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Abstract

The maintenance of component-based software systems requires up-to-date
models of their concrete architecture, i.e. the architecture that is realised in
the source code. These models help in systematically planning, analysing and
executing typical reengineering activities.

Often no or only outdated architectural models of such systems exist. There-
fore, various reverse engineering methods have been developed which try to
recover a system’s components, subsystems and connectors. However, these
reverse engineering methods are severely impacted by design deficiencies in the
system’s code base, especially violations of the component encapsulation. As
long as design deficiencies are not considered in the reverse engineering process,
they reduce the quality of the recovered component structures.

Despite this impact of design deficiencies, no existing architecture recon-
struction approach explicitly integrates a systematic deficiency detection and
removal into the recovery process.

Therefore, I have developed Archimetrix. Archimetrix is a tool-supported
architecture reconstruction process. It enhances a clustering-based architecture
recovery approach with an extensible, pattern-based deficiency detection. After
the detection of deficiencies, Archimetrix supports the software architect in
removing the deficiencies and provides the means to preview the architectural
consequences of such a removal. I also provide a process to identify and formalise
additional deficiencies.

I validated the approach on three case studies which show that Archimetrix
is able to identify relevant deficiencies and that the removal of these deficiencies
leads to an increased quality of the recovered architectures, i.e. they are closer
to the corresponding conceptual architectures.
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Zusammenfassung

Für die Wartung komponenten-basierter Software werden aktuelle Modelle ihrer
konkreten Architektur, d.h. der Architektur, welche im Quellcode umgesetzt
wurde, benötigt. Diese Modelle unterstützen den Software-Architekten bei
der Planung, der Analyse und der Ausführung von typischen Reengineering-
Aktivitäten.

Allerdings existieren häufig keine oder nur veraltete Architekturmodelle sol-
cher Software-Systeme. Daher wurden in der Vergangenheit zahlreiche Reverse-
Engineering-Verfahren entwickelt, welche dazu dienen, die Komponenten, Sub-
systeme und Konnektoren komponenten-basierter Software wiederzuerkennen.
Allerdings werden diese Reverse-Engineering-Verfahren durch Schwachstellen
im Quellcode – vor allem durch Schwachstellen, die die Kapselung von Kom-
ponenten verletzen – stark beeinflusst. Werden solche Schwachstellen bei der
Wiedergewinnung von Architekturmodellen nicht berücksichtigt, können sie die
Qualität der erkannten Komponentenstrukturen erheblich verringern.

Trotz dieses signifikanten Einflusses von Schwachstellen, werden diese im
Erkennungsprozess existierender Architektur-Rekonstruktions-Verfahren bisher
nicht berücksichtigt.

Zur Lösung dieses Problems habe ich im Rahmen dieser Arbeit Archimetrix
entwickelt. Archimetrix ist ein werkzeuggestütztes Architektur-Rekonstruktions-
Verfahren. Es erweitert einen bestehenden, clustering-basierten Architektur-
Rekonstruktions-Ansatz um ein erweiterbares, muster-basiertes Verfahren zur
Schwachstellenerkennung. Nach der Schwachstellenerkennung unterstützt Ar-
chime-trix den Software-Architekten zusätzlich bei der Entfernung der gefunde-
nen Probleme und ermöglicht es ihm, die Auswirkungen der Entfernung auf die
Software-Architektur des Systems zu analysieren. Außerdem beschreibt diese
Arbeit einen Prozess zur Identifikation, Dokumentation und Formalisierung von
Schwachstellen.

Archimetrix wurde an drei Fallstudien evaluiert, welche zeigen, dass Archime-
trix zuverlässig relevante Schwachstellen identifizieren kann und dass die Ent-
fernung dieser Schwachstellen die Qualität der rekonstruierten Architekturen
erhöht, d.h. dass diese Architekturen besser mit den ursprünglich dokumen-
tierten Architekturen übereinstimmen.

III





Danke

Viele Menschen glauben, dass Informatiker lichtscheue Einzelgänger sind, die
in ihrem stillen Kämmerlein vor dem Bildschirm hocken und direkten Kontakt
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mir nicht nur die Möglichkeit gegeben, diesen Weg zu gehen, sondern er hat auch
in seiner Arbeitsgruppe ein Umfeld geschaffen, in dem man gemeinschaftlich
und ohne überflüssiges Konkurrenzdenken miteinander forschen und arbeiten
kann. Ich habe mich hier in den vergangenen fünf Jahren sehr wohl gefühlt.

Ich danke auch den weiteren Mitgliedern meiner Prüfungskommission, Ralf
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Insbesondere möchte ich den Kollegen danken, mit denen ich im Laufe der
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besten Brüder der Welt, sowie an Janin, Sabrina und Pia. Auch meine Omas,
Anneliese und Ursula, sowie die gesamte weitere Verwandtschaft – zu zahlreich
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1. Introduction

Business information systems are one of the most pervasive, but also most
diverse, classes of software in our world. These systems support the daily
operation of many companies. They are used in a variety of tasks, including
human-resource management, process control, and accounting.

Business information systems have to perform complex tasks, addressing a
large number of requirements. Therefore, they are often large and complex
pieces of software consisting of millions of lines of code. This leads to high costs
in the creation and maintenance of these systems.

One way to address the complexity of these systems is the use of the component-
based software engineering (CBSE) paradigm [SGM02]. In CBSE, systems
are composed of ready-made, independently deployable software components.
These components can be connected to each other and communicate via well-
defined interfaces. This way, the complex functionality of the software can be
structured and distributed to a number of components. Third-party compo-
nents for specific tasks can be bought off-the-shelf and previously developed
components can be reused.

1.1. Evolution of Business Information Systems

An important trait of business information systems is their long life-span. They
are in use for many years, sometimes even as long as twenty or thirty years.
Systems that are critical for the operation of a business, such as process control
systems or banking software, cannot be easily exchanged or shut down. The
failure of such a system might cause high financial losses. In the case of process
control software, e.g. in a chemical plant, it might even incur danger to human
life. Nevertheless, new requirements or the discovery of programming errors
often necessitate the maintenance or extension of these crucial systems. This
activity is called software evolution [Leh80, Art88, MD08]. Software evolution
accounts for a significant part of the total cost of a software system. According
to different studies, it is responsible for 40% to 90% of the total cost of software
development [LS80, Gla03, Som10].

Based on these observations, Lehman phrased his famous laws of software
evolution [Leh80, Leh96]. The first law states that a system “[...] must be
continually adapted else it becomes progressively less satisfactory [...]” [Leh80].
The constant change in the software over time leads to a phenomenon de-
scribed as software aging [Par94], design erosion [vGB02], or architectural drift
[RLGB+11]. This stepwise decline of software quality is caused by different
factors: changes and extensions often have to be carried out under a high time
and cost pressure, the existing documentation of the software may be insuffi-
cient, or the maintenance activity may have been delegated to inexperienced
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developers. Whatever the cause, design erosion leads to the fact that deficien-
cies are introduced into the software, the original architecture of the software
gradually becomes distorted, and the source code becomes more and more clut-
tered and obfuscated. Reussner and Hasselbring describe this as the ’piggyback
syndrome’ :

“Gerade weil es so kostspielig ist, Software-Architekturen zu mod-
ifizieren, werden diese häufig nicht angepasst und stattdessen neue
Funktionalität in nicht optimaler Form hinzugefügt. Dadurch entste-
hen Software-Systeme mit dem ’Huckepack’-Syndrom:

• Viele Funktionalitäten wurden nachträglich, oft unter Umge-
hung der vorgesehenen, aber nicht ganz adäquaten Schnittstellen
und durch Verletzung von Datenkapselungen, dem System hinzugefügt,

• Code wird teilweise nicht mehr genutzt oder ist in ähnlicher
Form doppelt vorhanden,

• Code ist nicht in der Kompaktheit und für die Effizienz for-
muliert, wie es möglich wäre.”

[RH06, p. 134] 1

Design erosion, in turn, complicates future extensions: Normally, a high-
quality software architecture is required for an effective reengineering. Design
erosion, on the other hand, reduces the quality of a system. The quality of
the software in this case is measured in terms of the compliance to generally
accepted design principles. For example, system elements should exhibit low
coupling and high cohesion [CK94] and components should communicate via
their interfaces [SGM02]. If the existing architecture violates these principles,
this impedes software architect’s understanding of the system and may lead to
the introduction of even more problems or bugs. It leads to a vicious circle in
which bad software quality gives rise to new problems that further decrease the
quality. Lehman describes this problem in his seventh law: “The quality of E-
type systems2 will appear to be declining unless they are rigorously maintained
and adapted to operational environment changes” [Leh96].

Thus, maintenance can mitigate the negative effects of design erosion. As
Bourquin and Keller argue, this does not only improve the architectural quality
but it also reduces costs:

1Translation from German: “Since it is so expensive to modify software architectures, they
are often not adapted. New functionality in sub-optimal form is added instead. This leads
to software systems with the ’piggyback’ syndrome:

• A lot of functionality is added to the system retroactively, often neglecting the provided,
not entirely adequate interfaces and breaking the data encapsulation.

• Code is partially not used anymore or is duplicated with minor differences.

• Code is not written as succinctly and as efficiently as possible.”

2E-type systems in the sense of Lehman are systems which are part of the real world in
contrast to simple algorithms.
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“Solving those [architectural] problems leads to improvements that
ultimately help reducing costs, including:

• Further actions of perfective maintenance are facilitated.

• Extensions of the application are easier to develop and show a
lower defect rate.

• Existing components of the application are easier to reuse.”

[BK07]

A large number of different architecture maintenance and reengineering ap-
proaches exists already. Many of them require an in-depth understanding of
the system. In order to detect architectural problems and design erosion, the
software architect has to know the software architecture that was intended by
the original developers. Many of the existing approaches like reflexion mod-
eling [MNS01, KLMN06], expect the developer to have at least some kind of
understanding of the system [PTV+10]. Sometimes, a complete architectural
description is needed [TGLH00, LTC02]. If no such description is available,
these techniques cannot be applied.

The architectural description on which the aforementioned approaches are
based on is supposed to stem from the original development, or it has to be
created ex-post by an expert. This is often an unrealistic assumption because
the architecture description is insufficient or incomplete in many cases and the
original developers are not available anymore [BM06].

1.2. Reverse Engineering of Software Architectures

If neither experts nor sufficient, up-to-date documentation are available, the
software architect’s only starting point for understanding the system is the
source code itself. However, since business information systems often consist of
several millions of lines of code, it is infeasible to read all the code in order to
understand the system. Instead, an automatic approach to extract information
from the source code is necessary. As the architecture of the system is a good
starting point for developing an understanding, it is often the first artefact
that is extracted. This process is called architecture reconstruction [DP09] or
architecture recovery [MEG03].

To support software architects in the task of understanding a system, many
(semi-) automatic approaches have been proposed over the years. They have dif-
ferent goals and carry out their analyses at different levels of abstraction. Sartipi
argues that “[... i]n a nutshell, the existing approaches to software architectural
recovery can be classified as clustering-based techniques and pattern-based tech-
niques [...]” [Sar03]. Reussner and Hasselbring also mention knowledge-based
reverse engineering as a third technique [RH06, p. 153].

Clustering-based techniques try to reconstruct the architecture of software
systems by grouping the contained entities (e.g. classes or modules) into com-
ponents. The grouping is determined by some measure of similarity between
these entities [Lak97]. For example, a simple similarity metric would be the
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number of relations between two classes: Classes that have many relations are
grouped together. Ducasse and Pollet present an overview of these approaches
[DP09], and categorize them along different taxonomy axes. Due to the use
of metrics, which can be efficiently measured, clustering-based approaches are
usually very scalable. However, this advantage comes at the cost of abstrac-
tion. For example, the aforementioned number of relations metric does not
distinguish different kinds of relations, e.g. references and inheritance. There-
fore, clustering-based techniques cannot recover the intent of the clusters they
reconstruct [DP09].

In contrast, pattern-based techniques have the goal of detecting certain re-
curring structures, so-called patterns, in the system. The rationale behind this
idea is that the implementation of a certain pattern is linked to a specific de-
sign intent, the knowledge of which will enhance an engineer’s understanding
of the system. The most famous collection of software patterns are the Design
Patterns which are described in the seminal book by Gamma et al. [GHJV95].
In the following years, many other pattern collections have been proposed for
different domains [ACM01, BHS07, SSRB00] and different levels of abstraction
[Bec07, BMR+96, GM05]. Dong et al. give an overview of different automatic
pattern detection approaches [DZP09]. In contrast to clustering-based tech-
niques, pattern-based approaches usually take more detailed information into
account. Thereby, they can deliver more precise results but are less scalable
than clustering-based techniques [SSL01, BT04a].

Knowledge-based reverse engineering attempts to recover complete semantic
architecture descriptions by recognizing pre-defined clichés in control and data
flow graphs. However, the automated creation of complete semantic documen-
tation has by now been largely deemed infeasible [RH06, p. 153].

1.3. Problem Statement

The properties of business information systems discussed in Section 1.1 lead
to several problems in the application of state-of-the-art reverse engineering
approaches.

1. Architecture reconstruction is based on invalid assumptions for long-living
business information systems As described above, business information sys-
tems have a long life-span and have to be constantly adapted and evolved.
If no up-to-date architectural documentation is available, it has to be recon-
structed first in order to enable a system adaptation. However, state-of-the-art
architecture reconstruction techniques are based on the assumption that certain
component-based design rules and principles have been adhered to during the
development of such a system. For example, it is assumed that components
communicate only via their interfaces. Even if this is true in the initial release
of a system, software aging and design erosion can lead to the neglect of these
principles.

In that case, architecture reconstruction techniques yield adulterated results
because their assumptions are invalid for the system under analysis. In this
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thesis, I call these architecture-related problems which influence architecture
reconstruction techniques design deficiencies.

2. Deficiency detection does not scale without proper focus Design defi-
ciencies such as the neglect of component-based design principles can in prin-
ciple be detected through the application of pattern-based reverse engineering
techniques. However, the application of such approaches to complex business
information systems is impractical. Business information systems often consist
of millions of lines of code but pattern-based reverse engineering approaches do
not scale well [SSL01, BT04a]. Without information about the system archi-
tecture, the software architect cannot focus the deficiency detection of smaller
parts of the system.

3. Pattern detection results are not manageable Another problem of pattern
detection approaches is that they can yield hundreds or thousands of detection
results [TSG04]. In contrast to a reconstructed architecture, which attempts to
provide a coherent overview of the system’s components and their connections,
pattern occurrences are unconnected. Each detected pattern occurrence stands
for itself and the software architect may have a hard time to distinguish the
relevant occurrences from the less relevant, incomplete or incorrect ones [GD12].
Many existing approaches require an expert to validate detected problems and
provide additional insight [SPL03, KOV03]. Even if such an expert is available,
he has to examine the detected occurrences one by one which is very tedious.

1.4. Solution Overview

To solve the problems identified in the previous section, I propose an approach
called Archimetrix. Archimetrix combines clustering-based and pattern-based
techniques to allow for a scalable analysis of component-based software systems.
This section gives an overview of the approach and explains how it solves the
previously identified problems.

Figure 1.1 illustrates the reengineering process with Archimetrix. The process
begins with the clustering-based architecture reconstruction in Step 1 which
reconstructs an initial software architecture of the system. The architecture
consists of a number of components and their connections. In Step 2, the com-
ponents that were reconstructed are analysed with respect to their likelihood of
containing design deficiencies. Components that are likely to contain such defi-
ciencies are regarded as relevant for Step 3, the design deficiency detection. The
pattern-based detection is executed for a relevant subset of the reconstructed
components (as opposed to carrying out the detection on the whole system)
which improves its scalability. The results of the deficiency detection are then
analysed and ranked in Step 4, the design deficiency ranking. This step pri-
oritises the detected deficiency occurrences with respect to their influence on
the reconstructed architecture. The software architect can then decide which
of those deficiency occurrences are to be removed in Step 5, the deficiency
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3. Design Deficiency 
Detection

1. Architecture 
Reconstruction

2. Component
Relevance  Analysis

5. Deficiency 
Removal

4. Design 
Deficiency Ranking

Figure 1.1.: Overview of the reengineering process with Archimetrix

removal. After the removal, Step 1 is repeated. The newly reconstructed archi-
tecture may now differ from the initially reconstructed one because the removed
deficiency occurrences no longer influence the clustering. From here, the soft-
ware architect can either end the process or can repeat it, thereby iteratively
improving the architecture.

The suggested process solves the problems discussed in Section 1.3 as follows:

1. Reconstruction of an architectural description Archimetrix uses a stan-
dard clustering approach to reconstruct the software architecture of a given
system. This allows a software architect to get an overview of a system even if
no other information sources are available, e.g. an architecture documentation
or the original developers.

2. Detection of design deficiencies which influence the architecture recon-
struction A major problem of clustering techniques is the influence of the
reconstructed software architecture by design deficiencies. Bourquin and Keller
observe that design erosion and architecture violations are “[...] an architecture
smell3 whose detection can largely be automated and which has proven to be key
to high-impact refactorings [...]” [BK07]. However, techniques that detect such
problems often require an architectural representation of the software system
which is not available in many cases [BM06]. The use of clustering techniques in
Archimetrix provides exactly such a representation which allows for the detec-
tion and removal of design deficiencies. Subsequent architecture reconstruction
attempts may then yield a different architecture that is less influenced.

3. Relevance analysis identifies good candidate components for the defi-
ciency detection Many pattern detection techniques suffer from scaling issues

3The authors use the term ’architecture smell’ following the definition by Roock and Lippert.
Roock and Lippert explain that smells indicate conspicuous features in a system and that
architecture smells therefore may lead to extensive refactorings [RL04].
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in large systems. The Archimetrix process arranges for the deficiency detection
to be executed after an initial clustering. This allows the software architect to
select components from the reconstructed architecture and focus the deficiency
detection to this selection. The component relevance analysis determines which
components are a worthwhile input for the deficiency detection.

4. Deficiency ranking identifies the most severe problems Even if the detec-
tion scope of the deficiency detection is limited by the selection of components,
the detection can possibly yield a large number of results [TSG04]. Archimetrix
ranks these detected deficiency occurrences according to several criteria, and
thereby determines which deficiency occurrences are the most severe. The soft-
ware architect can then concentrate on the removal of these critical deficiency
occurrences.

1.5. Application Scenarios

Archimetrix can be employed in a number of different application scenarios.
This section provides an overview of how Archimetrix can support them.

Architecture improvement and documentation In this main application sce-
nario of Archimetrix, the software architect wants to reconstruct an unadul-
terated architectural model of the system under analysis. In order to
obtain this model, the architect detects and removes design deficiencies
which would otherwise influence the architecture reconstruction. By ex-
ecuting multiple iterations of architecture reconstruction and deficiency
removal, the software architect can successively improve (1) the under-
standing of the system and (2) the architecture of the system by remov-
ing the deficiencies. Afterwards, the architecture of the system is formally
documented in the reconstructed model. This can be the basis for a num-
ber of further maintenance activities discussed in the following.

Improved modularisation Once the component-based architecture of the sys-
tem under analysis has been reconstructed, single components from the
created architecture can be extracted and reused in other systems [BPD12].
This can be an important use case for the reengineering of legacy systems
as well as for the creation of software product lines [KK11].

Architecture reengineering When components are identified, the system can
be reengineered better. For example, components can be adapted in-
dependently once their boundaries are known to the software architect.
They can also be replaced by components off-the-shelf (COTS) or can
be adapted to new paradigms (e.g. service-oriented architecture [OSL05,
UZ09, EFH+11a, FHR11a]) or new technology, like cloud computing [FH10]
or web technology [ACL05, Zdu05].

Creation of analysis models The reconstructed model consists of components
in the strict sense of Szyperski’s component definition [SGM02]. It en-
ables the reconstruction of hierarchical component architectures. Thus,
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it enables the creation of analysis models which can serve as an input for
further analyses, e.g. for a performance prediction approach [BKR09].

Architecture conformance checking The reconstructed architecture can also
be used for conformance checking. Once a satisfying architecture has been
reconstructed, it can be used as a reference point for future development.
When future extension and adaptation necessitate changes to the system,
the resulting architecture can always be compared to this recovered archi-
tecture in order to check whether the changes caused the architecture to
erode. This way, appropriate countermeasures, e.g. a refactoring, can be
arranged. (Reussner and Hasselbring compare this scenario to construc-
tion surveillance from the engineering domain [RH06, p. 19].)

1.6. Scientific Contributions

This thesis is concerned with the following research questions:

RQ1 Do design deficiencies that stem from the neglect of component-based
design principles influence architecture reconstruction techniques?

RQ2 Can the integration of pattern detection techniques into the architecture
reconstruction process help in detecting such an influence?

RQ3 How can relevant design deficiencies be discovered, documented, and for-
malised?

RQ4 How can detected deficiencies be removed and can the influence of the
removal on the architecture be predicted?

RQ5 Can architecture reconstruction techniques be helpful in mitigating the
scalability issues of pattern detection techniques?

By answering these questions, this thesis provides support in retaining high-
quality software architectures in the code base of business information systems.
Thereby it enables software architects to use standard architecture reconstruc-
tion techniques whose utility would be otherwise limited due to design defi-
ciencies. This paves the way for further reengineering tasks which rely on the
availability of precise architecture documentation.

Note that this thesis does not present new design principles for the develop-
ment of component-based systems. The principles whose neglect is examined in
this thesis are rather a selection of commonly accepted design principles from
literature [ACM01, SGM02, Fow02].

1.7. Example System

In this section, I present a fictional business information system. It is a component-
based trading system which will serve as an example system throughout this
thesis. Figure 1.2 shows the trading system’s architecture.
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Figure 1.2.: An example business information system

The system consists of eight components. Its central parts are the two compo-
nents Accounting and Store. They are complemented by components for typical
tasks such as Logistics, Payment, Controlling, Database management, Network infras-
tructure, and user interface (UI). The architecture of the system is intentionally
simplified and is only used for illustrative purposes. However, it strongly resem-
bles the architecture of the Common Component Modeling Example (CoCoME)
[RRMP08]. CoCoME also represents a component-based trading system which
was designed as a benchmark for architecture analyses approaches. It is used
for the validation of Archimetrix in Chapter 10.

1.8. Structure

The thesis is structured into twelve chapters. Chapter 2 lays the foundation
for the remainder of the thesis, and discusses related work. Chapter 3 clarifies
the notion of design deficiencies, and introduces the Transfer Object Ignorance
design deficiency as a running example. The Archimetrix process is presented
in Chapter 4. Chapter 5 explains how the architecture reconstruction approach
used in Archimetrix works. It also analyses the influence of design deficiency oc-
currences on the architecture reconstruction with clustering-based techniques.
Chapters 6 to 9 deal with the different steps of the Archimetrix process: While
the component relevance analysis is treated in Chapter 6, the deficiency de-
tection and its extensions are discussed in Chapter 7. Chapter 8 illustrates
the ranking of deficiency occurrences. Chapter 9 presents the removal of defi-
ciency occurrences. The whole approach is validated in Chapter 10. Finally,
Chapter 11 concludes the thesis, and discusses possible future work.

The appendices contain technical information. Appendix A presents the var-
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ious meta models that are the foundation for the analyses and transformations
in Archimetrix. While Chapters 3 to 9 use one running example of a design
deficiency, Appendix B contains detailed descriptions of all deficiencies used in
the validation. Finally, Appendix C documents the metric weights used in the
different validation scenarios.
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This chapter presents the foundations of this thesis and discusses related work.

Software Architecture
Reconstruction

(Section 2.1)
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(Section 2.2)

Refactoring &
Reengineering
(Section 2.3)

Problem 
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(Section 2.5)

Architecture 
Reengineering
(Section 2.6)

Hybrid 
Reverse 

Engineering 
Approaches
(Section 2.4)

Archi-
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Figure 2.1.: Overview of the research areas related to this thesis

Figure 2.1 illustrates the different research areas that form the basis of
this thesis: software architecture reconstruction (SAR), pattern detection, and
refactoring and reengineering. Archimetrix combines these three areas and is
therefore depicted at their intersection in the centre of Figure 2.1. This chapter
presents the terminology and the gives a brief overview of each of this areas in
Sections 2.1 to 2.3.

There is currently no approach that combines SAR, pattern detection, and
reengineering as Archimetrix does. Therefore, the most closely related works
lie in the intersections of two of the research areas.

There are several approaches which propose to combine SAR with pattern
detection. These hybrid reverse engineering approaches are discussed in Sec-
tion 2.4. As the detection of design problems in a system indicates reengineering
opportunities, it is self-evident to augment pattern detection techniques with
the means to remove detected problems. Section 2.5 explains these approaches.
Finally, there is a lot of work that focuses on recovering the architecture of
legacy systems in order to maintain, reengineer, or migrate them. Section 2.6
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investigates approaches in this area, grouping them into the sub areas of archi-
tecture conformance checking, architecture migration and modernisation, and
architecture modularisation.

2.1. Software Architecture Reconstruction

Taylor et al. motivate software architecture reconstruction as follows:

“A good architectural model offers the basis for maintaining in-
tellectual control of the application. If no architectural model is
available, or if the model in existence is not consistent with the
implementation, then the activity of understanding the application
must proceed in a reverse-engineering fashion. That is, understand-
ing the application will require examination of the source code and
recovery of a model that provides adequate intellectual basis for
determining how the needed changes can be made.” [TMD09]

Consequently, an architectural model is the starting point for the understand-
ing of a software system and also the basis for reengineering activities. Ever
since the influential book by Shaw and Garlan [SG96], the topic of software
architecture has attracted a lot of research interest. Therefore, a diverse vo-
cabulary has developed over the years. The following section defines the most
common architecture-related terms that are used in this thesis. Afterwards, an
overview of the methodology of SAR is given, followed by a description of the
integration of SAR in Archimetrix.

2.1.1. Terminology

This section presents the terminology which is used in this thesis with respect
to software architecture in general and its reconstruction in particular.

Software Architecture The IEEE defines the term software architecture as
follows:

“The fundamental organization of a system embodied in its com-
ponents, their relationships to each other, and to the environment,
and the principles guiding its design and evolution.” [IEE00]

It is important to note that for a given system, there is no such thing as the
correct architecture. As there are different stakeholders with different concerns,
there are also different viewpoints of the architecture. In the context of software
architecture reconstruction most often a static viewpoint is assumed which is
confined to the recovery of system’s components and their connections.

Software component The term software component has been used in many
approaches, projects, and standards, yet there is no universally accepted defi-
nition what a software component is.

The definition of a software component used in this thesis is in line with the
definition by Szyperski:
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“A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A soft-
ware component can be deployed independently and is subject to
composition by third parties.” [SGM02, p. 34]

The components Szyperski describes are typically used in business informa-
tion systems. They have clearly defined interfaces and are solely communicating
via those interfaces. Interfaces define a number of operations and operations
exchange data only via so-called data transfer objects, i.e. objects which only
have fields of primitive types like integer. This leads to a clear decoupling
of components and promotes component encapsulation, interchangeability, and
reuse. It also increases the maintainability of the architecture.

There are a number of frameworks available which make components (and
sometimes also their connectors) first-class entities in the software development
process. On the one hand, there are commercial frameworks which were (at
least for the most part) developed in industry. Examples include Microsoft’s
COM [Mic12], CORBA [Obj06], and SCA [MR09]. On the other hand, there
are several academic approaches, for example Palladio [BKR09], FRACTAL
[BCL+06], and SOFA [BHP06]. A comparison of these frameworks is outside of
the scope of this thesis. The survey by Lau and Wang [LW07] is a good starting
point, however. It is also possible to mimic architecture concepts in languages
that have no dedicated support for it (e.g. in Java).

A component is an entity of the architecture level and therefore more ab-
stract than entities on the implementation level, like classes. A component can
comprise a number of implementation level entities. In that case, it is called
primitive component. A component can also be recursively composed of other
components in which case it is referred to as a composite component.

Note that this notion of a component is different from the definition of com-
ponents in other approaches like the one by Keller and al. [KSRP99] where each
class is viewed as a component of the software. It also differs from the notion
used in embedded systems where components are often active and communicate
via asynchronous message-passing.

Concrete Architecture According to the taxonomy by Ducasse and Pollet,
the concrete architecture of a software is the “[...] architecture that is derived
from the source code [...]” [DP09]. It must be noted that this derivation process
always introduces a certain degree of inaccuracy into the derived architecture.
This may be due to human misjudgement, to the imprecision of automated
heuristic analyses, or because of deliberate abstraction steps. Therefore, the
concrete architecture can never be definitive. On the contrary, there may be a
number of concrete architectures for a software system that are equally valid
for different scopes, purposes, or stakeholders.

The concrete architecture is sometimes also called as-built architecture [OSL05],
actual architecture [KLMN06], or implemented architecture [RLGB+11].

Conceptual Architecture The conceptual architecture is “[...] the architec-
ture that exists in human minds or in the software documentation [...]” [DP09].
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Ideally, it exactly matches the concrete architecture, e.g. because the concrete
architecture is derived step-by-step from the conceptual architecture. However,
more often than not the concrete architecture deviates from the conceptual ar-
chitecture. This can happen for a number of reasons such as time pressure,
ignorance on part of the designers, or technical limitations. Even if the ini-
tial implementation of a system adheres to the conceptual architecture, later
changes may gradually lead to the concrete and conceptual architecture drifting
apart (see Architectural Drift).

The conceptual architecture is also known as as-designed architecture [OSL05],
planned architecture [KLMN06], or designed architecture [RLGB+11].

Architectural Drift According to Lehman’s laws of software evolution, soft-
ware has to be changed during its lifetime in order to remain useful [Leh80,
Leh96]. It has to be adapted to new requirements or a changing environment
and discovered defects have to be removed. However, these changes, necessary
as they may be, always incur the risk of violating the original conceptual ar-
chitecture. When the original architecture was not built to cater for a new
requirement, e.g. distributed execution of an application, it is very difficult to
realise this requirement in the confines of the old architecture. When the ar-
chitecture is consequently adapted, however, is deviates from the documented,
conceptual architecture. In many cases, time pressure or simple neglect prevent
the adaptation of the documentation. Over time, the concrete and conceptual
architecture drift more and more apart. This phenomenon is called architectural
drift [RLGB+11].

Architectural drift is also sometimes referred to as software aging [Par94],
design erosion [vGB02], or architecture degradation [TMD09]. The term archi-
tectural drift refers to the increasing difference between conceptual and concrete
architecture as a whole. According to Rosik et al., “[...] individual discrepancies
[between conceptual and concrete architecture] are often referred to as viola-
tions or inconsistencies [...]” [RLGB+11].

2.1.2. Overview of the Methodology

Taylor et al. describe the methodology of architecture reconstruction as follows:

“A common approach to architectural recovery is clustering of the
implementation-level entities into architectural elements. Based on
the approach used for grouping source code entities, such as classes,
procedures, or variables, software clustering techniques can be di-
vided into two major categories: syntactic and semantic clustering.”
[TMD09, p. 142f ]

They distinguish syntactic clustering on the one hand which uses only static
information that can be derived from the source code. On the other hand, se-
mantic clustering also employs domain knowledge and behavioural information
from the program’s execution.

Both, syntactic and semantic clustering are based on a number of metrics.
Syntactic clustering could, for example, measure the coupling of two classes to
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determine if they should be assigned to the same architectural element or not.
In contrast, semantic clustering could analyse the number of interactions be-
tween two elements at run-time. In most architecture reconstruction approaches
several metrics are aggregated to arrive at a clustering decision.

A big advantage of these metric-based clustering approaches is that metrics
“[...] are known to scale up well” [DDL99]. Thus, it is possible to create an
architectural overview quickly even for large systems. A downside of clustering
approaches is the concept assignment problem [BMW93]. It means that “[...]
even if correct and complete structural and behavioral information about the
system were available to a clustering technique, a key challenge that remains is
recovering design intent and rationale.” [TMD09, p. 143]. Just from assigning
system elements to components, it is not necessarily clear which component
plays which role in a system.

2.1.3. Software Architecture Reconstruction in Archimetrix

The reconstruction of the software architecture from source code is a central
point in the Archimetrix process. Conceptually, any clustering-based SAR ap-
proach which reconstructs a component architecture of the system under anal-
ysis could be integrated into Archimetrix. A recent overview of architecture
reconstruction techniques is presented by Ducasse and Pollet [DP09].

I decided to use the Software Model eXtractor SoMoX [CKK08, Kro10,
KSB+11] which is an architecture reconstruction approach developed at the
Forschungszentrum Informatik (FZI) in Karlsruhe. SoMoX uses a whole range
of metrics to iteratively reconstruct the architecture of a system from its source
code. SoMoX is focused on reconstructing architectural views from the static
viewpoint, e.g. a repository view, containing the different reconstructed com-
ponents and a service architecture view, showing how these components are
statically connected in the system.

I chose SoMoX for various reasons. First, it reconstructs rigorous architec-
tural models which follow the strict component definition by Szyperski (see
Section 2.1.1). Second, expertise and support were easily available for me.
On a technical level, the use of Eclipse and EMF in SoMoX allowed an easy
integration with the other parts of Archimetrix.

The software architecture reconstruction process with SoMoX is explained in
detail in Chapter 5.

2.2. Pattern Detection

In the context of this thesis, pattern detection means searching for occurrences
of a pattern in a system. Detecting a pattern in a system can provide the
architect with valuable information. If it is a “good”, desirable pattern, it may
reveal part of the original developer’s intentions. If it is a “bad” solution on
the other hand, it signals an opportunity for improving the software.

Similar to the previous section, this section first introduces some pattern-
related terminology. Then, the general methodology of pattern detection is
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explained. Finally, the application of pattern detection in Archimetrix is dis-
cussed.

2.2.1. Terminology

Since software patterns have been the subject of research for nearly twenty
years now, a very diverse vocabulary has developed in the community. Denier
et al. attempt to give an overview of this vocabulary [DKG08]. In this section,
I present the pattern-related terminology that is used throughout this thesis. It
is in line with the terminology used in Reclipse, the pattern detection approach
used in Archimetrix (see Section 2.2.3).

Design Pattern / Architectural Pattern / Implementation Pattern Design
patterns are “good” solutions to frequently recurring software engineering prob-
lems. One of the first collections of design patterns was the book Design Pat-
terns by Gamma, Helm, Johnson, and Vlissides [GHJV95]. It presents 23
well-proven solutions to recurring problems in object-oriented software design.
According to Gamma et al., a pattern is “[...] a solution to problem in a con-
text” These solutions are presented using the same template which is structured
into categories like problem, intent, structure, behavior, pros and cons, etc. All
patterns are defined on roughly the same level of abstraction, i.e. the presented
solutions are at the design or class level. Every pattern only comprises a few of
classes and their relationships.

The first book in the famous Pattern-Oriented Software Architecture (POSA)
series [BMR+96] took on a broader view and presented patterns at different
abstraction levels. It contains patterns that represent good solutions at the
architectural level, like Pipes and Filters, as well as design patterns and im-
plementation patters or idioms. Other books in the series contain patterns for
certain domains like concurrency [SSRB00], resource management [KJ04], or
distributed computing [BHS07].

Another collection of patterns at the implementation level is presented by
Beck [Bec07].

AntiPattern / Bad Smell / Design Deficiency AntiPatterns were introduced
by Koenig [Koe95] and made famous by Brown et al. [BMMM98]. According to
the authors, an AntiPattern “[...] describes a commonly occurring solution to a
problem that generates decidedly negative consequences” [BMMM98, p. 7]. In
contrast to the ’good’ patterns, AntiPatterns do not represent the solution to a
problem - they are the problem. Nevertheless, they usually come with advice
on how they can be removed. Similar to the POSA books, Brown et al. present
AntiPatterns at different levels of abstraction. They include even commonly
occurring problems in the management of software projects. The ’bad’ coun-
terpart to implementation patterns on the very low level of abstraction are bug
patterns (e.g. [All02]).

The term bad smell was introduced by Fowler in his book on refactoring.
Bad smells give “[...] indications that there is trouble that can be solved by a
refactoring” [Fow99, p. 75]. In contrast to Anti Patterns, bad smells are only
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indications instead of concrete problems. Bad smells are intentionally charac-
terised by fuzzy statements like “a class has too many responsibilities” or “a
method has too many parameters”. Fowler explicitly leaves the decision if ac-
tion should be taken to “[...] informed human intuition” [Fow99, p. 75]. An
important point to note about bad smells according to Fowler is that they can
all be removed by refactorings. Refactorings “[...] do not alter the external
behavior of the code yet improve its internal structure” [Fow99, p. xvi]. Con-
sequently, the bad smells are at a low level of abstraction which allows for such
statements. An overview on state of current knowledge about bad smells given
by Zhang et al. [ZHB11].

In general, Archimetrix can detect arbitrary patterns in source code (see
Chapter 7). The focus in this thesis, however, lies on the detection of pat-
terns that influence the architecture reconstruction. In order to distinguish
these patterns from the very general AntiPatterns and from the fuzzy notion
of bad smells, they are referred to as design deficiencies in this thesis. Design
deficiencies are violations of component-based design principles, addressing el-
ements on both levels of abstraction: the class level and the component level.
One example is the call of a method which is not explicitly made available
through an interface (Interface Violation, see Appendix B.1). As such, design
deficiencies are not “bad” designs, they do not impact the functionality of the
system. Calling a method is not forbidden, after all. But in combination with
component-based design principles (components must communicate via their
interfaces), a method call may not always be allowed. An architecture recon-
struction approach which relies on these principles may be influenced by the
presence of such design deficiencies (see Chapter 5).

Pattern Description / Deficiency Description A pattern description is the
presentation of a pattern that is meant to explain the idea behind and the
relevant aspects of a pattern to a human reader. Pattern descriptions can be
found in all textbooks that introduce new patterns, e.g. [GHJV95, BMMM98,
BMR+96]. Pattern descriptions usually make use of templates that are divided
into parts like intent, consequences, and implementation. They use prose text,
(sometimes informal) diagrams, and examples to illustrate the pattern and its
application. In particular, pattern descriptions are unsuitable for automated
processing, e.g. in pattern detection approaches, as they lack a formal founda-
tion.

Pattern Formalisation / Deficiency Formalisation A pattern formalisation is
a representation of a pattern with the goal to make it automatically processable,
e.g. for their automated detection. A pattern formalisation is usually derived
from a pattern description by an expert. It often only reflects a subset of the
information given in the pattern description. This subset contains the elements
that can be detected in the software such as the structure and behaviour of a
pattern. Many different approaches have been presented to formalise pattern
descriptions. The book by Taibi gives an overview of some of them [Tai07].

17



2. Foundations and Related Work

Pattern Candidate / Deficiency Candidate A pattern candidate is a part
of a software system which is identified as the occurrence of a pattern by an
automated pattern detection mechanism. As the detection mechanism is based
on the pattern formalisation which only reflects a part of the pattern description,
a candidate may actually be detected incorrectly. For example, a candidate may
exhibit the same structure as the pattern formalisation but an inspection reveals
that it was not intended to be an implementation of that pattern. In this case,
the candidate is a false positive. On the other hand, a correctly detected pattern
candidate is called a true positive.

Pattern Occurrence / Deficiency Occurrence A pattern candidate which is
a true positive is also called a pattern occurrence. In literature, it is also known
as pattern instance or pattern implementation.

Pattern Role Patterns consist of different elements which have different re-
sponsibilities. These responsibilities are also called pattern roles and provide
a meaningful term to refer to an element and its responsibility. For example,
the famous Observer pattern basically consists of two basic roles [GHJV95,
p. 293ff ]: A subject which has a state and an observer which can register with
the subject and which is notified whenever the state of the subject changes.
These roles can also be refined, for example by stating that there are two
classes who play the roles of the abstract subject and the abstract observer,
defining the corresponding interfaces for the interaction. In addition, there can
be arbitrarily many classes which play the role of either a concrete subject or
a concrete observer, implementing specific behaviour. Roles cannot only be
played by classes but also by other elements of the system, e.g. by methods.

When a pattern occurrence is detected, its different elements are annotated
with the roles that they play in that pattern. This allows the software architect
to understand the responsibilities of all the different elements, when he inspects
the detected pattern occurrences.

2.2.2. Overview of the Methodology

In order to detect pattern occurrences in a software system, a pattern detec-
tion mechanism and pattern formalisations are needed. Although, the formal-
isations can be hard-coded into the detection mechanisms, most approaches
allow to specify them separately. Patterns are usually formalised with domain-
specific languages. Taibi presents a selection of different pattern formalisation
techniques [Tai07].

Pattern detection approaches can be classified by the type of information
they use for the detection. Some only take the static structure of the code
into account: The source code is parsed and patterns are detected based on the
formalisations of their structural properties (e.g. classes and their relationships).
This is method is called static analysis or structural analysis. Other approaches
also formalise the expected behavior of patterns and analyse the software’s
run-time behaviour accordingly. For this, execution traces have to be collected
which can then be compared to the expected behaviour of each candidate. This
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method is called dynamic or behavioural analysis. Because patterns can be
quite similar (e.g. the State and the Strategy pattern [GHJV95] are structurally
equivalent), some approaches combine static and dynamic analysis methods.
They use a structural analysis to identify pattern candidates and analyse the
candidates’ behaviour afterwards to identify the true positives.

A general problem of pattern detection approaches is the scalability. Because
very fine-grained information is considered during the detection, the analysis of
large systems can take hours or days [SSL01, BT04a]. In addition, the number
of detection results may become unmanageable for large systems. A system
with millions of lines of code may contain hundreds or thousands of pattern
occurrences [TSG04]. In that case, the value of the pattern detection decreases
rapidly because the software architect cannot manage the large number of re-
sults effectively.

2.2.3. Pattern Detection in Archimetrix

In Archimetrix, pattern detection is used to identify design deficiencies, i.e.
violations of well-known design principles and rules. Similar to software ar-
chitecture reconstruction, any pattern detection approach could be used in
Archimetrix, conceptually. The only requirement is that it allows for the specifi-
cation of the patterns to detect. Dong et al. compare different pattern detection
approaches considering aspects like analysed information, data representation,
or analysed systems 1 [DZP09].

I decided to integrate Reclipse into Archimetrix. Reclipse was developed in
the Software Engineering Group at the University of Paderborn under my par-
ticipation [vDMT10b, vDMT10a, vDT10]. It uses graph matching for the struc-
tural detection of user-specifiable patterns in abstract syntax graphs [NSW+02,
Nie04]. The static properties of the design patterns or design deficiencies to be
detected are formalised as graph patterns. Reclipse then tries to find isomorphic
matches for these graph patterns in the abstract syntax graph of the system
under analysis. These matches are then presented to the user as pattern/defi-
ciency candidates. Reclipse also provides the means to execute a behavioural
analysis which takes run-time information into account [Wen04, Wen07].

Reclipse is described in more detail in Chapter 7.

2.3. Refactoring and Reengineering

This section begins with an overview of the terminology concerning refactor-
ing and reengineering. As this area is more diverse than architecture recon-
struction or pattern detection, no general methodology can be identified. Sec-
tion 2.3.2 discusses the application of refactoring and reengineering techniques
in Archimetrix.

1Dong et al. refer to the detection of pre-defined patterns as “pattern mining” whereas the
term “pattern detection” is used in this thesis.

19



2. Foundations and Related Work

2.3.1. Terminology

The terminology presented in this section is largely based on the definitions by
Chikofsky and Cross [CC90]. Therefore, Figure 2.2 which relates the different
terms in the field to each other is adopted from their publication.

Forward
engineering

Forward
engineering

Requirements Design Implementation

Reverse 
engineering

Reverse 
engineering

Restructuring Restructuring
Redocumentation,

Restructuring

Figure 2.2.: Reengineering terminology (Figure adapted from [CC90])

Chikofsky and Cross identify three phases in the development of software:
(collection of) requirements, design, and implementation. In classical software
development, these phases occur exactly in that sequence which is called forward
engineering by the authors. In contrast, they call the reversed process, i.e.
going from the implementation back to the requirements, reverse engineering.
Changes within one of these phases are termed restructuring. This use of the
term reengineering was later adopted by Demeyer et al. [DDN03]. It deviates,
however, a little from the definition by Sommerville who sees reengineering as an
activity that “[...] takes place after a system has been maintained for some time
and maintenance costs are increasing” [Som10]. In Sommerville’s definition, the
initial construction of the system is not contained in the reengineering life cycle.

Reengineering According to Chikofsky and Cross, “[...] reengineering [...] is
the examination, and alteration of a subject system to reconstitute it in a
new form the subsequent implementation of the new form” [CC90]. Therefore,
reengineering is the combination of reverse engineering (in order to understand
the system) and forward engineering or restructuring (in order to change it). A
related notion in this area is software evolution which describes the reengineer-
ing of software as the consequence of software aging [Leh80, Art88, MD08].

Reverse engineering “Reverse engineering is the process of analyzing a sub-
ject system to identify the system’s components and their interrelationships

20



2.3. Refactoring and Reengineering

and create representations of the system in another form or at a higher level
of abstraction” [CC90]. Following this definition, both architecture reconstruc-
tion and pattern detection fall into this category. Reverse engineering is strictly
non-invasive, i.e. the system is not changed but only examined.

Forward engineering “Forward engineering is the traditional process of mov-
ing from high-level abstractions and logical, implementation-independent de-
signs to the physical implementation of a system” [CC90]. Therefore, forward
engineering is the ’normal’ activity of software engineers. Reverse engineering,
in contrast, is a more specialised activity that only happens in some projects.
In the context of reengineering, the term forward engineering is also sometimes
used to describe just the modification of an existing system.

Restructuring / Refactoring Chikofsky and Cross state that “restructuring
is the transformation from one representation form to another at the same rela-
tive abstraction level, while preserving the subject system’s external behavior”
[CC90]. This is in line with Fowler’s definition of the term refactoring : “Refac-
torings do not alter the external behavior of the code yet improve its internal
structure” [Fow99, p. xvi].

However, while ’refactoring’ is perceived to be a behavior-preserving change
in literature, the term restructuring is also used to describe large-scale modifi-
cations that may also alter or extend the system’s behavior. This is also called
modernisation in some cases [vHFG+11].

Removal Strategy The removal of AntiPatterns or bad smells is sometimes
called “refactoring” in literature. This means refactoring in the sense that the
software structure is improved but the externally visible behaviour is preserved.
In other cases, this constraint is a little more relaxed such that “in most cases,
the goal is to transform the code without impacting correctness” [BMMM98].

In the process described in this thesis, the focus is on the reconstruction
of a software architecture. Thus, the main goal is to disentangle the possibly
complex interrelations between classes and components to obtain a clear and
structured representation of the architecture. Therefore, we not only allow
reengineering operations that leave the behavior untouched. In contrast, we
explicitly include removal strategies that may change the behavior but may
nevertheless improve the system’s structure, e.g. because they remove an illegal
method call between two components. Of course, the software architect has to
be aware of this and has to restore the system behavior if necessary.

2.3.2. Reengineering in Archimetrix

In Archimetrix, reengineering comes into play to remove previously detected
design deficiency occurrences. On the one hand, deficiency occurrences can be
removed by automated transformations. On the other hand, this can also be
accomplished by manually changing the source code.

Automated deficiency removal is convenient from the software architect’s
point of view. Executing a pre-defined transformation can remove a deficiency
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occurrence quickly and reliably and the architect does not have to know the
specifics of the removal strategy. In this thesis, story diagrams are used for this
purpose [vDHP+12] (see Chapter 9). On the other hand, the transformations
have to be designed by an expert (possibly the same expert who formalises the
deficiencies) and have to be provided in a library together with the deficiency
formalisations. Only a limited amount of transformations can be provided and
it may be that none of them matches the software architect’s requirements. In
this case, a manual removal of the deficiency occurrence is inevitable.

Manually removing deficiencies from the source code is more tedious and
error-prone than applying automatic transformations. But it allows for more
flexibility since the software architect can also apply removal strategies that
were not provided in a library.

2.4. Hybrid Reverse Engineering Approaches

This section presents approaches that combine architecture reconstruction tech-
niques with pattern detection. Their focus is not on the reengineering of the
system or the removal of deficiencies.

Demeyer et al. present Code Crawler which is a hybrid reverse engineering ap-
proach that combines metrics with program visualisation techniques [DDL99].
The authors demonstrate how well-known metrics like lines of code or number
of methods can be visualised using different types of graphs. They argue that
this helps the developer to get a better overview of the system and, for example,
identify problems more quickly. the focus on metrics makes their approach very
scalable.

Tzerpos and Holt note that structural properties of the system under analysis
should be considered during clustering [TH00]. Therefore, they define a number
of “subsystem patterns” which are detected by their clustering algorithm. These
patterns are hard-coded and are not meant to be extended by the user of their
clustering tool. They do not consider deficiencies which could influence the
clustering.

Mancoridis et al. present a web-based portal site which provides a number of
reverse engineering tools to its visitors. Users can upload their own source code
and select different analysis methods such as clustering, code browsing, code
metrics, or visualisation [MSC+01]. They deliberately do not suggest a specific
process for the combination of the tools as they want to leave this decision to
the user.

Sartipi [Sar03] uses data mining techniques to structure a graph represen-
tation of a program. Then he defines architectural patterns (or, as he calls
them, queries) on the resulting graph which are evaluated by graph matching.
The queries are focused on simple architectural properties like the number of
relations to a certain component and are not as expressive as the structural
patterns used in Archimetrix.

Bauer and Trifu [BT04a, BT04b] use a combination of pattern detection and
clustering to recover the architecture of a system. They detect so-called “archi-
tectural clues” with a Prolog-based pattern matching approach and use these
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clues to compute a multi-graph representation of the system. The weighted
edges in this representation indicate the coupling of the system elements and
are used by a clustering algorithm to obtain an architecture of the system. In
contrast to Archimetrix, the clustering is completely based on the information
gathered by the pattern detection. Thus, the pattern detection has to be car-
ried out first which can take very long for large systems. Archimetrix applies
the clustering first to reduce the search space for the pattern detection. In
addition, Bauer and Trifu focus on the detection of design patterns and do not
consider the impact of bad smells on the clustering.

Han et al. present preliminary results on a similar approach [HWY+09]. They
also detect design patterns to improve the clustering of source code. Because
they also apply the pattern detection first, it stands to reason that they suffer
from the same drawbacks as Bauer and Trifu.

Basit and Jarzabek [BJ05] identify clone patterns in programs and then apply
a data mining approach to cluster clones which occur together frequently. How-
ever, they apply the clone detection and the clustering consecutively and do not
consider relation between the two parts nor do they suggest multiple iterations
of their approach. The detection of pre-defined patterns is not addressed.

Lung et al. [LXZS06] do not use clustering techniques to group related classes
into components. Instead they try to identify functionally cohesive sections of
long functions to find restructuring opportunities at the function level. Thus,
they apply a reverse engineering technique that is usually employed at the
architectural level to a lower level of abstraction. The possible restructurings are
only suggested but cannot be carried out automatically. Archimetrix combines
architecture reconstruction and pattern detection which operate at different
levels of abstraction.

Binkley et al. present the concept of Dependence Anti Patterns, dependence
structures in source code which may have negative effects on program compre-
hension, maintenance, and reverse engineering [BGH+08]. They define a set
of seven dependence anti patterns and use a combination of program slicing
and metric analysis to detect them. They do not consider the removal of these
anti patterns. The authors explicitly state that they do not investigate the pre-
cise influence of the anti patterns on the aforementioned software engineering
tasks. In contrast, this thesis analyses the impact of design deficiencies on the
architecture reconstruction in Chapter 5.

Similar to our approach, Arcelli Fontana and Zanoni [AFZ11] use an AST
representation of a system as a common basis for pattern detection and archi-
tecture reconstruction. However, they use the two techniques independently of
each other but do not combine them.

Klatt and Krogmann sketch a process for the tool-supported creation of soft-
ware product lines from different software systems that share common source
code [KK11]. They propose to use SiSSy and SoMoX for the recovery of the
software architecture and combine this with other code analysis techniques such
as clone detection and code history analysis. This is related to the idea of using
fine-grained analysis techniques like pattern detection to improve the architec-
ture reconstruction. Their focus is on the extraction of product lines and not
on the reengineering of the existing systems.
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The Massey Architecture Explorer is a tool developed in the research group of
Jens Dietrich at Massey University [Mas12]. It analyses Java systems and can
visualise the dependencies between their different constituent Jar files, between
packages, or classes. Each Jar file is viewed as a component. In addition, the
tool is able to detect a number of AntiPatterns, e.g. strong circular dependencies
between the archives. The tool does not use clustering techniques to reconstruct
components from the different source code artefacts.

Keller et al. [KSRP99] describe an approach to detect “design components”
in source code through “pattern-based reverse engineering”. However, they
refer to a design component as “a package of structural model descriptions
together with informal documentation, such as intent, applicability, or known-
uses.” Hence, in the terminology used in this thesis, they detect design patterns
rather than components. In contrast, the components recovered by Archimetrix
are in line with the more rigorous component definition by Szyperski [SGM02].

2.5. Bad Smell Detection and Removal

This section discusses approaches which combine pattern detection with refac-
toring or reengineering techniques. In these cases, the pattern detection is
used to detect bad smells, AntiPatterns, or other deficiencies. None of the ap-
proaches in this category is concerned with the reconstruction of the software
architecture.

Tourwé and Mens detect “refactoring opportunities”, identify matching trans-
formations and execute them automatically [TM03]. The bad smells and refac-
torings considered in their work are at a very low level of abstraction (e.g.
identifying and removing obsolete parameters). The impact of the refactorings
on the system architecture is not in their focus.

Tahvildari and Kontogiannis present a classification of design flaws in the in-
tersecting categories of structural, architectural, and behavioural flaws [TK03].
They use metrics to measure, for example, the coupling and cohesion in a system
in order to find those flaws. Then, they correct these deficiencies with appro-
priate meta-pattern transformations and re-evaluate the metrics. They argue
that applying the transformations improves the metric values and therefore the
quality of the system.

Trifu et al. detect and remove design flaws with respect to a user-selected
quality goal, e.g. performance [TSG04]. They detect those flaws by using graph
matching in combination with basic metrics. However, the authors point out
that this leads to a large number of detection results which have to be manually
validated by the user. Archimetrix provides an automatic deficiency ranking
which facilitates the validation of detection results.

Stürmer et al. model guideline violations in MatLab models and their au-
tomatic correction [SKSS07]. For the detection, they use Reclipse, the same
pattern detection approach that is integrated into Archimetrix. Thus, they
have the same scalability problems as, e.g. Simon et al. [SSL01] or Bauer and
Trifu [BT04a].

In his PhD thesis, Meyer [Mey09] presents an approach to identify bad smells
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with a structural analysis and remove those deficiencies with automated graph
transformations. In addition, he proposes to use inductive verification to prove
that the application of the transformations does not introduce new deficiencies
or violate certain constraints. However, he does not take the software architec-
ture into account. Meyer’s approach could be integrated into Archimetrix in
order to validate that the removal of design deficiency occurrences with respect
to pre-defined constraints.

Arendt et al. [AKM+11] present a quality assurance process which uses a
combination of metrics and structural patterns to identify model smells. They
combine the smells with pre-defined graph transformations to provide an auto-
mated refactoring for identified model smells. They use their approach for the
quality assurance in an industrial context, so they assume that the analysed
architectural models already exist and do not have to be reconstructed.

Shah et al. detect strong circular dependencies in a package hierarchy and try
to remove them by suggesting class movements [SDM12]. They use metrics to
gauge the impact of moving the suggested classes on the package structure. Al-
though their reengineering goal is architecture-oriented, they do not reconstruct
an architectural view in their work.

2.6. Architecture Reengineering

The field of architecture reengineering is very diverse. However, the large num-
ber of approaches can be classified by their goal. Accordingly, this section
is split into subsections dealing with architecture conformance checking ap-
proaches, architecture migration, and modularisation.

2.6.1. Architecture Conformance Checking

Knodel et al. [KLMN06] present an integrated process for the creation and
evaluation of software architectures for software product lines. For that, they
combine product line development approach PuLSE with the architecture- and
domain-oriented reengineering technique ADORE. ADORE employs reverse en-
gineering as well as renovation and extension techniques for the assessment and
integration of existing components into the architecture. However, these steps
are only mentioned at a high level of abstraction and are not explained in detail.
The authors’ focus lies on the comparison of the conceptual architecture to the
concrete architecture produced by their approach.

Bourquin and Keller present an approach that is focused on manual refac-
torings on the architecture level [BK07]. First, they manually create a target
architecture for their legacy software. Then, they assign existing packages to
the target architecture and detect the architecture violations (i.e. accesses that
violate the target architecture) in the concrete architecture. They analyse the
relevance of their refactorings on the architecture after the application of those
refactorings by using code metrics and a comparison between the number of
detected bad smells before and after the refactoring. They do not reconstruct
an architectural model automatically.
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Rosik et al. investigate architectural drift, i.e. the growing distance between
conceptual and concrete architecture, in a case study of an industrial software
system [RLGB+11]. They use a tool-supported reflexion modelling approach
[MNS01] to discover discrepancies between the conceptual and the concrete
architecture and discuss them with the developers. Like all reflexion modelling
approaches, they require someone (in their case the original developers) to have
an idea of the system’s conceptual architecture. In Archimetrix, a general
assumption is that no knowledge about the conceptual architecture is available.

Christl et al. use clustering to automatically establish the mapping between
the manually created, hypothetical architecture and the source code [CKS07].
Thereby, they mitigate the main drawback of many reflexion modelling ap-
proaches, i.e. the high manual effort of creating such a mapping up-front. They
do not consider the impact of deficiencies on the clustering results.

Sonargraph-Architect [Son12] (formerly known as SonarJ) is a commercial
tool which also employs a classical reflexion modelling approach. The soft-
ware architect can define a conceptual architecture in the tool. Afterwards,
Sonargraph-Architect can check if the concrete architecture complies with the
conceptual architecture. Refactorings are offered to fix rule violations.

The three commercial products Structure101, Restructure101, and Struc-
ture101build [Str12] form a tool suite with similar capabilities as the Sonargraph-
Architect. A architect can define a conceptual architecture and communicate it
to the development. The concrete architecture can be analysed, restructured,
and architectural rules and constraints can be specified and enforced. Similar
to reflexion modelling, both tool suites require up-front knowledge about the
system under analysis to define the conceptual architecture.

2.6.2. Architecture Migration and Modernisation

Krikhaar presents an architecture improvement process [Kri97] in which an
“ideal” architecture is constructed manually. The existing software is then
analysed regarding import relations, part-of hierarchies and use relations at
code level. This can partly be done automatically. The ideal and the “reverse-
architected” architecture are then to be compared manually to identify viola-
tions. Actions to remove violations are not discussed in the paper. The author
also suggests to incorporate code metrics in future work.

In follow-up work, Krikhaar et al. present a two-phase process for the im-
provement of software architectures [KPS+99]. Here, a model is generated
from code. The architect has to manually evaluate this model and think of
ideas to improve it. Metrics can also be used in this step although they are
not discussed by the authors. Then, ”recipes” to apply the ideas to the code
are created manually. Finally, the architect should implement automatic trans-
formations for the created recipes. The technique to do this seems to require
manual code annotations. The impact of the improvement ideas can be evalu-
ated on the model by using metrics or ”box-and-arrow” diagram visualisation.
In our approach, the improvement opportunities are automatically identified by
detecting the bad smells. Automated transformations can be provided for the
bad smells and an automated architecture prediction can analyse and visualise
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the impact of the transformation.
Seacord et al. present the “risk-managed modernization (RMM) approach”

for the modernisation of legacy systems [SPL03, p. 27ff ]. Similar to Archimetrix,
their process also begins with the reconstruction of a legacy system’s architec-
ture. Taking a broader view however, it examines a more general approach than
Archimetrix. RMM begins with the identification of stakeholders and their re-
quirements and ends with the creation of a modernisation plan and a resource
estimation step. The single steps are described at a higher level of abstraction
than in this thesis and are described from a management perspective.

Bianchi et al. [BCMV03] present a process to iteratively reengineer a complete
systems without shutting it down. The process supports the iterative migration
of functionality and data. The authors propose to first break down a system
into components that can then be reengineered individually. In contrast to
the approach in this thesis, neither the identification of components nor the
reengineering is the focus of their work. Both steps are assumed to be carried
out manually.

Frey and Hasselbring [FH10] present the CloudMIG approach, which provides
a process to reengineer legacy applications for the cloud. While this is related
to the motivation for my work, the authors emphasise aspects like resource ef-
ficiency and scalability of the target architecture. Although the recovery of the
original architecture is mentioned in their work, it is not focused on. During the
migration, the CloudMIG approach can be used to identify elements of the tar-
get architecture that violate constraints of the cloud environment. In contrast,
our approach concentrates on revealing deficiencies that do not stem from the
migration but from the long-term architecture erosion of the system. Frey and
Hasselbring also use metrics to assess the quality of their target architecture.
As they do this before the final system is generated this could be seen as related
to the architecture preview step in Archimetrix (see Chapter 9).

SOAMIG [EFH+11a, EFH+11b] is an iterative, generic process model for
the migration of legacy code to a service-oriented architecture. Similar to our
approach, the process contains reverse engineering steps for legacy code analysis
and refactoring steps for the improvement of the migrated system. In addition,
the authors try to automate as much of the migration as possible. However,
as their approach is more generic, they do not specifically define how, e.g. the
target architecture for the migration should be obtained. They also do not
focus on the detection of deficiencies in the legacy system. One application
of the SOAMIG process model is a tool suite for the migration of legacy Java
and COBOL system towards service-oriented architectures [FHR11a, FHR11b].
Archimetrix could perhaps be incorporated in another specific instance of the
SOAMIG process model.

The DynaMod project [vHFG+11] aims at the modernisation of long-living
software systems. For that, static and dynamic analyses in combination with ex-
pert knowledge are used to create an architectural representation of the system.
These architectural models are then transformed into the target architecture.
Template-based code generation is employed to create wrappers and connectors
for the target architecture. The approach does not focus on the detection and
removal of deficiencies in the legacy system.
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2.6.3. Modularisation

Dietrich et al. [DYM+08] present BARRIO, a clustering tool which supports a
developer in analysing how a legacy system can modularised. For that the sys-
tem’s classes are clustered and the tool detects two anti patterns: 1) a cluster
containing elements from multiple packages and 2) packages which are dis-
tributed over multiple clusters. In the former case, this is seen as an indication
to merge several packages. The latter case is interpreted as a situation in which
a package should be split up. The actual reengineering is not covered by the
approach but is left to the user as a manual task.

Sarkar et al. [SRK+09] report on their endeavour to break up a legacy
banking application into components. The presented process includes the cre-
ation of a modular architecture, semi-automatic identification of architecture
violations, a completely manual refactoring step and manually implemented
checks (”gatekeeper tools”) to enforce compliance with the reengineered ar-
chitecture. Archimetrix provides substantially more support to the software
architect through automated process steps such as the deficiency ranking or
the architecture preview.

Dietrich et al. [DMTS10] investigate the influence of certain patterns on the
decomposability of Java programs. Their studies show that there are a number
of anti patterns which make it hard to break up an application into modules.
They present an algorithm to identify these problems and discuss their removal
briefly. However, they do not a present a complete tool-supported process for
the detection and removal of those problems. They also do not use architecture
reconstruction techniques.

2.7. Classification of the Archimetrix Approach

This section places Archimetrix in two classifications of software maintenance
approaches. Lientz and Swanson [LS80] take on a very general view of software
maintenance techniques. Knodel et al. [KLMN06], on the other hand, list
ten purposes of software architecture evaluation. Here, I relate them to the
application scenarios of Archimetrix presented in Chapter 1.

Lientz and Swanson identify four different types of software maintenance:
adaptive, perfective, corrective, and preventive [LS80]. Adaptive maintenance
aims at modifying a system in order to adapt it changes in the system’s envi-
ronment, e.g. the operating system. Perfective maintenance is concerned with
implementing new functionality that satisfies new or changed user requirements.
Corrective maintenance deals with the diagnosis and correction of software er-
rors while preventive maintenance increases the software maintainability in or-
der to prevent future problems. Following this classification, Archimetrix sup-
ports corrective maintenance and preventive maintenance. Corrective main-
tenance is supported in that Archimetrix allows to detect and remove design
deficiencies. In doing so, Archimetrix enables the architect to improve the
quality of the code and the quality of the recovered architecture. On the other
hand, the improved understanding of the software architecture and the removal
of design deficiencies can prevent further design erosion and therefore increase
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maintainability.
Knodel et al. enumerate ten different purposes of software architecture evalu-

ation [KLMN06]. Three of them fall into the application scenario of “improved
modularisation” explained in Section 1.5. These are: the identification of po-
tential for the creation of a product line across different systems; the alignment
of a system with an existing product line; and the identification of components
that can be reused within an existing system. Three purposes are in line with
the “architecture improvement and documentation”. Knodel et al. identify: the
comprehension of software systems; the re-documentation of software systems;
and the traceability from the architecture to the source code. Yet another two
purposes are subsumed under the application scenario of “architecture confor-
mance checking”. The authors call them: the assessment of consistency between
documentation and implementation and the control of software evolution in the
sense that the implementation does not deviate from the conceptual architec-
ture. The two final purposes mentioned by Knodel et al. are the assessment
of component adequacy and the identification of un-documented architectural
entities. These tasks are not per se among Archimetrix’s application scenarios.

2.8. General Assumptions

Use of a single programming language Large business information systems
usually consists of several parts that are often implemented in different pro-
gramming languages. Although the parser integrated in Archimetrix, SISSy
[Sis11], supports Java, C++, and Delphi code, it cannot construct a coherent
model from system parts in different languages. This thesis thus does not con-
sider this problem but assumes that the system under study is programmed in
a single programming language.

Use of an object-oriented language I assume a scenario in which an object-
oriented programming language is used to develop component-based systems.
For the purpose of the examples in this thesis and for the implementation of the
prototypical tool suite, I assume a system that was implemented in Java without
the use of component frameworks such as Java EE [Jav12] or Fractal [BCL+06].
However, Archimetrix in general is not dependent on the use of a concrete
programming language as it operates at the level of a program’s abstract syntax
tree. Therefore, my approach can be modified to be applicable to any language
for which the architect is able to extract the abstract syntax tree.

Availability of architecture documentation In this thesis, I assume that no
documentation of the software system under analysis is available. This is either
the case when the documentation is so outdated that it has become useless or
when it has not been created in the first place. This also implies that no formal
models of the system exist. Therefore, the only reliable source of information
about the system is the source code itself.
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Design deficiencies stem from the neglect of principles and guidelines that are
meant to promote good component-oriented design. They are a component-
oriented analogy to bad smells which represent the neglect of rules that should
promote good object-oriented design [Fow99]. In this thesis, I selected four
design deficiencies as examples to illustrate my concepts and to serve as ex-
ample deficiencies in the validation: they are called Transfer Object Ignorance,
Interface Violation, Unauthorised Call, and Inheritance between Components.
I derived these deficiencies from Szyperski’s principles of component-oriented
design [SGM02]. In general, there are many more design deficiencies. A struc-
tured process for their discovery, documentation, and formalisation is presented
in Section 4.4.

This chapter gives an introduction to design deficiencies. It begins with a dis-
cussion of the different types of software patterns (and deficiencies as ’negative’
patterns) in Section 3.1. Section 3.2 then presents and explains a template for
the description of design deficiencies. Finally, Section 3.3 describes the Transfer
Object Ignorance deficiency which is used as a running example throughout this
thesis. The other three example deficiencies are explained briefly in Section 3.4.
More detailed descriptions and formalisations can be found in Appendix B.

3.1. Types of Software Patterns

Software patterns can be categorised in a number of ways. On the one hand, a
pattern can describe either a ’positive’ situation that is desired or a ’negative’
situation that should be avoided. The former are often subsumed under the
term design patterns. The latter go by a variety of names such as bad smells or
anti patterns. In this thesis, I call them design deficiencies. See Section 2.2 for
a discussion of the terminology.

Another possible categorisation axis deals with the generality of a pattern.
While some patterns can be regarded as ’universally applicable’, others are
written with a specific programming language, a specific technology, or even
a certain project in mind. Table 3.1 gives an overview and examples of the
different categories.

In Table 3.1, the more universally applicable patterns are listed in the top
rows. The lower in the table, the narrower the focus of a pattern. For instance,
Gamma et al.’s design patterns [GHJV95] or Martin’s guidelines in his book
“Clean Code” [Mar09] are intended to promote good object-oriented design. In
both cases, the presented rules and recommendations are general and are uni-
versally applicable to every programming language and every project. The only
restriction is the underlying development paradigm, i.e. that they are targeted

31



3. Design Deficiencies

P
o
sitiv

e
N

e
g
a
tiv

e

P
a
ra

d
ig

m
D

esign
P

attern
s

[G
H

J
V

95],
P

rin
cip

les
of

go
o
d

co
m

p
on

en
t-o

rien
ted

d
esign

[S
G

M
02],

C
lean

C
o
d

e
[M

ar09]

A
n
tiP

attern
s

[B
M

M
M

98],
B

ad
S

m
ells

[F
ow

99]

D
o
m

a
in

P
attern

s
fo

r
C

on
cu

rren
t

an
d

N
etw

orked
O

b
jects

[S
S

R
B

0
0],

P
attern

s
for

R
esou

rce
M

an
agem

en
t

[K
J
04],

A
P

attern
L

an
gu

a
ge

for
D

istrib
u

ted
C

om
p

u
tin

g
[B

H
S

07]

M
ore

N
ew

S
oftw

are
P

erform
an

ce
A

n
tip

attern
s:

E
ven

M
ore

W
ay

s
to

S
h

o
ot

Y
ou

rself
in

th
e

F
o
ot

[S
W

03],
A

P
ro

cess
to

E
ff

ectively
Id

en
tify

G
u

ilty
P

erform
an

ce
A

n
-

tip
attern

s
[C

M
R

T
10]

T
e
ch

n
o
lo

g
y

C
ore

J
2
E

E
P

attern
s

[A
C

M
01],

P
attern

s
of

E
n
terp

rise
A

p
p

lica
tio

n
A

rch
itectu

re
[F

ow
02]

M
o
d

elin
g

G
u

id
elin

e
V

iolation
s

in
S

im
u

lin
k

an
d

S
tate-

fl
ow

[S
K

S
S

07]

P
ro

g
ra

m
m

in
g

L
a
n

g
u

a
g
e

J
ava

C
o
d

e
C

on
ven

tion
s

[J
av

99],
C

h
eck

sty
le

gu
id

elin
es

[C
h

e1
1]

B
u

g
P

attern
s

in
J
ava

[A
ll02],

F
in

d
B

u
gs

b
u

g
p

attern
s

[F
in

12]

C
o
m

p
a
n
y

C
om

p
an

y
-sp

ecifi
c

g
u

id
elin

es
an

d
b

est
p

ractices
C

om
p

an
y
-sp

ecifi
c

w
orst

p
ractices

P
ro

je
c
t

P
ro

ject-sp
ecifi

c
gu

id
elin

es
an

d
b

est
p

ractices
P

ro
ject-sp

ecifi
c

w
orst

p
ractices

T
ab

le
3
.1

.:
E

x
a
m

p
les

of
p

ositive
an

d
n

egativ
e

p
attern

s
at

d
iff

eren
t

levels
of

gen
erality

32
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at object-oriented software. Similarly, the AntiPatterns described by Brown et
al. [BMMM98] and Fowler’s bad smells [Fow99] are very general.

In contrast, there are more specific patterns. They depend on a certain
technology, e.g. the use of Enterprise Application architectures [Fow02], or on
a programming language1, e.g. Java [Jav99]. Furthermore, patterns may be
specific for a given company or even a given project.

Design deficiencies often cut across the different abstraction levels. In gen-
eral, design deficiencies represent violations of principles of component-based
design which is located at the paradigm level. The Transfer Objects Igno-
rance deficiency presented in Section 3.3 is based on the use of transfer objects.
Transfer objects are presented as positive technology-specific patterns by Alur
et al. [ACM01, p. 415] and Fowler [Fow02, p. 401]. The combination with the
adherence to a specific naming scheme, however, adds a project-specific aspect
to it. In this case, it is specific for the CoCoME project [RRMP08].

3.2. Describing Design Deficiencies

For the description of patterns and AntiPatterns, Brown et al. advocate the use
of templates to give patterns a “consistent rhetorical structure” and to assure
that “important questions are answered about each pattern”[BMMM98, p. 49].
This practice is in line with the presentation of design patterns used by Gamma
et al. [GHJV95] and was also adopted by Demeyer et al. [DDN03] and Kerievsky
[Ker04].

To describe deficiencies in this thesis, I use a template that strongly resem-
bles the Full AntiPattern Template by Brown et al [BMMM98, p. 57ff ]. The
template consists of a number of sections with specific purposes which are ex-
plained in the following. Most of the sections are from Brown’s AntiPattern
template, but some are also slightly modified, renamed or omitted to fit into
the context of this thesis.

Design Deficiency Name The concise and evocative name of the deficiency.

Removal Strategy Names The similarly evocative names of the strategies
that can be applied to remove the deficiency.

Root Causes Brown et al. identify several root causes that can lead to the
introduction of deficiencies into a system. These are: haste, apathy, narrow-
mindedness, sloth, avarice, ignorance, pride, and responsibility.

Unbalanced Forces Brown et al. name six “primal forces” that have to be con-
sidered in the development of software systems and which can be unbalanced
by the introduction of deficiencies. They call them: management of function-
ality, management of performance, management of complexity, management of

1Patterns for programming languages can be seen as a special case of technology-specific
patterns.
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change, management of IT resources, and management of technology transfer.
Another force that is not mentioned by Brown et al. but that could be added
here is management of security.

Background The background section is meant to contain useful and interest-
ing information that helps in understanding the deficiency and that motivates
the need to resolve it.

General Form of this Design Deficiency This section describes characteristics
of the deficiency in a generic form (i.e. not by means of an example). Often
diagrams (e.g. class diagrams) and prose text are used for this.

Symptoms and Consequences This section should contain a list of conse-
quences that arise from the introduction of the deficiency into a system. In this
thesis, I use this section to point out why the given deficiency has an influence
on the reconstruction of the system’s software architecture.

Typical Causes Here, a bulleted list is used to enumerate the typical causes
for the introduction of this deficiency. They should be more specific than the
root causes mentioned above.

Known Exceptions Sometimes, there are exceptions to a rule. For example,
in a certain context, the problem that are normally created by a deficiency
may be negligible. Under such circumstances which are listed in this section,
a deficiency may be tolerable in a system. This has to be decided on a case-
by-case basis by the software architect. The deficiency ranking presented in
Chapter 8 aims at supporting the architect in this decision.

Removal Strategies This section describes one or more solutions to the prob-
lems created by the deficiency. Brown et al. call this section “Refactored So-
lution” [BMMM98]. In this thesis, I avoid the term “refactoring” as it is com-
monly understood as a behaviour-preserving change which often is carried out
at the source code level [Fow99]. Instead, I call this information removal strat-
egy as this, to my mind, better addresses the higher abstraction level and the
broader approach that is taken to the removal of design deficiencies. It is to be
noted that different removal strategies for a deficiency may have different goals
and are applicable only in certain situations. This is reflected in the strate-
gies’ descriptions. Removal strategies may be automatable. In these cases,
the effect of their application on the recovered architecture can be calculated
and presented to the architect (see Chapter 9). However, sometimes the con-
siderations or necessary changes for a removal strategy are too complex to be
automated. Still, the prose description of the removal strategy can be helpful
to the architect.
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Variations Similar to design patterns [GHJV95], a deficiency does not have
one unique and immutable form. There may be variations which, in turn, may
necessitate different removal strategies. In order to keep the section on the
general form and the removal strategies focused and avoid clutter, variations of
the deficiencies and their removal strategies are discussed in this section.

Example In this section, an example of a concrete deficiency occurrence and
the possible removal strategies to remove it are given.

Related Solutions The last section lists related deficiencies and patterns, ei-
ther from this thesis or from different pattern catalogues. This allows for an
easy comparison and can also serve as a place to point out differences in termi-
nology between different related patterns and deficiencies.

3.3. Running Example

In this section, I introduce the Transfer Object Ignorance design deficiency. I
chose it as a running example because it is a non-trivial example of a com-
mon guideline for the design of good component-oriented architectures, i.e. the
guideline that components should exchange data via transfer objects. This de-
ficiency is used throughout this thesis to illustrate the Archimetrix process. It
is also one of the deficiencies that I used in the validation presented in Chap-
ter 10. The deficiency is described with the AntiPattern template presented in
Section 3.2.

Design Deficiency Name

Transfer Object Ignorance

Removal Strategy Names

Mark exposed class as transfer object, Move called method, Introduce transfer
object

Root Causes

Ignorance This deficiency is easily introduced by developers that are unaware
of communication design patterns for component-based systems such as
data transfer objects.

Background

In component-based or service-oriented architectures, two components or ser-
vices should exchange data only via data transfer objects [ACM01, Fow02]. A
data transfer object is a data class2 that contains only the data that is needed for

2Although the name of the pattern is “data transfer object”, it deals with the creation of
specialised data classes. These classes are obviously created at design time. In a strict
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a specific task and has no additional behaviour. The only methods of a transfer
object are getters and setters for the contained data. In object-oriented pro-
gramming languages, classes that are meant to be used as data transfer objects
are usually designated by a special name prefix or suffix. This way, they can
be clearly distinguished from unwanted data classes which are normally a bad
smell in object-oriented programs [Fow99, p. 86]. For example, in the Java
reference implementation of the Common Component Modeling Example (Co-
CoME, [RRMP08]), classes representing data transfer objects are marked with
the suffix TO.

In contrast to common practice in object-oriented programming, communi-
cation by exchanging objects which are not transfer objects should be avoided
in component-based systems. This has two main reasons: First, passing an
object reference to another component in order to allow access to that object’s
data is a security risk and breaks the sending component’s encapsulation. It in-
advertently offers the receiving component the opportunity to invoke arbitrary
methods of the exposed object. Second, as each component can be deployed
independently [SGM02], each method call may possibly be a remote call that
incurs a significant communication overhead. Polling necessary data by invok-
ing a number of getters on (possibly different objects of) a remote component
can therefore be very inefficient [ACM01, Fow02]. Thus, transfer objects should
be used. They can be specifically constructed to contain all the relevant data
for a certain activity and can then be sent to the receiving component as a
whole.

Unbalanced Forces

Management of performance Ignoring transfer objects can decrease the per-
formance of the system due to communication overhead.

Management of security Passing object references to other components can
give them access to functionality that is not normally provided to them.

General Form of this Design Deficiency

Figure 3.1 shows the general form of the Transfer Object Ignorance deficiency
in a component diagram. It contains two components, Component A and Com-

ponent B. Following the notions of Szyperski ([SGM02], see Section 2.1.1), they
are supposed to communicate exclusively via the interface ICalledClass which is
provided by Component B and required by Component A. ICalledClass offers access
to the method calledMethod of the CalledClass which expects a parameter param of
the type ExposedClass. The ExposedClass, however, together with the CallingClass

belongs to Component A.

The problem becomes obvious in the implementation of the callingMethod

in the callingClass. The callingMethod has a reference e to an instance of the

sense, their instances which are used at run-time are the “real” data transfer objects. In
order to be consistent with the terminology from the pattern description, I use the name
“data transfer object” in this thesis, even when referring to the data class.
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CallingClass
callingMethod()

Component A

ICalledClass

Component B

CalledClass
calledMethod(ExposedClass param) : void

ExposedClass
data : SomeDataType

calledMethod
   (ExposedClass param) : void

…

ExposedClass e = …

ICalledClass cc = …

cc.calledMethod(e);

…

someFunctionality()

Figure 3.1.: General form of the Transfer Object Ignorance deficiency

ExposedClass and another reference cc of the type ICalledClass. The callingMethod

calls the calledMethod of cc and passes e as an argument.

As explained in the background section, this may lead to security and per-
formance problems. On the one hand, by passing the reference to e to the
CalledClass in Component B, Component A loses control over which data of e is
read by cc. cc may even change the data or call public methods of the Exposed-

Class, e.g. someFunctionality(). On the other hand, if cc was to interact a lot with
e, each of these interactions may possibly be a remote call causing significant
overhead as stated in the background section.

Symptoms and Consequences

If the example system was subject to a clustering-based architecture reconstruc-
tion algorithm, Transfer Object Ignorance deficiencies could gravely impact the
reconstructed architecture. By directly passing the reference to an instance
of the ExposedClass to the CalledClass, a strong coupling between the classes Ex-

posedClass, CalledClass, and CallingClass is created. Coupling between classes is
a metric that is used by many architecture reconstruction algorithms to group
classes into components. Therefore, it stands to reason that all the classes
involved in a Transfer Object Ignorance occurrence might be assigned to one
component by the architecture reconstruction algorithm instead of grouping
them into separate components. The impact of deficiencies on the metrics used
during architecture reconstruction is examined in detail in Chapter 5.

Typical Causes

• Passing object references as arguments of method calls is a common prac-
tice in object-oriented programming. Programmers are used to this kind
of communication between classes and may be ignorant to the fact that
it is a deficiency for the communication between classes in different com-
ponents.
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• Programming languages that do not support components as a first-level
concept (e.g. Java) have no means to detect this deficiency. Thus, pro-
grammers that introduce this deficiency in a system may simply be un-
aware that they should have used a transfer object.

Known Exceptions

Sometimes it may not be a problem to pass an object reference to another class
even if a transfer object could be used in theory. For example, if the Calling-

Class and the CalledClass are part of the same conceptual component, they can
communicate directly without violating component-based development princi-
ples. Also, in cases where Component A and Component B are parts of a common
composite component, it may be tolerable if they do not use transfer objects
for their communication.

Removal Strategies

There are several removal strategies that can be applied to remove the Transfer
Object Ignorance deficiency. There is no clear answer as to which of them is
suitable for the removal of a given deficiency occurrence. There may also be
more strategies than the ones pointed out in this section.

Mark exposed class as transfer object The Transfer Object Ignorance deficiency
may occur when a class that is intended to be used as a data transfer ob-
ject is not correctly designated as such. For example, if the exposed class
only contains fields of primitive data types and according access meth-
ods, it may be intended to be a transfer object. In order to remove a
deficiency, the ExposedClass could be adapted to be an actual data transfer
object. For example, in case of the CoCoME system, the suffix “TO”
could simply be appended to the class name. Of course, this may neces-
sitate an adaptation of the involved interfaces. In the deficiency’s general
form depicted in Figure 3.1, changing the name of the ExposedClass will
entail a change of the interface ICalledClass.

Move called method It may be the case, that the calledMethod may not be
placed ideally in the CalledClass at all. Fowler describes this situation
in his bad smells Feature Envy and Inappropriate Intimacy [Fow99]. If
the method were moved, e.g. to the CallingClass, the components would no
longer need to communicate with each other (at least as far as this partic-
ular interaction goes). This would also prevent the Transfer Object Igno-
rance deficiency. Of course, such a reengineering would also necessitate a
change in the component’s interfaces and could have severe repercussions
on other components and classes in the system.

Introduce transfer object Maybe the most obvious way to remove a Transfer
Object Ignorance deficiency is to introduce a new data transfer object
and use it for the passing of data instead of the object reference. This,
however, requires an in-depth analysis of the deficiency occurrence to
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determine which data or functionality of the ExposedClass is actually used
in the calledMethod. If only data is used, a new class can be created
that is correctly marked as a data transfer object. In the calledMethod,
an instance of this class has to be created and filled with the required
data. In order to accept this new transfer object, the CalledClass and the
appropriate interface have to be adapted accordingly. (The changing of
the interface may, of course, break other classes that implement it.). In
addition, the behaviour of the calledMethod has to be changed to correctly
process the transfer object. If functionality of the ExposedClass is used,
the reengineering becomes even more complicated as this functionality
may need to be moved to Component B in order to be available to the
calledMethod. So in spite of being an obvious removal strategy, introducing
a new transfer object consists of so many steps and considerations that it
is hardly automatable.

Variations

CallingClass
callingMethod()

Component A

ICalledClass

Component B

CalledClass
calledMethod() : ExposedClass

ExposedClass
data : SomeDataType

calledMethod() : ExposedClass

…

ICalledClass cc = …

ExposedClass e = 

     cc.calledMethod();

… 

someFunctionality()

Figure 3.2.: Variation of the Transfer Object Ignorance deficiency: A class is
exposed by returning it on a call.

Figure 3.2 shows a variation of the Transfer Object Ignorance deficiency’s
general form. In contrast to the general form where a parameter is used to pass
an object reference across component boundaries, the same is accomplished
here by returning an object reference in response to a call. In this case, the
ExposedClass belongs to Component B. The calledMethod returns an object of the
type ExposedClass. Because the calledMethod is available through the interface
ICalledClass, it is possible for the callingMethod to call the calledMethod and thereby
obtain an object reference to an instance of the ExposedClass. As shown in the
code snippet for the callingMethod, someFunctionality which is not provided by
the interface can then be called from Component A although this should not be
allowed. Similar to the general form of the deficiency, if the CalledClass intended
to return some data in response to the call of the calledMethod, it should do so
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by using a transfer object.

Example

Assets
calculateValue() : int

StoreQuery
getInventory() : Inventory

IStoreQuery

Accounting Store

IReporting

Inventory
items : Item[]

package data.storagepackage app.accounting

package app.controlling

Controlling

Reporting
sendReport(Report r) : void

Report
text : String

sendReport(Report r) : void

getInventory() : Inventory

Transfer Object 
Ignorance 2

Transfer Object 
Ignorance 1

calledMethod

exposedClass

callingClass

callingClass

exposedClass

calledMethod

checkStock() : int

Figure 3.3.: Running example: Transfer Object Ignorance

Figure 3.3 shows on excerpt of the concrete architecture of the example sys-
tem that is used as a running example throughout this thesis. The figure shows
the three components Accounting, Controlling, and Store. The components Store

and Controlling provide the interfaces IStoreQuery and IReporting which are both
required by the Accounting component. The system contains two occurrences of
the Transfer Object Ignorance deficiency which are marked by labelled ellipses.
They represent the two variants of the Transfer Object Ignorance deficiency.
Variant no. 1 exists between the components Accounting and Controlling while
variant no. 2 is located between Accounting and Store.

The Accounting component can send a Report to the Controlling component
by calling the method sendReport of the class Reporting. In doing so, a Report

object is passed to the Controlling component. This is an occurrence of the
general form of the Transfer Object Ignorance deficiency as described above.
The calling class of this occurrence is Assets, the called method is sendReport of
the class Reporting, and the exposed class is Report. While Report is marked as
the exposed class, it has the characteristic appearance of a data transfer object,
i.e. it contains an attribute (whose access methods are omitted in Figure 3.3)
but no methods that implement application logic. Although Report looks very
much like a transfer object, it lacks the appropriate suffix “TO”. Thus, an
appropriate removal strategy to remove this deficiency occurrence would be
the strategy Mark exposed class as transfer object as described above. Since
this strategy is rather simple, the removal could be performed by applying an
automated removal strategy.
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In the second occurrence, again, Assets is the calling class, the called method
is getInventory of the class StoreQuery, and the exposed class is Inventory. We
assume that the method calculateValue calls the method getInventory of the inter-
face IStoreQuery. An instance of Inventory is returned to the calling class Assets

on calling getInventory. This way, Assets gets access to Inventory’s attribute items

as well as to its method checkStock. These members should not be available
to classes from the Accounting component since they are not accessible via the
interface IStoreQuery.

One possibility to remove this deficiency occurrence is to apply the Introduce
transfer object removal strategy. By creating a new data class for the transfer
object, in this case, e.g. InventoryTO, all relevant data that is required by the
Assets class could be bundled and made available without exposing the Inventory

class itself. To find out which data is required, the architect would have to
analyse the calculateValue method. Afterwards, the method getInventory would
have to be adapted, to create an instance of InventoryTO, populate it with the
necessary data, and return it instead of the Inventory instance. As mentioned in
the description of the removal strategy above, analysing which data is used by
the Accounting component is very complex. Thus, it is very difficult to create an
automatic transformation that performs this reengineering. The architect will
probably have to carry out part of this reengineering manually.

Assets
calculateValue() : int

StoreQuery
getInventory() : InventoryTO

IStoreQuery

Accounting Store

IReporting

Inventory
items : Item[]

package data.storagepackage app.accounting

package app.controlling

Controlling

Reporting
sendReport(ReportTO r) : void

ReportTO
text : String

sendReport(ReportTO r) : void

getInventory() : InventoryTO

checkStock() : int

InventoryTO
items : Item[]

Figure 3.4.: Reengineered version of the running example from Figure 3.3

Figure 3.4 shows a reengineered version of the example system from Fig-
ure 3.3. As suggested above, the two removal strategies Mark exposed class
as transfer object and Introduce transfer object have been applied to the defi-
ciency occurrences no. 1 and 2, respectively. The class Report has been correctly
marked as a transfer object by renaming it to ReportTO and adapting the inter-
face IReporting accordingly. To remove deficiency occurrence no. 2, the new class
InventoryTO has been created and the interface IStoreQuery has been changed to
return an instance of this new class instead of an instance of Inventory. The
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3. Design Deficiencies

substantial changes that are required in the method getInventory which needs to
create an instance of InventoryTO and populate it with the correct data from
the Inventory are not visible in this figure.

Related Solutions

This paragraph provides short explanations of the patterns and deficiencies
related to the Transfer Object Ignorance deficiency.

Data Class The data transfer objects used for the communication are Data
Classes as described by Fowler [Fow99, p. 86]. Fowler characterises them
as bad smells in an object-oriented design because they “are dumb data
holders and are almost certainly being manipulated in far too much detail
by other classes”. However, in the context of component-oriented design,
these Data Classes are exactly what is needed for the data exchange be-
tween component to preserve the encapsulation of component behaviour.

Data Transfer Object The Data Transfer Object design pattern as described
by Alur et al. and Fowler presents the rationale and implementation of
component communication via transfer objects in detail [ACM01, Fow02].

Interface Violation When a class is exposed to other components by a Trans-
fer Object Ignorance deficiency, an Interface Violation may occur when
the components call methods of the exposed class that are not provided
regularly via interfaces (See Appendix B.1).

Unauthorised Call Exposing a class and its methods through a Transfer Object
Ignorance deficiency promotes Unauthorised Calls between components
(See Appendix B.2).

3.4. Further Design Deficiencies

This section provides an overview of the further design deficiencies that have
been examined in the course of this thesis. Detailed descriptions of these defi-
ciencies can be found in Appendix B.

Interface Violation In component-based systems, the communication between
components should be accomplished via the declared interfaces [SGM02].
However, this convention cannot always be enforced statically, for example
in cases where the programming language does not support the concept
of components directly. In these cases, an unwary developer may intro-
duce a method call between classes that conceptually belong to different
components even though the called method is not made available in an
interface. This is called an Interface Violation.

Unauthorised Call Interfaces in component-based systems according to Szyper-
ski are unidirectional: class A may call methods of class B as long as they
are declared in the interface used by A. However, this does not allow
B to call methods of A. Unfortunately, the connection of the classes in
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3.4. Further Design Deficiencies

one direction may convey the notion that these classes are “intended to
work together” to inexperienced developers. Therefore, they may intro-
duce calls from B to A without checking if this communication direction
would be allowed by the architecture. As it also describes a method call in
the absence of an appropriate interface, an Unauthorised Call is strongly
related to the Interface Violation deficiency.

Inheritance between Components According to Szyperski, components are units
of independent deployment [SGM02]. Therefore, there may not be an in-
heritance relationships between classes in different components. A clustering-
based architecture reconstruction approach may however assign such classes
to different components, for example because the classes are only loosely
coupled otherwise. This deficiency informs the software architect that the
reconstructed components are probably incorrect at this point.
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4. The Archimetrix Process

This chapter presents the Archimetrix process, a reengineering process that
aims at the recovery of a software’s architecture from its source code while tak-
ing design deficiencies into account. The process was first sketched in [TvDB11]
and was refined in later publications [vDB11, PvDB12, vDPB13]. The chap-
ter begins with a description of the scientific contributions of the process in
Section 4.1. It is followed by an overview of the process in Section 4.2 which
describes the two parts of the process and the involved roles. Section 4.3 pro-
vides details on the part of the process that is concerned with the architecture
reconstruction. The discovery, documentation, and formalisation of design de-
ficiencies is covered in Section 4.4. Finally, Section 4.5 discusses the limitations
of the current process.

4.1. Contributions

The process presented in this chapter contributes to the area of component-
based reengineering in the following ways:

• The process combines established techniques for the reverse engineering
of component-based systems, namely clustering-based architecture recon-
struction and pattern detection. This combination improves the recon-
structed architecture by leveraging the individual strengths of both ap-
proaches and thereby mitigating their shortcomings: Architecture recon-
struction is scalable and very useful to produce an overview of the system.
However, its results can be adulterated by design deficiency occurrences.
Pattern detection on the other hand allows for the precise identification of
such deficiency occurrences. In isolation, however, pattern detection does
not scale to large systems and may produce a large, confusing number of
results.

• The Archimetrix process comprises a sub process for the structured dis-
covery, documentation and formalisation of design deficiencies. In general,
this is a creative process that is driven by domain knowledge, examination
of existing systems, and the fusion of these elements into general patterns.
However, I propose a guideline to structure these steps.

• Archimetrix is designed as an extensible approach. The different pro-
cess steps can easily be extended, e.g. by adding new design deficiency
formalisations and removal strategy formalisations (see Section 4.4), new
component relevance metrics (see Section 6.5), and new metrics for the
ranking of design deficiencies (see Section 8.3). In this thesis, I also sug-
gests several future extensions of the process itself.
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4. The Archimetrix Process

4.2. Process Overview

Figure 4.1 shows the Archimetrix process. It consists of two parts: the iterative
architecture reconstruction process on the left (shaded in a light grey), and a
process for the formalisation of design deficiencies (shaded in a darker grey).
The former part combines clustering-based architecture reconstruction with de-
sign deficiency detection. It is an iterative process with one iteration consisting
of five steps. In addition, the deficiencies and removal strategies used in the
iterative process have to be discovered, documented and formalised which is in
the focus of the second part. The two parts are executed by different roles: the
software architect carries out the iterative architecture reconstruction while the
deficiency expert formalises the design deficiencies.

The steps in which pre-existing approaches are reused are marked with dashed
lines in Figure 4.1. The iterative architecture reconstruction process is ex-
plained in Section 4.3. The formalisation of design deficiencies is described in
Section 4.4.

4.3. Iterative Architecture Reconstruction

At the beginning of the process, I assume that only the source code of the
system is available to the software architect. The conceptual architecture is
unknown. Also, the architect does not know if and where design deficiencies
exist in the source code.

Step 1: Architecture Reconstruction The Archimetrix process starts with
the architecture reconstruction of the system. This step takes the system’s
source code as an input. The code is parsed and transformed into an abstract
syntax tree representation. From this abstract syntax tree, an initial software
architecture for the system is reconstructed. This initial architecture can pro-
vide a first rough overview of the system which is in line with Kazman’s advice
to initially “obtain a high-level architecture view of the system before beginning
the detailed reconstruction process” [KOV03]. However, it may be adulterated
by design deficiencies if they are present in the system. Details on the archi-
tecture reconstruction step and on the impact of deficiencies thereon are given
in Chapter 5.

Archimetrix uses the Software Model Extractor (SoMoX) [CKK08, Kro10]
for the architecture reconstruction (see Section 2.1.3). However, it would also
be possible to integrate other clustering-based architecture reconstruction ap-
proaches into the Archimetrix process.

Step 2: Component Relevance Analysis In order to prevent the adulteration
of the reconstructed architecture, I propose to detect the design deficiencies and
remove them from the system. As an additional benefit, this will improve the
code quality. However, executing a design deficiency detection on the complete
system is very time-consuming in the general case and does not scale well for
large systems [SSL01, BT04a]. As a consequence, I suggest that the software
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Figure 4.1.: The reengineering process with Archimetrix
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4. The Archimetrix Process

architect should select components from the initially recovered architecture to
limit the search scope for the design deficiency detection. Ideally, the detec-
tion should be focused on components in which such a detection is worthwhile.
These can be components that are very complex and therefore have a high
probability of containing design deficiencies. On the other hand, components
which are prone to change when the deficiencies are removed are a worthwhile
detection target. To support the architect in the decision which components are
a worthwhile input for the design deficiency detection, I propose the Component
Relevance Analysis step. It takes the components from the initial clustering,
rates them and thereby suggests a sensible input for the design deficiency de-
tection. The relevance analysis is explained in detail in Chapter 6.

Step 3: Design Deficiency Detection In the next step, the design deficiency
detection can be executed on the selected (relevant) component(s). The defi-
ciency detection uses pattern detection techniques to find occurrences of pre-
defined deficiencies in the selected components. (The formalisation of these
deficiencies is discussed in Section 4.4.) Archimetrix mainly focuses on the
structural analysis of the system, i.e. on the detection of deficiencies in the
result model of the architecture reconstruction based on their structural prop-
erties. The deficiency detection yields a set of design deficiency occurrences in
the previously selected components. This is explained in detail in Chapter 7.

Archimetrix uses Reclipse for the design deficiency detection (see Section 2.2.3).
Similar to the architecture reconstruction step, Archimetrix does not depend
on Reclipse on a conceptual level. Therefore, it is also possible to integrate
different pattern detection approaches into Archimetrix.

As Reclipse, in general, also has behavioural pattern detection capabilities,
i.e. the detection of patterns based on their run-time behaviour, Chapter 7 also
discusses the combination of structural and behavioural detection approaches.
It also points out how the behavioural pattern detection techniques can be
improved.

Step 4: Design Deficiency Ranking Depending on the context in which a de-
sign deficiency occurs, some occurrences may be more critical than others, i.e.
they may have a stronger influence on the architecture reconstruction or their
removal may be either easier or more pressing. As a consequence, the architect
has to decide which design deficiency occurrences should be removed and in
which order. In large systems, however, this may be difficult. On the one hand,
the number of detected deficiency occurrences may be so high that the archi-
tect can not easily get an overview. On the other hand, he may not be familiar
enough with the system to gauge the importance (or even the correctness) of the
detected occurrences. In order to support this decision, Archimetrix performs
a Design Deficiency Ranking step that judges the severity of the detected de-
sign deficiency occurrences. This ranking mechanism takes all detected design
deficiency occurrences as input and assigns a value between 0 and 1 to them.
This can serve as an indication for the architect which deficiencies may be the
most interesting to look at. Chapter 8 provides details on the design deficiency
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4.4. Design Deficiency Formalisation

ranking.

Step 5: Architecture Preview & Deficiency Removal To accomplish the
removal of a design deficiency, different removal strategies exist. Sometimes,
pre-defined removal strategies can be applied automatically. But there are also
situations in which the architect has to intervene and to remove the design
deficiency partly or completely manually. In both cases, the removal of the
deficiency will affect the metric values measured in the clustering and thus will
influence the architecture reconstruction.

If a pre-defined removal strategy is applied, its architectural consequences
can be visualised by an Architecture Preview. This step takes a selected design
deficiency occurrence and a chosen removal strategy as input. It produces a
comparison of the current architecture and the architecture that would result
from the application of the removal strategy. The software architect can then
preview the effects of different removal strategies and determine which of the
resulting architectures fits his requirements best. If no pre-defined removal
strategy can be applied, the deficiency can also be removed manually. The
architecture preview and the deficiency removal are described in Section 9.

Further iterations After the architect has removed one or more deficiency
occurrences, the architecture reconstruction can be repeated. The newly recon-
structed architecture may be different from the initially recovered one because
the removed deficiencies no longer influence the clustering. The software archi-
tect can compare the different reconstructed architectures to each other. This
comparison has to be performed manually at the moment. Tool-support for
this step is the currently being developed in a master’s thesis [Str13].

If the architect is satisfied with the newly reconstructed architecture, the
process ends at this point. Otherwise, the reengineered system can be the
starting point for a new iteration of the reengineering process.

4.4. Discovery, Documentation, and Formalisation of
Design Deficiencies

Before design deficiencies can be detected in a software system, it has to be de-
termined which deficiencies shall be detected. Sometimes there are pre-defined
catalogues of deficiencies (e.g. [All02, BMMM98]). At other times, it is unclear
which deficiencies commonly appear in a system so they have to be discov-
ered first. The discovered deficiencies and their removal strategies then have
to be documented and formalised in order to allow for an automatic detec-
tion. Removal strategies can be discovered and formalised at the same time
as the corresponding deficiencies. Therefore, I do not explicitly mention them
every time in the following description of the process. Section 9.5 explains the
formalisation language and the application of removal strategies.

This section describes a process for the systematic discovery, documentation,
and formalisation of design deficiencies. The process was first presented in
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[vDPB13]. For the formalisation of deficiencies, I reuse an existing, domain-
specific, graphical language which was developed in the Software Engineering
Group at the University of Paderborn [NSW+02, Nie04] [vDT10].

Design deficiencies often occur because design principles, guidelines, or con-
ventions are not adhered to. The reasons for this are manifold. For example,
high time pressure may force developers to quickly implement something with-
out spending much time on devising careful designs. In other cases, inexperi-
enced developers may simply be unaware of guidelines or the guidelines may
not be sufficiently enforced in a company, e.g. through regular code reviews.

Figure 4.2 shows the process for the discovery, documentation, and formalisa-
tion of such design deficiencies as a UML Activity. This process is performed by
a deficiency expert, i.e. someone who is familiar with the formalisation language
used in Archimetrix.

The process consists of four phases.

1. The discovery of design deficiencies (Steps 1.1 to 1.3).

2. The documentation of the discovered design deficiencies (Step 2).

3. The formalisation of the documented design deficiencies (Step 3).

4. The validation of the design deficiency formalisations (Steps 4 to 6).

The enumeration of the phases already suggests that the phases have to be
carried out in this order. For example, deficiencies can only be documented
when they have already been discovered. The validation phase happens in
iterations. The deficiency formalisations are tested on a test system or a real
system. If the detection results are not satisfying, the formalisations are refined
and the validation is repeated. The process ends when the deficiency detection
yields satisfying results for the deficiency formalisations.

The following paragraphs explain the process steps in more detail.

Steps 1.1 to 1.3: Deficiency Discovery The first step in discovering de-
ficiencies is to identify principles, guidelines, and conventions that are used
in the system under study. These may be, for example, common principles
of good component-based design like architectural styles or design patterns
[Fow02, SGM02] (Step 1.1). The use of data transfer objects described in Sec-
tion 3.3 is one example of such a common design principle. Design principles
can be identified by studying textbooks or by talking to experienced software
architects. The corresponding design deficiencies can then easily be derived
by imagining violations of design principles like the ignorance of data transfer
object in the running example.

On the other hand, there may be company- or project-specific guidelines
which are not universally applicable to arbitrary component-based systems (see
Section 3.1). For example, there may be company-specific naming conventions
or development guidelines. The naming convention for transfer objects pre-
sented in Section 3.3 is an example of a project-specific convention that stems
from the CoCoME project [RRMP08]. Other conventions may arise from the
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1.2: Derive violations from 
company- and project 

specific guidelines

1.3: Interview developers about 
informal conventions and commonly 

occurring deficiencies

2: Document deficiencies

3: Formalize deficiencies

4.1: Automatic detection 
on test system

5.1: Automatic detection 
on real system

4.2: Check results for false 
positives and negatives

5.2: Check results for false 
positives and negatives

6: Refine formalizations

5.3: Collect and analyze 
developer feedback on results

[Detection results are satisfying]

[else]

1.1: Derive violations from 
principles of good 

component-based design

Figure 4.2.: Process for the documentation and formalisation of design
deficiencies
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use of a specific framework (for example JEE [Jav12]) in a project [ACM01].
Principles and guidelines like this can be discovered by studying documentation
that is in use in the project, e.g. specific textbooks, guideline documents, or
wikis that are used by the developers (Step 1.2). Similar to the more universal
design deficiencies from Step 1.1, project-specific design deficiencies can be de-
rived by thinking of ways how the discovered guidelines and conventions could
be violated.

A third possible source of information about deficiencies are the system’s de-
velopers. Developers may have conventions that are not formally documented
and are disseminated by communication among the developers (“We always
do it that way...”). Of course, the spread of this knowledge is highly non-
transparent. Different developers may have different, possibly contradicting,
knowledge of such conventions and it is hard to find out if everybody in the
team has all relevant information. This can best be learned by interviewing the
developers and documenting and consolidating their knowledge (Step 1.3). On
the other hand, developers can be asked about commonly occurring deficiencies,
especially deficiencies that may often be introduced by new and inexperienced
developers. Detecting those deficiencies may not only be useful in the con-
text of the Archimetrix process. It can also increase the productivity of these
developers by detecting their faults early and reliably.

Step 2: Documentation of Deficiencies Once the principles, guidelines, and
conventions which should have been adhered to in the system in question are
identified, the deficiencies that arise from their violation can be documented
(Step 2). At first, this can be an informal, textual documentation. It is also
possible to use pre-defined templates for the documentation of design deficien-
cies like the ones presented by Brown et al. [BMMM98]. The templates can be
easily adapted to specific preferences or requirements in a company or project.
Section 3.3 shows an exemplary documentation of the Transfer Object Igno-
rance deficiency that makes use of Brown’s AntiPattern template. Independent
of the formalisation and the later detection of deficiencies, this documentation
can be very useful for the developers and their company. It can serve as a
catalogue of worst practices that makes knowledge about possible deficiencies
explicit and allows to avoid them in the future.

Step 3: Deficiency Formalisation As soon as the deficiencies are identified
and documented, they can be formalised (Step 3). There is a large variety
of domain-specific languages (DSL) for the formalisation of software patterns.
Taibi presents a selection thereof [Tai07].

Archimetrix uses Reclipse for the detection of design deficiencies [vDMT10a,
vDMT10b, vDT10]. Therefore, in this thesis, the DSL provided by Reclipse is
used to formalise the design deficiencies [NSW+02, Nie04]. In general, Reclipse
can use static and dynamic (i.e. run-time) information for the detection of
patterns.

In the scope of this thesis, the focus is on the use of static information.
Hence, the deficiency formalisation in this section is accomplished with so-
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structural pattern Transfer Object Ignorance

callingClass : 
GASTClass

calledMethod : Method

:TransferObjectIgnorance

accessed
Target

callingClass
exposed

Class

«create»

«create»
«create»

call : FunctionAccess formalParameters

allAccesses

param : FormalParameter

calledClass : GASTClass

c1 : Component

c2 : Component

classes

classes

methods

classes

calledMethod

exposedClass : GASTClass

name.substring(name.size()-2, name.size()) <> ‘TO’

type
«create»

someFunctionality : 
Method

methods

Figure 4.3.: Structural formalisation of the Transfer Object Ignorance deficiency

called structural patterns. For every deficiency that is to be detected by Reclipse
there has to be one structural pattern. Reclipse can then search for deficiency
occurrences based on these formalisations.

The following section explains the formalisation of design deficiencies by
means of the running example from Section 3.3. As the DSL for the formal-
isation of structural patterns is not a contribution of this thesis, it is only
explained to the extent that is necessary for the understanding of the example
formalisation.

Structural Formalisation The occurrence of a design deficiency is described
by an object structure that constitutes such a deficiency. In the deficiency
formalisations, this exemplary object structure is specified. In Reclipse, the ob-
jects are typed over an exchangeable meta model. In the case of Archimetrix, I
chose the source code decorator meta model which connects the reconstructed
architecture model (the service architecture model or SAM) with the gener-
alised abstract syntax tree (GAST) of the source code (see Section 5.4 and
Appendix A). This way, the deficiency formalisations can reference information
from both, the architecture and the source code. A more detailed explanation
can be found in Chapter 7.

Figure 4.3 shows a formalisation of the Transfer Object Ignorance deficiency’s
general form shown in Figure 3.1. In the upper left corner of Figure 4.3, an
object labelled callingClass of type GASTClass is connected to an ellipse labelled
c1: Component. The ellipse represents an annotation of a pattern occurrence
that has been matched earlier in the detection process. In this case, it marks
the component c1 to which the callingClass belongs. (The use of the component
patterns is explained in Section 7.4.)

The calling class contains a FunctionAccess call to a target calledMethod. The
calledMethod belongs to a calledClass which in turn is part of a component c2. The
calledMethod has a FormalParameter param of type exposedClass. The exposedClass
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is a regular GASTClass which also belongs to component c1.

The exposedClass is not marked as a transfer object which is signified by the
constraint that is imposed on its name. The constraint is expressed in the
Object Constraint Language (OCL, [Obj12]). This expression states that the
name may not end with the suffix “TO”. The ExposedClass contains a Method

someFunctionality. This method is marked to be an additional object which is
signified by the dashed border of the someFunctionality object. It means that
the detection algorithm will try to find a method in the exposed class but that
the deficiency occurrence can still be detected if such a method does not exist.
These additional elements can be used to capture multiple structural variants
of a deficiency with a single formalisation. In addition, the detection algorithm
can attach a percentage to each deficiency occurrence that expresses which
fragment of the formalisation could be detected [Tra07].

More deficiency formalisations are presented in Appendix B. A more detailed
explanation of Reclipse’s structural pattern DSL and exemplary specifications
of design patterns can be found in [vDT10].

Steps 4 to 6: Validation of the Formalisation The formalisation of deficien-
cies is a non-trivial task that has to be carried out manually. Therefore, a
validation is necessary to determine if the formalisations are suited to detect
the deficiencies they are supposed to detect. In the process presented in this
section, this is accomplished in two different ways. On the one hand, a search
for the formalised deficiencies can be executed on a test system (Step 4.1). The
test system usually is a small, manually created system which deliberately con-
tains occurrences of the deficiencies in question. The detection results are then
inspected manually by the deficiency expert for false positives and false nega-
tives (Step 4.2). If there are false positives, i.e. detected deficiency occurrences
that match the formalisation but are not really deficiencies, the formalisation
is not sufficiently exact. A false negative is a deficiency occurrence that was
implemented in the test system but that is not detected. In this case, the
formalisation may be too restrictive.

Another possibility to validate the deficiency formalisations is to execute a
deficiency detection on a part of a real system (Step 5.1). Ideally, the formalised
deficiencies are known to (or at least suspected to) occur in that part. After the
detection, the detection results can be analysed for false positives and negatives
(Step 5.2). Again, this is a manual task that has to be accomplished by the
deficiency expert. Of course, the false negatives in this scenario can only be
determined with respect to the known deficiency occurrences. Afterwards, the
detection results should be discussed with the developers that are responsible
for the analysed part of the system, provided they are still available (Step 5.3).
They can give additional insight into the occurrence of the deficiencies and can
also judge whether the detection results are of interest to them.

Finally, the formalisations can be adapted in accordance with the obtained
insight (Step 6). Afterwards, the validation (Steps 4.1 to 5.3) and adaptation
can be repeated until sufficiently good detection results is achieved. If the
validation shows that the detection results are satisfying, the formalisation of
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the deficiencies ends.

4.5. Limitations

The Archimetrix process leaves still room for extensions.

• At the moment, the software architect has to decide when he wants to
terminate the process. Section 4.2 suggests that the process ends when
the architect “is satisfied with the reconstructed architecture”. Kazman
et al. point out that it is a general problem of architecture reconstruction
processes that “there are no universal completion criteria” [KOV03]. This
is also true for Archimetrix. For now this architect’s satisfaction with the
architecture can only be based on a ’gut feeling’ or simple metrics like ’The
system contains no more bad smells’. Thus, the architect obviously runs
the “risk of stopping too soon” as Parnas puts it [Par11]. This situation
could be improved by employing metrics to measure the modularisation
quality of the system [SKR08]. In addition, design heuristics like the
ones presented by Riel [Rie96] and by Cho et al. [CKK01] could be taken
into account. For example, the architect could follow the process until a
number of metrics reaches a certain threshold.

• The process presented in this chapter provides some guidance in the dis-
covery of possible design deficiencies. However, it does not guarantee that
all deficiencies that exist in the system under study are really discovered.
Some deficiencies may be unknown to the developers or they may not be a
direct violation of a general or specific design principle. These deficiencies
may only be discovered if a developer or architect comes across them by
chance.

• Design deficiencies can only be detected automatically when they are
specified in a formal way. This formalisation is far from trivial and a
predefined catalogue of common deficiencies could be helpful. Especially
architects that are unfamiliar with the formalisation languages could ben-
efit from such a catalogue. However, there is no predetermined, static set
of deficiencies for component-based systems in general. While some defi-
ciencies may occur in nearly all systems, others are highly dependent on
technology choices or company-specific conventions (see Section 3.1).

• The formalisation of deficiencies as described in this chapter is sometimes
complicated by the structure of the underlying type graph. It may be nec-
essary to create several formalisations to cover all variants of a pattern.
For instance, the type graphs used in this thesis (GAST, SAMM, and
SCD; see Appendix A) use the same type to represent classes and inter-
faces (GASTClass). However, different elements are used to document the
assignment of classes and interfaces to components (ComponentImplementing-

ClassesLink and InterfaceSourceCodeLink, respectively). In some cases, this
necessitates the creation of two deficiency formalisations which cover the
same deficiency for classes and interfaces, respectively.

55





5. Influence of Design Deficiency
Occurrences on the Architecture
Reconstruction

This chapter deals with the reconstruction of component-based software archi-
tectures and how this is influenced by the presence of design deficiencies in
the source code. It starts with the contributions of this chapter in Section 5.1.
Archimetrix uses the tool SoMoX for the architecture reconstruction. Therefore,
the reconstruction process of SoMoX is explained in detail in Section 5.2 and the
dependencies between the metrics used in the process are analysed. Building on
those observations, Section 5.3 shows how occurrences of design deficiencies can
influence the metric values and thus adulterate the reconstructed architecture.
The architecture model that is created by SoMoX is described in Section 5.4 be-
cause it is the input for the subsequent process steps of Archimetrix. Section 5.5
discusses limitations while Section 5.6 concludes the chapter.

5.1. Contributions

The contributions of this chapter are as follows.

• This chapter presents an explanation of the architecture reconstruction
process reused in Archimetrix in terms of the running example. Thereby,
it provides the foundation for understanding the influence of deficiency
occurrences on the architecture reconstruction.

• The chapter also provides a detailed analysis of the influence of design
deficiency occurrences on the architecture reconstruction. It clarifies the
calculation of the metrics used in the architecture reconstruction. This
allows for an illustration of the impact that simple details like added
references between classes can have on the clustering metrics.

5.2. Reconstruction Process

This section explains the architecture reconstruction process that is realised
in SoMoX. It is completely based on the work by Krogmann [Kro10] and the
implementation of SoMoX.

Figure 5.1 depicts the architecture reconstruction process in SoMoX which
consists of eight steps. First, the source code of the system is parsed by the
parser SISSy [Sis11] and a Generalised Abstract Syntax Tree (GAST, see Ap-
pendix A.1) is created from it (1). SISSy already tries to detect classes that
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5. Influence of Deficiencies on the Architecture Reconstruction

Figure 5.1.: Architecture reconstruction process in SoMoX (from [Kro10])

are meant to represent data transfer objects (see Section 3.3) and excludes
them from the architecture reconstruction. This is done because on the code
level, transfer objects are tightly coupled to their sending and receiving classes.
This would cause SoMoX to cluster components together although the transfer
objects are meant to separate them.

Steps (2) to (8) are carried out iteratively. Each iteration builds on the results
of previous iterations and tries to create new components from the components
reconstructed so far1. The initial iteration produces one primitive component
for each class. In the subsequent iterations, every combination of two com-
ponents, either primitive or composite, constitutes a component candidate, i.e.
a candidate for the creation of a new component by combining two smaller
ones. There are three possibilities for combining a component candidate (see
Figure 5.2):

a) If the candidate consists of two primitive components, it can be merged,
i.e. unified into one larger primitive component.

b) A candidate can also be composed, i.e. encapsulated in a new composite
component. All components of the candidate are retained as sub com-
ponents of the newly created component. This can happen for both,
primitive and composite components.

c) Finally, a candidate can also be discarded. In this case, no new component
is created.

To determine whether a component candidate is merged, composed, or dis-
carded, new metric values are calculated in every iteration (Step 2 in Figure 5.1).
Then the metric values are combined into a merging value vmerge and a com-
position value vcompose for every potential candidate (3). The computation of

1These clustering iterations are not to be confused with the iterations of the Archimetrix
process.
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5.2. Reconstruction Process

vmerge and vcompose is explained in detail in Section 5.2.2 below. If, for a candi-
date, vmerge exceeds a certain merging threshold tmerge, the candidate is merged
(4). If vcompose exceeds a certain composition threshold tcompose, the two com-
ponents that constitute the candidate are composed (5). If both thresholds
are exceeded, merging takes precedence over composition. If both aggregated
values are below the respective thresholds, the candidate is discarded.

CAB

vmerge > tmerge ?

vcompose > tcompose ?

CA

CB

StoreQuery

Assets

a) Merge Components

vmerge ≤ tmerge & 
vcompose ≤ tcompose

Inventory

Component Candidate

vmerge =  0.38
vcompose =  0.82

b) Compose Components

c) Discard Candidate

StoreQueryAssets

Inventory

CAB

CAB

tmerge =  0.4
tcompose =  0.6

CA

Assets

CB

StoreQuery

Inventory

CB

StoreQuery

Inventory

CA

Assets

Figure 5.2.: Merge, composition, or discarding of a component candidate from
the running example

Figure 5.2 shows a situation that could occur during the architecture recon-
struction of the running example. The component candidate CAB consists of
two basic components, CA and CB. CA contains the class Assets while CB con-
tains the classes StoreQuery and Inventory. If this candidate was merged, a new
basic component containing all three classes would be created. If the candidate
was composed, the two basic components would be retained but they would be
integrated into a new composite component. If the aggregated metric values
indicated neither a merge nor a composition, the candidate would be discarded.

In the example, vmerge is 0.38 and therefore below the threshold tmerge of 0.4.
In contrast, vcompose is 0.82 and therefore exceeds the threshold of 0.6. Hence,
the candidate would be converted into a new composite component.
tmerge and tcompose are configured by the user before the clustering starts.

After each iteration, tmerge is increased while tcompose is decreased. This way,
component merges are more likely at the beginning of the clustering while
component compositions become more likely towards the end. Then, new can-
didates are constructed from the recovered components and the next iteration
commences. The clustering process ends when no new components can be pro-
duced by merging or composing component candidates during one iteration.
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5. Influence of Deficiencies on the Architecture Reconstruction

After the current component candidates have been merged, composed, or
discarded, they are integrated into the current architecture model (Step 6 in
Figure 5.1). Then, their interfaces are derived (7) and connectors between
the interfaces are added (8). Then, the next iteration begins in which new
component candidates are formed. The clustering process ends when no new
components can be produced by merging or composing component candidates
during one iteration.

The result of the clustering process is a mapping of the system elements to a
number of reverse engineered components together with the connectors between
those components.

The metrics used in step 2 of the reconstruction process are presented in
Section 5.2.1. The strategies used in step 3 are explained in Section 5.2.2.
For the purpose of explaining the metrics and strategies, I use the example
component candidate shown in Figure 5.3.

Assets

Inventory

Store
Query

CA CB

CAB

Figure 5.3.: Example of component candidates during the clustering

The component candidate is the same as in Figure 5.2. However, the inter-
faces have been omitted in Figure 5.3. Instead, the figure shows a number of
references to and from the classes contained in the components. The references
are relevant for the calculation of the metric values. The metrics and strategies
in the next sections are explained in terms of the two components CA and CB

and the component candidate CAB from Figure 5.3.
The following description of the metrics and strategies used in SoMoX are

based on the implementation of SoMoX. This way the following explanations
and observations are in line with the validation in Chapter 10. In Krogmann’s
thesis, most of the metrics are explained from a conceptual point of view
[Kro10]. There are however slight deviations between the description in his
thesis and the implementation of SoMoX. Some deviations are marginal and
can be addressed by translating metrics into each other 2. However, the met-
rics described by Krogmann also contain errors 3. These inconsistencies are

2For example, Krogmann describes the Interface Violations metric which is calculated by
subtracting the implemented Adherence to Interface Communication metric from 1 (1 −
Adh.To.InterfaceComm.).

3The range of the Interface Violations metric is inverted, i.e. the metric is 1 if all commu-
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5.2. Reconstruction Process

circumvented by using SoMoX’s implementation as a basis in this thesis. The
following sections give an impression of the metrics and strategies used in So-
MoX without explaining all the details of their calculation which can be found
in [Kro10].

5.2.1. Metrics

This section briefly presents the metrics that are used in SoMoX and explains
how they are combined in the architecture reconstruction. Other clustering-
based architecture reconstruction approaches use identical or at least similar
metrics. Especially the very basic metrics which measure the connection of
elements, e.g. the different access counts and the different types of coupling,
are used in all clustering-based architecture reconstruction techniques [Kos00,
DP09].

External Accesses Count(CA) This metric counts the number of accesses from
within a given set of types CA to all types outside of CA.

Internal Accesses Count(CA, CB) This metric counts the number of accesses
from within a given set of types CA to all types in a second set CB.

Interface Accesses Count(CA, CB) This metric counts the number of accesses
from within a given set of types CA to interfaces in a second set CB.

Efferent Coupling(CA) The efferent coupling metric counts the number of types
within a set of types CA which depends on types outside of CA.

Afferent Coupling(CA) The afferent coupling metric counts the number of
types which are not with the set of types CA but depend on types in
CA.

Abstract Types Count(CA) This metric returns the number of abstract types
within a set of types CA.

Total Types Count(CA) The total types count metric returns the number of
types in a set of types CA.

Name Resemblance(CA, CB) This metric calculates the resemblance of type
names between types in CA and CB. The metric is commutative, i.e.

NameResemblance(CA, CB) = NameResemblance(CB, CA).

Coupling(CA, CB) The coupling metric relates the number of internal accesses
between CA and CB to all external accesses of CA as follows:

Coupling(CA, CB) =
InternalAccessesCount(CA, CB)

ExternalAccessesCount(CA)

Coupling is not commutative.

nication bypasses the interfaces instead of using them. For the Package Mapping metric,
the commonRootHeight should not appear in the denominator but only in the numerator
of the formula.
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5. Influence of Deficiencies on the Architecture Reconstruction

Adherence To Interface Communication(CA, CB) This metric relates the num-
ber of accesses through interfaces between two sets of types CA and CB

to the number of all accesses between CA and CB.

Adh.ToInterfaceComm.(CA, CB) =
InterfaceAccessesCount(CA, CB)

InternalAccessesCount(CA, CB)

This metric is not commutative.

Instability(CAB) The Instability of a component candidate CAB indicates if the
candidate has many external dependencies that make its implementation
likely to change if external classes of interfaces change. It makes use of
the efferent and afferent coupling metrics:

Instability(CAB) =
EfferentCoupling(CAB)

EfferentCoupling(CAB) +AfferentCoupling(CAB)

Abstractness(CAB) The Abstractness metric indicates the portion of abstract
types in relation to all types of a component CAB.

Abstractness(CAB) =
AbstractTypesCount(CAB)

TotalTypesCount(CAB)

Distance from the Main Sequence(CAB) Components should neither be too
unstable nor too abstract. This is captured by the Distance from the Main
Sequence metric which was first introduced by Martin [Mar94]. Compo-
nents on the main sequence represent a good trade-off between instability
and abstractness.

DMS(CAB) = |Abstractness(CAB) + Instability(CAB)− 1|

Package Mapping(CA, CB) The Package Mapping metric expresses the “dis-
tance” of two types or sets of types CA and CB in terms of the system’s
package structure. Types the reside in the same part of the package
structure receive a high Package Mapping value while types in completely
different branches of the package tree receive a low value. The metric is
commutative.

PackageMapping(CA, CB) =
commonRootHeight(CA, CB)

maxHeight(CA, CB)

Directory Mapping(CA, CB) The Directory Mapping metric is comparable to
the package mapping metric and mainly targets programming languages
like C which do not support packages but in which directories are used
to organize the types. For languages like C++ that use both packages
and directories, this metric can be combined with Package Mapping. The
metric is commutative.

Slice Layer Architecture Quality A common architectural style of organizing
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5.2. Reconstruction Process

business information systems is the separation into slices and layers. Ac-
cording to Krogmann, “slices are service oriented cuts of a software sys-
tem, like for example, contracting, billing, and customer data manage-
ment. Layers are cross-cutting technology-induced cuts of software sys-
tem, like for example, a view layer, a middle-tier, and a database access
layer.” [Kro10]. This metric tries to capture the quality of this slice layer
architecture (SLAQ). The necessary information is derived by a heuristic
which analyses the system’s package structure. In contrast to the other
metrics, this analysis is realised by an algorithm that cannot be captured
in a single, simple formula.

Natural Subsystem(CAB) A Natural Subsystem is set of types a system that
realises exactly one slice in one layer of the complete system. This met-
ric indicates the likelihood of a component candidate representing such
a natural subsystem. Like the SLAQ metric, this metric is also heuris-
tically derived based on the system’s package structure and it cannot be
expressed in a simple formula.

5.2.2. Strategies

Name Resemblance After Coupling(CA, CB) Sometimes, types may be named
similarly although they have nothing to do with each other. The name re-
semblance metric does not account for this case. The Name Resemblance
After Coupling strategy4 therefore is based on the Name Resemblance
and the Coupling metrics. The Name Resemblance value of two sets of
types CA and CB is only taken into account if they are coupled at the
code level, i.e. if max(Coupling(CA, CB), Coupling(CB, CA)) is greater
than a user-definable threshold ε.

Subsystem Component(CA, CB) The Subsystem Component strategy is very
similar to the Natural Subsystem metric on which it is based. It scales
the Natural Subsystem value however in order to take small metric values
into account.

Component Merge Together with Component Composition, Component Merge
is one of the two strategies that decide if a component candidate is con-
verted into a new component during the clustering. It is the weighted
sum of the five strategies and metrics Adherence To Interface Communi-
cation, Name Resemblance After Coupling, Package Mapping, Directory
Mapping, and Subsystem Component. The weights w1 to w5 can be set
to a value between 0 and 1 in order to adapt the architecture recovery to
the system under analysis. By setting a weight to 0, a given metric be
completely left out of the calculation of the merge value. On the other
hand, a greater emphasis can be placed on a given metric by increasing
the corresponding weight. SoMoX provides a default configuration of the
weights which can serve as a starting point for tuning the weights to the

4This strategy is called Consistent Naming by Krogmann [Kro10]. Here, I use the name from
the implementation of SoMoX.
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5. Influence of Deficiencies on the Architecture Reconstruction

system under analysis. In the formula, w1 is negative because an ad-
herence to interface communication does not indicate that a component
candidate should be merged. On the contrary, the bypassing of interfaces
(and therefore a “negative adherence”) indicates a merge. The value of
this strategy is denoted by vmerge above.

ComponentMerge(CA, CB) =

(−w1 ×Adh.ToInterfaceComm.(CA, CB)

+ w2 ×NameResemblanceAfterCoupling(CA, CB)

+ w3 × PackageMapping(CA, CB)

+ w4 ×DirectoryMapping(CA, CB)

+ w5 × SubsystemComponent(CA, CB))

/ (w1 + w2 + w3 + w4 + w5)

Component Composition Similarly to Component Merge, Component Com-
position calculates a weighted sum of other metrics and strategies. In
addition to the metrics used in Component Merge, Component Composi-
tion also takes the DMS metric into account. The value of this strategy
is denoted by vcompose above. Similar, to the Component Merge strategy,
the Component Composition strategy can also be adapted to the system
under analysis by setting the weights w1 to w6.

ComponentComposition(CA, CB) =

(w1 ×Adh.ToInterfaceComm.(CA, CB)

+ w2 ×NameResemblanceAfterCoupling(CA, CB)

− w3 ×DistanceFromTheMainSequence(CAB)

+ w4 × PackageMapping(CA, CB)

+ w5 ×DirectoryMapping(CA, CB)

+ w6 × SubsystemComponent(CA, CB))

/ (w1 + w2 + w3 + w4 + w5 + w6)

5.2.3. Dependencies Between Metrics and Strategies

As described in the previous sections, metrics and strategies can (partly) be
composed of other metrics. This means that the metric values depend on each
other: When the value of a basic metric changes, this also affects the values of
all metrics and strategies that depend on it. Figure 5.4 visualises the interde-
pendencies between the metrics and strategies used in SoMoX.

Figure 5.4 is organized in five horizontal layers. The upper three layers depict
metrics while the lower two layers contain component detection strategies. In
the top layer are seven basic metrics that count types (e.g. Total Types Count)
or accesses (e.g. External Accesses Count). The second layer contains eight
metrics that either calculate values based on the counting metrics (e.g. Cou-
pling) or that use an algorithm to calculate their respective values (e.g. Name
Resemblance). Layer 3 contains only the two metrics Distance from the Main
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Figure 5.4.: Dependencies between the metrics and strategies
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5. Influence of Deficiencies on the Architecture Reconstruction

Sequence and Natural Subsystem which are based on metrics from the second
layer. The fourth layer contains two strategies that base their calculations on
metrics while the fifth layer contains the two most important component de-
tection strategies, Component Merge and Component Composition. The figure
shows clearly that both, Component Merge and Component Composition, indi-
rectly depend on several of the counting metrics from the top layer. This means
that any change in the accesses or types of a component candidate, for exam-
ple by introducing a design deficiency, may influence its merge or composition
value. The following section analyses exactly which metric values are influenced
to which extent by the Transfer Object Ignorance deficiency from Chapter 3.3.

5.3. Influence of Design Deficiency Occurrences on the
Metrics

In this section, the concrete influence of deficiency occurrences on the metric
values is examined. First, I analyse the influence of a single occurrence of the
Transfer Object Ignorance deficiency on the architecture reconstruction with
SoMoX. Afterwards, the degree to which different metrics are susceptible to
deficiency occurrences and the influence of other deficiencies are discussed.

5.3.1. Influence of the Transfer Object Ignorance Deficiency

CBCA

1

CAB

Assets

calculateValue()

1

InventoryTO

1

1

a) Without deficiency b) With Transfer Object Ignorance

Inventory

StoreQuery

getInventory() : InventoryTO

C'BC'A

1

C'AB

Assets

calculateValue()

1

1

Inventory

StoreQuery

getInventory() : Inventory

Figure 5.5.: Example of the influence of a Transfer Object Ignorance deficiency
on the architecture recovery

In order to demonstrate the influence of design deficiency occurrences on the
metrics used by SoMoX, I illustrate an example situation that could happen
during the architecture reconstruction process. Figure 5.5 shows two compo-
nent candidates, CAB on the left and C ′

AB on the right. The interfaces of the
components have been omitted in the figure. Similar to Figure 5.3, the compo-
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nent candidate CAB comprises the two components CA and CB. In comparison,
the same situation is visualised a second time, this time with a component can-
didate C ′

AB which is comprised of the components C ′
A and C ′

B. C ′
AB contains

an occurrence of the Transfer Object Ignorance deficiency.
Component candidate CAB does not contain a deficiency occurrence. The

class Assets in component CA has a reference to the class StoreQuery in compo-
nent CB and also to the transfer object InventoryTO which lies outside of the
components because it is ignored by the clustering algorithm (cf. Section 5.2).
StoreQuery contains a method getInventory which is called by Assets and which
shall return data from the class Inventory. To pass data on the current state
of the Inventory to Assets, StoreQuery creates an instance of the transfer object
class InventoryTO, populates it with the necessary data and passes it as a return
value to Assets. Note that Inventory has no reference to either Assets or StoreQuery,
this way.

In contrast, the component candidate C ′
AB on the right side of Figure 5.5

contains a Transfer Object Ignorance deficiency. Instead of using a transfer
object, StoreQuery directly passes a reference to an instance of Inventory to Assets.
Therefore, Assets has a direct reference to Inventory.

Without Deficiency With Transfer Object
Ignorance

External Accesses
Count(CA)

eacCA
eacC′

A
= eacCA

+ 1

External Accesses
Count(CB)

eacCB
eacC′

B
= eacCB

Internal Accesses
Count (CA, CB)

iacCA,CB
iacC′

A,C′
B

= iacCA,CB
+ 1

Internal Accesses
Count (CB, CA)

iacCB ,CA
iacC′

B ,C′
A

= iacCB ,CA

Interface Accesses
Count (CA, CB)

ifacCA,CB
ifacC′

A,C′
B

= ifacCA,CB

Interface Accesses
Count (CB, CA)

ifacCB ,CA
ifacC′

B ,C′
A

= ifacCB ,CA

Efferent
Coupling(CA)

efcpCA
efcpC′

A
= efcpCA

Afferent
Coupling(CA)

afcpCA
afcpC′

A
= afcpCA

+ 1

Efferent
Coupling(CB)

efcpCB
efcpC′

B
= efcpCB

+ 1

Afferent
Coupling(CB)

afcpCB
afcpC′

B
= afcpCB
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Efferent
Coupling(CAB)

efcpCAB
efcpC′

AB
= efcpCAB

Afferent
Coupling(CAB)

afcpCAB
afcpC′

AB
= afcpCAB

Abstract Types
Count(CA)

atcCA
atcC′

A
= atcCA

Abstract Types
Count(CB)

atcCB
atcC′

B
= atcCB

Total Types
Count(CA)

ttcCA
ttcC′

A
= ttcCA

Total Types
Count(CB)

ttcCB
ttcC′

B
= ttcCB

Name
Resemblance(CA, CB)

nrCA,CB
nr′CA,CB

= nrCA,CB

Coupling(CA, CB)
iacCA,CB
eacCA

iacC′
A

,C′
B

eacC′
A

=
iacCA,CB

+1

eacCA
+1

Coupling(CB, CA)
iacCB,CA
eacCB

iacC′
B

,C′
A

eacC′
B

=
iacCB,CA
eacCB

Adh.To. Interface
Comm.(CA, CB)

ifacCA,CB
iacCA,CB

ifacC′
A

,C′
B

iacC′
A

,C′
B

=
ifacCA,CB
iacCA,CB

+1

Adh.To. Interface
Comm.(CB, CA)

ifacCB,CA
iacCB,CA

ifacC′
B

,C′
A

iacC′
B

,C′
A

=
ifacCB,CA
iacCB,CA

Instability(CAB) insCAB
=

efcpCAB
efcpCAB

+afcpCAB
–

Abstractness(CAB) absCAB
=

atcCAB
ttcCAB

absC′
AB

= absCAB

DMS(CAB) dmsCAB
= |absCAB

+
insCAB

− 1|
–

Package
Mapping(CA, CB)

pmCA,CB
pmC′

A,C′
B

= pmCA,CB

Directory
Mapping(CA, CB)

dmCA,CB
dmC′

A,C′
B

= dmCA,CB

Table 5.1.: Influence of a Transfer Object Ignorance deficiency on the metric
values

Table 5.1 shows the effect of this single occurrence of the Transfer Object
Ignorance deficiency on the metrics that are used during the architecture recon-
struction process. The left column contains the name of the respective metric.
The parameter names reference the components CA, CB, and the component
candidate CAB from Figure 5.5. Commutative metrics are listed for both di-
rections, non-commutative metrics only once. The second column contains the
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metric values for the component candidate without a deficiency. Because the
example only consists of an excerpt of a potentially larger system, no absolute
metric values are used. I rather use variables that are then referenced in the
third column. This third column contains the metric values for the component
candidate with the transfer object deficiency. Here, absolute values are also
avoided but the variables from the second column are referenced to show the
value changes where necessary.

As Table 5.1 shows, the metric values for External Accesses Count(CB), Inter-
nal Accesses Count (CB, CA), Afferent Coupling(CA), Efferent Coupling(CB),
Coupling(CB, CA), and Adherence To Interface Communication(CB, CA) change
as indicated in the third column5. The changes all stem from the reference be-
tween Assets and Inventory.

The instability measures the coupling of the whole component candidate to
the rest of the system. As the rest of the system is not considered in this
example, no statement about this metric can be made. The DMS metric is
partially based on the instability. Therefore, no statement about the influence
of the example deficiency occurrence on this metric can be made, either.

The metrics Package Mapping and Directory Mapping only change when new
elements are created or when old elements are removed. Therefore, they do not
change in this concrete example.

The metrics Slice Layer Architecture Quality and Natural Subsystem are
omitted in Table 5.1. As they are rather complicated heuristics, it is not easily
possible to predict their change in any given situation.

Since the component detection strategies depend directly on the metrics (cf.
Section 5.2.3), their values are also changed. The strategy Name Resemblance
After Coupling partly depends on the influenced Coupling metric. Component
Merge depends, among others, on Name Resemblance After Coupling, Cou-
pling, and Adherence To Interface Communication which are all changed. The
Component Composition strategy is dependent on the changed strategy Name
Resemblance After Coupling as well as the metric Adherence To Interface Com-
munication.

In summary, the Transfer Object Ignorance deficiency leads to the addition
of one reference between CA and CB compared to the case without the defi-
ciency. This in turn affects six metric values and three strategy values, among
them the crucial Component Merge and Component Composition strategies. It
stands to reason that the occurrence of several design deficiencies in a system
can significantly influence the architecture recovery process of clustering-based
reverse engineering approaches like SoMoX.

5.3.2. Susceptibility of Different Metrics and Strategies

The different metrics and strategies are influenced in different ways by deficiency
occurrences. Although Section 5.2.3 showed that even high-level component-
detection strategies are influenced by the changes of low-level metrics, this

5Note that transfer objects like InventoryTO are exempt from the clustering (see Sec-
tion 5.2). They are filtered by SoMoX before the clustering based on their names and
neither themselves nor references to them do affect the metric values.
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influence is not the same for all metrics.

Table 5.1 shows that the low-level metrics which count relations between
elements in the component candidates are clearly influenced. Several values are
increased by one. This is true for several access counts and also for some of the
coupling metrics.

Which of these counting metrics are increased depends on the specific defi-
ciency occurrence. If for example, the example occurrence would also introduce
a reference from Inventory to Assets, the metrics External Accesses Count(CB),
Internal Accesses Count (CB, CA), Efferent Coupling(CA), and Afferent Cou-
pling (CB) would increase in addition to the already affected metrics. Similarly,
the addition or removal of types caused by a deficiency occurrence would in-
fluence the different type count metrics which are not influenced in the above
example. This, in turn, might influence the currently unaffected abstractness
metric which depends on two of the type count metrics.

Changes of the metrics Name Resemblance, Package Mapping, and Directory
Mapping cannot be described for deficiencies in general. It is often the case
that changes in a system also include the renaming of classes or packages. If a
deficiency is introduced during such a change, the corresponding metrics would
also be affected. This however can only be decided on a case-by-case-basis.

The component detection strategies are calculated by combining different
metrics, including the very basic ones. Therefore, they are influenced by changes
in the basic metric values but the extent of this influence cannot be easily
predicted and depends on the specific situation, e.g. on the number of relations
of the involved elements, and on the specific occurrence. It is however plausible
that the strategies will be affected to a lesser degree than the basic metrics
because they combine various different metrics. If only one or two of them
change, the overall strategy value may stay more or less the same.

In summary, the more basic metrics are influenced more by deficiency occur-
rences. However, given the right circumstances, a single deficiency occurrence
or the combination of several occurrences may influence the value of the com-
ponent detection strategies substantially. In some cases, this influence may
cause the architecture reconstruction algorithm to merge or compose compo-
nent candidates which would not have been reconstructed without the deficiency
occurrences.

5.3.3. Influence of Other Design Deficiencies Occurrences

The previous section illustrates the impact of a Transfer Object Ignorance occur-
rence on the architecture reconstruction with SoMoX. In part, other deficiency
occurrences also influence the metrics and strategies in similar ways. The other
deficiencies that have been examined in the course of this thesis are described
in Appendix B.

Interface Violation and Unauthorised Call The deficiencies Interface Viola-
tion and Unauthorised Call influence the architecture reconstruction in a way
similar to the Transfer Object Ignorance deficiency. Both, Interface Violation
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and Unauthorised Call, are concerned with method accesses which are not al-
lowed by the provided interfaces. Therefore, both deficiencies will influence
the access count metrics and the coupling metrics similar to Transfer Object
Ignorance occurrences.

Inheritance between Components The Inheritance between Components de-
ficiency is different from the other three deficiencies. Its occurrence indicates
that an inheritance relationship exists between two classes that were assigned
to different components. Such an inheritance relationship affects a whole range
of metrics. As the inheritance counts as an access between the involved classes,
the access count metrics are influenced which in turn can alter the coupling (see
5.4). The efferent and afferent coupling of components will lead to a changed
instability value. In additon, assigning a class to another component will affect
the total types count of the involved components and, in case of super class,
maybe also the abstract types count. This then leads to a different abstract-
ness value which, together with instability, influences the distance from the
main sequence.

However, a relationship between two classes normally leads to the assignment
of these classes to a common component as illustrated in the previous section.
Hence, in case of the Inheritance between Components deficiency, these classes
were assigned to the different components in spite of the inheritance relation-
ship. As discussed in Appendix B.3, this deficiency cannot be easily removed by
changing the source code as removing the inheritance relationship would have a
severe impact on the semantics of the program. Even if the inheritance relation-
ship was removed by a semantics-preserving refactoring, this would rather rein-
force the distribution of the classes to different components due to the reduced
coupling. Thus, it would not change the reconstructed architecture. Another
way to deal with this situation is the consideration of additional knowledge dur-
ing the architecture reconstruction (“These classes should be assigned to the
same component.”). In contrast to the rather subtle influence on the architec-
ture reconstruction which is exerted by the other deficiencies, the Inheritance
between Components deficiency requires the deliberate influence of the software
architect to improve the reconstructed model.

5.4. Result Model

The architecture reconstruction is based on the Generalised Abstract Syntax
Tree (GAST) which is extracted from the source code (see Section A.1). SoMoX
creates a separate model to store the results of the architecture reconstruction
process. This architectural model is an instance of the Service Architecture
Meta Model (SAMM). Instances of the SAMM are also referred to as service
architecture models (SAM). The SAMM contains elements like basic compo-
nents, composite components, and connectors between them. It is explained in
detail in Section A.2 of the Appendix.

The assignment of existing classes to the reconstructed components is an
important result of the architecture reconstruction. This information is stored
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in a third model: the Source Code Decorator (SCD) which connects the GAST
and the SAMM. Details on the SCD meta model can be found in Section A.3

Source Code 
Decorator

Generalized Abstract 
Syntax Tree

Software 
Architecture 
Meta Model

references references

Figure 5.6.: Relationship between Source Code Decorator, GAST, and Service
Architecture Meta Model (Figure adapted from [Tra11])

Figure 5.6 illustrates the relationship between the three models. The SCD
references both the GAST and the SAMM. This way, no direct reference be-
tween GAST and SAMM is necessary.

Figure 5.7 shows an excerpt of an exemplary instance of the three result
models. The figure illustrates how the result model instance for the running
example might look. An excerpt of the GAST instance is shown on the left
while an excerpt of the SAMM instance is shown on the right. Between the two
models is an excerpt of the SCD instance which connects them.

The GAST instance shows the three classes StoreQuery, Inventory, and Assets

from the running example. The SAMM instance contains two primitive compo-
nents, pc1 and pc2, and one composite component cc1. The SCD model contains
three elements of the type ComponentImplementingClassesLink which connect the
classes from the GAST to the components from the SAMM. In this case, the
classes StoreQuery and Inventory are assigned to pc1 while Assets is assigned to
pc2.

5.5. Limitations

The architecture reconstruction technique that is the basis for the observations
and analysis in this chapter is that of SoMoX. Other clustering-based architec-
ture reconstruction approaches may use different metrics or may combine them
in different ways. Thus, the analysis presented in this chapter is only valid for
SoMoX.

It can however be argued that the qualitative observations, i.e. that design
deficiencies can lead to an alteration of source code metrics which may, in turn,
influence the result of the clustering, are valid for clustering-based architecture
reconstruction approaches in general. Since metrics like the number of accesses
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GAST Instance SCD Instance SAMM Instance

cc1: 
CompositeComponent

pc1: PrimitiveComponent

pc2: PrimitiveComponent

:ComponentImplementing
ClassesLink

:ComponentImplementing
ClassesLink

:ComponentImplementing
ClassesLink

StoreQuery: 
GASTClass

Inventory: 
GASTClass

Assets: 
GASTClass

Figure 5.7.: Illustration of the relationship between exemplary result model in-
stances (Figure adapted from [Tra11])

between elements or coupling are used in nearly every clustering-based archi-
tecture reconstruction approach [Kos00, DP09], those techniques will probably
be similarly influenced by design deficiencies.

5.6. Conclusion

This chapter presented the clustering-based reconstruction of software archi-
tectures using the example of SoMoX. I showed how the metrics that are used
to calculate the clustering depend on each other. Furthermore, I pointed out
how design deficiency occurrences change the basic metric values used in the
clustering. The interdependence of the metrics leads to the fact that these
value changes are propagated up to the strategies that determine if elements
are clustered together. Therefore, the introduction of just one reference may
change the metric values such that the reconstructed architecture is significantly
influenced.

The following chapter deals with the identification of components which are
likely to contain such influencing deficiency occurrences.
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After the architecture has been reconstructed, it can be searched for deficiencies.
However, the software architect has to decide where to begin this search. To
support the architect in this decision, the component relevance analysis identi-
fies components that are particularly relevant for a deficiency detection (Step 2
in Figure 4.1).

This chapter begins with a motivation as to why a component relevance anal-
ysis is necessary. The chapter’s contributions and assumptions are described
afterwards in Sections 6.2 and 6.3. Section 6.4 defines what exactly relevance
means in the context of this chapter. Afterwards, the rationale and the calcu-
lation of the metrics used in the relevance analysis are discussed in Section 6.5.
Finally, it is illustrated how a component’s relevance can be determined from
its individual metric values in Section 6.6. The limitations of the component
relevance analysis are discussed in Section 6.7. Section 6.8 gives an overview of
related approaches. The chapter is closed by a conclusion.

6.1. Motivation

After the architecture reconstruction, the architect is presented with an archi-
tecture that may contain a possibly large number of interconnected and nested
components. In order to detect all deficiencies, the complete system would
have to be searched now. However, such a comprehensive detection may be
very time-consuming. For example, Simon et al. [SSL01] as well as Bauer and
Trifu [BT04a] note that pattern detection does not scale well with the size of
the system under study.

In the case of Archimetrix, the pattern detection tool Reclipse [vDMT10a,
vDMT10b] is used for the deficiency detection. It uses a graph matching ap-
proach based on the system’s abstract syntax graph (see Section 7). Searching
large systems for deficiencies is a problem for Reclipse because subgraph match-
ing is NP-complete in the general case [Epp95]. Reclipse tries to account for
this problem by exploiting structural properties of the pattern specifications to
confine the search space [NSW+02, NWW03, Nie04]. However, it still suffers
from scalability issues.

In addition, searching the complete system for deficiencies may result in a
large number of detection results. Being presented with thousands of deficiency
occurrences can give the software architect a hard time in deciding which of the
results are interesting and which are not.

In order to allow for a more efficient and focused detection of deficiency
occurrences, I thus propose to use the reconstructed architecture to limit the
search scope of the detection.
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6.2. Contributions

The contributions to the reengineering process are as follows.

• The software architect can select an arbitrary subset of the recovered com-
ponents, from single components to the complete system. The deficiency
detection is only carried out for the selected components. On the one
hand, this is significantly faster then searching the complete system. On
the other hand, it allows the architect to focus on one component or one
part of the system at a time. This prevents that he is overwhelmed by
the large number of detection results.

• To support the architect in his choice of components, the relevance of the
reconstructed components with respect to the deficiency detection can be
calculated. To this end, this chapter defines what relevance means for
components in the context of Archimetrix’s deficiency detection.

• A systematic method to determine relevant components is presented. This
allows for a faster and more focused detection of deficiency occurrences.

• The chapter proposes two relevance metrics which can be used for arbi-
trary systems. The rationale and the calculation of these two example
metrics is discussed in detail.

• The proposed relevance metrics are only examples. The presented ap-
proach is designed to be easily extensible with new relevance metrics.
This allows for a later extension, e.g. in order to adapt the relevance
analysis to the architect’s specific requirements.

6.3. Assumptions

The concepts presented in this chapter are based on a couple of assumptions:

• All aspects that are of interest for the relevance of a component have to be
mapped to a numerical value between 0 and 1. This assumption allows
for the definition of relevance metrics which calculate numerical values
for a given component. Thus, all aspects that can be characterised on an
ordinal scale are possible candidates for relevance metrics.

• The metric values are assumed to be proportional to the relevance of the
component in question, i.e. the higher the metric value, the more relevant
the component.

• For the calculation of the component relevance described in Section6.6,
all relevance metrics are assumed to be of equal importance.

All these assumptions apply for the metrics presented in Section 6.5.
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6.4. Component Relevance

In order to determine the relevance of components, it has to be clarified what the
term relevance means. In the context of this thesis, a relevant component is a
software component which was recovered during the architecture reconstruction
step (Step 1 in Figure 4.1) and which is a worthwhile input for the deficiency
detection (Step 3 in Figure 4.1). This thesis proposes two example relevance
metrics which can be used to determine which components are worthwhile in
that sense.

Component Complexity A component is a worthwhile input for the deficiency
detection if it is likely to contain deficiencies. It is generally in the software
architect’s interest to detect deficiencies in the system. Therefore, it is
sensible to search deficiencies in places where they are likely to be found.
Complex components are components which are hard to understand and
maintain. When developers change these components, they are arguably
more likely to introduce deficiencies in these components [Rie96, BB01,
Gla03]. Thus, we consider complex components to be a worthwhile input
for the deficiency detection. A study by Kafura and Reddy also suggests
that complex components are those that are the best starting points for
reengineering activities [KR87].

Closeness to Clustering Thresholds As explained in Chapter 5, deficiency oc-
currences can influence the architecture reconstruction. An architect who
uses Archimetrix is interested in reducing this influence to get a clear pic-
ture of the system’s concrete architecture. Therefore, components that
are likely to change when a contained deficiency is removed can be consid-
ered a worthwhile input for the deficiency detection. To determine these
components, the thresholds used during the architecture reconstruction
have to be considered.

Section 5.2 explains how the decision to merge or compose component
candidates is reached: The aggregated metric values vm and vc for a com-
ponent candidate are compared to two threshold values tm and tc and
the candidate is merged or composed when one of these thresholds is ex-
ceeded. However, a deficiency occurrence may influence the metric values
such that tm or tc are just barely exceeded. Removing this deficiency will
then probably prevent this composition or merge. Hence, the resulting
reconstructed architecture will differ from the previously reconstructed
architecture.

Therefore, components for which vm or vc were close to their respective
thresholds during the architecture reconstruction are considered as rele-
vant.

6.5. Relevance Metrics

Following the rationale from Section 6.4, I use a combination of two different rel-
evance metrics: the Complexity Metric and the Closeness to Threshold (CTT)
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Metric. These metrics were first presented in [Pla11] and can be calculated
for any software architecture that was reconstructed as described in Chapter 5.
Note that both metrics are heuristics, i.e. they can indicate which components
may be relevant but they may also deliver incorrect results.

6.5.1. Complexity Metric

The Complexity Metric identifies complex components. Components consisting
of many classes, attributes, methods and interfaces are hard to understand and
are therefore difficult to maintain and to adapt. Thus, the risk of accidentally
introducing design deficiencies when modifying these components is higher than
in simple components [Rie96, BB01, Gla03]. Arguably, this will problem will
get even worse if these components are not thoroughly reengineered. This leads
to the following assumption: the more complex a component, the more likely
it is to contain design deficiency occurrences. This makes the complexity of a
component significant to rate its relevance for the design deficiency detection.

To calculate the complexity, I use a slightly modified version of the Compo-
nent Plain Complexity (CPC) metric as described by Cho et al. [CKK01]. It is
expressed by the following formula:

CPC(Comp) := #Classes(Comp)

+ #Interfaces(Comp)

+
∑

c∈Classes(Comp)

#Methods(c)

+
∑

c∈Classes(Comp)

#Attributes(c)

+
∑

c∈Classes(Comp)

∑
m∈Methods(c)

#Parameters(m)

(6.1)

The complexity of the component is determined by counting all classes and
interfaces in the component. In addition, the number of methods and attributes
in these classes is counted, as well as the number of parameters in all methods.

In order to obtain a relevance metric value between 0 and 1, the CPC value
for each component is normalised by relating it to the complexity of the most
complex component.

CPC(C)norm =
CPC(C)

maxCi∈allComponents(CPC(Ci))
(6.2)

This normalised Component Plain Complexity value can then be used during
the component relevance calculation described in Section 6.6.

Note that the Component Plain Complexity is a very basic heuristic for
the calculation of the component complexity. In the future, the complexity
metric could be refined by taking metrics like McCabe’s Cyclomatic Complexity
[McC76] or the design evolution metrics proposed by Kpodjedo et al. [KRG+11]
into account.
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6.5.2. Closeness to Threshold Metric

As explained in Section 6.4, components whose aggregated merge or compose
value is close to the respective threshold during the clustering, are considered to
be relevant. This is determined by the Closeness to Threshold (CTT) Metric.
Components with an aggregated merge or compose value close to the respective
threshold receive a high CTT value and are therefore rated as very relevant.
The farther a component’s aggregated metric values are from the threshold, the
less relevant it is ranked by the CTT metric.

The calculation of the metric has to be explained in the context of the archi-
tecture reconstruction process. The architecture reconstruction is accomplished
in a number of iterations (see Section 5.2). During each iteration, all currently
reconstructed components are combined in pairs to form component candidates.
For each of these component candidates, the aggregated merge and compose val-
ues vm and vc are calculated. These are then compared to the corresponding
threshold values tm and tc. If a threshold is exceeded, the component candidate
is converted into a component, otherwise it is discarded.

The CTT metric is meant to detect components whose contained candidates
were closely above or below a threshold during the architecture reconstruction.
For this, it has first to be determined what close means in this context. In
Archimetrix, the software architect can define an appropriate margin ε. Com-
ponents whose constituent candidates were closer than ε to a threshold during
the clustering are deemed relevant. ε has to be set by the architect based on
his experience. The default value which was also used in the validation is 0.2.

For the calculation of the CTT metric, all component candidates that were
created during the architecture reconstruction are considered (no matter if they
were converted into a component or discarded). For each component candidate,
the closeness coefficient is calculated according to Formulas 6.3 and 6.4.

IsCTTMerge(cc) :=

 1 if |vm(cc)− tm| < ε

0 otherwise (6.3)

IsCTTCompose(cc) :=

 1 if |vc(cc)− tc| < ε

0 otherwise (6.4)

cc is the component candidate in question and ε is the margin in which the
candidates merge or compose value must lie to be considered “close” to the
threshold. If the candidate’s aggregated merge or compose value is closer to
the threshold than ε, its closeness coefficient is 1. Otherwise, it is 0.

vm and vc are calculated for all component candidates that are created dur-
ing the reconstruction process. However, the architect is only interested in the
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relevance of the components that are the results of the finished clustering pro-
cess. To the architect, the component candidates are intermediary artefacts
that he is not directly concerned with. In order to make a statement about
the relevance of a concrete component Comp, it has to be determined which
component candidates ended up being assigned to Comp at the end of the
reconstruction process. As shown in Figure 5.3, a component candidate con-
sists of two sets of classes CA and CB. If these classes are – at least in part
– assigned to Comp is determined by a component’s mapping coefficient for a
given component candidate. Formula 6.5 shows the calculation of this mapping
coefficient.

Mapping(cc, Comp) :=



0 if #(cc.CA.Classes ∩ Comp.Classes) = 0

∧ #(cc.CB.Classes ∩ Comp.Classes) = 0

1 if #(cc.CA.Classes ∩ Comp.Classes) ≥ 1

⊕ #(cc.CB.Classes ∩ Comp.Classes) ≥ 1

2 if #(cc.CA.Classes ∩ Comp.Classes) ≥ 1

∧ #(cc.CB.Classes ∩ Comp.Classes) ≥ 1

(6.5)

If Comp contains neither classes from CA nor from CB, the mapping coef-
ficient of component candidate and final component is 0. If at least one class
from either of both sets CA or CB is assigned to the component, this is rated
with a coefficient of 1. Finally, if classes from both CA or CB are found in the
final component, the mapping 2.

Formula 6.6 shows the calculation of the Closeness to Threshold metric.

CTT (Comp) :=
∑

i∈Iterations

 ∑
cc∈CCandsi

isCTTMerge(cc) ·Mapping(cc, Comp)


+

∑
i∈Iterations

 ∑
cc∈CCandsi

isCTTCompose(cc) ·Mapping(cc, Comp)


(6.6)

The components closeness to threshold is calculated as a sum over all it-
erations. For all candidates in every iteration, the product of the closeness
coefficient and the mapping coefficient is calculated. This way, candidates that
are not close enough to the threshold are filtered out as their closeness coeffi-
cient is 0. Similarly, component candidates whose classes are not part of the
component in question are filtered out because their mapping coefficient is 0.

In order to obtain a relevance value between 0 and 1, the CTT metric value

80



6.6. Relevance Calculation

has to be normalised. For this, the greatest possible CTT value for all the
component candidates is calculated as shown in Formula 6.7.

AllCCandsmax :=
∑

i∈Iterations
#CCandsi · 2 (6.7)

The number of component candidates for each iteration is multiplied by 2
because this is the maximum value a component candidate can achieve during
the CTT calculation (The mapping coefficient is 2 when the final component
contains classes from both parts of the component candidate. A candidate can
either be composed or merged during one iteration but not both.). The CTT
value is then normalised by dividing it by the maximum value as shown in
Formula 6.8.

CTTnorm(Comp) :=
CTT (Comp)

AllCCandsmax
(6.8)

6.6. Relevance Calculation

In order to calculate the relevance of a component, the values of the relevance
metrics are mapped to an n-dimensional coordinate system. Each relevance
metric represents one dimension. Thus, for the two relevance metrics presented
in this thesis, a two-dimensional coordinate system suffices. Figure 6.1 illus-
trates fictional results of a component relevance analysis for the example system
from Section 1.7.
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Figure 6.1.: Relevance analysis result calculation
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The relevance values are visualised in a coordinate system. The x-axis repre-
sents the component complexity and the y-axis represents the Closeness to
Threshold. Six components are positioned in the coordinate system. The
component accounting/controlling/store represents the combination of the three
components introduced in the running example (see Figure 3.3). They were
reconstructed as one component because of the Transfer Object Ignorance oc-
currences contained therein.

To identify the most relevant components, the Pareto optimality [CCDJ10]
is calculated for all components. A Pareto optimal set contains solutions that
represent the best possible trade-off among a number of objectives. A solution
is called Pareto optimal if and only if there is no solution that dominates it.
Here, we use the dominates relation in a maximization context: A solution x
dominates a solution y if and only if ∀i ∈ [1..n], fi(x) ≥ fi(y) and ∃i ∈ [1..n] such
that fi(x) > fi(y). The components that are Pareto optimal with respect to all
the relevance metrics are assumed to be good subjects for a design deficiency
detection because they represent the best available combination of relevance
values.

In Figure 6.1, the Pareto optimal components accounting/controlling/store, lo-

gistics and payment are marked with circles. They build up a Pareto front. Each
component below the Pareto front (here: ui, database, and network) is dominated
by the other components, hence, it is not Pareto optimal and therefore less
interesting.

If several Pareto optimal solutions exist, as in the example in Figure 6.1,
a further criterion to identify the most relevant component is required. For
this purpose, the geometric distance to the origin is used as a heuristic: The
higher this distance, the more relevant the corresponding component. Note
that this is possible due to the proportionality between the metric values and
the component relevance (see Section 6.3). The resulting distance value is
normalised to a value between 0 and 1 in order to simplify the comparison.

Thus the relevance of a component is computed according to Formula 6.9.

Relevance(C) :=

√
n∑

i=1
value2i

√
n

|valuei ∈ [0; 1] (6.9)

where C is the component whose relevance is calculated, n is the number of
ranking strategies, and valuei is the value of ranking strategy i for C. In our
example, accounting/controlling/store is the component with the largest relevance
value and thus it is the most relevant component for the design deficiency
detection.

This approach to calculate an overall relevance value is easily extensible. The
Pareto optimality as well as the normalised geometric distance are computable
for arbitrarily many dimensions. Thus, any number of metrics can be added to
rate the relevance of a component given they meet the assumptions described
in Section 6.3.
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6.7. Limitations

When considering the results of the component relevance analysis, a number of
limitations have to be kept in mind:

• The complexity metric is based on the assumption that large components
contain many deficiencies. Although this heuristic is based on a lot of
studies on this subject, e.g. [Rie96, BB01, Gla03], there may be cases
where it produces wrong results. Sometimes, short algorithms may be
more complex to understand and therefore harder to maintain than larger
routines for simple tasks. Similarly, a component may be a maintenance
nightmare due to missing documentation while a much larger component
is easier to understand. There may also be cases where large components
coincidentally do not contain any deficiencies but smaller components do.

• One motivation to confine the deficiency detection to single components
is that it does not scale to large systems. However, one heuristic to
find components that are good targets for the deficiency detection is the
complexity metric. This may result in components that are complex and
are therefore deemed relevant but which are on the other hand so large
that the deficiency detection still takes a very long time.

• The relevance analysis points out components in which a deficiency de-
tection is worthwhile according to the rationale presented in Section 6.4.
However, the software architect may want to select components based on
different considerations. For example, he could be interested in compo-
nents that are related to the system’s user interface or he may want to find
deficiencies that are easy for him to remove. In these cases, the current
relevance metrics are not particularly helpful for him. It may however be
a challenge to create specific relevance metrics that tackle these problems
as these scenarios are strongly dependent on the architect’s particular
goals and abilities.

• One assumption in Section 6.3 states that the relevance metrics are re-
garded to be equally important. However, if one metric was found to be
more or less important in comparison to others (e.g. due to one of the
other limitations discussed here), a possibility to assign weights to certain
metrics could be useful. This would allow the architect to flexibly adjust
the relevance rating according to his requirements.

• Focussing the deficiency detection on a subset of components may lead to
deficiency occurrences being missed by the detection. Design deficiencies
often involve multiple classes. The Transfer Object Ignorance deficiency
introduced in Chapter 3, for example, involves three classes. The classes
belonging to a given deficiency occurrence D may be assigned to different
components during the architecture reconstruction. If not all of these
components are then selected as an input for the deficiency detection, D
will not be detected. On the other hand, the purpose of the Archimetrix
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process is not necessarily to detect and remove all deficiency occurrences
but to find the relevant ones.

6.8. Related Approaches

Arthur suggests to use a Pareto analysis to “identify the 20% of the programs
that consume 80% of the resources” [Art88]. For that, he suggests to create
a table that lists all the modules in a program and assigns to each module
the number of failures, the number of defects, the number of enhancements,
and the time that the module has been worked on. From this table, it can
be determined, which modules should be subject to perfective maintenance
efforts, e.g. to reduce the failure density. In contrast to Archimetrix, which can
automatically determine the relevance of the reconstructed components, the
process described by Arthur is a manual one.

A lot of research went into the identification of defect-prone classes. If a
class is known to be prone to the introduction of defects, it can be tested more
thoroughly, for example. Basili et al. used object-oriented metrics to predict
defects [BBM96]. More recently, Kpodjedo et al. [KRG+11] as well as Khomh
et al. [KDGA12] have investigated the influence of anti patterns on the defect-
proneness of classes. However, none of these approaches considers components
as first-class entities in their analyses.

6.9. Conclusion

This chapter presented a concept for the rating of a software component’s rele-
vance. This rating can support the software architect in selecting components
from the reconstructed software architecture in which he can perform a design
deficiency detection. On the one hand, this selection will limit the search scope
of the deficiency detection and therefore allow for a faster search. On the other
hand, it allows the architect to examine parts of the system in which a deficiency
detection will probably yield meaningful results.

The component relevance analysis is designed to be an extensible mechanism.
Relevance metrics that fulfil the assumptions given in Section 6.3, can be added
to the analysis without changing the general concept.
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When the relevant components in the reconstructed architecture are identi-
fied, the detection of deficiencies in these components can begin (Step 4 in
Figure 4.1). In Archimetrix, the deficiency detection is accomplished by us-
ing the Reclipse Tool Suite which was developed by the Software Engineering
Group at the University of Paderborn in earlier work [NSW+02, Nie04, Wen07]
[vDMT10a, vDMT10b, vDT10].

Reclipse bases its detection both on structural and behavioural aspects of
a pattern. The static analysis is completely based on the static structure of
the system. The dynamic analysis collects traces of the system behaviour at
run-time and analyses them. Archimetrix was developed and validated with
a focus on the static analysis. There are however first ideas to improve the
dynamic analysis which have also been developed in the course of this thesis.
These ideas are also sketched in this chapter.

The chapter is structured as follows. Section 7.1 sums up the contributions of
this chapter while Section 7.2 discusses the assumptions of the deficiency detec-
tion. An overview of the complete pattern detection process with Reclipse, in-
cluding static and dynamic analysis, is given in Section 7.3. Section 7.4 explains
how the structural analysis is integrated with the architecture reconstruction
such that it can be focused on a selection of relevant components. Section 7.5
then shows why the current trace collection for the dynamic analysis is insuf-
ficient and sketches a solution to this problem. The limitations of the pattern
detection are detailed in Section 7.6 while Section 7.7 concludes the chapter.

7.1. Contributions

• This chapter illustrates how the pattern detection approach of Reclipse
can be integrated with the architecture reconstruction of SoMoX. This is
accomplished through a number of auxiliary patterns referencing different
parts of the result model.

• This chapter also sketches a new method to systematically and com-
prehensively obtain traces for the dynamic analysis. Normally, the be-
havioural traces are generated by executing the system under analysis in
a more or less systematic manner. Instead, I propose to use symbolic
execution to generate a whole set of traces which comprises the complete
behaviour.
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7.2. Assumptions

• For the explanations in this chapter, I assume that the architecture re-
construction (Step 1 in Figure 4.1) has been successfully executed. In
particular, I assume that a structurally consistent result model of the
analysed system consisting of GAST, SAM, and SCD is available.

• Another prerequisite for the deficiency detection is the existence of a
number of deficiency formalisations for the system under analysis. The
formalisations may have been created following the process proposed in
Section 4.4 or they may be reused from a pre-existing catalogue. The un-
derlying type graphs of the formalisations are assumed to be the GAST
meta model, the SAMM, and the SCD meta model (see Appendix A).

7.3. Pattern Detection with Reclipse

This section briefly explains the complete pattern detection process with Re-
clipse. Reclipse was developed in earlier work [NSW+02, Nie04, Wen07] [vDMT10a,
vDMT10b, vDT10] and is not a contribution of this thesis. Nevertheless, this
process is important for the explanation of the actual contributions of this thesis
in this area.
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Figure 7.1.: Process for the pattern detection with Reclipse

Figure 7.1 gives an overview of the pattern detection process. The process
comprises three steps.

86



7.3. Pattern Detection with Reclipse

First, a static analysis is executed to identify pattern candidates. The static
analysis employs graph matching to identify pre-defined object patterns in a
given host graph. In Archimetrix, the source code decorator of the system is
the host graph of the pattern matching. The second input of the static analysis
is a catalogue of structural pattern formalisations. The static analysis uses
only the static information available from the SCD (and the GAST and SAM
which are referenced by it, see Section 5.4). The program under analysis is not
executed. The static analysis yields a set of pattern candidates, i.e. parts of the
input model whose structure matches the pattern formalisations.

The second step of the Reclipse process is the execution of the system under
analysis. For this, the source code and the previously detected pattern can-
didates are necessary. The source code is executed and the behaviour of the
system is traced. Traces are only collected for methods that play a role in one
of the pattern candidates, i.e. for methods that are annotated as a part of the
pattern candidate during the static analysis. The collected traces are stored in
a file.

During the third step, the dynamic analysis, the traces of all candidates
are compared to the respective behavioural pattern formalisations. Candidates
whose behaviour conforms to the expected pattern are accepted as pattern
occurrences. Candidates who violate the expected behaviour are rejected. If
the trace of a candidate contains no conclusive evidence about its behaviour, the
candidate is neither rejected nor accepted. In this case, the software architect
has to decide if the candidate is a true or a false positive.

Archimetrix was developed and validated with a focus on the static analysis.
The extension of the dynamic analysis which is presented later in this chapter
is still in its early stages. It has therefore been exempt from the validation
presented in Chapter 10.

The following subsections explain the three steps in more detail.

Structural Analysis Reclipse employs a graph matching approach for the de-
tection of structural patterns [NSW+02]. The structural patterns are graph
patterns which formalise the structural properties of the design patterns or de-
sign deficiencies to be detected. Graph matching aims at finding occurrences
of one or more graph patterns in a host graph. In Reclipse, the host graph
of the matching can for example be the abstract syntax graph of a software
system. In Archimetrix, the abstract syntax graph is not sufficient because the
reconstructed components have to be considered during the graph matching.
Therefore Archimetrix uses the source code decorator as a host graph which
references both, the GAST and the SAM. This topic is discussed in Section 7.4.

Reclipse detects occurrences of a given pattern formalisation – which is also
a graph – by searching an isomorphic matching between that pattern formal-
isation and the host graph. When a pattern occurrence in the host graph is
detected, Reclipse creates an annotation which marks that pattern occurrence.

On a technical level, the detection is accomplished by generating story di-
agrams [vDHP+12] from the structural pattern formalisations. These story
diagrams are then executed through interpretation [Foc10]. The result of the
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static analysis is a set of pattern candidates.

If Reclipse was to detect deficiencies in the example system introduced in
Chapter 1, it would detect a number of candidates. Reclipse offers different
visualisations of the detected candidates [PvDT11]:

• A class diagram view which shows the different classes and methods that
are participating in an occurrence.

• A pattern view which shows the formalisation that corresponds to the
occurrence and hides all elements from the formalisation that were not
detected for the occurrence.

• An host graph view which shows only that part of the host graph that in
which the occurrence was detected.

These different views can help the software architect in deciding if a detected
occurrence is a true positive or a false positive. Figure 7.2 gives an example of
the class diagram view.

Assets
calculateValue() : int

Reporting
sendReport(Report r) : void

Transfer Object 
IgnorancecallingClass

exposedClass

calledMethod

Report
text : String

setText(text: String) : void

Figure 7.2.: Candidate for an occurrence of the Transfer Object Ignorance
deficiency

The figure shows a candidate for an occurrence of the Transfer Object Igno-
rance deficiency which was introduced in Section 3.3. The specific occurrence
in the figure is the occurrence no. 2 from page 40. It consists of the class Assets

which is identified to play the role of the calling class. The class Report appears
to be the class that is exposed by the deficiency. Finally, the method send Report

is the method that is called by the calling class.

This would be one of the candidates that would be observed during the next
step, the trace collection.

Trace Collection During the execution of the system under analysis, the can-
didates that were detected during the static analysis are observed. The execu-
tion can either be accomplished by executing a given test suite for the system
or by executing the program manually and triggering typical functionality. The
behaviour of the candidates is logged and stored in traces which are afterwards
analysed in the dynamic analysis step. Tracing the complete behaviour of a
system is, of course, impractical due to the huge amounts of data that would
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be created. Instead, Reclipse only traces the relevant behaviour of the detected
candidates. Only methods which are marked by the static analysis and which
appear in the behavioural formalisation of the pattern candidates are traced
[MW05].

Behavioural Analysis For the behavioural formalisation, Reclipse uses a DSL
that is syntactically similar to UML sequence diagrams [Obj10]. The DSL was
developed by Wendehals [Wen04, Wen07]. It was later extended in a Bachelor’s
thesis by Platenius [Pla09] [vDP09].

behavioural pattern Transfer Object Ignorance

callingClass: GASTClass calledClass: GASTClass exposedClass: GASTClass

calledMethod(exposedClass)

someFunctionality()
opt

Figure 7.3.: Behavioural formalisation of the Transfer Object Ignorance
deficiency

Figure 7.3 shows the behavioural formalisation of the Transfer Object Igno-
rance deficiency’s general form. The object types and message names refer
to identifiers from the structural formalisation. It contains the three objects
callingClass, calledClass, and exposedClass which are all of the type GASTClass (as
specified in the structural formalisation). The expected interaction between
these objects would be as follows.

The callingClass calls the calledMethod of the calledClass and passes an instance of
the exposedClass as an argument. Afterwards, the calledClass invokes the method
someFunctionality on the exposedClass. This interaction is contained in a combined
fragment with the opt operator signifying that the interaction is optional. If
the method someFunctionality is not invoked, a detected candidate may still be a
true positive occurrence of the Transfer Object Ignorance deficiency.

Note that Reclipse makes no assumptions about methods that are not used in
the behavioural formalisation. Between the invocation of calledMethod and some-

Functionality, arbitrary methods may be called during the execution. This has no
influence on the interaction that Reclipse expects from the pattern candidate.

The expected behaviour of a particular candidate at run-time can be derived
from its general behavioural formalisation. For each candidate, the general class
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and method names from the formalisation are replaced with names of elements
that play the corresponding roles in the candidate.

behavioural pattern Transfer Object Ignorance

a: Assets rep: Reporting r: Report

sendReport(r)

setText(text)
opt

Figure 7.4.: Expected behaviour for the candidate from Figure 7.2

If the candidate from Figure 7.2 is indeed an occurrence of a Transfer Object
Ignorance deficiency (instead of being just structurally similar), it is expected
to behave as shown in Figure 7.4. An instance a of the class Assets is expected
to call the method sendReport of the instance rep of the Reporting class and pass
an instance r of the class Report in the process. Thereby, rep would obtain a
reference to r which it should not have according to the system architecture.
Afterwards, rep could invoke arbitrary methods of r. In this formalisation, rep

could call the setText method of r. In accordance with the general behavioural
formalisation, the latter call is optional. For this candidate, calls of the method
sendReport of all the instances of Reporting and calls of setText of Report instances
would be traced.

The dynamic analysis checks if the candidates behave according to their be-
havioural patterns. This analysis is based entirely on the collected traces. If the
traces contain evidence that a candidate behaves only as specified by the pat-
tern, i.e. the relevant method calls occur in an order that matches the pattern,
the candidate is accepted as a true positive. If the traces show that a candi-
date behaves not in accordance with the behavioural pattern, the candidate is
rejected, i.e. it is assumed to be a false positive. In the example, rep might
call setText on r without sendReport being called earlier. This would for example
be an indicator that the candidate is a false positive. If the trace does not
contain conclusive evidence of either of these behaviours, e.g. because neither
sendReport not setText are being called, the dynamic analysis cannot determine
if the candidate is a true or a false positive. Such inconclusive behaviour might,
for example, occur when no methods of the candidate are called during execu-
tion. In this case, the dynamic analysis cannot reach a decision if the candidate
is a true or a false positive and the software architect may have to make this
decision on his own, e.g. by manually inspecting the candidate.
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An in-depth explanation of the pattern detection with Reclipse is given in
[Wen07].

7.4. Integrating the Deficiency Detection with the
Architecture Reconstruction

In this thesis, Reclipse’s pattern detection is used for the detection of design
deficiencies in a reconstructed software architecture. Archimetrix increases the
scalability of the deficiency detection by confining it to certain components (see
Chapter 6).

Travkin developed a concept for the integration of the deficiency detection
with the architecture reconstruction in his master’s thesis [Tra11]. This sec-
tion describes how a scalable deficiency detection which can take architectural
elements into account can be realised.

7.4.1. Input Model for the Deficiency Detection

Chapter 5 explains the architecture reconstruction process of SoMoX. SoMoX
bases its analysis on the GAST of the system and creates a separate architecture
model, the Service Architecture Model (SAM). A third model, the source code
decorator (SCD) is used to connect the two models and relate, e.g. classes to
components. In Section 5.4, this result model of the architecture reconstruction
is explained in more detail.

Until now, the input model for the pattern detection with Reclipse has always
been an abstract syntax tree. However, this is not sufficient in Archimetrix be-
cause the deficiencies also contain elements from the reconstructed architecture.
As the SCD references both, the GAST and the architectural model, it is the
ideal input model for the deficiency detection. By connecting the GAST and
the SAM, it creates one large host graph for the pattern matching. This allows
to use Reclipse for the deficiency detection without modifying the matching
algorithms.

7.4.2. Auxiliary Component Patterns

The formalisation of design deficiencies for component-based architectures often
necessitates statements about the relationship between components and the el-
ements contained therein. For example, it may be necessary to express that two
classes are contained in different components. This is the case in the formali-
sation of the Transfer Object Ignorance deficiency (see Figure 4.3). It specifies
that the callingClass and the exposedClass should reside in the same component
(c1) while the calledClass should be contained in a different component (c2). This
formalisation uses the Component auxiliary pattern described below.

In order to simplify the specification of such properties, a number of auxiliary
patterns has been defined. They formalise the composition of components and
the containment of classes in these components. They can then be easily used
in deficiency formalisations.
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Component Composition Patterns

This section presents three patterns which formalise the composition of compo-
nents. The first pattern is an abstract pattern that defines the roles that have
to be annotated if a component composition is detected. The other two pat-
terns are concrete extensions of this patterns and formalise direct and indirect
composition, respectively.

Figure 7.5 shows the abstract pattern Component Composition. An abstract
pattern is a pattern which is not meant to be matched itself but which defines
elements that shall be annotated by concrete patterns that extend it. If an
abstract pattern is used as a sub pattern in a formalisation, every pattern
extending it can be substituted for it during the matching process (similar to
polymorphism in object-oriented programming languages).

The Component Composition pattern defines that a component composition
exists between one ComponentImplementingClassesLink and a set of these links.
They are elements of the Source Code Decorator and reference a component
from the SAM on the one hand and number of classes from the GAST on
the other hand. The single ComponentImplementingClassesLinks is annotated as
the parent component while the set of links represents all the ComponentImple-

mentingClassesLinks which point to the subcomponents of the parent component.
Because it is an abstract pattern, it does not specify if the subcomponents are
directly or indirectly contained in the parent component. This is specified by
the two concrete sub patterns Direct Composition and Indirect Composition.

The Direct Composition pattern is shown in Figure 7.6. Because it is a sub
pattern of Component Composition, it annotates exactly the same roles. The
only difference to Component Composition is the direct connection between
parent and the subComponents. Occurrences of this pattern will be created every-
where in the SCD where components are directly contained in other components
(represented by the ComponentImplementingClassesLinks, here)1.

In contrast to the Direct Composition pattern, the Indirect Composition pat-
tern shown in Figure 7.7 represents situations where components are not di-
rectly contained within each other. Instead, it covers all cases where at least
one intermediate component exists between the parent and the subComponents.
The subComponents are directly contained in an intermediate middleComponent as
represented by the Direct Composition pattern. The middleComponent is in turn
contained in the parent component. Note that this containment is modelled by
the abstract Component Composition pattern. Therefore, the containment of
the middleComponent in the parent component may either be direct or indirect.
This way, indirect composition hierarchies of arbitrary size can be recognised
and annotated by this pattern.

1The semantics of annotating a set object in Reclipse are as follows: When an occurrence
of this pattern is detected, one link from the annotation to the ComponentImplementing-
ClassesLink representing the parent component will be created. In addition, links from
the annotation to all ComponentImplementingClassesLinks that are referenced via the
subComponents link will be created.
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subComponents : 
ComponentImplementingClassesLink

:ComponentComposition

subComponents

parentComponent

parent : 
ComponentImplementingClassesLink

abstract structural pattern ComponentComposition

«create»

«create»

«create»

Figure 7.5.: Structural formalisation of the abstract Component Composition
pattern

subComponents : 
ComponentImplementingClassesLink

:DirectComposition

subComponents

parentComponent

parent : 
ComponentImplementingClassesLink

structural pattern DirectComposition extends ComponentComposition

«create»

«create»

subComponents

«create»

Figure 7.6.: Structural formalisation of the Direct Composition pattern
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Class Containment Patterns

This section presents three patterns which formalise the containment of classes
in components. Similar to the component composition patterns, they consist
of one abstract and two concrete patterns. The abstract patterns defines the
roles and the concrete patterns formalise the direct and indirect containment
of classes in components, respectively.

The abstract Component pattern is shown in Figure 7.8. It specifies two
roles: classes which annotates a set of classes from the GAST and component

which is a ComponentType from the SAM.

The Direct Component Classes pattern (see Figure 7.9) extends the Component

pattern. It formalises the direct containment of a set of classes in a component.
This is achieved by matching a ComponentImplementingClassesLink from the SCD
as well as the ComponentType and all GASTClasses it references.

A class is always directly contained in exactly one component. However,
if that component is the subcomponent of a parent component, the class is
also indirectly contained in the parent component. The Indirect Component
Classes pattern depicted in Figure 7.10 captures this situation, annotating all
indirect containments of classes in components. The outermost parent compo-
nent is represented by the component object. Its corresponding ComponentImple-

mentingClassesLink is matched as parentComponentLink. The parentComponentLink

references the directly contained classes of the component which are not of in-
terest here. Instead it is used to navigate to the contained subcomponents of
the parent component. The subComponent link references the classes which are
indirectly contained in the parent component. The composition between the
parent component and its subcomponents is represented by a Component Com-
position pattern which again allows for direct or indirect composition. The set

fragment caters for the possibility that the parent component contains several
subcomponents.

7.5. Improved Trace Collection through Symbolic
Execution

In order to improve the detection results of the static analysis, the run-time
behaviour of the system under analysis can be taken into account. Reclipse
provides the means to analyse a system’s behaviour and relate this dynamic
analysis to the static analysis results [Wen07]. For the most part, this the-
sis is focused on the static analysis for the detection of design deficiencies.
However, in the future, the dynamic analysis could also be integrated into the
Archimetrix process. Section 7.3 presented a possible behavioural formalisation
for the Transfer Object Ignorance deficiency.

This section presents an idea for an improved trace collection which could
lead to better dynamic analysis results. Since this extension is still in an early
conceptual phase, the approach is not yet implemented as a part of the proto-
type presented in Chapter 10. Therefore, the improved trace collection is also
exempt from the validation of Archimetrix. Nevertheless, the ideas sketched in
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subComponents : 
ComponentImplementingClassesLink

:IndirectComposition

subComponents

parentComponent

parent : 
ComponentImplementingClassesLink

structural pattern IndirectComposition extends ComponentComposition

«create»

«create»

dc : DirectComposition

cc : ComponentComposition

middleComponent : 
ComponentImplementingClassesLink

parentComponent

subComponents

parentComponent

subComponents

«create»

Figure 7.7.: Structural formalisation of the Indirect Composition pattern

classes : GASTClass

:Component

classes component

component : 
ComponentType

abstract structural pattern Component

«create» «create»

«create»

Figure 7.8.: Structural formalisation of the abstract Component pattern
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classes : GASTClass

:DirectComponentClasses

classes component

component : 
ComponentType

structural pattern DirectComponentClasses extends Component

«create» «create»

directLink : 
ComponentImplementingClassesLink

implementingClasses component

link
«create»

«create»

Figure 7.9.: Structural formalisation of the Direct Component Classes pattern

classes : GASTClass

:IndirectComponentClasses

classes

component

component : 
ComponentType

«create»

«create»

cc : ComponentComposition

parentComponentLink : 
ComponentImplementingClassesLink

component

parentComponent

subComponents

subComponent : 
ComponentImplementingClassesLink

implementingClasses

«create»

link
«create»

set

structural pattern IndirectComponentClasses extends Component

Figure 7.10.: Structural formalisation of the Indirect Component Classes
pattern
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this section can be useful for future extensions of Archimetrix. They are based
on a Bachelor’s thesis by Volk [Vol10] and the resulting publication [vD11].

7.5.1. Shortcomings of the Trace Generation through Concrete
Execution

To analyse the run-time behaviour of a system, it has to be traced during
execution. These traces are an input for the dynamic analysis. In Reclipse,
traces are either collected through the execution of test cases (if available)
or through performing typical user interaction on the running system. This
method of collecting traces has some major drawbacks: It can only cover part
of the system’s behaviour. This part is determined in a non-transparent and,
in case of user interaction, possibly random way through the execution of the
system.

Because the program execution can only cover part of all possible behaviour,
the collected traces do not necessarily contain behavioural data on the inter-
esting candidates. In this case, it is very difficult to actively obtain that data
because there is no straightforward way to get the system to execute certain
methods. The actual system behaviour can normally be influenced by the in-
put or by direct interaction with the system, e.g. via a graphical user interface.
The software architect on the other hand only knowns the classes and methods
which play a part in the corresponding pattern candidate. Without an in-depth
analysis of the system’s source code, it is not possible to determine which inter-
action with or input into the system will trigger the execution of a particular
candidate.

If the collected trace does not contain behavioural data for a certain can-
didate, the architect has no choice but to collect more data. He can either
interact randomly with the system to trigger the desired behaviour by chance
or he systematically tries to cover as much interaction as possible. Neither of
these heuristics guarantees to produce the desired data. In addition, the former
approach does not allow to repeat the data collection in a systematic way. The
latter approach requires meticulous logging of the user interaction and input
data in order to be repeatable.

Furthermore, the current way of collecting traces does not allow definitive
conclusions about the candidates. The only conclusion the architect can draw
is that a given candidate behaves according to the behavioural pattern for the
part of the program that was actually executed. The candidate might violate the
pattern for another execution. The software architect, however, would never
know because he can only base his judgement on the collected trace data.

Therefore, a more systematic and comprehensive way to collect the traces for
the dynamic analysis could greatly improve the dynamic analysis results.

7.5.2. Systematic and Comprehensive Trace Generation through
Symbolic Execution

The basic idea for a more comprehensive trace generation is to use symbolic
execution. Symbolic execution as proposed by King allows to reason about
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classes of program executions instead of individual, concrete executions [Kin76].
This is accomplished by assigning symbolic values instead of concrete values
to variables and evaluating the different possible control flows. Monitoring a
symbolic execution of a program can therefore yield a number of traces that
cover the complete possible program behaviour. Consider this simple example
program.

public void m1( int x ) {
i f ( x == 5)

m2 ( ) ;
else

m3 ( ) ;
}

A concrete execution of m1 would lead to either m2 or m3 being called, de-
pending on the value of x. Hence, the collected trace would either contain m1

and m2 or m1 and m3. Executing m1 symbolically instead (with x as a symbolic
variable) would generate two traces: One with x= 5 and one with x 6= 5. In the
first case m1 and m2 would appear in the trace, in the second case m1 and m3

would be traced.

I propose to use symbolic execution to generate traces for pattern candidates
detected by Reclipse. First experiments which integrate Symbolic PathFinder,
an extension for the Java Source Code model checker Java PathFinder (JPF)
[PR10], into Reclipse show the general feasibility of the idea [Vol10] [vD11].

7.5.3. Interpreting the Generated Traces

Currently, the concrete execution of programs only allows for very imprecise
conclusions about the pattern candidates. Whether a candidate was a true or
false positive can only be answered with regard to the actually executed part
of the system. The use of symbolic execution enables the software architect to
get a much clearer picture.

Because all possible behaviour of the system is executed (at least theoretically,
see Section 7.6.2) and the relevant parts are traced, a more definite statement
can be made for each candidate. Even if abstraction and inaccuracy of the
symbolic execution may miss some execution paths, the data is much more
comprehensive than for concrete execution. The following three cases can be
distinguished:

1. If all traces of a candidate only show behaviour which complies with the
corresponding pattern, it is a true positive.

2. If at least one trace violates the behavioural pattern, a candidate has the
potential to behave incorrectly. This means it is either a false positive or
at least a flawed implementation of the pattern in question.

3. In the third case, no trace complies with the behavioural pattern but
no trace violates it either. This can happen when, e.g. only one of the
methods of a candidate is executed at all. This may be allowed by the
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pattern but because no other relevant methods are executed afterwards,
the pattern behaviour is neither completed nor violated. In this case, the
candidate can also be regarded as a false positive because it never shows
the complete correct behaviour.

7.5.4. Related Approaches

Symbolic execution is applied for a multitude of problems in different domains.
While the method was originally conceived for the generation of test input
[Kin76], it is now also applied in fields like the behavioural verification of safety-
critical, embedded systems [LMV05]. The Java PathFinder extension Symbolic
PathFinder [PR10] was developed for test generation and correctness checking
of multi-threaded programs.

Most dynamic pattern detection approaches rely on the concrete execution
of programs for the collection of traces [HHHL03, SH08]. De Lucia et al.
[dLDGR10] apply a systematic approach for the checking of behavioural pat-
terns. Similar to the idea sketched here, they begin with a static analysis to
identify pattern candidates. Then, they use the model checker SPIN to analyse
whether the candidates can possibly show the desired behaviour. This way,
false negatives can be removed from the set of candidates. For this step, the
authors translate the behavioural patterns into LTL expressions and the system
into a Promela specification. Afterwards, a straight-forward dynamic analysis
is carried out for the remaining candidates to verify if they actually show the
expected behaviour at run-time. This last step has the same disadvantages as
other approaches which employ concrete execution for the collection of traces.

7.6. Limitations

In this section, first the limitations of the deficiency detection in general are dis-
cussed. The subsequent section then deals with the limitations of the improved
trace generation.

7.6.1. Limitations of the Deficiency Detection in Software
Architectures

• The restriction of pattern detection to a subset of components has the
consequence that the sum of detected pattern occurrences for this subset
and for its complement may not be equal to the number of detected occur-
rences for a detection run on the whole system. Patterns that would be
detected between classes which are assigned to different components are
not detected if not all these components are part of the selected subset.
As a consequence, some deficiencies might be overlooked if the software
architect investigates different parts of the system one after the other. On
the other hand, the deficiency detection might be significantly faster due
to this restriction. The software architect has to be aware of this trade-off.
If he wants to be sure to detect all deficiency occurrences in the system,
a detection run on the system as a whole is inevitable.
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7.6.2. Limitations of the Improved Trace Generation

• The most straightforward approach to the generation of execution traces
is the symbolic execution of the system’s main method. This way, all
possible paths through the system are evaluated and all possible traces
for the detected pattern candidates can be collected. This approach ob-
viously suffers from a high computational complexity and also generates
extremely large amounts of trace data. In addition, the symbolic execu-
tion of programs which use frameworks like Eclipse is problematic because
the framework code is not of interest for the analysis.

• During the static analysis, a large number of pattern candidates can be
detected by Reclipse. As explained in Section 7.3, only method calls that
are part of the behavioural patterns are recorded in the traces. Still, gen-
erating all possible traces for every candidate can yield an impractically
large amount of data. To alleviate this problem, the software architect
could select a subset of the statically detected pattern candidates. Dur-
ing the symbolic execution, only methods of these selected candidates are
recorded in the traces which would reduce the trace files to manageable
sizes.

• User interaction constitutes a challenge for symbolic execution. While
textual interaction via a command line can still be covered by treating
the textual input as a symbolic variable, graphical user interfaces cannot
be simulated easily. JPF offers the library jpf-awt to abstract away the
rendering aspects of the GUI and still preserve the control flow of AWT-
and Swing-based GUIs. The implementation is still rudimentary though,
so the library does not work for all applications. However, it generally
allows to apply the approach to GUI-based systems.

7.7. Conclusion

This chapter gave an overview of the pattern detection capabilities of Reclipse.
It also described how the result model of SoMoX can be used as an input model
for Reclipse such that architecture-related design deficiencies can be detected.
Although Archimetrix mainly focuses on the static analysis for the deficiency
detection, I also explained the dynamic analysis and sketched an approach to
improve its trace collection.

The result of the deficiency detection is a set of deficiency occurrences.
Archimetrix can support the software architect in the decision which of the
detected occurrences should be removed first. This design deficiency ranking is
presented in the next chapter.
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The design deficiency detection yields a list of detected deficiency occurrences.
However, depending on a number of factors such as the size of the system under
study, this list may be very long [GD12].

Often, the limitation of resources like time, money, or manpower only allows
the deficiency occurrences with the highest impact to be tackled [BK07]. In
order to support the software architect in the decision which of the detected
deficiency occurrences should be removed, Archimetrix can rank them based
on their severity (Step 4 in Figure 4.1). Similar to the component relevance
analysis, the design deficiency ranking uses several metrics to determine the
rank of a design deficiency occurrence.

Section 8.1 details the contributions of this chapter while the assumptions
of the deficiency ranking are explained in Section 8.2. The ranking metrics
are presented in Section 8.3. Afterwards, the calculation of the overall rank is
covered in Section 8.4 and Section 8.5 discusses the limitations of this approach.
Related work is reviewed in Section 8.6 while Section 8.7 concludes the chapter.

8.1. Contributions

• Building on the example ranking metrics, I propose a method to rank
the detected deficiency occurrences based on the captured metric values.
This rank is represented by a number between 0 and 1 and supports the
architect in judging the severity of the detected deficiency occurrences.

• In this chapter, I present a number of example ranking metrics which
measure several severity-related aspects of a deficiency occurrence.

• Similar to the component relevance analysis, the deficiency ranking is
designed to be extensible with new ranking metrics in the future. This is
especially relevant as most of the ranking metrics presented in this thesis
are deficiency-specific. If Archimetrix were to be applied in a scenario in
which different deficiencies would be detected, new ranking metrics would
be needed.

8.2. Assumptions

The assumptions on which the ranking metrics are based, are similar to those
of the component relevance metrics presented in Chapter 6.

• The severity-related aspects have to be mapped to a numerical value be-
tween 0 and 1. Similar to the component relevance metrics, all aspects
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that can be mapped to an ordinal scale can be considered as a basis for a
relevance metric.

• The metric values are assumed to be proportional to the severity of the
deficiency occurrence, i.e. the higher the metric value, the more severe the
corresponding aspects of the deficiency occurrence.

• For the calculation of the overall deficiency rank, all ranking metrics are
assumed to be of equal importance. In the future, the deficiency ranking
could be extended with the possibility to assign weights to the different
ranking metrics in order to increase the configurability of the approach.

8.3. Ranking Metrics

For the ranking of deficiency occurrences in Archimetrix, I use general and
deficiency-specific metrics. General ranking metrics can be applied to all design
deficiencies.

In many cases, different occurrences of the same deficiency are not all equally
critical. For example, an Interface Violation between classes which reside in
the same package may be more acceptable than an Interface Violation between
completely unrelated classes. Therefore, deficiency-specific ranking metrics can
be used to measure such factors and differentiate occurrences of the same defi-
ciency better. Deficiency-specific ranking metrics can only be applied to certain
deficiencies.

In the following, the general and deficiency-specific ranking metrics used
in this thesis are explained. There is one general rankings metric and three
deficiency-specific ranking metrics. For the deficiency-specific metrics, the de-
ficiencies to which they are applicable are listed. As this thesis focuses on the
structural analysis for the detection of deficiencies, metrics for the ranking of
behavioural detection results are not discussed here. If a behavioural analysis
would be used, additional general ranking metrics which take, e.g. the number
of matching traces into account, could be used.

8.3.1. Structural Accuracy Metric

The structural accuracy metric is a general deficiency ranking metric and is
therefore applicable to all deficiencies.

Structural formalisations can contain mandatory and additional elements.
Mandatory elements have to be matched in order for a deficiency occurrence to
be detected. Additional elements can be matched during the detection process
but are not necessary for the detection of a deficiency occurrence.

The exemplary formalisation of the Transfer Object Ignorance occurrence in
Figure 4.3 contains one additional element: the Method someFunctionality of the
exposedClass. It represents the fact that a Transfer Object Ignorance occurrence
is more critical if the exposedClass contains functionality that is made available
to the callingClass. If the exposedClass contains no methods, the occurrence may
either be a false positive or it may be less critical.

102



8.3. Ranking Metrics

The structural accuracy of a pattern occurrence o is calculated as the ratio
between the elements of a deficiency formalisation that are actually matched
for a given occurrence and all elements in the formalisation [Tra07] (see Equa-
tion 8.1).

RankStructuralAccuracy(o) =
#matchedElements

#mandatoryElements+ #additionalElements
(8.1)

This value hints at the confidence that can be placed in a detected defi-
ciency occurrence. If only the absolutely mandatory core of a formalisation was
matched for a pattern occurrence but none of the additional elements were de-
tected, then the occurrence might arguably be a false positive. If an occurrence,
on the other hand, conforms to the structural formalisation in all the details,
it is probably a true positive. Therefore, I suggest to use this structural accu-
racy of a detected deficiency occurrence as a metric in the deficiency’s severity
ranking. While it is no definitive indicator of the deficiency occurrence being a
true or false positive, it can point to the occurrences that are more likely to be
true positives.

In the example occurrence no. 1 from Figure 3.3, the occurrence consists
of six matched objects (the callingClass Assets, the call in the method calculate-

Value, the calledClass Reporting, the calledMethod sendReport, the param r, and the
exposedClass Report), two matched component sub patterns (c1 = Accounting and
c2 = Controlling), and one matched object constraint (the name constraint of
the exposedClass Report). The method someFunctionality cannot be matched for
this occurrence because Report does not contain any methods. In this case the
structural accuracy metric would be calculated as follows:

RankStructuralAccuracy(TOI1) =
6 + 2 + 1

9 + 1
= 0.9

For example occurrence no. 2, the someFunctionality object would be matched
to the method checkStock. Therefore, the occurrence’s ranking value would be 1.

8.3.2. Deficiency-Specific Ranking Metrics

The metrics presented in this section can only be applied to specific deficiency
occurrences. Therefore, the deficiencies to which the given ranking metric can
be applied are indicated at the beginning of the following sections. In the cal-
culation of the ranking metrics, several clustering metrics from the architecture
reconstruction are reused. These are clustering metrics which have been identi-
fied as being especially susceptible to the influence of deficiency occurrences (see
Section 5.3.2), e.g. the different Access Count metrics or the Package Mapping
metric.

Class Locations Metric

Applicable to Interface Violation, Transfer Object Ignorance, Unauthorised
Call
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The idea behind the Class Locations Metric is that classes which reside in
the same part of the system are intended to collaborate closely with each other.
For Java systems, these are classes that lie in the same branch of the package
tree or even belong to the same package. Consequently, an occurrence of the
Transfer Object Ignorance deficiency (or of one of the other deficiencies listed
above) between classes which are located far away from each other (in terms
of the package structure) is a more serious design problem than an occurrence
between classes in the same part of the package tree. For this metric, the
value of the PackageMapping metric that is calculated during the architecture
reconstruction is used (see Section 5.2.1).

The calculation of the class locations metric is shown in Formula 8.2.

RankClassLocations(D) := 1− PackageMapping(CCD) (8.2)

Here, D is the design deficiency occurrence and CCD represents the compo-
nent candidate that contains the classes that are involved in the design defi-
ciency occurrence D. The higher the PackageMapping value, the lower the
occurrence is ranked.

In the running example in Figure 3.3, the classes Assets and Report lie in the
package app.accounting while the class Reporting belongs to the package app.controlling.
Since the classes belong to different sub packages of the app package, they have a
package mapping value of 0.5. Thus, the rank of the Transfer Object Ignorance
deficiency no. 1 would be 1− 0.5 = 0.5.

Deficiency occurrence no. 2 in the example exists between the classes As-

sets, StoreQuery, and Inventory. As stated above, Assets belongs to the package
app.accounting. In contrast, StoreQuery and Inventory are part of the data.storage

package. Thus, the classes have a package mapping value of 0 and the rank of
the deficiency occurrence is 1, i.e. it is more relevant than deficiency occurrence
no. 1.

Communication via Data Classes Metric

Applicable to Transfer Object Ignorance

The Transfer Object Ignorance deficiency describes situations in which ob-
jects that are not transfer objects are passed between components. There are
several degrees of severity depending on the class that is used for communi-
cation. For example, a class that only contains fields and access methods but
does not adhere to the specific naming convention for transfer objects does not
constitute a major problem. It may be that the developer intended to use a
transfer object and only forgot to name the class correctly. If, on the other
hand, a class adheres to the naming convention but contains several methods
with application logic, the deficiency is more severe.

Hence, the heuristic I suggest for this metric is as follows: The more non-
accessor methods occur in the class, the worse is the deficiency. Therefore, we
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use the Communication via Data Classes Metric (see Formula 8.3).

RankDC(D) = 1− IsDataClass(c)
(8.3)

IsDataClass(c) =
0 if #Fields(c) = 0

1−
(

#NonAccessors(c)+#MissingAccessors(c)
#NonAccessors(c)+#PotentialAccessors(c)

)
else

(8.4)

The metric value of the Communication via Data Classes metric for Transfer
Object Ignorance occurrences is 1 minus the similarity of the transfer object’s
class to a data class. Formula 8.4 shows how this similarity is calculated:

• If the class does not contain any fields, it is definitely not a data class.
Therefore, the rank of such a deficiency occurrence with respect to the
Communication via Data Classes metric is 1.

• If the class contains fields, the metric value depends on the methods in
the class. On the one hand, the number of methods that are not accessors
(#NonAccessors(c)) is counted. The number of potential accessor meth-
ods in a class #PotentialAccessors(c) is 2 times the number of fields.
By counting the number of actual accessor methods and subtracting the
count from the number of potential accessor methods, we get the num-
ber of missing accessor methods #MissingAccessors(c). The method
counts are related to one another as shown in the formula. The more
non-accessor methods exist in the class and the more accessor methods
are missing, the more the class deviates from a data class. This leads to
a higher ranking with respect to this metric.

In the running example from Section 3.3, the class Inventory is exposed to the
Accounting component although it is not a data transfer object. Inventory has one
non-accessor method: checkStock. Assuming that the Inventory class possesses
two access methods for the field items (e.g. getItems and setItems), no accessor
methods are missing. The rank calculation for the Transfer Object Ignorance
occurrence between Assets, StoreQuery, and Inventory would be as follows:

IsDataClass(Inventory) = 1−
(

1 + 0

1 + 2

)
=

2

3

RankDC(TOI1) = 1− 2

3
=

1

3
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In contrast, Report does not contain non-accessor methods. Therefore, the
Transfer Object Ignorance occurrence between Assets, Reporting, and Report would
be ranked like this:

IsDataClass(Report) = 1−
(

0 + 0

0 + 2

)
= 1

RankDC(TOI2) = 1− 1 = 0

Hence, Transfer Object Ignorance occurrence no. 1 is more critical than oc-
currence no. 2 with respect to the Communication via Data Classes metric.

Number of External Accesses Metric

Applicable to Interface Violation, Transfer Object Ignorance, Unauthorised
Call

During the architecture reconstruction, high coupling is an indicator of com-
ponent merging and composition (see Chapter 5). As explained in Section 5.2.1,
the coupling metric is calculated by relating the number of internal accesses of
a component to the number of its external accesses. The occurrence of deficien-
cies like Transfer Object Ignorance or Interface Violation changes these metrics.
In the example presented in Section 5.3, the metrics Internal Accesses Count
and External Accesses Count are increased by 1 each.

If a component has many external accesses, an increase by 1 does not make
a big difference. In a component with few external accesses however, a slight
increase could greatly affect the coupling. Consider the following example:
In Figure 5.5, component CA has one internal access to CB (from Assets to
StoreQuery). Assume that CA had three external accesses in total. With the
deficiency occurrence depicted on the right in Figure 5.5, internal and external
accesses would both increase by 1.

The coupling between CA and CB would thus be calculated as follows.

Coupling(CA, CB)withoutTOI =
1

3
≈ 0.33

Coupling(CA, CB)withTOI =
2

4
= 0.5

However, if we assumed that CA had ten external accesses, the difference
between the two coupling values would be much lower:

Coupling(CA, CB)withoutTOI =
1

10
= 0.1

Coupling(CA, CB)withTOI =
2

11
≈ 0.18

Hence, the number of external accesses is indicative of the impact that a
deficiency can have on the coupling and thereby the merging and composition
of components. If a component has a lot of external accesses, the impact is
significantly lower than for components with few external accesses. Therefore,
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deficiency occurrences in components with a high external accesses count are
less severe than those in components with a low external accesses count. The de-
ficiency rank with respect to this metric is calculated according to Formula 8.5.

RankNo.OfExt.Accesses(D) := 1− ExternalAccessesCount(CD)

maxCi∈allComponents(ExternalAccessesCount(Ci))
(8.5)

Here, CD is the component containing the deficiency occurrence.

8.4. Rank Calculation

For the calculation of the overall rank of a deficiency occurrence, all applicable
general and deficiency-specific ranking metrics are taken into account. As stated
in Section 8.2, all ranking metrics are considered to be equally important.

The overall ranking result for the design deficiency occurrences is determined
by calculating the Pareto optimal design deficiency occurrences with respect
to the applicable ranking metrics. This is similar to the calculation of the
component relevance defined in Formula 6.9 with the applicable ranking metrics
in place of the relevance strategies. Thus, the design deficiency ranking is
equally easy to extend. The normalisation of the rank value even allows for
the comparison of deficiency occurrences for which different ranking metrics
are applicable.

Assuming that both deficiency occurrences from the running example are
detected with a structural accuracy value of 100%, and that the Number of
External Accesses metric evaluates to 0.5 for both occurrences, their severity is
ranked as follows.

Rankoverall(TOI1) =

√
12 + 0.52 + 02 + 0.52√

4
=

√
1.5

2
= 0.75

Rankoverall(TOI2) =

√
12 + 12 + 1

3

2
+ 0.52

√
4

≈
√

2.611

2
≈ 0.808

The second deficiency occurrence is ranked as more severe with respect to
the employed metrics. Thus it would probably be better to reengineer this
deficiency occurrence first.

8.5. Limitations

This section lists the limitations of the proposed deficiency occurrence ranking
method.

• One drawback of the proposed method is that only objectively quantifiable
aspects of the deficiency occurrences can be considered in the ranking. In
the running example, the second deficiency occurrence would be ranked
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the more severe one. While this is correct with respect to the employed
metrics, several other aspects can play a role in an architect’s decision
which deficiency to remove. For example, the first deficiency occurrence
in the example can be easily removed by renaming the Report class (see
Section 3.3). An architect might want to prioritise these simple reengi-
neerings over more complicated ones. On a related note, an architect may
want to remove those deficiencies first that he is familiar with (or with
the part of the system that the deficiency occurs in). This cannot easily
be covered by metrics because it is a very subjective, architect-dependent
heuristic.

8.6. Related Approaches

This section presents a number of approaches which either identify the need to
rank detected pattern occurrences or which propose methods to do so.

Simon et al. were among the first to argue that tool support is necessary
to point out where refactorings can be applied [SSL01]. They suggest to use
metrics and an appropriate visualisation to help developers find worthwhile
refactoring locations. However, they admit that their approach does not scale
for large applications. The execution of the refactoring and the impact on the
system are not in the focus of their work.

Marinescu adds a filtering mechanism to his metric-based bad smell detection
approach that determines which occurrences are relevant for further processing
[Mar04]. This approach also uses the composition of several metrics to detect
design deficiencies. In the filtering mechanism, detected occurrences with ex-
treme metric values or values that are in a particular range are searched. He
does not address the removal of detected bad smells.

Bourquin and Keller present an approach that is focused on manual refactor-
ings on the architecture level [BK07]. They argue that bad smells “cannot be
quantified easily, and therefore are hard to prioritize”. They manually analyse
the relevance of their refactorings on the architecture after their application. In
order to analyse the refactoring results, they use code metrics and a comparison
between the number of detected bad smells before and after the refactoring.

Liu et al. point out that the removal of one bad smell occurrence can facilitate
or complicate the removal of other occurrences [LYN+09]. Hence, they suggest
that a proper resolution order should be found before the refactoring is begun.
This does not necessarily mean that the ’most critical’ bad smells are removed
first. However, finding the best resolution order does either require static rules
(”Smells of type A should always be removed before smells of type B.”) or
human judgement by a software architect.

Niere et al. suggest to assign a “fuzzy belief” to the formalisation of design
patterns which expresses the quality of the formalisation [NSW+02, Nie04]. An
occurrence of a pattern with a low belief would be ranked lower than occur-
rences with a higher belief. This means that occurrences of the same pattern
are always assigned the same rank. This system was incorporated in early
versions of Reclipse. It was later refined, by Travkin, Wendehals, and Meyer
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[Tra07, Wen07, Mey09]. They allow the specification of “mandatory” and “ad-
ditional” elements in pattern formalisations. If an occurrence contains some or
all additional elements, it is ranked higher than an occurrence which contains
only the mandatory elements. This method is currently implemented in Re-
clipse. In this thesis, I reuse this technique in the Structural Accuracy Metric
presented in Section 8.3.1.

8.7. Conclusion

In this chapter, I presented an extensible approach to the ranking of detected
deficiency occurrences. I also described four example metrics and illustrated
their evaluation for the running example. Finally, the calculation of the overall
deficiency rank for the two example occurrences from the running examples was
shown.

In future applications of Archimetrix, the presented metrics can be reused
if the same deficiencies as in this thesis are detected. If different deficiencies
were formalised and searched for, new ranking metrics for them would have to
be devised. This is however supported by the extensibility of the deficiency
ranking.
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The previous chapters presented the reverse engineering capabilities of Archimetrix.
They consist on the one hand of the architecture reconstruction and on the other
hand of the detection of design deficiencies. However, Rosik et al. point out
that “inconsistency identification is not of itself sufficient to ensure architectural
consistency” [RLGB+11]. They note that often developers do not remove defi-
ciencies even if they know about them. Therefore, Archimetrix offers support
for the removal of deficiencies.

This chapter begins with an overview of the contributions of Archimetrix in
the area of deficiency removal. Afterwards, the assumptions of the deficiency
removal are discussed and the deficiency removal process is explained (Sec-
tion 9.3). Archimetrix provides support for the manual removal of deficiencies
as well as for the automated removal. The manual removal is the subject of
Section 9.4 while Section 9.5 deals with the automated removal. The chapter
ends with a discussion of the limitations and the conclusion.

9.1. Contributions

• This chapter presents a dedicated process to support the software archi-
tect in removing the detected design deficiency occurrences. This process
refines Step 5 of the Archimetrix process presented in Chapter 4.

• This chapter also introduces the concept of guide templates which can
be used to generate concrete removal guides for the manual removal of
individual deficiency occurrences.

• For the automated removal of deficiency occurrences, this chapter dis-
cusses how automatic removal strategies can be specified. In addition,
a method to preview the effects of the application of automatic removal
strategies is introduced.

9.2. Assumptions

• A basic assumption of this chapter is that the detection and ranking of de-
ficiency occurrences have been executed successfully before the deficiency
removal. The explanations in this chapter assume that the software ar-
chitect has chosen a particular design deficiency occurrence which he now
wants to remove.

• I assume that the deficiency occurrences are unrelated, i.e. that they do
not share common elements. Therefore, I do not consider cases in which
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the removal of one deficiency occurrence invalidates other occurrences.
This issue is discussed in more detail in Section 9.6

9.3. Deficiency Removal Process

Detecting deficiency occurrences in the system goes a long way towards sup-
porting the software architect. As described in Chapter 3, design deficiency
descriptions often also point out one or more ways to remove a given occur-
rence of that deficiency. In order to really accomplish the removal, however,
the architect still has to perform two steps.

1. Role mapping In the deficiency description, the removal is described in
terms of the general form of a deficiency. For example, in Section 3.3,
the removal strategy Move calling method talks about ’moving the called-

Method’ to the callingClass. These are, of course, the pattern roles that are
played by concrete elements in a given deficiency occurrence. The archi-
tect has to map these roles to the concrete elements in order to under-
stand, that, e.g. for the removal of Transfer Object Ignorance occurrence
no. 2, the method calculateValue should be moved to the StoreQuery class.

2. Removal strategy application Once the architect has identified what has
to be done with which element, he still has to execute the prescribed re-
moval. Depending on the complexity of the deficiency and the removal
strategy, this task can be anything from straightforward to very compli-
cated. Still, manually removing a design deficiency occurrence is – like
any programming activity – error-prone. Thus, it is helpful to automate
this task wherever this is possible.

In order to support the software architect in the removal of a deficiency occur-
rence, I propose the process that is illustrated in Figure 9.1. The process refines
Step 5 “Architecture Preview & Deficiency Removal” from the Archimetrix pro-
cess presented in Chapter 4. Therefore, it begins after the deficiency ranking.

Archimetrix allows for the specification of two kinds of supportive artefacts:
Guide templates and automated removal strategies.

Guide templates On the one hand, there are guide templates which textually
enumerate the steps that are necessary to remove a given deficiency occur-
rence (Step 1.1 in Figure 9.1). They are comparable with the “refactoring
mechanics” used by Fowler [Fow99, p. 111] and Kerievsky [Ker04, p. 48].
The template aspect of these guide templates is such that Archimetrix
can replace the pattern role names used in the guide templates with the
corresponding object names from a given deficiency occurrence. This in-
stance of a guide template for a specific deficiency occurrence is called a
removal guide for this occurrence. By generating removal guides for all
the deficiency occurrences he wants to remove, the software architect does
not have to perform the role mapping by himself. He can concentrate on
the removal of the deficiency occurrences without constantly keeping in
mind which element of the occurrence is playing which role.
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[Automated removal 
strategy selected]

[Guide template selected]

[Previewed 
architecture ok]

[Previewed 
architecture not ok]

1.1: Specify guide templates for 
manual removal

1.2: Specify removal strategies
for automated removal

2: Choose deficiency 
occurrence to remove

1

2              3

3: Choose applicable guide 
template or automated removal 

strategy

4.1: Generate removal guide 
from guide template

5.1: Preview resulting 
architecture

4.2: Manually remove deficiency 
occurrence according to removal 

guide

5.2: Execute removal strategy

5.3: Propagate changes back to 
the code

[Deficiency removal completed]

[More deficiencies to remove]

Deficiency ranking
(Step 5 of the Archimetrix 

Process, see Chapter 4)

Next Iteration of the 
Archimetrix process 

(see Chapter 4)

...

...

[No appropriate guide 
templates or removal 
strategies available]

[Appropriate guide 
templates or removal 
strategies available]

Figure 9.1.: Process for the removal of deficiency occurrences
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Automated removal strategies Archimetrix also allows for the specification of
automated removal strategies (Step 1.2). These describe transformations
of the software system which automatically remove a given deficiency
occurrence. This completely relieves the architect of the role mapping
and of the manual removal of deficiency occurrences.

Guide templates and removal strategies can of course be saved and reused.
Thus, Steps 1.1 and 1.2 of the process are only necessary when no such artefacts
exist or when additional ones are needed.

When the necessary guide templates and removal strategies are available, the
architect can select a deficiency occurrence which shall be removed (Step 2).
This choice will be based on the deficiency occurrences detected by Reclipse
(see Chapter 7). It can be supported by the deficiency ranking described in
Chapter 8.

The guide templates and removal strategies are only applicable to specific de-
ficiencies. Therefore, Archimetrix filters the available templates and strategies
based on the deficiency occurrence selected by the software architect. From
these, the architect has to choose one solution (Step 3). Depending on this
choice, the process continues in two possible ways.

If the architect chooses a guide template for the removal of the deficiency,
a removal guide for the selected deficiency occurrence is generated (Step 4.1).
The removal guide resembles a cooking recipe that contains the specific role
names of the selected deficiency occurrence in place of the more general names
from the deficiency description. The architect can then remove the deficiency
occurrence manually according to the removal guide (Step 4.2). Section 9.4
describes the specification of guide templates and the generation of removal
guides.

If, on the other hand, the software architect chooses an automated removal
strategy, he can first preview the architecture that will result from the execution
of the strategy (Step 5.1). He can then either go back to Step 3 and choose
another solution or he can execute the removal strategy (Step 5.2). Because
the automated removal strategies are executed on the GAST of the system, the
changes that are made by the removal strategy then have to be propagated back
to the source code (Step 5.3). The specification and execution of automated
removal strategies is described in detail in Section 9.5.

After the removal of one or more deficiency occurrences, the main process
can continue. The next step in the Archimetrix process is a new architecture
reconstruction which will then be based on the reengineered system. If the
deficiency occurrences were removed manually, the system has to be parsed
again so that a new GAST is created. Otherwise, the reengineered GAST can
be directly used as an input for the new architecture reconstruction.

9.4. Manual Deficiency Removal

As explained in Section 9.3, not all deficiency occurrences are removable auto-
matically. Sometimes, not all information necessary for a deficiency removal is
available (e.g. how to name a new class or where to move a method). At other
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times, a deficiency occurrence is so complicated that it cannot be removed by
pre-specified removal strategies because not all possible cases can be covered
by the removal strategy with reasonable specification effort. In these cases, the
software architect has to remove the deficiency occurrence manually.

Carrying out refactorings and reengineerings manually can be supported by
providing the architect with a guide to the different refactoring steps. Fowler
[Fow99] and Kerievsky [Ker04] call these step-by-step guides “mechanics” of
the refactoring. However, these mechanics use the terminology from the general
form of a pattern. Therefore, such a “mechanic” for the removal of a Transfer
Object Ignorance occurrence might talk about an ’exposed class’ or a ’called
method’. The architect still has to perform the role mapping on-the-fly in order
to relate this description to the occurrence at hand (see Section 9.3). Thus,
he has to keep in mind that the ’exposed class’ is called, for example, Report

and that the ’called Method’ is the method sendReport in the class Reporting.
When the involved elements bear similar names as in the example, or when
a complicated pattern consists of many elements in different roles, the role
mapping can become quite tedious and error-prone.

9.4.1. Removal Guides

Archimetrix can support the software architect by generating a removal guide
for a given deficiency occurrence from the provided guide templates. The guide
template contains the necessary (manual) steps for the removal of a given de-
ficiency occurrence but it uses the generic pattern role names of the elements
from the general form of the deficiency. The general succession of removal steps
is the same for every deficiency occurrence but the concrete objects names dif-
fer. The generated removal guides use the concrete object names from a given
deficiency occurrence instead of the generic pattern role names. This saves
the architect the tedious task of the role mapping and facilitates the deficiency
removal for him.

On a technical level, the guide generation can be achieved by a simple tem-
plate mechanism. The basic text is always the same. It is captured in a guide
template. The template engine substitutes the role names with the concrete
element names from the deficiency occurrence.

9.4.2. Example

In Section 3.3, the removal strategy Introduce transfer object was presented
for the Transfer Object Ignorance deficiency. Because this removal strategy
requires a complex data analysis, it is hard to automate. A removal guide
template could look as follows.

1 . Analyse the methods #calledMethod and #callingMethod and
f i n d out which data from the c l a s s #exposedClass i s used
t h e r e i n .

2 . Create a new c l a s s named #exposedClassTO .
3 . In method #calledMethod , c r e a t e an new in s t ance o f

#exposedClassTO .
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4 . Then populate the newly c reated in s t anc e o f #exposedClassTO
with the data used in #calledMethod and #callingMethod .

5 . Change the parameter l i s t o f #calledMethod , so that i t
accept s i n s t a n c e s o f #exposedClassTO i n s t ead o f #
exposedClass .

6 . Adapt the cor respond ing i n t e r f a c e , i f nece s sa ry .
7 . Adapt a l l other c l a s s e s that implement that i n t e r f a c e , i f

nece s sa ry .
8 . In #callingMethod , pass the in s t anc e o f #exposedClassTO to

#calledMethod i n s t ead o f the in s t anc e o f #exposedClass .

Listing 9.1: Removal guide template for the Transfer Object Ignorance
deficiency

Suppose, the architect chose to remove Transfer Object Ignorance occurrence
no. 1 from the example in Figure 3.3 and he selected to remove it by applying
the Introduce transfer object removal strategy. Archimetrix would instantiate
the template shown in Listing 9.1 and produce the removal guide shown in
Listing 9.2

1 . Analyse the methods sendReport and calculateValue and f i n d
out which data from the c l a s s Report i s used t h e r e i n .

2 . Create a new c l a s s named ReportTO .
3 . In method calculateValue , c r e a t e an new in s t ance o f

ReportTO .
4 . Then populate the newly c reated in s t anc e o f ReportTO with

the data used in sendReport and calculateValue .
5 . Change the parameter l i s t o f sendReport , so that i t accept s

i n s t a n c e s o f ReportTO i n s t ead o f Report .
6 . Adapt the cor respond ing i n t e r f a c e , i f nece s sa ry .
7 . Adapt a l l other c l a s s e s that implement that i n t e r f a c e , i f

nece s sa ry .
8 . In calculateValue , pass the in s t anc e o f ReportTO to

sendReport i n s t ead o f the in s t anc e o f Report .

Listing 9.2: Removal guide for Transfer Object Ignorance occurrence no. 1 from
Figure 3.3

9.5. Automated Deficiency Removal

The automated removal of deficiency occurrences can be achieved by means
of automatic transformation of the software. This transformation can either
take place directly in the source code or in the software’s GAST representation.
In the latter case, the source code has to be evolved synchronously with the
GAST in order to correctly reflect the removal of the deficiency occurrence.
However, it also allows the software architect to explore different reengineering
alternatives without touching the source code.

As the architecture reconstruction as well as the deficiency detection in
Archimetrix both take place on the level of the GAST, I decided to also execute
the automated deficiency removal directly in the GAST. To this end, story di-
agrams [vDHP+12], are used to describe the model transformations necessary
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to accomplish the removal. Story diagrams are an in-place model transforma-
tion language developed at the University of Paderborn. Since, on a conceptual
level, Archimetrix is not dependent on a specific model transformation lan-
guage, other in-place model transformation languages like Henshin [ABJ+10],
MOLA [KBC05], QVT [Obj11], or VIATRA2 [VB07] could be integrated, as
well.

Similar to the deficiency formalisations, the removal strategies can be spec-
ified by the software architect or by a deficiency expert. Therefore they can
also be adapted to consider project- or company-specific guidelines like naming
conventions.

9.5.1. Removal Strategies

This section shows two exemplary specifications of the removal strategies Mark
exposed class as transfer object and Move called method introduced in Sec-
tion 3.3. Both removal strategies are possibilities to remove occurrences of the
Transfer Object Ignorance deficiency. A formalisation of a more complex re-
moval strategy for the design deficiency Interface Violation can be found in
Appendix B.1.

markExposedClassAsTransferObject (exposedClass: GASTClass): void

1. Append 'TO' to the class name.

exposedClass

name := name + 'TO'

Figure 9.2.: Removal strategy: Mark exposed class as transfer object

Mark exposed class as transfer object Figure 9.2 shows an extremely simple
transformation which realises the Mark exposed class as transfer object removal
strategy. It only consists of one story node which contains only the object
variable exposedClass. The exposedClass is passed to the removal strategy as
a parameter as shown in the signature at the top of Figure 9.2. The only
modification that the removal strategy applies is the addition of the suffix ’TO’
to the name of the exposed class in order to mark it correctly as a transfer
object.

The removal strategy assumes that the exposed class is really intended to be
a transfer object and that it is just named incorrectly. This is an example of a
project-specific removal strategy that enforces a specific naming convention.
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calledClass

moveCalledMethod (callingClass: GASTClass, calledClass: GASTClass, calledMethod: Method): void

methods

►
callingClasscalledMethod

2. Move called method to calling class

«destroy» «create»
methods

◄  

interface: GASTClass
methods

►

▲   overriddenMember

calledMethod

methodDecl: Method

calledClass

▲   superTypes

1. Remove method declaration from interface

«destroy»

«destroy»

«destroy»

methods

►

Figure 9.3.: Removal strategy: Move called method

Move called method Figure 9.3 shows the slightly more complex specification
of the Move called method removal strategy. As described in Section 3.3, it
moves the called method from the called class to the calling class. This makes
the use of transfer object unnecessary and therefore removes the deficiency.

The removal strategy has three parameters, callingClass, calledClass, and called-

Method, and consists of two story nodes. According to the deficiency description,
the calledMethod is available via an interface of the the calledClass. The first story
node specifies that the declaration of the calledMethod is to be removed from that
interface. The second story node removes the calledMethod from the calledClass

and puts it into the callingClass by destroying and creating the corresponding
containment links.

Obviously, this specification of the removal strategy is rather simplistic.
While it takes care of removing the method declaration from the interface,
it does not consider other classes that may implement the same interface. Sim-
ilarly, methods other than the callingMethod that may have called the moved
method are ignored. All these things can be modelled with story diagrams but
are omitted here for the sake of brevity.

9.5.2. Behaviour Preservation

A software architect has many degrees of freedom when removing a deficiency
occurrence manually. He may even decide to remove method calls and to move
or reimplement functionality. However, an automated transformation should
not change the behaviour of the system under analysis. There are cases in which
an adaptation of behaviour may be necessary. For example, in the CoCoME

118



9.5. Automated Deficiency Removal

system which served as one of the case studies in the validation of Archimetrix
(see Chapter 10), one deficiency occurred because a persistence mechanism was
called from a component which was forbidden to access it. In such a case, the
mechanism could be made “legally” available to the accessing component, it
could be extracted to a separate component, or it could be reimplemented in
the accessing component. In a strict sense, the last solution would not preserve
the behaviour because different methods would be called after the deficiency
removal (although they act similar to the originally called methods).

However, in most cases behaviour preservation is a desired property of a
deficiency removal, especially if the removal is performed automatically. At the
moment, Archimetrix does not offer support to analyse if an automatic removal
strategy preserves the system behaviour. To enforce this property, a suitable
analysis approach, e.g. the one by Meyer [Mey09], could be integrated into
the deficiency removal process. Meyer uses inductive invariant verification to
prove that automatic transformations of a system do preserve certain properties
(e.g. that variable accesses are not removed) and to prevent the introduction of
illegal constructs (e.g. accesses to members which are not visible). This way,
it could be ensured that an automatic deficiency removal does not alter the
system behaviour.

9.5.3. Propagating the Removal back to the Source Code

Carrying out the deficiency removal on the level of the GAST has advantages
and disadvantages. On the one hand, the transformed GAST can directly be
used for a new clustering without the need to parse the source code again. In
large systems, this can save valuable time. It also allows the software architect
to explore different alternatives for the removal of deficiencies without changing
the source code. Only when a suitable removal strategy has been found, he could
choose to propagate the removal to the code. In addition, it is advantageous
to specify the deficiency’s structural formalisations and the deficiency removal
in languages which are conceptually and syntactically similar. The software
architect can use similar syntactic constructs in the specifications and does
not have to learn two completely different languages. It also facilitates the
understanding of the specifications for other stakeholders.

On the other hand, if changing the source code is desired, the transformation
of the GAST incurs the problem that the source code has to be kept in sync.
Archimetrix handles this problem by providing a code generation for the GAST.
In the prototype implementation of Archimetrix, this code generation is realised
in a proof-of-concept manner. However, to fully support the synchronisation of
GAST and source code, an incremental code generator would be needed (see
Section 9.6).

9.5.4. Architecture Preview

Usually, the software architect has at most a vague idea about the implications
of a given refactoring or reengineering. For example, the design patterns by
Gamma et al. [GHJV95] and the from POSA books [BMR+96, SSRB00, KJ04]
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all feature a section on the consequences of applying that pattern. This section
consists of a prose description of what the pattern’s application means for the
rest of the system. Many of Fowler’s refactorings end with the line “Compile
and test.” [Fow99]. This not only suggests that the correct application of the
refactoring has to be ensured, but that it is necessary to validate the program
behaviour.

In Chapter 5, I showed that the introduction of design deficiency occurrences
can influence the reconstruction of a software architecture. Similarly, the archi-
tecture can change when such deficiency occurrences are removed. In fact, those
components that are likely to change on the removal of a deficiency occurrence
are considered to be relevant for the deficiency detection (see Section 6). But
on the one hand, this is not the only factor that determines the relevance of a
component. And on the other hand, there is neither a guarantee that removing
a deficiency occurrence will lead to a change of the component in question nor
is it clear how exactly the component will change. So the effects of a deficiency
removal are as unclear as the consequences of a pattern application or a refac-
toring. This can especially be a problem when multiple deficiency occurrences
with similar or identical ranking values are detected.

Therefore, Archimetrix provides the software architect with a means to pre-
view the architectural consequences of automated removal strategies. This al-
lows the architect to explore the effect of the different removal strategies and
to determine which strategy is most suited to remove a given design deficiency
occurrence. For that purpose, the architecture that will result from the au-
tomatic removal of a given deficiency occurrence is calculated and presented
to the architect. This preview helps the architect in judging how the selected
removal strategy affects the architecture and lets him decide if this is in line
with his requirements. Note that the architecture preview is only possible for
pre-defined removal strategies. If the deficiencies are removed manually, no
preview can be presented.

The architecture resulting from the initial clustering (referred to as original
architecture, here) is compared to the anticipated architecture from the pre-
view (referred to as previewed architecture, here). To execute the architecture
preview, the architect selects the design deficiency occurrence to be removed
and one of the applicable removal strategies. The selected removal strategy is
applied to a copy of the original architecture by executing an in-place model
transformation. The previewed architecture is then calculated by executing a
new clustering on the modified copy of the model. As the clustering scales
well for large systems (Krogmann reports a clustering time of 14 seconds for a
system with 50,000 LOC [Kro10]), the execution of a complete clustering for
producing the previewed architecture is justifiable.

To simplify the comparison for the user, the differences between the original
architecture and the previewed architecture are visualised. Figure 9.4 depicts
a possible visualisation of an architecture preview for the removal of Transfer
Object Ignorance occurrence 1 from the running example. The components of
the original architecture are visualised on the left side and the components of
the previewed architecture are visualised on the right side. In this example,
the original architecture only consists of one component, named comp 1. It
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Original Architecture: Previewed Architecture:

< comp 1 >
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Figure 9.4.: Architecture preview for the removal of Transfer Object Ignorance
occurrence no. 1
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Figure 9.5.: Architecture preview for the removal of Transfer Object Ignorance
occurrence no. 2
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contains all five classes from the running example. Assuming that the removal of
Transfer Object Ignorance occurrence 1 indeed has an effect on the architecture,
the previewed architecture will consist of two components, comp 1’ and comp

2. Classes that have been assigned to other components than in the original
architecture (in this case Reporting) are visualised with a darker background in
this figure. In the original architecture, classes that will no longer be assigned
to a given component after the deficiency removal are marked with a red minus
sign in the corner of the classes. Elements that are new in the previewed
architecture in comparison to the original architecture are marked with a green
plus. In this case, this applies to the component comp 2 and the class Reporting

contained therein. For moved classes, in the previewed architecture, the label
“was in comp 1” indicates their former location.

Figure 9.5 visualises the software architecture that will result from the re-
moval of Transfer Object Ignorance occurrence 2 instead of occurrence 1. If that
deficiency occurrence was removed, a new component comp 2 would be created,
too. But instead of the class Reporting, it would contain the classes StoreQuery

and Inventory.

Based on these two previews of the running example, a software architect
could decide which of the two previewed architectures would fit his purpose
best. Therefore, instead of having reengineering decisions based on a hunch,
Archimetrix allows the architect to make a better, informed decision.

As explained in Section 9.3, not all deficiencies are automatically removable.
Sometimes, not all information necessary for a deficiency removal is available
(e.g. how to name a new class or where to move a method). At other times, a
deficiency is so complicated that it cannot be removed by pre-specified removal
strategies. In these cases, the architect has to remove the deficiency manually.

9.5.5. Related Approaches

Related work on the removal of bad smells has already been described in Sec-
tion 2.5. In this section, I present a number of approaches which allow to
preview the effects of a code change on the software architecture.

The visualisation of recovered architectures in general has received a lot of
attention. Either specialised views of an architecture are constructed (e.g.
[SSL01, vDHK+04]) or reconstruction results are described in terms of an ar-
chitecture description language (ADL) and can be displayed accordingly (e.g.
with the X-ray tool [MK01]). Pacione provides a comparison of different vi-
sualisation approaches [Pac03, PRW03]. These approaches are concerned with
the visualisation of the status quo of an architecture. The effect of changes on
this status quo is not addressed.

Many IDEs, e.g. Eclipse [Ecl12] or IntelliJ IDEA [Int11], support refactorings
and previews of the resulting changes in the source code. For example, all lines
of code which are affected by the renaming of a variable can be shown. However,
the impact on the architecture is not analysed.

Zhao et al. carry out a change impact analysis on software architecture level
[ZYXX02]. Starting from a formal architecture specification, they use slicing
and chopping to identify those parts of a software architecture that are related to
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a given change. On the one hand, this implies that a formal architecture model
is required for their approach which may not always be the case. On the other
hand, they identify which parts of are system are related and therefore should
be considered when a given element of the system is changed. In contrast, the
architecture preview of Archimetrix precisely shows how the architecture will
change if a specific change is executed automatically.

Göde and Deissenboeck present an approach called “Delta Analysis” [GD12].
They state that the usually large number of problems reported by static anal-
ysis tools decreases the manageability of these problems and the motivation
of software architects. Instead they suggest that the architect should always
remove some problems from that file that he has to work on anyway, thereby
gradually improving the system. To capture this improvement they compare
the file before the modification (the “baseline”) with the file after the modifi-
cation and show which problems have been removed, which remain, and which
have been introduced. This idea is related to the architecture preview presented
in this chapter in that two states of a system are compared to each other. How-
ever, in Archimetrix two versions of the reconstructed system architecture are
compared in contrast to two versions of a source file.

9.6. Limitations

The removal of deficiencies in the Archimetrix process is subject to a number
of limitations.

• At the moment, a completely new architecture reconstruction has to be
executed for the architecture preview. A copy of the system’s GAST is
transformed by the automatic removal strategy and the result is given to
SoMoX. SoMoX has to start from scratch and calculate all metric values
for the transformed system to finally reconstruct the changed architecture.
This can then be compared to the previous architecture.

Although this approach is straightforward, it is also computationally in-
efficient. Because the exact impact of design deficiencies on the cluster-
ing can be calculated (see Chapter 5), the metric values for the trans-
formed GAST do not necessarily have to be re-measured. Instead the
value changes could be calculated and then be fed into SoMoX to al-
low for a faster architecture reconstruction. For systems like those that
were used in the validation (< 10 KLOC), for which the architecture re-
construction takes only seconds, this improvement may be insignificant.
Reengineering realistically-sized applications with over one million lines
of code may however be sped up substantially.

• On a related note, the architecture reconstruction that is part of every
iteration of the Archimetrix process (see Chapter 4) could be improved.
Currently, the complete architecture is reconstructed at the beginning of
a new iteration. This is done although only a small part of the system
may be affected by the previous deficiency removal. Because the affected
parts of the system are known, the architecture reconstruction could be
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adapted to work incrementally. This way, only the changed parts of the
system would have to be reconstructed at the beginning of a new iteration.
Again, this may not be necessary for small systems but it will ensure the
scalability of the approach for larger systems.

• The current approach assumes that deficiency occurrences are unrelated
and can be removed independently of each other. In reality, this is too
strong an assumption. Deficiency occurrences are often related or depen-
dent on each other. If one occurrence is removed, others may become
invalid, for example, because a previously bypassed interface has been ex-
tended. Therefore, it could be worthwhile to determine a good resolution
order for the detected deficiency occurrences as suggested by Liu et al.
[LYN+09]. This could be taken into account when advising the software
architect.

• In the limitations of the Archimetrix process discussed in Chapter 4, I
suggest that architecture quality metrics [SKR08] could be used to deter-
mine when to end the process. Similarly, such metrics could already be
considered during the architecture preview step. For example, the archi-
tect could be advised if and how much the removal of a given deficiency
occurrence would increase the quality metrics. Similar to the architecture
preview, this would only be possible for automated removal strategies, of
course.

• For the automated removal of deficiency occurrences, the current approach
synchronises the transformed GAST and the source code by generating
code for the complete system. This is, of course, impractical. Trans-
formations from the code to the GAST and back almost invariably lead
to the loss of information at some point. For example, the generated
code may be formatted slightly differently. These differences can lead
to problems with versioning systems because the complete code seems
to have changed although only a small part of the GAST was actually
transformed. It would be better to only generate code for those system
elements that really have changed.

• The manual and automated deficiency removal are executed on two dif-
ferent artefacts, i.e. the source code and GAST, respectively. For this
reason, the architect can only remove deficiency occurrences manually or
automatically without synchronising these artefacts. If an occurrence is
removed manually, the code has to be parsed into a new GAST represen-
tation before an automated removal can be executed. In the other case,
code from the automatically reengineered GAST has to be generated be-
fore a manual removal is executed. Otherwise the modifications from the
first removal will be overwritten by the second one.
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9.7. Conclusion

This chapter explained how Archimetrix supports the software architect in re-
moving detected deficiency occurrences. On the one hand, the manual removal
of deficiency occurrences is supported by the generation of individualised re-
moval guides for every occurrence. If automatic removal strategies are used,
on the other hand, a preview of how the removal affects the software architec-
ture can be computed and presented to the software architect. This dedicated
support can encourage architects to actually remove architecturally relevant
deficiency occurrences instead of refraining from it [RLGB+11].
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In this chapter, I present the validation of Archimetrix. In the context of
this thesis, a prototype implementation of Archimetrix was created which is
described in Section 10.1. This prototype was used to carry out a Level-I-
Validation, i.e. to compare the assumptions and predictions described in this
thesis with the measurements obtained by running the prototype [BR08]. The
setup of this validation is described in Section 10.2 while the validation ques-
tions are presented in Section 10.3. Section 10.4 gives an overview of the case
studies to which the prototype implementation was applied. Section 10.5 lists
the threats to the validity of this validation. Sections 10.6 to 10.8 report on the
results that were obtained during the validation and discuss them with respect
to the validation questions. The time and effort that was needed for the appli-
cation of Archimetrix is the case studies is documented in Section 10.9. Due to
time and resource constraints, a level-II-validation, i.e. a validation of the appli-
cability of Archimetrix in practice, could not be carried out within the scope of
this thesis. However, Section 10.10 sketches an approach to such a validation.
Section 10.11 concludes the chapter by discussing the lessons learned.

A major part of the validation results presented here was also published in
[vDPB13].

10.1. Prototype Implementation

The concepts presented in this thesis have been implemented in a research
prototype which also goes by the name of Archimetrix. The description of
the prototype in this section is based on a tool demonstration paper about
Archimetrix [vD12]. The prototype is a collection of plug-ins for Eclipse which
is freely available for download on the Archimetrix web page [Arc12]. All the
models that are created and processed in the Archimetrix process are based on
the Eclipse Modeling Framework (EMF). This section briefly shows the software
architecture of the prototype implementation of Archimetrix and then presents
an example session of the tool.

10.1.1. Software Architecture

Archimetrix reuses existing tools for several of the process steps described in
Chapter 4. Figure 10.1 gives an overview of the general software architecture
of Archimetrix.

Parsing the source code into a GAST is accomplished by the parser SISSy
[Sis11]. SISSy allows for the analysis of Java, C++, and Delphi code. For
the architecture reconstruction, Archimetrix relies on SoMoX [CKK08, Kro10]
which uses a combination of software metrics to heuristically create a model of
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Figure 10.1.: Illustrative overview of the software architecture of Archimetrix

the software architecture of the system under analysis (see Section 5.2). The de-
ficiency detection is accomplished by Reclipse [vDMT10a, vDMT10b, vDT10],
a pattern detection tool which employs graph matching to identify patterns
in a GAST (see Section 7.3). The automated removal of detected deficiency
occurrences is realised by transformations of the GAST. For this step, Story
Diagrams, a graphical in-place model transformation language [vDHP+12], are
used in the prototype (see Section 9.5). The remaining steps of the process
(component relevance analysis, deficiency ranking, and architecture preview)
are implemented within Archimetrix itself. Archimetrix is also responsible for
the coordination and execution of the process steps.

10.1.2. Example Session

This section gives an impression of the research prototype by describing an
example session with Archimetrix. It uses the Store Example system introduced
in Section 1.7. The Store Example system is also analysed in case study 1 in
Section 10.6. The session follows the process steps presented in Chapter 4 and
illustrates them with snapshots from the tool.

1. Parse the source code of the system under analysis First, the source code
of the system under analysis has to be parsed. As described above, Archimetrix
uses SISSy for this task. SISSy is able to parse Java, C++, and Delphi code
and creates an instance of the GAST meta model (see Appendix A.1) from it.

2. Reconstruct the software architecture In this step, the GAST is the input
for the initial architecture reconstruction step. The architecture reconstruction
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Figure 10.2.: Configuration of the metric weights for the architecture
reconstruction

is accomplished by SoMoX. Before the reconstruction is started, SoMoX has to
be configured.

Figure 10.2 shows the configuration of metric weights for the reconstruction.
These weights allow, for example, to put a greater emphasis on the coupling
or the name resemblance during the architecture reconstruction. The concrete
values are dependent on the system under analysis and have to be determined
by the software architect. SoMoX also provides a set of empirically determined
default values.

As a result of the architecture reconstruction, several models are created.
Two of these models are shown here 1.

One model shows the reconstructed components, the interfaces with their
operations and the detected data types (see Figure 10.3). For example, the
diagram shows in the upper left that the reconstructed component <PC No. 18

ProductsListView> provides the IListView interface with its createListEntry opera-
tion. This interface is required by component <CC No. 3>. In addition, PC

No. 18 requires the interface ISearch.
Another reconstructed model places an emphasis on the connection of the

reconstructed components by visualising the model as a component diagram
(see Figure 10.4). In this diagram, the interface operations and data types
are omitted. Instead, the connectors between the components are shown. The

1In fact, the models in Figure 10.3 and Figure 10.4 were layouted manually. At the moment,
Archimetrix does only provide very basic auto-layouting.
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Figure 10.3.: Reconstructed components
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Figure 10.4.: Reconstructed architecture

131



10. Validation

reconstructed components are contained in one large component called SoMoX

Reverse Engineered System representing the system boundary.

3. Execute relevance analysis After the architecture reconstruction, the com-
ponent relevance analysis is executed. The results of this analysis are shown in
a specialised tabular overview (Figure 10.5).

Figure 10.5.: Result of the component relevance analysis

The view consists of five columns. The first column contains the name of the
component in question. (The names are automatically generated and assigned
by SoMoX.) The following columns show the concrete metric values that were
calculated for that component during the relevance analysis. These are the
values of the single relevance metrics (Closeness To Threshold, Complexity)
as well as of the aggregated value (Relevance Total, see Section 6.6). The last
column indicates if the relevance value of the component is Pareto optimal with
respect to the other components. Pareto optimal (i.e. very relevant) components
are also highlighted in yellow.

4. Execute deficiency detection Before the detection of deficiencies is started,
the deficiencies have to be formalised. The editor for deficiency formalisations
is shown in Figure 10.6. It shows a formalisation of the Interface Violation
deficiency (see Appendix B.1).

The components for which the deficiency detection is executed can be selected
by the software architect. Typically, he will choose a subset of those components
that were identified as the most relevant in the relevance analysis. Figure 10.7
shows the selection dialogue for the reconstructed components.

The detected deficiency occurrences are presented in a simple list (see Fig-
ure 10.8).

The detected deficiency occurrences can also be inspected individually. Re-
clipse offers three different views for the visualisation of detection results (see
Section 7.3) Figure 10.9 shows the host graph view of a detected occurrence of
the Interface Violation deficiency. It shows the section of the host graph which
is involved in this deficiency occurrence. It is layouted similar to the deficiency
formalisation (cf. Figure 10.6) in order to facilitate its interpretation by the
software architect. In addition, it also shows selected attribute values of the
elements from the host graph, e.g. the names of the objects.
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Figure 10.6.: Example deficiency specification: Interface Violation

Figure 10.7.: Dialogue for the selection of components for the deficiency
detection
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Figure 10.8.: List view of the detected deficiency occurrences

Figure 10.9.: Host graph view of a detected Interface Violation occurrence
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5. Identify critical deficiencies In the next step, the detected deficiency oc-
currences are ranked in order to identify the occurrences that are the most
critical. This is accomplished by the deficiency ranking (see Figure 10.10).

Figure 10.10.: Result of the design deficiency ranking

The results of the deficiency ranking are presented in a tabular view similar
to the relevance analysis results. The first column shows the name of the
deficiency while the second column states the elements (classes and methods)
that play the different roles of the deficiency. Columns three and four show
the particular ranking values while the fifth column presents the aggregated
rank of the deficiency occurrence. The last column states if the deficiency
occurrence is Pareto optimal with respect to the other occurrences. Again,
the Pareto optimal deficiencies are highlighted in yellow. Those are the most
critical deficiency occurrences that should be removed first.

6. Select automated removal strategy for the critical deficiency After the
detected deficiency occurrences have been ranked, the software architect can
remove them according to their severity. This example session presents the
automatic removal of one deficiency occurrence through the application of a
removal strategy. For this, the software architect first has to select the deficiency
occurrence that is to be removed. Archimetrix then only shows those removal
strategies that are applicable to this type of deficiency (see Figure 10.11).

Figure 10.11.: Selection of an automated removal strategy

Before the strategy is executed and the system is changed, however, Archimetrix
can first calculate the effect of the reengineering on the architecture reconstruc-
tion. The changes that are to be expected are shown in the architecture preview
in Figure 10.12.

The architecture preview consists of two parts. The upper part contains
general information about the original architecture and the previewed architec-
ture. This information includes the number of components in the architecture,
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Figure 10.12.: Architecture preview

divided into primitive and composite components, and the number of interfaces.
Value changes between the two architectures are emphasised in yellow.

The lower part lists all the components of the original architecture (left)
and the previewed architecture (right), respectively. Components that exist
unchanged in both versions of the architecture are not marked. Components
that existed in the original architecture but no longer exist in the previewed
architecture are marked red. These components are no longer reconstructed
as they were before the reengineering. Components which still exist but which
contain different components and classes than before are marked yellow. Fi-
nally, components which did not exist in the original architecture but are newly
reconstructed after reengineering are marked green (not shown in Figure 10.12).

After the architecture preview is shown, the reengineering can be executed
by applying the automated removal strategy. This will remove the selected
deficiency occurrence by transforming the GAST of the system.

10.2. Experiment Setup

The validation was performed by myself and a student, mainly in the context of
her master’s thesis [Pla11]. In preparation for the case studies, we obtained the
source code of the systems under study. The CoCoME reference implementa-
tion is freely available for download [CoC12]. The source of Palladio Fileshare
and the SOFA implementation of CoCoME was made available to us by the
respective developers. We studied the available documentation to familiarise
ourselves with the systems.

We created deficiency formalisations for the four deficiencies described in this
thesis, namely: Transfer Object Ignorance, Interface Violation, Unauthorised
Call, and Inheritance between Components. We also formalised two automated
removal strategies for the removal of Interface Violation occurrences. For the
other deficiencies, no automated removal strategies were formalised.

The duration of the analysis steps was measured on a machine with an Intel
Core i7-2620M processor with 2.7 GHz and 6 GB RAM.
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10.3. Validation Questions

I evaluated Archimetrix with respect to the following validation questions:

VQ1 Are the deficiency formalisations sufficiently precise to detect actual defi-
ciency occurrences (instead of false positives)?

VQ2 Do the defined design deficiencies occur in real-life systems, even if the
systems were developed in a strictly component-based way?

VQ3 Is the calculated component relevance value a good indicator of compo-
nents in which the detection of design deficiencies is worthwhile?

VQ4 How does the limitation of scope by the relevance analysis improve the
deficiency detection compared to pure pattern matching?

VQ5 Does the removal of the deficiencies that receive a high ranking value
lead to architectural changes, and does the removal of deficiencies with a
low ranking value leave the architecture unchanged, i.e. do the deficiency
ranking heuristics work?

VQ6 Is the recovered architecture after the removal of a relevant deficiency
occurrence closer to the documented architecture?

10.4. Case Studies

In order to answer the validation questions, I selected three case studies in
which we applied Archimetrix. The first case study is the simple store example
system presented in Chapter 1. Second, we analysed Palladio Fileshare, a client-
server file sharing platform. In the third case study, two implementations of the
Common Component Modeling Example CoCoME [RRMP08] were compared.
The remainder of this section describes the analysed systems and relates them
to the validation questions.

Case Study 1: Store Example This system was built as a toy example. Due
to its small size, the basic functionality of Archimetrix could be evaluated
quickly. It also allowed the deliberate introduction of deficiencies. There-
fore, it served for the validation of the deficiency formalisations (cf. Step
4.1 and 4.2 in Figure 4.2). The example system shows the basic feasibility
of the Archimetrix process and demonstrates that deficiency occurrences
have an effect on the architecture reconstruction.

Case Study 2: Palladio Fileshare Palladio Fileshare realises a client-server file
sharing platform [KKR10]. It was developed in a strictly component-
based way and was already used in the validation of SoMoX [Kro10].
Therefore, we did expect to find few design deficiencies in it, if any. Thus,
the analysis of Palladio Fileshare is mainly targeted at validation question
VQ2.
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Case Study 3: CoCoME The Common Component Modeling Example Co-
CoME was created as a benchmark system for the comparison of different
component frameworks [RRMP08]. It is meant to represent a typical
component-based business information system. It was designed in a joint
effort of several software engineering research groups and the design was
thoroughly documented. Afterwards, a number of implementations of the
system were created. On the one hand, a Java reference implementation
was created by a group of students. On the other hand, a number of
component frameworks, e.g. SOFA or FRACTAL, were used to create
different implementations of the system.

Hence, the CoCoME system lends itself especially well to this valida-
tion. Its deliberate design as an exemplary, component-based business
information system allows for the generalisation of the validation results
to arbitrary business information systems. Additionally, in contrast to
the general assumption of Archimetrix that no conceptual architecture
is available, the conceptual software architecture of CoCoME is well-
documented. This allows to compare the reconstructed architecture to
the conceptual architecture and also to evaluate the changes in the recon-
structed architecture.

As the reference implementation was created by a group of students and as
it was written in Java which does not directly support component-oriented
design, I expected to find a number of deficiencies in the code. In contrast,
the SOFA implementation was created by researchers with the help of the
SOFA component framework. This framework enforces good component-
oriented design, e.g. by prohibiting the external access to methods which
are not part of a component’s interface. I did expect to find significantly
fewer deficiencies in this implementation. Therefore, especially the ref-
erence implementation can help to answer validation questions VQ1 to
VQ6 while the SOFA implementation is primarily targeted at questions
VQ1 and VQ2. Furthermore, the results for both implementations can be
compared with each other.

10.5. Threats to Validity

This section discusses the threats to the validity of this validation. It is split
into a discussion of the internal threats to validity in Section 10.5.1 and of the
external threats to validity in Section 10.5.2.

10.5.1. Threats to Internal Validity

In a controlled experiment, there are independent and dependent variables. The
independent variables are changed during the course of the experiment and the
behaviour of the dependent variables is observed. In order to draw valid con-
clusions about the behaviour of the dependent variables, the circumstances in
which the experiment is conducted have to be controlled. This ensures that the
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experiment yields the same, correct results every time it is repeated. The in-
ternal validity of an experiment describes of an experiment the degree to which
the relevant interfering variables have been controlled [Pre01, p. 50ff ]. Accord-
ingly, threats to the internal validity are factors which may have influenced the
outcome of the conducted experiment unintentionally.

Reuse of existing tools One important point to consider in this regard is the
reuse of existing tools in Archimetrix. On the one hand, these tools can
contain defects which produce incorrect results. On the other hand they
can be applied incorrectly and therefore influence the outcome of the case
studies.

One crucial factor in the use of SoMoX is the configuration of the metric
weights for the architecture reconstruction (see Chapter 5). The software
architect has to select a set of metric weights that is used in the architec-
ture reconstruction. Different sets of weights can lead to drastically differ-
ent reconstruction results. The selection of appropriate weights is a diffi-
cult task which can require a lot of trial-and-error work [BHT+10, Kro10].
The selection of metric weights in the case studies below was always based
on the provided default values. These were then altered if necessary so
that the reconstructed architecture contained a reasonable amount of
components (not too few, not too many; our experience shows that an
architecture with ten to twenty components has a reasonable degree of
granularity to be useful). Because the conceptual architecture was known
beforehand, the selection of metrics weights was influenced by it in that
we tried to select weights for which the reconstructed architecture was
“reasonably similar” to the conceptual one. Selecting different weights
may have yielded different architectures. This could have influenced the
subsequent process steps considerably.

Likewise, the use of Reclipse can have influenced the validation results.
First, the pattern detection algorithm may contain defects and may there-
fore yield incorrect results. Second, the deficiency formalisations were
completely created by two students and myself. This incurs the risk that
deficiencies which actually exist in the systems under analysis were not
detected due to too restrictive specifications (false negatives). Third, the
detected deficiency occurrences were inspected manually in order to en-
sure that they were indeed true positives. Human misjudgement may lead
to the acknowledgement of occurrences as true positives even if they are
false positives, objectively.

Selection of design deficiencies The design deficiencies that were searched for
in this thesis were selected based on well-known component-based design
principles (see Chapter 3 and Appendix B). They are not meant to be
an exhaustive representation but rather a sample of possible deficiencies.
Obviously, a different sample might have yielded different results, possibly
leading to different conclusions.
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10.5.2. Threats to External Validity

A controlled experiment is conducted in order to draw general conclusions from
the observed situation. The external validity is concerned with the general-
isability of the experiment results [Pre01, p. 54ff ]. Threats to the external
validity are a factors which may prevent to generalise the observed effects.

Selection of design deficiencies The design deficiency formalisations used in
the validation were in part tailored to the systems under analysis. For
example, for case study 3 (CoCoME), the Transfer Object Ignorance de-
ficiency formalisation was adapted to consider the project-specific naming
convention for transfer objects (the suffix ‘TO’). When applying Archimetrix
to other systems, the formalisations would have to be adapted accordingly.
There may be also other deficiencies which are more suitable for other sys-
tems. These could be discovered, documented, and formalised with the
process proposed in Section 4.4.

Selection of case studies Naturally, the generalisability of validation results
strongly depends on the selected case studies. In this regard, CoCoME
has been specifically selected as a case study because it was designed
as a benchmark system [RRMP08]. CoCoME is intended to represent
an example of a typical business information system which can be used
in the evaluation of analysis techniques for component-based systems.
Palladio Fileshare on the other hand is a typical client-server system and is
therefore also a good candidate for a case study. Therefore, I am confident
that the results of this validation can be generalised.

10.6. Case Study 1: Store Example

In this section, the validation of the store example is presented. First, an
overview of the system is presented. Then results of the validation are shown.

10.6.1. System Overview

The store example is a simplified, component-based system that was created
exclusively for the validation of Archimetrix. It has no real functionality but
instead consists of a number of classes which represent a mock-up of a real
system. The conceptual architecture of this system is shown and explained in
Section 1.7.

During the implementation, a number of design deficiencies were deliberately
introduced into the system. I introduced three Interface Violation occurrences
and two Transfer Object Ignorance occurrences. Thereby, I was able to validate
if the deficiency formalisations are appropriate for detecting these deficiency
occurrences.

The implementation of the store example consists of 10 interfaces and 14
classes which are distributed to eight components. Because the system does
only consist of mock-up code it comprises only 150 LOC.

140



10.6. Case Study 1: Store Example

Conceptual Architecture

# Composite Components 0

# Primitive Components 8

Implementation

# LOC 150

# Classes 14

# Interfaces 10

Table 10.1.: Properties of the Store Example system

10.6.2. Validation Results

< CC No. 3 >

< CC No. 1 >
(:Store)

< PC No. 14 >
(:Accounting)

< PC No. 0 >
(:Controlling)

< PC No. 16 >
(:Database)

< PC No. 20 >
(:Network)

< PC No. 2 >
(:Logistics)

< PC No. 4 >
(:Payment)

< PC No. 18 >
(:UI)

< PC No. 12 >
(:Store)

< PC No. 22 >
(:Store)

Figure 10.13.: Initially reconstructed architecture of the Store Example

Initial Architecture Reconstruction The result of the initial architecture re-
construction is visualised in Figure 10.13. The primitive components are la-
belled with numerical tags starting with PC, the composite components are
labelled with tags starting with CC. The numerical tags are generated and as-
signed by the architecture reconstruction algorithm during the creation of the
components of the architecture model. Interfaces and connectors are omitted in
this figure for a better readability, although they are part of the formal model.

Nine primitive and two composite components were recovered. I compared
the classes from the reconstructed components to the conceptual architecture
and named the reconstructed components accordingly. The component names
are displayed in parentheses in Figure 10.13.

Compared to the conceptual architecture, the Store component has been re-
constructed as two separate primitive components, albeit inside the common
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composite component CC No. 1. In addition, CC No. 1 has been encapsulated
inside composite component CC No. 3 together with the primitive components
Logistics, Payment, and UI.

Component Relevance

CC No. 3 0.215

CC No. 1 0.134

PC No. 22 0.083

PC No. 16 0.075

PC No. 14 0.051

PC No. 18 0.051

PC No. 0 0.040

PC No. 12 0.036

PC No. 2 0.035

PC No. 20 0.026

PC No. 4 0.025

Duration <1s

Table 10.2.: Component relevance analysis results for the Store Example

Component Relevance Analysis The results of the component relevance anal-
ysis are shown in Table 10.2. The most complex component, CC No. 3, was
identified as the most relevant one.

Deficiency Detection and Ranking According to the results of the relevance
analysis, I performed the deficiency detection in component CC No. 3. The
detected deficiency occurrences are documented in Table 10.3.

All of the three deliberately introduced Interface Violation occurrences were
detected. One of the two Transfer Object Ignorance occurrences was also de-
tected. The other Transfer Object Ignorance occurrence exists between the two
components Accounting and Controlling. Since neither of those components is
contained in CC No. 3, it was not detected in this step.

Table 10.4 shows the ranking of the three detected Interface Violation oc-
currences. One of the occurrences, located between the classes ProductsListView

and ProductSearch, was ranked to be the most relevant deficiency occurrence. It
is located between the two primitive components PC No. 12 and PC No. 18
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Detected occurrences

Design deficiency CC No. 3 Whole System

Transfer Object Ignorance 1 2

Interface Violation 3 3

Unauthorised Call 0 0

Inheritance Between Components 0 0

Duration 6s 19s

Table 10.3.: Detected design deficiencies in the Store Example

Deficiency Removal and Subsequent Architecture Reconstruction The most
critical Interface Violation occurrence was removed by applying an automatic
removal strategy which extends the violated interface (see Section B.1.4). Then,
the resulting architectural changes were previewed.

< CC No. 3 >

< CC No. 1 >
(:Store)

< PC No. 14 >
(:Accounting)

< PC No. 0 >
(:Controlling)

< PC No. 16 >
(:Database)

< PC No. 20 >
(:Network)

< PC No. 2 >
(:Logistics)

< PC No. 4 >
(:Payment)

< PC No. 18 >
(:UI)

< PC No. 12 >
(:Store)

< PC No. 22 >
(:Store)

Figure 10.14.: Reconstructed architecture after the removal of the most relevant
Interface Violation occurrence

Figure 10.14 shows the reconstructed architecture after the removal of the
most critical deficiency occurrence. Compared to the originally reconstructed
architecture, the two primitive components Logistics and Payment are no longer
assigned to CC No. 3. Hence, the newly reconstructed architecture is now closer
to the conceptual architecture.

10.6.3. Discussion

Although, the Store Example is a manually constructed, trivial system, it
demonstrates that the prototype implementation of Archimetrix can be used
to apply the complete Archimetrix process. The example exhibits the central
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10.6. Case Study 1: Store Example

properties which are the motivation of this thesis: The source code of this
system contains deficiencies which influence architecture reconstruction. The
deficiency occurrences are detected in the component which was identified as
the most relevant one. Removing the occurrence which was ranked as the most
critical one leads to the reconstruction of an architecture which is closer to the
conceptual architecture.
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10.7. Case Study 2: Palladio Fileshare

This section presents the case study of the Palladio Fileshare system. First, an
overview of the system under analysis is given. Then, the validation results are
documented and discussed.

10.7.1. System Overview

Palladio Fileshare

:ExistingFilesDB

:Hashing

:Compression

:Copyrighted
FilesDB

:BusinessLogic

Figure 10.15.: Conceptual architecture of Palladio Fileshare (adapted from
[KKR10])

Palladio Fileshare realises a server-based file sharing platform. As such, it
represents a typical business information system and its component-based ar-
chitecture is well-documented [KKR10]. The conceptual architecture of the
system is shown in Figure 10.15. According to the documentation, Palladio
Fileshare consists of five primitive components. The central component is the
one labelled Business Logic. It contains all the relevant program logic and uses
the four other primitive component Compression, Hashing, ExistingFilesDB, and
CopyrightedFilesDB. These five components are encapsulated by one composite
component representing the system boundary.

Table 10.7.1 lists some technical properties of the implementation of Palladio
Fileshare. The system consists of 87 classes and six interfaces. The implemen-
tation comprises 7869 lines of code.

10.7.2. Validation Results

Initial Architecture Reconstruction For the validation, I first executed an ar-
chitecture reconstruction with SoMoX. The clustering configuration is described
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Conceptual Architecture

# Composite Components 1

# Primitive Components 5

Implementation

# LOC 7869

# Classes 87

# Interfaces 6

Table 10.5.: Properties of the Palladio Fileshare system

< CC No. 5 >

< CC No. 3 >

< CC No. 1 >

< PC No. 86 >
Decoder, LiteralDecoder, 
LenDecoder, Decoder2, 

Encoder2, Optimal, 
LenPriceTableEncoder, 

LiteralEncoder, LenEncoder, 
Encoder, Base

< PC No. 88 >
BitTreeEncoder, 
BitTreeDecoder, 

Decoder, Encoder

< PC No. 90 >
OutWindow, 
InWindow, 

BinTree

< PC No. 102 >

< PC No. 104 >

< PC No. 38 >

< PC No. 100 >

< PC No. 94 >

< PC No. 92 >

< PC No. 96 >

< PC No. 98 >

Figure 10.16.: Reconstructed architecture for Palladio Fileshare
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in Appendix C. The architecture reconstruction took 9 seconds.

Figure 10.16 shows the reconstructed architecture. For the primitive compo-
nents inside CC No. 1, Figure 10.16 also visualises the contained classes because
they are relevant in the next validation step. Three composite components
(labelled with CC) and eleven primitive components (labelled with PC) were
detected in Palladio Fileshare.

Component Relevance Component (cont.) Relevance (cont.)

CC No. 5 0.234 PC No. 88 0.036

CC No. 1 0.150 PC No. 90 0.029

PC No. 86 0.086 PC No. 92 0.021

PC No. 104 0.063 PC No. 94 0.014

CC No. 3 0.054 PC No. 98 0.008

PC No. 102 0.051 PC No. 96 0.008

PC No. 100 0.047 PC No. 38 0.006

Duration 1s

Table 10.6.: Component relevance analysis results for Palladio Fileshare

Component Relevance Analysis In the next step, the component relevance
analysis was performed. The results are shown in Table 10.6. It only took one
second and identified the component CC No. 5 as the most relevant and CC No.

1 as the second most relevant component for design deficiency detection.

Deficiency Detection and Ranking Subsequently, I executed the design de-
ficiency detection. The detection in component CC No. 5 yielded no results.

Detected occurrences

Design deficiency CC No. 1 Whole System

Transfer Object Ignorance 11 11

Interface Violation 0 0

Unauthorised Call 0 0

Inheritance Between Components 0 0

Duration 2m 52s 8m 18s

Table 10.7.: Detected design deficiencies in Palladio Fileshare
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Therefore, the second-most relevant component, CC No. 1, was searched next.
The detection for CC No. 1 took 2 minutes and 52 seconds.

The detection results are presented in Table 10.7. Column 1 lists the different
design deficiencies. The second column shows the results for the analysis of
component CC No. 1 and the third column shows the results for the analysis
on the whole system. The deficiency detection found eleven occurrences of the
Transfer Object Ignorance deficiency in CC No. 1. Some of them are located in
the class LenEncoder which was assigned to the primitive component PC No. 86.
There, methods of the class BitTreeEncoder in the component PC No. 88 are
called and objects of the type Encoder are passed as parameters. Classes that are
involved in the detected deficiency occurrences are marked in boldface in Figure
10.16. A manual inspection verified that Encoder is not a typical data class since
it contains several methods that are neither getters nor setters. Instead, they
contain more complex application logic.

The same situation occurs for the call of the class BitTreeDecoder and a pa-
rameter of the type Decoder. Consequently, the communication between these
components violates the component-oriented design principle that transfer ob-
jects have to be used for interactions between different components. In the de-
ficiency removal step, we removed the detected deficiencies one by one through
manual reengineering. Subsequent architecture reconstructions showed that the
reconstructed architecture did not change. Therefore, we conclude that in case
of this case study, the detected deficiencies did not influence the metric vlaues
enough to influence the architecture reconstruction.

10.7.3. Discussion

This section answers the validation questions in terms of the validation results
for Palladio Fileshare.

Are the deficiency formalisations sufficiently precise to detect actual de-
ficiency occurrences (instead of false positives)? (VQ1) The deficiency
detection found eleven occurrences of the Transfer Object Ignorance deficiency.
All of them were manually inspected and found to be true positives. At least for
Palladio Fileshare, the formalisation of the Transfer Object Ignorance deficiency
seems to be appropriate.

Do the defined design deficiencies occur in real-life systems, even if the
systems were developed in a strictly component-based way? (VQ2) Palla-
dio Fileshare was developed by experienced researchers and was intended to be
developed in a strictly component-based way [KKR10]. I did not analyse the
system manually before and had no prior knowledge of contained deficiencies.
Instead, I derived the deficiency from component-oriented design principles in
literature [ACM01, Fow02]. Still, the implementation contained eleven occur-
rences of the Transfer Object Ignorance deficiency. This shows that the Transfer
Object Ignorance deficiency does occur in practice.
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Is the calculated component relevance value a good indicator of components
in which the detection of design deficiencies is worthwhile? (VQ3) The
relevance analysis identified composite component CC No. 5 as the most relevant
component followed by CC No. 1. Despite its high relevance value, however, CC

No. 5 did not contain any of the searched deficiencies. CC No. 1 on the other
hand did contain all deficiencies that were found in the system. Since the
deficiencies occur between the two primitive components PC No. 86 and PC

No. 88, a detection that is just focused on PC No. 86, the third-highest-ranked
component also yields no results.

This result stresses the heuristic nature of the component relevance analysis.
A high relevance value does not guarantee the existence of deficiency occurrence.
On the contrary, even in systems without any deficiencies, one component would
be ranked as the most relevant.

How does the limitation of the scope for the deficiency detection by the
relevance analysis improve scalability with respect to pure pattern matching?
(Q4) Focusing the deficiency detection on CC No. 1 increases the performance
of the analysis considerably. The deficiency detection in the whole system was
performed in eight minutes and 18 seconds. In contrast, the detection in CC

No. 1 only took one third of the time, i.e. two minutes and 52 seconds.
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10.8. Case Study 3: CoCoME

This section reports on the case study of the Common Component Modeling
Example CoCoME. In this case study, two implementations of the same system
were analysed. First, an overview of the conceptual architecture of CoCoME is
given which is identical for both implementations. Then, the validation results
are presented, first for the reference implementation and then for the SOFA
implementation. The section closes with a discussion of the results.

10.8.1. System Overview

CoCoME represents a component-based trading system. Its well-documented
architecture is intended to illustrate good component-oriented design.

CoCoME

:CashDeskLine

:Inventory

:GUI

:Data :Database

:Application

CashDesk
ConnectorIf

SaleRegistered
Event

StoreIf ReportingIf

Enterprise
QueryIf

Persis-
tenceIf

StoreIf

JDBC

CashDesk
ConnectorIf

Figure 10.17.: An overview of the conceptual architecture of CoCoME (adapted
from [HKW+08])

Figure 10.17 shows an overview of CoCoME’s conceptual architecture as doc-
umented in [HKW+08]. The system consists of two parts: an Inventory compo-
nent and a CashDeskLine component. The former is meant to handle the manage-
ment of the store inventory while the latter is responsible for the functionality
of the cash desks. These two components can communicate via the interfaces
CashDeskConnectorIf and SaleRegisteredEvent. Both, Inventory and CashDeskLine, are
composite components. Inventory contains the four components GUI, Application,
Data, and Database. As the results of this case study are mainly concerned with
the Inventory component, and especially its subcomponents Application and Data,
the other components are not presented in detail, here.

Figure 10.18 shows a more detailed view of the components Application and
Data. The component Data consists of the three sub components Enterprise, Per-

sistence, and Store. They all provide interfaces with corresponding names but are
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:Application

EnterpriseQueryIfPersistenceIf StoreIf

:Store:Persistence :Enterprise

:Data

:Store
:Product
Dispatcher

:Reporting

Product
DispatcherIf

Figure 10.18.: A detailed view of the components Inventory::Application and Inven-

tory::Data

not supposed to communicate with each other. The component Application also
contains three sub components: ProductDispatcher, Store, and Reporting. Product-

Dispatcher and Reporting require all three interfaces from the Data component.
Store requires only the two interfaces: PersistenceIf and StoreIf. In addition, Store

can communicate with ProductDispatcher via the interface ProductDispatcherIf.

Table 10.8.1 shows the properties of the conceptual architecture of CoCoME
and the two implementations. The conceptual architecture consists of eight
composite components and 19 primitive components.

The reference implementation of CoCoME was created manually in plain
Java. It consists of 127 classes and 21 interfaces and comprises more than 5000
lines of code. The reference implementation is freely available for download on
the CoCoME website [CoC12].

The SOFA implementation of CoCoME was realised with the SOFA compo-
nent framework [BHP06]. It contains more than double the amount of lines
of code compared to the reference implementation. The number of classes and
number of interfaces are also slightly higher.

10.8.2. Reference Implementation Validation Results

Initial Architecture Reconstruction The initial reconstruction of the CoCoME
system from the source code of the reference implementation took 13 seconds.
Eight primitive components and six composite components were reconstructed.
A visualisation of the recovered architecture is shown in Figure 10.19. In ad-
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Conceptual Architecture

# Composite Components 8

# Primitive Components 19

Reference implementation

# LOC 5116

# Classes 127

# Interfaces 21

SOFA implementation

LOC 10502

# Classes 153

# Interfaces 28

Table 10.8.: Properties of the reference implementation of the CoCoME system

< CC No. 11 >
(CoCoME)

< CC No. 3 >
(:Inventory)

< CC No. 1 > 

< CC No. 9 >

< CC No. 7 >

< PC No. 86 >
(External)

< PC No. 88 >
(:CashDeskLine) 

< PC No. 90 >
(:Data/:Database) < CC No. 5 >

< PC No. 0 >
(External) 

< PC No. 2 >
(External) 

< PC No. 92 >
(:Application)

< PC No. 94 >
(:GUI)

Relevance rank: 9
Detected IVs: 9
Detected UCs: 1

< PC No. 46 >
(:Data)

 
EnterpriseQueryImpl

Relevance rank: 12
Detected IVs: 2

PersistenceContextImpl, 
StoreQueryImpl,
TransactionContextImpl, 
StoreQuery-ImplTest,

FillDB

Relevance rank: 1
Detected IVs: 11
Detected UCs: 1

Relevance rank: 3
Detected IVs: 9
Detected UCs: 1

Relevance rank: 2
Detected IVs: 11
Detected UCs: 1

Figure 10.19.: Initially reconstructed architecture for the reference implemen-
tation of CoCoME
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dition to the component names from the clustering, the names of the corre-
sponding components from the conceptual architecture were mapped manually
to the recovered components by comparing the contained classes. The names
are displayed in parentheses. For example, the two primitive components PC

No. 90 and PC No. 46 can be mapped to the Inventory::Data component from the
conceptual architecture. For some components, which become relevant later in
the discussion of the results, their relevance ranking and the number of detected
deficiencies is shown in the yellow notes.

Compared to the conceptual architecture, the basic structure of the system is
recognisable: Two main components, CC No. 3 and CC No. 9, were reconstructed
representing the components Inventory and CashDeskLine. CC No. 9 also contains
some components labelled External which contain classes that represent the bank.
They are part of the reference implementation so that the interaction of bank
and trading system can be simulated. They are, however, not part of the
conceptual architecture. Component CC No. 3 contains the sub components
that are also present in the conceptual architecture. They are arranged a little
differently, though. The sub components GUI and Application were reconstructed
as documented. The component Data is split into two components, (PC No. 46

and PC No. 90), which belong to different composite components (CC No. 3 and
CC No. 5). PC No. 90 also contains the classes that would normally belong to the
Database component. The primitive components PC No. 90, PC No. 92, and PC

No. 94 are also encapsulated by an additional composite component, CC No. 1,
which is not part of the conceptual architecture.

Component Relevance Component (cont.) Relevance (cont.)

CC No. 11 0.7398 PC No. 94 0.1551

CC No. 3 0.4375 PC No. 90 0.0832

CC No. 1 0.4246 CC No. 5 0.0254

CC No. 9 0.3025 PC No. 88 0.0200

CC No. 7 0.2772 PC No. 46 0.0129

PC No. 86 0.2574 PC No. 0 0.0059

PC No. 92 0.1897 PC No. 2 0.0030

Duration 13s

Table 10.9.: Component relevance analysis results for the reference implemen-
tation of CoCoME

Component Relevance Analysis In the next step, the component relevance
analysis was performed. Table 10.9 lists the detected components and their
relevance values. The first column contains the names assigned to the com-
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Detected occurrences

Design deficiency CC No. 3 Whole System

Transfer Object Ignorance 0 0

Interface Violation 11 11

Unauthorised Call 1 1

Inheritance Between Components 0 0

Duration 2m 26s 6m 25s

Table 10.10.: Detected design deficiencies in the reference implementation of
CoCoME

ponents during the clustering. The second column shows the relevance values
for the components. The component relevance analysis took 13 seconds. The
three composite components that received the highest relevance ratings are CC

No. 11, CC No. 3 and CC No. 1.

Deficiency Detection and Ranking In the next step, we applied the design de-
ficiency detection. According to the results of the component relevance analysis,
CC No. 11 is the most relevant component. However, as CC No. 11 encompasses
the whole system, we chose the second most relevant component, CC No. 3, to be
searched for design deficiencies. Additionally, we executed a design deficiency
detection on the whole system and compared the results as well as the runtime.

Table 10.10 shows the detection results. The analysis of CC No. 3 took two
minutes and 26 seconds and the analysis of the whole system took six minutes
and 25 seconds. We detected eleven Interface Violations and one Unauthorised
Call which were all identified as true positives by manual inspection.

Figure 10.19 also shows the number of deficiencies that were detected per
component. As depicted there, all deficiencies were detected in the composite
component CC No. 3. They are distributed among the primitive components PC

No. 90 and PC No. 46. In PC No. 90, nine Interface Violations and the Unau-
thorised Call were detected. In component PC No. 46, two Interface Violation
occurrences were detected.

The eleven occurrences of the design deficiency Interface Violation are doc-
umented in detail in Table 10.11. In the second column, the table lists the
roles from the deficiency. For every detected deficiency occurrence, the ele-
ments which play the roles in that occurrence are shown. Column 3 shows the
deficiency ranking values (Pareto optimal values are annotated with “(opt.)”).
Column 4 lists the components which contain the participating classes.

All eleven occurrences concern the interface PersistenceContext and the method
getEntityManager (located in the subclass PersistenceContextImpl). Two occur-
rences (#1 and #2) are located in the class EnterpriseQueryImpl. For the other
occurrences, the accessing class is StoreQueryImpl. In the design deficiency rank-
ing, occurrences #1 and #2 received a higher ranking (0.5562) than the other
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10.8. Case Study 3: CoCoME

ones (0.4047). Their relevance values are Pareto optimal. As depicted in the last
column of the table, these occurrences involve two components (PC No. 46 and
PC No. 90) while the other occurrences are located entirely within the component
PC No. 90.

The detected Unauthorised Call occurrence concerns the same classes and is
also located in the method getEntityManager.

Deficiency Removal and Subsequent Architecture Reconstruction The In-
terface Violation occurrence #1, being one of the two most relevant Interface
Violation occurrences, was selected to be removed automatically by extending
the interface PersistenceContext. The corresponding removal strategy is docu-
mented in Appendix B.1.4.

< CC No. 9 >
(CoCoME)

< CC No. 1 > 
(:Inventory)

< CC No. 7 >

< CC No. 5 >

< PC No. 86 >
(External)

< CC No. 3>

< PC No. 0 >
(External) 

< PC No. 92 >
(:Application)

< PC No. 94 >
(:GUI)

< PC No. 46 >
(:Data)

< PC No. 90 >
(:Data/Database) < PC No. 88 >

(:CashDeskLine)
< PC No. 2 >

(External) 

Figure 10.20.: Architecture preview for removal of Interface Violation occur-
rence #1

Figure 10.20 depicts the previewed architecture for the selected deficiency
removal step. In comparison to the originally recovered architecture, the com-
posite component, encapsulating the primitive components :Application, :GUI,
and :Data/:Database, is no longer reconstructed. Thereby, the two primitive
components :Data/:Database and :Data belong to the same composite compo-
nent (:Inventory) in the previewed architecture. The previewed architecture is
closer to the conceptual architecture (see Figure 10.17) than the originally re-
constructed architecture (see Figure 10.19) However, the components PC No. 90

and PC No. 46 are still not reconstructed as designed.
Afterwards, the architecture preview for the removal of Interface Violation

occurrence #2 with the same removal strategy was computed (without having
removed Interface Violation #1, first). The result was the same architecture
as in Figure 10.20.

Then, all eleven Interface Violations were removed successively. Interface
Violation #1 was removed with the removal strategy as described above. As
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all other occurrences are concerned with the same interface (PersistenceContext),
they could be removed more easily afterwards as the interface had already been
extended by the first removal. These ten remaining removals were performed
manually.

The architecture that was reconstructed after all Interface Violation occur-
rences had been removed was identical to the one presented in Figure 10.20.
Hence, the architecture did not change again after the first deficiency occurrence
had been removed.

In order to validate the deficiency ranking, we changed the order of the de-
ficiency removal. Starting again with the original, unmodified reference imple-
mentation, we first removed Interface Violation occurrence #3, one of the less
relevant design deficiency occurrences. The removal was performed by applying
the same automatic removal strategy as before. In this case, the previewed ar-
chitecture was identical to the originally reconstructed one (see Figure 10.19).
The removal of the less relevant deficiency occurrence did not influence the
architecture reconstruction. The same applies for removing each of Interface
Violation occurrences #4 to #11, first. The reconstructed architecture changes
when occurrences #1 or #2 are removed but not for the other occurrences.

10.8.3. SOFA Implementation Validation Results

< CC No. 13 >

< CC No. 7 >

< CC No. 1 >

< PC No. 168 >

< PC No. 176 >
< CC No. 11 >

< PC No. 170 >

< CC No. 3 >

< PC No. 40 > < PC No. 70 >

< PC No. 172 >

< PC No. 78 > < PC No. 134 >

< PC No. 178 > < PC No. 188 >
< PC No. 182 >

< PC No. 0 >< PC No. 184 >< PC No. 44 >

< PC No. 174 >

< PC No. 0 >

< PC No. 130 >

< PC No. 132 >

< PC No. 180 >

< PC No. 186 >
< PC No. 162 >

< PC No. 2 >

< PC No. 148 >

< CC No. 9 >

< CC No. 5 >

Figure 10.21.: Initially reconstructed architecture for the SOFA implementation
of CoCoME

Initial Architecture Reconstruction The reconstructed architecture for the
SOFA implementation of CoCoME is depicted in Figure 10.21. Seven composite
components and 23 primitive components were recovered. The architecture
reconstruction took 27 seconds.

Component Relevance Analysis Table 10.12 shows the results of the compo-
nent relevance analysis. The duration of the relevance analysis was 13 seconds.

The component relevance analysis evaluated composite component CC No. 13

to be the most relevant component for the design deficiency detection. Several
components received a relevance value below 0.01. A manual inspection showed
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Component Relevance Component (cont.) Relevance (cont.)

CC No. 13 0.1612 PC No. 176 0.0149

CC No. 7 0.1163 PC No. 166 0.0125

CC No. 9 0.0452 PC No. 174 0.0092

PC No. 178 0.0438 PC No. 172 0.0083

PC No. 0 0.0421 PC No. 132 0.0065

CC No. 11 0.0342 PC No. 146 0.0053

CC No. 3 0.0324 PC No. 42 0.0049

CC No. 5 0.0309 PC No. 76 0.0040

CC No. 1 0.0305 PC No. 158 0.0034

PC No. 170 0.0280 PC No. 130 0.0026

PC No. 184 0.0257 PC No. 38 0.0024

PC No. 168 0.0222 PC No. 68 0.0024

PC No. 164 0.0180 PC No. 128 0.0020

PC No. 182 0.0179 PC No. 180 0.0014

Duration 13s

Table 10.12.: Component relevance analysis results for the SOFA implementa-
tion of CoCoME

that these are primitive components which only contain one class each. There-
fore, they are assigned very low complexity values resulting in equally low total
relevance values.

Deficiency Detection and Ranking Accordingly, I first executed a design de-
ficiency detection on CC No. 13 and then, for comparison, on the whole system
containing all components. Table 10.13 shows the results.

The analysis on the whole system took nearly an hour, while the analysis of
CC No. 13 only took a few minutes. I detected two similar Interface Violation
occurrences in the class AbstractReportingServiceClient in the component PC No.

174 (which is contained in CC No. 13). The manual inspection showed that
the class ReportProxy that contains the accessed method is a data class, which
makes these violations variants of the Interface Violation deficiency. There
is also one occurrence of the Unauthorised Call design deficiency. The class
DataDownloadAction calls one method of the class DataExchangeClientObjectUpdater

in another component. This is not allowed since the first component does not
require an interface provided by the latter component.

159



10. Validation

Detected occurrences

Design deficiency CC No. 13 Whole System

Transfer Object Ignorance 0 0

Interface Violation 2 2

Unauthorised Call 1 1

Inheritance Between Components 1 1

Runtime 3m 27s 54m 33s

Table 10.13.: Detected design deficiencies in the SOFA implementation of
CoCoME

Furthermore, I detected an occurrence of the design deficiency Inheritance
between Components. This deficiency occurs between the classes AbstractNeodati-

sODBObjectUpdater and DataExchangeClientObjectUpdater with the latter being a
sub class of the former. DataExchangeClientObjectUpdater is assigned to PC No. 38

Deficiency Removal and Subsequent Architecture Reconstruction I removed
both Interface Violation occurrences by extending the violated interface. The
architecture preview showed that the architecture reconstruction was not influ-
enced by those deficiency occurrences. The reconstructed architecture was the
same as before.

The occurrence of the Unauthorised Call deficiency was not removed in this
case study. For a discussion on the removal of Inheritance between Components
occurrences, see Appendix B.3.

10.8.4. Discussion

This section discusses the results of the case study in terms of the validation
questions presented in Section 10.3.

Are the deficiency formalisations sufficiently precise to detect actual de-
ficiency occurrences (instead of false positives)? (VQ1) Since a detailed
design document is available for the CoCoME system, both implementations
were expected to exhibit a good component-oriented design. I also expected
to find deficiencies in the reference implementation as it was created manually
by a group of students. In contrast, the SOFA implementation was created
by researchers with the help of a component framework. Therefore, I did not
expect it to contain any deficiencies. A large number of detection results in the
SOFA implementation could have been indicative of imprecise formalisations.
However, only a handful of deficiency occurrences were detected in the analysed
systems (12 in the reference implementation of CoCoME, 4 in the SOFA imple-
mentation). Manual inspection ensured, that the detected occurrences are real
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design problems and not false positives. Therefore, the validation results con-
firm my expectations and validation question VQ1 can be answered positively
for this case study.

Do the defined design deficiencies occur in real-life systems, even if the
systems were developed in a strictly component-based way? (VQ2) The
reference implementation of CoCoME was created manually by a group of stu-
dents. The design documentation is very detailed and clear. However, the
validation results show that the data component was not implemented as spec-
ified. As the detected deficiency occurrences were all concerned with the same
classes, it is possible that they all were introduced by the same developer. This
developer might not have known the conceptual architecture which, in turn,
might have led to the deficiencies.

The implementation of CoCoME with the SOFA framework also contains
several design deficiencies. This is more surprising than for the reference im-
plementation as the framework should enforce good component-oriented design
and prevent the introduction of deficiencies.

It stands to reason that these problems will be even more significant in larger,
more complex systems. Large business information systems can contain millions
of lines of code. The validation results suggest that in spite of clear concep-
tual architectures and the use of frameworks, developers will still introduce
deficiencies.

In summary, this case study shows that the design deficiencies presented in
this thesis do occur in practice. This is even the case for implementations
which where created with the support of a component framework. This allows
to answer validation question VQ2 positively.

Is the calculated component relevance value a good indicator of components
in which the detection of design deficiencies is worthwhile? (VQ3) In
the CoCoME reference implementation, composite component CC No. 11 was
identified as the most relevant component. However, as this component contains
all other reconstructed components, it trivially also contains all deficiencies.
Obviously, it is also the most complex of all components which partly explains
its high relevance value. This suggests that components containing the complete
system should be excluded from the relevance analysis in future.

CC No. 3 which received the second-highest relevance rank contained all de-
ficiencies (eleven Interface Violations and one Unauthorised Call). These defi-
ciencies were distributed among its contained primitive components PC No. 90

and PC No. 46. These primitive components only received very low deficiency
ranks (#9 and #12). So while CC No. 3 supports the hypothesis that rele-
vant components contain deficiencies, the results for the primitive components
contradict the hypothesis.

For the SOFA implementation, the most relevant component, CC No. 13 was
the one that contained all deficiencies. However, it also contained the majority
of all reconstructed components and therefore, similar to the reference imple-
mentation, large parts of the system.
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These results seem to indicate that the relevance analysis performs rather
poorly and they warrant a discussion of the employed relevance metrics. The
complexity is a well-proven heuristic for the identification of defect-prone classes
and components [Rie96, BB01, Gla03]. However, this does neither guarantee
that a complex component will contain deficiencies nor does it mean that sim-
ple components are always correct. The second relevance metric, closeness to
threshold, does identify worthwhile components in the sense that changes in
these components might affect the reconstructed architecture. Hence, this met-
ric is not indicative of a component’s probability to contain deficiencies.

These two observations explain the validation results: components with a
high relevance value are a worthwhile input for the deficiency detection. This
however does not necessarily mean that they will contain deficiencies. In the
future, additional relevance metrics could be added to remedy this problem.

How does the limitation of scope by the relevance analysis improve the
deficiency detection compared to pure pattern matching? (VQ4) For the
reference implementation of CoCoME, the deficiency detection in the selected
relevant component took approximately a third of the detection time in the
complete system (two minutes and 26 seconds compared to six minutes and
25 seconds). This time reduction is even more significant in the SOFA imple-
mentation: The deficiency detection in the most relevant component took three
minutes and 27 seconds. The detection in the whole system was accomplished
in 54 minutes and 33 seconds. The scope limitation nearly led to a speed-up
by a factor of 16, even though the selected component contained large parts
of the complete system (cf. the discussion of VQ3). In part, this can probably
be attributed to the exponential complexity of the graph matching algorithm
which is used for the deficiency detection. On the other hand, factors like model
loading and caching may also play a part, here. In the search of the selected rel-
evant component, large parts of the underlying model can be ignored, possibly
also contributing to the speed-up. To answer the question why the performance
gain is so large, the deficiency detection would have to be profiled and analysed
for both cases. This, however, is outside the scope of this thesis.

These results suggest that the deficiency detection can be made substantially
more efficient by concentrating on a subset of components instead of searching
the complete system. This effect will be even more important in larger sys-
tems in which the complete detection is not feasible due to time or memory
constraints. So validation question VQ4 can be answered with “yes”.

Does the removal of the deficiencies that receive a high ranking value lead
to architectural changes, and does the removal of deficiencies with a low
ranking value leave the architecture unchanged, i.e. do the deficiency rank-
ing heuristics work? (VQ5) The Interface Violations that were detected in
the reference implementation received two different ranks. The removal of the
two higher ranked occurrences did affect the architecture reconstruction. In
contrast, removing one of the nine lower ranked occurrences did not lead to a
change in the reconstructed architecture.
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These results show that there are cases in which the removal of just one de-
ficiency occurrence can influence the architecture reconstruction. It is however
not clear which occurrences have an effect on the architecture reconstruction
and which do not. The results for the reference implementation seem to indicate
that higher ranked deficiency occurrences are more likely to have an influence
than lower ranked occurrences. But this does not mean that the removal of
highly ranked occurrences will always influence the architecture reconstruction.
The removal of any of the deficiency occurrences in the SOFA implementation
did not lead to a change in the architecture. Thus, the software architect has
to determine if a deficiency removal changes the reconstructed architecture ei-
ther by using the architecture preview or by manual removal and subsequent
architecture reconstruction.

The case studies suggest, however, that if the removal of a deficiency oc-
currence will have an effect on the architecture reconstruction, it will be the
removal of the highest ranked occurrence.

Is the recovered architecture after the removal of a relevant deficiency oc-
currence closer to the documented architecture? (VQ6) In the reference
implementation, the reconstructed architecture differed from the conceptual ar-
chitecture mainly regarding the Inventory component. After the removal of one
of the highly ranked interface violations, however, the reconstructed architec-
ture changed. While the classes belonging to the conceptual Data component
were still distributed among different primitive components, the reconstructed
architecture was definitely closer to the conceptual one.

As the removal of deficiency occurrences in the SOFA implementation did
not influence the architecture, this validation question cannot be answered for
the second part of this case study.

This means that Archimetrix correctly identified design deficiency occur-
rences whose removal lead to an architecture that is closer to the conceptual
architecture than the originally reconstructed architecture. Design deficiency
occurrences whose removal did not change the architecture received a lower
ranking. These findings allow a positive answer to validation question VQ6.

10.9. Time and Effort

In summary, the execution of the different analysis steps, only took a few min-
utes for each system. The reported durations are just the analysis durations
without the time needed for the loading of the analysed models, e.g. the GAST.
Archimetrix uses the EMF framework which is not designed for model loading
performance. Thus, approximately one to two hours have to be added for the
loading of the models, depending on the size of the system.

For the architecture reconstruction step, the software architect has to de-
termine a suitable clustering configuration. This is a non-trivial task which
requires some experience. Our experiments with SoMoX showed that it is a
reasonable heuristic to aim for the reconstruction of an architecture with ten
to twenty components. Since an architecture reconstruction run only takes a
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few seconds for each of the analysed systems and since there is an approved
default configuration to start with, finding a suitable configuration can often
be accomplished within about one hour.

Furthermore, the time for the documentation and formalisation of deficiencies
and removal strategies has to be taken into account. As described in Section 4.4,
this is a complex task, which can take several hours including the validation of
the formalised deficiencies by performing detections on test and real systems.
However, this is an effort that has only be done once. Once a deficiency has been
formalised, it can be reused over and over again. Often, only small adaptations
are necessary afterwards.

All in all, one or two days per system have to be allowed for the application
of Archimetrix to a system of the approximate size of CoCoME. Given that
the manual investigation of large systems is practically impossible, I conclude
that Archimetrix can offer substantial support for the software architect in an
acceptable time frame.

10.10. Level-II-Validation

In the context of this thesis, a level-I-validation of Archimetrix could be per-
formed (i.e. we validated our conjecture about the influence of deficiency oc-
currences on the architecture reconstruction and about the feasibility of the
Archimetrix process as formulated in the research questions of this thesis). The
validation was carried out by two students and myself. All of us did participate
in the development of Archimetrix and were therefore very familiar with the
process and the prototypical implementation. The next logical step would be
to perform a level-II-validation, i.e. a validation if the Archimetrix process can
be reliably applied by trained professionals [BR08].

This section sketches a controlled experiment to evaluate the applicability of
Archimetrix in practice. This experiment sketch is in line with the suggestions
of Prechelt on the design of controlled experiments in software engineering
[Pre01, p. 57ff ]. Note that this section is not intended to provide a sound and
complete prescription for a controlled experiment. It rather offers suggestions
on the appropriate parameters for such an experiment.

Research question The main research question for a level-II-validation could
look like this: Given

• a software system with a documented architecture

• which contains deficiency occurrences that influence the architecture re-
construction,

can a user apply the Archimetrix process and the research prototype in such a
way, that he

a) finds the deficiency occurrences,

b) can remove the detected occurrences, either by applying an automatic
removal strategy or by following a removal guide, and
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c) can reconstruct an architecture that is no longer influenced by deficien-
cies?

Participants Archimetrix is meant to be used by software architects. There-
fore, the validation should be performed with participants that have an appro-
priate level of knowledge in this field, e.g. students with at least a bachelor’s
degree and a focus on software engineering. The participants have to be given
a special training before the validation. First, the Archimetrix process has to
be explained to them, i.e. the iterative cycle of architecture reconstruction, de-
ficiency detection, and deficiency removal. Then, they have to be trained in
the usage of the tool. Since, a catalogue with deficiency formalisations, removal
strategies, and removal guide templates is provided to the participants, they do
not need expertise in specifying these artefacts.

Experiment setup The participants are to be provided with the following
resources:

• The source of the system that is to be analysed. The conceptual architec-
ture of this system is known to the supervisors but it is not disclosed to
the participants of the experiments. The system should contain a number
of deficiency occurrences whose presence is also unknown to the partici-
pants.

• A catalogue with deficiency formalisations, removal strategies, and re-
moval guide templates. The formalisations in this catalogue should match
the deficiency occurrences in the system under analysis such that the par-
ticipants are able to detect these deficiencies. The removal strategies and
removal guide templates shall also be applicable to those deficiency oc-
currences.

• A computer with the research prototype of Archimetrix installed.

Tasks The participants should be given the task to apply the Archimetrix
process to the provided software system. They should follow the process steps
in the default order but are free to perform as many iterations of the process
as they see fit. Their goal is to remove as many deficiencies as possible and
reconstruct an architecture which is influenced as little as possible by deficien-
cies. The participants have to decide when they have accomplished this goal.
The participants shall document which deficiency occurrences they detect dur-
ing the process. They also shall document which deficiency occurrences they
remove and how they do remove them.

Independent variables Several independent variables can be varied across dif-
ferent instances of this controlled experiment.

The first independent variable is the participant. It is automatically varied
by having multiple people take part in the experiment.

Second, the system under analysis can be exchanged in different instances of
the experiment. This allows to eliminate effects that occur due to some peculiar
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property of a given system under analysis which might, for example, hinder the
participant’s understanding of the system.

Third, different deficiencies might have an effect on how well the Archimetrix
process can be applied. For example, participants might have difficulty in un-
derstanding certain deficiencies. Therefore, it might be beneficial to perform
the experiment with different deficiency catalogues. This would, of course, ne-
cessitate an individual preparation of the system under analysis such that for
every participant, it contains the deficiencies that are formalised in the given
deficiency catalogue.

Dependent variables There is a number of dependent variables which can be
measured in this validation.

First, the time that is needed by each individual participant to perform the
given task should be measured. The measurement starts after the training,
when all resources (as described above) are provided to the participants. The
measurement ends when a participant states that he has finished the given task.

Second, the architecture that was eventually reconstructed by each partici-
pant has do be documented. The supervisors can then compare it to the known
conceptual architecture.

Third, the number of detected deficiency occurrences as documented by the
participant can be compared to the number of known deficiency occurrences in
the system.

In addition, it should be measured if the participants think that Archimetrix
was helpful in accomplishing their task. The different parts of the prototype
implementation should be graded, e.g. how helpful was the relevance analysis,
how helpful was the deficiency detection, etc. This kind of feedback could be
collected with questionnaires that the participants have to fill out after finishing
the given task.

Internal and external validity In order to achieve a sufficient internal validity,
the sketched experiment should be conducted with a large enough number of
participants. This can smooth out the effects of different levels of previous
knowledge, for example.

To achieve a high degree of external validity, the experiment would have to be
conducted a number of times, varying the independent variables as described
above. For example, this can mean repeating the experiment with different
systems, with different deficiencies, and different participants.

10.11. Lessons Learned

This section summarises the results of the conducted cases studies and relates
them to the validation questions from Section 10.3. It also discusses limitations
that were discovered in the course of the validation.

VQ1: Are the deficiency formalisations sufficiently precise to detect actual
deficiency occurrences (instead of false positives)? Especially, Case study 1
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was useful in the validation of the deficiency formalisations. In the course of
the validation, all of the formalised deficiencies were detected in at least one of
case studies. Furthermore, the manual inspection of the detected occurrences
showed that no false positives were reported, thereby allowing a positive answer
to validation question VQ1.

It is of course possible that the current formalisation are too restrictive, i.e.
that there is a number of false negatives in the systems of the case studies.
These missed deficiency occurrences could be detected by introducing more
additional elements into the formalisations (see Section 4.4). That way, the
detected occurrences with a high structural accuracy would be very close to
the formalisations. In contrast, detected occurrences with a lower structural
accuracy could indicate variants of the formalised deficiency.

VQ2: Do the defined design deficiencies occur in real-life systems, even
if the systems were developed in a strictly component-based way? Case
studies 2 and 3 show that the example deficiencies used in this thesis do indeed
occur in real-life software systems. Since the case studies were specifically se-
lected to be representatives of typical business information systems, it stands
to reason that similar deficiencies will occur in other systems as well.

However, even if Palladio Fileshare and CoCoME are intended to be realistic
representatives of typical business information systems, they are still academic
examples. Especially, they are much smaller than the systems used in practice.
While the largest case study system, the SOFA implementation of CoCoME,
contained more than 10,000 lines of code, realistic business information system
can be more than 100 times larger. The occurrence of deficiencies in the case
study systems, in the other hand, suggests that the observed effects will also be
present in larger systems. If small teams in small systems introduce deficiencies
in spite of a very clear design documentation, it stands to reason that this
problem will be much more prevalent in large systems with more developers
and maybe also worse documentation.

VQ3:Is the calculated component relevance value a good indicator of com-
ponents in which the detection of design deficiencies is worthwhile? The
results for VQ3 are mixed. In some cases, the component relevance analysis reli-
ably identified components which contained deficiencies. In other cases, compo-
nents which contained deficiencies received a low ranking value. Looking at the
two relevance strategies, the reason for these observations can be identified. The
Complexity strategy is based on the widely recognised fact that complex sys-
tems tend to contain more defects than simpler systems [Rie96, BB01, Gla03].
However, this does not guarantee the presence of deficiencies in complex compo-
nents. It rather stresses the heuristic nature of the employed relevance strategy.

The Closeness to Threshold strategy, on the other hand, is not related to the
likelihood of deficiencies in the analysed components. Instead it deals with the
change-proneness of the reconstructed architecture.

In order to align the component relevance analysis more with the intuitive ex-
pectation that “relevant components should contain deficiencies”, the selected
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heuristics may need to be adapted. The relevance analysis could also be ex-
tended with additional relevance strategies. The intentionally extensible design
of the relevance analysis should facilitate future work in this area.

VQ4: How does the limitation of scope by the relevance analysis improve
the deficiency detection compared to pure pattern matching? The perfor-
mance gain from focusing the deficiency detection on previously reconstructed
components was significant in most cases, most notably for the SOFA imple-
mentation of CoCoME for which the deficiency detection was sped up by a
factor of 16. Due to the non-polynomial complexity fo the underlying pattern
detection algorithms, the difference will probably be even larger for systems
with hundreds of thousands lines of code.

Focusing the detection on single components is not only useful for the de-
tection of deficiencies. It could also be leveraged for the detection of other
patterns, e.g. design patterns, in the future. The required architectural model
could either come from an architecture reconstruction or a manually created
architecture model can be used.

One thing to keep in mind, however, is that focusing the pattern detection on
one component after the other might lead to overlooking patterns which exist
between those components.

VQ5: Does the removal of the deficiencies that receive a high ranking value
lead to architectural changes, and does the removal of deficiencies with a
low ranking value leave the architecture unchanged, i.e. do the deficiency
ranking heuristics work? For the Store Example and for the reference imple-
mentation of CoCoME, the removal of deficiency occurrences led to architec-
tural changes. These changes could be observed for those deficiency occurrences
that had received the highest ranking values. The removal of lower ranked de-
ficiency occurrences left the architecture unchanged. This indicates that the
deficiency ranking heuristics work.

However, it has to be stressed that the ranking metrics are for the most part
deficiency-specific. If different deficiencies are formalised, new ranking metrics
have to be devised that have to be evaluated separately.

VQ6: Is the recovered architecture after the removal of a relevant deficiency
occurrence closer to the documented architecture? The Store Example and
the reference implementation of CoCoME show that the reconstructed archi-
tecture may indeed change when deficiency occurrences are removed. In those
cases, the newly reconstructed architecture was indeed closer to the documented
architecture.

However, not every deficiency removal influenced the architecture reconstruc-
tion. Therefore, the answer to this validation question is based on a relatively
small amount of data. More experiments on other systems should be conducted
here in order to better understand the extent to which deficiency occurrences
influence the reconstruction algorithm.
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Further observations A problem with the removal of design deficiencies is that
if one occurrence has been removed, others may be invalidated. For example, in
CoCoME all detected Interface Violation occurrences are concerned with the
interface PersistenceContext. As soon as one of the occurrences is removed by
extending that interface, all other occurrences can be removed more easily (by
using the new interface). The different deficiency occurrences are related to
one another. Thus, it seems sensible to add support to remove such groups of
related design deficiency occurrences altogether at the same time.

This observation could also be considered in the deficiency ranking. An
additional ranking metric could measure if an interface is bypassed several times
(maybe even in the same class). The removal of these deficiencies which are
involved such a case may be more critical than the removal of an Interface
Violation which is the only one to bypass a certain interface.
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This chapter presents the conclusions that can be drawn from this thesis. It
also points out future research challenges which can be derived from the results
of this thesis.

11.1. Results and Conclusions

In this thesis, I addressed five research questions. Here, I answer them with
respect to the results that were obtained in the validation of Archimetrix.

RQ1 Do design deficiencies that stem from the neglect of design prin-
ciples influence architecture reconstruction techniques?

This thesis provided answers for this question in two ways. On the one
hand, I used an analytic approach which documented the relationship be-
tween base metrics and the decision to reconstruct components in SoMoX.
Then, I showed how the occurrence of deficiencies can influence the base
metrics and therefore the architecture reconstruction as a whole.

On the other hand, these theoretical considerations were supported by the
case studies carried out in the validation. As documented in Chapter 10,
there were cases in which the removal of a deficiency occurrence lead to a
change in the automatically reconstructed architecture. Therefore, it can
be concluded that there are situations in which design deficiencies indeed
influence the architecture reconstruction of component-based systems.

RQ2 Can the integration of pattern detection techniques into the
architecture reconstruction process help in detecting such an
influence?

Archimetrix integrates pattern detection with an architecture reconstruc-
tion approach in order to detect deficiency occurrences. The deficiency
detection is performed on the result model of the architecture reconstruc-
tion. In the case studies, I was able to detect occurrences of all four
example deficiencies that were formalised in this thesis.

The detected occurrences were ranked with the help of heuristics to deter-
mine which of them were the most critical with respect to their influence
on the architecture. The experiments showed that those deficiency occur-
rences whose removal led to a changed architecture were reliably identified
as critical by the deficiency ranking. Therefore, pattern detection tech-
niques provide great support in detecting deficiency occurrences which
influence the architecture reconstruction.
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RQ3 How can relevant design deficiencies be discovered, documented,
and formalised?

The example deficiencies that were presented in this thesis were derived
from component-oriented design principles in literature [ACM01, SGM02,
Fow02]. The creation of a comprehensive deficiency catalogue was not
in the focus of this thesis. This would also be impractical since many
deficiencies are dependent on the system under analysis. Therefore, I
presented a dedicated process for the discovery, documentation, and for-
malisation of design deficiencies. It addresses both, general as well as
project- and company-specific deficiencies.

RQ4 How can detected deficiencies be removed and can the influence
of the removal on the architecture be predicted?

In general, there are several ways to remove a given deficiency. How a
given occurrence can be removed has to be decided by the software archi-
tect on a case-by-case basis. However, Archimetrix supports this decision
in different ways. On the one hand, it offers automatic removal strategies
which can remove deficiency occurrences without manual intervention. In
this case, Archimetrix can also predict how the removal will affect the
reconstructed architecture and present this prediction to the architect.

In cases where an automatic removal is not possible, Archimetrix offers
the generation of individual removal guides for every deficiency. In cases
in which deficiency occurrences are removed manually, no automatic ar-
chitecture preview is possible. Instead a new architecture reconstruction
has to be performed for the reengineered system. The results can then be
compared to the original architecture manually.

RQ5 Can architecture reconstruction techniques be helpful in miti-
gating the scalability issues of pattern detection techniques?

The case studies show that the performance gain by focusing the deficiency
detection on certain components can be quite significant. In one case, the
detection time was reduced by the factor 16. In addition to improving
the performance of the pattern detection, the integration of pattern de-
tection and architecture reconstruction also enables the software architect
to focus his analysis on certain parts of the system. However, the archi-
tect also has to be aware of the drawbacks of this technique. Analysing
one component after the other may lead to overlooking deficiencies which
occur between those components. Additionally, the architecture recon-
struction may yield component which contain all system elements (see
Section 10.8.2). In these cases, there is obviously no performance gain.
The software architect has to keep this in mind and should choose com-
ponents of a lower complexity.

Overall, this thesis provided evidence that Archimetrix can support a software
architect in reconstructing a high-quality software architecture by detecting
and removing deficiencies. Thereby, it paves the way for further maintenance
activities.
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11.2. Future Research Challenges

The results of this thesis lead to several possibilities for future research. This
section highlights a few of these research challenges. Minor possibilities for
improvements of the different steps of the Archimetrix process are pointed out
in the limitations sections of the previous chapters.

Consideration of architectural knowledge One of the basic assumptions of this
thesis is that no architectural documentation of the software system un-
der analysis is available (cf. Section 2.8). However, in many cases, the
software architect may be in the possession of such knowledge. There
may be informal documentation (”box-and-line diagrams”) or pieces of
information (”Classes A and B belong together.”) from the original de-
velopment, even though no formal models of the architecture exist. In
other cases the architect may have an architecture model from a previous
application of SoMoX or Archimetrix.

Furthermore, Archimetrix does only analyse architectural information
which can be extracted from the source code. However, component frame-
works often also use additional information, e.g. code annotations and de-
ployment descriptors in Enterprise Java Beans [EJB12]. This metadata
could also be taken into account when reconstructing the architecture.

At the moment, Archimetrix cannot consider such information in its anal-
yses. At the moment of writing, the integration of architectural informa-
tion, especially in the architecture reconstruction, is under investigation
in a master’s thesis [Str13].

Consideration of run-time information The analyses of run-time information
in the pattern detection process is only briefly discussed in this thesis
(cf. Section 7.3). However, run-time information can also be very use-
ful in the detection of design deficiencies like Performance Antipatterns
[SW03, CMRT10]. The investigation of this research challenge is part
of the upcoming research project CloudScale [Clo12]. In this project,
Archimetrix is to be reused and extended for the detection of such run-
time-dependent patterns.

Consideration of design patterns At the moment, Archimetrix uses pattern
detection techniques exclusively for the detection of design deficiencies.
The same techniques could also be used for the detection of design pat-
terns. (In fact, Reclipse has been originally developed for the detection
of design patterns [vDMT10b, vDT10].) Some design patterns, e.g. the
Facade pattern [GHJV95], implement architectural concepts and there-
fore contain relevant clues for the architecture reconstruction. Bauer and
Trifu try to improve their architecture reconstruction approach this way
[BT04a, BT04b] (see Section2.4). It should be investigated if similar tech-
niques can be integrated into Archimetrix.

Integration of architecture quality analyses At the moment, Archimetrix does
not tell the software architect ‘when to stop’, i.e. when a sufficiently good
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architecture quality level has been achieved. Instead the software archi-
tect has to decide this by himself (see Section 4.5). This situation could
be improved by identifying sensible architecture quality metrics, e.g. the
modularisation quality of the system [SKR08], and integrating them into
the process. These metrics could be measured after every iteration of
the Archimetrix process to indicate when a sufficient level of modulari-
sation is achieved. It might also be worthwhile to integrate support for
the software architecture analysis method (SAAM) [KBWA94] into the
Archimetrix process.

Analysis of heterogeneous code bases Due to the use of the parser SISSy,
Archimetrix can analyse systems that are written in Java, C++, or Del-
phi. However, the complete system under analysis has to be written in
one of these languages. Typical business information systems are often
implemented in different languages. In order to enable a comprehensive
analysis of such heterogeneous code bases, a consistent GAST would have
to be constructed from the different system parts. This extension would
be especially useful if Archimetrix were to be applied in an industrial
context.
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This chapter shows and explains the three most important meta models used in
this thesis. The source code of the systems that are analysed with Archimetrix
is parsed into instances of the GAST meta model by the parser SISSy (Sec-
tion A.1). Instances of the Service Architecture Meta Model (SAMM) pre-
sented in Section A.2 are the result models of the architecture reconstruction
with SoMoX. The Source Code Decorator model relates elements from GAST
and SAMM to each other and is the starting point for the design deficiency de-
tection. It is explained in Section A.3. The description of the classes is adapted
from [Tra11].

A.1. Generalised Abstract Syntax Tree

The type graph used in the examples in this thesis describes the structure of
an abstract syntax tree. It is based on the generalised abstract syntax tree
(GAST) meta model developed in the QBench project [QBe06]. The GAST
was developed to provide a unified syntax tree model for different programming
languages like Java, C, and C++. Figure A.1 shows an excerpt of that meta
model. Especially some specialised sub classes have been omitted for clarity
reasons.

GASTClass

+ name: String
+ interface: Boolean

Root

File

+ pathName: String
+ linesOfCode: int

Package

+ name: String

root1

root

packages**
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+ name: String
+ visibility: int
+ abstract: boolean
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Figure A.1.: Meta model of the generalised abstract syntax tree (GAST,
adapted from [Tra11])
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Root The Root element is the central element of every GAST model. All other
elements are reachable from the Root node via composition relations.

File Elements of the GAST, e.g. classes and packages, can be related to files
in the file system. A File element holds references to those classes and
packages and a String containing the path to the file.

Package Similar to packages in Java, the Package element provides name spaces
and visibilities. A Package element can contain other packages, classes,
global variables, and functions.

GASTType The GASTType element represents data types like primitive data
types and classes. The attribute qualifiedName contains the unique, fully
qualified name of the type. GASTType is abstract.

GASTClass Classes and Interfaces are represented by the element GASTClass in
the GAST and are a sub type of the GASTType. Whether the GASTClass

represents an actual concrete class or an interface is determined by the
attribute interface. A GASTClass holds references to its methods, attributes,
and inner classes. A GASTClass can be assigned to a Package.

Function Function is the abstract super type for all executable operations. In
addition to attributes for its name, visibility and abstractness, a Function

can have a number of local variables and formal parameters. The return
type of a Function is determined by its DeclarationTypeAccess, a sub class of
Access. A Function always contains a block statement which, in turn, can
contain other statements.

GlobalFunction A GlobalFunction element represents a globally accessible oper-
ation, i.e. an operation that does not belong to a class. It can be assigned
to a name space defined by a package. For example, C functions are
represented by GlobalFunctions.

Method Functions that belong to a class are represented by Method elements,
a sub type of Function. They can reference other methods which they
override by means of the overriddenMember association.

Variable Variable is a super type for all kinds of variables. A Variable always has
a name and a type. Variable is abstract.

LocalVariable LocalVariables are variables that are contained in a Function.

FormalParameter FormalParameters are variables that represent the parameters
of a Function.

GlobalVariable GlobalVariables are variables that are globally accessible within
a given scope. The scope is determined by the Package in which the
GlobalVariable is contained.

Field The Field element represents class variables. Therefore, it is contained in
a GASTClass.
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Statement A Function consists of a number of Statements. There are multiple
sub classes of Statement which represent the different kinds of statements.
Most of them are omitted here. A Statement can contain a number of
Accesses. Statement is abstract.

BlockStatement The BlockStatement is a special kind of Statement which can
contain other Statements. It is the root element of all Statements contained
within a Function.

Access An Access represents the use of a Variable or a Function. It always belongs
to a certain Statement.

FunctionAccess A FunctionAccess represents the use of a Function in a Statement

and therefore references the accessed Function element.

VariableAccess A VariableAccess represents the use of a Variable in a Statement

and therefore references the accessed Variable element.

DeclarationTypeAccess The return type of a method can be specified by a
DeclarationTypeAccess. It points to the GASTClass which specifies the return
type.

CastTypeAccess A CastTypeAccess specifies the target type of a type cast. It
can occur, for example, in a Statement.

InheritanceTypeAccess An InheritanceTypeAccess is used to reflect the inheri-
tance relationships of a GASTClass. A class can have arbitrarily many
InheritanceTypeAccesses but each of these accesses has only one target GAST-

Type.

A.2. Service Architecture Meta Model

The Service Architecture Meta Model (SAMM) is a meta model for the spec-
ification of component-based systems. It was developed in the course of the
Q-ImPRESS project [BBB+08] and is mainly based on the Palladio Compo-
nent Model [RBB+11]. The architecture reconstruction with SoMoX creates an
instance of the SAMM to represent the reconstructed system architecture.

As only the structural aspects of the architecture are relevant in this thesis,
Figure A.2 only shows the elements that model a system’s static structure. In
general, the SAMM also contains elements for the representation of aspects like
component behaviour, allocation, and resources.

Repository The Repository is the central element of the SAMM. It references
all ComponentTypes, Interfaces, MessageTypes, and (data) Types of a SAMM
instance. Therefore, the Repository entity represents a storage for first
class entities that could be reused and composed into more complex ar-
chitectures.
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Figure A.2.: Excerpt of the Service Architecture Meta Model (SAMM, adapted
from [Tra11])

ServiceArchitectureModel This entity is a composite structure representing a
service-oriented architecture model. A ServiceArchitectureModel is a set of
Services connected to form a service architecture (SA). An SA provides
and requires Services through Interfaces. It provides an abstraction level
for modelling Services and reasoning about their behaviour. Therefore, all
constituents on the first nesting level have to be of the Service type. An
instance of the SAMM consists of Services, their Interfaces and Connectors.

Service The Service entity represents a basic building block of a service-oriented
architecture. A Service is a composite structure realised by a deployed
component. Therefore, it refers to a SubcomponentInstance. It provides
and requires functionality through its Ports to and from other Services,
respectively. A Service also has a certain behaviour and an allocation
definition. Both omitted here as they are not of interest in the context of
this thesis.

CompositeStructure This abstract entity represents an entity composed of
subcomponents. The Ports of a Composite Structure can be connected to
ports of its subcomponents using delegation connectors. The ports of
subcomponents may, in addition, be connected to each other via assembly
connectors. CompositeStructure is a superclass of both CompositeComponent

and ServiceArchitecturesModel.

PortEnabledEntity A PortEnabledEntity represents an entity that has an arbi-
trary number of required and provided Ports. It is a superclass of Ser-

viceArchitectureModel and ComponentType.

ComponentType This abstract class represents the type of a component. A
ComponentType is determined by two sets of Ports: a set of provided ports
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and a set of required ports. It also forms a common super class for Primi-

tiveComponent and CompositeComponent.

PrimitiveComponent This entity specifies a basic component on the lowest
hierarchical level. A PrimitiveComponent has no subcomponents.

CompositeComponent The CompositeComponent entity is used to model hier-
archical components, i.e. the components are allowed to be nested, thus
forming a tree-like structure.

SubcomponentInstance This entity specifies a subcomponent of a Composite

Structure. Note that this is not a run-time instance of a component, it
is an instance from the architectural point of view, i.e. an instance of a
Component Type in a Composite Structure.

EndPoint This abstract class represents a part of a Connector attachable to
a ComponentPort to form a (communication) connection between compo-
nents. It is subclassed by ComponentEndpoint and SubcomponentEndpoint to
realise the assembly and delegation connection, respectively.

ComponentEndpoint The ComponentEndpoint entity represents the externally
visible part of a Connector that is to be attached to a ComponentPort thus
establishing a connection among components.

SubcomponentEndpoint This entity represents the externally visible part of
a Connector that is to be attached to a port of a subcomponent thus es-
tablishing a communication link between the subcomponent and its super
component.

Port This abstract superclass represents a general Port notion. In the SAMM,
a Port can either be an EventPort or an InterfacePort. In this thesis, only
the InterfacePorts are of interest.

InterfacePort An InterfacePort represents an instance of an Interface which allows
the invocation of the functionality of a component via method calls.

Interface The Interface class represents the Interface concept of a SOA. It is the
visible part of a component to which connector endpoints can be attached
and which represents the access point to the component’s functionality.

Operation This class represents an Operation signature, i.e. types of input and
output messages and exceptions that can be thrown by an operation. It
is similar to a WSDL Operation.

MessageType This entity represents the MessageType used for data communi-
cation. It is modelled according to the WSDL Message and it is of either
the input (method parameters) or the output (return value) kind.

Parameter This class represents the data transmitted within messages, either
as input or as output of the associated Operation.

Type This entity represents the data type for message Parameters.
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A.3. Source Code Decorator

The source code decorator (SCD) serves as a bridge between the GAST and
the SAM. It links the elements from both models, e.g. to show which classes
are contained in a given component. Figure A.3 shows the relevant elements
from the SCD meta model together with the elements from GAST and SAM
connected by them.

MethodLevelSourceCodeLink

FileLevelSourceCodeLink

operationfunction

GAST::File SAMM::ComponentType

GAST::Function SAMM::Operation

componentTypefile

InterfaceSourceCodeLink
interfacegastClass

GAST::GASTClass SAMM::Interface

ComponentImplementing
ClassesLink

+ isCompositeComponent: Boolean
+ isInitialComponent: BooleanGAST::GASTClass SAMM::ComponentType

componentimplementingClasses

1

1

1

1

1

1

1..* 1

* *

*

providedInterfaces requiredInterfaces

subComponents

SourceCode
DecoratorRepository

*

*
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*

fileLevelSourceCodeLink

methodLevelSourceCodeLink

interfaceSourceCodeLink

componentImplementingClassesLink

Figure A.3.: Meta model of the Source Code Decorator (SCD, adapted from
[Tra11])

SourceCodeDecoratorRepository The SourceCodeDecoratorRepository is the cen-
tral element of the SCD. It contains all the different links.

FileLevelSourceCodeLink The FileLevelSourceCodeLink connects Files from the
GAST with ComponentTypes from the SAM.

MethodLevelSourceCodeLink A MethodLevelSourceCodeLink denotes which Func-

tions from the GAST realise which Operations in the SAM.

InterfaceSourceCodeLink The InterfaceSourceCodeLink links component Interfaces

from the SAM to the GASTClasses in which these interfaces are declared.
(GASTClass is used to represent both, actual classes and interfaces, see
Section A.1.)

ComponentImplementingClassesLink The ComponentImplementingClassesLink re-
lates SAM Components to the GASTClasses contained therein. Each Com-

ponent contains one to many GASTClasses. A Component can be an initial
component or a composite component which is indicated by the respective
boolean flags of the ComponentImplementingClassesLink. If a Component is a
composite component, its subcomponents can be reached by the subCompo-

nents association. In addition, the Component’s Interfaces can be referenced
by navigating to the related InterfaceSourceCodeLinks via the associations
providedInterfaces and requiredInterfaces.
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B. Design Deficiencies

In this chapter, I present the various design deficiencies that I discovered in the
course of this work. These are an addition to the Transfer Object Ignorance
deficiency that serves as a running example in this thesis. All the deficiencies
were also used in the validation of the approach described in Chapter 10.

For the presentation of the deficiencies, I adapted the Mini-AntiPattern Tem-
plate proposed by Brown et al. [BMMM98]. For each deficiency, its name, the
problem, and an example are presented. I also document one or more removal
strategies, the deficiency’s influence on the architecture reconstruction, and the
deficiency formalisation.

B.1. Interface Violation

An Interface Violation represents a method call between components although
the called method is not provided in an interface. This section briefly describes
the problem with this deficiency and presents a small example. For this defi-
ciency, I also present a more complex automated removal strategy than for the
running example in Chapter 9. This removal strategy consists of three differ-
ent Story Diagrams which call each other. It shows that the formalisation of
complex removal strategies with Story Diagrams is feasible.

B.1.1. Design Deficiency Problem

Components in a good component-oriented architecture are supposed to com-
municate exclusively via their interfaces [SGM02, p. 30]. Thus, if two classes
are part of different components, they can only invoke operations of each other
which are provided by their counterpart’s interfaces. This leads to a good
decoupling of the components. Only classes which reside in the same compo-
nent can directly access each other’s public operations and attributes which, of
course, results in a high coupling. If classes from different components invoke
operations which are not part of their corresponding interface, this is called an
interface violation.

An existing interface violation has a direct impact on the architecture re-
construction. Two classes which communicate with each other in a way that
violates their interfaces are strongly coupled. Hence, they are probably assigned
to the same component by a clustering-based reverse engineering approach.

B.1.2. Example

As an example, consider the example code in Figure B.1. StoreQuery implements
the interface IStoreQuery and also contains a method getInventory which is not part
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1Assets
calculateValue() : int

StoreQuery
getInventory() : Inventory

IStoreQuery

1

class Assets {

  IStoreQuery iQuery = … 

  int calculateValue() {

    …

    StoreQuery query = 

(StoreQuery) iQuery;

    query.getInventory();

    …

  }

}

class StoreQuery 

  implements IStoreQuery 

{

  

  getInventory() {…}

}

interface IStoryQuery {

  … 

}

Interface Violation

calledMethodcallingMethod

Accounting

Store

Figure B.1.: Example occurrence of an Interface Violation deficiency

of the interface. However, the class Assets needs the functionality of getInventory

in its calculateValue method. Therefore, the programmer chose to downcast
the reference iQuery to an object of the type IStoreQuery to the concrete type
StoreQuery. After the downcast, the method getInventory is accessible because it
is public.

This little ’trick’ on part of the programmer leads to the situation depicted on
the right of Figure B.1. Assets now has direct references to both, IStoreQuery and
StoreQuery. Because the classes belong to different components, this constitutes
an Interface Violation.

B.1.3. Influence on the Architecture Reconstruction

CBCA

1

CAB

Assets

calculateValue()

a) Without deficiency b) With Interface Violation

StoreQuery

getInventory() : InventoryTO
IStoreQuery

C'BC'A

1

C'AB

Assets

calculateValue()

1

StoreQuery

getInventory() : Inventory
IStoreQuery

Figure B.2.: Example of the influence of an Interface Violation deficiency on
the architecture recovery
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B.1. Interface Violation

Figure B.2 illustrates the influence of an occurrence of the Interface Viola-
tion deficiency on the architecture reconstruction. To the left of the figure,
a situation without the deficiency is depicted while a situation with an Inter-
face Violation is depicted on the right. The presence of an Interface Viola-
tion occurrence adds a direct reference between the classes Assets and Store-

Query. This is similar to the influence of a Transfer Object Ignorance occur-
rence which was analysed in Section 5.3. This means that the metric values
for External Accesses Count(CB), Internal Accesses Count (CB, CA), Afferent
Coupling(CA), Efferent Coupling(CB), Coupling(CB, CA), and Adherence To
Interface Communication(CB, CA) will be directly affected by this deficiency.

This leads to a similar conclusion: If Assets only communicated with Store-

Query via the IStoreQuery interface, Assets might be clustered into a different com-
ponent than StoreQuery. However, if Assets accesses the method getInventory() of
StoreQuery which is not provided by IStoreQuery, it bypasses the interface. This
leads to a direct coupling between Assets and StoreQuery, which consequently
may be grouped together into the same component, even if they do not belong
together conceptually.

B.1.4. Removal Strategies

In order to remove an Interface Violation occurrence, the interface IStoreQuery

could be extended and the method call in calculateValue() can be modified such
that the method provided by the interface is called and the class StoreQuery

is not accessed directly. As a consequence, all other classes that implement
IStoreQuery have to be adapted, too.

A formalisation of this removal strategy is shown in the story diagram in
Figure B.3. The story diagram and its two auxiliary diagrams are explained in
detail in the following paragraphs. The syntax and semantics of story diagrams
can be found in [vDHP+12].

The story diagram has four in-parameters: call, interface, castStmt, and ac-

cessedMethodOwner. call represents the interface violation, i.e. the statement
that calls the method in the concrete class (the call of m3 in m1). interface is
the interface that will be extended (IB in the example). castStmt refers to the
statement that down-casts the interface type to the concrete class type (i.e. the
statement B b = (B) ib;). Finally, accessedMethodOwner is the class that contains
the called method (B in the example). The story diagram has no out parameter.

The first story node (after the initial node) checks if a method with the same
name as the accessedMethod already exists in the interface. This is accomplished
by matching all methods of the interface in the set object interfaceMethods. Then
the pattern constraint ensures that none of these methods has the same name
as the parameter method. If this is not the case, i.e. if a method of the name
in question already exists in the interface, the application of the story diagram
fails. Otherwise, the control flow continues via the activity edge labelled with
[success].

The second story node creates a method declaration in the interface (methodDecl).
This new method declaration is declared as public (attribute assignment visibility

:= PUBLIC) and abstract (attribute assignment abstract := true). The declara-
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call

interface

targetFunction
►

removeInterfaceViolation
(call: FunctionAccess, interface: GASTClass, castStmt: Statement, accessedMethodOwner: GASTClass): void

methods

►

targetFunction

►

▲   overriddenMember

interface

class: GASTClass

implements: InheritanceTypeAccess

▼  inheritanceTypeAccesses

▼  accessedClass

[end]

[each time]

method: Method

returnType: GASTType

typeAccessOld:

DeclarationTypeAccess

typeAccessNew:

DeclarationTypeAccess
returnTypeAccess

►
methodDecl: Method

visibility := PUBLIC

abstract := true

name := method.name

returnTypeAccess

►

▼  accessedTarget

▲  accessedTarget

castStmt

varAccess1: VariableAccess

call

var1: Variable

varAccess2: VariableAccess

stmt: Statement varAccessNew: VariableAccess

var2: Variable

interface

accesses  ▲

targetVariable
►

▲  targetVariable

▲  accesses

accesses

◄

accesses

►

▲  targetVariable

▲  type

method2: Method

▼  localVariables

localVariables
◄  

2. Add method declaration to interface and set it as accessed target

4b. Remove cast statement, local variable and accesses, create new access

5. For each implementing class...

castStmt

call

accesses ▼

3. Decide if cast and call are 
done in same statement

[failure]

cast: CastTypeAccess[success] castStmt

4a. Remove cast

accesses
◄accessedMethodOwner

accessedTarget
◄

Call

generateMethodStub(class, methodDecl)

«destroy»

«create»

«create»

«create»

«create» «create»

«create»

Call

copyParameters(method, methodDecl):void

«destroy» «destroy» «destroy» «destroy»

«destroy»
«destroy» «destroy» «destroy»

«destroy»

«destroy»

«destroy»

«destroy»

«destroy»

«create»«create»

«create»

«create»

«create»«create»

1. Check if accessed method already exists in interface

interface interfaceMethodsinterfaceMethods: Method

interfaceMethods -> forAll (name <> method.name)

methods

►

«create»

interfaceMethodsinterfaceMethods

methods ▼

«create»

[success]

[failure]

success

failure

failure

[success]

[failure]

Figure B.3.: Removal strategy for the Interface Violation deficiency

184



B.1. Interface Violation

tion receives the same name as the formerly called method (attribute assignment
name := method.name, m3 in the example). The new method declaration is added
to the methods of the interface by creating a method link between interface and
methodDecl. It is also added to the previously matched set interfaceMethods by cre-
ating a corresponding inclusion link. The target accessed by the call is changed
by deleting the link between call and method and recreating it between call and
methodDecl. The return type of the method is set by creating a new object
typeAccessNew of the type DeclarationTypeAccess and connecting it to methodDecl.
It points to the same GASTType as the old declaration type access of the method.

The next node is an activity call node. It calls the story diagram copyParam-

eters which is described in detail below. This story diagram is responsible for
copying all the parameters of the formerly called method to the newly created
declaration methodDecl.

The following story node contains only the two bound, mandatory object
variables castStmt and call. Its responsibility is to try and match the link accesses

between those object variables. If the link exists, the cast and the call are part
of the same statement. In that case, the matching of the story node is successful
and the control flow continues along the transition labelled with [success] to
story node 4a. If the matching fails, i.e. the link does not exist and the cast
and the call are therefore not part of the same statement, the story node is left
via the [failure] transition. This distinction is necessary because the effort to
remove the cast statement is much greater if the cast is not done in the same
statement as the call (compare story nodes 4a and 4b).

If the cast is in the same statement as the call, story node 4a is executed: The
castStmt and its access to B are deleted. If the cast is not in the same statement
as the call that means that the cast is executed at some point before the call
and the resulting down-cast object is stored in a temporary variable. In this
case, this temporary variable can be deleted along with the accesses to it from
the call and the cast statements. Instead, a new variable of the interface type
(IB in the example) is created and then accessed by the call statement (4b). In
both cases, activity node 5 is executed next.

Activity node 5 is responsible for adapting all other classes that implement
the now changed interface. Thus, the node is a for-each activity node that binds
a class which is connected to the interface in each iteration. For each of those
bindings, the node that is reachable via the [each time] edge is executed. In
this case, that is a story diagram call of the story diagram generateMethodStub

which is explained in the following section. In contrast to the previous call to
copyParameters, the called story diagram here can either succeed or fail. If the
generation of the method stub fails, the application of the calling diagram is
also aborted with a failure.

When no new classes implementing the interface can be found, i.e. method
stubs have been generated for all implementing classes, the story diagram ter-
minates at the success final node.

The story diagram copyParameters (see Figure B.4) copies all the parameters
from a sourceMethod to a targetMethod. Both methods are provided as parame-
ters. The diagram consists of two story nodes.

The first activity node is a for-each activity node. It successively binds all
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typeAccessNewParam:

DeclarationTypeAccess

typeDeclaration

►

accessedTarget

◄

sourceMethod

param: FormalParameter

▼  formalParameters

[each time]

1. For each parameter in 
the source method...

targetMethod newParam: FormalParameterformalParameters

►
name := param.name

type: GASTType
type

►
param

2. … create a parameter in the target method.

copyParameters
(sourceMethod: Method, targetMethod: Method): void

[end]

«create» {last} «create» «create»

«create»
«create»

success

Figure B.4.: Auxiliary story diagram for the called by the removal strategy in
Figure B.3

formal parameters of the given sourceMethod to the object variable param. Each
time a new parameter is bound, the second node is executed. There, a new
formal parameter newParam is created in the targetMethod. Its name is set to the
same name as the original parameter’s by the expression ’name := param.name’.
The type is also set accordingly by binding the type of param. Then, a new
access to that type is created and connected to newParam. The newParam is
inserted at the last position in the list of parameters as indicated by the link
position constraint {last} at the new formalParameters link.

The story diagram generateMethodStub is shown in Figure B.5. It creates
a method which implements a method methodDecl from an interface. This is
accomplished by two story nodes and one story diagram call. The first node
checks if the given class contains a method with the same name as the given
declaration methodDecl. The check is performed by the attribute constraint
’name = methodDecl.name’. Since the object variable method is negative (crossed-
out), the matching of this story node is considered successful if no such method
exists in the class. In that case the next story node is executed. If a method of
the name in question already exists, the execution of the first story node fails
and the story diagram terminates at the failure final node.

The second story node creates a new methodStub in the given class. The
visibility of this method is set to public and its name is set to the name of
the method declaration as signified by the expression ’name := methodDecl.name’.
The correct return type for the method is set by creating a newTypeAccess from
the methodStub to the returnType that is also accessed by the methodDecl.

Finally, the story diagram CopyParameters is called in the story diagram call
node. The methodDecl and the methodStub are passed as parameters. The called
diagram then copies all parameters from the given method to the newly created
methodStub as explained above.

Another possibility to remove an Interface Violation is a variant of the above
removal strategy: Instead of extending the interface IStoreQuery, a completely
new interface could be introduced and accessed instead of the class StoreQuery.
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class

methodDecl

▼   methods

▼    overriddenMember

methodStub: Method

visibility := PUBLIC

name := methodDecl.name

returnType: GASTType

newTypeAccess:

DeclarationTypeAccess
returnTypeAccess

►

▼  accessedTarget

2. … generate method stub

generateMethodStub
(class: GASTClass, methodDecl: Method): void

Call

CopyParameters(method, methodStub)

class
methods

1. If no method of the given name already exists...

method: Method

name = methodDecl.name

[success]

[failure]
►

«create»

«create»
«create»

«create»

«create»

«create»

success

failure

oldTypeAccess: 

DeclarationTypeAccess
►

returnTypeAccess

▲  accessedTarget

Figure B.5.: Auxiliary story diagram for the called by the removal strategy in
Figure B.3
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This way, other classes would not have to be adapted.

B.1.5. Formalisation

Figure B.6 shows a possible formalisation of the Interface Violation deficiency.
The formalisation contains two Component sub patterns c1 and c2. c1 contains
the accessingClass (Assets in the example) which may not be an interface. The
accessingClass has an accessingMethod which contains two things: A call and a cast

statement. The cast accesses a variable of the type of the violatedInterface. The
call invokes the accessedMethod in the accessedClass. The accessedClass implements
the violatedInterface and both are contained in component c2. In addition, the
accessedMethod may not override a declaredMethod which is part of the violatedIn-

terface.
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Figure B.6.: Structural formalisation of the Interface Violation deficiency
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B.2. Unauthorised Call

This section presents the Unauthorised Call deficiency which is a call of a
method which is provided in the interface of the called component but which is
not allowed because the calling component does not require the corresponding
interface. The section briefly introduces the underlying problem, shows an ex-
ample and discusses two removal strategies. I also describe the influence of this
deficiency on the architecture reconstruction and explain a possible formalisa-
tion.

B.2.1. Design Deficiency Problem

In contrast to an Interface Violation, an Unauthorised Call is an invocation of
an operation which is provided by an interface but which may not be called
because the calling component is not connected to the called component. In
programming languages which do not explicitly support the concept of compo-
nents, e.g. plain Java, it is easy to introduce Unauthorised Calls accidentally
because strict interface communication is not enforced by the language. This
is especially true for components that are connected by some interface. Devel-
opers may only remember that those components are connected somehow and
might then introduce the Unauthorised Call.

B.2.2. Example

PurchaseLog
reportOrder()

StoreQuery
getInventory() : Inventory

IStoreQuery

Accounting Store

Inventory
items : Item[]

getInventory() : Inventory

Unauthorized Call

callingMethod
calledMethod

checkStock()

reportOrder()

IPurchaseLog

Figure B.7.: Example occurrence of an Unauthorised Call deficiency

In Figure B.7, the components Accounting and Store are connected via the
interface IStoreQuery. Thus, the method getInventory() may be called by classes
in the Accounting component. The Accounting component, on the other hand,
provides the reportOrder() method on its interface IPurchaseLog. However, this
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B.2. Unauthorised Call

does not allow classes in the Store component, e.g. Inventory, to call reportOrder()

because the Store component does not require that interface.
Developers may be tempted to call the method in PurchaseLog directly without

using the appropriate interface IPurchaseLog, especially because the components
are already connected. In the absence of component frameworks which prevent
this, the deficiency may be introduced quickly.

B.2.3. Influence on the Architecture Reconstruction

Similar to an Interface Violation, an Unauthorised Call adds one direct refer-
ence between the two components that are involved in the deficiency. Therefore,
adding this deficiency to a system will have a comparable influence on the met-
ric values during the architecture reconstruction, i.e. the counting and coupling
metrics will be directly affected. The influence on the naming-related met-
rics, like Name Resemblance and Package Mapping, depends on the concrete
deficiency occurrence and cannot be analysed in the generic case.

B.2.4. Removal Strategies

Essentially, the Unauthorised Call deficiency is a special kind of Interface Vio-
lation. However, it is easier to remove. The called method is already provided
by an interface. So, an obvious removal strategy is to make the use of that
interface explicit instead of calling a method in the implementing class.

If the use of the interface is not desired, for some reason, the call has to be
removed and some other way to provide the functionality has to be conceived
of. For example, the called method could be moved to the calling component.
However, this would necessitate changes to the corresponding interface which
might lead to complicated refactorings.

B.2.5. Formalisation

Figure B.8 shows a formalisation of the Unauthorised Call deficiency. It specifies
a situation in which a callingClass contains an accessingMethod which calls another
method, the accessedMethod. The accessedMethod is located in the calledClass

which implements an interface. This interface contains a declaredMethod which is
implemented by the accessedMethod. The component comp which contains the
callingClass, however, does not require the interface. This is expressed by the
negative fragment in the upper right corner of the formalisation. A negative
fragment encapsulates an object structure which may not be present in the
host graph for the pattern to be detected. In this case, there may not be an
InterfaceSourceCodeLink which points to the interface and which is marked as an
interface that is required by comp.
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structural pattern Unauthorised Call

accessedMethod : Method

:UnauthorisedCall

accessed
Target

callingClass

calledClass
«create»

«create»

«create»

call : FunctionAccess

methods

comp : Component

classes

calledMethod

calledClass : GASTClass

interface: Boolean == false

«create»

accessingMethod : 
Method

accesses

callingClass : GASTClass

interface: Boolean == false

methods

componentLink : 
ComponentImplementingClassesLink

interfaceLink : 
InterfaceSourceCodeLink

requiredInterfaces

gastClasses

link

negative

interface : GASTClass

interface: Boolean == true

implements: 
InheritanceTypeAccess

accessedClass

inheritanceTypeAccess

declaredMethod
 : Method

methods

overridden
Member

Figure B.8.: Structural formalisation of the Unauthorised Call deficiency
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B.3. Inheritance between Components

The Inheritance between Components deficiency is slightly different from the
other deficiencies presented in this thesis. In contrast to the other deficiencies,
there is no real problem in the source code. Instead, the reconstructed archi-
tecture is not in line with the architectural guidelines by Szyperski [SGM02].

B.3.1. Design Deficiency Problem

Inheritance relations between classes result in dependencies in the implementa-
tion and thereby lead to a tight coupling between the super class and the sub
class. If the super class changes, then the sub class has to be changed, too. Ac-
cording to the component definition by Szyperski, a “[...] component is a unit
of independent deployment” [SGM02, p. 30]. Therefore, such a dependency
must not exist between classes that are part of different components. If one
class extends another class, they have to be assigned to the same component.
Otherwise, the components cannot be reused independently.

B.3.2. Example

StoreReport
IStoreQuery

Accounting Store

Report
text : String

subClasssuperClass

Inheritance between 
Components

Figure B.9.: Example occurrence of an Inheritance between Components
deficiency

In Figure B.9, the class StoreReport extends the class Report. However, Stor-

eReport has been assigned to the Store component while Report is part of the
Accounting component. Therefore, Store cannot be deployed independently from
Accounting anymore.

B.3.3. Influence on the Architecture Reconstruction

The problem here is not that the original developer did make a mistake to intro-
duce the deficiency. On the contrary, the architecture reconstruction heuristic
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assigned the two classes to different components in spite of the inheritance rela-
tionship between them. This means that the inheritance relationship between
the classes did not sufficiently influence the architecture reconstruction metrics
to assign both classes to the same component.

B.3.4. Removal Strategies

In contrast to the other deficiencies presented in this thesis, there are no di-
rect reengineering strategies for the Inheritance between Components deficiency.
The placement of the classes in different components is a result of the auto-
matic architecture reconstruction. Thus, something in the implementation of
the system compelled the clustering algorithm to assign the classes to differ-
ent components. However, it would be not be advisable to try and influence
the architecture reconstruction indirectly, e.g. by adding additional references
between the two classes.

Therefore, the Inheritance between Components deficiency is not so much
a design deficiency of the system but it is a deficiency of the reconstructed
architecture. Its occurrence can serve as a warning that the reconstruction
may have made a mistake at that point and that the reconstructed components
should be reviewed by the software architect.

In order to avoid this deficiency, a way to specify such architectural guide-
lines as an input for the architecture reconstruction would be needed. If such
a mechanism was available, the software architect could specify that the ar-
chitecture reconstruction may not assign two classes which are connected by
an inheritance relation to two different components. Such an extension of So-
MoX is currently under development in a master’s thesis by Christian Stritzke
[Str13].

B.3.5. Formalisation

structural pattern Inheritance between Components

:InheritanceBetween
Components

superClass

subClass

«create»«create»

c2 : Componentclasses

«create»

superTypes

classes

superClass : GASTClass

interface: Boolean == false

subClass : GASTClass

interface: Boolean == false

c1 : Componentclasses

classes

Figure B.10.: Structural formalisation of the Inheritance Between Components
deficiency
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Figure B.10 shows the formalisation of the Inheritance between Components
deficiency which is rather straightforward. It describes two classes, superClass

and subClass, where superClass is among the superTypes of subClass. superClass is
contained in a component c1 while subClass is part of a component c2. The
mutual exclusion of a containment in both components implies that the two
components are not composed in some way, e.g. c1 is not contained within c2

and vice versa.
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C. Clustering Configurations

This section documents the configuration of SoMoX that were used in the vali-
dation (see Chapter 10). Each table lists the metric values and, where applica-
ble, the configuration of the blacklist and additional filters. The clustering con-
figuration for the Store Example is documented in Table C.1. Table C.2 shows
the configuration used for the architecture reconstruction of Palladio Fileshare.
Table C.3 contains the values for the reference implementation of CoCoME.
Finally, the Table C.4 documents which weights and filters were used when
analysing the SOFA implementaion of CoCoME.
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C. Clustering Configurations

Metric Weight

Package Mapping 70

Directory Mapping 0

DMS 5

Low Coupling 0

High Coupling 15

Low Name Resemblance 5

Mid Name Resemblance 15

High Name Resemblance 30

Highest Name Resemblance 45

Low SLAQ 0

High SLAQ 15

Composition: Interface Adherence 40

Clustering Composition Threshold Min Value 25

Clustering Composition Threshold Max Value 100

Clustering Composition Threshold Decrement 10

Merge: Interface Violation 10

Clustering Merge Threshold Min Value 45

Clustering Merge Threshold Max Value 100

Clustering Merge Threshold Increment 10

Blacklist java.*

Table C.1.: Configuration used for the architecture reconstruction of the Store
Example
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Metric Weight

Package Mapping 100

Directory Mapping 0

DMS 7

Low Coupling 0

High Coupling 10

Low Name Resemblance 5

Mid Name Resemblance 15

High Name Resemblance 40

Highest Name Resemblance 90

Low SLAQ 0

High SLAQ 25

Composition: Interface Adherence 25

Clustering Composition Threshold Min Value 19

Clustering Composition Threshold Max Value 80

Clustering Composition Threshold Decrement 15

Merge: Interface Violation 10

Clustering Merge Threshold Min Value 41

Clustering Merge Threshold Max Value 100

Clustering Merge Threshold Increment 7

Blacklist java.*

de.uka.ipd.sdq.BySuite

de.uka.ipd.sdq.↙

palladiofileshare.testdriver.*

Table C.2.: Configuration used for the architecture reconstruction of Palladio
Fileshare
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C. Clustering Configurations

Metric Weight

Package Mapping 60

Directory Mapping 0

DMS 5

Low Coupling 0

High Coupling 15

Low Name Resemblance 5

Mid Name Resemblance 15

High Name Resemblance 30

Highest Name Resemblance 45

Low SLAQ 0

High SLAQ 15

Composition: Interface Adherence 40

Clustering Composition Threshold Min Value 25

Clustering Composition Threshold Max Value 100

Clustering Composition Threshold Decrement 10

Merge: Interface Violation 10

Clustering Merge Threshold Min Value 45

Clustering Merge Threshold Max Value 100

Clustering Merge Threshold Increment 10

Blacklist everything but org.cocome.*

Additional filter .*TO|.*Event

Table C.3.: Configuration used for the architecture reconstruction of the Co-
CoME reference implementation
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Metric Weight

Package Mapping 60

Directory Mapping 0

DMS 5

Low Coupling 0

High Coupling 15

Low Name Resemblance 5

Mid Name Resemblance 15

High Name Resemblance 30

Highest Name Resemblance 45

Low SLAQ 0

High SLAQ 15

Composition: Interface Adherence 40

Clustering Composition Threshold Min Value 25

Clustering Composition Threshold Max Value 100

Clustering Composition Threshold Decrement 10

Merge: Interface Violation 10

Clustering Merge Threshold Min Value 45

Clustering Merge Threshold Max Value 100

Clustering Merge Threshold Increment 10

Blacklist java.*

javax.*

Table C.4.: Configuration used for the architecture reconstruction of the SOFA
implementation of CoCoME
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D. List of Abbreviations

ADL Architecture Description Language

AST Abstract Syntax Tree

CBSE Component-Based Software Engineering

CC Composite Component

CoCoME Common Component Modeling Example

COTS Component Off-The-Shelf

DSL Domain-Specific Language

DTO Data Transfer Object

EMF Eclipse Modeling Framework

GAST Generalised Abstract Syntax Tree

PC Primitive Component

POSA Pattern-Oriented Software Architecture

SAM Service Architecture Model

SAMM Service Architecture Meta Model

SAR Software Architecture Reconstruction

SCD Source Code Decorator

SISSy Structural Investigation of Software Systems

SoMoX Software Model Extractor

TO Transfer Object
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[DDN03] Demeyer, Serge, Stéphane Ducasse, and Oscar Nierstrasz: Object-
Oriented Reengineering Patterns. Morgan Kaufman Publishers,
2003, ISBN 978-1-55860-639-4.

[DKG08] Denier, Simon, Foutse Khomh, and Yann Gaël Guéhéneuc:
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cus Porembski, Thomas Stahl, Marcus Steinkamp, and Norman
Wittmüss: DynaMod project: Dynamic analysis for model-driven

219



References

software modernization. In Joint Proceedings of the 1st Interna-
tional Workshop on Model-Driven Software Migration and the 5th
International Workshop on Software Quality and Maintainability,
volume 708 of CEUR Workshop Proceedings, pages 12 – 13, March
2011.

[Wen04] Wendehals, Lothar: Specifying Patterns for Dynamic Pattern In-
stance Recognition with UML 2.0 Sequence Diagrams. In Proceed-
ings of the 6th Workshop Software Reengineering, volume 24 of
Softwaretechnik-Trends, pages 63 – 64. Gesellschaft für Informatik,
2004.

[Wen07] Wendehals, Lothar: Struktur- und verhaltensbasierte Entwurfsmus-
tererkennung. PhD thesis, University of Paderborn, September
2007. In German.

[Zdu05] Zdun, Uwe: Applying Patterns for Reengineering to the Web. In
Khan, Khaled M. and Yan Zhang (editors): Managing Corporate
Information Systems Evolution and Maintenance, pages 167 – 196.
Idea Group Publishing, 2005, ISBN 978-1-591-40366-1.

[ZHB11] Zhang, Min, Tracy Hall, and Nathan Baddoo: Code Bad Smells:
A Review of Current Knowledge. Journal of Software Maintenance
and Evolution: Research and Practice, 23(3):179 – 202, April
2011.

[ZYXX02] Zhao, Jianjun, Hongji Yang, Liming Xiang, and Baowen Xu:
Change impact analysis to support architectural evolution. Journal
of Software Maintenance and Evolution: Research and Practice,
14(5):317 – 333, 2002, ISSN 1532-0618.

220



Own Publications

[PvDB12] Marie Christin Platenius, Markus von Detten, and Steffen Becker.
Archimetrix: Improved Software Architecture Recovery in the
Presence of Design Deficiencies. In Proceedings of the 16th Eu-
ropean Conference on Software Maintenance and Reengineering,
CSMR, pages 255 – 264. IEEE, March 2012.

[PvDT11] Marie Christin Platenius, Markus von Detten, and Dietrich
Travkin. Visualization of Pattern Detection Results in Reclipse.
In Proceedings of the 8th International Fujaba Days. University of
Tartu, 2011.

[TvDB11] Oleg Travkin, Markus von Detten, and Steffen Becker. Towards
the Combination of Clustering-based and Pattern-based Reverse
Engineering Approaches. In Proceedings of the 3rd Workshop of
the GI Working Group L2S2 - Design for Future 2011. Gesellschaft
für Informatik, February 2011.

[vD11] Markus von Detten. Towards Systematic, Comprehensive Trace
Generation for Behavioral Pattern Detection through Symbolic Ex-
ecution. In Proceedings of 10th ACM SIGPLAN/SIGSOFT Work-
shop on Program Analysis for Software Tools and Engineering,
PASTE, pages 17 – 20. ACM, June 2011.

[vD12] Markus von Detten. Archimetrix: A Tool for Deficiency-Aware
Software Architecture Reconstruction. In Proceedings of the 19th
Working Conference on Reverse Engineering, WCRE, pages 503 –
504. IEEE, 2012.

[vDB11] Markus von Detten and Steffen Becker. Combining Clustering and
Pattern Detection for the Reengineering of Component-based Soft-
ware Systems. In Proceedings of the 7th International Conference
on the Quality of Software Architectures, QoSA, pages 23 – 32.
ACM, June 2011.

[vDHP+12] Markus von Detten, Christian Heinzemann, Marie Christin Plate-
nius, Jan Rieke, Dietrich Travkin, and Stephan Hildebrandt. Story
Diagrams – Syntax and Semantics. Technical Report tr-ri-12-324,
Software Engineering Group, Heinz Nixdorf Institute, University
of Paderborn, July 2012. Ver. 0.2.

[vDMT10a] Markus von Detten, Matthias Meyer, and Dietrich Travkin. Re-
clipse - A Reverse Engineering Tool Suite. Technical Report tr-

221



Own Publications

ri-10-312, Software Engineering Group, Heinz Nixdorf Institute,
University of Paderborn, March 2010.

[vDMT10b] Markus von Detten, Matthias Meyer, and Dietrich Travkin. Re-
verse Engineering with the Reclipse Tool Suite. In Proceedings of
the 32nd International Conference on Software Engineering, ICSE,
pages 299 – 300. ACM, May 2010.

[vDP09] Markus von Detten and Marie Christin Platenius. Improving Dy-
namic Design Pattern Detection in Reclipse with Set Objects. In
Proceedings of the 7th International Fujaba Days, pages 15 – 19.
Eindhoven University of Technology, 2009.

[vDPB13] Markus von Detten, Marie Christin Platenius, and Steffen
Becker. Reengineering Component-Based Software Systems with
Archimetrix. Journal on Software and Systems Modeling, 2013.
Theme Issue on Models for Quality of Software Architecture, to
appear.

[vDT10] Markus von Detten and Dietrich Travkin. An Evaluation of the
Reclipse Tool Suite based on the Static Analysis of JHotDraw.
Technical Report tr-ri-10-322, Software Engineering Group, Heinz
Nixdorf Institute, University of Paderborn, October 2010.

222



Supervised Theses

[Foc10] Markus Fockel. Interpretation von Graphtransformationsregeln zur
statischen Erkennung von Software-Mustern. Master’s thesis, Univer-
sity of Paderborn, October 2010. In German.

[Pla09] Marie Christin Platenius. Berücksichtigung von Objektmengen bei der
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