Entwicklung und Erprobung eines
Instruments zur Messung informatischer
Modellierungskompetenz im
fachdidaktischen Kontext

Thomas Rhode

Paderborn, 28.02.2013

Dissertation

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)
im Fachbereich Elektrotechnik, Informatik und Mathematik
der Universitdat Paderborn

Gutachter:
Prof. Dr. Johann S. Magenheim
Prof. Dr. Reinhard Keil
Prof. Dr. Sigrid Schubert

Zusammenfassung

Die Auswertung der Ergebnisse internationaler Vergleichsstudien haben Mangel am deut-
schen Bildungssystem aufgedeckt. In diesem Zusammenhang riickte die Vermittlung von
Kompetenzen in das Zentrum bildungspolitischer Lisungsstrategien. Um die Qualitét
des deutschen Bildungssystems zu sichern, wird die Entwicklung nationaler Bildungs-
standards gefordert, die verbindliche Anforderungen an das Lehren und Lernen in der
Schule darstellen. Diese Bildungsstandards sollen sich nach Vorgaben des Bildungsmi-
nisteriums fiir Bildung und Forschung auf wissenschaftlich fundierte Kompetenzmodelle
stiitzen, die in Zusammenarbeit von Fachdidaktikern, Fachwissenschaftlern und Psycho-
logen entwickelt werden. Ebenso wird hier explizit die Einbeziehung und Entwicklung
entsprechender Verfahren zur Testentwicklung gefordert.

In Anbetracht dieser bildungspolitischen Umsténde, beschreibt die vorliegende Disserta-
tionsschrift die Entwicklung eines wissenschaftlich fundierten Kompetenzstrukturmodells
und eines Kompetenzmessinstruments fiir einen zentralen Teilbereich der informatischen
Bildung, der objektorientierten Modellierung.

Um die Bedeutung des Gegenstandsbereichs zu verdeutlichen, wird die Relevanz der Mo-
dellierung fiir die Informatik aus fachwissenschaftlicher und fachdidaktischer Perspekti-
ve erOrtert. Im weiteren Verlauf wird dargestellt, wie die Gestaltung eines Kompetenz-
strukturmodells in zwei Schritten erfolgen kann. Zun&chst erfolgt eine normativ theoreti-
sche Ableitung von Kompetenzdimensionen und -komponenten anhand von einschligiger
Fachliteratur. In einem weiteren Schritt findet die empirische Verfeinerung des theoreti-
schen Rahmenmodells durch eine Expertenbefragung (durchgefiithrt in 2009 und 2010),
bei der Fachwissenschaftler, Fachdidaktiker und Fachleiter fiir das Fach Informatik be-
fragt wurden, statt. Auf Grundlage des wissenschaftlich fundierten Kompetenzmodells
wird die Entwicklung eines Testinstruments fiir den Kompetenzbereich Modellierung dar-
gestellt. Hier erfolgt die Beschreibung der Entwicklung von Items, um die formulierten
Kompetenzen zur objektorientierten Modellierung innerhalb der Komponenten des Kom-
petenzmodells iiberpriifen zu kénnen.

Als theoretische Grundlage fiir die Erprobung des Messinstruments in einer Lerngruppe,
wird die Entwicklung eines kompetenzforderlichen Lehr-/Lernarrangements erléutert.
Im Anschluss erfolgt die Darstellung der statistisch ausgewerteten Ergebnisse der Er-
probung, deren Interpretation und die Formulierung von Forschungsfragen fiir kiinftige

Forschungsarbeiten.

Abstract

Based on the outcomes of international studies, which show the inadequateness of the
German education system, fostering learners’ competencies becomes increasingly rele-
vant. In order to further improve the quality of the German education system, educational
policy requires the education system to implement national educational standards. The-
se standards delineate how learning and teaching in schools should take place. Teaching
and learning should be based on empirically-grounded competence models that should
be developed by domain experts and psychologists cooperatively. For the evaluation of
these competence models, educational policy demands the development of appropriate
instruments to measure relevant competencies as well. In order to fulfill these demands,
the development of an empirically-grounded competence model and a respective instru-
ment will be described for the domain of computer science modeling. First, the relevance
of object-oriented modeling for computer science education will be shown. Hereafter,
the development of an empirically-grounded competence model and an associated test
instrument will be shown. The development of the competence model requires two inter-
mediate steps: In the first step it will be shown how the dimensions and components of
the model can be derived theoretically. In a second step, the competence model will be
refined empirically by referring to the results of the qualitative content analysis of ex-
perts interviews conducted in 2009 and 2010. In the interviews, three groups of experts
have been interviewed: (1) experts of computer science, (2) experts of computer science
education and (3) expert computer science teachers.

Based on the empirically-grounded competence model, the development of an instrument
for measuring competencies will be described. Here, the creation of items to prove the
respective competencies covered in the competence model will be illustrated. In order
to evaluate the developed measurement instrument, a learning unit fostering informatics
modeling was developed. This unit has been conducted in spring 2011 in secondary
computer science education. After summarizing the statistically derived results of the

evaluation, open issues for potential further research projects will be outlined.

Vorwort

Die vorliegende Dissertationsschrift wurde wéihrend meiner zweijihrigen Tétigkeit als
wissenschaftlicher Mitarbeiter am Lehrstuhl ,Didaktik der Informatik® der Universitit
Paderborn und anschliefsend parallel zu meiner Beschiftigung in einem Wirtschaftsun-

ternehmen verfasst.

Ich bedanke mich herzlich bei Herrn Prof. Dr. Johann S. Magenheim fiir die umfassende
Unterstiitzung und stetige Férderung meines Promotionsvorhabens.

Frau Prof. Dr. Sigrid Schubert und Herrn Dr. Dieter Engbring gilt ebenfalls mein be-
sonderer Dank fiir die Beratung, wissenschaftliche Forderung und Hilfestellung bei der
thematischen Prizisierung.

Ein weiterer Dank gilt den Projektpartnern im DFG-Projekt ,Entwicklung von quali-
tativen und quantitativen Messverfahren zu Lehr-Lern-Prozessen fiir Modellierung und
Systemverstdndnis in der Informatik“. Hierbei danke ich insbesondere Wolfgang Nelles,
Prof. Dr. Niclas Schaper und Dr. Peer Stechert fiir die zahlreichen konstruktiven Diskus-
sionen und die kollegiale Zusammenarbeit.

Herrn Michael Dohmen danke ich fiir die tatkriftige Unterstiitzung bei der Durchfiihrung
der praktischen Erprobungen.

Ganz besonders bedanke ich mich bei meiner Familie fiir die liebevolle Unterstiitzung

wahrend der Promotion.

Ich widme diese Arbeit meiner Frau Christina und meinen T6chtern Elisa und Mirja.

Inhaltsverzeichnis

1. Einleitung 1
1.1. Forschungsfragen 1
1.2. Forschungsmethodik und Struktur der Arbeit 2
1.3. Téatigkeit im DFG-geforderten Projekt MoKoM 4
1.4. Die Verwendung des Begriffs ;Modell 7

2. Kompetenzorientierung als fachdidaktische Ausgangslage 8
2.1. Output-Orientierung als Replik auf Internationale Vergleichsstudien 10
2.2. Bildungsstandards in der Informatik 12
2.3. Kompetenzmodelle in der Informatik 18
2.4. Kompetenzmessung im Informatikunterricht 24
2.5. Zusammenfassung 30

3. Modellierung im fachwissenschaftlichen und fachdidaktischen Kontext 32
3.1. Begriffsdefinition und Fokussierung 34
3.2. Relevanz informatischer Modelle 35
3.3. Ansitze zur Klassifikation von informatischen Modellen 39
3.4. Informatische Vorgehensmodelle als strukturgebende theoretische Grundlage 45

3.4.1. Vorgehensmodelle in der Softwaretechnik 45
3.4.2. Vorgehens- & Vermittlungsmodelle zur OO-Modellierung 71
3.5. Zusammenfassung00 78

4. Theoretische Entwicklung eines Kompetenzstrukturmodells fiir informatisches
Modellieren 80
4.1. Entwicklung der Kompetenzdimensionen 82

4.1.1. Kompetenzstufung L 83
4.1.2. K1 Aufgabenbereiche 83
4.1.3. K2 Nutzung informatischer Sichten 86
4.1.4. K3 Anforderungen an den Umgang mit Komplexitdt 89
4.1.5. K4 Nicht-kognitive Kompetenzen 90
4.2. Forderung von Schliisselkompetenzen L. 94
4.2.1. Allgemeinbildender Wert des Informatikunterrichts an Gymnasien
der Sekundarstufe IT L 94
4.2.2. DESECO-Schliisselkompetenzen 95
4.2.3. Modellierungskompetenz und Schliisselkompetenzen 97
4.2.4. Nicht-kognitive Kompetenzen und Schliisselkompetenzen 99

4.2.5. Zusammenfassung oL 101

5. Empirische Entwicklung eines Kompetenzstrukturmodells fiir informatisches

Modellieren 103
5.1. Rahmenbedingungen und empirische Grundlage bei der Durchfiihrung der

Interviews o L 105

5.1.1. Critical Incident Technique 106

5.2. Empirisches Vorgehen zur Analyse Auswertung der Interviews 113

5.3. Exemplarische Darstellung der Analyse der Experteninterviews 115

5.4. Ergebnisse der Auswertung der Experteninterviews 120

5.5. Ergebnisse der qualitativen Inhaltsanalyse 122
5.5.1. Exemplarische Darstellung der Auswertung mit Zuordnung zu den

Komponenten des Rahmenmodells 122

5.5.2. Empirische Verfeinerung des Rahmenmodells 127

5.5.3. Fallstudie Charakteristika der Interviewten 131

5.6. Kategoriendefinitionen zum informatischen Modellieren 135

5.7. Zusammenfassung L oL 143

6. Entwurf eines Messinstruments fiir informatische Modellierungskompetenz

und Entwicklung eines Lehr-/Lernarrangements zur Erprobung 145
6.1. Entwicklung von Aufgabenitems 148
6.1.1. Zuordnung von Aufgaben zu Kompetenzkategorien 149
6.1.2. Exemplarische Item-Entwicklung 152

6.2. Entwicklung eines Lehr/Lernarrangements zur Erprobung des Messinstru-
mMentsS e e e 166
6.2.1. Informatiksysteme in didaktischem Kontext 167
6.2.2. Theoretische Konzeption des Informatik Lernlabors 175
6.2.3. Fallbeispiel Kommissionierstation in der Hochschullehre 178

6.2.4. Fallbeispiel Kommissionierstation als Unterrichtsreihe zur Kompe-
tenzmessungo Lo 186
6.3. Hypothesen fiir die Erprobung des Messinstruments 189
6.4. Zusammenfassung 193

7. Erprobung des Messinstruments fiir informatische Modellierungskompetenz 195

7.1. Untersuchungssetting- und Design 197
7.1.1. Lerngruppe und zeitlicher Rahmen 197
7.1.2. Messzeitpunkte 197

7.2. HI1 - Gesamtergebnis im Vergleich 198
7.2.1. Deskriptive statistische Analyse 198
7.2.2. Induktive statistische Analyse 201
7.2.3. Auswahl eines geeigneten Testverfahrens 201
724, t-Test 204

7.3. H2 - Ergebnisse zur Konstruktion von IS im Vergleich 206
7.3.1. Cluster 1 - Aufgaben zu Vorgehensmodellen in der Softwaretechnik 206
7.3.2. Cluster 2 - Aufgaben zur Dekonstruktion von IS 210

7.3.3. Cluster 3 - Aufgaben zur Konstruktion von IS 214

il

7.4. Zusammenfassung L.
8. Fazit und Weiterfiihrende Forschungsfragen
8.1. Zu Forschungsfrage 1o
8.2. Zu Forschungsfrage 2 o
8.3. Weiterfithrende Forschungsfragen
Literatur
Abbildungsverzeichnis
Tabellenverzeichnis
A. Anhang
Al. Interviewszenarien
A.2. Messinstrument und Bewertungsschema

A3.

A.2.1. Fragebogen
A.2.2. Bewertungsschema L
Material zur Unterrichtserprobung L.
A3.1. Klassendiagramm der Ausgangsversion der Kommissionierstation .
A.3.2. Ausbaustufen der Kommissionierstation im Quellcode
A.3.3. Bauanleitung der Kommissionierstation

1l

221
222
225
227

229

238

241

1. Einleitung

Im Rahmen der vorliegenden Dissertation wird der Prozess der Entwicklung und Erpro-
bung eines Instruments zur Messung informatischer Modellierungskompetenz im Kontext
der objektorientierten Softwareentwicklung dargestellt. Die Ergebnisse der Evaluation des
Messinstrumentariums werden vorgestellt, interpretiert und ankniipfende Forschungsfra-
gen formuliert. Ein wichtiger Meilenstein dieses Prozesses ist die Konzeption eines empi-
risch fundierten Kompetenzstrukturmodells, das als mogliches Kategoriengeriist fiir Mo-
dellierungskompetenz in der Informatik dienen kann. Dieses wurde im DFG-geforderten
Projekt ,Entwicklung von qualitativen und quantitativen Messverfahren zu Lehr-/Lern-
Prozessen fiir Modellierung und Systemversténdnis in der Informatik” (kurz: MoKoM)
erarbeitet. Es stellt die theoretische Basis fiir die Entwicklung und Evaluation des In-
strumentariums dar. Ferner sollen aufbauend auf dem Strukturmodell in weiteren For-
schungsvorhaben, die nicht Bestandteil dieser Dissertationsschrift sind, ein Kompetenz-
niveaumodell und -entwicklungsmodell erarbeitet werden. Ersteres soll Niveaustufungen
enthalten, die mit unterschiedlich anspruchsvollen kognitiven Prozessen und Wissensan-
forderungen korrespondieren. Letzteres hat das Ziel, Annahmen iiber das Erreichen von
Kompetenzen innerhalb eines bestimmten Zeitraums zu machen.

Um die Zielsetzung dieser Arbeit weiter zu spezifizieren, werden die zentralen Forschungs-

fragen dargelegt.

1.1. Forschungsfragen

1. Welche kognitiven und nicht-kognitiven Facetten umfasst informatische Modellie-

rungskompetenz? (Entwicklung eines Kompetenzstrukturmodells)

2. Lasst sich ein Zuwachs an informatischer Modellierungskompetenz messbar ma-

chen? (Entwicklung und Erprobung eines Messinstruments)

1.2. Forschungsmethodik und Struktur der Arbeit

Als Reaktion auf internationale Vergleichsstudien, die unbestreitbare Méngel am deut-
schen Bildungssystem offenbart haben, soll im Kapitel 2 Kompetenzorientierung als fach-
didaktische Ausgangslage ein Einblick in die Diskussion zur Kompetenzorientierung in
Deutschland am Beispiel des Informatikunterrichts gegeben werden. In diesem Zusam-
menhang werden verschiedene Ansétze zur Entwicklung von Kompetenzmodellen fiir die
gesamte informatische Bildung und fiir deren Teilbereiche vorgestellt. Sie kénnen als
Grundlage fiir die Entwicklung von Bildungsstandards und kompetenzorientiertem Un-
terricht angesehen werden.

Diese bildungspolitische Umorientierung motiviert maftgeblich die vorliegende Arbeit.
Das folgende Kapitel 3 Modellierung im fachwissenschaftlichen und fachdidaktischen
Kontext beschreibt die Modellierung als Inhaltsbereich der Informatik. Hier sollen Kom-
petenzen gefordert und gemessen werden. Entsprechend wird die Bedeutung der Modellie-
rung im Rahmen der objektorientierten Softwareentwicklung unter fachwissenschaftlicher
und fachdidaktischer Perspektive erortert.

Es ergeben sich folgende thematische Schwerpunkte fiir das Kapitel 3:

1. Legitimation der informatischen Modellierung aus fachwissenschaftlicher und fach-
didaktischer Sicht
Zunichst wird die besondere Bedeutung der Modellierung fiir das Gesamtgebiet
der Informatik fachwissenschaftlich begriindet. In einem Unterkapitel wird anhand
unterschiedlicher didaktischer Beitréige aufgezeigt, welcher Wert der informatischen

Modellierung im Unterricht an allgemeinbildenden Schulen zukommt.

2. Erérterung und Festlegung einer normativ-theoretischen Grundlage fir ein Kompe-
tenzmodell
In diesem Kapitel wird die normativ-theoretische Basis fiir die Entwicklung des
Kompetenzmodells erértert und festgelegt. Insbesondere wird danach gefragt, wel-
che kognitiven und nicht-kognitiven Facetten die Modellierungskompetenz beinhal-
tet.

3. Erérterung und Festleqgung einer normativ-theoretischen Grundlage fir eine Unter-
richtsreihe zur Erprobung des Kompetenzmessinstruments
Ziel ist es hier, das Kompetenzmessinstrument auf Tauglichkeit in der fachdidakti-
schen Praxis zu priifen. Um dies zu erreichen, wird eine Unterrichtsreihe fiir Schiiler
der gymnasialen Oberstufe entwickelt. Die theoretischen Grundlagen fiir die Ler-

neinheit werden hier erarbeitet.

Zwei weitere Kapitel fokussieren die Entwicklung des empirisch gesicherten Kompetenz-
strukturmodells fiir informatisches Modellieren. Diese erfolgt in zwei Stufen: Zunéchst
wird die normativ-theoretische Entwicklung des Kompetenzstrukturmodells dargestellt
[Nelles et al. 2009], [Kollee et al. 2009] (siehe Kapitel 4 Theoretische Entwicklung eines
Kompetenzstrukturmodells fir informatisches Modellieren). Im niachsten Schritt wird die
empirische Verfeinerung des Modells erldutert [Magenheim et al. 2010a] [Magenheim et
al. 2010b] [Lehner et al. 2010] (siehe Kapitel 5 Empirische Entwicklung eines Kompetenz-
strukturmodells fir informatisches Modellieren).

Das Kapitel 6 FEntwurf eines Messinstruments fir informatische Modellierungskompe-
tenz und Entwicklung eines Lehr- /Lernarrangements zur Erprobung befasst sich mit der
Entwicklung des Messinstruments. Gemessen werden die im Kompetenzstrukturmodell
kategorisierten Facetten informatischer Modellierungskompetenz. Kompetenzen werden
hier in Form von Profilen definiert. Um sie messbar zu machen, werden jeweils qualitative
und quantitative Items entwickelt, die zu dem Messinstrument gebiindelt werden.

Eine Unterrichtsreihe auf der Grundlage des didaktischen Konzepts des Paderborner
Informatik Lernlabors (ILL) wird fiir die Kompetenzmessung in der gymnasialen Ober-
stufe angepasst. Basis ist eine Inhaltseinheit Kommissionierstation. Diese hat sich in der
Hochschullehre (insb. im Rahmen der Informatiklehrerausbildung) als besonders tauglich
fiir die Entwicklung von Modellierungskompetenz erwiesen. Daher wird sie als Untersu-
chungssetting fiir die durchzufiihrenden Kompetenzmessungen herangezogen.

Die Erprobung des Messinstruments wird im Kapitel 7 Erprobung des Messinstruments
fiir informatische Modellierungskompetenz beschrieben. Hier besteht - wie in Forschungs-
frage 2 beschrieben - die Zielsetzung, Kompetenzentwicklung fiir Modellierungskompe-
tenz und deren Teilbereiche zu messen. Hierzu sind zwei Messzeitpunkte notwendig, zu
Beginn und zum Ende der Unterrichtseinheit.

Die Messergebnisse werden in Tabellen erfasst und grafisch dargestellt. Hierbei wird
zunéchst eine deskriptive statistische Analyse vorgenommen sowie ein induktives sta-
tistisches Verfahren angewandt. So wird nachgewiesen, dass das Instrument geeignet
ist, einen statistisch signifikanten Kompetenzzuwachs zu ermitteln (Vergleich gepaarter
Stichproben).

Abschliefsend werden die Ergebnisse der beiden Forschungsfragen zusammengefasst und

daraus resultierende weiterfithrende Forschungsfragen erortert.

1.3. Tatigkeit im DFG-geforderten Projekt MoKoM

In diesem Abschnitt wird die Tétigkeit des Autors als wissenschaftlicher Mitarbeiter in
dem Projekt MoKoM vorgestellt. Ferner wird erldutert, welche Aktivitdten im Rahmen
des oben beschriebenen Projekts MoKoM durchgefiihrt wurden und welche nicht mehr
Bestandteil des Forschungsprojekts waren.

Zunéchst wurde im Rahmen des Projekts MoKoM ein Kompetenzstrukturmodellmodell
fiir die Inhaltsbereiche informatisches Modellieren und Systemverstindnis entwickelt.
Zielsetzung war es ein theoretisches Kategoriengeriist fiir die nach Dimensionen geglie-
derten kognitiven und nicht-kognitiven Voraussetzungen, iiber die ein Lernender verfiigen
soll, um Aufgaben und Probleme in dem genannten Aufgabenbereich zu 16sen, zu ent-
wickeln. In diesem Zusammenhang wurde eine normativ-theoretische Literaturrecherche
anhand von fachdidaktischer und fachwissenschaftlicher Literatur vorgenommen, um die
jeweiligen Kompetenzdimensionen und -komponenten fiir den Bereich der informatischen
Modellierung und das Systemversténdnis theoretisch herzuleiten. Hierbei wurde die in
Kapitel 4 beschriebene normative Entwicklung der Dimension K1.3, die die Kompetenzen
zur Modellierung enthélt, vom Autor entwickelt. Im Rahmen dieses Forschungsschrittes
wurden zwei Verdffentlichungen (Informatik Spektrum)[Nelles et al. 2009] und der (World
Conference of Computer in Education 2009) [Kollee et al. 2009] als Mitautor publiziert.
Im néchsten Forschungsschritt (siehe Kapitel 5) ist die empirische Verfeinerung und
Ausdifferenzierung des Kompetenzmodells durch Expertenbefragungen erfolgt. In diesem
Arbeitsschritt hat der Autor die inhaltliche Gestaltung der Interviewszenarien fiir den
Bereich der Modellierung erstellt und konzipiert. Weiterhin wurde ein Grofiteil der Inter-
views von ca. 60-90 Minuten von dem Autor zusammen mit den Kollegen der Arbeits- und
Organisationspsychologie durchgefiithrt. Im Anschluss hat der Autor die technische und
organisatorische Koordination der Transkriptionen fiir einen Teil der Interviews durchge-
fithrt. Anschliefiend wurde die qualitative Inhaltsanalyse fiir die Interviewszenarien zur
Modellierung und Aggregation der Ergebnisse zur informatischen Modellierung in ei-
ner Gesamtauswertung vorgenommen. In diesem zweiten Forschungsschritt wurden drei
Veroffentlichungen als Mitautor publiziert, ISSEP 2010 [Magenheim et al. 2010a], IEEE
EDUCON 2010 [Magenheim et al. 2010b] und WCC 2010 [Lehner et al. 2010].

Auf Grundlage der vorherigen Arbeiten wurde in einem weiteren Forschungsschritt des
Projekts MoKoM die Entwicklung des Messinstruments auf Grundlage des empirisch
gesicherten Kompetenzstrukturmodells vorgenommen (siehe Kapitel 6.1). In diesem Zu-
sammenhang hat der Autor die Aufgaben und Items fiir die informatische Modellierung

in Zusammenarbeit mit den Kollegen der Arbeits- und Organisationspsychologie kon-

zipiert. Hierbei hat der Autor insbesondere die Items zur informatischen Modellierung
erstellt. Die Kollegen aus der Psychologie haben parallel die Items zu den nicht-kognitiven
Anforderungen formuliert. Die logische Verkniipfung der Items zu Aufgaben mit lebens-
weltnahem Stimulusmaterial wurde gemeinschaftlich vorgenommen.

Die folgenden Arbeitsschritte haben im Anschluss an das Projekt MoKoM stattgefun-
den: Um das entwickelte Messinstrument fiir Kompetenzen zur informatischen Model-
lierung zu erproben, wurde ein Lehr-/Lernarrangement auf theoretischer Grundlage des
Paderborner Informatik Lernlabors (siehe Kapitel 6.2) entwickelt. Dieses wurde zunéchst
von Studenten im Rahmen der Lehrveranstaltung Informatik Lernlabor entwickelt. Der
theoretische Entwurf der Unterrichtsreihe sowie die technischen und softwaretechnische
Eigenschaften wurden durch den Autor didaktisch reduziert und weiterentwickelt um fiir
den schulischen Einsatz geeignet zu sein.

Die schulische Erprobung wurde gemeinsam vom Autor und einer studentischen Hilfskraft
begleitet und von einem erfahrenen Informatiklehrer durchgefiihrt. Die beiden Kompe-
tenzmessungen wurden vorbereitet und durchgefithrt und deren Ergebnisse durch den
Autor statistisch ausgewertet (siehe Kapitel 7).

Zum besseren Verstandnis und zur Verdeutlichung der Kohérenz illustriert die Abbildung
1.1 den Inhalt der Arbeit und veranschaulicht den Aufbau und Zusammenhang der Ka-
pitel. Hierbei wird aufserdem die Rolle des Projekts MoKoM im Gesamtkontext dieser
Arbeit illustriert. Im weiteren Verlauf der Arbeit soll die Grafik dafiir verwendet werden,

um den Fortschritt der Arbeit und den roten Faden fiir jedes Kapitel hervorzuheben.

Kapitel 2 | Fachdidaktische

Ausgangslage

Internat. Vergleichsstudien
(PISA,TIMMS, .}

Kompetenzorientierung

Thematischer Schwerpunkt der Dissertation

dl.

Ausgangspunkt

Theoretische Gr

SWE Vorgehansmodell
(Rational unified Process)

fachwissenschaftlich

Modellierung in
Fachwissenschaft und
Fachdidaktik

—umfasstis

Vorgehensmodelle

Kapitel 3 | Modellierung in Fachwissenschaft

und Fachdidaktik

fachdidaktisch

Didakt. Vorgehensmodell
{0OM + Robatik)

Mok oM

Kapitel 4/5 | Kompefenzmodell-

Entwicklung

h 4

{theoratisch]

kxompetenzmodell
(empirisch}

Kapitel 6 | Messinstrument-

Entwicklung

h 4

Kompetanz
Kategoriendefinitionen

Messinstrument
Itementwicklung

Y

Entwicklung

Theoretische Grundlage

Kapitel 7 | Messingtrument-

Vorerprobung

Y

uUnterrichtsraihe

Kompetenzmassungen
im Vergleich

o

___l____

Ergebnisse
]

Kapitel 8 | Fazit / Weiterefihrende

Forschungsfragen

!

Abbildung 1.1.: Ubersicht Kapitel und logischer Zusammenhang

1.4. Die Verwendung des Begriffs ,,Modell“

Da der Begriff ,Modell in vielfdltigem Kontext verwendet wird, sollen zum besseren

Verstindnis die folgenden Modellebenen vorgestellt werden: !

Ebene 1- Kompetenzmodellebene

e Umfasst die Erstellung des Kompetenzmodells fiir den Gegenstandsbereich der In-

formatischen Modellierung (Ebene2)

Ebene 2 - Fachwissenschaftliche Modellebene

e Stellt den Gegenstandsbereich dar fiir den die entsprechenden kognitiven und sozial-
kommunikativen Anforderungen im Kompetenzmodell (Ebenel) zusammengefasst

und strukturiert werden

Ebene 3 - Vermittlungs-Modellebene

o Stellt die methodische Art und Weise dar, wie die im Kompetenzmodell (Ebenel)
beinhalteten Kompetenzen zur informatischen Modellierung (Ebene2) vermittelt

werden

Die einzelnen Modellebenen sind eng miteinander verflochten. Dies soll in der folgenden

Abbildung illustriert werden.

Ebenel
Kompetenz-
Modellebene

Ebene3 Ebene2

Vermittlungs- Fachwissenschaftliche
Modellebene Modellebene

~—

Abbildung 1.2.: Ubersicht der Modellebenen

'Eine Definition des Begriffs ,Modell“ aus fachwissenschaftlicher und fachdidaktischer Sicht erfolgt
in Kapitel 3. Die Modellebenen sollen hier lediglich die unterschiedliche Verwendung der Begriffe
»Modell“ oder ,Modellierung“ innerhalb der vorliegenden Arbeit verdeutlichen.

2. Kompetenzorientierung als

fachdidaktische Ausgangslage

Ausgeldst durch die Ergebnisse internationaler Vergleichsstudien, die Mingel am deut-
schen Bildungssystem aufgedeckt haben, findet die Vermittlung von Kompetenzen in
der aktuellen Bildungsdiskussion als zentrales Bildungsziel besondere Beachtung. Hierbei
wird iiber die Vermittlung von tragem Wissen [Whitehead 1939] hinaus die Entwicklung
von prozeduralem und in vielfiltigen Kontexten anwendbarem Handlungswissen gefor-
dert.

»,Neu in der deutschen Bildungsdiskussion ist vor allem die Verkniipfung von
Kompetenzorientierung und Standardisierung in der Qualitdtsentwicklung
von Schule und Unterricht, die als Reaktion auf unbefriedigende TIMSS und
PISA Ergebnisse und bildungspolitische Impulse der OECD die derzeitigen
Reformvorhaben im Bildungssystem mafgeblich beeinflusst [Drieschner 2009,
S. 10].%

Nationale Bestrebungen bei der Entwicklung von bundesweiten Bildungsstandards ver-

folgen zur Losung dieses Missstandes die folgende Zielsetzung |Drieschner 2009, S. 29]:
1. Die Festlegung von Kompetenzzielen.

2. Die Vermittlung der Kompetenzen durch geeignete didaktische und bildungsorga-

nisatorische Mafnahmen.

3. Die Uberpriifung, ob die festgelegten Kompetenzen erreicht wurden.

Kapitel 2 | Fachdidaktische

Ausgangslage

Internat. Vergleichsstudien
(PISA,TIMMS, .}

Kompetenzorientierung

Thematischer Schwerpunkt der Dissertation

dl.

Ausgangspunkt

Theoretische Gr

SWE Vorgehansmodell
(Rational unified Process)

fachwissenschaftlich

Modellierung in
Fachwissenschaft und
Fachdidaktik

—umfasstis

Vorgehensmodelle

Kapitel 3 | Modellierung in Fachwissenschaft

und Fachdidaktik

fachdidaktisch

Didakt. Vorgehensmodell
{0OM + Robatik)

MoKoM

Kapitel 4/5 | Kompefenzmodell-

Entwicklung

h 4

{theoratisch]

kxompetenzmodell
(empirisch}

Kapitel 6 | Messinstrument-

Entwicklung

h 4

Kompetanz
Kategoriendefinitionen

Messinstrument
Itementwicklung

Y

Entwicklung

Theoretische Grundlage

Kapitel 7 | Messingtrument-

Vorerprobung

v

uUnterrichtsraihe

Kompetenzmassungen
im Vergleich

L

___l____

Ergebnisse
]

Kapitel 8 | Fazit / Weiterefihrende

Forschungsfragen

!

Abbildung 2.1.: Kapitel 2 im Gesamtkontext der Arbeit

2.1. Output-Orientierung als Replik auf Internationale

Vergleichsstudien

Seit Verdftentlichung der Ergebnisse der TIMMS-Studie wird verstirkt iiber den aktuellen
Zustand des deutschen Bildungssystems und dessen Entwicklungsperspektiven diskutiert.
Insbesondere die empirischen Studien — wie z.B. PISA — haben unbestreitbare Méngel am
deutschen Bildungssystem offenbart. Diese Schwichen haben sich insbesondere im inter-
nationalen Vergleich gezeigt und belegen eindeutig den Zusammenhang zwischen sozialen
Faktoren und schulischem Erfolg im deutschen Bildungssystem [OECD 2001],[Baumert
et al. 2000].

Durch die oben genannten internationalen Vergleichsstudien hat sich eine grundsétzliche
Wende des deutschen Bildungssystems abgezeichnet: Wo frither Lehrpline, Haushaltspla-
ne, Rahmenrichtlinien und Priifungsrichtlinien richtungweisend waren, spielen heute ins-
besondere die Lernergebnisse der Schiilerinnen und Schiiler eine Rolle. Man spricht in
diesem Zusammenhang auch von einer Outputorientierung des Bildungssystems. Diese
Umorientierung fokussiert insbesondere die Entwicklung von Kompetenzen in einer Un-
terrichtsdoméne [Klieme et al. 2007].

Um die Qualitdt des deutschen Bildungssystems zu sichern, wurden Anstrengungen un-
ternommen, um nationale Bildungsstandards zu verfassen. Diese stellen verbindliche An-
forderungen an das Lehren und Lernen in der Schule [Klieme et al. 2007, S. 9] dar. Folg-
lich bieten sie einen Orientierungspunkt, um Lehrpersonen professionelles Handeln zu
ermdoglichen und die in den Bildungsstandards implizit aufgefiihrten Kompetenzaspekte
bestmoglich zu vermitteln [Klieme et al. 2007].

Es ergibt sich dementsprechend eine hohe Erwartungshaltung an die Implementierung
von Bildungsstandards im deutschen Bildungssystem. Neben der qualitativen Verbesse-
rung schulischer Lernergebnisse steht eine bundesweite Vergleichbarkeit und Anschluss-
fahigkeit von Schulabschliissen im Fokus [Riecke-Baulecke und Artelt 2004, S. 7]. Ferner
verspricht man sich einen Beitrag zu mehr Bildungsgerechtigkeit [Lankes 2006, S. 9].
Neben der Diskussion zur Kompetenzorientierung und Bildungsstandards in Deutschland
hat das Thema auch international einen hohen Stellenwert:

Die UNESCO-Publikation ,Understanding Information Literacy: A Primer“ (UNESCO
2008) werden notwendige sog. Literacys aufgefithrt, die miindige Biirger im 21. Jahrhun-
dert bendtigen [Horton 2007, S. 3].

1. the Basic or Core functional literacy fluencies (competencies) of reading, writing,

oralcy and numeracy;

10

2. Computer Literacy;

3. Media Literacy;

4. Distance Education and E-Learning;
5. Cultural Literacy;

6. Information Literacy.

Ein weiterer Ansatz der OECD sieht aufgrund steigender Anforderungen im Alltag der
Wissensgesellschaft die Definition von Schliisselkompetenzen von zentraler Bedeutung.
In diesem Zusammenhang hat sie in dem Bericht ,Definition and Selection of Key Com-

petencies (DeSeCo)“ drei zentrale Auspragungen von Schliisselkompetenzen definiert:
1. Interaktive Anwendung von Medien und Mitteln (Tools),
2. Interagieren in heterogenen Gruppen,
3. Eigenstindiges Handeln (OECD 2005).

Der Zusammenhang zwischen fachbezogenen Kompetenzen im Informatikunterricht und
Schliisselkompetenzen geméfs DESECO werden im Kapitel 4.2 erlautert.

Neben diesen exemplarisch ndher aufgefiihrten nationalen und internationalen Beitrdgen
zu Standards und Kompetenzen, sind beispielhaft weitere zu nennen (NCTM-Standards
- siehe auch Kapitel 2.2) [NCTM - National Council of Teachers of Mathematics 2000],
Curricula der Bachelor und Master Ausbildung (Bologna Declaration) [Rectors, Univer-
sities 1999] und der Européischer Qualifikationsrahmen fiir lebenslanges Lernen (EQR)
|[Européische Gemeinschaften 2008|.

Ferner wurde ein DFG Schwerpunktprogramm zum Thema ,Kompetenzmodelle zur Fr-
fassung individueller Lernergebnisse und zur Bilanzierung von Bildungsprozessen® kurz:
LSKompetenzmodelle® etabliert. Das DFG-Schwerpunktprogramm wird in einem Zeitraum
von sechs Jahren (2007-2013) gefordert. In dem interdisziplindren Forschungsprogramm
arbeiten Psychologen, Erziehungswissenschaftler und Fachdidaktiker zusammen |Leutner
2006].

Explizit fiir die informatische Bildung sind zusitzlich das ACM K-12 Curriculum |Tu-
cker2006 2006 und die GI Bildungsstandards Informatik Sekundarstufe I [GI 2008] (siehe
auch Kapitel 2.2) zu nennen.

Die zahlreichen nationalen und internationalen Beitrdge und Mafnahmen zum Thema

Bildungsstandards und Kompetenzen zeigen die hohe Relevanz der Thematik innerhalb

11

der aktuellen bildungspolitischen Diskussion und stellen eine zentrale Motivation fiir die
vorliegende Dissertationsschrift dar. Das folgende Kapitel erlautert Ansétze zur Entwick-

lung von Bildungsstandards in der Informatik.

2.2. Bildungsstandards in der Informatik

Bei der Entwicklung von Bildungsstandards sind nach Klieme-Expertise gesellschaftliche
und péadagogische Zielentscheidungen, wissenschaftlich fundierte Aussagen zum Aufbau

von Kompetenzen und Konzepte sowie Verfahren zur Testentwicklung mit einzubeziehen.

»In diesem Sinne gehen in die Entwicklung von Bildungsstandards (a) gesell-
schaftliche und padagogische Zielentscheidungen, (b) wissenschaftliche, insbe-
sondere fachdidaktische und psychologische Aussagen zum Aufbau von Kom-
petenzen, sowie (c¢) Konzepte und Verfahren der Testentwicklung ein [Klieme
et al. 2007, S. 19].«

Ausgehend von dieser bildungspolitischen Anforderung stellt sich im Hinblick auf die
zu untersuchende Teildisziplin der Informatik die Forschungsfrage (1), welche kognitiven
und nicht-kognitiven Facetten informatische Modellierungskompetenz umfasst?

Die Klieme-Expertise definiert dariiber hinaus konkrete Vorgaben fiir die Entwicklung
von Bildungsstandards. In diesem Zusammenhang wird die Eignung von Bildungsstan-
dards als verbindliche Vorgabe fiir Schulqualitdt anhand von Giitekriterien fiir sog. Per-
formance Standards manifestiert [Drieschner 2009, S. 28][Klieme et al. 2007]:

e Fokussierung auf Kernbereiche der Fécher oder Féichergruppen und ihre grundle-
genden Begriffsvorstellungen, Grundprinzipien, Verfahren und grundlegenden Wis-

sensbestande

e die Benennung von Kompetenzen als Resultate ibergreifenden, kumulativen, sys-
tematischen und vernetzten Lernens, die zu vorgegebenen Zeitpunkten (etwa am

Ende der 4. Klasse) verfiigbar sein sollen

e die verbindliche Festlegung von Mindeststandards sowie die Entwicklung von Regel-
und Maximalstandards auf der Basis von Kompetenzstufenmodellen zur differen-

zierten Bestimmung von Lernentwicklungen und Lernleistungen
e die Verstidndlichkeit fiir Lehrer, Schiiler und Eltern

e die Erreichbarkeit durch geeignete didaktisch-methodische Mafnahmen

12

e cine prézise Beschreibung von Leistungserwartungen, die Konzeptualisierungen von

Aufgaben und Testverfahren ermdéglicht

Wie bereits erldutert, sollen Bildungsstandards fachdidaktische und psychologische Aus-
sagen zum Aufbau von Kompetenzen in der jeweiligen Doméne beschreiben. Infolgedessen
ist es unerlisslich, einen einheitlichen Kompetenzbegriff zu verwenden. In diesem Zusam-
menhang soll die in der Bildungsforschung etablierte Kompetenzdefinition nach Weinert

& Klieme fiir diese Forschungsarbeit richtungweisend sein:

,In Ubereinstimmung mit [Weinert 2002, S. 27ff| verstehen wir unter Kom-
petenzen die bei Individuen verfiigharen oder von ihnen erlernbaren kogni-
tiven Fiahigkeiten und Fertigkeiten, bestimmte Probleme zu 16sen, sowie die
damit verbundenen motivationalen, volitionalen und sozialen Bereitschaften
und Fiahigkeiten, die Problemldsungen in variablen Situationen erfolgreich

und verantwortungsvoll nutzen zu konnen |[Klieme et al. 2007, S. 70].“

Kompetenzen beziehen sich demnach auf komplexe Anforderungssituationen und be-
stehen nicht allein aus einzelnen Fiahigkeiten und Fertigkeiten. Sie beinhalten neben
kognitiven auch nicht- kognitive, motivationale, willensmébige, personale und sozial-
kommunikative Aspekte, die zum selbstindigen Lésen doménenrelevanter Probleme not-
wendig sind. Ein weiterer wichtiger Aspekt, den das Weinert’sche Kompetenzverstandnis
umfasst, ist die Bereitschaft ein Problem zu l6sen. Weinert unterscheidet folgende, zu-
sammenwirkende Kompetenzfacetten: Fahigkeit, Wissen, Verstehen, Kénnen, Handeln,
Erfahrung, Motivation [Klieme et al. 2007, S. 73].

Im Folgenden soll anhand eines Ansatzes zur Entwicklung von Bildungsstandards fiir
das Unterrichtsfach Informatik in der Sekundarstufe I aufgezeigt werden, dass der Kom-
petenzbegriff nicht immer einheitlich verwendet wird. Dies soll den Leser dahingehend
sensibiligieren, dass eine einheitliche Verwendung des Kompetenzbegriffs wichtig ist und
kiinftige Forschungsarbeiten stets ein gemeinsames Kompetenzverstindnis zugrunde le-

gen sollten.

Bildungsstandards Informatik fiir die Sekundarstufe |

Die Bildungsstandards fiir den Informatikunterricht in der Sekundarstufe I orientieren
sich vorwiegend an den ,Principles and Standards for School Mathematics* der ,National
Council of Teachers of Mathematics (NCTM)* [NCTM - National Council of Teachers
of Mathematics 2000] und diversen fachdidaktischen Diskussionen. Es erfolgt keine Zu-
grundelegung empirisch fundierter Aussagen zum Aufbau von Kompetenzen im Informa-

tikunterricht.

13

,Diese vorliegende Strukturierung ist schrittweise in vielen Workshops mit
zahlreichen Lehrerinnen und Lehrern sowie Fachdidaktikerinnen und Fachdi-
daktikern entstanden und somit das Ergebnis eines mehrjéhrigen Diskussions-
prozesses mit vielen Beteiligten. Die grundsétzliche Unterteilung in Inhalts
und Prozessbereiche wurde von den NCTM-Standards iibernommen, weil sie
sich dort bereits als sehr erfolgreich erwies. Damit wird allerdings nicht be-
hauptet, dass dies die einzig mogliche sinnvolle Strukturierung sei [GI 2008,
S. 12].%

Die in der Klieme-Expertise geforderte Einbeziehung von Psychologen und FErziehungs-
wissenschaftlern bei der Formulierung von Kompetenzen ist somit nicht geleistet.
Die Bildungsstandards basieren auf einem impliziten Kompetenzmodell, welches in Inhalts-
und Prozessbereiche getrennt ist. Hier werden nach Aussage der Autoren jahrgangsstu-
feniibergreifend Mindestanforderungen in Form von Kompetenzen formuliert.
Die Inhaltsbereiche umfassen [GI 2008, S. 12ff]:

e Information und Daten

Schiilerinnen und Schiiler aller Jahrgangsstufen

— verstehen den Zusammenhang von Information und Daten sowie verschiedene Dar-

stellungsformen fiir Daten,

— verstehen Operationen auf Daten und interpretieren diese in Bezug auf die darge-

stellte Information,
— fithren Operationen auf Daten sachgerecht durch.
e Algorithmen
Schiilerinnen und Schiiler aller Jahrgangsstufen

— kennen Algorithmen zum L&sen von Aufgaben und Problemen aus verschiedenen

Anwendungsgebieten und lesen und interpretieren gegebene Algorithmen,
— entwerfen und realisieren Algorithmen mit den algorithmischen Grundbausteinen und
stellen diese geeignet dar.
e Sprachen und Automaten
Schiilerinnen und Schiiler aller Jahrgangsstufen

— nutzen formale Sprachen zur Interaktion mit Informatiksystemen und zum Problem-

16sen,
— analysieren und modellieren Automaten.
o Informatiksysteme
Schiilerinnen und Schiiler aller Jahrgangsstufen

— verstehen die Grundlagen des Aufbaus von Informatiksystemen und deren Funkti-

onsweise,

14

— wenden Informatiksysteme zielgerichtet an,
— erschlieffen sich weitere Informatiksysteme.
o Informatik, Mensch und Gesellschaft
Schiilerinnen und Schiiler aller Jahrgangsstufen

— benennen Wechselwirkungen zwischen Informatiksystemen und ihrer gesellschaftli-

chen Einbettung,

— nehmen Entscheidungsfreiheiten im Umgang mit Informatiksystemen wahr und han-

deln in Ubereinstimmung mit gesellschaftlichen Normen,
— reagieren angemessen auf Risiken bei der Nutzung von Informatiksystemen.
Die Prozessbereiche sind:
o Modellieren und Implementieren
Schiilerinnen und Schiiler aller Jahrgangsstufen
— erstellen informatische Modelle zu gegebenen Sachverhalten,
— implementieren Modelle mit geeigneten Werkzeugen,
— reflektieren Modelle und deren Implementierung.
e DBegriinden und Bewerten
Schiilerinnen und Schiiler aller Jahrgangsstufen
— stellen Fragen und duffern Vermutungen iiber informatische Sachverhalte,
— begriinden Entscheidungen bei der Nutzung von Informatiksystemen,
— wenden Kriterien zur Bewertung informatischer Sachverhalte an.
o Strukturieren und Vernetzen
Schiilerinnen und Schiiler aller Jahrgangsstufen
— strukturieren Sachverhalte durch zweckdienliches Zerlegen und Anordnen,
— erkennen und nutzen Verbindungen innerhalb und auferhalb der Informatik.
o Kommunizieren und Kooperieren
Schiilerinnen und Schiiler aller Jahrgangsstufen
— kommunizieren fachgerecht iiber informatische Sachverhalte,
— kooperieren bei der Losung informatischer Probleme,
— nutzen geeignete Werkzeuge zur Kommunikation und Kooperation.
o Darstellen und Interpretieren
Schiilerinnen und Schiiler aller Jahrgangsstufen
— interpretieren unterschiedliche Darstellungen von Sachverhalten,
— veranschaulichen informatische Sachverhalte,

— wiahlen geeignete Darstellungsformen aus.

15

In einem weiteren Schritt werden unter Beriicksichtigung der unterschiedlichen Auspra-
gungen informatischer Bildung der Bundesldnder sog. Nahtstellen definiert und jene zu
erreichende Kompetenzen aus den unterschiedlichen Inhalts- und Prozessbereichen des

Informatikunterrichts zugeordnet.

Information und Daten
Modellieren und Implementieren
Algorithmen
Begriinden und Bewerten
Sprachen und Automaten
Strukturieren und Vernetzen
Informatiksysteme

Kommunizieren und Kooperieren

Prozessbereiche
ayalalaqgsieyu]

Informatik, Mensch und Gesellschaft

Darstellen und Interpretieren

Abbildung 2.2.: Inhalts und Prozessbereiche [GI 2008, S. 11]

Konkret werden innerhalb der einzelnen Inhalts- und Prozessbereiche im Sinne von
Mindeststandards jeweils Kompetenzen differenziert nach zwei Jahrgangsstufen, nam-
lich Schiilerinnen und Schiiler der Jahrgangsstufen 5 bis 7 und Schiilerinnen und Schiiler
der Jahrgangsstufen 8 bis 10, aufgefithrt. Ein empirisch gesichertes Kompetenzmodell
und ein Instrument zur Messung der vorgestellten Kompetenzen liegen nicht vor.

In der Abbildung 2.3 wird diese Zuordnung am Beispiel des Prozessbereichs Modellieren
& Implementieren aufgezeigt:

Neben den methodologischen Abweichungen von der in der Klieme-Expertise vorgeschla-
genen Vorgehensweise zur Entwicklung von Bildungsstandards, ergeben sich weitere Dis-
kussionspunkte bei der Herleitung relevanter Kompetenzen und bei der Verwendung des
Kompetenzbegriffs.

Die Ableitung der Kompetenzen erfolgt lediglich anhand der fachlichen Systematik des
Informatikunterrichts und vorrangig anhand der Komponenten, die innerhalb der NCTM-
Standards fiir die Schulmathematik definiert wurden. Nach Klieme-Fxpertise ist eine der-
artige rein normative Vorgehensweise zur Ableitung von Kompetenzen nicht hinreichend.
Deskriptive Modelle bediirfen nach Klieme der Absicherung durch empirische fachdidak-

tische und lernpsychologische Forschung.

16

Prozessbereiche

Modellieren und Implementieren

Schiilerinnen und Schiiler aller Jahrgangsstufen
erstellen informatische Modelle zu gegebenen Sachverhalten

Schiilerinnen und Schuler Schiilerinnen und Schiiler

der Jahrgangsstufen 5 bis 7 der Jahrgangsstufen 8 bis 10

» betrachten Informatiksysteme und » analysieren Sachverhalte und
Anwendungen unter dem Aspekt der erarbeiten angemessene Modelle
zugrunde liegenden Modellierung

» identifizieren Objekte in Informatik- » entwickeln fir einfache Sachverhalte
systemen und erkennen Attribute objektorientierte Modelle und stellen
und deren Werte diese mit Klassendiagrammen dar

» modellieren die Verwaltung und
Speicherung groBer Datenmengen
mithilfe eines Datenmodells

» modellieren reale Automaten mithilfe
von Zustandsdiagrammen

Abbildung 2.3.: Prozessbereich Modellieren & Implementieren [GI 2008, S. 19|

Eine Ableitung von Fahigkeiten und Fertigkeiten aus der Fachsystematik der Informatik,
anhand von Bildungsstandards der Mathematik und anhand zahlreicher Diskussionen von
erfahrenen Informatiklehrern ist sicherlich wertvoll aber im Sinne der Klieme-Expertise
nicht geeignet, um Kompetenzen zu formulieren.

Die Kompetenzbeschreibungen innerhalb der vorgestellten Inhalts- und Prozessbereiche
entsprechen dariiber hinaus nicht dem Weinert’schen Kompetenzverstindnis.

Die Bildungsstandards sehen eine explizite Trennung von Inhalts und Prozessbereichen
vor. Hier werden einzelne Fahigkeiten und Fertigkeiten beschrieben, die die Schiilerin-
nen und Schiiler einer Jahrgangsstufe in einem bestimmten Teilbereich des Informatik-
unterrichts erreichen sollen. Dies widerspricht dem Weinert’schen Kompetenzverstandnis
insofern, als dass Kompetenzen aus komplexen Anforderungssituationen, die es zu bewal-
tigen gilt, bestehen. Hier sollte vielmehr eine ganzheitliche Betrachtung von kognitiven
und nicht-kognitiven Kompetenzaspekten beriicksichtigt werden.

Die vorliegende Arbeit hat die Zielsetzung ein Kompetenzstrukturmodell zu entwickeln.
Entsprechend der zuvor dargestellten Forderungen und dargestellter Mangel in bestehen-
den Ansétzen soll bei der Entwicklung des Kompetenzmodells explizit das Weinert’sche
Kompetenzverstindnis zugrunde gelegt werden. Das Kompetenzmodell wird im Rahmen
des MoKoM-Projekts von Fachdidaktikern und Psychologen entwickelt und durchliauft

Prozesse zur empirischen Differenzierung und Absicherung.

17

Als Grundlage fiir das Kapitel 4 soll im Folgenden der Begriff des Kompetenzmodells
erliutert werden. Wie in der Einleitung erwihnt, sieht die vorliegende Arbeit die Ent-
wicklung eines empirisch gesicherten Kompetenzstrukturmodells fiir die informatische

Modellierung vor.

2.3. Kompetenzmodelle in der Informatik

Ebenel

Kompetenz-
Modellebene

~—

Abbildung 2.4.: Modellebene 1 - Kompetenzmodell-Ebene

Bildungsstandards sollen sich nach Klieme auf Kompetenzmodelle stiitzen, die in Zusam-
menarbeit von Fachdidaktik und Fachwissenschaft mit Psychologen oder Erziehungswis-
senschaftlern entwickelt werden. Diese spezifizieren die Dimensionen und Kategorien von
Kompetenz, die mit entsprechend angepassten Aufgabensammlungen empirisch iiber-
priift werden kénnen.

Um das Erreichen der Standards empirisch zu {iberpriifen, ist es nach Klieme-Expertise
unabdingbar, entsprechende Testverfahren und Aufgaben zu entwickeln. Insbesondere
im Hinblick auf einen aktiven Schulbezug, sind Ergebniskontrollen unverzichtbar |Klieme
et al. 2007] und stellt eine zentrale Motivation zur Konzeption eines Kompetenzmessin-
struments fiir die Doméne der Modellierung im Rahmen des Software-Engineerings dar
(siehe Forschungsfrage 2:). Dariiber hinaus statuieren Schecker & Parchmann den Bedarf
an empirisch fachdidaktischer und lernpsychologischer Forschung bei der Entwicklung
von Kompetenzmodellen, die eine wesentliche theoretische Grundlage fiir die Entwick-

lung von Bildungsstandards darstellen.

18

,Normative Modelle diirfen nicht allein aus fachlichen Bildungszielen abge-
leitet werden. Sie sollen vielmehr eine theoretische Fundierung aus der Lern-
psychologie aufweisen. Ein deskriptives Modell bedarf der Absicherung durch
empirische fachdidaktische und lernpsychologische Forschung [Schecker und
Parchmann 2006, S. 47].¢

Kompetenzmodelle

Aufbauend auf dem Weinert’schen Kompetenzverstindnis charakterisieren Schecker &

Parchmann Kompetenzmodelle folgendermafien:

,Die Beschreibung von anforderungs- bzw. doménenbezogenen Kompetenzen,
deren Erlangung durch Lernsituationen unterstiitzt werden soll, erfordert eine
Systematik oder mit anderen Worten ein tragfihiges und fiir Messung und
Lernen umsetzbares Kompetenzmodell [Schecker und Parchmann 2006, S.
46].“

Es lassen sich dariiber hinaus drei wesentliche Typen von Kompetenzmodellen unter-
scheiden [Klieme et al. 2007|[Schecker und Parchmann 2006]:

1. Kompetenzstrukturmodell
Deskriptive Kompetenzstrukturmodelle dienen als mogliches Kategoriengeriist, um
zu erreichende Kompetenzen ordnen und darstellen zu kénnen. Sie konstituieren
das Gefiige einer nach Dimensionen gegliederten Beschreibung kognitiver Voraus-
setzungen, iiber die ein Lernender verfiigen soll, um Aufgaben und Probleme in
einem bestimmten Anforderungsbereich 16sen zu kénnen. Kompetenzstrukturmo-

delle sind explizit ausformuliert oder liegen implizit vor.

2. Kompetenzstufenmodell
Modelle dieses Typs umfassen Kompetenzstufungen, die mit unterschiedlich an-
spruchsvollen kognitiven Prozessen und Wissensanforderungen korrespondieren. Dement-
sprechend sind jene Stufen mit dem FErreichen eines bestimmten Niveaus einer

Kompetenzdimension verkniipft.

3. Kompetenzentwicklungsmodell
Kompetenzentwicklungsmodelle machen Annahmen dariiber, in welcher Weise sich
Kompetenzstrukturen herausbilden. Haufig werden in zeitlicher Perspektive Erwar-
tungen an das Erreichen bestimmter Kompetenzen nach Altersstufen/Schulstufen
gemacht. Sie basieren auf einer gestuften Kompetenz (siche Kompetenzstufenmo-

dell) und legen fest, unter welchen Bedingungen der Ubergang in eine hohere Stufe

19

moglich wird. Zur tatséchlichen Beschreibung, gezielten Planung und Foérderung
von Entwicklungen muss fachliche Perspektive mit Voraussetzungen der Lernenden

und weiteren Einflussfaktoren verkniipft werden.

Ansitze fiir Kompetenzmodelle in der Schulinformatik

Im Rahmen der vorliegenden Arbeit soll die theoretische und empirische Entwicklung
eines Kompetenzstrukturmodells fiir den Teilbereich der informatischen Modellierung
beschrieben werden. In diesem Zusammenhang werden zunichst bestehende Ansétze zur
Entwicklung von Kompetenzmodellen in der Informatik aufgefiihrt.

Kohl untergliedert die bestehenden Ansitze fiir Kompetenzmodelle in der Schulinfor-
matik in zwei Kategorien ((1) Modelle fiir die gesamte informatische Bildung und (2)
Modelle fiir Teilbereiche der informatischen Bildung) und erldutert diese im Rahmen sei-
ner Dissertation. Die folgende Liste gibt einen Uberblick iiber die bestehenden Ansitze
zur Kompetenzmodellierung [Kohl 2009, S. 47].

1. Modelle fiir die gesamte informatische Bildung

e Drei Dimensionen des Model of ICT-Competence-Classes (Magenheim 2005)

e Fiinf Stufen von Kompetenz auf Grundlage des PISA-Mathematik-Kompetenzmodells
(Friedrich 2003)

e Das implizite Kompetenzmodell als Grundlage der KMK-Bildungsstandards
(Puhlmann et. al. 2008)

2. Modelle fiir Teilbereiche der informatischen Bildung

e Ansitze fiir ein Kompetenzmodell fiir informatisches Modellieren (Brinda /
Schulte, 2005)

e Ansatz zur Entwicklung eines Kompetenzmodells fiir die theoretische Infor-
matik anhand von Kategorisierungen von Aufgaben eines Schiilerwettbewerbs
(Schliiter und Brinda 2007)

e Kompetenzmodell fiir die angewandte Informatik in zwei Dimensionen (Dor-

ninger 2007)

Kohl stellt ein Kompetenzmodell fiir die Algorithmik in der Sekundarstufe I vor. Dieses
basiert auf dem Inhaltsbereich Algorithmen und den dort aufgefithrten jahrgangsstufen-
iibergreifenden Kompetenzen und denjenigen Kompetenzen fiir Schiilerinnen und Schiiler
der Jahrgangsstufe 8 bis 10 (siehe Abbildung 2.5).

20

Algorithmen

Schiilerinnen und Schiiler aller Jahrgangsstufen

kennen Algorithmen zum Lésen von Aufgaben und Problemen aus
verschiedenen Anwendungsgebieten und lesen und interpretieren gegebene
Algorithmen

Schiilerinnen und Schiiler
der Jahrgangsstufen 8 bis 10

Schiilerinnen und Schiiler
der Jahrgangsstufen 5 bis 7

» Uberprifen die wesentlichen Eigen-
schaften von Algorithmen

» lesen formale Darstellungen von
Algorithmen und setzen sie in Pro-
gramme um

» benennen und formulieren Hand-
lungsvorschriften aus dem Alltag

» lesen und verstehen Handlungs-
vorschriften fiir das Arbeiten mit
Informatiksystemen

» interpretieren Handlungsvorschriften
korrekt und flihren sie schrittweise
aus

Abbildung 2.5.: Inhaltsbereich Algorithmen 1/2 [GI 2008, S. 15]

Schilerinnen und Schiiler aller Jahrgangsstufen
entwerfen und realisieren Algorithmen mit den algorithmischen Grundbausteinen
und stellen diese geeignet dar

Schiilerinnen und Schiiler
der Jahrgangsstufen 5 bis 7

» benutzen die algorithmischen Grund-
bausteine zur Darstellung von Hand-
lungsvorschriften

» entwerfen Handlungsvorschriften als
Text oder mit formalen Darstellungs-
formen

» entwerfen und testen einfache
Algorithmen

Schiilerinnen und Schiiler
der Jahrgangsstufen 8 bis 10

» stellen die algorithmischen Grund-
bausteine formal dar

» verwenden Variablen und Wertzuwei-
sungen

» entwerfen, implementieren und beur-
teilen Algorithmen

» modifizieren und erganzen Quell-
texte von Programmen nach
Vorgaben

Abbildung 2.6.: Inhaltsbereich Algorithmen 2/2 [GI 2008, S. 16]

Ausgehend von den oben aufgefithrten Kompetenzen entwickelt Kohl ein Kompetenzmo-
dell basierend auf vier Dimensionen (in der Dissertation Kohl als Komponenten bezeich-

net):

Komponente A - Eigenschaften von Algorithmen

Komponente B - algorithmische Grundbausteine und Datentypen
Komponente C - Arbeit mit Algorithmen

Komponente D - Programmentwicklung

21

Folgende Abbildung 2.7 zeigt das Kompetenzstrukturmodell, welches Kohl fiir den In-
haltsbereich Algorithmen vorschligt.

Dariiber hinaus wird den oben strukturell dargestellten Kompetenzen mit folgender Ni-
veaustufung graduiert. Diese wurde auf Grundlage der sog. SOLO-Taxonomie entwickelt
[Chan et al. 2010]: !

1. Stufe 1
Diese Stufe umfasst grundlegende Kompetenzen, die eine einfache Verkniipfung von

algorithmischen Grundbausteinen vorsieht.

2. Stufe 2
Diese Stufe enthilt vertiefte Kompetenzen, die das Analysieren, Implementieren,
Modifizieren und Priifen von Algorithmen mit mehreren ineinander Verschachtelten

Verzweigungen und Wiederholungen erfordert.

3. Stufe 8
Diese Stufe umfasst den Umgang mit komplezen Algorithmen, die das Erkldren und

Anwenden von Unterprogrammen mit Parametern erfordert.

Auf Grundlage des zuvor dargestellten Kompetenzstrukturmodells und dieser Niveaustu-

fung wird das folgende Kompetenz-Stufenmodell vorgeschlagen.

!Structure of the Observed Learning Outcome (SOLO)

22

Kompetenzen der Komponente | Kompetenzen des
GI-Empfehlungen der des Kompe- Kompetenzmodells
Jahrgangsstufen &8 his 10 tenzmodells ,Algorithmen* der
»Algorith- Jahrgangsstufen 8 bis 10
Schiilerinnen und men*
Schiiler Die Schiilerinnen und Schiiler
- tiberpriifen die A - erkliren den
wesentlichen Figenschaften | Eigenschaften | Algorithmusbegriff und die
von Algorithmen von wesentlichen Eigenschaften von
Algorithmen | Algorithmen
- iiberpriifen dic wesentlichen
Eigenschaften von Algorithmen
- nennen Probleme, die mithilfe
von Algorithmen losbar bzw.
nicht losbar sind
- stellen die algorithmischen | B - crkliren die algorithmischen
Grundbausteine formal dar | algorithmische | Grundbausteine wie Variablen,
- verwenden Variablen uwnd | Grund- Wertzuweisungen,
Wertzuweisungen bausteine und | Verzweigungen, Wiederholungen
Datentypen und wenden diese Erkldarungen
an
- stellen die algorithmischen
Grundbausteine dar
- verwenden Datentypen
- lesen formale C - analysieren gegebene
Darstellungen von Arbeit mit Algorithmen
Algorithmen und setzen sie | Algorithmen | - priifen Algorithmen
in Programme um - setzen gegebene Algorithmen
- modifizieren und erganzen in Programme um
Quelltext eines Programms - modifizieren und ergéinzen
nach Vorgaben Algorithmen bzw. Programme
- entwerfen, implementieren | D - entwerfen Programme
und beurteilen Algorithmen | Programm- - implementieren Programme
entwicklung mit cinem Programmiersystem

- testen Programme auf ihre
Funktionalitit

Abbildung 2.7.: Kompetenzstrukturmodell Algorithmen [Kohl 2009, S. 90|

23

Entgegen der Empfehlung der Klieme-Expertise, Bildungsstandards auf Grundlage ei-
nes theoretisch und empirisch fundierten Kompetenzmodells zu entwickeln, wird in der
Jenaer Forschungsarbeit ein kontrdrer Weg eingeschlagen, ndmlich die Ableitung eines
Kompetenzmodells anhand der GI-Empfehlungen fiir Bildungsstandards. Hierbei ist aus
Sicht des Autors zu beméngeln, dass die Kompetenzmodellierung als Grundlagenarbeit
vor der Formulierung von Empfehlungen fiir Bildungsstandards hétte stattfinden miissen
und nicht umgekehrt.

Dieser Umstand legitimiert die Forschungen im Rahmen des MoKoM-Projekts und der
vorliegenden Dissertation. Dementsprechend gilt es, in einem ersten Schritt ein Kompe-
tenzmodell zu entwickeln, das zundchst normativ-theoretisch abgeleitet und in weiteren
Entwicklungsschritten empirisch ergidnzt wird. Hierbei soll eine interdisziplindre Zusam-
menarbeit zwischen Psychologen und Informatikern stattfinden.

Neben der interdisziplindren Entwicklung von Kompetenzmodellen wird in der Klieme-
Expertise eine Entwicklung entsprechender Testverfahren und Aufgaben gefordert. Be-
vor im weiteren Verlauf (siehe Kapitel 6.1) die Aufgabenentwicklung im Rahmen des
MoKoM-Projekts und der vorliegenden Dissertation vorgestellt werden, soll nach einer
allgemeinen Beschreibung der Kompetenzmessung Kohls Ansatz zur Aufgabenentwick-
lung dargestellt werden. Im Anschluss wird erldutert, wie Kohls Erkenntnisse bei der
Aufgabenentwicklung die Forschungsarbeit dieser Dissertation beeinflusst haben, und
wie sich die Aufgabenentwicklung im MoKoM-Projekt und der vorliegenden Arbeit von

Kohls Ansatz unterscheiden.

2.4. Kompetenzmessung im Informatikunterricht

Mit Hilfe von Kompetenzmodellen werden diejenigen Kompetenzen spezifiziert, die die
Lernenden im jeweiligen Teilbereich der Informatik erwerben sollen. Sie umfassen deren
Kompetenzstruktur (Kompetenzstrukturmodell) sowie die unterschiedlichen Niveaustu-
fen jener Kompetenzen (Kompetenzstufenmodell). Dariiber hinaus legen Bildungsstan-
dards ein Minimalniveau fest, das von allen Lernern erreicht werden soll |Klieme et al.
2007, S. 81].

Um diese Standards im Unterricht praktisch einsetzen zu kénnen, bediirfen die im Kom-
petenzmodell formulierten Anforderungen einer weiteren Konkretisierung durch Aufga-
benstellungen und Testverfahren. Damit die Standards als Orientierung fiir Lehrpersonen
dienen kénnen; gilt es somit Aufgaben zu entwickeln mit denen fachliche Bildungsziele
konkretisiert werden kénnen und ein Orientierungspunkt fiir die Leistungsbewertung ge-

schaffen wird.

24

Stufen Stufe | Stufe Il Stufe lll
Die Schiilerinnen und Die Schiilerinnen und Die Schiilerinnen und Schiiler
Schiiler haben grund- Schiiler haben vertiefte haben umfassendere
legende Kompetenzen zu Kompetenzen zu Kompetenzen zu
Algorithmen. Algorithmen. Algorithmen.
Die Schiilerinnen Die Schiilerinnen Die Schiilerinnen
Komponenten und Schiiler ... und Schiiler ... und Schiiler ...
A -erklaren den Algorith- | >erklaren den Algorith- | B-erklaren den Algorithmusbegriff und die

Eigenschaften
von Algorithmen

musbegriff und die wesent-
lichen Eigenschaften von
Algorithmen

>-Uberpriffen die wesentli-
chen Eigenschaften von Al-
gorithmen in einfachen Fal-
len

I>>nennen Probleme, die mit-
hilfe von Algorithmen 6s-
bar bzw. nicht I6sbar sind

musbegriff und die wesent-
lichen Eigenschaften von
Algorithmen an bekannten
Beispielen

I>begriinden anhand dieser
Eigenschaften, ob gegebe-
ne Handlungsablaufe Algo-
rithmen sind

I>nennen Probleme, die mit-
hilfe von Algorithmen 16s-
bar bzw. nicht [6sbar sind

wesentlichen Eigenschaften von Algo-
rithmen an selbst konstruierten Beispie-
len

I>begriinden anhand dieser Eigenschaf-
ten, ob gegebene Handlungsablaufe Al-
gorithmen sind

I>nennen Probleme, die mithilfe von Algo-
rithmen lésbar bzw. nicht l6sbar sind

B

Algorithmische
Grundbausteine
und Datentypen

>-erklaren die algorithmi-
schen Grundbausteine wie
Variablen, Wertzuweisun-
gen, Verzweigungen und
Wiederholungen und wen-
den diese Erklarungen an

r>stellen die algorithmischen
Grundbausteine als Pseu-
docode dar

>verwenden einen numeri-
schen Datentyp

r>erklaren die algorithmi-
schen Grundbausteine wie
Variablen, Wertzuweisun-
gen, Verzweigungen und
Wiederholungen und wen-
den diese Erklarungen an

D>stellen die algorithmischen
Grundbausteine in ver-

schiedenen Darstellungs-
formen dar
-verwenden verschiedene
Datentypen

r-erklaren die algorithmischen Grundbau-
steine wie Variablen, Wertzuweisungen,
Verzweigungen, Wiederholungen und
Unterprogramme mit Parametern und
wenden diese Erklarungen an

I>stellen die algorithmischen Grundbau-
steine in verschiedenen Darstellungsfor-
men dar und wechseln zwischen Dar-
stellungsformen

I>verwenden verschiedene Datentypen

(]
Arbeit mit
Algorithmen

r>lesen in Pseudocode gege-
bene einfache Algorithmen

>prifen schrittweise einfa-
che Algorithmen mit gege-
benen Beispielen

I>setzen gegebene einfache
Algorithmen in Programme
um

>modifizieren und erganzen
einfache Algorithmen bzw.
Programme nach Vorga-
ben

r-analysieren die Funktions-
weise und den Leistungs-
umfang gegebener Algo-
rithmen

>>prifen Algorithmen mit ge-
gebenen Beispielen mithil-
fe von Durchlauftabellen
(Schreibtischtest)

I>setzen gegebene Algorith-
men in Programme um

I>modifizieren und ergénzen
Algorithmen bzw. Program-
me nach Vorgaben

I-analysieren die Funktionsweise und den
Leistungsumfang gegebener komplexer
Algorithmen

>prifen Algorithmen mithilfe von
Durchlauftabellen (Schreibtischtest) und
wahlen dazu typische und untypische
Beispiele selbst aus

>setzen gegebene komplexe Algorithmen
in Programme um

I>modifizieren und ergénzen komplexe Al-
gorithmen bzw. Programme nach Vor-
gaben und nach selbst gesetzten Zielen

I>korrigieren gegebene fehlerhafte Algo-
rithmen bzw. Programme

D
Programm-
entwicklung

>entwerfen einfache Pro-
gramme skizzenhaft

>-implementieren einfache
Programme mit einem Pro-
grammiersystem

>testen einfache Program-
me anhand gegebener Ein-
gaben auf ihre Grundfunk-
tionalitat

>>fertigen einen schriftlichen
Entwurf fiir Programme an
I>implementieren Program-
me mit einem Program-
miersystem benutzungs-
freundlich

I>testen Programme anhand
gegebener Eingaben auf
ihre Funktionalitat
>reflektieren (ber den Lo&-
sungsweg

I>fertigen einen schriftlichen Entwurf fur
komplexe Programme an

>implementieren komplexe Programme
mit einem Programmiersystem benut-
zungsfreundlich

[>testen komplexe Programme anhand
selbst gewahlter Eingaben auf ihre
Funktionalitat

I-reflektieren Uber den Losungsweg so-
wie Uber Vor- und Nachteile der Lésung

>>verbessern Programme eigenstandig

Abbildung 2.8.: Kompetenzstufenmodell Algorithmen [Kohl 2009, S. 93]

25

Neben dem praktischen Einsatz fiir einen kompetenzorientierten Informatikunterricht
dienen jene Aufgabensammlungen aber auch zur schuliibergreifenden Qualitétssicherung
und -entwicklung. Dementsprechend sollte die Testentwicklung einem aus Perspektive
der Fachwissenschaft, Fachdidaktik und paddagogisch-psychologischer Forschung profes-
sionellem Anspruch geniigen. Ansonsten kénnen schuliibergreifende Vergleichstests ,Ge-
fahr laufen, mehr Fehlinformation und Schaden als Aufklérung und Orientierung zu er-
zeugen [Klieme et al. 2007, S. 82].¢

Bei der Entwicklung von Testverfahren haben die Verwendungsziele einen Einfluss auf
die Entwicklung von Aufgaben, die Testdurchfiihrung und der Testauswertung. In diesem

Zusammenhang lassen sich die folgenden Ziele unterscheiden [Klieme et al. 2007, S. 82ff]:

1. Uberpriifung von Kompetenzmodellen
Empirische Uberpriifung, ob das jeweilige Kompetenzmodell tatsichlich die Aspekte
der Kompetenzen von Lernenden, ihre Niveaustufung und ggf. thre Entwicklung

angemessen widerspiegeln.

2. Systemmonitoring
Die Messverfahren dienen dazu, Aussagen iber das Kompetenzniveau von Lernen-
den zu machen und Zusammenhdnge mit schulischen und auferschulischen Bedin-

gungen aufzudecken.

3. Schulevaluation
Die Testverfahren werden zur Selbstevaluation eingesetzt, um zu priifen, inwieweit

Lehrkrafte oder Schulen ihre pédagogischen Ziele erreicht haben.

4. Indiwvidualdiagnostik und Forderung einzelner Lernender
Der Einsatz der Testverfahren verfolgt die Zielsetzung, Aussagen iiber spezifische
Starken und Schwdichen und damit dem Forderbedarf einzelner Lernender zu ma-

chen.

Das im Rahmen dieser Arbeit entwickelte Kompetenzmodell verfolgt die oben erliauterte
erste Zielsetzung, ndmlich die Evaluation ob das Kompetenzmodell fiir informatisches

Modellieren tatséchlich jene Kompetenzen angemessen widerspiegelt.

Test- und Aufgabenentwicklung im Informatikunterricht

Kohl beschreibt die Entwicklung von Aufgaben, um jene Kompetenzen, die im Kompe-
tenzmodell abgebildet sind zu iiberpriifen. Hierzu legt er zunéchst Kriterien zur Kon-

kretisierung der Aufgaben fest, nach denen Algorithmen den einzelnen Komponenten

26

und Stufen des Kompetenzmodells zugeordnet werden kénnen. Davon ausgehend wurden
konkrete Beispiel- und Testaufgaben entwickelt, die im Unterricht unter Verwendung der
visuellen Programmiersprache PUCK [Kohl 2009] bearbeitet werden kénnen. Hierbei ist
anzumerken, dass die Aufgaben auch mit der Zielsetzung entwickelt wurden, um bei der
gewahlten Unterrichtsmethode handhabbar zu sein.

In den Abbildungen 2.9 und 2.10 wird eine exemplarische Aufgabe zur Uberpriifung der
Stufe I zur Komponente C des Kompetenzmodells und deren Losung in der visuellen

Programmiersprache PUCK dargestellt.

Unterrichtsaufgabe Stufe | Komponente C

Aufgabe (Gehaltserhéhung)

Die Softwarefirma IT-Triple konnte ihre Effizienz durch den Umstieg auf eine visuelle Programmiersprache
steigern. Der Chef méchte deshalb seine Mitarbeiter belohnen. Die Gehélter aller Mitarbeiter sollen um 4 %
mindestens aber um 80 € im Monat erhoht werden.

Der Algorithmus zur Berechnung dieser Gehaltserhohung ist gegeben:

ALGORITHMUS Gehaltserhoehung

Lege die Variable altesgehalt vom Typ Integer an.

Fordere den Benutzer mit "Geben Sie bitte ihr altes Gehalt ein." auf, eine Zahl einzugeben.
Speichere die eingegebene Zahl in die Variable altesgehalt.

Wenn die Bedingung ((altesgehalt*104 DIV 100)-altesgehalt > 80) wahr ist, mache Folgendes:
[[Gib "Neues Gehalt:" und danach den Wert von (altesgehalt*104 DIV 100) aus. |

Wenn die Bedingung ((altesgehalt*104 DIV 100)-altesgehalt > 80) falsch ist, mache Folgendes:
[Gib "Neues Gehalt:" und danach den Wert von altesgehalt+80 aus. |

a) Welche Ausgaben liefert der Algorithmus fir das Gehalt 1000 € und fur das Gehalt 10000 €?

Ausgabe:
b) Lesen Sie den Algorithmus, Ubertragen Sie ihn in ein Programm und testen Sie es
c) Finden Sie durch mehrfaches Testen heraus, ab welcher Gehaltsgrenze mehr als 80 €

Gehaltserhéhung fallig ist.

d) Erganzen Sie das Programm so, dass jeweils die Gehaltserhéhung mit ausgegeben wird.

Abbildung 2.9.: Beispielaufgabe Kohl [Kohl 2009, S. 120|

Die Auswertung der einzelnen Aufgaben wurde anhand von Bewertungsmatrizen vor-
genommen. Als Resiimee nach Fertigstellung der Gesamtauswertung der Hauptunter-
suchung an Thiiringer Schulen formuliert Kohl seine Erfahrungen in Form von sechs
Anforderungen an die Entwicklung zu Testaufgaben der Informatik [Kohl 2009, S. 183]:

1. Zwischen Beispiel-, Unterrichts- und Testaufgaben unterscheiden

2. Beispiel- und Testaufgaben anhand der im Kompetenzmodell geforderten Kompe-

tenzen konstruieren und in klare, {iberschaubare Teilaufgaben untergliedern
3. Vielfiltige, abwechslungsreiche Unterrichtsaufgaben zusammenstellen

4. Die Unterrichtsaufgaben in einem digitalen, einfach modifizierbaren Format bereit-

stellen

27

o Welche Ausgaben liefert der Algorithmus fiir das Gehalt 1000 €
und fiir das Gehalt 10000 €7
Gehalt 1000 — Neues Gehalt: 1080
Gehalt 10000 — Neues Gehalt:10400

o Lesen Sie den Algorithmus, iibertragen Sie ihn in ein Programm
und testen Sie es.

> (EE)» en

o Finden Sie durch mehrfaches Testen heraus, ab welcher Gehalts-
grenze mehr als 80 € Gehaltserhéhung fillig ist.
AD der Eingabe 2025 sind mchr als 80€ Gehaltserhohung fallig.

o Erginzen Sie das Programm so, dass jeweils die Gehaltserh6hung
mit ausgegeben wird.

Abbildung 2.10.: Beispiellésung Kohl [Kohl 2009, S. 245|

28

5. In den Aufgaben nicht auf spezielle Software, Programmiersprachen oder Entwick-

lungsumgebungen eingehen
6. Aufgaben vor einem gréferen Einsatz erproben

Kohls Erkenntnisse bei der Aufgabenentwicklung haben in bestimmten Bereichen die
Aufgabenentwicklung im Rahmen des Projekts MoKoM und in dieser Dissertation be-
einflusst. Hierdurch wurden wir beispielsweise in unseren Planungen bestirkt, die ent-
wickelten Aufgaben vor dem breiten schulischen Einsatz mit Studierendengruppen und
kleineren Schiilergruppen zu erproben (siche Kapitel 7). Ferner bestand bei der Entwick-
lung der Aufgaben und Items die Prémisse, diese mdglichst unabhéngig von bestimmten
Technologien oder Programmiersprachen zu gestalten.

Ein wichtiger Unterschied bei der Gestaltung der Aufgaben und Items innerhalb des
MoKoM-Projekts gegeniiber Kohls Ansatz ist die Gestaltung der Aufgaben im Hinblick
auf die zu tiberpriifenden Kompetenzen. Kohl schldgt vor, dass die Aufgaben entspre-
chend der im Kompetenzmodell modellierten Kompetenzen zu konstruieren und in klare

Teilaufgaben zu zerlegen sind.

29

Im MoKoM-Projekt und im Rahmen dieser Dissertation wurde keine explizite Trennung
der einzelnen Aufgaben entsprechend der einzelnen Kompetenzbereiche angestrebt, son-
dern die Zielsetzung verfolgt, Aufgaben und Items zu gestalten, die ein moglichst breites
Spektrum an kognitiven und nicht kognitiven Fahigkeiten und Fertigkeiten abfragen. Fi-
ne im Hinblick auf den abzufragenden Kompetenzbereich zu eingeschriankt formulierte
Aufgabenstellung, lisst sich aus Sicht des Autors nicht mit dem Weinert’schen Kompe-
tenzverstiandnis vereinbaren. Wie erwéhnt sieht jenes Kompetenzverstindnis ein Haupt-

merkmal von Kompetenzen in der Bewéltigung komplexer Problemstellungen.

2.5. Zusammenfassung

Das Kapitel Kompetenzorientierung als fachdidaktische Ausgangslage beschreibt die bil-
dungspolitische Ausgangslage als zentrale Motivation fiir den Forschungsgegenstand der
vorliegenden Arbeit, ndmlich der Entwicklung eines Kompetenzmodells fiir die informa-
tische Modellierung und eines dazugehorigen Messinstruments als mogliche Grundlage
fiir die Entwicklung von Bildungsstandards in der Sekundarstufe II.

Zu Beginn des Kapitels wird verdeutlicht, dass die Diskussion um Bildungsstandards
und Kompetenzen sowohl national als auch international sehr relevant ist und Gegen-
stand zahlreicher Forschungsbeitrige, Veroffentlichungen und bildungsorganisatorischer
Mafnahmen ist. Dies ist die zentrale Motivation und Bestarkung des Forschungsvorha-
bens, entsprechende Grundlagenarbeit fiir den Bereich der informatischen Modellierung
im Projekt MoKoM und im Rahmen des Promotionsvorhabens zu leisten.

Dariiber hinaus werden die Giite-Kriterien fiir die Formulierung nationaler Bildungsstan-
dards gemik Klieme-Expertise aufgefithrt und die damit verbundenen Anforderungen an
Kompetenzformulierungen. Dementsprechend wird hier festgelegt, unter welchem theore-
tischen Versténdnis des Kompetenzbegriffs [Weinert 2002| die vorliegende Arbeit basiert
und welche Vorgehensweise bei der Entwicklung von Kompetenzmodellen und entspre-
chenden Instrumenten richtungsweisend sind [Klieme 2004].

Weiterhin soll das Kapitel aufzeigen, dass der Gesamtprozess zur Entwicklung von Bil-
dungsstandards nicht immer gemé&f nationaler Vorgaben korrekt eingehalten wird. Nicht
alle Ansétze, die sich Bildungsstandards nennen sind auch im Sinne der Klieme-Expertise.
Dies motiviert das interdisziplinire Vorgehen im Projekt MoKoM und in der vorliegenden
Forschungsarbeit.

Weiterhin soll dieses Kapitel den Leser dahingehend sensibilisieren, dass die Verwendung
des Kompetenzbegriffs nicht immer eindeutig ist. Es werden im zitierten Ansatz einzel-

ne Fahigkeiten und Fertigkeiten beschrieben, die nicht dem Anspruch des Weinert’schen

30

Kompetenzverstidndnisses geniigen. Dies zeigt wiederum, dass eine einheitliche Verwen-
dung des Begriffs ,Kompetenz* unabdingbar ist.

Im weiteren Verlauf gibt das Kapitel Uberblick iiber die verschiedenen Ansétze fiir Kom-
petenzmodelle in der Informatik und stellt exemplarisch Kohls Ansatz als Kompetenz-
modell fiir Algorithmen in der Sekundarstufe I vor. In diesem Zusammenhang soll deut-
lich gemacht werden, dass dieser Ansatz teilweise den Vorgaben der Klieme-Expertise
widerspricht und den MoKoM-Ansatz bestirkt. Dieser sieht wie in der Einleitung der
vorliegenden Arbeit beschrieben, zunéchst die Entwicklung eines interdisziplindren und
empirisch abgesicherten Kompetenzmodells vor und zeigt die Notwendigkeit, Grundla-
genarbeit fiir den informatischen Themenbereich Modellierung zu betreiben.

Eine weitere wichtige Begriindung fiir dieses Kapitel war die Darstellung der Forde-
rung, dass Kompetenzmodelle durch entsprechende Messverfahren in Form von Aufgaben
und Items unterstiitzt werden sollen. Hier war es hilfreich, einen exemplarischen Ansatz
zur Aufgabenentwicklung auf Grundlage eines bestehenden Kompetenzmodells fiir einen
Aufgabenbereich der Informatik zu bewerten. Hierbei konnten wertvolle Hinweise fiir
die eigene Forschungsarbeit gewonnen werden. Ferner wurde wiederum eine Uneinigkeit
hinsichtlich des Kompetenzverstindnisses festgestellt. In diesem Zusammenhang wurde
aus Sicht des Autors eine zu isolierte scharfe Trennung und Zuordnung von Aufgaben
nach zu {iberpriifenden Kompetenzen vorgenommen. Diese ist nicht im Sinne des Wei-
nert’schen Kompetenzverstidndnis und hat uns in unserer Forschung dazu bewogen, bei
der Aufgabenentwicklung darauf zu achten, ein mdéglichst breites Spektrum von kogniti-
ven und nicht kognitiven Kompetenzbereichen anhand eines Beispiels aus der Lebenswelt

der Probanden zu adressieren.

31

3. Modellierung im
fachwissenschaftlichen und
fachdidaktischen Kontext

Nach dem im vorherigen Kapitel die Relevanz der Diskussion um Kompetenz als Grund-
lage fiir Bildungsstandards deutlich gemacht wurde, soll in diesem Kapitel die Wahl des
Gegenstandsbereichs der objektorientierten Modellierung begriindet werden.
Dementsprechend verfolgt das Kapitel die Zielsetzung, die objektorientierte informati-
sche Modellierung aus fachwissenschaftlicher und fachdidaktischer Perspektive zu eror-
tern und dessen Relevanz als wichtigen informatischen Inhaltsbereich aufzuzeigen. Neben
dieser Legitimation besteht die Absicht, eine theoretische Grundlage fiir die normativ-
theoretische Entwicklung eines Kompetenzmodells in Kapitel 4 zu schaffen. Es gilt eben-
so, die theoretische Basis filir die Entwicklung einer entsprechenden Unterrichtsreihe zur
Erprobung des Messinstruments aufzuzeigen und festzulegen.

Im Verlauf des Kapitels werden nach einer Definition des informatischen Modellbegriffs
und der Fokussierung auf die objektorientierte Modellierung, verschiedene Ansitze zur
Modell-Kategorisierung aufgezeigt. Hierbei besteht die Zielsetzung, eine strukturgebende
theoretische Basis fiir die Entwicklung von Kompetenzkomponenten zur objektorientier-
ten informatischen Modellierung zu recherchieren und als theoretische Grundlage fiir die
Kompetenzmodellierung und Instrumentenentwicklung festzulegen.

Hierbei soll gezeigt werden, inwieweit sich Vorgehensmodelle in der Softwaretechnik (insb.
der Rational Unified Process (RUP)) hilfreich sein kénnen, um auf deren normativer
Grundlage Kompetenzaspekte abzuleiten.

Im Sinne des Weinert’schen Kompetenzverstdndnisses und den Giitekriterien der Klieme-
Expertise sind fachdidaktische Aspekte bei der Formulierung von Kompetenzen mit zu
beriicksichtigen. Demgemifs sollen in einem weiteren Unterkapitel didaktisch motivierte
Vorgehens- und Vermittlungsmodelle zur objektorientierten Modellierung (insb. im Be-
reich der Robotik) als theoretischer Ausgangspunkt zur Konzeption einer Evaluations-
Unterrichtsreihe fiir die Kompetenzmessinstrumente vorgeschlagen und begriindet wer-

den.

32

Kapitel 2 | Fachdidaktische

Ausgangslage

Internat. Vergleichsstudien
(PISA,TIMMS, .}

Kompetenzorientierung

Thematischer Schwerpunkt der Dissertation

Theoretische Gr

SWE Vorgehansmodell
(Rational unified Process)

fachwissenschaftlich

Modellierung in
Fachwissenschaft und
Fachdidaktik

—umfasstis

Vorgehensmodelle

Kapitel 3 | Modellierung in Fachwissenschaft

und Fachdidaktik

fachdidaktisch

Didakt. Vorgehensmodell
{0OM + Robatik)

Theoretische Grundlage

L

Ausgangspunkt
=
o
g v
]
=
dl 9 » P
g = [theoretisch]
§
0 E‘ kompatznzmodell
¥2 (empirisch]
T
¥
€5
=
o
x
o
2
'
§ v
E
2 Kompetanz
ﬁ Kategoriendefinitionen
n
@
Fi}
Zp
-5 Massinstrument
f .EJ Iementwickiung
2z
% =
28
£
k7] Y
E
2)
- l Entwicklung
b = Unterrichtsraihe
n
n
T
Z5
~ 2 Kompetanzmassungen
% s im Vergleich
=
25
-
oo
x> |

___l____

Ergebnisse
]

Kapitel 8 | Fazit / Weiterefihrende

Forschungsfragen

!

Abbildung 3.1.: Kapitel 3 im Gesamtkontext der Arbeit

33

3.1. Begriffsdefinition und Fokussierung

Nach Glinz (fachwissenschaftliche Perspektive) und Thomas (fachdidaktische Perspek-
tive) sind informatische Modelle in Anlehnung an die Allgemeine Modelltheorie nach
Stachowiak durch die folgenden Merkmale gekennzeichnet [Stachowiak 1973, S. 131ff],
[Thomas 2002, S. 27|

o Abbildungsmerkmal:
Modelle sind stets Modelle von etwas, ndmlich Abbildungen, Reprisentationen na-

tiirlicher oder kiinstlicher Originale, die selbst wieder Modelle sein kénnen.

o Verkiirzungsmerkmal:
Modelle erfassen im Allgemeinen nicht alle Attribute des durch sie représentier-
ten Originals, sondern nur solche, die den jeweiligen Modellerschaffern und/oder

Modellbenutzern relevant erscheinen.

o Pragmatisches Merkmal:
Modelle sind in ihren Originalen nicht per se eindeutig zugeordnet. Sie erfiillen ihre
Ersetzungsfunktion fiir bestimmte - erkennende und/oder handelnde, modellbenut-
zende - Subjekte, innerhalb bestimmter Zeitintervalle und unter Einschrénkung auf

bestimmte gedankliche oder tatséchliche Operationen.

Insbesondere die letzte Eigenschaft zeigt, dass Modelle kontextualisiert fiir einen be-
stimmten Verwendungszweck entwickelt werden |Glinz 2008, S. 425-426].

Uber die allgemeine Modelldefinition hinaus sieht Glinz spezifische Eigenschaften infor-
matischer Modelle. Entgegen dem Modellverstindnis nach Stachowiak, (definiert durch
das Verkiirzungsmerkmal und das pragmatische Merkmal) versteht Glinz die Abstraktion

nicht als alleiniges konstituierendes Merkmal informatischer Modelle.

“Ein Modell als Abstraktion eines Originals zu definieren, greift jedoch zu
kurz: Zeichen beispielsweise sind Abstraktionen, aber keine Modelle [Glinz
2008, S. 426].“

Ferner sieht er eine Abgrenzung gegeniiber dem Modellbegriff der mathematischen Logik.
Hier wird eine Menge von Axiomen als Modell jenes Axiomsystems bezeichnet. Derar-
tige Modelle werden von dem hier betrachteten Modellbegriff ausgeschlossen und finden
auch in der vorliegenden Dissertationsschrift keinerlei Beriicksichtigung. Vielmehr sollen
Modelle als Informatikartefakte oder als Mittel zum Verstehen von Informatikartefakten
betrachtet werden [Glinz 2008, S. 1].

34

Thomas sieht informatische Modelle als kulturell-tradiertes Bildungsgut mit dem sich
Schiilerinnen und Schiiler auseinander setzen sollten. Er begriindet diese These unter an-
derem damit, dass sich die Allgemeinbildungsbegriffe von Klafki [Klafki 2007] und Buss-
mann u. Heymann [Bussmann und Heymann 1987] auf informatische Modelle anwenden
lassen. Ferner untermauert er die Forderung damit, dass dem Schiiler anhand der Syste-
matiken zu den informatischen Modellen und deren Entstehungsprozess ein vollstandiges
Bild der gesamten Informatik vermittelt werden kann [Thomas 2002, S. 81].

Die vorliegende Arbeit fokussiert bei der Entwicklung eines Kompetenzstrukturmodells
und eines Kompetenzmessinstruments die objektorientierten Modellierung als Gegen-
standsbereich.

Im Folgenden wird die Relevanz der objektorientierten informatischen Modellbildung
aus fachwissenschaftlicher und fachdidaktischer Perspektive erértert. Ferner soll deutlich
gemacht werden, warum gerade dieser Bereich der informatischen Bildung als Gegen-
standsbereich fiir die Kompetenzmodellierung in der vorliegenden Dissertationsschrift

thematisiert wird.

3.2. Relevanz informatischer Modelle

Relevanz aus fachwissenschaftlicher Perspektive

Ebene2

Fachwissenschaftliche
Modellebene

K_/

Abbildung 3.2.: Modellebene 2 - Fachwissenschaftliche Modellebene

Das Verstehen und Lésen komplexer Probleme macht einen wesentlichen Teil informa-

tischer Kompetenz aus. Die Modellbildung ist eine unentbehrliche kognitive Fahigkeit

35

zur Bewiltigung von Komplexitat (Hesse, 2008) und hat innerhalb der Informatikstu-
dienginge einen hohen Stellenwert. Dies wird auch durch einschlégige Empfehlungen fiir
Informatik-Curricula bestatigt [Joint Task Force on Computing 2001|, [Gesellschaft fiir
Informatik e.V. (GI) (Hrsg) 2004|, [Fakultédtentag Informatik (Hrsg) 2004].
Insbesondere im Rahmen der Softwaretechnik kommt der Modellierung seit den 1990er
Jahren durch Aufkommen der objektorientierten Analyse- und Designtechniken und der
Unified Modeling Language (UML) ein hoher Stellenwert zu.

»<Modelle sind die Artefakte der Softwareentwicklung [Ebert 2005].

Spétestens aus Perspektive des Model Driven Development und der Model Driven Archi-
tecture (MDD/MDA) hat sich die zentrale Bedeutung der Modellierung im Rahmen der
Softwaretechnik weiter verfestigt [Hesse und Mayr 2008].

Vor allem diese Aussage bekriftigt die enorme Wichtigkeit der objektorientierten Model-
lierung fiir die Informatik und motiviert die Entwicklung eines Kompetenzstrukturmo-
dells fiir diesen Bereich der Informatik voranzutreiben.

Fieber, Huhn und Rumpe sehen die Qualitdt informatischer Modelle sogar als Indikator

fiir Softwarequalitit. Sie ermoglichen eine
e Struktur- und Schnittstellenbeschreibung,

e konstruktive Verhaltensbeschreibung, typischerweise von Zustand und Funktion,

deskriptive Kommunikationsprotokolle und -mechanismen,

Darstellung der logischen sowie physischen Verteilung,

(meist informelle) Organisation und Strukturierung der Anforderungsbeschreibung,
e Modellierung von Aufgaben- und Prozessabldufen und
e Datenmodellierung.

Einen besonderen Stellenwert messen sie in diesem Zusammenhang der Unified Modeling
Language (UML) bei. Diese unterstiitzt den SWE-Prozess mit ihren 13 Modellarten am
umfassendsten [Fieber et al. 2008, S. 408]. In ihrem Beitrag geben sie einen Uberblick,
was Modellqualitidt ausmacht und leisten den Transfer von selbiger zu Softwarequalitét.
Sie postulieren, dass die Qualitit der Modellbildung einen Einfluss auf die Qualitét der
Software und die Planbarkeit des SWE-Prozess hat.

36

,Allgemein anerkannt ist, dass addquate Modellbildung und Analyse der Fé-
higkeiten des Modells sowie die Extrapolation dieser Eigenschaften auf das
zu bildende Softwaresystem einen deutlichen Qualitdtsvorteil und Planungs-
sicherheit liefern kénnen |Fieber et al. 2008, S. 422].“

Relevanz aus fachdidaktischer Perspektive

Ebene3

Vermittlungs-

Modellebene

-

Abbildung 3.3.: Modellebene 3 - Vermittlungs-Modellebene

Im Folgenden sollen mégliche Ansétze zur Legitimation der Modellbildung im Informa-
tikunterricht der Sekundarstufe aufgefiihrt werden:

Thomas zeigt unter Verwendung der allgemeinen Modelltheorie nach Stachowiak und
weiteren Klassifikationsansétzen die inhaltliche Relevanz von Modellen in der Informatik
[Thomas 2002, S. 3]. Er verdeutlicht, dass informatische Modelle ein Bildungsgut mit Bil-
dungswert darstellen, indem er sie hinsichtlich der Allgemeinbildungskriterien von Klafki
und Bussmann /Heymann untersucht. Er sieht seine Arbeit als Ausgangspunkt fiir weitere
Forschungsfragen und fordert, dass weitere Untersuchungen unter Einbeziehung weiterer
Merkmale zur Allgemeinbildung durchgefiithrt werden miissen [Thomas 2002, S. 80]. Er
bewertet seinen Ansatz der Zuordnung von informatischen Modellen als eine Moglichkeit,
den Informatikunterricht im allgemeinbildenden Schulchanon zu legitimieren.

Brinda legitimiert die Einbeziehung von objektorientierter Modellierung in den Infor-

matikunterricht anhand der vier Fundamentalitdtskriterien von Schwill [Brinda 2004,

37

S. 40-41]. Er sieht das Horizontalkriterium als erfiillt, da objektorientierte Sichtweisen
in verschiedenen Teilgebieten der Informatik etabliert sind. Weiterhin sieht er das Ver-
tikalkriterium als erfiillt, da sich Inhalte aus dem Bereich der Objektorientierung auf
verschiedenen Bildungsniveaus vermitteln lassen. Das Zeitkriterium ist erfiillt, da erste
Ansitze zur Objektorientierung bereits in den 1960er Jahren entwickelt wurden. Da sich
objektorientierte Sichtweisen gut als Erklarungsmodell fiir informatische Erscheinungen
eignen, ist das Sinnkriterium ebenfalls erfiillt.

Dariiber hinaus statuiert Magenheim, dass die Thematisierung der objektorientierte Mo-
dellierung sogar das Potential hat, den Informatikunterricht an sich an allgemeinbilden-
den Schulen zu legitimieren: Nach Magenheim verlangen unterschiedliche Diskussions-
beitrage zur Didaktik der Informatik, dass eine Konzentration auf elementare Prinzipien
der Bezugswissenschaft Informatik zu leisten sei. Insbesondere bei der Inhaltsbestim-
mung und Zielsetzung des Informatikunterrichts sollten keine kurzlebigen Modetrends
verfolgt werden. Hierbei nennt er explizit die Prinzipien der Systemgestaltung sowie Mo-
dellierung. Hierbei gibt er gleichzeitig zu bedenken, dass auch Themenbereiche, wie z.B.
die Kommunikation in vernetzten Umgebungen und die Bewertung des Einsatzes von
Informatiksystem im sozialen Kontext im Sinne eines allgemeinbildenden Anspruchs des
Informatikunterrichts mit einzubeziehen sind [Hampel et al. 1999].
Fachwissenschaftliche Argumente fiir eine inhaltlich dauerhafte Etablierung von Objek-
torientierung sind die Sicherheit und Stabilitdt von Software, leichte Wartbarkeit sowie
sich daraus ergebende Vorteile bei Wiederverwendbarkeit und Sicherheit. Insbesondere in
komplexen Softwareprojekten zeigen objektorientierte Maximen wie Kapselung, Abstrak-
tion sowie Vererbung und Polymorphie ihre Vorteile gegeniiber imperativen Konzepten.
Der Ansatz der systemorientierten Didaktik verlangt somit eine Thematisierung sowohl
im wissenschaftspropédeutischen als auch im allgemein bildenden Kontext [Hampel et al.
1999, S. 17].

Zwischenfazit

In Anbetracht dieser fachdidaktischen Beitrige zur informatischen Modellierung lasst
sich feststellen, dass die objektorientierte Modellierung sowohl fiir die Informatik als
Wissenschaft als auch fiir den Informatikunterricht an allgemeinbildenden Schulen von

hoher Relevanz ist.

38

3.3. Ansatze zur Klassifikation von informatischen Modellen

Dieses Kapitel gibt einen exemplarischen Einblick in verschiedene Ansétze zur Klassifika-
tion von informatischen Modellen. Hierbei werden ein fachwissenschaftlicher Ansatz und
ein fachdidaktisch motivierter Ansatz dargestellt. Zielsetzung des Kapitels ist es, eine
mégliche Vorstrukturierung fiir die Dimensionen und Komponenten des Strukturmodells
aufzufinden. Auf dieser Grundlage sollen inhaltliche Themenbereiche ermittelt werden,
die ggf. Hinweise auf typische Kompetenzen fiir die objektorientierte informatische Mo-

dellierung geben kénnen.

Modelle in der Softwaretechnik nach Hesse/Mayr

Hesse und Mayr erértern zunéchst den Modellbegriff in der Softwaretechnik (ausgehend
von Stachowiak) und geben einige Klassifizierungen und Charakterisierungen von Model-
len und Modellierungen innerhalb der Softwaretechnik vor. Diese orientieren sich vorwie-
gend an der Art der modellierten Gegenstéinde und ob diese statischer oder dynamischer
Natur sind. Hierbei liegt ein systemtheoretischer Ansatz zugrunde, der auch als eine theo-
retische Basis bei der Entwicklung von Vorgehensmodellen innerhalb der Softwaretechnik

zu verstehen ist [Hesse und Mayr 2008].

“Den meisten genannten Modellkategorien liegt ein systemtheoretischer An-
satz zugrunde, der bei der Behandlung diskreter dynamischer Strukturen —
wie in der Softwaretechnik iiblich — nahe liegt. Er wurde daher schon relativ
frithzeitig in der Softwaretechnik aufgegriffen [...]. Der systemtheoretische An-
satz wird z.B. bei den 0.g. Prozessmodellen [Wasserfallmodell, Rational Uni-
fied Process| besonders deutlich, wo auch Prozesse als Systeme — bestehend
aus Komponenten und verbunden durch Beziehungen — aufgefasst werden
[Hesse und Mayr 2008, S. 383].

Im Folgenden werden die oben erwdhnten Modell-Klassifikationen und -Charakteristika

aufgefiihrt.

o Statikmodelle: Modellelemente beschreiben zu einem bestimmten Zeitpunkt beob-
achtbare oder beobachtbar gedachte Konstellationen von Gegenstéinden, Beziehun-

gen und sonstigen beschreibenden Elementen.

— Gegenstands-, Struktur-, Entitdts- und Klassenmodelle: Trotz teilweise dyna-
mischer Elemente (z.B. Methoden in Klassendiagrammen) ist die statische

Betrachtungsweise bestimmend.

39

o Dynamikmodelle: Modellelemente reprisentieren einen Vorgang, eine Aktion oder

einen Prozess. Diese sind zeitlichen Verdnderungen unterworfen.

— Vorgehens-, Aktions- und Prozessmodelle: Hierbei geht es vorrangig um die
Betrachtung mehrerer - nicht an einen Zeitpunkt gekoppelter - Konstellationen

und Verlaufe.

— Zustandsmodelle: Bei diesem Modelltyp werden Objekte und Klassen gleichar-
tiger Objekte betrachtet. Zustdnde beschreiben hierbei die Konstellation von
Objekten, wo hingegen Zustandsiiberginge deren dynamische Zusammenhin-

ge darstellen.

Kategorisierung aus fachdidaktischer Perspektive nach Thomas

Thomas untersuchte Skripte aus der Hochschullehre innerhalb verschiedener Teildiszipli-
nen der Informatik. Hierbei hat sich ergeben, dass das Wort ,Modell* in 83% der unter-
suchten Skripte in irgendeiner Flexionsform verwendet wurde [Thomas 2002, S. 48|. Auch
innerhalb dieser fachdidaktischen These wird die inhaltliche Relevanz der informatischen

Modellierung offensichtlich.

,Schliefst man von der Auftrittshiufigkeit des Wortes Modell auf das Verwen-
den von Modellen in der Informatik, so ist dem Modell offensichtlich ein zen-
traler Stellenwert innerhalb der Fachwissenschaft zuzuordnen [Thomas 2002,
S. 48].«

Die Begriffe ;modelliert” oder ,modellieren* tauchten mit einer Héiufigkeit von 61% auf.
Anhand sog. Modifizierer, die dem Begriff “Modell“ hinzugefiigt werden, illustriert Tho-
mas die Vielfdltigkeit des Modellbegriffs in der Informatik anhand unterschiedlichster
Modellbezeichnungen. Hierbei erfolgt die Bezeichnung des Modells anhand einer Meta-
pher (z.B. Call-Back-Modell, Schichten-Modell oder Master-Slave-Modell), anhand eines
Autors (z.B. Markov-Modell, oder Hufmann-Modell) oder dem jeweiligen Einsatzgebiet
des Modells (z.B. Speicher-Modell, Farb-Modell, Simulations-Modell etc.).

Er versteht jene Modifizierer allerdings auch als Mittel zur Prézisierung des Modelltyps
[Thomas 2002, S. 49]:

e nach Art der Zustandsiiberginge
statisch, dynamisch (diskret, kontinuierlich, deterministisch, stochastisch, nichtde-

terministisch), analog, ereignisorientiert.

40

e nach der Sichtweise der Modellierung: abstrakt, objektorientiert, strukturbasiert,
zustandsorientiert, verhaltensbasiert, eigenschaftsbasiert, kompositional, statistisch,

perzeptuell, kognitiv, handlungspsychologisch, minimal.

e nach der inneren Modellstruktur: analytisch, applikativ/funktional, (nicht-)logisch,
assoziativ, hierarchisch, taxonomisch, relational, geschlossen, parallel, Skonomisch,

konzeptuell.

e nach der Natur des Modells: (nicht)materiell, mechanisch, formal, operational, ma-
thematisch, semantisch, implementiert, mental, physiologisch, visuell, parametri-

siert, physikalisch, kinematisch.

Anhand der aus den Skripten aufgefundenen Modifizierer und Modelltypen leitet Thomas
eine Kategorisierung in Form von fiinf Hauptmodelltypen ab [Thomas 2002, S. 49ff]
1. Architekturmodelle
o (theoretisches) Maschinenmodell
— hardware-orientierte Konzepte von Rechnerarchitekturen
— abstrakte, theoretische Automaten (Turingmschine, Automatenmodelle)
e Rechenmodell

— grundlegende Konzepte, die Programmiersprachen zugrunde gelegt werden (imperativ-
prozedural, funktional applikativ, logisch deklarativ, objektorientiert, zustands-

orientiert)
e Programmiermodell
— im Sinne eines Programmierparadigmus
— als abstraktes Maschinenmodell

— als grundlegendes Konzept fiir die Interaktion von parallelen Prozessen (teilweise

als Kommunikationsmodell bezeichnet)

o Referenzmodell

beschreiben Vereinbarungen zu technischen Konzepten und Prinzipien
OSI-Referenzmodell

Client-Server Modell

Farbmodell

2. Vorgehensmodelle
e beschreiben Aktivitaten, die auszufiithren sind, um ein bestimmtes Ziel zu erreichen
e enthalten Hinweise zu erforderlichen oder zu erstellenden Dokumenten
e enthalten Ziele zu einzelnen Phasen/Arbeitsschritten

e geben Hinweise auf einsetzbare Verfahren und Hilfsmittel

41

e beruhen i.d.R. auf bestimmten Sicht- oder Denkweisen (z.B. fiir den Gesamtprozess

der SW-Entwicklung oder fiir einzelne Phasen)

3. Entwurfsmodelle

e stellen die Dokumentation von Ergebnissen der Aktivitdten bei der Erstellung eines

konkreten technischen Problems dar

e konnen in natiirlicher oder grafisch-symbolischer Art und Weise formuliert werden

e Systemmodell

Verwendung in der Automatentheorie in Form einer Mengenstruktur

Verwendung als Modell beliebigen Typs zu einem entwerfenden System

e Modellierungssprache

allgemeine Beschreibungsformen, die in verschiedenen Phasen der Softwareent-

wicklung zum Einsatz kommen
Modelle fiir die Entwurfsphase der Softwareentwicklung

Unified Modeling Language (UML): Sprache zur Veranschaulichung von Er-
gebnissen im objektorientierten SWE-Prozess; besteht aus verschiedenen Dia-

grammtypen zu verschiedenen Sichtweisen auf das System

zu jeder Modellierungssprache existiert i.d.R. ein Metamodell; jenes beschreibt
Syntax, Semantik und Pragmatik der Sprache oder fasst gemeinsame Kompo-

nenten von Modellen zusammen

o Aufgabenmodell

wird basierend auf dem Ergebnis der Analyse einer Aufgabe erstellt
enthélt Angaben zur Reihenfolge von Arbeitsablaufen

relevant innerhalb der Problemanalyse fiir der Entwurfsphase im SWE-Prozess

e Daten(bank)modell

Beschreibung von Daten und ihrer strukturellen/funktionalen Beziehungen un-

tereinander

Relationenmodell/Relationales Datenmodell: alle Daten werden in Form von
mathematischen Relationen représentiert, z.B. Entity Relationship Modell (ER-
Modell), Normalform-Modell

Hierarchisches Modell und Netzwerkmodell: sind im Gegensatz zum relationa-
len Datenmodell nicht mengen- sondern satzorientiert, d.h. um einen Datensatz
zu erreichen muss innerhalb der zugrundeliegenden Struktur von Datensatz zu
Datensatz navigiert werden.

Logisches Datenmodell oder Deduktives Modell: Erweiterung des relationalen
Datenmodells um Deduktionskomponente (auf dem Pradikatenkalkiil basierend)
Objektorientiertes Modell: strukturelle Reprisentationen werden mit der verhal-

tensmafsigen (operativen) Komponenten in einem Objekt verkniipft

42

Objektmodell

— im Softwareentwurf werden die identifizierten Komponenten eines betrachteten

Originals in meinst grafisch-symbolischer Form beschrieben
Komponentenmodell

— Komponente als Teil von (wiederverwendbarer) Software, das eine zusammen-
héngende Funktionalitit hat

— Definition der einzelnen Komponenten eines Systems
— Konfiguration eins Systems aus bereits gegebenen Komponenten
Funktionales Modell
— dient als Ausgangspunkt fiir die Entwicklungsphase
— es werden Objekte ausgewédhlt und deren Methoden bestimmt
Prozessmodell
— Beschreibung der Prozessverwaltung und Implementierung bei Betriebssystemen
— Beschreibung des zeitlichen Verhaltens eines Produktionsprozesses

— kognitionspsychologisches Modell zur Beschreibung des Sprechens im Teilgebiet
der kiinstlichen Intelligenz

Zustandsmodell

— Beschreibung der méglichen Zustéande, die Automaten oder Prozesse einnehmen

kénnen
Ereignismodell
— Beschreibung wie bei Benutzungsschnittstellen Ereignisse bearbeitet werden

— Steuerung der Ereignisbehandlung

4. Untersuchungsmodelle

dienen zur Erstellung von Prognosen fiir Informatiksysteme, Bewertung von Syste-

men zu unterschiedlichen Kriterien (Leistung, Kosten, Auslastung)
zumeist in formaler mathematischer Notation beschrieben
sind von starker Abstraktion, um auch quantitative Aussagen erzielen zu kénnen

Mathematisches Modell: Beschreibt mit abstrakten Symbolen und Notationen Ob-

jekte und deren Zusammenhinge
— Minimales Modell: Beschreibung im Sinne der mathematischen Modelltheorie

— Abstraktes und formales Modell: umfassen mathematische Modelle und Gra-
phen; keine abstrakten Datentypen

— Model Checking: Beweisverfahren zur Verifikation, dass ein bestimmtes Modell

eine Spezifikation erfiillt

43

e Analytisches Modell: gehen oft von Voraussetzungen aus, die ein System nicht erfiillt;

das Systemverhalten wird durch mathematische Grofeen und Beziehungen unterein-

ander beschrieben; im Gegensatz zu numerischen Simulationsmodellen ergeben sich

Zusammenhénge direkt aus dem Modell

Stochastisches Modell: beriicksichtigen zufillig auftretende Ereignisse

Kostenmodell: dienen zur Aufwandsabschitzung (z.B. bei Datenbankzugriffen)

e Simulationsmodell (simulatives Modell): beschreiben in statischer Weise vorrangig

Systemverhalten mittels mathematischer Groflen; enthalten aber auch Variablen, die

sich in Abhéngigkeit von der Zeit dynamisch d&ndern

Diskretes Modell: Modelle, die ihren Zustand nur zu bestimmten Zeiten dndern
Kontinuierliches Modell: Darstellung der Zeit im Modell erfolgt in Form realer
Werte; Zustandsgrofsen sind meist stetige Funktionen der Zeit; konnen typischer-

weise in Form von Differentialgleichungssystemen beschrieben werden.

5. Mentale Modelle

e interne semantische Modelle, die externen semantischen Modellen (z.B. Vorgehens-

modellen oder Entwurfsmodellen) zugrunde liegen; viele psychologische Effekte sind

fiir die Softwaretechnik von Bedeutung

Konzeptuales Modell: Menschen bilden sich konzeptuale (begriffliche) Modelle
von Objekten, die zu bedienen sind und innerhalb derer (sichtbare und unsicht-
bare) Operationen ablaufen; wird verwendet, um Operationen auf dem Objekt

mental zu simulieren

Modellwelt: Verwendung im Sinne einer Sichtweise in der Modellierung; im Be-
wusstsein der Abgrenzung zur Realitit und zu anderen Modellen
Modellvorstellung: stehe i.d.R. fiir Ziele, die das Subjekt mit dem Modell ge-
danklich verbindet

Modellklasse: Modelle werden aufgrund von Gemeinsamkeiten zu Modellklassen

vereint; Klassen werden in der objektorientierten Modellierung zu Modellklassen

zusammengefiihrt

Nach Betrachtung der verschiedenen Modelltypen eignen sich aus Sicht des Autors vor
allem Vorgehensmodelle als strukturgebende theoretisch-normative Grundlage zur Be-
schreibung von Kompetenzen fiir die objektorientierte informatische Modellierung.
Nach Thomas beschreiben Vorgehensmodelle Aktivitidten, die auszufiihren sind, um ein
bestimmtes Ziel zu erreichen. Ferner beschreiben sie Zielsetzungen fiir einzelne Phasen
und Arbeitsschritte und geben gleichzeitig Hinweise auf einsetzbare Verfahren und Hilfs-
mittel [Thomas 2002, S. 52].

Diese Modellcharakteristik ist unter Beriicksichtigung des Weinert’schen Kompetenzver-

stdndnis [Klieme 2004] stimmig um als strukturgebende Grundlage fiir die Formulierung

44

von Kompetenzen zu fungieren. Vorgehensmodelle beschreiben erforderliche kognitive
und nicht-kognitive Fahigkeiten und Fertigkeiten (in Form von Aktivitéten), die ein In-
dividuum zur Problemlésung in variablen Anforderungssituationen einsetzen kann. Die
zu bewiéltigenden variablen Anforderungssituationen werden innerhalb der Vorgehens-

modelle durch die unterschiedlichen Phasen der Softwareentwicklung ausgedriickt.

3.4. Informatische Vorgehensmodelle als strukturgebende

theoretische Grundlage

3.4.1. Vorgehensmodelle in der Softwaretechnik

Nach Sichtung der unterschiedlichen Klassifikations- und Kategorisierungsansétze fiir in-
formatische Modelle, scheinen informatische Vorgehensmodelle in der Softwaretechnik als
geeignete theoretische Grundlage zur Strukturierung informatischer Kompetenz fungie-
ren zu kdnnen.

Bevor eine Vorstellung verschiedener Vorgehensmodelle innerhalb der Softwareentwick-

lung erfolgt, ist es sinnvoll den Begriff ,Softwaretechnik® zu definieren.

wLielorientierte Bereitstellung und systematische Verwendung von Prinzipien,
Methoden und Werkzeugen fiir die arbeitsteilige, ingenieurméfige Entwick-
lung und Anwendung von umfangreichen Software-Systemen [Balzert 2000,
S. 36].

Balzert betont in seinem Lehrbuch, dass die Softwaretechnik stets die Zielsetzung ver-
folgt, umfangreiche Software, die arbeitsteilig und ingenieurméfig entwickelt wird, um die
Ziele des Kunden bzw. Auftraggebers zu erreichen. Hierbei werden Prinzipien (z.B. Ab-
straktion, Strukturierung, Hierarchisierung, Modularisierung) und Methoden (d.h. plan-
mékig angewandte, begriindete Vorgehensweisen) zur Erreichung von festgelegten Zielen
verwendet [Balzert 2000, S. 36].

Im Folgenden werden die wesentlichen Phasen der Softwareentwicklung, die in jedem
Softwareprojekt (Neu- oder Weiterentwicklung) und unabhéngig vom gewéhlten Vorge-
hensmodell relevant sind, aufgefiithrt [Kleuker 2011, S. 24ff].

o Anforderungsanalyse
Die Zielsetzung dieser Phase ist es zu verstehen, welche Ziele und Ergebnisse der
Kunde wiinscht. Hierbei kommt dem Dialog zwischen Kunden und Softwareent-
wicklern eine hohe Bedeutung zu. Die Qualitét dieser Phase (und dieser Kommuni-

kation) beeinflusst mafsgeblich das Gelingen eines Softwareentwicklungs-Projekts.

45

Grobdesign

Die Phase des Grobdesigns fokussiert die Verwandlung der zuvor aufgenommenen
Anforderungen in ein unmittelbar fiir die Softwareentwicklung einsetzbares Modell
zu verwandeln. Hierbei gilt es, informelle Anforderungen zu prézisieren und eine

grundsétzliche Software-Architektur festzulegen.

Feindesign

Im Rahmen dieser Phase erfolgt die Verfeinerung und Optimierung der Modelle
des Grobdesigns. In diesem Kontext werden genaue Schnittstellen zwischen den
verschiedenen Software-Komponenten definiert und das Design, welches hierbei als

innere Struktur der Software zu verstehen ist, entwickelt.

Implementierung
In der Implementierungsphase erfolgen die Programmierung der Software und die
Umsetzung der Modelle aus der Feindesign-Phase. Ein wesentlicher Meilenstein

dieser Phase ist die Vorlage einer lauffihigen Software.

Test und Integration

Hierbei erfolgt die Zusammensetzung der einzelnen Programmkomponenten zu ei-
nem Softwaresystem, dem eigentlichen Software-Produkt. In dieser Phase muss
zudem sichergestellt werden, dass die Software-Komponenten korrekt miteinander

agieren und die Anforderungen des Kunden an das Produkt umgesetzt wurden.

Qualitdtssicherung

Die Qualititssicherung ist eng mit den oben dargestellten Phasen verkniipft. Hierbei
muss fiir jedes Teilprodukt innerhalb des SWE-Prozess sichergestellte werden, dass
die vor dem Projekt definierten Qualitdtskriterien erfiillt sind. Folgephasen diirfen
erst dann beginnen, sobald die jeweiligen Qualitétskriterien der Vorphase erreicht

sind.

46

Anforderungsanalyse s 2

e

ﬁ

Implementierung (s 4

Test & Integration (e 4

Abbildung 3.4.: Allgemeine Phasen des Software Engineerings

[=T2]
c
=
—
(]
=
=
(%]
%]
4=
(0
=
E
)

Wasserfallmodell

Die Bezeichnung Wasserfall begriindet sich in dessen Eigenschaft, dass die oben be-
schriebenen Phagen der Softwareentwicklung nacheinander durchlaufen werden. Die ein-
zelnen Phasen Anforderungsanalyse, Grobdesign, Feindesign, Implementierung sowie Test
und Integration haben die jeweiligen Ergebnisse der Vorphase als Ausgangspunkt [Royce
1970]. Davon ausgehend ist eine grobe Projektplanung anhand der beschriebenen Phasen
einfach machbar, da jede der Phasen mit einem Meilenstein abschlieft. Bei jedem Meilen-
stein miissen die Ergebnisse der abgeschlossenen Phase kritisch gepriift werden. Davon
ausgehend ist die Entscheidung zu treffen, ob und in welcher Form das Projekt wei-
terlauft. Da im Rahmen der Entwicklung von hochkomplexen Software-Systemen nicht
sichergestellt werden kann, dass alle Phasen auf Anhieb erfolgreich abgeschlossen werden,
wurde das Wasserfallmodell um die Moglichkeit ergénzt, dass man bei offenen Proble-
men in eine vorherige Phase zuriickspringen kann, um mdégliche Probleme innerhalb dieser
vorherigen Phase zu 16sen.

Trotz dieser Optimierung verlangt das Wasserfallmodell, dass sdmtliche funktionale An-
forderungen des kiinftigen Benutzers nach dem ersten Durchlauf der Phase vollstindig
vorliegen. Dies widerspricht sich allerdings mit Erfahrungen aus der Praxis bei der Ent-
wicklung komplexer Software-Systeme. Hierbei kommt es immer wieder vor, dass sich die

Anforderungen des Kunden &ndern.

47

SYSTEM
REQUIREMENTS

~
\ l SOFTWARE
. v\i\

ANALYSIS

Y-

"~

PROGRAM
DESIGN

X~

CODING

=\

TESTING

A

)

OPERATIONS

Abbildung 3.5.: Wasserfallmodell [Royce 1970, S. 330]

48

Der Projekterfolg verlagert sich dann auf eine Umsetzung dieser gedinderten Anforderun-

gen zur Zufriedenheit des Kunden.

LAber alle groferen Software-Projekte haben gezeigt, dass diese Annahme
falsch ist. Es ist praktisch unmdéglich, eine vollstdndige Menge von Anforde-
rungen zu einem frithen Projektzeitpunkt zu formulieren [Kleuker 2011, S.
26]

Ein weiteres Problem bei der Verwendung des Wasserfallmodells als Grundlage zur Pla-
nung von SWE-Projekten ist das Phinomen, dass Projekte bis kurz vor Projektabschluss
wie ein Erfolg aussehen und innerhalb der letzten beiden Phasen (Test und Integration)
zu erheblichen Zeitverzogerungen kommen. Die Ursache liegt hierbei nach Kleuker in
der Tatsache, dass der Ubergang von einer unvollstindigen Anforderungsanalyse (z.B.
aufgrund von Termindruck) in die Grobdesign Phase augenscheinlich wenige Proble-
me bereitet. Ahnlich verhilt es sich beim Ubergang vom Grobdesign in das Feindesign,
da jene Phasen fast ausschlieflich auf Papier mit Texten und Modellen dokumentiert
werden. Erst im Rahmen der Implementierung werden Probleme durch fehlende oder
unzureichende Spezifikationen deutlich. Durch den dadurch implizierten Nachholbedarf
von versdaumten Tétigkeiten aus den vorherigen Phasen gerdt das Projekt zeitlich und

ressourcenmifig aus den Fugen [Kleuker 2011].

Prototypische Entwicklung

Die prototypische Softwareentwicklung stellt eine Verbesserung des Wasserfallmodells
dar: Vor dem eigentlichen Projekt wird hier ein Prototyp der Software (bzw. von Teilen
der Software) mit der Zielsetzung entwickelt, moglichst viele potentielle Probleme im
Vorfeld des eigentlichen Projekts zu finden. Hierbei ist beispielsweise ein Prototyp einer
Benutzer-Oberfliche des zu entwickelnden Softwaresystems besonders typisch. In die-
sem Zusammenhang wird die spitere Funktionalitat der beauftragten Software sichtbar,
wobei die dahinter liegende Funktionalitit der einzelnen GUI-Elemente noch nicht ,aus-
programmiert” ist. Der Ansatz eignet sich folglich dazu, mit dem Kunden zu entscheiden,
ob die Bestrebungen der Softwareentwicklung in die richtige Richtung gehen und mit der
Zielsetzung des Software-Systems zu vereinbaren sind. Ein weiteres Einsatzgebiet von
Prototypen ist der sog. technische Durchstich. Hierbei besteht die Zielsetzung im Sinne
einer technischen Machbarkeitsstudie die einzelnen Technologien auf Realisierbarkeit zu
untersuchen und diese sicherzustellen [Bischofberger und Pomberger 1992].

Dem entscheidenden Problem im Ansatz des Wasserfallmodells kann aber auch durch den

Einsatz von Prototypen nicht beigekommen werden: Die Entwicklung von Prototypen im

49

Vorfeld des SWE-Projekts sieht auch keine Anderungen der Kundenanforderungen im

spateren Verlauf des Projekts vor.

Prototyp

Anforderungsanalyse

Grobdesign

4 Anforderungsanalyse

Grobdesign

Feindesign Feindesign

|

Implementierung

Test & Integration

Implementierung

Test & Integration

Abbildung 3.6.: Prototypisches Vorgehensmodell

Iterativ/Inkrementelle Vorgehensmodelle

Die Begriffe iterativ und inkrementell haben im Kontext des unten dargestellten Vorge-

hensmodells folgende Bedeutung:

SWenn man den Begriff Iteratives Vorgehen formal anwendet, bedeutet er,
dass ein vorgegebenes Problem durch wiederholte Bearbeitung geldst wird.
Der Zusatz inkrementell bedeutet, dass bei jedem Durchlauf nicht nur das
existierende Ergebnis verfeinert wird, sondern |[...| neue Funktionalitidt hinzu-
kommt [Kleuker 2011, S. 30].“

Iterative Vorgehensmodelle sehen die von der prototypischen Entwicklung bekannte Wie-
derholung der Phasen mehrfach vor. Die jeweiligen Phasen werden in einer Schleife durch-
laufen und enden mit Fertigstellung des Produkts. Hierbei besteht die Zielsetzung, mit
jedem Schleifendurchlauf die Ergebnisse des vorherigen Durchlaufs zu verfeinern und zu

optimieren.

20

4|_| |

Iteration 4

[OTest & Integration

Iteration 3 r @ Implementierung

M Feindesign

M Grobdesign

Iteration 2
M Analyse
Iteration 1

Relevanz der jeweiligen Phase

Abbildung 3.7.: Tterativ- /Inkrementelles Vorgehensmodell

Die Abbildung 3.7 verdeutlicht beispielhaft, dass sich der Schwerpunkt der einzelnen Pha-
sen innerhalb der verschiedenen Iterationen verschiebt. Wo zu Projektbeginn moglichst
viele Anforderungen aufgenommen werden ist zu einem spéteren Zeitpunkt im Verlauf des
Projekts die Implementierung von deutlich héherer Relevanz. Ein kennzeichnendes Merk-
mal dieses Vorgehensmodells ist das mehrmalige Durchlaufen aller Phasen. Demgem#f
umfasst auch die erste Iteration eine Implementierungs- und Testphase. Hierdurch er-
moglicht der iterative Ansatz Probleme friihzeitig zu erkennen und diese bei der Planung
der folgenden Iteration mit zu beriicksichtigen. Wesentlicher Unterschied zum Wasser-
fallmodell und der prototypischen Entwicklung ist die Moglichkeit, auf Anderungen von
Anforderungen (Requirements) zu reagieren.

Die Tatsache, dass stets zeitliche Puffer fiir die Reaktion auf Probleme und Risiken
fiir die jeweilige Iteration mit eingeplant werden miissen, macht in Form von schlechter
Planbarkeit einen wesentlichen Nachteil dieses Ansatzes aus.

Der Zusatz inkrementell stellt — wie im obigen Zitat erldutert — eine Erweiterung der Soft-
ware in jedem Durchlauf der Phasen dar. Dies kann bedeuten, dass ein erstes Inkrement
die technischen Herausforderungen der Software umfasst und in einem weiteren Inkre-

ment insbesondere die Hauptanforderungen des Kunden umgesetzt werden. Die Planung

ol

von Folgeinkrementen kénnten dann ggf. an neu entdeckten Risiken oder dringlichen
Kundenwiinschen orientiert werden.

Der inkrementelle Bestandteil des iterativ-inkrementellen Ansatzes erfordert fiir jedes
Inkrement eine neue Planung. Diese ganzheitliche Neuplanung von der Anforderungs-
analyse bis hin zur Test- und Integrationsphase ermdglicht allerdings im Gegenzug den

flexiblen Umgang mit sich dndernden Anforderungen.

V-Modell

Das V-Modell legt neben den Phasen des Systementwurfs einen besonderen Wert auf die
Schritte der Qualititssicherung [Droeschel 1998§].

validi Abnahme-
Anforderungsanalyse g SXIISELELLELE i

Funktionaler ke Validierung
Systementwurf

I_"

Technischer Validierung Integrations-
Systementwurf test

= ;

Abbildung 3.8.: V-Modell

Im linken Bereich der Abbildung 3.8 werden die eigentlichen SW-Entwicklungsschritte
(die Konstruktion) beschrieben. Diese umfassen die Anforderungsanalyse, den funktiona-
len Systementwurf (enthélt die Schritte des Grobdesigns), den technischen Systement-
wurf (auf welchem System soll die Software laufen) und die Komponenten-Spezifikation
(enthélt die Schritte des Feindesigns). Die gestrichelten Linien zeigen, dass nach jeder
Entwicklungsphase gepriift wird, ob die Ergebnisse der vorherigen Phase akzeptabel sind
oder ggf. verbessert werden miissen.

Im Anschluss an die Phasen der Konstruktion erfolgt die Programmierung des Software-

Systems.

92

Der rechte Bereich des V-Modells (innerhalb der Integration) unterscheidet verschiedene
Arten des Softwaretests und der Qualitédtssicherung. Die einzelnen Testphasen sind mit
den zugehorigen Phasen der Konstruktionsphase verkniipft und iiberpriifen diese [Droe-
schel 1998|.

e Im Komponenten-Test wird gepriift, ob die entsprechenden Aspekte, die in der
Komponenten-Spezifikation definiert wurden, addquat umgesetzt worden sind. Nach
dem Test der einzelnen Softwarekomponenten werden diese zum Gesamtsystem zu-

sammengesetzt und integriert.

e Bei dem Integrationstest zeigt sich, ob die Phase des technischen Systementwurfs
erfolgreich verlaufen ist. Der Systemtest verfolgt die Zielsetzung, die Lauffihigkeit
des gesamten Systems nachzuweisen und in erster Instanz (hier noch ohne Betei-
ligung des Kunden/Auftraggebers) zu priifen, ob die Anforderungen des Kunden

umgesetzt worden sind.

o Im Abnahmetest erfolgt dhnlich wie im Systemtest eine Abnahme der Kundenan-

forderungen. Im Gegensatz zum Systemtest erfolgt dieser Test mit dem Kunden.

Das V-Modell sollte inshesondere fiir staatliche I'T-Projekte der Bundesrepublik Deutsch-
land zum Einsatz kommen. Hierbei bestand die Zielsetzung, Gefahren fiir I'T-Projekte
aus Sicht des Auftraggebers zu minimieren. Dementsprechend enthélt das V-Modell Vor-
gaben zu den jeweiligen Prozessen, die innerhalb der Projekte geplant werden miissen
und welche Artefakte zu welchem Zeitpunkt vorliegen miissen [Kleuker 2011, S. 32]. Das

V-Modell der Bundesrepublik Deutschland wurde in mehreren Iterationen entworfen.

o V-Modell 92
Das V-Modell 92 orientiert sich vorwiegend am Wasserfallmodell und war im Hin-
blick auf aufkommende iterativ-inkrementelle Vorgehensweisen innerhalb des Software-

Engineerings nicht mehr zeitgeméf.

o V-Modell 97
Charakterisierend fiir das V-Modell 97 ist insbesondere eine erste Offnung gegen-

iiber weiteren Vorgehensmodellen des Software-Engineerings.

o V-Modell XT
Das V-Modell XT (Extreme Tailoring) wurde im Gegensatz zum V-Modell 97 we-
sentlich weiterentwickelt und fiir weitere Anwendungsszenarien getffnet. Es wird in

kiirzeren Zyklen aktualisiert und weiterentwickelt.

23

Rational Unified Process

Der Rational Unified Process (RUP) wurde von Booch, Rumbough und Jacobsen entwi-
ckelt. Jene waren auch federfithrend an der Entwicklung der Unified Modeling Lanugage
(UML) beteiligt. Ausgehend von der Erkenntnis, dass unter Zuhilfenahme der UML un-
terschiedliche erfolgreiche Vorgehensstrategien zur Entwicklung von Software-Systemen
méglich sind, und diese Vorgehensmodelle Gemeinsamkeiten aufwiesen, wurde der RUP
auf Grundlage von best practices des SW-Engineering entwickelt. Der RUP sieht die Be-
nutzung von SW-Werkzeugen der Firma IBM-Rational vor, kann aber unabhingig davon
als Prozessmodell im SW-Engineering verstanden werden [Rational Software Corporation
IBM. 1998|.

Zielsetzung und "Best Practices"

Der RUP versteht sich als Ansatz um Aufgaben und Verantwortlichkeiten im Rahmen
von Softwareentwicklungsprozessen innerhalb einer Organisation zu verteilen. Hierbei
besteht die Zielsetzung, einerseits ein Prozess-Framework zur Entwicklung qualitativ
hochwertiger Software zur Verfiigung zu stellen, die den Anforderungen der Benutzer
gerecht werden und andererseits den Softwareentwicklungsprozess in einem vertretba-
ren zeit- und kosteneffizienten Rahmen zu absolvieren. Die stetige Weiterentwicklung des
RUP wird durch IBM - Rational Software in Zusammenarbeit mit Kunden und Partnern
vorangetrieben. Hierbei liegt der Fokus auf der stindigen Weiterentwicklung des Prozess-
Frameworks, sodass jenes stets die aktuellen Erkenntnisse und in der Praxis bewéhrte
Vorgehensweisen widerspiegelt und umfasst [Rational Software Corporation IBM. 1998|.
RUP hat die Zielsetzung, die Produktivitit in Teams, in dem jedes Teammitglied der
Zugang zu einer gemeinsamen Wissensbasis (Zielbeschreibungen, Vorlagen, etc.) gewihrt
wird, zu erhthen. Unabhéngig von den jeweiligen Aufgaben der Teammitglieder soll si-

chergestellt werden, dass alle Teammitglieder
e cine gemeinsame Sprache und Terminologie verwenden.
e von einem gemeinsamen Prozess ausgehen.
e die gleiche Sicht auf die Softwareentwicklung haben.

Der RUP unterstiitzt die Frzeugung und Pflege von Modellen. In diesem Zusammenhang
soll keine sinnlose Anh&ufung von Modellen unterstiitzt werden, sondern eine semantisch
moglichst umfangreiche Reprisentation einer Software im Entwicklungszustand. In die-

sem Zusammenhang gibt RUP Anleitung und Hinweise fiir die effektive Verwendung der

o4

UML. Als technisches Hilfsmittel umfasst das RUP-Prozessframework Werkzeuge zur Un-
terstiitzung des SWE-Prozess. Hierbei kommen Werkzeuge zur visuellen Modellierung,
Programmierwerkzeuge und Werkzeuge zum Softwaretest zum Einsatz.

Eine weitere wichtige Zielsetzung, die aus Sicht des Autors auch die Verwendung des RUP
als theoretische Grundlage zur Entwicklung von Komponenten und Dimensionen eines
Kompetenzstrukturmodells legitimiert, ist die dynamische Konfigurierbarkeit, die dieses
Vorgehensmodell charakterisiert. Laut RUP-Zielsetzung ist selbiger sowohl fiir kleine als
auch fiir groke Entwicklungsteams und Organisationen geeignet und entsprechend an-
passbar. RUP zeichnet sich dariiber hinaus durch eine einfache und klar strukturierte
Prozess-Architektur aus. Diese kann auch mittels eines Prozess-Entwicklungs- Werkzeugs
auf die Anforderungen einer Organisation angepasst werden [Rational Software Corpo-
ration IBM. 1998, S. 1].

Das wohl markanteste Charakteristikum des RUP ist der effektive Einsatz von etablierten
Vorgehensweisen bzw. -mustern aus der Softwareentwicklungspraxis. Hierbei handelt es
sich um die folgenden sechs best practices [Rational Software Corporation IBM. 1998, S.
2]

1. Develop Software Iteratively
Wie zuvor beschrieben ist es bei komplexer Software fast aussichtslos folgenden

sequentiellen Ablauf bei der Softwareentwicklung zu verfolgen:
e Das Problem definieren
e Das Design der Losung entwerfen
e Die Software zu implementieren
e Die Software zu testen
Dementsprechend verfolgt der RUP einen iterativen Ansatz, der es ermdglicht,
e cin Problem sukzessive zu verstehen und

e durch sukzessive Verfeinerung der zu entwickelnden Software zu einer effekti-

ven Losung zu kommen.

Der RUP offeriert einen interaktiven Losungsansatz, der die Benutzer mit in den
SW-Entwicklungsprozess einbezieht, um mogliche Risiken im Projekt friihzeitig
zu erkennen und zu minimieren. Dies wird dadurch gewdhrleistet, dass stdndig
ausfithrbare Prototypen der Software (auch dem Kunden) zur Verfiigung stehen und
somit eine kundenseitige Weiterentwicklung durch Tests und Feedback stets méglich
ist. Dieser interaktive Ansatz erleichtert zudem den Umgang mit Anderungen in

Anforderungen, gewiinschten Produkteigenschaften und Zeitplanen.

29

2. Manage Requirements
Der RUP umfasst Techniken um benétigte Funktionalitdten und Grenzen in der
Umsetzbarkeit eines Software-Systems aufzufinden, zu organisieren und zu doku-
mentieren. Er beinhaltet zudem das Change Management also den Umgang mit
Change Requests und deren Dokumentation. Zur Ableitung von funktionalen An-
forderungen setzt der RUP auf die Entwicklung Use Cases und Geschéftsprozessen
in Kommunikation mit dem Kunden. Diese kénnen das Software-Design, die Im-
plementierung und das Testen von Software so beeinflussen, dass das Endprodukt
den Anforderungen des Kunden geniigt. Zudem konnen diese als Leitfaden fiir das

fertige Produkt und deren Entwicklung dienen.

3. Use Component-based Architectures
Das im RUP empfohlene Vorgehensmodell akzentuiert die frithe Entwicklung eines
robusten, lauffahigen Basis-Systems. Hierzu gibt das Framework Hilfestellung um
die folgenden Zielsetzungen an eine Software zu erreichen.
e flexibel verdnderbar
e intuitiv verstidndlich

e hoher Wiederverwendungswert

Die vorgeschlagene komponentenbasierte Systemarchitektur sieht Software-KKomponenten
als nicht triviale Module oder Subsysteme, die einen bestimmten Zweck erfiillen.
Hierzu offeriert der RUP einen systematischen Ansatz, um eine Architektur zu de-
finieren, die sich sowohl aus neuen als auch aus bereits bestehenden Komponenten
zusammensetzt (adhoc/Komponenteninfrastruktur: CORBA, COM, etc.).

4. Visually Model Software
Der RUP zeigt auf, wie Software visuell modelliert werden kann, um deren Struktur
und Verhalten zu illustrieren. Dies umfasst das Ausblenden von Details und die

Verwendung von Syntaxbausteinen, die zu Quellcode konsistent sind.

5. Verify Software Quality
Schlechte Performance und die Zuverldssigkeit sind Faktoren, die die Akzeptanz
von Software entscheidend hemmen. Folglich sollte die Qualitét von Software unter

Mafgabe der folgenden Kriterien iiberpriift werden:
e Umsetzung der Anforderungen,
o Zuverlassigkeit,

e Funktionalitit sowie

26

e Anwendungs- und Systemperformance.

Der RUP unterstiitzt die Entwickler dahingehend bei der Planung, Implementie-
rung sowie der Ausfithrung und Evaluation der spezifischen Tests. Dariiber hinaus
sieht der RUP die Integration des Qualitdtsmanagements in jeder Entwicklungs-

phase vor sowie die Einbindung sdmtlicher beteiligter Entwickler.

6. Control Changes to Software
Hierbei geht es um die Fahigkeit des Frameworks, Changes bzgl. Software zu ver-
walten und sicherzustellen, dass diese fiir Antragsteller des Change Requests akzep-
tabel sind. Insbesondere in einer System-Umgebung, in der Verdnderungen unab-
wendbar sind, ist es von essentieller Wichtigkeit, Anderungen (=Change Requests)
kontrolliert in die Wege leiten zu konnen. Insbesondere um eine erfolgreiche itera-
tive Entwicklung zu ermdglichen, umfasst der Prozess der Aufnahme von Change

Requests, deren Kontrolle und Uberwachung.

Weiterhin bietet das RUP-Framework die Moglichkeit, Entwickler von Anderun-
gen anderer Entwickler zu isolieren, die Verénderungen von Software-Artefakten zu
kontrollieren (z.B. durch Modelle, Dokumente, etc.) und verhilft Teams als Einheit
zu arbeiten, indem eine automatisierte Integration und Kompilierung von Software-

Komponenten erfolgen kann.

Dimensionen des RUP

Der Rational Unified Process stellt sich als zweidimensionales Prozessmodell dar.

Organization along time

Phases
Core Process Workflows |ncepﬁon|E:a|mnon| Consiruction | Transition

Business Modeling ... | e NI — :

Requirements -
I 1
Analysis & Design R — :
Qrganization ﬂ
along content| ~ 'mplementation.... ; : .
Test o e
Deployment..___ . L : N

Core Supporting Workflows 0 I 1

Configuration & Change la1gl‘r1_t__.:_-_
1]

Project Management _____ — | —
Environment N
plﬁin'lla’yl ine-.| ter I iter. | ter. ‘ iier.l iter. | 'ter.l
feration(s) © #1 | 2 | #n | #n+1 @2 #m | #med
Iterations

The Iterative Model graph slhows how the process is structured along two dimensions.

Abbildung 3.9.: RUP-Dimensionen [Rational Software Corporation IBM. 1998, S. 3|

o7

Horizontale Dimension

Die sog. Zeitdimension repriisentiert den Software-Lebenszyklus in Form von sog. cy-
cles. Jeder Zyklus steht fiir die Entwicklung einer neuen Ausbaustufe des Produkts.
Jeder Durchlauf eines Zyklus umfasst die Phasen Inception Phase, Elaboration Phase,
Construction Phase und Transition Phase. Jede dieser Phasen dient einem bestimmten
Zweck und schliefft mit einem explizit definierten Meilenstein. An diesem Punkt miissen
wesentliche und kritische Entscheidungen getroffen werden [Rational Software Corpora-
tion IBM. 1998, S. 3ff].

Major Milestones

NS

Inn:eptlun| Elahoratmn Construction | Tran5|t|on

fJ’J’.T'l‘I::-,".r

Abbildung 3.10.: RUP-Meilensteine & Software-Lebenszyklen |[Rational Software Corpo-
ration IBM. 1998, S. 3]

Inception Phase

Wiéhrend dieser Phase wird ein sog. Geschéftsfall (business case) fiir das zu entwickelnde
System erstellt und der Projektscope abgesteckt. Hierzu miissen alle externen Akteure,
mit denen das System interagiert, herausgefunden werden. Dies umfasst insbesondere
das Ableiten sdmtlicher Use Cases sowie die Beschreibung der wichtigsten Use Cases. Der
Geschiftsfall beinhaltet zudem Erfolgskriterien, Risikoabschitzungen, Abschitzungen zu
den bendtigten Ressourcen sowie ein Vorgehensmodell in Form eines Phasenplans mit
Meilensteinen.

Ergebnisse und Ziele der Phase:
e Visions-Dokument mit Kernanforderungen und Grenzen des Projektscopes
e initiales Use Case Modell (10-20% vollstiandig)
e initialer Projekt-Glossar

e cin initialer Geschéftsfall (beinhaltet Geschéftszusammenhang, Erfolgskriterien und

finanzielle Prognosen)

28

e Risikoeinschatzung
e Projektplan, der Phasen und Iterationen beinhaltet
e Geschiftsmodell, sofern erforderlich
e cin oder mehrere Prototypen
Erfolgskriterien zum Erreichen des Meilensteins Lifecycle Objectives:

e Kenntnis/Vertrautheit relevanter Personen mit Projektgegenstand sowie Kosten-

und Zeitabschitzung
e Verstindnis der Anforderungen, wie in den Use Cases vermittelt

o Plausibilitdt der Kosten-/Zeitabschitzungen, Prioritdten und Risiken des Entwick-

lungsprozesses
e Bisherige getdtigte und geplante Ausgaben

An dieser Stelle kann das Projekt abgebrochen werden oder eine Neukonzeption ange-

stoften werden.

Elaboration Phase

Innerhalb dieser Phase wird die Domé&ne des Problembereichs analysiert, eine geeignete
Systemarchitektur festgelegt, ein Projektplan erstellt und Aspekte von hohem Risiko aus
dem Projektumfang entfernt. Um diese Ziele umzusetzen, muss man einen umfassenden
und detaillierten Blick auf das zu erstellende Software-System haben. Entscheidungen
hinsichtlich einer geeigneten Systemarchitektur miissen ausgehend vom Gegenstandsbe-
reich und dessen Abgrenzung, den Hauptfunktionalitdten und nicht-funktionalen Anfor-
derungen (z.B. Performanz) an das zu entwickelnde System getroffen werden. Die Phase
wird laut RUP- Whitepaper als kritischste der vier Phasen eingeschétzt mit deren Ab-
schluss ein Grofsteil der Entwicklungsarbeiten abgeschlossen ist. Charakterisierend fiir
diese Phase ist die Entscheidung, ob man die Folgephasen construction & transition wie
geplant durchfiihrt oder nicht. Hier erfolgt der Ubergang von einer leichten, wenig kos-
tenden und kaum riskanten Phase zu einer teuren, risikoreichen Phase. Die Aktivitdten
der inception phase stellen trotz etwaiger Verdnderungen sicher, dass die Architektur-
Planungen, Anforderungen und Plidne zur Vorgehensweise so stabil sind, dass Risiken

gemindert werden und verlédssliche Kosten- und Zeitprognosen gemacht werden kénnen.

29

Ein derartiger Grad an Verldsslichkeit ist erforderlich, um einer preislich fixierten Kon-
struktionsphase zuzustimmen und diese durchzufiihren.

In der Ausarbeitungsphase entsteht innerhalb von einer oder mehrerer Iterationen ein
ausfiihrbarer Architektur-Prototyp. Dieser umfasst die wesentlichen Use Cases der incep-
tion phase. Weitere Wegwerf-Prototypen kénnen dabei behilflich sein, Risiken hinsichtlich
Anforderungen und Design zu minimieren. Sie konnen als technische Machbarkeitsstudie
fiir bestimmte Elemente des SW-Systems fungieren und zur Demonstration bei Investo-
ren, Endkunden und Benutzern eingesetzt werden.

Ergebnisse und Ziele der Phase:

e Use Case Modell (mehr als 80% fertiggestellt), das sdmtliche relevante Falle und

Akteure identifiziert und fast alle modellierten Use Cases enthalt

Nicht funktionale Anforderungen

Software- Architektur-Beschreibung

gesicherte Risikoliste

Entwicklungsplan fiir das gesamte Projekt inkl. eines groben Projektplans, der die

Iterationen und die jeweilig dazugehorigen Evaluationskriterien umfasst

Erfolgskriterien zum Erreichen des Meilensteins Lifecycle Architecture:
Zu diesem Zeitpunkt werden die detaillierten Systemzielsetzungen, Sichtweisen, Archi-
tekturentscheidungen und Hauptrisiken untersucht. Hierbei ergeben sie die folgenden

Evaluationskriterien:
e Ist die Vision fiir das Projekt gefestigt?

e Besteht eine stabile Architektur?

e Zeigen demonstrative Ausfithrungen von Prototypen, dass problematische/geféhr-

dende Aspekte erkannt und glaubwiirdig gelst wurden?
e Sind die Planungen fiir die Konstruktionsphase akkurat und ausreichend detailliert?

e Sind die fiir das System relevanten Personen mit der Vision, dem Plan zur Ent-

wicklung des Systems in Bezug auf die beschlossene Architektur einverstanden?

e Ist das Verhiltnis der gemachten Ausgaben in Bezug auf die geplanten Ausgaben

akzeptabel?

Falls dieser Meilenstein nicht erreicht wird, kann das Projekt abgebrochen oder neu

konzipiert werden.

60

Construction Phase

Innerhalb der Konstruktionsphase werden alle noch ausstehenden Komponenten und An-
wendungen entwickelt und in das Produkt integriert. Es werden dariiber hinaus alle
Features griindlich getestet. Innerhalb der Phase vollzieht sich ein Wandel des Entwick-
lungsgegenstands von intellektuellem Eigentum wihrend der Inception- bzw. Elabora-
tionphase zu einsetzbarem praxistauglichen Produkten wihrend der Construction- bzw.
Transfer-Phase. Viele Projekte sind von solch grofem Umfang, dass eine parallele Weiter-
entwicklung des Systems moglich ist. Eine derartige Entwicklung kann die Verfiigbarkeit
von praxistauglichen Releases deutlich erh6hen. Im Umkehrschluss erhoht sich allerdings
auch die Komplexitdt im Hinblick auf das Ressourcenmanagement und die Synchronisa-
tion der Entwicklungsprozesse.

Ergebnisse und Ziele der Phase:

e ein fertiges Software-Produkt, das fiir die Benutzung von Endbenutzern freigegeben
ist
e Software-Produkt integriert in eine adiquate Plattform

e Bedienungsanleitungen / Release Notes

Erfolgskriterien zum Erreichen des Meilensteins Initial Operational Capability:

Zu diesem Zeitpunkt wird entschieden, ob es mdglich ist, die Software zur Benutzung an
die Endbenutzer freizugeben, ohne das Projekt einem hohen Risiko auszusetzen. Diese
Ausbaustufe wird haufig als beta-release bezeichnet. Hierbei ergeben sich die folgenden

Evaluationskriterien.

o Ist das Produkt ausgereift genug, um in den Benutzer-Szenarien verwendet zu wer-

den?

e Sind die fiir das System relevanten Personen in der Lage, Nutzer der Software zu

sein?

e Ist das Verhéltnis der gemachten Ausgaben in Bezug auf die geplanten Ausgaben

immer noch akzeptabel?

Wenn das Projekt diesen Meilenstein nicht erreicht, muss die Uberfithrung (Transition)

um ein Release verschoben werden.

61

Transition Phase

Zweck der Transition-Phase ist die Uberfiihrung der Software in die Benutzer Commu-
nity. Sobald die Verwendung der Software begonnen hat, werden die Entwickler dazu
veranlasst, neue Releases herauszubringen, Bugfixes zu implementieren und Funktionen
zu vervollstdndigen. Die Phase sollte beginnen, sobald eine Basis der Software derart
ausgereift ist, um in der Benutzerdomine eingesetzt werden zu kénnen. Hierzu ist es
erforderlich, dass ein Bereich der Software finalisiert wird und eine akzeptable Qualitét
aufweist; des Weiteren sollte dieser Bereich fertig dokumentiert sein, damit die Transition-

Phase fiir alle Seiten erfolgreich verlduft. Bedingungen hierfiir sind:
e Beta Testing um das System in Bezug auf Benutzererwartungen zu priifen

e Paralleler Einsatz eines bestehenden Systems, welches durch das Neue ersetzt wer-

den soll
Ergebnisse und Ziele der Phase:
e Erreichen, dass sich die Nutzer selbst unterstiitzen und Support geben kénnen

e Enduser mit dem Produkt konfrontieren, um sicherzustellen, dass die Grundanfor-
derungen zur Verdffentlichung des Produkts vollstdndig sind und den Anforderun-

gen der Vision entsprechen
e Bedienungsanleitungen / Release Notes
e Moglichst Ressourceneffizientes Finalisieren des Produkts

Die Phase kann — in Abhéngigkeit von dem jeweiligen Produkt — einfach aber auch sehr
komplex sein.

Erfolgskriterien zum Erreichen des Meilensteins Product Release:

An diesem Punkt wird entschieden, ob die Anforderungen/Ziele erreicht wurden und ob
weitere Entwicklungs-Zyklen durchgefiihrt werden miissen. Es ergeben sich die folgenden

Evaluationskriterien:
e Sind die Endnutzer zufrieden?

e Ist das Verhéltnis der gemachten Ausgaben in Bezug auf die geplanten Ausgaben

immer noch akzeptabel?

62

Vertikale Dimension

Die vertikale Dimension des RUP kann als statische Struktur des Prozesses verstanden
werden. Ein Prozess beschreibt wer, was und wann tut. Hierzu verwendet der RUP vier

sog. Primdr-Modellierungselemente [Rational Software Corporation IBM. 1998, S. 7.

1. workers ("wer")
Worker sind durch das Verhalten und die Verantwortlichkeiten eines Individuums
definiert. Sie kdnnen iiber eine Rolle charakterisiert werden, die von jedem Individu-
um bekleidet werden kann. Individuen konnen auch mehrere Rollen bekleiden. Die
Verantwortlichkeit eines workers konnen sowohl die Ausfithrung einer bestimmten

Menge von Aktivitidten als auch das Besitzen einer Menge von Artefakten sein.

2. activities ("wie")

Eine Aktivitdt eines spezifischen workers ist eine Arbeitseinheit, die ein Individu-
um, welches diese Rolle bekleidet, aufgefordert werden kann, auszufiihren. Diese
hat einen klar definierten Zweck, wie z.B. die Aktualisierung und Erstellung von
Modellen (Artefakten). Jede activity ist einem bestimmten worker zugeordnet und
deren zeitliche Einteilung betrégt einige Stunden bis hin zu einigen Tagen. Eine
activity ist zur Bearbeitung von einem oder einigen wenigen Artefakten |[Rational
Software Corporation IBM. 1998, S. 8ff].
Beispiele fiir activities:

e activity: Eine Iteration planen; worker: Project Manager

e activity: Use Cases und Akteure herausfinden; worker: System Analyst

o activity: Review des Design; worker: Design Reviewer

o gctivity: Ausfithren eines Performance-Test; worker: Performance Tester
3. artifacts ("was")
Artifacts sind ein Teil einer Information, welche von einem Prozess erstellt, verén-
dert oder benutzt wird. Sie sind als materielle Ergebnisse des Projekts zu verstehen

und kénnen Input fiir worker zur Bearbeitung einer Aktivitéit sein oder konnen Er-

gebnisse jener sein.
Beispiele fiir artifacts:
e Ein Modell (Use Case-/Design-Modell)
e Ein Element eines Modells (eine Klasse, ein Subsystem)

e Ein Dokument (Geschiftsfall, Softwarearchitekturdokument)

63

e Quellcode

e Ausfiihrbare Dateien

4. Workflows ("wann")
Ein Prozess ist nicht eine Konstitution einer Anzahl von workern, activities und ar-
tifacts sondern beschreibt vielmehr einen Ablauf von Aktivitdten und die Interakti-
on zwischen workern. Ein workflow ist demnach ein Ablauf von Aktivitéten, der ein
definiertes Ergebnis erzielt. Workflows innerhalb des RUP werden durch folgende
UML-Diagramme beschrieben: Sequenzdiagramm, Kollaborations-Diagramm und

Aktivitdtendiagramm.

Die beschriebene vertikale Dimension des RUP umfasst neun zentrale Phasen, sog. Core
Workflows. Jene représentieren eine Aufteilung von workers und activities in logische
Gruppen. Hierbei ldsst sich bei den neun Phasen eine Unterscheidung in sechs sog. engi-
neering workflows und sog. supporting workflows machen.

Im Folgenden sollen die einzelnen Core Workflows beschrieben werden. Hierbei liegt der
Fokus auf den engineering workflows, da diese auch als Grundlage fiir die theoretische Ab-
leitung von Kompetenzdimensionen und -kategorien fungieren sollen [Rational Software
Corporation IBM. 1998, S. 10ff].

Business Modeling (Geschdftsmodellierung)

Eins der gréften Probleme im SWE-Prozess ist, dass die Softwareentwicklung und die
Entwicklung im Geschéftsfeld hdufig unter Kommunikationsproblemen leiden. Dies fiihrt
dazu, dass der output vom business engineering hiufig nicht fiir das SW-Engineering
verwendet wird und umgekehrt. Der RUP versucht die Problematik mit einer gemeinsa-
men Sprache und einem gemeinsamen Prozess entgegenzuwirken, indem er zeigt, wie Zu-
sammenhinge zwischen business- und software-Modellen hergestellt und gepflegt werden
kénnen. Im Rahmen der Geschiftsmodellierung werden sog. Business Use Cases model-
liert. Diese sichern ein allseitiges Verstdndnis hinsichtlich der Faktoren, von denen der
Geschiftsprozess abhingt und inwiefern dieser unterstiitzt werden muss. Hierbei besteht
die Zielsetzung, wie das Geschiftsfeld von der zu entwickelnden Software unterstiitzt

werden soll. Es entsteht als Ergebnis dieser Phase ein sog. Business Object Model.

Requirements (Anforderungsanalyse)

Ziel dieser Phase ist die Beschreibung, wie sich das System verhalten soll. Sowohl die

Entwickler als auch die Kunden miissen dieser Beschreibung zustimmen. Hierbei werden

64

benétigte Funktionalitdten, Grenzen des Systems und Stakeholder ermittelt und in einem
Visionsdokument beschrieben und organisiert. Zentraler Inhalt sind die Anforderungen
aller Stakeholder sowie simtliche Akteure in Form von Benutzern und anderer Systeme,
die mit der zu entwickelnden Software interagieren. Dementsprechend werden Use Ca-
ses identifiziert, die das Systemverhalten représentieren. Dies schafft fiir die relevanten
Akteure einen direkten Bezug zum System, da die Use Cases ausgehend von Anforderun-
gen konzipiert werden. Die Use Cases beschreiben im Detail, wie das System Schritt fiir
Schritt mit den Akteuren interagiert und welches Verhalten das System mit sich bringt.
Nicht funktionale Anforderungen werden in einer separaten Dokumentation gepflegt und

organisiert.

Analysis & Design (Analyse & Design)

Ziel dieser Phase ist es zu modellieren, wie das System in der Implementierungsphase
realisiert werden soll. Infolgedessen miissen die Aufgaben und Funktionen ausgehend von
Use Case Beschreibungen umgesetzt werden, sodass diese den Anforderungen geniigen.
Auch die Auswahl einer geeigneten und einfach zu modifizierende Architektur sollte hier
vorgesehen werden. So ist sichergestellt, dass eine flexible Beriicksichtigung von sich &n-
dernden Anforderungen gewihrleistet ist.

Die Phase resultiert in einem Design-Modell (und optional in einem Analyse-Modell).
e fungiert als Abstraktion fiir den Quellcode
e beschreibt und strukturiert den Quellcode
e besteht aus Design Klagsen — strukturiert in design-packages und design-Subsystemen

e besteht aus Beschreibungen, wie die jeweiligen Klassen kollaborieren um Use Cases

umzusetzen.

Implementation (Implementierung)

Ziel der Implementierungsphase ist die Realisierung des Systems durch Implementierung
seiner konstituierenden Software-Komponenten. Hierbei muss zunéchst die Organisation
und Strukturierung von Quellcode erfolgen, sodass die verschiedenen Implementierungs-
Subsysteme feststehen. Ferner soll die Implementierung von Klassen als Komponenten
sowie der Test von Komponenten als Einheiten (unit tests) durchgefiihrt werden. Die
Erzeugnisse unterschiedlicher individueller Programmierer und Teams gilt es zu einem

ausfiihrbaren System zusammenzusetzen.

65

Zur Unterstiitzung der Implementierungsphase beschreibt der RUP, wie bestehende Kom-
ponenten weiterverwendet werden kénnen und wie neue Komponenten zur Erfiillung eines
wohl-definierten Zwecks entwickelt werden kénnen. Weiterhin wird durch das Framework
beschrieben, wie man ein System so konzipiert, dass es leicht wartbar ist und einen hohen
Grad an Wiederverwendbarkeit hat.

Test

Zielsetzung der Testphase im Sinne des RUP ist die Verifikation der Interaktion zwischen
Objekten, der Integration aller Softwarekomponenten und dass alle Anforderungen kor-
rekt implementiert wurden. Zudem muss sichergestellt sein, dass Fehler behoben wurden.
Neben der Zielsetzung schlagt der RUP die Integration der Testphase wéahrend der ge-
samten Phasen der Software Entwicklung vor. Somit ist gewdhrleistet, dass Bugs so friih
wie moglich aufgefunden werden und somit auch die Kosten bei der Fehlerbehebung
drastisch gesenkt werden kénnen.

Die eigentlichen Tests erfolgten im RUP in drei Qualitdtsdimensionen
1. Reliability
2. Functionality
3. Application- and System-Performance

Fiir jede dieser Dimensionen beschreibt der RUP, wie die Test-Phase zu durchlaufen ist
und gibt Hinweise im Hinblick auf Planung, Design, Implementierung, Ausfithrung und
Evaluation des Tests. Er beschreibt Strategien, wie Tests automatisiert werden kénnen.
Dies spielt insbesondere fiir den iterativen Ansatz eine grofe Rolle, da somit Regressions-
tests nach jeder Iteration (nach jeder neuen Version der Software) durchgefithrt werden
kénnen.

Deployment (Auslieferung/Verteilung)

Ziel dieser Phase ist im engeren Sinne das erfolgreiche Verteilen von Produkt-Releases

an die Benutzer. Dariiber hinaus umfasst diese Phase weitreichende Aufgaben:
e Externe Releases von Software
e Verpacken der Software

e Verteilung der Software

66

Installation der Software

Support fiir die Software

Planung und Durchfiihrung von beta-Tests

Migration von existierender Software und Daten

Formale Akzeptanz

Die zuvor beschriebenen Phasen reprisentieren die Engineering Workflows des RUP.
Im Folgenden soll der Vollstdndigkeit halber ein kurzer Einblick in die sog. supporting

workflows gegeben werden:

Project Management

Die Project Management Phase erfordert das Vermdgen, gegensitzliche Ziele und Auf-
gaben zu vereinen. Dies umfasst ein Risiko Management und spiegelt u.a. das Kénnen
wieder ein Produkt zu erzeugen, das sowohl den Anforderungen von Kunden und Auf-
traggebern als auch jenen der Enduser gerecht wird. Dieser workflow konzentriert sich
auf den iterativen Entwicklungsprozess. Zum Erreichen der Zielsetzung kann der RUP
Hilfestellung geben, in dem jener ein Framework zum Managen von Softwareprojekten
umfasst, praktische Richtlinien fiir die Planung, Personalfragen sowie die Ausfithrung und

Uberwachung von Projekten gibt und ein Framework zur Risikohandhabung bereitstellt.

Configuration & Change Management

In dieser Phase wird beschrieben, wie man mit den zahlreichen Artefakten (entwickelt
von verschiedenen Personen) im Projekt umgeht. Eine Kontrolle dahingehend hilft Un-
klarheiten bzgl. Kosten zu vermeiden und stellt sicher, dass die daraus resultierenden
Artefakte nicht im Konflikt stehen. Im Folgenden sind mogliche Szenarien aufgefiihrt,

bei denen eine Kontrolle sinnvoll erscheint:

o Gleichzeitiges Update: Zwei Personen arbeiten am selben Artefakt, der Letzte, der

die Anderungen comitted, zerstort die Arbeit seines Vorgiingers.

e Fingeschrinkte Benachrichtigungen: Wenn ein Problem in Artefakten behoben wird,

und andere Entwickler davon nicht in Kenntnis gesetzt werden.

e Verschiedene Versionen: Meist haben grofse Softwareprojekte mehrere Versionen;
wenn z.B. Fehler in einer Version auftauchen, muss sichergestellt werden, dass Ver-

besserungen in allen Versionen vorgenommen werden.

67

Environment (Umgebung)

Zweck dieses Workflows ist die Unterstiitzung der Softwareentwicklungs-Organisationen
mit geeigneten Software-Tools. Hierbei stellt der RUP Prozesse und Werkzeuge zur Ver-

figung um das Entwickler-Team zu unterstiitzen.

Potential und Grenzen des RUP

Im Gegensatz zum V-Modell, das auf einer generischen Auswahl von Methoden und
Werkzeugen basiert, gibt der RUP konkrete Hilfestellung unter expliziter Zuhilfenahme
der Unified Modeling Language. Als Kritikpunkt merkt Kleuker jedoch an, dass nach
Ablauf der elaboration phase innerhalb des RUP voun einer statischen Anforderungsmenge
ausgegangen wird und das Anderungen am System nur schwer und bei entsprechender

Interpratation verschiedener Aktivitdten zu leisten ist [Kleuker 2011, S. 20].

Agile Vorgehensmodelle

Umfassende Vorgehensmodelle wie das V-Modell XT oder der RUP sind sehr komplex.
Sie erfordern eine grofe Anzahl zu pflegender Dokumente und es kann vorkommen, dass
mogliche Zusammenhénge nicht auf Anhieb verstanden werden [Kleuker 2011, S. 42ff].
Um dieser Tendenz entgegenzuwirken haben sich renommierte SWE-Experten in der
Agile Allianz verbiindet. Das folgende sog. agile Manifest beschreibt die Leitlinien der
Organisation [Agile Alliance 2013]:

We are uncovering better ways of developing software
by doing it and helping others do it. Through this

work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation Customer
collaboration over contract negotiation Responding to change

over following a plan

That is, while there is value in the items on the right, we

value the items on the left more.

www.agileAlliance.org

68

1. Als erste Grunderkenntnis wird die Bedeutsamkeit des Entwicklerteams akzentu-
iert, dessen Zusammenhalt, Kommunikation und Motivation mafgeblich den Pro-
jekterfolg beeinflussen. Hierbei erfolgt eine Integration von Individuen (mit mog-

lichst kreativer Freiheit) in Abhéngigkeit der jeweiligen Stérken und Schwéchen.

2. Die lauffihige Software wird als zentraler Mittelpunkt von héchster Wichtigkeit
eingeschétzt. Die Dokumentation soll nur im minimalen Umfang und bei Bedarf

(moglichst innerhalb des Quellcodes der zu entwickelnden Software) erfolgen.

3. Der Kunde muss moglichst intensiv mit in den Entwicklungsprozess einbezogen

werden.

4. Software-Projekte miissen so geplant werden, dass sie auf Anderungen in den Kun-
denanforderungen reagieren konnen. Eine Suche nach neuen L&sungen und das

Verwerfen bestehender Losungen muss stets in Betrachtung gezogen werden.

Im Vorgehen lassen sich zwei Gruppierungen innerhalb der agilen Softwareentwicklung
nennen [Kleuker 2011, S. 22ff|, [Martin 2003].

1. Die erste Gruppe beinhaltet Metamodelle, die ausgehend vom oben beschriebenen
Manifest ein Rahmenwerk fiir die Projektorganisation vorgeben ohne eine konkrete
Methodik oder Werkzeuge vorzugeben, z.B. Scrum [Pichler 2009)].

2. Diese Gruppe umfasst Ansétze, die auf Grundlage bewidhrter Vorgehensmodelle
in der Softwaretechnik konkrete Vorgaben machen, z.B. Extreme Programming
[Pichler 2009].

Zusammenfassend kann man die folgende Aussage iiber die Agile Softwareentwicklung
treffen: Die Agile Softwareentwicklung hat bestehende Vorgehensmodelle der Software-
technik insofern weiterentwickelt und beeinflusst, als dass deren Flexibilitdt mit dem
Aufkommen der agilen Tendenzen deutlich verbessert wurde. Hiermit wurde der prak-
tischen Erfahrung Sorge getragen, dass ein SWE-Prozess in den seltensten Fillen von

Anfang bis Ende linear durchgeplant werden kann [Martin 2003].

Zwischenfazit

Nach eingehender Betrachtung des Themenbereichs der Modellierung aus fachwissen-
schaftlicher und fachdidaktischer Perspektive, scheint die Verwendung eines Vorgehens-

modells aus der Softwaretechnik auch im Sinne des Weinert’schen Kompetenzverstindnis

69

als geeignete strukturgebende Grundlage, um theoretisch fundierte Kategorien fiir ein
Kompetenzmodell ableiten zu kénnen.

Um einen genaueren Einblick in die unterschiedlichen Vorgehensmodelle der Software-
technik zu erhalten und zu priifen, auf welcher normativ-theoretischen Grundlage die
Ableitung von Kompetenzen erfolgen sollte, war es sinnvoll, einzelne exemplarische Vor-
gehensmodelle innerhalb der Softwaretechnik aufzufiihren und deren Charakteristik dar-
zustellen und zu vergleichen. Hierbei hat sich gezeigt, dass das Wasserfallmodell zu sta-
tisch zu sein scheint um SWE-Prozesse zu planen. Die Begriindung dafiir ist, dass Pro-
zesse zur Modellierung und Entwicklung von Software in der Praxis selten linear und
von vorne herein planbar ablaufen. Vielversprechend hingegen erscheinen die iterativ-
inkrementellen Ansétze, da diese eine explizite Dynamik innerhalb der Abfolge der ein-
zelnen SWE-Phasen vorsehen. Hierbei sieht das V-Modell einen fiir den schulischen Ein-
satz zu starken Fokus auf die Qualititssicherung vor. Das prototypische Vorgehen und
die agilen Methoden der Softwareentwicklung geben aus Sicht des Autors zu wenig Vor-
gaben an die einzelnen Phasen des SWE-Prozesses, um mégliche Strukturen und Inhalte
fiir das Kompetenzmodell abzuleiten. Dennoch liefern sie wertvolle Hinweise fiir die Ge-
staltung von SWE-Prozessen. Im Sinne der agilen Softwareentwicklung sollten diese ein
hohes Maf an Dynamik aufweisen.

Insgesamt sprechen die folgenden Aspekte aus Sicht des Autors fiir die Verwendung des
Rational Unified Process als theoretische Grundlage um die Facetten von Modellierungs-
kompetenz abzuleiten:

Beim Rational Unified Process handelt es sich um ein sehr gut etabliertes Vorgehens-
modell, welches als Quasi-Standard in der Softwaretechnik angesehen werden kann. Der
RUP sieht eine iterativ-inkrementelle Vorgehensweise bei der Entwicklung von Software-
Systemen vor und setzt auf sog. best practices im Software-Engineering.

Dariiber hinaus zeichnet sich dieser Ansatz durch eine hohe Anpassbarkeit im Hinblick auf
Komplexitat und Umfang aus. Hierdurch ldsst sich jener auch an die jeweilige Lerngruppe
anpassen.

Der RUP wurde von den Schopfern der UML kreiert und setzt dementsprechend auf
diesen Standard als Modellierungssprache, welche auch im Informatikunterricht der Se-
kundarstufe II zum breiten Einsatz kommt.

Ferner zeigen unterschiedliche Studien und Praxisberichte den erfolgreichen Einsatz des
RUP in der Lehre [Roggio 2006], [Goldin und Rudahl 2009] auf und legitimieren die
Verwendung dieses Ansatzes als theoretische Basis fiir ein Kompetenz-Strukturmodell.
Durch die Forderung der Klieme-Expertise, dass Kompetenzmodelle durch entsprechende

Testinstrumentarien iiberpriifbar sein sollen, gilt es neben der Entwicklung eines entspre-

70

chenden Kompetenzmessinstruments fiir die informatische Modellierung eine geeignete
Unterrichtsreihe als Setting fiir die Kompetenzmessung zu planen. Um deren theoreti-
sche Grundlage festzulegen, sollen im Folgenden unterschiedliche Unterrichtskonzepte zur
objektorientierten Modellierung vorgestellt werden. Der Fokus liegt hier (aufgrund des
besonderen Interesses des Autors und positiver Erfahrungen in der Ausbildung von an-
gehenden Informatiklehrern in der Hochschullehre) auf dem Thema Objektorientierung
und Robolik.

3.4.2. Vorgehens- & Vermittlungsmodelle zur OO-Modellierung

Neben der theoretischen Fundierung des Kompetenzmodells muss auch eine theoretische
Basis fiir die Konzeption einer Unterrichtsreihe innerhalb der die Evaluation des Kom-
petenzmessinstruments erfolgen soll, geschaffen werden. Hier soll ein etablierter Ansatz
zur Vermittlung objektorientierter Modellierung als theoretische Grundlage verwendet
werden.

Im Folgenden werden unterschiedliche Herangehensweisen und didaktische Vorgehens-
bzw. Vermittlungsmodelle am Beispiel des Informatik Anfangsunterrichts und dem The-

menbereich der objektorientierten Modellierung und Programmierung aufgezahlt.

Objects first

Nach Diethelm besteht ein Dilemma bei der Verwendung der Terminologie objects first.
Hier ergibt sich eine mehrfache Verwendung fiir unterschiedliche Vermittlungsmodelle
[Diethelm 2007, S. 21ff].

o Classes first: Entwicklung von Klassen, die Objekte definieren.

e OOP first: Programmierung in einer objektorientierten Sprache und ggf. eine Vi-
sualisierung durch Stifte & M&use bzw. Turtle-Grafiken (haben nach Diethelm nicht

immer die Intention, die objektorientierte Modellierung zu lehren).

e Objects first: das Objekt steht an erster Stelle.

Diethelms eigentlicher Ansatz startet mit Objekten, die in einem Szenario aus der Le-
benswelt der Lernenden eingebettet sind. Hierbei handelt es sich um Objekte, die z.B.
auf einer Tafel skizziert werden kénnen und lediglich Informationen iiber die Objekte
selbst und deren Zusammenhang enthalten. Ggf. konnen diese auch Attribute und ent-
sprechende Werte enthalten. Informationen iiber Klassen sind in diesem Ansatz zunéchst
bewusst nicht vorgesehen und sollen explizit zu einem spéiteren Zeitpunkt thematisiert
werden [Diethelm et al. 2005].

71

Einstieg {iber Programmiersprachen

Diese Vorgehensweise umfasst das Erlernen der Syntax einer objektorientierten Program-
miersprache und den Umgang mit Entwicklungsumgebungen. Hier besteht keinerlei Un-
terscheidung zu Vermittlungsmodellen von prozeduralen Sprachen. In Verdffentlichungen
zu der Thematik spricht man hier illustrativ von einem “Wolf im Schafspelz* [Diethelm
2007, S. 25], [Penon und Spolwig 1998|.

Ein weiteres Vermittlungskonzept fiir die Grundlagen der objektorientierten Program-
mierung ist das Konzept von Stiften und M&ausen. Hierbei handelt es sich um ein Un-
terrichtskonzept das eine unter didaktischen Gesichtspunkten entwickelte Klassenbiblio-
thek verwendet. Statt dem FEinstieg in die imperative Programmierung geschieht eine
Integration entsprechender informatischer Konzepte, wie z.B. Kontrollstrukturen in ein
durchgingig objektorientiertes Szenario.

Der Einstieg iiber visuelle Entwicklungsumgebungen zur Kapselung prozeduraler Pro-
grammierung ist ein weiteres mogliches Vorgehensmodell. Jenes steht allerdings in der
Kritik, dass die Vermittlung von objektorientiertem Denken vollkommen vernachléssigt
wird [Diethelm 2007, S. 25].

BlueJ-Konzept

BlueJ ist eine integrierte Entwicklungsumgebung (IDE) fir den Informatik Anfangsun-
terricht. Sie basiert auf dem Standard Java SDK und verwendet den Standard Jaewa-
Compiler sowie die gingige virtuelle Maschine (JVM = Java Virtual Machine). BlueJ
ermdoglicht einen visuellen und unmittelbar parametrisierten Methoden-Aufruf. Dies er-
moglicht den Lehrenden, komplexe Themen, wie z.B. textuelle Schnittstellen zu einem
spateren Zeitpunkt zu thematisieren und unabhéngig davon einen Einstieg in die ob-
jektorientierte Programmierung zu ermdglichen [Kolling und Quig 2005|. Die Intention
dieses Ansatzes ist nach Diethelm wiederum die Einfiihrung in eine objektorientierte
Programmierung. Die Vermittlung objektorientierter Denkweisen wird wieder vernach-
lassigt [Diethelm 2007, S. 26]. Brinda kritisiert dariiber hinaus, dass BlueJ ausschlieflich
Klassendiagramme visualisiert und das Laufzeitobjekte isoliert und ohne Assoziationen

untereinander dargestellt werden [Brinda 2004].

Alice-, Greenfood und Scratch-Konzept

Alice Greenfood und Scratch sind didaktische Werkzeuge, die einen Einstieg in die Pro-
grammierung in der voruniversitdren Lehre erleichtern sollen. Die Autoren sehen ihre

Software weniger als ein didaktisches Werkzeug fiir den Einstieg in die objektorientierte

72

Modellierung als ein Tool zur Erleichterung des Einstiegs in die objektorientierte Pro-
grammierung. Obwohl diese visuellen Programmierumgebungen zu unterschiedlichen Zei-
ten und in unterschiedlichem Kontext entwickelt wurden, sind diese nach Ansicht der
Autoren Cooper, Kélling und Maloney vergleichbar. Sie bezeichnen Thre Werkzeuge als

Initial Learning Environments.

LJAlthough designed at different times and in different contexts, these three
environments? Alice, Greenfoot and Scratch? can be classified together as
sharing similar characteristics. All are visual, all aim to foster immediate en-
gagement in an attractive activity, and all aim to introduce pre-University
students to programming. We describe these as ,Initial Learning Environ-
ments® [Utting et al. 2010, S. 1].*

Ein beispielhafter Einsatz von Alice im Informatikunterricht der Sekundarstufe I wurde
von Dohmen und Engbring durchgefiihrt. Sie stellten in der anschliefenden Evaluation
fest, dass Alice als alleiniges Hilfsmittel neben einem deutlich spiirbaren Motivations-
zuwachs den Schiilern zu keinen grundlegenden Kenntnissen iiber die objektorientierte
Programmierung verhelfen konnte. Der gleichzeitige deklarative Zugang mit vorgefertig-

ten Objekten hingegen, vereinfachte den Zugang spiirbar [Dohmen et al. 2009].

Model First

Hierbei handelt es sich um einen Ansatz von Bennedsen & Caspersen aus dem Jahr
2004 fiir einen Kurs im ersten Studienjahr. Dieser sieht vor mit der Modellierung von
Klassen zu beginnen und fokussiert hierbei die Ubersetzung von UML-Diagrammen in

objektorientierten Java-Code [Bennedsen und Caspersen 2005].

Informationszentrierter Ansatz

In der Sekundarstufe I sieht der informationszentrierte Ansatz vor, die Objektorientie-
rung als ,Grundstein fiir den Aufbau angemessener mentaler Modelle und die Verwendung
einer sauberen, ausdrucksstarken Terminologie zugrunde zu legen [Hubwieser 2000, S.
59].“ Der Einstieg iiber die objektorientierte Modellierung erfolgt am Beispiel der Zeich-
nung eines Zimmers und der Identifikation von Objekten sowie deren Klassifizierung nach
Form [Hubwieser 2005].

Der informationszentrierte Ansatz wird im Kapitel 6.2 ausfiihrlicher thematisiert. Hier
sollen lediglich einige Ansétze zum Einstieg in die objektorientierte Programmierung
genannt werden bevor auf den Ansatz Objektorientierte Modellierung und Robotik einge-

gangen wird.

73

0OO-Modellierung und Robotik

Traditionell sind hier virtuelle Roboter zur Vermittlung von imperativer und prozeduraler
Programmierung zu nennen, wie z.B. Kara oder NIKI.

Neuere Ansétze zur Vermittlung objektorientierter Konzepte mit Hilfe von LEGO Mind-
storms Robotern, wie z.B. Dietzel und Rinkens, die erste Unterrichtserfahrungen in einem
Informatik Differenzierungskurs der Jahrgangsstufe 10 machen konnten [Dietzel und Rin-
kens 2001]|. Das unterrichtliche Vorgehen sah vor, dass Kleingruppen die Roboter bauen
und danach erste Beschreibungen {iber Eigenschaften und Funktionalitdt der Roboter
anfertigen. Ausgehend davon werden die objektorientierten Begrifflichkeiten, wie z.B.
Objekt, Attribut und Methode erldutert.

Fugiv et. al untersuchten die Wirksamkeit der Vermittlung von UML- Modellierungs-
kompetenz und sozialen Kompetenzen, mit Hilfe von problembasierten Lernszenarien.
Hierbei wird den Lerngruppen eine vereinfachte UML-Modellierungsvorlage zur Verfii-
gung gestellt. Die Zielsetzung bestand darin, einen LEGO Mindstorms Roboter zu bau-
en und dessen Funktionalitdt zu programmieren. Mit Hilfe der zuvor genannten UML-
Modellierungsvorlage wurden zunichst die funktionalen Anforderungen (functional mo-
del) aufgenommen. Ein weiteres Modell, das sog. Detail-Model umfasst fiir jede System-
funktion bzw. Anforderung den jeweiligen Funktionsnamen, die Funktionsbeschreibung,
Vorbedingungen, mdégliche rudimentire Programmabliufe, die jeweiligen Endzustdnde
und Grafiken. Eine weitere sog. Relationship-Model-Vorlage hat die Zielsetzung den Zu-
sammenhang und die Interaktion der im Detail-Model beschriebenen Funktionen zu be-
schreiben. Jene korrespondiert in der Zielsetzung mit UML-Kollaborationsdiagrammen
[Ishii et al. 2010, S. 26ff].

Die Erhebung wurde im Rahmen eines Programmierkurses im Wintersemester 2007 an
der Chubu University of Engineering durchgefiihrt. Die Kursplanung sah drei Phasen

VOr:

1. Die Lernenden sollten Grundlagenwissen im Hinblick auf LEGO Mindstorms und
UML-Modellierung erlangen. Hierzu erhielten sie Mustervorlagen fiir die oben be-
schriebenen UML-Templates.

2. Die Lernenden wurden in Gruppen eingeteilt um in einer Art Wettbewerb jeweils
einen Roboter zu bauen, der auf moglichst schnelle Weise folgendes leisten muss:
Eine Linie bis zu einem Ziel verfolgen und Hindernissen ausweichen. Innerhalb
dieser Design- und Implementierungsphase sollte die Dokumentation innerhalb der
UML-Vorlagen erfolgen. Diese Phase wurde einmal zur Halbzeit des Projekts und
zum Ende des Projekts durchgefiihrt.

74

Function model

Detailed model

Functions needed to
attack a course

1. line trace

» judgment of brightness

* straight ahead movement
on black lines of the track

» curved movement on
white areas of the track

* smooth curves

2. avoiding obstructions

» using ultrasonic waves
for recognition

* behavior when avoiding
something

3. traversal of an incline

+ stable line trace

» adjustment of motor
power

Function name

avoidance of obstructions

Outline of function

make a line trace quickly while
avoiding obstructions

Beginning conditions

when approaching obstructions

Flow of functions

1. substitution of 0 for a

2. turn to the right

3. go forward

4. go forward while turning to
the left

5. recognize line

6. substitute ic + 1 for ic

7. quickly make a line trace

8. substitute 0 for ic

Final conditions

when ic is greater than 1,000

Image sketch

Relationship model

line trace

evau

L=

ultrasonic
WAVE Sensor
OFF /
. /retum
avoiding
. to the track
obstructions
—_—

ultrasonic
wave sensor
ON

D

traversal of
an incline

T\

F 3

75

Abbildung 3.11.: UML-Template nach Fujii et. al [Ishii et al. 2010, S. 27]

3. Die dritte Phase fokussierte die Selbst-Reflexion. Die Lernenden waren in diesem
Zusammenhang aufgefordert, die Ergebnisse der Gruppenarbeiten auf einem Pla-
kat zu dokumentieren. Dies umfasste die UML-Vorlage, ein sog. Problemanalyse-

Diagramm und ein Foto des entwickelten Roboters.

Um die UML-Modellierungskompetenz zu messen, wurden die Modelle der ersten und
zweiten Kurshilfte miteinander verglichen. Hierbei wurden die folgenden Evaluationskri-
terien fiir die UML-Modelle zugrunde gelegt [Ishii et al. 2010, S. 28ff]:

e Number of functions

Originality of functions

Existence of unrelated links

e Improvement of new methods and functions
e Detail of image sketches
e Resemblance to the sample model

Folgende Ergebnisse haben sich im Vergleich von erster und zweiter Kurshilfte ergeben:

[First half of the course M Second half of the course

Number of groups

N[|

1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18
Score

Abbildung 3.12.: Ergebnisse Fujii et. al 1/2 [Ishii et al. 2010, S. 30]

Nach Fuji et. al. zeigen diese Ergebnisse die Effektivitdt ihres Ansatzes, den Lernenden
ein Modellierungs-Template zur Verfiigung zu stellen.

Die sozial-kommunikativen Kompetenzen wurden mittels eines Fragebogens anhand des
sog. KISS-18 (Kikuchi’s Scale of Social Skills) zu Beginn (pre-test) und zum Ende (post-
test) der Unterrichtsreihe gemessen. Dieser umfasst grob betrachtet drei Haupt-Kriterien

sozial kommunikativer Kompetenaz:

76

@ First half of the course M Second half of the course

5
w 4T
g
23
&
)
>
<
0 1 1 1
Number of Originality of Existence of Improvement Detailof Resemblance
functions functions unrelated of new image to the
links methods and sketches sample
functions model

Abbildung 3.13.: Ergebnisse Fujii et. al 2/2 [Ishii et al. 2010, S. 31]

1. Problem solving skills
2. Troubleshooting skills
3. Communication skills

Die folgenden Ergebnisse zeigen nach Fuji et. al, dass die Lernenden im Rahmen die-
ses problematisierten Lernszenarios breit geficherte sozial-kommunikative Kompetenzen
erwerben konnten |Ishii et al. 2010, S. 30].

[Problem solving skills: Pre-test: 17.9; Post-test: 18.6. t(77) 2.131, p<.05],
[Troubleshooting skills: Pre-test: 15.2; Post-test: 15.9. t(77) 2.612, p<.05] and
[Communication skills: Pre-test: 20.8; Post-test: 21.7. t(77) = 2.745, p<.011).

Zwischenfazit

Die oben vorgestellten Forschungsergebnisse bestitigen meine Erfahrungen aus der Hoch-
schullehre bei der Verwendung von LEGO Mindstorms basierten Lernumgebungen zur
Vermittlung von Modellierungskompetenzen. Dies deutet darauf hin, dass ein derarti-
ges Lernszenario auch als Setting fiir die Evaluation des Messinstruments sinnvoll sein
kénnte. Dementsprechend soll das Vorgehens- bzw. Vermittlungsmodell Modellierung &

Robotik bei der Planung der Unterrichtsreihe besondere Beriicksichtigung finden.

77

3.5. Zusammenfassung

Nachdem im vorherigen Kapitel der bildungspolitische Stellenwert von Standards und
Kompetenzen deutlich gemacht wurde, hatte dieses Kapitel das Ziel, die Wichtigkeit
der objektorientierten Modellierung fiir die Fachwissenschaft und Fachdidaktik hervor-
zuheben. In diesem Zusammenhang wurde zun#chst der Modellbegriff in Anlehnung an
Stachowiak definiert. Diese Definition findet sowohl in Fachwissenschaft als auch in der
Fachdidaktik eine grofse Beachtung. Insbesondere mit Blick auf die Zielsetzung der Ar-
beit, Facetten der Modellierungskompetenz zu definieren, erwies sich diese definitorische
Festlegung als passend, da nach Stachowiak die Modellbildung stets kontextualisiert und
mit einer konkreten (komplexen) Zielsetzung erfolgen soll. Im weiteren Verlauf des Kapi-
tels wurde die Wichtigkeit der objektorientieren Modellierung aus fachwissenschaftlicher
und fachdidaktischer Perspektive erldutert. Fachwissenschaftlich hat sich die Relevanz
der objektorientierten Modellierung insbesondere durch die zunehmende Etablierung der
modellgetriebenen Softwareentwicklung ergeben.

Aus fachdidaktischer Sicht ist die objektorientierte Modellierung ebenso ein wichtiger Be-
standteil der informatischen Bildung und erfiillt zudem géngige erziehungswissenschaft-
liche und informatikdidaktische Allgemeinbildungskriterien. Ferner hat dieser Themen-
bereich dariiber hinaus das Potential, den Informatikunterricht an allgemeinbildenden
Schulen zu legitimieren.

Neben der Definition, Fokussierung und Legitimation der Modellierung sollte dieses Ka-
pitel auch dazu dienen, die theoretische Grundlage fiir die weitere Forschungsarbeit zu-
grunde zu legen. Mit dem Ziel, ein Kompetenzstrukturmodell fiir die Modellierung zu
schaffen, wurde eine theoretische Basis als Orientierungspunkt zur Vorstrukturierung der
Dimensionen des Kompetenzmodells festgelegt. Hierbei haben sich informatische Vorge-
hensmodelle als sinnvolle strukturgebende Basis erwiesen. Aus fachwissenschaftlicher und
fachdidaktischer Sicht beschreiben diese Modelle Aktivitdten in wechselndem Kontext
und einer klaren Zielsetzung. Dieser theoretische Rahmen soll dementsprechend auch in
Ubereinstimmung mit der zugrunde gelegten Definition von Kompetenz [Weinert 2002]
als normativer Ausgangspunkt verwendet werden, um die Ableitung von Kompetenzen
in Kapitel 4 durchzufiihren.

Als weitere Erkenntnis dieses Kapitels haben sich Vorgehensmodelle ebenso als theoreti-
sche Grundlage zur Entwicklung der Evaluations-Unterrichtsreihe des Kompetenzmessin-
struments herausgestellt. Gerade aufgrund der oben beschriebenen Modellcharakteristik
und den parallelen zum Weinert’schen Kompetenzverstdndnis soll dieser Modelltyp auch

fiir das Kapitel 7 theoretisch richtungsweisend sein.

78

Im weiteren Verlauf des Kapitels wurden konkrete Ansétze fiir Vorgehensmodelle in der
Softwaretechnik und in der Fachdidaktik aufgezeigt. Hierbei wurde zunichst ein Uber-
blick iiber Vorgehensmodelle in der Softwaretechnik gegeben, ein Vergleich angestellt,
die Charakteristika der einzelnen Vorgehensmodelle herausgestellt und die zugrunde lie-
genden Vorgehensstrategien erliutert. Es wurde deutlich gemacht, welche Einfliisse die
unterschiedlichen Modelle auf die Ableitung von Kompetenzen haben konnten und wel-
che als sinnvoll oder weniger sinnvoll erachtet wurden. Hierbei hat sich letztlich der
Rational Unified Process als Grundlage fiir die Modellentwicklung in Kapitel 4 ergeben.
Die Begriindung hierfiir ist zusammenfassend die breite Etablierung des RUP, die hohe
Anpassbarkeit des Ansatzes und die Studien iiber dessen erfolgreichen Einsatz in der
Lehre.

Zur Auswahl einer theoretischen Grundlage fiir die Unterrichtsreihe zur Evaluation des
Messinstruments wurden unterschiedliche didaktische Vorgehens- und Vermittlungsmo-
delle fiir den Einstieg in die OO-Modellierung dargestellt und verglichen. Hierbei wurde
das Vorgehensmodell Modellierung € Robotik als theoretische Grundlage ausgewé&hlt.
Die Begriindung lieferten Studien {iber den erfolgreichen Einsatz in der informatischen
Bildung und die positiven Erfahrungen des Autors im Einsatz dieser Thematik in der
fachdidaktischen Hochschullehre.

Nachdem hiermit die theoretische Basis fiir die folgenden Kapitel gelegt wurde wird im
néchsten Kapitel die Entwicklung der Dimensionen und Komponenten des Kompetenz-
modells vorgestellt. Die Erkenntnisse dieses Kapitels sind mafgeblich in die normativ-

theoretische Entwicklung des Kompetenzmodells eingeflossen.

79

4. Theoretische Entwicklung eines
Kompetenzstrukturmodells fiir

informatisches Modellieren

Im Folgenden wird die theoretische Ableitung von Kompetenzdimensionen des Struk-
turmodells und den jeweils aggregierten Kompetenzkomponenten beschrieben. Hierbei
wird die theoretische Fundierung der jeweiligen Kompetenzdimensionen dargelegt. In
diesem Zusammenhang sind die Erkenntnisse aus dem vorherigen Kapitel mafsgeblich in
die Kompetenzdimension K1 Aufgabenbereiche eingeflossen. Anhand des ausgewéhlten
Vorgehensmodell RUP sind die sog. Prozess Workflows des RUP als Kompetenzkompo-
nenten der Dimension K1.8 Systemgestaltung eingeflossen.

Weiterhin gibt das Kapitel einen Einblick in die differenzierte theoretische Ableitung von
Kompetenzkomponenten der einzelnen Dimensionen K1 Aufgabenbereiche, K2 Nutzung
informatischer Sichten, K8 Umgang mit Komplexitdt und K4 Nicht-kognitive Kompeten-
zen. Hierbei liegt der Fokus auf den Kompetenzen, die die objektorientierte Modellierung
adressieren.

Das in der vorliegenden Arbeit vorgestellte Kompetenzrahmenmodell wurde mit der Ziel-
setzung entwickelt, fachwissenschaftlich, fachdidaktisch und psychologisch fundierte Ka-
tegorien fiir die Operationalisierung von informatischer Modellierungskompetenz und in-
formatischem Systemverstdndnis zu gewinnen [Nelles et al. 2009]. Auf Grundlage dieses
Kapitels soll in einem weiteren Arbeitsschritt die empirische Bestimmung von Kompe-

tenzaspekten durch Expertenbefragungen (siehe Kapitel 5) stattfinden.

80

Kapitel 2 | Fachdidaktische

Ausgangslage

Internat. Vergleichsstudien
(PISA,TIMMS, .}

Kompetenzorientierung

Thematischer Schwerpunkt der Dissertation

Ausgangspunkt

Theoretische Gr

SWE Vorgehansmodell
(Rational unified Process)

fachwissenschaftlich

Modellierung in
Fachwissenschaft und
Fachdidaktik

—umfasstis

Vorgehensmodelle

Kapitel 3 | Modellierung in Fachwissenschaft

und Fachdidaktik

fachdidaktisch

Didakt. Vorgehensmodell
{0OM + Robatik)

Theoretische Grundlage

- |
i |
H
=
al S : |
T (thearatisch)
§ I
0 ncn kompatznzmodell
¥2 (empirisch]
T2
52 |
€5
=
2 |
x
o
2
: |
§ v
5 |
2 Kompetanz
ﬁ Kategoriendefinitionen
£ I
a
i}
Zp
=3 Messinstrument I
f .EJ Iementwickiung
2z
% -
28
§ L 4
g |
3
o o Entwicklung
b = Unterrichtsraihe
w
@
T
=5 I
~ 2 Kompetanzmassungen
- = im vergleich
- I
25
-
oo
x> |)

___l____

Ergebnisse
]

Kapitel 8 | Fazit / Weiterefihrende

Forschungsfragen

!

Abbildung 4.1.: Kapitel 4 im Gesamtkontext der Arbeit

81

4.1. Entwicklung der Kompetenzdimensionen

'Das vorliegende Kompetenzrahmenmodell fiir informatisches Modellieren und System-
verstdndnis ist in Anlehnung an andere Rahmenmodelle der empirischen Bildungsfor-
schung [Schaper und Hochholdinger 2006] folgendermafen strukturiert:

Zuniéchst wird inhaltlich auf einer iibergeordneten Ebene zwischen vier Kompetenzdi-
mensionen unterschieden: (Aufgabenbereiche(K1)?, Nutzung informatischer Sichten (K2),
Anforderungen an den Umgang mit Komplezitdt (K3) und nicht-kognitive Kompetenzen
(K4)), die auf weiteren Ebenen durch verschiedene Kompetenzfacetten oder -komponenten
inhaltlich differenziert werden. Zwei der Kompetenzdimensionen sind dariiber hinaus
durch unterschiedliche Stufen bzw. Niveaus der Wissensnutzung charakterisiert. Zunéchst
werden diese Kompetenzstufen vorgestellt, bevor differenzierter auf die Kompetenzdimen-
sionen eingegangen wird.

Kompetenzen beziehen sich auf Anforderungssituationen, in denen problemlésend gehan-
delt werden muss und zu deren effektiver Bewaltigung Kenntnisse, Strategien, Fahigkei-
ten und Einstellungen erforderlich sind. Um die im Modell erfassten Kompetenzanfor-
derungen zu veranschaulichen, soll bei der theoriegeleiteten Beschreibung der Kompe-
tenzdimensionen und -stufen auf ein exemplarisches Aufgabenszenario Bezug genommen
werden. Basierend auf dem hier entwickelten Rahmenmodell erfolgt unter anderem mit
Hilfe dieses Aufgabenszenarios die empirische Verfeinerung der jeweiligen Kompetenzdi-
mensionen und -komponenten. In diesem Zusammenhang kommt ein Interviewverfahren
zum Einsatz, das sich methodischer an der Critical Incident Technique orientiert. Hierbei
wird hauptséichlich ermittelt, wie die Probanden in kompetenzrelevanten Anwendungs-
szenarien problemldsend handeln und welche Kompetenzen hierfiir erforderlich sind.
Das Szenario Chatsystem soll in diesem Kapitel nur zur Veranschaulichung der normativ-
theoretischen Ableitung von Kompetenzen verwendet werden. Die ausfiihrlichere Be-

schreibung der einzelnen Interviewszenarien erfolgt in Kapitel 5:

Sie erhalten den Auftrag, ein verteiltes Chatsystem zu entwickeln. Im Rah-
men der Designphase sollen Sie die potenziellen Programmmodule (Klassen)
jeweils dem Client oder Server zuordnen. Zudem erhalten Sie als Projektlei-
ter die Aufgabe, nach Abschluss der Analyse- und Designphase, eine zeitlich

parallele Implementierung von Client- und Server-Softwarekomponenten in

'Das Kapitel 4.1 enthélt die fiir die Modellierungskompetenz relevanten Anteile aus der eigenen Vertf-
fentlichung [Nelles et al. 2009].

’Die Bezeichnung Aufgabenbereiche wurde in der spiteren Verfeinerung des Modells auferhalb die-
ser Dissertation nicht mehr verwendet. Hier hat eine Optimierung der Terminologie im Sinne des
Weinert’schen Kompetenzverstindnis stattgefunden.

82

Projektgruppen zu koordinieren.

4.1.1. Kompetenzstufung

Die ersten beiden Dimensionen K1 Aufgabenbereiche und K2 Nutzung informatischer
Sichten sind hinsichtlich der Kompetenzauspragungen gestuft, wobei diese Stufung den
Anforderungsbereichen I, II und IIl der Einheitlichen Prifungsanforderungen in der
Abiturprifung (EPA) im Fach Informatik entspricht [KMK (Hrsg) 2004]. Die Stufen
Wissen, Anwenden und Gestalten lassen sich wie folgt charakterisieren:

Auf der Kompetenzstufe Wissen sind Lernende zur Wiedergabe bekannter Sachverhalte,
zur Beschreibung und Darstellung bekannter Verfahren, Methoden und Prinzipien der In-
formatik imstande, wihrend sie auf der Kompetenzstufe Anwenden bereits befihigt sind,
selbstindig bekannte Sachverhalte zur Bearbeitung unbekannter Frage- und Problemstel-
lungen zu verwenden und bekannte Verfahren, Methoden und Prinzipien der Informatik
zur Losung einer Aufgabe aus einem neuen Problemkreis anzuwenden. Lernende auf der
Kompetenzstufe Gestalten treffen eine bewusste und selbstindige Auswahl geeigneter

Methoden und Verfahren in fiir sie neuartigen und komplexen Problemsituationen.

4.1.2. K1 Aufgabenbereiche

Im Hinblick auf die geforderte aufgaben- und anforderungsbezogene Ausrichtung von
Kompetenzmodellen werden im Rahmen der ersten Kompetenzdimension verschiedene
Grundanforderungen bzw. -kompetenzen in Bezug auf informatisches Modellieren und
informatisches Systemverstédndnis beschrieben. Diese beziehen sich auf die Anwendung
von Informatiksystemen, Systemverstindnis und den Prozess der Systemgestaltung als
Kompetenzkomponenten. Die Kompetenzstufung Wissen, Anwenden und Gestalten be-
zieht sich auf alle drei Kompetenzkomponenten, jedoch soll sie in diesem Zusammenhang
lediglich an der Kompetenzkomponente Systemuverstindnis exemplarisch erértert werden.
Die Komponente System anwenden reprasentiert die Befdhigung zur Anwendung eines
Informatiksystems. Dazu gehdren Auswahl geeigneter Anwendungsprogramme als Werk-
zeuge, Zielgerichtetheit sowie Angemessenheit der Eingaben und der Reaktion auf Aus-
gaben des Rechners. Ein Chatsystem soll beispielsweise als Lernmedium bewusst ange-
wendet werden konnen. Es eignet sich fiir die synchrone Kommunikation der Lernenden
untereinander sowie fiir die Kommunikation mit Lehrenden. Bei geeigneter Speicherung
der Beitrige wird dariiber hinaus asynchrone Kommunikation unterstiitzt. Da Beitra-
ge parallel abgesendet werden kénnen, entstehen jedoch hiufig Missverstindnisse, die

auf die Positionierung der Beitrdge zurilickzufiihren sind. Wissen um Moglichkeiten und

83

Grenzen von Informatiksystemen ist deswegen notwendig. Grundlage dafiir ist eine infor-
matische Bildung, aber auch (Bedien-)Fertigkeiten. Entmystifizierung des Rechners und
Abwendung des Gefiihls des ,Ausgeliefertseing” gegeniiber technischen Systemen sind
zu erreichen. Dafiir ist die bewusste Anwendung mit typischen Informatiksystemen von
den Lernenden gefordert. Dabei ist zwischen Anwendungssoftware und Systemsoftware
zu unterscheiden [GI 2008], und es sind immer auch grundlegende Prinzipien der Funk-
tionsweise zu behandeln, indem méglichst viele Arten von Fehlfunktionen thematisiert
werden. Innerhalb der Komponente Systemuverstindnis wird ein Verstehen der jeweiligen
Bestandteile eines Informatiksystems und der zugrunde liegenden informatischen Prinzi-
pien adressiert. Fiir Informatiksystemverstindnis sind die Analyse der inneren Struktur
und des nach auken sichtbaren Verhaltens von Informatiksystemen notwendig [Schubert
und Stechert 2007]. Ziel ist die Vermeidung von Versuch-Irrtum-Strategien. Anforderun-
gen an Lernende zur Erlangung des Informatiksystemverstdndnisses konnen das systema-
tische Erkunden und Experimentieren mit Informatiksystemen beinhalten. Solche Vorge-
hensweisen kénnen bei geeigneter Reduktion und Gestaltung in Anlehnung an Methoden
der Fachwissenschaft umgesetzt werden. Experimente, in denen die Lernenden selbstin-
dig Hypothesen formulieren, unterstiitzen die Kombination der Perspektiven Aufensicht
und Innensicht. Hierbei sind Lernende beispielsweise gefordert, funktionale Modelle zu
nutzen, um das beobachtete Verhalten des Systems zu formalisieren. Aufserdem werden
hierdurch fundamentale Ideen und Strukturmodelle identifiziert. Ziel ist es, dass die Ler-
nenden verstehen, wie die innere Struktur das Systemverhalten beeinflusst und warum
sie in der Entwurfsphase gewdhlt wurde. Durch systematisches Testen kann das System-
verhalten analysiert werden. Ist der Quelltext gegeben, so kénnen Lernende im Sinne
eines Whitebox- Tests das Systemverhalten auf Ursachen untersuchen. Das Systemverhal-
ten kann klassifiziert werden, wihrend im Quelltext besonders wichtige Stellen variiert
werden. FExemplarisch werden im Folgenden Lernziele zu den drei Anforderungsstufen
formuliert.

Fir die Stufe Reproduktion von Wissen bedeutet dies, dass die Lernenden befdhigt wer-
den miissen, Funktionsweise und Aufbau bekannter Informatiksysteme zu beschreiben
[Magenheim 2005, z.B. des Chatsystems mit Client-Server-Architektur.

Auf dem Niveau der Anwendung miissen Lernende in der Lage sein, die bekannte Vorge-
hensweise des systematischen Testens auf &hnliche Informatiksysteme aus einem bekann-
ten Bereich einzusetzen, z.B. Unterschiede zwischen Instant Messaging oder webbasierten
Chatriumen.

Zu der Stufe des Gestaltens ist im Kontext des Systemverstindnisses das bewusste und

selbststiandige systematische Testen unbekannter Informatiksysteme zu zdhlen. Dabei

84

sind die gelernten Vorgehensweisen zur Bewiltigung der Aufgabe selbststéndig auszu-
wéhlen und an das unbekannte Informatiksystem und den Kontext anzupassen, z.B. das
Chatmodul einer Lernplattform.

Die Kompetenzkomponente Systemgestaltung soll eine Befdhigung zur Konstruktion und
zum Reengineering von Informatiksystemen widerspiegeln. Sie untergliedert sich in die
Phasen der Systemgestaltung in Anlehnung an den Rational Unified Process (RUP) |Ra-
tional Software Corporation IBM. 1998|. Dieser stellt, wie in Kapitel 3 erldutert, einen
moglichen Ansatz (neben anderen) dar, um viele in der Software-Engineering-Praxis er-
folgreich eingesetzte Vorgehensweisen und Modellierungstechniken in einem umfassenden
Prozess zu integrieren. Die Unterkomponenten von Systemgestaltung spiegeln die sog.
Prozess-Workflows des RUP wider. Hierbei werden sowohl die Abldufe von Aktiviti-
ten als auch die Interaktion zwischen relevanten Personen (Entwicklern, Auftraggebern
und Benutzern) beschrieben. Bei der Entwicklung eines Chatsystems konnen Lernende
und Lehrende diese Rollen im Rahmen der Projektarbeit einnehmen. Es muss geklart
werden, welche Kenntnisse und Fahigkeiten zum Design des Client-Server-Systems not-
wendig sind. Weiterhin muss entschieden werden, welche Modellierungstechnik, z.B. der
Unified Modeling Language (UML), wihrend eines bestimmten Arbeitsablaufs zum Ein-
satz kommt. Die Ableitung von Kompetenzkomponenten auf der Grundlage der Prozess-

Workflows ist dadurch begriindet, dass der RUP ein umfassendes Prozess-Framework zur

Verfiigung stellt, welches es fiir das jeweilige Einsatzszenario anzupassen gilt.

K1 Aufgabenbereiche

@ System anwenden
@

Systemgestaltung

- Geschaftsmodellierung

- Anforderungsanalsyse

- Analyse & Design

- Implementierung
- Test

Abbildung 4.2.: K1 Aufgabenbereiche

85

4.1.3. K2 Nutzung informatischer Sichten

Zur Bewiltigung von Aufgaben bzw. Anforderungen der Systemanwendung, des System-
verstdndnisses und der Systemgestaltung ist es aufserdem erforderlich, dass die Lernenden
befihigt werden, Informatiksysteme aus unterschiedlichen Perspektiven zu betrachten.
Damit ist nicht nur der Erwerb unterschiedlicher Wissensbestdnde zur Systembeschrei-
bung und -analyse, sondern auch die Befihigung zum flexiblen Wechseln zwischen diesen
Sichtweisen — je nach Aufgabenanforderung — impliziert.

Informatische Bildung mit einem Schwerpunkt auf informatischem Modellieren und Sys-
temverstandnis sollte daher auch die kognitive Flexibilitdt der Lernenden im Umgang
mit solchen Systemen férdern.

Informatiksysteme konnen z.B. anhand ihres nach aufen sichtbaren Verhaltens, ihrer in-
neren Struktur analysiert werden. Denning beschreibt hierzu fiinf Perspektiven auf die
Informatik (windows of computing mechanics). Diese erweitert er zu sieben Kategori-
en der Informatik: computation, communication, coordination, automation, recollection,
evaluation und design |Denning 2007|. Denning setzt die Kategorien mit den Hauptfunk-

tionen von Informatiksystemen in Verbindung:

»These categories cover the main functions of computing systems [Denning
2007, S. 15].“

Damit wird implizit eine Antwort auf die Frage geliefert, welche Sichten Lernende auf
Informatiksysteme einnehmen kénnen und miissen, um ein konsistentes Gesamtbild von
Informatiksystemen zu bekommen. Nach Denning kénnen die Perspektiven auf die Infor-
matik mit einem fachdidaktischen Sichtenkonzept kombiniert werden. Dementsprechend
sollte der zu explorierende Lerngegenstand in unterschiedlichen, gef. interaktiv erfahr-
baren und synchronisierten Sichten dargestellt werden. So ist eine zuverldssige Daten-
iibertragung im Chatsystem, wie sie unter der Perspektive der Kommunikation (com-
munication) analysiert wird, unabdingbar fiir die Kommunikation der Chatteilnehmer,
wiahrend bei der digitalen Sprachiibertragung einzelne Bitfehler toleriert werden kénnen.
Diesbeziiglich kann der Entwurf (design) des Chatsystems untersucht werden. Die Neben-
ldufigkeit von Prozessen bzw. von eingegebenen Nachrichten in das Chatsystem kénnen
im Rahmen der Koordinierung (coordination)betrachtet werden. Die Sichten iiberschnei-
den sich jedoch. Dies wird dadurch verstirkt, dass in jeder Sicht mehrere Modelle und
Darstellungsformen zur Hervorhebung eines Aspektes zum Einsatz kommen, die wieder-
um auch fiir andere Perspektiven genutzt werden. Daher sind die Sichten schwierig zu
synchronisieren und bediirfen einer weiteren Strukturierung. Ausgehend von diesen Per-

spektiven lautet die Frage, welche und ggf. wie viele Perspektiven auf Informatiksysteme

86

zu beherrschen sind, um bei deren Einsatz Anwendungsprobleme zu 16sen. Nievergelt
erstellt dazu ein Schichtenmodell der Informatik: den Informatikturm. Als oberste und
grofkte Ebene nennt er die Anwendungsmethodik, die beschreibt, wie Informatiksysteme
zur Losung eines Anwendungsproblems eingesetzt werden. Darunter liegt die Ebene der
Systemrealisierung mit Entwurf und Implementierung in Hard- und Software. Nievergelt
zahlt zu dieser Ebene das Programmieren im Groften. Eine weitere Ebene tiefer liegt
die Algorithmik, d. h. das Programmieren im Kleinen. Auf der untersten Ebene liegen
fundamentale theoretische Erkenntnisse der Informatik [Nievergelt 1995].

Zur Strukturierung der Perspektiven wurde beschlossen, den Blick auf das System (Au-
fsensicht) und den Blick in das System (Innensicht) zu unterscheiden. Um das nach au-
ken sichtbare Verhalten von Informatiksystemen zu verstehen, seien als Beispiele Erwar-
tungshaltungen und Handlungsmuster der Nutzer sowie Usability angefiihrt. Brauer und
Brauer fordern mit Blick auf komplexe Informatiksysteme die Informatik auf, vernetztes

Denken und Handeln mit zu gestalten:

Ja, es wird immer klarer, dafs sequentielle geschlossene Systeme sehr gro-
be Idealisierungen darstellen, daf aber konkrete Systeme i. a. verteilt, offen
(interaktiv) und nichtsequentiell sind. Deshalb ist die Anderung der Denk-
gewohnheiten notig; vernetztes, nicht langer sequentielles Denken wird ge-
braucht [Brauer und Brauer 1992, S. 17].%

Es ist daher notwendig, Lernende im Umgang mit Perspektiven zu befdhigen; diese Per-
spektiven lassen die Verteilung der Systemkomponenten und deren Vernetzung erken-
nen. Fiir den Blick in das System kénnen deshalb Architekturmodelle betrachtet werden,
denn sie verdeutlichen Aufbau und grundsétzliche Arbeitsweise von Informatiksystemen.
Darunter fallen Rechnerarchitekturen wie Entwurfsmuster oder Schichten, z.B. eine 3-
Schichten-Architektur bestehend aus Graphical User Interface (GUI), Fachkonzept und
Datenhaltung. Dazu kommen theoretische Maschinenmodelle und Rechenmodelle, z.B.
Kalkiile und Sprachtypen wie imperativ, funktional, pradikativ, objektorientiert sowie
entsprechende héhere Programmiersprachen mit Algorithmen und Datenstrukturen.

Ausgehend vom fachdidaktischen Konzept der fundamentalen Ideen der Informatik kon-
nen Wirkprinzipen in Informatiksystemen bei gleichzeitiger Sicherung des Bildungswertes
beschrieben werden |Schubert und Schwill 2004|. Der Erfolg der Férderung des Informa-
tiksystemverstindnisses hiangt davon ab, ob es gelingt, komplexe Zusammenhénge, wie
sie zwischen der inneren Struktur und dem Verhalten von Informatiksystemen bestehen,
zu strukturieren, um Aneignung und Anwendung des Wissens zu unterstiitzen. Solche

Wissensorganisation férdert den Erwerb, die Kommunikation iiber den Wissensbereich

87

und die Anwendung des Wissens.

Ausschlaggebend hierfiir ist die Visualisierung als externe Représentationsform. Grafische
Beschreibungsmittel wie die UML ermdoglichen daher weitere Perspektiven auf Informa-
tiksysteme und unterstiitzen das Verstehen. Analog zu K1 konnen die Lernzielebenen
Wissen, Anwenden und Gestalten adressiert werden. Da Chatsysteme sowohl synchrone
als auch asynchrone Kommunikation unterstiitzen, hingt die Erwartungshaltung als Au-
Bensicht im hohen Make von den Zielen des Anwenders im Umgang mit der Software ab
(z.B. Freizeit, Lernprozess usw.). Bei der Entwicklung eines verteilten Chatsystems sind
einige der beschriebenen Innensichten relevant: Bei der Zuordnung von Programmkomypo-
nenten zu Client und Server ist es beispielsweise unabdingbar, sich mit der Architektur
(z.B. Client/Server-Prinzip) zu beschiftigen. Ferner muss man sich mit Aspekten der
Verteilung und Vernetzung von Komponenten befassen, um das zu entwickelnde Chat-
system spéter auf verschiedenen verteilten Rechnern einsetzen zu kénnen. Verfolgt man in
einem weiteren Schritt die Implementierung von Programmmodulen, wird deutlich, dass
man sich mit Kalkiilen und Sprachtypen befassen muss. Hierbei miissen sich Entwickler

notwendigerweise mit Algorithmen und Datenstrukturen beschéftigen.

K2 Nutzung informatischer Sichten

AuBensicht

(z.B. Erwartungshaltung,
Handlungsmuster, Usability)

Innensicht
- Schichten

- Verteilung

- Entwurfsmuster

- Hohere Programmiersprachen

- Sprachtypen (Kalkdle)

Abbildung 4.3.: K2 - Nutzung informatischer Sichten

88

4.1.4. K3 Anforderungen an den Umgang mit Komplexitat

Anforderungen an informatische Kompetenzen werden auch durch die Komplexitéit der
Systeme, die jeweils thematisiert oder verwendet werden, determiniert. Die Frage, die
sich in diesem Zusammenhang stellt, ist allerdings, welche Faktoren die Komplexitit
eines Informatiksystems ausmachen. Ein einfaches Kriterium ist die Anzahl an Kom-
ponenten eines Systems. Hinsichtlich eines Chatsystems bedeutet dies, dass ein kleines
System beispielsweise zwei Clients und einen Server als Komponenten umfassen kénn-
te. Damit gekoppelt ist der Grad der Vernetzung unterschiedlicher Komponenten, die in
Architekturmodellen beschrieben werden. Die Clients sind ausschlieflich iiber den Ser-
ver miteinander vernetzt. Komponenten und deren Vernetzung werden als Facetten zur
Beschreibung von Komplexitétsanforderungen herangezogen.

Brauer und Brauer weisen darauf hin, dass Algorithmen als formalisierbare Dimension
von Informatiksystemen nicht ausreichen, um Prozesse in Rechnern, parallele Prozes-
se oder verteilte Systeme in ihrer ganzen Komplexitit zu erfassen [Brauer und Brauer
1992]. Menschen und Maschinen machen Eingaben in Informatiksystemen und beeinflus-
sen damit die Systemzustinde und den auf Protokollen basierenden Datenaustausch. Das
Systemverhalten ist damit im Detail kaum noch deterministisch nachvollziehbar.

Man spricht in diesem Zusammenhang auch von der Intransparenz komplexer Systeme.
Zur Messung des Interaktivitdtsgrades eines Informatiksystems bietet sich eine Stufung
an, die nicht am Informatiksystem, sondern an den kognitiven Prozessen des Lernenden
orientiert ist. Ein Chatsystem ist beispielsweise geeignet, um schriftlich zu kommunizie-
ren, die Nutzung grafischer Darstellungen zur Kommunikation wird jedoch meist nicht
unterstiitzt. Auch sind intelligente Systemriickmeldungen meist auf eine Rechtsschreib-
priiffung beschrankt.

Im Computing Curricula Information Technology der ACM wird Abstraktion als wich-
tigstes Mittel zur Komplexitdtsbewiltigung hervorgehoben und es werden weitere ge-

nannt:

,The ability to manage complexity through abstraction & modeling, best
practices, patterns, standards, and the use of appropriate tools [ACM 2008,
S. 47].%

Diese Konzepte liefern Hinweise, wie Lernende adéquat mit Komplexititsanforderungen
bei Informatiksystemen umzugehen haben.

Auferdem nehmen wir an, dass auch der Grad der Verteilung von Systemkomponenten
(lokal versus verteilt) die Komplexitatsanforderungen determiniert. Die scheinbare Ab-

geschiedenheit eines Chatraums tduscht unerfahrenen Anwendern vor, dass es sich um

89

ein lokales statt verteiltes System handelt.

K3 Umgang mit Komplexitat

Anzahl der Komponenten

Grad der Vernetzung der Komponenten

Lokal versus verteilt

Grad der Interaktivitat

L

Abbildung 4.4.: K3 - Anforderungen an den Umgang mit Komplexitét

4.1.5. K4 Nicht-kognitive Kompetenzen

In Anlehnung an das Kompetenzverstidndnis nach Weinert umfassen Kompetenzen ne-
ben kognitiven Bereichen auch nicht kognitive Kompetenzen, wie Einstellungen, sozial-
kommunikative Fahigkeiten und motivationale und willensméfige Fahigkeiten |Weinert
2002|. Dementsprechend wird in diesem Unterkapitel erldutert, in welcher Art und in
welchem Ausmaf nicht-kognitive Kompetenzfacetten beim informatischen Modellieren
und informatischem Systemverstdndnis gefordert bzw. zu entwickeln sind.

Die Erwartungshaltungen an den Umgang mit einem Informatiksystem sind insofern
relevant, weil sie einen wesentlichen Bedingungsfaktor fiir das erfolgreiche Gelingen des
Lernens informatischer Inhaltsbereiche darstellen.

Als wichtige Fahigkeit sind sowohl die Wahrnehmung eines Informatiksystems im sozialen
Kontext als auch die Entwicklung eines prospektiven Blicks auf das System gefordert.
Die Wichtigkeit, Informatiksysteme im Kontext wahrnehmen und antizipieren zu kénnen,
wird bei Betrachtung des soziotechnischen Systembegriff und den sich daraus ergeben-
den Implikationen fiir die Betrachtung von Informatiksystemen deutlich [ACM 2008|.
Im Rahmen der arbeitspsychologischen Expertiseforschung wurde untersucht [Sonnentag

2006], worin sich High-Perfomer von Medium-Performern im Bereich Software-Design

90

und -entwicklung unterscheiden. Die Ergebnisse weisen darauf hin, dass High-Perfomer
im Vergleich zu Medium-Perfomern iiber eine bessere Kommunikation und Kooperation
verfiigen, sie ferner nicht mehr Zeit auf die fachspezifischen Tétigkeiten der Softwareent-
wicklung aufwenden, sehr wohl aber engagierter wihrend Projekttreffen und Konsulta-
tionen sind. High-Performer verfiigen auferdem iiber hoher entwickelte interpersonale
Fahigkeiten als Medium-Performer.

Sozial-kommunikative F&higkeiten und Kooperationsbereitschaft stellen folglich bedeut-
same Kompetenzanforderungen in der Informatikdoméne (insbesondere unter Beriick-
sichtigung des sozio-technischen Systembegriff) dar. Hierbei muss die Teamfihigkeit der
Lernenden entwickelt werden, um vielfiltige sozial-kommunikative Anforderungen, z.B.
bei der kooperativen Systemgestaltung, bewéltigen zu kénnen. Die Lernenden sollten
ebenfalls die Fahigkeit zum Perspektivwechsel (Empathie) entwickeln, um etwaige Rol-
len (z.B. Benutzer, Entwickler, Auftraggeber) und die jeweiligen subjektiven Sichten auf
das Informatiksystem nachvollziehen und deuten zu kénnen. Dabei ist zu beachten, dass
es sehr unterschiedliche und dennoch schliissige Sichten auf ein Informatiksystem geben
kann. Die Wichtigkeit, ein derartiges Einflihlungsvermdgen zu entwickeln, wird somit
offensichtlich.

Neben Einstellungen und sozial-kommunikativen Féhigkeiten miissen bei den Lernenden
entsprechende motivationale und volitionale Fahigkeiten entwickelt werden. Diese sind
eng mit Prozessen der Selbstregulation verkniipft und stellen die Vorbedingung zu selb-
stdndigem Handeln und dem entschlossenen und gewissenhaften Verfolgen der eigenen
Ziele dar. Der Grad der Motivation spiegelt eine wesentliche Facette der Handlungs-
kompetenz in diesem Kontext wider. Daher gilt es, eine Offenheit fiir neue Ideen und
Anforderungen zu férdern. Dariiber hinaus soll die Bereitschaft zu lernen und sich zu en-
gagieren gestirkt werden. Motivationale Kompetenzen befihigen die Lernenden dazu, ihr
Wissen in komplexen Situationen erfolgreich und verantwortungsvoll anwenden zu kon-
nen. Ferner sind sie entscheidend dafiir, dass die Lernenden ihre Kompetenzen beziiglich
des informatischen Modellierens und Systemverstédndnisses auf einer hohen Auspriagungs-
stufe entwickeln.

Mit Blick auf das oben beschriebene Aufgabenszenario zeigt sich, inwiefern die Erwar-
tungshaltung von Entwicklern Einfluss auf ein effektives Implementieren hat: Sollen die
Lernenden sich beispielsweise in eine objektorientierte Programmiersprache einarbeiten,
s0 ist eine ablehnende Haltung diesem Sprachtyp gegeniiber sicherlich als erschwerend ein-
zustufen. Eine positive Einstellung hingegen wird der effektiven Einarbeitung férderlich
sein. Auch die sozial-kommunikativen Fiahigkeiten sind von Relevanz: Eine zeitgleiche

Implementierung von Programmmodulen kann nur dann stattfinden, wenn eine ange-

91

messene Kommunikation in und zwischen den verschiedenen Entwicklergruppen erfolgt.
Hierbei miissen beispielsweise Absprachen iiber Schnittstellen getroffen werden. Aufser-
dem wird von Softwareentwicklern Empathie erwartet, um das Nutzerverhalten eines zu
implementierenden Informatiksystems zu antizipieren. In Bezug auf das Beispielszenario
ist es demnach wichtig, sich in die Rolle des Benutzers hineinzuversetzen und dessen kiinf-
tiges Verhalten im Umgang mit dem Chatsystem in Entwurfsentscheidungen (z.B. bei der
Entwicklung der Benutzungsschnittstelle) mit einzubeziehen. Im Rahmen eines solchen
arbeitsaufwindigen Projektes im Team ist sowohl zielorientiertes, frustrationstolerantes
und verantwortungsvolles Verhalten als auch die Bereitschaft, neues, nicht vorhandenes
Fachwissen selbstédndig zu erwerben, von erfolgsrelevanter Bedeutung.

In Anbetracht dieser theoretischen Uberlegungen ergeben sich wichtige Implikationen
bei der Analyse und im Umgang mit Informatiksystemen: Wahrend man die technischen

Aspekte eines Informatiksystems betrachtet (z.B. Hard- und Software), gilt es, dessen

soziale Aspekte und Auswirkungen mit in die Betrachtung einzubeziehen.

K4 Nicht-kognitive Kompetenzen

Einstellungen

- Wahrnehmung / Antizipation des IS im
Kontext

- Erwartung an den Umgang mit einem IS

Sozial-kommunikative Kompetenzen
- Kooperation und Teamfahigkeit

- Empathie (Perspektivwechsel: Benutzer,
Auftraggeber und Entwickler)

Motivationale und volitionale Kompetenzen

- Offenheut fur neue Ideen / Anforderungen
- Lernbereitschaft

6 W 6

- Bereitschaft zum Engagement

Abbildung 4.5.: K4 - Nicht-kognitive Kompetenzen

Die Dimensionen K1 bis K4 setzen sich zu einem theoretisch abgeleiteten Rahmenmodell

(Kompetenzstrukturmodell) zusammen.

92

JjuawaBefuz wnz Yeydsyauag -

YeyIspaiaquia -
uaSunuapiojuy

/ usapj anau 1y IN3YuaYO -
uazuajadwoy

3[EUOIY[OA PUn I[EUOHEMIOIN

P{21m3u3 pun JageEdeayny Rzinuag
FsyramanyRdsiag) aiyeduwg -

y=3diyejwes) pun uoijeiadooy -

U3zUIRdWOY IANEHIUNWWOY-[BZOS

wauR yw Fuedwn usp ue Sunpemy -
R0y
ediziuy f Sunwyswiyep, -

uadunj2psuiy

uazUa1adWOoY SAHUSON-WPIN #)

1ENAIEIIU] J3P PRID

1I3LIAA SNSIAA [BYO]

uauaucduwoy J3p SUNZIBWIA J3p peIn

uajuauodwo)y 13p |Yezuy

fwioy 1w Sueswin g

(3inyex) uadAyoeids -
eidsiaiwwelold JI9YoH -

Jaysnwspnmug -
BunpRuaA -
U3y

TRTLTETITT]

qesn “JSIsnwsFunjpuey
“BumyjeysSunpesuy gz)

Wossuagny

UlIYIS JaydsIewIoul SUnziny 7

s3] -
Funuanuawajduw) -
udisaq g asAjeuy -

asAs|euBsAuNI3pIoJUY -

Bunu

POWSYEYISID) -
Funyjesafwmaisis

SIUPUEISIIAWI)SAS

uapuamue waIsis

aydvIaquUagesny T

Theoretisch Hergeleitetes Rahmenmodell

Abbildung 4.6.

93

4.2. Forderung von Schliisselkompetenzen

3Neben der Ableitung informatik-spezifischer Kompetenzaspekte im Rahmenmodell, be-
stand der Anspruch, allgemeinbildende Schliisselkompetenzen mit zu beriicksichtigen.
Dementsprechend wurde theoretisch untersucht, inwiefern sich die im Kompetenzrah-
menmodell enthaltenen fachspezifischen Kompetenzaspekte zur Foérderung von Schliis-
selkompetenzen (in Anlehnung an OECD Definition and Selection of Competencies) eig-
nen. Im Rahmen der vorliegenden Arbeit soll hierbei der Fokus auf die informatische
Modellierungskompetenz und deren moglicher Zuordnung zu Schliisselkompetenzen ge-

legt werden.

4.2.1. Allgemeinbildender Wert des Informatikunterrichts an Gymnasien
der Sekundarstufe Il

Aufgrund seines Ursprungs innerhalb der Ingenieurwissenschaften ist Informatik das
wichtigste und geeignetste Fach, um IT-relevante Kompetenzen im Rahmen der Sekun-
darstufe zu vermitteln. Insbesondere im Hinblick auf die stdndig wachsende Relevanz
der IT im schulischen, privaten und beruflichen Alltag gilt es, im Rahmen des Infor-
matikunterrichts an allgemeinbildenden Schulen, den Umgang mit dieser Technologie in
verschiedenen sozialen Umgebungen zu vermitteln.

Um einen genaueren Einblick in die damit verbundenen Lehr- und Lernziele, Unterrichts-
inhalte und die Methodik der Vermittlung zu erhalten, ist es hilfreich, den Begriff des
Informatiksystems im Sinne der systemtheoretischen Didaktik der Informatik in Pader-

born zu definieren:

sunter Soziotechnischen Informatiksystemen (IS) verstehen wir die Vereini-
gung von Software (inkl. der grafischen Benutzeroberfliche GUI), Hardware
und eines assoziierten sozialen Systems von Personen die miteinander und mit
dem technischen Part des Informatiksystems interagieren [Magenheim 2000,
S. 42].%

Dieser Begriff hat seinen Ursprung sowohl in der Informatik als auch in der technischen
Soziologie [Ropohl 1999].

Insbesondere im Rahmen von Software Engineering Prozessen, ist die Modellierung ein
Prozess mit hohem kommunikativen und interaktiven Anteil, der eine intensive Zusam-

menarbeit zwischen Entwicklern und Kunden bzw. Auftraggebern erfordert. Hierbei kre-

®Das Kapitel 4.2 enthilt die fiir die Modellierungskompetenz relevanten Anteile aus der eigenen Verdf-
fentlichung [Kollee et al. 2009].

94

ieren Software-Entwickler Modelle, die einen prospektiven Blick auf die kiinftige Sys-
temfunktionalitit eines Informatiksystems gew#hren. Ferner wird deren Integration in
die Geschifts- und Arbeitsdoméne sowie in den jeweiligen sozialen Kontext aufgezeigt
[ACM 2008].

Damit der Informatikunterricht allgemeinbildende Kompetenzen vermitteln kann, sollte
die Modellierung innerhalb von Software Engineering Prozessen als ein zentrales The-
ma behandelt werden. Da es sich bei der Gestaltung von Informatiksystemen um eine
Tatigkeit handelt, die von vielen sozialen Faktoren abhingig ist, muss der Lerner ein
Prozessverstindnis entwickeln. Dies umfasst insbesondere die Interessen verschiedener
kooperierender Stakeholder (Entwickler, Benutzer und Auftraggeber), deren Ziele und
Absichten sowie die daraus resultierenden Designentscheidungen im Hinblick auf das In-
formatiksystem [ACM 2008].

Indem man diese mit dem Prozess der Modellierung verkniipften sozialen Aspekte und
Folgewirkungen bewusst thematisiert, kann der Informatikunterricht einen Beitrag zur
Entwicklung von Schliisselkompetenzen (z.B. die interaktive Nutzung von technischen
Systemen) leisten. Ein derartiger Unterricht bietet im Hinblick auf Klafkis epochalty-
pische Probleme einen allgemeinbildenden Wert: Nach Klafki ist der zu vermittelnde
Lerninhalt im Hinblick auf seine Vergangenheits-, Gegenwarts- und Zukunftsrelevanz zu
legitimieren. Dies geschieht im Hinblick auf die Modellierung im Kontext von Software
Engineering Prozessen durch die Thematisierung von epochaltypischer Probleme, z.B.

sozialer Folgewirkungen von Designentscheidungen [Horton 2007].

4.2.2. DESECO-Schliisselkompetenzen

Aufgrund der stetig steigenden Anforderungen im Alltag, den globalen Mérkten und dem
sog. Informationszeitalters sind Schliisselkompetenzen von fundamentaler Bedeutung fiir
jedes Individuum. Schliisselkompetenzen sind in diesem Zusammenhang mehr als Wissen
und Fahigkeiten. Sie umfassen komplexe psychologische Anforderungen und sollen es
dem Individuum erméglichen, den unterschiedlichen Anforderungen als Mitglied einer
modernen Gesellschaft gerecht zu werden. Schliisselkompetenzen kénnen erlernt werden

und koénnen als wichtige Bereiche der Allgemeinbildung verstanden werden [OECD 2005].

95

Interaktive
Benutzung von
Werkzeugen

Autonomes
Handeln

Interaktion in
Heterogenen
Gruppen

Abbildung 4.7.: DESECO Schliisselkompetenzen

Eine mogliche Kategorisierung von Schliisselkompetenzen wird im Ansatz des OECD Pro-
jekts Definition and Selection of Competencies (DeSeCo) vorgeschlagen. Hierbei werden
Schliisselkompetenzen in drei Gruppen kategorisiert [OECD 2005]:

o Using Tools Interactively
Diese Gruppe umfasst Kompetenzen, die es einem Individuum ermdéglichen Sprache
und Symbole, Wissen und Information sowie Technologie interaktiv verwenden zu
konnen. Der interaktive Umgang mit Technik erfordert Wissen und ein Bewusstsein,
wie die zeitgemifie Nutzung von Technologie und deren Integration in den Alltag

eines Individuums geschieht.

Fordert man eine derartige interaktive Nutzung von IT hat dies Auswirkungen auf
die Art und Weise, wie Individuen (z.B. ortsunabhéngig mit Hilfe von IT) miteinan-
der arbeiten, sich Zugang zu umfassenden Informationsressourcen verschaffen und
miteinander interagieren, indem globale I'T-gest{itzte soziale Netzwerke aufgespannt
werden. Die interaktive Nutzung von IT bietet die Chance, benachteiligte Personen

nicht auszuschliefen und die geschlechtliche Gleichbehandlung zu gewédhrleisten.

e [Interacting in Heterogeneous Groups
Dieser Bereich umfasst Schliisselkompetenzen, die eng mit sozialen, interpersonalen
Féhigkeiten und Fertigkeiten verkniipft sind. Dementsprechend erméglichen derar-
tige Kompetenzen die Integration eines Individuums in pluralistischen Gesellschaf-
ten und den Umgamg und die Bewaltigung komplexer Anforderungen. Diese umfas-

sen den sozial-konformen Umgang mit Mitmenschen, Kooperation und Teamarbeit

96

sowie eine soziale Konfliktfdhigkeit. Der sozial-konforme Umgang mit Mitmenschen
bedeutet die Fahigkeit, soziale Bindungen zu Mitmenschen — unabhéngig von ver-
schiedenen Berufen, Karrieren und anderen sozialen Hintergriinden — zu kniipfen,
diese aufrecht zu erhalten und mit selbigen umzugehen. Somit wird es Individuen
ermoglicht, angemessen miteinander zu kommunizieren und eine soziale Empathie
herauszubilden, um sich in den Mitmenschen und seine Perspektive auf einen Sach-

verhalt hineinzuversetzen.

o Acting Autonomously
Diese Kategorie besteht aus Schliisselkompetenzen, die das Individuum befdhigen,
in komplexen und verantwortungsvollen sozialen Kontexten zu agieren und soziale
Muster und Systeme zu verstehen. Ferner werden Individuen befiahigt, explizite und
implizite Folgewirkungen des eigenen Handelns zu antizipieren. Folglich adressiert
diese Gruppe von Schliisselkompetenzen die Entscheidungsfihigkeit und die Fa-
higkeit zur Ubernahme von Verantwortung eines Individuums. Zusammenfassend
lasst sich feststellen, dass diese Art von Schliisselkompetenzen entscheidend zur

Entwicklung von Selbststédndigkeit und Arbeitsféhigkeit eines Individuums ist.

Im Hinblick auf die Entwicklung von adiquaten Lernumgebungen, die z.B. im Rahmen
des Informatikunterrichts der Sekundarstufe II an allgemeinbildenden Schulen zum Ein-
satz kommen, verdeutlicht der DeSeCo-Ansatz die Wichtigkeit, nicht nur fachspezifische
Fahigkeiten und Fertigkeiten zu vermitteln, sondern die Forderung von ganzheitlichen
Kompetenzen (also insbesondere auch nicht-kognitiven Kompetenzfacetten und Schliis-

selkompetenzen) zu fokussieren.

4.2.3. Modellierungskompetenz und Schliisselkompetenzen

Nachfolgend wird an zwei exemplarischen Kompetenzdimensionen des Rahmenmodells
der Zusammenhang zwischen den im Modell abgebildeten Kompetenzfacetten und den
oben beschriebenen Schliisselkompetenzen illustriert. Hierbei soll im Sinne der theoreti-
schen Absicherung des Kompetenzstrukturmodells gezeigt werden, wie die Vermittlung
der im Modell enthaltenen Kompetenzen zur Entwicklung von Schliisselkompetenzen bei-
tragen kann.

K1 Aufgabenbereiche

Die Lerner sollen verschiedene Aufgabenbereiche informatischer Kompetenz erlernen.
Diese kdnnen den Bereichen Systemanwendung, Systemuverstindnis und Systemgestaltung

zugeordnet werden.

97

Wie zuvor erwahnt, umfasst die Komponente Systemanwendung Kompetenzfacetten zur
Anwendung eines Informatiksystems. Sie ermoglichen dem Lerner, Technologie interaktiv
im Sinne einer der oben beschriebenen Schliisselkompetenzen zu nutzen. Hierzu gilt es
seitens der Lerner ein Gespiir herauszubilden, wie Technologie gewinnbringend in den
persodnlichen Alltag eingebracht werden kann. Hierbei muss ein Einschitzungsvermogen
entwickelt werden, die Vorteile von Technologie abzuwédgen, und selbiges entsprechend
der personlichen Umstidnde und Ziele sinnvoll einzusetzen, anstatt diese ohne Bedacht
und Reflexion zu verwenden. Imm Hinblick auf ein Informatiksystem kann dies bedeuten,
jenes bewusst fiir die personlichen Zwecke einzusetzen (z.B. als Lernmedium).

Die Kompetenzkomponente Systemwverstindnis fokussiert das Verstindnis der Elemen-
te eines Informatiksystems und der dahinterliegenden informatischen Prinzipien. Neben
der bewussten Anwendung von Informatiksystemen ist die Entwicklung derartiger Kom-
petenzen (wie in der Kompetendimension abgebildet) eine wichtige Voraussetzung, um
sich ein Informatiksystem sinnvoll zu Nutze zu machen und es interaktiv verwenden zu
kénnen. Gerade um das personliche Potential eines Informatiksystems einschitzen zu
konnen, ist es hilfreich deren Natur zu kennen.

Die fiir die Entwicklung von Informatiksystemen besonders relevante Komponente Sys-
temgestaltung reprasentiert das Vermogen, Informatiksysteme zu entwickeln und reverse
engineering zu betreiben. Wie bereits beschrieben, wurden die Unterkomponenten von
Systemgestaltung anhand der statischen Phasen des Rational Unified Process |Rational
Software Corporation IBM. 1998] theoretisch abgeleitet. Hier handelt es sich um ein
mogliches Prozess-Framework, um viele bewéhrte Vorgehensweisen (best practices) im
Softwareengineering in einem umfassenden Prozess-Framework zu kapseln. Dieser wird
in vielen breit gestreuten Einsatzbereichen verwendet und l&sst sich auf verschiedene
Anwendungsszenarien adaptieren.

Die Unterkomponenten orientieren sich an den sog. Process Workflows des RUP. Die-
se beschreiben Abfolgen von diversen Aktivitdten innerhalb eines Software Engineering
Prozesses und die Kommunikation der Personen, die die Modellierung betreiben.

Der RUP orientiert sich an einem iterativen Vorgehen bei der Entwicklung von Informa-
tiksystemen und setzt auf komponentenbasierte Architekturen, die aus bereits bestehen-
den und neu entwickelten Komponenten bestehen.

Insbesondere im Bildungsbereich gilt es den RUP entsprechend der Komplexitit von
Software Engineering Projekten im schulischen Umfeld und der Kompetenz der Lerner
anzupassen.

Wie im Verlauf des folgenden Unterkapitels beschrieben, ist die Fahigkeit ein Informa-
tiksystem zu entwickeln (z.B. bei der Modellierung der Architektur des Systems) eng mit

98

verschiedenen nicht-kognitiven Kompetenzen verkniipft. Diese konnen wiederum verschie-

denen Schliisselkompetenzen entsprechend dem DeSeCo-Ansatz zugeordnet werden.

4.2.4. Nicht-kognitive Kompetenzen und Schliisselkompetenzen

Die Kompetenzdimension fokussiert, wie zu Beginn des Kapitels beschrieben, die nicht
kognitiven Kompetenzen eines Lerners, d.h. seine Einstellung gegeniiber dem Informa-
tiksystem, sozial-kommunikative und motivationale Kompetenzen.

Die Komponente Finstellung gegeniiber dem Gegenstandsbereich umfasst die Art und
Weise, wie ein Lerner ein Informatiksystem wahrnimmt inklusive eines prospektiven
Blicks auf ein derartiges System. Ferner adressiert diese Komponente auch die Erwar-
tungshaltung des Lerners gegeniiber dem Umgang mit einem Informatiksystem. Der er-
neute Bezug auf das Konzept eines sozio-technischen Informatiksystems und die sich
daraus ergebenden Implikationen im Umgang mit solchen Systemen, machen die Wich-
tigkeit deutlich, ein Informatiksystem im Kontext zu interpretieren und jenes wihrend
des Modellierungsprozesses zu antizipieren.

Die Begriindung fiir die Integration der Komponente Erwartungshaltung gegeniiber ei-
nem IS ergibt sich aus einer empirischen Studie von Magenheim und Schulte, welche die
Wichtigkeit der Beriicksichtigung der Erwartungshaltung der Lerner gegeniiber dem In-
formatikunterricht betont. Somit lasst sich feststellen, dass die Erwartungshaltung bzw.
Einstellung gegeniiber dem Gegenstandsbereich als grundlegende Bedingung fiir ein er-
folgreiches Lehren und Lernen zu verstehen ist [Magenheim und Schulte 2005]. Insbeson-
dere mit der Zielsetzung, die interaktive Nutzung von Werkzeugen (z.B. bei der Integrati-
on von IT in den Alltag) zu fordern, erfordert dies Kenntnis bzgl. der Erwartungshaltung
der Schiiler gegeniiber dem Gegenstandsbereich.

Wie zuvor erldutert, ist es wichtig, soziale Aspekte und Folgewirkungen in Betrachtung zu
ziehen, wenn man sich mit sozio-technischen Informatiksystemen befasst. Diese Perspek-
tive, die sich schon aus der Definition des Begriffs Informatiksystem ergibt, akzentuiert
die Erfordernis von sozial-kommunikativen Kompetenzen wenn im Rahmen der Model-
lierung (z.B. im Rahmen der Phase Requirements) die unterschiedlichen Anforderungen
und Interessen der Beteiligten (Auftraggeber, Benutzer und Entwickler) analysiert wer-
den. Daraus lésst sich aufkerdem folgern, dass die Lerner die Fihigkeit entwickeln miissen,
als aktiver Part in einem sozialen Handlungssystemen (z.B. in einer kooperativen Ler-
numgebung oder im Rahmen der kooperativen Softwareentwicklung) zu interagieren.
Die Lerner miissen weiterhin eine Empathie entwickeln, die es ihnen erméglicht, die oben
genannten Rollen innerhalb der Systemgestaltung und deren Perspektive auf das IS nach-

zuvollziehen. Nygaard postuliert, dass gerade jene héchst unterschiedlichen Perspektiven

99

auf ein IS durchaus kohérent und stimmig sein kénnen [Nygaard 1986]. Dies zeigt die
enorme Wichtigkeit eine solche Empathie herauszubilden. Ein weiterer Aspekt, der die
Wichtigkeit von Empathie auch im schulischen Umfeld unterstreicht ist die Tatsache,
dass Schiiler der Sekundarstufe II hiufig einen projektorientierten Informatikunterricht
durchlaufen. Hierbei agieren sie in einer Art Rollenspiel innerhalb der relevanten Rollen
des Software-Engineerings (Auftraggeber, Benutzer, Entwickler) und miissen auch den
Perspektivwechsel der verschiedenen Rollen bei der Betrachtung von Informatiksystemen
bewerkstelligen kénnen. Durch diesen Anspruch der im Kompetenzmodell zu vermitteln-
den Kompetenzfacetten erhalten die Lerner zudem die Chance zu lernen in Teams zu
arbeiten, zwischenmenschlich angemessenes Verhalten zu erlernen und Konflikte bei der
kooperativen Arbeit 16sen zu konnen.

Weiterhin wird dem Lerner die Moglichkeit geboten, Schliisselkompetenzen zu erwer-
ben, die sie dazu befihigen, autonom zu handeln. Hierbei kann der Prozess der Soft-
wareentwicklung und Modellierung hilfreich sein, um die eigene Identitdt innerhalb des
sozio-technischen Informatiksystems zu realisieren. Dementsprechend gilt es, eine Sen-
sibilitdt im Hinblick auf die eigene Umwelt, Gruppendynamik und die eigene Rolle des
SW-Engineering Prozesses zu entwickeln. Hierzu gehort auch die Fahigkeit, die sozialen
Folgewirkungen des eigenen Handelns einschétzen zu kdnnen.

Neben der Einstellung und den sozial kommunikativen Kompetenzen gilt es auf Seiten des
Lerners, motivationale Fahigkeiten herauszubilden (die eng mit dem persénlichen Prozess
der Selbstregulation verkniipft sind), die es ihm erméglichen, autonom zu handeln und
komplexe Anforderungen nachhaltig zu bewaltigen.

Die Lerner miissen auch dazu angehalten werden, eine willensmafige Bereitschaft zu ent-
wickeln, um eine Offenheit gegeniiber neuen Ideen und Anforderungen zu haben und sich
mit dem Gegenstandsbereich der informatischen Modellierung im Rahmen von SWE-
Prozessen zu beschiftigen. Der Grad an Motivation spiegelt hierbei auch die Zweckma-
bigkeit des eigenen Handelns, Entscheidungen zu treffen und Verantwortung zu iiber-
nehmen, wider. Folglich sind motivationale (und selbstregulative) Féhigkeiten von hoher
Relevanz um unterschiedlichen Anforderungen gerecht zu werden und erfolgreich zu sein,
da Personen mit hohen motivationalen Fahigkeiten nicht von unzweckmifigen und im
Sinne der Zielsetzung irrelevanten Gedanken und Kognitionen abgelenkt werden.
Zusammenfassend ermdglichen gerade jene zuvor beschriebenen nicht-kognitiven Kom-
petenzen dem Lerner, sein Wissen in komplexen Anforderungen des téiglichen Lebens

erfolgreich einsetzen zu kdnnen.

100

4.2.5. Zusammenfassung

Im Folgenden soll angelehnt an den vorherigen Abschnitt tabellarisch aufgefiihrt wer-
den, inwiefern der Kompetenzerwerb in der Doméne des informatischen Modellierens im

Rahmen der Systemgestaltung dazu beitragen kann Schliisselkompetenzen zu férdern.

o Systemgestaltung

— Interaktion in heterogenen Gruppen
Kooperative SWE-Prozesse férdern die Kommunikation zwischen den beteilig-
ten Personen. Die Lerner miissen selbststindig die Projektleiterrolle vergeben
und diese sowie die weiteren durchaus heterogenen Rollen (Entwickler, Auf-
traggeber und Endnutzer) innerhalb des SW-Engineering Projekts bekleiden.
Ferner miissen sie sich gemeinschaftlich (z.B. bei der Analyse von Klassendia-
grammen) in die jeweiligen zugrundeliegenden informatischen Konzepte des
zu entwickelnden Informatiksystems einarbeiten und herausfinden, wie diese
implementiert werden konnen. Hierbei wird von den Lernern gefordert, dass
die Gruppe trotz duferst unterschiedlicher Rollen und Perspektiven auf ein
Informatiksystem erfolgreich agiert und den gestellten Auftrag zielgerichtet

absolvieren kann.

— Autonomes Handeln
Die Prozesse zur Entwicklung und zum Re-Engineering von Informatiksyste-
men umfassen die selbststédndige Analyse von nicht bekannten Problemen und
Anforderungen. Ferner gilt es im Rahmen des Re-Engineerings, das bestehen-
de Informatiksystem um weitere Funktionen zu erweitern und dieses Wissen
autonom auf ein neues, nicht bekanntes Informatiksystem zu transferieren.
Diese Tatigkeiten erfordern ein hohes Maf an autonomen Handlungsvermo-

gen seitens der Lerner.

Innerhalb dieses Kapitels wurde ein Einblick in die theoretische Ableitung von Kompe-
tenzdimensionen und -komponenten fiir das Rahmenmodell aufgezeigt. Ferner wurden die
abgeleiteten Kompetenzaspekte zur Modellierung auf deren Tauglichkeit zur Férderung
von Schliisselkompetenzen und zur Bildung von Allgemeinwissen gepriift. Somit wurde
auch demonstriert, wie Schliisselkompetenzen als zentraler Bereich der Allgemeinbildung

in die Kompetenzdimensionen des Rahmenmodells integriert werden kénnen.

101

K1.3 Systemgestaltung

@ Geschaftsmodellierung
Autonomes
Handel
@ Anforderungsanalyse S
Interaktion in
Analyse & Design Heterogenen
Gruppen
@ Implementierung

Abbildung 4.8.: Informatisches Modellieren und Schliisselkompetenzen

Es bleibt zu kliren, inwieweit das auf Grundlage des Kompetenzstrukturmodells ent-
wickelte Instrument in der Lage ist, den Erwerb von Schliisselkompetenzen zu messen.
Dies ist allerdings nicht Gegenstand der vorliegenden Arbeit. Hier sollte das Kapitel vor-
wiegend zur weiteren theoretischen Fundierung der abgeleiteten Kompetenzdimensionen

und -komponenten zur informatischen Modellierung dienen.

102

5. Empirische Entwicklung eines
Kompetenzstrukturmodells fiir

informatisches Modellieren

LAuf Grundlage des theoretisch abgeleiteten Rahmenmodells erfolgt die empirische Ver-
feinerung der jeweiligen Kompetenzdimensionen und -komponenten. In diesem Zusam-
menhang kommt ein Interviewverfahren zum Einsatz, das sich an bew#hrten aufgaben-
analytischen Methoden und der Critical Incident Technique orientiert. Hierbei wird insbe-
sondere ermittelt, wie die Befragten in kompetenzrelevanten Anwendungsszenarien pro-
blemldsend handeln und welche Kenntnisse, Strategien, Fahigkeiten und Einstellungen
zu dessen effektiver Bewiltigung erforderlich sind. Hiermit sollen die zuvor entwickelten
Kompetenzdimensionen und -komponenten empirisch tiberpriift sowie konkretisiert und
weiter ausdifferenziert werden.

Alle Interviews wurden audiotechnisch aufgezeichnet, transkribiert und unter Verwen-
dung der qualitativen Inhaltsanalyse nach Mayring ausgewertet [Mayring 2010]. Hierbei
kamen die drei Hauptfunktionen der qualitativen Inhaltsanalyse: Zusammenfassung, Ex-
plikation und Strukturierung, in kombinierter Form zur Anwendung, wobei Letztere die
zentrale Rolle spielte. Die Kategorienbildung fiir die strukturierte Inhaltsanalyse erfolgte
sowohl anhand der Sichtung der Expertenaussagen als auch anhand der vorab bestimm-
ten Kompetenzkategorien und -facetten des theoretisch abgeleiteten Rahmenmodells mit

Hilfe zusammenfassender und explikativer Arbeitsschritte.

'Das Kapitel 5 enthilt die fiir die Modellierungskompetenz relevanten Anteile aus den eigenen Vertf-
fentlichungen [Magenheim et al. 2010a] und [Magenheim et al. 2010b].

103

Kapitel 2 | Fachdidaktische

Ausgangslage

Internat. Vergleichsstudien
(PISA,TIMMS, .}

Kompetenzorientierung

Thematischer Schwerpunkt der Dissertation

dl.

Ausgangspunkt

Theoretische Gr

SWE Vorgehansmodell
(Rational unified Process)

MoKoM

fachwissenschaftlich

Modellierung in
Fachwissenschaft und
Fachdidaktik

—umfasstis

Vorgehensmodelle

Kapitel 3 | Modellierung in Fachwissenschaft

und Fachdidaktik

fachdidaktisch

Didakt. Vorgehensmodell
{0OM + Robatik)

Kapitel 4/5 | Kompefenzmodell-

Entwicklung

h 4

{theoratisch]

kxompetenzmodell
(empirisch}

Kapitel 6 | Messinstrument-

Entwicklung

h 4

Kompetanz
Kategoriendefinitionen

Messinstrument
Itementwicklung

Y

Entwicklung

Y

Theoretische Grundlage

Kapitel 7 | Messingtrument-

Vorerprobung

uUnterrichtsraihe

Kompetenzmassungen
im Vergleich

o

___l____

Ergebnisse
]

Kapitel 8 | Fazit / Weiterefihrende

Forschungsfragen

!

Abbildung 5.1.: Kapitel 5 im Gesamtkontext der Arbeit

104

Zur Vorbereitung der strukturierten Inhaltsanalyse wurden die transkribierten Inter-
viewtexte auferdem hinsichtlich elementarer Sinneinheiten kodiert. Bei der eigentlichen
strukturierten Inhaltsanalyse wurden die Sinneinheiten anhand der zuvor entwickelten
Kategoriendefinitionen, Ankerbeispielen und Kodierregeln den Kompetenzkategorien zu-
geordnet. In Fillen, in denen eine Zuordnung durch vorhandene Ahnlichkeiten zweier Ka-
tegorien erschwert war, wurden Kodierregeln zur definitorischen Abgrenzung verwendet.
Hierdurch erfolgte sowohl eine empirische Uberpriifung des Kompetenzrahmenmodells
hinsichtlich der normativ-deduktiv bestimmten Kompetenzdimensionen und -facetten als
auch eine Korrektur, Ergdnzung und Ausdifferenzierung des Modells hinsichtlich neu-
er und zusitzlich zu berticksichtigender Kompetenzaspekte [Lehner et al. 2010], [Schu-
bert und Stechert 2010]. In einem weiteren Arbeitsschritt wurden die Ergebnisse der
Inhaltsanalyse in ein ausformuliertes Kompetenzmodell transformiert. Hierbei wurden
die Expertenaussagen weiter verallgemeinert und aggregiert sowie vor allem sprachlich
in relevante und vereinheitlichte Kompetenzbeschreibungen transformatiert. Dabei wur-
de auf Auswertungsmethoden nach [Schaper und Horvath 2008| zuriickgegriffen. Bei der
Formulierung der Kompetenzbeschreibungen wurde unter Zuhilfenahme einer Operato-
renliste [Informatik Zentralabitur NRW, 2005] unter anderem darauf geachtet, dass die
Formulierungen kenntlich machen, ob die Kompetenzen aus den Anforderungsbereichen
(1) Kenninisse und Wissen, (ii) Fahigkeiten und Kénnen oder (i) soziale und motivatio-
nale Bereitschaften stammen. Die Formulierungen wurden dariiber hinaus so gestaltet,
dass jeweils eine Tétigkeitsausfithrung mit folgenden Elementen beschrieben wird (Sub-
jekt ,Die Lernenden...“, Pridikat ,sind in der Lage, Anforderungen zu ermitteln.”, Objekt
»--der zu entwickelnden Software”), die sich auf die fokussierten informatischen Domé-
nen bezieht. Anhand zweier Beispiele in stark reduzierter Form werden innerhalb dieses
Kapitels die Transformationen der inhaltsanalytischen Auswertungen in vereinheitlichte

Kompetenzbeschreibungen dargestellt.

5.1. Rahmenbedingungen und empirische Grundlage bei der

Durchfiihrung der Interviews

In jedem Interview haben jeweils zwei Interviewer einen Interviewten befragt. Aus kono-
mischen Gesichtspunkten wurden die Befragungen per Telefon oder VoIP (Skype) durch-
gefiithrt. Zur erfolgreichen Bewiltigung des Interviews war keinerlel Vorbereitung seitens
des Interviewten erforderlich. Die Interviews wurden standardisiert; deren Abfolge soll

im Folgenden dargestellt werden:

105

1. Willkommensgesprich und Smalltalk um eine angenehme Gespriachsatmosphére

und einen gewissen Grad an Vertrauen des Interviewten zu gewinnen.

2. Vorstellung der Rahmenbedingungen und technischen Modalitdten des Interviews:
e Wahrung der Anonymitéit

e Nachfrage um FErlaubnis, das Interview audiotechnisch aufzeichnen zu diirfen

um diese voll transkribieren zu konnen

e Darlegung, dass die gestellten Fragen und Aufgaben nicht als Wissenstest zu
verstehen sind sondern dazu dienen, bisher nicht bedachte Kompetenzfacetten
innerhalb des Kompetenzstrukturmodells aufzufinden und bestehende Facet-

ten zu verifizieren, konkretisieren oder auszudifferenzieren
3. Vorstellung des zugrunde liegenden Kompetenzverstdndnisses nach Weinert

4. Vorstellung der Critical Incident Technique als empirisches Vorgehen bei der Durch-

fiihrung des Interviews

5. Information, dass innerhalb des Interviews vier hypothetische Szenarien vorgestellt
werden und die Interviewten dazu aufgefordert sind, deren Vorgehen bei der Losung
der prasentierten informatischen Problem- und Aufgabenstellungen innerhalb der

Szenarien genau zu beschreiben.

6. Hinweis, dass zum Ende der Befragung eine quantitative Evaluation der Typikalitat

der jeweiligen Szenarien im Hinblick auf den jeweiligen Kompetenzbereich erfolgt
7. Danksagung und Verabschiedung

Die Stichprobe besteht aus insgesamt 30 Informatik-Experten, die in drei gleichgrofie
Gruppen aufgeteilt sind: Fachwissenschaftler, Fachdidaktiker und Fachleiter des Unter-
richtsfaches Informatik an der gymnasialen Oberstufe. Diese Zusammenstellung der In-
terviewten wurde gewdhlt, um ein moglichst breites Spektrum an Expertise im Bereich
Didaktik der Informatik zu gewdhrleisten. Die Rekrutierung der Interviewkandidaten er-

folgte miindlich, telefonisch oder per E-Mail.

5.1.1. Critical Incident Technique

Die Critical Incident Technique hat ihre Wurzeln in der Arbeits- und Organisationspsy-
chologie. Sie wird vorrangig eingesetzt, um Anforderungen abzuleiten, die zur berufli-

chen Ausiibung innerhalb eines bestimmten Tétigkeitsfelds erfolgsrelevant sind. In ihrer

106

urspriinglichen Form sind die Befragten dazu eingeladen, kritische (Anforderungs-) Si-
tuationen zu nennen und zu beschreiben, die innerhalb der jeweiligen Doméne relevant
sind. Ferner werden die Befragten dazu aufgefordert, die personliche Vorgehensweise zur
Bewiltigung dieser Situation genau darzulegen [Mayring 2010].

Innerhalb des Projekts MoKoM war es erforderlich, die methodische Vorgehensweise bei
der Durchfithrung der Interviews zu modifizieren: Hier wurden die Interviewten nicht
nach kritischen Anforderungssituationen befragt, sondern ihnen wurden lediglich hypo-
thetische Anforderungsszenarien vorgestellt, bei denen sie ihr personliches Vorgehen zur
Bewiltigung beschreiben sollten. Dieses methodische Vorgehen bei der Durchfiihrung
der Interviews und die Anpassung der Critical Incident Technique wurde gewéhlt, da zur
Befragung bereits das (im vorherigen Kapitel beschriebene) theoretisch hergeleitete Kom-
petenzrahmenmodell vorlag. Dementsprechend wurden die hypothetischen Szenarien so
gewihlt, dass diese die verschiedenen Facetten informatischer Modellierungskompetenz
entsprechend der Dimensionen und Komponenten im Rahmenmodell umfassen und ad-

aquat reprasentieren.

Interviewszenarien fiir informatisches Modellieren

Insgesamt wurden 12 Szenarien entwickelt, wobei pro Interview jeweils vier Szenarien
zum Einsatz kamen. Die Zusammenstellung wurde pro Interview so gewéahlt, dass Fragen
zur Systemanwendung, zum Systemverstdndnis und zur Systemgestaltung beriicksichtigt
wurden.

1. Modellierung & Implementierung einer Software fiir ein Warenwirtschaftssystem
2. Modellierung & Implementierung eines verteilten Chatsystems

3. Modellierung & Implementierung eines web-basierten Spiels

4. Modellierung eines Klassendiagramms fiir eine Kontofiihrungssoftware

5. Implementierung eines Visualisierungsmoduls fiir Sortieralgorithmen

6. Software zur Verwaltung personlicher Gegenstinde auf Ergonomie priifen

Systematische Erkundung der neuesten Version einer Standardsoftware

® N

Umsatziibersicht {iber Werkzeugkategorien

9. Testen einer Softwareanwendung (Computer-Konfigurator)
10. Informationsbeschaffung {iber Online-Katalog und Suchmaschine
11. Datenbanken

12. Softwaretest im Team

107

Szenario 1: Modellierung & Implementierung einer Software fiir ein Warenwirtschaftssystem

Zusammenfassung Hierbei ist der Experte gefragt, ein Warenwirtschaftssystem fiir einen
Kiosk zu entwickeln. In diesem Zusammenhang gilt es, im Rahmen der
Geschéftsmodellierung und Anforderungsanalyse, das Vorgehen zur
Erfassung typischer Geschéftsvorginge und funktionaler Anforderungen
zu beschreiben. Ferner sollen die weiteren Phasen des
Software-Engineering-Prozesses geplant werden und eine zeitgleiche
Entwicklung der verschiedenen Module der Software in Kleingruppen

koordiniert werden.

Szenariobeschreibung I | Sie erhalten den Softwareentwicklungsauftrag, ein
Warenwirtschaftssystem fiir einen (Schul-)Kiosk zu entwickeln. Im
Rahmen der Geschéftsmodellierung und Anforderungsanalyse sollen
typische und alltagliche Geschiftsvorgéinge erfasst werden.

Fragen I - Wie wiirden Sie dabei vorgehen, und was miissen Sie dabei beachten?
- Welche grafischen Beschreibungsmittel wiirden Sie dafiir einsetzen?

- Welche Kenntnisse und Fahigkeiten benétigen Sie zur Modellierung
der Geschiiftsprozesse und zur Anforderungsanalyse?

- Welche informatischen Sichten sind hierbei von Bedeutung?

- Welche Komplexitit bzw. Komplexititsaspekte weist das Projekt auf?
- Welche (motivationalen) Bereitschaften und Einstellungen und welche
sozial-kommunikativen Fahigkeiten bendtigen Sie zur Modellierung der
Geschéftsprozesse und zur Anforderungsanalyse?

- Welche informatik-fremden Personen kénnten (oder sollten) bei der
Modellierung miteinbezogen werden? Welche Anforderungen kiimen auf
Sie zu, wenn Sie mit informatischen Laien {iber dieses SE-Projekt
kommunizieren wollen?

- Wie wiirde ein Schiiler die Aufgabe angehen?

Szenariobeschreibung II | Sie erhalten den Auftrag, die weiteren Phasen des

Software-Engineerings-Prozesses zu planen.

Fragen I1 - Welche weiteren Phasen miissen Ihrer Meinung nach bis zur
Verteilung des Software-Produkts durchlaufen werden?

- Wie wiirden Sie hierbei vorgehen und was muss dabei beachtet
werden?

- Welche Kenntnisse und Fahigkeiten benotigen Sie in diesen Phasen
des SE-Prozesses (insbesondere welche informatische Sichten)?

- Welche Bereitschaften und Einstellungen und welche
sozial-kommunikativen Fahigkeiten sind in diesen SE-Phasen besonders
relevant?

- Welche Phasen wiirden Sie im Rahmen eines Schulprojekts: Schulkiosk
im Informatikunterricht der Sekundarstufe durchlaufen wollen?

- In welcher Form wiirden Sie informatik-fremde Personen auch in die

weiteren SE-Phasen mit einbeziehen? Was wéire dabei zu beachten?

108

Szenariobeschreibung II1

In der Implementierungsphase des Projekts sollen Kleingruppen
gebildet werden, um die verschiedenen Module der Software zeitgleich

zu entwickeln.

Fragen IIT

- Was muss bei der Einteilung von SE-Gruppen im professionellen
Umfeld beriicksichtigt werden? Welche Anforderungen ergeben sich an
die Gruppenmitglieder?

- Was muss bei der Gruppeneinteilung im Informatikunterricht
beachtet werden? Welche sozialen und motivationalen Fahigkeiten und
Einstellungen miissen seitens der Schiiler vorhanden sein?

- Welche Erfolgs- oder Misserfolgserlebnisse kénnen wahrend der
Projektdurchfiihrung auftreten? Im Falle von Misserfolg: Welchen

Anforderungen stehen Sie gegeniiber, um sich neu zu motivieren?

109

Szenario 2: Modellierung & Implementierung eines verteilten Chatsystems

Zusammenfassung

Hier sollen im Rahmen eines Software-Engineering-Prozesses zur

Entwicklung eines verteilten Chat-Systems in der Design-Phase die
jeweiligen Programmmodule Client- und Server zugeordnet werden.
Nach Abschluss der Analyse- und Designphase soll eine kooperative

Implementationsphase in Kleingruppen geplant werden.

Szenariobeschreibung I

Sie erhalten den Auftrag ein Chat-System zu entwickeln. Im Rahmen
der Designphase sollen Sie die potentiellen Programmmodule (Klassen)

jeweils dem Client oder Server zuordnen.

Fragen I

- Wie wiirden Sie dabei vorgehen, und was miissen Sie dabei beachten?
- Welche grafischen Beschreibungsmittel wiirden Sie dafiir einsetzen?

- Welche Kenntnisse und Fahigkeiten benotigen Sie zum Design des
Client-Server-Systems?

- Welche informatischen Sichten sind hierbei von Bedeutung?

- Welche Komplexitit bzw. Komplexitétsaspekte weist das Projekt
auf? - Welche Bereitschaften und Einstellungen und welche
sozial-kommunikativen Fihigkeiten bendtigen Sie zum Design des
Client-Server-Systems?

- Wie wiirde ein Schiiler die Aufgabe angehen?

Szenariobeschreibung IT

Nach Abschluss der Analyse- und Designphase soll eine zeitlich
parallele Implementierung von Client- und
Server-Softwarekomponenten geschehen. Sie als Projektleiter stehen
nun vor der Aufgabe, die Aufgaben sinnvoll auf Teilgruppen ihres

Teams zu verteilen.

Fragen I1

- Wie wiirden Sie dabei vorgehen?

- Was miisste in einem professionellen Umfeld bei der
Gruppeneinteilung beachtet werden?

- Wie wiirden Sie die Einteilung der Gruppen im schulischen Umfeld
vornehmen um eine chancengleiche Kompetenzentwicklung zu
ermdglichen?

- Welche sozialen bzw. motivationalen Fahigkeiten der Schiiler sollten
zur erfolgreichen Implementierung vorhanden sein?

Welche Erfolgs- oder Misserfolgserlebnisse konnen wéhrend der
Projektdurchfithrung auftreten? Im Falle von Misserfolg: Welchen
Anforderungen stehen Sie gegeniiber, um sich neu zu motivieren?

- Durch welche kommunikativen und kooperativen Voraussetzungen
geldnge die Arbeit effektiv?

- Welche arbeitsbezogenen sozialen Umstidnde konnten den Erfolg
gefdhrden?

110

Szenario 3: Modellierung & Implementierung eines web-basierten Spiels

Zusammenfassung

Dieses Szenario thematisiert die Entwicklung eines webbasiertes Spiels.
Der Fokus liegt hierbei zunéchst auf der Entwicklung eines
umfassenden Klassendiagramms anhand von gegebenen CRC-Karten.
Der zweite Abschnitt des Szenarios sieht einen Robustheitstest, dessen

Koordinierung und Vorgehensstrategie vor.

Szenariobeschreibung I

Im Rahmen eines Softwareprojekts soll das Web-basierte Spiel ,,Mensch
drgere Dich nicht* implementiert werden. Sie haben bereits mit Hilfe
von CRC-Karten Verantwortlichkeiten von Klassen herausgestellt und
mogliche Zusammenhénge von Klassen lokalisiert. In einem weiteren

Schritt soll nun ein umfassendes Klassendiagramm entwickelt werden.

Fragen I

- Wie wiirden Sie dabei vorgehen, und was miissen Sie dabei beachten?
- Welche Kenntnisse und Fahigkeiten benotigen Sie zur Modellierung
des Klassendiagramms?

- Welche informatischen Sichten sind hierbei von Bedeutung?

- Welche Komplexitit bzw. Komplexititsaspekte weist das Projekt auf?
- Welche Bereitschaften und Einstellungen und welche
sozial-kommunikativen Fahigkeiten bendtigen Sie zur Modellierung
einer solchen, web-basierten Anwendung?

- Beschreiben Sie die Unterschiede in der methodischen Vorgehensweise,
die sich bei Anfingern, Fortgeschrittenen und Experten zeigen wiirden.
- Wie wiirde ein Schiiler die Aufgabe angehen?

Szenariobeschreibung I1

In einem spéteren Schritt (kurz vor Abschluss des Projekts) soll die
Software im Rahmen der Testphase bzgl. Threr Robustheit iberpriift
werden. Hierbei soll sichergestellt werden, dass keinerlei unerwartete

Benutzereingaben das Programm zum Absturz bringen.

Fragen IT

- Wie wiirden Sie bei einem derartigen Test vorgehen, und was miissen
Sie dabei beachten?

- Wie wiirde ein Schiiler die Aufgabe angehen?

111

Szenario 4: Modellierung eines Klassendiagramms fiir eine Kontofiihrungssoftware

Zusammenfassung

Hierbei galt es zunéchst ein einfaches Klassendiagramm fiir eine
rudimentédre Bankingsoftware zu modellieren. In einer weiteren
Ausbaustufe bzw. Iteration wurden die Anforderungen an die
Funktionalitat der Software deutlich erweitert. Diese Anpassungen
sollten auch in der Modellierung des erweiterten Systems mit
beriicksichtigt werden. Im Gegensatz zur ersten Iteration galt es zudem

die Interaktion zwischen verschiedenen Klassen zu modellieren.

Szenariobeschreibung I

Sie erhalten im Rahmen der Entwicklung einer einfachen
Kontofiihrungs-Software den Auftrag, ein Klassendiagramm zu
entwickeln. Die Software soll zunéchst einfache Ein- und

Auszahlvorginge auf einem Bankkonto realisieren.

Fragen I

- Wie gehen Sie dabei vor, und was miissen Sie dabei beachten?

- Welche Kenntnisse und Féhigkeiten benotigen Sie fiir eine
entsprechende Softwareentwicklung?

- Welche informatischen Sichten sind hierbei von Bedeutung?

- Welche Komplexitit bzw. Komplexititsaspekte weist das Projekt auf?
- Welche Einstellungen und Bereitschaften benotigen Sie fiir eine
entsprechende Softwareentwicklung?

- Welche moglichen Probleme konnten bei Schiilern der Sekundarstufe
auftreten?

- Welche grafischen Beschreibungsmittel wiirden Sie einsetzen und

warum?

Szenariobeschreibung IT

Fiir eine weitere Ausbaustufe der oben genannten Software soll nun
ebenfalls ein Klassendiagramm erstellt werden. Im Gegensatz zu der
ersten Ausbaustufe lassen sich nun beliebig viele Konten ertffnen.
Neben Ein- und Auszahlungen auf das jeweilige Konto lassen sich nun

auch Uberweisungen zwischen den Konten vornehmen.

Fragen I1

- Wie wiirden Sie dabei vorgehen?

- Welche zusétzlichen Anforderungen ergeben sich durch den Ubergang
zur erweiterten Ausbaustufe der Kontofiithrungs-Software?

- Rechtfertigen diese zusétzlichen Anforderungen eine Einteilung in
Kleingruppen?

- Durch welche kommunikativen und kooperativen Voraussetzungen
geldnge die Arbeit effektiv?

- Welche arbeitsbezogenen sozialen Umstidnde konnten den Erfolg
gefdhrden?

- Welche Erfolgs- oder Misserfolgserlebnisse kénnen wahrend der
Projektdurchfiithrung auftreten? Im Falle von Misserfolg: Welchen
Anforderungen stehen Sie gegeniiber, um sich neu zu motivieren?

- Welche Anforderungen fiir die Schiiler ergeben sich bei dieser
komplexeren Version der Software?

Wie wiirde ein Schiiler die Aufgabe angehen?

112

Szenario 5: Implementierung eines Visualisierungsmoduls fiir Sortieralgorithmen

Zusammenfassung

Hierbei wird der Interviewte aufgefordert, ein Visualisierungsmodul fiir
bereits implementierte Sortieralgorithmen zu entwickeln. In diesem
Zusammenhang wurde der Fokus auf die Integration der jeweiligen
Programmmodule (Sortier-Module und zu entwickelndes

Visualisierungsmodul) gelegt.

Szenariobeschreibung

Sie haben im Informatikunterricht der Sekundarstufe II
Sortieralgorithmen thematisiert und hierbei ausgewihlte
Sortierverfahren innerhalb von Programmmodulen implementiert. Zum
Abschluss der Unterrichtsreihe soll nun ein Visualisierungsmodul
implementiert werden. Dieses soll das zu sortierende Feld (Array)
visualisieren und die jeweiligen Teilschritte wéhrend der Sortierung
darstellen, indem séimtliche Anderungen im Feld grafisch

hervorgehoben werden.

Fragen

- Wie wiirden Sie in diesem Zusammenhang vorgehen?

- Was muss bei der Auswahl der Architektur, bei der Gestaltung der
Schnittstellen und bei der Entwicklung der Benutzungsschnittstelle
beachtet werden?

- Welche Phasen ergeben sich bei der Entwicklung des
Visualisierungsmoduls?

- Welche Kenntnisse und Fiahigkeiten benétigen Sie fiir eine
entsprechende Softwareimplementierung?

- Welche informatischen Sichten sind hierbei von Bedeutung?

- Welche Komplexitédt bzw. Komplexititsaspekte weist das Projekt auf?
- Welche Einstellungen und Bereitschaften benétigen Sie fiir eine
entsprechende Softwareimplementierung?

- Wie wiirde Schiiler an eine derartige Aufgabe herangehen?

- Welche Phasen sehen Sie im Rahmen der schulischen Projektarbeit?

5.2. Empirisches Vorgehen zur Analyse Auswertung der

Interviews

Die zuvor audiotechnisch aufgezeichnenten und voll transkribierten Interviews wurden

auf Grundlage der Qualitativen Inhaltsanalyse nach Mayring analysiert und ausgewertet.

Das Hauptziel dieser Methode ist es, die grofen Mengen an transkribiertem Text zu

bewiltigen und fiir eine empirische Auswertung nutzbar zu machen.

Diesbeziiglich lassen sich drei wichtige Techniken im Umgang mit groffen Textmengen
identifizieren [Mayring 2010]:

o Zusammenfassung

113

Als wichtige Funktion ist die Zusammenfassung und Reduktion von komplexen
und umfassenden Textmaterialbestinden auf eine handhabbare Menge zu nennen.

Hierbei sollten keine wichtigen Informationen verloren gehen.

o Faplikation
Mit Hilfe dieser Technik werden relevante beschreibende und interpretierende Text-
passagen denjenigen hinzugefiigt, die es zu interpretieren gilt bzw. die weiterer

Erlauterung bediirfen.

o Strukturierung
Bei Verwendung der dritten Technik soll eine Struktur aus dem Textmaterial ab-
geleitet werden. Hierzu wird versucht, das bestehende Textmaterial mit einer vor-
gegebenen Strukturierung in Form eines Kategoriensystems zu verkniipfen. Alle
Textelemente, die sich den jeweiligen Kategorien dieses Systems zuordnen lassen,

werden systematisch aus dem Interviewmaterial extrahiert.

Die oben aufgefiihrten Haupttechniken der qualitativen Inhaltsanalyse nach Mayring sind
nicht zwingend unabhingig voneinander. Sie ergénzen sich gut, sodass eine kombinierte
Verwendung dieser Techniken sinnvoll ist.

Im Rahmen der Analyse des Interviewmaterials im Projekt MoKoM kamen alle drei
Techniken (auch in kombinierter Form) zum Einsatz. Hierbei reprisentiert das theore-
tisch abgeleitete Kompetenzmodell das Kategoriensystem, dem die jeweiligen relevanten
Textpassagen zugeordnet wurden.

Insgesamt wurde im Rahmen des Projekts MoKoM ein interpretativer Ansatz bei der
Auswertung des Interviewmaterials verfolgt: Hierbei wurden relevante Textpassagen, die
Wissen, Fahigkeiten und Fertigkeiten sowie motivationale und sozial-kommunikative F&-
higkeiten représentieren, den jeweiligen kognitiven und nicht-kognitiven Kompetenzfa-
cetten des theoretisch hergeleiteten Kompetenz-Rahmenmodells zugeordnet.

Im nédchsten Kapitel wird anhand von drei exemplarischen Interviewtranskripten das
methodische Vorgehen bei der Auswertung der Interviews illustriert. Hierbei wurden in
einem ersten Schritt Textelemente lokalisiert und markiert, die mogliche Sinneinheiten
reprisentieren. Sinneinheiten sind als Textelemente zu verstehen, die relevante Informa-
tionen iiber informatik-spezifische Kompetenzen enthalten. Die Kompetenzen innerhalb
einer Sinneinheit sind diejenigen, die kritisch (eritical), also entscheidend zur Bewalti-
gung von Problemen in der Doméne des informatischen Modellierens im Rahmen von
SWE-Prozessen sind. Im n#chsten Schritt wurden weitere Textelemente innerhalb des
Interviewmaterials extrahiert. Jene reprasentieren sog. Ezplikationen, die mit den zuvor

aufgefundenen Sinneinheiten verkniipft sind. Diese Textelemente stellen den Inhalt (also

114

die jeweilige Kompetenzfacette) der verkniipften Sinneinheit prédgnant und anschaulich
dar. Folglich kénnen Ezplikationen den Inhalt von Sinneinheiten weiter prézisieren. Im
néchsten Vorgehensschritt wurde untersucht, ob sich die aufgefundenen Sinneinheiten
und Explikationen den Dimensionen und Komponenten des Rahmenmodells zuordnen
lassen. Auf diese Weise ldsst sich in einem ersten Schritt herausfinden, welche der aus
den Transkripten extrahierten Sinneinheiten und Explikationen von den Dimensionen
und Komponenten des Rahmenmodells adressiert werden und welche nicht. Dariiber
hinaus wird logischerweise auch deutlich, welche Sinneinheiten und Explikationen den
Elementen des Rahmenmodells nicht zugeordnet werden kénnen. In solchen Féllen gilt

es, das bestehende Kompetenz-Rahmenmodell zu ergidnzen.

5.3. Exemplarische Darstellung der Analyse der

Experteninterviews

Innerhalb dieses Kapitels wird das Vorgehen zur Verfeinerung des theoretisch abgelei-
teten Kompetenzmodells in Anlehnung an die qualitative Inhaltsanalyse nach Mayring
beschrieben. Hierbei liegt der Fokus auf Kompetenzen zur informatischen Modellierung
im Rahmen von SWE-Prozessen. In diesem Zusammenhang soll beispielhaft aufgezeigt
werden, wie das Kompetenzmodell empirisch verfeinert werden kann, d.h. wie zusitzli-
che Komponenten anhand des Interviewmaterials abgeleitet werden konnen. Ferner soll
im Sinne einer zeitlichen Momentaufnahme eine Ausbaustufe des empirisch verfeinerten
Modells vorgestellt werden und erste, aus damaliger Sicht potentielle Verfeinerungen,
vorgestellt werden. Im Hinblick auf die Kompetenzkomponente Systemgestaltung wurde
- wie zuvor erldutert - ein Szenario mit Fragen entwickelt, welches genau jene Kompe-
tenzaspekte dieser Doméne widerspiegelt. Im Folgenden wird ein Auszug des Szenarios
Chat System mit den entsprechenden Fragen vorgestellt:

Szenario Chat System

Sie erhalten den Auftrag ein Chat-System zu entwickeln. Im Rahmen der Designphase
sollen Sie die potentiellen Programmmodule (Klassen) jeweils dem Client oder Server

zuordnen.
Frage 1: ,Wie wiirden Sie dabei vorgehen, und was missen Sie dabei beachten?“
Frage 2: /Welche grafischen Beschreibungsmittel wiirden Sie dafiir einsetzen?

Frage 3: ,Welche Kenntnisse und Fdhigkeiten bendtigen Sie zum Design des Client-

Server-Systems?“

115

Frage 4: ,Wie wiirde ein Schiiler die Aufgabe angehen?

Frage 5: , Durch welche Einstellungen sowie kommunikativen und kooperativen Voraus-
setzungen geldnge die Arbeit effektiv? Welche motivationalen Voraussetzungen

spielen hierbei eine Rolle?“

Frage 6: ,Wie wiirden Sie die Einteilung der Gruppen im schulischen Umfeld vornehmen

um eine chancengleiche Kompetenzentwicklung zu ermdoglichen?“

Methodisch bezugnehmend auf Mayring haben wir das strukturelle Geriist des theo-
retisch abgeleiteten Kompetenzmodells mit dem Interviewmaterial verkniipft, um die
Struktur der Sinneinheiten innerhalb der Interviewtranskripte ableiten zu kdnnen. Die
Zielsetzung der Frage 1 war es herauszufinden, ob die vom Interviewten beschriebene
Vorgehensweise und die damit ableitbaren Sinneinheiten die Komponenten (Workflows
des Softwareengineerings) der Kompetenzdimension laden. Im weiteren Verlauf werden
ausgewdhlte Antworten von Interviewten vorgestellt. Diese sind fortlaufend nummeriert.

Die Antwort 1 ist dariiber hinaus unterteilt in la bis lc.

Antwort 1a: ,In einem ersten Schritt wiirde ich mir iberlegen, was die Punktionalitit des
Chatsystems ausmacht. In diesem Zusammenhang miisste ich herausfinden,

welche funktionalen Anforderungen bestehen.

Nachdem eine zusammenfassende Analyse der ersten Antwort durchgefiihrt wurde, konn-
te die Sinneinheit Ableitung von funktionalen Anforderungen aufgefunden werden. Im
néchsten Schritt wurde untersucht, ob diese Sinneinheit einer Kompetenzkomponente
des Rahmenmodells zugeordnet werden konnte. Falls dies nicht der Fall war, war diese
Sinneinheit ein moglicher Hinweis fiir die Erweiterung der Kompetenzdimension um ei-
ne weitere Komponente. Weiterhin kénnen derartige Sinneinheiten ein Indiz dafiir sein,
dass entsprechende Komponenten weiter auszudifferenzieren sind. In diesem konkreten
Beispiel konnte die Sinneinheit Ableitung von funktionalen Anforderungen der Kompe-
tenzkomponente K1.2 Analysephase zugeordnet werden. Folglich 14dt jene Komponente

die genannte Sinneinheit.

Antwort 1b: ,Danach wiirde ich mir iberlegen, wie der Datentransfer von statten ge-
hen konnte. Daher wirde ich mir die folgenden Fragen stellen: Welches
Protokoll ist hier sinnwoll? Wie kann die Verbindung zwischen den End-
punkten hergestellt werden. Wie wird dber die Verbindung kommuniziert?
Was passiert, wenn die Verbindung zusammenbricht? Was passiert, wenn

die Verbindung vom Benutzer unterbrochen wird.“

116

Um die Erlduterungen des Interviewten analysieren zu kénnen, war es hilfreich eine Kom-
bination der Techniken Zusammenfassung und Ezplikation zu verwenden. Zunichst konn-
te mit der zusammenfassenden Inhaltsanalyse der Textpassage die Sinneinheit Entwurf
der Kommunikation und des Datentransfers aufgefunden werden. Um sicherzustellen,
dass diese Sinneinheit der Kompetenzkomponente Analyse € Design zuzuordnen ist,
wurde eine Analyse des jeweiligen Kontext der Sinneinheit vorgenommen. Hierbei war es
hilfreich, sich auf den zweiten Satz der Antwort 1b zu beziehen: Hier hat der Interview-
te gedufert, dass er sich iiber ein technisch angemessenes Protokoll klar werden miisse.
Daraus geht hervor, dass seine Vorgehensweise dazu dient, die technischen Aspekte der
Kommunikation mittels eines Protokolls zu kliren. Diese Uberlegungen konnten ferner
als Grundlage fiir ein mogliches Entwurfs-Modell dienen, das eine Abstraktion des spéte-
ren Quellcodes darstellt. Die Erstellung eines derartigen Modells hat die Zielsetzung, das
System — so wie es in der Implementierungsphase umgesetzt werden soll — darzustellen.
Folglich kann Entwurf der Kommunikation und des Datentransfers der Komponente Ana-
lyse & Design zugeordnet werden und hat uns dariiber hinaus auf die Idee gebracht, dass
es sinnvoll sein konnte, die Komponente Analyse & Design in die Komponenten Analyse
und Design zu untergliedern. Die Sinneinheit wiirde dann, falls sich diese Trennung nach
Auswertung aller Interviews als sinnvoll erweist, logischerweise der Komponente Design

zugeordnet.

Antwort 1c: ,In Bezug auf diese Voriiberlequngen kann eine Zuordnung der SW- Kom-
ponenten zu Client und Server erfolgen: Der Client implementiert samtliche
GUI-Klassen, das Event-Management und die Verbindung zum Server. Der
Server hingegen, implementiert das Verbindungs-Management, die Nach-

richtenverarbeitung und die Benutzerverwaltung.“

Nach einer zusammentfassenden Analyse dieser Frage liefen sich die Sinneinheiten Client
umfasst die Funktionalitdt zur Interaktion mit dem Benutzer und Server umfasst Verbin-
dungsmanagement, Nachrichtenverarbeitung und Benutzerverwaltung ableiten. Mit ,Vor-
iiberlegungen® spricht der Interviewte erneut seine Uberlegungen hinsichtlich der Design-
Phase an. Ausgehend von diesem Kontext kénnen die aufgefundenen Sinneinheiten der
Komponente Analyse & Design zugeordnet werden. Weiterhin kénnten die Erlduterun-
gen des Interviewten einen Hinweis darauf geben, dass Lernende in der Lage sein miissen,
ausgehend von der jeweiligen Iteration der zu entwickelnden Software und des Kontextes
ein zielfiilhrendes Vorgehen und angemessene Modellierungstechniken zu wihlen. Ausge-
hend von dieser Annahme, wurde die Sinneinheit Féahigkeit, ausgehend von der aktuellen

Phase und Iteration des IS, ein sinnvolles Vorgehen auszuwdhlen und Fihigkeit, aus-

117

gehend von der aktuellen Phase und Iteration des IS, eine dem Kontert angemessene
Modellierungstechnik auszuwdhlen.

Die zweite Frage dieses Szenarios adressiert die Abfrage weiterer Informationen hin-
sichtlich verwendeter (graphischer) informatischer Modellierungstechniken und Beschrei-
bungsmittel. Hierbei bestand die Zielsetzung mit Hilfe der strukturierenden Inhaltsana-
lyse die Komponente K1.3 Systemgestaltung mit fiir den Prozess der Systemgestaltung

relevanten Modellierungstechniken weiter auszudifferenzieren und zu ergénzen.

Antwort 2: Wie zuvor erwdhnt wiirde ich UML-Klassendiagramme und UML - Deploy-

mentdiagramme verwenden.

Nach der Zusammenfassung dieser Textpassage erhielten wir UML-Klassendiagramm und
UML-Deploymentdiagramm als Sinneinheiten. Da der Interviewte hinsichtlich des Klas-
sendiagramms keinerlei Angaben dazu gemacht hat, ob es sich hierbei um ein Analyse-
oder Entwurfs-Klassendiagramm handelt, spricht diese Aussage hingegen nicht eindeu-
tig fiir eine weitere Differenzierung zwischen Analyse- und Designphase innerhalb des
Kompetenzmodells. Unabhéngig davon kotnnen diese Sinneinheiten jedoch zweifelsfrei
der globaleren Kompetenzkomponente Analyse & Design zugeordnet werden.

Innerhalb der dritten Frage sollten konkrete Kompetenzfacetten fiir den Prozess der Mo-
dellierung im Rahmen der Systemgestaltung und zugehoriger relevanter Fahigkeiten und
Fertigkeiten abgeleitet werden. Auch hierbei bestand die Zielsetzung in der Verfeinerung

und Ergénzung der Komponenten der Dimension K1 Basic Competencies.

Antwort 3: | Ich wiirde zur Liosung der Aufgabenstellung eine objektorientierte Vorge-
hensweise wdhlen. Hierzu muss ich bzw. miissen die Lernenden Fdhigkeiten
hinsichtlich der objektorientierten Analyse, des objektorientierten Entwurfs
und der objektorientierten Programmierung erwerben. Ferner muss derje-
nige, der mit der Umsetzung der Software beauftragt ist, in der Lage sein,
sich in eine spezifische objektorientierte Programmiersprache einzuarbeiten
und mit dieser umzugehen. Dariiber hinaus missen sich die Entwickler im
Klaren sein, dass sie es bei der zu entwickelnden Software mit einem verteil-
ten System zu tun haben. Daher miissen sie sich zudem mit den jeweiligen

Programmiertechniken von Client-/Server-Architekturen vertraut machen.“

Durch eine zusammenfassende Inhaltsanalyse erhilt man die Sinneinheiten oo-Analyse?,
oo-Design, oo-Programmierung und Kenntnis und Umgang mit einer oo- Programmiersprache.

Diese kénnen wiederum den Software FEngineering Phasen der Kompetenzkomponente

200 = objektorientiert

118

Systemgestaltung zugeordnet werden. In diesem Zusammenhang laden oo-Analyse und
00-Design die Unterkomponente Analyse & Design und oo-Programmierung und Kennt-
nis und Umgang mit einer oo-Programmiersprache die entsprechende Unterkomponente
Implementierung. Hierbei bleibt anzumerken, dass getrennte Nennung von Analyse und
Design fiir eine Ausdifferenzierung der Komponenten sprechen kénnte.

Im weiteren Verlauf wurden die Interviewten gefragt, wie sie die Vorgehensweise von
Schiilern der Sekundarstufe zur Lésung der im Szenario présentierten Anforderungssitua-
tion einschétzen wiirden. Hierdurch sollte untersucht werden, welche Kompetenzaspekte
fiir den Informatikunterricht in der Sekundarstufe Il relevant sein konnten. Weiterhin
bestand das Ziel, die Unterschiede hinsichtlich der Vorgehensweise zur Losung dieses
Problems zwischen Experten und Novizen in Erfahrung zu bringen.

Mit dem oben beschriebenen Anspruch, sowohl kognitive als auch nicht kognitive Kom-
petenzen fiir die Modellierung innerhalb von SWE-Prozessen abzuleiten, hat die Frage 5
den Fokus auf nicht kognitiven Kompetenzen. Um diesbeziiglich eine strukturierende In-
haltsanalyse der Antwort 5 vorzunehmen, gilt es einen weiteren Blick in die entsprechen-
de Kompetenzdimension K4 Nicht kognitive Kompetenzen zu werfen. Diese umfasst die
Kompetenzkomponenten FEinstellung gegentiber einem IS, Sozial-kommunikative Kompe-
tenzen sowie motivationale Kompetenzen. Im Folgenden soll exemplarisch gezeigt werden,

wie die Frage 5 zur Verfeinerung der Kompetenzdimension K4 beitragen konnte.

Antwort 5: | Zundchst miissen die Lernenden die Bereitschaft und den Willen dazu ha-
ben, sich in neue und fir sie unbekannte Themengebiete einzuarbeiten. Eng
damit verbunden ist auch die Einstellung, dass die verwendeten Technologien
sinnvoll sind. Ferner muss den Lernenden im Rahmen einer Aufgabenstel-
lung ein moglichst naher Bezug zur eigenen Lebenswelt vermittelt werden.
Der Kontext steht im Vordergrund und nicht die Losung von einzelnen iso-
lierten Problemen. Im Hinblick auf soziale und kommunikative Féahigkeiten
maissen die Lernenden befdhigt werden, kooperativ zu arbeiten. Hierzu miis-
sen sie in der Lage sein, Ideen anderer aufzugreifen und diese auf kreative

Weise weiterzuentwickeln.

Zur Auswertung der Frage 5 wurde wiederum eine Kombination aus strukturierender
und zusammenfassender Inhaltsanalyse durchgefiithrt. Hierdurch konnten die folgenden
Sinneinheiten aufgefunden werden und Unterkomponenten von Kj Nicht kognitive Kom-
petenzen zugeordnet werden: Bereitschaft Wissensliicken selbststindig zu schlieflen, die
Einstellung haben, dass die verwendete Technologie sinnvoll ist, Finstellung, im Kon-

text mit Lebensweltbezug zu arbeiten, Fahigkeit, die Ideen anderer aufzugreifen und zu

119

verwenden und Fihigkeit, die Ideen anderer kreativ und konstruktiv weiterzuentwickeln.
Die Sinneinheiten die Finstellung haben, dass die verwendete Technologie sinnvoll ist und
Einstellung, im Kontext mit Lebensweltbezug zu arbeiten laden die Kompetenzkomponen-
te Binstellung gegeniiber einem IS. Schlussendlich kénnen die Sinneinheiten Fihigkeit, die
Ideen anderer aufzugreifen und zu verwenden und Fihigkeit, die Ideen anderer kreativ
und konstruktiv weiterentwickeln zweifellos der Komponente Sozial-kommunikative Fd-
higkeiten zugeordnet werden.

Die letzte Frage (Frage 6) hatte die Intention herauszufinden, welche nicht kognitiven
Fahigkeiten kritisch fiir die Bewéltigung von Aufgaben in der Domé#ne des informatischen

Modellierens in SWE-Prozessen im Rahmen der Sekundarstufe II sind.

5.4. Ergebnisse der Auswertung der Experteninterviews

Insgesamt konnten innerhalb der oben dargestellten exemplarischen qualitativen Inhalts-
analyse verschiedenen Sinneinheiten abgeleitet werden. Diese konnten uns erste Hinweise

zur Validierung, zur Verfeinerung und zur Erginzung der Kompetenzaspekte im Rah-

= Co
S
= CT—
=
= CH——

Abbildung 5.2.: Theoretisches Teilmodell Modellierung

menmodell liefern:

Diejenigen Sinneinheiten, die den Kompetenzkomponenten des Modells zugeordnet wer-

den konnten, zeigen auf, welche Bereiche des theoretisch abgeleiteten Rahmenmodells

120

sich als sinnvoll erwiesen haben (griin markierte Komponenten in Abbildung 5.5). Hier
sind die Kompetenzkomponenten Systemanwendung, Systemgestaltung und die jeweili-
gen Unterkomponenten Anforderungsanalyse, Analyse, Design und Implementierung zu
nennen.

Aufierdem konnten weitere Sinneinheiten Aufschluss geben, wie das Kompetenzmodell im
Anschluss an die Auswertung sémtlicher Experteninterviews empirisch verfeinert werden
kénnte. In diesem Zusammenhang kénnte eine Erganzung von weiteren Kompetenzkom-
ponenten oder eine Verfeinerung bestehender Komponenten vorgenommen werden. Kon-
kret konnte es daraus folgend sinnvoll sein, die Komponente Analyse & Design in Analyse
und Design aufzugliedern. Obwohl diese Phasen voneinander abhéngig und teilweise eng
miteinander verkniipft sind, gab es Sinneinheiten (z.B. bei der Zuordnung von Klassen
zu Client oder Server) die eindeutig der Design-Phase und nicht der Analyse-Phase zu-
geordnet werden konnten (und umgekehrt). Eine weitere Verfeinerung, die sich aus der
Analyse dieser exemplarischen Interviewtranskripte ergeben hat, ist die Erweiterung der
Kompetenzdimension K1 Aufgabenbereiche um die Komponente Fidhigkeit, zur Auswahl
eines geeigneten Vorgehensmodell sowie zur Auswahl von relevanten Modellierungstech-
niken in Abhdngigkeit zur jeweiligen Iteration der zu entwickelnden SW (Abk.: Iteratives
Vorgehen). Insbesondere die Tatsache, dass der Prozess der Modellierung und System-
gestaltung gerade bei komplexen Systemen selten linear ablduft, scheint die Férderung
derartiger Kompetenzen zur kontextsensitiven Auswahl von Vorgehen und Modellierungs-
technik sinnvoll.

Nachdem die Zuordnung simtlicher hier aufgefundener Sinneinheiten erfolgt ist, miissen
die verbleibenden Komponenten unter Bezugnahme der restlichen Interviewtranskripte
legitimiert werden. Falls hierbei nach vollstdndiger Interviewauswertung keine Zuordnung
von Sinneinheiten zu bestimmten Kompetenzkomponenten des Rahmenmodells moéglich
ist, konnte dies ein Indiz dafiir sein, dass diese Komponenten ggf. in einer spéteren Version
des Modells keine Berticksichtigung mehr finden.

Die folgenden Abbildungen illustrieren den Prozess der Verfeinerung der theoretisch her-
geleiteten Kompetenzdimension. Zum besseren Verstdndnis werden zunéchst die verwen-

deten ikonischen Abbildungen in einer Legende (Abbildung 5.3) aufgefiihrt.

121

Theoretisch hergeleitete Komponente

el@

Empirisch bestatigte Komponente

&y

Empirisch hinzugefligte Komponente

)

Empirisch ausdifferenzierte Komponente

Q
]

Empirisch verworfene Komponente

|

Abbildung 5.3.: Legende zu den folgenden Abbildungen

5.5. Ergebnisse der qualitativen Inhaltsanalyse

5.5.1. Exemplarische Darstellung der Auswertung mit Zuordnung zu den
Komponenten des Rahmenmodells

Wie im vorherigen Kapitel dargelegt, zeichnet sich ein typisches Szenario fiir den Kom-
petenzbereich des informatischen Modellierens dadurch aus, dass der Interviewte eine
bestimmte Phase eines SWE-Prozesses durchléuft. Hierbei wurden die Antworten bzw.
die daraus abgeleiteten Sinneinheiten im Sinne einer strukturierenden Inhaltsanalyse den
einzelnen Dimensionen und Komponenten des theoretisch abgeleiteten Rahmenmodells
zugeordnet. In Anbetracht der Gesamtauswertung aller 30 Experteninterviews wurde
die Kompetenzdimension K1 Aufgabenbereiche und insbesondere die Komponente K1.3
Systemgestaltung folgendermaken empirisch verfeinert:

Insgesamt 25 Interviewte erwihnten, dass der Prozess der Systemgestaltung einen wich-

tigen Bereich informatischer Kompetenz darstellt.

Antwort K1.3: | Die verschiedenen Phasen des Wasserfallmodells miissen durchlaufen

werden.“

Antwort K1.3: | Wir miissen die Phasen eines professionellen SWE-Prozesses durchlau-

fen.«

122

it . b

-

asAjeues3uniapiojuy

dun)|e1598Wa1SAS £)

||PPOIA SSHBUISHBA
yasuidwy

:s1uqasi3 (g)

~

uayasiop sanneiay c

pe

|I

-~

Sunianuawajdu) S —

{ V.

v

Sunianuawajduwy

asAjeuesSuniapiojuy

Suniaij|apowsyeyasan

gunje1sadwalsAs € T

SunJaulajap
sunjnid ayasuidwy

8un1 1S3 WR1SAS £ T

[I°SPON
s9ydsi3aJoay]

Abbildung 5.4.: Prozess zur empirischenl\Qfgrfeinerung des Teilmodells Modellierung

K1.3 Systemgestaltung
Qoo
A\

O L.
G Analyse & Design

2
O L.
O CHE.
o .

Abbildung 5.5.: Empirische Verfeinerung des Teilmodells Modellierung

Die folgenden exemplarischen Aussagen konnten den Unterkomponenten von K1.5 Sys-
temgestaltung K1.3.1 - K1.3.5 zugeordnet werden:

Hierbei erwidhnten 12 Experten K1.3.2 Anforderungsanalyse und erlduterten, dass Lerner
in der Lage sein miissen, Use Cases zu analysieren und funktionale Anforderungen zu

spezifizieren.

Antwort K1.3.2: _FEs sollten verschiedene Use Cases analysiert werden, um herauszu-

finden, wie das spdtere System genutzt wird.“
Antwort K1.3.2: _Spezifikation von funktionalen Anforderungen.

Die Komponente K1.3.3 Analyse & Design wurde von einer grofken Anzahl Interviewten
genannt. Hierbei wurde erklart, dass dieser SWE-Prozess in mehreren Iterationen durch-
laufen werden muss. Hierbei hat es sich als sinnvoll erwiesen die Komponenten K1.3.3
Analyse & Design in Analyse und Design aufzuteilen. Somit konnte eine prézisere Zu-
ordnung von Sinneinheiten vorgenommen werden. Die weiteren aufgefundenen Aussagen

adressieren die Analysephase.

Antwort K1.3.3 (Analyse): ,Die Analyse-Phase muss durchlaufen werden.*

124

Antwort K1.3.3 (Analyse): ,Durchfihrung einer objektorientierten Analyse.“

Antwort K1.3.3 (Analyse): ,,Im Rahmen der Analysephase miissen sich die Lerner den

Problembereich vergegenwdrtigen.“

Hinsichtlich der Designphase erlduterten die Interviewten, dass die Lerner befdhigt sein
miissen (kontextabhingig) sinnvolle Konzepte auszuwéhlen und eigene Design-Konzepte

eines IS entwickeln zu konnen.

Antwort K1.3.3 (Design): ,Man muss sich mit verschiedenen Design-Techniken ver-

traut machen.”

Antwort K1.3.3 (Design): ,,Die Lernenden miissen befihigt werden, adiquate Design-
Techniken auszuwdhlen um den Entwurf der zu entwickelnden SW vor-

anzutreiben.”

Antwort K1.3.3 (Design): ,Ich muss in der Lage sein, Programm-Module passend zu

den jeweiligen Aufgaben abzuleiten.”

Antwort K1.3.3 (Design): ,Im Anschluss muss den Lernenden vermittelt werden, wie

sie ein eigenes Konzept fiir das Design eines SW-Systems entwickeln.“

Unabhéngig von dieser méglichen Unterscheidung zwischen Analyse und Design zdhlten
die Interviewten diverse Modellierungstechniken auf. Dies zeigt, dass die Lernenden in der
Lage sein miissen, sinnvolle Modellierungstechniken in Abhéngigkeit von der aktuellen

SWE-Phase und dessen aktueller Iteration auszuwihlen.
Antwort K1.3.3 (Analyse & Design): ,Anwendung von UML-Diagrammen.*
Antwort K1.3.3 (Analyse & Design): , Entwickeln von Klassendiagrammen®

Antwort K1.3.3 (Analyse & Design): ,Identifizierung von potentiellen Klassen mit

dem Ziel ein Klassendiagramm zu entwickeln®

Antwort K1.3.3 (Analyse & Design): ,Identifizierung und Zuordnung von inhaltli-
chen Bestandteilen eines Klassendiagramms, z.B. Attribute, Methoden,

Assoziationen und Vererbung.*
Antwort K1.3.3 (Analyse & Design): ,Anwendung von Zustandsdiagrammen®

Antwort K1.3.3 (Analyse & Design): ,Verwendung von UML-Deployment-Diagrammen

125

Die Komponente K1.5.4 Implementierung wurde sechs mal genannt. In diesem Zusam-
menhang betonten die Interviewten, dass die Lerner in der Lage sein miissen, Algorith-
men zu verstehen und diese nachvollziehen zu koénnen und sich in eine objektorientierte

Programmiersprache einarbeiten miissen.

Antwort K1.3.4 (Implementierung): ,Verstehen von Algorithmen (insbesondere re-

kursive Algorithmen).“

Antwort K1.3.4 (Implementierung): ,Wir missen lernen in einer bestimmiten objekt-
orientierten Programmiersprache zu implementieren und mit den Syn-

tazfehlern umzugehen.“

Antwort K1.3.4 (Implementierung): ,Sich in die objektorientierte Programmierung

einarbeiten.“

Antwort K1.3.4 (Implementierung): ,Den Unterschied zwischen Klassen- und Objekt-
Attributen und -Methoden verstehen.

Dariiber hinaus erwdhnten einige Interviewte, dass die Lernenden in der Lage sein miis-
sen, SW-Module (die beispielsweise in Teamarbeit implementiert wurden) in ein umfas-
sendes SW-System zu integrieren. Diese Auferungen (Sinneinheiten) kénnen wiederum
der Komponente K1.5.4 Implementierung zugeordnet werden. Ferner kénnen jene aller-
dings auch ein Hinweis darauf sein, dass es sinnvoll sein kénnte, das Rahmenmodell um
eine neue Komponente z.B. K1.3.4a Integration von SW-Modulen zu ergéinzen. Ferner
kann die Sinneinheit Implementierung in Teams auch der Dimension K/ Nichi-kognitive
Kompetenzen und der Komponente K4.2 Sozial-kommunikative Fihigkeiten zugeordnet
werden. Dies zeigt wiederum, dass die Dimensionen des Kompetenzmodells eng mitein-

ander verkniipft sind und nicht isoliert voneinander betrachtet werden sollten.

Antwort K1.3.4 (Implementierung): ,Synchronisation von Programmodulen, die von

verschiedenen Teams entwickelt wurden.“

Antwort K1.3.4 (Implementierung): ,Integration von Programmmodulen, die von ver-

schiedenen Teams implementiert wurden.“

Dariiber hinaus kam in diesem Zusammenhang seitens der Interviewten zum Ausdruck,
dass die Lerner mit Informatiksystemen eines unterschiedlichen Komplexitatsgrades kon-
frontiert sind und mit diesen umgehen lernen miissen. Dementsprechend kénnten die
folgenden Sinneinheiten ebenso fiir eine Zuordnung zur Dimension K3 Komplezitdt spre-

chen.

126

Antwort K1.3.4 (Implementierung): ,Die Lernenden miissen Software ,from the scratch®

entwickeln lernen.“

Antwort K1.3.4 (Implementierung): , Die Lernenden miissen befdhigt werden, sich in
bestehende Informatiksysteme einzuarbeiten und re-engineering zu be-

treiben.“

Antwort K1.3.4 (Implementierung): ,Analyse von Schnittstellen eines bereits beste-

henden Systems®
Die Relevanz der Komponente K1.3.5 Test wurde von 8 Interviewten bestétigt.
Antwort K1.3.5 (Test): ,Testen der Produktqualitdt.“

Antwort K1.3.5 (Test): ,Durchfihrung der Testphase um u.a. sicherzustellen, dass die
Anforderungen aus der Requirements-Phase (Anforderungsanalyse) kor-

rekt umgesetzt wurden.”

Weiterhin nannten die Experten bereits bewdhrte Vorgehensstrategien im Rahmen der

Testphase.
Antwort K1.3.5 (Test): ,Durchfihrung von Blackbox-Tests.“

Antwort K1.3.5 (Test): ,Whitebox-Tests als maogliche Vorgehensstrategie in der Test-
phase.

Antwort K1.3.5 (Test): ,Durchfihrung von Regressionstests.“

Zusammenfassend illustriert dieses Kapitel verschiedene Sinneinheiten, die von den Ant-
worten der Interviewten im Rahmen der Expertenbefragung abgeleitet wurden. Diese
wurden im Hinblick auf die Unterkomponenten von K1.8 Systemgestaltung strukturiert.
Ausgehend von dieser Zuordnung wurden Verfeinerungen des Rahmenmodells vorgenom-
men. Im Folgenden Unterkapitel wird dementsprechend aufgezeigt, welche Komponenten
sich als zutreffend erwiesen haben, welche Komponenten weiter ausdifferenziert werden
sollten und welche neuen Komponenten dem Modell erginzt werden sollten. Weiterhin
wird dargestellt, welche Komponenten ggf. aufgrund fehlender Bestétigung durch die

Experteninterviews aus dem Modell entfernt werden sollten.

5.5.2. Empirische Verfeinerung des Rahmenmodells

In diesem Unterkapitel sollen die Auswirkungen der qualitativen Inhaltsanalyse der Ex-

perteninterviews auf das Kompetenzstrukturmodell aufgefiihrt werden.

127

ypeqIaneys

unJaps X |
3IN3u ANy IN3YUILO - (zield pun u27) agewsieyxajdwoy
uazuajadwoy
OA pUn 3EUOENION

1ENX2[dWoY YOSLoIBUIqLIDY

I}EI23U] J3P pel
124F1YEjWEa] pUn UOKEI e
UaZUSIAAWOY SARENIUNWILION-{BIZOS

WI2LI2A SNSI3A (Y0

uajuaucdwoy 13p Funziauiap 13p peln

uaBunj23sur
lIS3=ua uajuauodwoy J13p [Yezuy

WsuauU|

uafuniapio

uspuIMUE Walshs

Uazua1adWoy SAIIUSOY-1YDIN #3

1euxs|dwoy uw Suedwin €3

U33Y2IS Jayasnewiolul Sunzann gy

aydzIaquagesiny T

irisch Verfeinertes Kompetenzstrukturmodell

Emp

Abbildung 5.6.

128

Die Komponente K1.8 Systemgestaltung hat sich als wichtiger Part des Kompetenzmo-
dells bestétigt, da diese grundlegende Prozesse und Kompetenzen zur Entwicklung von

Informatiksystemen umfasst. Dennoch hat die Auswertung der Interviews auch gezeigt,

dass Verfeinerungen am Rahmenmodell vorgenommen werden miissen.

K1.3 Systemgestaltung

Abbildung 5.7.: Empirisches Teilmodell Modellierung

In diesem Zusammenhang hat kein Interviewter K1.5.1 Geschdftsmodellierung genannt.
Ferner konnten keine Sinneinheiten aufgefunden werden, die sich dieser Komponente
eindeutig haben zuordnen lassen. Infolgedessen gilt es, die Daseinsberechtigung dieser
Komponente weiter zu verifizieren. Im Rahmen dieser Arbeit wurde selbige als nicht re-
levant fiir das verfeinerte Kompetenzmodell deklariert, insbesondere im Hinblick auf den
spateren Einsatz der daraus resultierenden Kompetenzmessinstrumente im Informatik-
unterricht der Sekundarstufe Il an allgemeinbildenden Schulen.

Die Kompetenzkomponente K1.3.2 Anforderungsanalyse wurde vielfach genannt und
konnte diversen Sinneinheiten zugeordnet werden. Infolgedessen hat sich diese Kompo-
nente als sinnvoll erwiesen.

K1.3.8 Analyse & Design wurde von zahlreichen Interviewten erwihnt. Dennoch konn-
ten viele Sinneinheiten eindeutig der Analysephase oder der Designphase zugeordnet
werden. Folglich scheint es sinnvoll, eine Aufgliederung der Komponente in zwei separate
Kompetenzkomponenten vorzunehmen um eine prézisere Kategorisierung von Model-

lierungskompetenzen vornehmen zu kénnen. Wie zuvor erwidhnt sind diese Phasen eng

129

miteinander verkniipft und werden hiufig in mehreren Iterationen durchlaufen [Rational
Software Corporation IBM. 1998, S. 2|. Unabhéngig davon hat die Analyse der Experten-
interviews gezeigt, dass Lerner dahingehend geférdert werden miissen, damit sie der ak-
tuellen Iteration und Phase des SWE-Prozesses entsprechend sinnvolle Vorgehensweisen
und Modellierungstechniken auswéhlen kénnen. Die Forderung derartiger Kompetenzen
umfasst die Neustrukturierung von Wissen und kann als wichtige Voraussetzung fiir si-
tuiertes Lernen gesehen werden. In diesem Kontext wird auch der Zusammenhang der
Kompetenzdimension K1 Aufgabenbereiche und K2 Informatische Sichten deutlich und
soll im Folgenden anhand verschiedener Beispiele illustriert werden:

Zur Forderung der oben genannten Auswahl und Anwendung relevanter Modellierungs-
techniken ist die Fahigkeit zum K2.3 Perspektivwechsel unabdingbar.

Die situierte Auswahl von angemessenen und zielfithrenden Modellierungstechniken um-
fasst zudem die Anwendung diverser UML-Diagramme und kann sowohl der Komponente
K1.3.3 Analyse & Design als auch der Komponente K2.2.6 grafische Beschreibungsmit-
tel zugeordnet werden. Dies zeigt wiederum die inhaltliche Verkniipfung der einzelnen
Kompetenzdimensionen.

Wie im vorherigen Kapitel erldutert, ist die Phase der Modellierung ein essentieller Be-
reich innerhalb des SWE-Prozesses. Die in diesem Zusammenhang aufgefundenen Sinn-
einheiten demonstrieren erneut die enge Verkniipfung von K1 Aufgabenbereiche und K2
Informatische Sichten. Die Sinneinheit Verstehen von Algorithmen koénnte der Kompe-
tenzkomponente K1.5.5 Implementierung oder der Komponente K2.2.4 Algorithmen &
Datenstrukturen zugeordnet werden. Ein weiteres Ergebnis ausgehend von der Analy-
se der Experteninterviews ist der Umgang mit Informatiksystemen in unterschiedlichen
Fertigstellungsgraden. Dies konnte ein Hinweis sein, dass die Kompetenzdimension K&
Umgang mit Komplexitdt und die Komponente Grad der Fertigstellung des Informatik-
systems erweitert werden sollten.

Neben dem Grad der Fertigstellung eines Informatiksystems erwdhnten einige Interviewte
ausdriicklich, dass die Lernenden in der Lage sein miissten, Programmmodule (in Teams
entwickelt) zu synchronisieren und diese in ein umfassendes Informatiksystem zu inte-
grieren. Hierbei gilt es beispielsweise, gemeinsame Schnittstellen innerhalb der Arbeits-
gruppen abzustimmen und erfordert K4.2 Sozial-kommunikative Fihigkeiten. Dies zeigt,
dass die Kompetenzdimension K1 Aufgabenbereiche eng mit der Kompetenzdimension
K/ Aufgabenbereiche verkniipft ist.

Die Kompetenzkomponente K1.5.5 Test wurde von vielen Interviewten erwdhnt und hat

sich als essentieller Bestandteil der Kompetenzdimension erwiesen.

130

5.5.3. Fallstudie Charakteristika der Interviewten

3Im Rahmen der Auswertung der Experteninterviews haben wir uns parallel mit der Fra-
gestellung beschiftigt, inwieweit sich die Gruppen der interviewten Fachleiter, Fachdi-
daktiker und Fachwissenschaftler unterscheiden und welche Charakteristika auszumachen
sind. Hierbei wurde eine gezielte inhaltliche Analyse anhand des Fallbeispiels (Szenario:
Warenwirtschaftssystem) vorgenommen.

Fiir den Kompetenzbereich Informatisches Modellieren wurden, wie bereits beschrieben,
fiinf Szenarien verwendet um das zuvor theoretisch abgeleitete Rahmenmodell zu verfei-
nern.

Ausgehend von den Interviewantworten soll ein Vorschlag fiir die moégliche empirische
Verfeinerung des Rahmenmodells vorgestellt werden und die méglichen Losungsstrategien
der Szenarien der einzelnen Interviewgruppen ermittelt werden.

Zusammenfassend lasst sich feststellen, dass die Interviewten die zentrale Bedeutung der
Kompetenzkategorie K1.8 Systemgestaltung als wichtigen Bestandteil des Kompetenz-
modells bestédtigt haben. Unabhéingig davon konnten unterschiedliche Vorgehensweisen
bei den Vorgehensstrategien der einzelnen Gruppen festgestellt werden.

Ein Proband aus der Gruppe der Fachwissenschaftler gibt vor, einen SWE-Prozess zu
wihlen, der verschiedene Iterationen durchlauft. Dies bestétigt uns die Kompetenzkom-
ponente K1.8 Systemgestaltung, die von der sog. core workflows des Rational Unified
Process abgeleitet wurde. Dieser sieht ebenfalls einen iterativen Prozessverlauf vor. Des-
halb erschien es uns als sinnvoll, eine weitere Komponente K1.3 Sequencing Pattern dem
Modell hinzuzufiigen. Diese umfasst diejenigen Kompetenzfacetten, die es dem Lernen-
den ermdoglichen, zweckmifige Problemlosungsstrategien und -techniken (hier Modellie-
rungstechniken) in Abhéngigkeit zur aktuellen Phase und Iteration des SWE-Prozesses
zu wihlen.

Im Gegensatz zu dem oben beschriebenen Vorgehen bevorzugt ein Proband aus der Grup-
pe der Befragten Fachleiter den klassischen linearen Prozessaufbau und erwihnt in die-
sem Zusammenhang das Wasserfallmodell. Dies bestitigt uns wiederum die Relevanz
der Komponenete K1.3 Systemgestaltung, da die Phasen des Wasserfallmodells dhnlich
der core workflows des Rational Unified Process strukturiert sind. Die Phasen des Was-
serfallmodells kénnen in gewisser Weise als statischer Teil des Rational Unified Process
verstanden werden.

Dieses gewéhlte Vorgehen kénnte ein Indiz dafiir sein, dass die Hochschullehrer tieferen

Einblick in best practices und moderne Prozessmodelle des Softwareengineerings haben.

®Dieser Abschnitt enthilt die fiir die Modellierungskompetenz relevanten Anteile aus der eigenen Ver-
offentlichung [Lehner et al. 2010].

131

Ein Proband aus der Gruppe der Fachdidaktiker beschreibt in seiner Antwort lediglich
den Durchlauf der Requirements-Phase und bestéatigt somit die zugehdrige Komponente
im Rahmenmodell.

Ferner empfindet der Fachwissenschaftler die Softwareentwicklung als einen hochst kom-
munikativen und kooperativen Prozess. Neben sozialen Kompetenzen, wie die Fahigkeit
im Team zu arbeiten, nennt er soziale Kompetenzen als wichtige Voraussetzung, damit
eine enge Zusammenarbeit zwischen Entwicklern und Kunden geschehen kann. Beide
genannten Gruppen reprasentieren unterschiedliche fachliche Expertise, die es zusam-
menzubringen gilt. Der Verzicht auf das jeweilig doménenrelevante Vokabular und der
Einsatz von zweckméfkigen grafischen Beschreibungsmitteln vereinfachen diesen Prozess

in gemeinsamen Austausch.

Antwort: Die Verwendung von kontextrelevant angepassten grafischen Beschreibungs-
mitteln ermoglichen gute Diskussionen zwischen Kunden und Domdnenex-

perten.“

Kommunikative Fahigkeiten sind weiterhin eine Bedingung fiir die Integration von infor-
matikfremden Personen in den SWE-Prozess. Derartige Kompetenzen fordern zudem die
Effektivitdt und Performanz innerhalb der Entwicklergruppe.

Ein befragter Fachdidaktiker sieht in der Zusammenarbeit in Teams ebenso einen wich-
tigen Faktor, von dem der Erfolg eines SWE-Projekts (auch im schulischen Kontext) ab-
héngt. Dies umfasst insbesondere die Fahigkeit konstruktive Kritik auszuiiben und mit
Kritik umgehen zu konnen. Die Rolle des Lehrers sieht der Fachwissenschaftler hierbei als
Coach und Beobachter des kooperativen Prozesses. Hierbei ist seine Aufgabe Gruppen
bei Problemen ggf. neu zu arrangieren.

Nachfolgend werden die Ergebnisse dieser Untersuchung vorgestellt. Dies beinhaltet das
oben dargestellte Fallbeispiel (Informatische Modellierung und sozial-kommunikative Kom-
petenzen) als auch ein weiteres durchgefiihrtes Fallbeispiel (Systemverstédndnis).

Neben den bereits im Fallbeispiel erlauterten Ergebnissen der Untersuchung wurden wie-
derkehrende Charakteristika bei den einzelnen befragten Gruppen identifiziert. Hierzu
werden nachfolgend einige Beispiele dargestellt.

Unsere Annahme gegeniiber den Fachwissenschaftlern bestand darin, dass diese hinsicht-
lich der Tauglichkeit der Szenarien im schulischen Bereich sehr skeptisch sind und die-
se nicht befiirworten. Im Gegensatz dazu konnten wir ein gegenteiliges Muster in den
Antworten der Fachwissenschaftler auffinden, die den Einsatz des Szenarios Warenwirt-
schaftssystem im schulischen Einsatz befiirworten.

Die folgenden Ausziige aus den Interviews beziehen sich jeweils auf einen beispielhaften

132

Vertreter aus der Gruppe der Fachwissenschaftler, Fachdidaktikder und Fachleiter.

Antwort SDie Implementierung eines Warenwirtschaftssystem kann im

(Fachwissenschaftler): schulischen Kontext zweifelsfrei umgesetzt werden.“

Antwort SIch bin nicht in der Lage wn diesem Zusammenhang didakti-
(Fachdidaktiker): sche und methodische Empfehlungen auszusprechen, ohne mir

dariber im Vorfeld Gedanken zu machen.“

Antwort (Fachleiter): ,Dieses Szenario kénnte angemessen fiir den schulischen FEin-
satz im Informatikunterricht sein. Es konnen allerdings Schwie-

rigkeiten in bestimmten Fdllen auftreten.”

In diesem Beispiel war es der Fachwissenschaftler, der sich entgegen der Annahme positiv
(und nicht wie angenommen negativ) bzgl. des Einsatzes des Szenarios im schulischen
Kontext und dessen Tauglichkeit gedufert hat. Kontrar waren die Aussagen des Fachdi-
daktikers und des Fachleiters, die grundséitzlich skeptischer gegeniiber dem Einsatz im
schulischen Umfeld eingestellt waren.

Anhand dieser Auferungen der verschiedenen Probandengruppen wird deutlich, dass ei-
ne Generalisierung, dass Fachwissenschaftler grundsétzlich negativ gegentiber schulischen
Themen eingestellt sind, kritisch gepriift werden muss. Derartige negative Einstellungen
gegeniiber schulischen Themen kénnen auch von vorherigen Erfahrungen in diesem The-
menbereich und anderen Faktoren abhidngen.

Die Auswertungen haben iiberdies gezeigt, dass insbesondere Fachwissenschaftler Unsi-
cherheiten gegeniiber Themengebieten gedufert haben, die auferhalb ihres Forschungs-
gebiets lagen. In diesem Zusammenhang duferte ein Fachwissenschaftler im Bereich Al-

gorithmen und Datenstrukturen:

Antwort: _Ich mdchte in diesem Zusammenhang erwdhnen, dass diese Thematik im

Bereich von Datenbanksystemen auflerhalb meiner Ezpertise liegt.”

Unabhéngig davon gab er uns hilfreiche Hinweise zu einer moglichen Losungsstrategie
des vorgestellten Szenarios. Ein weiterer Fachwissenschaftler weigerte sich eine Frage im
Bereich der objektorientierten Modellierung zu beantworten, da ihm die insbesondere
im schulischen Einsatz verwendeten CRC-Karten nicht geldufig waren. Dieses Antwort-
muster war allerdings nicht nur bei den Fachwissenschaftlern festzustellen: FEin befragter
Fachdidaktiker lehnte die Beantwortung und Schilderung zur persénlichen Vorgehens-

weise im Rahmen des Szenarios Warenwirtschaftssystem ab. Er duferte, dass er ohne

133

intensive vorherige Planung keine Hinweise zu seinem Vorgehen zur Loésung des Aufga-
benszenarios geben kénne.

Eine weitere Gegebenheit, die im Rahmen der Interviews aufgetreten ist, ging von einem
Fachwissenschaftler (Experte im Bereich Softwaretests) aus: Dieser wollte das Szenario
zum Thema Software-Test iberspringen, da seiner Meinung nach die Anforderungsana-

lyse nicht korrekt durchgefiihrt wurde.

Antwort: Ich mdchte hier die Bearbeitung des Szenarios abbrechen. Die Anforderungs-
analyse wurde nicht okkurat durchgefihrt; deshalb kann die Testphase nicht

geplant werden.*

Die oben genannten Verhaltensmuster der Interviewten bei der Beantwortung der Fra-
gen waren im Hinblick auf die gesamte Befragung eine Ausnahme. In den meisten Féllen
konnten die Interviewten ihre Vorgehensweise zur Losung des jeweiligen Szenarios de-
tailliert beschreiben und nannten uns relevante Kompetenzfacetten, die ihrer Meinung
nach erfolgsrelevant wiren. In diesem Zusammenhang wurde erwidhnt, dass Informatik-
unterricht zunéchst ein breites Grundlagenwissen vermitteln muss, bevor man sich mit
derartigen Fallbeispielen beschéftigt.

Eine weitere Gruppe von Fachdidaktikern versuchte ihre Vision von Informatikunterricht

bei der Beantwortung der Szenarien zu propagieren.

Antwort: | Bevor dieses Szenario in der Schule thematisiert wird, gilt es die dahinter-

liegenden fundamentalen Konzepte zu verstehen.“

Diese Gruppe der Befragten hat hiufig keinen direkten Kontakt zu Schiilern. Daher fielen
die Antworten im Hinblick auf das erwartete Schiilerverhalten zur Losung des Szenarios

eher abstrakt aus und hatten keinen Bezug zu konkreten Lernprozessen.
Antwort: | FEs hdngt davon ab, was die Schiiler zuvor gelernt haben.“

Je erfahrener die Experten im Bereich der Schulinformatik waren, desto einfacher fiel
uns die Zuordnung von Sinneinheiten zu den jeweiligen Komponenten des theoretisch
abgeleiteten Kompetenzmodells. Hierbei fiel insbesondere auf, dass fast alle befragten
Fachleiter das Szenario aus Perspektive des Lehrenden sahen, obwohl bei der Fragestel-
lung explizit nach dem personlichen Vorgehen zur Lésung des Problems gefragt wurde.
In einigen Féllen stellte sich jenes Dilemma vor der Beantwortung der jeweiligen Frage

durch den Experten heraus.

134

Antwort: |, Bevor ich diese Frage beantworte méchte ich eine Gegenfrage stellen: Soll ich
mein persinliches Vorgehen zur Lésung des Szenarios vorstellen oder mein

Vorgehen als Lehrer in einem konkreten Lernprozess?“
Andere Experten schilderten ihr Vorgehen unmittelbar aus Perspektive des Lehrenden:

Antwort: | So wie ich Sie verstanden habe, soll ich das Szenario aus Sicht des Leh-
rers beschretben: Dann wiirde ich zundchst ein Mindmap zu den Themen, die

meine Schiiler in diesem Zusammenhang lernen miissen, erstellen.”

Weitere Experten ergidnzten ihre Beschreibung der eigenen Losungsstrategie mit mog-
lichen Eindriicken aus Perspektive eines Schiilers, obwohl sie nicht dazu aufgefordert
wurden.

Zusammenfassend konnten verschiedene Vorgehensmuster bei den drei Interviewtengrup-
pen Fachwissenschaftler, Fachdidaktiker und Fachleiter aufgefunden werden und beispiel-
haft illustriert werden. Dennoch ist bei der Generalisierung jener Ergebnisse Vorsicht ge-
boten, da sich diese Ergebnisse auf einen kleinen Teil des empirischen Materials beziehen.
Ferner kdnnte es sein, dass diese Ergebnisse eher auf die individuellen Erfahrungen des
Interviewten zuriickzufithren sind als auf seine Gruppenzugehérigkeit.

Insgesamt lasst sich beziiglich der hier vorgestellten Fallstudie feststellen, dass wir wert-
volle Hinweise im Hinblick auf die Eignung unseres theoretisch abgeleiteten Kompetenz-
modells in Erfahrung bringen konnten. Insbesondere die Kompetenzdimension K1 Aufga-
benbereiche mit den Komponenten Systemgestaltung und deren Unterkategorien wurden
durch die Ausfiihrungen der Interviewten bestétigt. Diese ist von besonderer Wichtigkeit,
da jene einen strukturgebenden Hauptbestandteil des Kompetenzmodells ausmacht.
Zur Entwicklung eines empirisch gesicherten Kompetenzmodells gilt es, die Inhalts- und
Kriteriumsvaliditat des entwickelten Kompetenzmodells zu iiberpriifen. Die inhaltliche
Validitat soll durch ein Expertenrating sichergestellt werden. Die Kriteriumsvaliditat
wird im Rahmen dieser Arbeit iiberpriift, indem — wie im folgenden Kapitel beschrieben
— ein Messinstrument entwickelt wird, das die verschiedenen Kompetenzfacetten misst
und Aufschluss iiber die Kriteriumsvaliditit gibt. Die Korrelation zwischen diesen bei-
den Kriterien kann als Indikator fiir Kriteriumsvaliditit des Kompetenzmodells gesehen

werden.

5.6. Kategoriendefinitionen zum informatischen Modellieren

Ausgehend vom empirisch verfeinerten Kompetenzmodell mussten Kategoriendefinitio-

nen verfasst werden, sog. Kompetenzprofile. Hierzu wurden ausgehend von den Bezeich-

135

nungen der jeweiligen Unterkomponenten von K1.3 Systemgestaltung und standardisier-
ter Operatorenlisten Kompetenzen definiert. Hierbei bestand die Zielsetzung, iiberpriif-
bare Definitionen der einzelnen Kompetenzbereiche zu verfassen, die als Grundlage fiir die
Konzeption von Aufgaben fiir das Messinstrument Modellierung dienen. Folglich mussten
die teilweise abstrakten Bezeichnungen der Kompetenzkomponenten derart konkretisiert
werden, dass diese operationalisiert werden konnten und auf dessen Grundlage die Item-
Entwicklung stattfinden konnte.

Im Folgenden ist die standardisierte Operatorenliste, die fiir die Kompetenzprofildefini-
tion zugrunde gelegt wurde, aufgefiihrt(Ubersicht Operatoren NRW 2007).

Anforderungsbereich I

e Angeben:

Ohne n#here Erlauterungen und Begriindungen aufzihlen, nennen.

e Beschreiben
Sachverhalte oder Zusammenhénge unter Verwendung der Fachsprache in eigenen

Worten verstdndlich wiedergeben.

e Darstellen, Dokumentieren
Zusammenhéinge, Sachverhalte oder Arbeitsverfahren in strukturierter Form gra-

phisch oder sprachlich wiedergeben.

e Finordnen

Mit erlduternden Hinweisen in einen genannten Zusammenhang einfiigen.

e Erliutern*
Einen Sachverhalt auf der Grundlage von Vorkenntnissen so darlegen, dass er ver-

standlich wird.

e Uberfiihren, Ubertragen

Eine Darstellung in eine andere Darstellungsform bringen.

Anforderungsbereich 11

e Analysieren
Eine konkrete Materialgrundlage untersuchen, einzelne Elemente identifizieren und
Beziehungen zwischen den Elementen erfassen. Der Operator Analysieren wird oft
in Kombination mit einem weiteren Operator benutzt, der angibt, wie das Analy-

seergebnis darzustellen ist.

136

e Bestimmen, Ermitteln
Mittels charakteristischer Merkmale einen Sachverhalt genau feststellen und be-

schreiben.

e Entwerfen, Entwickeln
Herstellen und Gestalten eines Systems von Elementen unter vorgegebener Zielset-

zung.

e Frweitern, Vervollstdndigen

Eine gegebene Struktur um Bestandteile erweitern.

e Herleiten, Ableiten
Die Entstehung oder Ableitung eines gegebenen oder beschriebenen Sachverhaltes

aus anderen oder aus allgemeinen Sachverhalten darstellen

e Implementieren**

Algorithmen und Datenstrukturen in einer Programmiersprache aufschreiben.

e Modellieren**

Zu einem Ausschnitt der Realitét ein informatisches Modell anfertigen.

e Vergleichen
Nach vorgegebenen oder selbst gewiihlten Gesichtspunkten Gemeinsamkeiten, Ahn-

lichkeiten und Unterschiede ermitteln und darstellen.

e Zeigen
Eine Aussage, einen Sachverhalt nach Berechnungen, Herleitungen oder logischen

Begriindungen bestéatigen.
Anforderungsbereich II1

e Begriinden**
Einen Sachverhalt oder eine Entwurfsentscheidung durch Angabe von Griinden

erklaren.

e Beurteilen
Zu einem Sachverhalt ein selbststdndiges Urteil unter Verwendung von Fachwissen

und Fachmethoden formulieren und begriinden.

e Stellung nehmen
Unter Heranziehung relevanter Sachverhalte die eigene Meinung zu einem Problem

argumentativ entwickeln und darlegen.

137

4Unter Beriicksichtigung der Operatoren ergeben sich folgende Kategoriendefinitionen:

‘ K1.3.1 ‘ Anforderungsanalyse

K1.3.1.1 | Die Lernenden kénnen eine geeignete (Software)
Plattform/Basistechnologie auswéhlen, um das zu
erstellende SW-Projekt zu entwickeln.

K1.3.1.2 | Die Lernenden sind in der Lage, Anwendungsfille (Use

Cases) zu ermitteln und anzugeben (benennen), diese zu

analysieren (durchzuspielen); sie sind diesbeziiglich auch in
der Lage, Use Case Diagramme zu entwickeln. Hierbei
kénnen sich die Lernenden einen Eindruck verschaffen, was

die zu entwickelnde Software zu leisten hat.

K1.3.1.3 | Die Lernenden sind in der Lage, funktionale Anforderungen
an die zu entwickelnde Software zu ermitteln; dabei sind sie
beféhigt, die Ziele (z.B. funktionale Anforderungen),
Grenzen (z.B. Abgrenzung zu bestehenden
Softwaresystemen) und Stakeholder innerhalb der
Problemdomaéne zu ermitteln. Hierbei besteht wiederum die
Zielsetzung herauszufinden, was das zu entwickelnde

System leisten soll.

K1.3.1.4 | Die Lernenden sind in der Lage, eine tabellarische Use Case
Beschreibung in ein Aktivitédtendiagramm zu {iberfithren.
Hierdurch kénnen mdégliche Anwendungsszenarien genauer

analysiert werden.

K1.3.1.5 | Die Lernenden sind in der Lage, die zuvor ermittelten
funktionalen Anforderungen fiir andere verstéindlich und
nachvollziehbar darzustellen (dokumentieren). Hierbei
besteht die Zielsetzung, ein gemeinsames Dokument (im
Sinne eines Pflichtenhefts) fiir die SWE-Teams im Hinblick

auf die weiteren Phasen des SWE-Prozesses zu entwickeln.

*Hinweis: Die mit * gekennzeichneten Operatoren kénnen sowohl dem AFB I als auch dem AFB II und
die mit ** gekennzeichneten Operatoren dem AFB II oder dem AFB III zugeordnet werden.

138

‘ K1.3.2 ‘ Analyse

K1.3.2.1

Die Lernenden kénnen objektorientierte Begrifflichkeiten
angeben und erldutern. Dies ist Grundvoraussetzung, um
eine objektorientierte Dekomposition durchfithren zu

konnen.

K1.3.2.2

Die Lernenden sind in der Lage, eine objektorientierte
Dekomposition durchzufiihren; d.h., sie kénnen anhand
einer textuellen Beschreibung des Problembereichs
mogliche Klassenkandidaten, Attribute und Methoden
ermitteln (auffinden) und diese in eine formale
Darstellungsform {iberfithren. Hierbei besteht die

Zielsetzung ein Modell des Problembereichs zu erstellen.

K1.3.2.3

Die Lernenden sind in der Lage, relevante statische und
dynamische UML-Diagramme ohne
implementierungsspezifische Details zu entwickeln (z.B.
CRC-Karten). Durch diese formale konzeptionelle
Modellierung erhalten die Lernenden einen vertieften

Einblick in die Problemdomaéne.

K1.3.2.3.1

CRC-Karten: Die Lernenden sind in der Lage, ein
(textuelles) Szenario in Form von CRC-Karten

darzustellen.

K1.3.2.3.2

Objektdiagramm: Die Lernenden sind in der Lage,
Objektdiagramme zu entwickeln; diese konnen sie ggf.
ausgehend von Use Case Diagrammen iiberfithren; sie
koénnen relevante Objekte ermitteln, erldutern wie die
Objekte untereinander kommunizieren und von
gleichartigen Objekten Klassen (im Hinblick auf ein

Klassendiagramm) ableiten.

K1.3.2.3.3

Sequenzdiagramm: Die Lernenden sind in der Lage,
Sequenzdiagramme zu entwickeln; diese konnen sie ggf.

ausgehend von Use Case Diagrammen iiberfiihren.

K1.3.2.3.4

Klassendiagramm: Die Lernenden sind in der Lage,
Analyse-Klassendiagramme zu entwickeln; diese kénnen sie
ggf. ausgehend von textuellen Beschreibungen,
CRC-Karten, Use Case Diagrammen oder
Objektdiagrammen iiberfiihren; sie kénnen Klassen
inklusive Attributen und Methoden definieren,
Assoziationen festlegen und sinnvolle Vererbungsstrukturen
entwickeln. 139

| K1.3.3 | Design

K1.3.3.1

Die Lernenden sind in der Lage, die Architektur der zu
entwickelnden Software zu bestimmen; dabei wihlen sie
eine geeignete Programmiersprache aus, beriicksichtigen
Aspekte der Verteilung, Nebenlaufigkeit /Parallelitdt und
moglicher Entwurfsmuster. Dies ist eine wichtige
Voraussetzung fiir die Entwicklung von entwurfsspezifischen

UML-Diagrammarten.

K1.3.3.2

Die Lernenden sind in der Lage, sinnvolle Schnittstellen zu
bestimmen um eine spitere erfolgreiche Integration von

Programmmodulen zu ermdoglichen.

K1.3.3.3

Die Lernenden sind in der Lage, relevante statische und
dynamische UML-Diagramme mit
implementierungsspezifischen Details zu entwickeln.
Hierdurch entsteht ein entwurfsspezifisches Modell, welches
in Quellcode einer objektorientierten Hochsprache

iiberfithrt werden kann.

K1.3.3.3.1

Klassendiagramm: Die Lernenden sind in der Lage,

Entwurfs-Klassendiagramme zu entwickeln.

K1.3.3.3.2

Zustandsdiagramm: Die Lernenden sind in der Lage,

Zustandsdiagramme zu entwickeln.

K1.3.3.3.3

Verteilungsdiagramm: Die Lernenden sind in der Lage,
Verteilungsdiagramme zu entwickeln; sie kénnen mit Hilfe
der Verteilungsdiagramme Programmmodule (z.B. auf

Server und Client) aufteilen.

140

‘ K1.3.4 ‘ Implementierung

K1.3.4.1

Die Lernenden sind in der Lage, die Architektur der zu
entwickelnden Software zu bestimmen; dabei wihlen sie
eine geeignete Programmiersprache aus, beriicksichtigen
Aspekte der Verteilung, Nebenlaufigkeit /Parallelitdt und
moglicher Entwurfsmuster. Dies ist eine wichtige
Voraussetzung fiir die Entwicklung von entwurfsspezifischen

UML-Diagrammarten.

K1.3.4.1.1

Die Lernenden sind in der Lage, Programmierkonzepte, wie
z.B. das Variablenkonzept und Kontrollstrukturen
(Bedingte Anweisung, Schleifenkonstruktion) in der

Programmiersprache zu implementieren.

K1.3.4.1.2

Die Lernenden sind in der Lage, ein Klassendiagramm in
objektorientierten Java-Code zu iiberfithren; Sie kénnen
Klassen, Attribute und Methoden sowie Assoziationen und

Vererbungsstrukturen in Java-Code implementieren.

K1.3.4.1.3

Die Lernenden sind in der Lage, Programmbibliotheken
(z.B. Java-Swing) erfolgreich in eigene Programmmodule

einzubinden.

K1.3.4.2

Die Lernenden sind in der Lage, mit Hilfe von integrierten
Entwicklungsumgebungen (IDEs) Programmmodule zu

implementieren und zu integrieren.

K1.3.4.3

Die Lernenden sind in der Lage, mit Hilfe einer
Versionsverwaltungssoftware (z.B. Subversion)

Programmmodule und deren Versionierung zu verwalten.

K1.3.4.4

Die Lernenden sind in der Lage, die selbst implementierten
Programmmodule nachvollziehbar (im Hinblick auf gute

Wartbarkeit) zu dokumentieren (z.B. mit Java-Doc).

K1.3.4.5

Die Lernenden sind in der Lage, Programmmodule sinnvoll
in ein bestehendes Softwaresystem zu integrieren. Somit
koénnen Teile der zu entwickelnden Software zu einem

lauffahigen System aggregiert werden.

141

| K1.3.5 | Test

K1.3.5.1 Die Lernenden sind in der Lage, ein bestehendes
Softwaresystem systematisch zu testen. Hierbei besteht die
Zielsetzung unter anderem darin, zu iiberpriifen, ob die
zuvor spezifizierten funktionalen Anforderungen erfolgreich

umgesetzt wurden.

K1.3.5.1.1 | Die Lernenden sind in der Lage, zu Beginn der Testphase

einen geeigneten Testplan zu entwickeln.

K1.3.5.1.2 | Die Lernenden sind in der Lage, gingige Vorgehensmodelle
des Testens durchzufithren (z.B. Model-Checking,
Whitebox-, Blackbox-Testverfahren, ...).

K1.3.5.1.3 | Die Lernenden sind in der Lage, Testfdlle zu ermitteln

(Extremfille und unerwartete Eingabedaten erzeugen) oder

zu entwickeln; sie kénnen diese zum Test verwenden und

die daraus resultierenden Ausgaben protokollieren.

K1.3.5.1.4 | Die Lernenden sind in der Lage, automatisierte Tests

durchzufiihren.

K1.3.6 | Iteratives Vorgehen

K1.3.6.1 | Die Lernenden sind in der Lage, abhéngig von der
jeweiligen Iteration des SWE-Prozesses, sinnvolle
Modellierungstechniken auszuwahlen, anzuwenden und zu

beurteilen.

K1.3.6.2 | Die Lernenden sind in der Lage zu beurteilen, ob ein
erneutes Durchlaufen einer bereits absolvierten Phase des
SWE-Prozesses erforderlich ist; sie konnen abhingig von
den auftretenden Problemen in der aktuellen Phase eine

sinnvolle vorherige Phase auswéhlen, die es erneut zu

durchlaufen gilt.

Im Hinblick auf die Item-Entwicklung besteht die Zielsetzung, fiir jeden Kompetenzbe-
reich (definiert durch die Kategoriendefinitionen) mehrere spezifische Ttems zu entwickeln.
Hierbei gilt es zu beachten, dass die Testitems in einigen Fallen auch mehreren Kompe-

tenzprofilen zugeordnet werden kénnen.

142

Im folgenden Kapitel sollen in einem ersten Schritt die Item-Entwicklung auf Basis der
Kategoriendefinitionen erldutert werden. Diese dienen als Bestandteile des zu entwickeln-

den Kompetenzmessinstruments.

5.7. Zusammenfassung

Das Ergebnis dieses Kapitels ist ein wichtiger Meilenstein fiir die Entwicklung des Mess-
instruments: Das resultierende empirisch verfeinerte Kompetenzrahmenmodell und die
dazugehérigen Kategoriendefinitionen sind eine wichtige Voraussetzung zur Entwicklung
von Aufgabenitems sowie deren inhaltlicher Fokussierung.

Dementsprechend erfolgte die empirische Verfeinerung der jeweiligen Kompetenzdimen-
sionen und -komponenten. Hierbei kam ein Interviewverfahren zum Einsatz, das sich an
der Critical Incident Technique orientiert und mit dem ermittelt wurde, welche Kenntnis-
se, Strategien, Fahigkeiten und Einstellungen im Sinne der Befragten erforderlich sind,
um problemlésend zu handeln.

Alle Interviews wurden aufgezeichnet, transkribiert und unter Verwendung der qualita-
tiven Inhaltsanalyse ausgewertet. Hier wurden zuvor im Interviewmaterial aufgefundene
Sinneinheiten anhand der im Vorfeld entwickelten Kategoriendefinitionen, Ankerbeispie-
len und Kodierregeln den Kategorien des Kompetenzmodells zugeordnet. Hierdurch er-
folgte sowohl eine empirische Uberpriifung des Kompetenzrahmenmodells aus Kapitel
4 als auch eine Korrektur, Erginzung und Ausdifferenzierung des Modells hinsichtlich
neuer und zusétzlich zu beriicksichtigender Kompetenzaspekte.

Konkret hat sich die Komponente K1.3 Systemgestaltung als wichtiger Part des Kom-
petenzmodells gefestigt, da jene grundlegende Kompetenzen zur Entwicklung von Infor-
matiksystemen umfasst. Darliber hinaus ist ein wichtiges FErgebnis dieses Kapitels die
empirische Verfeinerung der Unterkomponenten von K1.3. Hier hat sich gezeigt, dass be-
stimmte Kompetenzkomponenten, wie z.B. die Geschéftsmodellierung, sich als weniger
relevant erwiesen haben. Diese wurden somit auch bei der Entwicklung des Kompetenz-
messinstruments weniger beriicksichtigt. Bei weiteren Kompetenzkomponenten war es
sinnvoll eine Binnendifferenzierung vorzunehmen. So wurde die Kompetenzkomponente
Analyse & Design in Analyse und Design aufgeteilt. Ferner wurde in dem Zusammenhang
eine weitere Komponente lteratives Vorgehen dem Kompetenzmodell hinzugefiigt.
Anhand des empirisch verfeinerten Kompetenzmodells wurden Kategoriendefinitionen,
sog. Kompetenzprofile formuliert. Hierzu wurden ausgehend von den Bezeichnungen der
jeweiligen Kompetenzkomponenten und standardisierten Operatorenlisten Kompetenzen

definiert. Hierbei bestand die Zielsetzung, Giberpriifbare Definitionen der einzelnen Kom-

143

petenzbereiche zu verfassen, die als Grundlage fiir die Konzeption von Aufgabenitems
dienen. Einzelne abstrakte Bezeichnungen mussten derart konkretisiert werden, dass die-
se operationalisiert werden konnten und auf deren Grundlage die Item-Entwicklung statt-
finden konnte.

Auf Grundlage der definierten Kategoriendefinitionen erfolgt im folgenden Kapitel 6 die
Entwicklung von Aufgaben und Items zur Uberpriifung von objektorientierter Modellie-

rungskompetenz.

144

6. Entwurf eines Messinstruments fiir
informatische
Modellierungskompetenz und
Entwicklung eines
Lehr-/Lernarrangements zur
Erprobung
Dieses Kapitel fokussiert die Entwicklung von Aufgaben und darin enthaltener Items auf
Grundlage der zuvor formulierten Kompetenzprofile (Kategoriendefinitionen). Hierbei
werden zunichst theoretische Grundlagen zur Testentwicklung und zur Fragebogenkon-

struktion aufgezeigt und beispielhaft der Entwicklungsprozess einzelner reprisentativer

Aufgaben des Messinstruments dargestellt.

145

(
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Kapitel 2 | Fachdidaktische

Ausgangslage

Internat. Vergleichsstudien
(PISA,TIMMS, .}

Kompetenzorientierung

Thematischer Schwerpunkt der Dissertation

Theoretische Gr

Kapitel 3 | Modellierung in Fachwissenschaft

und Fachdidaktik

(Rational unified Process)

SWE Vorgehensmodall

fachwissenschaftlich

Modellierung in
Fachwissenschaft und
Fachdidaktik

—umfasstis

Vorgehensmodelle

fachdidaktisch

Didakt Vorgehensmodall

{0OM + Robatik)

|

Theoretische Grundlage

!
£

k7] Y

E

2)

- l Entwicklung

b = Unterrichtsraihe
n

n

U

=25

~ 2 Kompetanzmassungen
% s im Vergleich
E=]

f=R

]

x> |

Ausgangspunkt I
- I
o
-é Y I
]
=
al g : |
g = [theoretisch]
§ I
0 E‘ kompatznzmodell I
~ 3 ..
<2 (empirisch}
e
=}
52 |
€5
=
2 |
x
o
2
: |
€
o
5 I
=
= Kompetanz
ﬁ Kategoriendefinitionen
3 I
@
Fi}
Zp
-5 Massinstrument I
f .EJ Iementwickiung
£3
[}
o E
[}

____|____

Ergebnisse
]

Kapitel 8 | Fazit / Weiterefihrende

Forschungsfragen

!

Abbildung 6.1.: Kapitel 6 im Gesamtkontext der Arbeit

146

Die folgende Abbildung 6.2 illustriert die Vorgehensweise zur Entwicklung der Aufgaben
des Messinstruments. Zundchst werden auf Grundlage der zuvor formulierten Kompe-
tenzkategorien zugehorige Items entwickelt. Die Items werden jeweils zu Aufgaben kom-
biniert und mit einem fiir die Probanden lebensweltnahen Stimulusmaterial kombiniert.
Im Sinne unseres Kompetenzverstindnisses nach Weinert werden neben den kognitiven
Kompetenzbereichen auch die nicht kognitiven Kompetenzbereiche aus der Kompetenz-
dimension K4 adressiert und explizit in den Aufgaben 1 - 10 mit beriicksichtigt. Somit
soll sichergestellt werden, dass Kompetenzen ganzheitlich abgefragt werden. Eine Ab-
frage von isolierten Fahigkeiten ist im Sinne des festgelegten Kompetenzverstdndnisses

nicht wiinschenswert.

Kompetenzkategorien

Aufgabe 1

Stimulus 1

Items
(K1.3.1)
Items
(K1.3.2)
Items
(K1.3.3)

K1.3.4 Items

- (K1.3.4)
K1.3.5 - ltems

K1.3.1

K1.3.2
Aufgabe i

K1.3.3
Stimulus i

(K1.3.5)

K1.3.6 Items

(SEX) \ Aufgabe 10

K4.1..K4.3 ltems (K4.1 .. K4.3) Stimulus 10

Abbildung 6.2.: Tllustration der Aufgabenentwicklung

Zur Evaluation des entwickelten Messinstruments umfasst dieses Kapitel ferner die Ent-
wicklung und Darstellung einer geeigneten Unterrichtsreihe. Diese basiert auf dem in
Kapitel 3 vorgeschlagenen Vorgehensmodell Modellierung & Robotik und dem Pader-
borner Informatik Lernlabor. In diesem Zusammenhang wurde eine LEGO Mindstorms
basierte Inhaltseinheit Kommissionierstation entwickelt, die sich im Rahmen unserer Er-

fahrungen in der Hochschullehre als kompetenzférderlich erwiesen hat.

147

6.1. Entwicklung von Aufgabenitems

Auf Basis des entwickelten Kompetenzmodells wurde in einem weiteren Arbeitsschritt
ein erstes Instrumentarium zur Diagnose von Kompetenzstéinden zu ausgewahlten Tei-
len des Modells entwickelt und im Rahmen eines Unterrichtsversuchs zur Forderung von
Kompetenzen im Bereich des informatischen Modellierens erprobt. Bei der Testentwick-
lung wurden in erster Linie sog. objektive Testverfahren bzw. Situational Judgement Tests
(SJT) entwickelt, die relevante Kompetenzen anhand konkreter Losungen von représenta-
tiven Aufgabenstellungen der Unterrichtsdoméne ermitteln und bewertbar machen. Hier-
bei wurden Erfahrungen zur Testentwicklung bei der TIMMS-, PISA- und DESI-Studie
[Baumert et al. 2000], [Prenzel und Deutschland 2004|, [Beck und Klieme 2007] sowie
von Testentwicklungen im Bereich der Arbeits- und Organisationspsychologie [Schaper
und Horvath 2008] beriicksichtigt. Unter Bezugnahme auf die Kompetenzbeschreibungen
bzw. -profile des Kompetenzmodells wurden zunichst geeignete Aufgabenstellungen, die
entsprechende Kompetenzanforderungen reprisentieren, generiert und in einem zweiten
Schritt passende Antwortformate (in Form vorgegebener Antwortalternativen oder freier
bzw. offener Antwortformate) entwickelt. Auf der Basis dieses Vorgehens wurden ins-
gesamt 62 Items zur Erfassung der Kompetenzbereiche K1.3 Systemgestaltung und K
Nicht-kognitive Fdhigkeiten konstruiert.

Fiir den Kompetenzbereich K1.8 Systemgestaltung wurden fiir den Informatikunterricht
geeignete Items entwickelt und zu Aufgaben kombiniert. Diese orientieren sich an dem
PISA/TIMMS-Aufgabenmuster. Sie stellen ein jeweils fiir die Schiiler lebensweltnahes
Stimulus- bzw. Aufgabenmaterial voran und enthalten daran anschliefend sowohl 23 offe-
ne als auch 11 Multiple-Choice(MC)-Antwortformate. In diesem Kontext wurden jeweils
ein bis zwei Aufgaben zur Operationalisierung der im Kompetenzstrukturmodell ent-
haltenen Kompetenzbereiche K1.3.1 Anforderungsanalyse, K1.8.2 Analysephase, K1.5.3
Designphase, K1.58.4 Implementierung, K1.3.5 Softwaretest sowie K1.3.6 Iteratives Vor-
gehen erstellt.

Exemplarisch fiir eine Aufgabe mit lebensweltnahem Stimulusmaterial und ein enthal-
tenes Item im MC-Antwortformat sei die Aufgabe 5B (siehe Fragebogen im Anhang)
genannt. Ausgehend von einer textuellen Szenariobeschreibung einer Schulbibliothek wer-
den die Probanden aufgefordert, eines von zwei Analyse-Klassendiagrammen auszuwéh-
len, welches die Schulbibliothek korrekt modelliert. Die Zielsetzung dieser Aufgabenstel-
lung (bzw. des enthaltenen Items) besteht darin, die Teilkompetenz K1.3.3.3 (Lernende
sind n der Lage, relevante statische und dynamische UML-Diagramme ohne itmplemen-

tierungsspezifische Details zu entwickeln und zu beurteilen) abzufragen.

148

Als Beispiel fiir SJT-Aufgabenstellung und einem Item mit offenem Antwortformat sei
die Aufgabe 2 angefiihrt. Hierbei handelt es sich um eine Aufgabenstellung, bei der sich
die Probanden in die Rolle eines I'T-Projektmanagers versetzen sollen. Aus dieser Per-
spektive gilt es, die Auswahl einer geeigneten Programmiersprache fiir die Entwicklung
eines plattformunabhingigen, verteilten Chat-Systems zu begriinden. In diesem Zusam-
menhang werden sie u.a. gefragt, welche Eigenschaften der Programmiersprache Java die
Entwicklung eines plattformunabhéngigen Softwaresystems begiinstigen. Hierbei enthilt
die Aufgabe ein Item mit offenem Antwortformat. Mit dieser Aufgabe und dem enthalte-
nen Item soll die Teilkompetenz K1.3.4.1 (Lernende sind in der Lage, die Architektur der
zu entwickelnden Software zu bestimmen und eine geeignete Programmiersprache auszu-

wdhlen) abgefragt werden.

6.1.1. Zuordnung von Aufgaben zu Kompetenzkategorien

Die Items wurden inhaltlich entsprechend der einzelnen Kompetenzkategorien zur in-
formatischen Modellierung (wie im vorherigen Kapitel erarbeitet) ausgerichtet. Hierbei
wurden spezielle Ttems fiir Kompetenzkategorien entwickelt und zu Aufgaben kombiniert
die moglichst mehrere im Strukturmodell abgebildete Kompetenzbereiche abfragen. Die
folgende Tabelle stellt die Kompetenzkategorien mit der Zuordnung zu den einzelnen

Aufgaben des Messinstruments dar.

149

Zuordnung Kompetenzkategorien zu Aufgabe 5

Kompetenzkategorien zu Aufgabe 5

K1.3.1.1

Analyse

K1.3.3.3

Die Lernenden sind in der Lage, relevante statische und
dynamische UML-Diagramme ohne
implementierungsspezifische Details zu entwickeln (z.B.
CRC-Karten). Durch diese formale konzeptionelle
Modellierung erhalten die Lernenden einen vertieften

Einblick in die Problemdomaéane.

K1.3.3.3.1

CRC-Karten: Die Lernenden sind in der Lage, ein
(textuelles) Szenario in Form von CRC-Karten

darzustellen.

K1.3.3.3.4

Klassendiagramm: Die Lernenden sind in der Lage,
Analyse-Klassendiagramme zu entwickeln; diese konnen sie
ggf. ausgehend von textuellen Beschreibungen,
CRC-Karten, Use Case Diagrammen oder
Objektdiagrammen iiberfiihren; sie kénnen Klassen
inklusive Attributen und Methoden definieren,
Assoziationen festlegen und sinnvolle Vererbungsstrukturen

entwickeln.

150

Zuordnung Kompetenzkategorien zu Aufgabe 6

Kompetenzkategorien zu Aufgabe 6

K1.3.2

Anforderungsanalyse

K1.3.2.2

Die Lernenden sind in der Lage, Anwendungsfille (Use
Cases) zu ermitteln und anzugeben (benennen), diese zu
analysieren (durchzuspielen); sie sind diesbeziiglich auch in
der Lage, Use Case Diagramme zu entwickeln. Hierbei
konnen sich die Lernenden einen Eindruck verschaffen, was

die zu entwickelnde Software zu leisten hat.

K1.3.3

Analyse

K1.3.3.3

Die Lernenden sind in der Lage, relevante statische und
dynamische UML-Diagramme ohne
implementierungsspezifische Details zu entwickeln (z.B.
CRC-Karten). Durch diese formale konzeptionelle
Modellierung erhalten die Lernenden einen vertieften

Einblick in die Problemdomaéne.

K1.3.3.3.3

Sequenzdiagramm: Die Lernenden sind in der Lage,
Sequenzdiagramme zu entwickeln; diese konnen sie ggf.

ausgehend von Use Case Diagrammen iiberfiihren.

151

Zuordnung Kompetenzkategorien zu Aufgabe 10

Kompetenzkategorien zu Aufgabe 10

K1.3.6

Test

K1.3.6.1

Die Lernenden sind in der Lage, ein bestehendes
Softwaresystem systematisch zu testen. Hierbei besteht die
Zielsetzung unter anderem darin, zu iiberpriifen, ob die
zuvor spezifizierten funktionalen Anforderungen erfolgreich

umgesetzt wurden.

K1.3.6.1.1

Die Lernenden sind in der Lage, zu Beginn der Testphase

einen geeigneten Testplan zu entwickeln.

K1.3.6.1.3

Die Lernenden sind in der Lage, Testfélle zu ermitteln
(Extremfille und unerwartete Eingabedaten erzeugen) oder
zu entwickeln; sie kénnen diese zum Test verwenden und

die daraus resultierenden Ausgaben protokollieren.

K1.3.7

Iteratives Vorgehen

K1.3.7.1

Die Lernenden sind in der Lage, abhéngig von der
jeweiligen Iteration des SWE-Prozesses, sinnvolle
Modellierungstechniken auszuwéahlen, anzuwenden und zu

beurteilen.

K1.3.7.2

Die Lernenden sind in der Lage zu beurteilen, ob ein
erneutes Durchlaufen einer bereits absolvierten Phase des
SWE-Prozesses erforderlich ist; sie konnen abhingig von
den auftretenden Problemen in der aktuellen Phase eine
sinnvolle vorherige Phase auswéhlen, die es erneut zu

durchlaufen gilt.

6.1.2. Exemplarische Item-Entwicklung

In diesem Kapitel werden neben einer thematischen Ubersicht aller Aufgaben, drei bei-

spielhafte Aufgaben zur informatischen Modellierung vorgestellt.

Ausgehend von den zuvor definierten Kompetenzprofilen wurden die inhaltliche Struk-
turierung und die jeweiligen inhaltlichen Themen der Aufgaben festgelegt. Im Folgenden

wird eine tabellarische Auflistung der Kompetenzprofile inkl. der jeweiligen Aufgabeni-

tems im Messinstrument (siehe Anhang) aufgefiihrt.

Betrachten wir nun einen exemplarischen Ausschnitt aus dem Entstehungsprozess der

152

Aufgaben.

Aufgabe 5 - Item zur Analysephase

Die Zielsetzung der ersten Items (Teilaufgabe 5 a,b) war die Uberpriifung des Kompe-
tenzbereichs K1.8 Analysephase. Innerhalb der Items (a,b) werden gezielt die jeweiligen
Teilkompetenzen abgefragt. Teilaufgabe a) wurde zur Messung des Kompetenzbereichs
K1.3.3.8 entwickelt.

K1.3.3.83 Die Lernenden sind in der Lage, relevante statische und dynami-
sche UML-Diagramme ohne implementierungsspezifische Details zu entwi-
ckeln (z.B. CRC-Karten). Durch diese formale konzeptionelle Modellierung

erhalten die Lernenden einen vertieften Einblick in die Problemdomdne.

Insbesondere ging es darum den Diagrammtyp CRC-Karten zu thematisieren.

K1.3.3.8.1 CRC-Karten: Die Lernenden sind in der Lage, ein (tertuelles)

Szenario in Form von CRC-Karten darzustellen.

Zunéchst enthélt die Aufgabe eine kurze Aufgabenbeschreibung die dem Probanden mit-
hilfe standardisierter Operatoren die erforderlichen Tétigkeiten zur Losung der Aufga-
be vorstellt. Anschliefend wird dem Probanden (hier Schiiler der Sekundarstufe II an
Gymnasien in NRW) ein Stimulus-Material aus seiner Erfahrungswelt prisentiert. Dies
beschreibt den jeweiligen Kontext der Aufgabe und soll dem Probanden die Méglichkeit
geben, sich mit der Aufgabe zu identifizieren. In diesem Aufgabenitem handelt es sich

um eine vereinfachte Darstellung einer Schulbibliothek.

153

Aufgabe 5a

Sie wurden beauftragt, eine Software zur Verwaltung Threr Schulbibliothek zu entwickeln.

In der Analyse-Phase sollen zundchst CRC-Karten fiir die wichtigsten Klassen erstellt
werden. Ergénzen Sie hierzu die unten dargestellten CRC-Karten um die jeweiligen
Responsibilities und Collaborators. Orientieren Sie sich hierbei an der Beschreibung der
Schulbibliothek I

Schulbibliothek I:
Die Schulbibliothek umfasst einen Bestand von Biichern. Diese sind gekennzeichnet durch
deren Titel, ID-Nummer und Anzahl der Seiten. Die Schulbibliothek wird von

verschiedenen Personen genutzt. Diese haben einen Namen und ein Alter.

()
Innerhalb der Aufgabe werden den Probanden rudimentére CRC-Karten zur Verfiigung

gestellt, die es — wie oben beschrieben — zu ergédnzen gilt. Hierbei miissen die jeweili-
gen Responsibilities und Collaborators eingetragen werden, sodass die CRC-Karten die
»Schulbibliothek I korrekt modellieren. Ein Stiftsymbol symbolisiert zusétzlich die zu
bearbeitenden Stellen innerhalb der Grafik.

Selbige soll Aufgaben mit lebensweltnahem Stimulusmaterial und einem Item mit offenem
Antwortformat représentieren.

Teilaufgabe b) wurde zur Uberpriifung des Kompetenzbereichs K1.38.3.3.4 konzipiert.

K1.8.3.3.4 Klassendiagramm: Die Lernenden sind in der Lage, Analyse -
Klassendiagramme zu entwickeln; diese kénnen sie ggf. ausgehend von textu-
ellen Beschreibungen, CRC-Karten, Use Case Diagrammen oder Objektdia-
grammen Gberfihren; sie konnen Klassen inklusive Attributen und Methoden
definieren, Assoziationen festlegen und sinnvolle Vererbungsstrukturen entwi-

ckeln.

Hier wird wiederum als erstes die Aufgabenbeschreibung dargelegt, gefolgt von einem
weiteren Stimulusmaterial in Form einer Beschreibung Schulbibliothek 1I. Zur Abfrage
des zugehdrigen Kompetenzbereichs K1.3.3.3.4 enthilt die Aufgabe ein Item mit MC-
Antwortformat.

Bei der Schulbibliothek II handelt es sich um eine erweiterte Szenariobeschreibung mit
deutlich erhohter Komplexitit, die im Gegensatz zur Schulbibliothek I dem Probanden
Aspekte der Vererbung, die Unterscheidung Assoziation/Aggregation, etc. abverlangt.

154

Bibliothek
Responsibilities:

Name Collaborator
Y
MNutzer Buch
Responsibilities: Responsibilities:
MName Collaborator Name Collaborator
Y

Abbildung 6.3.: CRC-Karten zur Schulbibliothek I

155

Aufgabe 5b

Wihlen Sie das Klassendiagramm aus, das die unten beschriebene erweiterte Version der
Schulbibliothek (Schulbibliothek II) korrekt modelliert.

Schulbibliothek 11:

Die Schulbibliothek umfasst einen Bestand von Biichern. Diese sind gekennzeichnet durch
deren Titel, ID-Nummer und Anzahl der Seiten. Es gibt Sachbiicher, Lexika und Romane.
Sachbiicher sind zusétzlich gekennzeichnet durch ein Themengebiet, Lexika durch die
Anzahl Bénde sowie die jeweilige Bandnummer des Exemplars. Die Schulbibliothek wird
von verschiedenen Personen genutzt. Diese haben einen Namen und ein Alter.
Unterschieden wird zwischen verschiedenen Benutzergruppen: Lehrer haben ein erstes und
zweites Unterrichtsfach und diirfen hochstens vier Biicher gleichzeitig ausleihen. Zusétzlich
stehen Sie als Berater fiir zwei bestimmte Sachgebiete der Fachbiicher zur Verfiigung.

Schiiler haben eine Jahrgangsstufe und diirfen hochstens zwei Biicher gleichzeitig ausleihen.

(...)

Der Proband ist nun aufgefordert per Multiple Choice eins von zwei Klassendiagrammen

auszuwiahlen, welches das in Schulbibliothek II beschriebene Szenario korrekt modelliert.

Um die Entscheidung zu begriinden und zu verhindern, dass die korrekte Antwort geraten

wird, soll er im falschen Klassendiagramm einen logischen Fehler und eine Schwéche hin-

sichtlich redundanter Attribute (aufgrund fehlender Vererbungsstruktur) auffinden und

kennzeichnen. Hierzu ist der Proband im weiteren Verlauf der Aufgabe angehalten, die

entsprechenden Bereiche im falschen Klassendiagramm mit Kreismarkierungen hervor-

zuheben.

Klassendiagramm 1:Q0 Xi

Klassendiagramm 2:0

Abbildung 6.4.: Multiple Choice Auswahl eines von zwei Klassendiagrammen

156

Klassendiagramm 1: /

t
N o
........

leiht aus

leiht aus

ist zustindig 2

Abbildung 6.5.: Korrektes Klassendiagramm

Klassendiagramm 2:

..........

benutzt

benutzt

leiht aus

leiht aus

ist zustindig

Abbildung 6.6.: Falsches Klassendiagramm

157

Aufgabe 6 - Aufgabe zur Designphase

Die Aufgabe 6 enthélt ITtems zur Uberpriifung der Kompetenzkomponente K1.3.4 Design
und deren Teilbereiche K1.3.4.8 am Beispiel des Zustandsdiagramms (K1.3.4.3.2).

K1.5.4.83 Die Lernenden sind in der Lage, relevante statische und dynami-
sche UML-Diagramme mait implementierungsspezifischen Details zu entwi-
ckeln. Hierdurch entsteht ein entwurfsspezifisches Modell, das in Quellcode

einer objektorientierten Hochsprache iiberfihrt werden kann.

K1.5.4.3.2 Zustandsdiagramm: Die Lernenden sind in der Lage, Zustandsdia-

gramme zu entwickeln.

Zu Beginn der Aufgabe findet der Proband wiederum eine Aufgabenbeschreibung (unter
Verwendung der Operatorliste) gefolgt von dem Stimulusmaterial zur Verankerung des

Kontexts der Aufgabe vor.

Aufgabe 6

Erginzen Sie ausgehend von der unten aufgefiihrten Funktionsbeschreibung eines

Festplatten-Rekorders das Zustandsdiagramm: Ergénzen Sie hierbei die fehlenden

Zustandsiiberginge.

Festplatten-Rekorder:

Das Gerét befindet sich nach dem Einschalten im Hauptmenii. Mittels der TV-Taste
gelangt man in den TV-Modus, in dem das aktuelle Fernsehbild dargestellt wird. Betatigt
man die Record-Taste, wechselt das Gerét in den Aufnahme-Modus und zeichnet das
aktuelle Fernsehprogramm auf. Betdtigt man in diesem Zustand die Stop-Taste wird die
Aufnahme beendet und das Gerét wechselt wieder in den TV-Modus. Durch Betétigung
der Pause-Taste innerhalb des TV-Modus wird der Timeshift-Modus aktiviert. Hierbei
wird die aktuelle Fernsehsendung pausiert und ab diesem Zeitpunkt aufgenommen. Durch
nochmaliges Driicken der Pause-Taste wird das Fernsehprogramm von der zuvor pausierten
Position fortgesetzt. Driickt man die Stop-Taste wechselt der Festplatten-Rekorder wieder
in den TV-Modus und spielt das TV-Programm ohne zeitlichen Versatz ab. Driickt man
innerhalb des Hauptmentis die Archiv-Taste, wechselt das Gerét in den Archiv-Modus.
Hier kann durch Betétigung der Play-Taste eine ausgewéhlte (zuvor aufgenommene)
Sendung abgespielt werden (das Gerat wechselt in den Abspielen-Modus). Mit Hilfe der
Stop-Taste gelangt man wiederum in den Archiv-Modus. Sowohl im TV- als auch im

Archiv-Modus gelangt man durch Driicken der Menii Taste ins Hauptmenii.

(...)

158

Jetzt ist der Proband aufgefordert, innerhalb der folgenden Abbildung (unvollstandiges
Zustandsdiagramm) die fehlenden Zustandsiibergénge zu erginzen, sodass die in der Be-
schreibung Festplatten-Rekorder beschriebene Programmlogik korrekt modelliert wird.
Hierbei handelt es sich wiederum um eine Aufgabe mit lebensweltnahem Stimulusmate-

rial und offenem Antwortformat.

Zustandsdiagramm des Festplatten-Rekorders:

Aufnahme-Modus
TV-Modus
Pause_Taste
@

_t7

Archiv-Taste

:ArChiv-M(’dus :

Abbildung 6.7.: Unvollstdndiges State-Chart

Aufgabe 10 - Aufgabe zur Testphase & zum iterativen Vorgehen

Die Aufgabe 10 des Kompetenzmessinstruments enthilt mit dem dargebotenen Screens-
hot eines Reisebuchungssystem ein lebensweltnahes Stimulusmaterial und umfasst sowohl
Items mit Multiple Choice Antwortformaten (Teilaufgabe 10a und 10c) als auch Items
mit offenen Antwortformaten (Teilaufgabe 10b)). Die Zielsetzung der Aufgabe 10 a) be-
steht in der Uberpriifung des von K1.8.6 Test und K1.8.7 Iteratives Vorgehen. Hierbei
werden insbesondere die Kompetenzprofile K1.3.6.1 und K1.5.7.1 fokussiert.

K1.8.6.1 Die Lernenden sind in der Lage, ein bestehendes Softwaresystem sys-
tematisch zu testen. Hierbei besteht die Zielsetzung unter anderem darin, zu
tberprifen, ob die zuvor spezifizierten funktionalen Anforderungen erfolgreich

umgesetzt wurden.

K1.8.7.1 Die Lernenden sind in der Lage zu beurteilen, ob ein erneutes Durch-

laufen einer bereits absolvierten Phase des SWE-Prozesses erforderlich ist; sie

159

konnen abhdngig von den auftretenden Problemen in der aktuellen Phase eine

sinnvolle vorherige Phase auswdhlen, die es erneut zu durchlaufen gilt.

Innerhalb der Teilaufgabe 10a) werden dem Probanden allgemeine Fragen zur Testphase
unter Verwendung von Items im Multiple Choice Format gestellt (Items i) - iv)). Hier-
bei geht es darum, allgemeine Fakten zur Testphase, deren Bedeutung im Kontext des
SWE-Prozesses und bestimmte Begriffe, wie z.B. der Robustheit abzufragen. Das Item v)
thematisiert die Testphase im sozialen Kontext. Diesbeziiglich sollen die Probanden Si-
tuationen aus Ihrer Erfahrungswelt nennen, bei denen ein sorgféltiger SW-Test von hoher
Bedeutung ist. Die Formulierung dieses Items macht wiederum deutlich, dass die Kom-
petenzdimensionen K1 und K4 eng miteinander verflochten sind. Analog zur Testphase
und dem Kompetenzprofil K1.3.6.1 hat dieses auch die Zielsetzung den Kompetenzbe-
reich K4.2 abzudecken.

160

Aufgabe 10a ‘

Entscheiden Sie, ob die folgenden Aussagen wahr sind. ja | nein
i) Im Rahmen der Testphase wird ausschlieflich iiberpriift, ob [T111]
der Auftraggeber mit dem fiir ihn entwickelten Softwaresystem
zurechtkommt.

ii) In der Testphase wird iiberpriift, ob sdmtliche funktionalen [T111]

Anforderungen aus der Anforderungsanalyse innerhalb des

Softwaresystems umgesetzt wurden.

iii) Es kann sinnvoll sein im Rahmen der Testphase einen [T111]
Riickgriff auf die bereits abgeschlossene Anforderungsdefinition

zu machen.

iv) Wenn man eine Software innerhalb der Testphase auf [T1T11

Robustheit iiberpriift, testet man wie zuverlissig das System

iiber einen lingeren Zeitraum liuft.

v) Es gibt bestimmte sicherheitskritische Bereiche, in denen Softwaresysteme
zur Unterstiitzung eingesetzt werden. Hierbei ist es von enormer Wichtigkeit,
dass die jeweilige Software auf Herz und Nieren getestet wird. Nennen Sie
mindestens zwei solcher Bereiche, in denen ein sorgfiltiger Softwaretest vor
dem Einsatz der Software auferordentlich wichtig (vielleicht sogar

lebenswichtig) ist.

Innerhalb der Teilaufgabe b) werden insbesondere die Kompetenzprofile K1.8.6.1.1 und
K1.3.6.1.8 adressiert. Implizit wird aufferdem der Kompetenzbereich K1.5.7 Iteratives

Vorgehen angesprochen.

K1.3.6.1.1 Die Lernenden sind in der Lage, zu Beginn der Testphase etnen

geeigneten Testplan zu entwickeln.

K1.8.6.1.8 Die Lernenden sind in der Lage, Testfille zu ermitteln (Extrem-
falle und unerwartete Eingabedaten erzeugen) oder zu entwickeln; sie kénnen
diese zum Test verwenden und die daraus resultierenden Ausgaben protokol-

lieren.

161

K1.53.7.1 Die Lernenden sind in der Lage zu beurteilen, ob ein erneutes Durch-
laufen einer bereits absolvierten Phase des SWE-Prozesses erforderlich ist; sie
konnen abhdngig von den auftretenden Problemen in der aktuellen Phase eine

sinnvolle vorherige Phase auswdhlen, die es erneut zu durchlaufen gilt.

Zu Beginn der Aufgabe wird der Proband innerhalb der Aufgabenbeschreibung aufge-

fordert, anhand einer Illustration einer bestehenden Webapplikation zur Reisebuchung

und einer Liste von funktionalen Anforderungen einen geeigneten Testplan zu entwickeln

und konkrete Testfille zu spezifizieren. Dem Probanden wird hier bewusst ein Riickgriff

von der Testphase auf die Anforderungsanalyse vorgegeben, indem je funktionaler Anfor-

derung ein konkreter Testfall entwickelt werden soll. Diesen gilt es in eine vorgefertigte

Tabelle einzutragen. Um diesen geforderten Aufgabenschritt deutlich zu illustrieren, wird

der entsprechende Testfall fiir die Anforderung 1 vorgegeben.

Aufgabe 10b

Entwickeln Sie anhand des unten dargestellten Screenshots einer Webapplikation zur
Reisebuchung und anhand des Ausschnitts der Anforderungsdefinition einen geeigneten

Testplan. Gehen Sie dabei folgendermafen vor:

i) Uberpriifen Sie, ob simtliche funktionalen Anforderungen an die Software umgesetzt
wurden, indem Sie fiir jede Anforderung jeweils einen Testfall entwickeln. Tragen Sie diese
Testfille in Tabelle 1 ein.

Anforderungsdefinition Reisebuchungssystem:

e Anforderung 1: Benutzer kann Pauschalreisen suchen, indem er Reiseziel,
Abflughafen, Abflugdatum, Riickflugdatum (muss mindestens zwei Tage hinter dem
Abflugdatum terminiert sein), Anzahl Erwachsener (mindestens einer), Anzahl

Kinder, Verpflegungsarten (mindestens eine) sowie einen Zimmertyp auswéhlt.

e Anforderung 2: Benutzer kann optional die Hotelkategorie (Anzahl Sterne) mit in die
Suche einbeziehen.

e Anforderung 3: Benutzer kann auch nur den Hinflug buchen. Hierbei muss keine

Eingabe in die Elemente der rechten Spalte gemacht werden.

ii) Uberpriifen Sie die Robustheit der Anwendung, indem Sie nochmals den Auszug der
Anforderungsdefinition betrachten und drei unerwartete Testfdlle entwickeln, die die

Anwendung zum Absturz bringen kdnnten. Ergénzen Sie diese Testfélle in Tabelle 2.

162

Last-Minute-SHOP-24

<> X 4} [http://www.las tminuteshop24.eu] @ D)

| Urlaub buchen\,
Last-Minute-Shop-24 I
Buchen Sie Ihre Traumreise!
Reiseziel u Anzahl Erwachsene E@
Abflughafen |Paderborn || Anzahl Kinder E@
Abflugdatum 12/08/2010] E Verpflegungsart [All Inclusive
§F Halbpension

[nur Hinflug

[ohne Verpflegung

Riickflugdatum [19/08/2010

] E Zimmertyp

O Hotelkategorie |3 Sterne _|¥]

Suchen

=
|

Abbildung 6.8.: Mockup Reisebuchungssystem

Testfall: Anforderung1 Testfall: Anforderung 2 Testfall: Anforderung 3
Reiseziel: Lanzarote Reiseziel: Reiseziel:
Abflughafen: Paderborn Abflughafen: Abflughafen:
Abflugdatum:01.08.2010 Abflugdatum: Abflugdatum:

Nur Hinflug: O Nur Hinflug: 4 Nur Hinflug: 4
Rickflugdatum:08.08.2010 Riickflugdatum: Riickflugdatum:
Anzahl Erwachsene: 2 Anzahl Erwachsene: Anzahl Erwachsene:
AnzahlKinder: 1 AnzahlKinder: AnzahlKinder:
Verpflegungsart: Verpflegungsart: Verpflegungsart:
AlQ; vPE; ovQ AlQ; vpO;ovQd AlQ; vpO;ovQd
Zimmertyp: Apartment Zimmertyp: Zimmertyp:
Hotelkategorie: O Hotelkategorie: Hotelkategorie:

Abbildung 6.9.: Testfille zur Anforderungsdefinition

163

Die Teilaufgabe ii) zielt ebenfalls auf die Spezifikation von Testfdllen ab. Hierbei soll der
Proband die Robustheit der Webanwendung testen. Analog zu Teilaufgabe i) wird ein

exemplarischer Testfall in Tabelle 2 vorgegeben.

Testfall: Fehleingabe 1 Testfall: Fehleingahe 2 Testfall: Fehleingahe 3
Reiseziel: Lanzarote Reiseziel: Reiseziel:
Abflughafen: Paderborn Abflughafen: Abflughafen:
Abflugdatum:01.08.2010 Abflugdatum: Abflugdatum:

Nur Hinflug: Q Nur Hinflug: Q Nur Hinflug: Q
Riickflugdatum:25.07.2010 Rickflugdatum: Rickflugdatum:
Anzahl Erwachsene: 2 Anzahl Erwachsene: Anzahl Erwachsene:
AnzahlKinder: 1 AnzahlKinder: AnzahlKinder:
Verpflegungsart: Verpflegungsart: Verpflegungsart:
AR vPL; ovQd AIQ; vpOQ;ov4d AIQ; vpOQ;ov4d
Zimmertyp: Apartment Zimmertyp: Zimmertyp:
Hotelkategorie:® (3 Sterne) Hotelkategorie: 1 Hotelkategorie: 1

Abbildung 6.10.: Testfille zur Robustheit

Die Teilaufgabe c¢) und die enthaltenen Items wurden mit der Zielsetzung entwickelt,
Teilaspekte des Kompetenzbereichs K1.3.6.1 und K1.8.6.1.1 anzusprechen.

K1.8.6.1 Die Lernenden sind in der Lage, ein bestehendes Softwaresystem sys-
tematisch zu testen. Hierbei besteht die Zielsetzung unter anderem darin, zu
dberprifen, ob die zuvor spezifizierten funktionalen Anforderungen erfolgreich

umgesetzt wurden.

K1.8.6.1.1 Die Lernenden sind in der Lage, zu Beginn der Testphase einen

geeigneten Testplan zu entwickeln.

164

Aufgabe 10c

i) Sie entwickeln eine Webseite fiir ein Reisebiiro und befinden sich nach Abschluss der
Implementierung in der Testphase. Um die Robustheit Ihres Softwareprodukts zu
verbessern, sollen Betatester in den Prozess mit einbezogen werden. Welche Personen

wiirden Sie in die Testphase mit einbeziehen? (Mehrfachnennungen moglich)

| Die Entwickler des Reisebuchungssystem
| Erfahrene Benutzer anderer Reisebuchungssysteme

| Benutzer, die Grundkenntnisse in der Benutzung des Internets haben

—_— — — —

| Grundschiiler, die gerade das Lesen gelernt haben

ii) Viele Betatester haben {iber Abstiirze der Webseite berichtet. Wie gehen Sie vor, um
die Eingaben in das System, die zum Absturz gefithrt haben, herauszufinden? Wie
ermitteln Sie, was der Benutzer mit seinen Eingaben (die zum Absturz gefiihrt haben)
bezwecken wollte?

Zu Beginn der Teilaufgabe ¢) wird erneut ein Stimulusmaterial in Form einer textuel-
len Darstellung des oben illustrierten Aufgabenszenarios dargeboten. Dieses beschreibt
das oben aufgefiihrte Aufgabenszenario zu einem spéteren Zeitpunkt des SWE-Prozesses,
nach Abschluss der Implementierungsphase. In Form eines Multiple Choice Aufgaben-
formats wird in Item i) abgefragt, welche Personen sinnvoll bei der Durchfithrung der
Testphase als Betatester eingesetzt werden konnten. Dies stellt einen wichtigen Bereich
der Testplanung dar und kann somit dem abgefragten Kompetenzprofil K1.3.6.1.1 zuge-
ordnet werden.

Innerhalb der Teilaufgabe ii) wird ein weiteres Stimulusmaterial angegeben. Hierbei wird
ein Fehlerszenario beschrieben, in dem die Nutzer des Reisebuchungssystems iiber Ab-
stiirze berichten. In diesem Zusammenhang wird der Proband nach seiner Vorgehensweise
gefragt, um die Fehlerursache zu reproduzieren, die zum Absturz gefiihrt haben kénnte.
Die Teilaufgabe ii) steht demnach auch reprisentativ fiir eine Aufgabe mit einleitendem
Stimulusmaterial mit lebensweltnaher Szenariobeschreibung und einem Item mit offenem

Antwortformat.

165

Zusammenfassung

Innerhalb dieses Teilkapitels bestand die Zielsetzung, den Prozess der Aufgabenentwick-
lung zu beschreiben und zu veranschaulichen. Dementsprechend wurde auf Grundlage von
Kompetenzprofilen, die im Kapitel 5.6 definiert wurden, zugehorige Items generiert und
zu Aufgaben kombiniert. Die Testentwicklung wurde in Anlehnung an objektive Testver-
fahren (Situational Judgement Tests (SJT)) entwickelt. Es wurden sowohl Erfahrungen
zur Testentwicklung bei internationalen Vergleichsstudien als auch von Testentwicklun-
gen im Bereich der Arbeits- und Organisationspsychologie mit einbezogen. Im Verlauf
des Kapitels wurden reprasentative Aufgaben vorgestellt und deren Aufbau und Entwick-
lungsprozess dargelegt. Diese Aufgaben enthalten jeweils eine Aufgabenbeschreibung, ein
lebensweltnahes Stimulusmaterial und die entsprechenden Items zur Uberpriifung der
Kompetenzbereiche des Strukturmodells.

Um das entwickelte Messinstrument zu erproben wird im folgenden Teilkapitel die Kon-
zeption eines Lehr-/Lernarrangements zur Foérderung von Modellierungskompetenzen
beschrieben. Mit dem Ziel, das Instrument im Rahmen eines Unterrichtsversuchs zur
Foérderung von Kompetenzen im Bereich des informatischen Modellierens zu erproben,
wird im folgenden Unterkapitel die theoretische und praktische Entwicklung des Lehr-

/Lernarrangements beschrieben.

6.2. Entwicklung eines Lehr/Lernarrangements zur

Erprobung des Messinstruments

Zunichst soll die fachdidaktische Grundlage erldutert werden, auf der die zu entwickeln-
de Lerneinheit basiert. Dementsprechend werden verschiedene fachdidaktische Ansétze
dargestellt. Hierbei soll angefiihrt werden, inwiefern die unterschiedlichen didaktischen
Ansitze zur Entwicklung der Unterrichtsreihe und somit zur Evaluation des Messinstru-
mentariums beigetragen haben. Der Fokus liegt hierbei auf dem Ansatz des Informatik
Lernlabors der systemorientierten Didaktik der Informatik nach Magenheim.

Im Folgenden wird die theoretische Grundlage zur Konzeption der Unterrichtsreihe fiir
die Erprobung des Kompetenzmessinstruments erortert. Hierbei werden der Ansatz der
systemorientierten Didaktik der Informatik nach Magenheimh sowie die theoretische Ein-

bettung der Unterrichtsreihe im Kontext des Informatik Lernlabors dargestellt.

166

6.2.1. Informatiksysteme in didaktischem Kontext

Die Vernetzung von Informatiksystemen und deren Wirkprinzipien werden seit Anfang
der 90er Jahre als Orientierungspunkt fiir den Informatikunterricht gefordert [Stechert
2009, S. 25]. Im weiteren Verlauf sollen verschiedene Ansétze (ohne Anspruch auf Voll-
standigkeit) fiir Informatiksysteme im didaktischen Kontext dargestellt werden. Es sollen
jeweils die Zusammenhinge und Bezugspunkte der verschiedenen didaktischen Ansétze
zur systemorientierten Didaktik, die als theoretische Grundlage der Unterrichtsreihe fun-
giert, gekniipft werden.

Hubwieser und Broy entwickeln den informationszentrierten Ansatz als moglichen Aus-
gangspunkt zur Legitimation des Informatikunterrichts an Gymnasien [Hubwieser und
Broy 1996|.

Informatiksysteme weisen nach diesem Ansatz folgende Eigenschaften auf [Hubwieser
2007, S. 44]:

e automatische Verarbeitung von Daten,
e Vernetzung,

e Interaktion mit menschlichen Benutzern.

Fiir den Einsatz und die Auseinandersetzung mit Informatiksystemen in der Schule sieht
Hubwieser die folgenden Schwerpunkte [Hubwieser 2007, S. 44]:

Zunichst betont er den Nutzen von Informatiksystemen bei der Unterstiitzung von Lern-
vorgingen jeglicher Art. Dies macht nach Hubwieser einen der wichtigsten und zeitauf-
wiandigsten Teile der oben genannten Schwerpunkte aus. Als Beispiel wird in diesem
Zusammenhang die Beschaffung von Informationen aus dem Internet oder die Verwen-
dung von Lernsoftware jeglicher Art genannt.

Als weiterer Punkt wird die Schulung von Bedienerfertigkeiten fiir konkrete Systeme
genannt. Hier werden beispielhaft Kurse zur Einfiihrung in die Handhabung eines spe-
ziellen Textverarbeitungssystems genannt, die hdufig sogar nach dem Produkt benannt
sind. Solche Schulungen vermitteln allerdings hadufig nur sehr spezielle Kenntnisse iiber
die jeweilige Software und dessen Benutzeroberfliche. Ein positiver Lerntransfer ist mit
solchem produktspezifischen Wissen kaum maglich.

Die Vermittlung allgemeiner und langlebiger Grundlagen der Informationstechnik wird
als weitere wichtige Zielsetzung fiir den Informatikunterricht angefiihrt. Diese letzte Ei-

genschaft macht die eigentliche Charakteristik des Informatikunterrichts aus.

»,Neben der Unterstiitzung von Lernprozessen oder der Bedienerschulung kon-

nen im Unterricht auch Prinzipien, Konzepte und Strategien zur Planung,

167

Konstruktion, Beschreibung und Bewertung abstrakter Informatiksysteme
thematisiert werden. Vor allem um diesen Informatikunterricht im eigentli-
chen Sinne geht es [...]. Dazu gehort auch die Behandlung von Anwendungen
informatischer Prinzipien |[...| [Hubwieser 2007, S. 48].“

Die drei genannten Schwerpunkte in der unterrichtlichen Auseinandersetzung mit Infor-
matiksystemen sind eng miteinander verzahnt. Hubwieser sieht die Verkniipfung dieser

Bereiche als wesentliche Eigenschaft eines guten Informatikunterrichts.

“Die Vermittlung grundlegender Konzepte der Informatik ist ohne die Ar-
beit am Rechner nach Hubwieser eine abschreckend abstrakte Veranstaltung.
Dies ist aus seiner Sicht zur Veranschaulichung der Lerninhalte und zur Mo-
tivierung der Lernenden absolut unerldsslich. Im Umkehrschluss setzt das
wiederum einige Fertigkeiten in der Bedienung von Hard- und Software vor-
aus, so dass man auch hier nicht ohne ein gewisses Mafs an Bedienerschulung
auskommt [Hubwieser 2007, S. 48].“

Hubwieser sieht folgende methodische Prinzipien bei der Gestaltung einer Unterrichts-
reihe fiir den Informatikunterricht [Hubwieser 2007, S. 68]:

1. Problemorientierung
Unterrichtsinhalte sollten anhand eines Problems aus der Erfahrungswelt der Schii-
ler behandelt werden. Eine strikte Problemorientierung kann den Informatikunter-
richt davor bewahren, dass dieser den Charakter einer Produktschulung oder eines

Programmierkurses hat.

2. Modellbildung und Simulation
Die Modellbildung und die Simulation sollen als durchgingiges Prinzip in die Pla-

nung des Informatikunterrichts mit einflieften.

y,Unser Informatikunterricht beschéftigt sich nicht nur mit Modellbildung
und Simulation, unser Unterricht besteht im Wesentlichen aus Modell-
bildung und Simulation, [...| [Hubwieser 2007, S. 691f].“

Wie zuvor beschrieben sieht Hubwieser analog zum systemorientierten Ansatz nach Ma-
genheim die Modellierung als ein wichtiges Prinzip des Informatikunterrichts. Dariiber
hinaus konnen anhand des informationszentrierten Ansatzes Hinweise zur Gestaltung der
Unterrichtsreihe abgeleitet werden. Diese sind zum einen die Problemorientierung, die es
bei der Unterrichtsreihe zu bewerkstelligen gilt und zum anderen, dass die Modellierung

und Simulation als Unterrichtsprinzip eine hohe Beriicksichtigung finden sollte.

168

Beherrschung
grundlegender Konzepte

/ Veranschaulichung,
Relevanz Motivierung

Uberblick,

! Hintergrund,
Beurteilung Abstraktion
. __Relevanz, >
Einsatz als Beispiele Schulung von
Medium oder als Lernhilfe Bedienerfertigkeiten

<—\Voraussetzung

Abbildung 6.11.: Verflechtung von Unterrichtshilfen, Bedienerschulung und Vermittlung
grundlegender Konzepte [Hubwieser 2007, S. 49|

Beziiglich der Unterrichtsreihe zur Evaluation des Messinstruments soll zur Problemori-
entierung der Unterrichtsreihe das Fallbeispiel Kommissionierstation verwendet werden,
welches im weiteren Verlauf des Kapitels ausfiihrlicher dargestellt wird. Ferner erhalten
die Schiiler die Gelegenheit die eigens entwickelten Modelle in Form von LEGO Mind-
storms Robotern zu simulieren.

Schubert und Stechert charakterisieren Informatiksysteme durch mégliche Perspektiven
auf ein solches System. Auf Grundlage von Erkenntnissen einer Expertengruppe der Asso-
ciation for Computing Machinery (ACM) zur Erstellung von Curricula fiir die Hochschul-
informatik, werden sieben Kategorien der Informatik abgeleitet [Denning 2003]. Schubert
und Stechert sehen ausgehend von diesen Kategorien unterschiedliche Sichten auf ein In-
formatiksystem als relevant an, die Lernende auf den Lerngegenstand Informatiksystem
einnehmen koénnen. Die Kategorien der Informatik nach Denning lassen sich sinnvoll mit
dem Sichtenkonzept kombinieren [Stechert 2009, S. 29].

e computation
Bedeutung von Berechnungen und Fragen der Berechenbarkeit:
Automaten, formale Sprachen, Turingmaschinen, Universalitit, komplexitidtstheo-
retische Fragestellungen, Ubersetzung, die technisch-physikalische Realisierung von

Informatiksystemen

e communication
Zuverlassige Dateniibertragung: Informatiksystem als Medium, speziell als Nach-

richtensystem im Shannon’schen Sinne eines Kanalmodells mit Kodierung, Kanal-

169

kapazitdt, Rauschunterdriickung, Datenkompression, Kryptographie, rekonfigurier-

barer Paketvermittlung und Ende-zu-Ende Fehlerbehandlung

e coordination
Kooperation zwischen vernetzten Entitdten: zwischen Menschen deren Arbeitsab-
ldufe durch Informatiksysteme unterstiitzt werden (Workflows), Eingabe- und Aus-
gabeverhalten der Informatiksysteme sowie Antwortzeit. Synchronisation zwischen
Informatiksystemen mit Race-conditions und Deadlocks, Serialisierbarkeit und ato-

maren Aktionen

e automation
Fragen zu Grenzen der Simulation kognitiver Prozesse: philosophische Betrachtun-
gen zur Automatisierung, zu Expertise und Expertensystemen, Verbesserung von
(kiinstlicher) Intelligenz, Turingtest, Bedeutung des Maschinenlernens mittels evo-

lutionédrer Algorithmen, Bionik

e recollection
Speicherhierarchien, Lokalitit von Referenzen, Caching, Adressbereich und Ab-
bildung, Namenskonventionen, Suche sowie Retrievaltechniken durch Name oder
Inhalt

e evaluation
Leistungsvoraussagen und Kapazitatsplanung: Sattigung und Flaschenhélse in Net-

zen

e design
Entwicklung qualitativ hochwertiger Informatiksysteme: Ebenenmodell des Rech-
ners, Schichtenarchitektur des Internets, Modularisierung, Geheimnisprinzip und
Abstraktion

Diese Sichten auf ein Informatiksystem sollen lernférderlich miteinander kombiniert wer-
den. Als Grundlage zur Verkniipfung der verschiedenen Sichten werden die folgenden drei
Charakteristika in Anlehnung an Claus und Schwill vorgeschlagen [Claus und Schwill
2006].

1. nach auften sichtbares Verhalten
2. innere Struktur

3. Entwicklung einer konkreten Realisierung

170

Da sich die Sichten auf ein Informatiksystem stark {iberschneiden, ist es sinnvoll eine
Biindelung der Lerninhalte und Fragestellungen zu den oben genannten Kategorien an-
hand dieser Charakteristika vorzunehmen.

Bei der Behandlung von Informatiksystemen (z.B. bei der Modellierung eines Softwa-
reprojekts) ist es sinnvoll, den Gegenstandsbereich aus unterschiedlichen Perspektiven
zu betrachten. Dementsprechend fordert Schubert in Ubereinstimmung mit Brinda, dass
der zu explorierende Lerngegenstand in unterschiedlichen, interaktiv erfahrbaren und
synchronisierten Sichten darzustellen ist [Brinda 2004, S. 52].

Diese Forderung stellt einen besonderen Verkniipfungspunkt zwischen dem Siegener und
dem Paderborner Ansatz dar. Wie im weiteren Verlauf der Arbeit genauer erldutert
wird, sieht das Konzept des Informatik Lernlabors auch einen expliziten Perspektivwech-
sel durch unterschiedliche mediale Représentationsformen eines Informatiksystems vor.
Beispielsweise kann ein Warenwirtschaftssystem eines Kiosks real, auf Modellebene oder
auf Quellcodeebene medial repriasentiert werden. Hierbei macht es durchaus Sinn wah-
rend der einzelnen SWE-Phasen unterschiedliche und sich wechselnde Perspektiven auf
ein Informatiksystem einzunehmen. Diese medialen Reprasentationsformen konnen auch
als unterschiedliche Sichten auf ein Informatiksystem interpretiert werden.
Ausgangspunkt der systemorientierten Didaktik nach Magenheim ist ein divergentes Ver-
stdndnis von Informatiksystemen und deren Bedeutung fiir den Informatikunterricht. Um
den Unterschied deutlich zu machen, betrachten wir die Definition des Begriffes Infor-

matiksystem nach Riideger Baumann.

y,unter einem Informatiksystem versteht man ein verteiltes, heterogenes, tech-
nisches System, das Wissen unterschiedlichster Art und Herkunft repréisen-
tiert, diese Wissensreprisentation in Gestalt von Daten und Programmen
verarbeitet und den Benutzern in geeigneter Form zur Verfiigung stellt [Bau-
mann 1996, S. 164].“

Nach Magenheim beinhaltet dieses Verstdndnis von einem Informatiksystem einen zu
starken Fokus auf das Produkt Software und dessen formale Dimension. Es ergibt sich
somit eine zu theoretische Zugangsweise zu Informatiksystemen und deren Behandlung
im Informatikunterricht. Inhaltlich zentrale Bestandteile eines solchen Unterrichts sind
somit vorrangig Datenstrukturen und Algorithmen sowie Kommunikationsprotokolle und
sukzessives Erlernen einer bestimmten Sprachsyntax.

Nach Magenheim vernachléssigt ein solcher Ansatz den Entwicklungsgang sowie die An-
wendung von Software und die damit einhergehende soziale Interaktion mit Informatik-

systemen. Eine von den Lehrplénen stets verlangte Behandlung von gesellschaftlichen

171

Auswirkungen von Informatiksystemen im Unterricht, kann infolgedessen nur in sehr ge-
ringem Umfang durchgefiihrt werden. Baumanns Ansatz bewirkt somit eine inhaltliche
Benachteiligung dieses essentiellen Bestandteils des Informatikunterrichts.

Der Ansatz der systemorientierten Didaktik der Informatik setzt andere Mafistdbe beziig-
lich inhaltlicher und methodischer Gestaltung von Informatikunterricht. Ausgangspunkt
des Unterrichts ist hierbei die Modellierung von Software und Softwaresystemen aus sozio-
technischer Perspektive. Das Handlungssystem und die Dynamik zwischen Mensch und
Maschine stehen demzufolge im Vordergrund. Formale Operationen und informatische
Prinzipien werden im Gegensatz zu anderen didaktischen Ansétzen als Bestandteile des
SWLE-Prozesses verstanden. In direkter Beziehung dazu stehen Fragestellungen beziig-
lich der Anwendung und den Auswirkungen von Informatiksystemen. Gesellschaftliche
Auswirkungen werden in diesem theoretischen Ansatz nicht mehr in Form von unterricht-
lichen Abstechern behandelt, sondern als Ausgangspunkt fiir Design- und Entwurfsent-
scheidungen im Softwareentwurf. Es soll dem Lernenden somit deutlich gemacht werden,
dass der Erwerb von sozialen Handlungs- und Kommunikationskompetenzen von funda-
mentaler Bedeutung fiir die Entwicklung von Software ist.

Magenheims Ansatz hat somit die Intention, dass Modellierung und Systemgestaltung
als zentraler Bezugspunkt fiir Anwendungsfragen und Fragestellungen der Auswirkung
von Informatiksystemen angesehen werden und somit den inhaltlichen Schwerpunkt von
Informatikunterricht ausmachen.

Innerhalb der systemorientierten Didaktik der Informatik Paderborn wurde in mehre-
ren Lehrveranstaltungen mit unterrichtspraktischem Bezug die Erfahrung gemacht, dass
die Verwendung von iiberwiegend selbstgesteuerten und konstruktivistisch orientierten
Lehr-/Lernarrangements [Cognition and Technology Group at Vanderbilt 1994], [Collins
1989, [Spiro und Feltovich 1992| Modellierungskompetenz wirkungsvoller férdern als sol-
che Arrangements, bei denen rezeptiv vermittelnde Instruktionsstrategien zum Einsatz
kommen. Auf dieser Grundlage wurde innerhalb des Informatik Lernlabors [Magenheim
2003a] die Lernumgebung Kommissionierstation entwickelt. Diese wurde fiir das Projekt
MoKoM weiterentwickelt und didaktisch aufbereitet. Die Besonderheit dieser Lernum-
gebung besteht darin, dass die Schiiler zunéchst eine Explorationsphase durchlaufen,
in der sie mit einem bestehenden komplexen Informatiksystem (Kommissionierstation)
konfrontiert werden (in diesem Zusammenhang werden Systemanwendung und System-
verstindnis gefordert). Anschliefend gilt es, das Informatiksystem im Rahmen einer Re-
Engineering-Phase zu dekonstruieren, zu analysieren und weiterzuentwickeln. In diesem
Beispiel hat es sich als hilfreich erwiesen, dass sich die Schiiler zun#chst anhand der

Entwurfsmuster Model- View-Controller und des Observer-Patterns die Systemfunktio-

172

nalitdt des LEGO Mindstorms Modells erschlieken, um in einem néchsten Schritt die
jeweiligen UML-Diagrammtypen und den Quellcode des Systems in strukturierter Form
analysieren zu konnen. Um dieses lernerzentrierte explorative Vorgehen zu unterstiitzen,
enthilt die Lernumgebung Kommissionierstation spezifische Medien, die das Informatik-
system in Form von Learning Objects [Standards 2001] mit unterschiedlichen medialen
Codierungsarten und Abstraktionsebenen représentieren [Tulodziecki und Herzig 2002],
[Magenheim und Scheel 2004]. Diese Kategorisierung bot Hilfestellung bei der Auswahl
von Lernobjekten, die im Rahmen der Unterrichtsreihe zum Einsatz kamen. Mit Hilfe der
bereitgestellten medialen Reprisentationen der Lernumgebung wurden lernerzentrierte,
explorative Lernprozesse zum Modellieren von Informatiksystemen ermdglicht. Hierbei
bestand die Zielsetzung, etablierte Vorgehensmodelle des Softwareentwurfs zu vermitteln
und mit Hilfe eines Beispiels aus der Lebenswelt der Schiiler die Anwendung, den Transfer
und die Bewertung von relevanten Modellierungstechniken zu vermitteln. Da neben der
Forderung von kognitiven Fahigkeiten und Fertigkeiten zur informatischen Modellierung
auch die Kooperation der Schiiler sowie deren Kommunikation untereinander angeregt
wurden, bot sich die Gelegenheit, die Messinstrumente im Rahmen dieser Lernumge-
bung (April bis Juni 2010) in einem Grundkurs der Jgst. 12 am Paderborner Pelizaeus
Gymnasium einzusetzen. Auf Grundlage dieser Unterrichtsreihe konnte das entwickelte
Teilingtrument fiir informatische Modellierungskompetenz und nicht-kognitive Kompe-

tenzen erprobt werden.

Dekonstruktion als Konzept der systemorientierten Didaktik

Vom Standpunkt der systemorientierten Didaktik, kann Software als Text zur Beschrei-
bung und Steuerung maschineller Betriebsamkeit und Interaktion zwischen Mensch und
Maschine verstanden werden. Diese Repréasentationsform beinhaltet Entwurfs- und De-
signentscheidungen des Entwicklers.

In diesem Kontext versteht man den Begriff Dekonstruktion als eine interpretierende
Anngherung an Software. Hierbei soll eine Sensibilisierung fiir Gestaltungsmaglichkeiten
von Software und zudem eine erhéhte Aufmerksamkeit im Hinblick auf die Phasen der
Softwareentwicklung geschaffen werden. Dekonstruktion versteht sich demzufolge nicht
nur als Lesen von Software um die Syntax einer Programmiersprache zu erlernen, sondern
als Vorgehensweise um Annahmen iiber Modell-, Entwurfs- und Designentscheidungen
einer Softwareentwicklung zu erlangen. Die somit gewonnenen Annahmen sind allerdings
nur hypothetischer Ausprigung und konnen nicht eindeutig belegt werden [Magenheim
2000].

Die Softwareentwicklung wird bei dem Vorgang der Dekonstruktion als Entscheidungs-

173

prozess angesehen, der von den Rahmenbedingungen abhéingt unter denen die Software
entstanden ist. Zu diesen Bedingungen zdhlen insbesondere die Interessen und Wiinsche
des Auftraggebers, die unterschiedliche gesellschaftliche Folgen nach sich ziehen kénnen.
Die Unterstreichung dieser Zusammenhénge sollte im Sinne des systemorientierten An-
satzes von fundamentaler Bedeutung fiir den Informatikunterricht sein.

Dekonstruktion kann zudem Einsicht in vielschichtige Betrachtungsweisen und Abstrakti-
onsebenen eines Informatiksystems geben. Sie verschafft Einblicke in die Benutzeroberfli-
che und die dort vorhandenen interaktiven grafischen Komponenten, als Reprisentanten
fiir Softwarefunktionalitét.

Der Assemblercode ist eine weitere Abstraktionsebene des Informatiksystems. Er kann als
Verbindung zur Hardwarearchitektur eines Rechners gesehen werden. Informatiksysteme
erscheinen in dieser Betrachtungsweise als zeichenverarbeitende Maschinen, die Daten
und Programme in Form von Zeichenketten verarbeiten. In diesem Zusammenhang ver-
steht sich die Turingmaschine als theoretischer Kern des Informatiksystems, die formale,
in Zeichenketten codierte Regeln befolgt [Magenheim 2000].

Die Dekonstruktion auf dieser Abstraktionsebene durchdringt nach Magenheim grundle-
gende Fragestellungen der theoretischen Informatik wie Berechenbarkeit, formale Spra-

chen und Grundelemente der Komplexitétstheorie [Magenheim 2000].

Dekonstruktion als Unterrichtsmethode im Informatikunterricht

Haufig stellt sich Informatikunterricht als monotoner Programmierkurs einer vorher fest-
gelegten Programmiersprache dar. Die Aufgabenstellungen haben zumeist einen geringfii-
gigen Grad an Komplexitit und beziehen sich vorwiegend auf fundamentale Algorithmen.
Der Bezug zur Mathematik ist hierbei charakteristisch.

Nach Magenheim ergeben sich in diesem Zusammenhang Defizite beim Einiiben und
Erlernen von Problemldsungsstrategien. Hierzu gehort die Fahigkeit, Probleme in Teil-

probleme aufzuteilen und ein analytisches Abstraktionsdenken zu entwickeln.

,Der fiir ein Unterrichtsfach an allgemein bildenden Schulen iibliche Anspruch
auf Vermittlung von Allgemeinbildung ist somit kaum zu leisten [Hampel et
al. 1999, S. 1]

Da die — in sich dynamische — Bezugswissenschaft des Informatikunterrichts eine stindige
Weiterentwicklung erfihrt, ist ein solches Unterrichtskonzept fiir einen wissenschaftspro-
padeutischen oder allgemein bildenden Unterricht nur bedingt einsatzfihig.

Der Ausgangspunkt der systemorientierten Didaktik hingegen, ist die Modellierung und

Analyse von Informatiksystemen mittels Dekonstruktion von objektorientiertem Jawva-

174

Code. Dieser ist von hinreichender und dennoch unter didaktischen Gesichtspunkten re-
duzierter Komplexitét.

Operationen, die die Dekonstruktion in diesem Zusammenhang charakterisieren, sind die
Erkundung der Funktionalitdt des Informatiksystems und die Herleitung des Modells
des Problembereichs. Dariiber hinaus ist der Vergleich des Informatiksystems zum realen
System fiir die Dekonstruktion kennzeichnend.

Auf diese Weise werden am Beispiel des Informatiksystems objektorientierte Verfahren
erprobt und im Verlauf der Dekonstruktion auch einzelne Klassen und Objekte der Soft-
ware analysiert. Die Wechselwirkung von Datenstrukturen, Methoden und Ereignissen
wird somit erkennbar und zusdtzlich deren Codierung in Java sukzessive erschlossen.
Die zuvor beschriebenen Teilziele kénnen nach Magenheim insofern erreicht werden, als
dass zu jedem Dekonstruktionsschritt Beispiele und Ubungsaufgaben prisentiert und
durchgefiihrt werden. Dies bewirkt zudem eine verbesserte Auffassungsgabe durch Trans-
fer in einen anderen Wahrnehmungszusammenhang. Weiterhin wird eine verbesserte Ein-
sicht in objektorientierte Sichtweisen und Modellbildung gewihrleistet. Im weiteren Ver-
lauf der Dekonstruktion sollten die Lernenden zudem einzelne Zusatzmodule entwickeln
und in geeigneter Form in die Software integrieren.

Die Hauptzielsetzung der Dekonstruktion im Sinne der systemorientierten Didaktik be-
steht in den Kompetenzen, kleine Softwareprojekte zu modellieren und nach objekt-
orientierten Paradigmen selbst zu entwickeln. Von essentieller Bedeutung ist ferner die
Fahigkeit, dass sich die Lernenden iiber das reale sozio-technische Informatiksystem und

den damit interagierenden Menschen bewusst werden |Hampel et al. 1999].

6.2.2. Theoretische Konzeption des Informatik Lernlabors
Das Informatik Lernlabor aus didaktisch-methodischer Perspektive

Der Entwurf und die Umsetzung des Informatik Lernlabors stellen den Versuch dar, die
zuvor beschriebenen unterrichtsmethodischen Konzepte unter wissenschaftlicher Beglei-
tung in die Praxis umzusetzen [Magenheim 2003a].

In der herkémmlichen informatischen Bildung kommen Tools, wie Editoren, Debugger
und Compiler zum Einsatz. Die Durchfiihrung des Informatik Lernlabors erfordert zu-
dem weitere interaktive computerbasierte Medien. Im Technisch-organisatorischem Sinne
lassen sich diese in Anlehnung an Keils Ansatz zu primdren, sekunddren und tertidren
Medienfunktionen folgendermafen unterscheiden [Keil-Slawik 2002] [Magenheim 2003b,
S. 36]:

o Cognitive Tools

175

Diese ermoglichen die interaktive Gestaltung und Strukturierung von Dokumenten,
Software und computerbasierten Medien. Sie stellen zudem Prozesse der Bearbei-

tung, Sicherung und Ubertragung sicher.

o Lernsoftware
Diese stellt dem Nutzer zusatzlich zur Inhaltsprisentation eine lerntheoretisch moti-
vierte Schnittstelle zur Interaktion mit dem Informatiksystem zur Verfiigung. Folg-

lich bildet das Medium Lernsoftware Formen der Mediennutzung in sich ab.

o Agents
Sie reprisentieren einen Medientyp, der Lernende und Nutzungsverhalten analy-
siert und sich infolgedessen dem Nutzer und seinen individuellen Bediirfnissen an-
passt. Agents besitzen somit eine regelbasierte oder algorithmische Lernfihigkeit
und werden auch als intelligente tutorielle Systeme bezeichnet. Sie spielen in didak-
tischem Kontext eine untergeordnete Rolle und sind auch bisher in der Konzeption

des Informatik Lernlabors nicht zu finden.

Die Medientypen Cognitive-Tools und Lernsoftware sind dagegen wesentliche Bestandtei-
le des Informatik Lernlabors. Cognitive Tools kommen in Form von grafischen Debuggern
und integrierten Entwicklungsumgebungen zum Einsatz. Weiterhin finden sie als grafische
Editoren Anwendung, die beispielsweise die interaktive Entwicklung von Java-Quellcode
unterstiitzen. Die einzelnen Phasen der Systemmodellierung kénnen infolgedessen inter-
aktiv am Computer gestaltet und der Lerngruppe vorgestellt werden. Weiterhin ist eine
Modifikation oder Revidierung nach Gruppendiskussionen unter geringem Aufwand mog-
lich.

Der Einsatz von Lernsoftware findet in Form von sog. Lernobjekten (learning objects)
statt [Standards 2001]. Diese stellen in sich abgeschlossene, multimediale Lerneinheiten
dar, die sich dem Nutzer auf interaktive Weise medial prisentieren. Lernobjekte beschrin-
ken sich auf eine begrenzte Anzahl von zu realisierenden Lernzielen und bieten Nutzern
die Moglichkeit, den Gegenstandsbereich explorativ zu erkunden.

Die Integration von Lernobjekten in das Informatik Lernlabor geschieht durch Kombi-
nation von Phasen des Prisenzlernens und Phasen des computerbasierten E-Learning.
Diese sich abwechselnden Lernformen werden auch als Blendet Learning bezeichnet.
Lernobjekte sollen im Informatik Lernlabor mdglichst interaktiv und fiir kollaboratives
Arbeiten zugéinglich angeboten werden. Diese Aufgabe kann beispielsweise von Lernplatt-
formen und spezieller Groupware mit spezifischen E-Learning Funktionen iibernommen
werden. In diesem Zusammenhang konnen den Lernenden Videosequenzen von realen

Arbeitsabldufen in Informatiksystemen offeriert werden. Zusétzlich sind Lehrende in der

176

Lage, Interviews mit Nutzern und Auftraggebern, Entwicklungsgespréche iiber Entwurfs-
entscheidungen und Animationen zu Arbeitsabldufen und Informationsfliissen (webba-
siert) zur Verfligung zu stellen.

Das interaktive Medium Lernsoftware ermdglicht somit vielschichtige Sichten auf das
Produkt Software und den SWE-Prozess. Diesbeziiglich kann ein Anwendungs- und Rea-
litdtsbezug der Lernenden sichergestellt werden und eine Forderung von vernetztem Wis-
sen seitens der Nutzer des Informatik Lernlabors stattfinden.

Die Arbeitsformen des Informatik Lernlabors lassen sich in zwei wesentliche Phasen un-
terteilen [Magenheim 2003a, S. 74]:

Dekonstruktionsphase

o Ezploration
Die Lernenden sollen hierbei mittels der oben angesprochenen interaktiven Me-
dien den Gegenstandsbereich erkunden und folglich ein erhdéhtes Verstindnis des
Informatiksystems erlangen. Die Durchfiihrung der Explorationsphase kann sowohl

arbeitsteilig als auch in Gruppenarbeit erfolgen.

o Re-engineering
In dieser Phase werden die Lernenden angewiesen, das vorhandene Informatik-
system zu verdndern und zusétzlich neue Module zu entwickeln und einzubetten.
Diesbeziiglich sollen Designentwiirfe verglichen und hinsichtlich ihrer technischen
Funktionalitit bewertet werden. Zusétzlich kénnen in dieser Dekonstruktionsphase
auch mogliche soziale Folgen diskutiert und erértert werden. Die Zielsetzung dieser

Phase ist es, eine fundierte Wissensbasis seitens der Lernenden zu schaffen.
Konstruktionsphase

o Transfer
In der Transferphase werden die Lernenden aufgefordert, einen komplexen Auftrag
zur Entwicklung eines Informatiksystems arbeitsteilig zu realisieren. Erforderlich
hierfiir ist der Transfer des bei der Dekonstruktionsphase erworbenen Wissens auf

die neue Anforderungssituation.

o Softwareentwicklung
Dieser zeitlich umfassende Abschnitt der Softwarekonstruktion beinhaltet die fiir
den Softwareentwurf iiblichen Teilphasen, wie Anforderungsdefinition, Spezifikati-
on, Entwurf und Implementierung. Die Softwareentwicklungsphasen kdnnen mit
Hilfe handlungsorientierter Modellierungskonzepte wie CRC Karten oder dem Ob-

ject Game gestaltet werden.

177

e Fualuation
Diese abschlieffende Phase der Konstruktion beinhaltet eine Bewertung hinsichtlich
der erreichten Lernziele seitens der Schiiler. Weiterhin kénnen die Lernenden die
Qualitdt des erstellten Produkts anhand der zuvor formulierten Anforderungsde-
finition einschétzen. Die Evaluation von erbrachten Eigenleistungen schafft somit
einen qualitativen Fortschritt beziiglich der stattfindenden Lernprozesse seitens der
Schiiler.

Inhaltsmodule des Informatik Lernlabors

Das Informatik Lernlabor verfiigt zurzeit iber drei technisch ausgereifte Inhaltsmodule,
die derzeit in Schul- und Hochschullehre ihren Einsatz finden. Das Modul Onlineredaktion
und die von mir entwickelte Software zur visuellen Programmierung sollen ebenfalls im
Informatik Lernlabor eingesetzt werden. Die bisherigen Inhaltsmodule strukturieren sich

folgendermafsen:

e Das Modul Hochregallager hat die Steuerung von Transport- und Lage-

rungsprozessen in einem Hochregallager zu Gegenstand. |...]

e Im Modul Schulkiosk werden elementarste Konzepte eines Warenwirt-
schaftssystems thematisiert. Die zu dekonstruierende Software bezieht

sich auf die Ein- und Verkaufsvorgénge eines Schulkiosks. |...]

e Das Computerspiel Ursuppe bildet den Ausgangspunkt fiir das Mo-
dul Computerspiel. Die zugehorige Software ist in der Lage, nach ent-
sprechenden Benutzereingaben die Spielverwaltung zu iibernehmen und

Spielsténde grafisch anzuzeigen. |...|

e Im Modul Onlineredaktion sollen vor allem webbasierte Transaktionen,
die Gestaltung von interaktiven Webseiten und die Speicherung von de-

ren Inhalten in einer Datenbank thematisiert werden.

6.2.3. Fallbeispiel Kommissionierstation in der Hochschullehre

Die Unterrichtsreihe zur Evaluation des Kompetenzmessinstruments fiir informatisches
Modellieren basiert auf dem LEGO Mindstorms System. Dieses setzt sich aus unter-
schiedlichen LEGO-Komponenten zusammen. Zum Bau eines LEGO Mindstorms Sys-
tems nutzt man vorwiegend die handelsiiblichen LEGO-Steine sowie Bauteile aus dem
Bereich LEGO-Technik. Dariiber hinaus kommen auch Motoren, Sensoren und Steuerein-

heiten (NX7T's) zum Einsatz. Diese Steuereinheiten lassen sich beliebig konfigurieren und

178

programmieren. Dementsprechend hat man die Md&glichkeit, Motoren und andere Peri-
pheriegerite beliebig auszulesen und anzusteuern. Die NXT-Bausteine unterstiitzen zu-
sdtzlich die Kommunikation untereinander via Bluetooth. Somit lassen sich unterschied-
liche NXT-Systeme zu einem komplexen System kombinieren und unterschiedliche reale
Prozesse (z.B.: Hochregallager, Kommissionierstationen, etc.) simulieren.

Wie oben beschrieben besteht im Rahmen der Vorlesung Informatik Lernlabor die Ziel-
setzung, die theoretischen Ansitze der systemorientierten Didaktik der Informatik nach
Magenheim unter wissenschaftlicher Begleitung praktisch zu erproben. Innerhalb der
Vorlesung ILL ’08 bestand die Aufgabe ein Fallbeispiel Kommissionierstation zu imple-

mentieren. Hierbei wurde den Studierenden die folgende Zielsetzung mitgeteilt:

Zielsetzung

Die Aufgabe besteht darin, mit Hilfe des LEGO Mindstorms Systems eine Kommissioni-
erstation zu konstruieren. Dies umfasst die technische und software-technische Konstruk-
tion, Verarbeitung und Abarbeitung von Auftrigen. Bei der Realisierung wurde grofsen
Wert darauf gelegt, dass eine realitdtsnahe Abbildung einer Kommissionierstation ent-
steht. Hierfiir wurden Videoaufzeichnungen und bereits bestehende Systeme betrachtet

und als Vorlage verwendet.

Anforderungen

Eine Kommissionierungsstrafie besteht aus mehreren Kommissionierungsstationen, die
durch ein Palettenband bedient werden. Auf einem Palettenband sollen sich verschiedene
Paletten bewegen, die Auftrige entgegennehmen. Umgesetzt werden soll jedoch nur eine
Kommissionierungsstation. Im Folgenden seien die Anforderungen fiir die Bestandteile

der Kommissionierungsstraffe aufgefiihrt:

o Palettenband
Das Palettenband soll Paletten zu einer Kommissionierungsstation transportieren

kénnen.

— Palette
Eine Palette soll einen Code, der aus verschiedenfarbigen LEGO-Steinen be-
steht, enthalten. Eine Palette beinhaltet einen Auftrag.

e Kommissionierungsstation
Eine Kommissionierungsstation ist Bestandteil einer Kommissionierungsstrafie. Die-

se soll ein Forderband sowie drei Kommisionierungstiirme enthalten.

179

— Forderband
Eine Kommissionierungsstation soll ein Forderband enthalten, welches die
zu verwaltenden Steine aus dem Kommissionterungstirmen, zu der Palette
beférdert.

— Kommissionierungsturm
Ein Kommissionierungsturm ist Bestandteil der Kommissionierungsstation.
Dieser enthélt die zu verwaltenden LEGO-Steine einer bestimmten Kategorie.
Eine Kommissionierungsstation soll drei Kommissionierungstirme enthalten,

welche jeweils griine, rote und graue Steine lagern.

— Farbsensor
Mit Hilfe des Farbsensors soll ein Farbcode, der sich auf der Palette befindet,

ausgelesen werden.

o Auftrag
Ein Auftrag soll die jeweilige Anzahl von griinen, roten und grauen LEGO-Steinen

beinhalten.
Dekonstruktionsphase

e FEzploration
Anhand von Videomaterialien und eines bestehenden LEGO Mindstorms Modells
waren die Studierenden angehalten, den Gegenstandsbereich des Hochregallagers

zu erkunden und dessen Funktionsweise zu verstehen.

o Re-engineering
Innerhalb der Re-Engineering-Phase erhielten die Studierenden den Auftrag ein
weiteres Hochregal mit entsprechendem Lift zur Ein- und Auslagerung von Pa-
letten in das Hochregallager zu integrieren. Hierzu waren sie aufgefordert, sich in
den bestehenden Quellcode des Systems einzuarbeiten und sowohl die technische
als auch die software-technische Umsetzung vorzunehmen. Hierdurch sollte eine

fundierte Wissensbasgis seitens der Studierenden aufgebaut werden.
Konstruktionsphase

o Transfer
In der Transferphase werden die Lernenden aufgefordert, einen komplexen Auftrag
zur Entwicklung eines Informatiksystems arbeitsteilig zu realisieren. Erforderlich
hierfiir ist der Transfer des bei der Dekonstruktionsphase erworbenen Wissens auf

die neue Anforderungssituation.

180

o Softwareentwicklung
Die Zielsetzung der Phase bestand in der Konstruktion einer Kommissioniersta-
tion. Innerhalb dieser umfangreichen Softwareentwicklungsphase wurden alle fiir
den Softwareentwurf {iblichen Teilphasen durchlaufen. Dementsprechend haben die
Studierenden — wie oben beschrieben — die Anforderungen an die Kommissitonier-
station aufgenommen, die Analyse- und Designphasen durchlaufen und deren Im-
plementierung vorgenommen. Wéhrend jener Softwareentwicklungsphasen kamen
handlungsorientierte Modellierungskonzepte wie CRC Karten, Klassendiagramme

oder das Object Game zum Eingatz.

o Fvaluation
Die abschliefsende Evaluationsphase beinhaltet eine Bewertung in Bezug auf erreich-
te Lernziele der Studierenden. Weiterhin ist hierbei die Qualitdt des entwickelten

Produkts anhand der zuvor formulierten Anforderungen bewertet worden.

181

BTListener
{ From util}

<edlatatype>>
Thread

Attributes
private String WAITING = "waiting. "
private boslean running

Onerations.
public BTListener()

public vaid rung)

public beolzan isRunning()
public void stop()

public void acceptiNewConnection(BTConnection bic)

KommisStrCtrl

Attibutes.
package BTConnection kommissionierTurmBTConnection

public KommisStretr()

public void run()
public void_main(String args[0.”]).

public void setikkommissionierTurmBTConnection(BTCennection bic)

<<interface>>

Lagerverwaltung
{From kommissionferung

Attributes

Operations
public Aufirag erzeugeAutrag(inti)

Lagertabelle
{ From kommissionierung }

Attibutes

Gperations
public Lagertabelle()

erations Redefined From Lagervenvaltun;

public Auftrag erzeugeAuftrag(inti)

0 Auftragsliste

\ Asributes

KommissionierungsStation
{From kommissionierung }

public KommissionierungsStation(SensorPort s, Motor m)
public void starteErkennung()

public int getGode()

public void starteF oerderBand()

public void stoppeFoerderBand()

KommisTurmCtrl

Atdbutes
package BTConnection kommissionierStrasssBTConnection

Operations
public KommisTurmGtri()
public void kommissioniereAufirag(Aufirag auftrag)
public void run()
public void main(String args(0.*])
public Thread getThread()
public void setThread(Thread val)

Kommissionierungs Turm
{ From kemmissionierung }

Astibutes,
private Motor motor

private int aktuellerAuftrag

Auftrag
{ From kommissionierung }

Band
{From kommissionizrung }

CodeReader
{ From kommissionierung }

Atvibutes
private intgruen

private introt
private int grau

Atibutes
private Motor motor

private boolean vorwaerts

Ietibutes
package int COLORY = 0

package int COLOR?2 = 2
package int COLOR3 = 8

public Auftrag(\MC;:J:::TI‘I‘(rot, int grau)
public int getGrusn()

public int getRot()

publicint getGrau()

Operations
public Band(Motor m, int speed, boolean vorwaerts)
public void starteBand()
public void stoppeBand()

package int COLOR4 = 11
package intINITCOLOR = COLOR1
package it NO_COLORS = 4

Abbildung 6.12.: Klassendiagramm der ILL-Kommissionierstation

private Col color
public boolean running
public boolean reading
public int lastGolorValus
public int colorValue
public int colorValues[o.
public int colorGounter= 0

private *0.7=1{(-1,0.1}{0.-1, 1}1{0.1.-1}

= newintiNO_COLORS]

Operati
public CodeReader(SensorPort s)
public void starteReader()
public void checkForStart(inti)
public void stopReading()
public void reset()
public boolean checkColorValues()
publie int getCodedNumber()
public int codiera(int colorList[0.*])

182

private boolean hearbeitet = true

erations
public KommissionierungsTurm(Motor m)
public void setAktuellerAutirag(int anzahl)
public void run()

public void kommissioniere(int anzahl)

Das neue ILL-Inhaltsmodul Kommissionierstation

Die Kommissionierstation besteht aus vier Hauptbestandteilen:
1. Kontrolleinheiten (bestehend aus zwei NXTs)
2. Transportband der einzelnen Warenstiicke
3. Kommissioniertiirme

4. Transportband fiir die zu befiillenden Paletten

o,]
ot |
s s s |
dddd I IIIID |
bk o b b
o A
A A A i
ot i ikt
- o]
B B
o o A
ol o bl jﬁ
3 —— o ko b
A i
A i
NN ok |
- o e - !
L O - ‘ i

LLLLL

o od . . ol
e e

= ;
ok dd

3333 | F

[334 l.'

2

Abbildung 6.13.: Technische Bestandteile der Komimissionierstation

Folgende Schritte sind erforderlich, um die Kommissionierstation in Betrieb zu nehmen:

183

Zunichst muss die Kommissionierstation auf einen ebenen Untergrund gestellt werden.
Nun gilt es, die Kommissioniertirme mit den Waren (hier 2x2 breite LEGO-Steine) zu
bestiicken.

Zum Einschalten der Kontrolleinheiten (NX7Ts) muss die orangefarbene Taste gedriickt
werden. Nach Betédtigung der Taste erscheint ein Startbildschirm und man gelangt in
das Hauptmenii. Im néchsten Schritt muss eine Palette auf das Palettentransportband
gelegt werden. Wenn man sich nun wieder der Kontrolleinheit zuwendet, sieht man den

folgenden Startbildschirm.

Abbildung 6.14.: Startbildschirm eines NXT-Bausteins

Jetzt muss der Reiter im Menii auf Run Default eingestellt werden und die orangenen
Tasten der NXTs A und B betétigt werden (die einzelnen Kontrolleinheiten sind entspre-
chend beschriftet). Nun verbinden sich die beiden NXTs iiber die Bluetooth-Schnittstelle
miteinander und das Transportband fiir die Paletten beginnt zu laufen. Das Band sorgt
flir den Transport der Palette und stoppt erst nach dem die Palette den Farbsensor
passiert hat und die korrekte Kodierung gelesen hat. Durch das Auslesen der Paletten-

kodierung wird die Bestiickung der Palette bestimmt und ein Signal an den jeweiligen

184

Kommissionierturm weitergegeben. Zeitgleich beginnt sich das Transportband fiir die
Warenstiicke in Bewegung zu setzen. Die Kommissioniertiirme lassen die passende An-
zahl an Warenstiicken auf dieses Band fallen, welches die Warenstiicke dann zu der Palet-
te beférdern. Anschliefend fihrt das Palettenband weiter und die néichste Palette kann
bearbeitet werden.

Fiir die fehlerfreie Abarbeitung einer Palettenreihe, sollte zwischen den Paletten ein Min-
destabstand von 2-3 cm eingehalten werden. Um die NXTs abzuschalten muss zweimal

die Taste, die sich unter der orangefarbenen Taste befindet, betitigt werden.

Farbcodierung

Die Farben schwarz, rot und blau wurden aus dem Grunde gewéhlt, da diese die gerings-
te Fehleranfilligkeit hatten. In verschiedenen Tests wurden Kombinationen von Farben
gewdhlt und auf deren Tauglichkeit iberpriift. So stellte sich heraus, dass besonders helle
Farben neben dunklen Farben, und umgekehrt, nicht korrekt erkannt wurden. Als Bei-
spiel wurde weifs-schwarz-weif als weik-blau-weifs erkannt oder schwarz-gelb-schwarz als
schwarz-griin-schwarz. Somit schloss sich der Gebrauch dieser Farben als Kombinationen
fiir die Farbcodierung aus. Die Fehleranfilligkeit des Farbsensors ldsst sich daraus erse-
hen, dass der Sensor immer einen Farbbereich erkennt. Besonders an Ubergiingen von
einer Farbe zu einer Anderen traten Farbfehler auf, die herausgefiltert werden mussten.

Fiir diese Implementierung gelten folgende Farbwerte:
e COLORIL = 0 // schwarz
e COLOR2 = 3 // blau
e COLOR3 =5 // rot
e INITCOLOR = COLOR1 = 0 // schwarz

Die Farberkennung liest einen Farbwert ein und vergleicht diesen mit dem zuletzt gelese-
nen Wert. Unterscheiden sich diese Werte, muss ein Farbwechsel stattgefunden haben. Die
Folge von aufeinanderfolgen Farben wird als Binéirstring codiert, sodass eine eindeutige

Zuordnung von Farbfolge und Auftrigen erfolgen kann.

185

Abbildung 6.15.: Farbsensor

6.2.4. Fallbeispiel Kommissionierstation als Unterrichtsreihe zur
Kompetenzmessung

Reduktion unter didaktischen Gesichtspunkten

Das im Rahmen des Seminars aufgenommene Feedback der Lehramts-Studierenden war
iiberaus positiv. Der Einsatz der LEGO Mindstorms hat sich als motivierend heraus-
gestellt. Dariiber hinaus stand nach Abschluss des Seminars Informatik Lernlabor SoSe
2008 ein funktionstiichtiger Prototyp der Kommissionierstation zur Verfiigung.

In diesem Zusammenhang wurde auch die Tauglichkeit der Inhaltseinheit Kommaissioni-
erstation fiir den Einsatz im Informatikunterricht in der Sekundarstufe II thematisiert
und bewertet. Hier verfestigte sich nach zahlreichen Diskussionen die Annahme, dass die
Thematik grundsétzlich geeignet sei und in der Erfahrungswelt der Schiiler verankert
ist. Es gilt jedoch eine didaktische Reduktion der Einheit vorzunehmen um technische
Hirden auszuschliefen und das Re-Engineering sowie die Phase der Softwareentwicklung

handhabbarer und fiir Schiiler leistbar zu machen.

Technische Vereinfachungen

Aufgrund der Erfahrungen an der Hochschule und den praktischen Erfahrungen zur di-
daktischen Tauglichkeit des ILL-Moduls Kommissionierstation fiir den schulischen Ein-
satz der Inhaltseinheit, wurden technische Vereinfachungen und Vereinfachungen im

Quellcode vorgesehen. Zunéchst ist die Identifizierung der einzelnen Paletten mittels

186

eines RFID-Sensors realisiert worden. Hierzu wurde an jeder Palette ein eindeutiger
RFID-Transponder angebracht. Hiermit wurde die storanféllige Farberkennung ersetzt
und der Programmcode deutlich vereinfacht. Im Gegensatz zur Codierung der einzelnen
Paletten durch farbige Bausteine erfolgt ein simples Auslesen des jeweiligen Byte-Werts,
der die eindeutige Kennung der jeweiligen Palette (durch den eindeutigen Transponder)
darstellt.

Reduzierte Ausbaustufen und Meilensteine

Es ergeben sich die folgenden Ausbaustufen bei der Verwendung der technisch reduzierten

Kommassionierstation:

1. Ausbaustufe I Fin Kommaissionierturm
In der Ausbaustufe I ist die rudimentére Funktionalitéit der Kommissionierstation
umgesetzt. Mit einem Kommissionterturm kann eine fest im Quellcode hinterlegte
Anzahl von Steinen in einer Farbe auf das Transportband geschoben und in die

jeweilige Palette beftrdert werden.

2. Ausbaustufe 11 Drei Kommissioniertiirme
In der Ausbaustufe IT werden drei Kommissioniertiirme verwendet. Diese miissen
entsprechend in das technische LEGO-Modell integriert werden. Auf Modellierungs-
ebene gilt es, die Kommissioniertirme addquat in das entsprechende Entwurfsmo-
dell (z.B. Klassendiagramm) mit aufzunehmen. Letztendlich miissen die zwei zu-
sitzlichen Tirme auch im Quellcode mit angepasst werden. Sofern die jeweilige
Iteration der Modellierungsphase abgeschlossen ist, ldsst sich das Modell eindeutig

in objektorientierten Quellcode iibersetzten.

3. Ausbaustufe 111 RFID Steuerung
In der Ausbaustufe III miissen weitreichende Anderungen an der Kommissioni-
erstation vorgenommen werden. Es gilt aus technischer Sicht einen RFID-Sensor
in die Station zu integrieren und die einzelnen Paletten mit RFID-Transpondern
auszustatten. Auf Modellierungsebene miissen die entsprechenden Komponenten
(z.B. der RFID-Sensor) mit aufgenommen werden. Auf Quellcodeebene gilt es ne-
ben der Ubernahme der Anderungen aus dem Entwurfsmodell ebenso die feste
Hinterlegung der Kommissionierauftrige im Quellcode aufzulésen. Hierzu musste
eine Datenstruktur hinterlegt werden, die eine Zuordnung von RFID-IDs zu den

entsprechenden Kommissionierauftrigen ermoglicht.

187

Neben der technischen Realisierung und Erprobung der drei oben genannten Ausbaustu-
fen der Kommissionierstation wurden die Anderungen im Modell sowie die Auswirkungen
im Quellcode aufbereitet. In diesem Zusammenhang finden sich im Anhang dieser Arbeit
die einzelnen Schritte zur Erweiterung des Quellcodes zwischen den einzelnen Ausbau-

stufen.

Grobplanung einer Unterrichtsreihe

Auf Grundlage der technisch und didaktisch reduzierten Inhaltseinheit Kommissionier-
station des ILL wurde die Grobplanung der folgenden Unterrichtsreihe zur Evaluation
des entwickelten Kompetenzmessinstruments fiir informatisches Modellieren vorgenom-
men. Auf theoretischer Grundlage der Phasen des /LL Magenheim [2003a] und der oben

genannten Ausbaustufen wurde die folgende Grobplanung vorgeschlagen:

Dekonstruktion
Exploration Die Lernenden erkunden den Gegenstandsbereich anhand von
(1./2.Woche) drei medialen Reprisentationsformen des Gegenstandsbereichs:

1. Die Lernenden erkunden die reale Kommissionierstation
anhand von Videomaterial eines realen Systems.

2. Die Lernenden erkunden das bestehende LEGO
Mindstorms Modell der Kommissionierstation in der
Ausbaustufe I. Wie oben beschrieben handelt es sich
hierbei um eine Minimalversion mit nur einem
Kommissionierturm und einem im Quellcode hinterlegten
Kommissionierauftrag.

3. Die Lernenden erkunden das Software-Modell anhand
bereits modellierter Entwurfs-Klassendiagramme und
anhand des bestehenden Quellcodes mit Hilfe von IDEs.

Re-Engineering Die Lernenden sind angehalten die Integration eines weiteren

(3.-4. Woche) Kommissionierturms am LEGO Mindstorms Modell
(Ausbaustufe II) vorzunehmen. Dariiber hinaus gilt es, die
Erweiterung des Systems in den entsprechenden
Entwurfsmodellen abzubilden und diese anschliefsend in den
Quellcode zu iibernehmen.

188

Konstruktion

Transfer Im Ubergang zwischen Dekonstruktions- und
Konstruktionsphase erfolgt der Lerntransfer der bei der
Dekonstruktion erworbenen Fahigkeiten auf die neue

Anforderungssituation

Software- Die Lernenden sollen einen komplexen Auftrag zur Erweiterung
entwicklung der Kommissionierstation ausfiihren. Hierbei gilt es, die
(5.-8. Woche) Ausbaustufe III zu realisieren. Dementsprechend muss ein RFID

integriert werden, um eine automatische Kommissionierung von
Waren zu ermdglichen. Hierzu muss die jeweilige Palette vom
System erkannt und der jeweilige zugehorige

Kommissionierauftrag ausgefithrt werden.

Evaluation Die Lernenden bewerten die erreichten Lernziele und die
(8. Woche) Qualitét des Produkts

Die Planung der Unterrichtsreihe zur ersten Evaluation des Kompetenzmessinstruments
fiir informatisches Modellieren wurde bewusst als Grobplanung ausgelegt. Hier sollte die
jeweilige Lehrperson moglichst viel Freiraum zur Gestaltung der Unterrichtsreihe und
zur Erreichung der einzelnen vordefinierten Meilensteine (Ausbaustufen der Kommissio-
nierstation) haben. Sowohl die Herangehensweise zur Vermittlung von Modellierungs-
kompetenz als auch die Auswahl geeigneter Modellierungstechniken (z.B. CRC-Karten,
Klassendiagramme, Objektdiagramme, etc.) liegt in der Kompetenz und Zustandigkeit

der Lehrperson, die die Unterrichtsreihe begleitet.

6.3. Hypothesen fiir die Erprobung des Messinstruments

Unter der Annahme, dass das entwickelte Lehr-/Lernarrangement Kompetenzen in der
informatischen Modellierung férdert, sollen im Folgenden Hypothesen zur Tauglichkeit

des Instruments, Kompetenzzuwichse zu messen, angefiihrt werden.

Hypothese H1:

Das Messinstrument zeigt einen systematischen Kompetenzzuwachs der Ler-

nenden beimn Nachtest tm Vergleich zum Vortest auf.

Zunéchst soll dementsprechend gepriift werden, ob sich im Vergleich von Vor- und Nach-
test ein Kompetenzzuwachs messen ldsst. Hierbei soll das Gesamtergebnis der einzelnen

Probanden beim Nachtest im Vergleich zum Vortest ermittelt und verglichen werden.

189

In Anlehnung an die Phasen des ILL macht es Sinn eine phasenabhingige Biindelung
der Aufgaben in sog. Aufgabencluster vorzunehmen. Anhand der Inhalte und der zu

fordernden Kompetenzen der Unterrichtsreihe werden drei Aufgabencluster gebildet:

1. Cluster 1: Allgemeine Kompetenzen zu Vorgehensmodellen in der Softwaretechnik
(Biindelung der Aufgaben 1,2,3)
Dieser Aufgabenbereich umfasst Kompetenzen zu den unterschiedlichen Vorgehens-
modellen der Softwaretechnik. Hierbei kénnen die Lernenden verschiedene lineare
und iterative Vorgehensmodelle des Software-Engineerings (linear: z.B. vereinfach-
tes Wasserfallmodell, ...; iteratives Vorgehen: z.B. RUP) und deren Phasen benen-
nen, fiir die Losung eines softwaretechnischen Problems verwenden und beurteilen
welche Phasen es zur Losung des Problems (erneut) zu durchlaufen gilt.

e K1.3.6 Iteratives Vorgehen

e K1.3.6.1 Die Lernenden sind in der Lage, abhéngig von der jeweiligen Iteration des
SWE-Prozesses, sinnvolle Modellierungstechniken auszuwéhlen, anzuwenden und zu

beurteilen.

e K1.3.6.2 Die Lernenden sind in der Lage zu beurteilen, ob ein erneutes Durchlau-
fen einer bereits absolvierten Phase des SWE-Prozesses erforderlich ist; sie kbnnen
abhingig von den auftretenden Problemen in der aktuellen Phase eine sinnvolle vor-

herige Phase auswihlen, die es erneut zu durchlaufen gilt.

2. Cluster 2: Kompetenzen fiir die Dekonstruktion und Analyse von Informatiksyste-
men (Bindelung der Aufgaben 4,5,6)
Dieser Aufgabenbereich fokussiert Kompetenzen zur Analyse eines (bestehenden)
Informatiksystems. Dies umfasst die Ableitung von funktionalen Anforderungen
bis hin zur Feinanalyse des Systems mit Hilfe der entsprechenden UML-Notation.
Hierbei spielen implementierungsspezifische Details bei der Modellierung eine un-
tergeordnete Rolle und sind lediglich fiir das Re-Engineering von Quellcode eines
bestehenden Informatiksystems relevant.

e K1.3.1.1 Die Lernenden konnen eine geeignete (Software) Plattform/Basistechnolo-

gie auswéhlen, um das zu erstellende SW-Projekt zu entwickeln.

e K1.3.1.2 Die Lernenden sind in der Lage, Anwendungsfélle (Use Cases) zu ermitteln
und anzugeben (benennen), diese zu analysieren (durchzuspielen); sie sind diesbeziig-
lich auch in der Lage, Use Case Diagramme zu entwickeln. Hierbei konnen sich die
Lernenden einen Eindruck verschaffen, was die zu entwickelnde Software zu leisten
hat.

e K1.3.1.3 Die Lernenden sind in der Lage, funktionale Anforderungen an die zu
entwickelnde Software zu ermitteln; dabei sind sie befahigt, die Ziele (z.B. funktionale

Anforderungen), Grenzen (z.B. Abgrenzung zu bestehenden Softwaresystemen) und

190

Stakeholder innerhalb der Problemdoméne zu ermitteln. Hierbei besteht wiederum

die Zielsetzung herauszufinden, was das zu entwickelnde System leisten soll.

e K1.3.1.4 Die Lernenden sind in der Lage, eine tabellarische Use Case Beschreibung
in ein Aktivitatendiagramm zu iiberfithren. Hierdurch kénnen moégliche Anwendungs-

szenarien genauer analysiert werden.

e K1.3.1.5 Die Lernenden sind in der Lage, die zuvor ermittelten funktionalen Anfor-
derungen fiir andere verstindlich und nachvollziehbar darzustellen (dokumentieren).
Hierbei besteht die Zielsetzung, ein gemeinsames Dokument (im Sinne eines Pflich-
tenhefts) fiir die SWE-Teams im Hinblick auf die weiteren Phasen des SWE-Prozess

zu entwickeln.
e K1.3.2 Analyse

e K1.3.2.1 Die Lernenden koénnen objektorientierte Begrifflichkeiten angeben und er-
ldutern. Dies ist Grundvoraussetzung, um eine objektorientierte Dekomposition durch-

fiithren zu konnen.

e K1.3.2.2 Die Lernenden sind in der Lage, eine objektorientierte Dekomposition
durchzufiihren; d.h., sie konnen anhand einer textuellen Beschreibung des Problem-
bereichs mogliche Klassenkandidaten, Attribute und Methoden ermitteln (auffinden)
und diese in eine formale Darstellungsform iiberfiihren. Hierbei besteht die Zielset-
zung ein Modell des Problembereichs zu erstellen.

e K1.3.2.3 Die Lernenden sind in der Lage, relevante statische und dynamische UML-
Diagramme ohne implementierungsspezifische Details zu entwickeln (z.B. CRC-Karten).
Durch diese formale konzeptionelle Modellierung erhalten die Lernenden einen ver-

tieften Einblick in die Problemdomaéne.

3. Cluster 3: Kompetenzen fiir die Konstruktion von Informatiksystemen (Biindelung
der Aufgaben 7,8,9,10)
Dieser Aufgabenbereich fokussiert Kompetenzen zum Design und zur Gestaltung
eines neuen Informatiksystems. Dies umfasst im Gegensatz zu den Aufgaben in
Cluster 2 vorrangig das konkrete Losungsdesign eines Informatiksystems bzw. des-
sen Bestandteilen und die konkrete Implementierung auf Grundlage von Design-
Modellen in UML-Notation. Hierbei liegt der Fokus bei der Modellierung auf Mo-
dellen mit implementierungsspezifischen Details. Neben der Konstruktion von In-
formatiksystemen adressieren die Aufgaben aus Cluster 3 ebenso den Test eines
Informatiksystems.

e K1.3.3 Design

e K1.3.3.1 Die Lernenden sind in der Lage, die Architektur der zu entwickelnden
Software zu bestimmen; dabei wahlen sie eine geeignete Programmiersprache aus,
beriicksichtigen Aspekte der Verteilung, Nebenldufigkeit/Parallelitdt und moglicher

191

Entwurfsmuster. Dies ist eine wichtige Voraussetzung fiir die Entwicklung von ent-

wurfsspezifischen UML-Diagrammarten.

K1.3.3.2 Die Lernenden sind in der Lage, sinnvolle Schnittstellen zu bestimmen um

eine spitere erfolgreiche Integration von Programmmodulen zu ermoglichen.

K1.3.3.3 Die Lernenden sind in der Lage, relevante statische und dynamische
UML-Diagramme mit implementierungsspezifischen Details zu entwickeln. Hierdurch
entsteht ein entwurfsspezifisches Modell, welches in Quellcode einer objektorientier-

ten Hochsprache iiberfiihrt werden kann.
K1.3.4 Implementierung

K1.3.4.1 Die Lernenden sind in der Lage, die Architektur der zu entwickelnden
Software zu bestimmen; dabei wihlen sie eine geeignete Programmiersprache aus,
beriicksichtigen Aspekte der Verteilung, Nebenldufigkeit/Parallelitdt und moglicher
Entwurfsmuster. Dies ist eine wichtige Voraussetzung fiir die Entwicklung von ent-

wurfsspezifischen UML-Diagrammarten.

K1.3.4.1.1 Die Lernenden sind in der Lage, Programmierkonzepte, wie z.B. das Va-
riablenkonzept und Kontrollstrukturen (Bedingte Anweisung, Schleifenkonstruktion)

in der Programmiersprache zu implementieren.

K1.3.4.1.2 Die Lernenden sind in der Lage, ein Klassendiagramm in objektorien-
tierten Java-Code zu iberfithren; Sie konnen Klassen, Attribute und Methoden sowie

Assoziationen und Vererbungsstrukturen in Java-Code implementieren.

K1.3.4.1.3 Die Lernenden sind in der Lage, Programmbibliotheken (z.B. Java-Swing)

erfolgreich in eigene Programmmodule einzubinden.

K1.3.4.2 Die Lernenden sind in der Lage, mit Hilfe von integrierten Entwicklungs-

umgebungen (IDEs) Programmmodule zu implementieren und zu integrieren.

K1.3.4.3 Die Lernenden sind in der Lage, mit Hilfe einer Versionsverwaltungssoft-

ware (z.B. Subversion) Programmmodule und deren Versionierung zu verwalten.

K1.3.4.4 Die Lernenden sind in der Lage, die selbst implementierten Programmmo-
dule nachvollziehbar (im Hinblick auf gute Wartbarkeit) zu dokumentieren (z.B. mit

Java-Doc).

K1.3.4.5 Die Lernenden sind in der Lage, Programmmodule sinnvoll in ein bestehen-
des Softwaresystem zu integrieren. Somit kénnen Teile der zu entwickelnden Software

zu einem lauffdhigen System aggregiert werden.
K1.3.5 Test

K1.3.5.1 Die Lernenden sind in der Lage, ein bestehendes Softwaresystem systema-
tisch zu testen. Hierbei besteht die Zielsetzung unter anderem darin, zu {iberpriifen,

ob die zuvor spezifizierten funktionalen Anforderungen erfolgreich umgesetzt wurden.

192

e K1.3.5.1.1 Die Lernenden sind in der Lage, zu Beginn der Testphase einen geeigne-

ten Testplan zu entwickeln.

e K1.3.5.1.3 Die Lernenden sind in der Lage, Testfélle zu ermitteln (Extremfille und
unerwartete Eingabedaten erzeugen) oder zu entwickeln; sie konnen diese zum Test

verwenden und die daraus resultierenden Ausgaben protokollieren.

Aufgrund der besonders (zeit-)intensiven Behandlung der Konstruktionsphase ist ein
Kompetenzzuwachs insbesondere bei Cluster 8 im Vergleich zu Cluster 1 und Cluster 2
zu erwarten. Demzufolge sollte das Instrument insbesondere fiir diesen Kompetenzbereich
einen deutlichen Kompetenzzuwachs messen kénnen. Dieser sollte merklich iiber dem
ermittelten Kompetenzzuwachs bei den Aufgabenclustern 2 und & liegen. Die Hypothese

H2 fasst den Sachverhalt in eine Aussage, die es zu liberpriifen gilt, zusammen:

Hypothese H2:

Das Messinstrument zeigt einen systematischen Kompetenzzuwachs bei dem
Aufgabencluster 3 (Konstruktion von IS) auf. Dieser ist gréfier als der Kom-
petenzzuwachs bei den Aufgabenclustern 1 (allgemeine Aufgaben zu Vorge-

hensmodellen in der Softwaretechnik) und 2 (Dekonstruktion von IS).

Diese Hypothesen gilt es bei der Auswertung der Ergebnisse der Erprobung im folgenden

Kapitel zu tiberpriifen.

6.4. Zusammenfassung

Dieses Kapitel hatte die Zielsetzung, den Prozess zur Entwicklung von Aufgaben und
darin enthaltener Items auf Grundlage der im Kapitel 5 formulierten Kompetenzprofi-
le (Kategoriendefinitionen) aufzuzeigen. In diesem Kontext wurden zunéchst theoreti-
sche Grundlagen zur Testentwicklung und zur Fragebogenkonstruktion aufgezeigt und
beispielhaft der Entwicklungsprozess einzelner repréisentativer Aufgaben des Messinstru-
ments dargestellt. Hierbei wurden spezielle [tems fiir Kompetenzkategorien entwickelt
und zu Aufgaben kombiniert, die m&glichst mehrere im Strukturmodell abgebildete Kom-
petenzbereiche abfragen.

Eine weitere Zielsetzung war es, die Konzeption eines Lehr-/Lernarrangements zur For-
derung von Modellierungskompetenzen zu beschreiben. Dieses soll als thematische und
unterrichtsmethodische Grundlage fiir die Erprobung des Messinstruments fungieren. Zur

theoretischen Fundierung wurden verschiedene didaktische Ansétze zum Verstdndnis von

193

Informatiksystemen aufgefiihrt und deren Einfluss auf die Gestaltung der Unterrichtsrei-
he dargestellt. Ebenso wurde die Verkniipfung der einzelnen Ansétze mit dem Fokus
auf der systemorientierten Didaktik der Informatik dargelegt. Neben der theoretischen
Fundierung wurde die praktische Entwicklung der LEGO Mindstorms basierten Inhalts-
einheit Kommissionierstation des Informatik Lernlabors dargestellt.

Abschliefsend wurden als Ergebnis dieses Kapitels im Hinblick auf die Lerneinheit zur
Evaluation Hypothesen zur Wirksamkeit des Messinstruments formuliert, die es im fol-
genden Kapitel zu iiberpriifen gilt.

Das néchste Kapitel beschreibt die Erprobung des Kompetenzmessinstruments im Rah-
men einer Unterrichtseinheit innerhalb der gymnasialen Oberstufe. Diese Erprobung wur-
de auf theoretischer und unterrichtspraktischer Grundlage des oben beschriebenen Lehr-
/Lernarrangements geplant und im Friithjahr 2011 am Paderborner Pelizaeus Gymnasium
durchgefiihrt.

194

7. Erprobung des Messinstruments fiir
informatische

Modellierungskompetenz

Dieses Kapitel beschreibt die Erprobung des Messinstruments fiir Modellierungskompe-
tenz. Dementsprechend werden auf Grundlage des dafiir konzipierten Lehr-/
Lernarrangements das Untersuchungssetting und -design mit den einzelnen Messzeit-
punkten dargestellt. Aufgrund vielfiltiger positiver Erfahrungen zum FEinsatz der Ler-
neinheit in der Hochschullehre gehen wir davon aus, dass diese die Entwicklung von
Modellierungskompetenz fordert. Der Fokus der Einheit liegt insbesondere auf der Kon-
struktion von Informatiksystemen und den dafiir erforderlichen Kompetenzen.

Die Ergebnisse der beiden Kompetenzmessungen sollen im Vergleich vorgestellt und dif-
ferenziert interpretiert werden. Ziel soll in diesem Zusammenhang die Priifung der zuvor
aufgestellten Hypothesen H7 und H2 sein. Bei der Priifung der Hypothese H1 werden die
Gesamtergebnisse der Erprobung betrachtet, wo hingegen bei H2 die Ergebnisse unter
Bertiicksichtigung der definierten Aufgabencluster 1-8 analysiert werden.

Infolgedessen soll zunéchst eine deskriptive statistische Analyse der Ergebnisse von Vor-
und Nachtest und der Verteilung der Probanden im Hinblick auf die erreichte Punktzahl
durchgefiihrt werden. In diesem Zusammenhang kommt in einem zweiten Schritt ein ge-
eignetes induktives Verfahren zum Einsatz, um die statistische Signifikanz der Ergebnisse
des Nachtests im Vergleich zum Vortest fiir 41 und H2 zu untersuchen.

Hierbei stellt sich die zentrale Frage, ob das Messinstrument in der Lage ist, messtechnisch
zu differenzieren und Kompetenzzuwichse aufzuzeigen.

Wie im vorherigen Kapitel zur Planung der Unterrichtsreihe beschrieben, sieht das ver-
wendete Untersuchungssetting zwei Messzeitpunkte vor. Einen zu Beginn der Unterrichts-
reihe und einen zum Abschluss der Einheit. Im Folgenden wird nochmals der Verlauf der
Unterrichtsreihe skizziert und die Messzeitpunkte aufgefiihrt. Ferner werden die Rah-

menbedingungen fiir die Durchfiihrung der Kompetenzmessung festgelegt.

195

Thematischer Schwerpunkt der Dissertation

Theoretische Gr

SWE Vorgehansmodell
(Rational unified Process)

fachwissenschaftlich

Modellierung in
Fachwissenschaft und
Fachdidaktik

—umfasstis

Vorgehensmodelle

Kapitel 3 | Modellierung in Fachwissenschaft

und Fachdidaktik

fachdidaktisch

Didakt. Vorgehensmodell
{0OM + Robatik)

Theoretische Grundlage

Kapitel 2 | Fachdidaktische

Ausgangslage

Internat. Vergleichsstudien
(PISA,TIMMS, .}

Kompetenzorientierung

Ausgangspunkt

MoKoM

Kapitel 4/5 | Kompefenzmodell-

Entwicklung

h 4

{theoratisch]

kxompetenzmodell
(empirisch}

Kapitel 6 | Messinstrument-

Entwicklung

h 4

Kompetanz
Kategoriendefinitionen

Messinstrument
Itementwicklung

Y

Kapitel 7 | Messingtrument-

Vorerprobung

Y

Entwicklung
uUnterrichtsraihe

Kompetenzmassungen
im Vergleich

Ergebnisse
]

Kapitel 8 | Fazit / Weiterefihrende

Forschungsfragen

!

Abbildung 7.1.: Kapitel 7 im Gesamtkontext der Arbeit

196

7.1. Untersuchungssetting- und Design

7.1.1. Lerngruppe und zeitlicher Rahmen

Im Mai und Juni 2011 wurde die Erprobung des Kompetenzmessinstruments iiber acht
Wochen am Paderborner Pelizaeus Gymnasium durchgefithrt. Beim Kurs handelte es sich
um einen Informatik Leistungskurs der Jahrgangsstufe 13. Der Kurs umfasste 28 Schii-
lerinnen und Schiiler. Es handelte sich hierbei um einen sog. Koorperations-Kurs der ge-
meinschaftlich von den Gymnasien im Paderborner Innenstadtbereich, ndmlich Pelizaeus
Gymnasium, Reismann Gymnasium und Theodorianum organisiert wurde. Durchschnitt-
lich hatte der Kurs jeweils flinf Wochenstunden, wobei dieser jeweils abwechselnd in den
geraden Kalenderwochen sechs Wochenstunden und in den ungeraden Kalenderwochen

vier Wochenstunden umfasste.

7.1.2. Messzeitpunkte

Die Messungen hatten einen zeitlichen Umfang von jeweils 90 Minuten. Hierbei wurden
die Probanden aufgefordert, alle zehn Aufgaben des Messinstruments zu bearbeiten. Im

Verlauf der Unterrichtseinheit waren die folgenden Messzeitpunkte vorgesehen:

Dekonstruktion

1. Kompetenzmessung

FExploration
(1./2.Woche)

Re-Engineering

(3.-4. Woche)

Konstruktion

Transfer

Softwareentwicklung

(5.-10. Woche)

Fvaluation
(10. Woche)

2. Kompetenzmessung

197

Zu den beiden Messzeitpunkten kam jeweils dasselbe Instrument (siehe Anhang) und
das gleiche Bewertungsschema zum Einsatz. Um die Ergebnisse der Probanden bei Vor-
und Nachtest vergleichen zu kénnen und trotzdem die Anonymitét der Schiilerinnen und

Schiiler zu wahren, wurde ein eindeutiger Code zur Identifizierung vorgegeben.

1. Erster Buchstabe Vorname der Mutter

2. Zweiter Buchstabe Vorname des Vaters

3. Erste Ziffer des Geburtstages (inkl. 0)
4. Zweite Ziffer des Geburtstages

z.B. HIO2 (Daten des Autors)

Bei den Kompetenzmessungen zu Beginn der Unterrichtseinheit (Vortest) und zu deren
Abschluss (Nachtest) konnten die Ergebnisse von einer Grundgesamtheit von N = 20
Probanden ausgewertet werden. Die Abweichung der Grundgesamtheit zur Kursstérke

héngt mit der Abwesenheit bestimmter Schiiler bei Vor- und Nachtest zusammen.

7.2. H1 - Gesamtergebnis im Vergleich

Mit dem Ziel, zuniichst einen Uberblick iiber die Datenlage zu erlangen, werden in einem
ersten Schritt ausschlieklich deskriptive statistische Verfahren verwendet. Im weiteren
Verlauf des Kapitels soll mit Hilfe eines induktiven Verfahrens iiberpriift werden, ob sich
tendenziell abzeichnende Kompetenzzuwichse tiberzufillig (also statistisch signifikant)

sind.

7.2.1. Deskriptive statistische Analyse

Dieses Teilkapitel hat die Zielsetzung, die erhobenen Daten im Hinblick auf die aufge-
stellte Hypothese HI zu iiberpriifen. Demzufolge wird zunéchst das Gesamtergebnis von
Vor- und Nachtest, d.h. die jeweilig vom Probanden erreichte Punktzahl, dargestellt und

verglichen.

Zu H1 Gesamtergebnisse

Zur Priifung der Hypothese H1 sollen die Gesamtergebnisse zu beiden Messzeitpunkten
verglichen werden. Dementsprechend umfasst die folgende Tabelle die erreichte Gesamt-

punktzahl der einzelnen Probanden.

198

Gesamtergebnis
(max Punkte = 172)

Proband Ergebnis Vortest Ergebnis Nachtest Vergleich
Kiirzel nominal ‘ prozentual | nominal ‘ prozentual || Tendenz
ANO5 77 44, 77% 96 55,81% +11,05%
NIO6 99,5 57,85% 105,5 61,34% +3,49%
IR14 61,5 35,76% 90,5 52,62% +16,86%
JJ13 47 27,33% 96 55,81% +28,49%
0104 84 48.,84% 114 66,28% +17,44%
ARI16 55,5 32,27% 105,5 61,34% +29,07%
OA27 76,5 44,48% 118 68,60% +24,13%
LG18 71,5 41,57% 74 43,02% +1,45%
AB26 74,5 43,31% 1295 75,29% +31,98%

EIO6 74,5 43,31% 118,5 68,90% +25,58%
EA26 114 66,28% 131,5 76,45% +10,17%
AG15 117 68,02% 144 83,72% +15,70%
ES29 95,5 55,52% 130 75,58% +20,06%
ORO01 76 44,19% 94.5 54,94% +10,76%
EA05 65 37,79% 100 58,14% +20,35%
ILO8 52,5 30,52% 84 48,84% +18,31%
AG12 126 73,26% 102 59,30% -13,95%
ARO1 87 50,58% 118 68,60% +18,02%
UG23 93 54,07% 133,5 77,62% +23,55%
LE06 114 66,28% 79,5 46,22% -20,06%
| arithm. Mittel | 83,08 | 48,30% | 108,23 | 62,92% | +14,62% |

Tabelle 7.1.: Gesamtergebnisse der Erprobung

Die erste Spalte mit der Bezeichnung Proband beinhaltet die einzelnen eindeutigen Ken-
nungen der Probanden. Innerhalb der Spalten Vortest werden die nominal erreichte
Punktzahl und die prozentual erreichte Punktzahl der einzelnen Probanden im Vortest
aufgefithrt. Die Spalten Nachtest beinhalten dementsprechend die nominalen und antei-
ligen Punktzahlen der Probanden im Nachtest. Innerhalb der Spalte Vergleich/Tendenz
wird die Differenz zwischen anteilig erreichter Punktzahl im Nachtest (Minuend) und
anteilig erreichter Punktzahl im Vortest (Subtrahend) berechnet und aufgefiihrt.

Betrachtet man die Gesamtergebnisse der Kompetenztests haben die Probanden im Vor-
test durchschnittlich 48,30% der moglichen Punkte erreicht. Im Nachtest erreichten sie
62,92% der Punkte. Folglich haben die Probanden im Nachtest im Mittel ca. 14,62%

mehr Punkte erreicht als im Vortest.

199

Bei Betrachtung der Ergebnisse der Probanden im Vergleich zeigt sich, dass 18 von 20
Probanden im Nachtest besser abgeschnitten haben als im Vortest. Dies kdnnte neben
dem deutlichen prozentualen Zuwachs als Indiz fiir einen méglichen Kompetenzzuwachs
interpretiert werden.

Um die Verteilung der Probanden im Hinblick auf die jeweils erreichte Punktzahl im
Kompetenztest zu illustrieren, werden im Folgenden zwei Histogramme dargestellt. Diese
zeigen die Haufigkeitsverteilung und enthalten auf der Ordinate die jeweilige Anzahl der
Probanden und auf der Abszisse die prozentual erreichte Punktzahl. Hierbei wird die
anteilig erreichte Punktzahl in zehn Leistungsklassen von 0% bis 100% eingeteilt. Um
dariiber hinaus die Verteilung von Vor- und Nachtest zu vergleichen, werden die beiden
Histogramme fiir Vortest (Histogramm mit blauen Balken) und Nachtest (Histogramm

mit roten Balken) nebeneinander dargestellt®.

Vortest Nachtest
7 7
6 6
5 5
R S|
z E
] v
e’ g 3
2 2
g 2 g 2
1 1
0 0 T T T T
0% 10% 20% 30% 40% 50% 60% 70% 80% 00% 100% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Anteilig erreichte Gesamtpunktzahl Anteilig erreichte Gesamtpunktzahl
Mittelwert: 48,30% Mittelwert: 62,92%

Tendenzz 4 14,62%

Abbildung 7.2.: Vor- und Nachtest im Vergleich

Bei Betrachtung der Histogramme wird deutlich, dass sich die Leistung der Probanden
merklich verbessert hat. Im Vortest haben ca. ein Viertel der Probanden (vier Proban-
den) nicht die 40 %-Marke erreicht. Im Nachtest hingegen konnten alle 20 Probanden
mehr als 40 % der Punkte erreichen. Bei der Verteilung der Probanden wird ein weiterer
Unterschied deutlich: Im Vortest konnten die meisten (hier sieben Probanden) Proban-
den mehr als 50 % der Punkte erreichen. Im Nachtest hingegen haben fiinf Probanden

mehr als 60 % der Punkte erreicht und dariiber hinaus vier Probanden sogar mehr als 70

'Die Vorkenntnisse der Probanden wurden bei dieser Auswertung nicht beriicksichtigt. Dies sollte in
einer breiten Erprobung des Messinstruments mit beriicksichtigt werden.

200

% der Punkte erreichen kénnen. Im Vergleich zum Vortest hat sich somit ein erheblicher
Leistungszuwachs abgezeichnet.

Unter der Annahme, dass die durchgefithrte Unterrichtsreihe Modellierungskompetenz
fordert, konnten diese Ergebnisse einen Hinweis darauf geben, dass sich mit dem verwen-
deten Instrument ein Kompetenzzuwachs messen lasst.

Hierbei ist anzumerken, dass im Rahmen der Priifung der Hypothese H1 noch keine
differenzierte Betrachtung der abgepriiften Kompetenzbereiche stattgefunden hat. Bevor
diese in H2 definierte Frage genauer betrachtet wird, sollen zunéchst die Gesamtergeb-
nisse von Vor- und Nachtest (H1) mit einer induktiven statistischen Methode zum Mit-
telwertvergleich untersucht werden. In diesem Zusammenhang soll festgestellt werden,
ob sich die Ergebnisse der Probanden zuféllig oder systematisch verbessert haben und
ob das Kompetenzmessinstrument dazu in der Lage ist, diesen Zuwachs messtechnisch

aufzuzeigen.

7.2.2. Induktive statistische Analyse

Wie einleitend beschrieben, soll neben der deskriptiven statistischen Analyse in einem
weiteren Schritt mit Hilfe eines induktiven Verfahrens iiberpriift werden, ob sich tenden-

ziell abzeichnende Kompetenzzuwéchse statistisch signifikant sind.

7.2.3. Auswahl eines geeigneten Testverfahrens

Um zu iiberpriifen, ob die empirische Mittelwertdifferenz signifikant oder zufillig ist,
kommt der t-Test als induktives statistisches Verfahren zum Mittelwertvergleich zum
Einsatz. Die Voraussetzungen fiir den t-Test sind, dass die unabhéngige Variable (hier
das Treatment durch die Unterrichtseinheit) dichotom, also in genau zwei Auspragungen
vorliegt (vor Treatment durch die Unterrichtsreihe; nach Treatment durch die Unter-
richtsreihe) und die abhéngige Variable (hier die erreichte Gesamtpunktzahl oder die
erreichte Punktzahl je Aufgabencluster metrisch skaliert ist. Des Weiteren muss sicher-

gestellt sein, dass die zu vergleichenden Stichproben normalverteilt sind.

Variable Skalierung Ausprigungen

uv || Unabhéngige Variable | dichotom | {vor der U-Reihe, nach der U-Reihe}
av Abhéngige Variable metrisch {0..max Punktzahl}

Zur Priifung der Normalverteilung kommt der Kolmogorov-Smirnov-Test zum Einsatz.
Mit Hilfe von SPSS (Version 19) wurde dieser Test fiir alle Stichproben angewendet.

201

Im Folgenden werden die Ergebnisse des Kolmogorov-Smirnov-Test fiir das Gesamtergeb-

nis und fiir die Aufgabencluster 1-83 dargestellt. Hierbei wird jeweils die Normalverteilung

der Stichproben von Vor- und Nachtest untersucht.

Deskriptive Statistiken

Standardabweic
N Mittelwert hung Minimum | Maximum
Gesamtergebnis (VT) 20 83,0750 22,53084 47,00 126,00
Gesamtergebnis (NT) 20| 108,2250 19,49796 74,00 144,00
Kolmogorov-Smirnov-Anpassungstest
Gesamtergebni | Gesamtergebni
s (VT) s (NT)
N 20 20
Parameter der Mittelwert 83,0750 108,2250
Normalver‘teilunga‘b Standardabweichung 22,53084 19,49796
Extremste Differenzen Absolut ,156 112
Positiv 156 106
Negativ - 115 =112
Kolmogorov-Smirnov-Z ,699 ,503
Asymptotische Signifikanz (2-seitig) 713 ,962

a. Die zu testende Verteilung ist eine Normalverteilung.

b. Aus den Daten berechnet.

Abbildung 7.3.: Kolmogorov-Smirnov-Test (Gesamtergebnis VT / NT)

202

Deskriptive Statistiken

Standardabweic
N Mittelwert hung Minimum | Maximum
Ergebnis Cluster 1 (VT) 20 13,5250 2,73609 8,00 18,00
Ergebnis Cluster 1 (NT) 20 17,9500 545773 10,50 29,00
Kolmogorov-Smirnov-Anpassungstest
Ergebnis Ergebnis
Cluster 1 (VT) Cluster 1 (NT)

N 20 20
Parameter der Mittelwert 13,5250 17,9500
Normalver‘teilunga‘b Standardabweichung 2,73609 545773
Extremste Differenzen Absolut ,169 ,140

Positiv 101 140

Negativ -, 169 -,086
Kolmogorov-Smirnov-Z 755 624
Asymptotische Signifikanz (2-seitig) 618 ,831

a. Die zu testende Verteilung ist eine Normalverteilung.

b. Aus den Daten berechnet.

Deskriptive Statistiken

Abbildung 7.4.: Kolmogorov-Smirnov-Test (Aufgabenclusterl VT / NT)

Standardabweic
N Mittelwert hung Minimum | Maximum
Ergebnis Cluster 2 (VT) 20 34,9000 6,65820 22,00 46,00
Ergebnis Cluster 2 (NT) 20 36,3750 8,76427 20,00 46,50
Kolmogorov-Smirnov-Anpassungstest
Ergebnis Ergebnis
Cluster 2 (VT) Cluster 2 (NT)

N 20 20
Parameter der Mittelwert 34,9000 36,3750
Normalver‘teilunga‘b Standardabweichung 6,65820 8,76427
Extremste Differenzen Absolut ,116 ,225

Positiv ,081 124

Negativ -,116 -,225
Kolmogorov-Smirnov-Z 517 1,007
Asymptotische Signifikanz (2-seitig) 952 ,263

a. Die zu testende Verteilung ist eine Normalverteilung.

b. Aus den Daten berechnet.

203

Abbildung 7.5.: Kolmogorov-Smirnov-Test (Aufgabencluster2 VT / NT)

Deskriptive Statistiken

Standardabweic
N Mittelwert hung Minimum Maximum
Ergebnis Cluster 3 (VT) 20 34,6500 21,40530 10,50 70,50
Ergebnis Cluster 3 (NT) 20 53,9000 12,92957 33,00 76,00

Kolmogorov-Smirnov-Anpassungstest

Ergebnis Ergebnis
Cluster 3 (VT) Cluster 3 (NT)
N 20 20
Parameter der Mittelwert 34,6500 53,9000
Normalweneilungf"'Ij Standardabweichung 21,40530 12,92957
Extremste Differenzen Absolut 73 ,121
Positiv A73 116
Negativ -,130 -121
Kolmogorov-Smirnov-Z 772 ,542
Asymptotische Signifikanz (2-seitig) ,589 ,931

a. Die zu testende Verteilung ist eine Normalverteilung.

b. Aus den Daten berechnet.

Abbildung 7.6.: Kolmogorov-Smirnov-Test (Aufgabenclusterd VT / NT)

Wie in allen Tabellen erkennbar, sind die Werte fiir die asymptotische Signifikanz (2-
seitig) p grofer oder gleich 0,05. Folglich kann man annehmen, dass die Werte der getes-
teten Variablen hinreichend normalverteilt sind.

Da die Voraussetzungen fiir den t-Test bei gepaarten Stichproben erfiillt sind, ist dessen

Anwendung sinnvoll um die Mittelwerte der Stichproben miteinander zu vergleichen.

7.2.4. t-Test

Die Daten der Auswertungstabellen zum Vor- und Nachtest werden mithilfe eines t-Tests
darauthin untersucht, ob sie sich statistisch signifikant voneinander unterscheiden. Hier-
bei soll iiberpriift werden, ob die Gesamtergebnisse des Nachtests hoher ausfallen als die
des Vortests. Der t-Test wird mit SPSS 19 durchgefiihrt. Hierbei wird eine Sicherheits-
wahrscheinlichkeit von 5% (o = 0.05) festgelegt, welches bei Untersuchungen dieser Art
iiblich ist.

204

Statistik bei gepaarten Stichproben

Mittelwert | N | Standardabweichung | Standardfehler
des Mittelwertes
Vortest 83,0750 20 22,53084 5,03805
Nachtest 108,20000 | 20 19,50196 4,36077

Korrelation bei gepaarten Stichproben

H N ‘ Korrelation ‘ Signifikanz ‘

’ Vortest & Nachtest H 20 ‘

1399 | 081

|

Test bei gepaarten Stichproben

Gepaarte Differenzen

Mittelwert | Standardabweichung | Standardfehler
des Mittelwertes
Vortest - Nachtest | —25,12500 23,17660 5,18244
Test bei gepaarten Stichproben
Gepaarte Differenzen T
95% Konfidenzintervall der Differenz
Untere ‘ Obere

| Vortest - Nachtest | —35,97198 | 14, 27802 | 4,848 |

Test bei gepaarten Stichproben

H df ‘ Sig. (2-seitig) ‘

’ Vortest-Nachtest H 19 ‘

000 |

Die statistische Auswertung liefert ein hchstsignifikantes Ergebnis?.

Dies bedeutet, dass die Mittelwertunterschiede zwischen dem Vor- und dem Nachtest
iiberzuféllig also systematisch sind. Da der Mittelwert fiir den Vortest kleiner ausfillt als
der fiir den Nachtest kann man behaupten, dass sich die Werte zum zweiten Messzeit-

punkt systematisch verbessert haben. Dementsprechend scheint das Messinstrument in

der Lage zu sein, einen Kompetenzzuwachs aufzuzeigen. Folglich wird die Hypothese H1

bestatigt.

2, € 0,001 : hochst signifikant | o < 0,01 : hoch signifikant | o < 0,05 : signifikant

205

Im weiteren Verlauf soll mit Hypothese H2 iiberpriift werden, bei welchen Kompetenz-
bereichen sich ein Kompetenzzuwachs abzeichnet. Hierbei wird vermutet, dass bei den
Kompetenzen zur Konstruktion von Informatiksystemen (Aufgabencluster 3) ein beson-
ders deutlicher Kompetenzzuwachs messbar ist, der grofer als die jeweiligen Zuwichse

bei den Aufgabenclustern 1 und 2 ist.

7.3. H2 - Ergebnisse zur Konstruktion von IS im Vergleich

Im Folgenden werden die Ergebnisse von Vor- und Nachtest entsprechend der vorgenom-
menen thematischen Clusterung der Aufgaben des Messinstruments untersucht. Hierbei
soll gepriift werden, ob wie vermutet fiir die Aufgaben zur Konstruktion von IS (Cluster
3) ein hoherer Kompetenzzuwachs als bei den Aufgaben zur Dekonstruktion von In-
formatiksystemen (Cluster 2) und allgemeinen Aufgaben zu Vorgehensmodellen in der

Softwaretechnik (Cluster 1) gemessen werden kénnen.

7.3.1. Cluster 1 - Aufgaben zu Vorgehensmodellen in der Softwaretechnik

Zunichst sollen die Ergebnisse fiir das Aufgabencluster 1 (Aufgaben zu Vorgehensmodel-
len in der Softwaretechnik) dargestellt werden. Wie im vorherigen Kapitel beschrieben,
umfasst jener Aufgabenbereich Kompetenzen zu den unterschiedlichen Vorgehensmodel-
len der Softwaretechnik. Hierbei kénnen die Lernenden verschiedene lineare und iterative
Vorgehensmodelle des Software-Engineerings (linear: z.B. vereinfachtes Wasserfallmodell,
...; iteratives Vorgehen: z.B. RUP) zur Losung eines komplexen Problems aus der Soft-
waretechnik benennen, sinnvoll absolvieren sowie beurteilen und planen.

Hierzu erfolgt zunéchst die deskriptive statistische Analyse und Interpretation der Er-
gebnisse von Vor- und Nachtest zu Cluster I im Vergleich. Ferner wird fiir diesen Bereich

ein induktiver Mittelwertvergleich mittels t-Test vorgenommen.

206

Ergebnis Cluster 1
(max Punkte = 36)

Proband Ergebnis Vortest Ergebnis Nachtest Vergleich

Kiirzel nominal ‘ prozentual | nominal ‘ prozentual || Tendenz
ANO05 12,5 34,72% 13 36,11% +1,39%
NIO6 17 47,22% 27 75,00% +27,78%
IR14 10 27,78% 12,5 33,33% +5,56%
JJ13 10 27,78% 16 44,44% +16,67%
0104 8 22,22% 22 61,11% +38,89%
AR16 14 38,80% 22 61,11% +22,22%
OA27 14 38,89% 11 30,56% -8,33%
LG18 15 41,67% 10,5 29,17% -12,50%
AB26 16 44,44% 21 58,33% +13,89%
EI06 14,5 40,28% 15,5 43,06% +2,78%
EA26 9,5 26,39% 23 63,89% +37,50%
AG15 13 36,11% 25 69,44% +33,33%
ES29 14 38,89% 29 80,56% +41,67%
ORO1 17,5 48,61% 12 33,33% -15,28%
EA05 12,5 34,72% 18,5 51,39% +16,67%
ILO8 14,5 40,28% 16 44,44% +4,17%
AG12 15 41,67% 13 36,11% -5,56%
ARO1 14,5 40,28% 15,5 43,06% +2,78%
UG23 18 50,00% 19 52,78% +2,78%
LE06 11 30,56% 18 50,00% 19,44%

[arithm. Mittel | 13,525 | 37,57% [17,95 49,86% || +12,29% |

Tabelle 7.2.: Ergebnisse zu Aufgabencluster 1

Deskriptive statistische Analyse

Die obige Tabelle zeigt die Ergebnisse aller Probanden zu Aufgabencluster 1. Analog der
Tabelle 7.1 zu den Gesamtergebnissen, beinhaltet die Spalte Proband die Kennungen fiir
die Probanden. Innerhalb der Spalten Vortest und Nachtest werden wiederum die nomi-
nal und prozentual erreichte Punktzahl der einzelnen Probanden im Vortest und Nachtest
aufgefiihrt. Innerhalb der Spalte Vergleich/Tendenz wird die Differenz zwischen antei-
lig erreichter Punktzahl fiir das Aufgabencluster 1 im Nachtest (Minuend) und anteilig
erreichter Punktzahl im Vortest (Subtrahend) berechnet.

Im Vortest haben die Probanden durchschnittlich 37, 57% der moglichen Punkte erreicht.
Im Nachtest erreichten sie 49, 86% der Punkte. Folglich haben die Probanden im Nachtest
im Mittel ca. 12,29% mehr Punkte erreicht als im Vortest.

207

Um auch fiir das Aufgabencluster 1 die Verteilung der Probanden im Hinblick auf die
jeweils erreichte Punktzahl im Kompetenztest zu illustrieren, werden wiederum zwei Hi-
stogramme dargestellt. Auch hier wird die Haufigkeitsverteilung mit der jeweiligen Anzahl
der Probanden auf der Ordinate und auf der Abszisse, die prozentual erreichte Punkt-
zahl dargestellt. Um den Vergleich von Vor- und Nachtest zu verdeutlichen, werden die

entsprechenden Histogramme nebeneinander aufgefiihrt.

Vortest Nachtest
9 9
8 8
7 7
c c
56 gs
: ;
.g 5 g 5
L4 24
£ £
m o
£31 g3
<
2 4 2
11 1
0 - T 1 0
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Anteilig erreichte Punktzahl Anteilig erreichte Punkzahl
Mittelwert 37,57% Mittelwert 49,86%

Tendenz: /H\ 12,29%

Abbildung 7.7.: Cluster 1 - Vor- und Nachtest im Vergleich

Bei Betrachtung der Histogramme zum Aufgabencluster 1 wird deutlich, dass sich die
Leistung der Probanden merklich verbessert hat. Im Vortest gab es nur einen Proban-
den der 50 % der Punkte oder mehr erreicht hatte. Im Nachtest hingegen hat sich eine
deutliche Verbesserung ergeben: Hier haben vier Probanden mehr als 50 % der Punkte
erreicht und vier weitere Probanden mehr als 60 % erreicht. Es gab sogar jeweils einen
Probanden mit mehr als 70% und mehr als 80% der erreichten Punkte.

Dieser Zuwachs kénnte damit zusammenhéngen, dass vor, wihrend und nach der Unter-
richtseinheit stets Wert darauf gelegt wurde, die aktuelle Phase des Software-Engineering
Prozesses zu besprechen und den weiteren Prozessverlauf abzustimmen. Hierbei wurde
beispielsweise innerhalb der Testphase ein Riickgriff auf die Anforderungsdefinition ge-

macht, um zu priifen, ob alle funktionalen Anforderungen korrekt umgesetzt wurden.

Induktive statistische Analyse

Die Daten der Auswertungstabellen zum Vor- und Nachtest wurden auch fiir die Er-
gebnisse des Clusters 1 mithilfe des t-Tests darauthin untersucht, ob sie sich statistisch

signifikant voneinander unterscheiden.

208

Bei der Durchfiithrung des t-Tests wurde wiederum eine Sicherheitswahrscheinlichkeit von
5% (a = 0.05) festgelegt.

Statistik bei gepaarten Stichproben

Mittelwert | N | Standardabweichung | Standardfehler
des Mittelwertes
Clusterl (VT) 13,5250 20 2,73609 ,61181
Clusterl (NT) 17,9500 20 5,45773 1,22039

Korrelation bei gepaarten Stichproben

H N ‘ Korrelation ‘ Signifikanz ‘

| Clusterl (VT) & Clusterl (NT) [20| 054 |

822 |

Test bei gepaarten Stichproben

Gepaarte Differenzen

Mittelwert | Standardabweichung | Standardfehler
des Mittelwertes
Vortest - Nachtest | —4,42500 6,23503 1,39420
Test bei gepaarten Stichproben
Gepaarte Differenzen T

95% Konfidenzintervall der Differenz

Untere ‘

Obere

‘ Clusterl (VT) - Clusterl (NT) H

~7,34309 |

—1,50691 | 3,174 |

Test bei gepaarten Stichproben

| at | sig. (2-seitig) |

| Clusterl (VT) - Clusterl (NT) [19| 005 |

Die statistische Auswertung liefert ein hochsignifikantes Ergebnis®. Das bedeutet, dass

die Mittelwertunterschiede zwischen dem Vor- und dem Nachtest {iberzufillig also als

systematisch interpretiert werden konnen. Da der Mittelwert fiir den Vortest kleiner

ausfillt als der fiir den Nachtest kann man behaupten, dass sich die Werte zum zweiten

Messzeitpunkt systematisch verbessert haben.

3 < 0,001 : hochst signifikant | o < 0,01 : hoch signifikant | o < 0,05 : signifikant

209

7.3.2. Cluster 2 - Aufgaben zur Dekonstruktion von IS

Analog zum Aufgabencluster 1 sollen fiir das Aufgabencluster 2 die Ergebnisse der Aus-
wertung dargestellt werden. Dieser Aufgabenbereich umfasst Kompetenzen zur Analyse
von Informatiksystemen. Dies beinhaltet die Ableitung von funktionalen Anforderungen
bis hin zur Feinanalyse eines Gegenstandbereichs unter Zuhilfenahme der entsprechenden
UML-Notation. Hierbei spielen implementierungsspezifische Details bei der Modellierung
eine untergeordnete Rolle und sind lediglich fiir das Re-Engineering des Quellcodes eines
bestehenden Informatiksystems relevant.

Zunichst erfolgt die deskriptive statistische Analyse und Interpretation der Ergebnisse
von Vor- und Nachtest zu Cluster 1 im Vergleich. Ferner wird fiir diesen Bereich ein

induktiver Mittelwertvergleich mittels t-Test durchgefiihrt.

210

Ergebnis Cluster 2
(max Punkte = 57)

Proband Ergebnis Vortest Ergebnis Nachtest Vergleich
Kiirzel nominal ‘ prozentual | nominal ‘ prozentual || Tendenz
ANO05 25 43,86% 43 75,44% +31,58%
NIO6 36 63,16% 32 56,14% -7,02%
IR14 40 70,18% 43 75,44% +5,26%

JJ13 22 38,60% 30 52,63% +14,04%
0104 41 71,93% 46 80,70% +8,77%
ARI16 31 54,39% 46,5 81,58% +27,19%
OA27 36 63,16% 43,5 76,32% +13,16%
LG18 38,5 67,54% 30,5 53,51% -14,04%
AB26 46 80,70% 45 78,95% -1,75%

EI06 46 80,70% 45 78,95% -1,75%

EA26 35 61,40% 44 77,19% +15,79%
AG15 37 64,91% 43 75,44% +10,53%
ES29 27,5 48,25% 36 63,16% +14,91%
ORO1 36,5 64,04% 22,5 39,47% -24,56%
EA05 33 57,89% 26 45,61% -12,28%
ILO8 23,5 41,23% 23 40,35% -0,88%

AG12 40,5 71,05% 31,5 55,26% -15,79%
ARO1 34 59,65% 38 66,67% +17,02%
UG23 32,5 57,02% 39 68,42% +11,40%
LE06 37 64,91% 20 35,09% -29,82%

| arithm. Mittel | 34,9 61,23% | 36,375 63,82% || +2,59% |

Tabelle 7.3.: Ergebnisse zu Aufgabencluster 2

Deskriptive statistische Analyse

Im Vortest haben die Probanden durchschnittlich 61,23% der moglichen Punkte erreicht.
Im Nachtest erreichten sie 63, 82% der Punkte. Folglich haben die Probanden im Nachtest
im Mittel ca. 2,59% mehr Punkte erreicht als im Vortest.

Zur Illustration der Verteilung der Probanden im Vergleich von Vor- zu Nachtest werden
wiederum zwei Histogramme dargestellt. Auch hier wird die Haufigkeitsverteilung mit der
jeweiligen Anzahl der Probanden auf der Ordinate und auf der Abszisse die prozentual
erreichte Punktzahl dargestellt. Um den Vergleich von Vor- und Nachtest zu verdeutlichen

werden die entsprechenden Histogramme nebeneinander aufgefiihrt.

211

Vortest Nachtest

8 8
7 7
c 6 c b
i B
5 m
2 a
£ 24
§3 g3
E 2 E 2
1 1
] 0
0% 10% 20% 30% 40% 5S0% 60% 70% 80% 90% 100% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Anteilig ereichte Punktzahl Anteilig erreichte Punktzahl
Mittelwert 61,23% Mittelwert 63,82%

Tendenz: /]\‘ 2,59%
Abbildung 7.8.: Cluster 2 - Vor- und Nachtest im Vergleich

Wie innerhalb der Ergebnistabelle zu Cluster 2 zu entnehmen ist, hat sich im Nachtest
im Vergleich zum Vortest lediglich ein Zuwachs von 2,59 % ergeben. Betrachtet man
die Verteilung der Probanden beim Vergleich der Histogramme, fillt auf, dass sich die
Verteilung kaum gedndert hat.

Das konnte aus Sicht des Autors damit zusammenhéngen, dass die Lernenden gute Vor-
kenntnisse in der Analyse von Informatiksystemen haben und innerhalb der Unterrichts-
reihe der Fokus vielmehr auf der Konstruktion von Informatiksystemen gelegen hat. Zwar
wurde das Fallbeispiel Kommissionierstation (dargestellt durch verschiedene mediale Re-
prisentationsformen) analysiert, jedoch lag der Fokus eindeutig auf der Konstruktion und
der Erweiterung des Systems.

Im Folgenden muss iiberpriift werden, ob der Kompetenzzuwachs zufillig oder systema-

tisch war. Dementsprechend wird ein t-Test zum Mittelwertvergleich durchgefiihrt.

Induktive statistische Analyse

Die Daten der Auswertungstabellen zum Vor- und Nachtest wurden auch fiir die Ergeb-
nisse des Clusters 2 mithilfe eines t-Tests daraufhin untersucht, ob sich die Mittelwerte
der erreichten Punktzahl statistisch signifikant voneinander unterscheiden.

Bei der Durchfiihrung des t-Tests wurde wiederum eine Sicherheitswahrscheinlichkeit von
5% (o = 0.05) festgelegt.

212

Statistik bei gepaarten Stichproben

Mittelwert | N | Standardabweichung | Standardfehler
des Mittelwertes
Cluster2 (VT) 34,9000 20 6,65820 1,48882
Cluster2 (NT) 36,3750 20 8,76427 1,95975

Korrelation bei gepaarten Stichproben

H N ‘ Korrelation ‘ Signifikanz ‘

’ Cluster2 (VT) & Cluster2 (NT) H 20 ‘ ,308 ‘

187 |

Test bei gepaarten Stichproben

Gepaarte Differenzen

Mittelwert | Standardabweichung | Standardfehler
des Mittelwertes
Vortest - Nachtest | —1,47500 9,23306 2.06457
Test bei gepaarten Stichproben
Gepaarte Differenzen T

95% Konfidenzintervall der Differenz

Untere ‘

Obere

[Cluster2 (VT) - Cluster2 (NT) |

~5,79620 |

—92,84620 | 714 |

Test bei gepaarten Stichproben

H df ‘ Sig. (2-seitig) ‘

’ Cluster2 (VT) - Cluster2 (NT) H 19 ‘ ,484 ‘

Die statistische Auswertung liefert ein nicht signifikantes Ergebnis?. Das bedeutet, dass

die Mittelwertunterschiede zwischen dem Vor- und dem Nachtest wahrscheinlich zufillig
sind. Obwohl der Mittelwert fiir den Vortest kleiner ausfillt als der fiir den Nachtest

kann nicht behauptet werden, dass sich die Ergebnisse des Clusters 2 zum Nachtest

systematisch verbessert haben.

*a < 0,001 : hochst signifikant | o < 0,01 : hoch signifikant | o < 0,05 : signifikant

213

7.3.3. Cluster 3 - Aufgaben zur Konstruktion von IS

Abschliefend werden die Ergebnisse fiir das Aufgabencluster 8 (Aufgaben zur Konstrukti-
on von Informatiksystemen) dargestellt. Dieser Aufgabenbereich fokussiert Kompetenzen
zum Design und zur Gestaltung eines neuen Informatiksystems. Dies umfasst im Gegen-
satz zu den Aufgaben in Cluster 2 vorrangig das konkrete Losungsdesign eines Informa-
tiksystems bzw. dessen Bestandteilen und die konkrete Implementierung auf Grundlage
von Design-Modellen in UML-Notation. Hierbei liegt der Fokus bei der Modellierung auf
Modellen mit implementierungsspezifischen Details. Neben der Konstruktion von Infor-
matiksystemen adressieren die Aufgaben aus Cluster 3 ebenso den Test eines Informa-
tiksystems.

Zur Analyse der Testergebnisse im Aufgabencluster 3 erfolgt zunéchst die deskriptive
statistische Analyse und Interpretation der Ergebnisse von Vor- und Nachtest zu Cluster
1 im Vergleich. Ferner wird auch fiir diesen Bereich ein induktiver Mittelwertvergleich
mittels t-Test durchgefiihrt.

214

Ergebnis Cluster 3
(max Punkte = 79)

Proband Ergebnis Vortest Ergebnis Nachtest Vergleich
Kiirzel nominal ‘ prozentual | nominal ‘ prozentual || Tendenz
ANO05 39,5 50,00% 40 50,63% +0,63%
NIO6 46,5 58,86% 46,5 58,86% +0,00%
IR14 11,5 14,56% 35,5 44,94% +30,38%

JJ13 15 18,99% 50 63,29% +44,30%
0104 35 44,30% 46 58,23% +13,92%
ARI16 10,5 13,29% 37 46,84% +33,54%
OA27 26,5 33,54% 63,5 80,38% +46,84%
LG18 18 22,78% 33 41,77% 18,99%

AB26 12,5 15,82% 63,5 80,38% +64,56%
EI06 14 17,72% 58 80,38% +55,70%
EA26 69,5 87,97% 64,5 81,65% -6,33%

AG15 67 84,81% 76 9,20% +11,39%
ES29 54 68,35% 65 82,28% +11,39%
ORO1 22 27,85% 60 75,95% +48,10%
EA05 19,5 24,68% 55,5 70,25% +45,57%
ILO8 14,5 18,35% 45 56,96% +38,61%
AG12 70,5 89,24% 57,5 72,78% -16,46%
ARO1 38,5 48,73% 64,5 81,65% +32,91%
UG23 42,5 53,80% 75,5 95,57% +41,77%
LE06 66 83,54% 41,5 52,53% -31,01%

[arithm. Mittel | 34,65 43,86% | 53,9 68,23% | +24,37% |

Tabelle 7.4.: Ergebnisse zu Aufgabencluster 3

Deskriptive statistische Analyse

Im Vortest haben die Probanden durchschnittlich 43, 86% der moglichen Punkte erreicht.
Im Nachtest erreichten sie 68, 23% der Punkte. Folglich haben die Probanden im Nachtest
im Mittel ca. 24,37% mehr Punkte erreicht als im Vortest.

Wie erwartet hat bei den Ergebnisse zum Aufgabencluster 3 der gréfte Zuwachs an
Punkten im Nachtest im Vergleich zum Vortest stattgefunden.

Um die Verteilung der Probanden im Hinblick auf die jeweils erreichte Punktzahl im
Kompetenztest zu illustrieren, zeigen die bereits fiir die anderen Aufgabencluster ver-
wendeten Histogramme die Haufigkeitsverteilung. Wie zuvor enthalten sie auf der Ordi-

nate die jeweilige Anzahl der Probanden und auf der Abszisse die prozentual erreichte

215

Punktzahl. Um dariiber hinaus die Verteilung von Vor- und Nachtest zu vergleichen, wer-
den die beiden Histogramme fiir Vortest (Histogramm mit blauen Balken) und Nachtest

(Histogramm mit roten Balken) nebeneinander dargestellt.

Vortest Nachtest

7 7

6 6
£ 5 €5
2 2
£ £
5 s |-
2 2
a -
= 3 =3
©]
[g
c 2
< 2 <2

1 1

o 0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Anteilig erreichte Punktzahl Anteilig erreichte Punktzahl
Mittelwert 43,86% Mittelwert 68,23%
Tendenz: P 2437%

Abbildung 7.9.: Cluster 3 - Vor- und Nachtest im Vergleich

Bei Betrachtung der Histogramme wird deutlich, dass sich die Leistung der Probanden
erheblich verbessert hat. Im Vortest haben die Hélfte der Probanden weniger als 40 % der
Punkte erreicht. Im Nachtest hingegen haben alle Probanden deutlich besser abgeschnit-
ten: In diesem Zusammenhang hat jeder Proband mehr als 40 % der Punkte erreicht.
Dieser Zuwachs von tiber 24% der Punkte im Nachtest bestétigt die Vermutung, dass das
Instrument genau bei diesem Aufgabencluster einen besonders hohen Kompetenzzuwachs
aufzeigt. Bestirkt wird diese Folgerung auch durch die Tatsache, dass im Nachtest mehr
als die Halfte der Probanden 70% oder mehr der Punkte erreicht haben und somit eine
fast vollstdndige Bearbeitung der Aufgaben des Clusters 3 geleistet haben.

Dieser erhebliche Zuwachs lasst sich dadurch erkliren, dass die Unterrichtsreihe beson-
ders jene Modellierungskompetenzen anspricht, die die Entwicklung eines Informatik-
systems adressieren. Als zentraler thematischer Schwerpunkt waren die Probanden hier
angehalten, einen komplexen und zeitlich umfinglichen Auftrag zur Erweiterung der
Kommissionierstation durchzufiihren. Hier mussten Anderungen an der Softwarearchi-
tektur modelliert werden, um neue Sensoren und Aktoren in das Informatiksystem zu
integrieren. Ferner galt es in diesem Zusammenhang unbekannte Programmschnittstel-
len anzusprechen und die dazugehorigen Software-Module sinnvoll in das Gesamtsystem
zu integrieren. Die Lernenden waren weiterhin gefordert, die daraus resultierenden neu-
en Quellcode Fragmente so in das Gesamtsystem zu integrieren, dass die Gesamtlésung

weiterhin lauffihig bleibt.

216

Die Probanden erfuhren durch die dargebotenen unterschiedlichen medialen Représen-
tationsformen einen Perspektivwechsel auf das Informatiksystem und mussten die tech-
nischen Anpassungen im Modell auf die Modellanpassungen und Quellcodeanpassungen
iiberfithren. Die Probanden haben in diesem Kontext auch technische Anderungen am
LEGO Mindstorms-Modell vorgenommen und in Design-Modelle (z.B. State-Charts) mit
implementierungsspezifischen Details iiberfiihrt. Die Designmodelle wurden wiederum in
objektorientierten Quellcode libersetzt. Konkret haben die Probanden hierbei Klassen-
diagramme mit Assoziationen und Vererbungsstrukturen in Java-Quellcode iibersetzt.
Insgesamt ergibt sich also bei dem Lehr-/Lernarrangement ein sehr starker Fokus auf die
Konstruktion und Entwicklung von Informatiksystemen.

Unter der Annahme, dass die durchgefithrte Unterrichtsreihe Modellierungskompetenz
fordert, konnten diese Ergebnisse einen Hinweis darauf geben, dass sich mit dem verwen-

deten Instrument ein Kompetenzzuwachs messen lasst.

Induktive statistische Analyse

Die Daten der Auswertungstabellen zum Vor- und Nachtest wurden auch fiir die Ergeb-
nisse des Clusters 3 mithilfe eines t-Tests daraufhin untersucht, ob sich die Mittelwerte
der erreichten Punktzahl statistisch signifikant voneinander unterscheiden.

Bei der Durchfithrung des t-Tests wurde wieder eine Sicherheitswahrscheinlichkeit von
5% (o = 0.05) festgelegt.

Statistik bei gepaarten Stichproben

Mittelwert | N | Standardabweichung | Standardfehler
des Mittelwertes

Cluster3 (VT) 34,6500 20 21,40530 4,78637

Cluster3 (NT) 53,9000 20 12,92957 2,89114

Korrelation bei gepaarten Stichproben

‘ H N ‘ Korrelation ‘ Signifikanz ‘
| Cluster3 (VT) & Cluster3 (NT) [20| 390 | 089 |

217

Test bei gepaarten Stichproben

Gepaarte Differenzen

Mittelwert | Standardabweichung | Standardfehler
des Mittelwertes
Cluster3 (VT) - Cluster3 (NT) | —19,25000 20,22993 452355
Test bei gepaarten Stichproben
Gepaarte Differenzen T
95% Konfidenzintervall der Differenz
Untere ‘ Obere

| Clusterl (VT) - Clusterl (NT) | 2871790 | —9,78210 | 4,256 |

Test bei gepaarten Stichproben

‘ H df ‘ Sig. (2-seitig) ‘
| Cluster3 (VT) - Cluster3 (NT) [19| 000 |

Die statistische Auswertung des Aufgabenclusters § liefert ein héchstsignifikantes Ergeb-
nis®. Das bedeutet, dass die Mittelwertunterschiede zwischen dem Vor- und dem Nachtest
systematisch sind. Da der Mittelwert fiir den Vortest hier deutlich kleiner ausfillt als der
fiir den Nachtest kann man behaupten, dass sich die Werte zum zweiten Messzeitpunkt
systematisch verbessert haben. Dementsprechend scheint das Messinstrument in der Lage

zu sein, einen Kompetenzzuwachs aufzuzeigen.

7.4. Zusammenfassung

Im Rahmen dieses Kapitels wurden die Ergebnisse zur Erprobung des Messinstruments
beschrieben.

Zur Uberpriifung der Hypothesen H1 und H2 erfolgte sowohl eine deskriptive statistische
Analyse der Ergebnisse als auch ein induktives Verfahren in Form eines t-Tests, um
die statistische Signifikanz der Ergebnisse des Nachtests im Vergleich zum Vortest zu
untersuchen.

Im Hinblick auf das Gesamtergebnis und den Mittelwertvergleich von Vor- und Nachtest,
bei dem sich ein Zuwachs von 14,62 % ergeben hat, zeigen die deskriptiven und induktiven

Ergebnisse, dass das Messinstrument in der Lage ist, die positiven Verdnderungen beim

% € 0,001 : hochst signifikant | o < 0,01 : hoch signifikant | o < 0,05 : signifikant

218

Nachtest im Vergleich zum Vortest zu messen. Demzufolge wurde die Hypothese HI

akzeptiert.

Test bei gepaarten Stichproben

T df Sig. S2—seitig!

Paaren 1 Gesamtergebnis (VT) - -4.847 19 000
Gesamtergebnis (NT)
Paaren 2 Ergebnis Cluster 1 (VT) -
Ergebnis Cluster 1 (NT)
Paaren 3 Ergebnis Cluster 2 (VT) - -, 714 19 484
)
) -
)

-3,174 19 ,005

Ergebnis Cluster 2 (NT
Paaren 4 Ergebnis Cluster 3 (VT
Ergebnis Cluster 3 (NT

-4,256 19 ,000

Abbildung 7.10.: Ergebnisse des t-Test im Vergleich 1/2

Bei Betrachtung der Ergebnisse zu den Aufgabenclustern I bis 3 konnten die in H2 aufge-
stellten Vermutungen bestéatigt werden, dass die Unterrichtsreihe insbesondere diejenigen
Modellierungskompetenzen fordert, die zur Konstruktion von Informatiksystemen erfor-
derlich sind. Hierbei hat sich innerhalb der deskriptiven statistischen Analyse gezeigt,
dass beim Aufgabencluster 1 (Aufgaben zu Vorgehensmodellen in der Softwaretechnik)
ein durchschnittlicher Zuwachs von 12,29% stattgefunden hat. Dieser Zuwachs konnte da-
mit zusammenhéngen, dass wahrend der Unterrichtsreihe stets Wert darauf gelegt wurde,
die aktuelle Phase des Software-Engineering Prozesses zu besprechen und den weiteren
Prozessverlauf abzustimmen. Beim Aufgabencluster 2 (Aufgaben zur Dekonstruktion von
IS) wurde lediglich ein Zuwachs von 2,59% gemessen. Dies konnte insbesondere daran ge-
legen haben, dass die Schiilerinnen und Schiiler gute Vorkenntnisse in der Analyse von
Informatiksystemen hatten und innerhalb der Unterrichtsreihe der Fokus eher auf der
Konstruktion von Informatiksystemen gelegen hat. Wie erwartet wurde der deutlichs-
te Zuwachs bei dem Aufgabencluster 8 (Aufgaben zur Konstruktion von IS) gemessen.
Hierbei haben sich die Probanden im Nachtest durchschnittlich um 24,37% im Gegensatz
zum Vortest verbessert. Der enorme Zuwachs erklart sich durch die starke Fokussierung
der Unterrichtsreihe auf Modellierungskompetenzen, die mit der Entwicklung eines In-
formatiksystems zu tun haben. Der grofite thematische Schwerpunkt war die Anpassung
und Entwicklung der technisch erweiterten Kommissionierstation.

Neben diesen Ergebnissen und den Riickschliissen aus der deskriptiven statistischen Ana-

219

lyse, wurde auch mit dem t-Test gezeigt, dass der Zuwachs bei dem Aufgabencluster 3
im Vergleich zu den Clustern I und 2 das hochste Signifikanzniveau aufweist. Wie in der
folgenden Tabelle dargestellt, ist der Zuwachs bei den Aufgaben des Clusters 3 héchst-
signifikant, wobei der Zuwachs beim Cluster I signifikant und der Zuwachs von Cluster
2 keine Signifikanz aufweist®.

Da sich dieses Signifikanzniveau auch implizit in der Gewichtung der einzelnen Themen
innerhalb der Unterrichtsreihe widerspiegelt, ist davon auszugehen, dass das Messinstru-
ment in dem vorliegenden Setting in der Lage ist, messtechnisch zu differenzieren. Folglich

wird auch die Hypothese H2 akzeptiert.

Test bei gepaarten Stichproben

T df Sig. (2-seitig)
Paaren 1 Gesamtergebnis (VT) - -4,847 19 ,000

Gesamtergebnis (NT)
Paaren 2 Ergebnis Cluster 1 (VT) -
Ergebnis Cluster 1 (NT)
Paaren 3 Ergebnis Cluster 2 (VT) - -, 714 19 ,484
)
) -
)

-3,174 19 ,005

Ergebnis Cluster 2 (NT
Paaren 4 Ergebnis Cluster 3 (VT
Ergebnis Cluster 3 (NT

-4,256 19 ,000

Abbildung 7.11.: Ergebnisse des t-Test im Vergleich 2/2

5 < 0,001 : hochst signifikant | o < 0,01 : hoch signifikant | o < 0,05 : signifikant

220

8. Fazit und Weiterfiihrende

Forschungsfragen

2
z s
k-l (Prsa,Tinms,]
3
b
Se
=
St Kompetenzorerterun
)
g3
>
(Thematischer Schwerpunkt der Dissertation |
| 3
3 |
E
| g
: |
< I3 (theorstisch)
| 5 |
5
K
| ef P — |
T2 (empirisch]
| T
az |
i
SWE Vorgehensmodail s X ul
1P rom=l 3 |
£]
I 2 3
g |
a fachwissenschaftlich £
£ 5
2 5 |
g Fachdidabtc ‘ ‘ 3
1E = esment |
T fachdidaktisch w2 tementwrickiung
BE e
l12% EF
=3 82
-5 x 0
=2 e [
ze {00M + Robotik]
152 [
£5
| H
5
H |
" = Entwicklung
| Theoretische Grundlage & sl I
§w
| £t |
=t Kompetenzmessungen
| BE mvergeicn |
4
| 23 I)
Ergebnisse
o
2
:E Kompetenzstrukturmodell
g (Modellierung)
€
$
]
: i
S5
g
ER
=¥ Statistische Ergebnisse
3 2 (Erprobung)
a £
g8

Abbildung 8.1.: Kapitel 8 im Gesamtkontext der Arbeit

221

8.1. Zu Forschungsfrage 1

SWelche kognitiven und nicht-kognitiven Facetten umfasst informatische Modellierungs-

kompetenz? (Entwicklung eines Kompetenzstrukturmodells)“

Im Rahmen der Kapitel 4 und 5 wurde die Entwicklung eines empirisch gesicherten
Kompetenzmodells fiir informatisches Modellieren aufgezeigt. Dieses umfasst die kogni-
tiven und nicht-kognitiven Facetten informatischer Modellierungskompetenz. Neben der
theoretisch-normativen Ableitung von Kompetenzaspekten zur Modellierung konnten mit
Hilfe der Experteninterviews wertvolle Hinweise zur Uberarbeitung der Dimensionen er-
langt werden. Die folgende Abbildung 8.2 illustriert den Prozess der empirischen Ver-
feinerung der Kompetenzdimension K1.3 Systemgestaltung. Die Abbildung 8.3 stellt das
gesamte empirisch iiberarbeitete Kompetenzmodell fiir informatische Modellierung und
Systemverstdndnis dar. Die fiir die informatische Modellierung relevanten Dimensionen,
deren Entwicklungsprozess in Abbildung 8.2 dargestellt wurde, ist in Abbildung 8.3 rot
hervorgehoben.

Das resultierende, empirisch verfeinerte Kompetenzstrukturmodell und die dazugehd-
rigen Kategoriendefinitionen waren eine wichtige Voraussetzung zur Entwicklung von

Aufgabenitems sowie deren inhaltlicher Fokussierung.

222

v

uay @510/ saAnela)| Q

4)
~

— I —— |

Sunisnuawsajdw . —

udisaq g ashjeuy m I

usisa asAjeu

asAjeuesSuniapaiojuy . T

3unye1sadwa1sAs € T

[|ISPOIA SOHBUIDHIA 3unJaulajIap B lI°pPON
yasiidw3 sunjnuid ayosuidwy sayasiia1oay|l

:siuqgas43 (€ r95e|ssuessny (1)

Abbildung 8.2.: Prozess zur empirischen Verfeinerung des Teilmodells Modellierung

223

ypeqIaneys

unJaps X |
3IN3u ANy IN3YUILO - (zield pun u27) agewsieyxajdwoy
uazuajadwoy
OA pUn 3EUOENION

1ENX2[dWoY YOSLoIBUIqLIDY

I}EI23U] J3P pel
124F1YEjWEa] pUn UOKEI e
UaZUSIAAWOY SARENIUNWILION-{BIZOS

WI2LI2A SNSI3A (Y0

uajuaucdwoy 13p Funziauiap 13p peln

uaBunj23sur
lIS3=ua uajuauodwoy J13p [Yezuy

WsuauU|

uafuniapio

uspuIMUE Walshs

Uazua1adWoy SAIIUSOY-1YDIN #3

1euxs|dwoy uw Suedwin €3

U33Y2IS Jayasnewiolul Sunzann gy

aydzIaquagesiny T

irisch Verfeinertes Kompetenzstrukturmodell

Emp

Abbildung 8.3.

224

8.2. Zu Forschungsfrage 2

LLasst sich ein Zuwachs an informatischer Modellierungskompetenz messbar machen?

(Entwicklung und Erprobung eines Messinstruments)

Innerhalb des Kapitels 6 wurde auf Grundlage des empirisch gesicherten Kompetenzmo-
dells die Entwicklung des Messinstruments fiir informatische Modellierungskompetenz
dargestellt. Neben der eigentlichen Entwicklung kam die Frage auf, wie eine erste Erpro-
bung des Instruments erfolgen konnte. Dementsprechend wurde ein Lehr-/Lernarrangement
auf theoretischer Grundlage des Informatik Lernlabors entwickelt.

Unter der Annahme, dass das entwickelte Lehr-/Lernarrangement Kompetenzen in der
informatischen Modellierung fordert, wurden die folgenden Hypothesen zur Tauglichkeit

des Instruments, Kompetenzzuwichse zu messen, angefiihrt.

Hypothese H1:

Das Messinstrument zeigt einen systematischen Kompetenzzuwachs der Ler-

nenden beim Nachtest im Vergleich zum Vortest auf.

Die deskriptive statistische Analyse zeigt eine durchschnittliche Verbesserung der Punkt-
zahl der Probanden von Nachtest im Vergleich zu Vortest von 14,62%. Dariiber hinaus
liefert auch die statistische Auswertung mittels des t-Tests ein hochstsignifikantes Er-
gebnis'. Da der Mittelwert fiir den Vortest geringer ist als der des Nachtests, lisst sich
behaupten, dass sich die Werte zum zweiten Messzeitpunkt systematisch verbessert ha-
ben. Somit hat sich das Instrument im Kontext des beschriebenen Untersuchungssettings
als tauglich erwiesen Kompetenzzuwichse zu messen. Die Hypothese HI wird somit be-
statigt.

Neben dem Gesamtergebnis der Erprobung wurde gepriift, welche Kompetenzbereiche
einen besonders hohen Kompetenzzuwachs aufzeigen und welche weniger.

In Anlehnung an die Phasen des ILL wurde eine phasenabhéngige Biindelung der Auf-
gaben in sog. Aufgabencluster vorgenommen. Anhand der Inhalte und der zu férdernden
Kompetenzen der Unterrichtsreihe wurden drei Aufgaben-Cluster gebildet die den einzel-

nen Phasen der in der Lerneinheit geférderten Kompetenzbereiche zugeordnet wurden.

1. Cluster 1: Allgemeine Kompetenzen zu Vorgehensmodellen in der Softwaretechnik
(Biindelung der Aufgaben 1,2,3)

' < 0,001 : hochst signifikant | o < 0,01 : hoch signifikant | o < 0,05 : signifikant

225

2. Cluster 2: Kompetenzen fiir die Dekonstruktion und Analyse von Informatiksyste-
men (Biindelung der Aufgaben 4,5,6)

3. Cluster 3: Kompetenzen fiir die Konstruktion von Informatiksystemen (Biindelung
der Aufgaben 7,8,9,10)

Aufgrund der besonderen Fokussierung und der Konstruktionsphase wurde ein Kompe-
tenzzuwachs insbesondere bei Cluster & im Vergleich zu Cluster I und Cluster 2 erwartet.
Demzufolge sollte das Instrument insbesondere fiir diesen Kompetenzbereich einen deut-
lichen Kompetenzzuwachs messen kénnen. Die Hypothese H2 fasst den Sachverhalt in

eine Aussage, die es zu liberpriifen galt, zusammen:

Hypothese H2:

Das Messinstrument zeigt einen systematischen Kompetenzzuwachs bei dem
Aufgabencluster 3 (Konstruktion von IS) auf. Dieser ist gréfier als der Kom-
petenzzuwachs bei den Aufgabenclustern 1 (allgemeine Aufgaben zu Vorge-

hensmodellen in der Softwaretechnik) und 2 (Dekonstruktion von IS).

Sowohl die deskriptive statistische Analyse als auch die Ergebnisse der t-Tests fithren
zur Bestitigung der Hypothese 2. Bei Betrachtung der Tabelle 8.1 ergibt sich bei den
Probanden ein durchschnittlicher Zuwachs von 24,37% der erreichbaren Punkte. Dieser
Wert liegt (wie erwartet) deutlich tiber dem Zuwachs beim Cluster 1 von 12,29% und
beim Cluster 2 von 2,59%. Diese durchschnittlichen Zuw#chse wurden dariiber hinaus mit
dem t-Test untersucht. Wie in Tabelle 8.1 dargestellt zeigt der t-Test, dass der Zuwachs
beim Cluster & nicht zufillig sondern systematisch ist. Hierbei ergibt sich fiir das Cluster

2

3 ein hochstsignifikantes Niveau”, wo hingegen Cluster I ein hochsignifikantes Niveau

und Cluster 2 als nicht signifikant einzustufen ist.

2, € 0,001 : hochst signifikant | o < 0,01 : hoch signifikant | o < 0,05 : signifikant

226

H Clusterl ‘ Cluster2 ‘ Cluster3 ‘

Vortest 3757% | 61,23% [43,86%

Nachtest 49.86% | 63,82% | 68,23%

Tendenz +12,29% | +2,59% | +24,37%
| Sign. (t-Test) | ,005 | ,484 | ,000 |

Tabelle 8.1.: Statistischer Vergleich von Vor- und Nachtest fiir die Cluster 1-3

Auf dieser Grundlage wird auch die Hypothese H2 bestitigt.

Die Bestdtigung der Hypothesen H1 und H2 beantwortet die Forschungsfrage 2: Das
Instrument scheint in dem vorgestellten Setting Kompetenzzuwéchse im Bereich der ob-
jektorientierten Modellierung messen zu kénnen. Dies gilt es allerdings in weiterfiihrenden
Forschungsvorhaben in breiten Erprobungen zu iiberpriifen. Im Rahmen dieser Disserta-
tion sind die Ergebnisse als Indiz fiir die Tauglichkeit des Instruments, welches weiterer

Uberarbeitung bedarf, anzusehen.

8.3. Weiterfiihrende Forschungsfragen

Die vorliegende Arbeit beschreibt die Resultate einer ersten Erprobung des Messinstru-
ments. Hierbei ist es mdglich einen statistisch signifikanten Kompetenzzuwachs im Ver-
gleich von Vor- und Nachtest zu messen. Voraussetzung ist, dass die verwendete Unter-
richtsreihe Modellierungskompetenz fordert.

Dieses noch nicht représentative Ergebnis muss in einer kiinftigen breiten Erprobung ve-
rifiziert werden. Hierfiir bedarf es einer groferen reprisentativen Stichprobenzahl. Es ist
somit erforderlich, mehr Lehrende und Schulklassen fiir weitergehende Kompetenzmes-
sungen zu gewinnen.

Die deskriptive statistische Auswertung der beiden Kompetenzmessungen hat gezeigt,
dass das Messinstrument hinsichtlich seines Umfangs iiberarbeitet und optimiert werden
muss. Insbesondere die letzten beiden Aufgaben des Instruments lassen erkennen, dass
die Aufgabensammlung offenbar zu umfangreich und innerhalb der vorgegebenen Zeit
von 90 Minuten kaum zu 16sen ist. Hier muss in weiteren Arbeitsschritten eine Kiirzung
des Instruments erarbeitet werden. Wahrscheinlich ist es sinnvoll, dass Messinstrument
in geeigneter Weise in Booklet-Form aufzuteilen. In diesem Zusammenhang sollte auch
gepriift werden, welche Aufgabentypen sich als besonders geeignet erwiesen haben und
somit vermehrt zu beriicksichtigen sind.

Die Unterrichtsreihe Kommissionierstation ist in der hochschuldidaktischen Praxis erfolg-

227

reich erprobt worden; die fiir die gymnasiale Oberstufe modifizierte Unterrichtsreihe muss
hinsichtlich ihrer Kompetenzforderlichkeit in weiteren Schritten iiberpriift werden. Hier-
bei sollten die verwendeten medialen Reprasentationsformen sowie die lernerzentrierten
Instruktionsformen mit beriicksichtigt werden, die bei der Planung der Unterrichtsreihe
als methodische Grundlage verwendet werden.

Im Gegensatz zu der ersten MoKoM Projektperiode haben sich die Entwicklungs- und
Forschungsarbeiten auf die Konzeption und empirisch gestiitzte Uberpriifung und Gene-
rierung eines Kompetenzstrukturmodells fiir informatisches Systemverstdndnis und Mo-
dellieren sowie die Konstruktion eines Instrumentariums zur Kompetenzmessung konzen-
triert. Aufbauend auf diesen Arbeiten soll in der zweiten Férderperiode das Strukturmo-
dell im Hinblick auf ein Kompetenzniveaumodell sowie in Ausschnitten auch in Bezug
auf ein Kompetenzentwicklungsmodell weiterentwickelt werden. Dariiber hinaus soll das
Instrumentarium zur Kompetenzmessung breit erprobt und weiterentwickelt sowie zwei
Anséitze zur Forderung des Kompetenzerwerbs mit einem Schwerpunkt auf informatisches
Systemverstdndnis einerseits und informatisches Modellieren andererseits hinsichtlich ih-
rer Wirkungen evaluiert werden.

Im Rahmen von fiinf Arbeitspaketen werden daher folgende Zielsetzungen bei MoKoM
11 verfolgt:

1. Breite empirische Erprobung des Instrumentariums zur Kompetenzmessung und

Uberpriifung der psychometrischen Giitekriterien des Verfahrens (Arbeitspaket PI),

2. Entwicklung eines Kompetenzniveaumodells fiir Informatisches Systemverstédndnis
und Modellieren (Arbeitspaket PII),

3. Analyse von bildungsbiographischen und unterrichtsbezogenen Einflussfaktoren des
Kompetenzerwerbs (Arbeitspaket PIII),

4. Konzeption und empirische Uberpriifung eines Kompetenzentwicklungsmodells zum
Informatischen Systemverstindnis sowie eines Kompetenzentwicklungsmodells zum
Informatischen Modellieren (Arbeitspaket PTV1.1, PIV1.2, PIV2.1 und PIV2.2),

5. Konzeption und Evaluation von Lehr-/Lernarrangements zur Férderung des Kom-
petenzerwerbs beim informatischen Modellieren (Arbeitspaket PIV2.1 und PIV2.3),

6. Erarbeitung von Implikationen aus den vorangegangenen empirischen Untersu-
chungsschritten fiir die fachdidaktische Theoriebildung und Weiterentwicklung von
Konzepten zur kompetenzférderlichen Unterrichtsgestaltung und praxisgerechten
diagnostischen Ansétzen (Arbeitspaket PV).

228

Um die vierte und fiinfte Zielsetzung zu erreichen, werden an den beiden Standorten
(Paderborn und Siegen) verschiedene informatikdidaktische Ansétze zur Férderung des
informatischen Systemversténdnisses einerseits und des informatischen Modellierung an-
dererseits genutzt und in die Schulpraxis implementiert. Dadurch werden unterschiedliche
Teilbereiche des gemeinsamen Kompetenzmodells unter jeweils spezifischen lerninhaltli-
chen und informatikdidaktischen Foki hinsichtlich Fragen zur Forderung des Kompeten-

zerwerbs in den Blick genommen und empirisch {iberpriift.

229

Literaturverzeichnis

[Tucker2006 2006] TUCKER, A. (Hrsg.): A Model Curriculum for K-12 Computer
Science: Final Report of the ACM K-12 Task Force Curriculum Committee,. 2nd Edi-
tzon. 2006

[ACM 2008] ACM: Computer Science Curriculum 2008: An Interim Revision of CS
2001 Report from the Interim Review Task / Association for Computing Machinery
[EEE Computer Society. 2008 (December). — Forschungsbericht

[Agile Alliance 2013] AGILE ALLIANCE: Agile Alliance Website. (2013). — URL
http://www.agilealliance.org/ (geprift: 18.02.2013)

[Balzert 2000] BALZERT, H.: Lehrbuch der Software-Technik: Software-Entwicklung. 2.
Auflage. Heidelberg : Spektrum Akademischer Verlag, 2000

[Baumann 1996] BAUMANN, R.: Didaktik der Informatik. 2. vollstindig neu bearbeitete
Auflage. Ernst Klett Verlag, 1996

[Baumert et al. 2000] BAUMERT, J. ; Bos, W. ; LEHMANN, R.: TIMSS/III. Dritte
Internationale Mathematik- und Naturwissenschaftsstudie. Mathematische und natur-
wissenschaftliche Bild, Bd.2, Mathematische und phys ... Kompetenzen am Ende der
gymnasialen Oberstufe. Leske + Budrich Verlag, 2000

[Beck und Klieme 2007] BEck, B. ; KLIEME, E.: Sprachliche Kompetenzen: Kon-
zepte und Messung: DESI-Studie (Deutsch Englisch Schiilerleistungen International).
Weinheim u.a. : Beltz, 2007

[Bennedsen und Caspersen 2005] BENNEDSEN, J. ; CASPERSEN, M.: Revealing the
programming process. In: ACM SIGCSE Bulletin (2005), S. S. 186-190

[Bischofberger und Pomberger 1992] BISCHOFBERGER, W. ; POMBERCER, G.:
Prototyping-oriented software development: Concepts and tools. Springer, 1992

230

[Brauer und Brauer 1992] BRAUER, W. ; BRAUER, U.: Wissenschaftliche Herausforde-
rungen fiir die Informatik: Anderungen von Forschungszielen und Denkgewohnheiten.
In: Informatik cui bono. Springer, 1992, S. S. 11-19

[Brinda 2004] BRINDA, T.: Didaktisches System fiir objektorientiertes Modellieren im
Informatikunterricht der Sekundarstufe 11. Universitit Siegen, Didaktik der Informatik
und E-Learning, Dissertation, 2004

[Bussmann und Heymann 1987 BussmanN, H. ; HEymMANN, H.: Computer und All-
gemeinbildung. In: Neue Sammlung I (1987), S. S. 2-39

[Chan et al. 2010] Cnan, C. ; Tsul, M.S. ; CHAN, M. ; HONG, Joe H. ; JoE, H.:
Assessment & Evaluation in Higher Education Applying the Structure of the Obser-

ved Learning Outcomes (SOLO) Taxonomy on Student ’ s Learning Outcomes : An
empirical study. (2010), Nr. November 2012, S. S. 37-41

[Claus und Schwill 2006] CrLAUS, V. ; SCHWILL, A.: Duden Informatik A-Z. Fachlexikon
fiir Studium, Ausbildung und Beruf. Mannheim : Dudenverlag, 2006

[Cognition and Technology Group at Vanderbilt 1994] COGNITION AND TECHNOLOGY
GROUP AT VANDERBILT: Multimedia environments for enhancing student learning in

mathematics. In: Technology based learning environments. Psychological and educatio-
nal foundations. (1994)

[Collins 1989] CorLINs, A.: Cognitive apprenticeship: Teaching the crafts of reading,

writing, and mathematics. In: Knowing, Learning and Instruction (1989)

[Denning 2003] DENNING, P.: Great principles of computing. In: Communications of
the ACM (2003)

[Denning 2007] DENNING, P.: Computing is a natural science. In: Communications of
the ACM (2007)

[Diethelm 2007] DIETHELM, L: Strictly models and objects first-Unterrichiskonzept
und-methodik fiir objektorientierte Modellierung im Informatikunterricht. Universitit
Kassel, Dissertation, 2007

[Diethelm et al. 2005] DIETHELM, I. ; GEIGER, L. ; ZUNDORF, A.: Teaching modeling
with objects first. In: ITFIP World Conference on Computers in Education (2005)

231

[Dietzel und Rinkens 2001] D1eTzEL, R. ; RINKENS, T.: Eine Einfithrung in die Objek-
torientierung mit Lego Mindstorms Robotern Erfahrungsbericht aus dem Unterricht.
INFOS 2001, 2001, S. 193-199

[Dohmen et al. 2009] DonMEN, M. ; ENGBRING, D. ; MAGENHEIM, J.: Kreativer

Einstieg in die Programmierung Alice im Informatik-Anfangsunterricht. In: INFOS
2009 (2009), S. S. 329ff

[Drieschner 2009] DRIESCHNER, E.: Bildungsstandards praktisch. Verlag fiir Sozialwis-
senschaften, 2009

[Droeschel 1998] DROESCHEL, W.: Inkrementelle und objektorientierte Vorgehensweise
mit dem VModell 97. Muenchen, Wien : Oldenbourg Verlag, 1998

[Ebert 2005] EBERT, J.: Zitat aus der Podiumsdiskussion SSoftware-Entwicklung und
Modellierungéuf dem Workshop Modellierung 2005. In: PAECH, B. (Hrsg.) ; DESEL,
J. (Hrsg.): Workshop Modellierung 2005, 2005

[Européische Gemeinschaften 2008] EUROPAISCHE GEMEINSCHAFTEN: The European
Qualifications Framework for Lifelong Learning (EQF) NC-30-08-266-EN-P Européi-
scher Qualifikationsrahmen Der Européische Qualifikationsrahmen fiir lebenslanges
Lernen (EQR). (2008). ISBN 9789279084720

[Fakultdtentag Informatik (Hrsg) 2004] FAKULTATENTAG INFORMATIK (HRSG): Emp-
fehlungen zur Einrichtung von konsekutiven Bachelor- und Masterstudiengdngen in

Informatik an Universitdten. 2004

[Fieber et al. 2008] FIEBER, F. ; HUHN, M. ; RUMPE, B.: Modellqualitit als Indikator
fiir Softwarequalitét: eine Taxonomie. In: Informatik-Spektrum 31 (2008), August,
Nr. 5, S. S. 408-424. — ISSN 0170-6012

[Gesellschaft fiir Informatik e.V. (GI) (Hrsg) 2004] GESELLSCHAFT FUR INFORMATIK
E.V. (GI) (HRsG): Empfehlungen fir Bachelor- und Masterprogramme im Studienfach
Informatik an Hochschulen. Bonn, 2004

[GI 2008] GI: Grundsitze und Standards fiir die Informatik in der Schule: Bildungs-
standards Informatik fiir die Sekundarstufe I; Empfehlungen der Gesellschaft fiir In-
formatik e.V. In: LOG IN 28 (2008)

[Glinz 2008] GrLINZ, M.: Modellierung in der Lehre an Hochschulen: Thesen und Er-
fahrungen. In: Informatik-Spektrum 31 (2008), August, Nr. 5, S. S. 425-434. — ISSN
0170-6012

232

[Goldin und Rudahl 2009] GorLbpiN, S. ; RupaHL, K.: Software Process in the Class-
room : A Comparative Study. In: Computer Engineering (2009), S. S. 427-431. ISBN
9781424445226

[Hampel et al. 1999] HawmPEL, T. ; MAGENHEIM, J. ; SCHULTE, C.: Dekonstruktion von
Informatiksystemen als Unterrichtsmethode-Zugang zu objektorientierten Sichtweisen
im Informatikunterricht. In: Informatik und Schule. Fochspezifische und fachiibergrei-
fende didaktische Konzepte. Berlin, Heidelberg, New York u.a. : Schwill, A., 1999,
S. S.149ff

[Hesse und Mayr 2008] HEsSE, W. ; MAYR, H.: Modellierung in der Softwaretechnik.
In: Informatik-Spektrum 31 (2008), August, Nr. 5, S. S. 375-375. — ISSN 0170-6012

[Horton 2007] HoORTON, F.: Understanding information literacy: A primer. Paris :
UNESCO, 2007

[Hubwieser 2000 HUBWIESER, P.: Informatik am Gymnasium. Ein Gesamtkonzept fir
einen zeitgemdfien Informatikunterricht. Habilitationsschrift, Fakultéat fiir Informatik,
Technische Universitiat Miinchen, 2000

[Hubwieser 2005] HUBWIESER, P.: Von der Funktion zum Objekt Informatik fiir die
Sekundarstufe. In: FRIEDRICH, S. (Hrsg.): INFOS 2005, 11. GI-Fachtagung Informatik
und Schule, 28.-30. September 2005 an der TU Dresden. 2005

[Hubwieser 2007] HUBWIESER, P: Didaktik der Informatik, 3. iberarbeitete und erwei-
terte Auflage. Springer examen.press, 2007

[Hubwieser und Broy 1996] HUBWIESER, P. ; BROY, M.: Ein neuer Ansatz fiir den
Informatikunterricht am Gymnasium. In: LOG IN 17 (1996), S. S. 42-47

|Ishii et al. 2010] IsHiI, N. ; SuzUuKl, Y. ; FuJsiyosHi, H. ; Fuill, T.: Fostering UML
Modeling Skills and Social Skills through Programming Education. In: 2010 23rd IEEE

Conference on Software Engineering Education and Training (2010), Mérz, S. S. 25-32.
ISBN 978-1-4244-7052-5

[Joint Task Force on Computing 2001] JOINT TASK FORCE ON COMPUTING: Com-

puting Curricula 2001 Computer Science. In: Journal of Educational Resources in
Computing (JERIC), 1 (3es) 1 (2001), September. — ISSN 15314278

|Keil-Slawik 2002] KEIL-SLAWIK, R.: Denkmedien-Mediendenken: Zum Verhéltnis von
Technik und Didaktik (Media For Thinking-Thinking About Media: On the Relati-

233

onship of Technology and Didactics). In: it-Information Technology and Didactics
(vormals it+ ti) 44 (2002), S. S. 181-186

[Klafki 2007] KLAFKI, W.: Neue Studien zur Bildungstheorie und Didaktik: Zeitgeméfe
Allgemeinbildung und kritisch-konstruktive Didaktik. (2007)

[Kleuker 2011] KLEUKER, S.: Grundkurs Software-Engineering mit UML. Wiesbaden :
Vieweg+Teubner, 2011

|[Klieme 2004] KLIEME, E.: Was sind Kompetenzen und wie lassen sie sich messen. In:
Pdadagogik 56 (2004), S. S. 10-13

[Klieme et al. 2007] KuEME, E. ; AvENARIUS, H. ; BLum, W. ; DORBRICH, P. ;
GRUBER, H. ; PRENZEL, M. ; REIss, K. ; RiQuarrTs, K. ; RosT, J. ; TENORTH, H. ;
VOLLMER, H.: Zur Entwicklung nationaler Bildungsstandards. Bildungsreform Band
1. Expertise. Bonn, Berlin : Bundesministerium fiirr Bildung und Forschung (BMBF)
Referat Publikationen; Internetredaktion., 2007

[KMK (Hrsg) 2004] KMK (HRSG): Einheitliche Prifungsanforderungen in der Ab-
sturprifung Informatik. KMK. Bonn : KMK Sténdige Konferenz der Kultusminister
der Lander in der Bundesrepublik Deutschland, 2004

[Kohl 2009] KoHL, L.: Kompetenzorientierter Informatikunterricht in der Sekundar-
stufe I unter Verwendung der visuellen Programmiersprache Puck. Friedrich-Schiller-

Universitdt Jena, Dissertation, 2009

[Kollee et al. 2009] KOLLEE, C. ; MAGENHEIM, J. ; NELLES, W. ; RHODE, T. ; SCHA-
PER, N. ; SCHUBERT, S. ; STECHERT, P.: Computer science education and key com-
petencies. In: World Conference on Computers in Education (2009)

[Kolling und Quig 2005] KOLLING, M. ; QUIG, B.: The BluelJ system and its pedago-
gy. In: Computer Science Computer Science Education, Special Issue of ACM
Computing Surveys, Vol. 37, 2005

|[Lankes 2006] LANKES, E.: Bildungsstandards in Deutschland. In: Kompetenzorien-
tierter Deutschunterricht. Kronshangen : Institut fiir Qualitdtsentwicklung an Schulen
Schleswig Holstein (Hrsg.), 2006

|Lehner et al. 2010] LEHNER, L. ; MAGENHEIM, J. ; NELLES, W. ; RHODE, T. ; SCHU-
BERT, S. ; STECHERT, P. ; SCHAPER, N.: Informatics Systems and Modelling - Case
Studies of Expert Interviews. In: Key Competencies in the Knowledge Society. Boston :

Springer, 2010

234

[Leutner 2006] LEUTNER, D.: Kompetenzmodelle zur Erfassung individueller Lerner-
gebnisse und zur Bilanzierung von Bildungsprozessen - Beschreibung eines neu einge-
richteten Schwerpunktprogramms der DFG. In: Zeitschrift fir Pddagogik 56 (2006),
Nr. 6, S. S. 876-903

[Magenheim 2000 MAGENHEIM, J.: Informatiksystem und Dekonstruktion als didakti-
sche Kategorien - Theoretische Aspekte und unterrichtspraktische Implikationen einer

systemorientierten Didaktik der Informatik. In: Tagungsbeitrag zur GI-Tagung Infor-
matik - Ausbildung und Beruf (2000)

[Magenheim 2003a] MAGENHEIM, J.: Informatik Lernlabor - Systemorientierte Di-
daktik in der Praxis. In: Informatische Fachkonzepte im Unterricht, Proceedings der
infos2003, 10.GI-Fachtagung Informatik und Schule, 17.-19. September in Garching
bei Minchen (2003)

[Magenheim 2003b] MAGENHEIM, J.: Wissensmanagement, Dekonstruktion und F-

Learning Communities in der Softwaretechnik-Didaktische Konzepte im BMBF-Projekt
MuSofT. Wa, 2003. — S. 2565-269 S

[Magenheim 2005] MAGENHEIM, J.: Towards a competence model for educational stan-
dards of informatics. In: WCCE 2005 - Proceedings of the 8th IFIP World Conference
on Computers in Education, University of Stellenbosch, Cape Town (SA) (2005)

[Magenheim et al. 2010a] MAGENHEIM, J. ; NELLES, W. ; RHODE, T. ; SCHAPER,
N.: Towards a methodical approach for an empirically proofed competency model.
In: HROMKOVIC, Juraj (Hrsg.) ; KRALOVIC, Richard (Hrsg.) ; VAHRENHOLD, Jan
(Hrsg.): Teaching Fundamentals Concepts of Informatics Bd. 5941. Berlin, Heidelberg :
Springer Berlin Heidelberg, 2010, S. S. 124-135

[Magenheim et al. 2010b] MAGENHEIM, J. ; NELLES, W. ; RHODE, T. ; SCHAPER, N. ;
SCHUBERT, S. ; STECHERT, P.: Competencies for informatics systems and modeling:
Results of qualitative content analysis of expert interviews. In: [EEE EDUCON 2010
Conference, IEEE, April 2010, S. S. 513-521. — ISBN 978-1-4244-6568-2

[Magenheim und Scheel 2004] MAGENHEIM, J. ; SCHEEL, O.: Using Learning Objects
in an ICT-based Learning Environment. In: Proceedings of E-Learn (2004)

[Magenheim und Schulte 2005] MAGENHEIM, J. ; SCHULTE, C.: Erwartungen und

Wahlverhalten von Schiilerinnen und Schiilern gegeniiber dem Schulfach Informatik

235

Ergebnisse einer Umfrage. In: Friedrich, S. (Hrsg.) Unterrichtskonzepte fir informati-
sche Bildung, infos2005-11. GI - Fachtagung Informatik und Schule 28.-30.September
2005 in Dresden, Proceedings (2005), S. S. 111-122

[Martin 2003] MARTIN, R.: Agile software development: principles, patterns, and prac-
tices. Prentice-Hall, Inc, 2003

[Mayring 2010] MAYRING, P.: Qualitative Inhaltsanalyse, Grundlagen und Techniken.
Beltz, 2010

[INCTM - National Council of Teachers of Mathematics 2000 NCTM - NATIONAL
Council, OF TEACHERS OF MATHEMATICS: Principles and Standards for School
Mathematics. (2000)

[Nelles et al. 2009] NELLES, W. ; RHODE, T. ; STECHERT, P.: Entwicklung eines
Kompetenzrahmenmodells - Informatisches Modellieren und Systemversténdnis. In:
Informatik-Spektrum 33 (2009), Juni, Nr. 1, S. S. 45-53. — ISSN 0170-6012

[Nievergelt 1995] NIEVERGELT, J.: Welchen Wert haben theoretische Grundlagen fiir
die Berufspraxis? Gedanken zum Fundament des Informatikturms. In: Informatik Spek-
trum (1995)

[Nygaard 1986] NvyYGAARD, K.: Program development as a social activity. In: H. Kugler
(Hrsg.), Information Processing 86. Amsterdam, 1986

[OECD 2005 OECD: The definition and selection of key competencies: Executive
summary. Paris : OECD. Directorate for Education, 2005

[OECD 2001] OECD, Pisa Konsortium D.: Schiilerleistungen im internationalen Ver-
gleich. Fine neue Rahmenkonzeption fiir die Erfassung von Wissen und Fahigkeiten.
Berlin : OECD PISA Deutschland, 2001

[Penon und Spolwig 1998] PENON, J. ; SPOLWIG, S.: Schone visuelle Welt? Objektori-
entierte Programmierung mit DELPHI und JAVA. In: LOG IN 18 (1998), Nr. 5

[Pichler 2009] PICHLER, R.: Scrum-Agiles Projektmanagement erfolgreich einsetzen.
Heidelberg : dPunkt-Verlag, 2009

[Prenzel und Deutschland 2004] PRENZEL, M. ; DEUTSCHLAND, Pisa K.: PISA 2003:
Der Bildungsstand der Jugendlichen in Deutschland: Ergebnisse des zweiten interna-

tionalen Vergleichs. Waxmann, 2004

236

[Rational Software Corporation IBM. 1998] RATIONAL SOFTWARE CORPORATION
IBM.: Rational unified process. Best practices for software development teams, white

paper. 1998

[Rectors, Universities 1999] RECTORS, UNIVERSITIES, European: The Bologna Decla-

ration on the European space for higher education : an explanation. (1999)

|Riecke-Baulecke und Artelt 2004] RIECKE-BAULECKE, C. ; ARTELT, T.: Bildungs-
standards. Oldenbourg Schulbuchverlag, 2004

[Roggio 2006] RocGaio, R.: A Model for the Software Engineering Capstone Sequence
using the Rational Unified Process. In: Work (2006), S. S. 306-311. ISBN 1595933158

[Ropohl 1999] RoprOHL, G.: Philosophy of socio-technical systems. In: Society for
Philosophy and Technology (1999)

|[Royce 1970] Rovce, W.: Managing the development of large software systems. In:
proceedings of IEEE WESCON (1970)

[Schaper und Hochholdinger 2006] SCHAPER, N. ; HOCHHOLDINGER, S.: Psycholo-
gische Konzepte zur Modellierung und Messung von Kompetenzen in der Lehreraus-
bildung. In: In: Hilligus A, Rinkens H-D (Hrsg) Standards und Kompetenzen - Neue
Qualitdt in der Lehrerausbildung? Miinster : LIT-Verlag, 2006

[Schaper und Horvath 2008] SCHAPER, N. ; HORVATH, E.: Development and Evaluation
of a Model of eTeaching Competence. In: In: Hambach S, Martens A, Urban B (eds)
e-Learning Baltics 2008. Proceedings of the 1st International eLBa Science Conference.
Rostock : Fraunhofer IRB Verlag, 2008

[Schecker und Parchmann 2006] SCHECKER, H. ; PARCHMANN, I.: Modellierung na-
turwissenschaftlicher Kompetenz. In: Zeitschrift fiir Didaktik der Naturwissenschaften
12 (2006), Nr. 2006, S. S. 45-66

[Schubert und Schwill 2004] SCHUBERT, S. ; SCHWILL, A.: Didaktik der Informatik. 1.
Auflage. Heidelberg, Berlin : Spektrum Akademischer Verlag, 2004

[Schubert und Stechert 2007] SCHUBERT, S. ; STECHERT, P.: A strategy to structure
the learning process towards understanding of informatics systems. In: Benzie, Dawvid
(Hrsg.) ; Iding, Marie (Hrsg.): Informatics, Mathematics and ICT: A golden triangle
(IMICT2007). Northeastern University. Boston. MA (2007)

237

[Schubert und Stechert 2010] SCHUBERT, S. ; STECHERT, P.: Competence Model
Research on Informatics System Application. In: Proceedings of the IFIP Conference
New developments in ICT and Education, Amiens, Frankreich, June 28-30 (2010)

[Sonnentag 2006] SONNENTAG, S.: Expertise in software design. In: Cambridge hand-

book of expertise and expert performance / K. Anders Ericsson, Neil Charness, Paul
J. Feltovich, & Robert R. Hoffmann (Eds.). Cambridge : Cambridge University Press,
2006, S. S. 373-387

[Spiro und Feltovich 1992] SpPIrO, R. ; FELTOVICH, P.: Cognitive flexibility, constructi-
vism, and hypertext: Random access instruction for advanced knowledge acquisition in
ill-structured domains. In: Constructivism and the Technology of Instruction. Hillsale,
NJ : Erlbaum, 1992

[Stachowiak 1973] STACHOWIAK, H.: Allgemeine Modelltheorie. Wien : Springer, 1973
[Standards 2001] STANDARDS, IEEE Learning T.: IEEE LOM working draft 6.1. (2001)

[Stechert 2009] STECHERT, Peer: Fachdidaktische Diskussion von Informatiksystemen
und der Kompetenzentwicklung im Informatikunterricht. Universitit Siegen, Didaktik

der Informatik und E-Learning, Dissertation, 2009

[Thomas 2002] THOMAS, M.: Informatische Modellbildung. Modellieren von Modellen
als ein zentrales Element der Informatik fiir den allgemeinbildenden Schulunterricht.

Universitat Potsdam, Dissertation, 2002

[Tulodziecki und Herzig 2002] TuropzIECKI, G. ; HERZIG, B.: Computer und Internet
im Unterricht: Medienpddagogische Grundlagen und Beispiele. Cornelsen Scriptor,
2002

[Utting et al. 2010] UTTING, L. ; COOPER, S. ; KOLLING, M. ; MALONEY, J. ; RESNICK,

M.: Alice, greenfoot, and scratch—a discussion. In: ACM Transactions on Computing
Education (TOCE) (2010)

[Weinert 2002] WEINERT, F.: Leistungsmessungen in Schulen. Beltz, 2002

|Whitehead 1939] WHITEHEAD, A.: Aims Of Education and Other Essays. New York :
The Free Press, 1939

238

Abbildungsverzeichnis

1.1.
1.2.

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.
2.10.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.
3.11.
3.12.
3.13.

4.1.
4.2.

Ubersicht Kapitel und logischer Zusammenhang 6
Ubersicht der Modellebenen 7
Kapitel 2 im Gesamtkontext der Arbeit 9
Inhalts und Prozessbereiche oL 16
Prozessbereich Modellieren & Implementieren 17
Modellebene 1 - Kompetenzmodell-Ebene 18
Inhaltsbereich Algorithmen 1/2 21
Inhaltsbereich Algorithmen 2/2 21
Kompetenzstrukturmodell Algorithmen 23
Kompetenzstufenmodell Algorithmen 25
Beispielaufgabe Kohl o 27
Beispiellosung Kohlo oo 28
Kapitel 3 im Gesamtkontext der Arbeit 33
Modellebene 2 - Fachwissenschaftliche Modellebene 35
Modellebene 3 - Vermittlungs-Modellebene 37
Allgemeine Phasen des Software Engineerings 47
Wasserfallmodell o oo 48
Prototypisches Vorgehensmodell 50
Iterativ-/Inkrementelles Vorgehensmodell ol
V-Modell 52
RUP-Dimensionen e o7
RUP-Meilensteine & Software-Lebenszyklen 58
UML-Template nach Fujiiet.al 75
Ergebnisse Fujii et. al 1/2 oo oo 76
Ergebnisse Fujii et. al 2/2 oo o 7
Kapitel 4 im Gesamtkontext der Arbeit 81
K1 Aufgabenbereiche L oo 85

239

4.3.
44.
4.5.
4.6.
4.7.
4.8.

0.1
5.2.
2.3.
5.4.
2.9.
5.6.
2.7.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.
6.10.
6.11.

6.12.
6.13.
6.14.
6.15.

7.1
7.2.
7.3.
7.4.
7.5.

K2 - Nutzung informatischer Sichten 88
K3 - Anforderungen an den Umgang mit Komplexitdt 90
K4 - Nicht-kognitive Kompetenzen 92
Theoretisch Hergeleitetes Rahmenmodell 93
DESECO Schliisselkompetenzen 96
Informatisches Modellieren und Schliisselkompetenzen 102
Kapitel 5 im Gesamtkontext der Arbeit 104
Theoretisches Teilmodell Modellierung 120
Legende zu den folgenden Abbildungen 122
Prozess zur empirischen Verfeinerung des Teilmodells Modellierung 123
Empirische Verfeinerung des Teilmodells Modellierung 124
Empirisch Verfeinertes Kompetenzstrukturmodell 128
Empirisches Teilmodell Modellierung 129
Kapitel 6 im Gesamtkontext der Arbeit 146
Nlustration der Aufgabenentwicklung 147
CRC-Karten zur Schulbibliothek I 155
Multiple Choice Auswahl eines von zwei Klassendiagrammen 156
Korrektes Klassendiagramm Lo 157
Falsches Klassendiagramm L. 157
Unvollstdndiges State-Chart L. 159
Mockup Reisebuchungssystem 163
Testfille zur Anforderungsdefinition 163
Testfélle zur Robustheit 0o 164
Verflechtung von Unterrichtshilfen, Bedienerschulung und Vermittlung grund-

legender Konzepte L 169
Klassendiagramm der ILL-Kommissionierstation 182
Technische Bestandteile der Kommissionierstation 183
Startbildschirm eines NXT-Bausteins 184
Farbsensor L 186
Kapitel 7im Gesamtkontext der Arbeit 196
Vor- und Nachtest im Vergleich 200
Kolmogorov-Smirnov-Test (Gesamtergebnis VI' / NT) 202
Kolmogorov-Smirnov-Test (Aufgabenclusterl VT /NT) 203
Kolmogorov-Smirnov-Test (Aufgabencluster2 VI' / NT) 203

240

7.6.
7.7,
7.8.
7.9.
7.10.
7.11.

8.1.
8.2.
8.3.

Kolmogorov-Smirnov-Test (Aufgabencluster3 VT /NT) 204

Cluster 1 - Vor- und Nachtest im Vergleich 208
Cluster 2 - Vor- und Nachtest im Vergleich 212
Cluster 3 - Vor- und Nachtest im Vergleich 216
Ergebnisse des t-Test im Vergleich 1/2 219
Ergebnisse des t-Test im Vergleich 2/2 220
Kapitel 8 im Gesamtkontext der Arbeit 221
Prozess zur empirischen Verfeinerung des Teilmodells Modellierung 223
Empirisch Verfeinertes Kompetenzstrukturmodell 224

241

Tabellenverzeichnis

7.1.
7.2.
7.3.
7.4.

8.1.

Gesamtergebnisse der Erprobung oo 199
Ergebnisse zu Aufgabencluster 1 L. 207
Ergebnisse zu Aufgabencluster 2 oL 211
Ergebnisse zu Aufgabencluster 3 215
Statistischer Vergleich von Vor- und Nachtest fiir die Cluster 1-3 227

242

A. Anhang

A.l. Interviewszenarien

243

Hypothetische Szenarien (Critical Incidents)

Im Folgenden mochte ich Ihnen einige Szenarien vorstellen, die Aufgaben beinhalten, die
Relevanz fiir den Informatikunterricht der Sekundarstufe II besitzen. Ich bitte Sie darum, sich
sehr genau und detailliert die darin enthaltenen Problemstellungen vorzustellen und ebenso
genau und detailreich zu schildern, wie Sie bei der Bewiiltigung der Aufgaben und Losung der
darin enthaltenen Probleme vorgehen wiirden.

Sz. 1 Sie erhalten den Softwareentwicklungsauftrag, ein Warenwirtschaftssystem fiir

[e]
[¢]
[¢]

o

[e]

einen (Schul-)Kiosk zu entwickeln. Im Rahmen der Geschéiftsmodellierung und
Anforderungsanalyse sollen typische / alltéigliche Geschiftsvorginge erfasst werden.

Wie wiirden Sie dabei vorgehen, und was miissen Sie dabei beachten?
Welche grafischen Beschreibungsmittel wiirden Sie dafiir einsetzen?
Welche Kenntnisse und Fahigkeiten bendétigen Sie zur Modellierung der Geschaftsprozesse
und zur Anforderungsanalyse?

o Welche informatischen Sichten sind hierbei von Bedeutung?

o Welche Komplexitat bzw. Komplexitatsaspekte weist das Projekt auf?
Welche (motivationalen) Bereitschaften und Einstellungen und welche sozial-
kommunikativen Fahigkeiten benétigen Sie zur Modellierung der Geschéaftsprozesse und zur
Anforderungsanalyse?
Welche informatik-fremden Personen konnten (oder sollten) bei der Modellierung
miteinbezogen werden? Welche Anforderungen kdmen auf Sie zu, wenn Sie mit
informatischen Laien tiber dieses SE-Projekt kommunizieren wollen?
Wie wiirde ein Schiler die Aufgabe angehen?

Sie erhalten den Auftrag, die weiteren Phasen des Softwareengineerings-Prozesses zu

planen.

o Welche weiteren Phasen missen lhrer Meinung nach bis zur Verteilung des Software-
Produkts durchlaufen werden?

o Wie wirden Sie hierbei vorgehen und was muss dabei beachtet werden?

o Welche Kenntnisse und Fahigkeiten bendétigen Sie in diesen Phasen des SE-Prozesses
(insbesondere welche informatische Sichten)?

o Welche Bereitschaften und Einstellungen und welche sozial-kommunikativen Fahigkeiten
sind in diesen SE-Phasen besonders relevant?

o Welche Phasen wiirden Sie im Rahmen eines Schulprojekts: ,Schulkiosk” im
Informatikunterricht der Sekundarstufe durchlaufen wollen?

o Inwelcher Form wirden Sie informatik-fremde Personen auch in die weiteren SE-Phasen mit

einbeziehen? Was waére dabei zu beachten?

In der Implementierungsphase des Projekts sollen Kleingruppen gebildet werden,
um die verschiedenen Module der Software zeitgleich zu entwickeln.

Was muss bei der Einteilung von SE-Gruppen im professionellen Umfeld bericksichtigt
werden? Welche Anforderungen ergeben sich an die Gruppenmitglieder?

Was muss bei der Gruppeneinteilung im Informatikunterricht beachtet werden? Welche
sozialen und motivationalen Fahigkeiten und Einstellungen missen seitens der Schiler
vorhanden sein?

Welche Erfolgs- oder Misserfolgserlebnisse kénnen wahrend der Projektdurchfiihrung
auftreten? Im Falle von Misserfolg: Welchen Anforderungen stehen Sie gegentiber, um sich
neu zu motivieren?

244

Sz.2 Sie erhalten den Auftrag ein Chat-System zu entwickeln. Im Rahmen der
Designphase sollen Sie die potentiellen Programmmodule (Klassen) jeweils dem
Client oder Server zuordnen.

o Wie wirden Sie dabei vorgehen, und was mussen Sie dabei beachten?

o Welche grafischen Beschreibungsmittel wiirden Sie dafir einsetzen?

o Welche Kenntnisse und Fahigkeiten bendtigen Sie zum Design des Client-Server-Systems?

o Welche informatischen Sichten sind hierbei von Bedeutung?
o Welche Komplexitdt bzw. Komplexitatsaspekte weist das Projekt auf?

o Welche Bereitschaften und Einstellungen und welche sozial-kommunikativen Fahigkeiten
bendétigen Sie zum Design des Client-Server-Systems?

o Wie wirde ein Schiiler die Aufgabe angehen?

Nach Abschluss der Analyse- und Designphase soll eine zeitlich parallele

Implementierung von Client- und Server-Softwarekomponenten geschehen. Sie als

Projektleiter stehen nun vor der Aufgabe, die Aufgaben sinnvoll auf Teilgruppen

ihres Teams zu verteilen.

o Wie wirden Sie dabei vorgehen?

o Was misste in einem professionellen Umfeld bei der Gruppeneinteilung beachtet werden?

o Wie wirden Sie die Einteilung der Gruppen im schulischen Umfeld vornehmen um eine
chancengleiche Kompetenzentwicklung zu erméglichen?

o Welche sozialen bzw. motivationalen Fahigkeiten der Schiiler sollten zur erfolgreichen
Implementierung vorhanden sein?

o Welche Erfolgs- oder Misserfolgserlebnisse kénnen wahrend der Projektdurchfiihrung
auftreten? Im Falle von Misserfolg: Welchen Anforderungen stehen Sie gegentiber, um sich
neu zu motivieren?

o Durch welche kommunikativen und kooperativen Voraussetzungen gelange die Arbeit
effektiv?

o Welche arbeitsbezogenen sozialen Umstande kénnten den Erfolg gefahrden?

Sz.3 Im Rahmen eines Softwareprojekts soll ein web-basierte Spiel implementiert

werden. Sie haben bereits mit Hilfe von CRC-Karten Verantwortlichkeiten von
Klassen herausgestellt und mogliche Zusammenhiinge von Klassen lokalisiert. In
einem weiteren Schritt soll nun ein umfassendes Klassendiagramm entwickelt
werden.

o Wie wirden Sie dabei vorgehen, und was missen Sie dabei beachten?
o Welche Kenntnisse und Fahigkeiten bendtigen Sie zur Modellierung des Klassendiagramms?
o Welche informatischen Sichten sind hierbei von Bedeutung?
o Welche Komplexitat bzw. Komplexitatsaspekte weist das Projekt auf?
o Welche Bereitschaften und Einstellungen und welche sozial-kommunikativen Fahigkeiten
benotigen Sie zur Modellierung einer solchen, web-basierten Anwendung?
o Beschreiben Sie die Unterschiede in der methodischen Vorgehensweise, die sich bei
Anfangern, Fortgeschrittenen und Experten zeigen wirden.
o Wie wirde ein Schiler die Aufgabe angehen?

In einem spéteren Schritt (kurz vor Abschluss des Projekts) soll die Software im
Rahmen der Testphase bzgl. Ihrer Robustheit iiberpriift werden. Hierbei soll
sichergestellt werden, dass keinerlei unerwartete Benutzereingaben das Programm
zum Absturz bringen.

o Wie wiirden Sie bei einem derartigen Test vorgehen, und was missen Sie dabei beachten?
o Wie wirde ein Schiler die Aufgabe angehen?

245

Sz. 4 Sie erhalten im Rahmen der Entwicklung einer einfachen Kontofiihrungs-Software
den Auftrag, ein Klassendiagramm zu entwickeln. Die Software soll zunichst
einfache Ein- und Auszahlvorgiinge auf einem Bankkonto realisieren.

o Wie gehen sie dabei vor, und was missen Sie dabei beachten?

o Welche Kenntnisse und Fahigkeiten bendtigen Sie fir eine entsprechende
Softwareentwicklung?

o Welche informatischen Sichten sind hierbei von Bedeutung?
o Welche Komplexitdt bzw. Komplexitatsaspekte weist das Projekt auf?

o Welche Einstellungen und Bereitschaften bendtigen Sie fiir eine entsprechende
Softwareentwicklung?

o Welche moglichen Probleme kdnnten bei Schiilern der Sekundarstufe auftreten?

o Welche grafischen Beschreibungsmittel wiirden Sie einsetzen und warum?

Fiir eine weitere Ausbaustufe der oben genannten Software soll nun ebenfalls ein

Klassendiagramm erstellt werden. Im Gegensatz zu der ersten Ausbaustufe lassen

sich nun beliebig viele Konten eroffnen. Neben Ein- und Auszahlungen auf das

jeweilige Konto lassen sich nun auch Uberweisungen zwischen den Konten
vornehmen.

o Wie wirden Sie dabei vorgehen?

o Welche zusitzlichen Anforderungen ergeben sich durch den Ubergang zur erweiterten
Ausbaustufe der Kontofiihrungs-Software?

o Rechtfertigen diese zusatzlichen Anforderungen eine Einteilung in Kleingruppen?

o Durch welche kommunikativen und kooperativen Voraussetzungen geldnge die
Arbeit effektiv?

o Welche arbeitsbezogenen sozialen Umstdnde konnten den Erfolg gefahrden?

o Welche Erfolgs- oder Misserfolgserlebnisse kénnen wéahrend der Projektdurchfiihrung
auftreten? Im Falle von Misserfolg: Welchen Anforderungen stehen Sie gegentiber, um sich
neu zu motivieren?

o Welche Anforderungen fir die Schiiler ergeben sich bei dieser komplexeren Version der
Software?

Wie wiirde ein Schiler die Aufgabe angehen?
Sz. 5 Sie haben im Informatikunterricht der Sekundarstufe II Sortieralgorithmen

thematisiert und hierbei ausgewihlte Sortierverfahren innerhalb von
Programmmodulen implementiert. Zum Abschluss der Unterrichtsreihe soll nun ein
Visualisierungsmodul implementiert werden. Dieses soll das zu sortierende Feld
(Array) visualisieren und die jeweiligen Teilschritte wihrend der Sortierung
darstellen, indem séimtliche Anderungen im Feld grafisch hervorgehoben werden.

o Wie wirden Sie in diesem Zusammenhang vorgehen?
o Was muss bei der Auswahl der Architektur, bei der Gestaltung der Schnittstellen und bei der
Entwicklung der Benutzungsschnittstelle beachtet werden.
o Welche Phasen ergeben sich bei der Entwicklung des Visualisierungsmoduls?
o Welche Kenntnisse und Fahigkeiten bendtigen Sie fir eine entsprechende
Softwareimplementierung?
o Welche informatischen Sichten sind hierbei von Bedeutung?
o Welche Komplexitat bzw. Komplexitatsaspekte weist das Projekt auf?
o Welche Einstellungen und Bereitschaften bendtigen Sie fiir eine entsprechende
Softwareimplementierung?
o Wie wirde Schiler an eine derartige Aufgabe herangehen?
Welche Phasen sehen sie im Rahmen der schulischen Projektarbeit?

246

Sz.6 Sie erhalten eine Software zur Verwaltung von personlichen Gegen-stiinden, die sie
verlichen bzw. entliechen haben. Diese soll spiter auf modernen Mobiltelefonen
eingesetzt werden.

Die Abteilung, die fiir die eigentliche Programmierung des Werkzeugs zustéindig ist,
bittet Sie, das Produkt in Bezug auf seine Ergonomie zu testen.
o Wie wirden Sie dabei vorgehen, und was mussen Sie dabei beachten?
o Welche Kenntnisse und Fahigkeiten bendtigen Sie um die Ergonomieeigenschaften der
Verwaltungssoftware zu testen?
o Welche informatischen Sichten sind hierbei von Bedeutung?
o Welche Komplexitat bzw. Komplexitatsaspekte weist das Projekt auf?
o Welche Bereitschaften und Einstellungen und welche sozial-kommunikativen Fahigkeiten
bendtigen Sie zum Testen der Ergonomieeigenschaften der Verwaltungssoftware?
o Wie wirde ein Schiler die Aufgabe angehen?
Sz.7 Sie haben gerade die neueste Version einer Standardsoftware installiert. Diese

unterscheidet sich in der Funktionalitit und Bedienung von der vorhergehenden
Version. Um einen ersten Eindruck zu erhalten, mochten Sie die Software
systematisch erkunden.

o
o

o

o

Mit welchen Erwartungen gehen Sie an die neue Software heran?
Welche Erwartungshaltung beglinstigt Ihre Arbeit? Welche Einstellung stiinde der effektiven
Absolvierung lhres Arbeitsauftrags im Weg?
Inwieweit spielen bereits gesammelte Vorerfahrungen eine Rolle bei der systematisches
Erkundung der Software?
Wie gehen Sie bei der Erkundung der neuen Software vor?
Empfehlen Sie diese oder eine andere Vorgehensweise auch fiir Schiler?
Welche Kenntnisse und Fahigkeiten bendtigen Sie fir eine entsprechende
Softwareerkundung?
o Welche informatischen Sichten sind hierbei von Bedeutung?
o Welche Komplexitat bzw. Komplexitatsaspekte weist das Projekt auf?
Welche Einstellungen und Bereitschaften bendtigen Sie fir eine entsprechende
Softwareerkundung?
Wie wiirde ein Schiiler die Aufgabe angehen?
Welche Probleme und Fallstricke kdnnen bei Schiilern auftreten?
Wie kénnen Sie Schiler unterstiitzen?

247

Sz. 8 Eine kleine Firma handelt mit verschiedenen Werkzeugen. Um zu entscheiden, ob es
sich lohnt das Geschéft an Samstagen linger zu 6ffnen, mochte der Geschiiftsfiihrer
eine tégliche Umsatziibersicht iiber die wichtigsten Werkzeugkategorien. Das
Geschiift arbeitet bisher ohne ein professionelles, rechnergestiitztes Kassensystem
und verfiigt nicht iiber die finanziellen Mittel um ein solches zu installieren.

o Beschreiben Sie, wie Sie diese Aufgabe l6sen konnen.
o Welche Kenntnisse und Fahigkeiten bendtigen Sie um diese Aufgabe l6sen zu konnen?
o Welche informatischen Sichten sind hierbei von Bedeutung?
o Welche Komplexitat bzw. Komplexitatsaspekte weist das Projekt auf?
o Was genau misste im Vorfeld mit dem Geschéftsfiihrer besprochen werden, damit die
Umsetzung des Auftrages erfolgreich verlauft?
o Inwieweit spielt es eine Rolle, dass der Geschéftsfihrer ein Informatiklaie ist? Was missten
Sie in einem Gesprach mit ihm beachten?
o Welche Einstellungen und Bereitschaften benétigen Sie um diese Aufgabe 16sen zu kénnen?
o Welche kommunikativen Schwierigkeiten kénnen auftreten und durch welches Vorgehen
lieRen sich diese Uiberwinden?
o Welche Probleme kdénnen bei einem Schiiler auftreten?
o Wie koénnen informatische Konzepte einen Schiiler beim I6sen dieser Aufgabe unterstiitzen?
Sz.9 Sie bitten Ihre Kollegen, eine von Thnen entwickelte Software auf Herz und Nieren

zu testen. Diese soll in Computer-Fachgeschéften verwendet werden, um es Kunden
zu ermoglichen den gewiinschten Computer selbstindig zu konfigurieren. Dazu kann
aus verschiedenen Gehiuseformen, Prozessortypen und einer begrenzten Zahl von
weiteren Komponenten und Peripheriegeriten ausgewihlt werden. Zur
Durchfiihrung der Tests stehen IThren Kollegen keine besonderen Werkzeuge zur
Verfiigung. Aus lizenzrechtlichen Griinden diirfen sie den Quellcode TIhrer
Anwendung nicht weitergeben.

o Wie sollten die Kollegen dabei vorgehen, und was miissen sie dabei beachten?

o Welches Handlungsmuster empfehlen Sie fir den Softwaretest?

o Welche Kenntnisse und Fahigkeiten benoétigen die Kollegen fuir die Testung der entwickelten
Software?

o Welche informatischen Sichten sind hierbei von Bedeutung?
o Welche Komplexitdt bzw. Komplexitatsaspekte weist das Projekt auf?

o Welche Einstellungen und Bereitschaften sollten die Kollegen fiir diesen Testvorgang
mitbringen?

o Inwieweit wird es notwendig sein, sich neues, relevantes Wissen anzueignen? Wie kann
dieses Wissen beschafft werden?

o Wie konnen Sie die Tester bei lhrer Aufgabe unterstiitzen?

o Welche Erfolgs- oder Misserfolgserlebnisse konnen wdhrend der Projektdurchfiihrung
auftreten? Im Falle von Misserfolg: Welchen Anforderungen stehen Sie gegentiber, um sich
neu zu motivieren?

o Durch welche kommunikativen und kooperativen Voraussetzungen gelange die Arbeit

effektiv?

Wie wiirde ein Schiler die Aufgabe angehen?

Welche Probleme und Fallstricke kénnen bei diesen Schilern auftreten?

Welche arbeitsbezogenen sozialen Umstdande kénnten den Erfolg gefahrden?

Welche Erwartungshaltung bei Durchflihrung der Tests férdert den Erfolg des Projekts?

O O O ©

248

Sz. 10 | Stellen Sie sich vor, Sie haben in einer Fachzeitschrift einen Artikel zu einem neuen
Forschungsgebiet gelesen und méchten nun mehr dariiber erfahren. Um weitere
Informationen zu bekommen, konsultieren Sie zunichst den Online-Katalog der
néchstgelegenen Universitiitsbibliothek.

o Was erwarten Sie von einem solchen Online-Katalog?
o Wie versuchen Sie Informationen aus einem solchen Online-Katalog zu erhalten?
o Welche Kenntnisse und Fahigkeiten bendtigen Sie fir eine entsprechende Recherche?
o Welche informatischen Sichten sind hierbei von Bedeutung?
o Welche Komplexitat bzw. Komplexitatsaspekte weist das Projekt auf?
o Welche Einstellungen und Bereitschaften bendétigen Sie fiir eine entsprechende Recherche?
o Welche Probleme kdnnen bei einem Schiler auftreten?
Leider hat die Recherche keine Ergebnisse gebracht und Sie haben sich zur Nutzung
einer Internetsuchmaschine entschlossen.
o Welche Erwartungen haben Sie an eine solche Suchmaschine?
o Wie gehen Sie vor, um die gewiinschten Informationen zu erhalten?
o Welche Probleme kdnnen bei einem Schiler auftreten?
Sie haben nun eine Anfrage an eine Suchmaschine gestellt, dabei aber keine Treffer
erhalten.
o Welche Griinde konnten dafiir verantwortlich sein?
o Wie gehen Sie vor, um die gewlinschte Information zu erhalten?
o Welche Probleme kdnnen bei einem Schiler auftreten?
Bei einer weiteren Suchanfrage erhalten Sie iiber 3 Mio. Treffer. Viele davon sind
fiir Sie jedoch nicht relevant.
o Welche Griinde kdnnten dafiir verantwortlich sein?
o Wie gehen Sie vor, um die gewiinschte Information zu erhalten?
o Welche Probleme kdnnen bei einem unerfahrenen Anwender auftreten?
Sie mochten, dass bei den Ergebnissen einer Suchanfrage mit dem
Namen / Spezialgebiet Threr Schule/Institutes Thr Internetauftritt weit vorne
angezeigt wird. Ihr Ziel ist nicht unbedingt Platz 1, aber zumindest die erste Seite.
o Wie gehen Sie vor, um dies zu realisieren?
Welche Probleme kénnen bei einem Schiler auftreten?
Sz. 11 | Sie haben gerade die neueste Version einer Datenbanksoftware installiert. Diese

unterscheidet sich in der Funktionalitit und Bedienung von der vorhergehenden
Version. Um einen ersten Eindruck zu erhalten, mochten Sie die Software
systematisch erkunden.

o Wie wirden Sie dabei vorgehen, und was missen Sie dabei beachten?
o Welche Kenntnisse und Fahigkeiten bendtigen Sie fir eine entsprechende
Softwareerkundung?
o Welche informatischen Sichten sind hierbei von Bedeutung?
o Welche Komplexitat bzw. Komplexitatsaspekte weist das Projekt auf?
o Welche Einstellungen und Bereitschaften bendtigen Sie fiir eine entsprechende
Softwareerkundung?
o Welche Erwartungshaltung begiinstigt Ihre Arbeit? Welche Einstellung stiinde der effektiven
Absolvierung Ihres Arbeitsauftrags im Weg?
o Inwieweit spielen bereits gesammelte Vorerfahrungen eine Rolle bei der systematisches

249

Erkundung der Software?

Im Informatikunterricht werden Datenbanken entweder vom Ansatz des Anwendens
oder des Modellierens behandelt. Diese beiden Ansitze sind als ,,Verwenden von
Strukturen‘‘ bzw. ,,Erzeugen von Strukturen‘ zueinander komplementiir.

o Wie wirden Sie vorgehen, um das Erlernen der bei relationalen Datenbanken verwendeten
Strukturierungsmethoden sowie das Hinterfragen der Strukturen zu férdern?

o Welches Handlungsmuster empfehlen Sie fiir Schiller, um die Struktur des Systems zu
erforschen?

o Was ist bei der Dateneingabe zu beachten?

o Was bei der Datenspeicherung?

o Wie geschieht die Datengewinnung (Abfrage)?

Die Verkniipfungen, die zum Extrahieren gewiinschter Daten bendtigt und beim
Erforschen gefunden wurden, konnen direkt als Datenbankabfragen formuliert
werden.

o Wie wiirde ein Schiler eine Datenbank ,Schule” mit den Entitaten Klassen, Schiler, Lehrer
etc. nutzen?

o Welche Probleme und Fallstricke kdnnen bei diesen Schiilern auftreten?

o Welche Vorgehensweisen werden diese einsetzen?

Die durch die Anfragen gewonnenen Informationen bilden die Grundlage fiir die
Riickkoppelung des Modells mit der Realitiit, fiir das ,,Hinterfragen erzeugter
Strukturen®.

o Was erwarten Sie von Schiilern, die den logischen Entwurf einer Datenbank erkundet haben?
o Welche Vorgehensweisen werden diese Einsetzen?

Die erschlossenen Strukturierungsregeln schlieBlich erlauben das eigenstindige
Erstellen weiterer Datenbankmodelle von Realweltausschnitten durch die Lernenden
(,,gestaltender Anwendungskontext).

o Wie unterstiitzt das Strukturieren eines Realweltproblems und das Uberfiihren in einen
logischen Entwurf das Verstandnis fir die Datenbank?

o Inwieweit hilft das Strukturieren, die Komplexitdt des Datenbanksystems zu bewaltigen?

Wie kénnen Schiler motiviert werden, die Strukturen der Datenbank zu hinterfragen?

o Wie konnen Sie die Schiler bei lhrer Aufgabe unterstiitzen?

o

250

Sz.12

Sie werden von einem Kollegen gebeten, dessen Neuentwicklung zu testen. Es
handelt sich dabei um eine Software, die Autohiusern verwendet werden soll, um es
Kunden zu ermoglichen das gewiinschte Auto selbstindig zu konfigurieren. Dazu
kann aus verschiedenen Fahrzeugtypen, Sondermodellen und Zusatzausstattungen
ausgewihlt werden. Zusitzlich kann das Autohaus in bestimmten Fillen einen
Rabatt von bis zu 10 Prozent auf das erstellte Fahrzeug erlassen.

o

Welche Teststrategie wiirde sie wahlen und warum? Und was missen Sie bei einem solchen
Vorgehen beachten?
Welche Kenntnisse und Fahigkeiten bendtigen Sie flir eine entsprechende
Softwareerkundung?

o Welche informatischen Sichten sind hierbei von Bedeutung?

o Welche Komplexitat bzw. Komplexitatsaspekte weist das Projekt auf?
Welche Einstellungen und Bereitschaften bendtigen Sie flr eine entsprechende
Softwareerkundung?
Auf welche Weise wiirden sich Unterschiede im Kompetenzniveau zwischen Laien und
Experten bei dieser Arbeit zeigen?
Wie kénnen Sie als Tester bei lhrer Aufgabe unterstiitzt werden?
Durch welche kommunikativen und kooperativen Voraussetzungen geldnge dieses Vorhaben
effektiv?
Wie wiirde ein Schiiler die Aufgabe angehen?
Welche Probleme und Fallstricke kénnen bei diesen Schilern auftreten?

251

A.2. Messinstrument und Bewertungsschema

A.2.1. Fragebogen

252

L UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Aufgaben zur informatischen Modellierung und Systemgestaltung

Vielen Dank, dass Sie sich bereit erkldrt haben, diese Aufgabensammlung zu bearbeiten!

Selbstverstandlich findet diese Bearbeitung vollkommen anonym statt. Uns geht es
darum, in absehbarer Zeit ein Messinstrumentarium zu entwickeln fiir die beiden
Bereiche Informatisches Modellieren und Systemverstdndnis. Da wir uns damit noch in
der Vorerprobungsphase befinden, sind wir darauf angewiesen, einen ersten
Testdurchlauf zu starten, um festzustellen, ob die gewéhlten Aufgaben sich fiir unseren
Zweck eignen. Durch die Bearbeitung dieser Aufgaben helfen Sie uns dabei sehr.
Herzlichen Dank!

253

&(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Aufgabe 1

A)

Ordnen Sie die folgenden UML-Diagrammtypen den jeweiligen Phasen des
Wasserfallmodells zu. Beachten Sie, dass einzelne Diagrammtypen auch mehreren
Phasen zugeordnet werden kénnen und dass Felder ggf. frei bleiben kénnen. Ergédnzen
Sie die untere Tabelle, indem Sie die Nummer der jeweiligen Diagrammtypen in der
rechten Spalte ergénzen.

UML-Diagrammtypen (alphabetisch sortiert):
(1) Aktivitdtendiagramm
(2) CRC-Karten
(3) Klassendiagramm
(4) Objektdiagramm (Objekt-Karten)
(5) Sequenzdiagramm
(5) Use Case Diagramm
(6) Zustandsdiagramm

Anforderungsanalyse /

Analyse

Design

Implementierung

Test

B)

In der Praxis laufen die Phasen des Softwareengineerings selten linear ab. Haufig
werden die einzelnen Phasen in mehreren Iterationen durchlaufen. Beschreiben Sie
mindestens zwei Beispiele (in 2-3 Sdtzen), in denen es notwendig ist, eine bereits
abgeschlossene Phase des Wasserfallmodells nochmals zu durchlaufen.

254

&(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Aufgabe 2

Sie sind als Projektmanager beauftragt, ein verteiltes Chatsystem zu entwickeln. Hierbei
muss folgendes beachtet werden:
e Die verschiedenen Module der Software sollen von verschiedenen Teams
entwickelt werden
e Zur gemeinsamen Modellierung sollen UML-Diagramme verwendet werden
Das zu entwickelnde Chatsystem soll plattformunabhangig
(Linux/Windows/Mac) lauffahig sein

i) Sie haben sich fiir Java als Plattform bzw. Programmiersprache entschieden:
Begriinden Sie Thre Entscheidung, indem sie erldutern inwiefern Java als
Programmiersprache/Plattform den oben genannten Anspriichen geniigt.

AN

ii) Nennen Sie Nachteile von Java:

255

'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Aufgabe 3
1. Erlautern Sie die Begriff ,Klasse". o
V.
2. Erlautern Sie den Begriff ,Objekt". /
3. Beschreiben Sie den Zusammenhang zwischen ,Klasse“ und , Objekt". Erlautern Sie
den Zusammenhang unter Verwendung der méglichen Klassen-/Objektkandidaten
,Lehrer”, ,Herr Meier, ,Herr Miiller”. g
I

4. Erlautern Sie den Begriff ,Vererbung" im Zusammenhang mit objektorientierter
Modellierung. Erklaren Sie den Begriff anhand der moglichen Klassenkandidaten /
,Person”, ,Lehrer”, Schiler”.

256

'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Aufgabe 4

A)

Innerhalb dieser Aufgabe soll ein Bankterminal modelliert werden.

Ergédnzen Sie das unten dargestellte Use-Case-Diagramm, indem Sie anhand der
Szenariobeschreibung links die jeweiligen Akteure erganzen und rechts die
entsprechenden Anwendungsfalle eintragen.

Szenariobeschreibung:

Bankterminal:

Die Kunden sollen die Moglichkeit haben, Geld abzuheben und ihren Kontostand
einzusehen. Des Weiteren sollen Sie eine Uberweisung mit Hilfe des Terminals
durchfiihren kénnen. Um das System zu warten, miissen Servicetechniker in der Lage
sein, Bargeld nachzufiillen und Softwareupdates einspielen zu kénnen.

Use-Case-Diagramm:

Bankterminal

0.1
Geld abheben
/

257

&(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

B)

Im Rahmen eines Softwareentwicklungsauftrags fiir ein Kreditinstitut haben Sie mit
dem Bankdirektor die Anforderungen an die zu entwickelnde Software erarbeitet. Sie
miissen nun Thren Entwicklerkollegen diese Information verstandlich mitteilen.

In der Zwischenzeit haben jedoch Ihre Kollegen ohne Ihr Wissen eine aus
Entwicklersicht sehr zeitsparende Vorgehensweise geplant, die jedoch aus Sicht des
Kreditinstituts nicht geeignet ist. Sie haben nun die Aufgabe, Ihre Kollegen von der
Notwendigkeit eines geeigneten Vorgehens im Sinne des Auftraggebers zu liberzeugen.

i) Wie gehen Sie dabei vor? Was unternehmen Sie? (Mehrfachnennungen méglich)

O Ichvereinbare ein Treffen mit den Kollegen und stelle ihnen die
Gesprachsergebnisse vor. Ich versuche sie von der Notwendigkeit der Umsetzung
der Anforderungen zu iiberzeugen. Die Wiinsche des Kunden zu berticksichtigen ist
erforderlich.

O Ich begriifie die eigenen Vorschlage der Kollegen und veranlasse, dass nach diesen
gearbeitet wird. Denn um erfolgreich zu sein, muss aus Entwicklersicht gearbeitet
werden.

ii) Wie gehen Sie vor, um Thren Wissensvorsprung durch das Gesprach mit dem
Bankdirektor Ihren Entwicklerkollegen sinnvoll zu vermitteln. (Mehrfachnennungen
moglich)

O Ich informiere die Kollegen iiber das gefiihrte Gesprach mit dem Bankdirektor gar
nicht, sondern lege fest, dass nach meinen Vorschldgen gearbeitet wird. Anstehende
Diskussionen gefihrden nur den Projekterfolg.

O Ich berufe ein Treffen mit den Kollegen ein und présentiere ihnen die
Gesprachsergebnisse mit dem Bankdirektor. Wenn nétig erstelle ein Handout zur
besseren Verdeutlichung.

iii) Welche Probleme kénnen sich dabei ergeben?

iv) Was miissten Sie bei der stattfindenden Diskussion beachten?
(Mehrfachnennungen moglich)

O Die verschiedenen Standpunkte sollen argumentativ vertreten werden.

O Ich hore den Ausfithrungen der anderen zu, berticksichtige diese allerdings fiir
meine Entscheidung nicht.

O Wenn ich Diskussionsteilnehmer kritisiere, dann tue ich das konstruktiv um der
Sache willen.

O Ich bin bereit, meinen Standpunkt von anderen kritisieren zu lassen, wenn sie
Argumente dabei vorbringen.

258

'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Aufgabe 5

A)

Sie wurden beauftragt, eine Software zur Verwaltung [hrer Schulbibliothek zu
entwickeln. In der Analyse-Phase sollen zunachst CRC-Karten fiir die wichtigsten
Klassen erstellt werden. Ergénzen Sie hierzu die unten dargestellten CRC-Karten um die
jeweiligen Responsibilities und Collaborators. Orientieren Sie sich hierbei an der
Beschreibung der Schulbibliothek 1.

Schulbibliothek I

Die Schulbibliothek umfasst einen Bestand von Biichern. Diese sind gekennzeichnet durch deren
Titel, id-Nummer und Anzahl der Seiten. Die Schulbibliothek wird von verschiedenen Personen
genutzt. Diese haben einen Namen und ein Alter.

[Bibliothek
Responsibilities:
Name Collaborator
V.
[Nutzer [Buch]
Responsibilities: Responsibilities:
Name Collaborator Name Collaborator

Vi Vi Vi s

259

&(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft
B)
Wihlen Sie das Klassendiagramm aus, dass die unten beschriebene erweiterte Version der
Schulbibliothek (Schulbibliothek II) korrekt modelliert.

Klassendiagramm 1:0 X/
Klassendiagramm 2:0

Im falschen Klassendiagramm befindet sich (A) ein logischer Fehler und eine (B) eine
Schwiiche hinsichtlich doppelt gespeicherter Attribute. Markieren Sie diese Fehler bzw.
Schwiichen im falschen Klassendiagramm, indem Sie die beteiligten Klassen und Assoziationen
einkreisen und je nach Mangel/Schwiche mit (A) oder (B) beschriften.

Schulbibliothek II

Die Schulbibliothek umfasst einen Bestand von Biichern. Diese sind gekennzeichnet durch deren
Titel, ISBN-Nummer und Anzahl der Seiten. Es gibt Sachbiicher, Lexika und Romane.
Sachbiicher sind zusitzlich gekennzeichnet durch ein Themengebiet, Lexika durch die Anzahl
Bénde sowie die jeweilige Bandnummer des Exemplars. Die Schulbibliothek wird von
verschiedenen Personen genutzt. Diese haben einen Namen und ein Alter. Unterschieden wird
zwischen verschiedenen Benutzergruppen: Lehrer haben ein erstes und zweites Unterrichtsfach
und diirfen hochstens vier Biicher gleichzeitig ausleihen. Zusitzlich stehen Sie als Berater fiir
zwei bestimmte Themengebiete der Fachbiicher zur Verfiigung. Schiiler haben eine
Jahrgangsstufe und diirfen hochstens zwei Biicher gleichzeitig ausleihen.

260

'L‘ UNIVERSITAT PADERBORN
Die Universitdt der Informationsgesellschaft

Klassendiagramm 1:

leiht aus

leiht aus

ist zustandig >
o s,
Fa %
i H
% -
.t

Klassendiagramm 2:

benutzt

benutzt

leiht aus

leiht aus

ist zustandig

261

'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Aufgabe 6

A)

Vervollstindigen Sie anhand der Use-Case-Beschreibung ,Geld abheben* das
entsprechende Sequenzdiagramm (siehe unten), indem Sie die einzelnen Aufrufe aus
der unten dargestellten Aufrufsammlung auswéhlen und dem Sequenzdiagramm
hinzufiigen (jeder Aufruf darf einmal verwendet werden; zeichnen Sie den jeweiligen
Aufrufpfeil und erginzen Sie die jeweilige Nummer; Die Aufruftext z.B. ,geld abheben(-
105) muss im Sequenzdiagramm nicht ergdnzt werden).

Szenario ,,Geld abheben“:

Schritt Nutzer Beschreibung der Aktivitit
1 Kunde ,Geld abheben” wéhlen
2 Bankterminal | PIN anfordern
3 Kunde PIN eingeben: 4725
4 Bankzentrale | PIN priifen
5 Bankterminal | Abzuhebenden Betrag erfragen
6 Kunde Betrag eingeben: 105 Euro
7 Bankzentrale | Kontostand auf ausreichende Deckung priifen
8 Bankterminal | Geld auszahlen
9 Kunde Geld entnehmen
10 Bankzentrale | Kontostand anpassen
Aufrufsammlung:

1) Kontostand_anpassen(-105) 2) get_Kontonummer()

>
true
true
it 7
5) PIN_prifen(4725,16852) 6) Kontostand_anpassen(-105)
true 16852
7) e - 8)

262

'L‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft
Sequenzdiagramm zum Szenario ,,Geld abheben“:

Kunde Kunde Terminal_Control Bank_Zentrale_Control Konto
L e n - L
Geld_abheben(
Geld_abheben(
PIN_anfordern()
PIN_eingeben(4725)
4725
______________>.
1
—
4
Betrag_erfragen() Qrrrnsnnnnnns
Be ingeben(105
trag_eingeben(105) 105
.______________>
Deckung_prifen(16852,105)
Deckung_priifen(16852,105)
true
true < ______________
Betrag_auszahlen(105) e ———————— — —]
B)
Stellen Sie sich vor, Sie wiirden im professionellen Umfeld Szenariobeschreibungen
analysieren und méchten im nachsten Schritt ein Sequenzdiagramm erstellen. Welche
Personen kdmen als Gesprachspartner in Frage, die wichtige Informationen iiber das
Geschaftsfeld liefern kénnten?
Ve
V- 4

263

&(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Aufgabe 7

Ergdnzen Sie ausgehend von der unten aufgefiihrten Funktionsbeschreibung eines
Festplatten-Rekorders das Zustandsdiagramm: Erginzen Sie hierbei die fehlenden
Zustandstiberginge.

Festplatten-Rekorder

Das Gerat befindet sich nach dem Einschalten im Hauptmenii. Mittels der TV-Taste
gelangt man in den TV-Modus, in dem das aktuelle Fernsehbild dargestellt wird. Betatigt
man die Record-Taste, wechselt das Gerat in den Aufnahme-Modus und zeichnet das
aktuelle Fernsehprogramm auf. Betétigt man in diesem Zustand die Stop-Taste wird die
Aufnahme beendet und das Gerat wechselt wieder in den TV-Modus. Durch Betatigung
der Pause-Tasteinnerhalb des TV-Modus wird der Timeshift-Modus aktiviert. Hierbei
wird die aktuelle Fernsehsendung pausiert und ab diesem Zeitpunkt aufgenommen.
Durch nochmaliges Driicken der Pause-Taste wird das Fernsehprogramm von der zuvor
pausierten Position fortgesetzt. Driickt man die Stop-Taste wechselt der Festplatten-
Rekorder wieder in den TV-Modus und spielt das TV-Programm ohne zeitlichen Versatz
ab.

Driickt man innerhalb des Hauptmeniis die Archiv-Taste, wechselt das Gerat in den
Archiv-Modus. Hier kann durch Betétigung der Play-Taste eine ausgewdhlte - zuvor
aufgenommene - Sendung abgespielt werden (das Gerat wechselt in den Abspielen-
Modus). Mit Hilfe der Stop-Taste gelangt man wiederum in den Archiv-Modus.

Sowohl im TV- als auch im Archiv-Modus gelangt man durch Driicken der Menii-Taste ins
Hauptmenti.

Zustandsdiagramm des Festplatten-Rekorders:

Aufnahme-Modus
TV-Modus
Pause_Taste
[Timeshift-Modus]

_t7

Archiv-Taste

[Archiv-Modus] Abspielen-Modus

264

'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Aufgabe 8

Implementieren Sie die Klassen Wald, Baum, Foerster und Nadelbaum (Attribute,
Methoden und Assoziationen/Aggregationen) anhand des unten dargestellten
Klassendiagramms. Verwenden Sie die vorgegebenen Klassenriimpfe. Beachten Sie, dass
die Konstruktoren der Klassen implementiert werden miissen, obwohl diese nicht im
Klassendiagramm zu finden sind.

Klassendiagramm:

265

&(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Quellcode:

Klasse wald:

public class Wald

Klasse Foerster:

public class Foerster

4

266

'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft
Klasse Baum:

public class Baum

Klasse Nadelbaum

public class NadelBaum

X

267

& UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Aufgabe 9

A)

Gegeben sei die API der Klasse java.util.Vector. (siehe Anhang des Fragebogens)
Verwenden sie diese, um die erforderlichen Methoden sowie deren Parameter und
Riickgabetypen fiir den Umgang mit der Klasse Vector zu recherchieren.

Ergdnzen Sie innerhalb des gegebenen Klassenrumpfes die main-Methode um
Anweisungen (siehe Vector-API), sodass die folgende Funktionalitit umgesetzt wird:

e Essoll ein Objekt der Klasse Vector erzeugt werden.

e Die folgenden Strings sollen sukzessive in den Vector eingefiigt werden:
seins”, ,zwei“, ,drei”, ,vier, ,funf"

¢ Innerhalb der im Klassenrumpf enthaltenen for-Schleife sollen simtliche
Elemente des Vectors auf der Konsole ausgegeben werden

Illustration des Vector-Objekts:

Index 0 1 2 3 4
Inhalt ,eins” JZwei" ,drei” vier” Sfunf”
Klasse Vectortest

import java.util.Vector
public class VectorTest {

public static void main(Strin%] args) {
//Vector-Objekt erzeugen

//Strings zum Vector hinzufigen/

//alle Elemente des Vectors auf Konsole ausgeben/
for ()

268

&(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft
B)
i) Stellen Sie sich vor, Sie arbeiten im Team an der Entwicklung einer MP3-Player-
Software. Sie personlich - als Experte auf diesem Gebiet - haben nun eine
Klassenbibliothek zur Tonausgabe auf der Soundkarte entwickelt.
Wie gehen Sie vor, um Ihren Kollegen die Verwendung Ihres Programmmoduls zu
ermoglichen? (Mehrfachnennungen méglich)

O Ich schicke ihnen den Quellcode meiner Klassenbibliothek zu und bitte sie, sich
detailliert einzuarbeiten. Wenn Sie mein Programm vollstdndig verstehen kénnen
Sie es in ihr Projekt einbinden.

O Ichlasse ihnen eine Schnittstellenbeschreibung zukommen. Diese umfasst lediglich
Methoden der Klassen und deren Signaturen. Das sollte fiir die Verwendung meines
Programmmoduls vollkommen ausreichen.

ii) Ein weiterer Kollege hat zu einem spéateren Zeitpunkt eine Alternative zu Ihrer
Programmbibliothek zur Soundausgabe entwickelt. Diese erweist als deutlich besser als
Ihre Programmbibliothek im Hinblick auf zukiinftige Features des Mp3-Players. Wie
verhalten Sie sich in dieser Situation, um den bestméglichen Erfolg des Projekts zu
erzielen? (Mehrfachnennungen moéglich)

O Ich setze alle Energie in die Uberarbeitung meiner Version, um es meinem Kollegen
Zu zeigen.

O Ich spreche mich mit meinem Kollegen ab, um aus unseren beiden Versionen das
Beste herauszuholen und diese zu einer optimalen lauffahigen Version zu verbinden.

O Ichkiindige, weil meine Arbeit nicht wertgeschatzt worden ist.

O Ich stelle meine eigene Losung zuriick und lasse zu, dass die bessere Losung meines
Kollegen genutzt wird, um den Projekterfolg nicht zu gefahrden.

269

&(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Aufgabe 10

A)
Entscheiden Sie, ob die folgenden Aussagen wahr sind:

i) Im Rahmen der Testphase wird ausschliefdlich tiberpriift, ob der
Auftraggeber mit dem fiir ihn entwickelten Softwaresystem
zurechtkommt.

jaQ neinQ

ii) In der Testphase wird liberpriift, ob sdmtliche funktionalen
Anforderungen aus der Anforderungsanalyse innerhalb des
Softwaresystems umgesetzt wurden

jaQ neinQ

iii) Es kann sinnvoll sein im Rahmen der Testphase einen Riickgriff auf
die bereits abgeschlossene Anforderungsdefinition zu machen

jaQ neinQ

iv) Wenn man eine Software innerhalb der Testphase auf Robustheit
iberpriift, testet man wie zuverléssig das System iiber einen langeren
Zeitraum lauft.

jaQ neinQ

v) Es gibt bestimmte sicherheitskritische Bereiche, in denen Softwaresysteme zur
Unterstlitzung eingesetzt werden. Hierbei ist es von enormer Wichtigkeit, dass die

jeweilige Software auf Herz und Nieren getestet wird.

Nennen Sie mindestens zwei solcher Bereiche, in denen ein sorgfaltiger Softwaretest vor
dem Einsatz der Software aufierordentlich wichtig (vielleicht sogar lebenswichtig) ist.

4

270

'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

B)

Entwickeln Sie anhand des unten dargestellten Screenshots einer Webapplikation zur
Reisebuchung und anhand des Ausschnitts der Anforderungsdefinition einen
geeigneten Testplan. Gehen Sie dabei folgendermafien vor:

i) Uberpriifen Sie, ob sdmtliche funktionalen Anforderungen an die Software umgesetzt
wurden, indem Sie fiir jede Anforderung jeweils einen Testfall entwickeln. Tragen Sie
diese Testfille in Tabelle 1 ein:

Anforderungsdefinition Reisebuchungssystem:

Anforderung 1: Benutzer kann Pauschalreisen suchen, indem er Reiseziel,
Abflughafen, Abflugdatum, Riickflugdatum (muss mindestens zwei
Tage hinter dem Abflugdatum terminiert sein), Anzahl
Erwachsener (mindestens einer), Anzahl Kinder,
Verpflegungsarten (mindestens eine) sowie einen Zimmertyp

auswahlt.

Anforderung 2: Der Benutzer kann optional die Hotelkategorie (Anzahl Sterne)
mit in die Suche einbeziehen.

Anforderung 3: Benutzer kann auch nur den Hinflug buchen. Hierbei muss keine

Eingabe in die Elemente der rechten Spalte gemacht werden.

Screenshot eines Web-Reise-Buchungssvstems:
Last-Minute-SHOP-24

<:] ¢> X Q [http://www.lastminuteshop24.eu | @

|Urlaub buchen\
Last-Minute-Shop-24 o
Buchen Sie Thre Traumreise!
Relsezlel |Lanzarote | v] Anzahl Erwachsene K
Abflughafen |Paderborn | v| Anzahl Kinder GHE

Abflugdatum E Verpflegungsart O All Inclusive
& Halbpension
[0 ohne Verpflegung

— B | e

O Hotelkategorie |3 Sterne _[v]

O nur Hinflug

Suchen J &

271

& UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Tabelle 1:

Testfall: Anforderung 1

Testfall: Anforderung 2

Testfall: Anforderung 3

Reiseziel: Lanzarote

Reiseziel:

Reiseziel:

Abflughafen: Paderborn Abflughafen: Abflughafen:
Abflugdatum: 01.08.2010 Abflugdatum: Abflugdatum:

Nur Hinflug: Q Nur Hinflug: Q Nur Hinflug: Q
Riickflugdatum: 08.08.2010 Riickflugdatum: Riickflugdatum:
Anzahl Erwachsene: 2 Anzahl Erwachsene: Anzahl Erwachsene:
Anzahl Kinder: 1 Anzahl Kinder: Anzahl Kinder:
Verpflegungsart: Verpflegungsart: Verpflegungsart:
AlQ; vPE; 0vVQ AIQ; vpQ; 0vQ A1Q; vpQ;0vQa
Zimmertyp: Apartment Zimmertyp: Zimmertyp:

Hotelkategorie: O

Hotelkategorie: O

Hotelkategorie: O

ii) Uberpriifen Sie die Robustheit der Anwendung, indem Sie nochmals den Auszug der
Anforderungsdefinition betrachten und drei unerwartete Testfélle entwickeln, die
die Anwendung zum Absturz bringen kénnten. Erganzen Sie diese Testfille in Tabelle 2.

Tabelle 2:

Testfall: Fehleingabe 1

Testfall: Fehleingabe 2

Testfall: Fehleingabe 3

Reiseziel: Lanzarote

Reiseziel:

Reiseziel:

Abflughafen: Paderborn Abflughafen: Abflughafen:
Abflugdatum: 01.08.2010 Abflugdatum: Abflugdatum:

Nur Hinflug: Q Nur Hinflug: Q Nur Hinflug: Q
Riickflugdatum: 25.07.2010 Riickflugdatum: Riickflugdatum:
Anzahl Erwachsene: 2 Anzahl Erwachsene: Anzahl Erwachsene:
Anzahl Kinder: 1 Anzahl Kinder: Anzahl Kinder:
Verpflegungsart: Verpflegungsart: Verpflegungsart:
Alm; VvPQ; 0v0O A1Q; vpOQ; ova AlQ; vpQ; ova
Zimmertyp: Apartment Zimmertyp: Zimmertyp:

Hotelkategorie: @ (3 Sterne)

Hotelkategorie: O

Hotelkategorie: O

272

&(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

)

i) Sie entwickeln eine Webseite fiir ein Reisebiliro und befinden sich nach Abschluss der
Implementierung in der Testphase. Um die Robustheit Ihres Softwareprodukts zu
verbessern, sollen Betatester in den Prozess mit einbezogen werden. Welche Personen
wiirden Sie in die Testphase mit einbeziehen? (Mehrfachnennungen méglich)

O Die Entwickler des Reisebuchungssystem

X/ O Erfahrene Benutzer anderer Reisebuchungssysteme
O Benutzer, die Grundkenntnisse in der Benutzung des Internets haben
O Grundschiiler, die gerade das Lesen gelernt haben

ii) Viele Betatester haben iiber Abstiirze der Webseite berichtet. Wie gehen Sie vor, um
die Eingaben in das System, die zum Absturz gefiihrt haben, herauszufinden? Wie
ermitteln Sie, was der Benutzer mit seinen Eingaben (die zum Absturz gefiihrt
haben)bezwecken wollte?

273

&(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Beurteilung verschiedener Aussagen zum informatischen Arbeiten

Im Folgenden werden verschiedene Aussagen prasentiert, die sich auf die Arbeit mit
sogenannten informatischen Systemen beziehen. Unter informatischen Systemen

versteht man einerseits das technische System an sich, andererseits aber auch den

Umgang der Benutzer mit diesem technischen System.

Bitte geben Sie an, inwieweit die unten aufgefiihrten Aussagen lhrer Meinung nach auf
Sie zutreffen. Es handelt sich dabei um Ihre ganz personliche Einschéatzung. Es gibt keine
richtigen und keine falschen Antworten. Bitte kreuzen Sie pro Frage genau eine Antwort

an.

& i
&
& $
& & N
ISP SN Q
4 A
x?

Informatische Systeme stecken voller Geheimnisse ololo
und ihr Funktionieren ist kaum nachvollziehbar.
Informatische Systeme kann man mit geeignetem
Wissen gut nachvollziehen und verstehen. Man kann Ol O | O
dann formlich in sie hineinsehen.
Ich bin davon iiberzeugt, dass das Anwenden und

. . L. O| O | O
Verstehen informatischer Systeme sehr wichtig ist.
Ich bin davon iiberzeugt, dass das Gestalten
m"forrlnat.lscher Systeme sehr bedeutsam und ololo
niitzlich ist.
Wenn ich mit einem informatischen System arbeite,
mache ich mir Gedanken um seine Tauglichkeit O| O | O
(Geeignetheit) fiir die zu bearbeitende Aufgabe.
Wenn ich mit einem informatischen System arbeite, ololo
bewerte ich dieses im Hinblick auf ihre Qualitat.
Wenn ich mit einem informatischen System arbeite,
bewerte ich dieses im Hinblick auf die ol O | O
Angemessenheit beziiglich der Aufgabenstellung.

274

&(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Wenn ich mit informatischen Systemen arbeite, so
muss ich mich den vorliegenden Gegebenheiten des
informatischen Systems anpassen, da ich nichts
daran dndern kann.

Wenn ich eine schwierige informatische Aufgabe
16se, ist es mir wichtig, einen Plan dabei zu verfolgen.
Unsystematisches Herumprobieren hilft da nicht
weiter.

Wenn ich eine schwierige informatische Aufgabe
l6se, lege ich sofort los. Ich méchte zu Beginn nicht
allzu viel Zeit mit der Planerei verlieren.

Informatische Systeme sind im Bereich der
Informatik von grof3er Bedeutung, sind aber
unbedeutend im alltdglichen Leben.

Informatische Systeme haben eine grofde Wirkung
auf das alltdgliche Leben. Kaum jemand kann sich
ihrem Einfluss entziehen.

Informatische Aufgabenstellungen interessieren
mich sehr.

Mir macht es Freude, informatische Modelle zu
erstellen, mit denen man einen Ausschnitt realer
Ablaufe abbilden kann.

Ich beschaftige mich gerne auch in der Freizeit mit
Informatik.

275

&(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

o 0
& N &
5? > “é’(\) bo'g
“6&(\) &Q (\}} §’
: & & Q@* N
; Q @ > L
& & L

Manchmal wiére ich ganz froh, wenn die
informatischen Aufgaben mehr mithilfe von festen O O|O0O|O| O
Losungsrezepten gelost werden konnten.
Ich finde es wichtig, dass ich meine Arbeitsweise an
die jeweilige informatische Aufgabenstellung O 0| 0| 0| O
anpasse, insbesondere wenn sie nur fiir mich ist.
Ich bin bereit, ganz neue Losungswege, die ich bisher
nicht kenne, zu entwickeln und einzusetzen, umeine | O 0|00 |0
informatische Aufgabe erfolgreich zu l6sen.
Ich bin motiviert, meine informatischen Fahigkeiten
stets zu verbessern (erh6hen) und mein Wissen O O|O0O|O| O
diesbeziiglich zu erweitern.
Ich will die mir anvertrauten informatischen o olololo
Aufgaben erfolgreich bearbeiten.
Der Erfolg bei der Bearbeitung von informatischen

§ el cer BeaThelting o olo|o]|o
Aufgaben ist mir wichtig.
Wenn ich mit einer informatischen Aufgabe betraut
bin, werde ich alles daransetzen, sie auch erfolgreich | O oO|lO0O|0O| O
zu bearbeiten.
Um Erfolg beim Bearbeiten von informatischen
Aufgaben zu haben, bin ich bereit, mich anstrengen @) Ol O| O] O
und bis an meine Leistungsgrenze zu gehen.

276

&(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

An die Aufgaben, die man mir libertrégt, fiihle ich
mich nicht so stark gebunden wie an die Aufgaben,
flir die ich mich ernsthaft interessiere.

Ich besitze ein ganz gutes informatisches
Grundwissen, so dass ich mein Wissen nicht standig
erweitern muss.

Misserfolgserlebnisse bei informatischen Aufgaben
sind nicht immer vermeidbar; dann heifst es jedoch
weiterzumachen und durchzuhalten.

Mich faszinieren informatische Aufgaben besonders,
wenn sie ein hohes Maf? an Abstraktion verlangen.

277

&(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Abschlussbefragung

Bei dieser Aufgabensammlung zur informatischen Modellierung und Systemverstdndnis
handelt es sich um eine Vorversion, die weiterhin noch verbessert werden muss. Durch
die Beantwortung der folgenden Fragen tragen Sie aktiv zur Weiterentwicklung dieses
Instrumentariums bei (bitte beachten Sie die Aufgabeniibersicht von im Anhang).
An welchen Stellen traten Verstdndnisschwierigkeiten auf? Z.B. durch schwammige
Formulierungen oder durch die Aufgabenstellung selbst.

v
-
Konnten die Antwortformate sinnvoll genutzt werden? Waren die Instruktionen so
formuliert, dass Sie dariiber Bescheid wussten, was Sie zu tun haben? Wo genau (bei
welchen Aufgaben) gab es Probleme? Wo fehlten hilfreiche Informationen?
4

Glauben Sie, dass die gewdhlten Formulierungen geeignet sind fiir Schiilerinnen und
Schiiler der 12. Jahrgangsstufe? Welche Formulierungen in welchen Aufgaben sind Ihrer
Meinung nach ungeeignet?

4

Welche Aufgaben fanden Sie besonders schwierig? Was genau war daran besonders
schwierig?

Va
i

278

&(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft
Welche Aufgaben fanden Sie besonders einfach, trivial und damit vielleicht sogar

uberfliissig?

ya
-l
Fiir welche Aufgaben benétigten Sie besonders viel Zeit? Nennen Sie bitte diese
Aufgaben?
Va
Il
Welche Aufgaben lief3en sich sehr schnell bearbeiten? Nennen Sie bitte auch diese
Aufgaben
Va
Koénnen Sie uns mitteilen, was Thnen bei der Bearbeitung der Aufgaben besonders
aufgefallen ist? Diese Auffalligkeiten kdnnen sich auf jeden erdenklichen Aspekt
beziehen, der mit dieser Aufgabensammlung im Zusammenhang steht?
V4
ol

279

&(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Anhang zur Abschlussbefragung

Aufgabeniibersicht des Hauptfragebogens

1.

W

LoNo U

Phasen des Wasserfallmodells / Zyklisches Vorgehen im Software Engineering
Prozess

Auswabhl der Architektur / Eigenschaften der Programmiersprache Java
Grundbegriffe der Objektorientierung

Entwicklung eines Use-Case-Diagramms / soziale Faktoren bei der Entwicklung
einer Banksoftware

CRC-Karten / Klassendiagramm zur Schulbibliothekssoftware
Sequenzdiagramm zum Szenario ,Geld abheben”

Zustandsdiagramm zum ,Festplatten Rekorder”

Implementierung des Klassendiagramms ,,Wald, Forster, Baum, Nadelbaum*
Implementierung anhand einer API: Klasse ,java.util.Vector” / soziale Faktoren
bei der Entwicklung von Programmmodulen ,Mp3-Player”

10. Test des Reisebuchungssystems / soziale Faktoren beim Softwaretest

280

'L‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Anhang zum Hauptfragebogen
API zu Aufgabe 9A)

Constructor Summary

Vector ()

Constructs an empty vector so that its internal data array has size 10 and its standard capacity increment

is zero.

Vector(Collection<? extends E> c)

Constructs a vector containing the elements of the specified collection, in the order they are returned by

the collection's iterator.

Vector (int initialCapacity)
Constructs an empty vector with the specified initial capacity and with its capacity increment equal to

Zero.

Vector (int initialCapacity,

int capacityIncrement)

Constructs an empty vector with the specified initial capacity and capacity increment.

Method Summary

boolean

void

boolean

boolean

void

int

void

Object

boolean

boolean

void

E

Enumeration<E>

void

add (E e)
Appends the specified element to the end of this Vector.

add (int index, E element)
Inserts the specified element at the specified position in this Vector.

addAll (Collection<? extends E> c)
Appends all of the elements in the specified Collection to the end of this Vector,
in the order that they are returned by the specified Collection's Iterator.

addall (int index, Collection<? extends E> c)

Inserts all of the elements in the specified Collection into this Vector at the
specified position.
addElement (E obj)

Adds the specified component to the end of this vector, increasing its size by one.

capacity ()
Returns the current capacity of this vector.

clear()
Removes all of the elements from this Vector.

clone ()
Returns a clone of this vector.

contains (Object o)
Returns true if this vector contains the specified element.

containsAll (Collection<?> c)
Returns true if this Vector contains all of the elements in the specified Collection.

copyInto (Object([] anArray)
Copies the components of this vector into the specified array.

elementAt (int index)
Returns the component at the specified index.

elements ()
Returns an enumeration of the components of this vector.

ensureCapacity (int minCapacity)
Increases the capacity of this vector, if necessary, to ensure that it can hold at least
the number of components specified by the minimum capacity argument.

281

'L‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

boolean

[eal

=1

int

int

int

void

boolean

|1

int

int

|1

boolean

boolean

void

boolean

void

protected wvoid

boolean

|

void

equals (Object o)
Compares the specified Object with this Vector for equality.

firstElement ()
Returns the first component (the item at index 0) of this vector.

get (int index)
Returns the element at the specified position in this Vector.

hashCode ()
Returns the hash code value for this Vector.

indexOf (Object o)
Returns the index of the first occurrence of the specified element in this vector, or
-1 if this vector does not contain the element.

indexOf (Object o, int index)
Returns the index of the first occurrence of the specified element in this vector,
searching forwards from index, or returns -1 if the element is not found.

insertElementAt (E obj, int index)
Inserts the specified object as a component in this vector at the specified index.

isEmpty ()
Tests if this vector has no components.

lastElement ()
Returns the last component of the vector.

lastIndexOf (Object o)
Returns the index of the last occurrence of the specified element in this vector, or
-1 if this vector does not contain the element.

lastIndexOf (Object o, int index)
Returns the index of the last occurrence of the specified element in this vector,
searching backwards from index, or returns -1 if the element is not found.

remove (int index)
Removes the element at the specified position in this Vector.

remove (Object o)
Removes the first occurrence of the specified element in this Vector If the Vector
does not contain the element, it is unchanged.

removeAll (Collection<?> c)
Removes from this Vector all of its elements that are contained in the specified
Collection.

removeAllElements ()
Removes all components from this vector and sets its size to zero.

removeElement (Object obj)
Removes the first (lowest-indexed) occurrence of the argument from this vector.

removeElementAt (int index)
Deletes the component at the specified index.

removeRange (int fromIndex, int toIndex)
Removes from this List all of the elements whose index is between fromIndex,
inclusive and tolndex, exclusive.

retainAll (Collection<?> c)
Retains only the elements in this Vector that are contained in the specified
Collection.

set (int index, E element)
Replaces the element at the specified position in this Vector with the specified
element.

setElementAt (E obj, int index)

282

'L‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Sets the component at the specified index of this vector to be the specified
object.

void | setSize(int newSize)
Sets the size of this vector.

int size()
Returns the number of components in this vector.

List<E> |sublist (int fromIndex, int toIndex)
Returns a view of the portion of this List between fromIndex, inclusive, and
toIndex, exclusive.

Object[] toArray ()
Returns an array containing all of the elements in this Vector in the correct order.

<T> T[] toArray (T[] a)
Returns an array containing all of the elements in this Vector in the correct order;
the runtime type of the returned array is that of the specified array.

String toString()
Returns a string representation of this Vector, containing the String representation
of each element.

void |trimToSize ()
Trims the capacity of this vector to be the vector's current size.

283

A.2.2. Bewertungsschema

284

Musterlosung

L UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Aufgaben zur informatischen Modellierung und Systemgestaltung

Vielen Dank, dass Sie sich bereit erkldrt haben, diese Aufgabensammlung zu bearbeiten!

Selbstverstandlich findet diese Bearbeitung vollkommen anonym statt. Uns geht es
darum, in absehbarer Zeit ein Messinstrumentarium zu entwickeln fiir die beiden
Bereiche Informatisches Modellieren und Systemverstdndnis. Da wir uns damit noch in
der Vorerprobungsphase befinden, sind wir darauf angewiesen, einen ersten
Testdurchlauf zu starten, um festzustellen, ob die gewéhlten Aufgaben sich fiir unseren
Zweck eignen. Durch die Bearbeitung dieser Aufgaben helfen Sie uns dabei sehr.
Herzlichen Dank!

285

'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Aufgabe 1

A)

Ordnen Sie die folgenden UML-Diagrammtypen den jeweiligen Phasen des
Wasserfallmodells zu. Beachten Sie, dass einzelne Diagrammtypen auch mehreren
Phasen zugeordnet werden kénnen und dass Felder ggf. frei bleiben kénnen. Ergédnzen
Sie die untere Tabelle, indem Sie die Nummer der jeweiligen Diagrammtypen in der
rechten Spalte ergénzen.

UML-Diagrammtypen (alphabetisch sortiert):
(1) Aktivitdtendiagramm
(2) CRC-Karten
(3) Klassendiagramm
(4) Objektdiagramm (Objekt-Karten)
(5) Sequenzdiagramm
(5) Use Case Diagramm
(6) Zustandsdiagramm

Anforderungsanalyse Use-Case-Diagramm /
Aktivitdtendiagramm
Analyse Klassendiagramm
Sequenzdiagramm
Design Klassendiagramm
Deploymentdiagramm
Zustandsdiagramm
Implementierung
Test
B)

In der Praxis laufen die Phasen des Softwareengineerings selten linear ab. Haufig
werden die einzelnen Phasen in mehreren Iterationen durchlaufen. Beschreiben Sie
mindestens zwei Beispiele (in 2-3 Sdtzen), in denen es notwendig ist, eine bereits
abgeschlossene Phase des Wasserfallmodells nochmals zu durchlaufen.

1. Beispiel: In der Testphase muss u.a. gepriift werden, ob alle funktionalen /
Anforderungen korrekt umgesetzt wurden. Daher ist es sinnvoll einen Riickgriff
auf die Anforderungsanalyse zu machen.

2. Beispiel: Innerhalb der Implementierungsphase kann sich herausstellen, dass
Anderungen an der Architektur der Software vorgenommen werden miissen.
Dementsprechend kann es sinnvoll/erforderlich sein, von der
Implementierungsphase einen Riickgriff auf die Designphase zu machen.

286

'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Aufgabe 2

Sie sind als Projektmanager beauftragt, ein verteiltes Chatsystem zu entwickeln. Hierbei
muss folgendes beachtet werden:
¢ Die verschiedenen Module der Software sollen von verschiedenen Teams
entwickelt werden
e Zur gemeinsamen Modellierung sollen UML-Diagramme verwendet werden
Das zu entwickelnde Chatsystem soll plattformunabhéngig
(Linux/Windows/Mac) lauffahig sein

i) Sie haben sich fiir Java als Plattform bzw. Programmiersprache entschieden:
Begriinden Sie Ihre Entscheidung, indem sie erldutern inwiefern Java als
Programmiersprache/Plattform den oben genannten Anspriichen geniigt.

objektorientierte Programmiersprache eignet sich gut zur Modularisierung

e Beispielsweise direkte Ubersetzung von Klassendiagrammen in Java-Quellcode
moglich

e Javaist durch die Java Virtual Machine plattformunabhéngig

ii) Nennen Sie Nachteile von Java:
e Performance-Nachteile durch die JVM (leider nicht mehr aktuell aufgrund JIT-
Compiler;-()
e Keine maschinennahe Programmierung méglich
e Kein direkter Speicherzugriff aufgrund fehlender Pointer-Arithmetik

Aufgabe 3
1. Erlautern Sie die Begriff ,Klasse"“. /

Unter einer Klasse versteht man in der objektorientierten Programmierung ein
abstraktes Modell bzw. einen Bauplan fiir eine Reihe von dhnlichen Objekten.

Die Klasse dient als Bauplan fiir die Abbildung von realen Objekten in Softwareobjekte
und beschreibt Attribute (Eigenschaften) und Methoden (Verhaltensweisen) der
Objekte

2. Erlautern Sie den Begriff ,Objekt".

Ein Objekt bezeichnet in der objektorientierten Programmierung (OOP) ein Exemplar /
eines bestimmten Datentyps oder einer bestimmten Klasse (auch , Objekttyp“ genannt).

In diesem Zusammenhang werden Objekte auch als ,Instanzen einer Klasse“ bezeichnet.
Objekte sind also konkrete Auspragungen (,Instanzen“) eines Objekttyps.

3. Beschreiben Sie den Zusammenhang zwischen ,Klasse“ und ,Objekt”. Erldutern Sie
den Zusammenhang unter Verwendung der moglichen Klassen-/Objektkandidaten
,Lehrer”, Herr Meier, ,Herr Miiller".

Die Klasse ,Lehrer” kann als abstraktes Modell fiir die Objekte ,Herr Meier” und ,Herr

Miiller gesehen werden. Diese stellen dann eine Instanz der Klasse , Lehrer” dar.

287

ILt‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft
4. Erlautern Sie den Begriff ,Vererbung” im Zusammenhang mit objektorientierter
Modellierung. Erklaren Sie den Begriff anhand der moglichen Klassenkandidaten /
,Person“, ,Lehrer”, Schuler”.

Klassen konnen miteinander in hierarchischen Beziehungen stehen und zu komplexen
Strukturen werden. Die GesetzméBigkeiten, nach denen diese gebildet werden, beschreibt das
grundlegende Konzept der Vererbung. Hier sind weiterhin die Begriffe Basisklasse und
abgeleitete Klasse von Bedeutung, um die Verhéltnisse der Klassen untereinander zu
charakterisieren. Dabei beschreibt die Basisklasse allgemeine Eigenschaften, ist also eine
Verallgemeinerung der abgeleiteten Klassen; diese sind somit Spezialisierungen der
Basisklasse.

Beispiel: Basisklasse person ist Verallgemeinerung der abgeleiteten Klassen
(Spezialisierungen) Lehrer und Schiiler.

Dabei erben die abgeleiteten Klassen alle Eigenschaften und Methoden der Basisklasse (d.h.
ein Motorrad hat alle Eigenschaften eines Kraftfahrzeugs, und man kann alles mit ihm
machen, das man mit einem Kraftfahrzeug machen kann). Zusitzlich fiihrt die abgeleitete
Klasse zusdtzliche Eigenschaften und Methoden ein, die bei ihren Objekten moglich sind.
(Das Motorrad hat z.B. einen Gepécktriger, ein Auto nicht, dafiir aber einen Kofferraum.)

288

'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Aufgabe 4

A)
Innerhalb dieser Aufgabe soll ein Bankterminal modelliert werden.
Ergédnzen Sie das unten dargestellte Use-Case-Diagramm, indem Sie anhand der

Szenariobeschreibung links die jeweiligen Akteure erginzen und rechts die
entsprechenden Anwendungsfille eintragen.

Szenariobeschreibung:

Bankterminal:

Die Kunden sollen die Méglichkeit haben, Geld abzuheben und ihren Kontostand
einzusehen. Des Weiteren sollen Sie eine Uberweisung mit Hilfe des Terminals
durchfiihren kénnen. Um das System zu warten, miissen Servicetechniker in der Lage
sein, Bargeld nachzufiillen und Softwareupdates einspielen zu kénnen.

Use-Case-Diagramm:

Bank(erminalj

-_P‘I-_F‘_‘_‘_——“'_'_-J
Kunde 2

0..1(" Bargeld nachfillen
ol
%1\ 0.1
Servicetechniker Update einspielen

289

&(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

B)

Im Rahmen eines Softwareentwicklungsauftrags fiir ein Kreditinstitut haben Sie mit
dem Bankdirektor die Anforderungen an die zu entwickelnde Software erarbeitet. Sie
miissen nun Thren Entwicklerkollegen diese Information verstandlich mitteilen.

In der Zwischenzeit haben jedoch Ihre Kollegen ohne Ihr Wissen eine aus
Entwicklersicht sehr zeitsparende Vorgehensweise geplant, die jedoch aus Sicht des
Kreditinstituts nicht geeignet ist. Sie haben nun die Aufgabe, Ihre Kollegen von der
Notwendigkeit eines geeigneten Vorgehens im Sinne des Auftraggebers zu liberzeugen.

i) Wie gehen Sie dabei vor? Was unternehmen Sie? (Mehrfachnennungen méglich)

\/ Ich vereinbare ein Treffen mit den Kollegen und stelle ihnen die
Gesprachsergebnisse vor. Ich versuche sie von der Notwendigkeit der Umsetzung
der Anforderungen zu iiberzeugen. Die Wiinsche des Kunden zu berticksichtigen ist
erforderlich.

O Ich begriife die eigenen Vorschliage der Kollegen und veranlasse, dass nach diesen
gearbeitet wird. Denn um erfolgreich zu sein, muss aus Entwicklersicht gearbeitet
werden.

ii) Wie gehen Sie vor, um Thren Wissensvorsprung durch das Gesprach mit dem
Bankdirektor Ihren Entwicklerkollegen sinnvoll zu vermitteln. (Mehrfachnennungen
maoglich)

O Ichinformiere die Kollegen liber das gefiihrte Gesprach mit dem Bankdirektor gar
nicht, sondern lege fest, dass nach meinen Vorschldgen gearbeitet wird. Anstehende
Diskussionen gefahrden nur den Projekterfolg.

Ich berufe ein Treffen mit den Kollegen ein und présentiere ihnen die
Gesprachsergebnisse mit dem Bankdirektor. Wenn nétig erstelle ein Handout zur
besseren Verdeutlichung.

iii) Welche Probleme konnen sich dabei ergeben?

e unterschiedliches Verstandnis Problembereichs
e Die Entwickler, die bereits in Vorleistung getreten empfinden ihre Arbeit als
nicht wertgeschatzt

iv) Was miissten Sie bei der stattfindenden Diskussion beachten?
(Mehrfachnennungen moglich)

\/ Die verschiedenen Standpunkte sollen argumentativ vertreten werden.
O Ich hére den Ausfithrungen der anderen zu, berticksichtige diese allerdings fiir
meine Entscheidung nicht.

X/ \/ Wenn ich Diskussionsteilnehmer Kritisiere, dann tue ich das konstruktiv um der

Sache willen.

\/ Ich bin bereit, meinen Standpunkt von anderen kritisieren zu lassen, wenn sie
Argumente dabei vorbringen.

290

'L‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Aufgabe 5

A)

Sie wurden beauftragt, eine Software zur Verwaltung [hrer Schulbibliothek zu
entwickeln. In der Analyse-Phase sollen zunachst CRC-Karten fiir die wichtigsten
Klassen erstellt werden. Ergénzen Sie hierzu die unten dargestellten CRC-Karten um die
jeweiligen Responsibilities und Collaborators. Orientieren Sie sich hierbei an der
Beschreibung der Schulbibliothek 1.

Schulbibliothek I

Die Schulbibliothek umfasst einen Bestand von Biichern. Diese sind gekennzeichnet durch deren
Titel, id-Nummer und Anzahl der Seiten. Die Schulbibliothek wird von verschiedenen Personen
genutzt. Diese haben einen Namen und ein Alter.

= r g
[Bibliothek
o Y‘ N T
& Responsibilities:
F 3y | - T
& P _‘Name &
' A o & &
D \\\\.)\ \.\-\\\ \\;':-\
& o |8 S
Ca \.ﬁé‘mhalt 45 B:\;ch
] &
A & & Biiche rl_::\g_st and ¥ K
o =7 |\wird ge‘nutzt von. |Nutzer &
. = 2 o= w— 2
\\\\‘\ & b\\?\ —SE
\\\7‘\ & g
e o &
3 & &
[Mutzer ™ & 2
I 2 T B & | e @
;Res,pbnﬂbllltle,g& o~ & 'Respangﬁuhnes: & o o
- 5 = : | -
i\\"‘é\ Nama .+ Collaborater N Name .+ & Collaborator
) & o < & <& A &

i . _‘\\\5\ % B o _\-\n ey & R __;\
| Ll i &2 | bl P a\\\ Y & -;\Q\ |
|leiht:aus Buch.* & & |wird ausgeliehen .~ |Nutzer:* o5
|—=) 3 iy o 4 =
|hat Namen . : £ |hat Titel ¢ >
1 A 1 Fond oy
|hat Alter " [hatiD &
1| - ~4 o)
|ist angemeldet hat Anzahl:Seiten
- e — '\-'.‘“ \'\-\?n

.o = —
5
&
;\" 5

291

&(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft
B)
Wihlen Sie das Klassendiagramm aus, dass die unten beschriebene erweiterte Version der
Schulbibliothek (Schulbibliothek II) korrekt modelliert.

Klassendiagramm 1:0 X/
Klassendiagramm 2:

Im falschen Klassendiagramm befindet sich (A) ein logischer Fehler und eine (B) eine
Schwiiche hinsichtlich doppelt gespeicherter Attribute. Markieren Sie diese Fehler bzw.
Schwichen im falschen Klassendiagramm, indem Sie die beteiligten Klassen und Assoziationen
einkreisen und je nach Mangel/Schwiche mit (A) oder (B) beschriften.

Schulbibliothek II

Die Schulbibliothek umfasst einen Bestand von Biichern. Diese sind gekennzeichnet durch deren
Titel, ISBN-Nummer und Anzahl der Seiten. Es gibt Sachbiicher, Lexika und Romane.
Sachbiicher sind zusitzlich gekennzeichnet durch ein Themengebiet, Lexika durch die Anzahl
Bénde sowie die jeweilige Bandnummer des Exemplars. Die Schulbibliothek wird von
verschiedenen Personen genutzt. Diese haben einen Namen und ein Alter. Unterschieden wird
zwischen verschiedenen Benutzergruppen: Lehrer haben ein erstes und zweites Unterrichtsfach
und diirfen hochstens vier Biicher gleichzeitig ausleihen. Zusitzlich stehen Sie als Berater fiir
zwei bestimmte Themengebiete der Fachbiicher zur Verfiigung. Schiiler haben eine
Jahrgangsstufe und diirfen hochstens zwei Biicher gleichzeitig ausleihen.

292

'L‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft
Klassendiagramm 1: /
1 Bibliothek i H
benutzt < K Lo
0. 0.
Benutzer Buch
-name : String [leiht aus 0.2 ~titel : String
-alter : Integer ~2 |-anzSeiten : Integer
-isbnNr : String
Teiht aus 0.4

il

1
Schiiler Lehrer Lexikon Sachbuch Roman
-jahrgangsstufe : Integer -fach1 : String -anzBaende : Integer
1 ~fach2 : String —bandNr : Integer

ist zustandig 2 Themengebiet 1

Klassendiagramm 2:

i i
benutzt 1 [_Bibliothek] ST
O ———
1
benutzt
0.
Buch
leiht aus 0. |titel:String
— : Integer

~isbnNr : St}ing

leiht aus 0.4

——— _——

- -
- 0.
ya Schiiler 1 -~ Lexikon Roman
-alter : Integer ' -alter : Integer \ \ : Integer
‘ -name : String 1 ‘ -name : String -bandNr : Integer
-jahrgangsstufe : Integer -fach1 : String l '
\ \ -fach2 : String ’ I
~ g
S
4 N P i
\. l ist zusténdig \

1 \ ~ 1
\ A
|———————————I———————————l \——————&—--L——————————,

! (B) Mangel hinsichtlich ! L (A) Logischer Fehler :

I 1
1 redundanten Attribute : i

293

&(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Aufgabe 6

A)

Vervollstindigen Sie anhand der Use-Case-Beschreibung,Geld abheben das

entsprechende Sequenzdiagramm (siehe unten), indem Sie die einzelnen Aufrufe aus
der unten dargestellten Aufrufsammlung auswéhlen und dem Sequenzdiagramm
hinzufiigen (jeder Aufruf darf einmal verwendet werden; zeichnen Sie den jeweiligen
Aufrufpfeil und ergdnzen Sie die jeweilige Nummer; Die Aufruftext z.B. ,geld abheben(-
105) muss im Sequenzdiagramm nicht ergdnzt werden).

Szenario ,,Geld abheben”:

Schritt Nutzer Beschreibung der Aktivitit
1 Kunde ,Geld abheben“ wahlen
2 Bankterminal | PIN anfordern
3 Kunde PIN eingeben: 4725
4 Bankzentrale | PIN priifen
5 Bankterminal | Abzuhebenden Betrag erfragen
6 Kunde Betrag eingeben: 105 Euro
7 Bankzentrale | Kontostand auf ausreichende Deckung priifen
8 Bankterminal | Geld auszahlen
9 Kunde Geld entnehmen
10 Bankzentrale | Kontostand anpassen
Aufrufsammlung:
1) Kontostand_anpassen(-105) 2) get_Kontonummer()
3 true true
R)
5) PIN_prifen(4725,16852) 6) Kontostand_anpassen(-105)
true 16852
yi <2) e

10
294

L UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft
Sequenzdiagramm zum Szenario , Geld abheben“:
= :

& > S
o 2

N

gﬁf)(n ntonumher{)

s,
£}

A

o : :
\\\\-‘ & . \Q* _:\:‘\
PIN_priifen(4725,16852)

“true &

& J
§ &

4 &
Betr\\zg_erfr agen() .+

il

NS

L Betrag_auizﬁlen[lﬂS: \\\‘
S

o &
Kgntostan d_aggassen(-105)q}
. L

o
.Q\\
o

B)

Stellen Sie sich vor, Sie wiirden im professionellen Umfeld Szenariobeschreibungen
analysieren und méchten im nachsten Schritt ein Sequenzdiagramm erstellen. Welche

Personen kdmen als Gesprachspartner in Frage, die wichtige Informationen iiber das
Geschaftsfeld liefern kdnnten?

e 7.B.Domaéanenexperten, denen die Geschéftsprozesse bekannt sind

11
295

&(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Aufgabe 7

Ergdnzen Sie ausgehend von der unten aufgefiihrten Funktionsbeschreibung eines
Festplatten-Rekorders das Zustandsdiagramm: Erginzen Sie hierbei die fehlenden
Zustandstiberginge.

Festplatten-Rekorder

Das Gerat befindet sich nach dem Einschalten im Hauptmenii. Mittels der TV-Taste
gelangt man in den TV-Modus, in dem das aktuelle Fernsehbild dargestellt wird. Betatigt
man die Record-Taste, wechselt das Gerat in den Aufnahme-Modus und zeichnet das
aktuelle Fernsehprogramm auf. Betétigt man in diesem Zustand die Stop-Taste wird die
Aufnahme beendet und das Gerat wechselt wieder in den TV-Modus. Durch Betatigung
der Pause-Tasteinnerhalb des TV-Modus wird der Timeshift-Modus aktiviert. Hierbei
wird die aktuelle Fernsehsendung pausiert und ab diesem Zeitpunkt aufgenommen.
Durch nochmaliges Driicken der Pause-Taste wird das Fernsehprogramm von der zuvor
pausierten Position fortgesetzt. Driickt man die Stop-Taste wechselt der Festplatten-
Rekorder wieder in den TV-Modus und spielt das TV-Programm ohne zeitlichen Versatz
ab.

Driickt man innerhalb des Hauptmeniis die Archiv-Taste, wechselt das Gerat in den
Archiv-Modus. Hier kann durch Betétigung der Play-Taste eine ausgewdhlte - zuvor
aufgenommene - Sendung abgespielt werden (das Gerat wechselt in den Abspielen-
Modus). Mit Hilfe der Stop-Taste gelangt man wiederum in den Archiv-Modus.

Sowohl im TV- als auch im Archiv-Modus gelangt man durch Driicken der Menii-Taste ins
Hauptmenti.

Zustandsdiagramm des Festplatten-Rekorders:

Aufnahme-Modus
Record_Taste

Stop_Taste

r TV-Modus &
Menii-Taste L |>

Pause_Taste
N Stop_Taste -

[Timeshift-Modus]
Pause_Taste
TV-Taste

Archiv-Taste

Archiv-Modus \ Play-Taste Abspielen-Modus
Menli-Taste e ~1
Stop_Taste

12
296

'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Aufgabe 8

Implementieren Sie die Klassen Wald, Baum, Foerster und Nadelbaum (Attribute,
Methoden und Assoziationen/Aggregationen) anhand des unten dargestellten
Klassendiagramms. Verwenden Sie die vorgegebenen Klassenriimpfe. Beachten Sie, dass
die Konstruktoren der Klassen implementiert werden miissen, obwohl diese nicht im
Klassendiagramm zu finden sind.

Klassendiagramm:

13
297

'L‘ UNIVERSITAT PADERBORN
Die Universitdt der Informationsgesellschaft

Quellcode:

Klasse wald:

public class Wald{
private Foerster foerster;
private Baum|[] baeume;
//Konstruktor
Wald (Foerster foerster) {
this.foerster=foerster;
baeume = new Baum][];

Klasse Foerster:

public class Foerster{
private String name;
//Konstruktor
Foerster (String name) {
this.name=name;

}
//...

14
298

'L‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft
Klasse Baum:

public class Baum{
private int hoehe;
//Konstruktor
Baum (int hoehe) {

this.hoehe=hoehe;
}
//...

Klasse Nadelbaum

public class NadelBaum extends Baum({
private String nadelArt;
//Konstruktor
NadelBaum (int hoehe,
super (hoehe) ;
this.nadelArt=nadelArt;

String nadelArt) {

15
299

'L‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Aufgabe 9

A)

Gegeben sei die API der Klasse java.util.Vector. (siehe Anhang des Fragebogens)
Verwenden sie diese, um die erforderlichen Methoden sowie deren Parameter und
Riickgabetypen fiir den Umgang mit der Klasse Vector zu recherchieren.

Ergdnzen Sie innerhalb des gegebenen Klassenrumpfes die main-Methode um
Anweisungen (siehe Vector-API), sodass die folgende Funktionalitit umgesetzt wird:

e Essoll ein Objekt der Klasse Vector erzeugt werden.

e Die folgenden Strings sollen sukzessive in den Vector eingefiigt werden:
seins”, ,zwei“, ,drei”, ,vier, ,funf"

¢ Innerhalb der im Klassenrumpf enthaltenen for-Schleife sollen simtliche
Elemente des Vectors auf der Konsole ausgegeben werden

Illustration des Vector-Objekts:

Index 0 1 2 3 4
Inhalt ,eins” JZwei" ,drei” vier” Sfunf”
Klasse Vectortest

import java.util.Vector
public class VectorTest({

public static void main(String[] args){
//Vector-Objekt erzeugen
Vector v = new Vector();
//Strings zum Vector hinzufigen
v.add(,eins");
v.add(, zwei");
v.add(,drei");
v.add(,vier");
v.add(,funf");
//alle Elemente des Vectors auf Konsole ausgeben
for(int i = 0; i < v.size(); i++){

System.out.println(v.elementAt (i));

}

16

300

x/

&(‘ UNIVERSITAT PADERBORN

B)

Die Universitdt der Informationsgesellschaft

i) Stellen Sie sich vor, Sie arbeiten im Team an der Entwicklung einer MP3-Player-
Software. Sie personlich - als Experte auf diesem Gebiet - haben nun eine
Klassenbibliothek zur Tonausgabe auf der Soundkarte entwickelt.

Wie gehen Sie vor, um Ihren Kollegen die Verwendung Ihres Programmmoduls zu
ermoglichen? (Mehrfachnennungen méglich)

O

Ich schicke ihnen den Quellcode meiner Klassenbibliothek zu und bitte sie, sich
detailliert einzuarbeiten. Wenn Sie mein Programm vollstdndig verstehen kénnen
Sie es in ihr Projekt einbinden.

Ich lasse ihnen eine Schnittstellenbeschreibung zukommen. Diese umfasst lediglich

Methoden der Klassen und deren Signaturen. Das sollte fiir die Verwendung meines
Programmmoduls vollkommen ausreichen.

ii) Ein weiterer Kollege hat zu einem spéteren Zeitpunkt eine Alternative zu lhrer
Programmbibliothek zur Soundausgabe entwickelt. Diese erweist als deutlich besser als
Ihre Programmbibliothek im Hinblick auf zukiinftige Features des Mp3-Players. Wie
verhalten Sie sich in dieser Situation, um den bestméoglichen Erfolg des Projekts zu
erzielen? (Mehrfachnennungen méglich)

O

O

Ich setze alle Energie in die Uberarbeitung meiner Version, um es meinem Kollegen
Zu Zeigen.

Ich spreche mich mit meinem Kollegen ab, um aus unseren beiden Versionen das
Beste herauszuholen und diese zu einer optimalen lauffahigen Version zu verbinden.
Ich kiindige, weil meine Arbeit nicht wertgeschétzt worden ist.

Ich stelle meine eigene Losung zuriick und lasse zu, dass die bessere Losung meines
Kollegen genutzt wird, um den Projekterfolg nicht zu gefahrden.

17
301

'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Aufgabe 10

A)
Entscheiden Sie, ob die folgenden Aussagen wahr sind:

i) Im Rahmen der Testphase wird ausschliefdlich tiberpriift, ob der
Auftraggeber mit dem fiir ihn entwickelten Softwaresystem
zurechtkommt.

jaQ nein\/ X/

ii) In der Testphase wird tiberpriift, ob simtliche funktionalen iﬂ\/ neinQ
Anforderungen aus der Anforderungsanalyse innerhalb des

Softwaresystems umgesetzt wurden

iii) Es kann sinnvoll sein im Rahmen der Testphase einen Riickgriff auf ia\/ neinQ
die bereits abgeschlossene Anforderungsdefinition zu machen

iv) Wenn man eine Software innerhalb der Testphase auf Robustheit jaQ nein\/

iberpriift, testet man wie zuverléssig das System iiber einen langeren
Zeitraum lauft.

v) Es gibt bestimmte sicherheitskritische Bereiche, in denen Softwaresysteme zur
Unterstlitzung eingesetzt werden. Hierbei ist es von enormer Wichtigkeit, dass die

jeweilige Software auf Herz und Nieren getestet wird.

Nennen Sie mindestens zwei solcher Bereiche, in denen ein sorgfaltiger Softwaretest vor
dem Einsatz der Software aufierordentlich wichtig (vielleicht sogar lebenswichtig) ist.

e Software von Flugzeugen, z.B. die Steuerung des Fahrwerks

4

e Software im medizinischen Bereich, z.B. Software zur Verabreichung von

Medikationen iiber einen Tropf

18
302

'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

B)

Entwickeln Sie anhand des unten dargestellten Screenshots einer Webapplikation zur
Reisebuchung und anhand des Ausschnitts der Anforderungsdefinition einen
geeigneten Testplan. Gehen Sie dabei folgendermafien vor:

i) Uberpriifen Sie, ob sdmtliche funktionalen Anforderungen an die Software umgesetzt
wurden, indem Sie fiir jede Anforderung jeweils einen Testfall entwickeln. Tragen Sie
diese Testfille in Tabelle 1 ein:

Anforderungsdefinition Reisebuchungssystem:

Anforderung 1: Benutzer kann Pauschalreisen suchen, indem er Reiseziel,
Abflughafen, Abflugdatum, Riickflugdatum (muss mindestens zwei
Tage hinter dem Abflugdatum terminiert sein), Anzahl
Erwachsener (mindestens einer), Anzahl Kinder,
Verpflegungsarten (mindestens eine) sowie einen Zimmertyp

auswahlt.

Anforderung 2: Der Benutzer kann optional die Hotelkategorie (Anzahl Sterne)
mit in die Suche einbeziehen.

Anforderung 3: Benutzer kann auch nur den Hinflug buchen. Hierbei muss keine

Eingabe in die Elemente der rechten Spalte gemacht werden.

Screenshot eines Web-Reise-Buchungssvstems:
Last-Minute-SHOP-24

<:] ¢> X Q [http://www.lastminuteshop24.eu | @

|Urlaub buchen\
Last-Minute-Shop-24 o
Buchen Sie Thre Traumreise!
Relsezlel |Lanzarote | v] Anzahl Erwachsene K
Abflughafen |Paderborn | v| Anzahl Kinder GHE

Abflugdatum E Verpflegungsart O All Inclusive
& Halbpension
[0 ohne Verpflegung

— B | e

O Hotelkategorie |3 Sterne _[v]

O nur Hinflug

Suchen J &

19
303

& UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Tabelle 1:

Testfall: Anforderung 1

Testfall: Anforderung 2

Testfall: Anforderung 3

Reiseziel: Lanzarote

Reiseziel: Lanzarote

Reiseziel:Palma de Mallorca

¥

Abflughafen: Paderborn

Abflughafen: Paderborn

Abflughafen: Miinster

Abflugdatum: 01.08.2010

Abflugdatum: 01.08.2012

Abflugdatum: 02.08.2012

Nur Hinflug: Q

Nur Hinflug: Q

Nur Hinflug: ®

Riickflugdatum: 08.08.2010

Riickflugdatum: 01.08.2012

Riickflugdatum:

Anzahl Erwachsene: 2

Anzahl Erwachsene: 2

Anzahl Erwachsene:

Anzahl Kinder: 1

Anzahl Kinder: 1

Anzahl Kinder:

Verpflegungsart: Verpflegungsart: Verpflegungsart:
A1Q; vem; ovQ Alm; VPQ; 0vO A1Q; vpQ;0vQa
Zimmertyp: Apartment Zimmertyp: Apartment Zimmertyp:

Hotelkategorie: O

Hotelkategorie: @ 4 Sterne

Hotelkategorie: O

ii) Uberpriifen Sie die Robustheit der Anwendung, indem Sie nochmals den Auszug der
Anforderungsdefinition betrachten und drei unerwartete Testfille entwickeln, die
die Anwendung zum Absturz bringen kénnten. Erginzen Sie diese Testfalle in Tabelle 2.

Tabelle 2:

Testfall: Fehleingabe 1

Testfall: Fehleingabe 2

Testfall: Fehleingabe 3

Reiseziel: Lanzarote

Reiseziel: Ibiza

Reiseziel: Menorca

174

Abflughafen: Paderborn

Abflughafen: Dortmund

Abflughafen: Hannover

Abflugdatum: 01.08.2010

Abflugdatum: 21.05.2012

Abflugdatum: 21.06.2012

Nur Hinflug: O

Nur Hinflug: O

Nur Hinflug: O

Riickflugdatum: 25.07.2010

Riickflugdatum: 15.05.2012

Riickflugdatum: 30.06.2012

Anzahl Erwachsene: 2

Anzahl Erwachsene: 2

Anzahl Erwachsene: 0

Anzahl Kinder: 1

Anzahl Kinder: 2

Anzahl Kinder: 2

Verpflegungsart:
Alm; VPO; 0vQ

Verpflegungsart:
AIQ; vPE; 0VQ

Verpflegungsart:
AlQ; vPO; 0V E

Zimmertyp: Apartment

Zimmertyp: Einzelzimmer

Zimmertyp: Doppelzimmer

Hotelkategorie: @ (3 Sterne)

Hotelkategorie: O

Hotelkategorie: O

Erlauterungen zu den Testfillen Fehleingabe 2, 3

e Fehleingabe 2: Trotz vier Personen ein Einzelzimmer 2 es sollte eine
Fehlermeldung angezeigt werden

e Fehleingabe 3: Kinder buchen ohne Erwachsene

Q)

i) Sie entwickeln eine Webseite fiir ein Reisebiiro und befinden sich nach Abschluss der
Implementierung in der Testphase. Um die Robustheit Ihres Softwareprodukts zu
verbessern, sollen Betatester in den Prozess mit einbezogen werden. Welche Personen
wiirden Sie in die Testphase mit einbeziehen? (Mehrfachnennungen méglich)

O Die Entwickler des Reisebuchungssystem

Erfahrene Benutzer anderer Reisebuchungssysteme

Benutzer, die Grundkenntnisse in der Benutzung des Internets haben
O Grundschiiler, die gerade das Lesen gelernt haben

20
304

'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft
ii) Viele Betatester haben iiber Abstiirze der Webseite berichtet. Wie gehen Sie vor, um
die Eingaben in das System, die zum Absturz gefiihrt haben, herauszufinden? Wie
ermitteln Sie, was der Benutzer mit seinen Eingaben (die zum Absturz gefiihrt
haben)bezwecken wollte?

e Testprotokolle anfertigen lassen
e Dokumentation der Fehler mit Screenshots

21
305

A.3. Material zur Unterrichtserprobung

A.3.1. Klassendiagramm der Ausgangsversion der Kommissionierstation

Die folgende Abbildung zeigt das Klassendiagramm der Ausgangsversion (vor der De-

konstruktionsphase) der Kommissionierstation.

<<amatype
BTListener Thread

{From ut

pivate Sring WATTING
pivats boolean running

KommisTurmCtrl

publ
publicvold stoppeFoerderBand()

?
\

|

m
)

packags it COLOR1 =0
package inl COLOR2 =2

i

=il

age It INITCOLOR = COLOR1
IntNO_COLORS = 4

Goutons
public Autvag(intgruen, nt oL, int grau)
P Gruen()

nfNO_COLORS]

DAL, 100,11

Klassendiagramm der ILL-Kommissionierstation

A.3.2. Ausbaustufen der Kommissionierstation im Quellcode

Die folgenden Tabelle zeigt die erforderlichen Anpassungen im Quellcode der Java-
Klassen, um die Ausgangsversion der Kommissionierstation (vor der Dekonstruktions-
phase) iiber die Ausbaustufe 1 (nach der Dekonstruktionsphase und vor der Konstruk-
tionsphase) bis hin zur finalen Ausbaustufe 2 (nach der Konstruktionsphase) zu erwei-

tern.

306

Klasse Anderung

Auftrag Zwei zusatzliche Objektvariablen(Integer) fur die
zuséatzlichen Farben

alt:
private int gruen;

neu:
private int gruen;
private int grau;
private int rot;

Auftrag Konstruktor um zusétzliche Objektvariablen erweitern.

alt:

public Auftrag(int gruen) {
this.gruen = gruen;

}

neu:

public Auftrag(int gruen, int grau, int rot) {
this.gruen = gruen;
this.grau = grau;

this.rot = rot;
}
Auftrag get Methoden flr zusatzliche Objektvariablen einfligen.
KommisStrCitrl Objekt-konstante auftrag mit drei Integern konstruieren.
alt:

private static final Auftrag auftrag = new Auftrag(2);

neu:
private static final Auftrag auftrag = new Auftrag(1,2,3);

KommisStrCtrl In der run-Methode dem DataOutputStream die
zusatzlichen Farben hinzufligen

alt:
sender.sendeAuftrag(auftrag.getGruen());

neu:
sender.sendeAuftrag(auftrag.getGruen(), auftrag.getGrau(), auftrag.getRot());

307

Klasse

Anderung

KommisTurmCtrl

Zuséatzliche Kommissioniertiirme als Objektvariablen
hinzuftigen.

alt:

KommissionierungsTurm k1; //Motor A

neu:

KommissionierungsTurm k1; /Motor A
KommissionierungsTurm k2; /Motor B
KommissionierungsTurm k3; /Motor C

KommisTurmCtrl

Im Konstruktor den Objektvariablen der zusétzlichen
Kommissioniertiirme, Objekte vom Typ
KommissionierTurm zuweisen.

alt:

this.k1 = new KommissionierungsTurm(Motor.A); // gruen

neu:

this.k1 = new KommissionierungsTurm(Motor.A); // gruen
this.k2 = new KommissionierungsTurm(Motor.B); // grau
this.k3 = new KommissionierungsTurm(Motor.C); // rot

KommisTurmCitrl

Im Konstruktor die Threads der zusatzlichen
Kommissioniertlirme starten.

alt:

/Istart des Threads

k1.start();

neu:

//start der Threads

k1.start();
k2.start();
k3.start();

308

Klasse Anderung

KommisTurmCtrl Die Methode kommissioniereAuftrag muss an alle drei
Turme die Anzahl der zu kommissionierenden Steine
Ubermitteln.

alt:

public void kommissioniereAuftrag(Auftrag auftrag) {
k1.setAktuellerAuftrag(auftrag.getGruen());
}

neu:

public void kommissioniereAuftrag(Auftrag auftrag) {
k1.setAktuellerAuftrag(auftrag.getGruen());
k2.setAktuellerAuftrag(auftrag.getGrau());
k3.setAktuellerAuftrag(auftrag.getRot());

}

KommisTurmCitrl In der run-Methode aus dem DatalnputStream die
zuséatzlichen Farben auslesen und in Auftragobjekt
speichern.

alt:

farben = bte.empfangeAuftrag(1);
System.out.printin(""+ farben[0]);
Auftrag auftrag = new Auftrag(farben[0]);
kommissioniereAuftrag(auftrag);

neu:
farben = bte.empfangeAuftrag(3);
System.out.printin(""+ farben[0] + ““ : *“ + farben[1] + *“ : * + farben[2]);

Auftrag auftrag = new Auftrag(farben[0], farben[1], farben[2]);
kommissioniereAuftrag(auftrag);

309

Klasse Anderung

Auftragstabelle Neu zu erstellende Klasse, die eine Hartgecodete Tabelle enthélt,
die jedem Bytecode eines RFID-Chips einen Auftrag zuweist.
Daflr gibt es zwei Methoden. Dle Methode getAuftragNummer
ermittelt anhand eines Bytecodes die Nummer des Auftrags. Die
Methode getAuftrag gibt mithilfe der Methode getAuftragNummer
den richtigen Auftrag zuriick.

KommisStrgCirl import des Pakets nxt.addon

import lejos.nxt.addon.*;

KommisStrgCitrl Deklarieren und initialisieren des neuen RFID-Sensor und der
Auftragstabelle

private BluetoothSender sender;
private Auftrag auftrag;

private RFIDSensor rfid;
private Auftragstabelle at;

public KommisStrCirl() {
super();
sender = null;
ks = new KommissionierungsStation(SensorPort.S1, Motor.B);
pb = new Band(Motor.A, 200, true);
rfid = new RFIDSensor(SensorPort.S2);
at = new Auftragstabelle();

}

KommisStrgCirl In der Run-Methode wird der Transponder ausgelesen und aus
der Auftragstabelle die Methode getAuftrag aufgerufen.

ks.starteErkennung();

pb.stoppeBand();

byte[] id = rfid.readTransponder(false);
auftrag = at.getAuftrag(id);

KommisStrgCtrl Die Konstante auftrag wird als variable deklariert.

private Auftrag auftrag;

310

A.3.3. Bauanleitung der Kommissionierstation

Die folgende Bauanleitung fiir das LEGO-Modell der Kommissionierstation wurde von

den Studierenden im Rahmen des Seminars Informatik Lernlabor (SoSe 08) erstellt.

311

315

316

