Reengineering of Component-Based Software
Systems in the Presence of Design Deficiencies

by

Markus von Detten

'L‘ UNIVERSITAT PADERBORN
Die Universitdt der Informationsgesellschaft

Fakultat fir Elektrotechnik, Informatik und Mathematik
Heinz Nixdorf Institut und Institut fiir Informatik
Fachgebiet Softwaretechnik

Zukunftsmeile 1

33102 Paderborn

Reengineering of
Component-Based Software
Systems in the Presence of

Design Deficiencies

PhD Thesis

to obtain the degree of
“Doktor der Naturwissenschaften (Dr. rer. nat.)”

by
MARKUS VON DETTEN
Balduinstrafle 4
33102 Paderborn

Referee:

Prof. Dr. Wilhelm Schafer

Paderborn, March 26, 2013

Abstract

The maintenance of component-based software systems requires up-to-date
models of their concrete architecture, i.e. the architecture that is realised in
the source code. These models help in systematically planning, analysing and
executing typical reengineering activities.

Often no or only outdated architectural models of such systems exist. There-
fore, various reverse engineering methods have been developed which try to
recover a system’s components, subsystems and connectors. However, these
reverse engineering methods are severely impacted by design deficiencies in the
system’s code base, especially violations of the component encapsulation. As
long as design deficiencies are not considered in the reverse engineering process,
they reduce the quality of the recovered component structures.

Despite this impact of design deficiencies, no existing architecture recon-
struction approach explicitly integrates a systematic deficiency detection and
removal into the recovery process.

Therefore, I have developed Archimetrix. Archimetrix is a tool-supported
architecture reconstruction process. It enhances a clustering-based architecture
recovery approach with an extensible, pattern-based deficiency detection. After
the detection of deficiencies, Archimetrix supports the software architect in
removing the deficiencies and provides the means to preview the architectural
consequences of such a removal. I also provide a process to identify and formalise
additional deficiencies.

I validated the approach on three case studies which show that Archimetrix
is able to identify relevant deficiencies and that the removal of these deficiencies
leads to an increased quality of the recovered architectures, i.e. they are closer
to the corresponding conceptual architectures.

Zusammenfassung

Fiir die Wartung komponenten-basierter Software werden aktuelle Modelle ihrer
konkreten Architektur, d.h. der Architektur, welche im Quellcode umgesetzt
wurde, bendtigt. Diese Modelle unterstiitzen den Software-Architekten bei
der Planung, der Analyse und der Ausfithrung von typischen Reengineering-
Aktivitaten.

Allerdings existieren haufig keine oder nur veraltete Architekturmodelle sol-
cher Software-Systeme. Daher wurden in der Vergangenheit zahlreiche Reverse-
Engineering-Verfahren entwickelt, welche dazu dienen, die Komponenten, Sub-
systeme und Konnektoren komponenten-basierter Software wiederzuerkennen.
Allerdings werden diese Reverse-Engineering-Verfahren durch Schwachstellen
im Quellcode — vor allem durch Schwachstellen, die die Kapselung von Kom-
ponenten verletzen — stark beeinflusst. Werden solche Schwachstellen bei der
Wiedergewinnung von Architekturmodellen nicht beriicksichtigt, kénnen sie die
Qualitéat der erkannten Komponentenstrukturen erheblich verringern.

Trotz dieses signifikanten Einflusses von Schwachstellen, werden diese im
Erkennungsprozess existierender Architektur-Rekonstruktions-Verfahren bisher
nicht berticksichtigt.

Zur Losung dieses Problems habe ich im Rahmen dieser Arbeit Archimetrix
entwickelt. Archimetrix ist ein werkzeuggestiitztes Architektur-Rekonstruktions-
Verfahren. Es erweitert einen bestehenden, clustering-basierten Architektur-
Rekonstruktions-Ansatz um ein erweiterbares, muster-basiertes Verfahren zur
Schwachstellenerkennung. Nach der Schwachstellenerkennung unterstiitzt Ar-
chime-trix den Software-Architekten zusétzlich bei der Entfernung der gefunde-
nen Probleme und ermdoglicht es ihm, die Auswirkungen der Entfernung auf die
Software-Architektur des Systems zu analysieren. AuBerdem beschreibt diese
Arbeit einen Prozess zur Identifikation, Dokumentation und Formalisierung von
Schwachstellen.

Archimetrix wurde an drei Fallstudien evaluiert, welche zeigen, dass Archime-
trix zuverlassig relevante Schwachstellen identifizieren kann und dass die Ent-
fernung dieser Schwachstellen die Qualitdt der rekonstruierten Architekturen
erhoht, d.h. dass diese Architekturen besser mit den urspriinglich dokumen-
tierten Architekturen iibereinstimmen.

111

Danke

Viele Menschen glauben, dass Informatiker lichtscheue Einzelgénger sind, die
in ihrem stillen Kdmmerlein vor dem Bildschirm hocken und direkten Kontakt
hochstens zum Pizzaboten haben. Dieses Vorurteil kann ich nicht bestatigen.
Ganz auf mich allein gestellt hétte ich diese Arbeit nie schreiben koénnen.
Stattdessen bin ich sehr vielen Menschen, die mich in den letzten Jahren be-
gleitet und unterstiitzt haben, zum Dank verpflichtet.

Zuallererst gebiihrt mein Dank meinem Doktorvater Wilhelm Schéfer. Er hat
mir nicht nur die Moglichkeit gegeben, diesen Weg zu gehen, sondern er hat auch
in seiner Arbeitsgruppe ein Umfeld geschaffen, in dem man gemeinschaftlich
und ohne tuberfliissiges Konkurrenzdenken miteinander forschen und arbeiten
kann. Ich habe mich hier in den vergangenen fiinf Jahren sehr wohl gefiihlt.

Ich danke auch den weiteren Mitgliedern meiner Priifungskommission, Ralf
Reussner, Uwe Kastens, Steffen Becker und Stefan Sauer, fiir ihre Bereitschaft,
sich mit meiner Arbeit auseinanderzusetzen. Ralf Reussner und Steffen Becker
danke ich aulerdem fiir die Anfertigung ihrer Gutachten.

Archimetrix wére nicht entstanden, wenn ich nicht die Unterstiitzung von
einigen ganz besonderen Personen gehabt hétte, sei es in intensiven Diskussio-
nen, beim Schreiben von Papieren oder durch die Anfertigung von Masterar-
beiten. Mein Dank gilt hier Steffen Becker, Marie Christin Platenius und Oleg
Travkin.

Dass ich mich in der AG Schéfer so wohl gefiihlt habe, ist natiirlich vor allem
meinen Kollegen in dieser Zeit zu verdanken. Neben all den fachlichen Diskus-
sionen haben auch die Gespriache und Aktivitdten abseits der Wissenschaft —
zum Beispiel in den Kaffeerunden, bei Filmabenden und bei den AG-Ausfliigen
— viel Spafl gemacht. Diese groflartigen Kollegen sind Bjorn Axenath, Matthias
Becker, Steffen Becker, Christian Bimmermann, Christian Brenner, Christo-
pher Brink, Nicola Danielzik, Stefan Dziwok, Tobias Eckhardt, Remo Fer-
rari, Markus Fockel, Jens Frieben, Holger Giese, Joel Greenyer, Jutta Haupt,
Christian Heinzemann, Stefan Henkler, Martin Hirsch, Jorg Holtmann, Ekkart
Kindler, Sebastian Lehrig, Renate Loffler, Nazim Madhavji, Jiirgen Maniera,
Ahmet Mehic, Jan Meyer, Matthias Meyer, Marie Christin Platenius, Uwe
Pohlmann, Claudia Priesterjahn, Jan Rieke, Wilhelm Schéfer, David Schmel-
ter, Julian Suck, Oliver Sudmann, Matthias Tichy, Dietrich Travkin, Robert
Wagner und Lothar Wendehals.

Insbesondere mochte ich den Kollegen danken, mit denen ich im Laufe der
Zeit ein Biiro geteilt habe: Matthias Tichy, Jan Rieke und vor allem Claudia
Priesterjahn. Ihr wart immer da, um fachliche Fragen zu ertrtern, meiner
Motivation ein wenig auf die Spriinge zu helfen oder auch um einfach mal zu
quatschen. Danke dafiir!

Beim Umschiffen aller biirokratischen, organisatorischen und technischen Klip-

pen waren mir Jutta Haupt und Jiirgen Maniera eine grofle Hilfe.

Archimetrix baut auf bereits vorhandenen Werkzeugen auf, insbesondere auf
SoMoX und Reclipse. Mein Dank gilt denjenigen, die an der Entwicklung dieser
Werkzeuge beteiligt waren und im Notfall zur Stelle waren um Unterstiitzung
zu leisten: Steffen Becker, Klaus Krogmann und Benjamin Klatt, sowie Dietrich
Travkin, Matthias Meyer und Lothar Wendehals.

Als wissenschaftlicher Mitarbeiter ist man stark davon abhéngig, dass man
Studenten findet, die in Form von Abschlussarbeiten oder SHK-T4étigkeiten an
der Umsetzung der eigenen Konzepte und Ideen mit Engagement und Begeis-
terung mitwirken. Ich hatte das Gliick, dass Markus Fockel, Aljoscha Hark,
Marie Christin Platenius, Christian Stritzke, Oleg Travkin und Andreas Volk
mir in dieser Hinsicht zur Seite gestanden haben.

Des Weiteren mochte ich meiner Familie Danke sagen. Das allergrofite Danke-
schon geht an meine Eltern Marita und Matthias, die mir diesen Weg iiberhaupt
erst ermoglicht haben, die mir immer Mut gemacht haben und ohne die ich
heute nicht an diesem Punkt wére. Danke auch an Andreas und Christoph, die
besten Briider der Welt, sowie an Janin, Sabrina und Pia. Auch meine Omas,
Anneliese und Ursula, sowie die gesamte weitere Verwandtschaft — zu zahlreich
um sie hier alle namentlich zu erwéhnen — haben ihren Anteil an dieser Arbeit.

Zu guter Letzt danke ich meiner Freundin Katharina Wecker. Fiir das Mit-
mir-freuen an guten Tagen, fiir die Aufmunterung an nicht so guten Tagen,
fir das Ertragen meiner manchmal seltsamen Launen ganz besonders in der
Endphase dieser Arbeit und vor allem fiir das “da sein”.

VI

Contents

1

2

3

4

Introduction

1.1 Evolution of Business Information Systems
1.2 Reverse Engineering of Software Architectures
1.3 Problem Statement
1.4 Solution Overview
1.5 Application Scenarios L.
1.6 Scientific Contributions
1.7 Example System oL oo
1.8 Structure L

Foundations and Related Work
2.1 Software Architecture Reconstruction
2.1.1 Terminology
2.1.2 Overview of the Methodology
2.1.3 Software Architecture Reconstruction in Archimetrix . . .
2.2 Pattern Detection oL
2.2.1 Terminology
2.2.2 Overview of the Methodology
2.2.3 Pattern Detection in Archimetrix
2.3 Refactoring and Reengineering
2.3.1 Terminology
2.3.2 Reengineering in Archimetrix
2.4 Hybrid Reverse Engineering Approaches
2.5 Bad Smell Detection and Removal
2.6 Architecture Reengineering
2.6.1 Architecture Conformance Checking
2.6.2 Architecture Migration and Modernisation
2.6.3 Modularisation L.
2.7 Classification of the Archimetrix Approach
2.8 General Assumptions

Design Deficiencies

3.1 Types of Software Patterns
3.2 Describing Design Deficiencies
3.3 Running Example oo oL
3.4 Further Design Deficiencies

The Archimetrix Process
4.1 Contributions.
4.2 Process Overview e

© 00 00 ~J U = W +— =

[y
o

12

—_
[\

14
15
15
16
18
19
19
20
21
22
24
25
25
26
28
28
29

31
31
33
35
42

45
45
46

VII

Contents

4.3 Iterative Architecture Reconstruction
4.4 Design Deficiency Formalisation
4.5 Limitations. oo

5 Influence of Deficiencies on the Architecture Reconstruction
5.1 Contributions.
5.2 Reconstruction Process L.
5.2.1 Metrics
5.2.2 Strategies
5.2.3 Dependencies Between Metrics and Strategies
5.3 Influence of Design Deficiency Occurrences on the Metrics . . .
5.3.1 Influence of the Transfer Object Ignorance Deficiency . .
5.3.2 Susceptibility of Different Metrics and Strategies
5.3.3 Influence of Other Design Deficiencies Occurrences
54 Result Model.
5.5 Limitations. L
5.6 Conclusion

6 Component Relevance Analysis

6.1 Motivation
6.2 Contributions.
6.3 Assumptions L
6.4 Component Relevance.
6.5 Relevance Metrics

6.5.1 Complexity Metric L.

6.5.2 Closeness to Threshold Metric
6.6 Relevance Calculation.
6.7 Limitations.o
6.8 Related Approaches
6.9 Conclusion

7 Design Deficiency Detection
7.1 Contributions.
7.2 Assumptions
7.3 Pattern Detection with Reclipse
7.4 Integration with the Architecture Reconstruction
7.4.1 Input Model for the Deficiency Detection
7.4.2 Auxiliary Component Patterns
7.5 Improved Trace Collection through Symbolic Execution.
7.5.1 Shortcomings of Current Trace Collection
7.5.2 Systematic Trace Generation
7.5.3 Interpreting the Generated Traces
7.5.4 Related Approaches,
7.6 Limitations. oL o
7.6.1 Limitations of the Deficiency Detection
7.6.2 Limitations of the Improved Trace Generation
7.7 Conclusion

VIII

57
o7
o7
61
63
64
66
66
69
70
71
72
73

75
75
76
76
7
7
78
79
81
83
84
84

Contents

8 Design Deficiency Ranking 101
8.1 Contributions. 101
8.2 Assumptions 101
8.3 Ranking Metrics o 102

8.3.1 Structural Accuracy Metric 102
8.3.2 Deficiency-Specific Ranking Metrics 103
8.4 Rank Calculation 107
8.5 Limitations. 107
8.6 Related Approaches 108
87 Conclusion 109

9 Deficiency Removal 111
9.1 Contributions. 111
9.2 Assumptions 111
9.3 Deficiency Removal Process. 112
9.4 Manual Deficiency Removal. 114

9.4.1 Removal Guides 115
9.4.2 Example. 115
9.5 Automated Deficiency Removal 116
9.5.1 Removal Strategies oL 117
9.5.2 Behaviour Preservation 118
9.5.3 Propagating the Removal back to the Source Code 119
9.5.4 Architecture Preview 119
9.5.5 Related Approaches 122
9.6 Limitations. 123
9.7 Conclusion 125

10 Validation 127

10.1 Prototype Implementation 127
10.1.1 Software Architecture 127
10.1.2 Example Sessiono 128

10.2 Experiment Setup 136

10.3 Validation Questions. 137

10.4 Case Studies 137

10.5 Threats to Validity L. 138
10.5.1 Threats to Internal Validity 138
10.5.2 Threats to External Validity 140

10.6 Case Study 1: Store Example 140
10.6.1 System Overview 140
10.6.2 Validation Results 141
10.6.3 Discussion e 143

10.7 Case Study 2: Palladio Fileshare. 146
10.7.1 System Overview 146
10.7.2 Validation Results 146
10.7.3 Discussion 149

10.8 Case Study 3: CoCoME. 151
10.8.1 System Overview 151

IX

Contents

10.8.2 Reference Implementation Validation Results
10.8.3 SOFA Implementation Validation Results
10.8.4 Discussion o
10.9 Time and Effort
10.10 Level-II-Validation.
10.11 Lessons Learned

11 Conclusion
11.1 Results and Conclusions.
11.2 Future Research Challenges.

A Meta Models
A.1 Generalised Abstract Syntax Tree
A.2 Service Architecture Meta Model
A.3 Source Code Decorator

B Design Deficiencies
B.1 Interface Violation.
B.1.1 Design Deficiency Problem
B.1.2 Example.
B.1.3 Influence on the Architecture Reconstruction
B.1.4 Removal Strategies L.
B.1.,5 Formalisation
B.2 Unauthorised Call
B.2.1 Design Deficiency Problem
B.22 Example.
B.2.3 Influence on the Architecture Reconstruction
B.2.4 Removal Strategies oL
B.2.,5 Formalisation
B.3 Inheritance between Components
B.3.1 Design Deficiency Problem
B.3.2 Example.
B.3.3 Influence on the Architecture Reconstruction
B.3.4 Removal Strategies
B.3.5 Formalisation

C Clustering Configurations
D List of Abbreviations
References

Own Publications
Supervised Theses

List of Figures

171
171
173

175
175
177
180

181
181
181
181
182
183
188
190
190
190
191
191
191
193
193
193
193
194
194

197

203

205

221

223

225

Contents

List of Tables 229

Index 231

XI

1. Introduction

Business information systems are one of the most pervasive, but also most
diverse, classes of software in our world. These systems support the daily
operation of many companies. They are used in a variety of tasks, including
human-resource management, process control, and accounting.

Business information systems have to perform complex tasks, addressing a
large number of requirements. Therefore, they are often large and complex
pieces of software consisting of millions of lines of code. This leads to high costs
in the creation and maintenance of these systems.

One way to address the complexity of these systems is the use of the component-
based software engineering (CBSE) paradigm [SGM02]. In CBSE, systems
are composed of ready-made, independently deployable software components.
These components can be connected to each other and communicate via well-
defined interfaces. This way, the complex functionality of the software can be
structured and distributed to a number of components. Third-party compo-
nents for specific tasks can be bought off-the-shelf and previously developed
components can be reused.

1.1. Evolution of Business Information Systems

An important trait of business information systems is their long life-span. They
are in use for many years, sometimes even as long as twenty or thirty years.
Systems that are critical for the operation of a business, such as process control
systems or banking software, cannot be easily exchanged or shut down. The
failure of such a system might cause high financial losses. In the case of process
control software, e.g. in a chemical plant, it might even incur danger to human
life. Nevertheless, new requirements or the discovery of programming errors
often necessitate the maintenance or extension of these crucial systems. This
activity is called software evolution [Leh80, Art88, MDO08]. Software evolution
accounts for a significant part of the total cost of a software system. According
to different studies, it is responsible for 40% to 90% of the total cost of software
development [LS80, Gla03, Som10].

Based on these observations, Lehman phrased his famous laws of software
evolution [Leh80, Leh96]. The first law states that a system “[...] must be
continually adapted else it becomes progressively less satisfactory [...]” [Leh80].
The constant change in the software over time leads to a phenomenon de-
scribed as software aging [Par94|, design erosion [vGBO02|, or architectural drift
[RLGBT'11]. This stepwise decline of software quality is caused by different
factors: changes and extensions often have to be carried out under a high time
and cost pressure, the existing documentation of the software may be insuffi-
cient, or the maintenance activity may have been delegated to inexperienced

1. Introduction

developers. Whatever the cause, design erosion leads to the fact that deficien-
cies are introduced into the software, the original architecture of the software
gradually becomes distorted, and the source code becomes more and more clut-
tered and obfuscated. Reussner and Hasselbring describe this as the ’piggyback
syndrome’:

“Gerade weil es so kostspielig ist, Software-Architekturen zu mod-
ifizieren, werden diese haufig nicht angepasst und stattdessen neue
Funktionalitét in nicht optimaler Form hinzugefiigt. Dadurch entste-
hen Software-Systeme mit dem 'Huckepack’-Syndrom:

e Viele Funktionalitdten wurden nachtraglich, oft unter Umge-
hung der vorgesehenen, aber nicht ganz adaquaten Schnittstellen
und durch Verletzung von Datenkapselungen, dem System hinzugefiigt,

e Code wird teilweise nicht mehr genutzt oder ist in dhnlicher
Form doppelt vorhanden,

e Code ist nicht in der Kompaktheit und fiir die Effizienz for-
muliert, wie es moglich wére.”

[RHO6, p. 134] !

Design erosion, in turn, complicates future extensions: Normally, a high-
quality software architecture is required for an effective reengineering. Design
erosion, on the other hand, reduces the quality of a system. The quality of
the software in this case is measured in terms of the compliance to generally
accepted design principles. For example, system elements should exhibit low
coupling and high cohesion [CK94] and components should communicate via
their interfaces [SGMO02]. If the existing architecture violates these principles,
this impedes software architect’s understanding of the system and may lead to
the introduction of even more problems or bugs. It leads to a vicious circle in
which bad software quality gives rise to new problems that further decrease the
quality. Lehman describes this problem in his seventh law: “The quality of E-
type systems? will appear to be declining unless they are rigorously maintained
and adapted to operational environment changes” [Leh96].

Thus, maintenance can mitigate the negative effects of design erosion. As
Bourquin and Keller argue, this does not only improve the architectural quality
but it also reduces costs:

!Translation from German: “Since it is so expensive to modify software architectures, they
are often not adapted. New functionality in sub-optimal form is added instead. This leads
to software systems with the ’piggyback’ syndrome:

e A lot of functionality is added to the system retroactively, often neglecting the provided,
not entirely adequate interfaces and breaking the data encapsulation.

e Code is partially not used anymore or is duplicated with minor differences.
e Code is not written as succinctly and as efficiently as possible.”

2E-type systems in the sense of Lehman are systems which are part of the real world in
contrast to simple algorithms.

1.2. Reverse Engineering of Software Architectures

“Solving those [architectural] problems leads to improvements that
ultimately help reducing costs, including:

e Further actions of perfective maintenance are facilitated.

e Extensions of the application are easier to develop and show a
lower defect rate.

e Existing components of the application are easier to reuse.”

[BKO7]

A large number of different architecture maintenance and reengineering ap-
proaches exists already. Many of them require an in-depth understanding of
the system. In order to detect architectural problems and design erosion, the
software architect has to know the software architecture that was intended by
the original developers. Many of the existing approaches like reflexion mod-
eling [MNS01, KLMNOG6], expect the developer to have at least some kind of
understanding of the system [PTVT10]. Sometimes, a complete architectural
description is needed [TGLHO00, LTCO02]. If no such description is available,
these techniques cannot be applied.

The architectural description on which the aforementioned approaches are
based on is supposed to stem from the original development, or it has to be
created ex-post by an expert. This is often an unrealistic assumption because
the architecture description is insufficient or incomplete in many cases and the
original developers are not available anymore [BMO06].

1.2. Reverse Engineering of Software Architectures

If neither experts nor sufficient, up-to-date documentation are available, the
software architect’s only starting point for understanding the system is the
source code itself. However, since business information systems often consist of
several millions of lines of code, it is infeasible to read all the code in order to
understand the system. Instead, an automatic approach to extract information
from the source code is necessary. As the architecture of the system is a good
starting point for developing an understanding, it is often the first artefact
that is extracted. This process is called architecture reconstruction [DP09] or
architecture recovery [MEGO3].

To support software architects in the task of understanding a system, many
(semi-) automatic approaches have been proposed over the years. They have dif-
ferent goals and carry out their analyses at different levels of abstraction. Sartipi

argues that “[... ijn a nutshell, the existing approaches to software architectural
recovery can be classified as clustering-based techniques and pattern-based tech-
niques [...]” [Sar03]. Reussner and Hasselbring also mention knowledge-based

reverse engineering as a third technique [RHO06, p. 153].

Clustering-based techniques try to reconstruct the architecture of software
systems by grouping the contained entities (e.g. classes or modules) into com-
ponents. The grouping is determined by some measure of similarity between
these entities [Lak97]. For example, a simple similarity metric would be the

1. Introduction

number of relations between two classes: Classes that have many relations are
grouped together. Ducasse and Pollet present an overview of these approaches
[DP09], and categorize them along different taxonomy axes. Due to the use
of metrics, which can be efficiently measured, clustering-based approaches are
usually very scalable. However, this advantage comes at the cost of abstrac-
tion. For example, the aforementioned number of relations metric does not
distinguish different kinds of relations, e.g. references and inheritance. There-
fore, clustering-based techniques cannot recover the intent of the clusters they
reconstruct [DP09].

In contrast, pattern-based techniques have the goal of detecting certain re-
curring structures, so-called patterns, in the system. The rationale behind this
idea is that the implementation of a certain pattern is linked to a specific de-
sign intent, the knowledge of which will enhance an engineer’s understanding
of the system. The most famous collection of software patterns are the Design
Patterns which are described in the seminal book by Gamma et al. [GHJV95].
In the following years, many other pattern collections have been proposed for
different domains [ACMO1, BHS07, SSRB00] and different levels of abstraction
[Bec07, BMR ™96, GMO05]. Dong et al. give an overview of different automatic
pattern detection approaches [DZP09]. In contrast to clustering-based tech-
niques, pattern-based approaches usually take more detailed information into
account. Thereby, they can deliver more precise results but are less scalable
than clustering-based techniques [SSLO1, BT04al.

Knowledge-based reverse engineering attempts to recover complete semantic
architecture descriptions by recognizing pre-defined clichés in control and data
flow graphs. However, the automated creation of complete semantic documen-
tation has by now been largely deemed infeasible [RHO06, p. 153].

1.3. Problem Statement

The properties of business information systems discussed in Section 1.1 lead
to several problems in the application of state-of-the-art reverse engineering
approaches.

1. Architecture reconstruction is based on invalid assumptions for long-living
business information systems As described above, business information sys-
tems have a long life-span and have to be constantly adapted and evolved.
If no up-to-date architectural documentation is available, it has to be recon-
structed first in order to enable a system adaptation. However, state-of-the-art
architecture reconstruction techniques are based on the assumption that certain
component-based design rules and principles have been adhered to during the
development of such a system. For example, it is assumed that components
communicate only via their interfaces. Even if this is true in the initial release
of a system, software aging and design erosion can lead to the neglect of these
principles.

In that case, architecture reconstruction techniques yield adulterated results
because their assumptions are invalid for the system under analysis. In this

1.4. Solution Overview

thesis, I call these architecture-related problems which influence architecture
reconstruction techniques design deficiencies.

2. Deficiency detection does not scale without proper focus Design defi-
ciencies such as the neglect of component-based design principles can in prin-
ciple be detected through the application of pattern-based reverse engineering
techniques. However, the application of such approaches to complex business
information systems is impractical. Business information systems often consist
of millions of lines of code but pattern-based reverse engineering approaches do
not scale well [SSLO1, BT04a]. Without information about the system archi-
tecture, the software architect cannot focus the deficiency detection of smaller
parts of the system.

3. Pattern detection results are not manageable Another problem of pattern
detection approaches is that they can yield hundreds or thousands of detection
results [TSGO04]. In contrast to a reconstructed architecture, which attempts to
provide a coherent overview of the system’s components and their connections,
pattern occurrences are unconnected. Each detected pattern occurrence stands
for itself and the software architect may have a hard time to distinguish the
relevant occurrences from the less relevant, incomplete or incorrect ones [GD12].
Many existing approaches require an expert to validate detected problems and
provide additional insight [SPL03, KOV03]. Even if such an expert is available,
he has to examine the detected occurrences one by one which is very tedious.

1.4. Solution Overview

To solve the problems identified in the previous section, I propose an approach
called Archimetriz. Archimetrix combines clustering-based and pattern-based
techniques to allow for a scalable analysis of component-based software systems.
This section gives an overview of the approach and explains how it solves the
previously identified problems.

Figure 1.1 illustrates the reengineering process with Archimetrix. The process
begins with the clustering-based architecture reconstruction in Step 1 which
reconstructs an initial software architecture of the system. The architecture
consists of a number of components and their connections. In Step 2, the com-
ponents that were reconstructed are analysed with respect to their likelihood of
containing design deficiencies. Components that are likely to contain such defi-
ciencies are regarded as relevant for Step 3, the design deficiency detection. The
pattern-based detection is executed for a relevant subset of the reconstructed
components (as opposed to carrying out the detection on the whole system)
which improves its scalability. The results of the deficiency detection are then
analysed and ranked in Step 4, the design deficiency ranking. This step pri-
oritises the detected deficiency occurrences with respect to their influence on
the reconstructed architecture. The software architect can then decide which
of those deficiency occurrences are to be removed in Step 5, the deficiency

1. Introduction

1. Architecture
Reconstruction

2. Component
Relevance Analysis

3. Design Deficiency
Detection

5. Deficiency
Removal

4. Design
Deficiency Ranking

Figure 1.1.: Overview of the reengineering process with Archimetrix

removal. After the removal, Step 1 is repeated. The newly reconstructed archi-
tecture may now differ from the initially reconstructed one because the removed
deficiency occurrences no longer influence the clustering. From here, the soft-
ware architect can either end the process or can repeat it, thereby iteratively
improving the architecture.

The suggested process solves the problems discussed in Section 1.3 as follows:

1. Reconstruction of an architectural description Archimetrix uses a stan-
dard clustering approach to reconstruct the software architecture of a given
system. This allows a software architect to get an overview of a system even if
no other information sources are available, e.g. an architecture documentation
or the original developers.

2. Detection of design deficiencies which influence the architecture recon-
struction A major problem of clustering techniques is the influence of the
reconstructed software architecture by design deficiencies. Bourquin and Keller
observe that design erosion and architecture violations are “[...] an architecture
smell? whose detection can largely be automated and which has proven to be key
to high-impact refactorings [...]” [BKO07]. However, techniques that detect such
problems often require an architectural representation of the software system
which is not available in many cases [BM06]. The use of clustering techniques in
Archimetrix provides exactly such a representation which allows for the detec-
tion and removal of design deficiencies. Subsequent architecture reconstruction
attempts may then yield a different architecture that is less influenced.

3. Relevance analysis identifies good candidate components for the defi-
ciency detection Many pattern detection techniques suffer from scaling issues

3The authors use the term ’architecture smell’ following the definition by Roock and Lippert.
Roock and Lippert explain that smells indicate conspicuous features in a system and that
architecture smells therefore may lead to extensive refactorings [RLO04].

1.5. Application Scenarios

in large systems. The Archimetrix process arranges for the deficiency detection
to be executed after an initial clustering. This allows the software architect to
select components from the reconstructed architecture and focus the deficiency
detection to this selection. The component relevance analysis determines which
components are a worthwhile input for the deficiency detection.

4. Deficiency ranking identifies the most severe problems Even if the detec-
tion scope of the deficiency detection is limited by the selection of components,
the detection can possibly yield a large number of results [TSGO04]. Archimetrix
ranks these detected deficiency occurrences according to several criteria, and
thereby determines which deficiency occurrences are the most severe. The soft-
ware architect can then concentrate on the removal of these critical deficiency
occurrences.

1.5. Application Scenarios

Archimetrix can be employed in a number of different application scenarios.
This section provides an overview of how Archimetrix can support them.

Architecture improvement and documentation In this main application sce-
nario of Archimetrix, the software architect wants to reconstruct an unadul-
terated architectural model of the system under analysis. In order to
obtain this model, the architect detects and removes design deficiencies
which would otherwise influence the architecture reconstruction. By ex-
ecuting multiple iterations of architecture reconstruction and deficiency
removal, the software architect can successively improve (1) the under-
standing of the system and (2) the architecture of the system by remov-
ing the deficiencies. Afterwards, the architecture of the system is formally
documented in the reconstructed model. This can be the basis for a num-
ber of further maintenance activities discussed in the following.

Improved modularisation Once the component-based architecture of the sys-
tem under analysis has been reconstructed, single components from the
created architecture can be extracted and reused in other systems [BPD12].
This can be an important use case for the reengineering of legacy systems
as well as for the creation of software product lines [KK11].

Architecture reengineering When components are identified, the system can
be reengineered better. For example, components can be adapted in-
dependently once their boundaries are known to the software architect.
They can also be replaced by components off-the-shelf (COTS) or can
be adapted to new paradigms (e.g. service-oriented architecture [OSLO5,
UZ09, EFH" 11a, FHR11a]) or new technology, like cloud computing [FH10]
or web technology [ACLO05, Zdu05].

Creation of analysis models The reconstructed model consists of components
in the strict sense of Szyperski’s component definition [SGMO02]. It en-
ables the reconstruction of hierarchical component architectures. Thus,

1. Introduction

it enables the creation of analysis models which can serve as an input for
further analyses, e.g. for a performance prediction approach [BKR09].

Architecture conformance checking The reconstructed architecture can also
be used for conformance checking. Once a satisfying architecture has been
reconstructed, it can be used as a reference point for future development.
When future extension and adaptation necessitate changes to the system,
the resulting architecture can always be compared to this recovered archi-
tecture in order to check whether the changes caused the architecture to
erode. This way, appropriate countermeasures, e.g. a refactoring, can be
arranged. (Reussner and Hasselbring compare this scenario to construc-
tion surveillance from the engineering domain [RHO06, p. 19].)

1.6. Scientific Contributions

This thesis is concerned with the following research questions:

RQ1 Do design deficiencies that stem from the neglect of component-based
design principles influence architecture reconstruction techniques?

RQ2 Can the integration of pattern detection techniques into the architecture
reconstruction process help in detecting such an influence?

RQ3 How can relevant design deficiencies be discovered, documented, and for-
malised?

RQ4 How can detected deficiencies be removed and can the influence of the
removal on the architecture be predicted?

RQ5 Can architecture reconstruction techniques be helpful in mitigating the
scalability issues of pattern detection techniques?

By answering these questions, this thesis provides support in retaining high-
quality software architectures in the code base of business information systems.
Thereby it enables software architects to use standard architecture reconstruc-
tion techniques whose utility would be otherwise limited due to design defi-
ciencies. This paves the way for further reengineering tasks which rely on the
availability of precise architecture documentation.

Note that this thesis does not present new design principles for the develop-
ment of component-based systems. The principles whose neglect is examined in
this thesis are rather a selection of commonly accepted design principles from
literature [ACMO01, SGM02, Fow02].

1.7. Example System

In this section, I present a fictional business information system. It is a component-
based trading system which will serve as an example system throughout this
thesis. Figure 1.2 shows the trading system’s architecture.

1.8. Structure

2]
Logistics

é ILogistics
|
1

Y

£ g] 8]]
IOrder
Payment —Qﬂﬁ} Accounting —C fffff {} Store —Qﬂﬁ —| Ul
IPayment IStoreQuery|

A L &

I U RN U
CP IReporting (? IDatabase \)C? INetwork

]

Controlling Database Network

Figure 1.2.: An example business information system

The system consists of eight components. Its central parts are the two compo-
nents Accounting and Store. They are complemented by components for typical
tasks such as Logistics, Payment, Controlling, Database management, Network infras-
tructure, and user interface (Ul). The architecture of the system is intentionally
simplified and is only used for illustrative purposes. However, it strongly resem-
bles the architecture of the Common Component Modeling Example (CoCoME)
[RRMP08]. CoCoME also represents a component-based trading system which
was designed as a benchmark for architecture analyses approaches. It is used
for the validation of Archimetrix in Chapter 10.

1.8. Structure

The thesis is structured into twelve chapters. Chapter 2 lays the foundation
for the remainder of the thesis, and discusses related work. Chapter 3 clarifies
the notion of design deficiencies, and introduces the Transfer Object Ignorance
design deficiency as a running example. The Archimetrix process is presented
in Chapter 4. Chapter 5 explains how the architecture reconstruction approach
used in Archimetrix works. It also analyses the influence of design deficiency oc-
currences on the architecture reconstruction with clustering-based techniques.
Chapters 6 to 9 deal with the different steps of the Archimetrix process: While
the component relevance analysis is treated in Chapter 6, the deficiency de-
tection and its extensions are discussed in Chapter 7. Chapter 8 illustrates
the ranking of deficiency occurrences. Chapter 9 presents the removal of defi-
ciency occurrences. The whole approach is validated in Chapter 10. Finally,
Chapter 11 concludes the thesis, and discusses possible future work.

The appendices contain technical information. Appendix A presents the var-

1. Introduction

ious meta models that are the foundation for the analyses and transformations
in Archimetrix. While Chapters 3 to 9 use one running example of a design
deficiency, Appendix B contains detailed descriptions of all deficiencies used in
the validation. Finally, Appendix C documents the metric weights used in the
different validation scenarios.

10

2. Foundations and Related Work

This chapter presents the foundations of this thesis and discusses related work.

Hybrid
Reverse
Engineering
Approaches
(Section 2.4)

Software Architecture
Reconstruction
(Section 2.1)

Pattern Detection
(Section 2.2)

Problem
Detection &
Removal
(Section 2.5)

Architecture
Reengineering
(Section 2.6)

Refactoring &
Reengineering
(Section 2.3)

Figure 2.1.: Overview of the research areas related to this thesis

Figure 2.1 illustrates the different research areas that form the basis of
this thesis: software architecture reconstruction (SAR), pattern detection, and
refactoring and reengineering. Archimetrix combines these three areas and is
therefore depicted at their intersection in the centre of Figure 2.1. This chapter
presents the terminology and the gives a brief overview of each of this areas in
Sections 2.1 to 2.3.

There is currently no approach that combines SAR, pattern detection, and
reengineering as Archimetrix does. Therefore, the most closely related works
lie in the intersections of two of the research areas.

There are several approaches which propose to combine SAR with pattern
detection. These hybrid reverse engineering approaches are discussed in Sec-
tion 2.4. As the detection of design problems in a system indicates reengineering
opportunities, it is self-evident to augment pattern detection techniques with
the means to remove detected problems. Section 2.5 explains these approaches.
Finally, there is a lot of work that focuses on recovering the architecture of
legacy systems in order to maintain, reengineer, or migrate them. Section 2.6

11

2. Foundations and Related Work

investigates approaches in this area, grouping them into the sub areas of archi-
tecture conformance checking, architecture migration and modernisation, and
architecture modularisation.

2.1. Software Architecture Reconstruction

Taylor et al. motivate software architecture reconstruction as follows:

“A good architectural model offers the basis for maintaining in-
tellectual control of the application. If no architectural model is
available, or if the model in existence is not consistent with the
implementation, then the activity of understanding the application
must proceed in a reverse-engineering fashion. That is, understand-
ing the application will require examination of the source code and
recovery of a model that provides adequate intellectual basis for
determining how the needed changes can be made.” [TMD09]

Consequently, an architectural model is the starting point for the understand-
ing of a software system and also the basis for reengineering activities. Ever
since the influential book by Shaw and Garlan [SG96], the topic of software
architecture has attracted a lot of research interest. Therefore, a diverse vo-
cabulary has developed over the years. The following section defines the most
common architecture-related terms that are used in this thesis. Afterwards, an
overview of the methodology of SAR is given, followed by a description of the
integration of SAR in Archimetrix.

2.1.1. Terminology

This section presents the terminology which is used in this thesis with respect
to software architecture in general and its reconstruction in particular.

Software Architecture The IEEE defines the term software architecture as
follows:

“The fundamental organization of a system embodied in its com-
ponents, their relationships to each other, and to the environment,
and the principles guiding its design and evolution.” [IEEQO]

It is important to note that for a given system, there is no such thing as the
correct architecture. As there are different stakeholders with different concerns,
there are also different viewpoints of the architecture. In the context of software
architecture reconstruction most often a static viewpoint is assumed which is
confined to the recovery of system’s components and their connections.

Software component The term software component has been used in many
approaches, projects, and standards, yet there is no universally accepted defi-
nition what a software component is.

The definition of a software component used in this thesis is in line with the
definition by Szyperski:

12

2.1. Software Architecture Reconstruction

“A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A soft-
ware component can be deployed independently and is subject to
composition by third parties.” [SGMO02, p. 34]

The components Szyperski describes are typically used in business informa-
tion systems. They have clearly defined interfaces and are solely communicating
via those interfaces. Interfaces define a number of operations and operations
exchange data only via so-called data transfer objects, i.e. objects which only
have fields of primitive types like integer. This leads to a clear decoupling
of components and promotes component encapsulation, interchangeability, and
reuse. It also increases the maintainability of the architecture.

There are a number of frameworks available which make components (and
sometimes also their connectors) first-class entities in the software development
process. On the one hand, there are commercial frameworks which were (at
least for the most part) developed in industry. Examples include Microsoft’s
COM [Mic12], CORBA [Obj06], and SCA [MR09]. On the other hand, there
are several academic approaches, for example Palladio [BKR09], FRACTAL
[BCL106], and SOFA [BHP06]. A comparison of these frameworks is outside of
the scope of this thesis. The survey by Lau and Wang [LWO07] is a good starting
point, however. It is also possible to mimic architecture concepts in languages
that have no dedicated support for it (e.g. in Java).

A component is an entity of the architecture level and therefore more ab-
stract than entities on the implementation level, like classes. A component can
comprise a number of implementation level entities. In that case, it is called
primitive component. A component can also be recursively composed of other
components in which case it is referred to as a composite component.

Note that this notion of a component is different from the definition of com-
ponents in other approaches like the one by Keller and al. [KSRP99] where each
class is viewed as a component of the software. It also differs from the notion
used in embedded systems where components are often active and communicate
via asynchronous message-passing.

Concrete Architecture According to the taxonomy by Ducasse and Pollet,
the concrete architecture of a software is the “[...] architecture that is derived
from the source code [...]” [DP09]. It must be noted that this derivation process
always introduces a certain degree of inaccuracy into the derived architecture.
This may be due to human misjudgement, to the imprecision of automated
heuristic analyses, or because of deliberate abstraction steps. Therefore, the
concrete architecture can never be definitive. On the contrary, there may be a
number of concrete architectures for a software system that are equally valid
for different scopes, purposes, or stakeholders.
The concrete architecture is sometimes also called as-built architecture [OSLO05],

actual architecture [KLMNOG6], or implemented architecture [RLGB111].

Conceptual Architecture The conceptual architecture is “[...] the architec-
ture that exists in human minds or in the software documentation [...]” [DP09].

13

2. Foundations and Related Work

Ideally, it exactly matches the concrete architecture, e.g. because the concrete
architecture is derived step-by-step from the conceptual architecture. However,
more often than not the concrete architecture deviates from the conceptual ar-
chitecture. This can happen for a number of reasons such as time pressure,
ignorance on part of the designers, or technical limitations. Even if the ini-
tial implementation of a system adheres to the conceptual architecture, later
changes may gradually lead to the concrete and conceptual architecture drifting
apart (see Architectural Drift).

The conceptual architecture is also known as as-designed architecture [OSLO5],
planned architecture [KLMNOG6], or designed architecture [RLGB'11].

Architectural Drift According to Lehman’s laws of software evolution, soft-
ware has to be changed during its lifetime in order to remain useful [Leh80,
Leh96]. It has to be adapted to new requirements or a changing environment
and discovered defects have to be removed. However, these changes, necessary
as they may be, always incur the risk of violating the original conceptual ar-
chitecture. When the original architecture was not built to cater for a new
requirement, e.g. distributed execution of an application, it is very difficult to
realise this requirement in the confines of the old architecture. When the ar-
chitecture is consequently adapted, however, is deviates from the documented,
conceptual architecture. In many cases, time pressure or simple neglect prevent
the adaptation of the documentation. Over time, the concrete and conceptual
architecture drift more and more apart. This phenomenon is called architectural
drift [RLGBT11].

Architectural drift is also sometimes referred to as software aging [Par94],
design erosion [vGBO02], or architecture degradation [TMDO09]. The term archi-
tectural drift refers to the increasing difference between conceptual and concrete

architecture as a whole. According to Rosik et al., “[...] individual discrepancies
[between conceptual and concrete architecture] are often referred to as viola-
tions or inconsistencies [...]” [RLGB*11].

2.1.2. Overview of the Methodology
Taylor et al. describe the methodology of architecture reconstruction as follows:

“A common approach to architectural recovery is clustering of the
implementation-level entities into architectural elements. Based on
the approach used for grouping source code entities, such as classes,
procedures, or variables, software clustering techniques can be di-
vided into two major categories: syntactic and semantic clustering.”
[TMDO09, p. 142f]

They distinguish syntactic clustering on the one hand which uses only static
information that can be derived from the source code. On the other hand, se-
mantic clustering also employs domain knowledge and behavioural information
from the program’s execution.

Both, syntactic and semantic clustering are based on a number of metrics.
Syntactic clustering could, for example, measure the coupling of two classes to

14

2.2. Pattern Detection

determine if they should be assigned to the same architectural element or not.
In contrast, semantic clustering could analyse the number of interactions be-
tween two elements at run-time. In most architecture reconstruction approaches
several metrics are aggregated to arrive at a clustering decision.

A big advantage of these metric-based clustering approaches is that metrics
“[...] are known to scale up well” [DDL99]. Thus, it is possible to create an
architectural overview quickly even for large systems. A downside of clustering
approaches is the concept assignment problem [BMWO93]. It means that “[...]
even if correct and complete structural and behavioral information about the
system were available to a clustering technique, a key challenge that remains is
recovering design intent and rationale.” [TMDO09, p. 143]. Just from assigning
system elements to components, it is not necessarily clear which component
plays which role in a system.

2.1.3. Software Architecture Reconstruction in Archimetrix

The reconstruction of the software architecture from source code is a central
point in the Archimetrix process. Conceptually, any clustering-based SAR ap-
proach which reconstructs a component architecture of the system under anal-
ysis could be integrated into Archimetrix. A recent overview of architecture
reconstruction techniques is presented by Ducasse and Pollet [DP09].

I decided to use the Software Model eXtractor SoMoX [CKKO08, Krol0,
KSB™11] which is an architecture reconstruction approach developed at the
Forschungszentrum Informatik (FZI) in Karlsruhe. SoMoX uses a whole range
of metrics to iteratively reconstruct the architecture of a system from its source
code. SoMoX is focused on reconstructing architectural views from the static
viewpoint, e.g. a repository view, containing the different reconstructed com-
ponents and a service architecture view, showing how these components are
statically connected in the system.

I chose SoMoX for various reasons. First, it reconstructs rigorous architec-
tural models which follow the strict component definition by Szyperski (see
Section 2.1.1). Second, expertise and support were easily available for me.
On a technical level, the use of Eclipse and EMF in SoMoX allowed an easy
integration with the other parts of Archimetrix.

The software architecture reconstruction process with SoMoX is explained in
detail in Chapter 5.

2.2. Pattern Detection

In the context of this thesis, pattern detection means searching for occurrences
of a pattern in a system. Detecting a pattern in a system can provide the
architect with valuable information. If it is a “good”, desirable pattern, it may
reveal part of the original developer’s intentions. If it is a “bad” solution on
the other hand, it signals an opportunity for improving the software.

Similar to the previous section, this section first introduces some pattern-
related terminology. Then, the general methodology of pattern detection is

15

2. Foundations and Related Work

explained. Finally, the application of pattern detection in Archimetrix is dis-
cussed.

2.2.1. Terminology

Since software patterns have been the subject of research for nearly twenty
years now, a very diverse vocabulary has developed in the community. Denier
et al. attempt to give an overview of this vocabulary [DKGO8]. In this section,
I present the pattern-related terminology that is used throughout this thesis. It
is in line with the terminology used in Reclipse, the pattern detection approach
used in Archimetrix (see Section 2.2.3).

Design Pattern / Architectural Pattern / Implementation Pattern Design
patterns are “good” solutions to frequently recurring software engineering prob-
lems. One of the first collections of design patterns was the book Design Pat-
terns by Gamma, Helm, Johnson, and Vlissides [GHJV95]. It presents 23
well-proven solutions to recurring problems in object-oriented software design.
According to Gamma et al., a pattern is “[...] a solution to problem in a con-
text” These solutions are presented using the same template which is structured
into categories like problem, intent, structure, behavior, pros and cons, etc. All
patterns are defined on roughly the same level of abstraction, i.e. the presented
solutions are at the design or class level. Every pattern only comprises a few of
classes and their relationships.

The first book in the famous Pattern-Oriented Software Architecture (POSA)
series [BMR196] took on a broader view and presented patterns at different
abstraction levels. It contains patterns that represent good solutions at the
architectural level, like Pipes and Filters, as well as design patterns and im-
plementation patters or idioms. Other books in the series contain patterns for
certain domains like concurrency [SSRB00], resource management [KJ04], or
distributed computing [BHS07].

Another collection of patterns at the implementation level is presented by
Beck [Bec07].

AntiPattern / Bad Smell / Design Deficiency AntiPatterns were introduced
by Koenig [Koe95] and made famous by Brown et al. BMMM98]. According to
the authors, an AntiPattern “[...] describes a commonly occurring solution to a
problem that generates decidedly negative consequences” [BMMMO8, p. 7]. In
contrast to the ’good’ patterns, AntiPatterns do not represent the solution to a
problem - they are the problem. Nevertheless, they usually come with advice
on how they can be removed. Similar to the POSA books, Brown et al. present
AntiPatterns at different levels of abstraction. They include even commonly
occurring problems in the management of software projects. The "bad’ coun-
terpart to implementation patterns on the very low level of abstraction are bug
patterns (e.g. [All02]).

The term bad smell was introduced by Fowler in his book on refactoring.
Bad smells give “[...] indications that there is trouble that can be solved by a
refactoring” [Fow99, p. 75]. In contrast to Anti Patterns, bad smells are only

16

2.2. Pattern Detection

indications instead of concrete problems. Bad smells are intentionally charac-
terised by fuzzy statements like “a class has too many responsibilities” or “a
method has too many parameters”. Fowler explicitly leaves the decision if ac-
tion should be taken to “[...] informed human intuition” [Fow99, p. 75]. An
important point to note about bad smells according to Fowler is that they can
all be removed by refactorings. Refactorings “[...] do not alter the external
behavior of the code yet improve its internal structure” [Fow99, p. xvi]. Con-
sequently, the bad smells are at a low level of abstraction which allows for such
statements. An overview on state of current knowledge about bad smells given
by Zhang et al. [ZHB11].

In general, Archimetrix can detect arbitrary patterns in source code (see
Chapter 7). The focus in this thesis, however, lies on the detection of pat-
terns that influence the architecture reconstruction. In order to distinguish
these patterns from the very general AntiPatterns and from the fuzzy notion
of bad smells, they are referred to as design deficiencies in this thesis. Design
deficiencies are violations of component-based design principles, addressing el-
ements on both levels of abstraction: the class level and the component level.
One example is the call of a method which is not explicitly made available
through an interface (Interface Violation, see Appendix B.1). As such, design
deficiencies are not “bad” designs, they do not impact the functionality of the
system. Calling a method is not forbidden, after all. But in combination with
component-based design principles (components must communicate via their
interfaces), a method call may not always be allowed. An architecture recon-
struction approach which relies on these principles may be influenced by the
presence of such design deficiencies (see Chapter 5).

Pattern Description / Deficiency Description A pattern description is the
presentation of a pattern that is meant to explain the idea behind and the
relevant aspects of a pattern to a human reader. Pattern descriptions can be
found in all textbooks that introduce new patterns, e.g. [GHIJV95, BMMMO98,
BMR196]. Pattern descriptions usually make use of templates that are divided
into parts like intent, consequences, and implementation. They use prose text,
(sometimes informal) diagrams, and examples to illustrate the pattern and its
application. In particular, pattern descriptions are unsuitable for automated
processing, e.g. in pattern detection approaches, as they lack a formal founda-
tion.

Pattern Formalisation / Deficiency Formalisation A pattern formalisation is
a representation of a pattern with the goal to make it automatically processable,
e.g. for their automated detection. A pattern formalisation is usually derived
from a pattern description by an expert. It often only reflects a subset of the
information given in the pattern description. This subset contains the elements
that can be detected in the software such as the structure and behaviour of a
pattern. Many different approaches have been presented to formalise pattern
descriptions. The book by Taibi gives an overview of some of them [Tai07].

17

2. Foundations and Related Work

Pattern Candidate / Deficiency Candidate A pattern candidate is a part
of a software system which is identified as the occurrence of a pattern by an
automated pattern detection mechanism. As the detection mechanism is based
on the pattern formalisation which only reflects a part of the pattern description,
a candidate may actually be detected incorrectly. For example, a candidate may
exhibit the same structure as the pattern formalisation but an inspection reveals
that it was not intended to be an implementation of that pattern. In this case,
the candidate is a false positive. On the other hand, a correctly detected pattern
candidate is called a true positive.

Pattern Occurrence / Deficiency Occurrence A pattern candidate which is
a true positive is also called a pattern occurrence. In literature, it is also known
as pattern instance or pattern implementation.

Pattern Role Patterns consist of different elements which have different re-
sponsibilities. These responsibilities are also called pattern roles and provide
a meaningful term to refer to an element and its responsibility. For example,
the famous Observer pattern basically consists of two basic roles [GHJV95,
p. 293ff]: A subject which has a state and an observer which can register with
the subject and which is notified whenever the state of the subject changes.
These roles can also be refined, for example by stating that there are two
classes who play the roles of the abstract subject and the abstract observer,
defining the corresponding interfaces for the interaction. In addition, there can
be arbitrarily many classes which play the role of either a concrete subject or
a concrete observer, implementing specific behaviour. Roles cannot only be
played by classes but also by other elements of the system, e.g. by methods.

When a pattern occurrence is detected, its different elements are annotated
with the roles that they play in that pattern. This allows the software architect
to understand the responsibilities of all the different elements, when he inspects
the detected pattern occurrences.

2.2.2. Overview of the Methodology

In order to detect pattern occurrences in a software system, a pattern detec-
tion mechanism and pattern formalisations are needed. Although, the formal-
isations can be hard-coded into the detection mechanisms, most approaches
allow to specify them separately. Patterns are usually formalised with domain-
specific languages. Taibi presents a selection of different pattern formalisation
techniques [Tai07].

Pattern detection approaches can be classified by the type of information
they use for the detection. Some only take the static structure of the code
into account: The source code is parsed and patterns are detected based on the
formalisations of their structural properties (e.g. classes and their relationships).
This is method is called static analysis or structural analysis. Other approaches
also formalise the expected behavior of patterns and analyse the software’s
run-time behaviour accordingly. For this, execution traces have to be collected
which can then be compared to the expected behaviour of each candidate. This

18

2.3. Refactoring and Reengineering

method is called dynamic or behavioural analysis. Because patterns can be
quite similar (e.g. the State and the Strategy pattern [GHJV95] are structurally
equivalent), some approaches combine static and dynamic analysis methods.
They use a structural analysis to identify pattern candidates and analyse the
candidates’ behaviour afterwards to identify the true positives.

A general problem of pattern detection approaches is the scalability. Because
very fine-grained information is considered during the detection, the analysis of
large systems can take hours or days [SSLO1, BT04a]. In addition, the number
of detection results may become unmanageable for large systems. A system
with millions of lines of code may contain hundreds or thousands of pattern
occurrences [TSGO04]. In that case, the value of the pattern detection decreases
rapidly because the software architect cannot manage the large number of re-
sults effectively.

2.2.3. Pattern Detection in Archimetrix

In Archimetrix, pattern detection is used to identify design deficiencies, i.e.
violations of well-known design principles and rules. Similar to software ar-
chitecture reconstruction, any pattern detection approach could be used in
Archimetrix, conceptually. The only requirement is that it allows for the specifi-
cation of the patterns to detect. Dong et al. compare different pattern detection
approaches considering aspects like analysed information, data representation,
or analysed systems ! [DZP09).

I decided to integrate Reclipse into Archimetrix. Reclipse was developed in
the Software Engineering Group at the University of Paderborn under my par-
ticipation [vDMT10b, vDMT10a, vDT10]. It uses graph matching for the struc-
tural detection of user-specifiable patterns in abstract syntax graphs [NSW*02,
Nie04]. The static properties of the design patterns or design deficiencies to be
detected are formalised as graph patterns. Reclipse then tries to find isomorphic
matches for these graph patterns in the abstract syntax graph of the system
under analysis. These matches are then presented to the user as pattern/defi-
ciency candidates. Reclipse also provides the means to execute a behavioural
analysis which takes run-time information into account [Wen04, Wen07].

Reclipse is described in more detail in Chapter 7.

2.3. Refactoring and Reengineering

This section begins with an overview of the terminology concerning refactor-
ing and reengineering. As this area is more diverse than architecture recon-
struction or pattern detection, no general methodology can be identified. Sec-
tion 2.3.2 discusses the application of refactoring and reengineering techniques
in Archimetrix.

'Dong et al. refer to the detection of pre-defined patterns as “pattern mining” whereas the
term “pattern detection” is used in this thesis.

19

2. Foundations and Related Work

2.3.1. Terminology

The terminology presented in this section is largely based on the definitions by
Chikofsky and Cross [CC90]. Therefore, Figure 2.2 which relates the different
terms in the field to each other is adopted from their publication.

Requirements Design Implementation
Forward Forward
engineering engineering
s e e -
Reverse Reverse
engineering engineering
- «——— - - —

Redocumentation,

Restructuring Restructuring Restructuring

Figure 2.2.: Reengineering terminology (Figure adapted from [CC90])

Chikofsky and Cross identify three phases in the development of software:
(collection of)) requirements, design, and implementation. In classical software
development, these phases occur exactly in that sequence which is called forward
engineering by the authors. In contrast, they call the reversed process, i.e.
going from the implementation back to the requirements, reverse engineering.
Changes within one of these phases are termed restructuring. This use of the
term reengineering was later adopted by Demeyer et al. [DDNO03]. It deviates,
however, a little from the definition by Sommerville who sees reengineering as an
activity that “[...] takes place after a system has been maintained for some time
and maintenance costs are increasing” [Som10]. In Sommerville’s definition, the
initial construction of the system is not contained in the reengineering life cycle.

Reengineering According to Chikofsky and Cross, “[...] reengineering [...] is
the examination, and alteration of a subject system to reconstitute it in a
new form the subsequent implementation of the new form” [CC90]. Therefore,
reengineering is the combination of reverse engineering (in order to understand
the system) and forward engineering or restructuring (in order to change it). A
related notion in this area is software evolution which describes the reengineer-
ing of software as the consequence of software aging [Leh80, Art88, MDO0S].

Reverse engineering “Reverse engineering is the process of analyzing a sub-
ject system to identify the system’s components and their interrelationships

20

2.3. Refactoring and Reengineering

and create representations of the system in another form or at a higher level
of abstraction” [CC90]. Following this definition, both architecture reconstruc-
tion and pattern detection fall into this category. Reverse engineering is strictly
non-invasive, i.e. the system is not changed but only examined.

Forward engineering “Forward engineering is the traditional process of mov-
ing from high-level abstractions and logical, implementation-independent de-
signs to the physical implementation of a system” [CC90]. Therefore, forward
engineering is the 'normal’ activity of software engineers. Reverse engineering,
in contrast, is a more specialised activity that only happens in some projects.
In the context of reengineering, the term forward engineering is also sometimes
used to describe just the modification of an existing system.

Restructuring / Refactoring Chikofsky and Cross state that “restructuring
is the transformation from one representation form to another at the same rela-
tive abstraction level, while preserving the subject system’s external behavior”
[CCI0]. This is in line with Fowler’s definition of the term refactoring: “Refac-
torings do not alter the external behavior of the code yet improve its internal
structure” [Fow99, p. xvi].

However, while ’refactoring’ is perceived to be a behavior-preserving change
in literature, the term restructuring is also used to describe large-scale modifi-
cations that may also alter or extend the system’s behavior. This is also called
modernisation in some cases [VHFGT11].

Removal Strategy The removal of AntiPatterns or bad smells is sometimes
called “refactoring” in literature. This means refactoring in the sense that the
software structure is improved but the externally visible behaviour is preserved.
In other cases, this constraint is a little more relaxed such that “in most cases,
the goal is to transform the code without impacting correctness” [BMMMO98|.

In the process described in this thesis, the focus is on the reconstruction
of a software architecture. Thus, the main goal is to disentangle the possibly
complex interrelations between classes and components to obtain a clear and
structured representation of the architecture. Therefore, we not only allow
reengineering operations that leave the behavior untouched. In contrast, we
explicitly include remowal strategies that may change the behavior but may
nevertheless improve the system’s structure, e.g. because they remove an illegal
method call between two components. Of course, the software architect has to
be aware of this and has to restore the system behavior if necessary.

2.3.2. Reengineering in Archimetrix

In Archimetrix, reengineering comes into play to remove previously detected
design deficiency occurrences. On the one hand, deficiency occurrences can be
removed by automated transformations. On the other hand, this can also be
accomplished by manually changing the source code.

Automated deficiency removal is convenient from the software architect’s
point of view. Executing a pre-defined transformation can remove a deficiency

21

2. Foundations and Related Work

occurrence quickly and reliably and the architect does not have to know the
specifics of the removal strategy. In this thesis, story diagrams are used for this
purpose [vDHP*12] (see Chapter 9). On the other hand, the transformations
have to be designed by an expert (possibly the same expert who formalises the
deficiencies) and have to be provided in a library together with the deficiency
formalisations. Only a limited amount of transformations can be provided and
it may be that none of them matches the software architect’s requirements. In
this case, a manual removal of the deficiency occurrence is inevitable.

Manually removing deficiencies from the source code is more tedious and
error-prone than applying automatic transformations. But it allows for more
flexibility since the software architect can also apply removal strategies that
were not provided in a library.

2.4. Hybrid Reverse Engineering Approaches

This section presents approaches that combine architecture reconstruction tech-
niques with pattern detection. Their focus is not on the reengineering of the
system or the removal of deficiencies.

Demeyer et al. present Code Crawler which is a hybrid reverse engineering ap-
proach that combines metrics with program visualisation techniques [DDL99].
The authors demonstrate how well-known metrics like lines of code or number
of methods can be visualised using different types of graphs. They argue that
this helps the developer to get a better overview of the system and, for example,
identify problems more quickly. the focus on metrics makes their approach very
scalable.

Tzerpos and Holt note that structural properties of the system under analysis
should be considered during clustering [TH00]. Therefore, they define a number
of “subsystem patterns” which are detected by their clustering algorithm. These
patterns are hard-coded and are not meant to be extended by the user of their
clustering tool. They do not consider deficiencies which could influence the
clustering.

Mancoridis et al. present a web-based portal site which provides a number of
reverse engineering tools to its visitors. Users can upload their own source code
and select different analysis methods such as clustering, code browsing, code
metrics, or visualisation [MSCT01]. They deliberately do not suggest a specific
process for the combination of the tools as they want to leave this decision to
the user.

Sartipi [Sar03] uses data mining techniques to structure a graph represen-
tation of a program. Then he defines architectural patterns (or, as he calls
them, queries) on the resulting graph which are evaluated by graph matching.
The queries are focused on simple architectural properties like the number of
relations to a certain component and are not as expressive as the structural
patterns used in Archimetrix.

Bauer and Trifu [BT04a, BT04b] use a combination of pattern detection and
clustering to recover the architecture of a system. They detect so-called “archi-
tectural clues” with a Prolog-based pattern matching approach and use these

22

2.4. Hybrid Reverse Engineering Approaches

clues to compute a multi-graph representation of the system. The weighted
edges in this representation indicate the coupling of the system elements and
are used by a clustering algorithm to obtain an architecture of the system. In
contrast to Archimetrix, the clustering is completely based on the information
gathered by the pattern detection. Thus, the pattern detection has to be car-
ried out first which can take very long for large systems. Archimetrix applies
the clustering first to reduce the search space for the pattern detection. In
addition, Bauer and Trifu focus on the detection of design patterns and do not
consider the impact of bad smells on the clustering.

Han et al. present preliminary results on a similar approach [HWY™09]. They
also detect design patterns to improve the clustering of source code. Because
they also apply the pattern detection first, it stands to reason that they suffer
from the same drawbacks as Bauer and Trifu.

Basit and Jarzabek [BJ05] identify clone patterns in programs and then apply
a data mining approach to cluster clones which occur together frequently. How-
ever, they apply the clone detection and the clustering consecutively and do not
consider relation between the two parts nor do they suggest multiple iterations
of their approach. The detection of pre-defined patterns is not addressed.

Lung et al. [LXZS06] do not use clustering techniques to group related classes
into components. Instead they try to identify functionally cohesive sections of
long functions to find restructuring opportunities at the function level. Thus,
they apply a reverse engineering technique that is usually employed at the
architectural level to a lower level of abstraction. The possible restructurings are
only suggested but cannot be carried out automatically. Archimetrix combines
architecture reconstruction and pattern detection which operate at different
levels of abstraction.

Binkley et al. present the concept of Dependence Anti Patterns, dependence
structures in source code which may have negative effects on program compre-
hension, maintenance, and reverse engineering [BGH'08]. They define a set
of seven dependence anti patterns and use a combination of program slicing
and metric analysis to detect them. They do not consider the removal of these
anti patterns. The authors explicitly state that they do not investigate the pre-
cise influence of the anti patterns on the aforementioned software engineering
tasks. In contrast, this thesis analyses the impact of design deficiencies on the
architecture reconstruction in Chapter 5.

Similar to our approach, Arcelli Fontana and Zanoni [AFZ11] use an AST
representation of a system as a common basis for pattern detection and archi-
tecture reconstruction. However, they use the two techniques independently of
each other but do not combine them.

Klatt and Krogmann sketch a process for the tool-supported creation of soft-
ware product lines from different software systems that share common source
code [KK11]. They propose to use SiSSy and SoMoX for the recovery of the
software architecture and combine this with other code analysis techniques such
as clone detection and code history analysis. This is related to the idea of using
fine-grained analysis techniques like pattern detection to improve the architec-
ture reconstruction. Their focus is on the extraction of product lines and not
on the reengineering of the existing systems.

23

2. Foundations and Related Work

The Massey Architecture Explorer is a tool developed in the research group of
Jens Dietrich at Massey University [Masl2]. It analyses Java systems and can
visualise the dependencies between their different constituent Jar files, between
packages, or classes. Each Jar file is viewed as a component. In addition, the
tool is able to detect a number of AntiPatterns, e.g. strong circular dependencies
between the archives. The tool does not use clustering techniques to reconstruct
components from the different source code artefacts.

Keller et al. [KSRP99] describe an approach to detect “design components”
in source code through “pattern-based reverse engineering”. However, they
refer to a design component as “a package of structural model descriptions
together with informal documentation, such as intent, applicability, or known-
uses.” Hence, in the terminology used in this thesis, they detect design patterns
rather than components. In contrast, the components recovered by Archimetrix
are in line with the more rigorous component definition by Szyperski [SGMO02].

2.5. Bad Smell Detection and Removal

This section discusses approaches which combine pattern detection with refac-
toring or reengineering techniques. In these cases, the pattern detection is
used to detect bad smells, AntiPatterns, or other deficiencies. None of the ap-
proaches in this category is concerned with the reconstruction of the software
architecture.

Tourwé and Mens detect “refactoring opportunities”, identify matching trans-
formations and execute them automatically [TMO03]. The bad smells and refac-
torings considered in their work are at a very low level of abstraction (e.g.
identifying and removing obsolete parameters). The impact of the refactorings
on the system architecture is not in their focus.

Tahvildari and Kontogiannis present a classification of design flaws in the in-
tersecting categories of structural, architectural, and behavioural flaws [TKO03].
They use metrics to measure, for example, the coupling and cohesion in a system
in order to find those flaws. Then, they correct these deficiencies with appro-
priate meta-pattern transformations and re-evaluate the metrics. They argue
that applying the transformations improves the metric values and therefore the
quality of the system.

Trifu et al. detect and remove design flaws with respect to a user-selected
quality goal, e.g. performance [TSGO04]|. They detect those flaws by using graph
matching in combination with basic metrics. However, the authors point out
that this leads to a large number of detection results which have to be manually
validated by the user. Archimetrix provides an automatic deficiency ranking
which facilitates the validation of detection results.

Stiirmer et al. model guideline violations in MatLab models and their au-
tomatic correction [SKSS07]. For the detection, they use Reclipse, the same
pattern detection approach that is integrated into Archimetrix. Thus, they
have the same scalability problems as, e.g. Simon et al. [SSL01] or Bauer and
Trifu [BT04a].

In his PhD thesis, Meyer [Mey09] presents an approach to identify bad smells

24

2.6. Architecture Reengineering

with a structural analysis and remove those deficiencies with automated graph
transformations. In addition, he proposes to use inductive verification to prove
that the application of the transformations does not introduce new deficiencies
or violate certain constraints. However, he does not take the software architec-
ture into account. Meyer’s approach could be integrated into Archimetrix in
order to validate that the removal of design deficiency occurrences with respect
to pre-defined constraints.

Arendt et al. [AKM™11] present a quality assurance process which uses a
combination of metrics and structural patterns to identify model smells. They
combine the smells with pre-defined graph transformations to provide an auto-
mated refactoring for identified model smells. They use their approach for the
quality assurance in an industrial context, so they assume that the analysed
architectural models already exist and do not have to be reconstructed.

Shah et al. detect strong circular dependencies in a package hierarchy and try
to remove them by suggesting class movements [SDM12]. They use metrics to
gauge the impact of moving the suggested classes on the package structure. Al-
though their reengineering goal is architecture-oriented, they do not reconstruct
an architectural view in their work.

2.6. Architecture Reengineering

The field of architecture reengineering is very diverse. However, the large num-
ber of approaches can be classified by their goal. Accordingly, this section
is split into subsections dealing with architecture conformance checking ap-
proaches, architecture migration, and modularisation.

2.6.1. Architecture Conformance Checking

Knodel et al. [KLMNO6| present an integrated process for the creation and
evaluation of software architectures for software product lines. For that, they
combine product line development approach PuLSE with the architecture- and
domain-oriented reengineering technique ADORE. ADORE employs reverse en-
gineering as well as renovation and extension techniques for the assessment and
integration of existing components into the architecture. However, these steps
are only mentioned at a high level of abstraction and are not explained in detail.
The authors’ focus lies on the comparison of the conceptual architecture to the
concrete architecture produced by their approach.

Bourquin and Keller present an approach that is focused on manual refac-
torings on the architecture level [BK07]. First, they manually create a target
architecture for their legacy software. Then, they assign existing packages to
the target architecture and detect the architecture violations (i.e. accesses that
violate the target architecture) in the concrete architecture. They analyse the
relevance of their refactorings on the architecture after the application of those
refactorings by using code metrics and a comparison between the number of
detected bad smells before and after the refactoring. They do not reconstruct
an architectural model automatically.

25

2. Foundations and Related Work

Rosik et al. investigate architectural drift, i.e. the growing distance between
conceptual and concrete architecture, in a case study of an industrial software
system [RLGB*11]. They use a tool-supported reflexion modelling approach
[MNSO1] to discover discrepancies between the conceptual and the concrete
architecture and discuss them with the developers. Like all reflexion modelling
approaches, they require someone (in their case the original developers) to have
an idea of the system’s conceptual architecture. In Archimetrix, a general
assumption is that no knowledge about the conceptual architecture is available.

Christl et al. use clustering to automatically establish the mapping between
the manually created, hypothetical architecture and the source code [CKSO07].
Thereby, they mitigate the main drawback of many reflexion modelling ap-
proaches, i.e. the high manual effort of creating such a mapping up-front. They
do not consider the impact of deficiencies on the clustering results.

Sonargraph-Architect [Sonl12] (formerly known as SonarJ) is a commercial
tool which also employs a classical reflexion modelling approach. The soft-
ware architect can define a conceptual architecture in the tool. Afterwards,
Sonargraph-Architect can check if the concrete architecture complies with the
conceptual architecture. Refactorings are offered to fix rule violations.

The three commercial products Structurel01, RestructurelOl, and Struc-
turel01build [Str12] form a tool suite with similar capabilities as the Sonargraph-
Architect. A architect can define a conceptual architecture and communicate it
to the development. The concrete architecture can be analysed, restructured,
and architectural rules and constraints can be specified and enforced. Similar
to reflexion modelling, both tool suites require up-front knowledge about the
system under analysis to define the conceptual architecture.

2.6.2. Architecture Migration and Modernisation

Krikhaar presents an architecture improvement process [Kri97] in which an
“ideal” architecture is constructed manually. The existing software is then
analysed regarding import relations, part-of hierarchies and use relations at
code level. This can partly be done automatically. The ideal and the “reverse-
architected” architecture are then to be compared manually to identify viola-
tions. Actions to remove violations are not discussed in the paper. The author
also suggests to incorporate code metrics in future work.

In follow-up work, Krikhaar et al. present a two-phase process for the im-
provement of software architectures [KPST99]. Here, a model is generated
from code. The architect has to manually evaluate this model and think of
ideas to improve it. Metrics can also be used in this step although they are
not discussed by the authors. Then, ”recipes” to apply the ideas to the code
are created manually. Finally, the architect should implement automatic trans-
formations for the created recipes. The technique to do this seems to require
manual code annotations. The impact of the improvement ideas can be evalu-
ated on the model by using metrics or ”box-and-arrow” diagram visualisation.
In our approach, the improvement opportunities are automatically identified by
detecting the bad smells. Automated transformations can be provided for the
bad smells and an automated architecture prediction can analyse and visualise

26

2.6. Architecture Reengineering

the impact of the transformation.

Seacord et al. present the “risk-managed modernization (RMM) approach”
for the modernisation of legacy systems [SPLO03, p. 27ff]. Similar to Archimetrix,
their process also begins with the reconstruction of a legacy system’s architec-
ture. Taking a broader view however, it examines a more general approach than
Archimetrix. RMM begins with the identification of stakeholders and their re-
quirements and ends with the creation of a modernisation plan and a resource
estimation step. The single steps are described at a higher level of abstraction
than in this thesis and are described from a management perspective.

Bianchi et al. [BCM V03] present a process to iteratively reengineer a complete
systems without shutting it down. The process supports the iterative migration
of functionality and data. The authors propose to first break down a system
into components that can then be reengineered individually. In contrast to
the approach in this thesis, neither the identification of components nor the
reengineering is the focus of their work. Both steps are assumed to be carried
out manually.

Frey and Hasselbring [FH10] present the CloudMIG approach, which provides
a process to reengineer legacy applications for the cloud. While this is related
to the motivation for my work, the authors emphasise aspects like resource ef-
ficiency and scalability of the target architecture. Although the recovery of the
original architecture is mentioned in their work, it is not focused on. During the
migration, the CloudMIG approach can be used to identify elements of the tar-
get architecture that violate constraints of the cloud environment. In contrast,
our approach concentrates on revealing deficiencies that do not stem from the
migration but from the long-term architecture erosion of the system. Frey and
Hasselbring also use metrics to assess the quality of their target architecture.
As they do this before the final system is generated this could be seen as related
to the architecture preview step in Archimetrix (see Chapter 9).

SOAMIG [EFH"11la, EFH*11b] is an iterative, generic process model for
the migration of legacy code to a service-oriented architecture. Similar to our
approach, the process contains reverse engineering steps for legacy code analysis
and refactoring steps for the improvement of the migrated system. In addition,
the authors try to automate as much of the migration as possible. However,
as their approach is more generic, they do not specifically define how, e.g. the
target architecture for the migration should be obtained. They also do not
focus on the detection of deficiencies in the legacy system. One application
of the SOAMIG process model is a tool suite for the migration of legacy Java
and COBOL system towards service-oriented architectures [FHR11a, FHR11b].
Archimetrix could perhaps be incorporated in another specific instance of the
SOAMIG process model.

The DynaMod project [vHFGT11] aims at the modernisation of long-living
software systems. For that, static and dynamic analyses in combination with ex-
pert knowledge are used to create an architectural representation of the system.
These architectural models are then transformed into the target architecture.
Template-based code generation is employed to create wrappers and connectors
for the target architecture. The approach does not focus on the detection and
removal of deficiencies in the legacy system.

27

2. Foundations and Related Work

2.6.3. Modularisation

Dietrich et al. [DYM™'08] present BARRIO, a clustering tool which supports a
developer in analysing how a legacy system can modularised. For that the sys-
tem’s classes are clustered and the tool detects two anti patterns: 1) a cluster
containing elements from multiple packages and 2) packages which are dis-
tributed over multiple clusters. In the former case, this is seen as an indication
to merge several packages. The latter case is interpreted as a situation in which
a package should be split up. The actual reengineering is not covered by the
approach but is left to the user as a manual task.

Sarkar et al. [SRKT09] report on their endeavour to break up a legacy
banking application into components. The presented process includes the cre-
ation of a modular architecture, semi-automatic identification of architecture
violations, a completely manual refactoring step and manually implemented
checks (”gatekeeper tools”) to enforce compliance with the reengineered ar-
chitecture. Archimetrix provides substantially more support to the software
architect through automated process steps such as the deficiency ranking or
the architecture preview.

Dietrich et al. [DMTS10] investigate the influence of certain patterns on the
decomposability of Java programs. Their studies show that there are a number
of anti patterns which make it hard to break up an application into modules.
They present an algorithm to identify these problems and discuss their removal
briefly. However, they do not a present a complete tool-supported process for
the detection and removal of those problems. They also do not use architecture
reconstruction techniques.

2.7. Classification of the Archimetrix Approach

This section places Archimetrix in two classifications of software maintenance
approaches. Lientz and Swanson [LS80] take on a very general view of software
maintenance techniques. Knodel et al. [KLMNO6], on the other hand, list
ten purposes of software architecture evaluation. Here, I relate them to the
application scenarios of Archimetrix presented in Chapter 1.

Lientz and Swanson identify four different types of software maintenance:
adaptive, perfective, corrective, and preventive [LS80]. Adaptive maintenance
aims at modifying a system in order to adapt it changes in the system’s envi-
ronment, e.g. the operating system. Perfective maintenance is concerned with
implementing new functionality that satisfies new or changed user requirements.
Corrective maintenance deals with the diagnosis and correction of software er-
rors while preventive maintenance increases the software maintainability in or-
der to prevent future problems. Following this classification, Archimetrix sup-
ports corrective maintenance and preventive maintenance. Corrective main-
tenance is supported in that Archimetrix allows to detect and remove design
deficiencies. In doing so, Archimetrix enables the architect to improve the
quality of the code and the quality of the recovered architecture. On the other
hand, the improved understanding of the software architecture and the removal
of design deficiencies can prevent further design erosion and therefore increase

28

2.8. General Assumptions

maintainability.

Knodel et al. enumerate ten different purposes of software architecture evalu-
ation [KLMNO6]. Three of them fall into the application scenario of “improved
modularisation” explained in Section 1.5. These are: the identification of po-
tential for the creation of a product line across different systems; the alignment
of a system with an existing product line; and the identification of components
that can be reused within an existing system. Three purposes are in line with
the “architecture improvement and documentation”. Knodel et al. identify: the
comprehension of software systems; the re-documentation of software systems;
and the traceability from the architecture to the source code. Yet another two
purposes are subsumed under the application scenario of “architecture confor-
mance checking”. The authors call them: the assessment of consistency between
documentation and implementation and the control of software evolution in the
sense that the implementation does not deviate from the conceptual architec-
ture. The two final purposes mentioned by Knodel et al. are the assessment
of component adequacy and the identification of un-documented architectural
entities. These tasks are not per se among Archimetrix’s application scenarios.

2.8. General Assumptions

Use of a single programming language Large business information systems
usually consists of several parts that are often implemented in different pro-
gramming languages. Although the parser integrated in Archimetrix, SISSy
[Sis11], supports Java, C++, and Delphi code, it cannot construct a coherent
model from system parts in different languages. This thesis thus does not con-
sider this problem but assumes that the system under study is programmed in
a single programming language.

Use of an object-oriented language [assume a scenario in which an object-
oriented programming language is used to develop component-based systems.
For the purpose of the examples in this thesis and for the implementation of the
prototypical tool suite, I assume a system that was implemented in Java without
the use of component frameworks such as Java EE [Jav12] or Fractal [BCL™06].
However, Archimetrix in general is not dependent on the use of a concrete
programming language as it operates at the level of a program’s abstract syntax
tree. Therefore, my approach can be modified to be applicable to any language
for which the architect is able to extract the abstract syntax tree.

Availability of architecture documentation In this thesis, I assume that no
documentation of the software system under analysis is available. This is either
the case when the documentation is so outdated that it has become useless or
when it has not been created in the first place. This also implies that no formal
models of the system exist. Therefore, the only reliable source of information
about the system is the source code itself.

29

3. Design Deficiencies

Design deficiencies stem from the neglect of principles and guidelines that are
meant to promote good component-oriented design. They are a component-
oriented analogy to bad smells which represent the neglect of rules that should
promote good object-oriented design [Fow99]. In this thesis, I selected four
design deficiencies as examples to illustrate my concepts and to serve as ex-
ample deficiencies in the validation: they are called Transfer Object Ignorance,
Interface Violation, Unauthorised Call, and Inheritance between Components.
I derived these deficiencies from Szyperski’s principles of component-oriented
design [SGMO02]. In general, there are many more design deficiencies. A struc-
tured process for their discovery, documentation, and formalisation is presented
in Section 4.4.

This chapter gives an introduction to design deficiencies. It begins with a dis-
cussion of the different types of software patterns (and deficiencies as 'negative’
patterns) in Section 3.1. Section 3.2 then presents and explains a template for
the description of design deficiencies. Finally, Section 3.3 describes the Transfer
Object Ignorance deficiency which is used as a running example throughout this
thesis. The other three example deficiencies are explained briefly in Section 3.4.
More detailed descriptions and formalisations can be found in Appendix B.

3.1. Types of Software Patterns

Software patterns can be categorised in a number of ways. On the one hand, a
pattern can describe either a ’positive’ situation that is desired or a 'negative’
situation that should be avoided. The former are often subsumed under the
term design patterns. The latter go by a variety of names such as bad smells or
anti patterns. In this thesis, I call them design deficiencies. See Section 2.2 for
a discussion of the terminology.

Another possible categorisation axis deals with the generality of a pattern.
While some patterns can be regarded as ’universally applicable’, others are
written with a specific programming language, a specific technology, or even
a certain project in mind. Table 3.1 gives an overview and examples of the
different categories.

In Table 3.1, the more universally applicable patterns are listed in the top
rows. The lower in the table, the narrower the focus of a pattern. For instance,
Gamma et al.’s design patterns [GHJV95] or Martin’s guidelines in his book
“Clean Code” [Mar09] are intended to promote good object-oriented design. In
both cases, the presented rules and recommendations are general and are uni-
versally applicable to every programming language and every project. The only
restriction is the underlying development paradigm, i.e. that they are targeted

31

3. Design Deficiencies

Positive

Negative

Paradigm

Domain

Technology

Programming
Language

Company
Project

Design Patterns [GHJV95], Principles of good
component-oriented design [SGMO02], Clean Code
[Mar09]

Patterns for Concurrent and Networked Objects
[SSRB00], Patterns for Resource Management [KJ04],
A Pattern Language for Distributed Computing
[BHSO7]

Core J2EE Patterns [ACMO1], Patterns of Enterprise
Application Architecture [Fow(2]

Java Code Conventions [Jav99], Checkstyle guidelines
[Chell]

Company-specific guidelines and best practices

Project-specific guidelines and best practices

AntiPatterns [BMMMO98], Bad Smells [Fow99]

More New Software Performance Antipatterns: Even
More Ways to Shoot Yourself in the Foot [SW03], A
Process to Effectively Identify Guilty Performance An-
tipatterns [CMRT10)]

Modeling Guideline Violations in Simulink and State-
flow [SKSS07]

Bug Patterns in Java [All02], FindBugs bug patterns
[Fin12]

Company-specific worst practices

Project-specific worst practices

Table 3.1.: Examples of positive and negative patterns at different levels of generality

32

3.2. Describing Design Deficiencies

at object-oriented software. Similarly, the AntiPatterns described by Brown et
al. [BMMM98] and Fowler’s bad smells [Fow99] are very general.

In contrast, there are more specific patterns. They depend on a certain
technology, e.g. the use of Enterprise Application architectures [Fow02], or on
a programming language!, e.g. Java [Jav99]. Furthermore, patterns may be
specific for a given company or even a given project.

Design deficiencies often cut across the different abstraction levels. In gen-
eral, design deficiencies represent violations of principles of component-based
design which is located at the paradigm level. The Transfer Objects Igno-
rance deficiency presented in Section 3.3 is based on the use of transfer objects.
Transfer objects are presented as positive technology-specific patterns by Alur
et al. [ACMO1, p. 415] and Fowler [Fow02, p. 401]. The combination with the
adherence to a specific naming scheme, however, adds a project-specific aspect
to it. In this case, it is specific for the CoCoME project [RRMPOS].

3.2. Describing Design Deficiencies

For the description of patterns and AntiPatterns, Brown et al. advocate the use
of templates to give patterns a “consistent rhetorical structure” and to assure
that “important questions are answered about each pattern”[BMMM98, p. 49].
This practice is in line with the presentation of design patterns used by Gamma
et al. [GHJV95] and was also adopted by Demeyer et al. [DDNO03] and Kerievsky
[Ker04].

To describe deficiencies in this thesis, I use a template that strongly resem-
bles the Full AntiPattern Template by Brown et al [BMMM98, p. 57ff]. The
template consists of a number of sections with specific purposes which are ex-
plained in the following. Most of the sections are from Brown’s AntiPattern
template, but some are also slightly modified, renamed or omitted to fit into
the context of this thesis.

Design Deficiency Name The concise and evocative name of the deficiency.

Removal Strategy Names The similarly evocative names of the strategies
that can be applied to remove the deficiency.

Root Causes Brown et al. identify several root causes that can lead to the
introduction of deficiencies into a system. These are: haste, apathy, narrow-
mindedness, sloth, avarice, ignorance, pride, and responsibility.

Unbalanced Forces Brown et al. name six “primal forces” that have to be con-
sidered in the development of software systems and which can be unbalanced
by the introduction of deficiencies. They call them: management of function-
ality, management of performance, management of complexity, management of

!Patterns for programming languages can be seen as a special case of technology-specific
patterns.

33

3. Design Deficiencies

change, management of I'T resources, and management of technology transfer.
Another force that is not mentioned by Brown et al. but that could be added
here is management of security.

Background The background section is meant to contain useful and interest-
ing information that helps in understanding the deficiency and that motivates
the need to resolve it.

General Form of this Design Deficiency This section describes characteristics
of the deficiency in a generic form (i.e. not by means of an example). Often
diagrams (e.g. class diagrams) and prose text are used for this.

Symptoms and Consequences This section should contain a list of conse-
quences that arise from the introduction of the deficiency into a system. In this
thesis, I use this section to point out why the given deficiency has an influence
on the reconstruction of the system’s software architecture.

Typical Causes Here, a bulleted list is used to enumerate the typical causes
for the introduction of this deficiency. They should be more specific than the
root causes mentioned above.

Known Exceptions Sometimes, there are exceptions to a rule. For example,
in a certain context, the problem that are normally created by a deficiency
may be negligible. Under such circumstances which are listed in this section,
a deficiency may be tolerable in a system. This has to be decided on a case-
by-case basis by the software architect. The deficiency ranking presented in
Chapter 8 aims at supporting the architect in this decision.

Removal Strategies This section describes one or more solutions to the prob-
lems created by the deficiency. Brown et al. call this section “Refactored So-
lution” [BMMMO98]. In this thesis, I avoid the term “refactoring” as it is com-
monly understood as a behaviour-preserving change which often is carried out
at the source code level [Fow99]. Instead, I call this information removal strat-
egy as this, to my mind, better addresses the higher abstraction level and the
broader approach that is taken to the removal of design deficiencies. It is to be
noted that different removal strategies for a deficiency may have different goals
and are applicable only in certain situations. This is reflected in the strate-
gies’ descriptions. Removal strategies may be automatable. In these cases,
the effect of their application on the recovered architecture can be calculated
and presented to the architect (see Chapter 9). However, sometimes the con-
siderations or necessary changes for a removal strategy are too complex to be
automated. Still, the prose description of the removal strategy can be helpful
to the architect.

34

3.3. Running Example

Variations Similar to design patterns [GHJV95], a deficiency does not have
one unique and immutable form. There may be variations which, in turn, may
necessitate different removal strategies. In order to keep the section on the
general form and the removal strategies focused and avoid clutter, variations of
the deficiencies and their removal strategies are discussed in this section.

Example In this section, an example of a concrete deficiency occurrence and
the possible removal strategies to remove it are given.

Related Solutions The last section lists related deficiencies and patterns, ei-
ther from this thesis or from different pattern catalogues. This allows for an
easy comparison and can also serve as a place to point out differences in termi-
nology between different related patterns and deficiencies.

3.3. Running Example

In this section, I introduce the Transfer Object Ignorance design deficiency. 1
chose it as a running example because it is a non-trivial example of a com-
mon guideline for the design of good component-oriented architectures, i.e. the
guideline that components should exchange data via transfer objects. This de-
ficiency is used throughout this thesis to illustrate the Archimetrix process. It
is also one of the deficiencies that I used in the validation presented in Chap-
ter 10. The deficiency is described with the AntiPattern template presented in
Section 3.2.

Design Deficiency Name

Transfer Object Ignorance

Removal Strategy Names

Mark exposed class as transfer object, Move called method, Introduce transfer
object

Root Causes

Ignorance This deficiency is easily introduced by developers that are unaware
of communication design patterns for component-based systems such as
data transfer objects.

Background

In component-based or service-oriented architectures, two components or ser-
vices should exchange data only via data transfer objects [ACMO01, Fow02]. A
data transfer object is a data class? that contains only the data that is needed for

2 Although the name of the pattern is “data transfer object”, it deals with the creation of
specialised data classes. These classes are obviously created at design time. In a strict

35

3. Design Deficiencies

a specific task and has no additional behaviour. The only methods of a transfer
object are getters and setters for the contained data. In object-oriented pro-
gramming languages, classes that are meant to be used as data transfer objects
are usually designated by a special name prefix or suffix. This way, they can
be clearly distinguished from unwanted data classes which are normally a bad
smell in object-oriented programs [Fow99, p. 86]. For example, in the Java
reference implementation of the Common Component Modeling Example (Co-
CoME, [RRMPO08]), classes representing data transfer objects are marked with
the suffix TO.

In contrast to common practice in object-oriented programming, communi-
cation by exchanging objects which are not transfer objects should be avoided
in component-based systems. This has two main reasons: First, passing an
object reference to another component in order to allow access to that object’s
data is a security risk and breaks the sending component’s encapsulation. It in-
advertently offers the receiving component the opportunity to invoke arbitrary
methods of the exposed object. Second, as each component can be deployed
independently [SGMO02], each method call may possibly be a remote call that
incurs a significant communication overhead. Polling necessary data by invok-
ing a number of getters on (possibly different objects of) a remote component
can therefore be very inefficient [ACMO1, Fow02]. Thus, transfer objects should
be used. They can be specifically constructed to contain all the relevant data
for a certain activity and can then be sent to the receiving component as a
whole.

Unbalanced Forces

Management of performance Ignoring transfer objects can decrease the per-
formance of the system due to communication overhead.

Management of security Passing object references to other components can
give them access to functionality that is not normally provided to them.

General Form of this Design Deficiency

Figure 3.1 shows the general form of the Transfer Object Ignorance deficiency
in a component diagram. It contains two components, Component A and Com-
ponent B. Following the notions of Szyperski ([SGMO02], see Section 2.1.1), they
are supposed to communicate exclusively via the interface ICalledClass which is
provided by Component B and required by Component A. ICalledClass offers access
to the method calledMethod of the CalledClass which expects a parameter param of
the type ExposedClass. The ExposedClass, however, together with the CallingClass
belongs to Component A.

The problem becomes obvious in the implementation of the callingMethod
in the callingClass. The callingMethod has a reference e to an instance of the

sense, their instances which are used at run-time are the “real” data transfer objects. In
order to be consistent with the terminology from the pattern description, I use the name
“data transfer object” in this thesis, even when referring to the data class.

36

3.3. Running Example

calledMethod B

(ExposedClass param) : void

Component A \ Component B
2] \ P 2]
\
\
FalllngClaSS (_______ () — CalledClass
callingMethod() oy N calledMethod(ExposedClass param) : void
~ ICalledClass
ExposedClass ~
data : SomeDataType N N
someFunctionality() ~

ExposedClass e = ..
ICalledClass cc = ..
cc.calledMethod (e) ;

Figure 3.1.: General form of the Transfer Object Ignorance deficiency

ExposedClass and another reference cc of the type ICalledClass. The callingMethod
calls the calledMethod of cc and passes e as an argument.

As explained in the background section, this may lead to security and per-
formance problems. On the one hand, by passing the reference to e to the
CalledClass in Component B, Component A loses control over which data of e is
read by cc. cc may even change the data or call public methods of the Exposed-
Class, e.g. someFunctionality(). On the other hand, if cc was to interact a lot with
e, each of these interactions may possibly be a remote call causing significant
overhead as stated in the background section.

Symptoms and Consequences

If the example system was subject to a clustering-based architecture reconstruc-
tion algorithm, Transfer Object Ignorance deficiencies could gravely impact the
reconstructed architecture. By directly passing the reference to an instance
of the ExposedClass to the CalledClass, a strong coupling between the classes Ex-
posedClass, CalledClass, and CallingClass is created. Coupling between classes is
a metric that is used by many architecture reconstruction algorithms to group
classes into components. Therefore, it stands to reason that all the classes
involved in a Transfer Object Ignorance occurrence might be assigned to one
component by the architecture reconstruction algorithm instead of grouping
them into separate components. The impact of deficiencies on the metrics used
during architecture reconstruction is examined in detail in Chapter 5.

Typical Causes

e Passing object references as arguments of method calls is a common prac-
tice in object-oriented programming. Programmers are used to this kind
of communication between classes and may be ignorant to the fact that
it is a deficiency for the communication between classes in different com-
ponents.

37

3. Design Deficiencies

e Programming languages that do not support components as a first-level
concept (e.g. Java) have no means to detect this deficiency. Thus, pro-
grammers that introduce this deficiency in a system may simply be un-
aware that they should have used a transfer object.

Known Exceptions

Sometimes it may not be a problem to pass an object reference to another class
even if a transfer object could be used in theory. For example, if the Calling-
Class and the CalledClass are part of the same conceptual component, they can
communicate directly without violating component-based development princi-
ples. Also, in cases where Component A and Component B are parts of a common
composite component, it may be tolerable if they do not use transfer objects
for their communication.

Removal Strategies

There are several removal strategies that can be applied to remove the Transfer
Object Ignorance deficiency. There is no clear answer as to which of them is
suitable for the removal of a given deficiency occurrence. There may also be
more strategies than the ones pointed out in this section.

Mark exposed class as transfer object The Transfer Object Ignorance deficiency
may occur when a class that is intended to be used as a data transfer ob-
ject is not correctly designated as such. For example, if the exposed class
only contains fields of primitive data types and according access meth-
ods, it may be intended to be a transfer object. In order to remove a
deficiency, the ExposedClass could be adapted to be an actual data transfer
object. For example, in case of the CoCoME system, the suffix “TO”
could simply be appended to the class name. Of course, this may neces-
sitate an adaptation of the involved interfaces. In the deficiency’s general
form depicted in Figure 3.1, changing the name of the ExposedClass will
entail a change of the interface ICalledClass.

Move called method It may be the case, that the calledMethod may not be
placed ideally in the CalledClass at all. Fowler describes this situation
in his bad smells Feature Envy and Inappropriate Intimacy [Fow99]. If
the method were moved, e.g. to the CallingClass, the components would no
longer need to communicate with each other (at least as far as this partic-
ular interaction goes). This would also prevent the Transfer Object Igno-
rance deficiency. Of course, such a reengineering would also necessitate a
change in the component’s interfaces and could have severe repercussions
on other components and classes in the system.

Introduce transfer object Maybe the most obvious way to remove a Transfer
Object Ignorance deficiency is to introduce a new data transfer object
and use it for the passing of data instead of the object reference. This,
however, requires an in-depth analysis of the deficiency occurrence to

38

3.3. Running Example

determine which data or functionality of the ExposedClass is actually used
in the calledMethod. If only data is used, a new class can be created
that is correctly marked as a data transfer object. In the calledMethod,
an instance of this class has to be created and filled with the required
data. In order to accept this new transfer object, the CalledClass and the
appropriate interface have to be adapted accordingly. (The changing of
the interface may, of course, break other classes that implement it.). In
addition, the behaviour of the calledMethod has to be changed to correctly
process the transfer object. If functionality of the ExposedClass is used,
the reengineering becomes even more complicated as this functionality
may need to be moved to Component B in order to be available to the
calledMethod. So in spite of being an obvious removal strategy, introducing
a new transfer object consists of so many steps and considerations that it
is hardly automatable.

Variations
AN
calledMethod() : ExposedClass
Component A ' C tB
\ omponen
2] \ P 2]
\
\
CallingClass | | /. CalledClass
callingMethod() o > calledMethod() : ExposedClass
N ICalledClass
AN ExposedClass
\\\ data : SomeDataType
. someFunctionality()

ICalledClass cc = ..
ExposedClass e =
cc.calledMethod () ;

Figure 3.2.: Variation of the Transfer Object Ignorance deficiency: A class is
exposed by returning it on a call.

Figure 3.2 shows a variation of the Transfer Object Ignorance deficiency’s
general form. In contrast to the general form where a parameter is used to pass
an object reference across component boundaries, the same is accomplished
here by returning an object reference in response to a call. In this case, the
ExposedClass belongs to Component B. The calledMethod returns an object of the
type ExposedClass. Because the calledMethod is available through the interface
ICalledClass, it is possible for the callingMethod to call the calledMethod and thereby
obtain an object reference to an instance of the ExposedClass. As shown in the
code snippet for the callingMethod, someFunctionality which is not provided by
the interface can then be called from Component A although this should not be
allowed. Similar to the general form of the deficiency, if the CalledClass intended
to return some data in response to the call of the calledMethod, it should do so

39

3. Design Deficiencies

by using a transfer object.

Example

getinventory() : Inventory
Accounting E Store $:|
\
N

package app.accounting package data.storage

i \ i

| o s(O)— | [Storetuery

i | calculateValue() :int |~ || getinventory() : Inventory
IStoreQuer

[Report | uery | T Inventory

call}ngc\a_ss -1 checkStock() : int

A\ eg(po;egiclass il
. callingClass Transfer Object
I ~
| exposedClass Ignorance 2
sendReport(Report r) : void | A
|
v N
‘9 IReporti

ng
Controlling E

package app.controlling

Transfer Object
Ignorance 1

caIIeVdMe't'hod

\ Reporting T’
‘ sendReport(Report r) : void ‘ ‘

Figure 3.3.: Running example: Transfer Object Ignorance

Figure 3.3 shows on excerpt of the concrete architecture of the example sys-
tem that is used as a running example throughout this thesis. The figure shows
the three components Accounting, Controlling, and Store. The components Store
and Controlling provide the interfaces I1StoreQuery and IReporting which are both
required by the Accounting component. The system contains two occurrences of
the Transfer Object Ignorance deficiency which are marked by labelled ellipses.
They represent the two variants of the Transfer Object Ignorance deficiency.
Variant no. 1 exists between the components Accounting and Controlling while
variant no. 2 is located between Accounting and Store.

The Accounting component can send a Report to the Controlling component
by calling the method sendReport of the class Reporting. In doing so, a Report
object is passed to the Controlling component. This is an occurrence of the
general form of the Transfer Object Ignorance deficiency as described above.
The calling class of this occurrence is Assets, the called method is sendReport of
the class Reporting, and the exposed class is Report. While Report is marked as
the exposed class, it has the characteristic appearance of a data transfer object,
i.e. it contains an attribute (whose access methods are omitted in Figure 3.3)
but no methods that implement application logic. Although Report looks very
much like a transfer object, it lacks the appropriate suffix “T'O”. Thus, an
appropriate removal strategy to remove this deficiency occurrence would be
the strategy Mark exposed class as transfer object as described above. Since
this strategy is rather simple, the removal could be performed by applying an
automated removal strategy.

40

3.3. Running Example

In the second occurrence, again, Assets is the calling class, the called method
is getlnventory of the class StoreQuery, and the exposed class is Inventory. We
assume that the method calculateValue calls the method getlnventory of the inter-
face IStoreQuery. An instance of Inventory is returned to the calling class Assets
on calling getlnventory. This way, Assets gets access to Inventory’s attribute items
as well as to its method checkStock. These members should not be available
to classes from the Accounting component since they are not accessible via the
interface IStoreQuery.

One possibility to remove this deficiency occurrence is to apply the Introduce
transfer object removal strategy. By creating a new data class for the transfer
object, in this case, e.g. InventoryTO, all relevant data that is required by the
Assets class could be bundled and made available without exposing the Inventory
class itself. To find out which data is required, the architect would have to
analyse the calculateValue method. Afterwards, the method getlnventory would
have to be adapted, to create an instance of InventoryTO, populate it with the
necessary data, and return it instead of the Inventory instance. As mentioned in
the description of the removal strategy above, analysing which data is used by
the Accounting component is very complex. Thus, it is very difficult to create an
automatic transformation that performs this reengineering. The architect will
probably have to carry out part of this reengineering manually.

getlnventory() : InventoryTO

Accounting $:| Store $:|
package app.accounting AN package data.storage
| \
| { ,,,,,,,, »(O— StoreQuery
- [ccubtevalueg it
| 1St
| ReportTO oreQuery Inventory [InventoryTO |
items : Item(] ‘ items : Item[] ‘

checkStock() : int

N
sendReport(ReportTO r) : void

RS

IReporting

Controlling $:|

package app.controlling

| Reporting ‘
‘ sendReport(ReportTO r) : void ‘

Figure 3.4.: Reengineered version of the running example from Figure 3.3

Figure 3.4 shows a reengineered version of the example system from Fig-
ure 3.3. As suggested above, the two removal strategies Mark exposed class
as transfer object and Introduce transfer object have been applied to the defi-
ciency occurrences no. 1 and 2, respectively. The class Report has been correctly
marked as a transfer object by renaming it to ReportTO and adapting the inter-
face IReporting accordingly. To remove deficiency occurrence no. 2, the new class
InventoryTO has been created and the interface IStoreQuery has been changed to
return an instance of this new class instead of an instance of Inventory. The

41

3. Design Deficiencies

substantial changes that are required in the method getlnventory which needs to
create an instance of InventoryTO and populate it with the correct data from
the Inventory are not visible in this figure.

Related Solutions

This paragraph provides short explanations of the patterns and deficiencies
related to the Transfer Object Ignorance deficiency.

Data Class The data transfer objects used for the communication are Data
Classes as described by Fowler [Fow99, p. 86]. Fowler characterises them
as bad smells in an object-oriented design because they “are dumb data
holders and are almost certainly being manipulated in far too much detail
by other classes”. However, in the context of component-oriented design,
these Data Classes are exactly what is needed for the data exchange be-
tween component to preserve the encapsulation of component behaviour.

Data Transfer Object The Data Transfer Object design pattern as described
by Alur et al. and Fowler presents the rationale and implementation of
component communication via transfer objects in detail [ACMO01, Fow02].

Interface Violation When a class is exposed to other components by a Trans-
fer Object Ignorance deficiency, an Interface Violation may occur when
the components call methods of the exposed class that are not provided
regularly via interfaces (See Appendix B.1).

Unauthorised Call Exposing a class and its methods through a Transfer Object
Ignorance deficiency promotes Unauthorised Calls between components
(See Appendix B.2).

3.4. Further Design Deficiencies

This section provides an overview of the further design deficiencies that have
been examined in the course of this thesis. Detailed descriptions of these defi-
ciencies can be found in Appendix B.

Interface Violation In component-based systems, the communication between
components should be accomplished via the declared interfaces [SGMO02].
However, this convention cannot always be enforced statically, for example
in cases where the programming language does not support the concept
of components directly. In these cases, an unwary developer may intro-
duce a method call between classes that conceptually belong to different
components even though the called method is not made available in an
interface. This is called an Interface Violation.

Unauthorised Call Interfaces in component-based systems according to Szyper-
ski are unidirectional: class A may call methods of class B as long as they
are declared in the interface used by A. However, this does not allow
B to call methods of A. Unfortunately, the connection of the classes in

42

3.4. Further Design Deficiencies

one direction may convey the notion that these classes are “intended to
work together” to inexperienced developers. Therefore, they may intro-
duce calls from B to A without checking if this communication direction
would be allowed by the architecture. As it also describes a method call in
the absence of an appropriate interface, an Unauthorised Call is strongly
related to the Interface Violation deficiency.

Inheritance between Components According to Szyperski, components are units
of independent deployment [SGMO02]. Therefore, there may not be an in-
heritance relationships between classes in different components. A clustering-
based architecture reconstruction approach may however assign such classes
to different components, for example because the classes are only loosely
coupled otherwise. This deficiency informs the software architect that the
reconstructed components are probably incorrect at this point.

43

4. The Archimetrix Process

This chapter presents the Archimetrix process, a reengineering process that
aims at the recovery of a software’s architecture from its source code while tak-
ing design deficiencies into account. The process was first sketched in [TvDB11]
and was refined in later publications [vDB11, PvDB12, vDPB13]|. The chap-
ter begins with a description of the scientific contributions of the process in
Section 4.1. It is followed by an overview of the process in Section 4.2 which
describes the two parts of the process and the involved roles. Section 4.3 pro-
vides details on the part of the process that is concerned with the architecture
reconstruction. The discovery, documentation, and formalisation of design de-
ficiencies is covered in Section 4.4. Finally, Section 4.5 discusses the limitations
of the current process.

4.1. Contributions

The process presented in this chapter contributes to the area of component-
based reengineering in the following ways:

e The process combines established techniques for the reverse engineering
of component-based systems, namely clustering-based architecture recon-
struction and pattern detection. This combination improves the recon-
structed architecture by leveraging the individual strengths of both ap-
proaches and thereby mitigating their shortcomings: Architecture recon-
struction is scalable and very useful to produce an overview of the system.
However, its results can be adulterated by design deficiency occurrences.
Pattern detection on the other hand allows for the precise identification of
such deficiency occurrences. In isolation, however, pattern detection does
not scale to large systems and may produce a large, confusing number of
results.

e The Archimetrix process comprises a sub process for the structured dis-
covery, documentation and formalisation of design deficiencies. In general,
this is a creative process that is driven by domain knowledge, examination
of existing systems, and the fusion of these elements into general patterns.
However, I propose a guideline to structure these steps.

e Archimetrix is designed as an extensible approach. The different pro-
cess steps can easily be extended, e.g. by adding new design deficiency
formalisations and removal strategy formalisations (see Section 4.4), new
component relevance metrics (see Section 6.5), and new metrics for the
ranking of design deficiencies (see Section 8.3). In this thesis, I also sug-
gests several future extensions of the process itself.

45

4. The Archimetrix Process

4.2. Process Overview

Figure 4.1 shows the Archimetrix process. It consists of two parts: the iterative
architecture reconstruction process on the left (shaded in a light grey), and a
process for the formalisation of design deficiencies (shaded in a darker grey).
The former part combines clustering-based architecture reconstruction with de-
sign deficiency detection. It is an iterative process with one iteration consisting
of five steps. In addition, the deficiencies and removal strategies used in the
iterative process have to be discovered, documented and formalised which is in
the focus of the second part. The two parts are executed by different roles: the
software architect carries out the iterative architecture reconstruction while the
deficiency expert formalises the design deficiencies.

The steps in which pre-existing approaches are reused are marked with dashed
lines in Figure 4.1. The iterative architecture reconstruction process is ex-
plained in Section 4.3. The formalisation of design deficiencies is described in
Section 4.4.

4.3. lterative Architecture Reconstruction

At the beginning of the process, I assume that only the source code of the
system is available to the software architect. The conceptual architecture is
unknown. Also, the architect does not know if and where design deficiencies
exist in the source code.

Step 1: Architecture Reconstruction The Archimetrix process starts with
the architecture reconstruction of the system. This step takes the system’s
source code as an input. The code is parsed and transformed into an abstract
syntax tree representation. From this abstract syntax tree, an initial software
architecture for the system is reconstructed. This initial architecture can pro-
vide a first rough overview of the system which is in line with Kazman’s advice
to initially “obtain a high-level architecture view of the system before beginning
the detailed reconstruction process” [KOV03|. However, it may be adulterated
by design deficiencies if they are present in the system. Details on the archi-
tecture reconstruction step and on the impact of deficiencies thereon are given
in Chapter 5.

Archimetrix uses the Software Model Extractor (SoMoX) [CKKO08, Krol0]
for the architecture reconstruction (see Section 2.1.3). However, it would also
be possible to integrate other clustering-based architecture reconstruction ap-
proaches into the Archimetrix process.

Step 2: Component Relevance Analysis In order to prevent the adulteration
of the reconstructed architecture, I propose to detect the design deficiencies and
remove them from the system. As an additional benefit, this will improve the
code quality. However, executing a design deficiency detection on the complete
system is very time-consuming in the general case and does not scale well for
large systems [SSLO1, BT04a]. As a consequence, I suggest that the software

46

4.3. Iterative Architecture Reconstruction

sai8ajel)s [eAoway

/ uondaRQ

N

”~
2

=

suopesi|ew.o4
sa1uaPYaQ usIsa

sa1391e.1S [eAoway
pue saipuaa(Jo
uonesijew.o

N
=
A

uadx3 Aouaspiyaq

sapuapyaq usisag
40 uoNES||EWI04 PUE UolEIUAWINIOQ

juauodwo) Jad
sapuaRyaq usdisag

AKousiyaq usisaqg :¢

syuauodwo)

jueAsRy

Sunjuey
Aouaniyaq udisaq v

\
|
I
I
|

sishleuy aoueas|ay
juauodwo) :g

sauaaq usisaq
[eonL)

.2

2.N19311Y21y palanoday

Jenoway Aduaniyaq
2 M3IARI 9IN1DBNYIIY :§

9po) 921n0s
payipo

days pasnay

Moy ereq

<

puagay

uonINIISUOIDY l@
aInPaNydIY T

sapuayaq udiseq
YlM 3po) 924n0S

@

193)1y2uY 31EMOS

UOI19NIISU0IDY BANII3UYDIY dAIEIIY|

1X

tri

1mne

ith Arch

The reengineering process w

Figure 4.1.

47

4. The Archimetrix Process

architect should select components from the initially recovered architecture to
limit the search scope for the design deficiency detection. Ideally, the detec-
tion should be focused on components in which such a detection is worthwhile.
These can be components that are very complex and therefore have a high
probability of containing design deficiencies. On the other hand, components
which are prone to change when the deficiencies are removed are a worthwhile
detection target. To support the architect in the decision which components are
a worthwhile input for the design deficiency detection, I propose the Component
Relevance Analysis step. It takes the components from the initial clustering,
rates them and thereby suggests a sensible input for the design deficiency de-
tection. The relevance analysis is explained in detail in Chapter 6.

Step 3: Design Deficiency Detection In the next step, the design deficiency
detection can be executed on the selected (relevant) component(s). The defi-
ciency detection uses pattern detection techniques to find occurrences of pre-
defined deficiencies in the selected components. (The formalisation of these
deficiencies is discussed in Section 4.4.) Archimetrix mainly focuses on the
structural analysis of the system, i.e. on the detection of deficiencies in the
result model of the architecture reconstruction based on their structural prop-
erties. The deficiency detection yields a set of design deficiency occurrences in
the previously selected components. This is explained in detail in Chapter 7.

Archimetrix uses Reclipse for the design deficiency detection (see Section 2.2.3).
Similar to the architecture reconstruction step, Archimetrix does not depend
on Reclipse on a conceptual level. Therefore, it is also possible to integrate
different pattern detection approaches into Archimetrix.

As Reclipse, in general, also has behavioural pattern detection capabilities,
i.e. the detection of patterns based on their run-time behaviour, Chapter 7 also
discusses the combination of structural and behavioural detection approaches.
It also points out how the behavioural pattern detection techniques can be
improved.

Step 4: Design Deficiency Ranking Depending on the context in which a de-
sign deficiency occurs, some occurrences may be more critical than others, i.e.
they may have a stronger influence on the architecture reconstruction or their
removal may be either easier or more pressing. As a consequence, the architect
has to decide which design deficiency occurrences should be removed and in
which order. In large systems, however, this may be difficult. On the one hand,
the number of detected deficiency occurrences may be so high that the archi-
tect can not easily get an overview. On the other hand, he may not be familiar
enough with the system to gauge the importance (or even the correctness) of the
detected occurrences. In order to support this decision, Archimetrix performs
a Design Deficiency Ranking step that judges the severity of the detected de-
sign deficiency occurrences. This ranking mechanism takes all detected design
deficiency occurrences as input and assigns a value between 0 and 1 to them.
This can serve as an indication for the architect which deficiencies may be the
most interesting to look at. Chapter 8 provides details on the design deficiency

48

4.4. Design Deficiency Formalisation

ranking.

Step 5: Architecture Preview & Deficiency Removal To accomplish the
removal of a design deficiency, different removal strategies exist. Sometimes,
pre-defined removal strategies can be applied automatically. But there are also
situations in which the architect has to intervene and to remove the design
deficiency partly or completely manually. In both cases, the removal of the
deficiency will affect the metric values measured in the clustering and thus will
influence the architecture reconstruction.

If a pre-defined removal strategy is applied, its architectural consequences
can be visualised by an Architecture Preview. This step takes a selected design
deficiency occurrence and a chosen removal strategy as input. It produces a
comparison of the current architecture and the architecture that would result
from the application of the removal strategy. The software architect can then
preview the effects of different removal strategies and determine which of the
resulting architectures fits his requirements best. If no pre-defined removal
strategy can be applied, the deficiency can also be removed manually. The
architecture preview and the deficiency removal are described in Section 9.

Further iterations After the architect has removed one or more deficiency
occurrences, the architecture reconstruction can be repeated. The newly recon-
structed architecture may be different from the initially recovered one because
the removed deficiencies no longer influence the clustering. The software archi-
tect can compare the different reconstructed architectures to each other. This
comparison has to be performed manually at the moment. Tool-support for
this step is the currently being developed in a master’s thesis [Str13].

If the architect is satisfied with the newly reconstructed architecture, the
process ends at this point. Otherwise, the reengineered system can be the
starting point for a new iteration of the reengineering process.

4.4. Discovery, Documentation, and Formalisation of
Design Deficiencies

Before design deficiencies can be detected in a software system, it has to be de-
termined which deficiencies shall be detected. Sometimes there are pre-defined
catalogues of deficiencies (e.g. [All02, BMMMO98]). At other times, it is unclear
which deficiencies commonly appear in a system so they have to be discov-
ered first. The discovered deficiencies and their removal strategies then have
to be documented and formalised in order to allow for an automatic detec-
tion. Removal strategies can be discovered and formalised at the same time
as the corresponding deficiencies. Therefore, I do not explicitly mention them
every time in the following description of the process. Section 9.5 explains the
formalisation language and the application of removal strategies.

This section describes a process for the systematic discovery, documentation,
and formalisation of design deficiencies. The process was first presented in

49

4. The Archimetrix Process

[vDPB13]. For the formalisation of deficiencies, I reuse an existing, domain-
specific, graphical language which was developed in the Software Engineering
Group at the University of Paderborn [NSW*02, Nie04] [vDT10].

Design deficiencies often occur because design principles, guidelines, or con-
ventions are not adhered to. The reasons for this are manifold. For example,
high time pressure may force developers to quickly implement something with-
out spending much time on devising careful designs. In other cases, inexperi-
enced developers may simply be unaware of guidelines or the guidelines may
not be sufficiently enforced in a company, e.g. through regular code reviews.

Figure 4.2 shows the process for the discovery, documentation, and formalisa-
tion of such design deficiencies as a UML Activity. This process is performed by
a deficiency expert, i.e. someone who is familiar with the formalisation language
used in Archimetrix.

The process consists of four phases.

1. The discovery of design deficiencies (Steps 1.1 to 1.3).

2. The documentation of the discovered design deficiencies (Step 2).

3. The formalisation of the documented design deficiencies (Step 3).

4. The validation of the design deficiency formalisations (Steps 4 to 6).

The enumeration of the phases already suggests that the phases have to be
carried out in this order. For example, deficiencies can only be documented
when they have already been discovered. The validation phase happens in
iterations. The deficiency formalisations are tested on a test system or a real
system. If the detection results are not satisfying, the formalisations are refined
and the validation is repeated. The process ends when the deficiency detection
yields satisfying results for the deficiency formalisations.

The following paragraphs explain the process steps in more detail.

Steps 1.1 to 1.3: Deficiency Discovery The first step in discovering de-
ficiencies is to identify principles, guidelines, and conventions that are used
in the system under study. These may be, for example, common principles
of good component-based design like architectural styles or design patterns
[Fow02, SGMO02] (Step 1.1). The use of data transfer objects described in Sec-
tion 3.3 is one example of such a common design principle. Design principles
can be identified by studying textbooks or by talking to experienced software
architects. The corresponding design deficiencies can then easily be derived
by imagining violations of design principles like the ignorance of data transfer
object in the running example.

On the other hand, there may be company- or project-specific guidelines
which are not universally applicable to arbitrary component-based systems (see
Section 3.1). For example, there may be company-specific naming conventions
or development guidelines. The naming convention for transfer objects pre-
sented in Section 3.3 is an example of a project-specific convention that stems
from the CoCoME project [RRMPO8]. Other conventions may arise from the

50

4.4. Design Deficiency Formalisation

(\77)‘
Ly S
&L | oL

1.1: Derive violations from 1.2: Derive violations from 1.3: Interview developers about
principles of good) company- and project informal conventions and commonly
component-based design specific guidelines occurring deficiencies

L

2: Document deficiencies

[d
o

N v
3: Formalize deficiencies

4.1: Automatic detection
on test system

@

5.1: Automatic detection
on real system

99

4.2: Check results for false
positives and negatives

99

5.2: Check results for false

positives and negatives 6: Refine