Heinz Nixdorf Institute

L(‘ University of Paderborn
L Business Computing, especially CIM

Robust Solution to the CLSP and the DLSP
with Uncertain Demand and Online

Information Base

Dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in the subject of Economics and Business Sciences
(Dr. rer. pol.)

at the University of Paderborn

by
Dipl.-Appl.Math.-Inf. Ekaterina Kaganova
born on 28.06.1987 in Leningrad, Russia

Paderborn, June 2013

Dean: Prof. Dr. Martin Schneider
Referee: Prof. Dr.-Ing. habil. Wilhelm Dangelmaier
Co-Referee: Prof. Dr. Leena Suhl






To the memory of my mother,
who made me who I am.

To my grandfather,
who is the best example to me.

To my husband,
who makes me happy.






Table of contents

LISt Of fi@UIES cuveicrrreicssnnicssunicssanesssanesssanesssanssssnsssssnsssssnsssssssssssssssssssssssssssssssssssssssssssssnsssssnsssssnsssses iv
| 00 E A1) 721 1) (OO vi
1 INEFOAUCHION cucueeeeneieiiecniisniisenisnecsseissecssnssssnesssesssnssssssssnssssssssssssssssssssssssssassssassssssssssssasssses 1
2 Problem StatemMeNLt........cccveiiveicsecssnnnsnissensssncsssncssnesssnsssesssssssssssssssssassssssssssssssssssssssssssasssssssse 4
2.1  Description of the uncertain Capacitated Lot Sizing Problem (CLSP)..........cccccccuveennee.. 5
2.2 Description of the uncertain Discrete Lot sizing and Scheduling Problem (DLSP)...... 11
2.3 Main 1eSearch GOAlS........ceciiiiiiiiieiiiiece et e 13

3 State Of the Artf.....eiiiiiiiiiiiiiniiniiinnisnecsnissecssisssissssssssssssssssssssssssssssssssssssssssssssssssssss 17
3.1  Production planning problems ..........cccueeeriiiiiiiiiiiieiieeeitee ettt 17
3.1.1  Review of production planning problems...........cccccueeriiiiniieiriieriieenieeeieeeieeens 17
3.1.2  Capacitated Lot Sizing Problem (CLSP) ......ccccccoiiiiiiiiiiiiieeeeeeeeeeeeee 21
3.1.3  Discrete Lot sizing and Scheduling Problem (DLSP) .......cccccoovviiiiiniiiiiniiceenn 23

3.2 UnCertainty treatMENT. .......c.eeeiuieeriieeriiieeniiteeritee et ee ettt e et ee et e e sttt e sbteesabeeesabeeesaseeesans 25
3.2.1  Uncertainty in production planning ............ccceecveeriuieeniieeniieeenieeeiieeeieeesieeesieeens 25
3.2.2  Worst-case analysis and competitive analysis .........cceecveeeviveeeniieennieeniieeniieenieeenns 28
3.2.3  SenSitiVILY ANalYSIS....cceeuieiriieiiiieiitie ettt eit ettt e et e et s e st e e e e 34
3.2.4  Stochastic OPUMIZAION ...cc.veerrurieiiitieeiiiee et et e st e et e e sibeeesibeessireesireesbeeesbeeeas 35
3.2.5  RODUSt OPtIMIZAION ..c.uuviiiiiieiiiieiitee ettt ettt ettt et esbteesaeeesbeeeas 38

4 ACHON POINES wuveierrenicnsanicssaneossancsssanesssnesssssessasssssasssssasssssssesssssessssssssssssssssssssssssssasssssasssssasssss 43
S MEtROAS cuueeueiiiniiniicniinicsnniseisnicsenisssnsssisssecsssssssessssssssesssssssssssssssssssssasssssssssssssssssassssssssssss 45
5.1  Analytical approach for defining the worst-case of demand distribution...................... 45

5.2 Analytical approach for deriving the upper and lower bounds of the competitive

6215 (0 U OO OO SOOI PTUPRORPPRON 47

5.3  Robust Optimization apProaCh.........ccccvieeriiieeriiieeiiie ettt eaeeeeaee e 50
5.3.1 Robust Counterpart (RC) .......cccuiiiiiiieiiieciieeiee ettt see e s 50
5.3.2  Affinely Adjustable Robust Counterpart (AARC) ......ccoeevvieeriieeniiecieeeieeeeeene 53

5.3.3 Features of the AARC fOr the CLSP.. ..o 54



5.3.4  Integrality issue of the AARC for the CLSP ........ccccooiiiiiiiiiieees 55

5.3.5  Testing workflow for the AARC WORST-CASE and AARC SCENARIOS
models. Simulation of uncertain demand............cccccoecveriiiniiiinienieneeeen 56

5.3.6  Comparison of solution approaches. The influence of uncertainty level on the
EOLAl COSES VAU .....eeeiiiiiiieiieiie et e 59
5.3.7  Features of the AARC for the DLSP ......cociiiiiiiiiieeeeeeeeeeeeee 60

5.3.8  Testing workflow for the AARC for the DLSP model. Simulation of
uncertain demand ........cocueovieiiiiiienie et 62
6 Results and diSCUSSION .....ccueerecreisecsrinsensnisancsnnssncssnssesssnsssnssssssessssssssssessssssssssessssssassssssassane 64
6.1  Analytical approach for defining the worst-case of demand distribution....................... 64
6.1.1  Important definitions and aSSUMPLIONS ........eeeririeriiieeniieeniieerieeeieee e e esiee e 64
6.1.2  MaIn thEOTEM ... .eioiiiiiiiiiiiiiceeceeeee ettt s 64
6.1.3  Comments On the Proof..........coouiiiiiiiiiiiiie e 66
6.1.4  Computational €XamPIe ........ccoouieiiiiiiiiiiiieeeeece et 70
6.1.5  Capabilities and limitations of the approach............ccceceveviiiiniiiiniiiinniieieceeee 77
6.2  Analytical approach for deriving the value of competitive ratio .......cc..ccecueeveeerveeneenne. 78
6.2.1  Perishable products with 10St SAIES ..........cccvuieeiiiiiiiiieiiieee e 78
6.2.2  Durable products with backlogged demand..............cccccveeriiieeriiieeniieiiieeieeeeeene 83
6.2.3  Computational €XaAMPIE ........oooueeriiiiiiiiiiiiiee ettt 91
6.2.4  Capabilities and limitations of the approach.............cccceviiiiiniiniiincieceeee 94
6.3  Robust Optimization approach for the CLSP..........ccccoiiiiiiiiiiiiicee 96
6.3.1 Robust Counterpart (RC) .......cccuiiiiiiiiiiieeciieeiee et see e svee e 96
6.3.2  Affinely Adjustable Robust Counterpart (AARC) ....cccovvvvieeviieeiiieeieeeieeee, 100
6.3.3  AARC with several demand SCENATIOS ........cc.cerueriiierieeniienieeieenie et 106
6.3.4  Computational examples for the RC...........cooiiiiiiiiiiiiiiicecee 109
6.3.5  Computational examples for the AARC, simulation and analysis of results........ 117
6.4  Robust Optimization approach for the DLSP .........cccccoiiiiiiiiiiiiiieeeeeeeeeee s 126
6.4.1  Robust Counterpart (RC) ......ccoouiiiiiiiiiiieiieieeiteeeiee et 126
6.4.2  Affinely Adjustable Robust Counterpart (AARC) .....ccoovviiiiiiiiniiiiiiiiiieee, 129
6.4.3  Computational example and SIMUIAtION.........ccceeeviiiiriiiiiniieiieeeeeeeee e 133
T CONCIUSIONS...cciuiereiirrisrecssissnesancssessnsssecssisssssesssssssessessssssassssssssssssssssssessassssssassssssssssssssasssass 141

BRI OICIICES ceeeeeerereeeeeeeeeeeeeeeeeeeeeeereeeeeeeseeesesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 145






List of figures

Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 3.1.
Figure 5.1.
Figure 5.2.
Figure 5.3.
Figure 6.1.

Figure 6.2.
Figure 6.3.
Figure 6.4.
Figure 6.5.
Figure 6.6.
Figure 6.7.
Figure 6.8.
Figure 6.9.

Figure 6.10.
Figure 6.11.

Figure 6.12.
Figure 6.13.

Figure 6.14.

Interval uncertainty of demand .............ccoovieeiiieiiiieee e 5
FOLAING NOTIZON ...ttt ettt e e e e aae e saee e 6
Incomplete information about demand for production ............ccccceeevvieeeieencnneennne. 7
ROIING NOTIZOMN...ccuiiiieiiieeeiie ettt e e e e e esae e s e e enns 7
Classification of uncertainty in production planning ...........cccceeeeveeerveeeseeercuneens 26
Testing workflow for the RO approach (CLSP) .......ccccvveviiiiiiiiiiieeeeeeeeen 57
One of the generated demand scenarios for the product 2 ...........ccceeeveeevieencnnennn. 58
Testing workflow for the AARC of the DLSP.......cooooiiiiiiiiiiiieieeeeeeee, 63
Mlustration of the demand scenario from Theorem 6.1 in case (N —n) is

EVETL ..ttt et ettt et e ettt et e sttt e bt e e ae e e bt e eh bt e bt e e bt e et e e eht e e bt e eh et e bt e eh bt e bt e eab e e bt e shbeenbeenaee 68
Ilustration of the demand scenario for case 1 of the Theorem 6.1 proof ............. 71
[lustration of the demand scenario for case 2a of the Theorem 6.1 proof ........... 71
Ilustration of the demand scenario for case 2b of the Theorem 6.1 proof ........... 72
Ilustration of the demand scenario for case 2¢ of the Theorem 6.1 proof ........... 72
IMlustration of the demand scenario for case 3 of the Theorem 6.1 proof ............. 72
Scenario 1 of the demand realization ............c.ceecueeiiiiiiiniiniienieeeeeeeeeen 74
Scenario 2 of the demand realization ...........cccceevueeriiiiiiniieiieneeeeee e 74
Scenario 3 of the demand realization ............ccceevueeriiiiiiiniiiniiinceeeeee e 75
Scenario 4 of the demand realization ...........cc.ceocuieviiiiiiniieiienceeccceeeeen 75

Comparison of the total costs between the RC, the probabilistic and the ideal
model solutions on four demand scenarios (Example 1) .....cccccevevveeeiieeninennne. 111

Lower and upper borders for the demand .............cccooviiiiiiiinniiiiiiiiinieeeee 114

Comparison of the total costs between the RC, the probabilistic and the ideal
model solutions on four demand scenarios (Example 2) .......cccceevvveeecieenneeennne. 115

Comparison between the AARC WORST-CASE, the AARC SCENARIOS
(with real coefficients in the decision rules) and the optimal objective values
on selected demand scenarios and on average over 100 demand scenarios........ 120



Figure 6.15.

Figure 6.16.

Figure 6.17.

Figure 6.18.

Comparison between the AARC WORST-CASE, the RC and the optimal
objective values on average over 100 demand scenarios for different levels
of demand UNCETLAINTY ........c..eeiiiiiiiiiieiiieeeee ettt

Comparison between the AARC of the DLSP and the optimal objective
values on selected demand scenarios and on average over 20 demand
SCEIIATIOS .. neenuteeutteuteeutee st et e ettt e bt esute e bt esabe e bt e shbeeabeesabeeabeesabeeabeesabeeabeenabeenneenaee

Comparison between the AARC of the DLSP with folding horizon and the
optimal objective values on the selected demand scenarios and on average
over 20 demand SCENATIOS. ......ccvuuiriiirierieeite ettt sttt seeeseee e ens

Comparison between the AARC of the DLSP with folding horizon, the RC
and the optimal objective values on average over 20 demand scenarios for
different levels of demand Uncertainty..........cccccceevueeeniieinieennieenieeeeeeeiee e

137



vi

List of tables

Table 3.1:
Table 3.2:
Table 6.1:

Table 6.2:

Table 6.3:

Table 6.4:
Table 6.5:

Table 6.6:
Table 6.7:

Table 6.8:

Table 6.9:

Table 6.10:

Table 6.11:

Table 6.12:

Table 6.13:

Comparison between lot sizing models. (Source: M. Salomon [6]) ..........cc....... 20
Classification scheme for models for production planning under uncertainty...... 27

Comparison of the offline and online algorithms on four generated demand
SCETIATIOS. «.uveerereenreeuteeteesateeteeeute e bt e st e e bt e s bt esbeeeas e e st e eabeenbeeeabeenbeeeaneenateenneesaneenneen 76

Applicability of the analytical approach for defining the worst-case of
demand diStrIDULION.........ooviiiiiriiiienie e 77

Applicability of the analytical approach for deriving the value of
COMPELITIVE TALIO..eeeuuteeeuirieeitieeitee ettt e et e e st e e sbeeesabeeesabeeeabeeeateessbteessbeeesabeeesareens 95

Four demand scenarios for testing the RC model (Example 1) .......c..ccceeneeenee. 110

Percentage differences between the costs associated with the RC, the
probabilistic model and the optimal costs (Example 1) ........ccoocveeviiiiniiinnninnns 111

Four demand scenarios for testing the RC model (Example 2) .......c....ccceueeeneee. 115

Percentage differences between the costs associated with the RC, the

probabilistic model and the optimal costs (Example 2) .........ccoccveeviiiiniiienneenns 116
Solving properties of the AARC WORST-CASE and AARC SCENARIOS
models with real coefficients in the decision rules .........c.ccceevveeriiiiniieenieennnne. 119

Comparison between the AARC WORST-CASE, the AARC SCENARIOS
solutions (with real coefficients in the decision rules) and the optimal

SOTULION .ttt ettt ettt e s et e et e s it e et e e sabeenbeeneee 120
Solving properties of the AARC WORST-CASE and AARC SCENARIOS
models with integer coefficients in deciSion rules .........cccccceeevveeerieeecieercneeennne. 121

Comparison between the AARC WORST-CASE, the AARC SCENARIOS
solutions (with integer coefficients in the decision rules) and the optimal
SOIUTION ..ttt et et st sb e e st 122

Comparison between the AARC WORST-CASE, AARC SCENARIOS
solutions (with integer coefficients in the decision rules) and the optimal
solution. Simulation with integer demand values ............ccccoeveeniiiiiiieeniiennneen. 123

Percentage difference in costs between the AARC WORST-CASE solution
(integer coefficients in the decision rules) and the optimal solution
depending on the uncertainty level..........cocccooiiiiiniiiiiiie 124



Vii

Table 6.14:

Table 6.15:
Table 6.16:
Table 6.17:

Table 6.18:

Table 6.19:

Percentage difference in costs between the AARC WORST-CASE solution
(integer coefficients in decision rules) and optimal solution, between the RC

solution and the optimal solution depending on the uncertainty level................
Solving properties of the AARC of the DLSP model.........c...cccoeviiniiininnnnnn.
Comparison between the AARC of the DLSP and the optimal solution ............

Comparison between the AARC of the DLSP with folding horizon and the

OPUMAL SOTULION ...ceueiiiiiiie ittt

Comparison of the AARC with folding horizon and the optimal objective

values on generated demand scenarios depending on the uncertainty level .......

Percentage difference in costs between the AARC with folding horizon
solution and the optimal solution, between the RC solution and the optimal

solution depending on the uncertainty level...........cccccceeviieniiieniiieiieeceee,



viii




1 Introduction

IBM corporation, which offers optimization software solutions, highlighted four key
2reasons why business managers and pla2nners should take a look at the state of the art in
optimization technology:

e  “Changes in the economy and in business process management are making smart,

agile economic planning and scenario comparison a necessity. ...

o The efficient use of resources has never been more critical in terms of impact on

profitability. ...

® Advances in computer hardware and optimization software have made it possible to

evaluate large planning and scheduling problems that were too difficult for
computers as recently as five years ago. ...

® Advances in software technology are making optimization accessible to nontechnical

planners, schedulers and managers who make the decisions in most
organizations. ...” [1].

However, the optimization in production planning faces serious difficulties: the market
data is typically uncertain, so strategic management teams have to estimate market needs and
production environment conditions based on historical data or contract conditions.

In the presented work, we focus on medium-term production planning, in particular on lot
sizing decisions under demand uncertainty. When choosing lot sizes, a manufacturer has to
determine production amounts and production timing in order to optimize a goal function, e.g.
minimizing the overall costs, while meeting demand requirements and satisfying existing
capacity restrictions. Decisions in lot sizing directly affect the production system performance;
therefore development and improvement of solution procedures for lot sizing problems is
essentially important.

In case the demand uncertainty is neglected during production planning process, the
obtained production plan may become extremely costly or even infeasible. Failures or delays in
delivery to customers are highly undesirable and may cause penalties; demands that are

unsatisfied in time can cause the loss of customers. For this reason the robustness of a production



plan is a main requirement. Moreover, manufacturers require a production plan that is robust in
the non-probabilistic way — remains feasible for each possible uncertain demand scenario. In
addition, a guaranteed upper bound for the total costs can contribute significantly to the
improvement of strategic planning.

However, data uncertainty is not the only aspect affecting the mathematical model of
production; incomplete information about the market or the production planning system also
significantly influences the mathematical model. When the total planning horizon is large
enough, a manufacturer often deals with partly given market data: even though it is possible to
estimate or create a prognosis of market behavior for the nearest future, information about
demands in far outstanding periods is typically unavailable. Production planning problems with
incomplete information about data also belong to the class of production planning problems
under demand uncertainty.

Generalizing, each mathematical model that describes a system or a process only
approximates the reality, and many data parameters that are used in mathematical models should
be considered as uncertain values instead of fixed numbers. Consequently, there is a need of a
solution immunized against data uncertainty in a wide variety of applications, both in industry
and science, e.g. in engineering, biology or chemistry. For all scientific areas, however, the
difficulties for modeling under uncertainty are basically the same:

¢ incorporation of the defined uncertainty set into the model;

e solution/optimization of the model under the given uncertainty and the determination

of a robust solution.

The recent research efforts toward robustness in production planning tend to use the
probabilistic interpretation of uncertainty, and few of them include case-studies necessary for
computational evaluation and comparison of production planning models under demand
uncertainty. Hence, computational evaluation and comparisons of solution approaches are
required for production planning models with uncertain demand. In science, manufacturing
processes are typically described with complex optimization models that include many integer
variables; consequently, tractability of a robust model is also critical.

The presented research investigates two basic production planning models for lot sizing
under demand uncertainty and contains seven main chapters. Chapter 2 “Problem Statement”

discusses the uncertain Capacitated Lot Sizing Problem (CLSP) and the uncertain Discrete Lot



Sizing and Scheduling Problem (DLSP) models in detail, and highlights the main research goals.
Chapter 3 “State of the Art” comprises fundamental concepts, developments and techniques that
relate to the stated goals. Two subsections of the “State of the Art” are devoted to the existing
production planning models and the methods for uncertainty treatment, respectively. Chapter 4
“Action points” emphasizes particular research issues that are not covered by the state of the art,
but are required to achieve the research goals. In other words, this chapter defines the main
research steps that have to be done. Subsequent chapter 5 “Methods” describes specific
approaches to be applied, and explains each required implementation step in detail. The
implementation and interpretation of the results are presented in chapter 6 “Results and
discussion”, including the theoretical results as well as the computational examples performed
for validation. Finally, conclusions and directions for further research are outlined in chapter 7

“Conclusions”.



2 Problem statement

Presented research investigates production planning systems with lot sizing that are
affected by environmental uncertainty — uncertain demands. In particular, a manufacturer
possesses information only on upper and lower bounds of potential demand, and no additional
knowledge is provided. Not only production planning problems with uncertain demand are
analyzed, but also cases with incomplete information about the market: if meaningful demand
borders are available for the fixed planning horizon only, or if new information about demand
comes into the system gradually over the time (online).

The main goal of the presented research is to construct and solve uncertain mathematical
lot sizing models in a robust way. Robustness against demand uncertainty is the crucial point and
is understood in a non-probabilistic way, meaning that the solution should stay feasible for any
possible demand scenario. The constructed production plan should also reflect all real-life
production system restrictions. In order to analyze the obtained results, several solution
approaches dealing with uncertainty and a set of computational examples are considered.

The research focuses on two production planning problems, which are essential in
manufacturing: Capacitated Lot Sizing Problem (CLSP) and Dynamic Lot Sizing and Scheduling
Problem (DLSP). Both problems are described with corresponding mathematical optimization
models, but since they have a different structure they are analyzed independently. The CLSP and
the DLSP are well-known production planning problems, and detailed model descriptions are
provided in chapter 3. Three subsections below describe the main components of the research
problem: formulation of the CLSP and the DLSP with the specific structure and uncertain

demands, main research goals.



2.1 Description of the uncertain Capacitated Lot
Sizing Problem (CLSP)

In this section, the considered Capacitated Lot Sizing Problem (CLSP), its mathematical
optimization model and the data uncertainty, which affects the model, are described.

The CLSP with several production machines, several products and several working slots
during one planning period is considered; production in overtime slot is more costly. If
production occurred, corresponding setup costs have to be paid. Production capacity of each
machine is limited individually for each product and for the total production amount in a normal
and an overtime slot. Actual maximal production pro period is calculated in accordance with
productivity coefficients in normal and overtime slots. The maximal and minimal stock levels are
specified by a manufacturer and should not be violated.

The CLSP with uncertain information about demand for all planning periods, except the
first one, is considered. In particular, the interval demand uncertainty is considered: upper and
lower bounds for possible demand values are known, but the exact value of demand is
unavailable, see Figure 2.1. Therefore, the so-called “uncertainty interval” is defined for the
demand, and it is assumed that the uncertain demand takes values outside of the uncertainty

interval with a probability of zero (never).

Overall planning horizon

\/ \Z
NN ENEEE RN

Known Upper and lower bounds
demand for demand

Figure 2.1. Interval uncertainty of demand
An exemplary case is when a company A expects the demand for the production in the
next planning period equal to the value D. However, due to the contract signed between the
company A and a customer the demand could be changed by ten percentage points from the
mentioned value at the beginning of the planning period. Thereby, during the planning process,
the demand uncertainty interval is [0.9D, 1.1D]. No additional information is available, such as
probabilities or distribution function, only upper and lower bounds for the demand are provided.

The manufacturer aims to satisfy each possible realization of the demand from the uncertainty



set, while minimizing the production costs. The question is: how many units should the
manufacturer produce? In other words, which production plan would be optimal in this case? For
instance, if the company A chooses to produce 0.9D and the value of actual demand is higher,
then A has to pay for the production in overtime slot or, even worse, the company is unable to
satisfy the demand on time. If the company A chooses to produce 1.1D and the value of actual
demand is less, then A has to pay additional holding or utilization costs.

If we consider the example above for several products and production machines, for a
large planning horizon, taking all additional production system restrictions and costs into
account, the problem becomes more complex.

If the model can be resolved when the production process has already started (e.g. when
new information about the market comes into the system), the production planning is
implemented under “folding horizon”: the production plan is created not once, but several times
based on the current state of the production planning system and the new market data, see

Figure 2.2.

Total planning horizon
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A |

Known demand Upper and lower bounds for
demand

Figure 2.2. Folding horizon
Additionally, the research’s aim is to analyze the case when not only the data uncertainty
affects the mathematical model of production, but also incomplete information about the market.
In this case, the demand is deterministic in the first planning period, defined by uncertainty

intervals for the next few periods, but is totally unknown for distant periods, see Figure 2.3.



Overall planning horizon

v

T~ mm e mmmmm ===

|

Known Upper and lower bounds Unknown
demand for demand demand

Figure 2.3. Incomplete information about demand for production

It is assumed that new information about market data becomes available over time, so the
new production plan should be created according to the new market state and current product
amounts in stock. Such a CLSP is referred to as a CLSP with an online information base,
meaning that information about market comes into the production planning system in real time,
for instance at the end of each planning period.

When information about the market is updated in an online manner, the production
planning is implemented under “rolling horizon™: first, the production plan is created for the
planning periods with known information about demand; then, it is recalculated when the new
information comes into the system, see Figure 2.4. The new production plan is based on the

current state of the production planning system.

Rolling horizon

®-——————+4 e

]

AN .

Known demand Upper and lower bounds
for demand

Figure 2.4. Rolling horizon

Let us exemplarily consider a manufacturing company that aims to optimize the
summarized costs for the total planning horizon of one year, considering one planning period
equal to one week. At the beginning, the exact value of the market demand is known only for the

next week. For three following weeks it is possible to define the demand uncertainty interval.



Therefore, an information base of four weeks for the customer’s demand is given in total;
information for the rest of the year is not available. At the end of the first week, new information
about the market comes into the system and an information base of four weeks is available again
starting from the second planning period (from the second week). The total number of periods,
for which an information base is given, is referred to as rolling horizon. In the considered
example, the rolling horizon is equal to four weeks (four planning periods).

Planning under rolling horizon makes the optimization more complicated: typically, it is
impossible to obtain the optimal production plan for the total planning horizon and it is non-
trivial to find a feasible one.

The notation and the general mathematical model of uncertain CLSP with interval
demand uncertainty are provided below. It is assumed that the interval demand uncertainty is

defined as [d]’-} —0dj, dje + Hd;t], where d}; are given nominal values of the demand for each

product and planning period, 6 is the given uncertainty level. The CLSP with interval demand
uncertainty belongs to the problems with uncertain data. It should be resolved at the end of each

planning period given that an online information base or a folding horizon is considered.

Parameters:
j =1..M  products,
i=1..K production machines,

t = 1..N  planning periods,

Data:
dj nominal demand for product j in the planning period t (units),
0 uncertainty level of demand,
NC productivity coefficient in normal time slot,
ovC productivity coefficient in overtime slot,
Ugje production capacity of machine i for product j in normal working time slot of
period t (units),
Wi production capacity of machine i for product j in overtime slot of period t

(units),



Sijt
Svijt

I o
min
Jj

max
Iy

total production capacity of machine i in normal working time slot of period t
(units),

total production capacity of machine i in overtime slot of period t (units),
production costs (per unit) for product j in normal working time slot of period t
using production machine i ($),

production costs (per unit) for product j in overtime slot of period t using
production machine i ($),

holding costs for product j (per unit and per period) in period t ($),

setup costs for machine i in normal working time slot of period t, when
producing product j ($),

setup costs for machine i in overtime slot of period t, when producing
product j ($),

initial stock of product j (units),

minimal stock of product j at the end of any period (units),

maximal stock of product j at the end of any period (units).

Decision variables of the CLSP model are the following:

Xijt

Vijt

Ijt
Zijt

Zvijt

quantity of product j to be produced in normal working time slot of period t

using production machine i,

quantity of product j to be produced in overtime slot of period t using

production machine i,

stock of product j at the end of period t,
binary variable, which equals to 1 when x;;; = 0 in period t and 0 otherwise,

binary variable, which equals to 1 when y;;; = 0 in period t and 0 otherwise.

The mathematical model, describing the production planning problem:

min

N N

Z Z(Cijtxijt + 0VijrYije + SijeZije + SVijeZVije) + Z Z hje i (2.1)

t= ]:1 t= ]:1
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s.t.:
K
I]l :I]O +Z(xl]1 +yl]1)—d]1,V] € {1 M} (22)
i=1
K
Ijt = Ij,t—l + Z(xijt + yijt) - djt’ V] € {1 M}, t e {2 N} (23)
i=1
Xijt Sui]-t-zi]-t, Vi E{l K},]E{l M},tE{l N} (24)
Yijt < Wije * ZVijt, Vi € {1 K},] € {1 M}, t e {1 N} (25)
M
me <U, Vie{l.KLte{l..N) (2.6)
j=1
M
Zyi,-t <W, Vie{l..K}te{l..N} @7
j=1
"< L <", vje{l..M}te{l..N} (2.8)
z;jr € {0,1}, zv;;, € {0,1}, vie{l..K},je{l..M}t€{1..N} (2.9)
Xijt = 0,y =2 0, ie{l..K},je{l..M},t € {1..N} (2.10)
dj € [d}, — 0dj,, dj, +6d;,], Vje{l..M},te{l..N} (2.11)

The objective function (2.1) minimizes the summarized (over the products, machines and
periods) total costs of the manufacturer: production and setup costs in normal and overtime
working slots and holding costs. Constraints (2.2), (2.3) are the so-called balance restrictions:
they describe the connection between amounts produced, amounts sold and amounts that are in
stock in each planning period. Constraints (2.4) and (2.5) fix the setup costs if production has
occurred and, at the same time, verify capacity limits of one machine for each particular product.
Constraints (2.6) and (2.7) are summarized over products capacity restrictions of one machine.
Inequalities in (2.8) set the lower and upper bounds on stock. Constraints (2.9), (2.10) show the

non-negative nature of variables. Uncertainty of the demand data is described by (2.11).
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2.2 Description of the uncertain Discrete Lot sizing
and Scheduling Problem (DLSP)

In this section, the Discrete Lot sizing and Scheduling Problem (DLSP), its mathematical
optimization model and the data uncertainty, which affects the model, are described.

The DLSP with several production machines and several products is investigated.
Whenever a machine switches from one type of product to another, corresponding setup costs
have to be paid. As in all small buckets models (see chapter 3), the item type cannot be changed
during a production period. A production machine can either use the full capacity of a production
period or remain idle during that period. The maximal and minimal stock levels are specified by
the manufacturer and should not be violated.

The main objective of the manufacturer is similar to the one claimed for the CLSP:
minimization of the total production, holding and setup costs, while satisfying the customers’
demand. However, unlike the previous problem, not only the length of lot sizes is important, but
also the exact sequence of the production lots. Since a unique item is assigned to one machine in
each planning period, the resulting sequence of item-machine-period assignments naturally
defines the production schedule.

Analogically to the previous section, the DLSP with uncertain demand for all planning
periods, except the first one, is investigated. In particular, the aim is to investigate the DLSP with
interval demand uncertainty and the DLSP with an online information base (planning under
rolling horizon). In order to avoid duplication, the reader is referred to section 2.1, e.g. to the
Figure 2.1, Figure 2.3, Figure 2.4.

The notation and general mathematical model of uncertain DLSP with interval demand
uncertainty are provided below. It is assumed, same as for the uncertain CLSP, that the interval
uncertainty is defined as [d;t —0dj, dje + Hdﬁ], where d}; are given nominal values of the
demand for each product and planning period, 6 is the given uncertainty level. The DLSP with
interval demand uncertainty belongs to the problems with uncertain data. It should be resolved at
the end of each planning period given that an online information base or a folding horizon is

considered.
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Parameters:
j=1.M products,
i=1..K production machines,

= 1..N  planning periods,

Data:
dj nominal demand for product j in the planning period t (units),
0 uncertainty level of demand,
Dij production speed of machine i for product j (units per period),
Cijt production costs (per unit) for product j at normal working time slot of period t
using production machine i ($),
hj holding costs for product j (per unit and per period) in period t ($),
Sijt setup costs for machine i at normal working time slot of period t, when
producing product j ($),
Eijo binary variable describing the initial state of machine i; it is equal to 1 when
machine i is set up to produce product j and O otherwise,
Lig initial stock of product j (units),
1].7”"" minimal stock of product j at the end of any period (units),
e maximal stock of product j at the end of any period (units).

Decision variables of the DLSP model are:

Iit stock of product j at the end of period t,
Zijt binary variable that equals to 1 when production of product j on the production

machine i occurred in period t and equals O otherwise.
A mathematical model of production process is the MIP problem:

o )

i=1

M N M
Z(Cijtpijzijt + sije max(0,z;e — zije-1 ) ) + Z Z hje L (2.12)

j=1 t=1 j=1

[\/Jz

o~
1l
[y
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S.t.:
K
lj; = Ijp + Zpijzijl —djy, vj€{l..M} (2.13)
i=1
K
Ly = Ljpq + Zpijzijt —dj, Vje{l..M}te{2..N} (2.14)
i=1
M
sz <1, Vie{l.Khte{l..N} 2.15)
j=1
L= ™, Vvje{l..M}hte{l..N} (2.16)
[ < I]-max, vie{l..M},t € {1...N} (2.17)
zijy €{0,1}, Vie{1..K},je{l..M},t €{1..N} (2.18)
dj € [d;, — 0d},, d}, + 6d;,], Vje{l..M},te{1..N} (2.19)

Here the objective function (2.12) minimizes the total costs of the manufacturer
(summarized over the products, machines and periods): production and setup costs in normal and
overtime working slots, and holding costs. Constrains (2.13), (2.14) are the so-called balance
restrictions: they describe the connection between amounts produced, amounts sold and amounts
that are in stock in each planning period. Constrain (2.15) states that at most one item can be
produced on one machine per one planning period. Inequalities (2.16), (2.17) set the lower and
upper bounds on stock. Constrain (2.18) shows the binary nature of decision variables. The

uncertainty of the demand data is described by (2.19).

2.3 Main research goals

The crucial aim of the research is to solve the uncertain CLSP (2.1)-(2.11) and DLSP
(2.12)-(2.19) with robustness guarantees.

In a rapidly changing environment, the manufacturer needs to continuously adapt the
production plan in accordance with the current market situation. Unavoidably, this leads to

changes in lot sizes, stock volumes, machine loads, but most importantly, it leads to changes in
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the value of total cost. Due to this fact, manufacturing companies aim to immunize production
planning systems against uncertainty of environment or, in other words, to make them robust.

The term “robustness” is used in the production planning as well as in other disciplines,
but it could be defined in several different ways. In manufacturing, most frequently, the ability to
deliver a product to the customer on time and on budget plays a crucial role. The manufacturing
company needs a feasibility guarantee of the created production plan as well as an upper bound
of total costs for any environment conditions. These two main concepts define the idea of
robustness in production planning.

Hence, the robustness of a solution is understood in the presented research as an
aggregate of the two following properties:

e a feasibility of the created production plan for any possible demand realization

scenario from the uncertainty set;

e a possibility to guarantee the meaningful upper bound of total costs or fixed

performance ratio of the solution algorithm.

One important expectation of the manufacturer from the robust production plan is the
ability to satisfy each possible scenario of demand realization from the uncertainty set, meaning
that even though the total manufacturing costs may change, the manufacturer is able to deliver
the product to the customer in accordance with the schedule.

The feasibility of the created production plan gives the manufacturer certain advantages,
since it guarantees the satisfaction of customers’ demands in any case. The increased quality of
service for the production planning company directly leads to the competitive advantage in the
market. That’s why the feasibility is a significant property of the robust production plan and is
included into the objectives scope.

The second robustness criterion of the production plan is a guaranteed maximum value of
the total costs. It has a significant impact on the quality of management in a manufacturing
company: knowledge of the total investments in the production processes is especially important
for the strategic planning team of a company, since it gives the opportunity to plan and manage
other working directions in a more effective way. Typically, company profit depends on the
value of the total costs and therefore can be estimated as well, so the production company strives

to know the required inputs in advance and with certainty, although the exact values of the
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customers’ demand are unknown. Clearly, it is not a major concern if the total costs decrease, but
the maximal possible value of the total investments should be guaranteed.

For the reasons mentioned above, it is a crucial aim of this work to provide the
manufacturer a meaningful upper bound of the total costs along with the production plan.

To achieve the robustness goals, several subgoals are defined:

1. analyze the uncertain CLSP problem (2.1)-(2.11) in order to identify the influence
of the demand scenario structure on the total value of the costs;

2. derive the performance guarantee for the strict online algorithm (no information
about future demand is known) for the uncertain CLSP problem (2.1)-(2.11);

3. apply the Robust Optimization (RO) approach for the uncertain CLSP (2.1)-(2.11)
and DLSP (2.12)-(2.19) and evaluate the obtained results.

The first subgoal can be achieved through the determination of the worst case demand
scenario — a realization of the demand from the uncertainty set, leading to the highest possible
costs for the manufacturer. If the worst case of the demand scenario is determined, the
deterministic CLSP can be solved for this particular case and the robustness goals will be
achieved. Indeed, by solving the worst case, the upper bound on total costs for any demand
scenario can be guaranteed. In addition, the worst case demand scenario is of particular interest
for the situation when information is not just uncertain, but also incomplete (planning under
rolling horizon).

Due to uncertainty and incomplete information about the future, it is typically impossible
to find an optimal production plan. Thus, the major goal of this work is to generate a solution
that is the closest to the best-possible one. If the uncertain CLSP (2.1)-(2.11) has a strict online
information base, it is interesting to compare the production plan obtained from the online
algorithm (planning without any demand knowledge) with the best possible production plan
(planning with the complete demand knowledge). Calculating the ratio between the total cost
values and comparing them for different demand scenarios, the competitive ratio of the online
solution algorithm is defined. The competitive ratio provides the performance guarantee of the
solution algorithm to the manufacturer and is used as a quality criterion.

The last subgoal concerns the Robust Optimization (RO) approach. The RO is widely
used for solving uncertain Linear Programming (LP) models and, therefore, can be applied to the

uncertain CLSP (2.1)-(2.11) and DLSP (2.12)-(2.19) considered. However, the integrality of the
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decision variables seems to be an issue and should be investigated separately. An additional aim
of this work is to compare the solution provided by the RO with solutions provided by other
approaches. This task will be performed on the basis of a representative set of computational
examples. Besides the differences in the value of the total costs, some other differences in
solutions can be considered, such as the computational time, the needed hardware resources as
well as the applicability of the method to different problem types. Using calculation experiments,
the problem structure’s influence on the solution can be analyzed (e.g. analysis of the solution
quality dependence on the uncertainty level). Furthermore, it is possible to check if the defined

worst-case of demand provides the highest total costs in a certain computational example.
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3 State of the art

3.1 Production planning problems

3.1.1 Review of production planning problems

Production planning and inventory management problems serve as the typical application
field of mathematical optimization models and algorithms. Along with the globalization, distinct
growth of information technology and changes in production environments, new challenges, e.g.
the construction and optimization of increasingly complex production planning models
appear [1].

Decision support is crucial in production planning and is required on several levels:
strategic, tactical or operational. This widely-used classification has its origins in the work of R.
Anthony. He defines the strategic planning as "the process of deciding on the objectives of the
organization, the resources used to obtain these objectives, and the policies that are to govern
the acquisition, use and disposition of these resources" [2], the tactical planning as "the process
by which managers assure that these resources are obtained and used effectively and efficiently
in the accomplishment of the organization’s objectives" [2] and the operational planning as "the
process of assuring that specific tasks are carried out effectively and efficiently" [2].

Long-term (strategic) planning focuses on such decisions as the facility location or the
entrance into new markets. Medium-term (tactical) planning includes resource planning,
establishing production quantities or lot sizing. Short-term (operational) planning defines day-to-
day scheduling of operations such as job sequencing [3].

The presented work focuses on medium-term planning, in particular on lot sizing
decisions. These decisions directly affect the production system performance; therefore,
development and improvement of the solution procedures in lot sizing is essential.

Lot sizing problems belong to the tactical level of planning: they have a medium planning
horizon, use internal and external sources of information, exist under a medium degree of

uncertainty and a medium degree of risk [4].
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Lot sizing is used in many production planning concepts, which are mostly implemented
as a part of production planning software systems. For example, it is included in Hierarchical
Production Planning (HPP), Just in Time Manufacturing (JIT), Material Requirements Planning
(MRP-I), Manufacturing Resource Planning (MRP-II), Enterprise Resource Planning (ERP).
This production planning software is widely used in industry, though the lot sizing problems are
usually solved heuristically, which causes some criticism. For example, Pochet and Wolsey
provide the following characteristic of the MRP systems: "In summary, the myopic MRP
decomposition scheme leads to important productivity and flexibility losses, two of the key levers
in all manufacturing strategies, which is exactly the opposite of what is expected from a good
planning system, and the opposite of what was initially expected from MRP systems. Indeed, the
starting idea of MRP was to distinguish the dependent demand, which is computable, from the
uncertain independent demand, for which forecasts are needed, with the objective of knowing
when and how much is needed of each component, and thereby opening the way to a reduction of
the global inventory levels" [5].

A variety of lot sizing models is used in industry and science, but each model can be

described by the following parameters and characteristics:

o planning horizon type and length of the planning periods;
° number of the production levels;

° demand type;

. number of resources (machines) and products;

o setup costs structure;

. backlogging (inventory shortage) possibility;

° presence or absence of capacity constraints.

By the type of planning horizon lot sizing models are classified into models with finite or
infinite planning horizon, continuous or discrete time. Discrete time lot sizing models encompass
“big bucket models” (sometimes called also “large bucket models”) and ‘“‘small bucket models”.
M. Salomon defines the differences between them as following: “... 'small’ time bucket models
allow for at most one item to be produced per period, while setups can be carried across period
boundaries, whereas 'large' bucket models permit multiple items to be produced per period, but

setups are disallowed to be carried over, even if production of a given product occurs in
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successive periods” [6]. One also distinguish between folding and rolling planning horizons,
where the model is solved not once, but at the end of each planning period, taking into account
new information new information about state of the market and the production planning system.
The difference is that in models with folding horizon information about the market or production
planning system is uncertain, but available up to the end of planning horizon, whereas in the
models with rolling horizon information about the market or production planning system is
incomplete and is known only for the fixed number of periods.

The lot sizing model is referred to as one-level model, if it is assumed that products are
manufactured directly from the row materials without any sub-assemblies, and it is referred to as
multi-level otherwise.

Demand in lot sizing models can be static (constant), maintaining a fixed value over all
planning periods, or dynamic, changing its value over planning periods. The demand is called
deterministic if its value is known in advance or uncertain if its exact value is unknown. The
uncertain demand is called probabilistic if its described with the help of some probabilistic
concept or by probabilities.

Lot sizing problems can also be classified into one-resource or multi-resource and one-
item or multi-item, depending on the available machines and number of the end products.

Setup costs may be taken into account using small bucket or big bucket models, or
ignored completely. As it was described previously, setup costs can be also sequence-dependent
or sequence-independent.

Some lot sizing models allow backlogging of the demand (shortening of the inventory) —
satisfying the demand later for additional costs; such models are called lot sizing models with
backlogging. If the lot sizing model is defined without backlogging (model with lost sales), then
delivery to the customer after required date is not allowed, meaning that the order will be lost.

Finally, the capacitated lot sizing problems should be mentioned: the lot sizing problems,
wherein the capacity of production and/or inventory is limited. If the production capacity is
assumed to be infinite, then a model is called uncapacitated.

The most important lot sizing models, which can be called classical, are the following:
the Economic Order Quantity model (EOQ), the Wagner-Within model (WW), the Economic
Lot sizing and Scheduling Problem (ELSP), the Capacitated Lot sizing Problem (CLSP), the
Discrete Lot sizing and Scheduling Problem (DLSP), the Continuous Setup Lot sizing Problem
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(CSLP), the Proportional Lot sizing and Scheduling Problem (PLSP), and the General Lot sizing
and Scheduling Problem (GLSP). The CLSP and the DLSP models are considered in more detail
later on; the capacitated models review that includes description, properties, computational
efficiency and solution algorithms for other lot sizing models can be found in [6], [3], [7].

The most important properties of the mentioned above models, except for the later-
developed PLSP and GLSP, were summarized in the work of M. Salomon [6] and are presented

in Table 3.1.

Table 3.1: Comparison between lot sizing models. (Source: M. Salomon [6])

Time axis Maximum #  Setup costs Demand Production
of items quantity per
produced per period
period

EOQ infinite, 1 constant, constant unrestricted
continuous per batch
ww finite, 1 dynamic, dynamic unrestricted
discrete per period
ELSP infinite, * constant, constant Hk
continuous per batch
CLSP finite, unrestricted dynamic, dynamic less than or
discrete per period equal to
capacity
CSLP finite, 1 dynamic, dynamic less than or
discrete per batch equal to
capacity
DLSP finite, 1 dynamic, dynamic zero or equal
discrete per batch to capacity

* - maximum production of one item per unit of time,
** - production quantity equal to zero or equal to production rate.

All considered production planning problems are typically modeled as Linear
Programming (LP) or Mixed-Integer Programming (MIP) models. Both the LP and the MIP
problems are extensively used in Operations Research field. Their mathematical definitions,
properties, computational status, solution methods and applications are discussed for example

in [8], [9], [5] or [10].
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3.1.2 Capacitated Lot Sizing Problem (CLSP)

The Capacitated Lot Sizing Problem (CLSP) in its classical formulation belongs to the
class of one-level one-resource multi-item production planning problems with the finite planning
horizon. The CLSP belongs to the class of big bucket models, so the planning periods range from
days to weeks or sometimes months. The crucial aim of a manufacturer is to define the total
production scope and sizes of production lots. Therefore, it is unnecessary to set the sequence of
lots within a period, because the exact production order can be determined on the operational
level. For the same reason, a machine is set up at the beginning of planning period, whether or
not the item it produces has changed, and keeps producing the given item for the duration of the
period.

The total production amount in each planning period must lie within the prescribed
bounds, which are reflected by the capacity constraint in the corresponding mathematical model.

The main goal of the manufacturer is satisfying demands, while minimizing the total
manufacturing costs. Backlogging of the demand (inventory shortage) is not allowed. Therefore,
three types of costs are associated with CLSP: production, setup and holding costs. Production
costs are proportional to the produced amounts and are dynamic - may vary from period to
period. Setup costs are fixed and are sequence independent, so the production order does not
influence the setup costs. Holding costs are proportional to the amounts in stock and are written
off at the end of each planning period.

To summarize, the production plan created by solving the CLSP should determine the
production amounts (lot sizes) of each product as well as the stocks in each planning period. The
total costs should be minimized, while satisfying the demands. At the same time, the production
sequence in each planning period should not be defined, and it can be determined by the
manufacturer without any loss in costs. The notations and the mathematical formulation of the

CLSP problem are presented below.

Parameters:
j=1.M products,
t = 1..N planning periods.
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Data:
dj nominal demand for product j in the planning period ¢,
Dje capacity needed to produce one unit of product j in the planning period t,
U total production capacity in the planning period t,
Cjt production costs (per unit) for product j in the planning period ¢,
h; holding costs for product j (per unit and per period),
S setup costs associated with production of product j,
Lo initial stock of product j,

Decision variables of the CLSP model are the following:

Xjt quantity of product j (lot size) to be produced in the planning period t,
Ii¢ stock of product j at the end of planning period ¢,
Zjt binary variable, which equals to 1 when x;; = 0 in period t and 0 otherwise,

The mathematical model, describing the production process is the MIP problem:

N M
mlnz Z(Sijt + CitXjt + h]I]t) (31)
t=1 j=1
s.t.:
Ijt = Ij,t—l + Xje — d]'t, VJ € {1 M}, t e {1 N} (32)
N
k=t
ijtxjt <U, Vte{l..N} (3.4)
j=1
zj; € {0,1}, vie{l..M},t e {1..N} (3.5)

X =0,I; >0, Vje{l..M}t€{l..N}) (3.6)
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The objective function (3.1) minimizes the total costs of the manufacturer. Restriction
(3.2) is the so-called balance restriction: it describes the connection between amounts produced,
amounts sold and amounts in stock in each planning period. Restriction (3.3) takes into account
the setup costs if production has occurred, whereas restriction (3.4) ensures capacity is not
exceeded the limit. Finally, restriction (3.5) shows that the setup variable is binary, and
restriction (3.6) shows the non-negative nature of the other decision variables.

In the 1980s, the CLSP problem was proved to belong to the class of NP-hard problems
even for the single-item formulation. Later, it was shown that the multi-item CLSP problem is
strictly NP-hard. Consequently, there is currently no efficient exact algorithm for CLSP.
However, advances in computer hardware and optimization software allow solving even large
CLSP problems that were too difficult for computers several years ago with an appropriate
computational accuracy.

Based on the literature, solution methods for the CLSP models are classified into three
main groups: exact methods, common-sense or specialized heuristics and the mathematical
programming-based heuristics.

Further information about the CLSP models can be found in the works [6], [3], [7].

3.1.3 Discrete Lot sizing and Scheduling Problem (DLSP)

The Discrete Lot Sizing and Scheduling Problem (DLSP) in its classical formulation
belongs to the class of one-level one-resource multi-item production planning problems with the
finite planning horizon. The DLSP belongs to the class of small bucket models, so the planning
periods range from minutes to hours or sometimes days.

In contrast to the CLSP model, production process is organized under the “all-or-
nothing” assumption — production amount in each planning period equals to zero or to the full
production capacity. Since a unique item is assigned to each planning period, the resulting
sequence of item-period assignments naturally defines the production schedule.

Another important difference between the CLSP and the DLSP is the structure of setup
costs. In the DLSP setup costs are fixed, but they only have to be paid if the type of produced
item was changed. Production of the same item may be continued in the next planning period

without the additional setup costs.
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The main objective of the manufacturer is similar to the one in the CLSP: minimizing the
total costs, while satisfying the customers’ demand. Backlogging of the customers demand
(inventory shortage) is not allowed and, therefore, three types of costs are associated with CLSP:
production, setup and holding costs.

Production costs are proportional to the produced amounts and are dynamic - may vary
from period to period. Holding costs are proportional to the amounts in stock and are written off
at the end of each planning period.

To summarize, the production plan created by the DLSP should determine the production
amounts (lot sizes) of each product as well as the sequence of lot sizes and the stock in each
planning period. The total costs should be minimized, while demands are satisfied. The notations

and the mathematical formulation of the DLSP problem are presented below.

Parameters:
j=1.M products,
t = 1..N planning periods.

Data:
dj nominal demand for product j in the planning period t,
1 production capacity available for product j in one planning period,
U total production capacity in the planning period t,
Cjt production costs (per unit) for product j in the planning period t,
h; holding costs for product j (per unit and per period),
S setup costs associated with production of product j,
Lo initial stock of product j.

Decision variables of the DLSP model are the following:
Iit stock of product j at the end of planning period t,

Zj binary variable that equals to 1 when production of product j occurred in

planning period t and equals to O otherwise.
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The mathematical model, describing the production process is the MIP problem:

N M
minz Z(sjmax(O, Zjp — Z]-,t_l) + ¢jtpjzj + hjljt)

t=1 j=1

s.t.

Ijt = Ij,t—l + PjZjt — d]'t, V] € {1 M}, t € {1 N}
M
szt <1, vt € {1..N}
j=1

zj; € {0,1}, vie{l..M},t e {1..N}

[, =0, Vje{l..M}te{l..N}

(3.7)

(3.8)

(3.9

(3.10)

(3.11)

Similarly to CLSP, the objective function (3.7) minimizes the total costs of the

manufacturer; restriction (3.8) is the balance restriction. Inequalities (3.9) ensure that products of

only one type are produced on a given machine in each planning period. Finally, restriction

(3.10) shows that the decision variables zj, are binary, while restriction (3.11) shows that the

stock is non-negative.

In the 1990s, the DLSP problem was proved to belong to the class of NP-hard problems.

Analogically to CLSP, solution methods for the DLSP models are classified into exact methods,

common-sense or specialized heuristics and mathematical programming-based heuristics.

Further information about the DLSP models can be found in [11], [6], [3], [7].

3.2 Uncertainty treatment

3.2.1 Uncertainty in production planning

Uncertainty in production planning systems was classified by Ho [12] into two main

groups; his classification is shown in the summarized form in Figure 3.1.
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Uncertainty in

production

A 4 \ 4

Environmental uncertainty System uncertainty

A 4 A 4

Quality uncertainty Production lead time
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Failure of production
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Figure 3.1. Classification of uncertainty in production planning

Giannoccaro and Pontrandolfo in [13] classified models that are currently used in
production planning to treat uncertainty into four main groups: conceptual models, artificial
intelligence-based models, analytical models and simulation models. Conceptual models utilize
such methods as safety stocks or safety lead times, artificial intelligence-based models utilize
genetic algorithms or fuzzy logic, analytical models include mathematical programming and
deterministic approximations, whereas simulation models include heuristic methods or
probability distributions.

According to the literature review by Mula et.al. [14], from the 87 reviewed models for
production planning under uncertainty, 35 were the analytical models, 27 were based on the
artificial intelligence, 16 were the simulation models and 9 were the conceptual models. The
authors analyzed additionally a connection between the particular production planning issues and
the corresponding modeling approaches that were used, and summarized the results in the table,
see Table 3.2. The number of research papers that have used one or another method is indicated

in the brackets.
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Table 3.2: Classification scheme for models for production planning under uncertainty
Source: Mula et.al. [14]

Research topic Number of citations

1. Aggregate planning Artificial intelligence models (8)
Simulation models (2)

2. Hierarchical production planning Analytical models (3)

3. Material requirement planning Conceptual models (9)

Analytical models (6)
Artificial intelligence models (4)
Simulation models (10)

4. Capacity planning Analytical models (4)
Simulation models (1)

5. Manufacturing resource planning Analytical models (7)
Artificial intelligence models (5)
Simulation models (2)

6. Inventory management Analytical models (10)
Artificial intelligence models (5)

7. Supply chain planning Conceptual models (1)
Analytical models (5)
Artificial intelligence models (5)

The authors concluded the review by stating that the analytical modeling approach, and in
particular the stochastic programming, is the most popular tool for uncertainty handling in
production planning. However, if the production planning problem structure is complex or there
are several types of uncertainty in the model, then the stochastic programming is typically
replaced by the simulation or artificial intelligence-based approaches. The dynamic
programming approach was used only for a few models and the corresponding studies were
mainly theoretical [14].

Further information can be found in [15], [16], [17], [14].
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3.2.2 Worst-case analysis and competitive analysis

Introduction to worst-case analysis and competitive analysis

The term “worst-case analysis” is typically associated with the circuit analysis, but may
be also used in the analysis of algorithms. In the latter case, the goal of the worst-case analysis
can be formulated as following: to find such a structure of a model input that the analyzed
algorithm provides the worst possible model output. How “good” or “bad” the output is,
typically is measured based on the model objective. If, for example, a LP minimization model is
considered, the worst possible output will be defined as the highest possible value of the
objective. In practice, the worst-case input for the considered model and the solution algorithm is
typically hard to determine due to the high complexity of the system.

The worst-case analysis is applied for algorithms evaluation in different research areas: in
finance [18], computer science [19], cellular manufacturing [20], discrete mathematics [21], etc.
In production planning, to the best of our knowledge, worst-case analysis is mainly used for
evaluating the heuristic solution approaches performance. For example, Axsiter analyzed four
different heuristics for the uncapacitated dynamic lot sizing problem [22], whereas Bitran et al.
analyzed heuristics, product aggregation, and partitioning of the planning horizon [23].

Competitive analysis is a research technique that is closely related to the worst-case
analysis and is mostly applied to online planning problems. Main terms used in the competitive
analysis are the following: online optimization problems (or simply online problem), online and
offline algorithms, competitive ratio. An online problem is an optimization problem where
decisions should be made without complete knowledge of the required information; the model
input is received in an online manner and, correspondingly, the output should be also provided
online. An offline algorithm is an optimal algorithm for a given optimization problem and its
input. It is assumed that the offline algorithm has access to all of input data. The online algorithm
constructs decision based only on the model inputs (data or events) from the past.

Origins of competitive analysis as well as its definition are described in the work of
Borodin and El-Yaniv [24]: “The traditional approach to studying online algorithms falls within
the framework of distributional (or average-case) complexity, whereby one hypothesizes a
distribution on events (event sequences) and studies the expected total cost (payoff) or expected

cost (payoff) per event. During the past 10 years the interest in this subject has been renewed
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largely as a result of the approach of competitive analysis, whereby the quality of an online
algorithm on each input sequence is measured by comparing its performance to that of an
optimal offline algorithm, which is (for an online problem) an unrealizable algorithm that has
full knowledge of the future. Competitive analysis thus falls within the framework of worst-case
complexity”.

To provide the formal definition of the competitive ratio the notations used in [24] are
kept: I denotes an input of an optimization model, ALG (I) denotes the cost associated with the
solution provided by an online algorithm ALG for the input I and OPT(I) denotes the optimal
cost for the input I (provided by the offline algorithm).

The online algorithm ALG is called c-competitive if exist such a and ¢ («, ¢ € R) that for
any model input I the following holds:

ALG(I) <c-OPT() + « (3.12)

If (3.12) stays true even for a =0, then the algorithm ALG is called strictly
c-competitive.

The smallest ¢, for which an online algorithm ALG is c-competitive, is called the

competitive ratio of this algorithm:
inf {c| ALG(I) < c-OPT(I) + a} (3.13)
The smallest ¢, such that an online algorithm ALG is strictly c-competitive, is called the

strict competitive ratio of ALG:
inf {c|ALG(I) < c-OPT(I)} (3.14)

In Game Theory online and offline players are typically considered instead of online and

offline algorithms. However, it does not change the fundamental meaning.

Review of M. Wagner work ‘“Online lot-sizing problems with ordering,

holding and shortage costs”

In this section, a brief overview of M. Wagner research [25] is provided.
Two inventory management models are considered there: the inventory model describing
perishable products with lost sales and the inventory model describing durable products with

backlogging. Both models are affected by the demand uncertainty and are strictly online — the
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demand for the current planning period is revealed only at the end of the period, after the
inventory ordering decisions have been already made. Both models use finite planning horizon
and period-dependent cost structure.

The mathematical formulation of the models is reproduced below with the original

notation, though it differs from the generally accepted.

Parameters:
i=1..n planning periods,
Data
d; demand in planning period i (units),
Ci unit ordering cost in period i ($),
S; unit inventory shortage costs in period i ($),
h; unit inventory holding costs in period i ($),
K; fixed ordering cost for placing an order in period i ($),
Iy initial stock (units).

Decision variables:
qi ordering quantity in period i (units).
I; stock in the end of period i,
I} = max(l;,0)  positive inventory at the end of period i,

I-

; = max(—I;,0) negative inventory at the end of period i.

The mathematical model, describing the inventory management problem for perishable products

with lost sales:
n
min D (@i + hiCai = 4" + siCds — )" + Kib(@) (3.15)
i=1

The online optimization problem (3.15) minimizes the total costs over all ordering

strategies q, considering the fixed planning horizon of N periods. The production cannot be put
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in the stock, and if the demand exceeds product availability in any period, the excess demand is

lost.

The mathematical model, describing the inventory management problem for durable

products with backlogging is the following:

n
minZ(ciqi + hi1i+ + Sili_ + Kl(S(ql)) (316)
i=1
S.t.:
L =1_1+q;—d; vie{l..n} (3.17)
q; = 0, vie{l..n} (3.18)

The online optimization problem (3.16)-(3.18) minimizes the total costs over all ordering
strategies ¢, considering the fixed planning horizon of N periods and taking into account that the
product can be held in the stock. The excess demand is backlogged for the future periods.

The main results of [25] are the sufficient condition for existence and formulas for the
lower and upper bounds for competitive ratio; to derive them, the techniques of competitive
analysis and the worst-case analysis were utilized.

The reasoning provided by Wagner is valid under three main assumptions [25]:

Assumption 1. ¢c,K,h,s > 0.

Assumption 2. d # 0.

Assumption 3. There exists a period in which it is optimal to procure a positive quantity.

To prove the main statements in [25], the known result from the linear-fractional
programming was utilized:

Lemma 1. If {x: f'(x) + g > 0,x = 0} is non-empty, then the optimization problems

(c’x + d) max(c'y + dz)
ax .z
x \f'x+yg
S.1. and S.1.
f'x+g>0 fly+gz=1
x>0 y=>0,z=>0

are equivalent [26].

For the inventory model with perishable products and lost sales the main result was

formulated in the following theorem [25]:
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Theorem 3.1. In period i, if c; = s;, order q; = 0 units and if ¢; < s;, order q; units. The

competitive ratio of this strategy is at most:

A
max e (i) @ g

Furthermore, the competitive ratio of any algorithm is at most:

Si
max y—¢.
i:Ci<SL' Ci

To prove the statement of Theorem 3.1, its narrowed version for one planning period was

formulated. The proof of the narrowed theorem includes the following steps:

e definition of competitive ratio (3.14) was expanded using the known
representation of model costs (3.15);

e two different procurement strategies were analyzed: ¢ > d and q < d;

e for each procurement strategy the formula of the competitive ratio is a linear-
fractional program, so the Lemma 1 was applied to get the corresponding LP
program;

e for the LP problems the corresponding dual systems were constructed and solved;

¢ maximum of obtained dual solutions defines the value of competitive ratio.

After the narrowed version of Theorem 3.1 was proved, the special cases were analyzed:
periods with zero demands and periods where the offline algorithm orders nothing. Summarizing
the results, the statement of Theorem 3.1 was proved.

For the inventory model with durable products and backlogging the main result was
formulated as the following theorem [25]:

Theorem 3.2. For an arbitrary online strategy q =0, b'q+ K <0 is a sufficient
condition for the existence of a finite strict competitive ratio. Furthermore, if a strict finite ratio
p exists, it satisfies:

a) b'q+K a;
max{max (G, o <o < max{ed

To prove the statement of Theorem 3.2, two subsets of the planning periods set were
considered: P = {i: [; = 0} and N = {i: I; < 0}. P and N denote respectively the periods with
non-negative and non-positive inventory. Then two additional Lemmas were formulated and

proved [25]:
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Lemma 2. For an arbitrary online strategy q = 0, we can write the online costs as
Z(d)<a'd+b'q+K,

where

j:i' j:i,
JEN JEP
n n
bl = Cl+Zh] —ZS],
Jj=i j=i
jEP JEN

fori=1..nand K =Y K;5(q)).
Lemma 3. The optimal offline cost of model (3.16)-(3.18) has the following lower and
upper bounds:
ad<Z'(d) <cd+K'evd >0,
where a = (a4 ... ay,) is defined as:

n

i—-1 j-1
a; =min{ min <c¢ + h c;, min <sc; + S S i=1..n
L 1gj<i-1 | Z k(770 iv1<izn ) Z k ’Z k(
k:] k=i k=i

and can be interpreted as the minimum marginal cost of satisfying demand d; by considering
(1) procuring in period j < i and carrying the inventory to period i, (2) procuring in period i,
(3) backlogging until period j > i, or (4) the cost of not satisfying the demand.

The proof of Theorem 3.2 includes the following steps:

e definition of competitive ratio (3.14) was expanded using the results provided by
Lemma 2 and Lemma 3;

® two linear-fractional programs were constructed for the lower and upper bound of
the competitive ratio;

e Lemma 1 was applied to get the corresponding LP programs;

¢ the corresponding dual systems were constructed and solved for the LP problems.

As the result, the sufficient condition for the finite competitive ratio existence and the
formula for lower and upper bounds for the competitive ratio were derived.
Additionally, the special ‘“Make-to-Order” procurement strategy was analyzed in [25].

The considered strategy always had a negative stock; ordering occurred only if the sum of
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corresponding shortage costs was higher than the ordering cost. The upper and lower bounds of
strict competitive ratio were provided. Moreover, if ordering and shortage costs were constant in
all planning periods, the exact value of competitive ratio was calculated.

It should be noted that the work [25] may be considered as an extension of [27], wherein

online inventory problems and corresponding competitive ratio were analyzed.

3.2.3 Sensitivity analysis

Saltelli et al. define sensitivity analysis as: “The study of how uncertainty in the output of
a model (numerical or otherwise) can be apportioned to different sources of uncertainty in the
model input” [28].

Sensitivity analysis is a well-established scientific research area with a number of
solution methods, which typically tries to solve the following question: if the optimal solution is
found, up to which extent can one alter the model’s parameters, so that the obtained solution
remains optimal?

Sensitivity analysis is applicable to uncertain LP and MIP models, but data uncertainty is
usually ignored in the first step and the solution is generated based on nominal data. Then such a
magnitude of input data vector is determined that the obtained solution stays optimal. Therefore,
one can only measure the robustness of the obtained solution, but cannot control it.

Sensitivity analysis studies deviations of model solutions and data with the help of
perturbations and defines the sensitivity of the initial system.

Another question, which can be answered by sensitivity analysis (e.g. by parametric self-
dual simplex method), is the following: if a model is infeasible, how can we change the model
parameters to make it feasible?

Advantages of the sensitivity analysis were formulated by Rappaport in [29]: *

1. In its applied organizational setting, sensitivity analysis may be broadly defined
as a study to determine the responsiveness of the conclusions of an analysis to
changes or errors in parameter values used in the analysis.

2. Sensitivity analysis tests the responsiveness of model results to possible changes
in parameter values, and thereby offers valuable information for appraising the

relative risk among alternative courses of action.
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3. Sensitivity analysis can provide systematic guidelines for allocating scarce
organizational resources to data collection and data refinement activities.

4. Under the sensitivity analysis approach, if the value of a decision is insensitive to
estimated parameter variations, the decision to purchase no additional
information can be made without introducing a statistical decision model.

5. If the value of a decision is sensitive to estimated parameter variations and the
information decision is not obvious, a statistical decision model may be developed

to guide the information decision.*

Detailed information about sensitivity analysis can be found in [29], [30], [31], [8], [10]
and [28].

3.2.4 Stochastic Optimization

Stochastic Optimization (SO) is used in Operation Research to optimize mathematical
optimization models under uncertainty, given that some probabilistic information about the
uncertainty is provided. Thus, the SO typically treats the uncertain parameters as the random
variables with the known probability distributions.

The SO research area began to develop after the work of G. Dantzig [32], wherein several
LP models under uncertainty were analyzed. This paper was also included in the list “Ten Most
Influential Papers of Management Science’s First Fifty Years”, published in 2004 [33]. The SO
approach is widely used in the different application areas, only a few of them are presented in the

following list:

® inventory management [34], [35];

e production planning [36], [37];

e portfolio selection and financial markets [38], [39];
¢ supply chain management [40];

e power systems [41].

More examples of the SO applications can be found in [42], [36].
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To provide a brief overview of the main ideas used in SO, the following basic terms are
explained below: probabilistic model, chance constraints and multi-stage stochastic
programming model.

Let us consider a deterministic optimization model: min,so F(x,d), where x is a
decision variable, d is a data parameter. If d is uncertain, then the SO assumes that it can be
considered as a random variable D with a known distribution. Typically, the distribution is
estimated based on historical data. A probabilistic model associated with the initial optimization

model minimizes the expected value of objective function. It can be written as:
min{f (x) = E[F(x,d)]} (3.19)

The probabilistic model (3.19) minimizes the objective on average, since by the law of
large numbers, the average cost, for a sufficiently large number of trials, will converge to the
expectation E[F (x, d)].

However, it is usually quite difficult to find E[F (x,d)] in a closed form and, therefore, it
is difficult to find the solution of (3.19). In case the data uncertainty is characterized by the fixed
number of possible scenarios with the given probabilities, the expected value E[F (x,d)] can be

written as:

K
FIFGr )] = ) piF o dy)
k=1

Here the expected value E[F(x,d)] is represented by a weighted sum of K given data
scenarios.

Let us consider the case, when the data uncertainty is defined by the uncertainty interval
d € [dmi", dm“x]. Distribution of the corresponding random variable D over the uncertainty
interval is unknown, but the expected value E[D] is available. For this optimization model the
worst case approach can be utilized: try to minimize the worst possible outcome of the model
over all possible expected incomes, considering all possible data distributions over the

uncertainty interval. The corresponding worst-case probabilistic model is the following:

min sup Eq«|F(x,D)],
min sup EylF(x,D)] (3.20)

where M is the set of all probability distributions on interval [dmi", dmax ] considering the given

mean E[D].
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The solution of model (3.20) is typically more conservative than the solution of model
(3.19), since it is optimal for the worst-case input scenario, while the solution of model (3.19) is
optimal on average.

Another powerful tool, which is often used in the SO, is the chance constraint
construction. The idea is to add the additional chance (or probabilistic) constrain to the initial
optimization model (3.19), which will restrict the chance of model output exceeding some fixed
value. In other words, the inequality F(x,d) < t must stay true with some fixed probability «.
Parameter 7 > 0 is usually called threshold of the model output, a € [0,1] is called a
significance level. The corresponding chance constraint is written as the following:

PriF(x,d) >t} <«
or equivalently,
PriF(x,d)<t}>1-a.

Augmenting the model (3.19) with the corresponding chance constrain, a solution that is
optimal on average results. It guarantees that the costs will be below the fixed threshold value
with the probability a.

The stochastic programming model (3.19) and the corresponding model with chance
constraint describe a one planning period problem. If the problem has several planning periods,
then multi-stage stochastic programming model is utilized: instead of the uncertain random
variable D the random process D, is considered, and the model (3.19) is extended for the several
planning periods. The resulting model utilizes vectors instead of the single variables and is
written as the following:

min{f (x) := E[F (x, )]}

Analogically to the one-period problem, if several sets of uncertain data scenarios have
known probabilities, then the objective can be presented as their weighted sum.

The dynamic programming approach (Wagner-Within algorithm) can be also utilized for
calculating the optimal decision. Dynamic programming equations include the expected values
of uncertain data and typically cannot be solved in a closed form, so numerical methods are used
for calculating the objective.

Great interest to the field of the SO in the past 60 years caused a lot of different solution
methods and techniques used in close connection with the SO, e.g. Monte Carlo method, dual

analysis, numerical methods, heuristics, scenario trees and sample average approximation. The
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fundamental concepts and solution methods of the stochastic programming and optimization can

be found in [36], [43], [44].

3.2.5 Robust Optimization

Robust Optimization (RO) is a specific and relatively novel methodology for handling
optimization problems with uncertain data. As opposed to SO, the RO approach is based on the
worst-case analysis and does not require any probabilistic data, though it may be used if
available.

The RO approach has its origins in the field of Robust Control, which appeared first in
the works of Bode in the 1930s. Main development of the Robust Control took place in 1980s
and 1990s and entailed many publications, see for instance [45], [46], [47], [48]. Robustness
questions were also considered in the statistics, see for instance the work of Huber [49].

Modern RO is based mainly on convex optimization and robust linear programming and
arose in works of Soyster [50], Ben-Tal, Nemirovski [51], [52] and El Ghaoui [53], [54].
Advances in computing technologies as well as development of fast interior point methods for
semi-definite optimization [26] raised interest to the RO techniques. The rapid growth of interest
in the field of RO is noted in 2000s and is still ongoing.

A solution that is immunized against data uncertainty is required in a wide variety of
applications. There are many research papers showing up the use of the RO approach in different

fields of study, such as:

¢ Finance and Portfolio Management [55], [56];

e Statistics, Learning and Estimation [57], [58];

¢ Inventory and Supply Chain Management [59], [60];

¢ Engineering: Structural Design [61], Circuit Design [62], Power Control in Wireless

Channels [63];

e Control Theory [64], [65];

As far as the production planning is concerned, robustness goals are typically achieved in
the probabilistic sense with the help of the SO, though during the last years several researches

were done based on the RO techniques [66].
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In the RO it is typically assumed that the model data uncertainty is defined by the
uncertainty intervals or uncertainty sets - the totality of all conceivable values. RO provides a
solution that stays feasible for each possible uncertainty realization, whereas SO provides robust
solution in a probabilistic sense. A high-level summary of the RO methodology and an overview
of related applications can be found in [67], [66], [68]. The RO paradigm is explained in details
in the work of A. Ben-Tal, L. El Ghaoui and A. Nemirovski [69]. Several crucial definitions and
concepts from this book are reproduced below and are used further in the presented research.

Let us remind the general representation of LP problem: min,{cTx + d: Ax < b}. The
RO methodology is developed with the help of four definitions, they are reproduced below
from [69].

Definition 1. An uncertain LP problem is a collection of LP programs of a common
structure:

{min{c"x+d: Ax < b}: (c,A,b) € U}, (3.21)
X

with the data (c, A, b) varying in a prescribed uncertainty set U.

Typically, it is impossible to solve (3.21), because the number of LP problems in the
collection above growth rapidly with the size of uncertainty set U and number of uncertain data
parameters. In order to include uncertainty into the mathematical model, construction of the
Robust Counterpart is proposed in RO, so it is unnecessary to solve the collection of LP
programs (3.21). The RC is the worst-case oriented model and, therefore, provides the feasible
solution for each possible data realization.

Definition 2. Robust Counterpart (RC) of the uncertain LP problem (3.21) is the
optimization problem:

min{ sup c'x+d: Ax<b, V(c,ADb)EU}
X (c,Ab)EU

or, equivalently, the optimization problem:

mitn{t :cTx+d<t, Ax<b, V(cADb)€EU} (3.22)
X,

Optimal solution of the RC (3.22) is called robust optimal solution of uncertain LP
problem (3.21).
However, talking about RC and robust optimal solution for (3.21), it is assumed that three

following assumptions are applied to the considered decision environment [69]:
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Assumption 4. All entries in the decision vector x represent “here and now” decisions:
they should get specific numerical values as a result of solving the problem before the actual
data “reveals itself”.

Assumption 5. The decision maker is fully responsible for consequences of the decisions
to be made when, and only when, the actual data is within the prespecified uncertainty set U.

Assumption 6. The constraints of the uncertain LP in question are “hard” — the decision
maker cannot tolerate violations of constraints when the data is in U.

It was shown in [69] that any uncertain LP model can be written as a model with certain
objective and, correspondingly, it always has the RC with the certain objective. It was shown
also that the RC for the LP with certain objective is constructed only by constrains
transformation. Moreover, without loss of generality, the uncertainty set U can be considered as
a direct product of sets U; ... U;, where i is the total number of constraints in original uncertain
LP model and each Uy is closed and convex set.

The RC (3.22) is a semi-infinite LP model, which in general can be NP-hard, but it was
proved in [52] that “the RC of the uncertain LO problem with uncertainty set U is
computationally tractable whenever the convex uncertainty set U itself is computationally
tractable”. This is the case when the uncertainty set U is a direct product of uncertainty intervals.
So if the uncertainty set U is polytope, then the RC is an explicit system of linear inequalities.
Tractability of the RC was also established for other uncertainty set structures, e.g. for conic
quadratic or semidefinite representations.

However, if the initial uncertain problem is not a LP model, but a MIP model, then the
tractability of the corresponding RC is not guaranteed. Even though the RO methodology can be
applied to the uncertain MIP models and the RC is constructed analogically to the LP case, the
resulting RC would be a MIP model, which is more computationally complex.

If Assumption 5 and Assumption 6 are not strict, meaning that some of the model
restrictions can be violated to some extent or the uncertain data may take values from the
prescribed neighborhood of the uncertainty set U, then the RC may be transformed into the
Globalized Robust Counterpart (GRC). Solution provided by the GRC guarantees that if the
uncertain data fluctuates in the prescribed neighborhood of the uncertainty set U, then violation

of the constraints has a fixed magnitude.
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An extension of the RC also appears when the uncertain data come into the system not on
one occasion, but step by step, so Assumption 4 may be extended. Dealing with a multi-stage
decision making process, some model variables represent not “here and now” decisions, but
rather “wait-and-see” decisions — they can be made after several process stages are finished. To
make the system adaptable for the changing environment conditions, “wait-and-see” decision
variables are allowed to depend on a part of the true data. The corresponding prescribed part of
the true data defines the so-called “information base” for decision variables on each decision
stage. If specific rules for the decision variables dependency on the information base are chosen,
then the extended RC - Adjustable Robust Counterpart - is defined [69]:

Definition 3. Adjustable Robust Counterpart (ARC) of the uncertain LP problem (3.21) is
the RC (3.22), where the decision variables are depended on a prescribed part of the true data
(information base):

xj = X;(Pw), (3.23)
where P; are prescribed matrixes defining information base and X;(*) are decision rules to be
chosen.

After solving the ARC model, the optimal robust decision rules (functions of the true
data) are provided, whereas the robust optimal numerical values for the decision variables are
given by the RC. The ARC of the uncertain LP problem (3.21) is less conservative than the
corresponding RC, meaning decreased value of total costs. The reason is that the adjustable
robust optimal solution is adaptable to the current state of the uncertain environment.

The crucial issue for the ARC is tractability of constructed model. Since optimization is
done over decision rules, which depend on many real variables, it may appear that the solution
algorithm is intractable. In order to solve the ARC in a polynomial time a careful choice of
decision rules is required.

Definition 4. Affinely Adjustable Robust Counterpart (AARC) of the uncertain LP
problem (3.21) is the ARC, where the decision rules X; (*) are affine functions.

It was shown in [69] that the AARC in computational sense is not harder than the initial
RC or, in other words, the constructed AARC has the same tractability status as the initial RC in
case with fixed recourse. An uncertain LP problem with prescribed information base is called a
problem with fixed recourse if the coefficients of every adjustable variable in the model are

certain. However, analogically to the RC, if the initial uncertain problem does not belong to the
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LP, but rather to the MIP, then tractability status of the corresponding AARC is not determined
in general case.

In case of fixed recourse, the same reasoning may be applied as in the case of RC
construction: if the uncertainty set U is a polytope, then the AARC represents an explicit system
of linear inequalities. Analogically, if Assumption 5 and Assumption 6 are not strict, then the
AARC may be transformed into Affine Adjustable Globalized Robust Counterpart (AAGRC).

The Robust Optimization includes a lot of other techniques, for instance Robust
Counterpart Approximations of Scalar Chance Constraints, as well as considers other uncertainty
models and sets structures, for instance uncertain conic quadratic problems. Detailed information

on the RO approach can be found in [69].



43

4 Action points

The crucial aim of the presented research is to solve the uncertain CLSP (2.1)-(2.11) and
the DLSP (2.12)-(2.19) with robustness guarantees.

The first subgoal is to analyze the uncertain CLSP problem (2.1)-(2.11) with the online
information base (planning under the rolling horizon), and to find such a structure of a model
input that the analyzed solution algorithm provides the worst possible model outcome.
According to the state of the art, the formulated subgoal can be solved with the help of the worst-
case analysis. However, the worst-case analysis is typically applied to the simple structures of
uncapacitated inventory/production models, whereas the considered CLSP has capacity
restrictions. Moreover, it has also several production slots and, therefore, specific cost structure.
Since the CLSP (2.1)-(2.11) is quite complex, some additional assumptions are required to
simplify the analysis. After determining the worst case demand scenario and solving the worst
case, the upper bound on total costs for any possible demand scenario and, additionally, the
competitive ratio of considered online algorithm can be respectively identified and guaranteed to
the manufacturer.

In the work of M. Wagner [25], described in chapter 3 “State of the Art”, the sufficient
condition for the existence of a finite competitive ratio and a formula for lower and upper bounds
for the competitive ratio were derived for two specific inventory models: for perishable products
with lost sales and for durable products with backlogging. Both models are affected by demand
uncertainty and are strictly online. The second subgoal in the presented research is logically
formulated as the following: to apply results of [25] for the production planning models and to
extend them by considering models with capacity restrictions. The competitive analysis approach
utilized in [25] will allow providing the performance guarantees of an online algorithm to the
manufacturer.

The last research subgoal is to derive a robust solution for the wuncertain
CLSP (2.1)-(2.11) and DLSP (2.12)-(2.19) with the help of the Robust Optimization (RO)
concept. RO techniques provide a solution that is robust in the non-probabilistic way, and that is

consistent with the stated main research aim. However, as outlined in chapter 3, there are just a
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few applications of the RO in the field of production planning (lot sizing); moreover, in these
applications computational examples are rarely used. Another important issue is that RC and
AARC models are widely used for solving uncertain LP problems, but may be intractable for the
MIP problems. In that way, the integrality of decision variables in the uncertain
CLSP (2.1)-(2.11) and DLSP (2.12)-(2.19) should be included into RC and AARCs and
investigated separately. Another action point considered is to compare the solution provided by
the RO with solutions provided by other approaches (e.g. probabilistic ones), which cannot be
done without a representative set of computational examples and a simulation. In particular,
differences in the value of total costs, computational time, needed hardware resources as well as
appliance of the method on different problem types should be compared. Using calculation
experiments, the influence of the problem structure on the solution can be additionally analyzed,

e.g. how the solution quality depends on the uncertainty level.
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5 Methods

According to chapter 3 (section 3.2.1), four main models dealing with the uncertainty are
used in production planning. However, most of them are inapplicable for the case outlined in this
thesis or do not allow to meet the stated goals.

The structure of the uncertain CLSP (2.1)-(2.11) and the uncertain DLSP (2.12)-(2.19) is
too complex to use the dynamic programming approach, which provides required robustness
guarantees. Conceptual models, such as safety stocks, are typically unsuitable for the cases with
incomplete information about market (online information base). Simulation models as well as
stochastic optimization usually utilize heuristics or probabilistic data, and therefore provide
feasible solution only with guaranteed probability.

In order to achieve the goals stated in the problem statement (chapter 2), it is proposed to
utilize analytical approaches from the worst-case analysis and competitive analysis for the
simplified versions of the CLSP (2.1)-(2.11). However, the Robust Optimization (RO) is
considered as the main solution approach for the uncertain CLSP (2.1)-(2.11) and the uncertain

DLSP (2.12)-(2.19).

5.1 Analytical approach for defining the worst-case of
demand distribution

In the CLSP (2.1)-(2.11) the setup costs do not play an important role in the production
planning process or do not exist at all and, therefore, they are excluded from the consideration.
To simplify the reasoning, the case where the manufacturer has only one production machine and
only one product to produce is analyzed; there is also no upper bound for the stock. As in the
classical CLSP model, the objective function is a function of costs, which should be minimized.
It includes the production costs at the normal and the overtime working time slots as well as the
holding costs. The demand in the considered CLSP is an uncertain data parameter and is defined
by the uncertainty interval:

[d; — 0d:,d; +0d;], Vvte{l..N},
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where d; are given nominal values of the demand and 6 is the number, defining the uncertainty
level.

The simplified CLSP model is the following:

N

minZ(Ctxt + oveye + help) (5.1
t=1
s.t.

Iy =11 +x +y—dq vt € {1..N} (5.2)
Xe < w, vt € {1..N} (5.3)
X +yj <k, vt € {1..N} (5.4)
xe=0,y.20,1, =0, vt € {1..N} (5.5)

One of the crucial research aims is to provide a solution for a production planning
problem with an uncertain demand; this solution should stay feasible for the worst-case demand
scenario and be comparable with the optimal solution.

Two types of solving algorithms are considered:

1. The algorithm with the planning horizon n = N ("offline"): in this case the demand
values for all planning periods are known in advance. The mathematical model can be
easily solved without the rolling or folding horizon, and as a result, the optimal
solution is obtained.

2. The algorithm with the fixed planning horizon n ("online"), where 1 < n < N: in this
case the demand values are known for the next n planning periods only. The model is
updated with the new market data and is iteratively solved at the end of each planning
period. Consequently, the considered algorithm has the rolling horizon, and most-
probably the non-optimal solution is obtained.

In order to identify the influence of the demand distribution on the behavior of the online

and the offline algorithms, the technics from the Worst-Case Analysis (WCA) and the
Competitive Analysis (CA) are used. The definitions of the problem instance and the competitive

ratio are formulated for the CLSP problem (5.1)-(5.5) and the corresponding solving algorithms.
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In a next step, the behavior of the online and the offline algorithm, depending on the
demand distribution structure, is studied. Therefore, the theorem that describes the worst-case of
demand scenario is formulated, meaning that the online algorithm provides the most expensive
production plan in comparison with the offline solution. For this purpose, some additional
definitions, assumptions and statements are required. To identify what aspects rouse the
differences between the behavior of the online and the offline algorithms, the possible changes in
the demand distribution are analyzed.

To verify the theorem statement, computational examples are implemented. The objective
value and the competitive ratio of the online algorithm are computed for the several demand
distributions based on the same problem instance.

Finally, the appliance of the analytical approach for defining the worst-case of the
demand distribution should be analyzed for the production planning problems with other
structures. For example, the extension of the theorem for the DLSP problem or the CLSP

problem with backlogging and setup costs is of particular interest.

5.2 Analytical approach for deriving the upper and
lower bounds of the competitive ratio

One of the research aims is to provide a robust production plan to the manufacturer, while
the guaranteed difference between the obtained and the optimal solution is less than a fixed
value. Ideally, the upper and the lower bound should be provided for the competitive ratio of the
online algorithm.

The goals mentioned above refer to the approach described in the work of
M. Wagner [25]. In his research, two inventory management models are considered: the
mathematical model for perishable products with lost sales and the mathematical model for
durable products with backlogging. To apply the technique for deriving the value of competitive
ratio proposed in [25], firstly it is necessary to switch from the inventory management problems
to the production planning problems. For this purpose in the inventory models (3.15) and
(3.16)-(3.18), production amounts are considered instead of inventory orders, setup costs are

considered instead of costs for placing an inventory order. Furthermore, the initial notations of
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M. Wagner are used, though they differ from the generally accepted notations. The parameters,

data and decision variables of the production planning model are presented below.

Parameters:
i =1..n planning periods,
Data:
d; demand in period i (units),
Ci production costs (per unit) in period i ($),
S; backlogging costs (per unit) in period i ($),
h; holding costs per unit and per period ($),
K; setup costs in period i, when producing product j ($),
Iy initial stock (units).

Decision variables:

q; quantity of product to be produced in period i (units).
I; stock at the end of period i,
I} = max(I;, 0) positive inventory at the end of period i,

I; = max(—1;,0) negative inventory at the end of period i.

The mathematical model, describing the production process for perishable products with

lost sales, is the following:
n
Izlzi(r)l Z(Ciqi +hi(q; — d)* +5;(d; — q:)" + K;6(q;)) (5.6)
i=1

The mathematical model, describing the production process for durable products with

backlogging, is the following:

n
minZ(ciqi + hi1i+ + Sili_ + Kl(S(ql)) (57)

i=1

S.t.:
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I, =1_,+q;—d; Vie{l..n} (5.8)

Both models, perishable products with lost sales (5.6) and durable products with
backlogging (5.7)-(5.9), do not include capacity restrictions. Hence, the capacity restrictions are
added into the mathematical models; thereby, the results shown in the work of Wagner are
extended. Assumption 1, Assumption 2 and Assumption 3 from the section 3.2.2 are assumed to
be valid for the reasoning in the present thesis.

For the extended mathematical model (5.6), wherein the capacity restrictions are added,
the analogue of Theorem 3.1 (see p.32) is formulated. The thesis follows the reasoning proposed
in Wagner’s work in order to derive and prove the formula for the maximum value of the
competitive ratio and the maximum value of the strict competitive ratio. The extended results
(for case with the capacity restrictions) are proved for the production planning problem with just
one planning period; in a subsequent step, these results are generalized for multi-period
problems. The main proof idea consists of the following steps:

e the upper and the lower bounds of the total costs are found for the offline and the
online algorithms;

¢ the obtained bounds are plugged into the competitive ratio definition;

e with the help of Lemma 1 from the linear-fractional programming (see p. 31), a
switch to the linear optimization problem occurs;

¢ the dual model for the linear optimization model is constructed and solved;

e the resulting solution defines upper and lower bounds for the competitive ratio;
the bounds are further extended for the multi-period production planning problem.

For the extended mathematical model (5.7)-(5.9), wherein the capacity restrictions are
added, the analogue of the Theorem 3.2 (see p. 32) is formulated. The thesis follows the
reasoning proposed in the Wagner’s work, and first proves the analogue of the Lemma 3
(see p. 33), which defines the upper and lower bounds for the offline costs. Since the
mathematical model with the capacity restrictions has a different feasibility domain, the proof of
the formulated lemma becomes more complex. The upper bound of the total offline costs is
defined by the feasible production plan q; = L; (for each planning period i), while the additional

reasoning is required for deriving the lower bound of the total costs. First, the additional
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assumption should be formulated to restrict the maximum value of the total demand. Next, the
linear optimization problem is defined for deriving the corresponding lower bound of the offline
costs. To find a feasible solution, the inverted matrix of the LP problem is constructed and, based
on this, the dual linear problem is defined. The solution of the dual problem is found by
considering the special cases of the system. The proved lemma allows defining the sufficient
condition of the competitive ratio existence for the mathematical model (5.7)-(5.9). Moreover,
the upper and lower bound for the strict competitive ratio are derived. The corresponding
theorem is proved based on the Lemma 1 from the linear-fractional optimization.

In order to verify the derived sufficient condition of the competitive ratio existence for
the online algorithm, two computational examples are implemented. The sufficient condition is
checked for the given numerical data and the two different production planning strategies.

Finally, the appliance of the analytical approach for deriving the upper and lower bounds
of the competitive ratio is analyzed for the production planning problems with other structures.
For example, a possibility to extend the theorem for the DLSP problem or the CLSP problem

without backlogging is investigated in this thesis.

5.3 Robust Optimization approach

The Robust Optimization (RO) approach is specifically developed for mathematical
models with uncertain data parameters and is in particular applicable, for linear optimization
models. To utilize the advantages of the RO approach and to accomplish the specific goals,
firstly the given data uncertainty is analyzed and the uncertain CLSP and the uncertain DLSP

problems are related to an existing subclass of RO problems.

5.3.1 Robust Counterpart (RC)

The formal definition of the uncertain Linear Optimization (LO) problem and its Robust
Counterpart (RC) that was given in [69] are cited in in the thesis by (3.21) and (3.22), see
p- 39-39. In a simplified way, a RC is an optimization model that is constructed for an initial
uncertain mathematical model and whose robust numerical solution is provided before true

values of uncertain data are known.
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The construction of Robust Counterparts (RCs) is described in detail in the first chapter
of [69]. The authors propose the following algorithm for the RC construction, assuming that the

“«

uncertain LO problem (3.21) has the certain objective: “... to get RC, we act as follows:

® preserve the original certain objective as it is, and
e replace every one of the original constraints
(Ax); < b; © alx < b
(al isi-th row in A) with its Robust Counterpart
alx < b; V[a;, b;] € U,
where U, is the projection of U on the space of data of i-th constraint:

Ui = {[ail bl] : [A, b] € U}'"

However, to get a RC in a tractable representation, some additional efforts are required.
In first chapter of [69] it is stated that “the RC of the uncertain LO problem with uncertainty set
U is computationally tractable whenever the convex uncertainty set U itself is computationally
tractable”. It was also proven in [52] that the semi-infinite constraint of the uncertain LO system
with the conic representation of the uncertainty set can be represented by a system of conic
inequalities. The corollary from the formulated theorem states that if the uncertainty set is
polyhedral, then a semi-infinite constraint can be presented as an explicit system of linear
inequalities.

The uncertain demand dj; in the CLSP (2.1)-(2.11) and the DLSP (2.12)-(2.19) models

takes values from the corresponding uncertainty interval [d]’f —0d, d;y + Hd;t] in each
planning period. Therefore, the uncertainty set the vector of uncertain demand d belongs to is a
polyhedral, which definitely is a convex set. It may be concluded that the methodology of the RC
construction is applicable to the considered uncertain production planning problems.

In order to construct the RC for the uncertain CLSP (2.1)-(2.11) and the uncertain

DLSP (2.12)-(2.19) the following steps should be completed:

1. The uncertain models (2.1)-(2.11) and (2.12)-(2.19) should be written as the uncertain
problems with the certain objectives and the semi-infinite constraints;
2. Each one of the original semi-infinite constraints should be replaced by the explicit

system of inequalities;
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3. The variables that do not represent the actual decisions (e.g. stock variables) should

be eliminated.

The certain objective can be constructed by substituting the uncertain objective
expression by an additional variable, and by restricting this variable to be equal or higher than
the initial objective in the additional constraint of the system. Step 3 can be done by expressing
redundant variables by the variables that represent the actual decisions.

To construct the RC in a solvable form as it is stated in step 2, every original model

constraint is transformed to the system of linear inequalities:
K N M

fo(a) + Z Z Z(fi]-t(a) x dip) < 0,dj, € [din; amer]

i=1t=1j=1
g
fie(@) X dip™ < pj (5.10)

fije(@) X djf™ < pje

Here, a is the vector of the decisions variables, f,(a) and f;;.(a) are the given functions

of a, dj; is the uncertain demand parameter belonging to the uncertainty interval [d}?m ; }?ax],

pj¢ 1s an additional variable.

The uncertain CLSP (2.1)-(2.11) and the uncertain DLSP (2.12)-(2.19) contain both,
integer and binary variables; consequently, attention should be paid to the tractability of the
constructed RCs. Remarks on a tractability of a RC for uncertain mixed-integer models were
done in [69]: “With no integer variables, the fact that the RC is an LO program
straightforwardly implies tractability of the RC, while in the presence of integer variables no
such conclusion can be made. Indeed, in the mixed integer case already the instances of the
uncertain problem P typically are intractable, which, of course, implies intractability of the RC.
In the case when the instances of P are tractable, the “fine structure” of the instances
responsible for this rare phenomenon usually is destroyed when passing to the mixed-integer
reformulation of the RC. There are some remarkable exceptions to this rule; however, in general
the Uncertain Mixed-Integer LO is incomparably more complex computationally than the

Uncertain LO with real variables.”



53

To check the tractability of the constructed RCs, the thesis proposes to implement the

mathematical models in the optimization software and to test them on a numerical example.

5.3.2 Affinely Adjustable Robust Counterpart (AARC)

Adjustability of the production plan to the changing market situation provides a strict
advantage and, therefore, is desirable. According to chapter 3, the Adjustable Robust Counterpart
(ARC) provides a less conservative solution for an optimization problem and suits to the
environment that allows decisions to be made along with the uncertain data appearance.

ARC aroused as a natural extension of the RC for uncertain optimization models, since
some decision variables are allowed to get numerical values already after some part of uncertain
data are known. So in the ARC the decision rules — functions of the uncertain data — are
considered instead of the original decision variables. However, when switching to the decision
rules, the tractability of the resulting optimization model becomes an issue. To make the model
computationally effective, the class of affine functions is used for the decision rules
representation.

In order to construct the AARC for the uncertain CLSP (2.1)-(2.11) and the uncertain
DLSP (2.12)-(2.19), the following steps have to be completed:

1. The information base (a part of data on which the variables are allowed to be
dependent) should be defined;

2. Corresponding decision variables of the initial model should be substituted by the
affine decision rules;

3. The affine decision rules should be plugged into the mathematical model, which

includes new decision variables, and should be transformed into the solvable form.

The information base for the ARC is defined in the definition of the ARC (3.23) by the
matrixes P;. If P; equal to zero matrixes, meaning that the decision variables are independent
from the actual market data, then the special case of ARC — the Robust Counterpart — is
obtained. The completeness of the information base is in inverse proportion with the

computational status of the constructed AARC. At the same time, the more complete the
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information base is, the better the gained solution is, in terms of proximity to the optimal
solution.

In a next step, the information base B, for the decision variables in the planning period t
of the uncertain CLSP (2.1)-(2.11) and the uncertain DLSP (2.12)-(2.19) is defined by the actual
demands obtained in previous planning periods: By = {1 ...t}.

If the initial uncertain model has a vector a that is comprised of the decision variables,
and the information base B; is defined, then the decision variable a; should be replaced by the
affine decision rule (5.11) in order to construct the AARC:

SEBt

The coefficients of the affine decision rules njpt and 7, are the new decision variables of the

AARC.

To get a computationally tractable representation of the AARC, the affine decision rules
are plugged into the uncertain CLSP (2.1)-(2.11) and the uncertain DLSP (2.12)-(2.19) models.
The same transformations as for the RC construction are implemented: getting the certain
objective, representing each semi-infinite constraint by the system of linear inequalities,

eliminating of the variables that describe the state of production planning system.

5.3.3 Features of the AARC for the CLSP

The objective function in the uncertain CLSP (2.1)-(2.11) is the minimization of the
manufacturer’s total costs. During the RC construction in this thesis, the reasoning was worst-
case oriented: the aim was to minimize the maximal possible costs of the manufacturer on the
prescribed uncertainty set of demand. The worst-case argumentation is maintained further on,
and the AARC model that optimizes the manufacturer’s costs for the worst-case demand
scenario is constructed. The resulting AARC is referred to in this work as “the AARC WORST-
CASE” for shortening.

One of the advantages of the RO approach is the fact that it can be applied not only for
the worst-case scenario optimization, since the only requirement is the convexity of the objective
function in the initial uncertain optimization model. Based on this fact, the AARC WORST-

CASE model can be designed less conservative, and a weighted sum of several demand



55

scenarios can be optimized instead of the worst-case. The objective function of the AARC
WORST-CASE model is substituted by minimization of the weighted sum of several demand
scenarios. Corresponding demand scenarios are proposed to have a given probabilities to occur,
so we plug them into the objective with the corresponding weights. Such the AARC optimizes
the weighted manufacturer’s costs on several demand scenarios, so it will be called further in our
work as “the AARC SCENARIOS” for shortening.

The established RO paradigm mainly discusses models with continuous decision
variables (due to the tractability issues) and their robust counterparts. However, the initial CLSP
(2.1)-(2.11) contain the binary variables z;;; and zv;j;, which we decided to leave unchanged in
the mathematical model, even though it may affect the tractability status of the resulting AARC.
To apply the classical RO approach for the AARC construction, we also ignored integrality of
the decision variables in the uncertain CLSP (2.1)-(2.11): for the AARC construction we
replaced the integer decision variables from the initial CLSP by the affine decision rules, whose
coefficients are real numbers. Consequently, the resulting values of decision variables may
appear to be non-integers, meaning that the obtained production plan should be additionally
analyzed before the implementation stage. Rounding of the obtained non-integer solution values
is typically used, however we address the integrality issue differently.

Both the AARC WORST-CASE and the AARC SCENARIOS models with real
coefficients in the affine decision rules belong to the class of Mixed Integer Programming (MIP)
problems (because of the binary nature of variables z;;; and zv;;;). They were implemented and
solved using the IBM ILOG CPLEX Optimization Studio in order to calculate the affine decision
rules. Hardware used: Intel(R) Core(TM) 15-450M 2.40 GHz processor and 4.00GB RAM.

5.3.4 Integrality issue of the AARC for the CLSP

The decision variables describing the production amounts and the amounts of product in
stock in the uncertain CLSP (2.1)-(2.11) can take only integer values. Since in the AARC they
are substituted by the affine decision rules, the corresponding affine decision rules have to take
only non-negative integer values independently from the actual data realization.

In the present thesis, it is proposed to narrow the parametric family of linear functions

used for the decision rules down to the linear functions with integer coefficients. For this
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purpose, the coefficients njpt and njst in (5.11) are restricted to be integers. Thereby, the function

of decision rules are forced to take only integer values for each possible demand scenario from
the prescribed uncertainty set. The explanation is based on the following: the demand parameters
take values which belong to the set of natural numbers with zero {N U 0}; due to the new
restriction all the coefficients of the affine decision rules belongs to the set of integers Z. Then
the closure property under addition and multiplication of the set of integers Z allows stating that
the production amounts x;;; and y;;; will take only integer values for every demand scenario
from the uncertainty set.

The new AARC WORST-CASE and AARC SCENARIOS model (with integer
coefficients in affine decision rules) are MIP problems, which were implemented and solved
using the IBM ILOG CPLEX Optimization Studio. The same hardware is used as for the AARCs
with the real coefficients in the decision rules.

However, narrowing the parametric family of decision rules may affect the proximity of
the obtained solutions to the optimal ones; in addition, the tractability of the resulting AARC
may be affected. By switching to the integer coefficients in the linear functions of the decision
rules, the number of the integer variables in the resulting AARC model is increased; it logically
entails the higher computational complexity of the AARC.

To evaluate the changes in the AARC performance, the AARC with real coefficients in
the decision rules and the AARC with integer coefficients in decision rules are compared using a

numerical example.

5.3.5 Testing workflow for the AARC WORST-CASE and
AARC SCENARIOS models. Simulation of uncertain demand

One of the research goals is the computational evaluation of the RO approach. To achieve
this, a computational example and simulation of the demand scenarios are considered.

Production system parameters and market data for the initial uncertain CLSP (2.1)-(2.11)
are provided by the operating manufacturing company. The numerical values are given for the
nominal demands and the uncertainty level. However, in order to evaluate the performance of the
AARC solution, the actual realizations of the demand are required. Thus, one may calculate the

value of the total costs provided by the AARC production plan, the value of total costs provided
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by some probabilistic algorithm (assuming that additional probabilistic information is given) and
the optimal value of the total costs for one particular demand scenario. Next, it can be evaluated
how close the obtained values are to each other, and the “price of robustness” — difference in
total costs between optimal and robust production plans — can be calculated.

Obviously, to make the comparison of the solution approaches fair enough, the
comparison of costs for only one demand scenario is insufficient. One may desire to compare the
differences in costs for a large number of demand scenarios and to compute the difference in
costs on average. The maximal difference in costs as well as the time of computation is also of
particular interest.

The constructed AARC models for the given CLSP were tested using the workflow

presented in Figure 5.1.

Solve the AARC model: calculate affine decision rules

v
Generate 100 random demand scenarios from the uncertainty set

A 4

Compute corresponding total costs for each demand scenario and on

average using AARC affine decision rules

A
Compute corresponding total costs for each demand scenario and on

average for the deterministic CLSP in an ideal case

A 4
Evaluate and compare results

Figure 5.1. Testing workflow for the RO approach (CLSP)

When the first step of the workflow was completed, the difference in the computation time as
well as in other solving parameters of the AARC WORST-CASE and the AARC SCENARIOS
models were compared.

As a next step, a simulation of 100 demand scenarios is implemented. Three scenarios
were fixed to the lowest possible demand, nominal demand and highest possible demand in all
planning periods. For the calculation experiment, the fact that demands are integer numbers and
allowed them to take any real values from the uncertainty interval was omitted. One of the

generated demand scenarios is shown in Figure 5.2.
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Figure 5.2. One of the generated demand scenarios for the product 2

The numeric values of the production amounts, stocks and total costs were calculated for
the AARC WORST-CASE and the AARC SCENARIOS model solutions on each generated
demand scenario and on average using the previously calculated AARC affine decision rules.

To identify the “price of robustness” of the AARCs solutions in a next step, the
deterministic CLSP model (2.1)-(2.11) was solved for each generated demand scenario. All
demands were assumed to be certain and known in advance, forming an ideal case. Accordingly,
the obtained objective values are optimal for the corresponding demand scenarios. It is worth
noting that the accuracy tolerance was set to 0.5% in deterministic CLSP to reduce the time of
computation.

Several parameters were used to compare the obtained results: the absolute values of the
objective functions, the maximal absolute and relative gaps between the optimal and the obtained
solutions, and the relative gap on average over 100 generated demand scenarios. The

computational accuracy was taken into account as well.

Since the integrality of decision variables was addressed in the initial CLSP by
constructing decision rules of a special kind, it was intended to investigate the newly constructed
AARC WORST-CASE and AARC SCENARIOS models (with integer coefficients in decision
rules) on simulated demand scenarios and to compare the obtained results with the results of

AARC models that use standard affine decision rules. For this purpose, the same workflow as
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shown in Figure 5.1 was used and, therefore, changes in performance of the AARC solution with
switching to the narrowed affine decision rules could be compared.

Additionally, the testing workflow shown in Figure 5.1 was implemented for the newly
constructed AARC WORST-CASE and AARC SCENARIOS models (with integer coefficients
in decision rules) using the closest to the reality simulation: the demand took only integer values
from the defined uncertainty interval. The demand was allowed to deviate from the nominal

values d;; by the defined uncertainty percentage, but not less than for 1 unit. The described

simulation along with the given data represents the case-study of the RO application. The
performance of the AARCs was evaluated by comparing it with the optimal and probabilistic

approaches by analogy with the real values demand simulation.

5.3.6 Comparison of solution approaches. The influence of
uncertainty level on the total costs value

As it was already mentioned, one may wish to compare the performance of different
solution approaches on the same production planning problem instance and to calculate the
“price of robustness” — difference in total costs between optimal and robust production plans.

The construction of a non-adjustable Robust Counterpart (RC) and the construction of a
probabilistic model (assuming that additional probabilistic information is given) were considered
as alternative solution approaches to the AARC. Additionally, all obtained solutions were
compared with the optimal solution. The optimal solution for a production planning problem
instance is a solution obtained from the deterministic CLSP model (2.1)-(2.11), which was
solved for particular demand scenario. All demands were assumed to be certain and known in
advance forming an ideal case.

To construct the probabilistic model, the demand was assumed to be uniformly
distributed over the uncertainty interval. Due to the symmetry of the uncertainty intervals
[d}‘t —0d;,,d;, + Hd}‘t], the mean demand values are equal to the nominal demands dj;. Given
this additional probabilistic information, the mean value of the total costs was optimized: the

mean demands d}‘t were plugged into the CLSP model (2.1)-(2.11), and the resulting

deterministic MIP problem was solved. It is worth to note that the deterministic CLSP model
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with the nominal demand values describes another possible production strategy — a strategy
where a manufacturer simply ignores the data uncertainty.

To make a comparison of the approaches, 100 production planning problem instances,
formed by the implemented demand simulation, were solved with the help of RC, AARC
WORST-CASE, AARC SCENARIOS (both with real and integer coefficients in decision rules),
probabilistic model and deterministic CLSP describing an ideal case. The absolute and relative
gaps between the total costs values of the obtained solutions were computed and compared.

Another important aspect is the influence of the uncertainty level on the following
factors: the performance of the solution approaches, the changes in total production costs and the
price of robustness of the AARC solutions. For this purpose, the demand simulation was
repeated for different levels of demand uncertainty 6: 5%, 10%, 20%, 30% and 50%. The
obtained production planning problem instances were used to calculate the total costs values
corresponding to the RC, the AARCs, the probabilistic model and the optimal solutions. The
absolute and relative gaps between the total costs values of the obtained solutions were computed
and compared for each uncertainty level.

Worth noting that the comparison of the AARC solutions with the RC solutions shows
whether the adjustability of decision variables provides an actual advantage. However, the RC
model became infeasible already for 21% of demand uncertainty; so the RC solution was

calculated only for 5%, 10% and 20% of uncertainty level.

5.3.7 Features of the AARC for the DLSP

The crucial issue that hinders AARC construction for the uncertain DLSP (2.12)-(2.19) is
the binary nature of the decision variables z;;;. To adjust the decision variables and to get the
resulting AARC computationally effective, the binary z;;; has to be substituted by the linear
functions of the decision rules (5.11). Obviously, such a replacement is not equivalent, since the
range of linear function (5.11) is not equal to {0, 1}.

To overcome this challenge, it is proposed to construct the AARC for the

DLSP (2.12)-(2.19) using the following steps:
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1. Decision variables z;;1, which are responsible for the production decisions in the next
planning period, are not substituted by the linear decision rules in the constructed
AARGC ; they are left unchanged in the model and keep their binary nature.

2. Decision variables z;;; for t > 1, which are responsible for the production decisions
in the further planning period, are substituted in the constructed AARC by the linear
decision rules (5.11) that are restricted to take values in the interval [0, 1].

3. The production plan provided by the constructed AARC is formed under a folding
planning horizon: the AARC is resolved at the end of each planning period, taking

into account new market and system data.

The solutions z;;; for the first planning period should be regarded as ,,the guide to action®
for the manufacturer. The values of decision variables z;, for t > 1 should be interpreted as the

possibilities of production of product j on the production machine i in the planning period t or as
the portion of planning period t, during which machine i should produce product j in order to
satisfy market demand. The folding planning horizon means that instead of solving the AARC
only once in the beginning of the production process, the AARC is resolved at the end of each
planning period. Thereby, a new solution is generated at the end of each planning period, taking
into account new information about demand and the current state of the production planning
system.

The AARC, which takes into account aspects mentioned above, has one strict advantage:
due to the adjustability of the variables, it is expected to be less conservative than the
corresponding RC for the DLSP. However, the disadvantages of the constructed AARC are also
serious. Firstly, the robustness of the AARC solution is not guaranteed any more, since the DLSP
“all or nothing” assumption can be violated. The reason is that the decision rules (5.11) are
allowed to take values on the interval [0, 1], making restriction (2.15) feasible for several non-
zero decision rules values that corresponds to z;j¢. Thus, the situation wherein the manufacturer
is not able to satisfy the customer demand due to the unavailable production capacity may occur.
Secondly, the upper bound of total costs is not provided to the manufacturer for the same reason.
The “all or nothing” assumption is relaxed; therefore, the total costs provided by the AARC for
the worst-case of demand distribution are not accurate. Finally, the AARC contains binary

variables, which reflect its computational status.
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The AARC for the DLSP (2.12)-(2.19) belongs to the class of Mixed Integer

Programming (MIP) problems (because of the binary nature of variables z;;;) and is planned to

be implemented and solved using the IBM ILOG CPLEX Optimization Studio. The following
hardware is used: Intel(R) Core(TM) 15-450M 2.40 GHz processor and 4.00GB RAM.

5.3.8 Testing workflow for the AARC for the DLSP model.
Simulation of uncertain demand

Analogically to the testing of the AARCs of the CLSP, a computational example and
simulation of the demand scenarios are considered for the AARC of the DLSP. Production
system parameters and market data for the initial uncertain DLSP (2.12)-(2.19) are provided by
the operating manufacturing company.

The aim is to analyze the constructed AARC by doing the following:

e generate 20 demand scenarios (though 3 of them are fixed to the highest, nominal
and lowest demand, all others are randomly generated),

e calculate and compare the production plans provided by the AARC, the RC and
the optimal solution for each demand scenario;

e identify the influence of uncertainty level on performance of the solution

algorithms.

The reader is referred to the section 5.3.5, wherein the method of demand generation and
the method of solution comparison are described in detail.

The testing workflow, described in Figure 5.1, is applied for testing the resulting AARC
for the DLSP (2.12)-(2.19). However, step 3, which proposes to compute the corresponding total
costs for each demand scenario and on average using AARC affine decision rules, is done under
the folding planning horizon. The algorithm that is used to calculate the total costs of AARC

solution is shown in Figure 5.3.
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Take the generated demand scenario and given model data: e.g. N=24, [;, =0, ...

It is assumed that initially E;;, = 0, Total Costs = 0.

\ 4

Solve the AARC model for given data (N, Iy, E;jo -..):

A 4

e solution variables are O (do not produce) or 1 (produce) for the first period,
e decision rules are between 0 and 1 for all other planning periods.

A 4

Based on known information base (demands are known for the nearest period) and given demand

scenario, the value of production costs in first planning period (Costs1) is calculated and saved.

A 4

Assuming that the production plan for the first planning period is implemented, new values for the

decision variables are assigned:

® new [;, values are equal to the stock at the end of first period (I;;),
® new Ejj values are equal to the machines state values at the end of first period,

e Total Costs = Total Costs + Costsl1,
e N=N-1

The total costs value is calculated for the considered demand scenario, using the AARC solution and folding

horizon

Figure 5.3. Testing workflow for the AARC of the DLSP
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6 Implementation and results

6.1 Analytical approach for defining the worst-case of
demand distribution

6.1.1 Important definitions and assumptions

Let us recall the stated subgoal (see section 5.1): to find such a demand distribution
(demand takes values from the prescribed uncertainty interval) for the overall planning horizon
N that an online algorithm provides the worst solution in comparison to the offline (optimal)
solution. To compare the online and the offline algorithms, the technics of competitive analysis
are used. The underlying idea is: do not consider the absolute behavior of the algorithm, but
rather the ratio between the algorithm’s behavior and the optimal behavior on the same problem
instance. Required definitions are formulated below.

Definition 5. The set of problem instances of the initial uncertain production planning
problem is the set P of all production planning problems I that differ from each other only by the
demand distribution (demand takes values from the prescribed uncertainty interval) over the
planning periods, while all other model parameters stay the same.

Definition 6. cost,(I) denotes the cost of an algorithm A (the objective function value
when the problem is solved by the algorithm A) on the problem instance 1. The optimal objective
value on the problem instance I is noted as costy,.(I). A competitive ratio of the algorithm A for
the production planning problem P (minimizing the costs) is the number ¢ € R, defined as:

inf {c| costa(I) < c * cost oy, (I), VI € P} (6.1

Based on the fact that all problem parameters except the unknown demand values are
fixed, a difference in the solution quality between the online and the offline algorithms may only
be caused by a possibility of production reallocation. The considered problem of the robust
optimization is generally quite complex to analyze, subsequently several crucial assumptions are

done in order to simplify the problem.
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Definition 7. Under the meaningful interval we understand the integral part l@] It
J

defines the number of periods during which it will be cheaper to hold one production unit
(considering production in the normal working time slot with lower production costs), rather
than to produce this unit in the overtime slot.

Assumption 7. To simplify, it is assumed that the total number of planning periods is less
. . . ) (ovj-p;)
than the corresponding meaningful interval: N < — |
]

Assumption 8. The total demand value summarized over all planning periods is fixed to
the integral part of the total production capacity in normal production shift summarized over all

planning periods:

N
;dt= [N *w|

Assumption 9. The length of the overtime slot and the length of the normal working time
slot are equal.
To define the competitive ratio of an online algorithm A in terms of the competitive
analysis, it is necessary to find:
inf {c | costy(I) < ¢ * costyy (1), VI € P}.

In turn, this is the same as to find:

cost,(I)
su "
Prep oSty (1)
Statement 1. If a, b,n are the positive integers and a = b, then % > %.

Proof. Let's compare

a and a+n
b b+n
This is the same as to compare:
a(b+n) and b(a+n)
b(b +n) b(b +n)
ab + an and ab + bn
an and bn

a and b
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By definition a > b, this means that:

SHES
IV
S Q
+|+
S| 3

6.1.2 Main theorem

The formulation and the proof of the theorem that describes the worst case of the demand
distribution in terms of CA are provided below. The worst-case of the demand distribution
defines also the value of the competitive ratio.

"The objective value while solving the model by the algorithm" is replaced by "the cost
of the algorithm" for shortening. Similarly, the term “production shift” is defined as rescheduling
of production from the overtime slot of one period to the normal time slot of one of the previous
periods. Shifts allow to satisfy demand in time and to avoid the high costs of overtime
production. The number of shifts made by an algorithm inside the meaningful interval reflects
the algorithm effectiveness.

The next issue focused is the fact that the competitive ratio of an online algorithm
directly depends on the difference between the number of shifts made by the online and the
offline algorithm. To illustrate this point, the difference in total costs between the solutions
provided by an online and an offline algorithm is considered, if the offline algorithm shifted one
production unit more than the online algorithm. From the problem (5.1) it is known that the total

costs are:

N
Z(Ctxt + ovey, + hely)

t=1

For simplicity, a production planning system with fixed production and holding costs in

all planning periods is considered. If the offline algorithm shifted from the planning period j to

planning period k one production unit, while the online algorithm did not shift anything, then the
difference in costs is the following:

COStoniine — COStoffiine = 0V — (¢ + hL), (6.2)

where L = j — k is the number of periods that the shifted production unit was held in stock

before delivery to the customer according to the offline production plan.
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According to Assumption 7, the difference in costs (6.2) is positive. Next, the case when
the number of units that were not shifted by the online algorithm increased to m is considered.
Correspondingly, both cost,pjine and cost,frine increased: the costs of production in overtime
slot increased by ov - (m — 1) for the online algorithm; the additional holding costs equal to the
hL - (m — 1) appeared for the offline algorithm. At the same time, the difference in costs
between the online and the offline solutions also increased to m(ov —(c+ hL)). Turning back
to the competitive ratio definition (6.1), it means that the difference between the numerator and
the denominator increased and the numerator is greater than the denominator. It immediately
leads to the growth of the competitive ratio by the Statement 1.

All aspects considered, the aim is to find such a demand distribution that the difference in
shifts made by the online and the offline algorithms is maximal. This demand distribution will
define the maximal ratio between the online and the offline costs.

Theorem 6.1. The following demand distribution realizes the worst-case of demand
distribution and defines the competitive ratio for the online algorithm with the rolling horizon n
out of N total periods, considering Assumption 7, Assumption 8 and Assumption 9:

1. If (N — n)iseven:

(N—n)

® first >

periods have zero demand;

® next n periods have average demand equal to the production capacity in the

normal time slot;

o Jast Gl

;n) periods have the highest possible demand.

2. If (N — n)isodd:

. (N-n+1 .
° fll’St( ;l )perzods have zero demand;

e next n — 1 periods have average demand equal to the production capacity in the

normal time slot;

(N—n+1)

o Jast >

periods have the highest possible demand.

The graphical representation for one of the cases of the Theorem 6.1 is shown in

Figure 6.1.
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Figure 6.1. lllustration of the demand scenario from Theorem 6.1 in case (N —n) is even

Proof. We will prove the Theorem 6.1 for the case when (N — n) is even. The case when
(N —n) is odd can be proved by the parity of reasoning.
Obviously, the optimal production plan for the CLSP problem (5.1)-(5.5) with the

(N-n)
2

demand distribution from Theorem 6.1 includes production shifts. Since the production in

overtime is more expensive and we are working under Assumption 7, it is meaningful to avoid
the overtime production and produce for the lower price (in the normal working time slots) in

advance.

On the other hand, the online algorithm will not be able to make any production shifts:

(N-n)

during the first and the next n planning periods the online algorithm put nothing in stock.

The reason is that due to the current market knowledge and rolling horizon restriction,

information about high demands in the last planning periods is not available for the online

(N-n)
2

algorithm during first + n planning periods. When the first planning period with the

maximal demand is taken into account by the online algorithm, there is no possibility to shift the
production anymore, meaning there is no time available in the normal time slots of previous

n — 1 periods. The difference between the number of shifts made by the offline algorithm and

(N-n)
.

the number of shifts made by the online algorithm is

In a next step, it is analyzed what will happen if the demand distribution is changed. The
competitive ratio is defined by the fraction with the numerator cost,y;in. and the denominator

coStyfriine- Any change in the demand distribution from the Theorem 6.1 will lead to one of the

following consequences:
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COStyfriine increases and cOStopjne Stays the same; cost,ffine increases and
costynine decreases. By the basic fraction properties, both situations will lead to the
decreased value of the competitive ratio.

COStonline and cost,ffn. decrease simultaneously. Such a behavior may be obtained
in practice in the following three situations:

a. The number of shifts made by the online algorithm remains the same, while
the number of shifts made by the offline algorithm decreases. This situation
may be caused by a demand distribution that requires less production in
overtime slot, if we will not consider shifting at all, than the demand
distribution from the Theorem 6.1. Consequently, both cost,,ine and
COStyrriine decrease. At the same time, the number of shifts made by the
offline algorithm decreases, so the difference between the number of shifts
made by the offline algorithm and the number of shifts made by the online
algorithm  decreases.  Correspondingly, the difference in  costs
(costyfriine — COStoniine) and the competitive ratio also decreases.

b. The number of shifts made by the online algorithm increases, while the
number of shifts made by the offline algorithm stays the same. Consequently,
the difference between numbers of shifts made by the offline algorithm and
the number of shifts made by the online algorithm decreases and the
competitive ratio also decreases.

c. The number of shifts made by the online algorithm increases, while the
number of shifts made by the offline algorithm decreases. Analogically to the
previous cases, the difference between numbers of shifts made by the offline
algorithm and the number of shifts made by the online algorithm decreases
and the competitive ratio also decreases.

COStopiine and cOSt,rfne Increase simultaneously. Such a behavior may be obtained
in practice only if the number of shifts made by the offline algorithm increases. This
inevitably leads to the increased number of shifts made by the online algorithm. The
reason is that if additional periods where demand is higher than average appear, they
will be obtained by the online algorithm with rolling horizon n. (Both algorithms for

this particular case will behave the same, which leads to the increased value of total
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costs for the production plans provided by the online and the offline algorithms. The
competitive ratio will also decrease based on the Statement 1.

COStopiine Increases, while cost,friine Stays the same; coStynne decreases, while
COStyrriine Stays the same. Such situations cannot be obtained in practice, because
any change in the demand distribution inevitably leads to the change in the
COStyffline, SINCE Assumption 8 is assumed.

COStopiine Stays the same, while cost,ffine decreases. Such situations cannot be
obtained in practice, because changes of the cost,fin. inevitably lead to changes of
COStopiine- Indeed, costyrriine decreases only for the demand distribution that requires
less production in overtime slot (if we will not consider shifting at all) than the
demand distribution from the Theorem 6.1. For this situation, cost,,;,. decreases as
well (see case 2b).

COStypiine increases, while cost,rfn. decreases. Such situations cannot be obtained
in practice, because no demand distribution increases the volume of non-shifted
demand for the online algorithm. On the other hand, if the cost,,;n. has increased
with the same value of non-shifted demand, then both, the online and the offline,
algorithms reallocated higher production volume to the normal working slot. This

case was considered in 3.

Thus, demand distribution in the theorem realizes the worst case, the Theorem 6.1 is proved.

6.1.3 Comments on the proof

The examples of the demand distributions that demonstrate the Theorem 6.1 proof are

provided below:

1.

2.

COStyffiine increases and coStyp i, Stays the same.

The demand distribution remains as indicated in the Theorem 6.1 for the planning
periods 2 till N; the maximal demand is obtained in the first planning period and the
minimal demand is obtained in the last period, see Figure 6.2.

COStonline and coSt,ffiime decrease simultaneously.
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a. The minimal demand is obtained in the first planning period, the average

demand is obtained in the periods 2 till N — 1 and the maximal demand is
obtained in the last period, see Figure 6.3.

b. The minimal demand is obtained in the first planning period; the maximal and
the minimal demand are alternating in further periods, see Figure 6.4.

c. The maximal demand is obtained in the first planning period; next periods are

alternating minimal and maximal demand values, see Figure 6.5.

3. coStoniine and coStyffiine Increase simultaneously.

The minimal demand occurs within the first EJ periods and the maximal demand

occurs in the next ng periods, see Figure 6.6.
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Figure 6.2. Illustration of the demand scenario for case 1 of the Theorem 6.1 proof
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Figure 6.3. Illustration of the demand scenario for case 2a of the Theorem 6.1 proof
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Hllustration of the demand scenario for case 2c of the Theorem 6.1 proof
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Figure 6.6. Illustration of the demand scenario for case 3 of the Theorem 6.1 proof
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6.1.4 Computational example

To illustrate the obtained results, a computational experiment was implemented. The

following data was used for the CLSP model (5.1)-(5.5):

N = 24 number of planning periods in overall planning horizon,

n=2, number of planning periods in rolling horizon of the online algorithm,
d; = 600 nominal demand in the planning period t (units),

6 =09 uncertainty level of demand (90%),

D = 14400 total summarized demand (units),

u; = 600 production capacity in normal working time slot of period t (units),
w; = 840 production capacity in overtime slot of period t (units),

¢ = 100 production costs (per unit) in normal working time slot of period t ($),
ov; = 150 production costs (per unit) in overtime slot of period t ($),

hy =2 holding costs (per unit and per period) in period t ($),

I,b,=0 initial stock of product j (units).

The mathematical model of the CLSP (5.1)-(5.5) was implemented in the IBM ILOG
CPLEX Optimization Studio. The Optimization Programming Language (OPL) was used to
describe the objective function and the restrictions of the model.

In order to verify the Theorem 6.1 statement, four different demand scenarios were
considered and compared by the behavior of the online algorithm. For each demand scenario, the
total value of costs was calculated for the production plan provided by the offline algorithm as
well as for the production plan provided by the online algorithm.

Scenario 1 describes the case, where planning periods with the lowest possible demand

are followed by planning periods with the highest possible demand, see Figure 6.7.
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Figure 6.7. Scenario 1 of the demand realization

Since the online algorithm shifts the production from periods with high demand to
periods with lower demand (with the help of the rolling horizon), the obtained value of the
objective function will be exactly the same as in the offline case.

Scenario 2 includes the lowest possible demand in the first twelve planning periods and

the highest possible demand in the last twelve planning periods, see Figure 6.8.
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Figure 6.8. Scenario 2 of the demand realization

In this case, the online algorithm with the rolling horizon is not able to solve the problem
as effectively as the offline algorithm does. In fact, the online algorithm will make only four
shifts of high-costly overtime production, while the offline algorithm will make twelve.

Scenario 3 is defined by alternating blocks of six planning periods with alternating

minimal and maximal demand, see Figure 6.9.
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Figure 6.9. Scenario 3 of the demand realization

The online algorithm with the rolling horizon is not able to shift all highest demands in
Scenario 3 and, therefore, has the overtime production in four planning periods. The offline
algorithm completely eliminates production in overtime slots, so the total costs and the value of
the competitive ratio differ for the offline and online algorithms.

Scenario 4 matches the demand distribution from the Theorem 6.1, see Figure 6.10.
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Figure 6.10. Scenario 4 of the demand realization

For Scenario 4, the online algorithm makes no shifts, while the offline algorithm is able
to shift all overtime slots productions.

For the online case the model was solved under the rolling horizon:

1. The production plan is constructed for the nearest eight planning periods;

2. The created production plan is implemented for the nearest period;

3. The planning horizon is moved by one planning period, and the mathematical model

is updated with the new demand data;
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4. The stock at the end of the first planning period and new demand data are used as the
input data for the new model.
The value of the objective function as well as the value of the competitive ratio is

presented in Table 6.1 for the online and offline algorithm for each considered demand scenario.

Table 6.1: Comparison of the offline and online algorithms on four generated demand scenarios.

Objective Objective Relative gap between Competitive
function value of function value of the objectives of the  ratio value
the offline the offline offline and the online for the online
algorithm ($) algorithm ($) algorithms (%) algorithm
Scenario 1 1454136 1454136 0 1
Scenario 2 1616168 1759192 8,85 1,0885
Scenario 3 1587848 1657000 4,36 1,0436
Scenario 4 1557288 1852890 19 1,1898

The solution of the online algorithm is worse than the optimal one for three out of four
demand distributions: the relative percentage gap between the objectives of the online and offline
algorithms is positive. The corresponding value of the competitive ratio is higher than the one for
Scenario 2, Scenario 3 and Scenario 4.

Despite the fact that not every assumption was satisfied (e.g. Assumption 9), the
statement of the Theorem 6.1 is confirmed. The highest value of the competitive ratio of the
online algorithm with the rolling horizon is obtained in case of the demand distribution described
in Theorem 6.1. It should be noted that the difference in the costs between solutions provided by
the online and offline algorithm reaches 19% in the worst-case scenario.

The formulated theorem and the computational example were already published in [70].
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6.1.5 Capabilities and limitations of the approach

Theorem 6.1 is formulated based on the worst-case analysis of the CLSP
problem (5.1)-(5.5) without backlogging and setup costs. Table 6.2 shows applicability of the
analytical approach for defining the worst-case of demand distribution for production planning

problems with other structures.

Table 6.2: Applicability of the analytical approach for defining the worst-case of demand

distribution
Production planning CLSP CLSP CLSP CLSP DLSP
model structure without BG*  without BG*  with BG* with BG*

without SC**  with SC** without SC**  with SC**

Applicability

of the analytical
approach for defining
the worst-case

Yes Limited No No No

BG* - backlogging, SC** - setup costs.

The analytical approach for defining the worst-case of demand distribution may be
applied to CLSP problems without backlogging and with a specific structure of setup costs: until
Assumption 7 used in our analysis stays valid.

For DLSP and CLSP with other production system structures, considered analytical
approach cannot be applied. Changes in the production system structure lead to the changes in
the structure of the goal function and restrictions. The whole model becomes complex and
interrelation between demand distribution and the values of different production costs become
not evident any more.

Nonetheless, the worst-case demand for the CLSP model (5.1)-(5.5) is described for the
length of the rolling horizon from 1 to N — 1 periods by Theorem 6.1. Hence, the method is
applicable for strict online problems, where demand information is known only for the current
planning period, and for the online problems, where nearly all information about the future is
available.

Obviously, Assumption 7, Assumption 8, and Assumption 9 strictly limit the described
approach. Even though the problem can be generalized relatively easily and Assumption 9 can be

eliminated, two other assumptions are crucial for the considered analysis. An additional future
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work in this direction can be done. However, since the application of the analytical approach is
limited, future research should be mostly considered as a base for a better problem
understanding.

Some other approaches are required in order to analyze the worst-case of demand

distribution for the DLSP and more complicated CLSP structures.

6.2 Analytical approach for deriving the value of
competitive ratio

6.2.1 Perishable products with lost sales

Formulation of the CLSP model

We consider the mathematical model (5.6), which describes inventory management for
perishable products with lost sales. In order to add the capacity restrictions, the highest possible
production amount in planning period i is fixed by L; units. The mathematical model for

perishable products with lost sales with the capacity restriction is:

n

OYQJQLZ(Q% +hi(q; —d)* +5;(d; — q))" + Ki6(q:)) (6.3)

i=1

The assumption that the production process is strictly online is still valid, meaning that
the exact value of the demand for the current planning period reveals only at the end of the
current period. All other assumptions from the work of Wagner [25] are assumed to be valid as

well (Assumption 1, Assumption 2 and Assumption 3 from p.31).

Deriving a competitive ratio

To derive the value of the competitive ratio, the reasoning from the Wagner’s work is
repeated. The formula, which defines the value of the competitive ratio for the production
planning model with perishable products and lost sales, was given in Theorem 3.1 of Wagner’s

work (see p. 32). The new extended formulation of the theorem is given below.
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Theorem 6.2. We consider the following production planning strategy: in period i, if
¢;i = S;, order q; = 0 units and if ¢; < s;, order q; < L; units. The competitive ratio of this

strategy is at most:

i {max {Ki — (s;i —¢i)q; (Ci + hi) 1 i}}
i:c;i<s; Ki - (Sl' - Ci)Li' Ki 9 'Cl' .

The maximum value of the strict competitive ratio is:

e e LRaE
lrz‘llci)scl max Ki — (Si — Ci)Li ’ Ki ' ’ Ci .

Furthermore, the competitive ratio of any algorithm is at least max(s;/c;).
i:c;<s;

The considered production strategy is conditioned on Assumption 3, which implies that
the production period with ¢; <'s; does exist. Otherwise, the optimal production strategy is
backlogging in all planning periods, both in the online and offline case. To prove the
Theorem 6.2, its special case of a single period model with unknown demand d is considered for
a start.

Theorem 6.3. If c = s, it is optimal (the strict competitive ratio equals to 1) to order zero

units. If ¢ < s, the strict competitive ratio of ordering q units is equal to:

K—(s—c)q q(c+h) s}

; 1; —¢.
K—(s—c)L K * c

max {
The maximum value of the strict competitive ratio is:
K L(c+h) s
; +1; —}.
K—(s—c¢)L K c

max {

Proof. For the case ¢ = s the proof is obvious: since the cost structure is known in
advance for the online and offline algorithms, the provided solution is to produce zero units in
both cases. Therefore, the competitive ratio of the online algorithm is equal to one.

However, an additional argumentation is required to prove the Theorem 6.3 statement for
¢ < s. Analogically to the proof provided in paper [25], the competitive ratio value is defined by:

() 6

where Z(d) is the value of the objective function in the online case and Z*(d) is the value of the
objective function in the offline case. Three possible cases determining the structure of Z(d) and

Z*(d) are considered, noting the online player’s production quantity by q:
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1.

The demand exceeds the maximal order quantity: 0 < g < L < d.

The best production strategy for the offline algorithm is to produce the highest possible
amount, which equals to L. The objective value of such a production strategy defines the
structure of the denominator in (6.4), and the following lower bound on the competitive

ratio is determined:

_ Z(d) - Z(d)
Pt \z (@) " b \cL+sd -1 +K

According to the Assumption 3, cd + K < sd. So the demand value is bounded:

d > K /(s — c). Based on that, the upper bound for the competitive ratio is derived:

Z(d) Z(d)
P kit (CL Fs(d—1) + K) =sup <cL Ts(d—1)+ K)
Regarding to the fact that the case 0 < g < L < d is considered, the online costs are
defined as:
Z(d)=sd+ (c—s)q+K
This value is put into the numerator of (6.4), which results the formula for the

competitive ratio:

p = sup (6.5)

az0

sd+(c—s)q+K
(sd+(c—s)L+K>

By Lemma 1 from the linear-fractional programming (see p. 31), the optimization
problem (6.5) is equal to the following linear program:
max (sy + ((c—s)q+K)z)
S.t.:
sy+((c—s)L+K)z= 1
z=0, y=>0
The dual linear system is the following:
mina
S.t.:
as =s

a((c—s)L+K)2(c—s)q+K
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The competitive ratio (6.4) is equal to the optimal dual solution:

K-(s—-0q) K-(s—0)q
'K—(S—C)L}_K—(S—C)L

max {1 (6.6)

. The demand is less than the production capacity: 0 < d < L.

The capacity restriction for demand value becomes meaningless for the offline algorithm:
it is always possible to produce enough to satisfy the demand. The optimal production
amount in the offline case equals to d units. Analogically to the case 1, the total costs of

the offline algorithm are plugged into the denominator of (6.4) and the competitive ratio

_ Z(d)
p= OizégL cd + K

In order to deduce the total costs of the online algorithm, two subcases are analyzed:

is the following:

a) The production amount in the online case is less than the demand value:
0<d<gq<L

The value of the competitive ratio is the following:

—hd+ (c+h)qg+K
cd+K

p= sup

0<dsL
Based on Lemma 1 from the linear-fractional programming, a switch to the linear
programming model and the corresponding dual model is implemented. The derived

competitive ratio coincides with the solution of the dual system and equals to:

e+ h) 6.7)
K+1
However, since g < L, the maximal possible value of competitive ratio equals to the
following:
M (6.8)
K+1
b) The production amount in the online case is higher than the demand value:
q<d<lL
The value of the competitive ratio is the following:

sd+(c—s)g+K
cd+ K

p= sup
0<d<L
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Based on Lemma 1 from the linear-fractional programming, a switch to the linear
programming model and the corresponding dual model follows. The derived

competitive ratio coincides with the solution of the dual system and equals to:

(6.9)

Summarizing cases 1, 2a and 2b, the total value of the competitive ratio is defined as the
maximal value among (6.6), (6.7) and (6.9):

K—(s—c)q q(c+h) S
max{K—(s—c)L' kL E}

Taking into account (6.8), the total competitive ratio is always less than:

{ K _L(c+h)+1_ s}
maxK—(s—c)L' K "¢

Thus, Theorem 6.3 is proved.
]
To prove the statement of Theorem 6.2, the total costs of the online algorithm and the

total costs of the offline algorithm are represented as the sums of costs in each planning period:

N
2(d) = ) Z(d),
i=1

N
ACESWACH

Next, the set S = {i: ¢; < s;} is defined. By Theorem 6.3 for each planning period i € S,
the following inequality is fulfilled:

K—(s—c)q q(c+h)
K—(s—colL K

s
Z;(d;) < max{ +1; E} Z;(d;)

To prove the statement of Theorem 6.2, the statement of Theorem 6.3 is utilized;
additionally the cases where demand is equal to zero or the offline algorithm produces nothing

are analyzed. The further proof exactly repeats the proof from the M. Wagner’s work [25].
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6.2.2 Durable products with backlogged demand

Formulation of the CLSP model

The mathematical model (5.7)-(5.9), which describes durable products with backlogging,
is considered. In order to add the capacity restrictions, the highest possible production amount in
planning period i is fixed by L; units.

The mathematical model describing the production process for durable products with

backlogging with the capacity restriction looks like:

n
minZ(cl-qi + hi1i+ + Sili_ + Klg(ql)) (610)
i=1
S.t.:
Ii = Ii—l + qi — di) Vi € {1 Tl} (611)
q <L, Vie{l..n} (6.12)
q; =0, Vie{l..n} (6.13)

The assumption that the production process is strictly online, meaning that the exact
value of the demand for the current planning period reveals only at the end of the current period,
still applies. All other assumptions from the work of Wagner are considered to be valid as well

(Assumption 1, Assumption 2 and Assumption 3 from p. 31).

Deriving a competitive ratio

To derive the value of competitive ratio, the reasoning from Wagner’s work is repeated.
Two subsets of the planning periods set are considered: P ={i:[; =0} and
N ={i:I; < 0}. P and N denote the periods with respectively non-negative and non-positive
inventory. If the inventory equals to zero in the planning period i, we assign i arbitrary to P or N.
The statement of Lemma 2 (see p. 33) stays true for the model (6.10)-(6.13), since the additional
capacity restriction does not influence the representation of the objective function.

The aim is to identify the upper and lower bounds of the total costs for the offline
algorithm and to formulate the analog of Lemma 3 (see p. 33) extended for the existing capacity

restriction. In order to achieve this, an additional assumption is formulated.
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Assumption 10. The total demand, summarized over all planning periods, is assumed to

n
diSZLi

n
i=1 i=1

be less that the total production capacity:

Lemma 4. The optimal costs provided by the offline algorithm for the production
planning model (6.10)-(6.13) have the following lower and upper bounds:
ad<Z'(d)<cL+K'evd =0,
where the bold symbols denote the vectors and a; is defined as following:
min(c;) = min(c;)

a; = min {si, hy, }, Vi={1..n}
m n—m

Proof: The aim is to define the lower and upper bounds for the optimal offline cost. Since the
capacity restriction exists in the model, the production strategy q; = d; is not always a feasible
solution. However, due to Assumption 10, the production strategy q; = L; in period i is a
feasible offline solution, so we have the upper bound for the offline costs:
Z'(d)<cL+K'e
To begin deriving a valuable lower bound of the offline costs, the fixed setup costs are

removed:

n
Z*(d) = mi(r)tZ(cl-qi + 517 + I =
qz
i=1

n i i

Tjglz ciq; +s; max Z(dj—q]-),o + h; max Z(qj—dj),O

i=1 j=1 j=1
By introducing the additional variables p; = 0,7; = 0, Vi € {1...n} and using the fact
that s > 0, h > 0, the lower bound is determined as the following linear program:

min (s'’p+c'q+h'r
min (s'p +c'q ) (6.14)

s.t.

i i
Pi+zq1' ZZdu VieN (6.15)
j=1 j=1

i i
ri—quZ—Zd-, VieP 6.16)
= =1
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qi < Ly, Vie{l..n} (6.17)
p.q.r=0 (6.18)
The size of the subset N is denoted by m (dim {N} = m), which is the number of
periods with a non-negative stock. Planning periods belonging to the set N are denoted by
nq ... Ny,. Thereby, the size of the subset P, which coincides with the numbers of periods with the
non-negative stock, equals to (n — m): dim {P} = n — m. Planning periods belonging to the set
P are denoted by p; ... Dp_m-

The mathematical model (6.14)-(6.18) with the new notations is rewritten as:

min (s'p+c'q+h'r
min (s'’p+c'q ) (6.19)
S.t.:
ny ny
Pn, t Z qj = Z d; (6.20)
j=1 j=1
Nm Nm
Pn,y, +qu sz,- (6.21)
j=1 j=1
P1 P1
Ty, — Z q; = - Z d; (6.22)
j=1 j=1
Pn-m Pn-m
Ty o — q; = - d; (6.23)
j=1 j=1
—q, = -1, (6.24)
—qn = —Ly (6.25)
p.qr=0 (6.26)

The system consists of the objective function and 2n inequalities (without the last group
of constraints defining the non-negative nature of the variables): m inequalities (6.20)-(6.21)
with the variables p; and q;, (n — m) inequalities (6.22)-(6.23) with the variables r; and q;, n

inequalities (6.24)-(6.25) with the variables q; and the parameters L;.
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In the next step, the matrix of the linear system (6.19)-(6.26) is constructed (see Matrix 1)
and the inverted matrix for the dual system is deduced. The matrix of the system (6.19)-(6.26)

has the size 2n X 2n, so the inverted matrix correspondingly has the same size.

Io 0 1 - o| | S | |1 1 1 1 1 - - o|

L) 0 0 - 1J L) OJ L 1 1 1 1 - 1 OJ
0 0 e e OF 1 0 0 - 0 -1 0 0 oo e e 0]
: : [o 1 0 o] -1 -1 -1 0 ol
A= : : lo 0 1 0 -1 -1 -1 -1 =1 - 0
0 0 ol Lo 0 o 1 -1 -1 -1 -1 -1 —1J

0 0 0] [0 0 0] 1 0 - 01

: | | 0 1 0 0|

: 0 0 1 0

o 0 - - O L) 0 o e ()J L) 0 0 0 - - 1J

Matrix 1. Matrix of the linear system (6.19)-(6.26)

The first logical group of columns in Matrix 1 is constructed by the coefficients in front
of the vector p; it correspondingly comprises m sub-columns. The second logical group of
columns in Matrix 1 is defined by the coefficients in front of the vector r; it correspondingly
consists of (n —m) sub-columns. Finally, the last logical group of columns in Matrix 1 is
constructed by the coefficients in front of the vector q; it correspondingly comprises n
sub-columns.

In order to decide where in the last column ones, minus ones and zeros should stay, the
set of planning periods was written in the following way: {p; ny p, ny N3 ... Ny, Pn_m}, Where n;
is the element i of set N, p; is the element j of set P. The concrete sequence of the elements n;
and p; may be different; just one of the possible combinations for the demonstration purposes
was considered.

The matrix of the dual linear system for the system (6.19)-(6.26) is constructed by

inverting the initial Matrix 1, see Matrix 2.
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Matrix 2. Inverted matrix of the linear system (6.19)-(6.26)

=== ~—

-0

0

0

The dual system of the system (6.19)-(6.26) has the dual variables x;,y;,z;, where

i €EN,j€P,te{l..n}andis written as the following based on Matrix 2:

\

S.t.:

(

max k

n

e

i=1 k=1
iEN

i
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XnneN — Ynnep + Zn < Cn
z=>0

Making the unification, the following dual system results:

oo e
xkzlkzl X — Zkz W) z)

iEN
s.t.:
Xi < Si» VieN
n n
Zxk—Zyj+ZkSck, Vk € {1..n}
i=k j=k
iEN jEP
z=>0
Denoting y = x, B = —Y,T = z and rewriting the system in new variables, the following

model can be concluded:

j

/ chhﬂj+Lt) 6.27)

n i

max Z drYi —
i=1 k:
iEN

s

1 Jj=1k=1
JEP
S.t.:

Vi = Si, VieN (6.28)
Bi<hj, VjEP (6.29)

n n
Z}/k—z,ﬁ’j + 1, < ¢y, Vk E{l Tl} (630)

i=k ]:k

N jep

=0 (6.31)
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In order to find feasible solutions for the dual problem (6.27)-(6.31), several special cases

were considered:

1. If B, T = 0, the model (6.27)-(6.31) is the following:

n i
iEN

s.t.

xiSsi, VieN

n
Zyk < Cp, Vk € {1..n}
i=k
iEN
The feasible solution of the model is defined by the following expression:

min(c,)
m )'

y; = min <si,
where m is the size of the subset N.
2. If B,y = 0, the model (6.27)-(6.31) is the following:
max LT
S.t.:
Ty < Ck, vk € {1..n}
T=0
The feasible solution of the model is 7; = c;.

3. If ,y = 0, the model (6.27)-(6.31) is the following:

maxzn: zj: diBj

j=1 k=1
jep

s.t.:
,8]' < hj, Vj€eP

Zﬂj < Cg, vk € {1..n}
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The feasible solution of the model is defined by the following expression:

B.=min| h; min(c)
i "n-m)’

where (n — m) is the size of the subset P.
Summarizing the three cases considered and using the weak duality, it can be stated that
vy'd,B'd,t'd are the lower bounds for Z*(d). Consequently, a’'d is also the lower bound for

Z*(d), where «a; is defined by the following expression:

o, = min {y,, B 7} = mi 'minci h'minci
L VPt —mm{sl, m “n—m}
Thus, Lemma 4 is proved.
]

The sufficient condition for the existence of a finite competitive ratio for an arbitrary
online production strategy as well as the set of the lower and upper bounds for the competitive
ratio are presented in the theorem below.

Theorem 6.4. For an arbitrary online strategy q = 0, inequality b'q +K <0 is a

sufficient condition for the existence of a finite strict competitive ratio. Furthermore, if a strict

finite ratio p exists, it satisfies the following inequality:

< p < max

al+b'q+K {ai}
c'L+K'e 1<i<n '

a;
Proof: Utilizing the lower bound from Lemma 4, Lemma 3 and Assumption 2 that d # 0,

the upper bound for the competitive ratio is the following:

< ad+b'q+K
< su :
P OsdEL a'd

d+#0

With the help of Lemma 1 from the linear-fractional programming, the equal linear
program is constructed:
rr}zgx(a’y + (b'q + K)z)
S.t.:
ay=1
y=>0,z=0
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The dual program is:

S.t.:

0=b'q+K
The dual model is feasible when b'q + K < 0. This implies that the competitive ratio is

at maximum:

&
max y—
1=<isn \q;
The analysis performed above is repeated for the upper bound from Lemma 4. As a
result, the following lower bound for the competitive ratio is constructed:

- ad+b'q+K
p= OiggL cL+K'e

a+0

Obviously, the higher the nominator is, the higher the value of the competitive ratio is.
Therefore, the lower bound for the competitive ratio equals to:
al+bq+K
c'L+K'e

Thus, Theorem 6.4 is proved.

6.2.3 Computational example

An example of the “backlog-up-to” decision policy was considered in the work [25] and
the formula for the strict competitive ratio was derived.

In this section, the aim is to consider the example of a production planning system, where
the backlogging is high-priced and therefore undesirable. Moreover, two different production
strategies that do not use backlogging are focused. The following data was used for the CLSP
model (6.10)-(6.13):
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N =12 number of planning periods in the overtime planning horizon,
D = 120 production capacity in one planning period and the maximal possible

demand (units),

c; =100 production costs (per unit) in the period i ($):
¢; in odd c; in even
planning periods planning periods
5 10
k=1 setup costs ($),
s = 100000 backlogging costs per unit ($),
h=1 holding costs per unit and per period ($),
Ib=0 initial stock (units),
The decision variables are:
qi production amount in the planning period i (units),
6(qi) €{0,1} binary setup variable that is equal to one if the production is obtained

in planning period i.

Production strategy 1

The following production strategy is considered:

e Production of min (D,D — I) in odd planning periods;
e Production of max (0,D —I") in even planning periods.
To calculate the upper and the lower bounds for the competitive ratio, firstly the
necessary condition of the competitive ratio existence from Theorem 6.4 is checked. The value

of b'q + K is calculated:

n n

b'q+K = Z ¢ + z hj 1q; + Ki6(qy) | = Z((Ci + (n—Dh)q; + K6(qy))

j=i i=1

< Z((ci +(n—Dh)D+K) = DZ(Q +(m—Dh+K) <
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< DZ(ci + (n—0)h) +nk
i=1

Since D > 0,nK > 0, it is enough to identify the sign of the following sum in order to

check the necessary condition of the competitive ratio existence:

n

n(ci+(n—i)h)= G+ n(n—i)hzf(c1+c2)+ Hi h>0
i=1 i=1 2

i=1 i=1
The necessary condition of the competitive ratio existence from Theorem 6.4 is
unsatisfied, since b'q + K < 0. Therefore, the upper and lower bounds for the competitive ratio

do not exist.

Production strategy 2

In a next step, a static production strategy is considered, e.g. the production in each
planning period equals to the half of the highest possible demand value: q; = D/2 .

According to Assumption 10, the total demand value is less than nD. The sign of
b'q + K is checked in two corner cases: when the demand always takes the highest possible
value and the lowest possible value in all planning periods.

If the demand takes the highest possible value D in each planning period, while D /2
units are produced, then the backlogged demand value is I~ = D/2 and all planning periods

belong to the subset N. For this particular demand realization, the b’'q + K value equals to the

following:
n n \ n n D
b’q+K:z Ci—ZSj ql+Kl6(ql) = Z Cl'—ZSj E-I_K =
i=1 J=1 i=1 j=i
jEN

N O

n n
Z Ci—ZSj +nK <0
i=1

j=i
Obviously, b'q + K < 0, since the punishment for the unsatisfied demand has a much
higher order of magnitude. According to Theorem 6.4, the finite value of the competitive ratio

exists for the scenario with the highest demand.
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If the demand takes the lowest possible value in the each planning period, while D /2
units are produced, then the amount in stock is always positive and all planning periods belong to
the subset P. According to Assumption 2 d # 0, so the lowest possible value of the total demand

equals to 1. For this particular demand realization, the b’q + K value equals to the following:

n n n
b'q+K= Z ¢ + z hi 1q; + Ki6(q:) | = Z((Ci + (n—Dh)q; + K6(q))
i=1 = =1

n D D n
= ((ci+(n—i)h)E+K> =EZ(CL- + (- Dh+K)

n
=DZ(ci+(n—i)h)+nK >0
i=1

Obviously, b'q+ K =0, since all sum components are positive. According to
Theorem 6.4, finite value of the competitive ratio does not exist for the scenario with the lowest
values of the demand.

To summarize, the formula for the finite competitive ratio cannot be derived using such a

production strategy, because it is impossible to verify the sign of b'q + K in a general case.

6.2.4 Capabilities and limitations of the approach

The considered solution approach is applicable to the two different production planning
models: perishable products with lost sales (6.3) and durable products with backlogging
(6.10)-(6.13). Switching to the terminology established in the production planning, the method
for deriving the upper and lower bounds of the competitive ratio is applicable to the CLSP
problems with backlogging and setup costs. At the same time, for production planning problems
with different model structures, e.g. for DLSP model, a new reasoning is required, see Table 6.3.

It should be noted that the analytical approach for deriving the value of the competitive
ratio is applicable only for the strict online problems (no actual demand values are known during
the production process). The additional market information, e.g. in production planning models

with the rolling or folding horizon, provides no advantages.
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Table 6.3: Applicability of the analytical approach for deriving the value of competitive ratio

Production planning CLSP CLSP CLSP CLSP DLSP
model structure without BG*  without BG*  with BG* with BG*

without SC**  with SC** without SC**  with SC**
Applicability
of the analytical
approach for deriving No No Yes Yes No

the value of
competitive ratio

BG* - backlogging, SC** - setup costs.

The analytical approach for deriving the value of the competitive ratio may be applied to
the CLSP with the backlogging but without any setup costs. The models that have some
additional restrictions or the models where Assumption 10 is not satisfied can be investigated by
the analytical approach for deriving the value of the competitive ratio as well. However, the
argumentation and transformations have to be considered very carefully, since the new feasible
domain of the mathematical model is defined. The existence of the corresponding sufficient
condition and the upper and the lower borders for the competitive ratio is not automatically
guaranteed for other models.

In addition, production planning problems with non-negative-only stocks are difficult to
analyze, and are not in the focus of Wagner’s paper [25]. As it can be noticed from the examples,
it is impossible to derive the value of the competitive ratio if the production strategy does not
propose all stocks negative. If the backlogging is prohibited or the production strategy proposes
some periods with positive inventory, the sufficient condition for the finite competitive ratio
(b'q + K < 0) is unsatisfied. If the set N is empty, the vector b becomes automatically greater
than zero and neither the required condition, nor the rest of the analysis does hold. This is the
reason why a positive-stock-only model cannot be analyzed by the analytical approach for
deriving the value of the competitive ratio; different solution techniques are required for the non-
negative-only stock. In fact, in the related research [27], it was shown that the finite performance
ratio (similar to the competitive ratio) does not exist for any production planning problem that

strictly maintains positive inventory.
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6.3 Robust Optimization approach for the CLSP'

6.3.1 Robust Counterpart (RC)

Let us recall the formulation of the CLSP mathematical model with several producing
machines and several products, where several production slots during one planning period are
taken into account. Production in overtime slot, indeed, is more costly.

By definition, the robust counterpart of the uncertain CLSP described above will be an

optimization model with the following objective:

K N M
min sup Z Z Z(Cijtxijt + 0VyjeYije + SijeZije + SVijeZVije)
djte[d;t_Gd;t'd;t"'Gd;t] i=1t=1j=1
(6.32)
N
t=1j=1

This objective is augmented by constraints (2.2)-(2.10) that stay true for any
dje € [d}, — 0d},, d;, +0d};], Vj€{1..M},t € {1..N}.

According to the RO paradigm, the RC model should have a certain objective. In order to
determine it, objective (6.32) is equivalently rewritten by introducing the extra variable F and the

additional restriction:

minF

N M N M
Z Z(Cijtxijt + 0VyjeYije + SijeZije + SVijeZVije) + Z Z hjelje < F

K
=1t=1j=1 t=1j=1

i
Adding the new objective and additional restriction to the (2.2)-(2.10) and forcing the
restrictions to stay true for any dj; € [d]’-} —0dj, dje + Hd;t], vjie{l..M},t € {1...N}, the

following Robust Counterpart can be deduced for the initial CLSP problem:
minF (6.33)

S.t.:

! The author thanks Prof. Dr. Nemirovski for his helpful consultations, valuable comments and
effective cooperation provided during the scientific visit to the Georgia Institute of Technology.
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K N M N M
z Z(Cijtxijt + ovijtyl-jt + Sijtzijt + SvijtZ'Uijt) + z Z h]tljt <F (634)
i=1t=1j=1 t=1 j=1
K
Ijl = 110 + Z(xl-jl + Yijl) - d]1,\7’] € {1 M} (635)
i=1
K
L =1+ Z(xm +yije) —die,  VjE{l..M},t€{2..N} (6.36)
i=1

Xijt < Uijt * Zijt, Vi € {1 K},] € {1 M}, t e {1 N} (637)
YVijt < Wijt * ZVyjt, Vi € {1 K},] € {1 ...M},t € {1 N} (6.38)

M
injt <U, Vie{l.KLte{l..N} (6.39)

j=1

M
Zyi,-t <W, Vie{l.K}te{l..N} (6.40)

j=1
"< L, <1, vje{l..M},te{l..N} (6.41)
z;j¢ € {0,1}, zv;;, € {0,1}, vie{l..K},je{l..M},t € {1..N} (6.42)
Xije =2 0,¥i5: 20, ie{l..K},je{l..M},t e {1..N} (6.43)
dye € [dj, — 0dj,,dj +6d,],  Vje{l..M}te{l..N} (6.44)

However, the RC should be rewritten in a solvable form. The objective function is
preserved as it is, and each original constraint is replaced by the system of linear inequalities
using the transformation (5.10).

The transformation (5.10) is directly applicable for constraints (6.34), (6.37)-(6.41), while
equality constraints (6.35)-(6.36) of the initial RC firstly should be replaced equivalently by two
inequalities. Functions fy(a) and f;.(a), which are mentioned in the transformation (5.10), are

formed for each constraint by combining the terms that respectively contain the uncertain
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demand dj; or do not. Introducing the additional variables p;; when needed, each constraint is

transformed to the system of linear inequalities.
Additionally, the decision variable I;; is expressed in terms of I, X;j¢, Vije, djr and is

eliminated from the RC:

Lo = Lo+ ZZ(xUt +yie) - Z Vjie(1..M}te{l..N}

i=1r=
The construction of the RC may be done not only for the symmetric interval uncertainty,
but also for any convex uncertainty set.

For shortening, the following notation is used:
di™ = d;, +0d;,

Putting all system of inequalities described above together and augmenting the resulting

system of linear constraints with the original objective to be minimized, the resulting model is:

minF (6.45)

s.t.

K N M N M
Z Z Z(Cijtxijt + 0V Yije + SijeZije + SVijeZVije) + Z Z itDje < F (6.46)

i=1 t=1j=1 t=1j=1
K t t

ljo + ZZ Xije + Yije) = Z A" <pje, Vj€{l..M})te{l..N} (6.47)
i=1r=1 r=1

K t t
Z Z Xije + Vi) — Z dm* <p,,  Vje{l..M}te{l..N) (6.48)
i=1r=1 r=1

xl-jt < ui]-t ' Zi]'t' Vi € {1 K},] € {1 M}, t e {1 N} (649)

Yijt < Wijt * ZVjjt, Vi € {1 K},] € {1 M}, t e {1 N} (650)
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M=

Xije < Ui, vie{l..K},te{l..N} (6.51)
=1
M
Zyi,-t <W, Vie{l.K}te{l..N} 6.52)
=1
K t
Lo + Z Z(xut + yije) - Z dmn > i vje (1. M)t € {1..N} (6.53)
i=1r=1
K t
Lo + Z Z Xije + Vije) — Z dmer > min, yje (1. M}t e{l..N} 6.54)

~
1l
=

r=1

=
o~

Lo + Z Z Xije + Vije) — Z dmin < M vje{l..M},t€{l..N} (6.55)

i=1r=1

K t
Z Z Xije + Vije) — Z dmer < X, yje(1..M}te{l..N} (6.56)

i=1r=1
z;je € {0,1}, zv;;, € {0,1}, vie{l..K},je{l..M},t € {1...N} (6.57)
xijt 20,020, i€{l.K}je{l..M},te{1..N} (6.58)

Since the decision variables x;;;, ¥;j: and the demand d;; are non-negative integers,

inequalities (6.48), (6.53) and (6.56) are redundant as they are weaker than inequalities (6.47),
(6.54) and (6.55) respectively. Thereby, restrictions (6.46) and (6.47) can be combined, since

there is no need in additional variable p;; any more.

The resulting system of the RC for the initial uncertain CLSP problem is the following:
minF (6.59)
S.t.:

K N M
Z z Z(Cijtxijt + 0vyjeYije + SijeZije + SVijezVije) +

i=1t=1j=1
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Y[ (M D Z(Wym) zdmm)

t=1 j=1 i=17r=
Xijt < Uije * Zijt) Vi € {1 K},] € {1 M}, t e {1 N}

Yijt < Wije * ZVijt, Vi € {1 K},] € {1 M},t € {1 N}

M

me <U, Vie{l.KLte{l..N)
j=1

D Ve SWe  Vie{l.Khte{l.N)

K t

t
Lio + Z Z Xije + Vije) — Z dpt =1, vjef{l..M},t€{1..N}
r=1

i=1r=1

t
Z Xije + Vie) — Z dmn < %, i (1. M}t e {1..N}

AM*

zijt € {0,1}, zv;;,. € {0,1}, vie{l..K},je{l..M},t € {1...N}

Xije = 0,y = 0, ie{l..K},je{l..M},t e{1..N}

(6.60)

(6.61)

(6.62)

(6.63)

(6.64)

(6.65)

(6.66)

(6.67)

(6.68)

The created RC belongs to the class of Mixed-Integer Programming (MIP) problems and

includes real, integer and binary variables. It can be solved by using any appropriate optimization

software. Because of the existing binary and mixed integer variables the tractability issues of the

constructed model should be considered.

6.3.2 Affinely Adjustable Robust Counterpart (AARC)

In the following, the initial CLSP model (2.1)-(2.11) and it’s RC (6.59)-(6.68) are

considered. To make the transformations more specific, the symmetric demand uncertainty is

considered, but the AARC can analogically be constructed for other types of uncertainty. The

positive nominal demands d;;, are given for all planning periods in advance and positive 6 is a
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given uncertainty level. So d}?i" =dj; — 0d},, A} = dj; + 0d}; and the uncertain demand

belongs to the newly defined uncertainty interval:

dj € [dj, — 0d},, d, + 0d;,, ], vj € {1..M},t € {1...N}

To construct the Affine Adjustable Robust Counterparts (AARCs) for the uncertain

CLSP (2.1)-(2.11) model, firstly it must be defined which model variables are allowed to depend

on the prescribed amount of the actual market data. Recalling the previous deliberations, the
decision variables are the following:

Xijt quantity of product j to be produced in normal working time slot of period t using

production machine i,

Yijt quantity of product j to be produced in overtime slot of period t using production
machine i,

Ii¢ stock of product j at the end of period t,

Zijt binary variable, which equals to 1 when x;;; = 0 in period t and 0 otherwise,

ZVjjt binary variable, which equals to 1 when y;;; = 0 in period t and 0 otherwise.

The decision variables I;; defining the stock value in each planning period can be
expressed by the decision variables x;;;,y;j;, the initial stock and the actual demand values;
therefore, they may be eliminated. The binary variables z;;; and zv;;, remain unchanged in the

mathematical model, even though it may affect the tractability status of the resulting AARC.

Applying the methodology for the AARC construction, other decision variables are
allowed to depend on the prescribed data amount; the decision-making policy is restricted to the
affine decision rules in order to achieve a computational tractability:

—_ -0 s
Xijt = i + Z Tije djs,

SEBt

— 0 S
Yijt = Wi t Z wije djs

SEBt

Recalling the created RC (6.59)-(6.68) of the initial CLSP, the affine decision rules are

plugged into the model, but the uncertain demand dj; is not replaced by its corner values:
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min F

K N M t
Z Z Z (cl]t <nut + nf]t ]S> + 0Vjj¢ (wl]t + Z wl]t ) + SijtZijt + Svl-jtzvl-jt> +
i=1t=1j=1 s=1
t
Lo + ZZ(nw+a)Ur Z(nw+ww) )—z jr> <F

t
70, + anjtdjs <wjxzy, Vie{l.Khje{l.Mhte{l..N}

0% + Z WSedjs S Wy X Zvie, Vi€ {1..K}j € {1.. M}t € {1..N}

s=1

M t

Z <ng.t + anjtdjs> <U, Vie{l.KLte{l..N)
j=1 s=1

M t
Z <w?jt + Z wfjtdjs> <W, Vie{l.Khte{l..N}
j=1 s=1

t K
IjO + Z Z T[lp]-r + (U?]'r + Z (T[isjr + wf]r)djs - Z d]T > Imln
r=1i=1 r<t: r=
sef1..1

vie{l..M},t € {1...N}

t K t
* Z Z ( Ty + Wiy + Z(”Ur + wjjr)d; ) - Z djr < [[*,
r=1 r=1

vie{l..M},t € {1...N}
z;je € {0,1}, zv;;, € {0,1}, vie{l..K},je{l..M},t € {1..N}
t

T + anjtdjs > 0, wi, + Z wipdis 20, Vie{l..K},je{l..M},t€{1..N}

s=1 s=1
The obtained model becomes complex to understand. To make it less sophisticated,
similar terms and separate terms containing uncertain demand djt are respectively combined. In
the first inequality, the production and setup costs are grouped separately from the holding costs

for simplicity:
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min F
S.t.:
N K M
(..0_|_ 0 Sz A+ SU: )
Cl]tnijt ovl]twijt Sl]tZl]t Svl}tzvut
t=1i=1 j=1
N M K
£ Q2 2 2 (Gt omgeot) |
s=1j=1\i=1 t:
SE[1...t]
N M/ K t t K \
0 0
+ZZ hie | I; +ZZ(niﬁ+wiﬁ)+z Z (nl-sjr+wis]-r)—1 d; <F
t=1 j=1 i=1r=1 s=1 \ i=1 T=st:
s€[1..1]

t
0, + anjtdjs <y Xz Vie{l.K}je{l..Mhte{l..N}

W% + Z WSedjs S Wiy X Zvge, Vi€ {1..K}j € {1.. M}t € {1..N}

s=1

M t

j=1 s=1

M

Z <w?jt + Z wfjtdjs> < Wy, vie{l..K},t e {1..N}

j=1 s=1

K t t K

Lo + ZZ(n?jr + w?jr) + Z Z Z (nl-sjr + wfjr) -1 |djs = ™",
i=1r=1 s=1 \ i=1 T=st:
SE[1..7]

vie{l..M},t € {1...N}

K t t K
Lip + ZZ(E?F + a)?jr) + Z Z Z (nisjr + a)l-sjr) -1 |djs < ",
i=1r=1 s=1\ i=1 Tt
SE[1..1]

vie{l..M},t € {1..N}
;e € {0,1}, zvy; € {0,1}, vie{l..K},je{l1..M},t € {1..N}
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t t
T + anjtdjs > 0,0 + Z wiidis 20, Vie{l..K},je{l..M},t€{1..N}
s=1 s=1

In order to eliminate the unknown demand values d;; and to guarantee the feasibility of

the solution for any demand scenario, the maximum principle from the Convex Optimization is

utilized [26]. The constraint in the general form is as follows:

T
Z d]-txi]-t < L,
t=1

where x;;; is a decision variable, L is the known data and dj; is the uncertain parameter. The

following equivalences can be written down:

T
Z djoxije < L, Vdy, € [d,(1 - 0),d7,(1 + 0)]
t=1

g
t:xijt<0 t:xijt>0
g

xl-jt| <L

T T
t=1 t=1

Each constraint of the previously created AARC model can analogically be transformed
using (6.69).
To simplify the notation, additional variables o;s, s, Yijts €j¢r € Mj¢ are defined:

K N

ajs = ZZ(CijtT[isjt + ovl-jtwis]-t), vie{l..M},se{l1..N}

i=1t=s

_ﬁjs < ajs < ,8]'5, V] € {1 ...M},S € {1 N}

—Yiit < Wi < Vije vie{l..K},je{l.M},te{l..N},se{l..t}

—efy <o <&y, Vie{l.K}Lje{l.Mhte{l..N},se{l..t}
K t
ZZ(nfjr-l_wfjr)_f}gt =1, VjE{l...M},l <s<t<N
i=1r=s

—Tlftﬁfftﬁnft, Vie{l.M},1<s<t<N
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Utilizing the equivalencies mentioned above, the final version of the AARC for the initial

CLSP model (2.1)-(2.11) is deduced:

n,F,ot,r[lf%)r/%s,f,n F (6.70)
S.t.:
N K M N M
Z Z Z(Cijtnlpjt + ovyjewlie + SijeZije + SVijezVije) + Z Z a5 ds
t=11i=1 j=1 s=1j=1

N M
ZZ 6.71)
s=1j=1

N M K t

+zz hft( ZZ Ur+wl]7')+Zf]t +9277]t 15) <F

im1r=1

0 *
7Tijl: + an]td + ezyut js = ui]'t X Zijt,
s=

(6.72)
Vie{l..K},je{l..M},t € {1...N}
0 * *
w;je + Z wl]td + 6; el-sjtdjs < Wijt X ZVjje, 6.73)

vie{l..K},je{l..M},t € {1...N}

t t
(ng.t + Z wsd)s + ezyfjtd]’fs> <Uy Vi€{l..K}te{l..N} (6.74)

s=1

M= 1

<wut + Z o dl; + GZ £5.d ) <W, Vie{l.Khte{l..N} (6.75)

Lip + Z Z(nw + ) + Z &5, d;, GZ N5 dis = I"”" 676)

i=17r=

vie{l..M},t € {1..N}

K t
ZZ ijr + wl]r) + Z E]t s T Gth js = Imax (6.77)

vie{l..M},t e {1..N}
zij € {0,1}, zv;;¢ € {0,1}, vie{l..K},je{l..M},t e{1..N} (6.78)
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nl, + an]td* GZ}/Ut - > Vie{l.K},je{l.MLte{l..N} (679

Wl + Z wSods; + ez e5,d >0, Vie{l.Khje{l..MLte{l..N}  (680)
S= s=1

The constructed model optimizes the worst-case of demand; therefore, it is further

referred as the AARC WORST-CASE for shortening.

6.3.3 AARC with several demand scenarios

One of the advantages of the robust optimization approach is the fact that it can be
applied not only for optimization of the worst-case scenario: mandatory requirement is a
convexity of the objective. Based on this fact, the AARC model (6.70)-(6.80) can be designed
less conservative; a weighted sum of several demand scenarios can be optimized instead of the
worst-case.

It is assumed that the following three scenarios have the same probability to occur: the
demand takes the lowest values, the demand takes the nominal values, and, finally, the demand
takes the highest values in all planning periods. Two additional variables are introduced:

L total costs value when the lowest possible demand values in all planning periods,

A total costs value when the nominal demand values in all planning periods.

The objective function of the AARC WORST-CASE model is substituted by the
weighted sum. Since all three scenarios are equally probable to occur, these are considered with

the equal weights of 1/3:

/ (1 Ly toayl F)
TLAFapyein \3 3 3

The corresponding restrictions are:
N K M

N M
Z Z Z(Cutﬂut + Ovutwut + SijeZije + Svl]tzvljt) + Z Z a]S -6 Z Z ,3

=1i=1 j= s=1 j= =1 j=1

N M K t t
+ZZ h]t(I]0+ ZZ(nw+wlﬂ)+Zfﬁ GZnitd};) <L
s=1

t=1j=1 i=1r=1

v
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N K M N M

0 0 *

z Z Z(Cijtﬂijt + 0V + Sijezije + SV zVe) + Z z ajsdjs
j

t=1i=1 j=1 s=1j=1

+ii hj <1,0+ ZZ(nw+ww)+Z§]t ]s) <A

t=1j=1 i=17r=

N K M N M
Z Z Z(cz]t”ut + Ovl]twl]t + SijtZije + sz]tzvut) + Z Z a]s is+6 Z Z ﬁ]s

t=1i=1 j=1 s=1j= s=1J=

+ii ]t<110+ ZZ(nm+wm)+Z§’]t +92’71t ]S> <F

t=1j=1 i=1r=

Combining the objective function written above and the new constraints together, and
augmenting the resulting system of the linear constraints with restrictions (6.72)-(6.80), the

following model is resulting:

1 1 1
] L4 A+ 6.81
atin (5oLt g At F) (6381)

N K M N M

0 0 *

z Z Z(Cijtﬂijt + 0Vl + SijeZije + SV 2z ) + Z Z ajsdjs
j

t=1i=1 j=1 s=1 j=1

N M
—0 Z Z . dr
Piscs 6.82)
K t t t
Lot ) D (nh +0f)+ ) &idi—0 ) 5 d}‘s> <L
i 1 s=1 s=1

S.t.:

t=11i=1j=1 s=1j=1

+2N:i "y <I’°+Zz(nw+ww)+25ﬂ ,s> <A

i=1r=

(6.83)
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N K M N M

0 0 *

z Z Z(Cijtﬂijt + 0V + SijeZije + SV 2z ) + Z Z ajsdjs
j

t=1i=1 j=1 s=17=1

S5l fhe s sl

0 *
7Tijt + Z T[L]td]s + GZ yl]t ]s = uijt X Zijt

vie{l..K},je{l..M},t €{1..N}

wl]t+Zwl]t +GZ£Ut < Wije X ZVjj,

vie{l..K},je{l..M},t € {1...N}

M t t
Z (n?jt + Z s di + ez yfjtd;s> <Uy, Vie{l.K}te({l..N}

j=1 s=1 s=1
M t t
Z <w?jt + Z wfjtdfs + ez Sl]tdjs> < W, vVie{l..K},te{l..N}
j=1 s=1 s=1
K
Lip + Z Z(n?jr + w?jr) + Z fjt GZ n]t d]*s > Imln
i=1r=1

K t
Lo + ZZ( Ur+wm)+25ﬁ +92’7,t djs < I"%%,

vie{l..M},t € {1...N}
z;jt € {0,1}, zv;;, € {0,1}, vie{l..K},je{l..M},t € {1...N}

nd, + and* 0 Vied; 20, Vie{l..K)j€{l..M)te(l..N}

W%, + Z wSedss + GZ e5,d 20,  Vie{l.K}je{l..M}te(l..N}

(6.84)

(6.85)

(6.86)

(6.87)

(6.88)

(6.89)

(6.90)

(6.91)

(6.92)

(6.93)
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The constructed model optimizes the weighted sum of the total costs for several demand

scenarios; therefore, it is further referred to as the AARC SCENARIOS for shortening.

6.3.4 Computational examples for the RC

Example 1. The RC with rolling horizon

In this section, the RC is tested for the CLSP with incomplete information about the
demand when planning under rolling horizon’. The considered production problem has 8
planning periods, one machine and one product. The holding costs are high in the last period and
can be considered as utilization costs; there are no setup costs. Capacity restriction only exists for
production; stock volume is not limited.

The production system parameters and market data for the considered example are

indicated below:

j=1 products,
i =1 production machines,
n=+4 number of periods in rolling horizon,

t=1..N,N=38 planning periods,

d; =50 nominal demand in the planning period t (units),

60 =02 uncertainty level of demand (20%),

U =100 total production capacity of machine (units),

Ct production costs (per unit) for product j at normal working time slot of

period t using production machine i ($):

i C C3 (€4 C5 Cg C7 (g

100 150 100 150 100 150 100 150

h; holding costs (per unit) in period t ($):

hy h; hy hy hs hg h; hg
2 2 2 2 2 2 2 300

lip =0 initial stock of product j (units).

? The example was published in [71]
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The initial CLSP model (2.1)-(2.11) and it’s RC (6.59)-(6.68) are considered for the
indicated data and rolling horizon of 4 planning periods; the demand for the nearest period is
assumed to be deterministic, see Figure 2.4.

In order to compare the results of RO approach, it is proposed to consider an ideal case
(all demands are known in advance) and a probabilistic model for the uncertain CLSP. To
construct the probabilistic model, it is proposed that demand has the union distribution and,
therefore, all possible demand values have equal probabilities, since no information about the
demand is available except the uncertainty interval. Based on that, the mean value of the demand
can be calculated and used for the calculation of the expected value of costs.

To evaluate the RC solution, the following workflow is used:

e consider several demand scenarios;

¢ solve the RC model and the probabilistic model for each scenario under the
rolling horizon;

e solve the deterministic mathematical model for each scenario (ideal case);

e compare the obtained total costs.

The workflow was implemented for four demand scenarios, see Table 6.4: the lowest
possible demand in all planning periods; the highest possible demand in all planning periods; the
case when the demand alternates between the lowest and the highest possible values; and, finally,

the case described in Theorem 6.1.

Table 6.4: Four demand scenarios for testing the RC model (Example 1)

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period &

Scenario 1 40 40 40 40 40 40 40 40
Scenario 2 60 60 60 60 60 60 60 60
Scenario 3 40 60 40 60 40 60 40 60
Scenario 4 40 40 50 50 50 50 60 60

According to the proposed workflow, the RC, the probabilistic model and the
deterministic model were solved, and the differences in total costs were determined, see

Figure 6.11.
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Figure 6.11. Comparison of the total costs between the RC, the probabilistic and the ideal model
solutions on four demand scenarios (Example 1)

As it can be noticed, in 3 out of 4 demand scenarios the production plan proposed by the
probabilistic model was more costly than the RC solution. The percentage differences between
the costs associated with the RC, the probabilistic model and the optimal costs are presented in

Table 6.5.

Table 6.5: Percentage differences between the costs associated with the RC, the probabilistic
model and the optimal costs (Example 1)

Percentage difference Percentage difference Percentage difference
between costs associated between costs associated between costs associated
with the RC and optimal with the probabilistic with the probabilistic

costs model and optimal costs model and the RC
Scenario 1 1,24 12,81 11,6
Scenario 2 0 0 0
Scenario 3 0,889 1,78 0,9

Scenario 4 0,886 12,21 11,3
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Summarizing, in the considered example, the highest difference in costs between the RC
solution and the probabilistic solution (over four demand scenarios) is 11,6%, whereas the

highest difference in costs between the RC and the optimal solution is less than 1,24%.

Example 2. The RC with folding horizon

In this section, the RC is tested for the CLSP with uncertain information about the
demand when planning under a folding horizon®. The considered production problem has 7
planning periods with normal and overtime working slots, one machine and two products. The
holding costs are high in the last period and can be considered as utilization costs; there are no
setup costs. The capacity restriction only exists for the production; the stock volume is not
limited. Backlogging (satisfaction of demand later than required) is allowed for some
punishment; therefore, the stock variable can take negative values. In the last planning period,
unsatisfied demand is highly undesirable, so the corresponding punishment is higher. Demand
uncertainty is defined by the lower and upper bound for each product and each planning period.
Production system parameters and market data for the considered example are indicated below:

j =2 products,

i =1 production machines,

t=1..NN=7 planning periods,

d}?in lower bound of demand for product j in planning period t (units):
dit™ dp™ dz™ dip™ dig™ dig™ diy™"
j=1 @47 48 53 64 68 57 49
j=2 32 31 23 15 20 27 32

diy ™ upper bound of demand for product j in planning period t (units):
d};lax d}rgax d}rglax d}rzax d}!r;lax d}gax d}';lax

i=1 163 66 71 8 92 77 67

j=2 40 37 29 19 24 33 40

? The example was published in [72]
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it

jt

ovjt

Dje

production capacity for product j in normal working time slot of

period t (units):

Ujp Uz Uiz Uy Uis U Uy
j=1 (0 70 70 70 70 70 70
j=2 P25 25 25 25 25 25 25

production capacity for product j in overtime slot of period t

(units):

le sz Wj3 Wj4 Wj5 Wj6 Wj7
j=1 20 20 20 20 20 20 20
j=2 12 12 12 12 12 12 12

production costs (per unit) for product j in normal working time

slot of period t using production machine i ($):

1 C2 €G3z Ca Cjs Cig Cjy
j=1 (100 120 100 120 100 120 100
j=2 [0 50 70 50 70 50 70

production costs (per unit) for product j in overtime slot of period t

using production machine i ($):

0Vj; 0Vj; 0Vjz 0Vjy O0Vjs O0Vjg O0Vjy
j=1 (150 180 150 180 150 180 150
j=2 100 70 100 70 100 70 100

punishment for backlogging (per unit) in period t ($):

Pj1 Pj2 Pj3 DPja Pjs Pje Dj7
j=1 200 200 200 200 200 200 800
j=2 130 130 130 130 130 130 500
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hj

Sjt = 3
svj; =3
IjO =0

holding costs (per unit) in period t ($):

h:

0 hp Ry

] ]

j=1 R 2
j=2 B 3 3

his  h;
2 300
3100

setup costs in normal working time slot of period t, when producing

product j ($),

setup costs in overtime slot of period t, when producing

product j ($),

initial stock of product j (units).

For the first product, the upper and lower bounds of the demand are defined by 15%

uncertainty level (taking into account rounding to an integer), whereas for the second product the

demand uncertainty level is 10%. In Figure 6.12, the borders for the demand are shown

graphically. The growth of the demand for the first product is obtained up to the fifth planning

period, but then customer’s demand starts to decrease. Vice versa, demand for the second

product decreases in the first periods and increases at the end of the planning horizon.

100
90
80
70
60
50
40
30
20
10

0

Demand

1 2 3 4 5 6 7
Planning periods

= @= [ower bounf of
demand
for product 1
+<4l-+ Lower bounf of
demand
for product 2
== Upper bounf of
demand
for product 1

Figure 6.12. Lower and upper borders for the demand

The initial CLSP model (2.1)-(2.11) and it’s RC (6.59)-(6.68) are considered with the

indicated data and folding planning horizon. Both models are extended for the backlogging;

demand for the nearest period is assumed to be deterministic, see Figure 2.2.
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Completely by analogy with the considered Example 1, and in order to evaluate the
constructed RC, an ideal case (all demands are known in advance) and a probabilistic model for
uncertain CLSP were considered and tested. The testing workflow coincides with the one

proposed in Example 1 and it was implemented for four demand scenarios, see Table 6.6.

Table 6.6: Four demand scenarios for testing the RC model (Example 2)

Planning periods

1 2 3 4 5 6 7
Scenario 1  j=1 47 48 53 64 68 57 49
J= 32 31 23 15 20 27 32
Scenario 2 j=1 63 66 71 86 92 77 67
j=2 40 37 29 19 24 33 40
Scenario 3 j=1 47 66 53 86 68 77 49
=2 32 37 23 19 20 33 32
Scenario4  j=1 47 48 53 75 92 77 67
j=2 32 31 23 17 24 33 40

80000 -

73841
73841
75006

o~
[@))
= 70000 A
2 ©
§ 60000
$ N
.E 50000 ICIeitSe;mlmstlc
(5]
D
._§ 40000 (Ideal case)
j_:t Robust
% 30000 Counterpart
2
§ 20000 ® Probabilistic
model

10000

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Figure 6.13. Comparison of the total costs between the RC, the probabilistic and the ideal model
solutions on four demand scenarios (Example 2)
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According to the proposed workflow, the RC, the probabilistic model and the
deterministic model were solved and the differences in total costs were determined, see
Figure 6.13.

It can be noticed that in two demand scenarios the production plan proposed by the
probabilistic model was more costly than the RC solution, and in other two scenarios vice versa.
The percentage differences between the costs associated with the RC, the probabilistic model and

the optimal costs are presented in Table 6.7.

Table 6.7: Percentage differences between the costs associated with the RC, the probabilistic
model and the optimal costs (Example 2)

Percentage difference Percentage difference Percentage difference
between costs associated between costs associated between costs associated
with the RC and optimal with the probabilistic with the probabilistic

costs model and optimal costs model and the RC
Scenario 1 0,72 0,19 -0,53
Scenario 2 0 1,58 1,58
Scenario 3 0,41 0,05 -0,36
Scenario 4 0,20 1,36 1,16

For the four presented scenarios of demand realization, the solution provided by the
probabilistic approach was better than the solution provided by the RC in two cases; the maximal
difference is 0.53%. However, in two scenarios where the RC solution was better, the maximal
difference is three times higher and equals to 1.58%.

Another important difference between the robust and probabilistic approach is the fact
that the robust optimization approach guarantees that the total costs will not exceed the value of
7384183 (in worst-case) for any possible demand realization. The expected value of the total costs
equals to 62243$ for the probabilistic model, but in the worst case the total costs are 750063,
which is 20.5% higher. Moreover, if the production planning problem without backlogging is

considered, the solution provided by the probabilistic model may become infeasible.
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6.3.5 Computational examples for the AARC, simulation and
analysis of results

In this section, the aim is to test the RO solution approach on the computational example,

in particular the AARC models. The production system parameters and the market data indicated

below are provided by the operating manufacturing company:

j=1..M,M =10 products,

i=1.KK=2
t=1..N,N=30

6 =01

NC =09

ovC = 0,75
ul-jt = NC - 480

Wijt = 0vC - 240

U, = NC - 480

W, = 0vC - 240

Cijt

production machines,
planning periods,

nominal demand for product j in planning period t (units):

die dpe d3e die dse dee d7e dge dor dioe
2 20010 10 30 30 60 60 100 100

uncertainty level of demand (10%),

productivity coefficient in normal time slot,

productivity coefficient in overtime slot,

production capacity of machine i for product j in normal working time
slot of period t (units),

production capacity of machine i for product j in overtime slot of
period t (units),

total production capacity of machine i in normal working time slot of
period t (units),

total production capacity of machine i in overtime slot of period t
(units),

production costs (per unit) for product j in normal working time slot of

period t using production machine i ($):

Cijc on weekdays Cijt on Saturdays Cij: on Sundays
(tmod7 €[1;5]) (tmod7 =6) (tmod7=0)
6 7,5 9
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Ovijt

hjt = 0,6

Sijt = 5" Cijt
Svijt =5 Ovijt

I]mln == 2 - d]*l

[ = 14- d},

production costs (per unit) for product j in overtime slot of period t

using production machine i ($):

ov;;; on weekdays ov;;; on Saturdays  ov;;; on Sundays
(tmod7 €[1;5]) (tmod7 =6) (tmod7=0)
7,5 7,5 9

holding costs for product j (per unit and per period) in period t ($),
setup costs for machine i in normal working time slot of period t,
when producing product j ($),

setup costs for machine i in overtime slot of period t, when producing
product j ($),

initial stock of product j (units),

minimal stock of product j at the end of any period (units),

maximal stock of product j at the end of any period (units).

Results. The AARC with real coefficients in decision rules

The AARC WORST-CASE (6.70)-(6.80) and the AARC SCENARIOS (6.81)-(6.93)
models with real values of coefficients in the affine decision rules are considered.

Both models are MIP problems, which were implemented and solved using the IBM
ILOG CPLEX Optimization Studio. Detailed information about the created models and the
generated solutions is presented in Table 6.8.

The computational time for the AARC SCENARIOS model is less by about 7 minutes
than for the AARC WORST-CASE model, but the accuracy tolerances (relative MIP gap
between best node and best integer solution) also differ.

The numeric values of the objective functions were calculated for both AARC models on
100 generated demand scenarios. The optimal value of total costs was calculated for each

demand scenario from the deterministic CLSP that describes an ideal case.
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Table 6.8: Solving properties of the AARC WORST-CASE and AARC SCENARIOS models with

real coefficients in the decision rules

AARC WORST-CASE*
with real coefficients in
decision rules

AARC SCENARIOS**
with real coefficients in
decision rules

Number of MIP model matrix
rows after MIP pre-solve

Number of MIP model matrix
columns after MIP pre-solve

Number of MIP model non-zero
matrix coefficients after
MIP pre-solve

MIP model binary variables
MIP search method
Solving time

Accuracy tolerance

55050

49380

489130

1200

Dynamic search

1838.4 sec
1,8%

54180

48810

468880

1200

Dynamic search

1398.2 sec
2,9%

*AARC that optimizes the worst-case demand scenario,

** AARC that optimizes the weighted sum of several demand scenarios.

The values of the objective functions of the AARC WORST-CASE, the AARC

SCENARIOS and the ideal case for three fixed demand scenarios and on average over 100

generated scenarios were compared, see Figure 6.14.

The objective values of the AARC SCENARIOS model were, on each fixed scenario and

on average over 100 scenarios, closer to the optimal values than the objective values of the

AARC WORST-CASE model. The absolute and relative gaps between the objectives of the

AARC models and the optimal objectives are provided in Table 6.9. Even with positive accuracy

tolerances and 10% uncertainty level of demand, the price of robustness was less than 3%.
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X o o
160000 - SN
12 — —
155000
=
.g 150000 ® Deterministic CLSP
= (Ideal case)
& 145000
5]
2
§ 140000
'.g‘ 135000 AARC WORST-
2 CASE* with real
<= 130000 coefficients in
3 decision rules
% 125000
>
B AARC
12
0000 SCENARIOS** with

real coefficients in
decision rules

115000

110000

Highest possible Mean values of Lowest possible Average on 100
demand demand demand scenarios

*AARC that optimizes the worst-case demand scenario,
**AARC that optimizes the weighted sum of several demand scenarios.

Figure 6.14. Comparison between the AARC WORST-CASE, the AARC SCENARIOS (with real
coefficients in the decision rules) and the optimal objective values on selected demand scenarios
and on average over 100 demand scenarios

Table 6.9: Comparison between the AARC WORST-CASE, the AARC SCENARIOS solutions
(with real coefficients in the decision rules) and the optimal solution

AARC WORST-CASE* AARC SCENARIOS**

with real coefficients in with real coefficients in
decision rules decision rules

Maximal absolute gap ($) 3786,78 3178,02

Maximal relative gap 2.9% 2,43%

Average relative gap (over 100 1.665% 1.51%

generated demand scenarios)

*AARC that optimizes the worst-case demand scenario,
**AARC that optimizes the weighted sum of several demand scenarios.
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Results. The AARC with integer coefficients in decision rules

The AARC WORST-CASE (6.70)-(6.80) and the AARC SCENARIOS (6.81)-(6.93)
models with integer coefficients in affine decision rules are considered.

Both models are MIP problems, which were implemented and solved using the IBM
ILOG CPLEX Optimization Studio. The number of the MIP model matrix rows, columns and
non-zero matrix coefficients after MIP pre-solve coincides with the numbers presented in
Table 6.8. The only difference is that the newly constructed AARC WORST-CASE and AARC
SCENARIOS models have additional 19800 integer variables, since the coefficients of the

decision rules become integers, not reals.

Table 6.10: Solving properties of the AARC WORST-CASE and AARC SCENARIOS models with
integer coefficients in decision rules

AARC WORST-CASE* AARC SCENARIOS**
with integer coefficients in ~ with integer coefficients in

decision rules decision rules
MIP search method Dynamic search Dynamic search
Solving time 1949.3 sec 1697.8 sec
Accuracy tolerance 1,87% 2,.9%

*AARC that optimizes the worst-case demand scenario,
** AARC that optimizes the weighted sum of several demand scenarios.

Both models were solved with nearly the same accuracy as in the case with real
coefficients in the decision rules. The computational time increased insignificantly by switching
to the integer coefficients: less than by 2 minutes for the AARC WORST-CASE model and by
about 5 minutes for the AARC SCENARIOS model. Detailed information about the created
models and the solutions is presented in Table 6.10.

Analogically to the case considered for standard affine decision rules (real coefficients),
the numeric values of the objective functions were calculated for both AARC models based on
100 generated demand scenarios. The optimal value of the total costs was calculated for each
demand scenario with the help of the deterministic CLSP that describes an ideal case.

A comparison of the AARC WORST-CASE, the AARC SCENARIOS and the optimal

objective values shows a similar trend to the results indicated in Figure 6.14: the production plan
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provided by the AARC SCENARIOS model was closer to the optimal production plan. The price
of robustness also changed insignificantly after switching to the integer coefficients in the affine
decision rules, see Table 6.11. It increased by 0,15% for the AARC WORST-CASE model and
decreased by 0,33% for the AARC SCENARIOS model in comparison with the models

containing real coefficients in the decision rules.

Table 6.11: Comparison between the AARC WORST-CASE, the AARC SCENARIOS solutions
(with integer coefficients in the decision rules) and the optimal solution

AARC WORST-CASE* AARC SCENARIOS**
with integer coefficients in ~ with integer coefficients in

decision rules decision rules
Maximal absolute gap ($) 3992,16 2745
Maximal relative gap 3,05% 2.1%
Average relative gap (ove; 100 1.73% 1.04%
generated demand scenarios)
Accuracy tolerance 1,87% 2,9%

*AARC that optimizes the worst-case demand scenario,
** AARC that optimizes the weighted sum of several demand scenarios.

Additionally, a simulation which is the closest to the reality was done: the demand for
product 1 took values from the set {1,2,3}, while the demand for other products took integer
values from corresponding uncertainty interval: [d]’-} —0dj, djp + Hd;t], vj € {2..M},
te{l..N}

The comparison of the integer demand simulation with the continuous demand simulation
was done. The price of robustness for the AARC WORST-CASE model became insignificantly
higher in case of integer demand simulation, see Table 6.11 and Table 6.12. The price of
robustness for the AARC SCENARIOS model increased by 1,1% in the worst case and became
by 0,2% higher than the analogous by the AARC WORST-CASE, on average of 100 scenarios.
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Table 6.12: Comparison between the AARC WORST-CASE, AARC SCENARIOS solutions (with
integer coefficients in the decision rules) and the optimal solution. Simulation with integer
demand values

AARC WORST-CASE* AARC SCENARIOS**
with integer coefficients in ~ with integer coefficients in

decision rules decision rules
Maximal absolute 4182.6 4168.5
gap ($)
Maximal relative gap 3,21% 3,2%
Average relative gap (ove; 100 17% 1.9%
generated demand scenarios)
Accuracy tolerance 1,9% 3,7%

*AARC that optimizes the worst-case demand scenario,
**AARC that optimizes the weighted sum of several demand scenarios.

It is quite possible that the accepted accuracy tolerance influenced the obtained changes,
since it was slightly higher for the integer demand simulation.

To compare results with the ones provided by probabilistic model, it was assumed that
the demand is uniformly distributed on the uncertainty interval. Given this additional
probabilistic information, expected values of demand were calculated (they equal to the nominal
demand values) and plugged the initial CLSP model. Resulting deterministic MIP problem was
solved with the accuracy tolerance 0.5%. Demand simulation showed that the inventory capacity
constraints of the constructed model were typically violated: as large as 66 of the total of 300
constraints were violated on average over 100 generated demand scenarios. For the demand
scenario with the highest possible demand values, the stock became negative 58 times (totally
over 30 planning periods and 10 products). Moreover, proposed production plan does not allow

to satisfy the demand completely, which is highly undesirable.
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The influence of uncertainty level on the total costs value

To evaluate the influence of uncertainty level 8 on the total costs value, the same
instances of AARCs were solved for the uncertainty level of 5%, 10%, 20%, 30% and 50%.

The AARC WORST-CASE model with integrality restrictions on the decision rules was
considered. The model was solved and evaluated based on the 100 generated demand scenarios.
The demand was assumed to be a continuous variable, so it took real values from the
corresponding uncertainty intervals. The results in Table 6.13 shows that even for the 50%
demand uncertainty the maximum price of robustness reaches 11,21% and is only 3,28% on
average.

Table 6.13: Percentage difference in costs between the AARC WORST-CASE solution (integer
coefficients in the decision rules) and the optimal solution depending on the uncertainty level

Uncertainty AARC WORST-CASE* Optimal objective =~ Maximal Average Accuracy
level objective value (integer value on average relative  relative  tolerance
coefficients in decision over 100 demand  gap gap
rules) on average over 100  scenarios ($)
demand scenarios ($)

5% 144121,5 1429123 1,59% 0,85%  1,7%
10% 145344.,8 142883,8 3,05% LL73%  1,9%
20% 144307,6 142867,6 3,72% 1,02% 2%

30% 145141,6 143088,8 6,83% 1,46%  1,4%
50% 147419,8 142851,5 11,21%  3,28%  2,5%

*AARC that optimizes the worst-case demand scenario.

Obviously, a direct dependence exists between the uncertainty level of the market data

and the price of robustness of the AARC model solution.

Adjustability advantage

In this section, the advantages of the AARC of the initial CLSP model are reflected over

a non-adjustable RC.
The AARC WORST-CASE model (with integer coefficients in decision rules) and the

non-adjustable RC model were tested based on 100 generated demand scenarios for several
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uncertainty levels. The RC model became already infeasible for 21% level of demand
uncertainty, so the RC solution was only calculated for 8 equal to 5%, 10% and 20%.

The absolute values of the optimal total costs and the total costs of the RC and the AARC
solutions (on average over 100 demand scenarios) are shown in Figure 6.15. The production plan
constructed by the RC has always the highest costs. The absolute gap between the RC and the
optimal solutions varies from 14684$ to 58684$, depending on uncertainty level, on average

over 100 demand scenarios.

[9\}
v
225000 A e
210000 - X &  mOptimal objective value on
195000 - ® q average over 100 demand
é 180000 - § § § % E = g § scenarios
E 165000 - q § - Q 3 a §
= 150000 - - - -
& 135000 - The AARC WORST-CASE*
3 120000 - objective value (integer
.§ 105000 - coefficients in decision rules)
o on average over 100 demand
< 90000 - .
= scenarios
S 75000 -
E 60000 - u The RC objective value
S 45000 - on average over 100 demand
30000 - scenarios
15000 -
O A T T
5% 10% 20%

Uncertainty level

* AARC that optimizes the worst-case demand scenario.

Figure 6.15. Comparison between the AARC WORST-CASE, the RC and the optimal objective
values on average over 100 demand scenarios for different levels of demand uncertainty

The absolute and relative gaps between the total costs values of the RC solution and the
optimal total costs are presented in Table 6.14. The maximal difference in costs exceeds 21%
already for 5% of demand uncertainty and reaches 98% for 6=20%. The average relative gap
varies from 10% to 41%. This significant difference in costs is caused by the higher

conservativeness of the RC model and shows the adjustability advantage.
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Table 6.14: Percentage difference in costs between the AARC WORST-CASE solution (integer
coefficients in decision rules) and optimal solution, between the RC solution and the optimal
solution depending on the uncertainty level

Uncertainty AARC WORST-CASE* RC
level with integer coefficients in decision
rules
Maximal Average relative gap Maximal Average relative gap
relative gap  over 100 generated relative gap  over 100 generated
demand scenarios demand scenarios
5% 1,47% 0,92% 21,39% 10,28%
10% 3,05% 1,73% 44.5% 20,56%
20% 3,72% 1,02% 98,27% 41,27%

* AARC that optimizes the worst-case demand scenario.

6.4 Robust Optimization approach for the DLSP

6.4.1 Robust Counterpart (RC)

For the construction of the RC for the DLSP problem, the formulation of the uncertain
DLSP mathematical model with several producing machines and several products (2.12)-(2.19)
forms the basis.

To construct the RC, transition to the model with the certain objective function is
necessary. In order to get it, the objective (2.12) is equivalently rewritten, introducing the extra

variable F and the additional restriction:

min F
N M N M
z E(Cijtpijzijt + Sijt max(O, Zijt - Zij,t—l ) ) + z 2 h]tI]t <F

t=1j=1 t=1j=1

K
=1

However, the RC should be written in a solvable form. So analogically to the RC of the
CLSP construction, each original constraint is replaced by the system of linear inequalities using

the transformation (5.10).
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The transformation (5.10) is directly applicable for all inequality constraints, while
equality constraints (2.13), (2.14) of the initial DLSP should be first replaced equivalently by
two inequalities. Functions f,(a) and f;;.(a), which are mentioned in the transformation (5.10),
are formed for each constraint by combining the terms that respectively do or do not contain the
uncertain demand dj;. Introducing the additional variables p;; if needed, each constraint is
transformed to the system of linear inequalities.

Additionally, the decision variable I;; is expressed in terms of o, p;j, Zij¢, dj; and is

eliminated from the RC:

t _I]O+ Zzpuzut Z ) VjE{l .M}te{l..N}

i=1r=
The construction of the RC may be done not only for the symmetric interval uncertainty,

but for any convex uncertainty set. For shortening, the following notation is used in this case:
di™ =d; +6d;,

Combining the system of inequalities described above together and augmenting the
resulting system of linear constraints with our original objective to be minimized, the following
model results:

minF
s.t.:

K N M N M
ZZZ(CUtu”Z”t + Sijt max(O Zijt — Zijt—1 ) ) +ZZhjtpjt <F
Jj=

i=1t=1 t=1j=1

1
K t
IjO + ZZUUZUL- - Z d}?in < Pjt, VJ € {1 M},t € {1 N}

K
Lo + Z Ui Zije — Z A <p,,  VjE{l..MLte{l..N)}

~
II

1

[N

M
sz <1, Vie{l..K}te{l..N}
j=1
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K t

Lo + Z Zuljzijt — Z dpt =1, vje{l..M}te{l..N}
i=1r=1 r=1
K t

Iy + Zzu”'zift - Z dpex > i yjie{1.. M}t € {1..N}
i=1r=1 r=1
K t

Iy + Zzu”'zift - Z dpin < ¥, yje{1..M}t€{1..N}
i=1r=1 r=1
K t t

IjO + ZZuijZijt - Z d}?’ax < Ijm'ax, V] € {1 ...M},t € {1 N}

i=1r=1 r=1

zijy €{0,1}, Vie{l..K},je{l1..M},t €{1..N}

Furthermore, the same argumentation as used for the construction of the RC for the
uncertain CLSP problem is applied. Redundant constraints are eliminated, since decision
variables z;;; and parameters u;j, d;; are non-negative. Thereupon, the two first constraints can
be combined, as there is no need for additional variable pj; any more.

For the initial uncertain DLSP problem, the resulting RC is the following:

minF (6.94)
S.t.:
K N M
Z z Z(Cijtuijzijt + sije max(0, zjr — Zijr—1 ) )
i=1t=1j=1
.. . (6.95)
£33 | e (1]0 IR d}?i"> <F
t=1j=1 i=1r=1 r=1
M
sz <1, Vie{l..K},te{l..N} (6.96)
j=1
K t
o + z Z“"fz"ft _ Z Ao > [ e (1. M}t € {1...N} (6.97)
i=1r=1 r=1
K t t
o + Z Zuijzijt _ Z dpin < ¥, yje{1..M}t€{1..N} (6.98)
i=1r=1 r=1
zijy €{0,1}, Vie{1..K},je{l..M},t €{1..N} (6.99)
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The created RC belongs to the class of Mixed-Integer Programming (MIP) problems and
includes real, integer and binary variables. It can be solved using any appropriate optimization
software. Due to existing binary and mixed integer variables, the tractability issues of the

constructed model should be considered.

6.4.2 Affinely Adjustable Robust Counterpart (AARC)

The initial DLSP model (2.12)-(2.19) and it’s RC (6.94)-(6.99) are considered. To model
adjustability of the variables, the vector of decision variables z is allowed to depend on the

prescribed amount Py d of the true demand d for every k < n:
Zije = X (Prd) = py + qf P d,

where P;, ... B, are matrices given in advance, specifying the information base of the decisions

z;j¢, and Xy (+) are affine decision rules. It is assumed that the manufacturer works with an online

information base B, = {1 ...t}: at the beginning of the planning period t the actual values of
demands dj; ...d;; are known. So, the decision variables z;;; are replaced by the affine decision
rules:
Zijr = n?jt + Z nl-sjt djs
SEB¢
To make these transformations more specific, the symmetric demand uncertainty is
considered, but the AARC can be constructed analogically for other types of uncertainty. The

positive nominal demands d;;, are given in advance for all planning periods and a positive 8 is

the given uncertainty level. So d}?i" =d;; — 0d;,, dii™ = dj; + 6d}, and the uncertain demand

belongs to the newly defined uncertainty interval:

dj € [dj, — 0d},, d}, + 6d;,, |, vj € {1..M},t € {1...N}
Recalling the created RC (6.94)-(6.99) of the initial DLSP, the affine decision rules are

plugged into the model, but the uncertain demand d;; remains unchanged:
minF (6.100)

s.t.:
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0 S
+ S5 max Oiﬂijt-l' Z”Utd - L]t 1~ Z 7Tij,t—ldjs

SEBt

N M t
+Zz he | 1o + ZZuU(nut + Z 7S dis) —Zd,-t
r=1

t=1 j=1 i=1r= SEB;

M

Z(ngt + Z mS.d) <1, Vie{l.Khte{l..N}

j=1 SEB¢
K t t
0 s min
I]0+ ZZuU(nUt+ Zﬂ:l}tdjs)_Zdjt ZI] )
i=1r=1 SEBt r=1
K
max
Zzuu%t + ), M) - Z <
i=1r=1 SEBt

vie{l..M},t e {1..N}

vie{l..M},t € {1...N}

nl, + Z mSedis € {0;1}, Vi€ {1..K},j€{l..Myte{l..N)

SEBt

(6.101)

(6.102)

(6.103)

(6.104)

(6.105)

The obvious modeling issue in the system above is that the decision variable z;;; has a

binary nature. Therefore, the affine function n?jt + Ysen,

in the constraint (6.105).

s, d:

ijt

The concept proposes the following steps to overcome this issue:

;s should only take O or 1 values

® leave z;;; in the AARC model as a binary decision variable, not as the decision

rule;

e et decision rules n?jt + Yses, Tije djs for all other planning periods to take values

within the interval [0,1];

e update data and generate a new solution at the end of each planning period.
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By implementing the proposed approach, the following model is constructed:

minF
S.t.:
K N M t
Z Z Z <Cijtuij e + Cijelij Z s
i=1t=1j=1 s=1
t—1
s=1
N M / K ¢t
+ZZ\hjt Lio + ZZu nw+z Z Z umy — 1 | djs )<F
t=1j=1 i=1r=1 =1 T<t
€[1..7]
M Mt
ant +ZZ miedis <1, Vie{l..K}Lte{l..N}
j=1 j=1s=1
K t t K
Lo + Zzu”n?jr +Z Z uyms, —1 |di > 1™, vje{1..M}yt€{1..N}
i=1r=1 s=1\i=1 Tst:
SE[1..1]
K t t K
Lo + Zzuijﬂ?jr + Z Z wn, — 1 |djs < ™, vie{l..M},t € {1...N}
i=1r=1 s=1\ i=1 Tr=<t:
SE[1..7]

miy €{0;1}, Vie{l..K},j€{l..M}
m;jp =0, Vie{l..K},je{l..M}
Mo = Eijo, Vi€ {1..K},j€{1..M}

Mo =0, Vie{l..K},je{l..M}

t
OSn?jt+Z mSedis <1, Vie{1..K}j€{1..M}t€(1..N}
s=1
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The constructed model is updated and resolved at the end of each planning period,
realizing a folding horizon.

To simplify the notation, additional variables s, B, Vijt, $jt. Mje, Oije are defined:

K N
Ajs = ZZ CijeUijmije, Vj€{1..M},s € {1..N}

i=1t=s

—Bjs < ajs < Pjs, VjE{l..M},s € {1..N}

~Yiie < Wi < Vije vie{l.K}Lje{l..M},te{l..N},se{l..t}
K t

Zuijﬂ?jr—s‘ft =1, Vje{l.ML,1<s<t<N

i=1r=s

N5 <& <n}, ViE{l.ML1<s<t<N

vie{l..K},je{l..M},t € {1..N}

Utilizing the equivalencies mentioned above, the final version of the AARC for the initial

DLSP model (2.12)-(2.19) is constructed:

wh b ens (6.106)
S.t.:
K N M
ZZZ(CUtuU T[l]t +5Ut5m) +ZZC¥,5 + GZZﬁ]S
i=1t=1j=1 py e
N M K t (6107)
+ZZ hjt<1j0+ ZZ w"’ZS(]t +HZ77],: ]S> <F
M Mt M t
Z e + Z Z mjedjs + 92 Zyl,td,*s <1, vie{l..K}Lt€{1..N} (6.108)
j=1 Jj=1s=1 j=1s=1
K t
Ijo + ZZ u'lJT[l]r Z f]t ez n]t d]*s > I]mln'
i=1r=1 s=1 (6.109)

vie{l..M},t € {1..N}
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K t
IjO + ZZ L]r Z g]t + ez n]t d]*s =< Ijmax'

i=1r=1

vie{l..M},t € {1..N}
my €{0;1}, Vie{l..K},j€{1..M}
mjj; =0, Vie{l..K},j€{1..M}
Mo = Eijo, Vi€ {1..K},j€{1..M}

mijo =0, Vie{l..K},je{l..M}

70, + an]td* 0 ) ¥ijedjs 20, Vi€ {1..K}j € (1. MLt e (l..N)

70, + Z 7S, dls + BZyutd]"s <1, Vie{l..K}je{l..M}te(l..N)

6.4.3 Computational example and simulation

(6.110)

(6.111)
(6.112)
(6.113)

(6.114)

(6.115)

(6.116)

In this section, the aim is to test the RO solution approach using a computational

example. The production system parameters and market data indicated below are provided by the

operating manufacturing company:
j=1..M,M =10 products,
i =1..K,K=10  production machines,
t = 1..N,N =24 planning periods,

di nominal demand for product j in planning period t (units):

dip dae dye da dse dge dye dge dop dio
220010 10 30 30 60 60 100 100

6=0,1 uncertainty level of demand (10%),

u;; = 240 production speed of machine i for product j (units per period),
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Cijt production costs (per unit) for product j in normal working time slot of

period t using production machine i ($):

Cijr in normal working shift ~ ¢;;; in overtime shift

(t<16) (16<t<24)
6 7,5
hj: = 0,6 holding costs for product j (per unit and per period) in period t ($),
Sijt = 5" Cijt setup costs for machine i in normal working time slot of period ¢, when

producing product j ($),
Eijo=0 binary variable describing the initial state of machine i; it is equal to 1

when machine i is installed to produce product j and O otherwise,

Lip =2-dj; initial stock of product j (units),
1]."”'” =2-dj minimal stock of product j at the end of any period (units),
M =12y, maximal stock of product j at the end of any period (units).

The DLSP is a small bucket model, so the planning period is relatively small. The
considered production model includes 24 planning periods equal to one hour, and the production
schedule is created for one day. The first 16 hours are contained within the normal working time
slot, whereas the last 8 periods are contained within the overtime slot and, therefore, production
is more costly then. Stock limits meet the requirements of the manufacturing company: the lower
bound on stock is defined based on the safety stocks strategy, the upper bound on stock equals to

the maximal warehouse capacity, which equals to a half-day production capacity.
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Results. The AARC with real coefficients in decision rules

The AARC (6.106)-(6.116) of the initial DLSP is considered. The model is a MIP
problem, which was implemented and solved using the IBM ILOG CPLEX Optimization Studio.
Detailed information about the created model and the generated solution is presented in

Table 6.15.

Table 6.15: Solving properties of the AARC of the DLSP model

Property Value

Number of MIP model matrix rows after 79790
MIP pre-solve

Number of MIP model matrix columns after 77850
MIP pre-solve

Number of MIP model non-zero matrix 758980
coefficients after MIP pre-solve

MIP model binary variables 4700

MIP search method dynamic search
Solving time 258 sec
Accuracy tolerance 0%

The time of computations for the AARC of the DLSP model was about 7 times less than
for the AARC WORST-CASE of the CLSP model, even though the model size and the number
of binary variables is significantly higher for the AARC of the DLSP model. The obtained
solution is optimal, since the value of the accuracy tolerance (relative MIP gap between best
node and best integer solution) is zero.

The numeric values of the objective function were calculated for the AARC (6.106)-
(6.116) based on 20 generated demand scenarios. The optimal value of the total costs was
calculated for each demand scenario from the deterministic DLSP that describes an ideal case.

The values of the objective functions of the AARC were compared with the ideal case for

three fixed demand scenarios and on average over 20 generated scenarios, see Figure 6.16.
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Figure 6.16. Comparison between the AARC of the DLSP and the optimal objective values on
selected demand scenarios and on average over 20 demand scenarios

The objective values of the AARC model were better than the optimal values, in each
fixed scenario and on average over 20 scenarios, which is of course nonsense. This is caused by
the fact that the AARC production plan only provides the probabilities of productions for all
planning periods except the first one. For example, the probability of the product j production on
the machine i may be equal to 0,5 and, at the same time the probability of the product j + 1
production on the same machine may be also equal to 0,5. So the model neglect that one machine
produces only one product during one planning period or produces nothing.

The absolute and relative gaps between the objectives of the AARC model and the
optimal objectives are provided in Table 6.16. Even with positive accuracy tolerances and 10%

uncertainty level of demand, the price of robustness was less than 3%.

Table 6.16: Comparison between the AARC of the DLSP and the optimal solution

Property Value
Maximal absolute gap ($) -19935,1
Maximal relative gap -14%
Average relative gap -11,5%

(over 100 generated demand scenarios)
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The provided comparison is not completely fair, since it was proposed to resolve the
AARC model at the end of each planning period. Here, the AARC solution provided at the very

beginning of the planning period was compared with the optimal one.

The AARC with folding horizon

The simulation for the AARC model with a folding horizon was implemented utilizing
the algorithm shown in Figure 5.3.

The values of the objective functions of the AARC with the folding horizon were
compared with the ideal case for three fixed demand scenarios and on average over 20 generated
scenarios, see Figure 6.17.

In the provided experiment, the objective values of the AARC model were worse than the
optimal values on each fixed scenario and on average over 20 scenarios. The absolute and
relative gaps between the objectives of the AARC with a folding horizon and the optimal
objectives are provided in Table 6.17. Even though that the AARC with a folding horizon was
solved with an accuracy tolerance equal to 2,2% and 10% uncertainty level of demand, the price

of robustness was more than 10% on average.
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Figure 6.17. Comparison between the AARC of the DLSP with folding horizon and the optimal
objective values on the selected demand scenarios and on average over 20 demand scenarios.
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Table 6.17: Comparison between the AARC of the DLSP with folding horizon and the optimal

solution
Property Value
Maximal absolute gap ($) 28389
Maximal relative gap 21,9%
Average relative gap 10,7%
(over 20 generated demand scenarios)
Accuracy tolerance 2,2%

The influence of uncertainty level on the total costs value

To evaluate the influence of uncertainty level 6 on the total costs value, the same
instances of AARCs were solved for the uncertainty level of 5%, 10% and 20%.

The AARC model with a folding horizon was considered. The model was solved and
evaluated based on the 20 generated demand scenarios. The demand was assumed to be a
continuous variable, so it took real values from the corresponding uncertainty intervals.
Table 6.18 shows that for all levels of demand uncertainty the maximum price of robustness

reaches 21% and is about 11% on average.

Table 6.18: Comparison of the AARC with folding horizon and the optimal objective values on
generated demand scenarios depending on the uncertainty level

Uncertainty AARC objective Optimal Maximal Average Accuracy
level value with folding objective value relative gap  relative gap tolerance
horizon on average on average over
over 20 demand 20 demand
scenarios ($) scenarios ($)
5% 156495,8 139030,1 21,7% 12,6% 0%
10% 152285,2 137607,9 21,9% 10,7% 0%
20% 152350,8 1387859 21,7% 9,9% 0%

* AARC that optimizes the worst-case demand scenario.

It can be admitted that there is no dependence between the uncertainty level of the market

data and the price of robustness of the AARC model solution.



139

Adj

ustability advantage

In this section, the solutions of the AARC with a folding horizon are compared with the

solutions of

The

non-adjustable RC for different levels of demand uncertainty.

AARC model with a folding horizon and the non-adjustable RC model were tested

based on 20 generated demand scenarios. The RC and the AARC of the initial DLSP model

became infeasible for 30% demand uncertainty, so solutions were calculated only for 6 equal to

5%, 10% an

d 20%.

The absolute values of the optimal total costs and the total costs of the RC and the AARC

solutions (on average over 20 demand scenarios) are shown in Figure 6.18. The production plan

constructed

by the RC has the highest costs for 10 and 20% of demand uncertainty level, but is

better than the AARC solution for 8=5%.

The

absolute gap between the RC and the optimal solutions varies from 14120$ to

37192$ on average over 20 demand scenarios, depending on the uncertainty level.
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18. Comparison between the AARC of the DLSP with folding horizon, the RC and the

optimal objective values on average over 20 demand scenarios for different levels of demand

uncertainty
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The absolute and relative gaps between the total costs values of the RC solution and the
optimal total costs are presented in Table 6.19. The maximal difference in costs exceeds 21%
already for 5% demand uncertainty and reaches 73% for 8 = 20%. The average relative gap
varies from 10% to 27%.

Table 6.19: Percentage difference in costs between the AARC with folding horizon solution and

the optimal solution, between the RC solution and the optimal solution depending on the
uncertainty level

Uncertainty =~ AARC with folding horizon RC
level Maximal Average relative gap Maximal Average relative gap
relative gap  over 20 generated relative gap  over 20 generated
demand scenarios demand scenarios
5% 21,7% 12,6% 21,7% 10,3%
10% 21,9% 10,7% 35,5% 16,1%
20% 21,7% 9,9% 72,9% 27,4%

* AARC that optimizes the worst-case demand scenario.
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7 Conclusions

Solving the uncertain CLSP (2.1)-(2.11) and DLSP (2.12)-(2.19) with robustness
guarantees is a challenging task, especially for cases with online information base.

The worst case demand scenario for the special case of uncertain CLSP (2.1)-(2.11) with
one product, one machine and no setup costs was determined. A theorem that describes the worst
case of the demand realization, and consequently defines the competitive ratio of any online
algorithm, was formulated and proved. The theorem statement was also tested empirically.
However, applicability of the presented analytical approach for determining the worst case
demand scenario is limited and, therefore, the obtained results should be seen as a foundation for
a better problem understanding. Further research is required in order to determine the worst case
demand scenario for the uncertain DLSP and for more complex uncertain CLSP structures, see
Table 6.2.

The analytical approach proposed in [25] was extended in the presented thesis. The
sufficient condition for the existence of a finite competitive ratio and the formulas for its upper
and lower bounds were deduced for two production planning models with additional capacity
restrictions: perishable products with lost sales (6.3) and durable products with backlogging
(6.10)-(6.13). The suggested method for deriving the upper and lower bounds for competitive
ratio is applicable to the CLSP with backlogging and setup costs, but not to the production
planning problems with different model structures, e.g. for DLSP (see Table 6.3). It should also
be noted that the analytical approach for competitive ratio estimation is only applicable to strict
online problems, meaning that actual demand values become known after the production process
has finished. Additional market information, e.g. in production planning models with the rolling
or folding horizon, is ignored. Moreover, the computational examples showed that the bounds for
the competitive ratio do not exist if the production stock is always non-negative.

Finally, the presented work investigated the Robust Optimization (RO) approach for the
uncertain CLSP (2.1)-(2.11) and DLSP (2.12)-(2.19) with interval uncertainty. In particular, the
RC and the AARC models were constructed (sections 6.3, 6.4). The models were applied to a
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real-world planning problem and demonstrated competitive performance and high accuracy. The
comparison with other state-of-the-art solutions was also implemented.

The demand scenario simulation was implemented for the constructed AARCs (6.70)-
(6.80) and (6.81)-(6.93); both AARCs were tested using 100 randomly generated demand
scenarios. The results of the simulation showed that the RO approach can be applied successfully
for the considered uncertain CLSP, since the gap between the optimal and the generated solution
is relatively small — about 2% on average of 100 generated demand scenarios (for the demand
uncertainty level of 10%). The solution provided by AARC is closer to the optimal one than the
solution produced by the probabilistic model, which assumed uniform demand distribution over
the uncertainty intervals. It also has the advantage of being feasible for any demand scenario
from the uncertainty set.

The results of the demand simulations also showed that the production plan created by
the AARC (6.70)-(6.80) is less conservative (closer to the optimal) than one created by the
AARC (6.81)-(6.93), so modeling with the weighted sum of demand scenarios in the objective
works better than considering the worst-case scenario only. Additionally, the direct connection
between the level of data uncertainty and the price of robustness was empirically observed. It
was also shown that the adjustability of decision variables gives a distinct advantage, since the
non-adjustable RC of the initial CLSP model becomes infeasible already for 21% of demand
uncertainty.

The integrality of the decision variables in the initial uncertain CLSP model was achieved
by restricting the coefficients of the AARC affine decision rules to integral values. This
technique is novel and worked well for the presented CLSP problem, showing competitive
performance to the conventional method of decision rules construction (usage of the real
coefficients in the decision rules). The technique utilized in the presented research provides a
production plan with integral decision variables and guarantees the feasibility of the created
production plan for each possible demand scenario. It can also be used in other RO applications,
where integrality is required.

Presented results of the computational experiments show that criticism of the
conservatism of the RO approach is not always justified, especially for adjustable robust

optimization.
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The RC and the AARC of the uncertain DLSP problem were also constructed and
analyzed. Integrality of the decision variables in the initial uncertain DLSP model was achieved
in the AARC by restricting the affine decision rules to take values from the interval [0,1] and
implementing folding planning horizon. The constructed AARC has the advantage of being less
conservative than the corresponding RC for the DLSP due to the adjustability of the variables.
However, is also has several disadvantages. First, the robustness of the AARC solution is not
guaranteed since the DLSP “all or nothing” assumption can be violated. The manufacturer may
not able to satisfy the customer’s demand due to the insufficient production capacity, and,
consequently, no strict upper bound of the total costs provided to the manufacturer.

The demand scenarios simulation was implemented for the constructed AARC (6.106)-
(6.116) and the AARC was tested using 20 generated demand scenarios and folding horizon. The
simulation results showed that the gap between the optimal, and the generated solution is about
11% on average over 20 generated demand scenarios (for the demand uncertainty level of 10%)
and 22% in the worst case. Additionally, after several computational examples, it was observed
that the level of data uncertainty does not influence the price of robustness: the average and
maximal gap between the robust and the optimal solution did not change significantly. It was
also shown that the AARC performs nearly as well as the RC when demand uncertainty level is
5%, while adjustability of decision variables provides an advantage for higher uncertainty levels.

From the theoretical point of view, the RO approach can be successfully applied in the
field of production planning under demand uncertainty. A practical implementation of the
considered RO techniques and analysis of the obtained results will be helpful and may be
considered as one of the directions for further research. The considered robust approach for lot
sizing decisions can be directly applied to the CLSP and DLSP problems with uncertain demand
and can be implemented in the following steps:

1. Construct a mathematical model that corresponds to the production process and
the market, formally describing the data uncertainty;

2. Construct the corresponding AARC;

3. Collect the production planning system and market data, numerically define
uncertainty intervals (or mean values and uncertainty level) for the demand;

4. Solve the constructed AARC using the given model data;



144

5. Implement the obtained robust production plan, using new information about the
market coming into the system;

6. Repeat steps 3-5 regularly in order to avoid human errors and account for changes
in the system state”.

Moreover, the considered robust approach is relevant in other applications of robust
optimization. Research results are significant for the companies that are utilizing business
intelligence on top of the risk management solutions or working with uncertain data.

Since additional probabilistic information may be useful in reducing the conservativeness
of the robust optimization approach, the analysis of production planning models with demand
forecasts is an important direction for further research.

To identify the performance of the RO solution, a variety of production planning models
with different data structures can be considered in the context of further research.

Finally, the solution provided by the RO approach should be compared in detail with the

solution provided by the SO approach based on the simulation of future demand scenarios.

* This step is optional, but is typically implemented by manufacturing companies.
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