reconfiguration processes 50

5.3 The reconfiguration framework . 52

5.4 Configuration database example . 53

5.5 Effect of increasing the guard parameter 54

5.6 Continuous reconfiguration intervals . 55

5.7 Generation of network mappings . 57

5.8 Breaking intervals . 60

5.9 Constraining intervals . 63

6.1 Communication Engine Architecture . 72

6.2 Propagation delay set-up . 73

6.3 Communication port . 76

6.4 Receiver unit architecture . 77

6.5 Priority queue architecture . 80

6.6 Queue module . 83

6.7 Modified comparator . 87

6.8 Unbalanced priority queues . 88

6.9 Balanced priority queues . 89

6.10 Scheduler hardware architecture . 89

6.11 Dispatcher state machine . 90

6.12 Fetching of packet data . 92

6.13 Usage of slice registers . 96

6.14 Usage of slice LUTs . 96

6.15 Usage of block memory . 97

6.16 Component resources (128 tasks per communication port) 98

6.17 Comparison of TrailCable and Bosch E-Ray resources 98

6.18 Communication engine placement on an FPGA 100

7.1 Latency measurement setup . 102

7.2 Latency measurement . 103

xii LIST OF FIGURES

7.3 Effect of a higher priority task . 105

7.4 Effect of a disturbance task . 105

7.5 Preemption enabled . 107

7.6 Preemption inhibited . 107

7.7 DoR signals . 108

7.8 DoR measurement setup with one node . 110

7.9 DoR - single node . 110

7.10 Skew - single node . 110

7.11 DoR measurement setup with three nodes 112

7.12 DoR - multiple nodes . 112

7.13 Skew - multiple nodes . 112

7.14 Network for the clock synchronization precision measurement 114

7.15 Maximum clock synchronization deviation 116

8.1 Arrangement of shuttles and motors . 120

8.2 Aerial view of the RailCab test-track facility 121

8.3 Centralized control architecture . 123

8.4 Distributed control architecture . 124

8.5 Power station . 125

8.6 Microcontroller module and fiber adapter 126

8.7 SSI module . 127

8.8 ECU board . 128

8.9 ECU board diagram . 129

8.10 ECU FPGA diagram . 130

8.11 Packet format for communication with SSI modules 131

8.12 Communication interface of the SSI modules 132

8.13 ECU module case . 133

8.14 SSI board . 134

8.15 SSI board diagram . 134

8.16 SSI FPGA diagram . 135

8.17 SSI interface . 136

8.18 Timing diagram of servo data accesses . 136

8.19 SSI module case . 137

8.20 Fiber-optic adapter board . 137

8.21 Fiber-optic board diagram . 138

8.22 Fiber-optic adapter case . 138

8.23 RailControl screenshot . 139

8.24 RailView screenshot . 140

8.25 Communication cycle of the system software 141

8.26 Virtual communication channels for motor control 143

8.27 Virtual communication channels for status monitoring 144

8.28 Virtual communication channels for data tunneling 145

List of Tables

6.1 Measurement of propagation delay . 74

6.2 Priority queue execution cycles . 84

6.3 Example: Handling overflows . 86

6.4 Required PQ Capacity . 95

6.5 Actual PQ Capacity . 95

6.6 Actual communication port capacities . 95

7.1 Single task configuration . 102

7.2 Multiple-task configuration . 105

xiii

Chapter 1

Introduction

Embedded system technology is nowadays a significant innovation driver. The increasing

importance of embedded systems is reflected in the statistics provided by the ARTEMIS

website [15]:

� About 98 % of computing devices are now embedded

� Global market is worth e 60 billion with annual growth rates of 14 %

� More than 16 billion embedded devices predicted by 2010 and over 40 billion by 2020

� More than 35 % of the value of a modern car is due to embedded electronics

Not only the number of embedded devices is increasing, but also their connectivity. Dis-

tributed embedded systems are present in a great variety of applications, such as cars,

aircraft, industrial production plants, medical equipments, etc. A common requirement

on these systems is real-time behavior, because their embedded computers are usually

used to control physical processes.

The ever increasing complexity of distributed real-time systems, including their com-

munication infrastructure, imposes many different design challenges. Requirements on

communication protocols are becoming more stringent with respect to dependability and

security, but at the same time higher flexibility and dynamic behavior are also needed.

This thesis will focus on wired real-time communication for embedded systems. In the

context of this work, a new protocol aimed at providing higher flexibility was designed,

implemented, and verified. Typical applications considered for this study are, for example,

distributed mechatronic systems.

1

2 CHAPTER 1. INTRODUCTION

1.1 Research Motivation

The requirements on real-time communication systems are continually changing over time.

Let us consider the example of the automotive industry. In the mid-1980s, CAN-bus [45]

was developed at Robert Bosch GmbH out of the need to exchange information among

distributed electronic control units (ECUs) for reducing the amount of cable harnesses.

This enabling technology has then rapidly become a de-facto communication standard for

cars. However, the ever increasing complexity and criticality of new applications (e.g.,

drive-by-wire systems) imposed new requirements on communication so that new data

buses were needed. The solution came by means of the time-triggered paradigm [32] and

corresponding protocol implementations such as FlexRay [35]. With the current develop-

ment pace, in which software gets about 10 times bigger from one car generation to the

next [20], it is possible to predict new challenges for the design of future communication

infrastructures. With the integration of more and more functions into ECUs, commu-

nication protocols will have to cope with different, and maybe conflicting, application

demands such as real-time and best-effort data transmission.

Another challenge for the design of real-time communication protocols is the emerging

need for dynamic reconfiguration support. Generally, real-time systems are designed

in a static fashion, but an increasing number of applications will be required to adapt

themselves at run-time. Examples are self-optimizing mechatronic systems such as those

addressed in the Collaborative Research Center 614 [9] at the University of Paderborn.

Even common assumptions taken into account for the design of real-time communication

systems can be revisited for new protocols. One example is the assumption that processes

are always activated in equally spaced time intervals. Although control loops generally

rely on this property to operate correctly, this behavior can also be restrictive in some

other applications such as radars, where the round-trip time of a transmitted pulse varies

according to the target distance. In fact, real-time platforms with higher flexibility can

be employed with a larger variety of applications.

Although great versatility is expected from real-time communication systems, costs must

be kept as low as possible and therefore resource-efficient hardware architectures are

crucial. In many embedded systems, communication controllers must be small enough to

fit in a small die area. Data transmission bandwidth is another limited resource that must

be efficiently utilized. To achieve that, low communication overhead and good scheduling

policies are important factors to be considered.

The objective of this work is to address the challenges mentioned and to provide solutions

that can be integrated into a new communication protocol. Another goal of this thesis is to

provide an abstraction layer for the communication infrastructure in such a manner that

independent, concurrent applications can also be independently designed and mapped

on a given network. With the time-triggered paradigm, one of the first steps to build a

1.2. Chapter Outline 3

distributed system is to find a suitable dispatching plan for all functions, which is not

always a simple task because, for example, a compromise must be found to establish

the basic communication period. The alternative approach investigated in this thesis

is to first determine the communication requirements for each functionality alone and

then, by means of an automatic process, to search for a feasible real-time solution that

meets the individual, original requisites. Another advantage of the proposed approach is

that modification of the requirements of a certain function can be made transparent to

others as long as feasibility holds. The latter approach implies that the communication

infrastructure must adapt itself to application demands and not the other way around.

1.2 Chapter Outline

This thesis is organized as follows:

Chapter 2, Background and Related Work presents paradigms of communication

systems and introduces selected commercially available protocols. Moreover, a list of

desired requirements for a new embedded real-time communication protocol is proposed.

Chapter 3, The TrailCable Communication Protocol begins with the concept of

sporadically triggered systems. The TrailCable communication protocol is then explained

in detail, including the real-time feasibility tests with a given configuration. A run-time

mechanism for fault-tolerance is also presented.

Chapter 4, The TrailCable Verifier Tool deals with the modeling of the TrailCable

network communication system. Network configurations are described by means of XML

files, which can be checked by a tool for real-time schedulability.

Chapter 5, Dynamic Reconfiguration discusses the framework that allows a TrailCa-

ble network to be reconfigured at run-time. Moreover, this chapter also presents methods

for automatically mapping real-time communication channels in a given network.

Chapter 6, The Communication Engine Hardware gives an overview of the

hardware-based communication engine of the TrailCable protocol. The characteristics

of the hardware implementation are analyzed in a design space exploration study.

Chapter 7, Experimental Results presents measurement results gained by practical ex-

periments that verify the real-time and fault-tolerance capabilities of the TrailCable pro-

tocol.

Chapter 8, An Application Example: The RailCab Test Track is a case study

that describes the employment of the TrailCable protocol with a real application, namely

the RailCab test track.

Chapter 9, Conclusion closes this thesis with a review of the TrailCable protocol features

and gives an outlook to future research directions.

Chapter 2

Background and Related Work

This chapter introduces some of the paradigms, trade-offs, and implementation aspects

of real-time communication systems. A survey of selected communication protocols used

in distributed control systems is also presented. The objective is not to provide an ex-

haustive list, but rather to present some of the approaches employed to build up real-time

communication protocols. Different requirements lead to different designs and therefore

one particular real-time communication protocol can be well suited for a given application

while not for others.

2.1 Paradigms Overview

According to Kopetz [57], data communication protocols for embedded systems can be

divided into two main categories: event- and time-triggered. Many times, this distinction

goes beyond the communication layer and is also used to characterize embedded systems

as a whole, including the corresponding operating system and application software. The

peculiarities of the two approaches will be outlined in the following.

2.1.1 Event-Triggered

Event-triggering was the first paradigm used for data communication. As the name sug-

gests, at any time an event can trigger data transmission. Such events can be generated

by internal timers, external interrupts, or other mechanisms. The term event-triggered

is usually used to indicate that triggering actions are not entirely pre-coordinated or

foreseen. As a consequence, real-time feasibility analysis can be very difficult or even

impossible to perform.

4

2.1. Paradigms Overview 5

2.1.2 Time-Triggered

Determinism is achieved in a time-triggered system by pre-planning the execution of

processes or communication tasks and their precise instant of activation. Time-triggered

communication systems usually use the time-division multiple access (TDMA) approach

to share the transmission medium between different nodes in a static, pre-defined manner.

In order to allow a consistent execution of a TDMA schedule in a distributed system,

global clock synchronization becomes necessary to make all participating nodes able to

operate in a coordinated manner.

2.1.3 Discussion

In practical applications of distributed embedded systems, especially in the domain of

mechatronics, it turns out that control algorithm processes are executed in cycles activated

periodically. The periodic activation of a determined set of packets of fixed and pre-defined

sizes along with a known medium access scheme provide rules that restrict the uncertainty

in the event-triggered approach and can allow checking whether real-time behavior can

be achieved under a given configuration. This being the case, an advantage of the event-

triggered paradigm over the time-triggered one is that nodes may start transmission as

soon as data is available, which may contribute to the reduction of communication latency.

However, such an advantage exists only when the communication infrastructure has a low

utilization factor. When transmission capacity is high, not only the maximum latencies

are maximized, but also the communication jitter. Such effects basically depend on the

communication protocol used, mainly in the available link bandwidth, and in the approach

used for medium access (arbitration) and packet transmission. Time-triggered protocols

allow a deterministic behavior of the communication system, with possibly higher, though

constant, response times.

When it comes to control applications, there is a trade-off in selecting the appropriate

paradigm. For a variety of control systems, communication latencies can be taken into

account when designing plant controllers, so that the additional delay caused by data

processing can be compensated for. This is, however, only possible when latencies are

rather constant, justifying the use of time-triggered architectures. On the other hand,

if certain control processes in a distributed system require lower communication latency

times or lower transmission periods than others, it may become a complex task to ac-

commodate the necessary data traffic efficiently with a TDMA schedule. A more detailed

study involving the trade-offs of both event- and time-triggered approaches for control

systems is presented in [12].

The comparison between both paradigms however, goes well beyond temporal require-

ments. One of the most important reasons for employing time-triggered communication

6 CHAPTER 2. BACKGROUND AND RELATED WORK

systems is the reliability level that can be offered by protocols based on this approach.

The so-called by-wire applications are good examples where safety plays a key role and

dependable technologies, including communication protocols, are indispensable.

2.2 Network Architectures

Another aspect to be taken into account in the classification of communication systems

is the physical infrastructure, including characteristics of the data transmission medium,

type of supported network topologies, and hardware costs.

The first implementations of communication protocols for embedded systems were based

on shared buses, i.e., the transmission of a given node is broadcast to all others via a

common medium interconnect. Such an arrangement is called bus topology, its main

advantage being the simplicity of the necessary hardware and thus reduced component

costs. However, some aspects must be considered when bus topologies are used. Firstly,

the electrical bus characteristics restrict the maximum bus length, bandwidth, and number

of nodes. Also, a single point of failure, such as a faulty node or a cable disruption or

short-circuit, can lead to a general failure. Furthermore, good arbitration techniques are

required in order to allow bus access to all nodes in a fair and efficient manner.

To overcome the safety restrictions imposed by a bus topology, usually a star interconnect

is employed. The reason is that single link or node failures can be isolated from the

remaining network. The fault-tolerance that can be achieved with a star topology justifies

its use in applications that require higher safety levels. The work by Ademaj et al. [10]

studies the increased safety of the star interconnect when compared to the shared bus.

Another characteristic of the star interconnect is that the point-to-point links from the

nodes to the central hub allow the use of electrical standards with higher transmission

rates and even the use of optical connections. On the other hand, a star interconnect

normally requires higher cabling effort and an extra hub, resulting in higher costs when

compared to the bus interconnect.

With the advent of large scale production of Ethernet-based components, new technologies

based on this standard are extending the original application focus, which is the classical

home and office network, to real-time communication systems. The main hurdle in this

respect is to change the medium-access approaches, which are based in collision detection

and probabilistic contention solving mechanisms, to deterministic procedures. In order

to guarantee real-time behavior, extensions to the original Ethernet standard are made,

such as the introduction of clock synchronization mechanisms and policies for coordinated

medium accesses. The use of Ethernet-based real-time solutions was originally aimed

at the networking of industrial plants, which can benefit from the usage of the same

communication standard for real-time machine control, supervision systems, and plant

2.3. Overview of Protocols 7

management. Despite the fact that Ethernet controllers are usually more complex and

require more hardware resources than the controllers of some communication protocols

for embedded systems, they allow for the creation of flexible connection arrangements

such as ring, star or mixed topologies with relatively high transmission rates.

2.3 Overview of Protocols

This section introduces some of the communication protocols that are used in real-time

embedded systems. Although there are many more available solutions, the presented

ones allow a comparison study of different design approaches and compromises that must

be made when designing communication systems. Other communication protocols under

research in academia are also referenced throughout this thesis.

CAN bus

The Controller Area Network (CAN) developed by Bosch in 1988, has become the most

widely used communication bus in the automotive sector and can be also found in other

domains such as factory automation. According to the CAN in automation (CiA) or-

ganization [24], more than 2 billion CAN nodes have already been sold. Moreover, CiA

presents surveys by market research institutes [23] stating that more than 400 million

CAN controllers were sold in 2005 with an estimative of twice as much in 2010.

CAN is a low-cost protocol based on a bus topology. Participating nodes access the

transmission medium via a non-destructive and priority-based arbitration procedure [44].

The priority is determined by an ID field at the beginning of a message. When two or

more nodes attempt a transmission simultaneously, the message with the highest priority

(lowest ID number) gains access to the bus and is able to transmit the remaining part

of the packet. Such arbitration is supported by an electrical mechanism at the physical

layer that uses the concept of recessive (logically 1) and dominant (logically 0) bits.

Nodes concurring in the arbitration process are able to drive each bit of the ID field

simultaneously onto the bus and read back the current state. If the bus state does not

correspond to the bit being transmitted, this means that the recessive bit of a certain

message was overwritten by a dominant bit of another. In this case the message with

the recessive bit backs out of the arbitration process and prepares itself to receive the

upcoming data from another node. The arbitration procedure continues until only one

message is left in the process, which happens during the last ID bit.

The CAN physical layer consists of a differential transmission pair, which provides good

noise immunity. The maximum supported bandwidth is 1 Mbps for buses up to 40 meters

8 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: CAN arbitration example

and is reduced with the increase in length. Each CAN message transports up to 8 payload

bytes.

Since the CAN standard specifies only the basic data-transfer mechanism among data

buffers in different nodes, the implementation of higher level protocols to support the

required communication, management and monitoring features is left to the application

software. In order to allow interoperability between embedded devices from different

manufacturers, higher level communication standards were also introduced. Examples are

the CANopen, maintained by the CiA organization, and the J1939, which is a standard

of the Society of American Engineers (SAE) institute.

Although largely used today, the CAN bus has some limitations to be employed in some

new generation automotive networks. The main reasons are safety, performance and deter-

minism requirements imposed on emerging architectures. To overcome such restrictions,

time-triggered protocols were developed and have already achieved operational status.

Even the CAN bus has gained its own time-triggered specification, the TTCAN [45].

Although the TTCAN allows deterministic data communication, bandwidth and safety

gains are better exploited in the native time-triggered protocols presented below.

TTP/C

Developed by the working group of Prof. Herman Kopetz at Vienna Technical University,

the Time-Triggered Protocol (TTP/C) [86, 84] is a deterministic communication protocol

that meets the requirements of the now superseded SAE class C specification [77]. The

structure of a time-triggered distributed computing cluster consists of fault-tolerant units

(FTUs), each one representing a single node in the network, which are interconnected via

the communication system.

Access to the transmission medium in TTP/C is based on broadcasts according to

the time-division-multiple-access (TDMA) approach, which uses a statically pre-defined

scheduling table and requires a common notion of time in all participating nodes. Ad-

2.3. Overview of Protocols 9

vantages of this method are predictability and low jitter, but at the price of a lack of

flexibility.

The communication network interface (CNI) of TTP/C is an autonomous component,

responsible for managing all communication functions independently of a host microcon-

troller. Due to the TDMA approach, data packets have low overhead, since it is possible to

coordinate the communication traffic based on global time references. In order to achieve

this, all relevant information concerning the protocol operation is stored in the CNIs of

all nodes in the so-called MEDL (Message descriptor list).

TTP/C was designed for applications with rigorous safety requirements. For this purpose,

fault-tolerant clock synchronization, redundancy management, bus guardians and mem-

bership agreement are some of the services and mechanisms provided by the protocol.

Such TTP/C capabilities, combined with a certified development process, have made it

possible to employ the protocol, for example, in aerospace and rail-signaling applications.

When it comes to network topologies, TTP/C supports both bus and star arrangements.

For increased safety, the star is preferred to the bus topology [10]. TTP/C has been

tested with different physical layers, such as RS-485 and Ethernet. Based on the expe-

rience gained with the TTP/C protocol, an alternative development, the TT-Ethernet

[58] concept, was introduced. TT-Ethernet is compatible with the IEEE 802.3 Ethernet

standard [43] and can be implemented with commercial-off-the-shelf (COTS) components.

Both software-only and dedicated hardware implementations for TT-Ethernet are possi-

ble, the first being a low-cost solution and the second a high-performance alternative. As

opposed to TTP/C, TT-Ethernet allows both event- and time-triggered communication,

with the latter always having preference over non-deterministic operation.

FlexRay

FlexRay [35] is the result of the efforts of car and chip manufacturers to develop a depend-

able and deterministic, yet flexible, data communication system to interconnect ECUs

in automotive systems. It is becoming the de-facto standard in this application field,

with more and more companies supporting the initiative. Like TTP/C, FlexRay is a

time-triggered protocol that uses the TDMA bus-access approach for data transmission,

according to a static schedule, in order to guarantee determinism. One of the main dif-

ferences, however, is that FlexRay reserves part of the TDMA communication cycle for

the so-called dynamic segment (Figure 2.2), where a priority-based scheme (mini-slotting

technique) is used to grant the nodes access to the bus. This is specially useful for the

non-critical functions in a distributed system that are better served by the event-triggered

communication paradigm.

When it comes to interconnections, FlexRay networks can be built using the following

topologies: passive bus, active star, or a combination of both. Also, it is possible to

10 CHAPTER 2. BACKGROUND AND RELATED WORK

Static
Segment

Dynamic
Segment

Symbol
Window

Idle
Time

...

Cycle n

Static
Segment

Dynamic
Segment

Symbol
Window

Idle
Time

Cycle n+1

Figure 2.2: FlexRay communication cycle

use redundant, doubled channels when higher reliability or bandwidth is required, or still

employ single links when cost and simplicity are a major concern.

Unlike TTP/C, FlexRay relies on its own physical layer standard [34], specially developed

for this purpose. The nominal data transmission rate of FlexRay is 10 Mbps with the net

throughput being about the half of this value.

AFDX

The Avionics Full-Duplex Switched Network (AFDX) [25], formalized by the ARINC

664 specification, is a safety critical communication protocol designed for interconnecting

aircraft computers. This standard is based on IEEE 802.3 Ethernet, which contributes

to an overall cost reduction (due to the use of COTS components) and an increase in

bandwidth as compared to older avionics data buses such as ARINC 429 [14]. However, in

order to guarantee determinism and reliability, the operation of AFDX requires additional

mechanisms that are not standard in commercial Ethernet networks.

As the name indicates, all links in AFDX are full-duplex. This is a requirement to avoid

collisions in the transmission medium, which lead to non-deterministic behavior. The

main types of components in an AFDX network are end-systems and switches. An end-

system represents the interface between the AFDX network and an avionics subsystem.

End-systems are always connected to AFDX switches, which can, in turn, be connected to

other switches to expand the network (Figure 2.3). To cope with communication failures,

AFDX is able to employ a pair of independent networks for data transmission. In this

kind of operation, the destination end-system identifies and verifies the replicas arriving

via the two redundant paths and passes a single instance of the message to higher-level

protocols.

A basic difference between AFDX and other Ethernet-based system is the concept of

Virtual Links, which are logical data flows from one source to one or more destinations, in

a scheme that resembles the multi-drop characteristic of ARINC 429. Moreover, instead

of using the destination address to route data packets, AFDX employs 16-bit message

identifiers that are used by the switches to determine the way packets are forwarded in

the network. Multiple Virtual Links are able to share the same Ethernet link. Therefore,

in order to guarantee deterministic behavior, each Virtual Link must have a pre-defined

bandwidth, which is a function of its transmission rate and payload. The Bandwidth

2.3. Overview of Protocols 11

End System

Avionics
Subsystem

Switch

End System

Avionics
Subsystem

End System End System

Avionics
Subsystem

Avionics
Subsystem

Switch

End System

Avionics
Subsystem

Figure 2.3: An example of an AFDX network

Allocation Gap (BAG) is the minimum allowed interval between two consecutive packets

and ranges, in power of 2, from 1 to 128 milliseconds. The AFDX employs the UDP/IP

protocol rather than TCP/IP, thus making possible to limit the traffic of a given Virtual

Link to a single data packet per BAG. Virtual Link Schedulers are responsible for ensuring

the bandwidth specification, selecting a given frame for transmission, and performing

bandwidth regulation to guarantee a deterministic Quality of Service (QoS) of AFDX.

The schedulers select a frame from the input buffers for transmission according to the

round-robin algorithm.

PROFINET

PROFINET [74] is an Ethernet-based communication protocol aimed at industrial au-

tomation applications. It was initiated by PROFIBUS International with development

support from Siemens AG, which has selected PROFINET as one of the main data com-

munication standards for its automation product line. Since PROFINET is an open

standard, different vendors now offer a variety of compatible hardware and software so-

lutions.

There are two so-called perspectives in the communication standard [81], namely

PROFINET CBA (Component Based Automation) and PROFINET IO (Input/Output)

that are complementary and may coexist. The focus of the former is on the realization of

modular applications and machine-machine communication. PROFINET CBA facilitates

the management of complex automation plants as autonomous components can be used

to abstract many aspects of an equipment, including electrical, mechanical, and software

characteristics. PROFINET IO is employed to interconnect controllers and distributed

peripherals and follows the consumer/provider model.

12 CHAPTER 2. BACKGROUND AND RELATED WORK

PROFINET defines three classes of communication requirements to meet the needs of

higher-level non-real-time applications ranging to low-latency, real-time distributed con-

trol devices. The first of them employs conventional TCP/IP communication and achieves

typical cycle times of 100 ms. It is a so-called class A solution since no modification in

the TCP/IP stack nor special hardware is required.

The second class, called PROFINET RT (Real-Time), provides a real-time cyclic commu-

nication that is implemented by a special driver that bypasses the ordinary communication

stack, resulting in lower cycle times, in the order of 10 ms. In order to prevent normal

TCP/IP traffic from impairing the correct functionality of PROFINET RT, the pack-

ets of the latter are assigned a higher priority according to the IEEE802.1q standard.

PROFINET RT is a class B solution because special software drivers are required, but it

works with COTS Ethernet hardware that comply with IEEE802.1q.

PROFINET IRT (Isochronous Real-Time) provides the highest possible performance of

all three classes. In this mode bandwidth is reserved for IRT packets at the beginning

of each communication cycle, so that even with a high utilization of TCP/IP traffic the

real-time behavior can be guaranteed. For this mode, a precise clock synchronization of

the network equipment is implemented in order to meet the precision requirements on

motion control applications. This characterizes a class C concept that employs special

software and hardware. With PROFINET IRT it is possible to reach cycle times of 250

µs with a jitter below 1 µs.

EtherCAT

EtherCAT, originally developed by Beckhoff [47], is also an Ethernet-based communica-

tion standard for industrial applications. The EtherCAT concept consists of one master

and several slaves that make up a logical ring, although line, star and tree topologies

are physically permitted (Figure 2.4). A characteristic of EtherCAT is that the master,

as opposed to the slaves, needs no special hardware for its operation, just a standard

Ethernet port. Once the master triggers the transmission of an EtherCAT packet to the

ring, the slaves, by means of dedicated hardware, are able to read and alter the contents

of the packet as it passes by. As the delay caused by the slaves is minimal, very high per-

formance can be achieved, with cycle times in the range of some microseconds, and jitter

well below 1 µs. As with PROFINET, EtherCAT also employs clock synchronization.

The Precision Time Protocol, IEEE1588 Standard [42], is used for this purpose.

Since devices are daisy-chained, a fault in the network, either in a node or in a connection,

may isolate several slaves. In order to overcome this kind of problem, EtherCAT also

specifies a redundancy scheme. It consists in adding a second Ethernet port to the master

node in order to close a ring in the network. Normally, only one of the Ethernet ports

at the master node is operational (the second is on stand-by). If a disruption occurs in

2.3. Overview of Protocols 13

Master

Slave Slave Slave

Slave Slave Slave

Slave Slave Slave

Figure 2.4: An example of an EtherCAT network

the network and the ring is broken, the Ethernet ports at the master node are then used

to initiate transmission in both ring directions. If the fault was caused by a connection

problem, all slaves will be able to rejoin the network.

SpaceWire

As the name suggests, SpaceWire is a data-communication standard that is used in satel-

lites and other spacecraft. It is based on the superseded IEEE1355-1995 standard [41],

which was derived from the T9000 Transputer [26] asynchronous serial connections, and

employs LVDS (TIA/EIA-644) [83] as the physical layer. Today SpaceWire is backed by

ESA (European Space Agency), which has issued an official standard for it [31].

SpaceWire is based on full-duplex, point-to-point serial links with signaling rates ranging

from 2 Mbps to 400 Mbps. The full-duplex links comprise a total of four differential pairs

(two for each direction) and utilize a data-strobe encoding technique that allows simple

recovery of the transmission clock. Nodes in a SpaceWire network can be either directly

connected to others or via switches that rely on wormhole routing to minimize latency

times.

Different types of addressing are defined for SpaceWire. With path addressing, when a

packet arrives at a switch, the first byte of payload is taken to determine the destination

port and then deleted. With logical addressing, the destination address is the first packet

byte and is kept by the switches. Another possibility is region addressing, a combination

of the two types above that facilitates multilevel routing and reduces the size of routing

tables.

In SpaceWire a flow-control mechanism is used to avoid the overflow of receiver buffers.

The rationale is that transmission is only allowed if the buffers have capacity to accept

14 CHAPTER 2. BACKGROUND AND RELATED WORK

incoming packets. This feature is implemented by sending special control packets from

the receiving node to the transmitting to indicate the status of the buffer.

Another feature of SpaceWire is the so-called Group Adaptive Routing that permits a

dynamic selection of parallel links for transmission and allows fault-tolerant operation

because if one of the links has a fault, alternative paths are available. Additionally,

SpaceWire defines packets called Time Codes that are used for synchronizing the network

with respect to a time master.

The features described make SpaceWire a fault-tolerant, scalable and high-performance

communication protocol. Still, one of its limitations is the lack of a formal approach

to real-time operation. Although different authors have proposed means to guarantee

real-time behavior [67, 69], this is not covered in the original standard.

2.4 Discussion of Real-Time Communication

Systems

Emerging applications are likely to impose ambitious requirements on real-time communi-

cation protocols in embedded systems. Among the many challenges one may have to deal

with, it is possible to list, for instance, adaptivity, efficiency, complexity management,

and mixed criticality. Meeting all these stringent demands is a non-trivial problem, espe-

cially because peculiarities of applications may render some solutions inappropriate. On

the other hand, it is possible to ponder the characteristics of a versatile communication

scheme to cover many aspects of the requirements presented. A list of desired protocol

characteristics and respective justifications is proposed below:

Mixed Hard-Real-Time and Best-Effort Behavior Protocols that support either

one or the other approach, but not both, may have limited applicability. While hard-

real-time behavior is the basic requirement on many embedded systems, especially with

control applications, non-real-time communication is useful for other functions such as

monitoring, logging, updates, configuration, and LAN connection. As embedded systems

get more and more complex and heterogeneous, the need for communication protocols

supporting both approaches concurrently may be more common. This functionality is

explicitly supported, for example, by FlexRay, PROFINET, and TTEthernet. On the

other hand, TTP/C is an example of a protocol that was designed mainly for hard-real-

time communication (although mapping best-effort communication in the reserved time

slots is possible). CAN and SpaceWire belong to the class of protocols used in real-

time applications that requires, however, a careful design of the applications in order to

guarantee deterministic behavior.

2.4. Discussion of Real-Time Communication Systems 15

Dynamic Reconfiguration Hard-real-time systems are commonly designed to per-

form pre-defined functions that will not be altered during the life-cycle of a product. In

this kind of applications all real-time communication and processing needs are defined

and analyzed during the design phase (static approach). However, new applications such

as flexible industrial plants or transportation systems (see Chapter 8) can profit from, or

even require, a dynamic reconfiguration of the real-time communication. Commercially

available hard-real-time communication systems usually do not allow for dynamic recon-

figuration, but academic projects are proposing ways of doing so, such as the Flexible

Time-Triggered approach [70].

Performance and Efficiency Low-latency and efficient bandwidth utilization allow

using a communication protocol in a greater variety of applications. Some distributed

control applications, for instance, require sampling rates of more than 1 kHz and latency

times in the range of microseconds. Efficiency is also an issue since bandwidth in embedded

systems is normally constrained. Therefore, communication overhead must be minimized

and medium access schemes should avoid unnecessary idle times.

Multi-master Capability Some protocols (e.g., EtherCAT) rely on a master/slave

scheme to control communication. Although this approach simplifies the design, one

drawback is that a faulty master potentially disrupts communication. For safety-critical

applications such as X-by-wire and flight control systems where modules are replicated

and a limited number of faulty nodes must be tolerated, a multi-master communication

approach may become a necessity. TTP/C, FlexRay, SpaceWire, CAN, and AFDX are

examples of multi-master protocols.

Distributed Clock Synchronization A common notion of global time is a require-

ment for many embedded systems. It allows, for instance, coordination of different tasks

and determination of the order of events. Moreover, it has been proved [85] that consensus

in a distributed system can be reached if, for example, it is synchronous and the commu-

nication delay is bounded. Consensus is an important service in distributed systems since

it allows nodes to agree on the same data and actions.

Fault-Tolerant Operation The resilience against faults is an important characteris-

tic of communication protocols. Redundancy, for instance, is a common approach to

fault-tolerance since by meticulous design the availability of a system can be extended by

means of replication. Another way of implementing fault-tolerance is by using a filtering

technique. An example are the bus guardians in TTP/C that protect the data bus against

the so-called babbling idiot failures [57], which occur when a node sends messages indis-

criminately. The CAN bus, for example, has no such mechanism and a malicious node

16 CHAPTER 2. BACKGROUND AND RELATED WORK

can jeopardize all data communication. Distributed high-integrity systems are usually

designed to cope with arbitrary (or Byzantine [59]) failures, which require at least 3.k+ 1

nodes to tolerate k faults.

Support for Composability and Scalability According to Kopetz’s definition [57],

“An architecture is said to be composable with respect to a specified property if the system

integration will not invalidate this property once the property has been established at the

subsystem level”. In practical terms, this concept means that the properties of smaller

components such as timeliness will persist after being integrated into larger subsystems.

Without composability, building complex systems becomes a hard or even impossible

task. Scalability refers to the capability of increasing load, size, bandwidth, and other

parameters of a functional unit without disproportionately increasing the effort to cope

with the higher demand.

Flexible Topologies Using communication protocols that support hybrid topologies

can potentially facilitate the design of distributed systems. Hybrid topologies give de-

signers more options to accommodate data links, especially in applications with tight

physical constraints. SpaceWire is an example of a flexible protocol when it comes to

topologies since it employs point-to-point connections so that different arrangements can

be built.

Resource Efficient Implementation Given that the scope of this discussion is the

embedded domain, available resources such as memory, processing power, chip area, and

bandwidth are normally scarce. Therefore an important characteristic of a communication

protocol tailored to this area is an efficient and resource-saving utilization. In automo-

tive applications, for instance, communication controllers are usually integrated into the

microcontroller die.

The following chapters of this thesis will present and evaluate a new communication proto-

col that was designed bearing in mind the above requirements. With the freedom to build

up a new protocol from scratch it was possible to take decisions about implementation

trade-offs and define an architecture to meet the envisioned needs.

Chapter 3

The TrailCable Communication

Protocol

This chapter presents the TrailCable hard-real-time data communication protocol which is

aimed at building reliable and flexible distributed embedded systems. The motivation to

develop a new communication protocol is due to the fact that although buses and networks

for reliable hard real-time applications exist, they usually have limited flexibility and

restricted support for dynamical reconfiguration, if at all. To overcome these limitations,

the rationale of the TrailCable protocol is based on the sporadic-triggering paradigm,

which is introduced in the following.

3.1 The Sporadic-Triggering Paradigm

Event- and time-triggered paradigms are usually considered as two opposite approaches

for building computing systems. It can be assumed, however, that time-triggered systems

are actually a proper subset of the more general event-triggered approach. In event-

triggered systems (ET) there is no rule whatsoever for the events to occur and tasks

can be released at any time. On the other hand, time-triggered systems (T T) are char-

acterized by a strict rule: all actions must be triggered at globally known times. This

rule implies that T T (ET and in practice it imposes a huge gap between event- and

time-triggered implementations, since global time synchronization and statically defined

scheduling tables are required for the latter.

While the characteristic of the time-triggered paradigm may facilitate building up reliable

and deterministic systems, one of its drawbacks is the lack of flexibility. In her book Real-

Time Systems [61], Jane Liu lists some of the disadvantages of the clock-driven approach.

The following text is an excerpt of her book:

17

18 CHAPTER 3. THE TRAILCABLE COMMUNICATION PROTOCOL

1. The release times of all jobs must be fixed. In contrast, priority-driven algorithms do

not require fixed release times. (...) we can guarantee the timely completion of every

job in a priority-driven system as long as the inter-release times of all jobs in each

periodic task are never less than the period of the task. This relaxation of the release-

time jitter requirement often eliminates the need for global clock synchronization and

permits more design choices.

2. In a clock-driven system, all combinations of periodic tasks that might execute at

the same time must be known a priori so a schedule for the combination can be

precomputed. This restriction is clearly not acceptable for applications which must

be reconfigurable on-line and the mix of periodic tasks cannot be predicted in advance.

(...) a priority-driven system does not have this restriction. We can vary the number

and parameters of periodic tasks in the system provided we subject each new periodic

task to an on-line acceptance test.

3. The pure clock-driven approach is not suitable for many systems that contain both

hard and soft real-time applications. (...) [p.112]

This thesis presents and relies on the so-called sporadic triggering (ST) concept that can

be used as an alternative to overcome T T limitations and reduce the gap between event-

and time-triggered systems. In sporadically triggered systems two consecutive activations

of a given job must be separated by a minimum time interval, the task period 1.

In many applications, the sporadic-triggering approach is a good compromise between

event- and time-triggered systems. The reason for this is that the sporadically-triggered

paradigm, as opposed to the event-triggered approach, makes it possible to ensure hard-

real-time behavior while offering a greater flexibility and independence between tasks than

do time-triggered implementations. However, in order to fully exploit the capabilities of

the sporadically-triggered paradigm, a dynamic scheduling algorithm becomes necessary

to assign active tasks to a given resource. This is more complex than the use of static

scheduling tables in the time-triggered approach.

Since all of their activations are periodic, time-triggered systems are also sporadically-

triggered. However, not all sporadically-triggered systems are also time-triggered due to

the fact that the former do not require a synchronized operation and their job activations

can happen any time as long as the minimum time interval between them is larger or

equal to the specified period. Thus, the relation between the three described paradigms

is represented by Figure 3.1 and can be expressed as: T T (ST (ET .

1Within the real-time research community, the word sporadic is used to describe tasks with a minimum,

predefined inter-arrival time. This is the interpretation throughout this thesis, but care must be taken

because such a term can be misleading for a broader audience, since it can be inferred that a certain

event happens only in an isolated or unruly manner.

3.2. TrailCable Protocol Rationale 19

ET ST TT

Figure 3.1: Triggering paradigms

The increased flexibility of the ST paradigm does not impose a limitation to building

dependable systems. A completely synchronous operation is not required for this purpose

as long as the maximum time intervals for processes to complete are bounded. The

Timed Asynchronous Distributed System Model by Cristian and Fetzer [28] shows that if

all processes have a defined time interval to respond and nodes have access to hardware

clocks, it is possible to implement distributed services such as clock synchronization,

membership, atomic broadcast and consensus.

The TrailCable protocol to be presented in this chapter is based on the ST paradigm and

is therefore not only suitable for hard-real-time use but also flexible enough to allow, for

example, dynamic reconfiguration of communication tasks.

3.2 TrailCable Protocol Rationale

The infrastructure of a TrailCable network consists of point-to-point, wired communica-

tion links. In order to reduce cabling complexity, cost, size, and weight, nodes are able

to act as data switches, forwarding data between neighbors. Although wireless networks

have a lot of benefits, wired links can offer an overall better communication reliability

since its transmission medium is less prone to external interferences when compared to

radio counterparts. Moreover, the performance characteristics of a wired link do not de-

viate much, while wireless communication is heavily dependent on spectrum utilization,

distance between nodes, etc.

A typical node in a TrailCable network is depicted in Figure 3.2. It consists of a host

processor with I/Os to interact with physical processes and the communication layer. The

latter is divided into the communication engine, which is the autonomous hardware com-

ponent that handles packet switching and real-time scheduling, and the communication

interface, which acts as an abstraction of the communication services provided by the

protocol for the host processor.

Real-time communication is established by means of virtual channels that are mapped

on the network infrastructure. To guarantee real-time behavior, data transmission in

20 CHAPTER 3. THE TRAILCABLE COMMUNICATION PROTOCOL

Host Processor

I/O

Communication
Interface

Communication
Engine

...
Communication Links

Physical Plant

Figure 3.2: The TrailCable node

each link direction is controlled by a scheduler which is responsible for assigning the

transmission medium to a given channel. The scheduler algorithm of the TrailCable is

Earliest Deadline First (EDF) [60] and was chosen because it allows high utilization of

the communication resources and is well suited for coping with dynamic configuration.

For the schedulers, virtual real-time channels are considered as communication tasks. A

communication task (in this thesis also simply referred to as task) represents the process

of transmitting to the communication link one complete data packet of a given real-time

channel within a specified deadline.

The point-to-point links are resources with limited capacity, and therefore a feasible sched-

ule is necessary to dynamically assign the available bandwidth to different, concurrent

communication tasks. In order to prove feasibility, for each channel the following param-

eters must be provided: minimum inter-arrival time, packet size, and channel deadline.

The arrival rate and the packet size parameters are the same for all point-to-point com-

munication links that make up a channel.

To better exploit bandwidth, the protocol also supports non-real-time communication.

The scheduling algorithms are able to guarantee that non-real-time traffic will not in-

terfere with the hard-real-time communication. This communication concept has some

similarities with the work by Kandlur, Shin and Ferrari [51, 50]. We extend that approach

by adding packet preemption, a bandwidth guardian for fault-tolerance, and a new clock

synchronization technique, all of them implemented in hardware at the communication-

protocol level. Moreover, the TrailCable approach has a different channel establishment

3.3. Virtual Real-Time Communication Channels 21

and scheduling methodologies. By using packet preemption, the restriction set by [51],

which implies that only small data packets can be used for real-time traffic, can be re-

laxed. This can decrease the transmission overhead and simplifies the implementation as

the messages do not have to be segmented into small packets prior to transmission. Imple-

menting fault tolerance and clock synchronization mechanisms at the communication level

also reduces the complexity of the application. In addition, fault-tolerance mechanisms

that work independently of the host software can be more robust and are able to reduce

communication latency when forwarding data packets. It has been shown (e.g. [56]) that

clock synchronization implemented in hardware allows a more accurate time reference.

3.3 Virtual Real-Time Communication Channels

The TrailCable network infrastructure can be described as an undirected graph

G := (V,E), where V is the set of vertices and E the set of edges that connect those

vertices [29]. In our case the vertices are computing nodes and the edges are bidirectional

electrical or optical communication links. The degree of a node corresponds to the number

of its active links. The maximum degree of a node therefore is limited by the number of

communication ports a node has.

1

23

4

5

Figure 3.3: Network infrastructure

Once a network infrastructure is defined, it is possible to map real-time channels on it. A

real-time channel is a logical tree (over which data is periodically transmitted from one

origin to one or more destination nodes in the network) with the corresponding packet

and time characteristics. Figure 3.3 shows an example where four real-time channels are

mapped on a communication infrastructure.

22 CHAPTER 3. THE TRAILCABLE COMMUNICATION PROTOCOL

The end-to-end connections between the origin and one destination are called

paths or routes and are defined by P := (V,E), where V = x0, x1, ..., xk and

E = x0x1, x1x2, ..., xk−1xk for distinct xn
′s. The source node is represented by x0 and

the path sink by xk.

As long as the real-time constraints can be met, a single data link can be shared by

concurrent real-time channels. In order to identify which real-time channel a data packet

belongs to, the packet header contains a unique identifier (ID field). However, it is im-

portant to note that the same real-time channel can have different IDs for different links.

This is possible because the intermediate routing nodes are able to alter the IDs of an in-

coming packet to another predefined one. This procedure can make it easier, for example,

to reconfigure the system at run-time.

Because the system is able to route multiple incoming real-time channels (that come from

either one or multiple input links) to the same output link, a communication scheduler

for each output port is indispensable. As mentioned, the scheduling strategy chosen for

the TrailCable protocol is EDF. One of the reasons is that the maximum bounds of the

data-link utilization can be improved as compared to other scheduling algorithms, such

as rate-monotonic [22]. Moreover, it is shown in this chapter that EDF can be employed

by all nodes of a certain real-time channel without the need for explicit synchronization

between nodes. The information a node requires for assigning new absolute deadlines

for the scheduling of data packets is obtained by analyzing the traffic characteristics

of previous packets. The communication engine of the TrailCable is also able to cope

with preemptions, which are required by the EDF algorithm, both at the low-level data

transmission layer and at the scheduler and dispatcher components. Thus, instead of

using the common approach to EDF-based communication, which implies a segmentation

of large packets into smaller ones that are individually scheduled, this work relies on

packet preemption.

Since we are dealing with hard real-time communication, timing requirements and route

characteristics for all channels must be known a priori in order to assure the feasibility of

a given configuration. The required schedulability analysis must be executed before any

real-time channel is altered or added to the system. During run-time, the characteristics of

each task are also needed by the communication engine and stored in data structures that

we call scheduling tables. Real-time channels can be added, removed, and reconfigured

on-line in a dynamic manner, but on condition that acceptance tests are successful.

To describe the timing characteristics of a channel, a real-time communication task is

assigned to each node along this channel. The main parameters (Figure 3.4) that describe

a real-time communication task i for a given node are the following:

� Release time (ri,j) - the latest possible instant in which the data packet of the j-th

instance is ready to be transmitted

3.3. Virtual Real-Time Communication Channels 23

Figure 3.4: Parameters of a real-time task

� Period (Ti) - minimum time interval between two consecutive release times at the

source node

� Relative deadline (Di) - the interval after the release time in which the data trans-

mission must be completed. The absolute deadline is different for each task instance

and represented by di,j

� Computation (or transmission) time (Ci) - time needed to transmit a data packet.

The value of Ci depends on the amount of data bytes to be transferred and on the

transmission rate. The parameters Ti and Ci are equal in all nodes that build a

real-time channel whereas Di can be different for each link.

In order to reduce the communication latency and thus the minimum achievable channel

deadlines, the virtual cut-through method was chosen to forward data packets. So, after

receiving a packet header and retrieving the ID (which allows retrieving the corresponding

routing information contained in the scheduling tables) the packet can be handed over

to the scheduler immediately, without the need for waiting for the whole packet to be

received. So, if we do not consider the propagation time of the communication links and

the intrinsic processing delays of the routing nodes, the release times from the second

hop onwards can be expressed as a function of the absolute deadline of the previous

communication link as follows:

rni,j = dn−1i,j − (Ci − α) (3.1)

where dn−1i,j is the absolute deadline of the previous communication link and α the time

to transmit the packet header.

The timing diagram of Figure 3.5 shows one scheduling example based on the network

infrastructure of Figure 3.3. The numbers on the left-hand side of Figure 3.5 associate

the time diagrams with the links of Figure 3.3. It can be noted that the release times at

the intermediate and final nodes (2 to 5) are (Ci − α) time units advanced with respect

to the previous absolute deadline. As also shown in Figure 3.5, a packet transmission,

however, can start even before the actual release times when the communication link is

idle. This reduces the average channel latencies and is also a requirement for the run-time

admission control presented in Section 3.6.

24 CHAPTER 3. THE TRAILCABLE COMMUNICATION PROTOCOL

Figure 3.5: Scheduling example

In Section 3.5 we will present the methodology we use to check whether a set of communi-

cation tasks for a given communication port is feasible. Even if the data communication

at every single communication port can be proven feasible by that methodology, it is still

necessary to check whether the end-to-end channel deadlines are met as well. To do this,

we first need to introduce two new parameters (Figure 3.6) that must be known for such

an analysis: prop and fw.

Receiver Transmitter

Protocol Engine

Receiver Transmitter

Protocol Engine

Receiver Transmitter

Protocol Engine

...

prop

fw

Figure 3.6: Packet-forwarding timing parameters

The term propn is the line-propagation delay from the point in time where a single byte

is written into the transmitter of a node n to the point where the same byte can be read

at the receiver of a neighboring node n + 1. Although the time necessary to transmit a

packet is fixed, propn can still vary slightly, depending, for example, on cable lengths. The

next term, fwn, represents the worst-case duration for forwarding a single byte from the

receiver of a node n to one of its transmitters, under the assumption that no other tasks

be active in the forwarding node. The parameter fwn is fixed for a given implementation

of the protocol. The term, Dn
i , is the relative deadline in the n-th node of a real-time

channel i. Different tasks of a channel i can have different relative deadlines.

The total end-to-end channel latency is determined by summing up the latencies added

by each involved node, which consists of its prop and fw delays and the relative deadline

3.4. Preemption Mechanism 25

Di. However, thanks to the use of the virtual cut-through forwarding method, it is still

possible to subtract, for each intermediate node, (C − α) from the total channel latency.

It follows that in order to guarantee that the deadline of a channel i (δi) be met, the

following condition must be satisfied:

δi ≤
k−1∑
n=0

(propn + fwn +Dn
i)− (k − 1) (Ci − α) (3.2)

where k is the number of nodes in the channel route from the source to a destination,

including all intermediate hops. Meeting this condition for all paths of all communica-

tion channels is a necessary step to assure the feasibility of a TrailCable communication

network.

3.4 Preemption Mechanism

Besides being a requirement for the classical EDF scheduling, packet preemption has

recently been studied by researchers looking for a way to improve time-sensitive commu-

nications, especially in the Internet domain. But there have not been many initiatives

to adopt such mechanisms with hard real-time communication networks for embedded

applications, such as in data buses for mechatronic systems.

The TrailCable packet-preemption mechanism relies on comma-control words to indicate

whether the packet being received is starting or being resumed. A comma-control word

consists of a unique sequence of bits at the data-link layer that, once detected, can be

used for alignment purposes. Commas are supported by some encoding schemes such as

the 8B/10B [87]. As the name suggests, the 8B/10B coding method converts 8 data bits

into 10 coded ones for transmission and implies, therefore, a 25 % overhead. The benefit

of this coding scheme, however, is that it provides a manner to align the receiver with

the transmitter, guarantees a maximum of 5 consecutive equal bits in the encoded data

stream, eliminating the DC-level at the link layer (which facilitates the hardware design)

and provides control characters that can be sent instead of data symbols. Two different

control characters called K28.5 and K28.1 are commas in 8B/10B and make it possible

for the receiver of the TrailCable protocol to recognize START and RESUME headers.

The functions of these headers are the following:

� START - used to indicate the beginning of a new packet. When the communication

link is idle, a sequence of START commas is also constantly transmitted to allow

the receiver to be kept synchronized with the transmitter.

� RESUME - indicates that a previously preempted packet is being resumed.

26 CHAPTER 3. THE TRAILCABLE COMMUNICATION PROTOCOL

Each real-time packet is composed, at least, by a START header and a data section

with variable length. The headers described contain, besides the comma, the packet ID

(by which the routing and scheduling information can be retrieved from the scheduling

table) and finally the CRC of the packet ID. The reason for protecting the ID by a CRC

is that a transmission fault could otherwise alter the correct ID, which would lead to

potentially wrong scheduling and routing decisions. The data section is composed by a

payload, its CRC, a timestamp (used for clock synchronization), and also the respective

CRC (Figure 3.7). During transmission of the data packet over a real-time channel the

payload CRC must be kept unchanged. On the other hand, the ID can be altered during

the forwarding process and consequently the ID-CRC field as well. The same occurs for

the timestamp section. The CRC polynomials were selected on the basis of the guidelines

presented in [55].

Comma
(1)

ID
(1)

ID CRC
(1)

Payload
(1 to 249)

CRC
(2)

T. Stamp
(4)

TS CRC
(1)

{ Header { Data

Figure 3.7: Format of a real-time packet

A header must always be sent atomically, but the data section can be preempted at the

end of each single byte. When a preemption occurs, the context of the previous task is

saved and the new task starts. As soon as the task with the highest priority is transmitted,

a preempted task can be resumed by sending a RESUME header. This method allows the

same packet to be preempted more than once in different instants of time and multiple

packets to be preempted in a row. A preemption example can be seen in Figure 3.8.

Start A Start B Res. AIdle IdleData A Data B Data A

Figure 3.8: Packet preemption

One further advantage of using the 8B/10B coding scheme in the TrailCable protocol is

that even if the receiver loses synchronization with the transmitter at a given time due

to transient communication errors, detecting a new comma is sufficient to reestablish the

synchronization. Therefore, faulty packet segments do not impair any subsequent, correct

ones, thus enhancing communication robustness and reducing masquerading failures.

The scheme presented imposes no additional overhead for the high-priority tasks that

preempt lower-priority ones. This is due to the fact that the amount of bytes sent by a

high-priority task will be the same regardless if it started when the link was idle or by

preempting another one. On the other hand, when tasks resume after being preempted

by another one it is necessary to resend a header thus increasing overhead. Despite of

3.5. Schedulability Analysis 27

this, using preemption allows a reduction of channel latency times and has, in average,

less overhead than scheduling smaller, segmented data packets since each segment also

has its own header.

For sensitive applications where hardware area and memory size are a major concern,

disabling preemption can save some resources. In this case it would not be possible to use

the original EDF scheduling, but there is a variant of this algorithm called npEDF (non-

preemptive EDF) that may become an alternative. Although not an optimal algorithm

as the EDF, npEDF also has some of the benefits of the former. Short [80] gives details

about npEDF and shows that it is well suited for resource-constrained applications. In our

work, however, we will concentrate on the classical EDF and benefit from preemptions

since the amount of hardware resources required for this function is low thanks to an

optimized architecture (described in Chapter 6) and because communication overhead is

also kept low since only three bytes are required in a RESUME header.

3.5 Schedulability Analysis

This section presents a method for performing the schedulability analysis of each com-

munication port scheduler presented in the network. The objective is to assure that by

means of the EDF algorithm all schedulers will be able to deliver the data packets that

reach a given communication port within the specified deadlines.

The clock drift between two consecutive nodes is an important effect to be reckoned with

when scheduling tasks in a distributed system. If a certain set of communication channels

uses the entire bandwidth available, a problem occurs if the oscillator at the sender is

slightly faster than the one at the receiver. In this situation the sender can occasionally

produce more bits than the receiver is able to handle correctly. Therefore it is necessary

to scale the value of the period and deadlines that describe the behavior of the real-

time tasks. For this purpose we use the deviation ∆ as a factor that corresponds to the

ratio between the lowest and highest clock oscillators used for the TrailCable engine in a

network. As an instance, using 50 ppm clock oscillators, two nodes are expected to deviate

a maximum of 100 ppm from each other and therefore the ∆ factor would be 0.99990. The

values of Ti and Di employed for both the acceptance tests and scheduling tables must

be then scaled from the nominal ones as follows: Ti = Ti(nom) ×∆ and Di = Di(nom) ×∆.

At first sight, the effect of ∆ would seem negligible, but consider for example a task

relative deadline Di(nom) = 50ms, ∆ = 0.99990 and a transmission rate of 32 Mbps. In

this scenario, the difference between the nominal and corrected deadlines corresponds

to the time required to transmit 20 bytes. This could potentially cause deadlines to be

missed if the network operates under heavy load. Moreover, since TrailCable is hard-real-

28 CHAPTER 3. THE TRAILCABLE COMMUNICATION PROTOCOL

time, all details that could possibly impair schedulability must be taken into account and

mitigated.

The transmission time Ci introduced in Section 3.3 is necessary for the schedulability

analysis and calculated by adding to the payload 10 bytes (3 for the START header, 2

for the payload CRC and 5 for the timestamp) and multiplying them by the transmission

time of a single byte:

Ci = (payload + 10)× 1(
baud rate

8

) (3.3)

Another necessary compensation is due to the overhead caused by the RESUME headers.

Each time a task is preempted, a new RESUME header must be sent thus increasing the

actual packet transmission time Ci. For this reason, before executing the schedulability

analysis, we need to calculate the maximum transmission time Cmaxi for each task i in

a certain communication port by adding the respective overhead costs to Ci, as expressed

by Eq. (3.4):

Cmaxi = Ci + α× Pi (3.4)

The constant α is the transmission time for a RESUME header and the variable Pi

represents the maximum number of times a task i can be preempted by others.

The classical EDF scheduler needs to sort absolute deadlines to determine the highest-

priority task. Absolute deadlines are calculated at the arrival of each new task by adding

its relative deadline value to the current time 2. So, if a task i is active in the scheduler,

a task m arriving immediately thereafter can only preempt i if Dm < Di. Otherwise,

di will be always smaller than dm. Moreover, under these circumstances a task i can be

preempted by m only once during the period Tm. It follows that a task m can preempt

i no more than Di/Tm times if Dm < Di. The variable Pi is the total number of times i

can be preempted with a set of t tasks. Pi is a conservative estimate, i.e., the number of

preemptions can actually be lower than the calculated amount.

M = {Dm|Di > Dm, 1 ≤ m ≤ t} Pi =
∑
∀x∈M

⌈
Di

Tx

⌉
(3.5)

With the clock and preemption compensations performed, it is possible to use standard

approaches for performing the schedulability analysis of an EDF task set. More specifi-

cally, since we are dealing with the special case where deadlines are less than periods, we

can apply the processor demand criterion by Baruah, Rosier, and Howell [17], which is

described by the following theorem presented in [21]:

2With TrailCable, the method is slightly different in order to cope with the jitter introduced by

previous schedulers. This method is described in Section 3.6.

3.5. Schedulability Analysis 29

Theorem. If D = {di,k|di,k = kTi +Di, di,k ≤ min(Bp,Hp), 1 ≤ i ≤ n, k ≥ 0},
then a set of periodic tasks with deadlines less than periods is schedulable by EDF if

and only if:

∀L ∈ D L ≥
n∑
i=1

(⌊
L−Di

Ti

⌋
+ 1

)
Ci (3.6)

This theorem consists in checking for all tasks and all instances whether the absolute

deadlines can be met in the available processing time (or available bandwidth in our case)

up to that point. The time interval for which these checks must be performed is bounded

by the hyper period Hp, or by the busy period Bp, of the task set. The busy period of

an interval [0, L] is the minimum time necessary to complete the execution of all released

tasks, which is defined as a quantity W (L) and given by [21]:

W (L) =
n∑
i=1

⌈
L

Ti

⌉
Cmaxi (3.7)

The busy period of an interval [0, L] must be equal to W (L) and is therefore defined as

Bp = min{L | W (L) = L}. The busy period is calculated by Algorithm 1 also presented

in [21].

Algorithm 1 busy period

1: L←
∑

n
i=1Cmaxi

2: L′ ← W (L)

3: Hp ← lcm(T1, ..., Tn)

4:

5: while (L′ 6= L) and (L′ ≤ Hp) do

6: L← L′

7: L′ ← W (L)

8: end while

9:

10: if (L′ ≤ Hp) then

11: Bp ← L

12: else

13: Bp ← ∞
14: end if

If the inequality (3.6) holds for ∀L ∈ D, the task set is feasible for an EDF scheduler

and the schedulability analysis for the given node is completed. The drawback of this

method, however, is its complexity, since it is exponential. Nevertheless, in practice the

schedulability analysis can be executed in reasonable time for many task sets, especially

when the network is not working near its maximum capacity.

30 CHAPTER 3. THE TRAILCABLE COMMUNICATION PROTOCOL

More recently, Albers and Slomka [11] presented improved algorithms for EDF schedula-

bility analysis for deadlines different from periods. The methods are still exact and have

pseudo-polynomial complexity, but outperform previous test algorithms.

Another possibility to cope with the complexity of schedulability analysis for EDF with

deadlines less than periods is to sacrifice exactness in favor of lower complexity. Masrur,

Drössler, and Färber [64] presented two sufficient algorithms that achieve polynomial

complexity, namely O(n2) and O(n log n).

3.6 Run-Time Admission Control

The admission control for the communication engine presented in this section is a key

component for guaranteeing the hard-real-time constraints during run-time. It is respon-

sible for checking whether the incoming packets in the nodes conform to the specifications

employed for the schedulability analysis. As a consequence, the run-time admission con-

trol acts like a bandwidth guardian that can filter traffic anomalies. Such procedure aims

at increasing the robustness and fault-tolerance of the real-time scheduling. If, for exam-

ple, a faulty node sends a task with shorter periods or with increased payload size, the

assumptions made initially for the schedulability analysis will not hold anymore. This

undesired situation could make not only the mentioned task, but potentially all others

miss their deadlines. To solve this problem the built-in bandwidth guardian individually

filters possible overload conditions for each task, thus acting as a “temporal firewall” that

guarantees that all correct tasks be correctly scheduled even in the presence of faults.

Additionally, the run-time admission control is also responsible for triggering the sched-

ulers with the appropriate absolute deadline for each new task instance. This is required

since one of the goals of the communication engine is to achieve a distributed schedul-

ing without the need for global clock synchronization. Indeed, the method we use even

dispenses with the transmission of explicit control information to synchronize the sched-

ulers. In order to cope with such requirements, the admission control block analyses the

incoming packets and, for every new task instance, calculates the absolute deadline that

is then used by the scheduler(s) of the defined output port(s).

As will be shown below, the procedures for implementing the bandwidth guardian and

calculating the deadlines have a lot in common. For this reason, both functionalities were

integrated into the run-time admission control module.

In order to set up the bandwidth guardian for a communication port, it is necessary to

define time intervals where data transmission is not allowed to occur. To do this, the

earliest and latest possible instants of the release times must be known. Without loss of

generality, let us assume that the transmission of a task at the source node be triggered

periodically at a fixed time interval between any two instances. In this situation the

3.6. Run-Time Admission Control 31

release times at the originating node (r0i,j) will have no phase variation. On the other

hand, from the second node of the route onwards, phase variations eventually occur due

to the behavior of the scheduler. In the best case scenario, a data packet will immediately

be transmitted from one node to the next if there are no higher-priority packets waiting

for transmission. Due to virtual cut-through routing, the forwarding of packets can be

accomplished as soon as the START header is received. This is illustrated in Figure 3.9

by the dotted up arrows. On the other hand, the worst-case scenario occurs if tasks are

completed exactly at their deadlines, when the release times are given by Eq. (3.1). It

can be seen that there are three different areas in the figure 3.9. The green area represents

the sector where data packets are received before the worst-case release time. Then, the

yellow sector represents the time after the worst-case release time, within which packet

transmissions must be completed to meet their deadlines. Finally, the red sector indicates

where packets of a certain task are not expected to be transmitted.

S

S

S

S

S

S

S

S

S

T

D
0

D
1

D
2

G
0

G
1

G
2

Figure 3.9: Guard intervals

The release times shown in Figure 3.9 follow a pattern that can analytically be defined

as:

r0i,jmin
= r0i,jmax

= Φi + j.Ti

r1i,jmin
= r0i,j + α r1i,jmax

= r0i,j +D0
i − (Cmaxi − α)

r2i,jmin
= r0i,j + 2.α r2i,jmax

= r0i,j +D0
i +D1

i − 2.(Cmaxi − α)

The next step is the definition of a guard zone, defined by Gn
i (Figure 3.9), which is

the minimum interval between completion of a data packet transmission and start of the

transmission of the next instance. The constant Gn
i is expressed by:

Gn
i = Ti −Dn

i − (rni,jmax
− rni,jmin

) (3.8)

32 CHAPTER 3. THE TRAILCABLE COMMUNICATION PROTOCOL

In a generic form, it follows that the guard value throughout a path is given by:

G0
i = Ti −D0

i

G1
i = Ti −D1

i − (D0
i − Cmaxi)

G2
i = Ti −D2

i − (D0
i +D1

i − 2.Cmaxi)
...

It can be seen that the values of Gn
i are dependent on the characteristics of the previous

nodes, namely their relative deadlines. On the other hand, the remaining parameters are

not dependent on previous nodes but it is worth recalling that Ti and Cmaxi are equal

in the entire real-time channel.

In the TrailCable protocol there is no explicit synchronization among schedulers. The

information a node requires to calculate the absolute deadlines for each new task instance

is gained entirely from the incoming traffic. By this each node acts as a fault-containment

region with respect to scheduling errors. This means that anomalies that could potentially

cause scheduling problems are detected early enough and filtered out. Moreover, this

approach has the benefit that no communication overhead is spent for controlling the

schedulers and also that no global clock synchronization is required for the schedulers.

The analysis of the incoming packets to determine if they are timely correct is performed

with the task parameters used for the schedulability analysis and also with the guard

values Gn
i . In the source nodes there is no need for a bandwidth guardian since there

is only outgoing traffic of a given communication task. In the intermediate nodes of a

channel, the bandwidth guardian becomes necessary and the absolute deadlines for the

local schedulers must also be calculated. In the destination nodes, it suffices to execute

only the bandwidth guardian (and no absolute deadline calculation) because data packets

will not be forwarded to a neighbor.

Before going on in the explanation of the admission control method, we have to introduce

the additional parameters needed by the process. Besides Ti, Cmaxi, D
n
i and dni,j, r

n
i,j and

Gn
i , the following parameters of the j-th instance of a task i at a node n are also needed:

� sni,j (start time) - time when the reception of a START header begins,

� resni,j (resume time) - time when the reception of a RESUME header is completed,

� fni,j (finish time) - time when the reception of every single task byte is finished (not

to be confounded with the time the whole transmission is completed).

� csni,j (corrected sni,j) - the start time added by the intervals where a packet was not

transmitted due to preemption (Figure 3.10).

3.6. Run-Time Admission Control 33

S

S

R

csi,j

si,j resi,jfi,j

R
csi,j

Figure 3.10: Admission control with preemption

The csni,j parameter is updated when RESUME headers are received as follows:

csni,j = csni,j + resni,j − fni,j (3.9)

Figure 3.11 illustrates the admission control method in the first intermediate node of a

given route. When this node receives the first packet (j = 0) of a communication task i

or the last instance was completed for a sufficiently long time (more than Ti time units

from the current packet), it is possible to assume that the START header of the packet

arrived at Φi = ri,0max
and the absolute deadline for the output port scheduler is then

calculated by adding D1 to that instant.

The calculated deadline can be met since a prior schedulability analysis was performed

and because ri,jmax
will, in the worst-case, coincide with the critical instance of the task.

The critical instant is the moment when the release of task causes the longest response

time. With the preemptive EDF algorithm, the release time phases Φ of different tasks

are not relevant for all deadlines to be met.

The second task instance is received at Φi + Ti + ∆1. By this, it can now be assumed

that the previous task was not received at ri,0max
, but ∆1 time units before it. Then,

ri,1max
is taken as the moment when the START header of the second packet instance

was received. Shifting the time references with respect to the previous instance will not

impair the schedulability of the task set at the output port. This can be easily proven

because if the separation of two task instances of i is greater than Ti, and the processor

demand condition (3.6) be satisfied for Ti, it will also be for Ti + ∆.

At the third instance we have the opposite situation, i.e., the interval between two in-

stances of i is smaller than Ti. This is an indication that the current instance was received

before ri,2max
. If we continue with the same procedure of the last two instances it would

not be possible to guarantee schedulability since in practice the task period would become

smaller than Ti, which was used for the feasibility analysis. To solve this problem, we use

a variable called hold, represented as Hn
i . It is used for two purposes. Firstly, it increases

the guard interval in which no packets are allowed to be received. Secondly, it is employed

to calculate the absolute deadline for the scheduler with respect to the time at which the

START header was received from the previous node (cf. Figure 3.11).

34 CHAPTER 3. THE TRAILCABLE COMMUNICATION PROTOCOL

S

S

D
1

G
0

S

S

D
1

G
0

S

S

D
1

G
0

H
0

H
0

si,0=Fi

si,1=Fi+T+Di 1

si,2=Fi+2.T -Di 2

input port

output port

input port

output port

input port

output port

j = 0

j = 1

j = 2

Figure 3.11: Hold Variable

The hold variable is only updated at the reception of START or RESUME headers

accepted by the bandwidth guardian. The Hn
i variable is updated when a START header

is received by:

Hn
i = Hn

i + Ti − (sni,j − csni,j−1) (3.10)

and also after a RESUME header by:

Hn
i = Hn

i − (csni,j − csni,j−1) (3.11)

If the equations yield negative values for Hn
i , the latter is set to zero. The upper bound

of Hn
i is determined by (Ti−Cmaxi−Gn−1

i), since exceeding this value would mean that

a packet was initiated before the end of the last instance.

3.6. Run-Time Admission Control 35

The bandwidth guardian performs two types of acceptance tests for each incoming header

and data byte. The first one is performed when the START header of a new data packet

arrives (3.12). This check is used to verify whether the incoming packet is received after

the extended guard area (which is marked in red in Figure 3.11). The right term of the

inequality (3.12) denotes the earliest time when a new task is able to start after the last

instance.

sni,j > fni,j +Gn−1
i +Hn

i (3.12)

Further acceptance tests are also performed upon reception of RESUME headers or nor-

mal data bytes. The check rationale, however, is different from the previous one. Here it

is verified whether all bytes of the packet are received within the green and yellow areas

in Figure 3.9.

t ≤ sni,j + (Ti −Gn−1
i) (3.13)

If errors occur, either due to scheduling in previous nodes or corrupted data transmission,

the system will be able to recover easily. In such a situation the values of Hn
i or csni,j

will only be updated when a correct header arrives. The consequence is a decrease in

Hn
i , possibly down to zero. When Hn

i is zero, the packet can immediately be scheduled

(recovering the system from the mentioned fault), because the time that has elapsed since

the last correct task instance is more than or equal to Ti.

A new absolute deadline for each new task instance forwarded by a node n is calculated

and sent to the scheduler when a START header is received. If a RESUME header is

received, the absolute deadline will be updated and passed to the scheduler, which in turn

will replace it internally. The absolute deadline is calculated by means of the following

equation:

dni,j = csni,j +Dn
i +Hn

i (3.14)

Summarizing the admission control method, we can state that actions will be taken when-

ever headers or data bytes arrive at a node. When data bytes of a given task are received,

it will be checked whether they arrive within a defined time interval after the correspond-

ing START header. It is also assured that the maximum number of received data bytes

will not exceed the packet size. On the other hand, when headers arrive at a receiver, the

admission control block of the respective port will execute the following five steps:

1. Check if the header is correct, with a valid ID and correct CRC,

2. execute an on-line acceptance check,

3. if the acceptance check passes, update the Hn
i variable, otherwise abort reception,

4. calculate, if the packet is forwarded, the absolute deadline of the task and submit

it to the scheduler.

36 CHAPTER 3. THE TRAILCABLE COMMUNICATION PROTOCOL

The complete admission control flow is detailed in Figure 3.12.

New Event

START Header
Received Correctly

Correct Header
Received Correctly

Data Byte
Received

 Hi = Hi + Ti – (si,j – csi,j-1)

 if (Hi < 0)

 Hi = 0
 end if

 csi,j=si,j

si,j > (fi,j-1 + Hi + Gi
n-1)

Activate task Ƭi in the
scheduler with absolute

deadline di,j

t ≤ si,j+(Ti – Gi
n-1)

 csi,j = csi,j + resi,j – fi,j

 Hi = Hi – (csi,j – csi,j-1)

Update the absolute
deadline of task Ƭi in the

scheduler with di,j

t ≤ si,j+(Ti – Gi
n-1)

Store the received data byte
in the the memory of the

node

Forward Data Packet? Forward Data Packet?

 di,j = csi,j + Di + Hi di,j = csi,j + Di + Hi

N N

N N

N

YYY

YY

Figure 3.12: Admission control flow

In the TrailCable protocol the admission control method described in this section is en-

tirely executed in hardware for performance reasons. It is worth mentioning that the

approach presented requires relatively few hardware resources since all calculations are

performed either by simple additions or subtractions and no multiplication or division is

used. Chapter 7 presents measurements that prove the functionality of the admission

control method in a real hardware implementation of the TrailCable protocol.

3.7. Clock Synchronization 37

3.7 Clock Synchronization

Clock synchronization plays an important role in real-time distributed systems. The Trail-

Cable protocol supports this service by generating globally synchronized time interrupts

to the host microcontrollers. Implementation of the clock synchronization algorithm is

based on timestamps appended to the end of normal frames. These timestamps represent

the sum of the accumulated line and routing delays along a path since the previous global

time tick in the origin node. Each node on a channel path reads the timestamp (ts) of the

previous node and adds the local routing delay (troute) and the propagation time of the

next link (tprop). For better synchronization results, at run-time the TrailCable protocol

measures the propagation time of the communication links to increase the precision of

timestamps; this can easily be performed by means of a timed “pinging” procedure.

One of the most widely known clock synchronization protocols for point-to-point archi-

tectures is the IEEE 1588 [42], but it is based on a master-slave approach that has some

drawbacks as far as safety is concerned. Therefore a distributed algorithm is used with

TrailCable. In order to perform clock synchronization, a set of nodes must be initially

defined. To reach a Byzantine agreement a minimum of 3 × f + 1 nodes are required to

tolerate f faults, but this condition can be relaxed for less critical applications without

fault tolerance, where the synchronization can be achieved with only two nodes. The

algorithm used by TrailCable is based on the algorithm by Lundelius and Lynch [63],

which is fully distributed. In each communication round, the nodes participating in the

synchronization initially sort the time differences between the local clock and the clock

of the remaining nodes (retrieved via the timestamps). Then, the f highest and f lowest

values are eliminated and an average calculation is executed using the remaining values.

The result is a correction factor that is used to increase or decrease the local communica-

tion period so that it converges to the global time. The TrailCable protocol employs the

median value as the averaging function since it yields good results and requires a simple

hardware implementation.

When compared to the clock synchronization procedures in time-triggered protocols such

as TTP/C and FlexRay, TrailCable requires a higher packet overhead to explicitly send

timestamps via the communication network. This happens because in the former protocols

a broadcast bus is used, thus allowing all nodes to determine the exact moment a packet

was sent by others. On the other hand the TrailCable approach has also some advantages.

First of all, a set of nodes which is not synchronized or is still establishing the initial

synchronization is able to transmit all packets to the intended destination, which is not

possible with a TDMA access over a broadcast bus. Additionally, another interesting

feature the TrailCable protocol supports is the definition of multiple clock synchronization

domains, as exemplified in Figure 3.13. As can be seen in the example, clock regions can

38 CHAPTER 3. THE TRAILCABLE COMMUNICATION PROTOCOL

A

B

C

C

Figure 3.13: Multiple clock domains

be disjointed and even overlapping. This is possible because of the dynamic scheduling

of packets using the EDF algorithm, which does not require a synchronized operation.

When it comes to scheduling feasibility, the effect of clock synchronization must be taken

into account. Eventually, the period of a certain communication task will have to be

shortened to achieve synchronization. If this is ignored for schedulability analysis, there

is the possibility that deadlines will be missed in heavy traffic conditions. In order to

avoid this, the amount of time a period can be shortened by is limited and known in

advance. Additionally, this effect can be dealt with transparently by means of a further

decrease in the value of the ∆ factor (cf. Section 3.5) that is used for the feasibility tests.

Nevertheless, since clock drift is generally very small over time, the utilization factor of

the data links is not expected to be perceptibly impaired due to the clock synchronization

service.

3.8 Non-Real-Time Communication

The TrailCable protocol is able to share bandwidth between hard-real-time and non-real-

time communication. The former has always priority, but as soon as the ready queue of an

EDF scheduler becomes idle, pending non-real-time packets can utilize the transmission

medium. If a non-real-time packet is being transmitted and a new hard-real-time task

arrives, then the ongoing transmission can be simply interrupted by the preemption mech-

anism to serve the higher-priority demand. As compared to TDMAs approaches where

a time window is reserved for non-real-time traffic, such as in FlexRay and PROFINET,

3.8. Non-Real-Time Communication 39

the TrailCable technique has the advantage that non-real-time traffic can fully utilize the

available capacity when hard-real-time communication is idle.

The mechanism described is known as “background scheduling” [21] and, though simple,

allows good separation of hard-real-time and non-real-time messages. On the other hand,

dynamic servers [82] are not only able to guarantee that deadlines of real-time packets

be met, but also improve response times of aperiodic, non-real-time traffic. However, the

drawback of dynamic servers as compared to background scheduling is a higher complexity

of the scheduling algorithms. In order to keep the hardware circuits of the packet sched-

ulers simple, the initial TrailCable implementation employs the background technique.

Indeed, in many applications the gains in performance of dynamic servers as compared

to background scheduling present no considerable advantage. It is worth mentioning that

although response times of non-real-time packets can be improved by the use of dynamic

servers, average data throughput remains the same as with the background scheduling.

In order to differentiate real-time from non-real-time packets, the latter are assigned a spe-

cial ID. Once the input ports identify such packets, these are passed to a non-real-time

switch that routes the packet to the appropriate host or communication ports. Rout-

ing can be simplified by using techniques such as path and logical addressing employed

with the SpaceWire protocol. This thesis will focus on hard-real-time communication,

but given the loose coupling between time-critical and best-effort traffic provided by the

TrailCable architecture, non-real-time functionalities can be added on without impairing

the timeliness of the protocol.

Chapter 4

The TrailCable Verifier Tool

In order to facilitate the deployment of the TrailCable protocol in practical applications,

a tool was developed to perform an automated schedulability analysis for a given network

configuration. The tool, called TrailCable Verifier, reads a TrailCable network formal

model, checks the feasibility of this model, and finishes on either of the two following

outcomes: if the network configuration is feasible, C-code containing the configuration of

each node in the network will automatically be generated. Otherwise, an error message

will indicate where the network configuration feasibility check has failed. Although there

are different tools for the analysis of real-time systems such as Symtas [39], the develop-

ment of the TrailCable Verifier is justified by the fact that it performs a variety of tasks

that are specific to the TrailCable protocol.

4.1 Communication System Modeling

A TrailCable network is modeled by means of a set of four XML files, each describing a

different aspect of a given configuration: hardware properties, network topology, real-time

tasks, and routing. Partitioning the network model into different files makes it modular

and any changes in the configuration can be limited to the affected file only. Each of

these four files has a corresponding Document Type Definition (DTD) that contains the

grammar rules used to parse the XML description. The DTD files are listed in Appendix

A.

To demonstrate the way a TrailCable network can be modeled, a simplified example of a

brake-by-wire system is used. In such systems there are no mechanical links between the

brake pedal and the brake actuators located in the wheels of the cars: control information

is exchanged between different modules via a data bus that must meet stringent safety

requirements. Figure 4.1 shows an example of a TrailCable network for an automotive

brake-by-wire system. The central module is responsible for sensing the brake pedal

40

4.1. Communication System Modeling 41

Node 1
FR

Node 2
FL

Node 4
RR

Node 3
RL

P1

P2 P3

P4

P2

P3

P2 P3

P2

P3

P2P3

Pedal
Box

P1

P1 P1

P1

Figure 4.1: A brake-by-wire network

excursion and the hand-brake status and sends the information to the wheel nodes. This

central node is two-fold redundant: it has two channels for reading the pedal excursion,

with each channel connected to two opposite brake units. Each brake unit is made up

of an ECU, connected to the network, that controls an electromechanical brake actuator

(EMB). Additional external sensor data such as throttle, steering, and acceleration, that

may be required in a brake-by-wire system, are also transmitted via the network but are

omitted in this example for the sake of simplicity.

The design rationale for the proposed brake-by-wire system assumes the braking decision

to be distributed: all four wheel nodes must reach an agreement (based on the data of

a variety of sensors) on which braking forces will be applied to the wheels. Moreover, it

is assumed that a wheel node will not take a different braking action than that agreed

on by the other members. To cope with the potential safety risks that can arise due to

malfunctioning nodes, a Byzantine agreement [59] can be employed in this brake-by-wire

example. The Byzantine agreement is characterized by the fact that a small number of

faulty nodes cannot impair the correct operation of others. In order to reach a Byzantine

agreement, 3m + 1 nodes are required to tolerate m faults. Therefore, if one wheel

node fails in the given example, although the mechanical braking capacity of the system

is compromised, the remaining three wheel nodes will be able to detect the fault and

compensate for the braking forces to bring the car to a safe stop.

In the brake-by-wire system presented not only node, but also communication faults must

be considered. In order to reach a Byzantine agreement in a network, there must be 2m+1

disjoint paths between the sender and the receivers [30]. Therefore the proposed brake-by-

wire architecture requires each node to broadcast its information to the others via three

disjoint routes (the way it is achieved is described in the following sections). It is worth

42 CHAPTER 4. THE TRAILCABLE VERIFIER TOOL

< Implementation

timeResolution = ".025"

defaultForwardingDelay = "1.250"

defaultLinkPropagationDelay = "2.000"

maximumTasks = "64"

deviation = "0.99"

maxPeriodXdeadlineRatio = "2"

maximumPacketSize = "256"

maximumPayloadSize = "249"

maximumPeriod = "25000000"

preemptionHeaderSize = "3"

transmissionRate = "32000000"

maxHardwareMemory = "4096"

maxHostAccessedMemory = "1023"

>

Figure 4.2: Example of a communication engine properties file

mentioning that the automotive network shown in Figure 4.1 could be further extended

to support a variety of additional systems such as steering, power-train, etc., sharing the

same communication links, thus reducing cabling efforts.

4.1.1 Communication Engine Properties

The communication engine properties file (Figure 4.2) contains different parameters that

depend on a given hardware implementation of the TrailCable protocol. This file describes,

among others characteristics, node and link performance, memory capacity, and maximum

packet size.

For the brake-by-wire example, the parameters are set according to the communication

engine hardware presented in Chapter 6. It has a time resolution of 25 ns, is able to

handle 64 simultaneous real-time tasks per communication, has 4 kB internal memory

and a data throughput of 32 Mbps. Moreover, the implementation accepts real-time

tasks with a period of up to 25 seconds. Some of the parameters described in this file

were already introduced in Chapter 3, such as forwarding delay, link propagation delay,

and deviation.

4.1.2 Network Topology

The network topology file (Figure 4.3) describes the way nodes are physically intercon-

nected to form the network. The number of nodes in the network and the maximum

4.1. Communication System Modeling 43

<Graph numNodes="5" maxPorts="8" >

<Connection node1="0" node2="1" port1="1" port2="1" />

<Connection node1="0" node2="2" port1="2" port2="1" />

<Connection node1="0" node2="3" port1="3" port2="1" />

<Connection node1="0" node2="4" port1="4" port2="1"

linkPropagationDelay="3.5" />

<Connection node1="1" node2="2" port1="2" port2="3" />

<Connection node1="2" node2="3" port1="2" port2="3" />

<Connection node1="3" node2="4" port1="2" port2="3" />

<Connection node1="4" node2="1" port1="2" port2="3" />

<NodeInformation node="0" forwardingDelay="1.5" />

<Host name="pedal_box" node="0" port="0" />

<Host name="FR_wheel" node="1" port="0" />

<Host name="FL_wheel" node="2" port="0" />

<Host name="RL_wheel" node="3" port="0" />

<Host name="RR_wheel" node="4" port="0" />

</Graph>

Figure 4.3: Example of a network topology file

number of ports for each of them are the first information required for the network topol-

ogy XML file, as they set the constraints for the creation of a given communication

infrastructure.

Each communication link is instantiated in the network topology XML file by a tag called

Connection. After the tag, the two nodes that are connected with their respective ports

are indicated. The propagation delay of all links can be configured independently, should

they be larger (to avoid impairing the channel deadline checks) or significantly smaller

(to avoid a too pessimistic scenario) than the default value inserted in the hardware

properties file. The propagation delay depends basically on cable lengths, therefore for a

given application different communication links are likely to have different latencies.

In the same way that the propagation delay can be set independently for each link,

the forwarding delay of all nodes can be defined. Nevertheless, if all nodes of a given

application are implemented with the same TrailCable communication hardware engine,

the forwarding delay holds for the whole network.

Each host is assigned an alias to make the model more intuitive and to facilitate the cre-

ation of real-time channels. The port representing the host interface is explicitly indicated

as well.

44 CHAPTER 4. THE TRAILCABLE VERIFIER TOOL

<ChannelList graph="Graph.xml" StaticRoute="StaticRoute.xml"

DynamicRoute="DynamicRoute.xml" communicationHWproperties="CommHWprop.xml">

<!-- Pedal Box outgoing routes -->

<Channel id="04" sourceHost="pedal_box" period="1000" payloadSize="64" >

<TargetHost host="FR_wheel" deadline="500" />

<TargetHost host="FL_wheel" deadline="500" />

<TargetHost host="RR_wheel" deadline="500" />

</Channel>

(...)

<!-- FR Wheel outgoing routes -->

(...)

<!-- FR Wheel outgoing routes -->

(...)

<!-- RL Wheel outgoing routes -->

<Channel id="30" sourceHost="RL_wheel" period="1000" payloadSize="64" >

<TargetHost host="pedal_box" deadline="500" />

<TargetHost host="FR_wheel" deadline="500" />

</Channel>

<Channel id="32" sourceHost="RL_wheel" period="1000" payloadSize="64" >

<TargetHost host="FL_wheel" deadline="500" />

</Channel>

<Channel id="34" sourceHost="RL_wheel" period="1000" payloadSize="64" >

<TargetHost host="RR_wheel" deadline="500" />

</Channel>

<!-- RR Wheel outgoing routes -->

(...)

</ChannelList>

Figure 4.4: Example of a real-time tasks file

4.1.3 Real-Time Channels

The XML file that models the real-time channels is the main input for the TrailCable

verifier tool. It includes references (Figure 4.4) to the remaining model files that contain

the network topology, routing information, and communication engine properties.

Real-time channels are instantiated by entering their basic characteristics: source host,

destination(s) host(s) with respective deadline(s), payload, and ID. A different deadline

can be assigned to each destination host of a real-time communication task. The routing

4.1. Communication System Modeling 45

information for each real-time task is defined in a distinct XML file since there are poten-

tially many different possible routes between the source node and the destination node(s)

that even could be dynamically reconfigured.

In the brake-by-wire example all nodes send information to all others. The central pedal

box implements such a logical broadcast employing four real-time channels (each targeting

a set of three wheels) while the wheels accomplish the same task with three channels. As

a result, a total of 16 real-time channels are instantiated in the presented system. All

real-time channels were assigned a period of 1 ms, a channel deadline of 500 µs and a

payload of 64 bytes. For clarity reasons, only one (shown in blue) of the four real-time

channels of the pedal box and only the channels (shown in red) of one of the four wheels

are represented in the file represented in Figure 4.4.

4.1.4 Routing

An explicit and consistent channel route must be assigned to each real-time channel in

the network. Routes are created by a set of transmitter-receiver pairs that, when ordered,

define a path between the source and all destination hosts. In special situations, when

two nodes are interconnected via two or more links, it is also required to define which

transmitter port is to be used.

A route is associated to the corresponding real-time channel by means of a common

ID. An appropriate relative deadline can be assigned to each link segment in the route.

Optionally, the ID of a real-time channel can also be altered in each hop of the network.

The latter functionality is achieved by specifying a new destination ID for every route

segment.

Figure 4.5 presents the routing definition XML file for the brake-by-wire example. Firstly,

it shows the route of one of the four real-time channels that originate at the central pedal

box. This route leads initially to the front-right wheel, where it bifurcates and reaches

both the rear-right and front-left wheels. The remaining three routes from the pedal box

(omitted in Figure 4.5) follow the same pattern: each of them exits the central node via

a different communication link, reaches the first wheel node, is then split and ends in the

two neighboring wheel nodes.

The routing XML file also defines the routes that initiate in the four wheel nodes. Figure

4.5 shows the three routes from the rear-left wheel node. The first one reaches the opposite

wheel node via the pedal box node. The two other routes lead to the immediate wheel

node neighbors. This is also the pattern employed for the three remaining wheel nodes.

46 CHAPTER 4. THE TRAILCABLE VERIFIER TOOL

<RouteList>

<!-- Pedal Box outgoing routes -->

<ChannelRoute channelID="04" defaultRelativeDeadline="200"

defaultDestinationTaskID="04" >

<Path from="0" to="1" />

<Path from="1" to="2" relativeDeadline="60" sourcePort="2"

destinationTaskID="04" />

<Path from="1" to="4" relativeDeadline="60" sourcePort="3"

destinationTaskID="04" />

</ChannelRoute>

(...)

<!-- FR Wheel outgoing routes -->

(...)

<!-- FL Wheel outgoing routes -->

(...)

<!-- RL Wheel outgoing routes -->

<ChannelRoute channelID="30" defaultRelativeDeadline="200"

defaultDestinationTaskID="30" >

<Path from="3" to="0" />

<Path from="0" to="1" />

</ChannelRoute>

<ChannelRoute channelID="32" defaultRelativeDeadline="200"

defaultDestinationTaskID="32" >

<Path from="3" to="2" />

</ChannelRoute>

<ChannelRoute channelID="34" defaultRelativeDeadline="200"

defaultDestinationTaskID="34" >

<Path from="3" to="4" />

</ChannelRoute>

<!-- RR Wheel outgoing routes -->

(...)

</RouteList>

Figure 4.5: Example of a routing file

4.2 Tool Flow

As soon as the network XML-based model is available, the TrailCable Verifier tool can be

called on to run the schedulability analysis on the given configuration. The tool executes

4.2. Tool Flow 47

Figure 4.6: The TrailCable Verifier Flow

the following steps when started:

1. XML syntax check - reads the XML files and verifies whether the syntax is correct

on the basis of the DTD definitions,

2. Model consistency check - in this step the tool checks whether the network

topology complies with a set of rules, such as: only one connection is allowed for

each communication port, the maximum number of nodes is respected, etc. It is

also verified if there are valid routes for all real-time channels,

3. Real-Time Analysis - this component executes two tasks. Firstly, given the rela-

tive deadlines, propagation and forwarding delays of all possible links of a real-time

channel, it is verified whether the channel deadline can be met by means of the pro-

cedure described in Section 3.3. If the test fails, the TrailCable Verifier application

quits after showing the reason why a certain channel is not feasible. Afterwards,

for each communication port in the network, the tool lists all of its real-time tasks

with the respective deadlines and checks whether the set is schedulable, using the

demand criterion [60], as described in Section 3.5. Should the test fail, the TrailCa-

ble Verifier application will quit after indicating the affected communication port

and the fault reason,

4. Network Configuration - if all tests are passed successfully, the application gen-

erates configuration data for each node in the network,

5. Code generation - using the network configuration data the application generates

C-code for all nodes in the network.

In addition to C-code, the TrailCable Verifier tool creates two basic reports. The first is a

list of all real-time channels, including their routes and worst-case channel latencies. The

second is a list of all communication ports and the real-time channels that pass through

them.

48 CHAPTER 4. THE TRAILCABLE VERIFIER TOOL

4.3 Configuration Data and Code Generation

In order to make sure that the network nodes are, at run-time, consistent with the model

used for the schedulability analysis, a file containing the protocol configuration is auto-

matically generated by the TrailCable Verifier tool. Other advantages of working with

automatic code generation from a higher-level model include the seamless transition to

the target hardware and the possibility to cope with complex networks.

Figure 4.7: Section of automatically generated C-code

For each node in the network a different C-code file is generated by the tool. This file

includes data tables with all variables required to set up the TrailCable communication

hardware. This C-code file is then compiled together with TrailCable drivers and appli-

cation code in order to create the executable binary file for the network node.

The generated C-code file (Figure 4.7) instantiates a configuration table for each commu-

nication port in a network node. These tables contain entries that specify the routing,

scheduling, and addressing parameters for all communication tasks. The fields of such

entries are: ID, size, packet forwarding information, period, relative deadline, guard time,

memory address, and configuration flags. The format of these entries is compatible with

the hardware implementation of the TrailCable protocol (Section 6.3.3), so that a simple

memory copy operation of the data tables is sufficient to program the network node.

Chapter 5

Dynamic Reconfiguration

The majority of distributed embedded systems, especially in the domain of mechatronics,

are characterized by the fact that the required real-time data communication layer is

designed and configured during the design phase. Hardware and software in such systems

are normally implemented for a pre-specified function that cannot be altered during run-

time. For this reason, the development of most wired real-time communication protocols

currently available was not targeted at supporting dynamic reconfiguration.

With the advent of new research activities in emerging fields such as self-optimizing and

self-organizing systems [9], a higher flexibility of the real-time data communication in-

frastructures is desired. Reconfiguring both the application functions and the underlying

data communication layer yields brand new possibilities to continually adapt a system

and make it better suited to perform the necessary functions at a given time.

Due to the EDF-scheduling mechanism of the TrailCable protocol that dispenses with a

global clock synchronization, reconfiguration of portions of a running network is facilitated

since all necessary changes can be limited to the affected components only. Moreover,

reconfiguring one communication channel in a given node does not require any other

concurrent channels to be altered in the process.

Since the focus of this work is on the hard-real-time behavior of the communication system,

a feasibility analysis must be carried out prior to any on-line reconfiguration to guarantee

predictability. Therefore, the fact that the communication system can be dynamically

reconfigured does not imply that any chosen configuration is necessarily valid. Buttazzo

[21] presented the basic scheme of the guarantee mechanism used in generic dynamic hard-

real-time systems. This basic scheme can be adapted to fit the TrailCable communication

characteristics, as shown in Figure 5.1.

This chapter is organized as follows: we initially present a basic scheme for classifying

different types of reconfiguration processes. Then, the framework that permits the recon-

49

50 CHAPTER 5. DYNAMIC RECONFIGURATION

Acceptance
Test

Reconfiguration
Process

New Network
Configuration

Reconfiguration
Request

Rejected

Accepted

Figure 5.1: Dynamic reconfiguration scheme

figuration in the TrailCable network will be introduced. Finally, we deal with methods to

allow the creation of new configurations at run-time.

5.1 Classification

In order to distinguish different types of reconfiguration processes, it is useful to classify

them with respect to their duration and data integrity. Figure 5.2 shows the classification

scheme employed.

Duration Integrity

Bounded Time Best-Effort Continuous Non-Continuous

Reconfiguarion
Process

Figure 5.2: Classification of reconfiguration processes

Bounded time reconfiguration The reconfiguration process must be completed

within a bounded time interval. In order to accomplish this, two requirements must be

met. Firstly, it must be assured that the new network configuration is feasible, i.e., allo-

cating all required channels and meeting their deadlines is possible. This first requirement

is met if a schedulability analysis with a positive result is performed prior to configuring

the network. The second requirement is that enough communication bandwidth be avail-

able for exchanging data among the participating nodes during the reconfiguration phase.

Real-time communication channels can be reserved in order to meet this requirement.

Best-effort reconfiguration No guarantee is given that a new reconfiguration request

will be accepted or that it can be executed within a specified time window. The advantage,

5.2. Reconfiguration Framework 51

however, is that this approach is more flexible, allowing, for example, the network to

continually search for an optimal configuration during run-time to better suit application

needs. Since there is no hard deadline for the process, non-real-time channels can be used

for coordinating the reconfiguration.

Continuous reconfiguration No data packets are lost during the reconfiguration pro-

cess. Such a reconfiguration can be guaranteed, for example, if the requirements of a given

real-time channel are to be alleviated, that is, the transmission period or the deadlines

are increased or the payload of the data packets is reduced.

Non-continuous reconfiguration The reconfiguration process leads to a transient

and short interruption of the data packet transmissions in one or more channels. This

happens, for example, when an existing channel must be temporarily excluded for the

rearrangement of its communication path.

5.2 Reconfiguration Framework

Valid TrailCable network configurations can be generated either off-line by means of the

TrailCable Verifier tool presented in Chapter 4 or at run-time. The framework described

in this section allows interchanging different configurations at run-time and provides an

abstraction layer that makes the reconfiguration process transparent to the requesting

host.

The role of this framework is to provide a mechanism, but not a reconfiguration policy. By

mechanism it is meant the technical realization that makes it possible to accomplish a cer-

tain task (the network reconfiguration, in this case). On the other hand, a policy specifies

which entity has the rights to perform reconfiguration. Such a distinction facilitates the

development of reconfigurable systems since both aspects can be regarded independently.

A similar approach is used, for example, in the Linux operating system [27].

While the reconfiguration mechanism clearly belongs to the TrailCable protocol, recon-

figuration policies may differ from one application to another and should be defined on

a case-to-case basis. Therefore, when building up applications with dynamic reconfigura-

tion capabilities, the system designer should stipulate a set of rules in order to define a

policy. A policy must answer questions like these: Which node(s) may start a reconfigura-

tion? Is there an arbitration to avoid conflicting reconfiguration requests? Are there any

restrictions to issuing reconfiguration requests? These questions are neither exhaustive

nor necessary but illustrate a guideline example to build a policy for a given application.

In this work we concentrate on the reconfiguration mechanism, which is implemented

by means of the framework presented in Figure 5.3. It consists of the following com-

52 CHAPTER 5. DYNAMIC RECONFIGURATION

Real-Time Communication Engine

Channel
Establishment

RX TX RX TX RX TX

...

Host

Configuration
Manager

Data
Interface

Configuration
Database

Figure 5.3: The reconfiguration framework

ponents: Data Interface, Configuration Database, Configuration Manager, and Channel

Establishment. They will be detailed below.

5.2.1 Data Interface

The Data Interface component is a device driver for sending and receiving data packets.

It abstracts the communication hardware so that other software modules can access the

physical communication layer by means of simple system calls.

When the TrailCable protocol is used without its reconfiguration capabilities, the Data

Interface component is used exclusively to exchange application data among different

computing nodes. On the contrary, nodes are required to share information regarding

the reconfiguration process. For this reason both the Channel Establishment and the

Configuration Manager blocks are internally connected to the Data Interface component.

The decision whether real-time or non-real-time communication channels are used for

reconfiguration depends on application demands. The trade-off here is that reserving real-

time channels for this purpose allows the reconfiguration to be performed in a bounded

time. On the other hand, the use of non-real-time channels dispenses with the necessity of

allocating potentially under-utilized communication bandwidth (that could be otherwise

exploited by running applications), but reconfiguration may take longer to complete.

5.2.2 Configuration Database

The role of the Configuration Database is to store multiple channel and port configurations

that can be activated at run-time.

5.2. Reconfiguration Framework 53

The channel configuration stores relevant information about a real-time channel, including

the respective source node, destination node(s), minimum period, packet size, and channel

deadline. Moreover, the channel configuration includes one or more mapping options that

define the employed route and port configurations for all nodes of such channel. A global

key is used to identify each channel configuration unequivocally.

The port configuration is a schedulable set of real-time tasks that use the same com-

munication port for data transmission. Each real-time task in a given configuration is

represented by its ID, a period (Ti), a relative deadline (Di), a guard time (Gi), and the

packet size (used to calculate the transmission time Ci).

Distributed Data Local Data

1..1

1..1

1..n

Channel Route B

Route A

Route C

Node A, Port 3

Node A, Port 1

Node E, Port 2

Node A, Port 2

Node B, Port 2

Node D, Port 2

Config. 1

Config. 2

Config. 1

Config. 2

Config. 1

Config. 1

Config. 2

Config. 3

Config. 1

Config. 1

Config. 2

A C

D E

B

1

2

3

1 2

1

2

3

1 2 21

Figure 5.4: Configuration database example

54 CHAPTER 5. DYNAMIC RECONFIGURATION

Figure 5.4 illustrates an example of a data structure that stores the configuration of one

real-time channel. The channel has three different and mutually exclusive mapping routes,

indicated by the colors red, blue and green. Each of these routes is characterized by the

set of communication ports involved in the transmission of the packets.

5.2.3 Configuration Manager

Reconfiguration requests are issued by the host to the Configuration Manager, which is

then responsible for activating the new configuration. The activation is a distributed

process where all nodes affected by the reconfiguration must participate. In this process

there are one proactive node and one or more reactive ones. The proactive node receives

the reconfiguration request from the host and is in charge of informing the reactive node(s)

which configuration will be activated. This is done by sending the respective key. Then,

all nodes will program the communication engine hardware.

If a new task is added, the programming process is straightforward: it is sufficient to write

all parameters of that task to the communication engine and then enable it. Reprogram-

ming an existing task can be done either in a continuous or a non-continuous manner.

The latter alternative is simpler since the procedure does not need to be synchronized

with the actual packet transmission. On the other hand, to guarantee a continuous re-

configuration it must be assured that the reprogramming a real-time communication task

takes place exactly between two consecutive data packets. Therefore, while the former

packet is routed and scheduled with the old configuration, the latter utilizes the new one.

Reprogramming the communication engine exactly within two packets of a real-time task

can be very challenging because the processor must be informed exactly when a packet

transmission ends. Moreover, depending on the communication period, the time available

for the reconfiguration can be very limited, demanding a high performance processor.

Figure 5.5: Effect of increasing the guard parameter

Another challenge to deal with during a continuous reconfiguration is an increase in the

Guard parameter, G. Figure 5.5 shows such a reconfiguration scenario. In this example,

the task parameters before reconfiguration are: T = 4, C = 1, D = 3, and G = 1. In the

new configuration both the period and the relative deadline are decreased to T = 3 and

D = 1. Therefore the new guard value is increased to G = 2. The communication time

5.2. Reconfiguration Framework 55

C is kept constant. It can be seen that if the acceptance condition from Eq. (3.12) is

evaluated with the new value of G, the first packet after reconfiguration will be discarded.

A simple solution to this problem would be to calculate the right-hand term of Eq. (3.12)

for each data byte received, so that after reconfiguration the acceptance condition can

be checked correctly if the last calculated value is used. This solution, however, implies

a higher degree of parallelization of the TrailCable hardware, since it must execute not

only the mentioned calculation, but also the acceptance check of the received byte itself,

which is given by Eq. (3.13).

In order to solve these two problems for continuous reconfiguration, namely reprogram-

ming a task exactly between two packets and coping with an increase in G, one can add

appropriate hardware support in the communication engine. The proposed hardware sup-

port is based on double-buffering the scheduling tables. By this, while one scheduling table

holds the parameters for the active configuration of a certain task, new parameters can

be written by the host into a second one. As soon as all parameters are written into the

inactive table, their roles are automatically switched at the right moment by the commu-

nication engine, which happens just after the acceptance condition of Eq. (3.12). In the

proposed mechanism, it must also be guaranteed that the buffer holding the parameters

of a particular real-time task can be switched independently of all other tasks.

Figure 5.6: Continuous reconfiguration intervals

In a continuous reconfiguration all nodes involved in the reconfiguration of a given real-

time channel must perform the reprogramming procedure between the same two consec-

utive task instances (Figure 5.6). One possibility of informing the nodes about the next

reconfiguration interval is to use the clock synchronization mechanism of the TrailCa-

ble protocol. In this approach a future time instant for triggering the reconfiguration

is selected by the proactive node and broadcast to the reactive ones. Another simple

alternative is to set the source of a real-time channel as the proactive node and use a

specific field in the data packet contents to inform the intermediate nodes of the moment

the reconfiguration in that channel must be carried out.

56 CHAPTER 5. DYNAMIC RECONFIGURATION

5.2.4 Channel Establishment

For some applications it can be rather simple to create all the required configurations at

the design phase and simply activate them at run-time. However, such an approach is not

always practical. One of the reasons for this is that a TrailCable network can be used to

interconnect nodes running applications that are completely unrelated, independent and

even possibly developed by distinct groups.

To overcome such limitation, the TrailCable protocol allows the creation of new config-

urations at run-time, which is supported by the Channel Establishment component. In

order to create a new configuration, the first step is to gather information about the net-

work, such as the current topology (since modifications can occur due to failures or new

cabling) and the list of the real time channels with the correspondent routes and relative

deadlines. The process of gathering information from other nodes is realized via the Data

Interface component.

Once all the required network information is available, the actual creation of a new con-

figuration can take place. Due to the complexity of this task, the process description is

presented in Section 5.3. This process is normally executed in a best-effort manner since

it is not possible to guarantee that an appropriate configuration will be found nor how

long the process will take to complete. When a valid configuration is generated, it must

be distributed to all participating nodes to permit activation.

In analogy to the Configuration Manager component, it is possible to classify the nodes

participating in the channel establishment process as either proactive or reactive. The

method described so far is conducted by a proactive node, as it is responsible for executing

all three steps: information gathering, configuration generation, and distribution. The

remaining nodes are reactive: upon arrival of requests from the proactive node they either

send the local information or store new configurations in the local database. In order to

guarantee hard-real-time behavior even in the case of faults, the configuration received by

the reactive nodes may be submitted to a schedulability analysis before being accepted.

5.3 Network Configurations

The TrailCable protocol allows a very efficient utilization of the available communication

bandwidth thanks to the EDF scheduling strategy. However, in order to exploit this

potential it is necessary to map all real-time channels to a network accordingly. By

choosing the best routes and the best relative deadlines for scheduling the data packets,

the number of real-time channels that can be mapped to the network can be maximized.

In this section we will deal with this problem and present methods to find mappings for

real-time channels that are both necessary and sufficient. Configurations generated off-line

5.3. Network Configurations 57

can benefit from more efficient mappings at the price of higher processing performance,

whereas configurations generated on-line usually require simpler algorithms but with an

adverse effect on optimality.

Communication
Hardware Properties

Network Topology Real-Time Channels

Routing

Automatic Mapping

Figure 5.7: Generation of network mappings

The flow employed in the automatic mapping of real-time channels is depicted in Fig-

ure 5.7. The three necessary inputs correspond to the information contained in the XML

files described in Section 4.1: Communication Hardware Properties, Network Topology,

and Real-Time Channels. The mapping process is then responsible for automatically gen-

erating the information related to the Routing XML File. At run-time, however, the use

of XML files is less practical and they can be substituted by equivalent data structures

that are stored in the memories of the nodes.

Before showing how the mapping process works, we will introduce a method that models

all possible combinations of relative deadlines that maintain a task set feasible. Then,

we extend this approach to support end-to-end real-time guarantees of all channels in a

network.

5.3.1 EDF Deadline Assignment

Different authors have presented methods for the assignment of deadlines with EDF

scheduling. For example, in [19] both exact and approximate techniques were presented

that allow finding feasible regions of deadlines. In [54], the assignment is done by means

of linear programming with the objective of reducing jitter.

Other than reducing jitter, the deadline assignment in the current work has for main

objective a maximization the number of real-time tasks that can be mapped in a commu-

nication port.

The method presented in this section is based on the integer linear programming (ILP)

technique. One advantage of this approach is that many different solvers are available.

58 CHAPTER 5. DYNAMIC RECONFIGURATION

These solvers bring many advances from the field of optimization and operational research,

which are transparent from the point of view of the application. Examples of solvers

include, for example, the open source lp solve [65] and even FPGA-based ones such

as [18], which aims at increasing performance. An ILP problem consists in finding the

optimal value of a cost function whose variables are constrained by linear equations or

inequalities. ILP problems are formalized as follows:

maximize c>x

subject to Ax ≤ b

In this section, we consider a set Γ of n real-time tasks under EDF. Each task is character-

ized by a period Ti and a computation time Ci. The objective is to model the relationship

among the relative deadlines D by means of linear relationships. With this model, one

can employ an ILP solver, for example, to minimize the sum of all deadlines while keeping

the task set feasible.

The work by Kim et al. [54] introduced a similar approach, but imposed the constraint

that a relative deadline Di can be larger than Dj if and only if Ci is larger than Cj:

∀i, ∀j, Di ≤ Dj ⇐⇒ Ci ≤ Cj

In this thesis the constraint above is relaxed. Relative deadlines are allowed to be in the

range Ci ≤ Di ≤ Ti, as long as the task set is feasible. The upper bound Ti prevents that

a new task instance is activated before completion of its predecessor.

∀i : 1 ≤ i ≤ n Di ≤ Ti (5.1)

If a given task set with deadlines less than periods is feasible, then any increase in the

relative deadlines up to the period value will not impair feasibility. On the other hand, the

actual lower bounds of relative deadlines depend on the parameters of the whole set and

cannot be analyzed independently. To formulate the permitted lower bounds of relative

deadlines, the processor demand criterion [17], represented by the inequality (5.2), is used.

L ≥
n∑
i=1

(⌊
L−Di

Ti

⌋
+ 1

)
Ci (5.2)

In a task set Γ with deadlines less than periods, it is sufficient to apply the processor

demand criterion to the absolute deadlines di,k of each task instance. So, since L = di,k

and di,k = kiTi + Di, it follows that L − Di = kiTi. Moreover, the number of instances

of the task i can be restricted to either the busy period Bp or the hyper period Hp of Γ.

It is worth mentioning that relative deadlines are irrelevant to calculate both Bp and Hp

(see Section 3.5). Then, we can rewrite Eq. (5.2) without the L variable:

∀i : 1 ≤ i ≤ n ∀ki : 0 ≤ ki ≤
⌈

min(Hp, Bp)

Ti

⌉

5.3. Network Configurations 59

kiTi +Di ≥
n∑
j=1

(⌊
kiTi +Di −Dj

Tj

⌋
+ 1

)
Cj (5.3)

Equation (5.3) is, however, not suitable to be utilized as an ILP constraint because the

floor function is not linear. To solve this problem, we need first to define mutually exclusive

intervals of (Di−Dj) in such a manner that each of these intervals leads to one different

result of
⌊
kiTi+Di−Dj

Tj

⌋
.

The approach to finding such intervals consists in checking how task j interferes with task

i. To do this, the first step is to determine the lower and upper bounds of (Di − Dj).
The lower bound is characterized by the minimum possible value of Di, which is Ci, and

the maximum possible value of Dj, which is Tj. Thus, the lower bound of (Di − Dj) is

(Ci − Tj). Analogously, its upper bound is (Ti − Cj). In a general form, the lower (αi,j)

and upper (βi,j) bounds of (kiTi +Di −Dj) are defined as:

αi,j = kiTi + Ci − Tj βi,j = kiTi + Ti − Cj

If the division of a point in the interval [αi,j, βi,j] by Tj results in an integer value, such

a point is called a boundary due to the fact the value of
⌊
kiTi+Di−Dj

Tj

⌋
changes at this

position. For a given ki, the set Ri,j consists of all results of this floor function in the

interval [αi,j, βi,j] and is expressed as follows:

Ri,j =

{
x ∈ N0 :

⌈
αi,j
Tj

⌉
≤ x ∧ x ≤

⌊
βi,j
Tj

⌋}
The boundaries of (kiTi +Di −Dj) can be then determined by multiplying each element

of Ri,j by Tj. Further on, if kiTi is subtracted from each multiplication result, we will get

the boundaries of (Di −Dj) for a given ki. Repeating the process for all values of ki we

finally obtain the set Bi,j of the boundaries of (Di −Dj):

Bi,j =
⋃
∀ki

⋃
∀x∈Ri,j

{xTj − kiTi} with: 0 ≤ ki ≤
⌈

min(Hp, Bp)

Ti

⌉

It is worth mentioning that the function (Di−Dj) is skew-symmetric, since the property

f(y, x) = −f(x, y) holds. So, the set Bj,i representing the boundaries of the intervals of

(Dj −Di) can be directly derived from the set Bi,j:

Bj,i =
⋃

∀x∈Bi,j

{−x}

Alternatively, it is possible to calculate the set Bj,i by means of the same procedure

described above for Bi,j:

αj,i = kjTj + Cj − Ti βj,i = kjTj + Tj − Ci

60 CHAPTER 5. DYNAMIC RECONFIGURATION

Rj,i =

{
x ∈ N0 :

⌈
αj,i
Ti

⌉
≤ x ∧ x ≤

⌊
βj,i
Ti

⌋}

Bj,i =
⋃
∀kj

⋃
∀x∈Rj,i

{xTi − kjTj} with: 0 ≤ kj ≤
⌈

min(Hp, Bp)

Tj

⌉
From the algorithmic perspective, the process of finding Bi,j or Bj,i can be done more

efficiently if the lowest value between ki and kj is selected to find one of the sets and then

apply the symmetry property to find the reciprocal one. Since one set can be directly

derived from another, it actually suffices to consider only one of the sets of boundaries

for a given task pair (i, j). As a convention, we store the set Bi,j, with i < j. For a set Γ

with n tasks, the total number of (i, j) pairs is then n!
(n−2)!×2 . The Algorithm 2 presents

the procedure of calculating the boundary set Bi,j of the possible task pairs (i, j). The

elements of each set Bi,j are sorted in increasing order to facilitate the next steps.

Once the boundaries of the task pair (i, j) are known, it is then possible to find the intervals

of (Di−Dj). The basic idea is to start out from the interval [(Ci−Tj), (Ti−Cj)], which

represents all possible values of (Di − Dj) and then, for each element in Bi,j, break the

interval that contains the respective boundary as depicted by Fig. 5.8. Algorithm 3 is

employed for this purpose. The result is a set χi,j in which each element represents one

interval:

χi,j = {[Bi,j1 , Bi,j1],]Bi,j1 , Bi,j2 [, [Bi,j2 , Bi,j2], . . . ,]Bi,jw−1
, Bi,jw [, [Bi,jw , Bi,jw]}

Ci -Tj Ti -Cj

Ci -Tj

Ti -Cj

Bi,j
1

Figure 5.8: Breaking intervals

Due to the symmetry property for the boundaries, the set of intervals χj,i can also be

directly found:

χj,i = {[-Bi,j1 , -Bi,j1],]-Bi,j1 , -Bi,j2 [, [-Bi,j2 , -Bi,j2], . . . ,]-Bi,jw−1
, -Bi,jw [, [-Bi,jw , -Bi,jw]}

All intervals of χi,j are mutually exclusive since the value of (Di − Dj) can be in only

one of them. To represent this constraint, we introduce the function u(x), where x is an

interval of χi,j. The function u(x) returns 1 if the result of (Di −Dj) is in the interval x,

or 0 otherwise. The exclusivity constraint for the ILP is given below:
w∑
y=1

u
(
χi,jy

)
= 1 where w = size(χi,j) (5.4)

5.3. Network Configurations 61

Algorithm 2 Boundaries of Deadlines

1: for i = 1 to n do

2: for j = i+ 1 to n do

3: max ki ←
⌈
min(Hp,Bp)

Ti

⌉
4: max kj ←

⌈
min(Hp,Bp)

Tj

⌉
5: Bi,j ← {∅}
6: if max ki ≤ max kj then

7: for k = 0 to max ki do

8: α = kTi + Ci − Tj
9: β = kTi + Ti − Cj

10: Ri,j =
{
x ∈ N0 :

⌈
α
Tj

⌉
≤ x ∧ x ≤

⌊
β
Tj

⌋}
11: for all x in M do

12: Bi,j ← Bi,j ∪ {xTj − kTi}
13: end for

14: end for

15: else

16: for k = 0 to max kj do

17: α = kTj + Cj − Ti
18: β = kTj + Tj − Ci
19: Rj,i =

{
x ∈ N0 :

⌈
α
Ti

⌉
≤ x ∧ x ≤

⌊
β
Ti

⌋}
20: for all x in M do

21: Bi,j ← Bi,j ∪ {−xTi + kTj}
22: end for

23: end for

24: end if

25: sort(Bi,j)

26: end for

27: end for

With all intervals and the exclusivity constraint defined it is possible to reformulate the

floor function in equation (5.3) as follows:

⌊
kiTi +Di −Dj

Tj

⌋
=⇒

kiTi +
w∑
y=1

u
(
χi,jy

)
χi,jy

Tj
=⇒

w∑
y=1

u
(
χi,jy

)
γi,jy

62 CHAPTER 5. DYNAMIC RECONFIGURATION

Algorithm 3 Intervals of Deadlines

Require: Bi,j sorted in increasing order

1: if Bi,j = {∅} then

2: χi,j ← { [Ci − Tj, Ti − Cj] }
3: else

4: χi,j ← {∅}
5: if first(Bi,j) 6= Ci − Tj then

6: χi,j ← χi,j ∪ { [Ci − Tj, first(Bi,j)[}
7: end if

8: for all x ∈ Bi,j do

9: χi,j ← χi,j ∪ { [x, x] }
10: if x 6= last(Bi,j) then

11: χi,j ← χi,j ∪ {]x, next(x)[}
12: else if x 6= Ti − Cj then

13: χi,j ← χi,j ∪ {]x, Ti − Cj] }
14: end if

15: end for

16: end if

For simplicity purposes, the term γi,jy is used to represent the value of the floor function

for the interval χi,jy . It is now possible to rewrite equation (5.3) without the floor function:

kiTi +Di ≥ (ki + 1)Ci +
∑

1≤j≤n,
i 6=j

w∑
y=1

u
(
χi,jy

)(
γi,jy + 1

)
Cj (5.5)

The method presented eliminates the floor function by checking the interaction of each

task pair (i, j). For sets with three or more tasks it is still necessary to establish a

relation among the relative deadlines of all tasks. To accomplish this, we explicitly define

the upper and lower bounds of each interval χi,j represented by equations (5.6) and (5.7)

respectively.

∀y : 1 ≤ y ≤ w w = size(χi,j)

Di −Dj



> Ci − Tj − 1 + u
(
χi,jy

)(
lb val(χi,jy)− Ci + Tj + 1

)
if lb endpt(χi,jy) = “]”

≥ Ci − Tj − 1 + u
(
χi,jy

)(
lb val(χi,jy)− Ci + Tj + 1

)
if lb endpt(χi,jy) = “[”

(5.6)

5.3. Network Configurations 63

Di −Dj



≤ Ti − Cj + 1 + u
(
χi,jy

)(
ub val(χi,jy)− Ti + Cj − 1

)
if ub endpt(χi,jy) = “]”

< Ti − Cj + 1 + u
(
χi,jy

)(
ub val(χi,jy)− Ti + Cj − 1

)
if ub endpt(χi,jy) = “[”

(5.7)

The functions lb val(x) and ub val(x) return the lower and upper bound values of the

interval x respectively. The functions lb endpt(x) and ub endpt(x) return the type of the

interval endpoints (either open or closed). The ILP constraints created by means (5.6)

and (5.7) take into account whether the considered endpoints are open or closed in order

to reflect the interval characteristic.

χ i, j

Ci -Tj - 1 Ti - Cj + 1

Lower Bound of χ i, j

Upper Bound of χ i, j

Figure 5.9: Constraining intervals

Figure 5.9 shows in a graphical manner how the χi,j intervals are constrained. If the

result of function u(χi,jy) is 1, then (Di−Dj) is constrained to that respective interval by

increasing the lower bound and decreasing the upper bound. All remaining intervals do

not represent any kind of constraint since their lower bounds become lower than (Ci−Tj)
and their upper bounds higher than (Ti − Cj).

The ILP constraints for the deadline assignment problem are given by (5.1), (5.4), (5.5),

(5.6), and (5.7). For a problem that consists in finding, for example, the lowest possible

sum of relative deadlines the cost function is
∑n

i=1Di. Alternative cost functions can also

be utilized, for instance, to minimize the jitter of the real-time tasks [54]. In the context

of this work, however, the main objective is to find a feasible mapping of all real-time

channels in a network.

5.3.2 Mapping of Real-Time Channels

The deadline assignment method presented above can be adapted and further extended to

support the task of mapping real-time channels in a TrailCable network. To accomplish

this, additional constraints are necessary to describe possible routes and the maximum

latencies of the channels.

64 CHAPTER 5. DYNAMIC RECONFIGURATION

The problem of finding routes in a network can be formulated with ILP by means of the

flow conservation method. Its basic idea is that the flow entering a node equals the flow

leaving it. In a real-time channel, the flow is generated by the source node and reaches the

sink nodes via the communication links. For a given channel, the flow in a communication

link (graph edges) is expressed by es,tc , where c is the channel ID, s and t are pairs of the

type (v,p) that represent the origin and destination vertices and ports of that edge. It

is worth remembering that since two nodes can be interconnected by more than one

communication link, the respective ports are also required to unequivocally represent the

chosen link.

Given a network topology, the definition of the route-finding problem for a channel c using

the flow conservation method consists in applying equation (5.8) to the source, all sink

nodes, and all potential intermediate vertices:

f(c) =
∑

∀(s,t): v ∈ s

es,tc −
∑

∀(s,t): v ∈ t

es,tc (5.8)

where,

f(c) =


Number of sinks when v is the source node of channel c

0 when v is an intermediate node of channel c

−1 when v is a sink node of channel c

In order to reduce the number of routing constraints, especially for large networks, it is

convenient to restrict the set of nodes that can be used to build a real-time channel. One

possible criterion is the maximum channel span, i.e., the maximum number of intermediate

hops between source and sink nodes. Additionally, application-specific knowledge may be

also utilized for the purpose of finding appropriate channel routes.

For the further steps a new variable bin es,tc must be introduced. As the name suggests,

it is a binary representation of es,tc meaning whether that edge is being used or not:

bin es,tc = bin(es,tc) with bin es,tc = {0|1}

The function bin(x) with x ∈ Z returns 1 if x ≥ 1 and 0 if x ≤ 0. The variable conversion

from integer (es,tc) to binary (bin es,tc) can be done with ILP using the following two

constraints:

0.5 < es,tc + sinks (1− bin es,tc); (5.9)

0.5 > es,tc − sinks× bin es,tc ; (5.10)

With these binary variables it is possible to explicitly impose the condition that a real-time

channel can enter a node only via a single communication link:

∀v :
∑

∀(s,t): v ∈ t

bin es,tc ≤ 1 (5.11)

5.3. Network Configurations 65

Any established route must meet the channel deadline requirement. Thus, the channel

deadline equation (3.2) must hold for all sink nodes. In our ILP problem definition, the

following inequalities are used to express the channel deadline constraint:

∀(s, t) and ∀p ∈ s :

δv∈tc ≥ δv∈sc +Ds,t
c + (props,t + fwv∈s − Cc + α) bin es,tc −N(1− bin es,tc) (5.12)

The basic idea is that the channel latency at a node equals the latency at the last hop

plus the relative deadlines and intrinsic delays of the predecessor node. The constant N

is a sufficiently large number that is used to relax the channel deadline constraint when

a communication link is not used.

Except for the relative deadline Ds,t
c , all other parameters in the inequality (5.12) are

known. To determine the relative deadlines, we use the method described in Section 5.3.1

with minor modifications. If a communication link is not used by a certain real-time

channel, then all relative deadlines Ds,t
c are set to zero and the upper bound constraint

for the relative deadlines becomes:

Ds,t
i ≤ Ti × bin es,ti (5.13)

If the channel utilizes that link, then the upper bound of the relative deadline is the

period Ti. Moreover, it is also necessary to adapt the inequality (5.5), so that it takes into

account just the active real-time channels in a given communication link for the deadlines

assignment. To accomplish this, the first thing to do is to introduce the variables acts,ti,j
that indicate whether both real-time channels i and j are active in the communication

link (s, t):

acts,ti,j = bin es,ti ∧ bin e
s,t
j

Since the operator ∧ (disjunction) is not directly supported in an ILP problem, the

following two constraints are employed to obtain the variable acts,ti,j from bin es,ti and

bin es,tj :

2 acts,ti,j < bin es,ti + bin es,tj + 0.5; (5.14)

2 acts,ti,j > bin es,ti + bin es,tj − 1.5; (5.15)

The exclusivity constraint (5.4) is used to indicate that only one of the possible intervals

of (Di − Dj) can be selected for a valid solution. Such a constraint only makes sense if

both tasks i and j are active and is therefore rewritten as:

w∑
y=1

u
(
χs,ti,jy

)
= acts,ti,j (5.16)

66 CHAPTER 5. DYNAMIC RECONFIGURATION

Adapting the constraint (5.5), the lower bound of the relative deadline of channel c in the

communication link (s, t) becomes:

Ds,t
i ≥ [(ki + 1)Ci − kiTi] bin es,ti +

∑
1≤j≤n,
i 6=j

w∑
y=1

u
(
χs,ti,jy

)(
γs,ti,jy + 1

)
Cj (5.17)

It should be noted that if a communication link (s, t) is not used by the real-time channel

c, then the relative deadline Ds,t
c is set to zero by means of the constraints (5.13) and

(5.17).

Finally, we alter the constraints (5.6) and (5.7) so that they are valid only when when

both tasks i and j are active. Otherwise, the restrictions are relaxed.

∀y : 1 ≤ y ≤ w w = size(χi,j)

Ds,t
i −D

s,t
j + u

(
χs,ti,jy

)(
Ci − 2Tj − 1− lb val(χs,ti,jy)

)
−(Ci − Tj)acts,ti,j + (Tj + 1)bin es,tj

{
> 0 if lb endpt(χs,ti,jy) = “]”

≥ 0 if lb endpt(χs,ti,jy) = “[”

(5.18)

Ds,t
i −D

s,t
j + u

(
χs,ti,jy

)(
2Ti − Cj + 1− ub val(χs,ti,jy)

)
−(Ti − Cj)acts,ti,j − (Ti + 1)bin es,ti

{
≤ 0 if ub endpt(χs,ti,jy) = “]”

< 0 if ub endpt(χs,ti,jy) = “[”

(5.19)

Optionally, it is possible to include a further constraint to cope with fault tolerance by

assuring that routes of specific real-time channels are disjoint. The group of such real-time

channels is called disjoint path group (DPG) and the constraint is expressed as:

∀v :
∑

∀(s,t): v ∈ t,
∀c: c ∈ DPG

bin es,tc ≤ 1 (5.20)

Additional constraints can be used to represent the limitations of the TrailCable commu-

nication engine hardware. For example, it can be checked whether the amount of available

memory is sufficient to buffer all real-time tasks in a certain node. Moreover, the num-

ber of real-time tasks in a communication link is limited by the scheduler capacity. The

larger the number of tasks that can be handled simultaneously, the higher the number of

available packet IDs:

∑
∀c

bin es,tc ≤ IDs (5.21)

5.3. Network Configurations 67

One possible objective function for this ILP problem consists in minimizing the sum of

deadlines of all real-time channels:

min:
∑
∀v ∈ V

δvc (5.22)

The outcome of this objective function is that the channel routes will be as direct as

possible and all relative deadlines will be set to the lowest possible values. In order to

facilitate the inclusion of further real-time channels during run-time without the need to

alter the network configuration, relative deadlines can be increased as long as the resulting

channel deadlines remain lower than the requirement of the application.

For the sake of simplicity, preemption overhead was not considered in the presented model.

One manner to cope with preemption is to add the respective overhead in the channel

deadlines after all communication channels are mapped in a network. Although this

method may not guarantee mapping optimality, it is simple and can be performed effi-

ciently.

5.3.3 The Fit Minimum Laxity First Algorithm

The method based on ILP for finding valid mappings of real-time channels presented in the

previous section has the advantage of finding possible solutions even for a high utilization

factor of the communication bandwidth. If preemption overhead can be neglected, the

ILP model would be optimal in the sense that if there is a valid configuration, then it can

be found. The main drawback of the method, however, is the required processing time,

especially for complex configurations. In order to reduce the complexity, one may impose

some restrictions on the requirements of the real-time channels. One example is to apply

a rule that all periods of the real-time channels must be harmonic, i.e., Tc = kTh, where

Tc is the period of a channel, Th the harmonic period, and k an integer constant.

To overcome the limitations of the ILP method, in this section we introduce a new algo-

rithm called Fit Minimum Laxity First or FMLF. Although this algorithm is not intended

to yield an optimal mapping configuration of a TrailCable network, its run-time complex-

ity is considerably lower, which makes it appropriate for many systems requiring dynamic

reconfiguration.

In the real-time scheduling theory, laxity Xi, or slack time, is a parameter that indicates

the time a task can be delayed by others and still meet its deadline; it is given by Xi =

Di−Ci. In the scope of this work, however, we will utilize the term laxity to express the

time difference between the real-time channel deadline required by an application δreq and

the time needed to transmit the packet in the best case δbest, i.e., when no other channels

exist in the network and the most direct route is taken.

The FMLF algorithm is executed in 5 steps that are listed below:

68 CHAPTER 5. DYNAMIC RECONFIGURATION

1. Calculate the laxity of the real-time channels. Clearly, the FMLF algorithm

starts out with calculating the laxity of all real-time channels that need to be mapped

in a given network. If a channel has multiple destinations, the laxity of each sink

node is calculated individually. In order to calculate the laxity, the first step is to

find the shortest routes to the sink nodes of all channels. This can be done by means

of the breadth-first search (BFS) algorithm. The complexity of BFS in the worst

case is O(|V | + |E|), where |V | represents the number of nodes (vertices) and |E|
the number of communication links (edges) of the network part considered. The

BFS algorithm must run for each source node of a real-time channel and therefore

the overall runtime complexity to find all shortest paths can be limited, without any

further optimizations, to O(|S| (|V |+ |E|)), where S is the set of source nodes of

all real-time channels.

Once the shortest routes are known, the lowest achievable channel deadlines δbest

can be calculated by means of equation (3.2). The laxities of each sink node v of a

channel c are then available: Xv
c = δreq

v
c − δbest

v
c .

2. Sort the real-time channels in the non-decreasing order of laxity. The

heuristic of the FMLF algorithm consists in mapping real-time channels with the

most stringent deadline requirements first. The basic idea is that mapping the

“harder” channels first will make it easier to map the remaining ones. The sorting

process has a runtime complexity of O(n log n) and its output is a linked list

containing the sorted laxities with the respective channel identifiers.

3. Select the real-time channel with the lowest laxity and perform incre-

mental schedulability tests. This step in the algorithm checks which commu-

nication links still have enough capacity to include the selected real-time channel.

If a communication link can be used, then the lowest possible relative deadline for

the corresponding EDF scheduler is also calculated by means of a similar process

as used in the ILP problem definition of Section 5.3.1. The basic difference, how-

ever, is that once a real-time channel is mapped, its relative deadlines are fixed and

therefore the complexity of the ILP problem is considerably reduced because only

one new relative deadline will have to be assigned during each iteration.

This step of the algorithm can be distributed among the nodes of a network. In this

case, a master node broadcasts to all potential intermediate hop nodes the period

Ti and communication time Ci of the real-time channel. The slave nodes then check

whether the real-time channel can be admitted in their communication ports and, if

so, determine the lowest possible relative deadline for each of the schedulers. Finally,

the slave nodes this information back to the master.

4. Find the route for the real-time channel. Once the feasible communication

links and their respective relative deadlines are known, it can be checked whether

5.4. Chapter Summary 69

a route is available. This can be done by means of the A* algorithm [38], with the

relative deadlines representing the edge weights of the network graph. This step

finds the route with the least channel deadline, if there be any, and uses it. If two

or more routes have the same channel deadline the route with less communication

links will be chosen. A route, however, is only established if the achievable channel

deadline is equal or lower than the required one. If a route to another sink node of

the same channel is already mapped, the existing path or a part of it can be used.

In order to increase the probability of success when mapping the next channels, the

relative deadlines that will be used for the EDF schedulers along the new route are

increased as much as possible (by a factor ∆) without the channel deadline being

missed. ∑
∀v ∈ Route

(Dv
c + ∆) = δreqc (5.23)

The new relative deadlines are then sent to the respective nodes, so that the real-

time task can be activated.

5. Select the next real-time channel, if any, and return to step 2. The previous

steps are repeated until all real-time channels in the list are processed.

5.4 Chapter Summary

This chapter dealt with the dynamic reconfiguration of the TrailCable protocol. In the

first part, a reconfiguration framework was presented. Such a structure allows the use

of the TrailCable protocol with dynamic applications and makes it possible to integrate

other domain-specific structures such as OCM [9].

The second part of this chapter was dedicated to methods that find valid TrailCable con-

figurations. The first method was based on integer linear programming (ILP) and is aimed

at finding optimal mappings of the real-time channels, i.e., find feasible configurations if

they exist. This is especially useful when the utilization factor of the communication

links are rather high. Due to the runtime complexity of the ILP method, an alternative

algorithm was introduced, which sacrifices optimality in order to find possible mappings

in less time.

The use of dynamic reconfiguration has many potential advantages in an embedded sys-

tem. For example, it makes possible to dynamically change the data rate of the commu-

nication links according to its demands to save power. Another use of dynamic recon-

figuration is to increase the tolerance to faults, since once faulty communication links or

nodes are detected, the routing of the real-time channels can be automatically altered if

alternative paths are available.

Chapter 6

The Communication Engine

Hardware

Due to the approach of the TrailCable protocol that relies on hardware scheduling and

low-level optimizations to achieve its performance and determinism goals, a new commu-

nication controller was developed from scratch, rather than employing commercial off-the-

shelf (COTS) components. Reasons for this decision were, among others, the following

protocol features:

Scalable Scheduler In order to allow handling multiple communication tasks simulta-

neously, a hardware-based EDF scheduler is necessary to deliver constant performance,

regardless of the number of tasks.

Packet Preemption To fully profit from the EDF scheduling strategy, a mechanism

allowing preemption of the data communication packets at the physical layer is of great

importance.

Admission Control Upon the reception of a data packet header, some of the task char-

acteristics are checked to assure that they are consistent with the specifications assumed

for the schedulability analysis. This procedure must be executed as fast as possible so

that by the time the packet header transmission is completed, a decision on acceptance

is immediately available. Since this operation takes only a few clock cycles and is carried

out simultaneously in different communication ports, a hardware solution is required.

Low Overhead Since the main application area of the TrailCable communication pro-

tocol is the domain of embedded systems, a concise frame format is used, reducing the

size of headers and control fields. The price of a relatively simple header used in the

70

6.1. Communication Engine Architecture 71

TrailCable protocol is additional processing required to fetch the local scheduling tables,

which are spread among small RAMs in order to increase the total memory bandwidth.

Clock Synchronization Even though not necessary for the TrailCable protocol to

achieve real-time behavior, global clock synchronization can be required for supporting

higher-level functionalities. For this reason a time-unit was integrated into the hardware

design to allow precise time synchronization of a set of network nodes. Since the time-

stamps are very precise (with a one clock cycle resolution), hardware support is once again

indispensable.

The functions listed above are implemented by means of a dedicated hardware architec-

ture called Communication Engine (CE), which encapsulates the digital circuits required

for an autonomous operation of the TrailCable protocol. This chapter introduces the

details of the communication engine architecture, discusses its actual implementation in

FPGA devices and presents a design space exploration study to demonstrate the impact

of different hardware configurations on the required amount of hardware resources.

6.1 Communication Engine Architecture

The communication engine is built up with three main components: communication

port(s), a host port, and an interconnect bus (Figure 6.1). The communication ports are

responsible for receiving and checking incoming data from the links as well as scheduling

and sending data packets to the physical medium. Besides implementing an interface

to the host microprocessor, the host port manages the memory storage and retrieval of

all real-time data packets traversing, leaving, or entering the node. Another function of

the host port is to carry out clock synchronization by means of a time-unit. Finally, the

interconnect bus is in charge of transferring data among several communication and host

ports. For this purpose, three independent buses are used: a control bus that transfers

incoming data packets and the corresponding control information from one port to the

real-time module and other ports, a real-time data bus that transfers real-time data from

storage memories to the communication ports, and one that is intended to distribute

non-real-time data for transmission.

Due to the fact that the architecture is built up in a modular manner, with the help

of the VHDL language constructs it was possible to parameterize some properties of

the implementation. Therefore, the system designer is able, for example, to determine

the number of communication ports needed for different nodes. For low-cost and simple

applications where redundancy is not necessary, it is possible to define a communication

engine with only a single communication port, which requires few hardware resources and

fits into small FPGAs (which potentially also contain application-specific logic). On the

72 CHAPTER 6. THE COMMUNICATION ENGINE HARDWARE

Figure 6.1: Communication Engine Architecture

other hand, multiple communication ports can be used, which allows the construction of

complex network topologies.

The following sections give a detailed description of the three parts of the communication

engine: the host port, the communication port, and the interconnect.

6.2 Host Port

The host port is responsible for the following functions: implementing an interface to allow

data exchange with a host microcontroller (Host Interface), providing a clock synchro-

nization service and time-related functions (Time Unit), and managing internal memory

banks where data packets are stored (Real-Time Module). The three modules are de-

scribed below.

6.2.1 Host Interface

The data transmission procedure initiated by the host processor is divided into two steps:

writing data packet contents to the internal memory of the data communication engine

and then triggering the transmission. There are two different modes of triggering the

transmission: one is a commanded triggering by the host controller itself. In this type of

operation, the packet is immediately handed over to the scheduler and then transmitted

according to its priority. The second mode of starting a transmission is by means of time-

triggering. In this case, periodic signals generated by the time unit are used to trigger

6.2. Host Port 73

the transmission of pre-selected packets. When clock synchronization is available, such

periodic signals are also synchronized in all participating nodes, allowing a coordinated

data communication.

When it comes to data reception, the communication engine is able to issue interrupts

to the host processor either upon reception of pre-defined data packets or at specific

times (synchronized operation). These modes allow both time- and event-triggered data

communication to occur in a concurrent manner, thus contributing to a high flexibility in

a distributed system based on the TrailCable protocol.

Another function of the Host Interface is to initiate the process that measures the propa-

gation delay of the communication links. The basic scheme of this functionality is depicted

by Figure 6.2. The process starts when a host issues a delay measurement request. Once

the neighboring node receives this request, it acknowledges the source host with another

data packet. When this packet arrives at the source node its timestamp contains the time

spent in both source and destination communication engines. Since the source node keeps

the exact time the request packet was triggered and also the time when the acknowledg-

ment arrives, it is possible to determine the propagation time of the links.

Node A Node B

trig 0

t0

t1

s0

s1

Task 0 - Request

Task 1 - Ack

ts0 = t0 - trig 0

ts1 = ts0 + t1 - s0

2

101 tstrigs
propAB




time

Figure 6.2: Propagation delay set-up

Table 6.1 presents the flow of the link propagation retrieval process. Within a com-

munication port, the task IDs 0 and 1, respectively, are reserved for the request and

acknowledgment of data packets. This is necessary because for the transmission of these

packets the timestamps cannot be updated with the link propagation delays.

6.2.2 Time Unit

The main function of the time unit is to establish a fault-tolerant clock synchronization for

a set of nodes in the network (See Section 3.7). Timestamps are used to exchange timing

74 CHAPTER 6. THE COMMUNICATION ENGINE HARDWARE

Table 6.1: Measurement of propagation delay

Node A Node B

1) Trigger task 0 transmission

2) Save the triggering time of task

0 (trig0)

3) Save transmission start time of

task 0 (t0)

4) Set the time stamp of task 0:

ts0 = t0 − trig0
5) Receive task 0 and save its recep-

tion start time (s0)

6) Acknowledge task 0 reception by

sending task 1

7) Save transmission start time of

task 1 (t1)

8) Set the time stamp of task 1:

ts1 = ts0 + t1 − s0
9) Receive task 1 and save its recep-

tion start time (s1)

10) Calculate the link propagation

delay from node A to node B:

propab =
s1 − trig0 − ts1

2

information among nodes. The timestamps used for clock synchronization are updated

with both the propagation delay of the links they pass by and with the time spent in

each communication engine. Thus, the timestamps represent the elapsed time between

the transmission triggering at the source node and the final reception at the destination

node(s).

In a synchronized system, the transmissions of data packets are triggered at globally

known times. Therefore, by means of the timestamps each node participating in the clock

synchronization is able to determine the difference between the local and remote time

references with high precision.

As regards hardware, it is simpler to employ the median rather than the mean value of the

time differences to determine the offset correction factor for the local node. The reason

is that calculating the mean requires two steps: sorting the time differences (in order to

eliminate the highest and lowest deviations) and then accumulate all values and divide

6.3. Communication Port 75

them by the number of entries. On the other hand, finding the median dispenses with the

second step, as it suffices to take the mid value of the sorted list. In practice, although

the mean could yield better clock synchronization results, the difference to the median

alternative is potentially negligible in many applications. Hence, the decision to use a

simpler and faster hardware component can be justified.

The Time-Unit is also responsible for generating interrupts to the host processor at pre-

defined times in order to support a time-triggered operation of the system when the clock

synchronization service is employed.

6.2.3 Real-Time Module

The payload data of incoming real-time packets are stored in internal memories located

in the Real-Time Module. Besides storing data, the Real-Time Module is responsible for

checking whether the CRC of received payload data is correct. If not, the packet will be

marked as faulty and its transmission will be canceled immediately in order to prevent

failures propagation. The Real-Time Module also creates the CRC for the payload data of

the packets whose origin is the local host. Moreover, another function of the Real-Time

Module is to retrieve the timestamps from the incoming data packets and hand them

over to the Time-Unit. Finally, it is also the role of the Real-Time Module to update

timestamps of packets being transmitted with the propagation delay of the addressed

output link.

The implementation of the Real-Time Module is fully pipelined to allow multiple com-

munication ports to write and fetch data in a concurrent manner.

6.3 Communication Port

For each link, the communication ports (Figure 6.3) handle both data reception and

transmission. In order to perform these tasks, the communication ports are divided into

different layers. On the receiving side, incoming data streams are first decoded and

parallelized. The receiver passes each single control or data byte to the next layer. It is

then a task of the admission control block to interpret such incoming information and

reconstruct the packets considering possible preemptions in the data stream. Moreover,

upon detection of START or RESUME headers, the admission control block performs

acceptance tests to verify whether incoming packets are syntactically correct and have

the expected temporal behavior. When an acceptance test is successful, the data packet

will be allowed into the internal buses, otherwise it will be discarded.

When it comes to data transmission, a scheduler selects the highest-priority task for

transmission. The dispatcher has then to fetch the data contents from the Real-Time

76 CHAPTER 6. THE COMMUNICATION ENGINE HARDWARE

Receiver

Scheduling
Table

O
u

tp
u

t
b

lo
c

k

In
p

u
t

b
lo

c
k

RX TX

Control/Data Data Control

Dispatcher

FIFO

Sender

Scheduler

Acceptance
Test

Figure 6.3: Communication port

Module, create the packets, and pass them over to the sender unit, where data is coded

and serialized for transmission. At any given time, if a higher-priority task is selected by

the scheduler, the dispatcher needs to start the transmission of the new packet by sending

the appropriate header. A detailed description of the components of the communication

ports will be presented in the following sections.

6.3.1 Physical Layer

TrailCable was designed to allow the use of a variety of standards at the physical layer as

long as they support a coding scheme like 8B/10B. The data links are required, however,

to be bidirectional, point-to-point and full-duplex. Among different alternatives, the Low

Voltage Differential Signaling (LVDS) was chosen for the first implementations because

of the following benefits: high data rates, noise immunity, low power consumption, and

increasing adoption by manufacturers of integrated circuits.

LVDS is defined by the ANSI/TIA/EIA-644-A standard [83] and is becoming more and

more popular for high-speed data communication applications. The low voltage swing

(approximately 350 mV) specified for the LVDS standard brings some benefits. The first

is low-power operation, with a dissipation slightly higher than 1 mW for a transmission

pair. For comparison, the RS-422 standard, which is also differential, draws about 70

times more power than LVDS. Moreover, a low-voltage swing is appropriate for higher

data rates since it is possible to change states faster when compared to technologies with

higher voltage excursions. Additionally, for given a signaling rate, the lower the voltage

swing, the lower the necessary slew rate, which in turn helps to reduce the amount of

dissipated electromagnetic energy and therefore to enhance EMC. Since LVDS relies on

6.3. Communication Port 77

differential data transmission, interferences that appear simultaneously in both wires are

suppressed, which makes this standard perform well with environmental noise.

There is currently a trend for the major FPGA suppliers to support the LVDS standard

in their devices. The TrailCable protocol profits from this scenario, since in many cases

the only integrated circuit required for its implementation can be an FPGA that holds

both the protocol engine and the LVDS drivers.

Although there are many advantages for using the LVDS standard, it imposes a limitation

on the maximal cable length, which depends on the transmission rate. Typically, a 100

Mbps LVDS link can be no more than about 30 meters long. For longer link distances,

the TrailCable can also use optical transmission. Another advantage of using fiber optics

as a medium is noise immunity, allowing the employment of TrailCable in very noisy

electrical conditions, such as high-voltage installations or switching, high-power electronics

equipment like servo devices.

Since the 8B/10B coding scheme is DC-balanced and guarantees a sufficient amount of

level transitions, it is also appropriate for optical transmissions and no modifications are

required for the TrailCable logic to accommodate either LVDS or a fiber optic communica-

tion link. The only differences are at the hardware level, with the respective transceivers

for each technology. This feature allows opting for the transmission medium which better

suits the application needs.

6.3.2 Receiver

After passing by the physical layer circuitry, the serial data stream is transformed into a

medium-independent sequence of bits, which is the input of the receiver logic implemented

in the FPGA.

8B10B
Decoder

Parallelizer

Control
Logic

Data
Recovery

LVDS or
Optical

Receiver

Receiver

Admission
Control

Interface

Figure 6.4: Receiver unit architecture

The nominal data transmission rate is equal to the receiver clock frequency. In order

to cope with phase differences and frequency drift, the receiver synchronizes the data

78 CHAPTER 6. THE COMMUNICATION ENGINE HARDWARE

stream with the local clock domain. This is performed by the data recovery block, whose

implementation is based on the Xilinx Application Note 224 [78]. By means of a 4-times

oversampling of the input data stream, the data recovery block is able to detect the signal

transitions and sample each bit at the correct time. At each local clock cycle, the data

recovery block outputs either one bit (normal case), two bits (if the transmission rate is

slightly higher than the receiver clock) or no bit at all (if the transmission rate is slightly

lower than the receiver clock).

The subsequent receiver stage is the parallelizer, which feeds a 8B/10B decoder. The

parallelizer searches and detects 8B/10B comma control bit-sequences in the synchronized

data handed over by the recovery block. By this, it is possible to determine exactly

where every 10-bit-coded byte starts. Successive transmission errors may lead to a loss

of synchronization that prevents the parallelizer from picking up the correct 10 bits of

an encoded byte. However, it is possible to recover from this situation as soon as a new

comma control byte is detected.

The last stage in the receiver is the 8B/10B decoder, that in addition to decoding the

10-bit word to the equivalent byte, informs the following modules whether the decoded

word represents data or a control comma. For the latter case, the 8B/10B decoder also

indicates if the control word is a START or a RESUME comma.

6.3.3 Admission Control

The admission control component implements the behavior described in Section 3.6. This

block analyses the incoming data from the receiver in order to locate where packets be-

gin, terminate, preempt or resume, according to the TrailCable protocol semantics. After-

wards, the admission check itself takes place. The design rationale for the implementation

of the admission control logic was to permit all the required processing to be executed

immediately, i.e., before the first payload byte is received. This was made possible by an

optimized hardware architecture specifically designed for this purpose. As a result, there

are no possible combinations of received data that could lead to a processing overload,

thus impairing the real-time behavior of the communication system.

The hardware architecture that performs admission control consists of two main blocks:

A scheduling table and an admission control unit. For each communication task, the

scheduling table holds specification parameters and run-time variables.

As the name suggests, the specification parameters define the characteristics of the real-

time tasks used for the schedulability analysis. These parameters are read-only for the

communication engine hardware. Only the host is allowed to write these parameters. The

specification parameters are: output ID, frame size, forwarding table, operation flags, Ti

(period), Di (relative deadline), and Gi (guard).

6.3. Communication Port 79

Run-time variables are updated by the communication engine hardware and used to store

information about the current status of the real-time tasks. The run-time variables are:

Hi (hold), si,j (start time), csi,j (corrected si,j), fi,j (finish time), and CRC.

6.3.4 Scheduler

The scheduler is responsible for selecting for transmission, within a set of active real-time

tasks, the one with the highest priority. As described in Section 3.5, the EDF algorithm

was chosen for this purpose. The main functionality of the scheduler is therefore to order

real-time tasks with respect to their absolute deadlines so that at any given time the

highest-priority task is known.

The scheduler has an interface to allow insertion or removal of active tasks. New insertion

requests come from other communication or host ports while removal requests are initiated

by the dispatcher whenever the transmission of a frame ends.

One requirement in the design of the TrailCable schedulers was to limit their response

time (i.e., the interval between changing the scheduler task set and finishing the priority

ordering process) to the transmission time of one packet header. By this, it is assured that

when the dispatcher finishes the transmission of a header, it will be able, if necessary, to

start the transmission of a new one immediately. The scheduler response time accounts for

a substantial portion of the forwarding delay of the node, fwn. Therefore, the higher the

response time, the higher also the latencies of the real-time channels. In the TrailCable

communication engine implementation presented in this chapter, the transmission time

of a header takes 750 ns (or 30 clock cycles), and thus the scheduler response time must

be kept under this value at all times. As a consequence, the forwarding delay fwn is very

small, about 2 µs for a 32 Mbps bit rate. As a matter of comparison, this is less than

that of many commercial Ethernet switches operating at 100 Mbps [48, 49].

The scheduler response time is also crucial for maintaining consistency between the hard-

ware implementation and the assumptions made for the EDF schedulability analysis. The

feasibility tests do consider the extra time spent for preemptions but do not take into ac-

count large scheduler response times. In fact, for the TrailCable schedulers the response is

immediate whenever a newly arriving task has the highest priority, since a simple compar-

ison between the deadlines of both the current and the new task is sufficient to determine

the highest-priority task.

Summarizing the requirements of the scheduler response time for the TrailCable protocol,

it follows that:

� Response time if the new task has the highest priority one: immediate.

� Response time for all other cases: < 30 clock cycles.

80 CHAPTER 6. THE COMMUNICATION ENGINE HARDWARE

The next sections give a deeper insight into the TrailCable scheduler hardware, which was

specifically designed to meet the above requirements.

6.3.4.1 Priority Queue

Consider the task of inserting a new entry into a list of ordered values. This new entry must

be placed in such a position that the list order be maintained. For a list with n elements,

a software implementation of this function using the classical binary search algorithm

has a complexity O(log n). However, even for small values of n the execution time of

this algorithm is rather high to handle multiple (and possibly simultaneous) incoming

scheduling requests arriving at a given communication port. Additionally, the fact that

the execution time of such algorithm depends on n is an inconvenient when it comes to

scalability: the larger the number of tasks supported by the scheduler, the higher are its

response times.

In order to overcome these limitations, the TrailCable protocol utilizes a hardware-based

sorting mechanism for the priorities of the tasks. Some of the possible alternatives for

the implementation of this component, often called priority queue, are presented in [46,

53, 75, 66], which were mainly developed for high-speed networks. For the TrailCable

protocol, however, the aim is at reducing the amount of resources needed to construct the

queues while offering a scalable architecture with good performance.

Priority Queue Architecture

The TrailCable priority queue architecture consists of a control logic block and multiple

queue modules (Figure 6.5). The queue modules have an internal memory where the

priority values are stored. Modules can be daisy-chained in order to increase the priority

queue capacity.

Figure 6.5: Priority queue architecture

The execution times of the two basic priority queue operations, enqueue (which inserts a

new entry and reorders the queue) and dequeue (which removes the highest-priority entry

6.3. Communication Port 81

from the queue) have, thanks to the employed hardware architecture, run-time complexity

O(1) (constant) regardless of the number of modules. As a matter of fact, the execution

time is proportional only to the size of the individual modules. Therefore, the presented

architecture is extremely scalable. The price paid for the scalability is an increase in

hardware resources for extending the priority queue, which is linear with respect to its

size.

Priority Queue Control Block

The control logic block is the component responsible for receiving the priority queue

interface commands (enqueue or dequeue) and generating the appropriate control signals

to queue modules. An interesting fact about the control block is that it does not have

to be modified at all if queue modules are added to or removed from the architecture.

This is due to the fact that the operations performed by all queue modules are always

synchronized and identical as they use exactly the same signals from the control logic

block. Keeping one single centralized control logic block for the entire priority queue

also contributes to reducing the required area on the chip and improving the overall

architecture resource efficiency.

The interface of the priority queue consists of the following signals: Enqueue, Dequeue,

Busy, Din, and Dout. Enqueue or Dequeue signalize the beginning of the respective

operation. Busy is set by the control logic during execution of the specified operation.

Din is used to insert the value in an enqueue operation and Dout returns, in a dequeue

operation, the highest priority value stored in the queue.

In order to show how the enqueue and dequeue operations are executed in each queue

module, the respective algorithms 4 and 5 are presented. They are implemented by means

of a state machine in the control logic block.

For the enqueue operation, the first phase consists in checking in each queue module

whether the new input value (Bcast) is larger than the highest value stored in the module.

If so, the module outputs its lowest value to its right-hand neighbor via the DOR output.

Otherwise, the value passed to the neighbor is the input value (Bcast). In the next step,

all modules read the value generated in the first phase by their left-hand neighbor and

store it in a local register. The last phase consists in the sorting process itself, which is

performed by successively comparing the value of the register with each entry in the queue

modules. When the value of the register is greater than the current queue entry, both are

swapped. The process continues until all the values of the local queue are compared.

82 CHAPTER 6. THE COMMUNICATION ENGINE HARDWARE

Algorithm 4 Enqueue

1: integer REG, queue[1..n]

2: input BCAST, DIL

3: output DOR

4:

5: if (BCAST > queue[1]) then

6: DOR ← queue[n]

7: else

8: DOR ← BCAST

9: end if

10: REG ← DIL

11: for i = 1 to n do

12: if (REG > queue[i]) then

13: swap(queue[i], REG)

14: end if

15: end for

Algorithm 5 Dequeue

1: integer REG, queue[1..n]

2: input DIR

3: output DOL

4:

5: DOL ← queue[1]

6: REG ← DIR

7: queue[i..n-1] ← queue[2..n]

8: queue[n] ← REG

6.3. Communication Port 83

Priority Queue Module

The designed queue module (Figure 6.6) has storage elements (one memory and one

register), one comparator, one multiplexer, and one Write Enable Logic block, which

consists of a simple combinational circuit for generating the write enable signals for both

the memory and the register.

Figure 6.6: Queue module

The module has three data inputs (DIL, DIR, and Bcast) and two data outputs (DOL

and DOR). The Bcast, DIL, and DOR data interfaces are used during the enqueue

operation, whereas DOL and DIR are used for the dequeue operation. Addr, S, and

Ctrl are signals generated by the control block. Their functions are the following:

� Addr - current memory address,

� S - channel selection signal for the multiplexers,

� Ctrl - control signals used to indicate whether the write enable signals for the

memory and register are forced to specific values or obtained by taking into account

the current comparison results.

The architecture of the queue module supports the enqueue algorithm introduced in algo-

rithm 4 as follows: First of all, the lowest-priority value stored in the memory is transferred

to the register by addressing the memory, setting the multiplexer input channel to DOL,

and generating a write enable signal to the register. In the next step, the multiplexer

must be set to output the Bcast value so that the latter can be compared with the reg-

ister contents. If the priority of Bcast is higher than the current register content, the

84 CHAPTER 6. THE COMMUNICATION ENGINE HARDWARE

former will be copied to the register, overwriting the previous lowest priority. At this

point, the register contains either the lowest priority of the queue module or the Bcast

input, whichever has the highest priority. This procedure corresponds to lines 5 to 9 of the

enqueue algorithm. The third phase consists in writing the DIL input unconditionally to

the register (line 10 of the enqueue algorithm). The following steps execute the sorting

process (line 11 to 15 of the enqueue algorithm) by comparing the register value to the

memory contents successively. If the priority stored in the register is higher, the Write

Enable Logic block generates “write” commands to both memory and register simultane-

ously, which causes the contents to be swapped between them. This operation is repeated

until the last position of the memory (which contains the lowest priority stored in the

module) is reached. Each comparison step can be accomplished in just one clock cycle.

As a result, the total number of clock cycles necessary to sort the queue is 4 (initialization

steps) plus the depth of the memory used. In the current TrailCable implementation the

enqueue operation always takes 20 clock cycles since it employs a 16-address memory. So,

if additional queue modules are daisy-chained, the priority queue capacity will increase in

steps of 16, but the duration of the enqueue operation remains the same.

The dequeue operation (Alg. 5) is considerably simpler. Each module outputs to the

left-hand neighbor the highest-priority entry stored locally (via DOL), simultaneously

reads from the right-hand neighbor (via DIR) the new lowest-priority entry for the local

module, and stores it into the register. The shifting operation shown in the dequeue

algorithm (line 7) can be implemented by simply incrementing a pointer to the memory

address of the highest-priority entry. Finally the register value is copied to the lowest

priority memory address. The dequeue operation takes only 4 clock cycles to execute.

Commanding simultaneous enqueue and dequeue operations is also possible. Removal of

the entry from the priority queue is done prior to the insertion. Since this a combination

of both enqueue and dequeue operations, it takes 7 clock cycles for initialization plus one

extra clock cycle for each memory address. Table 6.2 summarizes the execution latency

of all operations.

Table 6.2: Priority queue execution cycles
Operation Execution Cycles TrailCable Scheduler Implementation

Enqueue 4 + memory depth 20

Dequeue 4 4

Both Simultaneous 7 + memory depth 23

The memory depth of 16 chosen for the TrailCable implementation is a trade-off between

latency and hardware area. As regards latency, Table 6.2 shows that the operations take

at most 23 cycles to complete, which is quite reasonable for the application considering

that the transmission of a packet header takes 30 cycles. As regards hardware resources,

memories with a depth of 16 can be very efficiently implemented in FPGAs. The slices

6.3. Communication Port 85

of the Spartan-3 Xilinx FPGAs [91], for instance, have two main components: a look-up

table and a flip-flop. The so-called Distributed Memory feature allows the use of these

look-up-tables for implementing a 1-bit-wide RAM memory with a depth of 16. As a

result, it is possible to build an n-bit x 16 memory with only n FPGA slices, instead of

n× 16. Newer FPGA families, such as the Xilinx Spartan-6 [92], allow using one look-up

table to build either one 1-bit x 64, or two 1-bit x 32 memories.

Priority Queues for Deadline-Based Schedulers

When employing the EDF scheduling algorithm, priority queues are used to sort the

deadlines of all active tasks in ascending order. Since the absolute value of deadlines get

higher and higher over time and because the priority queues entries have a restricted size,

data overflows will eventually occur.

The first straightforward solution for coping with overflows would be to dimension the

priority queue entries so that no overflows can happen during the expected operation

lifetime of a given system. Nevertheless, this strategy has the disadvantage of considerably

increasing the required hardware resources. Another possibility to deal with overflows,

which is used in the TrailCable communication engine, is to adapt the priority queue

hardware architecture in such a way that overflows cannot impair the correct operation

of the sorting function. In the latter approach, the bit-width of the priority queue entries

is dependent on the maximum relative deadline of the scheduler, which is many orders of

magnitude smaller than the operation lifetime of system.

In order to cope with overflows, the maximum relative deadline supported by the scheduler

must be restricted. The necessary condition is that a relative deadline, D, cannot be larger

than half of the range of the time base used by the system:

max(Di) =
range(time base)

2
(6.1)

The time base is a counter that is incremented periodically and represents the absolute

time of the scheduler. In the TrailCable implementation presented in this chapter, the

time base is incremented at each clock cycle and has a resolution of 25 ns.

Another assumption required to handle overflows correctly is that if a deadline expires (its

value reaches the current time), it will be removed immediately from the priority queue.

This situation is not likely to occur with the TrailCable protocol since schedulability

analyses are performed in advance for each scheduler. If, however, this condition do occur

due to some kind of fault, the hardware must be able to recover from this unwanted state

as soon as possible.

To exemplify the method of handling overflows, we consider a simple system having a

time base implemented with a register of 3 bits, counting repeatedly from 0 to 7. As a

86 CHAPTER 6. THE COMMUNICATION ENGINE HARDWARE

Table 6.3: Example: Handling overflows
Time Base

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

Di = 1

c2 b2 b1 b0

0 0 0 1

0 0 1 0

0 0 1 1

1 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

Di = 2

c2 b2 b1 b0

0 0 1 0

0 0 1 1

1 1 0 0

1 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

...

Di = 4

c2 b2 b1 b0

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

result, the range of the time base is 8. Applying Eq. (6.1), it follows that the maximum

relative deadline allowed by the system is 4.

Table 6.3 shows an example of this scenario. The time base is shown on the left-hand

side. The possible absolute deadlines stored in the priority queue are presented in the

remaining tables. For example, when the time base is 0, all values in the queue must

range between 1 and 4 (represented by bits b2, b1, and b0).

From the tables and based on the previous assumptions, it can be seen that during the

time base interval from 0 to 3, no value in the queue can overflow. Therefore, no special

mechanism for handling overflows is needed in this first half of the table.

On the other hand, the first overflows can occur from the time base position 4 onwards.

It is possible to note that from this position either the MSB, b2, is one (no overflow

occurred), or zero (overflow occurred). For this reason, if the bit b2 is inverted during

the time-base positions from 4 to 7, the “chronological” relative order of the absolute

deadlines is reestablished and comparisons can be realized even with overflows.

It follows that in order to handle overflows, the MSBs of the inputs of a comparator,

cn, must then be: a) unchanged in the first half of the time-base range; b) inverted in

the second half of the time-base range. This logic is equivalent to: If TBn (MSB bit for

the time-base) is ’0’, cn = bn, else cn = ¬bn. Such a logic can be easily implemented

in hardware with exclusive-or gates. Figure 6.7 shows the digital circuit for handling

overflows.

It should be noted that the bit transformation shown in Figure 6.7 need only be done

for the comparison operations. The values stored in the priority queues must keep their

original format.

Now that the mechanism for handling overflows has been explained, it is possible to define

a general method to find out the necessary bit-width for the deadline entries of any given

deadline-based scheduler. This method is the following:

1. Define the time-base resolution of the system, tbres.

6.3. Communication Port 87

X[n-1..0]

X[n]

Y[n-1..0]

Y[n]

TB[n] X>Y

X[n..0]

Y[n..0]

COMP.

Figure 6.7: Modified comparator

2. Define the maximum relative deadline for the real-time tasks, Di.

3. Divide the maximum relative deadline by the time base resolution. This yields as a

result the number of time-base units for the maximum relative deadline, tbunits.

4. Calculate the amount of bits necessary to express tbunits using log2(tbunits).

5. Increment log2(tbunits) to satisfy equation (6.1).

Summarizing the previous steps in one formula we have:

bit width =

⌈
log2

(
max(Di)

tbres

)⌉
+ 1 (6.2)

For the TrailCable protocol implementation described in this chapter, the time-base res-

olution is 25 ns and the maximum relative deadline (Di) is 50 s. Thus, we find that the

deadline entries must be at least 32-bit long.

6.3.4.2 Balanced Priority Queues

For many applications, a single-priority queue can be enough to construct a real-time

scheduler. However, given the low latency requirements for the TrailCable protocol, pri-

ority queues must be instantiated in parallel so that the scheduler be able to process

simultaneous operations in a timely fashion and satisfy the response time requirement.

As demonstrated in Section 6.3.4, a priority queue operation may take up to 30 clock cy-

cles. For this reason it is necessary to have one priority queue for each possible scheduling

request within this interval. Since all other communication ports may generate scheduling

requests simultaneously it follows that the number of priority queues required for a certain

scheduler is equal to the number of communication and host ports in the node minus one:

PQs = ports− 1 (6.3)

88 CHAPTER 6. THE COMMUNICATION ENGINE HARDWARE

Additionally, all priority queues together must be able to store, in the worst case, an entry

for each real-time task of a communication port. Hence, dividing the maximum number

tasks of a communication port by the number of priority queues yields the minimum

capacity (number of entries) required for the priority queues:

entries =

⌈
max. tasks

PQs

⌉
(6.4)

However, a problem arises when parallel priority queues are used: if one of them is full and

at least another one still has the capacity to store two or more entries, the assumption that

the scheduler is able to handle simultaneous scheduling requests from all others ports does

not hold anymore. Consider, as an example, a system with 1 host and 3 communication

ports where the schedulers can handle up to 12 tasks simultaneously. Applying (6.3) and

(6.4) we get the arrangement shown in Figure 6.8. Note that for the given example PQ1

has only one stored entry while PQ2 and PQ3 have reached their maximum capacity.

In this scenario, with three simultaneous scheduling requests it would not be possible to

meet the requirement of response time, since all requests would have to be serialized to

PQ1. In this undesirable situation the priority queues are said to be unbalanced.

Figure 6.8: Unbalanced priority queues

In order to solve this problem, a mechanism is required to balance the number of entries

in the priority queues. The priority queues are said to be balanced if the maximum

difference in the number of entries between any two of them is one. Keeping priority

queues balanced when inserting new entries is a rather simple task: it is sufficient to

choose one of the queues with less entries. Contrary to this, the procedure for removing

the entries from the queues requires a more meticulous method.

Figure 6.9 is an example of how to keep the priority queues balanced when entries are

removed one after another. Initially at t = 0 µs, PQ1 stores 3 entries while PQ2 and PQ3

store 2 entries each. At this point, an entry is removed from PQ1 and all priority queues

will contain the same number of elements. They are therefore balanced. At t = 15 µs,

another entry is removed from PQ1. The queues are still balanced since the maximum

difference between them is only one entry. At t = 30 µs one more entry is removed

from PQ1. Now, if no action is taken, the priority queues will become unbalanced. To

keep them balanced, the first entry from either PQ2 or PQ3 must be transferred to PQ1.

Finally, at t = 45 µs once more an entry is removed from PQ1. To keep the priority

queues balanced at this point, the first entry of PQ3 is transferred to PQ1.

6.3. Communication Port 89

Figure 6.9: Balanced priority queues

6.3.4.3 Scheduler Hardware Architecture

Balanced priority queues are employed by the TrailCable schedulers in order to allow high

scalability and low latency times in the process of sorting absolute deadlines. Priority

queues are kept balanced by a block called Balanced Queues Control (Figure 6.10), which

manages all enqueue and dequeue operations. For dequeue operations this block is able,

if necessary, to automatically transfer an entry from one priority queue to another to keep

the queues balanced. For enqueue operations the control block determines the priority

queue in which the new entry must be inserted.

...PQ1 PQnPQ2

Balanced Queues

Control

Din

Dout

E D Din E D Din E D

Dout Dout

S
c
h
e
d
u
le
r
 C
tr
l.

Highest Priority

Search

H
ig
h
e
s
t
P
ri
o
r.
 I
D

D
e
a
d
lin
e
 /
 I
D

Highest Priority Entry

Balanced Queues

Figure 6.10: Scheduler hardware architecture

Another component present in the scheduler hardware architecture is a highest-priority

search block that keeps the highest-priority entry of the scheduler. So, whenever a new

90 CHAPTER 6. THE COMMUNICATION ENGINE HARDWARE

entry with a higher priority than the current one arrives, it will be possible to inform the

dispatcher immediately. Another function of this block is realized when the transmission

of a packet is completed: it searches and removes from the priority queues the new

highest-priority entry of the scheduler.

In the TrailCable protocol, the entries stored in the priority queues consist of both an

absolute deadline and an ID. The deadlines are used for the sorting process in the EDF

scheduling, whereas the ID allows the scheduler to associate a deadline with the corre-

sponding real-time task. In fact, the relevant information to the dispatcher is only the ID

of the highest-priority task, which is an output of the scheduler.

6.3.5 Dispatcher

The dispatcher is responsible for organizing data for transmission, according to the task

selected by the scheduler. To accomplish this, the dispatcher performs different functions

such as creating packets, fetching memory contents, updating timestamps, and controlling

the sender unit. In the following sections these functionalities will be described in detail.

6.3.5.1 Packet Construction

Packets are created by the dispatcher whenever the scheduler informs it that there is an

active task awaiting transmission. The dispatcher then acknowledges the scheduler and

starts the creation of the packet header, which consists of a comma (either START or

RESUME), ID, and the correspondent CRC.

In order to determine whether the current transmission is starting or resuming (after

a previous preemption), the dispatcher monitors all incoming scheduling requests for

the respective communication port. The first transmission of a task initiated after the

corresponding request will be assigned a START header whereas all subsequent ones will

be assigned a RESUME header.

SEND

COMMA

SEND

ID

SEND

ID CRC

SEND

DATA

Idle

New Scheduler ID

Preemption

Empty

Complete

Preemption

Empty

Figure 6.11: Dispatcher state machine

6.3. Communication Port 91

The state machine in Figure 6.11 shows the way the dispatcher constructs packets for

transmission. At first it is in the Idle state. If there are no tasks available for transmission

the scheduler keeps sending START commas. As soon as the scheduler informs an ID, the

dispatcher first sends this ID, followed by its CRC. From this moment on, the dispatcher

will be able to promptly preempt a task being transmitted, should the scheduler issue such

a command. In this case, a new START comma is sent and the new packet transmission

begins. When the transmission of a certain packet is completed, i.e., all bytes including

the complete timestamp is sent, the dispatcher returns to its initial state. At this point

it starts the transmission of the pending packets, if there are any. The transmission of

a task may also stop if there are no more data to be sent, i.e., the memory buffer gets

empty. This situation may occur when a packet being received by a node is preempted.

6.3.5.2 Fetching Transmission Data

During transmission of the packet header, the dispatcher begins fetching data from the

Real-Time Memory to be transmitted. The dispatcher addresses the contents of this

memory by providing both a pointer and an offset value (Figure 6.12). The pointer

consists of both the task ID and the respective source port. The offset value is initialized

upon the start of a packet transmission and then updated for each byte sent.

The fetching mechanism of the TrailCable protocol allows various communication ports

and hence various dispatchers to access the Real-Time Memory contents concurrently by

means of a pipelined circuit, shown in Figure 6.12. The dispatchers access the memory

in a round-robin fashion. Once a dispatcher is granted access to the memory, it drives

the outputs of both pointer and offset multiplexers. Then, two clock cycles thereafter

the requested data content will be available, if both the pointer and the offset values are

valid.

The memory map and the real-time memory in Figure 6.12 belong to the host port, the

multiplexers and demultiplexers belong to the real-time interconnect and the dispatchers

are located in the communication ports. The fetching pipeline has three stages. In the

first one, the pointer is used to address the memory map. Simultaneously, the offset is

stored in a register. In the second stage, the outputs of the memory map and the offset

register are combined to create the address for the real-time memory. In the last stage,

the data byte for transmission is available from the real-time memory. Also in this stage,

a bit indicates to the appropriate dispatcher whether the data is valid or not.

In order to be considered valid, both the accessed memory address and the offset must be

correct. The memory address for the access is considered valid if the memory map was

initialized with a correct value. The offset is valid if the corresponding byte was already

written into the memory by the input port.

92 CHAPTER 6. THE COMMUNICATION ENGINE HARDWARE

Dispatcher 1 Dispatcher 1 Dispatcher n

Memory Map
Real-Time Packets

Memory

Port Selection

Time Stamp Data

CRC Data

V
a

lid
 A

d
d

re
s
s

V
a

lid
 S

iz
e

OffsetPointer

In
te

rc
o

n
n

e
c

t
R

e
a

l-
T

im
e

 D
a

ta
 M

o
d

u
le

C
o

m
m

u
n

ic
a

ti
o

n
 P

o
rt

s

Base Address

Figure 6.12: Fetching of packet data

Since the dispatcher gets the response two cycles after its request and due to the fact

that the dispatchers request a new data every 10 clock cycles, the pipelined architecture

presented is able to handle up to 8 communication ports.

Besides packet payload, the respective CRC and the timestamp are also retrieved by the

dispatcher from the host port by the presented mechanisms. For the packets originating

in the same node, the payload CRC is calculated by the Host Port. For the packets

that come from other nodes, the payload CRC is not altered and is therefore fetched like

normal payload data.

6.3.5.3 Updating Timestamps

In every hop, packets have their timestamps automatically updated by the TrailCable

communication engine. This is done by adding both the measured propagation delay of

the next link and the elapsed time since reception of the START header (or activation if

it originates in the same node) till the exact time of transmission start.

6.3. Communication Port 93

The host port is responsible for adding the propagation delay for the next link to the

timestamp, while the role of the dispatcher is to add the elapsed time in the node. To do

so, the dispatcher utilizes the start time si,j, the transmission time ti,j, and the current

timestamp, tski,j. si,j is determined by the receiver unit whereas ti,j is obtained by the

dispatcher itself when it commands the transmission of a new START header. The

timestamp update realized by the communication engine is represented by Eq. (6.5) that

also shows the factors that are updated by the dispatcher and the Real-Time Module

(Section 6.2.3).

tsk+1
i,j = tski,j + (ti,j − si,j)︸ ︷︷ ︸

Updated by the
Dispatcher

+ prop k,k+1︸ ︷︷ ︸
Updated by the

Real-Time Module

(6.5)

Timestamps have a resolution of 25 ns, which is the same resolution of the measurements

of both si,j and ti,j. In order store the maximum latencies in a TrailCable network, 4 bytes

are needed to represent the timestamp. An additional timestamp CRC is also appended

to the end of the packet. The need for an extra CRC is justified by the fact that while

the payload CRC must not be changed in intermediate communication hops, timestamps

need to be updated frequently. A CRC for the timestamp is required in order to detect

any communication faults that could impair the clock synchronization or the retrieval of

the measured transmission latency of packets.

6.3.6 Sender

The sender unit receives commands and data from the dispatcher and generates the

transmission bit-stream for the physical layer. The dispatcher indicates whether a data

or comma transmission should take place. In the latter case, the comma type (START

or RESUME) is also informed by the dispatcher. Albeit the commands come from the

dispatcher, the timing of these operations are provided by the sender unit. The reason is

that only the sender unit is able to determine the exact instant when each new byte for

transmission must be available.

The hardware architecture of the sender unit is basically reciprocal to the receiver unit.

Data provided by the dispatcher go initially to a 8B/10B decoder. This component then

generates a 10-bit code that is passed on to a serializer. The output of the serializer is the

transmission bit-stream for the physical layer. Therefore, it takes 10 system clock cycles

for each data or comma control word to be transmitted. So, this limits the allowed latency

of the dispatcher, which must be able to prepare a new byte for transmission within this

interval.

Even when there are no packets for transmission, the sender unit continuously generates

START commas, indicating that the link is idle. Besides being necessary for optical

94 CHAPTER 6. THE COMMUNICATION ENGINE HARDWARE

communication, this behavior also permits the receiver unit to keep itself synchronized

with the sender and to check whether a connection is established.

6.4 Design Space Exploration

One of the aspects that must be taken into account when designing an embedded com-

munication protocol is the amount of hardware resources required. Embedded systems in

general are characterized by their relative small silicon area and memory footprints. The

communication protocol employed should therefore be no exception. This section presents

results on the resource utilization for FPGA-based TrailCable protocol implementations

with different configurations. The architecture presented in Figure 6.1 was employed in

this design space exploration, except for the fact that the non-real-time switch was not

included. The total memory available for packet buffering in the Real-Time module was

kept constant at 16 kB for all configurations.

Since the number of communication ports in the hardware architecture is customizable,

we decided to vary their number in order to check the impact on the amount of required

resources. Moreover, the number of real-time tasks a single communication port is able to

handle also reflects the required FPGA area. Indeed, a TrailCable FPGA implementation

can be tailored to specific application needs by specifying the number of communication

ports and the maximum simultaneous real-time tasks.

In order to observe how many hardware resources are needed for an FPGA-based Trail-

Cable protocol implementation, the number of ports was varied from 2 to 8, one of them

being always a host port and the remaining ones, communication ports. Additionally,

for each of these configurations the maximum number of allowed simultaneous real-time

tasks was set to 8, 16, 32, 64, 128, and 256. Therefore, a total of 42 different implemen-

tations of the TrailCable communication hardware were explored. Given the number of

ports and real-time tasks in the system, it is possible to dimension the priority queues

accordingly by means of the equations (6.3) and (6.4). The first equation can be seen as

a performance requirement while the second as a capacity requirement. If we apply the

two equations to the whole exploration space we get as a result the required capacity for

each priority queue, as shown in Table 6.4.

Since the priority queue modules in the TrailCable hardware store 16 entries, the actual

capacity must be a multiple of this number (Table 6.5). The performance requirement

represented by equation (6.3) imposes the necessity for parallel priority queues, even if

capacity could be achieved by fewer queues. This means that the communication ports

will be able to sort an even higher number of real-time tasks. Table 6.6 presents the

actual number of real-time tasks that can be handled by each communication port. It is

calculated by multiplying the values in Table 6.5 by the number of instantiated priority

6.4. Design Space Exploration 95

Table 6.4: Required PQ Capacity
Ports Tasks

8 16 32 64 128 256

2 8 16 32 64 128 256

3 4 8 16 32 64 128

4 3 6 11 22 43 86

5 2 4 8 16 32 64

6 2 4 7 13 26 52

7 2 3 6 11 22 43

8 2 3 5 10 19 37

Table 6.5: Actual PQ Capacity
Ports Tasks

8 16 32 64 128 256

2 16 16 32 64 128 266

3 16 16 16 32 64 128

4 16 16 16 32 48 96

5 16 16 16 16 32 64

6 16 16 16 16 32 64

7 16 16 16 16 32 48

8 16 16 16 16 32 48

queues. It can be seen that one communication port alone in the TrailCable commu-

nication engine is able to sort up to 336 priorities simultaneously. In this scenario, all

communication ports combined would be able to sort up to 2352 priorities. Nevertheless,

any extra sorting capacity of the communication ports cannot be always fully exploited

since all remaining hardware structures are laid out for a pre-defined number of real-time

tasks, 256 being the maximum for the current implementation. As a result, the maximum

number of real-time tasks the current TrailCable protocol implementation can schedule

simultaneously is limited to 1792.

Table 6.6: Actual communication port capacities
Ports Tasks

8 16 32 64 128 256

2 16 16 32 64 128 256

3 32 32 32 64 128 256

4 48 48 48 96 144 288

5 64 64 64 64 128 256

6 80 80 80 80 160 320

7 96 96 96 96 192 288

8 112 112 112 112 224 336

In the design space exploration performed, the VHDL code for the TrailCable communi-

cation engine was parameterized for all 42 possible combinations of the numbers of ports

and real-time tasks. Each configuration was synthesized and mapped using the Xilinx

ISE 12.3 tool [89] for a Xilinx Spartan-6 FPGA, model XC6SLX75T-3FGG376 [92]. The

results can be seen in Figures 6.13, 6.14, and 6.15. The figures represent, respectively, the

slice registers, slice LUTs, and block memory usage.

Figure 6.13 shows that the TrailCable hardware requirements on slice registers increase in

a linear fashion with respect to the number of ports and tasks. Also, it can be observed

that the number of ports has a much larger influence on resource utilization when com-

pared to the number of real-time tasks. This behavior is advantageous since in complex

96 CHAPTER 6. THE COMMUNICATION ENGINE HARDWARE

8
16

32
64

128
256

0

5000

10000

15000

20000

2

3

4
5

6
7

8

Tasks

S
li

ce
 R

e
g

is
te

rs

Ports

15000-20000

10000-15000

5000-10000

0-5000

Figure 6.13: Usage of slice registers

networks the demand on real-time tasks and available bandwidth usually tends to be a

more limiting factor than the number of available communication routes.

8
16

32
64

128
256

0

10000

20000

30000

2

3

4
5

6
7

8

Tasks

S
li

c
e

 L
U

T
s

Ports

20000-30000

10000-20000

0-10000

Figure 6.14: Usage of slice LUTs

Figure 6.14 indicates that the requirements on the slice LUTs are similar to the slice

registers. The figure shows, however, that the number of LUTs increases slightly more for

configurations with 128 and 256 real-time tasks. This can also be noticed in Figure 6.13,

but to a lower extent. The reason for this effect can be explained by the architecture

of the Spartan-6 FPGA family, which is based on 6-input LUTs. Therefore distributed

6.4. Design Space Exploration 97

memories with a depth of 64 and a combinational logic with up to 6-bit inputs can be

efficiently constructed with these units.

8
16

32
64

128
256

0

50

100

150

200

2

3

4
5

6
7

8

Tasks

B
lo

ck
 M

e
m

o
ry

 [
K

B
]

Ports

150-200

100-150

50-100

0-50

Figure 6.15: Usage of block memory

Besides normal logic slices, the TrailCable communication engine implementation also

utilizes block-RAM memories. Usage of the latter resources is presented in Figure 6.15.

It can be seen that for the configurations of up to 64 real-time tasks the number of

utilized block memories is kept constant for a given number of ports. This is justified by

the fact that the decision whether to use block or distributed RAMs for the internal data

tables was taken for a 64 tasks scenario. Therefore, if the design is dimensioned for fewer

tasks, the block memories will not be fully exploited. However, the design could be easily

modified to use distributed instead of block memories in these situations, leading to less

memory usage.

From this design space exploration it becomes clear that with an increasing number of

instantiated ports, the FPGA area required for the communication ports increases as

well. Figure 6.16 shows how the number of occupied slices of a single communication port

grows in relation to the host port and real-time module. The results indicate that the

FPGA area required by the communication ports increases linearly, whereas the remaining

components consume just some additional slices as the total number of ports gets larger.

This behavior also confirms the scaling capability of the TrailCable communication engine.

A comparison of the required FPGA resources of the TrailCable protocol with other com-

mercially available communication protocols cannot always be done in a straightforward

manner, since the rationale of the designs may differ in many aspects. Nevertheless, com-

parisons can be useful to classify communication protocols with respect to their overall

resource usage. Since the TrailCable protocol is aimed at hard-real-time embedded sys-

98 CHAPTER 6. THE COMMUNICATION ENGINE HARDWARE

0

200

400

600

800

1000

1200

1400

2 3 4 5 6 7 8

O
cc

u
p

ie
d

 S
li

ce
s

Ports

Communication Port Host Port and RT Module

Figure 6.16: Component resources (128 tasks per communication port)

tems, it is worth checking whether its area requirements are close to that of other protocols

used in this domain.

0

10

20

30

40

50

60

70

80

90

0

2000

4000

6000

8000

10000

12000

14000

TrailCable Bosch E-Ray

M
4

K
 B

lo
ck

s

O
c
cu

p
ie

d
 S

li
ce

s

ALUTs Memory

Figure 6.17: Comparison of TrailCable and Bosch E-Ray resources

Figure 6.17 shows a hardware resource comparison between TrailCable and a FlexRay

IP called E-Ray [76], developed by Bosch. The TrailCable hardware was configured with

two communication ports with up to 256 real-time tasks each. E-Ray has 128 message

buffers and is able to handle messages up to 254 bytes long. It can be seen that the

TrailCable implementation requires less logic resources but more memory. The lower

6.5. Chapter Summary 99

requirement on ALUTs of TrailCable reflects its efficient architecture (activating non-

real-time communication, however, would lead to an increase in the required area). The

higher memory requirement is explained by the fact that the incoming packets in the

TrailCable protocol must be internally buffered since packet transmission is postponed if

higher-priority tasks are using the same output link. Moreover, although the TrailCable

communication engine was originally optimized for Xilinx FPGAs, the results presented

in the figure are for an Altera FPGA implementation, due to the fact that the available

E-Ray data are also from this supplier.

The comparison highlights the fact that TrailCable is a practicable alternative to a com-

munication protocol because it not only provides a variety of features that assure hard-

real-time behavior but can also be implemented efficiently.

6.5 Chapter Summary

The TrailCable communication engine presented is a fully operational design and can

be employed in a variety of applications. Thanks to its flexible architecture, it can be

adapted for meeting specific application requirements and allowing the construction of

simple, single-channel communication controllers up to multi-port configurations with

hundreds of real-time tasks. However, it is still possible to ponder new features for further

improving the TrailCable communication engine capabilities. Some of the possibilities are

listed below:

Higher Throughput The TrailCable protocol was originally designed to provide com-

munication services for embedded systems, with typical communication rates under

100 Mbps. Limiting communication bandwidth allows executing different instructions

in serial steps, thus reducing the FPGA area requirements. On the other hand, if the

data processing is carried out by parallel circuits, higher performance can be achieved

and consequently higher communication rates. This design compromise and the utiliza-

tion of high-speed transceivers available in current FPGAs are expected to boost the

TrailCable performance and allow the utilization of data links with more than 1 Gbps bit

rates.

Robustness against Transient Faults The TrailCable communication engine has

different data tables and buffers distributed in its architecture. For highly dependable

systems, transient faults in these memories become a concern. To cope with this prob-

lem, it is possible to use error correcting codes (ECC) in all storage elements. Moreover,

application-independent solutions such as FPGA hardware synthesis with triple modular

100 CHAPTER 6. THE COMMUNICATION ENGINE HARDWARE

redundancy are readily available [52] and also contribute to increasing the design robust-

ness.

Dynamic Hardware Partial Reconfiguration FPGA partial reconfiguration has

already been used to increase the flexibility of networking hardware [37]. With TrailCable,

dynamic reconfiguration can also potentially extend the capabilities of the protocol. By

means of FPGA partial reconfiguration, it would be possible to add, remove or alter

communication ports during operation. As an example, under-utilized links can have their

traffic deviated to alternative ones and the FPGA area for the respective communication

port can be made available to other services. In another scenario, partial reconfiguration

could be employed to dynamically adapt the size of the communication ports to their

current traffic demand, so that the lower the number of real-time tasks they handle,

the lower also the occupied FPGA area. Figure 6.18 shows the FPGA placement of a

TrailCable engine with three communication ports and the reserved area for an additional

one.

Comm. Ports

Host Port RT Module Interconnect

Optional Comm. Port

Comm. Ports

Host Port RT Module Interconnect

Optional Comm. Port

Figure 6.18: Communication engine placement on an FPGA

Chapter 7

Experimental Results

This chapter presents quality and performance measurements of the TrailCable commu-

nication engine hardware introduced in Chapter 6. The influence of different design deci-

sions can be clearly seen in the measurements, whose parameters range from bandwidth,

latency to precision characteristics. The results are grouped in three different sections. In

the first one, an extensive approach is employed to identify the upper and lower bounds

of latency times. In the second section, a method to evaluate jitter and reaction times

is used. The last section deals with the clock synchronization mechanisms and discusses

parameters which can have influence on the achievable precision.

7.1 Latency Times of Virtual Real-Time Channels

When implementing a real-time data communication protocol, a basic requirement is that

the transmissions of data packets occur within defined latency bounds. The rationale of

the TrailCable protocol is based on the specification of deadlines for each virtual real-time

channel for analyzing the schedulability of a given configuration. The channel deadlines

can be seen as the maximum allowed latency time for a given channel. In this section, the

ability of the TrailCable protocol to meet deadlines is put to the test. In order to make

an extensive analysis, not only are we going to check whether deadlines can be met, but

also what is the exact latency time in packet transmissions.

The system setup for the experiments carried out during the latency analysis is depicted in

Figure 7.1. The hardware boards of the three nodes are described in detail in Chapter 8,

but at this time it is sufficient to know that each board comprises a discrete microcon-

troller (running the host functions) connected via its data bus to an FPGA (with the

communication engine hardware implementation). In addition, an extra component was

integrated into the FPGA design to allow measuring the transmission latency time with

high precision. This component starts a counter when the source host triggers a data

101

102 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.1: Latency measurement setup

Table 7.1: Single task configuration

Task ID 2

Period 196µs

Source Host (Relative Deadline) B (65µs)

Destination Host C

Payload 249 bytes

Required Channel Deadline 68µs

Actual Channel Deadline* 67.35µs

Transmission Time* 64.75µs

Minimum Achievable Latency 65.5µs

*Calculated by the TrailCable Verifier tool

transmission. Upon complete reception of the transmitted packet at the remote commu-

nication engine, a pulse is sent back to the source node via an additional wire (indicated

by the dashed lines in Figure 7.1). This pulse, when detected at the source node, stops

the counter, which will then contain the amount of clock cycles representing the total

transmission latency time.

Three different experiments were set up to obtain the behavior of the system under dif-

ferent circumstances. The results of this procedure allow a better understanding of some

of the TrailCable protocol characteristics. The experiments are detailed in the following.

7.1.1 Single Task Experiment

The first and simplest experiment consists in periodically transmitting a data packet from

host B to host C (Task 2). Host A is not used in this experiment and is kept inactive.

The objective of this experiment is to find out how much latency time jitter is caused by

the communication engines. The parameters for the communication task configuration

are presented in Table 7.1.

7.1. Latency Times of Virtual Real-Time Channels 103

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0

6 5 , 5

6 6 , 0

6 6 , 5

6 7 , 0

6 7 , 5
 m e a s . a v e r a g e
 m e a s . r a n g e
 t h e o r e t i c a l r a n g e

��

��

���
��	

�

F r e q u e n c y [H z]

Figure 7.2: Latency measurement

In order to check the feasibility of the system, the TrailCable Verifier tool was executed

with the requested task parameters. The maximum latency time of 67.35 µs was calcu-

lated by the tool for the virtual real-time channel. Besides the maximum latency, another

value of interest at this point is the minimum achievable latency time. It can be found

by adding link propagation delays and best-case forwarding delays (opposed to the worst-

case forwarding delays for the channel deadline calculation) to the packet transmission

time. In the current experiment the minimum achievable latency time would be about

65.5 µs. Thus, all latency times in this particular scenario must be in the tolerance range

between 65.5 µs and 67.35 µs. The expected jitter of the current experiment is therefore

about 1.85 µs.

The results of the latency time measurement from host B to host C are shown as a fre-

quency response in Figure 7.2. The frequency represents the transmission periodicity of

the data packets. For every 50 Hz frequency incrementation step, one thousand trans-

missions were initiated and their latency times were logged. Of special interest are the

minimum and maximum latency times, which define the borders of the measured latency

range. The dashed line in the figure shows also the average latency time, obtained from

all one thousand transmissions carried out for each frequency.

It can be clearly seen that the measured latency times lie entirely in the expected theo-

retical range. The system responds for all frequencies up to 5.1 kHz, which corresponds

to a transmission cycle of approximately 196 µs. This value corresponds to the period

parameter used to configure the communication hardware. For frequencies higher than

5.1 kHz, packets are eventually discarded by the bandwidth guardian mechanism. The

difference between the expected range and measured one results mostly from the clock

104 CHAPTER 7. EXPERIMENTAL RESULTS

deviation factor, numerical tolerances, and the forwarding delays, which were estimated

with an error margin.

In regards to quantitative aspects, it turned out that the jitter (the difference between

the maximum and minimum measured latency times) for the current scenario was only

375 ns. Since the clock oscillator operating frequency is 40 MHz for the implemented

communication engine, the jitter represents only 15 clock cycles. For comparison, it takes

10 clock cycles to transmit a single byte or control word. This explains the main source

of jitter, which is caused by the necessity to wait for the ongoing transmission of a data

byte or control word to be completed before starting the packet transmission triggered by

the host.

From these results, it follows that the jitter caused by the communication engine hardware

accounts only for a small and possibly negligible part of the latency time deviation. The

relevant portion of the latency time deviation is caused by a real-time scheduler handling

multiple tasks. The latter effect is nevertheless already well known and taken into account

in the schedulability analysis of the real-time communication.

7.1.2 Multiple Nodes Experiment

Once the system behavior with a single task is known, the next step is to check the system

response with concurrent communication tasks. For the sake of simplicity the experiments

were carried out with just two communication tasks, but the system behavior with a larger

number of tasks can be derived from this simple case. One of the two communication

tasks is similar to the single task experiment (task 2), but with different deadlines. The

additional communication task is originated at host A and has host C as a destination

(task 3). The link between communication engines 1 and 2 (Figure 7.1) is shared by both

communication tasks and some real-time packet scheduling characteristics can therefore

be analyzed. The parameters of the current experiment are shown in table 7.2.

Task 3 has smaller relative and channel deadlines and is transmitted more frequently than

task 2. The outcome of this configuration is that in order to meet its deadline, task 3

requires task 2, if active, to be preempted. This is the reason why the deadline of task 2

had to be increased in order to maintain the feasibility of the real-time communication.

The focus in this experiment continues to be the latency time measurement of task 2,

but now with the influence of the additional task 3, whose transmission period was kept

constant at 94 µs. The results can be seen in Figure 7.3.

As expected, the maximum latency time deviation increases. The measured difference

between the maximum and minimum latency values of 28.625 µs, reflects exactly the

time needed to transmit one packet of task 3 (27.5 µs), plus the time of a resume header

7.1. Latency Times of Virtual Real-Time Channels 105

Table 7.2: Multiple-task configuration

Task ID 2 3

Period 196 µs 94 µs

Source Host (Relative Deadline) B (94 µs) A (28 µs)

Intermediate Host (Relative Deadline) - B (28 µs)

Destination Host C C

Payload 249 bytes 100 bytes

Required Channel Deadline 97 µs 34 µs

Actual Channel Deadline* 96.0 3µs 33.66 µs

Worst Case Transmission Time* 65.5 µs 27.5 µs

Minimum Achievable Latency 65.5 µs 29 µs

*Calculated by the TrailCable Verifier tool

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0
6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

1 0 0

 m e a s . a v e r a g e
 m e a s . r a n g e
 t h e o r e t i c a l r a n g e

��

��

���
��	

�

F r e q u e n c y [H z]

Figure 7.3: Effect of a higher priority task

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0
6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

1 0 0

 m e a s . a v e r a g e
 m e a s . r a n g e
 t h e o r e t i c a l r a n g e

��

��

���
��	

�

F r e q u e n c y [H z]

Figure 7.4: Effect of a disturbance task

of task 2 (750 ns) and the jitter, which could be determined in the single task experiment

(375 ns).

Up to now, it has been assumed that the real-time communication was operated with the

parameters that were validated by the TrailCable Verifier tool. Deadlines therefore could

be met, because all communication tasks were configured according to the specification.

An important issue, however, arises when faults occur and the actual operation differs

from a valid configuration, potentially leading to deadline missing, among other anomalies.

One mechanism to avoid these kind of problems is the bandwidth guardian. The second

part of the current experiment is intended to check the efficacy of this mechanism. In

order to inject a deliberate fault into the system, the configuration of the communication

106 CHAPTER 7. EXPERIMENTAL RESULTS

engine 0 and host A (Figure 7.1) was modified by reducing the transmission period of task

3 to 66.67 µs. Without the guardian mechanism, the alteration mentioned would lead task

2 to preempt twice and as a consequence, its deadline would be missed. The configuration

of the 2 remaining nodes was left intact, so that this part of network is able to operate

normally. The measurements results under these conditions are shown in Figure 7.4. The

results show that the task 2 latency range is the same to the normal operation mode

(without disturbances). However, a discrepancy can be identified. The average latency

time decreases in comparison to the normal case. The explanation is that the bandwidth

guardian of the communication engine 1 drops packets of task 3 that exceed the correct

specification. In fact, every second packet had to be dropped. Therefore, the traffic of task

3 is reduced substantially and the average latency time of task 2 decreases as well. The

result of this experiment proves the benefit of the bandwidth guardian mechanism, which

is an important component when it comes to increasing the overall system fault-tolerance

and robustness.

The nodes in all experiments were not synchronized with each other so that transmissions

of tasks 2 and 3 can be triggered at any time. As expected, this does not impair the

real-time behavior of the communication system.

7.1.3 Preemption Experiment

The objective of this experiment is to analyze the effect of the preemption mechanism.

The network is initially configured like the multiple task experiment, i.e., two tasks (tasks

2 and 3) generated at hosts B and A, respectively, are transmitted to host C. The basic

difference is that the relevant information in this particular case is the latency time of

task 3. The transmission period of task 2 was now kept constant and that of task 3 varied.

Under the original operation conditions, with the configuration of Table 7.2, the latency

time measurement results are shown in Figure 7.5. Also in this case the latency times are

within the expected range. The cut frequency is now about 10.65 kHz and corresponds,

with a small tolerance, to the transmission period of 94 µs.

According to the measurements, the latency time of task 3 varies from to 29.95 µs to

31.15 µs. Of the total of this 1.2 µs difference, 750 ns are due to the start header of task

2, which can potentially be sent by the communication engine 1 just before a scheduling

request for task 3 arrives. If this is the case, the header leads to an extra delay as its

transmission is atomic, i.e., it cannot be preempted. The remaining jitter of about 450

ns is caused by the hardware implementation of all three nodes and is therefore slightly

higher than the jitter of the task 2 latency measurements, which involves only two network

nodes.

The results so far have shown that with preemption, the two latency times of tasks 2 and

3 were kept within the expected ranges. The next step of this experiment is to check the

7.2. Distinctness of Reaction 107

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0

2 9

3 0

3 1

3 2

3 3

3 4

 m e a s . a v e r a g e
 m e a s . r a n g e
 t h e o r e t i c a l r a n g e

��

��

���
��	

�

F r e q u e n c y [H z]

Figure 7.5: Preemption enabled

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0

3 0

4 0

5 0

8 0

9 0

1 0 0

 m e a s . a v e r a g e
 m e a s . r a n g e
 t h e o r e t i c a l r a n g e

��

��

���
��	

�

F r e q u e n c y [H z]

Figure 7.6: Preemption inhibited

consequences of inhibiting, in the communication engine 1, the preemption mechanism

that has been used so far. The measurements taken under such conditions are presented in

Figure 7.6. The natural consequence is that deadlines cannot be met anymore. Without

preemption, task 3 may have to wait for an entire packet of task 2 to be transmitted before

starting. The maximum latency time of task 3 which was 31.15 µs increases therefore to

95.15 µs. Moreover, the cut frequency of about 10.65 kHz is reduced to only 6.35 kHz due

to the fact that higher latency times also decrease the maximum achievable transmission

period.

This experiment confirms the benefit of using preemption for data communication net-

works. Without preemption, the deadlines that were assigned to the communication tasks

cannot be met by any scheduling algorithm.

7.2 Distinctness of Reaction

The method called Distinctness of Reaction was proposed by Wolter, Albert, and Gerth

[88, 13]. The main objective is to evaluate a computing system, taking into account

reaction time and latency characteristics. The approach consists in generating external

asynchronous stimuli and measuring the behavior of the system under test. The Distinct-

ness of Reaction method is particularly suited to compare properties of communication

systems (the focus of the current work), operating systems, microprocessors, among oth-

ers.

The measurements are supported by an additional hardware unit (introduced in [88]),

which was implemented as an FPGA component. This component substitutes the latency

108 CHAPTER 7. EXPERIMENTAL RESULTS

-1

1

-1

1

-1

1

-1

1

-1

1

-1

1

-1

1

i t()

x()t

w()t

w()t - t

w(-)t - T/2t

().x t w()t - t

().x t w(-)t - t T/2

T 2T 3T

T/2

^

^

^

^

^

^

t

^

^

t

t

t

t

t

t

t

Figure 7.7: DoR signals

time measurement unit used in the previous experiments. The Distinctness of Reaction

(DoR) measurement is based on the excitation signal i(t), with period T and duty cycle

of 50 % (Figure 7.7). The task of the system under test is to toggle an output signal, x(t),

each time a rising edge of the signal i(t) is detected. The signal x(t) is then compared

to the signal w(t− τ), which is the ideal response w(t) when toggling at each rising edge

of i(t), shifted by a delay constant τ . The delay constant τ is the average of the time a

system takes to process and toggle the output signal x(t). Under ideal conditions x(t)

would be equal to w(t−τ), but in practical applications the reaction times are likely to be

disseminated within a certain range. The larger the disparity between x(t) and w(t− τ),

the larger therefore the jitter caused by the system under test.

The functions x(t) and w(t) are digital signals and can assume the values 0 or 1. It is

helpful, however, to transform these functions for further developments so that they have

the values -1 or 1, as follows:

x̂ =

{
1 : x(t) = 1

−1 : x(t) = 0
; ŵ =

{
1 : w(t) = 1

−1 : w(t) = 0

When the product x̂(t)ŵ(t− τ) is 1, both signals are equal, otherwise the result is -1. It

follows that with the integral

DoR = lim
n→∞

1

nT

nT∫
0

x̂(t)ŵ(t− τ)dt (7.1)

7.2. Distinctness of Reaction 109

the average jitter over a sufficient large number of cycles can be determined. Nevertheless,

the Eq. 7.1 is not solvable because τ is still unknown. Finding the average latency τ is also

an objective when applying the DoR approach. In order to cope with this problem, an

orthogonal correlation method is employed. The latency τ is initially estimated to be tD.

The function x̂(t) is then not only correlated with ŵ(t− tD) but also with ŵ(t− tD−T/2).

These correlations can be interpreted as the real and imaginary parts of a frequency

response diagram and are defined below:

Re = lim
n→∞

1

nT

nT∫
0

x̂(t)ŵR(t− tD)dt (7.2)

Im = lim
n→∞

1

nT

nT∫
0

x̂(t)ŵI(t− tD − T/2)dt (7.3)

The value of DoR is the real part Re when tD is equal to τ . To find the wanted tD, this

variable will be adjusted until the imaginary component value Im reaches its minimum.

Due to the orthogonal correlation, when Im is minimum Re reaches its maximum, which

is the DoR value that is being looked for. At this point, the parameters DoR and τ are

available and the measurement for a determined frequency is concluded. In order to plot

a frequency response that resembles the classical style with amplitude and phase along a

frequency axis, the measurement procedure will be described repeated continuously from

a low frequency up to the frequency where the system fails to respond. The phase (or

skew, from now on) is given as a value from 0 to -100 % and is calculated with the equation

below:

Skew = − τ
T

(7.4)

That means that the maximum skew of 100 % corresponds to the point where the system

reacts after an interval equivalent to the nominal period of the input signal. If the reaction

time gets any longer the system will not be able to react after each rising edge of i(t) and

the value of DoR will therefore be zero. The Distinctness of Reaction method was briefly

described only to support the upcoming experiments with the TrailCable protocol. For

more detailed information about DoR, refer to the original work ([88, 13]).

7.2.1 Single Node Experiment

With a basic background on the DoR method it is possible to describe the first exper-

iment. The objective is to evaluate the performance limits of the TrailCable protocol

when operating with tasks transmitting two application bytes. The setup is shown in

110 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.8. An interrupt request to the host microcontroller is generated at each rising

edge of the signal i(t), which is generated by the DoR measurement unit located in the

FPGA. The interrupt service routine triggers the transmission of a packet (task 2 - sent

via the output communication port 2). Via an external loopback cable, task 2 is forwarded

to the input port 1. A polling loop detects the reception of task 2 and acknowledges it

with the transmission of task 3, which is transmitted in the opposite direction. Finally,

upon the reception of task 3, the microcontroller toggles the output signal x(t).

Figure 7.8: DoR measurement setup with one node

The frequency response of the given system was identified by means of an automated

process. For each frequency, the DoR and Skew values were captured taking a time span

of one thousand cycles of i(t). The frequency response plots are depicted in Figure 7.9

and 7.10.

0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0

8 6

8 8

9 0

9 2

9 4

9 6

9 8

1 0 0

Do
R x

 10
0

F r e q u e n c y [H z]

Figure 7.9: DoR - single node

0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0
- 1 0 0

- 9 0

- 8 0

- 7 0

- 6 0

- 5 0

- 4 0

- 3 0

- 2 0

- 1 0

0

Sk
ew

 [%
]

F r e q u e n c y [H z]

Figure 7.10: Skew - single node

From the experiment results, it can be observed that the system responds up to a fre-

quency of 51.9 kHz. The maximum achievable excitation frequency depends both on the

microcontroller and the TrailCable protocol performance. The skew drops linearly with

7.2. Distinctness of Reaction 111

the frequency, whereas the DoR plotting shows multiple peaks close to 1. Such peaks

could be reproduced at the same frequencies in different measurement procedures. The

reason is that the source of such peaks are resonance appearances, which occur when the

timing of the host software functions gets synchronized with the data communication.

The reproducibility stems also from the fact that the clock oscillator used by the micro-

controller is the same that drives the DoR measurement unit. A second clock oscillator

is used for the TrailCable protocol.

Although the main objective of this experiment was to evaluate the TrailCable protocol,

the microcontroller characteristics affect the results significantly, especially at higher fre-

quencies. For comparison, the transmission latency time of the two tasks combined is

below 10 µs. This value can be even exceeded by the processing time of the host software

functions involved in the process, which can also account for more jitter than the com-

munication layer itself. The results, however, allow a good estimation of the capabilities

of the TrailCable protocol. In [13] a similar procedure was executed to find the frequency

response of the CAN bus. The described system used exactly the same microcontroller

that was employed for the current experiments, so that only the software architectures

differ one another to some extent. The frequency response of the CAN bus interface

showed a cut frequency of 1291 Hz, more than 40 times lower than 51.9 kHz, the result

achieved with the TrailCable protocol. This can be explained by the higher transfer rate

and lower overhead of the latter.

7.2.2 Multiple Nodes Experiment

The current experiment is similar to the latency measurement setup for multiple nodes of

Section 7.1.2. The basic difference is that when tasks 2 or 3 arrive at host C, the latter

commands the transmission of another packet that will be sent back to the respective

origin. The new setup is presented in Figure 7.11. The configuration of tasks 2 and 3 in

both directions follow the parameters of Table 7.2, with the origin and destination hosts

swapped for the acknowledgment tasks. The frequency response obtained with the DoR

method is used to evaluate the behavior of task 2 and is based on the following process:

the DoR measurement unit connected with host B generates the excitation signal i(t). At

each rising edge of this signal, an interrupt is invoked and leads host B to send a packet

of task 2. When the response packet created by host C arrives, the output signal x(t) is

toggled.

The frequency response of task 2 was taken in three different scenarios. In the first one

(single task), task 3 was completely disabled so that no packets were transmitted at all.

For the second run (two tasks at limit), both tasks 2 and 3 were active and the packets

of task 3 were transmitted at the minimum possible transmission period (94 µs). The

last measurement (two tasks with disturbance) was executed by further decreasing the

112 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.11: DoR measurement setup with three nodes

transmission period of task 3 to an invalid value. Figures 7.12 and 7.13 depict the

frequency response for all three scenarios.

It can be seen in the figure that the theoretically valid ranges of the DoR and skew values

are also indicated. To find these regions two parameters are sufficient: the best and

worst-case latency times for task 2 to reach host C and return. The best-case latency

is therefore twice the transmission time of task 2 plus the link propagation delay. The

worst-case latency is twice the channel deadline of task 2. To increase the precision of

the two parameters, one can consider the processing time needed by host C to trigger the

acknowledgment task. For the current example, the best (bclat) and worst-case (wclat)

latency times are 132 µs and 203 µs, respectively. With both parameters known, the

valid range is determined for each frequency f as follows:

1− f(wclat − bclat) ≤DoR ≤ 1 (7.5)

−100.f.bclat ≤Skew ≤ −100.f.wclat (7.6)

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0
6 5

7 0

7 5

8 0

8 5

9 0

9 5

1 0 0

 s i n g l e t a s k
 t w o t a s k s a t l i m i t
 t w o t a s k s w . d i s t u r b a n c e
 t h e o r e t i c a l r a n g e

Do
R x

 10
0

F r e q u e n c y [H z]

Figure 7.12: DoR - multiple nodes

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0
- 1 0 0

- 9 0

- 8 0

- 7 0

- 6 0

- 5 0

- 4 0

- 3 0

- 2 0

- 1 0

0

 s i n g l e t a s k
 t w o t a s k s a t l i m i t
 t w o t a s k s w . d i s t u r b a n c e
 t h e o r e t i c a l r a n g e

Sk
ew

 [%
]

F r e q u e n c y [H z]

Figure 7.13: Skew - multiple nodes

7.2. Distinctness of Reaction 113

At first sight it can be noted that all frequency response plots are within the valid region.

Yet some peculiarities can be identified. Firstly, the DoR value for the single task scenario

is more constant and higher than the others. The skew is lower and rather constant

for the entire frequency range too. The reason is that task 2 is not preempted due to

the inexistence of task 3, so that the latency times are kept within a small tolerance.

Furthermore, with task 3 active, the DoR value suffers more variation because of the

increased latency time deviation time caused by the preemption. Also, an interesting

effect can be observed in the skew results, as the three plots can clearly show what

happens with the latency time in each scenario. As opposed to the single task scenario,

the two task scenario with channel deadlines set to the limit of feasibility leads to a higher

skew. But, although in the third scenario the activation rate of task 3 is even faster, the

skew does not get any higher, it decreases instead. This is once again caused by the

bandwidth guardian mechanism, which has to discard some out-of-specification packets

of task 3 in order to maintain the correctness of the timing characteristics of task 2.

Without the bandwidth guardian, the skew of task 2 was most likely to overshoot the

valid region.

[13] presents a frequency response for a time-triggered communication protocol, the

TTCAN. Both DoR and skew values decrease almost linearly with the frequency. The

reason is that the data transmission can only be triggered at pre-defined time slots. At a

cycle time of 1 ms, for example, the rising edge of i(t) can occur at any moment of this

cycle. As a result, the reaction time of the sender is 500 µs ± 500µs. The outcome is that

although predictable, the improvement of the reaction times in time-triggered protocols

is limited by the global cycle time. One advantage of the TrailCable protocol paradigm is

that, especially for networks working with a low or medium capacity, considerably better

reaction times can be reached. This can be partially explained by the fact that packet

transmissions can be triggered at any time, as long as the minimum time interval between

two instances is respected. Such characteristic is also reflected by the measurements of

this section. For a single task, both DoR and Skew values were better than with a con-

current task. Even in the case that multiple tasks were running simultaneously, there was

a good margin between the measured DoR and the expected worst-case DoR values.

Although the DoR method represents a good way of comparing different real-time systems

and analyzing their behavior, it is important to bear in mind that this approach should not

be used as the only means for measuring worst-case jitter or latency. The reason for this is

that the method integrates the DoR variable along many cycles, leading to extraordinary

occurrences being filtered out. Furthermore, the latency time is obtained indirectly from

the measurement with the lowest jitter. On the other hand, the DoR method is an intuitive

manner for control engineers to analyze the behavior of the communication protocol. With

the DoR frequency responses, the task of analyzing and simulating a distributed system

with respect to control characteristics can be facilitated to some extent. Finally, another

114 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.14: Network for the clock synchronization precision measurement

advantage of the DoR method is that the frequency responses can be used to support the

specification of necessary channel deadlines. With a given frequency response including

the required DoR and Skews values, one can easily define, by means of equations 7.5 and

7.6, the best and worst-case latency times and then specify a suitable channel deadline.

7.3 Clock Synchronization

Although clock synchronization is not required for real-time communication with the

TrailCable protocol, different applications can profit from this extra service. In this case

the quality of the clock synchronization may become an important technical aspect to be

taken into account. In this section, measurements regarding the clock synchronization

are presented. The focus is on the maximum clock deviation, i.e., the maximum time

difference between two synchronized events.

7.3.1 Measurement Setup

Before proceeding with the interpretation of the measurement results it is necessary to

introduce the network employed. Due to the capacity of the FPGA used in the hard-

ware system, which allows only two communication ports and one host port, the chosen

topology is a ring with 5 nodes (Figure 7.14) with optical data links. This limitation,

however, does not impair the quality of the measured results since the process of synchro-

nizing clocks relies basically on timestamps, which work according to the same principle,

regardless of the topology.

With respect to the virtual real-time channels, redundancy was used. At the beginning

of each communication cycle, all hosts transmit one synchronization packet through the

two communication ports. These packets are successively forwarded by the neighbors

until the information reaches all participating nodes. For example, host C sends its

synchronization packet clockwise via its communication engine port 2, which is forwarded

7.3. Clock Synchronization 115

by the remaining boards until the packet reaches host B. The same applies for the anti-

clockwise transmission which begins in host C and ends in host D.

In this configuration, each host receives up to eight synchronization packets (two for each

other node in the network). However, only the first arriving data packet from a certain

source node is considered in the synchronization process.

7.3.2 Interpretation of the Results

When the presented network is synchronized, all nodes transmit data packets periodically

and approximately at the same time. It was possible to achieve synchronization cycles as

low as 100 µs with the given architecture. Although the synchronization cycles depends

mainly on the amount of data sent and on the deadlines of the virtual channels, such a

small cycle reaffirms the performance of the TrailCable protocol thanks to its dedicated

hardware structure.

However, not only the shortest possible cycle is an important aspect, but also how precise

the synchronization is. In order to measure such characteristic the maximum deviation

parameter was employed. The maximum time deviation is obtained in a synchronized

system by measuring, from the point of view of one of the hosts, the maximum time

difference between the local event and the corresponding synchronized events that are

generated in the other hosts. The deviation can be positive or negative, but in this study

only the absolute values are considered.

Three different setups were used to measure the maximum deviations. They are detailed

as follows:

� Normal Scenario - the system is configured in the standard manner, which means

that when traversing a communication engine timestamps are updated by means

of accumulating the time interval needed from the beginning of reception until the

beginning of the transmission to the next node. Moreover, the pre-calculated link

delay time of the output port in use is also added to the timestamps.

� Artificial Delay - in this configuration the setup is similar to the normal scenario.

The basic difference is that an additional propagation delay was artificially added to

each of the data links in order to simulate longer cables. With this extra propagation

delay, packets take 1.25 µs longer to travel through each link.

� Inhibited Delay Retrieval - derived from the Artificial Delay scenario, in this par-

ticular case the timestamps are only updated with the time spent passing through

the communication engine. The link delay values are not added to the timestamps

in contrast to the two previous scenarios.

116 CHAPTER 7. EXPERIMENTAL RESULTS

0

100

200

300

400

500

600

700

800

900

1000

0,1 1 10

D
e
v
ia

ti
o
n
 [

n
s
]

Synchronization Cycle [ms]

Normal Operation Artificial Delay Inhibited Delay Retrieval

Figure 7.15: Maximum clock synchronization deviation

Measurements were made for communication cycles in the range of 100 µs to 10 ms

for all three scenarios. The results are presented in Figure 7.15. The deviation with

communication cycles of up to 1 ms are kept approximately constant. From this point on,

they increase rather linearly (considering a non-logarithmic scale). The reason for this is

that during short cycles the drifting of the clock oscillators is relative small and does not

impact significantly the synchronization. From the 1 ms cycles onwards, the effect of the

clocks drifting becomes apparent and, as expected, the longer the communication cycles,

the greater the corrections needed to keep the system synchronized, which in turn reflects

on greater deviations.

An interesting conclusion that can be made from the presented results is that for achieving

clock synchronization in the presented scenarios, timestamps are indispensable. The plots

of the Normal and the Artificial Delay scenarios are very close to each other, despite the

extra propagation delay. This is possible only because the actual propagation delays on

the cables are accurately measured and therefore timestamps are very precise. If the

propagation delay retrieval process is inactive and the correspondent information is not

available, the maximum deviation will increase rapidly beyond a certain point. This effect

can be observed by the plotting of the Inhibited Delay Retrieval scenario. It is important

to emphasize that in the Inhibited Delay Retrieval scenario, only the link propagation

delay part was not added to time stamps. This portion accounts only for a minor part of

the entire time stamp.

7.3. Clock Synchronization 117

Even for synchronization cycles of 10 ms, the maximum measured deviation of about only

380 ns is still quantitatively very good for most practical applications in the embedded

system domain, especially mechatronic systems. Therefore no measures were taken to

further minimize the maximum deviation. A simple technique for this purpose would be

to use rate correction in addition to the implemented offset correction. An explanation

and discussion of offset and rate correction techniques can be found in the chapter Global

Time of the Real-Time Systems book by Kopetz [57].

Chapter 8

An Application Example:

The RailCab Test Track

This chapter shows, by means of an example, how to employ the TrailCable protocol with

a real world application. The application chosen is the test track network of the RailCab,

a novel train system being developed at the University of Paderborn. The TrailCable

technology is especially well suited for the real-time data communication requirements

of this application, which is characterized by high flexibility, high throughput, and low

latency. A complete hardware and software solution tailored to the RailCab test track was

realized and will be presented in this chapter, followed by an outlook on new possibilities

of extending the test track functionalities with the support of the TrailCable protocol.

8.1 The RailCab Train System

The history of rail transport dates back to the early 1820’s with the introduction of steam

locomotives for passenger and freight transport. Since then, uncountable technological

improvements have been made to increase safety, comfort, speed, and capacity. Neverthe-

less, the basic concept has remained the same: rail transport in its classical arrangement

consists of monolithic carriages that are made up of one or more locomotives coupled to

transport wagons. With an ever increasing demand for decentralized transport demand

with complex logistic requirements, new paradigms of rail transport are urgently needed

to overcome the limitations imposed by the current model. One contribution in this

direction is the RailCab project that aims at increasing the flexibility of rail transport.

The RailCab is an innovative train system that originated as a joint research project

of six different institutes at the University of Paderborn [68]. The system is based on

independent, small, and autonomous vehicles that are called shuttles. An important

advantage of this configuration is the possibility to build up a very flexible transport

118

8.1. The RailCab Train System 119

network where the shuttles are assigned to travel on demand basis rather than on a static

schedule, used by the majority of the conventional trains. Moreover, with the RailCab

technology shuttles are able to travel non-stop from origin to destination thanks to a

computer-based traffic control system. This potentially reduces the total traveling time

between cities on secondary routes as changing trains and intermediate stops are no longer

required.

In order to increase energy efficiency and track throughput, individual shuttles are able,

while running, to come closer and build up convoys and also to travel apart. When

running in convoys, shuttles are separated from each other by only a few centimeters,

which reduces the drag on the rear vehicles. To add agility to the convoy operations,

conventional active rail switches are replaced by passive ones. It becomes therefore a task

of the shuttles to go into the intended direction over a rail switch. This is achieved by

means of an innovative steering system that is also a key-feature of the RailCab system

[33]. Furthermore, shuttles are also equipped with an active suspension and tilt module.

This allows for higher comfort and also increased safety, especially when on curves [40].

Traction and braking of the shuttles are based on doubly-fed linear motors, which account

for different benefits when employed with the RailCab concept. The application example

described in this chapter is closely related to the RailCab driving module. In order to

provide a basic background, the linear motor operation is presented below.

8.1.1 Linear Drive

The doubly-fed linear motors [72] consist of a primary and a secondary element. The

primary is installed along the rail track, the secondary is located under the shuttles

(Figure 8.1) and both elements are built with 3-phase windings. There are two important

advantages for the doubly-fed linear motors. Firstly, the asynchronous operation of the

two elements allows relative movements between shuttles traveling over the same primary

segment. Building up, splitting up, and maintaining convoys are therefore supported by

the proposed motor technology. Secondly, there is the possibility to transfer energy from

the track to the shuttles, even while the latter are moving. This eliminates the necessity

of overhead wires or contact rails along the tracks and dispenses with the necessity to

stop shuttles frequently in order to recharge their batteries.

Other advantages of the linear motors include the capability to climb steeper slopes than

do conventional trains. The reason is that the traction is achieved by means of electro-

magnetic forces and does not depend on the contact of the wheels with the track, which

can be even contaminated by snow, water or other elements that reduce the required fric-

tion. In addition, the lack of movable parts within the motors allows for good reliability

and reduced maintenance.

120 CHAPTER 8. AN APPLICATION EXAMPLE: THE RAILCAB TEST TRACK

Figure 8.1: Arrangement of shuttles and motors

The shuttles are responsible for adjusting not only their own secondary element, but also

the operation of the primary motor element they are running over. This is achieved by

means of wireless communication between the shuttles and the rail-track. The required

information to be transmitted by the shuttles consists of the electrical current amplitude

and frequency set-points for the primary element. However, it is also required to establish

a synchronization between the shuttles and the rail-track. With the synchronization men-

tioned, servo equipments installed at the shuttles and track are able to output consistent

values to primary and secondary motor elements at the right time. If the signal phases

of the two segments are not set accordingly, efficiency losses as well as incorrect traction

forces are likely to be the consequence. A promising synchronization solution is the use of

Hall sensors, described in [79]. In this approach, Hall sensors are installed at the front and

rear ends of the shuttle to measure the magnetic field of the primary element. With the

information from the sensors, a phase-locked loop (PLL) is tuned to the primary magnetic

field frequency and provides a reference that allows a synchronized setting of the signals

for the secondary element.

Moreover, in order to guarantee a smooth operation of the shuttles, consecutive primary

elements must also be synchronized with each other. Only by means of such a synchroniza-

tion is it possible to generate an electromagnetic field that is continuous in the junction of

two primary elements. The synchronization of the primary elements can be achieved by

means of a data communication system that triggers simultaneously the reference values

for all involved segments.

It is evident from the operation principle of the doubly-fed linear motors that a data

communication network is a relevant aspect and must be carefully designed. The follow-

ing section presents different communication paradigms for the RailCab test-track and

shows that an appropriate system architecture is important to assure high scalability and

robustness of the desired operation.

8.2. Test Track Network Architecture 121

8.2 Test Track Network Architecture

A 1:2.5 scale test-track (Figure 8.2) of the RailCab system was built at the University

of Paderborn to support the development process of a variety of sub-systems within the

project. With a total length of 530 meters, the rail track consists of a straight and an

oval section. The primary linear motor elements are installed along the whole track, with

the exception of the switch yard and the first meters of the straight section, which are

equipped with reaction plates. The primary segments are, on average, six meters long.

Each of them is individually connected to a servo equipment, which consists basically of a

current controller and the associated power electronics stage. The whole test track facility

employs a total of 83 servo devices, which are installed in four power stations along the

test track.

Figure 8.2: Aerial view of the RailCab test-track facility

Another part of the RailCab facility is a control room, where the operation of different

systems of the shuttles and the track can be monitored. From this position it is also pos-

sible to remotely set parameters and command different actions. In the following sections

we will present two network architectures that can be used to interconnect all servo de-

vices, all required electronic control units, and the computers used for the human-machine

interface. The first architecture illustrates a centralized approach while the second intro-

duces a distributed solution which is based on the TrailCable real-time communication

technology.

122 CHAPTER 8. AN APPLICATION EXAMPLE: THE RAILCAB TEST TRACK

8.2.1 Centralized Control Architecture

The centralized architecture was the first to be implemented at the test track. Rather than

to evaluate different data communication techniques for the RailCab project, the objective

of this initial implementation was to setup an infrastructure that allows experiments

related to the linear motors and provides a system for shuttles to run on the test-track

in a satisfactory manner. Besides, this was a valuable step to gather experience and

information regarding data communication for the current work. A detailed description

of the implemented system is presented in [73]. Of special interest here is the architecture

(Figure 8.3) and the operation paradigm.

The main component of the centralized control architecture is a network master node. It

is responsible for establishing communication with the shuttles via radio interfaces, for

processing motor control data and for setting the appropriate reference values of each

primary element. The wireless communication is based on radio modems with a link

bandwidth of 125 kBaud. Due to the point-to-point nature of the wireless link, the trans-

mission delays are approximately uniform over the time. With this characteristic behavior

it was possible to synchronize shuttles with a polling byte transmitted periodically by the

network master. This basic synchronization mechanism allows frequency and current am-

plitudes for the primary and secondary motor elements to be altered simultaneously, this

being a condition for a correct generation of the traction and braking forces.

The connection of the network master node to the servo devices is established via CAN

bus interfaces. There are four independent buses, one for each power station. Thus, each

bus has, including the network master, between 20 and 25 connected devices. Due to the

length of the CAN bus wires at the test track, which can reach about 300 meters, and the

spurious environment, the transmission bandwidth of the interfaces was reduced to 125

kBaud. Synchronization of all servo devices follows a principle similar to that used by

the wireless interfaces. It is achieved by means of a CANopen PDO (process data object)

that is also periodically sent via all four buses simultaneously. After the synchronization

PDO, the network master node transmits control datagrams that activate the necessary

primary segments with the required set-points and turn off segments that are no longer

used.

One advantage of the centralized control approach is the simplicity of synchronizing all

events, since they are all triggered by the network master node. Moreover, software

implementation for the described system is facilitated since many relevant functions on

the track side are executed on a single computer. However, a centralized solution is only

feasible for a system like the test track that is limited in size. For larger track extensions,

distributed approaches are essential and are the focus of the current work.

8.2. Test Track Network Architecture 123

Power Station 2

Power Station 3

Power Station 4

Power Station 1

Control Room

Radio
Modems

Operator’s
Computer

dSPACE Fiber Link

CAN bus

Data Links:

Network Controller
(dSpace System)

Servo 26

Servo 82

Servo 83

Servo 25

Servo 24

Servo 23

Servo 22Servo 14

Servo 15

Servo 16

Servo 17 Servo 21

Servo 20

Servo 19

Servo 18

Servo 13

Servo 12

Servo 11

Servo 10

Servo 30

Servo 29

Servo 28

Servo 27 Servo 31

Servo 32

Servo 33

Servo 34 Servo 38

Servo 37

Servo 36

Servo 35

Servo 42

Servo 41

Servo 40

Servo 39 Servo 43

Servo 44

Servo 45

Servo 46

Servo 63

Servo 64

Servo 65

Servo 66Servo 62

Servo 61

Servo 60

Servo 59Servo 51

Servo 52

Servo 53

Servo 54 Servo 58

Servo 57

Servo 56

Servo 55

Servo 50

Servo 49

Servo 48

Servo 47

Servo 4

Servo 3

Servo 2

Servo 1 Servo 5

Servo 6

Servo 7

Servo 8 Servo 69

Servo 68

Servo 67

Servo 9 Servo 70

Servo 71

Servo 72

Servo 73 Servo 77

Servo 76

Servo 75

Servo 74 Servo 78

Servo 79

Servo 80

Servo 81

Figure 8.3: Centralized control architecture

8.2.2 Distributed Control Architecture

In order to manage the complexity of a commercial RailCab system, a modular design of

the rail-track control network is of vital importance. The benefits of modularity include

the possibility to improve system scalability, increase availability, build up fault-tolerance

mechanisms by means of redundant components, and better distribute resources along

the track (such as ECUs, radio modems, and networking devices). A basic requisite to

124 CHAPTER 8. AN APPLICATION EXAMPLE: THE RAILCAB TEST TRACK

building a system that is modular, not only with respect to its functionality, but also

regarding its physical distribution, is an appropriate data communication system.

Servo 13

Servo 14

Servo 15

Servo 16

Servo 17

Servo 12

Servo 11

Servo 10

SSI Adapter 4

ECU Fiber Adapter

Servo 21

Servo 20

Servo 19

Servo 18

SSI Adapter 5

Servo 25

Servo 26

Servo 82

Servo 83Servo 24

Servo 23

Servo 22

SSI Adapter 6

Power Station 2

Servo 30

Servo 31

Servo 32

Servo 33

Servo 34

Servo 29

Servo 28

Servo 27

SSI Adapter 7

ECU Fiber Adapter

Servo 38

Servo 37

Servo 36

Servo 35

SSI Adapter 8

Servo 42

Servo 43

Servo 44

Servo 45

Servo 46

Servo 41

Servo 40

Servo 39

SSI Adapter 9

Power Station 3

Servo 50

Servo 51

Servo 52

Servo 53

Servo 54

Servo 49

Servo 48

Servo 47

SSI Adapter 10

ECU Fiber Adapter

Servo 58

Servo 57

Servo 56

Servo 55

SSI Adapter 11

Servo 62

Servo 63

Servo 64

Servo 65

Servo 66

Servo 61

Servo 60

Servo 59

SSI Adapter 12

Power Station 4

Servo 4

Servo 5

Servo 6

Servo 7

Servo 8

Servo 3

Servo 2

Servo 1

SSI Adapter 1

ECU Fiber Adapter

Servo 69

Servo 70

Servo 71

Servo 72

Servo 73

Servo 68

Servo 67

Servo 9

SSI Adapter 2

Servo 77

Servo 78

Servo 79

Servo 80

Servo 81

Servo 76

Servo 75

Servo 74

SSI Adapter 3

Power Station 1

ECU Fiber AdapterControl Room

Radio
Modems

Operator’s
Computer

TrailCable (Fiber Optics)

TrailCable (LVDS)

P2P I/O Link (LVDS)

1x SSI (RS-485) and
1x Serial (RS-232)

1x Ethernet 10/100Mbps
and 1x Serial (RS-232)

Data Links:

Figure 8.4: Distributed control architecture

Due to real-time behavior, performance and flexibility, among other requirements, the

TrailCable protocol is a promising alternative when it comes to building up a control net-

8.2. Test Track Network Architecture 125

work for the RailCab application. In order to take a first step in applying the TrailCable

technology for this purpose, an alternative data communication architecture was devel-

oped for the test-track facility. The main goal was to evaluate the TrailCable protocol

under real operational conditions. The architecture employed is depicted in Figure 8.4.

Figure 8.5: Power station

Contrary to the centralized control architecture where the network master is responsible

for managing the entire system, this task is performed by five ECUs in the distributed

control approach. Inside each power station (Figure 8.5) there is one ECU that controls

up to 24 servo devices that are locally connected. In addition, a fifth ECU is located in the

control room and used to gather data for monitoring purposes and to broadcast commands

from the host-PC to the test track network. Communication between the control room

ECU and the host-PC is implemented with the UDP/IP protocol over Ethernet. All ECUs

are interconnected via the TrailCable protocol in a ring topology that follows the test

track geometry. Fiber-optic cables are employed for the communication links, providing

immunity against interferences caused mainly by the high currents of the linear motors.

Additionally, for a given transmission bandwidth fiber-optic communication allows the

possibility to reach longer link distances as compared to electrical wires.

With this basic configuration, it would be possible to connect radio modems to any ECU.

However, in order to maintain physical compatibility with the centralized control archi-

tecture and because the wireless communication with the shuttles is not the focus of this

work, it was chosen to keep the radio modems exclusively in the power station 1. Never-

126 CHAPTER 8. AN APPLICATION EXAMPLE: THE RAILCAB TEST TRACK

Figure 8.6: Microcontroller module and fiber adapter

theless, the TrailCable protocol can provide a good support for wireless communication

in the RailCab system.

The servo devices are connected to the ECUs via three peripheral units. Instead of a

CAN bus interface, the servos are connected to the peripheral units via a synchronous

serial interface (SSI), based on the RS-485 electrical standard. This is why the peripheral

units are also called SSI modules. Each SSI module has the capability to interface to

up to eight servos. The main advantage of the SSI over the CAN interface is its higher

transmission rate, which allows communication cycles of 8 kHz. This means that reference

values can be set every so often, representing a 160-fold gain over the CAN bus for the

given application. Moreover, because of the SSI point-to-point links, local communication

errors affect only the data transmission of the associated servo device without impairing

the remaining network components.

Besides the SSI link between the peripheral unit and the servo device, there is also an

additional RS-232 serial interface, which is used for a remote monitoring of the servo

equipments from the host-PC located at the control room. The servos were designed to

be connected via a serial interface to a PC running a configuration and diagnostics tool

provided by the equipment manufacturer. In order to accomplish the same functionality

but in a remote manner, the host-PC is connected to the control room ECU with an RS-

232 interface. Then, via the test track network data received by this ECU is forwarded

transparently to the desired RS-232 interface of a given peripheral unit and reaches the

intended servo. The same happens in the opposite direction. With this mechanism one

servo at a time can be selected to be connected to the host-PC, allowing high flexibility

8.3. Test Track Implementation 127

Figure 8.7: SSI module

for monitoring purposes.

Finally, the data links between the ECUs and the SSI modules are implemented by means

of a proprietary point-to-point connection based on the LVDS standard. This proprietary

interface is designed to carry application-specific data packets in a periodic manner. Em-

ploying this solution instead of the full-featured TrailCable protocol itself is motivated

by the fact that the communication functionality is rather simple and the SSI modules

have no microprocessor. Thus, less resources such as FPGA area and processing power

are required.

After an introduction to the distributed control architecture, further details of the imple-

mented system will be presented below. The next section presents the developed hardware

and software components as well as the linear motor control strategy for the test track.

8.3 Test Track Implementation

A complete hardware and software solution was designed and implemented to evaluate

the TrailCable protocol at the RailCab test track facility. One of the objectives was

to create a system configuration that is based on components that are either limited

in processing power (microcontrollers) or area (FPGAs) resources, but with an overall

high performance. This could be achieved due to the FPGA-implemented communication

functions, which contributed to reduce processor utilization, and due to a careful planning

and scheduling of the software routines. In order to show how this strategy was pursued,

the implemented system is described below. Firstly, the realized hardware is presented

with both the electronic board features and the functionality of the FPGAs employed

being explained. Then, software tools for the host PC, which were developed to support

128 CHAPTER 8. AN APPLICATION EXAMPLE: THE RAILCAB TEST TRACK

system operation and monitoring, are introduced. Finally, we will deal with the control

software for the test track ECUs.

8.3.1 Hardware Components

There are three different types of hardware components that were developed to be used at

the test track facility: the ECU board, the SSI module and the fiber-optic adapter. The

distributed control architecture was created with the objective of limiting the number of

hardware components to be installed. This reduced costs and system complexity, but still

allowed evaluation of the developed components, especially the TrailCable protocol. For

this reason, each power station is equipped with only one ECU, responsible for managing

all local servo devices and executing communication routines. The SSI modules are used

as a communication bridge between the ECU and the servos. Because all functions are

processed in parallel in the FPGA of the SSI module, it was possible to add data interfaces

for up to 8 servo equipments, which considerably reduces the number of required hardware

elements. The three hardware component types are individually presented below.

8.3.1.1 ECU Module

The ECU board (Figure 8.8) is a new development derived from the Rabbit project [8]

and consists of two main components: a Freescale PowerPC MPC555 microcontroller [36]

and a Xilinx Virtex-400E FPGA [93], both interconnected and operating with a clock

frequency of 40 MHz. The microcontroller is assembled with 4 MB RAM and 4 MB Flash

memories in a piggy-back board provided by Phytec, a third-party company [71].

Figure 8.8: ECU board

Additional features of the developed ECU board include a 10/100 Mbps Ethernet in-

terface, an LCD-display interface, a CPLD for glue logic, and FPGA configuration via

8.3. Test Track Implementation 129

the microcontroller, a 2 Mbit serial flash, four LVDS connectors (each one containing four

transmission pairs), serial RS-232 interfaces from both the microcontroller and the FPGA,

CAN bus interface, and a variety of LEDs and switches circuitry. The microcontroller

and the FPGA are programmed via BDM and JTAG interfaces, respectively. The block

diagram of the ECU board is shown in Figure 8.9.

Figure 8.9: ECU board diagram

The FPGA is connected to the microcontroller via a 32-bit external bus interface so that

the FPGA can be accessed like an external memory. The microcontroller acts as a master

and is responsible for initiating read and write accesses to data in the FPGA memories.

One advantage of this approach is a high achievable transfer rate, due to the low-latency

and 32-bit data access. Additionally, interrupt (IRQ) lines are available from the FPGA

to the microcontroller, allowing triggering interrupt routines upon programmed events in

the reconfigurable logic device.

130 CHAPTER 8. AN APPLICATION EXAMPLE: THE RAILCAB TEST TRACK

Apart from containing the TrailCable communication engine, the FPGA is used for other

purposes as well. An optimized implementation of the components allowed the following

additional functions to be placed in the FPGA: a communication interface for three SSI

modules, an LCD-display driver, an RS-232 communication interface (UART), a watch-

dog, and an I/O component to read the state of jumpers and set digital outputs. The

architecture of the entire FPGA design is shown in Figure 8.10.

SSI Modules
Communication

Interface

Data and Control Bus

TrailCable
Communication

Engine

UART Units
(2x)

LCD Display
Logic

I/O Logic

Watchdog

Bus
Control

LVDS
Drivers

RS-232
Drivers

Jumpers

Digital
Outputs

LCD Display
Interface

Internal
Control Lines

Ports
2 to 4

Port 1 Processor
Reset

Figure 8.10: ECU FPGA diagram

The TrailCable communication engine module was built as described in Chapter 6. It

consists of one host port and two communication ports. For the test track application,

instead of using 32-bit registers a 16-bit architecture was chosen since it suffices for dead-

lines and periods in the range of a few microseconds. The 16-bit variant allows reduction

of the required FPGA area.

Although the Freescale MPC555 microcontroller already provides RS-232 serial commu-

nication interfaces, adding a similar functionality to the FPGA at the ECU board proved

beneficial. The UART developed requires only a small amount of resources when com-

pared to other FPGA components and allows the use of a very simple software driver

running in the MPC555 microcontroller. An FPGA-based UART was also originally re-

quired for the SSI module due to the lack of a microcontroller in that board so that only

a small development effort was necessary to use the same component in the ECU board.

One of the main components of the FPGA architecture is a proprietary communication

interface for the connection of up to three SSI modules. Each of the three available

interfaces consists of two full-duplex data links running at 32 Mbps, allowing low com-

munication latencies. Each full-duplex link is responsible for data exchange with 4 servos

and thus a total of 8 of such devices can be addressed by a single interface.

8.3. Test Track Implementation 131

When creating the communication interface for the SSI modules, special attention was

paid to guarantee synchronization of all servo devices. Since the ECU boards are syn-

chronized with each other by means of the TrailCable protocol, it is possible to use the

ECUs as time masters for the servos. The communication logic with the SSI modules

was designed to initiate simultaneous packet transmission in all interfaces when triggered

by the TrailCable time-reference tick. In fact, packet transmission in all links starts at

the same clock cycle. Since the SSI modules are synchronized with the ECUs by means

of such packet transmissions, all servos installed in a given power station can thus be

synchronized with each other with high precision. So, when it comes to the whole test

track, synchronization among all servos depends primarily on the quality of the clock

synchronization among all ECUs, which is also very precise (see Section 7.3). For this

reason, all 83 servos at the test track can be triggered virtually simultaneously since the

jitter is less than 1 µs.

The communication logic with the SSI modules has some characteristics inherited from

the physical layer of the TrailCable protocol: both the same electrical standard (LVDS)

and the coding scheme (8B/10B) are used. The packet format (Figure 8.11), however,

is different and was designed to suit specific application needs. When no data is sent,

idle control commas are continuously transmitted. A new packet is sent every 250 µs

and consists of a control byte (from the ECU to the SSI modules) or a status byte (from

the SSI modules to the ECU), 10 data bytes for each one of the four servos, a CRC

byte (calculated from all 41 bytes sent previously) and up to 8 bytes for asynchronous

communication. The transmission of an entire packet takes only 12.5 µs.

Figure 8.11: Packet format for communication with SSI modules

The status byte sent by the SSI modules to the ECU indicates whether the servos are

properly connected to the peripheral units. Additionally, the ECU is also able to retrieve

not only the condition of its own data links but also those of the SSI modules. This

allows automatic detection of link failures of the entire test track communication network,

regardless of the type of communication interface used.

132 CHAPTER 8. AN APPLICATION EXAMPLE: THE RAILCAB TEST TRACK

A block diagram of the SSI communication component is shown in Figure 8.12. The

architecture provides both synchronous and asynchronous communication features. The

former is used to transfer set-point values to the servos and to retrieve operation status

from them. For this purpose, at every communication cycle the contents of a dual-port

RAM memory are read and transmitted in the packet section reserved to carry data to the

servos. Using such a memory instead of an FIFO permits higher software performance,

since only part of the memory contents need to be updated periodically from one packet

to the other. On the other hand, the asynchronous communication obtains data to be

transmitted from an FIFO, since the number of bytes to be sent is unknown and not

constant. As long as the transmission FIFO is not empty, each byte will be put in the

assigned serial slots at the end of the data packet. When the FIFO is empty, idle control

commas are transmitted instead of data. The asynchronous communication is used for a

transparent tunneling of the RS-232 serial interface between the control room ECU and

one selected servo, as described in the distributed control architecture.

Figure 8.12: Communication interface of the SSI modules

In addition to the synchronization, it was also important to integrate safety mechanisms

into the communication interfaces in the three SSI modules. Without such a mechanism,

if the microcontroller fails to update the internal dual-port memory, the set-point values

transferred to the servos would be kept constant, leading to potential errors. In order

8.3. Test Track Implementation 133

to cope with this problem, a watchdog was included in the FPGA design. If the micro-

controller does not generate “live” signals within specified time intervals, an emergency

state will be activated. When this happens, predefined safety packets instead of the

normal memory contents are transmitted to the servos which are in turn deactivated to

avoid incorrect operation. Moreover, when the watchdog goes into the emergency state,

the microcontroller can automatically be reset to give it the opportunity to recover from

transient failures.

Figure 8.13: ECU module case

For installation at the test track, the ECU board was placed in an appropriate casing

(Figure 8.13) to protect the electronic components and to facilitate cabling and fixation.

The ECU module case incorporates an internal AC adapter for the power supply and a

fan for heat dissipation. Additional components include an LCD display, connectors, and

push-buttons and an auxiliary power output.

8.3.1.2 SSI Module

The SSI board (Figure 8.14) is employed as a bridge that has an LVDS proprietary

connection to an ECU on the one side and eight servo interfaces on the other side, each

containing both an SSI and an RS-232 link.

The core component of the board (Figure 8.15) is a Xilinx Spartan-2 200 FPGA [90]

which is responsible for all data processing as no microcontroller is available in the SSI

module. All communication interfaces are controlled individually, so that a simultaneous

operation of all links is possible.

134 CHAPTER 8. AN APPLICATION EXAMPLE: THE RAILCAB TEST TRACK

Figure 8.14: SSI board

Figure 8.15: SSI board diagram

As already mentioned, the LVDS interface between ECU and an SSI module consists of

two full-duplex data links. The wires required for both links are physically integrated in

a single CAT5 cable to facilitate installation. Since each full-duplex link is assigned to

the data transfer of 4 servos, we chose to build up two identical processing modules in

the FPGA that work completely independently of one another (Figure 8.16).

When the SSI module receives a packet transmitted by the ECU, it is checked whether

the correspondent CRC-byte matches. If so, data is read and the packet arrival time is

taken into account for the synchronization of the corresponding SSI interfaces. Should

no packet be received within a determined time interval, an emergency state will be

activated, similarly to the ECU board. In this situation, the peripheral unit allows for a

8.3. Test Track Implementation 135

Figure 8.16: SSI FPGA diagram

direct counter-measure as it can automatically deactivate the servos via the SSI interface.

As a result, if an error occurs with either the ECU board or with the physical connection

between the ECU and SSI modules, safety mechanisms will automatically shut down the

servos to minimize the outcomes of operation disruption.

The signals of the SSI interface (Figure 8.17) between the peripheral units and the servo

devices consist of a synchronization clock, serial data transmission (TXD) and reception

(RXD) lines, each one with a clock reference (TXC and RXC, respectively). The SSI

module takes the master role and generates the synchronization clock signal of 8 kHz

(125 µs period) based on the time reference retrieved from the ECU module. After the

rising edge of the synchronization clock signal, data transmission starts and 10 bytes are

transferred from the SSI module to the servos and vice versa. Each data byte is preceded

by a start bit and followed by a stop bit. The data transmission operates at 20 MBd,

thus allowing low communication latency.

Figure 8.18 shows the timing characteristic for read and write data accesses with the

servos. At each time-reference tick from the TrailCable communication engine, a packet

is generated at the ECU module and is transmitted to the SSI module. When it arrives

at the destination, the data transfer of the SSI interfaces is triggered. As soon as the data

read from the servos via the SSI interface is available, it is sent back to the ECU module.

The whole process takes less than 40 µs to complete. Such a performance is necessary for

allowing a control cycle with all required processing and communication functions to run

with a 250 µs period.

The synchronous data transmission capability of the communication interface between

the ECU and the SSI modules is used to transfer reference values and status information

to and from the servo devices. On the other hand, the part of the data packets reserved

136 CHAPTER 8. AN APPLICATION EXAMPLE: THE RAILCAB TEST TRACK

Figure 8.17: SSI interface

Figure 8.18: Timing diagram of servo data accesses

to asynchronous transfers is employed to create a bridge mechanism between the ECU

and the servos via an RS-232 serial interface. In order to establish a connection, the

control byte (Figure 8.11) sent in the packet from the ECU to the SSI module selects

one RS-232 interface to be activated at a given time. By this, whenever there is data

in the asynchronous packet segment, the respective bytes are forwarded to the selected

servo via the RS-232 interface. Data received by the SSI module in the RS-232 interface

is also appended to the packet sent back to the ECU. This allows the ECU to establish a

transparent and bidirectional connection with one of the RS-232 servo interfaces.

The casing of the SSI module (Figure 8.19) is similar to that of the ECU. It also contains

an internal AC adapter, a fan for heat dissipation, and can be fixed in a DIN rail.

8.3. Test Track Implementation 137

Figure 8.19: SSI module case

8.3.1.3 Fiber-Optic Adapter

The fiber-optic adapter (Figure 8.20) is the simplest and smallest of all 3 hardware boards.

Thanks to the 8B/10B coding scheme used by the TrailCable protocol physical layer,

which is appropriate for both electrical and optical transmissions, all the required func-

tionality is performed exclusively by the communication drivers circuitry. Although a

more complex design could be considered to reshape transmission signals or to implement

additional functionalities, the chosen approach proved to be efficient for the intended use.

Figure 8.20: Fiber-optic adapter board

There are two bidirectional ports available at the adapter. Each one consists of an LVDS

receiver connected to an optical transmitter and an optical receiver connected to an LVDS

transmitter (Figure 8.21). Both LVDS and optical interfaces work with the same baud

rate. The adapter ports therefore allow a completely transparent electrical/optical conver-

sion of the data links, without the need for any configuration. Thus, by simply connecting

the electrical cables of the TrailCable protocol to the adapter, it is possible to achieve

138 CHAPTER 8. AN APPLICATION EXAMPLE: THE RAILCAB TEST TRACK

optical links of up to 800 meters at 32 MBd with multi mode 62.5/125 µm fibers [16].

Longer cabling and the adapter itself have, however, an influence on the link propagation

delay. Nevertheless, the TrailCable can cope with this issue since it is able to measure

the propagation delay correctly by means of its native link control mechanism.

Figure 8.21: Fiber-optic board diagram

Like the ECU and SSI modules, the fiber-optic adapter board is placed in a DIN rail

mounted case (Figure 8.22). The power supply is provided by an external + 5 V source,

which can be either an AC adapter or the auxiliary output of the ECU module.

Figure 8.22: Fiber-optic adapter case

8.3.2 Software Tools

Due to the high complexity of the system, there was a need to develop software tools to

support a variety of configuration and monitoring activities. There are two specifically

designed software tools: the RailControl and the RailView programs. The RailControl is

required for test track operation, whereas the RailView is an optional visualization tool.

Since both tools are completely independent of one another, it is possible to execute them

on a single PC or different ones.

Besides the developed tools, a third-party program, distributed by the servo manufacturer,

can be also employed. By means of this tool it is possible to establish a connection between

the PC and one servo device via an RS-232 interface. The tool, called Drive Manager [62],

allows the parametrization and monitoring of the servo equipment. One of the features

8.3. Test Track Implementation 139

of the test track network is to allow a transparent tunneling between the PC running the

Drive Manager software, which is located at the control room, and one of the 83 remote

servos. The servo to be used in the tunneling process is selected with the RailControl tool

and can be altered at run-time by the system operator.

In order to obtain a better understanding of the distributed control functions running in

the ECUs, it is worth taking a deeper look at the features of the two developed tools first.

The RailControl and the RailView utilities will therefore be introduced below.

8.3.2.1 RailControl Tool

The RailControl tool offers a variety of functions to support the test track operation. It is

used to activate the servo devices, set emergency brakes of the shuttles, monitor and log

the system state, among other features. In order to group the tool features and facilitate

usability, different windows were used. These are:

Figure 8.23: RailControl screenshot

� Setup - used to manage the UDP/IP connection to the control room ECU, to man-

ually activate safety flash lights at the test track and to select a servo device for the

DriveManager utility tunneling mechanism.

� Track - is the main control window and allows the user to activate the test track, for

the operation of one or two shuttles. It also presents radio link status, the reference

values received from the shuttles via the wireless interface, the enabled servo devices,

140 CHAPTER 8. AN APPLICATION EXAMPLE: THE RAILCAB TEST TRACK

and their respective references values. Additionally, the operator has the possibility

to set the emergency brakes of each shuttle independently.

� Status - as the name suggests, it is used to show a large number of the test track

hardware parameters, such as communication error counters, synchronization infor-

mation, number of detected peripheral units, servo operation condition, and others.

� Plotting - used to plot test track signals during system run-time. Also provides a

logging capability in order to support off-line data analysis.

� Manual Input Control - allows the user to manually set the reference values for the

servo equipments instead of processing of parameters transmitted by the shuttles.

8.3.2.2 RailView Tool

Opposed to RailControl, the RailView program is not strictly necessary for controlling

the system, but plays an important role for monitoring the operations. The RailView

utility is an OpenGL-based visualization tool that gives the operator the possibility to

check system status at a glance. The test track is graphically shown with all 83 primary

segments represented individually by means of a specified color code, which allows the

status or malfunction of motors or servos to be promptly identified. Moreover, the position

of the shuttles is also presented in the visual track model, allowing the operator to check

whether the primary segments are being activated and deactivated consistently as the

vehicles are passing by.

Figure 8.24: RailView screenshot

8.3. Test Track Implementation 141

The RailView tool shows the status of all ECUs, SSI modules, and the entire data network.

For the main communication ring implemented with the TrailCable protocol, there is even

the possibility to detect failures in each direction of transmission. In the unlikely event of

electronic or link failures the faulty component is highlighted to allow the operator to take

immediate counter-measures. The RailView therefore is a useful tool to reduce operator

workload and support system operation.

8.3.3 System Software

This section introduces the system software of the ECUs used in the test track, which

heavily depends on data communication due to the system-inherent distributed charac-

teristic. The system software is responsible for three different groups of functions: motor

control, status identification, and data tunneling.

All function groups are integrated in a common run-time framework, based on a TDMA

scheduling. The basic cycle time of the scheduling plan is 4 ms, divided into 16 rounds

of 250 µs (Figure 8.25). The necessity to design the schedule with 250 µs rounds arises

from the fact that the servo devices get new reference values with a 4 kHz rate. Apart

from the motor control routines that must run every 250 µs, the remaining monitoring

and management functionalities are divided by means of a cyclic executive and build up

a scheduling plan that spans over all 16 rounds. The start times of the 4 ms cycles of

all ECUs are synchronized by means of the TrailCable protocol and as a consequence

each one of the 16 rounds is also triggered at approximately the same time in different

microcontrollers. Such a synchronization is a prerequisite for the distributed TDMA

scheduling and allows a consistent operation of all ECUs.

Motor
Control

Monitoring &
Maint. 1/16

Motor
Control

Monitoring &
Maint. 2/16

Motor
Control

Monitoring &
Maint. 3/16

Motor
Control

Monitoring &
Maint. 16/16

...

250µs

4ms

Synchronization Point

Figure 8.25: Communication cycle of the system software

A real-time operating system was not used for the described implementation. Because no

real-time operating system is available, the software running in the ECUs is responsible for

triggering the TDMA scheduling plan. This is supported and facilitated by the TrailCable

communication engine, which generates periodic interrupt signals that invoke interrupt

service routines (ISR) to execute real-time processes. After completion of each ISR, the

program flow returns to a polling loop. Functions of non-real-time nature, such as the

142 CHAPTER 8. AN APPLICATION EXAMPLE: THE RAILCAB TEST TRACK

UDP/IP communication executed by the ECU in the control room or the LCD manage-

ment, are handled exclusively in the polling loop. The real-time processing triggered by

the ISRs suspend the polling loop and has, therefore, higher priority. At each of the 16

rounds, predefined functions are called by the ISR, which acts like a task dispatcher.

This scheduling methodology is highly optimized and was necessary to meet the very strict

timing requirements of this RailCab application. With a more powerful microcontroller,

an alternative solution could be taken into consideration: instead of manually balancing

the processing time in different rounds, a real-time operating system could be used for

handling the scheduling of tasks with different activation periods (e.g., 250 µs for motor

control, 4 ms for status retrieval, etc.). The two presented implementation alternatives,

however, have one thing in common: they both profit from the flexibility of the TrailCable

protocol. Whether TDMA or dynamic scheduling is used, the TrailCable protocol can

be perfectly suited to the chosen approach since it can provide real-time communication

regardless of software paradigms.

The three function groups: motor control, status identification, and data tunneling will

be described in the following.

8.3.3.1 Motor Control

The main objective of the new communication infrastructure implemented at the RailCab

test track is to control the primary motor segments in order to allow operation of the

shuttles. In a normal scenario, the reference values for the primary segments are defined

by shuttles moving over the corresponding track section. The packets sent by a shuttle to

the test track via radio basically include the following information: shuttle position and

required primary current and frequency. With the shuttle position it is possible to decide,

at the track, which primary segments must be activated. Usually, up to three primary

segments are activated simultaneously in order to guarantee at all times the presence of

a magnetic field under a moving shuttle.

In addition to the primary current and frequency values obtained from the shuttles, the

activated servo devices require also a phase reference value. In each 250 µs round, this

reference phase value is updated, generating a sinusoidal signal at the primary segments.

The phases of all servo devices must be synchronized with each other in order to ensure

a smooth signal transition between two primary segments.

Data packets are sent by the shuttles via the wireless interface every 20 ms. The test

track components acknowledge reception of the packets to the shuttles in order to allow

error detection in the radio interface and also to inform the shuttles about the test track

status.

8.3. Test Track Implementation 143

In order to allow a simple transition from the centralized to the distributed control archi-

tecture it was chosen to keep the radio modems initially in the power station 1 and also to

use the local ECU as a master for motor control functions. This ECU gathers data from

the shuttles (via the wireless interface) and user commands (via the RailControl utility)

to control the servo devices properly. The master ECU node broadcasts the information

on which servos are active and the associated reference values to all others. Since clock

synchronization is provided, all ECUs are able to simultaneously set the appropriate val-

ues to the servos, which as a consequence allows the magnetic field of the motors to be

generated without abrupt discontinuities on different primary segments.

The given configuration requires the following communication among the ECUs (Fig-

ure 8.26): a connection between the ECUs of the control room and station 1 as well as

connections between the ECU of station 1 and the remaining ones. The first one is used to

transfer commands and configuration received from the RailControl tool and forward it to

the ECU in station 1. The second one is responsible for broadcasting the set-point of the

servo devices to all ECUs. In order to allow a fault tolerant communication of all chan-

nels, data is always sent clockwise and counter-clockwise into the test track fiber-optic

ring. Should a long or permanent link communication failure occur, immediate actions,

such as shutting the motors down, can be taken by the ECUs in order to avoid unsafe

behavior. The same applies in the case clock synchronization is lost or the semantics of

data packet contents are incorrect.

Control
Room

Station
1

Station
4

Station
3

Station
2

setpoint broadcast

RailControl interface

Figure 8.26: Virtual communication channels for motor control

The TrailCable data packets of the motor control functions have a payload of 41 bytes and

are transmitted every 4 ms. The channel deadline is 250 µs, allowing a packet that is sent

at the beginning of a round to be processed in the consecutive round at the destination

ECU. During design, the TrailCable Verifier tool was employed to check the feasibility

of all data packets transmitted via the TrailCable network, including the communication

channels for motor control, status identification, and data tunneling functions. The latter

two will be described below.

144 CHAPTER 8. AN APPLICATION EXAMPLE: THE RAILCAB TEST TRACK

8.3.3.2 Status Identification

The status identification function group is responsible for retrieving information about

the operational condition of a variety of system components. It is possible, for example, to

monitor the reference values used by all active servos and to check whether communication

links are working properly, the number of communication errors, synchronization status,

link propagation delays, and even operational parameters of the servo devices. The ECUs

gather information locally and transmits status data packets to the control room to be

displayed in the PC running the RailControl and RailView tools.

Control
Room

Station
4

Station
3

Station
2

Station
1

Figure 8.27: Virtual communication channels for status monitoring

In order to establish clock synchronization among all ECUs it is desirable that all nodes

participate in this process. The use of the status data packets for this purpose turned out

to be appropriate since most of the ECUs are required to transmit status data anyway.

The only necessary extension was the configuration of all ECUs to transmit their status

data packets not only to a single destination but also to all other nodes in the network.

Because the clock synchronization mechanism is executed primarily by the TrailCable

hardware, only a small overhead was added to the software running in the ECUs. As

with the motor control packets, the status channels were built in a redundant manner:

each ECU sends packets both clockwise and counter-clockwise to all other nodes. For the

sake of simplicity only the channels generated at two nodes are presented in Figure 8.27,

but all other remaining ones also transmit their data to the others via two channels.

The clock synchronization process takes into account only the timing information of the

first correctly received packet. The payload of the status data packets is 70 bytes, and

as with the motor control, packets are transmitted with a period of 4 ms and have a

channel deadline of 250 µs. Indeed, motor control and status packets are always sent

simultaneously by the ECUs at the beginning of each 4 ms cycle.

8.3. Test Track Implementation 145

8.3.3.3 Data Tunneling

The last function group is data tunneling. The goal here is to capture any bytes transmit-

ted via the PC in the control room on its RS-232 interface and to forward them via the

test track network to a selected servo, which is connected via another RS-232 interface.

The reciprocal operation is also available, so that data from a servo can be transmitted

back to the PC. Thus, the Drive Manager utility running in the PC can access a servo

as if it were locally and directly connected via an RS-232 cable. In Section 8.3.1 we ex-

plained how an ECU establishes communication with a servo. The objective now is to

demonstrate how the process takes place with the TrailCable-based communication ring.

The ECU in the control room acts as a master when it comes to the data tunneling

functions. This ECU has the information from the servo selected by the user (via the

RailControl tool) for the tunneling mechanism and is directly connected to the PC running

the Drive Manager utility. The ECU is therefore able to create data packets containing

both the selected servo and any data received from the PC and to broadcast it to the

whole network. The ECU, by which the selected servo is controlled, then forwards the

received data to the appropriate SSI module. The communication channels of the data

tunneling function follows the same strategy as the other functions, i.e., packets are sent

in a redundant manner via alternative routes.

Transmission from the remote ECUs to the master requires a different strategy. If indi-

vidual communication channels were to be established between each of the remote ECUs

and the master, the required bandwidth could even impair the feasibility of the real-time

communication tasks. The solution was to profit from one of the TrailCable main fea-

tures, namely dynamic reconfiguration. The idea is to establish only one communication

channel at a time between one remote ECU and the master. All other ECUs remain in

stand-by mode, waiting for a reconfiguration command.

Control
Room

Station
4

Station
3

Station
2

Station
1

bypass nodes

end node

Figure 8.28: Virtual communication channels for data tunneling

The reconfiguration scheme (Figure 8.28) is based on two configurations for the data

tunneling packets. In the first one, each remote ECU operates in a bypass mode, allowing

a tunneling packet received in one of its ports to be forwarded to the opposite one.

146 CHAPTER 8. AN APPLICATION EXAMPLE: THE RAILCAB TEST TRACK

In the second possible configuration, an ECU is set as the end node; it is responsible

for generating tunneling packets (with data received from the servos) and sending them

via its communication ports. During normal operation, the ECU corresponding to the

selected servo works as a source and all other remote ECUs operate in the bypass mode.

Should the selected servo change at run-time, the communication configuration of all

remote ECUs would immediately be altered as well. This reconfiguration method allows

therefore all ECUs to share common real-time channels and thus to reduce the amount

of required communication resources.

Once again, redundant communication channels were employed for a fault-tolerant oper-

ation. The tunneling data packets carry 18 payload bytes and have also a 250 µs channel

deadline. However, as opposed to the previously described data packets for the motor

control and status identification function groups, the transmission period for the data

tunneling packets is 2 ms. It was chosen to run the tunneling process twice in the 4 ms

cycle, so that both the end-to-end latency time and the data packet size could be reduced.

8.4 Chapter Summary

This chapter has shown how the TrailCable protocol was employed with the RailCab test

track facility. The use of such technology allowed low transmission latencies (below 250

µs), redundant communication and reconfiguration capabilities. These features represent

a promising alternative for interconnecting RailCab track components, especially when

larger systems are to be built. Scalability is a major concern in similar applications and

imposes different design challenges for hard-real-time embedded networks. The TrailCable

protocol supports the task of building up scalable and complex networks for different

reasons. Firstly, it dispenses with the necessity of a global communication scheduling,

which, however, can still be used for a small set of neighboring nodes. Furthermore,

the communication channels of unrelated functions can be independently designed and

integrated into the system. Also, due to its flexible topology, the task of cabling and

creating distributed architectures can be easily supported. Further ideas of how to employ

the TrailCable in larger networks are presented in [6].

Chapter 9

Conclusion

This thesis presented a new communication protocol named TrailCable, aimed at provid-

ing flexible and reliable hard-real-time communication for distributed embedded systems.

TrailCable was designed bearing in mind safety aspects in order to broaden its utiliza-

tion potential in applications such as critical distributed control systems. TrailCable is

based on the sporadic triggering (ST) paradigm, which closes the gap between event- and

time-triggered approaches.

A TrailCable network consists of multiple nodes interconnected by full-duplex, point-to-

point links. Nodes may have more than one communication port, thus acting as data

switches. In order to guarantee real-time behavior and increase bandwidth utilization,

packet scheduling is done with EDF scheduling, which has been proved to be optimal in

the sense of feasibility. One contribution of this thesis is a mechanism that calculates the

absolute deadlines for the EDF schedulers based on the characteristics of previous pack-

ets. This mechanism also integrates the so-called bandwidth guardian function that checks

whether communication conforms to the parameters used for schedulability analysis. Ad-

ditional services provided by the protocol include fault-tolerant clock synchronization and

non-real-time communication.

A detailed model of a TrailCable network, described by means of XML files, is used

by tools to perform an automated schedulability analysis of the proposed configuration.

Should the acceptance tests pass, C-code containing the configuration of each node will

automatically be generated.

One of the main features of the TrailCable protocol is the support for dynamic reconfigu-

ration, which allows for real-time channels to be added, removed, or altered, at run-time.

Dynamic reconfiguration takes advantage of the EDF algorithm for allocating packets to

the transmission links. So, no global clock synchronization is required for coordinating

medium accesses and parts of the network can be configured independently of others, thus

reducing complexity.

147

148 CHAPTER 9. CONCLUSION

This work introduced an ILP-based approach to optimally map real-time channels in

a given network topology. Since EDF is optimal as well, the bandwidth utilization of

a TrailCable network can therefore be very efficiently allocated to real-time channels.

With the TrailCable communication model, virtual channels, provided that they are real-

time feasible, can: 1) originate at any node, 2) reach destinations via multiple paths, 3)

have activation rates, deadlines, and packet sizes independent of other channels. Taking

this model into consideration, one can state that TrailCable is one of the most efficient

protocols when it comes to bandwidth utilization.

Another algorithm for mapping real-time channels, the Fit Minimum Laxity First, was

presented as an alternative to the ILP approach. Although not optimal, FMLF has much

lower run-time complexity and is hence more appropriate for dynamic channel allocation.

With EDF scheduling and clock synchronization, the TrailCable protocol can be employed

in different manners. It can be either used in such a way that packets that arrive earlier

than their deadlines are immediately processed, but at the disadvantage of introducing

jitter, or also be programmed to periodically process packets at globally known times,

which on average will require a slightly higher transmission latency but reduces the jitter

to the precision of the clock synchronization, typically below 1 µs. This latter approach

allows a time-triggered operation of the application software while the communication

infrastructure operates with sporadic triggering.

When it comes to scalability, one issue is the hardware implementation of EDF schedulers

and the internal switch logic. The hardware architecture presented is able to handle up to

1792 (7 communication ports, 256 tasks each) simultaneous real-time packets, a number

that is limited only by the number of IDs reserved in the initial protocol implementation.

Not only is an increase in the number of IDs possible, but the schedulers are also scalable

to cope with such an increased demand. The main components of the schedulers, the

priority queues, were built up in such manner that insertion and removal operations have

a run-time complexity of O(1) and require a chip area proportional to the number of

tasks.

Given the low overhead and the preemptive EDF scheduling, relatively low communication

latency times can be achieved with TrailCable. In order to prove the theoretical bounds,

Chapter 7 presented measurement experiments. For a data rate of 32 Mpbs, latency

times below 10 µs could be achieved. The results also confirmed that the expected

forwarding time of the TrailCable nodes operating at 32 Mbps is even less than that

of some commercial Ethernet switches operating at 100 Mpbs. Moreover, experiments

have shown the efficacy of the bandwidth guardian mechanism, which filters out non-

conform packets in order to ensure the timely delivery of correct ones. Experiments based

on the DoR method have shown how the TrailCable behaves with respect to jitter and

communication skew.

9.1. Outlook 149

Finally, a real application employing TrailCable was presented in Chapter 8: the RailCab

test track. In this particular case the system software was built using a cyclic executive,

which runs in a synchronous manner in all nodes. The maximum deviation of the clock

synchronization in this example was measured in a setup similar to that in Chapter 7

and turned out to be lower than 500 ns. In this specific application, more than 80 servo

drives could therefore be triggered with only a marginal phase difference. Additionally,

the application benefited also from the dynamic reconfiguration feature of TrailCable.

It was possible to alter, during run-time, real-time communication channels used for a

tunneling service between the control room and the power stations.

9.1 Outlook

Hard-real-time communication is a topic with many open research directions. This thesis

represents a contribution in this field and can be used as a basis for further investigations.

Among the many possibilities, some areas of interest are listed below:

Membership Service. Since TrailCable ensures bounded message transmission delays

and has a distributed clock synchronization service, it provides the necessary conditions

for building up a membership service. Also, redundancy management can be rather simply

implemented by checking, at the final receivers, redundant packets for correctness in order

to pass a single instance of the message to the application layer. Membership service and

redundancy management are the basis for building up a fault-tolerance abstraction layer

to further reduce the complexity of the application software.

Extension of the ST Paradigm to Application Software Processes. Transmis-

sion with TrailCable is done by successively scheduling packets in one node after the other.

At the last node it is possible, for example, for the communication protocol to trigger the

processor task that receives the packet in a similar manner, given that the real-time oper-

ating system at the host also works with the EDF algorithm. The same can be applied to

transmitting software process. This interaction between communication and processing

systems may contribute to additional efficiency gains, especially with system-on-a-chip

(SoC) implementations.

Real-Time Mapping Algorithms. In chapter 5 two approaches for mapping real-

time channels on the network were presented: one optimal and the other with lower

run-time complexity. There is a research potential in this field to find new techniques for

allocating communication tasks in the network according to different kinds of constraints.

It is possible to go even further and evaluate algorithms that also find a suitable network

150 CHAPTER 9. CONCLUSION

topology in an autonomous manner. If communication requirements and constraints are

given, it can be possible to automatically generate a network configuration, including

physical topology, channel mapping, and deadline assignments.

Mixed Criticality. The TrailCable architecture was designed in such a manner that

although real-time and non-real-time packets are able to share the same transmission

medium, they are managed independently in the nodes. This thesis has focused on the

real-time part, which is the most critical part, and opens up the possibility to integrate

different best-effort algorithms to handle non-real-time traffic in an efficient manner.

The current protocol features, the possibility to integrate other ones, and its suitability in

a wide range of applications give TrailCable the credentials of a real “trailblazer” in the

design of flexible hard-real-time communication systems. I hope that this work can inspire

other advancements in the area and thus contribute to innovative application ideas.

Appendix A

Network-modeling DTD Files

This appendix presents the four DTD files used to parse the XML-based models of a

TrailCable network configuration.

A.1 Communication Engine Properties

<!ELEMENT Implementation ANY>

<!ATTLIST Implementation timeResolution NMTOKEN #REQUIRED>

<!ATTLIST Implementation defaultForwardingDelay NMTOKEN #REQUIRED>

<!ATTLIST Implementation defaultLinkPropagationDelay NMTOKEN #REQUIRED>

<!ATTLIST Implementation maximumTasks NMTOKEN #REQUIRED>

<!ATTLIST Implementation deviation NMTOKEN #REQUIRED>

<!ATTLIST Implementation maxPeriodXdeadlineRatio NMTOKEN #REQUIRED>

<!ATTLIST Implementation maximumPeriod NMTOKEN #REQUIRED>

<!ATTLIST Implementation maximumPayloadSize NMTOKEN #REQUIRED>

<!ATTLIST Implementation maximumPacketSize NMTOKEN #REQUIRED>

<!ATTLIST Implementation preemptionHeaderSize NMTOKEN #REQUIRED>

<!ATTLIST Implementation transmissionRate NMTOKEN #REQUIRED>

<!ATTLIST Implementation maxHardwareMemory NMTOKEN #REQUIRED>

<!ATTLIST Implementation maxHostAccessedMemory NMTOKEN #REQUIRED>

151

152 APPENDIX A. NETWORK-MODELING DTD FILES

A.2 Network Topology

<!ELEMENT Graph (Connection+, (NodeInformation | Host)*)>

<!ATTLIST Graph numNodes NMTOKEN #REQUIRED>

<!ATTLIST Graph maxPorts NMTOKEN #REQUIRED>

<!ELEMENT Connection EMPTY>

<!ATTLIST Connection node1 NMTOKEN #REQUIRED>

<!ATTLIST Connection node2 NMTOKEN #REQUIRED>

<!ATTLIST Connection port1 NMTOKEN #REQUIRED>

<!ATTLIST Connection port2 NMTOKEN #REQUIRED>

<!ATTLIST Connection linkPropagationDelay NMTOKEN #IMPLIED>

<!ELEMENT NodeInformation EMPTY>

<!ATTLIST NodeInformation node NMTOKEN #REQUIRED>

<!ATTLIST NodeInformation forwardingDelay NMTOKEN #REQUIRED>

<!ELEMENT Host EMPTY>

<!ATTLIST Host name NMTOKEN #REQUIRED>

<!ATTLIST Host node NMTOKEN #REQUIRED>

<!ATTLIST Host port NMTOKEN #REQUIRED>

A.3 Real-Time Tasks

<!ELEMENT ChannelList (Channel+)>

<!ATTLIST ChannelList graph NMTOKEN #REQUIRED>

<!ATTLIST ChannelList HWproperties NMTOKEN #REQUIRED>

<!ATTLIST ChannelList StaticRoute NMTOKEN #REQUIRED>

<!ATTLIST ChannelList DynamicRoute NMTOKEN #IMPLIED>

<!ELEMENT Channel (TargetHost+)>

<!ATTLIST Channel id NMTOKEN #REQUIRED>

<!ATTLIST Channel sourceHost NMTOKEN #REQUIRED>

<!ATTLIST Channel period NMTOKEN #REQUIRED>

<!ATTLIST Channel payloadSize NMTOKEN #REQUIRED>

<!ATTLIST Channel redundancyMode (0) "0" >

<!ATTLIST Channel clockDomain (0|1|2|3) "0" >

<!ATTLIST Channel sync (0|1) "0" >

<!ATTLIST Channel description CDATA #IMPLIED>

<!ELEMENT TargetHost EMPTY>

<!ATTLIST TargetHost host NMTOKEN #REQUIRED>

<!ATTLIST TargetHost deadline NMTOKEN #REQUIRED>

A.4. Routing 153

A.4 Routing

<!ELEMENT RouteList (ChannelRoute+)>

<!ELEMENT ChannelRoute (Path+)>

<!ATTLIST ChannelRoute channelID NMTOKEN #REQUIRED

defaultRelativeDeadline NMTOKEN #REQUIRED

defaultDestinationTaskID NMTOKEN #REQUIRED>

<!ELEMENT Path EMPTY>

<!ATTLIST Path from NMTOKEN #REQUIRED

to NMTOKEN #REQUIRED

sourcePort NMTOKEN #IMPLIED

relativeDeadline NMTOKEN #IMPLIED

destinationTaskID NMTOKEN #IMPLIED>

Author’s Publications

[1] Francisco, A. L. d. F. A Hardware Implementation of an EDF-based Commu-

nication Protocol. In Proc. of 10th Brazilian Workshop on Embedded and Real-Time

Systems (WTR 2008). Rio de Janeiro, Brazil, May 2008.

[2] Francisco, A. L. d. F. and Diez, M. An EDF-Based, Hard-Real-Time Communi-

cation Engine for Distributed Embedded Systems. In IFIP International Conference

on Network and Parallel Computing (NPC 2006). Tokyo, Japan, October 2006.

[3] Francisco, A. L. d. F. Towards Dynamically Reconfigurable Hard-Real-Time Com-

munication for Embedded Mechatronic Systems. In 36th Annual IEEE/IFIP Interna-

tional Conference on Dependable System and Networks - Student Forum. Philadelphia,

PA, USA, June 2006.

[4] Francisco, A. L. d. F. Resource-Efficient FPGA-Based Priority Queues. In VLSI-

SoC - PhD Forum. Perth, Australia, October 2005.

[5] Francisco, A. L. d. F. and Rammig, F. J. Fault-Tolerant Hard-Real-Time Com-

munication of Dynamically Reconfigurable, Distributed Embedded Systems. In Pro-

ceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time

Distributed Computing. ISORC ’05, Washington, DC, USA, pp. 275–283, IEEE Com-

puter Society. 2005.

[6] Francisco, A. L. d. F., Schulz, B., and Henke, C. Towards a Real-Time Com-

munication Network for Autonomous Rail Vehicles. In From Specification to Embedded

Systems Application (Rettberg, A., Zanella, M. C., and Rammig, F. J., eds.).

Vol. 184 of IFIP International Federation for Information Processing. pp. 245–254,

Springer Boston. 2005.

[7] Francisco, A. L. d. F., Rettberg, A., and Hennig, A. Hardware Design and

Protocol Specification for the Control and Communication within a Mechatronic Sys-

tem. In Distributed and Parallel Embedded Systems. DIPES ’04, Toulouse, France,

pp. 113–122, August 2004.

154

AUTHOR’S PUBLICATIONS 155

[8] Zanella, M. C., Robrecht, M., Francisco, A. L. d. F., Horst, A.,

Lehmann, T., and Gielow, R. S. RABBIT - A Modular Rapid Prototyping Plat-

form for Distributed Mechatronic Systems. In Proceedings of the 14th symposium on

Integrated circuits and systems design. SBCCI ’01, IEEE Computer Society 2001.

Bibliography

[9] Adelt, P., Donoth, J., Geisler, J., Henkler, S., Kahl, S., Klöpper,

B., Münch, E., Oberthür, S., Paiz, C., Podlogar, H., Porrmann, M.,

Radkowski, R., Romaus, C., Schmidt, A., Schulz, B., Voecking, H.,

Witkowski, U., and Witting, K. Selbstoptimierende Systeme des Maschinen-

baus – Definitionen, Anwendungen, Konzepte. No. 234, HNI Verlagsschriftenreihe,

Paderborn 2009.

[10] Ademaj, A., Bauer, G., Sivencrona, H., and Torin, J. Evaluation of Fault

Handling of the Time-Triggered Architecture with Bus and Star Topology. In Proc. of

International Conference on Dependable Systems and Networks (DSN 2003). pp. 123–

132, 2003.

[11] Albers, K. and Slomka, F. Efficient Feasibility Analysis for Real-Time Systems

with EDF Scheduling. In Proceedings of the conference on Design, Automation and

Test in Europe - Volume 1. DATE ’05, Washington, DC, USA, pp. 492–497, IEEE

Computer Society 2005.

[12] Albert, A. Comparison of Event-Triggered and Time-Triggered Concepts with Re-

gard to Distributed Control Systems. Embedded World. pp. 235–252, 2004.

[13] Albert, A., Wolter, B., and Gerth, W. Distinctness of Reaction - Ein Messver-

fahren zur Beurteilung von Echtzeitsystemen (Teil 2). In at - Automatisierungstech-

nik. pp. 445–452, Oldenbourg Wissenschaftsverlag, October 2003.

[14] ARINC. ARINC Specification 429P1-17 Mark 33 Digital Information Transfer Sys-

tem (DITS), Part 1, Functional Description, Electrical Interface, Label Assignments

and Word Formats. 2004.

[15] ARTEMIS Joint Undertaking. “Embedded Systems.”

On-line: http://www.artemis-ju.eu/embedded systems. December 2011.

[16] Avago Technologies. “Inexpensive DC to 32 MBd Fiberoptic Solutions for In-

dustrial, Medical, Telecom, and Proprietary Data Communication Applications. Ap-

plication Note 1121.”

156

BIBLIOGRAPHY 157

[17] Baruah, S. K., Howell, R. R., and Rosier, L. E. Algorithms and Complexity

Concerning the Preemptive Scheduling of Periodic, Real-Time Tasks on One Pro-

cessor. In Real-Time Systems Symposium. Lake Buena Vista, FL, USA, December

1990.

[18] Bayliss, S., Bouganis, C.-S., Constantinides, G. A., and Luk, W. An FPGA

Implementation of the Simplex Algorithm. IEEE International Conference on Field-

Programmable Technology. 2006.

[19] Bini, E. and Buttazzo, G. The space of EDF deadlines: the exact region and a

convex approximation. Real-Time Systems. vol. 41, pp. 27–51, January 2009.

[20] Broy, M. Challenges in automotive software engineering. In Proceedings of the 28th

international conference on Software engineering. ICSE ’06, New York, NY, USA,

pp. 33–42, ACM 2006.

[21] Buttazzo, G. C. Hard Real-time Computing Systems: Predictable Scheduling Al-

gorithms And Applications. Norwell, MA, USA: Kluwer Academic Publishers 2000.

[22] Buttazzo, G. C. Rate monotonic vs. EDF: judgment day. Real-Time Systems,

vol. 29, no. 1, pp. 5–26, 2005.

[23] CAN in Automation e.V. “CAN Newsletter special issue automotive.”

On-line: http://www.can-cia.de/index.php?id=416. 2006.

[24] CAN in Automation e.V., H. “25 years of CAN.”

On-line: http://www.can-cia.de/index.php?id=1344.

[25] Condor Engineering Inc. AFDX / ARINC 664 Tutorial (1500-049). May 2005.

[26] Cook, B. M. and Walker, P. H. SpaceWire and IEEE 1355 Revisited. In Inter-

national SpaceWire Conference. 2007.

[27] Corbet, J., Rubini, A., and Kroah-Hartman, G. Linux Device Drivers, 3rd

Edition. O’Reilly Media, Inc. 2005.

[28] Cristian, F. and Fetzer, C. The Timed Asynchronous Distributed System Model.

In IEEE Transactions on Parallel and Distributed Systems. pp. 603–618, June 1999.

[29] Diestel, R. Graph Theory. Springer-Verlag 2005.

[30] Dolev, D. The Byzantine Generals Strike Again. In Journal of Algorithms. Vol. 3

pp. 14–30, March 1982.

[31] ECSS. SpaceWire - Links, nodes, routers and networks. 2008.

158 BIBLIOGRAPHY

[32] Elmenreich, W., Bauer, G., and Kopetz, H. The time-triggered paradigm. Pro-

ceedings of the Workshop on Time-Triggered and Real-Time Communication. 2003.

[33] Ettingshausen, C., Hestermeyer, T., and Otto, S. Aktive Spurführung und

Lenkung von Schienenfahrzeugen. 6. Magdeburger Maschinenbautage, Intelligente

technische Systeme und Prozesse - Grundlagen, Entwurf, Realisierung. 2003.

[34] FlexRay Consortium. FlexRay Electrical Physical Layer Specification v3.0.1.

2010.

[35] FlexRay Consortium. FlexRay Protocol Specification v3.0.1. 2010.

[36] Freescale Semiconductor Inc. “MPC555: 32-bit Power Architecture Microcon-

troller.”

On-line: http://www.freescale.com/files/microcontrollers/doc/user guide/

MPC555UM.pdf. 2010.

[37] Griese, B. Adaptive Echtzeitkommunikationsnetze. PhD thesis . University of

Paderborn. 2009.

[38] Hart, P. E., Nilsson, N. J., and Raphael, B. Correction to “A Formal Basis

for the Heuristic Determination of Minimum Cost Paths”. SIGART Bull. pp. 28–29,

December 1972.

[39] Henia, R., Hamann, A., Jersak, M., Racu, R., and Kai Richter, R. E.

System Level Performance Analysis - the SymTA/S Approach. ch. 2, pp. 29–72,. The

Institution of Electrical Engineers, London, United Kingdom 2006.

[40] Hestermeyer, T. Strukturierte Entwicklung der Informationsverarbeitung fr die

aktive Federung eines Schienenfahrzeugs. PhD thesis . University of Paderborn. 2006.

[41] IEEE Standards Association. 1355-1995 - IEEE Standard for Heterogeneous In-

terConnect (HIC), (Low-Cost, Low-Latency Scalable Serial Interconnect for Parallel

System Construction). 1995.

[42] IEEE Standards Association. 1588-2008 - IEEE Standard for a Precision Clock

Synchronization Protocol for Networked Measurement and Control Systems. 2008.

[43] IEEE Standards Association. IEEE 802.3-2008 Ethernet. 2008.

[44] International Organization for Standardization. ISO 11898-1:2003 Road

vehicles – Controller area network (CAN) – Part 1: Data link layer and physical

signalling. 2003.

BIBLIOGRAPHY 159

[45] International Organization for Standardization. ISO 11898-4:2004 Road

vehicles – Controller area network (CAN) – Part 4: Time-triggered communication.

2004.

[46] Ioannou, A., Manolis, and Katevenis, M. Pipelined Heap (Priority Queue)

Management for Advanced Scheduling in High-Speed Networks. In In IEEE/ACM

Transactions on Networking. pp. 2043–2047, 2001.

[47] Janssen, D. and Büttner, H. EtherCAT Der Ethernet-Feldbus. Elektronik.

vol. 23 2003.

[48] Jasperneite, J. and Gamper, S. Echtzeit-Betrieb im Ethernet - Industrial Eth-

ernet Switches auf dem Prüfstand - Teil1. Elektronik. vol. 7, pp. 50–92, Apr 2007.

[49] Jasperneite, J. and Gamper, S. Echtzeit-Betrieb im Ethernet - Industrial Eth-

ernet Switches auf dem Prüfstand - Teil2. Elektronik. vol. 16, pp. 60–65, Aug 2007.

[50] Kandlur, D. D. and Shin, K. G. Design of a Communication Subsystem for

HARTS. Tech. Rep. 1991.

[51] Kandlur, D. D., Shin, K. G., and Ferrari, D. Real-Time Communication in

Multi-Hop Networks. In Proceedings of the 11th International Conference on Dis-

tributed Computing Systems (ICDCS). Washington, DC, pp. 300–307, IEEE Com-

puter Society May 1991.

[52] Kastensmidt, F. L., Carro, L., and Reis, R. Fault-Tolerance Techniques for

SRAM-Based FPGAs. Springer 2006.

[53] Kim, B. K. and Shin, K. G. Scalable hardware earliest-deadline-first scheduler for

ATM switching networks. In IEEE Real-Time Systems Symposium. pp. 210–, 1997.

[54] Kim, T., Shin, H., and Chang, N. Deadline Assignment To Reduce Output Jitter

Of Real-Time Tasks. In IP Project, www.itpolicy.gsa.giv. pp. 67–72, 2000.

[55] Koopman, P. and Chakravarty, T. Cyclic Redundancy Code (CRC) Polynomial

Selection For Embedded Networks. In DSN ’04: Proceedings of the 2004 International

Conference on Dependable Systems and Networks (DSN’04). Washington, DC, USA,

p. 145, IEEE Computer Society June 2004.

[56] Kopetz, H. and Ochsenreiter, W. Clock synchronization in distributed real-time

systems. IEEE Trans. Comput. vol. 36, pp. 933–940, August 1987.

[57] Kopetz, H. Real-Time Systems: Design Principles for Distributed Embedded Ap-

plications. Norwell, MA, USA: Kluwer Academic Publishers. 1st ed. 1997.

160 BIBLIOGRAPHY

[58] Kopetz, H., Ademaj, A., Grillinger, P., and Steinhammer, K. The Time-

Triggered Ethernet (TTE) Design. In Proceedings of the Eighth IEEE International

Symposium on Object-Oriented Real-Time Distributed Computing. ISORC ’05, Wash-

ington, DC, USA, pp. 22–33, IEEE Computer Society 2005.

[59] Lamport, L., Shostak, R., and Pease, M. The Byzantine Generals Problem.

ACM Transactions on Programming Languages and Systems, pp. 382–441, July 1982.

[60] Liu, C. L. and Layland, J. W. Scheduling Algorithms for Multiprogramming in a

Hard-Real-Time Environment. Journal of the ACM, vol. 20, no. 1, pp. 46–61, 1973.

[61] Liu, J. W. S. Real-Time Systems. Prentice Hall. 2000.

[62] LTi Drives GmbH. “Drive Manager 3.”

On-line: http://drives.lt-i.com/Produkte/PC-Bedienoberflaeche/

DRIVE-MANAGER-3/4123/ 2010.

[63] Lundelius, J. and Lynch, N. A new fault-tolerant algorithm for clock synchroniza-

tion. In PODC ’84: Proceedings of the third annual ACM symposium on Principles

of distributed computing. New York, NY, USA, pp. 75–88, ACM Press. June 1984.

[64] Masrur, A., Drössler, S., and Färber, G. Improvements in Polynomial-Time

Feasibility Testing for EDF. In Proceedings of the Conference on Design, Automation

and Test in Europe (DATE). Munich, Germany, 2008.

[65] Michel Berkelaar, Kjell Eikland, P. N. Open source (mixed-integer) linear

programming system - lp solve. May 2004.

[66] Moore, S. W. and Graham, B. T. Tagged up/down sorter - A hardware priority

queue. The Computer Journal. vol. 38, pp. 695–703, 1995.

[67] Murata, Y., Kogo, T., and Yamasaki, N. A SpaceWire Extension for Dis-

tributed Real-Time Systems. In International SpaceWire Conference. 2010.

[68] Neue Bahntechnik Paderborn. “RailCab.” On-line: www.railcab.de. 2006.

[69] Parkes, S. and Ferrer, A. SpaceWire-RT. In International SpaceWire Confer-

ence. 2008.

[70] Pedreiras, P., Almeida, L., and Gai, P. The FTT-Ethernet Protocol: Merg-

ing Flexibility,Timeliness and Efficiency. In Proceedings of the 14th Euromicro Con-

ference on Real-Time Systems. Washington, DC, USA, pp. 152–, IEEE Computer

Society 2002.

BIBLIOGRAPHY 161

[71] PHYTEC Messtechnik GmbH. “phyCORE-MPC555 System on Module.”

On-line: http://www.phytec.com/products/som/PowerPC/

phyCORE-MPC555.html 2010.

[72] Pottharst, A., Henke, C., Schneider, T., Böcker, J., and Grotstollen,

H. Drive Control and Position Measurement of RailCab Vehicles Driven by Lin-

ear Motors. Int. Symposium on Instrumentation and Control Technology (ISICT),

Beijing, China. 2006.

[73] Pottharst, A. Energietechnik und Leittechnik einer Anlage mit Linearmotor

getriebenen Bahnfahrzeugen. PhD thesis . University of Paderborn. 2005.

[74] PROFIBUS Nutzerorganisation e.V. “PROFINET Overview.”

On-line: http://www.profibus.com/technology/profinet/overview/ 2010.

[75] Rexford, J. and Shin, K. G. Scalable hardware priority queue architectures for

high-speed packet switches. In IEEE Transactions on Computers. pp. 1215–1227,

IEEE 1997.

[76] Robert Bosch Gmbh. “FlexRay Communication Controller IP.”

On-line: http://www.semiconductors.bosch.de/en/ipmodules/flexray/flexray.asp.

2010.

[77] SAE International. Class C Application Requirement Considerations - J2056/1.

1993.

[78] Sawyer, N. Data Recovery. Application Note XAPP224. tech. rep. Xilinx, Inc 2005.

[79] Schneider, T., Schulz, B., Henke, C., and Böcker, J. Redundante Position-

serfassung für ein spurgeführtes linearmotorgetriebenes Bahnfahrzeug. Workshop En-

twurf mechatronischer Systeme, Heinz-Nixdorf-Institut, Universitt Paderborn 2006.

[80] Short, M. The Case For Non-preemptive, Deadline-driven Scheduling In Real-time

Embedded Systems. World Congress on Engineering. 2010.

[81] Siemens AG. PROFINET Systembeschreibung. 2008.

[82] Spuri, M., Buttazzo, G., and Anna, S. S. S. Scheduling Aperiodic Tasks in

Dynamic Priority Systems. Real-Time Systems, vol. 10, pp. 179–210, 1996.

[83] Telecommunications Industry Association. Electrical Characteristics of Low

Voltage Differential Signaling (LVDS) Interface Circuits. February 2001.

[84] TTTech Computertechnik AG. TTP/C Protocol Specification. 2003.

162 BIBLIOGRAPHY

[85] Turek, J. and Shasha, D. The Many Faces of Consensus in Distributed Systems.

Computer, vol. 25, pp. 8–17, June 1992.

[86] Vienna University of Technology, Real-Time Systems Group. “TTP/C

Project.” On-line: http://www.vmars.tuwien.ac.at/projects/ttp/ttpc.html.

[87] Widmer, A. X. and Franaszek, P. A. A DC-Balanced, Partitioned-Block,

8B/10B Transmission Code. IBM Journal of Research and Development, vol. 27,

no. 5, pp. 440–451, 1983.

[88] Wolter, B., Albert, A., and Gerth, W. Distinctness of Reaction - Ein Messver-

fahren zur Beurteilung von Echtzeitsystemen (Teil 1). In at - Automatisierungstech-

nik. pp. 396–403, Oldenbourg Wissenschaftsverlag September 2003.

[89] Xilinx Inc. “ISE Design Suite Version 12.3.”

On-line: http://www.xilinx.com/tools/designtools.htm. 2010.

[90] Xilinx Inc. “Spartan-2 FPGA Family.”

On-line: http://www.xilinx.com/support/documentation/spartan-ii.htm. 2010.

[91] Xilinx Inc. “Spartan-3 FPGA Family.”

On-line: http://www.xilinx.com/support/documentation/spartan-3.htm. 2010.

[92] Xilinx Inc. “Spartan-6 FPGA Family.”

On-line: http://www.xilinx.com/support/documentation/spartan-6.htm. 2010.

[93] Xilinx Inc. “Virtex-E FPGA Family.”

On-line: http://www.xilinx.com/support/documentation/virtex-e.htm. 2010.

