

Systematic Development of Model-based
Software Engineering Methods

Stefan Sauer
sauer@s-lab.upb.de

Dissertation

zur Erlangung des Grades “Doktor der Naturwissenschaften” (Dr. rer. nat.)

Fakultät für Elektrotechnik, Informatik und Mathematik

Universität Paderborn

Paderborn, Januar 2011

Diese Dissertation wurde im Novemer 2010 bei der Fakultät für Elektrotechnik,
Informatik und Mathematik der Universität Paderborn eingereicht. Sie wurde auf der
Grundlage der Gutachten von der Promotionskommission angenommen. Die mündliche
Prüfung fand am 20. Januar 2011 in Paderborn statt.

Gutachter:

• Prof. Dr. Gregor Engels
• Prof. Dr. Wilhelm Schäfer

Promotionskommission:

• Prof. Dr. Gregor Engels (Vorsitzender)
• Prof. Dr. Wilhelm Schäfer
• Prof. Dr. Hans Kleine Büning
• Prof. Dr. Franz J. Rammig
• Dr. Matthias Meyer

Danksagung

Auch wenn eine Dissertation eine individuelle Leistung darstellt, so ist sie gemeinhin
doch das Ergebnis einer Zusammenarbeit und ohne die Unterstützung anderer
Menschen nicht vorstellbar. So ist es auch in diesem Fall. Deshalb gebührt mein Dank
all denen, die mich bei meiner wissenschaftlichen Arbeit und der Anfertigung dieser
Dissertation unterstützt haben.

Meinen besonderen Dank möchte ich meinem Mentor, Doktorvater und langjährigen
Wegbereiter Prof. Dr. Gregor Engels aussprechen. Seine kollegiale Art, sein Vertrauen
und seine Unterstützung waren und sind wesentliche Erfolgsfaktoren für meine Arbeit.
Ich danke ihm, dass er mir die Möglichkeit gegeben hat, in seiner Fachgruppe zu
forschen und zu lehren, das s-lab – Software Quality Lab mit aufzubauen und
insbesondere dafür, dass er mich über die gesamte Zeit und bis zuletzt über Höhen und
Tiefen in vielfältiger Weise unterstützt hat, diese Dissertation zu einem erfolgreichen
Abschluss zu bringen. Ich danke Prof. Dr. Wilhelm Schäfer für die langjährige
konstruktive Zusammenarbeit und dass er die Rolle des Gutachters meiner Dissertation
übernommen hat. Ich danke den Mitgliedern der Promotionskommission, der neben den
beiden vorgenannten die Herren Prof. Dr. Hans Kleine Büning, Prof. Dr. Franz J.
Rammig und Dr. Matthias Meyer angehörten, dass Sie mir diese Ehre erwiesen haben.
Matthias Meyer danke ich auch, dass er mir in der „heißen Phase“ des Aufschreibens in
der Geschäftsführung des s-lab „den Rücken freigehalten hat“.

Ich danke den Kolleginnen und Kollegen, mit denen ich im s-lab, in der Fachgruppe
Datenbank- und Informationssysteme von Prof. Dr. Gregor Engels und in der
Universität Paderborn in den vergangenen Jahren zusammenarbeiten durfte, für die
interessante, freundschaftliche und angenehme Zusammenarbeit. Ich danke auch den
Kolleginnen und Kollegen der nationalen und internationalen Wissenschaft, mit denen
ich zusammengetroffen bin, und deren Impulse mich immer wieder einen Schritt weiter
gebracht haben. Mein Dank gilt aber auch den Partnern des s-lab und ihren
Mitarbeiterinnen und Mitarbeitern, mit denen ich in vielfältigen Projekten neue
Erkenntnisse und Erfahrungen insbesondere aus der Sicht der Praxis sammeln konnte.
Stellvertretend seien hier die Kolleginnen und Kollegen von Capgemini sd&m Research
genannt, mit denen ich an der Spezifikationsmethodik für betriebliche
Informationssysteme gearbeitet habe.

Neben dem wissenschaftlichen und beruflichen Umfeld trägt aber auch mein privates
Umfeld, allen voran meine Familie, einen wesentlichen Anteil am erfolgreichen
Abschluss dieser Dissertation. Ich danke meinen Eltern Gerhard und Ursula Sauer, dass
sie mir mein Studium und den akademischen Werdegang ermöglicht haben. Der größte
Dank gebührt aber meiner Frau Kerstin und meinen Kindern Bjarne und Louisa! Für
ihre Toleranz, Hilfe und so manche Entbehrung! Ich danke Kerstin, dass sie die Geduld
aufgebracht hat, mich auf diesem Weg zu begleiten und mir immer wieder mit jeglicher
Art von Unterstützung zur Seite gestanden hat. Bjarne und Louisa danke ich, dass sie es
akzeptiert haben, dass ihr Papa auch in seiner vermeintlichen Freizeit an der
Dissertation gearbeitet hat, anstatt diese Zeit mit ihnen zu verbringen.

Abstract
The development of today’s software systems demands for sophisticated software
engineering processes and methods. Effort that is invested once in the methods can
be systematically reused in projects. We use the term method engineering for the
systematic development of software engineering methods.

In the first part of this thesis, I present and characterize software engineering
methods and method engineering approaches that I have developed. They are
particularly concerned with model-based and model-driven development of
business information systems, multimedia and advanced interactive systems, and
some related domains. Two formal methods that are used in the software
engineering methods are also presented: Dynamic Meta Modeling (with Time) and
Visual Contracts.

The second part is devoted in more detail to the meta-method for modeling and
tailoring of software engineering methods, called MetaME. It combines ideas from
meta-modeling, method engineering and language engineering. The meta-method
comprises a product dimension and a process dimension. Artifact types are derived
from software engineering concepts to form the product dimension. In the process
dimension, software development tasks are described as operations that act upon
the artifacts. These tasks are performed as activities in the method’s workflow.

The third part contains a selection of my most important research contributions to
the field of software engineering methods and their systematic development.

Keywords: Method Engineering, Software Engineering Method, Meta-Model,
Model-based Software Development, Model-driven Development, Object-oriented
Modeling, Multimedia Applications, Business Information Systems, Interactive
Systems, Advanced User Interfaces

Zusammenfassung
Die Entwicklung moderner Softwaresysteme erfordert den Einsatz anspruchsvoller
Softwareentwicklungsprozesse und -methoden. Aufwand, der einmal in die
Methodenentwicklung investiert wird, kann systematisch in Projekten ausgenutzt
werden. Wir verwenden die Bezeichnung „Method Engineering“ für die
systematische Entwicklung von Softwareentwicklungsmethoden.

Im ersten Teil dieser Dissertation stelle ich Softwareentwicklungsmethoden und
Ansätze des Method Engineering vor, die ich entwickelt habe, und charakterisiere
sie. Sie beschäftigen sich insbesondere mit der modellbasierten und
modellgetriebenen Entwicklung von betrieblichen Informationssystemen,
Multimediasystemen und anspruchsvollen interaktiven System sowie einigen
verwandten Domänen. Zwei formale Methoden, die in den
Softwareentwicklungsmethoden eingesetzt werden, werden außerdem erläutert:
dynamische Metamodellierung (mit Zeit) und visuelle Kontrakte.

Der zweite Teil ist der detaillierten Beschreibung der von mir entwickelten Meta-
Methode MetaME für die Modellierung und Anpassung von Software-
entwicklungsmethoden gewidmet. Sie kombiniert Ideen der Metamodellierung, des
Method Engineering und der Entwicklung von (Modellierungs-) Sprachen. Die
Meta-Methode umfasst eine Produkt- und eine Prozessdimension. Artefakttypen
werden von Konzepten des Software Engineering abgeleitet, und sie bilden
gemeinsam die Produktdimension. In der Prozessdimension werden Software-
entwicklungsaufgaben als Operationen beschrieben, die auf den Artefakten
ausgeführt werden. Diese Aufgaben werden als Aktivitäten im Ablauf der Methode
ausgeführt.

Der dritte Teil enthält eine Auswahl meiner wichtigsten Forschungsarbeiten, die
ich zu dem Themenbereich Softwareentwicklungsmethoden und deren systema-
tische Entwicklung publiziert habe.

Schlüsselwörter: Methodenentwicklung, Softwareentwicklungsmethoden, Meta-
Modell, modellbasierte Softwareentwicklung, modellgetriebene Softwareent-
wicklung, objektorientierte Modellierung, Multimediaanwendungen, betriebliche
Informationssysteme, interaktive Systeme, moderne Benutzungsschnittstellen

Contents

Part I: Model-based Software Engineering Methods .. 1

1 Introduction... 2

2 Classifying Research Contributions to Model-based Software Engineering
Methods... 4

2.1 Engineering Framework for Methods and Software... 4

2.2 Classification of Works .. 8

3 Formal Methods for Software Engineering Methods ... 15

3.1 Rigorous Modeling with the Unified Modeling Language............................. 15

3.2 Semantic Dimensions of Sequence Diagrams .. 16

3.3 Precise Semantics of UML Collaboration Diagrams...................................... 18

3.4 Dynamic Meta Modeling (DMM) .. 19

3.5 Dynamic Meta Modeling with Time (DMM+t) ... 22

4 Fundamental Methods for Software Engineering ... 24

4.1 Java Code Generation from UML Behavioral Models................................... 24

4.2 Visual Contracts (VC): Design-by-Contract with Models 25

4.3 Executable Visual Contracts for Model-driven Monitoring........................... 26

4.4 Web-Service Discovery and Validation with Visual Contracts...................... 29

4.5 Specification of Enterprise Services with Visual Contracts 30

4.6 Model-based Testing with Visual Contracts... 31

5 Multimedia and Interactive Systems... 32

5.1 Multimedia Software Engineering Methods... 32

5.2 Object-oriented Modeling of Multimedia Applications 34

5.3 Model-based development with Multimedia Authoring Systems 38

5.4 Integrated Methods for Interactive Multimedia Systems 40

5.5 Model-driven Development of Interactive Multimedia Systems 42

i

5.6 Generation of Web Application Prototypes.. 43

6 Business Information Systems .. 45

6.1 Specification Method for Business Information Systems 46

6.2 Integration of Application Development and Landscaping............................ 53

6.3 Integrated Specification Framework: Method and Quality Gates 54

6.4 Integration of Software Engineering and Software Quality Assurance
Methods .. 57

6.4.1 Bridging Requirements Specification and Test 57

6.4.2 Integrating Quality Methods in Agile Processes 59

6.5 Architecture-driven Development: Software Stacks 60

7 Method Engineering.. 62

8 Concluding Remarks... 64

References .. 65

Part II: MetaME – A Meta-Method for Method Engineering of Software Engineering
Methods... 73

9 Engineering of Software Engineering Methods.. 74

10 Foundations of Method Engineering of Software Engineering Methods Based on
Meta-Modeling.. 78

10.1 Software Engineering and Software Development... 78

10.2 Models and Meta-Models ... 82

10.3 Method Engineering ... 84

10.4 Meta-Modeling for Method Engineering.. 86

10.5 SPEM.. 87

10.6 ISO 24744... 89

11 A Meta-Method for Method Engineering of Software Engineering Methods........ 91

11.1 Meta-Model Architecture of the Meta-Method .. 91

ii

iii

11.2 Method Engineering Meta-Method: Product Model 93

11.3 Method Engineering Meta-Method: Process Model....................................... 95

11.4 Integrating the Views of the Meta-Method... 98

11.5 Defining the Artifact Model of Software Engineering Method...................... 99

11.6 Software Process Modeling in the Software Engineering Method............... 100

11.7 Defining Work of Software Engineering Methods as Transformations 103

12 Tailoring and Reuse of Software Engineering Methodology 105

12.1 Tailoring the Software Engineering Method .. 105

12.2 Tailoring the Meta-Method... 106

13 Conclusion .. 107

References .. 108

Part III: Examples of Software Engineering and Method Engineering Methods........ 111

14 Contributed Works and Publications .. 112

15 UML Collaboration Diagrams and Their Transformation to Java........................113

16 Strengthening UML Collaboration Diagrams by State Transformations………..129

17 Dynamic Meta Modeling: A Graphical Approach to the Operational Semantics of
Behavioral Diagrams in UML... 144

18 Dynamic Meta Modeling with Time: Specifying the Semantics of Multimedia
Sequence Diagrams... 159

19 Object-oriented Modeling of Multimedia Applications..172

20 UML-based Behavior Specification of Interactive Multimedia Applications......206

21 Easy Model-Driven Development of Multimedia User Interfaces with
GuiBuilder... 214

22 Applying Meta-Modeling for the Definition of Model-Driven Development
Methods of Advanced User Interfaces.. 224

1

Part I:

Model-based Software Engineering Methods

1 Introduction

The development of today’s software systems demands for sophisticated software
engineering processes and methods. Not only the (globally) distributed development of
large and complex software systems by heterogeneous teams requires precise and
documented methods, but also lightweight and agile methods need to have a precise
foundation. Effort that is invested once in the methods can be systematically reused in
software development projects and other software development endeavors. This applies
to different types of systems (also called system domains in this work) and across
application domains. To build the required software engineering methods in a
systematic way, engineering principles must be applied not only for the development of
software systems, but also for the definition of the methods themselves. The systematic
development of software engineering methods is called method engineering in this
work.

Software engineering methods are required for all software engineering endeavors –
such as software development projects or systematic software product development –
regardless of their strictness or agility. Yet, the development of software engineering
methods has to address a number of challenges:

(a) Software engineering methods must be precisely described.
(b) Software engineering methods must be usable and oriented towards the people

that need to work with the methods or the produced results.
(c) Software engineering methods must be adequate for the tasks at hand and the

domains in which they are deployed.
(d) Software engineering methods must be reusable and tailorable for distinct and

dynamically changing situations, such as domains, organizations, project
context or even project situations.

In this work, we concentrate on model-based (and model-driven) software development
for software systems of different kind. Depending on the increasing level of importance
of models in development methods, we distinguish different notions:

• model-based: the development method deploys models to describe certain aspects
of the system, and models play an important role in the development method; they
are the central artifacts, other artifacts are secondary and accompany the models;

• model-driven: models are the central artifacts of the development method, and
model transformations accompany the models, which define how (partial) models
relate with each other and how models are derived from other models.

In the following, we distinguish between model-based and model-driven from a
methodological point of view. As a consequence, models are in either case the central
type of artifacts that are produced in the software development process. However, in
model-based and model-driven development, they are used for different development
purposes and thus play different roles in the software development methods and
processes. In addition, due to their use in a range of system domains, the models also
differ with respect to the aspects of the software system that they capture. We will stress
these aspects where the distinction is important.

2

From a methodological perspective, the systematic development of software
engineering methods is an engineering task and has to be directed by and follow a well-
defined method engineering method. Being a method itself, such a meta-method has to
comprise a process and a product part. The process part altogether defines who has to do
what and when. The product part defines the required work products (types of artifacts)
that are expected to be used or produced by the tasks and activities of the process part.
Both parts hold a set of relevant aspects that are required to characterize a software
engineering method.

In the contributed software engineering methods and attached works, I present a set of
method constituents, i.e., products of method engineering. Their main characteristics
and, to a limited degree, the process how they have been developed will be described in
the following sections.

The first part of this thesis presents and characterizes a collection of partial software
engineering methods and method engineering approaches that I have worked on. We
particularly look at the model-based and model-driven development of business
information systems, multimedia applications and other advanced interactive systems
(i.e., specifically their user interfaces), and some related domains. I also contributed to
the development of two methods that are used for specifying the semantics on the level
of models and meta-models and that are used in the collected software engineering
methods: Dynamic Meta-Modeling (with Time) and Visual Contracts.

In the second part of this thesis, we look in more detail at the meta-method for modeling
and tailoring of software engineering methods, called MetaME, that I have developed as
a method for the systematic development of software engineering methods. It combines
ideas from meta-modeling, method engineering and language engineering. The meta-
method comprises a product dimension and a process dimension. Artifact types are
derived from software engineering concepts to form the product dimension. This is the
foundation for the development of languages for describing and modeling the software
engineering methods. In the process dimension, software development tasks are
described as operations that act upon the artifacts. For their formal description, we reuse
the formal methods from the software engineering domain in the method engineering
domain. The tasks of the method are performed as activities in the method’s workflow.

The third part of this thesis contains a selection of my most important research
contributions to the field of software engineering methods and their systematic
development.

The remainder of this Part I is organized as follows: The general framework for
integrating software engineering and method engineering and the classification of
contributed software engineering methods according to a classification scheme is the
subject of Section 2. In the following, one section is dedicated to each class of research
contributions: formal methods for software engineering methods (Section 3),
fundamental methods that deal with general approaches related to model-driven
development methods and their application (Section 4), and methods for two system
domains: multimedia and interactive systems (Section 5) and business information
systems (Section 6). Previous work on method engineering is presented in Section 7,
followed by some concluding remarks.

3

2 Classifying Research Contributions to Model-based
Software Engineering Methods

In this section, I first introduce the common framework for method engineering and
software engineering and then the classification scheme for the characterization of
software engineering methods. It is based on the identification of aspects that are
important for a software engineering method. A collection of partial software
engineering methods that I have worked on is presented and classified according to this
classification scheme. Experience from this work has led to research on method
engineering which will be described in Section 7. Publications that are contributed to
Part III of this thesis are indicated by citation markers in bold letters.

2.1 Engineering Framework for Methods and Software

Before we analyze the relevant aspects for the classification of software engineering
methods, we have to generally distinguish between the two fundamental engineering
domains that are involved in the systematic development of software engineering
methods: method engineering and software engineering. We use the term method
engineering in this work to denote the systematic development of software engineering
methods.

Software engineering is the engineering domain that is concerned with the systematic
development of software systems and the artifacts that belong to a software system
along its lifecycle. Software engineering method is used in this work to denote the full
set of elements needed to describe a software development endeavor (e.g. a software
development project) in all relevant aspects. This does not only cover the software
development process and its contained activities, but also the artifacts (containing their
semantic content and their syntactic representation by appropriate languages) that are to
be produced, the tasks that need to be performed for achieving the development goals,
the roles in an organization that participate in the development, the tools, techniques and
utilities that are employed, as well as relationships between these concepts.

A corresponding characterization can be applied to the method engineering meta-
method: it denotes the full set of elements needed for developing and describing a
software engineering method, in all relevant aspects. This covers the method
engineering process and its contained activities as well as the method elements that are
to be produced, the tasks that need to be performed to achieve the development goals,
the roles in an organization that participate in the method development, the tools,
techniques and utilities that are employed, as well as relationships between these
concepts.

In our framework, each method consists fundamentally of a process model and a
product model (see Figure 1). The process model specifies how to proceed in the
execution of the method. We call the execution of a concrete process instance that
conforms to the process model enactment of the process model. The product model
defines the results (i.e., work products) that are expected from executing the method.
We call the production of a concrete result that conforms to the product model
instantiation of the product model. The objective of software engineering is to support
the development of software artifacts (the software system being one distinguished type

4

of artifact) in a systematic way by enacting the process of a software engineering
method. Analogously, method engineering is concerned with the systematic
development of software engineering methods by enacting the process of the method
engineering meta-method. The meta-method is itself a method, but is called meta-
method since it is employed to produce methods as the result of its enactment. A
concrete software engineering method thus is an instance of the method engineering’s
product model. In the same way, software artifacts are instances of the product model of
software engineering methods.

Method

Process
Model

Product
Model

Figure 1: Each method comprises an product model and a process model, where the process
model depends on the product model (dashed arrow)

Figure 2 summarizes these correspondences and relationships. Method engineering thus
corresponds to the enactment of the process model and the instantiation of the product
model of the method engineering meta-method. In turn, software engineering
corresponds to enacting the process model and instantiating the product model of the
software engineering method.

Method Engineering

Method Engineering
Meta-Method

Method Engineering
Meta-Method

Software Engineering
Method

Software Engineering
Method

Software System
Artifacts

Software System
Artifacts

Software Engineering

Enact Method
Engineering Process

Enact Software
Engineering Process

«instanceOf»

«instanceOf»

Figure 2: Method engineering and software engineering are two engineering domains that are
related by the concept of methods

In our overall method and software engineering framework, we assign the different
methods to different layers of a hierarchy. More generally, each method is the product
of enacting and instantiating its meta-method. In such a meta-method hierarchy, we
distinguish different method engineering domains. In analogy with the MOF meta-
model hierarchy we find the domain ‘engineering with objects’ on the topmost layer.

5

There, we locate our foundational meta-meta-method. Enacting this meta-meta method
(i.e., its process model) and instantiating its product model, we obtain our meta-method
for method engineering. It is located on the next layer. Methods of this layer deal with
the systematic development of methods for a particular domain, which is software
engineering in our case. This domain is located on the third layer and contains the
software engineering methods that are employed to develop software systems. They are
developed by enacting and instantiating the meta-method for method engineering.
Finally, software engineering then is concerned with enacting and instantiating the
software engineering methods in order to run a software engineering endeavor and
produce the software artifacts that instantiate the artifact model, i.e., the product model
of the software engineering method.

A refined view of this (meta-) modeling architecture is given in the context of the
MetaME meta-method for method engineering in Section 11.1.

Next we look more precisely into the domain of method engineering. If we work in the
domain of method engineering, we encounter a number of more or less general
disciplines (see Figure 3). Method engineering can itself be considered as an
(engineering) discipline. Regardless of considering method engineering as the domain
or the discipline, it comprises a set of other (engineering) (sub-) disciplines. In this
work, we distinguish the disciplines requirements engineering, domain engineering,
language engineering, process engineering, and software engineering.

Requirements engineering is the origin of any systematic engineering process, also for
eliciting the method requirements. All other engineering disciplines and their respective
products depend on good requirements engineering. Language engineering deals with
the development of appropriate languages for representing concepts and artifacts of the
domain, such as modeling and programming languages for software development. This
concerns both syntax and semantics of languages. Concepts are the ontological
foundation of the software engineering methods and are the first main product of the
domain engineering discipline. The definition of artifact types, which define the kinds
of products of the software engineering method, is also assigned to domain engineering.
Here we match concepts and languages, such that their semantics are compliant and the
syntax is appropriate for representing the concepts within the software engineering
method.

On top of the artifact model, we develop methods and processes for software
engineering for producing and working with the corresponding software artifacts.
Development of processes (including activities, milestones, workflows, phases, etc.) is
the business of the process engineering discipline. The method engineering discipline
more generally deals also with tasks, roles and organizations, artifact states, techniques
and practices, guidance, utilities, and so on. (Refer to Section 11.2 for more details.)

Finally, we work in the software engineering discipline ourselves when we develop a
comprehensive software engineering method. This self-reference is due to the demand
for the systematic development of CASE tools that support the designed software
engineering method.

This model of disciplines and their products makes up the backbone of our meta-method
that will be described in Part II. The model of artifact types (also called artifact model),

6

which combines concepts and languages for their representation, is the product model of
the meta-method, while the methods and processes form the process model of the meta-
method. Figure 3 depicts this model within the domain of method engineering. Dashed
arrows show dependencies.

ConceptsConcepts LanguagesLanguages

Artifact TypesArtifact Types

Methods &
Processes
Methods &
Processes

ToolsTools

Process
Engineering

Software
Engineering

Language
Engineering

Domain
Engineering

M
et

ho
d

E
ng

in
ee

rin
g

Requirements
Engineering

Method
Requirements

Method
Requirements

Figure 3: Method engineering and its contributing (sub-) disciplines produce the elements of a
software engineering method

To illustrate the concepts and their relationships, we look at an example: We consider
the system dynamics to be a relevant aspect of a software system and want to include it
in our software engineering method. To address this aspect in our software engineering
method, we include the concept of system dynamics in the conceptual model that is
developed as part of the domain engineering discipline. We then look for candidate
languages that appear appropriate for the representation of the system dynamics
concept. We either use existing, ideally standard languages for specifying system
dynamics such as Petri nets, automata or statecharts, or define a new language
ourselves. Assume that we decide on using UML statechart diagrams for representing
system dynamics. Then we define the artifact type “system dynamics model” as the
representation of the concept “system dynamics” by the language UML statechart
diagrams. In the software engineering method, we then also specify the pragmatics of
how (method: guidelines, techniques and practices) and when (process: workflow) to
build, modify and use the system dynamics model in the software engineering endeavor
that applies our software engineering method.

From the presented model of method engineering disciplines and their respective
products, we can derive the important aspects of software engineering methods that we
consider in our classification of the methods in the next sections.

7

2.2 Classification of Works

The software engineering methods in the upcoming sections, with the exception of the
formal methods for software engineering that are presented in Section 3, are classified
according to the main aspects of software engineering methods. Not surprisingly, these
aspects correspond to the main products of the method engineering process. With this
classification, we can show the scope and coverage as well as the relationships of the
different methods that have been developed in previous research.

In our classification we consider the aspects system domain, method domain,
concepts/artifact types, process, languages, methods/techniques, and tools as the
characteristic dimensions. We briefly explain them before we show the results of the
characterization in tabular form.

System domain. An important aspect of software engineering methods is the domain
for which software has to be developed. We distinguish between application domains
and system domains (also referred to as system classes). Application domains are
business domains (e.g. branches of trade like finance, sales, etc.) or engineering
domains (e.g. automotive production, chemical production, etc.), but also science,
education, and entertainment. In contrast, system domains in our context relate to
different types of software systems such as business information systems, embedded
systems, mobile systems, or multimedia and interactive systems. While the application
domain predominantly affects data structures and functionality, the system domain has
also important impact on the software and system architecture as well as on the software
technology to be used. Most importantly, software engineering methods often have to
be tailored to the specific requirements and properties of a system domain, while the
application domain only has a limited effect on the design of the software engineering
method. We therefore restrict our classification in general to the system domain and
only note the application domain where appropriate.

Method domain. The term method domain is used to refer to the development
paradigm that is used in order to build the system under consideration. Most
importantly, we distinguish between model-based and model-driven development
methods with this regard. But also other development styles such as design-by-contract,
architecture-driven development, prototyping, or end-user development belong to this
aspect.

Concepts and artifact types. This dimension discriminates software engineering
methods with respect to the artifact types that are produced or used. Prominent among
them, since we focus on model-based and model-driven development methods, are
different kinds of models. Nevertheless, all kinds of software engineering artifacts from
specification documents to code to test reports belong to this aspect. Deliverables are
also regarded as a specific kind of artifact. Since the distinction between concepts and
artifacts plays no significant role in our classification, we use the term artifact types in
the tables; more precisely, this dimension refers to the conceptual part of the artifact
types. The notational part is covered by the aspect language (see below).

Process. The process dimension refers to the software process model that belongs to the
software engineering method. It collects all information regarding workflows and tasks,

8

but also role models or the assignment of methods to particular stages (or phases) of the
software engineering process.

Language. The language aspect refers to the notation in which software artifacts are
represented in the context of the software engineering method. In our research, we
either use or extend the Unified Modeling Language (UML) for object-oriented
modeling or develop dedicated domain-specific languages where necessary and
appropriate according to the concepts of language engineering. Programming and
scripting languages, and other types of specification languages also belong to this
dimension.

Methods and techniques. In this classification category, we consider all methodical
elements of a software engineering method that determine how the software engineering
is done. Techniques and methodical guidelines are prominent members of this category,
but also reference architectures, frameworks, or specific technology.

Tools. The tool aspect refers to software tools that are available to support the method
or are used when enacting its process. Editors, simulation tools, code generators,
consistency checkers, execution environments, analysis tools, libraries, and so on are
typical instances. We also allocate other utilities such as checklists or templates to this
aspect.

With these dimensions, we are now equipped to classify and discriminate the relevant
research on software engineering methods. Prior to that we note a few remarks on the
common grounds of the software engineering methods as regards their founding on the
paradigm of object-orientation and the formal methods that we have developed to
support our software engineering work. The latter is also the subject of Section 3.

All methods have in common that they contribute to the model-based development of
software systems of different kinds, i.e., they belong to a given system domain. The
modeling paradigm that underlies our approach is object-oriented modeling. Thus, our
methods are concerned with model-based software development on the foundations of
the paradigm of object-orientation. We either use or extend the Unified Modeling
Language for our object-oriented modeling or develop dedicated domain-specific
languages where necessary and appropriate according to the concepts of language
engineering.

As foundational work towards developing object-oriented modeling languages for
particular application and system domains, like multimedia applications or business
information systems, we have analyzed the principle capabilities and limitations of the
Unified Modeling Language (see [EHS00], [HKS01]). This analysis builds an important
foundation for the decision which extensions are needed to tailor the UML for the
particular set of requirements of a given domain.

If we build domain-specific extensions of the UML, we deploy the built-in extension
mechanisms of meta-modeling (according to OMG’s Meta Object Facility (MOF)) or
profiling. In addition to using these formal concepts in our method and language
engineering, we also use two formal methods that we developed ourselves as a
theoretical foundation: Dynamic Meta Modeling (DMM) and Visual Contracts (VC).
DMM is a graphical technique for the specification of precise semantics of modeling

9

10

languages such as the UML. It can be applied to both the meta-model level, e.g. for the
specification of action semantics in behavioral models, and to the modeling level, e.g.
for specifying the semantics of operations. Visual contracts use a graphical object-
oriented model for specifying preconditions and post-conditions of behavioral elements
in a model. Thus, we combine the application of software engineering principles and
object technology for the development of specific kinds of systems such as multimedia
applications, Web applications, service-based systems or business information systems.
Examples are OMMMA, an extension of the UML for model-based development of
multimedia software systems, and ProGUM-Web, a UML-based approach for the
model-driven development of Web applications; but also the application of visual
contracts for the semantic specification of operations in Java or Web services.

The following Table 1 shows the results of the analysis of previous research with
respect to the aforementioned dimensions. The tables are grouped according to the
sections on fundamental methods (Section 4) that generally apply and methods that
have been developed in the context of a particular system domain. Among them, we
distinguish between the general system classes multimedia and interactive systems
(Section 5) and business information systems (Section 6). Where appropriate, the
members of these domains are further specialized with respect to the system type they
have been developed for. The approaches for business information systems are clustered
in two groups: in the first group are the specification method SPECME for business
information systems (Section 6.1) together with its accompanying method integration
approaches for application landscape and application development (Section 6.2) and for
quality assurance by the use of the dedicated specification quality gate (Section 6.3).
The other approaches for (business) information systems build the second group.

Table 1: Characterization of conducted research on software engineering methods according to the core main of software engineering methods

Software
Engineering
Method System Domain Method Domain Artifacts Process Language

Methods /
Techniques Tools

Java Code Generation
[EHSW99a],
[EHSW99b]

general:
Java programs

model-based
development;
conceptually model-
driven:
code-generation

class model,
behavior model,
Java code

design modeling;
generation of executable code

UML collaboration diagram,
UML class diagram;
refined UML meta-model;
Java

methodical guidelines:
modeling of object interaction;
two-level grammar specifies
transformations;
conceptual transformation
algorithm n/a

Visual Contracts
[LSE05], [ELS05a],
[ELS05b],[LES06],
[ELSH06], [LRE+06],
[EGS08]

Java programs
(operations) [LSE05],
[LES06];
Web Services [ELS05a],
[ELS05b];
enterprise services
[LRE+06];
software testing [EGS08]

design-by-contract
(on model level);
model-driven monitoring:
validation of programms
with assertion code
[LSE05], [LSE06];
Web service
specification and
discovery [ELS05a],
[ELS05b], and validation
of Web services
[ELS05b];
specification and
management of
enterprise services

class models,
visual contracts;
Java code (classes, behavioral
code),
JML assertions;
binary code

contract-based development
process;
workflows for:
design modeling,
code generation: class
diagram (Java class
skeleton);
operations annoted with
assertion code;
manual implementation:
functional code (method
bodies), additional operations
& classes

UML 2 class diagram,
UML 2 object diagram (pair)
[LSE05], [ELS05a], [ELS05b],
UML 2 composite structure
diagram (pair) [LES06], [ELSH06];
UML 2 meta-model extension
[ELSH06];
formalized by graph transformation
theory:
specifcation & matching: graph
transition,
generation of JML assertions:
graph transformations;
Java,
JML (behavioral interface
specification for Java)

contract-based development
method:
visually specifying contracts;
model-driven monitoring:
code generation for classes,
assertion code generation,
manual implementation of
additional code;
transformation algorithm;
semantic matching of Web
services:
code generation for ontology
classes,
generation of semantic
service specification

Visual Contract
Workbench (Eclipse
plug-in);
JML Compiler,
JMLUnit

AGG, Jena [ELS05a]

11

Software
Engineering
Method System Domain Method Domain Artifact Types Process Language

Methods /
Techniques Tools

OMMMA
[SE99a], [SE99b],
[SE99c], [SE99d],
[ES02], [SE01], [ES02]

multimedia applications,
multimedia
presentations;
multimedia information
systems [SE99c];
automotive infotainment
systems [SE99b],
EGS01]

model-based
development;
object-oriented modeling

integrated model conforming to
MVCMM architecture;
OMMMA model types (for
individual aspects): structure
model, timed behavior model,
dynamic behavior model,
presentation model

(suited for analysis and
design stage)

OMMMA-L (UML extension);
one diagram type for each model
view:
class diagram with framework (e.g.
hierarchy of media classes),
timed multimedia sequence
diagram,
presentation diagram,
statecharts;
meta-model derived from UML
meta-model [SE99d]

methodical guidelines for
OMMMA-L modeling;
tight integration of time-
dynamic behavior [SE01]

OMMMA-Edit modeling
environment: extension
of Rational Rose 98:
syntax-direct editors for
diagrams, cross-diagram
consistency checks

Model-based
Development with
Multimedia Authoring
System (MMAS)
[DEM+98], [DEM+99]

multimedia applications,
multimedia
presentations

model-based
development with
MMAS;
conceptually model-
driven

type and instance models:
platform-independent analysis
model;
design model of authoring system
("programming model");
application model framework,
dimensions: application logic,
presentation, control, media

model-driven process model
for analysis and design stage

UML class diagram,
UML object diagram

modeling method;
modeling framework (stages,
type/instance); class
framework for multimedia;
conceptual model
transformations n/a

Integrated Method for
Interactive Multimedia
Systems
[ESN03]

multimedia applications,
multimedia
presentations

OMMMA-based
modeling;
user-centered design

OMMMA models;
interaction design artifacts:
conceptual model, visual & design
structures, storyboard, prototype,
etc.

integrated process: OMMMA
process (softtware
engineering and media
development workflows) and
user-centered design process
(user-driven workflows)

OMMMA-L;
other, mostly informal graphical
notations n/a

OMMMA-Edit;
graphics tools;
prototyping tools

GuiBuilder
[SDGH06], [SE07]

graphical and
multimedia user
interfaces

visual model-driven
development;
simulation, scripting,
capture-replay;
end-user development

presentation model
dynamic behavior model

workflows: modeling,
simulation

(limited) hierarchical UML
statecharts;
object-oriented presentation
diagram

modeling guidelines;
static and dynamic model
validation;
interpretive prototype
simulation (with model
monitoring), capture-replay,
scripting

GuiBuilder: visual
modeling & execution
tool based on Eclipse:
model editor,
model validator,
generator function,
simulator

ProGUM-Web
[LSS03]

dynamic Web
applications

model-based,
incremental and iterative
development;
prototyping;
partly model-driven:
code template
generation, prototype
generation

functional requirements (use
cases);
use case specification: client-
server-interaction, user interaction,
business logic; object flows for
information exchange;
data structure & site structure class
models

incremental and iterative
process:
modeling workflow,
coding workflow,
prototyping workflow;
developer roles:
software developer,
graphic designer

UML extension:
UML use-case diagram,
UML class diagram,
UML activity diagram;
extended UML meta-model;
target languages: HTML, PHP
(etc.) scripts

separation of design and
business elements;
integrated: cooperative
development by graphics
designer and software
developer;
prototyping

UML CASE tool
Enterprise Architect;
XMI,
Java

12

Software
Engineering
Method System Domain Method Domain Artifacts Process Language

Methods /
Techniques Tools

Specification Method
(SPECME)
[SSE09a], [SSE09b],
[SSEB10]

business information
systems

model-based system
specification

system specification;
artifact types (use case, entity type,
functional overview etc.) defined by
artifact model;
main artifacts correspond to
specification modules

definition of the overall
processes: phases, roles,
milestones, sub-disciplines;
definition of tasks for creating
artifacts:
task-oriented specification
method: steps, input artifacts,
output artifacts

UML,
natural language,
tables,
other (graphical) notations

detailed method
description;strict separation of
the method aspects: content,
form, process and tools;
methodical guidelines how to
construct artifacts;
structured by specification
modules for main artifacts:
description of artifact type, its
representation, its production
and use;
templates, examples, hints

UML CASE tool
(Enterprise Architect),
Office tools,
other required editors;
Document Generator,
Specification Validator;
concept of use for
standard tool set-up;
specification templates

Integrated Specification
Framework (SPECME
plus Quality Gates (QG)
[SSE09a], [SSE09b],
[SSEB10]

business information
systems

integrated specification
and quality assurance;
SPECME: model-based
system specification,
QG: specification quality
assurance

system specification;
according to the artifact model;
QG check methods;
reports

process synchronization
SPECME and QG processes;
SPECME: see above,
QG: QG assessment process:
phases, roles, tasks,
continuous QG enhancement
process

as in the system specification;
QG: spreadsheets

alignment of SPECME & QG
method, method integration
on the foundation of the
common artifact meta-model;
QG: QG method guide;
check methods for process
and products (artifacts);
checklists, user scenarios,
change scenarios;
concept of use for check
methods

SPECME: as above;
QG: checklists,
templates

Integration of
Application Landscaping
and Development
[BEH+09]

business information
systems;
service-oriented
application landscapes;
enterprise services

holistic (model-based)
development of service-
oriented application
landscapes: integrating
(model-based)
application landscape
development and (model-
based)
application/service
development

according to combined artifact
meta-models;
artifact types of both contributing
methods, such as business
domain, business process,
business task, service, enterprise
IT architecture, IT system,
application landscape, component,
interface, sub-system,
action, operation, use case, etc.

alignment of application
landscaping and software
development processes
based on artifact
dependencies;
transition between disciplines:
business architecture
modeling, landscape
modeling, managed evolution,
integration architecture
management (QE);
business modeling,
requirements engineering,
analysis & design,
implementation, deployment,
test, software controlling, etc.
(Q)

UML models in QE and Q;
Quasar Ontology: integrated meta-
model of software engineering
concepts, refinement links between
domain concepts

integration of full-size
industrial methods:
Quasar (Q),
Quasar Enterprise (QE);
guidelines, patterns,
reference architectures,
scenarios, etc.
(analysis, comparison and
matching of concepts from
both domains);
complete, modular software
engineering method:
concept ontology, languages,
artifact types,
methods/processes, tools;
ontology integration;
language, tool, and
method/process alignment

Quasar tool support, e.g.
as in SPECME;
QG: e.g. Integrated
Architecture Framework
(IAF)

13

Software
Engineering
Method System Domain Method Domain Artifacts Process Language

Methods /
Techniques Tools

Integration of
Requirements
Engineering and Testing
[GFJ+09], [GSW+10]

business information
systems:
eID systems

requirements
engineering,
model-based testing

textual requirements,
requirements clusters;
test plans,
formal and informal acceptance
criteria

requirements engineering,
acceptance testing,
part of sophisticated
development process for eID
systems;
workflow with 3 activities:
annotation, clustering, test-
plan specification

natural language (requirements),
tables (test plan);
test-plan meta-model

multi-viewpoint requirements
engineering (based on RM-
ODP),
acceptance testing of eID
systems;
linguistic analysis,
requirements clustering,
pattern/template-based
requirements collection;
detecting overlaps and
temporal order;
(semi-automatic) generation:
test plan (pattern-based, with
heuristics),
acceptance criteria (formal for
test steps, informal for
asserts);
test-plan specification

tool for capturing and
managing requirements;
templates for different
RM-ODP viewpoints;
TORC environment:
parser (linguistic
analysis),
clustering algorithm,
quality plan creation,
statistics, etc.

Integrated Quality (QA)
Methods in SCRUM
[EGSP09]

(financial) business
information systems

agile development;
system test:
performance testing,
usability testing,
user acceptance testing

non-functional requirements;
product backlog (PBL),
task entries in PBL;
performance and load tests

extension of SCRUM process:
QA days (1-3): additional QA
activity with customer and
user: extensive testing of
functionality, non-functional
properties (usability,
performance);
user-testing day (1):
usability/performance/load
tests with significantly larger
group of users;
defined sub-processes and
tasks;
dynamic process
improvement n/a

methodical extension to
SCRUM for QA:
early customer/user feedback;
performance testing, (usability
testing);
usability and performance
tasks in the PBL;
methodical hints for managing
QA and user-testing days;
manual load/performance
tests during user-testing day
complement automated load
and performance tests during
QA days in customer
environment

product backlog,
management system

Open-Source Stacks:
Architecture-driven
Development Method
[CS08]

(financial) business
information systems

architecture-driven
development;
stack-based
development
(reuse in the large)

open-source software stack (incl.
documentation, specification);
software system

development process with
open source stacks;
activities identified for:
selection, coupling, updating,
replacing, testing;
role model: developer,
distributor, consultant, user

(specification language);
(modeling and programming
languages)

methodical guidelines how to
develop software with open
source stacks, e.g.
selection, coupling, obtaining
up-to-date information,
update, replacement, quality
assurance

open-source stacks =
preconfigured
assemblies of open-
source components and
frameworks

14

3 Formal Methods for Software Engineering Methods

Key to model-based and model-driven software engineering methods are precise and
usable modeling languages. The Unified Modeling Language has been designed to be
the object-oriented modeling language of today. However, it is also commonly agreed
that it is not the lingua franca of software and systems modeling. But it comes with
built-in extension mechanisms to define domain-specific variants of the modeling
language. Regardless, any modeling language needs to have precise semantics in order
to support rigorous modeling methods. The results of an analysis of UML’s feasibility
as a universal modeling language are presented in Section 3.1. Semantic dimensions of
sequence diagrams and their impact on rigorous modeling are shown in Section 3.2. The
remaining sections deal with approaches that colleagues and I have undertaken to
formalize the semantics of UML collaboration diagrams (Section 3.3) and to use
collaboration diagrams with a precise semantic interpretation by graph transformation
theory as a means for specifying the semantics of modeling languages. We call this
approach Dynamic Meta Modeling (with Time), see Sections 3.4 and 3.5.

The different methods, their main properties and dependencies, as well as the relevant
publications, are summarized in Figure 4.

3.1 Rigorous Modeling with the Unified Modeling Language

Object-oriented modeling is the conceptual anchor point for our model-based and
model-driven development methods. The Unified Modeling Language (UML) is the de
facto industrial standard of object-oriented modeling languages. It consists of several
sub-languages which are suited to model structural and behavioral aspects of software
systems. The UML was developed as a general-purpose language together with intrinsic
features to extend the UML towards domain-specific profiles that best fit the context of
use and the problem to solve. In [EHS00], we illustrate the language features of the
UML family of languages and its adaptation mechanisms. We show that the UML or an
appropriate, to be defined core UML, respectively, may serve as a universal base of
object-oriented modeling languages. But this core has to be adapted according to
domain-specific requirements to yield an expressive and intuitive modeling language
for a certain problem domain. With its built-in extension mechanisms – stereotypes,
tagged values, and constraints – the UML readily supports the definition of such
domain-specific profiles.

The analysis undertaken in [EHS00] reveals that the UML, on the level of abstract
syntax, really is an integration of modeling languages, due to the definition of one
common meta-model for all sub-languages. We call this a family of modeling
languages. This finding also applies to the concrete syntax level, since an agreement on
concrete notations has taken place, too.

Nevertheless, the UML is just a modeling language and still needs to be incorporated
into software engineering methods and processes. This includes the definition of
methodical guidelines for using the language features (i.e., the language’s pragmatics), a
software process model as well as techniques to transform UML models into other
(UML) models and eventually into a corresponding implementation in a programming
language.

15

Rigorous Modeling
with the UML

• analysis of UML’s
characteristics

• extensibility of UML for
defining domain-specific
languages as profiles

[EHS00]

Semantic Variation
Points of UML
Sequence Diagrams

• semantic dimensions and
variants of sequence diagrams

• defining the semantics of
specific uses and extensions
of UML sequence diagrams

[HKS01]

Precise Semantics of
UML Collaboration
Diagrams

• structure, interaction, state
transformation

• formalized with graph
transition systems and graph
processes

• precise specification of
behavioral semantics for the
modeling and meta-modeling
levels

[HS00b], [HS01]

DMM: Dynamic Meta
Modeling

• precise semantics of modeling
languages and behavioral
models

• models: operations
• meta-model: action
• formalized with GOS = graph

transformation + SOS
• UML notation: UML 1.x

collaboration diagrams
• tool support & architecture

[HHS00]
• incremental specification of

semantics [HHS01]; applied in
[HHS02a], [HHS04]

• consistency checking
[EHHS02]

• model transformation &
consistency checking
[HHS02b]

[EHS09], [EHHS00],
[HHS00], [HS00a],[HS00b],
[HHS01], [EHHS02]

DMM+t: Dynamic Meta
Modeling with Time

• semantics of timed behavioral
models

• modeling of timed execution
and checking of temporal
consistency

• formalized with timed graph
transformations

• use of DMM‘s incremental
specification capability

• applied to multimedia
sequence diagrams

[HHS02a], [HHS04]

Figure 4: Overview of the contributions to precise semantics, formal methods and rigorous
modeling

3.2 Semantic Dimensions of Sequence Diagrams

For a consequent and unambiguous use of a modeling language, not only its syntax, but
also its semantics need to be precisely defined. In [HKS01], we survey, structure, and
classify syntactic and semantic alternatives that appear in sequence diagrams, since
different interpretations for sequence diagrams exist without explicit means to
distinguish between them. Objective of this survey was to find semantic modeling

16

concepts that exist in sequence diagrams. We identify scope of interpretation, level of
abstraction, composition and refinement, ordering, time, and represented function as the
essential semantic dimensions of sequence diagrams (see Figure 5). Each dimension can
be considered a semantic variation point of sequence diagrams. For each semantic
variation point, we identify the semantic choices (i.e., the semantic variants) and we
justify each choice by supplying examples for its usage in sequence diagram modeling.
It is shown that UML sequence diagrams (1) do only support a subspace of the semantic
concepts and (2) have ambiguous semantics with respect to several of the semantic
variations identified (marked with borders and flashes in Figure 5, respectively).The
spanned semantic space is suited as a basis for discussing and proposing extensions of
UML sequence diagrams to precisely determine the semantic interpretation of modeled
sequence diagrams (as in the case of multimedia sequence diagrams, see Sections 5.2
and 3.5).

Figure 5: Semantic dimensions of sequence diagrams and their coverage by UML 1.4 (based on
[HKS01])

We propose a method and two-step process for indicating the semantics of sequence
diagrams with respect to semantic variations in order to define precise semantics. First,
one has to define the semantic framework by introducing stereotypes for each of these
semantic variations. Second, when using a sequence diagram, the modeler has to supply
one stereotype for each dimension, thereby fixing the semantics. Each combination of
stereotypes defines new semantics for sequence diagrams. For each combination,
specific well-formedness rules may be supplied. As a consequence, defining stereotypes
for each variation is an important task and should be done with great care. Essentially,
this task corresponds to defining a new specialized sub-language. OCL constraints can
be used to specify invalid combinations and exclude them from the set of all valid
sequence diagrams.

The use of stereotypes for fixing sequence diagram semantics can easily be integrated in
CASE tools. Thus it can be ensured that the semantics of each sequence diagram can be
fixed by the modeler.

17

Within a rigorous development process, it is of importance that modeling activities can
be assigned with sequence diagrams with specific semantics. For example, it may be
possible to use scenarios in early stages (e.g. requirements engineering) and then
proceed to specifications in later stages (e.g. analysis and design). Using our method to
fix the semantics of sequence diagrams, a process model can now precisely define the
form of sequence diagram to be used, e.g. by restricting or prescribing stereotypes for a
development activity. Due to the fixed semantics, precise consistency relations and
checks can be formulated that have to hold between different (partial) models within a
development process. Thus it can be ensured that sequence diagrams are used so that no
contradictions occur.

3.3 Precise Semantics of UML Collaboration Diagrams

We first proposed precise semantics for UML 1.x collaboration diagrams (they are
called interaction diagrams in UML 2.x; formally, with respect to the UML 2.x meta-
model, the interaction represents the behavioral part, while their structural part is still
called collaboration) based on graph transformation rules and graph processes in
[HS00b]. This semantics definition makes collaboration diagrams a powerful tool for
the precise specification of operations and actions. More precisely, we provide means
for specifying the semantics of operations in class diagrams and the interpretation of
actions on statechart diagrams. Such specifications are able to describe the pre- and
post-conditions of operations and actions, their effect on the current state, as well as the
calls or signals that are sent during their execution.

Precise semantics of UML collaboration diagrams impacts their use on both the model
and the meta-model level. The semantics of actions, like call or send actions, has to be
the same in all models, that is, it should be specified once and for all on the meta-level.
Action itself is a concept on the meta-model level. As operations and their interpretation
differ in every model, they have to be specified on the level of individual models. In
both cases, it is desirable to use UML to specify the semantics: In the case of
operations, the specification has to be given by software developers, i.e., users of the
UML, who should not be forced to learn yet another notation. And by specifying the
semantics of actions by UML collaboration diagrams on the meta-level, people without
a strong background in formal methods, like tool developers and advanced users, can
benefit from the semantics specification given in UML notation, too.

In [HS01] we provide the semantics definition for collaboration diagrams based on
concepts from the theory of graph transformation. According to the official UML
documents, collaboration diagrams specify patterns of system structure and interaction.
We propose to use them, in addition, for specifying, pre and post-conditions and state
transformations of operations and scenarios. We formalize the three different aspects of
a system model that can be expressed by collaboration diagrams – structure, state
transformation, and interaction – by means of graph transformation systems and graph
processes. We thus integrate the state transformation with the structural and the
interaction aspect. Orthogonally, we distinguish three levels of abstraction: type,
specification, and instance level. In particular, the idea of collaboration diagrams as
state transformations provides new expressive power which had so far been disregarded
by the UML standard. The relationships between the different abstraction levels and
aspects are described in terms of homomorphisms between graphs, rules, and graph
transformation systems.

18

Graph processes provide truly concurrent semantics to collaboration diagrams, which
can be helpful for analyzing the concurrency properties of operations in terms of the
associated causal dependencies. In particular, the semantics of signals (implemented as
a specific kind of objects) is compatible with that of asynchronous messages in a
message sequence chart, given as partially ordered send and receive actions.

The synchronous semantics of operation calls is captured by the substitution of the
called diagram for the call in the calling diagram, which is formally described as the
composition of two deduction rules over graph transformations. The proof-theoretic
interpretation of collaboration diagrams provides a basis for implementation, e.g., in a
theorem-prover, logic programming or (conditional) rewriting system. This is
particularly important if collaboration diagrams are used for dynamic meta-modeling
(DMM, see Section 3.4) to analyze, test, and verify the semantics specification. DMM
is used e.g. in [EHHS00] as a meta-modeling approach to the semantics of call actions
in statechart diagrams.

3.4 Dynamic Meta Modeling (DMM)

In addition to using meta-modeling according to the four layer meta-modeling
architecture of the OMG’s Meta Object Facility (MOF) for specifying the ontological
and linguistic meta-models in this work, we have developed a formal approach for
modeling behavior on the foundation of such meta-models. Dynamic Meta Modeling
(DMM) [EHS99], [EHHS00], [HS00a], [HHS00] is a method for the formal
specification of precise semantics for modeling languages like the UML. It has been
introduced as an approach to formalize the operational semantics of behavioral UML
diagrams in [EHS99], since the UML meta-model captures the abstract syntax and static
semantics of UML models by means of (meta-) class diagrams and expressions in the
Object Constraint Language (OCL), but it does not cover the dynamic (operational)
semantics of its behavioral diagrams.

The approach is founded on a graph-theoretic interpretation of meta-modeling. The
meta-model (of UML) is interpreted as a type graph. The abstract syntax of a
corresponding (UML) model is interpreted as an instance graph that conforms to the
given type graph.

We deploy graph transformation theory for the definition of DMM and combine it with
concepts from structured operational semantics (SOS). DMM rules are defined as graph
transformation rules typed over the type graph given by the meta-model. The rules are
represented in the notation of UML collaborations (i.e., UML 1.x collaboration
diagrams or the structural part of UML 2.x interactions). In this way, it is possible to
define the behavior of UML diagrams within UML notation. The collaborations are
formally interpreted as graph transformation rules. We use their extended interpretation
from [HS00b], [HS01] that covers pre- and post-conditions as well as state
transformations of operations and scenarios (see Section 3.3). By this construction, we
use collaboration diagrams that are formalized as graph transformation rules for
specifying the operational semantics of graphical modeling languages [EHHS00].

The conceptual idea of the semantics specification is inherited from Plotkin’s structured
operational semantics (SOS) paradigm, a style of semantics specification for concurrent
programming languages and process calculi. It provides powerful techniques and well-

19

established methodology. The basic idea of SOS is to represent the abstract syntax of
program states as terms (abstract syntax trees) and to specify a transition relation on
these terms by structural induction. The deduction rules for each syntactic construct
define an abstract interpreter for the language.

In DMM, SOS program terms are replaced with abstract syntax graphs of UML
diagrams which are augmented with a representation of the state. UML collaboration
diagrams are used as deduction rules to specify a goal-oriented interpreter for the
modeling language that is defined by the meta-model. The execution of operations is
described with simple UML collaboration diagrams (see below) which are formally
interpreted as graph transformation rules [EHHS00]. Each syntactic construct is defined
separately by a set of deduction rules of a graphical operational semantics. These rules
can be interpreted with predicate logics [HHS00]. Since we use graph transformation
techniques for specifying the operational semantics, the approach is called graphical
operational semantics (GOS). GOS can be used for defining the unambiguous
execution semantics of graph-based modeling languages, the generation of compilers
and interpreters, code generation and model simulation, or the formal analysis of
behavioral models [HS00a].

With the use of DMM, dynamic semantics of UML can be both mathematically
rigorous so as to enable formal specifications and proofs and, due to the use of UML
notation, understandable without prior knowledge of heavy mathematic machinery.
Thus, it can be used as a reference by tool developers and advanced users. The use of
UML diagrams for defining the semantics of behavioral UML models is also the origin
of the name Dynamic Meta Modeling. Figure 6 summarizes the semantic and syntactic
dependencies of DMM (DMM with Time will be presented in the next section).

Graph
Transformation

Graph
Transformation

Structured
Operational
Smantics

Structured
Operational
Smantics

Graphical
Operational
Semantics

Graphical
Operational
Semantics

Meta-ModelingMeta-Modeling

Dynamic
Meta Modeling

Dynamic
Meta Modeling

«semantic»
«semantic»

«semantic»

Dynamic
Meta Modeling

with Time

Dynamic
Meta Modeling

with Time

«semantic»UML

«syntactic»

«syntactic»

«UML 1»
Collaboration

Diagram

«UML 1»
Collaboration

Diagram

Timed Graph
Transformation
Timed Graph

Transformation

«semantic»«semantic»

«semantic»

Figure 6: Semantic and syntactic dependencies of Dynamic Meta Modeling (with Time)

An important prerequisite of dynamic meta-modeling is the precise semantic foundation
of UML collaboration diagrams. To resolve the generally problematic self-reference in
the specification of a specification language, we define the semantics of a core part of
language elements of collaboration diagrams (i.e., simple UML collaboration diagrams)
by a formal interpretation based on GOS. This distinguished set of language constructs
acts as a meta-modeling language for the dynamic aspects. This is analogous to the use

20

of a subset of the UML class diagrams in the Meta Object Facility for specifying the
static meta-model of UML. The precise semantics of the subset of UML collaboration
diagrams can then be utilized to specify the semantics of UML behavioral diagrams,
i.e., specifically for the complete UML collaboration diagrams in the UML itself
[HHS00]. DMM has also been applied for specifying a fragment of UML statecharts
and object diagrams in [EHHS00].

Altogether, Dynamic Meta Modeling fulfills important requirements for a semantics
specification of modeling languages (see [HHS00]):

• DMM is precise and formal due to its formal foundation in graphical operational
semantics which combines the theory of structured operational semantics and
graph transformation,

• DMM is open since it is based on formal logics,
• DMM is flexible due to its rule-based definition,
• DMM is comprehensible as it is defined as operational semantics and uses meta-

modeling concepts,
• DMM is based on graphs with its combined use of meta-modeling and graph

transformation.

Tool support and a possible tool architecture based on concepts of logic programming
are sketched in [HHS00] as well. The deduction rules are translated into Prolog clauses,
and the semantics of graph transformations is described by predicate logics. A Prolog
system can then be used as the execution engine that interoperates with a UML
modeling tool via XML, using XSL transformations. Theorem provers may
alternatively be used – on the model level for analysis and execution of models and on
the meta-model level for analyzing the semantics specification itself, for instance with
respect to the validity of meta-model invariants.

Two more properties of Dynamic Meta Modeling are worth mentioning here: the ability
to specify semantics incrementally and the integrated specification of model
transformations and consistency constraints.

Incremental semantics specification. DMM is not only suited for specifying the
semantics of the UML (and other modeling languages), but it also accounts for UML’s
built-in semantic variation points (e.g. compare Section 3.2) and extension mechanisms
(outlined in Section 3.1). As a consequence, DMM supports the definition of user-
defined semantics, e.g., in the context of domain-specific profiles which extend the
UML standard by stereotypes, tagged values, and constraints. The semantics
specification of such extensions must be formally integrated and consistent with the
standard UML semantics without changing the latter. Feasible semantics approaches
must allow advanced UML modelers to define domain-specific language extensions in a
precise, yet usable manner.

With DMM, it is possible to incrementally specify the semantics of UML extensions.
This incremental specification capability is presented in [HHS01]. It is an important
property for the specification of the semantics of the multimedia-specific extensions of
UML sequence diagrams that we have developed in [HHS02a], see Section 3.5. There
we specify the operational semantics of UML sequence diagrams and extend this
specification to include features for the modeling of multimedia applications. Our

21

multimedia sequence diagrams constitute a conservative extension of UML sequence
diagrams for the modeling of multimedia presentations.

Consistency checking. DMM can be utilized as a conceptional platform for consistency
checking [EHHS02]. We can use DMM rules for testing consistency constraints
between the specifications of (partial) models given in different member languages of
the UML. The consistency conditions depend on the languages involved, the
development process employed, and the current stage of the development. DMM rules
provide a formal and precise, yet understandable means for denoting consistency
conditions; and they can be easily adapted to new requirements. Due to their syntactic
similarity with UML collaboration diagrams, an advanced UML user should be able to
understand the notation. For the automatic validation of models according to the
consistency conditions, we conceptualize an automated testing environment in
[EHHS01] that uses these rules. With this environment, it is possible to automatically
check whether two diagrams conform to given consistency rules, thus enabling model
improvements.

Consistency of models and model transformations are strongly interrelated topics. It is
thus desirable to have a single notation for expressing model properties concerning both
aspects. When using meta-modeling techniques, graph transformations are a natural
candidate to express model transformations. In [HHS02b], we use graph
transformations for denoting both model transformations and consistency conditions
between models. This combined use benefits different types of interrelation between
transformation and consistency. A special focus is the generation of automatic
consistency-establishing transformations. We use relationship patterns to express related
elements in models and a graphical specification of consistency conditions with respect
to these relationships. The graphical consistency conditions are intuitively
understandable and especially suited to express complex object structures. They can, in
addition, be equipped with mechanisms that facilitate the automatic correction of certain
inconsistencies. This property that consistency and transformations can be studied in a
single language benefits all scenarios in which consistency and transformation interact.

In summary, graph transformation is used in this work as the theoretical foundation for
model-based software engineering. Models are represented as graphs, and graph
transformations are used to specify model transformations as well as their pre- and post-
conditions. The transformations can be interpreted as defining precise operational
semantics of the models. They can also be used to translate between different partial
models, as in the case of automatic code generation from design models (compare
Section 4). From a methodological point of view, graph transformation can furthermore
be deployed for graphically defining relationships between model elements and
consistency constraints between partial models, for checking these conditions and to
correct inconsistencies if required [HHS02b]. Thus, transformations and consistency
management can be handled in a common formalism.

3.5 Dynamic Meta Modeling with Time (DMM+t)

In system domains like embedded real-time systems and multimedia applications, it is
important to include specifications of time in the behavior models, since their correct
execution depends on the fulfillment of time constraints in addition to functional
requirements. UML already incorporates (syntactic) language features to model time

22

and temporal constraints. Obviously, such model elements must have an equivalent in
the semantic domain.

Together with Hausmann and Heckel, I have extended the DMM approach to DMM+t,
Dynamic Meta Modeling with Time [HHS02a], [HHS04]. We make use of DMM’s
extensibility as explained in Section 3.4. It allows us to define the operational semantics
of UML diagrams with time specifications incrementally. As the semantic domain, we
now use timed graph transformations. They extend the formalism of attributed graph
transformations by distinguished attributes for time. Transformations get a time stamp
and additionally can not only modify the graph structure, but also the value of time
attributes. By this means, we are able to define the operational semantics of UML
diagrams with time.

We have applied DMM+t in multimedia application modeling in [HHS02a], [HHS04].
We describe the semantics of time aspects in (extended) UML models (now with timed
execution semantics) and check temporal consistency of different partial models. For
this purpose, we have defined multimedia sequence diagrams, which are a multimedia-
specific variant of UML sequence diagrams. They allow us to model the control of
multimedia presentations. The DMM rules with time then specify an interpreter that can
be used to analyze or test a model of multimedia sequence diagrams. Timed automata
have been investigated an as alternative semantic domain.

 Integrating these works with the object-oriented modeling method OMMMA (see
Section 5.2), we obtain a comprehensive method for the model-based development of
multimedia applications. OMMMA, on the syntactic level, defines the required
extensions of the UML for the modeling of multimedia applications, using UML’s built-
in extension mechanisms for defining UML profiles. This defines the graphical syntax
of the visual modeling language. Dynamic Meta Modeling (DMM, DMM+t) provides
the formal means for defining the semantics. Using this formal method, we obtain
precisely defined semantics of the multimedia-specific extensions of UML sequence
diagrams.

23

4 Fundamental Methods for Software Engineering

In this section, we look at two fundamental approaches towards model-based and
model-driven software development: automatic code generation and design-by-contract
with models. In Section 4.1 we present a method for automatic generation of Java code
from UML 1.x collaboration diagrams. The remaining sections present the idea of
visual contracts and their application in different software development domains.
Visual contracts apply concepts of design-by-contract on the level of models. Their
formal foundation is given by graph transformation theory. We have successfully
applied visual contracts as a method for the model-driven monitoring of programs
(Section 4.3), Web service discovery and validation (Section 4.4), the specification of
enterprise services (Section 4.5), and for behavior specifications in model-based testing
(Section 4.6). The characteristics of the presented methods and the relevant publications
are summarized in Figure 7.

VC: Visual Contracts
• design-by-contract lifted to model level
• defined by meta-model extension for UML 2
• formalized with graph transitions (VC) and graph
transformations (JML generation) [ELSH06]

• either use UML 2 object [LSE05], [ELS05a], [ELS05b]
or composite structure diagrams [ELSH06]

• methods & workflows for contract-based modeling
• Visual Contract Workbench
• model-driven monitoring of Java programs with JML
assertions [LSE05], [LES06]

• specification and discovery of Web Services [ELS05a],
[ELS05b]

• validation of Web service implementations [ELS05b]
• specification and management of enterprise services
[LRE+06]

• model-based testing [EGS08]

[LSE05], [ELS05a], [ELS05b], [LES06],
[ELSH06], [LRE+06], [EGS08]

Java Code
Generation
• code generation from UML 1.x
collaboration diagrams

• methodical guidelines for using
collaboration diagrams

• formalized in a refined UML
meta-model

• two level-grammar specifies
transformations

• transformation algorithm

[EHSW99a], [EHSW99b]

Figure 7: Overview of the contributed fundamental methods

4.1 Java Code Generation from UML Behavioral Models

A different line of research, but starting point for the precise UML work is the rule-
based transformation of UML models in executable program code. The definition of
such transformation rules is the basis for automatic code generation and an important
aspect of rigorous and model-driven software development. In [EHSW99a] and
[EHSW99b], we provide a translation of UML 1.x collaboration diagrams in Java code.
The translation process is conceptualized and formalized. Graph transformation rules
are used that operate on a representation of a model as an instance of the UML meta-
model.

UML comprises a family of diagram types for specifying structure and behavior of
software systems. Models specified in these diagram types have to be transformed into

24

corresponding code during the software development process. While previously mainly
class diagrams and statechart diagrams were considered for automatic code generation,
we focus on collaboration diagrams in [EHSW99a] and [EHSW99b]. We investigate
the modeling of sequential behavior by UML collaboration diagrams and their
automatic transformation into Java code. The code generation from the collaboration
diagrams is closely related to the generation of code from class diagrams as explained in
[EHSW99b].

Objective of our transformation is to preserve the modeled information during the
transition from a model to its implementation. The automatically generated Java code
fragments implement a substantial part of the system functionality. However, we do not
use UML collaboration diagrams as a visual programming language for specifying the
behavior of a system completely. Instead we concentrate on the modeling of object
interactions, while computations on data values are neglected, and thus have to be
manually added to the generated Java code.

According to this perception of code generation, we first provide methodical guidelines
how to deploy collaboration diagrams in a structured way for modeling functional
behavior. This is an important prerequisite for a consistent transformation into Java
code. This methodical understanding is formally reflected in a refined meta-model. On
this basis, we then formulate the transformation algorithm.

We build our transformation on a two-level grammar approach. It uses a kind of meta
rules consisting of a rule scheme and an additional pattern [EHSW99a]. The rule
scheme describes the generation of syntactically correct Java code. It has the form of a
context-free rule expression, but it is still independent of a concrete collaboration
diagram. The pattern is a part of an instance diagram of the meta-model. It is used to
represent those parts of a concrete diagram which shall be actually transformed. Hence,
the occurrence of the pattern in the instance diagram for the example application for
which code shall be generated serves as an application condition for the whole meta-
rule to be applied. Moreover, the concrete occurrence links together the general code
generation as described by the rule scheme, and the actual elements of the concrete
collaboration diagram that has to be transformed. The parameters of the rule scheme
occur in the pattern and can hence be replaced by actual values in order to instantiate the
rule scheme.

4.2 Visual Contracts (VC): Design-by-Contract with Models

Visual contracts are a fundamental software engineering method and provide a
formalism for model-based and model-driven development. They apply concepts of
design-by-contract on the level of models. The formal foundation of visual contracts is
given by graph transformation theory [ELSH06].

We use executable visual contracts at runtime for monitoring the execution of programs.
We call this approach model-driven monitoring. For this purpose, visual contracts are
translated into assertion code that is executed together with the functional code for its
monitoring [LSE05], [LES06]. We use this fundamental software engineering method
for the semantic specification of Web services, the matching of service descriptions and
service requests [ELS05a], [ELS05b], and the model-based development and model-
driven monitoring of Web services [ELS05b]. We have applied visual contracts in an

25

industrial case study in order to evaluate its applicability to the development and
description of enterprise services [LRE+06]. Additionally, we employ visual contracts
for formalizing functional requirements in order to use them for software testing
[EGS08]. All these uses will be explained in the next sections.

4.3 Executable Visual Contracts for Model-driven Monitoring

Design-by-contract is widely acknowledged to be a powerful technique for creating
reliable software. It allows developers to specify the behavior of an operation precisely
by pre- and post-conditions. We have developed an approach to lift the design-by-
contract idea, which is usually used at the code level, to the model level. For this
purpose, visual contracts [LSE05] are introduced as a specification technique. They are
used to graphically specify data state transformations with pre- and post-conditions. The
pre- and post-conditions of behavioral elements, e.g. operations or services, are modeled
by pairs of UML object diagrams [LSE05] or pairs of UML composite structure
diagrams [ELSH06].

 In [LSE05], we define a mapping of visual contracts into Java classes that are annotated
with behavioral interface specifications in the Java Modeling Language (JML). The
mapping supports testing the correctness of the implementation against the specification
using JML tools, which include a runtime assertion checker. Thus we make the visual
contracts executable.

By using the UML, we build on a well-known standard that is predominantly used in
today’s model-based and model-driven development methods. Hence, our visual
contracts are understandable by software developers and can be easily integrated in
model-driven software engineering methods and processes. Visual contracts also qualify
for adoption in agile methods as they can be used as the origin for programmers’ coding
and test generation. Furthermore, our visual contracts are more intuitive and easier to
understand than logic formulae (normally used for design-by-contract) and, in
consequence, more efficient for information exchange among different development
team members.

To formalize visual contracts, we have defined a UML 2 meta-model extension for
visual contracts. The visual contracts integrate with the UML 2 meta-model. We mainly
use elements from the UML 2 meta-model packages InternalStructures and
Collaborations. The operational specification of the transformation from visual
contracts to JML code is based upon this UML 2 meta-model extension for visual
contracts. The meta-model represents the source language of the model transformation
and provides the type graph on which the graph transformation rules operate, i.e., the
graph transformation rules are specified on the meta-model level, and the concrete
models are viewed as meta-model instances when they are transformed. Figure 8
summarizes the semantics and semantic dependencies of visual contracts.

The conceptual idea and modeling language definition for visual contracts is
accompanied by a model-driven monitoring method that specifies how to work with
visual contracts (see Figure 9). Since visual contracts are used on the model level,
contract-based development in this case is a specific form of model-based software
development. Furthermore, as visual contracts are used as an input for generative
software development, too, modeling with visual contracts can even be considered a

26

model-driven software development method. Thus, it supports model-driven
development (MDD) of software systems by lifting the design-by-contract idea from the
code level to the model level.

Graph
Transformation

Graph
Transformation

Visual ContractsVisual Contracts

«semantic»

UML

«UML 2»
Composite

Structure Diagram

«UML 2»
Object

Diagram

{xor}

«syntactic»

Meta-ModelingMeta-Modeling

Figure 8: Semantic and syntactic dependencies of the visual contract formalism

When applying visual contracts in a design-by-contract method, a designer models the
design class diagram and specifies the behavior of operations (or services) by visual
contracts. Program classes with assertions are then generated from the class model and
the visual contracts. More precisely, the design class diagram is translated into class
templates in the target programming language, and assertion code (i.e., executable
contracts) is generated for the operations’ behavior. A programmer uses the visual
contracts as a specification and fills the missing behavioral code in the class skeletons
(this activity can be regarded as model-based). To validate that the programmer’s code
is a correct implementation of the visual contract, the assertion code is used for runtime
monitoring of the system’s behavior. Altogether, the code generation facilitates
automatic monitoring of the correctness of the programmers’ implementation.

The feasibility of the approach is shown in [LSE05] by a translation of our models into
Java. The visual contracts are translated into JML, a design-by-contract extension for
Java. Then we use the JML compiler, which translates the JML annotations into
executable bytecode. The compiled bytecode contains checks to test the pre- and post-
conditions at runtime. A translation of our visual contracts to OCL or Microsoft’s Spec#
is also possible.

For an efficient deployment of our model-driven development method, we have built a
comprehensive tool support in the Visual Contract Workbench [LES06]. The tool is
implemented as an Eclipse plug-in and uses the Eclipse Modeling Framework. An
editor allows developers to coherently model class diagrams and visual contracts
[LSE05]. The editor is complemented by code generation facilities that translate the
model in Java classes with assertions for their operations. The visual contracts are
translated into assertions in the Java Modeling Language (JML).

27

public class Customer {

// Associations:
private Vector customer;

/*@ requires (\exists Product p; product.contains(p);
@ p.getNo() == prNo);
@ ensures (\exists Order o; order.contains(o);
@ o.getOrderNo() == \result)
@*/

public int addProductToOrder(int customerNo,
int orderNo, int productNo){

}

public class Product {

// Associations:
private Vector customer;

/*@ requires (\exists Product p; product.contains(p);
@ p.getNo() == prNo);
@ ensures (\exists Order o; order.contains(o);
@ o.getOrderNo() == \result)
@*/

public int addProductToOrder(int customerNo,
int orderNo, int productNo){

}

public class Order {

// Associations:
private Vector customer;

/*@ requires (\exists Product p; product.contains(p);
@ p.getNo() == prNo);
@ ensures (\exists Order o; order.contains(o);
@ o.getOrderNo() == \result)
@*/

public int addProductToOrder(int customerNo,
int orderNo, int productNo){

}

public class Shop {

// Associations:
private Vector customer;

/*@ requires (\exists Product p; product.contains(p);
@ p.getNo() == prNo);
@ ensures (\exists Order o; order.contains(o);
@ o.getOrderNo() == \result)
@*/

public int addProductToOrder(int customerNo,
int orderNo, int productNo){

}

public class Customer {

// Associations:
private Vector customer;

/*@ requires (\exists Product p; product.contains(p);
@ p.getNo() == prNo);
@ ensures (\exists Order o; order.contains(o);
@ o.getOrderNo() == \result)
@*/

public int addProductToOrder(int customerNo,
int orderNo, int productNo){

}

public class Product {

// Associations:
private Vector customer;

/*@ requires (\exists Product p; product.contains(p);
@ p.getNo() == prNo);
@ ensures (\exists Order o; order.contains(o);
@ o.getOrderNo() == \result)
@*/

public int addProductToOrder(int customerNo,
int orderNo, int productNo){

}

public class Order {

// Associations:
private Vector customer;

/*@ requires (\exists Product p; product.contains(p);
@ p.getNo() == prNo);
@ ensures (\exists Order o; order.contains(o);
@ o.getOrderNo() == \result)
@*/

public int addProductToOrder(int customerNo,
int orderNo, int productNo){

}

public class Shop {

// Associations:
private Vector customer;

/*@ requires (\exists Product p; product.contains(p);
@ p.getNo() == prNo);
@ ensures (\exists Order o; order.contains(o);
@ o.getOrderNo() == \result)
@*/

public int addProductToOrder(int customerNo,
int orderNo, int productNo){

}

Class Diagramm Visual Contracts
Ja

va
 C

la
ss

 S
ke

le
to

ns
O

perations annotated
w

ith JM
L Assertions

JML Compiler

executable binary
code with run-time
tests for contracts

/*@ requires (\exists Product p;
@ product.contains(p); p.getNo() == prNo);
@ ensures (\exists Order o; order.contains(o);
@ o.getOrderNo() == \result)
@*/

public int addProductToOrder(int customerNo,
int orderNo, int productNo){

}

programmer
• implements method bodies
• adds additional operations
• adds classes

compile

+createOrder(in customer : Customer) : Order
+addProductToOrder(in productNo : Integer, in customerNo : Integer, in orderNo : Integer) : Boolean

«control»
Shop

-productNo : Integer
-name : String

«entity»
Product

-orderNo : Integer
-creationDate : Date

«control»
Order

-customerNo : Integer
-name : String

«entity»
Customer

0..*

1

buyer40..*
0..*

3 contains

orderNo1

0..1

customerNo1

0..1

productNo1

0..1

software
developer

models models

generate

generate

knowsknows

Figure 9: Overview of the design-by-contract method with visual contracts (from [LSE05])

The presented model-driven development (MDD) approach for constructing software
systems advocates a stepwise refinement and transformation process starting from high-
level models to concrete program code. In contrast to numerous research efforts that try
to generate executable function code from models, we propose a novel approach termed
model-driven monitoring (MDM) [ELSH06]. Models are used to specify minimal
requirements and are transformed into assertions on the code level for monitoring hand-
coded functional code during execution.

We deploy graph transformation theory for supporting our model-driven monitoring
approach. In particular, models in the form of visual contracts are defined by graph
transitions with loose semantics, while the automatic transformation from models to
JML assertions on the code level is defined by strict graph transformation rules. Since
the pre- and post-conditions of the visual contract only specify minimal requirements
towards the implementation of an operation, we use the loose semantics of graph
transitions of the double-pullback approach. For the model-to-code transformations, we
use compound graph transformation rules to define a transformation of our visual
contracts to JML. To automate this model transformation, we need the strict semantic
interpretation of graph transformation rules as formalized by the double-pushout
approach. Both aspects are supported and realized by the dedicated Eclipse plug-in.

Altogether, model-driven monitoring is a practically useful amalgamation of graph
transformation and design-by-contract concepts. In contrast to the automatic generation
of function code, we generate assertions from contracts that are monitored and
automatically checked while the actual and manually implemented function code is
executed.

28

4.4 Web-Service Discovery and Validation with Visual
Contracts

The quality of service-oriented software systems depends substantially on linking the
proper services. Two fundamental aspects are relevant: (1) Do the requirements of a
service requestor and the service description of a service provider fit together? (2) Is the
service implementation correct with respect to the service description?

If a service requestor wants to find a Web service that is offered by a service provider,
the requestor’s requirements and the description of the service must be compared.
Syntactic descriptions are not sufficient for this. In [ELS05a] we apply design-by-
contract on the modeling level for the semantic specification of Web services. We
employ visual contracts for the semantic description of both Web services and service
requests, and we introduce a matching mechanism for the comparison of requestor and
provider contracts in [ELS05a], [ELS05b]. This enables an automated semantic search
for Web services.

Pre- and post-conditions of a visual contract are each specified in the form of a UML
object diagram. The object diagrams are typed over a class diagram. The class diagram
acts as an ontological model that defines the terminology. Based on this specification of
service behavior, we define the notion of compatibility. Compatibility of provided
services and service requests is traced back to checking of sub-graph relationships
[ELS05a]. The precondition of the provider contract has to be a sub-graph of the
requestor contract’s precondition, and vice versa for the post-conditions. The notion of
compatibility enables the matching of service descriptions and service queries at the
discovery service. The notion of compatibility accounts for structural changes such as
the deletion or creation of an object. Focusing on structural changes allows us to
effectively compute the matching between descriptions of service requests and Web
services.

The approach may be extended e.g. with logic expressions to restrict the values of
object attributes. However, this will make the computation of the matching more
complicated. From our perspective, this is not required for the compatibility checks at
the discovery service, since the detected services are only candidates. A service
requestor has to take further steps to make a selection from the candidate set. Because
only a small number of candidate services then need to be further examined, additional
criteria may be considered for the selection.

Additionally, we have developed a method for generating a matching that allows us to
map the contracts that are typed over the class diagrams of service requestor and service
provider, respectively, to a semantic description that is typed over a domain ontology
[ELS05b]. Therefore, Web services can be offered and used across domains.

A model-based method and process for the contract-based development and
management of Web services in presented in [ELS05b]. In addition to the matching
process, we generate analyzable semantic descriptions and runtime assertions from Web
service models (i.e., visual contracts), and use them for checking the correctness of a
Web service implementation against its specification at execution time. The process is
depicted in Figure 10.

29

Ontology
Level Diagram

Implementation
Level Diagram

Interface
Level Diagram

Interface
Level Diagram

Implementation
Level Diagram

UML Design
Class Diagram

Visual
Contractstyped over

Interface
Information Model

Private
Contracts

Ontology

Visual
Contracts

Private
Contracts

Interface
Information Model

UML Design
Class Diagram

Semantic Matching

typed over

typed over

typed over

typed over

typed over

P
rovider

R
equestor

Public
Contracts

Public
Contracts

Implementation

software
developer

JML
AssertionsJava Classes

generategenerateprogrammer

implements
behavior

software
developer

creates
design model

creates
relation

creates
relation

creates
design model

Behavioral Code

Executable Code

compile

Binary Code (fuctional code + runtime assertion checks)

Figure 10: Specification, search and validation of Web services with visual contracts (from
[ELS05b)]

The conceptual approach is complemented by implemented software tools for
comparing the contracts and the generation of Java and JML code. The tool chain for
the contract matching contains The Attributed Graph Grammar System (AGG) as the
modeling editor for visual contracts. AGG supports typed graph transformation. The
type graph is an abstract representation of the used ontology (class diagram) in our case.
The ontology is represented by the semantic Web languages DAML+OIL. Visual
contracts are represented as AGG typed graph transformation rules. A Java application
translates between DAML+OIL and AGG’s file format. The DAML+OIL
representations of the ontology and the pre- and post-conditions of the visual contract
are RDF graphs. Thus, we can map our matching concept for contracts to the matching
of RDF graphs. The semantic Web framework Jena is used for computing the sub-graph
relation.

Altogether, we have developed a model-based and partly model-driven approach for the
semantic description, comparison and validation of Web services. Our solution does not
only support the semantic comparison of requirements and service descriptions, but also
the model-based validation of service implementations. Hence, the method supports
constructive and analytical quality assurance which has the potential to reasonably
improve the quality of service-oriented applications.

4.5 Specification of Enterprise Services with Visual Contracts

Conceptually, service-oriented architectures (SOA) allow for fast and cost-effective
appropriation of functionality to support the business processes of a company. Required
business functions are provided as enterprise services and can be flexibly deployed in
service-oriented business information systems. However, the large count of such
services demands for appropriate semantic descriptions for their efficient management.

30

We have evaluated the practical applicability of visual contracts for service
management in an industrial case study together with a software company [LRE+06],
using a realistic scenario from the insurance business. Visual contracts are employed as
a UML-based technique for the semantic description of enterprise services and the
formulation of service queries on the modeling level.

al contract formalism is extended, then the
matching mechanism must also be adapted.

4.6 Model-based Testing with Visual Contracts

act
Workbench with a plug-in for the generation of test cases and the execution of tests.

re engineering methods
for other system classes that I have developed or contributed to.

The evaluation shows that visual contracts can be used practically and economically on
the business level. On the technical level, extensions are required if visual contracts are
to be used for the specification of service interfaces beyond a certain degree of
complexity. However, the increased expressiveness competes with the intuitive
understandability of the contracts. If the visu

Visual contracts can also be applied in the methodical domain of model-based testing.
In order to effectively employ use-case descriptions for software testing, the pre- and
post-conditions of the use cases that are given in natural language are formalized by
visual contracts [EGS08]. The visual contracts specify the modification of business
objects as a result of executing the use case. The visual contracts can then be used for
generating test inputs during test-case specification and for checking test outputs during
test execution. Tool support is provided for linking visual contracts into the
development and test processes. Particularly, we have extended the Visual Contr

After having considered fundamental, widely applicable approaches to model-driven
development, namely automatic code generation and design-by-contract, in this section,
we look at software engineering methods that are targeted towards specific types of
systems, i.e., system domains, in the following sections. We start with the model-based
development of multimedia applications and then look at softwa

31

5 Multimedia and Interactive Systems

In this section we look at the system domain of multimedia and advanced interactive
systems. We consider multimedia applications and software systems with advanced user
interfaces to be members of this system domain. Characteristic is the importance of the
user interface, and thus its integrated modeling in model-based development methods;
furthermore, the tendency towards integrated, interdisciplinary development methods
that let designers and end-users participate in the development process.

In this domain, work on multimedia software engineering methods and predominantly
model-based development methods and processes for multimedia applications (Sections
 5.1, 5.2, 5.3), the integration of informal methods with software engineering methods
(Section 5.4), as well as the model-driven development of interactive multimedia
systems and Web applications (Sections 5.5 and 5.6) will be presented. An overview of
the contributions and their dependencies is given in Figure 11.

5.1 Multimedia Software Engineering Methods

Multimedia applications are interactive software systems that use, manipulate or
produce media of different types in an integrated way. According to this definition, they
are a specific type of software systems. The complexity of modern multimedia systems
and their distributed development by heterogeneous teams demands for systematic
development methods that account at the same time for their specific characteristics. We
call this systematic development multimedia software engineering. From a software
engineering perspective, it is necessary to apply and adapt software engineering
techniques in this system domain in order to account for the multitude of relevant
aspects and to keep multimedia software development projects manageable (see
[ES04a]).

My work on multimedia software engineering methods started in the late 1990s from
the observation, that a variety of techniques, services, systems technology and standard
document formats for multimedia computing and communication had been developed in
the 1990s. Despite the technological progress, the discipline of multimedia software
engineering did not receive comparable attention. Multimedia application development
typically followed an implement-and-test process: specialized multimedia authoring
systems, multimedia frameworks, toolkits or system software were directly used for
implementation. Among them, multimedia authoring tools were the dominant means for
prototyping and directly creating interactive multimedia and hypermedia applications.
The brisk development of multimedia frameworks and toolkits of the early 1990s had
widely ebbed away, but had fostered the provision of multimedia APIs such as
Microsoft's DirectX or Sun's Java Media API to simplify multimedia programming. An
analysis of the state of application development based on multimedia authoring systems
and object-oriented programming can be found in [ES02].

However, while authoring and programming of hypermedia and multimedia
applications were successfully adopted in practice, modeling and adequate specification
techniques for multimedia systems needed to further evolve. No preceding modeling
activities for requirements specification, analysis, or design of the system prior to the
implementation were included in the multimedia software development process. Formal
models without direct relation to development methods and implementation

32

technologies did not gain much practical relevance; yet they provided the conceptual
basis for later model-based development approaches. Sophisticated multimedia process
models and established, usable graphical notations tailored to the specification of
multimedia systems were still lacking.

Semantic Variation
Points of UML
Sequence Diagrams

• semantic dimensions and
variants of sequence diagrams

• defining the semantics of
specific uses and extensions
of UML sequence diagrams

[HKS01]

Model-based
Development with
MMAS

• method for model-based
development with multimedia
authoring systems (MMAS)

• object-oriented modeling
framework with dimensions
application logic, presentation,
control, media

• platform-independent
application model (Analysis)

• platform-specific programming
model of MMAS (Design)

• process model

[DEM+98], [DEM+99]

Integrated Method for
Interactive Multimedia
Systems

• process combining OMMMA
process and user-centered
design process

[ESN03]

DMM+t:
Dynamic
Meta
Modeling
with Time

• see Section 3

OMMMA

• object-oriented, model-based
method for Analysis and
Design of multimedia
applications

• model architecture MVCMM
contains views of holistic
model of the relevant system
aspects [SE99a]

• integrated model based on
UML meta-model extension
[SE99d]

• OMMMA-L modeling language
extends UML

• methodical guidelines
• extension for timed multimedia
sequence diagram,
presentation diagram

• integration of time-dynamic
behavior [SE01]

• OMMMA-Edit tool extending
Rational Rose 98

• applied for automotive
infotainment systems [SE99b],
[EGS01]

• applied for multimedia
information systems [SE99c]

[SE99a-d], [SE01], [ES02],
[EGS01]

GuiBuilder

• method and tool for MDD of
GUI prototypes with
multimedia

• object-oriented presentation
model

• hierarchical statechart model
• visual modeling tool based on
Eclipse

• method and tool enable end-
user participation

[SDGH06], [SE07]

ProGUM-Web

• method, process and tool for
model-based, partly model-
driven development of
dynamic Web applications

• cooperative development
• roles of programmers and Web
designers are distinguished

• role-specific code generation
and integration of program files

• incremental and iterative
development

[LSS03]

Semantic
Variation
Points of
UML
Sequence
Diagrams
• see Section 3

Figure 11: Overview of the work contributed to model-based and model-driven development in
the domain of multimedia and interactive systems

33

The main focus of research on multimedia software engineering at that time was the
development of hypermedia applications [ES04b], being a practically important subset
of multimedia applications. Some authors worked on the model-based development of
hypermedia applications. They proposed concepts and developed tools that support the
automatic generation of prototype hypermedia applications using XML technology.
Achievements in object-oriented modeling of multimedia applications were surveyed in
[ES02]. In our analysis, we considered approaches for the object-oriented modeling of
hypermedia applications and extensions of the Unified Modeling Language (UML) for
hypermedia and interactive systems.

Under these circumstances, I started research on model-based development of
multimedia applications. The most striking result of that work is the OMMMA method
and language for object-oriented modeling of multimedia applications that is described
in the next section. Addressing the general need for multimedia software engineering,
we proposed to make modeling a central technique and activity in the multimedia
software development process, even when multimedia authoring tools are used for
implementation. An according method and process is summarized in Section 5.3.

5.2 Object-oriented Modeling of Multimedia Applications

As our main contribution to model-based development in the system domain of
multimedia applications, we have developed the model-based development method for
multimedia applications OMMMA [SE99a]1, [SE99c], [SE99d]. OMMMA is an
acronym for object-oriented modeling of multimedia applications. At the core of the
OMMMA method is an integrated graphical model that coherently captures the
important aspects of multimedia applications. In [SE99a] and [SE99d] we investigate on
the methodical level, how far the modeling of multimedia applications, their structure
and behavior, goes beyond the modeling of conventional software systems. The analysis
yields that aspects of the user interface and the time-dynamic behavior ought to be
integrated parts of the multimedia application model. As a solution, we propose the
OMMMA method. OMMMA is based on a fundamental modeling architecture that
extends the model-view-controller architecture pattern towards multimedia. We call this
modeling architecture MVCMM [SE99a].

The integrated model combines a set of different partial models (i.e., modeling views)
according to MVCMM. Each of them is dedicated to modeling a particular aspect. The
collection of aspects covers application structure, application behavior, media and the
user interface. Furthermore, we have identified and incorporated the relationships and
inter-dependencies among the individual partial models in the integration model
[ES02], given by the common meta-model. The different partial models and their
interrelationships are depicted in Figure 12.

The meta-model is also the linguistic foundation for the corresponding modeling
language. Used as a linguistic meta-model, the OMMMA meta-model defines the
interplay between the model elements that possibly appear in different diagram types
(i.e., sub-languages). We defined the visual modeling language OMMMA-L as part of

1 Recognized with Most Influential Paper Award of IEEE Symposium on Visual Languages and Human-
Centric Computing 2010

34

the OMMMA development method for the object-oriented modeling of multimedia
applications [ES02]. OMMMA-L is an extension of the UML. With this extension, it is
possible to model the important aspects of a multimedia application in a coherent
graphical model.

AutoInfoSysSim::MIS::MultiInfoSys

MultiView

NavA1

Ctrl1

Ctrl2

Ctrl3

Ctrl4

CtrlA

CtrlB

AutoInfoSysSim::Cockpit

CockpitDisplay

AutoInfoSysSim

Speaker
L R Cent

AutoInfoSysSim

CommunicationAutoStatusSystem Navigation EntertainmentInfoServices

MapSpeedometer

Status2Monitor

1 1 1 1

1

*

1

Location
start

dest 1

1

*

*

*
**

MileageCounter
1

RevCounter
1

Media

TemporalMediaDiscreteMedia

Animation Audio VideoGraphics Image Text *

0..1

11

1

0..1

0..1

1
1..2

0..1

0..1

1

0..1
Direction

1..*
1

1

0..1 part:
Integer

Route

Announce
1
0..1

1

AutoInfoSysSim

Navigation InfoServices

Entertainment

AutoStatusSystem

Communication

navi
navi

retNavi

infoSys

infoSys
eTaineTain

Off

MultiInfoSys

H
off

on

MIS

directing

do / showRoute(start, dest)

direct
zoomOutzoomIn

:Navigation ABm:Map ABr:Route ab1:Direction

showRoute
(A, B)

show

start

ab1a:Announce ab2:Direction

start

end

start

end

start

end

end

finished

finished

< 10 sec

< 5 sec300 sec

[10;20]
sec

240 sec

< 3 sec

H*

Ce
nt

<
tL

ef
t:

Au
di

o>

M
ul

tiv
ie

w

M
ul

tiv
ie

w

N
av

A1

N
av

A1

<
st

ra
ig

ht
-le

ft
:

An
im

at
io

n>

<
st

ra
ig

ht
:

An
im

at
io

n>

<
AB

M
ap

:
Im

ag
e>

<
AB

Ro
ut

eS
eg

1:
An

im
at

io
n>

<
AB

Ro
ut

eS
eg

2:
An

im
at

io
n>

M
ul

tiv
ie

w

ABm:= calcMap(A, B)
ABr:= calcRoute(A, B)

Figure 12: Integrated view of an OMMMA model showing the relationships between dynamic
behavior model (top left), timed sequential behavior model (bottom right), class model (top
right) and presentation model (bottom left) (from [ES02])

Modeling in OMMMA is based on a separation of the aspects structure, timed behavior,
dynamic behavior, and presentation. Timed behavior refers to predetermined temporal
behavior of temporal media or media presentation schedules. Dynamic behavior is
induced by interactive control of users or the occurrence of other kinds of events. The
presentation aspect covers structure and layout of the (graphical) user interface and its
elements. Each modeling view is modeled with a dedicated diagram type. A core feature
is the integration of the two behavior aspects time and interactivity. This is especially
important in the presence of temporal media which have a predefined temporal
behavior. In a multimedia presentation, they may be reproduced without change, or they
may be altered in response to dynamically occurring events at runtime like user
interactions. Thus, predefined temporal behavior has to be combined with user
interaction which may happen non-deterministically in an integrated and consistent
model. To fulfill this requirement, we couple timed sequence diagrams that have been

35

extended for multimedia (compare Sect. 3.5) with UML statechart diagrams via a model
interface defined in the modeling language [SE01]2.

OMMMA-L is based for the most part on the standard modeling language UML. This
especially holds for the notation and the graphical representation of the diagram types.
For the definition of OMMMA-L as an extension of UML, we have analyzed the
structural and behavioral diagram types of the UML (compare [EHS00], [HKS01])
according to the requirements of the system domain multimedia applications. Where
necessary, we have adapted or extended the UML and its diagram types on the level of
abstract and concrete syntax, respectively. New language elements have been
incorporated into OMMMA-L in order to provide appropriate language features for the
specific properties of multimedia applications and to allow for integrated modeling of
all relevant aspects. Among these extensions are:

• extensions of UML sequence diagrams for modeling presentation and
synchronization of media objects in a multimedia application, and

• the presentation diagram, which supports the spatial representation of media and
presentation objects.

Since integration of co-existing timed procedural and interactive behavior is at the heart
of multimedia systems, we specifically focus on UML-based specification of behavior
in [SE01]. We define in detail the extensions to UML behavior diagrams for the
modeling of interactive multimedia applications. In addition, we outline from the
language and method perspective how these behavioral aspects are to be integrated with
media, presentation, and software architecture modeling to achieve a coherent and
consistent model. We show that the integration of predefined temporal behavior and
interactive control can be easily mapped to object-oriented implementation techniques
and frameworks and the development paradigms of most multimedia authoring systems.

OMMMA models can be used on the analysis and design stages of a model-based
development process for multimedia applications. To specify its intended use, the
modeling language OMMMA-L is accompanied by a method description and
methodical guidelines how to deploy the language in a model-based multimedia
software development process. Methodical guidelines also state how to integrate the
different diagram types for the holistic modeling of all aspects of a multimedia
application in a comprehensive model. For example, the class diagram is used to model
media types in a hierarchical media type model as well as the logical structure of the
multimedia application. Behavior is modeled with specialized multimedia sequence
diagrams and statechart diagrams. A new diagram type is added, the presentation
diagram, for modeling the (visual) presentation and interactive behavior elements in an
integrated and demonstrative way. It contains the elements of a multimedia application
user interface together with its spatial properties. In [SE99d], we describe the individual
diagram types and present a meta-model for OMMMA-L that is derived from the UML
meta-model. The formal semantics of UML behavior diagrams and their extensions for
the multimedia domain is defined based on the concept of Dynamic Meta Modeling (see
Section 3). In particular, the language extensions of OMMMA-L are formalized by a

2 Recognized with Best Paper Award of HCC’01 Symposium on Visual/Multimedia Approaches to
Programming and Software Engineering

36

precise semantics specification based on graphical operational semantics [EHHS00],
Section 3.5).

In addition to method and language engineering, we have developed the modeling
environment OMMMA-Edit as a research prototype. OMMMA-Edit is an extension of
the commercial UML modeling tool Rational Rose 98. OMMMA-Edit includes
additional visual, syntax-directed editors for the new, resp. extended diagram types of
OMMMA-L (see Figure 13) according to the modeling language specification and the
defined methodical guidelines. The modeling tool especially assures the consistency
between the different diagram types within a model as defined in the integration model.
Rational Rose 98 is also deployed as the repository for managing model data.

Figure 13: Screenshots of the OMMMA-Edit tool showing the project and diagram type editors

The OMMMA method and language have been applied, evaluated and specialized in
different scenarios, e.g., in the domains of multimedia information systems and
automotive infotainment systems.

Automotive infotainment systems. OMMMA-L has been evaluated in an industrial
joint project for a domain-specific modeling language for automotive software systems.
The integrated language was intended to cover aspects of interactive systems,
multimedia information (infotainment) and embedded systems [SE99b]. One specific
requirement was the modeling of the interactive graphical user interface of the
multimedia infotainment system within automotive cockpits [EGS01]. From the
identified set of relevant aspects to be modeled, we derived a modeling architecture,
defined adequate diagrammatic modeling (sub-) languages extending the UML, and

37

guidelines for using the modeling language elements. We compared two well-known
architecture patterns (MVC and PAC) [SE99b] and derived the Model-View-Controller-
Communication (MVCC), an advanced architecture paradigm applicable to real-time,
embedded multimedia systems. We specifically reused the OMMMA-L presentation
diagram.

Multimedia information systems. We also applied OMMMA for the modeling of
structure and dynamic behavior of multimedia information systems in [SE99c]. There,
we relate OMMMA-L to basic concepts of multimedia information systems and
services.

In summary, OMMMA-L is a precise, yet usable modeling language for the integrated
specification of multimedia applications based on software engineering principles and
methods. It is an extension of the Unified Modeling Language (UML) based on an
object-oriented development method. We conclude in [SE01] that the OMMMA
approach meets the following requirements:

• the diagrammatic notation is understandable even by non-technical members of a
development team or users,

• even large scenarios are still manageable due to the inherent structuring on the
structural and behavioral levels by modularization and nested state-machines that
are coupled with sequence diagrams,

• models are easily mapped to an object-oriented implementation or the concepts of
many multimedia authoring tools, but still no programming language knowledge
is needed for the task of modeling,

• temporal (as well as spatial) constraints can be intuitively expressed,
• although temporal and spatial constraints are contained in different diagrams, they

are parts of a common integrated model,
• the object-oriented classification of different stereotypes offers an adequate media

abstraction and supports architectural decomposition,
• dedicated diagram types enable separation of concern for the different aspects of

multimedia applications,
• language (and methods) are easily extensible and customizable by applying

UML’s built-in extension mechanisms for stereotyping, tagged-values, and
constraints,

• the modeling process can thus be very flexible.

More details on OMMMA can be found in the two attached publications [SE01] and
[ES02] in Part III of this thesis.

5.3 Model-based development with Multimedia Authoring
Systems

In addition to method and language engineering for object-oriented modeling, my
colleagues and I have also dealt with the issue of process engineering for multimedia
software development. Outcome of that research is a process model for the model-based
development of multimedia applications with authoring systems [DEM+98],
[DEM+99].

38

Authoring systems allow multimedia developers ad-hoc development of applications in
a sophisticated end-user programming style, using dedicated visual languages and
typical metaphors. Due to the use of these tools and the lack of established software
engineering processes and methods for multimedia applications, the multimedia
software development process typically used to be limited to the implementation stage.
But the lack of conceptualization and documentation leads to well-known software
development and maintenance problems.

Based on this observation, we have developed a process model for the model-based
development of multimedia applications. It is centered upon analysis and design phases
that are directed towards an implementation with multimedia authoring systems. For
multimedia applications, object-oriented models are produced on the type and instance
level (see Figure 14). The development method is model-based. We distinguish between
the platform-independent application model and the platform-specific model for a
particular authoring system [DEM+98].

«instance of»

«instance of»

Type Level Instance Level

Analysis

Design

Multimedia Application ModelMultimedia Application Model

Multimedia Application
Framework

Multimedia Application
Framework

Application-specific
Model

Application-specific
Model

Autoring System
Model

Autoring System
Model

Implementation

maps to

Multimedia Application
Instance Model

Multimedia Application
Instance Model

Instance Model of
Authoring System

Implementation

Instance Model of
Authoring System

Implementation

maps to

«specializes»

Implementation
in Authoring System

Implementation
in Authoring System

Figure 14: Model architecture for the model-based multimedia software development process
with multimedia authoring systems (adapted from [DEM+99])

In our approach, the analysis model of the multimedia application is based on a
framework that conforms to the typical architecture of multimedia applications. The
framework consists of four dimensions: application logic, presentation, control, and
media. Application-specific classes are specialized from the framework classes.
Framework and application-specific classes together build the platform-independent
application model of the analysis phase that is independent of the authoring system and

39

implementation technology. In addition, we employ a capability model of the selected
authoring system on the design stage. It models the implementation concepts that are
supported by the tool. We define a transformation mapping between the application’s
analysis model and the authoring system model that is part of the design model. This
mapping enables the transformation of instance models on the analysis level to instance
models on the design level.

From these two models, we systematically derive an implementation model on instance
level which is used as input for the authoring system. Basic functionality can be visually
programmed using the direct-manipulative graphical user interface of the authoring
system. More complex functionality can be coded in the scripting or programming
language of the authoring system. Code generation techniques and tools may also be
applied to (partially) automate the transformation from models to code, making this
development method not only model-based, but model-driven.

In [DEM+99], we have deployed this process model for the application and system
domain of multimedia e-learning using the authoring system Director. With our process
model, we improved the development process of multimedia applications according to
software engineering criteria.

Altogether, the process model and development method support the model-based
development of multimedia applications which are eventually implemented with a
customary multimedia authoring system. The central idea is to use a programming
model of the authoring system (i.e., a platform model) on the design stage to bridge
between the platform-independent analysis model of the application and its
implementation with the authoring system. The process model and method are not
bound to a particular authoring system, but can be transferred and reused by defining a
new authoring system model and a new transformation mapping from the application
model to the authoring system model.

Since temporal behavior is not sufficiently represented in the model of [DEM+99], we
extended the UML for the modeling of timed and dynamic behavior of multimedia
applications in the modeling language OMMMA-L (see Section 5.2).

5.4 Integrated Methods for Interactive Multimedia Systems

In an attempt to link the work on multimedia software engineering methods and
processes with design methods for interactive systems, we have commenced research on
integrated software engineering methods for interactive multimedia systems. The
development of many modern software systems requires joint work of experts from
different domains due to the systems’ complexity and the demand for a wide variety of
qualities that need to be achieved. This does not only apply to technical systems like
embedded and mechatronic systems – where mechanical and electrical engineering
knowledge and engineering methods need to be combined with software engineering
methods and expertise – but also for the system domains of interactive software systems
in general and interactive multimedia systems in particular. For this purpose, we have
worked on the integration of development methods and techniques from different areas
of expertise.

40

The integration of software engineering methods and methods of user-centered design
for the development of interactive multimedia systems can be assigned to the domain of
multimedia software engineering. In cooperation with usability engineering experts, we
have identified the characteristic similarities and differences between the OMMMA
method (see Section 5.2) and user-centered design methods and techniques. Based on
this analysis, we have conceptualized the integration of these approaches in a
comprehensive development process for interactive multimedia applications [ESN03].

The object-oriented modeling of interactive multimedia applications in the OMMMA
approach is designed to enable multimedia software developers to create comprehensive
analysis and design models of multimedia software. For development of highly usable
multimedia applications, this approach must be embedded in a comprehensive
development process that takes a user-oriented perspective on multimedia software
development. In [ESN03], we elaborate on the differences between user-centered design
activities and object-oriented software design activities and outline their integration in a
comprehensive development process. A high-level view of this process integration is
given in Figure 15.

The two domains mainly differ in their perspective on the system under development.
Furthermore, the user-centered methods are mostly targeted to the early phases of a
development process where an involvement of end-users is of great importance. We
argue that an integration of a user-centered design approach with an object-oriented
software design approach is an important step for the development of interactive
multimedia systems which are accepted by end-users. On this basis, an investigation of
conceptual and design models within a user-centered approach and their possible
transformation into software design models is outlined.

OMMMA Process User-centered Design Process

Requirements

Analysis

Design

Implementation

Test

Requirements

Conceptual Modeling

Evaluation

Prototyping

Media Design

Media Production

Design

Requirements

Figure 15: High-level schematic view of process integration of OMMMA process and user-
centered design process

41

5.5 Model-driven Development of Interactive Multimedia
Systems

Another continuation of the work on modeling multimedia applications goes in the
direction of rapid, model-driven development and simulation of multimedia user
interface prototypes. For this purpose, parts of the OMMMA approach have been taken
up and extended for the development of the GuiBuilder method and tool [SE07],
[SDGH06]. Classic GUI builder tools are widely used in practice for developing the
user interface of software systems. Typically they are visual programming tools that
support direct-manipulative assembling of the user interface components.

GuiBuilder integrates the model-driven development paradigm with the GUI builder
tool concept. It facilitates model-driven development of graphical and multimedia user
interfaces [SDGH06]. User interface developers model the structure and appearance of
the user interface with object-oriented presentation diagrams and its behavior with
hierarchical statecharts.

The GuiBuilder tool provides integrated editors for the compositional presentation
diagrams and the hierarchical statecharts. GuiBuilder then supports the transformation
of the model to Java. Working user interface prototypes are generated. When they are
executed, the modeled behavior is simulated. The execution can be controlled
dynamically by users or scripts. Interactive sessions with the user interface can be
recorded (as scripts) and replayed. The GuiBuilder tool combines the modeling and
execution environment. It has been implemented using the Eclipse platform. The
general architecture of the GuiBuilder tool is shown in Figure 16.

Gui-EditorValidator

GUI-Model

Problem
Repository

Statechart-
Editor

Presentation-
Editor

Loader

XML-
Model

XML-Log

SimulatorRemote
Control

Recorder

Player

Prototype
GUI

Simulation
Log

SimulatorRemote
Control

Recorder

Player

Prototype
GUI

Simulation
Log

Figure 16: The general architecture showing the components and their communication
relationships of the GuiBuilder tool

As to open software development towards end-user development, the GuiBuilder
method and tool enable a participatory design approach where user interface developers
as well as prospective end-users of the system can contribute to the design process.
They are supported in modeling the desired functionality of the GUI on a high level of
abstraction that is easy to understand for all involved stakeholders. The integration of
the model-driven development paradigm with the GUI-builder tool concept provides

42

them with a usable tool for prototyping graphical (multimedia) user interfaces in
practice.

We have evaluated GuiBuilder in several workshops with high-school students and
people who are interested in software development, but not professional software
developers or programmers [SE07]. After a presentation of the tool of about half an
hour they were capable of using the tool for constructing, changing and simulating
simple applications like a traffic-light control with only very limited support by our
tutors. Thus, the tool has shown its capability to support end users with little
programming skills in building and simulating interactive graphical user interfaces.

Model-driven development of graphical and multimedia user interfaces belongs to the
domain of model-driven development of advanced user interfaces (MDDAUI).
MDDAUI has been the topic of a series of workshops in the last years [VMB+10],
[VMS10], [VSB+10], [MGB+09a], [MGB+09b], [PVS+08], [PVH+07], [PVS+07],
[PVSH06], [PVS+06], [PVHS05]. MDDAUI applies generative software engineering
methods to the development of advanced user interfaces, just like GuiBuilder.

GuiBuilder has another property that is worth mentioning in this context: It supports the
cooperative development of design and functionality. This combination happens on a
low level of abstraction, the platform-specific design model of the user interface. But it
nevertheless points towards integrated software engineering methods specifically for
advanced interactive systems.

As we have seen for the model-based development of multimedia applications in
Section 5.4, software engineering methods will eventually have to be integrated with
informal, user-oriented design techniques in a holistic development method for such
user interfaces in order to appropriately account for usability requirements. Recently,
we have applied our meta-method for method engineering for designing model-driven
development methods for advanced user interfaces [Sau11], see Section 7. There we
particularly address the integration of software engineering methods with less formal
user-interface design methods.

5.6 Generation of Web Application Prototypes

Related to the work on GuiBuilder, although not for multimedia applications, is the
research conducted on model-driven development of Web application prototypes
ProGUM-Web. It is in so far similar to GuiBuilder as it accounts for the cooperative
development of Web applications by programmers and Web designers. ProGUM-Web
offers a method and a tool for the generation of prototypes of dynamic Web sites from
UML models [LSS03]. The development process consists of three stages which are
executed iteratively and incrementally: modeling, coding, prototype generation. In the
modeling stage, we use an extension of the UML that covers specific characteristics of
Web applications and their development process. From the models, we generate
dedicated code templates for software developers and graphics designers. The code
templates can iteratively and independently be edited by them and are then re-integrated
within the ProGUM-Web tool. In the third stage, the tool automatically generates an
executable prototype of the Web application from the integrated files. The generation
facility can be used throughout the development cycle.

43

With ProGUM-Web, dynamic Web sites can be independently developed by graphic
designers and software developers. This functionality is based on the generation of role-
specific code from UML-based models. Developers can check-in the respective code
modules they worked on, and changes to a prototype can be fed back into the repository.
Key to this cooperative model is the architectural separation of functionality and design.

After coming from multimedia applications and user interfaces of interactive systems to
Web applications, we next look at a very different class of software systems: large
business information systems.

44

6 Business Information Systems

Research in the area of software engineering methods for business information systems
(BIS) will be presented in this section. The specification method that I have developed
together with a large company (Section 6.1) is the most important contribution with
respect to method engineering, since its development followed a serious method
engineering method and process. This also applies to the work on the integrated method
for application landscape and application development (Section 6.2) and the integrated
specification framework (Section 6.3) that accompany the specification method. Other
work on the integration of engineering methods and quality assurance that is presented
concerns requirements engineering and software test (Section 6.4.1) and quality
assurance in agile methods like SCRUM (Section 6.4.2). Finally, architecture-driven
development with open-source stacks is presented as one method for efficient
development of large business information systems (Section 6.5). Figure 17 summarizes
these approaches.

Specification Method

• specific method for custom
development of large BIS

• model-based specification
• method consists of
specification modules

• specification modules
correspond to major
development artifact types

• four aspects are distinguished:
content, form, process, tools

• founded on a meta-model of
artifact types

• task-based specification of
method

• tool chain supports method

• result of a considerable
method engineering project

[SSE09a], [SSE09b],
[SSEB10]

Integrated
Specification
Framework

• tightly integrates specification
method and quality gates

• quality assurance defined
based on the model of artifact
types

• integration based on common
Enterprise Software
Engineering Model, defining
the artifact types

• used for method knowledge
transfer e.g. in global software
development

[SSE09a], [SSE09b],
[SSEB10]

Integration of
Application
Landscaping &
Development

• enterprise software
engineering method integrating
service-oriented application
landscaping and application
development

• defined on an integrated meta-
model of software engineering
concepts, with refinement links
between the domain concepts

• exemplified using Quasar and
Quasar Enterprise methods

• applied method engineering
process of [ESS08]

[BEH+09]

Integration of
Requirements
Engineering & Testing

• multi-viewpoint requirements
engineering

• applies techniques of linguistic
analysis, requirements
clustering and pattern-based
collection of requirements

• semi-automatic generation of
test plans and acceptance
criteria

• method and tool support
• applied in the domain of eID

systems

[GFJ+09],[GSW+10]

Integrated Quality
Assurance Methods
in SCRUM

• establish non-functional
requirements in agile method

• extend process for early user
and customer feedback

• QA day: extensive testing prior
to review meeting

• user testing day, e.g. load and
performance testing

• agile methods qualify for
dynamic process improvement

[EGSP09]

Open-Source Stacks:
Architecture-driven
Development Method

• architecture-driven
development method with
open-source stacks (OSS)

• reuse in the large, i.e., pre-
configured component
assemblies

• methodical guidance for
development with OSS

• methodical guidelines for
software development with
OSS

• development process with
open source stacks

• specific role model
• challenges: methods for
selection, coupling, actuality
and compatibility, quality
assurance

[CS08]

Figure 17: Research contributed to software engineering methods in the business information
systems (BIS) domain

45

6.1 Specification Method for Business Information Systems

In a cooperative effort with the research department and multiple business units of a
software company, I have development a specification method for business information
systems (BIS); see e.g. [SSE09a], [SSE09b], [SSEB10].

The objective of the specification method has been defined as follows:

The Specification Method is the sum of systematic processes and utilities for the preparation of
precise, unambiguous functional system specifications which we refer to as system
specifications. Adapted to the context of the respective project, it defines the concepts and
artifacts of the specification, offers specification languages and resources such as templates and
examples, provides instructions regarding the process within the specification, establishes
result types (work product types) for the specification and supplies suitable supporting tools. It
structures the specification into disciplines, activities and tasks, and establishes the
relationships between various parts of the specification.

The specification method is particularly designed as a unified method for custom-
development projects of large-scale BIS. A company-standard tool support is provided
together with predefined specification templates. Method and templates can be tailored
to support specific needs of the project.

The specification method is concerned with describing a software system from a
conceptual viewpoint. It is assigned to the discipline analysis of the development
process. It distinguishes the content from its form of representation and from the
process how the artifacts of the software specification are produced. It also covers the
support of CASE tools. These four aspects are defined on a common basis: the
ontological method engineering meta-model of the relevant concepts and their
relationships. While the terminology used in that specification method is slightly
different from the one in this work, the four aspects resemble the notions of concept,
notation (as part of artifact type), method, and tool of the method engineering
framework in this thesis.

The four fundamental aspects of the specification method are further characterized as
follows:

Content of a specification: Method engineers define what content a specification needs
independently of the form. The content defines the parts of a system specification,
according to the given business goals and requirements. Typically, the system
specification includes a description of the information system’s conceptual model, use
cases and dialogs, and other contents. The content structure is based on a meta-model of
all elements (i.e., the conceptual artifact model of the analysis discipline), including
their properties and relationships to each other.

Form of a specification: The form of a specification defines how the (previously
defined) content of a system specification is structured and, using a concrete notation,
how it would be represented best. For example: Having defined the use case as a basic
artifact, the form specifies how a use case will be specified with the UML and/or natural
language.

46

Process for creating a specification: This aspect describes the process of creating a
system specification. The steps from the problem to the solution idea to the conceptual
design of an application make up the core of the process during specification. The
specification method covers content production, quality assurance, and specification
management. It also describes the relationships to activities of other disciplines of the
company’s overall software engineering methodology where adequate, especially the
design. Details about the procedure for creating the separate parts of the specification
are given in the corresponding specification modules.

Tools which support the specification: The specification has to be done with some
kind of tool; ideally with the method-conformant use of a specification tool in full
extent, using it as the specification information repository. Although the specification
method is independent of a particular tool, Sparx Systems’ Enterprise Architect is
proposed as the basic specification tool. This aspect thus explains the collaboration
between the tool and the specification method.

The separation of these four aspects creates the necessary flexibility to maneuver in the
creation process and to tailor the method in the unavoidable trade-off between
standardization and individuality: On the one hand, the method should be deployable
across the entire company and make system specification safer, more efficient and more
uniform. On the other hand, projects that develop custom software systems may
significantly differ in their contextual requirements, and so they have different
requirements for a specification. The specification method nevertheless assumes that the
necessary content forms the predominantly "stable core" of the method; form and
process are customized to a greater extent to the project in question, yet it is
recommended to use the same form and process as in the method’s specification. The
structure of the specification method and the four aspects will now be briefly explained.

System Specification

Functional Overview

Cross-cutting Concepts

Glossary

Interaction

Dialogs

Print Outputs

Batch Processing

External Interfaces

Interaction

Dialogs

Print Outputs

Batch Processing

External Interfaces

Interaction

Dialogs

Print Outputs

Batch Processing

External Interfaces

Migration Concept

Behavior

System Use Cases

Application Functions

Behavior

System Use Cases

Application Functions

Behavior

System Use Cases

Application Functions

Structure

Conceptual Components

Logical Data Types

Logical Data Model

Structure

Conceptual Components

Logical Data Types

Logical Data Model

Figure 18: The specification method is organized in specification modules that correspond to
the main artifact types of the system specification

47

Specification modules. The specification method is organized in method modules, so-
called specification modules (see Figure 18) .Specification modules contain the detailed
information regarding content and resources for producing system specifications of
business information systems. They complement the general part (Part 1) of the
specification method which defines the methodical superstructure and the specification
process within the discipline analysis. Specification modules have a largely uniform
structure. Within the specification modules, content and form, i.e., structure and
notations, of the related artifact types are described. The description of the process and
method is task-oriented. Methodical guidelines (i.e., “good practices”), specification
techniques, examples, available tool support, and recommendations and warnings are
also included.

The specification modules correspond to the main artifact types of a system
specification. The functional overview provides a high-level specification of the BIS
under development. Conceptual components are the fundamental concept of structuring
the software specification and grouping its artifacts. They are derived from the topics of
the problem domain. Behavior is derived from business processes (part of the business
modeling discipline, another discipline of the overall software engineering
methodology) and specified on two levels: use cases and application functions. While
system functionality is generally specified with use cases, application functions refine
system actions of use case specifications, e.g. if they provide complex algorithms or
they are used in multiple use cases. Interaction of the software system is specified in
terms of dialogues with users, interfaces with external systems, print outputs and batch
processing.

Cross-cutting concepts, such as authorization or logging, migration concept and
glossary complement the software specification modules in the groups structure,
behavior and interaction, and the functional overview.

The general methodical principles (Part 1 of the specification method’s documentation)
and the specification modules (Part 2) are mapped into UML profiles which are
implemented in the CASE tool (currently Enterprise Architect) to provide the required
tool support.

Process. As the specification method is embedded in the company’s overall software
engineering methodology, it expects artifacts from the two other disciplines business
modeling and requirements engineering as required input. Conversely, it is responsible
for producing those artifacts that are required for the design, implementation, and test
disciplines.

The discipline analysis comprises three general sub-disciplines that group different
tasks: content production, specification management, and quality assurance (see Figure
19). Orthogonally, the process of this discipline is divided into three phases:
initialization, coarse-grained analysis and detailed analysis.

Content production is the actual engineering discipline and concerned with creating and
clarifying the content of the system specification. Within the tasks of this sub-discipline,
the artifacts of the system specification are actually developed. Specification
management is responsible for planning, monitoring, and controlling the course of
specification. Its tasks are dedicated to organizational issues. The objective of the

48

quality assurance sub-discipline is checking and assuring the required quality of the
system specification, both the product quality of the specification artifacts and
documents as well as the process quality of their development. Its tasks comprise
checking plans, reviewing deliverables, and conducting audits.

Detailed Analysis
(Component-oriented Approach)

Coarse-grained Analysis
(Domain-oriented Approach)

Coarse-grained
Specification accepted

System Specification
accepted

Initialization

Content Production

Specification Management

Quality Assurance

Figure 19: The discipline analysis comprises three phases and three sub-disciplines, and defines
two milestones

A system specification is produced in two important steps, corresponding to the two
phases coarse-grained analysis and detailed analysis with their respective milestones in
Figure 19:

• First, an overview of the system and its functionality is developed. The most
important product of this phase is the functional overview. In addition, artifacts that
are crucial for further planning are already specified to more detail in this phase. In
this phase, the specification process is organized according to the business domains
(domain-oriented approach).

• Secondly, a detailed specification is made, producing the individual artifacts of the
system specification according to the specification modules, thus building the
complete specification of the system. The specification process is organized
according to the previously identified conceptual components (component-oriented
approach).

Including the initialization, the tasks of the discipline analysis are thus executed
according to three basic phases. We have defined two milestones accordingly: (1)
“coarse-grained specification accepted” and (2) “system specification accepted”.

As has been stated above, the specification method is task-oriented. Figure 20 shows the
tasks and subtasks of discipline analysis with respect to the basic procedure in the three
phases and also reflects the two-way split of producing the system specification. The
description of the tasks is directly combined with the characterization of the work
products, i.e., the artifacts that are produced when executing the tasks.

Content and form. The artifact types combine the relevant specification concepts with
their recommended form of representation in the system specification, as defined by the
specification method.

49

Detailed AnalysisCoarse-grained Analysis
Coarse-grained
Specification
accepted

System
Specification
accepted

Initialization

Produce Functional Overview
• Describe Expert Solution Idea
• Describe Core Concepts
• Produce System Overview
• Produce Use Case Model Overview

Produce Tracing Matrix

Specify Use Cases
Finalize System Specification
• Write Introduction
• Reference further documents
• Write bibliography
• Write reading instructions

Specify Print Outputs

Specify Batches

Specify External Interfaces

Finalize Functional Overview
• Describe Expert Solution Idea
• Describe Core Concepts
• Produce System Overview
• Produce Use Case Model Overview
• Describe Solution Sketch

Specify Logical Data Model

Specify Component Architecture
• Specify Conceptual Components
• Specify Component Interfaces

Specify Logical Data Types

Write Glossary

Specify Cross-cutting Concepts
• Specify Logging and Tracing • Specify Temporal Data Management
• Specify Authorization • Specify Archiving
• Specify Multi-Tenancy • Specify Multiple Languages

Define Products

• Define Content
• Define Form
• Define Tooling

Specify Application Functions

Specify Migration Concept

Define Process

• Define Topics &
Components

• Define Team
Structure

• Define Work
Packages

• Define Meeting
Structure

• Define Project Plan

Specify Dialogs
Describe As-is Situation

Write General Specification
• Specify Actors
• Specify Dialog Types
• Specify Print Output Types
• SpecifyLogical Data Types
• SpecifyBatch Types

Figure 20: Tasks of discipline analysis with respect to the three phases

Figure 21: Artifacts of the system specification in bird’s eye view

Figure 21 gives a schematic overview of the artifacts that belong to the system
specification. It shows that the conceptual components are the central concept in the
system specification. They refine the functional overview and use the general

50

specification and the cross-cutting concepts. The concepts in the upper left corner induct
the reader into the system specification and the concepts in the upper right corner
support reading the system specification. The tracing matrix in the lower left corner
gives an overview of the relevant relationships in the system specification and to the
requirements specification. The migration concept in the lower right corner holds the
relevant information concerning the migration aspects.

The specification method is defined with the meta-model of system specification artifact
types as its backbone. The meta-model builds also the foundation for quality assurance
by so-called Quality Gates (see Section 6.3) as well as the company’s standard software
testing method. Of course, also the tools that support the specification method conform
to the model of artifact types.

Tools. A standard set of tools goes along with the specification method. Figure 22
shows all parts of the tool set-up (compare [SSEB10]). The provided setting fits the
underlying meta-model of specification artifacts and furthermore leads to a very
efficient ramp-up of the teams.

(1) First, we define UML profiles that contain the stereotypes according to the artifact
types in the meta-model.

(2) We use the MDG technology of Enterprise Architect for defining custom diagram
types with connected toolboxes. In the toolboxes only those stereotypes are listed that
shall be used to specify an artifact.

(3) The next step is to actually specify the network of interrelated artifacts. For this task,
the user applies the process, practices, and methods described in the specification
modules in connection with a specific concept of use for the Enterprise Architect.

(4) The specification can be checked for its conformance with the meta-model and its
internal consistency with the Specification Validator tool. It is available as an Enterprise
Architect plug-in that supports the editing and management of a rule base as well as
running and reporting the configured checks on the meta-model instance in the
Enterprise Architect repository.

All the previous steps are important for building a good system specification as regards
its content artifacts. The next steps present another, yet very important aspect: the
production of documents, since customers and partners often do not work with the
modeling tool.

(5) Again, for efficient ramp-up, we provide adaptable templates. Specialized templates
may be selected for specific purposes, such as e.g. global software development.

(6) In the Document Generator, the user may select and deselect artifacts in the
Enterprise Architect repository. For example, it is possible to select only some of the
components if the document is for a specific specialist division. We thus support the
generation of deliverables specific for different target groups such as the customer’s
domain experts, IT experts, or our software design teams.

51

52

(7) Finally, the document generator produces word documents based on the templates,
the repository and the selection.

composite structure Spezifikationsbausteine Überblick

Interaktion

Nachbarsystemschnittstellen

Batchv erarbeitung

Druckausgaben

Dialoge

Verhalten

Anwendungsfunktionen

Anwendungsfälle

Geschäftsprozesse

Struktur

Fachliche Datentypen

Fachliches Datenmodell

Fachliche Komponenten

Aktion

Anwendung

Anw endungsaktion

Anw endungsfall

Arbeitsschritt

Attribut

Batch

Datentyp

Dialog

Dialogelement

Druckausgabe

Entitätstyp

Ereignis

Fachliche Komponente

Geschäftsprozess

Nachbarsystemschnittstelle

Nutzeraktion

Anwendungsfunktion

Fachliches Thema

Beziehungstyp

Arbeitsmittel

Akteur

Schnittstelle

Aufrufer *

ruft auf

Gerufener *

1..*1

*

1

übergeordnet 0..1enthäl t
Teildialog *

1

hat

*

*

*

ruft auf

*

*
1

*

verwendet

*

*
1

verweist

*

verweist

0..1

*
konkretisiert

1..*

*ruft auf

0..1

*

1

*

setzt um

*

1

Aufrufer *
ruft auf

Gerufener *

1
erzeugt *

*initi ert
0..1

1

hat Hoheit über

*
1

führt durch

*

1

führt durch

*

*

gehört zu

*

*

beteil igt an

*

*

unterstützt*

verweist

*

*

*

verwendet

*

*

0..1

Oberkomponente
0..1

enthält
Subkomponente
0..*

*
beteiligt an

*

1

benötigt

*

1

bietet

*

*

1

1

löst aus

1..*

Quelle1

*

Ziel
1

*

*

verweist
0..1

1..*
1

Tei lprozess
*

0..1

*
bietet

1

*
benötigt

1

Enterprise Software
Engineering Model

MDG Technology

Enterprise Architect
Repository

Word Templates

Document Generator

Word Documents

1

2

5

6

7

6
3

4

Specification Validator

System Specification

Functional Overview

Cross-cutting Concepts

Glossary

Interaction

Dialogs

Print Outputs

Batch Processing

External Interfaces

Interaction

Dialogs

Print Outputs

Batch Processing

External Interfaces

Interaction

Dialogs

Print Outputs

Batch Processing

External Interfaces

Migration Concept

Behavior

System Use Cases

Application Functions

Behavior

System Use Cases

Application Functions

Behavior

System Use Cases

Application Functions

Structure

Conceptual Components

Logical Data Types

Logical Data Model

Structure

Conceptual Components

Logical Data Types

Logical Data Model

Specification
Method

Text

Figure 22: Tool support for the specification method for business information systems [adapted
from SSEB10]

Method engineering. The specification method has been developed in a dedicated
method engineering project of considerable size. Therefore, applying a controlled
method engineering process ensured the quality of the developed specification method
as a “tool” for model-based software development of large business information
systems. The method engineering process that we defined with the company is depicted
in Figure 23. It distinguishes three sub-processes: method development (top row),
continuous quality assurance and improvement (second row), and accompanying
activities for roll-out and dissemination. (To improve readability, loops for revisions

and the method improvement cycle have been omitted.) The process activities can be
further characterized as follows:

• Requirements: elicit and specify the requirements for the specification method
• Analysis: analyze the state-of-the-art in theory and practice and extract good

practices
• Construction: create the specification method’s artifacts (documents, templates,

tools, examples, etc.)
• Pilot: test the specification method in pilot projects
• Productive Use: use the specification method in projects throughout the

company
• Quality Assurance: continuously assure quality during construction by expert

reviews
• Evaluation & Evolution: continuously evaluate and improve specification

method during use
• Rollout & Training: rollout the method in the company and train the software

engineers
• Coaching: coach project teams that apply the specification method in their

software development projects

Requirements Analysis Construction Pilot

Rollout &
Training

Evaluation
& Evolution

Quality
Assurance

Productive
Use

Coaching

Figure 23: Method engineering process for the specification method

6.2 Integration of Application Development and Landscaping

In [BEH+09] we follow a method integration approach and present a holistic software
engineering method for service-oriented application landscape development. It
combines application landscaping and application development based on a common
meta-model of software engineering artifacts.

We outline that the development and management of an application landscape as part of
a service-oriented enterprise architecture requires a holistic approach, which reaches
from business modeling and global application landscaping down to the local
development of individual software components and services. We illustrate how such a
holistic software engineering method for enterprises can be systematically composed
and integrated from existing methods. Based on our previous research results in the area
of method engineering [ESS08], we show how two concrete existing methods can be
integrated. In particular, we use a common ontology of software engineering concepts,
where refinement links interrelate the concepts of both methods. By this, a smooth
transition between both methods can be defined.

53

The approach is exemplified in [BEH+09] with two existing methods, which are
developed and used within the software company Capgemini. Those are Quasar
Enterprise for developing application landscapes and Quasar (Quality Software
Architecture) for developing single applications. Both methods contain a set of
disciplines for their respective development goals. They are depicted in grey shaded
boxes in Figure 24. To combine both methods, the common Quasar Ontology defines
the integrated meta-model of software engineering concepts. Application landscaping
and software development can then be aligned based on dependencies between the
meta-model classes from the respective domains application and application landscape.

Quasar
Ontology Ontology

Quasar
Enterprise

Business
Architecture
Modeling

Landscape
Modeling

Managed
Evolution

Integration
Architecture
Management

Application
Landscape

Application

Test

Deployment

Analysis
& Design

Requirements
Engineering

ImplementationBusiness
Modeling

Quasar
Quasar
Requirements

Quasar
Design

Software
Controlling

Quasar
Analytics

Quasar
Development

Configuration & Change
Management

Quasar
Infrastructure Environment

Figure 24: Disciplines of the Quasar and Quasar Enterprise methods (adapted from [BEH+09])

Both methods are integrated within a holistic software engineering method to
seamlessly cover the full development cycle of service-oriented application landscapes,
from business modeling and service design to actual software development. Figure 25
demonstrates how the integrated ontology serves as the key feature for integrating both
methods. The integration is expressed by the ‘refines’ edges between the meta-model
classes of Quasar (right) and Quasar Enterprise (left). The example shows the
relationship between Quasar Enterprise’s method for decomposing Business Services
into Elementary Business Services (which are realized by Logical AL Components via
Application Services), with Quasar’s method for decomposing Business Processes
down to Use Cases which are realized by Logical Application Components (in gestalt of
Logical Operations that relate to Use Case Actions). Comparing these two sides and
interrelating the notions of both sides enable a smooth transition from global application
landscaping down to local application development. As an effect, Business Service
Activities can be interpreted as the external view of an Activity (i.e., Business Process
or BusinessTask). More details can be found in [BEH+09].

6.3 Integrated Specification Framework: Method and Quality
Gates

The industrial-strength specification method that we presented in Section 6.1 is part of
an overall system specification framework. This specification framework is introduced
in [SSE09a] and presented in more detail in [SSE09b]. It consists of the specification
method for business information systems and the specification quality gate, named QG

54

Specification. Actually, QG Specification assesses the quality of the then not yet ready
system specification in order to detect erroneous developments early and have them to
be corrected in a timely fashion. Another quality gate, QG Architecture, is later also
involved in the quality assurance process of the system specification. It checks, among
other artifacts, the completed system specification, but with fewer rigors and less
methods. Both parts, engineering and quality assurance, are tightly integrated. Since this
framework is tailored to the specification of large business information systems, it also
facilitates a quick ramp-up phase for software engineering projects without the need for
extensive tailoring or extension.

QuasarQuasar Enterprise

Business TaskBusiness Process

Activity

Business
Serv ice

Business Service
Activity

Elementary
Business

Serv ice

Application
Serv ice

Application
Serv ice Action

AL Interface
Logical AL

Interface

AL Operation
Logical AL
Operation

Use Case Element
User Requirement

Use Case

Use Case Action

AL Component
Quasar Enterprise Structure Element

Logical AL Component

Application Component
Quasar Structure Element

Logical Application
Component

Interface
Logical Interface

Operation
Logical

Operation

uses

*
uses

*

0..1 automates

1

0..1

automates

1

+import

*
+export

*

uses
*

uses*

refines

* is_related_to

*

*
*

0..1

refines

1

+import

*
+export

* *

uses
*

*

uses

*

* *

*depends_on
*

realises

refines

*

uses

*

1

refines

0..1

*
*

* depends_on
*

1

refines

*

Figure 25: Excerpt from the integrated Quasar Ontology (from [BEH+09])

The software specification acts as a bridge between customers, architects, software
developers and testers of business information systems. The specification method
consolidates the company’s engineering knowledge and best practices, enhanced by the
practical application of recent developments in theory and practice, on how to specify
business information systems. It serves as the constructive basis for creating complex
system specifications. The specification quality gate ensures that the software

55

specification has been produced in high quality. It acts as the specification method’s
concerted analytical counterpart for software quality assurance on the level of
specification artifacts. Quality gate assessments are executed by auditors in order to
evaluate the maturity and quality of the produced software artifacts. The quality gate
uses precisely defined check methods together with checklists, templates and scenarios
(e.g., user scenarios, change scenarios) for assessing not only the produced artifacts, but
also the actual and planned process.

The specification framework is the result of an effort to standardize system specification
throughout the company. In [SSEB10], we report on re-aligning and unifying the varied
software engineering methods that existed before within the software company, and on
the standardization of quality assurance procedures. By this activity, we arrived at a
comprehensive company-wide Enterprise Software Engineering Model (aka. “Quasar
Ontology”) that effectively build a common body of methodical knowledge and
supports knowledge transfer between stakeholders and teams. Furthermore, it is the
foundation for rigorous method integration.

Enterprise Software
Engineering Model

Quality Gates

Specification
Modules

Specification
Documents

Practices / Methods

Deliverables

check

develop generate

Tools, e.g. Enterprise Architect

Enterprise Software Engineering Model

Figure 26: A schematic overview of the integrated framework for system specifications and
their quality assurance based on the Enterprise Software Engineering Model (ESEM)

The Enterprise Software Engineering Model (ESEM) is the central part of the integrated
methodology, see Figure 26. It defines the unified terminology, the artifact types and
the relationships between them. The software development methods operate on the
ESEM, creating, using and modifying artifacts, which embody instances of the ESEM,
by the use of tools. Tools are also used to generate the deliverables as views on the
project’s instance of the ESEM. These views have to consider the background of the
particular target audience and the current state of the developed artifacts. Views on the
specification artifacts are e.g. customer-specific or developer-specific views.

56

The specification method is part of a holistic set of enterprise software engineering
methods that cover all disciplines of enterprise application landscaping and application
development ([BEH+09], see previous section), based on the ESEM. The specification
method already uses the ESEM as its backbone, i.e., the specification method’s artifact
meta-model has become part of the ESEM. Artifacts of the system specification are thus
produced by instantiating artifact types of the ESEM. To unambiguously determine the
deliverables and the maturity of the deliverables, they are also defined with respect to
the ESEM. Quality gates are then used as defined milestones. They assure a balanced
growth of the developed artefacts. Quality gate assessment complies to the ESEM as
well. We apply them to check the quality of the produced artifact.

With the integrated methodology, constructive and analytical methods stand no longer
isolated next to each other, but are directly coupled based on the ESEM, supporting the
quality assessment of the developed artifacts.

The integrated specification framework has been utilized as a methodical means for
knowledge transfer in global software development (GSD) to share development
knowledge among the onshore and offshore stakeholders and developers, and to assure
the quality of the exchanged information [SSE10]. Availability of a unified and
integrated set of methods fosters the exchange of knowledge (and the migration of
people between projects) and the dependability of the methods for offshore
development teams. They do no longer have to repeatedly re-adjust to method variants
used by the different business units, avoiding misinterpretation of information and risks
for project success.

6.4 Integration of Software Engineering and Software Quality
Assurance Methods

The integration of software engineering and software quality assurance methods is
attracting increasing interest recently. This challenge is addressed by our research on
software testing and the tight integration of constructive software engineering methods
and analytical software quality assurance methods. In addition to the integrated
specification framework that has been presented in the previous section, we have
investigated the integration of requirements engineering and model-based testing and
the integration of software quality assurance methods in agile development methods.

6.4.1 Bridging Requirements Specification and Test

The linkage between requirements engineering and system specification with
acceptance testing is the topic of [GFJ+09] and [GSW+10]. In acceptance testing,
customer requirements as specified in system specifications have to be tested for their
successful implementation. This is a time-consuming task due to inherent system
complexity and thus a large number of requirements.

In order to reduce effort in acceptance testing, we exploit redundancies and implicit
relations in requirements specifications. We use requirements specifications that are
based on the multi-viewpoint technique of the reference model for open distributed
processing (RM-ODP). Specifying with the RM-ODP model inherently yields
redundant requirements. This redundancy supports the readers of the requirements
documents in their understanding; but it may cause unnecessary effort in acceptance

57

testing where the requirements are checked for their fulfillment by the developed
system. For that reason we look for a way how the redundancies and dependencies
between requirements can be identified systematically. Once we have identified the
redundancies and dependencies, we aim at reducing the testing efforts for acceptance
testing.

As a solution, we deploy linguistic analysis and requirements clustering techniques
[GFJ+09] as well as pattern-based requirements collection [GSW+10] for reducing the
total number of test cases that are derived from the requirements specification. In
particular, we provide capabilities for automatically deriving semi-formal test plans and
acceptance criteria from the clustered informal textual requirements.

We apply requirements clustering techniques for identifying redundancies between
requirements. First, we annotate requirements with semantic attributes. They allow us to
differentiate between requirements types and enable the computation of the similarity
between each pair of requirements. By defining a threshold value we can group related
requirements into fine-grained clusters. For each cluster, efficient test plans can be
designed by ordering related requirements. In [GSW+10], capabilities for automatically
deriving semi-formal test plans and acceptance criteria from the clustered informal
textual requirements are added.

com.hjp.opa.clustering com.hjp.opa.requirements

com.hjp.opa.qualityplan com.hjp.opa.measurement

cern.colt.matrix edu.stanford.nlp

linguistic
analysis

processing
textual

requirements

initial
similarity

matrix

similarity
clustering

test plan
creation

statistics

Figure 27: Architectural overview of the TORC (Test Plan Optimization by Requirements
Clustering) tool environment

Most of the activities in our process are automated. This makes our approach less error-
prone than manual activities. Also reproducibility is granted by automation. The process
is iterative and thus enables us to review the results of each step and make
improvements. Tool support (see Figure 27) is provided for automated detection of the
redundancies and implicit relations in requirements [GFJ+09], but also for measurement
and the generation of quality plans [GSW+10].

58

We have applied this approach in a joint research project with an industrial partner, an
international consulting company, who are specialized in planning, procurement and
acceptance testing of national electronic identification (e-ID) systems. The results show
that linguistic analysis and clustering techniques can help testers in understanding the
relations between requirements and for improving test planning.

6.4.2 Integrating Quality Methods in Agile Processes

Agile methods like SCRUM have gained much recognition in recent years. Although
they are successfully applied many times, some problems have appeared in practice.
Specifically, non-functional requirements such as performance or usability are not or
only insufficiently considered. We have developed a process model how customer and
user feedback can improve the quality assurance in agile development processes
[EGSP09]. We focus on the improved consideration and observation of non-functional
requirements. We identify five problems of the agile SCRUM process model as regards
quality assurance that are solved by our approach. To improve this situation and to
firmly establish early feedback from customers and users during a sprint cycle, we have
extended the SCRUM process by an additional activity for quality assurance. Customer,
user and their timely feedback to the development team are incorporated into the
process such that the feedback can be considered for further development, future
decisions and planning.

In particular, we included an additional activity for quality assurance together with the
customer at the end of each iterative cycle (sprint). Customer and users test the software
for a period of one to three days prior to delivery of new software functions at the end of
a sprint to obtain qualified feedback. Based on the incorporation of this activity, we can
validate the new functions; and involving customers, users and their timely feedback to
the development team become a fixed part of the process. Based on the feedback,
additional entries in the product backlog with non-functional requirements can be
considered and prioritized during the planning of a new cycle. In addition to the new
activity, we add a user-testing day to the process. Many application users are invited to
test the current state of the software. With the user-testing day, we can execute
performance and load tests with a large number of users in the usage environment, in
addition to automated tests.

This work also considers the issue of software process improvement. We have identified
a number of problems that limit agile development processes in general and SCRUM in
particular in the areas of quality assurance and non-functional requirements. The new
quality assurance (QA) activity that is done by the customer in the form of QA days
helps to solve these problems. Customer and users are directly involved in each sprint
by this activity. Due to the incremental process model, composed from sprints, it was
possible to introduce, implement and evaluate the extension of the process model
incrementally while the development process was running.

The practical implementation of the new QA activity in a real project showed that the
feedback has increased attention towards the fulfillment of the requirements. Among the
non-functional requirements, the main focus was on performance. Performance was not
only considered, but occasionally attained central attention. This can be observed from
the high priority it achieved in the product backlog. Time for performance and usability

59

testing is firmly scheduled and reserved due to the additional QA activity and the user-
testing day, while the duration of a sprint is not significantly prolonged.

We also discussed how the initial consideration of non-functional requirements in
SCRUM processes can be improved. As one possible solution we postulated the
introduction of refactoring sprints. Developers get the time for extensive performance
and usability testing and for revising and improving the already developed functions.

Due to the incremental character of agile processes and their division in iterative sprints,
not only the expected functionality of the final project is produced stepwise in
agreement of development team and customer. Also the process model is incrementally
evaluated and changed. In this sense, agile process models are qualified for live
adaptation while the process is executed.

6.5 Architecture-driven Development: Software Stacks

The successful and efficient development of business information systems increasingly
depends on the systematic reuse of software. In addition to reusable software
components, pre-assembled frameworks and, recently, so-called software stacks have
been gaining more and more importance. Many of them are available as open source
software. Open-source stacks (OSS) are a pre-configured assembly of open-source
components (or frameworks). They build a sophisticated basis for the development of
new software systems. The open-source components of the stack interoperate such that
the open-source stack can be used as an integrated unit. In [CS08], we characterize
open-source stacks and describe typical occurrences. We also describe the software
development process with open-source stacks. We distinguish four roles that companies
can play in the market of open-source stacks: OSS developer, OSS distributor, OSS
consultant, OSS user. This shows that in a software lifecycle model of large and
distributed – with respect to development and use – software systems, the concept of
role can go far beyond development teams, with respect to both the organizational
(beyond individuals) and the lifecycle (beyond development) dimension. This can also
be observed in global software engineering as well as in the development of eID
systems, where roles like component supplier, system integrator, etc. are played by
different organizations.

The development of open-source stacks is, with respect to reuse of standard solutions,
the consequent next step of software engineering following software components and
frameworks. The reuse of open-source software components becomes easier and more
effective by the provision of pre-assembled software stacks with accompanying
services. Open source stacks support the effective reuse of freely available software.
This helps to reduce cost and development time for the development of new software.
The use of pre-assembled building blocks also increases the quality of the applications
that are developed. The Interactive Knowedge Stack that we are currently developing in
a joint European research project follows this paradigm. The semantic technology stack
is intended to be used by providers of content management systems.

The development of open-source stacks has to address a number of challenges:
selection, coupling, actuality and compatibility of components, and quality assurance of
open-source stacks. Business models are manifold according to the aforementioned

60

roles. The tendency that companies increasingly employ open-source solutions is an
indicator for the business potential of open-source software.

Another trend for new software engineering methods is software lifecycle management
beyond the software development cycle. This is especially important in the presence of
long-living software systems, where evolution and maintainability play an important
role to prevent software aging and software erosion [GKM+10], [ERMS09]. Important
methods in this domain are model-based and model-driven development methods. Yet,
future-proof architectures, such as particular architectural styles or the consequent use
of open-source software stacks have the potential to contribute to this domain.

After having completed the review of previous works on software engineering methods,
we now step forward to the domain of method engineering as a means for the systematic
development of software engineering methods.

61

7 Method Engineering

Answering the demand for the systematic development of software engineering
methods and based on the insights and experience gained from different method
development projects, I have developed MetaME, a meta-method for the engineering of
software engineering methods [ES10]. It goes back to previous work where we defined
a method engineering process that is centered upon the definition of a domain model of
software engineering concepts and artifact types [ESS08]. The meta-method is
described in detail in Part II of this thesis. The meta-method is adapted and applied in
[Sau11] for the domain of model-driven development of advanced user interfaces.

The objective of [ESS08] is to provide a unified understanding of software engineering
concepts and software artifacts, and their interrelationships. This understanding is the
key to successful software development. As a solution, we define a company-wide and
comprehensive ontological domain model of software engineering concepts and artifact
types. On this foundation, we select or define modeling languages, the process model,
and adequate tools.

In several research projects of s-lab – Software Quality Lab, we have analyzed how an
appropriate company-wide software engineering method can be determined. We found
that modeling languages like the UML and corresponding modeling tools are already
used in software companies. But a coherent, commonly understood and accepted
software engineering method is typically missing. This often has the following causes:

(1) lack of common understanding of the terminology for development artifacts,
(2) lack of common understanding how the development artifacts are interrelated,

and which dependencies and refinement relationships exist between them,
(3) belief that simply by selecting UML diagram types for modeling, their purpose

in the software development process is already determined,
(4) belief that simply by employing a commercial UML modeling tool, a software

engineering method is determined.

Based on these observations, we have developed a process model for the systematic
development of a company-specific software engineering method. The basic idea is to
develop a domain model of software engineering concepts first. This provides the
common understanding among the software developers (1). Adequate modeling and
implementation languages are selected, which are then assigned to the software
engineering concepts. As a result, we get a domain model of the software engineering
building blocks (called artifact types) that are to be used in the company (2). Thus, the
use of the modeling language corresponds to the identified software engineering
concepts (3). On this foundation, the process is defined as a roadmap through the
network of artifact types. Eventually, tools that fit the method are selected and provided
to the software developers together with a method-conformant concept of use (4).

The presented method engineering process has been repeatedly applied in joint research
projects with industry, for example in the development and methodical alignment of the
Quasar and Quasar Enterprise methods [BEH+09] for the systematic development of
large business information systems (see also Section 6) and application landscape
design, respectively.

62

The method engineering process is one ingredient for a method engineering method. It
must be complemented by an explicit model of method engineering concepts,
methodical guidelines for the process steps, and method description languages –
candidate languages are e.g. SPEM (see Section 10.5) or ISO 24744 (see Section 10.6)
– and eventually tools. Based on the process of [ESS08], MetaME, the proposed meta-
method for modeling and tailoring of software engineering methods, has been
developed and introduced in [SE10].

MetaME is a meta-method for method engineering of software engineering methods. It
builds on a four layer meta-model hierarchy which combines the two domains method
engineering and software engineering. It combines a meta-model as a general product
model of method engineering and a method engineering process model for developing
software engineering methods. The process model consists of 5+1 steps. In addition, we
propose to specify the tasks of a software engineering method as transformation rules
that are typed over the software artifact model. Together these models cover the product
and the process dimension of the meta-method. MetaME is described in detail in Part II
of this thesis.

The meta-method for method engineering has recently been specialized and applied for
the design of model-driven development methods in the system domain of advanced
user interfaces (MDDAUI) [Sau11]. This work was motivated by the increasing
complexity of user interfaces of interactive systems due to new interaction paradigms,
required adaptability, use of innovative technologies, multimedia, and interaction
modalities. Their development thus demands for sophisticated processes and methods. I
propose to adopt and adapt software engineering principles to succeed. In addition to
well-defined development methods, particularly model-driven development is identified
as a promising candidate for mastering the complex development task in a systematic,
precise and appropriately formal way. Although diverse models of advanced user
interfaces are deployed in a development process to specify, design and implement the
user interface, it is not standardized which models to use, how to combine them, and
how to proceed in the course of development. Rather, this has to be defined by methods
in the context of organizations, domains, projects. To cope with the definition of model-
driven development methods for advanced user interfaces, we propose to use the meta-
method for method engineering. It builds on the concept of object-oriented meta-
modeling based on the 4-layer MOF architecture, yet extends it to account not only for
the product model, but also for the work definitions and workflows that form the
process model. The meta-method can be used for modeling and tailoring such
development methods. [Sau11] demonstrates how to apply this meta-method for
designing development methods in the domain of advanced user interfaces.

Based on the analysis of requirements for a MDDAUI development method – which
originate from both the system domain of (advanced) user interfaces and the method
domain of model-driven development – we adapt the general method engineering meta-
method of [ES10] to cover models and model transformations as first-class citizens of
the method description. We also show results from applying the meta-method to the
target domain, especially graph transformation rules for the specification of tasks,
activities and transformations in a user interface development process.

63

8 Concluding Remarks

I have presented a framework for software and method engineering in this Part I of my
thesis. According to this framework, I have defined a classification scheme for software
engineering methods. This scheme was used to categorize a collection of previous
method engineering endeavors of fundamental nature and in different system domains.
Selected publications of these works are contributed to this thesis in Part III. The
experience gained from developing these software engineering methods has led to
research on the systematic development of software engineering methods and a method
engineering meta-method. This meta-method will be presented in the second part of this
thesis.

Currently, we are developing MMASQ, a model-based method for analysis,
specification, and qualification of complex, distributed IT systems in cooperation with
an industrial partner. There, we apply systematic method engineering and our meta-
method to develop a method and dedicated tool support that spans from requirements
engineering and specification to the qualification of eID and other distributed IT
systems.

Since software engineering methods do only provide value if they are employed in
practice, it is important to transfer and deploy them in real software development
endeavors. We have seen that many of the aforementioned methods have been
developed jointly with industrial partners or have been applied in practice. To this end,
the s-lab – Software Quality Lab provides an institutional platform for both the
collaborative research and development of software engineering methods together with
industrial partners and the transfer of methodical software engineering knowledge
between academia and industry – research and practice [EGS06]. This applies to
software engineering methods as well as software quality assurance methods, especially
software testing [BS10] – and their integration.

64

References
[BEH+09] Andrea Baumann, Gregor Engels, Alexander Hofmann, Stefan Sauer, Johannes

Willkomm: A Holistic Software Engineering Method for Service-Oriented
Application Landscape Development. In Proc. First NAF Academy Working
Conference on Practice-Driven Research on Enterprise Transformation (PRET
2009), Amsterdam, The Netherlands, Volume 28 of Lecture Notes in Business
Information Processing (LNBIP), pp. 1–17. Springer, Berlin Heidelberg 2009.

[CS08] Fabian Christ, Stefan Sauer: Open Source Stacks. In M. Asche, W. Bauhus, E.
Mitschke, B. Seel (eds.): Open Source: Kommerzialisierungsmöglichkeiten und
Chancen für die Zusammenarbeit von Hochschulen und Unternehmen, Vol. 3 of
Patent Offensive Westfalen Ruhr, pp. 133–154, Waxmann, Münster 2008.

[DEM+98] Ralph Depke, Gregor Engels, Katharina Mehner, Stefan Sauer, Annika Wagner:
Ein Ansatz zur Verbesserung des Entwicklungsprozesses von Multimedia-
Anwendungen. In Proc. Softwaretechnik '98, September 7-9, 1998, Paderborn,
Germany. Softwaretechnik-Trends 18(3):12–19, 1998.

[DEM+99] Ralph Depke, Gregor Engels, Katharina Mehner, Stefan Sauer, Annika Wagner:
Ein Vorgehensmodell für die Multimedia-Entwicklung mit Autorensystemen.
Informatik Forschung und Entwicklung 14(2):83–94, 1999.

[EGS01] Gregor Engels, Jens Gaulke, Stefan Sauer: Modelle für automobile Software –
Objektorientierte Modellierung von eingebetteten, interaktiven Softwaresystemen
im Automobil. Forschungsforum Paderborn 4:22–27. Universität Paderborn,
2001.

[EGS06] Gregor Engels, Matthias Gehrke, Stefan Sauer: Multi-Private Public Partnership
(MPPP) – Softwaretechnik auf dem Weg in die Industrie. In Chr. Hochberger, R.
Liskowsky (eds.): Proc. INFORMATIK 2006 - Informatik für Menschen, Band 1,
October 2006, Dresden, Germany, Workshop Vernetzung von Software
Engineering Expertise in Industrie und Forschung (VSEEIF), Volume P-93 of GI-
Edition - Lecture Notes in Informatics (LNI), pp. 281–287. Köllen Druck+Verlag
GmbH, Bonn 2006.

[EGS08] Gregor Engels, Baris Güldali, Stefan Sauer: Formalisierung der funktionalen
Anforderungen mit visuellen Kontrakten und deren Einsatz für modellbasiertes
Testen. Softwaretechnik-Trends 28(3):12–16, 2008.

[EGSP09] Gregor Engels, Silke Geisen, Stefan Sauer, Olaf Port: Sicherstellen der
Betrachtung von nicht-funktionalen Anforderungen in SCRUM-Prozessen durch
Etablierung von Feedback. In S. Fischer, E. Maehle, R. Reischuk (eds.): Proc.
INFORMATIK 2009 – Im Focus das Leben, September 28 - October 2, 2009,
Lübeck, Germany, Volume P-154 of GI-Edition - Lecture Notes in Informatics
(LNI), p. 458, Köllen Druck+Verlag GmbH, Bonn 2009.

[EHHS00] Gregor Engels, Jan Hendrik Hausmann, Reiko Heckel, Stefan Sauer: Dynamic
Meta Modeling: A Graphical Approach to the Operational Semantics of
Behavioral Diagrams in UML. In A. Evans, S. Kent, B. Selic (eds.): Proc. UML
2000, October 2-6, 2000, York, UK, Volume 1939 of Lecture Notes in Computer
Science (LNCS), pp. 323–337. Springer, Berlin Heidelberg 2000.

65

[EHHS02] Gregor Engels, Jan Hendrik Hausmann, Reiko Heckel, Stefan Sauer: Testing the
Consistency of Dynamic UML Diagrams. In Proc. Sixth International Conference
on Integrated Design and Process Technology (IDPT 2002), June 23-28, 2002,
Pasadena, CA, USA.

[EHS99] Gregor Engels, Reiko Heckel, Stefan Sauer: Dynamic Meta Modelling: A
Graphical Approach to Operational Semantics. In Proc. OOPSLA'99 Workshop
on Rigorous Modeling and Analysis with the UML: Challenges and Limitations,
November 2, 1999, Denver, Colorado, USA.

[EHS00] Gregor Engels, Reiko Heckel, Stefan Sauer: UML - A Universal Modeling
Language? In M. Nielsen, D. Simpson (eds.): Proc. 21st International Conference
on Application and Theory of Petri Nets (Petri Nets 2000), June 2000, Aarhus,
Denmark, Volume 1825 of Lecture Notes in Computer Science (LNCS), pp. 24–
38. Springer, Berlin Heidelberg 2000.

[EHSW99a] Gregor Engels, Roland Hücking, Stefan Sauer, Annika Wagner: UML
Collaboration Diagrams and Their Transformation to Java. In R. France, B.
Rumpe (eds.): Proc. UML'99 - The Unified Modeling Language, October 28-30,
1999, Fort Collins, Colorado, USA, Volume 1723 of Lecture Notes in Computer
Science (LNCS), pp. 473–488. Springer, Berlin, Heidelberg 1999.

[EHSW99b] Gregor Engels, Roland Hücking, Stefan Sauer, Annika Wagner: UML
Collaboration Diagrams and Their Transformation to Java. Technical Report tr-ri-
99-208, Fachbereich Mathematik - Informatik, Universität Paderborn, Germany,
June 1999. Extended version of [EHSW99a].

[ELS05a] Gregor Engels, Marc Lohmann, Stefan Sauer: Design by Contract zur
semantischen Beschreibung von Web Services. In A. B. Cremers, R. Manthey, P.
Martini, V. Steinhage (eds.): INFORMATIK 2005 - Informatik LIVE!, Band 1,
September 19-22, 2005, Bonn, Germany, Workshop Service-orientierte
Architekturen - Zusammenwirken von Business & IT, Volume P-68 of GI-Edition
- Lecture Notes in Informatics (LNI), pp. 612–616, Köllen Druck+Verlag GmbH,
Bonn 2005.

[ELS05b] Gregor Engels, Marc Lohmann, Stefan Sauer: Modellbasierte Entwicklung von
Web Services mit Design by Contract. In A. B. Cremers, R. Manthey, P. Martini,
V. Steinhage (eds.): INFORMATIK 2005 - Informatik LIVE! Band 1, September
19-22, 2005, Bonn, Germany, Workshop Modellbasierte Qualitätssicherung,
Volume P-68 of GI-Edition - Lecture Notes in Informatics (LNI), pp. 491–495.
Köllen Druck+Verlag GmbH, Bonn 2005.

[ELSH06] Gregor Engels, Marc Lohmann, Stefan Sauer, Reiko Heckel: Model-Driven
Monitoring: An Application of Graph Transformation for Design by Contract. In
A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, G. Rozenberg (eds.): Proc.
Third International Conference on Graph Transformations (ICGT 2006), Volume
4178 of Lecture Notes in Computer Science (LNCS), pp. 336–350. Springer,
Berlin Heidelberg 2006.

[ERMS09] Gregor Engels, Ralf Reussner, Christof Momm, Stefan Sauer (eds.): Design for
Future – Langlebige Softwaresysteme 2009. Proc. 1. Workshop des GI-
Arbeitskreises Langlebige Softwaresysteme (L2S2): Design for Future –
Langlebige Softwaresysteme, October 15-16, 2009, Karlsruhe, Germany, Volume

66

537 of CEUR Workshop Proceedings, ISSN 1613-0073. http://CEUR-
WS.org/Vol-537/

[ES02] Gregor Engels, Stefan Sauer: Object-oriented Modeling of Multimedia
Applications. In S.K. Chang (ed.): Handbook of Software Engineering and
Knowledge Engineering, Vol. 2, pp. 21–53, World Scientific, Singapore 2002.

[ES04a] Gregor Engels, Stefan Sauer: Guest Editors' Introduction. International Journal of
Software Engineering and Knowledge Engineering (IJSEKE) 14(6):543–544.
World Scientific Publishing, Singapore 2004.

[ES04b] Gregor Engels, Stefan Sauer (eds.): Modeling and Development of Multimedia
Systems. Special Issue of the International Journal of Software Engineering and
Knowledge Engineering 14(6), World Scientific Publishing, Singapore 2004.

[ES10] Gregor Engels, Stefan Sauer: A Meta-Method for Defining Software Engineering
Methods. In G. Engels, C. Lewerentz, W. Schäfer, A. Schürr, B. Westfechtel
(eds.): Graph Transformations and Model-Driven Engineering, Essays Dedicated
to Manfred Nagl on the Occasion of his 65th Birthday, Volume 5765 of Lecture
Notes in Computer Science (LNCS), pp. 411–440. Springer, Berlin Heidelberg
2010.

[ESN03] Gregor Engels, Stefan Sauer, Bettina Neu: Integrating Software Engineering and
User-centred Design for Multimedia Software Developments. In Proc. IEEE
Symposia on Human-Centric Computing Languages and Environments
(HCC' 03), October 2003, Auckland, New Zealand, Symposium on
Visual/Multimedia Software Engineering (VMSE '03), pp. 254–256. IEEE
Computer Society Press, Los Alamitos, CA, 2003.

[ESS08] Gregor Engels, Stefan Sauer, Christian Soltenborn: Unternehmensweit verstehen
– unternehmensweit entwickeln: Von der Modellierungssprache zur
Softwareentwicklungsmethode. Informatik-Spektrum 31(5):451–459, Special
Issue: Modellierung. Springer, Berlin Heidelberg 2008.

[GFJ+09] Baris Güldali, Holger Funke, Michael Jahnich, Stefan Sauer, Gregor Engels:
Semi-automated Test Planning for e-ID Systems by Using Requirements
Clustering. In Proc. 24th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2009), November 16-20, 2009, Auckland, New
Zealand, pp. 29–39, 2009.

[GKM+10] Rainer Gimnich, Uwe Kaiser, Christof Momm, Jochen Quante, Volker Riediger,
Stefan Sauer, Mircea Trifu, Andreas Winter (eds.): Proc. 12. Workshop Software-
Reengineering (WSR) & 2. Workshop Design for Future (DFF) 2010, Bad
Honnef, Germany, May 3-5, 2010. Softwaretechnik-Trends 30(2):28–85, 2010.

[GS10] Baris Güldali, Stefan Sauer: Transfer of Testing Research from University to
Industry: An Experience Report. In Proc. International TestIstanbul Conference
2010. Turkish Testing Board, May 2010. http://www.testistanbul.org

[GSW+10] Baris Güldali, Stefan Sauer, Peter Winkelhane, Michael Jahnich, Holger Funke:
Pattern-based Generation of Test Plans for Open Distributed Processing Systems.
In Proc. International Conference on Software Engineering (ICSE 2010), 5th
International Workshop on Automation of Software Test (AST 2010), pp. 119–
126. ACM Press, 2010.

67

[HHS00] Jan Hendrik Hausmann, Reiko Heckel, Stefan Sauer: Ein Konzept zur
anwendungsbezogenen UML-Semantikbeschreibung durch dynamische
Metamodellierung. In H. Giese, St. Philippi (eds.): Proc. 8th GROOM Workshop:
Visuelle Verhaltensmodellierung verteilter und nebenläufiger Softwaresysteme
(VVVNS 2000), November 13-14, 2000, Münster, Germany, pp. 64–69.
Technical Report no. 24/00 I, Universität Münster, Germany 2000.

[HHS01] Jan Hendrik Hausmann, Reiko Heckel, Stefan Sauer: Towards Dynamic Meta
Modeling of UML Extensions: An Extensible Semantics for UML Sequence
Diagrams. In Proc. IEEE Symposia on Human-Centric Computing Languages and
Environments (HCC '01), September 2001, Stresa, Italy, Symposium on Visual
Languages and Formal Methods, pp. 80–87.

[HHS02a] Jan Hendrik Hausmann, Reiko Heckel, Stefan Sauer: Dynamic Meta Modeling
with Time: Specifying the Semantics of Multimedia Sequence Diagrams. In P.
Bottoni, M. Minas (eds.): Proc. ICGT 2002 International Workshop on Graph
Transformation and Visual Modeling Techniques (GT-VMT 2002), October
2002, Barcelona, Spain. Electronic Notes in Theoretical Computer Science
(ENTCS) 72(3).

[HHS02b] Jan Hendrik Hausmann, Reiko Heckel, Stefan Sauer: Extended Model Relations
with Graphical Consistency Conditions. In L. Kuzniarz, G. Reggio, J. L.
Sourrouille, Z. Huzar (eds.): Proc. UML 2002 Workshop on Consistency
Problems in UML-based Software Development, October 2002, Dresden,
Germany, pp. 61–74. Research Report 2002:06, Blekinge Institute of Technology,
Sweden, 2002.

[HHS04] Jan Hendrik Hausmann, Reiko Heckel, Stefan Sauer: Dynamic Meta Modeling
With Time: Specifying the Semantics of Multimedia Sequence Diagrams. Journal
of Software and Systems Modeling (SOSYM) 3(3):181–192, 2004.

[HKS01] Jan Hendrik Hausmann, Jochen M. Küster, Stefan Sauer: Identifying Semantic
Dimensions of (UML) Sequence Diagrams. In A. Evans, R. France, A. Moreira,
B. Rumpe (eds.) Proc. Practical UML-Based Rigorous Development Methods -
Countering or Integrating the eXtremists, UML 2001 Workshop of the pUML-
Group, October 2001, Toronto, Canada, Volume P-7 of GI-Edition - Lecture
Notes in Informatics (LNI), pp. 142–157. Köllen Druck+Verlag GmbH, Bonn
2005.

[HS00a] Reiko Heckel, Stefan Sauer: Dynamische Metamodellierung als Methode zur
Definition einer operationalen Semantik für die UML. In Proc. 7th GI-Workshop
GROOM, April 4-5, 2000, Universität Koblenz-Landau. Softwaretechnik-Trends
20(2):43–44, 2000.

[HS00b] Reiko Heckel, Stefan Sauer: Strengthening the Semantics of UML Collaboration
Diagrams. In G. Reggio, A. Knapp, B. Rumpe, B. Selic, R. Wieringa (eds.): Proc.
UML 2000 Workshop on Dynamic Behavior in UML Models: Semantic
Questions, October 2, 2000, York, UK, pp. 63–69. Technical Report no. 0006,
Ludwig-Maximilians-Universität München, Germany, 2000.

[HS01] Reiko Heckel, Stefan Sauer: Strengthening UML Collaboration Diagrams by
State Transformations. In H. Hussmann (ed.): Proc. 4th International Conference
Fundamental Approaches to Software Engineering (FASE 2001), April 2001,

68

Genova, Italy, Volume 2029 of Lecture Notes in Computer Science (LNCS), pp.
109–123. Springer, Berlin Heidelberg 2001.

[LES06] Marc Lohmann, Gregor Engels, Stefan Sauer: Model-driven Monitoring:
Generating Assertions from Visual Contracts. In Proc. 21st IEEE/ACM
International Conference on Automated Software Engineering (ASE 2006), pp.
355–356. IEEE Computer Society, 2006.

[LRE+06] Marc Lohmann, Jan-Peter Richter, Gregor Engels, Baris Güldali, Oliver Juwig,
Stefan Sauer: Semantische Beschreibung von Enterprise Services – Eine
industrielle Fallstudie. s-lab Report No.1, Software Quality Lab (s-lab),
Universität Paderborn, Germany, ISSN 1863-0774, May 2006.

[LSE05] Marc Lohmann, Stefan Sauer, Gregor Engels: Executable Visual Contracts. In
Proc. 2005 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC' 05), September 21-24, 2005, Dallas, Texas, USA, pp. 63–
70.

[LSS03] Marc Lohmann, Stefan Sauer, Tim Schattkowsky: ProGUM-Web: Tool Support
for Model-Based Development of Web Applications. In P. Stevens, J. Whittle, G.
Booch (eds.): Proc. 6th International Conference on the Unified Modeling
Language (UML 2003), October 2003, San Francisco, CA, USA, Volume 2863 of
Lecture Notes in Computer Science (LNCS), pp. 101–105. Springer, Berlin
Heidelberg 2003.

[MGB+09a] Gerrit Meixner, Daniel Görlich, Kai Breiner, Heinrich Hußmann, Andreas Pleuß,
Stefan Sauer, Jan Van den Bergh: Fourth International Workshop on Model
Driven Development of Advanced User Interfaces. In Proc. 2009 International
Conference on Intelligent User Interfaces, February 8, 2009, Sanibel Island,
Florida, USA, pp. 503–504. ACM Press, 2009.

[MGB+09b] Gerrit Meixner, Daniel Görlich, Kai Breiner, Heinrich Hußmann, Andreas Pleuß,
Stefan Sauer, Jan Van den Bergh (eds.): Proc. Workshop on Model Driven
Development of Advanced User Interfaces (MDDAUI'09), February 8, 2009,
Sanibel Island, Florida, USA, Volume 439 of CEUR Workshop Proceedings,
ISSN 1613-0073. http://CEUR-WS.org/Vol-439/

[PVHS05] Andreas Pleuß, Jan Van den Bergh, Heinrich Hußmann, Stefan Sauer (eds.):
MDDAUI'05 – Model Driven Development of Advanced User Interfaces 2005.
Proceedings of the MoDELS'05 Workshop on Model Driven Development of
Advanced User Interfaces. Volume 159 of CEUR Workshop Proceedings, ISSN
1613-0073. http://CEUR-WS.org/Vol-159/

[PVH+07] Andreas Pleuß, Jan Van den Bergh, Heinrich Hußmann, Stefan Sauer, Daniel
Görlich (eds.): MDDAUI'07, Proceedings of the MODELS'07 Workshop on
Model Driven Development of Advanced User Interfaces, Volume 297 of CEUR
Workshop Proceedings, ISSN 1613-0073. http://CEUR-WS.org/Vol-297/

[PVSH06] Andreas Pleuß, Jan Van den Bergh, Stefan Sauer, Heinrich Hußmann: Workshop
Report: Model Driven Development of Advanced User Interfaces (MDDAUI). In
J.M. Bruel (ed.): Proc. Satellite Events at the MoDELS 2005 Conference,
MoDELS 2005 International Workshops, Doctoral Symposium, Educators
Symposium, Revised Selected Papers, Volume 3844 of Lecture Notes in
Computer Science (LNCS), pp. 182–190. Springer, Berlin Heidelberg 2006.

69

[PVS+06] Andreas Pleuß, Jan Van den Bergh, Stefan Sauer, Heinrich Hußmann, Alexander
Bödcher (eds.): MDDAUI'06 – Model Driven Development of Advanced User
Interfaces 2006. Proceedings of the MoDELS'06 Workshop on Model Driven
Development of Advanced User Interfaces. Volume 214 of CEUR Workshop
Proceedings, ISSN 1613-0073. http://CEUR-WS.org/Vol-214/

[PVS+07] Andreas Pleuß, Jan Van den Bergh, Stefan Sauer, Heinrich Hußmann, Alexander
Bödcher: Model Driven Development of Advanced User Interfaces (MDDAUI) –
MDDAUI'06 Workshop Report. In T. Kühne (ed.): MoDELS 2006 Workshops,
October 1-6, 2006, Genova, Italy, Volume 4364 of Lecture Notes in Computer
Science (LNCS), pp. 100–104. Springer, Berlin Heidelberg 2007.

[PVS+08] Andreas Pleuß, Jan Van den Bergh, Stefan Sauer, Daniel Görlich, Heinrich
Hußmann: Third International Workshop on Model Driven Development of
Advanced User Interfaces. In: H. Giese (ed.): Models in Software Engineering,
Workshops and Symposia at MoDELS 2007, Reports and Revised Selected
Papers, September 30 - October 5, 2007, Nashville, TN, USA, Volume 5002 of
Lecture Notes in Computer Science (LNCS), pp. 59–64. Springer, Berlin
Heidelberg 2008.

[Sau11] Stefan Sauer: Applying Meta-Modeling for the Definition of Model-Driven
Development Methods of Advanced User Interfaces. In: H. Hussmann, G.
Meixner, D. Zuehlke (eds.): Model-driven Development of Advanced User
Interfaces, Volume 340 of Studies in Computational Intelligence, pp. 67–86.
Springer, Berlin Heidelberg 2011.

[SDGH06] Stefan Sauer, Markus Dürksen, Alexander Gebel, Dennis Hannwacker:
GuiBuilder – A Tool for Model-Driven Development of Multimedia User
Interfaces. In A. Pleuss, J. Van den Bergh, H. Hußmann, S. Sauer, A. Bödcher
(eds.): Proc. MDDAUI'06 - Model Driven Development of Advanced User
Interfaces, Volume 214 of CEUR Workshop Proceedings, ISSN 1613-0073.
http://CEUR-WS.org/Vol-214/

[SE99a] Stefan Sauer, Gregor Engels: Extending UML for Modeling of Multimedia
Applications. In Proc. 1999 IEEE Symposium on Visual Languages (VL '99),
September 13-16, 1999, Tokyo, Japan, pp. 80–87. IEEE Computer Society, 1999.
Recognized with Most Influential Paper Award of IEEE Symposium on Visual
Languages and Human-Centric Computing 2010.

[SE99b] Stefan Sauer, Gregor Engels: MVC-Based Modeling Support for Embedded Real-
Time Systems. Position Statement. In P. Hofmann, A. Schürr (eds.): Proc.
Workshop Objektorientierte Modellierung eingebetteter Realzeitsysteme
(OMER), May 28-29, 1999, Herrsching (Ammersee), Germany, pp. 11–14.
Technical Report 1999-01, Fakultät Informatik, Universität der Bundeswehr
München, Germany, May 1999.

[SE99c] Stefan Sauer, Gregor Engels: OMMMA: An Object-oriented Approach for
Modeling Multimedia Information Systems. In L. Golubchik, V. J. Tsotras (eds.):
Proc. 5th International Workshop on Multimedia Information Systems (MIS '99),
October 21-23, 1999, Indian Wells, California, USA, pp. 64–71.

[SE99d] Stefan Sauer, Gregor Engels: UML-basierte Modellierung von
Multimediaanwendungen. In J. Desel, K. Pohl, A. Schürr (eds.): Proc.

70

Modellierung '99, March 10-12, 1999, Karlsruhe, Germany, pp. 155–170.
Teubner, Stuttgart 1999.

[SE01] Stefan Sauer, Gregor Engels: UML-based Behavior Specification of Interactive
Multimedia Applications. In Proc. IEEE Symposia on Human-Centric Computing
Languages and Environments (HCC '01), September 2001, Stresa, Italy, pp. 248–
255. Recognized with Best Paper Award of HCC’01 Symposium on
Visual/Multimedia Approaches to Programming and Software Engineering.

[SE07] Stefan Sauer, Gregor Engels: Easy Model-Driven Development of Multimedia
User Interfaces with GuiBuilder. In C. Stephanidis (ed.): Universal Access in
Human-Computer Interaction, Proc. 4th International Conference on UAHCI
2007, HCI International 2007, Part II: Universal Access Methods, Techniques and
Tools, July 22-27, 2007, Beijing, China, Volume 4554 of Lecture Notes in
Computer Science (LNCS), pp. 537–546. Springer, Berlin, Heidelberg 2007.

[SSE09a] Frank Salger, Stefan Sauer, Gregor Engels: An Integrated Quality Assurance
Framework for Specifying Business Information Systems. In E. Yu, J. Eder, C.
Rolland (eds.): Proc. Forum at the CAiSE 2009 Conference, Amsterdam, The
Netherlands, Volume 453 of CEUR Workshop Proceedings, ISSN 1613-0073, pp.
25–30, 2009. http://CEUR-WS.org/Vol-453/

[SSE09b] Frank Salger, Stefan Sauer, Gregor Engels: Integrated Specification and Quality
Assurance for Large Business Information Systems. In Proc. 2nd India Software
Engineering Conference (ISEC '09), pp. 129–130. ACM Press, 2009.

[SSEB10] Frank Salger, Stefan Sauer, Gregor Engels, Andrea Baumann: Knowledge
Transfer in Global Software Development - Leveraging Ontologies, Tools and
Assessments. In Proc. 5th IEEE International Conference on Global Software
Engineering (ICGSE 2010), pp. 336–341, 2010.

[VMB+10] Jan Van den Bergh, Gerrit Meixner, Kai Breiner, Andreas Pleuss, Stefan Sauer,
Heinrich Hußmann: Model-driven Development of Advanced User Interfaces. In
Proc. 28th International Conference on Human Factors in Computing Systems
(CHI 2010), Extended Abstracts Volume, April 10-15, 2010, Atlanta, Georgia,
USA, pp. 4429–4432. ACM Press, 2010.

[VMS10] Jan Van den Bergh, Gerrit Meixner, Stefan Sauer: MDDAUI 2010 Workshop
Report. In Proc. 5th International Workshop on Model Driven Development of
Advanced User Interfaces (MDDAUI 2010), Volume 617 of CEUR Workshop
Proceedings, ISSN 1613-0073, pp. 53–56. http://CEUR-WS.org/Vol-617/,
urn:nbn:de:0074-617-8

[VSB+10] Jan Van den Bergh, Stefan Sauer, Kai Breiner, Heinrich Hußmann, Gerrit
Meixner, Andreas Pleuss (eds.): Proceedings of the 5th International Workshop
on Model Driven Development of Advanced User Interfaces (MDDAUI 2010):
Bridging between User Experience and UI Engineering, April 10, 2010, Atlanta,
Georgia, USA, Volume 617 of CEUR Workshop Proceedings, ISSN 1613-0073.
http://CEUR-WS.org/Vol-617/, urn:nbn:de:0074-617-8

71

72

Part II:

MetaME – A Meta-Method for Method

Engineering of Software Engineering

Methods

73

9 Engineering of Software Engineering Methods

Software systems such as business information systems are constantly growing in size
and complexity. At the same time, they need to be produced in dependable quality while
their development shall be cost and resource effective. To meet all these requirements,
the development of software systems demands for sophisticated software engineering
methods and processes.

In this work we use the term software engineering method to denote the full set of
elements needed to describe a software development endeavor, such as a software
development project, in all relevant aspects. This does not only cover the software
development process and its contained activities, but also the artifacts that are to be
produced, the tasks that need to be performed to achieve the development goals, the
roles in an organization that participate in the development, the tools, techniques and
utilities that are employed, as well as relationships between these concepts.

To obtain such software engineering methods, their own development should be done
systematically and have a sound methodical foundation. This is the objective of method
engineering [Bri96]. Method engineering is an engineering discipline that deals with the
development of methods, techniques, and tools for the development of software
systems. It started in the area of information systems in the 1990s (e.g. [Gut94, Bri96]),
but was taken up by software engineering in the following (see e.g. [NFK94, Rol09,
HR10]). Method engineering aims at providing a framework for defining and tailoring
system and software engineering (SE) methods. It allows us to model and analyze even
complex software engineering methods in a systematic way.

Different software engineering methods and processes have been proposed and are in
use for different purposes, such as the Rational Unified Process (RUP) [IBM07] or agile
methods like SCRUM [SB02] and many more. However, it is widely recognized that
such standards are often too generic to be directly applicable and thus must be tailored
to the problem at hand (see e.g. [Wie03]) before they can effectively be employed. It
becomes also necessary to develop new methods due to the advent of new development
paradigms; or domain-specific methods that account for the specifics of a certain
domain like business information systems or business intelligence systems (see
Section 6); or for a particular delivery model such as global software development
[SSEB10]. Hence there is still a need to derive, evolve and develop new software
engineering methods.

Tailoring of methods is necessary since there exists no standard method that perfectly
suites all types of projects in all domains. It is also not reasonable to develop a new
method every time when a context-specific method is needed. It is much more economic
to tailor existing methods to the current development context and situation. A number of
method engineering approaches have been proposed that especially deal with the
development of methods for a particular situation, which is known as situational method
engineering (see e.g. [RBH07, BKPJ07, HR10]). Mechanisms for reuse and adaptation
play an important role in this field. In addition, component-like concepts that support
modularity of methods are often used, such as viewpoint templates [NFK96], method
fragments [Bri96], or method chunks [Rol09]. In recent publications, even the use of
method services and the notion of method-as-a-service are discussed [Rol09].

74

Another line of research has been focusing on the use of meta-modeling for the
representation of method contents. A number of meta-models have been developed in
result, see e.g. [HG05, GMH05, BG08, JJM09]. With the Object Management Group’s
(OMG) Software & Systems Process Engineering Meta-Model (SPEM) [OMG08] and
the ISO/IEC 24744 Software Engineering – Metamodel for Development
Methodologies [ISO07] even two standards for describing the content of software
engineering methods arrived (compare Sections 10.5 and 10.6, respectively).

The advantages of a meta-model-based approach are manifold: First, meta-modeling
provides a formal and precise foundation for the specification of software engineering
methods. Secondly, software engineering methods can be compared on the formal basis
provided by the meta-model, acting as a reference framework. Third, the formalization
provides a precise foundation for the development of tools and utilities that support the
use of the method. Fourth, the meta-model can be employed for analyzing a software
engineering method for certain properties such as consistency, conformance, etc. Last
but not least, the meta-model provides a formal basis for tailoring. Changes to software
engineering methods can be traced back to the meta-model and checked for their
conformance and consequences, since methods are instances of the meta-model.

In my analysis I have observed a number of reasons why the current approaches still
have some shortcomings. The first and most obvious point is the lack of a process
definition that specifies how to develop a software engineering method based on the
meta-modeling approach; in other words, how a method engineer should instantiate the
meta-model. Neither do they define the tasks that are needed for method engineering
nor a process workflow to follow. Strictly speaking, meta-models like SPEM do not
define a meta-model for software engineering methods, but a meta-model for method
descriptions. They provide a linguistic rather than an ontological meta-model. That
means, they define a modeling language for software engineering methods.

Secondly, most approaches lack a sound integration of the product and the process
aspect of a software engineering method in a coherent, yet manageable meta-modeling
architecture. For example, the OMG favors to complement SPEM [OMG08] with the
UML meta-model for the definition of the models to be produced, and some behavior
modeling formalism like BPMN to define the behavior of the methods process part. ISO
24744 proposes to combine the different aspects by the use of powertype patterns and
clabjects [ISO07, GH08]. ISO thus provides a sophisticated, yet challenging formal
approach to address the integration issues that contrasts the ideas of strict meta-
modeling as discussed in [AK01].

Additionally, although most approaches offer some means to interrelate the process and
product aspects at least on a high level of abstractions – such as products that are used
or created by tasks and activities in the process model, or roles that are responsible for
products or perform tasks – they lack the possibility to model complex patterns of
interlinked structural and behavioral models. For example, SPEM allows the method
engineer to define work products (artifacts) and work elements such as tasks, processes,
activities, and steps of tasks. Furthermore, state models can be assigned to work product
definitions; and the states and transitions of the work products’ state models can be
related to work elements. But this linking is restricted to the work product lifecycle of
individual work products. What cannot be expressed in a formal way is the effect of
work elements on the artifact object structure, i.e., the network of interrelated work

75

product instances. Instead of coding this by states, we wish to have an explicit
mechanism for defining such transformations.

Based on this observation, it is the objective of this work to combine method
engineering, meta-modeling and ideas from language engineering for the development
of software engineering methods and to present a concise meta-method in this part of
the thesis for defining and tailoring software engineering methods. The meta-method is
designed to support the definition of software engineering methods as well as the
tailoring of software engineering methods for particular domains and projects, i.e., as an
approach for situational method engineering.

The meta-method must cover both the product and the process dimension of the
software engineering method. In the product dimension, the method engineer must
specify which artifacts are to be produced in the course of applying the method and how
these artifacts are related. In the process dimension, it must be defined how to proceed
for producing the artifacts and what needs to be accomplished – and by whom – in
getting from one artifact to the other. The former can be covered by process or
workflow models. The latter can be achieved by the use of transformations. Such
transformations can be executed as manual development tasks or by automated tasks as
part of the software development process. Thus, we define the product part of the
software engineering method in an artifact model and the process part of the method by
workflow models and task models. The effect of task execution will be modeled by the
use of transformations that operate on the artifact model.

We propose transformation rules that operate on instances of the product model. These
rules can also make reference to the state model of individual work product elements,
but show also their attribute values and links in the pre- and post-conditions of the
transformation rule.

We use the same set of general specification means also to define the meta-method,
being itself a method for the development of methods. We use a product meta-model
from which software engineering methods are instantiated. The process dimension of
method engineering is described by the workflow model and the task model of the
meta-method. The workflow model defines how to proceed in order to define a software
engineering method. The task model defines the tasks that need to be accomplished,
again in the form of transformations.

This part of my thesis is structured as follows: I start with a brief description of the
foundations that are relevant for the presented approach for method engineering of
software engineering methods based on meta-modeling in Section 10. In particular, in
Section 10.1, I give a very brief introduction to the core concepts of software
engineering methods that are relevant for method engineering. Meta-modeling is
introduced in Section 10.2 as a methodological means for developing software
engineering methods. In Section 10.3, we deal with the domain of method engineering
and then present OMG’s SPEM [OMG08] as well as ISO/IEC 24744 in some detail.
Section 11 constitutes the core of this part where we present our meta-method MetaME
for method engineering of software engineering methods. Based on a foundational
meta-model architecture of the meta-method, we present the product meta-model as a
general information model of method engineering as well as a process model for
developing software engineering methods. Steps 3 and 4 of that process that are

76

concerned with the development of an artifact meta-model and the software process
model are looked at in detail. There we also introduce the method of specifying
software engineering tasks as transformation rules that operate on the product model.
The issue of tailoring in the framework of our meta-method is described in Section 12.
We look at both the tailoring of software engineering methods and the meta-level
tailoring of the method engineering meta-method. Section 13 concludes this part of the
thesis with a summary and outlook.

77

10 Foundations of Method Engineering of Software
Engineering Methods Based on Meta-Modeling

This section describes the foundations for the engineering of software engineering
methods based on meta-modeling that are important in the context of this thesis and
build the ground for the meta-method MetaME. Section 10.1 summarizes the core
concepts of software engineering methods that are relevant for method engineering.
Meta-modeling is introduced in Section 10.2 as a methodological means for developing
software engineering methods. In Section 10.3, we consider the domain of method
engineering. We then visit two meta-models for software engineering methods, namely
OMG’s SPEM (Section 10.5) and ISO/IEC 24744 (Section 10.6).

10.1 Software Engineering and Software Development

In order to manifest a common understanding of the fundamental concepts and central
technical terms that are used throughout this part of the thesis, we will introduce these
terms in this section. We look in the domain of software engineering, being the domain
of the software engineering methods, and the domain of method engineering, being the
domain of the meta-method.

From the software engineering perspective, the central concept of our approach is the
software engineering method. We define software engineering method as a systematic
procedure or technique of doing work in software engineering in order to reach a certain
goal and/or produce a defined set of software artifacts. Software engineering methods
structure, coordinate and document the development processes and activities as well as
the produced artifacts (also called work products or work items). Software engineering
methods are often also called software process models by other authors. However, the
term process may lead to misunderstandings, since a software engineering method
contains more than just a process definition. Rather, the software engineering method is
concerned with the processes and products of software engineering. Such products are
e.g. different kinds of software models that themselves may have a complex structure
that needs to be specified in a comprehensive software engineering method.

Software development processes are defined by IEEE Standard 610.12 as follows
[IEEE90]: “The process by which user needs are translated into a software product.”
The process involves activities such as translating user needs into software
requirements, transforming the software requirements into design, implementing the
design in code, testing the code, and sometimes, installing and checking out the
software for operational use. Activities may overlap or be performed iteratively. From
this definition we can derive the understanding, that processes are made from activities
that are executed in some order. In accordance with [OMG08], we define that the
processes of a software engineering method are hierarchically composed from activities.
More specific concepts may be defined to capture specific kinds of sub-hierarchies on
intermediate layers such as iterations and phases of development processes, like they are
defined in RUP [IBM07]. These compositional structures can be seen as specific kinds
of (composite) activities. Processes and activities thus define the process structure and
workflow of a software engineering method.

78

Two other terms that are closely related to the process are software development cycle
and software life cycle. They refer to the temporal aspect of the software engineering
process. According to IEEE Standard 610.12 [IEEE90], a software development cycle is
“the period of time that begins with the decision to develop a software product and ends
when the software is delivered.” The development cycle typically includes phases such
as a requirements phase, design phase, implementation phase, test phase, and
sometimes, installation and checkout phase. The phases of the cycle – alike the
activities of a process – may overlap or be performed iteratively, depending on the
software development approach that is employed. In contrast, the software life cycle is
defined as “the period of time that begins when a software product is conceived and
ends when the software is no longer available for use.” The software life cycle thus goes
beyond the software development cycle. It extends the development cycle with
additional phases: The software life cycle typically also includes a concept phase
upfront, and subsequent to development an installation and checkout phase, operation
and maintenance phase, and, sometimes, retirement phase. Again, these phases may
overlap or be performed iteratively.

A complete set of software engineering methods ideally covers the full software life
cycle; at least it should cover the full software development cycle. If it only covers the
software development cycle, the term software development method is as well
appropriate. However, particular software engineering methods may have a more
limited scope as regards the software life cycle. They may the be used as partial models
and integrated in a comprehensive software engineering method that covers the full
cycle.

Process

ProjectPeople

Product

Tools

Result

Template

Participants

Automation

Figure 28: The core concepts that make up the Unified Software Development Process
(redrawn from [JBR99])

A software engineering method comprises a set of concepts that are required for its
definition. It is commonly agreed that a software engineering method has to cover at
least three main aspects by its provided concepts (see e.g. [GH08]): the work products
that are created and used, the process to follow, and the producers that are involved.
Although different authors define different sets of concepts, some of them are
commonly used (although sometimes using different terms with varying semantics) and
can be seen as the agreed minimal set (sometimes further differentiated): roles (and/or
people), processes and activities (and/or tasks), work products (or artifacts), tools
(software tools and other utilities). The authors of the Unified Software Development

79

Process [JBR99], for example, identify five main concepts for software development
methods: process, people, project, product, and tools (as depicted in Figure 28), thus
adding the concept of project explicitly.

Gutzwiller [Gut94] has developed a meta-model for development methods and process
models. It requires five general elements for describing a method: activities, roles, work
products, techniques, and an information model (termed ‘meta-model’ in the original
work), see Figure 29. These concepts are characterized as follows:

• Activities are functional units of work that produce one or more defined work
products. They can be hierarchically structured and have a defined order of
execution. This order implies the order in which work products are developed.

• Roles are responsible for performing one or more activities. They can be played by
individual persons or groups of people.

• Work products are produced, used and modified by activities. They can thus be
employed as input and output of an activity. Work products can be hierarchically
structured.

• A technique provides guidance for producing one or more work products. It
prescribes how and by which means to produce the work products. Techniques may
be supported by tools.

• The information model specifies the artifact types that correspond to the work
products, their attributes and the relationships between the artifact types, especially
the composition hierarchy. The information model represents the conceptual data
model of the development artifacts.

Information Model
Activ ity

Work Product

Role

Technique

1

+view *

+nestedProduct * 0..1

1..*

works on

1..*

*

+guidance *

+performer

1*

+sub *+super 0..1

+pre * +post *

Figure 29: The core concepts of a software engineering method according to [Gut94]

According to [Bal98], a software engineering method defines the following aspects:

• workflow of development process,
• activities that are to be executed,
• definition of work products (or product parts) with respect to content and

structure/layout,

80

• completion criteria for work products (or product parts),
• required skills for performing tasks,
• responsibilities and capabilities of workers,
• standards, guidelines, techniques and tools that are to be employed.

The Rational Unified Process [IBM07] distinguishes between the static and the dynamic
aspect of a software development process. The static aspect describes the process
structure that is built from activities, workflows, artifacts, and workers. The dynamic
aspect of the process as it is enacted covers the temporal domain by the concepts
lifecycle, phase, iteration, and milestone. Workflows group activities logically.
Activities comprise activity steps. Artifacts are models, model elements, documents,
source code, and executable software. Deliverables are a kind of artifact. Workers are a
role concept for people and resources, having a responsibility relation with artifacts.

SPEM [OMG08] distinguishes between the method content and the process of a
systems and software engineering method. The core concepts defined in SPEM
[OMG08] for the method content are: work product, task, role, tool. The core concepts
of the process are: activity, milestone, work product use, task use, and role use.
Processes are defined in a general hierarchical breakdown structure with inner nodes
being activities. The workflow is defined with temporal relationships, called work
sequences. Work product use, task use, and role use are used to make reference to the
corresponding method content elements.

ISO 24744 [ISO07] distinguishes between ten key concepts. Five of them are assigned
to the method domain: language, notation, constraint, guideline, and outcome. The other
five are assigned to the endeavor domain: stage, work unit, work product, model unit,
and producer. Action is used to relate tasks to work products.

Stage is further specialized in instantaneous stage (e.g. milestone) and stage with
duration (e.g. time cycle, phase, build). Specializations of work unit are task, technique,
and process. Subtypes of work product are composite work product, software item,
hardware item, document, and model. The elements of models are captured by model
unit. Role, person, team as well as tool are subtypes of producer.

Guidelines can be associated with any methodology element. The observable results of
performing any kind of work unit are given by the class Outcome. Constraints are
aggregated by action kinds and are specialized in preconditions and post-conditions.
Notation is associated with both document kind and language. The relation with
document kind denotes that a document kind uses one or more notations. The
association between notation and language states that multiple notations can depict a
language and, vice versa, a notation can depict multiple languages. Language aggregates
model unit kind to denote that any model unit kind is always defined in the context of at
least one language, while a language can be the context for one or more model unit
kinds. A direct association between model kind and language allows a method engineer
to express which language is used for one or model kinds.

From this brief discussion of concepts provided in different meta-models or employed
in software engineering methods one can already see the ontological diversity of the
approaches. In an attempt to bring them closer together we have contrasted a selected
set of core concepts of the different approaches in Table 2. In the last column we have

81

added the matching concepts of our approach that is named MetaME – meta-method for
method engineering. They will be further discussed in Section 11.2.

Table 2: Comparison of core concepts for software engineering methods

SPEM ISO24744 RUP MetaME

 Stage Discipline
Domain
Discipline

 Concept

Work Product
Definition,
Work Product Use

Work Product (Model,
SoftwareItem,
HardwareItem,
Document),
ModelUnit

Artifact (Model,
ModelElement,
Document,
SourceCode,
Executable) Artifact

Work Definition WorkUnit Work Work

Activity Process
Workflow
Activity

Process
Activity

Task Definition, Task
Use Task Task Task
Step Action ActivityStep ActionStep
 Transformation
(Phase, Iteration) as
Kind

TimeCycle, Phase,
Build

Lifecycle, Phase,
Iteration Phase

Milestone Milestone Milestone Milestone
Role Definition, Role
Use Role Worker Role

Tool Definition Tool
Tool
Utility

 Language, Notation Notation
Guidance Guildeline Guidance
 Technique Technique
 Constraint Constraint

Comparable meta-models can also be derived from existing software engineering
methods, and of course, there exist many more of such meta-models for software
engineering methods, like those mentioned in Section 9. From the literature and my own
project experience, I have derived the meta-model for software engineering methods
that will be presented in Section 11.2. Some fundamentals of modeling and meta-
modeling will be discussed in the next section.

10.2 Models and Meta-Models

A promising approach towards the systematic and structured development of software
engineering methods is the use of meta-modeling techniques for specifying the software
engineering methods.

A model is, according to scientific theory, a representation of a natural or artificial
original that focuses on those characteristics and properties of the original that are
relevant for the given purpose of modeling, and abstracts from irrelevant properties. The
purpose depends on both the creator and user of the model, and the intended use of the
model. In an engineering process, models are used for specification, documentation, and
communication. They are themselves objects of processing and transformation, and are

82

a foundation for decision making, analysis, validation, verification, and testing. Models
can be built upfront or retrospective in terms of forward engineering or reverse
engineering, respectively.

A meta-model is a model of a model. Meta-modeling is, according to [GH08], “the act
and science of creating meta-models, which are a qualified variant of models.” The
specialty of a meta-model is that the information it represents is itself a model. The
meta-model’s concern is the modeling itself. In the domain of method engineering, the
meta-model is a model of a software engineering method.

In object-oriented meta-modeling, a model conforms to its meta-model in the way that it
is an instance of the meta-model. A software engineering method can then be
understood as a model that is an instance of this meta-model. The meta-model together
with the definition of the semantics of software engineering concepts that are contained
in the meta-model define an ontology for software engineering methods.

Meta-models are commonly used for defining modeling languages. However, they may
also be used for defining in a wider sense the process of modeling (compare [Str98]).
Meta-modeling is already widely used for defining software modeling languages as well
as models of software development methods, e.g. in the case of UML [OMG09a,
OMG09b] and SPEM [OMG08] or ISO 24744 [ISO07], respectively. UML is a
standard language for modeling software systems. SPEM and ISO 24744 are languages
for describing software development methods and process models, i.e., meta-models for
method descriptions.

For the domain of method engineering, we adopt the definition from [GH08]: A meta-
model is a domain-specific language that is intended to represent software development
methods. ISO 24744 defines the meta-model in the context of method engineering to be
the “specification of the concepts, relationships and rules that are used to define a
methodology” [ISO07]. (Note: methodology is synonymously used to method here,
denoting the “specification of the process to follow together with the work products to
be used and generated, plus the consideration of the people and tools involved”
[ISO07].)

The OMG has defined a four-layer meta-model reference architecture in the Meta
Object Facility (MOF) [OMG06] that builds on the concepts of object-orientation and is
commonly used in meta-modeling (see Figure 30).

According to this meta-model hierarchy, we can characterize the levels for the domain
of method engineering as follows:

M0 (Runtime layer) – M0 denotes the lowest level of the MOF 4-layer meta-model
hierarchy. In this layer, objects of the real world are denoted that exist at execution time
of the modeled system. More generally, M0 represents the area of concern (or domain),
which may be business, software engineering, or method engineering. In the domain of
method engineering these are the concrete objects (i.e., software artifacts) that are
produced or modified during the lifecycle of a concrete software engineering endeavor.

M1 (Model layer) – M1 is the layer where user models are located. Reality is modeled
in a modeling language (defined by M2), such that elements of M0 are instances of

83

elements in M1. In the domain of method engineering, the model of the method is
allocated on this level. The method engineer acts as the modeler.

M2 (Meta-model layer) – M2 is the layer where meta-modeling takes place. It contains
meta-models (models of models) such as the UML meta-model or SPEM which define
modeling languages for describing the user models of layer M1. Elements of user
models from M1 are then instances of meta-model elements of layer M2. This level
holds the meta-method’s model in the domain of method engineering.

M3 (Meta-meta-model layer) – M3 is the highest level of the 4-layer meta-model
hierarchy. Meta-meta-models are defined at this layer. They are used to describe the
meta-models on layer M2. In the MOF hierarchy, the Meta Object Facility itself is
defined on this level. Defining method engineering within an object-oriented meta-
model hierarchy, we use MOF for the domain of method engineering on this level as
well.

M3

M2

M1

M0

«metamodel»
UML

«metamodel»
UML

«metamodel»
MOF

«metamodel»
MOF

«instanceOf»

ModelModel

«instanceOf»

Runtime
Instances
Runtime
Instances

«instanceOf»

Figure 30: General 4-layer MOF meta-model hierarchy

Based on this meta-model hierarchy and the concepts that can be derived from the
characterization of software engineering methods, we define the meta-model of our
meta-method (M2). It contains the meta-classes for the important concepts that are
required to model a software engineering method. We will build on this four-layer meta-
modeling architecture as the guiding principle in the definition of our meta-method’s
architecture. This will be explained in Section 11.1.

10.3 Method Engineering

After having introduced the basic ideas of meta-modeling in the previous section, we
now continue with the topic “method engineering”, and then show how meta-modeling

84

has been applied for method engineering in the next section. SPEM and ISO 24744 will
be briefly explained as example meta-models in the following sections.

Method engineering has been an active research area in the field of information systems
engineering since the early 1990s. Method engineering is concerned with the systematic
construction of software development methods [Gut94]. [Hey95] defines method
engineering as the systematic and structured process of development, modification and
adaptation of methods by describing the components of the method and their
relationships. In general, it is the objective of method engineering to formalize the use
of methods for systems development [HR10]. More precisely, method engineering can
be defined as the engineering discipline to design, construct and adapt methods,
techniques and tools for the development of (information) systems [Bri96, HR10]. The
objective of method engineering is to develop a methodical approach for systems
development in a given context (and situation) such as an organization or project.

Method engineering mainly addresses two perspectives: a) the systematic development
of methods and b) the enactment and execution of methods. Both aspects may
themselves be supported by dedicated tools, such as a method development
environment or a workflow engine.

Applying method engineering to the domain of software engineering methods provides
a number of advantages:

• method engineering provides a methodological framework and conceptual
infrastructure for method knowledge,

• method engineering supports a systematic development of SE methods,
• by providing specific means for method adaptation, methods can be adapted to a

particular situation and context of use (cf. situational method engineering, see
[HR10] for a recent survey),

• concepts of method modularization, reuse and configuration [BKPJ07] can be
used to assemble methods from methodical building blocks, such as viewpoint
templates [NFK96], method fragments [Bri96], method chunks or method services
[Rol09],

• the meta-models that are used for the definition of methods enable analysis and
comparison of methods, even quantitatively, by the use of an accompanying
quality model and metrics,

• method engineering can ease reuse and provide means for compositional method
development, and method integration,

• method engineering builds a sound basis for tool support, e.g. computer-aided
software engineering (CASE) tools that may be built by using Meta-CASE tools.

The product of a method engineering process is a method. In the context of this work,
the users of this product are software engineers who develop software-based systems.

The lifecycle of a method is similar to the lifecycle of a software system. We can
interpret a method as a conceptual system for system development. Method engineering
manages and controls this method lifecycle and may even itself be computer-supported
by its own software system, a computer-aided method engineering (CAME) tool
[Bri96]. The general overall lifecycle model of method engineering is depicted in Figure
31. Once the domain of discourse has been identified (being software engineering in our

85

case), the requirements for the method are analyzed. It follows a multi-stage
development process. Then the method is deployed, used, and evaluated in order to start
another evolution cycle.

Develop method

Elicit method requirements

Deploy and use method

Evaluate method

Figure 31: Lifecycle of a software engineering method

10.4 Meta-Modeling for Method Engineering

Meta-modeling has been identified as a promising means for method engineering.
Several meta-models have been defined in the literature by different authors, see e.g.
[JJM09], [BG08], [GMH05], [HG05]. Two standards also exist that use meta-models
for the definition of software development methods: ISO 24744:2007 Software
Engineering − Metamodel for Development Methodologies [ISO07] and SPEM,
OMG’s Software & Systems Process Engineering Meta-Model Specification [OMG08].
The latter provides a meta-model as well as a UML profile for the specification of
software development methods. We present SPEM as the most acknowledged meta-
model and the ISO 24744 standard as examples in the following.

The engineering of software engineering methods happens within three domains: meta-
method engineering, method engineering, and software engineering (see also
Section 2.1). Each of them corresponds to a distinct level of abstraction. These levels of
abstraction correspond to the layers of the meta-modeling hierarchy depicted in Figure
30. Different tasks of SE method engineering have to be performed in the three domains
for producing the required products on the different levels of the meta-model hierarchy.
These tasks are performed by dedicated roles according to our meta-method (see Figure
32). The meta-method engineer is responsible for defining the meta-method for method
engineering (M2) in the meta-method engineering domain. This meta-method is applied
by the method engineer in the method engineering domain in order to develop a
concrete software engineering method (M1). The software engineering method is then
used by software engineers in the software engineering domain for developing the
software system in a real software development project (M0).

86

Meta-method
engineer

Develop
meta-method

Method
engineer

Develop
SE method

Software
engineer

Develop
software system

Meta-Method Engineering
Method Engineering

Software Engineering

Method
Engineering
Meta-Method

Method
Engineering
Meta-Method

Software
Engineering

Method

Software
Engineering

Method
Software
System

Software
System

Figure 32: Dedicated roles are responsible for producing the work products on the different
layers of the meta-model hierarchy

Gutzwiller proposes a 4-layer model in [Gut94] (depicted in Figure 33) that is similar to
our hierarchy and to the MOF meta-model hierarchy (see Figure 29). On level 3, the
topmost level, the engineering of development methods is located. This corresponds to
the meta-method in our terminology. Level 2 contains the development methods.
Information systems are on level 1. Finally, level 0 represent the real world.

M3

M2

M1

M0

Development Methods

Engineering of Development Methods

Information Systems

Real World

Figure 33: Gutzwiller’s 4-layer model of method engineering

10.5 SPEM

The Software & Systems Process Engineering Meta-Model (SPEM) [OMG08] is
intended for defining software and system development processes. The OMG
characterizes SPEM as “a process engineering meta-model as well as conceptual
framework, which can provide the necessary concepts for modeling, documenting,
presenting, managing, interchanging, and enacting development methods and
processes“ [OMG08].

SPEM is a meta-model that is based on MOF and UML. Objective of SPEM is to
provide description elements for software development methods that are independent of
parameters such as the development paradigm (‘method domain’ in Section 2.2) being
deployed (e.g. agile, architecture-centric or code-centric, test-driven or model-driven

87

software development), the degree of formalization or the cultural background. The set
of language elements is intended to be minimal for this purpose.

SPEM thus really is a meta-model for describing software engineering methods, and not
a method engineering method, since it does not contain a method engineering process
definition. Furthermore, SPEM has not been intended to be a process modeling
language for software development processes nor does it even provide its own behavior
modeling mechanisms. It provides neither a concrete process modeling language nor
guidance for selecting such a process model. It only provides the interface for docking a
complementary behavior modeling mechanisms. Hence, SPEM is just a description
language for software engineering methods.

An important principle of SPEM is the separation of the method content and the
development process. Method content denotes descriptions of how to achieve particular
development goals. Such contents are independent of their use in a specific
development process. The method contents are then applied within a process and
brought into a temporal order.

ProcessWithMethods

+ Activity
+ CompositeRole
+ RoleUse
+ TaskUse
+ TeamProfile
+ WorkProductUse

MethodContent

+ Qualification
+ RoleDefinition
+ Step
+ TaskDefinition
+ ToolDefinition
+ WorkProductDefinition

ProcessStructure

+ Activity
+ Constraint
+ Milestone
+ RoleUse
+ WorkDefinition
+ WorkProductUse

ManagedContent

+ Guidance
+ Metric

«Merge»

«Merge» «Merge»

Figure 34: Separation of method content and development process in SPEM

Figure 34 visualizes the separation of method content and process. It shows four meta-
model packages of SPEM including the meta-classes for the most relevant concepts. It
can be seen that elements such as work products, tasks, and roles are defined as method
contents (highlighted on the right-hand side) and then applied in the process part by
work product use, task use, and role use (highlighted in the two packages on the left-
hand side). What can be seen from this meta-model excerpt is that the package
ProcessWithMethods actually integrates process structure and method content by
its respective merge dependencies. Furthermore, guidance and metric from the package
ManagedContent are available as general concepts in the merging packages too.

88

10.6 ISO 24744

ISO standard 24744 Software Engineering – Metamodel for Development
Methodologies [ISO07] introduces the Software Engineering Metamodel for
Development Methodologies (SEMDM), a comprehensive meta-model that defines
software engineering methods (called methodologies in the standard; but methodology
is declared to be synonymous with method) based on the concept of powertype.
SEMDM is targeted towards the definition of methods in so-called information-based
domains, i.e. “areas characterized by their intensive reliance on information
management and processing, such as software, business or systems engineering”. It
considers the integration of the aspects process, modeling and people.

ISO 24744 distinguishes three domains: the meta-model domain, the method domain,
and the endeavor domain. Software developers work in the endeavor domain, method
engineers in the method domain. The three domains constitute three different areas of
expertise that correspond to three different levels of abstraction.

In contrast to the conventional approach of meta-modeling for method engineering,
where the meta-model is defined as a model of a modeling language, process or
methodology that developers may employ and instantiate to design a method, SEMDM
supports a dual-layer modeling approach. Driven by the observation that objects in the
method domain are often used as classes by developers to create elements in the
endeavor domain during method enactment, the meta-model is constructed as a model
of both the method and the endeavor domains. Modeling the method and endeavor
domains at the same time leads to pairs of classes in the meta-model that represent the
same concept at different levels of classification.

The central infrastructural concept for the definition of ISO 24744 is the powertype. A
powertype of another type, called the partitioned type, is a type whose instances are
subtypes of the partitioned type. Along with the powertype comes the concept of
clabject: a dual entity that is a class and an object at the same time. With these two
infrastructural concepts it is possible to define concepts that belong to the method
domain and concepts that belong to the endeavor domain in a common meta-model.

More precisely, the powertype concept is used to form a pattern of two classes in which
one of them represents “kinds of” the other. This pattern is called a powertype pattern,
since the “kind” class is a powertype of the other class, called the partitioned type.

In accordance with the meta-modeling concept, method-level elements must be
instances of meta-model-level elements, and elements at the endeavor level must be
instances of some element at the method level. This means that elements in the method
domain act at the same time as objects (since they are instances of meta-model classes)
and classes (since endeavor-level elements are instances of them). This class/object
duality is named clabject. Clabjects have a class facet and an object facet. Within
SEMDM, clabjects are used to construct a method from the powertype patterns in the
meta-model. A powertype pattern is instantiated into a clabject by making the object
facet of the clabject an instance of the powertype class in the powertype pattern, and the
class facet of the clabject a subclass of the partitioned type in the powertype pattern.

89

As stated in Section 10.1, ISO 24744 includes ten key concepts. Five of them are
assigned to the method domain: language, notation, constraint, guideline, and outcome.
The other five are assigned to the endeavor domain: stage, work unit, work product,
model unit, and producer. Action is used to relate tasks to work products.

After having presented the foundations from meta-modeling, method engineering and
the use of meta-modeling in method engineering – using SPEM and ISO 24744 as an
example – we will now present our meta-method for the definition of software
engineering methods in the next section.

90

11 A Meta-Method for Method Engineering of Software
Engineering Methods

Based on the foundations of method engineering and meta-modeling, I have developed
MetaME, a meta-method for the engineering of software engineering methods. I deploy
a four-layer meta-model architecture in order to define the meta-method. The meta-
method covers the product of the method engineering process, i.e., the method
description, and the process that is used to build a software engineering method. We
first look at the meta-model architecture that we use for integrating the product models
and the process models across the different meta-modeling layers in Section 11.1. We
then describe the respective meta-models on the meta-modeling layer M2 and their
integration (Sections 11.2 to 11.4). Sections 11.5 and 11.6 exemplify the artifact model
and the process model on the method level M1 that instantiate the meta-model from M2.
Finally, the use of transformation rules in the process model is shown in Section 11.7.

11.1 Meta-Model Architecture of the Meta-Method

We build on meta-modeling in the definition of our meta-method for method
engineering. However, we have discovered that simply employing object-oriented meta-
modeling in the sense of the Meta Object Facility has some shortcomings (see also
Section 9). MOF is restricted to defining the structure (abstract syntax) of a modeling
language. It does not comprise any means for modeling behavior. Furthermore, it only
allows an object-oriented type-instance relationship between classes and objects of
directly adjacent meta-modeling layers.

Product Model Process Model

M2

M1

M0

Method Engineering
Meta-Method

Software Engineering
Method

Software Engineering
Endeavor

Meta-Method
Product Model

Method
Artifact Model

Method
Work Model

Method
Workflow Model

«instanceOf»

Meta-Method
Work Model

Meta-Method
Workflow Model

«instanceOf»«instanceOf»

Software
Artifacts

«instanceOf»

Figure 35: A method consists of a product model and a process model; this applies to the meta-
method on level M2 as well as to the software engineering methods on level M1

To define a method, we combine the method’s product model (shaded in Figure 35 and
Figure 36) with its process model. The process model is composed of a work model that
defines work elements such as activities and tasks and a workflow model that defines
the temporal ordering of activities. We apply this method pattern on the meta-method
level and the method level as shown in Figure 35.

91

However, while the meta-method process model (M2) must be an instance of a process
meta-model (M3) to have execution semantics (see Figure 36), all parts of the method
(M1) are defined as instances of the meta-method product model (M2), since the
complete method is the product of the method engineering process. Yet, the method
process model (M1) must also be an instance of the process meta-model (M3), since it
is a process model itself. Yet, this instantiation relationship skips the M2 level and thus
is not compliant with strict meta-modeling as described in [AK01].

We solve this problem by bootstrapping the process meta-model into the meta-method
product model with a «merge» relationship (see [OMG06]), like this was done for MOF
and UML too. Thereby, we also convert between ontological and linguistic meta-
modeling, since the meta-method product model on M2 as well defines the method
modeling language. The method is engineered and modeled by instantiating the meta-
method product model (M2) and enacting the meta-method’s process model. This
relation is represented by the dependency of type «producedBy» between the method
and the instance of the meta-method process model (in level M1). The same pattern
applies in the M0 level for the production of the development project’s software
artifacts.

M3

M2

M1

M0

Method Engineering
Meta-Method

Foundation:
Meta-Meta Method

Software Engineering
Method

Software Engineering
Endeavor

Meta-Method
Product Model
Meta-Method
Product Model

Meta-Method
Process Model
Meta-Method
Process Model

MOFMOF Process
Meta-Model

Process
Meta-Model

MethodMethod
«instanceOf» «producedBy»

Method
Artifact Model

Method
Artifact Model

Method
Process Model

Method
Process Model

+

Software
Artifacts

Software
Artifacts

«instanceOf»

«producedBy»

«typedOver»

«typedOver»

«typedOver»

+

Meta-Method
Work Model

Meta-Method
Work Model

Meta-Method
Workflow Model
Meta-Method

Workflow Model

+

Method
Work Model

Method
Work Model

Method
Workflow Model

Method
Workflow Model

«typedOver»

«typedOver»

Method Process
Enactment

Method Process
Enactment

«instanceOf» «instanceOf»

«instanceOf» Meta-Method
Process Enactment

Meta-Method
Process Enactment

«merge»

Figure 36: Applying the meta-modeling approach for the engineering of methods

Figure 37 shows a focused view of the product model dimension across the layered
architecture. It can be seen, that we distinguish between the method engineering domain
(left-hand side) and the software engineering domain (right-hand side). The former is
concerned with the engineering of software engineering methods (and software
engineering endeavors that are executed according to the software engineering

92

methods), the latter with the engineering of software systems. Nevertheless, these two
hierarchies are interrelated. First, both hierarchies are founded in the Meta Object
Facility in their respective M3 layers. Secondly, the software engineering methods that
are developed in the method engineering domain are applied in the software engineering
domain. For example, the product model of the software engineering method (M1 of
method engineering domain) contains an artifact model in which the artifact types of the
method such as Task and Class are defined. Instances of these artifact types are
created as the concrete objects in a software development project (i.e., software
engineering endeavor). Additionally, these artifact types are transferred to the software
engineering domain where they are deployed in the software system meta-model (M2 of
software engineering domain) as the elements of a modeling language for the software
system model (M1 of software engineering domain). Figure 37 shows an example. Such
a software system model is produced in a concrete software engineering endeavor (M0
of method engineering domain) which in turn instantiates the software engineering
method. As a consequence, the two domains coincide (with a switch of layers) and must
be either integrated or coupled.

Method Engineering
Method Product Model Softw

M3

M2

M1

M0

Software Engineering
are Product Model

M2

M1

M0

Method Engineering
Product Meta-Model

MOF

SE Method
Artifact Model

Software System
Modeling Language

Meta Model

Software System Model
Model

Class

Model Element

«instanceOf»

Task Class

«instanceOf» «instanceOf»

Video

Task Class

«instanceOf»
«instanceOf»

Video

«instanceOf» «instanceOf»

«instanceOf» «instanceOf»

Software Engineering Endeavor
Artifacts

myVideo

«instanceOf»

Software System
System (Objects)

«task»
Edit Video

«task»
Edit Video

Figure 37: Example for the relationship between the artifact model of a software engineering
method (M1, left) and the meta-model of a modeling language (e.g. UML) used in software
development (M2, right)

Based on this integrated meta-modeling architecture of product and process models, we
describe in the following which constituents make up the meta-method in the different
parts of the meta-model hierarchy. We start on the meta-method level M2 (Sects. 11.2
to 11.4) and will then exemplify its instantiation on the method level M1 in the
remaining sub-sections of Section 11.

11.2 Method Engineering Meta-Method: Product Model

The meta-method for method-engineering on layer M2 of the method engineering
domain is a method itself. Therefore, all relevant aspects for defining a method need to
be defined for the meta-method as well: product model and process model. The product
model (see Figure 38) of the meta-method defines the fundamental types of elements
within software engineering methods. They can basically be boot-strapped to the

93

method engineering meta-method as well. In addition, I will briefly explain the process
of how to develop a software engineering method according to the product model in the
next section.

Domain

DisciplineActiv ity

Notation

Concept

Artifact

Role

OrganizationProcess

Technique

Tool Guidance Utility

Task

Aspect View Domain Model

Transformation

Work

Method

Model

Model ElementModel
Transformation

Constraint

Action Step

Phase Milestone

Practice

Artifact Lifecycle
Model

1..*1..*

*

*

+super 0..1

+sub *

1..*

1

+subdomain *

0..1

1..*

1

*

1..*

1..*

1

1..*

1

11..*
+super
0..1

+sub
0..*

1..*

1..*

* 1..*

1..*

1

1..*

+performer 1

1..*

+technique use
1

1..*

1

1..*
+output

1..*

1..* +input *

*

+target
1..*

*

+source
1..*

*

*

1..*

1

*

*

0..1

+task use 1..*

*

+target
1..*

*

+source
1..*

1..*
1

*

+participant*

0..*
1..*

*

1

*

1

*
1

*

1

*

+deliverable

1..*

*

*

0..1*

+sub * +super 0..1

* +input operand 1..*

*

+output operand

1..*

Figure 38: Core domain concepts of software engineering methods defined in the meta-model
of our meta-method

Figure 38 depicts the core concepts that are required for describing a software
engineering method. We have graphically structured the meta-class diagram according
to the main aspects that have to be covered (see Section 10.1). In the upper right, one
can find the method content defining the structure of the method (domain, discipline,
artifact, concept (semantics), notation (syntax)), and the general concept of constraint.
On the left-hand side, the process dimension is covered by the concepts process,
activity, task, action step, role, transformation, phase, milestone). At the bottom end,
techniques, tools, and practices of the methods that provide guidance on how to

94

accomplish the tasks and produce the work products are depicted (technique, tool,
utility, guidance, practice).

Domain captures the engineering or application domain for which a method is to be
specified. Domains can be further decomposed into a set of disciplines. Artifact types
are assigned to disciplines in which they are created or used. Each artifact type
combines a concept and a set of notation elements. The lifecycle of an artifact can be
modeled with an artifact lifecycle model, e.g. a state model. Techniques are associated
with methods to which they belong and/or to activities and tasks in which they are used.
Tools, utilities, guidance and practices are assigned to techniques.

Models are an important concept in model-based and model-driven development
paradigms. To account for that, we introduced the class Model as a specialization of the
class Artifact in our meta-method’s artifact model. As a sub-class of Artifact, it
refers to a model including its syntactic representation in a modeling language. From
the perspectives of semantic formalization and semantic model transformations, we
could as well sub-type the class Concept; but to also account for the notational
properties of models and, furthermore, syntactic model transformations, we choose to
use the shown inheritance relationship. Models contain model elements, as indicated by
the composition relationship between the classes Model and Model Element. This
allows method engineers to define model types and their element types directly as they
commonly define artifact types in their methods.

In the model-driven development paradigm, model transformations play a prominent
role. They should therefore be considered as first-class citizens of any model-driven
development method. We account for this by specializing the class Transformation
in the meta-model into the class Model Transformation for model-driven
development methods. Model Transformation has source and target relations to
class Model. A transformation rule then operates on the model elements of the related
models. The classes Model, Model Element and Model Transformation have
been added specifically for the model-based development paradigm and thus extend the
meta-class model of [ES10].

Work elements are specialized into tasks and activities. They can be further
decomposed into atomic action steps. Work is also related with role to indicate its
responsible performer as well as participants. Roles can be part of organizations.
Transformations are associated with work elements as well, but also relate to the
artifacts they use (source) or produce (target).

Processes are hierarchically composed from activities, can be organized in phases for
capturing the temporal domain, and can also include milestones. Each milestone is
related to the corresponding artifacts that need to be finished or be available in a
specified status to reach the milestone).

11.3 Method Engineering Meta-Method: Process Model

In Figure 39, the fundamental workflow of the meta-method for developing software
engineering methods is defined. This workflow model belongs to the meta-method
process model (M2) in Figure 36. It refines the composite activity “Develop Method” in
the method lifecycle process depicted in Figure 31. The numbers in Figure 39

95

corresponds to the phases of the meta-method process in order to produce a software
engineering method by instantiating the meta-method’s product model. The process
model is thus typed over the product model. Steps 1 to 5 correspond to the steps that we
have described in [ESS08]. The first step is of foundational character:

0. Define domain and disciplines: The domain is software engineering methods in our
case, and disciplines are used to further structure the software engineering method
into areas of concern, such as the disciplines of the Unified Software Development
Process [JBR99] (compare Figure 39).

In [ESS08] we have proposed a meta-method for defining software development
methods based on domain models of software engineering concepts and artifact types.
While the development of the domain models (steps 1 to 3, see [ESS08] for details) is
the focus of that article, the definition of the process and the assignment of tools on top
of these models are only sketched. The meta-method in [ESS08] has been applied,
analyzed and extended in [Sta09]. I have revised those five development steps in the
course of defining the meta-method MetaME.

Develop method

1 Produce domain model of
software engineering concepts

0 Define domain and disciplines

2 Select notations

3 Define artifact types

5 Select tools, techniques and
utilities

4 Define the software engineering
process models

Figure 39: The fundamental workflow of the meta-method

1. Produce domain model of software engineering concepts: In the sense of a product
model, the domain model of software engineering (SE) concepts is set up and
organized according to the identified disciplines (in the form of packages that may be
hierarchically nested). Such disciplines may as well correspond to levels of
abstraction (requirements, analysis, design, etc.) or views (partial models) of the
system (requirements model, analysis model, design model, etc.) Core activities are
the definition of SE concepts and assigning them to disciplines.
The concepts can be further classified according to the aspect they model, for

96

example, structure, behavior, or context. Concepts can be engineering or management
related.
Relationships between concepts are added such as composition and aggregation
relationships, dependencies, and associations. Refinement is an important type of
relationship for describing forward engineering methods: a set of concept instances
on a lower level of abstraction (partially) refines a set of concept instances on a
higher level of abstraction. For example, a business use case can be refined by a
system use case, and the system use case can be refined by a set of activities. Another
example is a conceptual component in a system specification that is refined into a set
of logical components within a software design. The class-model representation of
the meta-model is accompanied by a glossary that contains an entry for each meta-
model class. Each entry holds a description of the semantics, purpose and properties
of the concept and relationships to other concepts.

2. Select notations: In order to represent the software engineering concepts

appropriately, notations for their representation are required. Languages, together
with possible sub-languages (e.g., UML diagram types) and language elements must
be identified (either by newly defining them or by reusing existing notations) and
enumerated as candidates. Among them are typically languages for modeling,
documentation and implementation of software engineering concepts.

3. Define artifact types: Candidate notations, i.e., languages and language elements
that have been identified in step 2 are assigned to SE concepts from step 1 according
to the properties of the software engineering concepts that need to be expressed.
While the domain model of software engineering concepts can be interpreted as the
semantic domain of the software engineering method, languages define the syntax for
denoting them (notation particularly refers to the concrete syntax). The domain model
of software engineering artifacts then defines the semantics of the languages by
linking language elements (and particularly their syntactic representation) with SE
concepts. Consequently, the given semantics of the proposed candidate notations
must be conformant with the semantics imposed by the composition of step 3, and the
semantics of each language element shall still be unambiguous. Composition
hierarchies in the domain models of SE concepts and artifacts must be compatible.

4. Define the software engineering process models: The definition of the software
engineering process reifies the definition of a roadmap through the network of
development artifacts. Tasks and activities are defined and ordered into workflows
that produce the required artifacts in the specified order. Sequential, parallel, iterative,
incremental, evolutionary and agile development processes shall be supported. The
process model is composed from work models and workflow models.
We need to define activities for accomplishing tasks of software engineering in a
software development project and the process structure, comparable to the work
breakdown structure in [OMG08]. The process structure contains activities,
milestones and control-flow elements. The definition of tasks and activities can be
extended by object flows of used and produced work items (of the given artifact
types) and roles that are responsible for executing activities or participate in the
activities’ execution (the responsibility for an artifact is a structural issue, that is
modeled separately; a role model is also provided separately). For defining the
process, the following sub-activities need to be performed, which will be explained in
more detail with the M1-level examples in Section 11.6 and Section 11.7:

97

(a) identify tasks and activities,
(b) define the process structure (workflow) including processes, activities, and

milestones,
(c) specify work element structures for tasks, activities and possibly workflow

patterns including roles and work products,
(d) define the temporal course using phases and possibly other kinds of time period

concepts such as iterations, releases, builds,
(e) describe transformations and constraints.

5. Select tools, techniques and utilities: The selection of tools, techniques, and utilities

as well as the provision of concepts of use for these tools are required for guiding and
simplifying the software engineering work and producing the required software
artifacts. Tools, utilities, and guidance are assigned to techniques. Techniques are in
turn related with methods to which they belong and/or to activities and tasks in which
they are used. Guidance on how to proceed in an activity or task to produce the
artifacts of a particular type shall be explicitly provided, e.g. in the form of
guidelines, good and best practices, whitepapers, checklists, templates, examples, or
roadmaps. However, even the assignment of languages to software engineering
concepts in step 3 can be interpreted as partly associating a technique for the
development artifact. Both languages and tools typically have implications on how to
produce an artifact. Eventually, tools and utilities are thus related to the activities of
the software engineering process model as well. By this, it is shown which activities
are supported by tools and utilities and, in turn, which of them are to be used when
accomplishing the task of the activity.

Enacting this process in the M1 level of the method engineering domain, we
systematically create a software engineering method as an instance of the meta-methods
M2 product meta-model.

11.4 Integrating the Views of the Meta-Method

As can be seen from the description of the product and process models of the meta-
method in the last two sections, a number of consistency issues arise from the different
views on the software engineering method’s elements:

• consistency of artifacts as defined in the artifact model and their use as work
products in the process,

• conformance of hierarchical composition structures of the domain model of
software engineering concepts and the artifact model,

• consistent composition of process structures from activities, obeying all given
constraints such as the hierarchical composition of activities and flow
relationships (predecessor) between activities, or the linking of roles and work
products,

• consistency between work product use in activities and processes and the artifact
lifecycle model.

Such issues need to be resolved in the method engineering domain when a software
engineering method is defined. In addition to the method’s conformance with the meta-

98

methods product meta-model, it is also possible to define additional constraints for
software engineering methods as instances of the Constraint meta-model class.

Yet, a common meta-model for software engineering methods does not only provide a
common language for describing software engineering methods; it can also be used as a
standardized and unified reference model for software engineering methods. Different
methods can be analyzed, compared and exchanged on this basis.

In addition to the definition of activities and process structures (e.g. depicted as UML
activity diagrams holding the different process elements and specifying the workflow of
activities), we deploy collaborations in the work model defining the effect of work
elements, i.e., tasks and activities, on the artifact structure (which can be interpreted as
graph transformation rules that are typed over the artifact model). Such models of the
dynamics of a method can for instance be used for reasoning or analyzing certain
properties of a process. These transformation rules are explained in more detail in
Section 11.7.

Following this general discussion of the meta-method level, we will present the artifact
model (result of step 3) and the software process model (step 4) in more detail in the
following two sections. They represent instances of the meta-method product model
(M2) on the method level (M1).

11.5 Defining the Artifact Model of the Software Engineering
Method

The result of step 3 of our meta-method is a domain model of software engineering
artifacts. The objective of this model is to establish a common understanding of the
software artifacts that are to be produced in a software development project. This
comprises the purpose and meaning of each artifact type and its relevant properties as
well as the relationships, associations, dependencies, and generalizations between
artifact types. The artifact model is a type model that is used in the role of a meta-model
in the software engineering domain and thus instantiated for describing a software
system in a software development project (compare Figure 37). It defines the set of
software engineering artifacts that are produced, edited, and used throughout a software
development project as part of the software engineering method. It thus constitutes the
product model of the software engineering method (M1 in the method engineering
domain) and acts as the backbone of a family of methods where it can be combined with
dedicated process models, languages and tools.

Figure 40 shows as an example an excerpt from the artifact model for system
specifications in the disciplines business modeling and analysis that has been developed
together with an industrial partner.

For each artifact type, we can specify an artifact lifecycle model (state model, see
Figure 38) which defines the lifecycle of artifacts that are instances of this artifact type.

99

Information System

Conceptual Component

System Use Case

Action

Application Function

Dialogue

Dialogue Element

External InterfaceEntity Type Batch

BusinessModeling::
Business Process

BusinessModeling::
Action Step

Actor ActionSystem Action

Print Output

Attribute

Logical Data Type

BusinessModeling::
Ev ent

Actor

BusinessModeling::
Domain

*

uses*

+super 0..1

contains

+sub *

references

*

substantiates 1..*

+c
al

le
r *

calls

+c
al

le
e

*

*

1

*

initiates

0..1

1..*

1

*

pa
rti

ci
pa

te
s

*

*

1

references

*

realizes

*

1

+c
al

le
r *

calls +c
al

le
e

*

1

generates

*

+super 0..1

contains

+sub 0..*

1owns

*

1

requires *

1

offers *

+sub *

+super
0..1

+primary
actor

*

triggers

*

1

triggers

1..*

1

has

*

*

1

*

supports*

*

owns

1

*

1

*

calls
*

references

* *
uses

*

*
uses

*

1..*1

*

calls

0..1

*

participates
*

*

participates in

*

*
belongs to

*

Figure 40: Excerpt from the artifact model for system specification in the discipline analysis
with reference to elements from the discipline business modeling

11.6 Software Process Modeling in the Software Engineering
Method

The workflow structure of the process defines an ordered and hierarchically nested
structure of activities and milestones. Ordering relations, i.e., direct predecessor
dependencies between elements, are explicitly specified. They may be marked e.g. as
dependencies of the appropriate temporal relationship kind (such as typical interval
relations startToStart, startToFinish, finishToStart, finishToFinish, compare [OMG08]).

100

Transitive dependencies need to be computed for scheduling the activities. Other
properties of the work elements that are relevant for the ordering and execution may be
indicated by meta-attributes, such as “hasMultipleOccurences“, „isOptional“,
„isRepeatable“, „isOngoing“ and „isEventDriven“ (compare [OMG08]).

The flow of activities can also be represented in UML activity diagrams or other process
languages such as BPMN, Petri Nets, etc. The flow diagrams can contain activity
elements (as actions) as well as control flow patterns and nodes such as sequential,
alternative and parallel execution, conditional flows and iteration. Thus it is possible to
specify different kinds of software engineering processes.

Figure 41 shows an example of an activity diagram depicting the flow of high-level
activities according to the disciplines of the Unified Software Development Process
[JBR99]. In each iteration of the process, the engineering activities on the left-hand side
are executed sequentially. The three activities corresponding to the supporting
disciplines on the right-hand side run across the whole development lifecycle.

Requirements

Business Modeling

Analysis & Design

Implementation

Test

Deployment

Configuration & Change MgmtProject Management Environment

[final iteration]

Figure 41: Flow of high-level activities for the Unified Software Development Process

Constraints may be defined that restrict the possible flow of activity. For example, we
can use temporal expressions to define that each activity for specifying a use case must
eventually be followed by an activity specifying a test case. This may also be depicted
graphically, e.g. by the notation used in Figure 42.

Roles and work products (artifacts) shall be related to activities and milestones.
Therefore, they are to be included in the work model. (Within this task, one may finally
select from alternative artifact types, by defining the references to the artifact types of
the information model.) For activities, we can indicate whether work products are used

101

as parameters of kind „input/output/inoutput“. For milestones, we can indicate which
work products are required results that have to be completed for achieving that
milestone (responsibility assignment). For all elements that reference roles and work
products, it may be specified whether they are mandatory or optional by a meta-attribute
„isOptional“.

«activity»
Specify System

Use Case

«activity»
Specify

Test Case

Figure 42: Process constraint depicting that each activity for specifying a use case must
eventually be followed by an activity specifying a test case

Activity diagrams with object flows can be used to depict the input and output work
items of each activity. The use of work products can be represented as object flows
according to their parameter kind: in, out, inout. One can use ObjectNodes, Pins
ActivityParameterNodes of UML activity diagrams for this purpose. Roles can be
integrated by the use of ActivityPartitions (aka. “swimlanes”) for assigning activity
elements to the corresponding roles, representing the relationship between activity and
the role being used. Figure 41 shows an example how the activity pattern for structuring
the use case-model according to the Unified Software Development Process [JBR99]
can be represented. This diagram shows the activity together with the related role and
work products as well as the deployment of the tool Enterprise Architect according to
step 5 of the meta-method.

Use-Case
Model

[structured]

Structure the
use-case model

System analyst

Use-Case
Model

[outlined]

Use Case
[described]

Supplementary
Requirements

Glossary

«tool»
Enterprise
Architect

Figure 43: Activity pattern for the activity “Structure the use-case model” adapted from
[JBR99]

Consequently, the following relationships are represented in such a model:

• a role is responsible for performing an activity,
• a work product is used or produced by an activity as input, output or input-

output parameter,
• a tool shall be employed for accomplishing the activity,

102

• if a relationship of type performs exists between an activity and a role use and a
parameter relationship of kind out or in-out exists between the same activity and
a work product use, then there also exists a relationship of type responsible
(responsibility assignment) between the work product use and the role use.

11.7 Defining Work of Software Engineering Methods as
Transformations

As can be seen from Figure 43, the representation of the effects of work elements on the
artifact model can only be expressed in a limited way by using activity diagrams or
composite structures. Even if object flows are represented, they can only make reference
to the state of individual objects (such as the states “outlined” and “structured” for the
use-case model and the state “described” for use case in Figure 43). We therefore
include transformations that are depicted as UML collaborations (i.e., the structural part
of UML 2 interaction diagrams) that are interpreted as graph transformation rules on the
type graph of the artifact model (as introduced in [HS01]).

Figure 44 gives an example of such a transformation rule. It states for the activity
“Identify system use cases” that for each occurrence of the pattern on the left-hand side
in an instance of the artifact model, the structure on the right-hand side must be
produced by the activity. In particular it states that if a business process has an action
step that shall be supported by the software system being modeled (property “isManual”
= false), then a system use case needs to be included in the system model that realizes
this action step and whose primary actor is the same actor who is responsible for
executing the action step of the business process. The rule can be interpreted as a visual
contract [LSE05] stating pre- and post-conditions of the activity.

:Business Process

:Action Step

isManual = false

:Actor

participates in

:Business Process

:Action Step

isManual = false

:Actor

participates in

:System Use Case

status = identified

participates in

«transformation» Identify system use case

Figure 44: Transformation rule for activity “Identify system use case”

With this example of a transformation rule that specifies the effect of a work element in
a method we conclude our tour of how to develop software engineering methods with
MetaME. So far we have focused on how to create new software engineering methods,

103

but we can distinguish between initial development of a software development and its
modification. Modification can have different causes such as the need to evolve, tailor,
specialize or extend the software engineering method. We will exemplify tailoring
scenarios in the next section.

104

12 Tailoring and Reuse of Software Engineering
Methodology

Software engineering methods evolve over time due to changing requirements, new
achievements in software engineering – such as new process models and development
practices – and experience from software engineering projects. However, each software
development project is individual too, at least to some notable degree. This results in at
least slightly different requirements for every software development project. Thus,
software engineering methods must be tailorable. Such tailoring is a possibility to
implement situational method engineering (see Section 9). It happens on the M1 level of
our meta-modeling hierarchy. Changes to the meta-method on the M2 are also possible,
but they should only appear in a controlled evolution process within the meta-method
engineering domain, and are not part of the method engineering domain.

Tailoring can thus be applied to different levels of our approach according to the
tailoring scenarios that are required in an organization. We will give examples for the
tailoring of methods on the method (M1) and the meta-method (M2) level.

12.1 Tailoring the Software Engineering Method

Changes on the M1 level, where the software engineering method is located, can be
manifold and will occur rather often. For example, if a project is of limited size and
budget, it may not be appropriate to execute all activities in full and to produce all the
work products that are defined in the general method. If a method engineer (or a project
leader who is responsible for the tailoring of the software engineering method) wants to
change the artifact types, their properties or relationships, she has to adapt the software
engineering artifacts model. The consequences of such modifications on the network of
artifact types can be directly observed from the artifacts model. For example, if a project
decides to specify the software system without use cases and to use a combination of
business processes, business rules, dialogue specifications and application functions
instead, this will have an impact on numerous artifact types that are typically related to
use cases.

Changes to the artifacts model will typically also affect the defined activities in the
process dimension, since tasks and activities use artifacts from the artifacts model as
their input and output objects. If use cases are no longer produced, the work elements
producing use cases are no longer required. Work elements that typically depend on the
provision of use cases as input need to be altered for using the other supplied artifacts
that are available as work products. Maybe even the flow of activity must be altered due
to changes in the parameter object types. For example, if dialogue specifications are to
be used in an activity instead of use cases, but dialogues were only specified later in the
process so far, the activity of specifying dialogues will have to be moved upfront before
the dependent activity.

A number of other changes to the software engineering method are also quite common:

• changes of techniques how to produce a work product,
• change of notations for representing the content of artifacts,

105

• changes of tools, e.g. due to the wish of a customer, to enable tool chaining with
another tool, or to interoperate with development partners using a common tool
basis,

• addition of roles and responsibilities, and many more.

The advantage of the formal meta-model based approach of method engineering that we
have presented in this work is that its parts and their relationships within and among
each other are precisely and explicitly modeled. Thus tailoring can as well be executed
and described in a systematic way.

12.2 Tailoring the Meta-Method

The method engineering meta-method on level M2 has been designed to be flexible
enough to support a wide range of software engineering methods. However, if the need
occurs to define an at least partly new type of development method, or to add concepts
that have so far not been recognized, it may be necessary to start the tailoring process on
the meta-method level already and not just to alter the software engineering method on
the M1 level. This will be the case if elements are needed in the software engineering
method that cannot be built by instantiating the meta-classes of the method-engineering
meta-method.

For example, let us assume that the current meta-method only includes the concepts of
developers as roles that are responsible for certain work products and participate in the
execution of activities, possibly representing tasks. From an engineering perspective
this may be sufficient. If the software engineering method shall now be extended to
include a staffing perspective of project management, however, such a restriction may
no longer be acceptable. Especially in distributed offshore development it may be
necessary to make assumptions about the skills of the prospective developers on a
project team (who may not be known in advance), to specify the required skills, and
eventually to match the required and provided skills to actually form the development
team. This makes sense for estimating the effort and costs for accomplishing a certain
development task or for controlling the expected and achieved quality of the produced
artifacts. In this case, the product model of the meta-method for method engineering
needs to be extended by a class Person with a property for skills. The existing class
Role also needs to be extended by a property for skills. Such fundamental changes need
to be grounded on the M2 level and can then be applied on the M1 level by instantiating
the modified elements.

106

13 Conclusion

In this part of the thesis, I have presented MetaME, a meta-method for method
engineering of software engineering methods. It builds on a four layer meta-model
hierarchy which combines the two domains method engineering and software
engineering. We have described a meta-model as a general product model of method
engineering as well as a process model for developing software engineering methods.
The process consists of 5+1 steps. Together they cover the product and the process
dimension of the meta-method. The most important steps of that process are Steps 3 and
4. They are concerned with defining an artifact model and software process modeling,
respectively. In the process model, we also introduce the concept of specifying software
engineering tasks as transformation rules that are typed over the artifact model, thus
integrating the two dimensions. The issue of tailoring in our meta-method for the
engineering of software engineering methods is discussed in the final section.

Although method engineering of software engineering methods is not a new domain,
there is still work to be done. The integration of the different aspects and views of such
a method is not yet complete. Especially the use of constraints and patterns in a meta-
model-based approach still needs to be better understood. Furthermore, we have made a
first step towards the integration of structural and behavioral meta-modeling of software
engineering methods. This integration needs to be continued and evaluated. The
integrated meta-modeling architecture underlying the method engineering and software
engineering domains appears to be a qualified basis for this.

107

References
[AK01] Atkinson, C; Kühne, T.: Processes and products in a multi-level metamodeling

architecture. International Journal of Software Engineering and Knowledge
Engineering (IJSEKE) 11(6):761–783, 2001.

[Bal98] Balzert, H.: Lehrbuch der Software-Technik: Software-Management, Software-
Qualitätssicherung, Unternehmensmodellierung, Spektrum Akademischer Verlag,
Heidelberg Berlin 1998.

[BG08] Bollain, M.; Garbajosa, J.: A metamodel for defining development
methodologies, In: Filipe, J. et al. (eds): ICSOFT/ENASE 2007, CCIS 22, pp.
414−425. Springer, Berlin Heidelberg 2008.

[BKPJ07] Becker, J.; Knackstedt, R.; Pfeiffer, D.; Janiesch, C.: Configurative method
engineering - on the applicability of reference modeling mechanisms in method
engineering. In Proc. Americas Conference on Information Systems (AMCIS
2007), paper 56, 2007. http://aisel.aisnet.org/amcis2007/56

[Bri96] Brinkkemper, S.: Method engineering: engineering of information systems
development methods and tools. Information and Software Technology 38(4):
275–280, 1996.

[ESS08] Engels, G.; Sauer, S.; Soltenborn, C.: Unternehmensweit verstehen –
unternehmensweit entwickeln: Von der Modellierungssprache zur
Softwareentwicklungsmethode. Informatik-Spektrum 31(5):451–459, Themenheft
Modellierung. Springer, Berlin Heidelberg 2008.

[GH08] Gonzalez-Perez, C.; Henderson-Sellers, B.: Metamodelling for Software
Engineering, Wiley & Sons, 2008.

[GMH05] Gonzalez-Perez, C.; McBride, T.; Henderson-Sellers, B.: A metamodel for
assessable software development methodologies. Software Quality Journal
13:195–214.

[Gut94] Gutzwiller, T. A.: Das CC RIM-Referenzmodell für den Entwurf von
betrieblichen, transaktionsorientierten Informationssystemen, Physica-Verlag,
Heidelberg 1994.

[Hey95] Heym, W.: Prozeß- und Methoden-Management für Informationssysteme:
Überblick und Referenzmodell, Springer, Berlin Heidelberg 1995.

[HG05] Henderson-Sellers, B.; Gonzalez-Perez, C.: A comparison of four process
metamodels and the creation of a new generic standard. Information and Software
Technology 47:49–65, 2005.

[HR10] Henderson-Sellers, B., Ralyté, J.: Situational method engineering: state-of-the-art
review. Journal of Universal Computer Science 16(3):424–478.

[HS01] Heckel, R.; Sauer, S.: Strengthening UML collaboration diagrams by state
transformations. In Proc. Fundamental Approaches to Software Engineering, 4th
International Conference, FASE 2001, pp. 109–123. Springer, Berlin Heidelberg
2001.

108

[IBM07] IBM Corporation: Rational Unified Process. Version 7.0.1, 2007.

[IEEE90] IEEE: Standard Glossary of Software Engineering Terminology, IEEE Standard
610.12, The Institute of Electrical and Electronics Engineers, New York, NY
1990.

[ISO07] ISO: ISO/IEC 24774:2007 Software engineering – metamodel for development
methodologies, International Organization for Standardization, Geneva 2007.

[JBR99] Jacobson, I.; Booch, G.; Rumbaugh, J.: The Unified Software Development
Process: The complete guide to the Unified Process from the original designers,
Addison Wesley, 1999.

[JJM09] Jeusfeld, A., Jarke, M., Mylopoulos, J. (eds): Metamodeling for method
engineering, MIT Press, Cambridge, MA 2009.

[LSE05] Lohmann, M.; Sauer, S.; Engels, G.: Executable visual contracts. In Proc. 2005
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC ’05), pp. 63–70. IEEE Computer Society, 2005.

 [NFK94] Nuseibeh, B.;, Finkelstein, A.; Kramer, J.: Method engineering for multi-
perspective software development. Information and Software Technology
38:267–274, 1994.

[OMG06] Object Management Group: Meta Object Facility (MOF) Core Specification,
Version 2.0, 2006. http://www.omg.org/spec/MOF/2.0/PDF/

[OMG08] Object Management Group: Software & Systems Process Engineering Meta-
Model Specification, Version 2.0, 2008. http://www.omg.org/specs/

[OMG09a] Object Management Group: OMG Unified Modeling Language (OMG UML),
Infrastructure, V2.2, 2009. http://www.omg.org/uml/

[OMG09b] Object Management Group: OMG Unified Modeling Language (OMG UML),
Superstructure, V2.2, 2009. http://www.omg.org/uml/

[RBH07] Ralyté, J.; Brinkkemper, S.; Henderson-Sellers, B. (eds.): Situational Method
Engineering: Fundamentals and Experiences. Proc. IFIP WG 8.1 Working
Conference, Springer, Boston 2007.

[Rol09] Rolland, C.: Method engineering: towards methods as services. Software Process:
Improvement and Practice 14:143–164.

[SB02] Schwaber, K.; Beedle, M.: Agile Software Development with Scrum. Prentice
Hall, Upper Saddle River 2002.

[SSEB10] Salger, F.; Sauer, S.; Engels, G.; Baumann, A.: Knowledge transfer in global
software development – leveraging ontologies, tools, and assessments. In Proc.
5th International Conference on Global Software Engineering (ICGSE ’10), pp.
336–341. IEEE Computer Society, 2010.

109

110

[Sta09] Stadtler, D.: Eine generische Methode zur unternehmens- bzw.
projektspezifischen Festlegung von Vorgehensmodellen zur Entwicklung von
Software, Diplomarbeit, Universität Paderborn, Germany, 2009.

[Str98] Strahringer, S.: Ein sprachbasierter Metamodellbegriff und seine
Verallgemeinerung durch das Konzept des Metaisierungsprinzips. In: Pohl, K.;
Schürr, A.; Vossen, G. (eds.): Modellierung ’98. Volume 9 of CEUR Workshop
Proceedings, ISSN 1613-0073, 1998. http://CEUR-WS.org/Vol-9/

[Wie03] Wiegers, K. E.: Software Requirements, Microsoft Press, 2003.

Part III:

Examples of Software Engineering and

Method Engineering Methods

111

112

14 Contributed Works and Publications

In the third part of my thesis, I provide a selection of the most important research
publications that I contributed to the field of software engineering methods and their systematic
development. All but the last (and latest) are examples of (partial) software engineering
methods for different purposes. The last one is concerned with the application of the
contributed method engineering meta-method (see Part II) to the domain of model-
driven development of advanced user interfaces. List entries are ordered according to
topics and indexed with their section numbers. Citation markers correspond to Part I.

15 Gregor Engels, Roland Hücking, Stefan Sauer, Annika Wagner: UML Collaboration
Diagrams and Their Transformation to Java. In R. France, B. Rumpe (eds.): Proc.
UML'99 - The Unified Modeling Language, October 28-30, 1999, Fort Collins,
Colorado, USA, pp. 473–488. LNCS 1723, © Springer-Verlag, Berlin Heidelberg 1999.
[EHSW99a]

16 Reiko Heckel, Stefan Sauer: Strengthening UML Collaboration Diagrams by State
Transformations. In H. Hussmann (ed.): Proc. 4th Intl. Conf. Fundamental Approaches
to Software Engineering (FASE 2001), April 2001, Genova, Italy, pp. 109–123. LNCS
2029, © Springer-Verlag, Berlin Heidelberg 2001. [HS01]

17 Gregor Engels, Jan Hendrik Hausmann, Reiko Heckel, Stefan Sauer: Dynamic Meta
Modeling: A Graphical Approach to the Operational Semantics of Behavioral Diagrams
in UML. In A. Evans, S. Kent, B. Selic (eds.): Proc. UML 2000, October 2-6, 2000,
York, UK, pp. 323–337. LNCS 1939, © Springer-Verlag, Berlin Heidelberg 2000.
[EHHS00]

18 Jan Hendrik Hausmann, Reiko Heckel, Stefan Sauer: Dynamic Meta Modeling With
Time: Specifying the Semantics of Multimedia Sequence Diagrams. Journal of Software
and Systems Modeling (SOSYM) 3(3):181–192, 2004. © Springer-Verlag [HHS04]

19 Gregor Engels, Stefan Sauer: Object-oriented Modeling of Multimedia Applications.
In S.K. Chang (ed.): Handbook of Software Engineering and Knowledge Engineering,
vol. 2, pp. 21–53, © World Scientific, Singapore 2002. [ES02]

20 Stefan Sauer, Gregor Engels: UML-based Behavior Specification of Interactive
Multimedia Applications. In Proc. IEEE Symposia on Human-Centric Computing
Languages and Environments (HCC'01), September 2001, Stresa, Italy, pp. 248–255.
© IEEE, 2001. [SE01]

21 Stefan Sauer, Gregor Engels: Easy Model-Driven Development of Multimedia User
Interfaces with GuiBuilder. In C. Stephanidis (ed.): Proc. 4th Intl. Conf. Universal
Access in Human-Computer Interaction (UAHCI 2007), Part of HCI International 2007,
Beijing, China, July 22-27, 2007, Part II: Universal Access Methods, Techniques and
Tools, pp. 537–546. LNCS 4554, © Springer-Verlag, Berlin Heidelberg 2007. [SE07]

22 Stefan Sauer: Applying Meta-Modeling for the Definition of Model-Driven
Development Methods of Advanced User Interfaces. In: H. Hussmann, G. Meixner, D.
Zuehlke (eds.): Model-driven Development of Advanced User Interfaces, pp. 67–86.
© Springer-Verlag, Berlin Heidelberg 2011. [Sau11]

UML Collaboration Diagrams and Their
Transformation to Java

Gregor Engels1, Roland Hücking2, Stefan Sauer1, and Annika Wagner1

1 University of Paderborn, Dept. of Computer Science
D 33095 Paderborn, Germany

{engels,sauer,awa}@uni-paderborn.de
2 SAP AG, Lo. Dev. PP-PI, Neurottstr. 16

D 69190 Walldorf, Germany
roland.huecking@sap-ag.de

Abstract. UML provides a variety of diagram types for specifying both
the structure and the behavior of a system. During the development
process, models specified by use of these diagram types have to be trans-
formed into corresponding code. In the past, mainly class diagrams and
state diagrams have been considered for an automatic code generation.
In this paper, we focus on collaboration diagrams. As an important pre-
requisite for a consistent transformation into Java code, we first provide
methodical guidelines on how to deploy collaboration diagrams to model
functional behavior. This understanding yields a refined meta model and
forms the base for the definition of a transformation algorithm. The au-
tomatically generated Java code fragments build a substantial part of
the functionality and prevent the loss of important information during
the transition from a model to its implementation.
Keywords: Collaboration diagram, methodical guidelines, code gener-
ation, Java, pattern-based transformation algorithm

1 Introduction

The Unified Modeling Language (UML, [8,9,13]) provides a variety of diagram
types for an integrated specification of both the structure and the behavior of a
system. Collaboration diagrams belong to the behavioral diagrams like sequence
diagrams, statecharts and activity diagrams.

Tools to support the development of software, so-called CASE tools, often
do not only support the analysis and design of systems, but also contain code
generators to automatically create code fragments of the specified system in a
target programming language. Unfortunately, the capabilities of code generators
to transform the design to an implementation are often restricted to produce
class definitions consisting of attributes and operation signatures captured in
class diagrams, but not the methods to implement the procedural flow within
the operations.

Using also behavioral information for code generation prevents the loss of
substantial information during the transition of a model to its implementation.
Existing approaches in this direction transform statecharts into executable code
[5,1,2]. Statecharts are used as object controllers for specifying when an object

113

is willing to accept requests. CASE tools supporting code generation from stat-
echarts are e.g. Statemate [15], Omate [5], and Rhapsody [11].

In contrast, it is our aim to transform the specification of the functional
behavior of objects into code fragments. The functional model can be described
in terms of interactions between objects in an abstract way by UML interaction
diagrams.

The only tool known to us that is capable of generating code from interaction
diagrams is Structure Builder [16]. Sequence diagrams are used there, but code
is not directly generated from them, but from an intermediate representation
called Sequence Methods. Sequence Methods are based on the concept of Inter-
action Graphs [14], resulting from the Demeter project [7], which are directed
labeled trees with nodes representing object variables and edges representing ac-
tions. They basically resemble a representation of additional information that, in
agreement with our approach, needs to be interactively entered by a developer
to extend the interaction modeled in UML diagrams. Such information being
necessary for the generation of working Java code is e.g. how objects can be
accessed, how they are transported between methods, and instantiation of links
etc. These details can not be specified in sequence diagrams, but most of them
are already captured in collaboration diagrams.

Thus, we selected collaboration diagrams from UML interaction diagrams as
the source for the transformation process since, in contrast to sequence diagrams,
they do not only supply the message flow information of an interaction, but also
the underlying structural information building the context of the interaction, i.e.
the links via which messages are sent. Additionally, we stay within the diagram
types of UML whereas Sequence Methods are outside the UML.

Java was selected as the target language because it is a purely object-oriented
programming language of growing importance and it offers concepts for concur-
rent programming to extend the transformation mechanisms to parallel flow of
control.

The paper is organized as follows: In Sect.2, we introduce the main features
of collaboration diagrams and state methodical guidelines for their deployment.
A general overview of the transformation approach for collaboration diagrams
based on the transformation of class diagrams is given in Sect.3. The next section
introduces a refined meta model which forms the basis for a detailed description
of the transformation algorithm for collaboration diagrams in Sect.5. The paper
ends with some concluding remarks and perspectives.

Further details can be found in an extended version of this paper that is
available as a technical report (see [4]).

2 Deploying UML Collaboration Diagrams

In this section, we outline a methodical approach on how to deploy UML col-
laboration diagrams to model functional behavior. This approach is based on
the general UML specification [8,9], but it extends it by additional pragmatic
guidelines and constraints. A systematic usage of this approach will ensure that
collaboration diagrams describing the functionality of methods can automati-
cally be translated into corresponding Java code. In the following, we assume
that the reader is familiar with the standard UML notations (see [8,13]).

114

In general, collaboration diagrams can be used to model system functionality
or more precisely the control flow within a system. This is described by send-
ing messages between instances of classes. Collaboration diagrams are feasible
to model not only the behavioral, but also the structural context of such an
interaction, called a collaboration.

In [8], the following two possibilities, among others, of deploying collaboration
diagrams in the above sense are introduced:

– Method: specify the implementation of an operation as an interaction,
– Use case: describe the functionality of a main operation of a system on an

abstract level.

Both kinds of usage differ not only on their level of abstraction, but also
in their main intention. Whereas use cases are deployed in earlier phases of
modeling, the method-oriented usage is already close to implementation. Use
cases describe scenarios. They are intended to examplify a certain situation,
i.e., very often they describe only one possible control flow path. In contrast,
within a method specification, the general situation with all posssible control
flow paths has to be modeled. As a consequence, collaboration diagrams are
used on the instance level in the first case, describing the interaction of different
objects with each other. In the second case, they are used on the type level
possibly containing iterations or conditional flows [9]. Type level modeling is in
accordance with the specification of methods within classes of object-oriented
programming languages.

With this background, two main steps can be identified within the devel-
opment process producing the systems functionality. The first task is stepping
from different scenarios to the general situation. And the second task is stepping
from a model of the general situation to its implementation. In this paper, we
concentrate on the second task, where one type level model for each method,
i.e., exactly one collaboration diagram per method, serves as the basis for auto-
matic code generation.

The first task of combining different instance level collaboration diagrams
specifying the same operation can not be done automatically in the general
case. Collaborations define views on the classes specified in the class diagram.
Therefore, problems in combining several collaboration diagrams resemble typi-
cal problems of view integration [3]. Input by a developer is necessary to handle
conflicts or to specify details of combination like contextual constraints or con-
ditions. This interactive intervention should receive support by code generation
tools. Situations where an automatic combination is possible are, e.g., mutual
exclusive execution conditions for different occurences of the same operation for
branching as well as iteration.

On the other hand, collaboration diagrams are not able to fully model the
functionality of an operation. One restriction is their inability to model oper-
ations on data types, i.e., primitive base types like Integer, Real or predefined
enumeration types like Boolean, whose values do not posses an identity. Thus,
collaboration diagrams can not serve as a fully-fledged visual programming lan-
guage. Moreover, usually not all aspects of a system are completely modeled.
Exception handling, for example, will usually be separately specified and added

115

later in the implementation. For these reasons, code generation from collabora-
tion diagrams is by their definition restricted to object interactions. Generating
this kind of working code, prevents the loss of information during the step from
modeling to implementation and simplifies the task of transition what states our
objectives.

Before we start explaining our approach in more detail, we introduce a run-
ning example for a system to be modeled. Figure 1 shows the class diagram of
an example application where a Company object is related to zero or more Store,
Order, and Delivery objects. A Store is related to multiple Delivery objects, which
in turn are related to one Customer and one Order. A Customer can place several
instances of Order, and one or none Delivery objects belongs to an Order.

Company

+ void

Order

+ customer getCustomer()

- int pNr
- int amount

processOrder (Order o)

+ int getpNr
+ int getAmount

Store

- int [] products
- int [] amounts

+ void deliver (Delivery d)

Customer

Delivery

+ delivery (Order o, Store s)

1 *

1
*

1
*

1
0..1

*

* 1

1 1

*
delivery

store

Figure 1. Class diagram of a modeling example

A typical scenario within that setting is the situation where a customer orders
a product from the company. On the use case level one would model that scenario
by sending an order from a customer to the company, followed by forwarding
that order from the company to one of its stores, followed by delivering the
ordered products from the store to the customer.

After the step of refining and combining different use cases into a method-
oriented specification one might end up with a collaboration diagram for a
method processOrder as depicted in Fig.2. Here, the company first obtains the
product number pNr and the ordered amount a of that order using defined ac-
cess functions. It then checks all stores to find one that can supply the requested
amount of the demanded product. A delivery is created, and the selected store
is called to send it out. Finally, the delivery is added to a container holding all
deliveries of the company.

We will now introduce methodical guidelines as a foundation of the later
on presented transformation approach. As a consequence of deploying a unique
collaboration diagram for specifying the implementation of one operation, two
basic model entities build the basis for the forthcoming concepts:

– The specified operation is the operation whose implementation is modeled
by the collaboration diagram (processOrder in Fig.2).

116

: Company :Store:Store:Store:Store

:Store

:Order:Delivery

processOrder(o)

o

5: deliver(d) s

3: s := search(pNr, a)

1: pNr := getpNr ()
2: a := getAmount()

4: delivery(o, s)

:Delivery

6: add(d)

d
«local»

«local»

«parameter»

store

delivery

Figure 2. Collaboration diagram for the modeled example

– The target object is that object on which the specified operation is called.
The specified operation belongs to the class of the target object, its signature
must be declared in the operation compartment of the corresponding class
in the class diagram (:Company in Fig.2).

As a result of the refinement and combination of different scenario-oriented
collaboration diagrams we obtain a collaboration diagram with a single level of
nesting. Thus, we specify which operations are called in the specified operation
directly, but we do not consider those that are subordinately called within these
nested operations. We consider this to be meaningful when we specify the im-
plementation of an operation, since the subordinately called operations belong
to collaboration diagrams for the nested operations. This is alike the definition
of procedures and procedural calls in programming languages. As an implica-
tion, the target object is the sender of the call message for all operations in a
collaboration diagram except for the specified operation.

One end of a stereotyped link must be directly connected to the target ob-
ject (see Fig.2). Conventional links based on associations can also be indirectly
connected to the target object. They can be accessed by traversing along a path
of links of which only the first may be a stereotyped link. If a link with the
stereotype �parameter� (e.g. to :Order in Fig.2) is used, then a reference to the
object on the other end of the link must be transported to the target object as
a parameter of the specified operation. The names of objects that are connected
to the target object by a �parameter� link must be identical to the parameter
names of the corresponding operation in the collaboration diagram.

Stereotyped links of kind �local� (e.g. between :Company and s:Store in Fig.2)
depict that the linked objects are locally accessible within the specified operation.
This stereotype can be used either if the reference to the linked object was
obtained as a return value of a previously called operation or if the linked object
was initialized by calling a constructor within the specified operation. The same
restrictions apply to stereotyped links of kind �global�. Additionally, global
variables can also be initialized within another collaboration, i.e. in a different
collaboration diagram.

To prevent ambiguities, role names on association links are needed in the case
that multiple links exist between two objects. Calling a constructor across an

117

association link implies that both the receiver object and the link are implicitly
{new} (see 4: in Fig.2). Thus, the constraint is optional. In contrast, adding
to and deleting from multiobjects (notion for container in UML collaboration
diagrams) can be explicitly defined by the modeler in order to specify the exact
sequence of messages (see 6: in Fig.2).

Objects may not be marked with the constraint {destroyed} because Java
does not contain a predefined destructor. Otherwise, one would have to solve the
problem that all references to that object must be deleted to make the garbage
collector delete the object, even those references specified in other collaborations.

Further details of the implications of our approach will be shown in Sect.4
where the refined meta model for collaborations is presented.

3 Transformation Approach

In Sect.2, methodical guidelines on how to deploy collaboration diagrams have
been explained. Following these, all collaboration diagrams to be translated have
a well-formed structure. This is an important prerequisite and enables a system-
atic translation of collaboration diagrams into corresponding Java code.

The translation algorithm for collaboration diagrams is based on a standard
algorithm for translating class diagrams. The underlying idea is to translate class
definitions into corresponding Java class definitions and to translate associations
into bi-directional references between the two participating classes. This stan-
dard algorithm has been refined, e.g., with respect to automatically generated
”get” and ”put” access operations for attributes or a generic search operation
to select certain objects from a set of existing objects. Further details on the
refined class translation algorithm can be found in [4].

The basic idea of the overall transformation algorithm from a class diagram
and associated collaboration diagrams into corresponding Java code is to iden-
tify standard patterns in a given diagram and to translate those patterns into
corresponding Java code. This pattern-based transformation algorithm will be
presented in a technical, formal way in Sect.5. Here, we give two simple exam-
ples to sketch informally how this pattern-based translation works.

First, Fig.3(a) shows a part of the collaboration diagram given in Fig.2 where
operation getpNr() is sent via a parameter link with role o to an object of class
Order. This collaboration diagram is depicted in the lower left part of Fig.3(a),
while the corresponding class diagram can be found in the upper left part. The
right hand side shows the generated Java code for such a parameter link pattern
within a collaboration diagram.

Second, Fig.3(b) shows another pattern taken from Fig.2. Here, the collab-
oration diagram comprises a pattern consisting of a local link combined with
a newly created object of class Delivery. The resulting Java code comprises a
definition of a local variable d of type Delivery, as well as the invocation of the
constructor of class Delivery in order to create a new instance.

The complete structured and pattern-based transformation algorithm will
be explained in Sect.5. In order to be able to describe certain patterns within
a class or collaboration diagram, a uniform internal representation of diagrams
is an important prerequisite. As known from the UML language definition, such

118

an internal representation can best be defined by a meta model. Therefore, the
next section will present an adapted UML meta model, which incorporates the
restrictions introduced in Sect.2.

class Company
{

public void processOrder (Order o)
 {

int pNr;

 }
}

«parameter»

Company

+ void

Order

+ customer getCustomer()

- int pNr
- int amount

processOrder (Order o) + int getpNr
+ int getAmount

processOrder(o)
: Company

:Order

o

1: pNr := getpNr
 pNr = o.getpNr();

(a)

{new}

«local»

Company

+ void processOrder (Order o)

Delivery

+ Delivery (Order o, Store s)

:Delivery

d

4: delivery(o, s)processOrder(o)
: Company

class Company
{

public void processOrder (Order o)
 {

Delivery d;

 }
}

 d = new Delivery (o, s);
...

(b)
1 *

Figure 3. Transformation of (a) parameter and (b) local links into Java code

4 Refined Meta Model

Based on the UML meta model, we present a refined meta model for collab-
orations, that has been adapted according to the assumptions and restrictions
described in Sect.2. The methodical guidelines for deploying collaboration di-
agrams to model method implementations have been integrated and are thus
reflected on the meta model level now. Since the transformation algorithm pre-
sented in the next section is based on this meta model representation, the me-
thodical guidelines also affect the code generation. The benefits of this adapted
meta model are two-fold. First, the methodical guidelines have become part of
the modeling language. Thus, only well-structured collaboration diagrams can
be instantiated from this meta model. Second, the adapted meta model shows a
granularity which is very well suited as basis for the pattern-based transforma-
tion algorithm.

Figure 4 depicts the changes to the original UML meta model. Elements that
are replaced or deleted are crossed out, while new or changed meta classes and
associations are shaded. Note that associations connected to new classes are also
new even if they are not explicitly marked for simplicity. Some classes from other

119

meta model packages of UML have been included, but all changes to existing
associations have been marked.

0..1

first

 rev_from

AssociationEndRole

1

11

from to1

rev_to

*

Action
(from CommonBehavior)

* 0..1

0..1

1

Namespace
(from Core)

ModelElement
(from Core)

Interaction

constrainingElement

**

1 *

context

interaction

Message

*

message

1..*

predecessor

activator

*

*

*

0..1

action1

0..*

ClassifierRole

sender

receiver

1

1

**

multiplicity: Multiplicity

Classifier
(from Core)

base1

*

Feature
availableFeature

*

*

AssociationRole

multiplicity:
 Multiplicity

11

/owned
Element

1..*

/type 1

*

*
/ownedElement

/connection

1

2..*

Classifier
(from Core)

Operation
(from Core)

*

*

{or}
0..1

0..1 represented
Classifier

represented
Operation

Association
(from Core)

AssociationEnd
(from Core)

/connection

1

2..*

 base

1 *

base

1 *

1

1

next

previous

0..1

0..1

Expression

MethodCall

Request
(from CommonBehavior)

CallAction SendAction

CreateAction

VarIdent

Attribute
(from Core)

isLoop: Boolean
isCond: Boolean
isSuper: Boolean
 (...)

(...)

qualifier

0..1

0..1

argument

argument
*

*

0..1

recurrence

0..1

0..1

0..1

*

1 1

1

*
0..1 result

*

1 result

{or}
0..10..1

1

a_name

1

Type: N_T_D_Kind
RoleName: String

Node

Type:
 N_T_Kind

1..*

Edge

1

LocalEdge

SelfEdge

GlobalEdge

ParameterEdge

EdgeEnd

RoleName: String

*

target 1

 1 1 1 1

{or}

 1

 1

 1

 1

*

GlobalVar

1

*

*

name
1

0..1

request

(...)

*

/ownedElement

/owned
Element

Collaboration
(from Core)

0..1

*

Figure 4. Extended meta model for transforming collaboration diagrams

120

Due to the use of collaboration diagrams for specifying the implementation of
operations, the upper left occurence of class Classifier disappears from the meta
model. Additionally, we argued (see Sect.2) that the implementation of every
operation is specified by exactly one collaboration diagram what is reflected by
the one-to-one association between the corresponding classes.

Two new associations between the meta model classes Collaboration and
Message are added to simplify navigation through the meta model according to
the specified message sequence. The multiplicities on the predecessor association
are changed and the activator association is removed because the transformed
diagrams contain only one level of nesting. For the same reason, the association
to ClassifierRole with the role name sender is bent, now connecting ClassifierRole
and Collaboration: The sender for messages within this collaboration is the target
object on which the specified operation is called (see Sect.2).

To account for the distinct algorithmic transformation of the different link
types, we introduce meta model classes for stereotyped links LocalEdge, Glob-
alEdge, ParameterEdge, and SelfEdge, and the abstract super class Edge. The
new class EdgeEnd builds the counterpart to AssociationEndRole for the stereo-
typed links. We replace the composition relation between AssociationRole and
AssociationEndRole by two associations modeling directed association roles.
This is possible since we have only one level of nesting and we restrict the
transformation to binary associations. The transformation algorithm uses the
roles to and from to traverse association links in the direction of message flow.

New is also the abstract meta class Node as a super class of ClassifierRole.
Its purpose is to hold an attribute of type N T Kind representing the default
constraints {new} and {transient} that can be attached to an object (Classi-
fierRole) in a collaboration diagram. An equivalent attribute of the super type
N T D Kind has been added to the class AssociationEndRole. Due to this ex-
tension, the mapping of constraints on the appropriate subclasses of the meta
model class Action [8] is no longer needed.

We further introduce a meta model class Expression and subclasses (not
shown on the diagram) for data values, operators and their operands, etc. to
decompose expressions in their components. This enables the definition of access
functions for objects that are referenced by a link based on an association. The
recurrence attribute of the class Action is changed into an association. Simple
expressions are either instances of a base type or a variable identifier.

If an operation yields a result, the return action in UML is specified by
a separate return message [8]. In contrast, the return message is not explicitly
modeled in the refined meta model. Instead, the name of a variable for the return
value is explicitly stored in the meta model class VarIdent. This variable name
is related to either an attribute of the target object, a stereotyped link, or an
association link, represented by alternative associations to Attribute and Edge.
The role name belonging to such an edge is equivalent to the variable name. The
meta model class MethodCall is used to specify a method called on a variable
identifier using the dot notation.

Another meta model class GlobalVar is added to hold the names of global
variables that are referenced by �global� links within all collaboration diagrams.

Only three subclasses of the meta model class Action remain in the meta
model for the transformation of collaboration diagrams to Java, since Java has

121

no predefined destructor. For every instance of Action or its subclasses, exactly
one Request instance is linked.

5 Transformation Algorithm

In this section, the algorithm for transforming collaboration diagrams to Java
is specified in a rule-based way. In order for the algorithm to work correctly,
collaboration diagrams are assumed to be syntactically and static-semantically
correct. Moreover, the whole model consisting of a class diagram and a collabo-
ration diagram for each operation defined in the class diagram has already been
translated into an instance of the meta model as described in Sect.4.

We use a kind of meta rules consisting of a rule scheme and an additional
pattern. The rule scheme describes the generation of syntactically correct Java
code. It has the form of a context free rule expression. But it is still indepen-
dent of a concrete collaboration diagram. It contains two kinds of non-terminal
symbols. The first are non-terminals in the usual sense replaced by sequences
of non-terminals and terminals by the application of rules. Only those will be
called non-terminals in the following. The second kind are parameters of the rule
scheme, which allow its instantiation for a concrete diagram to be transformed.
These parameters are formulated using terms of the meta model. This approach
stems originally from the compiler construction area, where it is known as a
two-level grammar approach ([17]).

The pattern is a part of an instance diagram of the meta model. It is used to
represent those parts of a concrete diagram which shall be actually transformed.
Hence, the occurence of the pattern in the instance diagram for the example
application for which code shall be generated serves as an application condition
for the whole meta rule to be applied. Moreover, the concrete occurence links
together the general code generation possibilities, described by the rule scheme,
and the actual elements of the concrete collaboration diagram that has to be
transformed. The parameters of the rule scheme occur in the pattern and can
hence be replaced by actual values in order to instantiate the rule scheme.

Figure 5 shows two meta rules for the transformation of class diagrams.
These meta rules will be used in the following to illustrate how the algorithm is
specified in principle. On the left hand side, the part of the class diagram actually
translated by the meta rule is shown. In the middle, we give its translation to part
of an instance of the meta model, which forms the pattern. On the right hand
side, the rule scheme for generating Java code is shown. Words in capital letters
denote non-terminal symbols, whereas words in small letters denote terminal
symbols if they are underlined, or they denote parameter expressions over the
pattern if not. These parameters will be evaluated to terminal symbols as soon
as a concrete occurence of the pattern is chosen, leading to an instantiation of
the rule scheme for the concrete diagram.

The first meta rule shown in Fig.5 allows to transform a single class into the
frame for a class declaration in Java. Here, c refers to the instance of classifier
which represents the class in the instance of the meta model. Hence c.name is
a parameter which will be replaced by the name of the class, i.e., the concrete
value of this attribute in an occurence of the pattern. The non-terminal symbols

122

p:Parameter

kind = out

c1:Classifier

name =
METHODSc1

o.visibility c2.name o.name (ARGSo) {

c2:Classifier

name = type

 type owner

o : Operation

name = op
visibility =

public

COLLABo
}

METHODSc1

ClassName

STARTc public class c.name {

ClassName

name = par

ClassName

+ op

ATTRIBUTESc

METHODSc
}

c:Classifier

name =
ClassName

(out par : type)

class diagram pattern rule schema

Figure 5. Meta rules for class diagram

startc, attributesc and methodsc will also be instantiated with more con-
crete non-terminal symbols. The name c of the classifier object is used to keep
track of the concrete classifier object currently dealt with during the next steps
of code generation. It already determines partly the occurence of the pattern
belonging to the meta rule for replacing this non-terminal. The second meta
rule shown in Fig.5 serves for the generation of the method frames for each op-
eration defined in the class diagram in an analogous way. The instantiation of
the non-terminal symbol collabo will be replaced by the code generated for the
collaboration diagram of this operation.

Note that the meta rules are only applied once for each occurence of the
according pattern. Different occurences may overlap. For example, in case of the
second rule the same classifier object may occur as owner of an operation and
as parameter of another or even of the same operation.

Consider again our example application introduced in Sect.2. The class dia-
gram shown in Fig.1 can be transformed into Java code using the above meta
rules in the following way: We search for an occurence of the pattern of the first
meta rule in the instance diagram of the meta model. Classifier c is mapped
to classifier com, whose name attribute has the value ”Company”. For this oc-
curence of the pattern we instantiate the rule scheme leading to

startcom −→ public class Company {
attributescom

methodscom

}

In the second step, we want to replace the non-terminal methodscom. This
could be done by using the second meta rule. But we need a particular instanti-
ation of the according rule scheme (methodscom instead of methodsc1). Hence
the occurence for the pattern has to obey this constraint. If an occurence is
found that maps operation o to operation procOrd with name processOrder and
visibility public, the rule scheme can be instantiated to

123

methodscom −→ public void processOrder (argsprocOrd) {
collabprocOrd

}
With the above two rules, we can deduce a primitive class frame from the start

symbol startcom. Note that the instantiation process leads to a set of different
start symbols since the generated Java code has to be stored in different files.

We now advance to the transformation of collaboration diagrams. We start
with meta rules for replacing the non-terminal collabo by a sequence of other
non-terminals in order to determine the structure of the generated code of the
body of a method. First, the local variables have to be declared. Then, we invoke
the methods in the order which is indicated in the collaboration diagram by the
sequence numbers. Finally, we have to add newly inserted links, which are not
used to invoke a method, and to remove links, which are indicated as destroyed.
The according meta rule is depicted in Fig.6.

COLLABo

LOCALVAR_DECLo

 MESSAGE_INVOCo

 ASSOC_DYNAMICSo
o:Operation:Collaboration

represented
operation

: ClassName

c:Classifier

name =
ClassName

o()

collaboration diagram pattern rule scheme

owner

Figure 6. Meta-Rule for splitting of COLLAB

In the sequel, the first two meta rules generated by this substitution are
explained in detail. Figure 7 shows the meta rule for declaring local variables.
Remember that we also assume that indirectly declared local variables (return
values of method invocations referencing objects) are to be represented as lo-
cal edges in the instance of the meta model. Hence each LocalEdge uniquely
represents a local variable, the name of which is stored as the RoleName of its
EdgeEnd. The LocalEdge belongs to the collaboration of operation o. The type
of a local variable is given by the name of the base (classifier) of the target of the
EdgeEnd. This information is represented in the pattern. Moreover, it is used
in the rule scheme by the parameters c.name for the type and e.RoleName for
the name of the local variable. We add the possibility of declaring more than
one local variable within the same operation o by repeating the non-terminal
localvar declo. Again, different applications of the meta rule imply different
occurences of the pattern ensuring that each local variable is declared only once.
The meta rule in the lower part of Fig.7 serves for the end of the declaration pro-
cess. The rule scheme replaces the non-terminal localvar declo by the empty
string. It may only be applied, if the upper meta rule is not applicable any more.

Now we come to the generation of the real body of an operation, namely
the invocation of methods. Generally, we have to generate the method invoca-
tion code in the order indicated by the sequence numbers in the collaboration
diagram. This order is represented in the meta model by the predecessor edge
between messages and by the edge assigning the first message to a collaboration.

124

:VarType
VarName LOCALVAR_DECLo

 c.name e.RoleName ;
LOCALVAR_DECLo

LOCALVAR_DECLo

o:Operation:Collaboration

:LocalEdge
ClassifierRole

c:Classifier

name =
VarType

e:EdgeEnd

RoleName =
VarName

target

«local»

base

o:Operation

represented
operation

ownedElement

collaboration diagram pattern rule schema

Figure 7. Meta rule for local variable declaration

Hence, we have three kinds of meta rules: The first kind serves for invoking the
first method. The second kind traverses the predecessor edge from the previous
to the next message. The third kind ends the process. Meta rules of the last kind
look like the last one discussed for the local variable declaration above. They are
neglected in the following.

For the first two kinds of meta rules, we additionally have to distinguish many
different cases: whether the receiver of the message is a multiobject, whether it
is a newly created object, whether a parameter, a local or global variable or
an existing resp. new association is used to send the message to the receiver,
whether a return value is expected or not, whether the method invocation is
conditional or an iteration, and whether the method itself or the method of the
super class is called. Due to space limitations, we are not able to present all
according meta rules in this paper (see [4] for an exhaustive presentation).

Instead, Fig.8 shows as an example a meta rule for invoking a method on
a parameter object. It is a rule of the first kind, meaning that the method
invocation is the first one in the actually transformed collaboration. A method
for operation o is invoked. The kernel of this method invocation is that an
operation r.name is called on the parameter object referred to by e.RoleName.
The arguments for this call are generated from the non-terminal symbol argsr.
We omit a more detailed view on that, since we left out the specialization of
class Expression in the meta model in Sect.4 that is necessary for this purpose.
The meta rules for invoking an operation on a local or global variable look quite
similar. Only the parameter edge in the pattern is replaced by a local or global
edge, respectively. The transformation of a �self� link is handled analogously,
distinguishing between using a this-pointer or a super-pointer to call a redefined
method of a super class.

The pattern of the meta rule for method invocation via an association link
differs in that ParameterEdge and EdgeEnd are replaced by AssociationRole and
AssociationEndRole, respectively. Other additional requirements on attributes
of the CallAction and the receiving ClassifierRole ensure that one deals with
the simplest case and not with multiobjects, for instance. Another difference is

125

o:Operation

:Collaboration
m:Message

MESSAGE_INVo
:Parameter
Edge

e:EdgeEnd

VarName

RoleName =

c:CallAction

r:Request

name = op

MESSAGE_INVo,m

first

VarName

«parameter»

op() e.RoleName.r.name (ARGSr);
action

request

isLoop = false
isCond = false
isSuper = false

collaboration diagram pattern rule scheme

Figure 8. Meta rule for method invocation on parameter object

that the method may not directly be called using the RoleName stored in the
AssociationEndRole if sender and receiver are only indirectly linked. Hence we
include a non-terminal symbol paths,r which has to be replaced by an expression
determining the shortest existing link path from the sender s to the receiver r.

In order to allow more than one method invocation in the body of an op-
eration, the rule scheme in the above meta rule generates a new non-terminal
symbol message invo,m, distinguished by the differing parameter expression.
This second kind of non-terminals for method invocations can be replaced by
the second kind of meta rules.

Using the complete set of meta rules as shown for the generation of the code
for the class diagram by instantiating the meta rules and reducing the non-
terminals to terminal symbols, the following Java code is generated from the
collaboration diagram depicted in Fig.2.

public class Company {...
public void processOrder (Order o) {

Delivery d;
Store s;
int pNr;
int a;
pNr = o.getpNr();
a = o.getAmount();
s = search_stores(pNr, a);
d = new Delivery(o,s);
s.deliver(d);
add_deliveries(d);

}...
}

6 Conclusion and Perspectives

In this paper, we have investigated the modeling of behavior by UML collab-
oration diagrams and their automatic transformation into Java code. We have

126

introduced methodical guidelines how to deploy collaboration diagrams in a
structured way. This formed the basis for the formulation of a transformation
algorithm.

The objective of this automatic transformation is to prevent a loss of sub-
stantial information during the transition from a model to its implementation.
But, this does not imply that UML collaboration diagrams offer a means to spec-
ify the behavior of a system completely and that UML can be used as a visual
programming language. UML collaboration diagrams focus on the modeling of
object interactions, while computations on data values are neglected, and thus
have to be added to the generated Java code by hand.

This paper focussed on the transformation of sequential behavior descrip-
tions. The next steps will be to implement the transformation algorithm by
extending the often used, commercial tool Rational Rose [10] and to extend the
transformation algorithm to the transformation of concurrent behavior as well
as of asynchronous and synchronous communication descriptions. The already
chosen target language Java will facilitate this development. First results of that
extension can be found in [6].

Finally, it is intended to investigate whether and how the in this paper re-
used approach of two-level grammars (cf. [17]) is an appropriate means to specify
and realize easily adaptable code generators for forthcoming versions of UML
and for a visual modelling language in general.

References

1. Ali, J., Tanaka, J.: Generating executable code from the dynamic model of OMT
with concurrency. In: Proc. IASTED International Conference on Software Engi-
neering (SE‘97), San Francisco, 1997, pp. 291–297

2. Ali, J., Tanaka, J.: Implementation of the dynamic behavior of object oriented
systems. In: Integrated Design and Process Technology (IDPT), Vol. 4, Society for
Design and Process Science, 1998, pp. 281–288

3. Engels, G., Heckel, R., Taentzer, G., Ehrig, H.: A view-oriented approach to sys-
tem modelling using graph transformations. In Jazayeri, M., Schauer, H. (eds.):
Proceedings European Software Engineering Conference (ESEC’97), Zürich, LNCS
1301, Springer, 1997, pp. 327–343

4. Engels, G., Hücking, G., Sauer, S., Wagner, A.: UML Collaboration Diagrams
and Their Transformation to Java. Technical Report TR-RI-99-208, University of
Paderborn, 1999

5. Harel, D., Gery, E.: Executable Object Modeling with Statecharts. IEEE Com-
puter, 30 (July 1997) 31–42

6. Hücking, R.: UML Collaboration Diagrams and Their Transformation to Java (in
German). Master’s Thesis, University of Paderborn, September 1998

7. Lieberherr, K.: Adaptive Object-Oriented Software: The Demeter Method with
Propagation Patterns. PWS Publishing Company, Boston MA, 1996

8. OMG: UML Notation Guide, Version 1.1. The Object Management Group, Docu-
ment ad/97-08-05, Framingham MA, 1997

9. OMG: UML Semantics. Version 1.1. The Object Management Group, Document
ad/97-08-04, Framingham MA, 1997

10. Rational Rose 98. Rational Software Corporation, Cupertino CA, 1998
11. Rhapsody. Version 2.1. I-Logix, Andover MA, 1998

127

12. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-Oriented
Modelling and Design. Prentice-Hall, 1991

13. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. Addison-Wesley, Reading MA, 1999

14. Sangal, N., Farrel, E., Lieberherr, K.: Interaction Graphs: Object interaction spec-
ifications and their compilation to Java. Technical Report NU-CCS-98-11, North-
eastern University, Oct. 1998

15. Statemate MAGNUM. Release 1.2. I-Logix, Andover MA, 1999
16. Structure Builder. Version 3.1.5. Tendril Software Inc., Westford MA, 1999
17. A. van Wijngaarden: The Generative Power of Two-Level Grammars. In J. Loeckx

(ed.): Automata, Languages and Programming, 2nd Colloquium, University of
Saarbrücken, 1974. LNCS 14, Springer, 1974, pp. 9 –16

128

Strengthening UML Collaboration Diagrams by
State Transformations�

Reiko Heckel and Stefan Sauer

University of Paderborn, Dept. of Mathematics and Computer Science
D-33095 Paderborn, Germany
reiko|sauer@uni-paderborn.de

Abstract. Collaboration diagrams as described in the official UML doc-
uments specify patterns of system structure and interaction. In this pa-
per, we propose their use for specifying, in addition, pre/postconditions
and state transformations of operations and scenarios. This conceptual
idea is formalized by means of graph transformation systems and graph
process, thereby integrating the state transformation with the structural
and the interaction aspect.

Keywords: UML collaboration diagrams, pre/postconditions, graph transfor-
mation, graph process

1 Introduction

The Unified Modeling Language (UML) [24] provides a collection of loosely cou-
pled diagram languages for specifying models of software systems on all levels of
abstraction, ranging from high-level requirement specifications over analysis and
design models to visual programs. On each level, several kinds of diagrams are
available to specify different aspects of the system, like the structural, functional,
or interaction aspect. But even diagrams of the same kind may have different
interpretations when used on different levels, while several aspects of the same
level may be expressed within a single diagram.

For example, interaction diagrams in UML, like sequence or collaboration
diagrams, often represent sample communication scenarios, e.g., as refinement
of a use case, or they may be used in order to give a complete specification of
the protocol which governs the communication. Collaboration diagrams allow,
in addition, to represent individual snapshots of the system as well as structural
patterns.

If such multi-purpose diagrammatic notations shall be employed successfully,
a precise understanding of their different aspects and abstraction levels is re-
quired, as well as a careful analysis of their mutual relations. This understanding,
once suitably formalized, can be the basis for tool support of process models,
e.g., in the form of consistency checks or refinement rules.
� Research partially supported by the ESPRIT Working Group APPLIGRAPH.

129

In this paper, we address these issues for UML collaboration diagrams. These
diagrams are used on two different levels, the instance and the specification
level, both related to a class diagram for typing (cf. Fig. 1). A specification-level
diagram provides a pattern which may occur at the instance level.1

Specification

Instance

Type
type

type

occurrence
extension

pattern
role

Fig. 1. Two levels of collaboration diagrams and their typing

In addition, in the UML specification [24] two aspects of collaboration dia-
grams are identified: the structural aspect given by the graph of the collaboration,
and the interaction aspect represented by the flow of messages. These aspects
are orthogonal to the dimensions in Fig. 1: A specification-level diagram may
provide a structural pattern as well as a pattern of interaction. At the instance
level, a collaboration diagram may represent a snapshot of the system or a sample
interaction scenario. Moreover, both aspects are typed over the class diagram,
and the pattern-occurrence relation should respect this typing.

One way to make precise the relationships between different diagrams and
abstraction levels is the approach of meta modeling used in the UML specifica-
tion [24]. It allows to specify the syntactic relation between different diagrams
(or different uses of the same diagram) by representing the entire model by a
single abstract syntax graph where dependencies between different diagrams can
be expressed by means of additional links, subject to structural constraints spec-
ifying consistency. This approach provides a convenient and powerful language
for integrating diagram languages, i.e., it contributes to the question, how the in-
tegration can be specified. However, it provides no guidelines, what the intended
relationships between different diagrams should be.

Therefore, in this paper, we take the alternative approach of translating the
diagrams of interest into a formal method which is conceptually close enough
in order to provide us with the required semantic intuition to answer the what
question. Once this is sufficiently understood, the next step is to formulate these
results in the language of the UML meta model.

Our formal method of choice are graph transformation systems of the so-
called algebraic double-pushout (DPO) approach [10] (see [5] for a recent survey).
1 The use of collaboration diagrams for role modeling is not captured by this pic-

ture. A role model provides a refinement of a class diagram where roles restrict the
features of classes to those relevant to a particular interaction. A collaboration dia-
gram representing a role model can be seen as a second level of typing for instance
(and specification-level) diagrams which itself is typed over the class diagram. For
simplicity, herein we restrict ourselves to a single level of typing.

130

In particular, their typed variant [4] has built in most of the aspects discussed
above, including the distinction between pattern, instance, and typing, the struc-
tural aspect and (by way of the partial order semantics of graph processes [4]) a
truly concurrent model for the interaction aspect. The latter is in line with the
recent proposal for UML action semantics [1] which identifies a semantic domain
for the UML based on a concurrent data flow model.

The direct interpretation of class and collaboration diagrams as graphs and
of their interrelations as graph homomorphisms limits somewhat the scope of
the formalization. In particular, we deliberately neglect inheritance, ordered or
qualified associations, aggregation, and composition in class diagrams as well as
multi-objects in collaboration diagrams. This oversimplification for presentation
purpose does not imply a general limitation of the approach as we could easily
extend the graph model in order to accommodate these features, e.g., using a
meta model-based approach like in [21].

Along with the semantic intuition gained through the interpretation of collab-
oration diagrams in terms of graph transformation comes a conceptual improve-
ment: the use of collaboration diagrams as a visual query and update language
for object structures. In fact, in addition to system structure and interaction,
we propose the use of collaboration diagrams for specifying the state transfor-
mation aspect of the system. So far, this aspect has been largely neglected in
the standard documents [24], although collaboration diagrams are used already
in the CATALYSIS approach [6] and the FUSION method [3] for describing pre-
and postconditions of operations and scenarios.

Beside a variety of theoretical studies, in particular in the area of concur-
rency and distributed systems [9], application-oriented graph transformation ap-
proaches like PROGRES [29] or FUJABA [14] provide a rich background in using
rule-based graph transformation for system modeling as well as for testing, code
generation, and rapid prototyping of models (see [7] for a collection of survey
articles on this subject). Recently, graph transformations have been applied to
UML meta modeling, e.g., in [16, 2, 11].

Therefore, we believe that our approach not only provides a clarification, but
also a conceptual improvement of the basic concepts of collaboration diagrams.

Two approaches which share the overall motivation of this work remain to
be discussed, although we do not formally relate them herein. Övergaard [26]
uses sequences in order to describe the semantics of interactions, including no-
tions of refinement and the relation with use cases. The semantic intuition comes
from trace-based interleaving models which are popular, e.g., in process algebra.
Knapp [22] provides a formalization of interactions using temporal logic and the
pomset (partially ordered multi-set) model of concurrency [27]. In particular,
the pomset model provides a semantic framework which has much similarity
with graph processes, only that pomsets are essentially set-based while graph
processes are about graphs, i.e., the structural aspect is already built in. Be-
sides technical and methodological differences with the cited approaches, the
main additional objective of this work is to strengthen collaboration diagrams by
incorporating graph transformation concepts.

131

The presentation is structured according to the three aspects of collaboration
diagrams. After introducing the basic concepts and a running example in Sect. 2,
Sect. 3 deals with the structural and the transformation aspect, while Sect. 4 is
concerned with interactions. Section 5 concludes the paper.

A preliminary sketch of the ideas of this paper has been presented in [20].

2 UML Collaboration Diagrams: A Motivating Example

In this section, we introduce a running example to motivate and illustrate the
concepts in this paper. First, we sketch the use of collaboration diagrams as
suggested in the UML specification [24]. Then, we present an improved version
of the same example exploiting the state transformation aspect.

Figure 2 shows the class diagram of a sample application where a Company
object is related to zero or more Store, Order, and Delivery objects. Order objects
as well as Delivery objects are related to exactly one Customer who plays the role
of the customer placing the order or the receiver of a delivery, respectively. A
Customer can place several instances of Order and receive an unrestricted number
of Delivery objects.

Company

+ processOrder (o:Order)

Store

- products[*]: Integer
- amounts[*]: Integer

+ deliver(d:Delivery)
+ available(p:Integer, a:Integer): Boolean

1 *

store

Delivery

- pNr: Integer
- amount: Integer

+ Delivery (o:Order, s:Store)

1

*

delivery

 Order

- pNr: Integer
- amount: Integer

1

*

Customer

+ charge (d:Delivery)

* 1

*

1

customer

order receiver

Fig. 2. A class diagram defining the structure of the example

A typical scenario within that setting is the situation where a customer orders
a product from the company. After the step of refining and combining different
use cases into a method-oriented specification one might end up with a col-
laboration diagram specifying the implementation of operation processOrder as
depicted in the top of Fig. 3. Here, the company first obtains the product num-
ber pNr and the ordered amount using defined access functions. It then checks
all stores to find one that can supply the requested amount of the demanded
product. A delivery is created, and the selected store is called to send it out.
Concurrently, the customer is charged for this delivery. After an order has been
processed, it will be deleted.

Collaboration diagrams like this, which specifies the execution of an opera-
tion, may be used for generating method implementations in Java [12], i.e., they

132

can be seen as visual representations of programs. However, in earlier phases
of development, a higher-level style of specification is desirable which abstracts
from implementation details like the get functions for accessing attributes and
the implementation of queries by search functions on multi-objects.

Therefore, we propose to interpret a collaboration as a visual query which
uses pattern matching on objects, links, and attributes instead of low-level access
and search operations. In fact, leaving out these details, the same operation
can be specified more abstractly by the diagram in the lower left of Fig. 3.
Here, the calls to getPNr and getAmount are replaced by variables p and a for
the corresponding attribute values, and the call of search on the multi-object
is replaced by a boolean function available which constrains the instantiation of
/s:Store. (As specified in the lower right of the same figure, the function returns
true if the Store object matching /s is connected to a Product object with the
required product number p and an amount b greater than a.) The match is
complete if all items in the diagram not marked as {new} are instantiated. Then,
objects marked as {destroyed} are removed from the current state while objects
marked as {new} are created, initializing appropriately the attributes and links.
For example, the new Delivery object inherits its link and attribute values from
the destroyed Order object.

:Company
processOrder(o) 3: s:= search(p,a)

:Store

:Store
s

<<local>>
5a: deliver(d)

1: p:= getPNr()
2: a:= getAmount()

:Order
{destroyed}<<parameter>>

o

store

delivery
<<local>>:Delivery

{new}
4: Delivery(o,s)

d

:Customer
5b: charge(d)

receiver customer

/c:Company /s:Store

/d:Delivery
{new}

pNr = p
amount = a

/o:Order
{destroyed}

pNr = p
amount = a

store

delivery

processOrder(/o)

1:available(p,a)
2a:deliver(/d)

customer /cu:Customer receiver

2b:charge(/d)

/s:Store :Product

pNr = p
amount = b

product

available(p,a)

{b ≥ a}

Fig. 3. An implementation-oriented collaboration diagram (top), its declarative pre-
sentation (bottom left), and a visual query operation (bottom right)

In the following sections, we show how this more abstract use of collaboration
diagrams can be formalized by means of graph transformation rules and graph
processes.

133

3 Collaborations as Graph Transformations

A collaboration on specification level is a graph of classifier roles and association
roles which specifies a view of the classes and associations of a class diagram
as well as a pattern for objects and links on the instance level. This triangular
relationship, which instantiates the type-specification-instance pattern of Fig. 1
for the structural aspect, shall be formalized in the first part of this section.
Then, the state transformation aspect shall be described by means of graph
transformations. The interaction aspect is considered in the next section.

Structure. Focusing on the structural aspect first, we use graphs and graph ho-
momorphisms (i.e., structure-compatible mappings between graphs) to describe
the interrelations between class diagrams and collaboration diagrams on the
specification and the instance level.

The relation between class and instance diagrams is formally captured by the
concept of type and instance graphs [4]. By graphs we mean directed unlabeled
graphs G = 〈GV , GE , srcG, tarG〉 with set of vertices GV , set of edges GE , and
functions srcG : GE → GV and tarG : GE → GV associating to each edge its
source and target vertex, respectively. A graph homomorphism f : G → H is a
pair of functions 〈fV : GV → HV , fE : GE → HE〉 compatible with source and
target, i.e., for all edges e in GE , fV (srcG(e)) = srcH(fE(e)) and fV (tarG(e)) =
tarH(fE(e)).

Let TG be the underlying graph of a class diagram, called type graph. A
legal instance graph over TG consists of a graph G together with a typing ho-
momorphism g : G → TG associating to each vertex and edge x of G its type
g(x) = t in TG. In UML notation, we write x : t. Observe that the compatibility
of g with source and target ensures that, e.g., the class of the source object of
a link is the source class of the link’s association. Constraints like this can be
found in the meta class diagrams and well-formedness rules of the UML meta
model for the meta associations relating classifiers with instances, associations
with links, association ends with link ends, etc. ([24], Sect. 2.9). The typing of
specification-level graphs is described in a similar way ([24], Sect. 2.10).

An interpretation of a graph homomorphism which is conceptually different,
but requires the same notion of structural compatibility, is the occurrence of a
pattern in a graph. For example, a collaboration on the specification level occurs
in a collaboration on the instance level if there exists a mapping from classifier
roles to instances and from association roles to links preserving the connections.
Thus, the existence of a graph homomorphism from a given pattern graph implies
the presence of a corresponding instance level structure. The occurrence has to
be type-compatible, i.e., if a classifier role is mapped to an instance, both have to
be of the same classifier. This compatibility is captured in the notion of a typed
graph homomorphism between typed graphs, i.e., a graph homomorphism which
preserves the typing. In our collaboration diagrams, this concept of graphical
pattern matching is used to express visual queries on object structures.

In summary, class and collaboration diagrams have a homogeneous, graph-
like structure, and their triangular relationship can be expressed by three com-

134

patible graph homomorphisms. Next, this triangular relation shall be lifted to
the state transformation view.

State Transformation. Collaborations specifying queries and updates of object
structures are formalized as graph transformation rules, while corresponding col-
laborations on the instance level represent individual graph transformations.

A graph transformation rule r = L → R consists of two graphs L,R such that
the union L ∪R is defined. (This ensures that, e.g., edges which appear in both
L and R are connected to the same vertices in both graphs.) Consider the rule
in the upper part of Fig. 4 representing the collaboration of processOrder in the
lower left of Fig. 3. The precondition L contains all objects and links which have
to be present before the operation, i.e., all elements of the diagram except for
/d:Delivery which is marked as {new}. Analogously, the postcondition R contains
all elements except for /o:Order which is marked as {destroyed}. (The {transient}
constraint does not occur because a graph transformation rule is supposed to be
atomic, i.e., conceptually there are no intermediate states between L and R.)

/c:Company

/s:Store
/d:Delivery

pNr = p
amount = a/o:Order

pNr = p
amount = a

store

delivery

/c.processOrder (/o)

/c:Company

/s:Store
store

/cu:Customer
customer receiver

/cu:Customer

� �

��� ���

ce.processOrder (or)

co/c:Company

st/s:Store

or/o:Order

pNr = 13
amount = 28

store

customer

custo/cu:Customer

pr:Product

pNr = 13
amount = 42

product

co/c:Company

st/s:Store

de/d:Delivery

pNr = 13
amount = 28

store

receiver

custo/cu:Customer

pr:Product

pNr = 13
amount = 14

product

delivery

� �

Fig. 4. A graph transition consisting of a rule L → R specifying the operation process-
Order (top), and its occurrence o in an instance-level transformation (bottom)

A similar diagram on the instance level represents a graph transformation.
Graph transformation rules can be used to specify transformations in two dif-
ferent ways: either operationally by requiring that the rule is applied to a given
graph in order to rewrite part of it, or axiomatically by specifying pre- and
postconditions. In the first interpretation (in fact, the classical one [10], in

135

set-theoretic formulation), a graph transformation G
r(o)
=⇒ H from a pre-state

G to a post-state H using rule r is represented by a graph homomorphism
o : L ∪ R → G ∪ H, called occurrence, such that

1. o(L) ⊆ G and o(R) ⊆ H (i.e., the left-hand side of the rule is matched by
the pre-state and the right-hand side by the post-state),

2. o(L \R) = G \H and o(R \L) = H \G (i.e., all objects of G are {destroyed}
that match classifier roles of L not belonging to R and, symmetrically, all
objects of H are {new} that match classifier roles in R not belonging to L).

That is, the transformation creates and destroys exactly what is specified by the
rule and the occurrence. As a consequence, the rule together with the occurrence
of the left-hand side L in the given graph G determines, up to renaming, the
derived graph H, i.e., the approach has a clear operational interpretation, which
is well-suited for visual programming.

In the more liberal, axiomatic interpretation, requirement 2 is weakened to

2′. o(L \ R) ⊆ G \ H and o(R \ L) ⊆ H \ G (i.e., at least the objects of G
are {destroyed} that match classifier roles of L not belonging to R and,
symmetrically, at least the objects of H are {new} that match classifier roles
in R not belonging to L).

These so-called graph transitions [19] allow side effects not specified by the rule,
like in the example of Fig. 4 where the amount of product pr changes without
being explicitly rewritten by the rule. This is important for high-level modeling
where specifications of behavior are often incomplete.

In both cases, instance transformations as well as specification-level rules are
typed over the same type graph, and the occurrence homomorphism respects
these types. This completes the instantiation of the type-specification-instance
pattern for the aspect of state transformation.

Summarizing, a collaboration on the specification level represents a pattern
for state transformations on the instance level, and the occurrence of this pattern
requires, beside the structural match of the pre- and postconditions, (at least)
the realization of the described effects. Graph transformations provide a formal
model for the state transformation aspect which allows to describe the overall
effect of a complex interaction. However, the interaction itself, which decomposes
the global steps into more basic actions, is not modeled. In the next section, this
finer structure shall be described in terms of the model of concurrency for graph
transformation systems [4].

4 Interactions as Graph Processes

In this section, we shall extend the triangular type-specification-instance pattern
to the interaction part. First, we describe the formalization of the individual
concepts and then the typing and occurrence relations.

136

Class diagrams. A class diagram is represented as a graph transformation sys-
tem, briefly GTS, G = 〈TG,R〉 consisting of a type graph TG and a set of
transformation rules R. The type graph captures the structural aspect of the
class diagram, like the classes, associations, and attributes, as well as the types
of call and return messages that are sent when an operation is invoked. For the
fragment of the class diagram consisting of the classes Order, Customer, and De-
livery, the customer association2, and the attributes and operations of the first
two classes, the type graph is shown in Fig. 5. Classes are as usually shown as
rectangular, data types as oval shapes. Call and return messages are depicted
like UML action states, i.e., nodes with convex borders at the two sides. Return
messages are marked by overlined labels. Links from call message nodes rep-
resent the input parameters of the operation, while links from return message
nodes point to output parameters (if any). The self link points to the object
executing the operation. The rules of the GTS in Fig. 5 model different kinds of
basic actions that are implicitly declared within the class diagram. Among them
are state transformation actions like destroy o, control actions like send charge,
and actions representing the execution of an operation like cu.charge(d).

��

ℜ

����� ����	
��

������ �����

��������

��� �
	���

����

�
�����

o:Order ∅�����	� 	

�����

���� �����

�����������

�����

�������	
��

����������

����
�

�����

�������	
��

����������

�������	
��

����������

����
�

�����

�������	
��

���������� �����

����	
��

Fig. 5. Graph transformation system for a fragment of the class diagram in Fig. 2

Interactions. An interaction consists of a set of messages, linked by control and
data flow, that stimulate actions like access to attributes, invocation of opera-
tions, creation and deletion of objects, etc. While the control flow is explicitly
given by sequence numbers specifying a partial order over messages, data flow
information is only implicitly present, e.g., in the parameters of operations and
in their implementation, as far as it is given. However, it is important that con-
trol and data flow are compatible, i.e., they must not create cyclic dependencies.

2 More precisely, in UML terms this is an unnamed association in which class Customer
plays the role customer.

137

Such constraints are captured by the concept of a graph process which provides
a partial order semantics for graph transformation systems.

The general idea of process semantics, which have their origin in the theory
of Petri nets [28], is to abstract, in an individual run, from the ordering of actions
that are not causally dependent, i.e., which appear in this order only by accident
or because of the strategy of a particular scheduler. If actions are represented
by graph transformation rules specifying their behavior in a pre/postcondition
style, these causal dependencies can be derived by analyzing the intersections of
rules in the common context provided by the overall collaboration.

p

a

/s

available

self

product

amount

p

a

/s

/s

deliver

self

/d

delivery

/s /d

/cu

charge

self

/d

delivery

/cu /d

availableavailable

deliver

available

deliver

chargecharge

start

p

a

/s

fork

/d

/c

self
/s

/o
pNr = p
amount = a

amount

product

/cu

/s /d

/cu

self

self

delivery

delivery

return

customer
/cu

customer
/cu

deliver

deliver

charge

charge

processOrder

processOrder

available

available

/c

self

/s

/o
pNr = p
amount = a

order

store store

/o ∅∅∅∅

∅∅∅∅
/d
pNr = p
amount = a

/c

/d

/c

/d
delivery

destroy /o

new /d

new link
delivery

/d

/cu

/d

/cu
receiver

new link
receiver

/o

/cu

/o

/cu
receiver

destroy link
customer

Fig. 6. Graph process for the collaboration diagram of operation processOrder. The
three rules in the upper left section represent the operations, those in the upper right
realize the control flow between these operations, and the five rules in the lower part
are responsible for state transformations (note that attribute values a and p of /d can
be instantiated by new /d since all the rules of the graph process act in a common
context given by the collaboration)

The graph process for the collaboration diagram in the lower left of Fig. 3
is shown in Fig. 6. It consists of a set of rules representing the internal actions,
placed in a common name space. That means, e.g., the available node created
by the rule start in the top right is the same as the one deleted by the rule
available in the top left. Because of this causal dependency, available has to be
performed after start. Thus, the causality of actions in a process is represented
by the overlapping of the left- and right-hand sides of the rules.

138

Graph processes are formally defined in three steps. A safe graph transforma-
tion system consists of a graph C (best to be thought of as the graph of the collab-
oration) together with a set of rules T such that, for every rule t = G → H ∈ T
we have G,H ⊆ C (that is, C provides a common context for the rules in T).
Intuitively, the rules in T represent transformations, i.e., occurrences of rules. In
order to formalize this intuition, the notion of occurrence graph transformation
system is introduced requiring, in addition, that the transformations in T can
be ordered in a sequence. That means, the system has to be acyclic and free
of conflicts, and the causality relation has to be compatible with the graphical
structure. In order to make this precise, we define the causal relation associated
to a safe GTS 〈C, T 〉. Let t : G → H be one arbitrary transformation in T and
e be any edge, node, or attribute in C. We say that

– t consumes e if e ∈ G \ H
– t creates e if e ∈ H \ G
– t preserves e if e ∈ G ∩ H

The relation ≤ is defined on T ∪ C, i.e., it relates both graphical elements and
operations. It is the transitive and reflexive closure of the relation < where

– e < t1 if t1 consumes e
– t1 < e if t1 creates e
– t1 < t2 if t1 creates e and t2 preserves e, or

t1 preserves e and t2 consumes e

Now, a safe GTS is called an occurrence graph transformation system if

– the causal relation ≤ is a partial order which respects source and target, i.e.,
if t ∈ T is a rule and a vertex v of C is source (or target) of an edge e, then
• t ≤ v implies t ≤ e and
• v ≤ t implies e ≤ t

– for all elements x of C, x is consumed by at most one rule in T , and it is
created by at most one rule in T .

The objective behind these conditions is to ensure that each occurrence
GTS represents an equivalence class of sequences of transformations “up-to-
rescheduling”, which can be reconstructed as the linearizations of the partial
order ≤. Vice versa, from each transformation sequence one can build an occur-
rence GTS by taking as context C the colimit (sum) of all instance graphs in
the sequence [4].

The causal relation between the rules in the occurrence GTS in Fig. 6 is
visualized by the Petri net in the left of Fig. 7. For example, the dependency
between available and start discussed above is represented by the place between
the corresponding transitions. Of these dependencies, which include both control-
and data-flow, in the UML semantics only the control-flow dependencies are
captured by a precedence relation on messages, specified using sequence numbers.
This part is presented by the sub-net in the upper right of Fig. 7. In comparison,
the net in the lower right of Fig. 7 visualizes the control flow if we replace the

139

synchronous call to deliver by an asynchronous one: The call is delegated to
a thread which consumes the return message and terminates afterwards. This
strategy for modeling asynchronous calls might seem a little ad-hoc, but it follows
the implementation of asynchronous calls in Java as well as the formalization of
asynchronous message passing in process calculi [23]. The essential property is
the independence of the deliver and the charge action.

start

available fork

deliver

charge
return

destroy o/

new link
delivery

new link
receiver

destroy link
customer

new /d

start available fork

deliver

charge
return

start available fork

deliver

charge return

ignore

Fig. 7. Control flow and data dependencies of the occurrence GTS in Fig. 6 (left),
sub-net for control flow dependencies of occurrence GTS (top right), and control flow
dependencies with asynchronous call of deliver (bottom right)

We have used graph transformation rules for specifying both the overall effect
of an interaction as well as its basic, internal actions. A fundamental fact about
occurrence GTS [4] relates the state transformation with the interaction aspect:
Given an occurrence GTS O = 〈C, T 〉 and its partial order ≤, the sets of minimal
and maximal elements of C w.r.t. ≤ form two graphs Min(O),Max (O) ⊆ C. This
allows us to view a process p externally as a transformation rule τ(p), called total
rule of p, which combines the effects of all the local rules of T in a single, atomic
step. The total rule of the process in Fig. 6 is shown in the top of Fig. 4.

Summarizing, the three corners of our triangle are represented by a GTS

representing the type level, and two occurrence GTS formalizing interactions on
the specification and the instance level, respectively. It remains to define the
relation between these three levels, i.e., the concepts of typing and occurrence.

Typing. In analogy with the typing of graphs, an occurrence GTS O = 〈C, T 〉
is typed over a GTS G = 〈TG,R〉 via a homomorphism of graph transformation
systems, briefly GTS morphism. A GTS morphism p : O → G consists of a graph
homomorphism c : C → TG typing the context graph C over the type graph
TG, and a mapping of rules f : T → R such that, for every t ∈ T , the rules
t and f(t) are equal up to renaming. Such a typed occurrence GTS is called a
graph process [4].

Since all graphs in the rules of Fig. 6 are well-typed over the type graph TG,
their union C is typed over TG by the union of the typing homomorphisms of its

140

subgraphs. The rules representing basic actions, like operation invocations and
state transformations, can be mapped directly to rules in R. The control flow
rules, which are more complex, are mapped to compound rules derived from the
elementary rules in R.3

Occurrence. The occurrence of a specification-level interaction pattern at the
instance level is described by a plain homomorphism of graph transformation
systems: We want the same granularity of actions on the specification and the
instance level. An example of an instance-level collaboration diagram is given in
Fig. 8. It does not contain additional actions (although this would be permit-

co/c:Company st/s:Store

de/d:Delivery
 {new}

pNr = 13
amount = 28

 or/o:Order
{destroyed}

pNr = 13
amount = 28

store

delivery

processOrder(or)

1:available(13,28)
2a:deliver(de)

pr:Product

pNr = 13
amount = 42

product

customer
custo/cu:Customer

receiver

2b:charge(de)

Fig. 8. Collaboration diagram on the instance level

ted by the definition of occurrence), but the additional context of the Product
instance. In the process in Fig. 6, this would lead to a corresponding extension
of the start rule.

As before, the GTS homomorphisms forming the three sides of the triangle
have to be compatible. That means, an occurrence of a specification-level col-
laboration diagram in an instance-level one has to respect the typing of classes,
associations, and attributes and of operations and basic actions.

This completes the formalization of the type-specification-instance triangle
in the three views of collaboration diagrams of structure, state transformation,
and interaction.

5 Conclusion

In this paper, we have proposed a semantics for collaboration diagrams based
on concepts from the theory of graph transformation. We have identified and
formalized three different aspects of a system model that can be expressed by
collaboration diagrams (i.e., structure, state transformation, and interaction)
and, orthogonally, three levels of abstraction (type, specification, and instance
level). In particular, the idea of collaboration diagrams as state transformations
3 Categorically, this typing of an occurrence GTS can be formalized as a Kleisli mor-

phism mapping elementary rules to derived ones (see, e.g., [18, 17] for similar ap-
proaches in graph transformation theory).

141

provides new expressive power which has so far been neglected by the UML
standard. The relationships between the different abstraction levels and aspects
are described in terms of homomorphisms between graphs, rules, and graph
transformation systems.

The next steps in this work consist in transferring the new insights to the
UML specification. On the level of methodology and notation, the state trans-
formation aspect should be discussed as one possible way of using collaboration
diagrams. On the level of abstract syntax (i.e., the meta model) the pattern-
occurrence relation between specification- and instance-level diagrams has to
be made explicit, e.g., by additional meta associations. (In fact, this has been
partly accomplished in the most recent draft of the standard [25].) On the seman-
tic level, a representation of the causal dependencies in a collaboration diagram
is desirable which captures also the data flow between actions.

It remains to state more precisely the relation between collaboration diagrams
as defined by the standard and our extended version. Obviously, although our
collaboration diagrams are syntactically legal, the collaboration diagrams that
are semantically meaningful according to the UML standard form a strict subset
of our high-level diagrams based on graph matching. An implementation of this
matching by explicit navigation (as it is given, for example, in [14] as part of
a code generation in Java) provides a translation back to the original low-level
style. The formal properties of this construction have not been investigate yet.

References

1. Action Semantics Consortium. Precise action semantics for the Unified Modeling
Language, August 2000. http://www.kc.com/as_site/.

2. P. Bottoni, M. Koch, F. Parisi Presicce, and G. Taentzer. Consistency checking
and visualization of OCL constraints. In Evans et al. [13], pages 294–308.

3. D. Coleman, P. Arnold, S. Bodof, C. Dollin, H. Gilchrist, F. Hayes, and P. Jeremes.
Object Oriented Development, The Fusion Method. Prentice Hall, 1994.

4. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-
maticae, 26(3,4):241–266, 1996.

5. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic
approaches to graph transformation, Part I: Basic concepts and double pushout
approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph Transformation, Volume 1: Foundations, pages 163–245. World Scientific,
1997.

6. D. D’Souza and A. Wills. Components and Frameworks with UML: The Catalysis
Approach. Addison-Wesley, 1998.

7. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 2: Applica-
tions, Languages, and Tools. World Scientific, 1999.

8. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Proc. 6th
Int. Workshop on Theory and Application of Graph Transformation (TAGT’98),
Paderborn, November 1998, volume 1764 of LNCS. Springer-Verlag, 2000.

9. H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 3: Concur-
rency and Distribution. World Scientific, 1999.

142

10. H. Ehrig, M. Pfender, and H.J. Schneider. Graph grammars: an algebraic approach.
In 14th Annual IEEE Symposium on Switching and Automata Theory, pages 167–
180. IEEE, 1973.

11. G. Engels, J.H. Hausmann, R. Heckel, and St. Sauer. Dynamic meta modeling: A
graphical approach to the operational semantics of behavioral diagrams in UML.
In Evans et al. [13], pages 323–337.

12. G. Engels, R. Hücking, St. Sauer, and A. Wagner. UML collaboration diagrams
and their transformation to Java. In France and Rumpe [15], pages 473–488.

13. A. Evans, S. Kent, and B. Selic, editors. Proc. UML 2000 – Advancing the Standard,
volume 1939 of LNCS. Springer-Verlag, 2000.

14. T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story diagrams: A new graph
transformation language based on UML and Java. In Ehrig et al. [8].

15. R. France and B. Rumpe, editors. Proc. UML’99 – Beyond the Standard, volume
1723 of LNCS. Springer-Verlag, 1999.

16. M. Gogolla. Graph transformations on the UML metamodel. In J. D. P. Rolim
et al., editors, Proc. ICALP Workshops 2000, Geneva, Switzerland, pages 359–371.
Carleton Scientific, 2000.

17. M. Große-Rhode, F. Parisi Presicce, and M. Simeoni. Refinement of graph trans-
formation systems via rule expressions. In Ehrig et al. [8], pages 368–382.

18. R. Heckel, A. Corradini, H. Ehrig, and M. Löwe. Horizontal and vertical structuring
of typed graph transformation systems. Math. Struc. in Comp. Science, 6(6):613–
648, 1996.

19. R. Heckel, H. Ehrig, U. Wolter, and A. Corradini. Double-pullback transitions and
coalgebraic loose semantics for graph transformation systems. Applied Categorical
Structures, 9(1), January 2001.

20. R. Heckel and St. Sauer. Strengthening the semantics of UML collaboration di-
agrams. In G. Reggio, A. Knapp, B. Rumpe, B. Selic, and R. Wieringa, editors,
UML’2000 Workshop on Dynamic Behavior in UML Models: Semantic Questions,
pages 63–69. October 2000. Tech. Report no. 0006, Ludwig-Maximilians-University
Munich, Germany.

21. R. Heckel and A. Zündorf. How to specify a graph transformation approach: A
meta model for fujaba. In H. Ehrig and J. Padberg, editors, Uniform Approaches
to Graphical Process Specification Techniques, satellite workshop of ETAPS 2001,
Genova, Italy, 2001. To appear.

22. A. Knapp. A formal semantics of UML interactions. In France and Rumpe [15],
pages 116–130.

23. M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. In Proc.
ICALP’98, volume 1443 of LNCS, pages 856–867. Springer-Verlag, 1998.

24. Object Management Group. UML specification version 1.3, June 1999. http:

//www.omg.org.
25. Object Management Group. UML specification version 1.4beta R1, November

2000. http://www.celigent.com/omg/umlrtf/.
26. G. Övergaard. A formal approach to collaborations in the Unified Modeling Lan-

guage. In France and Rumpe [15], pages 99–115.
27. V. Pratt. Modeling concurrency with partial orders. Int. Journal. of Parallel

Programming, 15(1):33–71, February 1986.
28. W. Reisig. Petri Nets, volume 4 of EATCS Monographs on Theoretical Computer

Science. Springer-Verlag, 1985.
29. A. Schürr, A.J. Winter, and A. Zündorf. The PROGRES approach: Language and

environment. In Ehrig et al. [7], pages 487–550.

143

Dynamic Meta Modeling: A Graphical Approach

to the Operational Semantics of Behavioral
Diagrams in UML

Gregor Engels, Jan Hendrik Hausmann, Reiko Heckel, Stefan Sauer

University of Paderborn, Dept. of Mathematics and Computer Science
D-33098 Paderborn, Germany

engels|corvette|reiko|sauer@uni-paderborn.de

Abstract. In this paper, dynamic meta modeling is proposed as a new
approach to the operational semantics of behavioral UML diagrams. The
dynamic meta model extends the well-known static meta model by a
specification of the system’s dynamics by means of collaboration dia-
grams. In this way, it is possible to define the behavior of UML diagrams
within UML.
The conceptual idea is inherited from Plotkin’s structured operational
semantics (SOS) paradigm, a style of semantics specification for concur-
rent programming languages and process calculi: Collaboration diagrams
are used as deduction rules to specify a goal-oriented interpreter for the
language. The approach is exemplified using a fragment of UML state-
chart and object diagrams.
Formally, collaboration diagrams are interpreted as graph transformation
rules. In this way, dynamic UML semantics can be both mathematically
rigorous so as to enable formal specifications and proofs and, due to
the use of UML notation, understandable without prior knowledge of
heavy mathematic machinery. Thus, it can be used as a reference by tool
developers, teachers, and advanced users.

Keywords: UML meta model, statechart diagrams, precise behavioral semantics,
graph transformation

1 Introduction

The UML specification [20] defines the abstract syntax and static semantics
of UML diagrams by means of (meta) class diagrams and OCL formulas. The
dynamic (operational) semantics of behavioral diagrams is only described infor-
mally in natural language. However, when using UML models for communica-
tion between development teams, for project documentation, or as a contract
between developers and customers, it is important that all partners agree on a
common interpretation of the language. This requires a semantics specification
which captures, in a precise way, both the structural and the dynamic features
of the language.

144

Another fundamental requirement for the specification of a modeling lan-
guage is that it should be readable (at least) by tool developers, teachers, and
advanced users. Only in this way, a common understanding of the semantics of
the language can be developed among its users.

Presently, most approaches to dynamic UML semantics focus on the imple-
mentation and simulation of models, or on automatic verification and reasoning.
Reggio et al. [23], for example, use algebraic specification techniques to define the
operational semantics of UML state machines. Lillius and Paltor [17] formalize
UML state machines in PROMELA, the language of the SPIN model checker.
Knapp uses temporal logic [15] for formalizing UML interactions. Övergaard [21]
presents a formal meta modeling approach which extends static meta modeling
with a specification of dynamics by means of a simple object-oriented program-
ming language that is semantically based on the π-calculus. The formalisms used
in the cited approaches provide established technologies for abstract reasoning,
automatic verification, execution, or simulation of models, but they are not es-
pecially suited for explaining the semantics to non-experts.

In contrast, the technique of meta modeling has been successful, because it
does not require familiarity with formal notations to read the semantics specifi-
cation. Our approach to UML semantics extends the static meta model based on
class diagrams [20] by a dynamic model which is specified using a simple form of
UML collaboration diagrams. The basic intuition is that collaboration diagrams
specify the operations of a goal-driven interpreter. For instance, in order to fire
a transition in a statechart diagram, the interpreter has to make sure to be in
the source state of the transition, and it might have to ask for the occurrence of
a certain trigger event. This trigger event may in turn depend on the existence
of a link mediating a method call, invoked by the firing of a transition in another
statechart diagram, etc. Conceptually, this may be compared to the behavior of
a Prolog interpreter trying to find a proof for a given goal.

Despite the graphical notation, the specification is mathematically rigorous
since collaboration diagrams are given a formal interpretation based on graph
transformation rules (see, e.g., [24,6,7] for a recent collection of surveys and
[1] for an introductory text) within our approach. In particular, they can be
considered as a special form of graphical operational semantics (GOS) rules [4],
a generalization of Plotkin’s structured operational semantics (SOS) paradigm
for the definition of (textual) programming languages [22] towards graphs.

The paper is organized as follows: The approach to dynamic meta modeling is
exemplified using an important fragment of UML statechart and object diagrams
which is introduced along with a sample model in Sect. 2. In Sect. 3, we introduce
the structural part of our meta model, a fragment of the standard meta model
with meta classes extended by meta operations. The semantics specification in
terms of collaboration diagrams is presented in Sect. 4, and in Sect. 5 it is shown
how this specification can be used to compute the behavior of the sample model
introduced in Sect. 2. Finally, in Sect. 6 we summarize and outline some future
perspectives.

145

2 Statechart and Object Diagrams

Our approach to dynamic meta modeling shall be exemplified by the operational
semantics of UML statechart and object diagrams. Statechart diagrams are used
to specify the local behavior of objects (of a certain class) during their lifetime.
Similarly to an event-condition-action rule, a transition consists of a triggering
event, an activation condition, and a list of actions. Additionally, we regard
the invocation of operations on an object as well as the calls to operations of
other objects by the object under consideration as particularly relevant for this
purpose. Therefore, we restrict our specification to transitions with call events
and/or call actions. Conditions, other kinds of events and actions, composite
and pseudo states, as well as more advanced structural concepts like inheritance
and composition of classes are not considered.

The considered model extract refers to a problem of general importance, since
the life cycle description of objects in a statechart diagram has to be related to
the messaging mechanisms between interacting objects and the invocation of
methods on such objects. A recent solution [3] suggests to model dynamic be-
havior by state machines and to view methods as private virtual objects to allow
for concurrent execution by delegation. In contrast, we propose dynamic meta
modeling as a basis for an integration of events, messages, and method invoca-
tion. In the following, we present an example that will allow us to demonstrate
the application of our approach.

ControlBoxMachine
run()
stop()

set_red()
set_green()

monitor

monitor

idle running show_green show_red

run / monitor.set_red() set_red

stop / monitor.set_green() set_green

machine : Machine display:ControlBox

« »current

« »context « »context

« »current

Fig. 1. A sample model (initial configuration)

Figure 1 shows a model consisting of two classes Machine and ControlBox re-
lated by an association stating that objects of class Machine may be monitored
by objects of class ControlBox. In the Machine statechart diagram, transitions are
labeled with combined event/action expressions like run/monitor.set red(). That
means, in order for the transition to fire, a call event for the operation run()

146

has to occur, and by firing the transition the method set red() shall be called on
the ControlBox object at the opposite end of the monitor link. As a result, the
ControlBox object should change its state from show green to show red. No fur-
ther actions are issued by the ControlBox statechart diagram. Notice that we do
not model the implementation of operations. Therefore, the relevant interaction
between objects (like switching the display by the machine) is described using
call actions on the statechart level (rather than implementing it in the method
run()).

The initial configuration of the system is given by an object diagram together
with a specification of the control state of each object. In our example, machine
is in state idle and display is in state show green as shown in Fig. 1 by the
stereotyped �current� relationships.

After presenting the static meta model and the firing rules of UML statechart
diagrams in the next sections, we shall examine part of the life cycle of the objects
introduced above.

3 Meta Classes and Meta Operations

In the UML semantics specification [20], the abstract syntax of statechart di-
agrams is specified by a meta class diagram. In order to define the structural
model of an interpreter for this languages, this model has to be extended by state
information, for example to represent the current control state of an object.

Class

State Machine

State Transition
fire (Object)

Event
occur (Object)

Action
perform (Object)

CallAction
target:TargetExpr
op:OperationExpr

CallEvent

Operation
run (Object)

current 1

outgoing

trigger

effectingoingtarget

source

ModelElement
name:Name

Object
call (TargetExpr,

OperationExpr)
LinkEnd

Link

2

featureowner

instance

connection

classifier context

operation

occurrence

*

* 1

*

1..*

1
1

*
*

*

1

*

*

1

0..1

Fig. 2. Meta class diagram

Figure 2 shows the classes from the UML meta model that are relevant for the
subclass of statechart diagrams we are considering (partly simplified by flattening
the meta class hierarchy). A statechart diagram, represented by an instance of
meta class StateMachine, controls the behavior of the objects of the class it is
associated with. For this purpose, we extend the meta model by an association

147

current which designates the current control state of an object within the state
diagram. States and transitions are represented by instances of the corresponding
meta classes, and transitions are equipped with a trigger CallEvent (like run in
our scenario) and an effect CallAction (like control.set red()). A CallEvent carries
a link to the local operation which is called. Unlike in the standard meta model,
a CallAction is not directly associated with an operation, as this would result in
static binding. Instead, an attribute OperationExpr is provided.

The state space of the diagrammatic language consists of all instance graphs
conforming to the meta class diagram. Each instance graph represents the state
of an interpreter given by the “programs” (e.g., statechart diagrams) to be exe-
cuted, the problem domain objects with their respective data states (given, e.g.,
by the values of attributes and links), and their control states.

The relation between class and instance diagrams can be formally captured by
the concept of type and instance graphs [5].1 Given a type graph TG, representing
a class diagram, a TG-typed instance graph consists of a graph G together with
a typing homomorphism g : G → TG associating to each vertex and edge x of
G its type g(x) = t in TG. For example, the instance graph of the meta class
diagram in Fig. 2 that represents the abstract syntax of the model in Fig. 1 is
shown in Fig. 3.

Fig. 3. Abstract syntax of sample model

The class diagram in Fig. 2 does not only contain meta classes and associ-
ations, but also meta operations like perform(Object) of class Action. They are
the operations of our interpreter for statechart diagrams. Given the type graph
1 By graphs we mean directed unlabeled graphs G = 〈GV , GE , srcG, tarG〉 with set

of vertices GV , set of edges GE, and functions srcG : GE → GV and tarG : GE →
GV associating to each edge its source and target vertex. A graph homomorphism
f : G → H is a pair of functions 〈fV : GV → HV , fE : GE → HE〉 compatible with
source and target.

148

TG representing the structural part of the class diagram, the meta operations
form a family of sets M = (MOPw)w∈TG+

V
indexed by non-empty sequences

w = v1 . . . vn of parameter class names vi ∈ TGV . By convention, the first
parameter v1 of each meta operation represents the class to which the opera-
tion belongs (thus there has to be at least one argument type). For example,
the meta operation perform(Object) of class Action is formally represented as
perform ∈ MOPAction,Object.

After having described the abstract syntax of our model in terms of meta
classes and meta operations, the implementation of the meta operations shall be
specified using collaboration diagrams in the next section.

4 Meta Modeling with Collaboration Diagrams

The static meta model of the UML defines the abstract syntax of the language
by means of meta class diagrams. Seen as a system specification, these class
diagrams represent the structural model of an UML editor or interpreter. In this
section, we shall extend this analogy to the dynamic part of a model, i.e., we
are going to specify the dynamics of an interpreter for statechart and object
diagrams. Interaction diagrams and, in particular, collaboration diagrams are
designed to specify object interaction, creation, and deletion in a system model.
Dynamic meta modeling applies the same language concepts to the meta model
level to specify the interaction and dynamics of model elements of the UML.

The specification is based on the intuition of an interpreter which has to
demonstrate the existence of a certain behavior in the model. Guided by a re-
cursive set of rules stating the conditions for the execution of a certain meta op-
eration, the interpreter works its way from a goal (e.g., the firing of a transition)
towards its assumptions (e.g., the occurrence of a trigger event). The behavioral
rules are specified by collaboration diagrams consisting of two compartments.
The head of the diagram contains the meta operation which is specified by the
diagram. The body specifies the assumptions for the execution of the meta oper-
ation, its effect on the object configuration, and other meta operations required.

For example, the conditions for a transition to fire and its effect on the
configuration are specified in the collaboration diagram of Fig. 4: An object
o may fire a transition if that object is in the corresponding source state, the
(call) event triggering the transition occurs, and the operation associated with
this call event is invoked by the meta operation run(o). In this case, the object
o changes to the target state of the transition, which is modeled by the deletion
and re-creation of the current link.

Thus, in order to be able to continue, the interpreter looks for a call event
triggering the transition. This call event can be raised if the associated operation
is called on the object o as specified in Fig. 5 using the meta operation call. The
signature of this meta operation of meta class Object contains two parameters:
The first one holds a path expression to direct the call to its target object (it
equals nil when the target object is reached), and the second one specifies the

149

trans.fire(o)

s1:State trans:transition s2:State

ce:Callevent op:Operation

o:Object

source target

trigger

{destroy} {new}

current current

occur(o) run(o)

Fig. 4. The firing of a transition by an object

Fig. 5. Issuing a CallEvent

name of the operation to be called (and possibly further parameters). The name
of the operation op has to match the operation expression transmitted by call.

Note that this does not guarantee the execution of the body of the called oper-
ation. In fact, no rule for meta operation run of meta class Operation is provided.
The specification of the structure and dynamics of method implementations is
the objective of action semantics as described by the corresponding request for
proposals [18] by the Object Management Group. So far, UML provides only
“uninterpreted strings” to capture the implementation of methods. We believe
that our approach is extensible towards a dynamic semantics of actions once this
is precisely defined.

Fig. 6. Evaluating the target expression

150

An operation call like o.call(nil, op) in Fig. 5 originates from a call action
which specifies by means of a path expression the target of the call. Thus, in
order to find out whether a call is pending for a given object o, our interpreter
has to check two alternatives: Either a call action is performed on o directly with
target = nil, or there is a call at a nearby object with a target expression pointing
towards o. These two cases are specified by the two collaboration diagrams for
meta operation call in Fig. 7. The left diagram specifies the invocation of the
meta operation by a CallAction on an object start. (The object is not depicted
since it is given by the parameter of the premise.) Notice that the values of the
meta attributes target and op have to match the parameters of meta operation
call.

If the meta operation is not directly invoked by a call action, an iterative
search is triggered as specified by the right diagram: To invoke the meta operation
call(t,op) on an object successor which is connected to object current via a link,
whose link end named a is attached to the successor object, the meta operation
call(a.t,op) has to be invoked on current with the identical operation parameter
op and the extended path expression a.t. (We assume target to be in a Java-like
path syntax where the names of the links to be followed form a dot-separated
list.)

Notice, that the right rule in Fig. 7 is potentially non-deterministic: In a
state where the successor object has more than one incoming a link, different
instantiations for the current object are possible. In this case, the link to be
followed would be chosen non-deterministically.

Fig. 7. The performing of an action by an object

Figure 7 presents the rule for performing an action. In our scenario this
should be a CallAction initiating a call to another object, but the rule is also
applicable to other kinds of actions. An action is the (optional) effect of firing
a transition, i.e., the invocation of meta operation perform of meta class Action
depends on the firing of the associated transition. Thus, the rule in Fig. 4 has
to be applied again in order to derive the firing of the transition at the calling
object.

As already mentioned in the introduction, this goal-oriented style of seman-
tics specification is conceptually related to the proof search of a Prolog inter-
preter. This intuition is made precise by the paradigm of graphical operational
semantics (GOS) [4], a graph-based generalization of the structured operational

151

semantics (SOS) paradigm [22], for the specification of diagram languages. In
the GOS approach, deduction rules on graph transformations are introduced in
order to to formalize the derivation of the behavior of models from a set of meta-
level diagrams, which is implicitly present in this section. In the next section, we
describe a simplified form of this approach especially tailored for collaboration
diagrams.

5 Computing with Collaboration Diagrams

In the previous section, collaboration diagrams have been used to specify the
firing rules of statechart transitions and the transmission of calls between ob-
jects. Now, concrete computations shall be modeled as collaboration diagrams
on the instance level. This allows us to represent changes to the object structure
together with the operations causing these changes. Moreover, even incomplete
computations can be modeled, where some of the method calls are still unre-
solved. This is important if we want to give semantics to incomplete models like
the one in Sect. 2 which requires external activation in order to produce any
activity.

The transition from semantic rules to computations is based on a formal
interpretation of collaboration diagrams as graph transformation rules. A rule
representing the collaboration diagram for operation trans.fire(o) in Fig. 4 is
shown in Fig. 8. It consists of two graphs L and R representing, respectively,
the pre- and the post-condition of the operation. In general, both L and R are
instances of the type graph TG representing the class diagram, and both are
subgraphs of a common graph C that we may think of as the object graph of the
collaboration diagram. Then, the pre-condition L contains all objects and links
which have to be present before the operation, i.e., all elements of C except for
those marked as {new} or {transient}. Analogously, the post-condition contains
all elements of C not marked as {transient} or {destroy}. In the example of
Fig. 8, graph C is just the union L ∪ R since there are no transient objects in
the diagram of Fig. 4.

s1:State

ce:CallEvent

s2:Statetrans:Transition

o:Object

source target

current current

trigger

op:Operation

s1:State

ce:CallEvent

s2:Statetrans:Transition

o:Object

source target

current current

trigger

op:Operation
trans.fire(o)

ce.occur(o)
op.run(o)

Fig. 8. Collaboration diagram as a labeled graph transformation rule

Besides structural modifications, the collaboration diagram describes calls
to meta operations ce.occur(o) and op.run(o), and it is labeled by the opera-
tion trans.fire(o), the implementation of which it specifies. This information is

152

recorded in the rule-based presentation in Fig. 8 by means of additional labels
above and below the arrow. Abstractly, a collaboration diagram is denoted as

C : L
a

b
→ R

where C is the object graph of the diagram, L and R are the pre- and post-
conditions, a is the label representing the operation specified by the diagram,
and b represents the sequential and/or concurrent composition of operations
referred to (that is, called) within in the diagram. The expression ce.occur(o)
× op.run(o) in Fig. 8, for example, represents the concurrent invocation of two
operations.

We shall use the rule-based interpretation of collaboration diagrams in order
to derive the behavior of the sample model introduced in Sect. 2. The idea is to
combine the specification-level diagrams by means of two operators of sequential
composition and method invocation. The sequential composition of two diagrams

C1 : L1
a1

b1
→ R1 and C2 : L2

a2

b2
→ R2

is defined if the post-condition R1 of the first equals the pre-condition L2 of the
second. The composed diagram is given by

C1 ∪L2=R1 C2 : L1
a1; a2

b1; b2
→ R2

where C1∪L2=R1 C2 denotes the disjoint union of the graphs C1 and C2, sharing
only L2 = R1. The second operator on diagrams models the invocation of a
method from within the implementation of another method. This is realized by
substituting the method call by the implementation of the called method, thus
diminishing the hierarchy of method calls. Assume two rules

C : L
a

b[c]
→ R and C′ : L′ c

d
→ R′

where the call expression b[c] of the first rule contains a reference to the operation
c specified by the second rule. (In the rule of Fig. 8, b[c] corresponds to ce.occur(o)
× op.run(o), and c could be instantiated with either ce.occur(o) or op.run(o).)
Then, the composed rule is given by

C ∪c C′ : L ∪c L′ a

b[d]
→ R ∪c R′.

The call to c is substituted by the expression d specifying the methods called
within c. By C ∪c C′ we denote the union of graphs C and C′ sharing the self
and parameter objects of the operation c.2 In the same way, the pre- and post-
conditions of the called operation are imported inside the calling operation.
2 Notice that, in order to ensure that the resulting diagram is consistent with the

cardinality constraints of the meta class diagram, it might be necessary to identify
further elements of C and C′ with each other (besides the ones identified by c). For
instance, when identifying two transitions, we also have to identify the corresponding
source and target states. Formally, this effect is achieved by defining the union as a
pushout construction in a restricted category of graphs (see, e.g., [16]).

153

In Fig. 9 it is outlined how these two composition operators are used to build
a collaboration diagram representing a possible run of our sample model. The
given diagrams are depicted in iconized form with sequential composition and
invocation as horizontal and vertical juxtaposition, respectively. This presenta-
tion is inspired by the tile model [12], a generalization of the SOS paradigm [22]
towards open (e.g., incomplete) systems. In fact, in our example, such a seman-
tics is required since the model in Fig. 1 is incomplete, i.e., it does not specify
the source of the call events run and stop needed in order to trigger the machine’s
transitions.

[fire t3] [fire t4]

[call op3] [call op4]

[fire t1] [fire t2]

sequential composition

sy
nc

hr
on

iz
at

io
n

t3.fire(o2) t4.fire(o2)

ce3.occur(o2) ce4.occur(o2)

t1.fire(o1) t2.fire(o1)

ce3.occur(o2)
op3.run(o2)

ce4.occur(o2)
op4.run(o2)

t1.fire(o1) t2.fire(o1)

ce1.occur(o1)
op1.run(o1)

ce2.occur(o1)
op2.run(o1)

;

;

;

Fig. 9. Composing a run of the sample model

Figure 10 shows an expanded version of the iconized diagram [fire t3] in the
top left of Fig. 9. It originates from an application of the operation trans.fire(o)
in the context of an additional transition.3 The diagrams [fire t4] to the right of
[fire t3] as well as [fire t1] and [fire t2] in the bottom are expanded analogously.

Figure 11 details the icon labeled [call op3]. It shows the invocation of several
operations realizing the navigation of the method call along the monitor link as
specified by the target expression, and the issuing of the call event. A similar
diagram could be drawn for [call op4].

Finally, in Fig. 12 the composite computation is shown covering the complete
scenario depicted in Fig. 1. It can be derived from the components in Fig. 9 in two
different ways: by first synchronizing the single transitions (vertical dimension)

3 In general, contextualization of rules has to be specified explicitly in our model
(in this we follow the philosophy of the SOS and the tile framework [22,12]). In
the present specification, however, we can safely allow to add any context but for
the current links which ensure the coordinated behavior of the different statechart
diagrams.

154

Fig. 10. Operation trans.fire(o) in context

Fig. 11. Navigation of the method call

155

and then sequentially composing the two steps (horizontal dimension), or first
building local two-step sequences (horizontal dimension) and then synchronizing
them (vertical dimension).

Fig. 12. Composite rule for the scenario in Fig. 1

6 Conclusion

In this paper, we have proposed the use of collaboration diagrams formalized as
graph transformation rules for specifying the operational semantics of diagram
languages. The concepts have been exemplified by a fragment of a dynamic meta
model for UML statechart and object diagrams.

The fragment should be extended to cover a semantically complete kernel
of the language which can be used to define more specific, derived modeling
concepts. This approach is advocated by the pUML group (see e.g., [9]). Concrete
examples how to define such a mapping of concepts include the flattening of
statecharts by means of graph transformation rules [13] and the simplification
of class diagrams [14] by implementing inheritance in terms of associations.

Our experience with specifying a small fragment of UML shows that tool
support is required for testing and animating the specification. While the im-
plementation of flat collaboration diagrams is reasonably well understood (see,
e.g., [8,10]), the animation of the results of an execution on the level of concrete
syntax is still under investigation. It requires a well-defined mapping between
the concrete and the abstract syntax of the modeling language. One possible so-
lution is to complement the graph representing the abstract syntax by a spatial
relationship graph, and to realize the mapping by a graphical parser specified by
a graph grammar [2].

156

A related problem is the integration of model execution and animation in
existing UML tools. Rather than hard-coding the semantics into the tools, our
approach provides the opportunity to allow for user-defined semantics, e.g., in
the context of domain-specific profiles. Such a profile, which extends the UML
standard by stereotypes, tagged values, and constraints [19], could also be used
to implement the extensions to the static meta model that are necessary in order
to define the operational semantics (e.g., the current links specifying the control
states of objects could be realized as tagged values).

On the more theoretical side, the connection of dynamic meta modeling with
proof-oriented semantics following the SOS paradigm allows the transfer of con-
cepts of the theory of concurrent languages, like bisimulation, action refinement,
type systems, etc. Like in the GOS approach [4], the theory of graph transforma-
tion can provide the necessary formal technology for transferring these concepts
from textual to diagram languages.

References

1. M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J. Kreowski, S. Kuske,
D. Plump, A. Schürr, and G. Taentzer. Graph transformation for specification
and programming. Science of Computer Programming, 34:1–54, 1999. 324

2. R. Bardohl, G. Taentzer, M. Minas, and A. Schürr. Application of graph transfor-
mation to visual languages. In Ehrig et al. [6], pages 105–180. 335

3. R. Breu and R. Grosu. Relating events, messages, and methods of multiple
threaded objects. JOOP, pages 8–14, January 2000. 325

4. A. Corradini, R. Heckel, and U. Montanari. Graphical operational semantics.
In A. Corradini and R. Heckel, editors, Proc. ICALP2000 Workshop on Graph
Transformation and Visual Modelling Techniques, Geneva, Switzerland, Geneva,
July 2000. Carleton Scientific. 324, 330, 336

5. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-
maticae, 26(3,4):241–266, 1996. 327

6. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 2: Applica-
tions, Languages, and Tools. World Scientific, 1999. 324, 336

7. H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 3: Concur-
rency and Distribution. World Scientific, 1999. 324

8. G. Engels, R. Hücking, St. Sauer, and A. Wagner. UML collaboration diagrams
and their transformation to Java. In R. France and B. Rumpe, editors, Proc.
UML’99 Int. Conference, Fort Collins, CO, USA, volume 1723 of LNCS, pages
473–488. Springer Verlag, October 1999. 335

9. A. Evans and S. Kent. Core meta modelling semantics of UML: The pUML ap-
proach. In France and Rumpe [11], pages 140–155. 335

10. T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story diagrams: A new graph
transformation language based on UML and Java. In H. Ehrig, G. Engels, H.-
J. Kreowski, and G. Rozenberg, editors, Proc. 6th Int. Workshop on Theory and
Application of Graph Transformation (TAGT’98), Paderborn, November 1998, vol-
ume 1764 of LNCS. Springer Verlag, 2000. 335

157

11. R. France and B. Rumpe, editors. Proc. UML’99 – Beyond the Standard, volume
1723 of LNCS. Springer Verlag, 1999. 336, 337, 337

12. F. Gadducci and U. Montanari. The tile model. In G. Plotkin, C. Stirling, and
M. Tofte, editors, Proof, Language and Interaction: Essays in Honour of Robin
Milner. MIT Press, 1999. 333, 333

13. M. Gogolla and F. Parisi-Presicce. State diagrams in UML – a formal seman-
tics using graph transformation. In ICSE’98 Workshop on Precise Semantics of
Modelling Techniques, 1998. Tech. Rep. TUM-I9803, TU München. 335

14. M. Gogolla and M. Richters. Equivalence rules for UML class diagrams. In P.-A.
Muller and J. Bezivin, editors, Proc. UML’98 Workshop, pages 86–97. Universite
de Haute-Alsace, Mulhouse, 1998. 335

15. A. Knapp. A formal semantics of UML interactions. In France and Rumpe [11],
pages 116–130. 324

16. M. Korff. Single pushout transformations of equationally defined graph structures
with applications to actor systems. In Proc. Graph Grammar Workshop, Dagstuhl,
1993, volume 776 of LNCS, pages 234–247. Springer Verlag, 1994. 332

17. J. Lillius and I. Paltor. Formalising UML state machines for model checking. In
France and Rumpe [11], pages 430–445. 324

18. Object Management Group. Action semantics for the UML, November 1998.
http://www.omg.org/pub/docs/ad/98-11-01.pdf. 329

19. Object Management Group. Analysis and design platform task
force – white paper on the profile mechanism, April 1999.
http://www.omg.org/pub/docs/ad/99-04-07.pdf. 336

20. Object Management Group. UML specification version 1.3, June 1999.
http://www.omg.org. 323, 324, 326

21. G. Övergaard. Formal specification of object-oriented meta-modelling. In
T. Maibaum, editor, Fundamental Approaches to Software Engineering (FASE’00),
Berlin, Germany, number 1783 in LNCS, pages 193–207. Springer Verlag, March/
April 2000. 324

22. G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, Computer Science Department, 1981. 324, 331,
333, 333

23. G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann. Analysing UML ac-
tive classes and associated state machines – a lightweight formal approach. In
T. Maibaum, editor, Fundamental Approaches to Software Engineering (FASE’00),
Berlin, Germany, number 1783 in LNCS, pages 127–146. Springer Verlag, March/
April 2000. 324

24. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 1: Foundations. World Scientific, 1997. 324

158

DynamicMetaModelingwith time: Specifying the semantics
ofmultimedia sequence diagrams

Jan Hendrik Hausmann, Reiko Heckel, Stefan Sauer

University of Paderborn, Institute for Computer Science, D 33095 Paderborn, Germany
E-mail: {hausmann,reiko,sauer}@upb.de
Received: 7 February 2003/Accepted: 14 May 2003

Published online: 1 April 2004 – © Springer-Verlag 2004

Abstract. The Unified Modeling Langugage (UML) of-
fers different diagram types to model the behavior of
software systems. In some domains like embedded real-
time systems or multimedia systems, it is necessary to in-
clude specifications of time in behavioral models since the
correctness of these applications depends on the fulfill-
ment of temporal requirements in addition to functional
requirements. UML thus already incorporates language
features to model time and temporal constraints. Such
model elements must have an equivalent in the semantic
domain.
We have proposed Dynamic Meta Modeling (DMM),

an approach based on graph transformation, as a means
for specifying operational semantics of dynamic UML di-
agrams. In this article, we extend this approach to also
account for time by extending the semantic domain to
timed graph transformation. This enables us to define the
operational semantics of UML diagrams with time speci-
fications. As an example, we provide semantics for special
sequence diagrams from the domain of multimedia appli-
cation modeling.

Keywords: Formal semantics – Meta modeling – UML
extensions – Graph transformation – Time – Multimedia
– Sequence diagram

1 Introduction

The key objective of modeling is to create a representa-
tion of reality or ideas that abstracts from unnecessary
details and concentrates on the main concepts. When
designing software systems, time aspects are often (al-
though sometimes unreasonably) considered a minor re-
quirement and are thus not represented in the models.

Consequently, the core diagrams of UML [18] – the stan-
dard language for building visual models of software sys-
tems – focus on structure, function, and dynamics of sys-
tems, but not on temporal aspects.
While this approach is adequate for example in the

construction of business software (where temporal re-
quirements typically concern efficiency, which mostly de-
pends on the underlying hardware, system software, and
database systems), temporal behavior is a key feature in
other domains, and it has to be represented in the model
in a precise way. Embedded real-time systems and multi-
media applications are the most prominent among these
domains. Real-time systems require that the results of
a computational task are available within a limited period
of time. In multimedia applications, timing requirements
especially refer to the processing and synchronization of
continuous media objects and the related quality of ser-
vice (QoS).
The UML already provides some syntactic elements to

express temporal behavior, like send and receive times of
messages and duration of intervals on sequence diagrams
or firing times for transitions in statecharts. These elem-
ents may be used to formulate timing constraints, i.e.,
time expressions on stimuli, message, or transition names.
Further elements are being introduced by UML profiles
like the UML Profile for Schedulability, Performance, and
Time [17], which is motivated by the domain of embed-
ded real-time systems. Its temporal modeling more fun-
damentally deals with time and time values, time-related
events and stimuli, timing mechanisms like timers and
clocks, and timing services.
Yet, while the semantics of the frequently used core

elements of the UML is only partly understood, the in-
terpretation of time-related modeling concepts in UML
is even more ambiguous. The real-time profile [17] adds
some detail in this regard, but still lacks a precise and for-
mal semantics.

159

We can thus identify both a strong need for the precise
specification of temporal behavior and a lack of concepts
in the UML to meet this demand.
Existing approaches for real-time system specification

are mainly motivated by the need to analyze (i.e., test or
verify) systems with respect to their fulfillment of tempo-
ral properties. These approaches generally use time con-
straints to prescribe temporal requirements for a system.
These constraints can be modeled in UML sequence di-
agrams. The operational execution of a system is rather
described by an automata-based model, e.g. a state ma-
chine with timed events. It can then be tested or verified
whether the state machine model or an implementation
conforms to the timing constraints specified in the se-
quence diagram. Examples for this can be found in [13]
where statecharts are extended by information of worst-
case execution times derived from an actual implemen-
tation. Other approaches check whether an implementa-
tion satisfying all constraints may actually exist by using
model checkers [1, 5] or systems of linear inequalities [14].
[1] defines an operational semantics of a real-time ex-
tended subset of UML statecharts by translating them to
Uppaal timed automata [15] and model-checking them.
In contrast to the aforementionend translation ap-

proaches, we present an approach to the operational se-
mantics of UML diagrams in this article that resides on
a higher level of abstraction, disregarding the need to be
familiar with mathematical formalisms or model-checker
languages. It incorporates a notion of time, thus enabling
precise interpretation of models with temporal informa-
tion. The approach consists of specifying an abstract in-
terpreter for the behavioral diagrams of interest. For this
purpose, diagrams are represented as instances of a meta
model (i.e., as object diagrams, formally regarded as at-
tributed graphs) which extends the UML meta model by
representations of runtime state information. The steps
of the interpreter are specified by graph transformation
rules which manipulate the runtime state information to
model the execution of the diagram. This approach to
Dynamic Meta Modeling (DMM) has been successfully
applied to statechart and sequence diagrams [2, 9]. Note
that the use of graph transformation rules is different
from the graph-grammar based transformation presented
in [19]. There, UML models that are annotated with per-
formance information (like execution time) are translated
into a stochastic performance model by means of graph-
grammar productions.
In order to account for the time aspect, we extend

the formal foundation of the DMM approach from at-
tributed to timed graph transformation systems [7]. Con-
sequently, the approach is calledDynamic Meta Modeling
with time (DMM+t). Following a formal introduction to
the approach in Sect. 2, Sect. 3 presents – as a case study
for DMM+t – multimedia sequence diagrams. They are
a specialization of UML sequence diagrams for modeling
multimedia applications and have been proposed as part
of the OMMMA approach towards object-oriented mod-

eling of multimedia applications based on UML (see [4,
20] for details). The operational semantics of these di-
agrams is defined using DMM+t in Sect. 4, where we
also show how the formal semantics can be employed
to gain additional information on the example under
consideration.
A careful review of the achieved results in Sect. 5 re-

veals that in special cases the semantics definition yields
results that do not correspond to the intuitive concepts.
Two different kinds of strengthening the semantics are in-
troduced that can be used to eliminate these unwanted
phenomena. Section 6 concludes the presentation and
points out possibilities for future work.
A preliminary version of this work has been presented

at the International Workshop on Graph Transform-
ation and Visual Modeling Techniques (GTVMT 2002) in
Barcelona [10].

2 Dynamic MetaModeling with time

While textual programming languages are defined by
means of grammars and abstractly represented by terms
or trees, the UML is defined by its meta model [18],
i.e., a class diagram augmented with constraints, whose
instances represent individual UML models. Interpret-
ing these instances as attributed graphs, it is natural to
use graph transformations to specify the manipulation
and execution of diagrams. The approach of Dynamic
MetaModeling (DMM) [2, 9] uses rule-based graph trans-
formations, denoted as UML collaborations, to specify
abstract interpreters for dynamic sub-languages of the
UML, and thus provides an operational semantics.
In order to provide semantics to modeling techniques

with time, like multimedia sequence diagrams, the rep-
resentation of time in graph transformation systems
has been studied in [7]. Instead of introducing time as
a separate semantic concept, the approach models time
by means of time-valued attributes representing logical
clocks. This bears the advantage that different aspects
and properties of time can be modeled, depending on the
strategies according to which time values are assigned
and updated.

2.1 Graph transformation

Dynamic Meta Modeling with time (DMM+t) is based
on typed and attributed graphs which are represented as
UML class and object diagrams. Graph transformation
is defined according to the algebraic approach, which is
given a set-theoretic description in [7]. We denote rules by

p : L→R and transformation steps by G
p(o)
=⇒H, where p

is the rule and o its occurrence, and consider sequences

G0
p1(o1)
=⇒ · · ·

pn(on)
=⇒ Gn of transformations up to permuta-

tion of independent steps.
To be more precise, a notion of equivalence is de-

fined on transformation sequences which considers two

160

sequences as equivalent if they can be obtained from
each other by repeatedly swapping independent trans-
formation steps. This equivalence has been formalized by
the notion of shift-equivalence [12], and it is based on
the notion of independence of graph transformations: two

transformationsG
p1(o1)
=⇒ X

p2(o2)
=⇒ H are sequentially inde-

pendent if the occurrences o1(R1) of the right hand side of
p1 and o2(L2) of the left hand side of p2 do only overlap
in objects ofX that are preserved by both steps, formally
o1(R1)∩ o2(L2) ⊆ o1(L1 ∩R1)∩ o2(L2 ∩R2). Otherwise,
there exists a causal dependency between the two steps
forcing their application in the given order: either the
match o2(L2) of the second step contains vertices or edges
created by the first step, or the second step removes ver-
tices or edges that have been part of the match o1(L1) of
the first.

Two alternative transformations G
p1(o1)
=⇒ H1 and

G
p2(o2)
=⇒ H2 are parallel independent if the occurrence

o1(L1) of the left hand side of p1 in G is preserved by the
application of p2, and vice versa. Otherwise the two steps
are in conflict.
While sequential independence allows consecutive

transformations to be swapped, parallel independence al-
lows alternative transformations to be scheduled in any
order with the same result. The semantic idea behind
these notions is expressed in the local Church–Rosser
Theorem [3].

2.2 Graph transformation with time

Next we review the basic concepts of graph transform-
ation with time, following [7]. To incorporate time into
graph transformation with attributes, we generalize the
approach of TER nets [8]. TER nets are high-level Petri
nets that model time as a token attribute. Therefore,
a time data type is required as a domain for time-valued
attributes.
We model time by means of logical clocks repre-

sented by special attributes of a time data type T =
〈Dtime,+, 0,≥〉, i.e., an algebraic structure where ≥ is
a partial order with 0 as its least element, 〈+, 0〉 forms
a monoid (that is, + is associative with neutral element
0), and + is monotonic wrt. ≥. Obvious examples include
natural or real numbers with the usual interpretation of
the operations, but not dates in the YY:MM:DD format
(due to the Y2K problem).
A graph with time over a given time data type T is

a graph in which all vertices are attributed with a special
attribute chronos of type T . This attribute represents the
state of the local clock of the object. Graph transform-
ation rules with time p : L→ R are just pairs of graphs
with time as introduced above that respect the particu-
lar properties of time. This is expressed in the following
axioms.

1. Local monotonicity: for all vertices x ∈ L and y ∈ R:
x.chronos ≤ y.chronos, and

2. Uniform time stamps: for all vertices x, y ∈ R: x.chro-
nos = y.chronos.

These axioms ensure a behavior of time which can be de-
scribed informally as follows: according to axiom 1 an
operation or step specified by a rule cannot take nega-
tive time, i.e., it cannot decrease the chronos values of
the nodes it is applied to. It is, however, permitted to
take zero time. If this option seems too idealistic, the zero
case can be excluded without affecting the results of this
article.
Axiom 2 states an assumption about atomicity of rule

application, that is, all effects specified in the right hand
side are observed at the same time, called the firing time
of the rule application. Hence, it is guaranteed that the
chronos value of each object always represents the last
point in time when the object took part in a rule ap-
plication (thus the last time it had an externally visible
behavior).
In this case, one can show in analogy with TER nets

that for each transformation sequence s using only rules
that satisfy the above two conditions, there exists an
equivalent sequence s′ such that s′ is time-ordered, that
is, time is monotonically non-decreasing as the sequence
advances. Thereby we obtain the behavior of a fully syn-
chronized systemwith global time by strictly local means.

Theorem 1 (globalmonotonicity [7]).Forevery trans-
formation sequence s using only rules that satisfy axioms
1 and 2 above, there exists an equivalent sequence s′ =

G0
p1(o1),t1
=⇒ . . .

pn(on),tn
=⇒ Gn such that s

′ is time-ordered,
that is, ti ≤ ti+1 for all i ∈ {1, . . . , n−1}.

The abstract interpreter specified in this manner by
a set of graph transformation rules with time is mathe-
matically represented as a rewrite relation over instance

graphs G
p(o),t
=⇒ H labeled with occurrences of rules p(o)

and their firing times t. In addition, we specify a set of
terminal instance graphs to distinguish successful termi-
nation from deadlock. Then, a trace of the interpreter is
a sequence of transformation steps ending in a terminal
state corresponding to a terminal instance graph. Since
we do not want to distinguish different interleavings of
concurrent actions, we consider such traces up to shift-
equivalence. Theorem 1 ensures that one time-ordered
representative exists in every equivalence class of traces.
The rewrite relation defined above also induces a no-

tion of equivalence on graphs: two graphs are equivalent
if they are reducible to the same sets of terminal graphs.
(Note that there may be more than one terminal instance
graph reachable from a given graph because the rewrite
relation is, in general, non-deterministic.) This equiva-
lence can be used to define a notion of semantic equiv-
alence on UML diagrams, even if they are syntactically
different.
We use this model in Sect. 4 to specify an abstract in-

terpreter for multimedia sequence diagrams. Given a set
of individual diagrams as input to this interpreter, we can

161

test under which conditions a scenario executes success-
fully (by reaching a terminal state) and whether two given
scenarios are equivalent (if they always produce equiva-
lent traces or end up in the same terminal states).

3 Specifying time in multimedia with UML

Temporal relationships between elements of media pre-
sentations are the key characteristics of multimedia ap-
plications. The behavioral model of an interactive mul-
timedia application has to account for both the timed
and synchronized rendering of predefined scenes and the
alteration of the course of presentation caused by user
interaction. In the OMMMA approach, we deploy multi-
media sequence diagrams (in the following: MM sequence
diagrams), which are extended UML sequence diagrams,
to model the former and UML statecharts to model the
latter (the details of these modeling views and their inte-
gration can be found in [20]). Within this article, we con-
centrate on the representation of time in MM sequence
diagrams to explain the DMM+t approach to formal se-
mantics of UML with time.
We choose an example from a cinema application to

illustrate our approach. In a cinema, typically there is
a break to sell ice cream before the feature movie starts.
We model this situation as a scene using an MM sequence
diagram (see Fig. 1). While the ice cream is being sold, an
advertisement slide is presented for 200 seconds. A sound
clip announcing new products or special offers (Intro) fol-
lowed by some “appetite-inducing” music is being played
while the vendors sell the ice cream. The intro does not
have a fixed length since it is subject to frequent change;
the backgroundmusic can be played indefinitely. The mu-
sic is stopped when the movie is about to start.
The special elements used in this kind of multimedia

modeling can be explained in natural language:

– All objects appearing at the top of a MM sequence di-
agram are application objects. They have the ability
to render the content of some kind of media object.

Fig. 1. Example scene as a multimedia
sequence diagram

Every application object contains the methods start
and stopwhich control the rendering of the media. Ad-
ditional methods for pausing and re-synchronization
purposes are not used in this article. Application ob-
jects are independent in their timekeeping, following
the principles of distributed multimedia systems [16].
That means neither a central controller nor a global
clock can be assumed.
– The boxes on the lifelines of the application objects
are presentations. These elements replace the UML
construct activation. A presentation represents the
rendering of a media element by an application object.
The name of the media object is given inside of the
presentation’s box. A presentation may furthermore
define constraints on the minimal and maximal length
of the media rendering. This means that shortermedia
elements would remain visible/audible even though
their duration is over (e.g. static media elements like
the slide have a duration of 0, but need to be shown for
some time) and that long (possibly infinite) media ob-
jects (e.g. streams) can be limited. These features are
needed because a scene (as described by the MM se-
quence diagram) does not require all media elements
to have a known and fixed duration. MM sequence
diagrams can thus be compared to higher-level and
role-based interaction diagrams that are typically pro-
vided in the analysis phase of a software development.
– Attached to a presentation are incoming and outgo-
ing messages. Incoming messages aligned with the top
of a presentation box are messages calling the pre-
defined method start (startmessages), incoming mes-
sages aligned with the bottom of a presentation box
are stopmessages. Outgoing messages start or stop
other presentations in synchronization with the cur-
rent presentation. Outgoing messages can be synchro-
nized either with the start of a presentation (starting
at the top of the sending presentation box), the end of
the presentation (starting at the bottom of the box),
or they are sent out with a certain delay after the start
of the presentation (starting at the side of the box
with the specification of the delay attached). For in-
stance, the message to start the audio playback in the
example is timed to happen 5 seconds after the presen-
tation of the slide started.

In Sect. 4.2 these concepts will be formalized using
DMM+t rules. Like every semantics definition they are
based on the abstract rather than the concrete syntax of
the language. Therefore, the meta model defining the new
language elements for MM sequence diagrams is given in
Fig. 2.
The most prominent new feature in the meta model

is the data type Time. This data type may contain pos-
itive integer values and the special value unlim denot-
ing an unlimited time. It is used throughout the meta
model to specify timepoints (e.g. Message.timestamp
or Presentation.endtime) or the length of time intervals

162

Fig. 2. Meta model of the MM sequence diagram

Fig. 3. Abstract syntax of the example diagram

163

(e.g. Media.duration). As every model element must have
a chronos attribute (to comply with the axioms), it was
added to the topmost class of the UML meta model hi-
erarchy ModelElement. While a presentation uses the
symbol of the UML element activation (which has no rep-
resentation in the abstract syntax), it corresponds to the
meta model element Presentation that contains the at-
tributes minduration and maxduration. The associations
between the incoming and outgoing messages in stan-
dard UML have consequently been adapted to this new
element. The activator is now the message that starts
a presentation, and all resulting outgoing messages are
owned by the presentation. The order of these messages
is still determined by the successor/predecessor relation.
If message delays are specified, they must not contra-
dict this order. Attributes like presentation.active or mes-
sage.timestamp represent runtime information necessary
for the interpretation of the operational semantics rules.
A Device is the representation of a physical rendering fa-
cility suitable for the media type (this is not elaborated
here).
The representation of the example diagram of Fig. 1

according to this meta model is shown in Fig. 3. Addi-
tional information in the meta model representation is
the duration of the media objects (formerly only given
in the text) and the assumption of default values for
constraints of presentations: minduration is by default 0,
maxduration is by default unlim. Everything else is just
a representation of the information present in the con-
crete syntax diagram of Fig. 1.
Next we show how the techniques formally introduced

in Sect. 2 can be used to formalize the semantics of MM
sequence diagrams.

Fig. 4. DMM+t rule for ending a presentation due to the media duration

4 Semantics of multimedia sequence diagrams

This section contains the DMM+t rules for the MM se-
quence diagram example. The section consists of three
parts: first, we introduce the rule notation as it appears
in the figures, then we define the set of DMM+t rules for
MM sequence diagrams, and finally we show how these
rules support a precise interpretation of the model.

4.1 Format of the DMM+t rules

DMM+t rules as introduced in Sect. 2 are represented as
pairs of UML collaboration diagrams on the level of clas-
sifier roles (in contrast to the instance level) where the
role name following the slash symbol is optional and only
shown if it is needed for binding and the name of the
base classifier follows the colon symbol in the name string
(see [18, pp. 3–124ff]). The collaboration diagrams are ex-
tended by attribute conditions (given in OCL). The left
hand side diagram denotes the pre- and the right hand
side diagram the post-conditions of the transformation.
Since all rules here should conform to the axioms defined
in Sect. 2, we introduce a special variable firingtime. This
variable represents the chronos value that is associated
with the rule’s invocation. Its possible values are defined
in the preconditions section of the rule. The execution
mechanism of the rule has to ensure that

– the chronos attributes of all objects on the left hand
side of the rule have a lower or equal value to that of
firingtime before applying the rule, and
– the chronos attributes of all objects on the right hand
side of the rule are updated to the value of firingtime
after the rule has been executed.

164

Specifying the firing time in this fashion is a convenient
way to ensure that all resulting rules are correct with re-
spect to the axioms. The value of firingtime may also be
used in other conditions to set timestamps etc.

4.2 DMM+t rules for multimedia sequence diagrams

The DMM+t rules defining the semantics of MM se-
quence diagrams can be distinguished in three groups:
rules that describe the end of a presentation (Figs. 4 to 6),
rules that describe the reception of a message (Figs. 7
and 8), and rules that describe the sending of messages
(Figs. 9 to 11).
One of the features of MM sequence diagrams that

requires a specification in a formal time-based semantic
domain is the end of a presentation. This end may occur
in a number of ways. Either the media duration is in-

Fig. 5. DMM+t rule for extending a presentation up to minduration

Fig. 6. DMM+t rule for cutting a presentation at maxduration

Fig. 7. DMM+t for receiving a stopmessage

Fig. 8. DMM+t rule for receiving a startmessage

side the specified parameters and the presentation stops
“naturally” (i.e., the presentation runs just as long as
the media’s duration), or the minduration or maxdura-
tion constraints force the end of the rendering to occur
at a certain point in time. A further possibility is the
reception of a stopmessage. Figures 4 to 7 specify these al-
ternatives. The simplest one is the normal end of a media
object. The corresponding rule is represented in Fig. 4.
The preconditions state that this rule is only applicable
if media.duration fulfills the specified constraints, i.e., if
it falls inside the specified interval. Note that the associ-
ation (association role, to be precise) to the :Device role
is only present on the left hand side of the rule, i.e., it
is deleted when applying the rule since the device is de-
allocated. This is the same for all rules ending a presenta-
tion. The two rules in Figs. 5 and 6 specify the end of the
presentation due to the minduration or maxduration con-

165

Fig. 9. DMM+t rule describing the sending of the first message in an order

Fig. 10. DMM+t rule describing the sending of subsequent messages in an order

Fig. 11. DMM+t rule defining the sending of end-synchronized messages

straints. Only their preconditions differ, the effect (the
end of the presentation) is the same for all three rules.
In contrast, the reception of a stopmessage requires

the presence of a stimulus for the message as shown in
Fig. 7. A stimulus is the UML instance of a message
specification.1 Whenever a message is sent, a stimulus is
created and attached to the receiving object. In this way,
sending and reception are decoupled. Thus one might e.g.
formulate rules including protocol-based reception mech-
anisms (as specified by statecharts) as an alternative to
direct reception. Since we focus on MM sequence dia-
grams, we provide direct reception rules for startmessages
and stopmessages. The reception of a startmessage is
specified in Fig. 8. The stimulus that indicates the pend-
ing message is consumed in the course of the rule appli-

1 The precise definition of a Stimulus is not repeated here, it can
be found in the UML specification [18, pp. 2–103ff].

cation, and a device for rendering the media element is
allocated. Note that as the firing time of both message
reception rules is given as stimulus.chronos (the recep-
tion time of the stimulus), we assume a communication
without observable delays. It would also be possible to
model fixed delays, delays within a bounded interval or
unbounded message delays by modifying this condition.
The third set of rules describes the sending of specified

messages (Figs. 9 to 11). We have to distinguish between
messages that have a numerically specified delay (either
0, indicating a synchronization with the start of the own-
ing presentation, or a fixed time after that) and messages
that have a delay value of unlim, indicating a synchroniza-
tion with the end of the presentation. According to the
UML specification, we also have to account for messages
being in predecessor/successor relationship. The seman-
tics specification results in three different rules describing
the sending of specified messages.

166

Figure 9 displays the rule for the first message in
a sequence that has a limited delay. Since the attribute
msg.delay is present in the definition of the firing time, this
could never be true for the value unlim (firing time can
never be unlim). To interdict the application of the rule to
any message which has a predecessor (and is thus not the
first one), a negative application condition is used. A nega-
tive application condition (NAC) as defined in [11] con-
tains a subgraph that must not be present in the context
of a rule occurrence. It is indicated by enclosing the elem-
ents of the NAC in a dashed and canceled area. Therefore,
this rule couldnevermatch the role /msg to anymessage in
a givenhostgraph that has a predecessor.The effects of the
rule are the creation of a Stimulus at the receiving object
and the specification of a timestamp for the message, thus
indicating successful sending of the message.
The rule in Fig. 10 can be applied to any subsequent

message in the order specified by the predecessor rela-
tionship. It requires the previous message to be executed
(timestamp is set) and also requires a finite value for
its delay. Note that if all messages would be required
to carry a delay value, the way of processing messages
could be simplified by determining the order based on
their delay values. Combining the two ordering mechan-
isms can cause contradictions in the specifications (i.e.,
the specified order of messages and their delays do not
correspond), but gives flexibility to combine timed speci-
fications as used in our example with standard features
of UML sequence diagrams. One could e.g. combine MM
sequence diagrams with messages that are sent in reac-
tion to some external event rather than after a fixed delay.
Thosemessages would then have an unspecified delay, but
could be placed in an order with the timed messages.
The remaining case that has to be specified leads to

the resolution of an (intentional) ambiguity in the descrip-
tion of MM sequence diagrams in Sect. 3. The descrip-
tion in natural language does not yield any information on
the situation that a presentation ends before all its mes-
sages are executed. The trivial options are either to send
all remaining messages immediately (disregarding their
delay values) or to discard them. When discarding the
messages, we can furthermore distinguish whether end-
synchronized messages should still be sent (disregarding
the fact that some of their predecessors have been dis-
carded) or whether they should also be discarded. Note
that the twoprevious rules do not yield any information on
this as they only apply in the case of active presentations.
The rule in Fig. 11 does clarify these ambiguities. It states
that at the end of a presentation the end-synchronized
messageswill still be sent.No condition requires the execu-
tion of previous messages, thus end-synchronization over-
rides the predecessor/successor order. There is further-
more no rule to process remaining messages that are not
end-synchronized, thus they are discarded. This example
shows how a formal specification strengthens and clarifies
concepts presented in natural language although different
semantic decisions could be taken.

4.3 Interpreting the semantics

One of the motivations for deploying formal semantics
is the need to gain additional information on the model
under consideration. Since specifications can be quite
complex, it is not always obvious whether the specifica-
tion has a meaningful interpretation or if it complies with
the intention of the modeler. The definition of DMM+t
rules facilitates an interpretation of a given model. The
interpretation can be used for a visualization or a test of
a given situation. This is especially important if certain
elements of the model are underspecified, e.g. the dura-
tion of media elements is not given. Here, a modeler has
to ensure that at least a few chosen test cases produce the
intended behavior.
For such a test, an initial configuration (test case) has

to be provided. In addition to the specification given in
Fig. 3, we will assume the model to be in a state where
all chronos values are initially 0, the timestamps are un-
defined, and all application objects are inactive. A trigger
for the whole scenario is created by assuming that pre-
sentation p1 is to be started, i.e., p1.starttime is 0, p1
is active. We additionally assume a length of 50 seconds
for Intro. A fragment of this configuration is depicted in
Fig. 12.
The rule that can be applied on this initial config-

uration is the one shown in Fig. 9. The roles match as
follows: /receiver on Tape Player, /sender on Projector 1,
/presentation on p1, and /msg on m1. According to the
OCL constraints of this rule the firing time will be at
choronos=5 and a Stimulus will be created. Applying the
rule of Fig. 8 will consume the stimulus and activate p2.
Abstracting from the actual details of these graph

matchings, Fig. 13 shows an overview of the possible con-
figurations and the transitions between them. In this
figure, configurations are characterized by the chronos
values of the four presentation objects and their appli-
cation objects. Presentations that are currently active
are shaded in grey. The names of the configurations are
given as roman numerals. Labeled transitions between
the configurations indicate the rules applied as well as the
chronos value of the rule applications (the firing time).
Rule applications with identical firing times have been
combined into one transition.
The alternative paths between the configurations II

and IV illustrate the effect of the global monotonicity
theorem introduced in Sect. 2. Although some elements of
configuration IIIa have already reached a chronos value
of 200, performing operations on independent elements
with lower chronos values (in the past) still remains pos-
sible. Whether an actual interpreter would compute the
diagram by the path via configuration IIIa or configura-
tion IIIb is non-deterministic. The theorem guarantees
for each (successful) path of rule applications that an al-
ternative path exists that is ordered with respect to the
chronos values of the rule application (in the example
the path via IIIb). Therefore, the result of the interpre-

167

Fig. 12. Excerpt from the initial configuration

Fig. 13. Trace of the execution of the test scenario

168

tation is independent of the ordering of rule applications
in an actual interpretation. The terminal configuration,
i.e., the terminal instance graph, is not shown here; it is
reached when the movie ends.
In general, a terminal state is reached when all pre-

sentation objects have been presented, that is, their end-
time attributes are set. This intuitively corresponds to the
completion of the scenario at the bottom of the sequence
diagram.
More information on the application’s behavior can

be gained from possibly defective test cases, because the
system’s reaction to unexpected situations cannot eas-
ily be predicted. If we assume the length of the Intro to
be 230 seconds, it is not intuitively clear how this situ-
ation is handled. If we apply our semantic rules to this
scenario, we find that the scenario is invalid under the
rules we specified. At the end of the slide presentation,
a Stopmessage is sent to the tape player, but the resulting
Stimulus cannot be consumed since the object is not ac-
tive. Thus the Stimulus stays attached. At firingtime=235
the Intro ends and sends a Startmessage to the tape player.
This can now be processed, the player starts. A conflict
with the still lingering stimulus of the stopmessage does
not occur as the conditions for processing the stopmes-
sage are neither met before the startmessage is being pro-
cessed (presentation not active) nor afterwards (chronos
has been advanced). Thus the music never stops and no
terminal state can be reached.

5 Strengthening the semantics

In the previous section we demonstrated how DMM+t
rules can be used to specify semantics for UML diagrams
and how these specifications can be put to use. Yet some
details of the presented approach need to undergo a fur-
ther investigation to guarantee that DMM+t rules are
indeed able to express all concepts of MM sequence dia-
grams (and other dynamic UML diagrams with temporal
aspects).
The first and most general observation is that build-

ing on graph transformations as the basis of the semantic
domain gives a high degree of freedom. All graph trans-
formation rules can be executed on any part of the graph
provided their application conditions are satisfied. While
this allows for a non-deterministic and concurrent execu-
tion of a specification, it has to be ensured that no unin-
tended effects arise from this flexibility. The axioms given
in Sect. 2 already restrict the handling of the chronos at-
tributes to firing sequences that conform to the general
concept of passing time. These axioms have been enforced
by introducing the variable firingtime in the DMM+t
rules and interpreting it accordingly. Thus the distributed
presentation of media elements can be modeled using this
semantic domain.
MM sequence diagrams provide some other notions

that have to be properly represented. Outgoing messages

from a presentation have an order (specified by their
delays and/or the predecessor relation). To ensure that
this order is preserved in the semantic domain, the rules
for message processing are formulated to create a de-
pendency between them. Each of the message-processing
rules sets the timestamp of the message it executes and
thus creates the context for the processing of the next
message. Another intuitive order is embedded in the mes-
saging mechanism. A message cannot be received before
it is sent. Again, this is enforced by creating a dependency
between the rules, based on the existence of the stimulus
object.
But there still exists a degree of freedom in the seman-

tic domain that yields non-intuitive results. Consider the
MM sequence diagram given in Fig. 14 and assume that
the media element assigned to presentation p1 has a du-
ration of 80 (for the moment we will disregard p2 and p3
completely). If the presentation p1 starts at chronos=0,
the rules for sending the message (at firingtime=100) and
for reaching the end of the media object can both apply.
If the message is sent, an awkward situation occurs. Not
only does the sending of the message contradict the con-
cepts specified in Sect. 3 and refined in Sect. 4. But also,
by sending the message, the chronos value of the presen-
tation object is advanced to a value of 100, thus the rule
of Fig. 4 can never apply and end the presentation. Obvi-
ously, this is an unwanted behavior.
In terms of the formalization in Sect. 2 we have a con-

flict between two rules, which is unintended, because we
want only the rule for ending the presentation to fire.
There are two ways to rectify this situation. The first
would be to introduce dependencies between all rules con-
flicting in this way. Those pairs of conflicting rules can be
found e.g. employing the tool AGG [22]. This would result
in a lot of artificially created elements embodying the de-
pendencies. These would clog the specification, making it
hard to understand and change, especially as each change
might create new conflicts. Thus a more general solution
has to be found.
The second and in this case much more elegant way

to resolve this conflict is to introduce a general no-
tion of priority. The human intuition for a resolution
of this conflict would be that whichever rule would be
“earlier”, i.e., at a lower firing time, should be applied.
We can compare the firing times since the rules are in

Fig. 14. Example of a complex
MM sequence diagram

169

conflict and are thus influencing the local time of at
least one common object (and all objects synchronized
with it by the rule). Thus we state that an occurrence
of a rule may only happen if there is no conflicting
rule that might occur at a lower firing time. We call
the semantics conforming to this restriction the locally
strong semantics. By requiring this kind of priority it
is guaranteed that the local order of rule occurrences
does indeed conform to the intuitively expected order of
events.
This order is still enforced only locally. It does not

prevent “unintuitive” firing sequences due to the lack of
synchronization of local clocks. Refer again to Fig. 14. If
we assume the media of p1 to have a duration of 80 and
p2 to have a duration of 70, we might expect that the end-
synchronized stopmessage sent by p2will stop p1 before it
reaches its normal end. But once the presentations p1 and
p2 are started, both the rule for ending p1 due to the end
of the media (it has a lower firing time than the conflict-
ing rule for sending the message at firingtime=100) and
the rule for sending the message from p2 to p3 at firing-
time=30 can occur (it is not in conflict with the rule for
ending p1 as there are no common elements). Thus, non-
deterministically, we might end p1 and thereby advance
its chronos to 80. Then at firingtime=70, p2 would end,
but the rule for emitting the stopmessage to p1 would not
be applicable since the chronos value of p1 would already
be advanced to 80. Note that this is not a faulty behavior
if we regard the different media objects as unsynchro-
nized entities with their own local clocks. Under this as-
sumption, the sequence described above could yield valu-
able information for the case of a very “slow” componen
rendering p2.
But not every timed UML diagram assumes this kind

of local clocks. In most cases it is much simpler (and jus-
tifiable from the appliation domain) to assume perfectly
synchronized components, i.e., a global clock. In this case,
yet another restriction can be placed upon the semantics:
we can require an interpreter to always choose from all
possible rule occurrences one with minimal firing time.
This leads to the automatic creation of a globally time-
ordered firing sequence in which no object can “overtake”
another. In [8] this concept is called the strong semantics.
This kind of semantics places a heavy restriction on the
non-deterministic nature of the underlying formalism, as
it only allows for a non-deterministic choice between pos-
sible rule occurrences that happen at the same firing time.
This interpretation of the rules is closest to the intuitive
human interpretation.
We imagine that a tool could provide both possible in-

trepretation mechanisms. In that way, a modeler could
first interpret his specification under the assumption of
perfect time and then move to an interpretation taking
distributed clocks into account (if this is required by the
application domain). We believe that both interpreta-
tions yield interesting new and valuable information on
the model.

6 Conclusion

In this paper, we have extended the approach of Dynamic
Meta Modeling [2, 9] to specify the semantics of time-
dependent dynamic behavior of UML models. As a case
study, we have applied this approach to multimedia se-
quence diagrams, a variant of UML sequence diagrams for
modeling the control of multimedia presentations.
We have taken a high-level point of view in two dif-

ferent respects. First, the proposed semantics is at the
requirements level, that is, we have assumed zero dura-
tion for the operations like the start or termination of
a presentation or the transmission of a message. Further-
more, we did not consider failures and delays due to im-
perfect infrastructure (e.g. lack of resource availability),
that may appear for instance in distributed Web-based
multimedia applications. To capture those aspects, an ex-
tension of both the language of multimedia sequence dia-
grams and its semantic rules is required.
Second, the rules themselves are high-level because

they assume an execution mechanism based on global
pattern (that is, graph) matching which provides non-
determinism or backtracking to search for a successfully
terminating sequence. Although there are tools support-
ing these paradigms [21], this is quite different from stan-
dard object-oriented concepts. It is a topic of future re-
search how to map abstract semantic rules to object-
oriented implementations.

References

1. David A, Möller MO, Yi W (2002) Formal verification of UML
statecharts with real-time extensions. In: Proc. 5th Interna-
tional Conference on Fundamental Approaches to Software
Engineering (FASE 2002), Lecture Notes in Computer Sci-
ence, vol 2306. http://www.springer.de/comp/lncs. Springer,
pp 218–232

2. Engels G, Hausmann JH, Heckel R, Sauer S (2000) Dynamic
Meta Modeling: A graphical approach to the operational se-
mantics of behavioral diagrams in UML. In: Evans A, Kent
S, Selic B (eds) Proc. UML 2000, York, UK, Lecture Notes
in Computer Science, vol 1939. http://www.springer.de/
comp/lncs. Springer-Verlag, pp 323–337

3. Ehrig H, Pfender M, Schneider HJ (1973) Graph grammars:
An algebraic approach. In: 14th Annual IEEE Symposium on
Switching and Automata Theory. IEEE, pp 167–180

4. Engels G, Sauer S (2002) Object-oriented modeling of multi-
media applications. In: Chang SK (ed) Handbook of Software
Engineering and Knowledge Engineering, vol 2. World Scien-
tific, Singapore, pp 21–52

5. Firley T, Huhn M, Diethers K, Gehrke T, Goltz U (1999)
Timed sequence diagrams and tool-based analysis – A case
study. In: France R, Rumpe B (eds) Proc. UML ’99, Lec-
ture Notes in Computer Science, vol 1723. Springer-Verlag,
pp 645–660

6. Gyapay S, Heckel R, Varro D (2002) Graph transformation
with time: Causality and logical clocks. In: Corradini A, Ehrig
H, Kreowski H-J, Rozenberg G (eds) Proc. 1st International
Conference on Graph Transformation (ICGT 02), Barcelona,
Spain, Lecture Notes in Computer Science, vol 2505. Springer-
Verlag, pp 120–134

7. Gyapay S, Heckel R, Varro D (2003) Graph transformation
with time In: Fundamenta Informaticae 58(1):1–22

170

8. Ghezzi C, Mandrioli D, Morasca, Pezzè, S (1991) A unified
high-level Petri net formalism for time-critical systems. IEEE
Transactions on Software Engineering 17(2):160–172

9. Hausmann JH, Heckel R, Sauer S (2001) Towards dynamic
meta modeling of UML extensions: An extensible seman-
tics for UML sequence diagrams. In: Proc. IEEE Symposia
on Human-Centric Computing Languages and Environments
(HCC’01), pp 80–87

10. Hausmann JH, Heckel R, Sauer S (2002) Dynamic Meta
Modeling with time: Specifying the semantics of multi-
media sequence diagrams. In: Bottoni P, Minas M (eds)
Proc. International Workshop on Graph Transformation and
Visual Modeling Techniques (GTVMT 2002), Barcelona,
Spain, Electronic Notes in Theoretical Computer Science
72(3). http://www.elsevier.nl/locate/entcs. Elsevier
Science

11. Heckel R, Wagner A (1995) Ensuring consistency of condi-
tional graph grammars – A constructive approach. In: Proc.
of SEGRAGRA’95 “Graph Rewriting and Computation”,
Electronic Notes in Theoretical Computer Science, vol 2.
http://www.elsevier.nl/locate/entcs. Elsevier Science

12. Kreowski H-J (1977) Manipulation von Graphmanipulatio-
nen. PhD thesis, Technical University of Berlin, Department
of Computer Science

13. Küster JM, Stroop J (2001) Consistent design of embedded
real-time systems with UML-RT. In: Proc. IEEE Sympo-
sium on Object-Oriented Real-Time Distributed Computing
(ISORC 2001), pp 31–40

14. Li X, Lilius J (1999) Timing analysis of UML sequence dia-
grams. In: France R, Rumpe B (eds) Proc. UML ’99, Lecture
Notes in Computer Science 1723. Springer, pp 661–674

15. Guldstrand Larsen K, Pettersson P, Yi W (1997) UPPAAL in
a nutshell. International Journal on Software Tools for Tech-
nology Transfer 1(1–2):134–152

16. Mühlhäuser M, Gecsei J (1996) Services, frameworks, para-
digms for distributed multimedia applications. IEEE Multi-
media 3(3):48–61

17. Object Management Group (2002) UML Profile for Schedula-
bility, Performance, and Time, OMG adopted specification

18. Object Management Group (2003) OMG Unified Modeling
Language Specification, version 1.5

19. Petriu DC, Shen H (2002) Applying the UML performance
profile: Graph grammar-based derivation of LQN models from
UML specifications. In: Computer Performance Evaluation,
Modelling Techniques and Tools (Proceedings of TOOLS
2002), Lecture Notes in Computer Science, vol 2324. Springer-
Verlag, pp 159–177

20. Sauer S, Engels G (2001) UML-based behavior specification of
interactive multimedia applications. In: Proc. IEEE Symposia
on Human-Centric Computing Languages and Environments
(HCC’01), pp 248–255

21. Schürr A, Winter AJ, Zündorf A (1997) PROGRES: Lan-
guage and environment. In: Ehrig H, Engels G, Kreowski H-J,
Rozenberg G (eds) Handbook on Graph Grammars and Com-
puting by Graph Transformation: Applications, Languages,
and Tools. World Scientific, Singapore, pp 487–550

22. Taentzer G (1999) AGG: A tool environment for algebraic
graph transformation. In: Proc. International Workshop on
Applications of Graph Transformations with Industrial Rele-
vance (AGTIVE 1999), pp 481–488

Jan Hendrik Hausmann is
a PhD student at the Univer-
sity of Paderborn, Germany. His
research topics include object-
oriented modelling with the UML,
graph transformations and their
application in software engineer-
ing, meta modelling, and eLearn-
ing systems.

Reiko Heckel is assistant pro-
fessor at the University of Pader-
born, Germany, since 1998. His
research interest is the use of
graph transformation in soft-
ware engineering, including the
development of relevant theory
like structuring and modular-
ity concepts, concurrency theory,
graph-based temporal logic, etc.
and the application of this the-
ory to the modelling of object-

oriented and agent-based systems, and to the semantics of
visual modelling languages.

Stefan Sauer works as a re-
search and teaching associate at
the University of Paderborn in
the database and information
systems group. The focus of his
research is on object-oriented
modeling with the UML, seman-
tics of visual languages, meta
modeling, extensions of the UML
for interactive multimedia appli-
cations, and multimedia software
engineering.

171

OBJECT-ORIENTED MODELING OF

MULTIMEDIA APPLICATIONS ∗

GREGOR ENGELS and STEFAN SAUER
University of Paderborn

Mathematics and Computer Science Department
D–33095 Paderborn, Germany
E-Mail: {engels|sauer}@upb.de

The field of multimedia software engineering is still in an inmature state. Signif-
icant research and development has been dedicated towards multimedia services
and systems technology such as networking or database systems. Multimedia
document formats have been standardized. But when it comes to multimedia
application development, the development process is truncated to an implement-
and-test method. Either specialized multimedia authoring systems or multime-
dia frameworks or toolkits complementing programming languages or system
software are directly used for implementation. No preceding modeling phases
for requirements specification, analysis, or design of the system to build are
enforced. The development of sophisticated multimedia process models and es-
tablished, usable graphical notations tailored to the specification of multimedia
systems is still underway.

In order to fill this gap, it is the purpose of this chapter to show current
achievements in object-oriented modeling of multimedia applications. Based on
an analysis of the state of the art in multimedia application development, we
shortly present approaches to object-oriented hypermedia modeling and exten-
sions of the Unified Modeling Language (UML) for hypermedia and interactive
systems. The main part of the chapter is dedicated towards a recent approach
to the Object-oriented Modeling of MultiMedia Applications (OMMMA).

Keywords: Multimedia software engineering, object-oriented modeling, inte-
grated modeling, Unified Modeling Language.

∗chapter in S. K. Chang (editor), Handbook of Software Engineering and Knowledge
Engineering, vol. 2, pp. 21-53, World Scientific, Singapore, 2002. ISBN 981-02-4974-8.
http://www.wspc.com/books/compsci/4603.html

172

1 Introduction

Multimedia applications can be defined as interactive software systems com-
bining and presenting a set of independent media objects of diverse types that
have spatio-temporal relationships and synchronization dependencies, may be
organized in structured composition hierarchies, and can be coupled with an
event-based action model for interaction and navigation. Media objects con-
tribute essentially to presentation and interaction via the user interface. Two
major categories of media types can be distinguished:

• static media types: time-independent media that do not show any temporal
expansion and whose presentation is invariant over time, e.g. text, image,
and graphics; and

• temporal media types: time-dependent media that possess time-dynamic
behavior and whose presentation varies over time, e.g. animation, video,
and audio.

Interactive multimedia applications are becoming a widely-used kind of soft-
ware systems. By integrating multimedia elements, application programs can
be made more comprehensible. For instance, it is better to provide auditive
examples of musical pieces within an encyclopedia of classical composers or to
show a video on the deployment and functioning of a computer tomograph than
to simply provide this information textually or with single pictures. There-
fore, multimedia is especially useful if the information to present is itself in-
herently multimedia. Additionally, multimedia can also make user interaction
more intuitive by reproducing natural forms of interaction, e.g. with simu-
lated laboratory instruments like rotary switches or analogue indicators, or by
speech and gestures [9]. We expect that typical multimedia application domains
will not be restricted to purely presentational objectives, like web pages, edu-
cational courseware, interactive entertainment, or multimedia catalogues, but
conventional business, technical, and information systems will be extended with
multimedia features.

State of the art in multimedia software development is that multimedia ap-
plications are directly built either by deploying multimedia authoring systems
or by coding them using multimedia frameworks or toolkits adding multime-
dia features to (object-oriented) programming languages or system software. In
both cases, no preceding modeling phase as part of a sophisticated software
engineering process is carried out prior to implementation. But the importance
of such an activity in the course of multimedia software development has been
advocated (see e.g. [3] or [8]).

From a software engineering perspective, the problem with the current state
of multimedia application development is not only the absence of sophisticated,
yet practical multimedia software development process models, but also the lack
of usable (visual) notations to enable an integrated specification of the system
on different levels of abstraction and from different perspectives. Such languages
must be understandable by the different people and stakeholders involved in the
multimedia development process.

173

While support by authoring systems, multimedia technologies, services, and
standard formats eases the implementation and exchange of multimedia soft-
ware, they must be complemented by more abstract, yet precise modeling or
specification methods for these systems. What is especially missing is the inte-
grated specification of the multiple aspects of multimedia systems like real-time
behavior, user interaction, and application logic. This becomes a key issue when
multimedia applications continue to evolve towards higher complexity, and mul-
timedia features become prominent in almost any application domain in order
to make information more conceivable as well as user interaction more sophis-
ticated and lively. Effective management and maintenance of such applications
requires testing and quality assurance, adaption and reuse of its parts, as well
as readable and structured documentation. These requirements are supported
by a modeling activity within the development process. Precise specification
techniques add to this the capability of validation other than testing by model
analysis. Instead of authoring systems supporting the instance-level assembling
of interactive multimedia presentations, multimedia CASE tools are needed that
support an integrated development process. The implement-and-test paradigm
used during multimedia authoring resembles the state of software development
before leading to the software crisis of the 1980s.

From this observation, we claim that the development process of multime-
dia applications should include a modeling activity, predominantly on analysis
and design levels, like they are essential in conventional software engineering
methods. Especially the design phase is required to achieve a clearly struc-
tured and error-free implementation. Concepts, languages, methods, and tools
must be developed that take the specific requirements of multimedia systems
into account and support a methodical multimedia software process. As re-
gards software specification prior to implementation, we consider an integrated
visual modeling language with capabilities to describe all relevant aspects of the
system in an interrelated fashion as the most promising approach. Since the ob-
ject paradigm has proven many intrinsic properties to support software product
and development process quality – like encapsulation, modularity, extensibil-
ity, adaptability, portability, integrated specification of structure and behavior,
or seamless integration by using a uniform paradigm throughout the process
– we regard an object-oriented modeling language for multimedia that enables
an integrated specification as being well-suited for this task. Object-oriented
modeling eases the transition to the implementation of a multimedia application
since implementation technologies as well as multimedia databases are mostly
based on the object paradigm, too.

A number of models have been proposed for multimedia applications. One
striking disadvantage of most models is that they only support partial models
for individual aspects of the system, but not a holistic model for the integration
of these modeling dimensions. Primarily, they focus on modeling of temporal
relations and synchronization of multimedia presentations (e.g. [41, 61]; consult
[6] for a general classification). Some more elaborated models also account for
interactivity (e.g. [31]). Others concentrate on logical structure and naviga-
tional concepts for hypermedia (e.g. [33, 51]). Another problem with many of

174

these models is that they are not intended to be directly used by a multimedia
software engineer during a development project. Instead, they form the con-
ceptual basis of (proprietary) authoring systems. Thus, they are not suited for
directly supporting modeling activities in a multimedia software development
process.

In traditional software engineering, the Unified Modeling Language (UML
[47, 11])) has become the de facto standard notation for software development
from the early stages of requirements specification up to detailed design. It has
been adopted as the standard modeling language by the Object Management
Group (OMG) and has been submitted for standardization to the International
Standardization Organization (ISO).

UML is a family of visual, diagrammatic modeling languages that facilitate
the specification of both software systems and process models for their devel-
opment. The diverse language elements of its constituent sub-languages enable
modeling of all relevant aspects of a software system, and methods and prag-
matics can be defined how these aspects can be consistently integrated.

Unfortunately, UML does not support all aspects of multimedia applica-
tions in an adequate and intuitive manner (see Sect. 4.1). Especially, language
features for modeling time, synchronization, and user interface aspects are not
explicitly provided. Other concepts of UML are not mature enough or less vivid
and thus aggravate multimedia modeling unnecessarily.

But UML comes with built-in extension mechanisms and a so-called profiling
mechanism [47] in order to adapt and extend the general-purpose modeling
language for specific development processes and application domains.

These fundamental concepts of the UML form the basis for the object-
oriented modeling approach for multimedia applications that is presented as
the main content of this chapter. Based on the characteristics of multimedia
applications, we have developed extensions of the UML to specify all relevant
aspects of multimedia applications in a single and coherent model.

The aim of this contribution is therefore to give an overview of existing ap-
proaches to object-oriented multimedia software modeling and, in particular,
to introduce the UML-based, visual multimedia modeling language OMMMA-L
(Object-oriented Modeling of MultiMedia Applications - the Language). In
this intention, we first identify the characteristic dimensions of multimedia soft-
ware engineering and their relevance for an object-oriented modeling approach
for multimedia applications in Sect. 2. We then give an overview of the state
of the art in (object-oriented) multimedia software development. The UML-
based modeling approach OMMMA is presented in Sect. 4 where we point out
the essential elements of OMMMA-L for the specification of the different as-
pects of multimedia applications. Section 5 sketches some future directions of
research and practice in the area of multimedia software engineering influenced
by object-oriented modeling, and Sect. 6 concludes this chapter by summarizing
the current achievements.

175

2 Dimensions of Multimedia Software
Engineering

Software engineering can be approached from both the process and the system
perspective. Within these perspectives, a wide range of dimensions exist that
need to be considered. Each dimension captures a particular aspect of software
engineering. But these dimensions do not exist in isolation, they have interde-
pendecies with each other. Dimensions can be represented by partial models of
software engineering that must be integrated. A formal, graph-based model for
integrated software engineering has been presented in the GRIDS approach by
Zamperoni (see [63]). The instantiation of this generic (meta-) model is exem-
plified by a three-dimensional model of software engineering 3D-M. This model
identifies software processes, architectures, and views of the system as the three
fundamental dimensions of software engineering and addresses the integration
of the corresponding partial models.

The process dimension distinguishes different development phases (or activ-
ities) such as requirements specification, analysis, design, implementation, and
testing. Modeling and implementation phases generally correlate to different
levels of abstraction. Coordinates of the architecture dimension are different
system components, e.g. interfaces with the user or external systems, control,
processes, or a repository, whereas the views on the system can be distinguished
in e.g. structure, function, dynamic behavior etc. Each view captures specific
aspects of the system. (Note that architecture can also be regarded as a high-
level internal view of the system to be built.) Software development can thus be
understood as a (multi-) path through the multi-dimensional space of this inte-
grated software engineering model, where the trajectory is defined by a process
model, and suited software engineering technologies on the levels of concepts,
languages, methods, and tools are applied.

If we look at the characteristics of multimedia applications and their de-
velopment processes, we easily observe the necessity to tailor and extend these
general dimensions. Multimedia specific aspects introduce new process activi-
ties, new requirements regarding the architectural structure, and new views on
the system.

The process dimension must be extended to account for specific life-cycles
of multimedia applications (see e.g. [52]) and to include activities of content
and media production. Traditional development activities must be adapted,
e.g. through new kinds of testing.

The architecture dimension needs to be refined for multimedia systems. Mul-
timedia systems require complex architectures combining a multitude of hard-
ware and software components. Thus, architectural design resembles software-
hardware co-design of embedded systems. Architectural extensions are needed
to account for different notions of media that co-exist in a multimedia system
such as perception, presentation, representation, storage, and transport media
(see [36]), or for media-related processors like filter, converter, and renderer
components. Software components of multimedia systems can be categorized

176

into system, service, and application components. Multimedia applications are
interactive and have a strong emphasis on a multimedia user interface. Thus,
software architectures from the field of interactive system modeling, e.g. Model-
View-Controller (MVC [39]) or Presentation-Abstraction-Control (PAC [16])
can be considered as a basis for the architecture of multimedia applications. (A
similar approach was followed in the development of the MET++ framework
[1].) Since multimedia applications in general allow for multimodal interaction,
architectures for interactive systems have to be specialized by adapting the con-
trol component to incorporate support for modes of interaction.

Views need to be added or reconsidered: the structure view has to account
not only for domain objects, but also for media objects of static and temporal
media types. Multimedia-specific application frameworks and patterns may be
deployed. A presentation view, i.e., the design of the user interface with respect
to spatial (and temporal) relations of its constituents becomes fundamental –
more than in traditional interactive systems. Although space and time are
mainly perceivable at the user interface, other system entities, such as media or
domain entities, are subject to spatial and temporal relations (or constraints),
too. In fact, the most important new aspect of multimedia systems is that of
space and time, i.e., whether parts of the system have a temporal expansion
relative to some time axis or a spatial within some two or three-dimensional
coordinate space. Thus, a temporal and a spatial view or an integrated spatio-
temporal view are mandatory. Temporal behavior must also account for real-
time features and synchronization. Behavior can be predefined (algorithmic)
or interactive, i.e., non-deterministic at specification time, because the system
has to react to (run-time) events that are unpredictable in time. Multimedia-
specific events, e.g. regarding the processing of temporal media data or specific
media system services, need to be incorporated.

As has been stated above, the dimensions for architecture and views on the
system are interrelated with each other. The relations between different views
are partly influenced by architectural structures of the system and, vice versa,
views on particular application aspects influence the architectural separation
of concerns. For example, the interactive behavior view has to account for
degree and modes of interaction (encapsulated in user interface components).
Due to multimodal inputs resulting in the same application events, the coupling
of interactive control behavior and system function needs to be revised. The
coupling of these views can, for example, be accomplished by the architectural
separation of physical user actions in user interface components – wrapping
input devices – from application behavior in process components, mediated by
different levels of technical and logical events exchanged and handled by the
respective architectural components.

In case of hypermedia systems, navigation views can be understood as a fur-
ther refinement of both the structure and the function views. Other characteris-
tics that can be represented by dedicated views are security, media presentation
adaption, quality of service (QoS), or presentation environment (compare [55]).

Since the primary focus of this contribution is not on the multimedia soft-
ware process dimension, but on the multi-dimensional modeling of multimedia

177

applications, the dimensions of the system perspective, i.e., architecture and
views, are mainly relevant in the following. What remains as a requirement
for a modeling language from the process dimension is the necessity to support
models with different levels of abstraction. From the aforementioned views, the
following can be identified as being fundamental (see [50] for a discussion):

• media and application structure,

• spatio-temporal presentation,

• temporal behavior (function),

• interactive control.

Together with the architecture dimension, these views will be used in the
remainder to characterize the different presented approaches.

3 State of the Art in Multimedia Software
Development

Researchers and practitioners agree that multimedia systems pose new require-
ments on software engineering (see e.g. [12] or [45] for an overview of topics).

Research and development projects in the multimedia field have been mainly
focused on either multimedia enabling system technologies and services, e.g. net-
working or multimedia database systems, or the use of scripting-based authoring
systems as well as XML-based or object-oriented programming technologies for
the implementation of multimedia applications. Multimedia software engineer-
ing in the sense of specialized multimedia software development process models
and usable multimedia specification languages and methods has only drawn
minor attention.

In recent time, three different kinds of approaching multimedia software
programming have become dominant.

• Most multimedia applications and documents are nowadays developed us-
ing multimedia authoring systems. Multimedia authoring systems are
visual, interactive programming tools for the development of multimedia
applications that can be used by developers with different degrees of ex-
pertise.

• With the advent of more complex multimedia software that needs to
be integrated with other sophisticated application features, frameworks
and application programming interfaces complementing standard (object-
oriented) programming languages or system software were introduced.

• With the growing importance of web-based multimedia applications that
are portable between multiple platforms, XML-based approaches to mul-
timedia document authoring like the Synchronized Multimedia Integra-
tion Language (SMIL [62]; see [32]) – uptaking the SGML-based HyTime

178

approach – are being implemented aside from proprietary web-enabled
formats like Flash (by Macromedia) or Apple’s Quicktime.

Since the focus of this chapter is on object-oriented modeling of multime-
dia applications, we refer to these implementation technologies only in their
relations to object-orientation and/or modeling in the following. In particular,
authoring systems are discussed in the perspective of integration with modeling,
and object-oriented frameworks are presented that show fundamental concepts
based on which object-oriented modeling can be easier understood. Neverthe-
less, we stress that implementation of object-oriented models of multimedia
applications can be done with any implementation technology, regardless of its
degree of object-orientation. The architecture and views of object-oriented mod-
els can, for example, be easily mapped to the main concepts of most authoring
systems. Technology-specific decisions would only influence the modeling on the
level of detailed architecture and design.

3.1 Multimedia Authoring Systems and Modeling

Authoring systems are (partly) visual programming environments that support
ad hoc implementation and rapid prototyping of multimedia applications based
on direct-manipulative graphical user interfaces and intuitive media production
and processing metaphors. They are in general supplemented by a scripting
language containing simple language constructs to program extended function-
ality by hand. Pre-existing media and user interface objects are coupled with
built-in mechanisms for dynamic execution, e.g. event handling. Extensibility
of this functionality is rather limited.

Architecturally, authoring systems integrate four main functional compo-
nents: media object tools, composition and structure tools, interpreters, and
generators. Multimedia authoring systems can be classified according to the
media metaphors they deploy as their main abstractions for design and content
provision:

• Screen or card-based authoring systems, e.g. HyperCard [2] or ToolBook
[13], place media objects on cards, slides, or pages, and navigational in-
teraction allows users to switch between these cards.

• In icon or flowchart-based systems like Authorware [42], media objects
have iconic representations that are used as nodes in a navigational flow
graph.

• Macromedia Director [43] is an example for a timeline-based authoring sys-
tem where media objects are positioned along a time axis and navigational
interactions lead to jumps on this axis.

Regarding behavior, both card- and timeline-based categories rely in gen-
eral on scripting-based event handlers that are associated with user interface
elements, while dialogues in flowchart-based systems can be graphically speci-
fied.

179

Authoring systems are object-based rather than object-oriented, i.e., devel-
opers work with objects and component instances instead of classes and com-
ponent types. Reuse in the form of composition of existing artifacts is possible
only on the level of instances and scripts specifying object behavior. Inheritance
is, if at all supported, restricted to the instance level.

Other disadvantages of most authoring systems are scripting languages built
from primitive programming constructs; weak support for structuring, modu-
larization, and reuse, especially in timeline-based systems; unsufficient support
for team development; lack of user-defined types; limited documentation gen-
eration; and limited semantic foundation for analysis, test design, and mainte-
nance. A striking disadvantage of most authoring systems is that they do not
offer open and standardized interfaces for individual extensions or adaptions.
Furthermore, the authored applications generally are not platform-independent
bcause they use proprietary formats and languages.

The wide use of authoring systems and the lack of sophisticated and prac-
tically approved multimedia software process technology are responsible for a
multimedia development practice that is de facto truncated to implementation
and testing phases. This leads to problems well-known in traditional software
engineering like missing conceptualization and documentation. Although the
multimedia software engineering process is not the topic of this chapter, we will
shortly reference two approaches for an integration of UML-based modeling and
tool-supported authoring. We hereby intend to show how the current practice
of development can be maintained and extended by modeling activities.

Boles et al. deploy UML for modeling and Director [43] for implementing
a virtual genetics lab (see [10]). They use class, sequence, and statechart dia-
grams of UML to specify the application structure and behavior, i.e., possible
user interactions as well as internal course of control, of simulated lab experi-
ments. The Model-View-Controller (MVC [39]) paradigm is used as a pattern
for implementation, it is not explicitly represented in the model. To transform
the model to an executable application, they propose a translation approach
into Lingo, the scripting language of Director, bypassing the visual program-
ming capabilities of the authoring system. Events that trigger transitions in
statechart diagrams are implemented as methods of the corresponding classes.
Afterwards, view and controller classes for the direct-manipulative user inter-
face are added. In this case, modeling is restricted to the application internals,
user interface aspects are instantly coded.

To overcome the limitations regarding software engineering principles, we
have proposed a process model for improving the development of multimedia
applications from a software engineering perspective in [17]. It combines object-
oriented modeling in analysis and design phases with an implementation based
on a commercial authoring system, exemplified with Director [43]. The main
idea is to transform a framework-based analysis model of the application, that
is independent of the technology used for implementation, into a program. Key
feature of this transformation is a conceptual programming model of the author-
ing system that bridges the gap between analysis model and implementation.
This authoring system model is used during design to map an object model

180

instantiating the analysis-level class model to an object model instantiating the
authoring system model. The resulting design-level instance model can then be
implemented in a straightforward manner. This approach has so far only covered
the structural aspects of the multimedia application, it has not yet integrated a
behavioral or dynamic view.

Depending on their main metaphors, authoring systems more or less explic-
itly support the different views on an application identified in Sect. 2. While
the presentation view is generally well supported, complex application struc-
tures and behavior require sophisticated programming. The underlying archi-
tecture is transparent to the developer. Since authoring systems are visual
programming environments, different levels of abstraction are not supported.
From the above discussion we conclude that both multimedia authoring and
object-oriented modeling can benefit from each other when they are used as
complementary techniques within a multimedia software development process.
Which role object-orientation plays in the current practice of multimedia soft-
ware development will be presented in the next sections.

3.2 Object-orientation in the Development of Multimedia
Applications

The important role of object-orientation for multimedia has been stated by many
research contributions proposing object-oriented models as a conceptual basis
for multimedia. Also, standardization efforts in the multimedia domain have
discovered the advantages of object models. The family of MHEG standards
[36] for the specifiaction of interoperable interactive multimedia documents (see
[19] for an overview of MHEG-5 and its complementary parts) is based on an
object-oriented model with abstractions for applications and scenes as well as
links, streams, and other basic elements (so-called ingredients). Its focus is on
coding and exchange of hypermedia documents. PREMO (Presentation Envi-
ronment for Multimedia Objects [34]) is directed towards a standardization of
the presentation aspects of multimedia applications. It incorporates temporal
and event-based synchronization objects (see e.g. [29, 30, 28]). Its object model
originates from the OMG object model for distributed objects. PREMO con-
tains an abstract component for modeling, presentation, and interaction that
combines media control with aspects of modeling and geometry. For the defini-
tion of the MPEG-4 [35] standard, objects have been discovered as a potential
source for compression of video data instead of data reduction based on image
properties.

But object-orientation is also promoted by the existence of object-oriented
class libraries, toolkits, and frameworks that support the programming of mul-
timedia applications. In the following, we summarize some characteristics of
the latter since some of these approaches are accompanied by graphic authoring
systems that enable visual programming based on an object-oriented conceptual
model.

181

3.3 Object-oriented Multimedia Frameworks

Besides authoring systems, several object-oriented toolkits and frameworks have
been proposed to support a programming-based development of multimedia ap-
plications. They reify architectural structures and fundamental abstractions
of multimedia systems based either on extensions to object-oriented program-
ming languages or on conceptual object-oriented languages that abstract from
concrete programming environments. An important characteristic feature of
object-oriented multimedia frameworks is their open and extensible architec-
ture. It supports portability and adaptability, e.g. in the advent of new media
types that can be integrated. Some developments in this field are, beyond oth-
ers, the Media Editor Toolkit (MET++ [1]), MultiMedia Extensions (MME
[18]), the Berkeley Continuous Media Toolkit (CMT [54]), and Nsync [4]. A
recent development is the Java Media API [57] consisting of several components
such as the Java 2D and 3D APIs or the Java Media Framework (JMF [58];
see e.g. [25]) for continuous media. Microsoft’s DirectX [44] is a multimedia
extension on the operating system level.

The main objective of object-oriented multimedia frameworks is to supply
a multimedia developer with a software abstraction for multimedia program-
ming. The framework should comply with the fundamental object types and
operations that appear in multimedia applications. Conceptually, a framework
consists of interrelated abstract classes that have to be implemented by con-
crete classes for different multimedia platforms. Therefore, one can distinguish
at least two layers within such a framework. On the higher level, the abstract
framework classes build an application programming interface that can be used
by a multimedia developer independently of the target platform when imple-
menting a multimedia application. On the lower level, concrete classes realize a
platform-dependent implementation of the abstract concepts on the higer level.
To achieve such an implementation, the framework classes make use of a system
programming interface. The framework classes are organized in a generalization
hierarchy where the abstract superclasses specify interfaces that are realized by
their specialized, concrete subclasses.

Requirements for a multimedia framework are openess, robustness, ability to
be queried, scalability, support for architectural structuring, availability of gen-
eral, high-level concepts and interfaces for spatio-temporal media composition
and synchronization, hardware control, database integration, and concurrency.

We will shortly refer to some representative frameworks in the following.

Framework by Gibbs and Tsichritzis. A prototypical object-oriented mul-
timedia framework has been presented by Gibbs and Tsichritzis [24]. It specifies
an abstract application programming interface (API) that serves as a homo-
geneous interface to heterogeneous platforms. It combines two fundamental
concepts, a media hierarchy that encapsulates media values and a hierarchy of
components. Transform and format class hierarchies are used as supporting
concepts.

182

IMD. Another prominent approach that has been widely recognized is the
modeling method for interactive multimedia documents (IMD) by Vazirgiannis
[59]. It integrates the temporal and the spatial domain of multimedia documents
in a common event-based framework. It comprises an object-oriented event
model where elementary events of different, hierarchically specialized event types
are combined by algebraic and spatio-temporal operators. Events are conceived
as representatives of actions that generate these events, e.g. start or end of an
action, parameterized by their subject (triggering object) and object (reactive
object) and a spatio-temporal signature. Composite objects are combined from
basic media objects by temporal and spatial operators. Based on these concepts,
an authoring systeml is provided that allows developers to specify scenarios as
a set of autonomous functions, so-called scenario tuples, to which start and end
events, action lists and synchronization events, raised at the begin or end of the
tuple, can be assigned.

MET++. MET++ [1] is an application framework in that multimedia pre-
sentations are modeled as hierarchical compositions of temporal objects. The
modeled compositions are automatically transformed in temporal layout mech-
anisms and propagated. Real-time behavior and user interaction are integrated
in the controller part of an extended MVC model. The MET++ class hierarchy
includes compositional time-layout objects providing synchronization behavior
for temporal relations and time-dependent media objects. Dynamic behavior of
temporal media objects is specified by time-related functions that are themselves
specializations of complex temporal objects.

Java Media API. The Java Media API [57] contains classes for the integra-
tion of animation, imaging, two and three-dimensional graphics, speech, and
telephony. The Java Media Framework (JMF [58]), which is part of the Java
Media API, offers an interface for accessing and controlling continuous media
objects. It does not come with a general time concept that would enable the in-
tegrated synchronization of temporal and static media, only synchronization of
the former is supported. Furthermore, no sophisticated mechanism for temporal
composition is built in.

The presented frameworks and their inherent structuring can be used as
sources for the architectural structuring of multimedia systems and applications,
and partly for modeling language design. Additionally, their implementations
are promising technologies for the implementation of object-oriented models of
multimedia applications, especially for complex applications. But all the differ-
ent views on multimedia applications must be mapped to basic object-oriented
programming principles such as objects, messages, and events. Only in cases
where the frameworks are themselves accompanied by graphical development
(authoring) tools, like MET++, different views are explicitly supported on a
higher (visual) level of abstraction.

183

We now step from object-oriented implementation technologies to modeling
techniques. We first direct our attention to object-oriented modeling approaches
for hypermedia and interactive systems that can contribute to a holistic multi-
media modeling, before we return to the object-oriented modeling of multimedia
applications in Sect. 4.

3.4 Hypermedia Modeling

Hypermedia software development has been addressed by different modeling ap-
proaches. Because these models focus mainly on hyperlinked media, emphasis
is put on the design of navigational structures. Conceptual models of a hy-
permedia application are accompanied by some form of navigation model and
sometimes by an abstract user interface model. Other aspects of multimedia,
especially temporal behavior of continuous media and synchronization, are un-
derrepresented.

The Object-Oriented Hypermedia Design Model (OOHDM [51]) starts mod-
eling with a conceptual model of the semantics for the application domain that
is complemented by a navigational model in a second step. This part of the
model is based on an extended Entity-Relationship model. As a third activity,
abstract user interface design completes the model. The browsing semantics of
OOHDM is based on the static navigation structure specified in the navigational
model. OOHDM is an object-oriented extension of HDM [23] and comprises the
same basic modeling activities.

The Relationship Management Methodology (RMM [33]) is a method for
design and implementation of hypermedia systems. In contrast to OOHDM,
navigational structures are modeled within the domain model. Furthermore,
RMM enables the generation of HTML documents or code for authoring systems
from the model.

HyDev [48] is another proposal for decomposing hypermedia application
models in different partial models. The domain model is accompanied by an
instance model whose objects are instances of the domain model. The instance
model is regarded important since the behavior of multimedia applications often
relies on the characteristics of individual objects, and thus multimedia software
development has to deal with both type and instance level views. Relevant fea-
tures of object presentation and navigation between objects are captured in a
so-called representation model that abstracts from media formats and concrete
media objects.

HyperProp [55] comprises a conceptual model that represents authoring re-
quirements by spatio-temporal constraints, and a formatting algorithm for run-
time presentation adaption in reaction to occurrences of specified events. Hyper-
Prop is based on a logical document model for the composition of hypermedia
artifacts. Architecturally, it distinguishes three layers for representation objects,
data objects, and storage objects, respectively. The authoring system prototype
contains a graphical editor for constraint specification.

From the perspective of modeling multimedia applications by extensions of
the Unified Modeling Language, the work by Baumeister, Hennicker, Koch, and

184

Mandel is of particular interest. In [5], they propose extensions of the UML
to specify hypermedia based on the concepts of OOHDM. In [27], these exten-
sions are used for a further underpinning of the process associated with their
language extensions. There, they give a set of guidelines how to (semi-) au-
tomatically derive information for a model view from previous models. They
start with a conceptual model of the application domain from which they de-
rive a navigation space model for the hypermedia application based on views on
conceptual classes and additional navigation associations. From the navigation
space model, they build a navigational structure model by incorporating navi-
gational elements such as index, guided tour, query, and menu. Finally, they use
the navigational structure model to construct an abstract presentation model
focusing on the structural organization of the presentation rather than on the
physical presentation on the user interface. The disadvantage of this approach
is that interaction is restricted to the navigation via predefined links within the
application.

In summary, the main shortcoming of hypermedia approaches is their limited
capability of modeling behavior that is in most cases restricted to hyperlink
navigation. Other forms of user-initiated control and temporal behavior are
only partly considered. Additionally, application structure is often restricted
to trees with hyperlinked nodes. Because multimedia applications are highly
user-interactive, we look at user interface modeling next.

3.5 User Interface Modeling based on UML

In the UML field, there have also been some research contributions on how to
extend the general purpose modeling language UML towards a better represen-
tation of user interface modeling dimensions. These are important for multime-
dia modeling since we have identified the multimedia user interface presentation
and interaction as key views of multimedia systems in Sect. 2. Human-computer
interaction has to deal with representations of user roles; of user behavior when
performing tasks; of abstract conceptual and concrete physical user interfaces.
To capture user roles and user requirements, use case diagrams of UML can be
deployed. This approach is described in detail by Constantine and Lockwood
[15]. In [60], so-called user interaction diagrams (UID) are introduced to detail
use cases for requirements specification. For the modeling of behavior from the
user’s perspective, Kovacevic [38] proposes a UML extension for task analysis.

From a software analysis and design perspective, the UML profile for in-
teraction design suggested by Nunes and Cunha [46] is of importance. Here,
analysis and design models for the specification of user interfaces are presented.
The analysis classes from the UML built-in profile for software development pro-
cesses [47] are further refined to architecturally distinguish between interfaces
to external systems and for user interaction. On the design level, a dialogue
model for structuring dialogues and a presentation model for capturing naviga-
tion between different interaction spaces (contexts) are introduced.

The problem with all these models is that they are either on a high level of
abstraction such as use cases or other requirement gathering approaches or they

185

mostly focus on the architectural dimension or structural rather than behavioral
aspects (views). An exception is the UML-based approach described in [53]
that addresses dynamics of abstract user interfaces. Extended UML activity
diagrams are employed to detail the interaction for realizing a use case. But
since activity diagrams are still rather high-level behavior descriptions, they are
not well-suited to describe detailed behavior of a concrete user interface.

None of the presented approaches of user interface modeling based on UML
accounts for specific characteristics of multimedia applications and their impli-
cations on user interface modeling or the integration of multimedia applications
with the proposed user interface models. Multimedia-specific architectures or
system views beyond interaction are hardly supported. In the following sec-
tion, we show how the OMMMA approach attempts to integratedly specifiy the
different aspects of multimedia applications that have been identified in Sect. 2.

4 OMMMA — Object-oriented Modeling of
Multimedia Applications

In this section, we introduce the modeling language OMMMA-L [50]. We show
how this language extends the standard object-oriented modeling language UML
appropriately and allows all aspects of a multimedia application to be modeled
in an integral and coherent form.

4.1 UML and its Extensibility Towards Multimedia

The Unified Modeling Language (UML [47], see [11, 49] for an introduction,
[21] for an overview) consists of a family of diagrammatic languages which are
tailored to modeling diverse aspects of a system. Those are grouped into four
categories: use case diagrams, structural diagrams, behavioral diagrams, and
implementation diagrams. While use case diagrams are intended for capturing
functional requirements of a system, implementation diagrams are used to de-
scribe physical system structures and runtime entities. Structural aspects are
modeled in class and object diagrams. Behavioral aspects can be described
using sequence, collaboration, statechart, and activity diagrams. For the mod-
eling of multimedia applications, we have to analyze how well these diagram
types are suited for modeling the architecture of multimedia applications and
the four fundamental system views identified in Sect. 2: media and applica-
tion structure, spatio-temporal presentation, temporal behavior (function), and
interactive control.

Use case diagrams and implementation diagrams can be used to model re-
quirements and architectural structure and components, respectively. In the
following, we will focus on the fundamental system views within analysis and
design models. Thus we only discuss the structural and behavioral diagrams
regarding their appropriateness. As it turns out, the structure of an application
can be adequately modeled in UML class (and object) diagrams, interactive con-
trol can be modeled in statechart diagrams, accompanied by a tailored dialogue

186

signal hierarchy in class diagrams (although some specific abstractions for dia-
logue and user interaction specification as they are discussed in Sect. 3.5 may be
desirable), and parts of (predefined) temporal behavior can be adequately mod-
eled with UML sequence diagrams. But the analysis of UML’s features reveals
that specialized and more advanced language constructs are needed to describe
the temporal assembling of different objects. Additionally, UML does not offer
an explicit notation for spatial modeling in order to specify e.g. the presentation
view of user interface layouts intuitively. Finally, UML lacks appropriate prag-
matic guidelines on how to deploy the different diagram types cooperatively to
model complex multimedia applications. Such guidelines relate to both which
diagram types to use for a particular view on the system and how to deploy
a particular diagram on a specific level of abstraction, and how the different
views and levels of abstraction relate to each other. (Note that we concentrate
on a single level of abstraction herein.) These shortcomings have led to the
development of an extension of UML towards multimedia entitled OMMMA-L
(Object-oriented Modeling of MultiMedia Applications – the Language) that
captures the application characteristics represented in the different views and to
deriving pragmatics on how to model multimedia applications with an object-
oriented language based on UML.

The extensions of OMMMA-L can be integrated with UML by deploying
UML’s built-in extension mechanisms allowing existing model elements to be
specialized by stereotypes, constraints, and tagged values (see [47]). These light-
weight extensions do not influence the syntax and semantics of the UML itself,
but semantics can be specialized for domain-specific extensions. The extensions
can then be used to build profiles for specific application domains or kinds of
applications.

OMMMA-L is presented in the next subsections, starting by introducing an
example application to be modeled.

4.2 OMMMA-L Modeling Example: Automotive Infor-
mation System

The UML-based modeling language OMMMA-L has been designed to model a
wide range of aspects of interactive multimedia applications. We illustrate its
capabilities by showing extracts from a model of a simulation application of an
automotive information system.

Car cockpits nowadays evolve towards being highly-integrated multimedia
information interfaces that interact with many embedded components as well
as with external and distributed information systems and services. Diverse
applications have to be integrated, like car audio, navigation and communication
systems, travel or tourist information, and automotive system monitoring and
control.

Regarding interactivity with a human user, several levels of abstraction can
be distinguished: on a low level of interaction, a user has to interact with
hardware input and output devices (presentation media) that are visual, haptic,
or voice-enabled. Input devices produce signals that need to be transformed to

187

New

+

-

VoiceTemp

Fuel

Batt

Oil

421306.2

200

Audio

Comm
min-1 km/h

� MIS

Figure 1: Display of an Automotive Information System

semantic events on application level. For examle, clicking the right mouse button
on a specific point on the screen has a specific semantics for the application
when it is in a particular state. Pressing a specific button in a multi-functional
automotive control panel also shows a context-dependent behavior.

We return to the appropriate aspects of this application in the following
subsections in order to illustrate the language concepts of OMMMA-L. The
four fundamental views identified in Sect. 2 each relate to a particular diagram
type in the OMMMA approach:

• media and application structure are modeled in the class diagram;

• the spatial aspect of the presentation is modeled in OMMMA-L presenta-
tion diagrams (that are related to OMMMA-L sequence diagrams for the
spatio-temporal integration);

• temporal behavior (function) is modeled in OMMMA-L sequence dia-
grams; and

• interactive control is modeled in statechart diagrams.

Architectural considerations also appear on these diagrams, although they are
not explicitly modeled within these OMMMA-L diagram types. The individ-
ual diagrams are presented in the succeeding sections, before we explain the
integration of these diagrams in Sect. 4.7.

4.3 Class Diagram

Class diagrams are the core of an object-oriented application model and are
used to model the static structure of the multimedia application. Essentially,

188

AutoInfoSysSim

CommunicationAutoStatusSystem Navigation EntertainmentInfoServices

MapSpeedometer

Status2Monitor

1 1 1 1 1

1

*

Location
start

dest 1

1

*

*

*
**

MileageCounter
1

RevCounter
1

Media

TemporalMediaDiscreteMedia

Animation Audio VideoGraphics Image Text *

0..1

11

1

0..1

0..1

1
1..2

0..1

0..1

1

0..1
Direction

1..*
1

1

0..1 part:
Integer

Route

Announce
1
0..1

1

Figure 2: OMMMA-L class diagram

they consist of class and association definitions which describe the structure of
objects and their possible structural interrelations. As UML’s language features
for defining a class diagram are expressive enough, they have been incorporated
unchanged into OMMMA-L. But in order to express the two structural model
aspects of application semantics and media types, each OMMMA-L class dia-
gram consists of (at least) two closely interrelated parts:

• an hierarchy of media type definitions, which comprises classes for all (rep-
resentation) media types; and

• the logical model of an application, which comprises classes and associa-
tions to describe application domain objects and their interrelations.

The two aspects are linked by associations which interrelate application ob-
jects with corresponding media objects. For the specification of interaction,
these class hierarchies must be accompanied by a signal hierarchy as a basis for
event-based interaction. Presentation classes may be deployed (possibly in a
different package) in addition to model the possible composition of user inter-
faces as a basis for the presentation diagrams introduced in Sect. 4.5. Figure
2 shows a part of the class diagram for the sample application of a simulated
automotive information system shown in Fig. 1. The lower part of the diagram
depicts the media type hierarchy and the upper part the structure of the logical
model. It shows that the automotive information system simulation is a com-
plex composition of five subsystems: an automotive status system and systems
for navigation, communication, information services, and entertainment. The

189

status and navigation systems are more detailed. The status system comprises a
speedometer, a mileage counter, a revolution counter, and a set of status mon-
itors. The navigation system contains multiple maps that can be associated
with an unrestricted number of routes. In turn, routes can be related to multi-
ple maps. For each route, there is a start and a destination location. A route
relates to a set of directions that are qualified from the perspective of a route
by a part number defining their position in the sequence of directions. Addi-
tionally, a direction may be accompanied by a spoken announcement of the way
to drive. For some of these application classes, the associations to elements of
the media class hierarchy are shown. The speedometer, for instance, is related
to one or two graphics and an animation, e.g. to enable a day and night design
of the background and and a moving indicator for presentation of the actual
speed. Also, routes shown on the map (which is related to an image) and the
directions are realized as animations. An announcement is related to an audio
object whereas the (simplified) entertainment system relates to multiple video
objects.

OMMMA explicitly distinguishes between application objects as regards con-
tent and media objects in order to allow an application to present one application
entity by different (representation) media, e.g. accounting for distinct presen-
tation media, such as screens, or resource availability. Thus, media objects are
not specializations of application objects or vice versa. The dimension of me-
dia types is based on a generalization hierarchy of static and temporal media
types as it can be found in several multimedia standards, e.g. MHEG [36], and
frameworks, e.g. the framework by Gibbs and Tsichritzis [24] or MET++ [1].

4.4 Extended Sequence Diagram

UML offers various diagram types to model behavioral aspects of an application.
Due to their emphasis on modeling temporal sequences (of messages), sequence
diagrams are deployed in OMMMA-L to model the (predefined) temporal be-
havior of a multimedia application. But, in order to be able to model specific
characteristics of a multimedia application more directly and thus more intu-
itively, standard UML sequence diagrams are extended by a series of features,
especially regarding timing and time constraints. These are for example:

• Refinement of the time dimension by defining local time axes for objects
supporting a notion of local time. Local time can be related to global
(real) time (represented by the actor’s timeline) to specify intra-object
synchronization or to the time of other objects to specify inter-object syn-
chronization. Durations and points in time can be specified by different
forms of fixed, bounded or unbounded time intervals restricting their pos-
sible temporal positions. Time intervals are represented by their start and
end points. (Syntactically, these timing requirements can be written as
constraints using (in-)equalities or in an interval notation.)

• Sychronization bars (bold lines) instead of message arrows between object
activations to specify the continuous inter-object synchronization between

190

:Navigation ABm:Map ABr:Route ab1:Direction

showRoute
(A, B)

show

start

ab1a:Announce ab2:Direction

start

end

start

end

start

end

end

finished

finished

< 10 sec

< 5 sec300 sec

[10;20]
sec

240 sec

< 3 sec

H*

Ce
nt

<
tL

ef
t:

Au
di

o>

M
ul

tiv
ie

w

M
ul

tiv
ie

w

N
av

A1

N
av

A1

<
st

ra
ig

ht
-le

ft
:

An
im

at
io

n>

<
st

ra
ig

ht
:

An
im

at
io

n>

<
AB

M
ap

:
Im

ag
e>

<
AB

R
ou

te
Se

g1
:

An
im

at
io

n>
<

AB
R
ou

te
Se

g2
:

An
im

at
io

n>

M
ul

tiv
ie

w

ABm:= calcMap(A, B)
ABr:= calcRoute(A, B)

Figure 3: OMMMA-L sequence diagram

temporal media presentations that may abstract from a message direction.

• Activation and deactivation delays of media objects in order to model tol-
erated variations of synchronization relations for media objects (compare
maximum start and end times in [31]).

• A notion of shallow and deep History on a sequence diagram that UML
only provides for statechart diagrams. It allows the designer to specify
whether a specified scenario can be interrupted and later returned to at
the same point of virtual time where it had been interrupted. Deep history
(H*) denotes that this temporal reconstruction is possible even on nested
invocation levels with the semantics of pause and resume for the possibly
complex presentation, whilst shallow history (H) restricts returning to the
situation on the top level with the semantics that the sequence diagram can
be restarted from the interruption time, but already started presentations
of objects cannot be cued to their last presentation state.

• Parallely composed activation of media objects in order to model the simul-
taneous presentation of an application object across different presentation
channels (or media) and/or by different media objects.

• Sequentially composed activations resulting in an automatic triggering of
subsequent activations (segments), e.g. to present an animated object that
is sequentially presented via different channels and/or by different media
objects.

191

• Activations of application objects can be annotated with presentation ob-
jects, either abstractions from hardware devices (presentation media) or
software user interface objects – depending on the level of use – such as
audio channels or graphical objects on a screen, and/or media objects
designated to represent an application object during an activation or acti-
vation segment. Associated media objects, that must conform to the types
specified in the class diagram, are enclosed in 〈〉. The identifiers of pre-
sentation objects appear as pure strings (as they are used on presentation
diagrams, cf. Sect. 4.5).

• Activations of objects may be overlayed by media filters, which describe
time functions, e.g. the incremental increase of an audio level over time.

Each OMMMA-L sequence diagram models the temporal behavior of a pre-
defined scenario of the multimedia application. The scenario specified by the
sequence diagram is represented by the (initial) message sent from an actor
symbol (or some user interface component) to an object within the sequence
diagram that acts as the scenario controller. The message can be parameter-
ized, e.g. by time stamps for start and end of execution of a sequence diagram,
in order to support its re-use, or by parameters that may be used in guard
expressions or nested message calls.

All objects in one diagram relate to the same (global) timeline to which
they can be synchronized if required. The projection of a single continuous
media object on the corresponding (global) timeline specifies intra-object syn-
chronization. Concurrent scenarios with an independent timeline need to be
modeled by different sequence diagrams related to parallel substates within an
and-superstate of the corresponding statechart diagram (see Sect. 4.6), i.e., they
do not have a common notion of time. Different message types between objects
enable specification of synchronous or asynchronous messaging. A propagation
mechanism has to ensure consistency of temporal specifications or the mapping
of a local time axis to its relative temporal coordinate system.

Figure 3 gives an example of an OMMMA-L sequence diagram. It describes
the execution of showRoute(Location A, Location B) which is an operation of
the navigation system. All objects shown in the horizontal object dimension
are semantic, i.e. application objects. Based on the parameters for start and
destination (A respectively B), the Navigation object determines a route object
ABr and a map object ABm that is then called to be shown. After a maximum
activation delay of ten seconds relative to the start of the presentation of the
map, an animation of the route from location A to B has to be presented. This
animation consists of two parts of which the first one is associated with the
media object ABRouteSeg1:Animation that is shown for 300 seconds and the
second one is associated with the media object ABRouteSeg2:Animation that is
shown for 250 up to 260 seconds. (These presentation time intervals do not
necessarily coincide with the duration of the animation objects themselves.)
Both animations are presented via a screen object referenced as Multiview (see
Fig. 5). Parallel to the first part of the route animation, direction ab1:Direction

192

is presented at NavA1. It is accompanied by a spoken announcement that must
be started at most five seconds after the invocation by the direction object
ab1, and whose end is synchronized with the ends of both the first part of the
route animation and the corresponding direction ab1. The annoucement is to
be output via a center speaker denoted by Cent as specified in Fig. 4. The
synchronization bars at the start and the end of these activations specify that
a continuous inter-object synchronization is intended and has to be ensured
by the renderer at presentation time. The end of the first part of the route
animation directly triggers the execution of the second part. After a delay that
is between 10 and 20 seconds, another direction animation ab2 is started. It
(synchronously) co-ends with the presentation end of the second part of the
route animation. After finishing its presentation, the route object has to signal
to the navigation component within 3 seconds that presentation is finished.

For the specification of activation and deactivation delays, we use the UML
presentation option to distinguish periods of actual computing by shading the
activation segments from periods where objects are activated, but do not own
the focus of control of the associated thread, by plain activation segments [47].

4.5 Presentation Diagram

Class diagrams are used to model the media and application structure view
in OMMMA-L, OMMMA-L sequence diagrams model the temporal behavior
(function) view. Before we continue with interactive control in the next sub-
section, we first explain how the spatial structure of the presentation (view) is
modeled in OMMMA-L.

Due to the fact that UML does not offer a diagram type which is well-suited
and appropriate for modeling this view, the new presentation diagram type is
added to OMMMA-L. Presentation diagrams support an intuitive description of
the layout, i.e., the spatial arrangement of presentation objects at the user inter-
face. Spatial relationships (and constraints) can thus be graphically depicted. In
addition, by incorporating the user interface design into the modeling language,
consistency relations to other diagram types can be formulated and checked.

The presentation diagrams of OMMMA-L follow the idea of structuring the
presentation area of the user interface by boundig boxes for presentation objects
(more precisely, these can be roles as in UML collaboration diagrams that can
be substituted by conforming objects) that are to be presented. Bounding boxes
show geometry and size characteristics and are positioned on a virtual area rela-
tive to some specified coordinate system. Presentation objects are distinguished
into visualization objects and interaction objects. Visualization objects are pas-
sive objects that are used to present e.g. text, pictures, graphics, video, or
animation objects. Interaction objects enable user interactions and may raise
events in the running system. Examples are scroll or menu bars, buttons, input
fields or a hypertext containing links. Bounding boxes for interaction objects
are indicated by bold borders (like active objects are marked in UML). The
visual layout specification is accompanied by an iconic representation of audio
channels beside the visual presentation area.

193

AutoInfoSysSim �

MileageView

FuelIndicator

Stat1

Stat2

Stat3

Stat4

DevCntrView
SpeedView

FlashIndicat

Cockpit

Com Mis
CockpitDisplay

Speaker
L R Cent

Figure 4: Application-level OMMMA-L presentation diagram

We use the notation of a stereotyped UML package to depict a presenta-
tion diagram. The presentation diagram can be further divided into different
compartments representing hardware output devices such as different screens
or audio channels. In Fig. 4, the presentation diagram is divided in two com-
partments, one for a dashboard cockpit display and one for the left, right, and
center speakers as channels of an audio system (in the same way, local areas for
input devices can be described).

Since, in our example, there is no direct interaction with the presentation
objects like in direct-manipulative graphical user interfaces, but interaction is
via specific input devices such as knobs, all bounding areas are marked as visu-
alization objects (an area for input elements has been omitted).

The complete presentation of a certain application unit may be described
by several presentation diagrams that may be composed by a layered placement
on the virtual area (e.g. Figs. 4 and 5). Positioning of presentation elements
is by convention relative to the directly surrounding element unless otherwise
specified, e.g. by a separate hierarchical composition of presentation elements.
For instance in Fig. 5, MultiView is positioned relative to Cockpit from the pre-
sentation diagram AutoInfoSysSim, given by the path expression on the diagram.

Following this description of spatial modeling of the presentation view, now
the interactive control view, modeling system reaction to (user) inputs and other
events, is shown.

194

AutoInfoSysSim::MIS::MultiInfoSys �

MultiView

NavA1

Ctrl1

Ctrl2

Ctrl3

Ctrl4

CtrlA

CtrlB

AutoInfoSysSim::Cockpit

CockpitDisplay

Figure 5: Lower-level OMMMA-L presentation diagram

4.6 Statechart Diagram

In UML, statecharts are assigned to classes to specify the behavior of their
instances. They can be used on different levels of granularity. On a high level,
they can specify the behavior of an application or substantial parts thereof. On
a low level, they can be used to specify the behavior of simple classes, such as
user interface element classes, to model e.g. the behavior of a button or the
control state of a media object or its associated media player. The high-level
statecharts are used to specify the control behavior within the context of the
application since it must be specified which event regarding which particular
element of the application triggers a transition from a state of the application.
Examples of high-level statecharts that are partly schematic for simplification
of presentation can be seen in Figs. 6 and 7. They are used on an application-
semantic rather than a user interface level.

While OMMMA-L sequence diagrams are used to specify the (predefined)
temporal behavior of a multimedia application, statechart diagrams are used to
specify the system states as well as state transitions triggered by user interac-
tions or other system events, i.e., the interactive control or dynamic behavior.
OMMMA-L statechart diagrams are syntactically and semantically equal to
UML statechart diagrams. This means that e.g. they may be structured by
and- and or-superstates or refined by embedded statechart diagrams. An action
appearing on an OMMMA-L statechart may represent a multimedia scenario
(see Sect. 4.4). For example, internal entry- and exit-actions, or do-activities of
states may be labeled with names of actions or action expressions.

To enable dialogue specification on an adequate level of abstraction, e.g.

195

AutoInfoSysSim

Navigation InfoServices

Entertainment

AutoStatusSystem

Communication

H

run
monitor

on

standby

call

hangup

dial

connect

redial

new

navi
navi

retNavi

infoSys

infoSys
eTaineTain

Off

MultiInfoSys

H

off
on

MIS

Figure 6: OMMMA-L statechart diagram for the automotive information system
application

the selection of navigational alternatives or the control of media playout, the
OMMMA-L application model needs to be accompanied by an appropriate sig-
nal hierarchy (see [47], cf. Sect. 4.3). This must be based on a spatio-temporal
event model for user interactions on the control interface. It should, in perspec-
tive, also account for modal parameters of event instances. Events on statechart
diagrams relate to such signals. Signals may be categorized according to user
interaction events, application events, system events, and timer events. The
event model that can be used within OMMMA-L statecharts is not restricted.
It is therefore possible to integrate event algebras as they have been specified in
the area of active database management systems, that have also been used as a
basis for the spatio-temporal event model in [59]. Events can then be composed
by algebraic and temporal operators such as and, or, or seq.

This description of the use of statechart diagrams in OMMMA-L concludes
the presentation of the individual diagrams.

4.7 Integrated Modeling

Each of the above introduced OMMMA-L diagram types is used to specify a
certain view of a multimedia application. What remains is the integration of
these views into a coherent model of a multimedia application.

The typological fundament of the different views on the multimedia ap-
plication is defined in the OMMMA-L class diagram. Other structural and
behavioral views must conform to the class definitions and association specifi-
cations therein. This implies that objects on OMMMA-L sequence diagrams
or – if intended – presentation objects on presentation diagrams must be typed

196

Navigation

intro

routeSelect

startpos

destpos
entry / checkInputs(start,dest)

help

traffInfo

do / playInfo

help

info
route

from(start)

to(dest)

voice

cancel

new

directing

do / showRoute(start, dest)

directdirect
zoomOutzoomIn

Figure 7: OMMMA-L statechart diagram for the navigation subsystem

over these classes. Statechart diagrams are assigned to these classes for the
specification of interactive control or dynamic behavior.

A multimedia application may be more detailed seen as a collection of mul-
timedia application units, so-called scenarios or scenes. In the OMMMA ap-
proach, each scenario corresponds to a state within an high-level statechart
diagram which is associated to the class of the overall application or some class
encapsulating a substantial part thereof. Furthermore, each scenario is via its
associated state related to a presentation, possibly composed of different pre-
sentation diagrams.

A state associated to a scenario may be refined by a nested statechart dia-
gram or nested states (as depicted for state directing in Fig. 7) which describe
the possible interactive behavior during this scenario. (Thus, scenarios can be
hierarchically composed.) For example, state directing is not left when zooming,
implying the semantics that the temporal behavior of the scenario related to
showRoute is not influenced by zoom operations.

In order to couple the interactive control with the predefined functional be-
havior views of a multimedia application, actions on a statechart diagram can
be associated with OMMMA-L sequence diagrams that specify the scenarios,
more precisely, the predefined, timed pieces of functional behavior within a sce-
nario, corresponding to such actions or action expressions. An entry-action or
do-activity means that the behavior specified by the sequence diagram is auto-
matically triggered whenever the corresponding state is entered, exit-actions are
executed before the state is left. The semantics of the (concurrently executed)
do-activity is thereby to be interruptible by events triggering a transition from

197

AutoInfoSysSim::MIS::MultiInfoSys �

MultiView

NavA1

Ctrl1

Ctrl2

Ctrl3

Ctrl4

CtrlA

CtrlB

AutoInfoSysSim::Cockpit

CockpitDisplay

AutoInfoSysSim �

Speaker
L R Cent

AutoInfoSysSim

CommunicationAutoStatusSystem Navigation EntertainmentInfoServices

MapSpeedometer

Status2Monitor

1 1 1 1 1

1

*

Location
start

dest 1

1

*

*

*
**

MileageCounter
1

RevCounter
1

Media

TemporalMediaDiscreteMedia

Animation Audio VideoGraphics Image Text *

0..1

11

1

0..1

0..1

1
1..2

0..1

0..1

1

0..1
Direction

1..*
1

1

0..1 part:
Integer

Route

Announce
1
0..1

1

AutoInfoSysSim

Navigation InfoServices

Entertainment

AutoStatusSystem

Communication

navi
navi

retNavi

infoSys

infoSys
eTaineTain

Off

MultiInfoSys

H
off

on

MIS

directing

do / showRoute(start, dest)

direct
zoomOutzoomIn

:Navigation ABm:Map ABr:Route ab1:Direction

showRoute
(A, B)

show

start

ab1a:Announce ab2:Direction

start

end

start

end

start

end

end

finished

finished

< 10 sec

< 5 sec300 sec

[10;20]
sec

240 sec

< 3 sec

H*

Ce
nt

<
tL

ef
t:

Au
di

o>

M
ul

tiv
ie

w

M
ul

tiv
ie

w

N
av

A1

N
av

A1

<
st

ra
ig

ht
-le

ft
:

An
im

at
io

n>

<
st

ra
ig

ht
:

An
im

at
io

n>

<
AB

M
ap

:
Im

ag
e>

<
AB

Ro
ut

eS
eg

1:
An

im
at

io
n>

<
AB

R
ou

te
Se

g2
:

An
im

at
io

n>

M
ul

tiv
ie

w

ABm:= calcMap(A, B)
ABr:= calcRoute(A, B)

Figure 8: An integrated OMMMA-L specification

that particular state, whilst entry-actions and exit-actions are non-interruptible
as specified by the UML run-to-completion semantics (see [47]). Figure 7 gives
examples for an entry-action in state destpos and for two do-activities in states
traffInfo and directing. The latter do-activity is specified by a sequence diagram
with a (deep) history indicator denoting that the assigned scenario can be com-
pletely resumed after interruption. This construction is semantically feasible
since do-activities on statechart diagrams are executed concurrently. Based on
this coupling of function and control views, mutually exclusive substates of an
or-superstate enable the specification of alternative presentation flows triggered
by events on incoming transitions comparable to the timeline-tree model in [31].

A presentation diagram is associated to a state of the interactive control
view in order to couple presentation and control views. Therefore, its name
coincides with the name of the state to which it is assigned. Semantically,
this presentation diagram will be part of the user interface presentation as long
as the application or the respective part thereof is in that specific state. In
Fig. 4, the presentation diagram is labeled with the name of the top-level state
AutoInfSysSim, meaning that these objects are addressable for presentation as
long as the application is running.

The composition of a complete presentation of a certain application unit
(or state) is based on the hierarchical composition of states to which the con-

198

stituent presentation diagrams are assigned. Figure 5 shows a presentation
diagram that is assigned to state MultiInfoSys which is a nested substate of Au-
toInfoSysSim (via state MIS) as can be seen from the path expression in the
name compartment in the upper left. When the application is in state AutoIn-
foSysSim::MIS::MultiInfoSys or a substate thereof, the complete presentation is
composed of (at least the given) two presentation diagrams, i.e., the general
diagram for all application states and the diagram for the multi-information
system being active (compare Fig. 6).

In OMMMA-L sequence diagrams, an activation of an application object can
reference a media object that is being presented during this activation as well
as a presentation object that may be used on a reachable presentation diagram
in order to specify the spatio-temporal constraints of the presentation to the
user. Reachable presentation diagrams are defined by the coupling statechart
diagram. They either relate to the same state to which the action belongs that
is specified by the sequence diagram – either an internal action of that state or
an action on a transition within that state in case of a complex state – or to a
superstate of that state.

Figure 8 gives a simplified example of the interrelations between diagrams
in such a complete specification where small parts of each diagram type are de-
picted. Diagrams are interrelated by using the same identifier names in different
diagrams. Examples are the name of a specified scenario (initial message) in a
sequence diagram used as the action expression of an internal action within a
state of the state diagram, or the name of a state used as the identifier of a pre-
sentation diagram, or the name of a (visual) presentation object or audio channel
on a presentation diagram used within a sequence diagram in association to an
activation box. Other relations (consistency constraints) between diagrams are
depicted by overlayed arrows in Fig. 8. These constraints are precisely specified
in a UML profile for multimedia applications that extends standard capabilities
of UML for the modeling of multimedia applications according to the OMMMA
approach.

5 Future Directions

The modeling approaches presented herein still have to show their feasibility
in real-world applications and complex application settings. Case studies are
necessary to underpin their real achievements in practice.

The extension of UML by profiles for specific application domains has been
widely recognized as indicated by a diverse range of (prototypical) custom pro-
files, e.g. for architectures of web applications [14], and several requests for
proposals issued by the OMG in order to standardize profiles for several do-
mains, like embedded real-time applications and CORBA. A major drawback
still is the absence of generally accepted, formal and precise specifications of
UML semantics, and, therefore, also for most proposed extensions of UML. But
with the forthcoming appearance of diverse profiles, the issues of consistency
between and semantically sound integration of profiles need to be analyzed in

199

detail. Orthogonal aspects should be placed in isolated profiles that could then
more easily be combined. For the profiles presented herein, the integration of
user interface, hypermedia, and multimedia modeling extensions is an interest-
ing challenge.

A recent trend in the specification of multimedia applications is the use
of constraint-based approaches to more flexibly describe the requirements and
properties of multimedia presentations (see e.g. [40, 7, 56, 26]). Some con-
straints can be graphically expressed in the current OMMMA-L notation, other
constraints can be integrated into a model by UML’s built-in constraint language
OCL [47] or by using other textual or diagrammatic (for instance, constraint
diagrams [37]) constraint languages.

Some interesting challenges exist regarding the integration of the proposed
object-oriented modeling approach into general multimedia software develop-
ment processes. Especially the transformation between the model and an im-
plementation, based on either object-oriented frameworks or authoring systems,
that does account for both structure and behavior, is an obvious task at hand
to prove the feasibility of the concept.

6 Conclusion

In this chapter, we presented approaches for the object-oriented modeling of
interactive, hypermedia, and multimedia applications. We also examined the
current state of application development based on multimedia authoring sys-
tems and object-oriented programming. By doing this, we illuminated some
important aspects of the multi-dimensional task of multimedia software engi-
neering.

In our presentation, we focused on OMMMA-L, a visual, object-oriented
modeling language for multimedia applications. OMMMA-L is based on the
standard modeling language UML. New language features have been incorpo-
rated into OMMMA-L in order to support integrated modeling of all aspects of
a multimedia application. Particularly, a presentation diagram type and appro-
priate extensions to sequence diagrams have been introduced.

The modeling language is accompanied by a method description how to
deploy the language elements in a multimedia software development process and
a prototype implementation. Furthermore, the language extensions are being
formalized by a precise semantics specification based on graphical operational
semantics (cf. [20]). As a refined conceptual basis, we intend to define a formal
model for the composition within and between the different behavioral diagrams.

200

References

[1] P. Ackermann, Developing Object-Oriented Multimedia Software — Based
on MET++ Application Framework (dpunkt, Heidelberg, 1996).

[2] Apple, Hypercard, http://www.apple.com/hypercard/

[3] T. Arndt, “The evolving role of software engineering in the production of
multimedia applications”, Proceedings of the IEEE International Confer-
ence on Multimedia Computing and Systems (ICMCS’99) I (1999) 79–84.

[4] B. Bailey, J. A. Konstan, R. Cooley and M. Dejong, “Nsync — A toolkit
for building interactive multimedia presentations”, Proceedings of the 6th
ACM International Conference on Multimedia’98 (ACM Press, 1998) 257–
266.

[5] H. Baumeister, N. Koch and L. Mandel, “Towards a UML extension
for hypermedia design, eds. R. France and B. Rumpe, Proceedings of
the �UML�’99 — The Unified Modeling Language, Beyond the Standard,
2nd International Conference, Lecture Notes in Computer Science 1723
(Springer, 1999) 614–629.

[6] E. Bertino and E. Ferrari, “Temporal synchronization models for multime-
dia data”, TKDE 10, no. 4 (1998) 612–631.

[7] E. Bertino, E. Ferrari and M. Stolf, “MPGS: An interactive tool for the
specification and generation of multimedia presentations”, TKDE 12, no.
1 (2000) 102–125.

[8] A. Bianchi, P. Bottoni and P. Mussio, “Issues in design and implementation
of multimedia software systems”, Proceedings of the IEEE International
Conference on Multimedia Computing and Systems (ICMCS’99) I (1999)
91–96.

[9] M. M. Blattner and E. P. Glinert, “Multimodal integration”, IEEE Mul-
tiMedia 3, no. 4 (1996) 14–24.

[10] D. Boles, P. Dawabi, M. Schlattmann, E. Boles, C. Trunk and F. Wigger,
“Objektorientierte Multimedia-Softwareentwicklung: Vom UML-Modell
zur Director-Anwendung am Beispiel virtueller naturwissenschaftlich-
technischer Labore”, Proceedings of the Workshop Multimedia-Systeme,
28th Annual Conference of the German Computer Science Association (GI)
(1998) 33–51 (in German).

[11] G. Booch, J. Rumbaugh and I. Jacobsen, The Unified Modeling Language
User Guide (Addison-Wesley, Reading, MA, 1998).

[12] S.-K. Chang, Multimedia Software Engineering (Kluwer, Boston, MA,
1999).

201

[13] Click2Learn, Toolbook II, http://home.click2learn.com/

[14] J. Conallen, Building Web-Applications with UML (Addison-Wesley, Read-
ing, MA, 2000).

[15] L. L. Constantine and L. A. D. Lockwood, Software for Use: A Practical
Guide to the Models and Methods of Usage-Centered Design (ACM Press,
New York, NY, 1999).

[16] J. Coutaz, “PAC-ing the architecture of your user interface”, eds. M. D.
Harrison and J. C. Torres, Design, Specification and Verification of Interac-
tive Systems, Proceedings of the 4th Eurographics Workshop ’97 (Springer,
1997) 13–27.

[17] R. Depke, G. Engels, K. Mehner, S. Sauer and A. Wagner, “Ein Vorgehens-
modell für die Multimedia-Entwicklung mit Autorensystemen”, Informatik:
Forschung und Entwicklung 14 (1999) 83–94 (in German).

[18] D. Dingeldein, “Modeling multimedia objects with MME”, Proceed-
ings of the EUROGRAPHICS Workshop on Object-Oriented Graphics
(EOOG’94), 1994.

[19] M. Echiffre, C. Marchisio, P. Marchisio, P. Panicciari and S. Del Rossi,
“MHEG-5 — Aims, concepts, and implementation issues”, IEEE Multi-
Media 5, no. 1 (1998) 84–91.

[20] G. Engels, J. H. Hausmann, R. Heckel and S. Sauer, “Dynamic meta
modeling: A graphical approach to the operational semantics of behavioral
diagrams in UML”, in [22], pp. 323–337.

[21] G. Engels, R. Heckel and S. Sauer, “UML — A universal modeling lan-
guage?” eds. M. Nielsen and D. Simpson, Proceedings of the 21st Inter-
national Conference on Application and Theory of Petri Nets (ICATPN
2000), Lecture Notes in Computer Science 1825 (Springer, 2000) 24–38.

[22] A. Evans, S. Kent and B. Selic, Proceedings of the �UML�2000 — The
Unified Modeling Language, Advancing the Standard, 3rd Intl. Conf., Lec-
ture Notes in Computer Science 1939 (Springer, 2000).

[23] F. Garzotto, P. Paolini and D. Schwabe, “HDM - A model-based approach
to hypertext application design”, TOIS 11, no. 1 (1993) 1–26.

[24] S. J. Gibbs and D. C. Tsichritzis, Multimedia Programming: Objects, En-
vironments and Frameworks (Addison-Wesley, Wokingham, 1995).

[25] R. Gordon and S. Talley, Essential JMF: Java Media Framework, (Prentice-
Hall, Englewood Cliffs, NJ, 1999).

[26] V. Hakkoymaz, J. Kraft and G. Özsoyoglu, “Constraint-based automation
of multimedia presentation assembly”, Multimedia Systems 7, no. 6 (1999)
500–518.

202

[27] R. Hennicker and N. Koch, “A UML-based methodology for hypermedia
design”, in [22], pp. 410–424.

[28] I. Herman, N. Correia, D. A. Duce, D. J. Duke, G. J. Reynolds and J.
van Loo, “A standard model for multimedia synchronization: PREMO
synchronization objects”, Multimedia Systems 6, no. 2 (1998) 88–101.

[29] I. Herman, G. J. Reynolds and J. van Loo, “PREMO: An emerging stan-
dard for multimedia presentation — Part I: Overview and framework”,
IEEE MultiMedia 3, no. 3 (1996) 83–89.

[30] I. Herman, G. J. Reynolds and J. van Loo, “PREMO: An emerging stan-
dard for multimedia presentation — Part II: Specification and applica-
tions”, IEEE Multimedia, 3, no. 4 (1996) 72–75.

[31] N. Hirzalla, B. Falchuk and A. Karmouch, “A temporal model for interac-
tive multimedia scenarios”, IEEE MultiMedia 2, no. 3 (1995) 24–31.

[32] P. Hoschka, “An introduction to the synchronized multimedia integration
language”, IEEE MultiMedia 5, no. 4 (1998) 84–88.

[33] T. Isakowitz, E. Stohr and P. Balasubramanian “RMM: A methodology
for structured hypermedia design”, CACM 38, no. 8 (1995) 34–44.

[34] ISO/IEC JTC1/SC24/WG6 — Multimedia Presentation and Interchange,
PREMO (ISO/IEC 14478), http://www.iso.ch

[35] ISO/IEC JTC1/SC29/WG11 — Moving Picture Experts Group (MPEG),
MPEG-4 (ISO/IEC 14496), http://www.iso.ch, http://www.cselt.it/mpeg/

[36] ISO/IEC JTC1/SC29/WG11 — Multimedia and Hypermedia Expert
Group, MHEG (ISO/IEC 13522), http://www.iso.ch

[37] S. Kent, “Constraint diagrams: Visualising invariants in OO modelling”,
Proceedings of the OOPSLA’97 (ACM Press, 1997) 327–341.

[38] S. Kovacevic, “UML and user interface modeling”, eds. J. Bézivin and
P.-A. Muller, Proceedings of the �UML�’98 — The Unified Modeling Lan-
guage, Beyond the Notation, 1st International Workshop, Lecture Notes in
Computer Science 1618 (Springer, 1998) 253–266.

[39] G. E. Krasner and S. T. Pope, “A cookbook for using the model-view-
controller user interface paradigm in Smalltalk-80”, Journal of Object-
Oriented Programming 1, no. 3 (August/September 1988) 26–49.

[40] Y.-M. Kwon, E. Ferrari and E. Bertino, “Modeling spatio-temporal con-
straints for multimedia objects”, Data and Knowledge Engineering 30, no.
3 (1999) 217–238.

203

[41] T. D. C. Little and A. Ghafoor, “Synchronisation and storage models for
multimedia objects”, IEEE Journal on Selected Areas in Communications
8, no. 3 (April 1990) 413–427.

[42] Macromedia, Authorware,
http://www.macromedia.com/software/authorware/

[43] Macromedia, Director, http://www.macromedia.com/software/director/

[44] Microsoft, DirectX, http://www.microsoft.com/directx/

[45] M. Mühlhäuser, “Issues in multimedia software development”, Proceedings
of the International Workshop on Multimedia Software Development (IEEE
Computer Society, 1996) 2–9.

[46] N. J. Nunes and J. F. e Cunha, “Towards a UML profile for interaction
design: The Wisdom approach”, in [22], pp. 101–116.

[47] Object Management Group, OMG Unified Modeling Language Specifica-
tion, version 1.3, June 1999, http://www.omg.org

[48] P. Pauen, V. Voss and H.-W. Six, “Modelling hypermedia applications
with HyDev”, eds. A. A. Sutcliffe, J. Ziegler and P. Johnson, Designing
Effective and Usable Multimedia Systems, Proceedings of the IFIP 13.2
Working Conference (Kluwer, 1998).

[49] J. Rumbaugh, I. Jacobson and G. Booch, The Unified Modeling Language
Reference Manual, Object Technology Series (Addison-Wesley, Reading,
MA, 1999).

[50] S. Sauer and G. Engels, “Extending UML for modeling of multimedia
applications”, eds. M. Hirakawa and P. Mussio, Proceedings of the IEEE
Symposium on Visual Languages (VL’99), (IEEE Computer Society, 1999)
80–87.

[51] D. Schwabe and G. Rossi, “An object oriented approach to web-based
applications design”, Theory and Practice of Object Systems 4, no. 4 (1998)
207–225.

[52] T. K. Shih, S.-K. Chang, and P. Shih, “A web document development
paradigm and its supporting environment”, Proceedings of the 6th Inter-
national Conference on Distributed Multimedia Systems (DMS’99), 1999.

[53] P. P. da Silva and N. W. Paton, “UMLi: The Unified Modeling Language
for interactive applications”, in [22], pp. 117–132.

[54] B. C. Smith, L. A. Rowe, J. A. Konstan and K. D. Patel, “The Berkeley
Continuous Media Toolkit”, Proceedings of the 4th ACM International
Conference on Multimedia’96 (ACM Press, 1996) 451–452.

204

[55] L. F. G. Soares, R. F. Rodrigues and D. C. Muchaluat Saade, “Model-
ing, authoring and formatting hypermedia documents in the HyperProp
system”, Multimedia Systems 8, no. 2 (2000) 118–134.

[56] J. Song, G. Ramalingam, R. E. Miller and B.-K. Yi, “Interactive authoring
of multimedia documents in a constraint-based authoring system”, Multi-
media Systems 7, no. 5 (1999) 424–437.

[57] Sun Microsystems, Java Media API,
http://java.sun.com/products/java-media/

[58] Sun Microsystems, Java Media Framework,
http://java.sun.com/products/java-media/jmf/

[59] M. Vazirgiannis, Interactive Multimedia Documents — Modeling, Author-
ing, and Implementation Experiences, Lecture Notes in Computer Science
1564 (Springer, Berlin, 1999).

[60] P. Vilain, D. Schwabe and C. S. de Souza, “A diagrammatic tool for
representing user interaction in UML”, in [22], pp. 133–147.

[61] T. Wahl and K. Rothermel, “Representing time in multimedia systems”,
Proceedings of the IEEE 1st International Conference on Multimedia Com-
puting and Systems (ICMCS’94) (IEEE Computer Society, 1994) 538–543.

[62] World Wide Web Consortium (W3C), Synchronized Multimedia Integra-
tion Language (SMIL), http://www.w3.org/AudioVideo/

[63] A. Zamperoni, “GRIDS — Graph-based integrated development of soft-
ware: Integrating different perspectives of software engineering”, Proceed-
ings of the 18th International Conference on Software Engineering (ICSE)
(IEEE Computer Society, 1996) 48–59.

205

UML-based Behavior Specification of Interactive Multimedia Applications

Stefan Sauer and Gregor Engels
University of Paderborn, Dept. of Mathematics & Computer Science, D 33095 Paderborn, Germany�

sauer � engels � @uni-paderborn.de

Abstract

Availability of precise, yet usable modeling languages is
essential to the construction of multimedia systems based
on software engineering principles and methods. Although
several languages have been proposed for the specification
of isolated multimedia system aspects, there not yet exists
an integrated modeling language that adequately supports
multimedia software development in practice. We propose
an extension of the Unified Modeling Language (UML) for
the integrated specification of multimedia systems based on
an object-oriented development method. Since integration
of co-existing timed procedural and interactive behavior is
at the heart of multimedia systems, we focus on UML-based
specification of behavior in this paper. In addition, we out-
line how these behavioral aspects are to be integrated with
media, presentation, and software architecture modeling to
achieve a coherent and consistent model.

Keywords: UML, interactive multimedia, behavior specifi-
cation, integrated modeling

1 Introduction

In addition to the areas of interactive games and enter-
tainment, interactive multimedia applications are gaining
increasing importance in traditional areas of software sys-
tems such as information systems as well. As an effect,
many software and multimedia researchers and practition-
ers advocate deploying software engineering principles and
methods for the construction of multimedia systems (see,
e.g., [3, 9]). Essential to such approaches is the demand for
semantically precise, yet syntactically usable modeling no-
tations that support different views and levels of abstraction.
Visual and diagrammatic languages are defined to exactly
fulfill these requirements.

Many different aspects need to be integrated to coher-
ently model a multimedia application. The temporal inte-
gration and synchronization of diverse media objects with
different timing characteristics is the most important fea-
ture of multimedia applications in contrast to other inter-

active applications. Obviously, when we model application
behavior, timed procedural behavior, i.e., behavior with pre-
defined temporal characteristics, cannot be viewed in isola-
tion unless applications are non-interactive and thus do not
react to external events that dynamically occur in a non-
predictable manner at execution time. Otherwise, integra-
tion of co-existing timed procedural and interactive behav-
ior is a key feature that needs to be accounted for during the
construction of multimedia software. Therefore, it is the ob-
jective of this work to present an integrated modeling tech-
nique for timed procedural and interactive behavior.

Different models and notions have been proposed for
timed procedural and interactive multimedia behavior (e.g.,
[11, 10]). Nevertheless, the lasting disadvantage of many
approaches is that they purely focus on behavior, but it is
not specified how they are to be integrated with other as-
pects. As a consequence, object-oriented models (e.g., [5])
and (conceptual) frameworks (e.g., [1, 8]) have been pro-
posed that enable the integrated specification of application
structure and behavior. A disadvantage of these approaches
is that they either require thorough knowledge of the object-
oriented paradigm since they are not designed as modeling
languages for the practical software development process
and are thus not combined with an intuitive graphical no-
tation, or they are directly implemented in programming
frameworks and do only run in their proprietary environ-
ment. Another problem is the lack of higher level abstrac-
tions allowing to model core functionality before getting
into the details of a software design.

To overcome these shortcomings, we build on and ex-
tend the Unified Modeling Language (UML; [12]) for the
specific requirements of application modeling in the mul-
timedia domain. UML allows to model diverse system as-
pects by a family of diagram types based on the paradigm
of object-orientation. In [13] we gave an overview of the
OMMMA (Object-oriented Modeling of MultiMedia Ap-
plications) approach and modeling language that constitutes
the starting point for the more detailed presentation of in-
tegrated behavior modeling herein. We restrict the presen-
tation to an analysis level of modeling, not making use of
UML’s complete modeling capabilities.

206

The contribution of this work to the field of applying vi-
sual modeling to multimedia software engineering is three-
fold: First, we present an integrated modeling language
(method) for the specification of multiple aspects of mul-
timedia applications. This approach was outlined in [13],
but herein we clarify the details of behavior specification
and the integration of interactive and timed procedural be-
havior. Second, the presented modeling approach does not
invent a new language, but extends the standard object-
oriented modeling language UML deploying UML’s built-
in extension mechanisms. Thus, it supports the evolution
of traditional application models into multimedia applica-
tion models without a paradigm or language shift as well as
the migration of software developers that are familiar with
object-oriented methods and UML modeling towards multi-
media application development. Third, the visual modeling
language is also understandable for members of multimedia
developer teams other than programmers due to more intu-
itive notations and reflection of established metaphors and
authoring concepts.

The presentation in this paper is structured in the fol-
lowing way: We start with an overview of the integrated
modeling of multimedia applications based on UML focus-
ing on structural and basic architectural findings. In Sect. 3,
we demonstrate how to apply statechart diagrams to model-
ing of interactive behavior. Section 4 presents an extended
form of sequence diagrams for the specification of timed
procedural behavior. In Sect. 5, it is shown how the partial
models for these behavioral aspects are to be integrated. In
the following section, we compare the modeling approach
to selected related work in this area. Finally, we summarize
the presented achievements and outline future perspectives.

2 Integrated Modeling of Multimedia Appli-
cations Based on UML

UML comprises a family of sublanguages that are each
tailored to modeling specific aspects of a software system.
The variety of diagram languages reaches from the speci-
fication of requirements (use cases, class and activity dia-
grams), to the integrated modeling of structure, functional-
ity, and dynamics (class, collaboration, sequence, and state-
chart diagrams), and the modeling of software and hardware
architecture (component and deployment diagrams).

UML is designed as a general-purpose modeling lan-
guage that is independent of a particular software devel-
opment process (or method). The concrete use of the dia-
gram languages and their interpretation must be fixed by
prescribing a process during the activity of process mod-
eling. Technically, process-specific variants of the diagram
types for different modeling purposes, e.g., views and lev-
els of abstractions, can be defined by the built-in extension
mechanisms and the concept of UML profiles.

<<scenario>>
EducationApplication

<<scenario>>
Lectures

<<application>>
SubjectVideo

predecessor

successor

0..1

0..1

1..*
1

*1

predecessor

successor

0..1

0..1

<<scenario>>
Handouts

subTopic

Topic

*

0..1
*

<<scenario>>
LectureDiscussion

1

<<media>>
Video

<<media>>
Animation

0..1 1

1

1

<<application>>
Handout

<<application>>
Subtitle

1

<<media>>
Audio

*
<<scenario>>

Section

1

*

*
<<application>>

Speech

<<application>>
Trailer

1

1

0..1

1

0..1

1

0..1 1

<<media>>
Text

*

0..1

10..1

<<scenario>>
Homeworks

<<application>>
Question

<<application>>
Answer

0..1

0..1

predecessor

successor

*

*

1
1

* <<scenario>>
Homework

1

1
Intro

1

1

10..1

1

1

1

1
1

first

Figure 1. The class diagram of the educa-
tion application shows � scenario � , � applica-
tion � , and associated � media � classes

Analogously, UML’s extension mechanisms support the
definition of domain-specific adaptions of the language ele-
ments in order to adapt and specialize the modeling capabil-
ities to domain-specific requirements. Within this paper, we
make use of this built-in extensibility for tailoring UML to
the multimedia domain, particularly the modeling of inter-
active multimedia application behavior (on analysis level),
without stressing an overall multimedia software develop-
ment process.

We demostrate how UML can be adapted towards the
specification of interactive multimedia aplications by build-
ing on the OMMMA (Object-oriented Modeling of Multi-
Media Applications) approach that we presented in [13].

The modeling approach is illustrated deploying an exam-
ple application taken from Adali et al. [2]. They present an
educational application for organizing course material that
consists of three independent interactive presentations. The
first presentation contains three homeworks. Each home-
work consists of a question and an answer. The second pre-
sentation is a sequential list of videos representing parts of
lecture discussions, each referring to a specific subject. The
third presentation contains a hierarchically structured set of
textual handouts. In addition, they specify rudimentary tem-
poral and spatial constraints for these presentations.

Figure 1 depicts the UML class diagram for this applica-
tion. We extended the example to account for the modeling
of additional features not captured in the original model.
For the purpose of modeling multimedia applications, the
class diagram distinguishes the semantic part of the applica-
tion and the media types deployed to present the content of
multimedia objects. The latter are marked by the stereotype

� media � . Other stereotypes are used to distinguish differ-
ent types of (semantic) application objects. The stereotype

207

<<scenario>>
ea:EducationApplication

<<scenario>>
li:Lectures

successor<<scenario>>
ld1:LectureDiscussion

predecessor <<scenario>>
ld2:LectureDiscussion

predecessor successor

<<media>>
s4v:Video

<<media>>
s4a:Audio

<<media>>
s5a:Audio

<<media>>
s5a:Audio

<<application>>
s4:SubjectVideo

<<application>>
s5:SubjectVideo

<<application>>
ss4:Speech

<<application>>
ss5:Speech

<<scenario>>
hwi:Homeworks

<<scenario>>
hoi:Handouts

<<scenario>>
lIntro:Intro

<<application>>
st4:Subtitle

<<media>>
s4t:Animation

<<application>>
st5:Subtitle

<<media>>
s5t:Animation

<<application>>
trail:Trailer

<<media>>
trailv:Video

<<media>>
traila:Audio

subject subjectsound sound

subs
subs

lectures

trailer

audio audioanimanim

videovideo

first

Figure 2. Object diagram showing instances
for the second lecture discussion

� application � is used to distinguish application classes
that correspond to multimedia information from general ap-
plication classes, carrying no stereotype. This enables the
integrated modeling of media and non-media application
elements. Furthermore, the stereotype � scenario � marks
classes of objects that represent complex scenarions, i.e.,
composite parts of the interactive multimedia application
that involve several � application � objects with temporal
and spatial relationships. This distinction will be used for
the separation of behavioral aspects in the following sec-
tions.

Part of an object diagram in the context of this class dia-
gram is shown in Fig. 2. It depicts the application and media
objects for a part of the presentation of lecture discussions.
Adali et al. structure this presentation into three subsequent
parts: an introduction, a first discussion consisting of three
sequential subjects, and a second discussion containing two
sequential subjects. In our model, the lecture discussion pre-
sentation is embodied by object li:Lectures of stereotype

� scenario � . This is associated with instances of class Lec-
tureDiscussion representing the two discussions. The de-
tailed structure of such a discussion is only depicted for the
second discussion. In contrast to [2], we extend the videos
that constitute the discussions by distinguishing a visual
presentation, an associated audio track, and an animation
for the presentation of subtitles. We thus account for the
synchronization of continuous media objects. Each of the

� application � objects is associated with a � media � object
as it is specified by the class diagram.

After presenting the structure of the application, we now
consider its behavior. The modeling approach is based on
the conceptual idea that users interact with the multimedia
application via specific user interface components for input
(control) and output (presentation). User input events are

<<interaction>>
/input

<<scenario>>
/conductor

<<application>>
/abstraction

<<media>>
/media

<<presentation>>
/renderer

listener

subordinate

{transient}

<<timer>>
/mediaTimer manager

manager

{transient}

1 *

*

0..1

0..1

*
*

*

* *

*

1
*

*

Figure 3. General architectural pattern for in-
teractive multimedia applications

pre-processed and forwarded to functional controllers that
enact and manage (complex) scenarios of multimedia appli-
cations. The presentation of multimedia content is achieved
by collaborating application and media objects and renderer
components that execute the actual presentation.

The fundamental pattern of interaction within the multi-
media application is depicted as a UML collaboration dia-
gram on the specification level, i.e., containing roles instead
of individually identified objects, in Fig. 3. The user of the
system is depicted by a stick man, the UML symbol for an
actor that interacts with the modeled system. Users can only
interact with objects of stereotypes � interaction � and � pre-
sentation � for input and output, respectively. User input
events are handled by � scenario � objects which act as event
listeners as well as controller objects for the multimedia ap-
plication behavior. Objects of stereotype � scenario � can
be hierarchically structured and forward/delegate events to
other � scenario � objects. The behavior described so far is
inherently reactive and will be modeled within statechart
diagrams (see Sect. 3).

In addition to the communication with other � sce-
nario � objects, objects of this stereotype are also respon-
sible for enacting (timed) procedural behavior. This is
achieved by sending method calls to � application � ob-
jects in a timely fashion. The interaction between � sce-
nario � and � application � objects is modeled within an ex-
tended version of UML sequence diagrams (see Sect. 4). To
obtain timing information, the � scenario � objects are asso-
ciated with a media timer of stereotype � timer � .

Finally, in order to present the multimedia information to
the user, an � application � object and its associated � me-
dia � objects are temporarily associated with � presenta-
tion � objects for the duration of the presentation of the me-
dia content. We abstract from this last pattern of interaction
between application, media, and presentation objects within
sequence diagrams on the analysis level of our method, but
it may be modeled on a less abstract design model.

We thus separate reactive behavior from timed proce-
dural behavior as two different modeling views of a mul-
timedia application in the following. The former is modeled

208

LectureDiscussions
include / Lectures

EduAppIntro

quit

Selection(li)
Homeworks Handouts

top

EducationApplication

Selection(hwi)
Selection(hoi)

Figure 4. Statechart diagram modeling the
top-level reactive behavior of the education
application

LectureStart
LectureDiscussion1
do / ld1.perform()
exit / ld1.stop()

LectureDiscussion2
do / ld2.perform()
exit / ld2.stop()

next
prev

Lectures

up

Selection(ld2)

Selection(ld1)

Figure 5. Statechart diagram for the lecture
discussion presentation

within statechart diagrams with the usual semantics, the lat-
ter is modeled within extended sequence diagrams.

3 Modeling Interactive Behavior in State-
chart Diagrams

User interaction appears asynchronously and may affect
both the temporal and the spatial composition of objects at
presentation time. Interactive behavior is best represented
by an event-based model where a user event triggers some
action within the system, possibly mediated by a cascade
of events sent between objects within the system. UML
contains statechart diagrams for modeling event-based re-
active behavior. For the modeling of multimedia applica-
tions, three basic alternative uses of statecharts can be dis-
tinguished: modeling the overall system behavior on a high
level of abstraction modeling the behavior of active objects
controlling scenarios of media presentations, and modeling
the internal state of media, application or presentation ob-
jects during the presentation lifecycle. These models have
different purposes and appear on different levels of abstrac-
tion. For the objective of this paper, we concentrate on the
first and second alternative. In these cases, statemachines
are assigned to � scenario � objects.

The statechart diagrams for the example are depicted in
Figs. 4–6. We show the top-level statechart of the educa-

idle

perform() /
current := this.first

LectureDiscussion

presenting
do/ this.start(current)

speech nospeech

mute / current.sound.renderer.mute()

[current.successor
/= null] / current :=
current.successor

mute / current.sound.renderer.loud()

[current.successor = null]
stop()

 Figure 6. Statechart diagram for a video pre-
sentation in a single lecture discussion

tional application and a more detailed view of the nested
statemachine corresponding to the lecture discussion pre-
sentation. In order to present the integration of interactive
and procedural behavior on a detailed level, we have added
more possibilities for user control to the original example.
The events appearing as triggers on the state transitions cor-
respond to signals issued by corresponding user interface,
i.e., interaction components, either referring to selection or
navigation actions.

Figure 4 shows the top-level statechart diagram for the
modeled education application. States within this top-level
diagram correspond to scenarios of the interactive multime-
dia application. In this example, four alternative scenarios
that are modeled as substates of the composite top-level
XOR-state can be selecteded by user input. Note that it is
also possible to specify concurrent execution of multiple
scenarios by deploying composite AND-states. Icons on the
states LectureDiscussions, Homeworks, and Handouts
show that these states are themselves composite states. The
UML notation for referring to a nested statemachine Lec-
tures from a sub-machine state is only shown for the further
refined state LectureDiscussions (i.e., include in its in-
ternal transition compartment). The events triggering tran-
sitions within this statechart are handled by the top-level

� scenario � object of class EducationApplication to which
this statechart diagram is assigned by name.

We next consider the nested statemachine correspond-
ing to the presentation of lecture discussions. The state-
chart diagram in Fig. 5 shows that this scenario consists of
three different substates, one for the introduction and one
for each contained lecture discussion. The internal activities
of states LectureDiscussion1 and LectureDiscussion2,
labeled with the predefined action label do, model which
activity is undertaken by the Lectures object whenever it
is in one of these states. In case of LectureDiscussion2,
it sends the message perform() to the object ld2 which is
a � scenario � object of type LectureDiscussion. The re-
action of ld2 is modeled in a separate statechart diagram
(Fig. 6). This case thus models the coordination of activity
between different (active) objects by signaling events. The

209

Pδ Pβ

Pα

tβ

tα

tδ

tβ

tα

tδ1
tδ2 tδ3 tδ4

:Conductor Pα Pβ

tα

tβ

tδ1

tδ4

tδ3
tδ2

Figure 7. A comparison of generic models
for temporal constraints on intervals between
OCPN (upper left), interval relations (lower
left), and UML sequence diagrams

semantics of the do-activity is that this behavior is interrupt-
ible whenever an event occurs that triggers any transition
from this state. In contrast, UML also offers predefined in-
ternal action labels for entry and exit-actions that are run to
completion. To ensure that the media presentation, concur-
rently activated by the do-activity, is actually stopped on in-
terrupts, an exit-action is executed when such a preemptive
interaction occurs. Further details of the statechart diagram
for LectureDiscussion will be explained in Sect. 5.

4 Modeling Timed Procedural Behavior in
Extended Sequence Diagrams

Sequence diagrams are used for specifying timed proce-
dural behavior in our method. This diagram type offers a
rudimentary notion for time axes, and models can be ex-
tended by timing marks and temporal constraints. Several
extensions, such as activation and deactivation delays, inte-
grated time functions or composite activations on the life-
line of a single object have been proposed in [13].

Modeling of temporal behavior can be based on either
time point relations or time interval relations. Note that all
these point and interval relations can be expressed in se-
quence diagrams. In addition to explicit textual temporal
constraints, we developed extensions of the graphical syn-
tax for temporal constraints in order to make diagrams less
complex and more comprehensible. and to reduce explicit
temporal constraints. We do not show the syntax here, but
restrict ourselves to the presentation of a generic temporal
interval model that is depicted in Fig. 7 in comparison to
the well established generic models of OCPN [11] and the
interval relations from [14].

On sequence diagrams, we can distinguish different di-
mensions of time:

� (virtual, local) object time for each (application) object

LectureDiscussion.start(x)

<<application>>
x:SubjectVideo

<<application>>
x.sound:Speech

<<application>>
x.subs:Subtitle

<<application>>
trail:Trailer

<<scenario>>
:LectureDiscussion

stop() stop()

end()

stop()

< 200 ms

synchronized intervals on the objects‘ local time axes

start(x.video, vp)

start
(x.sound.audio,
ac)

start
(x.subs.anim,
tp)

start([traila,trailv],
[ac, vp])

Figure 8. Sequence diagram modeling timed
procedural behavior for the presentation of
lecture discussion videos

depicted on the diagram, i.e., the timing for actions rel-
ative to the object’s notion of time,

� message time, i.e., the send and receive time of a mes-
sage which correlate with events on the sender’s and
receiver’s local time axes,

� (global) real time coinciding with the user’s notion and
perception of time.

Each temporal event and interval on a local time axis
maps to a corresponding temporal event or interval of a ref-
erence time axis. A reference time axis can be the global
time axis or another local time axis.

Figure 8 depicts the timed procedural behavior of a lec-
ture discussion. Technically, it is given as the specification
of the method start of class LectureDiscussion which is
denoted by the header of the surrounding box. We have
modified the behavior specification from [2] in several ways
in order to explain additional features of our modeling ap-
proach. The atomic video segment of their example has
been further decomposed into a trailer and the successive
main video. The trailer is the same for all video segments.
The main video consists of three parts: video, sound, and
subtitles. In contrast to the trailer, where the decomposition
is only on the media level (depicted by a parallely com-
posed activation of trail:Trailer), the structure of the video
was defined as a semantic property of the application by
distinguishing three specialized � application � objects. The
bold bar connecting the activation symbols instead of a mes-
sage arrow specifies that the related activation intervals are
to be presented synchronously. Which video is to be played
is specified by parameter x. This parameter is also used in
combination with role names on links–as depicted on the
object diagram (see Fig. 2)–to define navigational path ex-

210

<<presentation>>
ac:AudioChannel

<<presentation>>
:Screen

{state = EducationApplication:: Lectures:: LectureDiscussion2}

<<presentation>>
vp:VideoPane

<<presentation>>
quitB:Button

<<presentation>>
topB:Button

<<presentation>>
upB:Button

<<presentation>>
prevB:Button

<<presentation>>
muteB:Button

<<presentation>>
tp:TextPane

Figure 9. Presentation diagram showing pre-
sentation objects (and an audio channel) and
their spatial layout for the video presentation

pressions that evaluate, e.g., to the actual sound and subti-
tle objects (x.sound and x.subs, respectively). A temporal
constraint has been added stating that the maximum delay
between the end of the trailer presentation and the start of
the video presention must not exceed 200 milliseconds. In
contrast, the only temporal constraint defined in [2], saying
that the start of the successive video must be after the end
of the preceding one, was moved to the statechart in Fig. 6
where it is specified by the sequential activation of the pa-
rameterized start activity. We thus obtain a single sequence
diagram specifying the behavior of all video presentations
instead of specifying this behavior individually on the in-
stance level.

The parameters of the start messages within the se-
quence diagram refer to the associated � media � and � pre-
sentation � objects. Since the trailer object has two differ-
ent media objects associated with it, its start message has
parameter lists with two-elements for each of both stereo-
types. The � presentation � objects and their graphically de-
picted constraints (relative or absolute positioning) can be
obtained from the presentation diagram assigned to the cur-
rent scenario state (see Fig. 9; the corresponding class dia-
gram is not shown).

While in the diagram of Fig. 8 only the synchronization
bar and the parallel activation are non-standard notations,
the right of Fig. 10 shows additional notations (here on an
instance-level diagram) that we introduced for the modeling
of multimedia applications. The respective standard syntax
is given on the left. Instead of assigning media and presenta-
tion objects by parameterizing messages, they can be graph-
ically attached to the corresponding activations on the ap-
plication object’s lifeline, like, e.g., the object tp:TextPane

start()
<<presentation>>

tp:TextPane
{new}

stop()

<<application>>
sub:Subtitle

<<media>>
st2:Text

<<media>>
st3:Text

<<media>>
st1:Text

<<media>>
st:Animation

<<scenario>>
ld:LectureDiscussion

< 200 ms

< 200 ms

40 s

30 s

50 s

start(st1, tp)

stop()

<<application>>
sub:Subtitle

<<scenario>>
ld:LectureDiscussion

end()

start(st2, tp)
end()

start(st3, tp)

< 200 ms

< 200 ms

40 s

30 s

50 s

Figure 10. Alternative notations on sequence
diagrams

(in earlier work [13], we simply used textual references).
Note that this object is marked with a constraint � new �
stating that this presentation object is to be created within
the scenario specified by the sequence diagram. Another
simplification is the use of sequentially composed activa-
tions for animations. In this case, the intermediate start and
end messages can be neglected. Objects can then be as-
signed to any segment of the animation activation as it were
a normal activation. They will be overridden by the next
occurrence of the same stereotype, i.e., in the example, ob-
ject tp:TextPane is valid for the whole animation sequence,
st1:Text only for the first segment. Delay intervals between
segments can be distinguished by dotted borders. If tempo-
ral durations refer to intervals on an object’s time axis, the
construction marks of UML can be omitted.

The sequence diagram in Fig. 11 shows possibilities how
to specify the synchronization of the partial view of Fig. 10
with the rest of the video presentation. It is modeled that the
possible delays in the animation need to be resynchronized
with the video and speech presentation as if they would not
have happened. It is also exemplified how the local time of
an object time axis can be related to global time by map-
ping intervals (or points in time) between two different time
axes. Here it is modeled that 120 seconds of the presen-
tation will be rendered within 40 seconds. Such mappings
can be specified relatively, i.e., by an offset and a conver-
sion factor, or absolutely. The same mechanisms can be ap-
plied between any two time axes. Finally, another temporal
mapping is shown regarding the relation of inherent time
of an associated continuous media object to the time axis
of the application object. Here it is specified that the pre-
sentation of the media objects m:DigitalVideo and s:Audio

211

start()

<<presentation>>
tp:TextPane

{new}

stop()

<<application>>
sub:Subtitle

<<media>>
st2:Text

<<media>>
st3:Text

<<media>>
st1:Text

<<media>>
st:Animation

<<scenario>>
:LectureDiscussion

< 200 ms

< 200 ms

40 s

30 s

50 s

start()

<<media>>
m:DigitalVideo
{start = 300}

vp
ac

stop()

<<application>>
mov:SubjectVideo

<<application>>
spe:Speech

<<media>>
s:Audio

{start = 300}

start()

stop()

120 s

120 s
40 s

Figure 11. Synchronization and temporal
mapping on sequence diagrams

starts at time 300. Since no duration or conversion factor
is specified, these parameters are identical to those of the
application object. In addition to temporal properties on as-
signed objects, spatial properties can also be modeled. By
assigning changing spatial properties to associated presen-
tation objects on an animation sequence, e.g., one can model
spatio-temporal animations.

5 Integrating Timed Procedural and Interac-
tive Behavior Modeling

After presenting the modeling of interactive behavior in
statechart diagrams and the modeling of timed procedural
behavior in sequence diagrams in detail, we will now show
how these two different behavioral aspects are integrated
in our modeling method for interactive multimedia appli-
cations. The main idea is that sequence diagrams specifiy
actions appearing on transitions or within states (i.e., as in-
ternal actions or activities) of the statechart diagrams. Ac-
tions are atomic while activities can be interrupted. We have
used the same mechanism already in Sect. 3 for the coupling
of statemachines of different objects. Now the receiver’s re-
sponse to the action on the transition of the sender is not
specified as a trigger on a transition of the receiver’s state-
chart, but instead by a sequence diagram that specifies the
initiated procedural behavior sequence. The statechart spec-
ifying the reactive behavior of class LectureDiscussion is
shown in Fig. 6. As a reaction to the reception of a perform
message, an object of this class enters the state rendering.
The do-activity of this state specifies that the action start
with the parameter current has to be executed. This action
is specified by the sequence diagram of Fig. 8. Reactive and
timed procedural behavior can thus be integrated. Figure 6
also shows that such timed procedural specifications can be
assigned to complex states as well. In the example, it is pos-

sible to mute the sound during the video presentation with-
out affecting the course of the timed procedural behavior.
Only an asynchronous message is sent to the presentation
object rendering the sound media object to set the output
level to zero. By this mechanism, sequence diagram speci-
fications can be integrated in any kind of dynamic specifica-
tion and on any level of nesting within statechart diagrams.
This removes the restriction to simple states as required in
[13], allowing for interaction with running timed scenarios
at execution time. The detailed semantic consequences of
this integration are currently under investigation.

6 Related Work

A wide variety of models for the synchronization of
temporal behavior within multimedia applications has been
proposed which can be categorized into graph, Petri-net,
object-oriented, and language-based models according to
[4], but none of the analyzed models fulfills all requirements
listed therein.

The timeline-tree model presented in [10] is similar to
our approach in that it allows to execute different prede-
fined timelines in response to user interaction. But due to
the lack of modularization and hierarchical structuring con-
cepts, models become overwhelmingly complex even for
moderate size applications.

Adali et al. [2] present an algebra for interactive mul-
timedia presentations. Within their model, a presentation
consists of a tree whose nodes represent non-interactive pre-
sentations. An interaction corresponds to a transition from
a parent to a child node traversing an edge of this tree. This
resembles our concept of predefined scenes that are spec-
ified within sequence diagrams that are in turn assigned to
actions (resp. states) of a statemachine. Transitions between
theses states reify interactions with the multimedia applica-
tion. Thus, states in the statemachine correspond to nodes
in their multimedia presentation tree. Since statechart dia-
grams are in general graphs, our approach is more expres-
sive as regards user interactive control. They also do not
account for simultaneous presentation of continuous media.

In the field of visual programming languages, the visual-
ization of temporal behavior has attracted some attention. In
addition, Burnett et al. [6] investigate how spatial program-
ming mechanisms can be applied to program temporal be-
havior for animated graphics. Animated graphics are a spe-
cific form of multimedia application. The main problems
they have to deal with are the mismatch between the pro-
gramming notation and the intuitive representation of the
problem to be solved and the manipulation of speed for pro-
gramming temporal interrelationships. The first objective
(closeness of mapping) similarly applies to our modeling
approach whereas the latter relates to the manipulation of
presentation speed, i.e., the mapping of object time to real

212

time in our case. They develop a hierarchy of grid-based
time models by relating the speed of a grid cell to normal
time or the speed of another cell. The most elaborate model
is capable of representing an unlimited number of speeds
and temporal relationships. These models can be applied to
the temporal mapping between different (local) object time
axes or between object time and global time.

7 Conclusion

The presented integration of predefined temporal behav-
ior and interactive control can be easily mapped to object-
oriented implementation techniques and frameworks and
the development paradigms of most multimedia authoring
systems. According to the classification criteria in [4], we
come to the conclusion that our integrated approach to be-
havior modeling of multimedia applications based on the
Unified Modeling Language meets the following require-
ments:

� the diagrammatic notation is understandable even by
non-technical members of a development team or
users,

� due to the inherent structuring on the structural and be-
havioral levels by modularization and nested statema-
chines that are coupled with sequence diagrams, even
large scenarios are still manageable,

� models are easily mapped to an object-oriented imple-
mentation or the concepts of many multimedia author-
ing tools, but still no programming language knowl-
edge is needed for the task of modeling,

� temporal (as well as spatial) constraints can be intu-
itively expressed,

� although temporal and spatial constraints are notated
in different diagrams, they are parts of a common inte-
grated model,

� the object-oriented classification of different object
stereotypes offers an adequate media abstraction and
supports architectural decomposition,

� dedicated diagram types enable separation of concern
for the different aspects of multimedia applications,

� language (and methods) are easily extensible and
customizable by applying UML’s built-in extension
mechanisms for stereotyping, tagged-values, and con-
straints,

� the modeling process can thus be very flexible.

We gave an overview of the extensions to UML behavior
diagrams for modeling interactive multimedia applications

in this paper. The whole set of extensions together with a
process defining the pragmatics for deploying this extended
variant of UML is underway to be defined as a standard-
compliant UML profile.

We are currently working on a formal semantics of UML
behavior diagrams and the proposed extensions for the mul-
timedia domain based on the concept of dynamic meta mod-
eling as introduced in [7].

References

[1] P. Ackermann. Developing Object-Oriented Multimedia
Software – Based on MET++ Application Framework.
dpunkt, Heidelberg, 1996.

[2] S. Adali, M. L. Sapino, and V. S. Subrahmanian. An algebra
for creating and querying multimedia presentations. Multi-
media Systems, 8(3):212–230, 2000.

[3] T. Arndt. The evolving role of software engineering in the
production of multimedia applications. In Proc. IEEE Intl.
Conf. on Multimedia Computing and Systems (ICMCS’99),
pages 79–84.

[4] E. Bertino and E. Ferrari. Temporal synchronization models
for multimedia data. TKDE, 10(4):612–631, 1998.

[5] E. Bertino, E. Ferrari, and Marco Stolf. MPGS: An interac-
tive tool for the specification and generation of multimedia
presentations. TKDE, 12(1):102–125, 2000.

[6] M. Burnett, N. Cao, and J. Atwood. Time in grid-oriented
VPLS: Just another dimension? In Proc. IEEE Symposium
on Visual Languages (VL 2000), pages 137–144.

[7] G. Engels, J. H. Hausmann, R. Heckel, and St. Sauer. Dy-
namic meta modeling: A graphical approach to the op-
erational semantics of behavioral diagrams in UML. In
A. Evans, S. Kent, and B. Selic, editors, Proc. UML 2000,
volume 1939 of LNCS, pages 323–337. Springer, 2000.

[8] S. J. Gibbs and D. C. Tsichritzis. Multimedia Programming:
Objects, Environments and Frameworks. ACM Press, 1995.

[9] M. Hirakawa. Do software engineers like multimedia? In
Proc. IEEE Intl. Conf. on Multimedia Computing and Sys-
tems (ICMCS’99), pages 85–90.

[10] N. Hirzalla, B. Falchuk, and A. Karmouch. A temporal
model for interactive multimedia scenarios. IEEE MultiMe-
dia, 2(3):24–31, 1995.

[11] T. D. C. Little and A. Ghafoor. Synchronisation and storage
models for multimedia objects. IEEE Journal on Selected
Areas in Communications, 8(3):413–427, April 1990.

[12] Object Management Group. OMG Unified Model-
ing Language Specification. Version 1.3, June 1999.
http://www.omg.org

[13] St. Sauer and G. Engels. Extending UML for modeling of
multimedia applications. In M. Hirakawa and P. Mussio, ed-
itors, Proc. IEEE Symposium on Visual Languages (VL’99),
pages 80–87.

[14] T. Wahl and K. Rothermel. Representing time in multime-
dia systems. In Proc. IEEE 1st Intl. Conf. on Multimedia
Computing and Systems (ICMCS’94), pages 538–543.

213

Easy Model-Driven Development of Multimedia User
Interfaces with GuiBuilder

Stefan Sauer and Gregor Engels

s-lab – Software Quality Lab
University of Paderborn

Warburger Str. 100
D-33098 Paderborn, Germany

{sauer,engels}@s-lab.upb.de

Abstract. GUI builder tools are widely used in practice to develop the user
interface of software systems. Typically they are visual programming tools that
support direct-manipulative assembling of the user interface components. We
have developed the tool GuiBuilder which follows a model-driven approach to
the development of graphical (multimedia) user interfaces. This allows a meta-
design approach where user interface developers as well as prospective users of
the system are supported in modelling the desired functionality of the GUI on a
high level of abstraction that is easy to understand for all involved stakeholders.
The model consists of compositional presentation diagrams to model the
structure of the user interface and hierarchical statechart diagrams to model its
behaviour. GuiBuilder then supports the transformation of the model to Java,
i.e., the generation of a working user interface and the simulation of the
modelled behaviour. Interactive sessions with the user interface can be recorded
and replayed.

Keywords: Model-driven development, meta-design, user interface, prototype
generation, capture-replay.

1 Introduction

Recently, meta-design has been proposed as a novel approach to system development
where end users play an active role not only in using a software system but also in
designing it. In [2], G. Fischer et al. state: “Meta-design characterizes objectives,
techniques, and processes for creating new media and environments allowing ‘owners
of problems’ (that is, end users) to act as designers. A fundamental objective of meta-
design is to create socio-technical environments that empower users to engage
actively in the continuous development of systems rather than being restricted to the
use of existing systems.”

In [1], M.F. Costabile et al. refine this approach and introduce the notion of
“Software Shaping Workshops (SSW)”, where groups of stakeholders focus on
certain aspects of system development. They state: “We view meta-design as a
technique, which provides the stakeholders in the design team with suitable languages

214

and tools to favour their personal and common reasoning about […].” Futhermore,
they follow G. Fischer’s arguments, who characterizes end users as persons who want
to be a “consumer” (i.e., user) of a software system in some situations, and in others a
“designer”, who adapts the software system to her personal needs and desires.

In our approach, we exemplify these ideas by presenting a model-based
development approach for graphical user interfaces (GUI). The overall idea is to
provide high-level sophisticated design languages and tools, which allow end users to
be involved in designing and testing graphical user interfaces of a software system.

Following the approach of model-driven development (MDD) techniques [4,9],
such a platform-independent model of a GUI is automatically transformed into an
executable GUI realisation in a common programming language like Java.

Graphical user interfaces of (multimedia) software applications provide users with
the presentation of information and interaction capabilities with (media) content and
functionality. The user interface is a complex part of the overall system and often
requires software engineering effort comparable to building the application
functionality itself. In addition, the user interface has to meet the user’s requirements
and expectations in order to yield a high acceptance rate by future users. Thus, user
interface development should be done cooperatively by software engineers and
prospective end users. Due to the inherent complexity of user interfaces, model-based
development processes which are nowadays well-accepted in software development
should be applied for user interfaces, too. GUI builder tools that merely support visual
programming of the user interface are overstrained with this task.

Model-based development of user interfaces promotes structuring of the resulting
implementation and allows developers and prospective users in teamwork to prevent
errors or to detect errors earlier and more easily by already analysing the model of the
user interface. The models can also be used as documentation and for guiding the
maintenance of the software system. Model-driven development even goes a step
further by automatically generating from the model an executable user interface in a
common programming language like Java.

The objective of this work is to develop a model-driven and tool-based
development technique for graphical user interfaces (GUI). The model of the GUI
combines structural and behavioural aspects. The model-driven development of the
GUI is then supported by a tool called GuiBuilder. GuiBuilder provides developers
and prospective users with an editor for GUI modelling and an execution environment
for GUI simulation. A prototype user interface can be generated from the model,
executed and tested. External tools can also connect to the simulation and are notified
about the simulation progress. Simulation runs can be recorded and replayed. The
simulation logs can also be used to support regression testing based on the capture-
replay paradigm.

A number of model-based approaches have been proposed in past years to deal
with user interface modelling at different levels of abstraction (see e.g. [10]).
GuiBuilder is targeted towards concrete user interface modelling. The idea of
combining statechart and presentation diagrams originally stems from the OMMMA
approach [8]. Statecharts have also been used in [3] for describing GUI behaviour.
UsiXML (e.g. [11]) uses graph transformations instead. It provides a variety of GUI
elements which are currently not completely supported by GuiBuilder due to its early
development state. In MOBI-D [7] the process of constructing a GUI is guided and

215

restricted by domain and task definitions, which are the building blocks of user
interfaces in MOBI-D. A UML-based approach towards model-driven development
of multimedia user interfaces is described in [5]. Recently, model-driven development
of user interfaces has attracted wider interest in the research community [6].

In the next section, we will introduce the different models that are supported by
GuiBuilder and their interplay. Section 3 presents the tool GuiBuilder. We draw
conclusions and outline future perspectives in Section 4.

2 Models of GuiBuilder

The model of the multimedia user interface in GuiBuilder consists of two parts: the
presentation model and the dynamics model. The presentation model captures the
structure and layout of the user interface, the dynamics model uses UML statecharts to
specify the behaviour of the GUI. Dynamic behaviour is enacted by user interaction
or other events that cause a change of state in the user interface (and the application).
Events that are caused by user interaction are modelled as signals which can be
handled by the presentation elements. Signals can also be sent as the actions of
triggered state transitions.

The basic concept of the compound model is to assign a presentation design to a
state, which describes the structure and layout of the user interface while in that state.
At any point in time, the GUI of an application is in a specific, possibly complex
state. An event occurrence causes a state change and thus a change of the
presentation.

The presentation model consists of presentation elements (see Fig. 1). Typically
they are graphical elements that are part of the application’s presentation. Such
elements can e.g. be geometric shapes, widgets, or graphics elements for rendering
images or video. In addition to graphical elements, audio elements can be included for
playing music or sound effects. The presentation elements have properties which can
be assigned with values. The properties depend on the type of presentation element
and determine the presentation of the element. The types of presentation elements are
organized in a class hierarchy.

Fig. 1. A presentation consists of presentation elements (left), where each presentation element
is characterized by its property values (right)

The presentation elements within one presentation diagram are ordered. The
topmost element is upfront and possibly covers parts of other elements if they
overlap.

216

If the GUI is in a simple state, the presentation is a composition of presentation
elements with their property values. The presentation is completely described by the
presentation diagram that is assigned to this state.

However, it is also possible to assign presentation diagrams to complex states in
our model. Complex states allow us to hierarchically structure the state of the user
interface. The actual presentation is then composed from the presentation diagrams
that are assigned to the current simple state and all its parent states, where the
complex states can even be concurrent (i.e., AND-superstates). Fig. 2 shows an
example, where the presentation diagrams Layout1 and Layout2 are assigned to
State1 and its substate State2, respectively.

The actual composition of the presentation is determined by the hierarchical
structure of the statechart diagram. If the behaviour of a superstate is refined by
substates, the assigned presentation is also refined by the presentation diagrams that
are assigned to the respective substates.

Fig. 2. Presentation diagrams can be assigned to hierarchical states, new presentation elements
can be added for substates or properties of existing elements be modified

The composition of the presentation diagrams according to the state hierarchy
works as follows:

First, presentation diagrams are stacked on top of each other. The order is
determined by the state hierarchy: presentation diagrams of substates are put on top of
presentation diagrams of their superstates. The former are intended to be the more
specific. Their presentation elements override (cover) the presentation elements of the
latter. For concurrent states, an order is not defined.

Secondly, since presentation diagrams can not only contain new presentation
elements, but also property changes (i.e., modify the properties of presentation
elements contained in presentation diagrams that are assigned to superstates), the
modified value also overrides the ‘inherited’ value. All presentation elements that are
introduced in presentation diagrams of the superstates of a state can be altered by
modifying their property values. A property change thus specifies the modification of
a property value of an inherited presentation element in a substate (see Fig. 3).

Consequently, a hierarchical presentation can be interpreted as a list of
modifications where the instantiation of a presentation element is a specific case. This
list can then be processed to construct and compose the actual presentation for a
particular state: for each presentation diagram, the list of modifications is processed,

State2

State1

217

whereby the order of the lists of different presentation diagrams is determined by the
hierarchical state structure from superstates to substates.

With respect to execution semantics, this means that when a state is left, the
modifications of its presentation diagram to the user interface become ineffective and
are replaced by the modifications of the presentation diagram of the successively
entered state. Modifications of the presentation diagram of the possibly still active
superstates remain unaffected, yet may be overridden.

Structured specification of a user interface is facilitated by this composition
mechanism. GUIs typically contain a limited number of fundamentally different
views which are then subject to a larger number of smaller (local) modifications for
representing the particularities of different states within the overreaching context. Our
incremental composition mechanism eases the specification of such modifications and
prevents the developer from having to specify the complete presentation design for
each, even simple modification. The GUI design thus requires less effort and the GUI
models become easier to extend and modify even by end users, especially since
redundancy is limited and controlled.

Fig. 3. Stepwise modification of a presentation element through hierarchical presentation
diagrams

In addition to presentation, interaction also profits from the incremental
specification. User interaction results in events which are received by presentation
elements as signals. Since signals are properties of the presentation elements as well,
they can be ‘inherited’ and modified like presentation properties. Functionality can
thus be adapted in the same way by modifying the signal specification.

Thus, since we follow a clearly structured approach toward user interface
construction and limit the GUI modelling language to a selected number of modelling
concepts and elements, it is suited for professional software developers and end users as
well. The integration of end users in the software development tasks is further promoted
by the strict distinction of interactive control behaviour that is modelled here and
possibly complex algorithmic computations of the system that are developed separately.

218

3 GuiBuilder - The Tool

GuiBuilder has been developed as a plug-in of the Eclipse tool environment and
platform. We used the Plug-in Development Toolkit PDT for its implementation and
the Graphical Editor Framework GEF for implementing the graphical editor of the
GuiBuilder plug-in.

GuiBuilder supports user interface software developers as well as prospective users
in the development of graphical (multimedia) user interfaces. Audio and video can be
integrated in the presentation of the application that is developed. In the current
version of GuiBuilder, executable GUIs are generated from the model and executed
using Java SWT, and the Java Media API is deployed for rendering of multimedia
artefacts.

The main view of GuiBuilder is the GUI editor. Additional views of GuiBuilder
are the Eclipse standard views problems view, outline view, and properties view as
well as the presentation view. The problems view lists the detected errors and
warnings. The outline view presents an outline page for each window of the GUI
editor when it is selected. The properties view shows properties of a selected model
element (statechart element or presentation element). Properties can be edited directly
in the properties view or in an explicit properties dialog. The presentation preview is a
GuiBuilder-specific view that presents a preview of the presentation (see Fig. 6). In
our development of GuiBuilder we tried to keep the tool as simple as possible—
despite its diverse functionality—to be usable even by end users.

The tight integration of editing and simulation tools allows users to dynamically
switch between the roles of software developers who design the structure and
behaviour of the interactive graphical user interface by the use of design models and
users who interact with the application that is being designed.

3.1 Editor

The editor of GuiBuilder is a graphical tool that supports the direct-manipulative
construction of dynamics and presentation diagrams. The GUI editor is a multi-page
editor that can manage windows of two different types for statecharts and presentation
layouts, respectively.

3.2 Model Validation

The GUI editor calls the validator to validate the correctness of the edited model. The
diagrams of the dynamics model have to be valid UML statechart diagrams where
only a limited subset of modelling elements is used to control the model’s complexity.
In addition, we require that the specified behaviour is deterministic. Thus, the
statechart diagrams are validated before code is generated from them by the generator
function and the simulation can be started. To effectively support the developer as
well as prospective user, we provide syntax-directed editing to prevent from
fundamental syntactic errors and static model analysis to detect more complex and
context-sensitive problems. For example, missing start events or non-deterministic
transitions are identified by our model analysis. Two categories of problems, errors
and warnings are recorded and presented to the user of the editor in the central

219

problems view, in the outline view (see Fig. 4), and directly at the relevant modelling
elements in the editor view. The identified problems are accompanied by correction
procedures (i.e., quick fixes). These features are altogether intended to support users
of the editor as much as possible in detecting and correcting defects. Only after all
errors have been resolved, the generation can be enacted. Warnings need not to be
resolved; however, they should not be ignored since they mark weaknesses of concept
or style within the model. Thus, the static analysis supports both the syntactic
correctness of the model and its quality in accordance to modelling guidelines.

Fig. 4. Problems are marked at the causing model elements

Since the static analysis is the powerful core of the validation module, the syntax-
directed editing restrictions can be kept low, not to unnecessarily hinder the flexibility
of model editing. For example, inconsistencies or incorrectness can be temporarily
tolerated as long as the developer does not want to start the prototype generation
process.

Despite the wide range of checks in the static analysis, some problems can still
only be detected during dynamic analysis. Dynamic analysis is integrated with the
simulation and executed at runtime. Dynamic errors that are detected then are for
example infinite loops or non-deterministic behaviour. Such errors cause the
termination of the simulation run.

3.3 Generation and Simulation

The simulator view shows the simulated GUI. The GUI editor passes the GUI model
via a generator function to the simulator view. The generator function flexibly
implements the transformation rules to build a prototype GUI from the GUI model. It
can be replaced for generating a different target language or for tailoring of the
generation results.

The simulator view starts the simulation in the simulator and registers the GUI
editor with the simulator. The simulator then notifies the GUI editor about state
changes.

Simulation of the user interface is accomplished by interpreting the model. The
GUI simulator uses a statechart simulator which interprets the statecharts of the
dynamics model. Connected objects are notified by the statechart simulator about

220

state transitions and triggered actions (signals). The GUI simulator constructs the
composite presentation view for the active state configuration and passes it to the
simulator view of GuiBuilder. The simulator view renders the current GUI view. The
user can then start the simulation in the simulation view, and the simulator executes
the generated GUI. Events can be raised either by interacting with the simulated GUI
elements directly or by using the ‘remote control’ that we implemented as an external
plug-in. It can be operated remotely to generate the required signals.

Fig. 5. Simulations can be tracked in the model

The interpretative approach has the advantage that the user interface model can be
altered at runtime, and these changes can directly influence the succeeding simulation
behaviour. GuiBuilder provides this functionality in a separate hot-code replacement
mode.

External tools and other Eclipse plug-ins can connect to the simulator and are thus
notified about state changes in the simulated model. They can assign specific actions
to the signals and specifically respond to their occurrence. With this mechanism it is
possible to actually control a fully fledged application. Besides, the simulation
recorder that we developed uses this mechanism for recording a simulation run. The
recorder logs the simulation execution. The recorded log can later be used to replay
the simulation or to do regression testing after the GUI model has been modified.

221

External tools can themselves send signals to the simulation and raise events to
change the state of the simulated GUI. Thus, the GUI can react to application or
external events, too.

Fig. 6. The GUI of GuiBuilder

While a simulation is running, the editor view of GuiBuilder highlights the current
state of the dynamics model in its statechart in green colour (composite state “Dialog”
and its concurrent substates “Step 3“ and “Show Preview” in the example of Fig. 5).
Thus, dynamic information is fed back into the model representation and can be used
e.g. for model debugging.

4 Conclusions

We have integrated the model-driven development paradigm with the GUI-builder
tool concept. This provides user interface developers as well as prospective end users
with a tool for constructing graphical (multimedia) user interfaces in practice. The
GUI model consists of presentation and dynamics models from which a prototype
user interface can be generated and simulated.

In a next step, we plan to further improve the capabilities of multimedia processing
by extending the dynamic model to deal with timed procedural behaviour. We also
want to demonstrate the flexibility of the transformation approach by tailoring the
generator function to different target representations.

222

We have evaluated GuiBuilder in several workshops with high-school students and
people who are interested in software development, but not professional software
developers or programmers. After a presentation of the tool of about half an hour they
were capable of using the tool for constructing, changing and simulating simple
applications like a traffic light control with only very limited support by our tutors.
Thus, the tool has shown its capability to support end users with little programming
skills in building and simulating interactive graphical user interfaces.

Additional information about GuiBuilder can be found at http://www.s-lab.upb.de/
Tools/GuiBuilder/

Acknowledgments. The authors are indebted to the three computer science students
Dennis Hannwacker, Marcus Dürksen, and Alexander Gebel, who contributed to the
concepts of GuiBuilder and implemented the tool.

References

[1] Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: A Meta-Design Approach to End-
User Development. In: Proc. IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC‘05), pp. 308–310. IEEE Comp. Soc, Washington (2005)

[2] Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A.G., Mehandjiev, N.: Meta-Design: A
Manifesto for End-User Development. CACM 47(9), 33–37 (2004)

[3] Horrocks, I.: Constructing the User Interface with Statecharts. Addison-Wesley, London
(1999)

[4] Mellor, S.J., Scott, K., Uhl, A.: MDA Distilled: Principles of model-driven architecture.
Addison-Wesley Professional, London (2004)

[5] Pleuß, A.: Modeling the User Interface of Multimedia Applications. In: Briand, L.C.,
Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 676–690. Springer, Heidelberg
(2005)

[6] Pleuß, A., Van den Bergh, J., Hußmann, H., Sauer, S (eds.).: MDDAUI ’05. In: Proc. of
the MoDELS’05 Workshop on Model Driven Development of Advanced User Interfaces,
CEUR Workshop Proc. 159. CEUR-WS.org, (2005)

[7] Puerta, A.R.: A Model-Based Interface Development Environment. IEEE Software 14(4),
41–47 (1997)

[8] Sauer, S., Engels, G.: UML-based Behavior Specification of Interactive Multimedia
Applications. In: Proc. IEEE Symposium on Human-Centric Computing Languages and
Environments (HCC‘01), pp. 248–255. IEEE Comp. Soc, Washington (2001)

[9] Selic, B.: The Pragmatics of Model-Driven Development. IEEE Software 20(5), 19–25
(2003)

[10] van Harmelen, M. (ed.): Object Modeling and User Interface Design. Addison-Wesley,
London (2001)

[11] Vanderdonckt, J., Limbourg, Q., Michotte, B., Bouillon, L., Trevisan, D., Florins, M.:
UsiXML: a User Interface Description Language for Specifying Multimodal User
Interfaces. In: Proc. W3C Workshop on Multimodal Interaction WMI’2004 (2004),
http://www.usixml.org

223

Applying Meta-Modeling for the Definition of
Model-Driven Development Methods of Advanced
User Interfaces

Stefan Sauer*

Abstract. The user interfaces of interactive systems become increasingly complex
due to new interaction paradigms, required adaptability, use of innovative tech-
nologies, multi-media and interaction modalities. Their development thus de-
mands for sophisticated processes and methods, as they are deployed in software
engineering. Model-driven development is a promising candidate for mastering
the complex development task in a systematic, precise and appropriately formal
way. Although diverse models of advanced user interfaces are deployed in a de-
velopment process to specify, design and implement the user interface, it is not
standardized which models to use, how to combine them, and how to proceed in
the course of development. Rather, this has to be defined by methods in the con-
text of organizations, domains, projects. To cope with the definition of model-
driven development methods for advanced user interfaces, we propose a meta-
method for method engineering. It can be used for modeling and tailoring such
development methods. We show how to apply this meta-method for designing de-
velopment methods in the domain of advanced user interfaces.

1 Introduction

The development of advanced interactive software systems demands for sophisti-
cated engineering processes and methods, not only for the application functionality,
but also for their increasingly sophisticated user interfaces. Model-driven develop-
ment is a qualified approach for dealing with the complex development task of
advanced user interface development in a systematic, precise and appropriately
formal way. However, it needs to get along with the creative and less formal
development techniques that are also used in user interface development.

Diverse models of advanced user interfaces are deployed in a development
process to specify, design and implement the user interface. Among these models

Stefan Sauer
University of Paderborn, s-lab – Software Quality Lab
Warburger Straße 100, D-33098 Paderborn, Germany
e-mail: sauer@s-lab.upb.de

224

are task models, dialog structure or navigation structure models, dialog flow or
navigation models, dialog state and presentation state models, abstract and con-
crete user interface models, models of adaptation, device capability models, and so
on. The concrete set of models that is used for a development depends on the
domain, purpose, and nature of the interactive system and its user interface. In an
integrated development approach, the set of models also has to be compatible
with other models of the interactive system such as those regarding application
functionality.

In order to cope with this complexity, it is necessary to define precise methods
for model-driven development of advanced user interfaces (MDDAUI). It must be
specified which models and artifacts are to be produced, how they are related and
how to proceed from one to the other by the use of transformations. Such trans-
formations can be executed as manual development tasks or by automated proce-
dures (e.g. model transformations) as part of the development process.

We propose a meta-method for method engineering [1] as a solution for this
challenge. It can be utilized for modeling and tailoring engineering methods. We
show how to apply this meta-method for designing development methods in the
domain of advanced user interfaces.

The meta-method consists of a product and a process part. The product part
prescribes which elements must be defined for a development method (product
model). The process model specifies what needs to be done (work model) and how
to proceed to obtain the definition of the development method (workflow model).

Engineering a development method then means instantiating the meta-method’s
product model according to its process model, i.e., the method engineer performs
the defined method engineering tasks of the work model and follows the meta-
method’s workflow model. The resulting development method – the product of
method engineering – is an instance of the meta-method’s product model.

In our approach, the development method itself contains a model of domain
concepts from the MDDAUI domain as its first product. Such domain concepts
are general concepts from the domain of human-computer interaction such as user,
task (not to be confused with the concept “task” from the method engineering do-
main), dialog, presentation state, widget and so on, but also concepts that are spe-
cific to either advanced user interfaces or model-based and model-driven methods.
Examples are multimodal interaction and adaptation, or domain-relevant – both
general and domain-specific – types of models with their model elements and de-
fined model transformations, respectively. The model of domain concepts defines
these concepts, their relevant properties and the interrelationships between the
concepts. The domain concepts are paired with notations for their representation to
form the artifact types (artifact model) of the development method. (Their seman-
tic relations are taken from the model of domain concepts.) The pairing provides
us with an adequate, integrated set of (modeling) languages for advanced user in-
terfaces. We thus combine method engineering and language engineering in our
meta-method.

The tasks in the process dimension are described as transformations that act
upon the artifacts of the method’s artifact model. The model transformations of
model-driven development are a specialization of this transformation concept. The

225

activities of the workflow generally correspond to the tasks the UI developers
have to accomplish, but may adapt them according to the situational context. It
can be specified in a rule-based manner which effects a particular development
task or activity has on the graph of artifacts. We use a notation based on graph
transformation rules to describe the precondition, post-condition and effect of such
development activities.

Tools can then be built that (1) use the model of domain concepts as the foun-
dation of their artifact repository structure; (2) that use a representation that
conforms to the defined notation of the method’s artifact types in their interaction
part, i.e., user interface, content and representation media, produced output docu-
ments and files; and (3) that use the work and workflow models as the basis for
the supported functionality.

In the next section, we will analyze the method domain of MDDAUI in order to
derive requirements for appropriate development methods from this analysis.
These requirements transitively impose requirements on the meta-method, possi-
bly requiring the specialization of the general meta-method for this class of
methods. We structure our analysis according to the characteristics of user inter-
faces, advanced user interfaces, (advanced) user interface development, models of
(advanced) user interfaces, and integrated model-driven development of advanced
user interfaces. In Section 3, we give a general introduction into method engineer-
ing and the use of meta-modeling for method engineering. Our meta-method for
method engineering is presented in Section 4. In Section 5, we show how to apply
it for the MDDAUI method domain. We summarize our work in Section 6.

2 Model-Driven Development of Advanced User Interfaces

In this section, we give an overview of MDDAUI. We derive from this the re-
quirements for model-driven development methods for advanced user interfaces.
In particular, we look at both the characteristics of advanced user interfaces that
impact their development from its product perspective and the inherent character-
istics of the development approach from the process perspective.

2.1 User Interfaces

The user interface of interactive software systems is one of the key factors
determining its success. Not surprisingly, the development of sophisticated user
interfaces is gaining more and more attention not only in the human-computer
interaction community, but eventually also in the software engineering community.

The user interface is the part of an interactive system where interaction
between humans and computers occurs. Interaction is a bidirectional process of
action and reaction, with the exchange of information between the human and the
computer. User interfaces therefore provide means of input and/or output, thus al-
lowing the users to manipulate a system and, vice versa, the system to indicate the
effects of the users' manipulation. The user interface of a software-based system
includes both hardware (physical) and software (logical) components. The term

226

“computer” thereby stands for an increasing multitude of computing platforms,
ranging from smart cards and wearable computing devices, across interactive
embedded systems, appliances, mobile phones and mobile computers, to desktops
and collaboration environments (cf.[2]).

2.2 Advanced User Interfaces

Advanced user interfaces represent the current state-of-the-art in human-computer
interaction. It is an intricate task to precisely define the term advanced user
interface, since there exists a wide range of user interfaces that are considered
advanced. Their common qualification is that they go beyond traditional user in-
terfaces of data-intensive or simple control systems. But this can be with respect to
different aspects, e.g. supporting complex interactions, visualizations, multimedia
representations, multimodality, context-dependent adaptability, or customization
(see [3], [4]). Summarizing and extending the classification of [5], typical facets
of advanced user interfaces are:

• they have to provide a high degree of usability,
• increasingly complex functionality is expected,
• more intuitive interaction techniques are built in,
• multimodal interaction is supported,
• tailored and customizable representations of information are offered,
• techniques like animation or 3D visualization are incorporated,
• speech or haptic output are used as additional perception channels,
• temporal media types, like video and audio, and the combination of differ-

ent modalities require dealing with synchronization and dependency issues,
• different interaction devices are used for different purposes, even within a

single modality,
• they use a broad spectrum of presentation, perception, and representation

media,
• context-aware user interfaces and adaptation to the context of use by means

of context-sensitive and multi-target user interfaces and user interface plas-
ticity appear in ubiquitous computing [2].

2.3 (Advanced) User Interface Development

User interface development generally employs both creative and informal tech-
niques of development such as storyboards and prototyping, and formal tech-
niques such as dialog structure and dialog state models. The development of user
interfaces of a software-based system is a multidisciplinary task. It typically in-
volves knowledge (and experts) from areas such as usability engineering, interac-
tion design, graphics and media design, user interface technologies and interaction
devices, computer engineering, software engineering, human factors, ergonomics
and even psychology. User interface development comprises tasks of specifica-
tion, design, and implementation. The implementation of user interfaces often

227

employs dedicated frameworks (e.g. Java AWT, SWT or SWING), toolkits, and
tools (e.g. GUI builders).

Advanced user interface development covers a broader spectrum of aspects than
traditional user interfaces development. This is due to two reasons: advanced user
interfaces have additional aspects that need to be taken into account (product per-
spective); the development of advanced user interfaces comprises additional tasks,
activities, methods and techniques that are not contained in traditional user inter-
face development methods (process perspective).

We can thus distinguish between two different dimensions and interpretations
of the term advanced user interface development, which can even be combined to
build a third interpretation:

A) development of advanced user interfaces
B) advanced development of user interfaces
C) advanced development of advanced user interfaces

Model-driven development of user interfaces can be subsumed to category B,
model-driven development of advanced user interfaces belongs to category C.

Advanced-user interface development naturally requires the combination of exper-
tise from human-computer interaction and software engineering. One possible ap-
proach is to combine object modeling with user interface design [6]. A series of
workshops on bridging the gaps between the software engineering and human-
computer interaction communities was hold as an activity of IFIP WG 2.7/13.4 on
User Interface Engineering during the last decade (http://www.se-hci.org/bridging/)
and resulted in some interesting lines of research (see e.g. [7], [8], [9]) –MDDAUI
being one of them!

It is our objective to integrate the knowledge from both domains and to apply
the model-driven development paradigm to user interface development. We will
look at this methodical integration from the perspective of models and modeling in
the next section.

2.4 Models of (Advanced) User Interfaces

A model is, according to scientific theory, a representation of a natural or artificial
original that focuses on those characteristics and properties of the original that are
relevant for the given purpose of modeling, and abstracts from irrelevant proper-
ties. In an engineering process, models are used for specification, documentation,
and communication. They are themselves objects of processing and transforma-
tion, and are a foundation for decision making, analysis, validation, verification,
and testing. Models can be built upfront or retrospective in terms of forward engi-
neering or reverse engineering, respectively.

The use of models has gained popularity in both software engineering and hu-
man-computer interaction over the years. Models have a long tradition in systems
and software engineering. Eventually with the Unified Modeling Language
(UML), model-based software development has become popular and common
practice. Recently, model-driven development is attracting a lot of attention in the
software engineering domain.

228

Likewise model-based user interface development has found its way into hu-
man-computer interaction design and user interface development. Models play an
important role in today’s user interface development. The purpose of models in
the development of user interfaces has been stated in [4]:

“Models shall act as a kind of bridge between input from various people involved in
UI development (end users, domain experts, UI developers, management people,
etc.) to integrate all this knowledge and to transfer it into the software engineering
process.”

However, although both communities make extensive use of models in their de-
velopment methods, the modeling is still vastly independent.

As in software engineering, the modeling of user interfaces deals with different
aspects and happens on different levels of abstraction. In addition, it may also be
done with a different degree of detail. Therefore, a holistic model has to combine a
set of partial models that are dedicated to modeling specific aspects on a defined
level of abstraction. The required degree of detail should be part of an accompany-
ing quality model.

For example, the CAMELEON reference framework for user interface models
in [2] structures the development lifecycle in four levels of abstraction: tasks and
concepts, abstract user interface, concrete user interface, final user interface.

Human-computer interaction and the development of advanced user interfaces
naturally address a broad spectrum of aspects to be considered. They can be repre-
sented by a diversity of dedicated models. Different kinds of models have been
widely used in the development of user interfaces. For example, task and dialog
models are used in many developments, and traditional approaches for user inter-
face development provide abstract and platform-independent models for basic
widget-based user interfaces.

For example, the CAMELEON reference framework [2] proposes a set of
models for the modeling of context-sensitive user interfaces. On the conceptual
level, three groups of models are differentiated: domain, context, and adaptation.
Domain concepts and tasks belong to the domain models. User, platform, and en-
vironment models are subsumed in the context models. Adaptation models
comprise evolution and transition models. From these models, design models are
derived. Among them are concepts and task models, abstract user interface
and concrete user interface models and the final user interface model for a given
configuration. A third group of models guide the adaptation process of the
context-sensitive user interface at runtime. Obviously, there exist relationships
between these models that call for systematic transformation.

In our method for object-oriented modeling of multimedia applications
OMMMA [10], we use four different types of models in combination: presentation
model (structure and layout), state model (interactive control), class model (media
and application structure), and sequence model (temporal behavior). Our
GuiBuilder method [11] uses a concrete user interface model consisting of a pres-
entation model (structure and layout of user interface elements) and a dynamics
model (interaction behavior). The GuiBuilder tool provides an editor and compo-
nents for model validation, UI prototype generation and simulation.

229

User Model

User Preference Model

User Knowledge Model

Perception Model Cognition Model Action Model

User Behav iour Model

Learning Model

User Activ ity Model

User Goals

Task Model

Scenario Model

Role Model

Workflow Model

Collaboration Model Social Behav iour Model

User Interface Model UI Guidelines

Dialog Model Presentation Model

Platform Model

Interaction Model

Context ModelUse Env ironment

Adaptation Model

Domain Model

Abstract UI Model

Concrete UI Model

Fig. 1 A large variety of models is used in the development of (advanced) user interfaces

In [12], we have given a list of models and sub-models that are commonly used
in user interface development. This list of models does not claim to be complete,
but already shows the diversity of models being used. A partly extended set of
models is shown in Fig. 1. Some of them may be even further decomposed, e.g.
the dialog model into dialog structure, dialog flow, and dialog state models; or the
presentation model into presentation structure, presentation layout, and presenta-
tion state models.

Which models are actually needed and best suited depends much on the given
development task and context. In [5], we concluded that “it is very probable that
there is no single set of models optimal for every kind of user interface”.

However, not all of the aspects listed in Sections 2.1 and 2.2 can be easily rep-
resented by formal models in a user interface development method. Therefore,
user interface development traditionally employs a number of informal techniques
(see Section 2.3) to cover certain aspects, especially if development is performed
on a higher level of abstraction. Their results can be considered to be informal
models. Furthermore, development methods have not only to consider the system
perspective, but also look from the perspective of the users.

230

Advanced user-orientation can be achieved by integrating methods of software
engineering with (less formal) methods of user-centered design [8]. Therefore,
the analysis and conceptual modeling of users, contexts of use, tasks and usage
scenarios have to be covered by an advanced user interface development method
as well.

Hence, it is our objective to provide a methodological framework that allows
method engineers to define, flexibly select and customize (semi-)formal models
and to integrate them with other artifacts to cover all relevant aspects of their ad-
vanced user interface development in a coherent set of models and artifacts. The
resulting methods combine modeling with informal techniques of other design
disciplines such as interaction design, creative design, graphics design, media
design, to name but a few. We call the result of such a method development an
integrated method.

2.5 Integrated Model-Driven Development of Advanced User
Interfaces

The guiding principle of MDDAUI is “the demand for a flexible composition of
various different models to support the model-driven development of user inter-
faces with a high degree of usability and customization” [13].

Model Driven Development (MDD) is an important paradigm in software
engineering. The basic idea is to systematically specify software using (platform-
independent) models, which are then gradually (i.e., using platform-specific
models) and (semi-)automatically transformed into executable applications for
different platforms and target devices.

MDD employs another core concept in addition to models: model transforma-
tions. Model transformations can be used to transform the content of a model or
between models. Models can be (semantically) transformed or (syntactically)
translated. Model transformations can also be used to check and restore consis-
tency or other quality properties of models. The intention of MDDAUI is to apply
this software engineering paradigm in the domain of user-interface development.

2.6 Requirements for Integrated MDD Methods for Advanced
User Interfaces

From the aforementioned analysis, we can summarize important requirements for
MDDAUI methods and, transitively, the method engineering meta-method. We
classify the requirements by their origin: the product domain of (advanced) user
interfaces (UI, AUI), the method domain of (advanced) user interface develop-
ment (UID, AUID), and the development paradigms model-based development
(MBD) and model-driven development (MDD). The requirements are listed in
Table 1. They will be answered by the meta-method in Section 4.

231

Table 1 Requirements for model-driven development methods for advanced user interfaces
that need to be covered by the meta-method

Requirement Type

The method must be able to treat a user interface as part of an interactive system. UI

The method must support typical user interface concepts such as user, goal, user
interface, dialog, presentation, physical and logical user interface component,
platform, device.

UI

The method must support typical concepts of advanced user interfaces and address the
relevant aspects for the abstract user interface from the list in Section 2.2.

AUI

The method must allow user interface developers to use multiple methods and
techniques that differ in formality and scope, such as creative techniques and formal
techniques.

UID

The method must support a combination of different domains of knowledge in a
multi-disciplinary development.

UID

The method must support multiple stages of development. UID

The method must be able to account for implementation practices and techniques by
specifying the use of technologies such as frameworks, toolkits, and tools.

UID

The method must account for usability and user needs. UID

The method must support informal development techniques for user interfaces. UID

The method must support multiple views. UID

The method must produce a set of artifacts that are related to each other. UID

The method must be able to distinguish different stages of development. UID

The method must provide an integrated artifact model that combines formal and
informal representations.

UID

The method must support different disciplines of user interface development. UID

The method shall be integrated with software engineering practice. UID

The method must provide restricted views for different developer roles. UID

The method must include the necessary methods for developing the relevant aspects
of advanced user interfaces.

AUID

The method must allow for the combination of methods from software engineering
and human-computer interaction.

AUID

The method must be capable of using models in the development. MBD

The method must support multiple models. MBD

The method must support models for different purposes, such as specification,
documentation, and communication (as indicated in Sect. 2.4).

MBD

The method must support the use of models for capturing development knowledge
about the advanced user interface.

MBD

The method must support modeling on different levels of abstraction. MBD

The method must support the selection of a set of different models that model
different aspects.

MBD

The method must allow for the differentiation of degrees of detail in models. MBD

The method must include the definition of elements of models. MBD

232

Table 1 (continued)

Requirement Type

The method must include the definition of relationships between models. MBD

The method must support model-driven development, i.e., the specification of model
transformations within and among models, operating on models and model elements.

MDD

It must be supported by the meta-method to specify model transformations. MDD

The model shall provide notions of platform-independent and platform-specific
models.

MDD

3 Method Engineering for Advanced User Interfaces

In this section, we will introduce the discipline of method engineering and will
then discuss the use of meta-modeling for method engineering. This will lead us to
the definition of our meta-method in the next section.

3.1 Method Engineering

Method engineering has been an active research area in the field of information
systems engineering since the early 1990s. In general, method engineering is con-
cerned with formalizing the use of methods for systems development [14]. More
precisely, method engineering can be defined as the engineering discipline to de-
sign, construct and adapt methods, techniques and tools for the development of
(information) systems (based on [15], [14]). The objective of method engineering
is to develop a methodological approach for systems development in a given con-
text (and situation) such as an organization or project.

Method engineering mainly addresses two perspectives: a) the systematic devel-
opment of methods and b) the enactment and execution of methods. Both aspects
may themselves be supported by dedicated tools, such as a method development
environment and a method workflow engine.

Applying method engineering to the domain of advanced user interface devel-
opment provides a number of advantages:

• method engineering provides a methodological framework and conceptual
infrastructure for method knowledge,

• method engineering supports a systematic development of model-driven
development methods for advanced user interfaces,

• by providing specific means for method adaptation, methods can be
adapted to a particular situation and context of use (cf. situational method
engineering, see ([14]) for a recent survey),

• concepts of method modularization, reuse and configuration can be used
to assemble methods from method building blocks, such as viewpoint
templates [16], method fragments [15], method chunks or method services
[17],

233

• the meta-models that are used for the definition of methods enable analysis
and comparison of methods, even quantitatively by the use of metrics,

• method engineering can ease reuse and provide means for compositional
method development, and method integration,

• method engineering builds a sound basis for tool support, e.g. computer-
aided software engineering (CASE) tools that may be built by using Meta-
CASE tools.

The product of a method engineering process is a method. The users of this
product are system and software engineers, and user interface developers in the
case of MDDAUI.

Evaluate MethodDeploy & Use MethodElicit Method
Requirements

Develop Method

Fig. 2 The general overall method engineering lifecycle is similar to a software lifecycle

The lifecycle of a method is similar to the lifecycle of a software system. We
can interpret a method as a conceptual system for system development. Method
engineering manages and controls this method lifecycle and may even itself be
computer-supported by its own software system, a computer-aided method engi-
neering (CAME) tool [15]. The general overall process model of method engineer-
ing is depicted in Fig. 2. Once the domain of discourse has been identified
(MDDAUI in our case), the requirements for the method are analyzed. It follows a
multi-stage development process. Then the method is deployed, used, and evalu-
ated in order to start another evolution cycle.

3.2 Meta-Modeling for Method Engineering

Meta-modeling has been identified as a promising means for method engineering.
Several meta-models have been defined in the literature by different authors, see
e.g.[18], [19], [20], [21]. Two standards also exist that use meta-models for the de-
finition of software development methods: ISO 24744:2007 Software Engineering
− Metamodel for Development Methodologies [22] and SPEM, the Object Man-
agement Group’s (OMG) Software & Systems Process Engineering Meta-Model
Specification [23]. The latter provides a meta-model as well as a UML profile for
the specification of software development methods.

MOF, the OMG’s Meta-Object Facility [24], has defined a four-layer meta-
model architecture that is commonly used in object-oriented meta-modeling. In this
hierarchy, elements of layer n-1 are instances of elements in layer n (1 ≤ n ≤ 3).
According to this meta-model hierarchy, we can characterize the levels for the
domain of method engineering:

234

M0 (Runtime layer) – M0 denotes the lowest level of the MOF 4-layer meta-
model hierarchy. In this layer, objects of the real world are denoted that exist at
execution time of the modeled system. More generally, M0 represents the area of
concern, which may be business, software engineering, or method engineering. In
the domain of method engineering, the M0 elements are the concrete objects that
are produced or modified during a concrete development endeavor.

M1 (Model layer) – M1 is the layer where user models are located. Reality is
modeled in a modeling language, such that elements of M0 are instances of ele-
ments in M1. In the domain of method engineering, the model of the method is al-
located on this level.

M2 (Meta-model layer) – M2 is the layer where meta-modeling takes place. It
contains meta-models (models of models) such as the UML meta-model or SPEM
which define modeling languages to describe the user models of layer M1. Ele-
ments of user models from M1 are then instances of meta-model elements of layer
M2. This level holds the meta-method’s product model in the domain of method
engineering.

M3 (Meta-meta-model layer) – M3 is the highest level of the 4-layer meta-
model hierarchy. Meta-meta-models are defined on this layer. They are used to
describe the meta-models on layer M2. In the MOF hierarchy, the Meta Object
Facility itself is defined on this level. Defining method engineering within an ob-
ject-oriented meta-model hierarchy, we use MOF for the domain of method engi-
neering on this level as well.

We also build on meta-modeling in our meta-method for method engineering.
However, we have discovered that simply employing object-oriented meta-
modeling has some shortcomings. In particular, the restriction to solely have
MOF’s <<instanceOf>> relationship between meta-model layers, and to permit it
only between directly neighboring layers, does not allow us to straightforwardly
combine the product and the process parts within this framework. Yet for defining
a method, we have to combine the method’s product model with its process
model, as depicted in Fig. 3.

The process model is composed of a work model and a workflow model. We
apply this method pattern on both the meta-method level and the method level.
However, while the meta-method process model must be an instance of a process
meta-model to have execution semantics, all parts of the method are defined as an
instance of the meta-method product model, since the complete method is the
product of the method engineering process. Yet, the method process model must
also be an instance of the process meta-model, since it is a process model itself.
We solve this problem by bootstrapping the process meta-model into the meta-
method product model with a <<merge>> relationship (see [24]), like this was
done for MOF and UML, too. The method is engineered by instantiating the meta-
method process model and enacting the thus instantiated process on the method
level. This relation is represented by the dependency of type <<producedBy>> be-
tween the method and the instance of the meta-method process model. The same
pattern applies on the M0 level for the production of the development project’s ar-
tifacts. Further details on the formal background of our meta-modeling approach
for method engineering can be found in [1].

235

M3

M2

M1

M0

Method Engineering
Meta-Method

AUI Development
Method

AUI Development
Project

Meta-Method
Product Model
Meta-Method
Product Model

Meta-Method
Process Model
Meta-Method
Process Model

MOFMOF Process
Meta-Model

Process
Meta-Model

MethodMethod
<<instanceOf>> <<producedBy>>

Method
Artifact Model

Method
Artifact Model

Method
Process Model

Method
Process Model

+

Project ArtifactsProject Artifacts <<instanceOf>>

<<producedBy>>

<<typedOver>>

<<typedOver>>

<<typedOver>>

+

Meta-Method
Work Model

Meta-Method
Work Model

Meta-Method
Workflow Model
Meta-Method

Workflow Model

+

Method
Work Model

Method
Work Model

Method
Workflow Model

Method
Workflow Model

<<typedOver>>

<<typedOver>>

Method Process
Enactment

Method Process
Enactment

<<instanceOf>> <<instanceOf>>

<<instanceOf>> Meta-Method
Process Enactment

Meta-Method
Process Enactment

<<merge>>

Fig. 3 Applying the meta-modeling approach for the engineering of methods

4 Meta-method for Engineering Development Methods

Conforming to the model presented in the previous section, the meta-method of
our method engineering approach consists of a product and a process model. We
will give an overview of both in this section. For the process part, we will focus on
the workflow model.

4.1 Process Model of the Meta-Method

In Fig. 4, the workflow of the composite activity “develop method” from Fig. 2 is
shown. While we describe the process workflow in a rather waterfall-like structure
for the ease of presentation here, it may in practice be enacted in a more incre-
mental and iterative fashion.

The meta-method’s process combines activities of language engineering and
method engineering. A first version of the process was published in [25]. There,
we focused on the development of the domain model and artifact model together
with language selection (steps 2 to 4 in the process depicted in Fig. 4). In [1], we
provide a complete and revised description of the step 1-4, 6 and 7 of the above
process in the context of the general method. However, in this work we have
specialized and extended the general process for the domain of MDDAUI. We de-
scribe the specialized process in the following step by step.

236

Define domain and
disciplines

Specify domain model,
aspects and domain

concepts

Prov ide methods, tools,
techniques, and utilities

Define dev elopment
process

Specify artifact types and
model types

Select language
candidates

Specify model
transformations

Fig. 4 High-level process model of the meta-method for model-driven development
methods

1. Define domain and disciplines: The domain is MDDAUI in our case, and dis-

ciplines are used to further structure the development method into areas of con-
cern, such as requirements elicitation, conceptual modeling, interaction design,
abstract user interface modeling, concrete user interface modeling, user inter-
face implementation, and so on.

2. Specify domain model, aspects and domain concepts: The model of domain
concepts is set up and organized according to the identified disciplines (in the
form of packages that may be hierarchically nested). The disciplines may also
correspond to stages of development or levels of abstraction. From the re-
quirements in Sect. 2.6, we have also derived the need for views that represent
the perspective of a stakeholder or a particular aspect of the advanced user
interface. Core tasks of this activity are the definition of domain concepts and
assigning them to disciplines and views.

Relationships between concepts are added such as composition and aggrega-
tion relationships, dependencies, associations.
 The meta-model representation is accompanied by a glossary that contains
an entry for each meta-model class. It describes the semantics, purpose and
properties of the concept and relationships to other concepts.

3. Select language candidates: In order to represent the domain concepts appro-
priately, languages, together with possible sub-languages (e.g., UML diagram
types) and language elements must be identified as candidates.

4. Specify artifact types and model types: Candidate languages and language
elements from step 3 are assigned to domain concepts from step 2 according to
the properties of the domain concepts that need to be expressed. While the
model of domain concepts defines the semantics of the method elements in the
product model, languages define the syntax and notation for their representa-
tion. The artifact model then links language elements with domain concepts. If
existing languages or symbols are used, then the method engineer has to take
care that the given semantics of the proposed candidate language elements is
conformant with the semantics imposed by the composition of step 3, and the

237

semantics of each language element shall still be unambiguous. Composition
hierarchies in the model of domain concepts and the artifacts model must be
compatible.
 This step of the process is further extended in the domain of model-based de-
velopment methods. In addition to general artifact types, models can be defined
as specializations of the artifact concept. The required and allowed model ele-
ments are defined for each type of model, and relationships between models
can be defined in the same way as for artifacts.

5. Specify model transformations: Since we address model-driven development
methods for advanced user interfaces in our approach, this step is an extension
to the standard method engineering process of the meta-method. If a model-
driven development method is to be defined, the model transformations must be
defined as transformation within or between models. This can be done in a rule-
based manner.

6. Define development process: The definition of the development process rei-
fies the definition of a roadmap through the network of development artifacts.
Activities are defined and ordered into workflows that produce the required ar-
tifacts in the specified order.

We have to define tasks, activities for accomplishing tasks, steps of activities
and workflows containing an ordered set of activities in this step of the meta-
method’s process. The process structure contains activities, milestones and con-
trol-flow elements. The process model can be extended by object flows of input
and output artifact types, and roles that are responsible for executing activities.

7. Provide methods, tools, techniques, and utilities: The selection or develop-
ment and the provision of methods (method modules), tools, techniques, and
utilities as well as the provision of tool mentors are required for guiding and
simplifying the works of user interface development and producing the required
artifacts. Tools are assigned to artifact types, languages or development tech-
niques. Guidance on how to produce the artifacts of a particular type in the se-
lected language shall be explicitly provided, e.g. in the form of guidelines, good
and best practices, whitepapers, checklists, templates, examples, or roadmaps.
However, even the assignment of languages to software engineering concepts
in step 3 can be interpreted as partly associating a technique for the develop-
ment artifact. Both languages and tools typically have implications on how to
produce an artifact. Eventually, tools and utilities are thus related to the activi-
ties of the software engineering process model as well. By this, it is shown
which activities are supported by tools and utilities and, in turn, which of them
are to be used when accomplishing the task of the activity.

4.2 Product Model of the Meta-Method

 The product meta-model for method engineering that we propose for model-
driven development methods is depicted in Fig. 5. According to the meta-model,
the domain is structured into disciplines. Artifacts are related to the disciplines,
where they are used. An artifact is always related to a pair of concept and notation.
All relevant concepts of the user-interface development domain are elements of

238

the domain model. Furthermore, aspect views are defined on the domain model to
cover particular views on selected aspects of the domain model, e.g. a modeling
view such as for task modeling or a view for a given developer role or stakeholder
(then possible relations to the respective classes Model and Role are not mod-
eled as associations of this meta-model).

Models are an important concept in model-centered, i.e., model-based and
model-driven, development paradigms. To account for that, we introduced the
class Model as a specialization of the class Artifact in our meta-method’s ar-
tifact model. Models contain model elements, as indicated by the composition re-
lationship between the classes Model and Model Element. This allows me-
thod engineers to define model types and their element types directly as they
commonly define artifact types in their methods.

Domain

Discipline

Activ ity

Notation

Concept

ArtifactRole

ModelModel
Transformation

Organization Process

Method

Tool Technique Utility

Task

Aspect View Domain Model

Model Element

+performer

1 1..*

1..*

1

1

1..*

1..*

1..*

11..*

1..*

1

1..*

1

1..*1..*

1..*

+input

*

1..*

+output
1..*

1..*

1

1..*

1

+subdomain *

0..1

1..*

1

+participant

* *

1..*

1

0..*

1..*

*

+source

1

*

+target

1

*

*

*

*

*

*

1..*

+performer 1

*

+participant*

1

+task use
1..*

1..* 1

1..*

+method use

1

Fig. 5 Meta-model in the context of the model-driven development paradigm.

In the model-driven development paradigm, model transformations play a
prominent role. They should therefore be considered as first-class citizens of any
model-driven development method. Thus, for model-driven development methods,
we have included the class Model Transformation which has source and

239

target relations to class Model. A transformation rule then operates on the model
elements (not modeled in this meta-model) of the related models. Activities are
the binding element between the information and the process view of the method
description. Activities are owned by disciplines and are the constituents of work-
flow processes. They operate on artifacts which they use as their input and output
parameter objects. Each activity uses a defined method to produce its output.
Alike the activity, the method is also associated with a discipline. Such a method
can provide tools, techniques and utilities that support the performers in accom-
plishing the task that is related to the activity. Each model transformation is re-
lated to one or more activities, meaning that the transformation is executed as part
of the activities in order to transform the elements of the related models as speci-
fied by the transformation.

5 Applying the Meta-Method: Development of Model-Driven
Development Methods for Advanced User Interfaces

After we have seen the product model and the general workflow model of the me-
ta-method in the previous section, we will now look at some consequences when
this approach for method engineering is applied in the MDDAUI domain. We will
concentrate on some important aspects of such a method definition.

The first major result of the method engineering process that is released to user
interface developers as the users of the method is a structured model of artifact
and model types, together with their relationships. This is typically represented as
a model of packages, sub-models (see Fig. 1 in Section 2.4) and classes. Such
model can become quite large, therefore it is important to employ the described
means of structuring. An excerpt from such a model of an advanced user interface
is depicted in Fig. 6. It shows five types of models and three classes representing
model elements.

«model»
Task Model

Task

User

Dialog

«model»
Abstract UI Model

«model»
Dialog Structure Model

«model»
Dialog Flow Model

«model»
Concrete UI Model0..1

refines

1

0..1
1

1

1

1..*

1

+supporting

11..*

+user

1..*

1..**

+performer 1

1..*

1

Fig. 6 Excerpt from the artifact model of a development method for user interfaces that is
used as the type definition of a transformation rule

240

 The definition of workflows does methodically not differ from the definition of
workflows for the meta-method as shown in the previous section. We will there-
fore omit to present another example here. However, the use of transformations
for the specification of development tasks and their effect on the product model
was not shown there. The same approach can also be deployed for the specifica-
tion of model transformations in model-driven development methods.

Effects of development tasks as well as model transformations on the models of
the user interface can only be expressed in a limited way by using activity dia-
grams or composite structures [1]. Even if object flows are represented, they can
only make reference to the state of individual objects. They are insufficient for
modeling the effect of a task or transformation on the object structure, i.e., the
graph of objects that are connected by association links, of the modeled system.
We therefore included collaborations in our methodical framework that are inter-
preted as graph transformation rules [26]. These transformation rules are typed
over the product model of the method.

performer:Role

task:Task

«model»
:Task Model

+performer

<<transformation>> Initiate Abstract UI Modeling

«model»
:Task Model

task:Task

performer:Role

«model»
:Abstract UI Model

:Dialog

«model»
:Dialog State

Model

«model»
Dialog Structure

Model
+performer

+supporting

+user

Fig. 7 Example for a model transformation rule defined on the instances of the meta-model

Fig. 7 gives an example of such a transformation rule. It states for the transfor-
mation “initiate abstract UI modeling” that for each occurrence of the pattern on
the left-hand side in an instance of the product model, the structure on the right-
hand side must be produced by the transformation. In particular, it states that if a
task model contains a task that is performed by the instance performer of class
Role, then a dialog must be generated as part of the abstract user interface model
which supports the given task and is used by the performer:Role to accom-
plish the task. Furthermore, two more models have to be instantiated: a dialog
state model and a dialog structure model, that are both associated to the generated
dialog element. The rule can be interpreted as a visual contract stating pre- and
post-conditions of the transformation [27].

241

6 Conclusions

We presented a meta-method for the development of systems, software and user
interface development methods in this chapter. It builds on the concept of object-
oriented meta-modeling based on the 4-layer MOF architecture, yet extends it to
account not only for the product model, but also for the work definitions and
workflows that form the process model.

We applied the concepts of method engineering in general and our meta-
method in particular to the domain of model-driven development of advanced user
interfaces (MDDAUI). Based on the analysis of requirements for such a develop-
ment method stemming from both the product domain of (advanced) user inter-
faces and the method domain of integrated model-driven development, we adapted
the general method engineering meta-method to cover models and model trans-
formations as first-class citizens of the method description. Finally, we briefly
showed some results of applying the meta-method to the target domain, especially
graph transformation rules for the specification of tasks, activities and transforma-
tions in a user interface development process.

References

[1] Engels, G., Sauer, S.: A Meta-Method for Defining Software Engineering Methods.
In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Graph
Transformations and Model-Driven Engineering. LNCS, vol. 5765, pp. 411–440.
Springer, Heidelberg (2010)

[2] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.:
A unifying reference framework for multi-target user interfaces. Interact with Com-
put. 15(3), 289–308 (2003)

[3] Pleuß, A., Van den Bergh, J., Sauer, S., Hußmann, H., Bödcher, A.: Model driven de-
velopment of advanced user interfaces (MDDAUI) – MDDAUI’06 workshop report.
In: Auletta, V. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 101–105. Springer, Hei-
delberg (2007)

[4] Pleuß, A., Van den Bergh, J., Sauer, S., Görlich, D., Hußmann, H.: Third interna-
tional workshop on model driven development of advanced user Interfaces. In: Giese,
H. (ed.) MODELS 2008. LNCS, vol. 5002, pp. 59–64. Springer, Heidelberg (2008)

[5] Pleuß, A., Van den Bergh, J., Sauer, S., Hußmann, H.: Workshop report: model
driven development of advanced user interfaces (MDDAUI). In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 182–190. Springer, Heidelberg (2006)

[6] Van Harmelen, M. (ed.): Object modeling and user interface design: designing inter-
active systems. Addison-Wesley, Longman (2001)

[7] Kazman, R., Bass, L.: Guest editors editorial: special issue on bridging the process
and practice gaps between software engineering and human-computer interaction.
Softw. Process Improv. Pract. 8, 63–65 (2003)

[8] Engels, G., Sauer, S., Neu, B.: Integrating software engineering and user-centred
design for multimedia software developments. In: Proc. 2003 IEEE Symp. Human
Centric Computing Languages and Environments (HCC 2003), pp. 254–256. IEEE
Computer Society, Los Alamitos (2003)

242

[9] Seffah, A., Vanderdonckt, J., Desmarais, M.C.: Human-centered software engineer-
ing: software engineering models. In: Patterns and Architectures for HCI, Springer,
London (2009)

[10] Engels, G., Sauer, S.: Object-oriented modeling of multimedia applications. In:
Chang, S.K. (ed.) Handbook of Software Engineering and Knowledge Engineering,
vol. 2, pp. 21–53. World Scientific, Singapore (2002)

[11] Sauer, S., Dürksen, M., Gebel, A., Hannwacker, D.: GuiBuilder – A tool for model-
driven development of multimedia user interfaces. In: Van den Bergh, J., et al. (eds.)
Model Driven Development of Advanced User Interfaces, MDDAUI 2006. CEUR-
WS, vol. 214 (2006), http://CEUR-WS.org/Vol-214/

[12] Van den Bergh, J., Meixner, G., Sauer, S.: MDDAUI 2010 workshop report. In: Van
den Bergh, J., et al. (eds.) Proc. 5th Intl. Workshop on Model Driven Development of
Advanced User Interfaces MDDAUI 2010. CEUR-WS, vol. 617 (2010)
urn:nbn:de:0074-617-8

[13] Meixner, G., Görlich, D., Breiner, K., Hußmann, H., Pleuß, A., Sauer, S., Van den
Bergh, J.: Fourth international workshop on model driven development of advanced
user interfaces. In: Proc. 13th Intl. Conf. Intelligent User Interfaces (IUI 2009), pp.
503–504. ACM, New York (2009)

[14] Henderson-Sellers, B., Ralyté, J.: Situational method engineering: state-of-the-art re-
view. J. Univers. Comput. Sci. 16(3), 424–478 (2010)

[15] Brinkkemper, S.: Method engineering: engineering of information systems develop-
ment methods and tools. Inf. Softw. Technol. 38, 275–280 (1996)

[16] Nuseibeh, B., Finkelstein, A., Kramer, J.: Method engineering for multi-perspective
software development. Inf. Softw. Technol. 38, 267–274 (1994)

[17] Rolland, C.: Method engineering: towards methods as services. Softw. Process. Im-
prov. Pract. 14, 143–164 (2009)

[18] Jeusfeld, A., Jarke, M., Mylopoulos, J. (eds.): Metamodeling for method engineering.
MIT Press, Cambridge (2009)

[19] Bollain, M., Garbajosa, J.: A metamodel for defining development methodologies. In:
Filipe, J., et al. (eds.) ICSOFT/ENASE 2007. CCIS, vol. 22, pp. 414–425. Springer,
Heidelberg (2008)

[20] Gonzalez-Perez, C., McBride, T., Henderson-Sellers, B.: A metamodel for assessable
software development methodologies. Soft. Qual. J. 13, 195–214 (2005)

[21] Henderson-Sellers, B., Gonzalez-Perez, C.: A comparison of four process metamod-
els and the creation of a new generic standard. Inf. Softw. Technol. 47, 49–65 (2005)

[22] ISO, ISO/IEC 24774:2007 Software engineering − metamodel for development meth-
odologies. International Organization for Standardization, Geneva (2007)

[23] OMG, Software & systems process engineering meta-model specification, version
2.0. Object Management Group (2008), http://www.omg.org/specs/

[24] OMG, Meta object facility (MOF) core specification, version 2.0. Object Manage-
ment Group (2006), http://www.omg.org/spec/MOF/2.0/PDF/

[25] Engels, G., Sauer, S., Soltenborn, C.: Unternehmensweit verstehen – unternehmen-
sweit entwickeln: von der Modellierungssprache zur Softwareentwicklungsmethode.
Inform. Spektrum 31(5), 451–459 (2008)

[26] Heckel, R., Sauer, S.: Strengthening UML collaboration diagrams by state transfor-
mations. In: Hussmann, H. (ed.) FASE 2001. LNCS, vol. 2029, pp. 109–123.
Springer, Heidelberg (2001)

[27] Lohmann, M., Sauer, S., Engels, G.: Executable visual contracts. In: 2005 IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC 2005), pp.
63–70. IEEE Computer Society, Los Alamitos (2005)

243

	Danksagung
	Contents
	1 Introduction
	2 Classifying Research Contributions to Model-based Software Engineering Methods
	2.1 Engineering Framework for Methods and Software
	Classification of Works

	3 Formal Methods for Software Engineering Methods
	3.1 Rigorous Modeling with the Unified Modeling Language
	Semantic Dimensions of Sequence Diagrams
	3.3 Precise Semantics of UML Collaboration Diagrams
	Dynamic Meta Modeling (DMM)
	Dynamic Meta Modeling with Time (DMM+t)

	4 Fundamental Methods for Software Engineering
	4.1 Java Code Generation from UML Behavioral Models
	4.2 Visual Contracts (VC): Design-by-Contract with Models
	4.3 Executable Visual Contracts for Model-driven Monitoring
	Web-Service Discovery and Validation with Visual Contracts
	4.5 Specification of Enterprise Services with Visual Contracts
	Model-based Testing with Visual Contracts

	5 Multimedia and Interactive Systems
	5.1 Multimedia Software Engineering Methods
	5.2 Object-oriented Modeling of Multimedia Applications
	Model-based development with Multimedia Authoring Systems
	5.4 Integrated Methods for Interactive Multimedia Systems
	5.5 Model-driven Development of Interactive Multimedia Systems
	Generation of Web Application Prototypes

	Business Information Systems
	6.1 Specification Method for Business Information Systems
	6.2 Integration of Application Development and Landscaping
	Integrated Specification Framework: Method and Quality Gates
	Integration of Software Engineering and Software Quality Assurance Methods
	Bridging Requirements Specification and Test
	Integrating Quality Methods in Agile Processes

	6.5 Architecture-driven Development: Software Stacks

	7 Method Engineering
	Concluding Remarks
	References
	9 Engineering of Software Engineering Methods
	10 Foundations of Method Engineering of Software Engineering Methods Based on Meta-Modeling
	10.1 Software Engineering and Software Development
	10.2 Models and Meta-Models
	Method Engineering
	Meta-Modeling for Method Engineering
	10.5 SPEM
	10.6 ISO 24744

	A Meta-Method for Method Engineering of Software Engineering Methods
	11.1 Meta-Model Architecture of the Meta-Method
	11.2 Method Engineering Meta-Method: Product Model
	11.3 Method Engineering Meta-Method: Process Model
	11.4 Integrating the Views of the Meta-Method
	11.5 Defining the Artifact Model of the Software Engineering Method
	11.6 Software Process Modeling in the Software Engineering Method
	11.7 Defining Work of Software Engineering Methods as Transformations

	12 Tailoring and Reuse of Software Engineering Methodology
	12.1 Tailoring the Software Engineering Method
	12.2 Tailoring the Meta-Method

	13 Conclusion
	References
	14 Contributed Works and Publications

