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Abstract

We study the existence of Lie group structures on topological groups of dif-
ferentiable maps C"(M, K) from a non-compact manifold M to a possibly
infinite dimensional Lie group K, and on weighted function spaces C'V (X, g)
from a completely regular Hausdorff space X to a Lie algebra g. As a tool
to deal with the groups C"(M, K), we develop a differential calculus of par-
tially differentiable mappings on multiple products of locally convex spaces
and establish exponential laws for such mappings, which also admit appli-

cations in other parts of infinite-dimensional Lie theory.



Deutsche Zusammenfassung

Die Arbeit ist dem Studium von Liegruppenstrukturen auf topologischen
Gruppen der Form C" (M, K) gewidmet, wobei M eine nicht-kompakte Man-
nigfaltigkeit und K eine endlich- oder unendlichdimensionale Liegruppe ist.
Zudem werden Liegruppen zu Funktionraumen C'V (X, g) untersucht, wobei
X ein vollstandig reguldrer topologischer Raum ist und g eine topologische
Liealgebra. Als ein Werkzeug zum Umgang mit den Gruppen C"(M, K)
entwickeln wir eine Differentialrechnung partiell differenzierbarer Abbildun-
gen auf Produkten mehrerer lokal konvexer Rdume und beweisen Expo-
nentialgesetze fiir solche Abbildungen, welche auch in anderen Teilen der

unendlich-dimensionalen Lietheorie von Nutzen sind.
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Chapter 1

Introduction

Infinite-dimensional Lie groups are of importance for mathematical physics. This thesis
introduces two classes of infinite-dimensional Lie groups. The first class are certain
mapping groups which generalize loop groups and current groups, that have attracted
much interest in mathematics and also appear in quantum theory. The second class
are Lie groups modelled on weighted function spaces, special cases of which have a gain
been applied in various branches of mathematics and physics.

It is a well-known fact that the set of smooth maps C°°(M, K) from a compact
smooth manifold M to a Lie group K modelled on a locally convex space carries a
natural Lie group structure (see [27], [23] and [25]). For non-compact manifolds M
this statement is, in general; not true, in this case, the topological group C*°(M, K)
may fail to admit a manifold structure. In [3I], Neeb and Wagemann developed Lie
theory for this class of groups. Notably, they gave sufficient conditions for the existence
of Lie group structures on such groups. In this thesis, we study the group C*(M, K)
for finite k. We show that there exists a natural Lie group structure compatible with
evaluations on C*(M, K) if the image of the left logarithmic derivative carries a natural
manifold structure. We then obtain a manifold structure on the group C¥(M, K) :=
{f € C¥(M,K) : f(mg) =1} and hence on C*(M,K) = K x C¥(M, K) a C*-regular
Lie group structure compatible with evaluations, for £ > s + 1 (Theorem [142)).

Let X be a completely regular Hausdorff space, E be a topological vector space and
V be a Nachbin family of weights on X (Definition [150). The weighted spaces CVy(X)
and CV (X) were introduced in the scalar case by Nachbin [28], and the corresponding
E—valued functions weighted spaces analogues C'Vy(X, E) and CV (X, E) were intro-
duced and studied by Bierstedt [5] and Prolla [35]. In general these spaces need not be



1. INTRODUCTION

algebras if E is an algebra. In [33] and [34] Oubbi presented necessary and sufficient
conditions for these spaces to be locally convex algebras of a certain type. In this the-
sis we study such weighted spaces in an infinite-dimensional Lie theory setting. More
precisely, we shall consider the Lie algebra—valued weighted functions space CV (X, g)
and we shall give conditions on the weight making this weighted space a topological Lie

algebra. We shall also consider Lie group structures on such spaces if g is nilpotent.

Thesis outline and statement of results

This thesis consists of two parts. The first five chapters comprising the first part are
devoted to the study of the Lie group structures on mapping groups. The remaining

part deals with the Lie-theoretical weighted spaces.

Chapter 2 presents some preliminaries on infinite-dimensional Lie theory. We collect
a few results concerning the differential calculus in locally convex spaces which will
be important later. We also briefly review some basic concepts and results concerning

manifolds, infinite-dimensional Lie groups and spaces of mappings.

Chapter gives a systematic treatment of the calculus of mappings on products with
different degrees of differentiability in the two factors, called C"*-mappings. We shall
develop their basic properties and some refined tools. We study such mappings in an
infinite-dimensional setting, which is analogous to the approach to C"-maps between
locally convex spaces known as Keller’s C7-theory [24]. We first introduce the notion
of a C™*-mapping: Let Fy, Fo and F' be locally convex spaces, U C Fy and V C E»s
be open subsets and r, s € Ng U {oo}. We say that a map f: U x V — F is C™* if the

iterated directional derivatives

(Dw;0)*** Dwr,0)P0,0;) ** * Dio,on) ) (@, )

exist for all 7,5 € Ng such that ¢ < r and j < s, and are continuous functions in
(z,y,wi,...,wi,v1,...,v;) € UxV x E}x E% (see Definition [25| for details). To enable
choices like U = [0, 1], and also with a view towards manifolds with boundary, more
generally we consider C™*-maps if U and V are locally convex (in the sense that each
point has a convex neighbourhood) and have dense interior (see Definition . These

properties are satisfied by all open sets.



The first aim of this chapter is to develop necessary tools like a version of the Theorem of
Schwarz and various versions of the Chain Rule. After that we turn to an advanced tool,
the exponential law for spaces of mappings on products (Theorem. We endow spaces
of C"-maps with the usual compact-open C"-topology (as recalled in Definition and
spaces of C™*-maps with the analogous compact-open C™*-topology (see Definitions
and . The main results of Section 3 (Theorems 49| and subsume:

Theorem A. Let Fi, Ey and F be locally convexr spaces, U C E1 and V C Ey be
locally convex subsets with dense interior, andr,s € NgU{oo}. Then~y": U — C*(V, F),
x +— y(x,o) is C" for each v € C™*(U x V, F), and the map

O: O™ (U x V,F) = C™(U,C*(V, F)), ~ 7" (1.1)

1s linear and a topological embedding. If U x V x E1 x Ey is a k-space E| or V' is locally

compact, then ® is an isomorphism of topological vector spaces.

This is a generalisation of the classical exponential law for smooth maps. Since C°°-
maps and C°*°-maps on products coincide (see Lemma Remark and Lemma

16]), we obtain as a special case that
O: C°(U xV,F) = C®(U,C>*(V,F)) (1.2)

is an isomorphism of topological vector spaces if V' is locally compact or U x V x Fy X E»
is a k-space.

Naturally one would like to apply the exponential law to a pair of smooth manifolds
My and M5 modelled on locally convex spaces E1 and Es, respectively. In Section|3.4] we
extend our results to C™*-maps on products of manifolds. Beyond ordinary manifolds,
we can consider (with increasing generality) manifolds with smooth boundary, manifolds
with corners and manifolds with rough boundary (all modelled on locally convex spaces)
— see Definition It turns out that if the modelling space of the manifold is well
behaved, the exponential law holds in these cases (Theorem . The main results of
Section [3.4] subsume:

LA topological space X is called a k-space if it is Hausdorff and its topology is the final topology
with respect to the inclusion maps K — X of compact subsets of X. For example, all locally compact

spaces and all metrizable topological spaces are k-spaces.
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Theorem B. Let My and My be smooth manifolds (possibly with rough boundary)
modelled on locally conver spaces E1 and Eso, respectively. Let F be a locally convex
space and r,s € NoU{oco}. Then " € C"(My,C*(Ma, F)) for ally € C™*(My x M, F),
and the map

D CT’S(Ml X MQ,F) — Cr(M17CS(M2,F)), Y = ’)/V (1.3)

1s linear and a topological embedding. If E1 and Eo are metrizable, then ® is an iso-

morphism of topological vector spaces.

The same conclusion holds if M is finite-dimensional or E7 X Eo X E7 X Es is a k-space,
provided that M; and M, are manifolds without boundary, manifolds with smooth

boundary or manifolds with corners.

Chapter In this chapter we generalize the results of the previous chapter. We
introduce and study mappings on multiple products of locally convex spaces (resp.
manifolds modelled on locally convex spaces) with different degrees of differentiability
in the individual factors (C“-maps). We first introduce the notion of a C“-mapping:
For all i € {1,...,n}, let E; and F be locally convex spaces, U; be an open subset of
E; and «o; € Ng U {00} such that a := (ay,...,a,). Suppose that D; is the iterated
directional derivatives in the ¢-th component. we say that a map f: Uy X --- x U, — F

is C% if the iterated directional derivatives

v

(D1 -+ Dy f) ()

exist and are continuous functions on Uy x --- x U, X EIB L oo x Eﬁ” such that 3; €
No, 8; < «; (see Definition [65] for details). More generally, we consider C*-maps if U;
is a locally convex subset with dense interior (see Definition . Using this definition,

most results of this chapter in the C'“ setting are analogous to those of Chapter [3] also
for the results concerning exponential laws (Theorems [94] and .

Chapter 5. In this chapter we discuss the C*-regularity concept. After recalling some
definitions and results (mainly from [32], [27], [I7] and [21]), we shall introduce a version
of the Fundamental Theorem for g-valued functions (Theorem [132)). The main result in

this chapter is the following:



Theorem C. Let M be a smooth manifold (possibly with boundary and modelled on
a locally convex space), 2 < k € N and G be a C*~2-regular Lie group with Lie algebra
g. Ifa e Qék(M,g) satisfies do + %[a,a] = 0, then « is locally integrable.

Chapter 6. In this chapter, we study Lie group structures on groups of the form
C*(M, K), where M is a non-compact smooth manifold and K is a, possibly infinite-

dimensional, Lie group. Using that the map
§: CFM,K) — Qb1 (M, )

is a topological embedding (Theorem [141]), we prove the following theorems (Theorems
and [147)) :

Theorem D.  Let s, k € NgU{oo} with k > s+1, M be a connected finite-dimensional
smooth manifold (with boundary) and K a C*-regular Lie group. Assume that the subset
§(Ck(M, K)) is a smooth submanifold onlc,c_1 (M, ). Endow C*(M, K) with the smooth
manifold structure for which & : C*(M, K) — im(8) is a diffeomorphism and

C*(M,K)= K x Ck(M, K)

with the product manifold structure. Assume that L; for j € J are compact submanifolds

(with boundary) of M whose interiors L; cover M, and such that
5j : Cf(LJ" K) — Qlckfl(LJ" E)’

is an embedding of smooth manifolds onto a submanifold of Qék_l(Lj,{%). Then the
following assertions hold:

(a) For each r € NoU{oo} and locally conver C"-manifold N, a map f: N xM — K
is C™* if and only if for alln € N, f, : M — K, m + f(n,m) are C* and the
corresponding map f¥ : N — C¥(M,K), n+ f, is C".

(b) K acts smoothly by conjugation on C*(M, K), and C*(M, K) carries a C*-regular

Lie group structure compatible with evaluations.

Theorem E. Let K be a C* '-regular Lie group and N and M finite-dimensional
smooth manifolds. We assume that G := C*(M, K) carries a C*-regular Lie group
structure compatible with evaluations and the smooth compact-open topology. If C™(N, G)
also carries a reqular Lie group structure compatible with evaluations and the compact-
open C*-topology, then C™*(N x M, K) carries a C*-reqular Lie group structure com-

patible with evaluations. Moreover, the canonical map

®:C"*(N x M,K) = C"(N,G), fwfY
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is an isomorphism of Lie groups.

Theorem D ensures, in particular, that C*(R, K) is a Lie group for each k € N and
C*=1lregular Lie group K. Theorem E implies that, if k,r, s € NgU{co} with & > s+1
and r > s+ 3, then C"F(R x R, K) admits a C*-regular Lie group structure compatible

with evaluation and the compact-open C™*-topology.

Chapter 7. In this chapter we study the weighted spaces of continuous functions

CV(X,E)={f € C(X,E):|f|v is bounded for every v € V'},
CVo(X,E)={f € C(X,E) : fv vanishes at infinity for every v € V'},

such that X is a completely regular Hausdorff space, E is a topological vector space
and V is a Nachbin family of weights on X. In Section 7.2} we recall from [33] and [34]
some facts concerning these spaces as algebras. Analogous to those facts, we describe
a condition on the weights that makes C'V (X, g) a topological Lie algebra (Corollary
172)):

Theorem F. If (g,[,]g) is a locally convex topological Lie algebra, X a Hausdorff
topological space and V' any Nachbin family on X such that V< V'V, then CV (X, g) is

a locally convex topological Lie algebra with the Lie bracket

[]: CV(X,9) x CV(X,g) = CV(X,g), (v,n) = [v,7]

with [v,n)(z) = [y(z),n(x)]g.

Using the fact that the Baker-Campbell-Hausdorff formula defines a group structure on
any nilpotent Lie algebra ([2I]), we obtain an analytic Lie group structure on CV (X, g),
if g is a nilpotent topological Lie algebra.

Also, for any Banach Lie group H with Lie algebra b, we use CV (X, h) to create a
Lie group structure on

(expy oy v € CV(X,h)),
if 1 € V (see Section [7.3|for details).
Remark. This text slightly deviates from the version of the thesis submitted to the

Institut fiir Mathematik in February 2013, as it takes comments of the referees into

account.



Chapter 2

Preliminaries

This chapter briefly reviews some of the basic concepts and material concerning differ-
ential calculus in locally convex spaces, infinite-dimensional Lie groups and spaces of
mappings.

The letter K always stands for R or C. All vector spaces will be K-vector spaces

and all linear maps will be K-linear, unless the contrary is stated.

2.1 Differential calculus in locally convex spaces

In this section we recall the C"-maps in the Michal-Bastiani sense, also known as Keller’s
Cl-map [24] (see |26], 23], [27], [15] and [21] for streamlined expositions, cf. also [4]).

For C"-maps on suitable non-open domains, see [2I] and [41].

Definition 1. Let E and F be locally convex topological vector spaces, U C E open
and f:U — F a map. Then the derivative of f at x in the direction of h is defined as

df (2, h) := lim %(f(x L th) — f(x))

t—0

whenever the limit exists. The function f is called differentiable at z if df (x, h) exists for
all h € E. The function f is called continuously differentiable or C* if f is continuous

and differentiable at all points of U and
df :UxE —F, (x,h)—df(xz,h)

is a continuous map. The function f is called a C"-map if f is C' and df is a C"~!-map,
and C* (or smooth) if f is C" for all r € N.
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Definition 2. (C"-maps on non-open sets). Let U C E be a locally convex subset
with dense interior. A mapping f: U — F is called C" if f|yo: U° — F is C" and
each of the maps d®(f|yo): U° x E¥ — F admits a (necessarily unique) continuous
extension d¥) f: U x EF — F.

We shall use some fundamental facts of the theory of C"-maps. For details, the
reader is referred to [15], 21, 23] 26] 27] (cf. also [4]):

Lemma 3. If f : E D U — F is C!, then f'(x) := df(z,e) : E — F is a continuous

linear map, for each x € U.

Proposition 4. (Schwarz’ Theorem). ([16, Proposition 1.13]) Let E and F be
locally convex spaces, f : U — F be a C"-map on a locally convex set U C E with dense
interior, where r € Ng U {oc}. Then d(k)f(m, o): E¥ — F is symmetric, K-linear, for
each x € U.

The compositions of composable C"-maps are C”.

Lemma 5. (Chain Rule). (J21]) Let E, F' and G be locally conver spaces, U C
E,V C F be locally convex sets with dense interior, and f : U — F,g:V — G be
C"-maps such that f(U) CV, where r € NgU {oo}. Then also go f:U — G is C".

Proposition 6. (Parameter-dependent integrals). ([6, Proposition 3.5]) Let E
and F be locally conver spaces, f : [a,b] x X — F be a continuous map such that
g(z) = f: f(t,x) dt exists in F for every x in a topological space X. Then g: X — F is
continuous. Suppose, in addition, that daof : [a,b] xU X E — F' exists and is continuous,
and that gi(x,v) = f;f(t,x; v)dt ezists in F for every x in an open U C E and every
v € E. Then g is a C'-map with dg = g.

Lemma 7. A map f: EDU — F is C"™ if and only if f is C* and df : U x E = F
is C".

We shall also use the Rule on Partial Differentials:

Lemma 8. ([21]) Let E1, E2 and F be locally convex spaces, U and V' be locally convex
subsets with dense interior of E1 and FEo respectively, and f : UXV — F be a continuous

map. Assume that there exist continuous functions
A UxV xE - F

dOVF UxV x Ey = F
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such that Dy, o) f(x,y) exists and coincides with d10) f(z,y,w) for all (z,y) € U"x VO
and w € By, and D) f(x,y) exvists and coincides with dOY f(x,y,v) for all (z,y) €
U x VO and v € Ey. Then f is C' and

df ((z,y), (w,v)) = dO f(z,y, w) + dOY f(z,y, v). (2.1)

Using the method of the proof of Lemma [§ as in [2I], one obtains the following

proposition.

Proposition 9. (Rule on Partial Differentials). Let Ey,...,E, and F be lo-
cally convexr spaces, U; be a locally convex subset with dense interior of E; for all
ie{l,...,n}, U :=U x--xUyand f : U X -+ x U, = F be a continuous
map. Assume that there exist continuous functions d;f : Uy X - x Uy, X E; = F
such that Dy, f(w1,...,2y) evists and coincides with d;f|yo(x1,. .., 20, w;) for all
i€ {1,...,n} and for all (z1,...,2,) € U, w; € E; and the corresponding element
(w;)* € ({01 x B; x ({0})" " C Ey x --- x E,. Then f is C! and

df (21, ), (w1, wn)) = dif (1, T, wi). (2.2)
=1

Proof. Assume that d;f exists for all i € {1,...,n}. If we can show that f|y o is
C' and holds for f|yo, then the right hand side of provides a continuous
extension of d(f|yo) to Uy x - x U, x (Ey X --+ x E,), whence f is C! and
holds. We may therefore assume that U; x --- x U,, is open in Fq X --- X E,. Given
(x1,...,2p) €Uy X -+ x U, and w; € E; for all i € {1,...,n}, there exists ¢ > 0 such
that (z1,...,25) + Dewy X -+ X Dew,, C Uy X -+ X Uy, where D := {z € K: |z] < €}.
Then (x1,...,zy,) + [0, 1]twy x -+ x [0, 1Jtw, C Uy X --- x U, for each 0 # t € D.. By
the Mean Value Theorem (see [21]), we obtain

1

Z(f((fflayxn) +t(wiy .. wn)) = f(@1,. ., 7))

"1
= Z;f(xl + twq, .. Sy Ty —i—twj,xj+1,... ,xn)
j=1
"1 1
—ng(ml —i—twl,...,xj_l +twj_1,mj,...,:):n) — Ef(xl,xn)
j=2

nooa
= Z/@ djf(ﬂj‘l +twy, ..., rj-1 +Htwj1, x5 —I—thj,a;jﬂ,...,xn,wj)da. (2.3)
7=1

Note that the integrals in (2.3)) make sense also for ¢ = 0 (the integrands are then
constants), and hence define mappings I1,...,I, : D — F. The map D x [0,1] —
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F, (t,0) = dif(z1 + twy,...,z; + otw;, Tit1, ..., Ty, w;) being continuous for all i €
{1,...,n}, the parameter-dependent integral I; is continuous (see [21]). Hence the right
hand side of converges as t — 0, with limit 11 (0)+- - -+12(0) = di f(z1, ..., zp, w1)+
<o+ dyf(x1, ..., 2y, wy). Hence df exists and is given by the right- hand side of

and hence continuous, whence f is C?. O

2.2 Manifolds

Since the composition of C™ maps between locally convex spaces is a C™ map, we can
define C"-manifolds M as in the finite-dimensional case (see [26], [23], [27], [15] and

[21]) .

Definition 10. (a) A smooth manifold modelled on a locally convex topological vector
space E is a Hausdorff topological space M, together with a set A of homeomor-
phisms (charts) ¢ : U — V from open subsets of M onto open subsets of E, such
that the domains cover M and the transition maps ¢ o9 ~! are smooth on their
domain, for all ¢, ¢ € A.

(b) If the transition maps @ o ~! are just C” on their domain, for all ¢, 1 € A, then
it is called a C"-manifold.

(c) A manifold modelled on Banach space is called a Banach manifold.

Products of manifolds and smoothness of maps between manifolds are defined also

as in the finite-dimensional case.

Remark 11. For i € {1,...,n}, let M; be a smooth manifold modelled on the space
E;. Then the product set M := My x - - - x M, carries a natural manifold structure with
model space E =[]}, E;.

Definition 12. A mapping f : M — N between manifolds is said to be C* if for each
x € M and each chart (V,%) on N with f(z) € V there is a chart (U, ¢) on M with
zc U, f(U)CV,and o fog¢!is Ck. We will denote by C*(M, N) the space of all
C*-mappings from M to N. A C*-mapping f : M — N is called a C*-diffeomorphism
if f~1: N — M exists and is also C*. Two manifolds are called diffeomorphic if there

exists a diffeomorphism between them.

Definition 13. Let M be a manifold modelled on the space E, and N C M a subset.

(a) N is called a submanifold of M if there exists a closed vector subspace F' C F and

for each x € N there exists an E-chart (U, ¢) of M with x € U and (U NN) =
e(U)NF.

10



2.3 Infinite-dimensional Lie groups and their Lie algebras

(b) N is called a split submanifold of M if, in addition, there exists a vector subspace
G C E for which the addition map F x G — E, (f,g) — f + g is a topological

isomorphism.

2.3 Infinite-dimensional Lie groups and their Lie algebras

Definition 14. A Lie group G is a group, equipped with a smooth manifold struc-
ture modelled on a locally convex space F such that the group operations are smooth
maps. Similarly, an analytic Lie group is a group G equipped with an analytic manifold
structure turning the group operations into analytic maps.

We write 1 € G for the identity element and A\y(x) = gz, resp., py(x) = xg for the
left, resp., right multiplication on G.

Remark 15. It is easy to see that the group operations are smooth if the map Gx G —

G, (z,y) — zy~! is smooth.

Smooth and analytic Lie groups can be described locally:

Proposition 16. (Local description of Lie groups). Suppose that a subset U of a
group G is equipped with a smooth (resp., K-analytic) manifold structure modelled on
a locally convexr space E. Furthermore, assume that there exists V. C U open such that
1eV ,VVCUV =V~ and

(a) V. xV = U, (g,h) — gh is smooth (resp., K-analytic),

(b) V=V, g g~ is smooth (resp., K-analytic),

(c) Forall g € G, there exists an open unit neighbourhood W C U such that g~'Wg C

U and the map W — U, h +— g~ thg is smooth (resp., K-analytic).

Then there is a unique smooth (resp., K-analytic) Lie group structure on G which makes

V', equipped with the above manifold structure, an open submanifold of G.
Proof. The proof of [10], Proposition III1.1.9.18 carries over without changes. O

Remark 17. If V' generates the group G (i.e., if G is the smallest subgroup of G
containing V'), then Condition (c) can be omitted in Proposition (16) (as it follows
from (a) and (b)).

The Lie algebra of a locally convex Lie group. As in finite dimensions, the tangent
space [] L(G) := Ti(G) = E at the identity element of a Lie group G can be made a

topological Lie algebra via the identification with the Lie algebra of left invariant vector

'For definitions and details of tangent spaces and tangent bundles, we refer to [2I] and [30].

11
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fields on G. We recall that a vector field X on a locally convex Lie group G is called
left invariant if
Xodg=TAjoX

as mappings G — T'G. Then each x € Tj(G) corresponds to a unique left invariant
vector field x; with 2;(g) := dX\y(1).2, g € G. The space of left invariant vector fields is
closed under the Lie bracket of vector fields, hence inherits a Lie algebra structure. In
this sense we obtain on g := 77 (G) a continuous Lie bracket (see [21]) which is uniquely

determined by [z, y]; = [z, y] for z,y € g.

Definition 18. (Exponential function). Let G be a locally convex Lie group. The

group G is said to have an exponential function if for each x € g the initial value problem
Y(0) =1, 7' (t) = Tadypy -
has a solution v, € C*°(R, G) and the function
expg 1 g — G,z — v,(1)
is smooth.

Definition 19. (The Lie functor). For a Lie group G, the locally convex Lie algebra
L(G) := (T1(G),].,.]) is called the Lie algebra of G.

To each morphism ¢ : G — H of Lie groups we further associate its tangent map
L(p) :=Ti(p) : L(G) — L(H), and the usual argument with related vector fields implies
that L(p) is a homomorphism of Lie algebras.

Adjoint Representation. Let G be a Lie group with Lie algebra g. For each g € G, we

define the conjugation or the inner automorphism by the map ¢, : G — G, z — gzg .

This defines a smooth action of G on itself by automorphisms, hence induces con-

tinuous linear automorphisms
Ad(g) :=L(cg) : g — 0.
Thus the adjoint representation
Ad: G — Aut(g)

is given by Ad(g) = Ti(cq) : g = g for g € G. By Definition Ad(g) is a Lie algebra

homomorphism. We also define for z € g a linear map

ad(z) : g — g, adz(y) := T Ad(z, 0y)

12



2.4 Spaces of mappings

2.4

Spaces of mappings

Definition 20. Let X and Y be Hausdorff topological spaces.

(a)

Given a compact subset K C X and open subset U C Y, we define
K, U] :={y € C(X,Y):~(K) CU}.

Then the sets
LKl, U1J N---N LKn, UnJ

where n € N, K1,..., K, are compact subsets of X and Uy, ..., U, open subsets
of Y, form a basis for a topology on C(X,Y), called the compact-open topology.
We write C(X,Y )¢, for C(X,Y), equipped with the compact-open topology.
If G is a topological group, then C(X, G) is a group with respect to the pointwise
product. Then the compact-open topology on C'(X, G) coincides with the topology
of uniform convergence on compact subsets of X, for which the sets |K,U|, K C
X compact and U C G a 1-neighbourhood, form a basis of 1-neighbourhoods. In
particular, C(X, G).,. is a topological group.
We topologize for two smooth manifolds M (possibly with boundary) and N, the
space C*(M, N) by the embedding

k

Ck(M7 N) — H C(Tn(M)v Tn(N))c.o.a f = (Tn(f»nEN]S,a (2'4)
n=0 n<

where the spaces C(T"(M),T"™(N))c.o. carry the compact-open topology. The so
obtained topology on C¥(M, N) is called the compact open C*-topology.

Remark 21. ([31]) Let G be a Lie group with Lie algebra g and k € Ng U {co}. The
tangent map T'(mg) of the multiplication map m¢g : G x G — G defines a Lie group

structure on the tangent bundle TG (cf.|21]). Iterating this procedure, we obtain a

Lie group structure on all higher tangent bundles T™G. For each n € Ny, we thus

obtain topological groups C(T"M,T"G)..,.. We also observe that for two smooth maps
f1, fo : M — G, the functoriality of T" yields

T(f1- f2) =T(mgo (f1 x f2)) =T(mg) o (Tfr x Tf2) =Tf1-Tfa.

Therefore the inclusion map C*(M, G) — HZ:O C(T"M,T"G)c.o. from 1} is a group

homomorphism, so that the inverse image of the product topology from the right hand

side is a group topology on C*(M, G) and thus turns C*(M, G) into a topological group,

even if M and G are infinite-dimensional.
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The following assertions readily follow from the definitions:

Remark 22. ([19])

(a) For every r > s, the inclusion map C"(U, E) — C*(U, E) is a continuous linear
map. The topology on C*°(U, E) is initial with respect to the family of inclu-
sion maps C*®(U, E) — C*(U, E), where k € Ny. Furthermore, C*(U, E) =
yLnC'k(U, E). Accordingly, C*(U,C>®(V, E)) = I.&HC’%U, C"(V,E)).

(b) For every k € Ny, the topology on C**1(U, E) is initial with respect to the in-
clusion map C**1(U, E) — C(U, E) together with the mapping C**'(U, E) —
CHU x E,E), v+ dy.

We recall from (|2I]) the following proposition and lemma for later use.

Proposition 23. Let X1, Xs andY be Hausdorff topological spaces. Then the following
holds:
(a) If f: X1 — X2 a continuous map, then also the pullback

C(f,Y): C(X2,Y)co. = C(X1,Y)co,y—7yof

18 continuous.

(b) If g: X1 x X9 =Y is continuous, then the map
9" X1 = C(X2,Y)ew, 9" () = g(,0)

15 continuous.

(c) If Xo is locally compact and h : X1 — C(X2,Y ). is continuous, then the map
h/\ : Xl X Xg — K h/\(l‘l,xg) = h(l‘l)(xg)
1S continuous.

Lemma 24. Suppose that the topology on E is initial with respect to a family (A\;);c;
of K-linear maps A\; : E — E; into topological K-vector spaces E;. Then the topology
on C"(M, E) is initial with respect to the family (C" (M, \;))icr of the linear mappings
C"(M,X\;):C"(M,E) — C"(M, E;).

14



Chapter 3
C"*-Mappings

This chapter gives a systematic treatment of the calculus of mappings on products with
different degrees of differentiability in the two factors, called C"*-mappings [H We shall
develop their basic properties and some refined tools. We study such mappings in an
infinite-dimensional setting, which is analogous to the approach to C"-maps between

locally convex spaces. We first introduce the notion of a C"*-mapping;:

Definition 25. Let Fq, E5 and F' be locally convex spaces, U and V' open subsets of
E; and Es respectively and r,s € Ny U {oo}. A mapping f: U x V — F is called a
C™*-map, if for all i, j € Ny such that i < r,j < s the iterated directional derivative

d(i7j)f(x7y7wla sy Wi V1, - ,Uj) = (D(’u)i,(]) e D(wl,O)D(O,v]-) T D(O,'Ul)f)(xvy)
exists for all x € U,y € V,wn,...,w; € Eq1,v1,...,v; € Ep and
dW)f: U xV x B x B} - F,
(T, y, w1, w014 05) > (D 0y Diwn,0) Do) Dio,or) (@5 y)
is continuous.

More generally, it is useful to have a definition of C"*-maps on not necessarily open

domains available:

Definition 26. Let F4, Fo and F be locally convex spaces, U and V' are locally convex

subsets with dense interior of Fy and Ejs, respectively, and r, s € NgU{oo}, then we say

'For examples of projects which benefit from the results developed in this chapter see [I]
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3. C"*-MAPPINGS

that a continuous map f: U x V. — F is C™%, if f|gogyo: U x VO — F is C™*-map

and for all ¢, j € Ny such that ¢ < r,j <'s, the map
A (flyoxyo) : U x VO x B x B} » F
admits a continuous extension
AU XV x Ef x B} > F.

Remark 27. Variants and special cases of C"*-mappings are encountered in many
parts of analysis. For example [2] considers analogues of C*"-maps on Banach spaces
based on continuous Fréchet differentiability; [I5], 1.4] for C*"-maps; [14] for C™*-maps
on finite-dimensional domains; and [I3] p. 135] for certain Lip™*-maps in the convenient
setting of analysis. Cf. also [29], [I8] for ultrametric analogues in finite dimensions.

Furthermore, a key result concerning C™*-maps was conjectured in [19, p.10].
Definitions 25] and [26] can be rephrased as follows:

Lemma 28. Let E1, Ey and F be locally conver spaces, U and V be locally convex
subsets with dense interior of E1 and Ey respectively and r,s € No U {oo}. Then
f:UXxV = F is C™-map if and only if all of the following conditions are satisfied:
(a) For each x € U, the map f, := f(x,0): V = F, y— f.(y) := f(x,y) is C*.
(b) For ally € V and j € Ny such that j < s and v := (vi,...,v;) € Eg, the map
dD fo(y,v): U = F, x = (d9 f,)(y,v) is C.
(¢) dW9)f: UxV x El x E% — F, (z,y,w,v) = dD(dD fo(y,v))(x, w) is continuous,
for all j as in (b), i € Ng such thati <r and w := (w1, ...,w;) € Ei.

Proof. Step 1. If U,V are open subsets, then the equivalence is clear.
Now the general case: Assume that f is a C™%-map.
Step 2. If x € U, then for j € Ny, j < s

D(O,Uj) T D(O,vl)f(xay) = va T Dv1fx(y)
exists for all y € VY and v1,..., v; € Fo, with continuous extension
(y7 U1, ,’Uj) = d(OJ)f(xa Y, V1, -+, U])

to V x Ej — F. Hence f,: V — F is C%.
If z € U is arbitrary, y € VY and v; € F», we show that D,, f.(y) exists and equals
dOV f(z,y,v1). There exists R > 0 such that y 4+ tv; € V for all t € R, |t/ < R and

there exists a relatively open convex neighbourhood W C U of = in U. Because U° is
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dense, there exists z € U N W. Since W is convex, we have x + 7(z — x) € W for all
7 € [0,1]. Moreover, since z € W°, we have x + 7(z — z) € W° C UY for all 7 € (0,1].
Hence, for 7 € (0,1], f(x + 7(2 — x),y) is C*® in y, and thus for ¢ # 0

1
1(f(x+7’(z—m),y+tv1)—f(a:—i—T(z—:c),y)):/ d(o’l)f(x—l—r(z—a:),y—i-atvl,vl)da
0

by the Mean Value Theorem. Now let F be a completion of F. Because
h: [0,1] X [-R,R] x [0,1] = F, (1,t,0) = dOV f(z 4+ 7(z — 2),y + otvr,v1)

is continuous, also the parameter-dependent integral
1
g: [0,1] x [-R,R] — F, g(7,1) ::/ h(r,t,0)do
0
is continuous. Fix ¢t # 0 in [—R, R]. Then

g(r,t) = %(f(w +7(z —x),y+to) = flz+7(2—2),y)) (3.1)

for all 7 € (0,1]. By continuity of both sides in 7, (3.1)) also holds for 7 = 0. Hence
1
as t — 0. Thus D,, f»(y) exists and is given by

1
9(0,0) = / dOY f(z,y,v1) do = dOY f(z,y,v1).
0

Holding (v1,...,vj_1) fixed, we can repeat the argument to see that D, --- Dy, fz(y)
exists for all y € V9 and j € Ny such that j < s and all vy, ... ,vj € Fa, and is given by

va e Dv1fx(y) = d(O’J)f(x, Y, V15, Uj)‘

Since the right-hand side makes sense for (y,vi,...,v;) € V x E% and is continuous
there, f, is C°.

Step 3 Holding vy,...,v; € E% fixed, the function (z,y) — d(o’j)f(x,y,vl,...,vj) is
C™0. By Step 2 (applied to the CO" function (y,z) — d9) f(z,y,v1,. .. ,Vj)) we see
that for each y € V, the function U — F, =z — d(o’j)f(a;,y,vl,...,vj) is C" and
d9D(dY) f,(y,v))(x,w) = d®I) f(x,y, w,v), which is continuous in (z,y,w,v) € U x V x
Ei x E% Hence if f is C™°, then (a),(b) and (c) hold.

Step 4. Conversely. Assume that (a),(b) and (c) hold. By Step 1, f|yoyyo is C™* and

A9 flyoyo(,y,w,v) = d(dD fo(y, v)) (@, w) (3:2)
for (z,y) e U x VO, we Ei v e Eg By (c), the right-hand side of || extends to a
continuous function d@9) f: U x V x Ei x E% — F. Hence f is a C™*-map. ]
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3. C"*-MAPPINGS

3.1 Elementary properties

The following lemma will enable us to prove a version of the Theorem of Schwarz for

C™%-maps.

Lemma 29. Let Ei, Ey and F be locally convex spaces, f: U xV — F be a CY'-map
on open subsets U C Er, V C Es. Let w € Eq and v € Ey. Then Dg4) Dy 0)f exists
and coincides with D, 0y D(0,v)f -

Proof. After replacing F' with a completion, we may assume that F' is complete. Fix
x €U,y € V. There is € > 0 such that  + sw € U and y + tv € V for all s,t € BX(0).

For t # 0 as before, we have

1
%(f(a: + sw,y + tv) — f(z + sw,y)) = / Do) f(z + sw,y + rtv)dr. (3.3)
0

For fixed ¢, consider the map

1
g: B?(O) — F, g(s) := / D(Oﬂ,)f(a: + sw,y + rtv)dr.
0

The map [0,1] x B¥(0) — F, (r,s) — Do) f(x + sw,y + rt) is differentiable in s, with
partial derivative D, 0)D 0,v)f (% + sw,y + rtv) which is continuous in (r, s). Hence, by
[6, Proposition 3.5], g is C! and

1
g/(O) - A D(w,O)D(O,v)f(x7 Y+ Tt’U)dT.

Hence (3.3)) can be differentiated with respect to s, and

1

1
Z(D(w,())f(x, Y +tv) — Dy o) f(z,y)) = /0 D w,0)D0,0) f (2, y + rtv)dr. (3.4)

Note that, for fixed x, v and w, the integrand in (3.4]) also makes sense for ¢ = 0, and
defines a continuous function h: [0,1] x BX(0) — F of (r,t). By [6, Proposition 3.5],

the function )
H: BR0) — F, H(t) ::/ h(r, t)dr
0

is continuous. If ¢ # 0 this function coincides with %(D(w,g)f(.f, y+1tv) — Doy f(2,9)),
by (3.4]). Hence

o1
D(0,0)Dw,0)f (2, y) = Hm — (D 0) f (7, y + tv) — Dy 0) f(7,9))

t—0 t
1
— lig H(t) = H(0) = | h(r.0)dr = h(1,0) = Diag) Doz )
t—0 0 ’ ’
exists and has the asserted form. O
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Lemma 30. Let E1, Eo and F be locally convex spaces, U and V' be open subsets of F
and Es, respectively, and r € NgU {oo}. If f: U xV — F is a C"™'-map, then

D 0,0y D0y = D0y f (2, )

exists for all i € N such that i <r, (z,y) € U xV, v € Ey and w1, ...,w; € E1, and it

coincides with d(i’l)f(z, Yy Wy« ey Wiy V).

Proof. The proof is by induction on ¢. The case ¢ = 1. This is covered by Lemma

Induction step. Assume that ¢ > 1. By induction, we know that
D0,0)D(w; 1,00+ Diw,0)f (2, 9)
exists and coincides with
AU f(z g, wy, . wieg,v). (3.5)
Define g: U x V — F via
9(%,y) = Dw,_,.0) " Dwr 0 f(,y) = d(i_l’o)f(x, Yy Wy e vy Wieq)-

Then g is C10 (f is C™! and r > i, hence we can differentiate once more in the first

variable). By induction, g is differentiable in the second variable with

D(O,v)g(xv y) = d(i_Ll)f(IE, Yy W1y ewoy,Wi—1, U) (36)
= D(wifl,O) T D(w1,0)D(O,v)f(xa y)a (37)

which is continuous in (v,z,%). Hence g is C%' and d®Vg(z,y,v) is given by (3.5).
Because f is C™! and r > 14, the right-hand side of (3.6 can be differentiated once more
in the first variable, hence also D(q ,yg(z, y), with

AWV g2, y, wi, v) = Diw, 0D (0.)9(%:9) = Dw,.0)Dw,—.0) - Dws 0) Do f (@, 9)
= d(i71)f(x> Yy, w, ..., Wy, ’U)-

As this map is continuous, g is C1''. By Lemma also D g,) D, ,09(x,y) exists and

is given by Dy, 0)D(0,0)9(%,y) = d@V f(z,y, w1, ..., w;,v) (Where we used ) But,
by definition of g,

D 0,0)Duw;,009(%,y) = D 0,0)D:,0) Pws_1,0) -+ D ,0).f (,9)-

Hence D(g,) D, 0) - * Dy 0)f (,y) = dOV f(w,y, w1, ... wi,v). O
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Proposition 31. (Schwarz’ Theorem). Let Ey, Ey and F be locally convex spaces
and f: U xV — F be a C™®-map on open subsets U C E1,V C FEo. Let i,j € Ny
with i < r,j < s and 0 € Si; be a permutation of {1,...,i+j}. Let x € U,y €
V,wi,...,w; € By and wit1,...,wiyj € Ea. Define w} := (wy,0) if k € {1,...,i} and
wy = (0,wy) ifk € {i+1,...,i+ j}. Then the iterated directional derivative

(Duzyy -+ Dur,,., D(ay)
exists and coincides with
d(%j)f(x) Y, W1y ..., Wiy Wi41,--- 7wi+j)'

Proof. The proof is by induction on i + j. The case i + j = 0 is trivial.

The case © = 0 or j = 0. If ¢ = 0, then the assertion follows from Schwarz’ Theorem
for the C*-function f(z,e): V — F. Likewise, if j = 0, then the assertion follows from
Schwarz’ Theorem for the C"-function f(e,y): U — F (see [21]).

The case i,j > 1. If o(1) € {1,...,i}, then by induction,

Dy - Dy x
Yo (2) “’a(z‘mf( Y)
1
= d(l J)f(x7 Y, wi, ... 7w0'(1)717 wo’(l)+17 ey Wi Wig1y - - 7wi+j)~
Because f is C%J, we can differentiate once more in the first variable:
Dw;(l) to Dw;(i+j)f(x7 y)

1, .
= d( J)f($7yawl7 s Wo(1)—1) Wo(1)+15 - -+ Wi, We(1); Wit - - 7wi+j)

= d(ihj)f(‘raval? ey Wiy Wity - - - 7wi+j)'
For the final equality we used that
d(i’j)f(:v,y, 21y s Ziy V1,00, Vf) = d(i)(d(j)f.(y,vl, v, 2, 2)

is symmetric in z1,...,2;, as g(z) == d9) fo(y, v, ... ,vj) is C" in x (see Lemma .
If o(1) € {i+1,...,i+j}, then by induction,

Dw;@) T Dw:(iJrj)f(:L‘a y) = d(’i7j—1)f(x7 Y, W, o oy Wiy e o, Wo (1) =15 Wo(1)+15 - -+ w2+])
For fixed wj41, ..., w;tj, consider the function h: U x V' — F,
h(l’, y) = d<07j_1)f(£> Y, Wit1y .- Wo(1)—15 Wo(1)+15 - - - 7wi+j)7
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which is C™s=0~1),
By Lemma |30

Dw;(l)Dw; te Dth(.Z‘, y)
exists and coincides with
Dy -+ Dy Dw;(l)h(m, ).
Now
Dw;@) T w(’;(i+j)f(x7 y) = d(i7j_1)f($v Y, Wiy -+ o5 Wo(1)—1) Wo(1)+15 - - - 7wi+j)

= Dy - Dy h(z, y).

By the preceding, we can apply Dw*(l), ie., D“’*<1> e Dw*(iﬂ_) f(z,y) exists and coincides
with

Dwz’.‘ ce Dwaw;(l)h<$7 y)

= d(ZJ)f(x? Y, W1y ..., Wi, Wig1y--- 7w0'(1)—17 wa(1)+17 sy Widyg, wo‘(l))

= d(l) (d(J)f.(y7 Wit1y---, wo’(l)fb wo’(l)+17 B 7wi+j7 wo’(l)))(x7 wi, ... ,'U)i)
where d(j)fx(y,vl, ...,v;) is symmetric in v1,...,v; by the Schwarz Theorem for the

C*®-function f,. Hence
A9 o (Y, Wik 1, -« o Wo(1) =1 Wo (1) 415 - - » Wikjs Wo1)) = A9 oy, wi1, ..., wis))
for all x. Hence also after differentiations in x:
dD(dD fo(y, Wit - W (1)1, Wa(1)41s - - - » Wik Wo1))) (@, w1, . w;)
coincides with
d(i’j)f(:v, Y, W1, ..o Wigj) = d(i)(d(j)f.(y, Wig1, - Wigj)) (@, w1, ..., w;).
O

Remark 32. If U and V are merely locally convex subsets with dense interior in the
situation of Proposition then

(D) - Dug ) H(@9) (3.8)

exists for all x € U%, y € V', and the map d(i’j)f(x, Y, w1, ..., Wiy;) provides a contin-
uous extension of 1) toall of U x V x E¥ x Eg
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Corollary 33. Let E1, FEo and F be locally convex spaces, U and V be locally convex
subsets with dense interior of Fn and Ey respectively. If f: U x V — F is C™*, then

g:VxU—=F, (y,z) = f(z,y)
s a C*"-map, and
d(j’i)g(y,x,vl,...,vj,wl,...,wi):d(i’j)f(:r,y,wl,...,wi,vl,...,vj)
foralli,j e Ng withi <r,j<s,zcUyecV,w,...,w; € B and v1,...,v; € Fs.

Lemma 34. Let E1, Ey and F be locally conver spaces, U and V be locally convex
subsets with dense interior of By and Fo respectively. If f: U xV — F is C™° and
A F'— H is a continuous linear map to a locally convex space H, then Ao f is C™°
and d)(Xo f) = Ao d®d f,

Proof. Follows from the fact that directional derivatives and continuous linear maps

can be interchanged. d

Lemma 35. (Mappings to products). Let Ey, Ey be locally convex spaces, U and V
be locally convex subsets with dense interior of E1 and Ey respectively, and (Fy)aca be
a family of locally convex spaces with direct product F := ] c 4 Fa and the projections
To: F' — F, onto the components. Let r,s € NoU {oo} and f: U xV — F be a map.
Then f is C™* if and only if all of its components fo := o o f are C™*. In this case

) f = (9 fa)aca, (3.9)
for alli,j € Ng such that i <r and j < s.

Proof. m, is continuous linear. Hence if f is C"® then f, = m, 0 f is C™*, by Lemma
with d(@9) £, = 7, 0 d@9) f. Hence (3.9) holds.
Conversely, assume that each f, is C™®. Because the limits in products can be

formed component-wise, we see that
dD fz,y,wi, ... wi, 1., 05) = D(w;0)** Diwr,0)P0,w;) *** Dio,or) f (@, )
exists for all (z,y) € U° x VO and wy,...,w; € Ey, wvi,...,v; € Ea, and is given by
(d(i’j)fa(x, Y, Wi,y .o, Wiy V1, - -+, V) )acA- (3.10)

Now li defines a continuous function U x V x E% x E% — F for all 4,5 € Ny
such that ¢ <r and j < s. Hence f is C™°. O
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Lemma 36. Letr,s € NgU{oco}, s > 1, Ey, Es, F be locally convex spaces, U and V' be
locally convex subsets with dense interior of Fy and Eo respectively. Let f: U XV — F
be a map. Then f is C™* if and only if f is C™0, f is CO' and dOV f: Ux(VxEy) — F
is C5~1L

Proof. The implication “ = ” will be established after Lemma [38, and shall not be used
before. To prove “ < 7, let i,j € Ng such that i < r and j < s, and (z,y) € U? x VO
and wi,...,w; € By and vy,...,v; € E».

If j = 0, then Dy, o) D, 0)f (7, y) exists as f is C™0, and is given by

d(i’O)f(x’ Y, Wi, ... 7wi)

which extends continuously to U x V x E.
If j >0, then D) f(x,y) = dOY f(z,y,v1) exists because f is C*! and since d(®V) f

is C™*~1 also the directional derivatives
D(wi,O) T D(wl,O)D(O,U‘j) e D(O,vl)f(:na y)

= D(w,.(00)) " Diwr.00) Di0.w;.0) - D0,(wni0y (0 ) (@, 9, v1)

exist and the right-hand side extends continuously to (z,y,wi,...,w;,v1,...,v;) €
UxV xEl ng. Hence f is C™°. O

Lemma 37. Let r,s € Ng U {oco}, E1, Ea, Hi, Ho, F be locally convex spaces, U, V, P
and Q) be locally conver subsets with dense interior of E1, Es, H1 and Hsy, respectively. If
f:UXV = FisaCr®-map and \1: Hi — E1 as well as Ay: Hy — Eo are continuous
linear maps such that \{(P) C U and A2(Q) CV, then fo (A X A2)|pxg: PxQ — F

s C™%.

Proof. Let (p,q) € P® x Q" and wy,...,w; € Hy, vy,...,v; € Ha. Let X C U be a
convex neighbourhood of A\j(p) and Y C V' be a convex neighbourhood of A2(g). For
t € R so small that Aa(q) + tAa(v1) € Y, we have

1

7 (Fu(p), Aa(q) + A2 (vr)) = f(Ar(p), A2(a)))

1
= / dOY F(A1(p), Xa(q) + stra(v1), v1) ds
0
by the Mean value Theorem for the C'-map f(\1(p),e). Hence
Dio,u)(f © (A1 x A2))(p; q)

1
=1lim [ dOYF(A\(p), \a(q) + stha(vy),v1) ds
t—0 0
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exists and is given by

1
/0 d(o’l)f()\l (p), A2 (Q)v Ul) ds
= dO®Y (A (p), Ma(q), v1)

and recursively,we obtain

D0y Dw1,0)P0,v;) *** Di0,or) (f © (A1 X A2))(p, q)

= d") F (A (p), A2(@), A (wi), - ., A (wi), Ao (1), - ., Ao ().

The right-hand side defines a continuous function of (p,q, w1, ..., ws,vi,...,v5) € P x
Q x Hi x Hg Hence the assertion follows. O

Lemma 38. Letr,s € NgoU{oo}, Ey, E9, Hy, ..., Hy, F be locally convex spaces, U and

V' be locally convex subsets with dense interior of E1 and Es, respectively, and
ffUXVXH x---xH, = F

be a continuous map with the following properties:
(a) f(z,y,@): Hy X ---x Hy, — F is n-linear for allx € U, y € V;
(b) The directional derivatives D(w, 0,0y * D(w,,0,0)D(0,0;,0) """ D0,v1,0)f (@ y, h) exist
for all i,j € Ny such thati <r,j <s, (z,y) €U x VY h € Hy x---x H, and

wi,...,w; € By, vi,...,v; € Ea, and extend continuously to functions
UxV xHyx-xHy,xE} xE} = F.

Then f: Ux (VxH;x---xHp)— FisC"®. Alsog: (UxHy x---xHy)xV —
F, ((z,h),y) = f(z,y,h) is C™°.

Proof. Holding h € H := H; X --- x H, fixed, the map f(e,h) is C"* and hence
p: VxU—=F, (z,y) = f(y,2,h)

is C*", by Corollary [33] with

Dw;0) " Dwr,0)Dio,wn) =+ Dio,wn) ()

= D(w;,0) " Dwr,0)D(0,0;) *** Dio,vr) f (Y5 T, h).

Hence f1: V x (U x H) — F, fi(y,z,h) := f(z,y, h) satisfies hypotheses analogous to
those for f (with 7 and s interchanged) and will be C*" if the first assertion holds.

24



3.1 Elementary properties

Using Corollary [33] this implies that g is C™*. Hence we only need to prove the first
assertion.

We may assume that r, s < oo; the proof is by induction on s.
The case s = 0. Then f is C™° by the hypotheses.
Induction step. Let v € Ea, 2 = (21,...,2,) € H. By hypothesis, D, 0)f(z,y, h) exists
for (z,y,h) € U° x V? x H and extends to a continuous map U x V x H x Ey — F in
(z,y,h,v). Because f(z,y,e): H — F is continuous and linear, it is C' with

D(0,07z)f(xay7 h) = Zf(xaya h17 teey hk*lvzkvthrl? ceey hn)
k=1

This formula defines a continuous function U x V x H x H — F. Holding x € U fixed,
we deduce with the Rule on Partial Differentials (Lemma [§]) that the map

V><H—>F,(y,h)'—>f(337y,h)

is C1, with
n

D00, (2,4, h) = D00 f (2,5, B) + Y F (2,5, 81, et 2y Ryt -5 ). (3.11)
k=1
Now f: U x (V x H) — F is C™° (see the case s =0). Also, f: U x (V x H) = F
is C%1, because we have just seen that d®V) f(z, (y,h), (v,z)) exists and is given by
(3-11), which extends continuously to U x (V x H) x (Ea x H).
We claim that dOYf: U x (V x H) x (Ey x H)) is C™*~1. If this is true, then f
is C™*, by Lemma To prove the claim, for fixed k € {1,...,n}, consider

p:Ux(VXHXEyxH)—=F, (z,y,h,v,2) — f(z,y,h1,. .., hk—1, 2k Bkt -« Bn)-

The map
Y:UXV xHy X+ x Hy_1 X (Hyp x By x H) — F,

(xay7 h17 .. '7h'rl—17 (hn,’l),Z)) = f('x:yahlv ERE 7hn)

is n-linear in (hy,...,Rn_1, (hn, v, 2)). By induction, ¢ is C™*~! as a map on U x (V x
Hy x---x Hy_1 x H, x E3 x H). By Lemma also ¢ is C™*~!. Hence each of
the final ¥ summands in is C™*1in (z, (y,h,v,2)). It remains to observe that
0: UxV x(Hx(ExxH)) = F, (z,y,h,v,2) = D0 f(7,y,h) is (n+1)-linear in the
final argument and satisfies hypotheses analogous to those of f, with r, s replaced by
r,s—1. Hence 0: U x (V x Hx Ey x H) — F is C"*~1, by induction. As a consequence,
dOV f is C™s~1 (like each of the summands in (3.11)).

O
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Taking Fy = {0}, Lemma [3§| readily entails:

Lemma 39. Let r € NgU {0}, E, Hy,...,Hy, F locally convex spaces, U be a locally
convex subset with dense interior of E and f: U x (Hy x --- x Hyp) — F be a C™%-map

which is n-linear for fixed first argument. Then f is C™°.

Proof of Lemma completed. If f is C™*, then f is C%! and f is C™°. Moreover
d(o’l)f: U xV x By — F is linear in the Ey-variable and

D w;,0,0) " Dw1,0,0)D0,0;,0) - D(o,ul,O)(d(O’l)f)(% Y, 2)
= d(i’j+1)f(1‘,y,w1, Wiy 2, U, V)
exists for all i,j € Ng such that i <7, j < s— 1, if (z,y) € U’ x V° and extends to
a continuous function in (z,y, z, w1, ..., w;,vi,...,v;) € U XV x Ey X E{ X E% Hence
by Lemma dOD fig Cms1,
Lemma 40. Let E1, Eo and F be locally convexr spaces, U and V be locally convex

subsets with dense interior of Ey and Es respectively, and r € NoU{oo}. If f: UXV —
F s C™" then f is C.

Proof. We may assume that r < oo, the proof is by the induction on r € Ny, The case
r=0. If fis C%°, then f is continuous and hence CY. The case r > 1. Assume U,V are
open subsets. Then D, ) f(z,y) exists and is continuous in (z,y,w), and D(g ) f(7,y)
exists and is continuous in (z,y,v). Hence by fis C' and

df((l"y)’ (w,v)) = D(w,O)f(:Ea y) + D(O,U)f(:E’y)’ (312)

which is continuous in (x,y,w,v). Thus f is C'. In the general case, the right hand
side of is continuous for (z,y,w,v) € U x V x E} x Ey and extends d(f|goxy0).
Hence f is C'. Next, note that D0y f(z,y) and D) f(x,y) are C— b=l mappings
in ((z,w),y) and (z, (y,v)), respectively, by Lemma [36| and Corollary Hence df is
C" !, by induction. Since f is a C! and df is C"~', the map f is C". O

Remark 41. If r = oo, then amap f: U x V — F is C* if and only if it is C°>° (as

an immediate consequence of Lemma [40)).

Proposition 42. Let E be a finite-dimensional vector space, F a locally convex space, U
be a locally convex and locally compact subset with dense interior of E and s € NoU{oco}.

Then the evaluation map
e:C*(U,F)x U — F, e(v,z) :=v(x)

of C5(U, F) is C%.
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3.2 Chain Rules for C"*-mappings

Proof. Without loss of generality, we may assume that s < co. The proof is by induction
on s.

If s =0, then ¢ is continuous because U is locally compact [11, Theorem 3.4.3|. Also,
¢ is linear in the first argument. Hence ¢ is C*°, by Lemma [39| and Corollary

Let s>1.Forz € U, we E,y€ C(U, F) and small t € R\ {0},

1 1
Lty e+ tw) —e(y, 2)) = S (v(@ + tw) —(2)) = dy(z,w) as t = 0.
Hence dOVe(y, z, w) exists and is given by
dOVe(y,z,w) = dy(z,w) = &1 (dy, (z,w)), (3.13)

where e1: C*" YU x E,F) x (U x E) = F, (¢, 2) = ((2) is C**~ by induction.
The right-hand side of ([3.13)) defines a continuous map (indeed a C°**~1-map)

C°(UF)x(UxE)—=F
by induction and Lemma [37] using that
C*(U,F) —» C* YU x E,F), vy dy

is continuous linear. Thus, by Lemma € is C°°%, O

3.2 Chain Rules for C"*-mappings

Lemma 43. (Chain Rule 1). Let X, Xo, E1, E2 and F be locally convez spaces,
P, Q, U and V be locally convexr subsets with dense interior of X1, Xo, E1 and Es
respectively, r,s € NgU{oo}, f: U XV — F a C"*-map, g1: P — U a C"-map and
go: Q =V aC®-map. Then

folgrxg2): PxQ—F, (p,q) = f(g1(p); 92(q))
1s a C™%-map.

Proof. Without loss of generality, we may assume that r,s < oo. The proof is by
induction on r.

The case r =0. If s =0, fo (g1 X g2) is just a composition of continuous maps, which
is continuous.

Now let s > 0. For fixed z € U, f,: V — F'is C*. Hence, for fixedp € P, fy,(,): V = F

27



3. C"*-MAPPINGS

is C° and fy,(p) © g2: @ — F is C° by the Chain Rule for C°-maps (see [21]). In

particular, the latter is C'', whence

D(o,2)(f o (91 % 92)) (P, @) = d(fg,(p) © 92)(q 2) = df g, ) (92(q), dg2(q; 2))

exists for z € X, and g € Q. Hence,

dOY(f o (g1 x g2))(p,q.2) = dOV f(91(p) , 92(q), dg2 (g, 2))
COs=1 CO0inp  Cs=1in (q,2)

exists. By induction on s, the map d®V(f o (g1 x g2)) is C%*~1. Hence, by Lemma
fol(g x go)is CU5.

Induction step (r > 0). If s = 0, we see as in the first part of the proof that h :=
fol(g1,g9) is cro,

If s > 0, we know that

dOYh(p, q,2) = dOY f(g1(p), g2(q), dga(g, ))-
—_———
Cr,s—l C'r 0571

By induction on s, this is C™*~1. Hence, by Lemma his C™%. O

Lemma 44. (Chain Rule 2). Let Ey, Es, F and Y be locally convex spaces, U,
V and W be locally convexr subsets with dense interior of Ei, Fo and F respectively,
r,s € NoU{oo}, f: U XV — F a C™*-map with f(UXxV)C W andg: W =Y bea
C"™5-map. Then

gof:UxV =Y

is a C™%-map.

Proof. Without loss of generality, we may assume that r,s < oo. The proof is by
induction on 7.

The case v = 0. If s = 0, go f is just a composition of continuous maps, which is
continuous.

Now let s > 0. For fixed x € U, f,: V — Fis C° and g: W — Y is C®. Hence
go fz: V — Y is C*® by the Chain Rule for C*-maps (see [21]). In particular, the latter

is C'', whence

D(O,v)(g o f)(w,y) = d(g o fx)(y,'U) = dg(fm(y)v dfw(yv ’U)) = dg(f(l'?y)a d(ovl)f(q%yav))
exists for v € Fy, if € UY, y € VY. Now

dOY(go f): U x (V x Ey) - Y
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3.3 The Exponential Law for C"*-mappings

(z,y,0) = dg (f(z,y),d"Vf(z,y,0))
——

Or+s—1 Co§_1
is a C%*~map, by Lemma Lemma [37| and induction on s. Hence, by Lemma
go fis C%s.
Induction step (r > 0). If s =0, we see as in the first part of the proof that h:=go f
is C™0,

If s > 0, we know that h is C™" by the preceding. Moreover,

dOVh(z,y,0) = dg (f(z,y),dVf(z,y,0)).
~—~

~
Cr+s—1 Cris—1

Hence, by induction on s the map d(®Vh is C™*~1. Hence by Lemma his C™%. O

3.3 The Exponential Law for C"™*-mappings

Definition 45. Let 1, Es and F be locally convex spaces, U and V be locally convex
subsets with dense interior of Eq and FEj respectively, and r, s € Ny U {oco}.
Give C™*(U x V, F') the initial topology with respect to the mappings

d9): C™(U x V,F) = C(U x V x Ei x E}, F), v+ d®y
for 4,7 € Ny such that i < r,j < s, where the right-hand side is equipped with the
compact-open topology.

Lemma 46. Let E1, FEy and F be locally conver spaces, U and V be locally convex

subsets with dense interior of Fh and Es respectively, then
Co®U XV, F)=C>®(U x V,F)
as topological vector spaces.

Proof. By Lemma [0] and Remark 1] both spaces coincide as sets. Thus it suffices to
show that the C'°°°- topology coincides with the C'°°-topology. As both topologies
are initial topologies, we only have to prove that the families of maps inducing the
topologies are continuous with respect to the other topology. For x € U,y € V, w :=

(w1, ...,w;) € Ef and v := (vy,...,v;) € Eg, we have
d(l’])f(.%', Yy, w, U) = d(H_])f(.ZU, Y, (wla 0)7 ) (wia 0)7 (O7U1)7 ) (07UJ))

Let g: U x V x Ef x E% — U XV x (B x E)™, (z,y,w1,...,wi,01,...,05)
(x,y, (w1,0),...,(w;,0),(0,v1),...,(0,v5)). As g is continuous linear, by [19, Proposi-
tion 4.4, the pullback ¢g* is continuous. Hence by continuity of d“+7), d(t1) = g* o d(i+7)
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3. C"*-MAPPINGS

is continuous with respect to the C°°-topology. This proves that the C'°*°-topology
is coarser than the C*°-topology. To show the converse we recall that d(k)f(aj,y, o) is

multilinear. Writing (w;, v;) = (w4, 0) + (0, v;) we obtain

where we defined g (z,y, (w1, v1), ..., (g, vk)) = (T, Y, Wiy, - .., Wiy, Vjys - -5 05, ) for
I = {i,...,q} and {1,...,k} \ I = {j1,...,Jk—r}- Clearly each g; is continuous
linear, hence smooth and we deduce from [I9, Proposition 4.4 that d*) is continuous

with respect to the C°*°-topology. Hence the assertion follows. O

Lemma 47. Let E and F be locally convex spaces, U be a locally convex subset with
dense interior of E and r € Ng U {oo}. Then sets of the form

k
{7y € C"(U,F) : dVy(K;) € Q;}
=0

form a basis of 0-neighbourhoods in C"(U, F), for k € Ny such that k < r, compact sets
K; CU x E* and 0-neighbourhoods Q; C F.

Proof. The topology on C" (U, F) is initial with respect to the maps
dD: C"(U,F) = C(U X E', F)eo, v — dP7.
Therefore the map

v CT(U¢ F) — H C(U X Ei7F)a Y= (d(i)f}/)NoBigr
Np2i<r
is a topological embedding. Sets of the form
W= {(i)Nyzi<r € H C{Ux E,F): ni(K;) CQ;fori=0,...,k}

No2i<r

(with k € Ny such that k < r, compact sets K; C U x E* and 0-neighbourhoods
Qi C F), form a basis of O-neighbourhoods in [[y, 5;<, C(U % E' F). Hence the sets
®~L(W) form a basis of 0-neighbourhoods in C"™(U, F). O

Similarly:

Lemma 48. Let Fq, Fy and F be locally conver spaces, U and V be locally convex
subsets with dense interior of E1 and Eo respectively, and r,s € Ng U {oo}. The sets

W ={yeC™(UxV,F): d")~(K; ;) C Pij fori=0,....,k and j =0,...,1}
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3.3 The Exponential Law for C"*-mappings

(where k € Ng such that k < r, I € Ny such that | < s, P;; C F are 0-neighbourhoods
and K; ; CU xV x Ei x E% is compact) form a basis of 0-neighbourhoods for C™(U x
V,F).

Theorem 49. Let F1, E> and F be locally convex spaces, U and V' be locally convex
subsets with dense interior of E1 and Ey respectively, and r,s € Nog U {oco}. Then
(@) If y: U XV — F is C™*, then v;: V — F is C* for all x € U and

iU = C3(V,F), x5 v
s C".
(b) The map
O: O™ (U x V, F) — C"(U,C*(V, F)), 7 — 7"

18 linear and a topological embedding.

Proof.
(a) 72: V = F is C* for all z € U by Lemma [2§|
By Remark 22}

C7(U,C=(V, F)) = lim C"(U, C*(V, F)).
s€Np

It therefore suffices to prove the assertion when s € Ny (cf. [4, Lemma 10.3]). We may
assume that r is finite. The proof is by induction on r.

The case r = 0. If s = 0 then the assertion follows from [II, Theorem 3.4.1].

If s > 1, the topology on C*(V, F') is initial with respect to the maps

d9): C3(V,F) = C(V X E}, F)eo, v — d9, for j € Ny such that j < s.

Hence, we only need that d¥) o fV: U — C(V x Eg,F)C.O is continuous for j €
{0,1,...,s}. Now

d9(fY(x)) = d9) (f(z,e)) = d O f(z,e) = (") f)" ().

Thus d¥) o f¥ = (dODf)V: U — C(V x E}, F).,, which is continuous by induction.
As a consequence, vV : U — C*(V, F) is continuous.

The caser > 1. If s = 0, then fV: U — C(V,F). Let x € U°, z € Ey. Then z+tz € U°,
for small t € R\ {oo}; we show that

%(fv(a: tt2) = fV(2)) = MO f(z, 0, 2)
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in C(V, F) as t — 0. For this, let K CV be compact. We have to show that

(%(fv(x +1z) = [Y(@)) k= (AP0 f(2,0,2)) |k

uniformly as t — 0. Let W C F be a 0-neighbourhood. Without loss of generality, W
is closed and absolutely convex. There is ¢ > 0 such that = + BX(0)z C U°. For y € K
and t € R\ {0} such that |t| < e, we have

Alty) = 3 (F (4 12) = £ @) ) — A0 £, 2)
= %(f(x + tz7y) - f($7y)) - d(lyo)f(x¢y7 Z)

1

- d(LO)f(m + otz,y,z)do — d(l’o)f(fb", Y 2)
0

1
= [ s+ otz,,2) — 40 fo.y.2)) do
0
The function
g: BR0) x K x [0,1] = F, (t,y,0) — d20 f(z + otz,y, 2) — dPO f(z,y, 2)

is continuous and ¢(0,y, o) = 0 for all (y,0) € K x [0, 1]. Because K x [0, 1] is compact,
by the Wallace Lemma (see [IT], 3.2.10]), there exists 6 € (0, ] such that g(BE(0) x K x
[0,1]) € W. Hence A(t,y) = [ g(t,y,0)do € W for all y € K and all t € BE(0) \ {0}.
Because this holds for all y € K, we see that A(t,e) — 0 uniformly, as required. Thus
df¥(z, z) exists for all z € U, z € Fy and is given by df¥(z,z) = d9 f(x, e, 2). Now

U— C(V,F),z— d" f(z, e, 2)

is a continuous function in all of U (by r = 0); so f is C' on U, and df¥(z,2) =
d10) f(z, e, z). Because

h: (Ux E1) xV = F, ((x,2),y) = d5 f(z,y, 2)

is C"~19 (see Lemma [36and Corollary[33), by induction d(f¥) = hV: Ux E; — C(V, F)
is C"~1. Hence f is C".
Let s > 1. Because

C*(V,F) = C(V,F) x C*" NV x Ey, F), v+ (v, dv)

is a linear topological embedding with closed image, f¥: U — C*(V, F) will be C" if
fY:U — C(V,F) is C" (which holds by induction) and the map

h:U — C YV x By, F), z — d(f¥(x))
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3.3 The Exponential Law for C"*-mappings

is C" (see |21]; cf. [4, Lemma 10.1]). For z € U, y € V and z € Es, we have

h(@)(y, 2) = d(f* (2))(y, 2) = d(f () (v, 2) = dOV f (2,5, 2),
thus o = (dOV £)Y for dOV f: U x (V x Ey) — F. This function is C™*~! by Lemma
6l Hence h is C" by induction.
(b) The linearity of ® is clear. For y € V, the point evaluation A\: C*(V, F') — F, n —

7(y) is continuous linear. Hence, for ¢ < r,

(dDfY) (@, wr, - wi) (y) = M(AdD V) (@, w1, w)
=dDNo f) (@, wr, ..., w)
= dD(f(e,9))(x, w1, ..., w;)
= dOO f(z,y,wr, ... w),

using that (Ao *)(z) = A(f¥(x)) = " (@)(y) = f(x,y). Hence
dD Y (@, wi, - w) = (dEO ) (0w, w;).
Hence by Schwarz’ Theorem (Proposition

d(])((d(l)fv)(x7w17 s 7wi))(y77)17 ey U]) = d(ld)f(xv Y, Wi, ..., Wi, V1, - 7Uj)'

® is continuous at 0. Let W C C"(U,C*(V, F)) be a 0-neighbourhood. After shrinking
W, without loss of generality

k
W= ({y € C"(U.C*(V.F)): dVy(K;) € Qi}

i=0
where k € No with k < r, K; C U x E! is compact and Q; C C*(V,F) is a 0-
neighbourhood (see Lemma . Using Lemma again, after shrinking ); we may
assume that l

Qi={neC*(V,F): d9n(Li;) C P}
§=0

with [; € Ng such that [; < s, compact sets L;; C V X E% and 0-neighbourhoods
P; ; C F. Shrinking ; further, we may assume that /; = [ is independent of ¢. Then
W is the set of all v € CT(U,C*(V, F)) such that d¥)(d®~(z,w))(y,v) € P;; for all
i=0,....,kand j =0,...,1, (x,w) € K; CU x Ei and (y,v) € Lij CV x E}. The

projections of U x Et onto the factors U and EY are continuous, hence the images K} and
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K? of K; under these projections are compact. After replacing K; by K! x K2, without
loss of generality K; = K} x KE Likewise, without loss of generality L; ; = Ll-l’ ;X L?,j
with compact sets Ll{ ; €V and Lz?, i C Ej.

Now if v € C™*(U x V, F) then dU)(dD~Y (z,w))(y,v) = d®y(z,y, w,v). Hence vV €
W if and only if d")y(K}! x L} ;x K2 x L2,) C P, foralli=0,...,kand j =0,...,1.
This is a basic neighbourhood in C™*(U x V, F) (see Lemma . Thus @~ H(W) is a
0-neighbourhood, whence ® is continuous at 0, and hence ® is continuous.

It is clear that ® is injective. To see that ® is an embedding, it remains to show that
®(W) is a 0-neighbourhood in im(®) for each W in a basis of 0-neighbourhoods in
C™(U x V, F).

Take W as in Lemma @; without loss of generality, after increasing Kj;;, we may
assume K;; = Kij X Ll{j X Kf] X L?,j with compact sets Kz{j cU, Lz{j cV, Kf] -
E} and L7; C Ej. Then ®(W) = { € im(®): dD(dDn(z,w))(y,v) € Pij for all
1=0,...,k, j=0,...,l, x € Kij, ye L., we KZQJ and v € L%j}, which is a

2,57
0-neighbourhood in im(®), by Lemma [47] O

Lemma 50. Let X be a topological space, E and F' be locally convex spaces, k € N, and
f: X x E¥ — F be a map such that f(x,e): E¥ — F is symmetric k-linear for each
x € X. Then f is continuous if and only if g: X x E — F, (x,w) — f(z,w,...,w) is

continuous.

Proof. The continuity of g follows directly from the continuity of f. If, conversely, g is

continuous, then by the Polarization Identity [8, Theorem A|

1
fle,wy,...,wg) = — Z (—1)k_(€1+"'+€’<)g(a:, g1wy + - -+ + Epwg),

81,...,6k=0

which is continuous.

O

Lemma 51. Let X be a topological space, E1, Fo and F be locally convex spaces,
k,leN, and f: X X E{“ X Eé — F be a map such that f(x,e,wy,...,wy): E{“ — F s

symmetric k-linear for all x € X and wy,...,w; € B, and f(xz,v1,..., v, ): Eé — F
is symmetric l-linear for all x € X and vy,...,vp € Ey. Then f is continuous if and
only if g: X x By X By — F, g(x,v,w) := f(x,v,...,0,w,...,w) is continuous.

Proof. The continuity of g follows directly from the continuity of f. If, conversely, g is
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3.3 The Exponential Law for C"*-mappings

continuous, then two applications of the Polarization Identity show that

f(.TU Vlye vy vk,wl,...,wl)
1

!
g l (ert- +El)fa: Vly ...y Uk, g EjWj, - -, E gjw;j)

‘517 €
1
1 I—(e1 4 k—(5 5
:m Z (_1) (e1+ +51)(_1) 1+ +k) 25%725]7%
€150-04E1,01 50,0, =0

whence f is continuous.

O]

Theorem 52. (Exponential Law). Let Ei, Es and F be locally convex spaces, U
and V be locally convex subsets with dense interior of E1 and Es respectively, and
r,s € NgU {oo}. Assume that at least one of the following conditions is satisfied:

(a) V' is locally compact.

Q: C™(U x V,F) = C"(U,C5(V, F)), f fY
is an isomorphism of topological vector spaces. Moreover, if g: U — C*(V, F) is C",
then

g U XV = F, g"(x,y) = g(x)(y)

s C™5.
Proof. We only need to show the final assertion. Indeed, given g € C"(U, C*(V, F')), the
map ¢” will be C™* and hence g = (¢")" = ®(g"). Thus ® will be surjective. Hence by
Theorem |71_§L ® will be an isomorphism of topological vector spaces.
(a) "z, y) = 9(2)(y) = e(g(x),y) where e: C*(V, F) x V = F, (7,y) = 7(y) is C°°
(Proposition . Hence ¢ is C™* by Chain Rule 1 (Lemma .

(b), (c), (d) and (e) If g: U — C*(V, F) is C", define ¢": UxV — F, g"(z,y) = g(z)(y).
For fixed z € U, we have g"(z,®) = g(x) which is C*, hence

(D(0,0;) " Dio.ony9™) (@, y) = d9 (g(x)) (y, v1,- .., v))
= (d9 o g)(z)(y, v1, ..., v))
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3. C"*-MAPPINGS

exists for j € Ng such that j < s, y € V? and vy, ... ,vj € Ea. Also,

(D(O,vj) T D(O,m)g/\)(m: y) = <€(y,v1,...,vj) o d(]) © g)($)7

where €(y4;...0): CsI(V x Eg,F) — F, f— f(y,v1,...,v5). For fixed (y,v1,...,v)),
this is the function €y 4, ... 2;) yo1,eyy) A0 d9): C5(V,F) —

C*=I(V x Eg, F) are continuous linear, we obtain the directional derivatives

odWog of z, which is C". Since g(

(Dw;0) " Dewr,0)P0,0)  *  Di0,01)9) (%5 y)

= (g1, ([P (D g(z, w1, ... wy)))

= d(j)(d(i)g(x,wl, o w))(y, 1, ., 05)

= (d(j) o (d(i)g))(x,wl, coswi) (Y, 1, -, 05)

= (dY9) o (dDgN((z, w1, ..., w;), (y, 01, - - -, v5))

for z € U°, wi,...,w; € By, and i € Ny such that i < r. To see that ¢ is C™*, it

therefore suffices to show that
b= (dYD o (dDg): Ux Ei xV x B} - F

is continuous for all 4, j € Ng such that i <r j <s.

The case i = 0, j = 0. Then h = ¢g”, which is continuous by the case of topological
spaces with U x V' a k-space (see [I8, Proposition B.15]).

The case i =0, 5 > 1. Then

h: (U xV)x E% — F, where h(z,y, o) :=dY)(g(x))(y,e): E% - F

is symmetric j-linear. Hence, by Lemma and its proof, h is continuous if we can
show that f: U x V x Ey — F, (z,y,v) — d9(g(x))(y,v,...,v) = h(z,y,v,...,v) is
continuous.

Now

(€)] :
cs(vV,F) -2 OV x EJ, F)

Tg lco(go,F)

U —15 OV x Ey, F).

where ¢: V X Fo — V x E’g, (y,v) = (y,v,...,v) and C%y, F): CO(V x E%,F) —
COUV x Eq, F), v+ 7o is the pullback which is continuous linear (see [21]; cf. [19]
Lemma 4.4]).

Hence 1 := C%(p, F)odW og: U — C%(V x Ey, F) is continuous. Because U x (V x

Es) is a k-space by hypothesis, we know from the case of topological spaces (see |20,
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3.3 The Exponential Law for C"*-mappings

Proposition B.15]) that f =n": U x (V x F3) — F is continuous.
The case i > 1, j =0. Then

h:U x EY xV — F, h(z,wi, ..., w;,y) = (d(i)g)(aj,wl,...,wj)(y).

By Lemma and its proof, h is continuous if we can show that f: U x E1 x V —
F, f(z,w,y) = (dDg)(z,w,...,w)(y) is continuous. But f = 9" for the continuous
map : U x By — CO(V,F), (z,w) — (d9g)(z,w,...,w). Hence f is continuous
because U x Fy x V is a k-space by hypothesis.

The case i > 1, 7 > 1. By Lemma 51| and its proof, h will be continuous if we can show
that

f:UXE xV xEy—F, f(x,w,y,v) :== h(z,w,...,w,y,v,...,v)
i—times j—times
is continuous. Now ¢: U x By — U x Ei, (x,w) + (x,w,...,w) is continuous and

0 :=C%p, F)odV odWDgotp: U x By — COV x Ey, F)

is continuous. Since U x Ey x V x FEy is a k-space by hypothesis, it follows that
0": U x E1 x V x Fy — F is continuous (see [20, Proposition B.15]). But " = f, and

thus f is continuous. O

Since C*°-maps and C°*°-maps coincide on products (see Lemma Remark
and Lemma , we obtain as a special case that

$: CF(U x V, F) — C=(U,C®(V, F)) (3.14)

is an isomorphism of topological vector spaces if V' is locally compact or U x V x Fy X E»

is a k-space.

Remark 53. For open sets U and V, the latter was known if Ey is finite-dimensional
or both E; and E, are metrizable (see [7] and [21]; cf. [19, Propositions 12.2 (b) and
12.6 (c)|, where also manifolds are considered). In the inequivalent setting of differen-
tial calculus developed by E.G.F. ThomasE an exponential law for smooth functions
on open sets (analogous to (3.14])) holds without any conditions on the spaces, see
[39, Theorem 5.1|. Related earlier results can be found in [37, p.90, Lemma 17|. In
the inequivalent “convenient setting” of analysis, always is an isomorphism of

bornological vector spaces (see [I3] and [25], also for the case of manifolds) — but rarely

!Thomas replaces continuity of a function or its differentials with continuity on compact sets, and

only considers quasi-complete locally convex spaces.
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3. C"*-MAPPINGS

an isomorphism of topological vector spaces [7] (in this setting other topologies on the
function spaces are used). Analogues of Theorems and for finite-dimensional

vector spaces over a complete ultrametric field can be found in [I§].

3.4 The Exponential Law for C™*-mappings on manifolds

Definition 54. We recall from [2I] that a manifold with rough boundary modelled on
a locally convex space F is a Hausdorff topological space M with an atlas of smoothly
compatible homeomorphisms ¢: Uy — V4 from open subsets Uy of M onto locally
convex subsets V5 C E with dense interior. If each Vy is open, M is an ordinary
manifold (without boundary). If each Vy is relatively open in a closed hyperplane
A7L([0, 00[), where A € E’ (the space of continuous linear functionals on E), then M is
a manifold with smooth boundary. In the case of a manifold with corners, each Vy is a
relatively open subset of A7 ([0, 00[) N ---N A ([0, 0c), for suitable n € N (which may
depend on ¢) and linearly independent \y,..., A\, € E’.

Definition 55. Let M; and Ms be smooth manifolds (possibly with rough boundary)
modelled on locally convex spaces, 1, s € Ny U {oco} and F' be a locally convex space. A
map f: My x My — F is called C™ if fo (p=1 x o71): Vo x Vy — Fis C™° for all
charts ¢: U, — V,, of My and v: Uy, — Vi of M. Then f is continuous in particular.

Definition 56. In the situation of Definition , let C™*(M; x My, F') be the space of
all C™%-maps f: My X My — F. Endow C"™*(Mj x Ms, F') with the initial topology with
respect to the maps C™*(My x My, F) — C™*(V, x Vy, F), f > fo(p™! x 1), for
 and v in the maximal smooth atlas of M; and Ms, respectively.

The following fact is well known (cf. [II], Proposition 2.3.2]).

Lemma 57. Let (0)jcs be a family of topological embeddings 6;: X; — Y; between
topological spaces. Then also
0:=1]0;: []Xi =[]V (@i)ies > (65(x5))jes
JjeJ Jj€J JjeJ
1s a topological embedding.

Proposition 58. Let My and My be smooth manifolds (possibly with rough boundary)
modelled on locally convex spaces, r,s € Ng U {oo} and F be a locally convex space.
Then

(a) fY € C"(My,C3(Ms, F)) for all f € C™5(My x My, F).
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3.4 The Exponential Law for C"*-mappings on manifolds

(b) The map
O: C"*(My x My, F) = C"(My,C*(My, F)), f s £V

is linear and a topological embedding.

Proof. (a) It is clear that fY(z) = f(z,e) is a C*-map My — F. It suffices to show that
fop™l: U, — C*(Ms, F) is C" for each chart ¢: U, — V,, of M. For i = 1,2, let A;

be the maximal smooth atlas for M;. Because the map
U: C*(Mp, F) = [[ C*(Vi, F), b (hoth™V)yea,
PEA2

is a linear topological embedding with closed image (see [21]; cf. [19, 4.7 and Proposition
4.19(d)]), f¥op~tis C™ if and only if Wo fop~!is C” (see [21]; cf. [4, Lemma 10.2]),

which holds if all components are C". Hence we only need that
0: V= C°(Vy, F), o = [P (o7 (@) o™t = (fo(p™ xy™h)Y(2)

is C". But 0 = (fo (ot x¢p™1))Y where fo (¢t x9p~1): V,, x Vyy — F is C™*, hence
6 is C" by Theorem [49]
(b) It is clear that @ is linear and injective. Because W is linear and a topological

embedding, also
CT(My,W): C"(My, C*(Ma, F)) — C"(My, [[ C°(Vy, F)), f > Tof
PYEA2
is a topological embedding (see [21]).
Let P:=[],cn, C°(Vy, F). The map
2: CT(M, P) = ] C"(Ve, P), f (fow Dpen,
peA
is a linear topological embedding. Using the isomorphism
H CT(VSO?P) = H H CT(VQC’?CS(V@D?F))
pEeAL pEAL YEA2
we obtain a linear topological embedding

I :=Z0C"(M;,0): C"(M;,C*(M, F)) = [ T] € (Ve C*(Vis, F)),
pEAL PEA2

fe (CW F)o fop Neen,
PeEA2
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3. C"*-MAPPINGS

where C*(yp™1, F): C¥(Ma, F) — C*(Vy, F), f+ fot~1 Also the map

w: C™5(My x Mo, F) — | | C™5(Vip x Vi, F), f = (Fo (o™ x ™)) e,
PEA2

Soeﬂlv

PEA2

is a topological embedding, by Definition Now we have the commutative diagram.

Cr3(My x My, F) —2—  C"(My,C%(Ms, F))

- v
I ¢V, x vy, ) —— [ C"(V, C*(Vy, F))
pEAL, peAL,

peA2 PeEA2

where 7 is the map (fop)pca, weds — (flw)weﬂl,dje‘/b. Because the vertical arrows are

topological embeddings and also the horizontal arrow at the bottom (by Lemma [57] and
Theorem is a topological embbeding, we deduce that the map ® at the top has to
be a topological embedding as well. O

Theorem 59. Let My and My be smooth manifolds (possibly with rough boundary)
modelled on locally convex spaces E1 and Eo respectively, F be a locally convexr space
and r,s € Ng U {oo}. Assume that My is locally compact or that one of the following
conditions is satisfied:

(a) r=s=0 and My x My is a k-space.

(b) r>1, s=0 and My x My x Ej is a k-space.

(¢) 7=0, s >1 and My x My x E is a k-space.

(d) r>1, s>1 and My x My x Fy x Es is a k-space.
Then

®: C"5(My x M, F) — C"(My,C*(Ma, F)), frs fY (3.15)

is an isomorphism of topological vector spaces. Moreover, a map g: My — C*(My, F)
1s C" if and only if
g": My x My — F, g"(z,y) = g(x)(y)

is C™5,

Proof. By Proposition we only need to show that ® is surjective. To this end, let
g € C"(My,C?*(Ms, F)) and define

fi=9g": My x My — F, f(z,y) := g(z)(y).

40



3.4 The Exponential Law for C"*-mappings on manifolds

Let ¢ : U, = V,, and ¢ : Uy — Vy, be charts for My and M, respectively. Then
Fole™' Xy Ve x Vy = F, (2,y) = (C*(¥7 F)ogop™) (1)

with C*(y~1, F): C%(M2, F) — C%(Vy,F),h + h o~ continuous linear. Hence
Ci(p~ Y F)ogoyp™:V, — C(Vy,F) is C". Hence fo (¢~ x 171) is C™* by the
exponential law (Theorem .

Note. In (d) Vi, x Vi x By x Ey is homeomorphic to the open subset Uy, x Uy, x Ey x E»
of the k-space M; x My x Ej X E and hence a k-space. Similarly in (a), (b) and (c).
Hence the Exponential Law (Theorem applies. If Ms is locally compact, then the

open subsets U, are locally compact and hence also the V,,. Again, the Exponential
Law (Theorem applies. O

Remark 60. The same conclusion holds if M is finite-dimensional or Fq X Ey X E1 X Ey
is a k-space, provided that M; and Ms are manifolds without boundary, manifolds
with smooth boundary or manifolds with corners. Recall that direct products of k-
spaces need not be k-spaces. However, the direct product of two metrizable spaces is
metrizable (and hence a k-space). Likewise, the product of two hemicompact k:—spaceﬂ
(also known as k,-spaces) is a hemicompact k-space and hence a k-space (see [12] for
further information and [22], including analogues for spaces which are only locally k).
Thus F1 X Ey x E1 X E5y is a k-space whenever both F; and FEy are k,,. For example,
the dual E’ of a metrizable locally convex space E always is k., when equipped with the
compact-open topology (cf. [3, Corollary 4.7]). Consequently is an isomorphism
in the case of manifolds with corners if Ms is finite-dimensional or both FE; and Ey are

metrizable, respectively, both are hemicompact k-spaces (Corollary .
To deduce a corollary, we use the following lemma.

Lemma 61. Let X be a Hausdorff topological space. If X = UjeJ V; with open subsets

V; € X which are k-spaces, then X is a k-space.

Proof. Let W C X be a subset such that WNK is relatively open in K for each compact
subset K' C X. We show that W' is open in X. Since W = (J,,(V; N W), it suffices to
show that each V;NW is open. For each compact subset K C V;, KN(V;NW) = KNW
is relatively open in K by hypothesis, thus V; N W is open in Vj, hence open in X. [J

Corollary 62. Let My and My be smooth manifolds (possibly with rough boundary)
modelled on locally convex spaces FE1 and Fo respectively, F' be a locally conver space
and r,s € NogU {oo}. Assume that (a) or (b) is satisfied:

1A topological space X is called hemicompact if it is the union of an ascending sequence K; C

Ky C --- of compact sets and each compact subset of X is contained in some K,.
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3. C"*-MAPPINGS

(a) Ey1 and Eq are metrizable.
(b) My and My are manifolds with corners. Moreover, Es is finite-dimensional or
both of E1 and Eo are hemicompact k-spaces.
Then
®: C"*(My x M, F) — C"(My,C*(Ma, F)), frs fY

is an isomorphism of topological vector spaces. Moreover, a map g: My — C*(Ms, F)
is C" if and only if
9" My x My — F, g"(2,y) = g(z)(y)

s C™%.

Proof. Case My a finite-dimensional manifold with corners. Let Ms be of dimension n.
Then each point of My has an open neighbourhood homeomorphic to an open subset
V of [0,00[". Hence V is locally compact, thus My is locally compact. Thus Theorem
applies.
Case E1, Es metrizable. Then all points x € M;y,y € My have open neighbourhoods
Uy € My, Uy € Ms homeomorphic to subsets Vi C Fy and Vo C Ejs, respectively. Since
V1 x V4 is metrizable, it follows that Uy x Us x Eq X Es is metrizable and hence a k-space.
Hence, by Lemma [61] My x Ms x Ey x Es is a k-space and Theorem [59] applies.
Case E1 and Eo are ky-spaces and My and Ms are manifolds with corners. For all
x € My and y € My, there are open neighbourhoods U; C M;, Us C My homeomorphic
to open subsets V7 and Vs, respectively, of finite intersections of closed half-spaces in Ey
and Fy, respectively. Hence V) x Vo x Ej X Es is a (relatively) open subset of a closed
subset of F; x Fy x E1 x Ey. The latter product is k., since F1 and Fy are k,-spaces
(see |22, Proposition 4.2(i)]), and hence a k-space.

Since open subsets (and also closed subsets) of k-spaces are k-spaces, it follows that
Vi X Vo x By X Ey is a k-space. Now Lemma [61] shows that My x My x Ey X E3 is a
k-space, and thus Theorem [59| applies.

O

Proof for the Remark All assertions are covered by Corollary [62] except for the
case when M7, M are manifolds with corners and F7 x E9 x Eq X Es is a k-space. But

this case can be proved like the result for k,-spaces in Corollary [62]

Remark 63. If s = 0, then C"™%-maps f: U x V — F can be defined just as well if V
is any Hausdorff topological space (and U C Ej as before).
If » = 0, then C™*-maps f: U x V — F make sense if U is a Hausdorff topological

space. All results carry over to this situation (with obvious modifications).
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3.4 The Exponential Law for C"*-mappings on manifolds

Remark 64. If F' is a complex locally convex space, we obtain analogous results if
E; is a locally convex space over Ky € {R,C}, Fs is a locally convex space over Ky €
{R,C}, and all directional derivatives in the first and second variable are considered
as derivatives over the ground field K; and Ko, respectively. The corresponding maps

could be called Cﬂgf K, ~aps.
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Chapter 4
C*-Mappings

In this chapter we develop the calculus of mappings on products with different degrees
of differentiability, called C'*-mappings, which generalize the concept of C"*-mappings
in Chapter We study their basic properties and some refined tools in an infinite-
dimensional setting. In section[d.4] we introduce the exponential laws for such mappings

on products of manifolds modelled on locally convex spaces.

Definition 65. Let F1,..., E, and F be locally convex spaces, U; be an open subset
of E; forallie {1,...,n} and o := (a1, ..., ) such that a; € No U {o0}.

A continuous mapping f : Uy X --- x U, — F'is called a C*-map, if for all 8; € Ny such
that 8; < a; and B := (b1, ..., Bn) the iterated directional derivative

dPf(x,wi,. .. ,wp) = (Dy-- Dpf)(x)

where (D;f)(z) := (D(wz‘)f;i +++ Diyyye f)(@), exists for all @ := (21,...,2,) where z; €

Ui, wi = ((wi)y,. ., (wi)g) such that (w;)y,...,(wi)s, € Ei, (wi)j,...,(wi)s €
({0}t x By x ({0})"F C Ey x -+ x E, and the maps

dﬁf:U1><"'XUnXElﬁl X...XErIBLn_>F7
so obtained are continuous.

More generally, the following definition allows us to speak about C*-maps on non-

open sets, like products of compact intervals.

Definition 66. Let E1,..., E, and F be locally convex spaces, U; be a locally convex
subset with dense interior of E; for all ¢ € {1,...,n} and « := (a1,...,ay) such that

a; € Ng U {oo}. We say that a continuous map f : U; X --- x U, — F is a C%-map, if
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f’U?meUg: UY x - xUY — F is a C%map and for all 3; € Ny such that 3; < a; and
B:=(P1,-..,0n), and the map

dﬁ(f’fo-ung) UV xUSXEY %o x B — F
admits a continuous extension
dPf U - x U, x B x ... x EP» — F.
Definitions [65] and [66] can be rephrased as follows:

Lemma 67. For alli € {1,...,n}, let E; and F be locally convex spaces, U; C E; be
a locally convex subset with dense interior, a; € No U {oo}. For j € N, 2 < j < n, let
Ui=Ui % xUj_1,V:i=Ujx - xUp, v = (a1,...,aj—1) and 0 := (aj,...,an).
Then f: Uy % -+ x U, — F is a CO -map if and only if all of the following conditions
are satisfied:
(a) For all x := (x1,...,2j—1) € U, the map f, = f(z,e) : V — F taking y :=
(@j,...,xn) €V to foly) == fla1,...,2,) is C".
(b) For all y € V and w; = ((wi)y,...,(w;)p,) € Eiﬁ",
d(ﬂj""’ﬁ")fm(y,wj, .o wy) 18 C7, where B; € Ny, 5; < «.
(c) For B := (B1,...,Bn), the map df : Uy x --- x U, x Elﬁ1 x o x EDn
F, (z,y,wy,...,wy) — d(ﬂl"“’ﬁf—l)(d(ﬁj""ﬁ")f.(y, Wy, ..., wp)) (@, wi, ..., wi—1),

18 continuous.

the map U — F, x —

Proof. Step 1. If U; C E; is an open subset for all i € {1,...,n}, then the equivalence
follows by the definition of a C(""-map.

Now the general case. Assume that f is a C'-map.

Step 2. For x € U? := UY x -+ x U]Q_1 and v = ((vk),-.-,(vk)g,) € E,f’“ for k €
{j,...,n} with corresponding elements (vg)7}, ..., (vx)5, € ({0})F 7 x B x ({0})"7F C
Ej 1 x --- x Ey, the iterated directional derivative

v v

(Dn - Dj) f(z,y) = Dy,

s Dy fa(y)

exists for all y € VY :=U 30 x -+ x UY | with continuous extension
0,..,0,8; -8
(Y, 05, V41, .., 0p) O848 )f(:c,y,vj,vj+1,...,vn)

to V' x Ejﬁj x -+ x EP" — F. Hence fo:V = Fis C". If x € U is arbitrary, y € V°,
we show that Dy, ) fs(y) exists and equals A0 01 £y (vj)1) with j-th entry 1.
There exists R > 0 such that y + t(v;)] € V for all t € R, |[t| < R and there exists
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a relatively open convex neighbourhood W C U of z in U. Because U is dense, there
exists z € U% N W. Since W is convex, we have z + 7(z — z) € W for all 7 € [0,1].
Moreover, since z € W0 we have x + 7(2 — x) € W for all 7 € (0,1]. Hence, for
7€ (0,1], f(x +7(z—x),y) is C" in y, and thus for ¢ # 0

1

@ +7(z—2),y +t(oa)]) - fle+7(2 —2).9)

1
_ /0 001000 £ 4 22 )k at(on), (o)) do

by the Mean Value Theorem. Now let F be a completion of F. Because
hi [0,1)x[-R, R x[0,1] = F, (7,t,0) = d O 0100 f(zp7(z—2), y+0t(0a)7, (va)})

is continuous, also the parameter-dependent integral
~ 1
g: [0,1] X [-R,R] — F, g(7,1) ::/ h(r,t,0)do
0
is continuous. Fix t # 0 in [-R, R]. Then

g(r,t) = %(f(x +7(z =),y +1(v;)1) - fz+7(z - 2),9)) (4.1)

for all 7 € (0, 1]. By continuity of both sides in 7, (4.1]) also holds for 7 = 0. Hence

S+ 6)D) — S(9) = 9(0,2) = 9(0,0)

as t — 0. Thus D(vn)ffx(y) exists and is given by

1
g<07 0) _ / d(O,..,,O,l,O...,D)f(x’ n (Un)l) do = d(O,..,,O,l,O...,O)f(x7 n (vn)l)-

0
Holding (v,), fixed, we can repeat the argument to see that D(vn)g Dy fa(y)
exists for all y € VO and is given by D(vn)}} ---D(vn)*{fz(y) = d0080) f (9, vy,).

Again we can repeat the argument to see that D, y- - D,y fz (y) exists for all y €

2
VO v.= (Vj,Vjg1,...,Un) € Efj X oo X Eﬁ" and is given by

Diayys, -~ Dy fuly) = 005585102550 f (2,1, ).

Uj),aj

Since the right-hand side makes sense for (y,v) € V x E]ﬁ Ix e x Eﬁ" and is continuous
there, f, is C".
Step 8 Holding v € Efj X oo X Eg" fixed, the function

(:E, y) — d(07"'707ﬁj7ﬁj+17"'76n)f($’ y’ U)
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is C(9), By Step 2 (applied to the C'®7) function (y,z) s dO0PiFit1Bn) (2,4 v))

we see that for each y € V, the function
U % F’ €T H d(07707ﬁj75]+1775’ﬂ)f(x, /y’ fu)
is C7 and for w € Efl X e X Ejﬁfll, we get

QBB (BB £y 0) (2, w0) = dP (2, y, w,0),

which is continuous in (z,y,w,v) € U x V X Elﬁ1 x -+ x EP". Hence if fis COM | then
(a),(b) and (c) hold.
Conversely, assume that (a),(b) and (c) hold. By step 1, f|yoxyo is C' and

dﬂf‘UOXVO (z,y,w,v) = d(BLB2,-:B5-1) (d(ﬁjvﬁjJrlwan)f.(y’ v))(z, w) (4.2)

for (z,y) € UYx VY. By (c), the right-hand side of (4.2 extends to a continuous function
dPf:U XV x EP' x ... x Bl - F. Hence f is a C"-map. O

4.1 Elementary properties

The following lemma will enable us to prove a version of the Theorem of Schwarz for

C“-maps.

Lemma 68. Let Fy,...,E, and F be locally conver spaces, U; be an open subset of
Ei, z; € U; fori € {1,...,n}, x := (x1,...,2,) and o := (a1,...,ap_1,1) such that
a; € NgU{oo}. If f: Uy x -+ x Uy, — F is a C*-map, then

Dw,y; Diwnys, = Py [ (@) (4.3)

elements (w;)7, ..., (w;)j, € ({0}t x E; x ({0})" " C Ey x --- x By, and it coincides
with

ezists for all B; € Ny with p; < oy, for all (w;)y,...,(wi)s, € E; and corresponding

4Bt D f (o (wi, . (wn1) s, s (0a)1). (4.4)

Proof. The proof is by induction on n. If n = 1, there is nothing to show. Let n > 2.
Now the proof is by induction on B;. If 81 = 0, holding the first variable fixed, we see

that (4.3]) exists and coincides with (4.4]), by the case n — 1. Now assume that 5; > 1.
If B; =0 for all = 2,...,n — 1, the assertion follows from Lemma Now assume
that 8; > 1 for some ¢ = 2,...,n — 1. By induction on 1, we know that

D(wn)TD(wl)g1—1D(w1)21—2 o D(wnfl)jlff(aj>
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exists and coincides with

112001 £ (2 (wy )y, (w1) g, g (o)1, (wa)1)- (4.5)

Define g: Uy x --- x U, — F via

g(w) = D(wl)zrlD(wJErz o D(wn—l)If(x)
— d(ﬁl*1,62,-..,ﬁn—170)f(x7 <w1>17 e (w1)61717 (wg)l, (U)Q)Q, ceey (wn_1)57L71).

By the preceding, g is differentiable in the n-th variable and

Dy, y:9() (4.6)
= dP LB Bl (3 (i), (wn) g (Wns)g, s (wn)1) (A7)
= D)y, Py, o Plwn); Piwn); (@), (4.8)

which is continuous in ((wy)1,z). Hence g is C(001) and dO-0Dg(z, (w,);) is given
by (4.5). Because f is C* and oy > (1, (4.7) can be differentiated once more in the
first variable, hence also D(wn);g(x), with

d(l,0,0,...,O,l)g(x, (wn)l, (wl)ﬁl)

= Dw,)s, Diw,);9(2)

-1

= d(ﬁl’mﬁn7171)f(xv (wl)la KR (wnfl)ﬁn_p (wn)l)

As this map is continuous, g is C(1:0--01) By Lemma , also D(wn)ID(wl)Z g(x) exists
1

and is given by D(wl);;l D(wn)’lﬂg(l‘) = d(ﬂl,..-ﬁn—l,l)f(m’ (w1)17 ey <wn_1)ﬁn—1’ (wn)l)'

But, by definition of g, D(wn)ID(wl)};lg(x) = D(wn)TD(wl)gl =Dy, _yy:_, f(x). Hence

D(wn)TD(wl)E1 o D(wn—l);iflf(aj) = d(ﬁl""’ﬁ”_l’l)f(ﬁl}’ (wl)l’ T (wnil)ﬁn—l’ (wn)l)'
]

Proposition 69. (Schwarz’ Theorem for C“-mappings). Fori € {1,...,n}, let E;
and F be locally convex spaces, U; C E; an open subset, x; € U; and «; € NogU{oo} with
a = (ai,...,an). For p; € Ny such that ; < oy, we define 5 := (B1,...,06n), & =
S B AL, pii= Yy B wi, - wh, € ({01 X By x ({0} C By x - x By
with entries we,, ..., w,, in the E;-coordinate. If o € S, is a permutation of {1,..., pp}

and f : Uy X -+ x U, = F is a C“-map, then the iterated directional derivative
(Dw;(l) - 'Dw;(pn)f)(ﬂfl, cey Tp)

exists and coincides with d° f(x1,. .., Tn, we, ..., Wy, )-
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Proof. The case n = 2 having been settled in Proposition we may assume that n > 3
and assume that the assertion holds when n is replaced with n — 1. We prove the n-th
case by induction on p,. The case p, = 0 is trivial. If at least one of the 8; = 0 for
i =1,...,n, then the assertion follows from the assumption that n has been replaced
withn—1. The case B; > 1 foralli =1,...,n.If (1) € {1,..., 51}, then by induction,

D

Wi Dug i P )

= d(ﬁlfl’&""’ﬁ")f(xl, cey Ty Wy e ey Wo(1) =15 Wo(1)415 - -+ s Wy - - - ,prn).

Because f is C%, we can differentiate once more in the first variable:

Dw;(l) te Dw;(pn)f(xl’ ey :Cn)
= dﬁf(xl, ey T, Wy - ,wU(l)_l,wU(1)+1,. . .,wpl,wg(l);w&,wézﬂ, ce ,wpn)
= dﬁf(xl, e T, W, W, ., W, )

For the final equality we used that, for ve,,...,v,, € E;,

dﬂf(xl,...,xn,vl,vg,...,vpn)

= dﬁl(dw?"“’ﬂ”)f.(xg, s Ty Vg Vgt s - - -5 Upy ) (T1, 015 - -+, 08;)
is symmetric in vy,...,vg, € Ei, as
g(xy) = dB2Po) £ (29, ..., Veys Ugot1s- -1 Upy,)

is C° in 21 (see Lemma [67).
If o(1) € {&,...,pi} for some i € {2,...,n}, then

Dw;(g) s Dw;(pn)f(.%'l, e ;$n)

<oBi—=1,Bi4+1,-,8n
= Brr-Bi=lBit1,8 )f(:z:l, e Ty Wy Wegy e vy Wer(1)—15 Wer(1) 415+ - s Woys + + 5 W, ).
For fixed wg,,...,w,, consider the function h: Uy x --- x U, = F, h(x1,...,2,) :=
d(o""’o’ﬁfl’ﬁi“""’5")]”(:151, ey Ty Wy - - Wo(1)—1 W (1) 41y - -+ Wpys - - - ,wpn).

Holding x;+1, ..., 2y, fixed, we can apply Lemma 68| and find that
Dw;(l)Dw* cee Dw* h([]}l, v 71'77,)

P1 §i—1

exists and coincides with
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Now, by induction,

Dw;(z) . 'Dw;(pn)f(l"l, ceeyTy)
seesBi—LBit1,,0n
:d(,Bl A Bit1 A )f(lila"'7xn7w17"'7/w§i)'"awo(1)717w0(1)+17'-‘7wpi7"‘7w,0n)

= Dy, ---Dwgi lh(xl, cey X))

Let v denote

d(ﬁz,---ﬁn)f.(xz’ ey Ty Wegs ey Weyy + v vy Wer(1)—1s Wo(1)41s -+ + s Woyy W(1)s Wejqs - - - W, )-
By the preceding, we can apply, Dw*(l), ie., D“’*(l) ~~-Dw*( )f(xl, ..., Ty) exists and
o o o(pn
coincides with
Dwgl ce Dw’gi_lDw;(l)h(mla cee 71371)
= dﬁf(xl, e Ty W Wey e ey Wer(1) =15 Wo(1)4+1s - - s Woy Wa(1)y Wegpqs - -+ Wpy)
= dﬁli/}(xl,wl, ce Wy )
where d(62""’5”)f$1(a:2,...,xn,v&,v&ﬂ,...,v[,n) is symmetric in v;,...,v, € E; by

induction on n for the C*?~“-function f,,. Hence also after differentiations in i,

dPrap(zy,we, ... , Wy, ) coincides with dPf(x1,... Tn,wr,. .., Wy, )- O

Corollary 70. Let Eq, ..., E, and F be locally convex spaces, U; C E; be locally convex
subset with dense interior for i € {1,...,n}, a := (ou,...,an_1,1) such that a; €
No U {oo} and o € Sp. Define ag := (qg1)s s Qo)) If fr U1 X -+- x Uy = Fis a
C“-map, then

go - Ua(l) X X Ua(n) —F, z— f(xa*1(1)7 .. .,.fo.fl(n)) (4.9)
is C and

dﬁgg(l’g(l), <o To(n)y Wo(1)s - - - ,wg(n)) = dﬁf(xl, ey, T, W1y e ,wn), (4.10)

for all B = (B1,...,0n) € N§ such that < o and (z1,...,2p, w1,...,wy) € Up X -+ X
U, x EI'B1 x -+ x B2 where By = (ﬁg<1),...,ﬂg(n>).

Lemma 71. Let Eq,..., E, and F be locally convex spaces, U; be a locally convex
subset with dense interior of E; for i € {1,...,n} and a := (aq,...,qy) such that
a; € NgU{oo} If f: Uy x-+- x U, — Fis a C*map and X : F — H is a continuous
linear map to a locally convex space H, then Mo f is C* and d®(Ao f) = NodP f for all
Bi € Ng such that 5; < o and 8 := (51,...,0n).
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Proof. Follows from the fact that directional derivatives and continuous linear maps

can be interchanged. O

Lemma 72. (Mappings to products for C“-mappings). Let E1,..., E, be locally
convex spaces, U; be a locally convex subset with dense interior of E; fori € {1,...,n},
and (Fj)jes be a family of locally convex spaces with direct product F' := HjeJFj and
the projections m; : F' — Fj onto the components. Let o := (ai,...,0y) such that
a; € NgU{oo} and f: Uy x -+ x Uy, — F be a map. Then f is C if and only if all of

its components fj := mjo f are C. In this case
d’f = (d°f})jer, (4.11)
for all B; € Ny such that B; < a; and = (B1,...,Fn).

Proof. m; is continuous linear. Hence if f is C%, then f; = m; o f is C%, by Lemma
with d? fi = mo d® f. Hence (4.11) holds. Conversely, assume that each fj is

C“. Because the limits in products can be formed component-wise, we see that for all

(21, an) €UY X -+ x UL, w; := ((w;)y,- - -, (wi)g,) such that (w;), ..., (w;)s € Ei,
dﬁf(xl,...,mn,wl,...,wn) = (lv)llu)nf)(xl,,mn)
exists and is given by
(dPfi(x1,. . Ty wr, . 00)) jer (4.12)
Now defines a continuous function

le---xUanlﬁlxu-ng”—)F.

Hence f is C°. O
Lemma 73. Let Fy,...,E, and F be locally convex spaces, U; be a locally convex
subset with dense interior of E; for i € {1,...,n} and a = (ai,...,an) where a; €

NoU{oo}, 0 > 1. If f: U X -+ x Uy — F is C@en=10) - f g 0001 gpg
dO O f Uy x o x Uy X (Up x Ep) — F is COmn—nen=L then f is O,

Proof. Let 8; € Ng with ; < oy, © 1= (21, ..., %) € UPx---xUL, w; := (wi)y, - -, (wi)s,)
where (w;)y, ..., (w;)p, € E;. Consider also the corresponding elements (w;)7, . . ., (w;)}, €

({0}t x E; x ({0)" P C By x --- x By,
If B =0, then (Dy - Dy_1 f) () exists as f is C(@1--n-1.0) "and is given by

d(ﬂl ..... 5n7170)f(x’ Wi, ... ,wnfl)
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4. C*-MAPPINGS

which extends continuously to Uy x - -+ x U, X Elﬁ1 X e X Egﬁ‘ll.
If Bn > 0, then D, flx) = d(o""’o’l)f(x, (wy)1) exists because f is C0.-0.1) and

1
because this function is C(@1-0n-1.0n=1) 3156 the directional derivatives
(D1 Dnf)(x)

_ 0,...,0,1
= (Ditunys, 0 Pt 1.0 Piwnys, 0 Diunz 00"V ), (wn)y)

exist and the right-hand side extends continuously to (z, (w1)1, ..., (wn)g, ) € U X -+ X
Uanl’glxn-xEE”.Hencefis ce. O]

Lemma 74. Let E1,...,E,, Hi,...,H, and F be locally convex spaces, U; C E;, P; C
H; be locally convex subsets with dense interior fori € {1,...,n} and a:= (aq,...,ap)
where a; € NoU{oo}, tf f : Uy x --- x U, — F is a C*map and \; : H; — FE;
is a continuous linear map such that \;j(P;) C U;, then fo (A1 X -+ X A\p)|px.-xP,:
P x---x P, — F is C%.

Proof. Let 3; € Ng such that 3; < a; and 8 := (81, .., Bn). For (p1,...,pn) € PP x-+-x

PP, (w;)y,-..,(wi)s € H; and corresponding elements (wi)], -, (i), € ({0}t x

H; x ({0})"* C Hy x --- x Hy,, we have
D(wn)’{(fo ()\1 XX /\n))(pla . 7pn)

= i ), a1 (1) Ann ) ) = FO (1) M)

= lim %(f(kl(pl), o An-1(Pa-1), A (Pn) + EAn((wn)y)) = F(a(pr), - Anlpn)))

t—0

= Do,...00n ((wn) )L ) A1(P1)s -+ s An(Pn)),

arguing as in the proof of Lemma [37} Recursively,

Di--Dp(fo x-xA))Pp1,-..,0n)
=d’fF(M(p1), - An(pn)s M((w01)1), -, An((wn) g,))-

The right-hand side defines a continuous function of (p1,...,pn, (w1);,..., (wn)ﬁn) €
P x- - x P, x Hlﬁ1 X oo X HE”. Hence the assertion follows. O]

Lemma 75. Let By, ..., Ey,, Hi,...,Hy, and F be locally convex spaces, U; be a locally
convex subset with dense interior of E; for i € {1,...,n}, o = (ay,...,ap) where
a; € NgU{oo}, H:=Hy X+ x Hp, and f : Uy x -+~ x U, x H— F be a map with the
following properties:

(a) For all x := (x1,...,2y), ; € U;, the map f(x,) : H — F is m-linear;
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(b) The map f:Uy x --- x U, x H = F is C(*0),
Then f:Up X -+ xUp—1 X (Upx H) = F is C*. Also g : Uy X -+ x U;j—1 x (U; x H) X
Ui+1 X oo X Un%F, (I‘l,...,$i,1,($i,h),l‘i+1,...,CL‘n) i—)f(ﬂ?,h) s C°.

Proof. Holding h € H fixed, the map f(e, h) is C* and hence, for a permutation o € S,
of {1,...,n}, we have Uy(1) X - - X Up(ny = F, (215, %n) = f(To-1(1)5 -+ To=1(n)5 P)
is 0%, where a; := 4(1),- -, 0 (n), by Corollary Using , we see that fi :
Usty X +++ X Ug(n—1) X (Ugn) X H) = F, fi(Te),- - Tom),h) := f(x,h) satisfies
hypotheses analogous to those for f (with a,(; interchanged) and will be C* if the
first assertion holds. Using Corollary [70] this implies that g is C“. Hence we only need
to prove the first assertion. We may assume that «; < oo; the proof is by induction on
Q.-

The case ay, = 0. Then f is C®1®n=1.0 by the hypotheses.

Induction step. Let (wy,); € En, 2= (21,...,2m) € H. By hypothesis,
D(O’...,07(wn)170)f(:c, h) exists and extends to a continuous map Uy X - - x U, x H X E,, — F.

Because f(x,e): H — F is continuous and m-linear, it is C'! with

D(O,...,O,z)f(x’ h) = Zf(xvhla R 7hk‘—lazka hk-‘rla v 7hm)

k=1
This formula defines a continuous function U; x --- x U, x H x E, — F. Holding
(1, ., 2p—1) € Up X -+ x Up_1 fixed, we deduce with the Rule on Partial Differentials

Lemma [8) that the map U,, x H — F, (zp, h) — f(z,h) is C', with
( p 3 ) )

Do,...0,(wn),,2) (@ ) (4.13)
= D(O,...,O,(wn)l,O)f(x7 h) + Z f(xa hl? ey hk*lv 2k hk+17 sy h’m)
k=1
Because we have just seen that d%+%V f(x1,... 21, (2, h), ((wn),, 2)) exists and is

given by (4.13)), which extends continuously to Uy x - - - x Up_1 X (Up, x H) X (E, x H),
f:Ux - xUp1x(UyxH) = Fis C% %1 Also, f: Uy x+--xU, 1 x (U, xH) = F
is C@1»2n-1,0 by the hypothesis.
We claim that d©-0D f : Uy x -+ x Uy, x (Up x HX Ep x H) = F is C®0n-1,0n=1,
If this is true, then f is C® by Lemma To prove the claim, for fixed k € {1,...,m},
consider

U X+ xUp1 x (U, x HxE, xH)—F,

({L‘, h, (wn)l, Z) — f(l‘, hl, cey hk—l, Zk hk+1, ey hm)
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The map
Y:U X+ xUpx H X+ X Hyp1 X (Hy X E, x H) — F,

(ajvhla s 7hm,1, (hmv (wn)laz)) = f(xvhlw . ahm)

is m-linear in (h1,...,hn—1, (hn, (Wy);, 2)). By induction, ¢ is COlr@n-1.0n=1 a5 4
map on Uy X +++ X Up—1 X (Up x Hy X -++ X Hy, X E, x H). By Lemma also ¢ is
Cmon—1,0n=1 " Hence each of the final k£ summands in is Cotr@n—1,0n=1 jp
(z,h1,. .., hin—1, (hm, (wn);, 2)). To take care of the first summands in (4.13)), observe
that 6: Uy x -+ xUp x (H x Ep) = F, (z,h, (wn)1) = Do,....0,(wn),,0)f (%, 1) is (m+1)-
linear in the final argument and satisfies hypotheses analogous to those of f, with
(aq,...,ay) replaced by (a,...,an 1,0, — 1). Hence 6 is Crn-1.0n=1 on [} x
oo X Up—1 X (U x H x Ey), and hence the first summand of is C@10n—1,0n—1
onUp x -+ xUp_1 x (U, x Hx E, x H), by Lemma As a consequence, d(0--01) f

is C1an-1.an=1 (]ike each of the summands in (4.13))). O
Lemma 76. Let Ey,...,E, and F be locally convex spaces, U; be a locally convex
subset with dense interior of E; for i € {1,...,n} and o := (a1,...,an) where o; €

No U {oo}, ay > 1. Then f : Uy X --- x U, — F is a C*map if and only if f
is COn=1.0 - f s 0001 gpd OO0 f - Uy x - X Uy x (U X Ep) = F s

Calr"van*lvan_l

Proof. If f is C¢, then f is Co0n-1.0 and f is €901 Moreover d(®01 f . Uy x

- x U, X E, — F is linear in the E,-variable and for all 8; € Ny, 8; < «;, B, <
an—1,(z1,...,2) €U x -+ x UL, (wi)y,...,(w;)p € E; and corresponding elements
(wi)]s -, (wi)f € ({0} x By x ({0)"* € By x -+ x B,

D)z, 0+ D((uny1,0) @O0V ) (1, i, 2)

- d(ﬁ1,-..,ﬁn7176n+1)f(x1, cos Ty (W1)q, - (wn,l)ﬂn_l, Z, (Wp)1, - - - (w”)ﬁn)
exists and extends to a continuous function in
(@15 @, (W11, (Wn1) g, s 2 (Wa)1s - (W) g ) € Urxe - xUpx B - B,

Hence, by Lemma d0-01) ¢ ig Cotrmen—1,0n =1 The converse has already been
established in Lemma O

Lemma 77. Fori € {1,...,n}, let E; be a locally convex space, U; C E; be a locally

convex subset with dense interior and o := (au, ..., an) where a; € NgU {oo}. Assume
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that E, = Hi x Hy with locally conver spaces Hi, Ho and U, =V x W with locally
convex subsets V. C Hy and W C Hy with dense interior. Let F be a locally convex
space. If amap f: UL X -+ X Up_1 X VX W = F is C@t0n-1kD) for qll k1 € Ny
with k+1 < ay, then f: Uy x --- x U, = F is C*.

Proof. We may assume that a,, < co. The proof is by induction on «,. For the case
an = 0, the assertion follows by the definition of a C*map. For the case o, > 0, let
x = (21,...,2,) € Up X ... x Uy and (hy, ha), (R}, h) € Hy x Hy. By the Rule on
Partial Differentials (Proposition E[),

A0 (i, (ha ) = OO0 f(, )+ dOOD [, ho). (414)

By Lemmas and , is @101k a5 5 map on Uy X -+ X Up_1 X (V x
Hp) x (W x Ha) for all k+1 < a,,_1, hence by induction and again by Lemma
is C(@1rmom—1.00=1) on 1]} x .. x (U, x Ep). Thus, d®0Vf Uy x---x U, x E, — F
is C(aron—1,0n=1) and by induction f: Uy X -+ x U, — F is C(@10m-1.0)  Hence, it
is C*, by Lemma [76]

O

Lemma 78. Let E1,...,E, and F be locally convex spaces, U; be a locally convex subset
with dense interior of E; fori € {1,...,n} and ag € Ng. If the map f : Uy x---xU, — F
15 C'0r 20 then f is C'0.

Proof. The proof is by induction on ag. The case ag = 0. If f is C%0, then f is
continuous and hence C°. The case oy > 1. Assume that Ui, ..., U, are open subsets.
Then D(wi)*f(:xl, ..., Ty) exists and is continuous in (x1, ..., z,,w;) for all x; € U; and
alli € {1,...,n}, where w; € E;, (w;)* € ({0})"! x E; x ({0})" ¢ C By x --+ x Ej,.
Hence, by Proposition |§|, fis C! and

df (21, Tn), (W1, ..y wn)) = Dy f(@15 -y @)+ FDipy= f(T1, ..o 20). (4.15)

Next note that D(wi)*f(ajl, v, Xy) is C0T 20— Lmappings, by Lemma and Corol-
lary Hence df is C*~! by induction. Since f is C' and df is C® !, then f is
co. O

As an immediate consequence of Lemma we obtain:

Remark 79. The map f:U; x --- x U, — F is smooth if and only if it is C°°°.
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Proposition 80. Let F1, ..., E, be finite-dimensional vector spaces and F be a locally
convex space. For i € {1,...,n}, let U; be a locally convex and locally compact subset
with dense interior of E; and a := (ai,...,qy), where oy € No U {oc}. Then the

evaluation map
e:CYUy X+ XU, F)xUp X -+ xUp = F, e(v,21,...,25) :=v(x1,..., %)
is C°9,

Proof. Without loss of generality, we may assume up to permutation that a; < oo for
all i € {1,...,n}. The proof is by induction on |a| = a1 + -+ + ay. If @ =0, then € is
continuous because each Uj is locally compact [11, Theorem 3.4.3]. Also, ¢ is linear in the
first argument. Hence ¢ is C°% 0 by Lemma [75{ and Corollary If @ # 0, we may
assume that a,, > 1, using Corollary For z; € Uio, we B, vyeC*Uyx---xUp,F)
and small t € R\ {0},

1

E(s(’y,xl, ey Tp1, Ty + tw) — (Y, 21, .. X))

_ 1 B 40:--,0,1)

=7 (Y(x1,. oy 1, Tp + tw) — (X1, .. xp)) — Y(z1,. .., Tn, w) as t — 0.
Hence d%0Ve(y,21,..., x,, w) exists and is given by
d(o""’o’l)e(’y, Tlyeney Ty, W) = d(o’“"o’l)'y(azl, ey T, W) = el(d(o""’o’l)'y, (z1,...,Tn,w)),

(4.16)

where g1: O @n-1en=1(7 5. x Uy, 1 x (Up X Eyp), F)X(Uy X+ - -xUp_1 % (Up X Ey)) —

F, (¢, o1, 20 1,2) = ((T1,...,2p_1,2) is COn—1,00—1 Ty induction.
The right-hand side of (4.16)) defines a continuous map (indeed a C°®1:@n—1,0n=1_
map) by induction and Lemma using that

Ca(Ul N % Un,F) N Cm,...,cxnﬂ,an—l(Ul X oo X Up_1 xUp x B, F), = d(O,.‘.,O,l),}/

is continuous linear. Thus, by Lemma [76] ¢ is C°%. O

4.2 Chain Rule for C*“-mappings

Lemma 81. (Chain Rule for C“-mappings). Fori € {1,...,n} andj € {1,...,m;},
let B, X;; and F' be locally convex spaces, U; C E;, P; ; C X; ; be locally convexr subsets
with dense interior, o := (aq,...,an) € (NoU{oco})™, f: U x -+ x Uy — F be a C°-
map and g; : Pi1 X Pig X -+ X Py, — Ui be a CVi-map, where v; := (Yi1, .- Yim,;) €
(No U {oo})™, vl := i1+ + Yim; < i . Then

fo(glX"'Xgn):(Pl,lX"‘XPl,m1)x"'X(Pn,lx"‘XPn,mn)_)Fy
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4.3 The Exponential Law for C“-mappings

(pl,h' .. 7pn,mn) = f(gl(pl,la cee 7p1,m1)7 s 7gn(pn,17 cee 7pn,mn))

is a COLm) _map.

Proof. Without loss of generality, we may assume that v; < oo. The proof is by induc-
tion on |y| := ||+ +]|yn|. I |y] =0, then fo(g1 x---xgy) is just a composition of
continuous maps, which is continuous, hence C'(%9 Now if || > 0, by Corollary
we may assume that |y,| > 0. Again by Corollary we may assume that vy, m,, > 0.
Let P := P;1 X -+ X Py, for p:= (p1, -+ ,pn) € PL X -+ X P, and z € X, p,,, the
map d(o""’o’l)gn(pn, z) is C 1o mmn =1 7mmn —1) -y Lemma Also, the function

Pn,l X oo X Pn,mn—l X (Pn,mn X Xn,mn) — Un>

(pn,la -y Pnmp—1, (pn,mna Z)) = gn(pn,la R 7pn,mn—1apn,mn)

is C7 by Lemma In particular, the latter is COn1¥nmp-1:9mn=1) " Thus both

components of
1 Pa X - X (Prmy X Xnmy = Un) X Epy (o, h) = (ga(pn), 4"V gp(pn, 2))

are C('Yn,l:mv'}’n,mnfla'yn,mn—1), S0 @ iS C('Yn,l7-~~77n,mi71a7n,m—1)' By Lemma d(o,...,o,l)f :
Uy X xUp_1 % (Upx Ey) — Fis Clar,om—v,an—1) Thyg, by the preceding, the map
40O (fo(gy -+ X g 1 XN P1s -+ Pty (s 2)) 15 COL 01Tt =13 ),

Hence,

A0V (fo (g1 x % gu))(p,2) = (dOOD F)((g1 x -+ % gn), d OOV g, (py, 2))

is COYn=19n 15 %n,mn 1m0 =1) and by induction, f o (g1 X xgn): (Prg XX
Prpy) X x (Ppy X+ X Py, ) = Fis C O =191, 9m,mn—=1.0) Hence, by Lemma
f o (91 X oo X gn) is a C(’Yl ----- "/n)_map. m

4.3 The Exponential Law for C*-mappings

Definition 82. Let E1,..., E, and F' be locally convex spaces, U; be a locally convex
subset with dense interior of E; for i € {1,...,n} and o := («1,...,a,) where a; €
NoU{oo}. Give C*(Uy X - - - X Uy, F) the initial topology with respect to the mappings
dP: C(Uy x -+ x Uy, F) —>C’(U1><---><Un><Elﬁ1 ><~-><E£",F),’y»—>d5'yforﬂi € Ny
such that 5; < oy and 8 := (f1,. .., Bn), where the right-hand side is equipped with the

compact-open topology.
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Lemma 83. Let F' and E; be locally convex spaces for i € {1,...,n}, U; C E; be a
locally convex subset with dense interior, a := (o, a, ..., ap) with a; € NoU {oo} and
Bi € No with B; < aj. Define U := Uy X --- x Uy, and 8 := (p1,52,...,0n). Then the
sets of the form

W ={feC*UF): d°f(K)C P}

(where P C F are 0-neighbourhoods and K C U x Efl X e X Eff" is compact), form a
subbasis of 0-neighbourhoods for C*(U, F), i.e., finite intersections of such sets form a

basis of 0-neighbourhoods.

Proof. The topology on C*(U, F) is initial with respect to the maps
d°: C*(U,F) = C(U X BV x - X EP" F)p, f— d°Ff.
Therefore the map

U:CU,F)—»  [[ CWXEM x- x Bl F), f e (d°f)ngspi<an
No38i<ay;

is a topological embedding. Sets of the form

Bi={(gs)spcas € [ CWXE x- x B} F): gs(Kp) C Qp}
No3B;i<a;
(with compact sets Kg C U X Elﬁ1 x -+ x B2 and 0-neighbourhoods Q3 C F), form
a basis of 0-neighbourhoods in HNO%ZS% C(U x Elﬁ1 X e X Egn,F), where Qg = F
for all but finitely many 3. Hence the sets U~!(1/) form a basis of 0-neighbourhoods in
CY(U, F). These are finite intersections 0-neighbourhoods as described in the lemma,

whence the latter for a subbasis. O

Lemma 84. For i € {1,...,n}, let E; and X be locally convexr spaces, U; C FE; be
a locally convexr subset with dense interior, F C X be a (sequentially) closed vector
subspace and a; € Ng U {oo} with o := (au,...,an). Then f:U;p x -+ x U, — F is a
C%-map if and only if f: Uy X --- x Uy, — X is a C*-map.

Proof. The inclusion map j : F — X is continuous linear and hence smooth. If f :
Uy X -+ x U, — Fis C% then also j o f is C%, by the Chain Rule (Lemma [81]).
Conversely, assume that jo f: U; x --- x U, — X is C'*.

Step 1. Assume that U; x --- x U, are open sets. Because directional derivatives can
be realized as limits of sequnces of directional difference quotiants, which lie in F, we

obtain
Dy f(x) = Dy=(jo f)(x) € F
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4.3 The Exponential Law for C“-mappings

forall z € Uy x---xU, and w € E; such that o; > 1, where w* € ({0})"! x E; x ({0})"*
is as in Definition Repeating this argument, we find that

dﬁf(:c,wl,...,wn) :dﬁ(jof)(x,wl,...,wn) eF

for all 8 € N} such that 8 < o, x € Uy x--- x U, and w; EE;-BZ' fori=1,...,n. Because
d®(j o f) is continuous and jo d’f = d?(j o f), also d’ f and thus f is C®.
Step 2. If Uy, ..., U, are arbitrary, then f’U?xn-ng is C“ by Step 1, and

d?(jo f)lz,wi,...,wy,) € F

for all € N such that 8 < a, z € U x - x UY and w; EE;Bi fori=1,...,n. Given
x=(x1,...,2,) € U{) X - X Ug, let V; C U, be a convex neighbourhood of x;. Because
Ui0 is dense in U; there exists y; € VZ-O. By convexity, 2 m = (1 — %)xl + %yz e V; for
all m € N, and indeed z;,, € Vio. Hence 2z, := (Z1,ms -+ - Znm) € U? X - X Ug for all
m and thus

dP(j o f)(zm,wi,...,wy) € F.

Since z,, — x as m — oo and F' is sequentially closed, we deduce that
dPGo f)(z,wi,...,w,) € F

thus
dPf=d’(Gof):Ux - xUyxE' x-..xEr — F

is a continuous extension to d’(f|i, x...xv, ), and thus f is C°. O

Lemma 85. Fori € {1,...,n}, let E; and F be locally convez spaces, U; C E; be a
locally convex subset with dense interior, F' = yLnFj where I 1s a locally convex space
with the limit maps q; : F — Fj and oy € Ng U {oo} with o := (a1,...,ay). Then
f:U x--x U, — Fis a C%map if and only if all the maps f o q; are C*.

Proof. After passing to an isomorphic locally convex space if necessary, we may assume

that F7 = lim Fj is realized as a closed vector subspace of [I;c; Fi (as usual). The

asseration now follows from Lemma [72] and Lemma [84] O
Lemma 86. Fori € {1,...,n}, let E;, F be locally convez spaces, U; be a locally convex

subset with dense interior of E;, and (Fj)jcs be a family of locally convex spaces with
direct product F := HjeJ Fj. Let o := (a1, ..., ap) such that a; € No U {oo} . If the
topology on F' is initial wit respect to the linear maps \; : F' — F;. Then the topology
on CY(U, F) is initial wit respect to the maps C*(U, \;).
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4. C*-MAPPINGS

Proof. Abbreviate U := Uj X - - - X Uy,. By definition, the topology on C*(U, F') is initial

with respect to the maps
d° : C*(U,F) = C(U x E? x - x EP" F),, (4.17)

for all 8 € Njj such that § < . By [I8, Lemma 3.3|, the compact-open topology on the
space on the right-hand side in (4.17) is initial with respect to the maps

C’(UxElﬁ1 ><-~><E,€",)\):C(UxEl/B1 ><---><Eff",F)—>C’(U><Elﬁ1 X o x B Fy),

")/’—>>\Z‘O’)/.

Hence by [I8, Lemma B.4], the topology on C*(U, F) is initial with respect to the maps

CU x B x - x EPn ) od’ (4.18)
Now the map in (4.18) coincides with d® o C%(U, \;) by the Chain Rule (Lemma [81)),

where

d° : C“(U,F;) = C(U x B x - x EP | F). (4.19)
The topology on C%(U, F;) being initial with respect to the d® from (4.19)), we deduce
that the given topology on C*(U, F) is initial wit respect to the maps C*(U, \;), by [18]
Lemma B.4]. O

Lemma 87. Let Eq, ..., E, be locally conver spaces, U; be a locally convex subset with
dense interior of E; fori € {1,...,n} and a; € No U {oo} with a := (aa,..., ). If

A F1 — Fy is a continuous linear map between locally convex spaces, then also
Ca(Ul X -+ X Un,)\) : Ca(Ul X e X Un,Fl) %CO‘(Ul X o X Un,Fg), ’7*—))\07
is continuous linear.

Proof. Abbreviate U := Uy X --- x Uy. The topology on F} is initial with respect to
A and idp, : Fi — F;. Hence by Lemmma , the topology on C*(U, F}) is initial
with respect to C*(U, \) and C*(U,idf,). In particular, C*(U, \) is continuous (and

obviously it is linear). O
Lemma 88. Let Eq, ..., Ey, be locally convex spaces, U; be a locally convex subset with
dense interior of E; fori € {1,...,n}, (F})jcs be a family of locally convex spaces with

direct product F := [];c; Fj and o; € No U {oo} with a:= (eu, ..., an). Then

CHUL X -+ x Up, F) 2 [ CU1 x -+ X Up, Fy).
Jje€J

60



4.3 The Exponential Law for C“-mappings

Proof. Abbreviate U := Uy X -+ X Uy. Let prj : F' — Fj be the projection onto the
j — th component It follows from Lemma [72] that the map

O : C*(U,pr))jes : C*(U,F) = [[ C*(U. Fy), v+ (pr;ov)jes
JjeJ
is a bijection.
Because the topology on F' is initial with respect to the maps pr; : F' — Fjj, Lemma @
shows that the topology on C*(U, F) is initial with respect to the maps C*(U, pr;) for

j € J. Thus ® is a homeomorphism. O
Lemma 89. Let E1,...,E,, F be locally convex spaces, U; be a locally convexr subset
with dense interior of E; fori € {1,...,n}, (F})jes be a family of locally convex spaces

with F':=lim Fj and o; € No U {oo} with o := (a1,..., ). Then

CHUL X - x Un, F) = Im CP(Uy x -+ X Uy, Fy).

Proof. Abbreviate U := Uy X --- x Uy,. Let q; : ' — F} be the limit maps and ¢; :
F; — F; for [ < j be the bonding maps. We may assume that F' is realized as a vector
subspace of [[;.; F7 and ¢ := prj|r. As a consequence of Lemma the map

C*(U,F) — HC’O‘(U,Fl), v = (@ oV)ieL
leL

co-restricts to a bijection
are] : «
¢ :CYU,F) — limC*(U, Fy)

(Using the bonding maps C*(U, ¢;;), | < j). Now Lemma 86 imply that ® is a homeo-

morphism. O
Lemma 90. Fori € {1,...,n}, let E;, F be locally convex spaces, U; be a locally convex
subset with dense interior of E; and a; € Ng U {oo} with o := (a1, ..., ). Then

CUUL % - x Un, F) = lim CP(Uy x -+ x U, F).
NE5B<a
Proof. Abbreviate U := U; X -+ x Uy. Since C*(U, F) = ﬂNga,@goc CA(U, F), it is
clear that C*(U,F) = @CB(U, F') as a vector space, together with the inclusion
maps qg : C*(U, F) — CB(U,F). Let T be the initial topoloy C®(U, F) with respect
to the maps gg. The topology on CP(U, F) being initial with respect to the maps
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d° : CP(U,F) — C(U x B x .. x Ei" F). By [I8, Lemma B.4], 7 is also initial with

respect to the maps
d? o qs: CO(U,F) = C(U x B x - x Bl F), v+ d%,

and hence coincides with the compact-open C“-topology on C*(U, F'). Hence C*(U, F') =
@ CB(U, F) also as a topologicla vector space. O

Lemma 91. For i € {1,...,n}, let E;,F be locally convex spaces, U; be a locally
conver subset with dense interior of E; and o; € Ng U {oo} sucht that o, > 1 and
a:=(ag,...,ap). Abbreviate U :== Uy X -+ x Uy. Then

D CYU, F) — Cleren—10( By 5 0 (Uy X -+ X Up—1 % (Un x Ey), F),
fe (f,d000 )
1s a linear topological embedding with closed image.

Proof. The linearity is clear.
Because @ is injective, it will be an embedding if we can show that the initial topology
7 on C*(U, F) with respect to ® coincides with the compact-open C*-topology . By

transitivity of initial topologies, 7 is initial with respect to the maps
d° : C*(U,F) = C(U X EY x ... x B F), fs d°f (4.20)
for B := (B1,...,0n) € N§ with ; < a; and 3, = 0 and the map

0p: CO(U,F) = C(Up X -+ x Up_1 X (Up X Ep) x EP x - X EP" ' x (B, x Ey)Pn, F),
(4.21)
fdP(def),

for p € Njj such that 8 < o — ey,
To see that ¥ C 7, we show that 7 makes the maps
dV:C*U,F) = C(U X E* x---x E" | F)

continuous for each v = (y1,...,7) € Nij with v < a. If v, = 0, this is clear from

(4.20), applied with 8 := ~. If 7, > 1, define 8 := v — e,. Then pg from (4.21) is
continuous . Also the map

h:UxE]"x---xE" —>U1><---><Un,1><(Un><En)><E151x---ng’fllx(Eann)B",
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4.3 The Exponential Law for C“-mappings

(T1yeeey Ty, W, .y Wy)
(1, Tn-1, (Tn, Wn1), Wi, . .. Wn—1, (Wn2,0),..., (Wnn,,0))
is continuos, where wy,, = (wp 1, ... W, ). Note that
A f (2w, ..., wy) = dP(d f)(h(z,wy, ..., wy))
for f € C*(U,F). Thus d¥ = C(h, F) o g, where
C(h,F): C(Uy X -+ X Un—1 X (Un x Ep) x E? x -+ x BV x (B, x Ep)P" F) —

C(UxE" x--x EI" F),
g—goh

is continuous. Hence d” is continuous with respect to 7 for all v and thus ¥ C 7.

Also 7 C ¢ (and thus 7 = ¢ ): Becausw 9 makes each of the maps d® from (4.20))
continuous , it only remains to show that ¥ makes ¢z freom (4.21)) continuous for each
B € Ny such that 8 < o — e,,. This will follow from the formula

Bn
pp=C(h,F)od* +> " C(h;,F)od’ (4.22)
j=1

with d? : CO(U, F) — C(U x E?* x -~ x Bf" F)

dPten . CU(U,F) — C(U x EY x - x, B B+l F),

n—1 1
h:Up XX Up_1 X (Un X Ep) x EP 5o x BP0 5 (B x Ep)Pn —
Ux EM x oo x EP < Bt
(1,..., Tn-1, (Tn,u0), w1, ..., wWn—1, (u1,v1),...,(ug,,vg,)) —
(1, Tp, w1, .., Wp—1, (U, UL, ..., Ug,))
and

hj:U1><-~-><Un_1><(Un><En)><E151><-~-><E5’1‘11><(En><En)ﬁ" — UXEY % - x EPn,

(1,..., Tn-1, (Tn,u0), w1, ..., wWn—1, (u1,v1),..., (ug,,vg,)) —

(:L’l, ey T, Wy e ooy Wp—1, (ul, ceey Uj—1,V5, Uj41,y .- - ,U5n))
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4. C*-MAPPINGS

It remains to prove (4.22). We first note that, because d° f(x1,...,zn, uo) is linear in

ug, we have

A (d f)(z1, ...y xn—1, (Tn.uo), (0,u1)) = d f(x1,...,2n,u1) (4.23)
and hence
d?en (den f)(z1, . .., Tp_1, (Tn-ug), (0,u1), (0,uz)) = 0. (4.24)
We now write
((ul’vl)v R (uﬁwvﬁn)) = ((ula 0) + (0,7)1), R (uﬁn’ 0) + (O,Ugn))

in the final argument of

dﬁ(delf)(xla sy Tp—1, (xnv uO)awla <oy Wp—1, ((ul’vl)a ) (uﬁnv Uﬁn)))7

in which this function is symmetric f,-linear. We expand into the sum of the 2°»
corresponding contributions, omit the terms vanishing by (4.24)) as they omit 2 or more
contributions (0, v;), and rewrite those containing one contribution (0,v;) using (4.23]).

This gives ([4.22]).

The image of ® is closed: Let (g;)ic; be a net in im® which converges, say to (f,g)
with f € C1an-10(U F) and g € CO=(Uy x -+ x Un_1 x (Un X Ep), F). Let
fi € C*(U, F) with ®(f;) = g;.- We claim that d" f(z,y) exists for x = (z1,...,2,) € U°
and y € F,,, and is given by

denf(x7y) :g(l’l,...,fﬂnfl,(l'n,y)). (425)

Because the righthand side of (4.25)) makes sense and is a continuous also for (z,y) €
U x E,, we see that f is C®* with

dnf =g (4.26)

a C* °r-map. Hence f is C% by Lemma . Using , we see that ®(f) =
(f,d"f) = (f,9), whence (f,g) € imPhi and so im® is closed. It remains to ver-
ify the claim. Abbreviate y* := (0,y) € Eq x --- X E,. For fixed t € R\ {0} such that
x + ty* € U, the functions

[0,1] = F,s = d° fi(z + sty™,y)

converge uniformly to s — g(z+sty*,y) (as (x+[0, 1]ty*) x{y} is compact and d°" f; — ¢

uniformly on comact sets). The right-hand side of

1
filx +ty") — fi(z) = t/o d°" fi(x + sty™,y) ds
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4.3 The Exponential Law for C“-mappings

therefore converges to ¢ fol g(x + sty*,y) ds, and the Left-hand side converges to f(x +
ty*) — f(x), which lies in F' (whence also the weak integral exists in F', not only in a

completion F). Thus
1 1
e+ t) = £@) = [ oo+ sty ds

which converges to fol g(z,y)ds = g(x,y) as t — 0, by continuity of g(x + sty,y) in
(s,t), the claim is established. O

Lemma 92. Let Eq,..., E, and F be locally convex spaces, U; C E; be a locally convex
subset with dense interior fori € {1,...,n}, a:= (aq,...,an) such that a; € NgU{oo}
and 0 € Sy, and oy = (Qg(1), -+ Uon))- If f1 UL X -+ x Uy = F is a C%-map, then
the map

P, : Ca(Ul X oo+ X Un,F) — CO‘U(UU(I) X oo X Ua(n)vF)
taking f to ®,(f) :=g as in (@) s an isomorphism of topological vector spaces.

Proof. For each 3 € Ni such that 8 < a, we have d* o ®, = C(hg, F) o d? by (4.10)
where

hﬁ:Ug(l)x---ng(n)fo((’l(;) ><~--><Ef‘(’7(;)”—>U1><---><Un><E151><---><Eff"

(‘750(1)’ w5y To(n)y Wo(1)s - - - ,wa(n)) — (wl, ey Ty W1y e ,wn).
Since d? and C (hg, F') are continuous, also dP o @, is continuous for each 3 as before,

1 = ®__1 is continuous.

O

and hence @ is continuous. The same argument show that (@)

Lemma 93. Let o := (ai1,...,a,) € (NoU {oco})", Ey,...,Ey, Hi,...,H, and F be
locally convez spaces, U; C E;, P; C H; be locally convexr subsets with dense interior
fori e {1,...,n} and g; : P; — E; be C%-maps such that g;(P;) C U;. Abbreviate
P:=Px---xP,andU :=U; x--- xUy,. Then

Cg,F):C*(U,F) - C*(P,F), frs fog
1s continuous and linear.

Proof. The linearity is clear. The topologies on C*(P, F') and C*(U, F') are initial with
respect to the inclusion maps ig : C*(P, F') — CB(P, F) and Jjp: C*(UF) — CA(U,F),
respectively, for 8 € Njj such that 8 < «. Since igo C%(g, F) = CP(g,F) o jg, it suffices
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4. C*-MAPPINGS

to show that each C#(g, F) is continuous. Hence o € Ng without loss of generality.
Now the proof is by induction on |«af .

|a] = 0, then C%(g, F') = C(g, F') is continuous.

Induction step: Assume that |« > 1. Thus a;; > 1 for some j € {1,...,n}. Let 0 € S,

be the permutation which interchanges j and n. Define oy,
O : CNU,F) = C*(Us(1y, -+ Uy, F)
and an analogous isomorphism
U, : CUPF) = C (Py1), -+ Pony, F)
as in Lemma 021 Then
Cg, F) =W, 0 C%(gy1) X+ X go(n): F) 0 Pa,

and it suffices to show that C“"(gy(1) X +++ X gy(n), I) is continuous. Hence o, > 1
without loss of generality. By Lemmal[91] C®(g, F) will be continuous if iq—, 0C*(g, F)
and d°» o C%(g, F') are continuous (with i,_., as at the beginning of the proof). Now
ia—e,0C%(g, F') = C* (g, F)0ja—e, is continuous by induction. Also for f € C*(P, F)
and (z1,...,2n—1,(Tn,y)) € Pp X --- X P,_1 X (P, x H,) we have

den(f © g)(SUl, co oy Tp—1, (xnvy)) = (denf)(gl($l)7 ce 7gn—1($n—1)a dgn(xnu y))7

le, dm o C%g,F) = CY (g1 X -+ X gn—1 X dgn, F') o d°*, which is continuous by

induction. O

Theorem 94. Let F and E; fori € {1,...,n} be locally convex spaces, U; C E; be a
locally convex subset with dense interior, a; € No U {oo}. For j € N, 2 < j < n, let
U:=Uix - xUj_g and V :=Ujx---x Uy, v:=(01,...,05-1) and n = (aj,...,0n).
Iff:UXxV — Fis COM_ then

(a) The map fo: V — F,yw— f(x,y) is C" for each x := (x1,...,x;-1) € U.

(b) The map fV: U — C"(V,F), x> f, is C7.

(c) The mapping ®: COM(U x V,F) — CY(U,C"V,F)), f — fY is linear and a

topological embedding.

Proof.
(a) vz: V. — Fis C" for all x € U, by Lemma
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4.3 The Exponential Law for C“-mappings

(b) We have
CUU,CNV,F) = lim  C'(U,CYV,F))

CE(NO)nijJﬁlv
¢<n

by Lemmas |89 and It therefore suffices to prove the assertion when n € (Ng)?»—/+!
(cf. [, Lemma 10.3]). We may assume that v € (Ng)"*1. The proof is by induction

on |y].
The case v = 0. If n = 0, then the assertion follows from [I1, Theorem 3.4.1]. If n # 0,

the topology on C"(V, F') is initial with respect to the maps
dBisBi+15-8n) . C"(V,F) — C(V x Efﬂ' N, E5n7F)C.O7 g — d(ﬁjﬁj+17---ﬁn)g,

for B; € Ny such that 8; < «;. Hence, we only need that d(BisBi+15Pn) o VU —
C(V x Efj X oo X Eg”,F)C_O is continuous for ; € {0,1,...,a;}. Now

d(ﬂj,ﬁj+1,...,,8n)(f\/($)) _ d(ﬁjyﬂj+17...,ﬁn)(f(l" 3)
_ d(o,...,o,ﬁj,ﬁjﬂ,...,5n)f(x’ o) = (d(O,...,Oﬁj=/3j+1,-..,5n)f)V(x)'

Thus dBiBi+18n) o fV = (d0r085.8541080) F)\V: U — CO(V x Efj X o x BB F)eo,
which is continuous by induction. As a consequence, fV: U — C"(V, F) is continuous.
The case v # 0. Using Corollary we may assume that, a;j_1 # 0. If n = 0, then
f2U—=C(V,F).Letx € U%:= UP x---xU}_}, z € Ej_y and 2* € ({0})7*x Ej_; be
the element with final component z. Since Uj_1 x V' = F, (u,v) — f(21,...,2j-2,u,v)
is C10, the proof of Theorem |59 show that

P2 = @) > A0 f e )

in C(V,F) as t — 0. Thus d(®01 fV(z, 2) exists for all z € U?, z € E;_1 and is given

Now U — C(V, F),z — d©-01.0--0) f(z: o 2) is a continuous function in all of U (by
v =0); 50 fVis CO01) on U, and dO0D fV(z, 2) = d0--010--0) £ (1 o 2). Because

is C(@15-2,05-1=11) (gee Lemma 76| and Corollary , by induction d©-0D(fV) =
hY:U x Ej_1 — C(V,F) is C(o10j—2,05-1=1) Noreover, fV is C(@1-®-2,2-1=1) by
induction. Hence Lemma [76| and Corollary (70| show that fV is C7.

If n # 0, again by Corollary [70] we may assume that «,, # 0. By Lemmas [87] and

C(V, F) = C"=n(V, F) x C(@ren-ren=)(y 5 ) s (p,d 00D )
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is a linear topological embedding with closed image, f¥: U — C"*»(V, F) will be C7
if fV:U — C(V,F) is C7 (which holds by induction) and the map

h: U — C(aj,...,anfl,an—l)(v « En,F), T d(O,...,O,l)(fV(x))
is C7. (see Lemma . Forx e U, y eV and z € E,, we have

h(@)(y, 2) = OOV (Y (@))(y, 2) = dO 0D (f(, 0))(y, 2) = dO D f(2,y, 2),
thus h = (d®-0D £)V for dO-OVf: U x (V x E,) — F.
This function is C(1®n-1.0n=1) 1y Lemma Hence h is C7, by induction.

(¢) The linearity of ® is clear. For y € V, the point evaluation \: C"(V, F) — F, ¢
¥ (y) is continuous linear. Hence, for §; € Ny, 8; < o, x € U and w € El’B1 ><EJBJ 1
(@525 £ ) () = A5 ) )

- d(ﬁlvﬁ%---vﬁj—l)()\ o fV)(z, w)
= B ) o)
_ d(ﬁl:ﬁ% -B5-1,0,...,0 ( 7w),

using that (Ao f*)(x) = A(f(x)) = f¥(2)(y) = f(z, ). Hence
(d(ﬂl,ﬁz,m,ﬁj_1)fv)(m, w) = (d(ﬁl:62,~~~76j—170»~~-’0)f)(l-’ o, w).
Hence by Schwarz’ Theorem (Proposition , for v € Efj X - X E,’[f”,

dBsBirseesBn) (@BrB2sesBi=1) £V (3 ) (y, v) = dB1P2580) £ (2 4y, w, v).

O is continuous at 0. Let W C CY(U,C"(V, F)) be a 0-neighbourhood. After shrinking
W, without loss of generality

W= [({f € C"(U,C"(V, F)): d°f(K;) € P}

T<B

for some 8 = (51,62,...,@ 1) € Nj_l with f; < oy, ¢ = (11, 72,...,7j-1) € Nj_l with
7 < Biy K CU X B[ x - X E 77" compact and P. C C"(V, F) 0-neighbourhood (see
Lemma . Using Lemma [83| again, after shrinking P, we may assume that,

P—ﬂ{gGC”(VF) d’g(Ks,p) C P p}
p<d
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4.3 The Exponential Law for C“-mappings

with § = (0j,...,0,) € Ng_jﬂ such that §; < oy, p = (75, Tj41,. .., ™), K¢ p TV X
E;j X --- X K" compact and P, C F 0-neighbourhood. Then W is the set of all
f e C7(U,C"(V,F)) such that d?(d° f(x,w))(y,v) € P, for all (z,w) € K; C U x
ET' X -+ X E;i‘ll and (y,v) € K., CV x E;j X -+ x ETr. The projections of U x
E7' x - x E]Tfll onto the factors U, ET', .. ,EjTi " are continuous, hence the images
Kg,K?, ..., K? of K. under these projections are compact. After replacing K. by
K! x K? x -++ x K, without loss of generality K. = K} x K2 x --- x K. Likewise,
without loss of generality K , = Kglyp X Kgp X+ X Kg,jﬁz with compact sets Kg{p cVv
and K2, C E7,... K,/ C EJ.

Now if f € CY"(U %V, F), then d?(ds fV(z,w))(y,v) = d©P) f(z,y,w,v). Hence f¥ € W
if and only if d) f(K! x K}, x K2 x -+ x K{ x K2, x -+ x K{;7"?) C P, for all
¢ < B, p < 6. This is a basic neighbourhood in CO(U x V, F) (see Lemma. Thus
®~1(W) is a 0-neighbourhood, whence ® is continuous at 0, and hence ® is continuous.
It is clear that ® is injective. To see that ® is an embedding, it remains to show that
®(W) is a 0-neighbourhood in im(®) for each W in a basis of 0-neighbourhoods in
CY"(U x V,F). Let

W= ({f €CY(U x V,F): d“(K,) C P.,}

¢<pB,
p<é

for some 3 € Ngfl with 3; < a4, § € Ngijﬂ with 6; < o, compact sets K, , CUxV x
ET' x---x EJ* and 0-neighbourhood P, , C F where (s, p) = (71, ... Ty), after increasing
K. p, we may assume that K¢, = L{ , x K! , x L2, x---x L, x K2, X K2
with compact sets L;p c U, Kgljp c Vv, L?,p X oo x L1, C E* x X E]T’:ll and
K2 % xK&7T C B x- - -x Efr. Then (W) = { € im(®): d’(d"p(z, w))(y,v) €
P, ,}forallgand p, z € L;p, yeK!  we Lgypx‘--ng,p and v € Kgpx- : 'xKg;jH,

S,pP?
which is a 0-neighbourhood in im(®), by Lemma [83] O

Lemma 95. Let Q be a topological space and i € {1,...,n}, let E;, F' be locally convex

spaces, 7; € N and

[:QXEx---xE™—=F

be a map such that f(xz,wi,..., wi—1,®,Wit1,...,w,): E]" = F is symmetric 7;-linear

for all x € Q and w; € E;j with j # i. Then f is continuous if and only if g: Q X

Ey x -+ X E, = F, glx,v1,v2,...,0,) := f(x,01,...,01,02,...,02,...,Upn,...,0y) 1S
—_—— ——— —_—————
T1—times To—times Tn—times
continuous.
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Proof. The continuity of g follows directly from the continuity of f. If, conversely, g is
continuous, then the assertion follows by n applications of the Polarization Identity [8]
Theorem A]. O

Theorem 96. (Exponential Law for C*-mappings). Let F and E; fori € {1,...,n}
be locally convexr spaces, U; C E; be a locally convexr subset with dense interior, o; €
No U {oo} and let X; := {0} if a; = 0, otherwise X; := E;. For j € {2,...,n} define
U=U1 % xUj—1,V:i=Uj x - xUp,v:=(1,...,05-1), 7 := (a,...,0p).
Assume that V is locally compact or U x V x X1 X Xo X -+ x X}, is a k-space. Then

&: COM(U x V,F) — CV(U,C(V, F)), f s fY

is an isomorphism of topological vector spaces. Moreover, if g: U — C"(V, F) is C7,
then

9" U XV = F, g"(x,y) = g(z)(y)

is Crm)

Proof. We only need to show the final assertion. Indeed, given g € CV(U,C"(V, F)),
the map ¢ will be C" and hence g = (¢")¥ = ®(¢"). Thus ® will be surjective. so,
by Theorem [94] ® will be an isomorphism of topological vector spaces.

Locally compact condition. For z = (z1,...,2j-1) € U and y := (y;,...,yn) € V,
9" (2,y) = g(z)(y) = e(g(x),y) where e: CT1(V,F) x V = F, (¢,y) > ¢(y) is C)
(Proposition . Hence ¢ is C( by Chain Rule for C®-mappings (Lemma .
k-space condition. If g: U — C"(V,F) is C7, define ¢": U x V — F, g"(z,y) =
g(z)(y). For fixed x € U, we have g"(z,e) = g(x) which is C”, hence

% v

(D] T Dn g/\)(x’ y) = d(ﬂjﬂj-‘rl““ﬂn)(g(‘r))(y’ Wyy -« awn)
= (a0 Pie1Pn) o g) () (y, wj, . wn)

exists for B; € Ny such that 3; < oy, y € V0 := UJQ x -+ x UY and w; € EZBZ Also,
(Dj+++ Do g")(@,4) = (g i) © A1) 0 g) (a),

where €(y . w,): C(V X Efj X oe X Eﬁ",F) — F, f— f(y,wj,...,wy). For fixed

(y,wy, ..., wy), this is the function E(ywjswn) odBi-Bi+1:-5n) o g of x, which is C7. Since

-----
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4.4 The Exponential Law for C'*-mappings on manifolds

linear, we obtain the directional derivatives
(D -+ D g")(2,y)
(yawj7-'~7wn)(d(6j76j+17“.75n)(d(51”827”.”8j71)

€ g(w,wi,. .., wji-1)))
dBisBi+15-55n) (d(ﬁlyﬁ%--wﬁjfl)

g(ac, Wiy -y wj—l))(ya Wiyenny wn)
dBisBit1sBn) o (d(ﬁl,ﬂz,m,ﬁjq)g))(x? w1, wi1) (Y W, - W)
dBisBit1rBn) o (d(ﬁl7527'~~:6j—1)g))/\(($’ w1, wil), (Y, wj, .. wy))

=
=
for z € U := U x --- x UY. To see that g" is C(0" it therefore suffices to show that
h: (d(ﬁjﬁj+1,--~ﬁn) o (d(ﬁleQw--ijfl)g))/\: U x Elﬁl NI E;Bi? <V x Ejﬁj X e X Egn S F

is continuous for all 5; € Ny such that 5; < a;. By Lemma h will be continuous if

we can show that

fiUxXy X xX; 1 xVxX;x---xX, =F,

(T, wi,. .., Wj—1,Y, W), ..., Wy)
= h(x, Wi, .. W W, W Wiy e, W1, Yy Wy ey Wy ey Whyy e ey W)
B1—times B2—times Bj—1—times B —times Brn—times
is continuous. Now ¢: Ux Xy x---x X;_1 — U><E1f81 X ~><E]@i_11, (T, wi,. .., wjm1) —
(T, wi,..., w1, W2, ..., W2, ..., Wj—1,...,w;j—1) is continuous and ¢: V' x X;x---x X, —
1 —times B2 —times Bj—1—times
Bj B
VX B X x Ep", (Y, wj, ..., wy) = (Y, Wyy oo Wi Wiy e e o s Wity e oy Wy, - e ., W)
B;—times Bj+1—times Bn—times

is continuous and

is continuous. Since U x X1 X ---x X;_1 XV x X; X ---x X, is a k-space by hypothesis,
it follows that 6": U x X7 x -+ X Xjo1xVxX;x--xX, = F is continuous (see
[20, Proposition B.15]). But 6" = f, and thus f is continuous. O

4.4 The Exponential Law for C*-mappings on manifolds

Definition 97. For i € {1,...,n}, let M; be a smooth manifold (possibly with rough
boundary) modelled on a locally convex space, a := (av, ..., ) with a; € Ng U {00}
and F be a locally convex space. A map f: My X --- x M,, — F is called C¢ if
folprtx - xprl): Vi x o x V, — Fis O for all charts ¢;: Uy, — Vi, of M;.

Then f is continuous in particular.
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Remark 98. In the preceding situation, assume that f o (cpl_1 X oo X 1) is O for
charts ¢; in a (not necessarily maximal) atlas of M;, for i € {1,...,n}. Then f is C?,
using the Chain Rule (Lemma . In paticular, a map f as in Definition [66|is C'* as
defined there iff it is C* in the sense of Definition

Definition 99. If M; x---x M, and N are smooth manifolds and o € (NgU{oo})", we
say that amap f: My x---xM, — N is C* if it is continuous and gpofo(cpflx- Cxp by
Vix--xV,—=Vis C*for all charts o : U — V of M and charts ¢; : U; — V; of M;
such that Uy x---x U, C f~1(U). Again using Lemmawe see that f is C* if and only
if for each z = (z1,...,2,) € My X -+ X M, there exists a chart ¢ : U — V of M with
f(x) € U and charts ; : U; — V; of M; with x; € U; such that U; x --- x U, C f~1(U)
and o fo(p;tx - xpr): Vi x - xV, = Vis C%

Definition 100. In the situation of Definition[97] let C*(Mj X - --x M,, F) be the space
of all C%maps f: My x --- x M,, — F. Endow C*(M; X --- x M,, F') with the initial
topology with respect to the maps C*(Mix--- XMy, F) = C*(Vy, x-- - xV, , F), f+—

fol(prt x -+ x 1), for ¢; in the maximal smooth atlas of M; with i = 1,...,n.

Lemma 101. Let F' be a locally convex space. Fori € {1,...,n}, let M; be a smooth
manifold modelled on a locally convex space, A; be the mazximal smooth atlas for M;
with a chart @; : Uy, — Vi, and o := (o, ..., o) with a; € NgU {oo}. Then the map

B COMy %o x My, F) 2 [ OOV, x oo x Vo ), f 5 fo(pr ! x-o x )
pi€A;

1s an embedding with closed image.

Proof. Tt is clear that ® is injective (and linear). The topology on C*(My X - --x M,, F)
being initial with respect to the maps f +— fo ((pl_l X -+ x 1), we deduce that ® is a
topological embedding. To see that im(®) is closed, let (93)gep be a net in im(®) which
converges to some g € H%_eﬂi C*(Vyy x --- x V. F). We have g3 = (98,51,....0n ) s €4
and g = (g<p17..,7<pn)%eAi. Then gg.o1,..on = Gor,npn i CH(Vy X oo X Vi, F') and

hence also pointwise. As a consequence,

g(plv"'v(p’n = gwlz“wwn o (Ipl’ Tt 71/}77/) © (801_1 XX 807;1)

on 1 (Vi NV, ) X -+ - xon(V,,, NVy,,), for all ¢4, ¢; € A;. Hence the map f: My x---x
M, — F is well-defined via f(2) := gypy,....0n (01(2), ..., on(2)) for x € Uy, x -+ x Uy,

Because
Foler" x - xp") = o, om (4.27)
is C%, the map f is C“ and by (4.27)), we have ®(f) = g. Hence im(®) is closed. = [
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4.4 The Exponential Law for C'*-mappings on manifolds

Lemma 102. Let My,..., M, be smooth manifolds (possibly with rough boundary), F
and X be locally conver spaces, W C F be an open set and f : W — X be a smooth
map. Let o € (NoU{oo})". If W =F or My,..., M, are compact, then

CYMy X -+ X My, f) : CY(My X -+ X My, W) = C*(My X -+~ %, X),y+— for

18 a C*°-map.

Proof. If W = F, we only need to show that C*(M; x --- x My, F) — C*(V,, X
X Vo, X)),y = (fory)o(pr! x - x 1) is smooth for all charts ¢; of M;, by
Lemma As this map coincides with C*(V,,, x --- x V,,, f) composed with the
continuous linear map v — yo (gol_1 X o X 1), we may assume that M; = Uj; is a
locally convex subset with dense interior of a locally convex space E;, fori =1,... n.
Because C*(Uy X -+ x Uy, X) = @C’B(Ul X -+ x Up, X) with the inclusion maps
ig: C¥Uy x +++ x Uy, X) = CP(Uy x -+ x Uy, X) for B € N such that 8 < a, (see
Lemma, we only need too show that igo C*(Uy X - - - X Uy, f) is smooth (see Lemma
and []). Now igoC¥(Uy x -+ x Uy, f) = CP(Uy % - - - x Uy, f) o3 with the continuous
linear inclusion map jg : C¥(Uy X +++ x Uy, F) = CP(Uy x - -+ x Uy, F). Hence e € N
without loss of generality.
The proof is by induction on |a|. If |a] = 0, then C*(Uy X - -+ x Up, f) = C(Up X - -+ X
Up, f) is smooth, see [21].
If || > 1, thereis j € {1,...,n} such that o; > 1. Let o € S,, be the permutation which
interchanges j and n. Define o, and ®, : C (U X «++ X Up, F) — C*(Ug(qy X -+ X
Us(n), ) and the analogous isomorphism W, : C% (U X -+ x Up, X) = C¥(Ug(y) X -+ X
Ug(n), X) as in Lemma Then C*(Uyx -+ XUy, f) = ¥ 0C% (Uyqyx - - - XUy, f)o
®,. Hence «,, > 1 without loss of generality, By Lemma [91] and it now suffices to
show that iq_¢, 0 Ca(Uy X - -+ X Uy, f) is smooth (which holds by induction as this map
coincides with C~ (U X - -+ x Up,) 0 ja—e, ) and d°» o C*(Uy X - -+ X Uy, f) is smooth.
Now d°(f o y)(@1,. ., Tn—1, (%0, y)) = df (Y(@1, -+ s 2n), d (21, X1, (Tn, Y))),

ie.,

d" o C¥(Uy x -+ x Up, f)
— Caie"(Ul X oo X Un_l X (Un X En)?df) o (Caien(}%F) Oja—envden) (428)

with h : Uy X +++ X Up—1 X (Up X Ep) — Uy X -+« X Uy, h(x1,..., 251, (Tn,y)) —
(z1,...,2p). By induction and Lemma , the right-hand side of is smooth and
hence also d®» o C*(U;y X - -+ x Uy, f) is smooth, as required.

We only sketch the proof of the case that M;,..., M, are compact and W C F is
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an open set. Then C(M; X -+ x M,,W) is open C(M; x --- x M,,W) and hence
C(My x -+ x My, W) is open in C*(M; X --- x My, F). One can show that Lemma
[[01lis also valied for non-maximal atlases. The asseration will therefore follow if we can
show:

If E; is a locally convex space, U; C E; a locally convex set with dense interior and
V; C Uj relatively open with compact closure K; := V; in U; for i € {1,...,n}, then the

map
{yeC¥Uy x -+ xUp, F) :y(Ky x - X K) CW} — CY(Vy x -+ x Vpp, X)),

v fovlvixxv,

is smooth. But this can be shown like the case W = E. O

Proposition 103. Fori € {1,...,n}, let M; be a smooth manifold (possibly with rough
boundary) modelled on a locally convex space, a; € NgU{oo} and F be a locally convex
space. Let j € {2,...,n}. Define M := My x --- X Mj_1, N := M; X -+ X My, v :=
(a1,...,aj_1) and n = (aj,...,a,). Forx € M and f € CON(M x N, F), write
M) = fr = f(x,0) : N = F. Then

(a) f¥ € CY(M,C"(N, F)) for all f € COM(M x N, F).

(b) The map

®: COM(M x N,F) — C"(M,C"(N, F)), f— f"

1s linear and a topological embedding.

Proof. (a) For x € M, it is clear that fV(x) = f(x,e) is a C"-map N — F. It suffices
to show that fo (o7 x -+ x gaj_}l): Upy X+ xUg,,_, — C"(N,F)is C7 for each chart
o Uy, — Vi, of M, where k € {1,...,j7 —1}. For all [ € {j,...,n}, let A; be the

maximal smooth atlas for M;. Because the map

U: C'N,F) = [ C"Uy, x - x Uy, , F), b (ho (97" x -+ x o)) pen,,
PIEAL, J<I<n
J<I<n

is a linear topological embedding with closed image f o (cpl_l X e X goj.ill) is C7 if and
only if Wo fo (gol_l X e X cpj:ll) is C7 (see Lemma , which holds if all components

are C7. Hence we only need that

0: Vipy X -+ X Vg | = C1(Vig, X -+ % Vi, F),

z [t X x et (@) o (@t x e xpp ) = (fo (et x o x o)) ()
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4.4 The Exponential Law for C'*-mappings on manifolds

is C7.But 6 = (fo(p;t x--x@p1))Y where fo(py! % x@pl): Vo x---xV,, — F
is C( hence 0 is C7 by Theorem .
(b) It is clear that @ is linear and injective. Because VU is linear and a topological

embedding, also

CY(M,W): CV(M,C"(N, F)) = C'(M, [[ C"(Viy, x -+ % Vi, , F)), frs Vo f

PIEAL,
Jj<I<n

is a topological embedding, by Lemma ﬁ Let P := [[pen, C"(Vy, x - -+ %V, F) and
J<Il<n

A, be the maximal smooth atlas for My where k € {1,...,j —1}. The map

B: C’Y<M7P> - H C’y(vsﬂl Ko X V@j—17P)7 [ (fo((pl_l Ko X (,0]_,11)) PrEAL,

orEAL, 1sk<j—1
1<k<j—1

is a linear topological embedding. Let

Q=[] Tl ¢OWerx---xVp_,,C"Vy, x - x V,, F)).

PrEAR, pIEAL,
1<k<j—1 j<I<n

Using the isomorphism [] 4, ca,, C7(Vyy X --- X V,, 1, P) = Q, (see Lemma we
1<k<j—1
obtain a linear topological embedding

''=E0C"(M,V): C"(M,C"(N,F)) — Q,
o (Cpt x - x ot F)o fo(pr! x oo x ;! 1))&@3,,
where C"(p; ! X -+ x @, F): CYN,F) = C"(Vy, X -+ x Vo, . F), f s fol(p;!
- x @7 1). Also the map

w: C(%n)(M x N,F) — H (1(7’77)(1/3[,1 X x Vo, F),
i €A,
1<i<n
Fe(Foler X xop"))gieas,
1<i<n

is a topological embedding, by Definition [I00] Now we have the commutative dia-

gramine.
cOm(M x N, F) —* , CV(M,C(N, F))
[ v
H C(%n)(vgm X -ee X an’F) ;) Q
i €A,
1<i<n
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where ¢ is the map (fio,,.on)picas, = (fo1. o, )pica;, Because the vertical arrows are
1<i<n T 1<i<n
topological embeddings and also the horizontal arrow at the bottom (by Lemma and

Theorem is a topological embbeding, we deduce that the map ® at the top has to
be a topological embedding as well. O

Theorem 104. Fori € {1,...,n}, let M; be a smooth manifold (possibly with rough
boundary) modelled on a locally convex space E;, F be a locally convex space and o; €
No U {oo}. Let X; := {0} if a; = 0, otherwise X; := E;. For j € {2,...,n} define
M: =M x---xMj_1, N:=M;x---xMy,v:=(c,...,aj_1) and n = (aj,...,0n).
Assume that N is locally compact or M x N x X1 X Xg X ---x X, is a k-space. Then

d: CON(M x N,F) — C'(M,C"(N, F)), f f¥ (4.29)

is an isomorphism of topological vector spaces. Moreover, a map g: M — C"(N,F) is
C7 if and only if
9"t M x N = F, g"(z,y) := g(z)(y)

is ¢,

Proof. By Proposition [L103], we only need to show that ® is surjective. To this end, let
g € CY(M,C"(N,F)) and define f := ¢": M x N — F, f(z,y) := g(z)(y). For all
ie{l,...,n}, let ; : Uy, = Vi, be charts for M;. Then

fo((pl_lx---X(p,;l):le X oo X Vg, = F,

(CL’l,...,.'L'n) = (CU(QO;I X X @;17}7’)0 g O(Sofl X X 80]'7—11))/\(1'17-'-"%?1)

with C”(w;lx- cxpp L F): CN(N,F) — C(Vig, -+ -x Vi, . F), h ho(cpj*lx- coxon )
continuous linear. Hence C”(w;l X xprl F)ogo(pr!x---x cp;_ll): Viop X -+- X
Vg, oy = C"(Viy; x -+ x V, , F) is C7. Hence f o (7! x - x 1) is €O by the
exponential law (Theorem [96]). Indeed:

Locally compact condition. For all [ € {j,...,n}, if N is locally compact, then the
open subset Uy, is locally compact and hence also the V,,,. Hence the Exponential Law
(Theorem applies.

k-space condition. Vi, X -+ x Vi, x X7 x Xg x --- x X, is homeomorphic to the open
subset Uy, x - -+ X U, x X1 X Xo x -+ x X, of the k-space M x N x X1 x Xg x---x X,

and hence a k-space. Again, the Exponential Law (Theorem applies. O

Remark 105. The same conclusion holds in the following situations:
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4.4 The Exponential Law for C'*-mappings on manifolds

(a) Mj,..., M, are finite-dimensional manifolds without boundary, with smooth bound-
ary or with corners (then N is a locally compact).

(b) M,..., M, are manifolds without boundary, with smooth boundary or with cor-
ners and Fy X -+ X E, x X1 x --- x X, is a k-space.

Corollary 106. Fori € I := {1,...,n}, let M; be a smooth manifold (possibly with
rough boundary) modelled on a locally convex space E;, F' be a locally convez space and
a; € NgU{oo}. For j € {2,...,n} define M := My x --- x Mj_1, N := Mj x --- %
My, v:=(ou,...,0j-1) and n = (o ,..., o). Assume that (a), (b) or (c) is satisfied:
(a) For alli € 1, E; is a metrizable.
(b) For alli € I, M; is manifold with corners and E; is a hemicompact k-space.
(¢) Forallie€{j,...,n}, M; is a finite-dimensional manifold with corners.
Then

®: COM(M x N,F) — C"(M,C"(N, F)), f— f"
is an isomorphism of topological vector spaces. Moreover, a map g: M — C"(N, F) is
C7 if and only if
9"t M x N = F, g"(z,y) = g(z)(y)

is ).
Proof. Case Mj ..., M, are finite-dimensional manifolds with corners. Let M; be of
dimension m; for [ € {j,...,n}. Then each point of M; has an open neighbourhood

homeomorphic to an open subset V; of [0, co[™. Hence V] is locally compact, thus M;
is locally compact. Thus Theorem [104] applies.

Case E; is a metrizable. Then for all ¢ € I, each point x; € M; has an open neighbour-
hood U; € M; homeomorphic to a subset V; C E;. Since Vi X --- x V,, is metrizable, it
follows that Uy x -+ x U, X By X - -+ X E, is metrizable and hence a k-space. Hence by
Lemma My x---x M, x Fyx---x E, is a k-space and Theorem [104] applies.
Case Fn, ..., E, are k,-spaces, M; is a manifold with corners. For all x; € M; there is
an open neighbourhood U; C M; homeomorphic to an open subset V; of finite intersec-
tions of closed half-space in F;. Hence Vi x--- XV, x Ey X ---x E,, is an (relatively) open
subset of a closed subset of (E; x - - - x E,,)2. The latter product is k,, since Fy, ..., E, are
k.-spaces (see [22, Proposition 4.2(i)]), and hence a k-space. Since open subsets (and
also closed subsets) of k-spaces are k-spaces, it follows that Vi x -+ xV, x By x--- X E,,
is a k-space. Now Lemma [61] shows that My x -+ X M, X Ey X --- x E, is a k-space,
and thus Theorem [104] applies. O
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4. C*-MAPPINGS

Remark 107. (a) For the case when each M; is a manifold with corners and (E; X

(b)

.-+ x E,)? is a k-space, the conclusion can be proved like the result for k,-spaces
in Corollary

Note that C7-maps Uy x --- x U, — F can be defined just as well if, for all
Jj € {1,...,n} with 5 = 0, U; is a Hausdorff topological space (rather than a
subset of some locally convex space Ej;). All results carry over to this situation
(with obvious modifications).

If F'is a complex locally convex space, we obtain analogous results if Ej; is a
locally convex space over K; € {R,C} and all directional derivatives in the j —th
variable are considered as derivatives over the ground field K;. The corresponding

maps could be called Cg -maps.

78



Chapter 5

Regular Lie groups and the

Fundamental Theorem

In this chapter we discuss the C*-regularity concept. After recalling some definitions
and results (mainly from [32], [27], [I7] and [21]), we shall introduce a version of the

Fundamental Theorem for g-valued functions (Theorem [132)).

Definition 108. The Maurer-Cartan form kg € Q' (G, g) is the unique left invariant

g-valued 1-form on G with kg1 = idy, i.e., kg(z;) = « for each x € g.

The logarithmic derivative of a map f can be described as a pull-back of the Maurer-

Cartan form.

Definition 109. Let M be a smooth manifold (with boundary) and K a Lie group with
Lie algebra £ and Maurer-Cartan form ki € Q'(K,€). For an element f € C'(M, K)
we call 6(f) := f*rx =: [ df € Qpo(M,¥) the (left) logarithmic derivative of f.
Remark 110. Let E be a locally convex space, M be a smooth finite dimensional
manifold (possibly with boundary). We write Q. (M, E) for the space of E-valued
1-forms on M defining C"-functions T'M — E. The space of E-valued smooth 1-forms
will be denoted by Q!(M, E). We endow Q). (M, E) with the topology induced by the
embedding

Q& (M, E) < C"(TM, E),
where T'M is the tangent bundle and C"(T'M, E) is endowed with the compact open C"-
topology, so that Qér.(M, E) is a closed subspace of C"(T'M, E). The space Q(M, E)
is endowed with the topology induced by the diagonal embedding

OY(M,E) < [ Q6 (M, B).
r=1
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5. REGULAR LIE GROUPS AND THE FUNDAMENTAL THEOREM

The left logarithmic derivative

is a €-valued 1-form on M. For k € Ny U {00}, we thus obtain a map
§: CH(M,K) — Qb2 (M, ¥)
satisfying the following lemma.

Lemma 111. For f,g € C*(M,G), the following assertions hold:
(a) The map f~': M — G, m— f(m)~! is C* with

3(f71) = —Ad(Ha(f).
(b) We have the following product and quotient rules:

8(fg) = Ad(g)~'6(f) +d(g).

and

3(fg™") = Ad(g)(8(f) — d(9)).

From this it easily follows that

Lemma 112. If M is connected and f,g € C*(M,G), then
3(f)=0(9) <= (GheG)g=Mof.
In particular, 5(f) = d(g) and f(mg) = g(mg) for some mg € M imply f = g.

Definition 113. (Integrability and local integrability). We call o € QICO (M, ¢)

integrable if there exists a Cl-function f : M — K with 6(f) = a. We say that « is
locally integrable if each point m € M has an open neighbourhood U such that «|y is

integrable.

Remark 114. Using induction on k, we can prove: If o € Qlck (M, ®) is integrable and
a = §f with a C'-function f: M — K, then f is C*+1.

In the following, we frequently abbreviate I := [0, 1].

Definition 115. (Left product integral and left evolution). Let £ : I — L(G) be

a continuous curve, defined on an interval I CR. If v: I — G is a Cl-curve such that

d(y) =&, we call v a left product integral for . If v(0) = 1, we call «y the left evolution

of £ and write Evolg (&) := 7.
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Definition 116. (C*-Regular Lie group). Let k € No U {oc}. A Lie group G with
Lie algebra g is called C*-regular, if for each &€ € C*(I,g), the initial value problem

v(0)=1, d(y)=¢ (5.1)
has a solution v = ¢ € C**1(I, @), and the evolution map
evolg : C*(I,g) = G, £ (1)

is smooth. We recall from Lemma that the solutions of (5.1)) are unique whenever
they exist. If G is C*F-regular, we write

Evolg : CF(I,g) — C*(I1,G), € ¢

for the corresponding map on the level of Lie group-valued curves.

The group G is called regular if it is C'*°-regular.

Proposition 117. Let G be a connected, simply connected real Lie group and H be a
reqular Lie group. Then every continuous Lie algebra homomorphism ¢ : L(G) — L(H)
integrates to a smooth group homomorphism ¢ : G — H such that L(yp) = 1.

Proof. For the proof we refer to [21]. O

Remark 118. Proposition [117| implies: If g is a locally convex, Mackey complete
topological Lie algebra, then there is (up to isomorphism) at most one simply connected,

regular Lie group G with L(G) = g.

Proposition 119. Let M be a finite-dimensional smooth manifold and E a locally
convex space. Then C*(M, E) is a locally convex space, and the evaluation map € :
CFHM,E) x M — E is C®*. If E is Mackey complete, then C*(M,E) is Mackey

complete.

Proof. All the spaces C(T"M,T"E). are locally convex. Therefore the corresponding
product topology is locally convex, and hence C*(M, E) is a locally convex space.

The continuity of the evaluation map follows from the continuity of the evaluation
map for the compact-open topology because the topology on Ck(M , E) is finer. Next

we observe that directional derivatives exist and lead to a map
dev:C*(M,E)> x T(M) = E, ((f,€),vm) > &(m) + Ton(f)om

whose continuity follows from the first step, applied to the evaluation map of C*(T'M, E).

Hence ev is C!, and iteration of this argument yields C*.
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5. REGULAR LIE GROUPS AND THE FUNDAMENTAL THEOREM

In view of Proposition we have
C™(I,C*(M, E)) = C*M(I x M, E) = C*(M,C>(I, E)),

and if E is Mackey complete, then we have an integration map
1
CHOL,C(1,E) » CHOLE), ¢ [ o dtog,
0

which implies that each C*-curve with values in Ck(M , E) has a Riemann integral, i.e.,
that C*(M, E) is Mackey complete. O

Theorem 120. Let M be a C°°-manifold, K be a Lie group with Lie algebra € and
k € NgU{oo}. If M is compact, then C*(M, K) carries a Lie group structure for which
any E-chart (¢x, Ux) of K yields a CF(M,€)-chart (¢,U) with

U= {feC* M, K): f(M)C Uk}, 6(f) = oo,

and the evaluation map of € : C*(M,K) x M — K is C°*. The corresponding Lie
algebra is C* (M, ).

Proof. For the existence of the Lie group structure with the given charts we refer to
[15]. The evaluation map ¢ is C¥ on U x M for each domain U as above, because
V = C*(M, ¢k (Uk)) is open in C*(M,) and the evaluation map of C*(M, ) is C*,
verified in Proposition [T19]

If f € CF(M, K) is arbitrary, then e(f¢~1(g),z) = f(x)¢ ' (g)(z) is C¥ in (g,) €
V x M, whence ¢ is C* on fU x M. O

Lemma 121. Let G be a Lie group modelled on a locally convex space E, M be a
compact manifold (possibly with boundary) and k € NoU{oo}. Then the evaluation map

e:CHM,G)x M — G
is CoF.

Proof. It suffices to show that each v € C¥(M,G) has an open neighbourhood W C
C*(M,G) such that |y s is C*F. Let ¢ : U — V C E be a chart for G around 1 € G
such that C*(M,U) is open in C*(M,G) and ¢, : C¥(M,U) — C¥(M,V) C C*(M, E)
is a chart of C¥(M,G). Then W := ~.C*(M,U) is an open neighbourhood of ~ in
C*(M,G). By the Chain Rule 1 (Lemma , elwxa will be C*F if we we can show
that the map

CHM,U) x M = G, (n,z) = e(y.n,2) = v(z)n(z) = p(y(z),(n, z))
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is C°* where 1 : G x G — G is the the group multiplication which is smooth, v(z) is
C* in z and C°* in (n,z). By the Chain Rule 2 (Lemma , we only need to show
that

ey : C*(M,U)x M — U C G, (n,z) — n(z)

is C°*. Now we have a commutative diagram

CHM,U)x M —Y» U

J{‘P* Xid'm l@

CHM, V) x M —— V

where € : CF(M,V) x M — V is a C*F-map as a restriction of the C°F-map
CFM,E) x M — E, (n,2) — n(x) (see Proposition . The vertical arrows being
charts, it followa that ey is C°F.

O]

Proposition 122. Let G be a Lie group, N be a manifold, M be a compact manifold
(both possibly with boundary) and r,k € Ng U {oc}. Then a map

f:N—=CHM, Q)

is C" if and only if
fAiNxM—G

is C™k .

Proof. Let f : N — C*¥(M,G) is C". Then f"(z,y) := f(z)(y) = e(f(x),y) where
e:CF(M,G) x M — G, (v,y) — ~(y) is CF, by Lemma Thus by Chain Rule 1
(Lemma, fNis O,

Conversely, assume that ¢ := " : N x M — G is a C"*-map. Then the map ¢" =
(fM)Y = fis C" if we can show that each zo € N has an open neighbourhood W C N
such that ¢g¥|w is C". To achieve this, let ¢ : U — V C E be a chart of G around 1.
The set P := {(x,y) € N x M : g(z,y) g(zo,y) "> € U} is open in N x M and contains
{zo} x M. Because {x¢} and M are compact, the Wallace Lemma (see |11}, 3.2.10])
provides an open neighbourhood W C N of xg such that W x M C P. The map

h:WxM—=UCG, (2,y) — g(z,y) g(z0,y) "

is C"¥ by Chain Rules 1 and 2 (Lemmasand, because g(z,y) , g(zo,y) are C™* in
(z,y) and h(z,y) = v(g(z,y), 9(z0,y)) where v : G x G — G, (a,b) — ab~! is smooth.
We claim that

Y W — C¥(M,U), x — h(z,e)
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5. REGULAR LIE GROUPS AND THE FUNDAMENTAL THEOREM

is C". If this is true, then also ¢g¥| is C", because g"(z) = h¥(z).v = (py o h¥)(x)
with v := g(zg,®) € C*¥(M,G). Using that the right translation p, : C*(M,G) —
C*(M,G), n+ n.v is smooth. To prove the claim, consider the commutative diagram

h\/

1474 Ck(M,U)
P
(SD © h|W><M)V
CH(M, V)

where poh|wxar: WxM — V C Eis C™* by definition of C™*-maps between manifolds
and (poh|wxar)Y is C" by the Vector-Valued Exponential Law in locally compact case
(Theorem [p9). Thus hY = (¢x) "1 o (9o hlwxar)" is O as well. O

Lemma 123. ([17, Lemma 2.2]) A map f: M — C*Y(I,G) is C" if and only if f is
C" as a map to C(I,G) and Do f : M — CK(I,TG) is C", where D : C**1(I,G) —
CHI, TG), v~
Proposition 124. ([i7, Theorem A]) Let G be a Lie group with Lie algebra g. If G is
a C*-regular, then the map

Evolg : C*(I,g) — C*(1,G)
15 smooth.

Lemma 125. Let k > 2. For each f € C*(M,G), the 1-form o := &(f) satisfies the

Maurer-Cartan equation
1
do + 3 [, a] = 0.
Proof. First we show that kg = d(idg) satisfies the Maurer-Cartan equation. It suffices

to evaluate da on left invariant vector fields x;, y;, where x,y € g. Since k() constant,

for each z € g, we have

dig(xr,y1) = mike () — yika(w1) — ke ([T, wi]) = —ra([z, y]) = — [z, Y]
1
=-3 (kG kG (@1, Y1)
Therefore a = f*k satisfies
da = f'drg = =5 [" [ra: k6] = =5 [f'ra, [Tre] = =5 o,
which is the Maurer-Cartan equation. O
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Remark 126. Assume that G is CF-regular. For ¢ € C¥(I,g),0 < s < 1, and

n(t) := e (st), we have §(n)(t) = s&(st). Therefore we obtain with S : C¥(I,g) x I —
Ck(I,g), S(& 5)(t) := s&(st) the relation

Evolo(&)(s) = 7¢(s) = evola(S (€, 5)).

Lemma 127. ([21]) If G is C*-reqular, x € g and & € C*([0,1],g), then the initial
value problem

has a unique solution n : [0,1] — g given by
0(t) = Ad(re(t) L.
Lemma 128. Consider a g-valued 1-form on I? of class C1,
a = vdz +wdy € Qi (12, g) with v,w € CH(I%, g).

(a) « satisfies the Maurer-Cartan equation if and only if

ov Ow

(b) Suppose that a satisfies the Maurer-Cartan equation.
i. Assume that G is C*-regular for some k € Ny U {oo} and o of class C*. If
f:I? = Gis C? with §(f)(0y) = w and §(f)(0:)(z,0) = v(x,0) for all
x €1, then 6(f) = a.
ii. Assume that G is C*-reqular for some k € No U {00} and a of class C**2,
Then the C?-function f : I?> — G defined by

f(xa 0) ‘= Yv(e,0) (ZE) and f(l‘a y) = f(xa 0) * Yw(zx,e) (y)
satisfies 6(f) = a.

Proof.  (a) To evaluate the Maurer-Cartan equation for «, we first observe that

1 0o 0 0 0
30l (o) = [at ) a3 = oyl
and obtain
1 ov ow
do+ [0, 0] = 6—ydy/\d:n+ 5y A dy + [, wldz Ady
ow Ov
= (% “ o + [v, w])dz A dy.
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5. REGULAR LIE GROUPS AND THE FUNDAMENTAL THEOREM

(b)

i.

We have
df = vdx + wdy with 0(x,0) = v(x,0) for z € I.

The Maurer-Cartan equation for § f reads

00 ol
oy Oxr vl

so that subtraction of this equation from (5.2)) leads to

d(v —0)
dy

As (v — 0)(x,0) = 0, the uniqueness assertion of Lemma applied to
Ne(t) := (v — 0)(z,t), implies that (v — v)(x,y) = 0 for all z,y € I, hence
that v = 0, which means that §(f) = vdz + wdy = «a.
Because v(e,0) € C**2(I,g) and G is C*+2-regular, we have
Yo(e0) € CFP3(I,G). Hence I? — G, (x,y) = Yy(e,0)(z) is a C¥*-map and
hence C2. By Proposition the map

=[v—10,uw].

w” I = CM(I,g), wY(z)(y) = w(z,y)
is C2, since w is C**2 and hence C%*. Since
Evolg : C*(I,g) — C*1(I,G)
is smooth by Proposition [124] it follows that
Evolgow" : I — CkH(I, Q), =+ Evolg(w”(z)) = Vew(,e)

is C2. Hence (EvolgowY)" : I x I = G, (z,y) — Veo(ae) () 1 C2k+1 by
Proposition . We can also consider w" as a C'-map to C¥*1(I,g). Since

G is also C**1l.regular, arguing as before we see that
Evolgow" : I — C*(I1, Q)

is O, whence (Evolg o w")" is C1¥*2 using Proposition Being C?F+1
(hence C?1) and C'**+2 (hence C2), the map (Evolg o w")" is C? in par-

ticular. Hence

i I — G, f(:r,y) "= Yu(e,0) (x)’}/w(x,o) (y)

is C2. Now (i) shows that §(f) = a.
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Lemma 129. Let k > 2, U be a convez subset of the locally convex space E with U° # (),
G a C*2-reqular Lie group with Lie algebra g and o € Qék (U, g) be a C*-differential

form satisfying the Maurer-Cartan equation. Then « is integrable.
Proof. We may w.l.o.g. assume that 29 = 0 € U. For 2 € U we consider the C*-curve
Ex il — g, t— ay(x).
The map
UxI—g, (x,t) — &(t)

is C* hence C?*~2. Therefore the map U — C*2(I,g), x — &, is C2. Hence the
function

f:U— G,z evol(&,)
is C2.
First we show that f(sz) = 7, (s) holds for each s € I. We have
S(5,82)(t) = s&u(st) = aspa(s57) = Esa(t)

and hence f(sz) = ¢, (s), by Remark .
For x,x + h € U, we consider the smooth map

B:IxI—=U,(s,t)—t(x+ sh)
and the C%-function F := f o 8. Then the preceding considerations imply F(s,0) =

f(0) =1,

o d d
1) = 210+ 5h) = S, (8) = Fls D ran()

0

= F(S7 t)at(ersh) (1’ + Sh) = F(S7 t)(ﬁ*a)(s,t)(&)'

Also, G (5,0) = 0= (8*)(50)(£%)-
As we have seen in Lemma [128|(b), these relations lead to

S(F)=p"aon I xI.

We therefore obtain

d oF
£f(:v + sh) = %(5, 1) = F(s,D)agisn(h) = f(z + sh)azisn(h),

and for s = 0 this leads to T,(f)(h) = f(x)ay(h), so that 6(f) = a.
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5. REGULAR LIE GROUPS AND THE FUNDAMENTAL THEOREM

Proposition 130. Let M be a connected manifold, G a Lie group with Lie algebra g,
and o € QY(M,g) a continuous 1-form. If a is locally integrable, then there exists a
connected covering q : M — M such that q*« is integrable. If, in addition, M is simply

connected, then « s integrable.

Proof. For the proof we refer to [21]. O

Definition 131. (a) For each locally integrable o € Qék (M, g), the homomorphism
pern® : (M, mo) = G, [y] — evolg(y @),

for each piecewise smooth loop v : I — M in my, is called the period homomor-
phism of o with respect to my.
(b) We write

MC(M,g) := {a € Qpi (M, g) : do+ %[a,a] =0}

for the set of solutions of the Maurer—Cartan equation.

Theorem 132. (Fundamental Theorem for g-valued functions).
Let M be a smooth manifold (possibly with boundary and modelled on a locally convex
space), and G be a Lie group with a Lie algebra g. Then the following assertions hold:
(a) If k > 2, G is C*2-reqular and a € Qlck (M,g) satisfies the Maurer-Cartan

equation, then « is locally integrable.

(b) If M is 1-connected and o € QICO (M, g) is locally integrable, then it is integrable.
(c) Suppose that M is connected, fit mog € M and let « € MC(M,g) such that « is
locally integrable. Using piecewise smooth representatives of homotopy classes, we

obtain a well-defined group homomorphism
pern® . (M, mo) — G, [y] — evolg(y @),
and « is integrable if and only if this homomorphism is trivial.

Proof. (a) If a satisfies the Maurer-Cartan equation, then Lemma implies its local
integrability, provided G is C*¥~2-regular.
(b) Proposition [L30}
(c) For the proof we refer to [21].
O

Remark 133. If M is one-dimensional, then each g-valued 2-form on M vanishes,
so that [o, 8] = 0 = da for o, 8 € Q1 (M,g). Therefore all 1-forms a € Qf, (M, g)

trivially satisfy the Maurer-Cartan equation.
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Lemma 134. Let M be a finite-dimensional manifold, V' be a locally convex topological
vector space and 7y : [0,1] — M be a C*-path with s € Ng U {cc}. Then

¥ Qe (M, V) = C*([0,1], V), w = 7" (w)
s a smooth map.

Proof. The evaluation map € : C5(TM,V) x TM — V, (g,w) — g(w) is C°* and

PMw,t) =7 (W)(t) = w(7'(t) = e(w,7'(t))-
Thus ¢ is C°* by Chain Rule 1 (Lemma . Hence 1 is C'°. O

Lemma 135. Let M be a compact manifold, N be a locally convex manifold, K be a
Lie group with a Lie algebra € and i : C"(M,K) — C(M, K) be the inclusion map with
r,s € NoU{oo}, 7 >1. Amap f: N — C"(M,K) is C*® if and only if io f: N —
C(M,K) is C* and 6o f: N — Qf,_(M,¥) is C*.

Proof. Tt is well-known that ¢ is a smooth homomorphism of groups. Also
0:C"(M,K) —>ch 1(M€)

is smooth (see [36, Proposition A.4]). Hence if f is C*¥, then also the compositions i o f
and 0 o f are C°.
Conversely, assume that io f and d o f are C®. Let ¢ : U — V be a chart for K around
1, such that ¢, := C"(M,¢) : C"(M,U) — C"(M,V) is a chart for C"(M, K) and
C(M, ) a chart for C(M, K). Because io f is continuous, after replacing N by an open
neighbourhood of a given point n of N, we may assume that f(N)f~'(n) C C(M,U).
It suffices to show that g: N — C"(M, K), x — f(x)f(n)~!is C%.
Let m : TM — M be canonical map. Now note that i o g = p.oio f is C°, where
C(M,K) = C(M,K), 7 >
ve is a smooth map. Furthermore, ¢ o g is C®. Indeed, g(ac) = f(x)f(n)~! where
f@), fn)t € CT(M,K). Hence 8(g(x)) = Ad(f(n). (5(f(x)) — 6(f(n)"))), and
§(f(n)~1) is independent of x, hence C*® in x. Also Ad(f(n)).0(f(z)) is C* in z, be-
cause 6 o f: N — QL (M, ) C C"1(TM,¢) is assumed C* and (Ad(f(n))w).(v) =
Ad(f(n)(r(v)))w(v) = he(w)(v), where w € Qf,_1(M,€),v € TM and h : TM x
¢t — ¢ h(v,w) = Ad(f(n)(m(v)))w is a C"-function and linear in w, entailing that
hy : C""YTM,t) — C™=YTM, &), hy(w)(v,w) := h(v,w(v)) is continuous linear, hence
C*. Hence f(N) C C"(M,U) without loss of generality. Since i o f is C*, the map
pso0iof: N — C(M,V)is C°. We have (¢, o f)(N) C C"(M,V). We show that

we abbreviated ¢ := f(n)~! and the right translation p,. :
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psof : N — C"(M,V)is C°. As a tool, consider the set P := {(z,y) € KxK : zy € U}
which is open in U x U and contains {1} x U. Thus @ := (¢ X ¢)(P) is open in
V x V and contains {0} x V. The map v : Q@ — V,v(x,y) = (¢ (z)p (y))
is smooth. Also the map 0 : V x E — E, (z,u) — dv(z,0;0,u) is smooth, and
we have dp(z.v) = 0(p(z),dp(v)) for v € U,v € 'K = ¢ It is known that the
map (j,d) : C"(M,€) — C(M,€) x C""YTM,¥),y — (v,dy) is a linear topologi-
cal embedding with closed image. Hence ¢, o f will be C® if j o ¢, o f is C® and
Yi=dop,of: N — CHTM,E) is C°. Now jop.,of = p,o0iofis C* as just
observed. By the Exponential Law (Proposition [58)), ¢ will be C* if %" : N x TM — ¢
is C*"1. But

"z, v) = d(p o f(z))(v)
= (dp o T(f(x)))(v)
= dp(m(v).6(f(x))(v))
= 0(p(m(v)), de((6f(x))(v)))
and 6 is C*, p(7(v)) is C* in (z,v), hence C*" ! in (z,v), dp is C*° and (6f(x))(v)
is C®"~!in (z,v) by the Exponential Law (Proposition . Thus " is indeed C*" 1,
by Chain Rule 2 (Lemma [44)). O

Proposition 136. Let N be a locally convex manifold, M a connected finite-dimensional
manifold and K a C* '-reqular Lie group. Then a function f: N x M — K is C™* if
and only if
(a) there exists a point mg € M such that f™ : N — K, n+— f(n,mg) is C", and
(b) the functions fp, : M — K, m+— f(n,m) are C* and
F:N— QL (M%), n—6(fn) is C".

Proof. If f is a C™*-map, then the map f™0 is C" and each f,, is C**. Since Qlcs,l(M, t)

is a closed vector subspace of C5~1(TM, £), it only remains to show that the map
F:N — C~YTM,¢¥) is C". By Proposition it suffices to show that

FN: N xXTM =¥, (n,v) = 0(fu)v = kx(T(fn)v)

is Cr,s—l

Now the Maurer-Cartan form kg is a smooth map T K — £ and the map
N xTM — TK, (n,v) = T(fn)(v)

is a C™*"l-map (cf. Lemma [36)). In view of Lemma {44 the assertion follows.

Because M can be covered by compact submanifolds L with boundary and the Pullbacks
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Qb1 (M, €) = QL1 (L, ®) induced by inclusion are continuous linear, we may assume
that M is compact for the proof of the conclusion. We first show that f is C" for each
m € M. Pick a smooth path ~ : [0,1] — M with v(0) = mg and (1) = m. Then

() = fa(m) = fu(mo)evolk (6(fn 0 7)) = fn(mo)evolk (v*6(fn))
= f™(n)evolg (v F(n)).

Since f™0 and F' are C", the smoothness of evolx and the smoothness of
’7* : Qlcsfl (M7 E) — CS_I([Oa 1]3@

(see Lemma imply that f is C". Now we show that f is C™°. Let m € M and
choose a chart (¢,U) of M for which ¢(U) is convex with ¢(m) = 0. We have to show
that the map

h:Nx¢U) = K, (n,z)— f(n, ¢ *(x))

is C™0. For v,(t) :=tz, 0 <t < 1, we have

h(n,x) = h(n,v(1)) = h(n,0)evolg (8(fn 0 L 07z))
= [ (n)evolg (v; (¢~  F(n)).

Since f™ and F' are C"-maps and evolg is smooth and
(™))" Qeea (U, 1) = Qgea (6(U), 1)

is a topological linear isomorphism, in view of the Chain Rule 1 (Lemma it suffices
to show that the map

Qeema (9(U), ) x o(U) = C*71([0,1],8), (o, 2) = 75
is C™0. In view of Theorem this follows from the fact that the map
Qa1 (6(U), 8) x ($(U) x [0,1]) = &, (a2, 1) = 17a(t) = aw(z),
is C°*~1 and hence C***~! (as a function of three variables). O

Lemma 137. Let M be a connected finite-dimensional smooth manifold (possibly with
boundary) and K a C*-reqular Lie group with Lie algebra €.
(a) If v :[0,1] = M is a piecewise smooth curve, then the map

QL (M, €) = K, a — evolg (v a)

18 smooth.
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(b) Let (¢,U) be a chart of M for which o(U) is a convex 0-neighbourhood and
Y2 (t) == L (tp(x)) for x € U, t € [0,1]. Then the map

Qb (M, 8) x U = K, (o, ) — evolg (via)
is C°L.
Proof. (a) This follows from the smoothness of evolyx and the fact that for each
smooth path 7 : [0,1] — M the map
QL (M, €) — C*([0,1),8), a —» fa=aon

is smooth (see Lemma |134)).
(b) We may assume that M = U = ¢(U) and ¢ = idy. Since K is Ck-regular, we
only need to show that the map

QékH(U, ) x U — Ck([O, 1,8), (a,z) = vy

is C>!. By the linearity in the first argument, we only need to show that the map
is C%!. By the Exponential Law for C® maps (Proposition [103)), we only need to
show that

Qlcvk+l(U7 E) x U x [07 1] - E7 (C%,:E,t) = (fy‘;a)t = O[’yz(t),YQ/E(t))

is C>bF as a function of 3 variables, which holds if it is C°!** as a function of
the 2 variables (a, (z,t)). But a., )7 (t) = a(zt, z) = e(a, (zt,x)) is CHF like
e: CHF(TU ) x TU — ¢.

O
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Chapter 6

The mapping group as an

infinite-dimensional Lie group

In this chapter we study Lie group structures on groups of the form C¥(M, K), where
M is a non-compact smooth manifold and K is a, possibly infinite-dimensional, Lie
group. All finite-dimensional manifolds considered in this chapter are assumed to be

paracompact, without further mentions.

6.1 Lie group structure on mapping groups

Proposition 138. Let M be a connected finite-dimensional smooth manifold and K a
regular Lie group. Assume that the group G := C*(M, K) carries a Lie group structure
which is compatible with evaluations in the sense that g := C*(M,¥) is the corresponding

Lie algebra and all point evaluations evy, : G — K,m € M, are smooth with

L(evy,) =evy, 1 g — L.

Then the following holds:
(a) The evaluation map ev : G x M — K, (f,m) — f(m) is C°F.
(b) If N is a locally convex C"-manifold and f : N — G is C", then f* : Nx M — K
is O™k,
(¢) If, in addition, G is C"~3-regular, where r > 3, then a map f: N — G is C" if
and only if the corresponding map f" : N x M — K is C™*.

Proof. (a) Let N C M be a compact submanifold (possibly with boundary). Then
C*(N, K) carries the structure of a regular Lie group (see [2I]). Let g5 : Go — Go
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O

denote the universal covering of the identity component Gy of GG. Consider the

continuous homomorphism of Lie algebras
¥ L(G) = CM(M, &) = CH(N, &), fr [N

In view of the regularity of C*(N,K), there exists a unique morphism of Lie
groups
¢:Gy— CHN,K) with L(p) = .

Then, for each n € N, the homomorphism ev,, o ¢ : Gy — K is smooth with

differential L(ev,, o ¢) = evy,, so that ev, o ¢ = ev,, o gg. We conclude that
ker qg C ker @,

and hence that @ factors to the restriction map p : C*(M, K)q — C*(N, K), i.e.,
@ = poqg. In particular, the restriction map C*(M, K) — C*(N, K) is a smooth
homomorphism of Lie groups. Since € : C*(N,K) x N — K is a C°*-map, by
Theorem (120} (a) follows.

If fis C", then f =evo (f xidy) is C™*, using that ev is C°* by (a).

) We may w.lo.g assume that N is l-connected. If f" is C™* we define § €

QETA(NaQ) by
Bw)(m) =k (T(f*(;m))(v)),

which is a C"~ b -map TN x M — ¢&.

We claim that § satisfies the Maurer-Cartan equation. Since the evaluation map
eV, : g — tis a continuous homomorphism of Lie algebras, and the corresponding
maps (evm)« : 02, 2(N,g) = 92, 2(N,£), w — evy, o w separate the points,
for m € M it follows that (§ satisfies the Maurer-Cartan equation, using that
Bv)(m) = 87, m)(v).

Fix a point ng € N. The Fundamental Theorem (Theorem implies the
existence of a unique C"-map h : N — G with h(ng) = f(no) and 6(h) = 8. Then

§(evm 0 h) = evy, 0 8(h) = ev,, 0 f = (evy, o f),

so Lemma [112] applied to K-valued functions, yields ev,, o h = ev,, o f for each
m, which leads to h = f. This proves that f is a C"-map.
O

Example 139. If M is a compact manifold (possibly with boundary), then the ordinary

Lie group structure on G := C¥(M, K) is compatible with evaluations. To identify
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T1(G) with C*(M, ¢), pick a chart ¢ : U — V C £ of K around 1 such that (1) =0
and dgle= ide. Then ¢ := d(¢.)|r,g: TIG — CF(M,¥) is a suitable isomorphism (cf.
II5)).

Note that ¢! is the map C*(M,t) — T1G, v %\tzo(ap_l oty). If K has a
smooth exponential function, then ¢»~! coincides with the map ~ %]t:()(exp xo(ty)),
because the smooth map (@ oexpy )« : C*(M,€) — C¥(M,£), v — @ o expy o satisfies
d(p oexpg)«(0,e) =id and thus

d d ~
£|t=o(exp;< o(ty)) = £It=o(s0 Yo poexpgo(ty))

= d(™)«(0,d(y 0 expg)«(7))

=L
Remark 140. If K is regular and M as in Proposition then a Lie group structure
on G := C¥(M, K) compatible with evaluations is unique whenever it exists. In fact,
assume that there is another structure G. Let f : G — G and g : G = G be the maps

x — x. Because g is smooth, the map f" = ¢” is C°>* by Proposition m(b) and hence
f is smooth by Proposition m(c) Likewise, f~! is smooth and thus G = G.

Proposition 141. If K is a C*'-reqular Lie group, M a connected finite-dimensional
smooth manifold and k > 2, then the map

§: CHM,K) — Qb1 (M, )

is a topological embedding. Let Evolg = 6! : im(0) — CF(M,K) denote its in-
verse. Then 0 is an isomorphism of topological groups if we endow im(0) with the group

structure defined by
axfB:= B+ Ad(Evolg(B)) ™" -« (6.1)

and

a~li= —Ad(Evolg(a)) - a. (6.2)

Proof. By definition of the topology on C*(M, K), the tangent map induces a continuous

group homomorphism
T:CFM,K)— C*YTM,TK), f~ T(f).

Let ki : TK +— € denote the (left) Maurer-Cartan form of K. Since 6(f) = f*rkx =
ki o T(f), it follows that the composition

CH(M, K) — C* T (M), T(K)) = C* HT(M),®), [~ T(f) &(f)
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is continuous.

Next we show that ¢ is an embedding. Consider o = §(f) with f € C¥(M, K), i.e.,
f(mg) = 1 holds for the base point mg € M. To reconstruct f from «, since M is
connected, we can find for m € M a smooth path v : [0,1] — M with v(0) = mg and
v(1) = m. Then §(f ovy) =~v*0(f) = v*« implies f(m) = evolg (v*a).

We now choose an open neighbourhood U of m and a chart (¢, U) of M such that
©(U) is convex with ¢(m) = 0. For each x € U define 7, : [0,1] — U, ~z(¢) =
o Yte(x)). Then

S(f(m) " (f o)) =d0(fo) =7 of =7«
implies that f(m)~!f(x) = evolg (v} ) and hence

f(x) = f(m). evolg (v, a)

From Lemma we immediately derive that the map

Qlck,l(M, t) x U — K, (o, x) — evolg (v* ) - evolg (va)

is continuous so that the corresponding map Qlck_l(M &) — C%U, K) is continuous.

We conclude that the map

5(Cf(M7 k)) - CO(U7 K)? 5(f) = f ’U

is continuous. We finally observe that for each open covering M = Uje 5 Uj, the re-
striction maps to U; lead to a topological embedding C?(M, K) — [es (U}, K).
Hence

S(CE(M,®)) —» COM,K), () f

is continuous.

Now, we show by induction that

is continuous for j = 0,...,k. The topology on C’(M, K) is initial with respect to
inclusion CV(M,K) — C°(M, K) and the map T : C/(M,K) — C'=Y(TM,TK). Be-
cause inclof; = ) is continuous, the map 6; will be continuous if we can show that also
T o 6, is continuous. Let m be the continuous group multiplication of CV~1(TM, TK).
We have Tf = f-0f = f-a for a« = 0f and thus T6;(a) = 0;_1() - o inside
C7~Y(TU, TK). Because the inclusion QF,,,_, (U, ) < C/~1(TU, TK) is continuous, also
To6; =mo (0j—1 x incl) is continuous (since #;_; is continuous by induction). O
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Theorem 142. Let s,k € NoU{oo} with k > s+1, M be a connected finite-dimensional
smooth manifold (with boundary), mg € M and K a C*®-regular Lie group. Assume that
the subset §(C*(M, K)) is a smooth submanifold of Q}Jk,l(M7 t). Endow CF(M, K) with
the smooth manifold structure for which & : CF(M, K) — im(0) is a diffeomorphism and
endow

CH(M,K) = K x CF(M, K)

with the product manifold structure. Assume that L; for j € J are compact submanifolds
(with boundary) of M with mg € Lj whose interiors L3 cover M, and such that

8; 1 CH(Lj, K) — Qfu-i (L, €)

is an embedding of smooth manifolds onto a submanifold of Qék,l(Lj,{%). Then the
following assertions hold:

(a) For each r € NgU{oo} and locally convex C"-manifold N, a map f: Nx M — K

is C™* if and only if for alln € N, f, : M — K, m + f(n,m) are C* and the
corresponding map

fYiN=CHMK), nefy
w5 CT.
(b) K acts smoothly by conjugation on C¥(M, K), and C*(M, K) carries a C*-regular

Lie group structure compatible with evaluations.

Proof. (a) Let mg be the base point of M. According to Proposition f:NXx
M — K is C™* if and only if f™ is C”, all the maps f, are C*, and § o fV :
N — Qék,l(M ,€) is C". In view of our definition of the manifold structure
on CF(M, K), the latter condition is equivalent to the C"-property for the map
N = CHM,K), nw fo(mo) ' fu = fm™(n)"'f,. Since the evaluation in mq

coincides with the projection
G:=CFM,K)=KxCFqM,K)— K,

we see that f is O™ if and only if all the maps f, are C* and fY is C".
(b) For the evaluation map f = ev : C*(M,K) x M — K, we have evV = idg with
G = CK(M,K), and ev, = g for each g € G. Hence (a) implies that ev is C°*.
In view of Proposition d is an isomorphism of topological groups if im(J) is
endowed with the group structure . We now show that the operations (6.1)) and
are smooth with respect to the submanifold structure on im(9).

The Lie group structure: To see that CF(M, K) is a Lie group, it suffices to show

97



6. THE MAPPING GROUP AS AN INFINITE-DIMENSIONAL LIE
GROUP

that the map
0 : im(0) x im(8) = Qw1 (M, ), (o, B) = Ad(Evolg(a)) - B

is smooth. Let (L;)jcs be a family of compact submanifolds (with boundary) of M

whose interiors L;? cover M, as described in the theorem. Then

Qlck,l(M, E) — H Qlc«kfl(L]ﬁE)a Q= (Oé |TLj)
jeJ

JjEJ
is linear and a topological embedding with closed image. Let
Py Qlck_l(M, E) — Qlck_l(Lj, E), a— o ’TL]-

be the restriction map. Then 6 will be smooth if we can show that p; o 6 is smooth for
each j € J. Now by the assumption and using the Lie group structure on Cf(Lj, K),
the map 6; : im(d;) x im(d;) — Qék,l
Consider the commutative diagram, in which 1 is the restriction map

(Lj,¥€) analogous to 6 is smooth.

im(8) x im(8) —2— QL,_,(M,¥)
lw lpj
im(5) x im(0;) —2 QL. (L;,¥)

In the above diagram p; o = 6; o 1) is smooth, thus 6 is smooth.
To see that C¥(M, K) = K x C¥(M, K) is a Lie group, it remains to show that the
action
0 K x CY(M,K) - C{(M,K),(9,7) = 979"

is smooth. This holds if and only if § o ¢ is smooth. Now for g € K, v € C¥(M, K).

5(a() =0(vg™") = Ad(g™")"o(y) + 6(97") = Ad(9)6(7)
\:6_/

(considering g as a constant path in C*(M, K)). Equivalently, writing 6(y) = «, we
thus have to show that

K xim(6) — im(9), (g,a) — Ad(g).«
is smooth. This follows if

7: K x C*YTM,8) — C*YTM,¢¥), (9,7) — Ad(g) .~y
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is smooth. Now 7(g,7,v) = Ad(g)y(v) = Ad(g)e(y,v) is CF~1in (g,v,v), by
the Chain Rule for C*-maps (Lemma , with evaluation e : C*~1(T'M,€) x TM — ¢
which is C°**~1 (Proposition[42)). Hence 7" is C**~1in ((g,7),v) and thus 7 = (7/)V
is C*° indeed.

If M is compact, then the Lie group structure on C¥(M, K) coincides with the
ordinary one. Indeed, write C*(M, K),,q for the latter.
Also, write f : CE(M,K)yq — CF(M,K), g : CF(M,K)prqg — CF(M,K)yq and
h:CFM,K) — CF(M,K) for the maps given by 7 ~ 7. Since h is smooth, b = f"
is C°F by (a). Hence f is smooth, by (a). Likewise, g is smooth, whence ¢ = (f~1)"
is C°F (see Proposition . Hence f~! is smooth, by Proposition m Thus f is
isomorphism and thus C¥(M, K),.q = CF(M, K). To emphasize the dependence on M,
we occasionally write 0y, instead of d. If My with my € M; has properties analogous to
M and f: M; — M is a smooth map with f(m1) = my, then

[ CM M K) = CY(My, K)oy ey o f
is a smooth homomorphism of Lie groups and the diagram

CH(M,K) -2 QL. (M,¥)
|7 | (6.3)

d
Ck(My, K) — Q1

Ok-1 (Mla E)

commutes, where we also use the continuous linear (and hence smooth) map
o QG (M, €) = Qpym (M, 8), w = frw.
Indeed commutes because
FOm() = (7 (kK)) = (vo ) (k) = (fF (1)) (kx) = a0, (F7 (7))

using the Maurer-Cartan form kx on K. Since dj; and dyy, are isomorphisms onto their
images, and f* on the left-hand side of (6.3 is a group homomorphism, also the smooth
map

f*oim(dpr) — im(dpr,)

is a homomorphism of groups.

The Lie algebra: We first determine the Lie algebra of G, := C¥(M, K) in the special
case M = [0,1]. We know that

§: Gy — CFL[0,1],8), v — 0
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is an isomorphism of Lie groups. Also, it is known that L(§) o9)~! = dd|p,goy 1 is the
map v — 7/, where ¢ := d(p.)|7,¢ is the ususal isomorphism between 771G and the Lie
algebra CF([0, 1], €) (see [I7]). Hence

L(6) oyt CF([0,1],8) — C*1([0,1],8), v — 7

is an isomorphism of topological Lie algebras, if the pointwise Lie bracket is used on
the left-hand side.
General case: For general M, We first determine the tangent space Tp(im(d)) to see the
Lie algebra of this group. Let n: I — im() be a C*-curve with 5(0) = 0 and 3 := 7/(0).
Then

1= perzz(t’)(’y) = evolg (7" n(t))

for each smooth loop v in mg and each ¢ € I. Taking the derivative in ¢t = 0, we get:

0 = Tp(evolg)(v*B) = / VB = /ﬁ

(see [I7]). Hence all periods of [ vanish, so that 8 is exact. If, conversely, § €
Qck (M, ¥) is an exact 1-form, then 8 = df for some f € C¥(M, ). We show that the
curve

a:[0,1] = im(0), t — d(expg o(tf))

satisfies o/(0)

= . Forx € M and v € T, M, choose a smooth path v in M from mg to
x, such that 4/(1) =

v. Then
, d
O)) = S| dlexpio (6w
= 2| dtexpio (i)' (1)
= 2|, 7 Glemrorh))
= 2|, Sonlexpicot(7 o M)()

= A0, (],_ (P ot 0 1))(1) = dFo (¥ 0 7))
= (For)(1) = df(/(1)) = df(0) = B(v)
thus o/ (0) = . This shows that
To(im(5)) = dCK(M, ¥) = CX(M. ¢

as a topological vector space (apply Proposition to the Lie group (¢, +)). By the
preceeding, the map
d: CK(M, &) — Tp(im(6))
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is an isomorphism of topological vector spaces. We now show that d is a homomorphism
(hence an isomorphism) of Lie algebras if C¥(M, %) is endowed with the pointwise Lie

bracket. We already know this if M = [0, 1]. In the general case, note that the maps
7"+ To(im(8)) — C*7H([0, 1), 8), w = 7*(w)

separate points (for 7 ranging through the set of all smooth paths in M starting in
mg). Moreover, v* is a Lie algebra homomorphism, as it is the tangent map at 0 of the

analogous smooth group homomorphism
~* 1 im(8) — CFL([0, 1], 8).
It therefore suffices to show that v* o d is a Lie algebra homomorphism for each ~. But

(o d)(f) =7"(df) =dfo v =(for) =("(f)

for f € CF(M,¥), where v* : CF(M,€) — C¥([0,1],€) is a Lie algebra homomorphism
and so is
Cr((0,1),8) = (0,11, 0), f = [,

by the special case of [0, 1]. Hence v* od is a Lie algebra homomorphism. Consider the

map

d
U CR(M,E) = TG, f s aL:O(epro ().

By the Chain Rule and the preceding, we have

d d
ToW(f) = T | (expicotf) = 7| ot = expycotf) = df

for f € C¥(M,¥), i.e., T1(6) o ¥ = d. Since T3 () and d are isomorphisms of topological
Lie algebras, also W is an isomorphism of topological Lie algebras. We mention that
the maps L(ev,), for ev, : C¥(M,K) — K, f — f(x), separate points on L(G.) E It

suffices to show that the maps
Levy) o W: CF(M,¢) — ¢
separate points on C¥(M, €). This follows if we can establish

L(evy) o ¥ =¢, (6.4)

! ev, is smooth because z € L,, for some n and the restriction map C¥(M,K) — CF(L,, K) is

smooth, as well as evaluation at z on CF(L,, K).
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with &, : CF(M,€) — &, f ~ f(x). But indeed, using the Chain Rule twice,
d
Lleva)¥(f) = Lieva) 3| _ (expicots)
d
= g‘tzoevz(exp[{otf)

d
= 2| _ expr(tf@)
=Toexpg f(z) = f(z) = ex(f)-
Let i : K — C*(M, K) be the map taking g € K to the constant function z + g.

Then
G=CKHM,K)=CFM, K) xi(K)

internally, entailing that
L(CH(M, K)) = L(C{(M, K)) x L(i(K))
internally. Hence
H:CHM, &) =CFM, &) xt = L(CHM,K)), n=~+v— U(y)+L)(v) (6.5)

(for v = n —n(mg) € CE(M,¥), v =n(mp) € £) is an isomorphism of topological vector
spaces.

Consider the evaluation maps |!| ev, : C*(M,K) — K. Then the maps L(ev,)
separate points on L(G). Indeed, ker(L(ev,,,)) = L(C¥(M, K)) because G = G, x K
with ev,,, the projection onto K. It therefore only remains to check that the maps
L(ev,) separate points on L(C¥(M, K)). But this has been already checked.

Since each L(ev,) is a Lie algebra homomorphism, H will be a Lie algebra homo-
morphism (hence an isomorphism) if we can show that L(ev,) o H is a Lie algebra
homomorphism for each 2 € M. The restriction of this map to C¥(M,¥) is L(ev,) o ¥,
hence a Lie algebra homomorphism. Moreover, the restriction to the constant functions
corresponds to L(ev,) o L(7) on &, and hence is a Lie algebra homomorphism. Because
C*(M,€) = C¥(M,€) x &, it only remains to show that

L(eva)H ([, v]) = [L(eva) H(7), L(eve) H (v)] (6.6)

for v € C¥(M,¥), v € €. The left-hand side of (6.6) is L(ev,)¥([y,v]) = .([1,v]) =
[v(z),v], (using (6.4)). The right-hand side of is

[Leva) ¥ (7), L(eva)L(i)(v)] = [e2(7), Leva 0 i)(v)] = [v(x), v]
=id

'These are smooth because evy,, is smooth and evs(f) = eva(fi(eVmy () )evm, (f), using the

smooth evaluation map ev, on CF(M, K) on the right-hand side.
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as well. Hence H is an isomorphism of topological Lie algebras. Identifying C*(M,€)

with L(G) via H, the map L(ev;) corresponds to point evaluation
Gp : CH(M, &) > & f — f(2),

ie.,

L(evy) o H = 4,. (6.7)

In fact, it suffices to show that both sides of coincide on both C¥(M,€) and ¢. For
v € CH(M,¥), we have L(ev,)H(y) = L(ev,)¥(y) = v(z) indeed. For v € &, we have
L(ev,)H(v) = L(evy)L(i)(v) = v as well.

Remark 143. (a) The restriction maps p, : CF(M,K) — C¥(L,, K), v — 7|, are
smooth, because their restrictions p/, to C*(M, K) are smooth and p, = p/,, x idg
if we identify C*(M, K) with C¥(M, K) x K and C*(L,,, K) with C¥(L,,, K) x K.
Now a map f: N — G from a manifold N to G is smooth if and only if p, o f:
N — C¥(Ly, K) is smooth for each n. In fact, assume that p, o f is smooth.
Then n — f(mg) = (pn © f)(mg) is smooth, and after replacing f with n —
f(@)f(z)(mo)~!, we may assume that im(f) € G4. 6, 0 pp o f =i 0o f

is smooth, where i, : L, — M is the inclusion map and i} : Qék,l(M, t) —
QL1 (Ln,®). Since Qb (M,®) = lmQL, (L, ¥) with the limit maps i}, it

1
ck—1

a map to the submanifold im(§). Hence f = =1 o (§ o f) is smooth as well.
As a consequence, C¥(M,g) : C¥(M,¢) — CF(M,K),v +~ g o ~ is smooth
for each smooth map g : ¢ — K, because C*(L,,g) is smooth (cf. [I5]) and
pn © C*(M, g) = C*(Ln,g) © pn.

(b) If I € NgU {00} and a map 6 : M — CY(I, K) is C¥, then 6* : I — C*(M, K),
0*(t)(x) = O(x)(t) is C".
Because the point evaluation ev; : CY(I, K) — K, v + ~(t) is smooth, we have
0*(t) = evy 0 0 € C*(M,K) for each t € I. By (a), 0* will be C' if we can
show that p, o 6* is C! for each n. But (p, o 6*) = 0*(t)|z, = (0|r,)*, where
0|r,)* : I — C*(Ly, K) is C', as follows by two applications of Proposition m

follows that § o f is smooth as a map to (2 (M, t) and hence also smooth as

Regularity: To verify the C*-regularity of G, let us show first that each v € C*(I, g)
has an evolution Evolg(y). Identifying C*(I,C*(M,¥)) with C*(I,g) via the isomor-
phism C*(I, H), we consider v as a C*-map I — C¥(M,¥€). Then v*: M — C*(I,¥),
v*(z)(t) := ~(t)(x) is CF, using the Exponential Law (Theorem [59) twice. Hence
Evolg oy* : M — C**t1(I, K) is C*, and therefore  := (Evolg oy*)* : I — C*(M, K),
n(t)(x) := (Evolg o v*)(x)(t) is C*T! (see Remark (b)) We claim that 7 is the
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evolution of «. Indeed, 1n(0)(z) = Evolg (v*(x))(0) = 1 for all x € M, whence n(0) = 1.
To see that dn = v, we only need to show that (dn)(t)(x) = v(¢t)(z) = v*(x)(¢) for all
x € M and t € [0,1], i.e., evy o dn = v*(x). However, recalling that L (ev,) = ev,, we
have
evy o dn=Lev, odn

— b(eva o 1)

= 0(t = Evolg (v*(2))(1))

= 0(Evolg (y"(x))) = 7" (x).
Thus Evolg(y) = 7. In particular, evolg(y) = Evolg(y)(1) = n(1) is the map M — K
taking = to Evolg (7v*(z))(1) = evolg (v*(x)). Thus evolg(y) = evolg o +*, i.e.,

evolg = Ck(M, evolg) o @,
where C*(M, evolg) is smooth by Remark (a) and
: C(I,CH(M, ) = CH(M, C*(1,4)), 7 = 7"

is an isomorphism of topological vector spaces by the Exponential Law (Theorem .

Thus evolg is smooth, which completes the proof. ]

Corollary 144. If M is a one-dimensional 1-connected real manifold (with boundary),
k,s € NoU{oco} with k > s+1 and K a C*-reqular Lie group, then the group C*(M, K)
carries a unique C*®-reqular Lie group structure for which

§:CEM,K) — Qb1 (M, €) 2 CF(M,¥)

is a O°-diffeomorphism. Also, C*(M, K) = CF(M,K) x K carries the structure of a

C*-reqular Lie group compatible with evaluations and the compact-open C*-topology.

Proof. We may assume that M =R, M =[0,1] or M = [0, 1].

Take L, = [-n,n], L, = [0,1] and L, = [0,1 — 1], respectively. Then im(d,) =
Qék,l(Ln, t) and Theorem applies. O

6.2 Iterative constructions

Lemma 145. Let (Gp)nen be a sequence of Lie groups, ¢nm : Gy — Gp morphisms
of Lie groups defining an inverse system, G = @Gn the corresponding topological
projective limit group and ¢, : G — G, the canonical maps. Let r € Ny U {oo} and

assume that G carries a Lie group structure with the following properties:
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(a) A map f: M — G of a smooth manifold M with values in G is C" if and only if
all the maps f, := ¢p o f are CT.
(b) L(G) = l'&lL(Gn) as topological Lie algebras, with respect to the projective system
defined by the morphisms L(¢mn) : L(Gpn) = L(Gp).
Then the map
Ui CT(M,G) 2 Em (M, Gr), = (fu)unen

s an isomorphism of topological groups.
Proof. First we note that our assumptions imply that
TG =L(G) x G = @(L(Gn) X Gp) = @T(Gn)

as topological groups. Moreover, writing |L(G)| for the topological vector space under-

lying L(G), considered as an abelian Lie algebra, we have
L(TG) 2 [L(G)] » L(G) = lim (|L(Gy)| % L(G)) = im L(TG,),

so that the Lie group T'G inherits all properties assumed for G. Hence we may iterate
this argument to obtain
TG

I

yLnTan

for each k

We thus have homeomorphisms
C(T"M,T*G)c.o. = lim C(T* M, T*G)co.,
which lead to a topological embedding

C"(M,G) = [[ C(T"M, T*G)co. = [] lm C(T* M, T*G,)co.

keNp k€Ng
>lim [[ C(T"M, T*Gy)c..
keNg
entailing that ¥ is a topological isomorphism. O

For compact manifolds N and M, a Lie group C*"(N x M, K) can be defined

similarly to the classical construction of C¥(N, K).

Lemma 146. If K is a locally convex Lie group and N and M are compact manifolds
(possibly with boundary), then the map

®:C"(N,C*(M,K)) = C"*(N x M,K), f~ f"

s an isomorphism of Lie groups.
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Proof. The bijectivity of ® follows from Proposition To see that ® is an isomor-
phism of Lie groups, let (¢, U) be a €-chart of K with ¢(1) = 0. Then C*(M,U) is an
open identity neighbourhood, so that C™(N,C*(M,U)) is an open identity neighbour-
hood, and so is C"¥(N x M,U). That ® restricts to a diffeomorphism

C"(N,C*(M,U)) — C™*(N x M,U)
now follows from Proposition [58 which asserts that
C"(N,C*(M,€)) — C™F(N x M, ), [ f"

is an isomorphism of topological vector spaces, hence restricts to diffeomorphisms on

open subsets. O

A Lie group structure on C™*(N x M, K) compatible with evaluations is defined
analogously to the case of C"(N, K).

Theorem 147. Let K be a Lie group and N and M finite-dimensional smooth man-
ifolds. We assume that G := C*(M, K) carries a C*-reqular Lie group structure com-
patible with evaluations and the compact-open C*-topology. Let r € Ng U {co} with
r—3>s. If C"(N,QG) carries a C*-regular Lie group structure compatible with evalua-
tions and the compact-open C"-topology, then CT”“(N x M, K) carries a C*-reqular Lie

group structure compatible with evaluations. Moreover, the canonical map
:C"*(N x M,K) = C"(N,G), fw~f"
is an isomorphism of Lie groups.

Proof. In view of Proposition [I38] the map @ is a bijective group homomorphism. First
we show that it is an isomorphism of topological groups.

Let M = |J,, M, be an exhaustion of M by compact submanifolds M,, with boundary
satisfying M,, C MT? 1- Then our definition of the group topology implies that

G = CM(M, K) = lim C"(M,, K)

as a topological group. Put G, := C*(M,,, K) and recall from Proposition m that it
carries a Lie group structure compatible with evaluations. We also have the isomorphism

of topological Lie algebras

L(G) = C*(M,?) = lim L(Gy,) = lim C* (M, ©).
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Now let (N;)men be an exhaustion of N by compact submanifolds with boundary.
Then Lemmas and lead to the following isomorphisms of topological groups:

C"(N,G) = 1im C"(N, Gy) = lim C"(N, C*(My, K))
> lim lim C7 Ny, C* (Myy, K)) = lim lim C™*(Nyy, x My, K)
>~ C™F(N x M, K).
The preceding isomorphism leads to a C®-regular Lie group structure on the topo-

logical group C™F (N x M, K). To see that this Lie group structure is compatible with

evaluations, we first observe that ev(, ) = evy, o ev,, o ®, where
eV oevy, : C"(N,CH(M,K)) = K

is smooth. Now

L(C™(N x M, K)) 224 L(C7(N,G)) = C"(N, L(Q))

(=23

E

>~ OT(N,C*(M,t)) = C"*(N x M, ¢).

The map L(ev,,) corresponds to ev,, : C"(N,L(G)) — L(G). Also, identifying L(G) with
C*(M,¥), L(ev,,) corresponds to evy, : CF(M,£) — €. Thus L(ev,, o ev,,) = ev,, o ev,
on C"(N,C*(M,¥)), which corresponds to eV (n,m) Ol CTF(N x M, ¥). O

Example 148. Let k,7,s € NgU{oo} with £ > s+ 1 and r > s + 3. Then
C™F(R x R, K)

admits a C*®-regular Lie group structure compatible with evaluation and the compact-
open C™*_topology. In fact, G := CK(R,K) admits a C*-regular Lie group struc-
ture compatible with evaluations and the compact-open C*-topology, by Corollary
Hence C"(R, G) admits a C*®-regular Lie group structure compatible with the evalua-
tions and the compact-open C"-topology, by Corollary [[44] The assertion now follows
from Theorem [147]

Remark 149. Continuing by induction, one could create Lie groups of the form
C*R"™ x M, K) with a € N**! if K is Cl-regular with sufficiently small I.

The following problem remains:
Can C*(M x R", K) be made a Lie group if n > 1 and dim(M x R") > 2 ?
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Chapter 7

Lie group structures on weighted

function spaces

The notions of weighted spaces of continuous functions were first introduced by L. Nach-
bin [28] , further investigations have been made by Bierstedt [5], Summers [3§], Prolla
[35], and other authors. In this chapter, we study Lie group structures on weighted
spaces of continuous functions of the form C'V{) (X, g), where X is a completely regular

Hausdorff space and g is a Lie algebra.

7.1 Weighted function spaces

In this section, we assemble some basic material concerning weighted spaces. Let X
be a completely regular Hausdorff space and E be a locally convex space. Recall that
a subset B of E is said to be bounded if for every neighbourhood N of 0 there exists
€ > 0 such that B C eN. A function f : X — F is said to vanish at infinity if for
each neighbourhood N of origin in F there exists a compact subset K of X such that
f(z) € N for all z in X \ K, the complement of the set K in X. Then we define

Co(X,E)={f € C(X,E): f(X) is bounded in E}, where f(X)={f(x): 2 € X},
Co(X,E)={f € C(X,E) : f vanishes at infinity on X}.
Definition 150. A set V of weights E] on X is called a Nachbin family or a system of

weights iff
(a) For every xz € X there is a v € V such that v(z) > 0,

L A function v : X — [0, 0o is called a weight if it is upper semicontinuous.
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(b) For A > 0wvy,ve € V, there is a v € V such that Av; < v and Avy < v (pointwise).

We define the weighted spaces CV (X, E) and CVy(X, E) of E-valued continuous

functions on X with respect to a given Nachbin family V' as follows:

CV(X,E)={fe€C(X,E): fvis bounded for every v € V'},
CW(X,E)={f € C(X,E) : fv vanishes at infinity for every v € V'}.

We will write CVgy(X, E) to mean CV (X, E) (resp. CVy(X, E)). When E = K,
we write simply C'V(X) instead of CV(X,K) and C'Vy(X) instead of CVj(X,K) .

The seminorms Py, where Py(f) = ||f| p, = sup{v(z)P((f(2))) : € X}, generate
a Hausdorff locally convex topology on each of these spaces for P ranging through the
continuous seminorms on E and v € V. This topology is called the weighted topology,
and CV (X, E) and CVy(X, E) endowed with this topology is called the weighted space
of vector-valued continuous functions. If £ =K and P = |.|, we also write .||, instead
of P,.

Remark 151. CV(X, E) and CVy(X, E) are vector spaces with the pointwise linear
operations and CVy(X, F) is a closed vector subspace of CV (X, E).
(a

Definition 152. ) A Nachbin family is called admissible if Vo € X, 3y € CV (X, R)
such that y(x) # 0.
(b) A Nachbin family is called strongly admissible if Vo € X, 3y € CVy(X,R) such
that y(z) # 0.

Definition 153. If V, W are two Nachbin families on X, we say V' < W iff for every
v € V there is a w € W such that v < w. In this case CW (X, E) is continuously
embedded in CV(X,E). W and V are called equivalent (W ~ V) if W < V and
V < W holds.

Remark 154. For each f € CV (X, E), the collection of N(v,U) = {g € CV(X,E) :
(v(g— f))(X) C U}, where f € CV(X,E), ve V and U is a neighbourhood of 0 in FE,
is a base of neighbourhoods of f in the weighted space CV (X, E).

Lemma 155. Let X be a topological space, V a Nachbin family with 1 € V and E a

normed space, then the set
CV(X,U)={f € CV(X,E) :im(f) + BE(0) CU for some e > 0}

is an open 0-neighbourhood of CV (X, E) for every open 0-neighbourhood U of E.
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Remark 156. For each f € CVy(X, E), the collection of B, (f) = {g € CVo(X,E) :
P,(f —g) < €}, where f € CVy(X,E), v € V and € > 0, is a base of open neighbour-
hoods of f in the weighted space C'Vy(X, E).

Proposition 157. ([40]/) Let X be a Hausdorff topological space, E and F be normed
spaces over K, U C X be an open 0-neighbourhood, V' be a set of weights of X with
ly €V, and f : U — F be K-analytic.

(a) If K=C, then

CV(E,f):CV(X,U) - CV(X,F),y+— forx

is complex analytic.
(b) f K=R and f : U — F admits a complex analytic extension f:U — Fc to
an open subset U C Eg, then CV(E, f) is real analytic, such an extension always

exists by definition of real analyticity.

7.2 Weighted topological Lie algebras

Definition 158. (a) A locally convex algebra is an algebra E endowed with a locally
convex topology such that the multiplication of FE separately continuous H
(b) Eissaid to be a topological algebra with B-hypocontinuous multiplication (or that
E is B-hypotopological), where B is a family of subsets of E, if E is equipped
with both left and right B-hypocontinuous multiplication ﬂ By means of the
seminorms, this is equivalent to: for every P € P, where P is a set of seminorms
on E defining its topology and B € B, there exist P’ € P and M > 0 such that

max(P(zy), P(yz)) < MP'(y),z € B,y € E.

In case B is the set of all bounded subsets of E, we just say that £ has hypocon-

tinuous multiplication or is hypotopological.

Remark 159. ([9]) Every continuous bilinear map is hypocontinuous. The converse is

in general false.

Proposition 160. ([3]) Let E be a locally convex algebra.

'In the case of topological Lie algebras, we shall however assume that the Lie bracket is jointly

continuous.
2Multiplication in E is said to be left (right) B-hypocontinuous if for each 0-neighbourhood U in
E and B C B, there exists a 0-neighbourhood U’ such that BU’ C U (resp. U'B C U).
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(a) C(X,E) is an algebra for every completely reqular space X if and only if E has
continuous multiplication.
(b) If E is hypotopological, then Cy(X, E) is an algebra for every Hausdorff completely

reqular space X.

Proposition 161. ([33])
(a) CVio)(X) is a locally convex algebra iff for every g € CV(g)(X), [g| W <W, i.e.,

YoeV, ' eV glv<
(b) CVio)(X) has continuous product if and only if V< VV.

The next proposition describes a condition on the weights that makes CV (X, g) a
topological Lie algebra.

Proposition 162. Let X be a completely regular Hausdorff space and V be a Nachbin
family on X. If V<V -V, then CV(X,g) is topological Lie algebra, for every locally

convez topological Lie algebra g.

Proof. Let v, n € CV(X,g). Given v € V and P € P, by the hypothesis V <V -V
there exists a weight w € V' such that v < w - w.
Because [+, -] is continuous there exists @ € P such that P([v, w]) < Q(v)Q(w), Yv,w €

g. Hence

(@) P(ly,1)(z)) < wz)w(x)P([y(z),n(x)]
< w(z)w(z)Q(y(x))Q(n(x))
= w@)Q0()) w(z)Qn())

<Qu(v) <Qu(m)

Hence v(z)P([v,n](x)) < Quw(7)Qw(n), independently of z. Passing to the supremum

over x on the left-hand side, we obtain

Py(ly:n]) < Qu(7)Qu(n) < oo (7.1)

Because P, ([,n]) < oo for allv € V and all P € P, we have [y,n] € CV (X, g). Moreover
Py([v:n]) < Qu()Qu(n) by (7.1), hence the bilinear map

CV(X,g) x CV(X,g) = CV(X,g), (v,n) = [7,7]

is continuous at (0,0) and thus continuous. The assertion follows. O
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Lemma 163. Let X be a completely reqular Hausdorff space and V' be a Nachbin family
on X. If V< V.V, then CVy(X, g) is a Lie subalgebra of CV (X, g), moreover CVy(X, g)
is an ideal of CV (X, g).

Proof. Let v € CV(X,g) and n € CVy(X,g). Given v € V and P € P, there exists
a weight w € V such that v < w - w and there exists a seminorm ) € P such that
P([v,w]) < Q(v)Q(w), Yv,w € g. Now given € > 0, there exists a compact set K C X

such that
€

w(z)Q(n(r)) < 0w +1 (7.2)

for all z € X\K. Then, for x € X\K, by (7.2) we have

IN

x

(@)w(z) P([y(x), n(x)])
(z)w(z)Q((2))Q(n(x))
(2)Q(y(x)) w(z)Q(n(x))

<Qu(7) <ot
€Qu(7)

T Qu(y) +1
<ee.

(@) P([, nl(x))

IN

w
w
w

Hence v(x)P([y,n](x)) vanishes at infinity. Thus [v,7n] € CVp(X,g). Hence CVy(X, g)
is an ideal of CV (X, g). O

7.3 The Lie group structure on CV (X, H),

Let H be any Banach Lie group with Lie algebra h. We show that if 1 € V, then
P = {y € CV(X,h) : |7l < €} is a O-neighbourhood. And if eXpH|Bh(O) is a

diffeomorphism onto an open 1-neighbourhood, then the map
d:P— HY ~— expyoy

is injective, hence ®(P) can be made a manifold diffeomorphic to the open set P C
CV(X,h), thus by the standard arguments (expy oy : v € P( or b)) is a Lie group.
Let W:=®(Q) and Q := {y € CV(X,h) : ||[7|lo < I} where § is so small that

BJ(0) + BJ(0) C BY(0) with ¢ < e, (7.3)

where * is the Baker-Campbell-Hausdorff multiplication.
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Now expy (—z) = expy (2) . Thus W is symmetric and (7.3) ensures that W-W C
P. Let G := (expg oy :v € CV(X,h)) C HX. Then

CV(X,bh) = Upn@Q
and expyy o(ny) = (expp 07)" € (expyy 0y 17 € Q) = (W) thus,
(W) = (expyoy:v € CV(X,h)) =CV(X,H)y =G.

In particular, ®(P) C (W).
We want to apply Proposition [16]to create a Lie group structure on G. Let us check
conditions (a) and (b) of Proposition

Inversion is analytic on W. The continuous linear map
CV(X,h) - CV(X,h), y— —v
restricts to the analytic self-map
Q= Qv —y

of Q. Since ®(—v) = ®(y)~ !, the inversion map G — G restricts to a self-map

j:W—)VV,va‘l

and j o ®|g= ® oi. We want to see that this map is analytic. We have a commutative
diagram

W W

T"I"Q T'I"Q

Since i is analytic, also j = ® oo (®|g)~! is analytic.

Multiplication is analytic on W. The multiplication map
GxG—=G

restricts to a map
WxW —=G.

Now CV (X, BJ(0)) x CV (X, B)(0)) = CV (X, BJ(0) x B}(0)) and m := C(X,v) :
CV(X, Bg(O) X Bg(O)) — P is an analytic mapping by Proposition where v :
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Bg(O) X Bg (0) — B?, (0), wv(a,b):=axbis the Baker-Campbell-Hausdorfl multiplica-
tion. Since @ = CV (X, Bg(O)), we obtain a commutative diagram

wWxw -2 @

T¢|QX‘I’|Q Té

QxQ 2> P
and u(WxW) C ®(P). Therefore the map W xW — G induced by group multiplication

is analytic.

7.4 Weighted Lie algebras and continuous product

Lemma 164. Let X be a Hausdorff topological space. Assume that for each xg € X,
there exists a continuous function h : X — R such that h(zg) # 0 and h € Cp(X,R).
Then X s locally compact.

Proof. Since h € Cy(X,R), there exists a compact set K C X such that |h(z)| <
€ := |h(zg)| /2 for all z € X\K. Now U := {x € X : |h(zx) — h(zo)| < €} is a closed
neighbourhood of zy in X. For z € U, we have |h(z)| > |h(zo)| — |h(z) — h(zo)| >
2¢ —e = €. Hence U C K and thus U is compact. Since U is a neighbourhood of zg, X
is locally compact.

O

Lemma 165. Let X be a Hausdorff topological space. Assume that V' C C(X, |0, 00)
and for each xo € X, there exists a function h € CVy(X,R) such that h(xo) # 0. Then

X s locally compact.

Proof. By Definition (a), there exists v € V such that v(zg) > 0. Then v-h €
Co(X,R) and (v - h)(zg) = v(zo) - h(xo) # 0. Hence, by Lemma [164, X is a locally

compact. O

Lemma 166. (a) If X is a completely reqular Hausdorff space and V' is an admissible
Nachbin family, then for each xg € X and each neighbourhood U C X of xq, there
ezists v € CV(X,R) such that y(xo) # 0 and v|x\y# 0.

(b) If X is a locally compact Hausdorff space and V is an admissible Nachbin family,
then V is a strongly admissible Nachbin family.

Proof.  (a) Since X is a completely regular Hausdorff space, there exists h € C(X, [0, 1])
such that h(zo) # 1 and h|x\y= 0.
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By dmissibility, there exists v € CV(X,R) such that vy(zp) # 0. Then h-~v €
CV(X,R). But (h-7)(z0) = h(zo)y(w0) # 0 and h - y|x\p= 0.

(b) Let xg € X. Because X is locally compact, there exists a compact neighbourhood
U C X of xg.
Since every locally compact space is completely regular, by (a) we find vy €
CV(X,R) such that v[x\y= 0 and y(z¢) # 0.
But K := U is compact and v - y|x\ g= 0, hence v(z) |y(x)| < € for each € and for
each x € X\K. Thus v € CVy(X,R). Hence V is strongly admissible Nachbin
family.

O

Lemma 167. Let X be a completely reqular space and V' be an admissible Nachbin
family. Assume that v € V and v1,...,v, € V satisfy

i mlly < Avilly, - lvnlly, > for all v, m € CV(X).

Then
v(x) <wvi(x) - op(x), foralz e X. (7.4)

Proof. 1If v(z) = 0, then (7.4) is clear. Now assume that v(xz) > 0. Let € be arbitrary.
Since vy, ..., v, are upper semicontinuous, there exists a neighbourhood U C X of =
such that v;(y) < wvj(x) +eforally € U.

Since V' is an admissible Nachbin family and X is a completely regular space, Lemma
shows that we find v € CV(X,R) such that v|x\y= 0 and y(x) # 0. Without loss
of generality im(v) C [0, 1] and (x) = 1. For each j, we have

V[l = sup{v;(y) [v(y)| - y € X}
= sup{v;(y) [V (y)| : y € U}

<wj(x)+e
Then
j copies of ~y
—_—N—
[yl = v(@) |71 (@) - (@)] = v(@)
and

Iy o < lly ==+ 11,
< (01(z) +€) - (vn(2) + €

115



7. LIE GROUP STRUCTURES ON WEIGHTED FUNCTION SPACES

Because € was arbitrary, we get

v(x) <wvp(z) - op(z).

O]

Lemma 168. Let a: E — F be a continuous linear map between locally convex spaces.
Then a oy € CV(g)(X, F) for each v € CV(o)(X, E), and the map

C‘/Y(O)(Xv Oé) : C‘/(O)(Xa E) — C‘/(O)(XvF)’ Y= ooy
18 continuous and linear.

Proof. Linearity is obvious. Now for each continuous seminorm P on F', there exists
continuous seminorm @ on E such that P(a(z)) < Q(x) because « is continuous linear.
Then for each v €V, z € X and vy € CV (X, E)

v(@)P(a(y(z))) < v(@)Q(y(x))

po < llallg, <ocoand aoy € CV(X, F). Thus CV(X,a) is continuous.
Now v(z)P(a(v(x))) < v(x)Q(y(x)) shows that v-(aoy) € Co(X, F) if vy € Co(X, E),
hence a0y € CVy(X, F) if vy € CVp(X, E). O

hence || 0 7|

Lemma 169. Let E be a locally convezr space, X be a topological space, V' a Nachbin
family and 0 #£ w € E. Then the map

:CV(X,R) = CV(X,E), y =~ -w
1s linear and a topological embedding. Furthermore,
im(®) ={y € CV(X,E) : (Vx € X)vy(x) € Rw}.
Proof. If P is a continuous seminorm on F and v € V, then

v(@)P(y(x)w) = v(@) [y(2)| P(w) < (7], - P(w),

thus 7 - w € CV(X, E) and [8(1)]], = |7+ v
® is continuous.
By Hahn-Banach Theorem, there exists A € E’ such that A(w) # 0. W.lLo.g AM(w) =
1. Then CV(X,\) : CV(X, E) - CV(X,R) is continuous and linear.
(CV(X,0)-8)(7) = CV(X, ) (y-w) = o (y-w). Here (Ao -w)(z) = A(y(z)w) =
Y(z)AM(w) = v(z). Thus Ao (y-w) = v, hence CV(X,A) o ® = idoy(x ), thus ® is

po < P(w) |7l hence the linear map
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injective and @1 = CV(X, \)|ime is continuous, thus ® is a homeomorphism onto its
image, i.e., a topological embedding.

Now let v € CV (X, E) and assume that v(x) € Rw for each x € X. Since w # 0,
we have y(z) = n(x)w with a unique real number n(z) € R. Then n = CV (X, \)(7),
hence n € CV(X,R). Hence 7 = ®(n) is in the image of P. O

We can prove the following lemma in the same way.

Lemma 170. Let E be a locally convex space, X be a topological space, V a Nachbin
family and 0 # w € E. Then the map

O :CV(X,R) - CW(X,E), vy~ -w
18 linear and a topological embedding. Furthermore,
im(®) ={y e CW(X,E) : (Vx € X)v(x) € Rw}.

Theorem 171. Letn € N withn > 2, X be a topological space, V C [0, 00[X a Nachbin
family and 8 : By x --- X E, — F a continuous n-linear map between locally convex
spaces, such that § # 0. Consider the conditions:

(a) VSV.V...V

n factors.

(b) Bo(i,.-.,7m) € CV(X,F) for all v; € CV(X,Ej) for j=1,...,n and
CV(X,B): CV(X,E) x - x CV(X, E,) — CV(X, F),

(/}/17"‘7771)Hﬁo(f}/la”'u’}/n)

18 continuous.

() Bo(Y1y---,m) € CVO(X, F) for all v; € CVo(X, Ej) for j=1,...,n and
CVo(X, B) : OVo(X, E1) % - x CVo(X, En) — CVo(X, F),

(’717"'77%)'_>/BO<717"-7771)

18 continuous.
Then (a) = (b) and (a) = (c¢). If X is a completely reqular Hausdorff space and V is
an admissible Nachbin family, then (b) = (a).
If X is a completely regular Hausdorff space and V' is a strongly admissible Nachbin
family, then (c¢) = (a).

Proof.
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(a) = (b): Let P be a continuous seminorm on F' and v € V.

By hypothesis, there exist vy, ...,v, € V such that v < wvivg - - - v,.

Because the n-linear map  is continuous, there exist continuous seminorms (Q; on
E; for j € {1,...,n} such that

P(B(wy, ..., wn)) < Q1(w1) - Q2(w2) - - - Qn(wn).
Let v; € CV(X, E;) for j € {1,...,n}. For z € X, estimate

v(@)P((Bo (- m)(2) S vi(@)va() - - vn(2)Q1((2))Q2(12(2)) - - - n ()
= v1(2)Q1(m(x)) v2(2)Q2(2(x)) - - - Vn (%) Qn(n(x))

/

~
S”’Yl”Ql,vl S”’Y2HQ271;2 S”'Yn”Qn,vn

<l o M2l gus -~ Imllg, v,

< 0.
Thus o (y1,...,9m) € CV(X, F) and [[Bo (v, m)llpy < Il - Imllg, 0, -
hence the n-linear map C'V (X, ) is continuous.
(a) = (c): In the same way as (a) = (b).
(b) = (a): Let X be a completely regular Hausdorff space and assume that V' admissible.
Because 8 # 0, there exist 0 # w; € E; such that w := f(w,...,wy,) # 0. Let
P : CV(X,R) = CV(X, Ej)a vy Wy,

which is a continuous linear map by Lemma [I69]
Let ®: CV(X,R) = CV (X, F), v+ v-w. Then ® is a linear topological embedding
by Lemma [I169 Moreover,

(Bo(®1(m1),---, Pul(m))) (@) = B(n(@)wi, ...,y (z)wn)
=71(z) (@) B(wr, - .., wy).

Hence (41 9n) - w = B o (P1(11),...,Pn(ym)) € CV(X,F) by hypothesis and by
Lemma 71 € CV(X,R).
Now let p: R™ — R, (r1,...,7) = 71 - 7y. By the preceding,

CV(X,p): CV(X,R)" = CV(X,R), (71,---»7) = 1o (Y1s---s7n)

is defined, and CV(X,5) o (®; x --- x &) = ® o CV(X, p). Since CV (X, ) o (P X
-+ X ®,,) is continuous, and ® a topological embedding, it follows that also CV (X, u) is
continuous. Hence, for the proof (b) = (a), without loss of generality £ = --- = E,, =
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7.4 Weighted Lie algebras and continuous product

F =R and g = p. Thus assume 71 -+ -y, € CV(X,R) for all v1,...,v, € CV(X,R)

and asume that
CV(X7 'u) : CV(X7R)n - CV(Xv R)a (717 cee a’}/n) =71 Tn

is continuous. Let v € V. We have to show there exist vi,...,v, € V such that
v < vy - vy. Because CV (X, pt) is continuous, there exist continuous seminorms ); on

CV(X,R) for j =1,...,n such that

Since V' is Nachbin family, for each j, there exist v; € V such that Q; < ||| v, - Now

(7.5) implies that
71 Anlly < illy, - vall,y, -

Hence Lemma shows that

v(z) <wvi(z)---vp(z), forall z € X. (7.6)
The proof of "(c) = (a)" is similar. O

Applying Theorem we obtain:

Corollary 172. If (g,[-,-]q) is a locally convex topological Lie algebra, X a Hausdorff
topological space and V' any Nachbin family on X such that V< V'V, then CV (X, g) is

a locally convex topological Lie algebra with the Lie bracket

[" ] : CV(ng) X CV(X79) - CV(X,Q), ('Y, 77) = [/777’]

with
[y, nl(@) = [y(@), n()]g.
Proof. Taking 3 := [+, |4 in Theorem , the assertion follows. O

Write g™ for the n-th term of the descending central series of a Lie algebra g. By
the definition of the Lie bracket in Corollary we obtain:

Corollary 173. If (g,[-,"]q) is a nilpotent locally convex topological Lie algebra with
g" = {0}, X any Hausdorff topological space and V any Nachbin family on X such
that V- < V'V, then CV (X, g) is a nilpotent locally convex topological Lie algebra with
CV(X,g)" ={0}.
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The Lie group structure on CV (X, g)

If CV(X,g) is a nilpotent locally convex topological Lie algebra and CV (X, g)" = 0,
then the Baker-Campbell-Hausdorff series (BCH-series) is a finite sum of terms involving
at most n — 1 brackets and being finite, the series converges on all of CV(X,g) X
CV(X,g), thus

ven=rt 3 (-1 kadv i (adn) -+ (ady)Pr(adn)P+ (ady)™ '
o +D(q1+ -+ a + Dpilaa! - prlg!m!
p1+Q'L>0
1 1 1 1
—7+n+2[%n] 12[%[7 nl] + 12[ 1, [n,7]] — 24[ ¥, [, [yl + - -

can be defined for all v,n € CV (X, g). This is a continuous function
CV(X,g) x CV(X,g) = CV(X,g)

in the variables (y1,72) and a polynomial. Hence this is an analytic function of (v, 7).
It is known that the Baker-Campbell-Hausdorff formula defines a group structure on
any nilpotent Lie algebra [2I]. By the preceding, the group multiplication is analytic.

The inversion is the continuous linear map
and therefore analytic as well. Thus (CV (X, g),*) is an analytic Lie group with Lie
algebra (CV (X, g),[.,.])

Remark 174. One can show this does not work any more in general if g is solvable. In
this case for finite-dimensional g, it is still possible to make g a Lie group G = (g, u),
where 1 : g X g — g is the analytic group multiplication (so G diffeomorphic to the
vector space g).

Thus CV (X, g) is a topological Lie algebra. But we can not make this a Lie group

using the multiplication
CV(X,p) : CV(X,g) x CV(X,g) = C(X,g), (v,n) = po(v,m),
because the latter may take values outside CV (X, g).

Example 175. Let X = R. V = {av, : @ < 0, a > 0} is a Nachbin family, where

V() = (1 + |z|)®. if
(@) logz ifx>1,
x) =
7 0 ifz<1,
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7.4 Weighted Lie algebras and continuous product

then v € CV(R), using that a continuous function n is in CV(R) if and only if n =
O(|z|*) as  — oo, for all & > 0. Let G = R? as a manifold, which is a group with

analytlc multiplication p((a, b), (¢,d)) := (a+e -¢, b+d) and analytic inversion i(a, b) :=

(—ae™? —b). We have then that 7(x ,0) defines a function 7 € CV(R,R x R) and

r) =
(0,logx) ifx>1,
(0,0) ifx <1,
)-

defines a function o € CV(R,R x R). For these functions and for z > 1

(10 (0,7)(®) = (o (@), 7(2)) = ({0, log 2}, (1, 0)) = (€57, log ) = ( _z_ log o)
is not O(y/x)
w0 po(o,r) ¢ CVREXR), [luo (v, | = oo

v_1
-2
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