
Entwicklung und Erprobung eines
Instruments zur Messung informatischer

Modellierungskompetenz im
fachdidaktischen Kontext

Thomas Rhode

Paderborn, 28.02.2013



Dissertation

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

im Fachbereich Elektrotechnik, Informatik und Mathematik
der Universität Paderborn

Gutachter:
Prof. Dr. Johann S. Magenheim

Prof. Dr. Reinhard Keil
Prof. Dr. Sigrid Schubert





Zusammenfassung

Die Auswertung der Ergebnisse internationaler Vergleichsstudien haben Mängel am deut-

schen Bildungssystem aufgedeckt. In diesem Zusammenhang rückte die Vermittlung von

Kompetenzen in das Zentrum bildungspolitischer Lösungsstrategien. Um die Qualität

des deutschen Bildungssystems zu sichern, wird die Entwicklung nationaler Bildungs-

standards gefordert, die verbindliche Anforderungen an das Lehren und Lernen in der

Schule darstellen. Diese Bildungsstandards sollen sich nach Vorgaben des Bildungsmi-

nisteriums für Bildung und Forschung auf wissenschaftlich fundierte Kompetenzmodelle

stützen, die in Zusammenarbeit von Fachdidaktikern, Fachwissenschaftlern und Psycho-

logen entwickelt werden. Ebenso wird hier explizit die Einbeziehung und Entwicklung

entsprechender Verfahren zur Testentwicklung gefordert.

In Anbetracht dieser bildungspolitischen Umstände, beschreibt die vorliegende Disserta-

tionsschrift die Entwicklung eines wissenschaftlich fundierten Kompetenzstrukturmodells

und eines Kompetenzmessinstruments für einen zentralen Teilbereich der informatischen

Bildung, der objektorientierten Modellierung.

Um die Bedeutung des Gegenstandsbereichs zu verdeutlichen, wird die Relevanz der Mo-

dellierung für die Informatik aus fachwissenschaftlicher und fachdidaktischer Perspekti-

ve erörtert. Im weiteren Verlauf wird dargestellt, wie die Gestaltung eines Kompetenz-

strukturmodells in zwei Schritten erfolgen kann. Zunächst erfolgt eine normativ theoreti-

sche Ableitung von Kompetenzdimensionen und -komponenten anhand von einschlägiger

Fachliteratur. In einem weiteren Schritt �ndet die empirische Verfeinerung des theoreti-

schen Rahmenmodells durch eine Expertenbefragung (durchgeführt in 2009 und 2010),

bei der Fachwissenschaftler, Fachdidaktiker und Fachleiter für das Fach Informatik be-

fragt wurden, statt. Auf Grundlage des wissenschaftlich fundierten Kompetenzmodells

wird die Entwicklung eines Testinstruments für den Kompetenzbereich Modellierung dar-

gestellt. Hier erfolgt die Beschreibung der Entwicklung von Items, um die formulierten

Kompetenzen zur objektorientierten Modellierung innerhalb der Komponenten des Kom-

petenzmodells überprüfen zu können.

Als theoretische Grundlage für die Erprobung des Messinstruments in einer Lerngruppe,

wird die Entwicklung eines kompetenzförderlichen Lehr-/Lernarrangements erläutert.

Im Anschluss erfolgt die Darstellung der statistisch ausgewerteten Ergebnisse der Er-

probung, deren Interpretation und die Formulierung von Forschungsfragen für künftige

Forschungsarbeiten.



Abstract

Based on the outcomes of international studies, which show the inadequateness of the

German education system, fostering learners' competencies becomes increasingly rele-

vant. In order to further improve the quality of the German education system, educational

policy requires the education system to implement national educational standards. The-

se standards delineate how learning and teaching in schools should take place. Teaching

and learning should be based on empirically-grounded competence models that should

be developed by domain experts and psychologists cooperatively. For the evaluation of

these competence models, educational policy demands the development of appropriate

instruments to measure relevant competencies as well. In order to ful�ll these demands,

the development of an empirically-grounded competence model and a respective instru-

ment will be described for the domain of computer science modeling. First, the relevance

of object-oriented modeling for computer science education will be shown. Hereafter,

the development of an empirically-grounded competence model and an associated test

instrument will be shown. The development of the competence model requires two inter-

mediate steps: In the �rst step it will be shown how the dimensions and components of

the model can be derived theoretically. In a second step, the competence model will be

re�ned empirically by referring to the results of the qualitative content analysis of ex-

perts interviews conducted in 2009 and 2010. In the interviews, three groups of experts

have been interviewed: (1) experts of computer science, (2) experts of computer science

education and (3) expert computer science teachers.

Based on the empirically-grounded competence model, the development of an instrument

for measuring competencies will be described. Here, the creation of items to prove the

respective competencies covered in the competence model will be illustrated. In order

to evaluate the developed measurement instrument, a learning unit fostering informatics

modeling was developed. This unit has been conducted in spring 2011 in secondary

computer science education. After summarizing the statistically derived results of the

evaluation, open issues for potential further research projects will be outlined.



Vorwort

Die vorliegende Dissertationsschrift wurde während meiner zweijährigen Tätigkeit als

wissenschaftlicher Mitarbeiter am Lehrstuhl �Didaktik der Informatik� der Universität

Paderborn und anschlieÿend parallel zu meiner Beschäftigung in einem Wirtschaftsun-

ternehmen verfasst.

Ich bedanke mich herzlich bei Herrn Prof. Dr. Johann S. Magenheim für die umfassende

Unterstützung und stetige Förderung meines Promotionsvorhabens.

Frau Prof. Dr. Sigrid Schubert und Herrn Dr. Dieter Engbring gilt ebenfalls mein be-

sonderer Dank für die Beratung, wissenschaftliche Förderung und Hilfestellung bei der

thematischen Präzisierung.

Ein weiterer Dank gilt den Projektpartnern im DFG-Projekt �Entwicklung von quali-

tativen und quantitativen Messverfahren zu Lehr-Lern-Prozessen für Modellierung und

Systemverständnis in der Informatik�. Hierbei danke ich insbesondere Wolfgang Nelles,

Prof. Dr. Niclas Schaper und Dr. Peer Stechert für die zahlreichen konstruktiven Diskus-

sionen und die kollegiale Zusammenarbeit.

Herrn Michael Dohmen danke ich für die tatkräftige Unterstützung bei der Durchführung

der praktischen Erprobungen.

Ganz besonders bedanke ich mich bei meiner Familie für die liebevolle Unterstützung

während der Promotion.

Ich widme diese Arbeit meiner Frau Christina und meinen Töchtern Elisa und Mirja.

4



Inhaltsverzeichnis

1. Einleitung 1
1.1. Forschungsfragen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Forschungsmethodik und Struktur der Arbeit . . . . . . . . . . . . . . . . 2
1.3. Tätigkeit im DFG-geförderten Projekt MoKoM . . . . . . . . . . . . . . . 4
1.4. Die Verwendung des Begri�s �Modell� . . . . . . . . . . . . . . . . . . . . 7

2. Kompetenzorientierung als fachdidaktische Ausgangslage 8
2.1. Output-Orientierung als Replik auf Internationale Vergleichsstudien . . . . 10
2.2. Bildungsstandards in der Informatik . . . . . . . . . . . . . . . . . . . . . 12
2.3. Kompetenzmodelle in der Informatik . . . . . . . . . . . . . . . . . . . . . 18
2.4. Kompetenzmessung im Informatikunterricht . . . . . . . . . . . . . . . . . 24
2.5. Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3. Modellierung im fachwissenschaftlichen und fachdidaktischen Kontext 32
3.1. Begri�sde�nition und Fokussierung . . . . . . . . . . . . . . . . . . . . . . 34
3.2. Relevanz informatischer Modelle . . . . . . . . . . . . . . . . . . . . . . . 35
3.3. Ansätze zur Klassi�kation von informatischen Modellen . . . . . . . . . . 39
3.4. Informatische Vorgehensmodelle als strukturgebende theoretische Grundlage 45

3.4.1. Vorgehensmodelle in der Softwaretechnik . . . . . . . . . . . . . . . 45
3.4.2. Vorgehens- & Vermittlungsmodelle zur OO-Modellierung . . . . . . 71

3.5. Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4. Theoretische Entwicklung eines Kompetenzstrukturmodells für informatisches
Modellieren 80
4.1. Entwicklung der Kompetenzdimensionen . . . . . . . . . . . . . . . . . . . 82

4.1.1. Kompetenzstufung . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.1.2. K1 Aufgabenbereiche . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.1.3. K2 Nutzung informatischer Sichten . . . . . . . . . . . . . . . . . . 86
4.1.4. K3 Anforderungen an den Umgang mit Komplexität . . . . . . . . 89
4.1.5. K4 Nicht-kognitive Kompetenzen . . . . . . . . . . . . . . . . . . . 90

4.2. Förderung von Schlüsselkompetenzen . . . . . . . . . . . . . . . . . . . . . 94
4.2.1. Allgemeinbildender Wert des Informatikunterrichts an Gymnasien

der Sekundarstufe II . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2.2. DESECO-Schlüsselkompetenzen . . . . . . . . . . . . . . . . . . . . 95
4.2.3. Modellierungskompetenz und Schlüsselkompetenzen . . . . . . . . 97
4.2.4. Nicht-kognitive Kompetenzen und Schlüsselkompetenzen . . . . . . 99
4.2.5. Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

i



5. Empirische Entwicklung eines Kompetenzstrukturmodells für informatisches
Modellieren 103
5.1. Rahmenbedingungen und empirische Grundlage bei der Durchführung der

Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.1.1. Critical Incident Technique . . . . . . . . . . . . . . . . . . . . . . 106

5.2. Empirisches Vorgehen zur Analyse Auswertung der Interviews . . . . . . . 113
5.3. Exemplarische Darstellung der Analyse der Experteninterviews . . . . . . 115
5.4. Ergebnisse der Auswertung der Experteninterviews . . . . . . . . . . . . . 120
5.5. Ergebnisse der qualitativen Inhaltsanalyse . . . . . . . . . . . . . . . . . . 122

5.5.1. Exemplarische Darstellung der Auswertung mit Zuordnung zu den
Komponenten des Rahmenmodells . . . . . . . . . . . . . . . . . . 122

5.5.2. Empirische Verfeinerung des Rahmenmodells . . . . . . . . . . . . 127
5.5.3. Fallstudie Charakteristika der Interviewten . . . . . . . . . . . . . 131

5.6. Kategoriende�nitionen zum informatischen Modellieren . . . . . . . . . . . 135
5.7. Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6. Entwurf eines Messinstruments für informatische Modellierungskompetenz
und Entwicklung eines Lehr-/Lernarrangements zur Erprobung 145
6.1. Entwicklung von Aufgabenitems . . . . . . . . . . . . . . . . . . . . . . . 148

6.1.1. Zuordnung von Aufgaben zu Kompetenzkategorien . . . . . . . . . 149
6.1.2. Exemplarische Item-Entwicklung . . . . . . . . . . . . . . . . . . . 152

6.2. Entwicklung eines Lehr/Lernarrangements zur Erprobung des Messinstru-
ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.2.1. Informatiksysteme in didaktischem Kontext . . . . . . . . . . . . . 167
6.2.2. Theoretische Konzeption des Informatik Lernlabors . . . . . . . . . 175
6.2.3. Fallbeispiel Kommissionierstation in der Hochschullehre . . . . . . 178
6.2.4. Fallbeispiel Kommissionierstation als Unterrichtsreihe zur Kompe-

tenzmessung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.3. Hypothesen für die Erprobung des Messinstruments . . . . . . . . . . . . . 189
6.4. Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7. Erprobung des Messinstruments für informatische Modellierungskompetenz 195
7.1. Untersuchungssetting- und Design . . . . . . . . . . . . . . . . . . . . . . 197

7.1.1. Lerngruppe und zeitlicher Rahmen . . . . . . . . . . . . . . . . . . 197
7.1.2. Messzeitpunkte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.2. H1 - Gesamtergebnis im Vergleich . . . . . . . . . . . . . . . . . . . . . . . 198
7.2.1. Deskriptive statistische Analyse . . . . . . . . . . . . . . . . . . . . 198
7.2.2. Induktive statistische Analyse . . . . . . . . . . . . . . . . . . . . . 201
7.2.3. Auswahl eines geeigneten Testverfahrens . . . . . . . . . . . . . . . 201
7.2.4. t-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

7.3. H2 - Ergebnisse zur Konstruktion von IS im Vergleich . . . . . . . . . . . 206
7.3.1. Cluster 1 - Aufgaben zu Vorgehensmodellen in der Softwaretechnik 206
7.3.2. Cluster 2 - Aufgaben zur Dekonstruktion von IS . . . . . . . . . . 210
7.3.3. Cluster 3 - Aufgaben zur Konstruktion von IS . . . . . . . . . . . . 214

ii



7.4. Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8. Fazit und Weiterführende Forschungsfragen 221
8.1. Zu Forschungsfrage 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
8.2. Zu Forschungsfrage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
8.3. Weiterführende Forschungsfragen . . . . . . . . . . . . . . . . . . . . . . . 227

Literatur 229

Abbildungsverzeichnis 238

Tabellenverzeichnis 241

A. Anhang 243
A.1. Interviewszenarien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
A.2. Messinstrument und Bewertungsschema . . . . . . . . . . . . . . . . . . . 252

A.2.1. Fragebogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
A.2.2. Bewertungsschema . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

A.3. Material zur Unterrichtserprobung . . . . . . . . . . . . . . . . . . . . . . 306
A.3.1. Klassendiagramm der Ausgangsversion der Kommissionierstation . 306
A.3.2. Ausbaustufen der Kommissionierstation im Quellcode . . . . . . . 306
A.3.3. Bauanleitung der Kommissionierstation . . . . . . . . . . . . . . . 311

iii



1. Einleitung

Im Rahmen der vorliegenden Dissertation wird der Prozess der Entwicklung und Erpro-

bung eines Instruments zur Messung informatischer Modellierungskompetenz im Kontext

der objektorientierten Softwareentwicklung dargestellt. Die Ergebnisse der Evaluation des

Messinstrumentariums werden vorgestellt, interpretiert und anknüpfende Forschungsfra-

gen formuliert. Ein wichtiger Meilenstein dieses Prozesses ist die Konzeption eines empi-

risch fundierten Kompetenzstrukturmodells, das als mögliches Kategoriengerüst für Mo-

dellierungskompetenz in der Informatik dienen kann. Dieses wurde im DFG-geförderten

Projekt �Entwicklung von qualitativen und quantitativen Messverfahren zu Lehr-/Lern-

Prozessen für Modellierung und Systemverständnis in der Informatik� (kurz: MoKoM )

erarbeitet. Es stellt die theoretische Basis für die Entwicklung und Evaluation des In-

strumentariums dar. Ferner sollen aufbauend auf dem Strukturmodell in weiteren For-

schungsvorhaben, die nicht Bestandteil dieser Dissertationsschrift sind, ein Kompetenz-

niveaumodell und -entwicklungsmodell erarbeitet werden. Ersteres soll Niveaustufungen

enthalten, die mit unterschiedlich anspruchsvollen kognitiven Prozessen und Wissensan-

forderungen korrespondieren. Letzteres hat das Ziel, Annahmen über das Erreichen von

Kompetenzen innerhalb eines bestimmten Zeitraums zu machen.

Um die Zielsetzung dieser Arbeit weiter zu spezi�zieren, werden die zentralen Forschungs-

fragen dargelegt.

1.1. Forschungsfragen

1. Welche kognitiven und nicht-kognitiven Facetten umfasst informatische Modellie-

rungskompetenz? (Entwicklung eines Kompetenzstrukturmodells)

2. Lässt sich ein Zuwachs an informatischer Modellierungskompetenz messbar ma-

chen? (Entwicklung und Erprobung eines Messinstruments)

1



1.2. Forschungsmethodik und Struktur der Arbeit

Als Reaktion auf internationale Vergleichsstudien, die unbestreitbare Mängel am deut-

schen Bildungssystem o�enbart haben, soll im Kapitel 2 Kompetenzorientierung als fach-

didaktische Ausgangslage ein Einblick in die Diskussion zur Kompetenzorientierung in

Deutschland am Beispiel des Informatikunterrichts gegeben werden. In diesem Zusam-

menhang werden verschiedene Ansätze zur Entwicklung von Kompetenzmodellen für die

gesamte informatische Bildung und für deren Teilbereiche vorgestellt. Sie können als

Grundlage für die Entwicklung von Bildungsstandards und kompetenzorientiertem Un-

terricht angesehen werden.

Diese bildungspolitische Umorientierung motiviert maÿgeblich die vorliegende Arbeit.

Das folgende Kapitel 3 Modellierung im fachwissenschaftlichen und fachdidaktischen

Kontext beschreibt die Modellierung als Inhaltsbereich der Informatik. Hier sollen Kom-

petenzen gefördert und gemessen werden. Entsprechend wird die Bedeutung der Modellie-

rung im Rahmen der objektorientierten Softwareentwicklung unter fachwissenschaftlicher

und fachdidaktischer Perspektive erörtert.

Es ergeben sich folgende thematische Schwerpunkte für das Kapitel 3:

1. Legitimation der informatischen Modellierung aus fachwissenschaftlicher und fach-

didaktischer Sicht

Zunächst wird die besondere Bedeutung der Modellierung für das Gesamtgebiet

der Informatik fachwissenschaftlich begründet. In einem Unterkapitel wird anhand

unterschiedlicher didaktischer Beiträge aufgezeigt, welcher Wert der informatischen

Modellierung im Unterricht an allgemeinbildenden Schulen zukommt.

2. Erörterung und Festlegung einer normativ-theoretischen Grundlage für ein Kompe-

tenzmodell

In diesem Kapitel wird die normativ-theoretische Basis für die Entwicklung des

Kompetenzmodells erörtert und festgelegt. Insbesondere wird danach gefragt, wel-

che kognitiven und nicht-kognitiven Facetten die Modellierungskompetenz beinhal-

tet.

3. Erörterung und Festlegung einer normativ-theoretischen Grundlage für eine Unter-

richtsreihe zur Erprobung des Kompetenzmessinstruments

Ziel ist es hier, das Kompetenzmessinstrument auf Tauglichkeit in der fachdidakti-

schen Praxis zu prüfen. Um dies zu erreichen, wird eine Unterrichtsreihe für Schüler

der gymnasialen Oberstufe entwickelt. Die theoretischen Grundlagen für die Ler-

neinheit werden hier erarbeitet.

2



Zwei weitere Kapitel fokussieren die Entwicklung des empirisch gesicherten Kompetenz-

strukturmodells für informatisches Modellieren. Diese erfolgt in zwei Stufen: Zunächst

wird die normativ-theoretische Entwicklung des Kompetenzstrukturmodells dargestellt

[Nelles et al. 2009], [Kollee et al. 2009] (siehe Kapitel 4 Theoretische Entwicklung eines

Kompetenzstrukturmodells für informatisches Modellieren). Im nächsten Schritt wird die

empirische Verfeinerung des Modells erläutert [Magenheim et al. 2010a] [Magenheim et

al. 2010b] [Lehner et al. 2010] (siehe Kapitel 5 Empirische Entwicklung eines Kompetenz-

strukturmodells für informatisches Modellieren).

Das Kapitel 6 Entwurf eines Messinstruments für informatische Modellierungskompe-

tenz und Entwicklung eines Lehr-/Lernarrangements zur Erprobung befasst sich mit der

Entwicklung des Messinstruments. Gemessen werden die im Kompetenzstrukturmodell

kategorisierten Facetten informatischer Modellierungskompetenz. Kompetenzen werden

hier in Form von Pro�len de�niert. Um sie messbar zu machen, werden jeweils qualitative

und quantitative Items entwickelt, die zu dem Messinstrument gebündelt werden.

Eine Unterrichtsreihe auf der Grundlage des didaktischen Konzepts des Paderborner

Informatik Lernlabors (ILL) wird für die Kompetenzmessung in der gymnasialen Ober-

stufe angepasst. Basis ist eine Inhaltseinheit Kommissionierstation. Diese hat sich in der

Hochschullehre (insb. im Rahmen der Informatiklehrerausbildung) als besonders tauglich

für die Entwicklung von Modellierungskompetenz erwiesen. Daher wird sie als Untersu-

chungssetting für die durchzuführenden Kompetenzmessungen herangezogen.

Die Erprobung des Messinstruments wird im Kapitel 7 Erprobung des Messinstruments

für informatische Modellierungskompetenz beschrieben. Hier besteht - wie in Forschungs-

frage 2 beschrieben - die Zielsetzung, Kompetenzentwicklung für Modellierungskompe-

tenz und deren Teilbereiche zu messen. Hierzu sind zwei Messzeitpunkte notwendig, zu

Beginn und zum Ende der Unterrichtseinheit.

Die Messergebnisse werden in Tabellen erfasst und gra�sch dargestellt. Hierbei wird

zunächst eine deskriptive statistische Analyse vorgenommen sowie ein induktives sta-

tistisches Verfahren angewandt. So wird nachgewiesen, dass das Instrument geeignet

ist, einen statistisch signi�kanten Kompetenzzuwachs zu ermitteln (Vergleich gepaarter

Stichproben).

Abschlieÿend werden die Ergebnisse der beiden Forschungsfragen zusammengefasst und

daraus resultierende weiterführende Forschungsfragen erörtert.

3



1.3. Tätigkeit im DFG-geförderten Projekt MoKoM

In diesem Abschnitt wird die Tätigkeit des Autors als wissenschaftlicher Mitarbeiter in

dem Projekt MoKoM vorgestellt. Ferner wird erläutert, welche Aktivitäten im Rahmen

des oben beschriebenen Projekts MoKoM durchgeführt wurden und welche nicht mehr

Bestandteil des Forschungsprojekts waren.

Zunächst wurde im Rahmen des Projekts MoKoM ein Kompetenzstrukturmodellmodell

für die Inhaltsbereiche informatisches Modellieren und Systemverständnis entwickelt.

Zielsetzung war es ein theoretisches Kategoriengerüst für die nach Dimensionen geglie-

derten kognitiven und nicht-kognitiven Voraussetzungen, über die ein Lernender verfügen

soll, um Aufgaben und Probleme in dem genannten Aufgabenbereich zu lösen, zu ent-

wickeln. In diesem Zusammenhang wurde eine normativ-theoretische Literaturrecherche

anhand von fachdidaktischer und fachwissenschaftlicher Literatur vorgenommen, um die

jeweiligen Kompetenzdimensionen und -komponenten für den Bereich der informatischen

Modellierung und das Systemverständnis theoretisch herzuleiten. Hierbei wurde die in

Kapitel 4 beschriebene normative Entwicklung der Dimension K1.3, die die Kompetenzen

zur Modellierung enthält, vom Autor entwickelt. Im Rahmen dieses Forschungsschrittes

wurden zwei Verö�entlichungen (Informatik Spektrum)[Nelles et al. 2009] und der (World

Conference of Computer in Education 2009) [Kollee et al. 2009] als Mitautor publiziert.

Im nächsten Forschungsschritt (siehe Kapitel 5) ist die empirische Verfeinerung und

Ausdi�erenzierung des Kompetenzmodells durch Expertenbefragungen erfolgt. In diesem

Arbeitsschritt hat der Autor die inhaltliche Gestaltung der Interviewszenarien für den

Bereich der Modellierung erstellt und konzipiert. Weiterhin wurde ein Groÿteil der Inter-

views von ca. 60-90 Minuten von dem Autor zusammen mit den Kollegen der Arbeits- und

Organisationspsychologie durchgeführt. Im Anschluss hat der Autor die technische und

organisatorische Koordination der Transkriptionen für einen Teil der Interviews durchge-

führt. Anschlieÿend wurde die qualitative Inhaltsanalyse für die Interviewszenarien zur

Modellierung und Aggregation der Ergebnisse zur informatischen Modellierung in ei-

ner Gesamtauswertung vorgenommen. In diesem zweiten Forschungsschritt wurden drei

Verö�entlichungen als Mitautor publiziert, ISSEP 2010 [Magenheim et al. 2010a], IEEE

EDUCON 2010 [Magenheim et al. 2010b] und WCC 2010 [Lehner et al. 2010].

Auf Grundlage der vorherigen Arbeiten wurde in einem weiteren Forschungsschritt des

Projekts MoKoM die Entwicklung des Messinstruments auf Grundlage des empirisch

gesicherten Kompetenzstrukturmodells vorgenommen (siehe Kapitel 6.1). In diesem Zu-

sammenhang hat der Autor die Aufgaben und Items für die informatische Modellierung

in Zusammenarbeit mit den Kollegen der Arbeits- und Organisationspsychologie kon-

4



zipiert. Hierbei hat der Autor insbesondere die Items zur informatischen Modellierung

erstellt. Die Kollegen aus der Psychologie haben parallel die Items zu den nicht-kognitiven

Anforderungen formuliert. Die logische Verknüpfung der Items zu Aufgaben mit lebens-

weltnahem Stimulusmaterial wurde gemeinschaftlich vorgenommen.

Die folgenden Arbeitsschritte haben im Anschluss an das Projekt MoKoM stattgefun-

den: Um das entwickelte Messinstrument für Kompetenzen zur informatischen Model-

lierung zu erproben, wurde ein Lehr-/Lernarrangement auf theoretischer Grundlage des

Paderborner Informatik Lernlabors (siehe Kapitel 6.2) entwickelt. Dieses wurde zunächst

von Studenten im Rahmen der Lehrveranstaltung Informatik Lernlabor entwickelt. Der

theoretische Entwurf der Unterrichtsreihe sowie die technischen und softwaretechnische

Eigenschaften wurden durch den Autor didaktisch reduziert und weiterentwickelt um für

den schulischen Einsatz geeignet zu sein.

Die schulische Erprobung wurde gemeinsam vom Autor und einer studentischen Hilfskraft

begleitet und von einem erfahrenen Informatiklehrer durchgeführt. Die beiden Kompe-

tenzmessungen wurden vorbereitet und durchgeführt und deren Ergebnisse durch den

Autor statistisch ausgewertet (siehe Kapitel 7).

Zum besseren Verständnis und zur Verdeutlichung der Kohärenz illustriert die Abbildung

1.1 den Inhalt der Arbeit und veranschaulicht den Aufbau und Zusammenhang der Ka-

pitel. Hierbei wird auÿerdem die Rolle des Projekts MoKoM im Gesamtkontext dieser

Arbeit illustriert. Im weiteren Verlauf der Arbeit soll die Gra�k dafür verwendet werden,

um den Fortschritt der Arbeit und den roten Faden für jedes Kapitel hervorzuheben.

5



Abbildung 1.1.: Übersicht Kapitel und logischer Zusammenhang

6



1.4. Die Verwendung des Begri�s �Modell�

Da der Begri� �Modell� in vielfältigem Kontext verwendet wird, sollen zum besseren

Verständnis die folgenden Modellebenen vorgestellt werden: 1

Ebene 1- Kompetenzmodellebene

• Umfasst die Erstellung des Kompetenzmodells für den Gegenstandsbereich der In-

formatischen Modellierung (Ebene2)

Ebene 2 - Fachwissenschaftliche Modellebene

• Stellt den Gegenstandsbereich dar für den die entsprechenden kognitiven und sozial-

kommunikativen Anforderungen im Kompetenzmodell (Ebene1) zusammengefasst

und strukturiert werden

Ebene 3 - Vermittlungs-Modellebene

• Stellt die methodische Art und Weise dar, wie die im Kompetenzmodell (Ebene1)

beinhalteten Kompetenzen zur informatischen Modellierung (Ebene2) vermittelt

werden

Die einzelnen Modellebenen sind eng miteinander ver�ochten. Dies soll in der folgenden

Abbildung illustriert werden.

Abbildung 1.2.: Übersicht der Modellebenen

1Eine De�nition des Begri�s �Modell� aus fachwissenschaftlicher und fachdidaktischer Sicht erfolgt
in Kapitel 3. Die Modellebenen sollen hier lediglich die unterschiedliche Verwendung der Begri�e
�Modell� oder �Modellierung� innerhalb der vorliegenden Arbeit verdeutlichen.

7



2. Kompetenzorientierung als

fachdidaktische Ausgangslage

Ausgelöst durch die Ergebnisse internationaler Vergleichsstudien, die Mängel am deut-

schen Bildungssystem aufgedeckt haben, �ndet die Vermittlung von Kompetenzen in

der aktuellen Bildungsdiskussion als zentrales Bildungsziel besondere Beachtung. Hierbei

wird über die Vermittlung von trägem Wissen [Whitehead 1939] hinaus die Entwicklung

von prozeduralem und in vielfältigen Kontexten anwendbarem Handlungswissen gefor-

dert.

�Neu in der deutschen Bildungsdiskussion ist vor allem die Verknüpfung von

Kompetenzorientierung und Standardisierung in der Qualitätsentwicklung

von Schule und Unterricht, die als Reaktion auf unbefriedigende TIMSS und

PISA Ergebnisse und bildungspolitische Impulse der OECD die derzeitigen

Reformvorhaben im Bildungssystem maÿgeblich beein�usst [Drieschner 2009,

S. 10].�

Nationale Bestrebungen bei der Entwicklung von bundesweiten Bildungsstandards ver-

folgen zur Lösung dieses Missstandes die folgende Zielsetzung [Drieschner 2009, S. 29]:

1. Die Festlegung von Kompetenzzielen.

2. Die Vermittlung der Kompetenzen durch geeignete didaktische und bildungsorga-

nisatorische Maÿnahmen.

3. Die Überprüfung, ob die festgelegten Kompetenzen erreicht wurden.

8



Abbildung 2.1.: Kapitel 2 im Gesamtkontext der Arbeit

9



2.1. Output-Orientierung als Replik auf Internationale

Vergleichsstudien

Seit Verö�entlichung der Ergebnisse der TIMMS-Studie wird verstärkt über den aktuellen

Zustand des deutschen Bildungssystems und dessen Entwicklungsperspektiven diskutiert.

Insbesondere die empirischen Studien � wie z.B. PISA � haben unbestreitbare Mängel am

deutschen Bildungssystem o�enbart. Diese Schwächen haben sich insbesondere im inter-

nationalen Vergleich gezeigt und belegen eindeutig den Zusammenhang zwischen sozialen

Faktoren und schulischem Erfolg im deutschen Bildungssystem [OECD 2001],[Baumert

et al. 2000].

Durch die oben genannten internationalen Vergleichsstudien hat sich eine grundsätzliche

Wende des deutschen Bildungssystems abgezeichnet: Wo früher Lehrpläne, Haushaltsplä-

ne, Rahmenrichtlinien und Prüfungsrichtlinien richtungweisend waren, spielen heute ins-

besondere die Lernergebnisse der Schülerinnen und Schüler eine Rolle. Man spricht in

diesem Zusammenhang auch von einer Outputorientierung des Bildungssystems. Diese

Umorientierung fokussiert insbesondere die Entwicklung von Kompetenzen in einer Un-

terrichtsdomäne [Klieme et al. 2007].

Um die Qualität des deutschen Bildungssystems zu sichern, wurden Anstrengungen un-

ternommen, um nationale Bildungsstandards zu verfassen. Diese stellen verbindliche An-

forderungen an das Lehren und Lernen in der Schule [Klieme et al. 2007, S. 9] dar. Folg-

lich bieten sie einen Orientierungspunkt, um Lehrpersonen professionelles Handeln zu

ermöglichen und die in den Bildungsstandards implizit aufgeführten Kompetenzaspekte

bestmöglich zu vermitteln [Klieme et al. 2007].

Es ergibt sich dementsprechend eine hohe Erwartungshaltung an die Implementierung

von Bildungsstandards im deutschen Bildungssystem. Neben der qualitativen Verbesse-

rung schulischer Lernergebnisse steht eine bundesweite Vergleichbarkeit und Anschluss-

fähigkeit von Schulabschlüssen im Fokus [Riecke-Baulecke und Artelt 2004, S. 7]. Ferner

verspricht man sich einen Beitrag zu mehr Bildungsgerechtigkeit [Lankes 2006, S. 9].

Neben der Diskussion zur Kompetenzorientierung und Bildungsstandards in Deutschland

hat das Thema auch international einen hohen Stellenwert:

Die UNESCO-Publikation �Understanding Information Literacy: A Primer� (UNESCO

2008) werden notwendige sog. Literacys aufgeführt, die mündige Bürger im 21. Jahrhun-

dert benötigen [Horton 2007, S. 3].

1. the Basic or Core functional literacy �uencies (competencies) of reading, writing,

oralcy and numeracy;

10



2. Computer Literacy;

3. Media Literacy;

4. Distance Education and E-Learning;

5. Cultural Literacy;

6. Information Literacy.

Ein weiterer Ansatz der OECD sieht aufgrund steigender Anforderungen im Alltag der

Wissensgesellschaft die De�nition von Schlüsselkompetenzen von zentraler Bedeutung.

In diesem Zusammenhang hat sie in dem Bericht �De�nition and Selection of Key Com-

petencies (DeSeCo)� drei zentrale Ausprägungen von Schlüsselkompetenzen de�niert:

1. Interaktive Anwendung von Medien und Mitteln (Tools),

2. Interagieren in heterogenen Gruppen,

3. Eigenständiges Handeln (OECD 2005).

Der Zusammenhang zwischen fachbezogenen Kompetenzen im Informatikunterricht und

Schlüsselkompetenzen gemäÿ DESECO werden im Kapitel 4.2 erläutert.

Neben diesen exemplarisch näher aufgeführten nationalen und internationalen Beiträgen

zu Standards und Kompetenzen, sind beispielhaft weitere zu nennen (NCTM-Standards

- siehe auch Kapitel 2.2) [NCTM - National Council of Teachers of Mathematics 2000],

Curricula der Bachelor und Master Ausbildung (Bologna Declaration) [Rectors, Univer-

sities 1999] und der Europäischer Quali�kationsrahmen für lebenslanges Lernen (EQR)

[Europäische Gemeinschaften 2008].

Ferner wurde ein DFG Schwerpunktprogramm zum Thema �Kompetenzmodelle zur Er-

fassung individueller Lernergebnisse und zur Bilanzierung von Bildungsprozessen� kurz:

�Kompetenzmodelle� etabliert. Das DFG-Schwerpunktprogramm wird in einem Zeitraum

von sechs Jahren (2007-2013) gefördert. In dem interdisziplinären Forschungsprogramm

arbeiten Psychologen, Erziehungswissenschaftler und Fachdidaktiker zusammen [Leutner

2006].

Explizit für die informatische Bildung sind zusätzlich das ACM K-12 Curriculum [Tu-

cker2006 2006] und die GI Bildungsstandards Informatik Sekundarstufe I [GI 2008] (siehe

auch Kapitel 2.2) zu nennen.

Die zahlreichen nationalen und internationalen Beiträge und Maÿnahmen zum Thema

Bildungsstandards und Kompetenzen zeigen die hohe Relevanz der Thematik innerhalb

11



der aktuellen bildungspolitischen Diskussion und stellen eine zentrale Motivation für die

vorliegende Dissertationsschrift dar. Das folgende Kapitel erläutert Ansätze zur Entwick-

lung von Bildungsstandards in der Informatik.

2.2. Bildungsstandards in der Informatik

Bei der Entwicklung von Bildungsstandards sind nach Klieme-Expertise gesellschaftliche

und pädagogische Zielentscheidungen, wissenschaftlich fundierte Aussagen zum Aufbau

von Kompetenzen und Konzepte sowie Verfahren zur Testentwicklung mit einzubeziehen.

�In diesem Sinne gehen in die Entwicklung von Bildungsstandards (a) gesell-

schaftliche und pädagogische Zielentscheidungen, (b) wissenschaftliche, insbe-

sondere fachdidaktische und psychologische Aussagen zum Aufbau von Kom-

petenzen, sowie (c) Konzepte und Verfahren der Testentwicklung ein [Klieme

et al. 2007, S. 19].�

Ausgehend von dieser bildungspolitischen Anforderung stellt sich im Hinblick auf die

zu untersuchende Teildisziplin der Informatik die Forschungsfrage (1), welche kognitiven

und nicht-kognitiven Facetten informatische Modellierungskompetenz umfasst?

Die Klieme-Expertise de�niert darüber hinaus konkrete Vorgaben für die Entwicklung

von Bildungsstandards. In diesem Zusammenhang wird die Eignung von Bildungsstan-

dards als verbindliche Vorgabe für Schulqualität anhand von Gütekriterien für sog. Per-

formance Standards manifestiert [Drieschner 2009, S. 28][Klieme et al. 2007]:

• Fokussierung auf Kernbereiche der Fächer oder Fächergruppen und ihre grundle-

genden Begri�svorstellungen, Grundprinzipien, Verfahren und grundlegenden Wis-

sensbestände

• die Benennung von Kompetenzen als Resultate übergreifenden, kumulativen, sys-

tematischen und vernetzten Lernens, die zu vorgegebenen Zeitpunkten (etwa am

Ende der 4. Klasse) verfügbar sein sollen

• die verbindliche Festlegung von Mindeststandards sowie die Entwicklung von Regel-

und Maximalstandards auf der Basis von Kompetenzstufenmodellen zur di�eren-

zierten Bestimmung von Lernentwicklungen und Lernleistungen

• die Verständlichkeit für Lehrer, Schüler und Eltern

• die Erreichbarkeit durch geeignete didaktisch-methodische Maÿnahmen

12



• eine präzise Beschreibung von Leistungserwartungen, die Konzeptualisierungen von

Aufgaben und Testverfahren ermöglicht

Wie bereits erläutert, sollen Bildungsstandards fachdidaktische und psychologische Aus-

sagen zum Aufbau von Kompetenzen in der jeweiligen Domäne beschreiben. Infolgedessen

ist es unerlässlich, einen einheitlichen Kompetenzbegri� zu verwenden. In diesem Zusam-

menhang soll die in der Bildungsforschung etablierte Kompetenzde�nition nach Weinert

& Klieme für diese Forschungsarbeit richtungweisend sein:

�In Übereinstimmung mit [Weinert 2002, S. 27�] verstehen wir unter Kom-

petenzen die bei Individuen verfügbaren oder von ihnen erlernbaren kogni-

tiven Fähigkeiten und Fertigkeiten, bestimmte Probleme zu lösen, sowie die

damit verbundenen motivationalen, volitionalen und sozialen Bereitschaften

und Fähigkeiten, die Problemlösungen in variablen Situationen erfolgreich

und verantwortungsvoll nutzen zu können [Klieme et al. 2007, S. 70].�

Kompetenzen beziehen sich demnach auf komplexe Anforderungssituationen und be-

stehen nicht allein aus einzelnen Fähigkeiten und Fertigkeiten. Sie beinhalten neben

kognitiven auch nicht- kognitive, motivationale, willensmäÿige, personale und sozial-

kommunikative Aspekte, die zum selbständigen Lösen domänenrelevanter Probleme not-

wendig sind. Ein weiterer wichtiger Aspekt, den das Weinert'sche Kompetenzverständnis

umfasst, ist die Bereitschaft ein Problem zu lösen. Weinert unterscheidet folgende, zu-

sammenwirkende Kompetenzfacetten: Fähigkeit, Wissen, Verstehen, Können, Handeln,

Erfahrung, Motivation [Klieme et al. 2007, S. 73].

Im Folgenden soll anhand eines Ansatzes zur Entwicklung von Bildungsstandards für

das Unterrichtsfach Informatik in der Sekundarstufe I aufgezeigt werden, dass der Kom-

petenzbegri� nicht immer einheitlich verwendet wird. Dies soll den Leser dahingehend

sensibilisieren, dass eine einheitliche Verwendung des Kompetenzbegri�s wichtig ist und

künftige Forschungsarbeiten stets ein gemeinsames Kompetenzverständnis zugrunde le-

gen sollten.

Bildungsstandards Informatik für die Sekundarstufe I

Die Bildungsstandards für den Informatikunterricht in der Sekundarstufe I orientieren

sich vorwiegend an den �Principles and Standards for School Mathematics� der �National

Council of Teachers of Mathematics (NCTM)� [NCTM - National Council of Teachers

of Mathematics 2000] und diversen fachdidaktischen Diskussionen. Es erfolgt keine Zu-

grundelegung empirisch fundierter Aussagen zum Aufbau von Kompetenzen im Informa-

tikunterricht.

13



�Diese vorliegende Strukturierung ist schrittweise in vielen Workshops mit

zahlreichen Lehrerinnen und Lehrern sowie Fachdidaktikerinnen und Fachdi-

daktikern entstanden und somit das Ergebnis eines mehrjährigen Diskussions-

prozesses mit vielen Beteiligten. Die grundsätzliche Unterteilung in Inhalts

und Prozessbereiche wurde von den NCTM-Standards übernommen, weil sie

sich dort bereits als sehr erfolgreich erwies. Damit wird allerdings nicht be-

hauptet, dass dies die einzig mögliche sinnvolle Strukturierung sei [GI 2008,

S. 12].�

Die in der Klieme-Expertise geforderte Einbeziehung von Psychologen und Erziehungs-

wissenschaftlern bei der Formulierung von Kompetenzen ist somit nicht geleistet.

Die Bildungsstandards basieren auf einem impliziten Kompetenzmodell, welches in Inhalts-

und Prozessbereiche getrennt ist. Hier werden nach Aussage der Autoren jahrgangsstu-

fenübergreifend Mindestanforderungen in Form von Kompetenzen formuliert.
Die Inhaltsbereiche umfassen [GI 2008, S. 12�]:

• Information und Daten

Schülerinnen und Schüler aller Jahrgangsstufen

� verstehen den Zusammenhang von Information und Daten sowie verschiedene Dar-

stellungsformen für Daten,

� verstehen Operationen auf Daten und interpretieren diese in Bezug auf die darge-

stellte Information,

� führen Operationen auf Daten sachgerecht durch.

• Algorithmen

Schülerinnen und Schüler aller Jahrgangsstufen

� kennen Algorithmen zum Lösen von Aufgaben und Problemen aus verschiedenen

Anwendungsgebieten und lesen und interpretieren gegebene Algorithmen,

� entwerfen und realisieren Algorithmen mit den algorithmischen Grundbausteinen und

stellen diese geeignet dar.

• Sprachen und Automaten

Schülerinnen und Schüler aller Jahrgangsstufen

� nutzen formale Sprachen zur Interaktion mit Informatiksystemen und zum Problem-

lösen,

� analysieren und modellieren Automaten.

• Informatiksysteme

Schülerinnen und Schüler aller Jahrgangsstufen

� verstehen die Grundlagen des Aufbaus von Informatiksystemen und deren Funkti-

onsweise,

14



� wenden Informatiksysteme zielgerichtet an,

� erschlieÿen sich weitere Informatiksysteme.

• Informatik, Mensch und Gesellschaft

Schülerinnen und Schüler aller Jahrgangsstufen

� benennen Wechselwirkungen zwischen Informatiksystemen und ihrer gesellschaftli-

chen Einbettung,

� nehmen Entscheidungsfreiheiten im Umgang mit Informatiksystemen wahr und han-

deln in Übereinstimmung mit gesellschaftlichen Normen,

� reagieren angemessen auf Risiken bei der Nutzung von Informatiksystemen.

Die Prozessbereiche sind:

• Modellieren und Implementieren

Schülerinnen und Schüler aller Jahrgangsstufen

� erstellen informatische Modelle zu gegebenen Sachverhalten,

� implementieren Modelle mit geeigneten Werkzeugen,

� re�ektieren Modelle und deren Implementierung.

• Begründen und Bewerten

Schülerinnen und Schüler aller Jahrgangsstufen

� stellen Fragen und äuÿern Vermutungen über informatische Sachverhalte,

� begründen Entscheidungen bei der Nutzung von Informatiksystemen,

� wenden Kriterien zur Bewertung informatischer Sachverhalte an.

• Strukturieren und Vernetzen

Schülerinnen und Schüler aller Jahrgangsstufen

� strukturieren Sachverhalte durch zweckdienliches Zerlegen und Anordnen,

� erkennen und nutzen Verbindungen innerhalb und auÿerhalb der Informatik.

• Kommunizieren und Kooperieren

Schülerinnen und Schüler aller Jahrgangsstufen

� kommunizieren fachgerecht über informatische Sachverhalte,

� kooperieren bei der Lösung informatischer Probleme,

� nutzen geeignete Werkzeuge zur Kommunikation und Kooperation.

• Darstellen und Interpretieren

Schülerinnen und Schüler aller Jahrgangsstufen

� interpretieren unterschiedliche Darstellungen von Sachverhalten,

� veranschaulichen informatische Sachverhalte,

� wählen geeignete Darstellungsformen aus.

15



In einem weiteren Schritt werden unter Berücksichtigung der unterschiedlichen Ausprä-

gungen informatischer Bildung der Bundesländer sog. Nahtstellen de�niert und jene zu

erreichende Kompetenzen aus den unterschiedlichen Inhalts- und Prozessbereichen des

Informatikunterrichts zugeordnet.

Abbildung 2.2.: Inhalts und Prozessbereiche [GI 2008, S. 11]

Konkret werden innerhalb der einzelnen Inhalts- und Prozessbereiche im Sinne von

Mindeststandards jeweils Kompetenzen di�erenziert nach zwei Jahrgangsstufen, näm-

lich Schülerinnen und Schüler der Jahrgangsstufen 5 bis 7 und Schülerinnen und Schüler

der Jahrgangsstufen 8 bis 10, aufgeführt. Ein empirisch gesichertes Kompetenzmodell

und ein Instrument zur Messung der vorgestellten Kompetenzen liegen nicht vor.

In der Abbildung 2.3 wird diese Zuordnung am Beispiel des Prozessbereichs Modellieren

& Implementieren aufgezeigt:

Neben den methodologischen Abweichungen von der in der Klieme-Expertise vorgeschla-

genen Vorgehensweise zur Entwicklung von Bildungsstandards, ergeben sich weitere Dis-

kussionspunkte bei der Herleitung relevanter Kompetenzen und bei der Verwendung des

Kompetenzbegri�s.

Die Ableitung der Kompetenzen erfolgt lediglich anhand der fachlichen Systematik des

Informatikunterrichts und vorrangig anhand der Komponenten, die innerhalb der NCTM-

Standards für die Schulmathematik de�niert wurden. Nach Klieme-Expertise ist eine der-

artige rein normative Vorgehensweise zur Ableitung von Kompetenzen nicht hinreichend.

Deskriptive Modelle bedürfen nach Klieme der Absicherung durch empirische fachdidak-

tische und lernpsychologische Forschung.

16



Abbildung 2.3.: Prozessbereich Modellieren & Implementieren [GI 2008, S. 19]

Eine Ableitung von Fähigkeiten und Fertigkeiten aus der Fachsystematik der Informatik,

anhand von Bildungsstandards der Mathematik und anhand zahlreicher Diskussionen von

erfahrenen Informatiklehrern ist sicherlich wertvoll aber im Sinne der Klieme-Expertise

nicht geeignet, um Kompetenzen zu formulieren.

Die Kompetenzbeschreibungen innerhalb der vorgestellten Inhalts- und Prozessbereiche

entsprechen darüber hinaus nicht dem Weinert'schen Kompetenzverständnis.

Die Bildungsstandards sehen eine explizite Trennung von Inhalts und Prozessbereichen

vor. Hier werden einzelne Fähigkeiten und Fertigkeiten beschrieben, die die Schülerin-

nen und Schüler einer Jahrgangsstufe in einem bestimmten Teilbereich des Informatik-

unterrichts erreichen sollen. Dies widerspricht dem Weinert'schen Kompetenzverständnis

insofern, als dass Kompetenzen aus komplexen Anforderungssituationen, die es zu bewäl-

tigen gilt, bestehen. Hier sollte vielmehr eine ganzheitliche Betrachtung von kognitiven

und nicht-kognitiven Kompetenzaspekten berücksichtigt werden.

Die vorliegende Arbeit hat die Zielsetzung ein Kompetenzstrukturmodell zu entwickeln.

Entsprechend der zuvor dargestellten Forderungen und dargestellter Mängel in bestehen-

den Ansätzen soll bei der Entwicklung des Kompetenzmodells explizit das Weinert'sche

Kompetenzverständnis zugrunde gelegt werden. Das Kompetenzmodell wird im Rahmen

des MoKoM-Projekts von Fachdidaktikern und Psychologen entwickelt und durchläuft

Prozesse zur empirischen Di�erenzierung und Absicherung.

17



Als Grundlage für das Kapitel 4 soll im Folgenden der Begri� des Kompetenzmodells

erläutert werden. Wie in der Einleitung erwähnt, sieht die vorliegende Arbeit die Ent-

wicklung eines empirisch gesicherten Kompetenzstrukturmodells für die informatische

Modellierung vor.

2.3. Kompetenzmodelle in der Informatik

Abbildung 2.4.: Modellebene 1 - Kompetenzmodell-Ebene

Bildungsstandards sollen sich nach Klieme auf Kompetenzmodelle stützen, die in Zusam-

menarbeit von Fachdidaktik und Fachwissenschaft mit Psychologen oder Erziehungswis-

senschaftlern entwickelt werden. Diese spezi�zieren die Dimensionen und Kategorien von

Kompetenz, die mit entsprechend angepassten Aufgabensammlungen empirisch über-

prüft werden können.

Um das Erreichen der Standards empirisch zu überprüfen, ist es nach Klieme-Expertise

unabdingbar, entsprechende Testverfahren und Aufgaben zu entwickeln. Insbesondere

im Hinblick auf einen aktiven Schulbezug, sind Ergebniskontrollen unverzichtbar [Klieme

et al. 2007] und stellt eine zentrale Motivation zur Konzeption eines Kompetenzmessin-

struments für die Domäne der Modellierung im Rahmen des Software-Engineerings dar

(siehe Forschungsfrage 2:). Darüber hinaus statuieren Schecker & Parchmann den Bedarf

an empirisch fachdidaktischer und lernpsychologischer Forschung bei der Entwicklung

von Kompetenzmodellen, die eine wesentliche theoretische Grundlage für die Entwick-

lung von Bildungsstandards darstellen.

18



�Normative Modelle dürfen nicht allein aus fachlichen Bildungszielen abge-

leitet werden. Sie sollen vielmehr eine theoretische Fundierung aus der Lern-

psychologie aufweisen. Ein deskriptives Modell bedarf der Absicherung durch

empirische fachdidaktische und lernpsychologische Forschung [Schecker und

Parchmann 2006, S. 47].�

Kompetenzmodelle

Aufbauend auf dem Weinert'schen Kompetenzverständnis charakterisieren Schecker &

Parchmann Kompetenzmodelle folgendermaÿen:

�Die Beschreibung von anforderungs- bzw. domänenbezogenen Kompetenzen,

deren Erlangung durch Lernsituationen unterstützt werden soll, erfordert eine

Systematik oder mit anderen Worten ein tragfähiges und für Messung und

Lernen umsetzbares Kompetenzmodell [Schecker und Parchmann 2006, S.

46].�

Es lassen sich darüber hinaus drei wesentliche Typen von Kompetenzmodellen unter-

scheiden [Klieme et al. 2007][Schecker und Parchmann 2006]:

1. Kompetenzstrukturmodell

Deskriptive Kompetenzstrukturmodelle dienen als mögliches Kategoriengerüst, um

zu erreichende Kompetenzen ordnen und darstellen zu können. Sie konstituieren

das Gefüge einer nach Dimensionen gegliederten Beschreibung kognitiver Voraus-

setzungen, über die ein Lernender verfügen soll, um Aufgaben und Probleme in

einem bestimmten Anforderungsbereich lösen zu können. Kompetenzstrukturmo-

delle sind explizit ausformuliert oder liegen implizit vor.

2. Kompetenzstufenmodell

Modelle dieses Typs umfassen Kompetenzstufungen, die mit unterschiedlich an-

spruchsvollen kognitiven Prozessen undWissensanforderungen korrespondieren. Dement-

sprechend sind jene Stufen mit dem Erreichen eines bestimmten Niveaus einer

Kompetenzdimension verknüpft.

3. Kompetenzentwicklungsmodell

Kompetenzentwicklungsmodelle machen Annahmen darüber, in welcher Weise sich

Kompetenzstrukturen herausbilden. Häu�g werden in zeitlicher Perspektive Erwar-

tungen an das Erreichen bestimmter Kompetenzen nach Altersstufen/Schulstufen

gemacht. Sie basieren auf einer gestuften Kompetenz (siehe Kompetenzstufenmo-

dell) und legen fest, unter welchen Bedingungen der Übergang in eine höhere Stufe

19



möglich wird. Zur tatsächlichen Beschreibung, gezielten Planung und Förderung

von Entwicklungen muss fachliche Perspektive mit Voraussetzungen der Lernenden

und weiteren Ein�ussfaktoren verknüpft werden.

Ansätze für Kompetenzmodelle in der Schulinformatik

Im Rahmen der vorliegenden Arbeit soll die theoretische und empirische Entwicklung

eines Kompetenzstrukturmodells für den Teilbereich der informatischen Modellierung

beschrieben werden. In diesem Zusammenhang werden zunächst bestehende Ansätze zur

Entwicklung von Kompetenzmodellen in der Informatik aufgeführt.

Kohl untergliedert die bestehenden Ansätze für Kompetenzmodelle in der Schulinfor-

matik in zwei Kategorien ((1) Modelle für die gesamte informatische Bildung und (2)

Modelle für Teilbereiche der informatischen Bildung) und erläutert diese im Rahmen sei-

ner Dissertation. Die folgende Liste gibt einen Überblick über die bestehenden Ansätze

zur Kompetenzmodellierung [Kohl 2009, S. 47].

1. Modelle für die gesamte informatische Bildung

• Drei Dimensionen des Model of ICT-Competence-Classes (Magenheim 2005)

• Fünf Stufen von Kompetenz auf Grundlage des PISA-Mathematik-Kompetenzmodells

(Friedrich 2003)

• Das implizite Kompetenzmodell als Grundlage der KMK-Bildungsstandards

(Puhlmann et. al. 2008)

2. Modelle für Teilbereiche der informatischen Bildung

• Ansätze für ein Kompetenzmodell für informatisches Modellieren (Brinda /

Schulte, 2005)

• Ansatz zur Entwicklung eines Kompetenzmodells für die theoretische Infor-

matik anhand von Kategorisierungen von Aufgaben eines Schülerwettbewerbs

(Schlüter und Brinda 2007)

• Kompetenzmodell für die angewandte Informatik in zwei Dimensionen (Dor-

ninger 2007)

Kohl stellt ein Kompetenzmodell für die Algorithmik in der Sekundarstufe I vor. Dieses

basiert auf dem Inhaltsbereich Algorithmen und den dort aufgeführten jahrgangsstufen-

übergreifenden Kompetenzen und denjenigen Kompetenzen für Schülerinnen und Schüler

der Jahrgangsstufe 8 bis 10 (siehe Abbildung 2.5).

20



Abbildung 2.5.: Inhaltsbereich Algorithmen 1/2 [GI 2008, S. 15]

Abbildung 2.6.: Inhaltsbereich Algorithmen 2/2 [GI 2008, S. 16]

Ausgehend von den oben aufgeführten Kompetenzen entwickelt Kohl ein Kompetenzmo-

dell basierend auf vier Dimensionen (in der Dissertation Kohl als Komponenten bezeich-

net):

Komponente A - Eigenschaften von Algorithmen

Komponente B - algorithmische Grundbausteine und Datentypen

Komponente C - Arbeit mit Algorithmen

Komponente D - Programmentwicklung

21



Folgende Abbildung 2.7 zeigt das Kompetenzstrukturmodell, welches Kohl für den In-

haltsbereich Algorithmen vorschlägt.

Darüber hinaus wird den oben strukturell dargestellten Kompetenzen mit folgender Ni-

veaustufung graduiert. Diese wurde auf Grundlage der sog. SOLO-Taxonomie entwickelt

[Chan et al. 2010]: 1

1. Stufe 1

Diese Stufe umfasst grundlegende Kompetenzen, die eine einfache Verknüpfung von

algorithmischen Grundbausteinen vorsieht.

2. Stufe 2

Diese Stufe enthält vertiefte Kompetenzen, die das Analysieren, Implementieren,

Modi�zieren und Prüfen von Algorithmen mit mehreren ineinander Verschachtelten

Verzweigungen und Wiederholungen erfordert.

3. Stufe 3

Diese Stufe umfasst den Umgang mit komplexen Algorithmen, die das Erklären und

Anwenden von Unterprogrammen mit Parametern erfordert.

Auf Grundlage des zuvor dargestellten Kompetenzstrukturmodells und dieser Niveaustu-

fung wird das folgende Kompetenz-Stufenmodell vorgeschlagen.

1Structure of the Observed Learning Outcome (SOLO)

22



Abbildung 2.7.: Kompetenzstrukturmodell Algorithmen [Kohl 2009, S. 90]

23



Entgegen der Empfehlung der Klieme-Expertise, Bildungsstandards auf Grundlage ei-

nes theoretisch und empirisch fundierten Kompetenzmodells zu entwickeln, wird in der

Jenaer Forschungsarbeit ein konträrer Weg eingeschlagen, nämlich die Ableitung eines

Kompetenzmodells anhand der GI-Empfehlungen für Bildungsstandards. Hierbei ist aus

Sicht des Autors zu bemängeln, dass die Kompetenzmodellierung als Grundlagenarbeit

vor der Formulierung von Empfehlungen für Bildungsstandards hätte statt�nden müssen

und nicht umgekehrt.

Dieser Umstand legitimiert die Forschungen im Rahmen des MoKoM-Projekts und der

vorliegenden Dissertation. Dementsprechend gilt es, in einem ersten Schritt ein Kompe-

tenzmodell zu entwickeln, das zunächst normativ-theoretisch abgeleitet und in weiteren

Entwicklungsschritten empirisch ergänzt wird. Hierbei soll eine interdisziplinäre Zusam-

menarbeit zwischen Psychologen und Informatikern statt�nden.

Neben der interdisziplinären Entwicklung von Kompetenzmodellen wird in der Klieme-

Expertise eine Entwicklung entsprechender Testverfahren und Aufgaben gefordert. Be-

vor im weiteren Verlauf (siehe Kapitel 6.1) die Aufgabenentwicklung im Rahmen des

MoKoM-Projekts und der vorliegenden Dissertation vorgestellt werden, soll nach einer

allgemeinen Beschreibung der Kompetenzmessung Kohls Ansatz zur Aufgabenentwick-

lung dargestellt werden. Im Anschluss wird erläutert, wie Kohls Erkenntnisse bei der

Aufgabenentwicklung die Forschungsarbeit dieser Dissertation beein�usst haben, und

wie sich die Aufgabenentwicklung im MoKoM-Projekt und der vorliegenden Arbeit von

Kohls Ansatz unterscheiden.

2.4. Kompetenzmessung im Informatikunterricht

Mit Hilfe von Kompetenzmodellen werden diejenigen Kompetenzen spezi�ziert, die die

Lernenden im jeweiligen Teilbereich der Informatik erwerben sollen. Sie umfassen deren

Kompetenzstruktur (Kompetenzstrukturmodell) sowie die unterschiedlichen Niveaustu-

fen jener Kompetenzen (Kompetenzstufenmodell). Darüber hinaus legen Bildungsstan-

dards ein Minimalniveau fest, das von allen Lernern erreicht werden soll [Klieme et al.

2007, S. 81].

Um diese Standards im Unterricht praktisch einsetzen zu können, bedürfen die im Kom-

petenzmodell formulierten Anforderungen einer weiteren Konkretisierung durch Aufga-

benstellungen und Testverfahren. Damit die Standards als Orientierung für Lehrpersonen

dienen können; gilt es somit Aufgaben zu entwickeln mit denen fachliche Bildungsziele

konkretisiert werden können und ein Orientierungspunkt für die Leistungsbewertung ge-

scha�en wird.

24



Abbildung 2.8.: Kompetenzstufenmodell Algorithmen [Kohl 2009, S. 93]

25



Neben dem praktischen Einsatz für einen kompetenzorientierten Informatikunterricht

dienen jene Aufgabensammlungen aber auch zur schulübergreifenden Qualitätssicherung

und -entwicklung. Dementsprechend sollte die Testentwicklung einem aus Perspektive

der Fachwissenschaft, Fachdidaktik und pädagogisch-psychologischer Forschung profes-

sionellem Anspruch genügen. Ansonsten können schulübergreifende Vergleichstests �Ge-

fahr laufen, mehr Fehlinformation und Schaden als Aufklärung und Orientierung zu er-

zeugen [Klieme et al. 2007, S. 82].�

Bei der Entwicklung von Testverfahren haben die Verwendungsziele einen Ein�uss auf

die Entwicklung von Aufgaben, die Testdurchführung und der Testauswertung. In diesem

Zusammenhang lassen sich die folgenden Ziele unterscheiden [Klieme et al. 2007, S. 82�]:

1. Überprüfung von Kompetenzmodellen

Empirische Überprüfung, ob das jeweilige Kompetenzmodell tatsächlich die Aspekte

der Kompetenzen von Lernenden, ihre Niveaustufung und ggf. ihre Entwicklung

angemessen widerspiegeln.

2. Systemmonitoring

Die Messverfahren dienen dazu, Aussagen über das Kompetenzniveau von Lernen-

den zu machen und Zusammenhänge mit schulischen und auÿerschulischen Bedin-

gungen aufzudecken.

3. Schulevaluation

Die Testverfahren werden zur Selbstevaluation eingesetzt, um zu prüfen, inwieweit

Lehrkräfte oder Schulen ihre pädagogischen Ziele erreicht haben.

4. Individualdiagnostik und Förderung einzelner Lernender

Der Einsatz der Testverfahren verfolgt die Zielsetzung, Aussagen über spezi�sche

Stärken und Schwächen und damit dem Förderbedarf einzelner Lernender zu ma-

chen.

Das im Rahmen dieser Arbeit entwickelte Kompetenzmodell verfolgt die oben erläuterte

erste Zielsetzung, nämlich die Evaluation ob das Kompetenzmodell für informatisches

Modellieren tatsächlich jene Kompetenzen angemessen widerspiegelt.

Test- und Aufgabenentwicklung im Informatikunterricht

Kohl beschreibt die Entwicklung von Aufgaben, um jene Kompetenzen, die im Kompe-

tenzmodell abgebildet sind zu überprüfen. Hierzu legt er zunächst Kriterien zur Kon-

kretisierung der Aufgaben fest, nach denen Algorithmen den einzelnen Komponenten

26



und Stufen des Kompetenzmodells zugeordnet werden können. Davon ausgehend wurden

konkrete Beispiel- und Testaufgaben entwickelt, die im Unterricht unter Verwendung der

visuellen Programmiersprache PUCK [Kohl 2009] bearbeitet werden können. Hierbei ist

anzumerken, dass die Aufgaben auch mit der Zielsetzung entwickelt wurden, um bei der

gewählten Unterrichtsmethode handhabbar zu sein.

In den Abbildungen 2.9 und 2.10 wird eine exemplarische Aufgabe zur Überprüfung der

Stufe I zur Komponente C des Kompetenzmodells und deren Lösung in der visuellen

Programmiersprache PUCK dargestellt.

Abbildung 2.9.: Beispielaufgabe Kohl [Kohl 2009, S. 120]

Die Auswertung der einzelnen Aufgaben wurde anhand von Bewertungsmatrizen vor-

genommen. Als Resümee nach Fertigstellung der Gesamtauswertung der Hauptunter-

suchung an Thüringer Schulen formuliert Kohl seine Erfahrungen in Form von sechs

Anforderungen an die Entwicklung zu Testaufgaben der Informatik [Kohl 2009, S. 183]:

1. Zwischen Beispiel-, Unterrichts- und Testaufgaben unterscheiden

2. Beispiel- und Testaufgaben anhand der im Kompetenzmodell geforderten Kompe-

tenzen konstruieren und in klare, überschaubare Teilaufgaben untergliedern

3. Vielfältige, abwechslungsreiche Unterrichtsaufgaben zusammenstellen

4. Die Unterrichtsaufgaben in einem digitalen, einfach modi�zierbaren Format bereit-

stellen

27



Abbildung 2.10.: Beispiellösung Kohl [Kohl 2009, S. 245]

28



5. In den Aufgaben nicht auf spezielle Software, Programmiersprachen oder Entwick-

lungsumgebungen eingehen

6. Aufgaben vor einem gröÿeren Einsatz erproben

Kohls Erkenntnisse bei der Aufgabenentwicklung haben in bestimmten Bereichen die

Aufgabenentwicklung im Rahmen des Projekts MoKoM und in dieser Dissertation be-

ein�usst. Hierdurch wurden wir beispielsweise in unseren Planungen bestärkt, die ent-

wickelten Aufgaben vor dem breiten schulischen Einsatz mit Studierendengruppen und

kleineren Schülergruppen zu erproben (siehe Kapitel 7). Ferner bestand bei der Entwick-

lung der Aufgaben und Items die Prämisse, diese möglichst unabhängig von bestimmten

Technologien oder Programmiersprachen zu gestalten.

Ein wichtiger Unterschied bei der Gestaltung der Aufgaben und Items innerhalb des

MoKoM-Projekts gegenüber Kohls Ansatz ist die Gestaltung der Aufgaben im Hinblick

auf die zu überprüfenden Kompetenzen. Kohl schlägt vor, dass die Aufgaben entspre-

chend der im Kompetenzmodell modellierten Kompetenzen zu konstruieren und in klare

Teilaufgaben zu zerlegen sind.

29



Im MoKoM-Projekt und im Rahmen dieser Dissertation wurde keine explizite Trennung

der einzelnen Aufgaben entsprechend der einzelnen Kompetenzbereiche angestrebt, son-

dern die Zielsetzung verfolgt, Aufgaben und Items zu gestalten, die ein möglichst breites

Spektrum an kognitiven und nicht kognitiven Fähigkeiten und Fertigkeiten abfragen. Ei-

ne im Hinblick auf den abzufragenden Kompetenzbereich zu eingeschränkt formulierte

Aufgabenstellung, lässt sich aus Sicht des Autors nicht mit dem Weinert'schen Kompe-

tenzverständnis vereinbaren. Wie erwähnt sieht jenes Kompetenzverständnis ein Haupt-

merkmal von Kompetenzen in der Bewältigung komplexer Problemstellungen.

2.5. Zusammenfassung

Das Kapitel Kompetenzorientierung als fachdidaktische Ausgangslage beschreibt die bil-

dungspolitische Ausgangslage als zentrale Motivation für den Forschungsgegenstand der

vorliegenden Arbeit, nämlich der Entwicklung eines Kompetenzmodells für die informa-

tische Modellierung und eines dazugehörigen Messinstruments als mögliche Grundlage

für die Entwicklung von Bildungsstandards in der Sekundarstufe II.

Zu Beginn des Kapitels wird verdeutlicht, dass die Diskussion um Bildungsstandards

und Kompetenzen sowohl national als auch international sehr relevant ist und Gegen-

stand zahlreicher Forschungsbeiträge, Verö�entlichungen und bildungsorganisatorischer

Maÿnahmen ist. Dies ist die zentrale Motivation und Bestärkung des Forschungsvorha-

bens, entsprechende Grundlagenarbeit für den Bereich der informatischen Modellierung

im Projekt MoKoM und im Rahmen des Promotionsvorhabens zu leisten.

Darüber hinaus werden die Güte-Kriterien für die Formulierung nationaler Bildungsstan-

dards gemäÿ Klieme-Expertise aufgeführt und die damit verbundenen Anforderungen an

Kompetenzformulierungen. Dementsprechend wird hier festgelegt, unter welchem theore-

tischen Verständnis des Kompetenzbegri�s [Weinert 2002] die vorliegende Arbeit basiert

und welche Vorgehensweise bei der Entwicklung von Kompetenzmodellen und entspre-

chenden Instrumenten richtungsweisend sind [Klieme 2004].

Weiterhin soll das Kapitel aufzeigen, dass der Gesamtprozess zur Entwicklung von Bil-

dungsstandards nicht immer gemäÿ nationaler Vorgaben korrekt eingehalten wird. Nicht

alle Ansätze, die sich Bildungsstandards nennen sind auch im Sinne der Klieme-Expertise.

Dies motiviert das interdisziplinäre Vorgehen im ProjektMoKoM und in der vorliegenden

Forschungsarbeit.

Weiterhin soll dieses Kapitel den Leser dahingehend sensibilisieren, dass die Verwendung

des Kompetenzbegri�s nicht immer eindeutig ist. Es werden im zitierten Ansatz einzel-

ne Fähigkeiten und Fertigkeiten beschrieben, die nicht dem Anspruch des Weinert'schen

30



Kompetenzverständnisses genügen. Dies zeigt wiederum, dass eine einheitliche Verwen-

dung des Begri�s �Kompetenz� unabdingbar ist.

Im weiteren Verlauf gibt das Kapitel Überblick über die verschiedenen Ansätze für Kom-

petenzmodelle in der Informatik und stellt exemplarisch Kohls Ansatz als Kompetenz-

modell für Algorithmen in der Sekundarstufe I vor. In diesem Zusammenhang soll deut-

lich gemacht werden, dass dieser Ansatz teilweise den Vorgaben der Klieme-Expertise

widerspricht und den MoKoM-Ansatz bestärkt. Dieser sieht wie in der Einleitung der

vorliegenden Arbeit beschrieben, zunächst die Entwicklung eines interdisziplinären und

empirisch abgesicherten Kompetenzmodells vor und zeigt die Notwendigkeit, Grundla-

genarbeit für den informatischen Themenbereich Modellierung zu betreiben.

Eine weitere wichtige Begründung für dieses Kapitel war die Darstellung der Forde-

rung, dass Kompetenzmodelle durch entsprechende Messverfahren in Form von Aufgaben

und Items unterstützt werden sollen. Hier war es hilfreich, einen exemplarischen Ansatz

zur Aufgabenentwicklung auf Grundlage eines bestehenden Kompetenzmodells für einen

Aufgabenbereich der Informatik zu bewerten. Hierbei konnten wertvolle Hinweise für

die eigene Forschungsarbeit gewonnen werden. Ferner wurde wiederum eine Uneinigkeit

hinsichtlich des Kompetenzverständnisses festgestellt. In diesem Zusammenhang wurde

aus Sicht des Autors eine zu isolierte scharfe Trennung und Zuordnung von Aufgaben

nach zu überprüfenden Kompetenzen vorgenommen. Diese ist nicht im Sinne des Wei-

nert'schen Kompetenzverständnis und hat uns in unserer Forschung dazu bewogen, bei

der Aufgabenentwicklung darauf zu achten, ein möglichst breites Spektrum von kogniti-

ven und nicht kognitiven Kompetenzbereichen anhand eines Beispiels aus der Lebenswelt

der Probanden zu adressieren.

31



3. Modellierung im

fachwissenschaftlichen und

fachdidaktischen Kontext

Nach dem im vorherigen Kapitel die Relevanz der Diskussion um Kompetenz als Grund-

lage für Bildungsstandards deutlich gemacht wurde, soll in diesem Kapitel die Wahl des

Gegenstandsbereichs der objektorientierten Modellierung begründet werden.

Dementsprechend verfolgt das Kapitel die Zielsetzung, die objektorientierte informati-

sche Modellierung aus fachwissenschaftlicher und fachdidaktischer Perspektive zu erör-

tern und dessen Relevanz als wichtigen informatischen Inhaltsbereich aufzuzeigen. Neben

dieser Legitimation besteht die Absicht, eine theoretische Grundlage für die normativ-

theoretische Entwicklung eines Kompetenzmodells in Kapitel 4 zu scha�en. Es gilt eben-

so, die theoretische Basis für die Entwicklung einer entsprechenden Unterrichtsreihe zur

Erprobung des Messinstruments aufzuzeigen und festzulegen.

Im Verlauf des Kapitels werden nach einer De�nition des informatischen Modellbegri�s

und der Fokussierung auf die objektorientierte Modellierung, verschiedene Ansätze zur

Modell-Kategorisierung aufgezeigt. Hierbei besteht die Zielsetzung, eine strukturgebende

theoretische Basis für die Entwicklung von Kompetenzkomponenten zur objektorientier-

ten informatischen Modellierung zu recherchieren und als theoretische Grundlage für die

Kompetenzmodellierung und Instrumentenentwicklung festzulegen.

Hierbei soll gezeigt werden, inwieweit sich Vorgehensmodelle in der Softwaretechnik (insb.

der Rational Uni�ed Process (RUP)) hilfreich sein können, um auf deren normativer

Grundlage Kompetenzaspekte abzuleiten.

Im Sinne des Weinert'schen Kompetenzverständnisses und den Gütekriterien der Klieme-

Expertise sind fachdidaktische Aspekte bei der Formulierung von Kompetenzen mit zu

berücksichtigen. Demgemäÿ sollen in einem weiteren Unterkapitel didaktisch motivierte

Vorgehens- und Vermittlungsmodelle zur objektorientierten Modellierung (insb. im Be-

reich der Robotik) als theoretischer Ausgangspunkt zur Konzeption einer Evaluations-

Unterrichtsreihe für die Kompetenzmessinstrumente vorgeschlagen und begründet wer-

den.

32



Abbildung 3.1.: Kapitel 3 im Gesamtkontext der Arbeit

33



3.1. Begri�sde�nition und Fokussierung

Nach Glinz (fachwissenschaftliche Perspektive) und Thomas (fachdidaktische Perspek-

tive) sind informatische Modelle in Anlehnung an die Allgemeine Modelltheorie nach

Stachowiak durch die folgenden Merkmale gekennzeichnet [Stachowiak 1973, S. 131�],

[Thomas 2002, S. 27]

• Abbildungsmerkmal:

Modelle sind stets Modelle von etwas, nämlich Abbildungen, Repräsentationen na-

türlicher oder künstlicher Originale, die selbst wieder Modelle sein können.

• Verkürzungsmerkmal:

Modelle erfassen im Allgemeinen nicht alle Attribute des durch sie repräsentier-

ten Originals, sondern nur solche, die den jeweiligen Modellerscha�ern und/oder

Modellbenutzern relevant erscheinen.

• Pragmatisches Merkmal:

Modelle sind in ihren Originalen nicht per se eindeutig zugeordnet. Sie erfüllen ihre

Ersetzungsfunktion für bestimmte - erkennende und/oder handelnde, modellbenut-

zende - Subjekte, innerhalb bestimmter Zeitintervalle und unter Einschränkung auf

bestimmte gedankliche oder tatsächliche Operationen.

Insbesondere die letzte Eigenschaft zeigt, dass Modelle kontextualisiert für einen be-

stimmten Verwendungszweck entwickelt werden [Glinz 2008, S. 425-426].

Über die allgemeine Modellde�nition hinaus sieht Glinz spezi�sche Eigenschaften infor-

matischer Modelle. Entgegen dem Modellverständnis nach Stachowiak, (de�niert durch

das Verkürzungsmerkmal und das pragmatische Merkmal) versteht Glinz die Abstraktion

nicht als alleiniges konstituierendes Merkmal informatischer Modelle.

�Ein Modell als Abstraktion eines Originals zu de�nieren, greift jedoch zu

kurz: Zeichen beispielsweise sind Abstraktionen, aber keine Modelle [Glinz

2008, S. 426].�

Ferner sieht er eine Abgrenzung gegenüber dem Modellbegri� der mathematischen Logik.

Hier wird eine Menge von Axiomen als Modell jenes Axiomsystems bezeichnet. Derar-

tige Modelle werden von dem hier betrachteten Modellbegri� ausgeschlossen und �nden

auch in der vorliegenden Dissertationsschrift keinerlei Berücksichtigung. Vielmehr sollen

Modelle als Informatikartefakte oder als Mittel zum Verstehen von Informatikartefakten

betrachtet werden [Glinz 2008, S. 1].

34



Thomas sieht informatische Modelle als kulturell-tradiertes Bildungsgut mit dem sich

Schülerinnen und Schüler auseinander setzen sollten. Er begründet diese These unter an-

derem damit, dass sich die Allgemeinbildungsbegri�e von Klafki [Klafki 2007] und Buss-

mann u. Heymann [Bussmann und Heymann 1987] auf informatische Modelle anwenden

lassen. Ferner untermauert er die Forderung damit, dass dem Schüler anhand der Syste-

matiken zu den informatischen Modellen und deren Entstehungsprozess ein vollständiges

Bild der gesamten Informatik vermittelt werden kann [Thomas 2002, S. 81].

Die vorliegende Arbeit fokussiert bei der Entwicklung eines Kompetenzstrukturmodells

und eines Kompetenzmessinstruments die objektorientierten Modellierung als Gegen-

standsbereich.

Im Folgenden wird die Relevanz der objektorientierten informatischen Modellbildung

aus fachwissenschaftlicher und fachdidaktischer Perspektive erörtert. Ferner soll deutlich

gemacht werden, warum gerade dieser Bereich der informatischen Bildung als Gegen-

standsbereich für die Kompetenzmodellierung in der vorliegenden Dissertationsschrift

thematisiert wird.

3.2. Relevanz informatischer Modelle

Relevanz aus fachwissenschaftlicher Perspektive

Abbildung 3.2.: Modellebene 2 - Fachwissenschaftliche Modellebene

Das Verstehen und Lösen komplexer Probleme macht einen wesentlichen Teil informa-

tischer Kompetenz aus. Die Modellbildung ist eine unentbehrliche kognitive Fähigkeit

35



zur Bewältigung von Komplexität (Hesse, 2008) und hat innerhalb der Informatikstu-

diengänge einen hohen Stellenwert. Dies wird auch durch einschlägige Empfehlungen für

Informatik-Curricula bestätigt [Joint Task Force on Computing 2001], [Gesellschaft für

Informatik e.V. (GI) (Hrsg) 2004], [Fakultätentag Informatik (Hrsg) 2004].

Insbesondere im Rahmen der Softwaretechnik kommt der Modellierung seit den 1990er

Jahren durch Aufkommen der objektorientierten Analyse- und Designtechniken und der

Uni�ed Modeling Language (UML) ein hoher Stellenwert zu.

�Modelle sind die Artefakte der Softwareentwicklung [Ebert 2005].�

Spätestens aus Perspektive des Model Driven Development und der Model Driven Archi-

tecture (MDD/MDA) hat sich die zentrale Bedeutung der Modellierung im Rahmen der

Softwaretechnik weiter verfestigt [Hesse und Mayr 2008].

Vor allem diese Aussage bekräftigt die enorme Wichtigkeit der objektorientierten Model-

lierung für die Informatik und motiviert die Entwicklung eines Kompetenzstrukturmo-

dells für diesen Bereich der Informatik voranzutreiben.

Fieber, Huhn und Rumpe sehen die Qualität informatischer Modelle sogar als Indikator

für Softwarequalität. Sie ermöglichen eine

• Struktur- und Schnittstellenbeschreibung,

• konstruktive Verhaltensbeschreibung, typischerweise von Zustand und Funktion,

• deskriptive Kommunikationsprotokolle und -mechanismen,

• Darstellung der logischen sowie physischen Verteilung,

• (meist informelle) Organisation und Strukturierung der Anforderungsbeschreibung,

• Modellierung von Aufgaben- und Prozessabläufen und

• Datenmodellierung.

Einen besonderen Stellenwert messen sie in diesem Zusammenhang der Uni�ed Modeling

Language (UML) bei. Diese unterstützt den SWE-Prozess mit ihren 13 Modellarten am

umfassendsten [Fieber et al. 2008, S. 408]. In ihrem Beitrag geben sie einen Überblick,

was Modellqualität ausmacht und leisten den Transfer von selbiger zu Softwarequalität.

Sie postulieren, dass die Qualität der Modellbildung einen Ein�uss auf die Qualität der

Software und die Planbarkeit des SWE-Prozess hat.

36



�Allgemein anerkannt ist, dass adäquate Modellbildung und Analyse der Fä-

higkeiten des Modells sowie die Extrapolation dieser Eigenschaften auf das

zu bildende Softwaresystem einen deutlichen Qualitätsvorteil und Planungs-

sicherheit liefern können [Fieber et al. 2008, S. 422].�

Relevanz aus fachdidaktischer Perspektive

Abbildung 3.3.: Modellebene 3 - Vermittlungs-Modellebene

Im Folgenden sollen mögliche Ansätze zur Legitimation der Modellbildung im Informa-

tikunterricht der Sekundarstufe aufgeführt werden:

Thomas zeigt unter Verwendung der allgemeinen Modelltheorie nach Stachowiak und

weiteren Klassi�kationsansätzen die inhaltliche Relevanz von Modellen in der Informatik

[Thomas 2002, S. 3]. Er verdeutlicht, dass informatische Modelle ein Bildungsgut mit Bil-

dungswert darstellen, indem er sie hinsichtlich der Allgemeinbildungskriterien von Klafki

und Bussmann/Heymann untersucht. Er sieht seine Arbeit als Ausgangspunkt für weitere

Forschungsfragen und fordert, dass weitere Untersuchungen unter Einbeziehung weiterer

Merkmale zur Allgemeinbildung durchgeführt werden müssen [Thomas 2002, S. 80]. Er

bewertet seinen Ansatz der Zuordnung von informatischen Modellen als eine Möglichkeit,

den Informatikunterricht im allgemeinbildenden Schulchanon zu legitimieren.

Brinda legitimiert die Einbeziehung von objektorientierter Modellierung in den Infor-

matikunterricht anhand der vier Fundamentalitätskriterien von Schwill [Brinda 2004,

37



S. 40-41]. Er sieht das Horizontalkriterium als erfüllt, da objektorientierte Sichtweisen

in verschiedenen Teilgebieten der Informatik etabliert sind. Weiterhin sieht er das Ver-

tikalkriterium als erfüllt, da sich Inhalte aus dem Bereich der Objektorientierung auf

verschiedenen Bildungsniveaus vermitteln lassen. Das Zeitkriterium ist erfüllt, da erste

Ansätze zur Objektorientierung bereits in den 1960er Jahren entwickelt wurden. Da sich

objektorientierte Sichtweisen gut als Erklärungsmodell für informatische Erscheinungen

eignen, ist das Sinnkriterium ebenfalls erfüllt.

Darüber hinaus statuiert Magenheim, dass die Thematisierung der objektorientierte Mo-

dellierung sogar das Potential hat, den Informatikunterricht an sich an allgemeinbilden-

den Schulen zu legitimieren: Nach Magenheim verlangen unterschiedliche Diskussions-

beiträge zur Didaktik der Informatik, dass eine Konzentration auf elementare Prinzipien

der Bezugswissenschaft Informatik zu leisten sei. Insbesondere bei der Inhaltsbestim-

mung und Zielsetzung des Informatikunterrichts sollten keine kurzlebigen Modetrends

verfolgt werden. Hierbei nennt er explizit die Prinzipien der Systemgestaltung sowie Mo-

dellierung. Hierbei gibt er gleichzeitig zu bedenken, dass auch Themenbereiche, wie z.B.

die Kommunikation in vernetzten Umgebungen und die Bewertung des Einsatzes von

Informatiksystem im sozialen Kontext im Sinne eines allgemeinbildenden Anspruchs des

Informatikunterrichts mit einzubeziehen sind [Hampel et al. 1999].

Fachwissenschaftliche Argumente für eine inhaltlich dauerhafte Etablierung von Objek-

torientierung sind die Sicherheit und Stabilität von Software, leichte Wartbarkeit sowie

sich daraus ergebende Vorteile bei Wiederverwendbarkeit und Sicherheit. Insbesondere in

komplexen Softwareprojekten zeigen objektorientierte Maximen wie Kapselung, Abstrak-

tion sowie Vererbung und Polymorphie ihre Vorteile gegenüber imperativen Konzepten.

Der Ansatz der systemorientierten Didaktik verlangt somit eine Thematisierung sowohl

im wissenschaftspropädeutischen als auch im allgemein bildenden Kontext [Hampel et al.

1999, S. 17].

Zwischenfazit

In Anbetracht dieser fachdidaktischen Beiträge zur informatischen Modellierung lässt

sich feststellen, dass die objektorientierte Modellierung sowohl für die Informatik als

Wissenschaft als auch für den Informatikunterricht an allgemeinbildenden Schulen von

hoher Relevanz ist.

38



3.3. Ansätze zur Klassi�kation von informatischen Modellen

Dieses Kapitel gibt einen exemplarischen Einblick in verschiedene Ansätze zur Klassi�ka-

tion von informatischen Modellen. Hierbei werden ein fachwissenschaftlicher Ansatz und

ein fachdidaktisch motivierter Ansatz dargestellt. Zielsetzung des Kapitels ist es, eine

mögliche Vorstrukturierung für die Dimensionen und Komponenten des Strukturmodells

aufzu�nden. Auf dieser Grundlage sollen inhaltliche Themenbereiche ermittelt werden,

die ggf. Hinweise auf typische Kompetenzen für die objektorientierte informatische Mo-

dellierung geben können.

Modelle in der Softwaretechnik nach Hesse/Mayr

Hesse und Mayr erörtern zunächst den Modellbegri� in der Softwaretechnik (ausgehend

von Stachowiak) und geben einige Klassi�zierungen und Charakterisierungen von Model-

len und Modellierungen innerhalb der Softwaretechnik vor. Diese orientieren sich vorwie-

gend an der Art der modellierten Gegenstände und ob diese statischer oder dynamischer

Natur sind. Hierbei liegt ein systemtheoretischer Ansatz zugrunde, der auch als eine theo-

retische Basis bei der Entwicklung von Vorgehensmodellen innerhalb der Softwaretechnik

zu verstehen ist [Hesse und Mayr 2008].

�Den meisten genannten Modellkategorien liegt ein systemtheoretischer An-

satz zugrunde, der bei der Behandlung diskreter dynamischer Strukturen �

wie in der Softwaretechnik üblich � nahe liegt. Er wurde daher schon relativ

frühzeitig in der Softwaretechnik aufgegri�en [...]. Der systemtheoretische An-

satz wird z.B. bei den o.g. Prozessmodellen [Wasserfallmodell, Rational Uni-

�ed Process] besonders deutlich, wo auch Prozesse als Systeme � bestehend

aus Komponenten und verbunden durch Beziehungen � aufgefasst werden

[Hesse und Mayr 2008, S. 383].�

Im Folgenden werden die oben erwähnten Modell-Klassi�kationen und -Charakteristika

aufgeführt.

• Statikmodelle: Modellelemente beschreiben zu einem bestimmten Zeitpunkt beob-

achtbare oder beobachtbar gedachte Konstellationen von Gegenständen, Beziehun-

gen und sonstigen beschreibenden Elementen.

� Gegenstands-, Struktur-, Entitäts- und Klassenmodelle: Trotz teilweise dyna-

mischer Elemente (z.B. Methoden in Klassendiagrammen) ist die statische

Betrachtungsweise bestimmend.

39



• Dynamikmodelle: Modellelemente repräsentieren einen Vorgang, eine Aktion oder

einen Prozess. Diese sind zeitlichen Veränderungen unterworfen.

� Vorgehens-, Aktions- und Prozessmodelle: Hierbei geht es vorrangig um die

Betrachtung mehrerer - nicht an einen Zeitpunkt gekoppelter - Konstellationen

und Verläufe.

� Zustandsmodelle: Bei diesem Modelltyp werden Objekte und Klassen gleichar-

tiger Objekte betrachtet. Zustände beschreiben hierbei die Konstellation von

Objekten, wo hingegen Zustandsübergänge deren dynamische Zusammenhän-

ge darstellen.

Kategorisierung aus fachdidaktischer Perspektive nach Thomas

Thomas untersuchte Skripte aus der Hochschullehre innerhalb verschiedener Teildiszipli-

nen der Informatik. Hierbei hat sich ergeben, dass das Wort �Modell� in 83% der unter-

suchten Skripte in irgendeiner Flexionsform verwendet wurde [Thomas 2002, S. 48]. Auch

innerhalb dieser fachdidaktischen These wird die inhaltliche Relevanz der informatischen

Modellierung o�ensichtlich.

�Schlieÿt man von der Auftrittshäu�gkeit des Wortes Modell auf das Verwen-

den von Modellen in der Informatik, so ist dem Modell o�ensichtlich ein zen-

traler Stellenwert innerhalb der Fachwissenschaft zuzuordnen [Thomas 2002,

S. 48].�

Die Begri�e �modelliert� oder �modellieren� tauchten mit einer Häu�gkeit von 61% auf.

Anhand sog. Modi�zierer, die dem Begri� �Modell� hinzugefügt werden, illustriert Tho-

mas die Vielfältigkeit des Modellbegri�s in der Informatik anhand unterschiedlichster

Modellbezeichnungen. Hierbei erfolgt die Bezeichnung des Modells anhand einer Meta-

pher (z.B. Call-Back-Modell, Schichten-Modell oder Master-Slave-Modell), anhand eines

Autors (z.B. Markov-Modell, oder Hufmann-Modell) oder dem jeweiligen Einsatzgebiet

des Modells (z.B. Speicher-Modell, Farb-Modell, Simulations-Modell etc.).

Er versteht jene Modi�zierer allerdings auch als Mittel zur Präzisierung des Modelltyps

[Thomas 2002, S. 49]:

• nach Art der Zustandsübergänge

statisch, dynamisch (diskret, kontinuierlich, deterministisch, stochastisch, nichtde-

terministisch), analog, ereignisorientiert.

40



• nach der Sichtweise der Modellierung: abstrakt, objektorientiert, strukturbasiert,

zustandsorientiert, verhaltensbasiert, eigenschaftsbasiert, kompositional, statistisch,

perzeptuell, kognitiv, handlungspsychologisch, minimal.

• nach der inneren Modellstruktur: analytisch, applikativ/funktional, (nicht-)logisch,

assoziativ, hierarchisch, taxonomisch, relational, geschlossen, parallel, ökonomisch,

konzeptuell.

• nach der Natur des Modells: (nicht)materiell, mechanisch, formal, operational, ma-

thematisch, semantisch, implementiert, mental, physiologisch, visuell, parametri-

siert, physikalisch, kinematisch.

Anhand der aus den Skripten aufgefundenen Modi�zierer und Modelltypen leitet Thomas
eine Kategorisierung in Form von fünf Hauptmodelltypen ab [Thomas 2002, S. 49�]

1. Architekturmodelle

• (theoretisches) Maschinenmodell

� hardware-orientierte Konzepte von Rechnerarchitekturen

� abstrakte, theoretische Automaten (Turingmschine, Automatenmodelle)

• Rechenmodell

� grundlegende Konzepte, die Programmiersprachen zugrunde gelegt werden (imperativ-

prozedural, funktional applikativ, logisch deklarativ, objektorientiert, zustands-

orientiert)

• Programmiermodell

� im Sinne eines Programmierparadigmus

� als abstraktes Maschinenmodell

� als grundlegendes Konzept für die Interaktion von parallelen Prozessen (teilweise

als Kommunikationsmodell bezeichnet)

• Referenzmodell

� beschreiben Vereinbarungen zu technischen Konzepten und Prinzipien

� OSI-Referenzmodell

� Client-Server Modell

� Farbmodell

2. Vorgehensmodelle

• beschreiben Aktivitäten, die auszuführen sind, um ein bestimmtes Ziel zu erreichen

• enthalten Hinweise zu erforderlichen oder zu erstellenden Dokumenten

• enthalten Ziele zu einzelnen Phasen/Arbeitsschritten

• geben Hinweise auf einsetzbare Verfahren und Hilfsmittel

41



• beruhen i.d.R. auf bestimmten Sicht- oder Denkweisen (z.B. für den Gesamtprozess

der SW-Entwicklung oder für einzelne Phasen)

3. Entwurfsmodelle

• stellen die Dokumentation von Ergebnissen der Aktivitäten bei der Erstellung eines

konkreten technischen Problems dar

• können in natürlicher oder gra�sch-symbolischer Art und Weise formuliert werden

• Systemmodell

� Verwendung in der Automatentheorie in Form einer Mengenstruktur

� Verwendung als Modell beliebigen Typs zu einem entwerfenden System

• Modellierungssprache

� allgemeine Beschreibungsformen, die in verschiedenen Phasen der Softwareent-

wicklung zum Einsatz kommen

� Modelle für die Entwurfsphase der Softwareentwicklung

� Uni�ed Modeling Language (UML): Sprache zur Veranschaulichung von Er-

gebnissen im objektorientierten SWE-Prozess; besteht aus verschiedenen Dia-

grammtypen zu verschiedenen Sichtweisen auf das System

� zu jeder Modellierungssprache existiert i.d.R. ein Metamodell; jenes beschreibt

Syntax, Semantik und Pragmatik der Sprache oder fasst gemeinsame Kompo-

nenten von Modellen zusammen

• Aufgabenmodell

� wird basierend auf dem Ergebnis der Analyse einer Aufgabe erstellt

� enthält Angaben zur Reihenfolge von Arbeitsabläufen

� relevant innerhalb der Problemanalyse für der Entwurfsphase im SWE-Prozess

• Daten(bank)modell

� Beschreibung von Daten und ihrer strukturellen/funktionalen Beziehungen un-

tereinander

� Relationenmodell/Relationales Datenmodell: alle Daten werden in Form von

mathematischen Relationen repräsentiert, z.B. Entity Relationship Modell (ER-

Modell), Normalform-Modell

� Hierarchisches Modell und Netzwerkmodell: sind im Gegensatz zum relationa-

len Datenmodell nicht mengen- sondern satzorientiert, d.h. um einen Datensatz

zu erreichen muss innerhalb der zugrundeliegenden Struktur von Datensatz zu

Datensatz navigiert werden.

� Logisches Datenmodell oder Deduktives Modell: Erweiterung des relationalen

Datenmodells um Deduktionskomponente (auf dem Prädikatenkalkül basierend)

� Objektorientiertes Modell: strukturelle Repräsentationen werden mit der verhal-

tensmäÿigen (operativen) Komponenten in einem Objekt verknüpft

42



• Objektmodell

� im Softwareentwurf werden die identi�zierten Komponenten eines betrachteten

Originals in meinst gra�sch-symbolischer Form beschrieben

• Komponentenmodell

� Komponente als Teil von (wiederverwendbarer) Software, das eine zusammen-

hängende Funktionalität hat

� De�nition der einzelnen Komponenten eines Systems

� Kon�guration eins Systems aus bereits gegebenen Komponenten

• Funktionales Modell

� dient als Ausgangspunkt für die Entwicklungsphase

� es werden Objekte ausgewählt und deren Methoden bestimmt

• Prozessmodell

� Beschreibung der Prozessverwaltung und Implementierung bei Betriebssystemen

� Beschreibung des zeitlichen Verhaltens eines Produktionsprozesses

� kognitionspsychologisches Modell zur Beschreibung des Sprechens im Teilgebiet

der künstlichen Intelligenz

• Zustandsmodell

� Beschreibung der möglichen Zustände, die Automaten oder Prozesse einnehmen

können

• Ereignismodell

� Beschreibung wie bei Benutzungsschnittstellen Ereignisse bearbeitet werden

� Steuerung der Ereignisbehandlung

4. Untersuchungsmodelle

• dienen zur Erstellung von Prognosen für Informatiksysteme, Bewertung von Syste-

men zu unterschiedlichen Kriterien (Leistung, Kosten, Auslastung)

• zumeist in formaler mathematischer Notation beschrieben

• sind von starker Abstraktion, um auch quantitative Aussagen erzielen zu können

• Mathematisches Modell: Beschreibt mit abstrakten Symbolen und Notationen Ob-

jekte und deren Zusammenhänge

� Minimales Modell: Beschreibung im Sinne der mathematischen Modelltheorie

� Abstraktes und formales Modell: umfassen mathematische Modelle und Gra-

phen; keine abstrakten Datentypen

� Model Checking: Beweisverfahren zur Veri�kation, dass ein bestimmtes Modell

eine Spezi�kation erfüllt

43



• Analytisches Modell: gehen oft von Voraussetzungen aus, die ein System nicht erfüllt;

das Systemverhalten wird durch mathematische Gröÿen und Beziehungen unterein-

ander beschrieben; im Gegensatz zu numerischen Simulationsmodellen ergeben sich

Zusammenhänge direkt aus dem Modell

� Stochastisches Modell: berücksichtigen zufällig auftretende Ereignisse

� Kostenmodell: dienen zur Aufwandsabschätzung (z.B. bei Datenbankzugri�en)

• Simulationsmodell (simulatives Modell): beschreiben in statischer Weise vorrangig

Systemverhalten mittels mathematischer Gröÿen; enthalten aber auch Variablen, die

sich in Abhängigkeit von der Zeit dynamisch ändern

� Diskretes Modell: Modelle, die ihren Zustand nur zu bestimmten Zeiten ändern

� Kontinuierliches Modell: Darstellung der Zeit im Modell erfolgt in Form realer

Werte; Zustandsgröÿen sind meist stetige Funktionen der Zeit; können typischer-

weise in Form von Di�erentialgleichungssystemen beschrieben werden.

5. Mentale Modelle

• interne semantische Modelle, die externen semantischen Modellen (z.B. Vorgehens-

modellen oder Entwurfsmodellen) zugrunde liegen; viele psychologische E�ekte sind

für die Softwaretechnik von Bedeutung

� Konzeptuales Modell: Menschen bilden sich konzeptuale (begri�iche) Modelle

von Objekten, die zu bedienen sind und innerhalb derer (sichtbare und unsicht-

bare) Operationen ablaufen; wird verwendet, um Operationen auf dem Objekt

mental zu simulieren

� Modellwelt: Verwendung im Sinne einer Sichtweise in der Modellierung; im Be-

wusstsein der Abgrenzung zur Realität und zu anderen Modellen

� Modellvorstellung: stehe i.d.R. für Ziele, die das Subjekt mit dem Modell ge-

danklich verbindet

� Modellklasse: Modelle werden aufgrund von Gemeinsamkeiten zu Modellklassen

vereint; Klassen werden in der objektorientierten Modellierung zu Modellklassen

zusammengeführt

Nach Betrachtung der verschiedenen Modelltypen eignen sich aus Sicht des Autors vor

allem Vorgehensmodelle als strukturgebende theoretisch-normative Grundlage zur Be-

schreibung von Kompetenzen für die objektorientierte informatische Modellierung.

Nach Thomas beschreiben Vorgehensmodelle Aktivitäten, die auszuführen sind, um ein

bestimmtes Ziel zu erreichen. Ferner beschreiben sie Zielsetzungen für einzelne Phasen

und Arbeitsschritte und geben gleichzeitig Hinweise auf einsetzbare Verfahren und Hilfs-

mittel [Thomas 2002, S. 52].

Diese Modellcharakteristik ist unter Berücksichtigung des Weinert'schen Kompetenzver-

ständnis [Klieme 2004] stimmig um als strukturgebende Grundlage für die Formulierung

44



von Kompetenzen zu fungieren. Vorgehensmodelle beschreiben erforderliche kognitive

und nicht-kognitive Fähigkeiten und Fertigkeiten (in Form von Aktivitäten), die ein In-

dividuum zur Problemlösung in variablen Anforderungssituationen einsetzen kann. Die

zu bewältigenden variablen Anforderungssituationen werden innerhalb der Vorgehens-

modelle durch die unterschiedlichen Phasen der Softwareentwicklung ausgedrückt.

3.4. Informatische Vorgehensmodelle als strukturgebende

theoretische Grundlage

3.4.1. Vorgehensmodelle in der Softwaretechnik

Nach Sichtung der unterschiedlichen Klassi�kations- und Kategorisierungsansätze für in-

formatische Modelle, scheinen informatische Vorgehensmodelle in der Softwaretechnik als

geeignete theoretische Grundlage zur Strukturierung informatischer Kompetenz fungie-

ren zu können.

Bevor eine Vorstellung verschiedener Vorgehensmodelle innerhalb der Softwareentwick-

lung erfolgt, ist es sinnvoll den Begri� �Softwaretechnik� zu de�nieren.

�Zielorientierte Bereitstellung und systematische Verwendung von Prinzipien,

Methoden und Werkzeugen für die arbeitsteilige, ingenieurmäÿige Entwick-

lung und Anwendung von umfangreichen Software-Systemen [Balzert 2000,

S. 36].�

Balzert betont in seinem Lehrbuch, dass die Softwaretechnik stets die Zielsetzung ver-

folgt, umfangreiche Software, die arbeitsteilig und ingenieurmäÿig entwickelt wird, um die

Ziele des Kunden bzw. Auftraggebers zu erreichen. Hierbei werden Prinzipien (z.B. Ab-

straktion, Strukturierung, Hierarchisierung, Modularisierung) und Methoden (d.h. plan-

mäÿig angewandte, begründete Vorgehensweisen) zur Erreichung von festgelegten Zielen

verwendet [Balzert 2000, S. 36].

Im Folgenden werden die wesentlichen Phasen der Softwareentwicklung, die in jedem

Softwareprojekt (Neu- oder Weiterentwicklung) und unabhängig vom gewählten Vorge-

hensmodell relevant sind, aufgeführt [Kleuker 2011, S. 24�].

• Anforderungsanalyse

Die Zielsetzung dieser Phase ist es zu verstehen, welche Ziele und Ergebnisse der

Kunde wünscht. Hierbei kommt dem Dialog zwischen Kunden und Softwareent-

wicklern eine hohe Bedeutung zu. Die Qualität dieser Phase (und dieser Kommuni-

kation) beein�usst maÿgeblich das Gelingen eines Softwareentwicklungs-Projekts.

45



• Grobdesign

Die Phase des Grobdesigns fokussiert die Verwandlung der zuvor aufgenommenen

Anforderungen in ein unmittelbar für die Softwareentwicklung einsetzbares Modell

zu verwandeln. Hierbei gilt es, informelle Anforderungen zu präzisieren und eine

grundsätzliche Software-Architektur festzulegen.

• Feindesign

Im Rahmen dieser Phase erfolgt die Verfeinerung und Optimierung der Modelle

des Grobdesigns. In diesem Kontext werden genaue Schnittstellen zwischen den

verschiedenen Software-Komponenten de�niert und das Design, welches hierbei als

innere Struktur der Software zu verstehen ist, entwickelt.

• Implementierung

In der Implementierungsphase erfolgen die Programmierung der Software und die

Umsetzung der Modelle aus der Feindesign-Phase. Ein wesentlicher Meilenstein

dieser Phase ist die Vorlage einer lau�ähigen Software.

• Test und Integration

Hierbei erfolgt die Zusammensetzung der einzelnen Programmkomponenten zu ei-

nem Softwaresystem, dem eigentlichen Software-Produkt. In dieser Phase muss

zudem sichergestellt werden, dass die Software-Komponenten korrekt miteinander

agieren und die Anforderungen des Kunden an das Produkt umgesetzt wurden.

• Qualitätssicherung

Die Qualitätssicherung ist eng mit den oben dargestellten Phasen verknüpft. Hierbei

muss für jedes Teilprodukt innerhalb des SWE-Prozess sichergestellte werden, dass

die vor dem Projekt de�nierten Qualitätskriterien erfüllt sind. Folgephasen dürfen

erst dann beginnen, sobald die jeweiligen Qualitätskriterien der Vorphase erreicht

sind.

46



Abbildung 3.4.: Allgemeine Phasen des Software Engineerings

Wasserfallmodell

Die Bezeichnung Wasserfall begründet sich in dessen Eigenschaft, dass die oben be-

schriebenen Phasen der Softwareentwicklung nacheinander durchlaufen werden. Die ein-

zelnen Phasen Anforderungsanalyse, Grobdesign, Feindesign, Implementierung sowie Test

und Integration haben die jeweiligen Ergebnisse der Vorphase als Ausgangspunkt [Royce

1970]. Davon ausgehend ist eine grobe Projektplanung anhand der beschriebenen Phasen

einfach machbar, da jede der Phasen mit einem Meilenstein abschlieÿt. Bei jedem Meilen-

stein müssen die Ergebnisse der abgeschlossenen Phase kritisch geprüft werden. Davon

ausgehend ist die Entscheidung zu tre�en, ob und in welcher Form das Projekt wei-

terläuft. Da im Rahmen der Entwicklung von hochkomplexen Software-Systemen nicht

sichergestellt werden kann, dass alle Phasen auf Anhieb erfolgreich abgeschlossen werden,

wurde das Wasserfallmodell um die Möglichkeit ergänzt, dass man bei o�enen Proble-

men in eine vorherige Phase zurückspringen kann, um mögliche Probleme innerhalb dieser

vorherigen Phase zu lösen.

Trotz dieser Optimierung verlangt das Wasserfallmodell, dass sämtliche funktionale An-

forderungen des künftigen Benutzers nach dem ersten Durchlauf der Phase vollständig

vorliegen. Dies widerspricht sich allerdings mit Erfahrungen aus der Praxis bei der Ent-

wicklung komplexer Software-Systeme. Hierbei kommt es immer wieder vor, dass sich die

Anforderungen des Kunden ändern.

47



Abbildung 3.5.: Wasserfallmodell [Royce 1970, S. 330]

48



Der Projekterfolg verlagert sich dann auf eine Umsetzung dieser geänderten Anforderun-

gen zur Zufriedenheit des Kunden.

�Aber alle gröÿeren Software-Projekte haben gezeigt, dass diese Annahme

falsch ist. Es ist praktisch unmöglich, eine vollständige Menge von Anforde-

rungen zu einem frühen Projektzeitpunkt zu formulieren [Kleuker 2011, S.

26].�

Ein weiteres Problem bei der Verwendung des Wasserfallmodells als Grundlage zur Pla-

nung von SWE-Projekten ist das Phänomen, dass Projekte bis kurz vor Projektabschluss

wie ein Erfolg aussehen und innerhalb der letzten beiden Phasen (Test und Integration)

zu erheblichen Zeitverzögerungen kommen. Die Ursache liegt hierbei nach Kleuker in

der Tatsache, dass der Übergang von einer unvollständigen Anforderungsanalyse (z.B.

aufgrund von Termindruck) in die Grobdesign Phase augenscheinlich wenige Proble-

me bereitet. Ähnlich verhält es sich beim Übergang vom Grobdesign in das Feindesign,

da jene Phasen fast ausschlieÿlich auf Papier mit Texten und Modellen dokumentiert

werden. Erst im Rahmen der Implementierung werden Probleme durch fehlende oder

unzureichende Spezi�kationen deutlich. Durch den dadurch implizierten Nachholbedarf

von versäumten Tätigkeiten aus den vorherigen Phasen gerät das Projekt zeitlich und

ressourcenmäÿig aus den Fugen [Kleuker 2011].

Prototypische Entwicklung

Die prototypische Softwareentwicklung stellt eine Verbesserung des Wasserfallmodells

dar: Vor dem eigentlichen Projekt wird hier ein Prototyp der Software (bzw. von Teilen

der Software) mit der Zielsetzung entwickelt, möglichst viele potentielle Probleme im

Vorfeld des eigentlichen Projekts zu �nden. Hierbei ist beispielsweise ein Prototyp einer

Benutzer-Ober�äche des zu entwickelnden Softwaresystems besonders typisch. In die-

sem Zusammenhang wird die spätere Funktionalität der beauftragten Software sichtbar,

wobei die dahinter liegende Funktionalität der einzelnen GUI-Elemente noch nicht �aus-

programmiert� ist. Der Ansatz eignet sich folglich dazu, mit dem Kunden zu entscheiden,

ob die Bestrebungen der Softwareentwicklung in die richtige Richtung gehen und mit der

Zielsetzung des Software-Systems zu vereinbaren sind. Ein weiteres Einsatzgebiet von

Prototypen ist der sog. technische Durchstich. Hierbei besteht die Zielsetzung im Sinne

einer technischen Machbarkeitsstudie die einzelnen Technologien auf Realisierbarkeit zu

untersuchen und diese sicherzustellen [Bischofberger und Pomberger 1992].

Dem entscheidenden Problem im Ansatz desWasserfallmodells kann aber auch durch den

Einsatz von Prototypen nicht beigekommen werden: Die Entwicklung von Prototypen im

49



Vorfeld des SWE-Projekts sieht auch keine Änderungen der Kundenanforderungen im

späteren Verlauf des Projekts vor.

Abbildung 3.6.: Prototypisches Vorgehensmodell

Iterativ/Inkrementelle Vorgehensmodelle

Die Begri�e iterativ und inkrementell haben im Kontext des unten dargestellten Vorge-

hensmodells folgende Bedeutung:

�Wenn man den Begri� Iteratives Vorgehen formal anwendet, bedeutet er,

dass ein vorgegebenes Problem durch wiederholte Bearbeitung gelöst wird.

Der Zusatz inkrementell bedeutet, dass bei jedem Durchlauf nicht nur das

existierende Ergebnis verfeinert wird, sondern [...] neue Funktionalität hinzu-

kommt [Kleuker 2011, S. 30].�

Iterative Vorgehensmodelle sehen die von der prototypischen Entwicklung bekannte Wie-

derholung der Phasen mehrfach vor. Die jeweiligen Phasen werden in einer Schleife durch-

laufen und enden mit Fertigstellung des Produkts. Hierbei besteht die Zielsetzung, mit

jedem Schleifendurchlauf die Ergebnisse des vorherigen Durchlaufs zu verfeinern und zu

optimieren.

50



Abbildung 3.7.: Iterativ-/Inkrementelles Vorgehensmodell

Die Abbildung 3.7 verdeutlicht beispielhaft, dass sich der Schwerpunkt der einzelnen Pha-

sen innerhalb der verschiedenen Iterationen verschiebt. Wo zu Projektbeginn möglichst

viele Anforderungen aufgenommen werden ist zu einem späteren Zeitpunkt im Verlauf des

Projekts die Implementierung von deutlich höherer Relevanz. Ein kennzeichnendes Merk-

mal dieses Vorgehensmodells ist das mehrmalige Durchlaufen aller Phasen. Demgemäÿ

umfasst auch die erste Iteration eine Implementierungs- und Testphase. Hierdurch er-

möglicht der iterative Ansatz Probleme frühzeitig zu erkennen und diese bei der Planung

der folgenden Iteration mit zu berücksichtigen. Wesentlicher Unterschied zum Wasser-

fallmodell und der prototypischen Entwicklung ist die Möglichkeit, auf Änderungen von

Anforderungen (Requirements) zu reagieren.

Die Tatsache, dass stets zeitliche Pu�er für die Reaktion auf Probleme und Risiken

für die jeweilige Iteration mit eingeplant werden müssen, macht in Form von schlechter

Planbarkeit einen wesentlichen Nachteil dieses Ansatzes aus.

Der Zusatz inkrementell stellt � wie im obigen Zitat erläutert � eine Erweiterung der Soft-

ware in jedem Durchlauf der Phasen dar. Dies kann bedeuten, dass ein erstes Inkrement

die technischen Herausforderungen der Software umfasst und in einem weiteren Inkre-

ment insbesondere die Hauptanforderungen des Kunden umgesetzt werden. Die Planung

51



von Folgeinkrementen könnten dann ggf. an neu entdeckten Risiken oder dringlichen

Kundenwünschen orientiert werden.

Der inkrementelle Bestandteil des iterativ-inkrementellen Ansatzes erfordert für jedes

Inkrement eine neue Planung. Diese ganzheitliche Neuplanung von der Anforderungs-

analyse bis hin zur Test- und Integrationsphase ermöglicht allerdings im Gegenzug den

�exiblen Umgang mit sich ändernden Anforderungen.

V-Modell

Das V-Modell legt neben den Phasen des Systementwurfs einen besonderen Wert auf die

Schritte der Qualitätssicherung [Droeschel 1998].

Abbildung 3.8.: V-Modell

Im linken Bereich der Abbildung 3.8 werden die eigentlichen SW-Entwicklungsschritte

(die Konstruktion) beschrieben. Diese umfassen die Anforderungsanalyse, den funktiona-

len Systementwurf (enthält die Schritte des Grobdesigns), den technischen Systement-

wurf (auf welchem System soll die Software laufen) und die Komponenten-Spezi�kation

(enthält die Schritte des Feindesigns). Die gestrichelten Linien zeigen, dass nach jeder

Entwicklungsphase geprüft wird, ob die Ergebnisse der vorherigen Phase akzeptabel sind

oder ggf. verbessert werden müssen.

Im Anschluss an die Phasen der Konstruktion erfolgt die Programmierung des Software-

Systems.

52



Der rechte Bereich des V-Modells (innerhalb der Integration) unterscheidet verschiedene

Arten des Softwaretests und der Qualitätssicherung. Die einzelnen Testphasen sind mit

den zugehörigen Phasen der Konstruktionsphase verknüpft und überprüfen diese [Droe-

schel 1998].

• Im Komponenten-Test wird geprüft, ob die entsprechenden Aspekte, die in der

Komponenten-Spezi�kation de�niert wurden, adäquat umgesetzt worden sind. Nach

dem Test der einzelnen Softwarekomponenten werden diese zum Gesamtsystem zu-

sammengesetzt und integriert.

• Bei dem Integrationstest zeigt sich, ob die Phase des technischen Systementwurfs

erfolgreich verlaufen ist. Der Systemtest verfolgt die Zielsetzung, die Lau�ähigkeit

des gesamten Systems nachzuweisen und in erster Instanz (hier noch ohne Betei-

ligung des Kunden/Auftraggebers) zu prüfen, ob die Anforderungen des Kunden

umgesetzt worden sind.

• Im Abnahmetest erfolgt ähnlich wie im Systemtest eine Abnahme der Kundenan-

forderungen. Im Gegensatz zum Systemtest erfolgt dieser Test mit dem Kunden.

Das V-Modell sollte insbesondere für staatliche IT-Projekte der Bundesrepublik Deutsch-

land zum Einsatz kommen. Hierbei bestand die Zielsetzung, Gefahren für IT-Projekte

aus Sicht des Auftraggebers zu minimieren. Dementsprechend enthält das V-Modell Vor-

gaben zu den jeweiligen Prozessen, die innerhalb der Projekte geplant werden müssen

und welche Artefakte zu welchem Zeitpunkt vorliegen müssen [Kleuker 2011, S. 32]. Das

V-Modell der Bundesrepublik Deutschland wurde in mehreren Iterationen entworfen.

• V-Modell 92

Das V-Modell 92 orientiert sich vorwiegend am Wasserfallmodell und war im Hin-

blick auf aufkommende iterativ-inkrementelle Vorgehensweisen innerhalb des Software-

Engineerings nicht mehr zeitgemäÿ.

• V-Modell 97

Charakterisierend für das V-Modell 97 ist insbesondere eine erste Ö�nung gegen-

über weiteren Vorgehensmodellen des Software-Engineerings.

• V-Modell XT

Das V-Modell XT (Extreme Tailoring) wurde im Gegensatz zum V-Modell 97 we-

sentlich weiterentwickelt und für weitere Anwendungsszenarien geö�net. Es wird in

kürzeren Zyklen aktualisiert und weiterentwickelt.

53



Rational Uni�ed Process

Der Rational Uni�ed Process (RUP) wurde von Booch, Rumbough und Jacobsen entwi-

ckelt. Jene waren auch federführend an der Entwicklung der Uni�ed Modeling Lanugage

(UML) beteiligt. Ausgehend von der Erkenntnis, dass unter Zuhilfenahme der UML un-

terschiedliche erfolgreiche Vorgehensstrategien zur Entwicklung von Software-Systemen

möglich sind, und diese Vorgehensmodelle Gemeinsamkeiten aufwiesen, wurde der RUP

auf Grundlage von best practices des SW-Engineering entwickelt. Der RUP sieht die Be-

nutzung von SW-Werkzeugen der Firma IBM-Rational vor, kann aber unabhängig davon

als Prozessmodell im SW-Engineering verstanden werden [Rational Software Corporation

IBM. 1998].

Zielsetzung und "Best Practices"

Der RUP versteht sich als Ansatz um Aufgaben und Verantwortlichkeiten im Rahmen

von Softwareentwicklungsprozessen innerhalb einer Organisation zu verteilen. Hierbei

besteht die Zielsetzung, einerseits ein Prozess-Framework zur Entwicklung qualitativ

hochwertiger Software zur Verfügung zu stellen, die den Anforderungen der Benutzer

gerecht werden und andererseits den Softwareentwicklungsprozess in einem vertretba-

ren zeit- und kostene�zienten Rahmen zu absolvieren. Die stetige Weiterentwicklung des

RUP wird durch IBM - Rational Software in Zusammenarbeit mit Kunden und Partnern

vorangetrieben. Hierbei liegt der Fokus auf der ständigen Weiterentwicklung des Prozess-

Frameworks, sodass jenes stets die aktuellen Erkenntnisse und in der Praxis bewährte

Vorgehensweisen widerspiegelt und umfasst [Rational Software Corporation IBM. 1998].

RUP hat die Zielsetzung, die Produktivität in Teams, in dem jedes Teammitglied der

Zugang zu einer gemeinsamen Wissensbasis (Zielbeschreibungen, Vorlagen, etc.) gewährt

wird, zu erhöhen. Unabhängig von den jeweiligen Aufgaben der Teammitglieder soll si-

chergestellt werden, dass alle Teammitglieder

• eine gemeinsame Sprache und Terminologie verwenden.

• von einem gemeinsamen Prozess ausgehen.

• die gleiche Sicht auf die Softwareentwicklung haben.

Der RUP unterstützt die Erzeugung und P�ege von Modellen. In diesem Zusammenhang

soll keine sinnlose Anhäufung von Modellen unterstützt werden, sondern eine semantisch

möglichst umfangreiche Repräsentation einer Software im Entwicklungszustand. In die-

sem Zusammenhang gibt RUP Anleitung und Hinweise für die e�ektive Verwendung der

54



UML. Als technisches Hilfsmittel umfasst das RUP-Prozessframework Werkzeuge zur Un-

terstützung des SWE-Prozess. Hierbei kommen Werkzeuge zur visuellen Modellierung,

Programmierwerkzeuge und Werkzeuge zum Softwaretest zum Einsatz.

Eine weitere wichtige Zielsetzung, die aus Sicht des Autors auch die Verwendung des RUP

als theoretische Grundlage zur Entwicklung von Komponenten und Dimensionen eines

Kompetenzstrukturmodells legitimiert, ist die dynamische Kon�gurierbarkeit, die dieses

Vorgehensmodell charakterisiert. Laut RUP-Zielsetzung ist selbiger sowohl für kleine als

auch für groÿe Entwicklungsteams und Organisationen geeignet und entsprechend an-

passbar. RUP zeichnet sich darüber hinaus durch eine einfache und klar strukturierte

Prozess-Architektur aus. Diese kann auch mittels eines Prozess-Entwicklungs-Werkzeugs

auf die Anforderungen einer Organisation angepasst werden [Rational Software Corpo-

ration IBM. 1998, S. 1].

Das wohl markanteste Charakteristikum des RUP ist der e�ektive Einsatz von etablierten

Vorgehensweisen bzw. -mustern aus der Softwareentwicklungspraxis. Hierbei handelt es

sich um die folgenden sechs best practices [Rational Software Corporation IBM. 1998, S.

2]

1. Develop Software Iteratively

Wie zuvor beschrieben ist es bei komplexer Software fast aussichtslos folgenden

sequentiellen Ablauf bei der Softwareentwicklung zu verfolgen:

• Das Problem de�nieren

• Das Design der Lösung entwerfen

• Die Software zu implementieren

• Die Software zu testen

Dementsprechend verfolgt der RUP einen iterativen Ansatz, der es ermöglicht,

• ein Problem sukzessive zu verstehen und

• durch sukzessive Verfeinerung der zu entwickelnden Software zu einer e�ekti-

ven Lösung zu kommen.

Der RUP o�eriert einen interaktiven Lösungsansatz, der die Benutzer mit in den

SW-Entwicklungsprozess einbezieht, um mögliche Risiken im Projekt frühzeitig

zu erkennen und zu minimieren. Dies wird dadurch gewährleistet, dass ständig

ausführbare Prototypen der Software (auch dem Kunden) zur Verfügung stehen und

somit eine kundenseitige Weiterentwicklung durch Tests und Feedback stets möglich

ist. Dieser interaktive Ansatz erleichtert zudem den Umgang mit Änderungen in

Anforderungen, gewünschten Produkteigenschaften und Zeitplänen.

55



2. Manage Requirements

Der RUP umfasst Techniken um benötigte Funktionalitäten und Grenzen in der

Umsetzbarkeit eines Software-Systems aufzu�nden, zu organisieren und zu doku-

mentieren. Er beinhaltet zudem das Change Management also den Umgang mit

Change Requests und deren Dokumentation. Zur Ableitung von funktionalen An-

forderungen setzt der RUP auf die Entwicklung Use Cases und Geschäftsprozessen

in Kommunikation mit dem Kunden. Diese können das Software-Design, die Im-

plementierung und das Testen von Software so beein�ussen, dass das Endprodukt

den Anforderungen des Kunden genügt. Zudem können diese als Leitfaden für das

fertige Produkt und deren Entwicklung dienen.

3. Use Component-based Architectures

Das im RUP empfohlene Vorgehensmodell akzentuiert die frühe Entwicklung eines

robusten, lau�ähigen Basis-Systems. Hierzu gibt das Framework Hilfestellung um

die folgenden Zielsetzungen an eine Software zu erreichen.

• �exibel veränderbar

• intuitiv verständlich

• hoher Wiederverwendungswert

Die vorgeschlagene komponentenbasierte Systemarchitektur sieht Software-Komponenten

als nicht triviale Module oder Subsysteme, die einen bestimmten Zweck erfüllen.

Hierzu o�eriert der RUP einen systematischen Ansatz, um eine Architektur zu de-

�nieren, die sich sowohl aus neuen als auch aus bereits bestehenden Komponenten

zusammensetzt (adhoc/Komponenteninfrastruktur: CORBA, COM, etc.).

4. Visually Model Software

Der RUP zeigt auf, wie Software visuell modelliert werden kann, um deren Struktur

und Verhalten zu illustrieren. Dies umfasst das Ausblenden von Details und die

Verwendung von Syntaxbausteinen, die zu Quellcode konsistent sind.

5. Verify Software Quality

Schlechte Performance und die Zuverlässigkeit sind Faktoren, die die Akzeptanz

von Software entscheidend hemmen. Folglich sollte die Qualität von Software unter

Maÿgabe der folgenden Kriterien überprüft werden:

• Umsetzung der Anforderungen,

• Zuverlässigkeit,

• Funktionalität sowie

56



• Anwendungs- und Systemperformance.

Der RUP unterstützt die Entwickler dahingehend bei der Planung, Implementie-

rung sowie der Ausführung und Evaluation der spezi�schen Tests. Darüber hinaus

sieht der RUP die Integration des Qualitätsmanagements in jeder Entwicklungs-

phase vor sowie die Einbindung sämtlicher beteiligter Entwickler.

6. Control Changes to Software

Hierbei geht es um die Fähigkeit des Frameworks, Changes bzgl. Software zu ver-

walten und sicherzustellen, dass diese für Antragsteller des Change Requests akzep-

tabel sind. Insbesondere in einer System-Umgebung, in der Veränderungen unab-

wendbar sind, ist es von essentieller Wichtigkeit, Änderungen (=Change Requests)

kontrolliert in die Wege leiten zu können. Insbesondere um eine erfolgreiche itera-

tive Entwicklung zu ermöglichen, umfasst der Prozess der Aufnahme von Change

Requests, deren Kontrolle und Überwachung.

Weiterhin bietet das RUP-Framework die Möglichkeit, Entwickler von Änderun-

gen anderer Entwickler zu isolieren, die Veränderungen von Software-Artefakten zu

kontrollieren (z.B. durch Modelle, Dokumente, etc.) und verhilft Teams als Einheit

zu arbeiten, indem eine automatisierte Integration und Kompilierung von Software-

Komponenten erfolgen kann.

Dimensionen des RUP

Der Rational Uni�ed Process stellt sich als zweidimensionales Prozessmodell dar.

Abbildung 3.9.: RUP-Dimensionen [Rational Software Corporation IBM. 1998, S. 3]

57



Horizontale Dimension

Die sog. Zeitdimension repräsentiert den Software-Lebenszyklus in Form von sog. cy-

cles. Jeder Zyklus steht für die Entwicklung einer neuen Ausbaustufe des Produkts.

Jeder Durchlauf eines Zyklus umfasst die Phasen Inception Phase, Elaboration Phase,

Construction Phase und Transition Phase. Jede dieser Phasen dient einem bestimmten

Zweck und schlieÿt mit einem explizit de�nierten Meilenstein. An diesem Punkt müssen

wesentliche und kritische Entscheidungen getro�en werden [Rational Software Corpora-

tion IBM. 1998, S. 3�].

Abbildung 3.10.: RUP-Meilensteine & Software-Lebenszyklen [Rational Software Corpo-
ration IBM. 1998, S. 3]

Inception Phase

Während dieser Phase wird ein sog. Geschäftsfall (business case) für das zu entwickelnde

System erstellt und der Projektscope abgesteckt. Hierzu müssen alle externen Akteure,

mit denen das System interagiert, herausgefunden werden. Dies umfasst insbesondere

das Ableiten sämtlicher Use Cases sowie die Beschreibung der wichtigsten Use Cases. Der

Geschäftsfall beinhaltet zudem Erfolgskriterien, Risikoabschätzungen, Abschätzungen zu

den benötigten Ressourcen sowie ein Vorgehensmodell in Form eines Phasenplans mit

Meilensteinen.

Ergebnisse und Ziele der Phase:

• Visions-Dokument mit Kernanforderungen und Grenzen des Projektscopes

• initiales Use Case Modell (10-20% vollständig)

• initialer Projekt-Glossar

• ein initialer Geschäftsfall (beinhaltet Geschäftszusammenhang, Erfolgskriterien und

�nanzielle Prognosen)

58



• Risikoeinschätzung

• Projektplan, der Phasen und Iterationen beinhaltet

• Geschäftsmodell, sofern erforderlich

• ein oder mehrere Prototypen

Erfolgskriterien zum Erreichen des Meilensteins Lifecycle Objectives:

• Kenntnis/Vertrautheit relevanter Personen mit Projektgegenstand sowie Kosten-

und Zeitabschätzung

• Verständnis der Anforderungen, wie in den Use Cases vermittelt

• Plausibilität der Kosten-/Zeitabschätzungen, Prioritäten und Risiken des Entwick-

lungsprozesses

• Bisherige getätigte und geplante Ausgaben

An dieser Stelle kann das Projekt abgebrochen werden oder eine Neukonzeption ange-

stoÿen werden.

Elaboration Phase

Innerhalb dieser Phase wird die Domäne des Problembereichs analysiert, eine geeignete

Systemarchitektur festgelegt, ein Projektplan erstellt und Aspekte von hohem Risiko aus

dem Projektumfang entfernt. Um diese Ziele umzusetzen, muss man einen umfassenden

und detaillierten Blick auf das zu erstellende Software-System haben. Entscheidungen

hinsichtlich einer geeigneten Systemarchitektur müssen ausgehend vom Gegenstandsbe-

reich und dessen Abgrenzung, den Hauptfunktionalitäten und nicht-funktionalen Anfor-

derungen (z.B. Performanz) an das zu entwickelnde System getro�en werden. Die Phase

wird laut RUP-Whitepaper als kritischste der vier Phasen eingeschätzt mit deren Ab-

schluss ein Groÿteil der Entwicklungsarbeiten abgeschlossen ist. Charakterisierend für

diese Phase ist die Entscheidung, ob man die Folgephasen construction & transition wie

geplant durchführt oder nicht. Hier erfolgt der Übergang von einer leichten, wenig kos-

tenden und kaum riskanten Phase zu einer teuren, risikoreichen Phase. Die Aktivitäten

der inception phase stellen trotz etwaiger Veränderungen sicher, dass die Architektur-

Planungen, Anforderungen und Pläne zur Vorgehensweise so stabil sind, dass Risiken

gemindert werden und verlässliche Kosten- und Zeitprognosen gemacht werden können.

59



Ein derartiger Grad an Verlässlichkeit ist erforderlich, um einer preislich �xierten Kon-

struktionsphase zuzustimmen und diese durchzuführen.

In der Ausarbeitungsphase entsteht innerhalb von einer oder mehrerer Iterationen ein

ausführbarer Architektur-Prototyp. Dieser umfasst die wesentlichen Use Cases der incep-

tion phase. WeitereWegwerf-Prototypen können dabei behil�ich sein, Risiken hinsichtlich

Anforderungen und Design zu minimieren. Sie können als technische Machbarkeitsstudie

für bestimmte Elemente des SW-Systems fungieren und zur Demonstration bei Investo-

ren, Endkunden und Benutzern eingesetzt werden.

Ergebnisse und Ziele der Phase:

• Use Case Modell (mehr als 80% fertiggestellt), das sämtliche relevante Fälle und

Akteure identi�ziert und fast alle modellierten Use Cases enthält

• Nicht funktionale Anforderungen

• Software-Architektur-Beschreibung

• gesicherte Risikoliste

• Entwicklungsplan für das gesamte Projekt inkl. eines groben Projektplans, der die

Iterationen und die jeweilig dazugehörigen Evaluationskriterien umfasst

Erfolgskriterien zum Erreichen des Meilensteins Lifecycle Architecture:

Zu diesem Zeitpunkt werden die detaillierten Systemzielsetzungen, Sichtweisen, Archi-

tekturentscheidungen und Hauptrisiken untersucht. Hierbei ergeben sie die folgenden

Evaluationskriterien:

• Ist die Vision für das Projekt gefestigt?

• Besteht eine stabile Architektur?

• Zeigen demonstrative Ausführungen von Prototypen, dass problematische/gefähr-

dende Aspekte erkannt und glaubwürdig gelöst wurden?

• Sind die Planungen für die Konstruktionsphase akkurat und ausreichend detailliert?

• Sind die für das System relevanten Personen mit der Vision, dem Plan zur Ent-

wicklung des Systems in Bezug auf die beschlossene Architektur einverstanden?

• Ist das Verhältnis der gemachten Ausgaben in Bezug auf die geplanten Ausgaben

akzeptabel?

Falls dieser Meilenstein nicht erreicht wird, kann das Projekt abgebrochen oder neu

konzipiert werden.

60



Construction Phase

Innerhalb der Konstruktionsphase werden alle noch ausstehenden Komponenten und An-

wendungen entwickelt und in das Produkt integriert. Es werden darüber hinaus alle

Features gründlich getestet. Innerhalb der Phase vollzieht sich ein Wandel des Entwick-

lungsgegenstands von intellektuellem Eigentum während der Inception- bzw. Elabora-

tionphase zu einsetzbarem praxistauglichen Produkten während der Construction- bzw.

Transfer-Phase. Viele Projekte sind von solch groÿem Umfang, dass eine parallele Weiter-

entwicklung des Systems möglich ist. Eine derartige Entwicklung kann die Verfügbarkeit

von praxistauglichen Releases deutlich erhöhen. Im Umkehrschluss erhöht sich allerdings

auch die Komplexität im Hinblick auf das Ressourcenmanagement und die Synchronisa-

tion der Entwicklungsprozesse.

Ergebnisse und Ziele der Phase:

• ein fertiges Software-Produkt, das für die Benutzung von Endbenutzern freigegeben

ist

• Software-Produkt integriert in eine adäquate Plattform

• Bedienungsanleitungen / Release Notes

Erfolgskriterien zum Erreichen des Meilensteins Initial Operational Capability:

Zu diesem Zeitpunkt wird entschieden, ob es möglich ist, die Software zur Benutzung an

die Endbenutzer freizugeben, ohne das Projekt einem hohen Risiko auszusetzen. Diese

Ausbaustufe wird häu�g als beta-release bezeichnet. Hierbei ergeben sich die folgenden

Evaluationskriterien.

• Ist das Produkt ausgereift genug, um in den Benutzer-Szenarien verwendet zu wer-

den?

• Sind die für das System relevanten Personen in der Lage, Nutzer der Software zu

sein?

• Ist das Verhältnis der gemachten Ausgaben in Bezug auf die geplanten Ausgaben

immer noch akzeptabel?

Wenn das Projekt diesen Meilenstein nicht erreicht, muss die Überführung (Transition)

um ein Release verschoben werden.

61



Transition Phase

Zweck der Transition-Phase ist die Überführung der Software in die Benutzer Commu-

nity. Sobald die Verwendung der Software begonnen hat, werden die Entwickler dazu

veranlasst, neue Releases herauszubringen, Bug�xes zu implementieren und Funktionen

zu vervollständigen. Die Phase sollte beginnen, sobald eine Basis der Software derart

ausgereift ist, um in der Benutzerdomäne eingesetzt werden zu können. Hierzu ist es

erforderlich, dass ein Bereich der Software �nalisiert wird und eine akzeptable Qualität

aufweist; des Weiteren sollte dieser Bereich fertig dokumentiert sein, damit die Transition-

Phase für alle Seiten erfolgreich verläuft. Bedingungen hierfür sind:

• Beta Testing um das System in Bezug auf Benutzererwartungen zu prüfen

• Paralleler Einsatz eines bestehenden Systems, welches durch das Neue ersetzt wer-

den soll

Ergebnisse und Ziele der Phase:

• Erreichen, dass sich die Nutzer selbst unterstützen und Support geben können

• Enduser mit dem Produkt konfrontieren, um sicherzustellen, dass die Grundanfor-

derungen zur Verö�entlichung des Produkts vollständig sind und den Anforderun-

gen der Vision entsprechen

• Bedienungsanleitungen / Release Notes

• Möglichst Ressourcene�zientes Finalisieren des Produkts

Die Phase kann � in Abhängigkeit von dem jeweiligen Produkt � einfach aber auch sehr

komplex sein.

Erfolgskriterien zum Erreichen des Meilensteins Product Release:

An diesem Punkt wird entschieden, ob die Anforderungen/Ziele erreicht wurden und ob

weitere Entwicklungs-Zyklen durchgeführt werden müssen. Es ergeben sich die folgenden

Evaluationskriterien:

• Sind die Endnutzer zufrieden?

• Ist das Verhältnis der gemachten Ausgaben in Bezug auf die geplanten Ausgaben

immer noch akzeptabel?

62



Vertikale Dimension

Die vertikale Dimension des RUP kann als statische Struktur des Prozesses verstanden

werden. Ein Prozess beschreibt wer, was und wann tut. Hierzu verwendet der RUP vier

sog. Primär-Modellierungselemente [Rational Software Corporation IBM. 1998, S. 7].

1. workers ("wer")

Worker sind durch das Verhalten und die Verantwortlichkeiten eines Individuums

de�niert. Sie können über eine Rolle charakterisiert werden, die von jedem Individu-

um bekleidet werden kann. Individuen können auch mehrere Rollen bekleiden. Die

Verantwortlichkeit eines workers können sowohl die Ausführung einer bestimmten

Menge von Aktivitäten als auch das Besitzen einer Menge von Artefakten sein.

2. activities ("wie")

Eine Aktivität eines spezi�schen workers ist eine Arbeitseinheit, die ein Individu-

um, welches diese Rolle bekleidet, aufgefordert werden kann, auszuführen. Diese

hat einen klar de�nierten Zweck, wie z.B. die Aktualisierung und Erstellung von

Modellen (Artefakten). Jede activity ist einem bestimmten worker zugeordnet und

deren zeitliche Einteilung beträgt einige Stunden bis hin zu einigen Tagen. Eine

activity ist zur Bearbeitung von einem oder einigen wenigen Artefakten [Rational

Software Corporation IBM. 1998, S. 8�].

Beispiele für activities:

• activity: Eine Iteration planen; worker: Project Manager

• activity: Use Cases und Akteure heraus�nden; worker: System Analyst

• activity: Review des Design; worker: Design Reviewer

• activity: Ausführen eines Performance-Test; worker: Performance Tester

3. artifacts ("was")

Artifacts sind ein Teil einer Information, welche von einem Prozess erstellt, verän-

dert oder benutzt wird. Sie sind als materielle Ergebnisse des Projekts zu verstehen

und können Input für worker zur Bearbeitung einer Aktivität sein oder können Er-

gebnisse jener sein.

Beispiele für artifacts:

• Ein Modell (Use Case-/Design-Modell)

• Ein Element eines Modells (eine Klasse, ein Subsystem)

• Ein Dokument (Geschäftsfall, Softwarearchitekturdokument)

63



• Quellcode

• Ausführbare Dateien

4. Work�ows ("wann")

Ein Prozess ist nicht eine Konstitution einer Anzahl von workern, activities und ar-

tifacts sondern beschreibt vielmehr einen Ablauf von Aktivitäten und die Interakti-

on zwischen workern. Ein work�ow ist demnach ein Ablauf von Aktivitäten, der ein

de�niertes Ergebnis erzielt. Work�ows innerhalb des RUP werden durch folgende

UML-Diagramme beschrieben: Sequenzdiagramm, Kollaborations-Diagramm und

Aktivitätendiagramm.

Die beschriebene vertikale Dimension des RUP umfasst neun zentrale Phasen, sog. Core

Work�ows. Jene repräsentieren eine Aufteilung von workers und activities in logische

Gruppen. Hierbei lässt sich bei den neun Phasen eine Unterscheidung in sechs sog. engi-

neering work�ows und sog. supporting work�ows machen.

Im Folgenden sollen die einzelnen Core Work�ows beschrieben werden. Hierbei liegt der

Fokus auf den engineering work�ows, da diese auch als Grundlage für die theoretische Ab-

leitung von Kompetenzdimensionen und -kategorien fungieren sollen [Rational Software

Corporation IBM. 1998, S. 10�].

Business Modeling (Geschäftsmodellierung)

Eins der gröÿten Probleme im SWE-Prozess ist, dass die Softwareentwicklung und die

Entwicklung im Geschäftsfeld häu�g unter Kommunikationsproblemen leiden. Dies führt

dazu, dass der output vom business engineering häu�g nicht für das SW-Engineering

verwendet wird und umgekehrt. Der RUP versucht die Problematik mit einer gemeinsa-

men Sprache und einem gemeinsamen Prozess entgegenzuwirken, indem er zeigt, wie Zu-

sammenhänge zwischen business- und software-Modellen hergestellt und gep�egt werden

können. Im Rahmen der Geschäftsmodellierung werden sog. Business Use Cases model-

liert. Diese sichern ein allseitiges Verständnis hinsichtlich der Faktoren, von denen der

Geschäftsprozess abhängt und inwiefern dieser unterstützt werden muss. Hierbei besteht

die Zielsetzung, wie das Geschäftsfeld von der zu entwickelnden Software unterstützt

werden soll. Es entsteht als Ergebnis dieser Phase ein sog. Business Object Model.

Requirements (Anforderungsanalyse)

Ziel dieser Phase ist die Beschreibung, wie sich das System verhalten soll. Sowohl die

Entwickler als auch die Kunden müssen dieser Beschreibung zustimmen. Hierbei werden

64



benötigte Funktionalitäten, Grenzen des Systems und Stakeholder ermittelt und in einem

Visionsdokument beschrieben und organisiert. Zentraler Inhalt sind die Anforderungen

aller Stakeholder sowie sämtliche Akteure in Form von Benutzern und anderer Systeme,

die mit der zu entwickelnden Software interagieren. Dementsprechend werden Use Ca-

ses identi�ziert, die das Systemverhalten repräsentieren. Dies scha�t für die relevanten

Akteure einen direkten Bezug zum System, da die Use Cases ausgehend von Anforderun-

gen konzipiert werden. Die Use Cases beschreiben im Detail, wie das System Schritt für

Schritt mit den Akteuren interagiert und welches Verhalten das System mit sich bringt.

Nicht funktionale Anforderungen werden in einer separaten Dokumentation gep�egt und

organisiert.

Analysis & Design (Analyse & Design)

Ziel dieser Phase ist es zu modellieren, wie das System in der Implementierungsphase

realisiert werden soll. Infolgedessen müssen die Aufgaben und Funktionen ausgehend von

Use Case Beschreibungen umgesetzt werden, sodass diese den Anforderungen genügen.

Auch die Auswahl einer geeigneten und einfach zu modi�zierende Architektur sollte hier

vorgesehen werden. So ist sichergestellt, dass eine �exible Berücksichtigung von sich än-

dernden Anforderungen gewährleistet ist.

Die Phase resultiert in einem Design-Modell (und optional in einem Analyse-Modell).

• fungiert als Abstraktion für den Quellcode

• beschreibt und strukturiert den Quellcode

• besteht aus Design Klassen � strukturiert in design-packages und design-Subsystemen

• besteht aus Beschreibungen, wie die jeweiligen Klassen kollaborieren um Use Cases

umzusetzen.

Implementation (Implementierung)

Ziel der Implementierungsphase ist die Realisierung des Systems durch Implementierung

seiner konstituierenden Software-Komponenten. Hierbei muss zunächst die Organisation

und Strukturierung von Quellcode erfolgen, sodass die verschiedenen Implementierungs-

Subsysteme feststehen. Ferner soll die Implementierung von Klassen als Komponenten

sowie der Test von Komponenten als Einheiten (unit tests) durchgeführt werden. Die

Erzeugnisse unterschiedlicher individueller Programmierer und Teams gilt es zu einem

ausführbaren System zusammenzusetzen.

65



Zur Unterstützung der Implementierungsphase beschreibt der RUP, wie bestehende Kom-

ponenten weiterverwendet werden können und wie neue Komponenten zur Erfüllung eines

wohl-de�nierten Zwecks entwickelt werden können. Weiterhin wird durch das Framework

beschrieben, wie man ein System so konzipiert, dass es leicht wartbar ist und einen hohen

Grad an Wiederverwendbarkeit hat.

Test

Zielsetzung der Testphase im Sinne des RUP ist die Veri�kation der Interaktion zwischen

Objekten, der Integration aller Softwarekomponenten und dass alle Anforderungen kor-

rekt implementiert wurden. Zudem muss sichergestellt sein, dass Fehler behoben wurden.

Neben der Zielsetzung schlägt der RUP die Integration der Testphase während der ge-

samten Phasen der Software Entwicklung vor. Somit ist gewährleistet, dass Bugs so früh

wie möglich aufgefunden werden und somit auch die Kosten bei der Fehlerbehebung

drastisch gesenkt werden können.

Die eigentlichen Tests erfolgten im RUP in drei Qualitätsdimensionen

1. Reliability

2. Functionality

3. Application- and System-Performance

Für jede dieser Dimensionen beschreibt der RUP, wie die Test-Phase zu durchlaufen ist

und gibt Hinweise im Hinblick auf Planung, Design, Implementierung, Ausführung und

Evaluation des Tests. Er beschreibt Strategien, wie Tests automatisiert werden können.

Dies spielt insbesondere für den iterativen Ansatz eine groÿe Rolle, da somit Regressions-

tests nach jeder Iteration (nach jeder neuen Version der Software) durchgeführt werden

können.

Deployment (Auslieferung/Verteilung)

Ziel dieser Phase ist im engeren Sinne das erfolgreiche Verteilen von Produkt-Releases

an die Benutzer. Darüber hinaus umfasst diese Phase weitreichende Aufgaben:

• Externe Releases von Software

• Verpacken der Software

• Verteilung der Software

66



• Installation der Software

• Support für die Software

• Planung und Durchführung von beta-Tests

• Migration von existierender Software und Daten

• Formale Akzeptanz

Die zuvor beschriebenen Phasen repräsentieren die Engineering Work�ows des RUP.

Im Folgenden soll der Vollständigkeit halber ein kurzer Einblick in die sog. supporting

work�ows gegeben werden:

Project Management

Die Project Management Phase erfordert das Vermögen, gegensätzliche Ziele und Auf-

gaben zu vereinen. Dies umfasst ein Risiko Management und spiegelt u.a. das Können

wieder ein Produkt zu erzeugen, das sowohl den Anforderungen von Kunden und Auf-

traggebern als auch jenen der Enduser gerecht wird. Dieser work�ow konzentriert sich

auf den iterativen Entwicklungsprozess. Zum Erreichen der Zielsetzung kann der RUP

Hilfestellung geben, in dem jener ein Framework zum Managen von Softwareprojekten

umfasst, praktische Richtlinien für die Planung, Personalfragen sowie die Ausführung und

Überwachung von Projekten gibt und ein Framework zur Risikohandhabung bereitstellt.

Con�guration & Change Management

In dieser Phase wird beschrieben, wie man mit den zahlreichen Artefakten (entwickelt

von verschiedenen Personen) im Projekt umgeht. Eine Kontrolle dahingehend hilft Un-

klarheiten bzgl. Kosten zu vermeiden und stellt sicher, dass die daraus resultierenden

Artefakte nicht im Kon�ikt stehen. Im Folgenden sind mögliche Szenarien aufgeführt,

bei denen eine Kontrolle sinnvoll erscheint:

• Gleichzeitiges Update: Zwei Personen arbeiten am selben Artefakt, der Letzte, der

die Änderungen comitted, zerstört die Arbeit seines Vorgängers.

• Eingeschränkte Benachrichtigungen: Wenn ein Problem in Artefakten behoben wird,

und andere Entwickler davon nicht in Kenntnis gesetzt werden.

• Verschiedene Versionen: Meist haben groÿe Softwareprojekte mehrere Versionen;

wenn z.B. Fehler in einer Version auftauchen, muss sichergestellt werden, dass Ver-

besserungen in allen Versionen vorgenommen werden.

67



Environment (Umgebung)

Zweck dieses Work�ows ist die Unterstützung der Softwareentwicklungs-Organisationen

mit geeigneten Software-Tools. Hierbei stellt der RUP Prozesse und Werkzeuge zur Ver-

fügung um das Entwickler-Team zu unterstützen.

Potential und Grenzen des RUP

Im Gegensatz zum V-Modell, das auf einer generischen Auswahl von Methoden und

Werkzeugen basiert, gibt der RUP konkrete Hilfestellung unter expliziter Zuhilfenahme

der Uni�ed Modeling Language. Als Kritikpunkt merkt Kleuker jedoch an, dass nach

Ablauf der elaboration phase innerhalb des RUP von einer statischen Anforderungsmenge

ausgegangen wird und das Änderungen am System nur schwer und bei entsprechender

Interpratation verschiedener Aktivitäten zu leisten ist [Kleuker 2011, S. 20].

Agile Vorgehensmodelle

Umfassende Vorgehensmodelle wie das V-Modell XT oder der RUP sind sehr komplex.

Sie erfordern eine groÿe Anzahl zu p�egender Dokumente und es kann vorkommen, dass

mögliche Zusammenhänge nicht auf Anhieb verstanden werden [Kleuker 2011, S. 42�].

Um dieser Tendenz entgegenzuwirken haben sich renommierte SWE-Experten in der

Agile Allianz verbündet. Das folgende sog. agile Manifest beschreibt die Leitlinien der

Organisation [Agile Alliance 2013]:

We are uncovering better ways of developing software

by doing it and helping others do it. Through this

work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation Customer

collaboration over contract negotiation Responding to change

over following a plan

That is, while there is value in the items on the right, we

value the items on the left more.

www.agileAlliance.org

68



1. Als erste Grunderkenntnis wird die Bedeutsamkeit des Entwicklerteams akzentu-

iert, dessen Zusammenhalt, Kommunikation und Motivation maÿgeblich den Pro-

jekterfolg beein�ussen. Hierbei erfolgt eine Integration von Individuen (mit mög-

lichst kreativer Freiheit) in Abhängigkeit der jeweiligen Stärken und Schwächen.

2. Die lau�ähige Software wird als zentraler Mittelpunkt von höchster Wichtigkeit

eingeschätzt. Die Dokumentation soll nur im minimalen Umfang und bei Bedarf

(möglichst innerhalb des Quellcodes der zu entwickelnden Software) erfolgen.

3. Der Kunde muss möglichst intensiv mit in den Entwicklungsprozess einbezogen

werden.

4. Software-Projekte müssen so geplant werden, dass sie auf Änderungen in den Kun-

denanforderungen reagieren können. Eine Suche nach neuen Lösungen und das

Verwerfen bestehender Lösungen muss stets in Betrachtung gezogen werden.

Im Vorgehen lassen sich zwei Gruppierungen innerhalb der agilen Softwareentwicklung

nennen [Kleuker 2011, S. 22�], [Martin 2003].

1. Die erste Gruppe beinhaltet Metamodelle, die ausgehend vom oben beschriebenen

Manifest ein Rahmenwerk für die Projektorganisation vorgeben ohne eine konkrete

Methodik oder Werkzeuge vorzugeben, z.B. Scrum [Pichler 2009].

2. Diese Gruppe umfasst Ansätze, die auf Grundlage bewährter Vorgehensmodelle

in der Softwaretechnik konkrete Vorgaben machen, z.B. Extreme Programming

[Pichler 2009].

Zusammenfassend kann man die folgende Aussage über die Agile Softwareentwicklung

tre�en: Die Agile Softwareentwicklung hat bestehende Vorgehensmodelle der Software-

technik insofern weiterentwickelt und beein�usst, als dass deren Flexibilität mit dem

Aufkommen der agilen Tendenzen deutlich verbessert wurde. Hiermit wurde der prak-

tischen Erfahrung Sorge getragen, dass ein SWE-Prozess in den seltensten Fällen von

Anfang bis Ende linear durchgeplant werden kann [Martin 2003].

Zwischenfazit

Nach eingehender Betrachtung des Themenbereichs der Modellierung aus fachwissen-

schaftlicher und fachdidaktischer Perspektive, scheint die Verwendung eines Vorgehens-

modells aus der Softwaretechnik auch im Sinne des Weinert'schen Kompetenzverständnis

69



als geeignete strukturgebende Grundlage, um theoretisch fundierte Kategorien für ein

Kompetenzmodell ableiten zu können.

Um einen genaueren Einblick in die unterschiedlichen Vorgehensmodelle der Software-

technik zu erhalten und zu prüfen, auf welcher normativ-theoretischen Grundlage die

Ableitung von Kompetenzen erfolgen sollte, war es sinnvoll, einzelne exemplarische Vor-

gehensmodelle innerhalb der Softwaretechnik aufzuführen und deren Charakteristik dar-

zustellen und zu vergleichen. Hierbei hat sich gezeigt, dass das Wasserfallmodell zu sta-

tisch zu sein scheint um SWE-Prozesse zu planen. Die Begründung dafür ist, dass Pro-

zesse zur Modellierung und Entwicklung von Software in der Praxis selten linear und

von vorne herein planbar ablaufen. Vielversprechend hingegen erscheinen die iterativ-

inkrementellen Ansätze, da diese eine explizite Dynamik innerhalb der Abfolge der ein-

zelnen SWE-Phasen vorsehen. Hierbei sieht das V-Modell einen für den schulischen Ein-

satz zu starken Fokus auf die Qualitätssicherung vor. Das prototypische Vorgehen und

die agilen Methoden der Softwareentwicklung geben aus Sicht des Autors zu wenig Vor-

gaben an die einzelnen Phasen des SWE-Prozesses, um mögliche Strukturen und Inhalte

für das Kompetenzmodell abzuleiten. Dennoch liefern sie wertvolle Hinweise für die Ge-

staltung von SWE-Prozessen. Im Sinne der agilen Softwareentwicklung sollten diese ein

hohes Maÿ an Dynamik aufweisen.

Insgesamt sprechen die folgenden Aspekte aus Sicht des Autors für die Verwendung des

Rational Uni�ed Process als theoretische Grundlage um die Facetten von Modellierungs-

kompetenz abzuleiten:

Beim Rational Uni�ed Process handelt es sich um ein sehr gut etabliertes Vorgehens-

modell, welches als Quasi-Standard in der Softwaretechnik angesehen werden kann. Der

RUP sieht eine iterativ-inkrementelle Vorgehensweise bei der Entwicklung von Software-

Systemen vor und setzt auf sog. best practices im Software-Engineering.

Darüber hinaus zeichnet sich dieser Ansatz durch eine hohe Anpassbarkeit im Hinblick auf

Komplexität und Umfang aus. Hierdurch lässt sich jener auch an die jeweilige Lerngruppe

anpassen.

Der RUP wurde von den Schöpfern der UML kreiert und setzt dementsprechend auf

diesen Standard als Modellierungssprache, welche auch im Informatikunterricht der Se-

kundarstufe II zum breiten Einsatz kommt.

Ferner zeigen unterschiedliche Studien und Praxisberichte den erfolgreichen Einsatz des

RUP in der Lehre [Roggio 2006], [Goldin und Rudahl 2009] auf und legitimieren die

Verwendung dieses Ansatzes als theoretische Basis für ein Kompetenz-Strukturmodell.

Durch die Forderung der Klieme-Expertise, dass Kompetenzmodelle durch entsprechende

Testinstrumentarien überprüfbar sein sollen, gilt es neben der Entwicklung eines entspre-

70



chenden Kompetenzmessinstruments für die informatische Modellierung eine geeignete

Unterrichtsreihe als Setting für die Kompetenzmessung zu planen. Um deren theoreti-

sche Grundlage festzulegen, sollen im Folgenden unterschiedliche Unterrichtskonzepte zur

objektorientierten Modellierung vorgestellt werden. Der Fokus liegt hier (aufgrund des

besonderen Interesses des Autors und positiver Erfahrungen in der Ausbildung von an-

gehenden Informatiklehrern in der Hochschullehre) auf dem Thema Objektorientierung

und Robotik.

3.4.2. Vorgehens- & Vermittlungsmodelle zur OO-Modellierung

Neben der theoretischen Fundierung des Kompetenzmodells muss auch eine theoretische

Basis für die Konzeption einer Unterrichtsreihe innerhalb der die Evaluation des Kom-

petenzmessinstruments erfolgen soll, gescha�en werden. Hier soll ein etablierter Ansatz

zur Vermittlung objektorientierter Modellierung als theoretische Grundlage verwendet

werden.

Im Folgenden werden unterschiedliche Herangehensweisen und didaktische Vorgehens-

bzw. Vermittlungsmodelle am Beispiel des Informatik Anfangsunterrichts und dem The-

menbereich der objektorientierten Modellierung und Programmierung aufgezählt.

Objects �rst

Nach Diethelm besteht ein Dilemma bei der Verwendung der Terminologie objects �rst.

Hier ergibt sich eine mehrfache Verwendung für unterschiedliche Vermittlungsmodelle

[Diethelm 2007, S. 21�].

• Classes �rst : Entwicklung von Klassen, die Objekte de�nieren.

• OOP �rst : Programmierung in einer objektorientierten Sprache und ggf. eine Vi-

sualisierung durch Stifte & Mäuse bzw. Turtle-Gra�ken (haben nach Diethelm nicht

immer die Intention, die objektorientierte Modellierung zu lehren).

• Objects �rst : das Objekt steht an erster Stelle.

Diethelms eigentlicher Ansatz startet mit Objekten, die in einem Szenario aus der Le-

benswelt der Lernenden eingebettet sind. Hierbei handelt es sich um Objekte, die z.B.

auf einer Tafel skizziert werden können und lediglich Informationen über die Objekte

selbst und deren Zusammenhang enthalten. Ggf. können diese auch Attribute und ent-

sprechende Werte enthalten. Informationen über Klassen sind in diesem Ansatz zunächst

bewusst nicht vorgesehen und sollen explizit zu einem späteren Zeitpunkt thematisiert

werden [Diethelm et al. 2005].

71



Einstieg über Programmiersprachen

Diese Vorgehensweise umfasst das Erlernen der Syntax einer objektorientierten Program-

miersprache und den Umgang mit Entwicklungsumgebungen. Hier besteht keinerlei Un-

terscheidung zu Vermittlungsmodellen von prozeduralen Sprachen. In Verö�entlichungen

zu der Thematik spricht man hier illustrativ von einem �Wolf im Schafspelz� [Diethelm

2007, S. 25], [Penon und Spolwig 1998].

Ein weiteres Vermittlungskonzept für die Grundlagen der objektorientierten Program-

mierung ist das Konzept von Stiften und Mäusen. Hierbei handelt es sich um ein Un-

terrichtskonzept das eine unter didaktischen Gesichtspunkten entwickelte Klassenbiblio-

thek verwendet. Statt dem Einstieg in die imperative Programmierung geschieht eine

Integration entsprechender informatischer Konzepte, wie z.B. Kontrollstrukturen in ein

durchgängig objektorientiertes Szenario.

Der Einstieg über visuelle Entwicklungsumgebungen zur Kapselung prozeduraler Pro-

grammierung ist ein weiteres mögliches Vorgehensmodell. Jenes steht allerdings in der

Kritik, dass die Vermittlung von objektorientiertem Denken vollkommen vernachlässigt

wird [Diethelm 2007, S. 25].

BlueJ-Konzept

BlueJ ist eine integrierte Entwicklungsumgebung (IDE) für den Informatik Anfangsun-

terricht. Sie basiert auf dem Standard Java SDK und verwendet den Standard Java-

Compiler sowie die gängige virtuelle Maschine (JVM = Java Virtual Machine). BlueJ

ermöglicht einen visuellen und unmittelbar parametrisierten Methoden-Aufruf. Dies er-

möglicht den Lehrenden, komplexe Themen, wie z.B. textuelle Schnittstellen zu einem

späteren Zeitpunkt zu thematisieren und unabhängig davon einen Einstieg in die ob-

jektorientierte Programmierung zu ermöglichen [Kölling und Quig 2005]. Die Intention

dieses Ansatzes ist nach Diethelm wiederum die Einführung in eine objektorientierte

Programmierung. Die Vermittlung objektorientierter Denkweisen wird wieder vernach-

lässigt [Diethelm 2007, S. 26]. Brinda kritisiert darüber hinaus, dass BlueJ ausschlieÿlich

Klassendiagramme visualisiert und das Laufzeitobjekte isoliert und ohne Assoziationen

untereinander dargestellt werden [Brinda 2004].

Alice-, Greenfood und Scratch-Konzept

Alice Greenfood und Scratch sind didaktische Werkzeuge, die einen Einstieg in die Pro-

grammierung in der voruniversitären Lehre erleichtern sollen. Die Autoren sehen ihre

Software weniger als ein didaktisches Werkzeug für den Einstieg in die objektorientierte

72



Modellierung als ein Tool zur Erleichterung des Einstiegs in die objektorientierte Pro-

grammierung. Obwohl diese visuellen Programmierumgebungen zu unterschiedlichen Zei-

ten und in unterschiedlichem Kontext entwickelt wurden, sind diese nach Ansicht der

Autoren Cooper, Kölling und Maloney vergleichbar. Sie bezeichnen Ihre Werkzeuge als

Initial Learning Environments.

�Although designed at di�erent times and in di�erent contexts, these three

environments? Alice, Greenfoot and Scratch? can be classi�ed together as

sharing similar characteristics. All are visual, all aim to foster immediate en-

gagement in an attractive activity, and all aim to introduce pre-University

students to programming. We describe these as �Initial Learning Environ-

ments� [Utting et al. 2010, S. 1].�

Ein beispielhafter Einsatz von Alice im Informatikunterricht der Sekundarstufe I wurde

von Dohmen und Engbring durchgeführt. Sie stellten in der anschlieÿenden Evaluation

fest, dass Alice als alleiniges Hilfsmittel neben einem deutlich spürbaren Motivations-

zuwachs den Schülern zu keinen grundlegenden Kenntnissen über die objektorientierte

Programmierung verhelfen konnte. Der gleichzeitige deklarative Zugang mit vorgefertig-

ten Objekten hingegen, vereinfachte den Zugang spürbar [Dohmen et al. 2009].

Model First

Hierbei handelt es sich um einen Ansatz von Bennedsen & Caspersen aus dem Jahr

2004 für einen Kurs im ersten Studienjahr. Dieser sieht vor mit der Modellierung von

Klassen zu beginnen und fokussiert hierbei die Übersetzung von UML-Diagrammen in

objektorientierten Java-Code [Bennedsen und Caspersen 2005].

Informationszentrierter Ansatz

In der Sekundarstufe I sieht der informationszentrierte Ansatz vor, die Objektorientie-

rung als �Grundstein für den Aufbau angemessener mentaler Modelle und die Verwendung

einer sauberen, ausdrucksstarken Terminologie zugrunde zu legen [Hubwieser 2000, S.

59].� Der Einstieg über die objektorientierte Modellierung erfolgt am Beispiel der Zeich-

nung eines Zimmers und der Identi�kation von Objekten sowie deren Klassi�zierung nach

Form [Hubwieser 2005].

Der informationszentrierte Ansatz wird im Kapitel 6.2 ausführlicher thematisiert. Hier

sollen lediglich einige Ansätze zum Einstieg in die objektorientierte Programmierung

genannt werden bevor auf den Ansatz Objektorientierte Modellierung und Robotik einge-

gangen wird.

73



OO-Modellierung und Robotik

Traditionell sind hier virtuelle Roboter zur Vermittlung von imperativer und prozeduraler

Programmierung zu nennen, wie z.B. Kara oder NIKI.

Neuere Ansätze zur Vermittlung objektorientierter Konzepte mit Hilfe von LEGO Mind-

storms Robotern, wie z.B. Dietzel und Rinkens, die erste Unterrichtserfahrungen in einem

Informatik Di�erenzierungskurs der Jahrgangsstufe 10 machen konnten [Dietzel und Rin-

kens 2001]. Das unterrichtliche Vorgehen sah vor, dass Kleingruppen die Roboter bauen

und danach erste Beschreibungen über Eigenschaften und Funktionalität der Roboter

anfertigen. Ausgehend davon werden die objektorientierten Begri�ichkeiten, wie z.B.

Objekt, Attribut und Methode erläutert.

Fujii et. al untersuchten die Wirksamkeit der Vermittlung von UML- Modellierungs-

kompetenz und sozialen Kompetenzen, mit Hilfe von problembasierten Lernszenarien.

Hierbei wird den Lerngruppen eine vereinfachte UML-Modellierungsvorlage zur Verfü-

gung gestellt. Die Zielsetzung bestand darin, einen LEGO Mindstorms Roboter zu bau-

en und dessen Funktionalität zu programmieren. Mit Hilfe der zuvor genannten UML-

Modellierungsvorlage wurden zunächst die funktionalen Anforderungen (functional mo-

del) aufgenommen. Ein weiteres Modell, das sog. Detail-Model umfasst für jede System-

funktion bzw. Anforderung den jeweiligen Funktionsnamen, die Funktionsbeschreibung,

Vorbedingungen, mögliche rudimentäre Programmabläufe, die jeweiligen Endzustände

und Gra�ken. Eine weitere sog. Relationship-Model-Vorlage hat die Zielsetzung den Zu-

sammenhang und die Interaktion der im Detail-Model beschriebenen Funktionen zu be-

schreiben. Jene korrespondiert in der Zielsetzung mit UML-Kollaborationsdiagrammen

[Ishii et al. 2010, S. 26�].

Die Erhebung wurde im Rahmen eines Programmierkurses im Wintersemester 2007 an

der Chubu University of Engineering durchgeführt. Die Kursplanung sah drei Phasen

vor:

1. Die Lernenden sollten Grundlagenwissen im Hinblick auf LEGO Mindstorms und

UML-Modellierung erlangen. Hierzu erhielten sie Mustervorlagen für die oben be-

schriebenen UML-Templates.

2. Die Lernenden wurden in Gruppen eingeteilt um in einer Art Wettbewerb jeweils

einen Roboter zu bauen, der auf möglichst schnelle Weise folgendes leisten muss:

Eine Linie bis zu einem Ziel verfolgen und Hindernissen ausweichen. Innerhalb

dieser Design- und Implementierungsphase sollte die Dokumentation innerhalb der

UML-Vorlagen erfolgen. Diese Phase wurde einmal zur Halbzeit des Projekts und

zum Ende des Projekts durchgeführt.

74



Abbildung 3.11.: UML-Template nach Fujii et. al [Ishii et al. 2010, S. 27]

75



3. Die dritte Phase fokussierte die Selbst-Re�exion. Die Lernenden waren in diesem

Zusammenhang aufgefordert, die Ergebnisse der Gruppenarbeiten auf einem Pla-

kat zu dokumentieren. Dies umfasste die UML-Vorlage, ein sog. Problemanalyse-

Diagramm und ein Foto des entwickelten Roboters.

Um die UML-Modellierungskompetenz zu messen, wurden die Modelle der ersten und

zweiten Kurshälfte miteinander verglichen. Hierbei wurden die folgenden Evaluationskri-

terien für die UML-Modelle zugrunde gelegt [Ishii et al. 2010, S. 28�]:

• Number of functions

• Originality of functions

• Existence of unrelated links

• Improvement of new methods and functions

• Detail of image sketches

• Resemblance to the sample model

Folgende Ergebnisse haben sich im Vergleich von erster und zweiter Kurshälfte ergeben:

Abbildung 3.12.: Ergebnisse Fujii et. al 1/2 [Ishii et al. 2010, S. 30]

Nach Fuji et. al. zeigen diese Ergebnisse die E�ektivität ihres Ansatzes, den Lernenden

ein Modellierungs-Template zur Verfügung zu stellen.

Die sozial-kommunikativen Kompetenzen wurden mittels eines Fragebogens anhand des

sog. KISS-18 (Kikuchi's Scale of Social Skills) zu Beginn (pre-test) und zum Ende (post-

test) der Unterrichtsreihe gemessen. Dieser umfasst grob betrachtet drei Haupt-Kriterien

sozial kommunikativer Kompetenz:

76



Abbildung 3.13.: Ergebnisse Fujii et. al 2/2 [Ishii et al. 2010, S. 31]

1. Problem solving skills

2. Troubleshooting skills

3. Communication skills

Die folgenden Ergebnisse zeigen nach Fuji et. al, dass die Lernenden im Rahmen die-

ses problematisierten Lernszenarios breit gefächerte sozial-kommunikative Kompetenzen

erwerben konnten [Ishii et al. 2010, S. 30].

[Problem solving skills: Pre-test: 17.9; Post-test: 18.6. t(77) = 2.131, p<.05],

[Troubleshooting skills: Pre-test: 15.2; Post-test: 15.9. t(77) = 2.612, p<.05] and

[Communication skills: Pre-test: 20.8; Post-test: 21.7. t(77) = 2.745, p<.01]).

Zwischenfazit

Die oben vorgestellten Forschungsergebnisse bestätigen meine Erfahrungen aus der Hoch-

schullehre bei der Verwendung von LEGO Mindstorms basierten Lernumgebungen zur

Vermittlung von Modellierungskompetenzen. Dies deutet darauf hin, dass ein derarti-

ges Lernszenario auch als Setting für die Evaluation des Messinstruments sinnvoll sein

könnte. Dementsprechend soll das Vorgehens- bzw. Vermittlungsmodell Modellierung &

Robotik bei der Planung der Unterrichtsreihe besondere Berücksichtigung �nden.

77



3.5. Zusammenfassung

Nachdem im vorherigen Kapitel der bildungspolitische Stellenwert von Standards und

Kompetenzen deutlich gemacht wurde, hatte dieses Kapitel das Ziel, die Wichtigkeit

der objektorientierten Modellierung für die Fachwissenschaft und Fachdidaktik hervor-

zuheben. In diesem Zusammenhang wurde zunächst der Modellbegri� in Anlehnung an

Stachowiak de�niert. Diese De�nition �ndet sowohl in Fachwissenschaft als auch in der

Fachdidaktik eine groÿe Beachtung. Insbesondere mit Blick auf die Zielsetzung der Ar-

beit, Facetten der Modellierungskompetenz zu de�nieren, erwies sich diese de�nitorische

Festlegung als passend, da nach Stachowiak die Modellbildung stets kontextualisiert und

mit einer konkreten (komplexen) Zielsetzung erfolgen soll. Im weiteren Verlauf des Kapi-

tels wurde die Wichtigkeit der objektorientieren Modellierung aus fachwissenschaftlicher

und fachdidaktischer Perspektive erläutert. Fachwissenschaftlich hat sich die Relevanz

der objektorientierten Modellierung insbesondere durch die zunehmende Etablierung der

modellgetriebenen Softwareentwicklung ergeben.

Aus fachdidaktischer Sicht ist die objektorientierte Modellierung ebenso ein wichtiger Be-

standteil der informatischen Bildung und erfüllt zudem gängige erziehungswissenschaft-

liche und informatikdidaktische Allgemeinbildungskriterien. Ferner hat dieser Themen-

bereich darüber hinaus das Potential, den Informatikunterricht an allgemeinbildenden

Schulen zu legitimieren.

Neben der De�nition, Fokussierung und Legitimation der Modellierung sollte dieses Ka-

pitel auch dazu dienen, die theoretische Grundlage für die weitere Forschungsarbeit zu-

grunde zu legen. Mit dem Ziel, ein Kompetenzstrukturmodell für die Modellierung zu

scha�en, wurde eine theoretische Basis als Orientierungspunkt zur Vorstrukturierung der

Dimensionen des Kompetenzmodells festgelegt. Hierbei haben sich informatische Vorge-

hensmodelle als sinnvolle strukturgebende Basis erwiesen. Aus fachwissenschaftlicher und

fachdidaktischer Sicht beschreiben diese Modelle Aktivitäten in wechselndem Kontext

und einer klaren Zielsetzung. Dieser theoretische Rahmen soll dementsprechend auch in

Übereinstimmung mit der zugrunde gelegten De�nition von Kompetenz [Weinert 2002]

als normativer Ausgangspunkt verwendet werden, um die Ableitung von Kompetenzen

in Kapitel 4 durchzuführen.

Als weitere Erkenntnis dieses Kapitels haben sich Vorgehensmodelle ebenso als theoreti-

sche Grundlage zur Entwicklung der Evaluations-Unterrichtsreihe des Kompetenzmessin-

struments herausgestellt. Gerade aufgrund der oben beschriebenen Modellcharakteristik

und den parallelen zum Weinert'schen Kompetenzverständnis soll dieser Modelltyp auch

für das Kapitel 7 theoretisch richtungsweisend sein.

78



Im weiteren Verlauf des Kapitels wurden konkrete Ansätze für Vorgehensmodelle in der

Softwaretechnik und in der Fachdidaktik aufgezeigt. Hierbei wurde zunächst ein Über-

blick über Vorgehensmodelle in der Softwaretechnik gegeben, ein Vergleich angestellt,

die Charakteristika der einzelnen Vorgehensmodelle herausgestellt und die zugrunde lie-

genden Vorgehensstrategien erläutert. Es wurde deutlich gemacht, welche Ein�üsse die

unterschiedlichen Modelle auf die Ableitung von Kompetenzen haben könnten und wel-

che als sinnvoll oder weniger sinnvoll erachtet wurden. Hierbei hat sich letztlich der

Rational Uni�ed Process als Grundlage für die Modellentwicklung in Kapitel 4 ergeben.

Die Begründung hierfür ist zusammenfassend die breite Etablierung des RUP, die hohe

Anpassbarkeit des Ansatzes und die Studien über dessen erfolgreichen Einsatz in der

Lehre.

Zur Auswahl einer theoretischen Grundlage für die Unterrichtsreihe zur Evaluation des

Messinstruments wurden unterschiedliche didaktische Vorgehens- und Vermittlungsmo-

delle für den Einstieg in die OO-Modellierung dargestellt und verglichen. Hierbei wurde

das Vorgehensmodell Modellierung & Robotik als theoretische Grundlage ausgewählt.

Die Begründung lieferten Studien über den erfolgreichen Einsatz in der informatischen

Bildung und die positiven Erfahrungen des Autors im Einsatz dieser Thematik in der

fachdidaktischen Hochschullehre.

Nachdem hiermit die theoretische Basis für die folgenden Kapitel gelegt wurde wird im

nächsten Kapitel die Entwicklung der Dimensionen und Komponenten des Kompetenz-

modells vorgestellt. Die Erkenntnisse dieses Kapitels sind maÿgeblich in die normativ-

theoretische Entwicklung des Kompetenzmodells einge�ossen.

79



4. Theoretische Entwicklung eines

Kompetenzstrukturmodells für

informatisches Modellieren

Im Folgenden wird die theoretische Ableitung von Kompetenzdimensionen des Struk-

turmodells und den jeweils aggregierten Kompetenzkomponenten beschrieben. Hierbei

wird die theoretische Fundierung der jeweiligen Kompetenzdimensionen dargelegt. In

diesem Zusammenhang sind die Erkenntnisse aus dem vorherigen Kapitel maÿgeblich in

die Kompetenzdimension K1 Aufgabenbereiche einge�ossen. Anhand des ausgewählten

Vorgehensmodell RUP sind die sog. Prozess Work�ows des RUP als Kompetenzkompo-

nenten der Dimension K1.3 Systemgestaltung einge�ossen.

Weiterhin gibt das Kapitel einen Einblick in die di�erenzierte theoretische Ableitung von

Kompetenzkomponenten der einzelnen Dimensionen K1 Aufgabenbereiche, K2 Nutzung

informatischer Sichten, K3 Umgang mit Komplexität und K4 Nicht-kognitive Kompeten-

zen. Hierbei liegt der Fokus auf den Kompetenzen, die die objektorientierte Modellierung

adressieren.

Das in der vorliegenden Arbeit vorgestellte Kompetenzrahmenmodell wurde mit der Ziel-

setzung entwickelt, fachwissenschaftlich, fachdidaktisch und psychologisch fundierte Ka-

tegorien für die Operationalisierung von informatischer Modellierungskompetenz und in-

formatischem Systemverständnis zu gewinnen [Nelles et al. 2009]. Auf Grundlage dieses

Kapitels soll in einem weiteren Arbeitsschritt die empirische Bestimmung von Kompe-

tenzaspekten durch Expertenbefragungen (siehe Kapitel 5) statt�nden.

80



Abbildung 4.1.: Kapitel 4 im Gesamtkontext der Arbeit

81



4.1. Entwicklung der Kompetenzdimensionen

1Das vorliegende Kompetenzrahmenmodell für informatisches Modellieren und System-

verständnis ist in Anlehnung an andere Rahmenmodelle der empirischen Bildungsfor-

schung [Schaper und Hochholdinger 2006] folgendermaÿen strukturiert:

Zunächst wird inhaltlich auf einer übergeordneten Ebene zwischen vier Kompetenzdi-

mensionen unterschieden: (Aufgabenbereiche(K1)2, Nutzung informatischer Sichten (K2),

Anforderungen an den Umgang mit Komplexität (K3) und nicht-kognitive Kompetenzen

(K4)), die auf weiteren Ebenen durch verschiedene Kompetenzfacetten oder -komponenten

inhaltlich di�erenziert werden. Zwei der Kompetenzdimensionen sind darüber hinaus

durch unterschiedliche Stufen bzw. Niveaus der Wissensnutzung charakterisiert. Zunächst

werden diese Kompetenzstufen vorgestellt, bevor di�erenzierter auf die Kompetenzdimen-

sionen eingegangen wird.

Kompetenzen beziehen sich auf Anforderungssituationen, in denen problemlösend gehan-

delt werden muss und zu deren e�ektiver Bewältigung Kenntnisse, Strategien, Fähigkei-

ten und Einstellungen erforderlich sind. Um die im Modell erfassten Kompetenzanfor-

derungen zu veranschaulichen, soll bei der theoriegeleiteten Beschreibung der Kompe-

tenzdimensionen und -stufen auf ein exemplarisches Aufgabenszenario Bezug genommen

werden. Basierend auf dem hier entwickelten Rahmenmodell erfolgt unter anderem mit

Hilfe dieses Aufgabenszenarios die empirische Verfeinerung der jeweiligen Kompetenzdi-

mensionen und -komponenten. In diesem Zusammenhang kommt ein Interviewverfahren

zum Einsatz, das sich methodischer an der Critical Incident Technique orientiert. Hierbei

wird hauptsächlich ermittelt, wie die Probanden in kompetenzrelevanten Anwendungs-

szenarien problemlösend handeln und welche Kompetenzen hierfür erforderlich sind.

Das Szenario Chatsystem soll in diesem Kapitel nur zur Veranschaulichung der normativ-

theoretischen Ableitung von Kompetenzen verwendet werden. Die ausführlichere Be-

schreibung der einzelnen Interviewszenarien erfolgt in Kapitel 5:

Sie erhalten den Auftrag, ein verteiltes Chatsystem zu entwickeln. Im Rah-

men der Designphase sollen Sie die potenziellen Programmmodule (Klassen)

jeweils dem Client oder Server zuordnen. Zudem erhalten Sie als Projektlei-

ter die Aufgabe, nach Abschluss der Analyse- und Designphase, eine zeitlich

parallele Implementierung von Client- und Server-Softwarekomponenten in

1Das Kapitel 4.1 enthält die für die Modellierungskompetenz relevanten Anteile aus der eigenen Veröf-
fentlichung [Nelles et al. 2009].

2Die Bezeichnung Aufgabenbereiche wurde in der späteren Verfeinerung des Modells auÿerhalb die-
ser Dissertation nicht mehr verwendet. Hier hat eine Optimierung der Terminologie im Sinne des
Weinert'schen Kompetenzverständnis stattgefunden.

82



Projektgruppen zu koordinieren.

4.1.1. Kompetenzstufung

Die ersten beiden Dimensionen K1 Aufgabenbereiche und K2 Nutzung informatischer

Sichten sind hinsichtlich der Kompetenzausprägungen gestuft, wobei diese Stufung den

Anforderungsbereichen I, II und III der Einheitlichen Prüfungsanforderungen in der

Abiturprüfung (EPA) im Fach Informatik entspricht [KMK (Hrsg) 2004]. Die Stufen

Wissen, Anwenden und Gestalten lassen sich wie folgt charakterisieren:

Auf der Kompetenzstufe Wissen sind Lernende zur Wiedergabe bekannter Sachverhalte,

zur Beschreibung und Darstellung bekannter Verfahren, Methoden und Prinzipien der In-

formatik imstande, während sie auf der Kompetenzstufe Anwenden bereits befähigt sind,

selbständig bekannte Sachverhalte zur Bearbeitung unbekannter Frage- und Problemstel-

lungen zu verwenden und bekannte Verfahren, Methoden und Prinzipien der Informatik

zur Lösung einer Aufgabe aus einem neuen Problemkreis anzuwenden. Lernende auf der

Kompetenzstufe Gestalten tre�en eine bewusste und selbständige Auswahl geeigneter

Methoden und Verfahren in für sie neuartigen und komplexen Problemsituationen.

4.1.2. K1 Aufgabenbereiche

Im Hinblick auf die geforderte aufgaben- und anforderungsbezogene Ausrichtung von

Kompetenzmodellen werden im Rahmen der ersten Kompetenzdimension verschiedene

Grundanforderungen bzw. -kompetenzen in Bezug auf informatisches Modellieren und

informatisches Systemverständnis beschrieben. Diese beziehen sich auf die Anwendung

von Informatiksystemen, Systemverständnis und den Prozess der Systemgestaltung als

Kompetenzkomponenten. Die Kompetenzstufung Wissen, Anwenden und Gestalten be-

zieht sich auf alle drei Kompetenzkomponenten, jedoch soll sie in diesem Zusammenhang

lediglich an der Kompetenzkomponente Systemverständnis exemplarisch erörtert werden.

Die Komponente System anwenden repräsentiert die Befähigung zur Anwendung eines

Informatiksystems. Dazu gehören Auswahl geeigneter Anwendungsprogramme als Werk-

zeuge, Zielgerichtetheit sowie Angemessenheit der Eingaben und der Reaktion auf Aus-

gaben des Rechners. Ein Chatsystem soll beispielsweise als Lernmedium bewusst ange-

wendet werden können. Es eignet sich für die synchrone Kommunikation der Lernenden

untereinander sowie für die Kommunikation mit Lehrenden. Bei geeigneter Speicherung

der Beiträge wird darüber hinaus asynchrone Kommunikation unterstützt. Da Beiträ-

ge parallel abgesendet werden können, entstehen jedoch häu�g Missverständnisse, die

auf die Positionierung der Beiträge zurückzuführen sind. Wissen um Möglichkeiten und

83



Grenzen von Informatiksystemen ist deswegen notwendig. Grundlage dafür ist eine infor-

matische Bildung, aber auch (Bedien-)Fertigkeiten. Entmysti�zierung des Rechners und

Abwendung des Gefühls des �Ausgeliefertseins� gegenüber technischen Systemen sind

zu erreichen. Dafür ist die bewusste Anwendung mit typischen Informatiksystemen von

den Lernenden gefordert. Dabei ist zwischen Anwendungssoftware und Systemsoftware

zu unterscheiden [GI 2008], und es sind immer auch grundlegende Prinzipien der Funk-

tionsweise zu behandeln, indem möglichst viele Arten von Fehlfunktionen thematisiert

werden. Innerhalb der Komponente Systemverständnis wird ein Verstehen der jeweiligen

Bestandteile eines Informatiksystems und der zugrunde liegenden informatischen Prinzi-

pien adressiert. Für Informatiksystemverständnis sind die Analyse der inneren Struktur

und des nach auÿen sichtbaren Verhaltens von Informatiksystemen notwendig [Schubert

und Stechert 2007]. Ziel ist die Vermeidung von Versuch-Irrtum-Strategien. Anforderun-

gen an Lernende zur Erlangung des Informatiksystemverständnisses können das systema-

tische Erkunden und Experimentieren mit Informatiksystemen beinhalten. Solche Vorge-

hensweisen können bei geeigneter Reduktion und Gestaltung in Anlehnung an Methoden

der Fachwissenschaft umgesetzt werden. Experimente, in denen die Lernenden selbstän-

dig Hypothesen formulieren, unterstützen die Kombination der Perspektiven Auÿensicht

und Innensicht. Hierbei sind Lernende beispielsweise gefordert, funktionale Modelle zu

nutzen, um das beobachtete Verhalten des Systems zu formalisieren. Auÿerdem werden

hierdurch fundamentale Ideen und Strukturmodelle identi�ziert. Ziel ist es, dass die Ler-

nenden verstehen, wie die innere Struktur das Systemverhalten beein�usst und warum

sie in der Entwurfsphase gewählt wurde. Durch systematisches Testen kann das System-

verhalten analysiert werden. Ist der Quelltext gegeben, so können Lernende im Sinne

eines Whitebox-Tests das Systemverhalten auf Ursachen untersuchen. Das Systemverhal-

ten kann klassi�ziert werden, während im Quelltext besonders wichtige Stellen variiert

werden. Exemplarisch werden im Folgenden Lernziele zu den drei Anforderungsstufen

formuliert.

Für die Stufe Reproduktion von Wissen bedeutet dies, dass die Lernenden befähigt wer-

den müssen, Funktionsweise und Aufbau bekannter Informatiksysteme zu beschreiben

[Magenheim 2005], z.B. des Chatsystems mit Client-Server-Architektur.

Auf dem Niveau der Anwendung müssen Lernende in der Lage sein, die bekannte Vorge-

hensweise des systematischen Testens auf ähnliche Informatiksysteme aus einem bekann-

ten Bereich einzusetzen, z.B. Unterschiede zwischen Instant Messaging oder webbasierten

Chaträumen.

Zu der Stufe des Gestaltens ist im Kontext des Systemverständnisses das bewusste und

selbstständige systematische Testen unbekannter Informatiksysteme zu zählen. Dabei

84



sind die gelernten Vorgehensweisen zur Bewältigung der Aufgabe selbstständig auszu-

wählen und an das unbekannte Informatiksystem und den Kontext anzupassen, z.B. das

Chatmodul einer Lernplattform.

Die Kompetenzkomponente Systemgestaltung soll eine Befähigung zur Konstruktion und

zum Reengineering von Informatiksystemen widerspiegeln. Sie untergliedert sich in die

Phasen der Systemgestaltung in Anlehnung an den Rational Uni�ed Process (RUP) [Ra-

tional Software Corporation IBM. 1998]. Dieser stellt, wie in Kapitel 3 erläutert, einen

möglichen Ansatz (neben anderen) dar, um viele in der Software-Engineering-Praxis er-

folgreich eingesetzte Vorgehensweisen und Modellierungstechniken in einem umfassenden

Prozess zu integrieren. Die Unterkomponenten von Systemgestaltung spiegeln die sog.

Prozess-Work�ows des RUP wider. Hierbei werden sowohl die Abläufe von Aktivitä-

ten als auch die Interaktion zwischen relevanten Personen (Entwicklern, Auftraggebern

und Benutzern) beschrieben. Bei der Entwicklung eines Chatsystems können Lernende

und Lehrende diese Rollen im Rahmen der Projektarbeit einnehmen. Es muss geklärt

werden, welche Kenntnisse und Fähigkeiten zum Design des Client-Server-Systems not-

wendig sind. Weiterhin muss entschieden werden, welche Modellierungstechnik, z.B. der

Uni�ed Modeling Language (UML), während eines bestimmten Arbeitsablaufs zum Ein-

satz kommt. Die Ableitung von Kompetenzkomponenten auf der Grundlage der Prozess-

Work�ows ist dadurch begründet, dass der RUP ein umfassendes Prozess-Framework zur

Verfügung stellt, welches es für das jeweilige Einsatzszenario anzupassen gilt.

Abbildung 4.2.: K1 Aufgabenbereiche

85



4.1.3. K2 Nutzung informatischer Sichten

Zur Bewältigung von Aufgaben bzw. Anforderungen der Systemanwendung, des System-

verständnisses und der Systemgestaltung ist es auÿerdem erforderlich, dass die Lernenden

befähigt werden, Informatiksysteme aus unterschiedlichen Perspektiven zu betrachten.

Damit ist nicht nur der Erwerb unterschiedlicher Wissensbestände zur Systembeschrei-

bung und -analyse, sondern auch die Befähigung zum �exiblen Wechseln zwischen diesen

Sichtweisen � je nach Aufgabenanforderung � impliziert.

Informatische Bildung mit einem Schwerpunkt auf informatischem Modellieren und Sys-

temverständnis sollte daher auch die kognitive Flexibilität der Lernenden im Umgang

mit solchen Systemen fördern.

Informatiksysteme können z.B. anhand ihres nach auÿen sichtbaren Verhaltens, ihrer in-

neren Struktur analysiert werden. Denning beschreibt hierzu fünf Perspektiven auf die

Informatik (windows of computing mechanics). Diese erweitert er zu sieben Kategori-

en der Informatik: computation, communication, coordination, automation, recollection,

evaluation und design [Denning 2007]. Denning setzt die Kategorien mit den Hauptfunk-

tionen von Informatiksystemen in Verbindung:

�These categories cover the main functions of computing systems [Denning

2007, S. 15].�

Damit wird implizit eine Antwort auf die Frage geliefert, welche Sichten Lernende auf

Informatiksysteme einnehmen können und müssen, um ein konsistentes Gesamtbild von

Informatiksystemen zu bekommen. Nach Denning können die Perspektiven auf die Infor-

matik mit einem fachdidaktischen Sichtenkonzept kombiniert werden. Dementsprechend

sollte der zu explorierende Lerngegenstand in unterschiedlichen, ggf. interaktiv erfahr-

baren und synchronisierten Sichten dargestellt werden. So ist eine zuverlässige Daten-

übertragung im Chatsystem, wie sie unter der Perspektive der Kommunikation (com-

munication) analysiert wird, unabdingbar für die Kommunikation der Chatteilnehmer,

während bei der digitalen Sprachübertragung einzelne Bitfehler toleriert werden können.

Diesbezüglich kann der Entwurf (design) des Chatsystems untersucht werden. Die Neben-

läu�gkeit von Prozessen bzw. von eingegebenen Nachrichten in das Chatsystem können

im Rahmen der Koordinierung (coordination)betrachtet werden. Die Sichten überschnei-

den sich jedoch. Dies wird dadurch verstärkt, dass in jeder Sicht mehrere Modelle und

Darstellungsformen zur Hervorhebung eines Aspektes zum Einsatz kommen, die wieder-

um auch für andere Perspektiven genutzt werden. Daher sind die Sichten schwierig zu

synchronisieren und bedürfen einer weiteren Strukturierung. Ausgehend von diesen Per-

spektiven lautet die Frage, welche und ggf. wie viele Perspektiven auf Informatiksysteme

86



zu beherrschen sind, um bei deren Einsatz Anwendungsprobleme zu lösen. Nievergelt

erstellt dazu ein Schichtenmodell der Informatik: den Informatikturm. Als oberste und

gröÿte Ebene nennt er die Anwendungsmethodik, die beschreibt, wie Informatiksysteme

zur Lösung eines Anwendungsproblems eingesetzt werden. Darunter liegt die Ebene der

Systemrealisierung mit Entwurf und Implementierung in Hard- und Software. Nievergelt

zählt zu dieser Ebene das Programmieren im Groÿen. Eine weitere Ebene tiefer liegt

die Algorithmik, d. h. das Programmieren im Kleinen. Auf der untersten Ebene liegen

fundamentale theoretische Erkenntnisse der Informatik [Nievergelt 1995].

Zur Strukturierung der Perspektiven wurde beschlossen, den Blick auf das System (Au-

ÿensicht) und den Blick in das System (Innensicht) zu unterscheiden. Um das nach au-

ÿen sichtbare Verhalten von Informatiksystemen zu verstehen, seien als Beispiele Erwar-

tungshaltungen und Handlungsmuster der Nutzer sowie Usability angeführt. Brauer und

Brauer fordern mit Blick auf komplexe Informatiksysteme die Informatik auf, vernetztes

Denken und Handeln mit zu gestalten:

�Ja, es wird immer klarer, daÿ sequentielle geschlossene Systeme sehr gro-

be Idealisierungen darstellen, daÿ aber konkrete Systeme i. a. verteilt, o�en

(interaktiv) und nichtsequentiell sind. Deshalb ist die Änderung der Denk-

gewohnheiten nötig; vernetztes, nicht länger sequentielles Denken wird ge-

braucht [Brauer und Brauer 1992, S. 17].�

Es ist daher notwendig, Lernende im Umgang mit Perspektiven zu befähigen; diese Per-

spektiven lassen die Verteilung der Systemkomponenten und deren Vernetzung erken-

nen. Für den Blick in das System können deshalb Architekturmodelle betrachtet werden,

denn sie verdeutlichen Aufbau und grundsätzliche Arbeitsweise von Informatiksystemen.

Darunter fallen Rechnerarchitekturen wie Entwurfsmuster oder Schichten, z.B. eine 3-

Schichten-Architektur bestehend aus Graphical User Interface (GUI), Fachkonzept und

Datenhaltung. Dazu kommen theoretische Maschinenmodelle und Rechenmodelle, z.B.

Kalküle und Sprachtypen wie imperativ, funktional, prädikativ, objektorientiert sowie

entsprechende höhere Programmiersprachen mit Algorithmen und Datenstrukturen.

Ausgehend vom fachdidaktischen Konzept der fundamentalen Ideen der Informatik kön-

nen Wirkprinzipen in Informatiksystemen bei gleichzeitiger Sicherung des Bildungswertes

beschrieben werden [Schubert und Schwill 2004]. Der Erfolg der Förderung des Informa-

tiksystemverständnisses hängt davon ab, ob es gelingt, komplexe Zusammenhänge, wie

sie zwischen der inneren Struktur und dem Verhalten von Informatiksystemen bestehen,

zu strukturieren, um Aneignung und Anwendung des Wissens zu unterstützen. Solche

Wissensorganisation fördert den Erwerb, die Kommunikation über den Wissensbereich

87



und die Anwendung des Wissens.

Ausschlaggebend hierfür ist die Visualisierung als externe Repräsentationsform. Gra�sche

Beschreibungsmittel wie die UML ermöglichen daher weitere Perspektiven auf Informa-

tiksysteme und unterstützen das Verstehen. Analog zu K1 können die Lernzielebenen

Wissen, Anwenden und Gestalten adressiert werden. Da Chatsysteme sowohl synchrone

als auch asynchrone Kommunikation unterstützen, hängt die Erwartungshaltung als Au-

ÿensicht im hohen Maÿe von den Zielen des Anwenders im Umgang mit der Software ab

(z.B. Freizeit, Lernprozess usw.). Bei der Entwicklung eines verteilten Chatsystems sind

einige der beschriebenen Innensichten relevant: Bei der Zuordnung von Programmkompo-

nenten zu Client und Server ist es beispielsweise unabdingbar, sich mit der Architektur

(z.B. Client/Server-Prinzip) zu beschäftigen. Ferner muss man sich mit Aspekten der

Verteilung und Vernetzung von Komponenten befassen, um das zu entwickelnde Chat-

system später auf verschiedenen verteilten Rechnern einsetzen zu können. Verfolgt man in

einem weiteren Schritt die Implementierung von Programmmodulen, wird deutlich, dass

man sich mit Kalkülen und Sprachtypen befassen muss. Hierbei müssen sich Entwickler

notwendigerweise mit Algorithmen und Datenstrukturen beschäftigen.

Abbildung 4.3.: K2 - Nutzung informatischer Sichten

88



4.1.4. K3 Anforderungen an den Umgang mit Komplexität

Anforderungen an informatische Kompetenzen werden auch durch die Komplexität der

Systeme, die jeweils thematisiert oder verwendet werden, determiniert. Die Frage, die

sich in diesem Zusammenhang stellt, ist allerdings, welche Faktoren die Komplexität

eines Informatiksystems ausmachen. Ein einfaches Kriterium ist die Anzahl an Kom-

ponenten eines Systems. Hinsichtlich eines Chatsystems bedeutet dies, dass ein kleines

System beispielsweise zwei Clients und einen Server als Komponenten umfassen könn-

te. Damit gekoppelt ist der Grad der Vernetzung unterschiedlicher Komponenten, die in

Architekturmodellen beschrieben werden. Die Clients sind ausschlieÿlich über den Ser-

ver miteinander vernetzt. Komponenten und deren Vernetzung werden als Facetten zur

Beschreibung von Komplexitätsanforderungen herangezogen.

Brauer und Brauer weisen darauf hin, dass Algorithmen als formalisierbare Dimension

von Informatiksystemen nicht ausreichen, um Prozesse in Rechnern, parallele Prozes-

se oder verteilte Systeme in ihrer ganzen Komplexität zu erfassen [Brauer und Brauer

1992]. Menschen und Maschinen machen Eingaben in Informatiksystemen und beein�us-

sen damit die Systemzustände und den auf Protokollen basierenden Datenaustausch. Das

Systemverhalten ist damit im Detail kaum noch deterministisch nachvollziehbar.

Man spricht in diesem Zusammenhang auch von der Intransparenz komplexer Systeme.

Zur Messung des Interaktivitätsgrades eines Informatiksystems bietet sich eine Stufung

an, die nicht am Informatiksystem, sondern an den kognitiven Prozessen des Lernenden

orientiert ist. Ein Chatsystem ist beispielsweise geeignet, um schriftlich zu kommunizie-

ren, die Nutzung gra�scher Darstellungen zur Kommunikation wird jedoch meist nicht

unterstützt. Auch sind intelligente Systemrückmeldungen meist auf eine Rechtsschreib-

prüfung beschränkt.

Im Computing Curricula Information Technology der ACM wird Abstraktion als wich-

tigstes Mittel zur Komplexitätsbewältigung hervorgehoben und es werden weitere ge-

nannt:

�The ability to manage complexity through abstraction & modeling, best

practices, patterns, standards, and the use of appropriate tools [ACM 2008,

S. 47].�

Diese Konzepte liefern Hinweise, wie Lernende adäquat mit Komplexitätsanforderungen

bei Informatiksystemen umzugehen haben.

Auÿerdem nehmen wir an, dass auch der Grad der Verteilung von Systemkomponenten

(lokal versus verteilt) die Komplexitätsanforderungen determiniert. Die scheinbare Ab-

geschiedenheit eines Chatraums täuscht unerfahrenen Anwendern vor, dass es sich um

89



ein lokales statt verteiltes System handelt.

Abbildung 4.4.: K3 - Anforderungen an den Umgang mit Komplexität

4.1.5. K4 Nicht-kognitive Kompetenzen

In Anlehnung an das Kompetenzverständnis nach Weinert umfassen Kompetenzen ne-

ben kognitiven Bereichen auch nicht kognitive Kompetenzen, wie Einstellungen, sozial-

kommunikative Fähigkeiten und motivationale und willensmäÿige Fähigkeiten [Weinert

2002]. Dementsprechend wird in diesem Unterkapitel erläutert, in welcher Art und in

welchem Ausmaÿ nicht-kognitive Kompetenzfacetten beim informatischen Modellieren

und informatischem Systemverständnis gefordert bzw. zu entwickeln sind.

Die Erwartungshaltungen an den Umgang mit einem Informatiksystem sind insofern

relevant, weil sie einen wesentlichen Bedingungsfaktor für das erfolgreiche Gelingen des

Lernens informatischer Inhaltsbereiche darstellen.

Als wichtige Fähigkeit sind sowohl die Wahrnehmung eines Informatiksystems im sozialen

Kontext als auch die Entwicklung eines prospektiven Blicks auf das System gefordert.

Die Wichtigkeit, Informatiksysteme im Kontext wahrnehmen und antizipieren zu können,

wird bei Betrachtung des soziotechnischen Systembegri� und den sich daraus ergeben-

den Implikationen für die Betrachtung von Informatiksystemen deutlich [ACM 2008].

Im Rahmen der arbeitspsychologischen Expertiseforschung wurde untersucht [Sonnentag

2006], worin sich High-Perfomer von Medium-Performern im Bereich Software-Design

90



und -entwicklung unterscheiden. Die Ergebnisse weisen darauf hin, dass High-Perfomer

im Vergleich zu Medium-Perfomern über eine bessere Kommunikation und Kooperation

verfügen, sie ferner nicht mehr Zeit auf die fachspezi�schen Tätigkeiten der Softwareent-

wicklung aufwenden, sehr wohl aber engagierter während Projekttre�en und Konsulta-

tionen sind. High-Performer verfügen auÿerdem über höher entwickelte interpersonale

Fähigkeiten als Medium-Performer.

Sozial-kommunikative Fähigkeiten und Kooperationsbereitschaft stellen folglich bedeut-

same Kompetenzanforderungen in der Informatikdomäne (insbesondere unter Berück-

sichtigung des sozio-technischen Systembegri�) dar. Hierbei muss die Teamfähigkeit der

Lernenden entwickelt werden, um vielfältige sozial-kommunikative Anforderungen, z.B.

bei der kooperativen Systemgestaltung, bewältigen zu können. Die Lernenden sollten

ebenfalls die Fähigkeit zum Perspektivwechsel (Empathie) entwickeln, um etwaige Rol-

len (z.B. Benutzer, Entwickler, Auftraggeber) und die jeweiligen subjektiven Sichten auf

das Informatiksystem nachvollziehen und deuten zu können. Dabei ist zu beachten, dass

es sehr unterschiedliche und dennoch schlüssige Sichten auf ein Informatiksystem geben

kann. Die Wichtigkeit, ein derartiges Einfühlungsvermögen zu entwickeln, wird somit

o�ensichtlich.

Neben Einstellungen und sozial-kommunikativen Fähigkeiten müssen bei den Lernenden

entsprechende motivationale und volitionale Fähigkeiten entwickelt werden. Diese sind

eng mit Prozessen der Selbstregulation verknüpft und stellen die Vorbedingung zu selb-

ständigem Handeln und dem entschlossenen und gewissenhaften Verfolgen der eigenen

Ziele dar. Der Grad der Motivation spiegelt eine wesentliche Facette der Handlungs-

kompetenz in diesem Kontext wider. Daher gilt es, eine O�enheit für neue Ideen und

Anforderungen zu fördern. Darüber hinaus soll die Bereitschaft zu lernen und sich zu en-

gagieren gestärkt werden. Motivationale Kompetenzen befähigen die Lernenden dazu, ihr

Wissen in komplexen Situationen erfolgreich und verantwortungsvoll anwenden zu kön-

nen. Ferner sind sie entscheidend dafür, dass die Lernenden ihre Kompetenzen bezüglich

des informatischen Modellierens und Systemverständnisses auf einer hohen Ausprägungs-

stufe entwickeln.

Mit Blick auf das oben beschriebene Aufgabenszenario zeigt sich, inwiefern die Erwar-

tungshaltung von Entwicklern Ein�uss auf ein e�ektives Implementieren hat: Sollen die

Lernenden sich beispielsweise in eine objektorientierte Programmiersprache einarbeiten,

so ist eine ablehnende Haltung diesem Sprachtyp gegenüber sicherlich als erschwerend ein-

zustufen. Eine positive Einstellung hingegen wird der e�ektiven Einarbeitung förderlich

sein. Auch die sozial-kommunikativen Fähigkeiten sind von Relevanz: Eine zeitgleiche

Implementierung von Programmmodulen kann nur dann statt�nden, wenn eine ange-

91



messene Kommunikation in und zwischen den verschiedenen Entwicklergruppen erfolgt.

Hierbei müssen beispielsweise Absprachen über Schnittstellen getro�en werden. Auÿer-

dem wird von Softwareentwicklern Empathie erwartet, um das Nutzerverhalten eines zu

implementierenden Informatiksystems zu antizipieren. In Bezug auf das Beispielszenario

ist es demnach wichtig, sich in die Rolle des Benutzers hineinzuversetzen und dessen künf-

tiges Verhalten im Umgang mit dem Chatsystem in Entwurfsentscheidungen (z.B. bei der

Entwicklung der Benutzungsschnittstelle) mit einzubeziehen. Im Rahmen eines solchen

arbeitsaufwändigen Projektes im Team ist sowohl zielorientiertes, frustrationstolerantes

und verantwortungsvolles Verhalten als auch die Bereitschaft, neues, nicht vorhandenes

Fachwissen selbständig zu erwerben, von erfolgsrelevanter Bedeutung.

In Anbetracht dieser theoretischen Überlegungen ergeben sich wichtige Implikationen

bei der Analyse und im Umgang mit Informatiksystemen: Während man die technischen

Aspekte eines Informatiksystems betrachtet (z.B. Hard- und Software), gilt es, dessen

soziale Aspekte und Auswirkungen mit in die Betrachtung einzubeziehen.

Abbildung 4.5.: K4 - Nicht-kognitive Kompetenzen

Die Dimensionen K1 bis K4 setzen sich zu einem theoretisch abgeleiteten Rahmenmodell

(Kompetenzstrukturmodell) zusammen.

92



Abbildung 4.6.: Theoretisch Hergeleitetes Rahmenmodell

93



4.2. Förderung von Schlüsselkompetenzen

3Neben der Ableitung informatik-spezi�scher Kompetenzaspekte im Rahmenmodell, be-

stand der Anspruch, allgemeinbildende Schlüsselkompetenzen mit zu berücksichtigen.

Dementsprechend wurde theoretisch untersucht, inwiefern sich die im Kompetenzrah-

menmodell enthaltenen fachspezi�schen Kompetenzaspekte zur Förderung von Schlüs-

selkompetenzen (in Anlehnung an OECD De�nition and Selection of Competencies) eig-

nen. Im Rahmen der vorliegenden Arbeit soll hierbei der Fokus auf die informatische

Modellierungskompetenz und deren möglicher Zuordnung zu Schlüsselkompetenzen ge-

legt werden.

4.2.1. Allgemeinbildender Wert des Informatikunterrichts an Gymnasien

der Sekundarstufe II

Aufgrund seines Ursprungs innerhalb der Ingenieurwissenschaften ist Informatik das

wichtigste und geeignetste Fach, um IT-relevante Kompetenzen im Rahmen der Sekun-

darstufe zu vermitteln. Insbesondere im Hinblick auf die ständig wachsende Relevanz

der IT im schulischen, privaten und beru�ichen Alltag gilt es, im Rahmen des Infor-

matikunterrichts an allgemeinbildenden Schulen, den Umgang mit dieser Technologie in

verschiedenen sozialen Umgebungen zu vermitteln.

Um einen genaueren Einblick in die damit verbundenen Lehr- und Lernziele, Unterrichts-

inhalte und die Methodik der Vermittlung zu erhalten, ist es hilfreich, den Begri� des

Informatiksystems im Sinne der systemtheoretischen Didaktik der Informatik in Pader-

born zu de�nieren:

�Unter Soziotechnischen Informatiksystemen (IS) verstehen wir die Vereini-

gung von Software (inkl. der gra�schen Benutzerober�äche GUI), Hardware

und eines assoziierten sozialen Systems von Personen die miteinander und mit

dem technischen Part des Informatiksystems interagieren [Magenheim 2000,

S. 42].�

Dieser Begri� hat seinen Ursprung sowohl in der Informatik als auch in der technischen

Soziologie [Ropohl 1999].

Insbesondere im Rahmen von Software Engineering Prozessen, ist die Modellierung ein

Prozess mit hohem kommunikativen und interaktiven Anteil, der eine intensive Zusam-

menarbeit zwischen Entwicklern und Kunden bzw. Auftraggebern erfordert. Hierbei kre-

3Das Kapitel 4.2 enthält die für die Modellierungskompetenz relevanten Anteile aus der eigenen Veröf-
fentlichung [Kollee et al. 2009].

94



ieren Software-Entwickler Modelle, die einen prospektiven Blick auf die künftige Sys-

temfunktionalität eines Informatiksystems gewähren. Ferner wird deren Integration in

die Geschäfts- und Arbeitsdomäne sowie in den jeweiligen sozialen Kontext aufgezeigt

[ACM 2008].

Damit der Informatikunterricht allgemeinbildende Kompetenzen vermitteln kann, sollte

die Modellierung innerhalb von Software Engineering Prozessen als ein zentrales The-

ma behandelt werden. Da es sich bei der Gestaltung von Informatiksystemen um eine

Tätigkeit handelt, die von vielen sozialen Faktoren abhängig ist, muss der Lerner ein

Prozessverständnis entwickeln. Dies umfasst insbesondere die Interessen verschiedener

kooperierender Stakeholder (Entwickler, Benutzer und Auftraggeber), deren Ziele und

Absichten sowie die daraus resultierenden Designentscheidungen im Hinblick auf das In-

formatiksystem [ACM 2008].

Indem man diese mit dem Prozess der Modellierung verknüpften sozialen Aspekte und

Folgewirkungen bewusst thematisiert, kann der Informatikunterricht einen Beitrag zur

Entwicklung von Schlüsselkompetenzen (z.B. die interaktive Nutzung von technischen

Systemen) leisten. Ein derartiger Unterricht bietet im Hinblick auf Klafkis epochalty-

pische Probleme einen allgemeinbildenden Wert: Nach Klafki ist der zu vermittelnde

Lerninhalt im Hinblick auf seine Vergangenheits-, Gegenwarts- und Zukunftsrelevanz zu

legitimieren. Dies geschieht im Hinblick auf die Modellierung im Kontext von Software

Engineering Prozessen durch die Thematisierung von epochaltypischer Probleme, z.B.

sozialer Folgewirkungen von Designentscheidungen [Horton 2007].

4.2.2. DESECO-Schlüsselkompetenzen

Aufgrund der stetig steigenden Anforderungen im Alltag, den globalen Märkten und dem

sog. Informationszeitalters sind Schlüsselkompetenzen von fundamentaler Bedeutung für

jedes Individuum. Schlüsselkompetenzen sind in diesem Zusammenhang mehr als Wissen

und Fähigkeiten. Sie umfassen komplexe psychologische Anforderungen und sollen es

dem Individuum ermöglichen, den unterschiedlichen Anforderungen als Mitglied einer

modernen Gesellschaft gerecht zu werden. Schlüsselkompetenzen können erlernt werden

und können als wichtige Bereiche der Allgemeinbildung verstanden werden [OECD 2005].

95



Abbildung 4.7.: DESECO Schlüsselkompetenzen

Eine mögliche Kategorisierung von Schlüsselkompetenzen wird im Ansatz des OECD Pro-

jekts De�nition and Selection of Competencies (DeSeCo) vorgeschlagen. Hierbei werden

Schlüsselkompetenzen in drei Gruppen kategorisiert [OECD 2005]:

• Using Tools Interactively

Diese Gruppe umfasst Kompetenzen, die es einem Individuum ermöglichen Sprache

und Symbole, Wissen und Information sowie Technologie interaktiv verwenden zu

können. Der interaktive Umgang mit Technik erfordert Wissen und ein Bewusstsein,

wie die zeitgemäÿe Nutzung von Technologie und deren Integration in den Alltag

eines Individuums geschieht.

Fördert man eine derartige interaktive Nutzung von IT hat dies Auswirkungen auf

die Art und Weise, wie Individuen (z.B. ortsunabhängig mit Hilfe von IT) miteinan-

der arbeiten, sich Zugang zu umfassenden Informationsressourcen verscha�en und

miteinander interagieren, indem globale IT-gestützte soziale Netzwerke aufgespannt

werden. Die interaktive Nutzung von IT bietet die Chance, benachteiligte Personen

nicht auszuschlieÿen und die geschlechtliche Gleichbehandlung zu gewährleisten.

• Interacting in Heterogeneous Groups

Dieser Bereich umfasst Schlüsselkompetenzen, die eng mit sozialen, interpersonalen

Fähigkeiten und Fertigkeiten verknüpft sind. Dementsprechend ermöglichen derar-

tige Kompetenzen die Integration eines Individuums in pluralistischen Gesellschaf-

ten und den Umgamg und die Bewältigung komplexer Anforderungen. Diese umfas-

sen den sozial-konformen Umgang mit Mitmenschen, Kooperation und Teamarbeit

96



sowie eine soziale Kon�iktfähigkeit. Der sozial-konforme Umgang mit Mitmenschen

bedeutet die Fähigkeit, soziale Bindungen zu Mitmenschen � unabhängig von ver-

schiedenen Berufen, Karrieren und anderen sozialen Hintergründen � zu knüpfen,

diese aufrecht zu erhalten und mit selbigen umzugehen. Somit wird es Individuen

ermöglicht, angemessen miteinander zu kommunizieren und eine soziale Empathie

herauszubilden, um sich in den Mitmenschen und seine Perspektive auf einen Sach-

verhalt hineinzuversetzen.

• Acting Autonomously

Diese Kategorie besteht aus Schlüsselkompetenzen, die das Individuum befähigen,

in komplexen und verantwortungsvollen sozialen Kontexten zu agieren und soziale

Muster und Systeme zu verstehen. Ferner werden Individuen befähigt, explizite und

implizite Folgewirkungen des eigenen Handelns zu antizipieren. Folglich adressiert

diese Gruppe von Schlüsselkompetenzen die Entscheidungsfähigkeit und die Fä-

higkeit zur Übernahme von Verantwortung eines Individuums. Zusammenfassend

lässt sich feststellen, dass diese Art von Schlüsselkompetenzen entscheidend zur

Entwicklung von Selbstständigkeit und Arbeitsfähigkeit eines Individuums ist.

Im Hinblick auf die Entwicklung von adäquaten Lernumgebungen, die z.B. im Rahmen

des Informatikunterrichts der Sekundarstufe II an allgemeinbildenden Schulen zum Ein-

satz kommen, verdeutlicht der DeSeCo-Ansatz die Wichtigkeit, nicht nur fachspezi�sche

Fähigkeiten und Fertigkeiten zu vermitteln, sondern die Förderung von ganzheitlichen

Kompetenzen (also insbesondere auch nicht-kognitiven Kompetenzfacetten und Schlüs-

selkompetenzen) zu fokussieren.

4.2.3. Modellierungskompetenz und Schlüsselkompetenzen

Nachfolgend wird an zwei exemplarischen Kompetenzdimensionen des Rahmenmodells

der Zusammenhang zwischen den im Modell abgebildeten Kompetenzfacetten und den

oben beschriebenen Schlüsselkompetenzen illustriert. Hierbei soll im Sinne der theoreti-

schen Absicherung des Kompetenzstrukturmodells gezeigt werden, wie die Vermittlung

der im Modell enthaltenen Kompetenzen zur Entwicklung von Schlüsselkompetenzen bei-

tragen kann.

K1 Aufgabenbereiche

Die Lerner sollen verschiedene Aufgabenbereiche informatischer Kompetenz erlernen.

Diese können den Bereichen Systemanwendung, Systemverständnis und Systemgestaltung

zugeordnet werden.

97



Wie zuvor erwähnt, umfasst die Komponente Systemanwendung Kompetenzfacetten zur

Anwendung eines Informatiksystems. Sie ermöglichen dem Lerner, Technologie interaktiv

im Sinne einer der oben beschriebenen Schlüsselkompetenzen zu nutzen. Hierzu gilt es

seitens der Lerner ein Gespür herauszubilden, wie Technologie gewinnbringend in den

persönlichen Alltag eingebracht werden kann. Hierbei muss ein Einschätzungsvermögen

entwickelt werden, die Vorteile von Technologie abzuwägen, und selbiges entsprechend

der persönlichen Umstände und Ziele sinnvoll einzusetzen, anstatt diese ohne Bedacht

und Re�exion zu verwenden. Im Hinblick auf ein Informatiksystem kann dies bedeuten,

jenes bewusst für die persönlichen Zwecke einzusetzen (z.B. als Lernmedium).

Die Kompetenzkomponente Systemverständnis fokussiert das Verständnis der Elemen-

te eines Informatiksystems und der dahinterliegenden informatischen Prinzipien. Neben

der bewussten Anwendung von Informatiksystemen ist die Entwicklung derartiger Kom-

petenzen (wie in der Kompetendimension abgebildet) eine wichtige Voraussetzung, um

sich ein Informatiksystem sinnvoll zu Nutze zu machen und es interaktiv verwenden zu

können. Gerade um das persönliche Potential eines Informatiksystems einschätzen zu

können, ist es hilfreich deren Natur zu kennen.

Die für die Entwicklung von Informatiksystemen besonders relevante Komponente Sys-

temgestaltung repräsentiert das Vermögen, Informatiksysteme zu entwickeln und reverse

engineering zu betreiben. Wie bereits beschrieben, wurden die Unterkomponenten von

Systemgestaltung anhand der statischen Phasen des Rational Uni�ed Process [Rational

Software Corporation IBM. 1998] theoretisch abgeleitet. Hier handelt es sich um ein

mögliches Prozess-Framework, um viele bewährte Vorgehensweisen (best practices) im

Softwareengineering in einem umfassenden Prozess-Framework zu kapseln. Dieser wird

in vielen breit gestreuten Einsatzbereichen verwendet und lässt sich auf verschiedene

Anwendungsszenarien adaptieren.

Die Unterkomponenten orientieren sich an den sog. Process Work�ows des RUP. Die-

se beschreiben Abfolgen von diversen Aktivitäten innerhalb eines Software Engineering

Prozesses und die Kommunikation der Personen, die die Modellierung betreiben.

Der RUP orientiert sich an einem iterativen Vorgehen bei der Entwicklung von Informa-

tiksystemen und setzt auf komponentenbasierte Architekturen, die aus bereits bestehen-

den und neu entwickelten Komponenten bestehen.

Insbesondere im Bildungsbereich gilt es den RUP entsprechend der Komplexität von

Software Engineering Projekten im schulischen Umfeld und der Kompetenz der Lerner

anzupassen.

Wie im Verlauf des folgenden Unterkapitels beschrieben, ist die Fähigkeit ein Informa-

tiksystem zu entwickeln (z.B. bei der Modellierung der Architektur des Systems) eng mit

98



verschiedenen nicht-kognitiven Kompetenzen verknüpft. Diese können wiederum verschie-

denen Schlüsselkompetenzen entsprechend dem DeSeCo-Ansatz zugeordnet werden.

4.2.4. Nicht-kognitive Kompetenzen und Schlüsselkompetenzen

Die Kompetenzdimension fokussiert, wie zu Beginn des Kapitels beschrieben, die nicht

kognitiven Kompetenzen eines Lerners, d.h. seine Einstellung gegenüber dem Informa-

tiksystem, sozial-kommunikative und motivationale Kompetenzen.

Die Komponente Einstellung gegenüber dem Gegenstandsbereich umfasst die Art und

Weise, wie ein Lerner ein Informatiksystem wahrnimmt inklusive eines prospektiven

Blicks auf ein derartiges System. Ferner adressiert diese Komponente auch die Erwar-

tungshaltung des Lerners gegenüber dem Umgang mit einem Informatiksystem. Der er-

neute Bezug auf das Konzept eines sozio-technischen Informatiksystems und die sich

daraus ergebenden Implikationen im Umgang mit solchen Systemen, machen die Wich-

tigkeit deutlich, ein Informatiksystem im Kontext zu interpretieren und jenes während

des Modellierungsprozesses zu antizipieren.

Die Begründung für die Integration der Komponente Erwartungshaltung gegenüber ei-

nem IS ergibt sich aus einer empirischen Studie von Magenheim und Schulte, welche die

Wichtigkeit der Berücksichtigung der Erwartungshaltung der Lerner gegenüber dem In-

formatikunterricht betont. Somit lässt sich feststellen, dass die Erwartungshaltung bzw.

Einstellung gegenüber dem Gegenstandsbereich als grundlegende Bedingung für ein er-

folgreiches Lehren und Lernen zu verstehen ist [Magenheim und Schulte 2005]. Insbeson-

dere mit der Zielsetzung, die interaktive Nutzung von Werkzeugen (z.B. bei der Integrati-

on von IT in den Alltag) zu fördern, erfordert dies Kenntnis bzgl. der Erwartungshaltung

der Schüler gegenüber dem Gegenstandsbereich.

Wie zuvor erläutert, ist es wichtig, soziale Aspekte und Folgewirkungen in Betrachtung zu

ziehen, wenn man sich mit sozio-technischen Informatiksystemen befasst. Diese Perspek-

tive, die sich schon aus der De�nition des Begri�s Informatiksystem ergibt, akzentuiert

die Erfordernis von sozial-kommunikativen Kompetenzen wenn im Rahmen der Model-

lierung (z.B. im Rahmen der Phase Requirements) die unterschiedlichen Anforderungen

und Interessen der Beteiligten (Auftraggeber, Benutzer und Entwickler) analysiert wer-

den. Daraus lässt sich auÿerdem folgern, dass die Lerner die Fähigkeit entwickeln müssen,

als aktiver Part in einem sozialen Handlungssystemen (z.B. in einer kooperativen Ler-

numgebung oder im Rahmen der kooperativen Softwareentwicklung) zu interagieren.

Die Lerner müssen weiterhin eine Empathie entwickeln, die es ihnen ermöglicht, die oben

genannten Rollen innerhalb der Systemgestaltung und deren Perspektive auf das IS nach-

zuvollziehen. Nygaard postuliert, dass gerade jene höchst unterschiedlichen Perspektiven

99



auf ein IS durchaus kohärent und stimmig sein können [Nygaard 1986]. Dies zeigt die

enorme Wichtigkeit eine solche Empathie herauszubilden. Ein weiterer Aspekt, der die

Wichtigkeit von Empathie auch im schulischen Umfeld unterstreicht ist die Tatsache,

dass Schüler der Sekundarstufe II häu�g einen projektorientierten Informatikunterricht

durchlaufen. Hierbei agieren sie in einer Art Rollenspiel innerhalb der relevanten Rollen

des Software-Engineerings (Auftraggeber, Benutzer, Entwickler) und müssen auch den

Perspektivwechsel der verschiedenen Rollen bei der Betrachtung von Informatiksystemen

bewerkstelligen können. Durch diesen Anspruch der im Kompetenzmodell zu vermitteln-

den Kompetenzfacetten erhalten die Lerner zudem die Chance zu lernen in Teams zu

arbeiten, zwischenmenschlich angemessenes Verhalten zu erlernen und Kon�ikte bei der

kooperativen Arbeit lösen zu können.

Weiterhin wird dem Lerner die Möglichkeit geboten, Schlüsselkompetenzen zu erwer-

ben, die sie dazu befähigen, autonom zu handeln. Hierbei kann der Prozess der Soft-

wareentwicklung und Modellierung hilfreich sein, um die eigene Identität innerhalb des

sozio-technischen Informatiksystems zu realisieren. Dementsprechend gilt es, eine Sen-

sibilität im Hinblick auf die eigene Umwelt, Gruppendynamik und die eigene Rolle des

SW-Engineering Prozesses zu entwickeln. Hierzu gehört auch die Fähigkeit, die sozialen

Folgewirkungen des eigenen Handelns einschätzen zu können.

Neben der Einstellung und den sozial kommunikativen Kompetenzen gilt es auf Seiten des

Lerners, motivationale Fähigkeiten herauszubilden (die eng mit dem persönlichen Prozess

der Selbstregulation verknüpft sind), die es ihm ermöglichen, autonom zu handeln und

komplexe Anforderungen nachhaltig zu bewältigen.

Die Lerner müssen auch dazu angehalten werden, eine willensmäÿige Bereitschaft zu ent-

wickeln, um eine O�enheit gegenüber neuen Ideen und Anforderungen zu haben und sich

mit dem Gegenstandsbereich der informatischen Modellierung im Rahmen von SWE-

Prozessen zu beschäftigen. Der Grad an Motivation spiegelt hierbei auch die Zweckmä-

ÿigkeit des eigenen Handelns, Entscheidungen zu tre�en und Verantwortung zu über-

nehmen, wider. Folglich sind motivationale (und selbstregulative) Fähigkeiten von hoher

Relevanz um unterschiedlichen Anforderungen gerecht zu werden und erfolgreich zu sein,

da Personen mit hohen motivationalen Fähigkeiten nicht von unzweckmäÿigen und im

Sinne der Zielsetzung irrelevanten Gedanken und Kognitionen abgelenkt werden.

Zusammenfassend ermöglichen gerade jene zuvor beschriebenen nicht-kognitiven Kom-

petenzen dem Lerner, sein Wissen in komplexen Anforderungen des täglichen Lebens

erfolgreich einsetzen zu können.

100



4.2.5. Zusammenfassung

Im Folgenden soll angelehnt an den vorherigen Abschnitt tabellarisch aufgeführt wer-

den, inwiefern der Kompetenzerwerb in der Domäne des informatischen Modellierens im

Rahmen der Systemgestaltung dazu beitragen kann Schlüsselkompetenzen zu fördern.

• Systemgestaltung

� Interaktion in heterogenen Gruppen

Kooperative SWE-Prozesse fördern die Kommunikation zwischen den beteilig-

ten Personen. Die Lerner müssen selbstständig die Projektleiterrolle vergeben

und diese sowie die weiteren durchaus heterogenen Rollen (Entwickler, Auf-

traggeber und Endnutzer) innerhalb des SW-Engineering Projekts bekleiden.

Ferner müssen sie sich gemeinschaftlich (z.B. bei der Analyse von Klassendia-

grammen) in die jeweiligen zugrundeliegenden informatischen Konzepte des

zu entwickelnden Informatiksystems einarbeiten und heraus�nden, wie diese

implementiert werden können. Hierbei wird von den Lernern gefordert, dass

die Gruppe trotz äuÿerst unterschiedlicher Rollen und Perspektiven auf ein

Informatiksystem erfolgreich agiert und den gestellten Auftrag zielgerichtet

absolvieren kann.

� Autonomes Handeln

Die Prozesse zur Entwicklung und zum Re-Engineering von Informatiksyste-

men umfassen die selbstständige Analyse von nicht bekannten Problemen und

Anforderungen. Ferner gilt es im Rahmen des Re-Engineerings, das bestehen-

de Informatiksystem um weitere Funktionen zu erweitern und dieses Wissen

autonom auf ein neues, nicht bekanntes Informatiksystem zu transferieren.

Diese Tätigkeiten erfordern ein hohes Maÿ an autonomen Handlungsvermö-

gen seitens der Lerner.

Innerhalb dieses Kapitels wurde ein Einblick in die theoretische Ableitung von Kompe-

tenzdimensionen und -komponenten für das Rahmenmodell aufgezeigt. Ferner wurden die

abgeleiteten Kompetenzaspekte zur Modellierung auf deren Tauglichkeit zur Förderung

von Schlüsselkompetenzen und zur Bildung von Allgemeinwissen geprüft. Somit wurde

auch demonstriert, wie Schlüsselkompetenzen als zentraler Bereich der Allgemeinbildung

in die Kompetenzdimensionen des Rahmenmodells integriert werden können.

101



Abbildung 4.8.: Informatisches Modellieren und Schlüsselkompetenzen

Es bleibt zu klären, inwieweit das auf Grundlage des Kompetenzstrukturmodells ent-

wickelte Instrument in der Lage ist, den Erwerb von Schlüsselkompetenzen zu messen.

Dies ist allerdings nicht Gegenstand der vorliegenden Arbeit. Hier sollte das Kapitel vor-

wiegend zur weiteren theoretischen Fundierung der abgeleiteten Kompetenzdimensionen

und -komponenten zur informatischen Modellierung dienen.

102



5. Empirische Entwicklung eines

Kompetenzstrukturmodells für

informatisches Modellieren

1Auf Grundlage des theoretisch abgeleiteten Rahmenmodells erfolgt die empirische Ver-

feinerung der jeweiligen Kompetenzdimensionen und -komponenten. In diesem Zusam-

menhang kommt ein Interviewverfahren zum Einsatz, das sich an bewährten aufgaben-

analytischen Methoden und der Critical Incident Technique orientiert. Hierbei wird insbe-

sondere ermittelt, wie die Befragten in kompetenzrelevanten Anwendungsszenarien pro-

blemlösend handeln und welche Kenntnisse, Strategien, Fähigkeiten und Einstellungen

zu dessen e�ektiver Bewältigung erforderlich sind. Hiermit sollen die zuvor entwickelten

Kompetenzdimensionen und -komponenten empirisch überprüft sowie konkretisiert und

weiter ausdi�erenziert werden.

Alle Interviews wurden audiotechnisch aufgezeichnet, transkribiert und unter Verwen-

dung der qualitativen Inhaltsanalyse nach Mayring ausgewertet [Mayring 2010]. Hierbei

kamen die drei Hauptfunktionen der qualitativen Inhaltsanalyse: Zusammenfassung, Ex-

plikation und Strukturierung, in kombinierter Form zur Anwendung, wobei Letztere die

zentrale Rolle spielte. Die Kategorienbildung für die strukturierte Inhaltsanalyse erfolgte

sowohl anhand der Sichtung der Expertenaussagen als auch anhand der vorab bestimm-

ten Kompetenzkategorien und -facetten des theoretisch abgeleiteten Rahmenmodells mit

Hilfe zusammenfassender und explikativer Arbeitsschritte.

1Das Kapitel 5 enthält die für die Modellierungskompetenz relevanten Anteile aus den eigenen Veröf-
fentlichungen [Magenheim et al. 2010a] und [Magenheim et al. 2010b].

103



Abbildung 5.1.: Kapitel 5 im Gesamtkontext der Arbeit

104



Zur Vorbereitung der strukturierten Inhaltsanalyse wurden die transkribierten Inter-

viewtexte auÿerdem hinsichtlich elementarer Sinneinheiten kodiert. Bei der eigentlichen

strukturierten Inhaltsanalyse wurden die Sinneinheiten anhand der zuvor entwickelten

Kategoriende�nitionen, Ankerbeispielen und Kodierregeln den Kompetenzkategorien zu-

geordnet. In Fällen, in denen eine Zuordnung durch vorhandene Ähnlichkeiten zweier Ka-

tegorien erschwert war, wurden Kodierregeln zur de�nitorischen Abgrenzung verwendet.

Hierdurch erfolgte sowohl eine empirische Überprüfung des Kompetenzrahmenmodells

hinsichtlich der normativ-deduktiv bestimmten Kompetenzdimensionen und -facetten als

auch eine Korrektur, Ergänzung und Ausdi�erenzierung des Modells hinsichtlich neu-

er und zusätzlich zu berücksichtigender Kompetenzaspekte [Lehner et al. 2010], [Schu-

bert und Stechert 2010]. In einem weiteren Arbeitsschritt wurden die Ergebnisse der

Inhaltsanalyse in ein ausformuliertes Kompetenzmodell transformiert. Hierbei wurden

die Expertenaussagen weiter verallgemeinert und aggregiert sowie vor allem sprachlich

in relevante und vereinheitlichte Kompetenzbeschreibungen transformatiert. Dabei wur-

de auf Auswertungsmethoden nach [Schaper und Horvath 2008] zurückgegri�en. Bei der

Formulierung der Kompetenzbeschreibungen wurde unter Zuhilfenahme einer Operato-

renliste [Informatik Zentralabitur NRW, 2005] unter anderem darauf geachtet, dass die

Formulierungen kenntlich machen, ob die Kompetenzen aus den Anforderungsbereichen

(i) Kenntnisse und Wissen, (ii) Fähigkeiten und Können oder (iii) soziale und motivatio-

nale Bereitschaften stammen. Die Formulierungen wurden darüber hinaus so gestaltet,

dass jeweils eine Tätigkeitsausführung mit folgenden Elementen beschrieben wird (Sub-

jekt �Die Lernenden...�, Prädikat �sind in der Lage, Anforderungen zu ermitteln.�, Objekt

�...der zu entwickelnden Software�), die sich auf die fokussierten informatischen Domä-

nen bezieht. Anhand zweier Beispiele in stark reduzierter Form werden innerhalb dieses

Kapitels die Transformationen der inhaltsanalytischen Auswertungen in vereinheitlichte

Kompetenzbeschreibungen dargestellt.

5.1. Rahmenbedingungen und empirische Grundlage bei der

Durchführung der Interviews

In jedem Interview haben jeweils zwei Interviewer einen Interviewten befragt. Aus ökono-

mischen Gesichtspunkten wurden die Befragungen per Telefon oder VoIP (Skype) durch-

geführt. Zur erfolgreichen Bewältigung des Interviews war keinerlei Vorbereitung seitens

des Interviewten erforderlich. Die Interviews wurden standardisiert; deren Abfolge soll

im Folgenden dargestellt werden:

105



1. Willkommensgespräch und Smalltalk um eine angenehme Gesprächsatmosphäre

und einen gewissen Grad an Vertrauen des Interviewten zu gewinnen.

2. Vorstellung der Rahmenbedingungen und technischen Modalitäten des Interviews:

• Wahrung der Anonymität

• Nachfrage um Erlaubnis, das Interview audiotechnisch aufzeichnen zu dürfen

um diese voll transkribieren zu können

• Darlegung, dass die gestellten Fragen und Aufgaben nicht als Wissenstest zu

verstehen sind sondern dazu dienen, bisher nicht bedachte Kompetenzfacetten

innerhalb des Kompetenzstrukturmodells aufzu�nden und bestehende Facet-

ten zu veri�zieren, konkretisieren oder auszudi�erenzieren

3. Vorstellung des zugrunde liegenden Kompetenzverständnisses nach Weinert

4. Vorstellung der Critical Incident Technique als empirisches Vorgehen bei der Durch-

führung des Interviews

5. Information, dass innerhalb des Interviews vier hypothetische Szenarien vorgestellt

werden und die Interviewten dazu aufgefordert sind, deren Vorgehen bei der Lösung

der präsentierten informatischen Problem- und Aufgabenstellungen innerhalb der

Szenarien genau zu beschreiben.

6. Hinweis, dass zum Ende der Befragung eine quantitative Evaluation der Typikalität

der jeweiligen Szenarien im Hinblick auf den jeweiligen Kompetenzbereich erfolgt

7. Danksagung und Verabschiedung

Die Stichprobe besteht aus insgesamt 30 Informatik-Experten, die in drei gleichgroÿe

Gruppen aufgeteilt sind: Fachwissenschaftler, Fachdidaktiker und Fachleiter des Unter-

richtsfaches Informatik an der gymnasialen Oberstufe. Diese Zusammenstellung der In-

terviewten wurde gewählt, um ein möglichst breites Spektrum an Expertise im Bereich

Didaktik der Informatik zu gewährleisten. Die Rekrutierung der Interviewkandidaten er-

folgte mündlich, telefonisch oder per E-Mail.

5.1.1. Critical Incident Technique

Die Critical Incident Technique hat ihre Wurzeln in der Arbeits- und Organisationspsy-

chologie. Sie wird vorrangig eingesetzt, um Anforderungen abzuleiten, die zur beru�i-

chen Ausübung innerhalb eines bestimmten Tätigkeitsfelds erfolgsrelevant sind. In ihrer

106



ursprünglichen Form sind die Befragten dazu eingeladen, kritische (Anforderungs-) Si-

tuationen zu nennen und zu beschreiben, die innerhalb der jeweiligen Domäne relevant

sind. Ferner werden die Befragten dazu aufgefordert, die persönliche Vorgehensweise zur

Bewältigung dieser Situation genau darzulegen [Mayring 2010].

Innerhalb des Projekts MoKoM war es erforderlich, die methodische Vorgehensweise bei

der Durchführung der Interviews zu modi�zieren: Hier wurden die Interviewten nicht

nach kritischen Anforderungssituationen befragt, sondern ihnen wurden lediglich hypo-

thetische Anforderungsszenarien vorgestellt, bei denen sie ihr persönliches Vorgehen zur

Bewältigung beschreiben sollten. Dieses methodische Vorgehen bei der Durchführung

der Interviews und die Anpassung der Critical Incident Technique wurde gewählt, da zur

Befragung bereits das (im vorherigen Kapitel beschriebene) theoretisch hergeleitete Kom-

petenzrahmenmodell vorlag. Dementsprechend wurden die hypothetischen Szenarien so

gewählt, dass diese die verschiedenen Facetten informatischer Modellierungskompetenz

entsprechend der Dimensionen und Komponenten im Rahmenmodell umfassen und ad-

äquat repräsentieren.

Interviewszenarien für informatisches Modellieren

Insgesamt wurden 12 Szenarien entwickelt, wobei pro Interview jeweils vier Szenarien
zum Einsatz kamen. Die Zusammenstellung wurde pro Interview so gewählt, dass Fragen
zur Systemanwendung, zum Systemverständnis und zur Systemgestaltung berücksichtigt
wurden.

1. Modellierung & Implementierung einer Software für ein Warenwirtschaftssystem

2. Modellierung & Implementierung eines verteilten Chatsystems

3. Modellierung & Implementierung eines web-basierten Spiels

4. Modellierung eines Klassendiagramms für eine Kontoführungssoftware

5. Implementierung eines Visualisierungsmoduls für Sortieralgorithmen

6. Software zur Verwaltung persönlicher Gegenstände auf Ergonomie prüfen

7. Systematische Erkundung der neuesten Version einer Standardsoftware

8. Umsatzübersicht über Werkzeugkategorien

9. Testen einer Softwareanwendung (Computer-Kon�gurator)

10. Informationsbescha�ung über Online-Katalog und Suchmaschine

11. Datenbanken

12. Softwaretest im Team

107



Szenario 1: Modellierung & Implementierung einer Software für ein Warenwirtschaftssystem

Zusammenfassung Hierbei ist der Experte gefragt, ein Warenwirtschaftssystem für einen

Kiosk zu entwickeln. In diesem Zusammenhang gilt es, im Rahmen der

Geschäftsmodellierung und Anforderungsanalyse, das Vorgehen zur

Erfassung typischer Geschäftsvorgänge und funktionaler Anforderungen

zu beschreiben. Ferner sollen die weiteren Phasen des

Software-Engineering-Prozesses geplant werden und eine zeitgleiche

Entwicklung der verschiedenen Module der Software in Kleingruppen

koordiniert werden.

Szenariobeschreibung I Sie erhalten den Softwareentwicklungsauftrag, ein

Warenwirtschaftssystem für einen (Schul-)Kiosk zu entwickeln. Im

Rahmen der Geschäftsmodellierung und Anforderungsanalyse sollen

typische und alltägliche Geschäftsvorgänge erfasst werden.

Fragen I - Wie würden Sie dabei vorgehen, und was müssen Sie dabei beachten?

- Welche gra�schen Beschreibungsmittel würden Sie dafür einsetzen?

- Welche Kenntnisse und Fähigkeiten benötigen Sie zur Modellierung

der Geschäftsprozesse und zur Anforderungsanalyse?

- Welche informatischen Sichten sind hierbei von Bedeutung?

- Welche Komplexität bzw. Komplexitätsaspekte weist das Projekt auf?

- Welche (motivationalen) Bereitschaften und Einstellungen und welche

sozial-kommunikativen Fähigkeiten benötigen Sie zur Modellierung der

Geschäftsprozesse und zur Anforderungsanalyse?

- Welche informatik-fremden Personen könnten (oder sollten) bei der

Modellierung miteinbezogen werden? Welche Anforderungen kämen auf

Sie zu, wenn Sie mit informatischen Laien über dieses SE-Projekt

kommunizieren wollen?

- Wie würde ein Schüler die Aufgabe angehen?

Szenariobeschreibung II Sie erhalten den Auftrag, die weiteren Phasen des

Software-Engineerings-Prozesses zu planen.

Fragen II - Welche weiteren Phasen müssen Ihrer Meinung nach bis zur

Verteilung des Software-Produkts durchlaufen werden?

- Wie würden Sie hierbei vorgehen und was muss dabei beachtet

werden?

- Welche Kenntnisse und Fähigkeiten benötigen Sie in diesen Phasen

des SE-Prozesses (insbesondere welche informatische Sichten)?

- Welche Bereitschaften und Einstellungen und welche

sozial-kommunikativen Fähigkeiten sind in diesen SE-Phasen besonders

relevant?

- Welche Phasen würden Sie im Rahmen eines Schulprojekts: Schulkiosk

im Informatikunterricht der Sekundarstufe durchlaufen wollen?

- In welcher Form würden Sie informatik-fremde Personen auch in die

weiteren SE-Phasen mit einbeziehen? Was wäre dabei zu beachten?

108



Szenariobeschreibung III In der Implementierungsphase des Projekts sollen Kleingruppen

gebildet werden, um die verschiedenen Module der Software zeitgleich

zu entwickeln.

Fragen III - Was muss bei der Einteilung von SE-Gruppen im professionellen

Umfeld berücksichtigt werden? Welche Anforderungen ergeben sich an

die Gruppenmitglieder?

- Was muss bei der Gruppeneinteilung im Informatikunterricht

beachtet werden? Welche sozialen und motivationalen Fähigkeiten und

Einstellungen müssen seitens der Schüler vorhanden sein?

- Welche Erfolgs- oder Misserfolgserlebnisse können während der

Projektdurchführung auftreten? Im Falle von Misserfolg: Welchen

Anforderungen stehen Sie gegenüber, um sich neu zu motivieren?

109



Szenario 2: Modellierung & Implementierung eines verteilten Chatsystems

Zusammenfassung Hier sollen im Rahmen eines Software-Engineering-Prozesses zur

Entwicklung eines verteilten Chat-Systems in der Design-Phase die

jeweiligen Programmmodule Client- und Server zugeordnet werden.

Nach Abschluss der Analyse- und Designphase soll eine kooperative

Implementationsphase in Kleingruppen geplant werden.

Szenariobeschreibung I Sie erhalten den Auftrag ein Chat-System zu entwickeln. Im Rahmen

der Designphase sollen Sie die potentiellen Programmmodule (Klassen)

jeweils dem Client oder Server zuordnen.

Fragen I - Wie würden Sie dabei vorgehen, und was müssen Sie dabei beachten?

- Welche gra�schen Beschreibungsmittel würden Sie dafür einsetzen?

- Welche Kenntnisse und Fähigkeiten benötigen Sie zum Design des

Client-Server-Systems?

- Welche informatischen Sichten sind hierbei von Bedeutung?

- Welche Komplexität bzw. Komplexitätsaspekte weist das Projekt

auf? - Welche Bereitschaften und Einstellungen und welche

sozial-kommunikativen Fähigkeiten benötigen Sie zum Design des

Client-Server-Systems?

- Wie würde ein Schüler die Aufgabe angehen?

Szenariobeschreibung II Nach Abschluss der Analyse- und Designphase soll eine zeitlich

parallele Implementierung von Client- und

Server-Softwarekomponenten geschehen. Sie als Projektleiter stehen

nun vor der Aufgabe, die Aufgaben sinnvoll auf Teilgruppen ihres

Teams zu verteilen.

Fragen II - Wie würden Sie dabei vorgehen?

- Was müsste in einem professionellen Umfeld bei der

Gruppeneinteilung beachtet werden?

- Wie würden Sie die Einteilung der Gruppen im schulischen Umfeld

vornehmen um eine chancengleiche Kompetenzentwicklung zu

ermöglichen?

- Welche sozialen bzw. motivationalen Fähigkeiten der Schüler sollten

zur erfolgreichen Implementierung vorhanden sein?

Welche Erfolgs- oder Misserfolgserlebnisse können während der

Projektdurchführung auftreten? Im Falle von Misserfolg: Welchen

Anforderungen stehen Sie gegenüber, um sich neu zu motivieren?

- Durch welche kommunikativen und kooperativen Voraussetzungen

gelänge die Arbeit e�ektiv?

- Welche arbeitsbezogenen sozialen Umstände könnten den Erfolg

gefährden?

110



Szenario 3: Modellierung & Implementierung eines web-basierten Spiels

Zusammenfassung Dieses Szenario thematisiert die Entwicklung eines webbasiertes Spiels.

Der Fokus liegt hierbei zunächst auf der Entwicklung eines

umfassenden Klassendiagramms anhand von gegebenen CRC-Karten.

Der zweite Abschnitt des Szenarios sieht einen Robustheitstest, dessen

Koordinierung und Vorgehensstrategie vor.

Szenariobeschreibung I Im Rahmen eines Softwareprojekts soll das Web-basierte Spiel �Mensch

ärgere Dich nicht� implementiert werden. Sie haben bereits mit Hilfe

von CRC-Karten Verantwortlichkeiten von Klassen herausgestellt und

mögliche Zusammenhänge von Klassen lokalisiert. In einem weiteren

Schritt soll nun ein umfassendes Klassendiagramm entwickelt werden.

Fragen I - Wie würden Sie dabei vorgehen, und was müssen Sie dabei beachten?

- Welche Kenntnisse und Fähigkeiten benötigen Sie zur Modellierung

des Klassendiagramms?

- Welche informatischen Sichten sind hierbei von Bedeutung?

- Welche Komplexität bzw. Komplexitätsaspekte weist das Projekt auf?

- Welche Bereitschaften und Einstellungen und welche

sozial-kommunikativen Fähigkeiten benötigen Sie zur Modellierung

einer solchen, web-basierten Anwendung?

- Beschreiben Sie die Unterschiede in der methodischen Vorgehensweise,

die sich bei Anfängern, Fortgeschrittenen und Experten zeigen würden.

- Wie würde ein Schüler die Aufgabe angehen?

Szenariobeschreibung II In einem späteren Schritt (kurz vor Abschluss des Projekts) soll die

Software im Rahmen der Testphase bzgl. Ihrer Robustheit überprüft

werden. Hierbei soll sichergestellt werden, dass keinerlei unerwartete

Benutzereingaben das Programm zum Absturz bringen.

Fragen II - Wie würden Sie bei einem derartigen Test vorgehen, und was müssen

Sie dabei beachten?

- Wie würde ein Schüler die Aufgabe angehen?

111



Szenario 4: Modellierung eines Klassendiagramms für eine Kontoführungssoftware

Zusammenfassung Hierbei galt es zunächst ein einfaches Klassendiagramm für eine

rudimentäre Bankingsoftware zu modellieren. In einer weiteren

Ausbaustufe bzw. Iteration wurden die Anforderungen an die

Funktionalität der Software deutlich erweitert. Diese Anpassungen

sollten auch in der Modellierung des erweiterten Systems mit

berücksichtigt werden. Im Gegensatz zur ersten Iteration galt es zudem

die Interaktion zwischen verschiedenen Klassen zu modellieren.

Szenariobeschreibung I Sie erhalten im Rahmen der Entwicklung einer einfachen

Kontoführungs-Software den Auftrag, ein Klassendiagramm zu

entwickeln. Die Software soll zunächst einfache Ein- und

Auszahlvorgänge auf einem Bankkonto realisieren.

Fragen I - Wie gehen Sie dabei vor, und was müssen Sie dabei beachten?

- Welche Kenntnisse und Fähigkeiten benötigen Sie für eine

entsprechende Softwareentwicklung?

- Welche informatischen Sichten sind hierbei von Bedeutung?

- Welche Komplexität bzw. Komplexitätsaspekte weist das Projekt auf?

- Welche Einstellungen und Bereitschaften benötigen Sie für eine

entsprechende Softwareentwicklung?

- Welche möglichen Probleme könnten bei Schülern der Sekundarstufe

auftreten?

- Welche gra�schen Beschreibungsmittel würden Sie einsetzen und

warum?

Szenariobeschreibung II Für eine weitere Ausbaustufe der oben genannten Software soll nun

ebenfalls ein Klassendiagramm erstellt werden. Im Gegensatz zu der

ersten Ausbaustufe lassen sich nun beliebig viele Konten erö�nen.

Neben Ein- und Auszahlungen auf das jeweilige Konto lassen sich nun

auch Überweisungen zwischen den Konten vornehmen.

Fragen II - Wie würden Sie dabei vorgehen?

- Welche zusätzlichen Anforderungen ergeben sich durch den Übergang

zur erweiterten Ausbaustufe der Kontoführungs-Software?

- Rechtfertigen diese zusätzlichen Anforderungen eine Einteilung in

Kleingruppen?

- Durch welche kommunikativen und kooperativen Voraussetzungen

gelänge die Arbeit e�ektiv?

- Welche arbeitsbezogenen sozialen Umstände könnten den Erfolg

gefährden?

- Welche Erfolgs- oder Misserfolgserlebnisse können während der

Projektdurchführung auftreten? Im Falle von Misserfolg: Welchen

Anforderungen stehen Sie gegenüber, um sich neu zu motivieren?

- Welche Anforderungen für die Schüler ergeben sich bei dieser

komplexeren Version der Software?

Wie würde ein Schüler die Aufgabe angehen?

112



Szenario 5: Implementierung eines Visualisierungsmoduls für Sortieralgorithmen

Zusammenfassung Hierbei wird der Interviewte aufgefordert, ein Visualisierungsmodul für

bereits implementierte Sortieralgorithmen zu entwickeln. In diesem

Zusammenhang wurde der Fokus auf die Integration der jeweiligen

Programmmodule (Sortier-Module und zu entwickelndes

Visualisierungsmodul) gelegt.

Szenariobeschreibung Sie haben im Informatikunterricht der Sekundarstufe II

Sortieralgorithmen thematisiert und hierbei ausgewählte

Sortierverfahren innerhalb von Programmmodulen implementiert. Zum

Abschluss der Unterrichtsreihe soll nun ein Visualisierungsmodul

implementiert werden. Dieses soll das zu sortierende Feld (Array)

visualisieren und die jeweiligen Teilschritte während der Sortierung

darstellen, indem sämtliche Änderungen im Feld gra�sch

hervorgehoben werden.

Fragen - Wie würden Sie in diesem Zusammenhang vorgehen?

- Was muss bei der Auswahl der Architektur, bei der Gestaltung der

Schnittstellen und bei der Entwicklung der Benutzungsschnittstelle

beachtet werden?

- Welche Phasen ergeben sich bei der Entwicklung des

Visualisierungsmoduls?

- Welche Kenntnisse und Fähigkeiten benötigen Sie für eine

entsprechende Softwareimplementierung?

- Welche informatischen Sichten sind hierbei von Bedeutung?

- Welche Komplexität bzw. Komplexitätsaspekte weist das Projekt auf?

- Welche Einstellungen und Bereitschaften benötigen Sie für eine

entsprechende Softwareimplementierung?

- Wie würde Schüler an eine derartige Aufgabe herangehen?

- Welche Phasen sehen Sie im Rahmen der schulischen Projektarbeit?

5.2. Empirisches Vorgehen zur Analyse Auswertung der

Interviews

Die zuvor audiotechnisch aufgezeichnenten und voll transkribierten Interviews wurden

auf Grundlage der Qualitativen Inhaltsanalyse nach Mayring analysiert und ausgewertet.

Das Hauptziel dieser Methode ist es, die groÿen Mengen an transkribiertem Text zu

bewältigen und für eine empirische Auswertung nutzbar zu machen.

Diesbezüglich lassen sich drei wichtige Techniken im Umgang mit groÿen Textmengen

identi�zieren [Mayring 2010]:

• Zusammenfassung

113



Als wichtige Funktion ist die Zusammenfassung und Reduktion von komplexen

und umfassenden Textmaterialbeständen auf eine handhabbare Menge zu nennen.

Hierbei sollten keine wichtigen Informationen verloren gehen.

• Explikation

Mit Hilfe dieser Technik werden relevante beschreibende und interpretierende Text-

passagen denjenigen hinzugefügt, die es zu interpretieren gilt bzw. die weiterer

Erläuterung bedürfen.

• Strukturierung

Bei Verwendung der dritten Technik soll eine Struktur aus dem Textmaterial ab-

geleitet werden. Hierzu wird versucht, das bestehende Textmaterial mit einer vor-

gegebenen Strukturierung in Form eines Kategoriensystems zu verknüpfen. Alle

Textelemente, die sich den jeweiligen Kategorien dieses Systems zuordnen lassen,

werden systematisch aus dem Interviewmaterial extrahiert.

Die oben aufgeführten Haupttechniken der qualitativen Inhaltsanalyse nach Mayring sind

nicht zwingend unabhängig voneinander. Sie ergänzen sich gut, sodass eine kombinierte

Verwendung dieser Techniken sinnvoll ist.

Im Rahmen der Analyse des Interviewmaterials im Projekt MoKoM kamen alle drei

Techniken (auch in kombinierter Form) zum Einsatz. Hierbei repräsentiert das theore-

tisch abgeleitete Kompetenzmodell das Kategoriensystem, dem die jeweiligen relevanten

Textpassagen zugeordnet wurden.

Insgesamt wurde im Rahmen des Projekts MoKoM ein interpretativer Ansatz bei der

Auswertung des Interviewmaterials verfolgt: Hierbei wurden relevante Textpassagen, die

Wissen, Fähigkeiten und Fertigkeiten sowie motivationale und sozial-kommunikative Fä-

higkeiten repräsentieren, den jeweiligen kognitiven und nicht-kognitiven Kompetenzfa-

cetten des theoretisch hergeleiteten Kompetenz-Rahmenmodells zugeordnet.

Im nächsten Kapitel wird anhand von drei exemplarischen Interviewtranskripten das

methodische Vorgehen bei der Auswertung der Interviews illustriert. Hierbei wurden in

einem ersten Schritt Textelemente lokalisiert und markiert, die mögliche Sinneinheiten

repräsentieren. Sinneinheiten sind als Textelemente zu verstehen, die relevante Informa-

tionen über informatik-spezi�sche Kompetenzen enthalten. Die Kompetenzen innerhalb

einer Sinneinheit sind diejenigen, die kritisch (critical), also entscheidend zur Bewälti-

gung von Problemen in der Domäne des informatischen Modellierens im Rahmen von

SWE-Prozessen sind. Im nächsten Schritt wurden weitere Textelemente innerhalb des

Interviewmaterials extrahiert. Jene repräsentieren sog. Explikationen, die mit den zuvor

aufgefundenen Sinneinheiten verknüpft sind. Diese Textelemente stellen den Inhalt (also

114



die jeweilige Kompetenzfacette) der verknüpften Sinneinheit prägnant und anschaulich

dar. Folglich können Explikationen den Inhalt von Sinneinheiten weiter präzisieren. Im

nächsten Vorgehensschritt wurde untersucht, ob sich die aufgefundenen Sinneinheiten

und Explikationen den Dimensionen und Komponenten des Rahmenmodells zuordnen

lassen. Auf diese Weise lässt sich in einem ersten Schritt heraus�nden, welche der aus

den Transkripten extrahierten Sinneinheiten und Explikationen von den Dimensionen

und Komponenten des Rahmenmodells adressiert werden und welche nicht. Darüber

hinaus wird logischerweise auch deutlich, welche Sinneinheiten und Explikationen den

Elementen des Rahmenmodells nicht zugeordnet werden können. In solchen Fällen gilt

es, das bestehende Kompetenz-Rahmenmodell zu ergänzen.

5.3. Exemplarische Darstellung der Analyse der

Experteninterviews

Innerhalb dieses Kapitels wird das Vorgehen zur Verfeinerung des theoretisch abgelei-

teten Kompetenzmodells in Anlehnung an die qualitative Inhaltsanalyse nach Mayring

beschrieben. Hierbei liegt der Fokus auf Kompetenzen zur informatischen Modellierung

im Rahmen von SWE-Prozessen. In diesem Zusammenhang soll beispielhaft aufgezeigt

werden, wie das Kompetenzmodell empirisch verfeinert werden kann, d.h. wie zusätzli-

che Komponenten anhand des Interviewmaterials abgeleitet werden können. Ferner soll

im Sinne einer zeitlichen Momentaufnahme eine Ausbaustufe des empirisch verfeinerten

Modells vorgestellt werden und erste, aus damaliger Sicht potentielle Verfeinerungen,

vorgestellt werden. Im Hinblick auf die Kompetenzkomponente Systemgestaltung wurde

- wie zuvor erläutert - ein Szenario mit Fragen entwickelt, welches genau jene Kompe-

tenzaspekte dieser Domäne widerspiegelt. Im Folgenden wird ein Auszug des Szenarios

Chat System mit den entsprechenden Fragen vorgestellt:

Szenario Chat System

Sie erhalten den Auftrag ein Chat-System zu entwickeln. Im Rahmen der Designphase

sollen Sie die potentiellen Programmmodule (Klassen) jeweils dem Client oder Server

zuordnen.

Frage 1: �Wie würden Sie dabei vorgehen, und was müssen Sie dabei beachten?�

Frage 2: �Welche gra�schen Beschreibungsmittel würden Sie dafür einsetzen?�

Frage 3: �Welche Kenntnisse und Fähigkeiten benötigen Sie zum Design des Client-

Server-Systems?�

115



Frage 4: �Wie würde ein Schüler die Aufgabe angehen?�

Frage 5: �Durch welche Einstellungen sowie kommunikativen und kooperativen Voraus-

setzungen gelänge die Arbeit e�ektiv? Welche motivationalen Voraussetzungen

spielen hierbei eine Rolle?�

Frage 6: �Wie würden Sie die Einteilung der Gruppen im schulischen Umfeld vornehmen

um eine chancengleiche Kompetenzentwicklung zu ermöglichen?�

Methodisch bezugnehmend auf Mayring haben wir das strukturelle Gerüst des theo-

retisch abgeleiteten Kompetenzmodells mit dem Interviewmaterial verknüpft, um die

Struktur der Sinneinheiten innerhalb der Interviewtranskripte ableiten zu können. Die

Zielsetzung der Frage 1 war es herauszu�nden, ob die vom Interviewten beschriebene

Vorgehensweise und die damit ableitbaren Sinneinheiten die Komponenten (Work�ows

des Softwareengineerings) der Kompetenzdimension laden. Im weiteren Verlauf werden

ausgewählte Antworten von Interviewten vorgestellt. Diese sind fortlaufend nummeriert.

Die Antwort 1 ist darüber hinaus unterteilt in 1a bis 1c.

Antwort 1a: �In einem ersten Schritt würde ich mir überlegen, was die Funktionalität des

Chatsystems ausmacht. In diesem Zusammenhang müsste ich heraus�nden,

welche funktionalen Anforderungen bestehen.�

Nachdem eine zusammenfassende Analyse der ersten Antwort durchgeführt wurde, konn-

te die Sinneinheit Ableitung von funktionalen Anforderungen aufgefunden werden. Im

nächsten Schritt wurde untersucht, ob diese Sinneinheit einer Kompetenzkomponente

des Rahmenmodells zugeordnet werden konnte. Falls dies nicht der Fall war, war diese

Sinneinheit ein möglicher Hinweis für die Erweiterung der Kompetenzdimension um ei-

ne weitere Komponente. Weiterhin können derartige Sinneinheiten ein Indiz dafür sein,

dass entsprechende Komponenten weiter auszudi�erenzieren sind. In diesem konkreten

Beispiel konnte die Sinneinheit Ableitung von funktionalen Anforderungen der Kompe-

tenzkomponente K1.2 Analysephase zugeordnet werden. Folglich lädt jene Komponente

die genannte Sinneinheit.

Antwort 1b: �Danach würde ich mir überlegen, wie der Datentransfer von statten ge-

hen könnte. Daher würde ich mir die folgenden Fragen stellen: Welches

Protokoll ist hier sinnvoll? Wie kann die Verbindung zwischen den End-

punkten hergestellt werden. Wie wird über die Verbindung kommuniziert?

Was passiert, wenn die Verbindung zusammenbricht? Was passiert, wenn

die Verbindung vom Benutzer unterbrochen wird.�

116



Um die Erläuterungen des Interviewten analysieren zu können, war es hilfreich eine Kom-

bination der Techniken Zusammenfassung und Explikation zu verwenden. Zunächst konn-

te mit der zusammenfassenden Inhaltsanalyse der Textpassage die Sinneinheit Entwurf

der Kommunikation und des Datentransfers aufgefunden werden. Um sicherzustellen,

dass diese Sinneinheit der Kompetenzkomponente Analyse & Design zuzuordnen ist,

wurde eine Analyse des jeweiligen Kontext der Sinneinheit vorgenommen. Hierbei war es

hilfreich, sich auf den zweiten Satz der Antwort 1b zu beziehen: Hier hat der Interview-

te geäuÿert, dass er sich über ein technisch angemessenes Protokoll klar werden müsse.

Daraus geht hervor, dass seine Vorgehensweise dazu dient, die technischen Aspekte der

Kommunikation mittels eines Protokolls zu klären. Diese Überlegungen könnten ferner

als Grundlage für ein mögliches Entwurfs-Modell dienen, das eine Abstraktion des späte-

ren Quellcodes darstellt. Die Erstellung eines derartigen Modells hat die Zielsetzung, das

System � so wie es in der Implementierungsphase umgesetzt werden soll � darzustellen.

Folglich kann Entwurf der Kommunikation und des Datentransfers der Komponente Ana-

lyse & Design zugeordnet werden und hat uns darüber hinaus auf die Idee gebracht, dass

es sinnvoll sein könnte, die Komponente Analyse & Design in die Komponenten Analyse

und Design zu untergliedern. Die Sinneinheit würde dann, falls sich diese Trennung nach

Auswertung aller Interviews als sinnvoll erweist, logischerweise der Komponente Design

zugeordnet.

Antwort 1c: �In Bezug auf diese Vorüberlegungen kann eine Zuordnung der SW- Kom-

ponenten zu Client und Server erfolgen: Der Client implementiert sämtliche

GUI-Klassen, das Event-Management und die Verbindung zum Server. Der

Server hingegen, implementiert das Verbindungs-Management, die Nach-

richtenverarbeitung und die Benutzerverwaltung.�

Nach einer zusammenfassenden Analyse dieser Frage lieÿen sich die Sinneinheiten Client

umfasst die Funktionalität zur Interaktion mit dem Benutzer und Server umfasst Verbin-

dungsmanagement, Nachrichtenverarbeitung und Benutzerverwaltung ableiten. Mit �Vor-

überlegungen� spricht der Interviewte erneut seine Überlegungen hinsichtlich der Design-

Phase an. Ausgehend von diesem Kontext können die aufgefundenen Sinneinheiten der

Komponente Analyse & Design zugeordnet werden. Weiterhin könnten die Erläuterun-

gen des Interviewten einen Hinweis darauf geben, dass Lernende in der Lage sein müssen,

ausgehend von der jeweiligen Iteration der zu entwickelnden Software und des Kontextes

ein zielführendes Vorgehen und angemessene Modellierungstechniken zu wählen. Ausge-

hend von dieser Annahme, wurde die Sinneinheit Fähigkeit, ausgehend von der aktuellen

Phase und Iteration des IS, ein sinnvolles Vorgehen auszuwählen und Fähigkeit, aus-

117



gehend von der aktuellen Phase und Iteration des IS, eine dem Kontext angemessene

Modellierungstechnik auszuwählen.

Die zweite Frage dieses Szenarios adressiert die Abfrage weiterer Informationen hin-

sichtlich verwendeter (graphischer) informatischer Modellierungstechniken und Beschrei-

bungsmittel. Hierbei bestand die Zielsetzung mit Hilfe der strukturierenden Inhaltsana-

lyse die Komponente K1.3 Systemgestaltung mit für den Prozess der Systemgestaltung

relevanten Modellierungstechniken weiter auszudi�erenzieren und zu ergänzen.

Antwort 2: �Wie zuvor erwähnt würde ich UML-Klassendiagramme und UML - Deploy-

mentdiagramme verwenden.�

Nach der Zusammenfassung dieser Textpassage erhielten wir UML-Klassendiagramm und

UML-Deploymentdiagramm als Sinneinheiten. Da der Interviewte hinsichtlich des Klas-

sendiagramms keinerlei Angaben dazu gemacht hat, ob es sich hierbei um ein Analyse-

oder Entwurfs-Klassendiagramm handelt, spricht diese Aussage hingegen nicht eindeu-

tig für eine weitere Di�erenzierung zwischen Analyse- und Designphase innerhalb des

Kompetenzmodells. Unabhängig davon können diese Sinneinheiten jedoch zweifelsfrei

der globaleren Kompetenzkomponente Analyse & Design zugeordnet werden.

Innerhalb der dritten Frage sollten konkrete Kompetenzfacetten für den Prozess der Mo-

dellierung im Rahmen der Systemgestaltung und zugehöriger relevanter Fähigkeiten und

Fertigkeiten abgeleitet werden. Auch hierbei bestand die Zielsetzung in der Verfeinerung

und Ergänzung der Komponenten der Dimension K1 Basic Competencies.

Antwort 3: �Ich würde zur Lösung der Aufgabenstellung eine objektorientierte Vorge-

hensweise wählen. Hierzu muss ich bzw. müssen die Lernenden Fähigkeiten

hinsichtlich der objektorientierten Analyse, des objektorientierten Entwurfs

und der objektorientierten Programmierung erwerben. Ferner muss derje-

nige, der mit der Umsetzung der Software beauftragt ist, in der Lage sein,

sich in eine spezi�sche objektorientierte Programmiersprache einzuarbeiten

und mit dieser umzugehen. Darüber hinaus müssen sich die Entwickler im

Klaren sein, dass sie es bei der zu entwickelnden Software mit einem verteil-

ten System zu tun haben. Daher müssen sie sich zudem mit den jeweiligen

Programmiertechniken von Client-/Server-Architekturen vertraut machen.�

Durch eine zusammenfassende Inhaltsanalyse erhält man die Sinneinheiten oo-Analyse2,

oo-Design, oo-Programmierung undKenntnis und Umgang mit einer oo-Programmiersprache.

Diese können wiederum den Software Engineering Phasen der Kompetenzkomponente

2oo = objektorientiert

118



Systemgestaltung zugeordnet werden. In diesem Zusammenhang laden oo-Analyse und

oo-Design die Unterkomponente Analyse & Design und oo-Programmierung und Kennt-

nis und Umgang mit einer oo-Programmiersprache die entsprechende Unterkomponente

Implementierung. Hierbei bleibt anzumerken, dass getrennte Nennung von Analyse und

Design für eine Ausdi�erenzierung der Komponenten sprechen könnte.

Im weiteren Verlauf wurden die Interviewten gefragt, wie sie die Vorgehensweise von

Schülern der Sekundarstufe zur Lösung der im Szenario präsentierten Anforderungssitua-

tion einschätzen würden. Hierdurch sollte untersucht werden, welche Kompetenzaspekte

für den Informatikunterricht in der Sekundarstufe II relevant sein könnten. Weiterhin

bestand das Ziel, die Unterschiede hinsichtlich der Vorgehensweise zur Lösung dieses

Problems zwischen Experten und Novizen in Erfahrung zu bringen.

Mit dem oben beschriebenen Anspruch, sowohl kognitive als auch nicht kognitive Kom-

petenzen für die Modellierung innerhalb von SWE-Prozessen abzuleiten, hat die Frage 5

den Fokus auf nicht kognitiven Kompetenzen. Um diesbezüglich eine strukturierende In-

haltsanalyse der Antwort 5 vorzunehmen, gilt es einen weiteren Blick in die entsprechen-

de Kompetenzdimension K4 Nicht kognitive Kompetenzen zu werfen. Diese umfasst die

Kompetenzkomponenten Einstellung gegenüber einem IS, Sozial-kommunikative Kompe-

tenzen sowie motivationale Kompetenzen. Im Folgenden soll exemplarisch gezeigt werden,

wie die Frage 5 zur Verfeinerung der Kompetenzdimension K4 beitragen könnte.

Antwort 5: �Zunächst müssen die Lernenden die Bereitschaft und den Willen dazu ha-

ben, sich in neue und für sie unbekannte Themengebiete einzuarbeiten. Eng

damit verbunden ist auch die Einstellung, dass die verwendeten Technologien

sinnvoll sind. Ferner muss den Lernenden im Rahmen einer Aufgabenstel-

lung ein möglichst naher Bezug zur eigenen Lebenswelt vermittelt werden.

Der Kontext steht im Vordergrund und nicht die Lösung von einzelnen iso-

lierten Problemen. Im Hinblick auf soziale und kommunikative Fähigkeiten

müssen die Lernenden befähigt werden, kooperativ zu arbeiten. Hierzu müs-

sen sie in der Lage sein, Ideen anderer aufzugreifen und diese auf kreative

Weise weiterzuentwickeln.�

Zur Auswertung der Frage 5 wurde wiederum eine Kombination aus strukturierender

und zusammenfassender Inhaltsanalyse durchgeführt. Hierdurch konnten die folgenden

Sinneinheiten aufgefunden werden und Unterkomponenten von K4 Nicht kognitive Kom-

petenzen zugeordnet werden: Bereitschaft Wissenslücken selbstständig zu schlieÿen, die

Einstellung haben, dass die verwendete Technologie sinnvoll ist, Einstellung, im Kon-

text mit Lebensweltbezug zu arbeiten, Fähigkeit, die Ideen anderer aufzugreifen und zu

119



verwenden und Fähigkeit, die Ideen anderer kreativ und konstruktiv weiterzuentwickeln.

Die Sinneinheiten die Einstellung haben, dass die verwendete Technologie sinnvoll ist und

Einstellung, im Kontext mit Lebensweltbezug zu arbeiten laden die Kompetenzkomponen-

te Einstellung gegenüber einem IS. Schlussendlich können die Sinneinheiten Fähigkeit, die

Ideen anderer aufzugreifen und zu verwenden und Fähigkeit, die Ideen anderer kreativ

und konstruktiv weiterentwickeln zweifellos der Komponente Sozial-kommunikative Fä-

higkeiten zugeordnet werden.

Die letzte Frage (Frage 6) hatte die Intention herauszu�nden, welche nicht kognitiven

Fähigkeiten kritisch für die Bewältigung von Aufgaben in der Domäne des informatischen

Modellierens in SWE-Prozessen im Rahmen der Sekundarstufe II sind.

5.4. Ergebnisse der Auswertung der Experteninterviews

Insgesamt konnten innerhalb der oben dargestellten exemplarischen qualitativen Inhalts-

analyse verschiedenen Sinneinheiten abgeleitet werden. Diese konnten uns erste Hinweise

zur Validierung, zur Verfeinerung und zur Ergänzung der Kompetenzaspekte im Rah-

menmodell liefern:

Abbildung 5.2.: Theoretisches Teilmodell Modellierung

Diejenigen Sinneinheiten, die den Kompetenzkomponenten des Modells zugeordnet wer-

den konnten, zeigen auf, welche Bereiche des theoretisch abgeleiteten Rahmenmodells

120



sich als sinnvoll erwiesen haben (grün markierte Komponenten in Abbildung 5.5). Hier

sind die Kompetenzkomponenten Systemanwendung, Systemgestaltung und die jeweili-

gen Unterkomponenten Anforderungsanalyse, Analyse, Design und Implementierung zu

nennen.

Auÿerdem konnten weitere Sinneinheiten Aufschluss geben, wie das Kompetenzmodell im

Anschluss an die Auswertung sämtlicher Experteninterviews empirisch verfeinert werden

könnte. In diesem Zusammenhang könnte eine Ergänzung von weiteren Kompetenzkom-

ponenten oder eine Verfeinerung bestehender Komponenten vorgenommen werden. Kon-

kret könnte es daraus folgend sinnvoll sein, die Komponente Analyse & Design in Analyse

und Design aufzugliedern. Obwohl diese Phasen voneinander abhängig und teilweise eng

miteinander verknüpft sind, gab es Sinneinheiten (z.B. bei der Zuordnung von Klassen

zu Client oder Server) die eindeutig der Design-Phase und nicht der Analyse-Phase zu-

geordnet werden konnten (und umgekehrt). Eine weitere Verfeinerung, die sich aus der

Analyse dieser exemplarischen Interviewtranskripte ergeben hat, ist die Erweiterung der

Kompetenzdimension K1 Aufgabenbereiche um die Komponente Fähigkeit, zur Auswahl

eines geeigneten Vorgehensmodell sowie zur Auswahl von relevanten Modellierungstech-

niken in Abhängigkeit zur jeweiligen Iteration der zu entwickelnden SW (Abk.: Iteratives

Vorgehen). Insbesondere die Tatsache, dass der Prozess der Modellierung und System-

gestaltung gerade bei komplexen Systemen selten linear abläuft, scheint die Förderung

derartiger Kompetenzen zur kontextsensitiven Auswahl von Vorgehen und Modellierungs-

technik sinnvoll.

Nachdem die Zuordnung sämtlicher hier aufgefundener Sinneinheiten erfolgt ist, müssen

die verbleibenden Komponenten unter Bezugnahme der restlichen Interviewtranskripte

legitimiert werden. Falls hierbei nach vollständiger Interviewauswertung keine Zuordnung

von Sinneinheiten zu bestimmten Kompetenzkomponenten des Rahmenmodells möglich

ist, könnte dies ein Indiz dafür sein, dass diese Komponenten ggf. in einer späteren Version

des Modells keine Berücksichtigung mehr �nden.

Die folgenden Abbildungen illustrieren den Prozess der Verfeinerung der theoretisch her-

geleiteten Kompetenzdimension. Zum besseren Verständnis werden zunächst die verwen-

deten ikonischen Abbildungen in einer Legende (Abbildung 5.3) aufgeführt.

121



Abbildung 5.3.: Legende zu den folgenden Abbildungen

5.5. Ergebnisse der qualitativen Inhaltsanalyse

5.5.1. Exemplarische Darstellung der Auswertung mit Zuordnung zu den

Komponenten des Rahmenmodells

Wie im vorherigen Kapitel dargelegt, zeichnet sich ein typisches Szenario für den Kom-

petenzbereich des informatischen Modellierens dadurch aus, dass der Interviewte eine

bestimmte Phase eines SWE-Prozesses durchläuft. Hierbei wurden die Antworten bzw.

die daraus abgeleiteten Sinneinheiten im Sinne einer strukturierenden Inhaltsanalyse den

einzelnen Dimensionen und Komponenten des theoretisch abgeleiteten Rahmenmodells

zugeordnet. In Anbetracht der Gesamtauswertung aller 30 Experteninterviews wurde

die Kompetenzdimension K1 Aufgabenbereiche und insbesondere die Komponente K1.3

Systemgestaltung folgendermaÿen empirisch verfeinert:

Insgesamt 25 Interviewte erwähnten, dass der Prozess der Systemgestaltung einen wich-

tigen Bereich informatischer Kompetenz darstellt.

Antwort K1.3: �Die verschiedenen Phasen des Wasserfallmodells müssen durchlaufen

werden.�

Antwort K1.3: �Wir müssen die Phasen eines professionellen SWE-Prozesses durchlau-

fen.�

122



Abbildung 5.4.: Prozess zur empirischen Verfeinerung des Teilmodells Modellierung
123



Abbildung 5.5.: Empirische Verfeinerung des Teilmodells Modellierung

Die folgenden exemplarischen Aussagen konnten den Unterkomponenten von K1.3 Sys-

temgestaltung K1.3.1 - K1.3.5 zugeordnet werden:

Hierbei erwähnten 12 Experten K1.3.2 Anforderungsanalyse und erläuterten, dass Lerner

in der Lage sein müssen, Use Cases zu analysieren und funktionale Anforderungen zu

spezi�zieren.

Antwort K1.3.2: �Es sollten verschiedene Use Cases analysiert werden, um herauszu-

�nden, wie das spätere System genutzt wird.�

Antwort K1.3.2: �Spezi�kation von funktionalen Anforderungen.�

Die Komponente K1.3.3 Analyse & Design wurde von einer groÿen Anzahl Interviewten

genannt. Hierbei wurde erklärt, dass dieser SWE-Prozess in mehreren Iterationen durch-

laufen werden muss. Hierbei hat es sich als sinnvoll erwiesen die Komponenten K1.3.3

Analyse & Design in Analyse und Design aufzuteilen. Somit konnte eine präzisere Zu-

ordnung von Sinneinheiten vorgenommen werden. Die weiteren aufgefundenen Aussagen

adressieren die Analysephase.

Antwort K1.3.3 (Analyse): �Die Analyse-Phase muss durchlaufen werden.�

124



Antwort K1.3.3 (Analyse): �Durchführung einer objektorientierten Analyse.�

Antwort K1.3.3 (Analyse): �Im Rahmen der Analysephase müssen sich die Lerner den

Problembereich vergegenwärtigen.�

Hinsichtlich der Designphase erläuterten die Interviewten, dass die Lerner befähigt sein

müssen (kontextabhängig) sinnvolle Konzepte auszuwählen und eigene Design-Konzepte

eines IS entwickeln zu können.

Antwort K1.3.3 (Design): �Man muss sich mit verschiedenen Design-Techniken ver-

traut machen.�

Antwort K1.3.3 (Design): �Die Lernenden müssen befähigt werden, adäquate Design-

Techniken auszuwählen um den Entwurf der zu entwickelnden SW vor-

anzutreiben.�

Antwort K1.3.3 (Design): �Ich muss in der Lage sein, Programm-Module passend zu

den jeweiligen Aufgaben abzuleiten.�

Antwort K1.3.3 (Design): �Im Anschluss muss den Lernenden vermittelt werden, wie

sie ein eigenes Konzept für das Design eines SW-Systems entwickeln.�

Unabhängig von dieser möglichen Unterscheidung zwischen Analyse und Design zählten

die Interviewten diverse Modellierungstechniken auf. Dies zeigt, dass die Lernenden in der

Lage sein müssen, sinnvolle Modellierungstechniken in Abhängigkeit von der aktuellen

SWE-Phase und dessen aktueller Iteration auszuwählen.

Antwort K1.3.3 (Analyse & Design): �Anwendung von UML-Diagrammen.�

Antwort K1.3.3 (Analyse & Design): �Entwickeln von Klassendiagrammen�

Antwort K1.3.3 (Analyse & Design): �Identi�zierung von potentiellen Klassen mit

dem Ziel ein Klassendiagramm zu entwickeln�

Antwort K1.3.3 (Analyse & Design): �Identi�zierung und Zuordnung von inhaltli-

chen Bestandteilen eines Klassendiagramms, z.B. Attribute, Methoden,

Assoziationen und Vererbung.�

Antwort K1.3.3 (Analyse & Design): �Anwendung von Zustandsdiagrammen�

Antwort K1.3.3 (Analyse & Design): �Verwendung von UML-Deployment-Diagrammen�

125



Die Komponente K1.3.4 Implementierung wurde sechs mal genannt. In diesem Zusam-

menhang betonten die Interviewten, dass die Lerner in der Lage sein müssen, Algorith-

men zu verstehen und diese nachvollziehen zu können und sich in eine objektorientierte

Programmiersprache einarbeiten müssen.

Antwort K1.3.4 (Implementierung): �Verstehen von Algorithmen (insbesondere re-

kursive Algorithmen).�

Antwort K1.3.4 (Implementierung): �Wir müssen lernen in einer bestimmten objekt-

orientierten Programmiersprache zu implementieren und mit den Syn-

taxfehlern umzugehen.�

Antwort K1.3.4 (Implementierung): �Sich in die objektorientierte Programmierung

einarbeiten.�

Antwort K1.3.4 (Implementierung): �Den Unterschied zwischen Klassen- und Objekt-

Attributen und -Methoden verstehen.�

Darüber hinaus erwähnten einige Interviewte, dass die Lernenden in der Lage sein müs-

sen, SW-Module (die beispielsweise in Teamarbeit implementiert wurden) in ein umfas-

sendes SW-System zu integrieren. Diese Äuÿerungen (Sinneinheiten) können wiederum

der Komponente K1.3.4 Implementierung zugeordnet werden. Ferner können jene aller-

dings auch ein Hinweis darauf sein, dass es sinnvoll sein könnte, das Rahmenmodell um

eine neue Komponente z.B. K1.3.4a Integration von SW-Modulen zu ergänzen. Ferner

kann die Sinneinheit Implementierung in Teams auch der Dimension K4 Nicht-kognitive

Kompetenzen und der Komponente K4.2 Sozial-kommunikative Fähigkeiten zugeordnet

werden. Dies zeigt wiederum, dass die Dimensionen des Kompetenzmodells eng mitein-

ander verknüpft sind und nicht isoliert voneinander betrachtet werden sollten.

Antwort K1.3.4 (Implementierung): �Synchronisation von Programmodulen, die von

verschiedenen Teams entwickelt wurden.�

Antwort K1.3.4 (Implementierung): �Integration von Programmmodulen, die von ver-

schiedenen Teams implementiert wurden.�

Darüber hinaus kam in diesem Zusammenhang seitens der Interviewten zum Ausdruck,

dass die Lerner mit Informatiksystemen eines unterschiedlichen Komplexitätsgrades kon-

frontiert sind und mit diesen umgehen lernen müssen. Dementsprechend könnten die

folgenden Sinneinheiten ebenso für eine Zuordnung zur Dimension K3 Komplexität spre-

chen.

126



Antwort K1.3.4 (Implementierung): �Die Lernenden müssen Software �from the scratch�

entwickeln lernen.�

Antwort K1.3.4 (Implementierung): �Die Lernenden müssen befähigt werden, sich in

bestehende Informatiksysteme einzuarbeiten und re-engineering zu be-

treiben.�

Antwort K1.3.4 (Implementierung): �Analyse von Schnittstellen eines bereits beste-

henden Systems�

Die Relevanz der Komponente K1.3.5 Test wurde von 8 Interviewten bestätigt.

Antwort K1.3.5 (Test): �Testen der Produktqualität.�

Antwort K1.3.5 (Test): �Durchführung der Testphase um u.a. sicherzustellen, dass die

Anforderungen aus der Requirements-Phase (Anforderungsanalyse) kor-

rekt umgesetzt wurden.�

Weiterhin nannten die Experten bereits bewährte Vorgehensstrategien im Rahmen der

Testphase.

Antwort K1.3.5 (Test): �Durchführung von Blackbox-Tests.�

Antwort K1.3.5 (Test): �Whitebox-Tests als mögliche Vorgehensstrategie in der Test-

phase.�

Antwort K1.3.5 (Test): �Durchführung von Regressionstests.�

Zusammenfassend illustriert dieses Kapitel verschiedene Sinneinheiten, die von den Ant-

worten der Interviewten im Rahmen der Expertenbefragung abgeleitet wurden. Diese

wurden im Hinblick auf die Unterkomponenten von K1.3 Systemgestaltung strukturiert.

Ausgehend von dieser Zuordnung wurden Verfeinerungen des Rahmenmodells vorgenom-

men. Im Folgenden Unterkapitel wird dementsprechend aufgezeigt, welche Komponenten

sich als zutre�end erwiesen haben, welche Komponenten weiter ausdi�erenziert werden

sollten und welche neuen Komponenten dem Modell ergänzt werden sollten. Weiterhin

wird dargestellt, welche Komponenten ggf. aufgrund fehlender Bestätigung durch die

Experteninterviews aus dem Modell entfernt werden sollten.

5.5.2. Empirische Verfeinerung des Rahmenmodells

In diesem Unterkapitel sollen die Auswirkungen der qualitativen Inhaltsanalyse der Ex-

perteninterviews auf das Kompetenzstrukturmodell aufgeführt werden.

127



Abbildung 5.6.: Empirisch Verfeinertes Kompetenzstrukturmodell

128



Die Komponente K1.3 Systemgestaltung hat sich als wichtiger Part des Kompetenzmo-

dells bestätigt, da diese grundlegende Prozesse und Kompetenzen zur Entwicklung von

Informatiksystemen umfasst. Dennoch hat die Auswertung der Interviews auch gezeigt,

dass Verfeinerungen am Rahmenmodell vorgenommen werden müssen.

Abbildung 5.7.: Empirisches Teilmodell Modellierung

In diesem Zusammenhang hat kein Interviewter K1.3.1 Geschäftsmodellierung genannt.

Ferner konnten keine Sinneinheiten aufgefunden werden, die sich dieser Komponente

eindeutig haben zuordnen lassen. Infolgedessen gilt es, die Daseinsberechtigung dieser

Komponente weiter zu veri�zieren. Im Rahmen dieser Arbeit wurde selbige als nicht re-

levant für das verfeinerte Kompetenzmodell deklariert, insbesondere im Hinblick auf den

späteren Einsatz der daraus resultierenden Kompetenzmessinstrumente im Informatik-

unterricht der Sekundarstufe II an allgemeinbildenden Schulen.

Die Kompetenzkomponente K1.3.2 Anforderungsanalyse wurde vielfach genannt und

konnte diversen Sinneinheiten zugeordnet werden. Infolgedessen hat sich diese Kompo-

nente als sinnvoll erwiesen.

K1.3.3 Analyse & Design wurde von zahlreichen Interviewten erwähnt. Dennoch konn-

ten viele Sinneinheiten eindeutig der Analysephase oder der Designphase zugeordnet

werden. Folglich scheint es sinnvoll, eine Aufgliederung der Komponente in zwei separate

Kompetenzkomponenten vorzunehmen um eine präzisere Kategorisierung von Model-

lierungskompetenzen vornehmen zu können. Wie zuvor erwähnt sind diese Phasen eng

129



miteinander verknüpft und werden häu�g in mehreren Iterationen durchlaufen [Rational

Software Corporation IBM. 1998, S. 2]. Unabhängig davon hat die Analyse der Experten-

interviews gezeigt, dass Lerner dahingehend gefördert werden müssen, damit sie der ak-

tuellen Iteration und Phase des SWE-Prozesses entsprechend sinnvolle Vorgehensweisen

und Modellierungstechniken auswählen können. Die Förderung derartiger Kompetenzen

umfasst die Neustrukturierung von Wissen und kann als wichtige Voraussetzung für si-

tuiertes Lernen gesehen werden. In diesem Kontext wird auch der Zusammenhang der

Kompetenzdimension K1 Aufgabenbereiche und K2 Informatische Sichten deutlich und

soll im Folgenden anhand verschiedener Beispiele illustriert werden:

Zur Förderung der oben genannten Auswahl und Anwendung relevanter Modellierungs-

techniken ist die Fähigkeit zum K2.3 Perspektivwechsel unabdingbar.

Die situierte Auswahl von angemessenen und zielführenden Modellierungstechniken um-

fasst zudem die Anwendung diverser UML-Diagramme und kann sowohl der Komponente

K1.3.3 Analyse & Design als auch der Komponente K2.2.6 gra�sche Beschreibungsmit-

tel zugeordnet werden. Dies zeigt wiederum die inhaltliche Verknüpfung der einzelnen

Kompetenzdimensionen.

Wie im vorherigen Kapitel erläutert, ist die Phase der Modellierung ein essentieller Be-

reich innerhalb des SWE-Prozesses. Die in diesem Zusammenhang aufgefundenen Sinn-

einheiten demonstrieren erneut die enge Verknüpfung von K1 Aufgabenbereiche und K2

Informatische Sichten. Die Sinneinheit Verstehen von Algorithmen könnte der Kompe-

tenzkomponente K1.3.5 Implementierung oder der Komponente K2.2.4 Algorithmen &

Datenstrukturen zugeordnet werden. Ein weiteres Ergebnis ausgehend von der Analy-

se der Experteninterviews ist der Umgang mit Informatiksystemen in unterschiedlichen

Fertigstellungsgraden. Dies könnte ein Hinweis sein, dass die Kompetenzdimension K3

Umgang mit Komplexität und die Komponente Grad der Fertigstellung des Informatik-

systems erweitert werden sollten.

Neben dem Grad der Fertigstellung eines Informatiksystems erwähnten einige Interviewte

ausdrücklich, dass die Lernenden in der Lage sein müssten, Programmmodule (in Teams

entwickelt) zu synchronisieren und diese in ein umfassendes Informatiksystem zu inte-

grieren. Hierbei gilt es beispielsweise, gemeinsame Schnittstellen innerhalb der Arbeits-

gruppen abzustimmen und erfordert K4.2 Sozial-kommunikative Fähigkeiten. Dies zeigt,

dass die Kompetenzdimension K1 Aufgabenbereiche eng mit der Kompetenzdimension

K4 Aufgabenbereiche verknüpft ist.

Die Kompetenzkomponente K1.3.5 Test wurde von vielen Interviewten erwähnt und hat

sich als essentieller Bestandteil der Kompetenzdimension erwiesen.

130



5.5.3. Fallstudie Charakteristika der Interviewten

3Im Rahmen der Auswertung der Experteninterviews haben wir uns parallel mit der Fra-

gestellung beschäftigt, inwieweit sich die Gruppen der interviewten Fachleiter, Fachdi-

daktiker und Fachwissenschaftler unterscheiden und welche Charakteristika auszumachen

sind. Hierbei wurde eine gezielte inhaltliche Analyse anhand des Fallbeispiels (Szenario:

Warenwirtschaftssystem) vorgenommen.

Für den Kompetenzbereich Informatisches Modellieren wurden, wie bereits beschrieben,

fünf Szenarien verwendet um das zuvor theoretisch abgeleitete Rahmenmodell zu verfei-

nern.

Ausgehend von den Interviewantworten soll ein Vorschlag für die mögliche empirische

Verfeinerung des Rahmenmodells vorgestellt werden und die möglichen Lösungsstrategien

der Szenarien der einzelnen Interviewgruppen ermittelt werden.

Zusammenfassend lässt sich feststellen, dass die Interviewten die zentrale Bedeutung der

Kompetenzkategorie K1.3 Systemgestaltung als wichtigen Bestandteil des Kompetenz-

modells bestätigt haben. Unabhängig davon konnten unterschiedliche Vorgehensweisen

bei den Vorgehensstrategien der einzelnen Gruppen festgestellt werden.

Ein Proband aus der Gruppe der Fachwissenschaftler gibt vor, einen SWE-Prozess zu

wählen, der verschiedene Iterationen durchläuft. Dies bestätigt uns die Kompetenzkom-

ponente K1.3 Systemgestaltung, die von der sog. core work�ows des Rational Uni�ed

Process abgeleitet wurde. Dieser sieht ebenfalls einen iterativen Prozessverlauf vor. Des-

halb erschien es uns als sinnvoll, eine weitere Komponente K1.3 Sequencing Pattern dem

Modell hinzuzufügen. Diese umfasst diejenigen Kompetenzfacetten, die es dem Lernen-

den ermöglichen, zweckmäÿige Problemlösungsstrategien und -techniken (hier Modellie-

rungstechniken) in Abhängigkeit zur aktuellen Phase und Iteration des SWE-Prozesses

zu wählen.

Im Gegensatz zu dem oben beschriebenen Vorgehen bevorzugt ein Proband aus der Grup-

pe der Befragten Fachleiter den klassischen linearen Prozessaufbau und erwähnt in die-

sem Zusammenhang das Wasserfallmodell. Dies bestätigt uns wiederum die Relevanz

der Komponenete K1.3 Systemgestaltung, da die Phasen des Wasserfallmodells ähnlich

der core work�ows des Rational Uni�ed Process strukturiert sind. Die Phasen des Was-

serfallmodells können in gewisser Weise als statischer Teil des Rational Uni�ed Process

verstanden werden.

Dieses gewählte Vorgehen könnte ein Indiz dafür sein, dass die Hochschullehrer tieferen

Einblick in best practices und moderne Prozessmodelle des Softwareengineerings haben.

3Dieser Abschnitt enthält die für die Modellierungskompetenz relevanten Anteile aus der eigenen Ver-
ö�entlichung [Lehner et al. 2010].

131



Ein Proband aus der Gruppe der Fachdidaktiker beschreibt in seiner Antwort lediglich

den Durchlauf der Requirements-Phase und bestätigt somit die zugehörige Komponente

im Rahmenmodell.

Ferner emp�ndet der Fachwissenschaftler die Softwareentwicklung als einen höchst kom-

munikativen und kooperativen Prozess. Neben sozialen Kompetenzen, wie die Fähigkeit

im Team zu arbeiten, nennt er soziale Kompetenzen als wichtige Voraussetzung, damit

eine enge Zusammenarbeit zwischen Entwicklern und Kunden geschehen kann. Beide

genannten Gruppen repräsentieren unterschiedliche fachliche Expertise, die es zusam-

menzubringen gilt. Der Verzicht auf das jeweilig domänenrelevante Vokabular und der

Einsatz von zweckmäÿigen gra�schen Beschreibungsmitteln vereinfachen diesen Prozess

in gemeinsamen Austausch.

Antwort: �Die Verwendung von kontextrelevant angepassten gra�schen Beschreibungs-

mitteln ermöglichen gute Diskussionen zwischen Kunden und Domänenex-

perten.�

Kommunikative Fähigkeiten sind weiterhin eine Bedingung für die Integration von infor-

matikfremden Personen in den SWE-Prozess. Derartige Kompetenzen fördern zudem die

E�ektivität und Performanz innerhalb der Entwicklergruppe.

Ein befragter Fachdidaktiker sieht in der Zusammenarbeit in Teams ebenso einen wich-

tigen Faktor, von dem der Erfolg eines SWE-Projekts (auch im schulischen Kontext) ab-

hängt. Dies umfasst insbesondere die Fähigkeit konstruktive Kritik auszuüben und mit

Kritik umgehen zu können. Die Rolle des Lehrers sieht der Fachwissenschaftler hierbei als

Coach und Beobachter des kooperativen Prozesses. Hierbei ist seine Aufgabe Gruppen

bei Problemen ggf. neu zu arrangieren.

Nachfolgend werden die Ergebnisse dieser Untersuchung vorgestellt. Dies beinhaltet das

oben dargestellte Fallbeispiel (Informatische Modellierung und sozial-kommunikative Kom-

petenzen) als auch ein weiteres durchgeführtes Fallbeispiel (Systemverständnis).

Neben den bereits im Fallbeispiel erläuterten Ergebnissen der Untersuchung wurden wie-

derkehrende Charakteristika bei den einzelnen befragten Gruppen identi�ziert. Hierzu

werden nachfolgend einige Beispiele dargestellt.

Unsere Annahme gegenüber den Fachwissenschaftlern bestand darin, dass diese hinsicht-

lich der Tauglichkeit der Szenarien im schulischen Bereich sehr skeptisch sind und die-

se nicht befürworten. Im Gegensatz dazu konnten wir ein gegenteiliges Muster in den

Antworten der Fachwissenschaftler au�nden, die den Einsatz des Szenarios Warenwirt-

schaftssystem im schulischen Einsatz befürworten.

Die folgenden Auszüge aus den Interviews beziehen sich jeweils auf einen beispielhaften

132



Vertreter aus der Gruppe der Fachwissenschaftler, Fachdidaktikder und Fachleiter.

Antwort

(Fachwissenschaftler):

�Die Implementierung eines Warenwirtschaftssystem kann im

schulischen Kontext zweifelsfrei umgesetzt werden.�

Antwort

(Fachdidaktiker):

�Ich bin nicht in der Lage in diesem Zusammenhang didakti-

sche und methodische Empfehlungen auszusprechen, ohne mir

darüber im Vorfeld Gedanken zu machen.�

Antwort (Fachleiter): �Dieses Szenario könnte angemessen für den schulischen Ein-

satz im Informatikunterricht sein. Es können allerdings Schwie-

rigkeiten in bestimmten Fällen auftreten.�

In diesem Beispiel war es der Fachwissenschaftler, der sich entgegen der Annahme positiv

(und nicht wie angenommen negativ) bzgl. des Einsatzes des Szenarios im schulischen

Kontext und dessen Tauglichkeit geäuÿert hat. Konträr waren die Aussagen des Fachdi-

daktikers und des Fachleiters, die grundsätzlich skeptischer gegenüber dem Einsatz im

schulischen Umfeld eingestellt waren.

Anhand dieser Äuÿerungen der verschiedenen Probandengruppen wird deutlich, dass ei-

ne Generalisierung, dass Fachwissenschaftler grundsätzlich negativ gegenüber schulischen

Themen eingestellt sind, kritisch geprüft werden muss. Derartige negative Einstellungen

gegenüber schulischen Themen können auch von vorherigen Erfahrungen in diesem The-

menbereich und anderen Faktoren abhängen.

Die Auswertungen haben überdies gezeigt, dass insbesondere Fachwissenschaftler Unsi-

cherheiten gegenüber Themengebieten geäuÿert haben, die auÿerhalb ihres Forschungs-

gebiets lagen. In diesem Zusammenhang äuÿerte ein Fachwissenschaftler im Bereich Al-

gorithmen und Datenstrukturen:

Antwort: �Ich möchte in diesem Zusammenhang erwähnen, dass diese Thematik im

Bereich von Datenbanksystemen auÿerhalb meiner Expertise liegt.�

Unabhängig davon gab er uns hilfreiche Hinweise zu einer möglichen Lösungsstrategie

des vorgestellten Szenarios. Ein weiterer Fachwissenschaftler weigerte sich eine Frage im

Bereich der objektorientierten Modellierung zu beantworten, da ihm die insbesondere

im schulischen Einsatz verwendeten CRC-Karten nicht geläu�g waren. Dieses Antwort-

muster war allerdings nicht nur bei den Fachwissenschaftlern festzustellen: Ein befragter

Fachdidaktiker lehnte die Beantwortung und Schilderung zur persönlichen Vorgehens-

weise im Rahmen des Szenarios Warenwirtschaftssystem ab. Er äuÿerte, dass er ohne

133



intensive vorherige Planung keine Hinweise zu seinem Vorgehen zur Lösung des Aufga-

benszenarios geben könne.

Eine weitere Gegebenheit, die im Rahmen der Interviews aufgetreten ist, ging von einem

Fachwissenschaftler (Experte im Bereich Softwaretests) aus: Dieser wollte das Szenario

zum Thema Software-Test überspringen, da seiner Meinung nach die Anforderungsana-

lyse nicht korrekt durchgeführt wurde.

Antwort: �Ich möchte hier die Bearbeitung des Szenarios abbrechen. Die Anforderungs-

analyse wurde nicht akkurat durchgeführt; deshalb kann die Testphase nicht

geplant werden.�

Die oben genannten Verhaltensmuster der Interviewten bei der Beantwortung der Fra-

gen waren im Hinblick auf die gesamte Befragung eine Ausnahme. In den meisten Fällen

konnten die Interviewten ihre Vorgehensweise zur Lösung des jeweiligen Szenarios de-

tailliert beschreiben und nannten uns relevante Kompetenzfacetten, die ihrer Meinung

nach erfolgsrelevant wären. In diesem Zusammenhang wurde erwähnt, dass Informatik-

unterricht zunächst ein breites Grundlagenwissen vermitteln muss, bevor man sich mit

derartigen Fallbeispielen beschäftigt.

Eine weitere Gruppe von Fachdidaktikern versuchte ihre Vision von Informatikunterricht

bei der Beantwortung der Szenarien zu propagieren.

Antwort: �Bevor dieses Szenario in der Schule thematisiert wird, gilt es die dahinter-

liegenden fundamentalen Konzepte zu verstehen.�

Diese Gruppe der Befragten hat häu�g keinen direkten Kontakt zu Schülern. Daher �elen

die Antworten im Hinblick auf das erwartete Schülerverhalten zur Lösung des Szenarios

eher abstrakt aus und hatten keinen Bezug zu konkreten Lernprozessen.

Antwort: �Es hängt davon ab, was die Schüler zuvor gelernt haben.�

Je erfahrener die Experten im Bereich der Schulinformatik waren, desto einfacher �el

uns die Zuordnung von Sinneinheiten zu den jeweiligen Komponenten des theoretisch

abgeleiteten Kompetenzmodells. Hierbei �el insbesondere auf, dass fast alle befragten

Fachleiter das Szenario aus Perspektive des Lehrenden sahen, obwohl bei der Fragestel-

lung explizit nach dem persönlichen Vorgehen zur Lösung des Problems gefragt wurde.

In einigen Fällen stellte sich jenes Dilemma vor der Beantwortung der jeweiligen Frage

durch den Experten heraus.

134



Antwort: �Bevor ich diese Frage beantworte möchte ich eine Gegenfrage stellen: Soll ich

mein persönliches Vorgehen zur Lösung des Szenarios vorstellen oder mein

Vorgehen als Lehrer in einem konkreten Lernprozess?�

Andere Experten schilderten ihr Vorgehen unmittelbar aus Perspektive des Lehrenden:

Antwort: �So wie ich Sie verstanden habe, soll ich das Szenario aus Sicht des Leh-

rers beschreiben: Dann würde ich zunächst ein Mindmap zu den Themen, die

meine Schüler in diesem Zusammenhang lernen müssen, erstellen.�

Weitere Experten ergänzten ihre Beschreibung der eigenen Lösungsstrategie mit mög-

lichen Eindrücken aus Perspektive eines Schülers, obwohl sie nicht dazu aufgefordert

wurden.

Zusammenfassend konnten verschiedene Vorgehensmuster bei den drei Interviewtengrup-

pen Fachwissenschaftler, Fachdidaktiker und Fachleiter aufgefunden werden und beispiel-

haft illustriert werden. Dennoch ist bei der Generalisierung jener Ergebnisse Vorsicht ge-

boten, da sich diese Ergebnisse auf einen kleinen Teil des empirischen Materials beziehen.

Ferner könnte es sein, dass diese Ergebnisse eher auf die individuellen Erfahrungen des

Interviewten zurückzuführen sind als auf seine Gruppenzugehörigkeit.

Insgesamt lässt sich bezüglich der hier vorgestellten Fallstudie feststellen, dass wir wert-

volle Hinweise im Hinblick auf die Eignung unseres theoretisch abgeleiteten Kompetenz-

modells in Erfahrung bringen konnten. Insbesondere die Kompetenzdimension K1 Aufga-

benbereiche mit den Komponenten Systemgestaltung und deren Unterkategorien wurden

durch die Ausführungen der Interviewten bestätigt. Diese ist von besonderer Wichtigkeit,

da jene einen strukturgebenden Hauptbestandteil des Kompetenzmodells ausmacht.

Zur Entwicklung eines empirisch gesicherten Kompetenzmodells gilt es, die Inhalts- und

Kriteriumsvalidität des entwickelten Kompetenzmodells zu überprüfen. Die inhaltliche

Validität soll durch ein Expertenrating sichergestellt werden. Die Kriteriumsvalidität

wird im Rahmen dieser Arbeit überprüft, indem � wie im folgenden Kapitel beschrieben

� ein Messinstrument entwickelt wird, das die verschiedenen Kompetenzfacetten misst

und Aufschluss über die Kriteriumsvalidität gibt. Die Korrelation zwischen diesen bei-

den Kriterien kann als Indikator für Kriteriumsvalidität des Kompetenzmodells gesehen

werden.

5.6. Kategoriende�nitionen zum informatischen Modellieren

Ausgehend vom empirisch verfeinerten Kompetenzmodell mussten Kategoriende�nitio-

nen verfasst werden, sog. Kompetenzpro�le. Hierzu wurden ausgehend von den Bezeich-

135



nungen der jeweiligen Unterkomponenten von K1.3 Systemgestaltung und standardisier-

ter Operatorenlisten Kompetenzen de�niert. Hierbei bestand die Zielsetzung, überprüf-

bare De�nitionen der einzelnen Kompetenzbereiche zu verfassen, die als Grundlage für die

Konzeption von Aufgaben für das Messinstrument Modellierung dienen. Folglich mussten

die teilweise abstrakten Bezeichnungen der Kompetenzkomponenten derart konkretisiert

werden, dass diese operationalisiert werden konnten und auf dessen Grundlage die Item-

Entwicklung statt�nden konnte.

Im Folgenden ist die standardisierte Operatorenliste, die für die Kompetenzpro�lde�ni-

tion zugrunde gelegt wurde, aufgeführt(Übersicht Operatoren NRW 2007).

Anforderungsbereich I

• Angeben:

Ohne nähere Erläuterungen und Begründungen aufzählen, nennen.

• Beschreiben

Sachverhalte oder Zusammenhänge unter Verwendung der Fachsprache in eigenen

Worten verständlich wiedergeben.

• Darstellen, Dokumentieren

Zusammenhänge, Sachverhalte oder Arbeitsverfahren in strukturierter Form gra-

phisch oder sprachlich wiedergeben.

• Einordnen

Mit erläuternden Hinweisen in einen genannten Zusammenhang einfügen.

• Erläutern*

Einen Sachverhalt auf der Grundlage von Vorkenntnissen so darlegen, dass er ver-

ständlich wird.

• Überführen, Übertragen

Eine Darstellung in eine andere Darstellungsform bringen.

Anforderungsbereich II

• Analysieren

Eine konkrete Materialgrundlage untersuchen, einzelne Elemente identi�zieren und

Beziehungen zwischen den Elementen erfassen. Der Operator Analysieren wird oft

in Kombination mit einem weiteren Operator benutzt, der angibt, wie das Analy-

seergebnis darzustellen ist.

136



• Bestimmen, Ermitteln

Mittels charakteristischer Merkmale einen Sachverhalt genau feststellen und be-

schreiben.

• Entwerfen, Entwickeln

Herstellen und Gestalten eines Systems von Elementen unter vorgegebener Zielset-

zung.

• Erweitern, Vervollständigen

Eine gegebene Struktur um Bestandteile erweitern.

• Herleiten, Ableiten

Die Entstehung oder Ableitung eines gegebenen oder beschriebenen Sachverhaltes

aus anderen oder aus allgemeinen Sachverhalten darstellen

• Implementieren**

Algorithmen und Datenstrukturen in einer Programmiersprache aufschreiben.

• Modellieren**

Zu einem Ausschnitt der Realität ein informatisches Modell anfertigen.

• Vergleichen

Nach vorgegebenen oder selbst gewählten Gesichtspunkten Gemeinsamkeiten, Ähn-

lichkeiten und Unterschiede ermitteln und darstellen.

• Zeigen

Eine Aussage, einen Sachverhalt nach Berechnungen, Herleitungen oder logischen

Begründungen bestätigen.

Anforderungsbereich III

• Begründen**

Einen Sachverhalt oder eine Entwurfsentscheidung durch Angabe von Gründen

erklären.

• Beurteilen

Zu einem Sachverhalt ein selbstständiges Urteil unter Verwendung von Fachwissen

und Fachmethoden formulieren und begründen.

• Stellung nehmen

Unter Heranziehung relevanter Sachverhalte die eigene Meinung zu einem Problem

argumentativ entwickeln und darlegen.

137



4Unter Berücksichtigung der Operatoren ergeben sich folgende Kategoriende�nitionen:

K1.3.1 Anforderungsanalyse

K1.3.1.1 Die Lernenden können eine geeignete (Software)

Plattform/Basistechnologie auswählen, um das zu

erstellende SW-Projekt zu entwickeln.

K1.3.1.2 Die Lernenden sind in der Lage, Anwendungsfälle (Use

Cases) zu ermitteln und anzugeben (benennen), diese zu

analysieren (durchzuspielen); sie sind diesbezüglich auch in

der Lage, Use Case Diagramme zu entwickeln. Hierbei

können sich die Lernenden einen Eindruck verscha�en, was

die zu entwickelnde Software zu leisten hat.

K1.3.1.3 Die Lernenden sind in der Lage, funktionale Anforderungen

an die zu entwickelnde Software zu ermitteln; dabei sind sie

befähigt, die Ziele (z.B. funktionale Anforderungen),

Grenzen (z.B. Abgrenzung zu bestehenden

Softwaresystemen) und Stakeholder innerhalb der

Problemdomäne zu ermitteln. Hierbei besteht wiederum die

Zielsetzung herauszu�nden, was das zu entwickelnde

System leisten soll.

K1.3.1.4 Die Lernenden sind in der Lage, eine tabellarische Use Case

Beschreibung in ein Aktivitätendiagramm zu überführen.

Hierdurch können mögliche Anwendungsszenarien genauer

analysiert werden.

K1.3.1.5 Die Lernenden sind in der Lage, die zuvor ermittelten

funktionalen Anforderungen für andere verständlich und

nachvollziehbar darzustellen (dokumentieren). Hierbei

besteht die Zielsetzung, ein gemeinsames Dokument (im

Sinne eines P�ichtenhefts) für die SWE-Teams im Hinblick

auf die weiteren Phasen des SWE-Prozesses zu entwickeln.

4Hinweis: Die mit * gekennzeichneten Operatoren können sowohl dem AFB I als auch dem AFB II und
die mit ** gekennzeichneten Operatoren dem AFB II oder dem AFB III zugeordnet werden.

138



K1.3.2 Analyse

K1.3.2.1 Die Lernenden können objektorientierte Begri�ichkeiten

angeben und erläutern. Dies ist Grundvoraussetzung, um

eine objektorientierte Dekomposition durchführen zu

können.

K1.3.2.2 Die Lernenden sind in der Lage, eine objektorientierte

Dekomposition durchzuführen; d.h., sie können anhand

einer textuellen Beschreibung des Problembereichs

mögliche Klassenkandidaten, Attribute und Methoden

ermitteln (au�nden) und diese in eine formale

Darstellungsform überführen. Hierbei besteht die

Zielsetzung ein Modell des Problembereichs zu erstellen.

K1.3.2.3 Die Lernenden sind in der Lage, relevante statische und

dynamische UML-Diagramme ohne

implementierungsspezi�sche Details zu entwickeln (z.B.

CRC-Karten). Durch diese formale konzeptionelle

Modellierung erhalten die Lernenden einen vertieften

Einblick in die Problemdomäne.

K1.3.2.3.1 CRC-Karten: Die Lernenden sind in der Lage, ein

(textuelles) Szenario in Form von CRC-Karten

darzustellen.

K1.3.2.3.2 Objektdiagramm: Die Lernenden sind in der Lage,

Objektdiagramme zu entwickeln; diese können sie ggf.

ausgehend von Use Case Diagrammen überführen; sie

können relevante Objekte ermitteln, erläutern wie die

Objekte untereinander kommunizieren und von

gleichartigen Objekten Klassen (im Hinblick auf ein

Klassendiagramm) ableiten.

K1.3.2.3.3 Sequenzdiagramm: Die Lernenden sind in der Lage,

Sequenzdiagramme zu entwickeln; diese können sie ggf.

ausgehend von Use Case Diagrammen überführen.

K1.3.2.3.4 Klassendiagramm: Die Lernenden sind in der Lage,

Analyse-Klassendiagramme zu entwickeln; diese können sie

ggf. ausgehend von textuellen Beschreibungen,

CRC-Karten, Use Case Diagrammen oder

Objektdiagrammen überführen; sie können Klassen

inklusive Attributen und Methoden de�nieren,

Assoziationen festlegen und sinnvolle Vererbungsstrukturen

entwickeln. 139



K1.3.3 Design

K1.3.3.1 Die Lernenden sind in der Lage, die Architektur der zu

entwickelnden Software zu bestimmen; dabei wählen sie

eine geeignete Programmiersprache aus, berücksichtigen

Aspekte der Verteilung, Nebenläu�gkeit/Parallelität und

möglicher Entwurfsmuster. Dies ist eine wichtige

Voraussetzung für die Entwicklung von entwurfsspezi�schen

UML-Diagrammarten.

K1.3.3.2 Die Lernenden sind in der Lage, sinnvolle Schnittstellen zu

bestimmen um eine spätere erfolgreiche Integration von

Programmmodulen zu ermöglichen.

K1.3.3.3 Die Lernenden sind in der Lage, relevante statische und

dynamische UML-Diagramme mit

implementierungsspezi�schen Details zu entwickeln.

Hierdurch entsteht ein entwurfsspezi�sches Modell, welches

in Quellcode einer objektorientierten Hochsprache

überführt werden kann.

K1.3.3.3.1 Klassendiagramm: Die Lernenden sind in der Lage,

Entwurfs-Klassendiagramme zu entwickeln.

K1.3.3.3.2 Zustandsdiagramm: Die Lernenden sind in der Lage,

Zustandsdiagramme zu entwickeln.

K1.3.3.3.3 Verteilungsdiagramm: Die Lernenden sind in der Lage,

Verteilungsdiagramme zu entwickeln; sie können mit Hilfe

der Verteilungsdiagramme Programmmodule (z.B. auf

Server und Client) aufteilen.

140



K1.3.4 Implementierung

K1.3.4.1 Die Lernenden sind in der Lage, die Architektur der zu

entwickelnden Software zu bestimmen; dabei wählen sie

eine geeignete Programmiersprache aus, berücksichtigen

Aspekte der Verteilung, Nebenläu�gkeit/Parallelität und

möglicher Entwurfsmuster. Dies ist eine wichtige

Voraussetzung für die Entwicklung von entwurfsspezi�schen

UML-Diagrammarten.

K1.3.4.1.1 Die Lernenden sind in der Lage, Programmierkonzepte, wie

z.B. das Variablenkonzept und Kontrollstrukturen

(Bedingte Anweisung, Schleifenkonstruktion) in der

Programmiersprache zu implementieren.

K1.3.4.1.2 Die Lernenden sind in der Lage, ein Klassendiagramm in

objektorientierten Java-Code zu überführen; Sie können

Klassen, Attribute und Methoden sowie Assoziationen und

Vererbungsstrukturen in Java-Code implementieren.

K1.3.4.1.3 Die Lernenden sind in der Lage, Programmbibliotheken

(z.B. Java-Swing) erfolgreich in eigene Programmmodule

einzubinden.

K1.3.4.2 Die Lernenden sind in der Lage, mit Hilfe von integrierten

Entwicklungsumgebungen (IDEs) Programmmodule zu

implementieren und zu integrieren.

K1.3.4.3 Die Lernenden sind in der Lage, mit Hilfe einer

Versionsverwaltungssoftware (z.B. Subversion)

Programmmodule und deren Versionierung zu verwalten.

K1.3.4.4 Die Lernenden sind in der Lage, die selbst implementierten

Programmmodule nachvollziehbar (im Hinblick auf gute

Wartbarkeit) zu dokumentieren (z.B. mit Java-Doc).

K1.3.4.5 Die Lernenden sind in der Lage, Programmmodule sinnvoll

in ein bestehendes Softwaresystem zu integrieren. Somit

können Teile der zu entwickelnden Software zu einem

lau�ähigen System aggregiert werden.

141



K1.3.5 Test

K1.3.5.1 Die Lernenden sind in der Lage, ein bestehendes

Softwaresystem systematisch zu testen. Hierbei besteht die

Zielsetzung unter anderem darin, zu überprüfen, ob die

zuvor spezi�zierten funktionalen Anforderungen erfolgreich

umgesetzt wurden.

K1.3.5.1.1 Die Lernenden sind in der Lage, zu Beginn der Testphase

einen geeigneten Testplan zu entwickeln.

K1.3.5.1.2 Die Lernenden sind in der Lage, gängige Vorgehensmodelle

des Testens durchzuführen (z.B. Model-Checking,

Whitebox-, Blackbox-Testverfahren, ...).

K1.3.5.1.3 Die Lernenden sind in der Lage, Testfälle zu ermitteln

(Extremfälle und unerwartete Eingabedaten erzeugen) oder

zu entwickeln; sie können diese zum Test verwenden und

die daraus resultierenden Ausgaben protokollieren.

K1.3.5.1.4 Die Lernenden sind in der Lage, automatisierte Tests

durchzuführen.

K1.3.6 Iteratives Vorgehen

K1.3.6.1 Die Lernenden sind in der Lage, abhängig von der

jeweiligen Iteration des SWE-Prozesses, sinnvolle

Modellierungstechniken auszuwählen, anzuwenden und zu

beurteilen.

K1.3.6.2 Die Lernenden sind in der Lage zu beurteilen, ob ein

erneutes Durchlaufen einer bereits absolvierten Phase des

SWE-Prozesses erforderlich ist; sie können abhängig von

den auftretenden Problemen in der aktuellen Phase eine

sinnvolle vorherige Phase auswählen, die es erneut zu

durchlaufen gilt.

Im Hinblick auf die Item-Entwicklung besteht die Zielsetzung, für jeden Kompetenzbe-

reich (de�niert durch die Kategoriende�nitionen) mehrere spezi�sche Items zu entwickeln.

Hierbei gilt es zu beachten, dass die Testitems in einigen Fällen auch mehreren Kompe-

tenzpro�len zugeordnet werden können.

142



Im folgenden Kapitel sollen in einem ersten Schritt die Item-Entwicklung auf Basis der

Kategoriende�nitionen erläutert werden. Diese dienen als Bestandteile des zu entwickeln-

den Kompetenzmessinstruments.

5.7. Zusammenfassung

Das Ergebnis dieses Kapitels ist ein wichtiger Meilenstein für die Entwicklung des Mess-

instruments: Das resultierende empirisch verfeinerte Kompetenzrahmenmodell und die

dazugehörigen Kategoriende�nitionen sind eine wichtige Voraussetzung zur Entwicklung

von Aufgabenitems sowie deren inhaltlicher Fokussierung.

Dementsprechend erfolgte die empirische Verfeinerung der jeweiligen Kompetenzdimen-

sionen und -komponenten. Hierbei kam ein Interviewverfahren zum Einsatz, das sich an

der Critical Incident Technique orientiert und mit dem ermittelt wurde, welche Kenntnis-

se, Strategien, Fähigkeiten und Einstellungen im Sinne der Befragten erforderlich sind,

um problemlösend zu handeln.

Alle Interviews wurden aufgezeichnet, transkribiert und unter Verwendung der qualita-

tiven Inhaltsanalyse ausgewertet. Hier wurden zuvor im Interviewmaterial aufgefundene

Sinneinheiten anhand der im Vorfeld entwickelten Kategoriende�nitionen, Ankerbeispie-

len und Kodierregeln den Kategorien des Kompetenzmodells zugeordnet. Hierdurch er-

folgte sowohl eine empirische Überprüfung des Kompetenzrahmenmodells aus Kapitel

4 als auch eine Korrektur, Ergänzung und Ausdi�erenzierung des Modells hinsichtlich

neuer und zusätzlich zu berücksichtigender Kompetenzaspekte.

Konkret hat sich die Komponente K1.3 Systemgestaltung als wichtiger Part des Kom-

petenzmodells gefestigt, da jene grundlegende Kompetenzen zur Entwicklung von Infor-

matiksystemen umfasst. Darüber hinaus ist ein wichtiges Ergebnis dieses Kapitels die

empirische Verfeinerung der Unterkomponenten von K1.3. Hier hat sich gezeigt, dass be-

stimmte Kompetenzkomponenten, wie z.B. die Geschäftsmodellierung, sich als weniger

relevant erwiesen haben. Diese wurden somit auch bei der Entwicklung des Kompetenz-

messinstruments weniger berücksichtigt. Bei weiteren Kompetenzkomponenten war es

sinnvoll eine Binnendi�erenzierung vorzunehmen. So wurde die Kompetenzkomponente

Analyse & Design in Analyse und Design aufgeteilt. Ferner wurde in dem Zusammenhang

eine weitere Komponente Iteratives Vorgehen dem Kompetenzmodell hinzugefügt.

Anhand des empirisch verfeinerten Kompetenzmodells wurden Kategoriende�nitionen,

sog. Kompetenzpro�le formuliert. Hierzu wurden ausgehend von den Bezeichnungen der

jeweiligen Kompetenzkomponenten und standardisierten Operatorenlisten Kompetenzen

de�niert. Hierbei bestand die Zielsetzung, überprüfbare De�nitionen der einzelnen Kom-

143



petenzbereiche zu verfassen, die als Grundlage für die Konzeption von Aufgabenitems

dienen. Einzelne abstrakte Bezeichnungen mussten derart konkretisiert werden, dass die-

se operationalisiert werden konnten und auf deren Grundlage die Item-Entwicklung statt-

�nden konnte.

Auf Grundlage der de�nierten Kategoriende�nitionen erfolgt im folgenden Kapitel 6 die

Entwicklung von Aufgaben und Items zur Überprüfung von objektorientierter Modellie-

rungskompetenz.

144



6. Entwurf eines Messinstruments für

informatische

Modellierungskompetenz und

Entwicklung eines

Lehr-/Lernarrangements zur

Erprobung

Dieses Kapitel fokussiert die Entwicklung von Aufgaben und darin enthaltener Items auf

Grundlage der zuvor formulierten Kompetenzpro�le (Kategoriende�nitionen). Hierbei

werden zunächst theoretische Grundlagen zur Testentwicklung und zur Fragebogenkon-

struktion aufgezeigt und beispielhaft der Entwicklungsprozess einzelner repräsentativer

Aufgaben des Messinstruments dargestellt.

145



Abbildung 6.1.: Kapitel 6 im Gesamtkontext der Arbeit

146



Die folgende Abbildung 6.2 illustriert die Vorgehensweise zur Entwicklung der Aufgaben

des Messinstruments. Zunächst werden auf Grundlage der zuvor formulierten Kompe-

tenzkategorien zugehörige Items entwickelt. Die Items werden jeweils zu Aufgaben kom-

biniert und mit einem für die Probanden lebensweltnahen Stimulusmaterial kombiniert.

Im Sinne unseres Kompetenzverständnisses nach Weinert werden neben den kognitiven

Kompetenzbereichen auch die nicht kognitiven Kompetenzbereiche aus der Kompetenz-

dimension K4 adressiert und explizit in den Aufgaben 1 - 10 mit berücksichtigt. Somit

soll sichergestellt werden, dass Kompetenzen ganzheitlich abgefragt werden. Eine Ab-

frage von isolierten Fähigkeiten ist im Sinne des festgelegten Kompetenzverständnisses

nicht wünschenswert.

Abbildung 6.2.: Illustration der Aufgabenentwicklung

Zur Evaluation des entwickelten Messinstruments umfasst dieses Kapitel ferner die Ent-

wicklung und Darstellung einer geeigneten Unterrichtsreihe. Diese basiert auf dem in

Kapitel 3 vorgeschlagenen Vorgehensmodell Modellierung & Robotik und dem Pader-

borner Informatik Lernlabor. In diesem Zusammenhang wurde eine LEGO Mindstorms

basierte Inhaltseinheit Kommissionierstation entwickelt, die sich im Rahmen unserer Er-

fahrungen in der Hochschullehre als kompetenzförderlich erwiesen hat.

147



6.1. Entwicklung von Aufgabenitems

Auf Basis des entwickelten Kompetenzmodells wurde in einem weiteren Arbeitsschritt

ein erstes Instrumentarium zur Diagnose von Kompetenzständen zu ausgewählten Tei-

len des Modells entwickelt und im Rahmen eines Unterrichtsversuchs zur Förderung von

Kompetenzen im Bereich des informatischen Modellierens erprobt. Bei der Testentwick-

lung wurden in erster Linie sog. objektive Testverfahren bzw. Situational Judgement Tests

(SJT) entwickelt, die relevante Kompetenzen anhand konkreter Lösungen von repräsenta-

tiven Aufgabenstellungen der Unterrichtsdomäne ermitteln und bewertbar machen. Hier-

bei wurden Erfahrungen zur Testentwicklung bei der TIMMS-, PISA- und DESI-Studie

[Baumert et al. 2000], [Prenzel und Deutschland 2004], [Beck und Klieme 2007] sowie

von Testentwicklungen im Bereich der Arbeits- und Organisationspsychologie [Schaper

und Horvath 2008] berücksichtigt. Unter Bezugnahme auf die Kompetenzbeschreibungen

bzw. -pro�le des Kompetenzmodells wurden zunächst geeignete Aufgabenstellungen, die

entsprechende Kompetenzanforderungen repräsentieren, generiert und in einem zweiten

Schritt passende Antwortformate (in Form vorgegebener Antwortalternativen oder freier

bzw. o�ener Antwortformate) entwickelt. Auf der Basis dieses Vorgehens wurden ins-

gesamt 62 Items zur Erfassung der Kompetenzbereiche K1.3 Systemgestaltung und K4

Nicht-kognitive Fähigkeiten konstruiert.

Für den Kompetenzbereich K1.3 Systemgestaltung wurden für den Informatikunterricht

geeignete Items entwickelt und zu Aufgaben kombiniert. Diese orientieren sich an dem

PISA/TIMMS-Aufgabenmuster. Sie stellen ein jeweils für die Schüler lebensweltnahes

Stimulus- bzw. Aufgabenmaterial voran und enthalten daran anschlieÿend sowohl 23 o�e-

ne als auch 11 Multiple-Choice(MC)-Antwortformate. In diesem Kontext wurden jeweils

ein bis zwei Aufgaben zur Operationalisierung der im Kompetenzstrukturmodell ent-

haltenen Kompetenzbereiche K1.3.1 Anforderungsanalyse, K1.3.2 Analysephase, K1.3.3

Designphase, K1.3.4 Implementierung, K1.3.5 Softwaretest sowie K1.3.6 Iteratives Vor-

gehen erstellt.

Exemplarisch für eine Aufgabe mit lebensweltnahem Stimulusmaterial und ein enthal-

tenes Item im MC-Antwortformat sei die Aufgabe 5B (siehe Fragebogen im Anhang)

genannt. Ausgehend von einer textuellen Szenariobeschreibung einer Schulbibliothek wer-

den die Probanden aufgefordert, eines von zwei Analyse-Klassendiagrammen auszuwäh-

len, welches die Schulbibliothek korrekt modelliert. Die Zielsetzung dieser Aufgabenstel-

lung (bzw. des enthaltenen Items) besteht darin, die Teilkompetenz K1.3.3.3 (Lernende

sind in der Lage, relevante statische und dynamische UML-Diagramme ohne implemen-

tierungsspezi�sche Details zu entwickeln und zu beurteilen) abzufragen.

148



Als Beispiel für SJT-Aufgabenstellung und einem Item mit o�enem Antwortformat sei

die Aufgabe 2 angeführt. Hierbei handelt es sich um eine Aufgabenstellung, bei der sich

die Probanden in die Rolle eines IT-Projektmanagers versetzen sollen. Aus dieser Per-

spektive gilt es, die Auswahl einer geeigneten Programmiersprache für die Entwicklung

eines plattformunabhängigen, verteilten Chat-Systems zu begründen. In diesem Zusam-

menhang werden sie u.a. gefragt, welche Eigenschaften der Programmiersprache Java die

Entwicklung eines plattformunabhängigen Softwaresystems begünstigen. Hierbei enthält

die Aufgabe ein Item mit o�enem Antwortformat. Mit dieser Aufgabe und dem enthalte-

nen Item soll die Teilkompetenz K1.3.4.1 (Lernende sind in der Lage, die Architektur der

zu entwickelnden Software zu bestimmen und eine geeignete Programmiersprache auszu-

wählen) abgefragt werden.

6.1.1. Zuordnung von Aufgaben zu Kompetenzkategorien

Die Items wurden inhaltlich entsprechend der einzelnen Kompetenzkategorien zur in-

formatischen Modellierung (wie im vorherigen Kapitel erarbeitet) ausgerichtet. Hierbei

wurden spezielle Items für Kompetenzkategorien entwickelt und zu Aufgaben kombiniert

die möglichst mehrere im Strukturmodell abgebildete Kompetenzbereiche abfragen. Die

folgende Tabelle stellt die Kompetenzkategorien mit der Zuordnung zu den einzelnen

Aufgaben des Messinstruments dar.

149



Zuordnung Kompetenzkategorien zu Aufgabe 5

Kompetenzkategorien zu Aufgabe 5

K1.3.1.1 Analyse

K1.3.3.3 Die Lernenden sind in der Lage, relevante statische und

dynamische UML-Diagramme ohne

implementierungsspezi�sche Details zu entwickeln (z.B.

CRC-Karten). Durch diese formale konzeptionelle

Modellierung erhalten die Lernenden einen vertieften

Einblick in die Problemdomäne.

K1.3.3.3.1 CRC-Karten: Die Lernenden sind in der Lage, ein

(textuelles) Szenario in Form von CRC-Karten

darzustellen.

K1.3.3.3.4 Klassendiagramm: Die Lernenden sind in der Lage,

Analyse-Klassendiagramme zu entwickeln; diese können sie

ggf. ausgehend von textuellen Beschreibungen,

CRC-Karten, Use Case Diagrammen oder

Objektdiagrammen überführen; sie können Klassen

inklusive Attributen und Methoden de�nieren,

Assoziationen festlegen und sinnvolle Vererbungsstrukturen

entwickeln.

150



Zuordnung Kompetenzkategorien zu Aufgabe 6

Kompetenzkategorien zu Aufgabe 6

K1.3.2 Anforderungsanalyse

K1.3.2.2 Die Lernenden sind in der Lage, Anwendungsfälle (Use

Cases) zu ermitteln und anzugeben (benennen), diese zu

analysieren (durchzuspielen); sie sind diesbezüglich auch in

der Lage, Use Case Diagramme zu entwickeln. Hierbei

können sich die Lernenden einen Eindruck verscha�en, was

die zu entwickelnde Software zu leisten hat.

K1.3.3 Analyse

K1.3.3.3 Die Lernenden sind in der Lage, relevante statische und

dynamische UML-Diagramme ohne

implementierungsspezi�sche Details zu entwickeln (z.B.

CRC-Karten). Durch diese formale konzeptionelle

Modellierung erhalten die Lernenden einen vertieften

Einblick in die Problemdomäne.

K1.3.3.3.3 Sequenzdiagramm: Die Lernenden sind in der Lage,

Sequenzdiagramme zu entwickeln; diese können sie ggf.

ausgehend von Use Case Diagrammen überführen.

151



Zuordnung Kompetenzkategorien zu Aufgabe 10

Kompetenzkategorien zu Aufgabe 10

K1.3.6 Test

K1.3.6.1 Die Lernenden sind in der Lage, ein bestehendes

Softwaresystem systematisch zu testen. Hierbei besteht die

Zielsetzung unter anderem darin, zu überprüfen, ob die

zuvor spezi�zierten funktionalen Anforderungen erfolgreich

umgesetzt wurden.

K1.3.6.1.1 Die Lernenden sind in der Lage, zu Beginn der Testphase

einen geeigneten Testplan zu entwickeln.

K1.3.6.1.3 Die Lernenden sind in der Lage, Testfälle zu ermitteln

(Extremfälle und unerwartete Eingabedaten erzeugen) oder

zu entwickeln; sie können diese zum Test verwenden und

die daraus resultierenden Ausgaben protokollieren.

K1.3.7 Iteratives Vorgehen

K1.3.7.1 Die Lernenden sind in der Lage, abhängig von der

jeweiligen Iteration des SWE-Prozesses, sinnvolle

Modellierungstechniken auszuwählen, anzuwenden und zu

beurteilen.

K1.3.7.2 Die Lernenden sind in der Lage zu beurteilen, ob ein

erneutes Durchlaufen einer bereits absolvierten Phase des

SWE-Prozesses erforderlich ist; sie können abhängig von

den auftretenden Problemen in der aktuellen Phase eine

sinnvolle vorherige Phase auswählen, die es erneut zu

durchlaufen gilt.

6.1.2. Exemplarische Item-Entwicklung

In diesem Kapitel werden neben einer thematischen Übersicht aller Aufgaben, drei bei-

spielhafte Aufgaben zur informatischen Modellierung vorgestellt.

Ausgehend von den zuvor de�nierten Kompetenzpro�len wurden die inhaltliche Struk-

turierung und die jeweiligen inhaltlichen Themen der Aufgaben festgelegt. Im Folgenden

wird eine tabellarische Au�istung der Kompetenzpro�le inkl. der jeweiligen Aufgabeni-

tems im Messinstrument (siehe Anhang) aufgeführt.

Betrachten wir nun einen exemplarischen Ausschnitt aus dem Entstehungsprozess der

152



Aufgaben.

Aufgabe 5 - Item zur Analysephase

Die Zielsetzung der ersten Items (Teilaufgabe 5 a,b) war die Überprüfung des Kompe-

tenzbereichs K1.3 Analysephase. Innerhalb der Items (a,b) werden gezielt die jeweiligen

Teilkompetenzen abgefragt. Teilaufgabe a) wurde zur Messung des Kompetenzbereichs

K1.3.3.3 entwickelt.

K1.3.3.3 Die Lernenden sind in der Lage, relevante statische und dynami-

sche UML-Diagramme ohne implementierungsspezi�sche Details zu entwi-

ckeln (z.B. CRC-Karten). Durch diese formale konzeptionelle Modellierung

erhalten die Lernenden einen vertieften Einblick in die Problemdomäne.

Insbesondere ging es darum den Diagrammtyp CRC-Karten zu thematisieren.

K1.3.3.3.1 CRC-Karten: Die Lernenden sind in der Lage, ein (textuelles)

Szenario in Form von CRC-Karten darzustellen.

Zunächst enthält die Aufgabe eine kurze Aufgabenbeschreibung die dem Probanden mit-

hilfe standardisierter Operatoren die erforderlichen Tätigkeiten zur Lösung der Aufga-

be vorstellt. Anschlieÿend wird dem Probanden (hier Schüler der Sekundarstufe II an

Gymnasien in NRW) ein Stimulus-Material aus seiner Erfahrungswelt präsentiert. Dies

beschreibt den jeweiligen Kontext der Aufgabe und soll dem Probanden die Möglichkeit

geben, sich mit der Aufgabe zu identi�zieren. In diesem Aufgabenitem handelt es sich

um eine vereinfachte Darstellung einer Schulbibliothek.

153



Aufgabe 5a

Sie wurden beauftragt, eine Software zur Verwaltung Ihrer Schulbibliothek zu entwickeln.

In der Analyse-Phase sollen zunächst CRC-Karten für die wichtigsten Klassen erstellt

werden. Ergänzen Sie hierzu die unten dargestellten CRC-Karten um die jeweiligen

Responsibilities und Collaborators. Orientieren Sie sich hierbei an der Beschreibung der

Schulbibliothek I.

Schulbibliothek I :

Die Schulbibliothek umfasst einen Bestand von Büchern. Diese sind gekennzeichnet durch

deren Titel, ID-Nummer und Anzahl der Seiten. Die Schulbibliothek wird von

verschiedenen Personen genutzt. Diese haben einen Namen und ein Alter.

(...)

Innerhalb der Aufgabe werden den Probanden rudimentäre CRC-Karten zur Verfügung

gestellt, die es � wie oben beschrieben � zu ergänzen gilt. Hierbei müssen die jeweili-

gen Responsibilities und Collaborators eingetragen werden, sodass die CRC-Karten die

�Schulbibliothek I� korrekt modellieren. Ein Stiftsymbol symbolisiert zusätzlich die zu

bearbeitenden Stellen innerhalb der Gra�k.

Selbige soll Aufgaben mit lebensweltnahem Stimulusmaterial und einem Item mit o�enem

Antwortformat repräsentieren.

Teilaufgabe b) wurde zur Überprüfung des Kompetenzbereichs K1.3.3.3.4 konzipiert.

K1.3.3.3.4 Klassendiagramm: Die Lernenden sind in der Lage, Analyse -

Klassendiagramme zu entwickeln; diese können sie ggf. ausgehend von textu-

ellen Beschreibungen, CRC-Karten, Use Case Diagrammen oder Objektdia-

grammen überführen; sie können Klassen inklusive Attributen und Methoden

de�nieren, Assoziationen festlegen und sinnvolle Vererbungsstrukturen entwi-

ckeln.

Hier wird wiederum als erstes die Aufgabenbeschreibung dargelegt, gefolgt von einem

weiteren Stimulusmaterial in Form einer Beschreibung Schulbibliothek II. Zur Abfrage

des zugehörigen Kompetenzbereichs K1.3.3.3.4 enthält die Aufgabe ein Item mit MC-

Antwortformat.

Bei der Schulbibliothek II handelt es sich um eine erweiterte Szenariobeschreibung mit

deutlich erhöhter Komplexität, die im Gegensatz zur Schulbibliothek I dem Probanden

Aspekte der Vererbung, die Unterscheidung Assoziation/Aggregation, etc. abverlangt.

154



Abbildung 6.3.: CRC-Karten zur Schulbibliothek I

155



Aufgabe 5b

Wählen Sie das Klassendiagramm aus, das die unten beschriebene erweiterte Version der

Schulbibliothek (Schulbibliothek II) korrekt modelliert.

Schulbibliothek II :

Die Schulbibliothek umfasst einen Bestand von Büchern. Diese sind gekennzeichnet durch

deren Titel, ID-Nummer und Anzahl der Seiten. Es gibt Sachbücher, Lexika und Romane.

Sachbücher sind zusätzlich gekennzeichnet durch ein Themengebiet, Lexika durch die

Anzahl Bände sowie die jeweilige Bandnummer des Exemplars. Die Schulbibliothek wird

von verschiedenen Personen genutzt. Diese haben einen Namen und ein Alter.

Unterschieden wird zwischen verschiedenen Benutzergruppen: Lehrer haben ein erstes und

zweites Unterrichtsfach und dürfen höchstens vier Bücher gleichzeitig ausleihen. Zusätzlich

stehen Sie als Berater für zwei bestimmte Sachgebiete der Fachbücher zur Verfügung.

Schüler haben eine Jahrgangsstufe und dürfen höchstens zwei Bücher gleichzeitig ausleihen.

(...)

Der Proband ist nun aufgefordert per Multiple Choice eins von zwei Klassendiagrammen

auszuwählen, welches das in Schulbibliothek II beschriebene Szenario korrekt modelliert.

Um die Entscheidung zu begründen und zu verhindern, dass die korrekte Antwort geraten

wird, soll er im falschen Klassendiagramm einen logischen Fehler und eine Schwäche hin-

sichtlich redundanter Attribute (aufgrund fehlender Vererbungsstruktur) au�nden und

kennzeichnen. Hierzu ist der Proband im weiteren Verlauf der Aufgabe angehalten, die

entsprechenden Bereiche im falschen Klassendiagramm mit Kreismarkierungen hervor-

zuheben.

Abbildung 6.4.: Multiple Choice Auswahl eines von zwei Klassendiagrammen

156



Abbildung 6.5.: Korrektes Klassendiagramm

Abbildung 6.6.: Falsches Klassendiagramm

157



Aufgabe 6 - Aufgabe zur Designphase

Die Aufgabe 6 enthält Items zur Überprüfung der Kompetenzkomponente K1.3.4 Design

und deren Teilbereiche K1.3.4.3 am Beispiel des Zustandsdiagramms (K1.3.4.3.2 ).

K1.3.4.3 Die Lernenden sind in der Lage, relevante statische und dynami-

sche UML-Diagramme mit implementierungsspezi�schen Details zu entwi-

ckeln. Hierdurch entsteht ein entwurfsspezi�sches Modell, das in Quellcode

einer objektorientierten Hochsprache überführt werden kann.

K1.3.4.3.2 Zustandsdiagramm: Die Lernenden sind in der Lage, Zustandsdia-

gramme zu entwickeln.

Zu Beginn der Aufgabe �ndet der Proband wiederum eine Aufgabenbeschreibung (unter

Verwendung der Operatorliste) gefolgt von dem Stimulusmaterial zur Verankerung des

Kontexts der Aufgabe vor.

Aufgabe 6

Ergänzen Sie ausgehend von der unten aufgeführten Funktionsbeschreibung eines

Festplatten-Rekorders das Zustandsdiagramm: Ergänzen Sie hierbei die fehlenden

Zustandsübergänge.

Festplatten-Rekorder :

Das Gerät be�ndet sich nach dem Einschalten im Hauptmenü. Mittels der TV-Taste

gelangt man in den TV-Modus, in dem das aktuelle Fernsehbild dargestellt wird. Betätigt

man die Record-Taste, wechselt das Gerät in den Aufnahme-Modus und zeichnet das

aktuelle Fernsehprogramm auf. Betätigt man in diesem Zustand die Stop-Taste wird die

Aufnahme beendet und das Gerät wechselt wieder in den TV-Modus. Durch Betätigung

der Pause-Taste innerhalb des TV-Modus wird der Timeshift-Modus aktiviert. Hierbei

wird die aktuelle Fernsehsendung pausiert und ab diesem Zeitpunkt aufgenommen. Durch

nochmaliges Drücken der Pause-Taste wird das Fernsehprogramm von der zuvor pausierten

Position fortgesetzt. Drückt man die Stop-Taste wechselt der Festplatten-Rekorder wieder

in den TV-Modus und spielt das TV-Programm ohne zeitlichen Versatz ab. Drückt man

innerhalb des Hauptmenüs die Archiv-Taste, wechselt das Gerät in den Archiv-Modus.

Hier kann durch Betätigung der Play-Taste eine ausgewählte (zuvor aufgenommene)

Sendung abgespielt werden (das Gerät wechselt in den Abspielen-Modus). Mit Hilfe der

Stop-Taste gelangt man wiederum in den Archiv-Modus. Sowohl im TV- als auch im

Archiv-Modus gelangt man durch Drücken der Menü Taste ins Hauptmenü.

(...)

158



Jetzt ist der Proband aufgefordert, innerhalb der folgenden Abbildung (unvollständiges

Zustandsdiagramm) die fehlenden Zustandsübergänge zu ergänzen, sodass die in der Be-

schreibung Festplatten-Rekorder beschriebene Programmlogik korrekt modelliert wird.

Hierbei handelt es sich wiederum um eine Aufgabe mit lebensweltnahem Stimulusmate-

rial und o�enem Antwortformat.

Abbildung 6.7.: Unvollständiges State-Chart

Aufgabe 10 - Aufgabe zur Testphase & zum iterativen Vorgehen

Die Aufgabe 10 des Kompetenzmessinstruments enthält mit dem dargebotenen Screens-

hot eines Reisebuchungssystem ein lebensweltnahes Stimulusmaterial und umfasst sowohl

Items mit Multiple Choice Antwortformaten (Teilaufgabe 10a und 10c) als auch Items

mit o�enen Antwortformaten (Teilaufgabe 10b)). Die Zielsetzung der Aufgabe 10 a) be-

steht in der Überprüfung des von K1.3.6 Test und K1.3.7 Iteratives Vorgehen. Hierbei

werden insbesondere die Kompetenzpro�le K1.3.6.1 und K1.3.7.1 fokussiert.

K1.3.6.1 Die Lernenden sind in der Lage, ein bestehendes Softwaresystem sys-

tematisch zu testen. Hierbei besteht die Zielsetzung unter anderem darin, zu

überprüfen, ob die zuvor spezi�zierten funktionalen Anforderungen erfolgreich

umgesetzt wurden.

K1.3.7.1 Die Lernenden sind in der Lage zu beurteilen, ob ein erneutes Durch-

laufen einer bereits absolvierten Phase des SWE-Prozesses erforderlich ist; sie

159



können abhängig von den auftretenden Problemen in der aktuellen Phase eine

sinnvolle vorherige Phase auswählen, die es erneut zu durchlaufen gilt.

Innerhalb der Teilaufgabe 10a) werden dem Probanden allgemeine Fragen zur Testphase

unter Verwendung von Items im Multiple Choice Format gestellt (Items i) - iv)). Hier-

bei geht es darum, allgemeine Fakten zur Testphase, deren Bedeutung im Kontext des

SWE-Prozesses und bestimmte Begri�e, wie z.B. der Robustheit abzufragen. Das Item v)

thematisiert die Testphase im sozialen Kontext. Diesbezüglich sollen die Probanden Si-

tuationen aus Ihrer Erfahrungswelt nennen, bei denen ein sorgfältiger SW-Test von hoher

Bedeutung ist. Die Formulierung dieses Items macht wiederum deutlich, dass die Kom-

petenzdimensionen K1 und K4 eng miteinander ver�ochten sind. Analog zur Testphase

und dem Kompetenzpro�l K1.3.6.1 hat dieses auch die Zielsetzung den Kompetenzbe-

reich K4.2 abzudecken.

160



Aufgabe 10a

Entscheiden Sie, ob die folgenden Aussagen wahr sind. ja nein

i) Im Rahmen der Testphase wird ausschlieÿlich überprüft, ob

der Auftraggeber mit dem für ihn entwickelten Softwaresystem

zurechtkommt.

[ ] [ ]

ii) In der Testphase wird überprüft, ob sämtliche funktionalen

Anforderungen aus der Anforderungsanalyse innerhalb des

Softwaresystems umgesetzt wurden.

[ ] [ ]

iii) Es kann sinnvoll sein im Rahmen der Testphase einen

Rückgri� auf die bereits abgeschlossene Anforderungsde�nition

zu machen.

[ ] [ ]

iv) Wenn man eine Software innerhalb der Testphase auf

Robustheit überprüft, testet man wie zuverlässig das System

über einen längeren Zeitraum läuft.

[ ] [ ]

v) Es gibt bestimmte sicherheitskritische Bereiche, in denen Softwaresysteme

zur Unterstützung eingesetzt werden. Hierbei ist es von enormer Wichtigkeit,

dass die jeweilige Software auf Herz und Nieren getestet wird. Nennen Sie

mindestens zwei solcher Bereiche, in denen ein sorgfältiger Softwaretest vor

dem Einsatz der Software auÿerordentlich wichtig (vielleicht sogar

lebenswichtig) ist.

����������������������������������

����������������������������������

����������������������������������

����������������������������������

����������������������������������

����������������������������������

Innerhalb der Teilaufgabe b) werden insbesondere die Kompetenzpro�le K1.3.6.1.1 und

K1.3.6.1.3 adressiert. Implizit wird auÿerdem der Kompetenzbereich K1.3.7 Iteratives

Vorgehen angesprochen.

K1.3.6.1.1 Die Lernenden sind in der Lage, zu Beginn der Testphase einen

geeigneten Testplan zu entwickeln.

K1.3.6.1.3 Die Lernenden sind in der Lage, Testfälle zu ermitteln (Extrem-

fälle und unerwartete Eingabedaten erzeugen) oder zu entwickeln; sie können

diese zum Test verwenden und die daraus resultierenden Ausgaben protokol-

lieren.

161



K1.3.7.1 Die Lernenden sind in der Lage zu beurteilen, ob ein erneutes Durch-

laufen einer bereits absolvierten Phase des SWE-Prozesses erforderlich ist; sie

können abhängig von den auftretenden Problemen in der aktuellen Phase eine

sinnvolle vorherige Phase auswählen, die es erneut zu durchlaufen gilt.

Zu Beginn der Aufgabe wird der Proband innerhalb der Aufgabenbeschreibung aufge-

fordert, anhand einer Illustration einer bestehenden Webapplikation zur Reisebuchung

und einer Liste von funktionalen Anforderungen einen geeigneten Testplan zu entwickeln

und konkrete Testfälle zu spezi�zieren. Dem Probanden wird hier bewusst ein Rückgri�

von der Testphase auf die Anforderungsanalyse vorgegeben, indem je funktionaler Anfor-

derung ein konkreter Testfall entwickelt werden soll. Diesen gilt es in eine vorgefertigte

Tabelle einzutragen. Um diesen geforderten Aufgabenschritt deutlich zu illustrieren, wird

der entsprechende Testfall für die Anforderung 1 vorgegeben.

Aufgabe 10b

Entwickeln Sie anhand des unten dargestellten Screenshots einer Webapplikation zur

Reisebuchung und anhand des Ausschnitts der Anforderungsde�nition einen geeigneten

Testplan. Gehen Sie dabei folgendermaÿen vor:

i) Überprüfen Sie, ob sämtliche funktionalen Anforderungen an die Software umgesetzt

wurden, indem Sie für jede Anforderung jeweils einen Testfall entwickeln. Tragen Sie diese

Testfälle in Tabelle 1 ein.

Anforderungsde�nition Reisebuchungssystem:

• Anforderung 1: Benutzer kann Pauschalreisen suchen, indem er Reiseziel,

Ab�ughafen, Ab�ugdatum, Rück�ugdatum (muss mindestens zwei Tage hinter dem

Ab�ugdatum terminiert sein), Anzahl Erwachsener (mindestens einer), Anzahl

Kinder, Verp�egungsarten (mindestens eine) sowie einen Zimmertyp auswählt.

• Anforderung 2: Benutzer kann optional die Hotelkategorie (Anzahl Sterne) mit in die

Suche einbeziehen.

• Anforderung 3: Benutzer kann auch nur den Hin�ug buchen. Hierbei muss keine

Eingabe in die Elemente der rechten Spalte gemacht werden.

ii) Überprüfen Sie die Robustheit der Anwendung, indem Sie nochmals den Auszug der

Anforderungsde�nition betrachten und drei unerwartete Testfälle entwickeln, die die

Anwendung zum Absturz bringen könnten. Ergänzen Sie diese Testfälle in Tabelle 2.

162



Abbildung 6.8.: Mockup Reisebuchungssystem

Abbildung 6.9.: Testfälle zur Anforderungsde�nition

163



Die Teilaufgabe ii) zielt ebenfalls auf die Spezi�kation von Testfällen ab. Hierbei soll der

Proband die Robustheit der Webanwendung testen. Analog zu Teilaufgabe i) wird ein

exemplarischer Testfall in Tabelle 2 vorgegeben.

Abbildung 6.10.: Testfälle zur Robustheit

Die Teilaufgabe c) und die enthaltenen Items wurden mit der Zielsetzung entwickelt,

Teilaspekte des Kompetenzbereichs K1.3.6.1 und K1.3.6.1.1 anzusprechen.

K1.3.6.1 Die Lernenden sind in der Lage, ein bestehendes Softwaresystem sys-

tematisch zu testen. Hierbei besteht die Zielsetzung unter anderem darin, zu

überprüfen, ob die zuvor spezi�zierten funktionalen Anforderungen erfolgreich

umgesetzt wurden.

K1.3.6.1.1 Die Lernenden sind in der Lage, zu Beginn der Testphase einen

geeigneten Testplan zu entwickeln.

164



Aufgabe 10c

i) Sie entwickeln eine Webseite für ein Reisebüro und be�nden sich nach Abschluss der

Implementierung in der Testphase. Um die Robustheit Ihres Softwareprodukts zu

verbessern, sollen Betatester in den Prozess mit einbezogen werden. Welche Personen

würden Sie in die Testphase mit einbeziehen? (Mehrfachnennungen möglich)

[ ] Die Entwickler des Reisebuchungssystem

[ ] Erfahrene Benutzer anderer Reisebuchungssysteme

[ ] Benutzer, die Grundkenntnisse in der Benutzung des Internets haben

[ ] Grundschüler, die gerade das Lesen gelernt haben

ii) Viele Betatester haben über Abstürze der Webseite berichtet. Wie gehen Sie vor, um

die Eingaben in das System, die zum Absturz geführt haben, herauszu�nden? Wie

ermitteln Sie, was der Benutzer mit seinen Eingaben (die zum Absturz geführt haben)

bezwecken wollte?

�����������������������������������������

�����������������������������������������

�����������������������������������������

�����������������������������������������

�����������������������������������������

Zu Beginn der Teilaufgabe c) wird erneut ein Stimulusmaterial in Form einer textuel-

len Darstellung des oben illustrierten Aufgabenszenarios dargeboten. Dieses beschreibt

das oben aufgeführte Aufgabenszenario zu einem späteren Zeitpunkt des SWE-Prozesses,

nach Abschluss der Implementierungsphase. In Form eines Multiple Choice Aufgaben-

formats wird in Item i) abgefragt, welche Personen sinnvoll bei der Durchführung der

Testphase als Betatester eingesetzt werden könnten. Dies stellt einen wichtigen Bereich

der Testplanung dar und kann somit dem abgefragten Kompetenzpro�l K1.3.6.1.1 zuge-

ordnet werden.

Innerhalb der Teilaufgabe ii) wird ein weiteres Stimulusmaterial angegeben. Hierbei wird

ein Fehlerszenario beschrieben, in dem die Nutzer des Reisebuchungssystems über Ab-

stürze berichten. In diesem Zusammenhang wird der Proband nach seiner Vorgehensweise

gefragt, um die Fehlerursache zu reproduzieren, die zum Absturz geführt haben könnte.

Die Teilaufgabe ii) steht demnach auch repräsentativ für eine Aufgabe mit einleitendem

Stimulusmaterial mit lebensweltnaher Szenariobeschreibung und einem Item mit o�enem

Antwortformat.

165



Zusammenfassung

Innerhalb dieses Teilkapitels bestand die Zielsetzung, den Prozess der Aufgabenentwick-

lung zu beschreiben und zu veranschaulichen. Dementsprechend wurde auf Grundlage von

Kompetenzpro�len, die im Kapitel 5.6 de�niert wurden, zugehörige Items generiert und

zu Aufgaben kombiniert. Die Testentwicklung wurde in Anlehnung an objektive Testver-

fahren (Situational Judgement Tests (SJT)) entwickelt. Es wurden sowohl Erfahrungen

zur Testentwicklung bei internationalen Vergleichsstudien als auch von Testentwicklun-

gen im Bereich der Arbeits- und Organisationspsychologie mit einbezogen. Im Verlauf

des Kapitels wurden repräsentative Aufgaben vorgestellt und deren Aufbau und Entwick-

lungsprozess dargelegt. Diese Aufgaben enthalten jeweils eine Aufgabenbeschreibung, ein

lebensweltnahes Stimulusmaterial und die entsprechenden Items zur Überprüfung der

Kompetenzbereiche des Strukturmodells.

Um das entwickelte Messinstrument zu erproben wird im folgenden Teilkapitel die Kon-

zeption eines Lehr-/Lernarrangements zur Förderung von Modellierungskompetenzen

beschrieben. Mit dem Ziel, das Instrument im Rahmen eines Unterrichtsversuchs zur

Förderung von Kompetenzen im Bereich des informatischen Modellierens zu erproben,

wird im folgenden Unterkapitel die theoretische und praktische Entwicklung des Lehr-

/Lernarrangements beschrieben.

6.2. Entwicklung eines Lehr/Lernarrangements zur

Erprobung des Messinstruments

Zunächst soll die fachdidaktische Grundlage erläutert werden, auf der die zu entwickeln-

de Lerneinheit basiert. Dementsprechend werden verschiedene fachdidaktische Ansätze

dargestellt. Hierbei soll angeführt werden, inwiefern die unterschiedlichen didaktischen

Ansätze zur Entwicklung der Unterrichtsreihe und somit zur Evaluation des Messinstru-

mentariums beigetragen haben. Der Fokus liegt hierbei auf dem Ansatz des Informatik

Lernlabors der systemorientierten Didaktik der Informatik nach Magenheim.

Im Folgenden wird die theoretische Grundlage zur Konzeption der Unterrichtsreihe für

die Erprobung des Kompetenzmessinstruments erörtert. Hierbei werden der Ansatz der

systemorientierten Didaktik der Informatik nach Magenheimh sowie die theoretische Ein-

bettung der Unterrichtsreihe im Kontext des Informatik Lernlabors dargestellt.

166



6.2.1. Informatiksysteme in didaktischem Kontext

Die Vernetzung von Informatiksystemen und deren Wirkprinzipien werden seit Anfang

der 90er Jahre als Orientierungspunkt für den Informatikunterricht gefordert [Stechert

2009, S. 25]. Im weiteren Verlauf sollen verschiedene Ansätze (ohne Anspruch auf Voll-

ständigkeit) für Informatiksysteme im didaktischen Kontext dargestellt werden. Es sollen

jeweils die Zusammenhänge und Bezugspunkte der verschiedenen didaktischen Ansätze

zur systemorientierten Didaktik, die als theoretische Grundlage der Unterrichtsreihe fun-

giert, geknüpft werden.

Hubwieser und Broy entwickeln den informationszentrierten Ansatz als möglichen Aus-

gangspunkt zur Legitimation des Informatikunterrichts an Gymnasien [Hubwieser und

Broy 1996].

Informatiksysteme weisen nach diesem Ansatz folgende Eigenschaften auf [Hubwieser

2007, S. 44]:

• automatische Verarbeitung von Daten,

• Vernetzung,

• Interaktion mit menschlichen Benutzern.

Für den Einsatz und die Auseinandersetzung mit Informatiksystemen in der Schule sieht

Hubwieser die folgenden Schwerpunkte [Hubwieser 2007, S. 44]:

Zunächst betont er den Nutzen von Informatiksystemen bei der Unterstützung von Lern-

vorgängen jeglicher Art. Dies macht nach Hubwieser einen der wichtigsten und zeitauf-

wändigsten Teile der oben genannten Schwerpunkte aus. Als Beispiel wird in diesem

Zusammenhang die Bescha�ung von Informationen aus dem Internet oder die Verwen-

dung von Lernsoftware jeglicher Art genannt.

Als weiterer Punkt wird die Schulung von Bedienerfertigkeiten für konkrete Systeme

genannt. Hier werden beispielhaft Kurse zur Einführung in die Handhabung eines spe-

ziellen Textverarbeitungssystems genannt, die häu�g sogar nach dem Produkt benannt

sind. Solche Schulungen vermitteln allerdings häu�g nur sehr spezielle Kenntnisse über

die jeweilige Software und dessen Benutzerober�äche. Ein positiver Lerntransfer ist mit

solchem produktspezi�schen Wissen kaum möglich.

Die Vermittlung allgemeiner und langlebiger Grundlagen der Informationstechnik wird

als weitere wichtige Zielsetzung für den Informatikunterricht angeführt. Diese letzte Ei-

genschaft macht die eigentliche Charakteristik des Informatikunterrichts aus.

�Neben der Unterstützung von Lernprozessen oder der Bedienerschulung kön-

nen im Unterricht auch Prinzipien, Konzepte und Strategien zur Planung,

167



Konstruktion, Beschreibung und Bewertung abstrakter Informatiksysteme

thematisiert werden. Vor allem um diesen Informatikunterricht im eigentli-

chen Sinne geht es [...]. Dazu gehört auch die Behandlung von Anwendungen

informatischer Prinzipien [...] [Hubwieser 2007, S. 48].�

Die drei genannten Schwerpunkte in der unterrichtlichen Auseinandersetzung mit Infor-

matiksystemen sind eng miteinander verzahnt. Hubwieser sieht die Verknüpfung dieser

Bereiche als wesentliche Eigenschaft eines guten Informatikunterrichts.

�Die Vermittlung grundlegender Konzepte der Informatik ist ohne die Ar-

beit am Rechner nach Hubwieser eine abschreckend abstrakte Veranstaltung.

Dies ist aus seiner Sicht zur Veranschaulichung der Lerninhalte und zur Mo-

tivierung der Lernenden absolut unerlässlich. Im Umkehrschluss setzt das

wiederum einige Fertigkeiten in der Bedienung von Hard- und Software vor-

aus, so dass man auch hier nicht ohne ein gewisses Maÿ an Bedienerschulung

auskommt [Hubwieser 2007, S. 48].�

Hubwieser sieht folgende methodische Prinzipien bei der Gestaltung einer Unterrichts-

reihe für den Informatikunterricht [Hubwieser 2007, S. 68]:

1. Problemorientierung

Unterrichtsinhalte sollten anhand eines Problems aus der Erfahrungswelt der Schü-

ler behandelt werden. Eine strikte Problemorientierung kann den Informatikunter-

richt davor bewahren, dass dieser den Charakter einer Produktschulung oder eines

Programmierkurses hat.

2. Modellbildung und Simulation

Die Modellbildung und die Simulation sollen als durchgängiges Prinzip in die Pla-

nung des Informatikunterrichts mit ein�ieÿen.

�Unser Informatikunterricht beschäftigt sich nicht nur mit Modellbildung

und Simulation, unser Unterricht besteht im Wesentlichen aus Modell-

bildung und Simulation, [...] [Hubwieser 2007, S. 69�].�

Wie zuvor beschrieben sieht Hubwieser analog zum systemorientierten Ansatz nach Ma-

genheim die Modellierung als ein wichtiges Prinzip des Informatikunterrichts. Darüber

hinaus können anhand des informationszentrierten Ansatzes Hinweise zur Gestaltung der

Unterrichtsreihe abgeleitet werden. Diese sind zum einen die Problemorientierung, die es

bei der Unterrichtsreihe zu bewerkstelligen gilt und zum anderen, dass die Modellierung

und Simulation als Unterrichtsprinzip eine hohe Berücksichtigung �nden sollte.

168



Abbildung 6.11.: Ver�echtung von Unterrichtshilfen, Bedienerschulung und Vermittlung
grundlegender Konzepte [Hubwieser 2007, S. 49]

Bezüglich der Unterrichtsreihe zur Evaluation des Messinstruments soll zur Problemori-

entierung der Unterrichtsreihe das Fallbeispiel Kommissionierstation verwendet werden,

welches im weiteren Verlauf des Kapitels ausführlicher dargestellt wird. Ferner erhalten

die Schüler die Gelegenheit die eigens entwickelten Modelle in Form von LEGO Mind-

storms Robotern zu simulieren.

Schubert und Stechert charakterisieren Informatiksysteme durch mögliche Perspektiven

auf ein solches System. Auf Grundlage von Erkenntnissen einer Expertengruppe der Asso-

ciation for Computing Machinery (ACM) zur Erstellung von Curricula für die Hochschul-

informatik, werden sieben Kategorien der Informatik abgeleitet [Denning 2003]. Schubert

und Stechert sehen ausgehend von diesen Kategorien unterschiedliche Sichten auf ein In-

formatiksystem als relevant an, die Lernende auf den Lerngegenstand Informatiksystem

einnehmen können. Die Kategorien der Informatik nach Denning lassen sich sinnvoll mit

dem Sichtenkonzept kombinieren [Stechert 2009, S. 29].

• computation

Bedeutung von Berechnungen und Fragen der Berechenbarkeit:

Automaten, formale Sprachen, Turingmaschinen, Universalität, komplexitätstheo-

retische Fragestellungen, Übersetzung, die technisch-physikalische Realisierung von

Informatiksystemen

• communication

Zuverlässige Datenübertragung: Informatiksystem als Medium, speziell als Nach-

richtensystem im Shannon'schen Sinne eines Kanalmodells mit Kodierung, Kanal-

169



kapazität, Rauschunterdrückung, Datenkompression, Kryptographie, rekon�gurier-

barer Paketvermittlung und Ende-zu-Ende Fehlerbehandlung

• coordination

Kooperation zwischen vernetzten Entitäten: zwischen Menschen deren Arbeitsab-

läufe durch Informatiksysteme unterstützt werden (Work�ows), Eingabe- und Aus-

gabeverhalten der Informatiksysteme sowie Antwortzeit. Synchronisation zwischen

Informatiksystemen mit Race-conditions und Deadlocks, Serialisierbarkeit und ato-

maren Aktionen

• automation

Fragen zu Grenzen der Simulation kognitiver Prozesse: philosophische Betrachtun-

gen zur Automatisierung, zu Expertise und Expertensystemen, Verbesserung von

(künstlicher) Intelligenz, Turingtest, Bedeutung des Maschinenlernens mittels evo-

lutionärer Algorithmen, Bionik

• recollection

Speicherhierarchien, Lokalität von Referenzen, Caching, Adressbereich und Ab-

bildung, Namenskonventionen, Suche sowie Retrievaltechniken durch Name oder

Inhalt

• evaluation

Leistungsvoraussagen und Kapazitätsplanung: Sättigung und Flaschenhälse in Net-

zen

• design

Entwicklung qualitativ hochwertiger Informatiksysteme: Ebenenmodell des Rech-

ners, Schichtenarchitektur des Internets, Modularisierung, Geheimnisprinzip und

Abstraktion

Diese Sichten auf ein Informatiksystem sollen lernförderlich miteinander kombiniert wer-

den. Als Grundlage zur Verknüpfung der verschiedenen Sichten werden die folgenden drei

Charakteristika in Anlehnung an Claus und Schwill vorgeschlagen [Claus und Schwill

2006].

1. nach auÿen sichtbares Verhalten

2. innere Struktur

3. Entwicklung einer konkreten Realisierung

170



Da sich die Sichten auf ein Informatiksystem stark überschneiden, ist es sinnvoll eine

Bündelung der Lerninhalte und Fragestellungen zu den oben genannten Kategorien an-

hand dieser Charakteristika vorzunehmen.

Bei der Behandlung von Informatiksystemen (z.B. bei der Modellierung eines Softwa-

reprojekts) ist es sinnvoll, den Gegenstandsbereich aus unterschiedlichen Perspektiven

zu betrachten. Dementsprechend fordert Schubert in Übereinstimmung mit Brinda, dass

der zu explorierende Lerngegenstand in unterschiedlichen, interaktiv erfahrbaren und

synchronisierten Sichten darzustellen ist [Brinda 2004, S. 52].

Diese Forderung stellt einen besonderen Verknüpfungspunkt zwischen dem Siegener und

dem Paderborner Ansatz dar. Wie im weiteren Verlauf der Arbeit genauer erläutert

wird, sieht das Konzept des Informatik Lernlabors auch einen expliziten Perspektivwech-

sel durch unterschiedliche mediale Repräsentationsformen eines Informatiksystems vor.

Beispielsweise kann ein Warenwirtschaftssystem eines Kiosks real, auf Modellebene oder

auf Quellcodeebene medial repräsentiert werden. Hierbei macht es durchaus Sinn wäh-

rend der einzelnen SWE-Phasen unterschiedliche und sich wechselnde Perspektiven auf

ein Informatiksystem einzunehmen. Diese medialen Repräsentationsformen können auch

als unterschiedliche Sichten auf ein Informatiksystem interpretiert werden.

Ausgangspunkt der systemorientierten Didaktik nach Magenheim ist ein divergentes Ver-

ständnis von Informatiksystemen und deren Bedeutung für den Informatikunterricht. Um

den Unterschied deutlich zu machen, betrachten wir die De�nition des Begri�es Infor-

matiksystem nach Rüdeger Baumann.

�Unter einem Informatiksystem versteht man ein verteiltes, heterogenes, tech-

nisches System, das Wissen unterschiedlichster Art und Herkunft repräsen-

tiert, diese Wissensrepräsentation in Gestalt von Daten und Programmen

verarbeitet und den Benutzern in geeigneter Form zur Verfügung stellt [Bau-

mann 1996, S. 164].�

Nach Magenheim beinhaltet dieses Verständnis von einem Informatiksystem einen zu

starken Fokus auf das Produkt Software und dessen formale Dimension. Es ergibt sich

somit eine zu theoretische Zugangsweise zu Informatiksystemen und deren Behandlung

im Informatikunterricht. Inhaltlich zentrale Bestandteile eines solchen Unterrichts sind

somit vorrangig Datenstrukturen und Algorithmen sowie Kommunikationsprotokolle und

sukzessives Erlernen einer bestimmten Sprachsyntax.

Nach Magenheim vernachlässigt ein solcher Ansatz den Entwicklungsgang sowie die An-

wendung von Software und die damit einhergehende soziale Interaktion mit Informatik-

systemen. Eine von den Lehrplänen stets verlangte Behandlung von gesellschaftlichen

171



Auswirkungen von Informatiksystemen im Unterricht, kann infolgedessen nur in sehr ge-

ringem Umfang durchgeführt werden. Baumanns Ansatz bewirkt somit eine inhaltliche

Benachteiligung dieses essentiellen Bestandteils des Informatikunterrichts.

Der Ansatz der systemorientierten Didaktik der Informatik setzt andere Maÿstäbe bezüg-

lich inhaltlicher und methodischer Gestaltung von Informatikunterricht. Ausgangspunkt

des Unterrichts ist hierbei die Modellierung von Software und Softwaresystemen aus sozio-

technischer Perspektive. Das Handlungssystem und die Dynamik zwischen Mensch und

Maschine stehen demzufolge im Vordergrund. Formale Operationen und informatische

Prinzipien werden im Gegensatz zu anderen didaktischen Ansätzen als Bestandteile des

SWE-Prozesses verstanden. In direkter Beziehung dazu stehen Fragestellungen bezüg-

lich der Anwendung und den Auswirkungen von Informatiksystemen. Gesellschaftliche

Auswirkungen werden in diesem theoretischen Ansatz nicht mehr in Form von unterricht-

lichen Abstechern behandelt, sondern als Ausgangspunkt für Design- und Entwurfsent-

scheidungen im Softwareentwurf. Es soll dem Lernenden somit deutlich gemacht werden,

dass der Erwerb von sozialen Handlungs- und Kommunikationskompetenzen von funda-

mentaler Bedeutung für die Entwicklung von Software ist.

Magenheims Ansatz hat somit die Intention, dass Modellierung und Systemgestaltung

als zentraler Bezugspunkt für Anwendungsfragen und Fragestellungen der Auswirkung

von Informatiksystemen angesehen werden und somit den inhaltlichen Schwerpunkt von

Informatikunterricht ausmachen.

Innerhalb der systemorientierten Didaktik der Informatik Paderborn wurde in mehre-

ren Lehrveranstaltungen mit unterrichtspraktischem Bezug die Erfahrung gemacht, dass

die Verwendung von überwiegend selbstgesteuerten und konstruktivistisch orientierten

Lehr-/Lernarrangements [Cognition and Technology Group at Vanderbilt 1994], [Collins

1989], [Spiro und Feltovich 1992] Modellierungskompetenz wirkungsvoller fördern als sol-

che Arrangements, bei denen rezeptiv vermittelnde Instruktionsstrategien zum Einsatz

kommen. Auf dieser Grundlage wurde innerhalb des Informatik Lernlabors [Magenheim

2003a] die Lernumgebung Kommissionierstation entwickelt. Diese wurde für das Projekt

MoKoM weiterentwickelt und didaktisch aufbereitet. Die Besonderheit dieser Lernum-

gebung besteht darin, dass die Schüler zunächst eine Explorationsphase durchlaufen,

in der sie mit einem bestehenden komplexen Informatiksystem (Kommissionierstation)

konfrontiert werden (in diesem Zusammenhang werden Systemanwendung und System-

verständnis gefördert). Anschlieÿend gilt es, das Informatiksystem im Rahmen einer Re-

Engineering-Phase zu dekonstruieren, zu analysieren und weiterzuentwickeln. In diesem

Beispiel hat es sich als hilfreich erwiesen, dass sich die Schüler zunächst anhand der

Entwurfsmuster Model-View-Controller und des Observer-Patterns die Systemfunktio-

172



nalität des LEGO Mindstorms Modells erschlieÿen, um in einem nächsten Schritt die

jeweiligen UML-Diagrammtypen und den Quellcode des Systems in strukturierter Form

analysieren zu können. Um dieses lernerzentrierte explorative Vorgehen zu unterstützen,

enthält die Lernumgebung Kommissionierstation spezi�sche Medien, die das Informatik-

system in Form von Learning Objects [Standards 2001] mit unterschiedlichen medialen

Codierungsarten und Abstraktionsebenen repräsentieren [Tulodziecki und Herzig 2002],

[Magenheim und Scheel 2004]. Diese Kategorisierung bot Hilfestellung bei der Auswahl

von Lernobjekten, die im Rahmen der Unterrichtsreihe zum Einsatz kamen. Mit Hilfe der

bereitgestellten medialen Repräsentationen der Lernumgebung wurden lernerzentrierte,

explorative Lernprozesse zum Modellieren von Informatiksystemen ermöglicht. Hierbei

bestand die Zielsetzung, etablierte Vorgehensmodelle des Softwareentwurfs zu vermitteln

und mit Hilfe eines Beispiels aus der Lebenswelt der Schüler die Anwendung, den Transfer

und die Bewertung von relevanten Modellierungstechniken zu vermitteln. Da neben der

Förderung von kognitiven Fähigkeiten und Fertigkeiten zur informatischen Modellierung

auch die Kooperation der Schüler sowie deren Kommunikation untereinander angeregt

wurden, bot sich die Gelegenheit, die Messinstrumente im Rahmen dieser Lernumge-

bung (April bis Juni 2010) in einem Grundkurs der Jgst. 12 am Paderborner Pelizaeus

Gymnasium einzusetzen. Auf Grundlage dieser Unterrichtsreihe konnte das entwickelte

Teilinstrument für informatische Modellierungskompetenz und nicht-kognitive Kompe-

tenzen erprobt werden.

Dekonstruktion als Konzept der systemorientierten Didaktik

Vom Standpunkt der systemorientierten Didaktik, kann Software als Text zur Beschrei-

bung und Steuerung maschineller Betriebsamkeit und Interaktion zwischen Mensch und

Maschine verstanden werden. Diese Repräsentationsform beinhaltet Entwurfs- und De-

signentscheidungen des Entwicklers.

In diesem Kontext versteht man den Begri� Dekonstruktion als eine interpretierende

Annäherung an Software. Hierbei soll eine Sensibilisierung für Gestaltungsmöglichkeiten

von Software und zudem eine erhöhte Aufmerksamkeit im Hinblick auf die Phasen der

Softwareentwicklung gescha�en werden. Dekonstruktion versteht sich demzufolge nicht

nur als Lesen von Software um die Syntax einer Programmiersprache zu erlernen, sondern

als Vorgehensweise um Annahmen über Modell-, Entwurfs- und Designentscheidungen

einer Softwareentwicklung zu erlangen. Die somit gewonnenen Annahmen sind allerdings

nur hypothetischer Ausprägung und können nicht eindeutig belegt werden [Magenheim

2000].

Die Softwareentwicklung wird bei dem Vorgang der Dekonstruktion als Entscheidungs-

173



prozess angesehen, der von den Rahmenbedingungen abhängt unter denen die Software

entstanden ist. Zu diesen Bedingungen zählen insbesondere die Interessen und Wünsche

des Auftraggebers, die unterschiedliche gesellschaftliche Folgen nach sich ziehen können.

Die Unterstreichung dieser Zusammenhänge sollte im Sinne des systemorientierten An-

satzes von fundamentaler Bedeutung für den Informatikunterricht sein.

Dekonstruktion kann zudem Einsicht in vielschichtige Betrachtungsweisen und Abstrakti-

onsebenen eines Informatiksystems geben. Sie verscha�t Einblicke in die Benutzerober�ä-

che und die dort vorhandenen interaktiven gra�schen Komponenten, als Repräsentanten

für Softwarefunktionalität.

Der Assemblercode ist eine weitere Abstraktionsebene des Informatiksystems. Er kann als

Verbindung zur Hardwarearchitektur eines Rechners gesehen werden. Informatiksysteme

erscheinen in dieser Betrachtungsweise als zeichenverarbeitende Maschinen, die Daten

und Programme in Form von Zeichenketten verarbeiten. In diesem Zusammenhang ver-

steht sich die Turingmaschine als theoretischer Kern des Informatiksystems, die formale,

in Zeichenketten codierte Regeln befolgt [Magenheim 2000].

Die Dekonstruktion auf dieser Abstraktionsebene durchdringt nach Magenheim grundle-

gende Fragestellungen der theoretischen Informatik wie Berechenbarkeit, formale Spra-

chen und Grundelemente der Komplexitätstheorie [Magenheim 2000].

Dekonstruktion als Unterrichtsmethode im Informatikunterricht

Häu�g stellt sich Informatikunterricht als monotoner Programmierkurs einer vorher fest-

gelegten Programmiersprache dar. Die Aufgabenstellungen haben zumeist einen geringfü-

gigen Grad an Komplexität und beziehen sich vorwiegend auf fundamentale Algorithmen.

Der Bezug zur Mathematik ist hierbei charakteristisch.

Nach Magenheim ergeben sich in diesem Zusammenhang De�zite beim Einüben und

Erlernen von Problemlösungsstrategien. Hierzu gehört die Fähigkeit, Probleme in Teil-

probleme aufzuteilen und ein analytisches Abstraktionsdenken zu entwickeln.

�Der für ein Unterrichtsfach an allgemein bildenden Schulen übliche Anspruch

auf Vermittlung von Allgemeinbildung ist somit kaum zu leisten [Hampel et

al. 1999, S. 1].�

Da die � in sich dynamische � Bezugswissenschaft des Informatikunterrichts eine ständige

Weiterentwicklung erfährt, ist ein solches Unterrichtskonzept für einen wissenschaftspro-

pädeutischen oder allgemein bildenden Unterricht nur bedingt einsatzfähig.

Der Ausgangspunkt der systemorientierten Didaktik hingegen, ist die Modellierung und

Analyse von Informatiksystemen mittels Dekonstruktion von objektorientiertem Java-

174



Code. Dieser ist von hinreichender und dennoch unter didaktischen Gesichtspunkten re-

duzierter Komplexität.

Operationen, die die Dekonstruktion in diesem Zusammenhang charakterisieren, sind die

Erkundung der Funktionalität des Informatiksystems und die Herleitung des Modells

des Problembereichs. Darüber hinaus ist der Vergleich des Informatiksystems zum realen

System für die Dekonstruktion kennzeichnend.

Auf diese Weise werden am Beispiel des Informatiksystems objektorientierte Verfahren

erprobt und im Verlauf der Dekonstruktion auch einzelne Klassen und Objekte der Soft-

ware analysiert. Die Wechselwirkung von Datenstrukturen, Methoden und Ereignissen

wird somit erkennbar und zusätzlich deren Codierung in Java sukzessive erschlossen.

Die zuvor beschriebenen Teilziele können nach Magenheim insofern erreicht werden, als

dass zu jedem Dekonstruktionsschritt Beispiele und Übungsaufgaben präsentiert und

durchgeführt werden. Dies bewirkt zudem eine verbesserte Au�assungsgabe durch Trans-

fer in einen anderen Wahrnehmungszusammenhang. Weiterhin wird eine verbesserte Ein-

sicht in objektorientierte Sichtweisen und Modellbildung gewährleistet. Im weiteren Ver-

lauf der Dekonstruktion sollten die Lernenden zudem einzelne Zusatzmodule entwickeln

und in geeigneter Form in die Software integrieren.

Die Hauptzielsetzung der Dekonstruktion im Sinne der systemorientierten Didaktik be-

steht in den Kompetenzen, kleine Softwareprojekte zu modellieren und nach objekt-

orientierten Paradigmen selbst zu entwickeln. Von essentieller Bedeutung ist ferner die

Fähigkeit, dass sich die Lernenden über das reale sozio-technische Informatiksystem und

den damit interagierenden Menschen bewusst werden [Hampel et al. 1999].

6.2.2. Theoretische Konzeption des Informatik Lernlabors

Das Informatik Lernlabor aus didaktisch-methodischer Perspektive

Der Entwurf und die Umsetzung des Informatik Lernlabors stellen den Versuch dar, die

zuvor beschriebenen unterrichtsmethodischen Konzepte unter wissenschaftlicher Beglei-

tung in die Praxis umzusetzen [Magenheim 2003a].

In der herkömmlichen informatischen Bildung kommen Tools, wie Editoren, Debugger

und Compiler zum Einsatz. Die Durchführung des Informatik Lernlabors erfordert zu-

dem weitere interaktive computerbasierte Medien. Im Technisch-organisatorischem Sinne

lassen sich diese in Anlehnung an Keils Ansatz zu primären, sekundären und tertiären

Medienfunktionen folgendermaÿen unterscheiden [Keil-Slawik 2002] [Magenheim 2003b,

S. 36]:

• Cognitive Tools

175



Diese ermöglichen die interaktive Gestaltung und Strukturierung von Dokumenten,

Software und computerbasierten Medien. Sie stellen zudem Prozesse der Bearbei-

tung, Sicherung und Übertragung sicher.

• Lernsoftware

Diese stellt dem Nutzer zusätzlich zur Inhaltspräsentation eine lerntheoretisch moti-

vierte Schnittstelle zur Interaktion mit dem Informatiksystem zur Verfügung. Folg-

lich bildet das Medium Lernsoftware Formen der Mediennutzung in sich ab.

• Agents

Sie repräsentieren einen Medientyp, der Lernende und Nutzungsverhalten analy-

siert und sich infolgedessen dem Nutzer und seinen individuellen Bedürfnissen an-

passt. Agents besitzen somit eine regelbasierte oder algorithmische Lernfähigkeit

und werden auch als intelligente tutorielle Systeme bezeichnet. Sie spielen in didak-

tischem Kontext eine untergeordnete Rolle und sind auch bisher in der Konzeption

des Informatik Lernlabors nicht zu �nden.

Die Medientypen Cognitive-Tools und Lernsoftware sind dagegen wesentliche Bestandtei-

le des Informatik Lernlabors. Cognitive Tools kommen in Form von gra�schen Debuggern

und integrierten Entwicklungsumgebungen zum Einsatz. Weiterhin �nden sie als gra�sche

Editoren Anwendung, die beispielsweise die interaktive Entwicklung von Java-Quellcode

unterstützen. Die einzelnen Phasen der Systemmodellierung können infolgedessen inter-

aktiv am Computer gestaltet und der Lerngruppe vorgestellt werden. Weiterhin ist eine

Modi�kation oder Revidierung nach Gruppendiskussionen unter geringem Aufwand mög-

lich.

Der Einsatz von Lernsoftware �ndet in Form von sog. Lernobjekten (learning objects)

statt [Standards 2001]. Diese stellen in sich abgeschlossene, multimediale Lerneinheiten

dar, die sich dem Nutzer auf interaktive Weise medial präsentieren. Lernobjekte beschrän-

ken sich auf eine begrenzte Anzahl von zu realisierenden Lernzielen und bieten Nutzern

die Möglichkeit, den Gegenstandsbereich explorativ zu erkunden.

Die Integration von Lernobjekten in das Informatik Lernlabor geschieht durch Kombi-

nation von Phasen des Präsenzlernens und Phasen des computerbasierten E-Learning.

Diese sich abwechselnden Lernformen werden auch als Blendet Learning bezeichnet.

Lernobjekte sollen im Informatik Lernlabor möglichst interaktiv und für kollaboratives

Arbeiten zugänglich angeboten werden. Diese Aufgabe kann beispielsweise von Lernplatt-

formen und spezieller Groupware mit spezi�schen E-Learning Funktionen übernommen

werden. In diesem Zusammenhang können den Lernenden Videosequenzen von realen

Arbeitsabläufen in Informatiksystemen o�eriert werden. Zusätzlich sind Lehrende in der

176



Lage, Interviews mit Nutzern und Auftraggebern, Entwicklungsgespräche über Entwurfs-

entscheidungen und Animationen zu Arbeitsabläufen und Informations�üssen (webba-

siert) zur Verfügung zu stellen.

Das interaktive Medium Lernsoftware ermöglicht somit vielschichtige Sichten auf das

Produkt Software und den SWE-Prozess. Diesbezüglich kann ein Anwendungs- und Rea-

litätsbezug der Lernenden sichergestellt werden und eine Förderung von vernetztem Wis-

sen seitens der Nutzer des Informatik Lernlabors statt�nden.

Die Arbeitsformen des Informatik Lernlabors lassen sich in zwei wesentliche Phasen un-

terteilen [Magenheim 2003a, S. 74]:

Dekonstruktionsphase

• Exploration

Die Lernenden sollen hierbei mittels der oben angesprochenen interaktiven Me-

dien den Gegenstandsbereich erkunden und folglich ein erhöhtes Verständnis des

Informatiksystems erlangen. Die Durchführung der Explorationsphase kann sowohl

arbeitsteilig als auch in Gruppenarbeit erfolgen.

• Re-engineering

In dieser Phase werden die Lernenden angewiesen, das vorhandene Informatik-

system zu verändern und zusätzlich neue Module zu entwickeln und einzubetten.

Diesbezüglich sollen Designentwürfe verglichen und hinsichtlich ihrer technischen

Funktionalität bewertet werden. Zusätzlich können in dieser Dekonstruktionsphase

auch mögliche soziale Folgen diskutiert und erörtert werden. Die Zielsetzung dieser

Phase ist es, eine fundierte Wissensbasis seitens der Lernenden zu scha�en.

Konstruktionsphase

• Transfer

In der Transferphase werden die Lernenden aufgefordert, einen komplexen Auftrag

zur Entwicklung eines Informatiksystems arbeitsteilig zu realisieren. Erforderlich

hierfür ist der Transfer des bei der Dekonstruktionsphase erworbenen Wissens auf

die neue Anforderungssituation.

• Softwareentwicklung

Dieser zeitlich umfassende Abschnitt der Softwarekonstruktion beinhaltet die für

den Softwareentwurf üblichen Teilphasen, wie Anforderungsde�nition, Spezi�kati-

on, Entwurf und Implementierung. Die Softwareentwicklungsphasen können mit

Hilfe handlungsorientierter Modellierungskonzepte wie CRC Karten oder dem Ob-

ject Game gestaltet werden.

177



• Evaluation

Diese abschlieÿende Phase der Konstruktion beinhaltet eine Bewertung hinsichtlich

der erreichten Lernziele seitens der Schüler. Weiterhin können die Lernenden die

Qualität des erstellten Produkts anhand der zuvor formulierten Anforderungsde-

�nition einschätzen. Die Evaluation von erbrachten Eigenleistungen scha�t somit

einen qualitativen Fortschritt bezüglich der statt�ndenden Lernprozesse seitens der

Schüler.

Inhaltsmodule des Informatik Lernlabors

Das Informatik Lernlabor verfügt zurzeit über drei technisch ausgereifte Inhaltsmodule,

die derzeit in Schul- und Hochschullehre ihren Einsatz �nden. Das Modul Onlineredaktion

und die von mir entwickelte Software zur visuellen Programmierung sollen ebenfalls im

Informatik Lernlabor eingesetzt werden. Die bisherigen Inhaltsmodule strukturieren sich

folgendermaÿen:

• Das Modul Hochregallager hat die Steuerung von Transport- und Lage-

rungsprozessen in einem Hochregallager zu Gegenstand. [...]

• Im Modul Schulkiosk werden elementarste Konzepte eines Warenwirt-

schaftssystems thematisiert. Die zu dekonstruierende Software bezieht

sich auf die Ein- und Verkaufsvorgänge eines Schulkiosks. [...]

• Das Computerspiel Ursuppe bildet den Ausgangspunkt für das Mo-

dul Computerspiel. Die zugehörige Software ist in der Lage, nach ent-

sprechenden Benutzereingaben die Spielverwaltung zu übernehmen und

Spielstände gra�sch anzuzeigen. [...]

• Im Modul Onlineredaktion sollen vor allem webbasierte Transaktionen,

die Gestaltung von interaktiven Webseiten und die Speicherung von de-

ren Inhalten in einer Datenbank thematisiert werden.

6.2.3. Fallbeispiel Kommissionierstation in der Hochschullehre

Die Unterrichtsreihe zur Evaluation des Kompetenzmessinstruments für informatisches

Modellieren basiert auf dem LEGO Mindstorms System. Dieses setzt sich aus unter-

schiedlichen LEGO-Komponenten zusammen. Zum Bau eines LEGO Mindstorms Sys-

tems nutzt man vorwiegend die handelsüblichen LEGO-Steine sowie Bauteile aus dem

Bereich LEGO-Technik. Darüber hinaus kommen auch Motoren, Sensoren und Steuerein-

heiten (NXTs) zum Einsatz. Diese Steuereinheiten lassen sich beliebig kon�gurieren und

178



programmieren. Dementsprechend hat man die Möglichkeit, Motoren und andere Peri-

pheriegeräte beliebig auszulesen und anzusteuern. Die NXT-Bausteine unterstützen zu-

sätzlich die Kommunikation untereinander via Bluetooth. Somit lassen sich unterschied-

liche NXT-Systeme zu einem komplexen System kombinieren und unterschiedliche reale

Prozesse (z.B.: Hochregallager, Kommissionierstationen, etc.) simulieren.

Wie oben beschrieben besteht im Rahmen der Vorlesung Informatik Lernlabor die Ziel-

setzung, die theoretischen Ansätze der systemorientierten Didaktik der Informatik nach

Magenheim unter wissenschaftlicher Begleitung praktisch zu erproben. Innerhalb der

Vorlesung ILL '08 bestand die Aufgabe ein Fallbeispiel Kommissionierstation zu imple-

mentieren. Hierbei wurde den Studierenden die folgende Zielsetzung mitgeteilt:

Zielsetzung

Die Aufgabe besteht darin, mit Hilfe des LEGO Mindstorms Systems eine Kommissioni-

erstation zu konstruieren. Dies umfasst die technische und software-technische Konstruk-

tion, Verarbeitung und Abarbeitung von Aufträgen. Bei der Realisierung wurde groÿen

Wert darauf gelegt, dass eine realitätsnahe Abbildung einer Kommissionierstation ent-

steht. Hierfür wurden Videoaufzeichnungen und bereits bestehende Systeme betrachtet

und als Vorlage verwendet.

Anforderungen

Eine Kommissionierungsstraÿe besteht aus mehreren Kommissionierungsstationen, die

durch ein Palettenband bedient werden. Auf einem Palettenband sollen sich verschiedene

Paletten bewegen, die Aufträge entgegennehmen. Umgesetzt werden soll jedoch nur eine

Kommissionierungsstation. Im Folgenden seien die Anforderungen für die Bestandteile

der Kommissionierungsstraÿe aufgeführt:

• Palettenband

Das Palettenband soll Paletten zu einer Kommissionierungsstation transportieren

können.

� Palette

Eine Palette soll einen Code, der aus verschiedenfarbigen LEGO-Steinen be-

steht, enthalten. Eine Palette beinhaltet einen Auftrag.

• Kommissionierungsstation

EineKommissionierungsstation ist Bestandteil einerKommissionierungsstraÿe. Die-

se soll ein Förderband sowie drei Kommisionierungstürme enthalten.

179



� Förderband

Eine Kommissionierungsstation soll ein Förderband enthalten, welches die

zu verwaltenden Steine aus dem Kommissionierungstürmen, zu der Palette

befördert.

� Kommissionierungsturm

Ein Kommissionierungsturm ist Bestandteil der Kommissionierungsstation.

Dieser enthält die zu verwaltenden LEGO-Steine einer bestimmten Kategorie.

Eine Kommissionierungsstation soll drei Kommissionierungstürme enthalten,

welche jeweils grüne, rote und graue Steine lagern.

� Farbsensor

Mit Hilfe des Farbsensors soll ein Farbcode, der sich auf der Palette be�ndet,

ausgelesen werden.

• Auftrag

Ein Auftrag soll die jeweilige Anzahl von grünen, roten und grauen LEGO-Steinen

beinhalten.

Dekonstruktionsphase

• Exploration

Anhand von Videomaterialien und eines bestehenden LEGO Mindstorms Modells

waren die Studierenden angehalten, den Gegenstandsbereich des Hochregallagers

zu erkunden und dessen Funktionsweise zu verstehen.

• Re-engineering

Innerhalb der Re-Engineering-Phase erhielten die Studierenden den Auftrag ein

weiteres Hochregal mit entsprechendem Lift zur Ein- und Auslagerung von Pa-

letten in das Hochregallager zu integrieren. Hierzu waren sie aufgefordert, sich in

den bestehenden Quellcode des Systems einzuarbeiten und sowohl die technische

als auch die software-technische Umsetzung vorzunehmen. Hierdurch sollte eine

fundierte Wissensbasis seitens der Studierenden aufgebaut werden.

Konstruktionsphase

• Transfer

In der Transferphase werden die Lernenden aufgefordert, einen komplexen Auftrag

zur Entwicklung eines Informatiksystems arbeitsteilig zu realisieren. Erforderlich

hierfür ist der Transfer des bei der Dekonstruktionsphase erworbenen Wissens auf

die neue Anforderungssituation.

180



• Softwareentwicklung

Die Zielsetzung der Phase bestand in der Konstruktion einer Kommissioniersta-

tion. Innerhalb dieser umfangreichen Softwareentwicklungsphase wurden alle für

den Softwareentwurf üblichen Teilphasen durchlaufen. Dementsprechend haben die

Studierenden � wie oben beschrieben � die Anforderungen an die Kommissionier-

station aufgenommen, die Analyse- und Designphasen durchlaufen und deren Im-

plementierung vorgenommen. Während jener Softwareentwicklungsphasen kamen

handlungsorientierte Modellierungskonzepte wie CRC Karten, Klassendiagramme

oder das Object Game zum Einsatz.

• Evaluation

Die abschlieÿende Evaluationsphase beinhaltet eine Bewertung in Bezug auf erreich-

te Lernziele der Studierenden. Weiterhin ist hierbei die Qualität des entwickelten

Produkts anhand der zuvor formulierten Anforderungen bewertet worden.

181



Abbildung 6.12.: Klassendiagramm der ILL-Kommissionierstation

182



Das neue ILL-Inhaltsmodul Kommissionierstation

Die Kommissionierstation besteht aus vier Hauptbestandteilen:

1. Kontrolleinheiten (bestehend aus zwei NXTs)

2. Transportband der einzelnen Warenstücke

3. Kommissioniertürme

4. Transportband für die zu befüllenden Paletten

Abbildung 6.13.: Technische Bestandteile der Kommissionierstation

Folgende Schritte sind erforderlich, um die Kommissionierstation in Betrieb zu nehmen:

183



Zunächst muss die Kommissionierstation auf einen ebenen Untergrund gestellt werden.

Nun gilt es, die Kommissioniertürme mit den Waren (hier 2x2 breite LEGO-Steine) zu

bestücken.

Zum Einschalten der Kontrolleinheiten (NXTs) muss die orangefarbene Taste gedrückt

werden. Nach Betätigung der Taste erscheint ein Startbildschirm und man gelangt in

das Hauptmenü. Im nächsten Schritt muss eine Palette auf das Palettentransportband

gelegt werden. Wenn man sich nun wieder der Kontrolleinheit zuwendet, sieht man den

folgenden Startbildschirm.

Abbildung 6.14.: Startbildschirm eines NXT-Bausteins

Jetzt muss der Reiter im Menü auf Run Default eingestellt werden und die orangenen

Tasten der NXTs A und B betätigt werden (die einzelnen Kontrolleinheiten sind entspre-

chend beschriftet). Nun verbinden sich die beiden NXTs über die Bluetooth-Schnittstelle

miteinander und das Transportband für die Paletten beginnt zu laufen. Das Band sorgt

für den Transport der Palette und stoppt erst nach dem die Palette den Farbsensor

passiert hat und die korrekte Kodierung gelesen hat. Durch das Auslesen der Paletten-

kodierung wird die Bestückung der Palette bestimmt und ein Signal an den jeweiligen

184



Kommissionierturm weitergegeben. Zeitgleich beginnt sich das Transportband für die

Warenstücke in Bewegung zu setzen. Die Kommissioniertürme lassen die passende An-

zahl an Warenstücken auf dieses Band fallen, welches die Warenstücke dann zu der Palet-

te befördern. Anschlieÿend fährt das Palettenband weiter und die nächste Palette kann

bearbeitet werden.

Für die fehlerfreie Abarbeitung einer Palettenreihe, sollte zwischen den Paletten ein Min-

destabstand von 2-3 cm eingehalten werden. Um die NXTs abzuschalten muss zweimal

die Taste, die sich unter der orangefarbenen Taste be�ndet, betätigt werden.

Farbcodierung

Die Farben schwarz, rot und blau wurden aus dem Grunde gewählt, da diese die gerings-

te Fehleranfälligkeit hatten. In verschiedenen Tests wurden Kombinationen von Farben

gewählt und auf deren Tauglichkeit überprüft. So stellte sich heraus, dass besonders helle

Farben neben dunklen Farben, und umgekehrt, nicht korrekt erkannt wurden. Als Bei-

spiel wurde weiÿ-schwarz-weiÿ als weiÿ-blau-weiÿ erkannt oder schwarz-gelb-schwarz als

schwarz-grün-schwarz. Somit schloss sich der Gebrauch dieser Farben als Kombinationen

für die Farbcodierung aus. Die Fehleranfälligkeit des Farbsensors lässt sich daraus erse-

hen, dass der Sensor immer einen Farbbereich erkennt. Besonders an Übergängen von

einer Farbe zu einer Anderen traten Farbfehler auf, die herausge�ltert werden mussten.

Für diese Implementierung gelten folgende Farbwerte:

• COLOR1 = 0 // schwarz

• COLOR2 = 3 // blau

• COLOR3 = 5 // rot

• INITCOLOR = COLOR1 = 0 // schwarz

Die Farberkennung liest einen Farbwert ein und vergleicht diesen mit dem zuletzt gelese-

nen Wert. Unterscheiden sich diese Werte, muss ein Farbwechsel stattgefunden haben. Die

Folge von aufeinanderfolgen Farben wird als Binärstring codiert, sodass eine eindeutige

Zuordnung von Farbfolge und Aufträgen erfolgen kann.

185



Abbildung 6.15.: Farbsensor

6.2.4. Fallbeispiel Kommissionierstation als Unterrichtsreihe zur

Kompetenzmessung

Reduktion unter didaktischen Gesichtspunkten

Das im Rahmen des Seminars aufgenommene Feedback der Lehramts-Studierenden war

überaus positiv. Der Einsatz der LEGO Mindstorms hat sich als motivierend heraus-

gestellt. Darüber hinaus stand nach Abschluss des Seminars Informatik Lernlabor SoSe

2008 ein funktionstüchtiger Prototyp der Kommissionierstation zur Verfügung.

In diesem Zusammenhang wurde auch die Tauglichkeit der Inhaltseinheit Kommissioni-

erstation für den Einsatz im Informatikunterricht in der Sekundarstufe II thematisiert

und bewertet. Hier verfestigte sich nach zahlreichen Diskussionen die Annahme, dass die

Thematik grundsätzlich geeignet sei und in der Erfahrungswelt der Schüler verankert

ist. Es gilt jedoch eine didaktische Reduktion der Einheit vorzunehmen um technische

Hürden auszuschlieÿen und das Re-Engineering sowie die Phase der Softwareentwicklung

handhabbarer und für Schüler leistbar zu machen.

Technische Vereinfachungen

Aufgrund der Erfahrungen an der Hochschule und den praktischen Erfahrungen zur di-

daktischen Tauglichkeit des ILL-Moduls Kommissionierstation für den schulischen Ein-

satz der Inhaltseinheit, wurden technische Vereinfachungen und Vereinfachungen im

Quellcode vorgesehen. Zunächst ist die Identi�zierung der einzelnen Paletten mittels

186



eines RFID-Sensors realisiert worden. Hierzu wurde an jeder Palette ein eindeutiger

RFID-Transponder angebracht. Hiermit wurde die störanfällige Farberkennung ersetzt

und der Programmcode deutlich vereinfacht. Im Gegensatz zur Codierung der einzelnen

Paletten durch farbige Bausteine erfolgt ein simples Auslesen des jeweiligen Byte-Werts,

der die eindeutige Kennung der jeweiligen Palette (durch den eindeutigen Transponder)

darstellt.

Reduzierte Ausbaustufen und Meilensteine

Es ergeben sich die folgenden Ausbaustufen bei der Verwendung der technisch reduzierten

Kommissionierstation:

1. Ausbaustufe I Ein Kommissionierturm

In der Ausbaustufe I ist die rudimentäre Funktionalität der Kommissionierstation

umgesetzt. Mit einem Kommissionierturm kann eine fest im Quellcode hinterlegte

Anzahl von Steinen in einer Farbe auf das Transportband geschoben und in die

jeweilige Palette befördert werden.

2. Ausbaustufe II Drei Kommissioniertürme

In der Ausbaustufe II werden drei Kommissioniertürme verwendet. Diese müssen

entsprechend in das technische LEGO-Modell integriert werden. Auf Modellierungs-

ebene gilt es, die Kommissioniertürme adäquat in das entsprechende Entwurfsmo-

dell (z.B. Klassendiagramm) mit aufzunehmen. Letztendlich müssen die zwei zu-

sätzlichen Türme auch im Quellcode mit angepasst werden. Sofern die jeweilige

Iteration der Modellierungsphase abgeschlossen ist, lässt sich das Modell eindeutig

in objektorientierten Quellcode übersetzten.

3. Ausbaustufe III RFID Steuerung

In der Ausbaustufe III müssen weitreichende Änderungen an der Kommissioni-

erstation vorgenommen werden. Es gilt aus technischer Sicht einen RFID-Sensor

in die Station zu integrieren und die einzelnen Paletten mit RFID-Transpondern

auszustatten. Auf Modellierungsebene müssen die entsprechenden Komponenten

(z.B. der RFID-Sensor) mit aufgenommen werden. Auf Quellcodeebene gilt es ne-

ben der Übernahme der Änderungen aus dem Entwurfsmodell ebenso die feste

Hinterlegung der Kommissionieraufträge im Quellcode aufzulösen. Hierzu musste

eine Datenstruktur hinterlegt werden, die eine Zuordnung von RFID-IDs zu den

entsprechenden Kommissionieraufträgen ermöglicht.

187



Neben der technischen Realisierung und Erprobung der drei oben genannten Ausbaustu-

fen der Kommissionierstation wurden die Änderungen im Modell sowie die Auswirkungen

im Quellcode aufbereitet. In diesem Zusammenhang �nden sich im Anhang dieser Arbeit

die einzelnen Schritte zur Erweiterung des Quellcodes zwischen den einzelnen Ausbau-

stufen.

Grobplanung einer Unterrichtsreihe

Auf Grundlage der technisch und didaktisch reduzierten Inhaltseinheit Kommissionier-

station des ILL wurde die Grobplanung der folgenden Unterrichtsreihe zur Evaluation

des entwickelten Kompetenzmessinstruments für informatisches Modellieren vorgenom-

men. Auf theoretischer Grundlage der Phasen des ILL Magenheim [2003a] und der oben

genannten Ausbaustufen wurde die folgende Grobplanung vorgeschlagen:

Dekonstruktion

Exploration

(1./2.Woche)

Die Lernenden erkunden den Gegenstandsbereich anhand von

drei medialen Repräsentationsformen des Gegenstandsbereichs:

1. Die Lernenden erkunden die reale Kommissionierstation

anhand von Videomaterial eines realen Systems.

2. Die Lernenden erkunden das bestehende LEGO

Mindstorms Modell der Kommissionierstation in der

Ausbaustufe I. Wie oben beschrieben handelt es sich

hierbei um eine Minimalversion mit nur einem

Kommissionierturm und einem im Quellcode hinterlegten

Kommissionierauftrag.

3. Die Lernenden erkunden das Software-Modell anhand

bereits modellierter Entwurfs-Klassendiagramme und

anhand des bestehenden Quellcodes mit Hilfe von IDEs.

Re-Engineering

(3.-4. Woche)

Die Lernenden sind angehalten die Integration eines weiteren

Kommissionierturms am LEGO Mindstorms Modell

(Ausbaustufe II) vorzunehmen. Darüber hinaus gilt es, die

Erweiterung des Systems in den entsprechenden

Entwurfsmodellen abzubilden und diese anschlieÿend in den

Quellcode zu übernehmen.

188



Konstruktion

Transfer Im Übergang zwischen Dekonstruktions- und

Konstruktionsphase erfolgt der Lerntransfer der bei der

Dekonstruktion erworbenen Fähigkeiten auf die neue

Anforderungssituation

Software-

entwicklung

(5.-8. Woche)

Die Lernenden sollen einen komplexen Auftrag zur Erweiterung

der Kommissionierstation ausführen. Hierbei gilt es, die

Ausbaustufe III zu realisieren. Dementsprechend muss ein RFID

integriert werden, um eine automatische Kommissionierung von

Waren zu ermöglichen. Hierzu muss die jeweilige Palette vom

System erkannt und der jeweilige zugehörige

Kommissionierauftrag ausgeführt werden.

Evaluation

(8. Woche)

Die Lernenden bewerten die erreichten Lernziele und die

Qualität des Produkts

Die Planung der Unterrichtsreihe zur ersten Evaluation des Kompetenzmessinstruments

für informatisches Modellieren wurde bewusst als Grobplanung ausgelegt. Hier sollte die

jeweilige Lehrperson möglichst viel Freiraum zur Gestaltung der Unterrichtsreihe und

zur Erreichung der einzelnen vorde�nierten Meilensteine (Ausbaustufen der Kommissio-

nierstation) haben. Sowohl die Herangehensweise zur Vermittlung von Modellierungs-

kompetenz als auch die Auswahl geeigneter Modellierungstechniken (z.B. CRC-Karten,

Klassendiagramme, Objektdiagramme, etc.) liegt in der Kompetenz und Zuständigkeit

der Lehrperson, die die Unterrichtsreihe begleitet.

6.3. Hypothesen für die Erprobung des Messinstruments

Unter der Annahme, dass das entwickelte Lehr-/Lernarrangement Kompetenzen in der

informatischen Modellierung fördert, sollen im Folgenden Hypothesen zur Tauglichkeit

des Instruments, Kompetenzzuwächse zu messen, angeführt werden.

Hypothese H1:

Das Messinstrument zeigt einen systematischen Kompetenzzuwachs der Ler-

nenden beim Nachtest im Vergleich zum Vortest auf.

Zunächst soll dementsprechend geprüft werden, ob sich im Vergleich von Vor- und Nach-

test ein Kompetenzzuwachs messen lässt. Hierbei soll das Gesamtergebnis der einzelnen

Probanden beim Nachtest im Vergleich zum Vortest ermittelt und verglichen werden.

189



In Anlehnung an die Phasen des ILL macht es Sinn eine phasenabhängige Bündelung

der Aufgaben in sog. Aufgabencluster vorzunehmen. Anhand der Inhalte und der zu

fördernden Kompetenzen der Unterrichtsreihe werden drei Aufgabencluster gebildet:

1. Cluster 1: Allgemeine Kompetenzen zu Vorgehensmodellen in der Softwaretechnik
(Bündelung der Aufgaben 1,2,3)
Dieser Aufgabenbereich umfasst Kompetenzen zu den unterschiedlichen Vorgehens-
modellen der Softwaretechnik. Hierbei können die Lernenden verschiedene lineare
und iterative Vorgehensmodelle des Software-Engineerings (linear: z.B. vereinfach-
tes Wasserfallmodell, ...; iteratives Vorgehen: z.B. RUP) und deren Phasen benen-
nen, für die Lösung eines softwaretechnischen Problems verwenden und beurteilen
welche Phasen es zur Lösung des Problems (erneut) zu durchlaufen gilt.

• K1.3.6 Iteratives Vorgehen

• K1.3.6.1 Die Lernenden sind in der Lage, abhängig von der jeweiligen Iteration des

SWE-Prozesses, sinnvolle Modellierungstechniken auszuwählen, anzuwenden und zu

beurteilen.

• K1.3.6.2 Die Lernenden sind in der Lage zu beurteilen, ob ein erneutes Durchlau-

fen einer bereits absolvierten Phase des SWE-Prozesses erforderlich ist; sie können

abhängig von den auftretenden Problemen in der aktuellen Phase eine sinnvolle vor-

herige Phase auswählen, die es erneut zu durchlaufen gilt.

2. Cluster 2: Kompetenzen für die Dekonstruktion und Analyse von Informatiksyste-
men (Bündelung der Aufgaben 4,5,6)
Dieser Aufgabenbereich fokussiert Kompetenzen zur Analyse eines (bestehenden)
Informatiksystems. Dies umfasst die Ableitung von funktionalen Anforderungen
bis hin zur Feinanalyse des Systems mit Hilfe der entsprechenden UML-Notation.
Hierbei spielen implementierungsspezi�sche Details bei der Modellierung eine un-
tergeordnete Rolle und sind lediglich für das Re-Engineering von Quellcode eines
bestehenden Informatiksystems relevant.

• K1.3.1.1 Die Lernenden können eine geeignete (Software) Plattform/Basistechnolo-

gie auswählen, um das zu erstellende SW-Projekt zu entwickeln.

• K1.3.1.2 Die Lernenden sind in der Lage, Anwendungsfälle (Use Cases) zu ermitteln

und anzugeben (benennen), diese zu analysieren (durchzuspielen); sie sind diesbezüg-

lich auch in der Lage, Use Case Diagramme zu entwickeln. Hierbei können sich die

Lernenden einen Eindruck verscha�en, was die zu entwickelnde Software zu leisten

hat.

• K1.3.1.3 Die Lernenden sind in der Lage, funktionale Anforderungen an die zu

entwickelnde Software zu ermitteln; dabei sind sie befähigt, die Ziele (z.B. funktionale

Anforderungen), Grenzen (z.B. Abgrenzung zu bestehenden Softwaresystemen) und

190



Stakeholder innerhalb der Problemdomäne zu ermitteln. Hierbei besteht wiederum

die Zielsetzung herauszu�nden, was das zu entwickelnde System leisten soll.

• K1.3.1.4 Die Lernenden sind in der Lage, eine tabellarische Use Case Beschreibung

in ein Aktivitätendiagramm zu überführen. Hierdurch können mögliche Anwendungs-

szenarien genauer analysiert werden.

• K1.3.1.5 Die Lernenden sind in der Lage, die zuvor ermittelten funktionalen Anfor-

derungen für andere verständlich und nachvollziehbar darzustellen (dokumentieren).

Hierbei besteht die Zielsetzung, ein gemeinsames Dokument (im Sinne eines P�ich-

tenhefts) für die SWE-Teams im Hinblick auf die weiteren Phasen des SWE-Prozess

zu entwickeln.

• K1.3.2 Analyse

• K1.3.2.1 Die Lernenden können objektorientierte Begri�ichkeiten angeben und er-

läutern. Dies ist Grundvoraussetzung, um eine objektorientierte Dekomposition durch-

führen zu können.

• K1.3.2.2 Die Lernenden sind in der Lage, eine objektorientierte Dekomposition

durchzuführen; d.h., sie können anhand einer textuellen Beschreibung des Problem-

bereichs mögliche Klassenkandidaten, Attribute und Methoden ermitteln (au�nden)

und diese in eine formale Darstellungsform überführen. Hierbei besteht die Zielset-

zung ein Modell des Problembereichs zu erstellen.

• K1.3.2.3 Die Lernenden sind in der Lage, relevante statische und dynamische UML-

Diagramme ohne implementierungsspezi�sche Details zu entwickeln (z.B. CRC-Karten).

Durch diese formale konzeptionelle Modellierung erhalten die Lernenden einen ver-

tieften Einblick in die Problemdomäne.

3. Cluster 3: Kompetenzen für die Konstruktion von Informatiksystemen (Bündelung
der Aufgaben 7,8,9,10)
Dieser Aufgabenbereich fokussiert Kompetenzen zum Design und zur Gestaltung
eines neuen Informatiksystems. Dies umfasst im Gegensatz zu den Aufgaben in
Cluster 2 vorrangig das konkrete Lösungsdesign eines Informatiksystems bzw. des-
sen Bestandteilen und die konkrete Implementierung auf Grundlage von Design-
Modellen in UML-Notation. Hierbei liegt der Fokus bei der Modellierung auf Mo-
dellen mit implementierungsspezi�schen Details. Neben der Konstruktion von In-
formatiksystemen adressieren die Aufgaben aus Cluster 3 ebenso den Test eines
Informatiksystems.

• K1.3.3 Design

• K1.3.3.1 Die Lernenden sind in der Lage, die Architektur der zu entwickelnden

Software zu bestimmen; dabei wählen sie eine geeignete Programmiersprache aus,

berücksichtigen Aspekte der Verteilung, Nebenläu�gkeit/Parallelität und möglicher

191



Entwurfsmuster. Dies ist eine wichtige Voraussetzung für die Entwicklung von ent-

wurfsspezi�schen UML-Diagrammarten.

• K1.3.3.2 Die Lernenden sind in der Lage, sinnvolle Schnittstellen zu bestimmen um

eine spätere erfolgreiche Integration von Programmmodulen zu ermöglichen.

• K1.3.3.3 Die Lernenden sind in der Lage, relevante statische und dynamische

UML-Diagramme mit implementierungsspezi�schen Details zu entwickeln. Hierdurch

entsteht ein entwurfsspezi�sches Modell, welches in Quellcode einer objektorientier-

ten Hochsprache überführt werden kann.

• K1.3.4 Implementierung

• K1.3.4.1 Die Lernenden sind in der Lage, die Architektur der zu entwickelnden

Software zu bestimmen; dabei wählen sie eine geeignete Programmiersprache aus,

berücksichtigen Aspekte der Verteilung, Nebenläu�gkeit/Parallelität und möglicher

Entwurfsmuster. Dies ist eine wichtige Voraussetzung für die Entwicklung von ent-

wurfsspezi�schen UML-Diagrammarten.

• K1.3.4.1.1 Die Lernenden sind in der Lage, Programmierkonzepte, wie z.B. das Va-

riablenkonzept und Kontrollstrukturen (Bedingte Anweisung, Schleifenkonstruktion)

in der Programmiersprache zu implementieren.

• K1.3.4.1.2 Die Lernenden sind in der Lage, ein Klassendiagramm in objektorien-

tierten Java-Code zu überführen; Sie können Klassen, Attribute und Methoden sowie

Assoziationen und Vererbungsstrukturen in Java-Code implementieren.

• K1.3.4.1.3Die Lernenden sind in der Lage, Programmbibliotheken (z.B. Java-Swing)

erfolgreich in eigene Programmmodule einzubinden.

• K1.3.4.2 Die Lernenden sind in der Lage, mit Hilfe von integrierten Entwicklungs-

umgebungen (IDEs) Programmmodule zu implementieren und zu integrieren.

• K1.3.4.3 Die Lernenden sind in der Lage, mit Hilfe einer Versionsverwaltungssoft-

ware (z.B. Subversion) Programmmodule und deren Versionierung zu verwalten.

• K1.3.4.4 Die Lernenden sind in der Lage, die selbst implementierten Programmmo-

dule nachvollziehbar (im Hinblick auf gute Wartbarkeit) zu dokumentieren (z.B. mit

Java-Doc).

• K1.3.4.5 Die Lernenden sind in der Lage, Programmmodule sinnvoll in ein bestehen-

des Softwaresystem zu integrieren. Somit können Teile der zu entwickelnden Software

zu einem lau�ähigen System aggregiert werden.

• K1.3.5 Test

• K1.3.5.1 Die Lernenden sind in der Lage, ein bestehendes Softwaresystem systema-

tisch zu testen. Hierbei besteht die Zielsetzung unter anderem darin, zu überprüfen,

ob die zuvor spezi�zierten funktionalen Anforderungen erfolgreich umgesetzt wurden.

192



• K1.3.5.1.1 Die Lernenden sind in der Lage, zu Beginn der Testphase einen geeigne-

ten Testplan zu entwickeln.

• K1.3.5.1.3 Die Lernenden sind in der Lage, Testfälle zu ermitteln (Extremfälle und

unerwartete Eingabedaten erzeugen) oder zu entwickeln; sie können diese zum Test

verwenden und die daraus resultierenden Ausgaben protokollieren.

Aufgrund der besonders (zeit-)intensiven Behandlung der Konstruktionsphase ist ein

Kompetenzzuwachs insbesondere bei Cluster 3 im Vergleich zu Cluster 1 und Cluster 2

zu erwarten. Demzufolge sollte das Instrument insbesondere für diesen Kompetenzbereich

einen deutlichen Kompetenzzuwachs messen können. Dieser sollte merklich über dem

ermittelten Kompetenzzuwachs bei den Aufgabenclustern 2 und 3 liegen. Die Hypothese

H2 fasst den Sachverhalt in eine Aussage, die es zu überprüfen gilt, zusammen:

Hypothese H2:

Das Messinstrument zeigt einen systematischen Kompetenzzuwachs bei dem

Aufgabencluster 3 (Konstruktion von IS) auf. Dieser ist gröÿer als der Kom-

petenzzuwachs bei den Aufgabenclustern 1 (allgemeine Aufgaben zu Vorge-

hensmodellen in der Softwaretechnik) und 2 (Dekonstruktion von IS).

Diese Hypothesen gilt es bei der Auswertung der Ergebnisse der Erprobung im folgenden

Kapitel zu überprüfen.

6.4. Zusammenfassung

Dieses Kapitel hatte die Zielsetzung, den Prozess zur Entwicklung von Aufgaben und

darin enthaltener Items auf Grundlage der im Kapitel 5 formulierten Kompetenzpro�-

le (Kategoriende�nitionen) aufzuzeigen. In diesem Kontext wurden zunächst theoreti-

sche Grundlagen zur Testentwicklung und zur Fragebogenkonstruktion aufgezeigt und

beispielhaft der Entwicklungsprozess einzelner repräsentativer Aufgaben des Messinstru-

ments dargestellt. Hierbei wurden spezielle Items für Kompetenzkategorien entwickelt

und zu Aufgaben kombiniert, die möglichst mehrere im Strukturmodell abgebildete Kom-

petenzbereiche abfragen.

Eine weitere Zielsetzung war es, die Konzeption eines Lehr-/Lernarrangements zur För-

derung von Modellierungskompetenzen zu beschreiben. Dieses soll als thematische und

unterrichtsmethodische Grundlage für die Erprobung des Messinstruments fungieren. Zur

theoretischen Fundierung wurden verschiedene didaktische Ansätze zum Verständnis von

193



Informatiksystemen aufgeführt und deren Ein�uss auf die Gestaltung der Unterrichtsrei-

he dargestellt. Ebenso wurde die Verknüpfung der einzelnen Ansätze mit dem Fokus

auf der systemorientierten Didaktik der Informatik dargelegt. Neben der theoretischen

Fundierung wurde die praktische Entwicklung der LEGO Mindstorms basierten Inhalts-

einheit Kommissionierstation des Informatik Lernlabors dargestellt.

Abschlieÿend wurden als Ergebnis dieses Kapitels im Hinblick auf die Lerneinheit zur

Evaluation Hypothesen zur Wirksamkeit des Messinstruments formuliert, die es im fol-

genden Kapitel zu überprüfen gilt.

Das nächste Kapitel beschreibt die Erprobung des Kompetenzmessinstruments im Rah-

men einer Unterrichtseinheit innerhalb der gymnasialen Oberstufe. Diese Erprobung wur-

de auf theoretischer und unterrichtspraktischer Grundlage des oben beschriebenen Lehr-

/Lernarrangements geplant und im Frühjahr 2011 am Paderborner Pelizaeus Gymnasium

durchgeführt.

194



7. Erprobung des Messinstruments für

informatische

Modellierungskompetenz

Dieses Kapitel beschreibt die Erprobung des Messinstruments für Modellierungskompe-

tenz. Dementsprechend werden auf Grundlage des dafür konzipierten Lehr-/

Lernarrangements das Untersuchungssetting und -design mit den einzelnen Messzeit-

punkten dargestellt. Aufgrund vielfältiger positiver Erfahrungen zum Einsatz der Ler-

neinheit in der Hochschullehre gehen wir davon aus, dass diese die Entwicklung von

Modellierungskompetenz fördert. Der Fokus der Einheit liegt insbesondere auf der Kon-

struktion von Informatiksystemen und den dafür erforderlichen Kompetenzen.

Die Ergebnisse der beiden Kompetenzmessungen sollen im Vergleich vorgestellt und dif-

ferenziert interpretiert werden. Ziel soll in diesem Zusammenhang die Prüfung der zuvor

aufgestellten Hypothesen H1 und H2 sein. Bei der Prüfung der Hypothese H1 werden die

Gesamtergebnisse der Erprobung betrachtet, wo hingegen bei H2 die Ergebnisse unter

Berücksichtigung der de�nierten Aufgabencluster 1-3 analysiert werden.

Infolgedessen soll zunächst eine deskriptive statistische Analyse der Ergebnisse von Vor-

und Nachtest und der Verteilung der Probanden im Hinblick auf die erreichte Punktzahl

durchgeführt werden. In diesem Zusammenhang kommt in einem zweiten Schritt ein ge-

eignetes induktives Verfahren zum Einsatz, um die statistische Signi�kanz der Ergebnisse

des Nachtests im Vergleich zum Vortest für H1 und H2 zu untersuchen.

Hierbei stellt sich die zentrale Frage, ob das Messinstrument in der Lage ist, messtechnisch

zu di�erenzieren und Kompetenzzuwächse aufzuzeigen.

Wie im vorherigen Kapitel zur Planung der Unterrichtsreihe beschrieben, sieht das ver-

wendete Untersuchungssetting zwei Messzeitpunkte vor. Einen zu Beginn der Unterrichts-

reihe und einen zum Abschluss der Einheit. Im Folgenden wird nochmals der Verlauf der

Unterrichtsreihe skizziert und die Messzeitpunkte aufgeführt. Ferner werden die Rah-

menbedingungen für die Durchführung der Kompetenzmessung festgelegt.

195



Abbildung 7.1.: Kapitel 7 im Gesamtkontext der Arbeit

196



7.1. Untersuchungssetting- und Design

7.1.1. Lerngruppe und zeitlicher Rahmen

Im Mai und Juni 2011 wurde die Erprobung des Kompetenzmessinstruments über acht

Wochen am Paderborner Pelizaeus Gymnasium durchgeführt. Beim Kurs handelte es sich

um einen Informatik Leistungskurs der Jahrgangsstufe 13. Der Kurs umfasste 28 Schü-

lerinnen und Schüler. Es handelte sich hierbei um einen sog. Koorperations-Kurs der ge-

meinschaftlich von den Gymnasien im Paderborner Innenstadtbereich, nämlich Pelizaeus

Gymnasium, Reismann Gymnasium und Theodorianum organisiert wurde. Durchschnitt-

lich hatte der Kurs jeweils fünf Wochenstunden, wobei dieser jeweils abwechselnd in den

geraden Kalenderwochen sechs Wochenstunden und in den ungeraden Kalenderwochen

vier Wochenstunden umfasste.

7.1.2. Messzeitpunkte

Die Messungen hatten einen zeitlichen Umfang von jeweils 90 Minuten. Hierbei wurden

die Probanden aufgefordert, alle zehn Aufgaben des Messinstruments zu bearbeiten. Im

Verlauf der Unterrichtseinheit waren die folgenden Messzeitpunkte vorgesehen:

Dekonstruktion

1. Kompetenzmessung

Exploration

(1./2.Woche)

Re-Engineering

(3.-4. Woche)

Konstruktion

Transfer

Softwareentwicklung

(5.-10. Woche)

Evaluation

(10. Woche)

2. Kompetenzmessung

197



Zu den beiden Messzeitpunkten kam jeweils dasselbe Instrument (siehe Anhang) und

das gleiche Bewertungsschema zum Einsatz. Um die Ergebnisse der Probanden bei Vor-

und Nachtest vergleichen zu können und trotzdem die Anonymität der Schülerinnen und

Schüler zu wahren, wurde ein eindeutiger Code zur Identi�zierung vorgegeben.

1. Erster Buchstabe Vorname der Mutter

2. Zweiter Buchstabe Vorname des Vaters

3. Erste Ziffer des Geburtstages (inkl. 0)

4. Zweite Ziffer des Geburtstages

z.B. HI02 (Daten des Autors)

Bei den Kompetenzmessungen zu Beginn der Unterrichtseinheit (Vortest) und zu deren

Abschluss (Nachtest) konnten die Ergebnisse von einer Grundgesamtheit von N = 20

Probanden ausgewertet werden. Die Abweichung der Grundgesamtheit zur Kursstärke

hängt mit der Abwesenheit bestimmter Schüler bei Vor- und Nachtest zusammen.

7.2. H1 - Gesamtergebnis im Vergleich

Mit dem Ziel, zunächst einen Überblick über die Datenlage zu erlangen, werden in einem

ersten Schritt ausschlieÿlich deskriptive statistische Verfahren verwendet. Im weiteren

Verlauf des Kapitels soll mit Hilfe eines induktiven Verfahrens überprüft werden, ob sich

tendenziell abzeichnende Kompetenzzuwächse überzufällig (also statistisch signi�kant)

sind.

7.2.1. Deskriptive statistische Analyse

Dieses Teilkapitel hat die Zielsetzung, die erhobenen Daten im Hinblick auf die aufge-

stellte Hypothese H1 zu überprüfen. Demzufolge wird zunächst das Gesamtergebnis von

Vor- und Nachtest, d.h. die jeweilig vom Probanden erreichte Punktzahl, dargestellt und

verglichen.

Zu H1 Gesamtergebnisse

Zur Prüfung der Hypothese H1 sollen die Gesamtergebnisse zu beiden Messzeitpunkten

verglichen werden. Dementsprechend umfasst die folgende Tabelle die erreichte Gesamt-

punktzahl der einzelnen Probanden.

198



Gesamtergebnis

(max Punkte = 172)
Proband Ergebnis Vortest Ergebnis Nachtest Vergleich

Kürzel nominal prozentual nominal prozentual Tendenz

AN05 77 44,77% 96 55,81% +11,05%
NI06 99,5 57,85% 105,5 61,34% +3,49%
IR14 61,5 35,76% 90,5 52,62% +16,86%
JJ13 47 27,33% 96 55,81% +28,49%
OI04 84 48,84% 114 66,28% +17,44%
AR16 55,5 32,27% 105,5 61,34% +29,07%
OA27 76,5 44,48% 118 68,60% +24,13%
LG18 71,5 41,57% 74 43,02% +1,45%
AB26 74,5 43,31% 129,5 75,29% +31,98%
EI06 74,5 43,31% 118,5 68,90% +25,58%
EA26 114 66,28% 131,5 76,45% +10,17%
AG15 117 68,02% 144 83,72% +15,70%
ES29 95,5 55,52% 130 75,58% +20,06%
OR01 76 44,19% 94,5 54,94% +10,76%
EA05 65 37,79% 100 58,14% +20,35%
IL08 52,5 30,52% 84 48,84% +18,31%
AG12 126 73,26% 102 59,30% -13,95%
AR01 87 50,58% 118 68,60% +18,02%
UG23 93 54,07% 133,5 77,62% +23,55%
LE06 114 66,28% 79,5 46,22% -20,06%

arithm. Mittel 83,08 48,30% 108,23 62,92% +14,62%

Tabelle 7.1.: Gesamtergebnisse der Erprobung

Die erste Spalte mit der Bezeichnung Proband beinhaltet die einzelnen eindeutigen Ken-

nungen der Probanden. Innerhalb der Spalten Vortest werden die nominal erreichte

Punktzahl und die prozentual erreichte Punktzahl der einzelnen Probanden im Vortest

aufgeführt. Die Spalten Nachtest beinhalten dementsprechend die nominalen und antei-

ligen Punktzahlen der Probanden im Nachtest. Innerhalb der Spalte Vergleich/Tendenz

wird die Di�erenz zwischen anteilig erreichter Punktzahl im Nachtest (Minuend) und

anteilig erreichter Punktzahl im Vortest (Subtrahend) berechnet und aufgeführt.

Betrachtet man die Gesamtergebnisse der Kompetenztests haben die Probanden im Vor-

test durchschnittlich 48, 30% der möglichen Punkte erreicht. Im Nachtest erreichten sie

62, 92% der Punkte. Folglich haben die Probanden im Nachtest im Mittel ca. 14, 62%

mehr Punkte erreicht als im Vortest.

199



Bei Betrachtung der Ergebnisse der Probanden im Vergleich zeigt sich, dass 18 von 20

Probanden im Nachtest besser abgeschnitten haben als im Vortest. Dies könnte neben

dem deutlichen prozentualen Zuwachs als Indiz für einen möglichen Kompetenzzuwachs

interpretiert werden.

Um die Verteilung der Probanden im Hinblick auf die jeweils erreichte Punktzahl im

Kompetenztest zu illustrieren, werden im Folgenden zwei Histogramme dargestellt. Diese

zeigen die Häu�gkeitsverteilung und enthalten auf der Ordinate die jeweilige Anzahl der

Probanden und auf der Abszisse die prozentual erreichte Punktzahl. Hierbei wird die

anteilig erreichte Punktzahl in zehn Leistungsklassen von 0% bis 100% eingeteilt. Um

darüber hinaus die Verteilung von Vor- und Nachtest zu vergleichen, werden die beiden

Histogramme für Vortest (Histogramm mit blauen Balken) und Nachtest (Histogramm

mit roten Balken) nebeneinander dargestellt1.

Abbildung 7.2.: Vor- und Nachtest im Vergleich

Bei Betrachtung der Histogramme wird deutlich, dass sich die Leistung der Probanden

merklich verbessert hat. Im Vortest haben ca. ein Viertel der Probanden (vier Proban-

den) nicht die 40 %-Marke erreicht. Im Nachtest hingegen konnten alle 20 Probanden

mehr als 40 % der Punkte erreichen. Bei der Verteilung der Probanden wird ein weiterer

Unterschied deutlich: Im Vortest konnten die meisten (hier sieben Probanden) Proban-

den mehr als 50 % der Punkte erreichen. Im Nachtest hingegen haben fünf Probanden

mehr als 60 % der Punkte erreicht und darüber hinaus vier Probanden sogar mehr als 70

1Die Vorkenntnisse der Probanden wurden bei dieser Auswertung nicht berücksichtigt. Dies sollte in
einer breiten Erprobung des Messinstruments mit berücksichtigt werden.

200



% der Punkte erreichen können. Im Vergleich zum Vortest hat sich somit ein erheblicher

Leistungszuwachs abgezeichnet.

Unter der Annahme, dass die durchgeführte Unterrichtsreihe Modellierungskompetenz

fördert, könnten diese Ergebnisse einen Hinweis darauf geben, dass sich mit dem verwen-

deten Instrument ein Kompetenzzuwachs messen lässt.

Hierbei ist anzumerken, dass im Rahmen der Prüfung der Hypothese H1 noch keine

di�erenzierte Betrachtung der abgeprüften Kompetenzbereiche stattgefunden hat. Bevor

diese in H2 de�nierte Frage genauer betrachtet wird, sollen zunächst die Gesamtergeb-

nisse von Vor- und Nachtest (H1 ) mit einer induktiven statistischen Methode zum Mit-

telwertvergleich untersucht werden. In diesem Zusammenhang soll festgestellt werden,

ob sich die Ergebnisse der Probanden zufällig oder systematisch verbessert haben und

ob das Kompetenzmessinstrument dazu in der Lage ist, diesen Zuwachs messtechnisch

aufzuzeigen.

7.2.2. Induktive statistische Analyse

Wie einleitend beschrieben, soll neben der deskriptiven statistischen Analyse in einem

weiteren Schritt mit Hilfe eines induktiven Verfahrens überprüft werden, ob sich tenden-

ziell abzeichnende Kompetenzzuwächse statistisch signi�kant sind.

7.2.3. Auswahl eines geeigneten Testverfahrens

Um zu überprüfen, ob die empirische Mittelwertdi�erenz signi�kant oder zufällig ist,

kommt der t-Test als induktives statistisches Verfahren zum Mittelwertvergleich zum

Einsatz. Die Voraussetzungen für den t-Test sind, dass die unabhängige Variable (hier

das Treatment durch die Unterrichtseinheit) dichotom, also in genau zwei Ausprägungen

vorliegt (vor Treatment durch die Unterrichtsreihe; nach Treatment durch die Unter-

richtsreihe) und die abhängige Variable (hier die erreichte Gesamtpunktzahl oder die

erreichte Punktzahl je Aufgabencluster metrisch skaliert ist. Des Weiteren muss sicher-

gestellt sein, dass die zu vergleichenden Stichproben normalverteilt sind.

Variable Skalierung Ausprägungen

uv Unabhängige Variable dichotom {vor der U-Reihe, nach der U-Reihe}

av Abhängige Variable metrisch {0..max Punktzahl}

Zur Prüfung der Normalverteilung kommt der Kolmogorov-Smirnov-Test zum Einsatz.

Mit Hilfe von SPSS (Version 19) wurde dieser Test für alle Stichproben angewendet.

201



Im Folgenden werden die Ergebnisse des Kolmogorov-Smirnov-Test für das Gesamtergeb-

nis und für die Aufgabencluster 1-3 dargestellt. Hierbei wird jeweils die Normalverteilung

der Stichproben von Vor- und Nachtest untersucht.

Abbildung 7.3.: Kolmogorov-Smirnov-Test (Gesamtergebnis VT / NT)

202



Abbildung 7.4.: Kolmogorov-Smirnov-Test (Aufgabencluster1 VT / NT)

Abbildung 7.5.: Kolmogorov-Smirnov-Test (Aufgabencluster2 VT / NT)

203



Abbildung 7.6.: Kolmogorov-Smirnov-Test (Aufgabencluster3 VT / NT)

Wie in allen Tabellen erkennbar, sind die Werte für die asymptotische Signi�kanz (2-

seitig) p gröÿer oder gleich 0,05. Folglich kann man annehmen, dass die Werte der getes-

teten Variablen hinreichend normalverteilt sind.

Da die Voraussetzungen für den t-Test bei gepaarten Stichproben erfüllt sind, ist dessen

Anwendung sinnvoll um die Mittelwerte der Stichproben miteinander zu vergleichen.

7.2.4. t-Test

Die Daten der Auswertungstabellen zum Vor- und Nachtest werden mithilfe eines t-Tests

daraufhin untersucht, ob sie sich statistisch signi�kant voneinander unterscheiden. Hier-

bei soll überprüft werden, ob die Gesamtergebnisse des Nachtests höher ausfallen als die

des Vortests. Der t-Test wird mit SPSS 19 durchgeführt. Hierbei wird eine Sicherheits-

wahrscheinlichkeit von 5% (α = 0.05) festgelegt, welches bei Untersuchungen dieser Art

üblich ist.

204



Statistik bei gepaarten Stichproben

Mittelwert N Standardabweichung Standardfehler

des Mittelwertes

Vortest 83,0750 20 22,53084 5,03805

Nachtest 108,20000 20 19,50196 4,36077

Korrelation bei gepaarten Stichproben

N Korrelation Signi�kanz

Vortest & Nachtest 20 ,399 ,081

Test bei gepaarten Stichproben

Gepaarte Di�erenzen

Mittelwert Standardabweichung Standardfehler

des Mittelwertes

Vortest - Nachtest −25, 12500 23,17660 5,18244

Test bei gepaarten Stichproben

Gepaarte Di�erenzen T

95% Kon�denzintervall der Di�erenz

Untere Obere

Vortest - Nachtest −35, 97198 −14, 27802 −4, 848

Test bei gepaarten Stichproben

df Sig. (2-seitig)

Vortest-Nachtest 19 ,000

Die statistische Auswertung liefert ein höchstsigni�kantes Ergebnis2.

Dies bedeutet, dass die Mittelwertunterschiede zwischen dem Vor- und dem Nachtest

überzufällig also systematisch sind. Da der Mittelwert für den Vortest kleiner ausfällt als

der für den Nachtest kann man behaupten, dass sich die Werte zum zweiten Messzeit-

punkt systematisch verbessert haben. Dementsprechend scheint das Messinstrument in

der Lage zu sein, einen Kompetenzzuwachs aufzuzeigen. Folglich wird die Hypothese H1

bestätigt.

2α ≤ 0, 001 : höchst signi�kant | α ≤ 0, 01 : hoch signi�kant | α ≤ 0, 05 : signi�kant

205



Im weiteren Verlauf soll mit Hypothese H2 überprüft werden, bei welchen Kompetenz-

bereichen sich ein Kompetenzzuwachs abzeichnet. Hierbei wird vermutet, dass bei den

Kompetenzen zur Konstruktion von Informatiksystemen (Aufgabencluster 3 ) ein beson-

ders deutlicher Kompetenzzuwachs messbar ist, der gröÿer als die jeweiligen Zuwächse

bei den Aufgabenclustern 1 und 2 ist.

7.3. H2 - Ergebnisse zur Konstruktion von IS im Vergleich

Im Folgenden werden die Ergebnisse von Vor- und Nachtest entsprechend der vorgenom-

menen thematischen Clusterung der Aufgaben des Messinstruments untersucht. Hierbei

soll geprüft werden, ob wie vermutet für die Aufgaben zur Konstruktion von IS (Cluster

3 ) ein höherer Kompetenzzuwachs als bei den Aufgaben zur Dekonstruktion von In-

formatiksystemen (Cluster 2 ) und allgemeinen Aufgaben zu Vorgehensmodellen in der

Softwaretechnik (Cluster 1 ) gemessen werden können.

7.3.1. Cluster 1 - Aufgaben zu Vorgehensmodellen in der Softwaretechnik

Zunächst sollen die Ergebnisse für das Aufgabencluster 1 (Aufgaben zu Vorgehensmodel-

len in der Softwaretechnik) dargestellt werden. Wie im vorherigen Kapitel beschrieben,

umfasst jener Aufgabenbereich Kompetenzen zu den unterschiedlichen Vorgehensmodel-

len der Softwaretechnik. Hierbei können die Lernenden verschiedene lineare und iterative

Vorgehensmodelle des Software-Engineerings (linear: z.B. vereinfachtes Wasserfallmodell,

...; iteratives Vorgehen: z.B. RUP) zur Lösung eines komplexen Problems aus der Soft-

waretechnik benennen, sinnvoll absolvieren sowie beurteilen und planen.

Hierzu erfolgt zunächst die deskriptive statistische Analyse und Interpretation der Er-

gebnisse von Vor- und Nachtest zu Cluster 1 im Vergleich. Ferner wird für diesen Bereich

ein induktiver Mittelwertvergleich mittels t-Test vorgenommen.

206



Ergebnis Cluster 1

(max Punkte = 36)
Proband Ergebnis Vortest Ergebnis Nachtest Vergleich

Kürzel nominal prozentual nominal prozentual Tendenz

AN05 12,5 34,72% 13 36,11% +1,39%
NI06 17 47,22% 27 75,00% +27,78%
IR14 10 27,78% 12,5 33,33% +5,56%
JJ13 10 27,78% 16 44,44% +16,67%
OI04 8 22,22% 22 61,11% +38,89%
AR16 14 38,89% 22 61,11% +22,22%
OA27 14 38,89% 11 30,56% -8,33%
LG18 15 41,67% 10,5 29,17% -12,50%
AB26 16 44,44% 21 58,33% +13,89%
EI06 14,5 40,28% 15,5 43,06% +2,78%
EA26 9,5 26,39% 23 63,89% +37,50%
AG15 13 36,11% 25 69,44% +33,33%
ES29 14 38,89% 29 80,56% +41,67%
OR01 17,5 48,61% 12 33,33% -15,28%
EA05 12,5 34,72% 18,5 51,39% +16,67%
IL08 14,5 40,28% 16 44,44% +4,17%
AG12 15 41,67% 13 36,11% -5,56%
AR01 14,5 40,28% 15,5 43,06% +2,78%
UG23 18 50,00% 19 52,78% +2,78%
LE06 11 30,56% 18 50,00% 19,44%

arithm. Mittel 13,525 37,57% 17,95 49,86% +12,29%

Tabelle 7.2.: Ergebnisse zu Aufgabencluster 1

Deskriptive statistische Analyse

Die obige Tabelle zeigt die Ergebnisse aller Probanden zu Aufgabencluster 1. Analog der

Tabelle 7.1 zu den Gesamtergebnissen, beinhaltet die Spalte Proband die Kennungen für

die Probanden. Innerhalb der Spalten Vortest und Nachtest werden wiederum die nomi-

nal und prozentual erreichte Punktzahl der einzelnen Probanden im Vortest und Nachtest

aufgeführt. Innerhalb der Spalte Vergleich/Tendenz wird die Di�erenz zwischen antei-

lig erreichter Punktzahl für das Aufgabencluster 1 im Nachtest (Minuend) und anteilig

erreichter Punktzahl im Vortest (Subtrahend) berechnet.

Im Vortest haben die Probanden durchschnittlich 37, 57% der möglichen Punkte erreicht.

Im Nachtest erreichten sie 49, 86% der Punkte. Folglich haben die Probanden im Nachtest

im Mittel ca. 12, 29% mehr Punkte erreicht als im Vortest.

207



Um auch für das Aufgabencluster 1 die Verteilung der Probanden im Hinblick auf die

jeweils erreichte Punktzahl im Kompetenztest zu illustrieren, werden wiederum zwei Hi-

stogramme dargestellt. Auch hier wird die Häu�gkeitsverteilung mit der jeweiligen Anzahl

der Probanden auf der Ordinate und auf der Abszisse, die prozentual erreichte Punkt-

zahl dargestellt. Um den Vergleich von Vor- und Nachtest zu verdeutlichen, werden die

entsprechenden Histogramme nebeneinander aufgeführt.

Abbildung 7.7.: Cluster 1 - Vor- und Nachtest im Vergleich

Bei Betrachtung der Histogramme zum Aufgabencluster 1 wird deutlich, dass sich die

Leistung der Probanden merklich verbessert hat. Im Vortest gab es nur einen Proban-

den der 50 % der Punkte oder mehr erreicht hatte. Im Nachtest hingegen hat sich eine

deutliche Verbesserung ergeben: Hier haben vier Probanden mehr als 50 % der Punkte

erreicht und vier weitere Probanden mehr als 60 % erreicht. Es gab sogar jeweils einen

Probanden mit mehr als 70% und mehr als 80% der erreichten Punkte.

Dieser Zuwachs könnte damit zusammenhängen, dass vor, während und nach der Unter-

richtseinheit stets Wert darauf gelegt wurde, die aktuelle Phase des Software-Engineering

Prozesses zu besprechen und den weiteren Prozessverlauf abzustimmen. Hierbei wurde

beispielsweise innerhalb der Testphase ein Rückgri� auf die Anforderungsde�nition ge-

macht, um zu prüfen, ob alle funktionalen Anforderungen korrekt umgesetzt wurden.

Induktive statistische Analyse

Die Daten der Auswertungstabellen zum Vor- und Nachtest wurden auch für die Er-

gebnisse des Clusters 1 mithilfe des t-Tests daraufhin untersucht, ob sie sich statistisch

signi�kant voneinander unterscheiden.

208



Bei der Durchführung des t-Tests wurde wiederum eine Sicherheitswahrscheinlichkeit von

5% (α = 0.05) festgelegt.

Statistik bei gepaarten Stichproben

Mittelwert N Standardabweichung Standardfehler

des Mittelwertes

Cluster1 (VT) 13,5250 20 2,73609 ,61181

Cluster1 (NT) 17,9500 20 5,45773 1,22039

Korrelation bei gepaarten Stichproben

N Korrelation Signi�kanz

Cluster1 (VT) & Cluster1 (NT) 20 ,054 ,822

Test bei gepaarten Stichproben

Gepaarte Di�erenzen

Mittelwert Standardabweichung Standardfehler

des Mittelwertes

Vortest - Nachtest −4, 42500 6,23503 1,39420

Test bei gepaarten Stichproben

Gepaarte Di�erenzen T

95% Kon�denzintervall der Di�erenz

Untere Obere

Cluster1 (VT) - Cluster1 (NT) −7, 34309 −1, 50691 −3, 174

Test bei gepaarten Stichproben

df Sig. (2-seitig)

Cluster1 (VT) - Cluster1 (NT) 19 ,005

Die statistische Auswertung liefert ein hochsigni�kantes Ergebnis3. Das bedeutet, dass

die Mittelwertunterschiede zwischen dem Vor- und dem Nachtest überzufällig also als

systematisch interpretiert werden können. Da der Mittelwert für den Vortest kleiner

ausfällt als der für den Nachtest kann man behaupten, dass sich die Werte zum zweiten

Messzeitpunkt systematisch verbessert haben.

3α ≤ 0, 001 : höchst signi�kant | α ≤ 0, 01 : hoch signi�kant | α ≤ 0, 05 : signi�kant

209



7.3.2. Cluster 2 - Aufgaben zur Dekonstruktion von IS

Analog zum Aufgabencluster 1 sollen für das Aufgabencluster 2 die Ergebnisse der Aus-

wertung dargestellt werden. Dieser Aufgabenbereich umfasst Kompetenzen zur Analyse

von Informatiksystemen. Dies beinhaltet die Ableitung von funktionalen Anforderungen

bis hin zur Feinanalyse eines Gegenstandbereichs unter Zuhilfenahme der entsprechenden

UML-Notation. Hierbei spielen implementierungsspezi�sche Details bei der Modellierung

eine untergeordnete Rolle und sind lediglich für das Re-Engineering des Quellcodes eines

bestehenden Informatiksystems relevant.

Zunächst erfolgt die deskriptive statistische Analyse und Interpretation der Ergebnisse

von Vor- und Nachtest zu Cluster 1 im Vergleich. Ferner wird für diesen Bereich ein

induktiver Mittelwertvergleich mittels t-Test durchgeführt.

210



Ergebnis Cluster 2

(max Punkte = 57)
Proband Ergebnis Vortest Ergebnis Nachtest Vergleich

Kürzel nominal prozentual nominal prozentual Tendenz

AN05 25 43,86% 43 75,44% +31,58%
NI06 36 63,16% 32 56,14% -7,02%
IR14 40 70,18% 43 75,44% +5,26%
JJ13 22 38,60% 30 52,63% +14,04%
OI04 41 71,93% 46 80,70% +8,77%
AR16 31 54,39% 46,5 81,58% +27,19%
OA27 36 63,16% 43,5 76,32% +13,16%
LG18 38,5 67,54% 30,5 53,51% -14,04%
AB26 46 80,70% 45 78,95% -1,75%
EI06 46 80,70% 45 78,95% -1,75%
EA26 35 61,40% 44 77,19% +15,79%
AG15 37 64,91% 43 75,44% +10,53%
ES29 27,5 48,25% 36 63,16% +14,91%
OR01 36,5 64,04% 22,5 39,47% -24,56%
EA05 33 57,89% 26 45,61% -12,28%
IL08 23,5 41,23% 23 40,35% -0,88%
AG12 40,5 71,05% 31,5 55,26% -15,79%
AR01 34 59,65% 38 66,67% +7,02%
UG23 32,5 57,02% 39 68,42% +11,40%
LE06 37 64,91% 20 35,09% -29,82%

arithm. Mittel 34,9 61,23% 36,375 63,82% +2,59%

Tabelle 7.3.: Ergebnisse zu Aufgabencluster 2

Deskriptive statistische Analyse

Im Vortest haben die Probanden durchschnittlich 61, 23% der möglichen Punkte erreicht.

Im Nachtest erreichten sie 63, 82% der Punkte. Folglich haben die Probanden im Nachtest

im Mittel ca. 2, 59% mehr Punkte erreicht als im Vortest.

Zur Illustration der Verteilung der Probanden im Vergleich von Vor- zu Nachtest werden

wiederum zwei Histogramme dargestellt. Auch hier wird die Häu�gkeitsverteilung mit der

jeweiligen Anzahl der Probanden auf der Ordinate und auf der Abszisse die prozentual

erreichte Punktzahl dargestellt. Um den Vergleich von Vor- und Nachtest zu verdeutlichen

werden die entsprechenden Histogramme nebeneinander aufgeführt.

211



Abbildung 7.8.: Cluster 2 - Vor- und Nachtest im Vergleich

Wie innerhalb der Ergebnistabelle zu Cluster 2 zu entnehmen ist, hat sich im Nachtest

im Vergleich zum Vortest lediglich ein Zuwachs von 2,59 % ergeben. Betrachtet man

die Verteilung der Probanden beim Vergleich der Histogramme, fällt auf, dass sich die

Verteilung kaum geändert hat.

Das könnte aus Sicht des Autors damit zusammenhängen, dass die Lernenden gute Vor-

kenntnisse in der Analyse von Informatiksystemen haben und innerhalb der Unterrichts-

reihe der Fokus vielmehr auf der Konstruktion von Informatiksystemen gelegen hat. Zwar

wurde das Fallbeispiel Kommissionierstation (dargestellt durch verschiedene mediale Re-

präsentationsformen) analysiert, jedoch lag der Fokus eindeutig auf der Konstruktion und

der Erweiterung des Systems.

Im Folgenden muss überprüft werden, ob der Kompetenzzuwachs zufällig oder systema-

tisch war. Dementsprechend wird ein t-Test zum Mittelwertvergleich durchgeführt.

Induktive statistische Analyse

Die Daten der Auswertungstabellen zum Vor- und Nachtest wurden auch für die Ergeb-

nisse des Clusters 2 mithilfe eines t-Tests daraufhin untersucht, ob sich die Mittelwerte

der erreichten Punktzahl statistisch signi�kant voneinander unterscheiden.

Bei der Durchführung des t-Tests wurde wiederum eine Sicherheitswahrscheinlichkeit von

5% (α = 0.05) festgelegt.

212



Statistik bei gepaarten Stichproben

Mittelwert N Standardabweichung Standardfehler

des Mittelwertes

Cluster2 (VT) 34,9000 20 6,65820 1,48882

Cluster2 (NT) 36,3750 20 8,76427 1,95975

Korrelation bei gepaarten Stichproben

N Korrelation Signi�kanz

Cluster2 (VT) & Cluster2 (NT) 20 ,308 ,187

Test bei gepaarten Stichproben

Gepaarte Di�erenzen

Mittelwert Standardabweichung Standardfehler

des Mittelwertes

Vortest - Nachtest −1, 47500 9,23306 2,06457

Test bei gepaarten Stichproben

Gepaarte Di�erenzen T

95% Kon�denzintervall der Di�erenz

Untere Obere

Cluster2 (VT) - Cluster2 (NT) −5, 79620 −2, 84620 −, 714

Test bei gepaarten Stichproben

df Sig. (2-seitig)

Cluster2 (VT) - Cluster2 (NT) 19 ,484

Die statistische Auswertung liefert ein nicht signi�kantes Ergebnis4. Das bedeutet, dass

die Mittelwertunterschiede zwischen dem Vor- und dem Nachtest wahrscheinlich zufällig

sind. Obwohl der Mittelwert für den Vortest kleiner ausfällt als der für den Nachtest

kann nicht behauptet werden, dass sich die Ergebnisse des Clusters 2 zum Nachtest

systematisch verbessert haben.

4α ≤ 0, 001 : höchst signi�kant | α ≤ 0, 01 : hoch signi�kant | α ≤ 0, 05 : signi�kant

213



7.3.3. Cluster 3 - Aufgaben zur Konstruktion von IS

Abschlieÿend werden die Ergebnisse für das Aufgabencluster 3 (Aufgaben zur Konstrukti-

on von Informatiksystemen) dargestellt. Dieser Aufgabenbereich fokussiert Kompetenzen

zum Design und zur Gestaltung eines neuen Informatiksystems. Dies umfasst im Gegen-

satz zu den Aufgaben in Cluster 2 vorrangig das konkrete Lösungsdesign eines Informa-

tiksystems bzw. dessen Bestandteilen und die konkrete Implementierung auf Grundlage

von Design-Modellen in UML-Notation. Hierbei liegt der Fokus bei der Modellierung auf

Modellen mit implementierungsspezi�schen Details. Neben der Konstruktion von Infor-

matiksystemen adressieren die Aufgaben aus Cluster 3 ebenso den Test eines Informa-

tiksystems.

Zur Analyse der Testergebnisse im Aufgabencluster 3 erfolgt zunächst die deskriptive

statistische Analyse und Interpretation der Ergebnisse von Vor- und Nachtest zu Cluster

1 im Vergleich. Ferner wird auch für diesen Bereich ein induktiver Mittelwertvergleich

mittels t-Test durchgeführt.

214



Ergebnis Cluster 3

(max Punkte = 79)
Proband Ergebnis Vortest Ergebnis Nachtest Vergleich

Kürzel nominal prozentual nominal prozentual Tendenz

AN05 39,5 50,00% 40 50,63% +0,63%
NI06 46,5 58,86% 46,5 58,86% +0,00%
IR14 11,5 14,56% 35,5 44,94% +30,38%
JJ13 15 18,99% 50 63,29% +44,30%
OI04 35 44,30% 46 58,23% +13,92%
AR16 10,5 13,29% 37 46,84% +33,54%
OA27 26,5 33,54% 63,5 80,38% +46,84%
LG18 18 22,78% 33 41,77% 18,99%
AB26 12,5 15,82% 63,5 80,38% +64,56%
EI06 14 17,72% 58 80,38% +55,70%
EA26 69,5 87,97% 64,5 81,65% -6,33%
AG15 67 84,81% 76 9,20% +11,39%
ES29 54 68,35% 65 82,28% +11,39%
OR01 22 27,85% 60 75,95% +48,10%
EA05 19,5 24,68% 55,5 70,25% +45,57%
IL08 14,5 18,35% 45 56,96% +38,61%
AG12 70,5 89,24% 57,5 72,78% -16,46%
AR01 38,5 48,73% 64,5 81,65% +32,91%
UG23 42,5 53,80% 75,5 95,57% +41,77%
LE06 66 83,54% 41,5 52,53% -31,01%

arithm. Mittel 34,65 43,86% 53,9 68,23% +24,37%

Tabelle 7.4.: Ergebnisse zu Aufgabencluster 3

Deskriptive statistische Analyse

Im Vortest haben die Probanden durchschnittlich 43, 86% der möglichen Punkte erreicht.

Im Nachtest erreichten sie 68, 23% der Punkte. Folglich haben die Probanden im Nachtest

im Mittel ca. 24, 37% mehr Punkte erreicht als im Vortest.

Wie erwartet hat bei den Ergebnisse zum Aufgabencluster 3 der gröÿte Zuwachs an

Punkten im Nachtest im Vergleich zum Vortest stattgefunden.

Um die Verteilung der Probanden im Hinblick auf die jeweils erreichte Punktzahl im

Kompetenztest zu illustrieren, zeigen die bereits für die anderen Aufgabencluster ver-

wendeten Histogramme die Häu�gkeitsverteilung. Wie zuvor enthalten sie auf der Ordi-

nate die jeweilige Anzahl der Probanden und auf der Abszisse die prozentual erreichte

215



Punktzahl. Um darüber hinaus die Verteilung von Vor- und Nachtest zu vergleichen, wer-

den die beiden Histogramme für Vortest (Histogramm mit blauen Balken) und Nachtest

(Histogramm mit roten Balken) nebeneinander dargestellt.

Abbildung 7.9.: Cluster 3 - Vor- und Nachtest im Vergleich

Bei Betrachtung der Histogramme wird deutlich, dass sich die Leistung der Probanden

erheblich verbessert hat. Im Vortest haben die Hälfte der Probanden weniger als 40 % der

Punkte erreicht. Im Nachtest hingegen haben alle Probanden deutlich besser abgeschnit-

ten: In diesem Zusammenhang hat jeder Proband mehr als 40 % der Punkte erreicht.

Dieser Zuwachs von über 24% der Punkte im Nachtest bestätigt die Vermutung, dass das

Instrument genau bei diesem Aufgabencluster einen besonders hohen Kompetenzzuwachs

aufzeigt. Bestärkt wird diese Folgerung auch durch die Tatsache, dass im Nachtest mehr

als die Hälfte der Probanden 70% oder mehr der Punkte erreicht haben und somit eine

fast vollständige Bearbeitung der Aufgaben des Clusters 3 geleistet haben.

Dieser erhebliche Zuwachs lässt sich dadurch erklären, dass die Unterrichtsreihe beson-

ders jene Modellierungskompetenzen anspricht, die die Entwicklung eines Informatik-

systems adressieren. Als zentraler thematischer Schwerpunkt waren die Probanden hier

angehalten, einen komplexen und zeitlich umfänglichen Auftrag zur Erweiterung der

Kommissionierstation durchzuführen. Hier mussten Änderungen an der Softwarearchi-

tektur modelliert werden, um neue Sensoren und Aktoren in das Informatiksystem zu

integrieren. Ferner galt es in diesem Zusammenhang unbekannte Programmschnittstel-

len anzusprechen und die dazugehörigen Software-Module sinnvoll in das Gesamtsystem

zu integrieren. Die Lernenden waren weiterhin gefordert, die daraus resultierenden neu-

en Quellcode Fragmente so in das Gesamtsystem zu integrieren, dass die Gesamtlösung

weiterhin lau�ähig bleibt.

216



Die Probanden erfuhren durch die dargebotenen unterschiedlichen medialen Repräsen-

tationsformen einen Perspektivwechsel auf das Informatiksystem und mussten die tech-

nischen Anpassungen im Modell auf die Modellanpassungen und Quellcodeanpassungen

überführen. Die Probanden haben in diesem Kontext auch technische Änderungen am

LEGO Mindstorms-Modell vorgenommen und in Design-Modelle (z.B. State-Charts) mit

implementierungsspezi�schen Details überführt. Die Designmodelle wurden wiederum in

objektorientierten Quellcode übersetzt. Konkret haben die Probanden hierbei Klassen-

diagramme mit Assoziationen und Vererbungsstrukturen in Java-Quellcode übersetzt.

Insgesamt ergibt sich also bei dem Lehr-/Lernarrangement ein sehr starker Fokus auf die

Konstruktion und Entwicklung von Informatiksystemen.

Unter der Annahme, dass die durchgeführte Unterrichtsreihe Modellierungskompetenz

fördert, könnten diese Ergebnisse einen Hinweis darauf geben, dass sich mit dem verwen-

deten Instrument ein Kompetenzzuwachs messen lässt.

Induktive statistische Analyse

Die Daten der Auswertungstabellen zum Vor- und Nachtest wurden auch für die Ergeb-

nisse des Clusters 3 mithilfe eines t-Tests daraufhin untersucht, ob sich die Mittelwerte

der erreichten Punktzahl statistisch signi�kant voneinander unterscheiden.

Bei der Durchführung des t-Tests wurde wieder eine Sicherheitswahrscheinlichkeit von

5% (α = 0.05) festgelegt.

Statistik bei gepaarten Stichproben

Mittelwert N Standardabweichung Standardfehler

des Mittelwertes

Cluster3 (VT) 34,6500 20 21,40530 4,78637

Cluster3 (NT) 53,9000 20 12,92957 2,89114

Korrelation bei gepaarten Stichproben

N Korrelation Signi�kanz

Cluster3 (VT) & Cluster3 (NT) 20 ,390 ,089

217



Test bei gepaarten Stichproben

Gepaarte Di�erenzen

Mittelwert Standardabweichung Standardfehler

des Mittelwertes

Cluster3 (VT) - Cluster3 (NT) −19, 25000 20,22993 4,52355

Test bei gepaarten Stichproben

Gepaarte Di�erenzen T

95% Kon�denzintervall der Di�erenz

Untere Obere

Cluster1 (VT) - Cluster1 (NT) −28, 71790 −9, 78210 −4, 256

Test bei gepaarten Stichproben

df Sig. (2-seitig)

Cluster3 (VT) - Cluster3 (NT) 19 ,000

Die statistische Auswertung des Aufgabenclusters 3 liefert ein höchstsigni�kantes Ergeb-

nis5. Das bedeutet, dass die Mittelwertunterschiede zwischen dem Vor- und dem Nachtest

systematisch sind. Da der Mittelwert für den Vortest hier deutlich kleiner ausfällt als der

für den Nachtest kann man behaupten, dass sich die Werte zum zweiten Messzeitpunkt

systematisch verbessert haben. Dementsprechend scheint das Messinstrument in der Lage

zu sein, einen Kompetenzzuwachs aufzuzeigen.

7.4. Zusammenfassung

Im Rahmen dieses Kapitels wurden die Ergebnisse zur Erprobung des Messinstruments

beschrieben.

Zur Überprüfung der Hypothesen H1 und H2 erfolgte sowohl eine deskriptive statistische

Analyse der Ergebnisse als auch ein induktives Verfahren in Form eines t-Tests, um

die statistische Signi�kanz der Ergebnisse des Nachtests im Vergleich zum Vortest zu

untersuchen.

Im Hinblick auf das Gesamtergebnis und den Mittelwertvergleich von Vor- und Nachtest,

bei dem sich ein Zuwachs von 14,62 % ergeben hat, zeigen die deskriptiven und induktiven

Ergebnisse, dass das Messinstrument in der Lage ist, die positiven Veränderungen beim

5α ≤ 0, 001 : höchst signi�kant | α ≤ 0, 01 : hoch signi�kant | α ≤ 0, 05 : signi�kant

218



Nachtest im Vergleich zum Vortest zu messen. Demzufolge wurde die Hypothese H1

akzeptiert.

Abbildung 7.10.: Ergebnisse des t-Test im Vergleich 1/2

Bei Betrachtung der Ergebnisse zu den Aufgabenclustern 1 bis 3 konnten die in H2 aufge-

stellten Vermutungen bestätigt werden, dass die Unterrichtsreihe insbesondere diejenigen

Modellierungskompetenzen fördert, die zur Konstruktion von Informatiksystemen erfor-

derlich sind. Hierbei hat sich innerhalb der deskriptiven statistischen Analyse gezeigt,

dass beim Aufgabencluster 1 (Aufgaben zu Vorgehensmodellen in der Softwaretechnik)

ein durchschnittlicher Zuwachs von 12,29% stattgefunden hat. Dieser Zuwachs könnte da-

mit zusammenhängen, dass während der Unterrichtsreihe stets Wert darauf gelegt wurde,

die aktuelle Phase des Software-Engineering Prozesses zu besprechen und den weiteren

Prozessverlauf abzustimmen. Beim Aufgabencluster 2 (Aufgaben zur Dekonstruktion von

IS) wurde lediglich ein Zuwachs von 2,59% gemessen. Dies könnte insbesondere daran ge-

legen haben, dass die Schülerinnen und Schüler gute Vorkenntnisse in der Analyse von

Informatiksystemen hatten und innerhalb der Unterrichtsreihe der Fokus eher auf der

Konstruktion von Informatiksystemen gelegen hat. Wie erwartet wurde der deutlichs-

te Zuwachs bei dem Aufgabencluster 3 (Aufgaben zur Konstruktion von IS) gemessen.

Hierbei haben sich die Probanden im Nachtest durchschnittlich um 24,37% im Gegensatz

zum Vortest verbessert. Der enorme Zuwachs erklärt sich durch die starke Fokussierung

der Unterrichtsreihe auf Modellierungskompetenzen, die mit der Entwicklung eines In-

formatiksystems zu tun haben. Der gröÿte thematische Schwerpunkt war die Anpassung

und Entwicklung der technisch erweiterten Kommissionierstation.

Neben diesen Ergebnissen und den Rückschlüssen aus der deskriptiven statistischen Ana-

219



lyse, wurde auch mit dem t-Test gezeigt, dass der Zuwachs bei dem Aufgabencluster 3

im Vergleich zu den Clustern 1 und 2 das höchste Signi�kanzniveau aufweist. Wie in der

folgenden Tabelle dargestellt, ist der Zuwachs bei den Aufgaben des Clusters 3 höchst-

signi�kant, wobei der Zuwachs beim Cluster 1 signi�kant und der Zuwachs von Cluster

2 keine Signi�kanz aufweist6.

Da sich dieses Signi�kanzniveau auch implizit in der Gewichtung der einzelnen Themen

innerhalb der Unterrichtsreihe widerspiegelt, ist davon auszugehen, dass das Messinstru-

ment in dem vorliegenden Setting in der Lage ist, messtechnisch zu di�erenzieren. Folglich

wird auch die Hypothese H2 akzeptiert.

Abbildung 7.11.: Ergebnisse des t-Test im Vergleich 2/2

6α ≤ 0, 001 : höchst signi�kant | α ≤ 0, 01 : hoch signi�kant | α ≤ 0, 05 : signi�kant

220



8. Fazit und Weiterführende

Forschungsfragen

Abbildung 8.1.: Kapitel 8 im Gesamtkontext der Arbeit

221



8.1. Zu Forschungsfrage 1

�Welche kognitiven und nicht-kognitiven Facetten umfasst informatische Modellierungs-

kompetenz? (Entwicklung eines Kompetenzstrukturmodells)�

Im Rahmen der Kapitel 4 und 5 wurde die Entwicklung eines empirisch gesicherten

Kompetenzmodells für informatisches Modellieren aufgezeigt. Dieses umfasst die kogni-

tiven und nicht-kognitiven Facetten informatischer Modellierungskompetenz. Neben der

theoretisch-normativen Ableitung von Kompetenzaspekten zur Modellierung konnten mit

Hilfe der Experteninterviews wertvolle Hinweise zur Überarbeitung der Dimensionen er-

langt werden. Die folgende Abbildung 8.2 illustriert den Prozess der empirischen Ver-

feinerung der Kompetenzdimension K1.3 Systemgestaltung. Die Abbildung 8.3 stellt das

gesamte empirisch überarbeitete Kompetenzmodell für informatische Modellierung und

Systemverständnis dar. Die für die informatische Modellierung relevanten Dimensionen,

deren Entwicklungsprozess in Abbildung 8.2 dargestellt wurde, ist in Abbildung 8.3 rot

hervorgehoben.

Das resultierende, empirisch verfeinerte Kompetenzstrukturmodell und die dazugehö-

rigen Kategoriende�nitionen waren eine wichtige Voraussetzung zur Entwicklung von

Aufgabenitems sowie deren inhaltlicher Fokussierung.

222



Abbildung 8.2.: Prozess zur empirischen Verfeinerung des Teilmodells Modellierung

223



Abbildung 8.3.: Empirisch Verfeinertes Kompetenzstrukturmodell

224



8.2. Zu Forschungsfrage 2

�Lässt sich ein Zuwachs an informatischer Modellierungskompetenz messbar machen?

(Entwicklung und Erprobung eines Messinstruments)�

Innerhalb des Kapitels 6 wurde auf Grundlage des empirisch gesicherten Kompetenzmo-

dells die Entwicklung des Messinstruments für informatische Modellierungskompetenz

dargestellt. Neben der eigentlichen Entwicklung kam die Frage auf, wie eine erste Erpro-

bung des Instruments erfolgen könnte. Dementsprechend wurde ein Lehr-/Lernarrangement

auf theoretischer Grundlage des Informatik Lernlabors entwickelt.

Unter der Annahme, dass das entwickelte Lehr-/Lernarrangement Kompetenzen in der

informatischen Modellierung fördert, wurden die folgenden Hypothesen zur Tauglichkeit

des Instruments, Kompetenzzuwächse zu messen, angeführt.

Hypothese H1:

Das Messinstrument zeigt einen systematischen Kompetenzzuwachs der Ler-

nenden beim Nachtest im Vergleich zum Vortest auf.

Die deskriptive statistische Analyse zeigt eine durchschnittliche Verbesserung der Punkt-

zahl der Probanden von Nachtest im Vergleich zu Vortest von 14,62%. Darüber hinaus

liefert auch die statistische Auswertung mittels des t-Tests ein höchstsigni�kantes Er-

gebnis1. Da der Mittelwert für den Vortest geringer ist als der des Nachtests, lässt sich

behaupten, dass sich die Werte zum zweiten Messzeitpunkt systematisch verbessert ha-

ben. Somit hat sich das Instrument im Kontext des beschriebenen Untersuchungssettings

als tauglich erwiesen Kompetenzzuwächse zu messen. Die Hypothese H1 wird somit be-

stätigt.

Neben dem Gesamtergebnis der Erprobung wurde geprüft, welche Kompetenzbereiche

einen besonders hohen Kompetenzzuwachs aufzeigen und welche weniger.

In Anlehnung an die Phasen des ILL wurde eine phasenabhängige Bündelung der Auf-

gaben in sog. Aufgabencluster vorgenommen. Anhand der Inhalte und der zu fördernden

Kompetenzen der Unterrichtsreihe wurden drei Aufgaben-Cluster gebildet die den einzel-

nen Phasen der in der Lerneinheit geförderten Kompetenzbereiche zugeordnet wurden.

1. Cluster 1 : Allgemeine Kompetenzen zu Vorgehensmodellen in der Softwaretechnik

(Bündelung der Aufgaben 1,2,3)

1α ≤ 0, 001 : höchst signi�kant | α ≤ 0, 01 : hoch signi�kant | α ≤ 0, 05 : signi�kant

225



2. Cluster 2 : Kompetenzen für die Dekonstruktion und Analyse von Informatiksyste-

men (Bündelung der Aufgaben 4,5,6)

3. Cluster 3 : Kompetenzen für die Konstruktion von Informatiksystemen (Bündelung

der Aufgaben 7,8,9,10)

Aufgrund der besonderen Fokussierung und der Konstruktionsphase wurde ein Kompe-

tenzzuwachs insbesondere bei Cluster 3 im Vergleich zu Cluster 1 und Cluster 2 erwartet.

Demzufolge sollte das Instrument insbesondere für diesen Kompetenzbereich einen deut-

lichen Kompetenzzuwachs messen können. Die Hypothese H2 fasst den Sachverhalt in

eine Aussage, die es zu überprüfen galt, zusammen:

Hypothese H2:

Das Messinstrument zeigt einen systematischen Kompetenzzuwachs bei dem

Aufgabencluster 3 (Konstruktion von IS) auf. Dieser ist gröÿer als der Kom-

petenzzuwachs bei den Aufgabenclustern 1 (allgemeine Aufgaben zu Vorge-

hensmodellen in der Softwaretechnik) und 2 (Dekonstruktion von IS).

Sowohl die deskriptive statistische Analyse als auch die Ergebnisse der t-Tests führen

zur Bestätigung der Hypothese H2. Bei Betrachtung der Tabelle 8.1 ergibt sich bei den

Probanden ein durchschnittlicher Zuwachs von 24,37% der erreichbaren Punkte. Dieser

Wert liegt (wie erwartet) deutlich über dem Zuwachs beim Cluster 1 von 12,29% und

beim Cluster 2 von 2,59%. Diese durchschnittlichen Zuwächse wurden darüber hinaus mit

dem t-Test untersucht. Wie in Tabelle 8.1 dargestellt zeigt der t-Test, dass der Zuwachs

beim Cluster 3 nicht zufällig sondern systematisch ist. Hierbei ergibt sich für das Cluster

3 ein höchstsigni�kantes Niveau2, wo hingegen Cluster 1 ein hochsigni�kantes Niveau

und Cluster 2 als nicht signi�kant einzustufen ist.

2α ≤ 0, 001 : höchst signi�kant | α ≤ 0, 01 : hoch signi�kant | α ≤ 0, 05 : signi�kant

226



Cluster1 Cluster2 Cluster3

Vortest 37,57% 61,23% 43,86%
Nachtest 49,86% 63,82% 68,23%
Tendenz +12,29% +2,59% +24,37%

Sign. (t-Test) ,005 ,484 ,000

Tabelle 8.1.: Statistischer Vergleich von Vor- und Nachtest für die Cluster 1-3

Auf dieser Grundlage wird auch die Hypothese H2 bestätigt.

Die Bestätigung der Hypothesen H1 und H2 beantwortet die Forschungsfrage 2: Das

Instrument scheint in dem vorgestellten Setting Kompetenzzuwächse im Bereich der ob-

jektorientierten Modellierung messen zu können. Dies gilt es allerdings in weiterführenden

Forschungsvorhaben in breiten Erprobungen zu überprüfen. Im Rahmen dieser Disserta-

tion sind die Ergebnisse als Indiz für die Tauglichkeit des Instruments, welches weiterer

Überarbeitung bedarf, anzusehen.

8.3. Weiterführende Forschungsfragen

Die vorliegende Arbeit beschreibt die Resultate einer ersten Erprobung des Messinstru-

ments. Hierbei ist es möglich einen statistisch signi�kanten Kompetenzzuwachs im Ver-

gleich von Vor- und Nachtest zu messen. Voraussetzung ist, dass die verwendete Unter-

richtsreihe Modellierungskompetenz fördert.

Dieses noch nicht repräsentative Ergebnis muss in einer künftigen breiten Erprobung ve-

ri�ziert werden. Hierfür bedarf es einer gröÿeren repräsentativen Stichprobenzahl. Es ist

somit erforderlich, mehr Lehrende und Schulklassen für weitergehende Kompetenzmes-

sungen zu gewinnen.

Die deskriptive statistische Auswertung der beiden Kompetenzmessungen hat gezeigt,

dass das Messinstrument hinsichtlich seines Umfangs überarbeitet und optimiert werden

muss. Insbesondere die letzten beiden Aufgaben des Instruments lassen erkennen, dass

die Aufgabensammlung o�enbar zu umfangreich und innerhalb der vorgegebenen Zeit

von 90 Minuten kaum zu lösen ist. Hier muss in weiteren Arbeitsschritten eine Kürzung

des Instruments erarbeitet werden. Wahrscheinlich ist es sinnvoll, dass Messinstrument

in geeigneter Weise in Booklet-Form aufzuteilen. In diesem Zusammenhang sollte auch

geprüft werden, welche Aufgabentypen sich als besonders geeignet erwiesen haben und

somit vermehrt zu berücksichtigen sind.

Die UnterrichtsreiheKommissionierstation ist in der hochschuldidaktischen Praxis erfolg-

227



reich erprobt worden; die für die gymnasiale Oberstufe modi�zierte Unterrichtsreihe muss

hinsichtlich ihrer Kompetenzförderlichkeit in weiteren Schritten überprüft werden. Hier-

bei sollten die verwendeten medialen Repräsentationsformen sowie die lernerzentrierten

Instruktionsformen mit berücksichtigt werden, die bei der Planung der Unterrichtsreihe

als methodische Grundlage verwendet werden.

Im Gegensatz zu der ersten MoKoM Projektperiode haben sich die Entwicklungs- und

Forschungsarbeiten auf die Konzeption und empirisch gestützte Überprüfung und Gene-

rierung eines Kompetenzstrukturmodells für informatisches Systemverständnis und Mo-

dellieren sowie die Konstruktion eines Instrumentariums zur Kompetenzmessung konzen-

triert. Aufbauend auf diesen Arbeiten soll in der zweiten Förderperiode das Strukturmo-

dell im Hinblick auf ein Kompetenzniveaumodell sowie in Ausschnitten auch in Bezug

auf ein Kompetenzentwicklungsmodell weiterentwickelt werden. Darüber hinaus soll das

Instrumentarium zur Kompetenzmessung breit erprobt und weiterentwickelt sowie zwei

Ansätze zur Förderung des Kompetenzerwerbs mit einem Schwerpunkt auf informatisches

Systemverständnis einerseits und informatisches Modellieren andererseits hinsichtlich ih-

rer Wirkungen evaluiert werden.

Im Rahmen von fünf Arbeitspaketen werden daher folgende Zielsetzungen bei MoKoM

II verfolgt:

1. Breite empirische Erprobung des Instrumentariums zur Kompetenzmessung und

Überprüfung der psychometrischen Gütekriterien des Verfahrens (Arbeitspaket PI),

2. Entwicklung eines Kompetenzniveaumodells für Informatisches Systemverständnis

und Modellieren (Arbeitspaket PII),

3. Analyse von bildungsbiographischen und unterrichtsbezogenen Ein�ussfaktoren des

Kompetenzerwerbs (Arbeitspaket PIII),

4. Konzeption und empirische Überprüfung eines Kompetenzentwicklungsmodells zum

Informatischen Systemverständnis sowie eines Kompetenzentwicklungsmodells zum

Informatischen Modellieren (Arbeitspaket PIV1.1, PIV1.2, PIV2.1 und PIV2.2),

5. Konzeption und Evaluation von Lehr-/Lernarrangements zur Förderung des Kom-

petenzerwerbs beim informatischen Modellieren (Arbeitspaket PIV2.1 und PIV2.3),

6. Erarbeitung von Implikationen aus den vorangegangenen empirischen Untersu-

chungsschritten für die fachdidaktische Theoriebildung und Weiterentwicklung von

Konzepten zur kompetenzförderlichen Unterrichtsgestaltung und praxisgerechten

diagnostischen Ansätzen (Arbeitspaket PV).

228



Um die vierte und fünfte Zielsetzung zu erreichen, werden an den beiden Standorten

(Paderborn und Siegen) verschiedene informatikdidaktische Ansätze zur Förderung des

informatischen Systemverständnisses einerseits und des informatischen Modellierung an-

dererseits genutzt und in die Schulpraxis implementiert. Dadurch werden unterschiedliche

Teilbereiche des gemeinsamen Kompetenzmodells unter jeweils spezi�schen lerninhaltli-

chen und informatikdidaktischen Foki hinsichtlich Fragen zur Förderung des Kompeten-

zerwerbs in den Blick genommen und empirisch überprüft.

229



Literaturverzeichnis

[Tucker2006 2006] Tucker, A. (Hrsg.): A Model Curriculum for K-12 Computer

Science: Final Report of the ACM K-12 Task Force Curriculum Committee,. 2nd Edi-

tion. 2006

[ACM 2008] ACM: Computer Science Curriculum 2008: An Interim Revision of CS

2001 Report from the Interim Review Task / Association for Computing Machinery

IEEE Computer Society. 2008 (December). � Forschungsbericht

[Agile Alliance 2013] Agile Alliance: Agile Alliance Website. (2013). � URL

http://www.agilealliance.org/ (geprüft: 18.02.2013)

[Balzert 2000] Balzert, H.: Lehrbuch der Software-Technik: Software-Entwicklung. 2.

Au�age. Heidelberg : Spektrum Akademischer Verlag, 2000

[Baumann 1996] Baumann, R.: Didaktik der Informatik. 2. vollständig neu bearbeitete

Au�age. Ernst Klett Verlag, 1996

[Baumert et al. 2000] Baumert, J. ; Bos, W. ; Lehmann, R.: TIMSS/III. Dritte

Internationale Mathematik- und Naturwissenschaftsstudie. Mathematische und natur-

wissenschaftliche Bild, Bd.2, Mathematische und phys ... Kompetenzen am Ende der

gymnasialen Oberstufe. Leske + Budrich Verlag, 2000

[Beck und Klieme 2007] Beck, B. ; Klieme, E.: Sprachliche Kompetenzen: Kon-

zepte und Messung: DESI-Studie (Deutsch Englisch Schülerleistungen International).

Weinheim u.a. : Beltz, 2007

[Bennedsen und Caspersen 2005] Bennedsen, J. ; Caspersen, M.: Revealing the

programming process. In: ACM SIGCSE Bulletin (2005), S. S. 186�190

[Bischofberger und Pomberger 1992] Bischofberger, W. ; Pomberger, G.:

Prototyping-oriented software development: Concepts and tools. Springer, 1992

230



[Brauer und Brauer 1992] Brauer, W. ; Brauer, U.: Wissenschaftliche Herausforde-

rungen für die Informatik: Änderungen von Forschungszielen und Denkgewohnheiten.

In: Informatik cui bono. Springer, 1992, S. S. 11�19

[Brinda 2004] Brinda, T.: Didaktisches System für objektorientiertes Modellieren im

Informatikunterricht der Sekundarstufe II. Universität Siegen, Didaktik der Informatik

und E-Learning, Dissertation, 2004

[Bussmann und Heymann 1987] Bussmann, H. ; Heymann, H.: Computer und All-

gemeinbildung. In: Neue Sammlung I (1987), S. S. 2�39

[Chan et al. 2010] Chan, C. ; Tsui, M.S. ; Chan, M. ; Hong, Joe H. ; Joe, H.:

Assessment & Evaluation in Higher Education Applying the Structure of the Obser-

ved Learning Outcomes (SOLO) Taxonomy on Student ' s Learning Outcomes : An

empirical study. (2010), Nr. November 2012, S. S. 37�41

[Claus und Schwill 2006] Claus, V. ; Schwill, A.: Duden Informatik A-Z. Fachlexikon

für Studium, Ausbildung und Beruf. Mannheim : Dudenverlag, 2006

[Cognition and Technology Group at Vanderbilt 1994] Cognition and Technology

Group at Vanderbilt: Multimedia environments for enhancing student learning in

mathematics. In: Technology based learning environments. Psychological and educatio-

nal foundations. (1994)

[Collins 1989] Collins, A.: Cognitive apprenticeship: Teaching the crafts of reading,

writing, and mathematics. In: Knowing, Learning and Instruction (1989)

[Denning 2003] Denning, P.: Great principles of computing. In: Communications of

the ACM (2003)

[Denning 2007] Denning, P.: Computing is a natural science. In: Communications of

the ACM (2007)

[Diethelm 2007] Diethelm, I.: Strictly models and objects �rst-Unterrichtskonzept

und-methodik für objektorientierte Modellierung im Informatikunterricht. Universität

Kassel, Dissertation, 2007

[Diethelm et al. 2005] Diethelm, I. ; Geiger, L. ; Zündorf, A.: Teaching modeling

with objects �rst. In: IFIP World Conference on Computers in Education (2005)

231



[Dietzel und Rinkens 2001] Dietzel, R. ; Rinkens, T.: Eine Einführung in die Objek-

torientierung mit Lego Mindstorms Robotern Erfahrungsbericht aus dem Unterricht.

INFOS 2001, 2001, S. 193�199

[Dohmen et al. 2009] Dohmen, M. ; Engbring, D. ; Magenheim, J.: Kreativer

Einstieg in die Programmierung Alice im Informatik-Anfangsunterricht. In: INFOS

2009 (2009), S. S. 329�

[Drieschner 2009] Drieschner, E.: Bildungsstandards praktisch. Verlag für Sozialwis-

senschaften, 2009

[Droeschel 1998] Droeschel, W.: Inkrementelle und objektorientierte Vorgehensweise

mit dem VModell 97. Muenchen, Wien : Oldenbourg Verlag, 1998

[Ebert 2005] Ebert, J.: Zitat aus der Podiumsdiskussion ßoftware-Entwicklung und

Modellierungäuf dem Workshop Modellierung 2005. In: Paech, B. (Hrsg.) ; Desel,

J. (Hrsg.): Workshop Modellierung 2005, 2005

[Europäische Gemeinschaften 2008] Europäische Gemeinschaften: The European

Quali�cations Framework for Lifelong Learning (EQF) NC-30-08-266-EN-P Europäi-

scher Quali�kationsrahmen Der Europäische Quali�kationsrahmen für lebenslanges

Lernen (EQR). (2008). ISBN 9789279084720

[Fakultätentag Informatik (Hrsg) 2004] Fakultätentag Informatik (Hrsg): Emp-

fehlungen zur Einrichtung von konsekutiven Bachelor- und Masterstudiengängen in

Informatik an Universitäten. 2004

[Fieber et al. 2008] Fieber, F. ; Huhn, M. ; Rumpe, B.: Modellqualität als Indikator

für Softwarequalität: eine Taxonomie. In: Informatik-Spektrum 31 (2008), August,

Nr. 5, S. S. 408�424. � ISSN 0170-6012

[Gesellschaft für Informatik e.V. (GI) (Hrsg) 2004] Gesellschaft für Informatik

e.V. (GI) (Hrsg): Empfehlungen für Bachelor- und Masterprogramme im Studienfach

Informatik an Hochschulen. Bonn, 2004

[GI 2008] GI: Grundsätze und Standards für die Informatik in der Schule: Bildungs-

standards Informatik für die Sekundarstufe I; Empfehlungen der Gesellschaft für In-

formatik e.V. In: LOG IN 28 (2008)

[Glinz 2008] Glinz, M.: Modellierung in der Lehre an Hochschulen: Thesen und Er-

fahrungen. In: Informatik-Spektrum 31 (2008), August, Nr. 5, S. S. 425�434. � ISSN

0170-6012

232



[Goldin und Rudahl 2009] Goldin, S. ; Rudahl, K.: Software Process in the Class-

room : A Comparative Study. In: Computer Engineering (2009), S. S. 427�431. ISBN

9781424445226

[Hampel et al. 1999] Hampel, T. ;Magenheim, J. ; Schulte, C.: Dekonstruktion von

Informatiksystemen als Unterrichtsmethode-Zugang zu objektorientierten Sichtweisen

im Informatikunterricht. In: Informatik und Schule. Fachspezi�sche und fachübergrei-

fende didaktische Konzepte. Berlin, Heidelberg, New York u.a. : Schwill, A., 1999,

S. S.149�

[Hesse und Mayr 2008] Hesse, W. ; Mayr, H.: Modellierung in der Softwaretechnik.

In: Informatik-Spektrum 31 (2008), August, Nr. 5, S. S. 375�375. � ISSN 0170-6012

[Horton 2007] Horton, F.: Understanding information literacy: A primer. Paris :

UNESCO, 2007

[Hubwieser 2000] Hubwieser, P.: Informatik am Gymnasium. Ein Gesamtkonzept für

einen zeitgemäÿen Informatikunterricht. Habilitationsschrift, Fakultät für Informatik,

Technische Universität München, 2000

[Hubwieser 2005] Hubwieser, P.: Von der Funktion zum Objekt Informatik für die

Sekundarstufe. In: Friedrich, S. (Hrsg.): INFOS 2005, 11. GI-Fachtagung Informatik

und Schule, 28.-30. September 2005 an der TU Dresden. 2005

[Hubwieser 2007] Hubwieser, P: Didaktik der Informatik, 3. überarbeitete und erwei-

terte Au�age. Springer examen.press, 2007

[Hubwieser und Broy 1996] Hubwieser, P. ; Broy, M.: Ein neuer Ansatz für den

Informatikunterricht am Gymnasium. In: LOG IN 17 (1996), S. S. 42�47

[Ishii et al. 2010] Ishii, N. ; Suzuki, Y. ; Fujiyoshi, H. ; Fujii, T.: Fostering UML

Modeling Skills and Social Skills through Programming Education. In: 2010 23rd IEEE

Conference on Software Engineering Education and Training (2010), März, S. S. 25�32.

ISBN 978-1-4244-7052-5

[Joint Task Force on Computing 2001] Joint Task Force on Computing: Com-

puting Curricula 2001 Computer Science. In: Journal of Educational Resources in

Computing (JERIC), 1 (3es) 1 (2001), September. � ISSN 15314278

[Keil-Slawik 2002] Keil-Slawik, R.: Denkmedien-Mediendenken: Zum Verhältnis von

Technik und Didaktik (Media For Thinking-Thinking About Media: On the Relati-

233



onship of Technology and Didactics). In: it-Information Technology and Didactics

(vormals it+ ti) 44 (2002), S. S. 181�186

[Klafki 2007] Klafki, W.: Neue Studien zur Bildungstheorie und Didaktik: Zeitgemäÿe

Allgemeinbildung und kritisch-konstruktive Didaktik. (2007)

[Kleuker 2011] Kleuker, S.: Grundkurs Software-Engineering mit UML. Wiesbaden :

Vieweg+Teubner, 2011

[Klieme 2004] Klieme, E.: Was sind Kompetenzen und wie lassen sie sich messen. In:

Pädagogik 56 (2004), S. S. 10�13

[Klieme et al. 2007] Klieme, E. ; Avenarius, H. ; Blum, W. ; Dörbrich, P. ;

Gruber, H. ; Prenzel, M. ; Reiss, K. ; Riquarts, K. ; Rost, J. ; Tenorth, H. ;

Vollmer, H.: Zur Entwicklung nationaler Bildungsstandards. Bildungsreform Band

1. Expertise. Bonn, Berlin : Bundesministerium fürr Bildung und Forschung (BMBF)

Referat Publikationen; Internetredaktion., 2007

[KMK (Hrsg) 2004] KMK (Hrsg): Einheitliche Prüfungsanforderungen in der Ab-

iturprüfung Informatik. KMK. Bonn : KMK Ständige Konferenz der Kultusminister

der Länder in der Bundesrepublik Deutschland, 2004

[Kohl 2009] Kohl, L.: Kompetenzorientierter Informatikunterricht in der Sekundar-

stufe I unter Verwendung der visuellen Programmiersprache Puck. Friedrich-Schiller-

Universität Jena, Dissertation, 2009

[Kollee et al. 2009] Kollee, C. ; Magenheim, J. ; Nelles, W. ; Rhode, T. ; Scha-

per, N. ; Schubert, S. ; Stechert, P.: Computer science education and key com-

petencies. In: World Conference on Computers in Education (2009)

[Kölling und Quig 2005] Kölling, M. ; Quig, B.: The BlueJ system and its pedago-

gy. In: Computer Science . . . . Computer Science Education, Special Issue of ACM

Computing Surveys, Vol. 37, 2005

[Lankes 2006] Lankes, E.: Bildungsstandards in Deutschland. In: Kompetenzorien-

tierter Deutschunterricht. Kronshangen : Institut für Qualitätsentwicklung an Schulen

Schleswig Holstein (Hrsg.), 2006

[Lehner et al. 2010] Lehner, L. ; Magenheim, J. ; Nelles, W. ; Rhode, T. ; Schu-

bert, S. ; Stechert, P. ; Schaper, N.: Informatics Systems and Modelling - Case

Studies of Expert Interviews. In: Key Competencies in the Knowledge Society. Boston :

Springer, 2010

234



[Leutner 2006] Leutner, D.: Kompetenzmodelle zur Erfassung individueller Lerner-

gebnisse und zur Bilanzierung von Bildungsprozessen - Beschreibung eines neu einge-

richteten Schwerpunktprogramms der DFG. In: Zeitschrift für Pädagogik 56 (2006),

Nr. 6, S. S. 876�903

[Magenheim 2000] Magenheim, J.: Informatiksystem und Dekonstruktion als didakti-

sche Kategorien - Theoretische Aspekte und unterrichtspraktische Implikationen einer

systemorientierten Didaktik der Informatik. In: Tagungsbeitrag zur GI-Tagung Infor-

matik - Ausbildung und Beruf (2000)

[Magenheim 2003a] Magenheim, J.: Informatik Lernlabor - Systemorientierte Di-

daktik in der Praxis. In: Informatische Fachkonzepte im Unterricht, Proceedings der

infos2003, 10.GI-Fachtagung Informatik und Schule, 17.-19. September in Garching

bei München (2003)

[Magenheim 2003b] Magenheim, J.: Wissensmanagement, Dekonstruktion und E-

Learning Communities in der Softwaretechnik-Didaktische Konzepte im BMBF-Projekt

MuSofT. Wa, 2003. � S. 255�269 S

[Magenheim 2005] Magenheim, J.: Towards a competence model for educational stan-

dards of informatics. In: WCCE 2005 - Proceedings of the 8th IFIP World Conference

on Computers in Education, University of Stellenbosch, Cape Town (SA) (2005)

[Magenheim et al. 2010a] Magenheim, J. ; Nelles, W. ; Rhode, T. ; Schaper,

N.: Towards a methodical approach for an empirically proofed competency model.

In: Hromkovi£, Juraj (Hrsg.) ; Královi£, Richard (Hrsg.) ; Vahrenhold, Jan

(Hrsg.): Teaching Fundamentals Concepts of Informatics Bd. 5941. Berlin, Heidelberg :

Springer Berlin Heidelberg, 2010, S. S. 124�135

[Magenheim et al. 2010b] Magenheim, J. ; Nelles, W. ; Rhode, T. ; Schaper, N. ;

Schubert, S. ; Stechert, P.: Competencies for informatics systems and modeling:

Results of qualitative content analysis of expert interviews. In: IEEE EDUCON 2010

Conference, IEEE, April 2010, S. S. 513�521. � ISBN 978-1-4244-6568-2

[Magenheim und Scheel 2004] Magenheim, J. ; Scheel, O.: Using Learning Objects

in an ICT-based Learning Environment. In: Proceedings of E-Learn (2004)

[Magenheim und Schulte 2005] Magenheim, J. ; Schulte, C.: Erwartungen und

Wahlverhalten von Schülerinnen und Schülern gegenüber dem Schulfach Informatik

235



Ergebnisse einer Umfrage. In: Friedrich, S. (Hrsg.) Unterrichtskonzepte für informati-

sche Bildung, infos2005-11. GI - Fachtagung Informatik und Schule 28.-30.September

2005 in Dresden, Proceedings (2005), S. S. 111�122

[Martin 2003] Martin, R.: Agile software development: principles, patterns, and prac-

tices. Prentice-Hall, Inc, 2003

[Mayring 2010] Mayring, P.: Qualitative Inhaltsanalyse, Grundlagen und Techniken.

Beltz, 2010

[NCTM - National Council of Teachers of Mathematics 2000] NCTM - National

Council of Teachers of Mathematics: Principles and Standards for School

Mathematics. (2000)

[Nelles et al. 2009] Nelles, W. ; Rhode, T. ; Stechert, P.: Entwicklung eines

Kompetenzrahmenmodells - Informatisches Modellieren und Systemverständnis. In:

Informatik-Spektrum 33 (2009), Juni, Nr. 1, S. S. 45�53. � ISSN 0170-6012

[Nievergelt 1995] Nievergelt, J.: Welchen Wert haben theoretische Grundlagen für

die Berufspraxis? Gedanken zum Fundament des Informatikturms. In: Informatik Spek-

trum (1995)

[Nygaard 1986] Nygaard, K.: Program development as a social activity. In: H. Kugler

(Hrsg.), Information Processing 86. Amsterdam, 1986

[OECD 2005] OECD: The de�nition and selection of key competencies: Executive

summary. Paris : OECD. Directorate for Education, 2005

[OECD 2001] OECD, Pisa Konsortium D.: Schülerleistungen im internationalen Ver-

gleich. Eine neue Rahmenkonzeption für die Erfassung von Wissen und Fähigkeiten.

Berlin : OECD PISA Deutschland, 2001

[Penon und Spolwig 1998] Penon, J. ; Spolwig, S.: Schöne visuelle Welt? Objektori-

entierte Programmierung mit DELPHI und JAVA. In: LOG IN 18 (1998), Nr. 5

[Pichler 2009] Pichler, R.: Scrum-Agiles Projektmanagement erfolgreich einsetzen.

Heidelberg : dPunkt-Verlag, 2009

[Prenzel und Deutschland 2004] Prenzel, M. ; Deutschland, Pisa K.: PISA 2003:

Der Bildungsstand der Jugendlichen in Deutschland: Ergebnisse des zweiten interna-

tionalen Vergleichs. Waxmann, 2004

236



[Rational Software Corporation IBM. 1998] Rational Software Corporation

IBM.: Rational uni�ed process. Best practices for software development teams, white

paper. 1998

[Rectors, Universities 1999] Rectors, Universities, European: The Bologna Decla-

ration on the European space for higher education : an explanation. (1999)

[Riecke-Baulecke und Artelt 2004] Riecke-Baulecke, C. ; Artelt, T.: Bildungs-

standards. Oldenbourg Schulbuchverlag, 2004

[Roggio 2006] Roggio, R.: A Model for the Software Engineering Capstone Sequence

using the Rational Uni�ed Process. In: Work (2006), S. S. 306�311. ISBN 1595933158

[Ropohl 1999] Ropohl, G.: Philosophy of socio-technical systems. In: Society for

Philosophy and Technology (1999)

[Royce 1970] Royce, W.: Managing the development of large software systems. In:

proceedings of IEEE WESCON (1970)

[Schaper und Hochholdinger 2006] Schaper, N. ; Hochholdinger, S.: Psycholo-

gische Konzepte zur Modellierung und Messung von Kompetenzen in der Lehreraus-

bildung. In: In: Hilligus A, Rinkens H-D (Hrsg) Standards und Kompetenzen - Neue

Qualität in der Lehrerausbildung? Münster : LIT-Verlag, 2006

[Schaper und Horvath 2008] Schaper, N. ;Horvath, E.: Development and Evaluation

of a Model of eTeaching Competence. In: In: Hambach S, Martens A, Urban B (eds)

e-Learning Baltics 2008. Proceedings of the 1st International eLBa Science Conference.

Rostock : Fraunhofer IRB Verlag, 2008

[Schecker und Parchmann 2006] Schecker, H. ; Parchmann, I.: Modellierung na-

turwissenschaftlicher Kompetenz. In: Zeitschrift für Didaktik der Naturwissenschaften

12 (2006), Nr. 2006, S. S. 45�66

[Schubert und Schwill 2004] Schubert, S. ; Schwill, A.: Didaktik der Informatik. 1.

Au�age. Heidelberg, Berlin : Spektrum Akademischer Verlag, 2004

[Schubert und Stechert 2007] Schubert, S. ; Stechert, P.: A strategy to structure

the learning process towards understanding of informatics systems. In: Benzie, David

(Hrsg.) ; Iding, Marie (Hrsg.): Informatics, Mathematics and ICT: A golden triangle

(IMICT2007). Northeastern University. Boston. MA (2007)

237



[Schubert und Stechert 2010] Schubert, S. ; Stechert, P.: Competence Model

Research on Informatics System Application. In: Proceedings of the IFIP Conference

New developments in ICT and Education, Amiens, Frankreich, June 28-30 (2010)

[Sonnentag 2006] Sonnentag, S.: Expertise in software design. In: Cambridge hand-

book of expertise and expert performance / K. Anders Ericsson, Neil Charness, Paul

J. Feltovich, & Robert R. Ho�mann (Eds.). Cambridge : Cambridge University Press,

2006, S. S. 373�387

[Spiro und Feltovich 1992] Spiro, R. ; Feltovich, P.: Cognitive �exibility, constructi-

vism, and hypertext: Random access instruction for advanced knowledge acquisition in

ill-structured domains. In: Constructivism and the Technology of Instruction. Hillsale,

NJ : Erlbaum, 1992

[Stachowiak 1973] Stachowiak, H.: Allgemeine Modelltheorie. Wien : Springer, 1973

[Standards 2001] Standards, IEEE Learning T.: IEEE LOM working draft 6.1. (2001)

[Stechert 2009] Stechert, Peer: Fachdidaktische Diskussion von Informatiksystemen

und der Kompetenzentwicklung im Informatikunterricht. Universität Siegen, Didaktik

der Informatik und E-Learning, Dissertation, 2009

[Thomas 2002] Thomas, M.: Informatische Modellbildung. Modellieren von Modellen

als ein zentrales Element der Informatik für den allgemeinbildenden Schulunterricht.

Universität Potsdam, Dissertation, 2002

[Tulodziecki und Herzig 2002] Tulodziecki, G. ; Herzig, B.: Computer und Internet

im Unterricht: Medienpädagogische Grundlagen und Beispiele. Cornelsen Scriptor,

2002

[Utting et al. 2010] Utting, I. ; Cooper, S. ; Kölling, M. ;Maloney, J. ; Resnick,

M.: Alice, greenfoot, and scratch�a discussion. In: ACM Transactions on Computing

Education (TOCE) (2010)

[Weinert 2002] Weinert, F.: Leistungsmessungen in Schulen. Beltz, 2002

[Whitehead 1939] Whitehead, A.: Aims Of Education and Other Essays. New York :

The Free Press, 1939

238



Abbildungsverzeichnis

1.1. Übersicht Kapitel und logischer Zusammenhang . . . . . . . . . . . . . . . 6

1.2. Übersicht der Modellebenen . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1. Kapitel 2 im Gesamtkontext der Arbeit . . . . . . . . . . . . . . . . . . . 9

2.2. Inhalts und Prozessbereiche . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3. Prozessbereich Modellieren & Implementieren . . . . . . . . . . . . . . . . 17

2.4. Modellebene 1 - Kompetenzmodell-Ebene . . . . . . . . . . . . . . . . . . 18

2.5. Inhaltsbereich Algorithmen 1/2 . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6. Inhaltsbereich Algorithmen 2/2 . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7. Kompetenzstrukturmodell Algorithmen . . . . . . . . . . . . . . . . . . . . 23

2.8. Kompetenzstufenmodell Algorithmen . . . . . . . . . . . . . . . . . . . . . 25

2.9. Beispielaufgabe Kohl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.10. Beispiellösung Kohl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1. Kapitel 3 im Gesamtkontext der Arbeit . . . . . . . . . . . . . . . . . . . 33

3.2. Modellebene 2 - Fachwissenschaftliche Modellebene . . . . . . . . . . . . . 35

3.3. Modellebene 3 - Vermittlungs-Modellebene . . . . . . . . . . . . . . . . . . 37

3.4. Allgemeine Phasen des Software Engineerings . . . . . . . . . . . . . . . . 47

3.5. Wasserfallmodell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6. Prototypisches Vorgehensmodell . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7. Iterativ-/Inkrementelles Vorgehensmodell . . . . . . . . . . . . . . . . . . 51

3.8. V-Modell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9. RUP-Dimensionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.10. RUP-Meilensteine & Software-Lebenszyklen . . . . . . . . . . . . . . . . . 58

3.11. UML-Template nach Fujii et. al . . . . . . . . . . . . . . . . . . . . . . . . 75

3.12. Ergebnisse Fujii et. al 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.13. Ergebnisse Fujii et. al 2/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1. Kapitel 4 im Gesamtkontext der Arbeit . . . . . . . . . . . . . . . . . . . 81

4.2. K1 Aufgabenbereiche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

239



4.3. K2 - Nutzung informatischer Sichten . . . . . . . . . . . . . . . . . . . . . 88

4.4. K3 - Anforderungen an den Umgang mit Komplexität . . . . . . . . . . . 90

4.5. K4 - Nicht-kognitive Kompetenzen . . . . . . . . . . . . . . . . . . . . . . 92

4.6. Theoretisch Hergeleitetes Rahmenmodell . . . . . . . . . . . . . . . . . . . 93

4.7. DESECO Schlüsselkompetenzen . . . . . . . . . . . . . . . . . . . . . . . . 96

4.8. Informatisches Modellieren und Schlüsselkompetenzen . . . . . . . . . . . 102

5.1. Kapitel 5 im Gesamtkontext der Arbeit . . . . . . . . . . . . . . . . . . . 104

5.2. Theoretisches Teilmodell Modellierung . . . . . . . . . . . . . . . . . . . . 120

5.3. Legende zu den folgenden Abbildungen . . . . . . . . . . . . . . . . . . . . 122

5.4. Prozess zur empirischen Verfeinerung des Teilmodells Modellierung . . . . 123

5.5. Empirische Verfeinerung des Teilmodells Modellierung . . . . . . . . . . . 124

5.6. Empirisch Verfeinertes Kompetenzstrukturmodell . . . . . . . . . . . . . . 128

5.7. Empirisches Teilmodell Modellierung . . . . . . . . . . . . . . . . . . . . . 129

6.1. Kapitel 6 im Gesamtkontext der Arbeit . . . . . . . . . . . . . . . . . . . 146

6.2. Illustration der Aufgabenentwicklung . . . . . . . . . . . . . . . . . . . . . 147

6.3. CRC-Karten zur Schulbibliothek I . . . . . . . . . . . . . . . . . . . . . . 155

6.4. Multiple Choice Auswahl eines von zwei Klassendiagrammen . . . . . . . . 156

6.5. Korrektes Klassendiagramm . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.6. Falsches Klassendiagramm . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.7. Unvollständiges State-Chart . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.8. Mockup Reisebuchungssystem . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.9. Testfälle zur Anforderungsde�nition . . . . . . . . . . . . . . . . . . . . . 163

6.10. Testfälle zur Robustheit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.11. Ver�echtung von Unterrichtshilfen, Bedienerschulung und Vermittlung grund-

legender Konzepte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.12. Klassendiagramm der ILL-Kommissionierstation . . . . . . . . . . . . . . . 182

6.13. Technische Bestandteile der Kommissionierstation . . . . . . . . . . . . . . 183

6.14. Startbildschirm eines NXT-Bausteins . . . . . . . . . . . . . . . . . . . . . 184

6.15. Farbsensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.1. Kapitel 7 im Gesamtkontext der Arbeit . . . . . . . . . . . . . . . . . . . 196

7.2. Vor- und Nachtest im Vergleich . . . . . . . . . . . . . . . . . . . . . . . . 200

7.3. Kolmogorov-Smirnov-Test (Gesamtergebnis VT / NT) . . . . . . . . . . . 202

7.4. Kolmogorov-Smirnov-Test (Aufgabencluster1 VT / NT) . . . . . . . . . . 203

7.5. Kolmogorov-Smirnov-Test (Aufgabencluster2 VT / NT) . . . . . . . . . . 203

240



7.6. Kolmogorov-Smirnov-Test (Aufgabencluster3 VT / NT) . . . . . . . . . . 204

7.7. Cluster 1 - Vor- und Nachtest im Vergleich . . . . . . . . . . . . . . . . . . 208

7.8. Cluster 2 - Vor- und Nachtest im Vergleich . . . . . . . . . . . . . . . . . . 212

7.9. Cluster 3 - Vor- und Nachtest im Vergleich . . . . . . . . . . . . . . . . . . 216

7.10. Ergebnisse des t-Test im Vergleich 1/2 . . . . . . . . . . . . . . . . . . . . 219

7.11. Ergebnisse des t-Test im Vergleich 2/2 . . . . . . . . . . . . . . . . . . . . 220

8.1. Kapitel 8 im Gesamtkontext der Arbeit . . . . . . . . . . . . . . . . . . . 221

8.2. Prozess zur empirischen Verfeinerung des Teilmodells Modellierung . . . . 223

8.3. Empirisch Verfeinertes Kompetenzstrukturmodell . . . . . . . . . . . . . . 224

241



Tabellenverzeichnis

7.1. Gesamtergebnisse der Erprobung . . . . . . . . . . . . . . . . . . . . . . . 199

7.2. Ergebnisse zu Aufgabencluster 1 . . . . . . . . . . . . . . . . . . . . . . . 207

7.3. Ergebnisse zu Aufgabencluster 2 . . . . . . . . . . . . . . . . . . . . . . . 211

7.4. Ergebnisse zu Aufgabencluster 3 . . . . . . . . . . . . . . . . . . . . . . . 215

8.1. Statistischer Vergleich von Vor- und Nachtest für die Cluster 1-3 . . . . . 227

242



A. Anhang

A.1. Interviewszenarien

243



Hypothetische Szenarien (Critical Incidents) 

Im Folgenden möchte ich Ihnen einige Szenarien vorstellen, die Aufgaben  beinhalten, die 
Relevanz für den Informatikunterricht der Sekundarstufe II besitzen. Ich bitte Sie darum, sich 
sehr genau und detailliert die darin enthaltenen Problemstellungen vorzustellen und ebenso 
genau und detailreich zu schildern, wie Sie bei der Bewältigung der Aufgaben und Lösung der 
darin enthaltenen Probleme vorgehen würden. 

Sz. 1 Sie erhalten den Softwareentwicklungsauftrag, ein Warenwirtschaftssystem für 
einen (Schul-)Kiosk zu entwickeln. Im Rahmen der Geschäftsmodellierung und 
Anforderungsanalyse sollen typische / alltägliche Geschäftsvorgänge erfasst werden. 

o Wie würden Sie dabei vorgehen, und was müssen Sie dabei beachten? 

o Welche grafischen Beschreibungsmittel würden Sie dafür einsetzen? 

o Welche Kenntnisse und Fähigkeiten benötigen Sie zur Modellierung der Geschäftsprozesse 

und zur Anforderungsanalyse? 
o Welche informatischen Sichten sind hierbei von Bedeutung? 

o Welche Komplexität bzw. Komplexitätsaspekte weist das Projekt auf? 

o Welche (motivationalen) Bereitschaften und Einstellungen und welche sozial-

kommunikativen Fähigkeiten benötigen Sie zur Modellierung der Geschäftsprozesse und zur 

Anforderungsanalyse? 

o Welche informatik-fremden Personen könnten (oder sollten) bei der Modellierung 

miteinbezogen werden? Welche Anforderungen kämen auf Sie zu, wenn Sie mit 

informatischen Laien über dieses SE-Projekt kommunizieren wollen? 

o Wie würde ein Schüler die Aufgabe angehen? 

Sie erhalten den Auftrag, die weiteren Phasen des Softwareengineerings-Prozesses zu 
planen.  

o Welche weiteren Phasen müssen Ihrer Meinung nach bis zur Verteilung des Software-
Produkts durchlaufen werden? 

o Wie würden Sie hierbei vorgehen und was muss dabei beachtet werden? 

o Welche Kenntnisse und Fähigkeiten benötigen Sie in diesen Phasen des SE-Prozesses 

(insbesondere welche informatische Sichten)? 

o Welche Bereitschaften und Einstellungen und welche sozial-kommunikativen Fähigkeiten 

sind in diesen SE-Phasen besonders relevant? 

o Welche Phasen würden Sie im Rahmen eines Schulprojekts: „Schulkiosk“ im 

Informatikunterricht der Sekundarstufe durchlaufen wollen? 

o In welcher Form würden Sie informatik-fremde Personen auch in die weiteren SE-Phasen mit 

einbeziehen? Was wäre dabei zu beachten? 

In der Implementierungsphase des Projekts sollen Kleingruppen gebildet werden, 
um die verschiedenen Module der Software zeitgleich zu entwickeln. 

o Was muss bei der Einteilung von SE-Gruppen im professionellen Umfeld berücksichtigt 

werden? Welche Anforderungen ergeben sich an die Gruppenmitglieder? 

o Was muss bei der Gruppeneinteilung im Informatikunterricht beachtet werden? Welche 

sozialen und motivationalen Fähigkeiten und Einstellungen müssen seitens der Schüler 

vorhanden sein? 

o Welche Erfolgs- oder Misserfolgserlebnisse können während der Projektdurchführung 

auftreten? Im Falle von Misserfolg: Welchen Anforderungen stehen Sie gegenüber, um sich 

neu zu motivieren? 

 

244



Sz. 2 Sie erhalten den Auftrag ein Chat-System zu entwickeln. Im Rahmen der 
Designphase sollen Sie die potentiellen Programmmodule (Klassen) jeweils dem 
Client oder Server zuordnen. 

o Wie würden Sie dabei vorgehen, und was müssen Sie dabei beachten? 

o Welche grafischen Beschreibungsmittel würden Sie dafür einsetzen? 

o Welche Kenntnisse und Fähigkeiten benötigen Sie zum Design des Client-Server-Systems? 
o Welche informatischen Sichten sind hierbei von Bedeutung? 

o Welche Komplexität bzw. Komplexitätsaspekte weist das Projekt auf? 

o  Welche Bereitschaften und Einstellungen und welche sozial-kommunikativen Fähigkeiten 

benötigen Sie zum Design des Client-Server-Systems? 

o Wie würde ein Schüler die Aufgabe angehen? 

Nach Abschluss der Analyse- und Designphase soll eine zeitlich parallele 
Implementierung von Client- und Server-Softwarekomponenten geschehen. Sie als 
Projektleiter stehen nun vor der Aufgabe, die Aufgaben sinnvoll auf Teilgruppen 
ihres Teams zu verteilen. 

o Wie würden Sie dabei vorgehen? 

o Was müsste in einem professionellen Umfeld bei der Gruppeneinteilung beachtet werden? 

o Wie würden Sie die Einteilung der Gruppen im schulischen Umfeld vornehmen um eine 

chancengleiche Kompetenzentwicklung zu ermöglichen? 

o Welche sozialen bzw. motivationalen Fähigkeiten der Schüler sollten zur erfolgreichen 

Implementierung vorhanden sein? 

o Welche Erfolgs- oder Misserfolgserlebnisse können während der Projektdurchführung 
auftreten? Im Falle von Misserfolg: Welchen Anforderungen stehen Sie gegenüber, um sich 

neu zu motivieren? 

o Durch welche kommunikativen und kooperativen Voraussetzungen gelänge die Arbeit 

effektiv? 

o Welche arbeitsbezogenen sozialen Umstände könnten den Erfolg gefährden? 

 

Sz. 3 Im Rahmen eines Softwareprojekts soll ein web-basierte Spiel implementiert 
werden. Sie haben bereits mit Hilfe von CRC-Karten Verantwortlichkeiten von 
Klassen herausgestellt und mögliche Zusammenhänge von Klassen lokalisiert. In 
einem weiteren Schritt soll nun ein umfassendes Klassendiagramm entwickelt 
werden. 

o Wie würden Sie dabei vorgehen, und was müssen Sie dabei beachten? 

o Welche Kenntnisse und Fähigkeiten benötigen Sie zur Modellierung des Klassendiagramms? 

o Welche informatischen Sichten sind hierbei von Bedeutung? 

o Welche Komplexität bzw. Komplexitätsaspekte weist das Projekt auf? 

o Welche Bereitschaften und Einstellungen und welche sozial-kommunikativen Fähigkeiten 
benötigen Sie zur Modellierung einer solchen, web-basierten Anwendung? 

o Beschreiben Sie die Unterschiede in der methodischen Vorgehensweise, die sich bei 

Anfängern, Fortgeschrittenen und Experten zeigen würden. 

o Wie würde ein Schüler die Aufgabe angehen? 

In einem späteren Schritt (kurz vor Abschluss des Projekts) soll die Software im 
Rahmen der Testphase bzgl. Ihrer Robustheit überprüft werden. Hierbei soll 
sichergestellt werden, dass keinerlei unerwartete Benutzereingaben das Programm 
zum Absturz bringen. 

o Wie würden Sie bei einem derartigen Test vorgehen, und was müssen Sie dabei beachten? 

o Wie würde ein Schüler die Aufgabe angehen? 

245



Sz. 4 Sie erhalten im Rahmen der Entwicklung einer einfachen Kontoführungs-Software 
den Auftrag, ein Klassendiagramm zu entwickeln. Die Software soll zunächst 
einfache Ein- und Auszahlvorgänge auf einem Bankkonto realisieren. 

o Wie gehen sie dabei vor, und was müssen Sie dabei beachten? 

o Welche Kenntnisse und Fähigkeiten benötigen Sie für eine entsprechende 

Softwareentwicklung? 
o Welche informatischen Sichten sind hierbei von Bedeutung? 

o Welche Komplexität bzw. Komplexitätsaspekte weist das Projekt auf? 

o Welche Einstellungen und Bereitschaften benötigen Sie für eine entsprechende 

Softwareentwicklung? 

o Welche möglichen Probleme könnten bei Schülern der Sekundarstufe auftreten? 

o Welche grafischen Beschreibungsmittel würden Sie einsetzen und warum? 

Für eine weitere Ausbaustufe der oben genannten Software soll nun ebenfalls ein 
Klassendiagramm erstellt werden. Im Gegensatz zu der ersten Ausbaustufe lassen 
sich nun beliebig viele Konten eröffnen. Neben Ein- und Auszahlungen auf das 
jeweilige Konto lassen sich nun auch Überweisungen zwischen den Konten 
vornehmen. 

o Wie würden Sie dabei vorgehen? 

o Welche zusätzlichen Anforderungen ergeben sich durch den Übergang zur erweiterten 

Ausbaustufe der Kontoführungs-Software? 

o Rechtfertigen diese zusätzlichen Anforderungen eine Einteilung in Kleingruppen? 

o Durch welche kommunikativen und kooperativen Voraussetzungen gelänge die 

Arbeit effektiv? 
o Welche arbeitsbezogenen sozialen Umstände könnten den Erfolg gefährden? 

o Welche Erfolgs- oder Misserfolgserlebnisse können während der Projektdurchführung 

auftreten? Im Falle von Misserfolg: Welchen Anforderungen stehen Sie gegenüber, um sich 

neu zu motivieren? 

o Welche Anforderungen für die Schüler ergeben sich bei dieser komplexeren Version der 

Software? 

Wie würde ein Schüler die Aufgabe angehen? 

Sz. 5 Sie haben im Informatikunterricht der Sekundarstufe II Sortieralgorithmen 
thematisiert und hierbei ausgewählte Sortierverfahren innerhalb von 
Programmmodulen implementiert. Zum Abschluss der Unterrichtsreihe soll nun ein 
Visualisierungsmodul implementiert werden. Dieses soll das zu sortierende Feld 
(Array) visualisieren und die jeweiligen Teilschritte während der Sortierung 
darstellen, indem sämtliche Änderungen im Feld grafisch hervorgehoben werden. 

o Wie würden Sie in diesem Zusammenhang vorgehen? 

o Was muss bei der Auswahl der Architektur, bei der Gestaltung der Schnittstellen und bei der 

Entwicklung der Benutzungsschnittstelle beachtet werden. 

o Welche Phasen ergeben sich bei der Entwicklung des Visualisierungsmoduls? 

o Welche Kenntnisse und Fähigkeiten benötigen Sie für eine entsprechende 

Softwareimplementierung? 

o Welche informatischen Sichten sind hierbei von Bedeutung? 
o Welche Komplexität bzw. Komplexitätsaspekte weist das Projekt auf? 

o Welche Einstellungen und Bereitschaften benötigen Sie für eine entsprechende 

Softwareimplementierung? 

o Wie würde Schüler an eine derartige Aufgabe herangehen? 

Welche Phasen sehen sie im Rahmen der schulischen Projektarbeit? 

246



Sz.6 Sie erhalten eine Software zur Verwaltung von persönlichen Gegen-ständen, die sie 
verliehen bzw. entliehen haben. Diese soll später auf modernen Mobiltelefonen 
eingesetzt werden.  
Die Abteilung, die für die eigentliche Programmierung des Werkzeugs zuständig ist, 
bittet Sie, das Produkt in Bezug auf seine Ergonomie zu testen. 

o Wie würden Sie dabei vorgehen, und was müssen Sie dabei beachten? 

o Welche Kenntnisse und Fähigkeiten benötigen Sie um die Ergonomieeigenschaften der 
Verwaltungssoftware zu testen? 

o Welche informatischen Sichten sind hierbei von Bedeutung? 

o Welche Komplexität bzw. Komplexitätsaspekte weist das Projekt auf? 

o  Welche Bereitschaften und Einstellungen und welche sozial-kommunikativen Fähigkeiten 

benötigen Sie zum Testen der Ergonomieeigenschaften der Verwaltungssoftware? 

o Wie würde ein Schüler die Aufgabe angehen? 

Sz. 7 Sie haben gerade die neueste Version einer Standardsoftware installiert. Diese 
unterscheidet sich in der Funktionalität und Bedienung von der vorhergehenden 
Version. Um einen ersten Eindruck zu erhalten, möchten Sie die Software 
systematisch erkunden. 

o Mit welchen Erwartungen gehen Sie an die neue Software heran? 

o Welche Erwartungshaltung begünstigt Ihre Arbeit? Welche Einstellung stünde der effektiven 

Absolvierung Ihres Arbeitsauftrags im Weg? 

o Inwieweit spielen bereits gesammelte Vorerfahrungen eine Rolle bei der systematisches 

Erkundung der Software? 

o Wie gehen Sie bei der Erkundung der neuen Software vor? 

o Empfehlen Sie diese oder eine andere Vorgehensweise auch für Schüler? 

o Welche Kenntnisse und Fähigkeiten benötigen Sie für eine entsprechende 

Softwareerkundung? 
o Welche informatischen Sichten sind hierbei von Bedeutung? 

o Welche Komplexität bzw. Komplexitätsaspekte weist das Projekt auf? 

o Welche Einstellungen und Bereitschaften benötigen Sie für eine entsprechende 

Softwareerkundung? 

o Wie würde ein Schüler die Aufgabe angehen? 

o Welche Probleme und Fallstricke können bei Schülern auftreten? 

o Wie können Sie Schüler unterstützen? 

 

247



Sz. 8 Eine kleine Firma handelt mit verschiedenen Werkzeugen. Um zu entscheiden, ob es 
sich lohnt das Geschäft an Samstagen länger zu öffnen, möchte der Geschäftsführer 
eine tägliche Umsatzübersicht über die wichtigsten Werkzeugkategorien. Das 
Geschäft arbeitet bisher ohne ein professionelles, rechnergestütztes Kassensystem 
und verfügt nicht über die finanziellen Mittel um ein solches zu installieren. 

o Beschreiben Sie, wie Sie diese Aufgabe lösen können. 

o Welche Kenntnisse und Fähigkeiten benötigen Sie um diese Aufgabe lösen zu können? 
o Welche informatischen Sichten sind hierbei von Bedeutung? 

o Welche Komplexität bzw. Komplexitätsaspekte weist das Projekt auf? 

o Was genau müsste im Vorfeld mit dem Geschäftsführer besprochen werden, damit die 

Umsetzung des Auftrages erfolgreich verläuft? 

o Inwieweit spielt es eine Rolle, dass der Geschäftsführer ein Informatiklaie ist? Was müssten 

Sie in einem Gespräch mit ihm beachten? 

o Welche Einstellungen und Bereitschaften benötigen Sie um diese Aufgabe lösen zu können? 

o Welche kommunikativen Schwierigkeiten können auftreten und durch welches Vorgehen 

ließen sich diese überwinden? 

o Welche Probleme können bei einem Schüler auftreten? 
o Wie können informatische Konzepte einen Schüler beim lösen dieser Aufgabe unterstützen? 

 

Sz. 9 Sie bitten Ihre Kollegen, eine von Ihnen entwickelte Software auf Herz und Nieren 
zu testen. Diese soll in Computer-Fachgeschäften verwendet werden, um es Kunden 
zu ermöglichen den gewünschten Computer selbständig zu konfigurieren. Dazu kann 
aus verschiedenen Gehäuseformen, Prozessortypen und einer begrenzten Zahl von 
weiteren Komponenten und Peripheriegeräten ausgewählt werden. Zur 
Durchführung der Tests stehen Ihren Kollegen keine besonderen Werkzeuge zur 
Verfügung. Aus lizenzrechtlichen Gründen dürfen sie den Quellcode Ihrer 
Anwendung nicht weitergeben. 

o Wie sollten die Kollegen dabei vorgehen, und was müssen sie dabei beachten? 

o Welches Handlungsmuster empfehlen Sie für den Softwaretest? 

o Welche Kenntnisse und Fähigkeiten benötigen die Kollegen für die Testung der entwickelten 

Software? 

o Welche informatischen Sichten sind hierbei von Bedeutung? 

o Welche Komplexität bzw. Komplexitätsaspekte weist das Projekt auf? 

o Welche Einstellungen und Bereitschaften sollten die Kollegen für diesen Testvorgang 

mitbringen?  

o Inwieweit wird es notwendig sein, sich neues, relevantes Wissen anzueignen? Wie kann 

dieses Wissen beschafft werden? 
o Wie können Sie die Tester bei Ihrer Aufgabe unterstützen? 

o Welche Erfolgs- oder Misserfolgserlebnisse können während der Projektdurchführung 

auftreten? Im Falle von Misserfolg: Welchen Anforderungen stehen Sie gegenüber, um sich 

neu zu motivieren? 

o Durch welche kommunikativen und kooperativen Voraussetzungen gelänge die Arbeit 

effektiv? 

o Wie würde ein Schüler die Aufgabe angehen? 

o Welche Probleme und Fallstricke können bei diesen Schülern auftreten? 

o Welche arbeitsbezogenen sozialen Umstände könnten den Erfolg gefährden? 

o Welche Erwartungshaltung bei Durchführung der Tests fördert den Erfolg des Projekts? 

 

248



Sz. 10 Stellen Sie sich vor, Sie haben in einer Fachzeitschrift einen Artikel zu einem neuen 
Forschungsgebiet gelesen und möchten nun mehr darüber erfahren. Um weitere 
Informationen zu bekommen, konsultieren Sie zunächst den Online-Katalog der 
nächstgelegenen Universitätsbibliothek. 

o Was erwarten Sie von einem solchen Online-Katalog? 

o Wie versuchen Sie Informationen aus einem solchen Online-Katalog zu erhalten? 

o Welche Kenntnisse und Fähigkeiten benötigen Sie für eine entsprechende Recherche? 
o Welche informatischen Sichten sind hierbei von Bedeutung? 

o Welche Komplexität bzw. Komplexitätsaspekte weist das Projekt auf? 

o Welche Einstellungen und Bereitschaften benötigen Sie für eine entsprechende Recherche? 

o Welche Probleme können bei einem Schüler auftreten? 

Leider hat die Recherche keine Ergebnisse gebracht und Sie haben sich zur Nutzung 
einer Internetsuchmaschine entschlossen. 

o Welche Erwartungen haben Sie an eine solche Suchmaschine? 

o Wie gehen Sie vor, um die gewünschten Informationen zu erhalten? 

o Welche Probleme können bei einem Schüler auftreten? 

Sie haben nun eine Anfrage an eine Suchmaschine gestellt, dabei aber keine Treffer 
erhalten. 

o Welche Gründe könnten dafür verantwortlich sein? 

o Wie gehen Sie vor, um die gewünschte Information zu erhalten? 

o Welche Probleme können bei einem Schüler auftreten? 

Bei einer weiteren Suchanfrage erhalten Sie über 3 Mio. Treffer. Viele davon sind 
für Sie jedoch nicht relevant. 

o Welche Gründe könnten dafür verantwortlich sein? 

o Wie gehen Sie vor, um die gewünschte Information zu erhalten? 

o Welche Probleme können bei einem unerfahrenen Anwender auftreten? 

Sie möchten, dass bei den Ergebnissen einer Suchanfrage mit dem 
Namen / Spezialgebiet Ihrer Schule / Institutes Ihr Internetauftritt weit vorne 
angezeigt wird. Ihr Ziel ist nicht unbedingt Platz 1, aber zumindest die erste Seite. 

o Wie gehen Sie vor, um dies zu realisieren? 

Welche Probleme können bei einem Schüler auftreten? 

Sz. 11 Sie haben gerade die neueste Version einer Datenbanksoftware installiert. Diese 
unterscheidet sich in der Funktionalität und Bedienung von der vorhergehenden 
Version. Um einen ersten Eindruck zu erhalten, möchten Sie die Software 
systematisch erkunden. 

o Wie würden Sie dabei vorgehen, und was müssen Sie dabei beachten? 

o Welche Kenntnisse und Fähigkeiten benötigen Sie für eine entsprechende 

Softwareerkundung? 

o Welche informatischen Sichten sind hierbei von Bedeutung? 

o Welche Komplexität bzw. Komplexitätsaspekte weist das Projekt auf? 

o Welche Einstellungen und Bereitschaften benötigen Sie für eine entsprechende 

Softwareerkundung? 

o Welche Erwartungshaltung begünstigt Ihre Arbeit? Welche Einstellung stünde der effektiven 
Absolvierung Ihres Arbeitsauftrags im Weg? 

o Inwieweit spielen bereits gesammelte Vorerfahrungen eine Rolle bei der systematisches 

249



Erkundung der Software? 

Im Informatikunterricht werden Datenbanken entweder vom Ansatz des Anwendens 
oder des Modellierens behandelt. Diese beiden Ansätze sind als „Verwenden von 
Strukturen“ bzw. „Erzeugen von Strukturen“ zueinander komplementär. 

o Wie würden Sie vorgehen, um das Erlernen der bei relationalen Datenbanken verwendeten 

Strukturierungsmethoden sowie das Hinterfragen der Strukturen zu fördern? 

o Welches Handlungsmuster empfehlen Sie für Schüler, um die Struktur des Systems zu 

erforschen? 

o Was ist bei der Dateneingabe zu beachten? 
o Was bei der Datenspeicherung? 

o Wie geschieht die Datengewinnung (Abfrage)? 

Die Verknüpfungen, die zum Extrahieren gewünschter Daten benötigt und beim 
Erforschen gefunden wurden, können direkt als Datenbankabfragen formuliert 
werden.  

o Wie würde ein Schüler eine Datenbank „Schule“ mit den Entitäten Klassen, Schüler, Lehrer 

etc. nutzen? 

o Welche Probleme und Fallstricke können bei diesen Schülern auftreten? 

o Welche Vorgehensweisen werden diese einsetzen? 

Die durch die Anfragen gewonnenen Informationen bilden die Grundlage für die 
Rückkoppelung des Modells mit der Realität, für das „Hinterfragen erzeugter 
Strukturen“.  

o Was erwarten Sie von Schülern, die den logischen Entwurf einer Datenbank erkundet haben? 

o Welche Vorgehensweisen werden diese Einsetzen? 

Die erschlossenen Strukturierungsregeln schließlich erlauben das eigenständige 
Erstellen weiterer Datenbankmodelle von Realweltausschnitten durch die Lernenden 
(„gestaltender“ Anwendungskontext). 

o Wie unterstützt das Strukturieren eines Realweltproblems und das Überführen in einen 
logischen Entwurf das Verständnis für die Datenbank? 

o Inwieweit hilft das Strukturieren, die Komplexität des Datenbanksystems zu bewältigen? 

o Wie können Schüler motiviert werden, die Strukturen der Datenbank zu hinterfragen? 

o Wie können Sie die Schüler bei Ihrer Aufgabe unterstützen? 

250



 

Sz. 12 Sie werden von einem Kollegen gebeten, dessen Neuentwicklung zu testen. Es 
handelt sich dabei um eine Software, die Autohäusern verwendet werden soll, um es 
Kunden zu ermöglichen das gewünschte Auto selbständig zu konfigurieren. Dazu 
kann aus verschiedenen Fahrzeugtypen, Sondermodellen und Zusatzausstattungen 
ausgewählt werden. Zusätzlich kann das Autohaus in bestimmten Fällen einen 
Rabatt von bis zu 10 Prozent auf das erstellte Fahrzeug erlassen. 

 

o Welche Teststrategie würde sie wählen und warum? Und was müssen Sie bei einem solchen 

Vorgehen beachten? 
o Welche Kenntnisse und Fähigkeiten benötigen Sie für eine entsprechende 

Softwareerkundung? 

o Welche informatischen Sichten sind hierbei von Bedeutung? 

o Welche Komplexität bzw. Komplexitätsaspekte weist das Projekt auf? 

o Welche Einstellungen und Bereitschaften benötigen Sie für eine entsprechende 

Softwareerkundung? 

o Auf welche Weise würden sich Unterschiede im Kompetenzniveau zwischen Laien und 

Experten bei dieser Arbeit zeigen? 

o Wie können Sie als Tester bei Ihrer Aufgabe unterstützt werden? 
o Durch welche kommunikativen und kooperativen Voraussetzungen gelänge dieses Vorhaben 

effektiv? 

o Wie würde ein Schüler die Aufgabe angehen? 

Welche Probleme und Fallstricke können bei diesen Schülern auftreten? 

 

251



A.2. Messinstrument und Bewertungsschema

A.2.1. Fragebogen

252



 
 

Aufgaben zur informatischen Modellierung und Systemgestaltung 
 
Vielen Dank, dass Sie sich bereit erklärt haben, diese Aufgabensammlung zu bearbeiten!  
 
Selbstverständlich findet diese Bearbeitung vollkommen anonym statt. Uns geht es 
darum, in absehbarer Zeit ein Messinstrumentarium zu entwickeln für die beiden 
Bereiche Informatisches Modellieren und Systemverständnis. Da wir uns damit noch in 
der Vorerprobungsphase befinden, sind wir darauf angewiesen, einen ersten 
Testdurchlauf zu starten, um festzustellen, ob die gewählten Aufgaben sich für unseren 
Zweck eignen. Durch die Bearbeitung dieser Aufgaben helfen Sie uns dabei sehr. 
Herzlichen Dank! 

253



 

Aufgabe 1 

A) 

Ordnen Sie die folgenden UML-Diagrammtypen den jeweiligen Phasen des 

Wasserfallmodells zu. Beachten Sie, dass einzelne Diagrammtypen auch mehreren 
Phasen zugeordnet werden können und dass Felder ggf. frei bleiben können. Ergänzen 
Sie die untere Tabelle, indem Sie die Nummer der jeweiligen Diagrammtypen in der 
rechten Spalte ergänzen. 
 
UML-Diagrammtypen (alphabetisch sortiert): 

(1) Aktivitätendiagramm 

(2) CRC-Karten 
(3) Klassendiagramm  
(4) Objektdiagramm (Objekt-Karten) 
(5) Sequenzdiagramm 
(5) Use Case Diagramm 
(6) Zustandsdiagramm 

 

 
 
Anforderungsanalyse  
Analyse  
Design  
Implementierung  
Test  
 

B) 

In der Praxis laufen die Phasen des Softwareengineerings selten linear ab. Häufig 
werden die einzelnen Phasen in mehreren Iterationen durchlaufen. Beschreiben Sie 
mindestens zwei Beispiele (in 2-3 Sätzen), in denen es notwendig ist, eine bereits 
abgeschlossene Phase des Wasserfallmodells nochmals zu durchlaufen. 
 
 
 

 

 

 

 

 

 

 

 

254



 

Aufgabe 2 

 
Sie sind als Projektmanager beauftragt, ein verteiltes Chatsystem zu entwickeln. Hierbei 
muss folgendes beachtet werden: 

• Die verschiedenen Module der Software sollen von verschiedenen Teams 
entwickelt werden 

• Zur gemeinsamen Modellierung sollen UML-Diagramme verwendet werden 
• Das zu entwickelnde Chatsystem soll plattformunabhängig 

(Linux/Windows/Mac) lauffähig sein 
 
i) Sie haben sich für Java als Plattform bzw. Programmiersprache entschieden: 
Begründen Sie Ihre Entscheidung, indem sie erläutern inwiefern Java als 
Programmiersprache/Plattform den oben genannten Ansprüchen genügt. 
 
 

 

 

 

 

 

 
ii) Nennen Sie Nachteile von Java: 
 

 

 

 

 

255



 

Aufgabe 3 

 
1. Erläutern Sie die Begriff „Klasse“. 
 

 

 

 
2. Erläutern Sie den Begriff „Objekt“. 
 

 

 

3. Beschreiben Sie den Zusammenhang zwischen „Klasse“ und „Objekt“. Erläutern Sie 
den Zusammenhang unter Verwendung der möglichen Klassen-/Objektkandidaten  
„Lehrer“, „Herr Meier“, „Herr Müller“. 

 

 

 

 

 

 

4. Erläutern Sie den Begriff „Vererbung“ im Zusammenhang mit objektorientierter 
Modellierung. Erklären Sie den Begriff anhand der möglichen Klassenkandidaten 
„Person“, „Lehrer“, Schüler“. 

 

 

 

 

 

 

 

256



 

Aufgabe 4 

A) 

Innerhalb dieser Aufgabe soll ein Bankterminal modelliert werden. 
Ergänzen Sie das unten dargestellte Use-Case-Diagramm, indem Sie anhand der 
Szenariobeschreibung links die jeweiligen Akteure ergänzen und rechts die 
entsprechenden Anwendungsfälle eintragen. 
 
Szenariobeschreibung: 

Bankterminal: 

Die Kunden sollen die Möglichkeit haben, Geld abzuheben und ihren Kontostand 
einzusehen. Des Weiteren sollen Sie eine Überweisung mit Hilfe des Terminals 
durchführen können. Um das System zu warten, müssen Servicetechniker in der Lage 
sein, Bargeld nachzufüllen und Softwareupdates einspielen zu können. 
 
Use-Case-Diagramm: 

 

257



 

B) 

Im Rahmen eines Softwareentwicklungsauftrags für ein Kreditinstitut haben Sie mit 
dem Bankdirektor die Anforderungen an die zu entwickelnde Software erarbeitet. Sie 
müssen nun Ihren Entwicklerkollegen diese Information verständlich mitteilen. 
In der Zwischenzeit haben jedoch Ihre Kollegen ohne Ihr Wissen eine aus 
Entwicklersicht sehr zeitsparende Vorgehensweise geplant, die jedoch aus Sicht des 
Kreditinstituts nicht geeignet ist. Sie haben nun die Aufgabe, Ihre Kollegen von der 
Notwendigkeit eines geeigneten Vorgehens im Sinne des Auftraggebers zu überzeugen. 
 
i) Wie gehen Sie dabei vor? Was unternehmen Sie? (Mehrfachnennungen möglich) 
 
□ Ich vereinbare ein Treffen mit den Kollegen und stelle ihnen die 

Gesprächsergebnisse vor. Ich versuche sie von der Notwendigkeit der Umsetzung 
der Anforderungen zu überzeugen. Die Wünsche des Kunden zu berücksichtigen ist 
erforderlich. 

□ Ich begrüße die eigenen Vorschläge der Kollegen und veranlasse, dass nach diesen 
gearbeitet wird. Denn um erfolgreich zu sein, muss aus Entwicklersicht gearbeitet 
werden. 

 
ii) Wie gehen Sie vor, um Ihren Wissensvorsprung durch das Gespräch mit dem 
Bankdirektor Ihren Entwicklerkollegen sinnvoll zu vermitteln. (Mehrfachnennungen 

möglich) 
 
□ Ich informiere die Kollegen über das geführte Gespräch mit dem Bankdirektor gar 

nicht, sondern lege fest, dass nach meinen Vorschlägen gearbeitet wird. Anstehende 
Diskussionen gefährden nur den Projekterfolg. 

□ Ich berufe ein Treffen mit den Kollegen ein und präsentiere ihnen die 
Gesprächsergebnisse mit dem Bankdirektor. Wenn nötig erstelle ein Handout zur 
besseren Verdeutlichung. 

 
iii) Welche Probleme können sich dabei ergeben? 
 
 

 

 

 
iv) Was müssten Sie bei der stattfindenden Diskussion beachten? 
(Mehrfachnennungen möglich) 
 
□ Die verschiedenen Standpunkte sollen argumentativ vertreten werden. 
□ Ich höre den Ausführungen der anderen zu, berücksichtige diese allerdings für 

meine Entscheidung nicht. 
□ Wenn ich Diskussionsteilnehmer kritisiere, dann tue ich das konstruktiv um der 

Sache willen. 
□ Ich bin bereit, meinen Standpunkt von anderen kritisieren zu lassen, wenn sie 

Argumente dabei vorbringen. 

258



 

Aufgabe 5 

A) 

Sie wurden beauftragt, eine Software zur Verwaltung Ihrer Schulbibliothek zu 
entwickeln. In der Analyse-Phase sollen zunächst CRC-Karten für die wichtigsten 
Klassen erstellt werden. Ergänzen Sie hierzu die unten dargestellten CRC-Karten um die 
jeweiligen Responsibilities und Collaborators. Orientieren Sie sich hierbei an der 
Beschreibung der Schulbibliothek I.  
 
Schulbibliothek I 

Die Schulbibliothek umfasst einen Bestand von Büchern. Diese sind gekennzeichnet durch deren 

Titel, id-Nummer und Anzahl der Seiten. Die Schulbibliothek wird von verschiedenen Personen 

genutzt. Diese haben einen Namen und ein Alter.  

 

 
 

259



 

B) 

Wählen Sie das Klassendiagramm aus, dass die unten beschriebene erweiterte Version der 

Schulbibliothek (Schulbibliothek II) korrekt modelliert. 

 

Klassendiagramm 1:���� 

Klassendiagramm 2:���� 
 

Im falschen Klassendiagramm befindet sich (A) ein logischer Fehler und eine (B) eine 

Schwäche hinsichtlich doppelt gespeicherter Attribute. Markieren Sie diese Fehler bzw. 

Schwächen im falschen Klassendiagramm, indem Sie die beteiligten Klassen und Assoziationen 

einkreisen und je nach Mangel/Schwäche mit  (A) oder (B) beschriften. 

 

 

 

Schulbibliothek II 

Die Schulbibliothek umfasst einen Bestand von Büchern. Diese sind gekennzeichnet durch deren 

Titel, ISBN-Nummer und Anzahl der Seiten. Es gibt Sachbücher, Lexika und Romane. 

Sachbücher sind zusätzlich gekennzeichnet durch ein Themengebiet, Lexika durch die Anzahl 

Bände sowie die jeweilige Bandnummer des Exemplars. Die Schulbibliothek wird von 

verschiedenen Personen genutzt. Diese haben einen Namen und ein Alter. Unterschieden wird 

zwischen verschiedenen Benutzergruppen: Lehrer haben ein erstes und zweites Unterrichtsfach 

und dürfen höchstens vier Bücher gleichzeitig ausleihen. Zusätzlich stehen Sie als Berater für 

zwei bestimmte Themengebiete der Fachbücher zur Verfügung. Schüler haben eine 

Jahrgangsstufe und dürfen höchstens zwei Bücher gleichzeitig ausleihen. 

260



 

Klassendiagramm 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Klassendiagramm 2: 

 

 

261



 

Aufgabe 6 

A) 

Vervollständigen Sie anhand der Use-Case-Beschreibung „Geld abheben“ das 
entsprechende Sequenzdiagramm (siehe unten), indem Sie die einzelnen Aufrufe aus 
der unten dargestellten Aufrufsammlung auswählen und dem Sequenzdiagramm 
hinzufügen (jeder Aufruf darf einmal verwendet werden; zeichnen Sie den jeweiligen 

Aufrufpfeil und ergänzen Sie die jeweilige Nummer; Die Aufruftext z.B. „geld abheben(-

105) muss im Sequenzdiagramm nicht ergänzt werden). 
 
Szenario „Geld abheben“: 

Schritt Nutzer Beschreibung der Aktivität 

1 Kunde „Geld abheben“ wählen 
2 Bankterminal PIN anfordern 
3 Kunde PIN eingeben: 4725 
4 Bankzentrale PIN prüfen 
5 Bankterminal Abzuhebenden Betrag erfragen 
6 Kunde Betrag eingeben: 105 Euro 
7 Bankzentrale Kontostand auf ausreichende Deckung prüfen 
8 Bankterminal Geld auszahlen 
9 Kunde Geld entnehmen 
10 Bankzentrale Kontostand anpassen 
 
Aufrufsammlung: 

 
 

 

262



 

Sequenzdiagramm zum Szenario „Geld abheben“: 

 

B) 

Stellen Sie sich vor, Sie würden im professionellen Umfeld Szenariobeschreibungen 
analysieren und möchten im nächsten Schritt ein Sequenzdiagramm erstellen. Welche 
Personen kämen als Gesprächspartner in Frage, die wichtige Informationen über das 
Geschäftsfeld liefern könnten? 

 
 

 

 

1 

4 

263



 

Aufgabe 7 

 
Ergänzen Sie ausgehend von der unten aufgeführten Funktionsbeschreibung eines 
Festplatten-Rekorders das Zustandsdiagramm: Ergänzen Sie hierbei die fehlenden 
Zustandsübergänge. 
 
Festplatten-Rekorder 

Das Gerät befindet sich nach dem Einschalten im Hauptmenü. Mittels der TV-Taste 
gelangt man in den TV-Modus, in dem das aktuelle Fernsehbild dargestellt wird. Betätigt 
man die Record-Taste, wechselt das Gerät in den Aufnahme-Modus und zeichnet das 
aktuelle Fernsehprogramm auf. Betätigt man in diesem Zustand die Stop-Taste wird die 
Aufnahme beendet und das Gerät wechselt wieder in den TV-Modus. Durch Betätigung 
der Pause-Tasteinnerhalb des TV-Modus wird der Timeshift-Modus aktiviert. Hierbei 
wird die aktuelle Fernsehsendung pausiert und ab diesem Zeitpunkt aufgenommen. 
Durch nochmaliges Drücken der Pause-Taste wird das Fernsehprogramm von der zuvor 
pausierten Position fortgesetzt. Drückt man die Stop-Taste wechselt der Festplatten-
Rekorder wieder in den TV-Modus und spielt das TV-Programm ohne zeitlichen Versatz 
ab.  
Drückt man innerhalb des Hauptmenüs die Archiv-Taste, wechselt das Gerät in den 
Archiv-Modus. Hier kann durch Betätigung der Play-Taste eine ausgewählte – zuvor 
aufgenommene – Sendung abgespielt werden (das Gerät wechselt in den Abspielen-

Modus). Mit Hilfe der Stop-Taste gelangt man wiederum in den Archiv-Modus. 
Sowohl im TV- als auch im Archiv-Modus gelangt man durch Drücken der Menü-Taste ins 
Hauptmenü. 
 
Zustandsdiagramm des Festplatten-Rekorders: 

 
 

264



 

Aufgabe 8 

 
Implementieren Sie die Klassen Wald, Baum, Foerster und Nadelbaum (Attribute, 
Methoden und Assoziationen/Aggregationen) anhand des unten dargestellten 
Klassendiagramms. Verwenden Sie die vorgegebenen Klassenrümpfe. Beachten Sie, dass 
die Konstruktoren der Klassen implementiert werden müssen, obwohl diese nicht im 
Klassendiagramm zu finden sind. 
 
 

 

 

Klassendiagramm: 

 

 
 

265



 

Quellcode: 

 

Klasse Wald: 

 
 
Klasse Foerster: 

 
 

public class Wald         { 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
} 

public class Foerster                            { 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
} 

266



 

Klasse Baum: 

 
 
 
Klasse Nadelbaum 

 
 

public class Baum                               { 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
} 

public class NadelBaum                          { 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

} 

267



 

Aufgabe 9 

A) 

Gegeben sei die API der Klasse java.util.Vector. (siehe Anhang des Fragebogens) 
Verwenden sie diese, um die erforderlichen Methoden sowie deren Parameter und 
Rückgabetypen für den Umgang mit der Klasse Vector zu recherchieren. 
 
Ergänzen Sie innerhalb des gegebenen Klassenrumpfes die main-Methode um 
Anweisungen (siehe Vector-API), sodass die folgende Funktionalität umgesetzt wird: 
 

• Es soll ein Objekt der Klasse Vector erzeugt werden. 

• Die folgenden Strings sollen sukzessive in den Vector eingefügt werden: 
„eins“, „zwei“, „drei“, „vier, „fünf“ 

• Innerhalb der im Klassenrumpf enthaltenen for-Schleife sollen sämtliche  
Elemente des Vectors auf der Konsole ausgegeben werden 

 
Illustration des Vector-Objekts: 

Index 0 1 2 3 4 
Inhalt „eins“ „zwei“ „drei“ „vier“ „fünf“ 
 

Klasse Vectortest  

import java.util.Vector 

public class VectorTest{ 

  

public static void main(String[] args){ 

 //Vector-Objekt erzeugen 

 

 

 

 

 

 

//Strings zum Vector hinzufügen 

  

 

 

 

 

 

 

//alle Elemente des Vectors auf Konsole ausgeben 

for (         ){ 

 

 

 

 

 

 

 } 

} 

} 

 

268



 

B) 

i) Stellen Sie sich vor, Sie arbeiten im Team an der Entwicklung einer MP3-Player-
Software. Sie persönlich – als Experte auf diesem Gebiet - haben nun eine 
Klassenbibliothek zur Tonausgabe auf der Soundkarte entwickelt. 
Wie gehen Sie vor, um Ihren Kollegen die Verwendung Ihres Programmmoduls zu 
ermöglichen? (Mehrfachnennungen möglich) 
 
□ Ich schicke ihnen den Quellcode meiner Klassenbibliothek zu und bitte sie, sich 

detailliert einzuarbeiten. Wenn Sie mein Programm vollständig verstehen können 
Sie es in ihr Projekt einbinden. 

□ Ich lasse ihnen eine Schnittstellenbeschreibung zukommen. Diese umfasst lediglich 
Methoden der Klassen und deren Signaturen. Das sollte für die Verwendung meines 
Programmmoduls vollkommen ausreichen. 

 
ii) Ein weiterer Kollege hat zu einem späteren Zeitpunkt eine Alternative zu Ihrer 
Programmbibliothek zur Soundausgabe entwickelt. Diese erweist als deutlich besser als 
Ihre Programmbibliothek im Hinblick auf zukünftige Features des Mp3-Players. Wie 
verhalten Sie sich in dieser Situation, um den bestmöglichen Erfolg des Projekts zu 
erzielen? (Mehrfachnennungen möglich) 
 
□ Ich setze alle Energie in die Überarbeitung meiner Version, um es meinem Kollegen 

zu zeigen. 
□ Ich spreche mich mit meinem Kollegen ab, um aus unseren beiden Versionen das 

Beste herauszuholen und diese zu einer optimalen lauffähigen Version zu verbinden. 
□ Ich kündige, weil meine Arbeit nicht wertgeschätzt worden ist. 
□ Ich stelle meine eigene Lösung zurück und lasse zu, dass die bessere Lösung meines 

Kollegen genutzt wird, um den Projekterfolg nicht zu gefährden. 
 

269



 

Aufgabe 10 

A) 

Entscheiden Sie, ob die folgenden Aussagen wahr sind: 
i) Im Rahmen der Testphase wird ausschließlich überprüft, ob der 
Auftraggeber mit dem für ihn entwickelten Softwaresystem 
zurechtkommt. 

ja����  nein���� 

ii) In der Testphase wird überprüft, ob sämtliche funktionalen 
Anforderungen aus der Anforderungsanalyse innerhalb des 
Softwaresystems umgesetzt wurden 

ja����  nein���� 

iii) Es kann sinnvoll sein im Rahmen der Testphase einen Rückgriff auf 
die bereits abgeschlossene Anforderungsdefinition zu machen 

ja����  nein���� 

iv) Wenn man eine Software innerhalb der Testphase auf Robustheit 
überprüft, testet man wie zuverlässig das System über einen längeren 
Zeitraum läuft. 

ja����  nein���� 

 
 
v) Es gibt bestimmte sicherheitskritische Bereiche, in denen Softwaresysteme zur 
Unterstützung eingesetzt werden. Hierbei ist es von enormer Wichtigkeit, dass die 
jeweilige Software auf Herz und Nieren getestet wird. 
Nennen Sie mindestens zwei solcher Bereiche, in denen ein sorgfältiger Softwaretest vor 
dem Einsatz der Software außerordentlich wichtig (vielleicht sogar lebenswichtig) ist. 

 
 

 

 

 

 

 

270



 

B) 

Entwickeln Sie anhand des unten dargestellten Screenshots einer Webapplikation zur 
Reisebuchung und anhand des Ausschnitts der Anforderungsdefinition einen 
geeigneten Testplan. Gehen Sie dabei folgendermaßen vor:  
 
i) Überprüfen Sie, ob sämtliche funktionalen Anforderungen an die Software umgesetzt 
wurden, indem Sie für jede Anforderung jeweils einen Testfall entwickeln. Tragen Sie 
diese Testfälle in Tabelle 1 ein: 
 
Anforderungsdefinition Reisebuchungssystem: 

 

Anforderung 1: Benutzer kann Pauschalreisen suchen, indem er Reiseziel, 
Abflughafen, Abflugdatum, Rückflugdatum (muss mindestens zwei 

Tage hinter dem Abflugdatum terminiert sein), Anzahl 

Erwachsener (mindestens einer), Anzahl Kinder, 
Verpflegungsarten (mindestens eine) sowie einen Zimmertyp 
auswählt. 

Anforderung 2:  Der Benutzer kann optional die Hotelkategorie (Anzahl Sterne) 
mit in die Suche einbeziehen. 

Anforderung 3:  Benutzer kann auch nur den Hinflug buchen. Hierbei muss keine 
Eingabe in die Elemente der rechten Spalte gemacht werden. 

 
Screenshot eines Web-Reise-Buchungssystems:  
 

271



 

 
Tabelle 1: 

 
Testfall: Anforderung 1 Testfall: Anforderung 2 Testfall: Anforderung 3 
Reiseziel: Lanzarote Reiseziel: Reiseziel: 
Abflughafen: Paderborn Abflughafen: Abflughafen: 
Abflugdatum: 01.08.2010 Abflugdatum: Abflugdatum: 

Nur Hinflug: � Nur Hinflug:  � Nur Hinflug:  � 
Rückflugdatum: 08.08.2010 Rückflugdatum: Rückflugdatum: 
Anzahl Erwachsene: 2 Anzahl Erwachsene: Anzahl Erwachsene: 
Anzahl Kinder: 1 Anzahl Kinder: Anzahl Kinder: 

Verpflegungsart: 
AI �;  VP �; OV � 

Verpflegungsart: 
AI �;  VP �; OV � 

Verpflegungsart: 
AI �;  VP �; OV � 

Zimmertyp: Apartment Zimmertyp: Zimmertyp: 

Hotelkategorie: � Hotelkategorie: � Hotelkategorie: � 

 
ii) Überprüfen Sie die Robustheit der Anwendung, indem Sie nochmals den Auszug der 
Anforderungsdefinition betrachten und drei unerwartete Testfälle entwickeln, die 
die Anwendung zum Absturz bringen könnten. Ergänzen Sie diese Testfälle in Tabelle 2. 
 
Tabelle 2: 

 

Testfall: Fehleingabe 1  Testfall: Fehleingabe 2 Testfall: Fehleingabe 3 
Reiseziel: Lanzarote Reiseziel: Reiseziel: 
Abflughafen: Paderborn Abflughafen: Abflughafen: 

Abflugdatum: 01.08.2010 Abflugdatum: Abflugdatum: 
Nur Hinflug: � Nur Hinflug:  � Nur Hinflug:  � 
Rückflugdatum: 25.07.2010 Rückflugdatum: Rückflugdatum: 
Anzahl Erwachsene: 2 Anzahl Erwachsene: Anzahl Erwachsene: 

Anzahl Kinder: 1 Anzahl Kinder: Anzahl Kinder: 
Verpflegungsart: 
AI �;  VP �; OV � 

Verpflegungsart: 
AI �;  VP �; OV � 

Verpflegungsart: 
AI �;  VP �; OV � 

Zimmertyp: Apartment Zimmertyp: Zimmertyp: 

Hotelkategorie: � (3 Sterne) Hotelkategorie: � Hotelkategorie: � 

 

272



 

C) 

i) Sie entwickeln eine Webseite für ein Reisebüro und befinden sich nach Abschluss der 
Implementierung in der Testphase. Um die Robustheit Ihres Softwareprodukts zu 
verbessern, sollen Betatester in den Prozess mit einbezogen werden. Welche Personen 
würden Sie in die Testphase mit einbeziehen? (Mehrfachnennungen möglich) 
 
□ Die Entwickler des Reisebuchungssystem 
□ Erfahrene Benutzer anderer Reisebuchungssysteme 
□ Benutzer, die Grundkenntnisse in der Benutzung des Internets haben 
□ Grundschüler, die gerade das Lesen gelernt haben 
 
ii) Viele Betatester haben über Abstürze der Webseite berichtet. Wie gehen Sie vor, um 
die Eingaben in das System, die zum Absturz geführt haben, herauszufinden? Wie 
ermitteln Sie, was der Benutzer mit seinen Eingaben (die zum Absturz geführt 
haben)bezwecken wollte?  
 
 

 

 

 

 

 

 

273



 

Beurteilung verschiedener Aussagen zum informatischen Arbeiten 

Im Folgenden werden verschiedene Aussagen präsentiert, die sich auf die Arbeit mit 
sogenannten informatischen Systemen beziehen. Unter informatischen Systemen 
versteht man einerseits das technische System an sich, andererseits aber auch den 
Umgang der Benutzer mit diesem technischen System. 
Bitte geben Sie an, inwieweit die unten aufgeführten Aussagen Ihrer Meinung nach auf 
Sie zutreffen. Es handelt sich dabei um Ihre ganz persönliche Einschätzung. Es gibt keine 
richtigen und keine falschen Antworten. Bitte kreuzen Sie pro Frage genau eine Antwort 
an. 
 

       

Informatische Systeme stecken voller Geheimnisse 

und ihr Funktionieren ist kaum nachvollziehbar. 
� � � � � � 

Informatische Systeme kann man mit geeignetem 

Wissen gut nachvollziehen und verstehen. Man kann 

dann förmlich in sie hineinsehen. 
� � � � � � 

Ich bin davon überzeugt, dass das Anwenden und 

Verstehen informatischer Systeme sehr wichtig ist. 
� � � � � � 

Ich bin davon überzeugt, dass das Gestalten 

informatischer Systeme sehr bedeutsam und 

nützlich ist. 

 

� � � � � � 

Wenn ich mit einem informatischen System arbeite, 

mache ich mir Gedanken um seine Tauglichkeit 

(Geeignetheit) für die zu bearbeitende Aufgabe.  
� � � � � � 

Wenn ich mit einem informatischen System arbeite, 

bewerte ich dieses im Hinblick auf ihre Qualität. 
� � � � � � 

Wenn ich mit einem informatischen System arbeite, 

bewerte ich dieses im Hinblick auf die 

Angemessenheit bezüglich der Aufgabenstellung. 
� � � � � � 

 

274



 

 
 

 
 

     

Wenn ich mit informatischen Systemen arbeite, so 

muss ich mich den vorliegenden Gegebenheiten des 

informatischen Systems anpassen, da ich nichts 

daran ändern kann.  

� � � � � � 

Wenn ich eine schwierige informatische Aufgabe 

löse, ist es mir wichtig, einen Plan dabei zu verfolgen. 

Unsystematisches Herumprobieren hilft da nicht 

weiter. 

� � � � � � 

Wenn ich eine schwierige informatische Aufgabe 

löse, lege ich sofort los. Ich möchte zu Beginn nicht 

allzu viel Zeit mit der Planerei verlieren. 
� � � � � � 

Informatische Systeme sind im Bereich der 

Informatik von großer Bedeutung, sind aber 

unbedeutend im alltäglichen Leben. 
� � � � � � 

Informatische Systeme haben eine große Wirkung 

auf das alltägliche Leben. Kaum jemand kann sich 

ihrem Einfluss entziehen. 
� � � � � � 

Informatische Aufgabenstellungen interessieren 

mich sehr. 
� � � � � � 

Mir macht es Freude, informatische Modelle zu 

erstellen, mit denen man einen Ausschnitt realer 

Abläufe abbilden kann. 

 

� � � � � � 

Ich beschäftige mich gerne auch in der Freizeit mit 

Informatik. 
� � � � � � 

 
 

275



 

 
 

     

Manchmal wäre ich ganz froh, wenn die 

informatischen Aufgaben mehr mithilfe von festen 

Lösungsrezepten gelöst werden könnten. 
� � � � � � 

Ich finde es wichtig, dass ich meine Arbeitsweise an 

die jeweilige informatische Aufgabenstellung 

anpasse, insbesondere wenn sie nur für mich ist. 
� � � � � � 

Ich bin bereit, ganz neue Lösungswege, die ich bisher 

nicht kenne, zu entwickeln und einzusetzen, um eine 

informatische Aufgabe erfolgreich zu lösen. 
� � � � � � 

Ich bin motiviert, meine informatischen Fähigkeiten 

stets zu verbessern (erhöhen) und mein Wissen 

diesbezüglich zu erweitern. 
� � � � � � 

Ich will die mir anvertrauten informatischen 

Aufgaben erfolgreich bearbeiten. 
� � � � � � 

Der Erfolg bei der Bearbeitung von informatischen 

Aufgaben ist mir wichtig. 
� � � � � � 

Wenn ich mit einer informatischen Aufgabe betraut 

bin, werde ich alles daransetzen, sie auch erfolgreich 

zu bearbeiten. 
� � � � � � 

Um Erfolg beim Bearbeiten von informatischen 

Aufgaben zu haben, bin ich bereit, mich anstrengen 

und bis an meine Leistungsgrenze zu gehen. 
� � � � � � 

 
 
 
 

276



 

       

An die Aufgaben, die man mir überträgt, fühle ich 

mich nicht so stark gebunden wie an die Aufgaben, 

für die ich mich ernsthaft interessiere. 
� � � � � � 

Ich besitze ein ganz gutes informatisches 

Grundwissen, so dass ich mein Wissen nicht ständig 

erweitern muss. 
� � � � � � 

Misserfolgserlebnisse bei informatischen Aufgaben 

sind nicht immer vermeidbar; dann heißt es jedoch 

weiterzumachen und durchzuhalten. 
� � � � � � 

Mich faszinieren informatische Aufgaben besonders, 

wenn sie ein hohes Maß an Abstraktion verlangen. 
� � � � � � 

 
 
 

277



 

Abschlussbefragung 

 
Bei dieser Aufgabensammlung zur informatischen Modellierung und Systemverständnis 
handelt es sich um eine Vorversion, die weiterhin noch verbessert werden muss. Durch 
die Beantwortung der folgenden Fragen tragen Sie aktiv zur Weiterentwicklung dieses 
Instrumentariums bei (bitte beachten Sie die Aufgabenübersicht von im Anhang).  
An  welchen Stellen traten Verständnisschwierigkeiten auf? Z.B. durch schwammige 
Formulierungen oder durch die Aufgabenstellung selbst.  
 
 

 

 

 
 
Konnten die Antwortformate sinnvoll genutzt werden? Waren die Instruktionen so 
formuliert, dass Sie darüber Bescheid wussten, was Sie zu tun haben? Wo genau (bei 
welchen Aufgaben) gab es Probleme? Wo fehlten hilfreiche Informationen? 
 
 

 

 

 
 
Glauben Sie, dass die gewählten Formulierungen geeignet sind für Schülerinnen und 
Schüler der 12. Jahrgangsstufe? Welche Formulierungen in welchen Aufgaben sind Ihrer 
Meinung nach ungeeignet? 
 
 

 

 

 
 
Welche Aufgaben fanden Sie besonders schwierig? Was genau war daran besonders 
schwierig? 
 
 

 

 

 

278



 

Welche Aufgaben fanden Sie besonders einfach, trivial und damit vielleicht sogar 
überflüssig? 
 
 

 

 

 
 
Für welche Aufgaben benötigten Sie besonders viel Zeit? Nennen Sie bitte diese 
Aufgaben? 
 
 

 

 

 
 
Welche Aufgaben ließen sich sehr schnell bearbeiten? Nennen Sie bitte auch diese 
Aufgaben 
 
 

 

 

 
 
Können Sie uns mitteilen, was Ihnen bei der Bearbeitung der Aufgaben besonders 
aufgefallen ist? Diese Auffälligkeiten können sich auf jeden erdenklichen Aspekt 
beziehen, der mit dieser Aufgabensammlung im Zusammenhang steht? 
 
 

 

 

 
                             
 
 
 
 
 

279



 

Anhang  zur Abschlussbefragung 

 
Aufgabenübersicht des Hauptfragebogens 

 

1. Phasen des Wasserfallmodells / Zyklisches Vorgehen im Software Engineering 
Prozess 

2. Auswahl der Architektur / Eigenschaften der Programmiersprache Java 
3. Grundbegriffe der Objektorientierung 
4. Entwicklung eines Use-Case-Diagramms / soziale Faktoren bei der Entwicklung 

einer Banksoftware 
5. CRC-Karten / Klassendiagramm zur Schulbibliothekssoftware 
6. Sequenzdiagramm zum Szenario „Geld abheben“ 
7. Zustandsdiagramm zum „Festplatten Rekorder“ 
8. Implementierung des Klassendiagramms „Wald, Förster, Baum, Nadelbaum“ 
9. Implementierung anhand einer API: Klasse „java.util.Vector“ / soziale Faktoren 

bei der Entwicklung von Programmmodulen „Mp3-Player“ 
10. Test des Reisebuchungssystems / soziale Faktoren beim Softwaretest 

 

280



 

Anhang zum Hauptfragebogen 

API zu Aufgabe 9A) 

 

Constructor Summary 

Vector()  
          Constructs an empty vector so that its internal data array has size 10 and its standard capacity increment 

is zero. 
 

Vector(Collection<? extends E> c)  
          Constructs a vector containing the elements of the specified collection, in the order they are returned by 

the collection's iterator. 
 

Vector(int initialCapacity)  
          Constructs an empty vector with the specified initial capacity and with its capacity increment equal to 

zero. 
 

Vector(int initialCapacity, int capacityIncrement)  
          Constructs an empty vector with the specified initial capacity and capacity increment. 

 

   

Method Summary 

 boolean add(E e)  
          Appends the specified element to the end of this Vector. 

 void add(int index, E element)  
          Inserts the specified element at the specified position in this Vector. 

 boolean addAll(Collection<? extends E> c)  
          Appends all of the elements in the specified Collection to the end of this Vector, 

in the order that they are returned by the specified Collection's Iterator. 

 boolean addAll(int index, Collection<? extends E> c)  
          Inserts all of the elements in the specified Collection into this Vector at the 

specified position. 

 void addElement(E obj)  
          Adds the specified component to the end of this vector, increasing its size by one. 

 int capacity()  
          Returns the current capacity of this vector. 

 void clear()  
          Removes all of the elements from this Vector. 

 Object clone()  
          Returns a clone of this vector. 

 boolean contains(Object o)  
          Returns true if this vector contains the specified element. 

 boolean containsAll(Collection<?> c)  
          Returns true if this Vector contains all of the elements in the specified Collection. 

 void copyInto(Object[] anArray)  
          Copies the components of this vector into the specified array. 

 E elementAt(int index)  
          Returns the component at the specified index. 

 Enumeration<E> elements()  
          Returns an enumeration of the components of this vector. 

 void ensureCapacity(int minCapacity)  
          Increases the capacity of this vector, if necessary, to ensure that it can hold at least 

the number of components specified by the minimum capacity argument. 

281



 

 boolean equals(Object o)  
          Compares the specified Object with this Vector for equality. 

 E firstElement()  
          Returns the first component (the item at index 0) of this vector. 

 E get(int index)  
          Returns the element at the specified position in this Vector. 

 int hashCode()  
          Returns the hash code value for this Vector. 

 int indexOf(Object o)  
          Returns the index of the first occurrence of the specified element in this vector, or 

-1 if this vector does not contain the element. 

 int indexOf(Object o, int index)  
          Returns the index of the first occurrence of the specified element in this vector, 

searching forwards from index, or returns -1 if the element is not found. 

 void insertElementAt(E obj, int index)  
          Inserts the specified object as a component in this vector at the specified index. 

 boolean isEmpty()  
          Tests if this vector has no components. 

 E lastElement()  
          Returns the last component of the vector. 

 int lastIndexOf(Object o)  
          Returns the index of the last occurrence of the specified element in this vector, or 

-1 if this vector does not contain the element. 

 int lastIndexOf(Object o, int index)  
          Returns the index of the last occurrence of the specified element in this vector, 

searching backwards from index, or returns -1 if the element is not found. 

 E remove(int index)  
          Removes the element at the specified position in this Vector. 

 boolean remove(Object o)  
          Removes the first occurrence of the specified element in this Vector If the Vector 

does not contain the element, it is unchanged. 

 boolean removeAll(Collection<?> c)  
          Removes from this Vector all of its elements that are contained in the specified 

Collection. 

 void removeAllElements()  
          Removes all components from this vector and sets its size to zero. 

 boolean removeElement(Object obj)  
          Removes the first (lowest-indexed) occurrence of the argument from this vector. 

 void removeElementAt(int index)  
          Deletes the component at the specified index. 

protected  void removeRange(int fromIndex, int toIndex)  
          Removes from this List all of the elements whose index is between fromIndex, 

inclusive and toIndex, exclusive. 

 boolean retainAll(Collection<?> c)  
          Retains only the elements in this Vector that are contained in the specified 

Collection. 

 E set(int index, E element)  
          Replaces the element at the specified position in this Vector with the specified 

element. 

 void setElementAt(E obj, int index)  

282



 

          Sets the component at the specified index of this vector to be the specified 

object. 

 void setSize(int newSize)  
          Sets the size of this vector. 

 int size()  
          Returns the number of components in this vector. 

 List<E> subList(int fromIndex, int toIndex)  
          Returns a view of the portion of this List between fromIndex, inclusive, and 

toIndex, exclusive. 

 Object[] toArray()  
          Returns an array containing all of the elements in this Vector in the correct order. 

<T> T[]
 

toArray(T[] a)  
          Returns an array containing all of the elements in this Vector in the correct order; 

the runtime type of the returned array is that of the specified array. 

 String toString()  
          Returns a string representation of this Vector, containing the String representation 

of each element. 

 void trimToSize()  
          Trims the capacity of this vector to be the vector's current size. 

 

 

283



A.2.2. Bewertungsschema

284



 
 

Aufgaben zur informatischen Modellierung und Systemgestaltung 
 
Vielen Dank, dass Sie sich bereit erklärt haben, diese Aufgabensammlung zu bearbeiten!  
 
Selbstverständlich findet diese Bearbeitung vollkommen anonym statt. Uns geht es 
darum, in absehbarer Zeit ein Messinstrumentarium zu entwickeln für die beiden 
Bereiche Informatisches Modellieren und Systemverständnis. Da wir uns damit noch in 
der Vorerprobungsphase befinden, sind wir darauf angewiesen, einen ersten 
Testdurchlauf zu starten, um festzustellen, ob die gewählten Aufgaben sich für unseren 
Zweck eignen. Durch die Bearbeitung dieser Aufgaben helfen Sie uns dabei sehr. 
Herzlichen Dank! 

Musterlösung

285



 

 2 

Aufgabe 1 

A) 

Ordnen Sie die folgenden UML-Diagrammtypen den jeweiligen Phasen des 
Wasserfallmodells zu. Beachten Sie, dass einzelne Diagrammtypen auch mehreren 
Phasen zugeordnet werden können und dass Felder ggf. frei bleiben können. Ergänzen 
Sie die untere Tabelle, indem Sie die Nummer der jeweiligen Diagrammtypen in der 
rechten Spalte ergänzen. 
 
UML-Diagrammtypen (alphabetisch sortiert): 

(1) Aktivitätendiagramm 
(2) CRC-Karten 
(3) Klassendiagramm  
(4) Objektdiagramm (Objekt-Karten) 
(5) Sequenzdiagramm 
(5) Use Case Diagramm 
(6) Zustandsdiagramm 

 
 
 
Anforderungsanalyse Use-Case-Diagramm 

Aktivitätendiagramm 
Analyse Klassendiagramm 

Sequenzdiagramm 
Design Klassendiagramm 

Deploymentdiagramm 
Zustandsdiagramm 

Implementierung  
Test  
 

B) 

In der Praxis laufen die Phasen des Softwareengineerings selten linear ab. Häufig 
werden die einzelnen Phasen in mehreren Iterationen durchlaufen. Beschreiben Sie 
mindestens zwei Beispiele (in 2-3 Sätzen), in denen es notwendig ist, eine bereits 
abgeschlossene Phase des Wasserfallmodells nochmals zu durchlaufen. 
 

1. Beispiel: In der Testphase muss u.a. geprüft werden, ob alle funktionalen 
Anforderungen korrekt umgesetzt wurden. Daher ist es sinnvoll einen Rückgriff 
auf die Anforderungsanalyse zu machen. 

2. Beispiel: Innerhalb der Implementierungsphase kann sich herausstellen, dass 
Änderungen an der Architektur der Software vorgenommen werden müssen. 
Dementsprechend kann es sinnvoll/erforderlich sein, von der 
Implementierungsphase einen Rückgriff auf die Designphase zu machen. 

 

286



 

 3 

Aufgabe 2 

 
Sie sind als Projektmanager beauftragt, ein verteiltes Chatsystem zu entwickeln. Hierbei 
muss folgendes beachtet werden: 

• Die verschiedenen Module der Software sollen von verschiedenen Teams 
entwickelt werden 

• Zur gemeinsamen Modellierung sollen UML-Diagramme verwendet werden 
• Das zu entwickelnde Chatsystem soll plattformunabhängig 

(Linux/Windows/Mac) lauffähig sein 
 
i) Sie haben sich für Java als Plattform bzw. Programmiersprache entschieden: 
Begründen Sie Ihre Entscheidung, indem sie erläutern inwiefern Java als 
Programmiersprache/Plattform den oben genannten Ansprüchen genügt. 
 

• objektorientierte Programmiersprache eignet sich gut zur Modularisierung 
• Beispielsweise direkte Übersetzung von Klassendiagrammen in Java-Quellcode 

möglich 
• Java ist durch die Java Virtual Machine plattformunabhängig 

 
ii) Nennen Sie Nachteile von Java: 

• Performance-Nachteile durch die JVM (leider nicht mehr aktuell aufgrund JIT-
Compiler ;-( ) 

• Keine maschinennahe Programmierung möglich 
• Kein direkter Speicherzugriff aufgrund fehlender Pointer-Arithmetik 

Aufgabe 3 

 
1. Erläutern Sie die Begriff „Klasse“. 
 
Unter einer Klasse versteht man in der objektorientierten Programmierung ein 
abstraktes Modell bzw. einen Bauplan für eine Reihe von ähnlichen Objekten. 
Die Klasse dient als Bauplan für die Abbildung von realen Objekten in Softwareobjekte 
und beschreibt Attribute (Eigenschaften) und Methoden (Verhaltensweisen) der 
Objekte 
 
2. Erläutern Sie den Begriff „Objekt“. 
 
Ein Objekt bezeichnet in der objektorientierten Programmierung (OOP) ein Exemplar 
eines bestimmten Datentyps oder einer bestimmten Klasse (auch „Objekttyp“ genannt). 
In diesem Zusammenhang werden Objekte auch als „Instanzen einer Klasse“ bezeichnet. 
Objekte sind also konkrete Ausprägungen („Instanzen“) eines Objekttyps. 
 
3. Beschreiben Sie den Zusammenhang zwischen „Klasse“ und „Objekt“. Erläutern Sie 

den Zusammenhang unter Verwendung der möglichen Klassen-/Objektkandidaten  
„Lehrer“, „Herr Meier“, „Herr Müller“. 

Die Klasse „Lehrer“ kann als abstraktes Modell für die Objekte „Herr Meier“ und „Herr 
Müller“ gesehen werden. Diese stellen dann eine Instanz der Klasse „Lehrer“ dar. 

 

287



 

 4 

4. Erläutern Sie den Begriff „Vererbung“ im Zusammenhang mit objektorientierter 
Modellierung. Erklären Sie den Begriff anhand der möglichen Klassenkandidaten 
„Person“, „Lehrer“, Schüler“. 

Klassen können miteinander in hierarchischen Beziehungen stehen und zu komplexen 

Strukturen werden. Die Gesetzmäßigkeiten, nach denen diese gebildet werden, beschreibt das 

grundlegende Konzept der Vererbung. Hier sind weiterhin die Begriffe Basisklasse und 

abgeleitete Klasse von Bedeutung, um die Verhältnisse der Klassen untereinander zu 

charakterisieren. Dabei beschreibt die Basisklasse allgemeine Eigenschaften, ist also eine 

Verallgemeinerung der abgeleiteten Klassen; diese sind somit Spezialisierungen der 

Basisklasse. 

Beispiel: Basisklasse Person ist Verallgemeinerung der abgeleiteten Klassen 

(Spezialisierungen) Lehrer und Schüler. 

Dabei erben die abgeleiteten Klassen alle Eigenschaften und Methoden der Basisklasse (d.h. 

ein Motorrad hat alle Eigenschaften eines Kraftfahrzeugs, und man kann alles mit ihm 

machen, das man mit einem Kraftfahrzeug machen kann). Zusätzlich führt die abgeleitete 

Klasse zusätzliche Eigenschaften und Methoden ein, die bei ihren Objekten möglich sind. 

(Das Motorrad hat z.B. einen Gepäckträger, ein Auto nicht, dafür aber einen Kofferraum.) 

288



 

 5 

Aufgabe 4 

A) 

Innerhalb dieser Aufgabe soll ein Bankterminal modelliert werden. 
Ergänzen Sie das unten dargestellte Use-Case-Diagramm, indem Sie anhand der 
Szenariobeschreibung links die jeweiligen Akteure ergänzen und rechts die 
entsprechenden Anwendungsfälle eintragen. 
 
Szenariobeschreibung: 
Bankterminal: 
Die Kunden sollen die Möglichkeit haben, Geld abzuheben und ihren Kontostand 
einzusehen. Des Weiteren sollen Sie eine Überweisung mit Hilfe des Terminals 
durchführen können. Um das System zu warten, müssen Servicetechniker in der Lage 
sein, Bargeld nachzufüllen und Softwareupdates einspielen zu können. 
 
Use-Case-Diagramm: 

 

289



 

 6 

B) 

Im Rahmen eines Softwareentwicklungsauftrags für ein Kreditinstitut haben Sie mit 
dem Bankdirektor die Anforderungen an die zu entwickelnde Software erarbeitet. Sie 
müssen nun Ihren Entwicklerkollegen diese Information verständlich mitteilen. 
In der Zwischenzeit haben jedoch Ihre Kollegen ohne Ihr Wissen eine aus 
Entwicklersicht sehr zeitsparende Vorgehensweise geplant, die jedoch aus Sicht des 
Kreditinstituts nicht geeignet ist. Sie haben nun die Aufgabe, Ihre Kollegen von der 
Notwendigkeit eines geeigneten Vorgehens im Sinne des Auftraggebers zu überzeugen. 
 
i) Wie gehen Sie dabei vor? Was unternehmen Sie? (Mehrfachnennungen möglich) 
 

√ Ich vereinbare ein Treffen mit den Kollegen und stelle ihnen die 
Gesprächsergebnisse vor. Ich versuche sie von der Notwendigkeit der Umsetzung 
der Anforderungen zu überzeugen. Die Wünsche des Kunden zu berücksichtigen ist 
erforderlich. 

□ Ich begrüße die eigenen Vorschläge der Kollegen und veranlasse, dass nach diesen 
gearbeitet wird. Denn um erfolgreich zu sein, muss aus Entwicklersicht gearbeitet 
werden. 

 
ii) Wie gehen Sie vor, um Ihren Wissensvorsprung durch das Gespräch mit dem 
Bankdirektor Ihren Entwicklerkollegen sinnvoll zu vermitteln. (Mehrfachnennungen 
möglich) 
 
□ Ich informiere die Kollegen über das geführte Gespräch mit dem Bankdirektor gar 

nicht, sondern lege fest, dass nach meinen Vorschlägen gearbeitet wird. Anstehende 
Diskussionen gefährden nur den Projekterfolg. 

√ Ich berufe ein Treffen mit den Kollegen ein und präsentiere ihnen die 
Gesprächsergebnisse mit dem Bankdirektor. Wenn nötig erstelle ein Handout zur 
besseren Verdeutlichung. 

 
iii) Welche Probleme können sich dabei ergeben? 
 

• unterschiedliches Verständnis Problembereichs 
• Die Entwickler, die bereits in Vorleistung getreten empfinden ihre Arbeit als 

nicht wertgeschätzt 
• … 

 
iv) Was müssten Sie bei der stattfindenden Diskussion beachten? 
(Mehrfachnennungen möglich) 
 

√  Die verschiedenen Standpunkte sollen argumentativ vertreten werden. 
□       Ich höre den Ausführungen der anderen zu, berücksichtige diese allerdings für     

      meine Entscheidung nicht. 

√  Wenn ich Diskussionsteilnehmer kritisiere, dann tue ich das konstruktiv um der 
Sache willen. 

√ Ich bin bereit, meinen Standpunkt von anderen kritisieren zu lassen, wenn sie 
Argumente dabei vorbringen. 

290



 

 7 

Aufgabe 5 

A) 

Sie wurden beauftragt, eine Software zur Verwaltung Ihrer Schulbibliothek zu 
entwickeln. In der Analyse-Phase sollen zunächst CRC-Karten für die wichtigsten 
Klassen erstellt werden. Ergänzen Sie hierzu die unten dargestellten CRC-Karten um die 
jeweiligen Responsibilities und Collaborators. Orientieren Sie sich hierbei an der 
Beschreibung der Schulbibliothek I.  
 
Schulbibliothek I 

Die Schulbibliothek umfasst einen Bestand von Büchern. Diese sind gekennzeichnet durch deren 

Titel, id-Nummer und Anzahl der Seiten. Die Schulbibliothek wird von verschiedenen Personen 

genutzt. Diese haben einen Namen und ein Alter.  

 
 
 

291



 

 8 

B) 

Wählen Sie das Klassendiagramm aus, dass die unten beschriebene erweiterte Version der 

Schulbibliothek (Schulbibliothek II) korrekt modelliert. 

 

Klassendiagramm 1:���� 

Klassendiagramm 2: √ 
 

Im falschen Klassendiagramm befindet sich (A) ein logischer Fehler und eine (B) eine 

Schwäche hinsichtlich doppelt gespeicherter Attribute. Markieren Sie diese Fehler bzw. 

Schwächen im falschen Klassendiagramm, indem Sie die beteiligten Klassen und Assoziationen 

einkreisen und je nach Mangel/Schwäche mit  (A) oder (B) beschriften. 

 

 

 

Schulbibliothek II 

Die Schulbibliothek umfasst einen Bestand von Büchern. Diese sind gekennzeichnet durch deren 

Titel, ISBN-Nummer und Anzahl der Seiten. Es gibt Sachbücher, Lexika und Romane. 

Sachbücher sind zusätzlich gekennzeichnet durch ein Themengebiet, Lexika durch die Anzahl 

Bände sowie die jeweilige Bandnummer des Exemplars. Die Schulbibliothek wird von 

verschiedenen Personen genutzt. Diese haben einen Namen und ein Alter. Unterschieden wird 

zwischen verschiedenen Benutzergruppen: Lehrer haben ein erstes und zweites Unterrichtsfach 

und dürfen höchstens vier Bücher gleichzeitig ausleihen. Zusätzlich stehen Sie als Berater für 

zwei bestimmte Themengebiete der Fachbücher zur Verfügung. Schüler haben eine 

Jahrgangsstufe und dürfen höchstens zwei Bücher gleichzeitig ausleihen. 

292



 

 9 

Klassendiagramm 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Klassendiagramm 2: 

 

 

(B) Mangel hinsichtlich 
redundanten Attribute 

(A) Logischer Fehler 

293



 

 10

Aufgabe 6 

A) 

Vervollständigen Sie anhand der Use-Case-Beschreibung „Geld abheben“ das 
entsprechende Sequenzdiagramm (siehe unten), indem Sie die einzelnen Aufrufe aus 
der unten dargestellten Aufrufsammlung auswählen und dem Sequenzdiagramm 
hinzufügen (jeder Aufruf darf einmal verwendet werden; zeichnen Sie den jeweiligen 

Aufrufpfeil und ergänzen Sie die jeweilige Nummer; Die Aufruftext z.B. „geld abheben(-

105) muss im Sequenzdiagramm nicht ergänzt werden). 
 
Szenario „Geld abheben“: 
Schritt Nutzer Beschreibung der Aktivität 
1 Kunde „Geld abheben“ wählen 
2 Bankterminal PIN anfordern 
3 Kunde PIN eingeben: 4725 
4 Bankzentrale PIN prüfen 
5 Bankterminal Abzuhebenden Betrag erfragen 
6 Kunde Betrag eingeben: 105 Euro 
7 Bankzentrale Kontostand auf ausreichende Deckung prüfen 
8 Bankterminal Geld auszahlen 
9 Kunde Geld entnehmen 
10 Bankzentrale Kontostand anpassen 
 
Aufrufsammlung: 

 
 
 

294



 

 11

Sequenzdiagramm zum Szenario „Geld abheben“: 

 

B) 

Stellen Sie sich vor, Sie würden im professionellen Umfeld Szenariobeschreibungen 
analysieren und möchten im nächsten Schritt ein Sequenzdiagramm erstellen. Welche 
Personen kämen als Gesprächspartner in Frage, die wichtige Informationen über das 
Geschäftsfeld liefern könnten? 

• z.B. Domänenexperten, denen die Geschäftsprozesse bekannt sind 
 
 
 
 

 

 

295



 

 12

Aufgabe 7 

 
Ergänzen Sie ausgehend von der unten aufgeführten Funktionsbeschreibung eines 
Festplatten-Rekorders das Zustandsdiagramm: Ergänzen Sie hierbei die fehlenden 
Zustandsübergänge. 
 
Festplatten-Rekorder 
Das Gerät befindet sich nach dem Einschalten im Hauptmenü. Mittels der TV-Taste 
gelangt man in den TV-Modus, in dem das aktuelle Fernsehbild dargestellt wird. Betätigt 
man die Record-Taste, wechselt das Gerät in den Aufnahme-Modus und zeichnet das 
aktuelle Fernsehprogramm auf. Betätigt man in diesem Zustand die Stop-Taste wird die 
Aufnahme beendet und das Gerät wechselt wieder in den TV-Modus. Durch Betätigung 
der Pause-Tasteinnerhalb des TV-Modus wird der Timeshift-Modus aktiviert. Hierbei 
wird die aktuelle Fernsehsendung pausiert und ab diesem Zeitpunkt aufgenommen. 
Durch nochmaliges Drücken der Pause-Taste wird das Fernsehprogramm von der zuvor 
pausierten Position fortgesetzt. Drückt man die Stop-Taste wechselt der Festplatten-
Rekorder wieder in den TV-Modus und spielt das TV-Programm ohne zeitlichen Versatz 
ab.  
Drückt man innerhalb des Hauptmenüs die Archiv-Taste, wechselt das Gerät in den 
Archiv-Modus. Hier kann durch Betätigung der Play-Taste eine ausgewählte – zuvor 
aufgenommene – Sendung abgespielt werden (das Gerät wechselt in den Abspielen-

Modus). Mit Hilfe der Stop-Taste gelangt man wiederum in den Archiv-Modus. 
Sowohl im TV- als auch im Archiv-Modus gelangt man durch Drücken der Menü-Taste ins 
Hauptmenü. 
 
Zustandsdiagramm des Festplatten-Rekorders: 

 
 

296



 

 13

Aufgabe 8 

 
Implementieren Sie die Klassen Wald, Baum, Foerster und Nadelbaum (Attribute, 
Methoden und Assoziationen/Aggregationen) anhand des unten dargestellten 
Klassendiagramms. Verwenden Sie die vorgegebenen Klassenrümpfe. Beachten Sie, dass 
die Konstruktoren der Klassen implementiert werden müssen, obwohl diese nicht im 
Klassendiagramm zu finden sind. 
 
 
 
 
Klassendiagramm: 
 

 
 

297



 

 14

Quellcode: 
 
Klasse Wald: 

 
 
Klasse Foerster: 

 
 

public class Wald{ 

 private Foerster foerster; 

 private Baum[] baeume; 

 //Konstruktor 

 Wald(Foerster foerster){ 

  this.foerster=foerster; 

  baeume = new Baum[]; 

 } 

 //...  

} 
 

public class Foerster{ 

 private String name; 

 //Konstruktor 

 Foerster(String name){ 

  this.name=name; 

 } 

 //... 

} 

 

298



 

 15

Klasse Baum: 

 
 
 
Klasse Nadelbaum 

 
 

public class Baum{ 

 private int hoehe; 

 //Konstruktor 

 Baum(int hoehe){ 

  this.hoehe=hoehe; 

 } 

 //... 

} 

 

public class NadelBaum extends Baum{ 

 private String nadelArt; 

 //Konstruktor 

NadelBaum(int hoehe, String nadelArt){ 

  super(hoehe);  

  this.nadelArt=nadelArt; 
 } 

 //... 

} 

 

299



 

 16

Aufgabe 9 

A) 

Gegeben sei die API der Klasse java.util.Vector. (siehe Anhang des Fragebogens) 
Verwenden sie diese, um die erforderlichen Methoden sowie deren Parameter und 
Rückgabetypen für den Umgang mit der Klasse Vector zu recherchieren. 
 
Ergänzen Sie innerhalb des gegebenen Klassenrumpfes die main-Methode um 
Anweisungen (siehe Vector-API), sodass die folgende Funktionalität umgesetzt wird: 
 

• Es soll ein Objekt der Klasse Vector erzeugt werden. 

• Die folgenden Strings sollen sukzessive in den Vector eingefügt werden: 
„eins“, „zwei“, „drei“, „vier, „fünf“ 

• Innerhalb der im Klassenrumpf enthaltenen for-Schleife sollen sämtliche  
Elemente des Vectors auf der Konsole ausgegeben werden 

 
Illustration des Vector-Objekts: 
Index 0 1 2 3 4 
Inhalt „eins“ „zwei“ „drei“ „vier“ „fünf“ 
 
Klasse Vectortest  

import java.util.Vector 

public class VectorTest{ 

  

public static void main(String[] args){ 
 //Vector-Objekt erzeugen 

Vector v = new Vector(); 

//Strings zum Vector hinzufügen 

 v.add(„eins“); 

v.add(„zwei“); 

v.add(„drei“); 
v.add(„vier“); 

v.add(„fünf“); 

//alle Elemente des Vectors auf Konsole ausgeben 

for(int i = 0; i < v.size(); i++){ 

 System.out.println(v.elementAt(i)); 

} 

} 
} 

 

300



 

 17

B) 

i) Stellen Sie sich vor, Sie arbeiten im Team an der Entwicklung einer MP3-Player-
Software. Sie persönlich – als Experte auf diesem Gebiet - haben nun eine 
Klassenbibliothek zur Tonausgabe auf der Soundkarte entwickelt. 
Wie gehen Sie vor, um Ihren Kollegen die Verwendung Ihres Programmmoduls zu 
ermöglichen? (Mehrfachnennungen möglich) 
 
□ Ich schicke ihnen den Quellcode meiner Klassenbibliothek zu und bitte sie, sich 

detailliert einzuarbeiten. Wenn Sie mein Programm vollständig verstehen können 
Sie es in ihr Projekt einbinden. 

√ Ich lasse ihnen eine Schnittstellenbeschreibung zukommen. Diese umfasst lediglich 
Methoden der Klassen und deren Signaturen. Das sollte für die Verwendung meines 
Programmmoduls vollkommen ausreichen. 

 
ii) Ein weiterer Kollege hat zu einem späteren Zeitpunkt eine Alternative zu Ihrer 
Programmbibliothek zur Soundausgabe entwickelt. Diese erweist als deutlich besser als 
Ihre Programmbibliothek im Hinblick auf zukünftige Features des Mp3-Players. Wie 
verhalten Sie sich in dieser Situation, um den bestmöglichen Erfolg des Projekts zu 
erzielen? (Mehrfachnennungen möglich) 
 
□ Ich setze alle Energie in die Überarbeitung meiner Version, um es meinem Kollegen 

zu zeigen. 

√ Ich spreche mich mit meinem Kollegen ab, um aus unseren beiden Versionen das 
Beste herauszuholen und diese zu einer optimalen lauffähigen Version zu verbinden. 

□ Ich kündige, weil meine Arbeit nicht wertgeschätzt worden ist. 

√ Ich stelle meine eigene Lösung zurück und lasse zu, dass die bessere Lösung meines 
Kollegen genutzt wird, um den Projekterfolg nicht zu gefährden.  

 

301



 

 18

Aufgabe 10 

A) 

Entscheiden Sie, ob die folgenden Aussagen wahr sind: 
i) Im Rahmen der Testphase wird ausschließlich überprüft, ob der 
Auftraggeber mit dem für ihn entwickelten Softwaresystem 
zurechtkommt. 

ja����  nein√ 

ii) In der Testphase wird überprüft, ob sämtliche funktionalen 
Anforderungen aus der Anforderungsanalyse innerhalb des 
Softwaresystems umgesetzt wurden 

ja√  nein���� 

iii) Es kann sinnvoll sein im Rahmen der Testphase einen Rückgriff auf 
die bereits abgeschlossene Anforderungsdefinition zu machen 

ja√  nein���� 

iv) Wenn man eine Software innerhalb der Testphase auf Robustheit 
überprüft, testet man wie zuverlässig das System über einen längeren 
Zeitraum läuft. 

ja����  nein√ 

 
 
v) Es gibt bestimmte sicherheitskritische Bereiche, in denen Softwaresysteme zur 
Unterstützung eingesetzt werden. Hierbei ist es von enormer Wichtigkeit, dass die 
jeweilige Software auf Herz und Nieren getestet wird. 
Nennen Sie mindestens zwei solcher Bereiche, in denen ein sorgfältiger Softwaretest vor 
dem Einsatz der Software außerordentlich wichtig (vielleicht sogar lebenswichtig) ist. 

 
• Software von Flugzeugen, z.B. die Steuerung des Fahrwerks 
• Software im medizinischen Bereich, z.B. Software zur Verabreichung von 

Medikationen über einen Tropf 

 
 

302



 

 19

B) 

Entwickeln Sie anhand des unten dargestellten Screenshots einer Webapplikation zur 
Reisebuchung und anhand des Ausschnitts der Anforderungsdefinition einen 
geeigneten Testplan. Gehen Sie dabei folgendermaßen vor:  
 
i) Überprüfen Sie, ob sämtliche funktionalen Anforderungen an die Software umgesetzt 
wurden, indem Sie für jede Anforderung jeweils einen Testfall entwickeln. Tragen Sie 
diese Testfälle in Tabelle 1 ein: 
 
Anforderungsdefinition Reisebuchungssystem: 
 
Anforderung 1: Benutzer kann Pauschalreisen suchen, indem er Reiseziel, 

Abflughafen, Abflugdatum, Rückflugdatum (muss mindestens zwei 
Tage hinter dem Abflugdatum terminiert sein), Anzahl 

Erwachsener (mindestens einer), Anzahl Kinder, 
Verpflegungsarten (mindestens eine) sowie einen Zimmertyp 
auswählt. 

Anforderung 2:  Der Benutzer kann optional die Hotelkategorie (Anzahl Sterne) 
mit in die Suche einbeziehen. 

Anforderung 3:  Benutzer kann auch nur den Hinflug buchen. Hierbei muss keine 
Eingabe in die Elemente der rechten Spalte gemacht werden. 

 
Screenshot eines Web-Reise-Buchungssystems:  
 

303



 

 20

 
Tabelle 1: 

 
Testfall: Anforderung 1 Testfall: Anforderung 2 Testfall: Anforderung 3 
Reiseziel: Lanzarote Reiseziel: Lanzarote Reiseziel:Palma de Mallorca 
Abflughafen: Paderborn Abflughafen: Paderborn Abflughafen: Münster 
Abflugdatum: 01.08.2010 Abflugdatum: 01.08.2012 Abflugdatum: 02.08.2012 

Nur Hinflug: � Nur Hinflug:  � Nur Hinflug:  � 
Rückflugdatum: 08.08.2010 Rückflugdatum:  01.08.2012 Rückflugdatum: 
Anzahl Erwachsene: 2 Anzahl Erwachsene: 2 Anzahl Erwachsene: 
Anzahl Kinder: 1 Anzahl Kinder: 1 Anzahl Kinder: 

Verpflegungsart: 
AI �;  VP �; OV � 

Verpflegungsart: 
AI �;  VP �; OV � 

Verpflegungsart: 
AI �;  VP �; OV � 

Zimmertyp: Apartment Zimmertyp: Apartment Zimmertyp: 

Hotelkategorie: � Hotelkategorie: � 4 Sterne Hotelkategorie: � 

 
ii) Überprüfen Sie die Robustheit der Anwendung, indem Sie nochmals den Auszug der 
Anforderungsdefinition betrachten und drei unerwartete Testfälle entwickeln, die 
die Anwendung zum Absturz bringen könnten. Ergänzen Sie diese Testfälle in Tabelle 2. 
 
Tabelle 2: 
 
Testfall: Fehleingabe 1  Testfall: Fehleingabe 2 Testfall: Fehleingabe 3 
Reiseziel: Lanzarote Reiseziel: Ibiza Reiseziel: Menorca 

Abflughafen: Paderborn Abflughafen: Dortmund Abflughafen: Hannover 
Abflugdatum: 01.08.2010 Abflugdatum: 21.05.2012 Abflugdatum: 21.06.2012 
Nur Hinflug: � Nur Hinflug:  � Nur Hinflug:  � 
Rückflugdatum: 25.07.2010 Rückflugdatum: 15.05.2012 Rückflugdatum: 30.06.2012 

Anzahl Erwachsene: 2 Anzahl Erwachsene: 2 Anzahl Erwachsene: 0 
Anzahl Kinder: 1 Anzahl Kinder: 2 Anzahl Kinder: 2 
Verpflegungsart: 
AI �;  VP �; OV � 

Verpflegungsart: 
AI �;  VP �; OV � 

Verpflegungsart: 
AI �;  VP �; OV � 

Zimmertyp: Apartment Zimmertyp: Einzelzimmer Zimmertyp: Doppelzimmer 
Hotelkategorie: � (3 Sterne) Hotelkategorie: � Hotelkategorie: � 

 
Erläuterungen zu den Testfällen Fehleingabe 2, 3 

• Fehleingabe 2: Trotz vier Personen ein Einzelzimmer �es sollte eine 
Fehlermeldung angezeigt werden 

• Fehleingabe 3: Kinder buchen ohne Erwachsene 
 

C) 

i) Sie entwickeln eine Webseite für ein Reisebüro und befinden sich nach Abschluss der 
Implementierung in der Testphase. Um die Robustheit Ihres Softwareprodukts zu 
verbessern, sollen Betatester in den Prozess mit einbezogen werden. Welche Personen 
würden Sie in die Testphase mit einbeziehen? (Mehrfachnennungen möglich) 
 
□ Die Entwickler des Reisebuchungssystem 

√  Erfahrene Benutzer anderer Reisebuchungssysteme 

√  Benutzer, die Grundkenntnisse in der Benutzung des Internets haben 
□ Grundschüler, die gerade das Lesen gelernt haben 
 

304



 

 21

ii) Viele Betatester haben über Abstürze der Webseite berichtet. Wie gehen Sie vor, um 
die Eingaben in das System, die zum Absturz geführt haben, herauszufinden? Wie 
ermitteln Sie, was der Benutzer mit seinen Eingaben (die zum Absturz geführt 
haben)bezwecken wollte?  
 

• Testprotokolle anfertigen lassen 
• Dokumentation der Fehler mit Screenshots 

… 

305



A.3. Material zur Unterrichtserprobung

A.3.1. Klassendiagramm der Ausgangsversion der Kommissionierstation

Die folgende Abbildung zeigt das Klassendiagramm der Ausgangsversion (vor der De-

konstruktionsphase) der Kommissionierstation.

Klassendiagramm der ILL-Kommissionierstation

A.3.2. Ausbaustufen der Kommissionierstation im Quellcode

Die folgenden Tabelle zeigt die erforderlichen Anpassungen im Quellcode der Java-

Klassen, um die Ausgangsversion der Kommissionierstation (vor der Dekonstruktions-

phase) über die Ausbaustufe 1 (nach der Dekonstruktionsphase und vor der Konstruk-

tionsphase) bis hin zur �nalen Ausbaustufe 2 (nach der Konstruktionsphase) zu erwei-

tern.

306



Klasse Änderung

Auftrag Zwei zusätzliche Objektvariablen(Integer) für die 
zusätzlichen Farben

alt:
private int gruen;

neu:
private int gruen;
private int grau;
private int rot;

alt:
private int gruen;

neu:
private int gruen;
private int grau;
private int rot;

Auftrag Konstruktor um zusätzliche Objektvariablen erweitern.

alt:
public Auftrag(int gruen) {
        this.gruen = gruen;
}

neu:
public Auftrag(int gruen, int grau, int rot) {
        this.gruen = gruen;
        this.grau = grau;
        this.rot = rot;
}

alt:
public Auftrag(int gruen) {
        this.gruen = gruen;
}

neu:
public Auftrag(int gruen, int grau, int rot) {
        this.gruen = gruen;
        this.grau = grau;
        this.rot = rot;
}

Auftrag get Methoden für zusätzliche Objektvariablen einfügen.

KommisStrCtrl Objekt-konstante auftrag mit drei Integern konstruieren.

alt:
private static final Auftrag auftrag = new Auftrag(2);

neu:
private static final Auftrag auftrag = new Auftrag(1,2,3);

alt:
private static final Auftrag auftrag = new Auftrag(2);

neu:
private static final Auftrag auftrag = new Auftrag(1,2,3);

KommisStrCtrl In der run-Methode dem DataOutputStream die 
zusätzlichen Farben hinzufügen

alt:
sender.sendeAuftrag(auftrag.getGruen());

neu:
sender.sendeAuftrag(auftrag.getGruen(), auftrag.getGrau(), auftrag.getRot());

alt:
sender.sendeAuftrag(auftrag.getGruen());

neu:
sender.sendeAuftrag(auftrag.getGruen(), auftrag.getGrau(), auftrag.getRot());

307



Klasse Änderung

KommisTurmCtrl Zusätzliche Kommissioniertürme als Objektvariablen 
hinzufügen.

alt:
KommissionierungsTurm k1; //Motor A

neu:
KommissionierungsTurm k1; //Motor A
KommissionierungsTurm k2; //Motor B
KommissionierungsTurm k3; //Motor C

alt:
KommissionierungsTurm k1; //Motor A

neu:
KommissionierungsTurm k1; //Motor A
KommissionierungsTurm k2; //Motor B
KommissionierungsTurm k3; //Motor C

KommisTurmCtrl Im Konstruktor den Objektvariablen der zusätzlichen 
Kommissioniertürme, Objekte vom Typ 
KommissionierTurm zuweisen.

alt:
this.k1 = new KommissionierungsTurm(Motor.A); // gruen

neu:
this.k1 = new KommissionierungsTurm(Motor.A); // gruen
this.k2 = new KommissionierungsTurm(Motor.B); // grau
this.k3 = new KommissionierungsTurm(Motor.C); // rot

alt:
this.k1 = new KommissionierungsTurm(Motor.A); // gruen

neu:
this.k1 = new KommissionierungsTurm(Motor.A); // gruen
this.k2 = new KommissionierungsTurm(Motor.B); // grau
this.k3 = new KommissionierungsTurm(Motor.C); // rot

KommisTurmCtrl Im Konstruktor die Threads der zusätzlichen 
Kommissioniertürme starten.

alt:
//start des Threads
k1.start();

neu:
//start der Threads
k1.start();
k2.start();
k3.start();

alt:
//start des Threads
k1.start();

neu:
//start der Threads
k1.start();
k2.start();
k3.start();

308



Klasse Änderung

KommisTurmCtrl Die Methode kommissioniereAuftrag muss an alle drei 
Türme die Anzahl der zu kommissionierenden Steine 
übermitteln.

alt:
public void kommissioniereAuftrag(Auftrag auftrag) {
        k1.setAktuellerAuftrag(auftrag.getGruen());
}

neu:
public void kommissioniereAuftrag(Auftrag auftrag) {
        k1.setAktuellerAuftrag(auftrag.getGruen());
        k2.setAktuellerAuftrag(auftrag.getGrau());
        k3.setAktuellerAuftrag(auftrag.getRot());
}

alt:
public void kommissioniereAuftrag(Auftrag auftrag) {
        k1.setAktuellerAuftrag(auftrag.getGruen());
}

neu:
public void kommissioniereAuftrag(Auftrag auftrag) {
        k1.setAktuellerAuftrag(auftrag.getGruen());
        k2.setAktuellerAuftrag(auftrag.getGrau());
        k3.setAktuellerAuftrag(auftrag.getRot());
}

KommisTurmCtrl In der run-Methode aus dem DataInputStream die 
zusätzlichen Farben auslesen und in Auftragobjekt 
speichern.

alt:
farben = bte.empfangeAuftrag(1);
System.out.println(""+ farben[0]);
Auftrag auftrag = new Auftrag(farben[0]);
kommissioniereAuftrag(auftrag);

neu:
farben = bte.empfangeAuftrag(3);
System.out.println(""+ farben[0] + ʻʻ : ʻʻ + farben[1] + ʻʻ : ʻʻ + farben[2]);
Auftrag auftrag = new Auftrag(farben[0], farben[1], farben[2]);
kommissioniereAuftrag(auftrag);

alt:
farben = bte.empfangeAuftrag(1);
System.out.println(""+ farben[0]);
Auftrag auftrag = new Auftrag(farben[0]);
kommissioniereAuftrag(auftrag);

neu:
farben = bte.empfangeAuftrag(3);
System.out.println(""+ farben[0] + ʻʻ : ʻʻ + farben[1] + ʻʻ : ʻʻ + farben[2]);
Auftrag auftrag = new Auftrag(farben[0], farben[1], farben[2]);
kommissioniereAuftrag(auftrag);

309



Klasse Änderung

Auftragstabelle Neu zu erstellende Klasse, die eine Hartgecodete Tabelle enthält, 
die jedem Bytecode eines RFID-Chips einen Auftrag zuweist. 
Dafür gibt es zwei Methoden. DIe Methode getAuftragNummer 
ermittelt anhand eines Bytecodes die Nummer des Auftrags. Die 
Methode getAuftrag gibt mithilfe der Methode getAuftragNummer 
den richtigen Auftrag zurück.

KommisStrgCtrl import des Pakets nxt.addon

import lejos.nxt.addon.*;import lejos.nxt.addon.*;

KommisStrgCtrl Deklarieren und initialisieren des neuen RFID-Sensor und der 
Auftragstabelle

private BluetoothSender sender;
private Auftrag auftrag;
private RFIDSensor rfid;
private Auftragstabelle at;

public KommisStrCtrl() {
        super();
        sender = null;
        ks = new KommissionierungsStation(SensorPort.S1, Motor.B);
        pb = new Band(Motor.A, 200, true);
        rfid = new RFIDSensor(SensorPort.S2);
        at = new Auftragstabelle();
    }

private BluetoothSender sender;
private Auftrag auftrag;
private RFIDSensor rfid;
private Auftragstabelle at;

public KommisStrCtrl() {
        super();
        sender = null;
        ks = new KommissionierungsStation(SensorPort.S1, Motor.B);
        pb = new Band(Motor.A, 200, true);
        rfid = new RFIDSensor(SensorPort.S2);
        at = new Auftragstabelle();
    }

KommisStrgCtrl In der Run-Methode wird der Transponder ausgelesen und aus 
der Auftragstabelle die Methode getAuftrag aufgerufen.

ks.starteErkennung();
pb.stoppeBand();
byte[] id = rfid.readTransponder(false);
auftrag = at.getAuftrag(id);

ks.starteErkennung();
pb.stoppeBand();
byte[] id = rfid.readTransponder(false);
auftrag = at.getAuftrag(id);

KommisStrgCtrl Die Konstante auftrag wird als variable deklariert.

private Auftrag auftrag;private Auftrag auftrag;

310



A.3.3. Bauanleitung der Kommissionierstation

Die folgende Bauanleitung für das LEGO-Modell der Kommissionierstation wurde von

den Studierenden im Rahmen des Seminars Informatik Lernlabor (SoSe 08) erstellt.

311



 

 
312



 

 
313



 

 
314



 

 
315



 

 
316


