
Immunorepairing of Hardware Systems

Dissertation

A thesis submitted to the
Faculty of Computer Science, Electrical Engineering and Mathematics

of the
University of Paderborn

in partial fulfillment of the requirements for the
degree of Dr. rer. nat

by

Norma Alicia Montealegre Agramont

Paderborn, Germany
July 2013

Supervisor:

Prof. Dr. Franz Josef Rammig

Reviewers:

Prof. Dr. Franz Josef Rammig

Prof. Dr. Sybille Hellebrand

Additional members of the oral examination committee:

Prof. Dr. Marco Platzner

Prof. Dr. Hans Kleine Büning

Dr. Matthias Fischer

Date of submission:

31.01.2013

Date of the oral examination:

22.03.2013

Summary

Repairing a hardware system that operates in an extreme and inaccessible environment, such
as a hardware module of a spaceborne or underwater device on-site, is very costly or even
sometimes impossible. That is the reason why, techniques for the design of a hardware system
which is able to recover from a failure autonomously are necessary. Such hardware system
able to recover from a failure autonomously is named a self-repairing hardware system and
is composed basically of a fault recognition module, a recovery procedure module, and the
circuit to be repaired. For the design of the fault recognition module, a low fault recognition
latency is a requirement, so that it can operate online and concurrently to the operation of
the circuit to be repaired. In the literature there are many approaches of self-repairing sys-
tems, however, most of them do not deliver details of the design of a fault recognition module
which is able to work concurrently to the operation of the circuit to be repaired. Moreover,
it has been noticed that many of the existing approaches propose new non-commercial hard-
ware platforms or self-repairing procedures which are hard to reproduce. Hence, this thesis
evaluates a set of fault recognition techniques that focus on reducing the fault recognition
latency and hardware overhead and delivers a modular framework for the implementation of
a self-repairing hardware system.

The human body recovers from illnesses and injury autonomously thanks to the immune
system. The field of artificial immune systems transfers the biological principles of the immune
system into models and algorithms for solving technical problems. This thesis makes use of
some of those algorithms for the design of the fault recognition module, reason why in the
title of this thesis immunorepairing is written instead of self-repairing. For the design of the
fault recognition module, it is assumed initially the existence of a set of fault pattern vectors
that address specific faults in the circuit. Each of those vectors has a recovery mechanism
associated. A comparison of the vector containing the current state of the circuit with each of
the fault pattern vectors in the available set is executed concurrently to the operation of the
circuit using different vector distance metrics. Thereafter, the vector containing the current
state of the circuit is classified based on the closest fault pattern vectors and a recovery
mechanism is assigned to it if a fault is determined. Two kinds of hardware systems were
recognized and taken into consideration: a hardware system with multiple line inputs and
outputs and a hardware system with single line inputs and outputs. The inputs and outputs
of the first one can be concatenated as vectors with real value elements expressed in fixed
or floating point format. In the same way, the inputs and outputs of the second one can be
concatenated as vectors with one-bit binary value elements. Hardware systems with multiple
line inputs and outputs can be hardware cores that have n-bit floating point format input
and output signals, or hardware systems that have input and output signals working with
continuous values, such is the case of some sensor or actuator signals. Hardware systems with

i

single line inputs and outputs can be combinational or sequential digital systems.
In case of vectors with real value elements expressed in fixed or floating point format,

the comparison of the vector containing the current state of the circuit with the stored set
of fault pattern vectors is done using the Mahalanobis or the set of Minkowski distances.
Thereafter, the assignment of a recovery mechanism is done using the k-nearest neighbor
or the minimal distance classification methods. The performances of those methods depend
on the size of the set of fault pattern vectors. That is, the number of fault pattern vectors
and the number of elements in each vector, also called dimension. Therefore, in this thesis,
methods for the reduction of the dimension of the fault pattern vectors are evaluated such
us “Principal Component Analysis”, “Singular Value Decomposition” and “Formal Immune
Networks”. Moreover, methods for the reduction of the number of fault pattern vectors are
also evaluated such us “Death of immune cells with insufficient stimulation”, “Elimination
of auto-reactive immune cells” and “Apoptosis and auto-immunization”. The methods that
give the minimal number of incorrectly recognized faults, minimal dimension, and minimal
number of fault pattern vectors, are the ones that are recommended to be employed in the
design of the fault recognition module. Their use assures a low fault recognition latency and
a low consumption of memory resources for storing the fault pattern vector set.

In case of vectors with one-bit binary value elements, the comparison of the vector contain-
ing the current state of the circuit with the stored set of fault pattern vectors can be done
using the Hamming distance. Using that distance, the result is either zero or one, that is to
say, either equal or unequal. When equal, the recovery mechanism associated to the fault
pattern vector can be assigned to the vector containing the current state of the circuit in
an straightforward manner, without using any classification method. The comparison of the
vector containing the current state of the circuit with the stored set of fault pattern vectors
is possible to be executed concurrently to the operation of the circuit, by monitoring firstly
the current vector of inputs to the circuit. When the vector containing the current inputs
matches one of the input vectors from the given fault pattern vectors, then, the vector of
current outputs can be compared with the corresponding stored output pattern vector. Such
a fault recognition module is comprised of an input vectors monitoring block, an output pat-
tern vectors storage block, and an output vectors comparison block. The design of all those
blocks can exploit the unspecified values in the elements of the fault pattern vectors in order
to get a reduced hardware overhead. Furthermore, an output vector compactor block, at the
output of the circuit, can be used for reducing the number of outputs to be compared, thereby
reducing the hardware overhead produced by the output pattern vectors storage block.

Besides the fault recognition module, the self-repairing hardware system requires a recov-
ery procedure module and other supporting modules such as: a controller, enablers of inputs
and outputs, a reconfiguration controller for recovery, etc. A modular architecture of a self-
repairing hardware system with all those modules is outlined and described in this thesis
at the register transfer level using the hardware description language VHDL. The delivered
description intends to provide ready to use modules for designing self-repairing hardware sys-
tems, and it is a further step towards the automatic design of self-repairing circuits described
at the RTL level. The controller and enablers of inputs and outputs help on driving the
outputs of the circuit to a safe value, while executing fault recognition and recovery and in
case of determining an unrecoverable defect after unsuccessful recoveries. The description
also includes a fault injector for debugging or testing the whole system injecting stuck-at
faults. That architecture has been implemented and tested for the design of a self-repairing
combinational circuit that uses as recovery mechanisms the switching to redundant modules

ii

and the partial reconfiguration of the circuit. The self-repairing combinational circuit has
been successfully synthesized and implemented into an FPGA hardware platform.

iii

iv

Acknowledgments

I would like to thank my supervisor Prof. Franz J. Rammig for the opportunity that he
gave me to work in his workgroup “Design of Distributed Embedded Systems” at the Heinz
Nixdorf Institute in Paderborn with the objective of writing this dissertation, specially in
the writing phase for the proofreading and his patience. I would also like to thank Prof.
Sybille Hellebrand for her precise advice during the realization of this dissertation, I really
appreciate the bibliographical sources and tools that she suggested me to use and refer to, and
her patience with me. I want to thank also my colleague Sebastian Hagenkötter for providing
data to test experimentally the algorithms and the work we did together. Finally, I want to
acknowledge the members of the examination board Prof. Marco Platzner, Prof. Hans Kleine
Büning and Dr. Matthias Fischer for evaluating my work.

v

vi

Contents

List of figures xi

List of tables xv

List of algorithms xvii

List of program codes xix

1 Introduction 1

1.1 Objectives of this work . 1

1.2 Strategy . 2

1.3 Organization of this work . 4

1.4 Bibliography . 6

2 Related work 7

2.1 Self-repairing hardware . 7

2.1.1 Multifunctional units . 8

2.1.2 Dynamic partial reconfiguration for testing and repair 8

2.1.3 Distributed self-repairing of a network of FPGA nodes 9

2.1.4 Small-scale reconfigurability for fault detection, diagnosis and recovery 10

2.1.5 Logic self-repair . 11

2.1.6 Dual-FPGA architecture for autonomous self-repair 12

2.2 Self-repairing approaches inspired by biological systems 13

2.2.1 Immune system paradigm . 13

2.2.2 POEtic tissue . 14

2.2.3 Evolvable hardware . 14

2.2.4 Embryonics . 16

2.2.5 Immunotronics . 16

2.2.6 e-DNA . 17

2.2.7 Autonomic System on Chip . 18

2.2.8 Immunocomputing . 19

2.3 Self-repairing in FPGAs . 20

2.3.1 Roving STAR . 20

2.3.2 TMR + RoRA . 20

2.4 Self-repairing introduced at the hardware description 21

2.4.1 Automatic insertion of fault tolerant structures in the RTL description 21

vii

Contents

2.5 Comments . 21

2.5.1 Hardware level of abstraction . 21

2.5.2 Hardware platform for the implementation 22

2.5.3 Type of addressed fault . 23

2.5.4 Error detection technique . 23

2.5.5 Recovery mechanism . 24

2.6 Bibliography . 25

3 Artificial immune systems 33

3.1 Biological immune system . 34

3.1.1 Internal agents . 35

3.1.2 External agents . 36

3.1.3 Communication among agents . 38

3.1.4 Immune system infrastructure . 54

3.1.5 Immune system agents . 56

3.2 Artificial immune system models and algorithms 67

3.2.1 Positive and negative selection . 67

3.2.2 Clonal selection . 68

3.2.3 Immune network . 72

3.2.4 Dendritic cells . 79

3.2.5 Formal immune network . 83

3.3 Comparison of artificial immune algorithms 85

3.4 Bibliography . 85

4 Fault recognition 87

4.1 Fault representation . 88

4.2 Fault recognition . 91

4.3 Fault repairing mechanisms assignation . 93

4.4 Fault space partitioning . 95

4.5 Fault recognition time . 96

4.6 Fault vector dimension reduction . 97

4.6.1 Principal component analysis . 98

4.6.2 Singular value decomposition . 103

4.7 Fault pattern vectors number reduction . 107

4.7.1 Death of immune cells with insufficient stimulation 108

4.7.2 Elimination of auto-reactive immune cells 108

4.8 Cytokine formal immune network . 110

4.8.1 Protein-protein interaction formal model 111

4.8.2 Formal immune network . 113

4.8.3 Molecular recognition . 116

4.8.4 Cytokine formal immune network . 117

4.8.5 Apoptosis and auto-immunization . 119

4.9 Conclusions . 121

4.10 Bibliography . 122

5 Evaluation of fault recognition methods 123

5.1 Fault recognition module with real fault vector elements 124

viii

Contents

5.1.1 Fault recognition . 126
5.1.2 Fault vector dimension reduction . 131
5.1.3 Fault pattern vectors number reduction 147

5.2 Fault recognition module with binary fault vector elements 169
5.2.1 Fault recognition . 171
5.2.2 Fault pattern vectors number reduction 174
5.2.3 Fault vector dimension reduction . 178

5.3 Conclusions . 190
5.4 Bibliography . 191

6 Implementation of a self-repairing unit 195

6.1 Design of the self-repairing unit . 196
6.1.1 Initial architecture of the self-repairing unit 196
6.1.2 Partial reconfiguration for recovering the unit 219
6.1.3 Fault injection for testing the self-repairing unit 228

6.2 Simulation of the self-repairing unit . 245
6.3 Implementation of the self-repairing unit . 252
6.4 Performance of the self-repairing unit . 257
6.5 Conclusions . 258
6.6 Bibliography . 259

7 Major contributions and further work 263

7.1 Major contributions . 263
7.2 Further work . 265
7.3 Bibliography . 266

List of publications 267

Bibliography 269

ix

Contents

x

List of Figures

1.1 Self-repairing circuit . 3

1.2 Built-In Concurrent Self-Test [Sharma and Saluja, 1988] 3

1.3 Self-repairing architecture . 5

1.4 LOC and peripheral elements [Marinos, 1969] 5

2.1 LOC and peripheral elements [Marinos, 1969] 8

2.2 Partial reconfigurable regions as slots [Paulsson et al., 2006a] 9

2.3 Subcomponent self-repairing [Akoglu et al., 2009] 10

2.4 Cone-level fault detection, diagnosis and recovery [Kumar and Lach, 2003] . . 11

2.5 POEtic layers [Tyrell et al., 2003] . 15

2.6 Self-repairing in an array with spare components [Tempesti et al., 1997] . . . 16

2.7 Immunotronics plus Embryonics concept [Bradley et al., 2000] 18

2.8 Layers of the Autonomic System on Chip [Bouajila et al., 2006] 19

2.9 FPGA with roving STAR [Abramovici et al., 2001] 20

2.10 New design flow using TMR and RoRA [Sterpone and Violante, 2005] 21

3.1 Artificial immune systems flow . 34

3.2 Cell parts . 35

3.3 Types of pathogens . 37

3.4 Layers of protection in the human immune system 37

3.5 Cell communication . 39

3.6 Cell surface receptor and free ligand interaction 39

3.7 Cell surface receptor and cell surface ligand interaction 40

3.8 Ligand-receptor interaction . 40

3.9 Molecules in a chemical substance . 41

3.10 Primary structure of a protein . 41

3.11 Secondary structure of a protein . 41

3.12 Tertiary structure of a protein . 42

3.13 Quaternary structure of a protein . 42

3.14 Lock and key principle and protein-protein binding analogy 43

3.15 Name conventions for binding sites . 44

3.16 Ligand placement . 44

3.17 Receptor placement . 47

3.18 PRRs, DAMPs and PAMPs . 48

3.19 B-cell receptor . 50

3.20 T-cell receptor . 51

xi

List of Figures

3.21 Signal transduction, transcription and translation 52

3.22 Genetic material . 53

3.23 Cardiovascular system . 54

3.24 Lymphatic system . 55

3.25 Leukocyte classification . 56

3.26 Leukocytes in the innate and adaptive immune response 57

3.27 Basophil cell releases histamine for attracting other leukocytes 57

3.28 Neutrophil cell engulfs pathogen and dies . 58

3.29 Eosinophil cell releases toxins for killing infected cell 58

3.30 Macrophage cell removes dead cells . 59

3.31 T-cell classification . 62

3.32 Pathogen - cell - CD8+ T-cell . 62

3.33 Pathogen - dendritic cell - CD4+ T-cell . 63

3.34 Pathogen - B-cell - helper CD4+ T-cell . 66

3.35 Idiotope . 73

3.36 Anti-idiotipic antibody . 74

3.37 Idiotope-paratope interaction . 74

3.38 Epitope-paratope interaction . 76

4.1 Inputs and outputs of the fault recognition module 88

4.2 Fault vector in a two dimensional space . 88

4.3 Possibilities of inputs and outputs of the circuit for self repairing - 1 90

4.4 Possibilities of inputs and outputs of the circuit for self repairing - 2 90

4.5 Scan design of a sequential circuit . 91

4.6 Similarity of a given fault vector and a fault pattern vector 92

4.7 k-nearest neighbor procedure . 94

4.8 Partitioning of a two dimensional space in subspaces 95

4.9 Total time required before a repairing mechanism can be executed 96

4.10 Dimension reduction of a vector . 97

4.11 Dimension reduction of a matrix . 97

4.12 Linear transformation of a vector . 98

4.13 Linear transformation of a matrix . 99

4.14 Mean and standard deviation of fault pattern vector components in a matrix 100

4.15 Deviation of fault pattern vector components from the mean 100

4.16 Singular value decomposition of a matrix with n > m 105

4.17 Singular value decomposition of a matrix with n < m 106

4.18 Truncated singular value decomposition of a matrix with n < m 107

4.19 Reduction of fault pattern vectors through insufficient stimulation 109

4.20 Reduction of fault pattern vectors through auto-reactive immune cells 109

4.21 Pairs of formal proteins with minimal binding energy given a binding matrix 113

4.22 Formal immune network space of dimension t = 2 116

4.23 Antigen in a formal immune network space of dimension t = 2 118

4.24 Recognition in a formal immune network space of dimension t = 2 118

5.1 Binary value inputs and outputs to the fault recognition module 123

5.2 Real value inputs and outputs to the fault recognition module 124

5.3 Fault vector types . 124

xii

List of Figures

5.4 Fault vector arrangement for a wire-bonding machine application 125
5.5 Fault pattern vectors with reduced dimensions 137
5.6 Fault pattern vectors with reduced dimensions using normalization 142
5.7 Wrong class recognitions vs dimensions . 146
5.8 Fault pattern vectors reduced by function removalbylackofstimulation 165
5.9 Threshold variation by function removalbylackofstimulation 165
5.10 Fault pattern vectors reduced by function removalbyautoreactivity 166
5.11 Threshold variation by function removalbyautoreactivity 167
5.12 Fault pattern vectors reduced by function removalbyapoptosisautoimmunization 167
5.13 Threshold variation by function removalbyapoptosisautoimmunization 168
5.14 Fault recognition module design using duplication 172
5.15 Fault recognition module design using only specified values 173
5.16 Fault recognition module design using a memory 174
5.17 Fault recognition module design using unspecified values in the input patterns 179
5.18 Fault recognition module design using an unspecified values monitor 180
5.19 Fault recognition module design using multiplexers 181
5.20 Fault recognition module design using implicit output vectors comparison . . 182
5.21 Input vector monitoring block . 186
5.22 Fault recognition module design using an output vector compactor 188
5.23 X-Compactor circuit for m = 8 and q = 6 . 190

6.1 Initial architecture of the self-repairing unit 197
6.2 State machine for concurrent fault recognition 202
6.3 State machine for an almost-concurrent fault recognition 202
6.4 A fault recognition module for a unit with binary inputs and outputs 206
6.5 A fault recognition module for a unit with real inputs and outputs 207
6.6 Recovery with redundant circuits . 215
6.7 Architecture of the self-repairing system . 220
6.8 Fault recognizer and repairer module for the circuit for self-repairing 221
6.9 Architecture for testing the self-repairing system 230
6.10 Fault injector . 231
6.11 Fault injector and fault repairer connection 231
6.12 Fault recognizer and repairer module with an embedded fault injector 232
6.13 Simulation of the self-repairing circuit . 250
6.14 Circuit for self-repairing . 251
6.15 FPGA board and breadboard for the hardware implementation 254
6.16 Performance measurement . 258

xiii

List of Figures

xiv

List of Tables

3.1 Dendritic cells algorithm relative weights . 81
3.2 Comparison of artificial immune algorithms 85

5.1 Available fault vectors with real elements . 126
5.2 Wrong class recognitions . 129
5.3 Wrong class recognitions using variants of the Mahalanobis distance 130
5.4 Wrong class recognitions using normalization through the p-norm 130
5.5 Wrong class recognitions using vector dimension reduction 140
5.6 Wrong class recognitions using normalized vector dimension reduction (a) . . 144
5.7 Wrong class recognitions using normalized vector dimension reduction (b) . . 145
5.8 Results of “Death of immune cells with insufficient stimulation” (a) 152
5.9 Results of “Death of immune cells with insufficient stimulation” (b) 153
5.10 Results of “Death of immune cells with insufficient stimulation” (c) 154
5.11 Results of “Elimination of auto-reactive immune cells” (a) 155
5.12 Results of “Elimination of auto-reactive immune cells” (b) 156
5.13 Results of “Elimination of auto-reactive immune cells” (c) 157
5.14 Results of “Apoptosis and auto-immunization” (a) 158
5.15 Results of “Apoptosis and auto-immunization” (b) 159
5.16 Results of “Apoptosis and auto-immunization” (c) 160
5.17 Best case by “Death of immune cells with insufficient stimulation” 162
5.18 Best case by “Elimination of auto-reactive immune cells” 163
5.19 Best case by “Apoptosis and auto-immunization” 164
5.20 Summary of results from existing methods of test set compaction 178
5.21 Truth table for the output vectors comparison using multiplexers 182
5.22 Truth table for the implicit output vectors comparison when pattern bit = 0 183
5.23 Truth table for the implicit output vectors comparison when pattern bit = 1 183
5.24 Fault pattern vectors with all specified bits for the c17 benchmark circuit . . 184
5.25 Fault pattern vectors with unspecified bits for the c17 benchmark circuit . . . 184
5.26 Hardware overhead of the fault recognition module 185
5.27 Possible compaction using the X-Compact technique 189
5.28 Compaction using the X-Compact technique for the circuits of ISCAS 85 . . 189

6.1 Circuit for self-repairing truth table . 249
6.2 Fault vectors with recovery mechanisms . 251

xv

List of Tables

xvi

List of Algorithms

3.1 Positive and negative selection . 69
3.2 Clonal selection . 71
3.3 Immune network . 78
3.4 Dendritic cells . 80

4.1 Fault pattern vector dimension reduction using PCA and the covariance 103
4.2 Fault pattern vector dimension reduction using PCA and SVD 104
4.3 Fault pattern vector dimension reduction using SVD 107
4.4 Fault pattern vectors number reduction through insufficient stimulation 109
4.5 Fault pattern vectors number reduction through auto-reactive immune cells . . 110
4.6 Fault pattern vector dimension reduction in a FIN 117
4.7 Fault recognition by means of molecular recognition 119
4.8 Fault repairing mechanism assignation by means of a cFIN 119
4.9 Fault pattern vectors number reduction in a cFIN 120

5.1 Fault pattern vector set compaction using the clonal selection algorithm 176

xvii

List of Algorithms

xviii

List of Program Codes

5.1 Minkowski, Euclidean, Manhattan and Chebyshev distance functions 126
5.2 Mahalanobis distance function . 127
5.3 Covariance matrix function . 127
5.4 Nearest neighbor class function . 127
5.5 k-nearest neighbors function . 128
5.6 PCA transformation using eigenvalue decomposition function 131
5.7 PCA transformation using singular value decomposition function 132
5.8 Singular value decomposition transformation function 134
5.9 Formal immune network transformation function (a) 135
5.10 Formal immune network transformation function (b) 135
5.11 Transformation function for the fault vectors of the test set 136
5.12 Transformation function for the fault vectors of the test set for FIN 136
5.13 Correlation matrix function . 139
5.14 Death of immune cells with insufficient stimulation function 147
5.15 Elimination of auto-reactive immune cells function 148
5.16 Apoptosis and auto-immunization function 150

6.1 Circuit for self-repairing module . 198
6.2 Enable inputs module . 199
6.3 Enable outputs module . 200
6.4 State machine module . 203
6.5 Fault recognition module . 210
6.6 Memory module . 213
6.7 Recovery procedure module . 214
6.8 Recovery counter module . 216
6.9 Constants package . 218
6.10 Self-partial reconfigurator module . 223
6.11 Saboteurs at the inputs module . 229
6.12 Saboteurs at the outputs module . 233
6.13 Mutants module . 235
6.14 Mutant module with an stuck-at-0 fault . 236
6.15 Recognizer-repairer module . 237
6.16 Top architecture module . 242
6.17 Top architecture test bench . 245
6.18 Constrains file . 255

xix

List of Program Codes

xx

1
Introduction

A hardware system which is able to recover from a failure autonomously is named a self-
repairing system. A self-repairing system avoids the time span from the manifestation of a
failure in it to the presence of a repairing team on site. The logistics necessary for having a
repairing team and replacement material on site costs time, effort and money. An extreme
example is the on site repairing of the hardware module of a space telescope, which besides of
having a very high cost, in some circumstances can even be impossible because of the extreme
conditions. Thus, the interest in investigating how to design self-repairing hardware systems.

Biological systems show autonomous recovery mechanisms. In vertebrates the entity re-
sponsible of detecting injuries or illnesses and of triggering recovery mechanisms is the immune
system. Taking the human immune system as inspiration, the field of artificial immune sys-
tems transfers those biological principles into models and algorithms which can serve to solve
technical problems. This thesis searches in the field of artificial immune systems for useful
methods in the design of self-repairing hardware systems. That is the reason why this thesis
has the name of Immunorepairing of Hardware Systems.

This chapter is organized as follows. The first section presents the aim and main objectives
of this thesis. The second section outlines the strategy for reaching those objectives, such as
the preliminary architecture of a self-repairing system and the fault recognition and recovery
mechanisms to be studied. Finally, the last section explains how this thesis is organized.

1.1 Objectives of this work

Regarding the duration of a fault in a hardware system, any fault can be classified into
permanent, transient or intermittent, [Koren and Krishna, 2007]. A self-repairing hardware
system which is implemented by using programmable logic, such as FPGAs, can use recon-
figuration for repairing the hardware system from only transient faults. However different
types of redundancy can be used for repairing a system, please refer to [Koren and Krishna,

1

Chapter 1. Introduction

2007]. Firstly, static redundancy is mostly implemented by triplicating the hardware module
and determining its output using a voter. That kind of redundancy masks faults and can
be used for repairing the hardware module from both transient and permanent faults. Sec-
ondly, dynamic redundancy activates an available spare hardware module under a detected
fault. Such kind of redundancy can repair a hardware module from both transient and per-
manent faults. However its use makes more sense when a permanent fault is present. So,
in [Bolchini et al., 2011] the type of fault, transient or permanent, is first determined for ap-
plying either reconfiguration or active redundancy in a hardware system implemented using
FPGAs.

The presence of an error caused by a permanent or transient fault in a hardware system can
be detected by using self-checking design techniques, such as the ones explained extensively
in [Lala, 2000] and [Gössel et al., 2008]. Those methods serve for first detecting a fault, but
the determination of which repairing mechanism should be applied is open.

Looking at concrete efforts of developing complete self-repairing hardware systems in the
literature, which are briefly presented in chapter 2, it could be noticed that most of those
approaches do not deliver details of the design of a fault recognition module which is able
to work concurrently to the operation of the circuit to be repaired. Moreover, it has been
noticed that many of the existing approaches propose new hardware platforms or self-repairing
procedures which are hard to reproduce.

Hence, this thesis has the aim of providing a general architecture for the design of a self-
repairing system. Thereby stressing on the design of a fault recognition module where the
faults should not only be classified into transient and permanent, but permanent faults should
be classified or distinguished according to the type of required repairing mechanism given at
the design time. The objectives that support that aim are:

• The design of a versatile self-repairing architecture using a hardware description lan-
guage

• The design of a multiclass fault recognition module with a low fault recognition latency

The design of the self-repairing architecture using a hardware description language would
make that architecture independent of the implementation hardware platform to be used.
A low fault recognition latency, in the second objective, would allow the fault recognition
module to operate online and concurrently to the operation of the system.

1.2 Strategy

To achieve the proposed objectives, this section provides the methods and tools used in this
thesis.

A self-repairing system is composed of the three modules drawn on figure 1.1: the circuit
for self-repairing, the fault recognition module and the recovery procedure module. The fault
recognition module executes fault recognition and delivers a recovery mechanism which is
determined at the time of designing the system. The recovery procedure module executes the
recovery mechanism provided by the fault recognition module.

Since the fault recognition module should operate online and concurrently to the operation
of the circuit for self-repairing, the technique named Built-In Concurrent Self-Test, in short
BICST, is applied, please see figure 1.2 and refer to [Sharma and Saluja, 1988]. So, the

2

1.2. Strategy

Recovery procedure
Recovery mechanism

Fault recognition

Inputs OutputsCircuit for self−repairing

Figure 1.1: Self-repairing circuit

current inputs of the circuit for self-repairing are observed and compared with the fault
pattern vectors stored in memory. When the current inputs match to the inputs of any stored
fault pattern vector, it is verified if the current outputs of the circuit for self-repairing match
with the desired outputs. If they do not match, the recovery mechanism associated to that
fault pattern vector is delivered to the recovery procedure module.

Circuit Under Test OutputsInputs

Concurrent Test Circuit
Comparator

Error indicator

Comparator enable

Test complete

Figure 1.2: Built-In Concurrent Self-Test (abstracted from [Sharma and Saluja, 1988] c©1988
IEEE)

For getting a low fault recognition latency, the number of fault pattern vectors should be
minimal. That can be complied considering only fault pattern vectors for critical faults, or
by reducing the given set of fault pattern vectors. Therefore, methods for the reduction of
the number of fault pattern vectors of the given set and for the reduction of the dimensions
of those fault pattern vectors are studied.

A concurrent fault recognition module for combinational circuits can be implemented using
a small set of fault pattern vectors, as stated in [Kochte et al., 2009]. In that publication, they
use a small set of fault pattern vectors for the so called random pattern resistant faults, which
are faults that can not be covered by a random generated testing set. For a self-repairing
circuit, the set of fault pattern vectors to be used can be prepared to cover only critical
faults. A review of techniques for the reduction of the hardware overhead produced by such
a concurrent fault recognition module for combinational circuits by using unspecified values
is done.

In the case of combinational or sequential circuits, the pattern vectors are vectors that
contain one-bit binary value components. In case of hardware cores with, e.g., 32-bit floating
point inputs and outputs, or analog hardware modules which have input and output signals

3

Chapter 1. Introduction

with continuous values, the fault pattern vectors are vectors that contain real value elements.
In the last case, reduction of the given set of fault pattern vectors is necessary. Since fault-
recognition can be inspired by methods that the biological immune system uses for finding
illnesses, suitable methods were searched in the field of artificial immune systems. A special
attention has been devoted to the cytokine Formal Immune Network method presented in
[Tarakanov, 2008], because it performs reduction of fault pattern vectors and considers a
class associated with each fault pattern vector, named cytokine, field which can be assumed
to be the recovery mechanism. Besides, that method allows self-learning, which is understood
as the addition of new fault pattern vectors online without requiring a recomputation of the
transformation matrix used for fault pattern vector dimension reduction.

The recovery procedure is normally hardware platform dependent. However, techniques
such as redundancy and partial reconfiguration can be used for many hardware platforms,
reason why a hardware platform with an FPGA that supports partial reconfiguration has
been used. Although, Xilinx FPGAs are SRAM-based and consequently prone to single event
upsets, this thesis assumes that repairing should be executed when a permanent fault, rather
than a transient fault, is detected. A permanent fault is modeled as a stuck-at fault and
a fault injection module that inserts such faults for testing the self-repairing system in the
simulation and in the final implementation is added to the self-repairing architecture.

The self-repairing architecture, shown in figure 1.3, applies some ideas of the self-repairing
architecture taken from [Marinos, 1969] and shown in figure 1.4. That architecture considers
an Input/Output Enabler which permits that only a verified result is present at the outputs.
That feature is useful in the design of safety critical systems1, which are systems that require
fail-safe outputs, please refer to [Sutton, 2012]. A verified output is flagged by the output
Ready, which can be seen in figure 1.4. After a determined number of failed recoveries, the
system flags an unrecoverable defect in the system by means of the signal Defect, which can
be seen on the same figure 1.4. In that case, the outputs maintain the verified value of the
prior inputs, guaranteeing a fail-safe state of the system.

The hardware description language used for describing the self-repairing architecture is
VHDL. The description proposes the delivery of modules, that is to say prepared template
code for designing self-repairing hardware systems, inspired by the work in [Entrena et al.,
2001] and briefly explained in section 2.4.1.

1.3 Organization of this work

This thesis is organized in more seven chapters with the following content. Chapter 2 presents
briefly the work related to this thesis in the current literature and comments their differences
and weaknesses. Chapter 3 provides a biological background, models and algorithms of arti-
ficial immune systems. That chapter explains biological concepts for non-biologists, provides
the most known artificial immune algorithms with their pseudocodes, and gives a comparison
mentioning the application of each algorithm. Chapter 4 deals with fault recognition concepts
and thereafter concentrates on methods of fault recognition for systems whose fault pattern
vectors contain real elements. That chapter explains mathematically the cytokine Formal
Immune Network algorithm presented in [Tarakanov et al., 2005] and its similarities to the
Principal Component Analysis algorithm for dimension reduction. Chapter 5 presents the

1A safety critical system is a system whose failure can produce injury to people or damage to the environment
or equipment, reason why upon a failure the system should automatically become safe.

4

1.3. Organization of this work

Inputs

c

Last recovery

Fault

Recognition ready

Recovered

Ready

Defect

OutputsCircuit for self−repairing

Input/Output enabler

Recovery procedure

Outputs enable

Inputs enable

On−line learning

Fault recognition

Minimal test vector set

Figure 1.3: Self-repairing architecture

Peripheral elements

for error diagnosis and correction

Inputs

Selected operation

Outputs

Control signals

Final outputsLogic Operational Circuit

Figure 1.4: LOC and peripheral elements required for error diagnosis and correction (ab-
stracted from [Marinos, 1969] c©1969 IEEE)

5

Bibliography

implementation and evaluation of the algorithms presented in chapter 4, which are adequate
for fault pattern vectors with real value elements that proceed from complex digital systems
such as hardware cores or analog systems. The second part of chapter 5 presents methods for
reducing the hardware overhead of a concurrent fault recognition module for combinational
circuits by using the unspecified values of its fault pattern vectors that have one-bit binary
value elements. Chapter 6 presents the self-repairing architecture described in VHDL, its sim-
ulation and implementation. The last chapter exposes the major contributions of this thesis
and lists possible further work. This thesis is organized in nearly independent chapters. That
means that each chapter is understandable without reading prior chapters unless chapter 5,
which requires the understanding of the algorithms presented in chapter 4.

1.4 Bibliography

Bolchini, C., Sandionigi, C., Fossati, L., and Codinachs, D. M. (2011). A reliable fault classifier
for dependable systems on SRAM-based FPGAs. In 17th International On-Line Testing
Symposium - IOLTS 2011. IEEE.

Entrena, L., López, C., and Oĺıas, E. (2001). Automatic Insertion of Fault-Tolerant Structures
at the RT Level. In 7th International On-Line Testing Workshop, pages 183–200. 48-50.

Gössel, M., Ocheretny, V., Sogomonyan, E., and Marienfeld, D. (2008). New Methods of
Concurrent Checking. Frontiers in Electronic Testing. Springer.

Kochte, M. A., Zoellin, C. G., and Wunderlich, H.-J. (2009). Concurrent Self-Test with
Partially Specified Patterns For Low Test Latency and Overhead. In 14th European Test
Symposium, pages 53–58. IEEE Computer Society.

Koren, I. and Krishna, C. M. (2007). Fault Tolerant Systems. Morgan Kaufmann.

Lala, P. K. (2000). Self-Checking and Fault-Tolerant Digital Design. Morgan Kaufmann.

Marinos, P. N. (1969). The Organization of a Self-Repairing System from Multifunctional
Units. Proceedings of the IEEE, 57(7):1320.

Sharma, R. and Saluja, K. K. (1988). An Implementation and Analysis of a Concurrent Built-
In Self-Test Technique. In 18th International Symposium on Fault-Tolerant Computing -
FTCS 18, pages 164–169. IEEE.

Sutton, A. (2012). No Room for Error: Creating Highly Reliable, High-Availability FPGA
Designs. Technical report, Synopsis.

Tarakanov, A., Goncharova, L., and Tarakanov, O. (2005). A Cytokine Formal Immune
Network. In 8th European Conference on Advances in Artificial Life - ECAL 2005, volume
3630 of Lecture Notes in Computer Science, pages 510–519. Springer.

Tarakanov, A. O. (2008). Formal Immune Networks: Self-Organization and Real-World Appli-
cations. In Prokopenko, M., editor, Advances in Applied Self-organizing Systems, Advanced
Information and Knowledge Processing, pages 271–290. Springer.

6

2
Related work

Research in the area of self-repairing hardware systems addresses: different types of faults,
e.g., transient or permanent faults regarding its persistence; different types of hardware plat-
forms, e.g., Field Programmable Gate Arrays, Programmable Systems on Chips, etc; and
different levels of abstraction, e.g., system level, Register Transfer Level (RTL), gate level,
transistor level, etc. Similar approaches usually differ on the employed error detection method,
recovery mechanism, or system architecture, which in some cases are inspired by biological
systems.

The revised work has been organized in the following sections: general work done on self-
repairing hardware, approaches inspired by biological systems, work done on introducing
self-repairing in the FPGA fabric, and finally work done on self-repairing introduced in the
description of hardware systems. A subsection is devoted for each specific work, in which the
principle is introduced with the help of a figure abstracted from the respective publication
when necessary. At the end, a section is devoted to comments regarding the differences and
the shortcomings of the different approaches. It is not strictly necessary to keep on reading
sections 2.1, 2.2, 2.3 and 2.4.1 which introduce briefly the different approaches. It can be
skipped to the section 2.5 devoted to comments and on demand or by interest look at the
respective referenced subsection.

2.1 Self-repairing hardware

This section introduces work done in the field of self-repairing hardware systems in general,
leaving approaches inspired by biological systems and work done on self-repairing of the FPGA
fabric aside.

7

Chapter 2. Related work

Peripheral elements

for error diagnosis and correction

Inputs

Selected operation

Outputs

Control signals

Final outputsLogic Operational Circuit

Figure 2.1: LOC and peripheral elements required for error diagnosis and correction (ab-
stracted from [Marinos, 1969] c©1969 IEEE)

2.1.1 Multifunctional units

One of the most earlier publications on self-repairing systems and main reference in this
thesis is the letter of Peter N. Marinos named “The Organization of a Self-Repairing System
from Multifunctional Units”, please refer [Marinos, 1969]. It proposes the design of a self-
organizing system using multifunctional devices, which give to the system a high flexibility
in the configuration of its functioning and a capability of self-repair. A multifunctional logic
device contains a so called logic operational circuit, shown in figure 2.1, which besides inputs
and outputs, has control signals for selecting the operation fi to be performed. In order that
upon a failure, the logic operational circuit is able to perform the same operation but error
free, each one of the operations fi has assigned additional values for the control signals. Thus,
the values of the control signals can be partitioned into classes, a class corresponding to each
function fi. The peripheral elements required for the error diagnosis and correction of a logic
operation unit are shown in figure 2.1. In this work the idea of having a multifunctional
logic device for a self-organizing and self-repairing system, the arrangement of peripheral
elements for error detection and correction, and the partitioning of the states of a self-repairing
automaton in classes are valuable.

2.1.2 Dynamic partial reconfiguration for testing and repair

A Field Programmable Gate Array, in short FPGA, is an integrated circuit with programmable
logic. The programmable logic allows to configure the functionality of the circuit after the
manufacturing of the chip. Chip is a typical name given to an integrated circuit. By some
FPGA chips it is possible to program only a part of its programmable logic while the remaining
logic is operating, process named as dynamic partial reconfiguration. Dynamic partial recon-
figuration can be used for implementing a large circuit into an FPGA that does not present
enough hardware resources. The work shown in the publications [Paulsson et al., 2006b] and
[Paulsson et al., 2006a] suggests using dynamic partial reconfiguration of an FPGA not only
for implementing a given circuit, but also for detecting errors on it and for its recovery in
the case of a detected error. For that, the FPGA is partitioned into slots which are partial
reconfigurable regions able to contain a circuit partition each, as shown in figure 2.2. For
error detection, a test bench module, created for testing a single slot or the circuit partition
implemented in that slot, is configured into the FPGA when a slot is available. How the test
bench module should be designed and executed is not mentioned, but it is recommended to
restrict the testing time in order of not interfering the overall circuit operation. N-modular
redundancy is a method of fault masking, where n copies of a circuit partition get the same

8

2.1. Self-repairing hardware

FPGA

S
lo

t
2

S
lo

t
1

S
lo

t
n

Dynamic partial reconfiguration circuitry

Figure 2.2: Partial reconfigurable regions in the FPGA as slots for dynamic partial reconfig-
uration (abstracted from [Paulsson et al., 2006a] c©2006 IEEE)

input data and deliver their outputs to a voter, which gives as final output the output of
the majority. A subcase of N-modular redundancy with N = 3 is the so called Triple Modu-
lar Redundancy, in short TMR. Triple Modular Redundancy, where the copies of the circuit
partition and the voter module are implemented in different slots using dynamic partial re-
configuration, named as dynamic TMR, is suggested as a second method for error detection.
As recovery strategies are suggested the partial reconfiguration of a failed circuit partition in
the same slot, the partial reconfiguration of a failed circuit partition in a different slot, and
the blocking of a slot for future use when faulty. Although the presented testing strategies
can be useful for large circuit that use dynamic partial reconfiguration for its implementation,
for other circuits the complexity of the required controller looks too high.

2.1.3 Distributed self-repairing of a network of FPGA nodes

Self-repairing for a network of nodes composed each one of an FPGA board attached to a
wireless networking module is presented in [Venishetti et al., 2007], [Sreeramareddy et al.,
2008], [Akoglu et al., 2009] and [Sreeramareddy et al., 2010]. Thereby, self-repairing is exe-
cuted at the node and at the network levels. For the determination if a node presents an error
or not, the circuits implemented in the FPGA of each node are partitioned into components
and subcomponents. Built-in self-testing hardware is added to each component. Thereby, a
Linear Feedback Shift Register, in short LFSR, is used for generating pseudo-random input
test patterns, and a Multiple Input Shift Register, in short MISR, is used for compressing the
output vectors generating a signature. The generated signature is compared with the expected
signature stored in extra memory. If a mismatch is detected, testing at the subcomponent
level, only for that component, is triggered. Subcomponent testing is performed by applying
test pattern vectors stored in memory at the inputs and by subsequently comparing the vec-
tors at the outputs with the respective expected output vectors stored also in memory. Upon
a mismatch, partial reconfiguration of the failed subcomponent is initiated. That process is
able to counteract a temporary fault produced for example by a bit flip in an internal register
of the FPGA. If the error remains after partial reconfiguration, it means that a permanent

9

Chapter 2. Related work

Redundant
hardware

subcomponents

Redundant
hardware

subcomponents Component 1

Component n

Component 1

Component n

Bypass

Node 1 Node N

FPGA 1 FPGA N

Subcomp. z

Subcomp. b

Subcomp. a

Subcomp. b

Subcomp. z

Figure 2.3: Subcomponent self-repairing (abstracted from [Akoglu et al., 2009] c©2009
Springer)

hardware fault in the FPGA area occupied by the subcomponent is present. Therefore, a
redundant hardware module that implements the subcomponent functionality and placed in
another area on the FPGA is enabled and connected diverting the data lines to and from the
subcomponent, as shown in figure 2.3. If a further error in the same subcomponent is present
and if all available redundant hardware modules that implement the failed subcomponent
functionality are exhausted, fault information is provided to the wireless networking module
of the node. That module sends information about the failed subcomponent to the master
node, which reassigns the task of the failed subcomponent to another node in the network.
Reassignment of tasks is also done by the master node when it perceives, by polling, that a
node fell down. One observation about this work is that it does not consider as an issue the
time that self-testing of components and subcomponents take and the frequency in which self-
testing is triggered. Besides, it does not mention that a component should go off-line in order
to execute self-testing using LFSR and MISR. Nevertheless, in [Sreeramareddy et al., 2010]
it is proposed the use of partial bitstream relocation, in short PBR. The partial bitstream
relocation method, taken from [Sudarsanam et al., 2009], allows firstly the reduction of the
time that partial reconfiguration of a subcomponent takes and secondly the subcomponent
relocation to an empty partial reconfigurable region in the FPGA on the fly. All that, by
using only the frame data part of the partial bitstream of the subcomponent, saved in Block
RAM memory in the FPGA instead of in external memory, for the partial reconfiguration.

2.1.4 Small-scale reconfigurability for fault detection, diagnosis and recovery

The work presented in [Kumar and Lach, 2003] considers to decompose a circuit to the cone
level. Where a cone is a combinational block with many inputs, but only one output. An

10

2.1. Self-repairing hardware

k

k

LUT 1

LUT 2

LUT n

k

Out 1

Out n2:1

2:1

nk:k

2:1

n:1

LUT s

n1

Figure 2.4: Cone-level fault detection, diagnosis and recovery (abstracted from
[Kumar and Lach, 2003] c©2003 IEEE)

SRAM-based k-input lookup table, in short k-LUT, can implement the functionality of any
cone that has as a maximum k inputs. For fault detection, one of the k-input lookup table
executes redundant computation of all n cones in a rotating manner. That is possible by
using the multiplexer nk : k shown in figure 2.4. Then, the output of the rotating k-LUT is
compared with the output of the selected cone through a XOR gate. When a fault at the
cone is flagged by that XOR gate, the k-LUT can be permanently configured to implement
the functionality of the faulty cone. That can happen when the nk : k multiplexer selects the
inputs of the faulty cone and the 2 : 1 multiplexer at the output of the faulty cone selects the
LUT output, as can be seen also in figure 2.4. What this work does not mention is how the
select lines of all multiplexers are controlled.

2.1.5 Logic self-repair

The work in [Koal et al., 2012], [Koal et al., 2011], [Koal et al., 2009], [Koal and Vierhaus,
2008] and [Kothe and Vierhaus, 2006] intends to adapt existing self-repairing approaches for
memories and regular logic, like FPGAs, to logic designs. This work relies on the idea
that there exist functional units in a logic design which are implemented multiple times,
or seen from another side, the design is built out of regular components, e.g., ANDs, ORs
XORs, blocks of gates, adders, ALUs, etc. Out of such identical functional units or regular
components in a logic design, a reconfigurable logic block, in short RLB, is proposed. Such
RLB is provided with one spare unit that can serve for replacing a faulty functional unit by
controlling some MUXs in the required way, the same way as shown in subsection 2.1.4 and
figure 2.4 where a functional unit is a Look Up Table. The functional units in an RLB can
be tested at start-up for encountering production faults, or in idle times during operation for
encountering wear-out defects. The test is proposed to be done by a built-in self-test module
which executes a cyclic test of all functional units in the RLB. Thereafter, when a functional
block is encountered faulty, a built-in self-repair module configures the multiplexers in the
way that the spare unit replaces the faulty functional unit. Furthermore, for more flexibility,

11

Chapter 2. Related work

in [Koal et al., 2009] it is proposed a regular switching scheme for the inputs and the outputs
instead of multiplexers. With such a switching scheme and more spare units in the RLB,
triple modular redundancy is proposed for safety critical functional units that have hard
real time constraints. Regarding the granularity of a functional unit, it is recommended to
apply redundancy through RLBs in functional units with more than 400 transistors due to
the enormous overhead that redundancy can bring with in units with less granularity. It is
important to note that this approach is dependent on the regularity of the logic and requires
a method for finding such regularity.

2.1.6 Dual-FPGA architecture for autonomous self-repair

An architecture for autonomous self-repair with two FPGAs with a soft microcontroller each
is presented in [Mitra et al., 2000] and [Mitra et al., 2004]. The function of the soft micro-
controller in the first FPGA is to reconfigure the second FPGA and vice versa. For that, it
must be assured that the communication between FPGAs, the bus, the memory that stores
the alternative FPGA configurations, and the reconfiguration circuitry, are reliable. Three
issues in autonomous self-repair are: concurrent error detection, fault location, and recovery.
Since, the dual-FPGA architecture has been developed at the Stanford Center for Reliable
Computing within the Reliability Obtained by Adaptive Reconfiguration project, in short
ROAR, many techniques have been studied to cope with the issues of an autonomous self-
repair. Those techniques are shortly listed with references below organized regarding the type
of fault that they address by the detection, recovery and fault location.

Faults can be transient or permanent. Transient faults in an FPGA can be distinguished
between: transient faults that affect the configuration of the FPGA; and transient faults that
affect the user application data, when memory modules have been implemented using the
Configurable Logic Blocks, in short CLBs, of the FPGA.

For concurrent error detection implemented in hardware, techniques for the detection of
transient faults that affect the configuration of the FPGA are: the synthesis of a circuit with
a parity check code towards a self-checking circuit, please see [Touba and McCluskey, 1997]
and [Zeng et al., 1999]; and the use of design diversity for the design of a redundant circuit for
error detection, please see [Mitra, 2000]. The last technique considers a model of a common
failure mode, which is a failure present by using simple circuit duplication without considering
diversity in the design.

For concurrent error detection implemented in software, in [Oh, 2000] the following tech-
niques that address transient faults in the application memory are presented: Control Flow
Checking by Software Signatures, where signatures are embedded into the program during
compilation and compared with run-time signatures during execution; Error Detection by
Duplicating Instructions, where instructions are duplicated at compile-time; and Error De-
tection by Diverse Data and Duplicated Instructions, where a program is compiled to a new
program with diverse data.

A concurrent detection of permanent faults is a challenge. Some design attempts are the
following: a built-in self-test circuitry in all subcircuits, using a reduced number of built-in
seeds and encoded in the circuitry not in memory, please see [Al-Yamani, 2004]; the use of
patterns stored in memory for testing the functionality of the circuit or subcircuits, please
see an approach at [Li et al., 2008], [Mitra, 2008] and [Li et al., 2010]; the use of self-checking
circuits designed using diverse duplication and organized in a pipeline fashion, where the
outputs of the checkers are taken out through an scan chain towards a controller placed in

12

2.2. Self-repairing approaches inspired by biological systems

the second FPGA, please see [Mitra et al., 2004]; and finally, the reduction of the number of
test configurations for an exhaustive test of defects on the hardware of the FPGA, please see
[Chmelař, 2004b] and [Chmelař, 2004a].

For the recovery of the circuit from transient faults that affect the configuration of the
FPGA, a fault free configuration can be loaded in the FPGA using partial reconfiguration. In
case the transient faults affect the user application data, rollback and roll-forward techniques
can be employed for recovery, see one approach at [Yu, 2001]. However, through partial
reconfiguration, the content of the user application data can be altered. For that, the dirty
bit memory coherence technique is presented in [Huang, 2001] and [Huang and McCluskey,
2001], which associates a bit for flagging a possible threat to a column of CLBs containing a
CLB that has been configured as memory.

For the fault location and recovery of the circuit from a permanent fault, column based
precompiled configurations having an intentionally unused column are used for blind recon-
figuration, where all possible precompiled configuration are loaded one after another until a
configuration that avoids the fault is found, please see [Mitra et al., 2004].

2.2 Self-repairing approaches inspired by biological systems

Some approaches for self-repairing hardware systems are inspired by biological processes.
Some of the most important approaches are introduced below.

2.2.1 Immune system paradigm

It is an approach presented in [Avižienis, 2002], which proposes to insert a subsystem analo-
gous to the immune system of the human body into a hardware system. That subsystem is
called Fault Tolerance Infrastructure, in short FTI, and it follows a set of design principles
which are based on key attributes of the human immune system. Taking those attributes,
the FTI first of all must be software-independent, consist of hardware and firmware ele-
ments only, be distributed, have its own communication links, and have a fully fault-tolerant
implementation. The proposed FTI in [Avižienis, 2006], which principles evolved from the
Test-and-Repair processor STAR presented in [Avizienis et al., 1971], is a system composed
of four types of controllers called nodes, which are implemented using read-only microcode.

The nodes in a FTI are responsible of protecting a computing node C. In particular, the so
called monitor node M receives error messages from the computing node through an adapter
node A and sends appropriate recovery commands. Those recovery commands are stored in
read-only memory in the monitor node. For fault tolerance purposes there are more than one
monitor nodes which are connected through an special bus. A monitor node is connected to
the startup, shutdown and survival node S3. The functions of that node are to control the
power-on, power-off, to provide a non-volatile and radiation hardened storage for system time
and configuration, and to indicate the health status of the computing node. The S3 node has
been separated from the monitor node M to make the node that must survive catastrophic
events as small as possible. The fourth type of node, the decision node D, provides decision
services for N-version software executing on diverse computing nodes. Besides, that node
serves as a communication link between the software implemented in a computing node and
the monitor node.

The FTI can be placed in a hardware component, or it can be employed to protect a board
with several components as shown in detail in [Avižienis, 2000]. Another option is to build a

13

Chapter 2. Related work

hierarchy of FTIs, which requires dedicated communication links among them. Furthermore,
considering that a self-organizing system is composed of agents, the immune system paradigm
is proposed to be also employed implementing an FTI in each of the agents, please refer to
[Avižienis, 2006].

2.2.2 POEtic tissue

In an attempt to classify hardware systems inspired by biology, three inspiring domains of
biology: Phylogenesis, Ontogenesis and Epigenesis, were identified in [Sipper et al., 1997],
resulting in the three axes of the POE model. Phylogenesis is defined as the development or
evolution of a particular group of organisms [Dictionary.com, 2012]. Ontogenesis is defined
as the development of an individual organism from embryo to adult [Dictionary.com, 2012].
Epigenesis is defined as the development of an organism considering the action of the envi-
ronment [Dictionary.com, 2012]. In those three domains, remarkable approaches are: in the
domain of Phylogenesis, Evolvable hardware which is motivated by the concept of evolution
of a group of organisms; in the domain of Ontogenesis, Replicating and regenerating hardware
which most important example is Embryonics that is motivated by the concept of the de-
velopment of a multicellular organism from a mother cell; and in the domain of Epigenesis,
Learning hardware which most important example is Immunotronics that is motivated by the
concept of the development of an organism by learning.

In the project named “Reconfigurable POEtic Tissue” developed by a group of Univer-
sities, please see [École Polytechnique Fédérale de Lausanne et al., 2005], the concept of a
programmable hardware device for assisting on the design of systems that apply the above
mentioned three axes of biological inspiration has been developed. The hardware device con-
sists of units having a three layer structure corresponding to each POE model axis, as seen
in figure 2.5. The first layer, named genotype layer, disposes of a memory where the dif-
ferent functions that a unit in the device can adopt are stored. Such information is named
the genome of the tissue and can be changed by evolution. The second layer, named map-
ping layer, is responsible of selecting which part of the information contained in memory will
determine the operation of the unit. That information serves for configuring the unit in a
similar way to the cellular differentiation and could be helpful at the time of implementing
self-repairing of the hardware device. The third layer, named phenotype layer, contains an
application dependent processing unit surrounded by the communication unit, which is there
for getting stimulus from the environment for the learning process. For a detailed description
of the POEtic tissue and its hardware implementation please see [Tyrell et al., 2003] and
[Moreno et al., 2004]. Each unit in the POEtic tissue is understood as a molecule. However,
for the implementation of self-repairing, several molecules are grouped together to form a cell.
Faults are detected in a cell by duplicating its molecules and comparing their outputs. The
system is recovered using spare cells, please see [Tyrell and Barker, 2006] and [Barker et al.,
2007]. The implementation of a desired application into the proposed hardware requires that
specialized hardware platform ready to use, reason why the evaluation of the performance of
that hardware platform turns impossible.

2.2.3 Evolvable hardware

It is a new way of designing electronic circuits using algorithms inspired by the evolution
of species. As described in [Torresen, 2004], at the very beginning a randomly generated

14

2.2. Self-repairing approaches inspired by biological systems

EPIGENESIS

Learning hardware

PHYLOGENESIS

ONTOGENESIS

Evolvable hardware

Replicating and regenerating hardware

Phenotype layer

Mapping layer

Genotype layer

Figure 2.5: POEtic layers (abstracted from [Tyrell et al., 2003] c©2006 Springer)

population of circuits is created. All generated circuits are evaluated according to the provided
specification which consists of input/output vectors only. For that evaluation, the circuits can
be simulated or implemented in hardware. In case the circuits are implemented in hardware,
FPGAs are very useful. That is a fact that allows to handle with the bitstream for configuring
the FPGA as a circuit in the population. To each circuit a fitness number that reflects how
well it performs according to the given specification is assigned. The population evolves in
several iterations using crossover and mutation. Crossover combines parts of the two best
circuits. Mutation changes some parts of the best circuits randomly. At the end the best
circuit is given as a result. The limitation of this approach for designing circuits is the
bitstream length.

The evolution of a circuit could also be executed online, but reconfiguration times are a
limiting factor. An approach that uses evolution for self-repairing a part of a combinational
circuit is shown in [Garvie and Thompson, 2004]. There, Triple Modular Redundancy, Scrub-
bing and Jiggling are combined together. Triple Modular Redundancy is used for avoiding
shutting down the system during repairing. By using Scrubbing, a module, of the three
available modules, is reconfigured when its output is different from the other two redundant
modules. When that mechanism fails to repair the module, Jiggling is triggered. By using
Jiggling, the two healthy modules maintain the circuit operating by driving the majority voter
in the TMR, while a 1+1 evolution in the faulty module takes place. That evolutionary strat-
egy considers one elite circuit and one mutated circuit, therefore the name. If the mutated
circuit is superior to the other one, the mutated circuit replaces the elite circuit, otherwise
another mutant circuit is created. TMR and Scrubbing are considered for repairing transient
faults, and Jiggling is considered for repairing permanent faults. It is to note that Jiggling
prevents the system from reacting against transient faults while repairing the failed module
by evolution. In this approach, fault recognition is executed by using TMR, no redundancy
of modules is added for repairing besides Triple Modular Redundancy, no saved bitstreams
are necessary for reconfiguring a module, and the architecture of the TMR is enhanced at the
voter by a repairer circuit which is aimed to be smaller than using redundant modules for
repairing.

15

Chapter 2. Related work

Faulty and transparent cell

Column of spare cells

Working cells

Figure 2.6: Self-repairing in an array with spare components (abtracted from [Tempesti et al.,
1997] c©1997 Elsevier)

2.2.4 Embryonics

The term derives from the words embryology and electronics and has been coined by the
Laboratoire de Systemès Logiques at the Ècole Polytechnique Fèdèrale de Lausanne, please see
[Marchal et al., 1996]. Embryonics fusions concepts from biology, cellular automata and Field
Programmable Gate Arrays and refers specifically to a two dimensional array of cells, where
each cell contains a processing element and a memory. The processing element implements
a particular logic function, which is determined by a configuration register in the memory.
The configuration register is selected by the coordinates of the cell. Each cell contains the
configuration registers of all cells in the same column only and not of all cells in the array
for saving memory space. One extra register contains a so called transparent configuration
which is loaded when the cell is reported faulty. With a faulty cell configured as transparent,
the routing is done around that cell as shown in figure 2.6. Fault detection in a cell is
performed by a test module which compares the outputs of the two identical modules that
implement the function of the cell. An implementation of a cell using multiplexers is presented
in [Tempesti et al., 1997].

The embryonics project proposes also a model inspired by biology for organizing hard-
ware which consists in four hierarchical levels. In that hierarchy the basic element in the
first level is a molecule, which is the module defined as a cell in previous publications,
e.g., [Ortega-Sanchez et al., 2000] and [Tempesti et al., 1997]. In the second level, a set of
molecules forms a cell, which is basically a processor conceived as a set of smaller functional
blocks. In the third level, a set of cells forms an organism, which is conceived as a multipro-
cessor system. The fourth level is seen as a set of organisms that gives rise to a population,
which has not been clearly defined in hardware terms. In conclusion, the embryonics approach
proposes a new FPGA composed of an array of configurable logic blocks which are conceived
as molecules or basic elements of the four-level hierarchy.

2.2.5 Immunotronics

This term comes from immunological electronics and has been coined by the Intelligent Sys-
tems Research Group at the University of York. Immunotronics deals with the design of a
fault recognition module for a hardware digital system using learning techniques inspired by

16

2.2. Self-repairing approaches inspired by biological systems

the immune system. Considering that many digital systems can be represented by a single
or a set of finite state machines, in [Bradley, 2002] a single finite state machine with a fault
detection module is presented. That fault detection module considers data vectors formed by
concatenating inputs|previous-state|current-state. The recognition of faults is based on the
so called nonself recognition. The nonself recognition consists on a partial matching of the
current data vector inputs|previous-state|current-state obtained from the state machine with
the so called tolerance condition vectors saved in memory. The use of partial matching allows
to reduce the number of tolerance condition vectors saved in memory. A content addressable
memory makes feasible to search in parallel all memory locations in a single clock cycle, ac-
cessing the device by using the data rather than by using the address. The tolerance condition
vectors are generated offline by using a set of self vectors S which represent all possible vec-
tors inputs|previous-state|current-state in the error-free state machine. Randomly generated
tolerance condition vectors which partially match in more than c contiguous bits are rejected
and all other are saved as the vectors recognizers of faults. That process is named the negative
selection algorithm which is inspired by the maturation of new immune cells in the human
immune system. This approach supposes that the state machine is completely observable
since the recognition is based in the input|previous-state|current-state vector. Other classical
methods for fault detection of sequential circuits use an ordered sequence of input|output vec-
tors considering that the state machine is not completely observable. A 100% fault recognition
is guaranteed when a total matching is used and all tolerance condition vectors are stored in
memory, which requires a huge memory for big circuits, reason why the fault recognition is
traded off with the memory space.

An attempt to add self-repairing to Immunotronics has lead to a combination between
Immunotronics and Embryonics as presented in [Bradley et al., 2000]. In figure 2.7 a second
layer of immune cells can be observed. That network of immune cells replaces the fault
detection mechanism that the embryonic cell had and employs the method of fault detection
introduced by Immunotronics. Each immune cell is able to monitor all adjacent cells through
the trans-layer connections. Besides, the immune cells are able to communicate among each
other through the lymphatic connections. That scheme allows to have a distributed fault
detection avoiding a single point of failure in the fault detection elements. A final hardware
implementation of this approach has not been presented, however, the idea of this approach
has been applied to the POEtic tissue which is a project executed by the same Universities
that worked on Immunotronics and Embryonics.

2.2.6 e-DNA

e-DNA architecture is the name given at the Technical University of Denmark and presented
in [Boesen et al., 2011] to a network of chip arranged as an array of homogeneous processing
units named eCells. Each eCell can communicate through its network adapter with all its eight
adjacent neighbors in the network. Each eCell has a RAM memory, a microprocessor and an
arithmetic logic unit. The RAM memory in each eCell contains the whole eDNA program that
is executed by the eCells and specified by the programmer. The eDNA program is written in
the eDNA language, which has control structures like if-then-else and explicit control for par-
allelism. The microprocessor in the eCell configures the arithmetic logic unit to perform the
function described in their corresponding gene, which is the part of the eDNA program corre-
sponding to that eCell. The configuration program that runs in the microprocessor is named
ribosomal DNA and is executed in the microprocessors of all eCells. The eDNA architecture

17

Chapter 2. Related work

Column of spare cells

Working cells Immune cell

Trans−layer connection Lymphatic connection

Figure 2.7: Immunotronics plus Embryonics concept (abstracted from [Bradley et al., 2000]
c©2000 IEEE)

implements self-programming rather as self-organization by the autonomous determination
of each eCell of which part of the eDNA to execute, please see [Boesen and Madsen, 2009].
Furthermore, self-repairing is also supported by the eDNA architecture, which is triggered in
a faulty eCell after fault recognition. Fault recognition is implemented using time redundancy
by a sort of double computation, as stated in [Boesen et al., 2011]. Self-repairing firstly con-
sists on finding the nearest spare eCell, then writing the coordinate of the spare eCell as the
coordinate of the faulty eCell in the routing table, and afterwards broadcasting a message to
all eCells instructing to update the new coordinates of the faulty eCell in the eDNA program
saved in RAM memory. This approach is being implemented in hardware, but results about
the implementation of the self-repairing procedure in the hardware platform are not available
yet.

2.2.7 Autonomic System on Chip

It is a project that tries to implement the aspects of Autonomic Computing: self-configuration,
self-optimization and self-healing, given in [Kephard and Chess, 2003], which are present in a
self-governing system, to a System on Chip. This project has been developed in the context
of the priority program 1183 Organic Computing funded by the German Research Founda-
tion (DFG) at the Technical University of Munich. That priority program aimed to develop
technical systems with lifelike properties including all self-X properties which they coined as
organic properties. The proposed autonomic SoC architecture in [Lipsa et al., 2005] consists
of two logical layers: the functional layer which contains Intellectual Property components
like CPUs, memories, on-chip buses, etc, named functional elements, in short FEs; and the
autonomous layer which consists of autonomic elements, in short AEs, together with its in-
terconnecting structure, please see figure 2.8. An autonomic element observes the state of its
corresponding functional element through a monitor. An evaluator in the autonomic element
assesses the state of the functional element. And an actuator in the autonomic element initi-
ates, when necessary, a corrective action. The evaluator, as given in [Zeppenfeld et al., 2010],
applies a reward-based reinforcement learning technique using a Learning Classifier Table
that helps on judging the effectiveness of an specific corrective action comparing the state of
the system before and after the action has been applied. The monitors are intended to collect

18

2.2. Self-repairing approaches inspired by biological systems

AUTONOMOUS LAYER

Autonomic elements (each having: Monitor, Evaluator, Actuator)

FUNCTIONAL LAYER

Intellectual Property components (such as RAM, CPU, etc)

Figure 2.8: Layers of the Autonomic System on Chip (abstracted from [Bouajila et al., 2006]
c©2006 IFIP)

data for computing the error rate of the function elements. That information should serve for
adjusting frequency, voltage, etc in order to correct the malfunction of the functional elements
due to environmental variations, please see [Bouajila et al., 2006]. Self-repairing is introduced
at the processor level in a processor pipeline architecture using a micro-rollback strategy with
an error detection mechanism able to detect multiple transient and timing errors. The pro-
cessor pipeline architecture uses shadow registers and comparators at the inter-stage registers
of the datapath and a history register for saving the data of the inter-stage registers enabling
recomputation for error correction. Error detection and correction can be possible in two
clock cycles, please see [Bouajila et al., 2011], [Zeppenfeld et al., 2010] and [Bouajila et al.,
2006]. This approach addresses a specific architecture of processor considering transient and
timing errors. The autonomic layer seems to help on long term actions which do not con-
tribute directly on the self-repairing of the functional units. The hardware implementation
of the integration of the autonomic layer and the functional layer has not been presented and
evaluated yet.

2.2.8 Immunocomputing

It is a term coined by Alexander Tarakanov for a computational approach that is inspired
by the principles of information processing of proteins and immune networks. A protein is
considered as the basic component in an immune network because cells in general commu-
nicate each other through the binding of ligands and a receptors, which are proteins that
are placed on their surfaces. In his book Immunocomputing: Principles and Applications
[Tarakanov et al., 2003], Alexander Tarakanov presents: a mathematical model of a protein
in three dimensions using quaternions; the computation of the binding energy between two
proteins using a bilinear form; and the concept of a chip with a memory organized in layers
P, M, R, w and C, and processing units. The memory stores real values in a floating point
format. The processing units compute the bilinear form wij = P T

ijMRij using the values of
memory elements of layers P, R and M and put the result on elements of layer w. The layer
C serves for changing the values of the elements in the layer R, which triggers recomputation
of the values of element on layer w. The mathematical description of this approach is hard
to understand and is confusing in some places. Nevertheless, the so coined formal immune
network, in short FIN, has been better explained in further publications such as [Tarakanov,
2008] and applied to pattern recognition. A formal immune network is based on the mathe-
matical modeling of the binding energy among proteins and is basically a transformation of
multidimensional pattern vectors to vectors with reduced dimensions, which allows to per-

19

Chapter 2. Related work

form a faster pattern recognition at the same time saving memory for storing the transformed
pattern vectors.

2.3 Self-repairing in FPGAs

There exist some approaches of self-repairing which are specific for FPGAs. Some of the most
relevant are described briefly below.

2.3.1 Roving STAR

In [Abramovici et al., 1999], [Emmert et al., 2000] and [Abramovici et al., 2001] a method for
testing an FPGA is presented, where the configurable logic blocks and interconnects of the
entire chip are tested by roving one horizontal and one vertical self-testing area, as shown in
figure 2.9. This method uses partial reconfiguration for moving the operating areas and leaving
the self-testing area, in short STAR, available for being tested. The testing, diagnosis, partial
reconfiguration, and repairing using partially defective and spare logic and routing resources
for bypassing faults, is executed by a controller implemented in an external microprocessor
which accesses the FPGA using the boundary-scan interface. This method uses off-line testing
methods and does not need to stop the operation of the system for fault recovery, since it
works on an inoperative area. But, it is to note that for reordering the operating area in
order to make place for the STAR requires partial reconfiguration, which indeed stops parts
of the system running on the FPGA. The implementation of the controller is not presented,
but looks quite complex for being implemented. Furthermore, the constant reconfiguration
of the FPGA for testing purposes can reduce the life time of the chip.

FPGA

Figure 2.9: FPGA with roving STAR (abstracted from [Abramovici et al., 2001] c©2001 IEEE)

2.3.2 TMR + RoRA

A single event upset, in short SEU, is a fault caused by radiation that produces a bit flip in a
bit register. Since a single event upset in the configuration memory of non radiation hardened
SRAM-based FPGA can produce more than one errors in a circuit, triple modular redundancy
can not guarantee masking a SEU fault when the errors caused by a single SEU affect two
redundant modules at the same time. That problem has been identified and reported in
[Bellato et al., 2004] stressing that the FPGA interconnection resources are more sensitive

20

2.4. Self-repairing introduced at the hardware description

to SEUs in comparison to the logic blocks. Therefore, in [Reorda et al., 2005b] a tool for
analyzing the SEU effects on placed and routed FPGA design is presented. That tool verifies
that the voter and the three replicated modules are placed in dedicated FPGA areas, if that
is not the case, a report of the resources and the configuration memory bits that violate that
rule is created. That report is used as input by the RoRA tool, presented in [Reorda et al.,
2005a], which executes placing and routing of the reported critical areas again avoiding that
a single configuration bit controls two or more routing segments. Since the RoRA tool,
which name comes from Reliability-oriented place and Route Algorithm, is computationally
expensive and less efficient than commercial tools, it can not be used for placing and routing
the whole design. Therefore, in [Sterpone and Violante, 2005] it is proposed to integrate the
analyzer and RoRA tools to the FPGA design flow of commercial tools like the ISE from
Xilinx, as shown in figure 2.10. In that flow, the TMR tool replicates the circuit three times
and adds a voter according to the TMR architecture. The analyzer and RoRA tools work on
an already placed and routed design. Although triple modular redundancy can be inserted
automatically with the Xilinx TMRTool in designs to be implemented in Xilinx FPGAs, the
Analyzer and RoRA tools are not commercial standard tools yet.

TMR Analyzer RORA router
ISE

SYNTHESIS PLACE & ROUTE
ISE

Figure 2.10: New design flow using TMR and RoRA (abstracted from [Sterpone and Violante,
2005] c©2005 IEEE)

2.4 Self-repairing introduced at the hardware description

One approach has been found, that intends to automatically insert structures in the hardware
description at the register transfer level to attain fault tolerance. That approach is described
briefly below.

2.4.1 Automatic insertion of fault tolerant structures in the RTL description

In [Entrena et al., 2001] and [López-Ongil et al., 2007] ideas regarding a library-based tool for
inserting hardware and information redundancy in designs described at the register transfer
level is given. As the resulting fault tolerant design is also described at the RTL level, commer-
cial tools can be used for synthesizing it. This work gives also some initial ideas for inserting
pre-prepared template code lines for fault-repairing in the hardware design description.

2.5 Comments

This section intends to make a comparison of the approaches described in the prior subsec-
tions considering aspects such as hardware level of abstraction, hardware platform for the
implementation, type of addressed fault, error detection technique, and recovery mechanism.

2.5.1 Hardware level of abstraction

Regarding the hardware level of abstraction, self-repairing can be implemented at different
levels. Seeing from top to bottom, it can be implemented in a network by assigning the tasks of

21

Chapter 2. Related work

the failed node to other nodes, such as the approach explained in the subsection “Distributed
self-repairing of a network of FPGA nodes” of subsection 2.1. It can also be implemented at
the board level with the help of an infrastructure for self-repairing as the approach explained
in the subsection “Immune system paradigm” of subsection 2.2. In a single chip, in which a
system on chip1 is implemented, as proposed in [Moreno et al., 1998], which unfortunately
uses a non-commercial available reconfigurable system on chip, reason why it has not been
introduced in last subsections. In a network on chip2, as the approach introduced in subsection
“e-DNA” of subsection 2.2. A processing unit is composed of a datapath and a control
unit. An approach for self-repairing a pipelined datapath of a processing unit using shadow
registers has been introduced in subsection “Autonomic System on Chip” of subsection 2.2.
A control unit can be implemented as a finite state machine like any sequential digital circuit
is implemented. An approach of error recognition in a state machine using a method inspired
by the immune system has been introduced in the subsection “Immunotronics” of subsection
2.2. Processing units, memories, input/output modules or specialized modules are usually
described using hardware description languages, such as VHDL, which describe a digital
circuit at the register transfer level3. An approach for inserting error recognition and recovery
RTL structures on the description of a digital circuit has been shown in subsection 2.4.1. Two
approaches of self-repairing of combinational circuits using spare modules and multiplexers or
switches have been introduced in subsections “Small-scale reconfigurability for fault detection,
diagnosis and recovery” and “Logic self-repair” of subsection 2.1. Finally, self-repairing at
the transistor level has been proposed in [Kothe and Vierhaus, 2006] however not introduced
in last subsections.

2.5.2 Hardware platform for the implementation

Systems on chip or digital circuits described at the register transfer level can be synthe-
sized, placed, routed and downloaded into a field programmable gate array4. Most FPGAs
are reconfigurable and some of them are able to be reconfigured partially. Total and par-
tial reconfiguration can be used for fault recovery, therefore FPGAs are attractive in the
design and implementation of self-repairing hardware systems as can be seen in subsections
“Dynamic partial reconfiguration for testing and repair”, “Distributed self-repairing of a net-
work of FPGA nodes”, “Dual-FPGA architecture for autonomous self-repair” and “Evolvable
hardware”. Other approaches such as the ones shown in subsections “POEtic tissue” and
“Embryonics” propose the manufacturing of a new kind of field programmable gate array,
which makes those self-repairing approaches hard to be implemented or be used in the stan-
dard circuit design flow.

1A system on chip, in short SoC, integrates many modules that are usually seen as single chips on a board,
such as processing units, memory modules, input/output modules, etc, in a single chip.

2A network on chip, in short NoC, is a paradigm for implementing the intermodule communication in a
system on chip using switches that relay messages from a source module to the destination module.

3The register transfer level, in short RTL, is the level at which a circuit is described considering the flow and
the logical operations performed on signals between hardware registers. Hardware registers are modules
that store a determined number of bits of information, which can be read or overwritten.

4A field programmable gate array, in short FPGA, is an integrated circuit designed with programmable logic
in order to be configured to implement any logic function after the integrated circuit has been manufactured.

22

2.5. Comments

2.5.3 Type of addressed fault

An FPGA can store its configuration in SRAM5, flash6 or antifuse7 memory, which all are
fabricated with complementary metal-oxide-semiconductor technology, in short CMOS.

SRAM-based FPGAs, such as the FPGAs from Xilinx, are prone to Singular Event Upsets,
which are bit flips caused by radiation. A bit flip in a data register in the FPGA can be
perceived as a transient fault, but a bit flip in a configuration register is perceived as a
permanent fault, since it modifies the logic function implemented in the FPGA. An approach
against SEUs affecting the configuration memory is the so called scrubbing, which consists
on the total or partial reloading of the configuration memory with the correct bitstream, as
in the approaches presented in subsections “Dynamic partial reconfiguration for testing and
repair”, “Distributed self-repairing of a network of FPGA nodes”, “Dual-FPGA architecture
for autonomous self-repair” and “TMR + RoRA”. As can be seen, many approaches have
appeared to go against SEU effects, although there are commercial radiation hardened FPGA
chips. The problem is that those chips are very expensive and they do not have the memory
capacity and characteristics that new in mass produced FPGA chips have.

While flash-based FPGAs, such as the FPGAs from Actel, are not prone to radiation, they
are fabricated with CMOS technology. Chips fabricated with CMOS technology can fail due
to out of range temperatures, pressure, aging, or electromagnetic interference. Furthermore,
the constant decreasing of die size in a silicon wafer is making chips prone to power fluctu-
ations, or to such low levels of radiation as the presented on the surface of the earth. Such
permanent faults in FPGAs are addressed by the approaches presented in subsections “Evolv-
able hardware”, “Roving STAR”, “Dual-FPGA architecture for autonomous self-repair” and
“Distributed self-repairing of a network of FPGA nodes”. Permanent faults in hardware in
general has been also addressed by the approaches in subsections “Multifunctional units”,
“Small-scale reconfigurability for fault detection, diagnosis and recovery”, “Logic self-repair”,
“Immune system paradigm”, “POEtic tissue”, “Embryonics” and “e-DNA”.

Faults which has been introduced as transient or permanent according to their persistence,
can be modeled as stuck-at, stuck-open, bridge, etc. Most approaches consider stuck-at faults,
however the approach presented in the subsection “TMR + RoRA” addresses bridge faults.
According to [Avižienis et al., 2004], timing failures can also be present in a system and be
modeled as a delay, problem which has been addressed in the subsection “Autonomic System
on Chip” and in [Wong et al., 2007] which has not been introduced in last subsections.

A fault is the cause of a failure and a failure can be recognized through the detection of
an error into the system, please see [Avižienis et al., 2004]. A self-repairing system requires
error detection and recovery mechanisms.

2.5.4 Error detection technique

Errors can be detected offline when the circuit is not operating, or online at the start of the
operation of the circuit, concurrently to the operation of the circuit, when the circuit is idle,
or at scheduled slots of time such as the approach in [Al-Asaad and Shringi, 2000]. In the

5SRAM means static random-access memory. It is a volatile memory that does not require refreshing during
operation, in comparison with dynamic random-access memory, but it still requires to be powered for
remembering data.

6Flash memory is a nonvolatile memory which can be electrically erased or reprogrammed.
7An antifuse is a device that has initially a high resistance and after programmed the contrary, it becomes

into an electrically conductive path. An antifuse is one time programmable.

23

Chapter 2. Related work

last case, the preemption of the circuit can happen triggered by time or by an event. Of-
fline error detection is executed in the approach presented in subsection “Roving STAR” for
detecting errors in an FPGA, however only a part of the FPGA is not operating and being
tested. Online error detection methods require some kind of redundancy in the design such
as: space redundancy, e.g., duplication with comparison or self-checking circuits which are
also named concurrent checking hardware; time redundancy, e.g., double execution; or infor-
mation redundancy, e.g., error detecting and correcting codes. Duplication with comparison
has been proposed on the approaches of subsections “Small-scale reconfigurability for fault
detection, diagnosis and recovery” and “Embryonics”. Self-checking state machines or self-
checking circuits using diverse duplication and organized in a pipelined fashion are proposed
and introduced in subsection “Dual-FPGA architecture for autonomous self-repair”, however
they serve for detecting transient errors. Double execution is proposed in the approach of
subsection “Dynamic partial reconfiguration for testing and repair” using a so called dynamic
TMR. Error detecting and correcting codes such as the Hamming encoding can be used for
coding the states of a state machine for detecting and correcting the effect of a SEU in a state
register, as proposed in [Burke and Taft, 2004]. That technique is offered by some synthesis
tools for FPGA designs such as the one of Synopsis, please see [Sutton, 2012].

Error detection should be executed concurrently, or in other case fast enough in order to
not affect the operation of the circuit. Most of the approaches do not go in detail in the
error detection mechanism, although it is a key part of a self-repairing system. In some of the
approaches such as the ones in subsections “Dynamic partial reconfiguration for testing and
repair” and “Distributed self-repairing of a network of FPGA nodes”, a Built-In Self-Test
technique is proposed for error detection. However, BIST requires to stop the circuit for
executing error recognition, fact which is not realized in those approaches. Test patterns or
seeds for the decompression of test patterns in case of having a LFSR, for being used by the
BIST circuitry can be applied to the system when it is not operating, or they can be stored
in memory, which is not usual because of the huge amount of data which should be stored.
In [Li et al., 2008] - subsection “Dual-FPGA architecture for autonomous self-repair” and in
[Avižienis, 2000] - subsection “Immune system paradigm” it is mentioned the use of a set of test
patterns stored in memory for testing the functionality of cores or nodes, respectively. But, no
details about the error detection, consequently no information about the size of the stored data
set, which determines how long error detection can take and the memory needed, is given.
In the approach introduced in subsection “Immunotronics”, a set of the so called tolerant
condition vectors is stored in memory for detecting errors on a state machine concurrently
to its operation, however it demands that the states of the state machine are observable.
The so called formal immune network introduced in subsection “Immunocomputing” reduces
the dimensions of multidimensional vectors, however those are vectors with real elements
represented in floating point format. Testing vectors of digital circuits have usually elements
with binary values 0 or 1. Nevertheless, testing vectors of hardware cores or systems with
continuous signal inputs and outputs, can profit of that reduction method in order to save
memory.

2.5.5 Recovery mechanism

System recovery can be achieved by error handling and fault handling. Error handling con-
sists on bringing the system to an error free state by looking back for a saved prior error-free
state, process named rollback, or by copying data from a redundant system and recomputing

24

2.6. Bibliography

the output again, process named roll-forward. Those methods are useful for recovering from
transient faults as applied in the approaches presented in subsections “Dual-FPGA architec-
ture for autonomous self-repair” and “Autonomic System on Chip”. Fault handling tries to
avoid the error to happen again going against the cause of a failure, that is removing the fault
by the following subsequent processes: fault diagnosis, fault isolation, system reconfigura-
tion and system reinitialization. Fault diagnosis is very hard to achieve concurrently because
is time demanding and difficult, nevertheless, the approach presented in subsection “Dual-
FPGA architecture for autonomous self-repair” proposes blind reconfiguration using column
based precompiled configurations for finding out which column partition of the FPGA is
faulty. The approach presented in subsection “Roving STAR” executes offline fault diagnosis
with the help of an external controller circuit. Fault isolation is executed by the approaches
presented in subsections “Embryonics” and “e-DNA” at the cell level of partitioning. System
reconfiguration is applied in most approaches that use as hardware platform an FPGA, such
as those in subsections “Dynamic partial reconfiguration for testing and repair”, “Distributed
self-repairing of a network of FPGA nodes”, “Dual-FPGA architecture for autonomous self-
repair”, “Evolvable hardware” and “Roving STAR”. Triple modular redundancy, in short
TMR, is a technique that uses redundancy for masking faults, and has been used in the ap-
proaches “TMR + RoRA” and “Evolvable hardware”. However, the last approach considers
the repairing of a faulty module of the TMR by using a technique inspired by evolution. Sys-
tem reconfiguration can also be applied configuring a redundant module to execute the task
of the faulty module by means of multiplexers or switches, such is the case of the approaches
presented in subsections “Multifunctional units”, “Small-scale reconfigurability for fault de-
tection, diagnosis and recovery”, “Distributed self-repairing of a network of FPGA nodes”,
“Logic self-repair”, “Immune system paradigm”, “Embryonics” and “e-DNA”. Thereby, the
number of redundant modules determine how many faults can be repaired.

2.6 Bibliography

Abramovici, M., Emmert, J. M., and Stroud, C. E. (2001). Roving STARs: An Integrated
Approach to On-Line Testing, Diagnosis and Fault Tolerance for FPGAs in Adaptive Com-
puting Systems. In 3rd NASA/DoD Workshop on Evolvable Hardware, pages 73–92. IEEE
Computer Society.

Abramovici, M., Stroud, C., Hamilton, C., Wijesuriya, S., and Verma, V. (1999). Using
Roving STARs for On-Line Testing and Diagnosis of FPGAs in Fault-Tolerant Applications.
In International Test Conference, pages 973–982.

Akoglu, A., Sreeramareddy, A., and Josiah, J. G. (2009). FPGA based distributed self healing
architecture for reusable systems. Cluster Computing, 12(3):269–284. Springer.

Al-Asaad, H. and Shringi, M. (2000). On-line built-in self-test for operational faults. In
AUTOTESTCON 2000, pages 168–174.

Al-Yamani, A. A. (2004). Deterministic Built-In Self Test for Digital Circuits. PhD thesis,
Stanford University.

Avižienis, A. (2000). A Fault Tolerance Infrastructure for Dependable Computing with High-
Performance COTS Components. In International Conference on Dependable Systems and
Networks - DSN 2000, pages 496–500. IEEE.

25

Bibliography

Avižienis, A. (2002). An Immune System Paradigm for the Design of Fault Tolerant Systems.
In 4th European Dependable Computing Conference on Dependable Computing - EDCC 4,
Lecture Notes in Computer Science, pages 81–83. Springer.

Avižienis, A. (2006). An Immune System Paradigm for the Assurance of Dependability of
Collaborative Self-organizing Systems. In 19th World Computer Congress, TC 10: 1st
International Conference on Biologically Inspired Computing, volume 216 of IFIP Interna-
tional Federation for Information Processing, pages 1–6. Springer.

Avižienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. (2004). Basic Concepts and
Taxonomy of Dependable and Secure Computing. Transactions on Dependable and Secure
Computing, 1(1):11–33. IEEE.

Avizienis, A., Gilley, G. C., Mathur, F. P., Rennels, D. A., Rohr, J. A., and Rubin, D. K.
(1971). The STAR (Self-Testing and Self-Repairing) Computer: An Investigation of the
Theory and Practice of Fault-Tolerant Computer Design. Transactions on Computers,
20(11):1312–1321. IEEE.

Barker, W., Halliday, D. M., Thoma, Y., Sanchez, E., Tempesti, G., and Tyrell, A. M. (2007).
Fault Tolerance Using Dynamic Reconfiguration on the POEtic Tissue. Transactions on
Evolutionary Computation, 11(5):666–684. IEEE.

Bellato, M., Bernardi, P., Bortolato, D., Candelori, A., Ceschia, M., Paccagnella, A., Re-
baudengo, M., Reorda, M. S., Violante, M., and Zambolin, P. (2004). Evaluating the
effects of SEUs affecting the configuration memory of an SRAM-based FPGA. In Design,
Automation and Test in Europe Conference and Exhibition, volume 1, pages 584–589.

Boesen, M. R. and Madsen, J. (2009). eDNA: A Bio-Inspired Reconfigurable Hardware Cell
Architecture Supporting Self-organisation and Self-healing. In NASA/ESA Conference on
Adaptive Hardware and Systems - AHS 2009, pages 147–154.

Boesen, M. R., Madsen, J., and Keymeulen, D. (2011). Autonomous Dynamically Self-
organizing and Self-healing Distributed Hardware Architecture the eDNA Concept. In
Aerospace Conference, pages 1–13. IEEE.

Bouajila, A., Zeppenfeld, J., Stechele, W., and Herkersdorf, A. (2011). An Architecture and
an FPGA Prototype of a Reliable Processor Pipeline Towards Multiple Soft- and Timing
Errors. In 14th International Symposium on Design and Diagnostics of Electronic Circuits
and Systems - DDECS 2011, pages 225 – 230. IEEE.

Bouajila, A., Zeppenfeld, J., Stechele, W., Herkersdorf, A., Bernauer, A., Bringmann, O., and
Rosenstiel, W. (2006). Organic Computing at the System on Chip Level. In International
Conference on Very Large Scale Integration, pages 338–341. IFIP.

Bradley, D., Ortega-Sanchez, C., and Tyrell, A. (2000). Embryonics + Immunotronics: A
Bio-Inspired Approach to Fault Tolerance. In 2nd NASA/DoD Workshop on Evolvable
Hardware, pages 215–223. IEEE Computer Society.

Bradley, D. W. (2002). Immunotronics - Novel Finite-State-Machine architectures with built-
in self-test using self-nonself differentiation. Transactions on Evolutionary Computation,
6(3):227–238. IEEE.

26

Bibliography

Bradley, D. W. and Tyrell, A. M. (2001). The Architecture for a Hardware Immune System.
In 3rd NASA/DoD Workshop on Evolvable Hardware, pages 193–200. IEEE Computer
Society.

Burke, G. and Taft, S. (2004). Fault Tolerant State Machines. Technical Report
D160/MALPD 2004, Jet Propulsion Laboratory, California Institute of Technology.

Chmelař, E. (2004a). Minimizing the Number of Test Configurations for FPGAs. In Interna-
tional Conference on Computer Aided Design - ICCAD 2004, pages 899–902. IEEE/ACM.

Chmelař, E. (2004b). The Test and Diagnosis of FPGAs. PhD thesis, Stanford University.

Dictionary.com, L. (2012). English dictionary. dictionary.reference.com.

École Polytechnique Fédérale de Lausanne, University of York, The University of Glasgow,
Université de Lausanne, and Universitat Politécnica de Catalunya (1.09.2001 - 31.1.2005).
Reconfigurable POEtic Tissue (POETIC) Project. http://cordis.europa.eu.

Emmert, J. M., Stroud, C. E., Skaggs, B., and Abramovici, M. (2000). Dynamic Fault
Tolerance in FPGAs via Partial Reconfiguration. In Symposium on Field-Programmable
Custom Computing Machines, pages 165–174. IEEE.

Entrena, L., López, C., and Oĺıas, E. (2001). Automatic Insertion of Fault-Tolerant Structures
at the RT Level. In 7th International On-Line Testing Workshop, pages 183–200. 48-50.

Garvie, M. and Thompson, A. (2004). Scrubbing away transients and Jiggling around the
permanent: Long survival of FPGA systems through evolutionary self-repair. In 10th
International On-Line Testing Symposium - IOLTS 2004, pages 155–160. IEEE.

Huang, W.-J. and McCluskey, E. J. (2001). A Memory Coherence Technique for Online
Transient Error Recovery of FPGA Configurations. In International Symposium on Field-
Programmable Gate Arrays - FPGA 2001. ACM/SIGDA.

Huang, W.-J. R. (2001). Dependable Computing Techniques for Reconfigurable Hardware.
PhD thesis, Stanford University.

Kephard, J. O. and Chess, D. M. (2003). The Vision of Autonomic Computing. Computer,
36(1):41–50. IEEE Computer Society.

Koal, T., Scheit, D., Schölzel, M., and Vierhaus, H. T. (2011). On the Feasibility of Built-In
Self Repair for Logic Circuits. In International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems - DFT 2011, pages 316–324. IEEE.

Koal, T., Scheit, D., and Vierhaus, H. T. (2009). A Concept for Logic Self Repair. In 12th
Euromicro Conference on Digital System Design, Architectures, Methods and Tools - DSD
2009, pages 621–624.

Koal, T., Ulbricht, M., and Vierhaus, H. T. (2012). Combining On-Line Fault Detection
and Logic Self Repair. In 15th International Symposium on Design and Diagnostics of
Electronic Circuits and Systems - DDECS 2012, pages 288–293. IEEE.

Koal, T. and Vierhaus, H. T. (2008). Basic Architecture for Logic Self Repair. In 14th
International On-Line Testing Symposium - IOLTS 2008, pages 177–178. IEEE.

27

Bibliography

Kochte, M. A., Zoellin, C. G., and Wunderlich, H.-J. (2009). Concurrent Self-Test with
Partially Specified Patterns For Low Test Latency and Overhead. In 14th European Test
Symposium, pages 53–58. IEEE Computer Society.

Kothe, R. and Vierhaus, H. T. (2006). Embedded Self Repair by Transistor and Gate Level
Reconfiguration. In Conference on Design and Diagnostics of Electronic Circuits and Sys-
tems - DDECS 2006, pages 208–213. IEEE.

Kumar, V. V. and Lach, J. (2003). Fine-Grained Self-Healing Hardware for Large-Scale
Autonomic Systems. In 14th International Workshop on Database and Expert Systems
Applications, pages 707–712. IEEE Computer Society.

Li, Y., Makar, S., and Mitra, S. (2008). CASP: Concurrent Autonomous Chip Self-Test
Using Stored Test Patterns. In Design, Automation and Test in Europe - DATE 2008,
pages 885–890.

Li, Y., Mutlu, O., Gardner, D. S., and Mitra, S. (2010). Concurrent Autonomous Self-Test
for Uncore Components in System-on-Chips. In 28th VLSI Test Symposium - VTS 2010,
pages 232–237. IEEE.

Lipsa, G., Herkersdorf, A., Rosenstiel, W., Bringmann, O., and Stechele, W. (2005). To-
wards a Framework and a Design Methodology for Autonomic SoC. In 2nd International
Conference on Autonomic Computing - ICAC 2005, pages 391–392.

López-Ongil, C., Entrena, L., Garćıa-Valderas, M., and Portela-Garćıa, M. (2007). Automatic
Tools for Design Hardening. In Velazco, R., Fouillat, P., and Reis, R., editors, Radiation
Effects on Embedded Systems, pages 183–200. Springer.

Marchal, P., Nussbaum, P., Piguet, C., Durand, S., Mange, D., Sanchez, E., Stauffer, A.,
and Tempesti, G. (1996). Embryonics: The Birth of Synthetic Life. In Sanchez, E. and
Tomassini, M., editors, Towards Evolvable Hardware, volume 1062 of Lecture Notes in
Computer Science, pages 616–196. Springer.

Marinos, P. N. (1969). The Organization of a Self-Repairing System from Multifunctional
Units. Proceedings of the IEEE, 57(7):1320.

Mitra, S. (2000). Diversity Techniques For Concurrent Error Detection. PhD thesis, Stanford
University.

Mitra, S. (2008). Globally Optimized Robust Systems to Overcome Scaled CMOS Reliability
Challenges. In Design, Automation and Test in Europe - DATE 2008, pages 941–946.

Mitra, S., Huang, W.-J., Saxena, N. R., Yu, S.-Y., and McCluskey, E. J. (2000). Depend-
able Adaptive Computing Systems - The Stanford CRC ROAR Project. In Pacific RIM
International Symposium on Dependable Computing - Fast Abstracts.

Mitra, S., Huang, W.-J., Saxena, N. R., Yu, S.-Y., and McCluskey, E. J. (2004). Reconfig-
urable Architecture for Autonomous Self-Repair. Design and Test of Computers, 21(4):228–
240. IEEE.

28

Bibliography

Moreno, J., Thoma, Y., Sanchez, E., Torrez, O., and Tempesti, G. (2004). Hardware Realiza-
tion of a Bio-Inspired POEtic Tissue. In NASA/DoD Conference on Evolvable Hardware,
pages 237–244. IEEE.

Moreno, J. M., Madrenas, J., Faura, J., Cantó, E., Cabestany, J., and Insenser, J. M. (1998).
Feasible Evolutionary and Self-Repairing Hardware by Means of the Dynamic Reconfigu-
ration Capabilities of the FIPSOC Devices. In 2nd International Conference on Evolvable
Systems: From Biology to Hardware - ICES 1998, Lecture Notes in Computer Science,
pages 345–355. Springer.

Oh, N. (2000). Software Implemented Hardware Fault Tolerance. PhD thesis, Stanford Uni-
versity.

Ortega-Sanchez, C., Mange, D., Smith, S., and Tyrell, A. (2000). Embryonics: A Bio-Inspired
Cellular Architecture with Fault-Tolerant Properties. Genetic Programming and Evolvable
Machines, 1(3):187–215.

Paulsson, K., Hübner, M., and Becker, J. (2006a). Methods for Run-time Failure Recognition
and Recovery in Dynamic and Partial Reconfigurable Systems Based on Xilinx Virtex-
II Pro FPGAs. In Symposium on Emerging VLSI Technologies and Architectures. IEEE
Computer Society.

Paulsson, K., Hübner, M., and Becker, J. (2006b). Strategies to On- Line Failure Recovery in
Self- Adaptive Systems based on Dynamic and Partial Reconfiguration. In 1st NASA/ESA
Conference on Adaptive Hardware and Systems - AHS 2006, pages 288–291. IEEE Com-
puter Society.

Reorda, M. S., Sterpone, L., and Violante, M. (2005a). Efficient Estimation of SEU effects in
SRAM-based FPGAs. In 11th International On-Line Testing Symposium - IOLTS 2005,
pages 54–59. IEEE.

Reorda, M. S., Sterpone, L., and Violante, M. (2005b). Multiple errors produced by single
upsets in FPGA configuration memory - a possible solution. In European Test Symposium,
pages 136–141.

Sharma, R. and Saluja, K. K. (1988). An Implementation and Analysis of a Concurrent Built-
In Self-Test Technique. In 18th International Symposium on Fault-Tolerant Computing -
FTCS 18, pages 164–169.

Sipper, M., Sanchez, E., Mange, D., Tomassini, M., Pérez-Uribe, A., and Stauffer, A. (1997).
A Phylogenetic, Ontogenetic, and Epigenetic View of Bio-Inspired Hardware Systems.
Transactions on Evolutionary Computation, 1(1):83–97. IEEE.

Sreeramareddy, A., Josiah, J. G., Akoglu, A., and Stoica, A. (2008). SCARS: Scalable Self-
Configurable Architecture for Reusable Space Systems. In NASA/ESA Conference on
Adaptive Hardware and Systems - AHS 2008, pages 204–210.

Sreeramareddy, A., Kallam, R., Dasu, A. R., and Akoglu, A. (2010). Self-configurable ar-
chitecture for reusable systems with Accelerated Relocation Circuit (SCARS-ARC). In
International Symposium on Parallel and Distributed Processing, Workshops and Phd Fo-
rum - IPDPSW 2010, pages 1–4. IEEE.

29

Bibliography

Sterpone, L. and Violante, M. (2005). A Design Flow for Protecting FPGA-Based Systems
Against Single Event Upsets. In 20th International Symposium on Defect and Fault Toler-
ance in VLSI Systems - DFT 2005, pages 436–444. IEEE.

Sudarsanam, A., Kallam, R., and Dasu, A. (2009). PRR-PRR Dynamic Relocation. Computer
Architecture Letters, 8(2):44–47. IEEE.

Sutton, A. (2012). No Room for Error: Creating Highly Reliable, High-Availability FPGA
Designs. Technical report, Synopsis.

Tarakanov, A., Goncharova, L., and Tarakanov, O. (2005). A Cytokine Formal Immune
Network. In 8th European Conference on Advances in Artificial Life - ECAL 2005, volume
3630 of Lecture Notes in Computer Science, pages 510–519. Springer.

Tarakanov, A. O. (2008). Formal Immune Networks: Self-Organization and Real-World Appli-
cations. In Prokopenko, M., editor, Advances in Applied Self-organizing Systems, Advanced
Information and Knowledge Processing, pages 271–290. Springer.

Tarakanov, A. O., Skormin, V. A., and Sokolova, S. P. (2003). Immunocomputing: Principles
and Applications. Springer.

Tempesti, G., Mange, D., Mudry, P.-A., Rossier, J., and Stauffer, A. (2007). Self-Replicating
Hardware for Reliability: The Embryonics Project. Journal on Emerging Technologies in
Computing Systems - JETC, 3(2):Article No. 9. ACM.

Tempesti, G., Mange, D., and Stauffer, A. (1997). A Robust Multiplexer-Based FPGA In-
spired By Biological Systems. Journal of Systems Architecture: Special Issue on Dependable
Parallel Computer Systems, 43(10):719–733. Elsevier.

Torresen, J. (2004). An Evolvable Hardware Tutorial. In 14th International Conference on
Field Programmable Logic and Applications - FPL 2004, volume 3203 of Lecture Notes in
Computer Science, pages 821–830. Springer.

Touba, N. A. and McCluskey, E. J. (1997). Logic Synthesis of Multilevel Circuits with
Concurrent Error Detection. Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 16(7):783–789. IEEE.

Tyrell, A. M. and Barker, W. (2006). The Poetic Hardware Device: Assistance for Evolu-
tion, Development and Learning. In Higuchi, T., Liu, Y., and Yao, X., editors, Evolvable
Hardware, Genetic and Evolutionary Computation, pages 99–119. Springer.

Tyrell, A. M., Sanchez, E., Floreano, D., Tempesti, G., mange, D., Moreno, J.-M., Rosenberg,
J., and Villa, A. E. (2003). POEtic Tissue: An Integrated Architecture for Bio-inspired
Hardware. In Evolvable Systems: From Biology to Hardware, volume 2606 of Lecture Notes
in Computer Science, pages 129–140. Springer.

Venishetti, S. K., Akoglu, A., and Kalra, R. (2007). Hierarchical Built-in Self-testing and
FPGA Based Healing Methodology for System-on-a-Chip. In 2nd NASA/ESA Conference
on Adaptive Hardware and Systems - AHS 2007, pages 717–724.

30

Bibliography

Wikipedia (2012). Searched words: fault-tolerant system, fault-tolerant design, single point
of failure, integrated circuit, chip, partial reconfiguration, system on chip, network on chip,
hardware register, CMOS, fault model, SRAM, flash memory.

Wong, J. S. J., Sedcole, P., and Cheung, P. Y. K. (2007). Self-characterization of Combi-
natorial Circuit Delays in FPGAs. In International Conference on Field-Programmable
Technology - ICFPT 2007, pages 17–23.

Yu, S.-Y. (2001). Fault Tolerance in Adaptive Real-Time Computing Sytems. PhD thesis,
Stanford University.

Zeng, C., Saxena, N., and McCluskey, E. J. (1999). Finite State Machine Synthesis with
Concurrent Error Detection. In International Test Conference, pages 672–678.

Zeppenfeld, J., Bouajila, A., Herkersdorf, A., and Stechele, W. (2010). Towards Scalabil-
ity and Reliability of Autonomic Systems on Chip. In 3rd International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing - ISORC 2010 -
Workshop on Self-Organizing Real-Time Systems, pages 73–80. IEEE.

31

Bibliography

32

3
Artificial immune systems

Artificial immune systems is a subfield of artificial intelligence based on principles of the
biological immune system. Artificial intelligence is the science and engineering of making
intelligent machines, please see [Wikipedia, 2010]. The term artificial intelligence has been
coined by John McCarthy, the inventor of the LISP programming language, in 1956. Intel-
ligent machines are based on automated inference engines. Inference engines infer certain
consequences based on certain conditions. They follow the construct if-then. When the con-
struct have the form if adjective then noun the machine is a classifier. When the construct
have the form if adjective then verb the machine is a controller. However, controllers do
classify the condition before inferring actions. Classifier and controller machines make use
of machine learning techniques to train the machine and pattern recognition techniques for
condition matching. In many cases condition matching does not imply absolute, but rather
the closest match. Methods of artificial intelligence can make use of a symbolically structured
knowledge base and statistical analysis, such is the case of expert systems, case based reason-
ing and Bayesian networks, or can make use of the learning of empirical data such is the case
of neural networks, fuzzy systems, evolutionary computation, cellular automata and artificial
immune systems. The first group of methods constitute the subbranch named conventional
artificial intelligence and the second group constitute the subbranch named computational
intelligence. Computational intelligence takes also some other names such as soft computing
or non-symbolical artificial intelligence.

Artificial immune systems at the moment consists of a set of representative algorithms.
Those algorithms are based on biological immune system models taken from the field of im-
munology. Immunology is a subfield of biology that studies the immune system of plants,
animals and the human. Immunology uses models for understanding the structure and func-
tion of the immune system. Those models are sometime quite complex due to the biological
immune system is indeed a complex system and many processes are not well understood till
date. Some of those models seem to be potentially useful for solving some computational

33

Chapter 3. Artificial immune systems

Biological immune system

Biological immune system models

Artificial immune system models

Artificial immune system algorithms

Computer programs

understanding

simplifying

applying

programming

Figure 3.1: Artificial immune systems flow

problems. The simplification of such biological immune system models can produce artificial
immune system models, that applied to determined problems, could be the basis of artifi-
cial immune system algorithms and consequently computer programs. Figure 3.1 shows the
addressed flow.

In order to have a funded idea of the structure and the function of the biological immune
system for understanding how artificial immune systems are conceived and work, the next
section gives a short but complete summary of the most important concepts of the biological
immune system, focusing on the human. The section afterwards presents the most known
artificial immune system models and algorithms. At the end a brief comparison of the pre-
sented algorithms is given showing its biological analogy, input and outputs and its main
application.

3.1 Biological immune system

The biological immune system is a system that protects a biological entity, i.e. the human,
against internal or external agents that cause disease on it and thereafter death. As causes
of disease can be listed: external or internal malicious agents, extreme temperature, extreme
pressure, radiation, nutrient deficiency, aging, inherited disorders, etc. A disease in any living
biological entity can be defined as the malfunctioning, the excessive reproduction or the
unexpected death of cells. In this context, next subsections deal with cells inside a biological
entity as internal agents, pathogens that endanger the biological entity as external agents,
communication among all those agents, the immune system infrastructure and the immune
system agents. The information presented in the sections about communication among agents
and immune system agents have been extracted from the book [Kimball, 1994] and its on-line
actualization. Immunology is a dynamic field thus, the on-line actualization of that book has
been a very helpful resource.

34

3.1. Biological immune system

3.1.1 Internal agents

A cell is considered as the most basic functional unit inside a biological entity. A cell executes
tasks autonomously and is able to react with its environment. Thus, a cell is considered as
an internal agent.

Biological entities, also called organisms, can consist of only one cell or more than one cell.
When an organism has more than one cell it is named a multicellular organism. Animals,
plants and the human are multicellular organisms. The cells in a multicellular organism are
specialized and collaborate each other to fulfill joint objectives in the context of the organism
as a whole. For that, free intercellular material on the environment or cellular material on
the surface of the cells serve as information that helps for a coordinated work, that is to say,
a harmonious functioning of all individual cells for the most effective results.

The term cell comes from the latin word cellula that means small room. A cell is composed
of a cell membrane that separates the interior of the cell from its environment, please see figure
3.2. Such cell membrane is permeable for letting pass through substances inside or outside
the cell. The cell membrane has on its surface receptors that the cell uses for communicating
with other cells. Several specialized components are found inside the cell in a liquid named
cytoplasm. Such components are responsible of synthesis of substances; processing of food,
intern worn-out components or engulfed cells; energy generation and storage; food and waste
storage and intern substances transportation. Some cells have a nucleus and some others not.
The nucleus contains inherited information about the growth, specific function over its life
span, reproduction and death of the cell.

Nucleus

Cell membrane

Cell component

Inherited information

Surface receptor

Cytoplasm

Cell environment

Figure 3.2: Cell parts

Cell growth Cell growth is given by metabolism. Metabolism consists in the synthesis and de-
composition of substances. Decomposition of substances generates energy, raw material
and waste.

Cell reproduction Cell reproduction is given by cell division and controlled by intercellular
communication. Cell reproduction is useful for organism growth, replenishing of cells of
tissues of damaged organs or any other biological process. Organs are functional units

35

Chapter 3. Artificial immune systems

constituted of several kinds of tissues, a tissue being a structural material of equal cells
grouped together. Excessive and uncontrolled cell reproduction is a disorder which can
cause an abnormal mass of tissue. The cells in such abnormal mass of tissue are called
tumor cells and can be considered as internal malicious agents inside the organism.

Cell death There are two kinds of cell death, programmed cell death and cell death caused
by external malicious agents. When cell death is programmed, died cells are easily
recognized and removed by other cells. Programmed cell death is named apoptosis.
The name apoptosis has been inspired in the falling off of leaves in plants. The term
apoptosis derives from the Greek words apo that means off and ptõsis that means falling.
Apoptosis is useful for maintaining internal stability under varying conditions inside the
organism, i.e. removal of damaged or infected cells. Apoptosis is also useful in tissue
development, i.e. elimination of transitory cells, tissues or organs. The programmed
death of a cell can be triggered or inhibited by the cell itself or by other cells using
intercellular communication. A cell triggers its own death when it is stressed by heat,
radiation, nutrient privation, insufficient oxygen, etc.

Uncontrolled apoptosis during tissue development can derive in atrophy, which is an
excessive death of cells, or in the formation of abnormal mass of tissues, which is an
insufficient death of cells.

When cell death is caused by external malicious agents, died cells are not easily recog-
nized by other cells for removal. Consequently, dead tissue is built in the surroundings
of cell death. Such form of unexpected cell death is named necrosis, term derived from
the Greek word necro that means dead body.

3.1.2 External agents

Every unicellular or multicellular organism outside a specific biological entity is considered
an external agent. Some external agents are harmless and live in harmony with the biological
entity but other external agents are malicious since they produce disease on the biological
entity. Pathogens are external agents that produce disease in the organism where they intrude.
The term pathogen is derived form the Greek words pathos that means suffering and gen that
means give birth to, giving the meaning of a suffering creator. There are three types of
pathogens: viruses, bacteria and fungi, please see figure 3.3. The definition of each class of
pathogen is given below.

Virus A virus, latin word that means poison, is a biological particle that replicates only inside
the cells of organisms.

Bacterium A bacterium, term derived form the Greek word bakterion that means small staff,
is an small organism constituted of a single cell without a nucleus. Small organisms are
called in the biological jargon as microorganisms. Bacteria live in any habitat such as
in inorganic matter, in organic matter, in plants or in animals.

Fungus A fungus, term derived from the Greek word sphongos that means sponge, exists as
a microorganism constituted of a single cell with a nucleus, i.e. yeast; as a multicellular
microorganism, i.e. mould; and as an organism, i.e. mushrooms. Fungi eat organic
matter.

36

3.1. Biological immune system

Virus Bacterium Fungus

Figure 3.3: Types of pathogens

The biological immune system in the human body has a layered protection to act against
external malicious agents like the pathogens described before. The layers are the following:
the pathogen barriers, the innate immune system and the adaptive immune system. Those
layers are described below and illustrated in figure 3.4.

Pathogen barriers

Innate immune system

Adaptive immune system

Skin Mucous membrane

Tears Earwax Saliva Gastric acid

Flora

Innate immune response

Adaptive immune response

(Leukocytes)

(Adapted leukocytes)

Figure 3.4: Layers of protection in the human immune system

Pathogen barriers The layer of pathogen barriers consists of barriers that can be mechanical,
chemical and biological.

The skin and the mucous membrane block the intrusion of pathogens into the body,
therefore they are considered as mechanical pathogen barriers. The mucous membrane is
the tissue that covers cavities in the human body that connect the external environment
to internal organs of the respiratory, gastrointestinal, visual, auditory and urogenital
systems, among others. The prolongation of such cavities inside internal organs such as
the stomach or the lungs, are also covered by a mucous membrane.

Substances secreted by the mucous membrane like nasal mucus, saliva, gastric acid,
tears, earwax, breast milk, etc, trap pathogens which intend to enter the body, and
inhibit their proliferation. Consequently those substances are considered as chemical
pathogen barriers.

The flora is harmless bacteria that lives on the internal walls of the gastrointestinal
tract, specifically in the internal walls of the stomach and the intestines. The flora is an
example of a biological pathogen barrier since it competes with pathogenic bacteria for
food and space. That fact reduces the probability that any foreign pathogenic bacteria
which enters in the gastrointestinal tract proliferate sufficiently for causing disease.

37

Chapter 3. Artificial immune systems

Innate immune system Pathogens that passed the pathogen barriers successfully, meet the
second layer of protection, the innate immune system. The innate immune system exe-
cutes the innate immune response. The innate immune response consists of recognizing
pathogens and taking a set of actions in order to get rid of them. Such tasks are per-
formed by immune system agents, which are cells in the human body called leukocytes.

Adaptive immune system If the existing leukocytes can not stop the proliferation of path-
ogens, they initiate the adaptive immune response. The adaptive immune response
tries to produce adapted leukocytes which are able to recognize exactly a determined
pathogen and react accordingly in order to combat it.

3.1.3 Communication among agents

Agents communicate among each other for getting information over their environment and for
reacting accordingly following a defined goal. Communication is the process of information
interchanging. Cells are internal agents inside an organism that interchange information in
order to execute their defined tasks. Information is represented by biological material that a
cell exposes on its surface or releases to the environment for communicating with distant cells,
please see figure 3.5. Communication among cells makes a joint work inside an organism be
coordinated and not chaotic. Furthermore, interaction of an organism with its environment
is only possible when its peripheral cells communicate with external agents which can also be
cells of other organisms, please see again figure 3.5. In summary, cells of the same class inside
an organism can communicate, cells of different classes inside an organism can communicate
or cells of an organism with the cells of other organism can also communicate. In this
subsection a model of cell communication organized in three parts is presented. That model
uncovers the issue how cells of the immune system recognize pathogen. Furthermore the cell
communication model is extended to the communication of a group of cells where a sort of
network is built.

Cell communication model - Part 1

Claude Shannon and Warren Weaver presented in 1949 a general component based model of
communication Sender→Message→Receiver, statement taken from [Wikipedia, 2010]. In the
context of cell communication, the sender and the receiver are cells and the message is cellular
material that contains information called ligand. A ligand can be present as surface ligand or
as free ligand, please see figures 3.6 and 3.7. A target cell receives only messages when it has
a specific receptor that interacts with the present ligand. Therefore, the component based
model of cell communication is Ligand→Receptor and the binding of a ligand to a receptor
in a cell is called ligand-receptor interaction, please see figure 3.8. Ligands and receptors are
mostly proteins. In consequence, a ligand-receptor interaction can be considered as a protein-
protein binding. In order to understand how that binding takes place, the components of a
protein and its structure, the different classes of ligands and classes of receptors are explained
below.

Protein A protein is a chemical substance composed of the following chemical elements:
carbon, hydrogen, nitrogen and oxygen expressed with the symbols C, H, N and O
respectively. Carbon, hydrogen, oxygen and nitrogen atoms are arranged into molecules,
where every molecule has the same number of atoms of each chemical element. The

38

3.1. Biological immune system

Receptor

Message
on the surface of the cell

Released message

Organism 2

Organism 1

Cell X
Cell Z

Cell C

Cell B

Cell A

Cell A

Cell A

Cell A

Cell A

Figure 3.5: Cell communication

Surface receptor

Free ligand

Cell X

Cell Y

Figure 3.6: Cell surface receptor and free ligand interaction

number of atoms of each of the different chemical elements in a molecule give the exact
formula of the chemical substance, please see figure 3.9. A protein molecule is very
large and has its carbon atoms arranged into chains to which the atoms of the other
chemical elements hang up. Molecules with carbon chains are called in chemistry organic
compounds, thus, a protein molecule is an organic compound.

A protein molecule is the result of bonding amino acids of a set of 20 different ones
by means of peptide bonds. Amino acids are simpler chemical compounds organized

in an amine group

N

H

H

and a carboxylic acid group

C

OH

O

both attached to
the same carbon in a carbon chain – R – called residue. Residues have different sizes
among different amino acids. A peptide bond is the result of the reaction of the carboxil
group of one amino acid with the amino group of the adjacent amino acid with loss of

39

Chapter 3. Artificial immune systems

Surface receptor

Surface ligandCell X

Cell Y

Figure 3.7: Cell surface receptor and cell surface ligand interaction

Cell Y

Ligand-receptor interaction

Figure 3.8: Ligand-receptor interaction

a water molecule H2O as shown in the following chemical reaction. Note that – R –

represents the carbon chain of the first amino acid and – R’ – the carbon chain of the
second amino acid.

RN

H

H

C

OH

O

.

+ . R’N

H

H

C

OH

O

.

−→ . CRN

H

H N R’ C

OH

O

H

O

.

+ H
2
O

(3.1)

The complex structure of a protein molecule can be determined analyzing its primary,
secondary, tertiary and quaternary structures. The primary structure of a protein con-
stitutes the order in the sequence and the number of amino acids tied by peptide bonds,
see figure 3.10. The secondary structure of a protein constitutes the arrangement of the
sequence of amino acids into regularly repeating structures like the alpha-helix, with
the form of an spiral, and beta-sheet, with the form a twisted and pleated sheet, see
figure 3.11. Those structures are stabilized by bonds of hydrogen atoms. The tertiary
structure is formed when last repeating structures, seen as units in a three dimensional
space, arrange spatially giving an specific three dimensional position to every contained
atom in the protein molecule, see figure 3.12. That structure is stabilized mainly with
the help of non covalent bonds. Non covalent bonds are weaker bonds in comparison
with covalent bonds such as the peptide bonds. A covalent bond results from sharing
a pair of electrons between two atoms. A noncovalent bond results from the attraction
of two opposite electrically charged sides. If the up to now compound with its tertiary
structure is considered as a subunit with the name of polypeptide, we can say that some
proteins are composed of only one of such subunits or more than one subunits. The
spacial arrangement and position of those subunits constitutes the quaternary structure

40

3.1. Biological immune system

Molecules

Figure 3.9: Molecules in a chemical substance

Amino acid A Amino acid B Amino acid CPeptide bondPeptide bond

Figure 3.10: Primary structure of a protein

of a multisubunit protein, see figure 3.13. The quaternary structure stabilizes in the
same way as the tertiary structure.

The structure of a protein determines its function. For example, solubility in water is
dependent on the structure of a protein. Some proteins are soluble in water and some
others not. Therefore, proteins can be classified regarding its solubility in water in
fibrous proteins and globular proteins. Fibrous proteins build long chains of proteins
in the form of filaments, they are not soluble in water and therefore have an structural
function that maintain the shape of the conforming biological material even against me-
chanical movement or external forces. Examples of fibrous proteins are the keratin in
hair, the collagen in tendons, the actin and myosin in muscles. Globular proteins have
an spherical structure, are soluble in water and are present in liquid biological matter.
Globular proteins have a variety of functions such as enzymes, transporters, messengers,
containers and regulators among others. Enzymes speed up very specific chemical reac-
tions in normal conditions without being consumed by the reaction. One example is the
enzyme lactase that speed up the break down of the lactose, sugar found in milk, into
small digestible sugars such as the glucose and galactose. Transporter proteins carry
elements from one site to another site. One example is the hemoglobin that transports
oxygen and carbon dioxide. Messenger proteins are proteins that participate in cell
communication, such as ligands and receptors. Examples of ligands in cell communi-
cation are hormones, neurotransmitters and cytokines. Examples of receptors in cell
communication are the immunoglobulins. Some immunoglobulins are used to neutralize
external pathogenic agents. One example of a protein used as element container is the

Alpha-helix

Beta-sheet

Figure 3.11: Secondary structure of a protein

41

Chapter 3. Artificial immune systems

x

y

z

Figure 3.12: Tertiary structure of a protein

x

y

z

Figure 3.13: Quaternary structure of a protein

42

3.1. Biological immune system

Binding site of protein A

Binding site of protein B

Lock

Key

Protein-protein bindingLock and key principle

Figure 3.14: Lock and key principle and protein-protein binding analogy

ferritin that stores iron in the spleen. Regulator proteins regulate biological processes,
such as the albumin in blood that regulate the osmotic pressure in blood. The osmotic
pressure is the pressure necessary to prevent the flow of solvent, often water, through a
semipermeable membrane that separates the solvent from a solution containing a solute
to which the membrane is impermeable. In this way the flow of water through the
membrane cell into the cell is regulated. Toxins are proteins synthesized by biological
entities which are used to kill own or foreign cells. Some of such toxins help to increase
the flow of water into a cells until it explodes. Such process is called cytolysis.

Protein-Protein binding Proteins are molecules that build a sort of molecular machines that
execute molecular processes. All that is possible because protein molecules interact by
binding each other. Sometimes a protein binds to another protein to form a protein
complex, for transporting the binding protein, to modify the binding protein, etc. A
protein has a region in its surface named binding site which binds with the binding site
of another protein. The form of the binding site is determined by the three dimensional
structure of the protein. Protein-protein binding can be explained with the “Lock and
Key” model proposed by Emil Fischer in 1894 to explain the binding between an enzyme
protein and a substrate protein. The “Lock and Key” model consists in the binding of
two specific complementary geometric shapes, because one shape fits exactly into the
other shape, see figure 3.14. Then two complementary shapes bind with a non-covalent
interaction. However shape is not everything at the time of binding. Chemical properties
of the amino acid chains in the surroundings of the binding site like hydrophilic or
hydrophobic characteristics or electrical charge influences the binding process and the
binding specificity, i.e. to which protein the protein binds. An hydrophilic protein is a
protein that tends to interact with water. An hydrophobic protein is a protein that is
repelled from water.

The binding site of a protein takes different names, a binding site in a protein that works
as ligand is named epitope and the binding site in a protein that works as receptor is
named paratope. Some proteins, like the receptors of some immune cells have besides
a binding site working as a paratope, another binding site working as epitope named
idiotope. Cells expose many identical receptors on their surfaces, but each receptor has
only one paratope and, in some cases, one idiotope. The same holds for free receptors.
Cells also expose many identical ligands on their surfaces, but each ligand has only
one epitope. The same holds for a free ligand. A pathogen can be biological particle,
like in the case of a virus, a cell, like in the case of bacteria or monocellular fungi,
or multicellular organism, like in the case of multicellular fungi. Then a pathogen is
composed of a set of molecules, mostly proteins with binding sites named generally

43

Chapter 3. Artificial immune systems

Agent Molecule mostly protein Binding site

Immune cell

Immune cell

Pathogen(Antigen)

many

many

many

Receptor

Free receptor

Ligand

Free ligand

Pathogenic molecule(Antigen)

one

one

one

one

one

Paratope and one idiotope

Paratope and one idiotope

Epitope

Epitope

Epitope (Antigenic determinant)(Antigen)

Figure 3.15: Name conventions for binding sites

as epitopes. Such molecules are pathogenic molecules that are potential producers
of an immune response. In the immune response, antibodies are secreted by some
immune cells. Antibodies are receptors able to bind to epitopes of pathogenic molecules
neutralizing them. Therefore any producer of antibodies is named antigen and the
binding sites of that antigen are named antigenic determinants. Please do not get
confused when in this chapter or in the literature you find the term antigen referring a
pathogen, a pathogenic molecule or an antigenic determinant, since all of them produce
an immune response that can lead to the production of antibodies. See figure 3.15 for
more clarity.

Ligands Ligands are molecules mostly protein molecules, amino acids or small inorganic com-
pounds which act as messages during cell communication. A ligand is synthesized by
a cell, stored and then placed inside the cell, on the external surface of the membrane
of the cell or released into the extracellular liquid, see figure 3.16. In case a ligand is
placed inside the cell, it can interact only with a receptor produced by the same cell
lying also inside the cell. When a ligand is present on the surface of the membrane of
the cell, the ligand travels together with the cell searching for a matching receptor on
the surface of other cell. In case the ligand is released into the extracellular liquid, it
travels freely and crosses the gap towards a target cell that has a matching receptor.
Some free ligands are able to interact with a matching receptor on the surface of other
cells. Other free ligands are able to cross the membrane of cells for interacting with
receptors which lie inside the cell.

inside surface free

Cell

Figure 3.16: Ligand placement

According to their functionality, ligands are classified and get some special names. The
most known groups of ligands are described below.

Cytokines The term cytokine comes from the words cyto, prefix derived from the Greek
word kutos that means cell or container, and kinos, that means movement. Cy-
tokines are protein molecules secreted by cells that move towards target cells for cell
communication. They circulate in concentrations of 10−12 mol/liter. One mol has
6,02×1023 elemental units, therefore we can say that around 6,02×1011 cytokines

44

3.1. Biological immune system

circulate in each liter of the extracellular liquid. Some examples of cytokines are:
interferon, histamine, tumor necrosis factor, etc. Interferons are protein molecules
released by virus infected cells for warning other cells about the presence of that
virus. Histamine is a compound which is characterized for containing nitrogen.
Histamine serves for informing other immune system cells over the place where an
infection takes place. Tumor necrosis factor is a molecule that induces programmed
cell death in its target cells.

Hormones Hormones also serve for cell communication, however, they are produced by
endocrine glands. Endocrine glands are organs in the body that secrete hormones
into the blood. Hormones usually target cells that are located far away from
the ligand releasing cell or gland. Around 6,02×1014 hormone protein molecules
circulate in each liter of the extracellular liquid.

Neurotransmitters These are molecules that transmit information from neurons to
other cells across a synapse. A synapse is a junction between two cells which
permit passing chemical signals through. Neurons communicate only with one cell
through that synapse.

Toxins It is a poisonous substance which molecules are produced by living cells. The
term comes from the latin word toxicum that means poison. One effect of toxins
in cells is the trigger of the process named cytolysis. Cytolysis, term that comes
form cyte, that means cell, and the Greek word luein, that means to break down, is
the dissolution of a cell caused by excessive movement of water inwards so that its
cell membrane cannot withstand the pressure of the water inside and consequently
it explodes. Toxins destroy specifically or non-specifically other cells. Examples of
toxins that target specific cells are neurotoxins, which affect cells of the nervous
system, or hemotoxins, which destroy red blood cells. Examples of toxins that
target all cells they encounter are necrotoxins, which cause necrosis. Toxins are
produced due to two reasons, on one side for predation, such is the case of the toxins
produced by scorpions or for defense, such is the case of the toxins produced by
ants or bees.

Chemokines These are ligands that attract the cells they bind to a determined site in
the body. They can also be named chemoattractants and the process of attracting
cells or other entities to a determined site is called chemotaxis. Chemotaxis, is a
term derived from the word chemical and the Greek word táxis that means to ar-
range. Chemotaxis is the process that determines how single cells or multicellular
organisms direct their movements according to certain chemicals in their environ-
ment. Some other examples of chemotaxis are: the movement of bacteria towards
the highest concentration of food or towards the lowest concentration of poison,
the movement of sperm towards the egg during fertilization, etc. Chemotaxis is
positive if the movement is in the direction of a higher concentration of chemoat-
tractant and negative if the movement is in the direction of a lower concentration
of chemoatracttant.

Damage-associated molecular patterns In short DAMPs, are molecules produced by
cellular stress, i.e. uric acid. They are present on the surface of cells which died
by apoptosis. Cells died by necrosis do not show such marks on their surfaces,
passing by unnoticed to other cells. However some cell that die by necrosis release
molecules of their genetic material which are considered by other cells as DAMPs.

45

Chapter 3. Artificial immune systems

Pathogen-associated molecular patterns In short PAMPs, are molecules present in
pathogen or produced by them, i.e. bacterial carbohydrates or nucleic acids of
viruses. Their structure is found only in pathogen but not in the organism where
the pathogen intrudes. An specific PAMP molecule is present in many related
pathogens, in consequence the ligand-receptor interaction is not pathogen specific
and trigger immediately the innate immune response, which is a generic response.
In contrast, the adaptive immune response is a pathogen specific response that
is triggered with a time delay only when a serious level of danger for the whole
organism is perceived or when the innate immune response has not been sufficiently
effective to combat with pathogen.

Histocompatibility molecules The term histocompatibility comes from the Greek word
histos that means tissue. Histocompatibility molecules are molecules present in the
surface of the membrane of all cells, except the red blood cells and the nervous
system cells. Each person have a unique set of histocompatibility molecules. The
histocompatibility molecules are encoded in the major histocompatibility complex,
which is a set of genes found in the hereditary information inside cells. A histo-
compatibility molecule is a cell surface protein whose extracellular region forms a
sort of groove, or container with the opening place directed outside the cell, able
to host a molecule attached by means of non covalent forces. There are two classes
of histocompatibility molecules MHC-I and MHC-II, meaning MHC major histo-
compatibility molecule. They differ in its structure, its function, the cell where
they reside, the molecule that they host and the type of cell that they bind to.

The major histocompatibility complex I molecule, in brief MHC-I, is a molecule
present in almost all cells of the body. The molecules that they host are fragments
of all the proteins within the cell where they reside. That includes synthesized
proteins within the cells. There are three cases where the MHC-I molecules can be
helpful for the immune system: by virus infected cells, cancer cells and transplanted
tissues. A virus that enters a cell, uses that cell for hiding, for reproducing and for
producing pathogenic molecules using its genetic material but the resources of the
cell. Each cell in the body uses MHC-I molecules, as mechanism of defense, for
displaying such pathogenic molecules in its surface informing external cells that
itself is infected by a virus. Cancer cells, which genetic material has been damaged
by mutation, start producing suspicious molecules. Those suspicious molecules are
displayed on the cell surface by means of MHC-I molecules, warning external cells
about the cell damage. Finally, the cells of a transplanted tissue display MHC-I
molecules that are different to the MHC-I molecules of the host body. MHC-
I molecules of the cells of the transplanted tissue appear suspicious to immune
system cells, reason why tissue rejection is produced.

The groove side of the MHC-I molecule and the hosted molecule bind to a matching
T-cell receptor of a CD8+ T-cells, please see figure 3.32. Besides, the MHC-I
molecule presents in its extracellular region an epitope which binds to the CD8
receptor of the CD8+ T-cell. That second signal is necessary for a successful
interaction among both cells that leads to the activation of the CD8+ T-cell.

The major histocompatibility complex II molecule, in brief MHC-II, is a molecule
present in antigen presenting cells, or APCs. B-cells and dendritic cells, cells of the
immune system are considered as antigen presenting cells. The molecules that an

46

3.1. Biological immune system

antigen presenting cell presents in the groove of MHC-II molecules, are fragments
of ingested pathogenic molecules taken from its surroundings, that means from
outside the cell. APCs ingest extracellular material enclosing it forming a sort of
compartment named endosome. The endosome, once inside the cell, fuses with a
lysosome. That lysosome, which is a component in the cytoplasm of a cell, digests
the extracellular material producing fragments which are, by means of MCH-II
molecules, shown in the surface of the APC.

The groove side of the MHC-II molecule and the hosted molecule bind to a match-
ing T-cell receptor of a CD4+ T-cells, please see figure 3.33. Besides, the MHC-II
molecule presents in its extracellular region an epitope which binds to the CD4
receptor of the CD4+ T-cell. The second signal is necessary for a successful inter-
action among both cells that leads to the activation of the CD4+ T-cell.

Receptors Receptors are molecules, mostly proteins or amino acids, which interact with
matching ligands during cell communication. A receptor has a binding site named
usually paratope. There is a great variety of receptors in the cells of the body. The
receptors differ in their structure. There are specialized receptors in the immune cells
which repertoire is immense, like the B-cell and T-cell receptors. The structure of those
receptors is encoded by a gene assembled combining information taken randomly from
a pool of gene segments of the genetic material in the cells. The assembled gene is then
transcribed into messenger ribonucleic acid (mRNA), process known as transcription,
and then synthesized into the corresponding protein or sequence of amino acids, process
named as translation.

A receptor is synthesized by a cell, stored and then placed on the external surface of
the membrane of the cell, inside the cell or released into the extracellular liquid, please
see figure 3.17. Receptors placed on the external surface of the membrane of the cells
are called cell-surface receptors, receptors placed inside the cell are named intracellular
receptors and receptors released to the extracellular liquid are named free receptors.
Cell-surface receptors are used by the cells for sensing the external environment. For
instance, immune system cells use cell-surface receptors for recognizing: external agents,
i.e pathogenic molecules; internal malicious agents, i.e. infected cells, tumor cells; and
cellular debris, i.e. dead cells, worn-out cells. Receptors placed inside the cell interact
with ligands which crossed the membrane of the cell, i.e. steroids, or with matching
ligands produced by the same cell. Receptors released into the extracellular liquid serve
to mark external agents or cellular debris for being processed by immune system cells.

According to their functionality, receptors are classified and get different names. The
most important groups of receptors are presented below.

insidesurfacefree

Cell

Figure 3.17: Receptor placement

Cytokine receptor Are receptors that bind to cytokines. This term is in a way not much
descriptive, however can be found at the time of talking in terms of cytokines.

47

Chapter 3. Artificial immune systems

Pathogen Recognition Receptors In short, PRRs, are receptors that bind with patho-
gen-associated molecular patterns found in pathogens and with damage associated
molecular patterns produced by stressed or death cells. Please see figure 3.18.

PAMPs

Pattern Recognition Receptors

Damage-Associated Molecular Patterns Pathogen-Associated Molecular Patterns

PRRs

DAMPs

bind to

Figure 3.18: PRRs, DAMPs and PAMPs

PRRs exist free in the blood and lymph or as surface receptors in cells. Free
PRRs bind to pathogenic molecules marking them for phagocytosis, process called
opsonization. Phagocytosis is the the process of ingestion of solid extracellular
matter by a cell, while pinocytosis is the process of ingestion of liquid matter. Both
processes are named endocytosis since the ingestion consists in the invagination of
a portion of the membrane of the cell forming a vesicle named endosome. Surface
PRRs receptors can also help in the phagocytosis process binding a PAMP of
a pathogenic molecule and promoting the formation of an endosome around it,
process named as receptor-mediated endocytosis. Reason why such PRRs are
called endocytic PRRs. Macrophage cells, cells of the immune system, have lots
of those receptors for executing its main task of phagocytosis.

Other surface PRR receptors, named signaling PRRs, after binding with PAMPs
initiate an appropriate response for combating the pathogen, i.e. production of
specific cytokines, inflammation in the site of infection, etc. Such receptors are
named toll-like receptors and recognize roughly the nature of the pathogen. In
mammals 12 kinds of TLRs are known. TLR-1 and TLR-2 bind to bacteria like
the streptococci and staphylococci. TLR-3 binds to the double-stranded RNA of
viruses. RNA stands for ribonucleic acid, acid that contains genetic material. TLR-
4 binds to bacteria like the salmonella and escherichia coli. TLR-5 binds to the
motile part of the bacteria listeria. TLR-6 binds to mycoplasma bacteria like the
one that causes the atypical pneumonia. TLR-7 and TLR-8 bind to single-stranded
RNA of viruses like influenza, measles and mumps. TLR-9 binds unmethylated
CpG oligodeoxynucleotides which are single-stranded synthetic DNA molecules
present in microbial genetic material. TLR-11 bind to parasitic protozoa like the
plasmodium that causes malaria or the toxoplasma has a serious effect in the fetus
of an infected mother. The exact functions of TLR-10 and TLR-12 are not well
understood.

B-cell receptor A B-cell receptor is a molecule produced by a B-cell. It is able to
interact with a very specific pathogenic molecule. A B-cell shows thousands of
copies of the same B-cell receptor on its surface. The interaction of a B-cell receptor
of a B-cell with a particular pathogenic molecule initiates the activation process of
the B-cell.

A secreted B-cell receptor that moves freely in the body is called antibody. Patho-
genic molecules able to induce the generation of antibodies are also called antigens,

48

3.1. Biological immune system

name that comes from antibody generator. An antibody binds to a pathogenic mol-
ecule marking it for being removed from the body. The removal of an opsonized
antigen is executed by special cells through phagocytosis. Paghocytosis is not pos-
sible without the opsonization of the antigen. That is because the membrane of
the phagocytic cell and the antigen, both have negative charge, making difficult
that both come close together. The antibody neutralizes the antigen by interacting
with it.

A B-cell receptor is a so called glycoprotein. The prefix glyco is given because it
has attached carbohydrate molecules to them. That protein molecule is composed
of four subunits, please see figure 3.19. Two identical subunits called light chains,
with two hundred amino acids, and other two identical subunits, twice bigger as
the light chains, named heavy chains. The first one hundred amino acids of all
four chains vary from B-cell receptor to B-cell receptor. That is why are called
all together the variable region an the rest the constant region. In the variable
region there are regions where the variability is the highest, that regions are named
hypervariable regions. Since the hypervariable regions form the three dimensional
structure of the binding site, or paratope, of the B-cell receptor, are also named
complementarity determining regions. So, the epitope of the antigen binds by
complementarity to the paratope of the B-cell receptor. Then, the constant region
determines which response will be triggered by the cell after interaction.

The light chains can present two different kinds of constant regions named kappa
(κ) and lambda (λ). The heavy chains can present five different kinds of constant
regions named mu (µ), gamma (γ), alpha (α), delta (δ), and epsilon (ǫ). The B-cell
receptors get a combination of one of the two kinds of constant region in the light
chain with another one of the five kinds of constant region in the heavy chains.
According to which kind of constant region in its heavy chains the B-cell receptor
has, it gets different names: IgM, IgG, IgA, IgD and IgE. The prefix Ig comes from
another name given to the B-cell receptor that is immunoglobulin.

The specificity of a B-cell receptor to a particular pathogenic molecule is given
before the B-cell encounters that pathogenic molecule. The specificity is encoded
in gene segments which by random combination give birth to a big repertoire
of B-cell receptors in the B-cells of the body. For that there are four kinds of
gene segments: V for variable, D for diverse, J for joining and C for constant.
For the variable region of the heavy chains there are 51 V gene segments, 27 D
gene segments and 6 J gene segments in the chromosome 14 of the human genetic
material. For the constant region of the heavy chain there are 9 gene segments
also in the chromosome 14 with the following distribution: 1 gene segment for a µ
constant region, 1 gene segment for a δ constant region, 4 gene segments for the
four types of γ constant regions, 1 gene segment for an ǫ constant region and 2
gene segments for the two types of α constant regions. For the variable region of
the light chains of B-cell receptors with a kappa constant region there are 40 V
gene segments and 5 J gene segments in the chromosome 2. For the variable region
of the light chains of B-cell receptors with a lambda constant region there are 31
V gene segments and 4 J gene segments in the chromosome 22. Thus, there is the
possibility of having 51×27×6×40×5×31×4 = 2.5×108 different B-cell receptors,
without considering the constant region which is responsible for the reaction not for

49

Chapter 3. Artificial immune systems

the binding specificity. Moreover, there are some more complicated processes in the
segment combination that makes the B-cell receptor binding specificity even more
diverse. The 9 gene segments for the constant region allows the B-cell to produce
B-cell receptors with different effector function, that is to say, B-cell receptors or
antibodies that react in different way against the antigen they bind.

Heavy chain Heavy chain
Light chain Light chain

Variable region

Constant region

Hypervariable region

Figure 3.19: B-cell receptor

T-cell receptor A T-cell receptor is a molecule present in the surface of a T-cell. A T-
cell receptor is able to interact with a particular epitope or antigenic determinant
of a pathogenic molecule, presented in a histocompatibility molecule by an antigen
presenting cell. That interaction together with some other cells signals activate
the T-cell.

The T-cell receptor is a protein molecule containing two identical subunits named
alpha (α) and beta (β), please see figure 3.20. Each subunit has a variable region
and a constant region. The variable regions presents, each, three hypervariable
regions, named similarly as for the B-cell receptors, complementary determining
regions. The complementary determining regions constitute the binding site, or
paratope, which according with its specificity, bind to a particular epitope or anti-
genic determinant in a pathogenic molecule and the MHC molecule.

The specificity of a T-cell receptor to a particular pathogenic molecule is given
before the T-cell encounters that pathogenic molecule. The specificity is encoded
in gene segments which by random combination give birth to a big repertoire of
T-cell receptors in the T-cells of the body. For that there are four kinds of gene
segments: V for variable, D for diverse, J for joining and C for constant, same as
for B-cell receptors. For the variable region of an α subunit there are 50 V gene
segments and 50 J gene segments in the chromosome 14 of the genetic material of
the cell. For the variable region of the β subunit there are 20 V gene segments, 13
J gene segments and 2 D gene segments in the chromosome 7. Then there is the
possibility of having 50 × 50 × 20 × 13 × 2 = 1.3 × 106 different T-cell receptors.
That number does not consider the constant region which is responsible for the
type of reaction that the cell takes in case of a successful binding. The constant
region is not responsible for the T-cell receptor binding specificity.

Some T-cell receptors contain other two subunits named gamma (γ) and delta

50

3.1. Biological immune system

α chain β chain

Variable region

Constant region

Hypervariable region

Figure 3.20: T-cell receptor

(δ). They are produced transcribing and translating the gene assembled with gene
segments stored in chromosome 7 for the γ protein subunit and gene segments
stored in chromosome 14 for the δ protein subunit.

Cell communication model - Part 2

David Berlo extended the general model of communication in 1960 with the concept of chan-
nel, resulting in Sender→Message→Channel→Receiver. A channel is the medium where the
message travels towards the receiver, statement taken from [Wikipedia, 2010]. The idea of
a communication medium applies only to a long distance communication where the sender
and the receiver are apart. In the context of cell communication the channel is the extracel-
lular liquid in the cell environment where the ligand travels through before interacting with
a receptor. Regarding where the ligand is located and where the ligand-receptor interaction
takes place, five types of cell communication can be distinguished:

Juxtacrine communication The ligand-receptor interaction is given in cells having physical
contact. The ligand is located on the surface of the ligand producing cell and the
receptor on the surface of the receiving cell. The ligands in this kind of communication
are usually protein molecules on the surface of cells which need to transmit precisely a
message.

Paracrine communication Communication of cells over short distances. The ligand is re-
leased by the ligand producing cell and travels the extracellular liquid. The ligand-
receptor interaction in the proximity of the ligand producing cell with a cell having a
matching receptor. The ligands in this kind of communication are usually neurotrans-
mitters or cytokines.

Endocrine communication Communication of cells over long distance. The ligand travels the
extracellular liquid and the ligand-receptor interaction is given far away of the ligand
producing cell with a cell having a matching receptor. Ligands are usually hormones.

Autocrine communication Communication of the cell with itself. The ligand for this kind of
communication, once outside of the ligand producing cell, binds to a specific receptor

51

Chapter 3. Artificial immune systems

in the same cell. This kind of communication can be compared with the internal con-
versation that a person establish with itself speaking aloud. The ligands for this kind
of communication are usually cytokines.

Intracrine communication Communication of the cell with itself. The ligand stays inside the
ligand producing cell and binds to a matching receptor lying inside the same cell. This
kind of communication can be compared with the internal conversation that a person
establish with itself in silence. The ligands for this kind of communication are usually
are cytokines.

Cell communication model - Part 3

Finally, Wilbur Schram indicated in 1954 that it is important to consider also in the general
model of communication the impact that the message has on the receiver, statement taken
from [Wikipedia, 2010]. That idea concerns what happens in cell communication since after
a ligand-receptor interaction occurs, the cell having the receptor transduces the signal till
its nucleus and decodes from genetic material the respective cell response. In consequence,
the process of cell communication can be modeled as Ligand-receptor interaction→Signal
transduction→Cell response.

Signal transduction A surface cell receptor has a side on the internal surface of the cell mem-
brane that binds with molecules inside the cell across a signal transduction pathway.
There are different signal transduction pathways. Signal transduction can help amplify-
ing the signal or merge the signals of multiple receptors. The ligand-receptor interaction
initiates a determined signal transduction pathway, which at the end activates a deter-
mined transcription factor able to turn a respective gen or set of genes on in the nucleus
of the cell. The information of that genes is taken into messenger ribonucleic acid, in
short mRNA, process named as transcription.

Cell membrane

Nucleus

Cell component

Inherited information

Surface receptor

Signal transduction

Transcription

Translation

Figure 3.21: Signal transduction, transcription and translation

Cell response At the structural level, the response of a cell is codified by genes, stored in the
genetic material of the organism in the nucleus of the cell, made of deoxyribonucleic acid,
in short DNA. A gene is considered the unit of heredity in any living organism. A gene

52

3.1. Biological immune system

defines the sequence of amino acids of one protein. Note that the entire genetic material
of an organism is inside all cells and is named genome, however, in each cell only some
parts of that genetic material is expressed, reason why it is possible to have different cells.
The entire set of proteins expressed by a cell at a defined time and conditions is named
proteome. The information of the composition of an specific amino acid is contained
in a triplet of nucleotides named codon, encoded in the genetic code. A nucleotide is
a molecule that can be defined as the structural unit in the inherited information in
a cell, please see figure 3.22. The genetic code consider the four existing nucleotides:
adenine (A), cytosine (C), guanine (G) and Thymine (T) or uracil (U) as components
of codons of three nucleotides. Uracil is present in transcribed genetic material outside
the nucleus or genetic material of viruses or cells without nucleus made of ribonucleic
acid, in short RNA, instead of DNA. That gives the possibility of having 43 = 64 kinds
of amino acids. But, the genetic code is redundant since there exist 20 kinds of amino
acids in the structure of cell proteins. A cell is a kind of molecular machine, it produces
molecules, mostly proteins, from the transcribed mRNA in ribosomes, process called
as translation. A ribosomes is a component in the cytoplasm of a cell. Please refer to
figure 3.21 for getting the idea where each process, signal transduction, transcription
and translation, take place inside the cell.

...

...

...

coded in the Genetic Code and made of DNA or RNA

Nucleotide
Codon

Gene

Chromosome

Genome

Amino acid

Protein

Figure 3.22: Genetic material

At a functional level, a ligand-receptor interaction triggers in the target cell a response
that depends on: the characteristics of the ligand, the number of ligands around the
cell, the number of receptors available on the cell for such ligand, the affinity between
ligand and receptor and the activated pathway for signal transduction. The most known
target cell responses to its environment after ligand-receptor interaction are: secretion
of identical or different ligands, increment of the number of receptors for the same or
different ligands and suppression of its response. Ligand-receptor interaction can pro-
duce also an effect on the target cell itself. Thus, according to that reaction, ligands can
be classified and named as growth, death or survival factors. A growth factor stimulates
or inhibit the growth of the cell, its proliferation by cell division, its maturation or its
differentiation. A death factor causes a cell to undergo a programmed cell death. A
survival factor is a factor that looks for the maintenance of the functional activities of
the target cells and which deprivation can lead to a programmed cell death.

53

Chapter 3. Artificial immune systems

3.1.4 Immune system infrastructure

The immune system infrastructure is a set of organs and ducts connected together. The im-
mune system agents, the leukocytes, use such infrastructure to move around the body and
perform the immune response under the presence of pathogens in the body. The immune
system infrastructure consist of the cardiovascular system and the lymphatic system. Both
systems are generally presented in the literature apart, therefore they will be presented sep-
arately below. After that, the use of such infrastructure for the immune response is exposed.

Cardiovascular system The cardiovascular system is composed of the blood, the heart and
the blood vessels, see figure 3.23. The cardiovascular vessels transport blood throughout
the body being pumped by the heart. The cardiovascular system is a closed system,
meaning that the blood flows in a circular way without leaving the blood vessels. Small
permeable blood vessels in the surroundings from tissues allow the delivery of nutrients
from the blood to the tissues and the gathering of waste products from the tissues to
the blood. The blood is important for the immune system because it transports ready
to combat leukocytes to the tissues. Furthermore, since the blood is spread throughout
the body, it also serves as a communication medium transporting substances which act
as messages for the leukocytes.

Heart

Blood vessels

Figure 3.23: Cardiovascular system

Lymphatic system The lymphatic system is composed of the lymph, the lymph nodes and the

54

3.1. Biological immune system

lymph vessels. Small permeable lymph vessels closed at one end and located in-between
the cells of tissues, allow the gathering of the lymph. The lymph, term which comes
from the latin word lympha that means clear water, is composed of leukocytes which
trapped pathogen and cellular debris. The lymphatic vessels transport the lymph from
the tissues to the lymph nodes. It is important to note that, there are not lymph vessels
that bring the lymph back to the tissues, instead new leukocytes produced in the lymph
nodes are directed to the blood vessels for moving into the blood. Consequently, the
lymphatic system is considered a one way open system. Furthermore, the lymphatic
system relies on some organs like the bone marrow, the thymus and the spleen for
producing leukocytes and the tonsils for battling with inhaled or digested pathogen,
please see figure 3.24.

Tonsils

Thymus gland

Spleen

Lymph nodes

Bone marrow

Lymph vessels

Figure 3.24: Lymphatic system

During the immune response, the immune system infrastructure is used actively in the
following way. Leukocytes are produced in the bone marrow, a tissue inside the largest bones.
Some of them migrate to the spleen and some others to the thymus in order to become fit for
recognizing pathogen. Leukocytes enter the blood, flow in the blood vessels throughout the
body, and guard for the presence of pathogens. In case pathogens invade the body through a
wound, called site of infection, leukocytes migrate to the tissues being affected by pathogens
and combat with them. In the other case when pathogens are ingested or inhaled, the first

55

Chapter 3. Artificial immune systems

organ of defense that they encounter are the tonsils. The tonsils have leukocytes on their
outermost layer that scans for the presence of pathogens. The cellular debris, product of
the battle between leukocytes and pathogens, and the leukocytes that trapped pathogen and
communicate the situation on the site of infection, enter the lymph and flow in the lymphatic
vessels towards the lymph nodes. The lymph nodes get rid of cellular debris and process
the information communicated by the arriving leukocytes. With the processed information,
new more skilled leukocytes are produced. The newly produced leukocytes enter the lymph
towards blood vessels were the lymph is mixed with the circulating blood. The leukocytes that
entered the blood move again to the site of infection or compensate the volume of leukocytes
that left the blood for fighting with pathogens.

3.1.5 Immune system agents

The immune system agents are cells responsible of executing the immune response in the
immune system. Such cells are named leukocytes. The term leukocyte means white cell
coming from the Greek words leukos, that means white, and kutos that means cell. They
were named white cells since in laboratory they show up in white color.

Leukocytes are cells which are mainly produced from the hematopoietic stem cell in the
bone marrow. An hematopoietic stem cell, term which comes from the Greek words haimat
that means blood and poietic that means create, is a type of stem cell that gives origin to
all cells of the blood. Stem cells are cells in multicellular organisms that have the ability to
reproduce through cell division and then differentiate into several types of cells. Stem cells
can be embryonic or adult. Embryonic stem cells are found on embryos and adult stem cell on
tissues of the body. Adult stem cells replenish cells regenerating in this way damaged tissues.

Leukocytes produced from the hematopoietic stem cell differentiate into several types of
cells with different physical functions. Thus, leukocytes can be classified regarding the pres-
ence of granules inside the cell in granulocytes and agranulocytes, see figure 3.25. Gran-
ulocytes are small sacks which serve for storing cell produced substances, for transporting
substances inside the cells or as compartment where chemical reactions take place, such is the
case of decomposition of complex substances. Among granulocyte leukocytes are the basophil
cells, the neutrophil cells and the eosinophil cells. Agranulocytes leukocytes are the mono-
cytes and the lymphocytes. Basophil cells, neutrophil cells, eosinophil cells and monocytes
perform mainly the innate immune response. Lymphocytes, except natural killer cells, are
responsible of the adaptive immune response, see figure 3.26. The function of each kind of
leukocyte is described below.

Leukocytes

Granulocytes Agranulocytes

Basophil cells Eosinophil cellsNeutrophil cells Monocytes Lymphocytes

Macrophages Dendritic cells Natural killer cells T-cells B-cells

Figure 3.25: Leukocyte classification

Basophil cells These cells have granules that change color with basic dyes. A dye is a coloring
liquid. Basophil cells derive their name from the word basic and from the Greek word

56

3.1. Biological immune system

Innate immune response

Adaptive immune response

Basophil cells Eosinophil cellsNeutrophil cells

Macrophages Dendritic cells

T-cells B-cells

Natural killer cells

Figure 3.26: Leukocytes in the innate and adaptive immune response

philos, that means beloved. Basophil cells release the organic compound histamine that
causes inflammation, see figure 3.27. Histamine act as a chemokine. Inflammation is a
process that can be defined as the movement of leukocytes out of the blood vessels to
the site of infection. Big amounts of leukocytes in the site of infection are the reason
of swelling. The histamine is an organic compound that serves for informing other
leukocytes over the site where the infection takes place.

Site of infection Pathogens

Histamine

Basophil

cell

Figure 3.27: Basophil cell releases histamine for attracting other leukocytes

Neutrophil cells These cells have granules which change color with neutral dyes. Neutrophil
cells move by chemotaxis to the site of infection and engulf pathogens, i.e. bacteria,
please see figure 3.28. Neutrophil cells die after ingesting pathogen forming a yellow-

57

Chapter 3. Artificial immune systems

white substance called pus around the site of infection.

Site of infection

Pathogen
Neutrophil

cell

Figure 3.28: Neutrophil cell engulfs pathogen and dies

Eosinophil cells These cells have granules which change color with the acid dye eosin. Eo-
sinophil cells release toxins which are poisonous organic compounds that produce the
death of pathogen infected cells, i.e. virus infected cells, please see figure 3.29.

Site of infection

Pathogen

Eosinophil

cell

Toxins

Virus

Infected cell

Figure 3.29: Eosinophil cell releases toxins for killing infected cell

Monocytes The term monocyte is derived from the word mono that means one. Monocytes
are cells characterized for having one large nucleus. Monocytes move by chemotaxis
out from the blood vessels towards the site of infection. Once in the site of infection,
they execute the process of phagocytosis. The term phagocytosis comes from the Greek
words phagein, that means to eat and osis, that mean process. Phagocytosis is the
process of engulfing solid material such as cellular material and pathogens. Monocytes
differentiate in the site of infection into macrophages and dendritic cells.

Macrophages The term macrophage comes from the Greek words makro, that means
large, and phagein, that means to eat. Macrophages are cells that mainly execute
phagocytosis removing dead cells, such as neutrophils that engulfed pathogen and
then died, worn-out cells and cellular debris, please see figure 3.30.

Dendritic cells These are cells located in the interfaces between the external and inter-
nal environment of the body such as the skin and the lining of the gastrointestinal
tract. They reach such tissues transported by the blood. Dendritic cells are said
to have three states immature, semi-mature and mature. In a mature state they
present lots of branched projections called dendrites, reason why they got the name
of dendritic cells. Dendritic cells have the function of collecting, processing and

58

3.1. Biological immune system

cell

Site of infection

Pathogen

Neutrophil

Virus

Infected cell

Macrophage

Figure 3.30: Macrophage cell removes dead cells

presenting antigen material to cells responsible of the adaptive immune response,
mainly to CD4+ T-cells. Therefore, they are considered as the interface between
the innate immune system and the adaptive immune system.

A dendritic cell collects antigenic material by receptor endocytosis. In receptor
endocytosis, a cell ingests a molecule when one of its receptors binds to that mol-
ecule. To support the task of collecting antigenic material, a dendritic cell has
toll like receptors for a variety of typical ligands present in pathogen. Besides,
a dendritic cell has a set of receptors for further pathogen-associated molecular
patterns, for damage-associated molecular patterns produced by macrophages and
other injured or death cells, and for inflammatory cytokines. Those signals help
the dendritic cell by assessing the danger situation around the antigenic material.

The collected material is processed in the lysosomes of the dendritic cell. A lyso-
some is a component in the cytoplasm of the cell that fragments the ingested ma-
terial. Those fragments are arranged together with histocompatibility molecules
class II and located in the external surface of its cell membrane.

Then, the dendritic cell migrates from the tissue to the lymph node or spleen.
T-cells and B-cells reside in the lymph nodes or the spleen, being the probability
of encountering a CD4+ T-cell with a T-cell receptor that matches the pathogenic
fragment together with the MHC-II molecule high. In case the T-cell receptor of
some CD4+ T-cell binds the presented compound of the dendritic cell, the T-cell
waits for a co-stimulatory signal in order to become activated. For that signal, the
CD4+ T-cell has a receptor named CD-28 and the dendritic cell produces a ligand
named B7 when the situation at the site of infection is dangerous. Once activated,
the CD4+ T-cell starts to differentiate according to additional ligands secreted
also by the dendritic cell. Figure 3.33 gives a pictured idea of how a dendritic cell
works.

A dendritic cell besides having the ability of activating a CD4+ T-cell is also
able to inform the T-cell where to go for combating the antigen. For that, a
dendritic cell that collects antigen in the skin, also collects vitamin D3-calciferol
and convert it in calcitriol. Calcitriol is secreted by the dendritic cell and induces
the activated CD4+ T-cell to produce CCR10 receptors. CCR10 receptors bind to

59

Chapter 3. Artificial immune systems

CCL27 chemokines present in the skin. That means, the CD4+ T-cell is attracted
to move into direction of the skin by chemotaxis. A dendritic cell that collects
antigen in the gastrointestinal tract takes vitamin A-retinol, converts it to retinoic
acid and secretes it nearby the activated CD4+ T-cell. The CD4+ T-cell produces
CCR9 receptors that bind to CCL25 chemokines which lead the CD4+T-cell to
the intestine by chemotaxis.

There are also dendritic cells which origin are not monocytes. Those dendritic cells
are named lymphoid dendritic cells or plasmacytoid dendritic cells, because they
follow the lymphoid differentiation of the hematopoietic stem cell, not the myeloid
differentiation which gives origin to monocytes. They have TLR receptors, for
example the TLR-7 receptor which binds the single stranded ribonucleic acid of
viruses. Under a viral infection they produce high amounts of a cytokine named
interferon. Interferons are ligands which trigger the immune system activating
natural killer cells and increasing the reproduction of cytotoxic cells, in that way
interfering the viral or tumor cell replication.

Dendritic cells are not completely understood. Many questions are open like: at
which point a dendritic cell decides to migrate to the lymph node, how much
antigen the dendritic cell collects in the tissue, which concentration of external
signals is necessary for producing a co-stimulatory signal able to activate a CD4+
T-cell, what is the life span of the dendritic cell after presenting an antigen to a
CD4+ T-cell, how many CD4+ T-cells can a dendritic cell activate, how dendritic
cells present antigen to B-cells. Those questions where reported open at the time
of developing the algorithm presented in [Greensmith, 2007] and in section 3.2.4
of this chapter.

Lymphocytes These are a type of leukocyte responsible of executing the adaptive immune
response. Natural killer cells, B-cells and T-cells belong to the group of lymphocytes.
Below a description of those cells.

Natural killer cells These are cells specialized in killing virus infected cells and tumor
cells. Natural killer cells recognize their target cells using a set of receptors. Their
receptors are classified in activating receptors and inhibiting receptors. Activating
receptors are specialized in recognizing suspicious molecules, however, activator
receptors in natural killer cells are not as specialized and diverse as the receptors
of B-cells and T-cells. Natural killer cells do not develop an adaptive immune
response, reason why they belong to the innate immune system rather to the
adaptive immune system. Inhibitor receptors bind to MHC-I molecules. Viruses
normally suppress the expression of MHC-I molecules in the cell they have infected.
The same happens with cancer cells that present a reduced amount of MHC-I
molecules. Thus, when the number of activating signals is higher that the number
of inhibitory signals, the natural killer cell becomes activated and starts performing
actions for killing the cell. For that, natural killer cells release toxic substances
such as perforins and granzymes near the cell to be killed. Perforins perforate the
cell membrane of the cell allowing granzymes enter the cell. Granzymes induce the
cell to die by apoptosis and to produce the so called reactive oxygen species (ROS).
Reactive oxygen species are free radicals, or better known as oxidants, that have
the ability of damaging the cell reacting quickly with molecules in cell structures

60

3.1. Biological immune system

for reaching an stable state. When activated, natural killer cells release also ligands
that stimulate macrophages to kill the bacteria they have phagocyted and attract
other immune cells to the site of infection producing inflammation.

T-cells A T-cell is a cell of the immune system that participates in the adaptive immune
response. Its surface is covered with thousands of identical copies of receptors
named T-cell receptors. T-cell receptors are specific, that means, they bind to a
particular epitope of a pathogenic molecule. When that happens, a T-cell may
become activated, starting processes that contribute with the adaptive immune
response. A T-cell with T-cell receptors able to bind to a particular pathogenic
molecule exists even before the T-cell encounters that pathogenic molecule. The
particular structure of a T-cell receptor is encoded in a gene which is assembled
from randomly taken gene segments of the genetic material in the nucleus of the
cell during T-cell maturation.

T-cells mature in the thymus, reason why they got their name. First, a popula-
tion of hematopoietic stem cells produced in the bone marrow migrates through
the blood into the thymus. The hematopoietic stem cells begin cell division for
generating a population of immature T-cells with a T-cell receptor of random
specificity and both CD8 and CD4 receptors. Then, the immature T-cells are con-
fronted, in the cortex of the thymus, to a wide variety of molecules that belong
the body, mostly proteins, inserted in histocompatibility molecules. When a T-
cell is not able to bind the body molecule–histocompatibility molecule compound
successfully, it is removed by apoptosis. Otherwise, the T-cell is conserved down-
regulating one of its receptors CD4 or CD8, becoming a CD8+ T-cell or a CD4+
T-cell respectively. The T-cell becomes a CD4+ T-cell when it binds successfully
a body molecule–MHC-II molecule compound or a CD8+ T-cell when it binds
successfully to a body molecule–MHC-I molecule compound. That process of mat-
uration is named positive selection, since a T-cell, under successfully recognition,
is positively selected. This process has two objectives, first to train the T-cells for
recognizing body molecules, and second to prove the functionality of the T-cells,
particularly the ability to bind to the histocompatibility molecules produced by
body cells. Histocompatibility molecules produced by body cells are named as
self-histocompatibility molecules in order to differentiate with histocompatibility
molecules of cells of foreign tissues or cells of external organisms.

Auto-immunization is the process by which the immune system produces an im-
mune response against molecules that belong the body, mostly own proteins. Auto-
immunization can occur when a T-cell receptor of a T-cell binds with a body
molecule–self-histocompatibility compound so strongly that the T-cell initiates an
adaptive immune response against that molecule, damaging the own body or even
killing it. In order to avoid that situation, T-cells are confronted to body molecules
inserted in histocompatibility molecules in the medulla of the thymus. When the
T-cell binds too strongly to any presented body molecule–histocompatibility mol-
ecule compound, it is considered as auto-reactive and therefore it is eliminated.
That process is named negative selection, since under receptor interaction, the T-
cell is negatively selected, that means removed form the T-cell set. That process
follows the idea that T-cell receptors of a T-cell that bind with compounds of body
molecule–self-histocompatibility molecule with low affinity, may bind compounds

61

Chapter 3. Artificial immune systems

αβ γδ

CD4+ CD8+

Th1 Th2 Th17

Figure 3.31: T-cell classification

T−Cell receptorPathogenic molecule

Virus infected cell
or tumor cell CD8+ T-cell

CD8 receptor
MHC-I

Cytotoxic molecules

Figure 3.32: Pathogen - cell - CD8+ T-cell

of pathogenic molecule–self-histocompatibility molecule with high affinity. Finally,
the remaining T-cells are considered as mature and leave the thymus. On those
T-cells the body relies to mount immune responses on. Even though auto-reactive
T-cells have been detected before leaving the thymus, some of them may pass
unrecognized through. In that case, when any body molecules–MHC-I molecules
compound of an antigen presenting cell interacts with the T-cell receptor of a T-cell
in the lymph nodes or the spleen, the dendritic cell starts a process to get rid of
that T-cell. Auto-reactive T-cells are potential initiators of auto-immune diseases,
therefore the body tries to eliminate them following diverse paths. That is not the
case for B-cells, since B-cells need T-cells for being activated.

Regarding the type of T-cell receptor a T-cell has, there are two kinds of T-cells,
αβ T-cells and γδ T-cells, please see figure 3.31. The function of αβ T-cells is
better understood than the function of γδ T-cells. γδ T-cells have been identified
binding directly pathogenic molecules in tissues of the body, acting actually as
pathogen collectors instead of relying in antigen presenting cells. That is also
the reason why γδ T-cells present neither CD4 nor CD8 receptors that interact
with the side epitope of histocompatibility molecules. γδ T-cells migrate from the
thymus to tissues that connect the body with the external world like the skin and
the gastrointestinal tract, constituting a first line of defense against pathogenic
molecules.

αβ T-cells can have either a CD8 receptor or a CD4 receptor being named CD8+
T-cells and CD4+ T-cells respectively. The T-cell receptors of CD8+ T-cells
bind with pathogenic molecule–MHC-I molecule compounds. Compounds body
molecule–MHC-I molecule are present in almost all cells of the body showing ev-
ery protein of the cell or produced inside the cell. A virus that enters a cell produces
unnoticed pathogenic molecules, but using MHC-I molecules, the cell can inform
outside about the anomaly. Then, a CD8+ T-cell which T-cell receptor bind such

62

3.1. Biological immune system

Site of infection

Neutrophil
cell

Virus

Infected cell

Dendritic cell

Macrophage

PAMPs

DAMPs

Inflamatory cytokines

Pathogen

Site of infection

Pathogenic
molecule

Neutrophil
cell

Virus

Infected cell

Dendritic cell

Macrophage

Lysosome

PAMPs

DAMPs

Inflamatory cytokines

Pathogen

Digested
pathogenic molecule

Dendritic cell

Lymph node or spleen

CD4+ T-cell

T-cell receptor
CD4 receptor

CD28

MHC-II

Co-stimulatory signal B7

Signals for differentiation

Figure 3.33: Pathogen - dendritic cell - CD4+ T-cell

63

Chapter 3. Artificial immune systems

a compound becomes activated and starts secreting cytotoxic molecules that kill
the infected cell, see figure 3.32. The T-cell receptors of CD4+ T-cells bind with
pathogenic molecule–MHC-II molecule compounds of antigen presenting cells, such
as dendritic cells. Besides CD4+ T-cells require a co-stimulation signal, named B7,
for being activated. For that signal the CD4+ T-cell presents a receptor named
CD28, see figure 3.33. If no co-stimulation signal is present, the CD4+ T-cell be-
comes anergic. An anergic CD4+ T-cell is unable to mount an immune response.
The lack of co-stimulation is given normally when a T-cell presents a T-cell recep-
tor that matches a body molecule-MHC-II molecule compound. That mechanism
allows to stop auto-reactive cells. When both, several hundreds of T-cell receptors
in a CD4+ T-cell bind to pathogenic molecule-MHC-II molecule compounds and
the receptors CD28 bind to B7, the CD4+ T-cell becomes activated and starts cell
division and differentiation into helper CD4+ T-cells. Helper CD4+ T-cells are
cells that help other cells in the immune system secreting ligands that stimulate
that cells. Activated CD4+ T-cell differentiate into different kinds of helper CD4+
T-cells according to the kind of ligands that the dendritic cell secretes at the time
of binding. The most known differentiated helper CD4+ T-cells are Th1, Th2, Tfh,
Th17 and Treg and are produced due to the presence of the ligands IL-12, IL-4, IL-
21, IL-23 and IL-10 respectively. Th1 cells help combating intracellular pathogen
by stimulating macrophages to kill bacteria. Th2 cells help combating extracellu-
lar pathogen by binding B-cells activating them for synthesizing and secretion of
antibodies. Tfh cells help B-cells to reproduce by cell division, undergo affinity
maturation and differentiate into memory B-cells and plasma B-cells. Plasma B-
cells are cells capable of synthesizing huge amounts of antibodies. They are found
in follicles in the lymph node, reason why they got that name. Th17 cells help
combating fungi and bacteria by attracting neutrophil cells to places like the skin
and the gastrointestinal tract and producing inflammation. They also stimulate
epithelial cells to release antimicrobial proteins in the skin or mucosal barriers
against bacteria. Treg cells are cells that suppress the immune response. When
activated they release a ligand named IL-10 that inhibits all other helper T-cells
or kills antigen presenting cells. Some other regulatory T-cells like Tr1 and Tr3 are
found in the intestine. There, they care for making the body tolerant to molecules
ingested in the diet. Some of the produced cells by CD4+ T-cell differentiation
become memory CD4+ T-cells. A memory CD4+ T-cell gets the same T-cell re-
ceptors as its parent CD4+ T-cell and has the ability for being activated with an
smaller amount of pathogenic molecules binding its T-cell receptors. The intrusion
of the same pathogen a time later will generate an earlier and effective immune
response because of the presence of that memory CD4+ T-cells.

There are also αβ T-cells which have on their surfaces activating and inhibiting
receptors, like those found in natural killer cells. Therefore, these cells are named
natural killer T-cells. They do not bind pathogenic molecule–histocompatibility
molecule I or II compounds, instead they bind a pathogenic molecule–CD1 mol-
ecule compounds. MHC-II molecules form compounds with ingested pathogenic
molecules with carbohydrate components while CD1 molecules form compounds
with ingested pathogenic molecules with lipid components. Lipid molecules are
hydrophobic. When a natural killer T-cell is activated, it secretes high amounts of

64

3.1. Biological immune system

ligands that stimulate CD4+ T-cells to differentiate into Th1 and Th2, accelerating
the adaptive immune response.

B-cells B-cells are immune cells that participate in the adaptive immune response. The
surface of a B-cell is covered with thousands of identical copies of B-cell receptors
which bind to an specific epitope or antigenic determinant of a pathogen.

B-cells are cells produced and maturated in the bone marrow, reason why they
got their name. Over half of the produced B-cells have B-cell receptors able to
bind with body molecules. Fact which would start a fight against the own body
tissues. Therefore, the produced B-cells are confronted with body molecules in the
bone marrow. When the B-cell receptor of a B-cell binds too strongly with a body
molecule, the receptor undergoes a process of receptor editing. Receptor editing
consists in transcribing again the pool of gene segments that encode the receptor
specificity and produce a receptor with another binding site. When the B-cell
receptor binds a body molecule again, the cell dies by apoptosis. Although some
B-cells with B-cell receptors able to bind to body molecules still leave the bone
marrow, they are stopped by further processes like the absence of helper CD4+
T-cells with matching T-cell receptors able to activate them.

When a pathogen enters the body, it encounters a pool of B-cells with B-cell recep-
tors of different specificity. The binding site, or paratope, of the B-cell receptors
of some B-cells will bind the antigenic determinants, or epitopes, of that patho-
gen with different affinities. Affinity is the strength of binding. Only the B-cells
whose B-cell receptors bind with a determined strength will participate in the adap-
tive immune response, process named as selection. Selected B-cells phagocyte the
pathogenic molecules by receptor endocytosis, digest them in lysosomes and form
digested pathogenic molecule–MHC-II molecule compounds to be shown on their
surfaces, please see figure 3.34. When the T-cell receptors of a helper CD4+ T-cell
bind the digested pathogenic molecule–MHC-II molecule compound of a B-cell, it
starts releasing ligands which activates the B-cell. An activated B-cell starts to
reproduce by mitosis. Process named as clonal expansion.

By clonal expansion, two kinds of cells are produced, plasma B-cells and memory
B-cells. A plasma B-cells is a cell able to synthesize and secrete B-cell receptors
massively. Those free B-cell receptors, called also antibodies, help fighting against
the pathogen by binding pathogenic molecules for further removal. A memory B-
cell is a clone of the parent B-cell having identical receptors as those of its parent
B-cell. Memory cells have a long life span, therefore an earlier and effective response
to a second intrusion of the same pathogen into the body is possible. That process
is named immunological memory and has been the basis for the development of
vaccines. A vaccine is an small amount of a determined pathogen given to a person,
which triggers an immune response that produces memory B-cells.

During clonal expansion B-cells are first cloned and afterwards they differentiate.
During differentiation a group of memory B-cells get B-cell receptors with different
specificity as those of their parent, [Allen et al., 1987]. The change of specificity in
the B-cell receptors is given by mutation. Since mutation occurs in multiple points
and it occurs in immune cells, not in reproductive cells of the body, the process is
named somatic hyper-mutation. That process helps increasing the diversity of the
B-cell receptor repertoire. Thus, it is possible an every-time-increased affinity of

65

Chapter 3. Artificial immune systems

B-cell

B-cell receptor

Pathogenic molecule

B-cell

Pathogenic
molecule

Lysosome

B-cell

CD4 receptor

Helper
CD4+ T-cell

T-cell receptor
Digested

pathogenic molecule

MHC-II

Stimulation ligands for B-cells

Lymph node

B-cell receptor

Free B-cell receptors

(antibodies)

Memory B-cell Plasma B-cell

Figure 3.34: Pathogen - B-cell - helper CD4+ T-cell

66

3.2. Artificial immune system models and algorithms

the B-cell receptors of B-cells that meet the antigenic determinant again. That pro-
cess is named affinity maturation and makes possible an evolution of the immune
response in order to combat definitely and more effectively with a pathogen.

Affinity maturation implies producing B-cells with a different B-cell receptor. But
why if that B-cell receptor binds too strongly to body molecules. B-cells with
mutated receptors that show an improved affinity to the antigenic determinant
are selected. All other B-cells which present B-cell receptors with unchanged or
diminished affinity to the antigenic determinant are removed, [Tarlinton, 1998].
That process is said to happen in germinal centers placed in the cortex of the
lymph nodes.

3.2 Artificial immune system models and algorithms

Artificial immune system models are a simplified version of the biological immune system
models presented in literature about Immunology. The aim of this section is to show the
application of such artificial immune system models for the development of artificial immune
system algorithms which can be useful for solving computational problems, machine learning
and pattern recognition. The main artificial immune models are: positive and negative selec-
tion, clonal selection, immune network, dendritic cells and the formal immune network. Next
subsections present those artificial immune system models by its immunological background
together with an algorithm. Algorithms can vary according to the application, however, the
presented pseudo-codes for each algorithm intend to give a hands-on idea of how immunolog-
ical theories can be used.

3.2.1 Positive and negative selection

Positive and negative selection are processes present during the maturation of B-cells and T-
cells. B-cells are produced and maturated in the bone marrow. Since B-cells are produced with
a wide repertoire of B-cell receptors, some B-cell receptors can bind body molecules tightly
inducing the production of antibodies against the body. Therefore, B-cells are confronted in
the bone marrow with body molecules. All B-cells whose B-cell receptors bind tightly to body
molecules, rearrange their receptors or die by apoptosis. That process is named negative se-
lection. The same process happens in the lymph nodes when through somatic hyper-mutation
B-cells with mutated receptors are produced. There, auto-reactive T-cells are detected and
induced to die by apoptosis. The maturation of T-cells is a little more complicated since
the T-cell receptors are able to recognize compounds of antigen–histocompatibility molecule
shown by antigen presenting cells. T-cells are produced in the bone marrow, but migrate to
the thymus to maturate. There, they are first confronted with compounds of body molecule–
histocompatibility molecules. T-cells able to bind to any of those compounds are positively
selected. That process assures that only T-cells with functionally working T-cell receptors
survive, all other die by apoptosis. Besides, T-cells are also confronted with compounds
of body molecule–histocompatibility molecules, in order to eliminate those T-cells that are
reactive to the body, same as the negative selection in B-cell maturation.

The negative selection process has been used for the development of an algorithm for the
fist time in [Forrest et al., 1994]. The proposed algorithm has been applied for detecting
changes in a computer caused by viruses, unauthorized use, etc. It considers known data in a

67

Chapter 3. Artificial immune systems

computer as the self and any deviation or change of the known data as the non-self. The goal
is to have a mechanism that discriminates self from non-self. In order to generate a detector
set of strings representing deviation or changes of the known data in a computer, negative
selection is used. Given a random set of strings, the affinity of those strings in relation to
strings representing the known data in the computer is calculated. If any string of the random
set has a considerably affinity with any of the strings representing the normal state of the
computer, the string is removed from the set, otherwise is conserved in the set. The remaining
strings become the set of detectors of possible deviations in the data of a computer.

Although the negative selection process can be applied for generating a set of detectors when
the string representing the self is provided, positive selection can be used when the strings
representing the non-self are also provided. Therefore, both processes positive selection and
negative selection, can be executed similarly to the maturation of T-cells in the thymus.
Positive selection can be applied for getting a set of T-cells that bind correctly with antigens,
in other words the non-self. The algorithm combining positive and negative selection is
presented and explained below.

Algorithm 3.1 presents the pseudo-code of the positive and negative selection. Note that for
the algorithm, instead of considering compounds of antigen–histocompatibility molecules and
body molecule–histocompatibility molecule, only antigen and body molecule are written for
reasons of simplicity. A T-cell can be interpreted as a number or a vector with a determined
number of parameters. The algorithm presents two parts. The first part is the positive
selection of T-cells and the second the negative selection of T-cells.

First a random set of immature T-cells with a specified number of parameters is generated,
please see line 2 in the pseudo-code. The idea is, provided a set of antigens, compute for each
random generated immature T-cell, the binding affinity to each antigen in the given antigen
set, please see line 8 in the pseudo-code. The affinity can be computed as, for instance, the
Euclidean distance between the antigen and the immature T-cell. The idea is, positively select
the immature T-cell that binds, within a given threshold, with at least one of the antigens,
see lines 9 to 16 of the pseudo-code. Since the same procedure is executed for each immature
T-cell of the random set of immature T-cells, the number of bindings variable is reset in line
6 of the pseudo-code. The resulting set of semi-mature T-cells, is then the input for the
negative selection part of the algorithm.

The negative selection part of the algorithm computes the binding affinity of each semi-
mature T-cell with each body molecule of a given set of body molecules. When a T-cell binds
to any of the body molecules, it is negatively selected from the set. All remaining T-cells
constitute thereafter, the set of mature T-cells, please see lines 21 to 32 of the pseudo-code.
Since the same procedure is executed for each semi-mature T-cell of the set of semi-mature
T-cells, the number of bindings variable is reset in line 22 of the pseudo-code.

The positive and the negative selection processes can be executed a number of iterations
times. Then, the mature T-cells set can be accumulated in each iteration as shown in line 36
of the pseudo-code. For that, the number of semi-mature and mature T-cells variables should
be reset and the sets of semi-mature and mature T-cell sets emptied, see lines 3, 19, 4 and 20
in the pseudo-code.

3.2.2 Clonal selection

The clonal selection is a theory initiated in 1954 by the immunologist Niels Jerne, statement
taken from [Wikipedia, 2010]. He stated that in the body a pool of immune cells with specific

68

3.2. Artificial immune system models and algorithms

Algorithm 3.1: Positive and negative selection

Input: Number of immature T-cells, set of antigens, set of body molecules, threshold for the
binding affinity with the antigen, threshold for the binding affinity with the body
molecule, number of iterations

Output: Set of mature T-cells

1: foreach iteration do

2: Generate randomly immature T-cells
3: Reset the number of semi-mature T-cells variable
4: Empty the set of semi-mature T-cells
5: foreach immature T-cell do

6: Reset the number of bindings variable
7: foreach antigen do

8: Compute the binding affinity between the immature T-cell and the antigen
9: if binding affinity <= threshold for the binding affinity with the antigen then

10: Increment the number of bindings variable

11: end

12: end

13: if number of bindings > 0 then

% Positive selection

14: Copy the immature T-cell to the set of semi-mature T-cells
15: Increment the number of semi-mature T-cells variable

16: end

17: end

18: if number of semi-mature T-cells 6= 0 then

19: Reset the number of semi-mature T-cells variable
20: Empty the set of mature T-cells
21: foreach semi-mature T-cell do

22: Reset the number of bindings variable
23: foreach body molecule do

24: Compute the binding affinity between the semi-mature T-cell and the body
molecule

25: if binding affinity <= threshold for the binding affinity with the body molecule
then

26: Increment the number of bindings variable
27: end

28: end

29: if number of bindings = 0 then

% Negative selection

30: Copy the semi-mature T-cell to the set of mature T-cells
31: Increment the number of semi-mature T-cells variable

32: end

33: end

34: end

35: if number of mature T-cells 6= 0 then

36: Accumulate the mature T-cells
37: end

38: end

69

Chapter 3. Artificial immune systems

receptors is present before an antigen enters the body. First when the antigen enters the
body, the immune cells which bind the antigen start to reproduce for combating the antigen.
In 1958 Frank Macfarlane Burnet named the theory for the first time as the clonal selection
theory and added the idea that the immune cells reproduce by cloning two types of cells, one
type that combats with the pathogen and the other type with a longer lifespan. The clones
cells with longer lifespan ensure a future immunity to the antigen. In the following years the
theory has been enhanced with the idea that immune cells, in particular B-cells, differentiate
into cells which are able to bind the antigen in the course of time with higher binding affinity.
That effect has been attributed to the mutation of the binding sites of receptors of B-cell
clones during differentiation. B-cells are cells of the adaptive immune system which take
a big role in the development of an specific immune response against antigens. The clonal
selection algorithm takes inspiration on the processes associated to the clonal selection theory
for B-cells, explained in 3.1.5 and defined briefly below.

Clonal selection Only the B-cells whose B-cell receptors bind to the antigen with a deter-
mined strength start an immune response.

Clonal expansion Selected B-cells start to produce B-cell clones.

Immunological memory Some of the B-cell clones get a longer lifespan and are named mem-
ory B-cells.

Somatic hypermutation Some of the B-cell clones get mutated B-cell receptors.

Affinity maturation B-cell clones whose mutated receptors bind with higher strength to the
antigen in reference to their parent B-cell survive, all other die. An iterated production
of B-cell clones causes an ever increasing binding strength with the antigen.

The most known clonal selection algorithm is the CLONALG proposed by Leandro N.
de Castro and Fernando Von Zuben and presented in [Castro and Timmis, 2002]. That al-
gorithm sets the number of B-cell clones proportional to the binding strength of the B-cell
receptors of the selected B-cell to the antigen and the mutation rate inverse proportional
to the same binding strength, all that in the clonal selection and somatic hypermutation
processes respectively.

The pseudo-code of the clonal selection algorithm is listed in Algorithm 3.2. That pseudo-
code considers a B-cell having only one B-cell receptor, therefore for simplicity the pseudo-
code is written in terms of B-cells only, not in terms of B-cell receptors. Besides, the binding
strength is named binding affinity. The algorithm gives as output a set of memory B-cells.
The set of memory B-cells is a set with B-cells that present the highest binding affinity found
to a set of given antigens. There is the possibility to generate only one memory B-cell for
every antigen or a group of memory B-cells for each antigen. There is also the possibility of
having only one or a set of antigens in the given set. The implementation of the algorithm
is application dependent. The application at the end determines which exactly is the output
of the algorithm, the number representation of B-cells and antigens and the binding affinity
function to use. This algorithm has been frequently used for learning patterns and optimizing
functions. In the first case the antigens would represent the patterns. In the second case, the
memory B-cells represent the arguments that minimize or maximize a given function.

In Algorithm 3.2, first of all, an initial random set of B-cells of a given size is created,
please see line 1 in the pseudo-code. A B-cell represents the specificity of its B-cell receptor.

70

3.2. Artificial immune system models and algorithms

Algorithm 3.2: Clonal selection

Input: Size of the initial random B-cell set, set of antigens, number of cloning loops, cloning
factor, mutation factor, number of worst B-cells for replacing

Output: Set of memory B-cells

1: Create an initial random set of B-cells of the given size
2: foreach antigen do

3: foreach B-cell do

4: Compute the binding affinity function between the antigen and the B-cell

5: end

6: Sort the set of B-cells by descending binding affinity
7: Select the B-cell with highest binding affinity as a parent B-cell for cloning
8: foreach cloning loop do

9: Set the number of B-cell clones proportional to the binding affinity of the parent B-cell
using a cloning factor if given

10: Set the mutation rate inverse proportional to the binding affinity of the parent B-cell
using a mutation factor if given

11: foreach B-cell clone do

12: Mutate the B-cell clone
13: Compute the binding affinity function between the antigen and the B-cell clone
14: if affinity of the B-cell clone > current highest affinity then

15: Select the B-cell clone as a parent B-cell for next cloning loop
16: Set the current highest binding affinity with the binding affinity of the B-cell

clone
17: end

18: end

19: end

20: if B-cell clone with better binding affinity exists then

21: Replace the B-cell parent with the B-cell clone with better binding affinity

22: end

23: Copy the B-cell with best binding affinity after cloning in the set of memory B-cells
24: Replace B-cells with the worst binding affinity to the antigen with random B-cells

25: end

71

Chapter 3. Artificial immune systems

Next, the binding affinity of one antigen with each B-cell is computed, see lines 2 and 4 in the
pseudo-code. The binding affinity function could be implemented as the Euclidean distance
between the antigen and the B-cell, hence, the higher the distance the lower the binding
affinity. The B-cell with the highest binding affinity is selected as a parent B-cell, see line 7 in
the pseudo-code. Note that instead selecting only the B-cell, a set of B-cell with the highest
binding affinity can be selected as parent cells for producing B-cell clones. The biological
counterpart of this procedure is the clonal selection.

The number of B-cell clones to produce is set proportional to the binding affinity. Because
of the proportionality, a given cloning factor could be used, see line 9 in the pseudo-code. The
mutation rate is inversely proportional to the binding affinity and a given mutation factor
could also be used, see line 10 in the pseudo-code. Each one of the B-cell clones is mutated, see
line 12. The binding affinity between the mutated B-cell clone and the antigen is computed,
see 13 in the pseudo-code. If the binding affinity of the mutated B-cell clone to the antigen is
higher in comparison to the binding affinity of its parent B-cell to the antigen, the mutated
B-cell clone is selected as parent B-cell and the highest binding affinity value is updated, see
lines 15 and 16 in the pseudo-code. In the next iteration, the next B-cell clone is mutated, its
binding affinity to the antigen computed and if its binding affinity is higher than the current
highest binding affinity, the mutated B-cell clone is selected as parent B-cell and its affinity
becomes the new highest affinity. The same for the next B-cell clone, and so on. In the next
cloning loop the mutated B-cell clone with highest affinity will be the one that produces new
B-cell clones. That procedure is repeated a given number of cloning loops. The biological
counterparts of that procedure are the clonal expansion, somatic hyper-mutation and affinity
maturation processes. Note that a cloning loop is performed for the B-cell with the best
binding affinity to the antigen and not for the whole population of B-cells. The algorithm
does not match in this point its biological counterpart since it has been optimized. In the non
optimized case, the cloning loop should be inserted between lines 2 and 3 of the pseudo-code.

When a better B-cell clone exist, it replaces the parent B-cell in the population, see line
21 in the pseudo-code, and a given number of B-cells with the lowest binding affinity to the
antigen are replaced with random B-cells, see lines 20 to 24 in the pseudo-code. The new set
of B-cells now will serve to compute the binding affinity to the next antigen. Lines 20 to 24
make sense when the antigens are correlated or similar.

The mutated B-cell clone with the best binding affinity to the antigen is copied into the
memory B-cells set, see line 23 in the pseudo-code. The memory B-cell set besides being
the solution set, it also ensures that a B-cell with best binding affinity is not removed in
next iterations. The biological counterpart of that procedure is the immunological memory
process.

The quality of the result, that is to say, B-cells with the best binding affinity to the antigen
or set of antigens can be reached with a high number of cloning loops. Whenever the applica-
tion provides only one antigen the whole algorithm could be executed a number of iterations.
So an even better affinity can be reached.

3.2.3 Immune network

The immune network algorithm is based in the immune network theory proposed by Niels K.
Jerne. A quotation of some of his important ideas published in [Jerne, 1974] are cited below:

What is needed, I believe, is to incorporate clonal selection into a broader immune

72

3.2. Artificial immune system models and algorithms

theory which accounts for the properties of the essential regulatory mechanism.
It is a tentative approach to this task that I have proposed that clonal selection
operates in the frame of a lymphocyte network. The immune system is a
network of antibody molecules and lymphocytes that recognize and are recognized
by other antibody molecules and lymphocytes. ... This network is not just a
formal curiosity but it is a functional network and the properties of this network
represent the essential regulatory mechanism of the immune system. ... Apart
from the antigen-driven regulation, regulatory mechanisms that must discriminate
between such lymphocytes, enhancing some and inhibiting others, can therefore
act only (a) via the idiotopes (by means of combining sites of other molecules or
receptors that recognize these idiotopes) or (b) via the combining sites (by means
of idiotopes on other molecules or receptors that are recognized by these combining
sites). ... Are cells influenced when the combining sites of their receptors recognize
an idiotope?. Yes. ... Are cells influenced when the idiotypes of their receptors
are recognized by a combining site?. Yes.

He states that the number of cells in the immune system not only increases with cloning
and affinity maturation, but it is also regulated by a sort of immune network. Such network
is not just the network of immune cells like B-cells or T-cells, but a network that integrates
antibodies too. Therefore, the number of immune cells and the number of antibodies increase
and decrease towards an stable state. In such network, not only programmed cell death and
antigen are the causes of the decreasing of immune cells and antibodies, but also cells or
antibodies that act as inhibitors of cell proliferation. That can be possible because of the
presence of idiotopes and anti-idiotipic antibodies, please see figure 3.35 and 3.36

Antibody or B-cell receptor

Receptor site (Paratope)

Ligand site (Idiotope)

Figure 3.35: Idiotope

An idiotope is a binding site acting as a ligand in a B-cell receptor or antibody. That
idiotope binds with an anti-idiotipic B-cell receptor or anti-idiotipic antibody. The question
now is how that anti-idiotypic antibodies are produced. I have not found a clear answer but it
is assumed that a separate antibody, that is able to bind with the idiotope of the antibody or
B-cell receptor created against a determined antigen, is produced by some cell or maybe by the
same antibody producing cell, taken from [Wikipedia, 2010]. Figure 3.37 taken from [Jerne,
1985], shows a B-cell receptor Ab2 whose paratope binds to the idiotope of an antibody Ab1.
Consequently, the B-cell produces and secretes antibodies with such paratope, anti-idiotipic
antibodies. We also see in figure 3.37, that the paratope of the antibody Ab1 binds to the
idiotope of the B-cell receptor Ab2. In that case, the question is, can a B-cell be opsonized

73

Chapter 3. Artificial immune systems

Antibody or B-cell receptor

Anti-idiotipic antibody

Figure 3.36: Anti-idiotipic antibody

by an antibody?. That idea sounds not much convincing, instead the B-cell can be inhibited
to produce antibodies Ab2. In consequence, some cells can be stimulated by some other cells
and inhibited by some other cells which are also stimulated by other cells and inhibited by
other, giving the idea of a dynamic network.

B-cell receptor

Antibody
B-cell

Ab1

Ab2

B-cell receptor

Antibody

B-cell

Ab1

Ab2

Figure 3.37: Idiotope-paratope interaction

Considering the immune system have approximately R lymphocytes and it is sensitive to
m antigens, the repertoire of lymphocytes for a determined antigen is R

m
. The repertoire of

lymphocytes for an specific antigen presents n sets of lymphocytes with different receptors
recognizing that antigen with different degrees of precision or affinity. Each of those sets of
lymphocytes with identical receptors is dynamic since the number of lymphocytes in the set
changes with time. The dynamics of such set has been modeled quantitatively by Niels K.
Jerne in [Jerne, 1974] in the formula 3.2.

dL

dt
= α− βL+ L

n
∑

1

ϕ(Ei,Ki, t) − L

n
∑

1

ψ(Ii,Ki, t) (3.2)

Where:

The first term α is the rate at which the lymphocytes enter into the set L from other
compartments of the immune system. Even though it is not clear what the author refers with
“other compartments”, I assume that it is referred to cells produced in the bone marrow.

74

3.2. Artificial immune system models and algorithms

The second term βL is the rate at which the lymphocytes decay or leave the set L. I assume
that lymphocyte decay can be originated by programmed cell death because of cell aging or
insufficient nutrients as examples.

The third term is the summation of some function ϕ of all excitatory signals of idiotopes
of the sets E that bind with association constants K to paratopes of the receptors of cells in
the set L. I assume that excitatory signals initiate cloning or the production of antibodies
with identical paratopes, therefore the term is be positively added.

The fourth term is the summation of some function ψ of all inhibitory signals of paratopes
of the sets I that bind to the idiotopes of the set L with association constants K. I assume
again that inhibitory signals represent the inhibition of cell cloning or antibody production,
hence, the negative sign for that term.

Although the mathematical model in 3.2 has been constructed for a set of identical lym-
phocytes, some ideas for modeling the rate of change of the population of all lymphocytes
in the body have been taken. So, Alan S. Perelson in [Perelson, 1989] presents the idea of
reproduction of cells by cell stimulation and the death of cells by lack of stimulation as is to
seen in the formula 3.3

Rate of lymphocyte population change = influx from bone marrow

+reproduction of stimulated cells

−death of unstimulated cells (3.3)

Where the reproduction of stimulated cells is assumed to take place by means of cloning
and the cells which receive no stimulation in a time frame die.

An immune network is a dynamic network of internal agents which also receive stimuli
form external agents. Therefore there are two types of interactions: the interaction of in-
ternal agents with themselves inside the organism and the interactions of internal agents
with external agents. The stimulation of internal agents (lymphocytes) produced by external
agents (antigen) is not present in the mathematical model proposed by Niels K. Jerne in equa-
tion 3.2. However, it is assumed that cloning and affinity maturation by means of somatic
hypermutation follows the interaction of the paratope of any B-cell receptor or antibody with
the epitope of an antigen, as seen in figure 3.38, and that this event produces the increasing
of the population of lymphocytes.

In summary, all those ideas have been taken for constructing immune network algorithms
for computer programs. By the implementation the main goals have been to show clusters
and inter-relationships among data items and to analyze the evolution and stability of such
networks. There exist many algorithms following different interpretations of the given math-
ematical models. Equation 3.4 shows a collection of all possible factors for the increasing or
the decreasing of a lymphocyte population. That equation helps, in the following paragraph,
to explain better the differences among all existing algorithms.

Rate of lymphocyte population change = Nbm − Dn + Ri − Di + Re − De − Dp (3.4)

Where:

75

Chapter 3. Artificial immune systems

B-cell receptor

Idiotopes

B-cell

Paratope

Epitopes Antigen

Antibody

Idiotopes

Paratope

Epitopes Antigen

Figure 3.38: Epitope-paratope interaction

Nbm is the influx of new lymphocytes from the bone marrow

Dn is the out-flux of lymphocytes due to natural death like aging or nutrient deficiency

Ri is the influx of new cells due to reproduction of cells stimulated by other cells, in other
words internal stimulation

Di is the out-flux of cells due to the lack of stimulation of cells by other cells

Re is the influx of new cells due to reproduction of cells stimulated by antigens, in other
words external stimulation

De is the out-flux of cells due to the lack of stimulation of cells by antigens

Dp is the outflux of cells due to death produced by antigens

The artificial immune network proposed in [Timmis et al., 2000] and [Timmis and Neal,
2001] considers the computation of the stimulation of a cell by other cells together with the
stimulation of a cell by the presented antigen or group of antigens. First of all, cells with a low
stimulation value are removed from the network. Cells which have an stimulation level higher
that a given threshold are reproduced proportionally to their stimulation. Such clone cells
are mutated with a determined mutation rate. A percentage of cells with weak stimulation
are removed. The clone cells are inserted in the network and the whole procedure is executed
iteratively again.

Differently, the artificial immune network named aiNet, presented in [Castro and Timmis,
2002], computes the stimulation of all cells by the presented antigen and then, like in the
clonal selection algorithm, selects cells with higher stimulation for reproducing. Clone cells
are mutated with a strength inversely proportional to the stimulation level. After cell re-
production, the stimulation of each cell by all other cells is computed. The stimulation is
measured by means of affinity or similarity, one of the cells that presents a similarity with
other cell higher than a given threshold is eliminated from the network. In this way, the
outflux of cells helps to maintain the number of cells not out of bounds and within a given
range. Besides, new random cells are added at the end of the iteration in order to insert
diversity in the cell population.

As we could perceive in last examples, some factors for the increasing or the decreasing of
a lymphocyte population, shown in equation 3.4 have been taken into account. Some factor

76

3.2. Artificial immune system models and algorithms

are missing and the main difference is the way of computation of the stimulation level of a
cell for reproduction.

Algorithm 3.3 shows the pseudo-code of an immune network algorithm. The algorithm
gives as output, in each iteration, the actual population of B-cells and the set of memory
B-cells. The algorithm starts with a random initial set of B-cells of a given size, see line 1 in
the pseudo-code. The binding affinity of an antigen with each of the B-cells in the network
is computed, see lines 3 and 5 in the pseudo-code. The binding affinity function can be, for
instance, the Euclidean distance between the antigen and the B-cell. However, it is to note
that the lower the distance, the higher the binding affinity. B-cells with the lowest binding
affinity to the antigen, much lower than a given stimulation threshold, are replaced with
random B-cells, see line 8 in the pseudo-code. B-cells with binding affinity to the antigen
higher than the given stimulation threshold, are selected for cloning and mutation of clones is
executed, see lines 7 to 16 in the pseudo-code. For each B-cell clone the binding affinity with
the antigen is also computed. A given number of B-cell clones with binding affinity higher
than the given stimulation threshold is copied into the set of memory B-cells, see lines 17 to 24
in the pseudo-code. The B-cell clones copied to the B-cell memory set are also copied into the
B-cell set, see line 25. For each B-cell in the set is computed the binding affinity with all other
B-cells in the set. When any B-cell of the set stimulates the B-cell, with a binding affinity at
least of suppression threshold, then the B-cell is removed from the B-cell set because of lack
of stimulation, see lines 26 to 37 in the pseudo-code. A given number of B-cells are inserted
into the B-cell set, see line 38. The same procedure is executed for all antigens, line 3 in the
pseudo-code, during a given number of iterations, line 2 in the pseudo-code.

Algorithm 3.3 considers only B-cells since mutation of receptors for affinity maturation
happens only by B-cells. Moreover, the influx of new B-cells in the network comes from the
reproduction of B-cells stimulated by antigen and from new B-cells. The outflux of B-cells
happen due to lack of stimulation of B-cells by other B-cells and by antigen. An extra B-cell
memory set which cells are the ones which bind with all antigens the best has been created
in order not to loose that B-cells in future iterations because of lack of stimulation by other
antigens or by other B-cells.

In comparison with the clonal selection algorithm, the immune network algorithm aims
in a way to control the variation of the number of cells in the population, maintaining in
equilibrium the influx and the outflux of cells. That comes from the idea that the immune
network is considered an homeostatic system, that is to say, a system that tends to maintain a
stable condition. The clonal selection algorithm produces clones with the objective of finding
clones with better binding affinity without caring much about the rate of variation of the
population.

As conclusion, I can say, that immune network algorithms give a big range of possibilities
since the interpretation of the biological principles can vary, some details of the immunological
processes are still not well understood and the implementation into a program put some
other restrictions. From my point of view, one question is still open, how an idiotope exactly
stimulates or inhibits an immune cell after binding with the paratope of an antibody or
another cell? Such question generates, at the end, diversity in the biological interpretations
of an immune network and finally in these algorithms.

77

Chapter 3. Artificial immune systems

Algorithm 3.3: Immune network

Input: Initial size of the B-cell set, number of iterations, set of antigens, stimulation threshold, number
of B-cells with lowest binding affinity for replacing, number of B-cell clones per antigen for the
memory set, number of new B-cells for inserting, suppression threshold

Output: Set of memory B-cells, set of B-cells

1: Create an initial random set of B-cells of the given size
2: foreach iteration do

3: foreach given antigen do

4: foreach B-cell do

5: Compute the binding affinity function between the antigen and the B-cell
6: end

7: Sort the set of B-cells by descending binding affinity
8: Replace a given number of B-cells with the lowest binding affinity, much lower than the

stimulation threshold, with random B-cells
9: Select the B-cells with binding affinity higher than the given stimulation threshold as parent

B-cells for cloning
10: foreach parent B-cell do

11: Determine the number of B-cell clones proportional to the binding affinity of the parent
B-cell

12: Set the mutation rate inverse proportional to the binding affinity of the parent B-cell
13: foreach B-cell clone do

14: Mutate the parameters of the B-cell clone
15: end

16: end

17: if set of B-cell clones exist then

18: foreach B-cell clone do

19: Compute the binding affinity function between the antigen and the B-cell clone
20: end

21: Sort the set of B-cell clones by descending binding affinity
22: Select a given number of B-cell clones with affinity higher than the stimulation threshold
23: Copy the selected B-cell clones into the set of memory B-cells

24: end

25: Add the set of selected B-cell clones to the set of B-cells
26: for i = 1 to number of B-cells−1 do

27: for j = i + 1 to number of B-cells do

28: Compute the binding affinity of B-cell i and B-cell j

29: if binding affinity < suppression threshold then

30: Increase idiotope stimulation variable
31: end

32: end

33: if idiotype stimulation variable 6= 0 then

34: Maintain B-cell i in the set
35: end

36: Eliminate B-cell i from the set

37: end

38: Insert random B-cells to the set

39: end

40: end

78

3.2. Artificial immune system models and algorithms

3.2.4 Dendritic cells

Dendritic cells are present in the tissues that connect the body with the external world. Since
external pathogens enter the body through that tissues, dendritic cells patrol the tissues col-
lecting suspicious molecules and sampling a manifold set of other molecules in order to assess
the situation around such suspicious molecules. Once the dendritic cell is prepared to give
information about the state in the tissue, it migrates to the lymph node to communicate that
information to more specialized cells in the immune system. The dendritic cells algorithm has
been inspired in the behavior of the dendritic cells of the human body and largely presented
by her author Julie Greensmith in her Doctor Thesis, please refer [Greensmith, 2007]. The
following paragraphs present the pseudo-code of the algorithm, its biological counterpart and
the most important details for getting it programed.

The algorithm can be divided into two parts:

• The collection of antigens and sampling of context signals followed by their processing
by a set of immature dendritic cells, lines 1 to 23 of the algorithm 3.4

• The analysis of the sampled antigens and context final values delivered by migrated
dendritic cells, lines 24 to 42 of the algorithm 3.4

Considering the biological counterpart, the first part takes place in a tissue of the body.
There, immature dendritic cells digest antigens and receptors of that cells interact with ligands
identified as the context signals. The digestion of antigens is translated in the algorithm as
the collection of antigens and accumulation of them into a vector, line 6 of the pseudo-code.
In each cycle an immature dendritic cell can collect only one antigen or a set of antigens. The
collected antigens are exclusive for that immature dendritic cell. All other cells should look
for the remaining antigens in the pool. For reason of simplicity, the algorithm considers an
equal amount of antigens collected per cycle for all immature dendritic cells in the set. The
vector of antigens in line 4 of the pseudo-code should have the size of the number of antigens
collected per cycle times the size of the immature dendritic cell set.

Four categories of input context signals are considered: pathogen associated molecular pat-
terns (PAMPs), danger signals, safe signals and inflammatory signals. PAMPs are molecules
produced exclusively by pathogen which are recognized by receptors in the dendritic cell.
Danger signals are the signals produced by cells which died by necrosis. Safe signals are the
signals produced by cells which died by apoptosis. Inflammatory signals are ligands released
by some cells in the site of infection in order to attract cells of the immune system for com-
bating an infection. Dendritic cells have receptors for all those signals, therefore they are
able to assess whether the situation in the tissue is dangerous or not. The danger theory has
been proposed by the immunologist Polly Matzinger, who proposes that an immune response
is initiated and regulated not only by the presence of the antigen but by the damage of the
body detected by means of signals produced by injured or stressed cells. The input context
signals in the application where this algorithm is to be applied can be manifold, however they
should be grouped into the four listed categories. Such signal categorization is application
dependent and requires expert knowledge. In the pseudo-code of the algorithm presented in
3.4, the number of input signal per category is one for the sake of simplicity. The algorithm
also considers that in a cycle all dendritic cells get the same values of the input context signals,
see line 3 in the pseudo-code. The last simulates that the context signals, also called ligands,
are uniformly distributed to all cells and each cell posses enough receptors for such ligands.

79

Chapter 3. Artificial immune systems

Algorithm 3.4: Dendritic cells

Input: Streams of the input context signals, stream of antigens, number of cycles, number of antigens
collected per cycle, size of the set of immature dendritic cells, migration threshold for each
immature dendritic cell, weights matrix, antigen types, mature context antigen value (MCAV)
threshold for each antigen type

Output: Dangerousness of each antigen type

1: Reset the number of migrated dendritic cells variable
2: foreach cycle do

3: Update the values PAMPs(P), danger(D), safe(S) and inflammatory(I) signals in the vector of
input context signals

4: Update the vector of antigens
5: foreach immature dendritic cell do

6: Take a number of antigens collected per cycle from the vector of antigens and accumulate
them into the vector of collected antigens of the immature dendritic cell

7: foreach Output p: CSM, semi-mature, mature do

8: Output(p) = [WP(p)P + WD(p)D + WS(p)S] × (1 + I)
9: end

10: Accumulate the computed output signals into the vector of outputs of the immature dendritic
cell

11: if Output(CSM) > migration threshold of the immature dendritic cell then

12: if Output(mature) > Output(semi-mature) then

13: Set the immature dendritic cell context variable to 1

14: else

15: Set the immature dendritic cell context variable to 0
16: end

17: Copy the immature dendritic cell into the set of migrated dendritic cells
18: Increment the number of migrated dendritic cells variable
19: Remove the immature dendritic cell from the set
20: Add a new immature dendritic cell to the set

21: end

22: end

23: end

24: Reset the vector of presentations of antigen types
25: Reset the vector of mature presentations of antigen types
26: if number of migrated dendritic cells 6= 0 then

27: foreach migrated dendritic cell do

28: Count the antigens per type in the vector of collected antigens
29: Increment the vector of presentations of antigen types accordingly
30: if migrated dendritic cell context variable = 1 then

31: Increment the vector of mature presentations for each antigen type accordingly
32: end

33: end

34: end

35: foreach antigen type do

36: Calculate the mature context antigen value MVAC using:

MVAC(antigen type) = number of mature presentations(antigen type)
number of presentations(antigen type)

37: if MVAC(antigen type) > MVAC threshold(antigen type) then

38: The antigen type is dangerous

39: else

40: The antigen type is not dangerous
41: end

42: end

80

3.2. Artificial immune system models and algorithms

The ligand-receptor interactions initiate signal transduction that leads to different reactions,
i.e. production of receptors, secretions of ligands, etc. The immature dendritic cell computes
and accumulates, as the time passes, three output signals: the co-stimulatory output signal
(CSM), the semi-mature output signal and the mature output signal, see line 8 to 10 in the
pseudo-code. The processing of the input signals for obtaining the output signals is given by
the formula 3.5.

Output(p) = [WP(p)
K

∑

k

Pk + WD(p)
L

∑

l

DL + WS(p)
M
∑

m

Sm] × (1 + I) (3.5)

Where:

Pk represents the K PAMP signals

Dl represents the L danger signals

Pm represents the M safe signals

I represents the inflammatory signal

WP(p) represents the weight for PAMP signals for the output p

WD(p) represents the weight for danger signal for the output p

WS(p) represents the weight for safe signals for the output p

p output signals can be computed as Output(CSM), Output(Semi-mature signal) and
Output(mature signal)

The weights for the computation of the output signals should be provided beforehand. The
weight assignment is application dependent and requires also expert knowledge. Nevertheless,
relative weight values were derived empirically from immunological data [Greensmith, 2007]
and give an idea how to define such values, please see table 3.1.

Input context signals

Output signal p PAMPs (P) danger signals (D) safe signals (S)

CSM WP(CSM) WP(CSM)
2

1.5 × WP(CSM)

semi-mature 0 0 1

mature WP(mature) WP(mature)
2

−1.5 × WP(mature)

Table 3.1: Dendritic cells algorithm relative weights [Greensmith, 2007]

The co-stimulatory output is a ligand in the surface of the dendritic cell named in biological
terms B7. That signal attaches to a receptor named CD28 in the specialized T-cell activating
it after having presented the antigen within an MHC molecule. The signature of the antigen
in the MHC molecule is not enough for activating that specialized T-cell for that specific
antigen. A co-stimulatory signal is absolutely necessary otherwise the T-cell is unable to
mount an immune response against that presented antigen. In the pseudo-code, when the

81

Chapter 3. Artificial immune systems

co-stimulatory output reaches a threshold given for that dendritic cell, the dendritic cell is
ready to migrate to the lymph node, see line 11 in the pseudo-code. One could say that the
co-stimulatory signal is powerful enough for activating a T-cell in the lymph node.

All dendritic cells in the population can be assigned different migration threshold values, so
a kind of diversity in the dendritic cell population is assured. A rule for assigning a migration
threshold is to give a value around the half of the maximum possible value of co-stimulatory
output in one cycle given by the formula 3.6.

Migration threshold > 0.5 × (WP(p)MaxP + WD(p)MaxD + WS(p)MaxS) × (1 + I) (3.6)

Where:

p is CSM

MaxP maximum value of Pk expected

MaxD maximum value of Dl expected

MaxS maximum value of Sm expected

The semi-mature and mature outputs are the ligands secreted by the dendritic cell, named
IL-10 and IL-12 respectively in the biology terminology. IL-10 is a ligand that inhibits the
synthesis of pro-inflammatory ligands regulating the immune response and making the body
tolerant to some antigens, i.e. bacteria in the gastrointestinal tract. IL-12 is a ligand that
promotes the differentiation of the T-cell in helper T-cells which are able to activate other
immune cells. The dendritic cell have a context variable assigned in the pseudo-code. That
variable inform whether the situation in the tissue is dangerous or not. When the accumulated
mature output is higher than the accumulated semi-mature output, the dendritic cell becomes
a context variable of 1, which means in the biological counterpart that the immune response
against the antigen should be mounted, see lines 12 and 13 in the pseudo-code. A context
variable of 0 means that the antigen should be tolerated, see line 15 in the pseudo-code.
In reality the dendritic cell in the lymph node releases ligands that promote or inhibit the
immune response according to the situation observed in the tissue.

A dendritic cell in a program can be implemented as a structure with the following fields:
vector of collected antigen, input context signals vector, weights matrix, migration threshold
and context value. For migrating the dendritic cell from the tissue to the lymph node, the
dendritic cell structure is copied into another structure, see line 17 in the pseudo-code. An
array of such structures forms the migrated dendritic set. Since an immature dendritic cell
should be removed from the immature dendritic cell set, line 19 in the pseudo-code, and a
new immature dendritic cell should be added to the immature dendritic cell set, line 20 in the
pseudo-code, it is sufficient to set the immature dendritic cell with initial values and reuse
that structure in the next cycle.

The second part of the algorithm takes place in the lymph node. Only dendritic cells that
passed a maturation phase in the tissue are able to migrate to the lymph node. A variable
counts the number of migrated dendritic cells, see lines 1 and 18 in the pseudo-code. In
the lymph node, dendritic cells present the collected antigen to T-cells in order to mount an
immune response. The collected antigens of all migrated dendritic cells are counted per type,
see lines 24, 28 and 29 in the pseudo-code. The collected antigens of all mature migrated

82

3.2. Artificial immune system models and algorithms

dendritic cells are also counted per type, see lines 25 and 31 in the pseudo-code. The ratio
between number of antigens sampled by mature migrated dendritic cells over the number of
antigens sampled by all migrated dendritic cells is the mature context value which is calculated
for all antigen types, see line 36 in the pseudo-code. When that ratio is compared to a defined
threshold, the antigen type can be declared as dangerous or not dangerous, see lines 37 to 41
in the pseudo-code.

The fist part of the algorithm has as inputs an stream of input signals sampled at the
frequency allowed by the time the input context signals processing allows. The second part
of the pseudo-code can take place in parallel or off-line, maybe after a determined number of
cycles passed away, see line 2 in the pseudo-code, in order to be able to asses the dangerousness
of every antigen. Although, the assignation of the number of cycles after which the assessment
of the antigens should be executed is application dependent. It is from benefit to maintain
such number small enough in order to react timely against the antigen.

3.2.5 Formal immune network

A formal immune network is the formal mathematical representation of immune networks
presented in [Tarakanov et al., 2003]. The notable issue of these networks is that they take
a protein as the most elementary part for modeling. Thus, a formal protein is the abstract
model of a B-cell receptor, an antigen, an antibody or a T-cell receptor, since all are just
proteins. The formal model of a protein considers a three dimensional arrangement of its
atoms. Because of the complexity of the model it is not presented here. The model of the
formal protein is not absolutely necessary for understanding and implementing formal immune
networks, since by applying formal immune networks for a determined application, a protein
can be represented as a set of numbers. The set of number representing a protein can get
different meanings depending on the application.

A formal immune network is a network of bindings among formal proteins. The BB-Network
and the AB-Network are presented in [Tarakanov et al., 2003]. The BB-Network, is a network
among B-cell receptors and the AB-Network a network of B-cell receptors with antigens. Since
the strong binding of a B-cell receptor attached to a B-cell with an antigen or another B-cell
receptor triggers cell reproduction, a B-cell has been also modeled as a quadruplet presented
in 3.7.

B − cell = 〈P, Ip, Is, Im〉 (3.7)

Where:

P represents the B-cell receptor

Ip is the state indicator of the B-cell receptor from n states 0, 1, 2, ..., n − 1

Is is the cell state indicator

Im is a mutation indicator

That model can be understood as the model of an agent which behavior is supported by
the cell and mutation state indicators in the following way.

Is = 0 death, the B-cell is destroyed

83

Chapter 3. Artificial immune systems

Is = 1 recognition, the receptor P can bind another protein

Is = 2 proliferation, the B-cell is converted into other to B-cell copies with Is = 1 and Ip

determined by Im

Im = 0 without mutation, inherit child receptor from cell parent

Im = 1 with mutation, change child receptor state

The binding energy is given by:

w(P (i), P (j)) = min(i− j)mod(n), (j − i)mod(n) (3.8)

Given nh as the threshold of binding of the immune network, for a determined B-cell in
the state Is = 1 compute the binding energy with their neighbors, if at least one w <= nh

then the B-cell proliferates, otherwise it dies.
The BB-Network with B-cells with two neighbors is described by:

B1, ..., Bk−1, Bk, Bk+1, ..., Bm (3.9)

If cell Bk proliferates in Bk1 and Bk2:

B1, ..., Bk−1, Bk1, Bk2, Bk+1, ..., Bm (3.10)

And if Bk dies:

B1, ..., Bk−1, ∅, Bk+1, ..., Bm (3.11)

Empty spaces are filled shifting the B-cells accordingly.
In the case of an AB-Network, the antigens are placed above the B-cells, as it can be seen

below:

A1, ..., AkB1, ..., Bk, ..., Bm (3.12)

A B-cell dies if there is not matching antigen or if it does not bind with any neighbor B-cell
under. If the B-cell binds with a binding energy w = nh, the B-cell proliferates without
mutation. If the B-cell binds with a binding energy w < nh, the B-cell proliferates with
mutation.

The described BB-Network is a one dimensional B-cell network with parameters n as
the number of receptor types and nh the binding threshold. So it can be represented as
1D − BB(n, nh). A BB-Network where its Bk cells have four neighbors is considered a two
dimensional B-cell network and represented as 2D−BB(n, nh). A BB-Network where its Bk

cells have six neighbors is considered a three dimensional B-cell network and can be repre-
sented as 3D −BB(n, nh). It is to imagine that an AB-Network could also exist as a two or
three dimensional network, although not presented in [Tarakanov et al., 2003].

The BB-Networks can evolve to the following states: death of all B-cells, unlimited prolif-
eration of B-cells or the cyclic reproduction of the population. Those states can be compared
with the biological states of immune networks: immunodeficiency, allergy or immune memory,
respectively. In the case of AB-Networks, a population of antigen of the same type leads that
the whole population of B-cells in the end matches that antigen, that is to say, all B-cells
result having the same receptor.

84

3.3. Comparison of artificial immune algorithms

A formal model of a T-cell is also presented in [Tarakanov et al., 2003], however it is not
really included in the constructed networks. In the same way as presented above, immune
cells could be modeled and a dynamic formal immune network with different cells as agents
could be constructed and simulated.

3.3 Comparison of artificial immune algorithms

Table 3.2 presents a summary of the biological analogy, inputs and outputs that each of the
presented algorithms consider. You can also refer to the listed pseudo-codes, in last section,
in order to verify those entries. Besides, the table contains a line about the main application
of each algorithm. Please note that the algorithms have been and can be applied to a huge
variety of application. However, applications which have been thoroughly implemented in the
literature or are straight forward to implement are listed in the table.

Table 3.2 has no entries in inputs and outputs for formal immune networks since no algo-
rithm has been presented in the respective section. The section referred to formal immune
networks contains just the formal representation of the immune cells and the immune net-
work. The implementation could take place considering the formal B-cells, formal T-cells or
free formal proteins as agents inside a formal network. To show the implementation of such
agent network has not been the aim, just to present how the immune cells and an immune
network can be modeled in a formal way. The algorithm coined as cytokine formal immune
network does not consider any of the formal representation of the B-cells, T-cells or free for-
mal proteins, instead it has a mathematical background rather than a biological one. That
algorithm can be applied for learning multidimensional patterns and for recognizing on-line
those learned patterns. Cytokine formal immune networks is explained in chapter 4.

Algorithm Biological analogy Input Output Application

Self/Non-self T-cells maturation body molecules/antigens T-cell set learning

Clonal selection B-cells reproduction antigens B-cell memory set optimization

Immune networks B-cells reproduction, idiotopes antigens B-cell memory set clustering

Dendritic cells Dendritic cells context signals/antigens dangerousness of antigens recognition

Formal immune network B-cells reproduction, proteins agents

Table 3.2: Comparison of artificial immune algorithms

3.4 Bibliography

Allen, D., Cumano, A., Dildrop, R., Kocks, C., Rajewsky, K., Tajewsky, N., Roes, J.,
Sablitzky, F., and Siekevitz, M. (1987). Timing, Genetic Requirements and Functional
Consequences of Somatic Hypermutation during B-Cell Development. Immunological Re-
views, 96(1):5–22. Blackwell Publishing Ltd.

Castro, L. N. and Timmis, J. (2002). Artificial Immune Systems. A new Computational
Intelligence Approach. Springer.

Forrest, S., Perelson, A. S., Allen, L., and Cherukuri, R. (1994). Self-Nonself Discrimination
in a Computer. In Symposium on Research in Security and Privacy, pages 202–212. IEEE.

85

Bibliography

Greensmith, J. (2007). The Dendritic Cell Algorithm. PhD thesis, University of Nottingham.

Jerne, N. K. (1974). Clonal selection in a lymphocyte network. In Edelman, G. M., editor,
Cellular selection and regulation in the immune response, pages 39–48. Raven Press, New
York.

Jerne, N. K. (1985). The Generative Grammar of the Immune System, Nobel lecture, 8
December 1984. Bioscience Reports, 5(6):439–451. Springer.

Kimball, J. W. (1994). Biology. Addison-Wesley, 6 edition.

Perelson, A. S. (1989). Immune Network Theory. Immunologival Reviews, 110(1):5–36.
Munksgaard.

Tarakanov, A. O., Skormin, V. A., and Sokolova, S. P. (2003). Immunocomputing, Principles
and Applications. Springer.

Tarlinton, D. (1998). Germinal centers: form and function. Current Opinion in Immunology,
10(3):245–251. Elsevier.

Timmis, J. and Neal, M. (2001). A resource limited artificial immune system for data analysis.
Knowledge Based Systems, 14(3-4):121–130. Elsevier.

Timmis, J., Neal, M., and Hunt, J. (2000). An artificial imune system for data analysis.
BioSystems, 55(1-3):143–150. Elsevier.

Wikipedia (2010). Searched words: artificial intelligence, disease, cell, software agent, in-
telligent agent, apoptosis, necrosis, pathogen, virus, bacterion, fungus, lymphatic system,
lymph, thymus, spleen, tonsils, leukocyte, protein, enzyme, allosteric regulation, cell sig-
naling, communication, intracrine, autocrine signalling, juxtacrine signalling, paracrine sig-
nalling, idiotope, interferon, histamine, tumor necrosis factor, toxin, growth factor, hor-
mone, cytokine, neurotransmitter, DAMPs, PAMPs, major histocompatibility complex,
pattern recognition receptor, toll like receptor, signal transduction, gene, genetic, genetic
code, dendritic cell, T-cell, B-cell, T helper 17 cell, lymph node, clonal selection, affinity
maturation.

86

4
Fault recognition

Fault recognition is the most important task in a self-repairing system. In the self-repairing
architecture depicted in chapter 1, this task is performed by the fault recognition module.
The fault recognition module has as inputs the input and output signals of the circuit for
self repairing. With the observation of those signals in a determined point of time, the
fault recognition module intends to find whether the behavior of the circuit is right or wrong.
When a wrong behavior is detected, a repairing mechanism, represented as an integer number,
is given to the recovery procedure module. The repairing mechanism value informs which
recovery procedure has to be executed for repairing the circuit. This fault recognition method
can be seen as a multiclass classifier. Of course, methods for the design of self-checking circuits
can be used for determining first whether a system is faulty or not, but the method presented
here helps for determining which repairing mechanism should be executed.

This chapter is devoted to explain issues related to the design of such a fault recognition
module such as: the fault representation, the fault recognition procedure, the fault repairing
mechanism assignation and the learning method for making the fault recognition module able
to recognize faults and to assign repairing mechanisms. Fault recognition has been largely im-
plemented by using linear transformation methods such as Principal Component Analysis or
Singular Value Decomposition, techniques presented extensively in [Krishnan and Kerkhoff,
2012], [Mardia et al., 1979], [Theodoridis and Koutroumbas, 2008], [Theodoridis, 2009] and
[Oja, 2003] among others. However, fault recognition can be implemented by using empir-
ical methods such as artificial immune system algorithms as shown in [Amaral, 2011] and
[Tarakanov et al., 2005]. The method presented in [Tarakanov et al., 2005], named cytokine
Formal Immune Network, is a non-linear transformation which fuses ideas from the math-
ematical method Principal Component Analysis and the binding energy in proteins which
is the basis of any immune network inside a biological entity. This chapter starts with the
explanation of the Principal Component Analysis and the Singular Value Decomposition as
a starting point for understanding the method cytokine Formal Immune Network. Those

87

Chapter 4. Fault recognition

methods are useful for designing a multiclass classifier able to determine a fault repairing
mechanism under a determined permanent fault. That is why, they are presented in form
of algorithms for a precise understanding, an then in the next chapter they are compared
with experimental data in order to demonstrate its usefulness and performance in terms of
percentage of recognized faults.F

Fault recognition

Circuit for self repairing

Recovery procedure
Recovery mechanism

Inputs Outputs

Figure 4.1: Inputs and outputs of the fault recognition module

4.1 Fault representation

The fault recognition module recognizes faults which are patterns that have a determined
representation. If we consider a fault being defined as a vector [inputs|outputs], formed with
input values to the circuit for self repairing and corresponding values of the output signals
expressing a wrong behavior of the circuit for self repairing, that fault can be seen as a pattern
representing a point in a multidimensional space. Generalizing, a fault pattern can be seen as
a vector X = [x1, x2,, xp, xp+1, xp+2,, xp+q] belonging to the multidimensional space of
dimension p+q named {X}, where p is the number of inputs and q is the number of outputs to
and from the circuit for self repairing respectively. Such a multidimensional vector is difficult
to represent graphically because of the number of dimensions. Nevertheless, considering a
circuit for self repairing has one input and one output, a fault pattern vector X = [x1, x2] can
be represented graphically as a point in a two dimensional space {X} as shown in figure 4.2.

x1

x2

{X}

X

Figure 4.2: Fault vector X = [x1, x2] represented in the two dimensional space {X}

Furthermore, the representation of a fault is dependent on how the inputs and outputs
of the circuit for self repairing are. Figures 4.3 and 4.4 show the possibilities of inputs and
outputs of the circuit for self repairing. We can be confronted with digital or analog input

88

4.1. Fault representation

and output signals. In the case of digital signals, a signal can have a single line or multiple
lines. In the case the circuit has single-line digital inputs and outputs, we can be confronted
with a combinational or a sequential circuit for self repairing, see figure 4.4 a) and b). In the
case of a circuit for self repairing with multiple-line input and output signals, multiple-line
signals can have independent lines, which is not very common because of the huge quantity
of lines that this implicates, see figure 4.4 c). It is more often to have values stored in buffers
which are sent to other modules through a serial or parallel bus, see figure 4.4 d). Those
values can have integer, fixed point or floating point format. In the case of analog signals,
each signal should be converted to a digital signal through a sampler and an analog to digital
converter, see figure 4.4 e). After the conversion, values can be expressed in an integer, fixed
point or floating point format which can be stored in buffers and be sent serially or in parallel
to other modules.

Thus, in practice, in the case of digital single-line inputs and outputs of the circuit for
self repairing, a fault pattern looks like this example [0; 1; 1; 1; 1; 1; 0|1; 1; 0]. When digital
multiple-line signals or analog signals converted to digital is the case, a fault pattern looks like
this other example [1, 34; 8, 98; 0, 45; 1, 09|0, 02; 3, 78; 8, 46]. In brief, values in a fault pattern
vector X, representing inputs and outputs of the self repairing circuit, could be binary 0 and
1, integer numbers or decimal numbers expressed in fixed or floating point format.

Looking at the output signal values in a fault pattern, they can contain output values that
represent an explicit fault, [inputs|incorrect outputs], or can contain correct output values,
[inputs|correct outputs]. In the case of output values that represent an explicit fault, at the
moment of comparing the fault pattern of an explicit fault with an observed output, that
explicit fault can be recognized uniquely or a similar fault to that explicit fault can also be
detected using a similarity threshold. But, in the case of correct output values, at the moment
of comparing the fault pattern of correct outputs with an observed output, a deviation can
help to detect a non explicitly defined fault. Examples of fault pattern vectors containing
explicit and non explicit faults, are given below.

Given a combinational circuit with three inputs and one output implementing the function
Z = A · B + C, examples of fault pattern vectors are:

→ [1, 1, 1|0] represents an explicit fault since the output 0 under inputs 111 is wrong. Then
that fault or a similar one can be detected with the help of that stored fault pattern
vector.

→ [1, 0, 0|0] where output 0 is the correct output under inputs 100. Then a deviation of
the correct output expresses a fault when that stored fault pattern vector is available.

These two forms of conceiving a fault pattern vector, explicitly and non explicitly, can be
combined into a set of fault pattern vectors, but a mark should be given. Fault pattern vectors
with correct outputs can be marked as self and fault pattern vectors with outputs containing
an explicit fault can be marked as non self. This mark can be attached to the fault pattern
vector X in the following form [self |inputs|outputs] or [non self |inputs|outputs].

Having sequential circuits for self repairing, taking care of its internal states is necessary.
Sequential circuit outputs depend not only on its inputs but also on its internal states so
that any fault pattern vector X should be expressed in the form [inputs|present states|next
states|outputs]. But, having the present and next states available outside the circuit, requires
the circuit for self repairing to be observable and controllable. A sequential circuit can be
made observable and controllable by means of design for test techniques such as scan design,

89

Chapter 4. Fault recognition

fl
o
at

in
g
 p

o
in

t

fi
x
ed

 p
o
in

t

in
te

g
er

fl
o
at

in
g
 p

o
in

t

fi
x
ed

 p
o
in

t

in
te

g
er

fl
o
at

in
g
 p

o
in

t

fi
x
ed

 p
o
in

t

in
te

g
er

with busno bus

one line multiples lines

digital signal analog signal

co
m

b
in

at
io

n
al

se
q
u
en

ti
al

Figure 4.3: Possibilities of inputs and outputs of the circuit for self repairing in a tree repre-
sentation

D

S
am

p
le

 a
n

d
 h

o
ld

A
n

al
o

g
 t

o
 d

ig
it

al
 c

o
n

v
er

te
r

n lines n lines

Outputs

OutputsInputs

A
n

al
o

g
 m

u
lt

ip
le

x
er

Buffers

Buffers

Inputs Outputs OutputsInputs

InputsInputs Outputs

S
er

ia
l

o
r

p
ar

al
le

l
b

u
s

S
er

ia
l

o
r

p
ar

al
le

l
b

u
s

Circuit for self repairing Circuit for self repairing

Circuit for self repairing Circuit for self repairing

Circuit for self repairing

Q

Clock

one line

one line one line

b)a)

d)c)

e)

SequentialCombinational

Figure 4.4: Possibilities of inputs and outputs of the circuit for self repairing
a) digital combinational circuit with one line inputs and outputs
b) digital sequential circuit with one line inputs and outputs
c) independent multiple-line inputs and outputs
d) multiple-line inputs and outputs sent to other modules through a bus
e) analog inputs and outputs digitalized by an analog to digital converter and sent to other
modules through a bus

90

4.2. Fault recognition

see figure 4.5. Scan design uses available registers configured into a serial shift-register chain.
That serial shift register chain is used to give from outside desired present state signals to
the circuit and receive next state signals back. That is generally done serially through extra
signals serial data in, serial data out and a test signal. The test signal controls multiplexers
added at the inputs of the registers in order to let either normal signals or desired test signals
pass through. However, it should be noted that scan design implies stopping the circuit and
entering in a test mode for passing the desired known present state values together with the
inputs to the circuit for self repairing.

Next state logic Output logic

MuxQ D

Clock

S
er

ia
l

d
at

a
o
u
t

T
es

t
m

o
d
e

S
er

ia
l

d
at

a
in

Inputs

Outputs

Figure 4.5: Scan design for making sequential circuits observable and controllable

4.2 Fault recognition

Fault pattern recognition implies finding out that a given fault vector Xg represents a fault.
A given fault vector Xg represents a fault when it has determined typical fault features or is
equal or at least similar to some other known stored fault pattern vector Xp. To find out that
a given fault vector Xg has determined typical fault features, requires first to perform feature
extraction and afterwards compare the extracted features with stored typical fault features.
Feature extraction is defined and explained in section 4.6. To find out a given fault vector
Xg is equal to another stored known fault pattern vector Xp, requires comparing each fault
vector component value xgi and xpi for equality. That procedure is named pattern matching.
But, when similarity of the given fault vector Xa to a fault pattern vector Xp is searched for,
a way to measure such similarity is required.

The similarity between two vectors is inversely proportional to the distance they have, see
figure 4.6. Therefore, it is possible by means of the measurement of the distance between two
vectors to determine whether a given fault vector Xg is similar enough to a fault pattern vector
Xp or not. There are distinctive ways of measuring the distance. Some distance measurement
methods taken from [Wikipedia, 2010] and [Theodoridis and Koutroumbas, 2008] are defined
below.

Given a fault vector Xg = [xg1, ..., xgi, ..., xgn] and a fault pattern vector Xp = [xp1, ..., xpi,

..., xpn], the distance can be defined as:

91

Chapter 4. Fault recognition

x1

x2

xg1

xg2

xp1

xp2

{X}

Xg

Xp

Figure 4.6: Determination of the similarity of a given fault vector Xg = [xg1, xg2] and a fault
pattern vector Xp = [xp1, xp2] through the measurement of its distance in the two dimensional
space {X}

Minkowski distance:

distance(Xg,Xp) = (

n
∑

i=0

|xgi−xpi|q)
1
q = (|xg1−xp1|q+...+|xgi−xpi|q+...+|xgn−xpn|q)

1
q

(4.1)

Euclidean distance: (Minkowski distance for q = 2)

distance(Xg,Xp) = (
n

∑

i=0

(xgi−xpi)
2)

1
2 = ((xg1−xp1)

2+..+(xgi−xpi)
2+..+(xgn−xpn)2)

1
2

(4.2)

Manhattan distance: (Minkowski distance for q = 1)

distance(Xg,Xp) =

n
∑

i=0

|xgi−xpi| = |xg1−xp1|+ ...+ |xgi−xpi|+ ...+ |xgn−xpn| (4.3)

Chebyshev distance: (Minkowski distance for q = ∞)

distance(Xg,Xp) = lim
q→∞

(

n
∑

i=0

|xgi − xpi|q)
1
q =

n
max
i=1

|xgi − xpi|

= max(|xg1 − xp1|, ..., |xgi − xpi|, ..., |xgn − xpn|)
(4.4)

Hamming distance:

distance(Xg,Xp) =

n
∑

i=0

(xgi ⊕ xpi) (4.5)

The Minkowski distance is suitable for fault vectors which components are integer or decimal
numbers expressed in fixed or floating point format. And the Hamming distance is suitable
for binary fault vector components, case of digital one line inputs and outputs of the circuit
for self repairing. The Hamming distance of two fault vectors is the number of positions at

92

4.3. Fault repairing mechanisms assignation

which the corresponding coding symbols, “1” or “0” are different. i.e. given Xg = [11100101]
and Xp = [11110100], the Hamming distance is 2, because the fault vector components in the
4th and 8th positions are different.

Once the similarity of a given fault vector Xg with every other known stored fault pattern
vector Xp has been measured, the fault pattern vector Xp which has the smallest distance to
the given fault vector Xg is declared the most similar.

Furthermore, if similarity of the given fault vector Xg is searched for, not to a single fault
pattern vector but to a set c of fault pattern vectors {X}c, that similarity can be measured
computing the Mahalanobis distance.

Given a fault vector Xg = [xg1, ..., xgi, ..., xgn]T and a set of fault pattern vectors {X}c

with mean µc = (µc1, ..., µci, ..., µcn)T and covariance matrix Covc, the Mahalanobis distance
of the given fault vector Xg to the set of fault pattern vectors {X}c is defined as:

distance(Xg , µc) =

√

(Xg − µc)TCov
−1
c (Xg − µc) (4.6)

If the covariance matrix is the identity matrix, Mahalanobis distance reduces to the Eu-
clidean distance of the given fault vector Xg to the set of fault pattern vectors {X}c in the
following way:

distance(Xg, µc) =
√

(Xg − µc)T (Xg − µc) (4.7)

In some special cases the covariance matrix of the set of fault pattern vectors {X}c

can be a scalar multiple of the identity matrix Covc = acI or a diagonal matrix Covc =
diag(σc

2
1, ..., σc

2
i , ..., σc

2
n). Where σci is the standard deviation and σc

2
1 is the variance of the

vector component xi within the fault patten vector set {X}c.
Mahalanobis distance can also be applied for measuring the similarity between the given

fault vector Xg and a fault pattern vector Xcp that belongs to a set of fault pattern vectors
{X}c with covariance Covc.

distance(Xg,Xcp) =

√

(Xg −Xcp)TCov
−1
c (Xg −Xcp) (4.8)

Again, if the covariance matrix is the identity matrix, the Mahalanobis distance between
the given fault vector Xg and a fault pattern vector Xcp reduces to the Euclidean distance:

distance(Xg,Xcp) =
√

(Xg −Xcp)T (Xg −Xcp) =

√

n
∑

i=0
(xgi − xcpi)

2

And finally, if the covariance matrix is the diagonal matrix Covc = diag(σc
2
1, ..., σc

2
i , ..., σc

2
n),

the distance reduces to the normalized Euclidean distance:

distance(Xg,Xcp) =

√

√

√

√

n
∑

i=0

(xgi − xcpi)
2

σcp
2
i

(4.9)

4.3 Fault repairing mechanisms assignation

We have seen above that a given fault vector Xg can be encountered to represent a fault
finding out equality or similarity of its components or extracted features to a fault pattern

93

Chapter 4. Fault recognition

vector Xp or a set of fault pattern vectors {X}c. Once a given fault vector Xg has been
encountered to represent a fault, it is expected the assignation of a fault name or fault class
to the given fault vector Xg. If each stored fault pattern vector Xp or each set of fault pattern
vectors {X}c has a repairing mechanism assigned then, instead of giving a fault name or a
fault class, a repairing mechanism can be assigned to the given fault vector Xg.

Whenever equality of the given fault vector Xg and a stored fault pattern vector Xp has been
identified during fault pattern recognition, the repairing mechanism that the fault pattern
vector Xp has, will be assigned to the given fault vector Xg when it is encountered that it
represents a fault.

When similarity between the given fault vector Xg and a fault pattern vector Xp or set of
fault pattern vectors {X}c has been identified by fault pattern recognition then, the repairing
mechanism of the closest fault pattern vector Xp or set of fault pattern vectors {X}c is assigned
to the given fault vector Xg. The closest fault pattern vector Xp to the given fault vector
Xg is the one that has the smallest distance measured with any of the Minkowski distance
equations given in last section 4.2. The closest set of fault pattern vectors {X}c to the given
fault vector Xg is that one with the smallest distance measured with the Mahalanobis distance
equation given also in last section 4.2.

A method which uses the computed distances between the given fault vector Xg and each
of the vectors Xcp of sets of fault pattern vectors {X}c measured with any of the Minkowski
distance equations is the k-nearest neighbor procedure, please see [Theodoridis, 2009] and
[Wikipedia, 2010]. The k-nearest neighbor procedure uses the k closest fault pattern vectors
Xcp to the given fault vector Xg. The repairing mechanisms of the given fault vector Xg

can be determined by the majority vote of its neighbor fault pattern vectors Xcp. The most
common repairing mechanism among its k-nearest neighbors Xcp is assigned to the given fault
vector Xg. The number k is a positive integer, generally small. If k = 1, then the repairing
mechanism of the nearest neighbor Xcp is assigned to the given fault vector Xg. This method
eliminates the need of computing the mean µc and the covariance matrix Σc of each set {X}c.

{X}1 {X}2

{X}3

{X}4

x1

x2

{X}

Xg → 2

Figure 4.7: k-nearest neighbor procedure with k = 5 assigns Xg to the subset {X}2

Figure 4.7 shows graphically the procedure followed by the k-nearest neighbor algorithm
in a two dimensional {X} space for k = 5. In this example, the repairing mechanism number
coincide with the subset number. Therefore, the assigned repairing mechanism for Xg is 2.

Even though the repairing mechanism is not expressed as an integer number but as a real
decimal, the average of the values of the k-nearest neighbors can be assigned to the given fault
vector. However this assumption is not applicable to our problem, since we defined repairing

94

4.4. Fault space partitioning

mechanisms to be represented as integer numbers.

4.4 Fault space partitioning

If we assign a repairing mechanism to each fault pattern vector X, then, the space {X} can
be partitioned into subsets {X}c, where c = 1, 2,, l are the integer numbers allotted to the
repairing mechanisms and l the total number of repairing mechanisms. Figure 4.8 shows such
partitioning in a {X} space of two dimensions. The process of partitioning the space {X} in
subsets is named learning [Tarakanov et al., 2003]. Provided that the repairing mechanisms
are given beforehand, then the learning process is named supervised learning, since the space
subsets are already defined. If the repairing mechanisms are unknown, the partitioning of the
space can be done by means of unsupervised learning i.e. clustering, for more information
please see [Theodoridis and Koutroumbas, 2008].

{X}1 {X}2

{X}3

{X}4

x1

x2

{X}

Figure 4.8: Partitioning of the space {X} in subset spaces {X}c

To execute the fault space partitioning or the already defined learning procedure, fault
pattern vectors should be provided. It has to be noted that fault pattern vectors of all possible
[self |inputs|outputs] combinations, in reality are hard to obtain and even if available, it is
too much data for being processed. Therefore, the fault recognition module should try to
generalize from the given incomplete amount of fault patterns vectors in order to determine
the repairing mechanism of a given fault pattern correctly.

When the repairing mechanisms are known, the fault pattern vectors for learning have the
form [repairing mechanism|self |inputs|outputs]. In the case the fault pattern vectors are
given only in the form [self |inputs|outputs], they should be classified by unifying similar vec-
tors and separating distinctive vectors and further assigning a repairing mechanism to each
of the resulting clusters. By means of the measurement of the distance between two fault vec-
tors, defined in section 4.2, it is possible to determine whether fault pattern vectors are similar
enough for being unified into a cluster or separated. It would also be possible to be provided
with both forms of fault pattern vectors ([repairing mechanism|self |inputs|outputs] and
[self |inputs|outputs]) for which supervised learning algorithms and unsupervised learning al-
gorithms like clustering can be executed to extend the already given repairing mechanisms
set.

Once the space {X} has been partitioned into subsets {X}c, were each subset is assigned
to a determined repairing mechanism, the recognition of a given fault vector Xg is the deter-
mination of a repairing mechanism c, such as Xg ⊂ {X}c.

95

Chapter 4. Fault recognition

The fault pattern vectors provided for learning, where each vector is allotted a determined
repairing mechanism, is stored for later use in the recognition process within the fault recog-
nition module memory.

4.5 Fault recognition time

The fault pattern recognition time is dependent on the size and number of fault pattern
vectors stored within the fault recognition module memory. Each time a given fault vector
Xg is presented for determining whether it represents a fault or not, distances of that vector
with each fault pattern vector stored in memory are computed. After a given fault vector
Xg is declared to represent a fault, a repairing mechanism is assigned. Figure 4.9 shows the
total time needed before a repairing mechanism can be executed. In order that under a fault,
repairing takes place on time, small fault recognition times should be assured.

R
ep

ai
ri

n
g
 m

ec
h
an

is
m

 e
x
ec

u
ti

o
n

F
au

lt
 r

ep
ai

ri
n
g
 m

ec
h
an

is
m

 a
ss

ig
n
at

io
n

C
ir

cu
it

 f
o
r

se
lf

 r
ep

ai
ri

n
g

in
p
u
ts

 a
n
d
 o

u
tp

u
ts

 p
re

se
n
ta

ti
o
n

i.
e.

 d
is

ta
n
ce

s
m

ea
su

re
m

en
t

F
au

lt
 p

at
te

rn
 r

ec
o
g
n
it

io
n

Figure 4.9: Total time required before a repairing mechanism can be executed

Assume that each data element in memory has the format [repairing mechanism|self |
inputs|outputs]. A determined and limited number of such elements can be stored in the
available memory. But, as stated above, a large amount of such data elements increases the
recognition time because of the number of required computations. For this reason, a strategy
to obtain a compact data set of fault pattern vectors with a high recognition capability is
searched for. First, it is intended to reduce the size of each data element. The number of
inputs plus outputs gives the dimension of the data, i.e. fault vector dimension reduction
techniques are needed. Second, it is intended to store only data elements with a high recog-
nition capability, consequently methods for fault pattern vector number reduction are also
required.

While fault vector dimension reduction can be solved by mathematical techniques and fault
pattern vector number reduction can be performed by conventional algorithms, among others
algorithms inspired in principles of the biological immune system, a cytokine Formal Immune
Network, an algorithm from Immunocomputing, get both, the fault vector dimension and the
fault pattern vectors number, reduced. Fault vector dimension reduction and fault pattern
vectors number reduction, highlighting cytokine Formal Immune Networks at the end, are
presented in the following sections.

96

4.6. Fault vector dimension reduction

4.6 Fault vector dimension reduction

In our context, the dimension of a fault vector is the number of inputs plus outputs signals.
Dimension reduction implies to reduce the number of signals in order to ease the distance
measurement computations which have to be made for fault pattern recognition and repairing
mechanism assignation [Theodoridis and Koutroumbas, 2008].

Given an n dimensional fault vector1 X = [x1, ..., xi, ..., xn]T , the aim is to find a lower
dimensional vector R = [r1, ..., ri, ..., rt]

T , with t <= n, that represents that fault preserving
the content of the original fault vector according to some criterion, see figure 4.10. If we
consider that we have m fault pattern vectors X = [x1, ..., xi, ..., xn]T , a matrix Xn×m can be
formed with those fault vectors. Then, the aim of dimension reduction is to find a reduced
matrix Rt×m, with t <= n, see figure 4.11.

R

X

t

n

dimension reduction

Figure 4.10: Dimension reduction of vector Xn×1 into vector Rt×1

R

Rj

X

Xj

t

n

m

m

dimension reduction

Figure 4.11: Dimension reduction of matrix Xn×m into matrix Rt×m

Dimension reduction can be carried out by feature selection or feature extraction. On the
one hand, by feature selection it is intended to find a subset of the most relevant original input
and output signals. Methods of feature selection can be applied for reducing the dimension
of fault vectors with one-bit binary value components “0” or “1”. Algorithms of feature

1A vector is usually represented as a column, therefore the transpose is applied.

97

Chapter 4. Fault recognition

selection can be classified into feature ranking and subset feature selection. Feature ranking
ranks the input and output signals by a metric and eliminates the signals that do not achieve
an adequate score. Subset feature selection searches for an optimal subset of signals. On
the other hand, by feature extraction the data in the high dimensional space is transformed
to a space of fewer dimensions. Data transformation can be linear or non-linear. Feature
extraction can be used for reducing the dimension of fault pattern vectors with integer or
decimal number components expressed in fixed or floating point format.

Linear transformation for feature extraction considers each of the new t elements ri of the
reduced fault vector R as a linear combination of the n components xi of the original fault
vector X in the form:

Rt×1 = WT
n×t ×Xn×1 where Wn×t is the linear transformation weight matrix (4.10)

Figure 4.12 shows the linear transformation of vector X, where each element ri of the new
reduced fault vector R can be computed by:

ri = Wi,1x1 + ...+ Wi,nxn where i = 1, ..., t

R WT

X

ri W T
i

t t

n

n

=

Figure 4.12: Linear transformation Rt×1 = Wt×n ×Xn×1 of vector Xn×1 into vector Rt×1

Further, the matrix representation of the linear transformation is:

Rt×m = WT
n×t × Xn×m (4.11)

Figure 4.13 shows the linear transformation of matrix Xn×m, where each element Rij of
the reduced matrix Rt×m can be computed by:

Ri,j = Wi,1X1,j ++ Wi,nXn,j where i = 1, ..., t and j = 1, ...,m

The most known linear transformation method for dimension reduction is the Principal
Component Analysis which is explained next in subsection 4.6.1

4.6.1 Principal component analysis

Principal Component Analysis is a dimension reduction technique that executes a linear trans-
formation of the fault pattern vectors X = [x1, ..., xi, ..., xn]T , arranged in the matrix Xn×m,

98

4.6. Fault vector dimension reduction

R

Rj

Ri,j

WT

W T
i

X

Xj
t t

n

n mm

=

Figure 4.13: Linear transformation Rt×m = WT
n×tXn×m of matrix Xn×m into matrix Rt×m

to reduced fault pattern vectors R = [r1, ..., ri, ..., rt]
T , arranged in the matrix Rt×m, refer

[Theodoridis and Koutroumbas, 2008] and [Mardia et al., 1979]. The linear transformation
of a fault pattern vector Xn×1 has been already defined above as:

Rt×1 = WT
n×t ×Xn×1

and the linear transformation of the fault pattern matrix Xn×m has also been already defined
above as:

Rt×m = WT
n×t × Xn×m

Given initially a not reduced transformation:

Rn×m = WT
n×n × Xn×m (4.12)

the first goal of Principal Component Analysis is to find a proper transformation matrix
Wn×n such that a transformed fault pattern vector Rn×1 has uncorrelated components ri,
i.e. covariance equal to 0. The second goal is to reduce the dimension of the transformed
fault pattern vector Rn×1 by retaining just t components ri in vector Rt×1 called principal
components. The principal components ri should describe as much of the variability as possible
of fault pattern vector components xi of the original fault pattern vector X.

The first vector W1, from the t vectors in Wn×t, is used to calculate the first principal
component r1. W1 should be the argument that describes the most of the total variance of
the transformed matrix Rn×m = WT

n×n × Xn×m and can be defined as:

W1 = arg max‖W1‖=1V ar{WT
n×n × Xn×m} (4.13)

The following t− 1 vectors Wi should be the next arguments that describe as much of the
remaining variance as possible of the transformed matrix WT

n×n×Xn×m. Note that vectors Wi

are orthonormal, i.e. norm ‖Wi ‖= 1, and mutually perpendicular, i.e. Wi·Wj = 0 with i 6= j.
Orthonormal vectors Wi form an orthogonal matrix Wn×n, which constitute the basis for the
transformation. An orthogonal matrix has the following properties: WWT = WT W = I

and WT = W−1. Where I is the identity matrix and W−1 is the inverse matrix of W.
The variance is the mean of the square of the amount of variation Xi,j − x̄i from the mean

x̄i of values Xi,j corresponding to the fault pattern vector component xi. It can be also

99

Chapter 4. Fault recognition

calculated by the square of the standard deviation σxi . Please see figures 4.14 and 4.15 for
a better understanding. Besides, terms like mean x̄i, standard deviation σxi and variance
V ar(xi) are defined formally below.

X

Xi,j

Xj

xi x̄i, σxi

n

m

Figure 4.14: Mean x̄i and standard deviation σxi of a fault pattern vector components xi in
matrix Xn×m

Xi,m Xi,jXi,1 Xi,2x̄i

Xi,m − x̄i

Xi,j − x̄i

Xi,1 − x̄i

Xi,2 − x̄i

0

Figure 4.15: Deviation Xi,j − x̄i of fault pattern component values Xi,j from the fault pattern
vector component mean x̄i

The mean x̄i of fault pattern vector components xi is also called expected value of a fault
pattern vector component E[xi] and can be calculated by:

x̄i = E[xi] =
1

m

m
∑

j=1

Xi,j (4.14)

The standard deviation σxi of a fault pattern vector component xi can be calculated by:

σxi =
√

E[(xi − x̄i)2] =

√

1
m

m
∑

j=1
(Xi,j − x̄i)2

The square of the standard deviation gives the variance as shown below:

100

4.6. Fault vector dimension reduction

V ar(xi) = E[(xi − x̄i)
2] = 1

m

m
∑

j=1
(Xi,j − x̄i)

2

Moreover the mean X̄, standard deviation σX and variances V ar(X) of all n fault pattern
vector components xi of fault pattern vector X can be defined as:

X̄ = (x̄1, ..., x̄i, ..., x̄n)T = E[X] = 1
m

m
∑

j=1
Xj

σX = (σx1 , ..., σxi , ..., σxn)T =
√

E[(X − X̄)2] =

√

1
m

m
∑

j=1
(Xj − X̄)2

V ar(X) = (V ar(x1), ..., V ar(xi), ..., V ar(xn))T = E[(X − X̄)2] = 1
m

m
∑

j=1
(Xj − X̄)2

If the variances V ar(xi) of vector V ar(X) are arranged in the diagonal of a n× n matrix,
the values off the diagonal Cov(xi, xl) are called covariances between fault pattern vector com-
ponents xi and xl and the resulting matrix is called covariance matrix. First, the covariance
between fault pattern vector components xi and xl can be calculated by:

Cov(xi, xl) = E[(xi − x̄i)(xj − x̄l)] = 1
m

m
∑

j=1
(Xi,j − x̄i)(Xl,j − x̄l)

The covariance expresses how much fault pattern vector components xi and xl vary together.
A covariance of zero means that both variables do not show any tendency to vary together.
A covariance greater than zero means big values of xi correspond to big values of xl. And a
covariance less than zero means big values of xi correspond to small values of xl. The covari-
ance gets the dimension obtained by multiplying the units of fault pattern vector component
xi with fault pattern vector component xl. Second, the covariance matrix can be computed
by means of matrices operations as follows:

Cov(X)n×n = E[(X − X̄)(X − X̄)T] =
1

m

m
∑

j=1

(Xj − X̄)(Xj − X̄)T =
1

m
Bn×mBT

n×m (4.15)

Where Bn×m is the matrix of deviations from the mean X̄ of matrix X computed by:

Bn×m = Xn×m − (X̄n×1 × [1, ..., 1, ...1]1×m) (4.16)

After all definitions, the first goal of Principal Component Analysis can be redefined as
getting a transformed matrix Rn×m such that its covariance matrix looks like:

Cov(R)n×n =

















V ar(r1) · · · 0
. . .

...
V ar(ri)

...
. . .

0 · · · V ar(rn)

















Now, considering the not reduced transformed matrix Rn×m is the matrix of deviations
from the mean R̄ of matrix R with R̄ = [0], the covariance matrix of Rn×m can be expressed
as:

101

Chapter 4. Fault recognition

Cov(R)n×n = E(Rn×mRT
n×m)

Substituting Rn×m by WT
n×nXn×m and making operations we get:

Cov(R)n×n = E((WT
n×nXn×m)(WT

n×nXn×m)T)

Cov(R)n×n = E((WT
n×nXn×mXT

n×mWn×n))

Cov(R)n×n = WT
n×nE(Xn×mXT

n×m)Wn×n

Cov(R)n×n = WT
n×nCov(Xn×m)Wn×n

Multiplying to the left of the terms of the equation by Wn×n and to the right by WT
n×n

we get:

Wn×nCov(R)n×nW
T
n×n = Cov(Xn×m)

The equation resembles the eigenvalue decomposition of matrix Cov(Xn×m) defined as:

Wn×nEn×nW
T
n×n = Cov(Xn×m)

where En×n is a diagonal matrix that contains eigenvalues and the matrix Wn×n contains
corresponding eigenvectors. Then we have Cov(R)n×n = En×n, equality which meets the
first goal of the Principal Component Analysis, covariances equal to 0 off the diagonal. If
the eigenvalues are arranged in a decreasing way and the eigenvectors correspondingly, the
first eigenvalue expresses the most of the variance and its corresponding eigenvector can be
taken as the first transformation vector W1. Considering the total variance of matrix Rn×m

is the sum of the variances V ar(xi), correspondingly the sum of the eigenvalues Ei,i of the
diagonal of matrix En×n, t eigenvalues which contribute to maintain determined amount of
variance in percent can be chosen and their respective eigenvectors can be taken to form the
transforming matrix Wt×m.

Furthermore, the transforming matrix Wn×n can also be calculated by means of the singular
value decomposition of the matrix of deviations from the mean X̄ of matrix Xn×m, named
above Bn×m. If we define the singular value decomposition of the matrix of deviations Bn×m

as:

Bn×m = Un×nSn×mVT
m×m

Were:

Sn×m is a matrix with singular values si, ordered in a descending way, in the main diagonal
and zeros off the diagonal

Un×n is a matrix which contains the left singular vectors corresponding the singular values
si

Vm×m is a matrix which contains the right singular vectors corresponding the singular values
si

We can now use the singular value decomposition factorization in the definition of the
covariance matrix Cov(X)n×n in the following way:

102

4.6. Fault vector dimension reduction

Algorithm 4.1: Fault pattern vector dimension reduction using principal component
analysis and the covariance

1: Arrange fault pattern vectors Xn×1 together into matrix Xn×m

2: Calculate the mean vector X̄n×1, which contain the mean of each fault pattern vector
component xi using:

x̄i = 1
m

m
∑

j=1
Xij

3: Calculate the matrix of deviations from the mean using:
Bn×m = Xn×m − (X̄n×1 × [1, ..., 1, ..., 1]1×m)

4: Calculate the covariance matrix of matrix Xn×m using:
Cov(X)n×n = 1

m
(Bn×m × BT

n×m)
5: Calculate the matrix of eigenvectors Wn×n and the matrix of eigenvalues En×n of the

covariance matrix Cov(X)n×n

6: Rearrange the eigenvalues in the diagonal matrix En×n in a decreasing manner moving
their respective eigenvectors in matrix Wn×n accordingly

7: Calculate the total variance of the transformed matrix Rn×m using:

total variance =
m
∑

j=1
Ej,j

8: Given an expected maintained variance in percent, choose t eigenvectors corresponding
to the biggest t eigenvalues such that partial variance ≥ maintained variance using:

partial variance = (E1,1 + ...+ Et,t)
100

total variance

9: Calculate the new compressed matrix using only the t chosen eigenvectors using:
Rt×m = WT

n×tXn×m

Cov(X)n×n = 1
m

Bn×mBT
n×m = 1

m
(Un×nSn×mVT

m×m)(Un×nSn×mVT
m×m)T

Making some operations we get:

Cov(X)n×n = Un×n(1
m

Sn×mST
n×m)UT

n×n

We can therefore conclude that the left singular vector matrix Un×n is equal to the matrix
of eigenvectors Wn×n of the eigenvalue decomposition of the covariance matrix Cov(X)n×n

and the eigenvalue matrix En×n can be calculated by:

En×n =
1

m
Sn×mST

n×m (4.17)

Then the procedure to select the t left singular vectors of the matrix Un×n to form the
transforming matrix Wn×t can be executed in the same way as explained above.

Algorithm 4.1, shown below, serves to compute the reduced matrix Rt×m calculating the
covariance matrix Cov(X)n×n and Algorithm 4.2 serves to compute the reduced matrix Rt×m

calculating the singular value decomposition of the matrix of deviations Bn×m.

4.6.2 Singular value decomposition

The singular value decomposition, shortened as SVD, is a way to factorize a rectangular
matrix Xn×m. This factorization can be used to find the linear transformation weight ma-
trix Wn×t for reducing fault pattern vectors Xn×1 arranged in the matrix Xn×m to matrix

103

Chapter 4. Fault recognition

Algorithm 4.2: Fault pattern vector dimension reduction using principal component
analysis and singular value decomposition

1: Arrange fault pattern vectors Xn×1 together into matrix Xn×m

2: Calculate the mean vector X̄n×1, which contain the mean of each fault pattern vector
component xi using:

x̄i = 1
m

m
∑

j=1
Xij

3: Calculate the matrix of deviations from the mean using:
Bn×m = Xn×m − (X̄n×1 × [1, ..., 1, ..., 1]1×m)

4: Calculate the matrix of singular values Sn×m, matrix of left singular vectors Un×n and
matrix of right singular vectors Vm×m of matrix Bn×m (The compact singular value
decomposition Bn×m = Un×rSr×rV

T
m×r can be also sufficient, here being r the rank of

matrix Bn×m)
5: Rearrange the singular values in matrix Sn×m in a decreasing manner moving their

respective left singular vectors in matrix Un×n and right singular vectors in matrix
Vm×m accordingly

6: Calculate the covariance matrix of the transformed matrix Rn×m which corresponds to
the matrix of eigenvalues En×n of the eigenvalue decomposition of the covariance of
matrix Xn×m using:

En×n = 1
m

(Sn×m × ST
n×m)

7: Calculate the total variance of the transformed matrix Rn×m using:

total variance =
m
∑

j=1
Ej,j

8: Given an expected maintained variance in percent, choose t eigenvectors corresponding
to the biggest t eigenvalues such that partial variance ≥ maintained variance using:

partial variance = (E1,1 + ...+ Et,t)
100

total variance

9: Calculate the new compressed matrix using only the t chosen eigenvectors using:
Rt×m = UT

n×tXn×m

104

4.6. Fault vector dimension reduction

Rt×m by means of the linear transformation given in equation 4.11, as extensively shown in
[Theodoridis and Koutroumbas, 2008] and [Theodoridis, 2009].

We consider the singular value decomposition of matrix X defined as:

Xn×m = Un×nSn×mVT
m×m

Were:

Sn×m is a matrix with singular values si, ordered in a descending way, in the main diagonal
and zeros off the diagonal

Un×n is a matrix which contains the left singular vectors corresponding the singular values
si

Vm×m is a matrix which contains the right singular vectors corresponding the singular values
si

If we multiply both terms of the singular value decomposition by the transpose of the left
singular vector matrix i.e. UT

n×n, we obtain:

UT
n×nXn×m = UT

n×nUn×nSn×mVT
m×m

If matrix Un×n is orthogonal, then UT
n×nUn×n = In×n. Where In×n is the identity matrix.

Note that a matrix multiplied by an identity matrix give as a result the same matrix. Then
we obtain the Karhunen-Loéve transform Y of matrix X as shown below:

Yn×m = UT
n×nXn×m = Sn×mVT

m×m

If we compare this matrix equation with the transformation matrix we are looking for
Wn×n, matrix Un×n can be used to find the transformation matrix Wt×n. But, still matrix
U is n× n.

Visualizing the factorization in figure 4.16 for n > m, because there exist only m corre-
sponding singular values, the matrix U can be rewritten as an n×m matrix.

X U S

VT

nn n

nm

m

mmm

=

Figure 4.16: Singular value decomposition of matrix Xn×m = Un×mSm×mVT
m×m for n > m

Xn×m = Un×mSm×mVT
m×m

0

B

@

X1,1 · · · X1,m

.

..
. . .

.

..
Xn,1 · · · Xn,m

1

C

A
=

0

B

@

U1,1 · · · U1,m

.

..
. . .

.

..
Un,1 · · · Un,m

1

C

A
×

0

B

@

S1,1 · · · 0
.
..

. . .
.
..

0 · · · Sm,m

1

C

A
×

0

B

@

V1,1 · · · Vm,1

.

..
. . .

.

..
V1,m · · · Vm,m

1

C

A

105

Chapter 4. Fault recognition

Also, visualizing the factorization in figure 4.17 for n < m, because there exist only n

corresponding singular values, the matrix V T can be rewritten as a m× n matrix.

Xn×m = Un×nSn×nV
T
m×n

0

B

@

X1,1 · · · X1,m

...
. . .

...
Xn,1 · · · Xn,m

1

C

A
=

0

B

@

U1,1 · · · U1,n

...
. . .

...
Un,1 · · · Un,n

1

C

A
×

0

B

@

S1,1 · · · 0
...

. . .
...

0 · · · Sn,n

1

C

A
×

0

B

@

V1,1 · · · Vn,1

...
. . .

...
V1,m · · · Vn,m

1

C

A

X U S

VT

n

n

n nn

mm m

m

=

Figure 4.17: Singular value decomposition of matrix Xn×m = Un×nSn×nV
T
m×n for n < m

Now, if we multiply Un×n ×Sn×n ×VT
m×n, the singular value decomposition when n > m,

we obtain:

0

B

@

X1,1 · · · X1,m

..

.
. . .

..

.
Xn,1 · · · Xn,m

1

C

A
=

0

B

@

U1,1S1,1V1,1 + ... + U1,mSm,mV1,m · · · U1,1S1,1Vm,1 + ... + U1,mSm,mVm,m

..

.
. . .

..

.
Un,1S1,1V1,1 + ... + Un,mSm,mV1,m · · · Un,1S1,1Vm,1 + ... + Un,mSm,mVm,m

1

C

A

Alike for n < m:

0

B

@

X1,1 · · · X1,m

...
. . .

...
Xn,1 · · · Xn,m

1

C

A
=

0

B

@

U1,1S1,1V1,1 + ... + U1,nSn,nV1,n · · · U1,1S1,1Vm,1 + ... + U1,nSn,nVm,n

...
. . .

...
Un,1S1,1V1,1 + ... + Un,nSn,nV1,n · · · Un,1S1,1Vm,1 + ... + Un,nSn,nVm,n

1

C

A

As we can see, each singular value adds up a new term to each element in the matrix.
Normally the singular values are ordered in a descending way then, the effect of last terms in
the sum is minimal.

Therefore, if only t column vectors of U and t row vectors of VT corresponding to the
largest singular values s1 to st of matrix S are taken and the rest is discarded, we obtain a
truncated singular value decomposition. That is shown in figure 4.18 and defined below.

X̃n×m = Un×tSt×tV
T
m×t

Where X̃n×m is an approximation of matrix Xn×m since the singular value decomposition
is no longer exact.

If we consider then:

UT
n×tX̃n×m = St×tV

T
m×t

106

4.7. Fault pattern vectors number reduction

X U S

VT

n n n

nm

m

mmm

t t

tt

=

Figure 4.18: Truncated singular value decomposition X̃n×m = Un×tSt×tV
T
m×t of matrix X

for n < m

We get a reduced transformed matrix Rt×m. Then we can write:

Rt×m = UT
t×tX̃n×m = St×tV

T
m×t

The listed algorithm 4.3 shown below serves to compute the reduced matrix Rt×m calculat-
ing the singular value decomposition of matrix Xn×n. A variant of this method to reduce the
dimension of fault pattern vectors is used by the cytokine Formal Immune Network algorithm
described in section 4.8.

Algorithm 4.3: Fault pattern vector dimension reduction using singular value decom-
position

1: Arrange fault pattern vectors Xn×1 together into matrix Xn×m

2: Calculate the matrix of singular values Sn×m, matrix of left singular vectors Un×n and
matrix of right singular vectors Vm×m of matrix Xn×m (The compact singular value
decomposition Xn×m = Un×rSr×rV

T
m×r can be also sufficient, being r the rank of

matrix Xn×m)
3: Rearrange the singular values in matrix Sn×m in a decreasing manner moving their

respective left singular vectors in matrix Un×n and right singular vectors in matrix
Vm×m accordingly

4: Choose t left singular vectors corresponding to the biggest t singular values following
some criterion

5: Calculate the new compressed matrix using only the t chosen eigenvectors using:
Rt×m = UT

n×tXn×m

4.7 Fault pattern vectors number reduction

Fault pattern vectors number is the number m of vectors Xn×1 arranged in matrix Xn×m

or the number m of vectors Rt×1 arranged in matrix Rt×m. For convenience the text below
is expressed in terms of reduced fault pattern vectors Rt×1 because vector operations with
reduced vectors is much more efficient. However, fault pattern vectors number reduction can
also be executed before dimension reduction. Fault pattern vectors number reduction implies
to reduce the number m of vectors Rt×1 in such a way that the remaining q fault pattern

107

Chapter 4. Fault recognition

vectors Rt×1 are the most representative in the set {R}. Those q fault pattern vectors Rt×1

should fit into memory available in the fault recognition module.

The biological immune system disposes of immune cells which reproduce and die intensively
under the presence of pathogens. However, the immune system maintains the number of
immune cells within some limits avoiding an exponential increasing or decreasing of immune
cells. That regulatory mechanism is attributed to a sort of network that immune cells build
by interacting with each other. The strategies for avoiding an exponential increasing of
immune cells are, among others, the death of immune cells with insufficient stimulation and
the elimination of auto-reactive immune cells. Those two strategies are used for reducing the
fault pattern vectors number m in next subsections.

4.7.1 Death of immune cells with insufficient stimulation

Immune cells are stimulated by other immune cells that are also stimulated by other immune
cells. Cells which do not receive stimulation die. Stimulation of immune cells is given by affin-
ity or complementarity. An immune cell stimulates another immune cell when the affinity
of both cells overpass an stimulation threshold. The immune cells with insufficient stimula-
tion in a time period die. This idea has been transferred to artificial immune networks in
[Timmis and Neal, 2001] for bringing dynamics into a population of cells thereby eliminating
outliers. That algorithm is explained below.

Given two fault pattern vectors Rk and Rl, their affinity or complementarity can be assumed
as their similarity. As we have seen before, similarity among two fault pattern vectors Rk

and Rl can be measured by any distance measurement method, i.e. Minkowski distance
or Hamming distance, where the lower the distance the higher the similarity. Fault pattern
vectors Rk which do not present any similarity within an stimulation threshold with any other
fault pattern vector Rl are removed from the set {R}. Algorithm 4.4 shows that procedure.
Note that instead of removing fault pattern vectors Rk with stimulation variable equal to
0 from matrix Rt×m, fault pattern vectors Rk with stimulation variable greater that 0 are
included into the reduced fault pattern vectors matrix Q. Then, matrix Qt×q contains q fault
pattern vectors Rt×1 which are close together within a dense area. All fault pattern vectors
Rt×1 far away from that dense area, at least with a distance equal to the stimulation threshold,
are eliminated. If only one fault repairing mechanism is assigned to all fault pattern vectors
Rt×1 in matrix Rt×m, that is to say, vectors Rt×1 belong to a subset {R}c then, eliminated
fault vectors Rt×1 can be interpreted as a sort of outliers of that set {R}c, please see figure
4.19 drawn for t = 2.

4.7.2 Elimination of auto-reactive immune cells

An immune cell which recognizes a molecule of the body and mount an immune response
against that molecule is named auto-reactive immune cell. Auto-reactive immune cells can
damage the body producing auto-immune diseases. Therefore, the immune system tries to
get rid of those immune cells. That idea has been used in the cFIN algorithm for reducing
similar vectors and named as apoptosis, please see [Tarakanov et al., 2005] and [Tarakanov,
2008] or refer to next section 4.8.

As we have seen in the section referred to fault recognition, given two fault pattern vectors
Rk and Rl, fault pattern vector Rk recognizes fault pattern vector Rl when fault pattern
vectors Rk and Rl are similar enough. That is to say, the distance between fault pattern

108

4.7. Fault pattern vectors number reduction

Algorithm 4.4: Fault pattern vectors number reduction resembling the death of im-
mune cells with insufficient stimulation

1: Arrange the m fault pattern vectors Rt×1 together into matrix Rt×m

2: for k = 1 to m− 1 do

3: Reset the stimulation variable of fault pattern vector Rk

4: for l = k + 1 to m do

5: Calculate the distance of fault pattern vector Rk with fault pattern vector Rl

using i.e. any of the Minkowski distances by:
distance(Rk, Rl) = (|rk1 − rl1|h + ...+ |rki − rli|h + ...+ |rkt − rlt|h)

1
h

6: if distance(Rk, Rl) < stimulation threshold then

7: Increase the stimulation variable of fault pattern vector Rk by 1
8: end

9: end

10: if stimulation variable of fault pattern vector Rk > 0 then

11: Include fault pattern vector Rk to the reduced fault pattern vectors matrix Q

12: end

13: end

{R}c

r1

r2

{R}

Stimulated fault pattern vector

Removed fault pattern vector

Stimulation threshold

Figure 4.19: Reduction of fault pattern vectors using the principle of insufficient stimulation

{R}c

r1

r2

{R}

Removed fault pattern vector

Recognition threshold

Figure 4.20: Reduction of fault pattern vectors using the principle of auto-reactive immune
cells

109

Chapter 4. Fault recognition

Algorithm 4.5: Removal of fault pattern vectors resembling the elimination of auto-
reactive immune cells

1: Arrange the m fault pattern vectors Rt×1 together into matrix Rt×m

2: for k = 1 to m− 1 do

3: Copy fault pattern vector k of matrix R in the reduced set of fault pattern vectors
Q

4: for l = k + 1 to m do

5: Calculate the distance of fault pattern vector Rk with fault pattern vector Rl

using i.e. any of the Minkowski distances by:
distance(Rk, Rl) = (|rk1 − rl1|h + ...+ |rki − rli|h + ...+ |rkt − rlt|h)

1
h

6: if distance(Rk, Rl) > threshold then

7: Copy fault patter vector Rk in the reduced set of fault pattern vectors Q

8: end

9: end

10: Adopt the whole reduced set of fault pattern vectors Q as the new set of fault
pattern vectors R for reducing in the next loop

11: Calculate the new number of fault pattern vectors m of the new matrix R

12: Maintain k fault pattern vectors in the reduced set Q and remove the rest fault
pattern vectors

13: end

vector Rk and fault pattern vector Rl is smaller than a recognition threshold. Then, fault
pattern vectors Rl that are recognized by fault pattern vector Rk can be eliminated. This
procedure assures to have only one fault pattern vector Rt×1 within a round area of radius the
size of the recognition threshold, thereby avoiding redundant fault pattern vectors in the set
{R}c, please see figure 4.20 drawn for t = 2. Algorithm 4.5 serves for reducing fault pattern
vectors Rt×1 arranged in a matrix Rt×m. The resultant reduced fault pattern vectors matrix
Qt×q depends on the order of fault pattern vectors Rt×1 in matrix Rt×m. This method for
reducing the fault pattern vectors number is used in the cytokine Formal Immune Network
algorithm explained in next section considering that different sets {R}c are available.

4.8 Cytokine formal immune network

Cytokine Formal Immune Network is a method for pattern recognition based on molecu-
lar recognition, which is the interaction between two molecules that show complementarity.
This method is presented in [Tarakanov et al., 2003], [Tarakanov et al., 2005] and [Tarakanov,
2008]. This section aims to show the mathematical and the biological background of this
method. This method uses a variant of the singular value decomposition transformation de-
scribed in this chapter for fault vector dimension reduction named formal immune network
and a variant of the elimination of auto-reactive immune cells method for fault pattern vec-
tors number reduction named apoptosis and auto-immunization. The special feature of this
method is that by the fault pattern vectors number reduction it considers the class of each
fault pattern vector in the so called cytokine vector.

Proteins are molecules that are present in many biological processes. One example of such

110

4.8. Cytokine formal immune network

biological processes is the antibody-antigen interaction following the principles of molecular
recognition. Antibodies are proteins produced by immune cells and released into the extra-
cellular fluid. Antibodies have the task of binding antigens and marking them thereby for
being removed by other cells. Antigens are also proteins and are placed on the surfaces of
pathogens. They received that name from the construction antibody generator, since the
binding of an antigen with an antibody placed on the surface of an immune cell, stimulates
that immune cell for producing more antibodies for combating the recognized pathogen.

Antibodies placed on the surface of immune cells or released into the extracellular fluid
interact with antigens and also with each other building a complex network. That network
serves for communicating signals that promote cell growing, cell differentiation, cell removal
and cell functioning. A Formal Immune Network intends to model mathematically such a
network of interacting proteins starting with the formal model of a protein-protein interaction.

4.8.1 Protein-protein interaction formal model

Firstly, two proteins can be defined in a formal way as the vectors Um×1 and Vn×1, with
different number of elements m and n. Elements in the vectors represent binding points.
Proteins interact with a determined binding energy where: the lower the energy the stronger
the binding, [Tarakanov et al., 2003]. That binding energy w can be defined by the bilinear
form:

w = −UT
1×mXm×nVn×1 (4.18)

A bilinear form is a function represented as f(U, V) = UTXV that maps two vectors U and
V to one scalar. Function f(U, V) is named bilinear because given an scalar number λ, it is
possible to apply the properties of linearity such as vector addition and scalar multiplication
with respect of both vectors U and V to the function f(U, V) as follows:

f(U1 + U2, V) = f(U1, V) + f(U2, V)

f(U, V1 + V2) = f(U, V1) + f(U, V2)

f(U, λV) = f(λU, V) + λf(U, V)

The minus sign in equation 4.18 aims to represent the binding energy as a number w ≤ 0.
A positive value in the binding energy would mean repulsion between the two proteins. In
the same equation, matrix Xm×n can be defined as the binding matrix between the formal
proteins Um×1 and Vn×1.

The problem we have now is to determine those formal proteins U∗
m×1 and V ∗

n×1 that have
the minimal binding energy w∗ given a binding matrix Xm×n. That is to say, to find the
formal proteins U∗

m×1 and V ∗
n×1 that bind the best. Besides, in order to simplify vector

operations, it is required that vectors Um×1 and Vn×1 are orthonormal. That means their
norms should be equal to one, ||U || =

√
UTU = 1 and ||V || =

√
V TV = 1, leading that the

scalar product of the transposed vector UT or V T with the vector U or V respectively should
be also equal to one, UTU = 1 and V TV = 1. Then, we have a function f(U, V) with two
restrictions for minimizing:

111

Chapter 4. Fault recognition

f(U, V) = −UT
m×1Xm×nVn×1 (4.19)

UT
m×1Um×1 = 1

V T
n×1Vn×1 = 1

The minimization problem can be solved minimizing the Lagrange function Λ(U, V, λ1, λ2)
given below.

Λ(U, V, λ1, λ2) = f(U, V) + λ1(g(U, V) − c1) + λ2(h(U, V) − c2)

That Lagrange function Λ(U, V, λ1, λ2) presents two constraint functions g(U, V) = c1 and
h(U, V) = c2 with respective Lagrange multipliers λ1 and λ2. Lagrange multipliers serve for
scaling constraint functions. Replacing equations 4.19 we get:

Λ(U, V, λ1, λ2) = −UT
m×1Xm×nVn×1 + λ1(U

T
m×1Um×1 − 1) + λ2(V

T
n×1Vn×1 − 1)

Now, it is necessary to find the gradient of the Lagrange function ∇U,V,λ1,λ2Λ(U, V, λ1, λ2)
for finding the extremal points. That gradient should be made equal to zero for finding
variables U , V , λ1 and λ2 that minimize the function Λ.

∇U,V,λ1,λ2Λ(U, V, λ1, λ2) = 0

Calculating the gradient ∇U,V,λ1,λ2Λ(U, V, λ1, λ2) by the partial differential equations of
function Λ(U, V, λ1, λ2) respecting each of its variables U , V , λ1 and λ2, we get the following
system of linear equations:

∂Λ

∂U
= 2λ1U − XV = 0

∂Λ

∂V
= 2λ2V − XTU = 0

∂Λ

∂λ1
= UTU − 1 = 0

∂Λ

∂λ2
= V TV − 1 = 0

Multiplying the first partial differential equation left by UT and using the third partial
differential equation UTU = 1 we obtain:

2λ1 = UTXV

Furthermore, multiplying the second partial differential equation also left by V T and using
the fourth partial differential equation V TV = 1, we obtain an equation that transposed gives:

2λ2 = UTXV

Last two equations derive 2λ1 = 2λ2. If we rewrite those two equations into one assigning
2λ1 = 2λ2 = s, where s is a scalar number we get:

s = UTXV (4.20)

112

4.8. Cytokine formal immune network

Reminding the definition of singular value decomposition of matrix Xm×n:

Xm×n = s1U1V
T
1 + ...+ siUiV

T
i + ...+ srUrV

T
r (4.21)

where si are singular values, Ui left singular vectors, Vi right singular vectors and r rank of
the matrix Xm×n. Every singular value in a singular value decomposition of a matrix Xm×n

can also be expressed as:

si = UT
i XVi (4.22)

That expression is very similar to obtained equation 4.20 since in both cases vectors U and
V are orthonormal. That confirms that extremal points of a bilinear form UT

m×1Xm×nVn×1 are
determined by the singular value decomposition of the matrix Xm×n, as in [Tarakanov et al.,
2003] stated, having:

si = −w∗
i

Which means that all singular values si are assumed as the minimal binding energy values
−w∗

i for the pairs of formal proteins U∗
i and V ∗

i that bind the best given a binding matrix
Xm×n. Figure 4.21 shows such pairs of formal proteins U∗

i and V ∗
i as a subset of all possible

values of formal proteins Ui and Vi that are arguments of the bilinear function w = f(U, V) =
−UT

m×1Xm×nVn×1. Since with singular value decomposition we address only pairs of formal
proteins U∗

i and V ∗
i that bind the best, the notation Ui and Vi, without asterisk ∗, from now

on assumes such pair of formal proteins U∗
i and V ∗

i with minimal binding energy w∗
i .

U∗

1 , V ∗

1 ,−w∗

1 , X
U∗

2 , V ∗

2 ,−w∗

2 , X

U∗

3 , V ∗

3 ,−w∗

3 , X U∗

i , V ∗

i ,−w∗

i , X

U∗

r , V ∗

r ,−w∗

r , X

U, V,−w,X

Figure 4.21: Subset of pairs of formal proteins U∗ and V ∗ with minimal binding energy −w∗

given a binding matrix Xm×n

4.8.2 Formal immune network

The singular value decomposition of a matrix Xm×n can also be written in a matrix form as:

Xm×n = Um×mSm×nV
T
n×n

Multiplying both sides of the equation right by Vn×n and considering VT
n×nVn×n = 1 we

obtain:

113

Chapter 4. Fault recognition

Xm×nVn×n = Um×mSm×n (4.23)

Expressing the matrix equation in terms of vectors Ui, Vi and Xi we get:

0

B

B

B

B

B

@

XT
1
−
...
−

XT
m

1

C

C

C

C

C

A

m×n

×
`

V1 | · · · | Vn

´

n×n
=

`

U1 | · · · | Um

´

m×m
×

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

s1 · · · 0

. . .

si

. . .
.
..

... sr

. . .

0
...

0 · · · 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

m×n

Note that for convenience vectors of n dimensions Xn×1 are arranged not as m column
vectors in a matrix Xn×m but as m line vectors in XT

n×1 in a matrix XT
n×m. Then, we have

as binding matrix Xm×n, the matrix XT
n×m. This convention helps a better handling during

matrix multiplication and eases to find the transformation that we are looking for.
Matrix Sm×n is shown for m ≥ n. Note that there exist r non zero singular values si placed

in the diagonal of matrix Sm×n of size min(m,n). Number r is the rank of matrix Xm×n

which is less or equal than the minimum between m and n, r ≤ min(m,n). All other values
off the diagonal in matrix Sm×n are 0.

Now multiplying matrices:
0

B

B

B

B

B

B

B

@

XT
1 V1 · · · XT

1 Vi · · · XT
1 Vn

...
...

...
XT

p V1 · · · XT
p Vi · · · XT

p Vn

...
...

...
XT

mV1 · · · XT
mVi · · · XT

mVn

1

C

C

C

C

C

C

C

A

m×n

=
`

U1s1 | · · · | Ursr | · · · | Un0
´

m×n

And expressing vectors Ui by their elements:

0

B

B

B

B

B

B

B

@

XT
1 V1 · · · XT

1 Vi · · · XT
1 Vr · · · XT

1 Vn

..

.
..
.

..

.
..
.

XT
p V1 · · · XT

p Vi · · · XT
p Vr · · · XT

p Vn

..

.
..
.

..

.
..
.

XT
mV1 · · · XT

mVi · · · XT
mVr · · · XT

mVn

1

C

C

C

C

C

C

C

A

m×n

=

0

B

B

B

B

B

B

B

@

U11s1 · · · Ui1si · · · Ur1sr · · · Un10
.
..

.

..
.
..

.

..
U1ps1 · · · Uipsi · · · Urpsr · · · Unp0

...
...

...
...

U1ms1 · · · Uimsi · · · Urmsr · · · Unm0

1

C

C

C

C

C

C

C

A

m×n

Considering n ≤ m, matrix Um×m multiplied by matrix Sm×n produces a matrix m× n.
Further, when the rank of matrix Xm×n is r ≤ n ≤ m, matrix Um×mSm×n can be written
as a reduced matrix of dimension m× r. Even further away, equation 4.21 has shown that
by decomposing matrix Xm×n into a sum of matrices siLiR

T
i by means of its singular values

si and right and left singular vectors Vi and Ui, the first sum terms contribute the matrix
Xm×n the most because singular values are ordered falling down s1 ≤ s2 ≤ ... ≤ sr. Then,
when considering only t singular values in the singular value decomposition of matrix Xm×n,
with t ≤ r, it is sufficient to write matrices Um×mSm×n and Xm×nVn×n of equation 4.23 as
matrices of dimensions m× t obtaining:

114

4.8. Cytokine formal immune network

0

B

B

B

B

B

B

B

@

XT
1 V1 · · · XT

1 Vi · · · XT
1 Vt

...
...

...
XT

p V1 · · · XT
p Vi · · · XT

p Vt

...
...

...
XT

mV1 · · · XT
mVi · · · XT

mVt

1

C

C

C

C

C

C

C

A

m×t

=

0

B

B

B

B

B

B

B

@

U11s1 · · · Ui1si · · · Ut1st

...
...

...
U1ps1 · · · Uipsi · · · Utpst

..

.
..
.

..

.
U1ms1 · · · Uimsi · · · Utmst

1

C

C

C

C

C

C

C

A

m×t

Observing carefully the elements of that matrices, vector XT
p of binding matrix Xm×n

contributes only to components p of all formal proteins Ui. Besides, although only t singular
values, t lefts singular vectors and t right singular vectors can be seen, all m vectors XT

n×1

are present. Then looking at the central elements in the matrices, we can derive the following
equation:

Uip =
1

si
XT

p Vi (4.24)

That equation shows that the components Uip of left singular vectors Ui are a function of
the vector XT

p having Vi and si, as the following expression illustrates:

0

B

B

B

B

B

B

B

B

B

B

@

XT
1

V1

s1

· · ·
XT

1
Vi

si
· · ·

XT
1

Vt

st

...
...

...
XT

p V1

s1

· · ·
XT

p Vi

si
· · ·

XT
p Vt

st

...
...

...
XT

mV1

s1

· · ·
XT

mVi

si
· · ·

XT
mVt

st

1

C

C

C

C

C

C

C

C

C

C

A

m×t

=

0

B

B

B

B

B

B

B

@

U11 · · · Ui1 · · · Ut1

..

.
..
.

..

.
U1p · · · Uip · · · Utp

...
...

...
U1m · · · Uim · · · Utm

1

C

C

C

C

C

C

C

A

m×t

And the same expression in terms of the matrix elements of the matrix of left singular
vectors Um×t for a better understanding given below:

0

B

B

B

B

B

B

B

B

B

B

@

XT
1

V1

s1

· · ·
XT

1
Vi

si
· · ·

XT
1

Vt

st

..

.
..
.

..

.
XT

p V1

s1

· · ·
XT

p Vi

si
· · ·

XT
p Vt

st

..

.
..
.

..

.
XT

mV1

s1

· · ·
XT

mVi

si
· · ·

XT
mVt

st

1

C

C

C

C

C

C

C

C

C

C

A

m×t

=

0

B

B

B

B

B

B

B

@

U1,1 · · · U1,i · · · U1,t

...
. . .

...
. . .

...
Up,1 · · · Up,i · · · Up,t

...
. . .

...
. . .

...
Um,1 · · · Um,i · · · Um,t

1

C

C

C

C

C

C

C

A

m×t

Then vectors XT
p can be transformed into vectors formed with that components Uip of

left singular vectors Ui. Considering that t < n, then vectors Xp of dimension n × 1 can be
expressed as vectors from now on Rp of dimension t×1. That means a vector dimension reduc-
tion of Xn×1 to Rt×1. We can take either vectors Rt×1 with components (U1p, ..., Uip, ..., Utp)
from the left singular vectors matrix Um×t or recompute component values Uip by means of
equation 4.24.

A single vector Rp with i = 1, ..., t components represents all p binding points of t formal
proteins Ui that bind with t formal proteins Vi with minimal binding energy w∗

i respectively,
having a binding matrix Xm×n. In consequence vectors Rp contain information of a sort of
network of interacting formal proteins. That network of formal proteins has been named in
[Tarakanov et al., 2003] as a Formal Immune Network and the space where the vectors Rp are
drawn is named Formal Immune Network space. The dimension of the space is determined
by the number t.

115

Chapter 4. Fault recognition

i = 1

i = 2

−1

−1

1

1

U1p

U2p
Rp

R1

Rm

Figure 4.22: Formal immune network space of dimension t = 2

As an example we can see in figure 4.22 m vectors Rp in a Formal Immune Network space
of dimension t = 2. A single vector Rp = (U1p, U2p) of that set of m vectors Rp represents
the links of formal proteins U1 and U2 that bind to formal proteins V1 and V2 with binding
energies s1 = −w∗

1 and s2 = −w∗
2 respectively, given a binding matrix Xm×n. Vectors Rp

contain the information of a sort of network of formal proteins U1, U2, V1 and V2.

We can take that theory for reducing the dimension of fault pattern vectors in the following
way. Given fault pattern vectorsXn×1 arranged in a matrix XT

n×m, the task is first to calculate
the singular value decomposition of that matrix XT

n×m. Once having computed the singular
values si, left singular vectors Ui and right singular vectors Vi, we can take only t left singular
vectors Ui. Elements p of left singular vectors Ui are the coordinates of transformed vectors
Rp. Algorithm 4.6 presents that procedure.

4.8.3 Molecular recognition

In last subsection we have found a set of t formal proteins Vi that bind the best with other t
formal proteins Ui given a binding matrix Xm×n. Let us consider those t formal proteins Vi

as antibodies. Number t determines how many antibodies Vi we have computed with given
matrix Xm×n and the dimension of the space where the binding points of proteins Ui in vectors
Rp = (U1p, ..., Utp) can be drawn. Antibodies interact with antigens by molecular recognition.
If antibodies are represented by proteins Vi, then an antigen is represented by the proteins Ui.
In this method of molecular recognition, an antigen is not given directly as vectors Ui but as a
vector Xg of dimension n× 1 of the binding matrix Xm×n. The problem now is to find which
network of proteins Ui represent that antigen and interact with the already found network
of antibodies Vi. With the help of the already computed minimal binding energies −wi = si

and the antibodies Vi, vector Xg can be transformed to the Formal Immune Network space
as vector Rg with coordinates (U1g, ..., Utg) using equation 4.24 rewritten for Xg as:

116

4.8. Cytokine formal immune network

Algorithm 4.6: Fault pattern vector dimension reduction by means of a formal immune
network

1: Arrange m fault pattern vectors Xn×1 together into matrix Xn×m

2: Calculate the matrix of singular values Sm×n, matrix of left singular vectors Um×m

and matrix of right singular vectors Vn×n of matrix XT
n×m (The compact singular

value decomposition XT
n×m = Um×tSt×tVt×n is sufficient, being t ≤ rank of matrix

XT
n×m and s1 ≥ ... ≥ st)

3: Take the m rows of t elements of the matrix of left singular vectors Um×t as the m
reduced fault pattern vectors Rp of dimension t× 1 as follows:

















RT
1
...
RT

p
...
RT

m

















m×t

=

















U1,1 · · · U1,i · · · U1,t

...
. . .

...
. . .

...
Up,1 · · · Up,i · · · Up,t

...
. . .

...
. . .

...
Um,1 · · · Um,i · · · Um,t

















m×t

Uig =
1

si
XT

g Vi (4.25)

If vector Xg is equal to any vector Xp of binding matrix Xm×n, then the singular value
decomposition and equation 4.25 applies. But, if Xg is different to any other vector Xp of
matrix vector Xm×n, transforming vector Xg to Rg = (U1g, ..., Utg) by means of equation
4.25 helps to find the most similar vector Xp of binding matrix vector Xm×n in the Formal
Immune Network space. That is the idea of this method of molecular recognition.

Figure 4.23 shows vector of binding points Rg = (U1g, U2g) in a Formal Immune Network
space of dimension t = 2.

Now the problem is to determine which vector Rp is the most similar to vector Rg in
order to recognize the antigen. Similarity is measured by means of distance. Any distance
measurement method can be taken for computing the distance among the vector Rg and each
vector Rp. The vector Rp with the minimal distance to vector Rg is elected, please see figure
4.24.

The method of molecular recognition can be employed for fault recognition in the following
way. Given m reduced fault pattern vectors Rt×1 and a fault vector for being recognized Xg,
first fault vector Xg of dimension n × 1 should be reduced to vector Rg of dimension t × 1.
Computing the distance of vector Rg to all reduced fault pattern vectors Rp, the fault vector
Rg is the type of the reduced fault pattern vector Rp with minimal distance to the reduced
fault vector Rg. Algorithm 4.7 shows that procedure.

4.8.4 Cytokine formal immune network

Cytokines are proteins produced by immune cells and released into the extracellular fluid for
communicating with other cells. The production of cytokines by an immune cell is triggered
by the interaction of an antibody placed on the surface of the immune cell with an antigen.
The cytokine that is released after antibody-antigen binding is dependent on the encountered
antigen. Since every vector Xp in a binding matrix Xm×n has the capability of recognizing

117

Chapter 4. Fault recognition

i = 1

i = 2

−1

−1

1

1

Rg

U1g

U2g
Rp

R1

Rm

Figure 4.23: Vector Rg in a formal immune network space of dimension t = 2

i = 1

i = 2

−1

−1

1

1

Rg

Rp

R1

Rm

Figure 4.24: Recognition in a formal immune network space of dimension t = 2 (adapted
from figure in [Tarakanov, 2008] c©2008 Springer)

118

4.8. Cytokine formal immune network

Algorithm 4.7: Fault recognition by means of molecular recognition

1: Reduce fault vector Xg calculating t coordinates of reduced fault vector Rg using:
rgi = 1

si
XT

g Vi

2: Calculate the distance of the reduced fault vector Rg with all other reduced fault
pattern vectors Rp using i.e. any of the Minkowski distances by:

distance(Rg, Rp) = (|rg1 − rp1|h + ...+ |rgi − rpi|h + ...+ |rgt − rpt|h)
1
h

3: Fault pattern vector Xg is the type of the nearest reduced fault pattern vector Rp to Rg

an antigen Xg, a cytokine Formal Immune Network considers an assigned cytokine, in other
words a class c, for each vector Xp in the binding matrix Xm×n or vector Rp in matrix Rm×t.
A cytokine or class c, can be an integer number or a real number.

That procedure is very helpful for learning algorithms. In a supervised learning procedure,
a class c assigned to a vector Xp is inherited by the reduced vector Rp. If the classes c
are unknown we are in front of an unsupervised learning procedure where the assignment of
classes c to vectors Rp can be executed by clustering in the Formal Immune Network space.
Clustering means grouping close together vectors Rp into a class c.

Molecular recognition in a cytokine Formal Immune Network implies assigning the class c
of the nearest vector Rp to vector Rg. Other methods for assigning a class c to vector Rg can
also be executed such as the nearest neighbor procedure already presented in section 4.3.

A cytokine Formal Immune Network can be employed for fault repairing mechanism assig-
nation when the repairing mechanisms are represented by classes c and assigned by molecular
recognition to fault vectors. Algorithm 4.8 presents that procedure.

Algorithm 4.8: Fault repairing mechanism assignation by means of a cytokine formal
immune network

1: Assign a fault repairing mechanism c to every fault pattern vector Xp of matrix Xn×m

if supervised learning is applied, or to every fault pattern vector Rp in the Formal
Immune Network space by clustering if unsupervised learning is applied

2: Calculate i = 1, ..., t coordinates of a given fault vector Xg for getting a reduced fault
vector Rg using:

rgi = 1
si
XT

g Vi

3: Calculate the distance of the reduced given fault vector Rg with all other reduced fault
pattern vectors Rp using i.e. any of the Minkowski distances by:

distance(Rg, Rp) = (|rg1 − rp1|h + ...+ |rgi − rpi|h + ...+ |rgt − rpt|h)
1
h

4: Assign the fault repairing mechanism c of the nearest reduced fault pattern vector Rp

to the given fault vector Xg

4.8.5 Apoptosis and auto-immunization

An immune cell whose surface receptors interact with a molecule that belongs to the body
can trigger the production of antibodies that are able to interact with more body molecules,

119

Chapter 4. Fault recognition

Algorithm 4.9: Fault pattern vectors number reduction by means of apoptosis and
auto-immunization

1: Arrange the m fault pattern vectors Rt×1 together into matrix Rt×m

2: for e = 1 to m− 1 do

3: Copy fault pattern vector e of matrix R into the reduced matrix of fault pattern
vectors Q

4: for f = e+ 1 to m do

5: Calculate the distance of fault pattern vector Re with fault pattern vector Rf

using i.e. any of the Minkowski distances by:
distance(Re, Rf) = (|re1 − rf 1|h + ...+ |rei − rf i

|h + ...+ |ret − rf t
|h)

1
h

6: if distance(Re, Rf) < threshold and ce = cf then

7: Copy fault pattern vector Rf into the matrix of deleted fault pattern
vectors D

8: else

9: Copy fault pattern vector Rf into the reduced matrix of fault pattern
vectors Q

10: end

11: end

12: Adopt matrix of fault pattern vectors Q as the new matrix of fault pattern vectors
R for reducing in the next loop

13: Calculate the new number of fault pattern vectors m of the new matrix R

14: Maintain e fault pattern vectors in the reduced matrix Q and remove the rest fault
pattern vectors

15: end

16: Have ready m− z deleted fault pattern vectors Dt×1 together into matrix Dt×m−z and
z fault pattern vectors Qt×1 together into matrix Qt×z

17: for e = 1 to m− z do

18: for f = 1 to z do

19: Calculate the distance of deleted fault pattern vector De with fault pattern
vector Qf using i.e. any of the Minkowski distances by:

distance(De, Qf) = (|de1 − qf 1|h + ...+ |dei − qf i
|h + ...+ |det − qf t

|h)
1
h

20: Save the distance together with the index f

21: end

22: Choose the lowest distance and its respective index f
23: if ce 6= cf then

24: Insert fault patter vector De in the reduced matrix of fault pattern vectors Q

25: end

26: end

120

4.9. Conclusions

killing the body in that way. The immune system get rid of those auto-reactive immune cells
programming their death. A programmed death of cells is named apoptosis. In the Formal
Immune Network space vectors Rf with class cf that are near enough to another vector Re

with the same class ce are removed form the set. That procedure is named apoptosis and
it tries to get a reduced set of vectors {Q} eliminating redundant vectors Rt×1 in the set
{R} in order to accelerate molecular recognition. Since each vector Re should be compared
using a determined distance measurement method with all other vectors Rf in the Formal
Immune Network space, the resulting reduced set {Q} changes according with the initial order
of vectors Rt×1 in matrix Rt×m before comparison. Therefore, the cytokine Formal Immune
Network method proposes correcting the wrong removal of vectors Re performing a second
comparison between removed vectors Dt×1 and vectors Qt×1 in the actual reduced set {Q}.
Vector De with class ce of the set of deleted vectors {D} is inserted into the set {Q} if the
nearest vector Qf in the reduced set {Q} has a different class cf assigned. That method has
been named as auto-immunization since it is indeed the insertion of vectors Dt×1 which have
been marked already as auto-reactive. Algorithm 4.9 presents the procedure for reducing the
number of fault pattern vectors by apoptosis and auto-immunization.

4.9 Conclusions

This chapter presented fault pattern recognition and repairing mechanism assignment after
giving a fault representation convention. Because of memory and fault recognition time con-
straints it is required to have a set able to recognize fault pattern vectors the best as possible
with the minimum information as possible. For that, dimension reduction of fault pattern
vectors and reduction of the number of fault pattern vectors have been presented as the main
objectives to follow. Dimension reduction can be obtained by methods such as the Principle
Component Analysis or the Formal Immune Network. Principle Component Analysis offers
a way to reduce the dimension of fault pattern vectors minimizing the covariance matrix,
which implies to compute the eigenvalue decomposition of the covariance matrix. It has been
demonstrated that using the Singular Value Decomposition of the set of fault pattern vectors
lead to the same result. A Formal Immune Network reduces fault pattern vectors also using
Singular Value Decomposition, however the computation of reduced fault pattern vectors has
another approach. That method takes as reduced coordinates of the fault pattern vectors
elements of the matrix of left singular vectors. Methods of fault pattern vectors number re-
duction have been also presented. Those resemble some biological processes. Please have in
mind that the method named cytokine Formal Immune Network method, presented exten-
sively in section 4.8 takes additionally into consideration the assignment of classes to the fault
pattern vectors, which allows performing repairing mechanism assignment after fault pattern
recognition. The cytokine Formal Immune Network method executes both, fault vector di-
mension reduction and fault pattern vectors number reduction, using variants of the methods
presented in sections 4.6 and 4.7, thus it has been devoted a single section for that method.
The algorithms presented in this chapter have been elaborated in the context of this thesis
with the sight to fault recognition. Those algorithms are implemented and analyzed for some
applications in next chapter.

121

Bibliography

4.10 Bibliography

Amaral, J. L. M. (2011). Fault Detection in Analog Circuits Using a Fuzzy Dendritic Cell
Algorithm. In 10th International Conference on Artificial Immune Systems - ICARIS 2011.
Springer.

Fodor, I. K. (2002). A survey of dimension reduction techniques. Technical report, Center
for Applied Scientific Computing, Lawrence Livermore National Laboratory.

Krishnan, S. and Kerkhoff, H. G. (2012). A Robust Metric for Screening Outliers from
Analogue Product Manufacturing Tests Responses. In 6th European Test Symposium -
ETS 2011. IEEE.

Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979). Multivariate Analysis. Probability and
Mathematical Statistics. Academic Press.

Oja, E. (2003). Principal Component Analysis. In Arbib, M. A., editor, The Handbook of
Brain Theory and neural Networks. The MIT Press.

Tarakanov, A., Goncharova, L., and Tarakanov, O. (2005). A Cytokine Formal Immune
Network. In Capcarrère, M., Freitas, A., Bentley, P., Johnson, C., and Timmis, J., editors,
Advances in Artificial Life, volume 3630 of Lecture Notes in Computer Science, pages 510–
519. Springer.

Tarakanov, A. O. (2008). Formal Immune Networks: Self-Organization and Real-World Ap-
plications. In Wu, X. and Prokopenko, M., editors, Advances in Applied Self-organizing
Systems, Advanced Information and Knowledge Processing, pages 271–290. Springer.

Tarakanov, A. O., Skormin, V. A., and Sokolova, S. P. (2003). Immunocomputing, Principles
and Applications. Springer.

Theodoridis, S. (2009). Introduction to Pattern Recognition: A MATLAB Approach. Aca-
demic Press.

Theodoridis, S. and Koutroumbas, K. (2008). Pattern Recognition. Academic Press, 4 edition.

Timmis, J. and Neal, M. (2001). A resource limited artificial immune system for data analysis.
Knowledge Based Systems, 14(3-4):121–130. Elsevier.

Wikipedia (2010). Searched words: dimension reduction, singular value decomposition,
Karhunen-Loève theorem, Hamming distance, feature selection k-nearest neighbor algo-
rithm, Mahalanobis distance, pattern recognition, pattern matching, machine learning,
molecular recognition, bilinear form, Lagrange multiplier.

122

5
Evaluation of fault recognition methods

The circuit for self-repairing, shown in figure 4.1, can be a digital combinational circuit, a
digital sequential circuit, a complex digital system or a sampled analog system, as presented
in detail in section 4.1. On the first side, digital combinational circuits and digital sequential
circuits are able to provide to the fault recognition module one line digital signals containing
binary values, as can be seen in figure 5.1. On the other side, complex digital systems and
sampled analog systems are able to provide to the fault recognition module multiple line
digital signals containing real values, in a number representation format i.e. fixed or floating
point format, as can be seen in figure 5.2.

Fault recognition Recovery procedure
Recovery mechanism

Circuit for self repairing

one line

Binary value signal inputs Binary value signal outputs

Figure 5.1: Binary value inputs and outputs to the fault recognition module

Since fault vectors in the fault recognition module are formed aggregating the inputs and

123

Chapter 5. Evaluation of fault recognition methods

Fault recognition Recovery procedure
Recovery mechanism

Circuit for self repairing

Real value signal inputs Real value signal outputs

multiline

Figure 5.2: Real value inputs and outputs to the fault recognition module

outputs of the circuit for self-repairing, as can be seen in figures 5.1 and 5.2, the type of the
signals provided by the circuit for self-repairing to the fault recognition module determines
the type of the fault vector elements. Consequently, considering the value of the inputs and
outputs of the circuit for self-repairing there are two fault vector types, fault vectors with
binary value elements and fault vectors with real value elements, as can be seen in figure 5.3.

0 01 1 1 1

12,34 34,56 13,60 56,78 88,90 10,45

Fault vector with binary elements

Fault vector with real elements

Figure 5.3: Fault vector types

Last chapter presented issues related to the design of the fault recognition module for a self-
repairing system theoretically. In order to evaluate the exposed fault recognition methods, this
chapter presents the same issues but practically. Since the implementation of algorithms for
fault recognition, fault vector dimension reduction and fault pattern vectors number reduction
are different for binary and real fault vector elements, they are presented separately in the
next two sections and in the last section conclusions are derived.

5.1 Fault recognition module with real fault vector elements

This section presents the implementation of algorithms for the design of a fault recognition
module which gets from the circuit for self-repairing real value signal inputs and outputs.
Those real value signals become the elements of the fault vector in the fault recognition mod-
ule. It is important to note that the arrangement of signals within a fault vector for the design
of a fault recognition module is application dependent. Some ideas over the arrangement of
signals into a fault vector have been given in section 4.1.

In order to show the output of the implemented algorithms, a set of 87 fault pattern vectors
with real value elements has been made available. The set of fault pattern vectors comes from
a real application. Every single fault pattern vector of the set is formed with samples of three
sensor analog signals provided by a wire-bonding machine. The samples are placed as elements
in the fault pattern vector which has the following fault vector arrangement: [wire-bond failure

124

5.1. Fault recognition module with real fault vector elements

value | first sensor samples, second sensor samples, third sensor samples]. The first sensor
provides with 380 samples, the second sensor with 80 samples and the third sensor with 380
samples. The wire-bond failure value contains the value assigned to one of three wire-bond
failures. A single fault pattern vector is shown in figure 5.4. Note that the wire-bond failure
value has been taken out for the graphic.

A
m

p
li
tu

d
e

Samples

Fault vector = [first sensor samples, second sensor samples, third sensor samples]

-1

1

2

3

4

5

6

7

0

0 100 200 300 400 500 600 700 800

Figure 5.4: Fault vector arrangement for a wire-bonding machine application

The available set contains 40 different fault pattern vectors corresponding to acceptable
wire-bonds, 40 different fault pattern vectors corresponding to wire-bonds failed because
of a contaminated bonding surface and 7 different fault pattern vectors corresponding to
wire-bonds failed because of bad placement of the bonding point. For the evaluation of the
algorithms another set with 113 fault vectors has been also made available. The available set
contains 46 different fault pattern vectors corresponding to acceptable wire-bonds, 60 different
fault pattern vectors corresponding to wire-bonds failed because of a contaminated bonding
surface, and 7 different fault pattern vectors corresponding to wire-bond failed because of bad
placement of the bonding point. Table 5.1 shows the number of fault vectors per wire-bond
failure in the available data for the design of the fault recognition module and for its testing.

Methods for fault recognition, fault vector dimension reduction and fault pattern vectors
number reduction presented in sections 4.5, 4.6 and 4.7 were implemented in Matlab R©. The
implementation and evaluation of those methods, using the available data, are presented in
next subsections. Please note that the results to be presented are specifically for the available
data, nevertheless, the same methods can be used for any other set of fault pattern vectors
coming from a different application.

125

Chapter 5. Evaluation of fault recognition methods

Table 5.1: Available fault vectors with real elements

Class value Wire-bond failure Design Test

0 Acceptable wire-bond 40 46
1 Failed wire-bond - contaminated surface 40 60
2 Failed wire-bond - bad placement 7 7

Total vectors 87 113
Data matrix size 840 × 87 840 × 113

5.1.1 Fault recognition

For recognizing a fault, we require a method for determining that a given fault vector repre-
sents a fault. For that purpose, section 4.2 presented different distance measurement methods.
Those distance measurement methods measure the degree of similarity of the given fault vector
to each fault pattern vector of a stored set of fault pattern vectors. However, it is important
to have in mind that the similarity is inversely proportional to the measured distance. For
real fault vectors, the Minkowski distance, the Euclidean distance, the Manhattan distance
and the Chebyshev distance have been programmed as functions in Matlab. The Matlab
program codes of those functions are shown in the code listing 5.1.

Program Code 5.1: Minkowski, Euclidean, Manhattan and Chebyshev distance functions

funct ion [d i s t a n c e] = d i s t ancem inkowsk i (a , b , n)
d i s t a n c e = (sum((a − b) . ˆ n)) . ˆ (1/n) ;

funct ion [d i s t a n c e] = d i s t a n c e e u c l i d e a n (a , b)
d i s t a n c e = sq r t (sum((a − b) . ˆ 2)) ;

funct ion [d i s t a n c e] = d i s t ancemanha t t an (a , b)
d i s t a n c e = sum(abs (a − b)) ;

funct ion [d i s t a n c e] = d i s t a n c e c h eb y s h e v (a , b)
d i s t a n c e = max(abs (a − b)) ;

Please note that although all functions are written together for prettiness of the page, each
function is implemented as a single Matlab file. The function definition contains the reserved
word function next to the outputs of the function in square brackets. The equal sign is
followed by the name of the function next to the inputs to the function in round brackets. In
these functions, the inputs are represented by the variables a, b and n. Functions taken from
the Matlab library appear in bold face in the code listing, i.e. sum, abs and sqrt. For more
information over those functions, please refer to the online documentation of Matlab.

Additionally, for determining that a given fault vector represents a fault, there is also the
possibility of measuring the similarity using the Mahalanobis distance. Since each fault pat-
tern vector has assigned a fault class, the whole fault pattern vector set mX can be partitioned
into subsets mXc. One subset for each fault class. The Mahalanobis distance measures the dis-
tance of the given fault vector a to any subset of fault patten vectors mXc. For that, the inputs
to the Mahalanobis distance function, shown in code listing 5.2, are the given fault vector a,
the mean vector meanmXc of the subset mXc computed in Matlab by meanmXc = mean(mXc,2),

126

5.1. Fault recognition module with real fault vector elements

and the covariance matrix covmXc computed using the function displayed in code listing 5.3.
Please note that the covariance matrix is computed using equations 4.15 and 4.16, already
explained in chapter 4. Note also that the mean vector and covariance matrix are computed
for the respective subset of fault pattern vectors mXc, not for the whole set mX.

Program Code 5.2: Mahalanobis distance function

funct ion [d i s t a n c e t o c] = d i s t a n c emaha l a nob i s (a , meanmXc , covmXc)
d i s t a n c e t o c = sq r t (((a − meanmXc) ’ / covmXc)∗ (a − meanmXc)) ;

Program Code 5.3: Covariance matrix function

funct ion [covmXc] = co va r i a n c e (mXc)
mdfmeanmXc = mXc − (mean(mXc, 2) ∗ ones (1 , s i z e (mXc , 2))) ;
covmXc = (mdfmeanmXc ∗ mdfmeanmXc ’)/ s i z e (mXc , 2) ;

Section 4.2 in chapter 4 presented many formulas for computing the Mahalanobis distance.
The selection of the formula depends on the covariance matrix of the addressed subset of fault
pattern vectors. Usually the covariance matrix of a real fault pattern vector subset is far from
an identity matrix or a diagonal matrix of variances, like shown in formula 4.7 and subsequent
paragraph. Therefore, firstly, the Mahalanobis distance function has been implemented using
the most general formula 4.6.

Once having the distances from the given fault vector to each fault pattern vector of the
whole set of fault pattern vectors, assigning a fault class to the given fault vector is the next
task. That task can be executed by assigning the class of the nearest fault pattern vector
or applying the k-nearest neighbor algorithm explained in section 4.3. In the case of using
the Mahalanobis distance method, the fault class of the subset that reported the minimum
distance to the given fault vector is assigned to that fault vector.

Code listing 5.4 shows the Matlab function for assigning the fault class of the nearest fault
pattern vector to the given fault vector. Note that the variable input variable distances, is a
vector that contains the distances of the given fault vector to all fault pattern vectors in the
set of fault pattern vectors mX. Additionally, vc is a vector that contains the fault classes of
all fault pattern vectors in the set mX. In the end, the variable faultvectorclass gets the fault
class of the nearest fault pattern vector to the given fault vector.

Program Code 5.4: Nearest neighbor class function

funct ion [f a u l t v e c t o r c l a s s] = n e a r e s t n e i g h b o r c l a s s (d i s t a n c e s , vc)
[˜ , minp lace] = min (d i s t a n c e s) ;
f a u l t v e c t o r c l a s s = vc (minp lace) ;

The k-nearest neighbor algorithm is a bit more complicated. Code listing 5.5 presents
the Matlab program code of that algorithm as a function. The function gives as outputs
k nearest neighbors. That means, k fault pattern vectors with the minimal distance to the
given fault vector. The inputs to the function are the distances of the given fault vector to
all fault pattern vectors into the vector distances, the vector vc with the classes of all fault
patten vectors in the set mX, the number of nearest neighbors to search for in variable k, the
number of classes in variable numberclasses and the vector classesvector with the numerical
values assigned for every existing class. The function min in Matlab gives the value and place
of the minimal element in a vector. With that function it is possible to find the place of the

127

Chapter 5. Evaluation of fault recognition methods

nearest fault pattern vector and copy its class in vector nearestneighborsclasses. That process
is shown in lines 5 to 10 of the code listing 5.5. In order to find the k most nearest fault
pattern vectors, the value of the minimal distance in the vector distances is replaced with the
value of the maximal distance. Then, it is possible to find the place of the next most nearest
fault pattern vector. Now, the next task is to find the most common class in the vector
nearestneighborsclasses. That process is shown in code lines 12 to 17 of the code listing 5.5.
Given two vectors, the Matlab function eq gives a vector with elements 1 for equal vector
elements, otherwise 0. Using that function and function sum, it is possible to get in the vector
nearestneighborsperclass the number of nearest neighbors of each fault class. Then, with the
help of function max, the most common class is found and assigned to the given fault vector
in the variable faultvectorclass.

Program Code 5.5: k-nearest neighbors function

1 funct ion [f a u l t v e c t o r c l a s s] = k n e a r e s t n e i g h b o r s c l a s s (d i s t a n c e s , vc , k ,\
2 numbe rc l a s s e s ,
3 c l a s s e s v e c t o r)
4 n e a r e s t n e i g h b o r s c l a s s e s = zeros (1 , k) ;
5 f o r i = 1 : k
6 [˜ , m inp lace] = min (d i s t a n c e s) ;
7 n e a r e s t n e i g h b o r s c l a s s e s (i) = vc (minp lace) ;
8 [maxvalue , ˜] = max(d i s t a n c e s) ;
9 d i s t a n c e s (minp lace) = maxva lue ;

10 end

11 n e a r e s t n e i g h b o r s p e r c l a s s = zeros (1 , numbe rc l a s s e s) ;
12 f o r j = 1 : numbe rc l a s s e s
13 n e a r e s t n e i g h b o r s p e r c l a s s (j) = sum(eq ((c∗ones (1 , k)) ,\
14 n e a r e s t n e i g h b o r s c l a s s e s)) ;
15 end

16 [˜ , maxplace] = max(n e a r e s t n e i g h b o r s p e r c l a s s) ;
17 f a u l t v e c t o r c l a s s = c l a s s e s v e c t o r (maxplace) ;

Now, using the available data summarized in table 5.1, it is possible to compare all distance
measurement methods and class assignation methods towards fault recognition. For that, the
class of every of the 113 fault vectors of the test set were searched using the 87 fault pattern
vectors of the design set. Table 5.2 shows the number of wrong class recognitions from the 113
recognized fault vector classes. Likewise, the number of wrong class recognitions per existing
class, that means classes 0, 1 and 2, are also shown in that table. Class recognition using the
nearest neighbor class assignation method and the Manhattan distance measurement method
reports to be the best, having failed only once in recognizing the class of the 113 test vectors.
On the contrary, class recognition using the minimal distance class assignation method and
the Mahalanobis distance measurement method failed 57 times, that means that only 56
test vectors were recognized correctly. Finally, the nearest neighbor class assignation method
reported a better recognition comparing with the k-nearest neighbor class assignation method
for k = 3 neighbors.

Table 5.3 is an extended version of table 5.2. It also includes the number of wrong class
recognitions using the Mahalanobis distance measurement method with the following covari-
ance matrices covmXc: all equal to the identity matrix (Mahalanobis*) and all matrices with
the variances in the diagonal and zeros off the diagonal (Mahalanobis**). Those forms of
Mahalanobis distances have been explained in detail in section 4.2 of chapter 4. There, it

128

5.1. Fault recognition module with real fault vector elements

Table 5.2: Wrong class recognitions per distance measurement and class assignation method

Class assignation method
Nearest
neighbor

k-nearest
neighbor

Minimal
distance

k = 3

Distance measurement method M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
ah

al
an

ob
is

Wrong class recognitions

Total 1 3 5 7 4 5 7 9 57

Class 0 1 1 1 0 0 0 0 0 8
Class 1 0 0 2 3 0 0 1 3 43
Class 2 0 2 2 4 4 5 6 6 6

Total test vectors 113

has also been mentioned that the Mahalanobis distance can also be applied for measuring the
distance of a fault vector to a fault pattern vector that belongs to a subset of fault pattern
vectors with covariance covmXc, as shown in formula 4.8. Table 5.3 also comprises the num-
ber of wrong class recognitions for that case (Euclidean*) and additionally the case taking
all covariances matrices covmXc with the variances in the diagonal and zeros of the diagonal
(Euclidean**), case known as the normalized Euclidean distance.

Table 5.3 shows on one side a high number of wrong class recognitions using the distance
measurement methods that apply the whole covariance matrices, such is the case of the
methods Mahalanobis and Euclidean*. On the other side, a low number of wrong class
recognitions can be seen using the Manhattan distance measurement method and the distance
measurement methods that considered a covariance matrix with the variances in the diagonal
and zeros off the diagonal. The effect of such diagonal matrix is that the computation of the
distances takes place with standardized variables, which are in fact dimensionless. That is to
say, instead of using the difference xgi − xpi of the variable values in the Euclidean distance

(
n
∑

i=1
(xgi−xpi)

2)
1
2 , normalized variable values in the form

xgi−xpi

σi
=

xgi

σi
−xpi

σi
are applied getting

(
n
∑

i=1
(

xgi−xpi

σi
)2)

1
2 , where σi is the standard deviation for variable i. The standard deviation

computed by σi = (1
m

m
∑

j=1
(xi,j − µi)

2)
1
2 , where µi = 1

m

m
∑

j=1
xi,j is the mean value, is very similar

to the vector norm ‖xi,j − µi‖ = (
m
∑

j=1
(xi,j − µi)

2)
1
2 , considering as vector all i components of

the m available fault pattern vectors with its mean taken off [xi,1 −µi, xi,2 −µi, ..., xi,m −µi].
The only difference is the factor 1

m
in the standard deviation. In a more generalized form,

the p-norm defined as ‖xi,j − µi‖ = (
m
∑

i=0
(xi,j − µi)

p)
1
p could also be used, as shown later on

in table 5.4. In the Mahalanobis distance that uses a covariance matrix with the variances in
the diagonal and zeros off the diagonal (Mahalanobis**), the following normalization takes

129

Chapter 5. Evaluation of fault recognition methods

Table 5.3: Wrong class recognitions using variants of the Mahalanobis distance

Class assignation method Nearest neighbor k-nearest neighbor
Minimal
distance

d
ia
g
(σ

c
2 1
,.
..
,σ

c
2 i
,.
..
,σ

c
2 n
)

d
ia
g
(σ

c
2 1
,.
..
,σ

c
2 i
,.
..
,σ

c
2 n
)

I d
ia
g
(σ

c
2 1
,.
..
,σ

c
2 i
,.
..
,σ

c
2 n
)

covmXc covmXc covmXc

Distance measurement method M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

E
u
cl

id
ea

n
*

E
u
cl

id
ea

n
**

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

E
u
cl

id
ea

n
*

E
u
cl

id
ea

n
**

M
ah

al
an

ob
is

M
ah

al
an

ob
is

*

M
ah

al
an

ob
is

**

Wrong class recognitions

Total 1 3 5 7 57 1 4 5 7 9 57 1 57 7 1

Class 0 1 1 1 0 8 0 0 0 0 0 8 0 8 0 0
Class 1 0 0 2 3 43 1 0 0 1 3 43 0 43 3 0
Class 2 0 2 2 4 6 0 4 5 6 6 6 1 6 4 1

Total test vectors 113

place
xgi−µi

σi
=

xgi

σi
− µi

σi
, which is also known as the standard score. The standard score

measures how many standard deviations, the measured variable is above or below the mean.
In conclusion, to work by the distance measurement and subsequent class assignation with
normalized variables had a positive effect in the recognition, producing thereby a low number
of wrong class recognitions.

Table 5.4: Wrong class recognitions using normalization through the p-norm

Class assignation method Nearest neighbor k-nearest neighbor
Minimal
distance

Euclidean
norm

p-norm
Euclidean

norm
p-norm standard

score

Distance measurement method M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
ah

al
an

ob
is

M
ah

al
an

ob
is

*

M
ah

al
an

ob
is

**

Wrong class recognitions

Total 1 3 5 7 2 1 0 5 2 1 0 10 4 5 7 9 1 1 1 4 1 1 1 8 57 7 1

Class 0 1 1 1 0 1 0 0 3 1 0 0 7 0 0 0 0 0 0 0 2 0 0 0 5 8 0 0
Class 1 0 0 2 3 1 1 0 0 1 1 0 0 0 0 1 3 0 0 0 0 0 0 0 0 43 3 0
Class 2 0 2 2 4 0 0 0 2 0 0 0 3 4 5 6 6 1 1 1 2 1 1 1 3 6 4 1

Total test vectors 113

In the last paragraph, the normalized Euclidean distance has been presented as a variant of
the Mahalanobis distance. In the same way, Manhattan, Minkowski and Chebyshev distances
can be normalized with the help of the standard deviation σ or its similar, the Euclidean
norm. Besides, a generalized form of norm, named the p-norm, can be used for normalizing

130

5.1. Fault recognition module with real fault vector elements

the distances. The p-norm is a general form of norm, the same way as the Minkowski distance
is a general form of distance. Using that p-norm with p = 1, the Manhattan distance can
be normalized. The same way, using the p-norm with p = ∞, the Chebyshev distance
can be normalized. Table 5.4 has been elaborated normalizing the distance measurement
through both ways. Firstly, using the normalized distance measurement methods through
the standard deviation, also known as Euclidean norm or p-norm with p = 2. Secondly, using
the normalized distance measurement methods through the p-norm, applying the p employed
in the respective distance measurement method i.e. Manhattan: p = 1 for the distance
measurement method and p = 1 for the norm, similarly Chebyshev: p = ∞ for the distance
measurement method and p = ∞ for the norm.

Table 5.4 shows that the class recognition improves using such normalized distances. The
number of wrong class recognitions drops even to zero using the normalized Minkowski dis-
tance measurement method and the nearest neighbor class assignation method. Furthermore,
the recognition per class looks to be independent of the number of fault pattern vectors per
class available in the design set by using the nearest neighbor class assignation method and
normalized distance measurement methods. Next section shows how to accelerate the recogni-
tion time reducing the dimensions of the fault vectors. That means, the distance measurement
methods can be applied for less dimensions, speeding up the class recognition in that way.

5.1.2 Fault vector dimension reduction

The total time taken for computing the distances between a given fault vector to each of
the stored fault pattern vectors, depends on the number of components of the given fault
vector and the stored fault pattern vectors in consideration. A way of reducing that time is
reducing the number of components of those vectors. The number of components of a vector
is also called dimension, since it is the maximal number of dimensions in which the vector
can be represented graphically. That is why, the process of reducing the components of a
vector is called vector dimension reduction. The Matlab program codes for all methods of
fault vector dimension reduction presented in section 4.6 of chapter 4 are presented in the
following sections of this subsection. Furthermore, using the available data summarized in
table 5.1, the implemented algorithms for fault vector dimension reduction could be tested.
The obtained results are presented at the end in a comparative manner by meas of a table.

Principal component analysis

Principal component analysis tries to reduce the number of components of vectors perform-
ing a linear transformation which produces vectors with fewer components, called principal
components. The principal components contain the most of the information that a vector
comprises. There are two ways of finding those principal components. One way is performing
eigenvalue decomposition on the covariance matrix covmX of the matrix mX formed with the
set of fault pattern vectors. And the other way is performing singular value decomposition
on the matrix of deviations from the mean mmeanmX also of the matrix mX formed with the
set of fault pattern vectors. The Matlab program code for both forms of performing such
transformation is shown in code listings 5.6 and 5.7.

Program Code 5.6: PCA transformation using eigenvalue decomposition function

1 funct ion [mR,W] = t r a n s f p c a c o v e i g s (mX, covmX , ma i n t a i n e d va r i a n c e)

131

Chapter 5. Evaluation of fault recognition methods

2 [W, E] = e ig s (covmX , rank (covmX)) ;
3 t o t a l v a r i a n c e = sum(diag (E)) ;
4 t = 1 ;
5 p a r t i a l v a r i a n c e = (E(t , t)/ t o t a l v a r i a n c e) ;
6 while p a r t i a l v a r i a n c e < ma i n t a i n e d va r i a n c e
7 t = t + 1 ;
8 p a r t i a l v a r i a n c e = p a r t i a l v a r i a n c e + (E(t , t)/ t o t a l v a r i a n c e) ;
9 end

10 i f t == 1
11 t = 2 ;
12 end

13 W = W(: , 1 : t) ;
14 mR = W’ ∗ mX;

Code listing 5.6 shows the implementation of algorithm 4.1: “Fault pattern vector dimen-
sion reduction using principal component analysis and the covariance” presented in section
4.6.1 of chapter 4. That algorithm has been implemented as the function transfpcacoveigs.
The outputs that the function can hand out are: the transformed matrix mR, and the trans-
formation matrix W. The function requires as inputs: the matrix to be transformed mX, the
covariance covmX of the matrix mX, and the expected maintained variance between 0 and
100 in the argument maintainedvariance. The maintained variance relates to the amount of
information which should be maintained in the reduced matrix mR, where a value of 100
produces a matrix mR equal to the original matrix mX, that is to say no information is lost
and the whole variance is conserved.

The function eigs in line 2 of code listing 5.6 computes the eigenvalues and eigenvectors of
the covariance matrix covmX of matrix mX and gives them out in matrices E and W respec-
tively. The number of eigenvalues and eigenvectors computed by the function eigs is equal
to the rank of the matrix covmX, which is the maximum possible number and can be given
in the second argument of that function. However, the number of eigenvectors t taken into
account in the transformation matrix W is computed according to the expected maintained
variance in code lines 3 to 12. Then, the new compressed matrix mR in code line 14 comes out
from transforming matrix mX with a transformation matrix W. That transformation matrix
contains only the first t eigenvectors that correspond to the biggest eigenvalues in matrix E.

In contrast to algorithm 4.1, code listing 5.6 does not implement the steps for computing
the covariance covmX of matrix mX, since that computation can be done using the covariance
matrix function explained already in detail and shown in code listing 5.3. Besides, it is not
necessary to rearrange the eigenvalues in the diagonal matrix E in a decreasing manner and
to move their respective eigenvectors in matrix W accordingly, since the function eigs gives
out the eigenvalues in matrix E already arranged in a decreasing manner.

Program Code 5.7: PCA transformation using singular value decomposition function

1 funct ion [mR,W] = t r a n s f p c a c o v s v d (mX, mdfmeanmX, ma i n t a i n e d va r i a n c e)
2 [U, S ,˜]= svd (mdfmeanmX) ;
3 E = (S . ˆ 2) . / s i z e (mX, 2) ;
4 t o t a l v a r i a n c e = sum(diag (E)) ;
5 t = 1 ;
6 p a r t i a l v a r i a n c e = (E(t , t)/ t o t a l v a r i a n c e) ;
7 while p a r t i a l v a r i a n c e < ma i n t a i n e d va r i a n c e
8 t = t + 1 ;

132

5.1. Fault recognition module with real fault vector elements

9 p a r t i a l v a r i a n c e = p a r t i a l v a r i a n c e + (E(t , t)/ t o t a l v a r i a n c e) ;
10 end

11 i f t == 1
12 t = 2 ;
13 end

14 W = U(: , 1 : t) ;
15 mR = W’ ∗ mX;

Code listing 5.7 shows the implementation of algorithm 4.2: “Fault pattern vector di-
mension reduction using principal component analysis and singular value decomposition”
presented in section 4.6.1 of chapter 4. That algorithm has been implemented as the function
transfpcacovsvd. The outputs and inputs of that function are the same comparing with the
function transfpcacoveigs presented in code listing 5.6, except for the input mdfmeanmX. That
is because, instead of computing the eigenvalues and eigenvectors of the covariance covmX
of matrix mX, the singular values and singular vectors of the matrix of deviations from the
mean mdfmeanmX of matrix mX are computed.

The function svd in line 2 of code listing 5.7 computes the singular values and the left
singular vectors of matrix mdfmeanmX and gives them out in matrices S and U respectively.
Note that the output corresponding to the matrix of right singular vectors has been replaced
by a symbol because that matrix is not needed. The number t of left singular vectors of
matrix U, to take into account into the transformation matrix W, is computed in code lines
4 to 13. For that computation, it is necessary to have the matrix of eigenvalues E, which is
possible to get with the equation 4.17 implemented in code line 3 and explained extensively
in section 4.6.1 of chapter 4. Then, the new compressed matrix mR in code line 15 comes out
from transforming matrix mX with a transformation matrix W that contains only the first t
left singular vectors that correspond to the biggest singular values in matrix S. It is to remark
that the output matrix mR handed out by both functions transfpcacoveigs and transfpcacovsvd
is the same, since the matrix of left singular vectors U and the matrix of eigenvectors W come
out with equal values, as demonstrated in section 4.6.1 of chapter 4.

In contrast to algorithm 4.2, code listing 5.7 does not implement the steps for computing
the matrix of deviations from the mean mdfmeanmX of matrix mX, since that computation can
be done using the Matlab expression mdfmeanmX = mX − (mean(mX,2) ∗ ones(1,size(mX,2))),
already shown in code listing 5.3. Besides, it is not necessary to rearrange the singular values
in the diagonal matrix S in a decreasing manner and to move their respective left singular
vectors in matrix U accordingly, since the function svd gives the singular values in matrix S
out already arranged in a decreasing manner.

Singular value decomposition

The singular value decomposition is a method of matrix factorization that can be used for
reducing the number of components of vectors by performing a linear transformation. This
linear transformation requires a transformation matrix W, that can be obtained computing
the singular value decomposition of the matrix mX formed with the available set of fault
pattern vectors. The singular value decomposition of matrix mX produces the following three
matrices: a diagonal matrix with singular values S, a matrix with left singular vectors U,
and a matrix with right singular vectors V. In this method, a submatrix of the matrix of left
singular vectors U is taken as transformation matrix W. Thereby, only t left singular vectors
that correspond to the t biggest singular values, chosen according to some criterion, are taken

133

Chapter 5. Evaluation of fault recognition methods

into matrix W. The Matlab program code for performing such transformation is shown in
code listing 5.8.

Program Code 5.8: Singular value decomposition transformation function

1 funct ion [mR,W] = t r a n s f s v d (mX, expec t edene rg y)
2 [U, S ,˜]= svd (mX) ;
3 t o t a l e n e r g y = sum(diag (S)) ;
4 t = 1 ;
5 p a r t i a l e n e r g y = (S(t , t)/ t o t a l e n e r g y) ;
6 while p a r t i a l e n e r g y < expec t edene rg y
7 t = t +1;
8 p a r t i a l e n e r g y = p a r t i a l e n e r g y + (S(t , t)/ t o t a l e n e r g y) ;
9 end

10 i f t == 1
11 t = 2 ;
12 end

13 W = U(: , 1 : t) ;
14 mR = W’ ∗ mX;

Code listing 5.8 shows the implementation of algorithm 4.3: “Fault pattern vector dimen-
sion reduction using singular value decomposition” presented in section 4.6.2 of chapter 4.
That algorithm has been implemented as the function transfsvd. The outputs that this func-
tion can hand out are: the transformed matrix mR, and the transformation matrix W. For
that, the function requires as inputs: the matrix mX, and the expected energy, in variable
expectedenergy, which is the amount of information that it is expected to be maintained in
the reduced matrix mR.

The function svd in line 2 of code listing 5.8 computes the singular values and the left
singular vectors of matrix mX and gives them out in matrices S and U respectively. The
singular values in the diagonal matrix S with their corresponding left and right singular
vectors, come already arranged in a decreasing manner out. The number t of left singular
vectors to take into account into the transformation matrix W is computed according to the
expected energy in code lines 3 to 12. Thereafter, the new compressed matrix mR is obtained
in code line 14 transforming matrix mX with the transformation matrix W, which contains
only the first t left singular vectors that correspond to the t biggest singular values.

It is to remark that unlike function transfpcasvd, where the transformation matrix W is
computed performing the singular value decomposition of the matrix of deviation from the
mean mmeanmX of matrix mX, function transfsvd computes the transformation matrix W
performing the singular value decomposition of the matrix mX directly. Besides, instead of
considering the t eigenvectors that correspond to the t biggest eigenvalues chosen given an
expected maintained variance, function transfsvd takes the t singular vectors that correspond
to the t biggest singular values chosen given an expected maintained energy.

Formal immune network

Formal immune network is a method for reducing the dimensions of vectors by performing a
special transformation, That transformation requires the computation of the singular value
decomposition of the transposed matrix mX’, which has been formed with the available set
of fault pattern vectors. The Matlab implementation of that algorithm is presented in code
listing 5.9.

134

5.1. Fault recognition module with real fault vector elements

Program Code 5.9: Formal immune network transformation function (a)

1 funct ion [mR, S ,V] = t r a n s f f i n (mX, d imens ion)
2 [U, S ,V] = svd (mX’) ;
3 mR = U(: , 1 : d imens ion) ’ ;

Code listing 5.9 shows the implementation of algorithm 4.6: “Fault pattern vector dimen-
sion reduction by means of a formal immune network” presented in detail in subsection 4.8.2
of chapter 4. That algorithm has been implemented as the function transffin. The outputs
that this function can hand out are: the transformed matrix mR, the matrix of singular values
S, and the matrix of right singular vectors V. For that, the function requires as inputs: the
matrix mX, and the number of dimensions to be considered, normally 2 or 3.

The function svd in line 2 of code listing 5.10 computes the singular values, the left singular
vectors, and the right singular vectors of the transpose of the matrix mX, and gives them out
into matrices S, U, and V respectively. The singular values in the diagonal matrix S, with
their corresponding left and right singular vectors, come out already arranged in a decreasing
manner. At the end, the new compressed matrix mR is the transpose of a submatrix of the
matrix of left singular vectors U. That submatrix is formed with all the rows of the matrix of
left singular vectors U, and only with a reduced number of columns equal to the given number
of dimensions as shown in code line 3.

Program Code 5.10: Formal immune network transformation function (b)

1 funct ion [mR, S ,V] = t r a n s f f i n (mX, d imens ion)
2 [U, S ,V] = svd (mX’) ;
3 mR = zeros (s i z e (mX, 2) , d imens ion) ;
4 f o r i = 1 : s i z e (mX, 2)
5 f o r q = 1 : d imens ion
6 mR(i , q) = (1/S(q , q)) ∗ A(i , :) ∗ V(: , q) ;
7 end

8 end

9 mR = mR’ ;

Unlike functions transfpcaeigs, transfpcasvd, and transfsvd, function transffin does not obtain
the transformed matrix mR computing a transformation matrix W. However, the transformed
matrix mR can also be computed using the formula 4.24 in subsection 4.8.2 of chapter 4,
whose code is shown in code lines 3 to 9 of code listing 5.10. This method is useful for the
transformation of single vectors and requires only a number equal to the number of dimensions
of singular values and their respective right singular vectors.

Comparison of methods

Table 5.4 presented the number of wrong class recognitions using different distance measure-
ment and class assignation methods. For elaborating that table, the vectors of table 5.1 with
all their 840 components have been employed. Now, the intention is to extend table 5.4 using
vectors with reduced number of components. For that, four functions for dimension reduc-
tion have been presented above in this subsection. The functions transfcoveigs, transfcovsvd,
transfsvd, and transffin require as input the matrix mX. The matrix mX can be formed with
the 87 fault pattern vectors of the design set, introduced in table 5.1. Those functions hand
out the matrix mR. The matrix mR contains the fault pattern vectors with reduced number

135

Chapter 5. Evaluation of fault recognition methods

of components. Figure 5.5 shows the fault pattern vectors of the design set which dimensions
have been reduced to two using all four functions. In that figure, it can be observed that all
methods try to cluster the points of a common class.

In order to analyze whether those reduced fault pattern vectors are able to recognize fault
vectors of the test set, the distances between fault pattern vectors and fault vectors of the
test set should be measured. For that, both sets, the design set and the test set, should
contain vectors with reduced number of components. Therefore, it is necessary to reduce also
the components of the fault vectors of the test set. For that, a transformation function is
necessary. On the one side, the functions transfcoveigs, transfcovsvd and transfsvd hand out a
transformation matrix W. On the other side, the function transffin gives out instead, a matrix
with singular values S and a matrix with right singular vectors V. Therefore, two functions
for transforming the fault vectors of the test set are presented below.

The first function for reducing the components of fault vectors of the test set is transftestdata
and it is shown in code listing 5.11. It serves for transforming a single fault vector or the
whole test set. It requires as inputs: a transformation matrix W, and the fault vectors of the
test set arranged into the matrix mT. The transformation matrix W is the matrix provided
by any of the functions transfcoveigs, transfcovsvd, or transfsvd. Function transftestdata hands
out the fault vectors with reduced number of components in matrix mTt.

Program Code 5.11: Transformation function for the fault vectors of the test set

1 funct ion [mTt] = t r a n s f t e s t d a t a (mT,W)
2 mTt = W’∗mT;

The second function for reducing the components of the fault vectors of the test set is
transftestdatafin and it is shown in code listing 5.12. It serves for transforming a single fault
vector or the whole test set. It requires as inputs: the matrix of singular values S, the matrix
of right singular vectors V, and the fault vectors of the test set arranged into the matrix mT.
Matrices S and V are the matrices provided by the function transffin. Function transftestdatafin
also hands out the fault vectors with reduced number of components into matrix mTt. It is
to remark that, this function implements the equation 4.25 explained in subsection 4.8.3 of
chapter 4.

Program Code 5.12: Transformation function for the fault vectors of the test set for FIN

1 funct ion [mTt] = t r a n s f t e s t d a t a f i n (mT, S ,V)
2 d im e n s i o n f i n = s i z e (S , 2) ;
3 mR = zeros (s i z e (mT, 2) , d im e n s i o n f i n) ;
4 f o r i = 1 : s i z e (mT, 2)
5 f o r q = 1 : d im e n s i o n f i n
6 mR(i , q) = (1/S(q , q)) ∗ mT(: , i) ’ ∗ V(: , q) ;
7 end

8 end

9 mTt = mR’ ;

Fault vector dimension reduction should reduce the time taken in computing the distances
between vectors. That happens at expense of increasing the number of wrong class recog-
nitions. Subtables 5.6a, 5.6b, 5.6c and 5.6d show the results obtained executing all fault
vector dimension reduction functions exposed above in this subsection. The results have been
obtained varying the maintained variance (*) and maintained energy (**) for getting one to

136

5.1. Fault recognition module with real fault vector elements

(a) transfpcacoveigs

dimension 1

d
im

en
si

o
n

2

class 0
class 1
class 2

53 54 55 56 57 58 59 60 61 62

-36.5

-37

-37.5

-38

-38.5

-39

-39.5

-40

(b) transfpcacovsvd

dimension 1

d
im

en
si

o
n

2

class 0
class 1
class 2

53 54 55 56 57 58 59 60 61 62

-36.5

-37

-37.5

-38

-38.5

-39

-39.5

-40

Figure 5.5: Fault pattern vectors with reduced dimensions

137

Chapter 5. Evaluation of fault recognition methods

(c) transfsvd

dimension 1

d
im

en
si

o
n

2

class 0
class 1
class 2

5

4

3

2

1

-1

-2

-3
111.5 112 112.5 113 113.5 114 114.5 115 115.5 116 116.5

0

(d) transffin

dimension 1

d
im

en
si

o
n

2

class 0
class 1
class 2

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4
-0.109 -0.1085 -0.108 -0.1075 -0.107 -0.1065 -0.106 -0.1055 -0.105 -0.1045 -0.104

Figure 5.5: Fault pattern vectors with reduced dimensions

138

5.1. Fault recognition module with real fault vector elements

four dimensions for each subtable respectively. The line notransf in all subtables presents
obviously the lowest number of wrong class recognitions. Fault vector dimension reduction
using the functions transfpcacoveigs and transfpcacovsvd report the same results. That is not
a surprise, since in subsection 4.6.1 of chapter 4, it has been demonstrated mathematically
that both methods of dimension reduction lead to the same results. The recognition of fault
vectors using the methods of dimension reduction showed even with only 1 to 4 dimensions,
less wrong class recognition than the recognition executed without reducing dimensions. Es-
pecially using the Chebyshev and Mahalanobis distance measurement methods. Those cases
are remarked with dark gray in the subtables.

Subsection 5.1.1 showed through table 5.4 that normalization of the fault vectors pro-
duces a smaller number of wrong class recognitions. Applying that idea, four new functions
transfpcacorreigs, transfpcacorrsvd, transfsvdnormalized and transffinnormalized introduce nor-
malization in the process of dimension reduction and are presented separately in the following
paragraphs.

Function transfpcacorreigs computes the eigenvalue decomposition of the correlation matrix
corrmX of the matrix mX, instead of the covariance matrix covmX of the matrix mX, executing
eigs(corrmX). The correlation is a statistical measure that denotes dependence between two
variables xi and xl. The correlation can be obtained dividing the covariance of the variables
xi and xl by the product of their standard deviations, as shown in equation 5.1. Given a
vector of variables X, a correlation matrix can be formed with the correlations of all the
variables with all other variables. The computing of such a correlation matrix requires a term
by term division of the covariance matrix, defined in equation 4.15, by a matrix formed with
the standard deviations of all the variables. The standard deviations, can be obtained in a
form of a vector computing the square root of the variances taken from the diagonal of the
covariance matrix. Then, the product of the vector of standard deviations by its transpose,
σX ∗σT

X , produces the required matrix, as can be shown in the implementation in code listing
5.13. It is to remark that the correlation presents dimensionless values between +1 and −1.
A value of 0 means no dependence between variables. A value of +1 is obtained when the
correlation is computed for a variable with itself, unless the variance of that variable is 0, case
when all the values for that variable do not change and the correlation consequently does not
exist.

Corr(xi, xl) =
Cov(xi, xl)

σxiσxl

=
E[(xi − x̄i)(xl − x̄l)]

σxiσxl

=
1

m

m
∑

j=1

(xij − x̄i)(xlj − x̄l)

σxiσxl

(5.1)

Program Code 5.13: Correlation matrix function

funct ion [corrmX] = c o r r e l a t i o n (mX, covmX)
vsdmX = sq r t (diag (covmX)) ;
corrmX = ((mdfmeanmX∗mdfmeanmX ’) . / (vsdmX∗vsdmX ’))/ numbe rve c to r sdata ;

Function transfpcacorrsvd computes the singular value decomposition of the matrix of stan-
dard scores mszmX of matrix mX, instead of the singular value decomposition of the ma-
trix mX, executing svd(mszmX). The standard score of the given value of a variable can be
computed by the expression

xgi
−µi

σi
=

xgi

σi
− µi

σi
, that represents how many standard devia-

tions the measured variable is above or bellow the mean, as already explained in subsection

139

Chapter 5. Evaluation of fault recognition methods

Table 5.5: Wrong class recognitions using vector dimension reduction

Class assignation method Nearest neighbor k-nearest neighbor
Minimal
distance

Euclidean
norm

p-norm
Euclidean

norm
p-norm standard

score

Distance measurement method N
r.

of
d
im

en
si

on
s

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
ah

al
an

ob
is

M
ah

al
an

ob
is

*

M
ah

al
an

ob
is

**

Wrong class recognitions

notransf 840 1 3 5 7 2 1 0 5 2 1 0 10 4 5 7 9 1 1 1 4 1 1 1 8 57 7 1
transfpcacoveigs* 1 11 11 11 11 28 28 28 28 33 28 25 18 11 11 11 11 16 16 16 16 16 16 14 12 37 19 37
transfpcacovsvd* 1 11 11 11 11 28 28 28 28 33 28 25 18 11 11 11 11 16 16 16 16 16 16 14 12 37 19 37
transfsvd** 1 35 35 35 35 40 40 40 40 41 40 40 38 30 30 30 30 30 30 30 30 35 30 30 30 65 49 65
transffin 1 35 35 35 35 40 40 40 40 41 40 40 38 30 30 30 30 30 30 30 30 35 30 30 30 65 49 65

Total test vectors 113

(a) * maintained variance = 0.84, ** maintained energy = 0.96, fin dimension = 1

Class assignation method Nearest neighbor k-nearest neighbor
Minimal
distance

Euclidean
norm

p-norm
Euclidean

norm
p-norm standard

score

Distance measurement method N
r.

of
d
im

en
si

on
s

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
ah

al
an

ob
is

M
ah

al
an

ob
is

*

M
ah

al
an

ob
is

**

Wrong class recognitions

notransf 840 1 3 5 7 2 1 0 5 2 1 0 10 4 5 7 9 1 1 1 4 1 1 1 8 57 7 1
transfpcacoveigs* 2 4 7 7 8 6 7 7 10 5 7 9 6 4 7 9 9 1 4 4 5 2 4 3 4 2 7 8
transfpcacovsvd* 2 4 7 7 8 6 7 7 10 5 7 9 6 4 7 9 9 1 4 4 5 2 4 3 4 2 7 8
transfsvd** 2 5 5 5 4 10 9 7 11 15 9 5 3 7 7 7 7 7 7 8 6 18 7 4 2 1 14 38
transffin 2 9 12 13 13 10 9 7 11 15 9 5 3 7 7 7 7 7 7 8 6 18 7 4 2 1 8 38

Total test vectors 113

(b) * maintained variance = 0.93, ** maintained energy = 0.98, fin dimension = 2

Class assignation method Nearest neighbor k-nearest neighbor
Minimal
distance

Euclidean
norm

p-norm
Euclidean

norm
p-norm standard

score

Distance measurement method N
r.

of
d
im

en
si

on
s

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
ah

al
an

ob
is

M
ah

al
an

ob
is

*

M
ah

al
an

ob
is

**

Wrong class recognitions

notransf 840 1 3 5 7 2 1 0 5 2 1 0 10 4 5 7 9 1 1 1 4 1 1 1 8 57 7 1
transfpcacoveigs* 3 3 7 7 9 5 6 6 7 5 6 6 9 5 5 7 7 1 1 2 2 1 1 1 2 1 7 7
transfpcacovsvd* 3 3 7 7 9 5 6 6 7 5 6 6 9 5 5 7 7 1 1 2 2 1 1 1 2 1 7 7
transfsvd** 3 3 3 3 4 14 14 12 14 14 14 12 11 4 5 6 7 2 3 4 3 3 3 2 3 0 7 9
transffin 3 8 8 8 7 14 14 12 14 14 14 12 11 3 3 3 3 2 3 4 3 3 3 2 3 0 5 9

Total test vectors 113

(c) * maintained variance = 0.965, ** maintained energy = 0.984, fin dimension = 3

Class assignation method Nearest neighbor k-nearest neighbor
Minimal
distance

Euclidean
norm

p-norm
Euclidean

norm
p-norm standard

score

Distance measurement method N
r.

of
d
im

en
si

on
s

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
ah

al
an

ob
is

M
ah

al
an

ob
is

*

M
ah

al
an

ob
is

**

Wrong class recognitions

notransf 840 1 3 5 7 2 1 0 5 2 1 0 10 4 5 7 9 1 1 1 4 1 1 1 8 57 7 1
transfpcacoveigs* 4 6 5 5 8 11 11 11 10 9 11 13 18 5 5 7 7 4 5 6 6 3 5 7 13 2 7 8
transfpcacovsvd* 4 6 5 5 8 11 11 11 10 9 11 13 18 5 5 7 7 4 5 6 6 3 5 7 13 2 7 8
transfsvd** 4 3 4 4 5 11 16 15 15 12 16 15 14 3 4 5 6 1 1 1 3 1 1 2 4 0 7 8
transffin 4 5 4 3 3 11 16 15 15 12 16 15 14 4 4 3 4 1 1 1 3 1 1 2 4 0 6 8

Total test vectors 113

(d) * maintained variance = 0.978, ** maintained energy = 0.986, fin dimension = 4

140

5.1. Fault recognition module with real fault vector elements

5.1.1. In Matlab the matrix of standard scores can be computed by the following expression
mzsmX = mdfmeanmX./(vsdmX∗ones(1,numbervectorsdata)).

Function transfsvdnormalized computes the singular value decomposition of the matrix of
standard scores mszmX of matrix mX, instead of the singular value decomposition of the
matrix mX, executing svd(mszmX).

Function transffinnormalized computes the singular value decomposition of the transpose of
the matrix of standard scores mszmX of matrix mX, instead of the singular value decompo-
sition of the transpose of the matrix mX, executing svd(mszmX’). However, the computation
of the transformed matrix mR employing equation 4.24 and the matrix mX instead of matrix
mszmX, same as in the function transfin, has implemented because it delivered better results.

Figure 5.6 shows the fault pattern vectors of the given design set presented in table 5.1,
which dimensions have been reduced to two, using all four functions transfpcacorreigs, transf-
pcacorrsvd, transfsvdnormalized and transffinnormalized. In that figure, it can be observed that
the functions transfpcacorreigs, transfpcacorrsvd and transfsvdnormalized produce with normal-
ization the same results. In the case of the fault pattern vectors which dimensions has been
reduced with function transffinnormalized, the fault pattern vectors look equal placed as the
other methods but with scaled down components.

In order to see the effect of normalization and to analyze whether the reduced fault pattern
vectors are able to recognize fault vectors of the test set presented in table 5.1, table 5.6 has
been prepared. Thereby, functions transfpcacorreigs and transfpcacorrsvd have been executed
setting the same maintained variance as in functions transfpcacoveigs and transfpcacovsvd.
Similarly, function transfsvdnormalized has been executed setting the same maintained energy
as in function transfsvd. Finally, function transffinnormalized has been executed with the same
dimension as for the function transffin. In table 5.6, it can be noticed that although the
intention has been to implement a similar normalization for both functions transfpcacorreigs
and transfpcacorrsvd, they are not equivalent. Besides, the number of dimensions by the
functions transfpcacorreigs, transfpcacorrsvd and transffinnormalized increases. Despite of that,
an improvement in the recognition in comparison to the results with no transformation and
transformation without normalization can observed by the values highlighted with dark color.
That is not the case of function transffinnormalized, where even with the same number of
dimensions as their similar function transffin, lower number of wrong class recognitions are
obtained. It is to notice that for a dimension of 4, highlighted with dark color, functions
transfpcacorreigs, transfpcacorrsvd and transffinnormalized deliver zero wrong class recognitions.
Therefore, for a fairer comparison, table 5.7 presents the wrong class recognitions for all
functions with the same number of dimensions from 1 to 6.

In that table 5.7 it can be observed that the wrong class recognitions is the same by the
functions transfpcacorreigs, transfpcacorrsvd and transffinnormalized for all distance measure-
ment methods. That is because using normalization, the transformation of the fault pattern
vectors gives the same results, as could be observed in subfigures (a), (b) and (c) of figure 5.6.
Moreover, in table 5.7, the number of wrong class recognitions using the k-nearest neighbor
class assignation method using the Euclidean norm and the p-norm is zero for dimensions
from 2 to 6. All cases of zero wrong class recognitions are highlighted with dark color.

In order to see how the number of wrong class recognitions varies increasing the number
of dimensions, figure 5.7 presents a plot of the number of wrong class recognitions versus
the number of dimensions from 1 to 87 for the k-nearest neighbor class assignation method
considering the Euclidean norm normalization. 87 is the maximum number of dimension
because the maximum number of dimension can only be the rank of the available matrix of

141

Chapter 5. Evaluation of fault recognition methods

(a) transfpcacorreigs

dimension 1

d
im

en
si

o
n

2

class 0
class 1
class 2

-16 -15 -14 -13 -12 -11 -10
17

17.5

18

18.5

19

19.5

20

20.5

21

21.5

22

(b) transfpcacorrsvd

dimension 1

d
im

en
si

o
n

2

class 0
class 1
class 2

-16 -15 -14 -13 -12 -11 -10
17

17.5

18

18.5

19

19.5

20

20.5

21

21.5

22

Figure 5.6: Fault pattern vectors with reduced dimensions using normalization

142

5.1. Fault recognition module with real fault vector elements

(c) transfsvdnormalized

dimension 1

d
im

en
si

o
n

2

class 0
class 1
class 2

-16 -15 -14 -13 -12 -11 -10
17

17.5

18

18.5

19

19.5

20

20.5

21

21.5

22

(d) transffinnormalized

dimension 1

d
im

en
si

o
n

2

class 0
class 1
class 2

-0.09 -0.085 -0.08 -0.075 -0.07 -0.065 -0.06 -0.055

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

Figure 5.6: Fault pattern vectors with reduced dimensions using normalization

143

Chapter 5. Evaluation of fault recognition methods

Table 5.6: Wrong class recognitions using normalized vector dimension reduction. (a) Same
maintained variance and maintained energy values

Class assignation method Nearest neighbor k-nearest neighbor
Minimal
distance

Euclidean
norm

p-norm
Euclidean

norm
p-norm standard

score

Distance measurement method m
ai

n
ta

in
ed

va
ri

an
ce

/e
n
er

gy

N
r.

of
d
im

en
si

on
s

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
ah

al
an

ob
is

M
ah

al
an

ob
is

*

M
ah

al
an

ob
is

**

W
ro

n
g

cl
as

s
re

co
gn

it
io

n
s

notransf 840 1 3 5 7 2 1 0 5 2 1 0 10 4 5 7 9 1 1 1 4 1 1 1 8 57 7 1

transfpcacoveigs* 0.84 1 11 11 11 11 28 28 28 28 33 28 25 18 11 11 11 11 16 16 16 16 16 16 14 12 37 19 37
transfpcacovsvd* 0.84 1 11 11 11 11 28 28 28 28 33 28 25 18 11 11 11 11 16 16 16 16 16 16 14 12 37 19 37
transfsvd** 0.96 1 35 35 35 35 40 40 40 40 41 40 40 38 30 30 30 30 30 30 30 30 35 30 30 30 65 49 65
transffin 1 35 35 35 35 40 40 40 40 41 40 40 38 30 30 30 30 30 30 30 30 35 30 30 30 65 49 65
transfpcacorreigs* 0.84 3 6 3 3 3 16 15 16 16 20 15 15 7 8 5 4 4 3 3 2 3 9 3 1 0 0 7 29
transfpcacorrsvd* 0.84 4 5 4 4 4 13 14 15 17 16 14 15 11 7 6 4 4 1 0 0 0 1 0 0 1 3 7 11
transfsvdnormalized** 0.96 68 2 3 4 4 30 20 12 6 36 20 11 8 7 5 4 4 5 5 4 4 7 5 4 6 34 7 15
transffinnormalized 1 7 7 7 7 8 8 8 8 8 8 8 8 6 6 6 6 11 11 11 11 11 11 9 7 12 4 12

transfpcacoveigs* 0.93 2 4 7 7 8 6 7 7 10 5 7 9 6 4 7 9 9 1 4 4 5 2 4 3 4 2 7 8
transfpcacovsvd* 0.93 2 4 7 7 8 6 7 7 10 5 7 9 6 4 7 9 9 1 4 4 5 2 4 3 4 2 7 8
transfsvd** 0.98 2 5 5 5 4 10 9 7 11 15 9 5 3 7 7 7 7 7 7 8 6 18 7 4 2 1 14 38
transffin 2 9 12 13 13 10 9 7 11 15 9 5 3 7 7 7 7 7 7 8 6 18 7 4 2 1 8 38
transfpcacorreigs* 0.93 4 5 4 4 4 13 14 15 17 16 14 15 11 7 6 4 4 1 0 0 0 1 0 0 1 3 7 11
transfpcacorrsvd* 0.93 10 4 3 4 4 37 37 33 35 40 37 35 27 6 4 5 4 3 2 2 1 5 2 2 2 8 7 25
transfsvdnormalized** 0.98 76 2 3 4 4 33 23 14 4 37 23 13 4 7 5 4 4 5 5 4 2 7 5 4 6 51 7 16
transffinnormalized 2 7 7 5 5 16 16 15 15 18 16 15 11 8 7 7 6 2 3 3 3 5 3 1 0 2 6 18

transfpcacoveigs* 0.965 3 3 7 7 9 5 6 6 7 5 6 6 9 5 5 7 7 1 1 2 2 1 1 1 2 1 7 7
transfpcacovsvd* 0.965 3 3 7 7 9 5 6 6 7 5 6 6 9 5 5 7 7 1 1 2 2 1 1 1 2 1 7 7
transfsvd** 0.984 3 3 3 3 4 14 14 12 14 14 14 12 11 4 5 6 7 2 3 4 3 3 3 2 3 0 7 9
transffin 3 8 8 8 7 14 14 12 14 14 14 12 11 3 3 3 3 2 3 4 3 3 3 2 3 0 5 9
transfpcacorreigs* 0.965 5 4 4 4 4 22 24 25 24 22 24 25 15 6 5 4 4 1 0 0 1 0 0 0 0 3 7 12
transfpcacorrsvd* 0.965 19 4 3 4 4 32 29 25 13 36 29 24 3 6 5 4 4 3 2 1 0 5 2 1 0 9 7 22
transfsvdnormalized** 0.984 78 2 3 4 4 33 26 15 5 37 26 13 4 7 5 4 4 5 5 5 2 8 5 4 7 37 7 16
transffinnormalized 3 9 5 5 5 16 15 16 16 20 15 15 7 8 8 8 8 3 3 2 3 9 3 1 0 0 13 29

transfpcacoveigs* 0.978 4 6 5 5 8 11 11 11 10 9 11 13 18 5 5 7 7 4 5 6 6 3 5 7 13 2 7 8
transfpcacovsvd* 0.978 4 6 5 5 8 11 11 11 10 9 11 13 18 5 5 7 7 4 5 6 6 3 5 7 13 2 7 8
transfsvd** 0.986 4 3 4 4 5 11 16 15 15 12 16 15 14 3 4 5 6 1 1 1 3 1 1 2 4 0 7 8
transffin 4 5 4 3 3 11 16 15 15 12 16 15 14 4 4 3 4 1 1 1 3 1 1 2 4 0 6 8
transfpcacorreigs* 0.978 5 4 4 4 4 22 24 25 24 22 24 25 15 6 5 4 4 1 0 0 1 0 0 0 0 3 7 12
transfpcacorrsvd* 0.978 26 3 3 4 4 41 39 36 19 43 39 33 3 7 5 4 4 7 5 3 0 9 5 1 1 8 7 21
transfsvdnormalized** 0.986 79 2 3 4 4 33 26 15 5 37 26 13 4 7 5 4 4 5 5 5 2 9 5 4 7 50 7 15
transffinnormalized 4 7 8 7 6 13 14 15 17 16 14 15 11 7 8 8 9 1 0 0 0 1 0 0 1 3 8 11

Total test vectors 113

fault pattern vectors mX87×840. This unique graph refers to all the functions transfpcacorreigs,
transfpcacorrsvd, transfsvdnormalized and transffinnormalized because their behavior is the same
for that class assignation method, as has been already noticed in table 5.7. Since a low number
of wrong class recognitions can be observed from two dimensions upwards, for many numbers
of dimensions, then, obviously, it is recommended to take the minimal number of dimensions
for a minimal number of wrong class recognitions, in this case four dimensions. However,
that should be decided according to the tolerable number of wrong class recognitions and the
available memory for saving the reduced fault pattern vectors.

The number of wrong class recognitions without normalizations in the process of dimension
reduction increases as the number of dimensions increases, as can be seen in figure 5.7 using
function transfpcacoveigs. This shows that a lower number of wrong class recognitions can be
obtained employing the normalization implemented in the process of dimension reduction by
functions transfpcacorreigs, transfpcacorrsvd, transfsvdnormalized and transffinnormalized.

144

5.1. Fault recognition module with real fault vector elements

Table 5.7: Wrong class recognitions using normalized vector dimension reduction. (b) Same
dimensions

Class assignation method Nearest neighbor k-nearest neighbor
Minimal
distance

Euclidean
norm

p-norm
Euclidean

norm
p-norm standard

score

Distance measurement method m
ai

n
ta

in
ed

va
ri

an
ce

/e
n
er

gy

N
r.

of
d
im

en
si

on
s

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
an

h
at

ta
n

E
u
cl

id
ea

n

M
in

ko
w

sk
i

C
h
eb

y
sh

ev

M
ah

al
an

ob
is

M
ah

al
an

ob
is

*

M
ah

al
an

ob
is

**

W
ro

n
g

cl
as

s
re

co
gn

it
io

n
s

notransf 840 1 3 5 7 2 1 0 5 2 1 0 10 4 5 7 9 1 1 1 4 1 1 1 8 57 7 1

transfpcacoveigs* 0.84 1 11 11 11 11 28 28 28 28 33 28 25 18 11 11 11 11 16 16 16 16 16 16 14 12 37 19 37
transfpcacovsvd* 0.84 1 11 11 11 11 28 28 28 28 33 28 25 18 11 11 11 11 16 16 16 16 16 16 14 12 37 19 37
transfsvd** 0.96 1 35 35 35 35 40 40 40 40 41 40 40 38 30 30 30 30 30 30 30 30 35 30 30 30 65 49 65
transffin 1 35 35 35 35 40 40 40 40 41 40 40 38 30 30 30 30 30 30 30 30 35 30 30 30 65 49 65
transfpcacorreigs* 1 7 7 7 7 8 8 8 8 8 8 8 8 6 6 6 6 11 11 11 11 11 11 9 7 12 4 12
transfpcacorrsvd* 1 7 7 7 7 8 8 8 8 8 8 8 8 6 6 6 6 11 11 11 11 11 11 9 7 12 4 12
transfsvdnormalized* 1 7 7 7 7 8 8 8 8 8 8 8 8 6 6 6 6 11 11 11 11 11 11 9 7 12 4 12
transffinnormalized* 1 7 7 7 7 8 8 8 8 8 8 8 8 6 6 6 6 11 11 11 11 11 11 9 7 12 4 12

transfpcacoveigs* 0.93 2 4 7 7 8 6 7 7 10 5 7 9 6 4 7 9 9 1 4 4 5 2 4 3 4 2 7 8
transfpcacovsvd* 0.93 2 4 7 7 8 6 7 7 10 5 7 9 6 4 7 9 9 1 4 4 5 2 4 3 4 2 7 8
transfsvd** 0.98 2 5 5 5 4 10 9 7 11 15 9 5 3 7 7 7 7 7 7 8 6 18 7 4 2 1 14 38
transffin 2 9 12 13 13 10 9 7 11 15 9 5 3 7 7 7 7 7 7 8 6 18 7 4 2 1 8 38
transfpcacorreigs* 2 6 6 6 5 16 16 15 15 18 16 15 11 8 4 4 4 2 3 3 3 5 3 1 0 2 5 18
transfpcacorrsvd* 2 6 6 6 5 16 16 15 15 18 16 15 11 8 4 4 4 2 3 3 3 5 3 1 0 2 5 18
transfsvdnormalized* 2 6 6 6 5 16 16 15 15 18 16 15 11 8 4 4 4 2 3 3 3 5 3 1 0 2 5 18
transffinnormalized* 2 7 7 5 5 16 16 15 15 18 16 15 11 8 7 7 6 2 3 3 3 5 3 1 0 2 6 18

transfpcacoveigs* 0.965 3 3 7 7 9 5 6 6 7 5 6 6 9 5 5 7 7 1 1 2 2 1 1 1 2 1 7 7
transfpcacovsvd* 0.965 3 3 7 7 9 5 6 6 7 5 6 6 9 5 5 7 7 1 1 2 2 1 1 1 2 1 7 7
transfsvd** 0.984 3 3 3 3 4 14 14 12 14 14 14 12 11 4 5 6 7 2 3 4 3 3 3 2 3 0 7 9
transffin 3 8 8 8 7 14 14 12 14 14 14 12 11 3 3 3 3 2 3 4 3 3 3 2 3 0 5 9
transfpcacorreigs* 3 6 3 3 3 16 15 16 16 20 15 15 7 8 5 4 4 3 3 2 3 9 3 1 0 0 7 29
transfpcacorrsvd* 3 6 3 3 3 16 15 16 16 20 15 15 7 8 5 4 4 3 3 2 3 9 3 1 0 0 7 29
transfsvdnormalized* 3 6 3 3 3 16 15 16 16 20 15 15 7 8 5 4 4 3 3 2 3 9 3 1 0 0 7 29
transffinnormalized* 3 9 5 5 5 16 15 16 16 20 15 15 7 8 8 8 8 3 3 2 3 9 3 1 0 0 13 29

transfpcacoveigs* 0.978 4 6 5 5 8 11 11 11 10 9 11 13 18 5 5 7 7 4 5 6 6 3 5 7 13 2 7 8
transfpcacovsvd* 0.978 4 6 5 5 8 11 11 11 10 9 11 13 18 5 5 7 7 4 5 6 6 3 5 7 13 2 7 8
transfsvd** 0.986 4 3 4 4 5 11 16 15 15 12 16 15 14 3 4 5 6 1 1 1 3 1 1 2 4 0 7 8
transffin 4 5 4 3 3 11 16 15 15 12 16 15 14 4 4 3 4 1 1 1 3 1 1 2 4 0 6 8
transfpcacorreigs* 4 5 4 4 4 13 14 15 17 16 14 15 11 7 6 4 4 1 0 0 0 1 0 0 1 3 7 11
transfpcacorrsvd* 4 5 4 4 4 13 14 15 17 16 14 15 11 7 6 4 4 1 0 0 0 1 0 0 1 3 7 11
transfsvdnormalized* 4 5 4 4 4 13 14 15 17 16 14 15 11 7 6 4 4 1 0 0 0 1 0 0 1 3 7 11
transffinnormalized* 4 7 8 7 6 13 14 15 17 16 14 15 11 7 8 8 9 1 0 0 0 1 0 0 1 3 8 11

transfpcacoveigs* 5 4 3 3 7 7 7 7 6 6 7 7 12 5 4 6 6 5 5 5 6 5 5 5 11 2 7 8
transfpcacovsvd* 5 4 3 3 7 7 7 7 6 6 7 7 12 5 4 6 6 5 5 5 6 5 5 5 11 2 7 8
transfsvd** 5 3 4 5 6 19 18 16 15 17 18 16 25 3 4 5 6 3 2 3 2 1 2 5 15 4 7 8
transffin 5 8 8 9 11 19 18 16 15 17 18 16 25 4 4 6 8 3 2 3 2 1 2 5 15 4 7 8
transfpcacorreigs* 5 4 4 4 4 22 24 25 24 22 24 25 15 6 5 4 4 1 0 0 1 0 0 0 0 3 7 12
transfpcacorrsvd* 5 4 4 4 4 22 24 25 24 22 24 25 15 6 5 4 4 1 0 0 1 0 0 0 0 3 7 12
transfsvdnormalized** 5 4 4 4 4 22 24 25 24 22 24 25 15 6 5 4 4 1 0 0 1 0 0 0 0 3 7 12
transffinnormalized 5 4 6 6 6 22 24 25 24 22 24 25 15 6 6 8 8 1 0 0 1 0 0 0 0 3 7 12

transfpcacoveigs* 6 5 4 3 5 6 4 4 4 5 4 6 10 6 5 6 6 3 2 1 2 2 2 1 8 9 7 8
transfpcacovsvd* 6 5 4 3 5 6 4 4 4 5 4 6 10 6 5 6 6 3 2 1 2 2 2 1 8 9 7 8
transfsvd** 6 3 4 4 6 7 7 6 5 7 7 7 6 6 5 5 6 2 1 1 2 1 1 1 6 9 7 12
transffin 6 6 6 5 7 7 7 6 5 7 7 7 6 5 5 6 7 2 1 1 2 1 1 1 6 9 4 12
transfpcacorreigs* 6 5 3 4 4 22 27 27 24 24 27 26 16 6 4 5 4 1 1 1 0 1 1 1 1 2 7 17
transfpcacorrsvd* 6 5 3 4 4 22 27 27 24 24 27 26 16 6 4 5 4 1 1 1 0 1 1 1 1 2 7 17
transfsvdnormalized** 6 5 3 4 4 22 27 27 24 24 27 26 16 6 4 5 4 1 1 1 0 1 1 1 1 2 7 17
transffinnormalized 6 4 3 3 4 22 27 27 24 24 27 26 16 6 6 6 7 1 1 1 0 1 1 1 1 2 11 17

Total test vectors 113

145

Chapter 5. Evaluation of fault recognition methods

(a) transfpcacorreigs, transfpcacorrsvd, transfsvdnormalized and transffinnormalized

number of dimensions

n
u
m

b
er

o
f
w

ro
n
g

cl
a
ss

re
co

g
n
it
io

n
s

0
0

2

4

6

8

12

10

10 20 30 40 50 60 70 80 90

(b) transfpcacorreigs

number of dimensions

n
u
m

b
er

o
f
w

ro
n
g

cl
a
ss

re
co

g
n
it
io

n
s

0
0

2

4

6

8

12

14

16

18

10

10 20 30 40 50 60 70 80 90

Figure 5.7: Wrong class recognitions vs dimensions

146

5.1. Fault recognition module with real fault vector elements

5.1.3 Fault pattern vectors number reduction

Last section has shown that working with fault vectors that have reduced components, can
not only reduce the time taken in computing the distances between vectors, but can also
reduce the number of wrong fault recognitions. This section aims to show that reducing the
number of fault pattern vectors to which the given fault vector should be compared, can
also reduce the fault recognition time. The reduction of the number of fault pattern vectors
can be carried out before or after the fault vector dimension reduction has been executed.
Next subsections show the implementation of the methods: “Death of immune cells with
insufficient stimulation”, “Elimination of auto-reactive immune cells”, and “Apoptosis and
auto-immunization”, shown in section 4.7 and subsection 4.8.5 of chapter 4. Their results are
presented by means of tables and two dimensional graphs.

Death of immune cells with insufficient stimulation

The reduction of the number of fault pattern vectors resembling the death of immune cells
with insufficient stimulation, has been presented in section 4.7 of chapter 4 by means of
algorithm 4.4. That algorithm is inspired in the control of population of immune cells and
tries to reduce the number of fault pattern vectors in the set, removing all fault pattern
vectors that do not present any affinity with all other fault pattern vectors.

Program Code 5.14: Death of immune cells with insufficient stimulation function

1 funct ion [mXr , vc r] = r emo v a l b y l a c k o f s t imu l a t i o n (mX, vc , t h r e s h o l d ,\
2 d i s tancemethod)
3 mXr = [] ; v c r = [] ;
4 f o r i = 1 : (s i z e (mX, 2) − 1)
5 s t i m u l a t i o n = 0 ;
6 f o r j = (i +1): s i z e (mX, 2)
7 d i s t a n c e = d i s t a n c e v e c t o r t o v e c t o r (mX(: , i) ,mX(: , j) ,\
8 d i s tancemethod) ;
9 i f d i s t a n c e < t h r e s h o l d

10 s t i m u l a t i o n = s t i m u l a t i o n + 1 ;
11 end

12 end

13 i f s t i m u l a t i o n ˜= 0
14 mXrtemp = [mXr ,mX(: , i)] ; vcrtemp = [vcr , vc (i)] ;
15 mXr = mXrtemp ; vc r = vcrtemp ;
16 end

17 i f i == (s i z e (mX, 2) − 1)
18 mXrtemp = [mXr ,mX(: , i +1)] ; vcrtemp = [vcr , vc (i +1)] ;
19 mXr = mXrtemp ; vc r = vcrtemp ;
20 end

21 end

The algorithm 4.4 named “Fault pattern vectors number reduction resembling the death of
immune cells with insufficient stimulation” has been implemented in Matlab as the function
removalbylackofstimulation and is shown in code listing 5.14. This function requires as inputs:
all fault pattern vectors arranged into the matrix mX, the fault class of each of those fault
pattern vectors arranged into the vector vc, a value in the variable threshold which allows
to tune the algorithm, and the distance measurement method to be applied for measuring

147

Chapter 5. Evaluation of fault recognition methods

the affinity between vectors in variable distancemethod. The function gives as outputs: the
reduced number of fault pattern vectors into the matrix mXr, and the fault classes of the
leftover fault pattern vectors into the vector vcr.

In the function presented in code listing 5.14, the affinity between fault vectors is measured
through the distance between them, as can be seen in code line 7. A small distance means
a high affinity. Therefore, following the logic of the algorithm, a low value in the variable
threshold can produce the removal of a high number of fault pattern vectors, since the area
in which a fault pattern vector can be stimulated is too small. As distance measurements
methods to define in variable distancemethod, could be selected one of the Minkowski distance
measurement methods, or one of the Minkowski distance measurement methods normalized
with the Euclidean norm or the p-norm, as explained in section 5.1.1. The Mahalanobis
distance is not appropriate, since that one is a distance measured between a vector and a set
of vectors.

The fault pattern vectors which have an affinity greater than the threshold with the fault
pattern vector in turn in the loop, are counted in the variable stimulation, as can be seen in
the code lines 9 to 11. The fault pattern vectors of the matrix mX, which stimulation variable
is zero, are not copied in the new reduced matrix mXr, see code lines 13 to 16. Please note
that the fault classes of the vectors contained in the new reduced matrix mXr are copied
accordingly. Finally, the last fault pattern vector is copied into the new reduced matrix mXr
directly since there are not other vectors to be compared with. That can be seen in line codes
17 to 20.

Elimination of auto-reactive immune cells

The reduction of the number of fault pattern vectors through auto-reactive immune cells,
has been presented in section 4.7 of chapter 4 by means of algorithm 4.5. That algorithm is
inspired in the removal of immune cells which are able to react against other cells of the body.
In that way, that algorithm tries to reduce the number of fault pattern vectors by removing
fault pattern vectors that recognize any other fault pattern vector in the set.

Program Code 5.15: Elimination of auto-reactive immune cells function

1 funct ion [mXr , vc r] = r emo v a l b y a u t o r e a c t i v i t y (mX, vc , t h r e s h o l d ,\
2 d i s tancemethod)
3 mXr = mX(: , 1) ; v c r = vc (: , 1) ;
4 numbervec to rs = s i z e (mX, 2) ;
5 f o r i = 1 : (numbervec to rs − 1)
6 f o r j = (i + 1) : numbervec to rs
7 d i s t a n c e = d i s t a n c e v e c t o r t o v e c t o r (mX(: , i) ,mX(: , j) ,\
8 d i s tancemethod) ;
9 i f d i s t a n c e > t h r e s h o l d

10 mXrtemp = [mXr ,mX(: , j)] ; vcrtemp = [vcr , vc (j)] ;
11 mXr = mXrtemp ; vc r = vcrtemp ;
12 end

13 end

14 mX = mXr ; vc = vc r ;
15 numbervec to rs = s i z e (mXr , 2) ;
16 i f i < numbervec to rs
17 mXr = mXr (: , 1 : (i + 1)) ; v c r = vc r (1 : (i + 1)) ;
18 end

148

5.1. Fault recognition module with real fault vector elements

19 end

The algorithm 4.5 named “Fault pattern vectors number reduction through auto-reactive
immune cells” has been implemented in Matlab as the function removalbyautoreactivity and is
shown in code listing 5.15. This function requires as inputs: all fault pattern vectors arranged
into the matrix mX, the fault class of each of those fault pattern vectors arranged into the
vector vc, a value in the variable threshold which allows to tune the algorithm, and the distance
measurement method in the variable distancemethod to be applied for determining if a fault
pattern recognizes another fault pattern vector or not. The function gives as outputs: the
reduced number of fault pattern vectors into the matrix mXr, and the fault classes of the
leftover fault pattern vectors into the vector vcr.

In the function presented in code listing 5.15, a fault pattern vector recognizes another fault
pattern vector whenever the distance between these fault pattern vectors is less than a given
threshold, as can be seen in code lines 7 and 9. In consequence, a high value in the variable
threshold can produce that a higher number of fault pattern vectors are recognized by the
fault pattern vector in turn and do not be copied in the new reduced matrix mXr, see code
lines 9 to 12. Please note that the fault classes of the vectors contained in the new reduced
matrix mXr are copied accordingly into vector vcr. As distance measurements methods for
assigning in variable distancemethod, could be selected one of the Minkowski distance mea-
surement methods, or one of the Minkowski distance measurement methods normalized with
the Euclidean norm or the p-norm, as explained in section 5.1.1. The Mahalanobis distance
is here again not appropriate, since that one is a distance measured between a vector and a
set of vectors.

Following algorithm 4.5, the reduced set of fault pattern vectors mXr is adopted as the new
set of fault pattern vectors mX for being reduced in the next loop, as can be seen in code
line 14. The new number of fault pattern vectors in the matrix mX is updated. And in code
line 17, only the fault pattern vectors that passed the loop and have not recognized any prior
fault pattern vector are copied into matrix mXr. Please note that the conditional expression
in code lines 16 and 18, prevents getting a problem with the last fault pattern vector in the
row which does not have any fault pattern vector for recognizing. This is the reason why, in
code listing 5.15, unlike algorithm 4.5, the fault pattern vector in turn in the loop, is copied
into the matrix of reduced fault pattern vectors mXr in the prior loop, instead of copying it at
the beginning of the loop, see code line 17. As a consequence, it is necessary to copy the first
fault pattern vector in the row into the matrix mXr at the beginning of the code, see code
line 3. Finally it is important to remark, that the initial order of the fault pattern vectors in
the matrix mX may affect the final matrix mXr given as result.

Apoptosis and auto-immunization

The reduction of the number of fault pattern vectors by means of apoptosis and auto-
immunization, has been presented in section 4.8.5 of chapter 4 by means of algorithm 4.9.
That algorithm is inspired in the programmed death of cells, called apoptosis, and in the
emergence of cells that are auto-reactive in the body, named auto-immunization. It tries to
reduce the number of fault pattern vectors by removing fault pattern vectors that recognize
any other fault pattern vector in the set. However, comparing with the algorithm 4.5, which
eliminates auto-reactive immune cells, this algorithm considers also the class of the fault
pattern vectors for deciding about the removal of the fault pattern vectors.

149

Chapter 5. Evaluation of fault recognition methods

Program Code 5.16: Apoptosis and auto-immunization function

1 funct ion [mXr , vc r] = remova l byapop to s i s au to immun i za t i on (mX, vc ,\
2 t h r e s h o l d ,\
3 d i s tancemethod)
4 %% Apopto s i s
5 mXr = mX(: , 1) ; v c r = vc (1) ;
6 mXd = [] ; vcd = [] ;
7 numbervec to rs = s i z e (mX, 2) ;
8 f o r i = 1 : (numbervec to rs − 1)
9 f o r j = (i + 1) : numbervec to rs

10 d i s t a n c e = d i s t a n c e v e c t o r t o v e c t o r (mX(: , i) ,mX(: , j) ,\
11 d i s tancemethod) ;
12 i f (d i s t a n c e < t h r e s h o l d) && (vc (i) == vc (j))
13 mXdtemp = [mXd,mX(: , j)] ; vcdtemp = [vcd , vc (j)] ;
14 mXd = mXdtemp ; vcd = vcdtemp ;
15 e l s e

16 mXrtemp = [mXr ,mX(: , j)] ; vcrtemp = [vcr , vc (j)] ;
17 mXr = mXrtemp ; vc r = vcrtemp ;
18 end

19 end

20 mX = mXr ; vc = vc r ;
21 numbervec to rs = s i z e (mXr , 2) ;
22 i f i < numbervec to rs
23 mXr = mXr (: , 1 : (i + 1)) ; v c r = vc r (1 : (i + 1)) ;
24 end

25 end

26 %% Auto immunizat ion
27 numbe r v e c t o r s d e l e t e d = s i z e (mXd, 2) ;
28 numbe rve c to r s r educed = s i z e (mXr , 2) ;
29 f o r i = 1 : n umbe r v e c t o r s d e l e t e d
30 f o r j = 1 : numbe rve c to r s r educed
31 d i s t a n c e s (j) = d i s t a n c e v e c t o r t o v e c t o r (mXd(: , i) ,mXr (: , j) ,\
32 d i s tancemethod) ;
33 end

34 [˜ , m inp lace] = min (d i s t a n c e s) ;
35 i f vcd (i) ˜= vc r (minp lace)
36 mXrtemp = [mXr ,mXd(: , i)] ; vcrtemp = [vcr , vcd (i)] ;
37 mXr = mXrtemp ; vc r = vcrtemp ;
38 end

39 end

The algorithm 4.9 named “Fault pattern vectors number reduction by means of apoptosis
and auto-immunization” has been implemented in Matlab as the function removalbyapopto-
sisautoimmunization and is shown in code listing 5.16. This function requires the same inputs
as prior algorithms: all fault pattern vectors arranged into the matrix mX, the fault class
of each of those fault pattern vectors arranged into the vector vc, a value in the variable
threshold which allows to tune the algorithm, and the distance measurement method in the
variable distancemethod to be applied for determining if a fault pattern recognizes another
fault pattern vector or not. This function gives also as outputs: the reduced number of fault
pattern vectors into the matrix mXr, and the the fault classes of the leftover fault pattern
vectors into the vector vcr.

150

5.1. Fault recognition module with real fault vector elements

In the function presented in code listing 5.16, the first part of the code implementing
apoptosis looks very similar to the code presented in code listing 5.15, except that the fault
pattern vector recognizes another fault pattern vector whenever the distance between these
fault pattern vectors is less than a given threshold and the fault pattern vector classes are
the same, as can be seen in code line 12. Besides, the fault vectors that are removed from
the set are saved for being used in the code lines that implement the auto-immunization, as
can be seen in code lines 13 and 14. Similar to the code listing 5.15, a high value in the
variable threshold can produce the removal of a high number of fault pattern vectors, see
code lines 12 to 18. Furthermore, as distance measurements methods for assigning in variable
distancemethod, could be selected one of the Minkowski distance measurement methods, or
one of the Minkowski distance measurement methods normalized with the Euclidean norm
or the p-norm, as explained in section 5.1.1. The Mahalanobis distance is here again is not
appropriate, since that one is a distance measured between a vector and a set of vectors.

The second part of the code that implements auto-immunization tries to find the fault
pattern vector in the reduced matrix of fault pattern vectors mXr, that approaches the most
a fault pattern vector of the matrix of deleted fault pattern vectors mXd. Then, it is proved
whether both fault pattern vectors have the same class. If that is not the case, the deleted
fault pattern vector is reinserted in the reduced matrix of fault pattern vectors mXr. That
procedure can be seen in code lines 27 to 39, and the reason why it is executed is for reinserting
some characteristic fault pattern vectors whose deletion has been produced because of the
initial order of the matrix mX. Finally, the reduced number of fault pattern vectors are given
into the matrix mXr together with their corresponding classes into the vector vcr.

Comparison of methods

The functions removalbylackofstimulation, removalbyautoreactivity and removalbyapoptosisauto-
immunization have been executed for different thresholds as can be seen in tables 5.8 to 5.16
respectively. Thereby, fault pattern vectors with five dimensions has been employed since for
the given data set, fault pattern vectors with five dimensions showed in subsection 5.1.2, in
many cases, to be able to recognize all fault vectors of the test set producing zero wrong class
recognitions.

Tables 5.8 to 5.16 show besides the wrong class recognitions also their corresponding reduced
number of fault pattern vectors. Looking at those tables, it is desirable to find the lowest
reduced number of fault pattern vectors by the lowest number of wrong class recognitions.
That is difficult to find since the lower the reduced number of fault pattern vectors, the higher
the number of wrong class recognitions. Therefore, an optimization objective in form of a
formula is required for finding the case where both, the number of wrong class recognitions
and the reduced number of fault pattern vectors, are minimal. For that, the number of
wrong class recognitions and the reduced number of fault pattern vectors can be added up
considering that we look for the minimal of both. But, before that, the number of fault
pattern vectors should be multiplied by the number of their dimensions. That, in order to be
able to compare properly the obtained results with the results of the line notransf obtained
without executing dimension reduction, i.e. with 840 dimensions. Besides, since the number
of wrong class recognitions has normally a low value, in comparison with the values of the
reduced number of fault pattern vectors, a weight should be multiplied to it. The resulting
formula is show in equation 5.2

151

Chapter 5. Evaluation of fault recognition methods

T
ab

le
5.

8:
R

es
u
lt
s

of
th

e
al

go
ri

th
m

“D
ea

th
of

im
m

u
n
e

ce
ll
s

w
it
h

in
su

ffi
ci

en
t

st
im

u
la

ti
on

”
a

T
h
re

sh
ol

d
C

la
ss

as
si

gn
at

io
n

m
et

h
o
d

N
ea

re
st

n
ei

gh
b
or

k
-n

ea
re

st
n
ei

gh
b
or

M
in

im
al

d
is

ta
n
ce

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

st
an

d
ar

d
sc

or
e

D
is

ta
n
ce

m
ea

su
r.

m
et

h
o
d

D=Nr.ofdimensions

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Mahalanobis

Mahalanobis*

Mahalanobis**

1

A

n
ot

ra
n
sf

84
0

10
6

6
5

7
10

6
10

6
10

6
10

6
10

6
10

6
10

6
23

10
6

6
7

9
10

6
10

6
10

6
10

6
10

6
10

6
10

6
26

67
7

1
tr

an
sf

p
ca

co
ve

ig
s

5
7

6
6

10
53

8
8

6
53

8
8

14
9

6
6

6
53

7
3

7
53

7
6

17
8

7
3

tr
an

sf
p
ca

co
v
sv

d
5

7
6

6
10

53
8

8
6

53
8

8
14

9
6

6
6

53
7

3
7

53
7

6
17

8
7

3
tr

an
sf

sv
d

5
5

7
8

9
67

17
27

21
67

17
21

21
10

6
6

7
67

4
5

5
67

4
5

18
7

7
7

tr
an

sffi
n

5
8

8
9

11
67

17
27

21
67

17
21

21
4

4
6

8
67

4
5

5
67

4
5

18
4

7
8

tr
an

sf
p
ca

co
rr

ei
gs

5
7

6
6

5
67

60
40

45
67

60
28

12
8

7
7

6
67

6
5

12
67

6
2

0
7

8
9

tr
an

sf
p
ca

co
rr

sv
d

5
7

6
6

5
67

60
40

45
67

60
28

12
8

7
7

6
67

6
5

12
67

6
2

0
7

8
9

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
7

6
6

5
67

60
40

45
67

60
28

12
8

7
7

6
67

6
5

12
67

6
2

0
7

8
9

tr
an

sffi
n
n
or

m
al

iz
ed

5
4

6
6

6
67

60
40

45
67

60
28

12
6

6
8

8
67

6
5

12
67

6
2

0
3

7
12

B

n
ot

ra
n
sf

84
0

1
81

86
87

1
1

1
1

1
1

1
22

1
81

86
87

1
1

1
1

1
1

1
22

1
81

86
tr

an
sf

p
ca

co
ve

ig
s

5
66

81
82

82
4

22
34

54
3

22
49

82
66

81
82

82
4

22
34

54
3

22
49

82
66

81
82

tr
an

sf
p
ca

co
v
sv

d
5

66
81

82
82

4
22

34
54

3
22

49
82

66
81

82
82

4
22

34
54

3
22

49
82

66
81

82
tr

an
sf

sv
d

5
65

81
82

83
4

34
47

56
2

34
56

84
65

81
82

83
4

34
47

56
2

34
56

84
65

81
82

tr
an

sffi
n

5
87

87
87

87
4

34
47

56
2

34
56

84
87

87
87

87
4

34
47

56
2

34
56

84
87

87
87

tr
an

sf
p
ca

co
rr

ei
gs

5
73

82
83

84
5

32
46

59
4

32
59

84
73

82
83

84
5

32
46

59
4

32
59

84
73

82
83

tr
an

sf
p
ca

co
rr

sv
d

5
73

82
83

84
5

32
46

59
4

32
59

84
73

82
83

84
5

32
46

59
4

32
59

84
73

82
83

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
73

82
83

84
5

32
46

59
4

32
59

84
73

82
83

84
5

32
46

59
4

32
59

84
73

82
83

tr
an

sffi
n
n
or

m
al

iz
ed

5
87

87
87

87
5

32
46

59
4

32
59

84
87

87
87

87
5

32
46

59
4

32
59

84
87

87
87

(10*A)+(B*D)

n
ot

ra
n
sf

84
0

19
00

68
10

0
72

29
0

73
15

0
19

00
19

00
19

00
19

00
19

00
19

00
19

00
18

71
0

19
00

68
10

0
72

31
0

73
17

0
19

00
19

00
19

00
19

00
19

00
19

00
19

00
18

74
0

15
10

68
11

0
72

25
0

tr
an

sf
p
ca

co
ve

ig
s

5
40

0
46

5
47

0
51

0
55

0
19

0
25

0
33

0
54

5
19

0
32

5
55

0
42

0
46

5
47

0
47

0
55

0
18

0
20

0
34

0
54

5
18

0
30

5
58

0
41

0
47

5
44

0
tr

an
sf

p
ca

co
v
sv

d
5

40
0

46
5

47
0

51
0

55
0

19
0

25
0

33
0

54
5

19
0

32
5

55
0

42
0

46
5

47
0

47
0

55
0

18
0

20
0

34
0

54
5

18
0

30
5

58
0

41
0

47
5

44
0

tr
an

sf
sv

d
5

37
5

47
5

49
0

50
5

69
0

34
0

50
5

49
0

68
0

34
0

49
0

63
0

42
5

46
5

47
0

48
5

69
0

21
0

28
5

33
0

68
0

21
0

33
0

60
0

39
5

47
5

48
0

tr
an

sffi
n

5
51

5
51

5
52

5
54

5
69

0
34

0
50

5
49

0
68

0
34

0
49

0
63

0
47

5
47

5
49

5
51

5
69

0
21

0
28

5
33

0
68

0
21

0
33

0
60

0
47

5
50

5
51

5
tr

an
sf

p
ca

co
rr

ei
gs

5
43

5
47

0
47

5
47

0
69

5
76

0
63

0
74

5
69

0
76

0
57

5
54

0
44

5
48

0
48

5
48

0
69

5
22

0
28

0
41

5
69

0
22

0
31

5
42

0
43

5
49

0
50

5
tr

an
sf

p
ca

co
rr

sv
d

5
43

5
47

0
47

5
47

0
69

5
76

0
63

0
74

5
69

0
76

0
57

5
54

0
44

5
48

0
48

5
48

0
69

5
22

0
28

0
41

5
69

0
22

0
31

5
42

0
43

5
49

0
50

5
tr

an
sf

sv
d
n
or

m
al

iz
ed

5
43

5
47

0
47

5
47

0
69

5
76

0
63

0
74

5
69

0
76

0
57

5
54

0
44

5
48

0
48

5
48

0
69

5
22

0
28

0
41

5
69

0
22

0
31

5
42

0
43

5
49

0
50

5
tr

an
sffi

n
n
or

m
al

iz
ed

5
47

5
49

5
49

5
49

5
69

5
76

0
63

0
74

5
69

0
76

0
57

5
54

0
49

5
49

5
51

5
51

5
69

5
22

0
28

0
41

5
69

0
22

0
31

5
42

0
46

5
50

5
55

5

m
in

im
u
m

37
5

46
5

47
0

47
0

55
0

19
0

25
0

33
0

54
5

19
0

32
5

54
0

42
0

46
5

47
0

47
0

55
0

18
0

20
0

33
0

54
5

18
0

30
5

42
0

39
5

47
5

44
0

T
ot

al
te

st
ve

ct
or

s
11

3

A
=

W
ro

n
g

cl
a
ss

re
co

g
n
it
io

n
s,

B
=

N
r.

o
f
fa

u
lt

p
a
tt

er
n

v
ec

to
rs

,
T

h
re

sh
o
ld

=
1

152

5.1. Fault recognition module with real fault vector elements

T
ab

le
5.

9:
R

es
u
lt
s

of
th

e
al

go
ri

th
m

“D
ea

th
of

im
m

u
n
e

ce
ll
s

w
it
h

in
su

ffi
ci

en
t

st
im

u
la

ti
on

”
b

T
h
re

sh
ol

d
C

la
ss

as
si

gn
at

io
n

m
et

h
o
d

N
ea

re
st

n
ei

gh
b
or

k
-n

ea
re

st
n
ei

gh
b
or

M
in

im
al

d
is

ta
n
ce

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

st
an

d
ar

d
sc

or
e

D
is

ta
n
ce

m
ea

su
r.

m
et

h
o
d

D=Nr.ofdimensions

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Mahalanobis

Mahalanobis*

Mahalanobis**

0.
25

A

n
ot

ra
n
sf

84
0

10
6

10
6

9
7

10
6

10
6

10
6

10
6

10
6

10
6

10
6

10
6

10
6

10
6

9
9

10
6

10
6

10
6

10
6

10
6

10
6

10
6

10
6

67
10

6
7

tr
an

sf
p
ca

co
ve

ig
s

5
12

9
9

12
10

6
10

6
10

6
53

10
6

10
6

53
22

67
11

10
10

10
6

10
6

10
6

53
10

6
10

6
53

21
67

7
24

tr
an

sf
p
ca

co
v
sv

d
5

12
9

9
12

10
6

10
6

10
6

53
10

6
10

6
53

22
67

11
10

10
10

6
10

6
10

6
53

10
6

10
6

53
21

67
7

24
tr

an
sf

sv
d

5
91

9
8

10
10

6
10

6
10

6
53

10
6

10
6

53
24

67
12

9
9

10
6

10
6

10
6

53
10

6
10

6
53

32
67

7
13

tr
an

sffi
n

5
12

8
9

11
10

6
10

6
10

6
53

10
6

10
6

53
24

9
7

9
9

10
6

10
6

10
6

53
10

6
10

6
53

32
9

7
10

tr
an

sf
p
ca

co
rr

ei
gs

5
12

6
6

7
10

6
10

6
10

6
10

6
10

6
10

6
10

6
33

13
10

10
10

10
6

10
6

10
6

10
6

10
6

10
6

10
6

2
67

7
11

tr
an

sf
p
ca

co
rr

sv
d

5
12

6
6

7
10

6
10

6
10

6
10

6
10

6
10

6
10

6
33

13
10

10
10

10
6

10
6

10
6

10
6

10
6

10
6

10
6

2
67

7
11

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
12

6
6

7
10

6
10

6
10

6
10

6
10

6
10

6
10

6
33

13
10

10
10

10
6

10
6

10
6

10
6

10
6

10
6

10
6

2
67

7
11

tr
an

sffi
n
n
or

m
al

iz
ed

5
4

6
6

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
33

6
6

8
8

10
6

10
6

10
6

10
6

10
6

10
6

10
6

2
3

7
12

B

n
ot

ra
n
sf

84
0

1
1

64
86

1
1

1
1

1
1

1
1

1
1

64
86

1
1

1
1

1
1

1
1

1
1

64
tr

an
sf

p
ca

co
ve

ig
s

5
3

17
27

38
1

1
1

2
1

1
2

14
3

17
27

38
1

1
1

2
1

1
2

14
3

17
27

tr
an

sf
p
ca

co
v
sv

d
5

3
17

27
38

1
1

1
2

1
1

2
14

3
17

27
38

1
1

1
2

1
1

2
14

3
17

27
tr

an
sf

sv
d

5
2

18
24

35
1

1
1

2
1

1
2

25
2

18
24

35
1

1
1

2
1

1
2

25
2

18
24

tr
an

sffi
n

5
74

81
84

84
1

1
1

2
1

1
2

25
74

81
84

84
1

1
1

2
1

1
2

25
74

81
84

tr
an

sf
p
ca

co
rr

ei
gs

5
8

28
42

47
1

1
1

1
1

1
1

26
8

28
42

47
1

1
1

1
1

1
1

26
8

28
42

tr
an

sf
p
ca

co
rr

sv
d

5
8

28
42

47
1

1
1

1
1

1
1

26
8

28
42

47
1

1
1

1
1

1
1

26
8

28
42

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
8

28
42

47
1

1
1

1
1

1
1

26
8

28
42

47
1

1
1

1
1

1
1

26
8

28
42

tr
an

sffi
n
n
or

m
al

iz
ed

5
87

87
87

87
1

1
1

1
1

1
1

26
87

87
87

87
1

1
1

1
1

1
1

26
87

87
87

(10*A)+(B*D)

n
ot

ra
n
sf

84
0

19
00

19
00

53
85

0
72

31
0

19
00

19
00

19
00

19
00

19
00

19
00

19
00

19
00

19
00

19
00

53
85

0
72

33
0

19
00

19
00

19
00

19
00

19
00

19
00

19
00

19
00

15
10

19
00

53
83

0
tr

an
sf

p
ca

co
ve

ig
s

5
13

5
17

5
22

5
31

0
10

65
10

65
10

65
54

0
10

65
10

65
54

0
29

0
68

5
19

5
23

5
29

0
10

65
10

65
10

65
54

0
10

65
10

65
54

0
28

0
68

5
15

5
37

5
tr

an
sf

p
ca

co
v
sv

d
5

13
5

17
5

22
5

31
0

10
65

10
65

10
65

54
0

10
65

10
65

54
0

29
0

68
5

19
5

23
5

29
0

10
65

10
65

10
65

54
0

10
65

10
65

54
0

28
0

68
5

15
5

37
5

tr
an

sf
sv

d
5

92
0

18
0

20
0

27
5

10
65

10
65

10
65

54
0

10
65

10
65

54
0

36
5

68
0

21
0

21
0

26
5

10
65

10
65

10
65

54
0

10
65

10
65

54
0

44
5

68
0

16
0

25
0

tr
an

sffi
n

5
49

0
48

5
51

0
53

0
10

65
10

65
10

65
54

0
10

65
10

65
54

0
36

5
46

0
47

5
51

0
51

0
10

65
10

65
10

65
54

0
10

65
10

65
54

0
44

5
46

0
47

5
52

0
tr

an
sf

p
ca

co
rr

ei
gs

5
16

0
20

0
27

0
30

5
10

65
10

65
10

65
10

65
10

65
10

65
10

65
46

0
17

0
24

0
31

0
33

5
10

65
10

65
10

65
10

65
10

65
10

65
10

65
15

0
71

0
21

0
32

0
tr

an
sf

p
ca

co
rr

sv
d

5
16

0
20

0
27

0
30

5
10

65
10

65
10

65
10

65
10

65
10

65
10

65
46

0
17

0
24

0
31

0
33

5
10

65
10

65
10

65
10

65
10

65
10

65
10

65
15

0
71

0
21

0
32

0
tr

an
sf

sv
d
n
or

m
al

iz
ed

5
16

0
20

0
27

0
30

5
10

65
10

65
10

65
10

65
10

65
10

65
10

65
46

0
17

0
24

0
31

0
33

5
10

65
10

65
10

65
10

65
10

65
10

65
10

65
15

0
71

0
21

0
32

0
tr

an
sffi

n
n
or

m
al

iz
ed

5
47

5
49

5
49

5
49

5
10

65
10

65
10

65
10

65
10

65
10

65
10

65
46

0
49

5
49

5
51

5
51

5
10

65
10

65
10

65
10

65
10

65
10

65
10

65
15

0
46

5
50

5
55

5

m
in

im
u
m

13
5

17
5

20
0

27
5

10
65

10
65

10
65

54
0

10
65

10
65

54
0

29
0

17
0

19
5

21
0

26
5

10
65

10
65

10
65

54
0

10
65

10
65

54
0

15
0

46
0

15
5

25
0

T
ot

al
te

st
ve

ct
or

s
11

3

A
=

W
ro

n
g

cl
a
ss

re
co

g
n
it
io

n
s,

B
=

N
r.

o
f
fa

u
lt

p
a
tt

er
n

v
ec

to
rs

,
T

h
re

sh
o
ld

=
0
.2

5

153

Chapter 5. Evaluation of fault recognition methods

T
ab

le
5.

10
:

R
es

u
lt
s

of
th

e
al

go
ri

th
m

“D
ea

th
of

im
m

u
n
e

ce
ll
s

w
it
h

in
su

ffi
ci

en
t

st
im

u
la

ti
on

”
c

T
h
re

sh
ol

d
C

la
ss

as
si

gn
at

io
n

m
et

h
o
d

N
ea

re
st

n
ei

gh
b
or

k
-n

ea
re

st
n
ei

gh
b
or

M
in

im
al

d
is

ta
n
ce

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

st
an

d
ar

d
sc

or
e

D
is

ta
n
ce

m
ea

su
r.

m
et

h
o
d

D=Nr.ofdimensions

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Mahalanobis

Mahalanobis*

Mahalanobis**

0.
1

A

n
ot

ra
n
sf

84
0

10
6

10
6

99
8

10
6

10
6

10
6

10
6

10
6

10
6

10
6

10
6

10
6

10
6

67
9

10
6

10
6

10
6

10
6

10
6

10
6

10
6

10
6

67
10

6
67

tr
an

sf
p
ca

co
ve

ig
s

5
10

6
10

6
10

6
29

10
6

10
6

10
6

10
6

10
6

10
6

10
6

53
10

6
10

6
10

6
67

10
6

10
6

10
6

10
6

10
6

10
6

10
6

53
67

10
6

67
tr

an
sf

p
ca

co
v
sv

d
5

10
6

10
6

10
6

29
10

6
10

6
10

6
10

6
10

6
10

6
10

6
53

10
6

10
6

10
6

67
10

6
10

6
10

6
10

6
10

6
10

6
10

6
53

67
10

6
67

tr
an

sf
sv

d
5

10
6

10
6

10
6

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
53

10
6

10
6

10
6

67
10

6
10

6
10

6
10

6
10

6
10

6
10

6
53

67
10

6
67

tr
an

sffi
n

5
19

13
12

11
10

6
10

6
10

6
10

6
10

6
10

6
10

6
53

12
23

10
10

10
6

10
6

10
6

10
6

10
6

10
6

10
6

53
10

14
5

tr
an

sf
p
ca

co
rr

ei
gs

5
10

6
10

6
61

5
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
67

67
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
67

10
6

67
tr

an
sf

p
ca

co
rr

sv
d

5
10

6
10

6
61

5
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
67

67
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
67

10
6

67
tr

an
sf

sv
d
n
or

m
al

iz
ed

5
10

6
10

6
61

5
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
67

67
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
67

10
6

67
tr

an
sffi

n
n
or

m
al

iz
ed

5
4

6
6

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
6

6
8

8
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
3

7
12

B

n
ot

ra
n
sf

84
0

1
1

2
80

1
1

1
1

1
1

1
1

1
1

2
80

1
1

1
1

1
1

1
1

1
1

2
tr

an
sf

p
ca

co
ve

ig
s

5
1

1
1

3
1

1
1

1
1

1
1

2
1

1
1

3
1

1
1

1
1

1
1

2
1

1
1

tr
an

sf
p
ca

co
v
sv

d
5

1
1

1
3

1
1

1
1

1
1

1
2

1
1

1
3

1
1

1
1

1
1

1
2

1
1

1
tr

an
sf

sv
d

5
1

1
1

4
1

1
1

1
1

1
1

2
1

1
1

4
1

1
1

1
1

1
1

2
1

1
1

tr
an

sffi
n

5
27

61
70

72
1

1
1

1
1

1
1

2
27

61
70

72
1

1
1

1
1

1
1

2
27

61
70

tr
an

sf
p
ca

co
rr

ei
gs

5
1

1
2

6
1

1
1

1
1

1
1

1
1

1
2

6
1

1
1

1
1

1
1

1
1

1
2

tr
an

sf
p
ca

co
rr

sv
d

5
1

1
2

6
1

1
1

1
1

1
1

1
1

1
2

6
1

1
1

1
1

1
1

1
1

1
2

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
1

1
2

6
1

1
1

1
1

1
1

1
1

1
2

6
1

1
1

1
1

1
1

1
1

1
2

tr
an

sffi
n
n
or

m
al

iz
ed

5
87

87
87

87
1

1
1

1
1

1
1

1
87

87
87

87
1

1
1

1
1

1
1

1
87

87
87

(10*A)+(B*D)

n
ot

ra
n
sf

84
0

19
00

19
00

26
70

67
28

0
19

00
19

00
19

00
19

00
19

00
19

00
19

00
19

00
19

00
19

00
23

50
67

29
0

19
00

19
00

19
00

19
00

19
00

19
00

19
00

19
00

15
10

19
00

23
50

tr
an

sf
p
ca

co
ve

ig
s

5
10

65
10

65
10

65
30

5
10

65
10

65
10

65
10

65
10

65
10

65
10

65
54

0
10

65
10

65
10

65
68

5
10

65
10

65
10

65
10

65
10

65
10

65
10

65
54

0
67

5
10

65
67

5
tr

an
sf

p
ca

co
v
sv

d
5

10
65

10
65

10
65

30
5

10
65

10
65

10
65

10
65

10
65

10
65

10
65

54
0

10
65

10
65

10
65

68
5

10
65

10
65

10
65

10
65

10
65

10
65

10
65

54
0

67
5

10
65

67
5

tr
an

sf
sv

d
5

10
65

10
65

10
65

80
10

65
10

65
10

65
10

65
10

65
10

65
10

65
54

0
10

65
10

65
10

65
69

0
10

65
10

65
10

65
10

65
10

65
10

65
10

65
54

0
67

5
10

65
67

5
tr

an
sffi

n
5

32
5

43
5

47
0

47
0

10
65

10
65

10
65

10
65

10
65

10
65

10
65

54
0

25
5

53
5

45
0

46
0

10
65

10
65

10
65

10
65

10
65

10
65

10
65

54
0

23
5

44
5

40
0

tr
an

sf
p
ca

co
rr

ei
gs

5
10

65
10

65
62

0
80

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

68
0

70
0

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

67
5

10
65

68
0

tr
an

sf
p
ca

co
rr

sv
d

5
10

65
10

65
62

0
80

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

68
0

70
0

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

67
5

10
65

68
0

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
10

65
10

65
62

0
80

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

68
0

70
0

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

67
5

10
65

68
0

tr
an

sffi
n
n
or

m
al

iz
ed

5
47

5
49

5
49

5
49

5
10

65
10

65
10

65
10

65
10

65
10

65
10

65
10

65
49

5
49

5
51

5
51

5
10

65
10

65
10

65
10

65
10

65
10

65
10

65
10

65
46

5
50

5
55

5

m
in

im
u
m

32
5

43
5

47
0

80
10

65
10

65
10

65
10

65
10

65
10

65
10

65
54

0
25

5
49

5
45

0
46

0
10

65
10

65
10

65
10

65
10

65
10

65
10

65
54

0
23

5
44

5
40

0

T
ot

al
te

st
ve

ct
or

s
11

3

A
=

W
ro

n
g

cl
a
ss

re
co

g
n
it
io

n
s,

B
=

N
r.

o
f
fa

u
lt

p
a
tt

er
n

v
ec

to
rs

,
T

h
re

sh
o
ld

=
0
.1

154

5.1. Fault recognition module with real fault vector elements

T
ab

le
5.

11
:

R
es

u
lt
s

of
th

e
al

go
ri

th
m

“E
li
m

in
at

io
n

of
au

to
-r

ea
ct

iv
e

im
m

u
n
e

ce
ll
s”

a

T
h
re

sh
ol

d
C

la
ss

as
si

gn
at

io
n

m
et

h
o
d

N
ea

re
st

n
ei

gh
b
or

k
-n

ea
re

st
n
ei

gh
b
or

M
in

im
al

d
is

ta
n
ce

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

st
an

d
ar

d
sc

or
e

D
is

ta
n
ce

m
ea

su
r.

m
et

h
o
d

D=Nr.ofdimensions

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Mahalanobis

Mahalanobis*

Mahalanobis**

0.
7

A

n
ot

ra
n
sf

84
0

1
4

12
67

2
1

0
5

2
1

0
10

4
7

8
67

1
1

1
4

1
1

1
8

57
3

53
tr

an
sf

p
ca

co
ve

ig
s

5
3

3
6

8
7

7
7

9
6

7
7

14
3

7
13

12
5

6
6

3
5

6
5

2
8

3
7

tr
an

sf
p
ca

co
v
sv

d
5

3
3

6
8

7
7

7
9

6
7

7
14

3
7

13
12

5
6

6
3

5
6

5
2

8
3

7
tr

an
sf

sv
d

5
4

3
4

3
19

19
18

11
17

19
21

37
5

7
11

8
3

5
5

13
1

5
6

16
8

3
6

tr
an

sffi
n

5
25

67
67

67
19

19
18

11
17

19
21

37
31

67
67

67
3

5
5

13
1

5
6

16
67

67
67

tr
an

sf
p
ca

co
rr

ei
gs

5
4

4
5

6
22

26
27

28
22

26
23

23
8

10
13

9
1

0
1

1
0

0
0

17
11

4
6

tr
an

sf
p
ca

co
rr

sv
d

5
4

4
5

6
22

26
27

28
22

26
23

23
8

10
13

9
1

0
1

1
0

0
0

17
11

4
6

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
4

4
5

6
22

26
27

28
22

26
23

23
8

10
13

9
1

0
1

1
0

0
0

17
11

4
6

tr
an

sffi
n
n
or

m
al

iz
ed

5
67

67
67

67
22

26
27

28
22

26
23

23
67

67
67

67
1

0
1

1
0

0
0

17
67

67
67

B

n
ot

ra
n
sf

84
0

87
25

7
1

87
87

87
87

87
87

87
87

87
25

7
1

87
87

87
87

87
87

87
87

87
25

7
tr

an
sf

p
ca

co
ve

ig
s

5
54

24
19

16
86

82
76

67
87

82
68

22
54

24
19

16
86

82
76

67
87

82
68

22
54

24
19

tr
an

sf
p
ca

co
v
sv

d
5

54
24

19
16

86
82

76
67

87
82

68
22

54
24

19
16

86
82

76
67

87
82

68
22

54
24

19
tr

an
sf

sv
d

5
54

23
17

12
86

80
73

61
86

80
65

17
54

23
17

12
86

80
73

61
86

80
65

17
54

23
17

tr
an

sffi
n

5
5

1
1

1
86

80
73

61
86

80
65

17
5

1
1

1
86

80
73

61
86

80
65

17
5

1
1

tr
an

sf
p
ca

co
rr

ei
gs

5
38

18
14

12
87

75
69

59
87

75
60

12
38

18
14

12
87

75
69

59
87

75
60

12
38

18
14

tr
an

sf
p
ca

co
rr

sv
d

5
38

18
14

12
87

75
69

59
87

75
60

12
38

18
14

12
87

75
69

59
87

75
60

12
38

18
14

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
38

18
14

12
87

75
69

59
87

75
60

12
38

18
14

12
87

75
69

59
87

75
60

12
38

18
14

tr
an

sffi
n
n
or

m
al

iz
ed

5
1

1
1

1
87

75
69

59
87

75
60

12
1

1
1

1
87

75
69

59
87

75
60

12
1

1
1

(10*A)+(B*D)

n
ot

ra
n
sf

84
0

73
09

0
21

04
0

60
00

15
10

73
10

0
73

09
0

73
08

0
73

13
0

73
10

0
73

09
0

73
08

0
73

18
0

73
12

0
21

07
0

59
60

15
10

73
09

0
73

09
0

73
09

0
73

12
0

73
09

0
73

09
0

73
09

0
73

16
0

73
65

0
21

03
0

64
10

tr
an

sf
p
ca

co
ve

ig
s

5
30

0
15

0
15

5
16

0
50

0
48

0
45

0
42

5
49

5
48

0
41

0
25

0
30

0
19

0
22

5
20

0
48

0
47

0
44

0
36

5
48

5
47

0
39

0
13

0
35

0
15

0
16

5
tr

an
sf

p
ca

co
v
sv

d
5

30
0

15
0

15
5

16
0

50
0

48
0

45
0

42
5

49
5

48
0

41
0

25
0

30
0

19
0

22
5

20
0

48
0

47
0

44
0

36
5

48
5

47
0

39
0

13
0

35
0

15
0

16
5

tr
an

sf
sv

d
5

31
0

14
5

12
5

90
62

0
59

0
54

5
41

5
60

0
59

0
53

5
45

5
32

0
18

5
19

5
14

0
46

0
45

0
41

5
43

5
44

0
45

0
38

5
24

5
35

0
14

5
14

5
tr

an
sffi

n
5

27
5

67
5

67
5

67
5

62
0

59
0

54
5

41
5

60
0

59
0

53
5

45
5

33
5

67
5

67
5

67
5

46
0

45
0

41
5

43
5

44
0

45
0

38
5

24
5

69
5

67
5

67
5

tr
an

sf
p
ca

co
rr

ei
gs

5
23

0
13

0
12

0
12

0
65

5
63

5
61

5
57

5
65

5
63

5
53

0
29

0
27

0
19

0
20

0
15

0
44

5
37

5
35

5
30

5
43

5
37

5
30

0
23

0
30

0
13

0
13

0
tr

an
sf

p
ca

co
rr

sv
d

5
23

0
13

0
12

0
12

0
65

5
63

5
61

5
57

5
65

5
63

5
53

0
29

0
27

0
19

0
20

0
15

0
44

5
37

5
35

5
30

5
43

5
37

5
30

0
23

0
30

0
13

0
13

0
tr

an
sf

sv
d
n
or

m
al

iz
ed

5
23

0
13

0
12

0
12

0
65

5
63

5
61

5
57

5
65

5
63

5
53

0
29

0
27

0
19

0
20

0
15

0
44

5
37

5
35

5
30

5
43

5
37

5
30

0
23

0
30

0
13

0
13

0
tr

an
sffi

n
n
or

m
al

iz
ed

5
67

5
67

5
67

5
67

5
65

5
63

5
61

5
57

5
65

5
63

5
53

0
29

0
67

5
67

5
67

5
67

5
44

5
37

5
35

5
30

5
43

5
37

5
30

0
23

0
67

5
67

5
67

5

m
in

im
u
m

23
0

13
0

12
0

90
50

0
48

0
45

0
41

5
49

5
48

0
41

0
25

0
27

0
18

5
19

5
14

0
44

5
37

5
35

5
30

5
43

5
37

5
30

0
13

0
30

0
13

0
13

0

T
ot

al
te

st
ve

ct
or

s
11

3

A
=

W
ro

n
g

cl
a
ss

re
co

g
n
it
io

n
s,

B
=

N
r.

o
f
fa

u
lt

p
a
tt

er
n

v
ec

to
rs

,
T

h
re

sh
o
ld

=
0
.7

155

Chapter 5. Evaluation of fault recognition methods

T
ab

le
5.

12
:

R
es

u
lt
s

of
th

e
al

go
ri

th
m

“E
li
m

in
at

io
n

of
au

to
-r

ea
ct

iv
e

im
m

u
n
e

ce
ll
s”

b

T
h
re

sh
ol

d
C

la
ss

as
si

gn
at

io
n

m
et

h
o
d

N
ea

re
st

n
ei

gh
b
or

k
-n

ea
re

st
n
ei

gh
b
or

M
in

im
al

d
is

ta
n
ce

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

st
an

d
ar

d
sc

or
e

D
is

ta
n
ce

m
ea

su
r.

m
et

h
o
d

D=Nr.ofdimensions

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Mahalanobis

Mahalanobis*

Mahalanobis**

1

A

n
ot

ra
n
sf

84
0

1
4

17
67

2
1

0
5

2
1

0
12

4
8

67
67

1
1

1
4

1
1

1
9

57
5

67
tr

an
sf

p
ca

co
ve

ig
s

5
2

2
2

4
7

9
13

12
6

9
8

3
7

8
5

8
5

6
4

9
5

6
6

9
17

4
32

tr
an

sf
p
ca

co
v
sv

d
5

2
2

2
4

7
9

13
12

6
9

8
3

7
8

5
8

5
6

4
9

5
6

6
9

17
4

32
tr

an
sf

sv
d

5
3

3
2

3
19

20
22

29
17

20
30

23
10

9
4

4
3

6
6

18
1

6
18

20
15

5
16

tr
an

sffi
n

5
58

67
67

67
19

20
22

29
17

20
30

23
67

67
67

67
3

6
6

18
1

6
18

20
67

67
67

tr
an

sf
p
ca

co
rr

ei
gs

5
2

2
3

10
21

24
25

29
22

24
19

19
8

3
3

9
1

0
1

1
0

0
0

17
42

4
10

tr
an

sf
p
ca

co
rr

sv
d

5
2

2
3

10
21

24
25

29
22

24
19

19
8

3
3

9
1

0
1

1
0

0
0

17
42

4
10

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
2

2
3

10
21

24
25

29
22

24
19

19
8

3
3

9
1

0
1

1
0

0
0

17
42

4
10

tr
an

sffi
n
n
or

m
al

iz
ed

5
67

67
67

67
21

24
25

29
22

24
19

19
67

67
67

67
1

0
1

1
0

0
0

17
67

67
67

B

n
ot

ra
n
sf

84
0

87
11

3
1

87
87

87
87

87
87

87
70

87
11

3
1

87
87

87
87

87
87

87
70

87
11

3
tr

an
sf

p
ca

co
ve

ig
s

5
34

12
10

10
85

69
59

48
85

69
52

12
34

12
10

10
85

69
59

48
85

69
52

12
34

12
10

tr
an

sf
p
ca

co
v
sv

d
5

34
12

10
10

85
69

59
48

85
69

52
12

34
12

10
10

85
69

59
48

85
69

52
12

34
12

10
tr

an
sf

sv
d

5
33

11
10

10
85

64
53

43
86

64
43

12
33

11
10

10
85

64
53

43
86

64
43

12
33

11
10

tr
an

sffi
n

5
2

1
1

1
85

64
53

43
86

64
43

12
2

1
1

1
85

64
53

43
86

64
43

12
2

1
1

tr
an

sf
p
ca

co
rr

ei
gs

5
25

10
9

7
84

57
48

40
85

57
40

8
25

10
9

7
84

57
48

40
85

57
40

8
25

10
9

tr
an

sf
p
ca

co
rr

sv
d

5
25

10
9

7
84

57
48

40
85

57
40

8
25

10
9

7
84

57
48

40
85

57
40

8
25

10
9

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
25

10
9

7
84

57
48

40
85

57
40

8
25

10
9

7
84

57
48

40
85

57
40

8
25

10
9

tr
an

sffi
n
n
or

m
al

iz
ed

5
1

1
1

1
84

57
48

40
85

57
40

8
1

1
1

1
84

57
48

40
85

57
40

8
1

1
1

(10*A)+(B*D)

n
ot

ra
n
sf

84
0

73
09

0
92

80
26

90
15

10
73

10
0

73
09

0
73

08
0

73
13

0
73

10
0

73
09

0
73

08
0

58
92

0
73

12
0

93
20

31
90

15
10

73
09

0
73

09
0

73
09

0
73

12
0

73
09

0
73

09
0

73
09

0
58

89
0

73
65

0
92

90
31

90
tr

an
sf

p
ca

co
ve

ig
s

5
19

0
80

70
90

49
5

43
5

42
5

36
0

48
5

43
5

34
0

90
24

0
14

0
10

0
13

0
47

5
40

5
33

5
33

0
47

5
40

5
32

0
15

0
34

0
10

0
37

0
tr

an
sf

p
ca

co
v
sv

d
5

19
0

80
70

90
49

5
43

5
42

5
36

0
48

5
43

5
34

0
90

24
0

14
0

10
0

13
0

47
5

40
5

33
5

33
0

47
5

40
5

32
0

15
0

34
0

10
0

37
0

tr
an

sf
sv

d
5

19
5

85
70

80
61

5
52

0
48

5
50

5
60

0
52

0
51

5
29

0
26

5
14

5
90

90
45

5
38

0
32

5
39

5
44

0
38

0
39

5
26

0
31

5
10

5
21

0
tr

an
sffi

n
5

59
0

67
5

67
5

67
5

61
5

52
0

48
5

50
5

60
0

52
0

51
5

29
0

68
0

67
5

67
5

67
5

45
5

38
0

32
5

39
5

44
0

38
0

39
5

26
0

68
0

67
5

67
5

tr
an

sf
p
ca

co
rr

ei
gs

5
14

5
70

75
13

5
63

0
52

5
49

0
49

0
64

5
52

5
39

0
23

0
20

5
80

75
12

5
43

0
28

5
25

0
21

0
42

5
28

5
20

0
21

0
54

5
90

14
5

tr
an

sf
p
ca

co
rr

sv
d

5
14

5
70

75
13

5
63

0
52

5
49

0
49

0
64

5
52

5
39

0
23

0
20

5
80

75
12

5
43

0
28

5
25

0
21

0
42

5
28

5
20

0
21

0
54

5
90

14
5

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
14

5
70

75
13

5
63

0
52

5
49

0
49

0
64

5
52

5
39

0
23

0
20

5
80

75
12

5
43

0
28

5
25

0
21

0
42

5
28

5
20

0
21

0
54

5
90

14
5

tr
an

sffi
n
n
or

m
al

iz
ed

5
67

5
67

5
67

5
67

5
63

0
52

5
49

0
49

0
64

5
52

5
39

0
23

0
67

5
67

5
67

5
67

5
43

0
28

5
25

0
21

0
42

5
28

5
20

0
21

0
67

5
67

5
67

5

m
in

im
u
m

14
5

70
70

80
49

5
43

5
42

5
36

0
48

5
43

5
34

0
90

20
5

80
75

90
43

0
28

5
25

0
21

0
42

5
28

5
20

0
15

0
31

5
90

14
5

T
ot

al
te

st
ve

ct
or

s
11

3

A
=

W
ro

n
g

cl
a
ss

re
co

g
n
it
io

n
s,

B
=

N
r.

o
f
fa

u
lt

p
a
tt

er
n

v
ec

to
rs

,
T

h
re

sh
o
ld

=
1

156

5.1. Fault recognition module with real fault vector elements

T
ab

le
5.

13
:

R
es

u
lt
s

of
th

e
al

go
ri

th
m

“E
li
m

in
at

io
n

of
au

to
-r

ea
ct

iv
e

im
m

u
n
e

ce
ll
s”

c

T
h
re

sh
ol

d
C

la
ss

as
si

gn
at

io
n

m
et

h
o
d

N
ea

re
st

n
ei

gh
b
or

k
-n

ea
re

st
n
ei

gh
b
or

M
in

im
al

d
is

ta
n
ce

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

st
an

d
ar

d
sc

or
e

D
is

ta
n
ce

m
ea

su
r.

m
et

h
o
d

D=Nr.ofdimensions

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Mahalanobis

Mahalanobis*

Mahalanobis**

1.
2

A

n
ot

ra
n
sf

84
0

1
2

33
67

2
1

0
5

2
1

0
12

4
4

67
67

1
1

1
4

1
1

1
8

57
4

67
tr

an
sf

p
ca

co
ve

ig
s

5
3

3
7

8
7

11
11

12
6

11
11

32
7

4
6

7
5

5
6

8
5

5
9

38
27

4
41

tr
an

sf
p
ca

co
v
sv

d
5

3
3

7
8

7
11

11
12

6
11

11
32

7
4

6
7

5
5

6
8

5
5

9
38

27
4

41
tr

an
sf

sv
d

5
5

4
6

12
19

22
27

23
17

22
31

61
8

4
6

24
4

6
15

11
1

6
18

63
45

4
17

tr
an

sffi
n

5
67

67
67

67
19

22
27

23
17

22
31

61
67

67
67

67
4

6
15

11
1

6
18

63
67

67
67

tr
an

sf
p
ca

co
rr

ei
gs

5
3

5
11

10
21

20
25

11
22

20
28

61
9

4
9

9
1

0
0

6
0

0
0

61
50

5
10

tr
an

sf
p
ca

co
rr

sv
d

5
3

5
11

10
21

20
25

11
22

20
28

61
9

4
9

9
1

0
0

6
0

0
0

61
50

5
10

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
3

5
11

10
21

20
25

11
22

20
28

61
9

4
9

9
1

0
0

6
0

0
0

61
50

5
10

tr
an

sffi
n
n
or

m
al

iz
ed

5
67

67
67

67
21

20
25

11
22

20
28

61
67

67
67

67
1

0
0

6
0

0
0

61
67

67
67

B

n
ot

ra
n
sf

84
0

87
10

3
1

87
87

87
87

87
87

87
42

87
10

3
1

87
87

87
87

87
87

87
42

87
10

3
tr

an
sf

p
ca

co
ve

ig
s

5
25

10
9

8
83

56
47

41
85

56
39

9
25

10
9

8
83

56
47

41
85

56
39

9
25

10
9

tr
an

sf
p
ca

co
v
sv

d
5

25
10

9
8

83
56

47
41

85
56

39
9

25
10

9
8

83
56

47
41

85
56

39
9

25
10

9
tr

an
sf

sv
d

5
25

10
8

6
81

51
41

34
85

51
35

7
25

10
8

6
81

51
41

34
85

51
35

7
25

10
8

tr
an

sffi
n

5
1

1
1

1
81

51
41

34
85

51
35

7
1

1
1

1
81

51
41

34
85

51
35

7
1

1
1

tr
an

sf
p
ca

co
rr

ei
gs

5
19

8
7

7
77

46
37

26
84

46
28

5
19

8
7

7
77

46
37

26
84

46
28

5
19

8
7

tr
an

sf
p
ca

co
rr

sv
d

5
19

8
7

7
77

46
37

26
84

46
28

5
19

8
7

7
77

46
37

26
84

46
28

5
19

8
7

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
19

8
7

7
77

46
37

26
84

46
28

5
19

8
7

7
77

46
37

26
84

46
28

5
19

8
7

tr
an

sffi
n
n
or

m
al

iz
ed

5
1

1
1

1
77

46
37

26
84

46
28

5
1

1
1

1
77

46
37

26
84

46
28

5
1

1
1

(10*A)+(B*D)

n
ot

ra
n
sf

84
0

73
09

0
84

20
28

50
15

10
73

10
0

73
09

0
73

08
0

73
13

0
73

10
0

73
09

0
73

08
0

35
40

0
73

12
0

84
40

31
90

15
10

73
09

0
73

09
0

73
09

0
73

12
0

73
09

0
73

09
0

73
09

0
35

36
0

73
65

0
84

40
31

90
tr

an
sf

p
ca

co
ve

ig
s

5
15

5
80

11
5

12
0

48
5

39
0

34
5

32
5

48
5

39
0

30
5

36
5

19
5

90
10

5
11

0
46

5
33

0
29

5
28

5
47

5
33

0
28

5
42

5
39

5
90

45
5

tr
an

sf
p
ca

co
v
sv

d
5

15
5

80
11

5
12

0
48

5
39

0
34

5
32

5
48

5
39

0
30

5
36

5
19

5
90

10
5

11
0

46
5

33
0

29
5

28
5

47
5

33
0

28
5

42
5

39
5

90
45

5
tr

an
sf

sv
d

5
17

5
90

10
0

15
0

59
5

47
5

47
5

40
0

59
5

47
5

48
5

64
5

20
5

90
10

0
27

0
44

5
31

5
35

5
28

0
43

5
31

5
35

5
66

5
57

5
90

21
0

tr
an

sffi
n

5
67

5
67

5
67

5
67

5
59

5
47

5
47

5
40

0
59

5
47

5
48

5
64

5
67

5
67

5
67

5
67

5
44

5
31

5
35

5
28

0
43

5
31

5
35

5
66

5
67

5
67

5
67

5
tr

an
sf

p
ca

co
rr

ei
gs

5
12

5
90

14
5

13
5

59
5

43
0

43
5

24
0

64
0

43
0

42
0

63
5

18
5

80
12

5
12

5
39

5
23

0
18

5
19

0
42

0
23

0
14

0
63

5
59

5
90

13
5

tr
an

sf
p
ca

co
rr

sv
d

5
12

5
90

14
5

13
5

59
5

43
0

43
5

24
0

64
0

43
0

42
0

63
5

18
5

80
12

5
12

5
39

5
23

0
18

5
19

0
42

0
23

0
14

0
63

5
59

5
90

13
5

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
12

5
90

14
5

13
5

59
5

43
0

43
5

24
0

64
0

43
0

42
0

63
5

18
5

80
12

5
12

5
39

5
23

0
18

5
19

0
42

0
23

0
14

0
63

5
59

5
90

13
5

tr
an

sffi
n
n
or

m
al

iz
ed

5
67

5
67

5
67

5
67

5
59

5
43

0
43

5
24

0
64

0
43

0
42

0
63

5
67

5
67

5
67

5
67

5
39

5
23

0
18

5
19

0
42

0
23

0
14

0
63

5
67

5
67

5
67

5

m
in

im
u
m

12
5

80
10

0
12

0
48

5
39

0
34

5
24

0
48

5
39

0
30

5
36

5
18

5
80

10
0

11
0

39
5

23
0

18
5

19
0

42
0

23
0

14
0

42
5

39
5

90
13

5

T
ot

al
te

st
ve

ct
or

s
11

3

A
=

W
ro

n
g

cl
a
ss

re
co

g
n
it
io

n
s,

B
=

N
r.

o
f
fa

u
lt

p
a
tt

er
n

v
ec

to
rs

,
T

h
re

sh
o
ld

=
1
.2

157

Chapter 5. Evaluation of fault recognition methods

T
ab

le
5.

14
:

R
es

u
lt
s

of
th

e
al

go
ri

th
m

“A
p
op

to
si

s
an

d
au

to
-i
m

m
u
n
iz

at
io

n
”

a

T
h
re

sh
ol

d
C

la
ss

as
si

gn
at

io
n

m
et

h
o
d

N
ea

re
st

n
ei

gh
b
or

k
-n

ea
re

st
n
ei

gh
b
or

M
in

im
al

d
is

ta
n
ce

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

st
an

d
ar

d
sc

or
e

D
is

ta
n
ce

m
ea

su
r.

m
et

h
o
d

D=Nr.ofdimensions

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Mahalanobis

Mahalanobis*

Mahalanobis**

1.
5

A

n
ot

ra
n
sf

84
0

1
21

39
42

2
1

0
5

2
1

0
14

4
15

22
13

1
1

1
4

1
1

1
22

57
4

52
tr

an
sf

p
ca

co
ve

ig
s

5
7

25
26

27
7

13
19

18
6

13
20

93
6

15
15

14
5

6
12

4
5

6
8

10
0

53
4

47
tr

an
sf

p
ca

co
v
sv

d
5

7
25

26
27

7
13

19
18

6
13

20
93

6
15

15
14

5
6

12
4

5
6

8
10

0
53

4
47

tr
an

sf
sv

d
5

9
26

24
41

21
23

23
32

19
23

38
97

5
16

18
22

6
13

12
8

3
13

29
98

53
4

37
tr

an
sffi

n
5

42
40

40
41

21
23

23
32

19
23

38
97

30
29

32
37

6
13

12
8

3
13

29
98

53
37

48
tr

an
sf

p
ca

co
rr

ei
gs

5
11

22
24

41
24

26
32

37
23

26
35

98
5

15
14

24
1

0
4

8
0

0
6

10
3

53
3

46
tr

an
sf

p
ca

co
rr

sv
d

5
11

22
24

41
24

26
32

37
23

26
35

98
5

15
14

24
1

0
4

8
0

0
6

10
3

53
3

46
tr

an
sf

sv
d
n
or

m
al

iz
ed

5
11

22
24

41
24

26
32

37
23

26
35

98
5

15
14

24
1

0
4

8
0

0
6

10
3

53
3

46
tr

an
sffi

n
n
or

m
al

iz
ed

5
40

42
43

44
24

26
32

37
23

26
35

98
32

33
34

35
1

0
4

8
0

0
6

10
3

53
1

64

B

n
ot

ra
n
sf

84
0

87
11

9
10

87
87

87
87

87
87

87
19

87
11

9
10

87
87

87
87

87
87

87
19

87
11

9
tr

an
sf

p
ca

co
ve

ig
s

5
19

11
11

11
78

44
35

25
83

44
26

7
19

11
11

11
78

44
35

25
83

44
26

7
19

11
11

tr
an

sf
p
ca

co
v
sv

d
5

19
11

11
11

78
44

35
25

83
44

26
7

19
11

11
11

78
44

35
25

83
44

26
7

19
11

11
tr

an
sf

sv
d

5
18

11
11

8
73

39
34

24
80

39
24

8
18

11
11

8
73

39
34

24
80

39
24

8
18

11
11

tr
an

sffi
n

5
23

21
21

19
73

39
34

24
80

39
24

8
23

21
21

19
73

39
34

24
80

39
24

8
23

21
21

tr
an

sf
p
ca

co
rr

ei
gs

5
16

11
13

13
65

34
28

23
77

34
21

6
16

11
13

13
65

34
28

23
77

34
21

6
16

11
13

tr
an

sf
p
ca

co
rr

sv
d

5
16

11
13

13
65

34
28

23
77

34
21

6
16

11
13

13
65

34
28

23
77

34
21

6
16

11
13

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
16

11
13

13
65

34
28

23
77

34
21

6
16

11
13

13
65

34
28

23
77

34
21

6
16

11
13

tr
an

sffi
n
n
or

m
al

iz
ed

5
13

15
15

17
65

34
28

23
77

34
21

6
13

15
15

17
65

34
28

23
77

34
21

6
13

15
15

(10*A)+(B*D)

n
ot

ra
n
sf

84
0

73
09

0
94

50
79

50
88

20
73

10
0

73
09

0
73

08
0

73
13

0
73

10
0

73
09

0
73

08
0

16
10

0
73

12
0

93
90

77
80

85
30

73
09

0
73

09
0

73
09

0
73

12
0

73
09

0
73

09
0

73
09

0
16

18
0

73
65

0
92

80
80

80
tr

an
sf

p
ca

co
ve

ig
s

5
16

5
30

5
31

5
32

5
46

0
35

0
36

5
30

5
47

5
35

0
33

0
96

5
15

5
20

5
20

5
19

5
44

0
28

0
29

5
16

5
46

5
28

0
21

0
10

35
62

5
95

52
5

tr
an

sf
p
ca

co
v
sv

d
5

16
5

30
5

31
5

32
5

46
0

35
0

36
5

30
5

47
5

35
0

33
0

96
5

15
5

20
5

20
5

19
5

44
0

28
0

29
5

16
5

46
5

28
0

21
0

10
35

62
5

95
52

5
tr

an
sf

sv
d

5
18

0
31

5
29

5
45

0
57

5
42

5
40

0
44

0
59

0
42

5
50

0
10

10
14

0
21

5
23

5
26

0
42

5
32

5
29

0
20

0
43

0
32

5
41

0
10

20
62

0
95

42
5

tr
an

sffi
n

5
53

5
50

5
50

5
50

5
57

5
42

5
40

0
44

0
59

0
42

5
50

0
10

10
41

5
39

5
42

5
46

5
42

5
32

5
29

0
20

0
43

0
32

5
41

0
10

20
64

5
47

5
58

5
tr

an
sf

p
ca

co
rr

ei
gs

5
19

0
27

5
30

5
47

5
56

5
43

0
46

0
48

5
61

5
43

0
45

5
10

10
13

0
20

5
20

5
30

5
33

5
17

0
18

0
19

5
38

5
17

0
16

5
10

60
61

0
85

52
5

tr
an

sf
p
ca

co
rr

sv
d

5
19

0
27

5
30

5
47

5
56

5
43

0
46

0
48

5
61

5
43

0
45

5
10

10
13

0
20

5
20

5
30

5
33

5
17

0
18

0
19

5
38

5
17

0
16

5
10

60
61

0
85

52
5

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
19

0
27

5
30

5
47

5
56

5
43

0
46

0
48

5
61

5
43

0
45

5
10

10
13

0
20

5
20

5
30

5
33

5
17

0
18

0
19

5
38

5
17

0
16

5
10

60
61

0
85

52
5

tr
an

sffi
n
n
or

m
al

iz
ed

5
46

5
49

5
50

5
52

5
56

5
43

0
46

0
48

5
61

5
43

0
45

5
10

10
38

5
40

5
41

5
43

5
33

5
17

0
18

0
19

5
38

5
17

0
16

5
10

60
59

5
85

71
5

m
in

im
u
m

16
5

27
5

29
5

32
5

46
0

35
0

36
5

30
5

47
5

35
0

33
0

96
5

13
0

20
5

20
5

19
5

33
5

17
0

18
0

16
5

38
5

17
0

16
5

10
20

59
5

85
42

5

T
ot

al
te

st
ve

ct
or

s
11

3

A
=

W
ro

n
g

cl
a
ss

re
co

g
n
it
io

n
s,

B
=

N
r.

o
f
fa

u
lt

p
a
tt

er
n

v
ec

to
rs

,
T

h
re

sh
o
ld

=
1
.5

158

5.1. Fault recognition module with real fault vector elements

T
ab

le
5.

15
:

R
es

u
lt
s

of
th

e
al

go
ri

th
m

“A
p
op

to
si

s
an

d
au

to
-i
m

m
u
n
iz

at
io

n
”

b

T
h
re

sh
ol

d
C

la
ss

as
si

gn
at

io
n

m
et

h
o
d

N
ea

re
st

n
ei

gh
b
or

k
-n

ea
re

st
n
ei

gh
b
or

M
in

im
al

d
is

ta
n
ce

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

st
an

d
ar

d
sc

or
e

D
is

ta
n
ce

m
ea

su
r.

m
et

h
o
d

D=Nr.ofdimensions

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Mahalanobis

Mahalanobis*

Mahalanobis**

1.
75

A

n
ot

ra
n
sf

84
0

1
21

39
42

2
1

0
5

2
1

0
59

4
15

22
13

1
1

1
4

1
1

1
59

57
4

52
tr

an
sf

p
ca

co
ve

ig
s

5
6

25
42

42
9

15
25

30
7

15
35

10
4

7
15

15
15

5
11

7
22

5
11

19
10

6
53

4
48

tr
an

sf
p
ca

co
v
sv

d
5

6
25

42
42

9
15

25
30

7
15

35
10

4
7

15
15

15
5

11
7

22
5

11
19

10
6

53
4

48
tr

an
sf

sv
d

5
15

26
41

41
22

28
30

40
21

28
35

94
8

16
19

22
6

11
20

15
3

11
22

91
53

4
48

tr
an

sffi
n

5
42

40
40

41
22

28
30

40
21

28
35

94
30

29
32

37
6

11
20

15
3

11
22

91
53

37
48

tr
an

sf
p
ca

co
rr

ei
gs

5
9

39
40

41
19

29
35

38
24

29
37

69
8

16
22

24
1

0
6

8
1

0
7

67
53

1
61

tr
an

sf
p
ca

co
rr

sv
d

5
9

39
40

41
19

29
35

38
24

29
37

69
8

16
22

24
1

0
6

8
1

0
7

67
53

1
61

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
9

39
40

41
19

29
35

38
24

29
37

69
8

16
22

24
1

0
6

8
1

0
7

67
53

1
61

tr
an

sffi
n
n
or

m
al

iz
ed

5
40

42
43

44
19

29
35

38
24

29
37

69
32

33
34

35
1

0
6

8
1

0
7

67
53

1
64

B

n
ot

ra
n
sf

84
0

87
11

9
10

87
87

87
87

87
87

87
9

87
11

9
10

87
87

87
87

87
87

87
9

87
11

9
tr

an
sf

p
ca

co
ve

ig
s

5
14

11
10

10
73

36
24

22
80

36
20

5
14

11
10

10
73

36
24

22
80

36
20

5
14

11
10

tr
an

sf
p
ca

co
v
sv

d
5

14
11

10
10

73
36

24
22

80
36

20
5

14
11

10
10

73
36

24
22

80
36

20
5

14
11

10
tr

an
sf

sv
d

5
16

11
9

7
67

32
25

21
75

32
23

7
16

11
9

7
67

32
25

21
75

32
23

7
16

11
9

tr
an

sffi
n

5
23

21
21

19
67

32
25

21
75

32
23

7
23

21
21

19
67

32
25

21
75

32
23

7
23

21
21

tr
an

sf
p
ca

co
rr

ei
gs

5
15

11
12

13
60

28
22

17
71

28
17

9
15

11
12

13
60

28
22

17
71

28
17

9
15

11
12

tr
an

sf
p
ca

co
rr

sv
d

5
15

11
12

13
60

28
22

17
71

28
17

9
15

11
12

13
60

28
22

17
71

28
17

9
15

11
12

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
15

11
12

13
60

28
22

17
71

28
17

9
15

11
12

13
60

28
22

17
71

28
17

9
15

11
12

tr
an

sffi
n
n
or

m
al

iz
ed

5
13

15
15

17
60

28
22

17
71

28
17

9
13

15
15

17
60

28
22

17
71

28
17

9
13

15
15

(10*A)+(B*D)

n
ot

ra
n
sf

84
0

73
09

0
94

50
79

50
88

20
73

10
0

73
09

0
73

08
0

73
13

0
73

10
0

73
09

0
73

08
0

81
50

73
12

0
93

90
77

80
85

30
73

09
0

73
09

0
73

09
0

73
12

0
73

09
0

73
09

0
73

09
0

81
50

73
65

0
92

80
80

80
tr

an
sf

p
ca

co
ve

ig
s

5
13

0
30

5
47

0
47

0
45

5
33

0
37

0
41

0
47

0
33

0
45

0
10

65
14

0
20

5
20

0
20

0
41

5
29

0
19

0
33

0
45

0
29

0
29

0
10

85
60

0
95

53
0

tr
an

sf
p
ca

co
v
sv

d
5

13
0

30
5

47
0

47
0

45
5

33
0

37
0

41
0

47
0

33
0

45
0

10
65

14
0

20
5

20
0

20
0

41
5

29
0

19
0

33
0

45
0

29
0

29
0

10
85

60
0

95
53

0
tr

an
sf

sv
d

5
23

0
31

5
45

5
44

5
55

5
44

0
42

5
50

5
58

5
44

0
46

5
97

5
16

0
21

5
23

5
25

5
39

5
27

0
32

5
25

5
40

5
27

0
33

5
94

5
61

0
95

52
5

tr
an

sffi
n

5
53

5
50

5
50

5
50

5
55

5
44

0
42

5
50

5
58

5
44

0
46

5
97

5
41

5
39

5
42

5
46

5
39

5
27

0
32

5
25

5
40

5
27

0
33

5
94

5
64

5
47

5
58

5
tr

an
sf

p
ca

co
rr

ei
gs

5
16

5
44

5
46

0
47

5
49

0
43

0
46

0
46

5
59

5
43

0
45

5
73

5
15

5
21

5
28

0
30

5
31

0
14

0
17

0
16

5
36

5
14

0
15

5
71

5
60

5
65

67
0

tr
an

sf
p
ca

co
rr

sv
d

5
16

5
44

5
46

0
47

5
49

0
43

0
46

0
46

5
59

5
43

0
45

5
73

5
15

5
21

5
28

0
30

5
31

0
14

0
17

0
16

5
36

5
14

0
15

5
71

5
60

5
65

67
0

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
16

5
44

5
46

0
47

5
49

0
43

0
46

0
46

5
59

5
43

0
45

5
73

5
15

5
21

5
28

0
30

5
31

0
14

0
17

0
16

5
36

5
14

0
15

5
71

5
60

5
65

67
0

tr
an

sffi
n
n
or

m
al

iz
ed

5
46

5
49

5
50

5
52

5
49

0
43

0
46

0
46

5
59

5
43

0
45

5
73

5
38

5
40

5
41

5
43

5
31

0
14

0
17

0
16

5
36

5
14

0
15

5
71

5
59

5
85

71
5

m
in

im
u
m

13
0

30
5

45
5

44
5

45
5

33
0

37
0

41
0

47
0

33
0

45
0

73
5

14
0

20
5

20
0

20
0

31
0

14
0

17
0

16
5

36
5

14
0

15
5

71
5

59
5

65
52

5

T
ot

al
te

st
ve

ct
or

s
11

3

A
=

W
ro

n
g

cl
a
ss

re
co

g
n
it
io

n
s,

B
=

N
r.

o
f
fa

u
lt

p
a
tt

er
n

v
ec

to
rs

,
T

h
re

sh
o
ld

=
1
.7

5

159

Chapter 5. Evaluation of fault recognition methods

T
ab

le
5.

16
:

R
es

u
lt
s

of
th

e
al

go
ri

th
m

“A
p
op

to
si

s
an

d
au

to
-i
m

m
u
n
iz

at
io

n
”

c

T
h
re

sh
ol

d
C

la
ss

as
si

gn
at

io
n

m
et

h
o
d

N
ea

re
st

n
ei

gh
b
or

k
-n

ea
re

st
n
ei

gh
b
or

M
in

im
al

d
is

ta
n
ce

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

st
an

d
ar

d
sc

or
e

D
is

ta
n
ce

m
ea

su
r.

m
et

h
o
d

D=Nr.ofdimensions

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Mahalanobis

Mahalanobis*

Mahalanobis**

1.
78

A

n
ot

ra
n
sf

84
0

1
21

39
42

2
1

0
5

2
1

0
60

4
15

22
13

1
1

1
4

1
1

1
60

57
4

52
tr

an
sf

p
ca

co
ve

ig
s

5
6

25
42

42
9

16
27

30
7

16
40

10
4

7
15

15
15

5
12

8
22

5
12

23
10

6
53

4
48

tr
an

sf
p
ca

co
v
sv

d
5

6
25

42
42

9
16

27
30

7
16

40
10

4
7

15
15

15
5

12
8

22
5

12
23

10
6

53
4

48
tr

an
sf

sv
d

5
15

26
41

41
22

28
29

40
21

28
37

94
8

16
19

22
7

13
19

35
3

13
28

91
53

4
48

tr
an

sffi
n

5
42

40
40

41
22

28
29

40
21

28
37

94
30

29
32

37
7

13
19

35
3

13
28

91
53

37
48

tr
an

sf
p
ca

co
rr

ei
gs

5
9

39
40

41
19

28
35

38
24

28
37

69
8

16
22

24
1

0
6

8
1

0
7

67
53

1
61

tr
an

sf
p
ca

co
rr

sv
d

5
9

39
40

41
19

28
35

38
24

28
37

69
8

16
22

24
1

0
6

8
1

0
7

67
53

1
61

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
9

39
40

41
19

28
35

38
24

28
37

69
8

16
22

24
1

0
6

8
1

0
7

67
53

1
61

tr
an

sffi
n
n
or

m
al

iz
ed

5
40

42
43

44
19

28
35

38
24

28
37

69
32

33
34

35
1

0
6

8
1

0
7

67
53

1
64

B

n
ot

ra
n
sf

84
0

87
11

9
10

87
87

87
87

87
87

87
8

87
11

9
10

87
87

87
87

87
87

87
8

87
11

9
tr

an
sf

p
ca

co
ve

ig
s

5
14

11
9

9
72

35
23

22
79

35
20

5
14

11
9

9
72

35
23

22
79

35
20

5
14

11
9

tr
an

sf
p
ca

co
v
sv

d
5

14
11

9
9

72
35

23
22

79
35

20
5

14
11

9
9

72
35

23
22

79
35

20
5

14
11

9
tr

an
sf

sv
d

5
16

11
9

7
65

31
25

24
75

31
23

7
16

11
9

7
65

31
25

24
75

31
23

7
16

11
9

tr
an

sffi
n

5
23

21
21

19
65

31
25

24
75

31
23

7
23

21
21

19
65

31
25

24
75

31
23

7
23

21
21

tr
an

sf
p
ca

co
rr

ei
gs

5
15

11
12

13
58

27
22

17
69

27
18

9
15

11
12

13
58

27
22

17
69

27
18

9
15

11
12

tr
an

sf
p
ca

co
rr

sv
d

5
15

11
12

13
58

27
22

17
69

27
18

9
15

11
12

13
58

27
22

17
69

27
18

9
15

11
12

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
15

11
12

13
58

27
22

17
69

27
18

9
15

11
12

13
58

27
22

17
69

27
18

9
15

11
12

tr
an

sffi
n
n
or

m
al

iz
ed

5
13

15
15

17
58

27
22

17
69

27
18

9
13

15
15

17
58

27
22

17
69

27
18

9
13

15
15

(10*A)+(B*D)

n
ot

ra
n
sf

84
0

73
09

0
94

50
79

50
88

20
73

10
0

73
09

0
73

08
0

73
13

0
73

10
0

73
09

0
73

08
0

73
20

73
12

0
93

90
77

80
85

30
73

09
0

73
09

0
73

09
0

73
12

0
73

09
0

73
09

0
73

09
0

73
20

73
65

0
92

80
80

80
tr

an
sf

p
ca

co
ve

ig
s

5
13

0
30

5
46

5
46

5
45

0
33

5
38

5
41

0
46

5
33

5
50

0
10

65
14

0
20

5
19

5
19

5
41

0
29

5
19

5
33

0
44

5
29

5
33

0
10

85
60

0
95

52
5

tr
an

sf
p
ca

co
v
sv

d
5

13
0

30
5

46
5

46
5

45
0

33
5

38
5

41
0

46
5

33
5

50
0

10
65

14
0

20
5

19
5

19
5

41
0

29
5

19
5

33
0

44
5

29
5

33
0

10
85

60
0

95
52

5
tr

an
sf

sv
d

5
23

0
31

5
45

5
44

5
54

5
43

5
41

5
52

0
58

5
43

5
48

5
97

5
16

0
21

5
23

5
25

5
39

5
28

5
31

5
47

0
40

5
28

5
39

5
94

5
61

0
95

52
5

tr
an

sffi
n

5
53

5
50

5
50

5
50

5
54

5
43

5
41

5
52

0
58

5
43

5
48

5
97

5
41

5
39

5
42

5
46

5
39

5
28

5
31

5
47

0
40

5
28

5
39

5
94

5
64

5
47

5
58

5
tr

an
sf

p
ca

co
rr

ei
gs

5
16

5
44

5
46

0
47

5
48

0
41

5
46

0
46

5
58

5
41

5
46

0
73

5
15

5
21

5
28

0
30

5
30

0
13

5
17

0
16

5
35

5
13

5
16

0
71

5
60

5
65

67
0

tr
an

sf
p
ca

co
rr

sv
d

5
16

5
44

5
46

0
47

5
48

0
41

5
46

0
46

5
58

5
41

5
46

0
73

5
15

5
21

5
28

0
30

5
30

0
13

5
17

0
16

5
35

5
13

5
16

0
71

5
60

5
65

67
0

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
16

5
44

5
46

0
47

5
48

0
41

5
46

0
46

5
58

5
41

5
46

0
73

5
15

5
21

5
28

0
30

5
30

0
13

5
17

0
16

5
35

5
13

5
16

0
71

5
60

5
65

67
0

tr
an

sffi
n
n
or

m
al

iz
ed

5
46

5
49

5
50

5
52

5
48

0
41

5
46

0
46

5
58

5
41

5
46

0
73

5
38

5
40

5
41

5
43

5
30

0
13

5
17

0
16

5
35

5
13

5
16

0
71

5
59

5
85

71
5

m
in

im
u
m

13
0

30
5

45
5

44
5

45
0

33
5

38
5

41
0

46
5

33
5

46
0

73
5

14
0

20
5

19
5

19
5

30
0

13
5

17
0

16
5

35
5

13
5

16
0

71
5

59
5

65
52

5

T
ot

al
te

st
ve

ct
or

s
11

3

A
=

W
ro

n
g

cl
a
ss

re
co

g
n
it
io

n
s,

B
=

N
r.

o
f
fa

u
lt

p
a
tt

er
n

v
ec

to
rs

,
T

h
re

sh
o
ld

=
1
.7

8

160

5.1. Fault recognition module with real fault vector elements

Optimization objective = Weight× A +Dimensions× B (5.2)

Where: A is the matrix formed with all numbers of wrong class recognitions and B is the
matrix formed with all the numbers of reduced fault pattern vectors.

Tables 5.8 to 5.16 show the value of the optimization objective considering a weight of
10, which resulted suitable for finding the best results. The tables also show the minimum
optimization objective value along each column, that is to say, along all methods of dimension
reduction. The minimum value helps to find the best case by a determined threshold, cases
highlighted with light and dark gray color. Taking the minimum value among the results
for all thresholds, gives the best case highlighted in dark gray color in tables 5.8 to 5.16 and
zoomed in tables 5.17, 5.18 and 5.19 in.

Table 5.17 presents four best cases by a value of 80 for the optimization objective. One
of the best cases, highlighted in dark gray in that table, has been taken in order to see
graphically the fault pattern vectors with their first two dimensions. That case has been
obtained using a threshold of 0.1 by the execution of the function removalbylackofstimulation
for the reduction of fault pattern vectors, the function transfpcacorreigs for the reduction of
dimensions from 480 to 5, the Chebyshev distance measurement method, the nearest neighbor
class assignation method, and with only six fault pattern vectors reported just 5 wrong class
recognitions from 113 fault vectors of the test set. Those fault pattern vectors can be seen
in figure 5.8 in black, and in gray the removed fault pattern vectors. Thereby, the function
removalbylackofstimulation reduced the number of fault pattern vectors removing outlier fault
pattern vectors. Although a good recognition has been reported, the removal of outlier fault
pattern vectors can lead to important loose of information contained in the original set of
fault pattern vectors for future fault vector recognitions.

For the same case, it has been analyzed by means of a plot, how the number of wrong
class recognitions and number of fault pattern vectors vary for different thresholds by using
function removalbylackofstimulation. That plot is shown in figure 5.9. There, it can be observed
that the smaller the stimulation threshold that each fault pattern vector has, the smaller is
the probability that the vectors are stimulated, reason why a bigger number of fault pattern
vectors is removed due to lack of stimulation. In that figure, it can also be verified the case
where for a threshold of 0.1, six fault pattern vectors report 5 wrong class recognitions.

Table 5.18 presents six best cases by a value of 70 for the optimization objective. One of the
best cases, highlighted in dark gray in that table, has been taken in order to see graphically
the fault pattern vectors with their first two dimensions. That case has been obtained using a
threshold of 1 by the execution of the function removalbyautoreactivity for the reduction of fault
pattern vectors, the function transfpcacorreigs for the reduction of dimensions from 480 to 5,
the Euclidean distance measurement method, the nearest neighbor class assignation method,
and with only ten fault pattern vectors reported just 2 wrong class recognitions from 113 fault
vectors of the test set. Those fault pattern vectors can be seen in figure 5.10 in black, and
in gray the removed fault pattern vectors. Thereby, the function removalbylackofstimulation
reduced the number of fault pattern vectors removing redundant fault pattern vectors. This
method performs quite good. However, the resulting final set of fault pattern vectors is
dependent on the order of the initial fault patten vectors.

For the same case, it has been analyzed by means of a plot, how the number of wrong class
recognitions and number of fault pattern vectors vary for different thresholds by using function
removalbyautoreactivity. That plot is shown in figure 5.11. There, it can be observed that the

161

Chapter 5. Evaluation of fault recognition methods

T
ab

le
5.

17
:

B
es

t
ca

se
b
y

“D
ea

th
of

im
m

u
n
e

ce
ll
s

w
it
h

in
su

ffi
ci

en
t

st
im

u
la

ti
on

”

T
h
re

sh
ol

d
C

la
ss

as
si

gn
at

io
n

m
et

h
o
d

N
ea

re
st

n
ei

gh
b
or

k
-n

ea
re

st
n
ei

gh
b
or

M
in

im
al

d
is

ta
n
ce

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

st
an

d
ar

d
sc

or
e

D
is

ta
n
ce

m
ea

su
r.

m
et

h
o
d

D=Nr.ofdimensions

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Mahalanobis

Mahalanobis*

Mahalanobis**

0.
1

A

n
ot

ra
n
sf

84
0

10
6

10
6

99
8

10
6

10
6

10
6

10
6

10
6

10
6

10
6

10
6

10
6

10
6

67
9

10
6

10
6

10
6

10
6

10
6

10
6

10
6

10
6

67
10

6
67

tr
an

sf
p
ca

co
ve

ig
s

5
10

6
10

6
10

6
29

10
6

10
6

10
6

10
6

10
6

10
6

10
6

53
10

6
10

6
10

6
67

10
6

10
6

10
6

10
6

10
6

10
6

10
6

53
67

10
6

67
tr

an
sf

p
ca

co
v
sv

d
5

10
6

10
6

10
6

29
10

6
10

6
10

6
10

6
10

6
10

6
10

6
53

10
6

10
6

10
6

67
10

6
10

6
10

6
10

6
10

6
10

6
10

6
53

67
10

6
67

tr
an

sf
sv

d
5

10
6

10
6

10
6

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
53

10
6

10
6

10
6

67
10

6
10

6
10

6
10

6
10

6
10

6
10

6
53

67
10

6
67

tr
an

sffi
n

5
19

13
12

11
10

6
10

6
10

6
10

6
10

6
10

6
10

6
53

12
23

10
10

10
6

10
6

10
6

10
6

10
6

10
6

10
6

53
10

14
5

tr
an

sf
p
ca

co
rr

ei
gs

5
10

6
10

6
61

5
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
67

67
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
67

10
6

67
tr

an
sf

p
ca

co
rr

sv
d

5
10

6
10

6
61

5
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
67

67
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
67

10
6

67
tr

an
sf

sv
d
n
or

m
al

iz
ed

5
10

6
10

6
61

5
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
67

67
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
67

10
6

67
tr

an
sffi

n
n
or

m
al

iz
ed

5
4

6
6

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
6

6
8

8
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

6
3

7
12

B

n
ot

ra
n
sf

84
0

1
1

2
80

1
1

1
1

1
1

1
1

1
1

2
80

1
1

1
1

1
1

1
1

1
1

2
tr

an
sf

p
ca

co
ve

ig
s

5
1

1
1

3
1

1
1

1
1

1
1

2
1

1
1

3
1

1
1

1
1

1
1

2
1

1
1

tr
an

sf
p
ca

co
v
sv

d
5

1
1

1
3

1
1

1
1

1
1

1
2

1
1

1
3

1
1

1
1

1
1

1
2

1
1

1
tr

an
sf

sv
d

5
1

1
1

4
1

1
1

1
1

1
1

2
1

1
1

4
1

1
1

1
1

1
1

2
1

1
1

tr
an

sffi
n

5
27

61
70

72
1

1
1

1
1

1
1

2
27

61
70

72
1

1
1

1
1

1
1

2
27

61
70

tr
an

sf
p
ca

co
rr

ei
gs

5
1

1
2

6
1

1
1

1
1

1
1

1
1

1
2

6
1

1
1

1
1

1
1

1
1

1
2

tr
an

sf
p
ca

co
rr

sv
d

5
1

1
2

6
1

1
1

1
1

1
1

1
1

1
2

6
1

1
1

1
1

1
1

1
1

1
2

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
1

1
2

6
1

1
1

1
1

1
1

1
1

1
2

6
1

1
1

1
1

1
1

1
1

1
2

tr
an

sffi
n
n
or

m
al

iz
ed

5
87

87
87

87
1

1
1

1
1

1
1

1
87

87
87

87
1

1
1

1
1

1
1

1
87

87
87

(10*A)+(B*D)

n
ot

ra
n
sf

84
0

19
00

19
00

26
70

67
28

0
19

00
19

00
19

00
19

00
19

00
19

00
19

00
19

00
19

00
19

00
23

50
67

29
0

19
00

19
00

19
00

19
00

19
00

19
00

19
00

19
00

15
10

19
00

23
50

tr
an

sf
p
ca

co
ve

ig
s

5
10

65
10

65
10

65
30

5
10

65
10

65
10

65
10

65
10

65
10

65
10

65
54

0
10

65
10

65
10

65
68

5
10

65
10

65
10

65
10

65
10

65
10

65
10

65
54

0
67

5
10

65
67

5
tr

an
sf

p
ca

co
v
sv

d
5

10
65

10
65

10
65

30
5

10
65

10
65

10
65

10
65

10
65

10
65

10
65

54
0

10
65

10
65

10
65

68
5

10
65

10
65

10
65

10
65

10
65

10
65

10
65

54
0

67
5

10
65

67
5

tr
an

sf
sv

d
5

10
65

10
65

10
65

80
10

65
10

65
10

65
10

65
10

65
10

65
10

65
54

0
10

65
10

65
10

65
69

0
10

65
10

65
10

65
10

65
10

65
10

65
10

65
54

0
67

5
10

65
67

5
tr

an
sffi

n
5

32
5

43
5

47
0

47
0

10
65

10
65

10
65

10
65

10
65

10
65

10
65

54
0

25
5

53
5

45
0

46
0

10
65

10
65

10
65

10
65

10
65

10
65

10
65

54
0

23
5

44
5

40
0

tr
an

sf
p
ca

co
rr

ei
gs

5
10

65
10

65
62

0
80

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

68
0

70
0

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

67
5

10
65

68
0

tr
an

sf
p
ca

co
rr

sv
d

5
10

65
10

65
62

0
80

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

68
0

70
0

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

67
5

10
65

68
0

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
10

65
10

65
62

0
80

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

68
0

70
0

10
65

10
65

10
65

10
65

10
65

10
65

10
65

10
65

67
5

10
65

68
0

tr
an

sffi
n
n
or

m
al

iz
ed

5
47

5
49

5
49

5
49

5
10

65
10

65
10

65
10

65
10

65
10

65
10

65
10

65
49

5
49

5
51

5
51

5
10

65
10

65
10

65
10

65
10

65
10

65
10

65
10

65
46

5
50

5
55

5

m
in

im
u
m

32
5

43
5

47
0

80
10

65
10

65
10

65
10

65
10

65
10

65
10

65
54

0
25

5
49

5
45

0
46

0
10

65
10

65
10

65
10

65
10

65
10

65
10

65
54

0
23

5
44

5
40

0

T
ot

al
te

st
ve

ct
or

s
11

3

A
=

W
ro

n
g

cl
a
ss

re
co

g
n
it
io

n
s,

B
=

N
r.

o
f
fa

u
lt

p
a
tt

er
n

v
ec

to
rs

,
T

h
re

sh
o
ld

=
0
.1

162

5.1. Fault recognition module with real fault vector elements

T
ab

le
5.

18
:

B
es

t
ca

se
b
y

“E
li
m

in
at

io
n

of
au

to
-r

ea
ct

iv
e

im
m

u
n
e

ce
ll
s”

T
h
re

sh
ol

d
C

la
ss

as
si

gn
at

io
n

m
et

h
o
d

N
ea

re
st

n
ei

gh
b
or

k
-n

ea
re

st
n
ei

gh
b
or

M
in

im
al

d
is

ta
n
ce

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

st
an

d
ar

d
sc

or
e

D
is

ta
n
ce

m
ea

su
r.

m
et

h
o
d

D=Nr.ofdimensions

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Mahalanobis

Mahalanobis*

Mahalanobis**

1

A

n
ot

ra
n
sf

84
0

1
4

17
67

2
1

0
5

2
1

0
12

4
8

67
67

1
1

1
4

1
1

1
9

57
5

67
tr

an
sf

p
ca

co
ve

ig
s

5
2

2
2

4
7

9
13

12
6

9
8

3
7

8
5

8
5

6
4

9
5

6
6

9
17

4
32

tr
an

sf
p
ca

co
v
sv

d
5

2
2

2
4

7
9

13
12

6
9

8
3

7
8

5
8

5
6

4
9

5
6

6
9

17
4

32
tr

an
sf

sv
d

5
3

3
2

3
19

20
22

29
17

20
30

23
10

9
4

4
3

6
6

18
1

6
18

20
15

5
16

tr
an

sffi
n

5
58

67
67

67
19

20
22

29
17

20
30

23
67

67
67

67
3

6
6

18
1

6
18

20
67

67
67

tr
an

sf
p
ca

co
rr

ei
gs

5
2

2
3

10
21

24
25

29
22

24
19

19
8

3
3

9
1

0
1

1
0

0
0

17
42

4
10

tr
an

sf
p
ca

co
rr

sv
d

5
2

2
3

10
21

24
25

29
22

24
19

19
8

3
3

9
1

0
1

1
0

0
0

17
42

4
10

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
2

2
3

10
21

24
25

29
22

24
19

19
8

3
3

9
1

0
1

1
0

0
0

17
42

4
10

tr
an

sffi
n
n
or

m
al

iz
ed

5
67

67
67

67
21

24
25

29
22

24
19

19
67

67
67

67
1

0
1

1
0

0
0

17
67

67
67

B

n
ot

ra
n
sf

84
0

87
11

3
1

87
87

87
87

87
87

87
70

87
11

3
1

87
87

87
87

87
87

87
70

87
11

3
tr

an
sf

p
ca

co
ve

ig
s

5
34

12
10

10
85

69
59

48
85

69
52

12
34

12
10

10
85

69
59

48
85

69
52

12
34

12
10

tr
an

sf
p
ca

co
v
sv

d
5

34
12

10
10

85
69

59
48

85
69

52
12

34
12

10
10

85
69

59
48

85
69

52
12

34
12

10
tr

an
sf

sv
d

5
33

11
10

10
85

64
53

43
86

64
43

12
33

11
10

10
85

64
53

43
86

64
43

12
33

11
10

tr
an

sffi
n

5
2

1
1

1
85

64
53

43
86

64
43

12
2

1
1

1
85

64
53

43
86

64
43

12
2

1
1

tr
an

sf
p
ca

co
rr

ei
gs

5
25

10
9

7
84

57
48

40
85

57
40

8
25

10
9

7
84

57
48

40
85

57
40

8
25

10
9

tr
an

sf
p
ca

co
rr

sv
d

5
25

10
9

7
84

57
48

40
85

57
40

8
25

10
9

7
84

57
48

40
85

57
40

8
25

10
9

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
25

10
9

7
84

57
48

40
85

57
40

8
25

10
9

7
84

57
48

40
85

57
40

8
25

10
9

tr
an

sffi
n
n
or

m
al

iz
ed

5
1

1
1

1
84

57
48

40
85

57
40

8
1

1
1

1
84

57
48

40
85

57
40

8
1

1
1

(10*A)+(B*D)

n
ot

ra
n
sf

84
0

73
09

0
92

80
26

90
15

10
73

10
0

73
09

0
73

08
0

73
13

0
73

10
0

73
09

0
73

08
0

58
92

0
73

12
0

93
20

31
90

15
10

73
09

0
73

09
0

73
09

0
73

12
0

73
09

0
73

09
0

73
09

0
58

89
0

73
65

0
92

90
31

90
tr

an
sf

p
ca

co
ve

ig
s

5
19

0
80

70
90

49
5

43
5

42
5

36
0

48
5

43
5

34
0

90
24

0
14

0
10

0
13

0
47

5
40

5
33

5
33

0
47

5
40

5
32

0
15

0
34

0
10

0
37

0
tr

an
sf

p
ca

co
v
sv

d
5

19
0

80
70

90
49

5
43

5
42

5
36

0
48

5
43

5
34

0
90

24
0

14
0

10
0

13
0

47
5

40
5

33
5

33
0

47
5

40
5

32
0

15
0

34
0

10
0

37
0

tr
an

sf
sv

d
5

19
5

85
70

80
61

5
52

0
48

5
50

5
60

0
52

0
51

5
29

0
26

5
14

5
90

90
45

5
38

0
32

5
39

5
44

0
38

0
39

5
26

0
31

5
10

5
21

0
tr

an
sffi

n
5

59
0

67
5

67
5

67
5

61
5

52
0

48
5

50
5

60
0

52
0

51
5

29
0

68
0

67
5

67
5

67
5

45
5

38
0

32
5

39
5

44
0

38
0

39
5

26
0

68
0

67
5

67
5

tr
an

sf
p
ca

co
rr

ei
gs

5
14

5
70

75
13

5
63

0
52

5
49

0
49

0
64

5
52

5
39

0
23

0
20

5
80

75
12

5
43

0
28

5
25

0
21

0
42

5
28

5
20

0
21

0
54

5
90

14
5

tr
an

sf
p
ca

co
rr

sv
d

5
14

5
70

75
13

5
63

0
52

5
49

0
49

0
64

5
52

5
39

0
23

0
20

5
80

75
12

5
43

0
28

5
25

0
21

0
42

5
28

5
20

0
21

0
54

5
90

14
5

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
14

5
70

75
13

5
63

0
52

5
49

0
49

0
64

5
52

5
39

0
23

0
20

5
80

75
12

5
43

0
28

5
25

0
21

0
42

5
28

5
20

0
21

0
54

5
90

14
5

tr
an

sffi
n
n
or

m
al

iz
ed

5
67

5
67

5
67

5
67

5
63

0
52

5
49

0
49

0
64

5
52

5
39

0
23

0
67

5
67

5
67

5
67

5
43

0
28

5
25

0
21

0
42

5
28

5
20

0
21

0
67

5
67

5
67

5

m
in

im
u
m

14
5

70
70

80
49

5
43

5
42

5
36

0
48

5
43

5
34

0
90

20
5

80
75

90
43

0
28

5
25

0
21

0
42

5
28

5
20

0
15

0
31

5
90

14
5

T
ot

al
te

st
ve

ct
or

s
11

3

A
=

W
ro

n
g

cl
a
ss

re
co

g
n
it
io

n
s,

B
=

N
r.

o
f
fa

u
lt

p
a
tt

er
n

v
ec

to
rs

,
T

h
re

sh
o
ld

=
1

163

Chapter 5. Evaluation of fault recognition methods

T
ab

le
5.

19
:

B
es

t
ca

se
b
y

“A
p
op

to
si

s
an

d
au

to
-i
m

m
u
n
iz

at
io

n
”

T
h
re

sh
ol

d
C

la
ss

as
si

gn
at

io
n

m
et

h
o
d

N
ea

re
st

n
ei

gh
b
or

k
-n

ea
re

st
n
ei

gh
b
or

M
in

im
al

d
is

ta
n
ce

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

E
u
cl

id
ea

n
n
or

m
p
-n

or
m

st
an

d
ar

d
sc

or
e

D
is

ta
n
ce

m
ea

su
r.

m
et

h
o
d

D=Nr.ofdimensions

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Manhattan

Euclidean

Minkowski

Chebyshev

Mahalanobis

Mahalanobis*

Mahalanobis**

1.
78

A

n
ot

ra
n
sf

84
0

1
21

39
42

2
1

0
5

2
1

0
60

4
15

22
13

1
1

1
4

1
1

1
60

57
4

52
tr

an
sf

p
ca

co
ve

ig
s

5
6

25
42

42
9

16
27

30
7

16
40

10
4

7
15

15
15

5
12

8
22

5
12

23
10

6
53

4
48

tr
an

sf
p
ca

co
v
sv

d
5

6
25

42
42

9
16

27
30

7
16

40
10

4
7

15
15

15
5

12
8

22
5

12
23

10
6

53
4

48
tr

an
sf

sv
d

5
15

26
41

41
22

28
29

40
21

28
37

94
8

16
19

22
7

13
19

35
3

13
28

91
53

4
48

tr
an

sffi
n

5
42

40
40

41
22

28
29

40
21

28
37

94
30

29
32

37
7

13
19

35
3

13
28

91
53

37
48

tr
an

sf
p
ca

co
rr

ei
gs

5
9

39
40

41
19

28
35

38
24

28
37

69
8

16
22

24
1

0
6

8
1

0
7

67
53

1
61

tr
an

sf
p
ca

co
rr

sv
d

5
9

39
40

41
19

28
35

38
24

28
37

69
8

16
22

24
1

0
6

8
1

0
7

67
53

1
61

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
9

39
40

41
19

28
35

38
24

28
37

69
8

16
22

24
1

0
6

8
1

0
7

67
53

1
61

tr
an

sffi
n
n
or

m
al

iz
ed

5
40

42
43

44
19

28
35

38
24

28
37

69
32

33
34

35
1

0
6

8
1

0
7

67
53

1
64

B

n
ot

ra
n
sf

84
0

87
11

9
10

87
87

87
87

87
87

87
8

87
11

9
10

87
87

87
87

87
87

87
8

87
11

9
tr

an
sf

p
ca

co
ve

ig
s

5
14

11
9

9
72

35
23

22
79

35
20

5
14

11
9

9
72

35
23

22
79

35
20

5
14

11
9

tr
an

sf
p
ca

co
v
sv

d
5

14
11

9
9

72
35

23
22

79
35

20
5

14
11

9
9

72
35

23
22

79
35

20
5

14
11

9
tr

an
sf

sv
d

5
16

11
9

7
65

31
25

24
75

31
23

7
16

11
9

7
65

31
25

24
75

31
23

7
16

11
9

tr
an

sffi
n

5
23

21
21

19
65

31
25

24
75

31
23

7
23

21
21

19
65

31
25

24
75

31
23

7
23

21
21

tr
an

sf
p
ca

co
rr

ei
gs

5
15

11
12

13
58

27
22

17
69

27
18

9
15

11
12

13
58

27
22

17
69

27
18

9
15

11
12

tr
an

sf
p
ca

co
rr

sv
d

5
15

11
12

13
58

27
22

17
69

27
18

9
15

11
12

13
58

27
22

17
69

27
18

9
15

11
12

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
15

11
12

13
58

27
22

17
69

27
18

9
15

11
12

13
58

27
22

17
69

27
18

9
15

11
12

tr
an

sffi
n
n
or

m
al

iz
ed

5
13

15
15

17
58

27
22

17
69

27
18

9
13

15
15

17
58

27
22

17
69

27
18

9
13

15
15

(10*A)+(B*D)

n
ot

ra
n
sf

84
0

73
09

0
94

50
79

50
88

20
73

10
0

73
09

0
73

08
0

73
13

0
73

10
0

73
09

0
73

08
0

73
20

73
12

0
93

90
77

80
85

30
73

09
0

73
09

0
73

09
0

73
12

0
73

09
0

73
09

0
73

09
0

73
20

73
65

0
92

80
80

80
tr

an
sf

p
ca

co
ve

ig
s

5
13

0
30

5
46

5
46

5
45

0
33

5
38

5
41

0
46

5
33

5
50

0
10

65
14

0
20

5
19

5
19

5
41

0
29

5
19

5
33

0
44

5
29

5
33

0
10

85
60

0
95

52
5

tr
an

sf
p
ca

co
v
sv

d
5

13
0

30
5

46
5

46
5

45
0

33
5

38
5

41
0

46
5

33
5

50
0

10
65

14
0

20
5

19
5

19
5

41
0

29
5

19
5

33
0

44
5

29
5

33
0

10
85

60
0

95
52

5
tr

an
sf

sv
d

5
23

0
31

5
45

5
44

5
54

5
43

5
41

5
52

0
58

5
43

5
48

5
97

5
16

0
21

5
23

5
25

5
39

5
28

5
31

5
47

0
40

5
28

5
39

5
94

5
61

0
95

52
5

tr
an

sffi
n

5
53

5
50

5
50

5
50

5
54

5
43

5
41

5
52

0
58

5
43

5
48

5
97

5
41

5
39

5
42

5
46

5
39

5
28

5
31

5
47

0
40

5
28

5
39

5
94

5
64

5
47

5
58

5
tr

an
sf

p
ca

co
rr

ei
gs

5
16

5
44

5
46

0
47

5
48

0
41

5
46

0
46

5
58

5
41

5
46

0
73

5
15

5
21

5
28

0
30

5
30

0
13

5
17

0
16

5
35

5
13

5
16

0
71

5
60

5
65

67
0

tr
an

sf
p
ca

co
rr

sv
d

5
16

5
44

5
46

0
47

5
48

0
41

5
46

0
46

5
58

5
41

5
46

0
73

5
15

5
21

5
28

0
30

5
30

0
13

5
17

0
16

5
35

5
13

5
16

0
71

5
60

5
65

67
0

tr
an

sf
sv

d
n
or

m
al

iz
ed

5
16

5
44

5
46

0
47

5
48

0
41

5
46

0
46

5
58

5
41

5
46

0
73

5
15

5
21

5
28

0
30

5
30

0
13

5
17

0
16

5
35

5
13

5
16

0
71

5
60

5
65

67
0

tr
an

sffi
n
n
or

m
al

iz
ed

5
46

5
49

5
50

5
52

5
48

0
41

5
46

0
46

5
58

5
41

5
46

0
73

5
38

5
40

5
41

5
43

5
30

0
13

5
17

0
16

5
35

5
13

5
16

0
71

5
59

5
85

71
5

m
in

im
u
m

13
0

30
5

45
5

44
5

45
0

33
5

38
5

41
0

46
5

33
5

46
0

73
5

14
0

20
5

19
5

19
5

30
0

13
5

17
0

16
5

35
5

13
5

16
0

71
5

59
5

65
52

5

T
ot

al
te

st
ve

ct
or

s
11

3

A
=

W
ro

n
g

cl
a
ss

re
co

g
n
it
io

n
s,

B
=

N
r.

o
f
fa

u
lt

p
a
tt

er
n

v
ec

to
rs

,
T

h
re

sh
o
ld

=
1
.7

8

164

5.1. Fault recognition module with real fault vector elements

dimension 1

d
im

en
si

o
n

2
class 0

class 1

class 2

-16 -15 -14 -13 -12 -11 -10
17

17.5

18

18.5

19

19.5

20

20.5

21

21.5

22

Figure 5.8: Fault pattern vectors reduced by function removalbylackofstimulation

threshold

number of wrong class recognitions

number of fault pattern vectors

20

40

60

80

100

120

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.9: Threshold variation by function removalbylackofstimulation

165

Chapter 5. Evaluation of fault recognition methods

dimension 1

d
im

en
si

o
n

2
class 0

class 1

class 2

-16 -15 -14 -13 -12 -11 -10
17

17.5

18

18.5

19

19.5

20

20.5

21

21.5

22

Figure 5.10: Fault pattern vectors reduced by function removalbyautoreactivity

bigger the threshold, the bigger is the probability to find fault pattern vectors for being
removed of the area, defined by the given threshold, of another fault pattern vector. Reason
why a big number of fault pattern vectors are removed due to the so called autoreactivity. In
figure 5.11, it can also be verified the case where for a threshold of 1, ten fault pattern vectors
report 2 wrong class recognitions.

Table 5.19 presents three best cases by a value of 65 for the optimization objective. One of
the best cases, highlighted in dark gray in that table, has been taken in order to see graphically
the fault pattern vectors with their first two dimensions. That case has been obtained using
a threshold of 1.78 by the execution of the function removalbyapoptosisautoimmunization for
the reduction of fault pattern vectors, the function transfpcacorreigs for the reduction of
dimensions from 480 to 5, the Mahalanobis* distance measurement method, the minimal
distance class assignation method, and with only eleven fault pattern vectors reported just 1
wrong class recognitions from 113 fault vectors of the test set. Those fault pattern vectors
can be seen in figure 5.12 in black, and in gray the removed fault pattern vectors. Thereby,
the function removalbyapoptosisautoimmunization reduced the number of fault pattern vectors
removing redundant fault pattern vectors. However, this method, in comparison with the one
implemented by the function removalbyautoreactivity, tries to get, independently of the order
of the initial fault patten vectors, a resulting final set of fault pattern vectors by reinserting
already removed fault pattern vectors. Reason why the number of wrong class recognition
goes even lower.

For the same case, it has been analyzed by means of a plot, how the number of wrong
class recognitions and number of fault pattern vectors vary for different thresholds by using

166

5.1. Fault recognition module with real fault vector elements

threshold

number of wrong class recognitions

number of fault pattern vectors

10

20

30

40

50

60

70

80

90

0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 5.11: Threshold variation by function removalbyautoreactivity

dimension 1

d
im

en
si

o
n

2

class 0

class 1

class 2

-16 -15 -14 -13 -12 -11 -10
17

17.5

18

18.5

19

19.5

20

20.5

21

21.5

22

Figure 5.12: Fault pattern vectors reduced by function removalbyapoptosisautoimmunization

167

Chapter 5. Evaluation of fault recognition methods

threshold

number of wrong class recognitions

number of fault pattern vectors

10

20

30

40

50

60

70

80

90

0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 5.13: Threshold variation by function removalbyapoptosisautoimmunization

the function removalbyapoptosisautoimmunization. That plot is shown in figure 5.13. There,
it can be observed that the bigger the threshold, the bigger is the probability to find fault
pattern vectors for being removed from the area defined by the given threshold of another fault
pattern vector. Reason why a big number of fault pattern vectors are removed by apoptosis.
However, some fault pattern vectors are reinserted by the so called autoimmunization to the
resulting set of fault pattern vectors again. In figure 5.11, it can also be verified the case
where for a threshold of 1.78, eleven fault pattern vectors report 1 wrong class recognition.
Furthermore, with a bigger threshold, i.e. 2, the number of vectors would have been reduced to
ten maintaining as 1 the number of wrong class recognitions. It is to note that in this method,
it is not possible to reduce further, above a limit, the number of fault pattern vectors due to
the operation of reinsertion of fault pattern vectors.

With respect to tables 5.8 to 5.16, it is also to remark that the cases that use functions
transfpcacorreigs, transfpcacorrsvd and transfsvdnormalized for fault pattern vector dimension
reduction, deliver the same results. That is because the same set of fault pattern vectors is
obtained after fault pattern vector dimension reduction, as could be seen on subfigures (a),
(b) and (c) of figure 5.6 and on table 5.7.

Tables 5.8 to 5.16 can not show appropriate results for all combination of methods since
the range of values of the threshold, that produces a variation in the number of fault pattern
vectors and number of wrong class recognitions, is different for each combination of class assig-
nation method, distance measurement method and fault pattern vector dimension reduction
method. So, for example, using the Manhattan distance measurement method, a rang with
high number values for the threshold is required in order to see a variation in the number

168

5.2. Fault recognition module with binary fault vector elements

of fault pattern vectors and number of wrong class recognitions. Similarly, the use of the
transffinnormalized fault pattern vector dimension reduction method, requires a range with
low number values for the threshold, in order to see a variation in the number of fault pattern
vectors and number of wrong class recognitions. Therefore, the election of the combination
of methods should be done first, and then the reduction of number of fault pattern vectors
should be executed. This mode to proceed should be more beneficial, since the combination
of methods should be determined by the difficulty of the hardware implementation of each
one of the methods. The hardware implementation of the method of fault pattern vector
dimension reduction is necessary for reducing the vector that comes from a functioning sys-
tem, and the distance measurement method and class assignation method are necessary for
determining whether that vector represents a fault or not. The hardware implementation of
those methods will be addressed in chapter 6.

A further optimization could also be done implementing a loop for a set of dimensions over
the loop for a set of thresholds. However, since on tables 5.8 to 5.16 the range of values of
the threshold, that produces a variation in the number of fault pattern vectors and number
of wrong class recognitions, is different for each combination of class assignation method,
distance measurement method and fault pattern vector dimension reduction method, it would
be better to perform such an optimization for just a subset of methods, e.g. only one method
of fault pattern dimension reduction combined with several distance measurement and class
assignation methods.

5.2 Fault recognition module with binary fault vector elements

This section presents the implementation of algorithms for the design of a fault recognition
module which gets from the circuit for self-repairing binary value signal inputs and outputs.
Such is the case of combinational and sequential digital systems, as show in section 4.1. Those
binary value signals become the elements of the fault vector in the fault recognition module.
The arrangement of signals within a fault vector for the design of a fault recognition module
depends on the type of digital circuit. A fault vector could have the form [Inputs|Outputs]
for combinational circuits and [Inputs|Present-state|Outputs|Next-state] for sequential
circuits with full scan design.

Scan design is a technique that inserts test points and additional logic for setting and reading
the internal states, i.e., present-state next-state, in a sequential circuit, [Williams and Angell,
1973]. When all the sequential elements, such as flip-flops and latches, are considered in
the scan design, the sequential circuit is said to have a full scan design, otherwise it is said
to have a partial scan design. A partial scan design tries to reduce the adverse effects on
area and performance that a scan design entails for making a sequential circuit testable,
[Kalla and Ciesielski, 1998]. In a full scan design, a single test pattern, named here fault
pattern vector, can detect a fault. In a sequential circuit without scan design or a sequential
circuit with a partial scan design, a sequence of test patterns is necessary for detecting a
single fault. Here, we concentrate in a completely observable and controllable digital circuit,
i.e., a circuit for which a single fault pattern vector can detect a fault, such is the case of
combinational circuits and sequential circuits provided with a full scan design.

For evaluation purposes there exists several ACM/SIGDA benchmark sets, as listed on the
page of the [Collaborative Benchmarking and Experimental Algorithmics Laboratory, 2007].
Those sets have been created for analyzing the performance of methods and tools for electronic

169

Chapter 5. Evaluation of fault recognition methods

design automation, in short EDA. Two of them are the ISCAS 85 and ISCAS 89 sets. The
ISCAS 85 is a set of combinational circuits distributed initially at the 1985 International
Symposium on Circuits and Systems, [Bryan, 1988]. They have been used for comparing
results in the area of test pattern generation. The ISCAS 89 is a set of sequential circuits
distributed in the Special Session of Sequential Test Generation at the 1989 International
Symposium on Circuits and Systems, [Brglez et al., 1989].

In order to determine if a circuit is faulty or not, fault pattern vectors with binary value
elements can be generated for all possible inputs of the digital circuit. That means, when the
circuit has n inputs, 2n fault pattern vectors. However, that is only possible when the digital
circuit has few inputs. When a digital circuit has a large number of inputs, a reduced set of
fault pattern vectors can be generated for finding a given set of faults. Such a reduced set of
fault pattern vectors with binary value elements can be generated automatically with the so
called automatic test pattern generator, in short ATPG.

There are automatic test pattern generators suitable for different fault models, [Wang et al.,
2009]. Those fault models try to reflect the behavior of possible physical defects in a circuit.
Some fault models are: the gate-level stuck-at model, which models a digital signal line
stuck-at logic levels 0 or 1; the transistor-level stuck-at model, which models a transistor
that gets stuck-open or stuck-short; the bridging fault model, that models two signal wires
shorted together; the delay fault model, that models the event when the propagation delay
of a transition falls outside an specified time limit.

Since a gate-level stuck-at fault in a combinational circuit needs only one fault pattern
vector to be detected, and a gate-level stuck-at fault in a sequential circuit needs a sequence
of fault pattern vectors to be detected, an ATPG for gate-level stuck-at faults in combinational
circuits is different than an ATPG for gate-level stuck-at faults in sequential circuits. However,
when a sequential circuit is provided with a full scan design, an ATPG for gate-level stuck-at
faults in combinational circuits can be employed for generating fault pattern vectors for that
sequential circuits.

Since a stuck-open fault behaves like a level sensitive latch, a sequence of two fault pattern
vectors is necessary for detecting a single fault, therefore an ATPG for stuck-open faults in
digital circuits usually produces sequences of two fault pattern vectors for detecting stuck-
open faults. Since a stuck-short fault is the model of a conducting path between VDD, the
positive supply voltage, and VSS, the negative supply voltage, that fault can be detected
by monitoring the power supply current, IDD, in its steady state, method named as IDDQ.
Where Q comes from the term “quiescent state”, which is the steady state period when a
transistor or other circuit element is not performing an active function in the circuit. In the
IDDQ method, a set of fault pattern vectors is necessary to be generated for being applied at
the time of monitoring the IDDQ current.

A bridging fault is modeled as a dominant-AND/dominant-OR assuming that one signal
dominates the logic value of the shorted signal for one logic value only, the ATPG is similar
to the ATPG for gate-level stuck-at faults in combinational circuits but designed with con-
straints. A delay fault can be caused by resistive opens and shorts in wires and parameter
variations in transistors, and can be detected by a sequence of two fault pattern vectors. The
first pattern vector initializes the circuit and the second fault pattern vector starts a transi-
tion at the start of a path that will propagate in a time that is measured and compared with
a determined time limit.

In order to obtain fault pattern vectors for a combinational circuit or a sequential circuit
with a full scan design, ATALANTA, an automatic test pattern generator for stuck-at faults

170

5.2. Fault recognition module with binary fault vector elements

in combinational circuits, [Lee and Ha, 1993], tool developed at the Bradley Department of
Electrical and Computer Engineering in the Virginia Polytechnic Institute and State Univer-
sity, is intended to be used.

A fault pattern vector can detect no fault, a single fault, or many faults. In order to
evaluate which faults a fault pattern vector is able to detect, a fault simulator is required.
A fault simulator injects a determined fault model into the design of a given circuit, applies
an input pattern vector on the circuit, and compares the resulting output with the output of
the fault-free circuit. When the resulting output and the output of the fault-free circuit are
different, then the input pattern vector is able to detect that determined fault. In that way,
a fault simulator is able to determine the percentage of faults that a fault pattern vector set
is able to find from a pool of inserted faults in the circuit, number called as fault coverage.
A fault simulator is an integral part of an automatic test pattern generator since it helps to
determine whether a generated input pattern vector is able to detect a fault or not.

The automatic test pattern generator ATALANTA uses the FSIM fault simulator, which
is a fault simulator for combinational circuits and sequential circuits with full scan design,
[Lee and Ha, 1991]. It has been also developed at the Bradley Department of Electrical and
Computer Engineering in the Virginia Polytechnic Institute and State University.

Methods for fault recognition, fault vector dimension reduction and fault pattern vectors
number reduction, are different in comparison with the methods shown for fault pattern
vectors with real elements. Next sections show some alternatives of how to perform fault
recognition, fault vector dimension reduction and fault pattern vectors number reduction,
with fault vectors having binary elements.

5.2.1 Fault recognition

Now the goal is to find a method for fault recognition in digital circuits. We concentrate
here in stuck-at faults. Once a stuck-at fault happened at any input xi, called also primary
variable of the circuit, a mathematical method that helps on finding that fault is the so called
Boolean difference defined below.

∂f

∂xi
= f(x1, ..., xi = 1, ..., xn) ⊕ f(x1, ..., xi = 0, ..., xn) (5.3)

The Boolean difference gives a logic 1, when both terms of the exclusive-or give opposite val-
ues. That means that the stuck-at fault can be detected only when f(x1, ..., xi = 1, ..., xn) 6=
f(x1, ..., xi = 0, ..., xn). When the Boolean difference gives a logic 0, it means that the fault
cannot be detected observing the value of function f . In other words the stuck-at fault at xi

is not observable at output f .

If a stuck-at fault happens at an internal point u in the circuit, e.g. the output of a gate,
called also secondary variable, the Boolean difference looks like the formula below.

∂f

∂u
= f(x1, ..., xn, u(x1, ..., xn)) ⊕ f(x1, ..., xn, ū(x1, ..., xn)) (5.4)

The same, if f(x1, ..., xn, u(x1, ..., xn)) 6= f(x1, ..., xn, ū(x1, ..., xn)), the Boolean difference
gives a logic value 1. That means that the stuck-at fault at the secondary variable or internal
point u is observable at f . When the Boolean difference gives a logic value of 0 then, the
stuck-at fault at u is not observable at output f .

171

Chapter 5. Evaluation of fault recognition methods

Input vector

Circuit for self-repairing

Fault-free circuit

Output vector

Fault-free output vector

Fault

Figure 5.14: Fault recognition module design using duplication

When the stuck-at fault is observable, there exist an input vector [x1, ..., xn], or several
input vectors, that help on distinguishing a fault-free circuit from a faulty circuit. In the case
where the stuck-at is given at a primary variable xi, it is easy to determine that a stuck-at-0
fault can be detected with an input vector [x1, ..., xi = 1, ..., xn] and an stuck-at-1 with an
input vector [x1, ..., xi = 0, ..., xn]. However, when the stuck-at fault happens at any internal
point u of the circuit, it is necessary to find an input vector [x1, ..., xn] able to produce a
Boolean difference at the fault location u, process called fault sensitization, and then show
that difference at any output, in our case f , process called fault propagation, please see
[Kirkland and Mercer, 1988]. Therefore the condition for finding a stuck-at-0 at u joining
both processes is u(x1, ..., xn) · f(x1, ..., xn, u = 0) ⊕ f(x1, ..., xn, u = 1) = 1. Similarly, the
condition for finding a stuck-at-1 at u joining both processes is ū(x1, ..., xn) · f(x1, ..., xn, u =
0) ⊕ f(x1, ..., xn, u = 1) = 1, please see [Reed, 1973] and [Wang et al., 2009]. If the condition
can not be satisfied, the fault can not be detected. That is to say, there exist no input vector
able to help on finding that fault.

One of the generated input pattern vectors can be applied to the circuit for self-repairing
for detecting the considered fault. Once that input pattern vector has been applied, the
output from the circuit for self-repairing should be compared with the output from a fault-
free circuit. If those outputs are different, the circuit is considered faulty, otherwise it is
considered fault-free. Such output comparison can be implemented with an EXCLUSIVE-
OR gate. However, when the circuit has more than one output signal, the outputs of the
circuit for self-repairing arranged into a vector should be compared with the output vector of
a fault-free circuit. In order to compare those two output vectors, the Hamming distance for
vectors with binary value elements, presented in section 4.2 should be zero when the output
vectors are equal. Given n outputs in the output vectors, that distance can be implemented
using n EXCLUSIVE-OR gates and an n input OR gate as shown in figure 5.14.

In figure 5.14, the fault-free output vector is obtained applying concurrently the generated
input pattern vector to a copy of the circuit that is trusted for being fault-free. However,
the fault-free output vector can be obtained by implementing a more simple logic designed
using a set of fault pattern vectors generated for detecting a determined set of faults, with the
arrangement [Input pattern vector|Output pattern vector]. The logic just monitors the
input vector to the circuit, giving a sign whenever an input pattern vector contained in any of
the generated fault pattern vector is present, case in which the output vector from the circuit

172

5.2. Fault recognition module with binary fault vector elements

Input vector

Circuit for self-repairing
Output vector

Fault-free output vector

Fault

Input vectors

monitoring

Output pattern vectors

storage

Output vectors

comparison

m

m

m

m

n

n

n

t
2

2

1

n1s(1) ≤ t

n1s(m) ≤ t

Figure 5.15: Fault recognition module design using only specified values (abstracted and
generalized from [Voyiatzis et al., 2009] c©2009 IEEE)

for self-repairing is compared with the output pattern vector contained in the respective
fault pattern vector. That architecture has been presented first in [Sharma and Saluja, 1988]
and named Built-In Concurrent Self-Test, in short BICST. Given a circuit with n inputs, m
outputs and a set with t fault pattern vectors, the logic can be implemented with t n-input
AND gates for monitoring the inputs, m OR gates for the output pattern vectors storage,
with different number of inputs n1s(i) <= t which is the number of 1s in the corresponding
output pattern vector i, where 1 ≤ i ≤ m, and m 2-input EXCLUSIVE-OR gates and one
m-input OR gate for comparing the output vectors, as shown in figure 5.15 and presented
in [Voyiatzis et al., 2009]. Note that the input pattern vectors contained in the fault pattern
vectors of the available set serve for designing the input vector monitoring block, and the
outputs pattern vectors serve for designing the output pattern vectors storage block.

Since the logic of the inputs monitoring block and the outputs response block have together
the form of sums of products, the logic can also be implemented with programmable logic
arrays, as proposed in [Sharma and Saluja, 1988]. A programmable logic array, in short PLA,
has an AND matrix and an OR matrix for implementing Boolean functions expressed in the
form of sums of products.

An alternative for the logic responsible of recognizing faults is to use a memory for storing
the output pattern vectors contained in the given fault pattern vectors. Having a circuit with
n inputs and m outputs, it is necessary a memory of size 2n times m bits for storing the
output pattern vectors. That, if the address word of the memory is taken directly from the
n bits input vector of the circuit. If the n bits input vector is decoded to a p bits vector,
where t ≤ 2p and t is the number of available fault pattern vectors, it is necessary a memory
of size 2p times m bits for storing the output pattern vectors. Since, n or p bit address word
points the m bit data word containing the respective output pattern vector as shown in figure
5.16, having a memory of size 2p, requires an overflow detector for canceling a possible fault
generated when an input vector can not be decoded because a fault pattern vector containing
such input pattern vector has not been considered and consequently no output pattern vector
exists. For some circuits for self-repairing, the use of a memory could impair a just-in-time

173

Chapter 5. Evaluation of fault recognition methods

Input vector

Circuit for self-repairing
Output vector

Fault-free output vector

Fault

Memory
Address

Data

Output pattern vectors

storage

Output vectors

comparison
m

m

m

m

n

n

2

2

1

Figure 5.16: Fault recognition module design using a memory

delivery of the fault signal when the reading process of the fault-free output from the memory
is slower than the logic of the circuit being tested.

Nevertheless, the use of a memory for storing the output pattern vectors or the whole fault
pattern vectors could be useful for highly complex circuits like Systems-On-Chips, where the
fault recognition of core or uncore components can be executed in idle times or in a scheduled
manner. Although the System-On-Chip in not stopped for performing fault recognition of a
core or uncore element, please see [Li et al., 2008] and [Li et al., 2010], the element should be
stalled and isolated properly from the system for shifting in the input pattern vectors into the
circuit with scan design and comparing the shifted-out output vectors with the corresponding
output pattern vectors. In this case, the size of the memory required is dependent on the
available number of fault pattern vectors for testing the cores or uncore elements. A reduction
of the number of fault pattern vectors could reduce the time the element in stopped.

It is desired to reduce the hardware overhead that fault recognition causes in the circuit for
self-repairing. Given t fault pattern vectors with an input pattern vector of n elements and an
output pattern vector withm elements, the hardware overhead of the fault recognition module
can be reduced by reducing the number of fault pattern vectors t shown in figure 5.15, or by
reducing the elements n and m of the input and output pattern vectors respectively. Next
subsections deal with this two ways of reducing the hardware overhead of the fault recognition
module. The subsection dealing with fault pattern vectors number reduction refers to the
reduction of the number t of fault pattern vectors with binary elements in the available set.
And the subsection dealing with fault vector dimension reduction refers to the reduction of
the elements n and m of the input and output vectors with binary elements from the circuit
for self-repairing and the input and output pattern vectors contained in the available set of
fault pattern vectors.

5.2.2 Fault pattern vectors number reduction

Because of the hardware overhead that fault recognition could cause in the circuit, it is
desired to reduce the logic responsible for recognizing faults. One method for reducing the
fault recognition logic is to reduce the number of fault pattern vectors as much as possible
maintaining the fault coverage. When the fault recognition module is implemented with logic

174

5.2. Fault recognition module with binary fault vector elements

gates as show in figure 5.15, the number of AND gates required for implementing the input
vectors monitoring block is equal to the number of fault pattern vectors t. Therefore, a reduced
number of fault pattern vectors reduces the number of AND gates required for implementing
the input vectors monitoring block. If the fault recognition logic includes a memory as shown
in figure 5.16, the vertical size of that memory should be at least t. Therefore, a reduced
number of fault pattern vectors reduces the size of the memory required for storing the fault-
free output vectors.

The fault recognition module for a circuit can be implemented by means of a set of fault
pattern vectors generated for detecting a set of faults. Since usually there exist some fault
pattern vectors that detect more than one fault in the considered set of faults, redundant fault
pattern vectors can be removed from the fault pattern vector set. That method is named
fault pattern vector set compaction in this document and test set compaction in the literature
about testing of digital circuits.

Many automatic test pattern generators, in short ATPGs, concentrate on delivering a set
of fault pattern vectors that have a high fault coverage, but they do not consider in the
generation the minimization of the number of fault pattern vectors that they will deliver.
Compaction of a fault pattern vector set can be executed after the set has been generated
by the ATPG, case in which is called static compaction. Or, it can be integrated into the
automatic test pattern generation, case in which is called dynamic compaction.

Static compaction can be executed in two ways as presented in [Wang et al., 2006]. The
first method is to construct a covering matrix with the fault pattern vectors in the rows and
the faults in the columns. That table is commonly filled out by simulating a model of the
circuit with the whole generated set of fault pattern vectors and a set of faults using a fault
simulator. Then, a subset of fault pattern vectors is selected in the way that all columns, that
is to say all faults, are covered. The second method can reduce a set of fault pattern vectors
delivered with unspecified values, also called X values or don’t care bits. Thereby, similar
fault pattern vectors which by means of its unspecified values can be expressed as only one
fault pattern vector are searched, i.e. 0X10 and 01X0 give 0110.

Static compaction is executed in [Raedtke et al., 1995]. There, it is searched for a reduced
set of fault pattern vectors, provided that several fault pattern vectors having nonspecified
values for each fault type in a fault set are available. Thus, an optimal set of fault pattern
vectors with one fault pattern vector for each fault type is searched in the way of having a
high number of equal fault pattern vectors. The searching of such an optimal set has been
implemented by means of a genetic algorithm in [Raedtke et al., 1995] as explained below.

A genetic algorithm is a searching heuristic where a population of individuals evolve through
a determined number of generations. That, by using crossover and mutation in individuals
selected according to a fitness function. In order to find a set of fault pattern vectors with a
high number of similar fault pattern vectors, [Raedtke et al., 1995] applies a genetic algorithm
in the following way. An individual is a set with fault pattern vectors for each fault type. The
individuals having the minimal number of fault pattern vectors, that is to say, the maximum
number of equal fault pattern vectors are selected in each generation. Crossover is executed by
interchanging fault pattern vectors for the same fault type between two fault pattern vector
sets. Mutation is executed by exchanging a fault pattern vector in a fault pattern vector set
by another fault pattern vector for that fault type taken from the pool of generated fault
pattern vectors for the corresponding fault type. Besides, a hillclimber procedure replaces
a fault pattern vector in the fault pattern vector set that present no similar fault pattern
vectors inside that fault pattern vector set with another fault pattern vector taken from the

175

Chapter 5. Evaluation of fault recognition methods

pool of generated fault pattern vectors for the corresponding fault type. At the end, equal
fault pattern vectors in the most optimal fault pattern vector set are reduced to only one
fault pattern vector. Besides, using the unspecified values, similar fault pattern vectors are
reduced using the second method of static compaction presented above. The results typed
on table 5.20 show that smaller fault pattern vector sets are obtained in comparison to fault
pattern vector sets obtained using other compaction methods.

The clonal selection algorithm developed for optimization problems and explained in sec-
tion 3.2.2 is proposed in this thesis to be employed for finding a set of fault pattern vec-
tors with a high number of equal fault pattern vectors, resembling the method presented in
[Raedtke et al., 1995] and considering the individuals as cells. The advantage of the clonal
selection algorithm in comparison to genetic algorithms is that a global optimal solution can
be found faster. That is because clone cells of the cell with the best fitness are specifically
mutated. Thereby, the number of produced clone cells is proportional to the fitness and the
mutation rate applied to the clones is inversely proportional to the same fitness. Hence, the
optimal solution can be found faster. Furthermore, the avoidance of a local optimum can be
reached through the replacement of the cells that present the worst fitness, i.e. implementing
death and birth of cells into the algorithm. That procedure is similar to the hillclimber pro-
cedure applied in [Raedtke et al., 1995]. The proposed clonal selection algorithm for finding
the optimal set of fault pattern vectors with the highest number of equal fault pattern vectors
is presented below.

Algorithm 5.1: Fault pattern vector set compaction using the clonal selection algorithm

Input: k as the initial number of sets to be created, number of iterations, number of cloning
loops, cloning factor, mutation factor, number of worst sets for being replaced

Output: best set

1: Computation of the number of available fault pattern vectors per fault in the pool of fault
pattern vectors

2: Creation of k sets of fault pattern vectors
3: foreach iteration do

4: Computation of the number of different fault pattern vectors in the clone sets
5: Selecting the set with the minimal number of different fault pattern vectors for being cloned
6: foreach cloning loop do

7: Setting the number of clone sets inverse proportional to the number of different fault
pattern vectors of the set to be cloned

8: Setting the mutation rate proportional to the number of different fault pattern vectors
of the set to be cloned

9: Creation of clone sets of the set with the minimal number of different fault pattern
vectors

10: Changing of fault pattern vectors in the clone sets (Mutation)
11: Computation of the number of different fault pattern vectors in the clone sets
12: Selecting the clone set with the minimal number of different fault pattern vectors as

new parent set
13: end

14: Replacing sets with the worst number of different fault pattern vectors with a new set

15: end

16: Selecting the set with the minimal number of different fault pattern vectors
17: Maintaining only the different and non-similar fault pattern vectors in the set

176

5.2. Fault recognition module with binary fault vector elements

That algorithm has been implemented in Matlab and in order to evaluate it, different num-
ber of fault pattern vectors containing unspecified values for 22 stuck-at faults for the c17
benchmark circuit of the ISCAS 85 set has been generated with the ATPG tool ATALANTA.
Thus, each fault pattern vector set contained 22 fault pattern vectors. Executing the imple-
mented program, a set with 14 different fault pattern vectors including unspecified values were
found as the best fault pattern vector set. The input variables used by executing the program
has been set to: 7 initial number of sets, 3 iterations, 8 cloning loops, mutation factor of 5,
clonation factor of 5 and 3 worst sets for being replaced. Additionally, reducing similar vectors
that include unspecified values following the second method for static compaction presented
in [Wang et al., 2006] and explained above, e.g. XX111X0 and X111XX0 give X1111X0,
8 fault pattern vectors including unspecified values were found. The implemented algorithm
can serve on finding a minimal set in situations that require a set of fault pattern vectors with
unspecified values such as one of the methods for fault vector dimension reduction presented
in next subsection.

In a dynamic fault pattern vector set compaction, the compaction procedure is integrated
into the automatic test pattern generator, where usually a fault simulator is used for verifying
the fault coverage of every single fault pattern vector. Thereby the ATPG tries to generate
fault pattern vectors that detect as much faults as possible in the way of having a set without
redundant fault pattern vectors.

One method of dynamic compaction is the reverse order fault simulation, as proposed in
[Schulz et al., 1988]. Thereby, fault simulation is applied to a generated set of fault pattern
vectors starting from the last generated fault pattern vector. In that procedure, any fault
pattern vector which does not detect new faults is removed. That procedure serves for re-
moving fault pattern vectors that appeared to be redundant after its generation. That is why
the fault simulation is executed in reverse order. The compactor available in the ATALANTA
automatic test pattern generator tool, [Lee and Ha, 1993], executes compaction using that
method and additionally the fault pattern vectors in the set are shuffled randomly and fault
simulated again several times for removing further fault pattern vectors which do not detect
a new fault.

Last method removes fault pattern vectors that do not recognize new faults during fault
simulation in reverse order, but it does not care about fault pattern vectors that became
redundant in the process of fault pattern vector generation. A method that approached
that problem is the Redundant Vector Elimination presented in [Hamzaoglu and Patel, 2000],
which by the fault pattern vector generation keeps track of the faults detected by each fault
pattern vector, the number of essential faults of each fault pattern vector and the number of
times a fault is detected.

When during the generation of fault pattern vectors, a fault pattern vector that detects
a fault contains elements which can take any value, either 0 or 1, without affecting the
recognition of the fault, those elements can be all left unspecified with Xs, specified with
1s, specified with 0s, or specified randomly with 1s or 0s. Dynamic fault pattern vector
set compaction methods tries to fill those values such as every single fault pattern vector
recognizes more faults, [Wang et al., 2006].

The method presented in [Pomeranz et al., 1993] fills the unspecified values of the fault
pattern vectors of the set by searching each time for a fault pattern vector that detects the
next fault in a list of faults ordered such that, a fault pattern vector for a fault in the list
would potentially detect the next fault in the list.

Two other methods of dynamic fault pattern vector set compaction make use of genetic

177

Chapter 5. Evaluation of fault recognition methods

algorithms as presented in [Rudnick and Patel, 1999] and [Mazumder and Rudnick, 1998]. In
both methods, after a fault pattern vector has been generated including unspecified values,
a genetic algorithm tries to find a variant of the fault pattern vector such that it detects a
higher number of faults than the original one. Fault simulation is used for measuring the
fitness of each solution during evolution. By the first method, the unspecified values of the
provided fault pattern vector are specified differently for each individual in the population.
The population evolve to find the best filling of unspecified values. In the second method,
the unspecified values of the provided fault pattern vector are specified differently for each
individual in the population, but as the population evolves, specified values of the original
fault pattern vector are also changed in order to find a fault pattern vector that detects more
faults than the original one. Those methods have been employed for the generation of reduced
sets of sequences of fault pattern vectors for sequential circuits without scan design or partial
scan design.

Table 5.20 shows the sizes of compacted fault pattern vector sets for the benchmark com-
binational circuits of ISCAS 85 using the methods explained above and reported in the cor-
responding literature. We can see that the gap between those results and the lower bounds,
taken from [Kajihara et al., 1993], is quite small, specially for the newest results in the table
presented by [Hamzaoglu and Patel, 2000]. Although the results by [Raedtke et al., 1995] for
the benchmark circuits c1355 and c1908 are smaller than the lower bound and it is impossible
to reproduce those results again, the idea of how to implement a static compaction program
using genetic algorithms is worth. Note that no results for dynamic fault pattern vector set
compaction using genetic algorithms is shown on table 5.20, since the available methods in
[Rudnick and Patel, 1999] are applied to sets of sequences of fault pattern vectors for sequen-
tial circuits. Even if dynamic compaction techniques are more frequently used by various
ATPG tools, static compaction of fault pattern vector sets can be necessary when the ATPG
tool does not compact the generated set or when the fault pattern vector set can still be
compacted using a compaction method different to the one used by the ATPG tool.

Table 5.20: Summary of results from existing methods of fault pattern vector set compaction
for combinational circuits

Benchmark circuit Lower bound [Raedtke et al., 1995] [Schulz et al., 1988] [Lee and Ha, 1993] [Hamzaoglu and Patel, 2000] [Pomeranz et al., 1993]

c432 20 36 58 48 27 -
c880 12 32 60 52 16 30
c1355 84 67 88 84 84 86
c1908 91 65 125 117 106 126
c2670 39 72 127 115 44 67
c3540 79 95 171 154 84 111
c5315 36 74 143 114 37 56
c6288 6 18 38 28 12 16
c7552 28 117 231 204 73 87

5.2.3 Fault vector dimension reduction

Fault vector dimension reduction of fault pattern vectors with binary elements can be made
in two ways. The first way is the use or introduction of unspecified values, also called X

values or don’t care bits, in the fault pattern vectors of a set by the design of the fault
recognition module. Although it is not possible to have the unspecified value at the same bit
position in all fault pattern vectors of the fault pattern vector set, that procedure helps on
reducing the hardware overhead caused by the introduction of a fault recognition module on

178

5.2. Fault recognition module with binary fault vector elements

Input vector

Circuit for self-repairing
Output vector

Fault-free output vector

Fault

Input vectors

monitoring

Output pattern vectors

storage

Output vectors

comparison

m

m

m

m
n

t
2

2

1

n1s(1) ≤ t

n1s(m) ≤ t

[n1s(1) + n0s(1)] ≤ n

[n1s(t) + n0s(t)] ≤ n

Figure 5.17: Fault recognition module design using unspecified values in the input patterns
(abstracted and generalized from [Voyiatzis et al., 2009] c©2009 IEEE)

the circuit for self-repairing and also helps on reducing the mean time to recognize a fault,
in short MTTRF, at operation time. The second way can be introduced considering input
vectors and output vectors separately. Regarding the input pattern vectors contained in the
fault pattern vectors, it consists on the compression of the input pattern vectors at design
time and the decompression of the respective compressed vectors at operation time for being
applied to the circuit for self-repairing, method that can be only useful for offline testing in
a non-concurrent fault recognition scheme. Regarding the output vectors, it consists on the
compaction of the output vectors form the circuit for self-repairing and the output pattern
vectors for reducing the hardware necessary for the output vectors comparison block and the
output pattern vectors storage block, which helps on reducing the whole hardware overhead
of the fault recognition module. Those two ways of fault vector dimension reduction are
explained in detail in the following subsections.

Set of fault pattern vectors with unspecified values

Fault vector dimension reduction can be executed using or introducing, when not available,
unspecified values X in the fault pattern vectors. The use of unspecified values X in the
input pattern vectors contained in the fault pattern vectors allows the design of the input
vector monitoring block with AND gates with reduced number of inputs n1s(i) ≤ n, equal to
the number of 1s and 0s in the input pattern vector contained in the respective fault pattern
vector i, where 1 ≤ i ≤ t, as shown in figure 5.17. Then, this procedure helps on reducing the
hardware overhead caused by the fault recognition module in the circuit. Besides it helps on
decreasing the mean time to recognize a fault because for each unspecified value in an input
pattern vector contained in any fault pattern vector, the probability that an input vector
occurs and matches that input pattern vector implemented with an AND gate increases by a
factor of 2.

The introduction of X values in the output pattern vectors contained in the fault pattern
vectors does not help on reducing the hardware overhead, instead it increases the logic needed
since a monitor for the X values should be inserted, as implemented in [Voyiatzis et al., 2009]

179

Chapter 5. Evaluation of fault recognition methods

Input vector

Circuit for self-repairing
Output vector

Fault-free
output vector

Fault

Input vectors
monitoring

Output pattern vectors
storage

Output vectors
comparison

Unspecified values
monitor

m

m

m

m

m

m

n

t

2

2

2

2

1

n1s(1) ≤ t

n1s(m) ≤ t

[n1s(1) + n0s(1)] ≤ n

[n1s(t) + n0s(t)] ≤ n

nXs(1) ≤ t

nXs(m) ≤ t

Figure 5.18: Fault recognition module design using an unspecified values monitor (abstracted
and generalized from [Voyiatzis et al., 2009] c©2009 IEEE)

and named the MOBEX scheme. That monitor avoids to trigger a fault when any output bit
of the circuit and its corresponding output pattern bit X, filled randomly with either an 1 or
a 0, are different. Being that output bit not necessary for detecting the fault or faults that the
fault pattern vector is intended to detect. Figure 5.18 shows the additional block necessary
for monitoring the unspecified values in the output pattern vectors. The unspecified values
monitor is implemented with NOR gates. Whenever an unspecified value is present in any
fault pattern vector, a signal is raised and inverted to cancel by means of an AND gate the
signal coming from the respective XOR gate. Most automatic test pattern generators provide
fault pattern vectors with unspecified values in both the input and the output pattern vectors.
Therefore, when the fault pattern vectors are generated with a conventional ATPG, such an
unspecified values monitor is unavoidable.

A way of reducing the hardware overhead introduced by the use of unspecified values in
the output pattern vectors contained in the fault pattern vectors is to employ multiplexers
for masking that unspecified values, as proposed in [Voyiatzis et al., 2009] and named as the
IVEX scheme. With that method, the hardware overhead can be reduced notoriously when
the total number of X values of all available output pattern vectors is higher than the total
number of 0 values. That, since in the design of the output pattern vectors storage block only
the values 0 or 1 of the elements of the output pattern vectors are considered. Table 5.21
shows how that design works. The set of m multiplexers forward either the signals coming
from the AND gates that considered the 1s at that bit position or the signals coming from the
AND gates that considered the 0s at that bit position, according to the value present at the
selector lines which come from the outputs of the circuit. Note that the lines coming from the
outputs of the circuit are inverted at the selector inputs of the multiplexers. The case where
both inputs to any multiplexer, 1s or 0s, have the value of 1 can not occur. In the case when

180

5.2. Fault recognition module with binary fault vector elements

Input vector

Circuit for self-repairing

ault-free

Output vector

Fault-free
output vector

FaultInput vectors

monitoring

Output pattern vectors

storage

Output vectors

comparison

m

m

m

n

t

1

[n1s(1) + n0s(1)] ≤ n

[n1s(t) + n0s(t)] ≤ n

n1s(1) ≤ t

n0s(m) ≤ t

n1s(1) ≤ t

n0s(m) ≤ t

Figure 5.19: Fault recognition module design using multiplexers (abstracted and generalized
from [Voyiatzis et al., 2009] c©2009 IEEE)

both inputs 1s or 0s to the same multiplexer have the value of 0, that is the output pattern
bit has a X value, it does not matter whether the 1s or the 0s input to the multiplexer is
selected, since the output of the multiplexer will always be a 0, which means there is no fault.
Then, the X at that bit position has been masked. In case an output bit of the circuit for
self-repairing is 0, the respective multiplexer forwards the value of the input 1s, which should
have the value of 0 when there is no fault, otherwise it has a value of 1, which means that
the output bit from the circuit for self-repairing and the respective output pattern bit are
different. In case an output bit of the circuit of self-repairing is 1, the respective multiplexer
forwards the input 0s, which should have the value of 0 when there is no fault, otherwise it
has a value of 1, which means that the output bit from the circuit for self-repairing and the
respective output pattern bit are different.

[Kochte et al., 2009] shows the design of a concurrent fault recognition module using un-
specified values in the output pattern vectors. Thereby, when an input pattern vector is
present at the input of the circuit for self-repairing, only the output bits that present a value
of 0 or 1 in the respective output pattern vector are observed. The design can be understood
by means of the truth tables 5.22 and 5.23. When the value of an output pattern bit is 0,
the direct value of the respective output bit from the circuit for self-repairing is connected
to an AND gate together with the output line coming from the AND gate that detects the
respective input pattern vector, signal named as hit. When the hit signal has a value of 1 and
the output bit from the circuit for self-repairing has the value of 1, different from the expected
value 0, a fault is signalized with a 1 value at the output of the AND gate, otherwise a 0 value
is given, which means that no fault occurred at that output bit. Similarly, when the value

181

Chapter 5. Evaluation of fault recognition methods

Table 5.21: Truth table for the output vectors comparison using multiplexers

1s 0s Output bit MUX selector = Output bit MUX output = Fault

X
0 0 0 1s 0
0 0 1 0s 0
0 1 0 1s 0
0 1 1 0s 1
1 0 0 1s 1
1 0 1 0s 0

-
1 1 0 1s -
1 1 1 0s -

Input vector

Circuit for self-repairing
Output vector

Fault-free

output vector

FaultInput vectors

monitoring

Output pattern vectors

storage

Implicit output vectors

comparison

m

n

t

t

t

1

[n1s(1) + n0s(1)] ≤ n

[n1s(t) + n0s(t)] ≤ n

n0s(1) ≤ m

n1s(1) ≤ m

n0s(t) ≤ m

n1s(t) ≤ m

Figure 5.20: Fault recognition module design using implicit output vectors comparison (ab-
stracted and generalized from [Kochte et al., 2009] c©2009 IEEE)

of the output pattern bit is 1, the respective output bit from the circuit for self-repairing is
inverted and connected to an AND gate together with the output line coming from the AND
gate that detects the respective input pattern vector, signal named as hit. When the hit
signal has a value of 1 and the output bit from the circuit for self-repairing has the value of
0, different from the expected value 1, a fault is signalized with a 1 value at the output of the
AND gate, otherwise a 0 value is given which means that no fault occurred at that output
bit. Since the output signal from the AND gate, that detects the respective input pattern
vector, is used for all the output bits to be observed for that output pattern vector, i.e., the
outputs having a value 0 or 1, only one AND gate is necessary if all the output signals from
the circuit for self-repairing connected directly or inversely are collected by means of an OR
gate and a NAND gate respectively, as seen in figure 5.20.

The hardware overhead for all the design alternatives presented above caused by the fault

182

5.2. Fault recognition module with binary fault vector elements

Table 5.22: Truth table for the implicit output vectors comparison when pattern bit = 0

Hit Output bit Output bit Fault

0 0 0 0
0 1 1 0
1 0 0 0
1 1 1 1

Table 5.23: Truth table for the implicit output vectors comparison when pattern bit = 1

Hit Output bit Output bit Fault

0 0 1 0
0 1 0 0
1 0 1 1
1 1 0 0

recognition module is expressed symbolically in table 5.26. In order to show the computa-
tion of the hardware overhead by means of an example, two minimal sets of fault pattern
vectors for the benchmark circuit c17 which has 5 inputs and 2 outputs, one with completely
specified values and another containing unspecified values where generated in the following
way. A compact set with all specified values has been generated using the ATALANTA au-
tomatic test pattern generation tool. Likewise, a compact set containing unspecified values
has been generated using ATALANTA and a program that implemented the algorithm 5.1
for compacting the set. So in the first set we have 4 fault pattern vectors with all specified
values, which are shown in table 5.24, and in the second set we have 8 fault pattern vectors
containing unspecified values in the input and output pattern vectors, which are shown in
table 5.25. The following symbols are used in the computation of the hardware overhead of
the fault recognition module.

t number of fault pattern vectors in the set
n number of inputs of the circuit
m number of outputs of the circuit

n1sIM(i) number of 1 values in the line i of the input pattern vectors matrix
n0sIM(i) number of 0 values in the line i of the input pattern vectors matrix
nXsIM(i) number of X values in the line i of the input pattern vectors matrix
n1sOM(i) number of 1 values in the line i of the outputs pattern vectors matrix
n0sOM(i) number of 0 values in the line i of the outputs pattern vectors matrix
nXsOM(i) number of X values in the line i of the outputs pattern vectors matrix

The symbolic expression of the hardware overhead for the input vectors monitoring block
looks the same for all schemes. However, for the first scheme the number of 1s and 0s in
every input pattern vectors is equal to the number of inputs, since all values are specified.
Besides the number of input pattern vectors is only 4. The other three schemes present the
same hardware overhead for the input vectors monitoring block. The number of 1s and 0s in
every input pattern vector is less than number of inputs because of the presence of unspecified

183

Chapter 5. Evaluation of fault recognition methods

Table 5.24: Fault pattern vectors with all specified bits for the c17 benchmark circuit

Input pattern vectors Outputs pattern vectors

10101 11
01010 11
10000 00
01111 00

Table 5.25: Fault pattern vectors with unspecified bits for the c17 benchmark circuit

Input pattern vectors Outputs pattern vectors

x00x0 00
10111 10
01100 11
100x1 01
11111 10
00011 01
001xx 0x
010xx 11

values. That is the reason why a reduction of the hardware overhead can be reached using
unspecified values at the input pattern vectors.

Please note that in figures 5.15, 5.18, 5.19 and 5.20, the input vector monitoring block has
been drawn only with AND gates for simplifying the figures. However, the inputs to the AND
gates are determined by the values in the input pattern vectors. Where, the inputs with a
value of 1 should be connected directly and the inputs with a value of 0 should be inverted.
Then, the values 1 of an input pattern vector can be collected whit a AND gate and the values
0 of the same input pattern vector can be collected with a NOR gate. The last is possible by
considering that Input X · Input Y = Input X + Input Y. Finally, the output of the AND and
NOR gates can be connected to a two-input AND gate as seen in figure 5.21. In this way, the
hardware overhead of the input vectors monitoring block has been computed more exactly.

In order to compare all the schemes, the necessary gates for the benchmark circuit c17
have been transformed to the NAND logic. Please look for NAND logic at [Wikipedia, 2011]
for more details. Were: an AND gate requires 2 NAND gates, an INV gate requires 1
NAND gate, an OR gate requires 3 NAND gates, a XOR gate requires 4 NAND gates, and
a Multiplexer unit requires 4 NAND gates considering that a two-input multiplexer has the
following Boolean formula: Multiplexer-input-1 ·Selector+Multiplexer-input-2 ·Selector. The
computation of the total number of NAND gates required for the small benchmark circuit
c17 is only illustrative. A comparison of all those schemes in terms of hardware overhead
with only that example is not possible and it would require to consider bigger circuits with
different test pattern vectors sets. Please note that the computation of the required NAND
gates for the second, third and fourth schemes has been executed for the set of 8 fault pattern
vectors containing unspecified values.

The first scheme that has been introduced by [Sharma and Saluja, 1988] can only be used
for the design of the fault recognition module using a fault pattern vector set with only

184

5.2. Fault recognition module with binary fault vector elements

T
ab

le
5.

26
:

H
ar

d
w

ar
e

ov
er

h
ea

d
of

th
e

fa
u
lt

re
co

gn
it
io

n
m

o
d
u
le

B
lo

ck
N

u
m

b
er

of
ga

te
s

c1
7

ci
rc

u
it

n
=

5,
m

=
2

F
au

lt
re

co
gn

it
io

n
m

o
d
u
le

d
es

ig
n

u
si

n
g

on
ly

sp
ec

ifi
ed

va
lu

es
.

S
ch

em
e

fr
om

[S
h
ar

m
a

an
d

S
al

u
ja

,
19

88
].
t
=

4

In
p
u
t

ve
ct

or
s

m
on

it
or

in
g

t
∑

i

ce
il
[n

1
s
I
M

(i
)
−

1]
2
IN

A
N

D
,

t
∑

i

ce
il
[n

0
s
I
M

(i
)
−

1]
2
IN

O
R
,t

2
IN

IN
V
,t

2
IN

A
N

D
6

2
IN

A
N

D
,5

2
IN

O
R
,4

2
IN

IN
V
,4

2
IN

A
N

D

O
u
tp

u
t

p
at

te
rn

ve
ct

or
s

st
or

ag
e

m
∑

i

ce
il
[n

1
s
O

M
(i

)
−

1]
2
IN

O
R

2
2
IN

O
R

O
u
tp

u
t

ve
ct

or
s

co
m

p
ar

is
on

m
2
IN

X
O

R
,(
m

−
1)

2
IN

O
R

2
2
IN

X
O

R
,1

2
IN

O
R

T
ot

al
ga

te
s

10
2
IN

A
N

D
,8

2
IN

O
R
,4

2
IN

IN
V
,2

2
IN

X
O

R
T
ot

al
2
IN

N
A

N
D

ga
te

s
56

2
IN

N
A

N
D

F
au

lt
re

co
gn

it
io

n
m

o
d
u
le

d
es

ig
n

u
si

n
g

an
u
n
sp

ec
ifi

ed
va

lu
es

m
on

it
or

.
S
ch

em
e

M
O

B
E

X
fr

om
[V

oy
ia

tz
is

et
al

.,
20

09
].
t
=

8

In
p
u
t

ve
ct

or
s

m
on

it
or

in
g

t
∑

i

ce
il
[n

1
s
I
M

(i
)
−

1]
2
IN

A
N

D
,

t
∑

i

ce
il
[n

0
s
I
M

(i
)
−

1]
2
IN

O
R
,t

2
IN

IN
V
,t

2
IN

A
N

D
10

2
IN

A
N

D
,9

2
IN

O
R
,8

2
IN

IN
V
,8

2
IN

A
N

D

O
u
tp

u
t

p
at

te
rn

ve
ct

or
s

st
or

ag
e

m
∑

i

ce
il
[n

1
s
O

M
(i

)
−

1]
2
IN

O
R

6
2
IN

O
R

O
u
tp

u
t

ve
ct

or
s

co
m

p
ar

is
on

m
2
IN

X
O

R
,(
m

−
1)

2
IN

O
R

8
2
IN

X
O

R
,7

2
IN

O
R

U
n
sp

ec
ifi

ed
va

lu
es

m
on

it
or

m
∑

i

ce
il
[n

X
s
O

M
(i

)
−

1]
2
IN

O
R
,2
m

2
IN

A
N

D
0

2
IN

O
R
,1

2
IN

A
N

D

T
ot

al
ga

te
s

19
2
IN

A
N

D
,2

2
2
IN

O
R
,8

2
IN

IN
V
,8

2
IN

X
O

R
T
ot

al
2
IN

N
A

N
D

ga
te

s
14

4
2
IN

N
A

N
D

F
au

lt
re

co
gn

it
io

n
m

o
d
u
le

d
es

ig
n

u
si

n
g

m
u
lt
ip

le
x
er

s.
S
ch

em
e

IV
E

X
fr

om
[V

oy
ia

tz
is

et
al

.,
20

09
].
t
=

8

In
p
u
t

ve
ct

or
s

m
on

it
or

in
g

t
∑

i

ce
il
[n

1
s
I
M

(i
)
−

1]
2
IN

A
N

D
,

t
∑

i

ce
il
[n

0
s
I
M

(i
)
−

1]
2
IN

O
R
,t

2
IN

IN
V
,t

2
IN

A
N

D
10

2
IN

A
N

D
,9

2
IN

O
R
,8

2
IN

IN
V
,8

2
IN

A
N

D

O
u
tp

u
t

p
at

te
rn

ve
ct

or
s

st
or

ag
e

m
∑

i

ce
il
[n

1
s
O

M
(i

)
−

1]
2
IN

O
R
,

m
∑

i

ce
il
[n

0
s
O

M
(i

)
−

1]
2
IN

O
R

6
2
IN

O
R
,5

2
IN

O
R

O
u
tp

u
t

ve
ct

or
s

co
m

p
ar

is
on

m
2
IN

M
U

X
,m

2
IN

IN
V
,(
m

−
1)

2
IN

O
R

8
2
IN

M
U

X
,8

2
IN

IN
V
,7

2
IN

O
R

T
ot

al
ga

te
s

18
2
IN

A
N

D
,2

7
2
IN

O
R
,1

6
2
IN

IN
V
,8

2
IN

M
U

X
T
ot

al
2
IN

N
A

N
D

ga
te

s
16

5
2
IN

N
A

N
D

F
au

lt
re

co
gn

it
io

n
m

o
d
u
le

d
es

ig
n

u
si

n
g

im
p
li
ci

t
ou

tp
u
t

ve
ct

or
s

co
m

p
ar

is
on

.
S
ch

em
e

fr
om

[K
o
ch

te
et

al
.,

20
09

].
t
=

8

In
p
u
t

ve
ct

or
s

m
on

it
or

in
g

t
∑

i

ce
il
[n

1
s
I
M

(i
)
−

1]
2
IN

A
N

D
,

t
∑

i

ce
il
[n

0
s
I
M

(i
)
−

1]
2
IN

O
R
,t

2
IN

IN
V
,t

2
IN

A
N

D
10

2
IN

A
N

D
,9

2
IN

O
R
,8

2
IN

IN
V
,8

2
IN

A
N

D

O
u
tp

u
t

p
at

te
rn

ve
ct

or
s

st
or

ag
e

an
d

im
p
li
ci

t
ou

tp
u
t

ve
ct

or
s

co
m

p
ar

is
on

t
∑

i

ce
il
[n

1
s
O

M
(i

)
−

1]
2
IN

O
R
,

t
∑

i

ce
il
[n

0
s
O

M
(i

)
−

1]
2
IN

O
R
,t

2
IN

IN
V
,2
t

2
IN

A
N

D
,(
t
−

1)
2
IN

O
R

2
2
IN

O
R
,3

2
IN

O
R
,8

2
IN

IN
V
,1

6
2
IN

A
N

D
,7

2
IN

O
R

T
ot

al
ga

te
s

34
2
IN

A
N

D
,2

1
2
IN

O
R
,1

6
2
IN

IN
V

T
ot

al
2
IN

N
A

N
D

ga
te

s
14

7
2
IN

N
A

N
D

185

Chapter 5. Evaluation of fault recognition methods

Input vector

Input vectors

monitoring

n

tn1s(1) ≤ n

n0s(t) ≤ n

n1s(1) ≤ n

n0s(t) ≤ n

Figure 5.21: Input vector monitoring block (abstracted and generalized from [Voyiatzis et al.,
2009] c©2009 IEEE)

specified bits. The second scheme MOBEX introduced by [Voyiatzis et al., 2009] differs from
the first scheme in that it presents an unspecified values monitor block for handling with the
unspecified values in the output pattern vectors. The third scheme IVEX introduced also
by [Voyiatzis et al., 2009], presents a way of masking the unspecified values in the output
pattern vectors by using multiplexers instead of XOR gates, only considering the specified
values for the design of the output vectors comparison block. Therefore, that scheme is useful
when the number of unspecified values X is higher than the number of specified values 0.
That scheme has been conceived for handling with unspecified values in the output pattern
vectors, however it can also be used when the fault pattern vectors have only specified values.
The fourth scheme introduced by [Kochte et al., 2009] can also be used for output pattern
vectors with only specified values or output pattern vectors containing unspecified values.
That because in the implicit output vectors comparison block, that scheme considers only
the specified values in the output pattern vectors. Therefore, a reduction in the hardware
overhead can be given when unspecified values are available in the output pattern vectors.

In the case a fault pattern vector set with only specified values 0s and 1s is available, some
methods for finding and introducing unspecified values in a given set of fault pattern vectors
maintaining the fault coverage are the following. [Miyase and Kajihara, 2004] performs a
don’t care identification in fault pattern vectors for combinational circuits with the help of
a fault simulator. Thereby, for each fault pattern vector, it determines first which faults are
covered and then it starts to flip the value of one element on the vector at each time and verify
by fault simulation whether the faults are still covered. When the value in that bit position
can be changed without affecting the coverage of the fault pattern vector, the value is set to
X. [Pomeranz and Reddy, 2006] reduces the number of specified values in the given set of
fault pattern vectors by increasing the number of fault pattern vectors. That is executed by
replacing a fault pattern vector with a subset of other fault pattern vectors which cover all
together the same faults covered by the initial fault pattern vector, but have fewer specified
values each in comparison with the initial fault pattern vector. [Kochte et al., 2009] reduces
the number of specified values in a set of fault pattern vectors by test set stripping and
test pattern splitting which are methods that have the same principles as the both methods
explained above. Test set stripping takes 0s and 1s from fault pattern vectors away by flipping
values and fault simulating for verifying the fault coverage. Test pattern splitting reduces the
number of specified values by splitting the faults covered by a single fault pattern vector into

186

5.2. Fault recognition module with binary fault vector elements

subsets and replacing that fault pattern vector by other fault pattern vectors covering each
fault pattern vector only one subset, in consequence increasing the number of pattern vectors
in the set. However, [Kochte et al., 2009] limits the number of specified values in each fault
pattern to a determined number. So the procedure of test pattern splitting is executed until
the desired number of specified values in each fault pattern vector is reached.

Input vector compression and output vector compaction

In the area of chip testing, the compression of the input pattern vectors is named test stimulus
compression and the compression of the output pattern vectors is named test response com-
paction. The test stimulus compression should be information lossless in order to maintain
the fault coverage of the original test set. On the contrary, the output response compaction
can be lossy [Wang et al., 2006], that is why it is named compaction instead of compression.

When a determined digital circuit is provided with built-in self-test, normally the input
pattern vectors for being applied in a determined testing phase are generated pseudo-randomly
by a test pattern generator circuit based on a linear feedback shift register, and not by an
automatic test pattern generator. Only the input pattern vectors that can not be generated by
such a pseudo-random pattern generator are generated by an ATPG, which tries to cover the
remaining faults named random-pattern resistant faults. Such a set of input pattern vectors
contained in the fault pattern vectors generated by the ATPG can be compressed into vectors
with less number of elements together with a so called polynomial identifier. Those vectors
constitute the seeds of a linear feedback shift register and its computation implies solving
a set of linear equations, [Hellebrand et al., 1992]. Only the set of seeds and the respective
polynomial identifiers need to be stored in memory. At the time of testing, those seeds can
be fed into a linear feedback shift register that decompresses the seed vectors to the original
input pattern vectors. That compression scheme is only useful for saving storage space for
testing a digital circuit in idle or scheduled times. It is not suitable for the design of a fault
recognition module which should perform online concurrent fault recognition, where the input
vectors monitoring block looks for a known input pattern vector at the inputs of the fault
circuit for self-repairing in order to give a sign for starting the evaluation of the outputs of
the circuit for self-repairing.

The output vector from the circuit for self-repairing can be compacted by means of a
compactor circuit. Such a compactor circuit can be able to compact the output vector in
time or space. A space compactor reduces the elements of the output vector from m to
q and a time compactor produces a signature of a sequence of consecutive output vectors.
For an online concurrent fault recognition scheme, a space compactor could be of advantage
for reducing the hardware overhead of the fault recognition circuit since the output pattern
vectors storage and output vectors comparison blocks can be reduced by reducing the elements
of the output vectors from m to q. The idea of the inclusion of a output vector compactor is
given in figure 5.22.

A method for compacting the output vectors is the X-Compact technique presented in
[Mitra, 2004] which has been implemented in some commercial test compression tools. The
design of the output vector compactor block with the X-Compact technique can allow to work
with output pattern vectors with unspecified values in the output pattern vectors storage
block. That means no modification in all other blocks is necessary. That because the X-
Compact technique is independent of the fault patter vectors, in consequence independent to
the ATPG used for generating the fault pattern vectors and correspondingly the covered fault

187

Chapter 5. Evaluation of fault recognition methods

Input vector

Circuit for self-repairing
Output vector

Fault-free output vector

Fault

Input vectors

monitoring

Output pattern vectors

storage

Output vectors

comparison

Output vector compactor

m

q

q

q

q

n

t
2

2

1

n1s(1) ≤ t

n1s(m) ≤ t

[n1s(1) + n0s(1)] ≤ n

[n1s(t) + n0s(t)] ≤ n

Figure 5.22: Fault recognition module design using an output vector compactor

models. The X-Compact technique give some rules for the filling of the so called X-Matrix
with 1s and 0s. That matrix is used for the construction of a circuit based only in XOR
gates. XOR gates because of the information loss-less property of that gates, [Mitra, 2004].
Thereby, the number of matrix rows is set with the number of elements of the output vector,
in our case m. The number of columns of the matrix is set with the number of elements of
the compacted output vector q. Both numbers should have the following relation: m ≤ 2q

and fulfill a set of rules for the detection of faults.
The rules that guarantees to detect one fault are:

• No row contain all 0s

• All rows are different

The additional rule that guarantees to detect two faults is:

• Every row contains an odd number of 1s

The additional rule that guarantees to to detect a fault when an unspecified value is present
at the corresponding fault pattern vector is:

• The submatrix obtained by removing a row and a column having 1s in that should not
contain a row with all 0s

The additional rule that guarantees to to detect two faults when an unspecified value is
present at the corresponding fault pattern vector is:

• The submatrix obtained by removing a row and a column having 1s in that should
contain all distinct rows

Then the minimum number of elements for the compacted output vectors that could be
achieved, as a function of the number of elements in the output vectors m and the fulfillment
of the rules exposed above is shown in table 5.27.

188

5.2. Fault recognition module with binary fault vector elements

Table 5.27: Possible compaction using the X-Compact technique

m q

6-8 6
9-32 10

33-128 14
129-512 18
513-2048 22

Table 5.28: Compaction using the X-Compact technique for the circuits of ISCAS 85

Benchmark circuit m q

c17 2 -
c432 7 6
c499 32 10
c880 26 10
c1355 32 10
c1908 25 10
c2670 140 18
c3540 22 10
c5315 123 14
c6288 32 10
c7552 108 14

A method for creating such matrix is to choose an odd number s such that m ≤ 22s. Then
a A matrix with all 2s combinations should be created and then another matrix B obtained
by bit-wise complementing the first matrix A. The final matrix is the concatenation of the
rows of both matrix in the form A|B. An example of such matrix is given below and its
respective circuit is drawn in figure 5.23.

























1 1 1 0 0 0
1 1 0 0 0 1
1 0 1 0 1 0
0 1 1 1 0 0
0 1 0 1 0 1
1 0 0 0 1 1
0 0 1 1 1 0
0 0 0 1 1 1

























Table 5.28 shows an overview of the possible compaction rate for the benchmark circuits of
the set ISCAS 85, if the circuits are provided with such an output vector compactor according
to their number of outputs m.

189

Chapter 5. Evaluation of fault recognition methods

1

1

2

2

3

3

4

4

5

5

6

6 7 8

Figure 5.23: X-Compactor circuit for m = 8 and q = 6 (adapted from [Mitra, 2004] c©2004
IEEE)

5.3 Conclusions

This chapter presented the evaluation of some methods for the design of a fault recognition
module for a circuit for self-repairing that delivers input and output vectors with real or
binary elements.

For the design of such a fault recognition module, a fault vector has been defined as the
aggregation of input and output signals. So, the present input and output signals from the
present fault vector is compared with a set of fault pattern vectors, in order to determine
whether the circuit for self-repairing is faulty or not during its operational phase.

Since the fault recognition process relies on a vector comparison, some distance measure-
ment methods have been evaluated. The Hamming distance measurement method by fault
vectors with binary elements allows an exact comparison. Therefore, the determination that
there exists a fault in the circuit for self-repairing is straightforward. Under a determined
input vector, a mismatch of the output vector from the circuit for self-repairing and a corre-
sponding output pattern vector leads to determine that there exist a fault. In vectors with
real elements, an exact comparison is not possible. Therefore, a class has been attached to
each fault pattern vector. That class number contains the information of whether the circuit
for self-repairing is faulty or not and when faulty, which type of fault is present. For that,
some fault distance measurement methods has been evaluated and additionally some class
assignation methods.

The fault coverage is dependent on the quality of the set of fault pattern vectors which are
generated for covering a set of faults. The fault efficiency is dependent on the fault coverage
and can be defined as the quotient between the faults covered and the fault detected. By

190

5.4. Bibliography

the design of the fault recognition module for a circuit for self-repairing that delivers a fault
vector with binary elements, the fault efficiency can be in most cases assured to be 1. That
because a single fault pattern vector is able to determine whether there exist a fault or not.
That is not the case for a circuit with a fault vector with real elements. There, the faults
detected are dependent of the distance measurement method, the class assignation method
and the set of fault pattern vectors stored into the fault recognition module.

By working with fault pattern vectors with binary elements, the fault recognition module
consists in an input vectors monitoring block, an output pattern vectors storage block and
an output vectors comparison block. The hardware overhead of those blocks depends on the
number of fault pattern vectors and the number of elements of the input pattern vectors and
output pattern vectors contained in the fault pattern vectors of the available set. By working
with fault pattern vectors with real elements, the recognition module consists in a distance
measurement block, a class assigner block and a memory block. The hardware overhead of
those blocks depends also on the number of fault pattern vectors and the number of elements
of those vectors. That because they should be stored in memory. That is the reason why
this chapter evaluated some algorithms and schemes for reducing the number of fault pattern
vectors in the available set and the elements, called also dimensions, of the fault vectors.

The mean time to recognize a fault, which is the time taken by a fault recognition module
for recognizing that a fault happened in the circuit for self-repairing, is dependent on the
quality of the fault pattern vectors set and also on the time that the fault recognition takes
to recognize that fault. So, in a circuit for self-repairing that delivers fault pattern vectors
with binary elements, the fault recognition module can be designed for working concurrently
with the operation of the circuit for self-repairing. In that case, the mean time to recognize
a fault depends on the probability that an input vector that matches an input pattern vector
appears at the inputs of the circuit for self-repairing.

Regarding fault pattern vectors with binary elements, [Voyiatzis et al., 2009] proposes to
design a fault recognition module using all the fault pattern vectors generated by an ATPG.
However, the size of a fault pattern vector set for a circuit for self-repairing with many inputs
and for a high fault coverage, is big. Therefore, [Kochte et al., 2009] proposes to consider only
fault pattern vectors for random pattern resistant faults of for only critical faults. That is
feasible, since the self-repairing circuit could use all other random patterns for testing offline
the health of the circuit at the start or in scheduled or idle times. However, the advantages
of a concurrent fault recognition module is that the circuit does not need to enter in a test
mode or to be stopped in order to monitor for critical faults.

Having evaluated some methods for designing a fault recognition module, next chapter
deals with the hardware implementation issues for a self-repairing circuit.

5.4 Bibliography

Brglez, F., Bryan, D., and Kozminski, K. (1989). Notes on the ISCAS’89 Benchmarks Cir-
cuits. MCNC.

Bryan, D. (1988). The ISCAS’85 benchmark circuits and netlist format. MCNC.

Collaborative Benchmarking and Experimental Algorithmics Laboratory (2007). The Bench-
mark Archives at CBL (up to 1996).

191

Bibliography

Hamzaoglu, I. and Patel, J. H. (2000). Test Set Compaction Algorithms for Combinational
Circuits. Transactions on Computer-Aided Design of Integrated Circuits and Systems,
19(8):283–289. IEEE.

Hellebrand, S., Tarnick, S., Rajski, J., and Courtois, B. (1992). Generation Of Vector Patterns
Through Reseeding Of Multiple-Polynomial Linear Feedback Shift Registers. In Interna-
tional Test Conference - ITC 1992, pages 120–129.

Kajihara, S., Pomeranz, I., Kinoshita, K., and Reddy, S. M. (1993). Cost-Effective Gener-
ation of Minimal Test Sets for Stuck-at Faults in Combinational Logic Circuits. In 30th
International Design Automation Conference - DAC 1993, pages 102–106. ACM.

Kalla, P. and Ciesielski, M. (1998). A Comprehensive Approach to the Partial Scan Problem
using Implicit State Enumeration. In International Test Conference - ITC 1998, pages
651–657. IEEE Computer Society.

Kirkland, T. and Mercer, M. R. (1988). Algorithms for Automatic Test Pattern Generation.
Design & Test, 5(3):43–55. IEEE Computer Society.

Kochte, M. A., Zoellin, C. G., and Wunderlich, H.-J. (2009). Concurrent Self-Test with
Partially Specified Patterns For Low Test Latency and Overhead. In 14th European Test
Symposium, pages 53–58. IEEE Computer Society.

Lee, H. K. and Ha, D. S. (1991). An Efficient Forward Fault Fault Simulation Algorithm
Based on the Parallel Pattern Single Fault Propagation. In International Test Conference
- ITC 1991, pages 946–955.

Lee, H. K. and Ha, D. S. (1993). On the Generation of Test Patterns for Combinational Cir-
cuits. Technical Report 12-93, Department of Electrical Engineering, Virginia Polytechnic
Institute and State University.

Li, Y., Makar, S., and Mitra, S. (2008). CASP: Concurrent Autonomous Chip Self-Test Using
Stored Test Patterns. In Conference on Design, Automation and Test in Europe - DATE
2008, pages 885–890. ACM.

Li, Y., Mutlu, O., Gardner, D. S., and Mitra, S. (2010). Concurrent Autonomous Self-Test
for Uncore Components in Systems-on-Chips. In 28th VLSI Test Symposium - VTS 2010,
pages 232–237. IEEE Computer Society.

Mazumder, P. and Rudnick, E. (1998). Genetic Algorithms for VLSI Design, Layout and Test
Automation. Prentice Hall.

Mitra, S. (2004). X-compact: an efficient response compaction technique. Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 23(3):421–432. IEEE.

Miyase, K. and Kajihara, S. (2004). XID: Don’t care identification of test patterns for com-
binational circuits. Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 23(2):321–326. IEEE.

Pomeranz, I., Reddy, L. N., and Reddy, S. M. (1993). COMPACTEST: A Method to Generate
Compact Test Sets for Combinational Circuits. Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 12(7):1040–1049. IEEE.

192

Bibliography

Pomeranz, I. and Reddy, S. M. (2006). Reducing the number of specified values per test
vector by increasing the test set size. Computers & Digital Techniques, 153(1):39–46. IEE.

Raedtke, S., Bargfrede, J., and Anheier, W. (1995). Distributed Automatic Test Pattem
Generation with a Parallel FAN Algorithm. In International Conference on Computer
Design: VLSI in Computers and Processors - ICCD 1995, pages 698–702. IEEE.

Reed, I. S. (1973). Boolean Difference Calculus and Fault Finding. Journal on Applied
Mathematics, 24(1):124–143. Society for Industrial and Applied Mathematics - SIAM.

Rudnick, E. M. and Patel, J. H. (1999). Efficient Techniques for Dynamic Test Sequence
Compaction. Transactions on Computers, 48(3):323–330. IEEE.

Schulz, M. H., Trischler, E., and Sarfert, T. M. (1988). SOCRATES: A Highly Afficient
Automatic Test Pattern Generation System. Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 7(1):126–137. IEEE.

Sharma, R. and Saluja, K. K. (1988). An Implementation and Analysis of a Concurrent Built-
In Self-Test Technique. In 18th International Symposium on Fault-Tolerant Computing -
FTCS 18, pages 164–169.

Voyiatzis, I., Gizopoulos, D., and Paschalis, A. (2009). An Input Vector Monitoring Con-
current BIST Scheme Exploiting X Values. In 15th On-Line Testing Symposium - IOLTS
2009, pages 206–207. IEEE.

Wang, L.-T., Cheng, K.-T., and Chang, Y.-W., editors (2009). Electronic Design Automation:
Synthesis, Verification, and Test. Systems on Silicon. Morgan Kaufmann.

Wang, L.-T., Wu, C.-W., and Wen, X. (2006). VLSI Test Principles and Architectures:
Design for Testability. Systems on Silicon. Morgan Kaufman.

Wikipedia (2011). Searched words: standard score, standard deviation, normalization, norm,
unit vector, variance, Mahalanobis distance, design for test, scan chain, NAND logic.

Williams, M. J. Y. and Angell, J. B. (1973). Enhancing Testability of Large-Scale Integrated
Circuits via Test Points and additional Logic. Transactions on Computers, 22(1):46–60.
IEEE Computer Society.

193

Bibliography

194

6
Implementation of a self-repairing unit

A method for making a complex system self-repairing is first to partition that system into
simple and independent units which can be implemented as self-repairing units. This chapter
presents the architecture, design, simulation and implementation of a self-repairing unit at
the Register Transfer Level, in short RTL. The register transfer level of abstraction is used in
Hardware Description Languages, in short HDL, for creating circuits at a higher level than
the transistor or gate levels. Hardware description languages describe the flow of signals
between registers by declaring the registers as variables and describing the flow of signals
by using constructs like if-then-else and arithmetic operators. Foremost in this chapter, the
architecture of a self-repairing unit gives an overview of the arrangement of its modules, which
are implemented as VHDL modules. Since all those modules, excluding the unit itself, look the
same for all the units, they all can be taken as templates, in the form of a framework, for the
design of any self-repairing unit. The module responsible for the recovery procedure considers
redundancy and partial reconfiguration, a feature available by some Field Programmable Gate
Arrays, in short FPGAs. For testing the self-repairing unit, a fault injector is considered early
in the architecture of the self-repairing unit. A fault injector is helpful for testing the self-
repairing unit by the simulation of the design or by its hardware implementation.

Transient faults caused by radiation in SRAM based FPGAs can be detected and re-
paired by using triple modular redundancy as presented in [Kastensmidt et al., 2006] or by
using coding techniques that avoid forbidden state changes in state machines as shown in
[Burke and Taft, 2004]. This chapter intends to give a framework for a versatile repairing
of permanent faults using active redundancy. This framework uses partial reconfiguration
for repairing purposes, although partial reconfiguration can also be used for fitting a large
design into a single FPGA by means of temporal partitioning and temporal placement of
submodules into the used FPGA, for more information please refer [Purna and Bhatia, 1999],
[Christoph Steiger et al., 2003], [Dittmann, 2008] and [Montealegre and Rammig, 2010].

195

Chapter 6. Implementation of a self-repairing unit

6.1 Design of the self-repairing unit

The self-repairing unit can be designed in a modular way describing each module in a separate
VHDL file. Each VHDL file has defined the inputs and outputs of the module in the entity

part and its functionality in the architecture part. Each module can contain submodules
defining them as component in its architecture part before the reserved word begin, and
defining their signals connection after the reserved word begin.

The next subsection shows the modules required for a self-repairing unit, their signal con-
nections and the functionality of each module. The subsection thereafter enhances the design
inserting some modules for fault injection, required for testing the self-repairing unit at de-
sign time by its simulation or its hardware implementation. The last subsection shows the
modules required for the recovery of the unit by means of partial reconfiguration, if the unit
is intended to be implemented in a FPGA. All VHDL modules are explained by means of
their VHDL code, pointing out the logic behind the most important lines. It is recommended
only to look at the logic of the mentioned code lines and do not stuck reading the whole code.
For understanding the format of the VHDL constructs please refer a VHDL reference manual,
e.g., [Zwolinski, 2003], [Chu, 2006], [Brown and Vranesic, 2005] or [Pellerin and Taylor, 1996].

6.1.1 Initial architecture of the self-repairing unit

In this subsection, the initial architecture for the design of the self-repairing unit is explained
in detail, excluding the partial reconfiguration as recovery mean and the testing of the self-
repairing unit. Those features will be explained separately in the subsequent subsections.

First of all, the initial architecture of the self-repairing unit is shown in figure 6.1. There, the
inputs to the self-repairing unit are: the inputs capable to be disconnected from the unit itself
declared as InputsUser ; the signal Clock which allows to synchronize the activity of all the
modules in the self-repairing unit; and the signal Reset which allows to bring the self-repairing
unit to a known initial state. The outputs to the self-repairing unit are: the outputs capable to
be disconnected from the unit itself declared as OutputsUser ; the signal Ready that indicates,
that the module that executes fault recognition named FaultRecognition is neither searching
for faults in the unit, nor the module that executes the recovery procedure RecoveryProcedure
is repairing the unit; and the signal Defect that indicates that the unit has been encountered
faulty and repaired without success. The unit is the module labeled as CircuitForSR. The
modules responsible for enabling the inputs and outputs of the unit are EnableInputs and
EnableOutputs, which are controlled by the state machine module StateMachine. That module
behaves according to signals coming from the modules that execute fault recognition and
recovery. Fault recognition is executed using data stored in the memory module SyncMemory.
When the recovery of the unit has not been successful, it is attempted to be recovered again
a determined number of times registered by the module RecoveryCounter, before giving up by
raising up the signal Defect. The function of all those enunciated modules are explained in
detail below.

Circuit for self-repairing module

The unit named as circuit for self-repairing can be described at the register transfer level
as a VHDL module. That module has been labeled as CircuitForSR and is shown in code
listing 6.1. In the entity part of that module, firstly the inputs and outputs of the circuit for

196

6.1. Design of the self-repairing unit

R
ec

o
v
er

ed

R
e
s
e
t

C
lo
c
k

E
In

p
u
ts

L
as

tR
ec

o
v
er

y

R
ec
o
v
er
y
C
o
u
n
te
r

L
as

t
R

ec
o
v
er

y

In
p
u
ts

O
u
tp

u
ts

R
ec

o
v
er

ed

R
e
s
e
t

C
lo
c
k

D
o
u
t

E
In

p
u
ts

W
E

n

D
in

F
au

lt C

C
E

n

A
d
d
re

ss

R
ec

o
g
n
it

io
n
R

ea
d
y

F
a
u
lt
R
ec
o
g
n
it
io
n

W
E

n

A
d
d
re

ss

D
in

C
lo
c
k

D
o
u
t

C
E

n

S
y
n
cM

em
o
ry

R
ea

d
y

D
ef

ec
t

E
In

p
u
ts

E
O

u
tp

u
ts

L
as

tR
ec

o
v
er

y

R
ec

o
g
n
it

io
n
R

ea
d
y

F
au

lt

R
ec

o
v
er

ed

In
p
u
ts

O
u
tp

u
t

R
e
s
e
t

C
lo
c
k

S
ta
te
M
a
ch
in
e

In
p
u
ts

In
p
u
ts

u
se

r

E
In

p
u
ts

R
e
s
e
t

C
lo
c
k

E
n
a
b
le
In
p
u
ts

R
e
s
e
t

E
O

u
tp

u
ts

O
u
tp

u
ts

C
lo
c
k

O
u
tp

u
ts

U
se

r

R
e
s
e
t

In
p
u
ts

O
u
tp

u
ts

C
U

T

C R
ec

o
g
n
it

io
n
R

ea
d
y

L
as

tR
ec

o
v
er

y

C
lo
c
k

F
au

lt

O
u
tp

u
ts

R
ec

o
v
er

ed

R
ec
o
v
er
y
P
ro
ce
d
u
re

E
n
a
b
le
O
u
tp
u
ts

In
p
u
ts

O
u
tp

u
ts

C
ir
cu
it
F
o
rS
R

F
ig

u
re

6.
1:

In
it
ia

l
ar

ch
it
ec

tu
re

of
th

e
se

lf
-r

ep
ai

ri
n
g

u
n
it

197

Chapter 6. Implementation of a self-repairing unit

self-repairing can be declared as two vectors of Boolean signals of type std logic vector.
That is a standard logic type defined in the package ieee.std logic 1164.all referenced in
code line 2, for more details please see [Zwolinski, 2003]. Any definition in a VHDL package
can be used referencing the package in the VHDL module with the reserved word use, please
see code lines 2 and 3. In order to define only once for all the modules that require them, the
constants in code lines 7 and 8, number of inputs and number of outputs of the circuit for
self-repairing, labeled as size inputs and size outputs respectively, they are defined in the user-
defined package Constants explained below in their respective subsection. The architecture

part with the name of Behavioral contains the hardware description of the unit. An example
is a tiny combinational circuit with 3 inputs, 1 output, and Boolean formula (C · B) + (C · A).

Program Code 6.1: Circuit for self-repairing module

1 l i b r a r y i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3 use work . Cons tant s . a l l ;
4

5 ent i t y C i r c u i t Fo rSR i s

6 port (
7 I n pu t s : i n s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;
8 Outputs : out s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0)
9) ;

10 end C i r c u i t Fo rSR ;
11

12 a rch i t ec tu re Beha v i o r a l of C i r c u i t Fo rSR i s

13 begin

14

15 Outputs (0) <= ((not I n pu t s (2)) and I n pu t s (1)) or\
16 (I n pu t s (2) and I n pu t s (0)) ;
17

18 end Beha v i o r a l ;

Enable inputs module

This module is responsible for connecting the external inputs, labeled as InputsUser, to the
inputs of the circuit for self-repairing, labeled as Inputs. This module is necessary for isolating
the unit when the recovery procedure is being executed, or when the unit requires being
verified for each Inputs/Outputs before connecting the Outputs to the OutputsUser. That
is required for hard critical systems when an unverified wrong output can have dramatic
consequences. The enable inputs module is implemented by means of a process, labeled as
EI PROC. A process allows to describe a circuit by its behavior. A process is evaluated when
any of the signals in its sensitivity list changes. So, the process EI PROC is evaluated when
the Clock signal changes. Thanks to an if-then statement, the process EI PROC is active only
at the rising edge of the clock signal connecting the InputsUser signals to the Inputs signals if
the EInputs signal is switched to ‘1’, please see code line 25. In addition, if the Reset signal is
ever switched to ‘1’, the InputsUser signals are also connected to the User signals, as shown
in code line 22.

198

6.1. Design of the self-repairing unit

Program Code 6.2: Enable inputs module

1 l i b r a r y i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3 use work . Cons tant s . a l l ;
4

5 ent i t y Enab l e I n pu t s i s

6 port (
7 Clock : i n s t d l o g i c ;
8 Reset : i n s t d l o g i c ;
9 E Inpu t s : i n s t d l o g i c ;

10 I n pu t sU s e r : i n s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;
11 I n pu t s : out s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0)
12) ;
13 end Enab l e I n pu t s ;
14

15 a rch i t ec tu re Beha v i o r a l of Enab l e I n pu t s i s

16 begin

17

18 EI PROC : process (C lock)
19 begin

20 i f (Clock ’ e ven t and Clock = ’1 ’) then

21 i f Reset = ’1 ’ then

22 I n pu t s <= Inpu t sU s e r ;
23 e l s e

24 i f (E Inpu t s = ’1 ’) then

25 I n pu t s <= Inpu t sU s e r ;
26 end i f ;
27 end i f ;
28 end i f ;
29 end process ;
30

31 end Beha v i o r a l ;

Enable outputs submodule

The enable outputs module is responsible for connecting the outputs of the circuit for self-
repairing, labeled as Outputs, to the outputs of the self-repairing unit, labeled as OutputsUser.
This module, the same as the enable inputs module, is necessary for isolating the unit when
the recovery procedure is being executed, or when the circuit for self-repairing requires being
verified for each Inputs/Outputs before connecting the Outputs to the OutputsUser. The
enable outputs module is implemented by means of a process, labeled as EO PROC. The
process is active only at the rising edge of the clock signal and connects the Outputs signals
to the OutputsUser signals when the EOutputs signal is switched to ‘1’, please see code line
25. If the Reset signal is ever switched to ‘1’, the OutputsUser signals are left floating, i.e.,
the signals are neither driven to a logical high ‘1’ nor to a low level ‘0’, they instead present
a high impedance which is described in VHDL with the symbol ‘Z’ as shown in code line 22.

199

Chapter 6. Implementation of a self-repairing unit

Program Code 6.3: Enable outputs module

1 l i b r a r y i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3 use work . Cons tant s . a l l ;
4

5 ent i t y Enab leOutputs i s

6 port (
7 Clock : i n s t d l o g i c ;
8 Reset : i n s t d l o g i c ;
9 EOutputs : i n s t d l o g i c ;

10 Outputs : i n s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0) ;
11 OutputsUser : out s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0)
12) ;
13 end Enab leOutputs ;
14

15 a rch i t ec tu re Beha v i o r a l of Enab leOutputs i s

16 begin

17

18 EO PROC : process (C lock)
19 begin

20 i f (Clock ’ e ven t and Clock = ’1 ’) then

21 i f Reset = ’1 ’ then

22 OutputsUser <= (others => ’Z ’) ;
23 e l s e

24 i f (EOutputs = ’1 ’) then

25 OutputsUser <= Outputs ;
26 end i f ;
27 end i f ;
28 end i f ;
29 end process ;
30

31 end Beha v i o r a l ;

State machine module

The state machine module StateMachine controls the enable inputs and enable outputs mod-
ules, through their output signals EInputs and EOutputs. In addition, it is responsible for
the signals Ready and Defect. The signal Ready indicates that the self-repairing unit has no
pending fault recognition or recovery tasks. The signal Defect indicates that the circuit for
self-repairing presents a failure that is unrecoverable. The state machine module receives as
input signals from the fault recognition module FaultRecognition the signals RecognitionReady
and Fault, from the recovery procedure module RecoveryProcedure the signal Recovered, and
from the recovery counter module RecoveryCounter the signal LastRecovery, as can be seen in
figure 6.1.

Chapter 5 has shown that in case of having a circuit for self-repairing with binary inputs
and outputs, it is feasible to implement a fault recognition unit that operates concurrently
to the unit. However, for a circuit for self-repairing with real inputs and outputs, a fault
recognition unit that operates concurrently is possible only when the fault recognition is fast
enough to be ready before the next inputs/outputs are present. In case the fault recognition
is not fast enough, the fault recognition unit can miss some inputs/outputs and be only

200

6.1. Design of the self-repairing unit

able to recognize faults in the circuit for self-repairing by just picking the inputs/outputs
that it can. Another alternative is an almost-concurrent fault recognition, helpful when the
unit requires being verified for each Inputs/Outputs before connecting the Outputs to the
OutputsUser. That is required for hard critical systems when an unverified wrong output can
have dramatic consequences. The state machine for a concurrent fault recognition is shown in
figure 6.2 and the state machine for an almost-concurrent fault recognition is shown in figure
6.3.

The state machine for a concurrent fault recognition is by default in the state st FR. In
that state, the signals EInputs, EOutputs and Ready are set to ‘1’ and the signal Defect is
set to ‘0’. Under a fault in the circuit for self-repairing, indicated by the input signal Fault,
and whenever it has not been exceeded the number of possible recoveries, indicated by the
signal LastRecovery set to ‘0’, the state machine enters into the st RP state. In that state,
the circuit for self-repairing is isolated by disconnecting its Inputs and Outputs from the
external InputsUser and OutputsUser setting the signals EInputs and EOutputs to ‘0’. When
the circuit for self-repairing has been recovered, the state machine is informed by the signal
Recovered and it enters again into the default state sf FR, where it is verified if the recovered
circuit is fault-free. When that is not the case, the state machine enters the st RP state
again. If the repeated recovery procedures have not succeeded in repairing the unit, the state
machine enters the st Defect state. In that state, the Inputs and Outputs of the circuit are
disconnected form the InputsUser and OutputsUser, and the Defect and Ready signals are
set to ‘1’.

Unlike the state machine for concurrent fault recognition, the state machine for an almost-
concurrent fault recognition has the signals EInputs, EOutputs and Ready set to ‘0’. Besides,
there is a new signal RecognitionReady coming for the fault recognition module FaultRecog-
nition. When the fault recognition process is finished and no fault is encountered, the state
machine changes state from sf FR to a new state st EO, where the Outputs of the circuit for
self-repairing are connected to the OutputsUser. Just after that, the state machine changes
to another new state st EI, where the InputsUser are connected to the Inputs of the circuit
for self-repairing. The state st EI is the default state, where the signals Ready and EInputs
are set to ‘1’. From that state, the state machine changes to state st FR when the Inputs or
Outputs of the circuit for self-repairing change or the Reset signal is set to ‘1’.

The state machine for an almost-concurrent fault recognition is described in VHDL by
means of three processes, which has been labeled as SYNC PROC, NEXT STATE DECODE
and OUTPUT DECODE, as show in code lines 34, 59 and 95. The process SYNC PROC de-
scribes the registers in the state machine, that is why that process is evaluated at the rising
edge of the Clock signal. The NEXT STATE DECODE and OUTPUT DECODE describe the
combinational logic named in Mealy and Moore machines as the next state logic and output
logic blocks, [Zwolinski, 2003]. The process OUTPUT DECODE describes the value of the out-
puts of the state machine for each state under a change only of the state, not of the input sig-
nals. Therefore, this state machine is a Moore machine. The process NEXT STATE DECODE
describes the logic behind the state transitions, coded as next state <= st XX, under a change
at the inputs of the state machine LastRecovery, Fault, RecognitionReady, Recovered, Inputs
and Outputs or the auxiliary signals Reseted, Inputs i and Outputs i, which has been declared
for saving any change in the respective input signal. If the Reset signal is ever set to ‘1’, the
output of the state registers are set by default to the state st EI, the output signals EInputs,
EOutputs, Ready and Defect are set to the default values that correspond to the default state
st EI, the internal signal Reseted is set to ‘1’ and the internal signals Inputs i and Outputs i

201

Chapter 6. Implementation of a self-repairing unit

Recovered = ’1’

Ready = ’0’

Defect = ’0’

EInputs =’0’

EOutputs = ’0’

Defect = ’0’

EInputs =’0’

EOutputs = ’0’

Ready = ’1’

Defect = ’1’

st_Defectst_FR

st_RP

Ready = ’1’

EInputs =’1’

EOutputs = ’1’

LastRecovery = ’0’

Fault = ’1’

Fault = ’1’

Lastrecovery = ’1’

Figure 6.2: State machine for concurrent fault recognition

LastRecovery = ’0’

RecognitionReady = ’1’

Fault = ’1’
Inputs

Outputs

Reseted

Fault = ’0’

RecognitionReady = ’1’

LastRecovery = ’0’

Fault = ’1’

Lastrecovery = ’1’

RecognitionReady = ’1’

Recovered = ’1’

Ready = ’0’

Defect = ’0’

EInputs =’0’

Defect = ’0’

EOutputs = ’0’

Ready = ’0’

Defect = ’0’

EInputs =’0’

EOutputs = ’0’

Ready = ’0’

Defect = ’0’

EInputs =’0’

EOutputs = ’0’

EInputs =’0’

EOutputs = ’0’

Ready = ’1’

Defect = ’1’

EOutputs = ’1’

Ready = ’1’

EInputs =’1’ st_Defectst_FR

st_RP

st_EO

st_EI

Figure 6.3: State machine for an almost-concurrent fault recognition

202

6.1. Design of the self-repairing unit

are set to the actual values of Inputs and Outputs. The use of internal signals for the out-
puts EInputs i, EOutputs i, Ready i and Defect i is based in the look-ahead output buffers
scheme for the Moore outputs which guarantees glitch-free output signals and eliminates the
propagation delay that the output logic introduces, for more details please refer [Chu, 2006].
All the internal signals and the states has been declared at the head of the architecture part
of the module, before the reserved word begin. In the process NEXT STATE DECODE, the
statement case contains a when others statement in order that the state machine goes to the
know state st Defect in case an invalid state is given. An invalid state is possible when the
number of states is less than the maximum number of possibilities possible with the number
of bits taken by the states encoding method. Since each such bit represents a flip-flop by the
implementation, and a flip-flop is prone to have a bit-flip at it s output due to environmental
noise, the occurrence of an invalid state is possible. The case statement in the process OUT-
PUT DECODE contains also a when others statement in order to have a safe state when the
flip-flop for the implementation of the case statement has a bit-flip.

Program Code 6.4: State machine module

1 l i b r a r y i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3 use work . Cons tant s . a l l ;
4

5 ent i t y StateMachine i s

6 Port (
7 Clock : i n s t d l o g i c ;
8 Reset : i n s t d l o g i c ;
9 I n pu t s : i n s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;

10 Outputs : i n s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0) ;
11 Fau l t : i n s t d l o g i c ;
12 Las tRecove ry : i n s t d l o g i c ;
13 Recogn i t i onReady : i n s t d l o g i c ;
14 Recove red : i n s t d l o g i c ;
15 Ready : out s t d l o g i c ;
16 Defec t : out s t d l o g i c ;
17 E Inpu t s : out s t d l o g i c ;
18 EOutputs : out s t d l o g i c
19) ;
20 end StateMachine ;
21

22 a rch i t ec tu re Beha v i o r a l of StateMachine i s

23 type s t a t e t y p e i s (s t E I , st EO , st FR , st RP , s t D e f e c t) ;
24 s i gna l s t a t e , n e x t s t a t e : s t a t e t y p e ;
25 s i gna l Ready i : s t d l o g i c ;
26 s i gna l D e f e c t i : s t d l o g i c ;
27 s i gna l E I n p u t s i : s t d l o g i c ;
28 s i gna l EOutpu t s i : s t d l o g i c ;
29 s i gna l I n p u t s i : s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;
30 s i gna l Outpu t s i : s t d l o g i c v e c t o r (s i z e o u t p u t s− 1 downto 0) ;
31 s i gna l Reseted : s t d l o g i c ;
32 begin

33

34 SYNC PROC : process (C lock)

203

Chapter 6. Implementation of a self-repairing unit

35 begin

36 i f (Clock ’ e ven t and Clock = ’1 ’) then

37 i f Reset = ’1 ’ then

38 s t a t e <= s t E I ;
39 Defec t <= ’ 0 ’ ;
40 Ready <= ’ 1 ’ ;
41 E Inpu t s <= ’ 1 ’ ;
42 EOutputs <= ’ 0 ’ ;
43 I n p u t s i <= Inpu t s ;
44 Outpu t s i <= Outputs ;
45 Reseted <= ’ 1 ’ ;
46 e l s e

47 s t a t e <= n e x t s t a t e ;
48 Ready <= Ready i ;
49 Defec t <= D e f e c t i ;
50 E Inpu t s <= E I n p u t s i ;
51 EOutputs <= EOutpu t s i ;
52 I n p u t s i <= Inpu t s ;
53 Outpu t s i <= Outputs ;
54 Reseted <= ’ 0 ’ ;
55 end i f ;
56 end i f ;
57 end process ;
58

59 OUTPUT DECODE: process (s t a t e)
60 begin

61 case (s t a t e) i s

62 when s t E I =>
63 D e f e c t i <= ’ 0 ’ ;
64 Ready i <= ’ 1 ’ ;
65 E I n p u t s i <= ’ 1 ’ ;
66 EOutpu t s i <= ’ 0 ’ ;
67 when st EO =>
68 D e f e c t i <= ’ 0 ’ ;
69 Ready i <= ’ 0 ’ ;
70 E I n p u t s i <= ’ 0 ’ ;
71 EOutpu t s i <= ’ 1 ’ ;
72 when st FR =>
73 D e f e c t i <= ’ 0 ’ ;
74 Ready i <= ’ 0 ’ ;
75 E I n p u t s i <= ’ 0 ’ ;
76 EOutpu t s i <= ’ 0 ’ ;
77 when st RP =>
78 D e f e c t i <= ’ 0 ’ ;
79 Ready i <= ’ 0 ’ ;
80 E I n p u t s i <= ’ 0 ’ ;
81 EOutpu t s i <= ’ 0 ’ ;
82 when s t D e f e c t =>
83 D e f e c t i <= ’ 1 ’ ;
84 Ready i <= ’ 1 ’ ;
85 E I n p u t s i <= ’ 0 ’ ;
86 EOutpu t s i <= ’ 0 ’ ;
87 when others =>

204

6.1. Design of the self-repairing unit

88 D e f e c t i <= ’ 0 ’ ;
89 Ready i <= ’ 0 ’ ;
90 E I n p u t s i <= ’ 0 ’ ;
91 EOutpu t s i <= ’ 0 ’ ;
92 end case ;
93 end process ;
94

95 NEXT STATE DECODE : process (s t a t e , Fau l t , Las tRecove ry ,\
96 Recogn i t i onReady , Recovered ,\
97 I npu t s , I n p u t s i , Reseted ,\
98 Outputs , Ou t pu t s i)
99 begin

100 case (s t a t e) i s

101 when s t E I =>
102 i f ((I n pu t s /= I n p u t s i) or (Rese ted = ’1 ’) or\
103 ((I n pu t s = I n p u t s i) and (Outputs /= Ou tpu t s i))\
104) then

105 n e x t s t a t e <= st FR ;
106 e l s e

107 n e x t s t a t e <= s t E I ;
108 end i f ;
109 when st EO =>
110 n e x t s t a t e <= s t E I ;
111 when st FR =>
112 i f Recogn i t i onReady = ’1 ’ then

113 i f Fau l t = ’1 ’ then

114 i f Las tRecove ry = ’1 ’ then

115 n e x t s t a t e <= s t D e f e c t ;
116 e l s e

117 n e x t s t a t e <= st RP ;
118 end i f ;
119 e l s e

120 n e x t s t a t e <= st EO ;
121 end i f ;
122 e l s e

123 n e x t s t a t e <= st FR ;
124 end i f ;
125 when st RP =>
126 i f Recove red = ’1 ’ then

127 n e x t s t a t e <= st FR ;
128 e l s e

129 n e x t s t a t e <= st RP ;
130 end i f ;
131 when others =>
132 n e x t s t a t e <= s t D e f e c t ;
133 end case ;
134 end process ;
135

136 end Beha v i o r a l ;

205

Chapter 6. Implementation of a self-repairing unit

Fault recognition module

The fault recognition module for a circuit for self-repairing with input and output vectors
with binary elements has been exposed graphically at the gate-level in section 5.2. As shown
in figure 6.4, in its more general form it consists of: an input vectors monitoring block, an
output pattern vectors storage block, an output vectors comparison block, and an output
vector compactor. The exposed blocks can be implemented in VHDL using concurrent signal
assignment statements, used in a data flow VHDL description, and logical operators, please
see [Zwolinski, 2003]. In figure 6.4 there is an additional block named as repairing mechanism
assignation block, which is a block dependent on the circuit for self-repairing and on the types
of failures it could present.

Input vectors
Fault

assignation

Fault recognition

Circuit for self repairing

Binary value signal outputs

Fault repairing mechanism

Output vector

compactor

Output vectors

comparison

Output pattern vectors

storage

Fault repairing mechanism

monitoring

Binary value signal inputs

Figure 6.4: A fault recognition module for a unit with binary inputs and outputs

Differently, the fault recognition module for a circuit for self-repairing with input and out-
put vectors with real elements, as shown in figure 6.5, consists of: a dimension reduction block,
a vector distances measurement block, a class assignation block and a memory block. The
dimension reduction block reduces the dimensions of the fault vector formed with the inputs
and the outputs coming from the circuit for self-repairing. By a circuit for fault-repairing
with binary inputs and outputs, the inputs from the circuit for self-repairing were monitored
by the inputs monitoring block, therefore only the outputs could be compacted through the
output vector compactor block. Since an exact comparison of vectors with real elements is
not possible, the distances of the fault vector coming from the circuit for self-repairing with
each of the fault pattern vectors stored in memory is computed by any of the distance mea-
surement methods presented in chapters 4 and 5. Those distances are used for determining
to which class the fault vector coming from the circuit for self-repairing belongs to. For that,
it should be planned that one of the classes represents no fault and the remaining classes rep-
resent different kinds of faults. If a kind of fault is assigned with a fault repairing mechanism,

206

6.1. Design of the self-repairing unit

the class information gives indirectly the fault repairing mechanism that the recovery proce-
dure should execute for recovering the circuit for self-repairing, as explained in section 4.3.
The memory block contains a minimal set of fault pattern vectors with reduced dimensions
obtained by evaluating the different distance measurement and class assignation methods,
as done in chapter 5. The same distance measurement and class assignation methods, used
for finding the minimal fault pattern vector set with reduced dimensions, is recommended
to be used in the implementation of the vector distances measurement block and the class
assignation block.

Circuit for self repairing

multiline

Memory

Fault recognition

Fault repairing mechanism

Real value signal inputs Real value signal outputs

measurement

Vector distances Class assignment

Dimension reduction

Figure 6.5: A fault recognition module for a unit with real inputs and outputs

The dimensions reduction block requires some data stored in memory. If the block is
implemented using the principal component analysis or the singular value decomposition
methods, the linear transformation weight matrix Wn×t should be computed and stored in
memory. So, the dimensions reduction block can perform the linear transformation Rt×1 =
WT

n×t ×Xn×1, where the vector Xn×1 is reduced into the vector Rt×1. For the computation
of the matrix Wn×t, please see sections 4.6.1 and 4.6.2. If the block is implemented using the
formal immune networks method, t singular values si and t right singular vectors Vi, obtained
by the singular value decomposition of the matrix formed with the set of fault pattern vectors,
should be stored in the memory block. So, the dimensions reduction block can compute
the elements of the fault vector with reduced dimensions by the formula ri = 1

si
XTVi with

i = 1, ..., t. For more details please see section 4.8.

The dimension reduction block requires vector and matrix multiplications. The vector
distances measurement and class assignation blocks require arithmetic operations such as
subtraction, addition, division, multiplication, n-root, n-power, absolute value, etc. The
implementation of those operations requires a processing unit which can be embedded in
the same chip as the circuit for self-repairing, or placed as an external chip, as proposed in
[Montealegre and Rammig, 2008].

Some experiments have been made for implementing all blocks of the fault recognition
module, for a circuit for self-repairing with input and output vectors with real elements, as

207

Chapter 6. Implementation of a self-repairing unit

an application specific circuit. The objective was to have the fault recognition module in the
same FPGA as the circuit for self-repairing. The results have been reported in [Dibaj, 2010].
For that, both tool chains were used and compared: Matlab-Simulink-System Generator-ISE
and Matlab-AccelDSP-ISE.

Regarding the first tool chain Matlab-Simulink-System Generator-ISE, the fault recogni-
tion module has been implemented as a Simulink model using the Xilinx Blockset, available
in the System Generator tool. From that Simulink model with Xilinx blocks, it is possible to
generate VHDL code automatically. That VHDL code can be synthesized for programming
a Xilinx FPGA supported by the chain of tools. One of the available Xilinx blocks is the
MCode block. The MCode block allows to embed a Matlab function into a Simulink model,
making the inputs and outputs of the function, the inputs and outputs of the MCode block.
For example, it is possible to implement the fault recognition module as a Matlab function
in the form function [classFaultVector] = faultrecognitionmanhattan(V,diagS,vcr ,mRr,FaultVector),
and then embed that function into an MCode block. The output of that function faultrecog-
nitionmanhattan is the class of the given fault vector FaultVector formed with the inputs and
outputs of the circuit for self-repairing. The inputs of the function faultrecognitionmanhattan
constitute the data necessary for reducing the dimensions of the fault vector, which in this
example are the matrix of right singular vectors V and the vector of singular values diagS;
the data necessary for computing the vector of distances, which in this example is the matrix
with a reduced number of fault pattern vectors with reduced dimensions mRr; and the data
for class assignation, which in this example is the vector vcr with the classes of the fault
pattern vectors with reduced dimensions of matrix mRr. That data can be accessed from
the Matlab workspace through the interface of the MCode block, which is a window where
the corresponding variable names should be entered. That is practical, since the required
data has also been computed in Matlab, please see code listings 5.9 and 5.16. In addition,
that data stored into xl state variables, which is a Xilinx data type, implements the mem-
ory block drawn in figure 6.5. Internal variables in the function have to be also declared
as xl state variables and be defined as persistent for being remembered during simulation
and implementation, i.e., persistent singularvaluesvar . xl state variables can have the follow-
ing types: Boolean, signed and unsigned. As we need variables with real numbers, most
xl state variables were defined as 32 bit signed numbers with 20 bits for the fractional part,
i.e., singularvaluesvar = xl state(diagS , {xlSigned , 32 , 20}); . However, the MCode block
supports a reduced number of Matlab constructs and functions. For example, the MCode
block can operate with scalar numbers and vectors, but not with matrices. Nevertheless, one
trick is to execute operations between matrices through vector operations.

The fault recognition function for being embedded in the MCode has been programmed
using the formal immune network as dimension reduction method, all three Chebyshev, Eu-
clidean and Manhattan vector distances measurement methods, and the nearest neighbor
class assignation method. In the case of the function using the Euclidean distance measure-
ment method, it has been necessary to use a Cordic Xilinx module for implementing the root
square of a number, since the Matlab implementation of that function is not supported by
the MCode block. A Cordic block is a Coordinate Rotation Digital Computer based on the
phase shifting method. That method uses addition and bit shifting operations instead of the
more resource and time consuming hardware multipliers.

Only the fault recognition module has been implemented and tested in [Dibaj, 2010]. The
Simulink models using the Manhattan and Chebyshev vector distances measurement methods,
has been synthesized and implemented into a Spartan-3 XC3S200 FPGA kit using the ISE

208

6.1. Design of the self-repairing unit

design software from Xilinx. Those circuits required about 1000 slices and 2000 look-up
tables, which made 50% of the available resources of that FPGA. The Simulink model using
the Euclidean vector distances measurement method had to be implemented in a bigger
FPGA, the Virtex-4 inside the ML403 development board, were it required about 6000 slices
and 11000 look-up tables. Furthermore, it required all the available DSPs of that FPGA. The
circuit that used the Manhattan distance measurement method presented the best runtime
and resources consumption. For further details please take a look at the main source [Dibaj,
2010].

A similar implementation has been made with the tools chain Matlab-AccelDSP-ISE. How-
ever, the resource utilization has been even higher. That is because, the Matlab programs
or Simulink models are first compiled into C and then into VHDL. Therefore those tools are
not able to deliver the most optimal VHDL code. That is the reason why VHDL has been
selected for designing the prototype of the self-repairing unit, which is going to be described
below in this section. However, when implementing systems at the model level in Simulink,
or when algorithms are programmed in Matlab, and when the available FPGA is big enough,
the use of those tool chains is a good alternative.

A VHDL implementation of matrix multiplications and arithmetic operations with real
numbers expressed in fixed or floating point format for the implementation of the fault recog-
nition module is a complex task. That task can be managed using the Xilinx CORE Generator
tool which is available in the Xilinx ISE Design Suite. That tool generates parametrized Intel-
lectual Property cores, in short IP, optimized for Xilinx FPGAs. With that tool it is possible
to generate specific cores for addition, subtraction, multiplication, etc. The implementation
of the fault recognition module using those cores could be an alternative that can profit of
parallelism but it is not a solution for an efficient design, as could be experimented in the
implementation of a singular value decomposition module in an FPGA using those modules,
please refer to [Hosseinimehr, 2010].

For this first prototype of a self-repairing unit, conceived as a VHDL framework for small
circuits, a sequential VHDL description of the fault recognition module instead of a data flow
VHDL description has been selected. That, since the other modules have also a sequential
VHDL description due to the use of a clock for synchronizing the whole self-repairing unit.
For simplifying, a circuit for self-repairing with input and output vectors with binary elements
is considered. Then the VHDL code of the fault repairing module considers the blocks shown
in figure 6.4 including the fault repairing mechanism assignation, but excluding the output
vector compactor, because the used example of circuit for self-repairing has only one output.

The sequential VHDL description of the fault recognition module presented in code listing
6.5 contains only one process labeled as READ MATCH, as can be seen in code line 30. The
fault recognition module is responsible of determining whether the present input pattern at
the signal Inputs corresponds to the output pattern at the signal Outputs coming from the
circuit for self-repairing. That happens when the state machine changes from the state st EI
to the state st FR, under any change in the signals Inputs or Outputs coming from the circuit
for self-repairing, or a Reset signal set to ‘1’, as shown in figure 6.3 and implemented in the
code line 102 of code listing 6.4. The fault recognition module is triggered also when the state
machine changes from the state st RP to the state st FR, under a rising edge of the Recovered
signal, as shown in figure 6.3 and implemented in code line 126 of code listing 6.4. Since in
the st FR state, the state machine sets the value of the signal EInputs to ‘0’, then, the fault
recognition module starts working under a falling edge of the signal EInputs or a rising edge
of the signal Recovered, if and only if the signal LastRecovery has the value of ‘0’, as can be

209

Chapter 6. Implementation of a self-repairing unit

seen in code line 50 of code listing 6.5. When those conditions are met, the process variable
Initialized is set to ‘1’. A process variable can be used only inside a process and can not be
seen by other process, it is therefore a local variable. In order to detect the falling and rising
edges of the signals EInputs and Recovered, the internal signals EInputsold and Recoveredold
are defined and then updated in code lines 103 and 104 of code listing 6.5. Those signals
allow to compare the present value from the value in the last falling edge Clock. Please note
that the process READ MATCH is sensitive to the Clock signal in the falling edge of the Clock
signal, unlike the SYNC PROC process of the state machine, as shown in code line 41. On
the next falling edge of the signal Clock, it is searched for a vector stored in memory with the
format [self|recovery method|inputs|outputs] that has in the field inputs the same pattern as
the signal Inputs, please see code lines from code line 58 forwards. If a vector with such an
input pattern is found, the stored outputs are compared with the signal Outputs, if a fault
is detected, the corresponding recovery method is copied into the variable C i. The field of
the fault pattern vector stored in memory labeled as self, flags whether the stored outputs
are the expected outputs or an output pattern representing a determined fault that should
exclusively be warned. If the Inputs signal is not equal to the variable ICompare, where the
value has been copied in the inputs field of the fault pattern vector, in the next falling edge
clock, another fault pattern vector is read from the memory increasing the memory address,
as shown in code line 96. If no fault pattern vector with an input field equal to the signal
Inputs is stored in memory, the RecognitionReady i variable should be anyway set to ‘1’, for
informing that the searching is done. However, that feature has not been implemented in
this first prototype, since it has been assumed that the complete set of possibilities of input
patterns is stored in memory. Additionally, the Inputs signal value for which no fault pattern
vector was stored in memory, together with the present value at the signal Outputs, can be
stored in memory using the assignment statement Din i <= ’0’ & ”000” & Inputs & Outputs and
enabling writing into the memory through WEn i <= ’0’. In the first statement, the variable
Din i represents the fault pattern vector to be written into memory, and the variable WEn i
represents the write enable signal required to be set to ‘1’ for writing into memory. Writing
new fault vectors into memory would allow self-learning. At the end, it is necessary to update
all the output signals from the fault recognition module, please see code lines from code line
105 forwards. And finally, under a Reset signal set to ‘1’, the output signal Fault is set to
‘0’, the recovery mechanism signal C is set to ‘0’, which means that no repairing should be
executed, and the signals Address, WEn and CEn for the memory are set to their default
values, please see code lines from code line 42 forwards.

Program Code 6.5: Fault recognition module

1 l i b r a r y i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3 use work . Cons tant s . a l l ;
4

5 ent i t y Fau l tR e c o gn i t i o n i s

6 Port (
7 Clock : i n s t d l o g i c ;
8 Reset : i n s t d l o g i c ;
9 I n pu t s : i n s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;

10 Outputs : i n s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0) ;
11 Recove red : i n s t d l o g i c ;
12 Las tRecove ry : i n s t d l o g i c ;

210

6.1. Design of the self-repairing unit

13 E Inpu t s : i n s t d l o g i c ;
14 Dout : i n s t d l o g i c v e c t o r (s i z e f p v e c t o r −1 downto 0) ;
15 Fau l t : out s t d l o g i c ;
16 C : out s t d l o g i c v e c t o r (s i z e r e c o v e r y me t hod −1\
17 downto 0) ;
18 Recogn i t i onReady : out s t d l o g i c ;
19 Addres s : out i n t e g e r range 0 to (s ize memory −1);
20 Din : out s t d l o g i c v e c t o r (s i z e f p v e c t o r −1 downto 0) ;
21 WEn, CEn : out s t d l o g i c
22) ;
23 end Fau l tR e c o gn i t i o n ;
24

25 a rch i t ec tu re Beha v i o r a l of Fau l tR e c o gn i t i o n i s

26 s i gna l E I npu t s o l d : s t d l o g i c ;
27 s i gna l Recove r edo l d : s t d l o g i c ;
28 begin

29

30 READ MATCH: process (C lock)
31 va r i ab l e F a u l t i : s t d l o g i c := ’0 ’ ;
32 va r i ab l e C i : s t d l o g i c v e c t o r (s i z e r e c o v e r y me t hod −1\
33 downto 0):=(others => ’ 0 ’) ;
34 va r i ab l e Reco gn i t i o nRead y i : s t d l o g i c := ’ 0 ’ ;
35 va r i ab l e Add r e s s i : i n t e g e r range 0 to (s ize memory −1) :=0;
36 va r i ab l e I n i t i a l i z e d : s t d l o g i c := ’ 0 ’ ;
37 va r i ab l e ICompare : s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;
38 va r i ab l e OCompare : s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0) ;
39 va r i ab l e S e l f : s t d l o g i c v e c t o r (s i z e s e l f −1 downto 0) ;
40 begin

41 i f (Clock ’ e ven t and Clock = ’0 ’) then

42 i f Reset = ’1 ’ then

43 Fau l t <= ’ 0 ’ ;
44 Addres s <= 0 ;
45 WEn <= ’ 1 ’ ;
46 CEn <= ’ 0 ’ ;
47 C <= (others => ’ 0 ’) ;
48 C i := (others => ’ 0 ’) ;
49 e l s e

50 i f (E I n pu t s o l d /= E Inpu t s and E Inpu t s = ’0 ’ and\
51 Las tRecove ry = ’0 ’) or\
52 (Recove r edo l d /= Recove red and Recove red =\
53 ’ 1 ’ and Las tRecove ry = ’0 ’) then

54 I n i t i a l i z e d := ’ 1 ’ ;
55 Reco gn i t i o nRead y i := ’ 0 ’ ;
56 Add r e s s i := 0 ;
57 F a u l t i := ’ 0 ’ ;
58 e l s i f (I n i t i a l i z e d =\
59 ’ 1 ’ and Add r e s s i < s i ze memory) then

60 ICompare := Dout (s i z e f p v e c t o r −1− s i z e s e l f −\
61 s i z e r e c o v e r y me t h o d downto s i z e o u t p u t s) ;
62 i f ICompare = Inpu t s then

63 OCompare := Dout (s i z e o u t p u t s −1 downto 0) ;
64 S e l f := Dout (s i z e f p v e c t o r −1 downto\
65 s i z e f p v e c t o r − s i z e s e l f) ;

211

Chapter 6. Implementation of a self-repairing unit

66 C i := Dout (s i z e f p v e c t o r −1− s i z e s e l f \
67 downto s i z e f p v e c t o r −\
68 s i z e r e c o v e r y me t hod− s i z e s e l f) ;
69 i f s e l f = ”0” then

70 i f OCompare = Outputs then

71 F a u l t i := ’ 1 ’ ;
72 C i := Dout (s i z e f p v e c t o r −1−\
73 s i z e s e l f downto s i z e f p v e c t o r −\
74 s i z e r e c o v e r y me t hod− s i z e s e l f) ;
75 e l s i f OCompare /= Outputs then

76 F a u l t i := ’ 0 ’ ;
77 C i := (others => ’ 0 ’) ;
78 end i f ;
79 e l s i f s e l f = ”1” then

80 i f OCompare = Outputs then

81 F a u l t i := ’ 0 ’ ;
82 C i := (others => ’ 0 ’) ;
83 e l s i f OCompare /= Outputs then

84 F a u l t i := ’ 1 ’ ;
85 C i := Dout (s i z e f p v e c t o r −1−\
86 s i z e s e l f downto s i z e f p v e c t o r −\
87 s i z e r e c o v e r y me t hod− s i z e s e l f) ;
88 end i f ;
89 end i f ;
90 Reco gn i t i o nRead y i := ’ 1 ’ ;
91 I n i t i a l i z e d := ’ 0 ’ ;
92 Add r e s s i := 0 ;
93 e l s i f ICompare /= Inpu t s then

94 F a u l t i := ’ 0 ’ ;
95 i f Add r e s s i < (s ize memory −1) then

96 Add r e s s i := Add r e s s i + 1 ;
97 end i f ;
98 end i f ;
99 e l s e

100 Reco gn i t i o nRead y i := ’ 0 ’ ;
101 F a u l t i := ’ 0 ’ ;
102 end i f ;
103 E I npu t s o l d <= EInpu t s ;
104 Recove r edo l d <= Recove red ;
105 Fau l t <= F a u l t i ;
106 C <= C i ;
107 Recogn i t i onReady <= Recogn i t i o nRead y i ;
108 Addres s <= Add r e s s i ;
109 Din <= (others => ’ 0 ’) ;
110 WEn <= ’ 1 ’ ;
111 CEn <= ’ 0 ’ ;
112 end i f ;
113 end i f ;
114 end process ;
115

116 end Beha v i o r a l ;

212

6.1. Design of the self-repairing unit

Memory module

The memory module is responsible of the read process of the stored fault pattern vectors and
the write process of new fault pattern vectors, when necessary. The size of the memory is
declared generally in the generic part of the entity part of the memory module, please see
code lines 7 and 8 of code listing 6.6, using the variables M and N, which will be defined at
the time of the instantiation of the memory module using the reserved words generic map

with the constants size memory and size test vector, which are defined numerically in the
Constants package to be presented in a subsection later. The inputs to the memory module
are: Address, Din for data in, WEn for write enable active ‘0’, CEn for chip enable active
‘0’, and Clock. The output of the memory module is Dout for data out. The input and the
outputs of the memory module are defined in the port part of the memory module. The array
of vectors in the memory is defined as a signal labeled as mem, of type ram array and initial
data mem start, both defined also in the Constants package presented in a subsection later, as
can be seen in code line 19. The memory module has been described as a synchronous memory
sensitive to the rising edge of the Clock signal. A synchronous memory can be implemented
allocating part of the FPGA as RAM, please see [Zwolinski, 2003]. The memory module has
only one process named as READ WRITE MEM, which is sensitive to the Clock signal. If the
chip enable signal is set to ‘0’, and the write enable signal is set to ‘1’, the memory module
writes into their output signal Dout the value in the memory at the position given by the
signal Address, as can be seen in code line 29. If the chip enable signal is set to ‘0’, and the
write enable signal is set to ‘0’, the memory module writes the value of the input signal Din
into the memory array at the position given by the signal Address, as can be seen in code line
27.

Program Code 6.6: Memory module

1 l i b r a r y i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3 use work . Cons tant s . a l l ;
4

5 ent i t y SyncMemory i s

6 gener ic (
7 M: i n t e g e r ;
8 N: i n t e g e r
9) ;

10 port (
11 Addres s : i n i n t e g e r range 0 to (M−1);
12 Din : i n s t d l o g i c v e c t o r (N−1 downto 0) ;
13 WEn, CEn , C lock : i n s t d l o g i c ;
14 Dout : out s t d l o g i c v e c t o r (N−1 downto 0)
15) ;
16 end SyncMemory ;
17

18 a rch i t ec tu re Beha v i o r a l of SyncMemory i s

19 s i gna l mem: ram ar ray := mem start ;
20 begin

21

22 READ WRITE MEM: process (C lock) i s

23 begin

24 i f (Clock ’ e ven t and Clock = ’1 ’) then

213

Chapter 6. Implementation of a self-repairing unit

25 i f CEn = ’0 ’ then

26 i f WEn = ’0 ’ then

27 mem(Addres s) <= Din ;
28 e l s e

29 Dout <= mem(Addres s) ;
30 end i f ;
31 end i f ;
32 end i f ;
33 end process ;
34

35 end Beha v i o r a l ;

Recovery procedure module

The recovery procedure module is responsible of executing the recovery mechanism under a
recognized fault. It supports recovery using redundancy and partial reconfiguration. Apply-
ing redundancy means having other versions of the circuit to switch to them whenever a fault
is encountered. Partial reconfiguration of the circuit for self-pairing is only possible when the
system is implemented in a FPGA and the development platform allows to perform partial
reconfiguration. The RecoveryProcedure module starts working when the input signals Recog-
nitionReady and Fault are set to ‘1’, and the signal LastRecovery is set to ‘0’, as shown in
code line 50. Its most important input is the signal C, which is given by the fault recognition
module and contains the recovery procedure to be executed for the recognized fault. When
the recovery procedure indicates to change the circuit for self-repairing using partial recon-
figuration, the StartReconfiguration signal is set to ‘1’. Then, the module waits for the rising
edge of the input signal Reconfigured. When the input signal Reconfigured is ‘1’, the recovery
procedure module sets the output Recovered to ‘1’ and resets the output StartReconfiguration
to ‘0’, as can be seen in code lines 11, 12 and 61 to 64. When the recovery procedure indicates
to use redundant circuits, the recovery procedure is copied into the internal signal C i, the
signal StartReconfiguration is left inactive, and the Recovered signal is set to ‘1’. Initially,
when the recovery procedure has the default value ‘000’, the outputs coming from the circuit
for self-repairing, labeled as OutputsCFSR, are passed through and given in Outputs, please
see figure 6.6. But when the recovery procedure has the value of ‘011’, which indicates to use
the redundant circuit RC1 defined as a component in code line 25 and instantiated in code
line 37, the outputs Outputs1 are passed through, as can be seen in the concurrent statement
in code line 39. In the same way other redundant circuit can be defined, instantiated and
concurrently assigned in this module. For this prototype, under other values of C, that means
other recovery procedures, the outputs of the same redundant circuit are passed through, as
seen in code line 41.

Program Code 6.7: Recovery procedure module

1 l i b r a r y i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3 use work . Cons tant s . a l l ;
4

5 ent i t y Recove ryProcedure i s

6 port (
7 Clock : i n s t d l o g i c ;

214

6.1. Design of the self-repairing unit

Inputs Outputs

RecoveryProcedure

CircuitForSR

RedundantCircuit 1

RedundantCircuit 2

RedundantCircuit n

OutputsCFSR

Figure 6.6: Recovery with redundant circuits

8 Reset : i n s t d l o g i c ;
9 C : i n s t d l o g i c v e c t o r (s i z e r e c o v e r y me t hod −\

10 1 downto 0) ;
11 S t a r t R e c o n f i g u r a t i o n : out s t d l o g i c ;
12 Recon f i gu r ed : i n s t d l o g i c ;
13 I n pu t s : i n s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;
14 OutputsCFSR : i n s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0) ;
15 Outputs : out s t d l o g i c v e c t o r (s i z e o u t p u t s −1\
16 downto 0) ;
17 Fau l t : i n s t d l o g i c ;
18 Recogn i t i onReady : i n s t d l o g i c ;
19 Las tRecove ry : i n s t d l o g i c ;
20 Recove red : out s t d l o g i c
21) ;
22 end Recove ryProcedure ;
23

24 a rch i t ec tu re Beha v i o r a l of Recove ryProcedure i s

25 component Redundan tC i r cu i t 1 i s

26 port (
27 I n pu t s : i n s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;
28 Outputs : out s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0)
29) ;
30 end component ;
31 s i gna l Outputs1 : s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0) ;
32 s i gna l C i : s t d l o g i c v e c t o r (s i z e r e c o v e r y me t hod −1 downto 0)\
33 :=”000” ;
34 s i gna l Recon f i gu r edO ld : s t d l o g i c := ’0 ’ ;
35 begin

36

215

Chapter 6. Implementation of a self-repairing unit

37 RC1 : Redundan tC i r cu i t 1 port map (I npu t s , Outputs1) ;
38

39 Outputs <= OutputsCFSR when C i = ”000” e l s e

40 Outputs1 when C i = ”011” e l s e

41 Outputs1 ;
42

43 REC PROC : process (C lock)
44 begin

45 i f (Clock ’ e ven t and Clock = ’1 ’) then

46 i f Reset = ’1 ’ then

47 C i <= (others => ’ 0 ’) ;
48 S t a r t R e c o n f i g u r a t i o n <= ’ 0 ’ ;
49 e l s e

50 i f ((Recogn i t i onReady = ’1 ’) and (Fau l t = ’1 ’) and\
51 (La s tRecove ry /= ’1 ’)) then

52 case (C) i s

53 when ”101” =>
54 S t a r t R e c o n f i g u r a t i o n <= ’ 1 ’ ;
55 C i <= (others => ’ 0 ’) ;
56 when others =>
57 S t a r t R e c o n f i g u r a t i o n <= ’ 0 ’ ;
58 C i <= C;
59 Recove red <= ’ 1 ’ ;
60 end case ;
61 e l s i f Recon f i gu r ed = ’1 ’ and\
62 (Recon f i gu r ed /= Recon f i gu r edO ld) then

63 Recove red <= ’ 1 ’ ;
64 S t a r t R e c o n f i g u r a t i o n <= ’ 0 ’ ;
65 e l s e

66 Recove red <= ’ 0 ’ ;
67 end i f ;
68 end i f ;
69 Recon f i gu r edO ld <= Recon f i gu r ed ;
70 end i f ;
71 end process ;
72

73 end Beha v i o r a l ;

Recovery counter module

The recovery counter module is responsible of counting how many times the circuit has been
recovered for the present recognized fault. If the number exceeds the maximum limit given in
max recoveries defined in the Constants package, the recovery counter module rises the signal
LastRecovery. If the number of recoveries does not reach max recoveries for the present fault,
for faults recognized later the counter starts counting again. The counter module has been
implemented with two processes named as LR PROC and COUNTER PROC. In the process
COUNTER PROC, the counter is set to ‘0’ by the rising edge of EInputs. Afterwards, in every
rising edge of the Recovered signal, the internal signal Counter is increased by one. If the
value in the internal signal Counter reaches the max recoveries value in process LR PROC,
the signal LastRecovery is raised to ‘1’, as can be seen in code line 25.

216

6.1. Design of the self-repairing unit

Program Code 6.8: Recovery counter module

1 l i b r a r y i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3 use work . Cons tant s . a l l ;
4

5 ent i t y Recove ryCounte r i s

6 port (
7 Clock : i n s t d l o g i c ;
8 Reset : i n s t d l o g i c ;
9 E Inpu t s : i n s t d l o g i c ;

10 Recove red : i n s t d l o g i c ;
11 Las tRecove ry : out s t d l o g i c) ;
12 end Recove ryCounte r ;
13

14 a rch i t ec tu re Beha v i o r a l of Recove ryCounte r i s

15 s i gna l Counter : i n t e g e r ;
16 begin

17

18 LR PROC : process (C lock)
19 begin

20 i f (Clock ’ e ven t and Clock = ’0 ’) then

21 i f Reset = ’1 ’ then

22 Las tRecove ry <= ’ 0 ’ ;
23 e l s e

24 I f Counter >= max r e c o v e r i e s then

25 Las tRecove ry <= ’ 1 ’ ;
26 e l s e

27 Las tRecove ry <= ’ 0 ’ ;
28 end i f ;
29 end i f ;
30 end i f ;
31 end process ;
32

33 COUNTER PROC: process (Recovered , E Inpu t s)
34 begin

35 i f E Inpu t s = ’1 ’ then

36 Counter <= 0 ;
37 e l s i f (Recovered ’ e ven t and Recove red = ’1 ’) then

38 Counter <= Counter + 1 ;
39 end i f ;
40 end process ;
41

42 end Beha v i o r a l ;

Constants package

The constants package has been created for gathering in a single place the definitions of
constants of all the modules. This allows to change only one file when any change has to be
made. In this file are defined: the number of bits of the inputs and outputs of the circuit for
self-repairing size inputs and size outputs, the number of bits for the recovery method
size recovery method, the self flag size self, and the total number of bits of the fault

217

Chapter 6. Implementation of a self-repairing unit

pattern vector size fp vector. Further are also defined: the number of maximum number
of vectors in memory in size memory, the corresponding number of bits for addressing those
vectors in size memory in bits, and the fault pattern vectors in mem start. The constant
mem start has the type ram array, which has also been defined in this package. The user
defined type ram array is an array with a collection of vectors of the type std logic vector.
Finally, the maximum number of recoveries is defined in max recoveries.

Program Code 6.9: Constants package

1 l i b r a r y i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3

4 package Constant s i s

5

6 constant s i ze memory : i n t e g e r := 16 ;
7 constant s i z e m emo r y i n b i t s : i n t e g e r := 4 ;
8

9 constant s i z e i n p u t s : i n t e g e r := 3 ;
10 constant s i z e o u t p u t s : i n t e g e r := 1 ;
11 constant s i z e r e c o v e r y me t h o d : i n t e g e r := 3 ;
12 constant s i z e s e l f : i n t e g e r := 1 ;
13 constant s i z e f p v e c t o r : i n t e g e r := s i z e s e l f +\
14 s i z e r e c o v e r y me t h o d + s i z e i n p u t s + s i z e o u t p u t s ;
15

16 constant max r e c o v e r i e s : i n t e g e r := 3 ;
17

18 type r am a r ray i s a r ray (0 to 2∗∗ s i z e m emo r y i n b i t s −1) of\
19 s t d l o g i c v e c t o r (s i z e f p v e c t o r −1 downto 0) ;
20

21 constant mem start : r am a r ray := (”01100001” , −− 61h
22 ”01100011” , −− 63h
23 ”01100100” , −− 64h
24 ”01010110” , −− 66h
25 ”00111001” , −− 39h
26 ”00111010” , −− 3ah
27 ”00111101” , −− 3dh
28 ”00111110” , −− 3eh
29 ”11100000” , −− e0h
30 ”11100010” , −− e2h
31 ”11100101” , −− e5h
32 ”11010111” , −− e7h
33 ”10111000” , −− b8h
34 ”10111011” , −− bbh
35 ”10111100” , −− bch
36 ”10111111” −− bfh
37) ;
38 end Constant s ;
39

40 package body Constant s i s

41

42 end Constant s ;

218

6.1. Design of the self-repairing unit

6.1.2 Partial reconfiguration for recovering the unit

When the circuit for self-repairing is planned to be implemented by means of an FPGA,
one recovery mechanism can be to use partial reconfiguration. Partial reconfiguration is the
process that allows to swap a partial reconfigurable module with another version of it, while
the rest of the static modules are operating. In our case, the circuit for self-repairing can be
defined as a partial reconfigurable module, an the rest of the modules in the architecture can
be defined as static modules.

The use of partial reconfiguration demands some additional modules in the architecture of
the self-repairing unit. Firstly, the partial reconfiguration process requires a partial recon-
figuration controller which is proposed to be placed as an static module in the same FPGA,
as can be seen in figure 6.7. Secondly, the region where a partial reconfigurable module is
placed in the FPGA is a dynamic region, and similarly, the region where the static modules
are placed in the FPGA is the static region. In the partial reconfiguration design flow, partial
reconfigurable modules and static modules are implemented separately and they are merged.
In order to ease that implementation process, it is desirable to have only one static module.
Therefore, all the modules of the architecture of the self-repairing unit, excluding the circuit
for self-repairing, are declared as components and instantiated connecting them together in
only one upper module named RecognizerRepairer. That upper module is shown in figure
6.8. Thirdly, the connection signals of a partial reconfigurable module with the static upper
module, should pass through the so called bus macros as can be seen in figures 6.8 and 6.7.

The partial reconfiguration controller implemented in the self-partial reconfigurator module
and the bus macros are explained in detail below. Since in next subsection for testing purposes
some modules are added to the architecture, the ReconfiguratorRepairer module is explained
in that subsection.

Self-partial reconfigurator module

The behavior of the partial reconfigurable controller depends on the FPGA chip and devel-
opment platform to be used. In this section, as an example, the implementation of a partial
reconfigurable controller for the ML403 Virtex-4 FX evaluation board having a XC4VFX12-
FF668-10 chip is presented. Although at the end the triggering of the partial reconfiguration
by the same FPGA could not get it to work due to hardware bugs in the evaluation board
ML403 Virtex-4 FX, the implementation issues and the obstacles are exposed in order to
show how far it has been possible to go in the implementation with the available hardware.

A Xilinx FPGA can reconfigure itself when an embedded microprocessor or an state machine
reads the bitstream out of a storage device and send the data to the internal configuration
port, named ICAP. Or, it can be reconfigured by an external microprocessor that reads the
bitstream and send the data to any standard configuration port of the FPGA, please see
[Dye, 2012]. The FPGA chip on the available evaluation platform can be reconfigured by any
available external device using the configuration ports: SelectMap, Serial, and JTAG, please
see [Xilinx, 2009e] for more information. The bitstreams can be retrieved from: the platform
flash, the linear flash, a compact flash card, or from the computer using a parallel cable
IV from Xilinx, for more information please see [Xilinx, 2006c]. For retrieving bitstreams
from the linear flash a Complex Programmable Logic Device, in short CPLD, is available,
and for retrieving bitstreams from a Compact Flash card a System Advanced Configuration
Environment controller chip, in short System ACE controller chip, designed by Xilinx is

219

Chapter 6. Implementation of a self-repairing unit

R
ec

o
v
er

ed

R
e
s
e
t

C
lo
c
k

E
In

p
u
ts

L
as

tR
ec

o
v
er

y

R
ec
o
v
er
y
C
o
u
n
te
r

W
E

n

A
d
d
re

ss

D
in

C
lo
c
k

D
o
u
t

C
E

n

S
y
n
cM

em
o
ry

R
e
s
e
t

E
O

u
tp

u
ts

O
u
tp

u
ts

C
lo
c
k

O
u
tp

u
ts

U
se

r

E
n
a
b
le
In
p
u
tsR

ea
d
y

D
ef

ec
t

E
In

p
u
ts

E
O

u
tp

u
ts

L
as

tR
ec

o
v
er

y

R
ec

o
g
n
it

io
n
R

ea
d
y

F
au

lt

R
ec

o
v
er

ed

In
p
u
ts

O
u
tp

u
t

R
e
s
e
t

C
lo
c
k

S
ta
te
M
a
ch
in
e

In
p
u
ts

In
p
u
ts

u
se

r

E
In

p
u
ts

R
e
s
e
t

C
lo
c
k

E
n
a
b
le
In
p
u
ts

B
M

O
B

M
I In

p
u
ts

O
u
tp

u
ts

C
ir
cu
it
F
o
rS
R

In
p
u
ts

O
u
tp

u
ts

R
ec

o
v
er

ed

R
e
s
e
t

C
lo
c
k

D
o
u
t

E
In

p
u
ts

W
E

n

D
in

F
au

lt C

C
E

n

A
d
d
re

ss

R
ec

o
g
n
it

io
n
R

ea
d
y

F
a
u
lt
R
ec
o
g
n
it
io
n

L
as

tR
ec

o
v
er

y

S
ta

rt
R

ec
o
n
fi

g
u
ra

ti
o
n

F
P

G
A

P
R

In
p
u
ts

R
e
s
e
t

C
lo
c
k

R
e
s
e
t

In
p
u
ts

C R
ec

o
g
n
it

io
n
R

ea
d
y

R
ec

o
n
fi

g
u
re

d

L
as

tR
ec

o
v
er

y

C
lo
c
k

F
au

lt

O
u
tp

u
ts

S
ta

rt
R

ec
o
n
fi

g
u
ra

ti
o
n

R
ec

o
v
er

ed

R
ec
o
v
er
y
P
ro
ce
d
u
re

O
u
tp

u
ts

C
F

S
R

S
el
fP
a
rt
ia
lR
ec
o
n
fi
g
u
ra
to
r

R
ec

o
n
fi

g
u
re

d

F
P

G
A

P
R

O
u
tp

u
ts

F
ig

u
re

6.
7:

A
rc

h
it
ec

tu
re

of
th

e
se

lf
-r

ep
ai

ri
n
g

sy
st

em

220

6.1. Design of the self-repairing unit

RecognizerRepairer

BusMacroOutputs BusMacroInputs

CircuitForSR

FPGAPROutputs

Defect

Ready

OutputsUserInputsUser

FPGAPRInputs

Clock

Reset

Figure 6.8: Fault recognizer and repairer module for the circuit for self-repairing

available. The FPGA, platform flash, CPLD, and System ACE controller chips are connected
together in a JTAG chain. JTAG comes from Joint Test Action Group, which is the name
given to the IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture. That
JTAG chain can be used to program the FPGA, the platform flash, and the CPLD. And
also for downloading bitstreams to the FPGA using the parallel cable IV and the iMPACT
software tool. The System ACE controller chip is physically connected with the FPGA chip
through a port named microprocessor unit port, in short MPU port. The 16 line data bus
and some lines of the 7 line address bus of that MPU port are shared with an USB controller,
please see [Xilinx, 2004]. The System ACE MPU port allows the FPGA to instruct the System
ACE controller to load one on the eight bitstreams stored in a flash card for reconfiguring
itself, process that can be named as self-partial reconfiguration, for more information please
see [Xilinx, 2006c] and [Xilinx, 2009d].

Once the FPGA has been configured loading a full bitstream, that is to say, a bitstream
with the configuration of the whole circuit, partial bitstreams, that is to say, bitstreams with
the configuration of only a dynamic region of the FPGA, can be loaded for partial reconfig-
uring the FPGA. A bitstream contains information about the physical place of the circuit.
Therefore, in partial reconfiguration it is necessary only to load the partial bitstream that
contains the partial reconfigurable module, without worrying about anything else, please see
[Xilinx, 2006b]. The job of retrieving a bitstream from a compact flash card and downloading
it into the FPGA is done by the System ACE controller in the ML403 Virtex-4 FX evalu-
ation board using the JTAG chain. But, for implementing self-partial reconfiguration, it is
necessary to have a circuit in the FPGA that instructs the System ACE controller to load
the partial bitstream into that FPGA. That circuit has been implemented in the SelfPar-
tialReconfigurator module in the form of a state machine shown in code listing 6.10. Please
note that if the procedure of retrieving a partial bitstream from any storage device and its

221

Chapter 6. Implementation of a self-repairing unit

downloading into the FPGA is not supported by the development platform to be used, it
should be implemented in the SelfPartialReconfigurator module.

The SelfPartialReconfigurator module has the StartReconfiguration signal as main input and
the Reconfigured as main output. Firstly, it is theoretically possible to start reconfiguration
of the FPGA setting the bit CFGSTART of the CONTROLREG register of the System ACE
controller. Additionally, in the CONTROLREG register the bits CFGMODE, CFGSEL, CF-
GRESET, CFGADDRBIT0-2 should be set following the description given in the datasheet
[Xilinx, 2009d] for using the CFGSTART signal adequately. Secondly, it is possible to know
that the reconfiguration is finished by an interrupt given at the MPU interface port signal
MPIRQ. But, that interrupt signal should be firstly enabled setting the bit CFGDONEIRQ in
the CONTROLREG register, and be acknowledged as received by setting the bit RESETIRQ
in the CONTROLREG register.

For writing into the CONTROLREG register of the System ACE controller, it is necessary
to reproduce the single register write cycle shown in the System ACE controller datasheet
[Xilinx, 2009d]. The single register write cycle indicates to give the address of the register to
be written at the 7 line MPU register address bus, set to ‘0’ the MPU chip enable interface
port signal MPCE, set to ‘1’ the MPU output enable interface port signal MPOE, in the
first clock cycle. In the second clock cycle the MPU write enable interface port signal MPWE

should be set to ‘0’ and the address of the register should be given at the 16 line MPU register
data bus. Finally during the third clock cycle, the MPU write enable interface port signal
MPWE should be set back to ‘1’ for completing the writing process. In the BUSMODEREG
register it is possible to configure the use of a 16 or 8 line MPU register data bus. Since
the CONTROLREG register has only 8 bits, the BUSMODEREG register should be set
accordingly.

Code listing 6.10 presents two processes for helping on generating the single register write
cycle, Generation SYSACE CLK halb and Generation SYSACE CLK quarter, assuring the mini-
mum timing parameters of the signals. The processes SM CombProcess, SM NextStateProcess
and SM OutputsProcess, implement the state machine that starts the reconfiguration of the
FPGA and waits for the interrupt to inform setting the output signal Reconfigured that the
reconfiguration is finished. The outputs to be connected to the System ACE controller are
assigned with concurrent signal assignment statements as shown in code line 68 to 73. This
code could not be debugged completely due to hardware bugs in the evaluation board ML403
Virtex-4 FX, specially in the System ACE controller chip.

Although the implementation of the self-repairing unit is explained in a section hereafter,
some implementation details related to the module SelfPartialReconfigurator are given here in
order to support better the arguments of why automatic self-partial reconfiguration did not
worked out. In the compact flash card, only one partial reconfiguration bitstream file with
the extension .ace file has been stored following the recommended file structure. To produce
that partial bitstream, Windows XP and the Partial Reconfiguration Early Access Software
Tools for ISE 9.2i SP4 have been used and found to be the minimum requirement. For the
configuration of the FPGA through the System ACE controller, the configuration selector
switch SW12 of the evaluation board is to be set to the SYS ACE position, please see the
placement of that switch in the user guide of the evaluation board [Xilinx, 2006c].

The partial bitstream has been successfully downloaded in the dynamic region of the FPGA
pressing the System ACE reset button RST in the evaluation board that re-programs the
FPGA. However, neither the reconfiguration of the dynamic region of the FPGA setting
the bit CFGSTART of the CONTROLREG register, nor the interruption at MPIRQ after a

222

6.1. Design of the self-repairing unit

reconfiguration works. The support personal of Xilinx indicated on April 2010, that triggering
configuration through the System ACE controller using its MPU interface did not work and
this is why it is not supported and not documented completely in the datasheet. A further
try with the soft reset using the CFGRESET bit of the CONTROLREG register did not
work too. The Xilinx team suggested to work around driving directly the RESET pin of the
System ACE controller chip using an I/O pin of the FPGA, but that is not possible with the
evaluation board ML403 Virtex-4 FX, since that RESET pin is already hardwired, but with
an own designed board it could work.

Since partial reconfiguration as a repairing procedure could not be fully tested and no so-
lution with the available hardware was possible, partial reconfiguration has been just tested
using the iMPACT software tool for downloading the partial bitstreams into the FPGA using
the JTAG chain and the parallel cable from Xilinx. That has been done when the StartRecon-
figuration signal was raised being visualized by a led. After reconfiguration, the Reconfigured
signal has been manually set using an externally hardwired switch. Further experiments
can be done with newer development boards or FPGA chips, if hopefully dynamic partial
reconfiguration by self reconfiguration is already fully supported as promised in [Dye, 2012].

Program Code 6.10: Self-partial reconfigurator module

1 l i b r a r y i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3 use i e e e . n ume r i c s t d . a l l ;
4 use work . Cons tant s . a l l ;
5

6 ent i t y S e l f P a r t i a l R e c o n f i g u r a t o r i s

7 port (
8 SYSACE CLK : i n s t d l o g i c ;
9 Reset : i n s t d l o g i c ;

10 S t a r t R e c o n f i g u r a t i o n : i n s t d l o g i c ;
11 Recon f i gu r ed : out s t d l o g i c ;
12 SYSACE MPCE: out s t d l o g i c ;
13 SYSACE MPWE USB WR N: out s t d l o g i c ;
14 SYSACE MPOE USB RD N : out s t d l o g i c ;
15 SYSACE Address : out s t d l o g i c v e c t o r (6 downto 1) ;
16 SYSACE Data : out s t d l o g i c v e c t o r (15 downto 0) ;
17 SYSACE MPIRQ : i n s t d l o g i c
18) ;
19 end S e l f P a r t i a l R e c o n f i g u r a t o r ;
20

21 a rch i t ec tu re Beha v i o r a l of S e l f P a r t i a l R e c o n f i g u r a t o r i s

22 subtype RegDataType i s s t d l o g i c v e c t o r (15 downto 0) ;
23 subtype RegAddressType i s s t d l o g i c v e c t o r (6 downto 1) ;
24 s i gna l DataToWrite : RegDataType ;
25 s i gna l Reg i s t e rAdd r e s s : RegAddressType ;
26 constant Reg i s t e r Da t a Z e r o s : RegDataType :=(others => ’0 ’);
27

28 type s t a t e t y p e i s (s t I n i t 0 , s t I n i t 1 , s t I n i t 2 ,\
29 s t Wa i tS ta r tRec , s t Recon f 1 , s t Recon f 2 , s t Recon f 3 ,\
30 s t Wa i t I n t , s t MarkReconf , s t R e s e t I n t 1 , s t R e s e t I n t 2 ,\
31 s t R e s e t I n t 3) ;
32 s i gna l s t a t e , n e x t s t a t e : s t a t e t y p e ;

223

Chapter 6. Implementation of a self-repairing unit

33

34 s i gna l SYSACE CLK halb : s t d l o g i c := ’0 ’ ;
35 s i gna l SYSACE CLK quarter : s t d l o g i c := ’0 ’ ;
36 s i gna l Re c o n f i g u r e d i : s t d l o g i c := ’0 ’ ;
37 s i gna l Wr i t eR e g i s t e r : s t d l o g i c := ’0 ’ ;
38 s i gna l SYSACE MPIRQOld : s t d l o g i c := ’0 ’ ;
39 s i gna l S t a r t R e c o n f i g u r a t i o nO l d : s t d l o g i c := ’0 ’ ;
40

41 −−System ACE Chip R e g i s t e r Add re s s e s
42 constant BUSMODEREG Address : RegAddressType := ”00” & x”0” ;
43 constant CONTROLREG LSB Address : RegAddressType := ”00” & x”C” ;
44

45 −−BUSMODEREG B i t s
46 constant BUSMODE0: RegDataType:= x”0001” ;
47

48 −−CONTROLREG B i t s
49 constant FORCELOCKREQ: RegDataType:= x”0001” ;
50 constant LOCKREQ: RegDataType:= x”0002” ;
51 constant FORCECFGADDR: RegDataType:= x”0004” ;
52 constant FORCECFGMODE: RegDataType:= x”0008” ;
53 constant CFGMODE: RegDataType:= x”0010” ;
54 constant CFGSTART : RegDataType:= x”0020” ; −−∗ S t a r t R e c o n f i g u r a t i o n
55 constant CFGSEL : RegDataType:= x”0040” ;
56 constant CFGRESET: RegDataType:= x”0080” ;
57 constant DATABUFRDYIRQ: RegDataType:= x”0100” ;
58 constant ERRORIRQ: RegDataType:= x”0200” ;
59 constant CFGDONEIRQ: RegDataType:= x”0400” ; −−∗ Recon f i gu r ed
60 −− I n t e r r u p . t r i g g e r
61 constant RESETIRQ: RegDataType:= x”0800” ; −−∗ Recon f i gu r ed
62 −− I n t e r r u p t i o n r e s e t
63 constant CFGPROG: RegDataType:= x”1000” ;
64 constant CFGADDRBIT0 : RegDataType:= x”2000” ; −−∗ Con f i g u r a t i o n
65 constant CFGADDRBIT1 : RegDataType:= x”4000” ; −− f i l e number 0−7
66 constant CFGADDRBIT2 : RegDataType:= x”8000” ; −−
67 begin

68 SYSACE MPCE <= not ’ 1 ’ ;
69 SYSACE MPOE USB RD N <= not ’ 0 ’ ;
70 SYSACE MPWE USB WR N <= SYSACE CLK quarter when\
71 Wr i t eR e g i s t e r = ’1 ’ e l s e ’ 1 ’ ;
72 SYSACE Address <= Reg i s t e rAdd r e s s ;
73 SYSACE Data <= DataToWrite ;
74

75 Generat ion SYSACE CLK halb : process (SYSACE CLK)
76 begin

77 i f r i s i n g e d g e (SYSACE CLK) then

78 SYSACE CLK halb <= not SYSACE CLK halb ;
79 end i f ;
80 end process ;
81

82 Generat ion SYSACE CLK quarter : process (SYSACE CLK halb)
83 begin

84 i f r i s i n g e d g e (SYSACE CLK halb) then

85 SYSACE CLK quarter <= not SYSACE CLK quarter ;

224

6.1. Design of the self-repairing unit

86 end i f ;
87 end process ;
88

89 SM CombProcess : process (SYSACE CLK quarter)
90 begin

91 i f r i s i n g e d g e (SYSACE CLK quarter) then

92 i f Reset = ’1 ’ then

93 s t a t e <= s t Wa i t S t a r tR e c ;
94 Recon f i gu r ed <= ’ 0 ’ ;
95 e l s e

96 s t a t e <= n e x t s t a t e ;
97 Recon f i gu r ed <= Re c o n f i g u r e d i ;
98 SYSACE MPIRQOld <= SYSACE MPIRQ ;
99 S t a r t R e c o n f i g u r a t i o nO l d <= S t a r t R e c o n f i g u r a t i o n ;

100 end i f ;
101 end i f ;
102 end process ;
103

104 SM NextStateProcess : process (s t a t e , S t a r t R e c o n f i g u r a t i o n ,\
105 SYSACE MPIRQ)
106 begin

107 case (s t a t e) i s

108 when s t I n i t 0 =>
109 n e x t s t a t e <= s t I n i t 1 ;
110 when s t I n i t 1 =>
111 n e x t s t a t e <= s t I n i t 2 ;
112 when s t I n i t 2 =>
113 n e x t s t a t e <= s t Wa i t S t a r tR e c ;
114 when s t Wa i t S t a r tR e c =>
115 i f (S t a r t R e c o n f i g u r a t i o nO l d /= \
116 S t a r t R e c o n f i g u r a t i o n) and \
117 S t a r t R e c o n f i g u r a t i o n = ’1 ’ then

118 n e x t s t a t e <= s t Re con f 1 ;
119 e l s e

120 n e x t s t a t e <= s t Wa i t S t a r tR e c ;
121 end i f ;
122 when s t R e c o n f 1 =>
123 n e x t s t a t e <= s t Re con f 2 ;
124 when s t R e c o n f 2 =>
125 n e x t s t a t e <= s t Re con f 3 ;
126 when s t R e c o n f 3 =>
127 n e x t s t a t e <= s t Wa i t I n t ;
128 when s t Wa i t I n t =>
129 i f (SYSACE MPIRQOld /= SYSACE MPIRQ) and\
130 SYSACE MPIRQ = ’1 ’ then

131 n e x t s t a t e <= st MarkRecon f ;
132 e l s e

133 n e x t s t a t e <= s t Wa i t I n t ;
134 end i f ;
135 when s t MarkRecon f =>
136 n e x t s t a t e <= s t R e s e t I n t 1 ;
137 when s t R e s e t I n t 1 =>
138 n e x t s t a t e <= s t R e s e t I n t 2 ;

225

Chapter 6. Implementation of a self-repairing unit

139 when s t R e s e t I n t 2 =>
140 n e x t s t a t e <= s t R e s e t I n t 3 ;
141 when s t R e s e t I n t 3 =>
142 n e x t s t a t e <= s t Wa i t S t a r tR e c ;
143 when others =>
144 n e x t s t a t e <= s t Wa i t S t a r tR e c ;
145 end case ;
146 end process ;
147

148 SM OutputsProcess : process (s t a t e)
149 begin

150 case (s t a t e) i s

151 when s t I n i t 0 =>
152 Re c o n f i g u r e d i <= ’ 0 ’ ;
153 Wr i t eR e g i s t e r <= ’ 0 ’ ;
154 Reg i s t e rAdd r e s s <= BUSMODEREG Address ;
155 DataToWrite <= Reg i s t e r Da t a Z e r o s or BUSMODE0;
156 when s t I n i t 1 =>
157 Re c o n f i g u r e d i <= ’ 0 ’ ;
158 Wr i t eR e g i s t e r <= ’ 1 ’ ;
159 Reg i s t e rAdd r e s s <= BUSMODEREG Address ;
160 DataToWrite <= Reg i s t e r Da t a Z e r o s or BUSMODE0;
161 when s t I n i t 2 =>
162 Re c o n f i g u r e d i <= ’ 0 ’ ;
163 Wr i t eR e g i s t e r <= ’ 1 ’ ;
164 Reg i s t e rAdd r e s s <= CONTROLREG LSB Address ;
165 DataToWrite <= Reg i s t e r Da t a Z e r o s or CFGDONEIRQ;
166 when s t Wa i t S t a r tR e c =>
167 Re c o n f i g u r e d i <= ’ 0 ’ ;
168 Wr i t eR e g i s t e r <= ’ 0 ’ ;
169 Reg i s t e rAdd r e s s <= BUSMODEREG Address ;
170 DataToWrite <= Reg i s t e r Da t a Z e r o s or BUSMODE0;
171 when s t R e c o n f 1 =>
172 Re c o n f i g u r e d i <= ’ 0 ’ ;
173 Wr i t eR e g i s t e r <= ’ 1 ’ ;
174 Reg i s t e rAdd r e s s <= CONTROLREG LSB Address ;
175 DataToWrite <= Reg i s t e r Da t a Z e r o s or CFGRESET\
176 or CFGDONEIRQ;
177 when s t R e c o n f 2 =>
178 Re c o n f i g u r e d i <= ’ 0 ’ ;
179 Wr i t eR e g i s t e r <= ’ 1 ’ ;
180 Reg i s t e rAdd r e s s <= CONTROLREG LSB Address ;
181 DataToWrite <= Reg i s t e r Da t a Z e r o s or CFGSTART\
182 or CFGRESET or CFGDONEIRQ;
183 when s t R e c o n f 3 =>
184 Re c o n f i g u r e d i <= ’ 0 ’ ;
185 Wr i t eR e g i s t e r <= ’ 1 ’ ;
186 Reg i s t e rAdd r e s s <= CONTROLREG LSB Address ;
187 DataToWrite <= ((Reg i s t e r Da t a Z e r o s or CFGSTART)\
188 and not CFGRESET) or CFGDONEIRQ;
189 when s t Wa i t I n t =>
190 Re c o n f i g u r e d i <= ’ 0 ’ ;
191 Wr i t eR e g i s t e r <= ’ 0 ’ ;

226

6.1. Design of the self-repairing unit

192 Reg i s t e rAdd r e s s <= BUSMODEREG Address ;
193 DataToWrite <= Reg i s t e r Da t a Z e r o s or BUSMODE0;
194 when s t MarkRecon f =>
195 Re c o n f i g u r e d i <= ’ 1 ’ ;
196 Wr i t eR e g i s t e r <= ’ 0 ’ ;
197 Reg i s t e rAdd r e s s <= BUSMODEREG Address ;
198 DataToWrite <= Reg i s t e r Da t a Z e r o s or BUSMODE0;
199 when s t R e s e t I n t 1 =>
200 Re c o n f i g u r e d i <= ’ 0 ’ ;
201 Wr i t eR e g i s t e r <= ’ 1 ’ ;
202 Reg i s t e rAdd r e s s <= CONTROLREG LSB Address ;
203 DataToWrite <= (Reg i s t e r Da t a Z e r o s and \
204 not CFGSTART) or CFGDONEIRQ;
205 when s t R e s e t I n t 2 =>
206 Re c o n f i g u r e d i <= ’ 0 ’ ;
207 Wr i t eR e g i s t e r <= ’ 1 ’ ;
208 Reg i s t e rAdd r e s s <= CONTROLREG LSB Address ;
209 DataToWrite <= Reg i s t e r Da t a Z e r o s or RESETIRQ\
210 or CFGDONEIRQ;
211 when s t R e s e t I n t 3 =>
212 Re c o n f i g u r e d i <= ’ 0 ’ ;
213 Wr i t eR e g i s t e r <= ’ 1 ’ ;
214 Reg i s t e rAdd r e s s <= CONTROLREG LSB Address ;
215 DataToWrite <= (Reg i s t e r Da t a Z e r o s and \
216 not RESETIRQ) or CFGDONEIRQ;
217 when others =>
218 Re c o n f i g u r e d i <= ’ 0 ’ ;
219 Wr i t eR e g i s t e r <= ’ 0 ’ ;
220 Reg i s t e rAdd r e s s <= BUSMODEREG Address ;
221 DataToWrite <= Reg i s t e r Da t a Z e r o s or BUSMODE0;
222 end case ;
223 end process ;
224

225 end Beha v i o r a l ;

Bus macros

A bus macro is a sort of module with fixed connection points that serves for interfacing the
dynamic and the static regions. A bus macro is not required to be programmed because it
is provided together with the software tools for partial reconfiguration as a file with .nmc

extension. It has a naming convention that contains: the FPGA device it is prepared for; the
physical direction of its unidirectional connection points, i.e., right to left, left to right, top
to bottom, bottom to top; its synchronicity, where a synchronous macro has a clock line and
registers for capturing the data at the connection points; and its width, which is the number
of configurable logic blocks it is made of, having a narrow bus macro with two CLBs for eight
connection points and a wide bus macro with four CLBs for sixteen connection points.

Since the example of circuit for self-repairing has only 3 inputs and one output, the bus
macros busmacro xc4v r2l async narrow.nmc for the inputs and for the output the bus
macro busmacro xc4v l2r async narrow.nmc, have been selected. They should be defined
as components and instantiated mapping its connection points according to the circuit design

227

Chapter 6. Implementation of a self-repairing unit

in the top module, to be presented further in this chapter. Besides, the physical placement
of the bus macros should be given in the constraints file of the top module, to be presented
also further in this chapter. For more information about bus macros and advising of how to
physically place them, please refer to the manual of the software tool for partial reconfiguration
used, in this case [Xilinx, 2008].

6.1.3 Fault injection for testing the self-repairing unit

In order to confirm that the self-repairing unit is capable of repairing itself, it is necessary
to inject some faults into the circuit for self-repairing. In the literature, there exist some
techniques for inserting faults which are for example: the use of partial reconfiguration for
downloading bitstreams in the FPGA containing a faulty circuit for self-repairing, presented
in [Sterpone and Violante, 2007]; the use of simulator commands during the simulation of
the design for altering some signals or variables in the circuit for self-repairing, technique
presented in [Jenn et al., 1994]; the use of the existing boundary scan architecture of the
FPGA for injecting faults at any input or output signal of the circuit for self-repairing which
is connected externally to a I/O pin of the FPGA having a boundary scan cell that can
override its value, as discussed in [Chakraborty and Chiang, 2002]; or the modification of
the VHDL code by: adding saboteur modules that when active modify the value or timing
characteristics of signals in the circuit for self-repairing, or adding mutant modules that when
active overlap the circuit for self-repairing with any faulty one, [Jenn et al., 1994]. The VHDL
mutants or mutants of the binary partial bitstream of the circuit for self-repairing could be
produced using the method exposed in [Xie et al., 2011] and [Becker et al., 2012].

Those methods can be classified in methods of fault injection during the simulation of the
self-repairing unit and methods of fault injection while the self-repairing system is operating.
The use of simulator commands during simulation can help on debugging the design of the
self-repairing unit. Furthermore the insertion of saboteur and mutant modules into the self-
repairing unit can also help on debugging the VHDL design. The use of partial reconfiguration
requires to have an additional fault injection controller that triggers partial reconfiguration.
The use of the existing boundary scan in the hardware platform can be helpful whenever the
circuit for self-repairing has its inputs and outputs connected to the external I/O pins of the
FPGA or implementing chip. The insertion of fault injection modules early in the design
can be helpful for debugging the self-repairing unit or for testing it during its operational
life. Besides, working at the VHDL level allows to insert faults for different fault models, i.e.
faults at the gate level, please see [Misera and Sieber, 2007] or could allow to insert fault at
different points in the design automatically, please see [Baraza et al., 2005].

Some experiments for inserting stuck-at faults in a circuit at the VHDL level were executed
and presented in the Bachelor thesis [Traut, 2010]. From the results, it could be concluded
that stuck-at faults can be inserted at the inputs and outputs of the circuit for self-repairing
using saboteur modules, and stuck-at faults at any internal signal inside the circuit for self-
repairing can be inserted using mutant modules of the circuit for self-repairing.

Therefore, the proposed architecture of the self-repairing unit has been enhanced with three
further VHDL modules SaboteursInModule, SaboteursOutModule and MutantsModule, as can
be seen in figure 6.9. The connection of those modules with the circuit for self-repairing is
shown in figure 6.10. Since we also use redundancy as a repairing mechanism, the connection
with redundant circuits drawn in figure 6.11 considered the possibility of injecting a fault
even after the circuit for self-repairing has been recovered. In order to be able to control fault

228

6.1. Design of the self-repairing unit

injection from the outside, some control inputs for fault injection have been added. Those can
be seen in the RecognizerRepairer module in figure 6.12. The input signals SaboteurInputs,
SaboteurOutputs and Mutant serve for activating the respective fault injection module. The
input signal StuckAt serves for selecting between stuck-at-1 or stuck-at-0 faults. The input
signal Injection serves for injecting the elected fault. It could be possible, of course, to inject
two faults or more simultaneously, but analyzing the behavior of the circuit under more than
two faults is not straightforward, thus, this situation has been avoided. And finally, the
input signal FaultRemoval removes the inserted fault, but not the failure or error generated
by the presence of that fault. The functionality and design of the fault injection modules is
explained below, followed by the description of the RecognizerRepairer and Top modules of
the final self-repairing unit.

Saboteurs at the inputs module

A saboteur is an element that can be placed breaking a signal line for altering its value
or timing characteristics. It is intended to place saboteurs at the inputs of the circuit for
self-repairing for inserting stuck-at faults at those lines. For that, a VHDL module named
SaboteursInModule has been implemented and is shown in code listing 6.11.

This module has an input for enabling the saboteurs at the inputs named SaboteurInputs,
an input for determining if an stuck-at-1 or an stuck-at-0 is inserted in the signal line named
StuckAt1, an input for injecting a fault named as Injection, and an input for removing the
fault but not the failure or fault produced FaultRemoval. The signal line to be altered enters
through the input vector Inputs and the altered signal line gets out through the output vector
InputsFI. The module is synchronized by the Clock signal and set to its default state through
the signal Reset.

The module has only one process named SI PROC. At a rising edge of the signal Injection,
if and only if the module is enabled by setting to ‘1’ the signal SaboteurInputs, the stuck-at
fault selected is inserted to a random input line of the input vector Inputs, as can be seen in
code lines 35 to 49. Thereby, the signal InjectedFaults is set to ‘1’, which allows the concurrent
statement in code line 25 to pass the inputs with the injected fault out. The input in which
the stuck-at fault will be inserted is computed randomly in code lines 50 to 56. At a rising
edge of the input FaultRemoval, the signal InjectedFaults is set to ‘0’, which prevents to pass
the inputs with the inserted fault out, as can be seen in code lines 57 to 57 and 25.

Program Code 6.11: Saboteurs at the inputs module

1 l i b r a r y i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3 use work . Cons tant s . a l l ;
4

5 ent i t y Saboteurs InModu le i s

6 port (
7 Clock : i n s t d l o g i c ;
8 Reset : i n s t d l o g i c ;
9 Sabo t e u r I n pu t s : i n s t d l o g i c ;

10 StuckAt1 : i n s t d l o g i c ;
11 I n j e c t i o n : i n s t d l o g i c ;
12 FaultRemoval : i n s t d l o g i c ;
13 I n pu t s : i n s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;

229

Chapter 6. Implementation of a self-repairing unit

R
ec

o
v
er

ed

R
e
s
e
t

C
lo
c
k

E
In

p
u
ts

L
as

tR
ec

o
v
er

y

R
ec
o
v
er
y
C
o
u
n
te
r

L
as

t
R

ec
o
v
er

y

In
p
u
ts

O
u
tp

u
ts

R
ec

o
v
er

ed

R
e
s
e
t

C
lo
c
k

D
o
u
t

E
In

p
u
ts

W
E

n

D
in

F
au

lt C

C
E

n

A
d
d
re

ss

R
ec

o
g
n
it

io
n
R

ea
d
y

F
a
u
lt
R
ec
o
g
n
it
io
n

W
E

n

A
d
d
re

ss

D
in

C
lo
c
k

D
o
u
t

C
E

n

S
y
n
cM

em
o
ry

F
au

lt
R

em
o
v
al

R
e
s
e
t

C
lo
c
k

O
u
tp

u
ts

S
ab

o
te

u
rO

u
tp

u
ts

S
tu

ck
A

t1

In
je

ct
io

n

O
u
tp

u
ts

F
I

R
e
s
e
t

E
O

u
tp

u
ts

O
u
tp

u
ts

C
lo
c
k

O
u
tp

u
ts

U
se

r

E
n
a
b
le
In
p
u
tsR

ea
d
y

D
ef

ec
t

E
In

p
u
ts

E
O

u
tp

u
ts

L
as

tR
ec

o
v
er

y

R
ec

o
g
n
it

io
n
R

ea
d
y

F
au

lt

R
ec

o
v
er

ed

In
p
u
ts

O
u
tp

u
t

R
e
s
e
t

C
lo
c
k

S
ta
te
M
a
ch

in
e

In
p
u
ts

In
p
u
ts

u
se

r

E
In

p
u
ts

R
e
s
e
t

C
lo
c
k

E
n
a
b
le
In
p
u
ts

In
p
u
ts

S
ab

o
te

u
rI

n
p
u
ts

S
tu

ck
A

t1

In
je

ct
io

n

F
au

lt
R

em
o
v
al

R
e
s
e
t

C
lo
c
k

In
p
u
ts

F
I

S
a
b
o
te
u
rs
In
M
o
d
u
le

B
M

I

B
M

O

In
p
u
ts

O
u
tp

u
ts

C
ir
cu

it
F
o
rS

R

R
e
s
e
t

In
p
u
ts

C R
ec

o
g
n
it

io
n
R

ea
d
y

R
ec

o
n
fi

g
u
re

d

L
as

tR
ec

o
v
er

y

C
lo
c
k

F
au

lt

O
u
tp

u
ts

S
ta

rt
R

ec
o
n
fi

g
u
ra

ti
o
n

R
ec

o
v
er

ed

R
ec
o
v
er
y
P
ro
ce
d
u
re

O
u
tp

u
ts

C
F

S
R

O
u
tp

u
ts

M
u
t

M
u
ta
n
te
n
M
o
d
u
le

In
je

ct
io

n

F
au

lt
R

em
o
v
al

R
e
s
e
t

C
lo
c
k

In
p
u
ts

M
u
ta

n
t

O
u
tp

u
ts

C
F

S
R

S
a
b
o
te
u
rs
O
u
tM

o
d
u
le

S
ta

rt
R

ec
o
n
fi

g
u
ra

ti
o
n

F
P

G
A

P
R

In
p
u
ts

R
e
s
e
t

C
lo
c
k

S
el
fP
a
rt
ia
lR

ec
o
n
fi
g
u
ra
to
r

F
P

G
A

P
R

O
u
tp

u
ts

R
ec

o
n
fi

g
u
re

d

F
ig

u
re

6.
9:

A
rc

h
it
ec

tu
re

fo
r

te
st

in
g

th
e

se
lf
-r

ep
ai

ri
n
g

sy
st

em

230

6.1. Design of the self-repairing unit

Mutant 1

Mutant 2

Mutant n

MutantenModule

Inputs Outputs

CircuitForSR

SaboteursInputs SaboteursOutputs

Figure 6.10: Fault injector

Mutant 1

Mutant 2

Mutant n

Outputs

BusMacroOutputs

CUTRedundant 1

CUTRedundant 2

CUTRedundant n

RecoveryProcedure

BusMacroInputs

Inputs

MutantenModule

CircuitForSR

SaboteursInputs SaboteursOutputs

Figure 6.11: Fault injector and fault repairer connection

231

Chapter 6. Implementation of a self-repairing unit

StuckAt

Injection

Mutant

FaultRemoval

Reset

Clock

RecognizerRepairer

BusMacroOutputs BusMacroInputs

CircuitForSR

OutputsUser

Ready

Defect

FPGAPROutputs

FPGAPRInputs

InputsUser

SaboteurInputs

SaboteurOutputs

Figure 6.12: Fault recognizer and repairer module with an embedded fault injector

14 I n p u t s F I : out s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0)
15) ;
16 end Saboteurs InModu le ;
17

18 a rch i t ec tu re Beha v i o r a l of Saboteurs InModu le i s

19 s i gna l I n j e c t i o n O l d : s t d l o g i c ;
20 s i gna l RandomNumber : i n t e g e r := 0 ;
21 s i gna l InputsTemp : s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;
22 s i gna l I n j e c t e d F a u l t s : s t d l o g i c := ’0 ’ ;
23 s i gna l FaultRemovalOld : s t d l o g i c := ’0 ’ ;
24 begin

25 I n p u t s F I <= InputsTemp when (I n j e c t e d F a u l t s = ’1 ’) e l s e I n pu t s ;
26

27 SI PROC : process (C lock)
28 begin

29 i f (Clock ’ e ven t and Clock = ’1 ’) then

30 i f Reset = ’1 ’ then

31 FaultRemovalOld <= FaultRemoval ;
32 I n j e c t e d F a u l t s <= ’ 0 ’ ;
33 RandomNumber <= 0 ;
34 e l s e

35 i f ((I n j e c t i o n /= I n j e c t i o n O l d) and\
36 (I n j e c t i o n = ’1 ’) and (S abo t e u r I n pu t s = ’1 ’)\
37 and (StuckAt1 = ’1 ’) and\
38 (I n j e c t e d F a u l t s = ’ 0 ’)) then

39 InputsTemp <= Inpu t s ;
40 InputsTemp (RandomNumber) <= ’ 1 ’ ;
41 I n j e c t e d F a u l t s <= ’ 1 ’ ;

232

6.1. Design of the self-repairing unit

42 e l s i f ((I n j e c t i o n /= I n j e c t i o n O l d) and\
43 (I n j e c t i o n = ’1 ’) and (S abo t e u r I n pu t s = ’1 ’)\
44 and (StuckAt1 = ’0 ’)\
45 and (I n j e c t e d F a u l t s = ’ 0 ’)) then

46 InputsTemp <= Inpu t s ;
47 InputsTemp (RandomNumber) <= ’ 0 ’ ;
48 I n j e c t e d F a u l t s <= ’ 1 ’ ;
49 end i f ;
50 i f ((RandomNumber = (s i z e i n p u t s −1)) and\
51 (I n j e c t e d F a u l t s = ’ 0 ’)) then

52 RandomNumber <= 0 ;
53 e l s i f ((RandomNumber < (s i z e i n p u t s −1)) and\
54 (I n j e c t e d F a u l t s = ’ 0 ’)) then

55 RandomNumber <= RandomNumber + 1 ;
56 end i f ;
57 i f ((Faul tRemoval = ’1 ’) and\
58 (Faul tRemovalOld /= FaultRemoval)) then

59 I n j e c t e d F a u l t s <= ’ 0 ’ ;
60 end i f ;
61 I n j e c t i o n O l d <= I n j e c t i o n ;
62 FaultRemovalOld <= FaultRemoval ;
63 end i f ;
64 end i f ;
65 end process ;
66

67 end Beha v i o r a l ;

Saboteurs at the outputs module

This module is responsible of inserting stuck-out faults at the output lines of the circuit
for self-repairing. It has been named SaboteursOutModule and works exactly the same as
the SaboteursInModule, please see last subsection, except of it is enabled when the external
signal SaboteurOutputs is set to ‘1’. Since the example circuit for self-repairing has only one
output, the stuck-at fault is always inserted at that output. The lines for generating a fault
at a random output in code listing 6.12 make sense for a circuit for self-repairing with many
output lines.

Program Code 6.12: Saboteurs at the outputs module

1 l i b r a r y i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3 use work . Cons tant s . a l l ;
4

5 ent i t y SaboteursOutModule i s

6 port (
7 Clock : i n s t d l o g i c ;
8 Reset : i n s t d l o g i c ;
9 SaboteurOutputs : i n s t d l o g i c ;

10 StuckAt1 : i n s t d l o g i c ;
11 I n j e c t i o n : i n s t d l o g i c ;
12 FaultRemoval : i n s t d l o g i c ;
13 Outputs : i n s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0) ;

233

Chapter 6. Implementation of a self-repairing unit

14 OutputsF I : out s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0)
15) ;
16 end SaboteursOutModule ;
17

18 a rch i t ec tu re Beha v i o r a l of SaboteursOutModule i s

19 s i gna l I n j e c t i o n O l d : s t d l o g i c := ’0 ’ ;
20 s i gna l RandomNumber : i n t e g e r := 0 ;
21 s i gna l OutputsTemp : s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0) ;
22 s i gna l I n j e c t e d F a u l t s : s t d l o g i c := ’0 ’ ;
23 s i gna l FaultRemovalOld : s t d l o g i c := ’0 ’ ;
24

25 begin

26 OutputsF I <= OutputsTemp when (I n j e c t e d F a u l t s = ’1 ’)\
27 e l s e Outputs ;
28 SO PROC: process (C lock)
29 begin

30 i f (Clock ’ e ven t and Clock = ’1 ’) then

31 i f Reset = ’1 ’ then

32 FaultRemovalOld <= FaultRemoval ;
33 I n j e c t e d F a u l t s <= ’ 0 ’ ;
34 RandomNumber <= 0 ;
35 e l s e

36 i f ((I n j e c t i o n /= I n j e c t i o n O l d) and (I n j e c t i o n = ’1 ’)\
37 and (SaboteurOutputs = ’1 ’)\
38 and (StuckAt1 = ’1 ’)\
39 and (I n j e c t e d F a u l t s = ’ 0 ’)) then

40 OutputsTemp <= Outputs ;
41 OutputsTemp (RandomNumber) <= ’ 1 ’ ;
42 I n j e c t e d F a u l t s <= ’ 1 ’ ;
43 e l s i f ((I n j e c t i o n /= I n j e c t i o n O l d)\
44 and (I n j e c t i o n = ’1 ’)\
45 and (SaboteurOutputs = ’1 ’)\
46 and (StuckAt1 = ’0 ’)\
47 and (I n j e c t e d F a u l t s = ’ 0 ’)) then

48 OutputsTemp <= Outputs ;
49 OutputsTemp (RandomNumber) <= ’ 0 ’ ;
50 I n j e c t e d F a u l t s <= ’ 1 ’ ;
51 end i f ;
52 i f ((RandomNumber = (s i z e o u t p u t s −1)) and\
53 (I n j e c t e d F a u l t s = ’ 0 ’)) then

54 RandomNumber <= 0 ;
55 e l s i f ((RandomNumber < (s i z e o u t p u t s −1)) and\
56 (I n j e c t e d F a u l t s = ’ 0 ’)) then

57 RandomNumber <= RandomNumber + 1 ;
58 end i f ;
59 i f ((Faul tRemoval = ’1 ’) and\
60 (Faul tRemovalOld /= FaultRemoval)) then

61 I n j e c t e d F a u l t s <= ’ 0 ’ ;
62 end i f ;
63 I n j e c t i o n O l d <= I n j e c t i o n ;
64 FaultRemovalOld <= FaultRemoval ;
65 end i f ;
66 end i f ;

234

6.1. Design of the self-repairing unit

67 end process ;
68

69 end Beha v i o r a l ;

Mutants module

A mutant is an element that has undergone a change. Resembling that, a faulty circuit for
self-repairing can be seen as a mutant. A faulty circuit for self-repairing can be described in
a VHDL module, similarly as the original circuit for self-repairing has been described. In the
description of that VHDL module, the value of signals can be altered in the same way as a
saboteur does; components, operators or variables can be exchanged, i.e., an AND gate by an
OR gate; or the behavior of a determined fault model can be described affecting the original
module. A variety of mutants can be designed and connected in the place of the circuit
for self-repairing on demand. Thus, the module MutantsModule injects a fault replacing the
original circuit for self-repairing by a mutant of it named here CircuitForSRX. For that, the
mutant module CircuitForSRX should be declared as a component, instantiated, and its input
and output lines should be connected in the way that it replaces the original circuit for self-
repairing. That happens at the rising edge of the external signal Injection, if and only if
the external signal Mutant is set to ‘1’, as can be seen in code lines 46 to 50. Similarly to
the saboteurs, the mutant to be connected instead of the circuit for self-repairing is selected
randomly in code lines 51 to 57. The faulty circuit for self-repairing, named here mutant, is
replaced by the original circuit under a rising edge of the external signal FaultRemoval, as
show in code lines 58 to 61. In code listing 6.13 only one mutant is shown, but similarly more
mutants can be added.

Code listing 6.14 shows the example of a mutant having the circuit for self-repairing with
an stuck-at-0 fault at the output of the first AND gate, as shown in code line 14.

Program Code 6.13: Mutants module

1 l i b r a r y i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3 use work . Cons tant s . a l l ;
4

5 ent i t y MutantsModule i s

6 port (
7 Clock : i n s t d l o g i c ;
8 Reset : i n s t d l o g i c ;
9 Mutant : i n s t d l o g i c ;

10 I n j e c t i o n : i n s t d l o g i c ;
11 FaultRemoval : i n s t d l o g i c ;
12 I n pu t s : i n s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;
13 OutputsCFSR : i n s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0) ;
14 OutputsMut : out s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0)
15) ;
16 end MutantsModule ;
17

18 a rch i t ec tu re Beha v i o r a l of MutantsModule i s

19 component Ci rcu i tFo rSRX
20 port (
21 I n pu t s : i n s t d l o g i c v e c t o r (s i z e i n p u t s − 1 downto 0) ;

235

Chapter 6. Implementation of a self-repairing unit

22 Outputs : out s t d l o g i c v e c t o r (s i z e o u t p u t s − 1 downto 0)
23) ;
24 end component ;
25

26 s i gna l I n j e c t i o n O l d : s t d l o g i c ;
27 s i gna l RandomNumber : i n t e g e r := 0 ;
28 s i gna l I n j e c t e d F a u l t s : s t d l o g i c := ’0 ’ ;
29 s i gna l FaultRemovalOld : s t d l o g i c := ’0 ’ ;
30 constant MutantsNumber : i n t e g e r := 1 ;
31 s i gna l OutputsX : s t d l o g i c v e c t o r (s i z e o u t p u t s − 1 downto 0) ;
32

33 begin

34 CFSRX : C i rcu i tFo rSRX port map (I npu t s , OutputsX) ;
35

36 OutputsMut <= OutputsX when ((RandomNumber = 1) and\
37 (I n j e c t e d F a u l t s = ’ 1 ’)) e l s e OutputsCFSR ;
38

39 MUT PROC: process (C lock)
40 begin

41 i f (Clock ’ e ven t and Clock = ’1 ’) then

42 i f Reset = ’1 ’ then

43 I n j e c t e d F a u l t s <= ’ 0 ’ ;
44 RandomNumber <= 0 ;
45 e l s e

46 i f ((I n j e c t i o n /= I n j e c t i o n O l d) and\
47 (I n j e c t i o n = ’1 ’) and (Mutant = ’1 ’)\
48 and (I n j e c t e d F a u l t s = ’ 0 ’)) then

49 I n j e c t e d F a u l t s <= ’ 1 ’ ;
50 end i f ;
51 i f ((RandomNumber = MutantsNumber) and\
52 (I n j e c t e d F a u l t s <= ’0 ’)) then

53 RandomNumber <= 1 ;
54 e l s i f ((RandomNumber < MutantsNumber) and\
55 (I n j e c t e d F a u l t s <= ’0 ’)) then

56 RandomNumber <= RandomNumber + 1 ;
57 end i f ;
58 i f ((Faul tRemoval = ’1 ’) and\
59 (Faul tRemovalOld /= FaultRemoval)) then

60 I n j e c t e d F a u l t s <= ’ 0 ’ ;
61 end i f ;
62 I n j e c t i o n O l d <= I n j e c t i o n ;
63 FaultRemovalOld <= FaultRemoval ;
64 end i f ;
65 end i f ;
66 end process ;
67

68 end Beha v i o r a l ;

Program Code 6.14: Mutant module with an stuck-at-0 fault

1 l i b r a r y i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3 use work . Cons tant s . a l l ;

236

6.1. Design of the self-repairing unit

4

5 ent i t y C i r cu i tUnde rTe s tX i s

6 Port (I n pu t s : i n s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;
7 Outputs : out s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0)) ;
8 end C i r cu i tUnde rTe s tX ;
9

10 a rch i t ec tu re Beha v i o r a l of C i r cu i tUnde rTe s tX i s

11

12 begin

13

14 Outputs (0) <= ’0 ’ or (I n pu t s (2) and I n pu t s (0)) ;
15

16 end Beha v i o r a l ;

Recognizer-repairer module

The RecognizerRepairer shown in figure 6.12 is an upper module that groups together all mod-
ules of the self-repairing circuit with the exception of the circuit for self-repairing and the
bus macros. It has been created for grouping all static modules into only one to ease the
partial reconfiguration design flow. This module has the input and output signals shown in
figure 6.12. All modules SelfPartialReconfigurator, MutantsModule, SaboteursOutModule, Sabo-
teursInModule, EnableInputs, EnableOutputs, FaultRecognition, SyncMemory, RecoveryCounter,
RecoveryProcedure and StateMachine are declared as components and then instantiated with
the names SPR, MUT, SO, SI, EI, EO, FR, MEM, RC, RP and SM respectively in code listing
6.15. The signals in code lines 189 to 207 had to be declared in order to connect all those
modules using positional association, that is to say, mapping the signals respecting the order
in which the inputs and output ports on the interface of the modules, in the entity part of
their code, are declared.

Program Code 6.15: Recognizer-repairer module

1 l i b r a r y i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3 use work . Cons tant s . a l l ;
4

5 ent i t y Reco gn i z e rR epa i r e r i s

6 port (
7 Clock : i n s t d l o g i c ;
8 Reset : i n s t d l o g i c ;
9 I n pu t sU s e r : i n s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;

10 OutputsUser : out s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0) ;
11 Defec t : out s t d l o g i c ;
12 Ready : out s t d l o g i c ;
13 I n p u t s C i r c u i t : out s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;
14 Outpu t sC i r c u i t : i n s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0) ;
15 Mutant : i n s t d l o g i c ;
16 Sabo t e u r I n pu t s : i n s t d l o g i c ;
17 SaboteurOutputs : i n s t d l o g i c ;
18 StuckAt1 : i n s t d l o g i c ;
19 I n j e c t i o n : i n s t d l o g i c ;
20 FaultRemoval : i n s t d l o g i c ;

237

Chapter 6. Implementation of a self-repairing unit

21 SYSACE CLK : i n s t d l o g i c ;
22 SYSACE MPCE: out s t d l o g i c ;
23 SYSACE MPWE USB WR N: out s t d l o g i c ;
24 SYSACE MPOE USB RD N : out s t d l o g i c ;
25 SYSACE Address : out s t d l o g i c v e c t o r (6 downto 1) ;
26 SYSACE Data : out s t d l o g i c v e c t o r (15 downto 0) ;
27 SYSACE MPIRQ : i n s t d l o g i c
28) ;
29 end Reco gn i z e rR epa i r e r ;
30

31 a rch i t ec tu re Beha v i o r a l of Reco gn i z e rR epa i r e r i s

32 component S e l f P a r t i a l R e c o n f i g u r a t o r i s

33 port (
34 SYSACE CLK : i n s t d l o g i c ;
35 Reset : i n s t d l o g i c ;
36 S t a r t R e c o n f i g u r a t i o n : i n s t d l o g i c ;
37 Recon f i gu r ed : out s t d l o g i c ;
38 SYSACE MPCE: out s t d l o g i c ;
39 SYSACE MPWE USB WR N: out s t d l o g i c ;
40 SYSACE MPOE USB RD N : out s t d l o g i c ;
41 SYSACE Address : out s t d l o g i c v e c t o r (6 downto 1) ;
42 SYSACE Data : out s t d l o g i c v e c t o r (15 downto 0) ;
43 SYSACE MPIRQ : i n s t d l o g i c
44) ;
45 end component ;
46

47 component MutantsModule i s

48 port (
49 Clock : i n s t d l o g i c ;
50 Reset : i n s t d l o g i c ;
51 Mutant : i n s t d l o g i c ;
52 I n j e c t i o n : i n s t d l o g i c ;
53 FaultRemoval : i n s t d l o g i c ;
54 I n pu t s : i n s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;
55 OutputsCFSR : i n s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0) ;
56 OutputsMut : out s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0)
57) ;
58 end component ;
59

60 component SaboteursOutModule i s

61 port (
62 Clock : i n s t d l o g i c ;
63 Reset : i n s t d l o g i c ;
64 SaboteurOutputs : i n s t d l o g i c ;
65 StuckAt1 : i n s t d l o g i c ;
66 I n j e c t i o n : i n s t d l o g i c ;
67 FaultRemoval : i n s t d l o g i c ;
68 Outputs : i n s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0) ;
69 OutputsF I : out s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0)
70) ;
71 end component ;
72

73 component Saboteurs InModu le i s

238

6.1. Design of the self-repairing unit

74 port (
75 Clock : i n s t d l o g i c ;
76 Reset : i n s t d l o g i c ;
77 Sabo t e u r I n pu t s : i n s t d l o g i c ;
78 StuckAt1 : i n s t d l o g i c ;
79 I n j e c t i o n : i n s t d l o g i c ;
80 FaultRemoval : i n s t d l o g i c ;
81 I n pu t s : i n s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;
82 I n p u t s F I : out s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0)
83) ;
84 end component ;
85

86 component Enab l e I n pu t s
87 port (
88 Clock : i n s t d l o g i c ;
89 Reset : i n s t d l o g i c ;
90 E Inpu t s : i n s t d l o g i c ;
91 I n pu t sU s e r : i n s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;
92 I n pu t s : out s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0)
93) ;
94 end component ;
95

96 component Enab leOutputs
97 port (
98 Clock : i n s t d l o g i c ;
99 Reset : i n s t d l o g i c ;

100 EOutputs : i n s t d l o g i c ;
101 Outputs : i n s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0) ;
102 OutputsUser : out s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0)
103) ;
104 end component ;
105

106 component Fau l tR e c o gn i t i o n
107 port (
108 Clock : i n s t d l o g i c ;
109 Reset : i n s t d l o g i c ;
110 I n pu t s : i n s t d l o g i c v e c t o r (s i z e i n p u t s − 1 downto 0) ;
111 Outputs : i n s t d l o g i c v e c t o r (s i z e o u t p u t s − \
112 1 downto 0) ;
113 Recove red : i n s t d l o g i c ;
114 Las tRecove ry : i n s t d l o g i c ;
115 E Inpu t s : i n s t d l o g i c ;
116 Fau l t : out s t d l o g i c ;
117 C : out s t d l o g i c v e c t o r (s i z e r e c o v e r y me t h o d − \
118 1 downto 0) ;
119 Recogn i t i onReady : out s t d l o g i c ;
120 Addres s : out i n t e g e r range 0 to (s ize memory−1) ;
121 Din : out s t d l o g i c v e c t o r (s i z e f p v e c t o r − \
122 1 downto 0) ;
123 WEn, CEn : out s t d l o g i c ;
124 Dout : i n s t d l o g i c v e c t o r (s i z e f p v e c t o r − \
125 1 downto 0)
126) ;

239

Chapter 6. Implementation of a self-repairing unit

127 end component ;
128

129 component SyncMemory
130 gener ic (
131 M: i n t e g e r ;
132 N: i n t e g e r
133) ;
134 port (
135 Addres s : i n i n t e g e r range 0 to (s ize memory−1) ;
136 Din : i n s t d l o g i c v e c t o r (s i z e f p v e c t o r −1 downto 0) ;
137 WEn, CEn , C lock : i n s t d l o g i c ;
138 Dout : out s t d l o g i c v e c t o r (s i z e f p v e c t o r −1 downto 0)
139) ;
140 end component ;
141

142 component Recove ryCounte r
143 port (
144 Clock : i n s t d l o g i c ;
145 Reset : i n s t d l o g i c ;
146 E Inpu t s : i n s t d l o g i c ;
147 Recove red : i n s t d l o g i c ;
148 Las tRecove ry : out s t d l o g i c
149) ;
150 end component ;
151

152 component Recove ryProcedure
153 port (
154 Clock : i n s t d l o g i c ;
155 Reset : i n s t d l o g i c ;
156 C : i n s t d l o g i c v e c t o r (s i z e r e c o v e r y me t hod− \
157 1 downto 0) ;
158 S t a r t R e c o n f i g u r a t i o n : out s t d l o g i c ;
159 Recon f i gu r ed : i n s t d l o g i c ;
160 I n pu t s : i n s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;
161 OutputsCFSR : i n s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0) ;
162 Outputs : out s t d l o g i c v e c t o r (s i z e o u t p u t s \
163 −1 downto 0) ;
164 Fau l t : i n s t d l o g i c ;
165 Recogn i t i onReady : i n s t d l o g i c ;
166 Las tRecove ry : i n s t d l o g i c ;
167 Recove red : out s t d l o g i c
168) ;
169 end component ;
170

171 component StateMachine
172 port (
173 Clock : i n s t d l o g i c ;
174 Reset : i n s t d l o g i c ;
175 I n pu t s : i n s t d l o g i c v e c t o r (s i z e i n p u t s − 1 downto 0) ;
176 Outputs : i n s t d l o g i c v e c t o r (s i z e o u t p u t s − \
177 1 downto 0) ;
178 Fau l t : i n s t d l o g i c ;
179 Las tRecove ry : i n s t d l o g i c ;

240

6.1. Design of the self-repairing unit

180 Recogn i t i onReady : i n s t d l o g i c ;
181 Recove red : i n s t d l o g i c ;
182 Ready : out s t d l o g i c ;
183 Defec t : out s t d l o g i c ;
184 E Inpu t s : out s t d l o g i c ;
185 EOutputs : out s t d l o g i c
186) ;
187 end component ;
188

189 s i gna l S t a r t R e c o n f i g u r a t i o n : s t d l o g i c ;
190 s i gna l Recon f i gu r ed : s t d l o g i c ;
191 s i gna l I n pu t s : s t d l o g i c v e c t o r (s i z e i n p u t s − 1 downto 0) ;
192 s i gna l I n p u t s F I : s t d l o g i c v e c t o r (s i z e i n p u t s − 1 downto 0) ;
193 s i gna l OutputsCFSR : s t d l o g i c v e c t o r (s i z e o u t p u t s − 1 downto 0) ;
194 s i gna l OutputsRec : s t d l o g i c v e c t o r (s i z e o u t p u t s − 1 downto 0) ;
195 s i gna l OutputsMut : s t d l o g i c v e c t o r (s i z e o u t p u t s − 1 downto 0) ;
196 s i gna l OutputsF I : s t d l o g i c v e c t o r (s i z e o u t p u t s − 1 downto 0) ;
197 s i gna l E Inpu t s : s t d l o g i c ;
198 s i gna l EOutputs : s t d l o g i c ;
199 s i gna l Recove red : s t d l o g i c ;
200 s i gna l Las tRecove ry : s t d l o g i c ;
201 s i gna l Fau l t : s t d l o g i c ;
202 s i gna l C : s t d l o g i c v e c t o r (s i z e r e c o v e r y me t h o d − 1 downto 0) ;
203 s i gna l Recogn i t i onReady : s t d l o g i c ;
204 s i gna l Addres s : i n t e g e r range 0 to (s ize memory−1) ;
205 s i gna l Din : s t d l o g i c v e c t o r (s i z e f p v e c t o r −1 downto 0) ;
206 s i gna l WEn, CEn : s t d l o g i c ;
207 s i gna l Dout : s t d l o g i c v e c t o r (s i z e f p v e c t o r −1 downto 0) ;
208

209 begin

210 I n p u t s C i r c u i t <= In p u t s F I ;
211 OutputsCFSR <= Outpu t sC i r c u i t ;
212

213 SPR : S e l f P a r t i a l R e c o n f i g u r a t o r port map (SYSACE CLK , Reset ,\
214 S t a r t R e c o n f i g u r a t i o n , Recon f i gu r ed , SYSACE MPCE,\
215 SYSACE MPWE USB WR N,\
216 SYSACE MPOE USB RD N , SYSACE Address ,\
217 SYSACE Data , SYSACE MPIRQ) ;
218 MUT: MutantsModule port map (Clock , Reset , Mutant , I n j e c t i o n ,\
219 FaultRemoval , I npu t sF I , OutputsRec , OutputsMut) ;
220 SO: SaboteursOutModule port map (Clock , Reset , SaboteurOutputs ,\
221 StuckAt1 , I n j e c t i o n , Faul tRemoval , OutputsMut , OutputsFI) ;
222 SI : Saboteurs InModu le port map (Clock , Reset , Sabo t eu r I npu t s ,\
223 StuckAt1 , I n j e c t i o n , Faul tRemoval , I npu t s , I n p u t s F I) ;
224

225 EI : E nab l e I n pu t s port map (Clock , Reset , E Inputs , I npu t sUse r , I n pu t s) ;
226 EO: Enab leOutputs port map (Clock , Reset , EOutputs , OutputsFI ,\
227 OutputsUser) ;
228 FR : Fau l tR e c o gn i t i o n port map (Clock , Reset , I npu t s , OutputsFI ,\
229 Recovered , Las tRecove ry , E Inputs , Fau l t ,C , Recogn i t i onReady ,\
230 Address , Din ,WEn, CEn , Dout) ;
231 MEM: SyncMemory gener ic map (s ize memory , s i z e f p v e c t o r)\
232 port map (Address , Din ,WEn, CEn , Clock , Dout) ;

241

Chapter 6. Implementation of a self-repairing unit

233 RC: Recove ryCounte r port map(Clock , Reset , E Inputs , Recovered ,\
234 Las tRecove ry) ;
235 RP: Recove ryProcedure port map (Clock , Reset ,C ,\
236 S t a r t R e c o n f i g u r a t i o n , Recon f i gu r ed , I npu t sF I , OutputsCFSR ,\
237 OutputsRec , Fau l t , Recogn i t i onReady , Las tRecove ry , Recove red) ;
238 SM: StateMachine port map (Clock , Reset , I npu t s , OutputsFI , Fau l t ,\
239 Las tRecove ry , Recogn i t i onReady , Recovered , Ready , Defect ,\
240 EInputs , EOutputs) ;
241

242 end Beha v i o r a l ;

Top architecture module

Finally, in the TopArchitecture module shown in code listing 6.16, the partial reconfigurable
module CircuitForSR to be placed in a dynamic region, the module RecognizerRepairer to
be placed on a static region, and the bus macros busmacro xc4v l2r async narrow and bus-
macro xc4v r2l async narrow are first declared and then instantiated with the names CFSR,
RR, BMO and BMI respectively. The signals in code lines 107 to 110 connect the instantiated
modules using positional association. Please note that the input ports which are not used in
the BMI and BMI instances have the value of ‘1’ and the outputs which are not used are left
‘open’.

Program Code 6.16: Top architecture module

1 l i b r a r y i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3 use work . Cons tant s . a l l ;
4

5 ent i t y TopArch i t e c tu r e i s

6 port (
7 Clock : i n s t d l o g i c ;
8 Reset : i n s t d l o g i c ;
9 I n pu t sU s e r : i n s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;

10 OutputsUser : out s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0) ;
11 Defec t : out s t d l o g i c ;
12 Ready : out s t d l o g i c ;
13 Mutant : i n s t d l o g i c ;
14 Sabo t e u r I n pu t s : i n s t d l o g i c ;
15 SaboteurOutputs : i n s t d l o g i c ;
16 StuckAt1 : i n s t d l o g i c ;
17 I n j e c t i o n : i n s t d l o g i c ;
18 FaultRemoval : i n s t d l o g i c ;
19 SYSACE CLK : i n s t d l o g i c ;
20 SYSACE MPCE: out s t d l o g i c ;
21 SYSACE MPWE USB WR N: out s t d l o g i c ;
22 SYSACE MPOE USB RD N : out s t d l o g i c ;
23 SYSACE Address : out s t d l o g i c v e c t o r (6 downto 1) ;
24 SYSACE Data : out s t d l o g i c v e c t o r (15 downto 0) ;
25 SYSACE MPIRQ : i n s t d l o g i c
26) ;
27 end TopArch i t e c tu r e ;

242

6.1. Design of the self-repairing unit

28

29 a rch i t ec tu re Beha v i o r a l of TopArch i t e c tu r e i s

30 component bu smac r o x c 4 v l 2 r a s yn c n a r r ow i s

31 port (
32 i npu t0 : i n s t d l o g i c ;
33 i npu t1 : i n s t d l o g i c ;
34 i npu t2 : i n s t d l o g i c ;
35 i npu t3 : i n s t d l o g i c ;
36 i npu t4 : i n s t d l o g i c ;
37 i npu t5 : i n s t d l o g i c ;
38 i npu t6 : i n s t d l o g i c ;
39 i npu t7 : i n s t d l o g i c ;
40 output0 : out s t d l o g i c ;
41 output1 : out s t d l o g i c ;
42 output2 : out s t d l o g i c ;
43 output3 : out s t d l o g i c ;
44 output4 : out s t d l o g i c ;
45 output5 : out s t d l o g i c ;
46 output6 : out s t d l o g i c ;
47 output7 : out s t d l o g i c
48) ;
49 end component ;
50

51 component bu smac r o x c 4 v r 2 l a s yn c n a r r ow i s

52 port (
53 i npu t0 : i n s t d l o g i c ;
54 i npu t1 : i n s t d l o g i c ;
55 i npu t2 : i n s t d l o g i c ;
56 i npu t3 : i n s t d l o g i c ;
57 i npu t4 : i n s t d l o g i c ;
58 i npu t5 : i n s t d l o g i c ;
59 i npu t6 : i n s t d l o g i c ;
60 i npu t7 : i n s t d l o g i c ;
61 output0 : out s t d l o g i c ;
62 output1 : out s t d l o g i c ;
63 output2 : out s t d l o g i c ;
64 output3 : out s t d l o g i c ;
65 output4 : out s t d l o g i c ;
66 output5 : out s t d l o g i c ;
67 output6 : out s t d l o g i c ;
68 output7 : out s t d l o g i c
69) ;
70 end component ;
71

72 component C i r c u i t Fo rSR i s

73 port (
74 I n pu t s : i n s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;
75 Outputs : out s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0)
76) ;
77 end component ;
78

79 component Reco gn i z e rR epa i r e r i s

80 port (

243

Chapter 6. Implementation of a self-repairing unit

81 Clock : i n s t d l o g i c ;
82 Reset : i n s t d l o g i c ;
83 I n pu t sU s e r : i n s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;
84 OutputsUser : out s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0) ;
85 Defec t : out s t d l o g i c ;
86 Ready : out s t d l o g i c ;
87 I n p u t s C i r c u i t : out s t d l o g i c v e c t o r (s i z e i n p u t s −1\
88 downto 0) ;
89 Outpu t sC i r c u i t : i n s t d l o g i c v e c t o r (s i z e o u t p u t s −1\
90 downto 0) ;
91 Mutant : i n s t d l o g i c ;
92 Sabo t e u r I n pu t s : i n s t d l o g i c ;
93 SaboteurOutputs : i n s t d l o g i c ;
94 StuckAt1 : i n s t d l o g i c ;
95 I n j e c t i o n : i n s t d l o g i c ;
96 FaultRemoval : i n s t d l o g i c ;
97 SYSACE CLK : i n s t d l o g i c ;
98 SYSACE MPCE: out s t d l o g i c ;
99 SYSACE MPWE USB WR N: out s t d l o g i c ;

100 SYSACE MPOE USB RD N : out s t d l o g i c ;
101 SYSACE Address : out s t d l o g i c v e c t o r (6 downto 1) ;
102 SYSACE Data : out s t d l o g i c v e c t o r (15 downto 0) ;
103 SYSACE MPIRQ : i n s t d l o g i c
104) ;
105 end component ;
106

107 s i gna l InputsRR : s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;
108 s i gna l InputsFromBMI : s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;
109 s i gna l OutputsToBMO : s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0) ;
110 s i gna l OutputsBMO : s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0) ;
111

112 begin

113 CFSR : C i r c u i t Fo rSR port map (InputsFromBMI , OutputsToBMO) ;
114 RR: Re c o gn i z e rR epa i r e r port map (Clock , Reset , I npu t sUse r ,\
115 OutputsUser , Defect , Ready ,\
116 InputsRR , OutputsBMO ,\
117 Mutant , Sabo t eu r I npu t s , SaboteurOutputs , StuckAt1 ,\
118 I n j e c t i o n , Faul tRemoval ,\
119 SYSACE CLK ,SYSACE MPCE,SYSACE MPWE USB WR N,\
120 SYSACE MPOE USB RD N , SYSACE Address , SYSACE Data ,\
121 SYSACE MPIRQ) ;
122 BMI : bu smac r o x c 4 v l 2 r a s yn c n a r r ow port map (InputsRR (0) ,\
123 InputsRR (1) , InputsRR (2) , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ ,\
124 InputsFromBMI (0) , InputsFromBMI (1) , InputsFromBMI (2) ,\
125 open , open , open , open , open) ;
126 BMO: bu smac r o x c 4 v r 2 l a s yn c n a r r ow port map (OutputsToBMO (0) ,\
127 ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , ’ 1 ’ , OutputsBMO (0) ,open , open , open ,\
128 open , open , open , open) ;
129

130 end Beha v i o r a l ;

244

6.2. Simulation of the self-repairing unit

6.2 Simulation of the self-repairing unit

The module at the top of the hierarchy for describing the self-repairing unit is the TopAr-
chitecture module. Its inputs and outputs constitute the interface of the self-repairing unit
outwards. For simulating the behavior of the self-repairing unit, the inputs of the TopArchi-
tecture module can be stimulated by means of a test bench and executed by a simulator.

A test bench is also a VHDL module which has neither inputs nor outputs declared at
its interface, but the module to be simulated declared and then instantiated. A test bench
module produces stimuli for all input signals of the module to be simulated. A VHDL test
bench is very useful for debugging any VHDL module. Test benches for all modules presented
in this chapter have been created at the design time in order to debug them, however they
will not be presented here. A test bench works together with a simulator that imitates the
behavior of the circuit described in the module to be simulated. A simulator allows to observe
in a command-line interface and/or a graphical user interface the output signals of the module
to be simulated. ISIM, a simulator from Xilinx, allows to see the input and output signals at
the interface, the internal signals and the variables of the module to be simulated.

The module named TopArchitectureTB, shown in code listing 6.17, has been created as test
bench of the module TopArchitecture in order to verify the behavior of the self-repairing unit,
the fault injector and the partial reconfiguration procedure. In the test bench TopArchitec-
tureTB, the module TopArchitecture has been firstly declared as a component an then it has
been instantiated, as can be seen in the code lines 9 to 29 and 53 to 59. Please note that all
its inputs and outputs had also to be declared as signals, as can be seen in code lines 31 to
48. In code lines 50 and 61, the signal Reconfigured has been declared and then its value has
been assigned to the signal SYSACE MPIRQ in order to handle with a more clear term and
to deploy a simulation independent of the development platform being used.

Program Code 6.17: Top architecture test bench

1 l i b r a r y i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3 use work . Cons tant s . a l l ;
4

5 ent i t y TopArch i tectureTB i s

6 end TopArch i tectureTB ;
7

8 a rch i t ec tu re Beha v i o r a l of TopArch i tectureTB i s

9 component TopArch i t e c tu r e i s

10 port (
11 Clock : i n s t d l o g i c ;
12 Reset : i n s t d l o g i c ;
13 I n pu t sU s e r : i n s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;
14 OutputsUser : out s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0) ;
15 Defec t : out s t d l o g i c ;
16 Ready : out s t d l o g i c ;
17 Mutant : i n s t d l o g i c ;
18 Sabo t e u r I n pu t s : i n s t d l o g i c ;
19 SaboteurOutputs : i n s t d l o g i c ;
20 StuckAt1 : i n s t d l o g i c ;
21 I n j e c t i o n : i n s t d l o g i c ;
22 FaultRemoval : i n s t d l o g i c ;

245

Chapter 6. Implementation of a self-repairing unit

23 SYSACE MPCE: out s t d l o g i c ;
24 SYSACE MPWE USB WR N: out s t d l o g i c ;
25 SYSACE MPOE USB RD N : out s t d l o g i c ;
26 SYSACE Address : out s t d l o g i c v e c t o r (6 downto 1) ;
27 SYSACE Data : out s t d l o g i c v e c t o r (15 downto 0) ;
28 SYSACE MPIRQ : i n s t d l o g i c
29) ;
30 end component ;
31 s i gna l Clock : s t d l o g i c := ’0 ’ ;
32 s i gna l Reset : s t d l o g i c ;
33 s i gna l I n pu t sU s e r : s t d l o g i c v e c t o r (s i z e i n p u t s −1 downto 0) ;
34 s i gna l OutputsUser : s t d l o g i c v e c t o r (s i z e o u t p u t s −1 downto 0) ;
35 s i gna l Defec t : s t d l o g i c ;
36 s i gna l Ready : s t d l o g i c ;
37 s i gna l Mutant : s t d l o g i c ;
38 s i gna l Sabo t e u r I n pu t s : s t d l o g i c ;
39 s i gna l SaboteurOutputs : s t d l o g i c ;
40 s i gna l StuckAt1 : s t d l o g i c ;
41 s i gna l I n j e c t i o n : s t d l o g i c ;
42 s i gna l FaultRemoval : s t d l o g i c ;
43 s i gna l SYSACE MPCE: s t d l o g i c ;
44 s i gna l SYSACE MPWE USB WR N: s t d l o g i c ;
45 s i gna l SYSACE MPOE USB RD N : s t d l o g i c ;
46 s i gna l SYSACE Address : s t d l o g i c v e c t o r (6 downto 1) ;
47 s i gna l SYSACE Data : s t d l o g i c v e c t o r (15 downto 0) ;
48 s i gna l SYSACE MPIRQ : s t d l o g i c ;
49

50 s i gna l Recon f i gu r ed : s t d l o g i c ;
51

52 begin

53 TA: TopArch i t e c tu r e port map (Clock , Reset ,\
54 I npu t sUse r , OutputsUser ,\
55 Defect , Ready ,\
56 Mutant , Sabo t eu r I npu t s , SaboteurOutputs , StuckAt1 ,\
57 I n j e c t i o n , Faul tRemoval ,\
58 SYSACE MPCE,SYSACE MPWE USB WR N,SYSACE MPOE USB RD N ,\
59 SYSACE Address , SYSACE Data , SYSACE MPIRQ) ;
60

61 SYSACE MPIRQ <= Recon f i gu r ed ;
62

63 Clock <= not Clock a f t e r 0 .1 ns ;
64

65 STIMULUS : process

66 begin

67

68 −− i n i t i a l v a l u e s (f a u l t y c i r c u i t)
69 Reset <= ’ 0 ’ ;
70 I n pu t sU s e r <= ”010” ;
71 Mutant <= ’ 0 ’ ;
72 Sabo t e u r I n pu t s <= ’ 0 ’ ;
73 SaboteurOutputs <= ’ 0 ’ ;
74 StuckAt1 <= ’ 0 ’ ;
75 I n j e c t i o n <= ’ 0 ’ ;

246

6.2. Simulation of the self-repairing unit

76 FaultRemoval <= ’ 0 ’ ;
77 Recon f i gu r ed <= ’ 0 ’ ;
78 wait fo r 16ns ;
79

80 −− r e s e t
81 Reset <= ’ 1 ’ ;
82 wait fo r 2ns ;
83 Reset <= ’ 0 ’ ;
84 wait fo r 16ns ;
85

86 −− change o f i n p u t s (f i r s t r e c o v e r y)
87 I n pu t sU s e r <= ”111” ;
88 wait fo r 33ns ;
89

90 −− s a bo t e u r i n p u t s
91 Sabo t e u r I n pu t s <= ’ 1 ’ ;
92 StuckAt1 <= ’ 0 ’ ;
93 wait fo r 3ns ;
94 I n j e c t i o n <= ’ 1 ’ ;
95 wait fo r 2ns ;
96 I n j e c t i o n <= ’ 0 ’ ;
97 wait fo r 3ns ;
98 FaultRemoval <= ’ 1 ’ ;
99 wait fo r 2ns ;

100 FaultRemoval <= ’ 0 ’ ;
101 wait fo r 3ns ;
102 Sabo t e u r I n pu t s <= ’ 0 ’ ;
103 wait fo r 10ns ;
104 Reset <= ’ 1 ’ ;
105 wait fo r 2ns ;
106 Reset <= ’ 0 ’ ;
107 wait fo r 20ns ;
108

109 −− s a bo t e u r ou tpu t s
110 SaboteurOutputs <= ’ 1 ’ ;
111 StuckAt1 <= ’ 0 ’ ;
112 wait fo r 3ns ;
113 I n j e c t i o n <= ’ 1 ’ ;
114 wait fo r 2ns ;
115 I n j e c t i o n <= ’ 0 ’ ;
116 wait fo r 13ns ;
117 SaboteurOutputs <= ’ 0 ’ ;
118 wait fo r 10ns ;
119 Reset <= ’ 1 ’ ;
120 wait fo r 2ns ;
121 Reset <= ’ 0 ’ ;
122 wait fo r 18ns ;
123

124 −− mutant
125 Mutant <= ’ 1 ’ ;
126 wait fo r 3ns ;
127 I n j e c t i o n <= ’ 1 ’ ;
128 wait fo r 2ns ;

247

Chapter 6. Implementation of a self-repairing unit

129 I n j e c t i o n <= ’ 0 ’ ;
130 wait fo r 10ns ;
131 FaultRemoval <= ’ 1 ’ ;
132 wait fo r 2ns ;
133 FaultRemoval <= ’ 0 ’ ;
134 wait fo r 3ns ;
135 Mutant <= ’ 0 ’ ;
136 wait fo r 10ns ;
137 Reset <= ’ 1 ’ ;
138 wait fo r 2ns ;
139 Reset <= ’ 0 ’ ;
140 wait fo r 12ns ;
141

142 −− p a r t i a l r e c o n f i g u r a t i o n
143 I n pu t sU s e r <= ”011” ;
144 wait fo r 5ns ;
145 SaboteurOutputs <= ’ 1 ’ ;
146 StuckAt1 <= ’ 0 ’ ;
147 wait fo r 3ns ;
148 I n j e c t i o n <= ’ 1 ’ ;
149 wait fo r 2ns ;
150 I n j e c t i o n <= ’ 0 ’ ;
151 wait fo r 5ns ;
152 Recon f i gu r ed <= ’ 1 ’ ;
153 wait fo r 2ns ;
154 Recon f i gu r ed <= ’ 0 ’ ;
155 wait fo r 10ns ;
156 FaultRemoval <= ’ 1 ’ ;
157 wait fo r 2ns ;
158 FaultRemoval <= ’ 0 ’ ;
159 wait fo r 10ns ;
160 Recon f i gu r ed <= ’ 1 ’ ;
161 wait fo r 2ns ;
162 Recon f i gu r ed <= ’ 0 ’ ;
163 wait fo r 3ns ;
164 SaboteurOutputs <= ’ 0 ’ ;
165 wait fo r 8ns ;
166

167 wait ;
168 end process ;
169

170 end ;

In code line 63 of code listing 6.17 a clock signal with a frequency of 50 MHz is produced.
That frequency is obtained because that signal switches from ‘0’ to ‘1’ and vice versa each
nanosecond, producing a signal with period of 2 nanoseconds. Then, inverting the period, a
frequency of 50 MHz is obtained as follows: Frequency = 1

Period = 1
2 ns = 50 MHz.

The process STIMULUS shown in code line 65 contains the sequential assertion of the input
signals to desired values. Once the input signals are asserted to initial values, as can be seen
in code lines 69 to 77, the VHDL construct wait for, shown in code line 78, serves for having
asserted that inputs to a determined value a time length, in this case 3 nanoseconds, before
the inputs are asserted to a new value.

248

6.2. Simulation of the self-repairing unit

Table 6.1: Circuit for self-repairing truth table

C B A C C · B C · A (C · B) + (C · A) (C · A) + 0

0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 1 0 1 1
0 1 1 1 1 0 1 1
1 0 0 0 0 0 0 0
1 0 1 0 0 1 1 0
1 1 0 0 0 0 0 0
1 1 1 0 0 1 1 0

The assertions in code lines 68 to 165 have been done in the way to verify the operation
of the self-repairing circuit, the operation of the fault injector and the recovery mechanism
using reconfiguration. Running with the ISIM simulator the test bench presented in code
listing 6.17, the simulation shown in figure 6.13 is obtained. Please take in mind that by
running the ISIM simulator under Linux, it has been necessary to bypass the bus macros in
the TopArchitecture module, since the bus macro files could not be interpreted by the ISIM
simulator correctly giving out undefined signal values by the simulation.

The circuit for self-repairing has the Boolean formula (C·B)+(C·A), whose gate diagram and
truth table is shown in figure 6.14 and table 6.1 respectively. In code line 70 of code listing
6.17 the InputsUser are asserted to the initial value of ‘010’. A faulty circuit for self-repairing
with an stuck-at-0 at the output of the AND gate C · A, is present at the very beginning. In
the simulation shown in figure 6.13 the output OutputsUser has a correct value of ‘1’ since for
a non-faulty as for a faulty circuit for self-repairing the output is the same, as can be seen in
the truth table 6.1. Therefore, the stuck-at-0 fault at the output of the AND gate C · A is not
an active fault and can be called a dormant fault, because it produces a latent error which
can not be detected, those terms has been taken from [Avižienis et al., 1992]. Please note
that the signal Ready goes down at the beginning. That signal goes down when the module
FaultRecognition checks whether the outputs of the circuit for self-repairing are correct.

In code line 81 of code listing 6.17, the Reset signal is asserted to ‘1’. A reset triggers also
a fault recognition which happens when the signal Ready goes down. After the signal Reset
is set to ‘1’, fault recognition is triggered. During that time, the signals at OutputsUser are
neither driven to a logical ‘1’ not to a logical ‘0’, state named as floating or of high impedance
because the signals have high voltage and allow to pass very small amount of current through,
please see [Wikipedia, 2012]. That state is marked by a ‘Z’ at the simulation shown in figure
6.13.

In code line 87 of code listing 6.17, the signal InputsUser are changed to the binary value
‘111’. A change at the inputs of the circuit for self-repairing triggers fault recognition shown
by a low signal at Ready. Since for that inputs the dormant stuck-at-0 fault at the output
of the AND gate (C · A) + 0 becomes active, a fault is found by the FaultRecognition module
as can be seen by the signal Fault in figure 6.13. Then, recovery is performed by the module
which description has been shown in code listing 6.7 replacing the circuit for self-repairing
by the redundant circuit CircuitForSRX, which is fault free. The signal Recovered, shows that
the recovery is finished. The signal Ready goes again up showing that the recovery has been

249

Chapter 6. Implementation of a self-repairing unit

F
ig

u
re

6.
13

:
S
im

u
la

ti
on

of
th

e
se

lf
-r

ep
ai

ri
n
g

ci
rc

u
it

250

6.2. Simulation of the self-repairing unit

ABC

Figure 6.14: Circuit for self-repairing

Table 6.2: Fault vectors with recovery mechanisms

Self Recovery procedure Inputs Outputs

0 110 000 1
0 110 001 1
0 110 010 0
0 101 011 0
0 011 100 1
0 011 101 0
0 011 110 1
0 011 111 0

1 110 000 0
1 110 001 0
1 110 010 1
1 101 011 1
1 011 100 0
1 011 101 1
1 011 110 0
1 011 111 1

Recovery procedure ’101’ means partial reconfiguration.

Recovery procedure ’110’ and ’011’ mean redundancy.

successful since a new fault recognition finds no faults anymore. The recovery procedure
using a redundant module has been selected by the RecoveryProcedure module based on the
field corresponding to the recovery procedure saved on the fault vectors in the constants file
Constants presented in subsection 6.1.1 and shown in table 6.2.

The simulation from 50 000 ps to 100 000 ps, shown in figure 6.13, intends to show the
behavior of the self-repairing circuit by inserting a stuck-at-0 fault at one of its inputs using
a saboteur as fault injector. For that, the signal SaboteurInputs is set to ‘1’ and the fault is
injected by rising the signal Injection. That fault is detected as can be seen at the internal
signal Fault and then recovered, as can be seen at the internal signal Recovered. The fault is
removed after the second recovery rising the signal FaultRemoval. Therefore, a third recovery
is not executed and the signal Ready becomes the value of ‘1’ again.

The simulation from 100 000 ps to 150 000 ps shown in figure 6.13, shows the behavior
of the self-repairing circuit by inserting a stuck-at-0 fault at one of its outputs using also
a saboteur as fault injector. Here, the signal SaboteurOutputs is set to ‘1’ and the fault is

251

Chapter 6. Implementation of a self-repairing unit

injected by rising the signal Injection. That fault is detected as can be seen at the internal
signal Fault and then recovered, as can be seen at the internal signal Recovered. The fault
has been recovered three times, but since a fault is found a fourth time, the signal Defect is
raised to ‘1’. The injected fault can be removed in the simulation, only by rising to ‘1’ the
signal Reset.

The simulation from 150 000 ps to 200 000 ps shown in figure 6.13, shows the behavior of
the self-repairing circuit by inserting a fault into the circuit using as fault injector a mutant of
that circuit. The mutant delivers an output of ‘0’ in any case. For that, the signal Mutant is
set to ‘1’ and the fault is injected by rising the signal Injection. That fault is detected as can
be seen at the internal signal Fault and then recovered, as can be seen at the internal signal
Recovered. The fault is recovered three times, but since a fault is found a fourth time, the
signal Defect is raised to ‘1’. The injected fault can be removed in this case, only by rising
to ‘1’ the signal Reset.

The simulation from 200 000 ps to 250 000 ps shown in figure 6.13, shows how the circuit
can be recovered by using partial reconfiguration. Partial reconfiguration is the recovery
mechanism when finding a fault under inputs ‘011’, and has been encoded to the binary value
of ‘101’ and stored in memory as shown in table 6.2 and code listings 6.9 and 6.6. The
recovery procedure ‘101’ triggers partial reconfiguration in the module RecoveryProcedure
setting to ‘1’ the signal StartReconfiguration. For the simulation, a fault at the outputs is
introduced by means of a saboteur. The fault is recognized and then the recovery mechanism
of partial reconfiguration is triggered. The module RecoveryProcedure waits for the signal
Reconfigured, which is set to ‘1’ thereafter. However, since the fault is not removed, the module
FaultRecognition finds the fault again, and the recovery by means of partial reconfiguration is
triggered again. Before the signal Reconfigured is raised, the fault is removed by setting to ‘1’
the signal FaultRemoval, as can be seen in code line 156 of code listing 6.17. Therefore, after
the signal Reconfigured is raised again, the signal Ready is raised indicating that the system
has been successfully recovered and the outputs for the given inputs are correct.

6.3 Implementation of the self-repairing unit

Once a successful simulation of the self-repairing circuit has been executed, its implementation
in hardware can be started. The implementation of a VHDL design on a Xilinx FPGA
requires: to synthesize the VHDL top module using the XST tool for creating a Xilinx-
specific netlist file with the extension .ngc, taken from the term Native Generic Circuit; to
create a constraints file of the top module with the extension .ucf, taken from the term User
Constraints File, using a text editor or the tools Floorplanner or PlanAhead; to translate
the netlist file to a file with extension .ngd, taken from the term Native Generic Database,
that contains a logical description of the design using AND/OR gates, decoders, flip-flops
and RAMs, using the NGDBuild program that requires as inputs the busmacro files with
extension .nmc and the created constraints file with the extension .ucf; to map the logical
description of the design to the FPGA hardware using the MAP program, which gives as
output a file with extension .ncd, taken from the term Native Circuit Description; to place
and route the mapped design using the PAR program getting a file with the same extension
.ncd; to generate a bitstream for the Xilinx FPGA configuration using the BITGen program
getting a binary file with the extension .bit; and to download the binary file into the FPGA
memory cells using the iMPACT configuration tool. For more information please see the

252

6.3. Implementation of the self-repairing unit

Xilinx Development System Reference Guide [Xilinx, 2005] or its updated Command Line
Tools User Guide [Xilinx, 2009a] and the XST User Guide [Xilinx, 2009f].

The implementation of a VHDL design considering partial reconfiguration requires to ex-
ecute a different implementation flow that entails to synthesize, translate, map, place and
route the static, reconfigurable and top modules separately and then merge them together for
generating the binary files for being downloaded into the FPGA. For executing that imple-
mentation flow, the program Early-Access form Xilinx is required. Then it is necessary to
prepare a by Xilinx recommended project directory structure containing the folders: non pr
with subdirectories for implementing non-partial reconfigurable versions of the design for
testing its functioning before inserting partial reconfiguration; synth with subdirectories for
synthesizing separately the top, static and reconfigurable modules; prm with subdirectories
for the translation, map, place and route of each partial reconfigurable module; static for the
translation, map, place and route of the static modules; top for the translation of the top
module; merges with subdirectories for the verification and assemble of the static modules
with each of the partial reconfigurable modules, step which gives the binary files out for
downloading into the FPGA; and finally and option folder data containing the VHDL files of
all modules and the busmacro files. For more information please see the Early Access Partial
Reconfiguration User Guide [Xilinx, 2008], the Command Line PR Implementation document
[Xilinx, 2006a], the Partial reconfiguration Design with PlanAhead manual [Xilinx, 2007] or
the newer updated partial Reconfiguration User Guide [Xilinx, 2010].

For simplifying the whole implementation process, the architecture for self-repairing has
been conceived to contain a single static module, the RecognizerRepairer module, and a single
partial reconfigurable module, the CircuitForSR module. Then, the top module has those two
modules instantiated with the names RR and CFSR, and the bus macros with the names BMI
and BMO. In the user constraints file shown in code listing 6.18, which has been created
with a text editor, location constraints have been declared. First of all the signal Clock
has been connected to the SYSCLK having the label AE14, as can be seen in the code line
1, which is the output of a crystal oscillator available in the development board and gives
a signal of 100 MHz, please see the documents [Xilinx, 2006c] and [Xilinx, 2004] for more
information. The inputs and outputs of the circuit for self-repairing, the Reset, Defect and
Ready signals, and the signals for fault injection have been located in the way of having them
connected to the available I/O pins of the expansion I/O connector J6 of the development
board documented in [Xilinx, 2006c], please see code lines 3 to 15 of code listing 6.18. The
three line Inputs, StuckAt1, SaboteursInputs, SaboteursOutputs, and Mutant signals, have
been connected externally to toggle switches in a breadboard, please see figure 6.15; the
Reset, FaultRemoval and Injection signals, have been connected externally to push-button
switches; and the one line Outputs, Defect and Ready signals have been connected externally
to leds lying on the breadboard. The inputs and outputs serving for the execution of partial
reconfiguration are located to the corresponding FPGA I/O pins which connect to the System
ACE controller in the development board, shown in the schematics of the development board
[Xilinx, 2004] and declared in code lines 17 to 43 of code listing 6.18.

In order to separate the FPGA resources used for the static region from the resources
used for the dynamic region, physical constraints for mapping, placement and routing are
necessary. That is possible using the AREA GROUP constraint which allows to partition the
design into physical regions by declaring labels for each region, for more details please refer
to [Xilinx, 2009b] and [Xilinx, 2008]. It is demanding to declare AREA GROUP constraints
for each reconfigurable region. Therefore, the instance CFSR of the circuit for self-repairing

253

Chapter 6. Implementation of a self-repairing unit

FPGA board

StartReconfiguration Reconfigured

Mutant SaboteurInputs SaboteurOutputs Stuck−at−1

Inputs Output Ready Defect Reset

Injection FaultRemoval

Figure 6.15: FPGA board and breadboard for the hardware implementation

254

6.3. Implementation of the self-repairing unit

has been declared as the area group AG CFSR, for which the physical range of slices with the
lower left corner X26Y0 and upper right corner X45Y125 has been reserved, as can be seen
in code line 49. That has been possible thanks to the a graph of the FPGA which can be
produced by the program PlanAhead. Slices contain look-up tables and flip-flops, if RAM
memory, multipliers or other kind of logic is required in the reconfigurable region, constraints
for that logic are also necessary. Since the circuit for self-repairing is a simple combinational
circuit, the RANGE declaration for slices is enough. Now, the instances of the bus macros BMI
and BMO which connect the inputs and outputs of the circuit for self-repairing with the static
part of the design are located physically in the FPGA to the slices with coordinates X24Y122
and X24Y120 respectively, as can be see in code lines 52 and 53. The mode of the area group
AG CFSR is declared with RECONFIG for preventing that the NGDBuild reports errors at
the time of translating the design [Xilinx, 2008], as can be seen in code line 50. The instance
RR of the module ReconfiguratorRepairer to be placed in a static region has been declared as
the area group AG RR in code line 55. However, no information about a defined placement
into the FPGA for that area group is provided in this constraints file since it is not necessary
for a static region, [Xilinx, 2008].

Program Code 6.18: Constrains file

1 NET ”Clock” LOC = ”AE14” ;
2

3 NET ”Rese t ” LOC = ”AA24” ;
4 NET ” Defec t ” LOC = ”V20” ;
5 NET ”Ready” LOC = ”AC25” ;
6 NET ” FaultRemoval ” LOC = ”AC24” ;
7 NET ”OutputsUser (0) ” LOC = ”Y24” ;
8 NET ” I n pu t sU s e r (0) ” LOC = ”Y26” ;
9 NET ” I n pu t sU s e r (1) ” LOC = ”W26” ;

10 NET ” I n pu t sU s e r (2) ” LOC = ”AB23” ;
11 NET ” I n j e c t i o n ” LOC = ”AB25” ;
12 NET ”StuckAt1 ” LOC = ”AD23” ;
13 NET ” SaboteurOutputs” LOC = ”AC26” ;
14 NET ” Sabo t e u r I n pu t s” LOC = ”AD26” ;
15 NET ”Mutant” LOC = ”AC22” ;
16

17 NET ”SYSACE CLK” LOC = ”AF11” ;
18 NET ”SYSACE MPCE” LOC = ”AD5” ;
19 NET ”SYSACE MPWE USB WR N” LOC = ”Y8” ;
20 NET ”SYSACE MPOE USB RD N” LOC = ”AA8” ;
21 NET ”SYSACE MPIRQ” LOC = ”AD4” ;
22 NET ”SYSACE Address (1) ” LOC = ”Y10” ;
23 NET ”SYSACE Address (2) ” LOC = ”AA10” ;
24 NET ”SYSACE Address (3) ” LOC = ”AC7” ;
25 NET ”SYSACE Address (4) ” LOC = ”Y7” ;
26 NET ”SYSACE Address (5) ” LOC = ”AA9” ;
27 NET ”SYSACE Address (6) ” LOC = ”Y9” ;
28 NET ”SYSACE Data (0) ” LOC = ”AB7” ;
29 NET ”SYSACE Data (1) ” LOC = ”AC9” ;
30 NET ”SYSACE Data (2) ” LOC = ”AB9” ;
31 NET ”SYSACE Data (3) ” LOC = ”AE6” ;
32 NET ”SYSACE Data (4) ” LOC = ”AD6” ;

255

Chapter 6. Implementation of a self-repairing unit

33 NET ”SYSACE Data (5) ” LOC = ”AF9” ;
34 NET ”SYSACE Data (6) ” LOC = ”AE9” ;
35 NET ”SYSACE Data (7) ” LOC = ”AD8” ;
36 NET ”SYSACE Data (8) ” LOC = ”AC8” ;
37 NET ”SYSACE Data (9) ” LOC = ”AF4” ;
38 NET ”SYSACE Data (10) ” LOC = ”AE4” ;
39 NET ”SYSACE Data (11) ” LOC = ”AD3” ;
40 NET ”SYSACE Data (12) ” LOC = ”AC3” ;
41 NET ”SYSACE Data (13) ” LOC = ”AF6” ;
42 NET ”SYSACE Data (14) ” LOC = ”AF5” ;
43 NET ”SYSACE Data (15) ” LOC = ”AA7” ;
44 % NET ”FPGA DONE” LOC = ”H14” ;
45 % NET ”FPGA PROG B” LOC = ”H15” ;
46 % NET ”FPGA INIT” LOC = ”G15” ;
47

48 INST ”CFSR” AREA GROUP = ”AG CFSR” ;
49 AREA GROUP ”AG CFSR” RANGE = SLICE X26Y0 : SLICE X45Y125 ;
50 AREA GROUP ”AG CFSR” MODE = RECONFIG;
51

52 INST ”BMI” LOC = ”SLICE X24Y122” ;
53 INST ”BMO” LOC = ”SLICE X24Y120” ;
54

55 INST ”RR” AREA GROUP = ”AG RR” ;

During synthesis it is advisable to select a Hamming-3 encoding for the states of state
machines. This feature is available in the Synopsis tools. It allows the automatic detection and
correction of a single bit in the states of the state machine. The error detection and correction
circuitry is automatically added by the tool. For more information please see [Sutton, 2012].
The XST synthesis tool from Xilinx does not include such a feature. Instead, it has an option
for selecting the type of state machine encoding that the synthesis tool should use. Among
others, the Gray encoding is available, which allows to have glitchless state machine output
signals, or the one-hot encoding which allows to get a faster circuit using a flip-flop per state.
Using a single flip-flop per state in a state machine sometimes reduces the circuitry of the
next state and output logic, reason why the circuit delivers the outputs faster, please see
[Brown and Vranesic, 2005]. The encoding of the states of the state machine can be also
specified explicitly in the VHDL design declaring the states as constants with binary values
reflecting the desired encoding, for more information please refer to [Pellerin and Taylor,
1996]. As an alternative, the synthesis program XST from Xilinx offers an option named
safe implementation, which makes the synthesis program to implement the state machines in
safe mode. Safe mode means that if the state machine enters in an invalid state, additional
logic forces the state machine to go to a safe recovery state which can be defined previously
in the VHDL design or can be the reset state taken by the synthesis program as the recovery
state, for more information please see [Xilinx, 2009f]. The design has been synthesized with
the safe implementation mode enabled and with the Gray encoding for the states of the state
machine.

The synthesis of the RecognizerRepairer module reported a resource consumption of 154
slices, 158 slice flip flops and 260 4-inputs LUTs. The modules CircuitForSR and TopArchitec-
ture has been also synthesized. And then all modules have been translated, mapped, placed
and routed separately and then merged, following the implementation of a VHDL design con-
sidering partial reconfiguration described above. The binary files of the static region and the

256

6.4. Performance of the self-repairing unit

partial reconfigurable modules for the dynamic region are created during the merging pro-
cess that uses the programs PR verifydesign and PR assemble of the Early Access suite.
Those programs are run using the static module with each one of the partial reconfigurable
modules. The obtained binary files can be downloaded into the FPGA by using the iMPACT

program. The self-partial reconfiguration has been planned so that the FPGA gets the partial
bit files of the circuit to be partially reconfigured from a CompactFlash card inserted in the
development board. In that case, the partial bit files have to be converted to .ace files by
means of the GenACE program which usage is described in the Embedded System Tools
Reference Manual from Xilinx [Xilinx, 2009c]. Since the self-partial reconfiguration could not
be tested due to bugs in hardware of the development platform, the partial reconfiguration
has been executed using the iMPACT program each time the StartReconfiguration signal
was raised and visualized through a led wired in a breadboard. After the partial reconfiguring
of the circuit, the Reconfigured signal has been raised using an externally wired push-button.
The self-repairing feature of the self-repairing circuit could be successfully tested completely
using redundancy as verified in the simulation.

6.4 Performance of the self-repairing unit

The performance of the self-repairing circuit can be measured by the Mean Time To Recognize
a Fault plus the Mean Time To Recovery as shown graphically in figure 6.16. The MTTRF
is the time since a fault is present in the circuit until it is recognized. It is dependent on the
place on which a fault pattern vector that recognizes that fault is present in the fault pattern
vector set in memory. When many fault pattern vectors recognize that fault, the place of
the first fault pattern vector that recognizes that fault determines the time when the fault is
going to be recognized. The worst case is when the first fault pattern vector that recognizes a
fault is placed at the end of the fault pattern vector set in memory. Therefore, the number of
fault pattern vectors in the fault pattern vector set gives the worst time to recognize a fault.
If the fault pattern vector set is compact and has a good fault coverage, the fault can be
recognized faster and the fault recovery can take place soon thereafter. It would be advisable
to place the fault pattern vectors that recognize critical faults at the beginning of the set
in memory in the way the respective critical faults are recognized earlier. For example the
recovery mechanism for a stuck-at-0 fault at the output of the AND gate C · A of the tiny
circuit taken as example is placed in third place in memory, as can be seen in table 6.2. Fact
that reduces the MTTRF for that fault.

Another approach can be to use a Content-Addressable Memory, in short CAM, for storing
the fault pattern vectors. By such a memory, it is not given a memory address for reading a
data word at that position in the memory, instead a data word is provided for being matched
with the data stored in the memory and then the address of the data that matches the
given data word is given as output. That kind of memory is expensive since comparators
are necessary, the more comparators are used in parallel the faster the memory gives the
address of the matching word. Content-Addressable Memory can be designed in FPGAs
as described in the application notes of Xilinx [Xilinx, 2000] and Actel [ACTEL, 2003]. The
programmable logic devices APEX from Altera for Systems-on-a-Programmable-Chip provide
dedicated circuitry for CAMs [Altera, 1999]. However, the size of the memory is limited by the
resources of the FPGA or the available dedicated circuitry. Fact that justify the reduction
of the number of fault pattern vectors and their dimension that are going to be stored in

257

Chapter 6. Implementation of a self-repairing unit

Fault Injection Fault Recognition Fault Recovery

Fault Recovery

MTTRF MTTR

Recognized Fault

Figure 6.16: Performance measurement

memory for fault recognition.

Such a parallel comparison of the input vector with the input pattern vectors has been taken
place in the input vectors monitoring block shown in figure 5.22 for a combinational circuit for
self-repairing. In that case, the fault recognition is executed concurrently and the MTTRF
is equal to the time the combinational logic for the output vector compaction, if present,
and the output vectors comparison takes for reporting a fault. It can be assumed that the
fault recognition designed in that way is the fastest and the most resource efficient. However
such a design is limited to fault vectors with binary elements and does not comprise fault
recovery assignment. Fault recognition by system on chips controlled by microcontrollers or
microprocessors could apply associative arrays or hashing techniques implemented in software,
please see [Wikipedia, 2012], which are usually supported again by a hardware Content-
Addressable Memory.

In [Sharma and Saluja, 1988] the computation of the time required for test completion is
presented. That time is the time required for testing a circuit with the whole set of available
testing vectors in memory. Computing that time for a self-repairing circuit is not the main
objective as it is by self-testing circuits. In a self-repairing circuit, important is to perform
fault recovery when a single fault is recognized by means of the stored set of fault pattern
vectors. Reason why only active faults can be recognized and dormant ones not.

The Mean Time to Recovery shown in figure 6.16 depends on the available recovery meth-
ods. The time partial reconfiguration takes depends on the type of FPGA, e.g. Virtex 4,
the configuration mode and interface used for reconfiguring that FPGA [Xilinx, 2009e], e.g.
JTAG, the type of memory from where the partial bitstream is taken, e.g. CompactFlash,
and the size of the partial bitstream which is proportional to the size of the circuit to be
reconfigured. By using redundancy for recovery, switching to a redundant circuit requires less
time than partial reconfiguration, however, it demands resources of the FPGA, increasing in
that way the resource consumption of the self-repairing circuit.

6.5 Conclusions

This chapter presented in detail the design and implementation of the framework for self-
repairing a unit having taken as an example a tiny combinational circuit. The resource
consumption of the RecognizerRepairer module is a parameter which should not vary much
when being used for larger circuits. The self-repairing design, presented in this chapter can
be used as a template for other circuits, which has been the intention of this thesis. Due to
bugs in the available development board, partial reconfiguration has been proved to work but
self-partial reconfiguration could not completely be debugged and demonstrated functioning.
The self-repairing functionality of the framework using redundancy has been fully proved to

258

6.6. Bibliography

work.

6.6 Bibliography

ACTEL (2003). Content-Addressable Memory (CAM) in Actel Devices. Application Note
AC194.

Altera (1999). CAM Comparison: APEX 20KE vs. Virtex-E Devices. Technical Brief 61.

Avižienis, A., Kopetz, H., and Laprie, J. C., editors (1992). Dependability: Basic Concepts
and Terminology, volume 5 of Dependable Computing and Fault-Tolerant Systems. Springer.

Baraza, J. C., Gracia, J., Gil, D., and Gil, P. J. (2005). Improvement of Fault Injection
Techniques Based on VHDL Code Modification. In 10th International Conference on High-
Level Design Validation and Test Workshop, pages 19–26. IEEE.

Becker, M., Kuznik, C., Joy, M. M., Xie, T., and Mueller, W. (2012). Binary Mutation
Testing Through Dynamic Translation. In 42nd International Conference on Dependable
Systems and Networks - DSN 2012, pages 1–12. IEEE.

Brown, S. and Vranesic, Z. (2005). Fundamentals of Digital Logic with VHDL Design.
Mcgraw-Hill, second edition.

Burke, G. and Taft, S. (2004). Fault Tolerant State Machines. In MALPD 2004.

Chakraborty, T. J. and Chiang, C.-H. (2002). A novel fault injection method for system
verification based on FPGA boundary scan architecture. In International Test Conference
- ITC 2002, pages 923–929.

Christoph Steiger, H. W., Platzner, M., and Thiele, L. (2003). Online Scheduling and Place-
ment of Real-time Tasks to Partially Reconfigurable Devices. In 24th Real-Time Systems
Symposium - RTSS 2003, pages 224–225. IEEE.

Chu, P. P. (2006). RTL Hardware Design Using VHDL: Coding for Efficiency, Portability,
and Scalability. John Wiley & Sons.

Dibaj, P. (2010). Hardware Fault Recognition Unit. Bachelor’s thesis, University of Pader-
born.

Dittmann, F. (2008). Methods to Exploit Reconfigurable Fabrics. PhD thesis, University of
Paderborn.

Dye, D. (2012). Partial Reconfiguration of Xilinx FPGAs Using ISE Design Suite. Xilinx
White Paper: Virtex-4, Virtex-5, Virtex-6, and 7 Series FPGAs.

Hosseinimehr, M. (2010). Implementation of a Singular Value Decomposition Module on an
FPGA. Master’s thesis, University of Paderborn.

Jenn, E., Arlat, J., Rimbn, M., Ohlsson, J., and Karlsson, J. (1994). Fault Injection into
VHDL Models: The MEFISTO Tool. In 24th International Symposium on Fault-Tolerant
Computing - FTCS 24, pages 66–75.

259

Bibliography

Kastensmidt, F. L., Carro, L., and Reis, R. (2006). Fault-Tolerance Techniques for SRAM-
Based FPGAs. Frontiers in Electronic Testing. Springer.

Misera, S. A. and Sieber, A. (2007). Fehlerinjektionstechniken in SystemC-Beschreibungen
mit Gate- und Switch-Level-Verhalten. In Dresdner Arbeitstagung für Schaltungs- und
Systementwurf - DASS 2007. TUD Press.

Montealegre, N. and Rammig, F. J. (2008). Immuno-repairing of FPGA designs. In Hinchey,
M., Pagnoni, A., Rammig, F. J., and Schmeck, H., editors, 20th World Computer Congress,
2nd International Conference on Biologically-Inspired Collaborative Computing, volume
268, pages 137–149. Springer.

Montealegre, N. and Rammig, F. J. (2010). Dynamic Partial Reconfiguration by Means of
Algorithmic Skeletons - A Case Study. In Platzner, M., Teich, J., and Wehn, N., editors, Dy-
namically Reconfigurable Systems: Architectures, Design Methods and Applications, pages
183–198. Springer.

Pellerin, D. and Taylor, D. (1996). VHDL Made Easy. Prentice Hall.

Purna, K. M. G. and Bhatia, D. (1999). Temporal Partitioning and Scheduling Data Flow
Graphs for Reconfigurable Computers. Transactions on Computers, 48(6):579–590. IEEE.

Sharma, R. and Saluja, K. K. (1988). An Implementation and Analysis of a Concurrent Built-
In Self-Test Technique. In 18th International Symposium on Fault-Tolerant Computing -
FTCS 18, pages 164–169.

Sterpone, L. and Violante, M. (2007). A New Partial Reconfiguration-Based Fault-Injection
System to Evaluate SEU Effects in SRAM-Based FPGAs. Transactions on Nuclear Science,
54(4):965–970. IEEE.

Sutton, A. (2012). FPGA Design Solutions for Military and Aerospace Applications. White
paper. Synopsis.

Traut, A. (2010). Fehler-Injektor fur digitale Schaltungen. Master’s thesis, University of
Paderborn.

Wikipedia (2012). Searched words: register-transfer level, clock signal, reset, high impedance,
arithmetic logic unit, associative array, content-addressable memory, hash function, hash
table.

Xie, T., Mueller, W., and Letombe, F. (2011). HDL-Mutation Based Simulation Data Gen-
eration by Propagation Guided Search. In 14th Euromicro Conference on Digital System
Design, pages 608–615.

Xilinx (2000). Using Block RAM for High Performance Read/Write CAMs. XAPP204 (v1.2).

Xilinx (2004). ML401/2/3 Block Diagram.

Xilinx (2005). Development System Reference Guide.

Xilinx (2006a). Command Line PR Implementation.

260

Bibliography

Xilinx (2006b). Early Access Partial Reconfiguration User Guide. For ISE 8.1.01i. UG208
(v1.1).

Xilinx (2006c). ML401/ML402/ML403 Evaluation Platform User Guide. UG080 (v2.5).

Xilinx (2007). Partial reconfiguration Design with PlanAhead.

Xilinx (2008). Early Access Partial Reconfiguration User Guide. For ISE 9.2.04i. UG208
(v1.2).

Xilinx (2009a). Command Line Tools User Guide. UG628 (v11.4).

Xilinx (2009b). Constraints Guide. UG625 (v11.4).

Xilinx (2009c). Embedded System Tools Reference Manual. EDK 11.3.1. UG111.

Xilinx (2009d). System ACE CompactFlash Solution. DS080 (v1.4).

Xilinx (2009e). Virtex-4 FPGA Configuration User Guide. UG071 (v1.11).

Xilinx (2009f). XST User Guide. UG627 (v11.3).

Xilinx (2010). Partial Reconfiguration User Guide. UG702 (v12.3).

Zwolinski, M. (2003). Digital System Design with VHDL. Prentice Hall, second edition.

261

Bibliography

262

7
Major contributions and further work

7.1 Major contributions

Chapter 2 presented a careful review of the literature available in the field of self-repairing
hardware systems. That review allowed to see the focus, strengths and weaknesses of each
approach. Thereby, it could be realized that the design of the fault recognition module,
which is a key module in a self-repairing hardware system, has not been presented in detail
in most of the approaches. Then, regarding the design of the fault recognition module for
a self-repairing circuit, the first major contribution of this thesis is the design methodology
for an online concurrent fault recognition module, which focuses on the reduction of the fault
recognition latency and the hardware overhead, explained in chapters 4 and 5.

Chapter 1 presented the outline of an architecture for a self-repairing system that assures
a fail-safe state of the system in case of having an unrecoverable defect during system recov-
ery, and during fault recognition when required. That architecture has been designed in a
modular way with the sight of having modules which can be added to a circuit described also
as a hardware module. Thus, the second major contribution of this thesis is the architecture
described at the RTL level of abstraction in the VHDL hardware description language for
designing self-repairing hardware systems. That self-repairing architecture has been used as
a framework for designing a self-repairing tiny circuit, which has been simulated and imple-
mented in an FPGA successfully. The delivered modular architecture constitutes a further
step towards the automatic insertion of hardware modules described at the RTL level for
building a self-repairing system. That procedure is similar to the existing insertion of built-in
self-test circuitry by RTL logic BIST tools, such as Tessent LogicBIST from Mentor Graph-
ics or TurboBIST from Syntest, or also similar to the automatic insertion of error detection
structures in RTL code presented in [Entrena et al., 2001] and [Mohanram et al., 2002]. The
description of the architecture in VHDL can be synthesized and implemented for any hard-
ware or FPGA platform. Fact which makes the architecture hardware platform independent.

263

Chapter 7. Major contributions and further work

Furthermore, the addition of a fault injection module to the architecture, based on saboteurs
and mutants of the circuit for self-repairing, provides with a tool for simulating, debugging
and evaluating the designed self-repairing circuit with the implemented fault recognition and
recovery procedure modules.

For the design of the fault recognition module, helpful methods inspired by the immune
system have been investigated. In chapter 3, the basic idea of the most important algorithms
in the field of artificial immune systems and their pseudocodes have been presented. In
the literature, those algorithms are explained mixing biological terms with computing terms,
making hard to understand the way in which biological concepts have been transferred to the
algorithms and how to implement and improve them. Therefore, the explanation starts with
the most basic biological concepts required for understanding the algorithms. It is important
to stress that the listed pseudocodes of the presented algorithms have been verified by coding
them on functioning programs, which have not been presented in this thesis. Furthermore,
a comparison of all algorithms specifying their inputs, results and their main application,
resumes the work done to date in the field of artificial immune systems.

For the design of the fault recognition module, it was assumed that a set of fault pattern
vectors for the recognition of faults is available. Since such a set of vectors in many sys-
tems is huge, it produces a high recognition latency, and it requires a high amount of memory
resources, vectors dimension reduction and reduction of the number of vectors have been iden-
tified as possible solution. The algorithm named cytokine Formal Immune Network from the
field of artificial immune systems has not been explained in chapter 3, but instead in chapter
4, because it can be better understood in connection with methods for vector dimension re-
duction such as the Principal Component Analysis. The Formal Immune Network, Principal
Component Analysis, and Singular Value Decomposition can be employed for reducing the
dimension of vectors. Thereby in this thesis, the mathematical similarities between PCA and
FIN has been uncovered. The variable cytokine in a cFIN represents a class, which is associ-
ated to every vector in the given set, and is used by the reduction of the number of vectors,
eliminating similar vectors that have the same class. That part of the method, inspired by the
biological processes Apoptosis and Autoimmunization, can also be employed in combination
with other dimension reduction methods such as PCA or SVD. Therefore, in chapter 5 such
combinations have been evaluated considering as parameters: the number of reduced dimen-
sions, the threshold for the reduction of the number of fault pattern vectors, the distance
measurement method, and the class assignation method. The implementation of the different
algorithms presented in Matlab serves for finding the dimension reduction method, number
of dimensions, distance measurement method and class assignation method that provide the
best recognition for the given set of fault pattern vectors. Then, those parameters can be used
for designing and implementing the fault recognition module in hardware. That procedure
can be applied in a hardware implementation for systems that have multiple line input and
output vectors with real value elements.

The design of a fault recognition module for a digital circuit that has vectors with one-bit
binary value elements is different. Hence, a review of methods for designing a concurrent fault
recognition module for a combinational circuit are given. Thereby, the hardware overhead of
that module has been shown that can be reduced using the unspecified values contained in
the given fault pattern vectors. In this thesis, the reduction of the number of fault pattern
vectors containing unspecified values using the clonal selection algorithm has been proposed.
Then, the reduced set can be used for designing the concurrent fault recognition module. For
reducing the hardware overhead of that module, this thesis proposes also to use a compactor

264

7.2. Further work

at the outputs of the circuit for self-repairing in order to be able to save just compacted
output pattern vectors to be used by the output vectors comparison block. For that, the so
called Compact-X technique for the compaction of output vectors has been found suitable.

7.2 Further work

The fault recognition module has been implemented for an almost-concurrent fault recogni-
tion, which can be applied to hardware systems that have input and output vectors with real
value elements. However, in the hardware implementation, a combinational circuit has been
used as the circuit for self-repairing. With the methods presented in chapter 5, it is possible
to describe in VHDL, a concurrent fault recognition module to be used for the given combi-
national circuit. It is also possible instead of using a combinational circuit as an example, to
use a hardware system that have input and output vectors with real value elements to test
the fault recognition module described in VHDL performing minor modifications.

In the implementation of the fault recognition module, a complete fault pattern vector
set has been used. However, a reduced or incomplete fault pattern vector set can be used
and self-learning can be applied for adding fault pattern vectors online. That requires to
declare an oversized memory in order to have enough place for adding fault pattern vectors
on demand.

Self-learning, which consists on the enhancement of the fault pattern vector set online on
demand, has not been included in the evaluation of methods for the reduction of the size of
fault pattern vectors set. The effect of that feature in the recognition rate can be worth to
be evaluated.

The recovery mechanism has been associated to each fault pattern vector stored in memory.
For fault pattern vectors which have not a recovery mechanism associated, or for fault pattern
vectors added online, fault diagnosis can be executed. Fault diagnosis is time expensive,
therefore improvement of fault diagnosis techniques are required.

A complex circuit can be partitioned into smaller subcircuits which can be made self-
repairing adding a fault recognition and a recovery procedure modules for each subcircuit.

Having a circuit which can be partitioned in smaller subcircuits, distributed fault recogni-
tion and centralized fault recovery can be implemented. The management of the self-repairing
actions can be modeled and simulated following the paradigm in [Montealegre and Rammig,
2012], that proposes an immune network of agents, or simulated at the transaction level using
corresponding tools.

The fault recognition module has been conceived for finding permanent faults in the circuit
for self-repairing. Recognition of transient faults could also be added using methods of con-
current checking. An starting point can be the use of modules for the realization of a totally
self-checking state machine such as the approaches in [Bolchini et al., 2000] and [Zeng et al.,
1999]. Potentially recovery states or spare states can also be considered for the design of
self-repairing sequential circuits.

The architecture for the design of self-repairing hardware systems can be implemented
at the system level of abstraction using the tool chain Matlab-Simulink-SystemGenerator-
ISE. In that case, a toolbox for inserting fault repairing in circuits can be created. Such
an implementation can be fruitful for testing fault recognition modules that use different
parameters or have different design.

265

Bibliography

7.3 Bibliography

Akoglu, A., Sreeramareddy, A., and Josiah, J. G. (2009). FPGA based distributed self healing
architecture for reusable systems. Cluster Computing, 12(3):269–284.

Avižienis, A. (2006). An Immune System Paradigm for the Assurance of Dependability of
Collaborative Self-organizing Systems. In 19th World Computer Congress, 1st Interna-
tional Conference on Biologically Inspired Computing, volume 216 of IFIP International
Federation for Information Processing, pages 1–6. Springer.

Bolchini, C., Montandon, R., Salice, F., and Sciuto, D. (2000). Design of VHDL-Based
Totally Self-Checking Finite-State Machine and Data-Path Descriptions. Transactions on
Very Large Scale Integration (VLSI) Systems, 8(1):98–103. IEEE.

Entrena, L., López, C., and Oĺıas, E. (2001). Automatic Insertion of Fault-Tolerant Structures
at the RTL Level. 7th International On-Line Testing Workshop, pages 183–200.

Kochte, M. A., Zoellin, C. G., and Wunderlich, H.-J. (2009). Concurrent Self-Test with
Partially Specified Patterns For Low Test Latency and Overhead. In 14th European Test
Symposium, pages 53–58. IEEE Computer Society.

Li, Y., Makar, S., and Mitra, S. (2008). CASP: Concurrent Autonomous Chip Self-Test
Using Stored Test Patterns. Design, Automation and Test in Europe - DATE 2008, pages
885–890.

Mohanram, K., Krishna, C. V., and Tuba, N. A. (2002). A Methodology for Automated
Insertion of Concurrent Error Detection Hardware in Synthesizable Verilog RTL. In In-
ternational Symposium on Circuits and Systems - ISCAS 2002, volume 1, pages 577–580.
IEEE.

Montealegre, N. and Rammig, F. J. (2012). Agent-Based Modeling and Simulation of Arti-
ficial Immune Systems. In 15th International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops - ISORCW 2012, Third Workshop
on Self-Organizing Real-Time Systems - SORT 2012, pages 212–219. IEEE.

Zeng, C., Saxena, N., and McCluskey, E. J. (1999). Finite state machine synthesis with
concurrent error detection. Proceedings of the International Test Conference, pages 672–
678.

266

List of publications

In the context of this thesis five conference papers and one journal paper were published. The
self-repairing unit has been presented as a demo at an international conference. And finally
three bachelor theses have been supervised.

Conference papers

Norma Montealegre and Franz Josef Rammig. Immuno-Repairing of FPGA Designs. In
Mike Hinchey, Anastasia Pagnoni, Franz Josef Rammig, and Hartmut Schmeck, editors,
World Computer Congress (WCC 2008), Biologically-Inspired Collaborative Computing
(BICC 2008), volume 268 of the International Federation for Information Processing
Series, pages 137-149, Springer, Milano, Italy, September, 7-10 2008.

Norma Montealegre. Fault Tolerance in FPGA Designs by Means of Immunocomputing. In
René Schüffny, Reiner G Spallek, and Günter Elst, editors, Dresdner Arbeitstagung
Schaltungs- und Systementwurf (DASS 2008), pages 131-136, Fraunhofer Institut In-
tegrierte Schaltung, Institutsteil Entwurfsutomatisierung, Springer, Dresden, Germany,
May, 15-16 2008.

Masoud Hosseinimehr and Norma Montealegre. Implementation of a Singular Value Decom-
position Module on an FPGA. In Teofilo Gonzalez, editor, 23rd IASTED International
Conference on Parallel and Distributed Computing and Systems (PDCS 2011), ACTA
Press, Dallas, USA, December, 14-16 2011.

Norma Montealegre and Franz J. Rammig. Agent-Based Modeling and Simulation of Artifi-
cial Immune Systems. In 3rd Workshop on Self-Organizing Real-Time Systems (SORT
2012) and 15th International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing Workshops (ISORCW 2012), pages 212-219, IEEE, Shen-
zhen, China, April, 11 2012.

Norma Montealegre. Agent-Based Artificial Immune System Model for the Detection of
Faults in a Distributed Satellite System. In the 1st European conference on Satellite
TELecommunications (ESTEL 2012), IEEE-AESS, Rom, Italy, October, 2-5 2012.

Journal papers

Norma Montealegre and Sebastian Hagenkötter. Process integrated wire-bond quality control
by means of cytokine-Formal Immune Networks. Journal of Intelligent Manufacturing,
volume 23, number 3, pages 699-715, 2012.

267

List of Publications

Demonstrations

Norma Montealegre. Demonstration of the Fault Recognition and Recovery of FPGA Circuits
by Means of Cytokine-Formal Immune Networks. In Neil Bergmann, Oliver Diessel, and
Lesley Shannon, editors, International Conference on Field-Programmable Technology
(FPT 2009), pages 384-397, IEEE, Sydney, Australia, December, 9-11 2009.

Theses

Puya Dibaj. Hardware Fault Recognition Unit. Bachelor thesis. Universität Paderborn,
May, 2010.

Alexander Traut. Fehler Injektor für digitale Schaltungen. Bachelor thesis. Universität
Paderborn, May, 2010.

Masoud Hosseinimehr. Implementation of a Singular value Decomposition Module on an
FPGA. Bachelor thesis. Universität Paderborn, May, 2010.

268

Bibliography

Abramovici, M., Emmert, J. M., and Stroud, C. E. (2001). Roving STARs: An Integrated
Approach to On-Line Testing, Diagnosis and Fault Tolerance for FPGAs in Adaptive Com-
puting Systems. In 3rd NASA/DoD Workshop on Evolvable Hardware, pages 73–92. IEEE
Computer Society.

Abramovici, M., Stroud, C., Hamilton, C., Wijesuriya, S., and Verma, V. (1999). Using
Roving STARs for On-Line Testing and Diagnosis of FPGAs in Fault-Tolerant Applications.
In International Test Conference, pages 973–982.

ACTEL (2003). Content-Addressable Memory (CAM) in Actel Devices. Application Note
AC194.

AISweb (2010).

Akoglu, A., Sreeramareddy, A., and Josiah, J. G. (2009). FPGA based distributed self healing
architecture for reusable systems. Cluster Computing, 12(3):269–284. Springer.

Al-Asaad, H. and Shringi, M. (2000). On-line built-in self-test for operational faults. In
AUTOTESTCON 2000, pages 168–174.

Al-Yamani, A. A. (2004). Deterministic Built-In Self Test for Digital Circuits. PhD thesis,
Stanford University.

Allen, D., Cumano, A., Dildrop, R., Kocks, C., Rajewsky, K., Tajewsky, N., Roes, J.,
Sablitzky, F., and Siekevitz, M. (1987). Timing, Genetic Requirements and Functional
Consequences of Somatic Hypermutation during B-Cell Development. Immunological Re-
views, 96(1):5–22. Blackwell Publishing Ltd.

Altera (1999). CAM Comparison: APEX 20KE vs. Virtex-E Devices. Technical Brief 61.

Amaral, J. L. M. (2011). Fault Detection in Analog Circuits Using a Fuzzy Dendritic Cell
Algorithm. In 10th International Conference on Artificial Immune Systems - ICARIS 2011.
Springer.

Avižienis, A. (2000). A Fault Tolerance Infrastructure for Dependable Computing with High-
Performance COTS Components. In International Conference on Dependable Systems and
Networks - DSN 2000, pages 496–500. IEEE.

Avižienis, A. (2002). An Immune System Paradigm for the Design of Fault Tolerant Systems.
In 4th European Dependable Computing Conference on Dependable Computing - EDCC 4,
Lecture Notes in Computer Science, pages 81–83. Springer.

269

Bibliography

Avižienis, A. (2006). An Immune System Paradigm for the Assurance of Dependability of
Collaborative Self-organizing Systems. In 19th World Computer Congress, TC 10: 1st
International Conference on Biologically Inspired Computing, volume 216 of IFIP Interna-
tional Federation for Information Processing, pages 1–6. Springer.

Avižienis, A., Kopetz, H., and Laprie, J. C., editors (1992). Dependability: Basic Concepts
and Terminology, volume 5 of Dependable Computing and Fault-Tolerant Systems. Springer.

Avižienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. (2004). Basic Concepts and
Taxonomy of Dependable and Secure Computing. Transactions on Dependable and Secure
Computing, 1(1):11–33. IEEE.

Avizienis, A., Gilley, G. C., Mathur, F. P., Rennels, D. A., Rohr, J. A., and Rubin, D. K.
(1971). The STAR (Self-Testing and Self-Repairing) Computer: An Investigation of the
Theory and Practice of Fault-Tolerant Computer Design. Transactions on Computers,
20(11):1312–1321. IEEE.

Baraza, J. C., Gracia, J., Gil, D., and Gil, P. J. (2005). Improvement of Fault Injection
Techniques Based on VHDL Code Modification. In 10th International Conference on High-
Level Design Validation and Test Workshop, pages 19–26. IEEE.

Barker, W., Halliday, D. M., Thoma, Y., Sanchez, E., Tempesti, G., and Tyrell, A. M. (2007).
Fault Tolerance Using Dynamic Reconfiguration on the POEtic Tissue. Transactions on
Evolutionary Computation, 11(5):666–684. IEEE.

Becker, M., Kuznik, C., Joy, M. M., Xie, T., and Mueller, W. (2012). Binary Mutation
Testing Through Dynamic Translation. In 42nd International Conference on Dependable
Systems and Networks - DSN 2012, pages 1–12. IEEE.

Bellato, M., Bernardi, P., Bortolato, D., Candelori, A., Ceschia, M., Paccagnella, A., Re-
baudengo, M., Reorda, M. S., Violante, M., and Zambolin, P. (2004). Evaluating the
effects of SEUs affecting the configuration memory of an SRAM-based FPGA. In Design,
Automation and Test in Europe Conference and Exhibition, volume 1, pages 584–589.

Boesen, M. R. and Madsen, J. (2009). eDNA: A Bio-Inspired Reconfigurable Hardware Cell
Architecture Supporting Self-organisation and Self-healing. In NASA/ESA Conference on
Adaptive Hardware and Systems - AHS 2009, pages 147–154.

Boesen, M. R., Madsen, J., and Keymeulen, D. (2011). Autonomous Dynamically Self-
organizing and Self-healing Distributed Hardware Architecture the eDNA Concept. In
Aerospace Conference, pages 1–13. IEEE.

Bolchini, C., Montandon, R., Salice, F., and Sciuto, D. (2000). Design of VHDL-Based
Totally Self-Checking Finite-State Machine and Data-Path Descriptions. Transactions on
Very Large Scale Integration (VLSI) Systems, 8(1):98–103. IEEE.

Bolchini, C., Sandionigi, C., Fossati, L., and Codinachs, D. M. (2011). A reliable fault classifier
for dependable systems on SRAM-based FPGAs. In 17th International On-Line Testing
Symposium - IOLTS 2011. IEEE.

270

Bibliography

Bouajila, A., Zeppenfeld, J., Stechele, W., and Herkersdorf, A. (2011). An Architecture and
an FPGA Prototype of a Reliable Processor Pipeline Towards Multiple Soft- and Timing
Errors. In 14th International Symposium on Design and Diagnostics of Electronic Circuits
and Systems - DDECS 2011, pages 225 – 230. IEEE.

Bouajila, A., Zeppenfeld, J., Stechele, W., Herkersdorf, A., Bernauer, A., Bringmann, O., and
Rosenstiel, W. (2006). Organic Computing at the System on Chip Level. In International
Conference on Very Large Scale Integration, pages 338–341. IFIP.

Bradley, D., Ortega-Sanchez, C., and Tyrell, A. (2000). Embryonics + Immunotronics: A
Bio-Inspired Approach to Fault Tolerance. In 2nd NASA/DoD Workshop on Evolvable
Hardware, pages 215–223. IEEE Computer Society.

Bradley, D. W. (2002). Immunotronics - Novel Finite-State-Machine architectures with built-
in self-test using self-nonself differentiation. Transactions on Evolutionary Computation,
6(3):227–238. IEEE.

Bradley, D. W. and Tyrell, A. M. (2001). The Architecture for a Hardware Immune System.
In 3rd NASA/DoD Workshop on Evolvable Hardware, pages 193–200. IEEE Computer
Society.

Brglez, F., Bryan, D., and Kozminski, K. (1989). Notes on the ISCAS’89 Benchmarks Cir-
cuits. MCNC.

Brown, S. and Vranesic, Z. (2005). Fundamentals of Digital Logic with VHDL Design.
Mcgraw-Hill, second edition.

Bryan, D. (1988). The ISCAS’85 benchmark circuits and netlist format. MCNC.

Burke, G. and Taft, S. (2004a). Fault Tolerant State Machines. Technical Report
D160/MALPD 2004, Jet Propulsion Laboratory, California Institute of Technology.

Burke, G. and Taft, S. (2004b). Fault Tolerant State Machines. In MALPD 2004.

Castro, L. N. and Timmis, J. (2002). Artificial Immune Systems. A new Computational
Intelligence Approach. Springer.

Chakraborty, T. J. and Chiang, C.-H. (2002). A novel fault injection method for system
verification based on FPGA boundary scan architecture. In International Test Conference
- ITC 2002, pages 923–929.

Chmelař, E. (2004a). Minimizing the Number of Test Configurations for FPGAs. In Interna-
tional Conference on Computer Aided Design - ICCAD 2004, pages 899–902. IEEE/ACM.

Chmelař, E. (2004b). The Test and Diagnosis of FPGAs. PhD thesis, Stanford University.

Christoph Steiger, H. W., Platzner, M., and Thiele, L. (2003). Online Scheduling and Place-
ment of Real-time Tasks to Partially Reconfigurable Devices. In 24th Real-Time Systems
Symposium - RTSS 2003, pages 224–225. IEEE.

Chu, P. P. (2006). RTL Hardware Design Using VHDL: Coding for Efficiency, Portability,
and Scalability. John Wiley & Sons.

271

Bibliography

Collaborative Benchmarking and Experimental Algorithmics Laboratory (2007). The Bench-
mark Archives at CBL (up to 1996).

Dibaj, P. (2010). Hardware Fault Recognition Unit. Bachelor’s thesis, University of Pader-
born.

Dictionary.com, L. (2012). English dictionary. dictionary.reference.com.

Dittmann, F. (2008). Methods to Exploit Reconfigurable Fabrics. PhD thesis, University of
Paderborn.

Dye, D. (2012). Partial Reconfiguration of Xilinx FPGAs Using ISE Design Suite. Xilinx
White Paper: Virtex-4, Virtex-5, Virtex-6, and 7 Series FPGAs.

École Polytechnique Fédérale de Lausanne, University of York, The University of Glasgow,
Université de Lausanne, and Universitat Politécnica de Catalunya (1.09.2001 - 31.1.2005).
Reconfigurable POEtic Tissue (POETIC) Project. http://cordis.europa.eu.

Emmert, J. M., Stroud, C. E., Skaggs, B., and Abramovici, M. (2000). Dynamic Fault
Tolerance in FPGAs via Partial Reconfiguration. In Symposium on Field-Programmable
Custom Computing Machines, pages 165–174. IEEE.

Entrena, L., López, C., and Oĺıas, E. (2001). Automatic Insertion of Fault-Tolerant Structures
at the RT Level. In 7th International On-Line Testing Workshop, pages 183–200. 48-50.

Fodor, I. K. (2002). A survey of dimension reduction techniques. Technical report, Center
for Applied Scientific Computing, Lawrence Livermore National Laboratory.

Forrest, S., Perelson, A. S., Allen, L., and Cherukuri, R. (1994). Self-Nonself Discrimination
in a Computer. In Symposium on Research in Security and Privacy, pages 202–212. IEEE.

Garvie, M. and Thompson, A. (2004). Scrubbing away transients and Jiggling around the
permanent: Long survival of FPGA systems through evolutionary self-repair. In 10th
International On-Line Testing Symposium - IOLTS 2004, pages 155–160. IEEE.

Gössel, M., Ocheretny, V., Sogomonyan, E., and Marienfeld, D. (2008). New Methods of
Concurrent Checking. Frontiers in Electronic Testing. Springer.

Greensmith, J. (2007). The Dendritic Cell Algorithm. PhD thesis, University of Nottingham.

Hamzaoglu, I. and Patel, J. H. (2000). Test Set Compaction Algorithms for Combinational
Circuits. Transactions on Computer-Aided Design of Integrated Circuits and Systems,
19(8):283–289. IEEE.

Hellebrand, S., Tarnick, S., Rajski, J., and Courtois, B. (1992). Generation Of Vector Patterns
Through Reseeding Of Multiple-Polynomial Linear Feedback Shift Registers. In Interna-
tional Test Conference - ITC 1992, pages 120–129.

Hosseinimehr, M. (2010). Implementation of a Singular Value Decomposition Module on an
FPGA. Master’s thesis, University of Paderborn.

272

Bibliography

Huang, W.-J. and McCluskey, E. J. (2001). A Memory Coherence Technique for Online
Transient Error Recovery of FPGA Configurations. In International Symposium on Field-
Programmable Gate Arrays - FPGA 2001. ACM/SIGDA.

Huang, W.-J. R. (2001). Dependable Computing Techniques for Reconfigurable Hardware.
PhD thesis, Stanford University.

Jenn, E., Arlat, J., Rimbn, M., Ohlsson, J., and Karlsson, J. (1994). Fault Injection into
VHDL Models: The MEFISTO Tool. In 24th International Symposium on Fault-Tolerant
Computing - FTCS 24, pages 66–75.

Jerne, N. K. (1974). Clonal selection in a lymphocyte network. In Edelman, G. M., editor,
Cellular selection and regulation in the immune response, pages 39–48. Raven Press, New
York.

Jerne, N. K. (1985). The Generative Grammar of the Immune System, Nobel lecture, 8
December 1984. Bioscience Reports, 5(6):439–451. Springer.

Kajihara, S., Pomeranz, I., Kinoshita, K., and Reddy, S. M. (1993). Cost-Effective Gener-
ation of Minimal Test Sets for Stuck-at Faults in Combinational Logic Circuits. In 30th
International Design Automation Conference - DAC 1993, pages 102–106. ACM.

Kalla, P. and Ciesielski, M. (1998). A Comprehensive Approach to the Partial Scan Problem
using Implicit State Enumeration. In International Test Conference - ITC 1998, pages
651–657. IEEE Computer Society.

Kastensmidt, F. L., Carro, L., and Reis, R. (2006). Fault-Tolerance Techniques for SRAM-
Based FPGAs. Frontiers in Electronic Testing. Springer.

Kephard, J. O. and Chess, D. M. (2003). The Vision of Autonomic Computing. Computer,
36(1):41–50. IEEE Computer Society.

Kimball, J. W. (1994). Biology. Addison-Wesley, 6 edition.

Kirkland, T. and Mercer, M. R. (1988). Algorithms for Automatic Test Pattern Generation.
Design & Test, 5(3):43–55. IEEE Computer Society.

Koal, T., Scheit, D., Schölzel, M., and Vierhaus, H. T. (2011). On the Feasibility of Built-In
Self Repair for Logic Circuits. In International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems - DFT 2011, pages 316–324. IEEE.

Koal, T., Scheit, D., and Vierhaus, H. T. (2009). A Concept for Logic Self Repair. In 12th
Euromicro Conference on Digital System Design, Architectures, Methods and Tools - DSD
2009, pages 621–624.

Koal, T., Ulbricht, M., and Vierhaus, H. T. (2012). Combining On-Line Fault Detection
and Logic Self Repair. In 15th International Symposium on Design and Diagnostics of
Electronic Circuits and Systems - DDECS 2012, pages 288–293. IEEE.

Koal, T. and Vierhaus, H. T. (2008). Basic Architecture for Logic Self Repair. In 14th
International On-Line Testing Symposium - IOLTS 2008, pages 177–178. IEEE.

273

Bibliography

Kochte, M. A., Zoellin, C. G., and Wunderlich, H.-J. (2009). Concurrent Self-Test with
Partially Specified Patterns For Low Test Latency and Overhead. In 14th European Test
Symposium, pages 53–58. IEEE Computer Society.

Koren, I. and Krishna, C. M. (2007). Fault Tolerant Systems. Morgan Kaufmann.

Kothe, R. and Vierhaus, H. T. (2006). Embedded Self Repair by Transistor and Gate Level
Reconfiguration. In Conference on Design and Diagnostics of Electronic Circuits and Sys-
tems - DDECS 2006, pages 208–213. IEEE.

Krishnan, S. and Kerkhoff, H. G. (2012). A Robust Metric for Screening Outliers from
Analogue Product Manufacturing Tests Responses. In 6th European Test Symposium -
ETS 2011. IEEE.

Kumar, V. V. and Lach, J. (2003). Fine-Grained Self-Healing Hardware for Large-Scale
Autonomic Systems. In 14th International Workshop on Database and Expert Systems
Applications, pages 707–712. IEEE Computer Society.

Lala, P. K. (2000). Self-Checking and Fault-Tolerant Digital Design. Morgan Kaufmann.

Lee, H. K. and Ha, D. S. (1990). SOPRANO: An Efficient Automatic Test Pattern Genera-
tor for Stuck-Open Faults in CMOS Combinational Circuits. In 27th Design Automation
Conference, pages 660–666.

Lee, H. K. and Ha, D. S. (1991). An Efficient Forward Fault Fault Simulation Algorithm
Based on the Parallel Pattern Single Fault Propagation. In International Test Conference
- ITC 1991, pages 946–955.

Lee, H. K. and Ha, D. S. (1993). On the Generation of Test Patterns for Combinational Cir-
cuits. Technical Report 12-93, Department of Electrical Engineering, Virginia Polytechnic
Institute and State University.

Lee, H. K. and Ha, D. S. (1996). HOPE: An Efficient Parallel Fault Simulator for Synchronous
Sequential Circuits. Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 15(9):1048–1058. IEEE.

Li, Y., Makar, S., and Mitra, S. (2008a). CASP: Concurrent Autonomous Chip Self-Test
Using Stored Test Patterns. In Design, Automation and Test in Europe - DATE 2008,
pages 885–890.

Li, Y., Makar, S., and Mitra, S. (2008b). CASP: Concurrent Autonomous Chip Self-Test
Using Stored Test Patterns. In Conference on Design, Automation and Test in Europe -
DATE 2008, pages 885–890. ACM.

Li, Y., Mutlu, O., Gardner, D. S., and Mitra, S. (2010a). Concurrent Autonomous Self-Test
for Uncore Components in System-on-Chips. In 28th VLSI Test Symposium - VTS 2010,
pages 232–237. IEEE.

Li, Y., Mutlu, O., Gardner, D. S., and Mitra, S. (2010b). Concurrent Autonomous Self-Test
for Uncore Components in Systems-on-Chips. In 28th VLSI Test Symposium - VTS 2010,
pages 232–237. IEEE Computer Society.

274

Bibliography

Lipsa, G., Herkersdorf, A., Rosenstiel, W., Bringmann, O., and Stechele, W. (2005). To-
wards a Framework and a Design Methodology for Autonomic SoC. In 2nd International
Conference on Autonomic Computing - ICAC 2005, pages 391–392.

López-Ongil, C., Entrena, L., Garćıa-Valderas, M., and Portela-Garćıa, M. (2007). Automatic
Tools for Design Hardening. In Velazco, R., Fouillat, P., and Reis, R., editors, Radiation
Effects on Embedded Systems, pages 183–200. Springer.

Marchal, P., Nussbaum, P., Piguet, C., Durand, S., Mange, D., Sanchez, E., Stauffer, A.,
and Tempesti, G. (1996). Embryonics: The Birth of Synthetic Life. In Sanchez, E. and
Tomassini, M., editors, Towards Evolvable Hardware, volume 1062 of Lecture Notes in
Computer Science, pages 616–196. Springer.

Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979). Multivariate Analysis. Probability and
Mathematical Statistics. Academic Press.

Marinos, P. N. (1969). The Organization of a Self-Repairing System from Multifunctional
Units. Proceedings of the IEEE, 57(7):1320.

Mazumder, P. and Rudnick, E. (1998). Genetic Algorithms for VLSI Design, Layout and Test
Automation. Prentice Hall.

Misera, S. A. and Sieber, A. (2007). Fehlerinjektionstechniken in SystemC-Beschreibungen
mit Gate- und Switch-Level-Verhalten. In Dresdner Arbeitstagung für Schaltungs- und
Systementwurf - DASS 2007. TUD Press.

Mitra, S. (2000). Diversity Techniques For Concurrent Error Detection. PhD thesis, Stanford
University.

Mitra, S. (2004). X-compact: an efficient response compaction technique. Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 23(3):421–432. IEEE.

Mitra, S. (2008). Globally Optimized Robust Systems to Overcome Scaled CMOS Reliability
Challenges. In Design, Automation and Test in Europe - DATE 2008, pages 941–946.

Mitra, S., Huang, W.-J., Saxena, N. R., Yu, S.-Y., and McCluskey, E. J. (2000). Depend-
able Adaptive Computing Systems - The Stanford CRC ROAR Project. In Pacific RIM
International Symposium on Dependable Computing - Fast Abstracts.

Mitra, S., Huang, W.-J., Saxena, N. R., Yu, S.-Y., and McCluskey, E. J. (2004). Reconfig-
urable Architecture for Autonomous Self-Repair. Design and Test of Computers, 21(4):228–
240. IEEE.

Miyase, K. and Kajihara, S. (2004). XID: Don’t care identification of test patterns for com-
binational circuits. Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 23(2):321–326. IEEE.

Mohanram, K., Krishna, C. V., and Tuba, N. A. (2002). A Methodology for Automated
Insertion of Concurrent Error Detection Hardware in Synthesizable Verilog RTL. In In-
ternational Symposium on Circuits and Systems - ISCAS 2002, volume 1, pages 577–580.
IEEE.

275

Bibliography

Montealegre, N. and Rammig, F. J. (2008). Immuno-repairing of FPGA designs. In Hinchey,
M., Pagnoni, A., Rammig, F. J., and Schmeck, H., editors, 20th World Computer Congress,
2nd International Conference on Biologically-Inspired Collaborative Computing, volume
268, pages 137–149. Springer.

Montealegre, N. and Rammig, F. J. (2010a). Dynamic Partial Reconfiguration by Means of
Algorithmic Skeletons - A Case Study.

Montealegre, N. and Rammig, F. J. (2010b). Dynamic Partial Reconfiguration by Means
of Algorithmic Skeletons - A Case Study. In Platzner, M., Teich, J., and Wehn, N., edi-
tors, Dynamically Reconfigurable Systems: Architectures, Design Methods and Applications,
pages 183–198. Springer.

Montealegre, N. and Rammig, F. J. (2012). Agent-Based Modeling and Simulation of Arti-
ficial Immune Systems. In 15th International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops - ISORCW 2012, Third Workshop
on Self-Organizing Real-Time Systems - SORT 2012, pages 212–219. IEEE.

Moreno, J., Thoma, Y., Sanchez, E., Torrez, O., and Tempesti, G. (2004). Hardware Realiza-
tion of a Bio-Inspired POEtic Tissue. In NASA/DoD Conference on Evolvable Hardware,
pages 237–244. IEEE.

Moreno, J. M., Madrenas, J., Faura, J., Cantó, E., Cabestany, J., and Insenser, J. M. (1998).
Feasible Evolutionary and Self-Repairing Hardware by Means of the Dynamic Reconfigu-
ration Capabilities of the FIPSOC Devices. In 2nd International Conference on Evolvable
Systems: From Biology to Hardware - ICES 1998, Lecture Notes in Computer Science,
pages 345–355. Springer.

Oh, N. (2000). Software Implemented Hardware Fault Tolerance. PhD thesis, Stanford Uni-
versity.

Oja, E. (2003). Principal Component Analysis. In Arbib, M. A., editor, The Handbook of
Brain Theory and neural Networks. The MIT Press.

Ortega-Sanchez, C., Mange, D., Smith, S., and Tyrell, A. (2000). Embryonics: A Bio-Inspired
Cellular Architecture with Fault-Tolerant Properties. Genetic Programming and Evolvable
Machines, 1(3):187–215.

Paulsson, K., Hübner, M., and Becker, J. (2006a). Methods for Run-time Failure Recognition
and Recovery in Dynamic and Partial Reconfigurable Systems Based on Xilinx Virtex-
II Pro FPGAs. In Symposium on Emerging VLSI Technologies and Architectures. IEEE
Computer Society.

Paulsson, K., Hübner, M., and Becker, J. (2006b). Strategies to On- Line Failure Recovery in
Self- Adaptive Systems based on Dynamic and Partial Reconfiguration. In 1st NASA/ESA
Conference on Adaptive Hardware and Systems - AHS 2006, pages 288–291. IEEE Com-
puter Society.

Pellerin, D. and Taylor, D. (1996). VHDL Made Easy. Prentice Hall.

Perelson, A. S. (1989). Immune Network Theory. Immunologival Reviews, 110(1):5–36.
Munksgaard.

276

Bibliography

Pomeranz, I., Reddy, L. N., and Reddy, S. M. (1993). COMPACTEST: A Method to Generate
Compact Test Sets for Combinational Circuits. Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 12(7):1040–1049. IEEE.

Pomeranz, I. and Reddy, S. M. (2006). Reducing the number of specified values per test
vector by increasing the test set size. Computers & Digital Techniques, 153(1):39–46. IEE.

Purna, K. M. G. and Bhatia, D. (1999). Temporal Partitioning and Scheduling Data Flow
Graphs for Reconfigurable Computers. Transactions on Computers, 48(6):579–590. IEEE.

Raedtke, S., Bargfrede, J., and Anheier, W. (1995). Distributed Automatic Test Pattem
Generation with a Parallel FAN Algorithm. In International Conference on Computer
Design: VLSI in Computers and Processors - ICCD 1995, pages 698–702. IEEE.

Reed, I. S. (1973). Boolean Difference Calculus and Fault Finding. Journal on Applied
Mathematics, 24(1):124–143. Society for Industrial and Applied Mathematics - SIAM.

Reorda, M. S., Sterpone, L., and Violante, M. (2005a). Efficient Estimation of SEU effects in
SRAM-based FPGAs. In 11th International On-Line Testing Symposium - IOLTS 2005,
pages 54–59. IEEE.

Reorda, M. S., Sterpone, L., and Violante, M. (2005b). Multiple errors produced by single
upsets in FPGA configuration memory - a possible solution. In European Test Symposium,
pages 136–141.

Rudnick, E. M. and Patel, J. H. (1999). Efficient Techniques for Dynamic Test Sequence
Compaction. Transactions on Computers, 48(3):323–330. IEEE.

Schulz, M. H., Trischler, E., and Sarfert, T. M. (1988). SOCRATES: A Highly Afficient
Automatic Test Pattern Generation System. Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 7(1):126–137. IEEE.

Sharma, R. and Saluja, K. K. (1988). An Implementation and Analysis of a Concurrent Built-
In Self-Test Technique. In 18th International Symposium on Fault-Tolerant Computing -
FTCS 18, pages 164–169. IEEE.

Sipper, M., Sanchez, E., Mange, D., Tomassini, M., Pérez-Uribe, A., and Stauffer, A. (1997).
A Phylogenetic, Ontogenetic, and Epigenetic View of Bio-Inspired Hardware Systems.
Transactions on Evolutionary Computation, 1(1):83–97. IEEE.

Sreeramareddy, A., Josiah, J. G., Akoglu, A., and Stoica, A. (2008). SCARS: Scalable Self-
Configurable Architecture for Reusable Space Systems. In NASA/ESA Conference on
Adaptive Hardware and Systems - AHS 2008, pages 204–210.

Sreeramareddy, A., Kallam, R., Dasu, A. R., and Akoglu, A. (2010). Self-configurable ar-
chitecture for reusable systems with Accelerated Relocation Circuit (SCARS-ARC). In
International Symposium on Parallel and Distributed Processing, Workshops and Phd Fo-
rum - IPDPSW 2010, pages 1–4. IEEE.

Sterpone, L. and Violante, M. (2005). A Design Flow for Protecting FPGA-Based Systems
Against Single Event Upsets. In 20th International Symposium on Defect and Fault Toler-
ance in VLSI Systems - DFT 2005, pages 436–444. IEEE.

277

Bibliography

Sterpone, L. and Violante, M. (2007). A New Partial Reconfiguration-Based Fault-Injection
System to Evaluate SEU Effects in SRAM-Based FPGAs. Transactions on Nuclear Science,
54(4):965–970. IEEE.

Sudarsanam, A., Kallam, R., and Dasu, A. (2009). PRR-PRR Dynamic Relocation. Computer
Architecture Letters, 8(2):44–47. IEEE.

Sutton, A. (2012). No Room for Error: Creating Highly Reliable, High-Availability FPGA
Designs. Technical report, Synopsis.

Tarakanov, A., Goncharova, L., and Tarakanov, O. (2005). A Cytokine Formal Immune
Network. In 8th European Conference on Advances in Artificial Life - ECAL 2005, volume
3630 of Lecture Notes in Computer Science, pages 510–519. Springer.

Tarakanov, A. O. (2008a). Formal Immune Networks: Self-Organization and Real-World
Applications. In Prokopenko, M., editor, Advances in Applied Self-organizing Systems,
Advanced Information and Knowledge Processing, pages 271–290. Springer.

Tarakanov, A. O. (2008b). Formal Immune Networks: Self-Organization and Real-World
Applications. In Wu, X. and Prokopenko, M., editors, Advances in Applied Self-organizing
Systems, Advanced Information and Knowledge Processing, pages 271–290. Springer.

Tarakanov, A. O., Skormin, V. A., and Sokolova, S. P. (2003a). Immunocomputing: Principles
and Applications. Springer.

Tarakanov, A. O., Skormin, V. A., and Sokolova, S. P. (2003b). Immunocomputing, Principles
and Applications. Springer.

Tarlinton, D. (1998). Germinal centers: form and function. Current Opinion in Immunology,
10(3):245–251. Elsevier.

Tempesti, G., Mange, D., Mudry, P.-A., Rossier, J., and Stauffer, A. (2007). Self-Replicating
Hardware for Reliability: The Embryonics Project. Journal on Emerging Technologies in
Computing Systems - JETC, 3(2):Article No. 9. ACM.

Tempesti, G., Mange, D., and Stauffer, A. (1997). A Robust Multiplexer-Based FPGA In-
spired By Biological Systems. Journal of Systems Architecture: Special Issue on Dependable
Parallel Computer Systems, 43(10):719–733. Elsevier.

Theodoridis, S. (2009). Introduction to Pattern Recognition: A MATLAB Approach. Aca-
demic Press.

Theodoridis, S. and Koutroumbas, K. (2008). Pattern Recognition. Academic Press, 4 edition.

Timmis, J. and Neal, M. (2001). A resource limited artificial immune system for data analysis.
Knowledge Based Systems, 14(3-4):121–130. Elsevier.

Timmis, J., Neal, M., and Hunt, J. (2000). An artificial imune system for data analysis.
BioSystems, 55(1-3):143–150. Elsevier.

Torresen, J. (2004). An Evolvable Hardware Tutorial. In 14th International Conference on
Field Programmable Logic and Applications - FPL 2004, volume 3203 of Lecture Notes in
Computer Science, pages 821–830. Springer.

278

Bibliography

Touba, N. A. and McCluskey, E. J. (1997). Logic Synthesis of Multilevel Circuits with
Concurrent Error Detection. Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 16(7):783–789. IEEE.

Traut, A. (2010). Fehler-Injektor fur digitale Schaltungen. Master’s thesis, University of
Paderborn.

Tyrell, A. M. and Barker, W. (2006). The Poetic Hardware Device: Assistance for Evolu-
tion, Development and Learning. In Higuchi, T., Liu, Y., and Yao, X., editors, Evolvable
Hardware, Genetic and Evolutionary Computation, pages 99–119. Springer.

Tyrell, A. M., Sanchez, E., Floreano, D., Tempesti, G., mange, D., Moreno, J.-M., Rosenberg,
J., and Villa, A. E. (2003). POEtic Tissue: An Integrated Architecture for Bio-inspired
Hardware. In Evolvable Systems: From Biology to Hardware, volume 2606 of Lecture Notes
in Computer Science, pages 129–140. Springer.

Venishetti, S. K., Akoglu, A., and Kalra, R. (2007). Hierarchical Built-in Self-testing and
FPGA Based Healing Methodology for System-on-a-Chip. In 2nd NASA/ESA Conference
on Adaptive Hardware and Systems - AHS 2007, pages 717–724.

Voyiatzis, I., Gizopoulos, D., and Paschalis, A. (2009). An Input Vector Monitoring Con-
current BIST Scheme Exploiting X Values. In 15th On-Line Testing Symposium - IOLTS
2009, pages 206–207. IEEE.

Wang, L.-T., Cheng, K.-T., and Chang, Y.-W., editors (2009). Electronic Design Automation:
Synthesis, Verification, and Test. Systems on Silicon. Morgan Kaufmann.

Wang, L.-T., Wu, C.-W., and Wen, X. (2006). VLSI Test Principles and Architectures:
Design for Testability. Systems on Silicon. Morgan Kaufman.

Wikipedia (2010a). Searched words: artificial intelligence, disease, cell, software agent, in-
telligent agent, apoptosis, necrosis, pathogen, virus, bacterion, fungus, lymphatic system,
lymph, thymus, spleen, tonsils, leukocyte, protein, enzyme, allosteric regulation, cell sig-
naling, communication, intracrine, autocrine signalling, juxtacrine signalling, paracrine sig-
nalling, idiotope, interferon, histamine, tumor necrosis factor, toxin, growth factor, hor-
mone, cytokine, neurotransmitter, DAMPs, PAMPs, major histocompatibility complex,
pattern recognition receptor, toll like receptor, signal transduction, gene, genetic, genetic
code, dendritic cell, T-cell, B-cell, T helper 17 cell, lymph node, clonal selection, affinity
maturation.

Wikipedia (2010b). Searched words: dimension reduction, singular value decomposition,
Karhunen-Loève theorem, Hamming distance, feature selection k-nearest neighbor algo-
rithm, Mahalanobis distance, pattern recognition, pattern matching, machine learning,
molecular recognition, bilinear form, Lagrange multiplier.

Wikipedia (2011). Searched words: standard score, standard deviation, normalization, norm,
unit vector, variance, Mahalanobis distance, design for test, scan chain, NAND logic.

Wikipedia (2012a). Searched words: fault-tolerant system, fault-tolerant design, single point
of failure, integrated circuit, chip, partial reconfiguration, system on chip, network on chip,
hardware register, CMOS, fault model, SRAM, flash memory.

279

Bibliography

Wikipedia (2012b). Searched words: register-transfer level, clock signal, reset, high
impedance, arithmetic logic unit, associative array, content-addressable memory, hash func-
tion, hash table.

Williams, M. J. Y. and Angell, J. B. (1973). Enhancing Testability of Large-Scale Integrated
Circuits via Test Points and additional Logic. Transactions on Computers, 22(1):46–60.
IEEE Computer Society.

Wong, J. S. J., Sedcole, P., and Cheung, P. Y. K. (2007). Self-characterization of Combi-
natorial Circuit Delays in FPGAs. In International Conference on Field-Programmable
Technology - ICFPT 2007, pages 17–23.

Xie, T., Mueller, W., and Letombe, F. (2011). HDL-Mutation Based Simulation Data Gen-
eration by Propagation Guided Search. In 14th Euromicro Conference on Digital System
Design, pages 608–615.

Xilinx (2000). Using Block RAM for High Performance Read/Write CAMs. XAPP204 (v1.2).

Xilinx (2004). ML401/2/3 Block Diagram.

Xilinx (2005). Development System Reference Guide.

Xilinx (2006a). Command Line PR Implementation.

Xilinx (2006b). Early Access Partial Reconfiguration User Guide. For ISE 8.1.01i. UG208
(v1.1).

Xilinx (2006c). ML401/ML402/ML403 Evaluation Platform User Guide. UG080 (v2.5).

Xilinx (2007). Partial reconfiguration Design with PlanAhead.

Xilinx (2008). Early Access Partial Reconfiguration User Guide. For ISE 9.2.04i. UG208
(v1.2).

Xilinx (2009a). Command Line Tools User Guide. UG628 (v11.4).

Xilinx (2009b). Constraints Guide. UG625 (v11.4).

Xilinx (2009c). Embedded System Tools Reference Manual. EDK 11.3.1. UG111.

Xilinx (2009d). System ACE CompactFlash Solution. DS080 (v1.4).

Xilinx (2009e). Virtex-4 FPGA Configuration User Guide. UG071 (v1.11).

Xilinx (2009f). XST User Guide. UG627 (v11.3).

Xilinx (2010). Partial Reconfiguration User Guide. UG702 (v12.3).

Yu, S.-Y. (2001). Fault Tolerance in Adaptive Real-Time Computing Sytems. PhD thesis,
Stanford University.

Zeng, C., Saxena, N., and McCluskey, E. J. (1999). Finite State Machine Synthesis with
Concurrent Error Detection. In International Test Conference, pages 672–678.

280

Bibliography

Zeppenfeld, J., Bouajila, A., Herkersdorf, A., and Stechele, W. (2010). Towards Scalabil-
ity and Reliability of Autonomic Systems on Chip. In 3rd International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing - ISORC 2010 -
Workshop on Self-Organizing Real-Time Systems, pages 73–80. IEEE.

Zwolinski, M. (2003). Digital System Design with VHDL. Prentice Hall, second edition.

281

	List of figures
	List of tables
	List of algorithms
	List of program codes
	Introduction
	Objectives of this work
	Strategy
	Organization of this work
	Bibliography

	Related work
	Self-repairing hardware
	Multifunctional units
	Dynamic partial reconfiguration for testing and repair
	Distributed self-repairing of a network of FPGA nodes
	Small-scale reconfigurability for fault detection, diagnosis and recovery
	Logic self-repair
	Dual-FPGA architecture for autonomous self-repair

	Self-repairing approaches inspired by biological systems
	Immune system paradigm
	POEtic tissue
	Evolvable hardware
	Embryonics
	Immunotronics
	e-DNA
	Autonomic System on Chip
	Immunocomputing

	Self-repairing in FPGAs
	Roving STAR
	TMR + RoRA

	Self-repairing introduced at the hardware description
	Automatic insertion of fault tolerant structures in the RTL description

	Comments
	Hardware level of abstraction
	Hardware platform for the implementation
	Type of addressed fault
	Error detection technique
	Recovery mechanism

	Bibliography

	Artificial immune systems
	Biological immune system
	Internal agents
	External agents
	Communication among agents
	Immune system infrastructure
	Immune system agents

	Artificial immune system models and algorithms
	Positive and negative selection
	Clonal selection
	Immune network
	Dendritic cells
	Formal immune network

	Comparison of artificial immune algorithms
	Bibliography

	Fault recognition
	Fault representation
	Fault recognition
	Fault repairing mechanisms assignation
	Fault space partitioning
	Fault recognition time
	Fault vector dimension reduction
	Principal component analysis
	Singular value decomposition

	Fault pattern vectors number reduction
	Death of immune cells with insufficient stimulation
	Elimination of auto-reactive immune cells

	Cytokine formal immune network
	Protein-protein interaction formal model
	Formal immune network
	Molecular recognition
	Cytokine formal immune network
	Apoptosis and auto-immunization

	Conclusions
	Bibliography

	Evaluation of fault recognition methods
	Fault recognition module with real fault vector elements
	Fault recognition
	Fault vector dimension reduction
	Fault pattern vectors number reduction

	Fault recognition module with binary fault vector elements
	Fault recognition
	Fault pattern vectors number reduction
	Fault vector dimension reduction

	Conclusions
	Bibliography

	Implementation of a self-repairing unit
	Design of the self-repairing unit
	Initial architecture of the self-repairing unit
	Partial reconfiguration for recovering the unit
	Fault injection for testing the self-repairing unit

	Simulation of the self-repairing unit
	Implementation of the self-repairing unit
	Performance of the self-repairing unit
	Conclusions
	Bibliography

	Major contributions and further work
	Major contributions
	Further work
	Bibliography

	List of publications
	Bibliography

