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1 Introduction 

IBM corporation, which offers optimization software solutions, highlighted four key 

2reasons why business managers and pla2nners should take a look at the state of the art in 

optimization technology: 

• “Changes in the economy and in business process management are making smart, 

agile economic planning and scenario comparison a necessity. ...  

• The efficient use of resources has never been more critical in terms of impact on 

profitability. …  

• Advances in computer hardware and optimization software have made it possible to 

evaluate large planning and scheduling problems that were too difficult for 

computers as recently as five years ago. … 

• Advances in software technology are making optimization accessible to nontechnical 

planners, schedulers and managers who make the decisions in most 

organizations. …” [1]. 

However, the optimization in production planning faces serious difficulties: the market 

data is typically uncertain, so strategic management teams have to estimate market needs and 

production environment conditions based on historical data or contract conditions. 

In the presented work, we focus on medium-term production planning, in particular on lot 

sizing decisions under demand uncertainty. When choosing lot sizes, a manufacturer has to 

determine production amounts and production timing in order to optimize a goal function, e.g. 

minimizing the overall costs, while meeting demand requirements and satisfying existing 

capacity restrictions. Decisions in lot sizing directly affect the production system performance; 

therefore development and improvement of solution procedures for lot sizing problems is 

essentially important.  

In case the demand uncertainty is neglected during production planning process, the 

obtained production plan may become extremely costly or even infeasible. Failures or delays in 

delivery to customers are highly undesirable and may cause penalties; demands that are 

unsatisfied in time can cause the loss of customers. For this reason the robustness of a production 
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plan is a main requirement. Moreover, manufacturers require a production plan that is robust in 

the non-probabilistic way – remains feasible for each possible uncertain demand scenario. In 

addition, a guaranteed upper bound for the total costs can contribute significantly to the 

improvement of strategic planning. 

However, data uncertainty is not the only aspect affecting the mathematical model of 

production; incomplete information about the market or the production planning system also 

significantly influences the mathematical model. When the total planning horizon is large 

enough, a manufacturer often deals with partly given market data: even though it is possible to 

estimate or create a prognosis of market behavior for the nearest future, information about 

demands in far outstanding periods is typically unavailable. Production planning problems with 

incomplete information about data also belong to the class of production planning problems 

under demand uncertainty. 

Generalizing, each mathematical model that describes a system or a process only 

approximates the reality, and many data parameters that are used in mathematical models should 

be considered as uncertain values instead of fixed numbers. Consequently, there is a need of a 

solution immunized against data uncertainty in a wide variety of applications, both in industry 

and science, e.g. in engineering, biology or chemistry. For all scientific areas, however, the 

difficulties for modeling under uncertainty are basically the same:  

• incorporation of the defined uncertainty set into the model; 

• solution/optimization of the model under the given uncertainty and the determination 

of a robust solution. 

The recent research efforts toward robustness in production planning tend to use the 

probabilistic interpretation of uncertainty, and few of them include case-studies necessary for 

computational evaluation and comparison of production planning models under demand 

uncertainty. Hence, computational evaluation and comparisons of solution approaches are 

required for production planning models with uncertain demand. In science, manufacturing 

processes are typically described with complex optimization models that include many integer 

variables; consequently, tractability of a robust model is also critical. 

The presented research investigates two basic production planning models for lot sizing 

under demand uncertainty and contains seven main chapters. Chapter 2 “Problem Statement” 

discusses the uncertain Capacitated Lot Sizing Problem (CLSP) and the uncertain Discrete Lot 
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Sizing and Scheduling Problem (DLSP) models in detail, and highlights the main research goals. 

Chapter 3 “State of the Art” comprises fundamental concepts, developments and techniques that 

relate to the stated goals. Two subsections of the “State of the Art” are devoted to the existing 

production planning models and the methods for uncertainty treatment, respectively. Chapter 4 

“Action points” emphasizes particular research issues that are not covered by the state of the art, 

but are required to achieve the research goals. In other words, this chapter defines the main 

research steps that have to be done. Subsequent chapter 5 “Methods” describes specific 

approaches to be applied, and explains each required implementation step in detail. The 

implementation and interpretation of the results are presented in chapter 6 “Results and 

discussion”, including the theoretical results as well as the computational examples performed 

for validation. Finally, conclusions and directions for further research are outlined in chapter 7 

“Conclusions”. 
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2 Problem statement 

Presented research investigates production planning systems with lot sizing that are 

affected by environmental uncertainty – uncertain demands. In particular, a manufacturer 

possesses information only on upper and lower bounds of potential demand, and no additional 

knowledge is provided. Not only production planning problems with uncertain demand are 

analyzed, but also cases with incomplete information about the market: if meaningful demand 

borders are available for the fixed planning horizon only, or if new information about demand 

comes into the system gradually over the time (online). 

The main goal of the presented research is to construct and solve uncertain mathematical 

lot sizing models in a robust way. Robustness against demand uncertainty is the crucial point and 

is understood in a non-probabilistic way, meaning that the solution should stay feasible for any 

possible demand scenario. The constructed production plan should also reflect all real-life 

production system restrictions. In order to analyze the obtained results, several solution 

approaches dealing with uncertainty and a set of computational examples are considered. 

The research focuses on two production planning problems, which are essential in 

manufacturing: Capacitated Lot Sizing Problem (CLSP) and Dynamic Lot Sizing and Scheduling 

Problem (DLSP). Both problems are described with corresponding mathematical optimization 

models, but since they have a different structure they are analyzed independently. The CLSP and 

the DLSP are well-known production planning problems, and detailed model descriptions are 

provided in chapter 3. Three subsections below describe the main components of the research 

problem: formulation of the CLSP and the DLSP with the specific structure and uncertain 

demands, main research goals.  
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2.1 Description of the uncertain Capacitated Lot 

Sizing Problem (CLSP) 

In this section, the considered Capacitated Lot Sizing Problem (CLSP), its mathematical 

optimization model and the data uncertainty, which affects the model, are described.  

The CLSP with several production machines, several products and several working slots 

during one planning period is considered; production in overtime slot is more costly. If 

production occurred, corresponding setup costs have to be paid. Production capacity of each 

machine is limited individually for each product and for the total production amount in a normal 

and an overtime slot. Actual maximal production pro period is calculated in accordance with 

productivity coefficients in normal and overtime slots. The maximal and minimal stock levels are 

specified by a manufacturer and should not be violated. 

The CLSP with uncertain information about demand for all planning periods, except the 

first one, is considered. In particular, the interval demand uncertainty is considered: upper and 

lower bounds for possible demand values are known, but the exact value of demand is 

unavailable, see Figure 2.1. Therefore, the so-called “uncertainty interval” is defined for the 

demand, and it is assumed that the uncertain demand takes values outside of the uncertainty 

interval with a probability of zero (never).  

 

Figure 2.1. Interval uncertainty of demand 

An exemplary case is when a company � expects the demand for the production in the 

next planning period equal to the value �. However, due to the contract signed between the 

company A and a customer the demand could be changed by ten percentage points from the 

mentioned value at the beginning of the planning period. Thereby, during the planning process, 

the demand uncertainty interval is [0.9�, 1.1�]. No additional information is available, such as 

probabilities or distribution function, only upper and lower bounds for the demand are provided. 

The manufacturer aims to satisfy each possible realization of the demand from the uncertainty 

 

Known 
demand 

Overall planning horizon 

Upper and lower bounds 
for demand 
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set, while minimizing the production costs. The question is: how many units should the 

manufacturer produce? In other words, which production plan would be optimal in this case? For 

instance, if the company � chooses to produce 0.9� and the value of actual demand is higher, 

then � has to pay for the production in overtime slot or, even worse, the company is unable to 

satisfy the demand on time. If the company � chooses to produce 1.1� and the value of actual 

demand is less, then � has to pay additional holding or utilization costs. 

If we consider the example above for several products and production machines, for a 

large planning horizon, taking all additional production system restrictions and costs into 

account, the problem becomes more complex. 

If the model can be resolved when the production process has already started (e.g. when 

new information about the market comes into the system), the production planning is 

implemented under “folding horizon”: the production plan is created not once, but several times 

based on the current state of the production planning system and the new market data, see  

Figure 2.2. 

 

Figure 2.2. Folding horizon 

Additionally, the research’s aim is to analyze the case when not only the data uncertainty 

affects the mathematical model of production, but also incomplete information about the market. 

In this case, the demand is deterministic in the first planning period, defined by uncertainty 

intervals for the next few periods, but is totally unknown for distant periods, see Figure 2.3. 

Total planning horizon 

 

 

 

Known demand Upper and lower bounds for 
demand 
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Figure 2.3. Incomplete information about demand for production 

It is assumed that new information about market data becomes available over time, so the 

new production plan should be created according to the new market state and current product 

amounts in stock. Such a CLSP is referred to as a CLSP with an online information base, 

meaning that information about market comes into the production planning system in real time, 

for instance at the end of each planning period. 

When information about the market is updated in an online manner, the production 

planning is implemented under “rolling horizon”: first, the production plan is created for the 

planning periods with known information about demand; then, it is recalculated when the new 

information comes into the system, see Figure 2.4. The new production plan is based on the 

current state of the production planning system. 

 

Figure 2.4. Rolling horizon 

Let us exemplarily consider a manufacturing company that aims to optimize the 

summarized costs for the total planning horizon of one year, considering one planning period 

equal to one week. At the beginning, the exact value of the market demand is known only for the 

next week. For three following weeks it is possible to define the demand uncertainty interval. 

 

 

 

Known demand Upper and lower bounds 
for demand 

Rolling horizon 

 

Known 
demand 

Overall planning horizon 

Upper and lower bounds 
for demand 

Unknown 
demand 
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Therefore, an information base of four weeks for the customer’s demand is given in total; 

information for the rest of the year is not available. At the end of the first week, new information 

about the market comes into the system and an information base of four weeks is available again 

starting from the second planning period (from the second week). The total number of periods, 

for which an information base is given, is referred to as rolling horizon. In the considered 

example, the rolling horizon is equal to four weeks (four planning periods).  

Planning under rolling horizon makes the optimization more complicated: typically, it is 

impossible to obtain the optimal production plan for the total planning horizon and it is non-

trivial to find a feasible one. 

The notation and the general mathematical model of uncertain CLSP with interval 

demand uncertainty are provided below. It is assumed that the interval demand uncertainty is 

defined as ����∗ − ����∗ , ���∗ + ����∗ �, where ���∗  are given nominal values of the demand for each 

product and planning period, � is the given uncertainty level. The CLSP with interval demand 

uncertainty belongs to the problems with uncertain data. It should be resolved at the end of each 

planning period given that an online information base or a folding horizon is considered. 

 

Parameters: �	 = 	1…� products, �	 = 1…� production machines, �	 = 	1…�	 planning periods, 

 

Data: ���∗ 	 nominal demand for product � in the planning period � (units), �	 uncertainty level of demand, � 	 productivity coefficient in normal time slot, !" 	 productivity coefficient in overtime slot, #$�� 	 production capacity of machine � for product � in normal working time slot of 

period � (units), %$�� production capacity of machine � for product � in overtime slot of period � 
(units), 
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 &$�	 total production capacity of machine � in normal working time slot of period � 
(units), '$� total production capacity of machine � in overtime slot of period � (units), ($�� production costs (per unit) for product � in normal working time slot of period � 
using production machine � ($), )"$�� production costs (per unit) for product � in overtime slot of period � using 

production machine � ($), ℎ�� holding costs for product � (per unit and per period) in period � ($), +$�� setup costs for machine � in normal working time slot of period �, when 

producing product � ($), +"$�� setup costs for machine � in overtime slot of period �, when producing  

product � ($), ,�- initial stock of product � (units), ,�.$/ minimal stock of product � at the end of any period (units), ,�.01 maximal stock of product j at the end of any period (units). 

 

Decision variables of the CLSP model are the following: 3$�� 	 quantity of product � to be produced in normal working time slot of period � 
using production machine �,	4$��	 quantity of product � to be produced in overtime slot of period � using 

production machine �, ,�� 	 stock of product � at the end of period �, 5$��	 binary variable, which equals to 1 when 3$�� ≥ 0	in period � and 0 otherwise, 5"$�� 	 binary variable, which equals to 1 when 4$�� ≥ 0 in period � and 0 otherwise. 

 

The mathematical model, describing the production planning problem: 

7�89:::;($��3$�� + )"$��4$�� + +$��5$�� + +"$��5"$��<=
�>?

@
�>? +::ℎ��,��=

�>?
@
�>?

A
$>? B (2.1) 
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s.t.:  

,�? = ,�- +:;3$�? + 4$�?<A
$>? − ��?, ∀	� ∈ E1…�F	 (2.2) 

,�� = ,�,�G? +:;3$�� + 4$��<A
$>? − ��� , ∀� ∈ E1…�F, � ∈ E2…�F	 (2.3) 

3$�� ≤ #$�� ∙ 5$�� , ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F	 (2.4) 

4$�� ≤ %$�� ∙ 5"$�� , ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F	 (2.5)	
:3$��=
�>? ≤ &$�, ∀� ∈ E1…�F, � ∈ E1…�F	 (2.6)	
:4$��=
�>? ≤ '$�, ∀� ∈ E1…�F, � ∈ E1…�F	 (2.7)	

,�.$/ ≤ ,�� ≤ ,�.01, ∀� ∈ E1…�F, � ∈ E1…�F	 (2.8) 

5$�� ∈ E0,1F, 5"$�� ∈ E0,1F, ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F (2.9) 

3$�� ≥ 0, 4$�� ≥ 0, � ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F (2.10) 

��� ∈ ����∗ − ����∗ , ���∗ + ����∗ �, ∀� ∈ E1…�F, � ∈ E1…�F (2.11) 

 The objective function (2.1) minimizes the summarized (over the products, machines and 

periods) total costs of the manufacturer: production and setup costs in normal and overtime 

working slots and holding costs. Constraints (2.2), (2.3) are the so-called balance restrictions: 

they describe the connection between amounts produced, amounts sold and amounts that are in 

stock in each planning period. Constraints (2.4) and (2.5) fix the setup costs if production has 

occurred and, at the same time, verify capacity limits of one machine for each particular product. 

Constraints (2.6) and (2.7) are summarized over products capacity restrictions of one machine. 

Inequalities in (2.8) set the lower and upper bounds on stock. Constraints (2.9), (2.10) show the 

non-negative nature of variables. Uncertainty of the demand data is described by (2.11). 



11 

 

2.2 Description of the uncertain Discrete Lot sizing 

and Scheduling Problem (DLSP) 

In this section, the Discrete Lot sizing and Scheduling Problem (DLSP), its mathematical 

optimization model and the data uncertainty, which affects the model, are described.  

The DLSP with several production machines and several products is investigated. 

Whenever a machine switches from one type of product to another, corresponding setup costs 

have to be paid. As in all small buckets models (see chapter 3), the item type cannot be changed 

during a production period. A production machine can either use the full capacity of a production 

period or remain idle during that period. The maximal and minimal stock levels are specified by 

the manufacturer and should not be violated. 

The main objective of the manufacturer is similar to the one claimed for the CLSP: 

minimization of the total production, holding and setup costs, while satisfying the customers’ 

demand. However, unlike the previous problem, not only the length of lot sizes is important, but 

also the exact sequence of the production lots. Since a unique item is assigned to one machine in 

each planning period, the resulting sequence of item-machine-period assignments naturally 

defines the production schedule. 

Analogically to the previous section, the DLSP with uncertain demand for all planning 

periods, except the first one, is investigated. In particular, the aim is to investigate the DLSP with 

interval demand uncertainty and the DLSP with an online information base (planning under 

rolling horizon). In order to avoid duplication, the reader is referred to section 2.1, e.g. to the 

Figure 2.1, Figure 2.3, Figure 2.4. 

The notation and general mathematical model of uncertain DLSP with interval demand 

uncertainty are provided below. It is assumed, same as for the uncertain CLSP, that the interval 

uncertainty is defined as ����∗ − ����∗ , ���∗ + ����∗ �, where ���∗  are given nominal values of the 

demand for each product and planning period, � is the given uncertainty level. The DLSP with 

interval demand uncertainty belongs to the problems with uncertain data. It should be resolved at 

the end of each planning period given that an online information base or a folding horizon is 

considered. 
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Parameters: �	 = 	1…� products, �	 = 1…� production machines, �	 = 	1…�	 planning periods, 

 

Data: ���∗ 	 nominal demand for product � in the planning period � (units), �	 uncertainty level of demand, K$�	 production speed of machine � for product � (units per period), ($�� production costs (per unit) for product � at normal working time slot of period � 
using production machine � ($), ℎ�� holding costs for product � (per unit and per period) in period � ($), +$�� setup costs for machine � at normal working time slot of period �, when 

producing product � ($), L$�- binary variable describing the initial state of machine �; it is equal to 1 when 

machine � is set up to produce product � and 0 otherwise, ,�- initial stock of product � (units), ,�.$/ minimal stock of product � at the end of any period (units), ,�.01 maximal stock of product � at the end of any period (units). 

 

Decision variables of the DLSP model are: ,�� 	 stock of product � at the end of period �, 5$��	 binary variable that equals to 1 when production of product � on the production 

machine � occurred in period � and equals 0 otherwise. 

 

A mathematical model of production process is the MIP problem: 

7�89:::;($��K$�5$�� + +$��	7M3	;0, 5$�� − 5$�,�G?	<	< +::ℎ��,��=
�>?

@
�>?

=
�>?

@
�>?

A
$>? B (2.12) 
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s.t.:  

,�? = ,�- +:K$�5$�?A
$>? − ��?, ∀� ∈ E1…�F	 (2.13) 

,�� = ,�,�G? +:K$�5$��A
$>? − ��� , ∀� ∈ E1…�F, � ∈ E2…�F	 (2.14) 

:5$��=
�>? ≤ 1, ∀� ∈ E1…�F, � ∈ E1…�F	 (2.15) 

,�� ≥	 ,�.$/, ∀� ∈ E1…�F, � ∈ E1…�F	 (2.16)	
,�� ≤ ,�.01, ∀� ∈ E1…�F, � ∈ E1…�F	 (2.17)	

5$�� ∈ E0,1F,			∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F (2.18)	
��� ∈ ����∗ − ����∗ , ���∗ + ����∗ �, ∀� ∈ E1…�F, � ∈ E1…�F (2.19) 

 Here the objective function (2.12) minimizes the total costs of the manufacturer 

(summarized over the products, machines and periods): production and setup costs in normal and 

overtime working slots, and holding costs. Constrains (2.13), (2.14) are the so-called balance 

restrictions: they describe the connection between amounts produced, amounts sold and amounts 

that are in stock in each planning period. Constrain (2.15) states that at most one item can be 

produced on one machine per one planning period. Inequalities (2.16), (2.17) set the lower and 

upper bounds on stock. Constrain (2.18) shows the binary nature of decision variables. The 

uncertainty of the demand data is described by (2.19). 

2.3 Main research goals 

The crucial aim of the research is to solve the uncertain CLSP (2.1)-(2.11) and DLSP 

(2.12)-(2.19) with robustness guarantees. 

In a rapidly changing environment, the manufacturer needs to continuously adapt the 

production plan in accordance with the current market situation. Unavoidably, this leads to 

changes in lot sizes, stock volumes, machine loads, but most importantly, it leads to changes in 
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the value of total cost. Due to this fact, manufacturing companies aim to immunize production 

planning systems against uncertainty of environment or, in other words, to make them robust.  

The term “robustness” is used in the production planning as well as in other disciplines, 

but it could be defined in several different ways. In manufacturing, most frequently, the ability to 

deliver a product to the customer on time and on budget plays a crucial role. The manufacturing 

company needs a feasibility guarantee of the created production plan as well as an upper bound 

of total costs for any environment conditions. These two main concepts define the idea of 

robustness in production planning. 

Hence, the robustness of a solution is understood in the presented research as an 

aggregate of the two following properties: 

• a feasibility of the created production plan for any possible demand realization 

scenario from the uncertainty set; 

• a possibility to guarantee the meaningful upper bound of total costs or fixed 

performance ratio of the solution algorithm. 

One important expectation of the manufacturer from the robust production plan is the 

ability to satisfy each possible scenario of demand realization from the uncertainty set, meaning 

that even though the total manufacturing costs may change, the manufacturer is able to deliver 

the product to the customer in accordance with the schedule. 

The feasibility of the created production plan gives the manufacturer certain advantages, 

since it guarantees the satisfaction of customers’ demands in any case. The increased quality of 

service for the production planning company directly leads to the competitive advantage in the 

market. That’s why the feasibility is a significant property of the robust production plan and is 

included into the objectives scope. 

The second robustness criterion of the production plan is a guaranteed maximum value of 

the total costs. It has a significant impact on the quality of management in a manufacturing 

company: knowledge of the total investments in the production processes is especially important 

for the strategic planning team of a company, since it gives the opportunity to plan and manage 

other working directions in a more effective way. Typically, company profit depends on the 

value of the total costs and therefore can be estimated as well, so the production company strives 

to know the required inputs in advance and with certainty, although the exact values of the 
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customers’ demand are unknown. Clearly, it is not a major concern if the total costs decrease, but 

the maximal possible value of the total investments should be guaranteed. 

For the reasons mentioned above, it is a crucial aim of this work to provide the 

manufacturer a meaningful upper bound of the total costs along with the production plan. 

To achieve the robustness goals, several subgoals are defined: 

1. analyze the uncertain CLSP problem (2.1)-(2.11) in order to identify the influence 

of the demand scenario structure on the total value of the costs; 

2. derive the performance guarantee for the strict online algorithm (no information 

about future demand is known) for the uncertain CLSP problem (2.1)-(2.11); 

3. apply the Robust Optimization (RO) approach for the uncertain CLSP (2.1)-(2.11) 

and DLSP (2.12)-(2.19) and evaluate the obtained results. 

The first subgoal can be achieved through the determination of the worst case demand 

scenario – a realization of the demand from the uncertainty set, leading to the highest possible 

costs for the manufacturer. If the worst case of the demand scenario is determined, the 

deterministic CLSP can be solved for this particular case and the robustness goals will be 

achieved. Indeed, by solving the worst case, the upper bound on total costs for any demand 

scenario can be guaranteed. In addition, the worst case demand scenario is of particular interest 

for the situation when information is not just uncertain, but also incomplete (planning under 

rolling horizon). 

Due to uncertainty and incomplete information about the future, it is typically impossible 

to find an optimal production plan. Thus, the major goal of this work is to generate a solution 

that is the closest to the best-possible one. If the uncertain CLSP (2.1)-(2.11) has a strict online 

information base, it is interesting to compare the production plan obtained from the online 

algorithm (planning without any demand knowledge) with the best possible production plan 

(planning with the complete demand knowledge). Calculating the ratio between the total cost 

values and comparing them for different demand scenarios, the competitive ratio of the online 

solution algorithm is defined. The competitive ratio provides the performance guarantee of the 

solution algorithm to the manufacturer and is used as a quality criterion. 

 The last subgoal concerns the Robust Optimization (RO) approach. The RO is widely 

used for solving uncertain Linear Programming (LP) models and, therefore, can be applied to the 

uncertain CLSP (2.1)-(2.11) and DLSP (2.12)-(2.19) considered. However, the integrality of the 
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decision variables seems to be an issue and should be investigated separately. An additional aim 

of this work is to compare the solution provided by the RO with solutions provided by other 

approaches. This task will be performed on the basis of a representative set of computational 

examples. Besides the differences in the value of the total costs, some other differences in 

solutions can be considered, such as the computational time, the needed hardware resources as 

well as the applicability of the method to different problem types. Using calculation experiments, 

the problem structure’s influence on the solution can be analyzed (e.g. analysis of the solution 

quality dependence on the uncertainty level). Furthermore, it is possible to check if the defined 

worst-case of demand provides the highest total costs in a certain computational example. 
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3 State of the art 

3.1 Production planning problems 

3.1.1 Review of production planning problems 

Production planning and inventory management problems serve as the typical application 

field of mathematical optimization models and algorithms. Along with the globalization, distinct 

growth of information technology and changes in production environments, new challenges, e.g. 

the construction and optimization of increasingly complex production planning models 

appear [1]. 

Decision support is crucial in production planning and is required on several levels: 

strategic, tactical or operational. This widely-used classification has its origins in the work of R. 

Anthony. He defines the strategic planning as "the process of deciding on the objectives of the 

organization, the resources used to obtain these objectives, and the policies that are to govern 

the acquisition, use and disposition of these resources" [2], the tactical planning as "the process 

by which managers assure that these resources are obtained and used effectively and efficiently 

in the accomplishment of the organization’s objectives" [2] and the operational planning as "the 

process of assuring that specific tasks are carried out effectively and efficiently" [2]. 

Long-term (strategic) planning focuses on such decisions as the facility location or the 

entrance into new markets. Medium-term (tactical) planning includes resource planning, 

establishing production quantities or lot sizing. Short-term (operational) planning defines day-to-

day scheduling of operations such as job sequencing [3]. 

The presented work focuses on medium-term planning, in particular on lot sizing 

decisions. These decisions directly affect the production system performance; therefore, 

development and improvement of the solution procedures in lot sizing is essential. 

Lot sizing problems belong to the tactical level of planning: they have a medium planning 

horizon, use internal and external sources of information, exist under a medium degree of 

uncertainty and a medium degree of risk [4]. 
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Lot sizing is used in many production planning concepts, which are mostly implemented 

as a part of production planning software systems. For example, it is included in Hierarchical 

Production Planning (HPP), Just in Time Manufacturing (JIT), Material Requirements Planning 

(MRP-I), Manufacturing Resource Planning (MRP-II), Enterprise Resource Planning (ERP). 

This production planning software is widely used in industry, though the lot sizing problems are 

usually solved heuristically, which causes some criticism. For example, Pochet and Wolsey 

provide the following characteristic of the MRP systems: "In summary, the myopic MRP 

decomposition scheme leads to important productivity and flexibility losses, two of the key levers 

in all manufacturing strategies, which is exactly the opposite of what is expected from a good 

planning system, and the opposite of what was initially expected from MRP systems. Indeed, the 

starting idea of MRP was to distinguish the dependent demand, which is computable, from the 

uncertain independent demand, for which forecasts are needed, with the objective of knowing 

when and how much is needed of each component, and thereby opening the way to a reduction of 

the global inventory levels" [5]. 

A variety of lot sizing models is used in industry and science, but each model can be 

described by the following parameters and characteristics: 

• planning horizon type and length of the planning periods; 

• number of the production levels; 

• demand type; 

• number of resources (machines) and products; 

• setup costs structure; 

• backlogging (inventory shortage) possibility; 

• presence or absence of capacity constraints. 

By the type of planning horizon lot sizing models are classified into models with finite or 

infinite planning horizon, continuous or discrete time. Discrete time lot sizing models encompass 

“big bucket models” (sometimes called also “large bucket models”) and “small bucket models”. 

M. Salomon defines the differences between them as following: “… 'small' time bucket models 

allow for at most one item to be produced per period, while setups can be carried across period 

boundaries, whereas 'large' bucket models permit multiple items to be produced per period, but 

setups are disallowed to be carried over, even if production of a given product occurs in 
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successive periods” [6]. One also distinguish between folding and rolling planning horizons, 

where the model is solved not once, but at the end of each planning period, taking into account 

new information new information about state of the market and the production planning system. 

The difference is that in models with folding horizon information about the market or production 

planning system is uncertain, but available up to the end of planning horizon, whereas in the 

models with rolling horizon information about the market or production planning system is 

incomplete and is known only for the fixed number of periods. 

The lot sizing model is referred to as one-level model, if it is assumed that products are 

manufactured directly from the row materials without any sub-assemblies, and it is referred to as 

multi-level otherwise.  

Demand in lot sizing models can be static (constant), maintaining a fixed value over all 

planning periods, or dynamic, changing its value over planning periods. The demand is called 

deterministic if its value is known in advance or uncertain if its exact value is unknown. The 

uncertain demand is called probabilistic if its described with the help of some probabilistic 

concept or by probabilities. 

Lot sizing problems can also be classified into one-resource or multi-resource and one-

item or multi-item, depending on the available machines and number of the end products. 

Setup costs may be taken into account using small bucket or big bucket models, or 

ignored completely. As it was described previously, setup costs can be also sequence-dependent 

or sequence-independent. 

Some lot sizing models allow backlogging of the demand (shortening of the inventory) –

satisfying the demand later for additional costs; such models are called lot sizing models with 

backlogging. If the lot sizing model is defined without backlogging (model with lost sales), then 

delivery to the customer after required date is not allowed, meaning that the order will be lost. 

Finally, the capacitated lot sizing problems should be mentioned: the lot sizing problems, 

wherein the capacity of production and/or inventory is limited. If the production capacity is 

assumed to be infinite, then a model is called uncapacitated. 

The most important lot sizing models, which can be called classical, are the following: 

the Economic Order Quantity model (EOQ), the Wagner-Within model (WW), the Economic 

Lot sizing and Scheduling Problem (ELSP), the Capacitated Lot sizing Problem (CLSP), the 

Discrete Lot sizing and Scheduling Problem (DLSP), the Continuous Setup Lot sizing Problem 
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(CSLP), the Proportional Lot sizing and Scheduling Problem (PLSP), and the General Lot sizing 

and Scheduling Problem (GLSP). The CLSP and the DLSP models are considered in more detail 

later on; the capacitated models review that includes description, properties, computational 

efficiency and solution algorithms for other lot sizing models can be found in [6], [3], [7]. 

The most important properties of the mentioned above models, except for the later-

developed PLSP and GLSP, were summarized in the work of M. Salomon [6] and are presented 

in Table 3.1. 

Table 3.1: Comparison between lot sizing models. (Source: M. Salomon [6]) 

 Time axis Maximum # 

of items 

produced per 

period 

Setup costs Demand Production 

quantity per 

period 

EOQ infinite, 

continuous 

1 constant, 

per batch 

constant unrestricted 

WW finite, 

discrete 

1 dynamic, 

per period 

dynamic unrestricted 

ELSP infinite, 

continuous 

* constant, 

per batch 

constant ** 

CLSP finite, 

discrete 

unrestricted dynamic, 

per period 

dynamic less than or 

equal to 

capacity 

CSLP finite, 

discrete 

1 dynamic, 

per batch 

dynamic less than or 

equal to 

capacity 

DLSP finite, 

discrete 

1 dynamic, 

per batch 

dynamic zero or equal 

to capacity 

 * - maximum production of one item per unit of time, 

** - production quantity equal to zero or equal to production rate. 

 

 All considered production planning problems are typically modeled as Linear 

Programming (LP) or Mixed-Integer Programming (MIP) models. Both the LP and the MIP 

problems are extensively used in Operations Research field. Their mathematical definitions, 

properties, computational status, solution methods and applications are discussed for example 

in [8], [9], [5] or [10]. 
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3.1.2 Capacitated Lot Sizing Problem (CLSP) 

The Capacitated Lot Sizing Problem (CLSP) in its classical formulation belongs to the 

class of one-level one-resource multi-item production planning problems with the finite planning 

horizon. The CLSP belongs to the class of big bucket models, so the planning periods range from 

days to weeks or sometimes months. The crucial aim of a manufacturer is to define the total 

production scope and sizes of production lots. Therefore, it is unnecessary to set the sequence of 

lots within a period, because the exact production order can be determined on the operational 

level. For the same reason, a machine is set up at the beginning of planning period, whether or 

not the item it produces has changed, and keeps producing the given item for the duration of the 

period. 

The total production amount in each planning period must lie within the prescribed 

bounds, which are reflected by the capacity constraint in the corresponding mathematical model. 

The main goal of the manufacturer is satisfying demands, while minimizing the total 

manufacturing costs. Backlogging of the demand (inventory shortage) is not allowed. Therefore, 

three types of costs are associated with CLSP: production, setup and holding costs. Production 

costs are proportional to the produced amounts and are dynamic - may vary from period to 

period. Setup costs are fixed and are sequence independent, so the production order does not 

influence the setup costs. Holding costs are proportional to the amounts in stock and are written 

off at the end of each planning period. 

To summarize, the production plan created by solving the CLSP should determine the 

production amounts (lot sizes) of each product as well as the stocks in each planning period. The 

total costs should be minimized, while satisfying the demands. At the same time, the production 

sequence in each planning period should not be defined, and it can be determined by the 

manufacturer without any loss in costs. The notations and the mathematical formulation of the 

CLSP problem are presented below. 

 

Parameters: �	 = 	1…� products, �	 = 	1…�	 planning periods. 
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Data: ��� 	 nominal demand for product � in the planning period �, K�� capacity  needed to produce  one unit of product � in the planning period �, &�	 total production capacity in the planning period �, (�� production costs (per unit) for product � in the planning period �, ℎ�  holding costs for product � (per unit and per period), +� setup costs associated with production of product �, ,�- initial stock of product �, 
 

Decision variables of the CLSP model are the following: 3�� 	 quantity of product � (lot size) to be produced in the planning period �,	,�� 	 stock of product � at the end of planning period �, 5�� 	 binary variable, which equals to 1 when 3�� ≥ 0	in period � and 0 otherwise, 

 

The mathematical model, describing the production process is the MIP problem: 

7�8::;+�5�� + (��3�� + ℎ�,��<=
�>?

@
�>?  (3.1) 

s.t.:  

,�� = ,�,�G? + 3�� − ���, ∀� ∈ E1…�F, � ∈ E1…�F	 (3.2) 

3�� ≤ N:��O@
O>� P 5��, ∀	� ∈ E1…�F, � ∈ E1…�F	 (3.3) 

:K��3��=
�>? ≤ &�, ∀� ∈ E1…�F	 (3.4)	

5�� ∈ E0,1F, ∀� ∈ E1…�F, � ∈ E1…�F	 (3.5) 

3�� ≥ 0, ,�� ≥ 0, ∀� ∈ E1…�F, � ∈ E1…�F (3.6) 
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 The objective function (3.1) minimizes the total costs of the manufacturer. Restriction 

(3.2) is the so-called balance restriction: it describes the connection between amounts produced, 

amounts sold and amounts in stock in each planning period. Restriction (3.3) takes into account 

the setup costs if production has occurred, whereas restriction (3.4) ensures capacity is not 

exceeded the limit. Finally, restriction (3.5) shows that the setup variable is binary, and 

restriction (3.6) shows the non-negative nature of the other decision variables. 

 In the 1980s, the CLSP problem was proved to belong to the class of NP-hard problems 

even for the single-item formulation. Later, it was shown that the multi-item CLSP problem is 

strictly NP-hard. Consequently, there is currently no efficient exact algorithm for CLSP. 

However, advances in computer hardware and optimization software allow solving even large 

CLSP problems that were too difficult for computers several years ago with an appropriate 

computational accuracy.  

Based on the literature, solution methods for the CLSP models are classified into three 

main groups: exact methods, common-sense or specialized heuristics and the mathematical 

programming-based heuristics. 

Further information about the CLSP models can be found in the works [6], [3], [7]. 

3.1.3 Discrete Lot sizing and Scheduling Problem (DLSP) 

The Discrete Lot Sizing and Scheduling Problem (DLSP) in its classical formulation 

belongs to the class of one-level one-resource multi-item production planning problems with the 

finite planning horizon. The DLSP belongs to the class of small bucket models, so the planning 

periods range from minutes to hours or sometimes days.  

In contrast to the CLSP model, production process is organized under the “all-or-

nothing” assumption – production amount in each planning period equals to zero or to the full 

production capacity. Since a unique item is assigned to each planning period, the resulting 

sequence of item-period assignments naturally defines the production schedule. 

Another important difference between the CLSP and the DLSP is the structure of setup 

costs. In the DLSP setup costs are fixed, but they only have to be paid if the type of produced 

item was changed. Production of the same item may be continued in the next planning period 

without the additional setup costs. 
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The main objective of the manufacturer is similar to the one in the CLSP: minimizing the 

total costs, while satisfying the customers’ demand. Backlogging of the customers demand 

(inventory shortage) is not allowed and, therefore, three types of costs are associated with CLSP: 

production, setup and holding costs. 

Production costs are proportional to the produced amounts and are dynamic - may vary 

from period to period. Holding costs are proportional to the amounts in stock and are written off 

at the end of each planning period. 

To summarize, the production plan created by the DLSP should determine the production 

amounts (lot sizes) of each product as well as the sequence of lot sizes and the stock in each 

planning period. The total costs should be minimized, while demands are satisfied. The notations 

and the mathematical formulation of the DLSP problem are presented below. 

 

Parameters: �	 = 	1…� products, �	 = 	1…�	 planning periods. 

 

Data: ��� 	 nominal demand for product � in the planning period �, K� production capacity available for product � in one planning period, &�	 total production capacity in the planning period �, (�� production costs (per unit) for product � in the planning period �, ℎ�  holding costs for product � (per unit and per period), +� setup costs associated with production of product �, ,�- initial stock of product �. 
 

Decision variables of the DLSP model are the following: ,�� 	 stock of product � at the end of planning period �, 5�� 	 binary variable that equals to 1 when production of product � occurred in 

planning period � and equals to 0 otherwise. 
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The mathematical model, describing the production process is the MIP problem: 

7�8::;+�7M3	;0, 5�� − 5�,�G?< + (��K�5�� + ℎ�,��<=
�>?

@
�>?  (3.7) 

s.t.:  ,�� = ,�,�G? + K�5�� − ��� , ∀� ∈ E1…�F, � ∈ E1…�F	 (3.8) 

:5��=
�>? ≤ 1, ∀� ∈ E1…�F	 (3.9) 

5�� ∈ E0,1F, ∀� ∈ E1…�F, � ∈ E1…�F (3.10) 

,�� ≥ 0, ∀� ∈ E1…�F, � ∈ E1…�F (3.11) 

 Similarly to CLSP, the objective function (3.7) minimizes the total costs of the 

manufacturer; restriction (3.8) is the balance restriction. Inequalities (3.9) ensure that products of 

only one type are produced on a given machine in each planning period. Finally, restriction 

(3.10) shows that the decision variables 5�� are binary, while restriction (3.11) shows that the 

stock is non-negative. 

 In the 1990s, the DLSP problem was proved to belong to the class of NP-hard problems. 

Analogically to CLSP, solution methods for the DLSP models are classified into exact methods, 

common-sense or specialized heuristics and mathematical programming-based heuristics. 

Further information about the DLSP models can be found in [11], [6], [3], [7]. 

3.2 Uncertainty treatment 

3.2.1 Uncertainty in production planning 

Uncertainty in production planning systems was classified by Ho [12] into two main 

groups; his classification is shown in the summarized form in Figure 3.1.  
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Figure 3.1. Classification of uncertainty in production planning 

Giannoccaro and Pontrandolfo in [13] classified models that are currently used in 

production planning to treat uncertainty into four main groups: conceptual models, artificial 

intelligence-based models, analytical models and simulation models. Conceptual models utilize 

such methods as safety stocks or safety lead times, artificial intelligence-based models utilize 

genetic algorithms or fuzzy logic, analytical models include mathematical programming and 

deterministic approximations, whereas simulation models include heuristic methods or 

probability distributions.  

According to the literature review by Mula et.al. [14], from the 87 reviewed models for 

production planning under uncertainty, 35 were the analytical models, 27 were based on the 

artificial intelligence, 16 were the simulation models and 9 were the conceptual models. The 

authors analyzed additionally a connection between the particular production planning issues and 

the corresponding modeling approaches that were used, and summarized the results in the table, 

see Table 3.2. The number of research papers that have used one or another method is indicated 

in the brackets. 

  

Uncertainty in 

production 

Environmental uncertainty System uncertainty 

Demand uncertainty Supply uncertainty 

Production lead time Quality uncertainty 

Failure of production 

system uncertainty 
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Table 3.2: Classification scheme for models for production planning under uncertainty 

Source: Mula et.al. [14] 

Research topic Number of citations 

1. Aggregate planning  Artificial intelligence models (8) 

Simulation models (2) 

2. Hierarchical production planning Analytical models (3) 

3. Material requirement planning Conceptual models (9) 

Analytical models (6) 

Artificial intelligence models (4) 

Simulation models (10) 

4. Capacity planning	 Analytical models (4) 

Simulation models (1) 

5. Manufacturing resource planning Analytical models (7) 

Artificial intelligence models (5) 

Simulation models (2) 

6. Inventory management Analytical models (10) 

Artificial intelligence models (5) 

7. Supply chain planning Conceptual models (1) 

Analytical models (5) 

Artificial intelligence models (5) 

 

The authors concluded the review by stating that the analytical modeling approach, and in 

particular the stochastic programming, is the most popular tool for uncertainty handling in 

production planning. However, if the production planning problem structure is complex or there 

are several types of uncertainty in the model, then the stochastic programming is typically 

replaced by the simulation or artificial intelligence-based approaches. The dynamic 

programming approach was used only for a few models and the corresponding studies were 

mainly theoretical [14]. 

Further information can be found in [15], [16], [17], [14]. 
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3.2.2 Worst-case analysis and competitive analysis 

Introduction to worst-case analysis and competitive analysis 

The term “worst-case analysis” is typically associated with the circuit analysis, but may 

be also used in the analysis of algorithms. In the latter case, the goal of the worst-case analysis 

can be formulated as following: to find such a structure of a model input that the analyzed 

algorithm provides the worst possible model output.  How “good” or “bad” the output is, 

typically is measured based on the model objective. If, for example, a LP minimization model is 

considered, the worst possible output will be defined as the highest possible value of the 

objective. In practice, the worst-case input for the considered model and the solution algorithm is 

typically hard to determine due to the high complexity of the system. 

The worst-case analysis is applied for algorithms evaluation in different research areas: in 

finance [18], computer science [19], cellular manufacturing [20], discrete mathematics [21], etc. 

In production planning, to the best of our knowledge, worst-case analysis is mainly used for 

evaluating the heuristic solution approaches performance. For example, Axsäter analyzed four 

different heuristics for the uncapacitated dynamic lot sizing problem [22], whereas Bitran et al. 

analyzed heuristics, product aggregation, and partitioning of the planning horizon [23]. 

Competitive analysis is a research technique that is closely related to the worst-case 

analysis and is mostly applied to online planning problems. Main terms used in the competitive 

analysis are the following: online optimization problems (or simply online problem), online and 

offline algorithms, competitive ratio. An online problem is an optimization problem where 

decisions should be made without complete knowledge of the required information; the model 

input is received in an online manner and, correspondingly, the output should be also provided 

online. An offline algorithm is an optimal algorithm for a given optimization problem and its 

input. It is assumed that the offline algorithm has access to all of input data. The online algorithm 

constructs decision based only on the model inputs (data or events) from the past.  

Origins of competitive analysis as well as its definition are described in the work of 

Borodin and El-Yaniv [24]: “The traditional approach to studying online algorithms falls within 

the framework of distributional (or average-case) complexity, whereby one hypothesizes a 

distribution on events (event sequences) and studies the expected total cost (payoff) or expected 

cost (payoff) per event. During the past 10 years the interest in this subject has been renewed 
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largely as a result of the approach of competitive analysis, whereby the quality of an online 

algorithm on each input sequence is measured by comparing its performance to that of an 

optimal offline algorithm, which is (for an online problem) an unrealizable algorithm that has 

full knowledge of the future. Competitive analysis thus falls within the framework of worst-case 

complexity”. 

To provide the formal definition of the competitive ratio the notations used in [24] are 

kept: , denotes an input of an optimization model, �QR(,) denotes the cost associated with the 

solution provided by an online algorithm �QR for the input , and !ST(,) denotes the optimal 

cost for the input , (provided by the offline algorithm). 

The online algorithm �QR is called (-competitive if exist such U and ( (U, ( ∈ ℝ) that for 

any model input , the following holds: �QR(,) ≤ ( ∙ !ST(,) + U (3.12) 

If (3.12) stays true even for U = 0, then the algorithm �QR is called strictly (-competitive. 

The smallest (, for which an online algorithm �QR is (-competitive, is called the 

competitive ratio of this algorithm: �8W	Eс	|	�QR(,) ≤ ( ∙ !ST(,) + UF (3.13) 

The smallest (, such that an online algorithm �QR is strictly (-competitive, is called the 

strict competitive ratio of �QR: �8W	Eс	|	�QR(,) ≤ ( ∙ !ST(,)F (3.14) 

 In Game Theory online and offline players are typically considered instead of online and 

offline algorithms. However, it does not change the fundamental meaning. 

 

Review of M. Wagner work “Online lot-sizing problems with ordering, 

holding and shortage costs” 

In this section, a brief overview of M. Wagner research [25] is provided.  

Two inventory management models are considered there: the inventory model describing 

perishable products with lost sales and the inventory model describing durable products with 

backlogging. Both models are affected by the demand uncertainty and are strictly online – the 
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demand for the current planning period is revealed only at the end of the period, after the 

inventory ordering decisions have been already made. Both models use finite planning horizon 

and period-dependent cost structure. 

The mathematical formulation of the models is reproduced below with the original 

notation, though it differs from the generally accepted. 

 

Parameters: �	 = 1…8 planning periods, 

 

Data: �$	 demand in planning period � (units), ($ unit ordering cost in period � ($), +$ unit inventory shortage costs in period � ($), ℎ$ unit inventory holding costs in period � ($), �$ fixed ordering cost for placing an order in period � ($), ,- initial stock (units). 

 

Decision variables: Z$	 ordering quantity in period � (units).	,$	 stock in the end of period �, ,$[ = max	(,$, 0)	 positive inventory at the end of period �, ,$G = max	(−,$, 0)	 negative inventory at the end of period �. 
 
The mathematical model, describing the inventory management problem for perishable products 

with lost sales: 

7�8_`a :(($Z$ + ℎ$(Z$ − �$)[ + +$(�$ − Z$)[ + �$b(Z$))/
$>?  (3.15) 

The online optimization problem (3.15) minimizes the total costs over all ordering 

strategies _, considering the fixed planning horizon of � periods. The production cannot be put 
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in the stock, and if the demand exceeds product availability in any period, the excess demand is 

lost. 

The mathematical model, describing the inventory management problem for durable 

products with backlogging is the following: 

7�8:(($Z$ + ℎ$,$[ + +$,$G + �$b(Z$))/
$>?  (3.16) 

 s.t.:  ,$ = ,$G? + Z$ − �$ , ∀� ∈ E1…8F	 (3.17) 

Z$ ≥ 0, ∀� ∈ E1…8F	 (3.18) 

The online optimization problem (3.16)-(3.18) minimizes the total costs over all ordering 

strategies _, considering the fixed planning horizon of � periods and taking into account that the 

product can be held in the stock. The excess demand is backlogged for the future periods. 

The main results of [25] are the sufficient condition for existence and formulas for the 

lower and upper bounds for competitive ratio; to derive them, the techniques of competitive 

analysis and the worst-case analysis were utilized. 

The reasoning provided by Wagner is valid under three main assumptions [25]: 

Assumption 1. c,d, e, f > 0. 

Assumption 2. h ≠ 0. 

Assumption 3. There exists a period in which it is optimal to procure a positive quantity. 

To prove the main statements in [25], the known result from the linear-fractional 

programming was utilized: 

Lemma 1. If  E3:	Wk(3) + l > 0, 3 ≥ 0F is non-empty, then the optimization problems 

7M31 mckn + �okn + lp 

and 

7M3q,r (cks + �5) 
s.t. s.t. okn + l > 0 oks + l5 = 1 3 ≥ 0 s ≥ a, 5 ≥ 0 

are equivalent [26]. 

For the inventory model with perishable products and lost sales the main result was 

formulated in the following theorem [25]:  
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Theorem 3.1. In period �, if ($ ≥ +$, order Z$ = 0 units and if ($ < +$, order Z$ units. The 

competitive ratio of this strategy is at most: 

7M3$:uvwxv y7M3 yz($ + ℎ$�$ { Z$ + 1, +$($||. 
Furthermore, the competitive ratio of any algorithm is at most:  

7M3$:uvwxv y+$($|. 
To prove the statement of Theorem 3.1, its narrowed version for one planning period was 

formulated.  The proof of the narrowed theorem includes the following steps: 

• definition of competitive ratio (3.14) was expanded using the known 

representation of model costs (3.15); 

• two different procurement strategies were analyzed: Z > � and Z ≤ �; 

• for each procurement strategy the formula of the competitive ratio is a linear-

fractional program, so the Lemma 1 was applied to get the corresponding  LP 

program; 

• for the LP problems the corresponding dual systems were constructed and solved; 

• maximum of obtained dual solutions defines the value of competitive ratio. 

After the narrowed version of Theorem 3.1 was proved, the special cases were analyzed: 

periods with zero demands and periods where the offline algorithm orders nothing. Summarizing 

the results, the statement of Theorem 3.1 was proved. 

For the inventory model with durable products and backlogging the main result was 

formulated as the following theorem [25]: 

Theorem 3.2. For an arbitrary online strategy _ ≥ a, }k_ + �	 ≤ 0 is a sufficient 

condition for the existence of a finite strict competitive ratio. Furthermore, if a strict finite ratio ~ exists, it satisfies: 

��n y��n����� y����| , }k_ + ddk� | 	≤ � ≤ ��n����� y����|. 
To prove the statement of Theorem 3.2, two subsets of the planning periods set were 

considered: S = E�:	,$ ≥ 0F and � = E�:	,$ ≤ 0F. S and � denote respectively the periods with 

non-negative and non-positive inventory. Then two additional Lemmas were formulated and 

proved [25]: 
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Lemma 2. For an arbitrary online strategy _ ≥ 0, we can write the online costs as �(h) ≤ �kh + }k_ +d, 
where 

M$ =:+�/
�>$,�∈@

−:ℎ�/
�>$,�∈�

, 
�� = ($ +:ℎ�/

�>$,�∈�
−:+�/

�>$,�∈@
, 

for � = 1…8 and d = ∑ �$b(Z$)/$>? . 

Lemma 3. The optimal offline cost of model (3.16)-(3.18) has the following lower and 

upper bounds: �kh ≤ �∗(h) ≤ ckh + dk�, ∀h ≥ a, 
where U = (U?…U/) is defined as: 

U$ = 7�8 � 7�8?���$G?�(� +:ℎO$G?
O>� � , ($, 7�8$[?���/ �(� +:+O�G?

O>$ � ,:+O/
O>$ � , � = 1…8 

and can be interpreted as the minimum marginal cost of satisfying demand �$ by considering 

(1) procuring in period � < � and carrying the inventory to period �, (2) procuring in period �, 
(3) backlogging until period � > �, or (4) the cost of not satisfying the demand. 

The proof of Theorem 3.2 includes the following steps: 

• definition of competitive ratio (3.14) was expanded using the results provided by 

Lemma 2 and Lemma 3; 

• two linear-fractional programs were constructed for the lower and upper bound of 

the competitive ratio; 

• Lemma 1 was applied to get the corresponding  LP programs; 

• the corresponding dual systems were constructed and solved for the LP problems. 

As the result, the sufficient condition for the finite competitive ratio existence and the 

formula for lower and upper bounds for the competitive ratio were derived. 

Additionally, the special “Make-to-Order” procurement strategy was analyzed in [25]. 

The considered strategy always had a negative stock; ordering occurred only if the sum of 
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corresponding shortage costs was higher than the ordering cost. The upper and lower bounds of 

strict competitive ratio were provided. Moreover, if ordering and shortage costs were constant in 

all planning periods, the exact value of competitive ratio was calculated. 

It should be noted that the work [25] may be considered as an extension of [27], wherein 

online inventory problems and corresponding competitive ratio were analyzed. 

3.2.3 Sensitivity analysis 

Saltelli et al. define sensitivity analysis as: “The study of how uncertainty in the output of 

a model (numerical or otherwise) can be apportioned to different sources of uncertainty in the 

model input” [28]. 

Sensitivity analysis is a well-established scientific research area with a number of 

solution methods, which typically tries to solve the following question: if the optimal solution is 

found, up to which extent can one alter the model’s parameters, so that the obtained solution 

remains optimal? 

Sensitivity analysis is applicable to uncertain LP and MIP models, but data uncertainty is 

usually ignored in the first step and the solution is generated based on nominal data. Then such a 

magnitude of input data vector is determined that the obtained solution stays optimal. Therefore, 

one can only measure the robustness of the obtained solution, but cannot control it.  

Sensitivity analysis studies deviations of model solutions and data with the help of 

perturbations and defines the sensitivity of the initial system. 

Another question, which can be answered by sensitivity analysis (e.g. by parametric self-

dual simplex method), is the following: if a model is infeasible, how can we change the model 

parameters to make it feasible? 

Advantages of the sensitivity analysis were formulated by Rappaport in [29]: “ 

1. In its applied organizational setting, sensitivity analysis may be broadly defined 

as a study to determine the responsiveness of the conclusions of an analysis to 

changes or errors in parameter values used in the analysis.  

2. Sensitivity analysis tests the responsiveness of model results to possible changes 

in parameter values, and thereby offers valuable information for appraising the 

relative risk among alternative courses of action.  
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3. Sensitivity analysis can provide systematic guidelines for allocating scarce 

organizational resources to data collection and data refinement activities.  

4. Under the sensitivity analysis approach, if the value of a decision is insensitive to 

estimated parameter variations, the decision to purchase no additional 

information can be made without introducing a statistical decision model. 

5. If the value of a decision is sensitive to estimated parameter variations and the 

information decision is not obvious, a statistical decision model may be developed 

to guide the information decision.“ 

Detailed information about sensitivity analysis can be found in [29], [30], [31], [8], [10] 

and [28]. 

3.2.4 Stochastic Optimization 

Stochastic Optimization (SO) is used in Operation Research to optimize mathematical 

optimization models under uncertainty, given that some probabilistic information about the 

uncertainty is provided. Thus, the SO typically treats the uncertain parameters as the random 

variables with the known probability distributions. 

The SO research area began to develop after the work of G. Dantzig [32], wherein several 

LP models under uncertainty were analyzed. This paper was also included in the list “Ten Most 

Influential Papers of Management Science’s First Fifty Years”, published in 2004 [33]. The SO 

approach is widely used in the different application areas, only a few of them are presented in the 

following list: 

• inventory management [34], [35]; 

• production planning [36], [37];  

• portfolio selection and financial markets [38], [39]; 

• supply chain management [40]; 

• power systems [41]. 

More examples of the SO applications can be found in [42], [36]. 
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To provide a brief overview of the main ideas used in SO, the following basic terms are 

explained below: probabilistic model, chance constraints and multi-stage stochastic 

programming model. 

Let us consider a deterministic optimization model: 7�81`- �(3, �), where 3 is a 

decision variable, � is a data parameter. If � is uncertain, then the SO assumes that it can be 

considered as a random variable � with a known distribution. Typically, the distribution is 

estimated based on historical data. A probabilistic model associated with the initial optimization 

model minimizes the expected value of objective function. It can be written as: 7�81`- EW(3) ≔ L[�(3, �)]F (3.19) 

The probabilistic model (3.19) minimizes the objective on average, since by the law of 

large numbers, the average cost, for a sufficiently large number of trials, will converge to the 

expectation L[�(3, �)].  
However, it is usually quite difficult to find L[�(3, �)] in a closed form and, therefore, it 

is difficult to find the solution of (3.19). In case the data uncertainty is characterized by the fixed 

number of possible scenarios with the given probabilities, the expected value L[�(3, �)] can be 

written as: 

L[�(3, �)] = :KO�(3, �O)A
O>?  

Here the expected value L[�(3, �)] is represented by a weighted sum of � given data 

scenarios. 

Let us consider the case, when the data uncertainty is defined by the uncertainty interval � ∈ ��.$/, �.01�. Distribution of the corresponding random variable � over the uncertainty 

interval is unknown, but the expected value L[�] is available. For this optimization model the 

worst case approach can be utilized: try to minimize the worst possible outcome of the model 

over all possible expected incomes, considering all possible data distributions over the 

uncertainty interval. The corresponding worst-case probabilistic model is the following: 7�81`- +#Kℋ∈ℳ	Lℋ[�(3, �)], (3.20) 

where ℳ is the set of all probability distributions on interval ��.$/, �.01� considering the given 

mean L[�]. 
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The solution of model (3.20) is typically more conservative than the solution of model 

(3.19), since it is optimal for the worst-case input scenario, while the solution of model (3.19) is 

optimal on average. 

Another powerful tool, which is often used in the SO, is the chance constraint 

construction. The idea is to add the additional chance (or probabilistic) constrain to the initial 

optimization model (3.19), which will restrict the chance of model output exceeding some fixed 

value. In other words, the inequality �(3, �) ≤ � must stay true with some fixed probability U. 

Parameter � > 0 is usually called threshold of the model output, U ∈ [0,1] is called a 

significance level. The corresponding chance constraint is written as the following: S�E�(3, �) > �	F ≤ U 

or equivalently, S�E�(3, �) ≤ �	F ≥ 1 − U. 
Augmenting the model (3.19) with the corresponding chance constrain, a solution that is 

optimal on average results. It guarantees that the costs will be below the fixed threshold value � 

with the probability U. 

The stochastic programming model (3.19) and the corresponding model with chance 

constraint describe a one planning period problem. If the problem has several planning periods, 

then multi-stage stochastic programming model is utilized: instead of the uncertain random 

variable � the random process �� is considered, and the model (3.19) is extended for the several 

planning periods. The resulting model utilizes vectors instead of the single variables and is 

written as the following: 7�8n`- EW(n) ≔ L[�(n, h)]F 
Analogically to the one-period problem, if several sets of uncertain data scenarios have 

known probabilities, then the objective can be presented as their weighted sum. 

The dynamic programming approach (Wagner-Within algorithm) can be also utilized for 

calculating the optimal decision. Dynamic programming equations include the expected values 

of uncertain data and typically cannot be solved in a closed form, so numerical methods are used 

for calculating the objective. 

Great interest to the field of the SO in the past 60 years caused a lot of different solution 

methods and techniques used in close connection with the SO, e.g. Monte Carlo method, dual 

analysis, numerical methods, heuristics, scenario trees and sample average approximation. The 
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fundamental concepts and solution methods of the stochastic programming and optimization can 

be found in [36], [43], [44]. 

3.2.5 Robust Optimization  

Robust Optimization (RO) is a specific and relatively novel methodology for handling 

optimization problems with uncertain data. As opposed to SO, the RO approach is based on the 

worst-case analysis and does not require any probabilistic data, though it may be used if 

available. 

The RO approach has its origins in the field of Robust Control, which appeared first in 

the works of Bode in the 1930s. Main development of the Robust Control took place in 1980s 

and 1990s and entailed many publications, see for instance [45], [46], [47], [48]. Robustness 

questions were also considered in the statistics, see for instance the work of Huber [49].  

Modern RO is based mainly on convex optimization and robust linear programming and 

arose in works of Soyster [50], Ben-Tal, Nemirovski [51], [52] and El Ghaoui [53], [54]. 

Advances in computing technologies as well as development of fast interior point methods for 

semi-definite optimization [26] raised interest to the RO techniques. The rapid growth of interest 

in the field of RO is noted in 2000s and is still ongoing. 

A solution that is immunized against data uncertainty is required in a wide variety of 

applications. There are many research papers showing up the use of the RO approach in different 

fields of study, such as: 

• Finance and Portfolio Management [55], [56]; 

• Statistics, Learning and Estimation [57], [58]; 

• Inventory and Supply Chain Management [59], [60]; 

• Engineering: Structural Design [61], Circuit Design [62], Power Control in Wireless 

Channels [63]; 

• Control Theory [64], [65];  

As far as the production planning is concerned, robustness goals are typically achieved in 

the probabilistic sense with the help of the SO, though during the last years several researches 

were done based on the RO techniques [66]. 
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In the RO it is typically assumed that the model data uncertainty is defined by the 

uncertainty intervals or uncertainty sets - the totality of all conceivable values. RO provides a 

solution that stays feasible for each possible uncertainty realization, whereas SO provides robust 

solution in a probabilistic sense. A high-level summary of the RO methodology and an overview 

of related applications can be found in [67], [66], [68]. The RO paradigm is explained in details 

in the work of A. Ben-Tal, L. El Ghaoui and A. Nemirovski [69]. Several crucial definitions and 

concepts from this book are reproduced below and are used further in the presented research. 

Let us remind the general representation of LP problem: 7�81E(�3 + �: �3 ≤ �F. The 

RO methodology is developed with the help of four definitions, they are reproduced below 

from [69]. 

Definition 1. An uncertain LP problem is a collection of LP programs of a common 

structure: E7�81 E(�3 + � ∶ 	�3 ≤ �F ∶ 	 ((, �, �) ∈ &F, (3.21) 

with the data ((, �, �) varying in a prescribed uncertainty set &. 

Typically, it is impossible to solve (3.21), because the number of LP problems in the 

collection above growth rapidly with the size of uncertainty set & and number of uncertain data 

parameters. In order to include uncertainty into the mathematical model, construction of the 

Robust Counterpart is proposed in RO, so it is unnecessary to solve the collection of LP 

programs (3.21). The RC is the worst-case oriented model and, therefore, provides the feasible 

solution for each possible data realization. 

Definition 2. Robust Counterpart (RC) of the uncertain LP problem (3.21) is the 

optimization problem: 7�81 E +#K(u,�,�)∈�	(�3 + � ∶ 	�3 ≤ �, ∀((, �, �) ∈ &F  

or, equivalently, the optimization problem: 7�81,� E� ∶ 	(�3 + � ≤ �, 	�3 ≤ �, ∀((, �, �) ∈ &F (3.22) 

Optimal solution of the RC (3.22) is called robust optimal solution of uncertain LP 

problem (3.21).  

However, talking about RC and robust optimal solution for (3.21), it is assumed that three 

following assumptions are applied to the considered decision environment [69]: 
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Assumption 4. All entries in the decision vector 3 represent “here and now” decisions: 

they should get specific numerical values as a result of solving the problem before the actual 

data “reveals itself”. 

Assumption 5. The decision maker is fully responsible for consequences of the decisions 

to be made when, and only when, the actual data is within the prespecified uncertainty set &. 

Assumption 6. The constraints of the uncertain LP in question are “hard” – the decision 

maker cannot tolerate violations of constraints when the data is in  &. 

It was shown in [69] that any uncertain LP model can be written as a model with certain 

objective and, correspondingly, it always has the RC with the certain objective. It was shown 

also that the RC for the LP with certain objective is constructed only by constrains 

transformation. Moreover, without loss of generality, the uncertainty set & can be considered as 

a direct product of sets &?…&$, where � is the total number of constraints in original uncertain 

LP model and each  &O is closed and convex set. 

The RC (3.22) is a semi-infinite LP model, which in general can be NP-hard, but it was 

proved in [52] that “the RC of the uncertain LO problem with uncertainty set & is 

computationally tractable whenever the convex uncertainty set & itself is computationally 

tractable”. This is the case when the uncertainty set & is a direct product of uncertainty intervals. 

So if the uncertainty set & is polytope, then the RC is an explicit system of linear inequalities. 

Tractability of the RC was also established for other uncertainty set structures, e.g. for conic 

quadratic or semidefinite representations. 

However, if the initial uncertain problem is not a LP model, but a MIP model, then the 

tractability of the corresponding RC is not guaranteed. Even though the RO methodology can be 

applied to the uncertain MIP models and the RC is constructed analogically to the LP case, the 

resulting RC would be a MIP model, which is more computationally complex. 

If Assumption 5 and Assumption 6 are not strict, meaning that some of the model 

restrictions can be violated to some extent or the uncertain data may take values from the 

prescribed neighborhood of the uncertainty set &, then the RC may be transformed into the 

Globalized Robust Counterpart (GRC). Solution provided by the GRC guarantees that if the 

uncertain data fluctuates in the prescribed neighborhood of the uncertainty set &, then violation 

of the constraints has a fixed magnitude. 
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An extension of the RC also appears when the uncertain data come into the system not on 

one occasion, but step by step, so Assumption 4 may be extended. Dealing with a multi-stage 

decision making process, some model variables represent not “here and now” decisions, but 

rather “wait-and-see” decisions – they can be made after several process stages are finished. To 

make the system adaptable for the changing environment conditions, “wait-and-see” decision 

variables are allowed to depend on a part of the true data. The corresponding prescribed part of 

the true data defines the so-called “information base” for decision variables on each decision 

stage. If specific rules for the decision variables dependency on the information base are chosen, 

then the extended RC - Adjustable Robust Counterpart - is defined [69]: 

Definition 3. Adjustable Robust Counterpart (ARC) of the uncertain LP problem (3.21) is 

the RC (3.22), where the decision variables are depended on a prescribed part of the true data 

(information base): 3� = ��;S��<, (3.23) 

where S� are prescribed matrixes defining information base and ��(∙) are decision rules to be 

chosen. 

 After solving the ARC model, the optimal robust decision rules (functions of the true 

data) are provided, whereas the robust optimal numerical values for the decision variables are 

given by the RC. The ARC of the uncertain LP problem (3.21) is less conservative than the 

corresponding RC, meaning decreased value of total costs. The reason is that the adjustable 

robust optimal solution is adaptable to the current state of the uncertain environment. 

 The crucial issue for the ARC is tractability of constructed model. Since optimization is 

done over decision rules, which depend on many real variables, it may appear that the solution 

algorithm is intractable. In order to solve the ARC in a polynomial time a careful choice of 

decision rules is required. 

 Definition 4. Affinely Adjustable Robust Counterpart (AARC) of the uncertain LP 

problem (3.21) is the ARC, where the decision rules ��(∙) are affine functions.  

 It was shown in [69] that the AARC in computational sense is not harder than the initial 

RC or, in other words, the constructed AARC has the same tractability status as the initial RC in 

case with fixed recourse. An uncertain LP problem with prescribed information base is called a 

problem with fixed recourse if the coefficients of every adjustable variable in the model are 

certain. However, analogically to the RC, if the initial uncertain problem does not belong to the 
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LP, but rather to the MIP, then tractability status of the corresponding AARC is not determined 

in general case.  

 In case of fixed recourse, the same reasoning may be applied as in the case of RC 

construction: if the uncertainty set & is a polytope, then the AARC represents an explicit system 

of linear inequalities. Analogically, if Assumption 5 and Assumption 6 are not strict, then the 

AARC may be transformed into Affine Adjustable Globalized Robust Counterpart (AAGRC). 

The Robust Optimization includes a lot of other techniques, for instance Robust 

Counterpart Approximations of Scalar Chance Constraints, as well as considers other uncertainty 

models and sets structures, for instance uncertain conic quadratic problems. Detailed information 

on the RO approach can be found in [69]. 
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4 Action points 

The crucial aim of the presented research is to solve the uncertain CLSP (2.1)-(2.11) and 

the DLSP (2.12)-(2.19) with robustness guarantees.  

The first subgoal is to analyze the uncertain CLSP problem (2.1)-(2.11) with the online 

information base (planning under the rolling horizon), and to find such a structure of a model 

input that the analyzed solution algorithm provides the worst possible model outcome. 

According to the state of the art, the formulated subgoal can be solved with the help of the worst-

case analysis. However, the worst-case analysis is typically applied to the simple structures of 

uncapacitated inventory/production models, whereas the considered CLSP has capacity 

restrictions. Moreover, it has also several production slots and, therefore, specific cost structure. 

Since the CLSP (2.1)-(2.11) is quite complex, some additional assumptions are required to 

simplify the analysis. After determining the worst case demand scenario and solving the worst 

case, the upper bound on total costs for any possible demand scenario and, additionally, the 

competitive ratio of considered online algorithm can be respectively identified and guaranteed to 

the manufacturer. 

In the work of M. Wagner [25], described in chapter 3 “State of the Art”, the sufficient 

condition for the existence of a finite competitive ratio and a formula for lower and upper bounds 

for the competitive ratio were derived for two specific inventory models: for perishable products 

with lost sales and for durable products with backlogging. Both models are affected by demand 

uncertainty and are strictly online. The second subgoal in the presented research is logically 

formulated as the following: to apply results of [25] for the production planning models and to 

extend them by considering models with capacity restrictions. The competitive analysis approach 

utilized in [25] will allow providing the performance guarantees of an online algorithm to the 

manufacturer. 

The last research subgoal is to derive a robust solution for the uncertain  

CLSP (2.1)-(2.11) and DLSP (2.12)-(2.19) with the help of the Robust Optimization (RO) 

concept. RO techniques provide a solution that is robust in the non-probabilistic way, and that is 

consistent with the stated main research aim. However, as outlined in chapter 3, there are just a 
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few applications of the RO in the field of production planning (lot sizing); moreover, in these 

applications computational examples are rarely used. Another important issue is that RC and 

AARC models are widely used for solving uncertain LP problems, but may be intractable for the 

MIP problems. In that way, the integrality of decision variables in the uncertain  

CLSP (2.1)-(2.11) and DLSP (2.12)-(2.19) should be included into RC and AARCs and 

investigated separately. Another action point considered is to compare the solution provided by 

the RO with solutions provided by other approaches (e.g. probabilistic ones), which cannot be 

done without a representative set of computational examples and a simulation. In particular, 

differences in the value of total costs, computational time, needed hardware resources as well as 

appliance of the method on different problem types should be compared. Using calculation 

experiments, the influence of the problem structure on the solution can be additionally analyzed, 

e.g. how the solution quality depends on the uncertainty level. 
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5 Methods 

According to chapter 3 (section 3.2.1), four main models dealing with the uncertainty are 

used in production planning. However, most of them are inapplicable for the case outlined in this 

thesis or do not allow to meet the stated goals. 

The structure of the uncertain CLSP (2.1)-(2.11) and the uncertain DLSP (2.12)-(2.19) is 

too complex to use the dynamic programming approach, which provides required robustness 

guarantees. Conceptual models, such as safety stocks, are typically unsuitable for the cases with 

incomplete information about market (online information base). Simulation models as well as 

stochastic optimization usually utilize heuristics or probabilistic data, and therefore provide 

feasible solution only with guaranteed probability.  

In order to achieve the goals stated in the problem statement (chapter 2), it is proposed to 

utilize analytical approaches from the worst-case analysis and competitive analysis for the 

simplified versions of the CLSP (2.1)-(2.11). However, the Robust Optimization (RO) is 

considered as the main solution approach for the uncertain CLSP (2.1)-(2.11) and the uncertain 

DLSP (2.12)-(2.19). 

5.1 Analytical approach for defining the worst-case of 

demand distribution 

In the CLSP (2.1)-(2.11) the setup costs do not play an important role in the production 

planning process or do not exist at all and, therefore, they are excluded from the consideration. 

To simplify the reasoning, the case where the manufacturer has only one production machine and 

only one product to produce is analyzed; there is also no upper bound for the stock. As in the 

classical CLSP model, the objective function is a function of costs, which should be minimized. 

It includes the production costs at the normal and the overtime working time slots as well as the 

holding costs. The demand in the considered CLSP is an uncertain data parameter and is defined 

by the uncertainty interval: [��∗ − ���∗, ��∗ + ���∗], ∀� ∈ E1…�F, 



46 

 

where ��∗ are given nominal values of the demand and � is the number, defining the uncertainty 

level. 

The simplified CLSP model is the following: 

7�8:((�3� + )"�4� + ℎ�,�)@
�>?  (5.1) 

 s.t.:  

,� = ,�G? + 3� + 4� − ��, ∀� ∈ E1…�F	 (5.2) 

3� ≤ %, ∀� ∈ E1…�F	 (5.3) 

3� + 4� ≤ �, ∀� ∈ E1…�F	 (5.4)	
3� ≥ 0, 4� ≥ 0, ,� ≥ 0, ∀� ∈ E1…�F	 (5.5)	

One of the crucial research aims is to provide a solution for a production planning 

problem with an uncertain demand; this solution should stay feasible for the worst-case demand 

scenario and be comparable with the optimal solution.  

Two types of solving algorithms are considered: 

1. The algorithm with the planning horizon 8 = � ("offline"): in this case the demand 

values for all planning periods are known in advance. The mathematical model can be 

easily solved without the rolling or folding horizon, and as a result, the optimal 

solution is obtained. 

2. The algorithm with the fixed planning horizon 8 ("online"), where 1 ≤ 8 < �: in this 

case the demand values are known for the next 8 planning periods only. The model is 

updated with the new market data and is iteratively solved at the end of each planning 

period. Consequently, the considered algorithm has the rolling horizon, and most-

probably the non-optimal solution is obtained. 

In order to identify the influence of the demand distribution on the behavior of the online 

and the offline algorithms, the technics from the Worst-Case Analysis (WCA) and the 

Competitive Analysis (CA) are used. The definitions of the problem instance and the competitive 

ratio are formulated for the CLSP problem (5.1)-(5.5) and the corresponding solving algorithms. 
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In a next step, the behavior of the online and the offline algorithm, depending on the 

demand distribution structure, is studied. Therefore, the theorem that describes the worst-case of 

demand scenario is formulated, meaning that the online algorithm provides the most expensive 

production plan in comparison with the offline solution. For this purpose, some additional 

definitions, assumptions and statements are required. To identify what aspects rouse the 

differences between the behavior of the online and the offline algorithms, the possible changes in 

the demand distribution are analyzed.  

  To verify the theorem statement, computational examples are implemented. The objective 

value and the competitive ratio of the online algorithm are computed for the several demand 

distributions based on the same problem instance. 

Finally, the appliance of the analytical approach for defining the worst-case of the 

demand distribution should be analyzed for the production planning problems with other 

structures. For example, the extension of the theorem for the DLSP problem or the CLSP 

problem with backlogging and setup costs is of particular interest. 

5.2 Analytical approach for deriving the upper and 

lower bounds of the competitive ratio 

One of the research aims is to provide a robust production plan to the manufacturer, while 

the guaranteed difference between the obtained and the optimal solution is less than a fixed 

value. Ideally, the upper and the lower bound should be provided for the competitive ratio of the 

online algorithm. 

The goals mentioned above refer to the approach described in the work of 

M. Wagner [25]. In his research, two inventory management models are considered: the 

mathematical model for perishable products with lost sales and the mathematical model for 

durable products with backlogging. To apply the technique for deriving the value of competitive 

ratio proposed in [25], firstly it is necessary to switch from the inventory management problems 

to the production planning problems. For this purpose in the inventory models (3.15) and  

(3.16)-(3.18), production amounts are considered instead of inventory orders, setup costs are 

considered instead of costs for placing an inventory order. Furthermore, the initial notations of 
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M. Wagner are used, though they differ from the generally accepted notations. The parameters, 

data and decision variables of the production planning model are presented below. 

 

Parameters: �	 = 1…8 planning periods, 

 

Data: �$	 demand in period � (units), ($ production costs (per unit) in period � ($), +$ backlogging costs (per unit) in period � ($), ℎ$ holding costs per unit and per period ($), �$ setup costs in period �, when producing product � ($), ,- initial stock (units). 

 

Decision variables: Z$	 quantity of product to be produced in period � (units).	,$	 stock at the end of period �, ,$[ = 7M3	(,$, 0)	 positive inventory at the end of period �, ,$G = 7M3	(−,$, 0)	 negative inventory at the end of period �. 
 

The mathematical model, describing the production process for perishable products with 

lost sales, is the following: 

min_`a :(($Z$ + ℎ$(Z$ − �$)[ + +$(�$ − Z$)[ +�$b(Z$))/
$>?  (5.6) 

The mathematical model, describing the production process for durable products with 

backlogging, is the following: 

7�8:(($Z$ + ℎ$,$[ + +$,$G + �$b(Z$))/
$>?  (5.7) 

 s.t.:  
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 ,$ = ,$G? + Z$ − �$ , ∀� ∈ E1…8F	 (5.8) Z$ ≥ 0, ∀� ∈ E1…8F	 (5.9) 

Both models, perishable products with lost sales (5.6) and durable products with 

backlogging (5.7)-(5.9), do not include capacity restrictions. Hence, the capacity restrictions are 

added into the mathematical models; thereby, the results shown in the work of Wagner are 

extended. Assumption 1, Assumption 2 and Assumption 3 from the section 3.2.2 are assumed to 

be valid for the reasoning in the present thesis. 

For the extended mathematical model (5.6), wherein the capacity restrictions are added, 

the analogue of Theorem 3.1 (see p.32) is formulated. The thesis follows the reasoning proposed 

in Wagner’s work in order to derive and prove the formula for the maximum value of the 

competitive ratio and the maximum value of the strict competitive ratio. The extended results 

(for case with the capacity restrictions) are proved for the production planning problem with just 

one planning period; in a subsequent step,  these results are generalized for multi-period 

problems. The main proof idea consists of the following steps: 

• the upper and the lower bounds of the total costs are found for the offline and the 

online algorithms; 

• the obtained bounds are plugged into the competitive ratio definition; 

• with the help of Lemma 1 from the linear-fractional programming (see p. 31), a 

switch to the linear optimization problem occurs; 

• the dual model for the linear optimization model is constructed and solved; 

• the resulting solution defines upper and lower bounds for the competitive ratio; 

the bounds are further extended for the multi-period production planning problem. 

For the extended mathematical model (5.7)-(5.9), wherein the capacity restrictions are 

added, the analogue of the Theorem 3.2 (see p. 32) is formulated. The thesis follows the 

reasoning proposed in the Wagner’s work, and first proves the analogue of the Lemma 3 

(see p. 33), which defines the upper and lower bounds for the offline costs. Since the 

mathematical model with the capacity restrictions has a different feasibility domain, the proof of 

the formulated lemma becomes more complex. The upper bound of the total offline costs is 

defined by the feasible production plan Z$ = Q$ (for each planning period �), while the additional 

reasoning is required for deriving the lower bound of the total costs. First, the additional 
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assumption should be formulated to restrict the maximum value of the total demand. Next, the 

linear optimization problem is defined for deriving the corresponding lower bound of the offline 

costs. To find a feasible solution, the inverted matrix of the LP problem is constructed and, based 

on this, the dual linear problem is defined. The solution of the dual problem is found by 

considering the special cases of the system. The proved lemma allows defining the sufficient 

condition of the competitive ratio existence for the mathematical model (5.7)-(5.9). Moreover, 

the upper and lower bound for the strict competitive ratio are derived. The corresponding 

theorem is proved based on the Lemma 1 from the linear-fractional optimization. 

In order to verify the derived sufficient condition of the competitive ratio existence for 

the online algorithm, two computational examples are implemented. The sufficient condition is 

checked for the given numerical data and the two different production planning strategies.  

Finally, the appliance of the analytical approach for deriving the upper and lower bounds 

of the competitive ratio is analyzed for the production planning problems with other structures. 

For example, a possibility to extend the theorem for the DLSP problem or the CLSP problem 

without backlogging is investigated in this thesis. 

5.3 Robust Optimization approach   

The Robust Optimization (RO) approach is specifically developed for mathematical 

models with uncertain data parameters and is in particular applicable, for linear optimization 

models. To utilize the advantages of the RO approach and to accomplish the specific goals, 

firstly the given data uncertainty is analyzed and the uncertain CLSP and the uncertain DLSP 

problems are related to an existing subclass of RO problems. 

5.3.1 Robust Counterpart (RC) 

The formal definition of the uncertain Linear Optimization (LO) problem and its Robust 

Counterpart (RC) that was given in [69] are cited in in the thesis by (3.21) and (3.22), see  

p. 39-39. In a simplified way, a RC is an optimization model that is constructed for an initial 

uncertain mathematical model and whose robust numerical solution is provided before true 

values of uncertain data are known.  
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The construction of Robust Counterparts (RCs) is described in detail in the first chapter 

of [69]. The authors propose the following algorithm for the RC construction, assuming that the 

uncertain LO problem (3.21) has the certain objective: “… to get RC, we act as follows: 

• preserve the original certain objective as it is, and 

• replace every one of the original constraints 	(�3)$ ≤ �$ 	⇔ 	M$�3 ≤ �$ 	
(M$� is	�-th row in �) with its Robust Counterpart 	M$�3 ≤ �$	∀[M$, �$] ∈ &$,	
where &� is the projection of  & on the space of data of  �-th constraint: &$ = E[M$, �$] ∶ 	 [�, �] ∈ &F. ” 

 However, to get a RC in a tractable representation, some additional efforts are required. 

In first chapter of [69] it is stated that “the RC of the uncertain LO problem with uncertainty set & is computationally tractable whenever the convex uncertainty set & itself is computationally 

tractable”. It was also proven in [52] that the semi-infinite constraint of the uncertain LO system 

with the conic representation of the uncertainty set can be represented by a system of conic 

inequalities. The corollary from the formulated theorem states that if the uncertainty set is 

polyhedral, then a semi-infinite constraint can be presented as an explicit system of linear 

inequalities. 

 The uncertain demand ��� in the CLSP (2.1)-(2.11) and the DLSP (2.12)-(2.19) models 

takes values from the corresponding uncertainty interval ����∗ − ����∗ , ���∗ + ����∗ � in each 

planning period. Therefore, the uncertainty set the vector of uncertain demand h belongs to is a 

polyhedral, which definitely is a convex set. It may be concluded that the methodology of the RC 

construction is applicable to the considered uncertain production planning problems. 

In order to construct the RC for the uncertain CLSP (2.1)-(2.11) and the uncertain 

DLSP (2.12)-(2.19) the following steps should be completed:  

1. The uncertain models (2.1)-(2.11) and (2.12)-(2.19) should be written as the uncertain 

problems with the certain objectives and the semi-infinite constraints; 

2. Each one of the original semi-infinite constraints should be replaced by the explicit 

system of inequalities; 
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3. The variables that do not represent the actual decisions (e.g. stock variables) should 

be eliminated. 

The certain objective can be constructed by substituting the uncertain objective 

expression by an additional variable, and by restricting this variable to be equal or higher than 

the initial objective in the additional constraint of the system. Step 3 can be done by expressing 

redundant variables by the variables that represent the actual decisions. 

To construct the RC in a solvable form as it is stated in step 2, every original model 

constraint is transformed to the system of linear inequalities: 

W-(�) +:::;W$��(�) × ���<=
�>?

@
�>?

A
$>? ≤ 0, ��� ∈ ����.$/; ���.01�	

⇕		

¢£¤
£¥ W$��(�) × ���.$/ ≤ K��W$��(�) × ���.01 ≤ K��
W-(�) +:::#��=

�>?
@
�>?

A
$>? ≤ 0 

(5.10) 

Here,  � is the vector of the decisions variables, W-(�) and W$��(�) are the given functions 

of �, ��� is the uncertain demand parameter belonging to the uncertainty interval ����.$/; ���.01�, K�� is an additional variable. 

  The uncertain CLSP (2.1)-(2.11) and the uncertain DLSP (2.12)-(2.19) contain both, 

integer and binary variables; consequently, attention should be paid to the tractability of the 

constructed RCs.  Remarks on a tractability of a RC for uncertain mixed-integer models were 

done in [69]: “With no integer variables, the fact that the RC is an LO program 

straightforwardly implies tractability of the RC, while in the presence of integer variables no 

such conclusion can be made. Indeed, in the mixed integer case already the instances of the 

uncertain problem S typically are intractable, which, of course, implies intractability of the RC. 

In the case when the instances of S are tractable, the “fine structure” of the instances 

responsible for this rare phenomenon usually is destroyed when passing to the mixed-integer 

reformulation of the RC. There are some remarkable exceptions to this rule; however, in general 

the Uncertain Mixed-Integer LO is incomparably more complex computationally than the 

Uncertain LO with real variables.” 
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To check the tractability of the constructed RCs, the thesis proposes to implement the 

mathematical models in the optimization software and to test them on a numerical example. 

5.3.2 Affinely Adjustable Robust Counterpart (AARC) 

 Adjustability of the production plan to the changing market situation provides a strict 

advantage and, therefore, is desirable. According to chapter 3, the Adjustable Robust Counterpart 

(ARC) provides a less conservative solution for an optimization problem and suits to the 

environment that allows decisions to be made along with the uncertain data appearance. 

ARC aroused as a natural extension of the RC for uncertain optimization models, since 

some decision variables are allowed to get numerical values already after some part of uncertain 

data are known. So in the ARC the decision rules – functions of the uncertain data – are 

considered instead of the original decision variables. However, when switching to the decision 

rules, the tractability of the resulting optimization model becomes an issue. To make the model 

computationally effective, the class of affine functions is used for the decision rules 

representation. 

In order to construct the AARC for the uncertain CLSP (2.1)-(2.11) and the uncertain 

DLSP (2.12)-(2.19), the following steps have to be completed:  

1. The information base (a part of data on which the variables are allowed to be 

dependent) should be defined; 

2. Corresponding decision variables of the initial model should be substituted by the 

affine decision rules; 

3. The affine decision rules should be plugged into the mathematical model, which 

includes new decision variables, and should be transformed into the solvable form. 

The information base for the ARC is defined in the definition of the ARC (3.23) by the 

matrixes S�. If S� equal to zero matrixes, meaning that the decision variables are independent 

from the actual market data, then the special case of ARC – the Robust Counterpart – is 

obtained. The completeness of the information base is in inverse proportion with the 

computational status of the constructed AARC. At the same time, the more complete the 
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information base is, the better the gained solution is, in terms of proximity to the optimal 

solution.  

In a next step, the information base ¦� for the decision variables in the planning period � 
of the uncertain CLSP (2.1)-(2.11) and the uncertain DLSP (2.12)-(2.19) is defined by the actual 

demands obtained in previous planning periods: ¦� = E1… �F. 
If the initial uncertain model has a vector � that is comprised of the decision variables, 

and the information base ¦� is defined, then the decision variable M� should be replaced by the 

affine decision rule (5.11) in order to construct the AARC: 

M� = §��- +	: §��xx∈¨© ��x (5.11) 

The coefficients of the affine decision rules §��-  and §��x  are the new decision variables of the 

AARC. 

 To get a computationally tractable representation of the AARC, the affine decision rules 

are plugged into the uncertain CLSP (2.1)-(2.11) and the uncertain DLSP (2.12)-(2.19) models. 

The same transformations as for the RC construction are implemented: getting the certain 

objective, representing each semi-infinite constraint by the system of linear inequalities, 

eliminating of the variables that describe the state of production planning system. 

5.3.3 Features of the AARC for the CLSP 

The objective function in the uncertain CLSP (2.1)-(2.11) is the minimization of the 

manufacturer’s total costs. During the RC construction in this thesis, the reasoning was worst-

case oriented: the aim was to minimize the maximal possible costs of the manufacturer on the 

prescribed uncertainty set of demand. The worst-case argumentation is maintained further on, 

and the AARC model that optimizes the manufacturer’s costs for the worst-case demand 

scenario is constructed. The resulting AARC is referred to in this work as “the AARC WORST-

CASE” for shortening. 

One of the advantages of the RO approach is the fact that it can be applied not only for 

the worst-case scenario optimization, since the only requirement is the convexity of the objective 

function in the initial uncertain optimization model. Based on this fact, the AARC WORST-

CASE model can be designed less conservative, and a weighted sum of several demand 
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scenarios can be optimized instead of the worst-case. The objective function of the AARC 

WORST-CASE model is substituted by minimization of the weighted sum of several demand 

scenarios.  Corresponding demand scenarios are proposed to have a given probabilities to occur, 

so we plug them into the objective with the corresponding weights. Such the AARC optimizes 

the weighted manufacturer’s costs on several demand scenarios, so it will be called further in our 

work as “the AARC SCENARIOS” for shortening. 

The established RO paradigm mainly discusses models with continuous decision 

variables (due to the tractability issues) and their robust counterparts. However, the initial CLSP 

(2.1)-(2.11) contain the binary variables 5$�� and 5"$��, which we decided to leave unchanged in 

the mathematical model, even though it may affect the tractability status of the resulting AARC. 

To apply the classical RO approach for the AARC construction, we also ignored integrality of 

the decision variables in the uncertain CLSP (2.1)-(2.11): for the AARC construction we 

replaced the integer decision variables from the initial CLSP by the affine decision rules, whose 

coefficients are real numbers. Consequently, the resulting values of decision variables may 

appear to be non-integers, meaning that the obtained production plan should be additionally 

analyzed before the implementation stage. Rounding of the obtained non-integer solution values 

is typically used, however we address the integrality issue differently. 

Both the AARC WORST-CASE and the AARC SCENARIOS models with real 

coefficients in the affine decision rules belong to the class of Mixed Integer Programming (MIP) 

problems (because of the binary nature of variables 5$�� and 5"$��). They were implemented and 

solved using the IBM ILOG CPLEX Optimization Studio in order to calculate the affine decision 

rules. Hardware used: Intel(R) Core(TM) i5-450M 2.40 GHz processor and 4.00GB RAM. 

5.3.4 Integrality issue of the AARC for the CLSP 

The decision variables describing the production amounts and the amounts of product in 

stock in the uncertain CLSP (2.1)-(2.11) can take only integer values. Since in the AARC they 

are substituted by the affine decision rules, the corresponding affine decision rules have to take 

only non-negative integer values independently from the actual data realization. 

In the present thesis, it is proposed to narrow the parametric family of linear functions 

used for the decision rules down to the linear functions with integer coefficients. For this 
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purpose, the coefficients §��-  and §��x  in (5.11) are restricted to be integers. Thereby, the function 

of decision rules are forced to take only integer values for each possible demand scenario from 

the prescribed uncertainty set. The explanation is based on the following: the demand parameters 

take values which belong to the set of natural numbers with zero Eℕ ∪ 0F; due to the new 

restriction all the coefficients of the affine decision rules belongs to the set of integers ℤ. Then 

the closure property under addition and multiplication of the set of integers ℤ allows stating that 

the production amounts 3$�� and 	4$�� will take only integer values for every demand scenario 

from the uncertainty set. 

The new AARC WORST-CASE and AARC SCENARIOS model (with integer 

coefficients in affine decision rules) are MIP problems, which were implemented and solved 

using the IBM ILOG CPLEX Optimization Studio. The same hardware is used as for the AARCs 

with the real coefficients in the decision rules. 

However, narrowing the parametric family of decision rules may affect the proximity of 

the obtained solutions to the optimal ones; in addition, the tractability of the resulting AARC 

may be affected. By switching to the integer coefficients in the linear functions of the decision 

rules, the number of the integer variables in the resulting AARC model is increased; it logically 

entails the higher computational complexity of the AARC. 

To evaluate the changes in the AARC performance, the AARC with real coefficients in 

the decision rules and the AARC with integer coefficients in decision rules are compared using a 

numerical example. 

5.3.5 Testing workflow for the AARC WORST-CASE and 

AARC SCENARIOS models. Simulation of uncertain demand 

One of the research goals is the computational evaluation of the RO approach. To achieve 

this, a computational example and simulation of the demand scenarios are considered. 

Production system parameters and market data for the initial uncertain CLSP (2.1)-(2.11) 

are provided by the operating manufacturing company. The numerical values are given for the 

nominal demands and the uncertainty level. However, in order to evaluate the performance of the 

AARC solution, the actual realizations of the demand are required. Thus, one may calculate the 

value of the total costs provided by the AARC production plan, the value of total costs provided 



57 

 

by some probabilistic algorithm (assuming that additional probabilistic information is given) and 

the optimal value of the total costs for one particular demand scenario. Next, it can be evaluated 

how close the obtained values are to each other, and the “price of robustness” – difference in 

total costs between optimal and robust production plans – can be calculated. 

Obviously, to make the comparison of the solution approaches fair enough, the 

comparison of costs for only one demand scenario is insufficient. One may desire to compare the 

differences in costs for a large number of demand scenarios and to compute the difference in 

costs on average. The maximal difference in costs as well as the time of computation is also of 

particular interest.  

The constructed AARC models for the given CLSP were tested using the workflow 

presented in Figure 5.1. 

 

Figure 5.1. Testing workflow for the RO approach (CLSP) 

When the first step of the workflow was completed, the difference in the computation time as 

well as in other solving parameters of the AARC WORST-CASE and the AARC SCENARIOS 

models were compared. 

As a next step, a simulation of 100 demand scenarios is implemented. Three scenarios 

were fixed to the lowest possible demand, nominal demand and highest possible demand in all 

planning periods. For the calculation experiment, the fact that demands are integer numbers and 

allowed them to take any real values from the uncertainty interval was omitted. One of the 

generated demand scenarios is shown in Figure 5.2. 

Compute corresponding total costs for each demand scenario and on 

average for the deterministic CLSP in an ideal case 

Evaluate and compare results 

Solve the AARC model: calculate affine decision rules 

Generate 100 random demand scenarios from the uncertainty set 

Compute corresponding total costs for each demand scenario and on 

average using AARC affine decision rules 
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Figure 5.2. One of the generated demand scenarios for the product 2 

The numeric values of the production amounts, stocks and total costs were calculated for 

the AARC WORST-CASE and the AARC SCENARIOS model solutions on each generated 

demand scenario and on average using the previously calculated AARC affine decision rules.  

To identify the “price of robustness” of the AARCs solutions in a next step, the 

deterministic CLSP model (2.1)-(2.11) was solved for each generated demand scenario. All 

demands were assumed to be certain and known in advance, forming an ideal case. Accordingly, 

the obtained objective values are optimal for the corresponding demand scenarios. It is worth 

noting that the accuracy tolerance was set to 0.5% in deterministic CLSP to reduce the time of 

computation. 

Several parameters were used to compare the obtained results: the absolute values of the 

objective functions, the maximal absolute and relative gaps between the optimal and the obtained 

solutions, and the relative gap on average over 100 generated demand scenarios. The 

computational accuracy was taken into account as well. 

Since the integrality of decision variables was addressed in the initial CLSP by 

constructing decision rules of a special kind, it was intended to investigate the newly constructed 

AARC WORST-CASE and AARC SCENARIOS models (with integer coefficients in decision 

rules) on simulated demand scenarios and to compare the obtained results with the results of 

AARC models that use standard affine decision rules. For this purpose, the same workflow as 
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shown in Figure 5.1 was used and, therefore, changes in performance of the AARC solution with 

switching to the narrowed affine decision rules could be compared. 

Additionally, the testing workflow shown in Figure 5.1 was implemented for the newly 

constructed AARC WORST-CASE and AARC SCENARIOS models (with integer coefficients 

in decision rules) using the closest to the reality simulation: the demand took only integer values 

from the defined uncertainty interval. The demand was allowed to deviate from the nominal 

values ���∗  by the defined uncertainty percentage, but not less than for 1 unit. The described 

simulation along with the given data represents the case-study of the RO application. The 

performance of the AARCs was evaluated by comparing it with the optimal and probabilistic 

approaches by analogy with the real values demand simulation. 

5.3.6 Comparison of solution approaches. The influence of 

uncertainty level on the total costs value 

As it was already mentioned, one may wish to compare the performance of different 

solution approaches on the same production planning problem instance and to calculate the 

“price of robustness” – difference in total costs between optimal and robust production plans. 

The construction of a non-adjustable Robust Counterpart (RC) and the construction of a 

probabilistic model (assuming that additional probabilistic information is given) were considered 

as alternative solution approaches to the AARC. Additionally, all obtained solutions were 

compared with the optimal solution. The optimal solution for a production planning problem 

instance is a solution obtained from the deterministic CLSP model (2.1)-(2.11), which was 

solved for particular demand scenario. All demands were assumed to be certain and known in 

advance forming an ideal case. 

To construct the probabilistic model, the demand was assumed to be uniformly 

distributed over the uncertainty interval. Due to the symmetry of the uncertainty intervals ����∗ − ����∗ , ���∗ + ����∗ �, the mean demand values are equal to the nominal demands ���∗ . Given 

this additional probabilistic information, the mean value of the total costs was optimized: the 

mean demands ���∗  were plugged into the CLSP model (2.1)-(2.11), and the resulting 

deterministic MIP problem was solved. It is worth to note that the deterministic CLSP model 
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with the nominal demand values describes another possible production strategy – a strategy 

where a manufacturer simply ignores the data uncertainty. 

To make a comparison of the approaches, 100 production planning problem instances, 

formed by the implemented demand simulation, were solved with the help of RC, AARC 

WORST-CASE, AARC SCENARIOS (both with real and integer coefficients in decision rules), 

probabilistic model and deterministic CLSP describing an ideal case. The absolute and relative 

gaps between the total costs values of the obtained solutions were computed and compared. 

Another important aspect is the influence of the uncertainty level on the following 

factors: the performance of the solution approaches, the changes in total production costs and the 

price of robustness of the AARC solutions. For this purpose, the demand simulation was 

repeated for different levels of demand uncertainty �: 5%, 10%, 20%, 30% and 50%. The 

obtained production planning problem instances were used to calculate the total costs values 

corresponding to the RC, the AARCs, the probabilistic model and the optimal solutions. The 

absolute and relative gaps between the total costs values of the obtained solutions were computed 

and compared for each uncertainty level.  

Worth noting that the comparison of the AARC solutions with the RC solutions shows 

whether the adjustability of decision variables provides an actual advantage. However, the RC 

model became infeasible already for 21% of demand uncertainty; so the RC solution was 

calculated only for 5%, 10% and 20% of uncertainty level.  

5.3.7 Features of the AARC for the DLSP 

The crucial issue that hinders AARC construction for the uncertain DLSP (2.12)-(2.19) is 

the binary nature of the decision variables 5$��. To adjust the decision variables and to get the 

resulting AARC computationally effective, the binary 5$�� has to be substituted by the linear 

functions of the decision rules (5.11). Obviously, such a replacement is not equivalent, since the 

range of linear function (5.11) is not equal to {0, 1}. 

To overcome this challenge, it is proposed to construct the AARC for the  

DLSP (2.12)-(2.19) using the following steps: 
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1. Decision variables 5��1, which are responsible for the production decisions in the next 

planning period, are not substituted by the linear decision rules in the constructed 

AARC; they are left unchanged in the model and keep their binary nature. 

2. Decision variables 5��� for � > 1, which are responsible for the production decisions 

in the further planning period, are substituted in the constructed AARC by the linear 

decision rules (5.11) that are restricted to take values in the interval [0, 1]. 

3. The production plan provided by the constructed AARC is formed under a folding 

planning horizon: the AARC is resolved at the end of each planning period, taking 

into account new market and system data.  

The solutions 5$�? for the first planning period should be regarded as „the guide to action“ 

for the manufacturer. The values of decision variables 5$�� for � > 1 should be interpreted as the 

possibilities of production of product � on the production machine � in the planning period � or as 

the portion of planning period �, during which machine � should produce product � in order to 

satisfy market demand. The folding planning horizon means that instead of solving the AARC 

only once in the beginning of the production process, the AARC is resolved at the end of each 

planning period. Thereby, a new solution is generated at the end of each planning period, taking 

into account new information about demand and the current state of the production planning 

system. 

The AARC, which takes into account aspects mentioned above, has one strict advantage: 

due to the adjustability of the variables, it is expected to be less conservative than the 

corresponding RC for the DLSP. However, the disadvantages of the constructed AARC are also 

serious. Firstly, the robustness of the AARC solution is not guaranteed any more, since the DLSP 

“all or nothing” assumption can be violated. The reason is that the decision rules (5.11) are 

allowed to take values on the interval [0, 1], making restriction (2.15) feasible for several non-

zero decision rules values that corresponds to 5$��. Thus, the situation wherein the manufacturer 

is not able to satisfy the customer demand due to the unavailable production capacity may occur. 

Secondly, the upper bound of total costs is not provided to the manufacturer for the same reason. 

The “all or nothing” assumption is relaxed; therefore, the total costs provided by the AARC for 

the worst-case of demand distribution are not accurate. Finally, the AARC contains binary 

variables, which reflect its computational status.  
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The AARC for the DLSP (2.12)-(2.19) belongs to the class of Mixed Integer 

Programming (MIP) problems (because of the binary nature of variables 5$��) and is planned to 

be implemented and solved using the IBM ILOG CPLEX Optimization Studio. The following 

hardware is used: Intel(R) Core(TM) i5-450M 2.40 GHz processor and 4.00GB RAM. 

5.3.8 Testing workflow for the AARC for the DLSP model. 

Simulation of uncertain demand 

Analogically to the testing of the AARCs of the CLSP, a computational example and 

simulation of the demand scenarios are considered for the AARC of the DLSP. Production 

system parameters and market data for the initial uncertain DLSP (2.12)-(2.19) are provided by 

the operating manufacturing company.  

The aim is to analyze the constructed AARC by doing the following:  

• generate 20 demand scenarios (though 3 of them are fixed to the highest, nominal 

and lowest demand, all others are randomly generated),  

• calculate and compare the production plans provided by the AARC, the RC and 

the optimal solution for each demand scenario; 

• identify the influence of uncertainty level on performance of the solution 

algorithms. 

The reader is referred to the section 5.3.5, wherein the method of demand generation and 

the method of solution comparison are described in detail. 

The testing workflow, described in Figure 5.1, is applied for testing the resulting AARC 

for the DLSP (2.12)-(2.19). However, step 3, which proposes to compute the corresponding total 

costs for each demand scenario and on average using AARC affine decision rules, is done under 

the folding planning horizon. The algorithm that is used to calculate the total costs of AARC 

solution is shown in Figure 5.3. 
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Figure 5.3. Testing workflow for the AARC of the DLSP 

 

  

Take the generated demand scenario and given model data: e.g. �=24, ,�- = 0, ... 

It is assumed that initially L$�- = 0, Total Costs = 0. 

Solve the AARC model for given data (�, ,�-, L$�- ...):  

• solution variables are 0 (do not produce) or 1 (produce) for the first period,  

• decision rules are between 0 and 1 for all other planning periods. 

Based on known information base (demands are known for the nearest period) and given demand 

scenario, the value of production costs in first planning period (Costs1) is calculated and saved. 

Assuming that the production plan for the first planning period is implemented, new values for the 

decision variables are assigned: 

• new ,�- values are equal to the stock at the end of first period (,�?), 

• new L$�- values are equal to the machines state values at the end of first period, 

• Total Costs = Total Costs + Costs1, 

• � = � − 1	

The total costs value is calculated for the considered demand scenario, using the AARC solution and folding 

horizon 

 

� = 0	
Yes 

No 
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6 Implementation and results 

6.1 Analytical approach for defining the worst-case of 

demand distribution 

6.1.1 Important definitions and assumptions 

Let us recall the stated subgoal (see section 5.1): to find such a demand distribution 

(demand takes values from the prescribed uncertainty interval) for the overall planning horizon � that an online algorithm provides the worst solution in comparison to the offline (optimal) 

solution. To compare the online and the offline algorithms, the technics of competitive analysis 

are used. The underlying idea is: do not consider the absolute behavior of the algorithm, but 

rather the ratio between the algorithm’s behavior and the optimal behavior on the same problem 

instance. Required definitions are formulated below. 

Definition 5. The set of problem instances of the initial uncertain production planning 

problem is the set S of all production planning problems , that differ from each other only by the 

demand distribution (demand takes values from the prescribed uncertainty interval) over the 

planning periods, while all other model parameters stay the same. 

Definition 6. ()+��(,) denotes the cost of an algorithm A (the objective function value 

when the problem is solved by the algorithm A) on the problem instance I. The optimal objective 

value on the problem instance I is noted as ()+�­®�(,). A competitive ratio of the algorithm A for 

the production planning problem P (minimizing the costs) is the number ( ∈ ℝ, defined as:  �8W 	¯(	°	()+��(,) ≤ ( ∗ ()+�­®�(,), ∀, ∈ S± (6.1) 

Based on the fact that all problem parameters except the unknown demand values are 

fixed, a difference in the solution quality between the online and the offline algorithms may only 

be caused by a possibility of production reallocation. The considered problem of the robust 

optimization is generally quite complex to analyze, subsequently several crucial assumptions are 

done in order to simplify the problem. 
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Definition 7. Under the meaningful interval we understand the integral part ²;­³´G®´<µ´ ¶. It 
defines the number of periods during which it will be cheaper to hold one production unit 

(considering production in the normal working time slot with lower production costs), rather 

than to produce this unit in the overtime slot. 

Assumption 7. To simplify, it is assumed that the total number of planning periods is less 

than the corresponding meaningful interval: � ≤ ²;­³´G®´<µ´ ¶. 
Assumption 8. The total demand value summarized over all planning periods is fixed to 

the integral part of the total production capacity in normal production shift summarized over all 

planning periods:   

:�� =@
�>? 	·� ∗ %¸ 

Assumption 9. The length of the overtime slot and the length of the normal working time 

slot are equal. 

To define the competitive ratio of an online algorithm � in terms of the competitive 

analysis, it is necessary to find: �8W 	¯(	°	()+��(,) ≤ ( ∗ ()+�­®�(,), ∀, ∈ S±. 
In turn, this is the same as to find:  

+#K¹∈� º ()+��(,)()+�­®�(,)». 
Statement 1. If M, �, 8 are the positive integers and M	 ≥ 	�, then  

0� ≥ 0[/�[/. 
Proof. Let's compare M� and M + 8� + 8 

This is the same as to compare: M(� + 8)�(� + 8) and �(M + 8)�(� + 8) M� + M8 and M� + �8 M8 and �8 M and � 
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By definition M ≥ �, this means that: M� ≥ M + 8� + 8		 
■ 

6.1.2 Main theorem 

The formulation and the proof of the theorem that describes the worst case of the demand 

distribution in terms of CA are provided below. The worst-case of the demand distribution 

defines also the value of the competitive ratio. 

"The objective value while solving the model by the algorithm" is replaced by "the cost 

of the algorithm" for shortening. Similarly, the term “production shift” is defined as rescheduling 

of production from the overtime slot of one period to the normal time slot of one of the previous 

periods. Shifts allow to satisfy demand in time and to avoid the high costs of overtime 

production. The number of shifts made by an algorithm inside the meaningful interval reflects 

the algorithm effectiveness.  

The next issue focused is the fact that the competitive ratio of an online algorithm 

directly depends on the difference between the number of shifts made by the online and the 

offline algorithm. To illustrate this point, the difference in total costs between the solutions 

provided by an online and an offline algorithm is considered, if the offline algorithm shifted one 

production unit more than the online algorithm. From the problem (5.1) it is known that the total 

costs are: 

:((�3� + )"�4� + ℎ�,�)@
�>?  

For simplicity, a production planning system with fixed production and holding costs in 

all planning periods is considered. If the offline algorithm shifted from the planning period � to 

planning period � one production unit, while the online algorithm did not shift anything, then the 

difference in costs is the following: ()+�­/¼$/½ −	()+�­¾¾¼$/½ = )" − (( + ℎQ), (6.2) 

where Q = � − � is the number of periods that the shifted production unit was held in stock 

before delivery to the customer according to the offline production plan. 
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According to Assumption 7, the difference in costs (6.2) is positive. Next, the case when 

the number of units that were not shifted by the online algorithm increased to 7 is considered. 

Correspondingly, both ()+�­/¼$/½ and ()+�­¾¾¼$/½ increased: the costs of production in overtime 

slot increased by )" ∙ (7 − 1) for the online algorithm; the additional holding costs equal to the ℎQ ∙ (7 − 1) appeared for the offline algorithm. At the same time, the difference in costs 

between the online and the offline solutions also increased to 7;)" − (( + ℎQ)<. Turning back 

to the competitive ratio definition (6.1), it means that the difference between the numerator and 

the denominator increased and the numerator is greater than the denominator. It immediately 

leads to the growth of the competitive ratio by the Statement 1. 

All aspects considered, the aim is to find such a demand distribution that the difference in 

shifts made by the online and the offline algorithms is maximal. This demand distribution will 

define the maximal ratio between the online and the offline costs. 

Theorem 6.1. The following demand distribution realizes the worst-case of demand 

distribution and defines the competitive ratio for the online algorithm with the rolling horizon 8 

out of � total periods, considering Assumption 7, Assumption 8 and Assumption 9: 

1. If (� − 	8) is even:  

• first 
(�−8)2  periods have zero demand; 

• next 8 periods have average demand equal to the production capacity in the 

normal time slot; 

• last 
(�−8)2  periods have the highest possible demand. 

2. If (� − 	8) is odd: 

• first 
(�−8+1)2  periods have zero demand; 

• next 8 − 1 periods have average demand equal to the production capacity in the 

normal time slot; 

• last 
(�−8+1)2  periods have the highest possible demand. 

The graphical representation for one of the cases of the Theorem 6.1 is shown in  

Figure 6.1.  
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Figure 6.1. Illustration of the demand scenario from Theorem 6.1 in case (� − 8) is even 

 Proof. We will prove the Theorem 6.1 for the case when (� − 8) is even. The case when (� − 8) is odd can be proved by the parity of reasoning. 

Obviously, the optimal production plan for the CLSP problem (5.1)-(5.5) with the 

demand distribution from Theorem 6.1 includes 
(@G/)¿  production shifts. Since the production in 

overtime is more expensive and we are working under Assumption 7, it is meaningful to avoid 

the overtime production and produce for the lower price (in the normal working time slots) in 

advance. 

On the other hand, the online algorithm will not be able to make any production shifts: 

during the first 
(@G/)¿  and the next 8 planning periods the online algorithm put nothing in stock. 

The reason is that due to the current market knowledge and rolling horizon restriction, 

information about high demands in the last planning periods is not available for the online 

algorithm during first 
(@G/)¿ + 8 planning periods. When the first planning period with the 

maximal demand is taken into account by the online algorithm, there is no possibility to shift the 

production anymore, meaning there is no time available in the normal time slots of previous 8 − 1 periods. The difference between the number of shifts made by the offline algorithm and 

the number of shifts made by the online algorithm is 
(@G/)¿ . 

In a next step, it is analyzed what will happen if the demand distribution is changed. The 

competitive ratio is defined by the fraction with the numerator ()+�­/¼$/½ and the denominator ()+�­¾¾¼$/½. Any change in the demand distribution from the Theorem 6.1 will lead to one of the 

following consequences: 

0

200

400

600

800

1000

1200

1 2 ... (N-n)/2 ... n+(N-n)/2 ... N

D
em

a
n

d
 v

a
lu

es

Planning periods



69 

 

1. ()+�)WWÀ�8Á increases and ()+�)8À�8Á stays the same; ()+�)WWÀ�8Á increases and ()+�)8À�8Á decreases. By the basic fraction properties, both situations will lead to the 

decreased value of the competitive ratio. 

2. ()+�)8À�8Á and ()+�)WWÀ�8Á decrease simultaneously. Such a behavior may be obtained 

in practice in the following three situations: 

a. The number of shifts made by the online algorithm remains the same, while 

the number of shifts made by the offline algorithm decreases. This situation 

may be caused by a demand distribution that requires less production in 

overtime slot, if we will not consider shifting at all, than the demand 

distribution from the Theorem 6.1. Consequently, both ()+�)8À�8Á and ()+�)WWÀ�8Á decrease. At the same time, the number of shifts made by the 

offline algorithm decreases, so the difference between the number of shifts 

made by the offline algorithm and the number of shifts made by the online 

algorithm decreases. Correspondingly, the difference in costs  (()+�­¾¾¼$/½ − ()+�­/¼$/½) and the competitive ratio also decreases. 

b. The number of shifts made by the online algorithm increases, while the 

number of shifts made by the offline algorithm stays the same. Consequently, 

the difference between numbers of shifts made by the offline algorithm and 

the number of shifts made by the online algorithm decreases and the 

competitive ratio also decreases. 

c. The number of shifts made by the online algorithm increases, while the 

number of shifts made by the offline algorithm decreases. Analogically to the 

previous cases, the difference between numbers of shifts made by the offline 

algorithm and the number of shifts made by the online algorithm decreases 

and the competitive ratio also decreases. 

3. ()+�)8À�8Á and ()+�)WWÀ�8Á increase simultaneously. Such a behavior may be obtained 

in practice only if the number of shifts made by the offline algorithm increases. This 

inevitably leads to the increased number of shifts made by the online algorithm. The 

reason is that if additional periods where demand is higher than average appear, they 

will be obtained by the online algorithm with rolling horizon 8. (Both algorithms for 

this particular case will behave the same, which leads to the increased value of total 
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costs for the production plans provided by the online and the offline algorithms. The 

competitive ratio will also decrease based on the Statement 1. 

4. ()+�)8À�8Á increases, while ()+�)WWÀ�8Á stays the same; ()+�)8À�8Á decreases, while ()+�)WWÀ�8Á stays the same.  Such situations cannot be obtained in practice, because 

any change in the demand distribution inevitably leads to the change in the ()+�)WWÀ�8Á, since  Assumption 8 is assumed. 

5. ()+�)8À�8Á stays the same, while ()+�)WWÀ�8Á decreases. Such situations cannot be 

obtained in practice, because changes of the ()+�)WWÀ�8Á inevitably lead to changes of ()+�)8À�8Á. Indeed, ()+�)WWÀ�8Á decreases only for the demand distribution that requires 

less production in overtime slot (if we will not consider shifting at all) than the 

demand distribution from the Theorem 6.1. For this situation, ()+�)8À�8Á decreases as 

well (see case 2b). 

6. ()+�)8À�8Á increases, while ()+�)WWÀ�8Á decreases. Such situations cannot be obtained 

in practice, because no demand distribution increases the volume of non-shifted 

demand for the online algorithm. On the other hand, if the ()+�)8À�8Á has increased 

with the same value of non-shifted demand, then both, the online and the offline, 

algorithms reallocated higher production volume to the normal working slot. This 

case was considered in 3. 

Thus, demand distribution in the theorem realizes the worst case, the Theorem 6.1 is proved.  

■ 

6.1.3 Comments on the proof 

The examples of the demand distributions that demonstrate the Theorem 6.1 proof are 

provided below: 

1. ()+�)WWÀ�8Á increases and ()+�)8À�8Á stays the same.  

The demand distribution remains as indicated in the Theorem 6.1 for the planning 

periods 2 till �; the maximal demand is obtained in the first planning period and the 

minimal demand is obtained in the last period, see Figure 6.2. 

2. ()+�)8À�8Á and ()+�)WWÀ�8Á decrease simultaneously. 
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a. The minimal demand is obtained in the first planning period, the average 

demand is obtained in the periods 2 till � − 1 and the maximal demand is 

obtained in the last period, see Figure 6.3. 

b. The minimal demand is obtained in the first planning period; the maximal and 

the minimal demand are alternating in further periods, see Figure 6.4. 

c. The maximal demand is obtained in the first planning period; next periods are 

alternating minimal and maximal demand values, see Figure 6.5. 

3. ()+�)8À�8Á and ()+�)WWÀ�8Á increase simultaneously. 

The minimal demand occurs within the first Â�2Ã periods and the maximal demand 

occurs in the next Â�2Ã periods, see Figure 6.6. 

 

Figure 6.2. Illustration of the demand scenario for case 1 of the Theorem 6.1 proof 

 

Figure 6.3. Illustration of the demand scenario for case 2a of the Theorem 6.1 proof 
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Figure 6.4. Illustration of the demand scenario for case 2b of the Theorem 6.1 proof 

 

Figure 6.5. Illustration of the demand scenario for case 2c of the Theorem 6.1 proof 

 

Figure 6.6. Illustration of the demand scenario for case 3 of the Theorem 6.1 proof 
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6.1.4 Computational example 

To illustrate the obtained results, a computational experiment was implemented. The 

following data was used for the CLSP model (5.1)-(5.5): � = 24 number of planning periods in overall planning horizon, 

8 = 8 number of planning periods in rolling horizon of the online algorithm, 

��∗ = 600 nominal demand in the planning period � (units), 

� = 0,9 uncertainty level of demand (90%), 

�	 = 	14400 total summarized demand (units), 

#� = 600 production capacity in normal working time slot of period � (units), 

%� = 840 production capacity in overtime slot of period � (units), 

(� = 100 production costs (per unit) in normal working time slot of period � ($), 

)"� = 150 production costs (per unit) in overtime slot of period � ($), 

ℎ� = 2 holding costs (per unit and per period) in period � ($), 

,- = 0 initial stock of product � (units). 

The mathematical model of the CLSP (5.1)-(5.5) was implemented in the IBM ILOG 

CPLEX Optimization Studio. The Optimization Programming Language (OPL) was used to 

describe the objective function and the restrictions of the model.  

In order to verify the Theorem 6.1 statement, four different demand scenarios were 

considered and compared by the behavior of the online algorithm. For each demand scenario, the 

total value of costs was calculated for the production plan provided by the offline algorithm as 

well as for the production plan provided by the online algorithm.  

Scenario 1 describes the case, where planning periods with the lowest possible demand 

are followed by planning periods with the highest possible demand, see Figure 6.7. 
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Figure 6.7. Scenario 1 of the demand realization 

Since the online algorithm shifts the production from periods with high demand to 

periods with lower demand (with the help of the rolling horizon), the obtained value of the 

objective function will be exactly the same as in the offline case. 

 Scenario 2 includes the lowest possible demand in the first twelve planning periods and 

the highest possible demand in the last twelve planning periods, see Figure 6.8. 

 

Figure 6.8. Scenario 2 of the demand realization 

In this case, the online algorithm with the rolling horizon is not able to solve the problem 

as effectively as the offline algorithm does. In fact, the online algorithm will make only four 

shifts of high-costly overtime production, while the offline algorithm will make twelve. 

Scenario 3 is defined by alternating blocks of six planning periods with alternating 

minimal and maximal demand, see Figure 6.9. 
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Figure 6.9. Scenario 3 of the demand realization 

The online algorithm with the rolling horizon is not able to shift all highest demands in 

Scenario 3 and, therefore, has the overtime production in four planning periods. The offline 

algorithm completely eliminates production in overtime slots, so the total costs and the value of 

the competitive ratio differ for the offline and online algorithms. 

Scenario 4 matches the demand distribution from the Theorem 6.1, see Figure 6.10. 

 

Figure 6.10. Scenario 4 of the demand realization 

For Scenario 4, the online algorithm makes no shifts, while the offline algorithm is able 

to shift all overtime slots productions. 

For the online case the model was solved under the rolling horizon: 

1. The production plan is constructed for the nearest eight planning periods;  

2. The created production plan is implemented for the nearest period; 

3. The planning horizon is moved by one planning period, and the mathematical model 

is updated with the new demand data; 
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4. The stock at the end of the first planning period and new demand data are used as the 

input data for the new model. 

The value of the objective function as well as the value of the competitive ratio is 

presented in Table 6.1 for the online and offline algorithm for each considered demand scenario. 

Table 6.1: Comparison of the offline and online algorithms on four generated demand scenarios. 

 Objective 

function value of 

the offline 

algorithm ($) 

Objective 

function value of 

the offline 

algorithm ($) 

Relative gap between 

the objectives of the 

offline and the online 

algorithms (%) 

Competitive 

ratio value 

for the online 

algorithm 

Scenario 1 1454136 1454136 0 1 

Scenario 2 1616168 1759192 8,85 1,0885 

Scenario 3 1587848 1657000 4,36 1,0436 

Scenario 4 1557288 1852890 19 1,1898 

 

The solution of the online algorithm is worse than the optimal one for three out of four 

demand distributions: the relative percentage gap between the objectives of the online and offline 

algorithms is positive. The corresponding value of the competitive ratio is higher than the one for 

Scenario 2, Scenario 3 and Scenario 4.  

Despite the fact that not every assumption was satisfied (e.g. Assumption 9), the 

statement of the Theorem 6.1 is confirmed. The highest value of the competitive ratio of the 

online algorithm with the rolling horizon is obtained in case of the demand distribution described 

in Theorem 6.1. It should be noted that the difference in the costs between solutions provided by 

the online and offline algorithm reaches 19% in the worst-case scenario. 

The formulated theorem and the computational example were already published in [70]. 
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6.1.5 Capabilities and limitations of the approach 

Theorem 6.1 is formulated based on the worst-case analysis of the CLSP  

problem (5.1)-(5.5) without backlogging and setup costs. Table 6.2 shows applicability of the 

analytical approach for defining the worst-case of demand distribution for production planning 

problems with other structures. 

Table 6.2: Applicability of the analytical approach for defining the worst-case of demand 

distribution 

Production planning  

model structure 

CLSP  

without BG* 

without SC** 

CLSP 

without BG* 

with SC** 

CLSP 

with BG* 

without SC** 

CLSP 

with BG* 

with SC** 

DLSP 

Applicability 

of the analytical 

approach for defining 

the worst-case 

Yes Limited No No No 

 BG* - backlogging, SC** - setup costs. 

 

The analytical approach for defining the worst-case of demand distribution may be 

applied to CLSP problems without backlogging and with a specific structure of setup costs: until 

Assumption 7 used in our analysis stays valid. 

For DLSP and CLSP with other production system structures, considered analytical 

approach cannot be applied. Changes in the production system structure lead to the changes in 

the structure of the goal function and restrictions. The whole model becomes complex and 

interrelation between demand distribution and the values of different production costs become 

not evident any more. 

Nonetheless, the worst-case demand for the CLSP model (5.1)-(5.5) is described for the 

length of the rolling horizon from 1 to � − 1 periods by Theorem 6.1. Hence, the method is 

applicable for strict online problems, where demand information is known only for the current 

planning period, and for the online problems, where nearly all information about the future is 

available. 

Obviously, Assumption 7, Assumption 8, and Assumption 9 strictly limit the described 

approach. Even though the problem can be generalized relatively easily and Assumption 9 can be 

eliminated, two other assumptions are crucial for the considered analysis. An additional future 
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work in this direction can be done. However, since the application of the analytical approach is 

limited, future research should be mostly considered as a base for a better problem 

understanding. 

Some other approaches are required in order to analyze the worst-case of demand 

distribution for the DLSP and more complicated CLSP structures. 

6.2 Analytical approach for deriving the value of 

competitive ratio 

6.2.1 Perishable products with lost sales 

Formulation of the CLSP model 

We consider the mathematical model (5.6), which describes inventory management for 

perishable products with lost sales. In order to add the capacity restrictions, the highest possible 

production amount in planning period � is fixed by Q$ units. The mathematical model for 

perishable products with lost sales with the capacity restriction is: 

mina�_�È:(($Z$ + ℎ$(Z$ − �$)[ + +$(�$ − Z$)[ + �$b(Z$))/
$>?  (6.3) 

The assumption that the production process is strictly online is still valid, meaning that 

the exact value of the demand for the current planning period reveals only at the end of the 

current period. All other assumptions from the work of Wagner [25] are assumed to be valid as 

well (Assumption 1, Assumption 2 and Assumption 3 from p.31). 

 

Deriving a competitive ratio 

 To derive the value of the competitive ratio, the reasoning from the Wagner’s work is 

repeated. The formula, which defines the value of the competitive ratio for the production 

planning model with perishable products and lost sales, was given in Theorem 3.1 of Wagner’s 

work (see p. 32). The new extended formulation of the theorem is given below. 



79 

 

Theorem 6.2. We consider the following production planning strategy: in period �, if ($ ≥ +$, order Z$ = 0 units and if ($ < +$, order Z$ ≤ Q$ units. The competitive ratio of this 

strategy is at most: 

7M3$:uvwxv y7M3 y�$ − (+$ − ($)Z$�$ − (+$ − ($)Q$ , z($ + ℎ$�$ { Z$ + 1, +$($||. 
The maximum value of the strict competitive ratio is: 

7M3$:uvwxv y7M3 y �$�$ − (+$ − ($)Q$ , z($ + ℎ$�$ { Q$ + 1, +$($||. 
Furthermore, the competitive ratio of any algorithm is at least 7M3(+$ ($⁄ )$:uvwxv . 

 The considered production strategy is conditioned on Assumption 3, which implies that 

the production period with ($ < +$ does exist. Otherwise, the optimal production strategy is 

backlogging in all planning periods, both in the online and offline case. To prove the  

Theorem 6.2, its special case of a single period model with unknown demand � is considered for 

a start. 

 Theorem 6.3.  If ( ≥ +, it is optimal (the strict competitive ratio equals to 1) to order zero 

units. If ( < +, the strict competitive ratio of ordering Z units is equal to: 

7M3 y� − (+ − ()Z� − (+ − ()Q ;	Z(( + ℎ)� + 1;	+(|. 
The maximum value of the strict competitive ratio is: 

7M3 y �� − (+ − ()Q ;	Q(( + ℎ)� + 1;	+(|. 
Proof. For the case c ≥ s the proof is obvious: since the cost structure is known in 

advance for the online and offline algorithms, the provided solution is to produce zero units in 

both cases. Therefore, the competitive ratio of the online algorithm is equal to one. 

However, an additional argumentation is required to prove the Theorem 6.3 statement for ( < +. Analogically to the proof provided in paper [25], the competitive ratio value is defined by: 

+#KÌ`- z �(�)�∗(�){, (6.4) 

where �(�) is the value of the objective function in the online case and �∗(�) is the value of the 

objective function in the offline case. Three possible cases determining the structure of �(�) and �∗(�) are considered, noting the online player’s production quantity by Z: 
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1. The demand exceeds the maximal order quantity: 0 ≤ Z ≤ Q < �. 

The best production strategy for the offline algorithm is to produce the highest possible 

amount, which equals to Q. The objective value of such a production strategy defines the 

structure of the denominator in (6.4), and the following lower bound on the competitive 

ratio is determined: 

~ = +#KÌ`- m �(�)�∗(�)p ≥ +#KÌ`- m �(�)(Q + +(� − Q) + �p 

According to the Assumption 3, (� + � < +�. So the demand value is bounded:  � > � (+ − ()⁄ . Based on that, the upper bound for the competitive ratio is derived: 

~ = +#KÌÍA (xGu)⁄ m �(�)(Q + +(� − Q) + �p ≤+#KÌ`- m �(�)(Q + +(� − Q) + �p 

Regarding to the fact that the case 0 ≤ Z ≤ Q < � is considered, the online costs are 

defined as: �(�) = +� + (( − +)Z + � 

This value is put into the numerator of (6.4), which results the formula for the 

competitive ratio: 

~ = +#KÌ`- z+� + (( − +)Z + �+� + (( − +)Q + �{ (6.5) 

By Lemma 1 from the linear-fractional programming (see p. 31), the optimization 

problem (6.5) is equal to the following linear program: 7M3	4,5 ;+4 + ;(( − +)Z + �<5< 
 s.t.: +4 + ;(( − +)Q + �<5 = 1	5 ≥ 0, 4 ≥ 0	

The dual linear system is the following: 7�8U 

 s.t.: U+ ≥ + U;(( − +)Q + �< ≥ (( − +)Z + � 
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The competitive ratio (6.4) is equal to the optimal dual solution: 

7M3	 º1,� − (+ − ()Z� − (+ − ()Q» = �− (+ − ()Z� − (+ − ()Q (6.6) 

2. The demand is less than the production capacity: 0 < � ≤ Q. 

The capacity restriction for demand value becomes meaningless for the offline algorithm: 

it is always possible to produce enough to satisfy the demand. The optimal production 

amount in the offline case equals to � units. Analogically to the case 1, the total costs of 

the offline algorithm are plugged into the denominator of (6.4) and the competitive ratio 

is the following: 

~ = +#K-wÌ�Î m �(�)(� + �p 

In order to deduce the total costs of the online algorithm, two subcases are analyzed: 

a) The production amount in the online case is less than the demand value: 	0 < � < Z ≤ Q. 

The value of the competitive ratio is the following: 

~ = +#K-wÌ�Î m−ℎ� + (( + ℎ)Z + �(� + � p 

Based on Lemma 1 from the linear-fractional programming, a switch to the linear 

programming model and the corresponding dual model is implemented. The derived 

competitive ratio coincides with the solution of the dual system and equals to:  Z(( + ℎ)� + 1  (6.7) 

However, since Z ≤ Q, the maximal possible value of competitive ratio equals to the 

following: Q(( + ℎ)� + 1  (6.8) 

b) The production amount in the online case is higher than the demand value:  Z ≤ � < Q 

The value of the competitive ratio is the following: 

~ = +#K-wÌwÎ m+� + (( − +)Z + �(� + � p 
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Based on Lemma 1 from the linear-fractional programming, a switch to the linear 

programming model and the corresponding dual model follows. The derived 

competitive ratio coincides with the solution of the dual system and equals to: +( (6.9) 

Summarizing cases 1, 2a and 2b, the total value of the competitive ratio is defined as the 

maximal value among (6.6), (6.7) and (6.9): 

7M3 y� − (+ − ()Z� − (+ − ()Q ; Z(( + ℎ)� + 1;	+(| 
Taking into account (6.8), the total competitive ratio is always less than: 

7M3 y �� − (+ − ()Q ; Q(( + ℎ)� + 1;	+(| 
Thus, Theorem 6.3 is proved. 

■ 

To prove the statement of Theorem 6.2, the total costs of the online algorithm and the 

total costs of the offline algorithm are represented as the sums of costs in each planning period: 

�(�) =:�$(�$)@
$>? , 

�∗(�) =:�$∗(�$)@
$>?  

Next, the set Ï = E�:	($ < +$F is defined. By Theorem 6.3 for each planning period � ∈ Ï, 

the following inequality is fulfilled: 

�$(�$) ≤ 	7M3 º� − (+ − ()Z� − (+ − ()Q ; Z(( + ℎ)� + 1;	+(»	 �$∗(�$) 
To prove the statement of Theorem 6.2, the statement of Theorem 6.3 is utilized; 

additionally the cases where demand is equal to zero or the offline algorithm produces nothing 

are analyzed. The further proof exactly repeats the proof from the M. Wagner’s work [25]. 
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6.2.2 Durable products with backlogged demand 

Formulation of the CLSP model 

The mathematical model (5.7)-(5.9), which describes durable products with backlogging, 

is considered. In order to add the capacity restrictions, the highest possible production amount in 

planning period � is fixed by Q$ units.  

The mathematical model describing the production process for durable products with 

backlogging with the capacity restriction looks like: 

7�8:(($Z$ + ℎ$,$[ + +$,$G + �$b(Z$))/
$>?  (6.10) 

 s.t.:  

,$ = ,$G? + Z$ − �$ , ∀� ∈ E1…8F	 (6.11) 

Z$ ≤ Q$, ∀� ∈ E1…8F	 (6.12) 

Z$ ≥ 0, ∀� ∈ E1…8F (6.13) 

The assumption that the production process is strictly online, meaning that the exact 

value of the demand for the current planning period reveals only at the end of the current period, 

still applies. All other assumptions from the work of Wagner are considered to be valid as well 

(Assumption 1, Assumption 2 and Assumption 3 from p. 31). 

 

Deriving a competitive ratio 

 To derive the value of competitive ratio, the reasoning from Wagner’s work is repeated. 

Two subsets of the planning periods set are considered: S = E�:	,$ ≥ 0F and � = E�:	,$ ≤ 0F. S and � denote the periods with respectively non-negative and non-positive 

inventory. If the inventory equals to zero in the planning period �, we assign � arbitrary to S or �. 

The statement of Lemma 2 (see p. 33) stays true for the model (6.10)-(6.13), since the additional 

capacity restriction does not influence the representation of the objective function. 

The aim is to identify the upper and lower bounds of the total costs for the offline 

algorithm and to formulate the analog of Lemma 3 (see p. 33) extended for the existing capacity 

restriction. In order to achieve this, an additional assumption is formulated. 
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Assumption 10. The total demand, summarized over all planning periods, is assumed to 

be less that the total production capacity: 

:�$ ≤/
$>? 	:Q$/

$>?  

Lemma 4. The optimal costs provided by the offline algorithm for the production 

planning model (6.10)-(6.13) have the following lower and upper bounds: �kh ≤ �∗(h) ≤ ckÈ + dk�, ∀h ≥ a, 
where the bold symbols denote the vectors and U$ is defined as following: 

U$ = 7�8 º+$, 7�8	(($)7 , ℎ$ , 7�8(($)8 − 7 » , ∀� = E1…8F 
Proof: The aim is to define the lower and upper bounds for the optimal offline cost. Since the 

capacity restriction exists in the model, the production strategy Z$ = �$ is not always a feasible 

solution. However, due to Assumption 10, the production strategy Z$ = Q$ in period � is a 

feasible offline solution, so we have the upper bound for the offline costs: �∗(h) ≤ ckÈ + dk� 

To begin deriving a valuable lower bound of the offline costs, the fixed setup costs are 

removed:  

�∗(h) ≥ 7�8_`- :(($Z$ + +$,$G + ℎ$,$[)/
$>? =	

7�8_`- :9($Z$ + +$7M3 �:;�� − Z�<, 0$
�>? � + ℎ$7M3 �:;Z� − ��<, 0$

�>? �B/
$>?  

By introducing the additional variables K$ ≥ 0, �$ ≥ 0, ∀� ∈ E1…8F and using the fact 

that + > 0, ℎ > 0, the lower bound is determined as the following linear program: 7�8Ð,_,Ñ 	(fkÐ + ck_ + ekÑ) (6.14) 

 s.t.:  

K$ +:Z� ≥$
�>? :�� , ∀� ∈ �$

�>? 	 (6.15) 

�$ −:Z� ≥$
�>? −:�� , ∀� ∈ S$

�>?  (6.16) 
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 Z$ ≤ Q$, ∀� ∈ E1…8F (6.17) Ð, _, Ñ ≥ 0 (6.18) 

The size of the subset � is denoted by 7 (��7 	E�F = 7), which is the number of 

periods with a non-negative stock. Planning periods belonging to the set � are denoted by 8?…8.. Thereby, the size of the subset S, which coincides with the numbers of periods with the 

non-negative stock, equals to (8 − 7): ��7 	ESF = 8 −7. Planning periods belonging to the set S are denoted by K?…K/G.. 

The mathematical model (6.14)-(6.18) with the new notations is rewritten as: 7�8Ð,_,Ñ 	(fkÐ + ck_ + ekÑ) (6.19) 

 s.t.:  

K/Ò +:Z� ≥/Ò
�>? :��/Ò

�>? 	 (6.20) 

…  

K/Ó +:Z� ≥/Ó
�>? :��/Ó

�>?  (6.21) 

�®Ò −:Z� ≥®Ò
�>? −:��®Ò

�>?  (6.22) 

…  

�®ÔÕÓ − : Z� ≥®ÔÕÓ
�>? − : ��®ÔÕÓ

�>?  (6.23) 

−Z? ≥ −Q? (6.24) …  −Z/ ≥ −Q/ (6.25) Ð, _, Ñ ≥ 0 (6.26) 

The system consists of the objective function and 28 inequalities (without the last group 

of constraints defining the non-negative nature of the variables): 7 inequalities (6.20)-(6.21) 

with the variables K$ and Z$, (8 − 7) inequalities (6.22)-(6.23) with the variables �$  and Z$, 8 

inequalities (6.24)-(6.25) with the variables Z$ and the parameters Q$. 
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In the next step, the matrix of the linear system (6.19)-(6.26) is constructed (see Matrix 1) 

and the inverted matrix for the dual system is deduced. The matrix of the system (6.19)-(6.26) 

has the size 28 × 28, so the inverted matrix correspondingly has the same size. 

 

Α =

×
ØØØ
ØØØ
ØØØ
ØØ
Ù
ÚÛÛ
ÛÜ1 0 0 ⋯ 00 1 0 ⋯ 00 0 1 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮0 0 0 ⋯ 1ßàà

àá
ÚÛÛ
ÛÜ0 ⋯ ⋯ ⋯ 00 ⋯ ⋯ ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮⋮ ⋮ ⋮ ⋮ ⋮0 ⋯ ⋯ ⋯ 0ßàà

àá
ÚÛÛ
ÛÜ1 1 0 ⋯ ⋯ ⋯ ⋯ 01 1 1 1 0 ⋯ ⋯ 01 1 1 1 1 ⋯ ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮1 1 1 1 1 ⋯ 1 0ßàà

àá

ÚÛÛ
ÛÜ0 0 ⋯ ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮⋮ ⋮ ⋮ ⋮ ⋮⋮ ⋮ ⋮ ⋮ ⋮0 0 ⋯ ⋯ 0ßàà

àá
ÚÛÛ
ÛÜ1 0 0 ⋯ 00 1 0 ⋯ 00 0 1 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮0 0 0 ⋯ 1ßàà

àá
ÚÛÛ
ÛÜ−1 0 0 ⋯ ⋯ ⋯ 0−1 −1 −1 0 ⋯ ⋯ 0−1 −1 −1 −1 −1 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮−1 −1 −1 −1 −1 −1 −1ßàà

àá

ÚÛÛ
ÛÜ0 0 ⋯ ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮⋮ ⋮ ⋮ ⋮ ⋮⋮ ⋮ ⋮ ⋮ ⋮0 0 ⋯ ⋯ 0ßàà

àá
ÚÛÛ
ÛÜ0 0 ⋯ ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮⋮ ⋮ ⋮ ⋮ ⋮⋮ ⋮ ⋮ ⋮ ⋮0 0 ⋯ ⋯ 0ßàà

àá
ÚÛÛ
ÛÜ1 0 ⋯ ⋯ ⋯ ⋯ 00 1 0 ⋯ ⋯ ⋯ 00 0 1 ⋯ ⋯ ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮0 0 0 0 ⋯ ⋯ 1ßàà

àá
â
ããã
ããã
ããã
ãã
ä

 

Matrix 1. Matrix of the linear system (6.19)-(6.26) 

 

The first logical group of columns in Matrix 1 is constructed by the coefficients in front 

of the vector Ð; it correspondingly comprises 7 sub-columns. The second logical group of 

columns in Matrix 1 is defined by the coefficients in front of the vector Ñ; it correspondingly 

consists of (8 − 7) sub-columns. Finally, the last logical group of columns in Matrix 1 is 

constructed by the coefficients in front of the vector _; it correspondingly comprises 8  

sub-columns.  

In order to decide where in the last column ones, minus ones and zeros should stay, the 

set of planning periods was written in the following way: EK?	8?	K¿	8¿	8å…8.	K/G.F, where 8$ 
is the element � of set �, K� is the element � of set S. The concrete sequence of the elements 8$ 
and K$ may be different; just one of the possible combinations for the demonstration purposes 

was considered. 

The matrix of the dual linear system for the system (6.19)-(6.26) is constructed by 

inverting the initial Matrix 1, see Matrix 2. 
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Αk =

×
ØØ
ØØ
ØØ
ØØ
ØØ
ØØ
ØØ
Ù
ÚÛÛ
ÛÜ1 0 0 ⋯ 00 1 0 ⋯ 00 0 1 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮0 0 0 ⋯ 1ßàà

àá
ÚÛÛ
ÛÜ0 ⋯ ⋯ ⋯ 00 ⋯ ⋯ ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮⋮ ⋮ ⋮ ⋮ ⋮0 ⋯ ⋯ ⋯ 0ßàà

àá
ÚÛÛ
ÛÜ0 0 ⋯ ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮⋮ ⋮ ⋮ ⋮ ⋮⋮ ⋮ ⋮ ⋮ ⋮0 0 ⋯ ⋯ 0ßàà

àá

ÚÛÛ
ÛÜ0 0 ⋯ ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮⋮ ⋮ ⋮ ⋮ ⋮⋮ ⋮ ⋮ ⋮ ⋮0 0 ⋯ ⋯ 0ßàà

àá
ÚÛÛ
ÛÜ1 0 0 ⋯ 00 1 0 ⋯ 00 0 1 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮0 0 0 ⋯ 1ßàà

àá
ÚÛÛ
ÛÜ0 0 ⋯ ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮⋮ ⋮ ⋮ ⋮ ⋮⋮ ⋮ ⋮ ⋮ ⋮0 0 ⋯ ⋯ 0ßàà

àá

ÚÛÛ
ÛÛÛ
ÛÜ1 1 1 ⋯ 11 1 1 ⋯ 10 1 1 ⋯ 10 1 1 ⋯ 10 0 1 ⋯ 10 0 0 ⋯ 1⋮ ⋮ ⋮ ⋮ ⋮0 0 0 ⋯ 0ßà

ààà
ààá

ÚÛÛ
ÛÛÛ
ÛÜ−1 −1 −1 ⋯ −10 −1 −1 ⋯ −10 −1 −1 ⋯ −10 0 −1 ⋯ −10 0 −1 ⋯ −10 0 ⋯ ⋯ −1⋮ ⋮ ⋮ ⋮ ⋮0 0 0 0 −1ßà

ààà
ààá

ÚÛÛ
ÛÛÛ
Ü1 0 ⋯ ⋯ 00 1 0 ⋯ 00 0 1 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮⋮ ⋮ ⋮ ⋮ ⋮⋮ ⋮ ⋮ ⋮ ⋮0 0 0 ⋯ 1ßà

ààà
àá

â
ãã
ãã
ãã
ãã
ãã
ãã
ãã
ä

 

Matrix 2. Inverted matrix of the linear system (6.19)-(6.26) 

 

The dual system of the system (6.19)-(6.26) has the dual variables 3$, 4� , 5�, where � ∈ �, � ∈ S, � ∈ E1…8F and is written as the following based on Matrix 2: 

7M3
×Ø
Ù::�O3$$

O>? −	/
$>?$∈@

::�O4��
O>? + Èæ	/

�>?�∈� âã
ä

 

 s.t.: 3$ ≤ +$, ∀� ∈ �	4� ≤ ℎ� , ∀� ∈ S 

:3$/
$>?$∈@

−:4� + 5?/
�>?�∈�

≤ (? 

:3$/
$>¿$∈@

−:4� + 5¿/
�>¿�∈�

≤ (¿ 

… 
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: 3$/
$>/G?$∈@

− : 4� + 5/G?/
�>/G?�∈�

≤ (/G? 

3/,/∈@ − 4/,/∈� + 5/ ≤ (/ æ ≥ 0 

Making the unification, the following dual system results: 

7M3
×Ø
Ù::�O3$$

O>? −	/
$>?$∈@

::�O4��
O>? + Èæ	/

�>?�∈� âã
ä

 

 s.t.: 3$ ≤ +$, ∀� ∈ �	4� ≤ ℎ� , ∀� ∈ S 

:3O/
$>O$∈@

−:4� + 5O/
�>O�∈�

≤ (O, ∀� ∈ E1…8F 
æ ≥ 0 

Denoting ç = n, è = −s, é = æ and rewriting the system in new variables, the following 

model can be concluded: 

7M3
×Ø
Ù::�Oê$$

O>? −	/
$>?$∈@

::�Oë��
O>? + Èé	/

�>?�∈� âã
ä

 (6.27) 

 s.t.:  ê$ ≤ +$, ∀� ∈ �	 (6.28) ë� ≤ ℎ� , ∀� ∈ S (6.29) 

:êO/
$>O$∈@

−:ë� + �O/
�>O�∈�

≤ (O, ∀� ∈ E1…8F (6.30) 

é ≥ 0 (6.31) 
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In order to find feasible solutions for the dual problem (6.27)-(6.31), several special cases 

were considered: 

1. If è, é = 0, the model (6.27)-(6.31) is the following: 

7M3::�Oê$$
O>?

/
$>?$∈@

 

 s.t.: 3$ ≤ +$, ∀� ∈ �	
:êO/
$>O$∈@

≤ (O, ∀� ∈ E1…8F 
The feasible solution of the model is defined by the following expression: 

ê� = 7�8m+�,7�8	((�)7 p , 
where 7 is the size of the subset �.  

2. If è, ç = 0, the model (6.27)-(6.31) is the following: 7M3 Èé 

 s.t.: �O ≤ (O, ∀� ∈ E1…8F é ≥ 0 

The feasible solution of the model is �� = (�. 
3. If é, ç = 0, the model (6.27)-(6.31) is the following: 

7M3::�Oë��
O>? 	/

�>?�∈�
 

 s.t.: ë� ≤ ℎ� , ∀� ∈ S	
:ë�/
�>O�∈�

≤ (O, ∀� ∈ E1…8F 
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The feasible solution of the model is defined by the following expression: 

ë� = 7�8mℎ�,7�8	((�)8 −7 p , 
where (8 − 7) is the size of the subset S.  

Summarizing the three cases considered and using the weak duality, it can be stated that  êk�, ëk�, �k� are the lower bounds for �∗(h). Consequently, Ukh is also the lower bound for �∗(h), where U$ is defined by the following expression: 

U$ = 7�8 	Eê$, ë$, �$F = 7�8 y+$, 7�8	($7 , ℎ$, 7�8		($8 − 7| 
Thus, Lemma 4 is proved. 

■ 

The sufficient condition for the existence of a finite competitive ratio for an arbitrary 

online production strategy as well as the set of the lower and upper bounds for the competitive 

ratio are presented in the theorem below. 

Theorem 6.4. For an arbitrary online strategy _ ≥ 0, inequality }k_ + �	 ≤ 0 is a 

sufficient condition for the existence of a finite strict competitive ratio. Furthermore, if a strict 

finite ratio ~ exists, it satisfies the following inequality: �kÈ + }k_ + �ckÈ + dk� ≤ ~ ≤ 7M3?�$�/ yM$U$|. 
Proof: Utilizing the lower bound from Lemma 4, Lemma 3 and Assumption 2 that h ≠ 0, 

the upper bound for the competitive ratio is the following: 

~ ≤ sup-�h�ÈÌî- m�kh + }k_ + ��kh p. 
With the help of Lemma 1 from the linear-fractional programming, the equal linear 

program is constructed: 7M3q,r (�ks + (}k_ + �)5) 
 s.t.: �ks = 1 s ≥ 0, 5 ≥ 0 
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The dual program is: 7�8 ë 

 s.t.: ë� ≥ � 

 0 ≥ }k_ + � 

The dual model is feasible when }k_ + �	 ≤ 0. This implies that the competitive ratio is 

at maximum: 

7M3?�$�/ yM$U$| 
The analysis performed above is repeated for the upper bound from Lemma 4. As a 

result, the following lower bound for the competitive ratio is constructed: 

~ ≥ sup-�Ì�ÎÌî- m�kh + }k_ + �ckÈ + dk� p 

Obviously, the higher the nominator is, the higher the value of the competitive ratio is. 

Therefore, the lower bound for the competitive ratio equals to: �kÈ + }k_ + �ckÈ + dk�  

Thus, Theorem 6.4 is proved. 

■ 

6.2.3 Computational example 

An example of the “backlog-up-to” decision policy was considered in the work [25] and 

the formula for the strict competitive ratio was derived. 

In this section, the aim is to consider the example of a production planning system, where 

the backlogging is high-priced and therefore undesirable. Moreover, two different production 

strategies that do not use backlogging are focused. The following data was used for the CLSP 

model (6.10)-(6.13): 
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 � = 12 number of planning periods in the overtime planning horizon, �	 = 	120 production capacity in one planning period and the maximal possible 

demand (units), ($ = 100 production costs (per unit) in the period � ($): ($ in odd  

planning periods 

($ in even 

planning periods 

5 10 

  �	 = 	1 setup costs ($), + = 100000 backlogging costs per unit ($), ℎ = 1 holding costs per unit and per period ($), ,- = 0 initial stock (units), 

 

The decision variables are: Z$ production amount in the planning period � (units), b(Z$) ∈ E0,1F  binary setup variable that is equal to one if the production is obtained 

in planning period �. 
 

Production strategy 1  

The following production strategy is considered:  

• Production of 7�8 	(�,� − ,+) in odd planning periods; 

• Production of 7M3 	(0, � − ,+) in even planning periods. 

To calculate the upper and the lower bounds for the competitive ratio, firstly the 

necessary condition of the competitive ratio existence from Theorem 6.4 is checked. The value 

of }k_ + � is calculated:  

}k_ + � =:ï9($ +:ℎ�/
�>$ BZ$ +�$b(Z$)ð/

$>? =	:;(($ + (8 − �)ℎ)Z$ + �b(Z$)</
$>?

≤	:;(($ + (8 − �)ℎ)� + �</
$>? = �:(($ + (8 − �)ℎ + �)/

$>? ≤	
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≤ �:(($ + (8 − �)ℎ)/
$>? + 8� 

Since � > 0, 8� > 0, it is enough to identify the sign of the following sum in order to 

check the necessary condition of the competitive ratio existence: 

:(($ + (8 − �)ℎ)/
$>? =:($/

$>? +:(8 − �)ℎ/
$>? = 82 ((? + (¿) + N: �/G?

$>? Pℎ > 0 

The necessary condition of the competitive ratio existence from Theorem 6.4 is 

unsatisfied, since }k_ + � ≤ 0. Therefore, the upper and lower bounds for the competitive ratio 

do not exist. 

 

Production strategy 2 

In a next step, a static production strategy is considered, e.g. the production in each 

planning period equals to the half of the highest possible demand value: Z$ = � 2	⁄ .  

According to Assumption 10, the total demand value is less than 8�. The sign of }k_ + � is checked in two corner cases: when the demand always takes the highest possible 

value and the lowest possible value in all planning periods. 

If the demand takes the highest possible value � in each planning period, while � 2⁄  

units are produced, then the backlogged demand value is ,G = � 2⁄  and all planning periods 

belong to the subset �. For this particular demand realization, the }k_ + � value equals to the 

following: 

}k_ + � =:
×
ØØÙ×Ø
Ù($ −:+�/

�>$,�∈@ âã
äZ$ + �$b(Z$)

â
ããä/

$>? =		:ï9($ −:+�/
�>$ B�2 + �ð/

$>? =		

= �2:9($ −:+�/
�>$ B + 8�/

$>? ≤ 0 

Obviously, }k_ + � ≤ 0, since the punishment for the unsatisfied demand has a much 

higher order of magnitude. According to Theorem 6.4, the finite value of the competitive ratio 

exists for the scenario with the highest demand. 
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If the demand takes the lowest possible value in the each planning period, while � 2⁄  

units are produced, then the amount in stock is always positive and all planning periods belong to 

the subset S. According to Assumption 2 h ≠ 0, so the lowest possible value of the total demand 

equals to 1. For this particular demand realization, the }k_ + � value equals to the following: 

}k_ + � =:ï9($ +:ℎ�/
�>$ BZ$ +�$b(Z$)ð/

$>? =	:;(($ + (8 − �)ℎ)Z$ + �b(Z$)</
$>?

=	:m(($ + (8 − �)ℎ)�2 + �p/
$>? = �2:(($ + (8 − �)ℎ + �)/

$>?
= �:(($ + (8 − �)ℎ)/

$>? + 8� ≥ 0 

Obviously, }k_ + � ≥ 0, since all sum components are positive. According to  

Theorem 6.4, finite value of the competitive ratio does not exist for the scenario with the lowest 

values of the demand.  

To summarize, the formula for the finite competitive ratio cannot be derived using such a 

production strategy, because it is impossible to verify the sign of  }k_ + � in a general case. 

6.2.4 Capabilities and limitations of the approach 

The considered solution approach is applicable to the two different production planning 

models: perishable products with lost sales (6.3) and durable products with backlogging  

(6.10)-(6.13). Switching to the terminology established in the production planning, the method 

for deriving the upper and lower bounds of the competitive ratio is applicable to the CLSP 

problems with backlogging and setup costs. At the same time, for production planning problems 

with different model structures, e.g. for DLSP model, a new reasoning is required, see Table 6.3. 

It should be noted that the analytical approach for deriving the value of the competitive 

ratio is applicable only for the strict online problems (no actual demand values are known during 

the production process). The additional market information, e.g. in production planning models 

with the rolling or folding horizon, provides no advantages. 
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Table 6.3: Applicability of the analytical approach for deriving the value of competitive ratio 

Production planning  

model structure 

CLSP  

without BG* 

without SC** 

CLSP 

without BG* 

with SC** 

CLSP 

with BG* 

without SC** 

CLSP 

with BG* 

with SC** 

DLSP 

Applicability 

of the analytical 

approach for deriving 

the value of 

competitive ratio 

No No Yes Yes No 

 BG* - backlogging, SC** - setup costs. 

 

The analytical approach for deriving the value of the competitive ratio may be applied to 

the CLSP with the backlogging but without any setup costs. The models that have some 

additional restrictions or the models where Assumption 10 is not satisfied can be investigated by 

the analytical approach for deriving the value of the competitive ratio as well. However, the 

argumentation and transformations have to be considered very carefully, since the new feasible 

domain of the mathematical model is defined. The existence of the corresponding sufficient 

condition and the upper and the lower borders for the competitive ratio is not automatically 

guaranteed for other models. 

In addition, production planning problems with non-negative-only stocks are difficult to 

analyze, and are not in the focus of Wagner’s paper [25]. As it can be noticed from the examples, 

it is impossible to derive the value of the competitive ratio if the production strategy does not 

propose all stocks negative. If the backlogging is prohibited or the production strategy proposes 

some periods with positive inventory, the sufficient condition for the finite competitive ratio 

(}k_ + � ≤ 0) is unsatisfied. If the set � is empty, the vector } becomes automatically greater 

than zero and neither the required condition, nor the rest of the analysis does hold. This is the 

reason why a positive-stock-only model cannot be analyzed by the analytical approach for 

deriving the value of the competitive ratio; different solution techniques are required for the non-

negative-only stock. In fact, in the related research [27], it was shown that the finite performance 

ratio (similar to the competitive ratio) does not exist for any production planning problem that 

strictly maintains positive inventory. 
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6.3 Robust Optimization approach for the CLSP1 

6.3.1 Robust Counterpart (RC) 

Let us recall the formulation of the CLSP mathematical model with several producing 

machines and several products, where several production slots during one planning period are 

taken into account. Production in overtime slot, indeed, is more costly. 

By definition, the robust counterpart of the uncertain CLSP described above will be an 

optimization model with the following objective: 

7�8	 ñ +#KÌ´©∈òÌ´©∗ GóÌ´©∗ ,Ì´©∗ [óÌ´©∗ ô9:::;($��3$�� + )"$��4$�� + +$��5$�� + +"$��5"$��<=
�>?

@
�>?

A
$>?

+::ℎ��,��=
�>?

@
�>? Bõ 

(6.32) 

This objective is augmented by constraints (2.2)-(2.10) that stay true for any  ��� ∈ ����∗ − ����∗ , ���∗ + ����∗ �, ∀� ∈ E1…�F, � ∈ E1…�F. 
According to the RO paradigm, the RC model should have a certain objective. In order to 

determine it, objective (6.32) is equivalently rewritten by introducing the extra variable � and the 

additional restriction: 7�8� 

:::;($��3$�� + )"$��4$�� + +$��5$�� + +"$��5"$��< +::ℎ��,��=
�>?

@
�>?

=
�>?

@
�>?

A
$>? ≤ � 

Adding the new objective and additional restriction to the (2.2)-(2.10) and forcing the 

restrictions to stay true for any ��� ∈ ����∗ − ����∗ , ���∗ + ����∗ �, ∀� ∈ E1…�F, � ∈ E1…�F, the 

following Robust Counterpart can be deduced for the initial CLSP problem: 7�8� (6.33) 

s.t.:  

                                                 
1 The author thanks Prof. Dr. Nemirovski for his helpful consultations, valuable comments and 
effective cooperation provided during the scientific visit to the Georgia Institute of Technology. 
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:::;($��3$�� + )"$��4$�� + +$��5$�� + +"$��5"$��< +::ℎ��,��=
�>?

@
�>?

=
�>?

@
�>?

A
$>? ≤ � (6.34) 

,�? = ,�- +:;3$�? + 4$�?<A
$>? − ��?, ∀	� ∈ E1…�F	 (6.35) 

,�� = ,�,�G? +:;3$�� + 4$��<A
$>? − ��� , ∀� ∈ E1…�F, � ∈ E2…�F	 (6.36) 

3$�� ≤ #$�� ∙ 5$�� , ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F	 (6.37) 

4$�� ≤ %$�� ∙ 5"$�� , ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F	 (6.38)	
:3$��=
�>? ≤ &$�, ∀� ∈ E1…�F, � ∈ E1…�F	 (6.39)	
:4$��=
�>? ≤ '$�, ∀� ∈ E1…�F, � ∈ E1…�F	 (6.40)	

,�.$/ ≤ ,�� ≤ ,�.01, ∀� ∈ E1…�F, � ∈ E1…�F	 (6.41) 

5$�� ∈ E0,1F, 5"$�� ∈ E0,1F, ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F	 (6.42) 

3$�� ≥ 0, 4$�� ≥ 0, � ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F (6.43) 

��� ∈ ����∗ − ����∗ , ���∗ + ����∗ �, ∀� ∈ E1…�F, � ∈ E1…�F (6.44) 

However, the RC should be rewritten in a solvable form. The objective function is 

preserved as it is, and each original constraint is replaced by the system of linear inequalities 

using the transformation (5.10).  

The transformation (5.10) is directly applicable for constraints (6.34), (6.37)-(6.41), while 

equality constraints (6.35)-(6.36) of the initial RC firstly should be replaced equivalently by two 

inequalities. Functions W-(�)  and W$��(�), which are mentioned in the transformation (5.10), are 

formed for each constraint by combining the terms that respectively contain the uncertain 
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demand ��� or do not. Introducing the additional variables  K�� when needed, each constraint is 

transformed to the system of linear inequalities. 

Additionally, the decision variable ,�� is expressed in terms of  ,�-, 3$�� , 4$��, ��� and is 

eliminated from the RC: 

,�� = ,�- +	::;3$�� + 4$��<�
ö>?

A
$>? −:����

ö>? , ∀� ∈ E1…�F, � ∈ E1…�F 
The construction of the RC may be done not only for the symmetric interval uncertainty, 

but also for any convex uncertainty set.  

For shortening, the following notation is used: ���.$/ = ���∗ − ����∗  

���.01 = ���∗ + ����∗  

Putting all system of inequalities described above together and augmenting the resulting 

system of linear constraints with the original objective to be minimized, the resulting model is: 

7�8� (6.45) 

s.t.:  

:::;($��3$�� + )"$��4$�� + +$��5$�� + +"$��5"$��< +::ℎ��K��=
�>?

@
�>?

=
�>?

@
�>?

A
$>? ≤ � (6.46) 

,�- +	::;3$�� + 4$��<�
ö>?

A
$>? −:���.$/�

ö>? ≤ K��	, ∀� ∈ E1…�F, � ∈ E1…�F (6.47) 

,�- +	::;3$�� + 4$��<�
ö>?

A
$>? −:���.01�

ö>? ≤ K��, ∀� ∈ E1…�F, � ∈ E1…�F (6.48) 

3$�� ≤ #$�� ∙ 5$�� , ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F	 (6.49) 

4$�� ≤ %$�� ∙ 5"$�� , ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F	 (6.50)	
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:3$��=
�>? ≤ &$�, ∀� ∈ E1…�F, � ∈ E1…�F	 (6.51)	
:4$��=
�>? ≤ '$�, ∀� ∈ E1…�F, � ∈ E1…�F	 (6.52)	

,�- +	::;3$�� + 4$��<�
ö>?

A
$>? −:���.$/�

ö>? ≥ ,�.$/, ∀� ∈ E1…�F, � ∈ E1…�F	 (6.53) 

,�- +	::;3$�� + 4$��<�
ö>?

A
$>? −:���.01�

ö>? ≥ ,�.$/, ∀� ∈ E1…�F, � ∈ E1…�F (6.54)	
,�- +	::;3$�� + 4$��<�

ö>?
A
$>? −:���.$/�

ö>? ≤ ,�.01 , ∀� ∈ E1…�F, � ∈ E1…�F (6.55)	
,�- +	::;3$�� + 4$��<�

ö>?
A
$>? −:���.01�

ö>? ≤ ,�.01 , ∀� ∈ E1…�F, � ∈ E1…�F (6.56)	
5$�� ∈ E0,1F, 5"$�� ∈ E0,1F, ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F	 (6.57) 

3$�� ≥ 0, 4$�� ≥ 0, � ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F (6.58) 

Since the decision variables 3$��, 4$�� and the demand ��� are non-negative integers, 

inequalities (6.48), (6.53) and (6.56) are redundant as they are weaker than inequalities (6.47), 

(6.54) and (6.55) respectively. Thereby, restrictions (6.46) and (6.47) can be combined, since 

there is no need in additional variable K�� any more. 

The resulting system of the RC for the initial uncertain CLSP problem is the following: 7�8� (6.59) 

 s.t.:  

:::;($��3$�� + )"$��4$�� + +$��5$�� + +"$��5"$��<=
�>?

@
�>?

A
$>? +  
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+::9ℎ�� N,�- +	::;3$�� + 4$��<�
ö>?

A
$>? −:���.$/�

ö>? PB ≤ �=
�>?

@
�>?  (6.60) 

3$�� ≤ #$�� ∙ 5$�� , ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F	 (6.61) 

4$�� ≤ %$�� ∙ 5"$�� , ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F	 (6.62)	
:3$��=
�>? ≤ &$�, ∀� ∈ E1…�F, � ∈ E1…�F	 (6.63)	
:4$��=
�>? ≤ '$�, ∀� ∈ E1…�F, � ∈ E1…�F	 (6.64)	

,�- +	::;3$�� + 4$��<�
ö>?

A
$>? −:���.$/�

ö>? ≥ ,�.$/, ∀� ∈ E1…�F, � ∈ E1…�F	 (6.65) 

,�- +	::;3$�� + 4$��<�
ö>?

A
$>? −:���.$/�

ö>? ≤ ,�.01 , ∀� ∈ E1…�F, � ∈ E1…�F (6.66)	
5$�� ∈ E0,1F, 5"$�� ∈ E0,1F, ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F	 (6.67) 

3$�� ≥ 0, 4$�� ≥ 0, � ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F (6.68) 

The created RC belongs to the class of Mixed-Integer Programming (MIP) problems and 

includes real, integer and binary variables. It can be solved by using any appropriate optimization 

software. Because of the existing binary and mixed integer variables the tractability issues of the 

constructed model should be considered. 

6.3.2 Affinely Adjustable Robust Counterpart (AARC) 

In the following, the initial CLSP model (2.1)-(2.11) and it’s RC (6.59)-(6.68) are 

considered. To make the transformations more specific, the symmetric demand uncertainty is 

considered, but the AARC can analogically be constructed for other types of uncertainty. The 

positive nominal demands ���∗  are given for all planning periods in advance and positive � is a 
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given uncertainty level. So ���.$/ = ���∗ − ����∗ 	, ���.01 = ���∗ + ����∗  and the uncertain demand 

belongs to the newly defined uncertainty interval:  

��� ∈ ����∗ − ����∗ , ���∗ + ����∗ , �, ∀� ∈ E1…�F, � ∈ E1…�F 
To construct the Affine Adjustable Robust Counterparts (AARCs) for the uncertain 

CLSP (2.1)-(2.11) model, firstly it must be defined which model variables are allowed to depend 

on the prescribed amount of the actual market data. Recalling the previous deliberations, the 

decision variables are the following: 3$�� 	 quantity of product � to be produced in normal working time slot of period � using 

production machine �,	4$��	 quantity of product � to be produced in overtime slot of period � using production 

machine �, ,�� 	 stock of product � at the end of period �, 5$��	 binary variable, which equals to 1 when 3$�� ≥ 0	in period � and 0 otherwise, 5"$�� 	 binary variable, which equals to 1 when 4$�� ≥ 0 in period � and 0 otherwise. 

 

The decision variables ,�� defining the stock value in each planning period can be 

expressed by the decision variables 3$��, 4$��, the initial stock and the actual demand values; 

therefore, they may be eliminated. The binary variables 5$�� and 5"$�� remain unchanged in the 

mathematical model, even though it may affect the tractability status of the resulting AARC. 

Applying the methodology for the AARC construction, other decision variables are 

allowed to depend on the prescribed data amount; the decision-making policy is restricted to the 

affine decision rules in order to achieve a computational tractability: 

3$�� = §$��- +	: §$��xx∈¨© ��x , 
4$�� =	�$��- +	: �$��xx∈¨© ��x 

Recalling the created RC (6.59)-(6.68) of the initial CLSP, the affine decision rules are 

plugged into the model, but the uncertain demand ��� is not replaced by its corner values: 
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 7�8� 

s.t.: 

:::N($�� N§$��- +	:§$��x ��x�
x>? P + )"$�� N�$��- +:�$��x ��x�

x>? P + +$��5$�� + +"$��5"$��P=
�>?

@
�>?

A
$>? + 

::9ℎ�� N,�- +	::N§$�ö- + �$�ö- +:;§$�öx + �$�öx <��x�
x>? PA

$>?
�

ö>? −:��ö�
ö>? PB=

�>?
@
�>? ≤ � 

§$��- +	:§$��x ��x�
x>? ≤ #$�� × 5$��, ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F 

�$��- +:�$��x ��x�
x>? ≤ %$�� × 5"$�� , ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F 
:N§$��- +	:§$��x ��x�

x>? P=
�>? ≤ &$�, ∀� ∈ E1…�F, � ∈ E1…�F 
:N�$��- +:�$��x ��x�

x>? P=
�>? ≤ '$�, ∀� ∈ E1…�F, � ∈ E1…�F 

,�- +	::ï§$�ö- + �$�ö- + : ;§$�öx + �$�öx <��xö��:x∈[?…�]
ðA

$>?
�

ö>? −:��ö�
ö>? ≥ ,�.$/,

∀� ∈ E1…�F, � ∈ E1…�F 
,�- +	::N§$�ö- + �$�ö- +:;§$�öx + �$�öx <��x�

x>? PA
$>?

�
ö>? −:��ö�

ö>? ≤ ,�.01 ,
∀� ∈ E1…�F, � ∈ E1…�F 5$�� ∈ E0,1F, 5"$�� ∈ E0,1F, ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F 

§$��- +	:§$��x ��x�
x>? ≥ 0,�$��- +:�$��x ��x�

x>? ≥ 0, ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F 
The obtained model becomes complex to understand. To make it less sophisticated, 

similar terms and separate terms containing uncertain demand ��� are respectively combined. In 

the first inequality, the production and setup costs are grouped separately from the holding costs 

for simplicity: 
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 7�8�	
s.t.: 

:::;($��§$��- + )"$���$��- + +$��5$�� + +"$��5"$��<=
�>?

A
$>?

@
�>?

+::ï: : ;($��§$��x + )"$���$��x <�:x∈[?…�]
A
$>? ð��x=

�>?
@
x>?  

	+::
×Ø
Ùℎ�� ï,�- +	::;§$�ö- +�$�ö- <�

ö>?
A
$>? +:ï: : ;§$�öx + �$�öx < − 1ö��:x∈[?…ö]

A
$>? ð�

x>? ��xð
âã
ä=

�>?
@
�>? ≤ �	

§$��- +	:§$��x ��x�
x>? ≤ #$�� × 5$��, ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F	

�$��- +:�$��x ��x�
x>? ≤ %$�� × 5"$�� , ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F	
:N§$��- +	:§$��x ��x�

x>? P=
�>? ≤ &$�, ∀� ∈ E1…�F, � ∈ E1…�F 
:N�$��- +:�$��x ��x�

x>? P=
�>? ≤ '$�, ∀� ∈ E1…�F, � ∈ E1…�F 

,�- +	::;§$�ö- + �$�ö- <�
ö>?

A
$>? +:ï: : ;§$�öx + �$�öx < − 1ö��:x∈[?…ö]

A
$>? ð�

x>? ��x ≥ ,�.$/,
∀� ∈ E1…�F, � ∈ E1…�F	

,�- +	::;§$�ö- + �$�ö- <�
ö>?

A
$>? +:ï: : ;§$�öx + �$�öx < − 1ö��:x∈[?…ö]

A
$>? ð�

x>? ��x ≤ ,�.01,
∀� ∈ E1…�F, � ∈ E1…�F	5$�� ∈ E0,1F, 5"$�� ∈ E0,1F, ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F	
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§$��- +	:§$��x ��x�
x>? ≥ 0,�$��- +:�$��x ��x�

x>? ≥ 0, ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F	
In order to eliminate the unknown demand values ��� and to guarantee the feasibility of 

the solution for any demand scenario, the maximum principle from the Convex Optimization is 

utilized [26]. The constraint in the general form is as follows: 

:���3$���
�>? ≤ Q, 

where 3$�� is a decision variable, Q is the known data and ��� is the uncertain parameter. The 

following equivalences can be written down: 

:���3$���
�>? ≤ Q, ∀��� ∈ ����∗ (1 − �), ���∗ (1 + �)�	

(6.69)	
⇕	

: ���∗ (1 − �)3$���:1v´©w- + : ���∗ (1 + �)3$���:1v´©Í- ≤ Q	
⇕	

:���∗�
�>? 3$�� + �:���∗�

�>? °3$��° ≤ Q	
Each constraint of the previously created AARC model can analogically be transformed 

using (6.69). 

To simplify the notation, additional variables α�x , ë�x, γ$��ù , ε$��ù , û��x , ü��x  are defined: 

U�x =	::;($��§$��x + )"$���$��x <@
�>x

A
$>? ,				∀	� ∈ E1…�F, + ∈ E1…�F	
−ë�x ≤ U�x ≤ ë�x,				∀	� ∈ E1…�F, + ∈ E1…�F −ê$��x ≤ §$��x ≤ ê$��x , ∀	� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F, + ∈ E1… �F	−ý$��x ≤ �$��x ≤ ý$��x , ∀	� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F, + ∈ E1… �F	

::;§$�öx + �$�öx <�
ö>x

A
$>? − û��x = 1,				∀	� ∈ E1…�F, 1 ≤ + ≤ � ≤ �	

−ü��x ≤ û��x ≤ ü��x ,				∀	� ∈ E1…�F, 1 ≤ + ≤ � ≤ �	
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Utilizing the equivalencies mentioned above, the final version of the AARC for the initial 

CLSP model (2.1)-(2.11) is deduced: 7�8þ,�,�,è,ç,�,�,�� (6.70) 

s.t.:  

:::;($��§$��- + )"$���$��- + +$��5$�� + +"$��5"$��<=
�>?

A
$>?

@
�>? +::U�x��x∗=

�>?
@
ù>?

+ θ::ë�x��x∗=
�>?

@
ù>?  

	+::9ℎ�� N,�- +	::;§$�ö- + �$�ö- <�
ö>?

A
$>? +:û��x�

x>? ��x∗ + θ:ü��x�
x>? ��x∗ PB=

�>?
@
�>? ≤ � 

(6.71) 

§$��- +	:§$��x ��x∗�
x>? + θ:ê$��x ��x∗�

x>? ≤ #$�� × 5$��,
∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F (6.72) 

�$��- +:�$��x ��x∗�
x>? + θ:ý$��x ��x∗�

x>? ≤ %$�� × 5"$�� ,
∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F (6.73)	

:N§$��- +	:§$��x ��x∗�
x>? + θ:ê$��x ��x∗�

x>? P=
�>? ≤ &$�, ∀� ∈ E1…�F, � ∈ E1…�F (6.74)	
:N�$��- +:�$��x ��x∗�

x>? + θ:ý$��x ��x∗�
x>? P=

�>? ≤ '$�, ∀� ∈ E1…�F, � ∈ E1…�F (6.75)	
,�- +	::;§$�ö- + �$�ö- <�

ö>?
A
$>? +:û��x�

x>? ��x∗ − θ:ü��x�
x>? ��x∗ ≥ ,�.$/,

∀� ∈ E1…�F, � ∈ E1…�F (6.76) 

,�- +	::;§$�ö- + �$�ö- <�
ö>?

A
$>? +:û��x�

x>? ��x∗ + θ:ü��x�
x>? ��x∗ ≤ ,�.01 ,

∀� ∈ E1…�F, � ∈ E1…�F (6.77)	
5$�� ∈ E0,1F, 5"$�� ∈ E0,1F, ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F (6.78) 
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§$��- +	:§$��x ��x∗�
x>? − θ:ê$��x ��x∗�

x>? ≥ 0, ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F (6.79) 

�$��- +:�$��x ��x∗�
x>? + θ:ý$��x ��x∗�

x>? ≥ 0, ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F (6.80) 

The constructed model optimizes the worst-case of demand; therefore, it is further 

referred as the AARC WORST-CASE for shortening. 

6.3.3 AARC with several demand scenarios 

One of the advantages of the robust optimization approach is the fact that it can be 

applied not only for optimization of the worst-case scenario: mandatory requirement is a 

convexity of the objective. Based on this fact, the AARC model (6.70)-(6.80) can be designed 

less conservative; a weighted sum of several demand scenarios can be optimized instead of the 

worst-case. 

It is assumed that the following three scenarios have the same probability to occur: the 

demand takes the lowest values, the demand takes the nominal values, and, finally, the demand 

takes the highest values in all planning periods. Two additional variables are introduced: Q total costs value when the lowest possible demand values in all planning periods, � total costs value when the nominal demand values in all planning periods. 

 

The objective function of the AARC WORST-CASE model is substituted by the 

weighted sum. Since all three scenarios are equally probable to occur, these are considered with 

the equal weights of 1/3: 

7�8þ,È,�,�,�,è,ç,�,�,�		 z13 ∙ Q +	13 ∙ � + 1
3
∙ �{ 

The corresponding restrictions are: 

:::;($��§$��- + )"$���$��- + +$��5$�� + +"$��5"$��<=
�>?

A
$>?

@
�>? +::U�x��x∗=

�>?
@
ù>? − θ::ë�x��x∗=

�>?
@
ù>?  

	+::9ℎ�� N,�- +	::;§$�ö- + �$�ö- <�
ö>?

A
$>? +:û��x�

x>? ��x∗ − θ:ü��x�
x>? ��x∗ PB=

�>?
@
�>? ≤ Q 
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:::;($��§$��- + )"$���$��- + +$��5$�� + +"$��5"$��<=
�>?

A
$>?

@
�>? +::U�x��x∗=

�>?
@
ù>?  

	+::9ℎ�� N,�- +	::;§$�ö- + �$�ö- <�
ö>?

A
$>? +:û��x�

x>? ��x∗ PB=
�>?

@
�>? ≤ A 

:::;($��§$��- + )"$���$��- + +$��5$�� + +"$��5"$��<=
�>?

A
$>?

@
�>? +::U�x��x∗=

�>?
@
ù>? + θ::ë�x��x∗=

�>?
@
ù>?  

	+::9ℎ�� N,�- +	::;§$�ö- + �$�ö- <�
ö>?

A
$>? +:û��x�

x>? ��x∗ + θ:ü��x�
x>? ��x∗ PB=

�>?
@
�>? ≤ � 

Combining the objective function written above and the new constraints together, and 

augmenting the resulting system of the linear constraints with restrictions (6.72)-(6.80), the 

following model is resulting: 

7�8þ,	,
�,�,è,ç,�,�,�		 z13 ∙ Q +	13 ∙ � + 1
3
∙ �{ (6.81) 

s.t.:  

:::;($��§$��- + )"$���$��- + +$��5$�� + +"$��5"$��<=
�>?

A
$>?

@
�>? +::U�x��x∗=

�>?
@
ù>?

− θ::ë�x��x∗=
�>?

@
ù>?  

	+::9ℎ�� N,�- +	::;§$�ö- + �$�ö- <�
ö>?

A
$>? +:û��x�

x>? ��x∗ − θ:ü��x�
x>? ��x∗ PB=

�>?
@
�>? ≤ Q 

(6.82) 

:::;($��§$��- + )"$���$��- + +$��5$�� + +"$��5"$��<=
�>?

A
$>?

@
�>? +::U�x��x∗=

�>?
@
ù>?  

	+::9ℎ�� N,�- +	::;§$�ö- + �$�ö- <�
ö>?

A
$>? +:û��x�

x>? ��x∗ PB=
�>?

@
�>? ≤ � 

(6.83) 
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:::;($��§$��- + )"$���$��- + +$��5$�� + +"$��5"$��<=
�>?

A
$>?

@
�>? +::U�x��x∗=

�>?
@
ù>?

+ θ::ë�x��x∗=
�>?

@
ù>?  

	+::9ℎ�� N,�- +	::;§$�ö- + �$�ö- <�
ö>?

A
$>? +:û��x�

x>? ��x∗ + θ:ü��x�
x>? ��x∗ PB=

�>?
@
�>? ≤ � 

(6.84) 

§$��- +	:§$��x ��x∗�
x>? + θ:ê$��x ��x∗�

x>? ≤ #$�� × 5$��,
∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F (6.85) 

�$��- +:�$��x ��x∗�
x>? + θ:ý$��x ��x∗�

x>? ≤ %$�� × 5"$�� ,
∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F (6.86)	

:N§$��- +	:§$��x ��x∗�
x>? + θ:ê$��x ��x∗�

x>? P=
�>? ≤ &$�, ∀� ∈ E1…�F, � ∈ E1…�F (6.87)	
:N�$��- +:�$��x ��x∗�

x>? + θ:ý$��x ��x∗�
x>? P=

�>? ≤ '$�, ∀� ∈ E1…�F, � ∈ E1…�F (6.88)	
,�- +	::;§$�ö- + �$�ö- <�

ö>?
A
$>? +:û��x�

x>? ��x∗ − θ:ü��x�
x>? ��x∗ ≥ ,�.$/,

∀� ∈ E1…�F, � ∈ E1…�F (6.89) 

,�- +	::;§$�ö- + �$�ö- <�
ö>?

A
$>? +:û��x�

x>? ��x∗ + θ:ü��x�
x>? ��x∗ ≤ ,�.01,

∀� ∈ E1…�F, � ∈ E1…�F (6.90)	
5$�� ∈ E0,1F, 5"$�� ∈ E0,1F, ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F (6.91) 

§$��- +	:§$��x ��x∗�
x>? − θ:ê$��x ��x∗�

x>? ≥ 0, ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F (6.92) 

�$��- +:�$��x ��x∗�
x>? + θ:ý$��x ��x∗�

x>? ≥ 0, ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F (6.93) 



109 

 

The constructed model optimizes the weighted sum of the total costs for several demand 

scenarios; therefore, it is further referred to as the AARC SCENARIOS for shortening. 

6.3.4 Computational examples for the RC 

Example 1. The RC with rolling horizon 

In this section, the RC is tested for the CLSP with incomplete information about the 

demand when planning under rolling horizon2. The considered production problem has 8 

planning periods, one machine and one product.  The holding costs are high in the last period and 

can be considered as utilization costs; there are no setup costs. Capacity restriction only exists for 

production; stock volume is not limited.  

The production system parameters and market data for the considered example are 

indicated below: �	 = 	1 products, �	 = 1  production machines, 8 = 4 number of periods in rolling horizon, �	 = 	1…�,� = 8 planning periods, ��∗ = 50 nominal demand in the planning period � (units), � = 0,2 uncertainty level of demand (20%), & = 100 total production capacity of machine (units), (� production costs (per unit) for product � at normal working time slot of 

period � using production machine � ($): (? (¿ (å (� (� (
 (� (� 

100 150 100 150 100 150 100 150 
  ℎ� holding costs (per unit) in period � ($): ℎ? ℎ¿ ℎå ℎ� ℎ� ℎ
 ℎ� ℎ� 

2 2 2 2 2 2 2 300 
  ,�- = 0 initial stock of product � (units). 

                                                 
2 The example was published in [71] 
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The initial CLSP model (2.1)-(2.11) and it’s RC (6.59)-(6.68) are considered for the 

indicated data and rolling horizon of 4 planning periods; the demand for the nearest period is 

assumed to be deterministic, see Figure 2.4. 

In order to compare the results of RO approach, it is proposed to consider an ideal case 

(all demands are known in advance) and a probabilistic model for the uncertain CLSP. To 

construct the probabilistic model, it is proposed that demand has the union distribution and, 

therefore, all possible demand values have equal probabilities, since no information about the 

demand is available except the uncertainty interval. Based on that, the mean value of the demand 

can be calculated and used for the calculation of the expected value of costs. 

To evaluate the RC solution, the following workflow is used: 

• consider several demand  scenarios; 

• solve the RC model and the probabilistic model for each scenario under the 

rolling horizon; 

• solve the deterministic mathematical model for each scenario (ideal case); 

• compare the obtained total costs. 

The workflow was implemented for four demand scenarios, see Table 6.4: the lowest 

possible demand in all planning periods; the highest possible demand in all planning periods; the 

case when the demand alternates between the lowest and the highest possible values; and, finally, 

the case described in Theorem 6.1. 

Table 6.4: Four demand scenarios for testing the RC model (Example 1) 

 Period  1 Period  2 Period  3 Period  4 Period  5 Period  6 Period  7 Period  8 

Scenario 1 40 40 40 40 40 40 40 40 

Scenario 2 60 60 60 60 60 60 60 60 

Scenario 3 40 60 40 60 40 60 40 60 

Scenario 4 40 40 50 50 50 50 60 60 

 

According to the proposed workflow, the RC, the probabilistic model and the 

deterministic model were solved, and the differences in total costs were determined, see  

Figure 6.11. 
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Figure 6.11. Comparison of the total costs between the RC, the probabilistic and the ideal model 

solutions on four demand scenarios (Example 1) 

 

 As it can be noticed, in 3 out of 4 demand scenarios the production plan proposed by the 

probabilistic model was more costly than the RC solution. The percentage differences between 

the costs associated with the RC, the probabilistic model and the optimal costs are presented in 

Table 6.5. 

Table 6.5: Percentage differences between the costs associated with the RC, the probabilistic 

model and the optimal costs (Example 1) 

 

Percentage difference 

between costs associated 

with the RC and optimal 

costs 

Percentage difference 

between costs associated 

with the probabilistic 

model and optimal costs 

Percentage difference 

between costs associated 

with the probabilistic 

model and the RC 

Scenario 1 1,24 12,81 11,6 

Scenario 2 0 0 0 

Scenario 3 0,889 1,78 0,9 

Scenario 4 0,886 12,21 11,3 
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 Summarizing, in the considered example, the highest difference in costs between the RC 

solution and the probabilistic solution (over four demand scenarios) is 11,6%, whereas the 

highest difference in costs between the RC and the optimal solution is less than 1,24%. 

 

Example 2. The RC with folding horizon 

In this section, the RC is tested for the CLSP with uncertain information about the 

demand when planning under a folding horizon3. The considered production problem has 7 

planning periods with normal and overtime working slots, one machine and two products.  The 

holding costs are high in the last period and can be considered as utilization costs; there are no 

setup costs. The capacity restriction only exists for the production; the stock volume is not 

limited. Backlogging (satisfaction of demand later than required) is allowed for some 

punishment; therefore, the stock variable can take negative values. In the last planning period, 

unsatisfied demand is highly undesirable, so the corresponding punishment is higher. Demand 

uncertainty is defined by the lower and upper bound for each product and each planning period. 

Production system parameters and market data for the considered example are indicated below: �	 = 	2 products, �	 = 1  production machines, �	 = 	1…�,� = 7 planning periods, ���.$/ lower bound of demand for product � in planning period � (units): 

 ��?.$/ ��¿.$/ ��å.$/ ���.$/ ���.$/ ��
.$/ ���.$/ � = 1 47 48 53 64 68 57 49 � = 2 32 31 23 15 20 27 32 

  ���.01 upper bound of demand for product � in planning period � (units): 

 ��?.01 ��¿.01 ��å.01 ���.01 ���.01 ��
.01 ���.01 � = 1 63 66 71 86 92 77 67 � = 2 40 37 29 19 24 33 40 

  

 

                                                 
3 The example was published in [72] 
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 #�� production capacity for product � in normal working time slot of 

period � (units): 

 #�? #�¿ #�å #�� #�� #�
 #�� � = 1 70 70 70 70 70 70 70 � = 2 25 25 25 25 25 25 25 

  %�� production capacity for product � in overtime slot of period � 
(units): 

 %�? %�¿ %�å %�� %�� %�
 %�� � = 1 20 20 20 20 20 20 20 � = 2 12 12 12 12 12 12 12 

  (�� production costs (per unit) for product � in normal working time 

slot of period � using production machine � ($): 

 (�? (�¿ (�å (�� (�� (�
 (�� � = 1 100 120 100 120 100 120 100 � = 2 70 50 70 50 70 50 70 

  )"��  production costs (per unit) for product � in overtime slot of period � 
using production machine � ($): 

 )"�? )"�¿ )"�å )"�� )"�� )"�
 )"�� � = 1 150 180 150 180 150 180 150 � = 2 100 70 100 70 100 70 100 

  K�� punishment for backlogging (per unit) in period � ($): 

 K�? K�¿ K�å K�� K�� K�
 K�� � = 1 200 200 200 200 200 200 800 � = 2 130 130 130 130 130 130 500 
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 ℎ�� holding costs (per unit) in period � ($): 

 ℎ�? ℎ�¿ ℎ�å ℎ�� ℎ�� ℎ�
 ℎ�� � = 1 2 2 2 2 2 2 300 � = 2 3 3 3 3 3 3 100 
 

+�� = 3 setup costs in normal working time slot of period �, when producing 

product � ($), +"�� = 3 setup costs in overtime slot of period �, when producing 

product � ($), ,�- = 0 initial stock of product � (units). 

 

For the first product, the upper and lower bounds of the demand are defined by 15% 

uncertainty level (taking into account rounding to an integer), whereas for the second product the 

demand uncertainty level is 10%. In Figure 6.12, the borders for the demand are shown 

graphically. The growth of the demand for the first product is obtained up to the fifth planning 

period, but then customer’s demand starts to decrease. Vice versa, demand for the second 

product decreases in the first periods and increases at the end of the planning horizon. 

 

Figure 6.12. Lower and upper borders for the demand 

 

The initial CLSP model (2.1)-(2.11) and it’s RC (6.59)-(6.68) are considered with the 

indicated data and folding planning horizon. Both models are extended for the backlogging; 

demand for the nearest period is assumed to be deterministic, see Figure 2.2. 
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Completely by analogy with the considered Example 1, and in order to evaluate the 

constructed RC, an ideal case (all demands are known in advance) and a probabilistic model for 

uncertain CLSP were considered and tested. The testing workflow coincides with the one 

proposed in Example 1 and it was implemented for four demand scenarios, see Table 6.6. 

Table 6.6: Four demand scenarios for testing the RC model (Example 2) 

 Planning periods 

1 2 3 4 5 6 7 

Scenario 1 j=1 47 48 53 64 68 57 49 

j=2 32 31 23 15 20 27 32 

Scenario 2 j=1 63 66 71 86 92 77 67 

j=2 40 37 29 19 24 33 40 

Scenario 3 j=1 47 66 53 86 68 77 49 

j=2 32 37 23 19 20 33 32 

Scenario 4 j=1 47 48 53 75 92 77 67 

j=2 32 31 23 17 24 33 40 

 

 

Figure 6.13. Comparison of the total costs between the RC, the probabilistic and the ideal model 

solutions on four demand scenarios (Example 2) 
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 According to the proposed workflow, the RC, the probabilistic model and the 

deterministic model were solved and the differences in total costs were determined, see  

Figure 6.13. 

It can be noticed that in two demand scenarios the production plan proposed by the 

probabilistic model was more costly than the RC solution, and in other two scenarios vice versa. 

The percentage differences between the costs associated with the RC, the probabilistic model and 

the optimal costs are presented in Table 6.7. 

Table 6.7: Percentage differences between the costs associated with the RC, the probabilistic 

model and the optimal costs (Example 2) 

 

Percentage difference 

between costs associated 

with the RC and optimal 

costs 

Percentage difference 

between costs associated 

with the probabilistic 

model and optimal costs 

Percentage difference 

between costs associated 

with the probabilistic 

model and the RC 

Scenario 1 0,72 0,19 -0,53 

Scenario 2 0 1,58 1,58 

Scenario 3 0,41 0,05 -0,36 

Scenario 4 0,20 1,36 1,16 

  

For the four presented scenarios of demand realization, the solution provided by the 

probabilistic approach was better than the solution provided by the RC in two cases; the maximal 

difference is 0.53%. However, in two scenarios where the RC solution was better, the maximal 

difference is three times higher and equals to 1.58%.  

Another important difference between the robust and probabilistic approach is the fact 

that the robust optimization approach guarantees that the total costs will not exceed the value of 

73841$ (in worst-case) for any possible demand realization. The expected value of the total costs 

equals to 62243$ for the probabilistic model, but in the worst case the total costs are 75006$, 

which is 20.5% higher. Moreover, if the production planning problem without backlogging is 

considered, the solution provided by the probabilistic model may become infeasible. 
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6.3.5 Computational examples for the AARC, simulation and 

analysis of results 

In this section, the aim is to test the RO solution approach on the computational example, 

in particular the AARC models. The production system parameters and the market data indicated 

below are provided by the operating manufacturing company: �	 = 	1…�,� = 10 products, �	 = 1…�,� = 2  production machines, �	 = 	1…�,� = 30 planning periods, ���∗  nominal demand for product � in planning period � (units): �?�∗  �¿�∗  �å�∗  ���∗  ���∗  �
�∗  ���∗  ���∗  ���∗  �?-�∗  

2 200 10 10 30 30 60 60 100 100 

   � = 0,1 uncertainty level of demand (10%), � = 0,9 productivity coefficient in normal time slot, !" = 0,75 productivity coefficient in overtime slot, #$�� = � ∙ 480 production capacity of machine � for product � in normal working time 

slot of period � (units), %$�� = !" ∙ 240 production capacity of machine � for product � in overtime slot of 

period � (units), &$� = � ∙ 480 total production capacity of machine � in normal working time slot of 

period � (units), '$� = !" ∙ 240 total production capacity of machine � in overtime slot of period � 
(units), ($�� production costs (per unit) for product � in normal working time slot of 

period � using production machine � ($): ($�� on weekdays 

(�	mod	7 ∈ [1; 5] ) ($�� on Saturdays 

(�	mod	7 = 6 ) 

($�� on Sundays 

(�	mod	7 = 0 ) 

6 7,5 9 
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 )"$�� production costs (per unit) for product � in overtime slot of period � 
using production machine � ($): )"$�� on weekdays 

(�	mod	7 ∈ [1; 5] ) )"$�� on Saturdays 

(�	mod	7 = 6 ) 

)"$�� on Sundays 

(�	mod	7 = 0 ) 

7,5 7,5 9 

  ℎ�� = 0,6 holding costs for product � (per unit and per period) in period � ($), +$�� = 5 ∙ ($�� setup costs for machine � in normal working time slot of period �, 
when producing product � ($), +"$�� = 5 ∙ )"$�� setup costs for machine � in overtime slot of period �, when producing 

product � ($), ,�- = 2 ∙ ��?∗  initial stock of product � (units), ,�.$/ = 2 ∙ ��?∗  minimal stock of product � at the end of any period (units), ,�.01 = 14 ∙ ��?∗  maximal stock of product � at the end of any period (units). 

 

Results. The AARC with real coefficients in decision rules 

The AARC WORST-CASE (6.70)-(6.80) and the AARC SCENARIOS (6.81)-(6.93) 

models with real values of coefficients in the affine decision rules are considered. 

Both models are MIP problems, which were implemented and solved using the IBM 

ILOG CPLEX Optimization Studio. Detailed information about the created models and the 

generated solutions is presented in Table 6.8. 

The computational time for the AARC SCENARIOS model is less by about 7 minutes 

than for the AARC WORST-CASE model, but the accuracy tolerances (relative MIP gap 

between best node and best integer solution) also differ. 

The numeric values of the objective functions were calculated for both AARC models on 

100 generated demand scenarios. The optimal value of total costs was calculated for each 

demand scenario from the deterministic CLSP that describes an ideal case. 
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Table 6.8: Solving properties of the AARC WORST-CASE and AARC SCENARIOS models with 

real coefficients in the decision rules 

 AARC WORST-CASE*  

with real coefficients in 

decision rules 

AARC SCENARIOS**  

with real coefficients in 

decision rules 

Number of MIP model matrix 

rows after MIP pre-solve 

55050 54180 

Number of MIP model matrix 

columns after MIP pre-solve 

49380 48810 

Number of MIP model non-zero 

matrix coefficients after  

MIP pre-solve 

489130 468880 

MIP model binary variables 1200 1200 

MIP search method Dynamic search Dynamic search 

Solving time 1838.4 sec 1398.2 sec 

Accuracy tolerance 1,8% 2,9% 

 *AARC that optimizes the worst-case demand scenario,  

**AARC that optimizes the weighted sum of several demand scenarios. 

 

The values of the objective functions of the AARC WORST-CASE, the AARC 

SCENARIOS and the ideal case for three fixed demand scenarios and on average over 100 

generated scenarios were compared, see Figure 6.14. 

The objective values of the AARC SCENARIOS model were, on each fixed scenario and 

on average over 100 scenarios, closer to the optimal values than the objective values of the 

AARC WORST-CASE model. The absolute and relative gaps between the objectives of the 

AARC models and the optimal objectives are provided in Table 6.9. Even with positive accuracy 

tolerances and 10% uncertainty level of demand, the price of robustness was less than 3%. 
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*AARC that optimizes the worst-case demand scenario, 

**AARC that optimizes the weighted sum of several demand scenarios. 

Figure 6.14. Comparison between the AARC WORST-CASE, the AARC SCENARIOS (with real 

coefficients in the decision rules) and the optimal objective values on selected demand scenarios 

and on average over 100 demand scenarios 

 

 

Table 6.9: Comparison between the AARC WORST-CASE, the AARC SCENARIOS solutions 

(with real coefficients in the decision rules) and the optimal solution 

 AARC WORST-CASE*  

with real coefficients in 

decision rules 

AARC SCENARIOS**  

with real coefficients in  

decision rules 

Maximal absolute gap ($) 3786,78 3178,02 

Maximal relative gap 2,9% 2,43% 

Average relative gap (over 100 

generated demand scenarios) 
1,665% 1,51% 

 *AARC that optimizes the worst-case demand scenario,  

**AARC that optimizes the weighted sum of several demand scenarios. 

15
49

88

14
30

79

13
07

45

14
28

83

15
60

27

14
53

82

13
47

37

14
53

45

15
59

11

14
47

01

13
34

90

14
46

57

110000

115000

120000

125000

130000

135000

140000

145000

150000

155000

160000

Highest possible
demand

Mean values of
demand

Lowest possible
demand

Average on 100
scenarios

V
a

lu
e 

o
f 

th
e 

o
b

je
ct

iv
e 

fu
n

ct
io

n

Deterministic CLSP
(Ideal case)

AARC WORST-
CASE* with real
coefficients in
decision rules

AARC
SCENARIOS** with
real coefficients in
decision rules



121 

 

Results. The AARC with integer coefficients in decision rules 

The AARC WORST-CASE (6.70)-(6.80) and the AARC SCENARIOS (6.81)-(6.93) 

models with integer coefficients in affine decision rules are considered. 

Both models are MIP problems, which were implemented and solved using the IBM 

ILOG CPLEX Optimization Studio. The number of the MIP model matrix rows, columns and 

non-zero matrix coefficients after MIP pre-solve coincides with the numbers presented in  

Table 6.8. The only difference is that the newly constructed AARC WORST-CASE and AARC 

SCENARIOS models have additional 19800 integer variables, since the coefficients of the 

decision rules become integers, not reals. 

Table 6.10: Solving properties of the AARC WORST-CASE and AARC SCENARIOS models with 

integer coefficients in decision rules 

 AARC WORST-CASE*  

with integer coefficients in 

decision rules 

AARC SCENARIOS**  

with integer coefficients in 

decision rules 

MIP search method Dynamic search Dynamic search 

Solving time 1949.3 sec 1697.8 sec 

Accuracy tolerance 1,87% 2,9% 

 *AARC that optimizes the worst-case demand scenario, 

**AARC that optimizes the weighted sum of several demand scenarios. 

 

Both models were solved with nearly the same accuracy as in the case with real 

coefficients in the decision rules. The computational time increased insignificantly by switching 

to the integer coefficients: less than by 2 minutes for the AARC WORST-CASE model and by 

about 5 minutes for the AARC SCENARIOS model. Detailed information about the created 

models and the solutions is presented in Table 6.10. 

Analogically to the case considered for standard affine decision rules (real coefficients), 

the numeric values of the objective functions were calculated for both AARC models based on 

100 generated demand scenarios. The optimal value of the total costs was calculated for each 

demand scenario with the help of the deterministic CLSP that describes an ideal case. 

A comparison of the AARC WORST-CASE, the AARC SCENARIOS and the optimal 

objective values shows a similar trend to the results indicated in Figure 6.14: the production plan 
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provided by the AARC SCENARIOS model was closer to the optimal production plan. The price 

of robustness also changed insignificantly after switching to the integer coefficients in the affine 

decision rules, see Table 6.11. It increased by 0,15% for the AARC WORST-CASE model and 

decreased by 0,33% for the AARC SCENARIOS model in comparison with the models 

containing real coefficients in the decision rules. 

Table 6.11: Comparison between the AARC WORST-CASE, the AARC SCENARIOS solutions 

(with integer coefficients in the decision rules) and the optimal solution 

 AARC WORST-CASE*  

with integer coefficients in 

decision rules 

AARC SCENARIOS**  

with integer coefficients in 

decision rules 

Maximal absolute gap ($) 3992,16 2745 

Maximal relative gap 3,05% 2,1% 

Average relative gap (over 100 

generated demand scenarios) 
1,73% 1,24% 

Accuracy tolerance 1,87% 2,9% 

 *AARC that optimizes the worst-case demand scenario, 

**AARC that optimizes the weighted sum of several demand scenarios. 

  

Additionally, a simulation which is the closest to the reality was done: the demand for 

product 1 took values from the set {1,2,3}, while the demand for other products took integer 

values from corresponding uncertainty interval: ����∗ − ����∗ , ���∗ + ����∗ �, ∀� ∈ E2…�F,	� ∈ E1…�F. 
The comparison of the integer demand simulation with the continuous demand simulation 

was done. The price of robustness for the AARC WORST-CASE model became insignificantly 

higher in case of integer demand simulation, see Table 6.11 and Table 6.12. The price of 

robustness for the AARC SCENARIOS model increased by 1,1% in the worst case and became 

by 0,2% higher than the analogous by the AARC WORST-CASE, on average of 100 scenarios. 
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Table 6.12: Comparison between the AARC WORST-CASE, AARC SCENARIOS solutions (with 

integer coefficients in the decision rules) and the optimal solution. Simulation with integer 

demand values 

 AARC WORST-CASE*  

with integer coefficients in 

decision rules 

AARC SCENARIOS**  

with integer coefficients in 

decision rules 

Maximal absolute  

gap ($) 
4182,6 4168,5 

Maximal relative gap 3,21% 3,2% 

Average relative gap (over 100 

generated demand scenarios) 
1,7% 1,9% 

Accuracy tolerance 1,9% 3,7% 

 *AARC that optimizes the worst-case demand scenario, 

**AARC that optimizes the weighted sum of several demand scenarios. 

 

It is quite possible that the accepted accuracy tolerance influenced the obtained changes, 

since it was slightly higher for the integer demand simulation. 

To compare results with the ones provided by probabilistic model, it was assumed that 

the demand is uniformly distributed on the uncertainty interval. Given this additional 

probabilistic information, expected values of demand were calculated (they equal to the nominal 

demand values) and plugged the initial CLSP model. Resulting deterministic MIP problem was 

solved with the accuracy tolerance 0.5%. Demand simulation showed that the inventory capacity 

constraints of the constructed model were typically violated: as large as 66 of the total of 300 

constraints were violated on average over 100 generated demand scenarios. For the demand 

scenario with the highest possible demand values, the stock became negative 58 times (totally 

over 30 planning periods and 10 products). Moreover, proposed production plan does not allow 

to satisfy the demand completely, which is highly undesirable. 
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The influence of uncertainty level on the total costs value 

To evaluate the influence of uncertainty level � on the total costs value, the same 

instances of AARCs were solved for the uncertainty level of 5%, 10%, 20%, 30% and 50%. 

The AARC WORST-CASE model with integrality restrictions on the decision rules was 

considered. The model was solved and evaluated based on the 100 generated demand scenarios. 

The demand was assumed to be a continuous variable, so it took real values from the 

corresponding uncertainty intervals. The results in Table 6.13 shows that even for the 50% 

demand uncertainty the maximum price of robustness reaches 11,21% and is only 3,28% on 

average. 

Table 6.13: Percentage difference in costs between the AARC WORST-CASE solution (integer 

coefficients in the decision rules) and the optimal solution depending on the uncertainty level 

Uncertainty 

level 

AARC WORST-CASE*  

objective value (integer 

coefficients in decision 

rules) on average over 100 

demand scenarios ($) 

Optimal objective 

value on average 

over 100 demand 

scenarios ($) 

Maximal 

relative 

gap 

Average 

relative 

gap 

Accuracy 

tolerance 

5% 144121,5 142912,3 1,59% 0,85% 1,7% 

10% 145344,8 142883,8 3,05% 1,73% 1,9% 

20% 144307,6 142867,6 3,72% 1,02% 2% 

30% 145141,6 143088,8 6,83% 1,46% 1,4% 

50% 147419,8 142851,5 11,21% 3,28% 2,5% 

 *AARC that optimizes the worst-case demand scenario. 

 

Obviously, a direct dependence exists between the uncertainty level of the market data 

and the price of robustness of the AARC model solution. 

 

Adjustability advantage 

In this section, the advantages of the AARC of the initial CLSP model are reflected over 

a non-adjustable RC. 

The AARC WORST-CASE model (with integer coefficients in decision rules) and the 

non-adjustable RC model were tested based on 100 generated demand scenarios for several 
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uncertainty levels. The RC model became already infeasible for 21% level of demand 

uncertainty, so the RC solution was only calculated for � equal to 5%, 10% and 20%.  

The absolute values of the optimal total costs and the total costs of the RC and the AARC 

solutions (on average over 100 demand scenarios) are shown in Figure 6.15. The production plan 

constructed by the RC has always the highest costs. The absolute gap between the RC and the 

optimal solutions varies from 14684$ to 58684$, depending on uncertainty level, on average 

over 100 demand scenarios. 

 
*AARC that optimizes the worst-case demand scenario. 

Figure 6.15. Comparison between the AARC WORST-CASE, the RC and the optimal objective 

values on average over 100 demand scenarios for different levels of demand uncertainty 

 

The absolute and relative gaps between the total costs values of the RC solution and the 

optimal total costs are presented in Table 6.14. The maximal difference in costs exceeds 21% 

already for 5% of demand uncertainty and reaches 98% for θ=20%. The average relative gap 

varies from 10% to 41%. This significant difference in costs is caused by the higher 

conservativeness of the RC model and shows the adjustability advantage. 
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Table 6.14: Percentage difference in costs between the AARC WORST-CASE solution (integer 

coefficients in decision rules) and optimal solution, between the RC solution and the optimal 

solution depending on the uncertainty level 

Uncertainty 

level 

AARC WORST-CASE*  

with integer coefficients in decision 

rules 

RC 

Maximal 

relative gap 

Average relative gap 

over 100 generated 

demand scenarios 

Maximal 

relative gap 

Average relative gap 

over 100 generated 

demand scenarios 

5% 1,47% 0,92% 21,39% 10,28% 

10% 3,05% 1,73% 44,5% 20,56% 

20% 3,72% 1,02% 98,27% 41,27% 

 *AARC that optimizes the worst-case demand scenario. 

6.4 Robust Optimization approach for the DLSP  

6.4.1 Robust Counterpart (RC) 

For the construction of the RC for the DLSP problem, the formulation of the uncertain 

DLSP mathematical model with several producing machines and several products (2.12)-(2.19) 

forms the basis. 

To construct the RC, transition to the model with the certain objective function is 

necessary. In order to get it, the objective (2.12) is equivalently rewritten, introducing the extra 

variable � and the additional restriction: 

 7�8�	
:::;($��K$�5$�� + +$��	7M3	;0, 5$�� − 5$�,�G?	<	< +::ℎ��,��=

�>?
@
�>?

=
�>?

@
�>?

A
$>? ≤ � 

However, the RC should be written in a solvable form. So analogically to the RC of the 

CLSP construction, each original constraint is replaced by the system of linear inequalities using 

the transformation (5.10).  
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The transformation (5.10) is directly applicable for all inequality constraints, while 

equality constraints (2.13), (2.14) of the initial DLSP should be first replaced equivalently by 

two inequalities. Functions W-(�)  and W$��(�), which are mentioned in the transformation (5.10), 

are formed for each constraint by combining the terms that respectively do or do not contain the 

uncertain demand ���. Introducing the additional variables  K�� if needed, each constraint is 

transformed to the system of linear inequalities. 

Additionally, the decision variable ,�� is expressed in terms of  ,�-, K$�, 5$�� , ��� and is 

eliminated from the RC: 

,�� = ,�- +	::K$�5$���
ö>?

A
$>? −:����

ö>? , ∀� ∈ E1…�F, � ∈ E1…�F 
The construction of the RC may be done not only for the symmetric interval uncertainty, 

but for any convex uncertainty set. For shortening, the following notation is used in this case: ���.$/ = ���∗ − ����∗  

���.01 = ���∗ + ����∗  

Combining the system of inequalities described above together and augmenting the 

resulting system of linear constraints with our original objective to be minimized, the following 

model results: 7�8�	
 s.t.: 

:::;($��#$�5$�� + +$��	7M3	;0, 5$�� − 5$�,�G?	<	< +::ℎ��K��=
�>?

@
�>?

=
�>?

@
�>?

A
$>? ≤ � 

,�- +	::#$�5$���
ö>?

A
$>? −:���.$/�

ö>? ≤ K�� , ∀� ∈ E1…�F, � ∈ E1…�F 
,�- +	::#$�5$���

ö>?
A
$>? −:���.01�

ö>? ≤ K�� , ∀� ∈ E1…�F, � ∈ E1…�F 
:5$��=
�>? ≤ 1, ∀� ∈ E1…�F, � ∈ E1…�F 
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,�- +	::#$�5$���
ö>?

A
$>? −:���.$/�

ö>? ≥ ,�.$/, ∀� ∈ E1…�F, � ∈ E1…�F 
,�- +	::#$�5$���

ö>?
A
$>? −:���.01�

ö>? ≥ ,�.$/, ∀� ∈ E1…�F, � ∈ E1…�F 
,�- +	::#$�5$���

ö>?
A
$>? −:���.$/�

ö>? ≤ ,�.01, ∀� ∈ E1…�F, � ∈ E1…�F 
,�- +	::#$�5$���

ö>?
A
$>? −:���.01�

ö>? ≤ ,�.01, ∀� ∈ E1…�F, � ∈ E1…�F 
5$�� ∈ E0,1F,			∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F 

Furthermore, the same argumentation as used for the construction of the RC for the 

uncertain CLSP problem is applied. Redundant constraints are eliminated, since decision 

variables 5$�� and parameters #$�, ��� are non-negative. Thereupon, the two first constraints can 

be combined, as there is no need for additional variable K�� any more. 

For the initial uncertain DLSP problem, the resulting RC is the following: 7�8� (6.94) 

 s.t.:  

:::;($��#$�5$�� + +$��	7M3	;0, 5$�� − 5$�,�G?	<	<=
�>?

@
�>?

A
$>?

+::9ℎ�� N,�- +	::#$�5$�ö�
ö>?

A
$>? −:���.$/�

ö>? PB=
�>?

@
�>? ≤ � 

(6.95) 

:5$��=
�>? ≤ 1, ∀� ∈ E1…�F, � ∈ E1…�F (6.96) 

,�- +	::#$�5$���
ö>?

A
$>? −:���.01�

ö>? ≥ ,�.$/, ∀� ∈ E1…�F, � ∈ E1…�F (6.97) 

,�- +	::#$�5$���
ö>?

A
$>? −:���.$/�

ö>? ≤ ,�.01 , ∀� ∈ E1…�F, � ∈ E1…�F (6.98) 

5$�� ∈ E0,1F,			∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F (6.99) 
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The created RC belongs to the class of Mixed-Integer Programming (MIP) problems and 

includes real, integer and binary variables. It can be solved using any appropriate optimization 

software. Due to existing binary and mixed integer variables, the tractability issues of the 

constructed model should be considered. 

6.4.2 Affinely Adjustable Robust Counterpart (AARC) 

The initial DLSP model (2.12)-(2.19) and it’s RC (6.94)-(6.99) are considered. To model 

adjustability of the variables, the vector of decision variables æ is allowed to depend on the 

prescribed amount SO� of the true demand � for every � ≤ 8: 

5$�� = �O(SOh) = KO + ZO�SOh, 
where S?, …S/ are matrices given in advance, specifying the information base of the decisions 5$��, and �O(∙) are affine decision rules. It is assumed that the manufacturer works with an online 

information base ¦� = E1… �F: at the beginning of the planning period � the actual values of 

demands ��?…��� are known. So, the decision variables 5$�� are replaced by the affine decision 

rules: 

5$�� = §$��- +	: §$��xx∈¨© ��x 
To make these transformations more specific, the symmetric demand uncertainty is 

considered, but the AARC can be constructed analogically for other types of uncertainty. The 

positive nominal demands ���∗  are given in advance for all planning periods and a positive � is 

the given uncertainty level. So ���.$/ = ���∗ − ����∗ 	, ���.01 = ���∗ + ����∗  and the uncertain demand 

belongs to the newly defined uncertainty interval:  ��� ∈ ����∗ − ����∗ , ���∗ + ����∗ , �, ∀� ∈ E1…�F, � ∈ E1…�F 
Recalling the created RC (6.94)-(6.99) of the initial DLSP, the affine decision rules are 

plugged into the model, but the uncertain demand ��� remains unchanged: 7�8�	 (6.100) 	 s.t.:	  
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:::9($��#$� 9§$��- +	: §$��xx∈¨© ��xB=
�>?

@
�>?

A
$>?

+ +$��7M390, §$��- +	: §$��xx∈¨© ��x − §$�,�G?- − : §$�,�G?x
x∈¨©ÕÒ ��x	BB	

+::ïℎ�� 9,�- +	::#$�(§$��- +	: §$��xx∈¨© ��x)�
ö>?

A
$>? −:����

ö>? Bð=
�>?

@
�>? ≤ �	

(6.101) 

:(§$��- +	: §$��xx∈¨© ��x)=
�>? ≤ 1, ∀� ∈ E1…�F, � ∈ E1…�F	 (6.102) 

,�- +	::#$�(§$��- +	: §$��xx∈¨© ��x)�
ö>?

A
$>? −:����

ö>? ≥ ,�.$/, ∀� ∈ E1…�F, � ∈ E1…�F	 (6.103) 

,�- +	::#$�(§$��- +	: §$��xx∈¨© ��x)�
ö>?

A
$>? −:����

ö>? ≤ ,�.01 , ∀� ∈ E1…�F, � ∈ E1…�F	 (6.104) 

§$��- +	: §$��xx∈¨© ��x ∈ E0; 1F,			∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F	 (6.105) 

The obvious modeling issue in the system above is that the decision variable 5$�� has a 

binary nature. Therefore, the affine function §$��- +	∑ §$��xx∈¨© ��x should only take 0 or 1 values 

in the constraint (6.105). 

The concept proposes the following steps to overcome this issue: 

• leave 5��1 in the AARC model as a binary decision variable, not as the decision 

rule;  

• let decision rules §$��- +	∑ §$��xx∈ ©̈ ��x  for all other planning periods to take values 

within the interval [0,1]; 
• update data and generate a new solution at the end of each planning period. 
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By implementing the proposed approach, the following model is constructed: 7�8� 

s.t.: 
:::N($��#$� 	§$��- + ($��#$�:§$��x ��x�

x>?
=
�>?

@
�>?

A
$>?

+ +$��7M3 N0, §$��- − §$�,�G?- +:;§$��x − §$��G?x <��x�G?
x>? +	§$��� ���	PP	

+::
×Ø
Ùℎ�� ï,�- +	::#$�§$�ö-�

ö>?
A
$>? +:ï: : #$�§$�öù − 1ö��:x∈[?…ö]

A
$>? ð�

x>? ��xð
âã
ä=

�>?
@
�>? ≤ � 

:§$��-=
�>? +::§$��x ��x�

x>?
=
�>? ≤ 1, ∀� ∈ E1…�F, � ∈ E1…�F 

,�- +	::#$�§$�ö-�
ö>?

A
$>? +:ï: : #$�§$�öù − 1ö��:x∈[?…ö]

A
$>? ð�

x>? ��x ≥ ,�.$/, ∀� ∈ E1…�F, � ∈ E1…�F 

,�- +	::#$�§$�ö-�
ö>?

A
$>? +:ï: : #$�§$�öù − 1ö��:x∈[?…ö]

A
$>? ð�

x>? ��x ≤ ,�.01, ∀� ∈ E1…�F, � ∈ E1…�F 
§$�?- ∈ E0; 1F,			∀� ∈ E1…�F, � ∈ E1…�F 
§$�?ù = 0,			∀� ∈ E1…�F, � ∈ E1…�F 
§$�-- = L$�-,			∀� ∈ E1…�F, � ∈ E1…�F 
§$�-ù = 0,			∀� ∈ E1…�F, � ∈ E1…�F 

0 ≤ 	§$��- +	:§$��x ��x�
x>? ≤ 1,			∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F 
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The constructed model is updated and resolved at the end of each planning period, 

realizing a folding horizon. 

To simplify the notation, additional variables α�x , ë�+, γ$��ù , û��x , ü��x , b$�� are defined: 

U�x =	::($��#$�§$��x@
�>x

A
$>? ,				∀� ∈ E1…�F, + ∈ E1…�F	

−ë�x ≤ U�x ≤ ë�x,				∀� ∈ E1…�F, + ∈ E1…�F −ê$��x ≤ §$��x ≤ ê$��x , ∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F, + ∈ E1… �F	
::#$�§$�öù�

ö>x
A
$>? − û��x = 1,				∀� ∈ E1…�F, 1 ≤ + ≤ � ≤ �	

−ü��x ≤ û��x ≤ ü��x ,				∀� ∈ E1…�F, 1 ≤ + ≤ � ≤ �	
b$�� =	7M3 N0, §$��- − §$�,�G?- +	§$��� ���∗ + θγ$��� ���∗ +:;§$��x − §$��G?x <;��x∗ + ���x∗ <�G?

x>? P ,
∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F	

Utilizing the equivalencies mentioned above, the final version of the AARC for the initial 

DLSP model (2.12)-(2.19) is constructed: 7�8þ,�,�,è,ç,�,�,�� (6.106) 

s.t.:  

:::;($��#$� 	§$��- + +$��b$��<=
�>?

@
�>?

A
$>? +::U�x��x∗=

�>?
@
x>? + �::ë�x��x∗=

�>?
@
x>?  

+::9ℎ�� N,�- +	::#$�§$�ö-�
ö>?

A
$>? +:û��x�

x>? ��x∗ + �:ü��x�
x>? ��x∗ PB=

�>?
@
�>? ≤ � 

(6.107) 

:§$��-=
�>? +::§$��ù ��x∗�

x>?
=
�>? + θ::γ$��ù ��x∗�

x>?
=
�>? ≤ 1, ∀� ∈ E1…�F, � ∈ E1…�F (6.108) 

,�- +	::#$�§$�ö-�
ö>?

A
$>? +:û��x�

x>? ��x∗ − θ:ü��x�
x>? ��x∗ ≥ ,�.$/,

∀� ∈ E1…�F, � ∈ E1…�F (6.109) 
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,�- +	::#$�§$�ö-�
ö>?

A
$>? +:û��x�

x>? ��x∗ + θ:ü��x�
x>? ��x∗ ≤ ,�.01 ,

∀� ∈ E1…�F, � ∈ E1…�F (6.110) 

§$�?- ∈ E0; 1F,			∀� ∈ E1…�F, � ∈ E1…�F (6.111) §$�?ù = 0,			∀� ∈ E1…�F, � ∈ E1…�F (6.112) §$�-- = L$�-,			∀� ∈ E1…�F, � ∈ E1…�F (6.113) §$�-ù = 0,			∀� ∈ E1…�F, � ∈ E1…�F (6.114) 

§$��- +	:§$��ù ��x∗�
x>? − θ:γ$��ù ��x∗�

x>? ≥ 0,			∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F (6.115) 

§$��- +	:§$��ù ��x∗�
x>? + θ:γ$��ù ��x∗�

x>? ≤ 1,			∀� ∈ E1…�F, � ∈ E1…�F, � ∈ E1…�F (6.116) 

6.4.3 Computational example and simulation 

In this section, the aim is to test the RO solution approach using a computational 

example. The production system parameters and market data indicated below are provided by the 

operating manufacturing company: �	 = 	1…�,� = 10 products, �	 = 1…�,� = 10  production machines, �	 = 	1…�,� = 24 planning periods, ���∗  nominal demand for product � in planning period � (units): �?�∗  �¿�∗  �å�∗  ���∗  ���∗  �
�∗  ���∗  ���∗  ���∗  �?-�∗  

2 200 10 10 30 30 60 60 100 100 

  � = 0,1 uncertainty level of demand (10%), #$� = 240	 production speed of machine � for product � (units per period), 
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 ($��	 production costs (per unit) for product � in normal working time slot of 

period � using production machine � ($): ($�� in normal working shift 

(� < 16 ) 

($�� in overtime shift 

(16 ≤ � ≤ 24 ) 

6 7,5 

  ℎ�� = 0,6 holding costs for product � (per unit and per period) in period � ($), +$�� = 5 ∙ ($�� setup costs for machine � in normal working time slot of period �, when 

producing product � ($), L$�- = 0	 binary variable describing the initial state of machine �; it is equal to 1 

when machine � is installed to produce product � and 0 otherwise, ,�- = 2 ∙ ��?∗  initial stock of product � (units), ,�.$/ = 2 ∙ ��?∗  minimal stock of product � at the end of any period (units), ,�.01 = 12 ∙ #$��	 maximal stock of product � at the end of any period (units). 

  

The DLSP is a small bucket model, so the planning period is relatively small. The 

considered production model includes 24 planning periods equal to one hour, and the production 

schedule is created for one day. The first 16 hours are contained within the normal working time 

slot, whereas the last 8 periods are contained within the overtime slot and, therefore, production 

is more costly then. Stock limits meet the requirements of the manufacturing company: the lower 

bound on stock is defined based on the safety stocks strategy, the upper bound on stock equals to 

the maximal warehouse capacity, which equals to a half-day production capacity. 
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Results. The AARC with real coefficients in decision rules 

The AARC (6.106)-(6.116) of the initial DLSP is considered. The model is a MIP 

problem, which was implemented and solved using the IBM ILOG CPLEX Optimization Studio. 

Detailed information about the created model and the generated solution is presented in  

Table 6.15. 

Table 6.15: Solving properties of the AARC of the DLSP model 

Property  Value 

Number of MIP model matrix rows after  

MIP pre-solve 

79790 

Number of MIP model matrix columns after  

MIP pre-solve 

77850 

Number of MIP model non-zero matrix 

coefficients after MIP pre-solve 

758980 

MIP model binary variables 4700 

MIP search method dynamic search 

Solving time 258 sec 

Accuracy tolerance 0% 

 

The time of computations for the AARC of the DLSP model was about 7 times less than 

for the AARC WORST-CASE of the CLSP model, even though the model size and the number 

of binary variables is significantly higher for the AARC of the DLSP model. The obtained 

solution is optimal, since the value of the accuracy tolerance (relative MIP gap between best 

node and best integer solution) is zero. 

The numeric values of the objective function were calculated for the AARC (6.106)-

(6.116) based on 20 generated demand scenarios. The optimal value of the total costs was 

calculated for each demand scenario from the deterministic DLSP that describes an ideal case. 

The values of the objective functions of the AARC were compared with the ideal case for 

three fixed demand scenarios and on average over 20 generated scenarios, see Figure 6.16. 



136 

 

 

Figure 6.16. Comparison between the AARC of the DLSP and the optimal objective values on 

selected demand scenarios and on average over 20 demand scenarios 

The objective values of the AARC model were better than the optimal values, in each 

fixed scenario and on average over 20 scenarios, which is of course nonsense. This is caused by 

the fact that the AARC production plan only provides the probabilities of productions for all 

planning periods except the first one. For example, the probability of the product � production on 

the machine � may be equal to 0,5 and, at the same time the probability of the product � + 1 

production on the same machine may be also equal to 0,5. So the model neglect that one machine 

produces only one product during one planning period or produces nothing.  

 The absolute and relative gaps between the objectives of the AARC model and the 

optimal objectives are provided in Table 6.16. Even with positive accuracy tolerances and 10% 

uncertainty level of demand, the price of robustness was less than 3%. 

Table 6.16: Comparison between the AARC of the DLSP and the optimal solution 

Property Value 

Maximal absolute gap ($) -19935,1 

Maximal relative gap -14% 

Average relative gap 

(over 100 generated demand scenarios) 

-11,5% 
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 The provided comparison is not completely fair, since it was proposed to resolve the 

AARC model at the end of each planning period. Here, the AARC solution provided at the very 

beginning of the planning period was compared with the optimal one. 

 

The AARC with folding horizon 

The simulation for the AARC model with a folding horizon was implemented utilizing 

the algorithm shown in Figure 5.3.  

The values of the objective functions of the AARC with the folding horizon were 

compared with the ideal case for three fixed demand scenarios and on average over 20 generated 

scenarios, see Figure 6.17. 

In the provided experiment, the objective values of the AARC model were worse than the 

optimal values on each fixed scenario and on average over 20 scenarios. The absolute and 

relative gaps between the objectives of the AARC with a folding horizon and the optimal 

objectives are provided in Table 6.17. Even though that the AARC with a folding horizon was 

solved with an accuracy tolerance equal to 2,2% and 10% uncertainty level of demand, the price 

of robustness was more than 10% on average. 

 

Figure 6.17. Comparison between the AARC of the DLSP with folding horizon and the optimal 

objective values on the selected demand scenarios and on average over 20 demand scenarios. 
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Table 6.17: Comparison between the AARC of the DLSP with folding horizon and the optimal 

solution 

Property Value 

Maximal absolute gap ($) 28389 

Maximal relative gap 21,9% 

Average relative gap 

(over 20 generated demand scenarios) 

10,7% 

Accuracy tolerance 2,2% 

 

The influence of uncertainty level on the total costs value 

To evaluate the influence of uncertainty level � on the total costs value, the same 

instances of AARCs were solved for the uncertainty level of 5%, 10% and 20%. 

The AARC model with a folding horizon was considered. The model was solved and 

evaluated based on the 20 generated demand scenarios. The demand was assumed to be a 

continuous variable, so it took real values from the corresponding uncertainty intervals.  

Table 6.18 shows that for all levels of demand uncertainty the maximum price of robustness 

reaches 21% and is about 11% on average. 

Table 6.18: Comparison of the AARC with folding horizon and the optimal objective values on 

generated demand scenarios depending on the uncertainty level 

Uncertainty 

level 

AARC objective 

value with folding 

horizon on average 

over 20 demand 

scenarios ($) 

Optimal 

objective value 

on average over 

20 demand 

scenarios ($) 

Maximal 

relative gap 

Average 

relative gap 

Accuracy 

tolerance 

5% 156495,8 139030,1 21,7% 12,6% 0% 

10% 152285,2 137607,9 21,9% 10,7% 0% 

20% 152350,8 138785,9 21,7% 9,9% 0% 

 *AARC that optimizes the worst-case demand scenario. 

 

It can be admitted that there is no dependence between the uncertainty level of the market 

data and the price of robustness of the AARC model solution. 
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Adjustability advantage 

In this section, the solutions of the AARC with a folding horizon are compared with the 

solutions of non-adjustable RC for different levels of demand uncertainty. 

 The AARC model with a folding horizon and the non-adjustable RC model were tested 

based on 20 generated demand scenarios. The RC and the AARC of the initial DLSP model 

became infeasible for 30% demand uncertainty, so solutions were calculated only for � equal to 

5%, 10% and 20%.  

The absolute values of the optimal total costs and the total costs of the RC and the AARC 

solutions (on average over 20 demand scenarios) are shown in Figure 6.18. The production plan 

constructed by the RC has the highest costs for 10 and 20% of demand uncertainty level, but is 

better than the AARC solution for �=5%. 

The absolute gap between the RC and the optimal solutions varies from 14120$ to 

37192$ on average over 20 demand scenarios, depending on the uncertainty level. 

 

*AARC that optimizes the worst-case demand scenario. 

Figure 6.18. Comparison between the AARC of the DLSP with folding horizon, the RC and the 

optimal objective values on average over 20 demand scenarios for different levels of demand 

uncertainty 
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The absolute and relative gaps between the total costs values of the RC solution and the 

optimal total costs are presented in Table 6.19. The maximal difference in costs exceeds 21% 

already for 5% demand uncertainty and reaches 73% for � = 20%. The average relative gap 

varies from 10% to 27%. 

Table 6.19: Percentage difference in costs between the AARC with folding horizon solution  and 

the optimal solution, between the RC solution and the optimal solution depending on the 

uncertainty level 

Uncertainty 

level 

AARC with folding horizon RC 

Maximal 

relative gap 

Average relative gap 

over 20 generated 

demand scenarios 

Maximal 

relative gap 

Average relative gap 

over 20 generated 

demand scenarios 

5% 21,7% 12,6% 21,7% 10,3% 

10% 21,9% 10,7% 35,5% 16,1% 

20% 21,7% 9,9% 72,9% 27,4% 

 *AARC that optimizes the worst-case demand scenario. 
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7 Conclusions 

Solving the uncertain CLSP (2.1)-(2.11) and DLSP (2.12)-(2.19) with robustness 

guarantees is a challenging task, especially for cases with online information base. 

The worst case demand scenario for the special case of uncertain CLSP (2.1)-(2.11) with 

one product, one machine and no setup costs was determined. A theorem that describes the worst 

case of the demand realization, and consequently defines the competitive ratio of any online 

algorithm, was formulated and proved. The theorem statement was also tested empirically. 

However, applicability of the presented analytical approach for determining the worst case 

demand scenario is limited and, therefore, the obtained results should be seen as a foundation for 

a better problem understanding. Further research is required in order to determine the worst case 

demand scenario for the uncertain DLSP and for more complex uncertain CLSP structures, see 

Table 6.2. 

The analytical approach proposed in [25] was extended in the presented thesis. The 

sufficient condition for the existence of a finite competitive ratio and the formulas for its upper 

and lower bounds were deduced for two production planning models with additional capacity 

restrictions: perishable products with lost sales (6.3) and durable products with backlogging 

(6.10)-(6.13). The suggested method for deriving the upper and lower bounds for competitive 

ratio is applicable to the CLSP with backlogging and setup costs, but not to the production 

planning problems with different model structures, e.g. for DLSP (see Table 6.3). It should also 

be noted that the analytical approach for competitive ratio estimation is only applicable to strict 

online problems, meaning that actual demand values become known after the production process 

has finished. Additional market information, e.g. in production planning models with the rolling 

or folding horizon, is ignored. Moreover, the computational examples showed that the bounds for 

the competitive ratio do not exist if the production stock is always non-negative. 

Finally, the presented work investigated the Robust Optimization (RO) approach for the 

uncertain CLSP (2.1)-(2.11) and DLSP (2.12)-(2.19) with interval uncertainty. In particular, the 

RC and the AARC models were constructed (sections 6.3, 6.4). The models were applied to a 



142 

 

real-world planning problem and demonstrated competitive performance and high accuracy. The 

comparison with other state-of-the-art solutions was also implemented. 

The demand scenario simulation was implemented for the constructed AARCs (6.70)-

(6.80) and (6.81)-(6.93); both AARCs were tested using 100 randomly generated demand 

scenarios. The results of the simulation showed that the RO approach can be applied successfully 

for the considered uncertain CLSP, since the gap between the optimal and the generated solution 

is relatively small – about 2% on average of 100 generated demand scenarios (for the demand 

uncertainty level of 10%). The solution provided by AARC is closer to the optimal one than the 

solution produced by the probabilistic model, which assumed uniform demand distribution over 

the uncertainty intervals. It also has the advantage of being feasible for any demand scenario 

from the uncertainty set. 

The results of the demand simulations also showed that the production plan created by 

the AARC (6.70)-(6.80) is less conservative (closer to the optimal) than one created by the 

AARC (6.81)-(6.93), so modeling with the weighted sum of demand scenarios in the objective 

works better than considering the worst-case scenario only. Additionally, the direct connection 

between the level of data uncertainty and the price of robustness was empirically observed. It 

was also shown that the adjustability of decision variables gives a distinct advantage, since the 

non-adjustable RC of the initial CLSP model becomes infeasible already for 21% of demand 

uncertainty. 

The integrality of the decision variables in the initial uncertain CLSP model was achieved 

by restricting the coefficients of the AARC affine decision rules to integral values. This 

technique is novel and worked well for the presented CLSP problem, showing competitive 

performance to the conventional method of decision rules construction (usage of the real 

coefficients in the decision rules). The technique utilized in the presented research provides a 

production plan with integral decision variables and guarantees the feasibility of the created 

production plan for each possible demand scenario. It can also be used in other RO applications, 

where integrality is required. 

Presented results of the computational experiments show that criticism of the 

conservatism of the RO approach is not always justified, especially for adjustable robust 

optimization. 



143 

 

 The RC and the AARC of the uncertain DLSP problem were also constructed and 

analyzed. Integrality of the decision variables in the initial uncertain DLSP model was achieved 

in the AARC by restricting the affine decision rules to take values from the interval [0,1] and 

implementing folding planning horizon. The constructed AARC has the advantage of being less 

conservative than the corresponding RC for the DLSP due to the adjustability of the variables. 

However, is also has several disadvantages. First, the robustness of the AARC solution is not 

guaranteed since the DLSP “all or nothing” assumption can be violated. The manufacturer may 

not able to satisfy the customer’s demand due to the insufficient production capacity, and, 

consequently, no strict upper bound of the total costs provided to the manufacturer. 

The demand scenarios simulation was implemented for the constructed AARC (6.106)-

(6.116) and the AARC was tested using 20 generated demand scenarios and folding horizon. The 

simulation results showed that the gap between the optimal, and the generated solution is about 

11% on average over 20 generated demand scenarios (for the demand uncertainty level of 10%) 

and 22% in the worst case. Additionally, after several computational examples, it was observed 

that the level of data uncertainty does not influence the price of robustness: the average and 

maximal gap between the robust and the optimal solution did not change significantly. It was 

also shown that the AARC performs nearly as well as the RC when demand uncertainty level is 

5%, while adjustability of decision variables provides an advantage for higher uncertainty levels.  

From the theoretical point of view, the RO approach can be successfully applied in the 

field of production planning under demand uncertainty. A practical implementation of the 

considered RO techniques and analysis of the obtained results will be helpful and may be 

considered as one of the directions for further research. The considered robust approach for lot 

sizing decisions can be directly applied to the CLSP and DLSP problems with uncertain demand 

and can be implemented in the following steps: 

1. Construct a mathematical model that corresponds to the production process and 

the market, formally describing the data uncertainty;  

2. Construct the corresponding AARC; 

3. Collect the production planning system and market data, numerically define 

uncertainty intervals (or mean values and uncertainty level) for the demand; 

4. Solve the constructed AARC using the given model data; 
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5. Implement the obtained robust production plan, using new information about the 

market coming into the system; 

6. Repeat steps 3-5 regularly in order to avoid human errors and account for changes 

in the system state4. 

Moreover, the considered robust approach is relevant in other applications of robust 

optimization. Research results are significant for the companies that are utilizing business 

intelligence on top of the risk management solutions or working with uncertain data. 

Since additional probabilistic information may be useful in reducing the conservativeness 

of the robust optimization approach, the analysis of production planning models with demand 

forecasts is an important direction for further research.  

To identify the performance of the RO solution, a variety of production planning models 

with different data structures can be considered in the context of further research.  

Finally, the solution provided by the RO approach should be compared in detail with the 

solution provided by the SO approach based on the simulation of future demand scenarios. 

                                                 
4 This step is optional, but is typically implemented by manufacturing companies. 
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